
   

 
 

 
 
 
 

Neural Processing of Fearful and Happy Facial Expressions: Effects of 
Fixation to Facial Features and Task Demands 

 
 
 
 
 
 
 
 
 

by  

Karly Neath 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Psychology  

 
 

 
 

Waterloo, Ontario, Canada, 2015 

© Karly Neath 2015 
 



ii 
 

AUTHOR'S DECLARATION 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. I understand that my thesis 

may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

 

The current literature regarding the time course of facial expression processing is inconsistent 

and early emotion effects are debated. Facial expressions are well-known to be characterized by 

“diagnostic” facial features (e.g., the smiling mouth for happy expressions and wide open eyes 

for fearful expressions) and these “diagnostic” features have been suggested to modulate the 

neural response to facial expressions; however, a systematic investigation of the impact of facial 

features on the neural processing of facial emotions is lacking. Thus, in an attempt to elucidate 

the time course of facial expression processing, and these early emotion effects, the main 

objective of the current thesis was to investigate whether fixation to facial features influenced 

the neural response to facial expressions. Combining EEG and eye-tracking using a gaze-

contingent procedure, three experiments tested whether fixation to the “diagnostic” facial 

features of a given emotion was driving these previously reported early emotion effects on well-

known ERP components (P1, N170 and EPN) during a gender discrimination (Experiment -Exp.1), 

explicit emotion discrimination (Exp.2) and an oddball detection (Exp.3) task. Given that 

experimental procedures have also been highly inconsistent in the previous literature, the impact 

of task on the time course of facial expression processing was directly tested within-subjects in 

Exp.4. Differential effects for fearful and happy expressions were seen at posterior sites, earlier 

and mostly occipital for happy expressions and later and mostly lateral for fearful expressions 

with no differences seen between tasks (Exp.’s 1 to 4), and these emotion effects interacted with 

fixation to facial features (Exp.’s 1 to 3). Happy cues from the mouth were required for early 

processing of happy expressions (i.e., happy gist) likely driven by low-level differences and the 
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later semantic processing of the emotional content of the face. Fearful cues from both the mouth 

and the eyes were important for semantic processing of the emotional content of the face.  

Importantly, no interaction between emotion and fixation location was seen on the N170 (index 

of processing of structure of the face) arguing for separate processing of structural and emotional 

aspects of the face. Differential effects of fixation location were seen for the P1 and N170, with 

a sensitivity to face position (low-level) on the P1, followed by an eye sensitivity seen on the N170 

component, possibly reflecting the activity of an eye-detector in the processing of the face 

structure. Overall, this thesis has helped to elucidate the debated early emotion effects in the 

temporal domain and has extended our current understanding of the role of facial features and 

task demands during facial expression processing. Results also highlighted the need for 

controlling for fixation in ERP emotion research and the importance of quantifying neural activity 

around P1 and N170 peaks as emotion effects may be missed by simply measuring these 

commonly studied ERP markers.  
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Chapter 1: General Introduction 

 

Our ability to perceive and recognize the emotional states and behavioural intentions of 

others is based to a large extent on the cues conveyed by facial expressions of emotion (hereafter 

facial expressions or facial emotions). The study of facial expressions dates back to at least the 

19th century, as reflected in Charles Darwin’s “The expression of emotions in man and animals” 

(Darwin, 1872), and remains one of the most active research areas in visual cognition to date. 

Certain facial expressions are universally recognized as signs of specific emotional states (Ekman, 

1993; although see Jack, Garrod, Yu, Caldara, & Schyns, 2012).  The most consistently expressed 

and recognized emotions include anger, fear, disgust, sadness and happiness (reviewed in Ekman 

1999; see also Russell, Bachorowski, & Fernández-Dols, 2003). There has been a growing interest 

in how the brain processes emotional facial expressions and many studies have helped develop 

our understanding of the mechanisms that underlie facial emotion processing. While several 

studies have informed the literature on the cognitive (e.g., Calder, Young, Keane, & Dean, 2000; 

White, 2000) and neural processes (e.g., Adolphs, 2002a; Haxby, Hoffman, & Gobbini, 2002) 

involved in the perception and recognition of facial expressions, the findings from the current 

literature regarding the brain regions and time course of facial expression processing are 

inconsistent and several important questions remain. In this thesis, I present a series of studies 

conducted with the goal of elucidating the neural events underlying the extraction of information 

during the early visual stages of facial emotion processing.  
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1.1 Facial expressions and the role of facial features 
 

Since the 1970’s, Paul Ekman and colleagues have influenced research on facial 

expressions, reporting cross-cultural research on facial expressions that provides evidence for 

universality of basic emotions. Ekman’s (1993) basic emotion model proposes that different 

emotions constitute discrete categories, with distinct evolutionary histories and independent 

neural circuits. Studies of brain responses to facial expressions of emotion therefore typically 

contrast different emotional categories, as specified by basic emotion models. The study of 

fearful expressions has dominated the facial expression literature.  Researchers have shown a 

particular interest in fearful expressions because they convey a potential threat or danger and 

their rapid detection may be a crucial advantage for survival (Öhman, 2002). More recently 

research has begun to take interest in happy expressions, given that they are the most frequently 

encountered expressions in our everyday social communication. Fear and happiness are often 

compared as they present a comparison of threatening (avoidance) and non-threatening 

(approach) expressions, respectively (Lang, Bradley, & Cuthbert, 1997). Ideally, I would have 

included all six basic emotions in this thesis; however, due to practical constraints (i.e., 

experimental length) the present research will focus on these most commonly studied emotions, 

namely fearful and happy expressions.   

Facial expressions are made up of specific configurations of facial muscle activity, often 

as an automatic emotional response (Kohler et al., 2004). These changes in facial musculature 

alter the facial features (e.g., wide open eyes in fear, upturned corners of the mouth in 

happiness). These facial configurations constitute species-specific universal expressions that are 

critical for proper social interaction and communication (Ekman, 1993).  For instance, happy 
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expressions, characterized by a smiling mouth, signal that the person is open for communication 

and interaction. Recent studies have suggested that individual facial features may play a role 

during facial expression categorization, suggesting the importance of expression-specific facial 

features during the perception of facial emotions. Replicating earlier studies (e.g., Hanawalt, 

1944) Calder and colleagues (2000; Experiment 1) demonstrated that the top half of the face was 

more important for accurate perception of fearful and angry expressions whereas the bottom 

half of the face was more important for accurate perception of happy expressions. Other 

evidence comes from visual scanning studies although the findings are somewhat mixed. Some 

studies have reported longer viewing times and more fixations towards the eyes compared to 

other features (i.e., nose and mouth) regardless of facial expression (e.g., Clark, Neargarder, & 

Cronin-Golomb, 2010; Guo, 2012; Sullivan, Ruffman, & Hutton, 2007), while other studies suggest 

fixations and viewing times may vary depending on the specific facial expressions. For example, 

Scheller, Büchel, and Gamer (2012) showed that participants made more saccades to the eyes 

compared to the mouth of fearful expressions and the opposite was seen for happy expressions. 

Eisenbarth and Alpers (2011) reported more saccades and fixations on the eyes for sad and angry 

faces, the mouth for happy faces, but equally for the mouth and eyes for fearful expressions. 

Using a response classification technique called Bubbles (Gosselin & Schyns, 2001) whereby 

portions of the face of various sizes and spatial frequencies are revealed, studies have suggested 

that specific locations of the face are most useful or diagnostic for the accurate discrimination of 

the six basic emotions (Smith et al., 2005). For example, the wide open eyes were the primary 

diagnostic cue for fearful expressions and the upturned corners of the smiling mouth for happy 

expressions. Following this, Neath and Itier (2014) tested the impact of fixation to expression-
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specific facial features on the whole face. This was important given we interact mostly with whole 

faces in our everyday lives.  Using a gaze-contingent procedure1, we found that diagnostic facial 

features (like wide open eyes for fear) did not improve discrimination performance. Instead, 

results suggested the features are ‘‘glued’’ together (holistic processing) during the early stages 

of vision. Therefore, although there is growing support for the idea of a greater attention toward 

expression-specific diagnostic features, the role of facial features during facial expression 

recognition remains inconclusive. The current thesis attempts to clarify the role of facial features 

in the neural processing of fearful and happy expressions. 

1.2 Cognitive and neural models of facial emotion perception 
 

Arguably the most influential model of face perception was developed by Bruce and 

Young (1986). They proposed that the face processing system derives different types of 

information from facial stimuli that includes structural, identity and expression codes. They 

proposed that face processing begins with a “structural encoding” stage, where view-centered 

and abstract descriptions of global configuration and of features are extracted from the visual 

stimulus to support the analysis of expression and identity recognition. Expression and identity 

processing routes would start diverging right after the so-called “view-centered descriptions” of 

this structural encoding stage and remain segregated throughout subsequent processing stages. 

A more recent model of face perception was suggested by Haxby, Hoffman and Gobbini 

(2000). Their model incorporates findings from functional neuroimaging and proposed a neural 

                                                           
1 The gaze-contingent procedure is a relatively novel design that allows for precise control of where the participant 
is fixating on the facial stimulus. To achieve fixation on key facial features, a fixation cross is presented and 
participants are told to focus their attention on the cross and not to shift their gaze. If they shift their gaze the trial 
does not proceed. If the fixation cross was where the left eye of the face subsequently appeared, we can infer the 
person’s gaze was focused on that left eye. If the fixation cross was where the mouth subsequently appeared, we 
can infer the person’s gaze was on the mouth.  
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network for face processing, which consists of two main parts, the core system and the extended 

system. The core system contains three bilateral brain structures, the inferior occipital 

gyrus/”occipital face area” (IOG/OFA), the fusiform gyrus/”fusiform face area” (FG/FFA) and the 

superior temporal sulcus (STS). According to the model each of these structures has a different 

function: the IOG is involved in the early processing of facial features (e.g., Rossion et al., 2003), 

the FG processes invariant aspects of faces, such as identity or gender (e.g., Kanwisher, 

McDermott, & Chun, 1997), and the STS processes the variant aspects of faces, such as facial 

expressions (e.g., Allison, Puce, & McCarthy, 2000). The regions of the core system interact with 

one another and the FG and STS also send and receive input to the extended system. The 

extended system consists of the intraparietal sulcus (Cowan, 2011), the auditory cortex (Price, 

2010), the amygdala, insula and the limbic system (Adolphs et al., 1999, 2002a, 2002b; Dolan & 

Vuilleumier, 2003), and the anterior temporal cortex (Gainotti, 2007). The amygdala in particular 

is thought to be involved in the emotional evaluation of faces and has many connections to the 

core system of face processing, primary visual cortex and prefrontal cortex, suggesting it might 

be involved in top-down influences on early visual processing (Palermo & Rhodes, 2007), 

although recent reviews suggest that the cortex has a more important role in emotion processing 

than was traditionally assumed (see Pessoa & Adolphs, 2010).   

 Both models of face perception reviewed (Bruce and Young, 1986; Haxby et al., 2000) 

suggest that the expression (is the person happy or angry) and identity of a face (is that Jane or 

Joan) are processed “by functionally and neurologically independent systems” (Calder & Young, 

2005). However, in their review Calder and Young (2005) concluded that there is no study giving 

conclusive evidence for complete separation of these expression and identity processes. Along 
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the same lines, Vuilleumier and Pourtois (2007) reviewed the evidence from EEG and fMRI studies 

and concluded that emotional facial expression processing is too widely distributed in the brain 

to be only processed by the STS. They suggested that the FFA is sensitive to both emotional 

expression and identity (e.g., Vuilleumier, Richardson, Armony, Driver, & Dolan, 2004), arguing 

against the idea that these two processes are completely independent.  

Findings from investigations of the neural correlates underlying face perception have also 

led to the question of whether there are differentiable patterns of neural activity specific to each 

basic emotion (see Adolphs, 2002a for a review). In a recent meta-analysis, Vytal and Hamman 

(2010) reported that each of the basic emotions (fear, anger, surprise, happiness and sadness) 

were consistently associated with distinct and characteristic patterns of brain activity. For 

example, fear was consistently associated with amygdala activation, disgust with insula, 

amygdala and ventral prefrontal cortex, sadness with medial prefrontal cortex, anger with 

orbitofrontal cortex and happiness with rostral anterior cingulate cortex activation. However, in 

a more recent meta-analysis, every region that was activated for a given basic emotion was also 

activated for at least one other emotion (Lindquist, Wager, Kober, Bliss-Moreau, and Barrett, 

2012). Thus, based on neuroimaging evidence it is unclear whether certain expressions 

preferentially draw upon specific brain regions, or if all expressions draw upon the same set of 

brain regions with different expressions having subtly different patterns of activation across 

these shared brain regions. 

1.3 Face perception and ERP components 
 

As reviewed above, neuroimaging research suggests that face perception may involve 

distinct brain regions. These regions may also become active in a specific time sequence and 
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therefore the complete understanding of face and facial expression perception also requires 

understanding their processing time course. In addition, it is unclear whether the brain 

distinguishes emotional from neutral facial expressions in general or distinguishes among 

different emotions (i.e., specialized processing of fearful expressions).  Event-related potentials 

(ERPs), a specific type of analysis of electroencephalographic (EEG) data, are a useful tool that 

enables the assessment of neural responses to affective events with millisecond temporal 

resolution and complements findings from neuroimaging studies about the face neural network 

in the temporal domain. ERPs allow us to examine whether structural and emotional aspects of 

face encoding are independent or interacting processes and when the brain distinguishes 

between emotional expressions by linking these cognitive processes with neural activity and 

specific ERP components defined by a specific time course and scalp topography (Kappenman & 

Luck, 2012).  

 

1.3.1 The visual P1 component 
 

The first visual ERP investigated in face perception is the visual P1 occurring ~80-120ms 

post-stimulus onset and typically maximum at occipital sites. The P1 is thought to be generated 

within extrastriate visual cortex (V2, V3 and posterior fusiform gyrus) (Clark, Fan, & Hillyard, 

1995). This component is known to be sensitive to attention (Luck, 1995; Luck, Woodman, & 

Vogel, 2000; Mangun, 1995) and low-level stimulus properties such as colour, contrast, 

luminance and spatial frequencies (Johannes, Münte, Heinze & Mangun, 1995; see Regan, 1989, 

cited by Rossion and Jacques, 2012). While early studies suggested P1 might reflect the earliest 

timing of face-specific effects, recent studies converge to support the idea that face-object 

differences seen on PI component are likely due to low-level factors (e.g., Ganis, Smith, & 
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Schendan, 2012; Jemel et al., 2003; Rossion & Caharel, 2011; Tarkiainen, Cornelissen, & Salmelin, 

2002; Rousselet, Husk, Bennett, & Sekuler, 2008), a finding recently confirmed by unmixing of 

the components underlying the P1 and N170 (Desjardins & Segalowitz, 2013)..  

A growing number of studies have now reported enhanced P1 amplitude for fearful 

relative to neutral faces (e.g., Batty & Taylor, 2003; Jetha, Zheng, Schmidt, & Segalowitz, 2012; 

Pourtois, Grandjean, Sander, & Vuilleumier, 2004; Sato, Kochiyama, Yoshikawa, & Matsumura, 

2001; Smith, Weinberg, Moran, & Hajcak, 2013; Wijers & Banis, 2012). This early fearful effect 

has been interpreted as reflecting the greater activation of early visual brain areas to intrinsically 

salient, threat-related stimuli, via the activation of a subcortical route involving the amygdala 

(see Vuilleumier & Pourtois, 2007 for a review). Fearful faces would automatically engage this 

subcortical structure which, in turn, would modulate and enhance cortical processing of the face 

stimuli (Morris et al., 1998; Vuilleumier et al., 2004; Whalen et al., 1998). This cortical modulation 

would result in variations of the neural activity recorded on the scalp with ERPs. Because of its 

early timing, which corresponds to the activation of early visual areas rather than higher-order 

visual areas, this effect is thought to reflect a coarse emotion extraction, the “threat gist” (e.g., 

Luo, Feng, He, Wang, & Lu, 2010; Vuilleumier & Pourtois, 2007), that might rely on low spatial 

frequencies (Vuilleumier et al., 2003). A more elaborated processing of the visual threat would 

occur later, around or after the N170 (e.g., Luo et al., 2010), the ERP component most studied in 

face perception. It is important to note that this early P1 modulation by emotion is currently 

debated and several studies have reported no modulation of the P1 by emotion (see Vuilleumier 

& Pourtois, 2007 for a review). In many of these studies low-level visual features of stimuli (e.g., 
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luminance) were not controlled for (e.g., Batty & Taylor, 2003) and might have driven these early 

reported responses. 

1.3.2 The face-sensitive N170 component 
 

It is generally agreed that the earliest reliable neural signature of face perception is 

detected in the EEG about 170 milliseconds after stimulus presentation, and manifests as a 

negative ERP component (N170) over occipito-temporal electrode sites ~130-200ms post-

stimulus onset (e.g., Bentin, Allison, Puce, Perez, & McCarthy, 1996; Ganis, Smith, & Schendan, 

2012; Jemel et al., 2003; Rossion et al., 2000; Rossion & Caharel, 2011). This component is 

thought to reflect encoding of the structure of the face (Bentin et al., 1996; Bentin & Deouell, 

2000; Eimer, 2000; Itier & Taylor, 2002, 2004; Rossion et al., 2000) and to thus correspond 

roughly to the structural encoding stage of Bruce and Young (1986). The bulk of the literature 

supports the view that it reflects holistic processing, the integration of facial features into an 

indecomposable whole (Rossion, 2009; but see Nemrodov, Anderson, Preston, & Itier, 2014 and 

Zheng, Mondloch, Nishimura, Vida, & Segalowitz, 2011).  ERP research has suggested the FG (Itier 

& Taylor, 2002; Itier et al., 2006; Rossion et al., 1999; Rossion et al., 2003) and STS (Itier et al., 

2007; Itier and Taylor, 2004) as potential generators of the N170 although the IOG has also been 

proposed (for a review see Rossion & Jacques, 2011).   

Like the P1, reports of the N170 sensitivity to facial emotions have been inconsistent. A 

number of studies have reported larger N170 responses to emotional faces, especially fearful 

expressions, compared to neutral faces (e.g., Batty & Taylor, 2003; Blau, Maurer, Tottenham, & 

McCandliss, 2007; Caharel, Courtay, Bernard, Lalonde, & Rebaï, 2005; Leppänen, Moulson, Vogel-

Farley & Nelson, 2007; Leppänan, Hietanen, & Koskinen, 2008).  However, as seen for the P1, a 

http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Courtay%20N%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Bernard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Reba%C3%AF%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Lepp%C3%A4nen%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Moulson%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Nelson%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
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lack of sensitivity to facial expressions of emotion has also been reported for the N170 

component in many studies (e.g., Ashley, Vuilleumier, & Swick, 2004; Balconi & Lucchiari, 2005; 

Herrmann, Aranda, Ellgring, Mueller et al., 2002; Krolak-Salmon, Fischer, Vighetto, & Mauguière, 

2001; Münte, Brack, Grootheer, Wieringa et al., 1998; Pourtois et al., 2005; Shupp, Junghöfer, 

Weike, & Hamm, 2004; Smith, Weinberg, Moran, & Hajack, 2013). In a very recent meta-analysis, 

Hinojosa, Mercado and Carretié (2015) attempted to resolve the inconsistencies surrounding the 

sensitivity of N170 to emotions. Out of 128 possible studies testing the N170 and emotion, they 

analyzed 57 studies and reported the N170 to be indeed sensitive to facial expressions. The 

results also suggested that the N170 is more sensitive to particular facial expressions and less, or 

not at all, to others. In particular, the meta-analysis revealed that the greatest effect sizes 

corresponded to fearful>neutral and angry>neutral contrasts, followed by the happy>neutral 

contrast. However, disgusted>neutral and sad>neutral contrasts did not reach significance.  

As the N170 is thought to reflect structural encoding stages, sensitivity of this component 

to facial emotion is usually interpreted as reflecting a sensitivity to the variations in the structure 

of the face by the facial expression (i.e., changes in shape of the various facial features; see 

Vuilleumier and Pourtois, 2007) rather than the full appraisal of the emotion per se. Others 

interpret the N170 variations with emotion as reflecting an integration of expression and identity 

processing (e.g., Hijonosa et al., 2015). A better demonstration of a true integration of identity 

and expression, however, requires showing an interaction between the processing of face 

identity per se and that of facial emotion, by using different task demands on the same stimuli. 

This has been demonstrated in neuroimaging studies (e.g., Fox, Moon, Iaria, & Barton, 2009; but 

see Winston, Henson, Fine-Gould, & Dolan, 2004) and neuropsychological case studies (Calder & 

http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Herrmann%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Herrmann%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Ellgring%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Ellgring%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=M%C3%BCnte%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=M%C3%BCnte%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Grootheer%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Grootheer%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
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Young, 2005; but see Bate & Bennetts, 2015) but research using ERPs is lacking. One way to test 

for this potential integration is to test for an interaction between the processing of a facial 

feature, which is integrated into the face percept during structural encoding at the level of the 

N170, and facial expressions.  

1.3.3 The Early Posterior Negativity (EPN) 
 

Another well studied ERP in facial expression research is the well-known marker of 

emotion processing Early Posterior Negativity (EPN), a negative potential measured over 

occipito-temporal sites ~150-350ms post-stimulus onset. The EPN is enhanced for emotional 

relative to neutral stimuli, for both verbal and non-verbal material including faces (Rellecke, 

Palazova, Sommer, & Schacht, 2011; Schupp et al., 2003, 2004). Like the N170, the EPN is 

commonly reported to be most pronounced for threat-related expressions (i.e., fearful and angry 

expressions) compared to neutral and happy expressions (e.g., Rellecke et al., 2011; Schupp et 

al., 2004) although there are reports of a general emotion effect with more negative amplitudes 

for both threatening and happy expressions compared to neutral expressions (Sato et al., 2001; 

Schupp, Flaisch, Stockburger, & Junghöfer, 2006). Therefore this effect has been suggested to 

reflect enhanced processing of emotionally salient faces in general, and of threatening faces (i.e., 

fearful and angry) in particular, in cortical visual areas (Schupps et al., 2004).  

The current view is that the EPN reflects more in depth appraisal of the emotion, some 

form of semantic stage where the meaning of the emotion is extracted (Vuilleumier and Pourtois, 

2007; Luo et al., 2010). Some studies have suggested that the EPN reflects the neural activity 

related to the processing of the emotion that is added onto the normal processing of the face. 

This added activity would sometimes start around the N170 and be responsible for the emotional 
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effects reported for the N170 (Leppänen et al., 2008; Rellecke et al., 2013; Schupps et al., 2004), 

although it seems largest after the N170. According to this interpretation, structural encoding, as 

indexed by the N170, and facial emotion encoding, are separate processes and the emotion 

effect is just more or less strong depending on the emotion.    

1.4 (Expressionless) Face perception and facial features assessed by ERPs 
 

Two recent studies controlling for fixation position using an eye-tracker and a gaze-

contingent procedure have shown that the N170, until now believed to reflect face holistic 

processing, is also sensitive to features within the face and in particular to the eyes. Larger N170s 

were indeed reported for fixation on the eyes compared to fixation on the mouth of upright faces 

(de Lissa et al., 2014; Nemrodov et al., 2014; see also Zerouali, Lina, & Jemel, 2013) or compared 

to fixation on the nose, forehead and even nasion (Nemrodov et al., 2014). This finding echoes 

previous reports of larger N170s for eye regions presented in isolation compared to whole 

upright faces (Bentin et al., 1996; Itier, Latinus, & Taylor, 2006; Itier, Alain, Sedore, & McIntosh, 

2007; Itier, Van Roon, & Alain, 2011; Taylor, Edmonds, McCarthy, & Allison, 2001) and larger 

N170s for facial characteristics including eye color and size (Zheng et al., 2011), confirming a 

special role for eyes in the early processing of the face structure, as also suggested by response 

classification techniques (e.g., Rousselet, Ince, van Rijsbergen, & Schyns., 2014; Schyns et al., 

2003, 2007, 2009). Importantly however, these recent eye-tracking-EEG studies demonstrated 

the sensitivity of the N170 to eyes in full faces when the face configuration was not altered 

(configuration is altered with presentation of isolated eyes or when portions of faces are revealed 

as in the response classification technique Bubbles). In addition, Nemrodov et al. (2014) showed 

that this eye sensitivity disappeared in eyeless faces, demonstrating it was due to the presence 
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of the eyes at fovea. These findings, along with numerous others, led the authors to develop the 

Lateral Inhibition Face Template and Eye Detector (LIFTED) model which proposes that the N170 

reflects both the activity of an eye-detector and the processing of a face as a whole in a complex 

interplay between information at fovea and information in parafovea (Nemrodov et al., 2014). In 

addition to providing a new theoretical account of holistic and featural processing at the neural 

level, this study highlights the importance of controlling for fixation to face features in ERP face 

research. In the present thesis, the same gaze-contingent approach was used in the study of facial 

expressions of emotion, which constitutes, to the best of my knowledge, the first work of its kind 

in that domain.  

1.5 Facial expression perception and facial features assessed by ERPs 
 

Spatial attention to the face plays an important role during the processing of facial 

emotions (e.g., Holmes, Kiss, & Eimer, 2006; Wijers & Banis, 2012). In fact, differences in the 

amount of attention devoted to the emotional face may be one reason for inconsistencies in 

reports of early emotion effects on P1 and N170. Emotion effects on these components were 

indeed eliminated when attention was covertly directed away from the foveally presented 

emotional faces towards other faces in the periphery (Wijers & Banis, 2012) or towards vertical 

lines flanking the emotional faces (Holmes et al., 2006). Another factor possibly contributing to 

these inconsistent early ERP effects of emotion is the differing amount of attention to facial 

features.  

The role of facial features in the neural response to facial expressions has recently been 

investigated in ERP research but remains unclear. Research using the Bubbles technique in 

combination with ERPs has suggested that the eye region provides the most useful diagnostic 
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information for the recognition of fearful facial expressions and the mouth for the recognition of 

happy facial expressions. A three-stage model was proposed whereby the face-sensitive N170 is 

characterized by the encoding of the expression-specific diagnostic featural information (Schyns 

et al., 2007, 2009). Facial information extraction begins at the eye (locally) irrespective of facial 

expression, followed by a more global processing of facial information, and finally zooms back in 

to locally encode the feature diagnostic for discriminating a particular expression. When the 

feature diagnostic for the discrimination of that emotion has been detected, the N170 peaks 

(Schyns et al., 2007).  

 Also supporting the importance of fearful eyes, Leppänen et al. (2008) reported that an 

early fearful effect, seen as more negative amplitudes for fearful compared to neutral faces from 

the peak of the N170 (~160ms in that study) until 260ms (encompassing the visual P2 and EPN), 

was eliminated when the eye region was covered, demonstrating the importance of this facial 

area in the neural response to fearful expressions. Calvo and Beltrán (2014) reported hemispheric 

differences in the processing of facial expressions using face parts and whole faces. An enhanced 

N170 in the left hemisphere was seen for happy compared to angry, surprised and neutral faces 

for the bottom face region presented in isolation (including the mouth), but not for the top face 

region presented in isolation (including the eyes), or for the presentation of the whole face. In 

the right hemisphere in contrast, the N170 was enhanced for angry compared to happy, surprised 

and neutral faces for whole faces only. Taken together these studies suggest that the expression-

specific diagnostic features modulate the neural response to facial expression at the level of the 

N170 or later.  
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All these ERP studies have employed techniques that forced feature-based processing by 

revealing facial information through apertures of various sizes and spatial frequencies (e.g., 

Bubbles, Schyns et al., 2007, 2009), by presenting isolated face parts (Calvo & Beltrán, 2014; 

Leppänen et al., 2008) or by covering portions of the face (Leppänen et al., 2008). The bulk of the 

literature on face perception, however, supports the idea that faces are processed holistically, 

whether the focus is on identity (McKone, 2008; Rossion & Jacques, 2008) or emotion (Calder & 

Jansen, 2005; Calder et al., 2000) recognition. Moreover, components such as the N170 have 

been shown to be very sensitive to disruption of this holistic processing (Itier, 2015; Rossion and 

Jacques, 2011, for reviews). A systematic investigation of the impact of facial features on the 

neural processing of facial emotion in the context of the whole face is lacking. This is important 

given we almost invariably encounter whole faces in our daily social interactions, and eye-

tracking studies suggest that faces are explored and that fixation moves across facial features, 

with a larger exploration of the eyes (see Itier, 2015, for a review). By using a gaze-contingent 

approach, the present thesis attempts to fill this gap.  

1.6 Overall thesis aims  
 

  The previous literature regarding the time course of facial expression processing is 

inconsistent and early emotion effects are debated. In an attempt to elucidate the time course 

of facial expression processing, and these early emotion effects, the main aim of this thesis was 

to investigate whether fixation to facial features influenced the neural response to facial 

expressions. Using a gaze-contingent procedure with an eye-tracker to enforce fixation combined 

with EEG recordings, I tested whether fixation to facial features suggested to be “diagnostic” for 

a given emotion was driving previously reported early emotion effects on well-known ERP 
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components (P1, N170 and EPN). Diagnostic features have been suggested to vary as a function 

of task demands (Schyns, Bonnar, & Gosselin, 2002); therefore, this hypothesis was tested during 

gender discrimination (Exp.1), explicit emotion discrimination (Exp.2) and oddball detection 

(Exp.3) tasks. This experimental paradigm also allowed me to test whether processing of 

structural and emotional aspects of faces are independent or interact. Facial features are 

integrated into the face percept during structural encoding (at the level of the N170 ERP 

component) and an interaction of fixation with a given facial expression at the N170 would imply 

an integration of face and emotion processing. Lack of an interaction would imply separate 

processing of these aspects. Finally, experimental procedures have been highly inconsistent in 

the previous literature; however, the effect of task remains unclear. In Exp. 4 I directly tested the 

impact of task demands on the time course of facial expression processing. 

  



17 
 

Chapter 2: Fixation to features and neural processing of fearful and happy facial 

expressions in a gender discrimination task2 (Exp.1) 

 
 

2.1 Introduction 
 

The N170 is arguably the first face-sensitive ERP component, measured over the scalp at 

occipito-temporal sites ~130-200ms after stimulus-onset, and reflects structural encoding of the 

face (e.g., Bentin, Allison, Puce, Perez, & McCarthy, 1996; Ganis, Smith, & Schendan, 2012; Jemel 

et al., 2003; Rossion et al., 2000; Rossion & Caharel, 2011).  Whether the N170 is also sensitive 

to facial emotions is a matter of ongoing debate as results have been inconsistent in the previous 

literature (Vuilleumier & Pourtois, 2007). Several studies have reported an increased N170 

response to facial expressions, most commonly for fearful faces compared to neutral faces  (e.g., 

Batty & Taylor, 2003; Blau, Maurer, Tottenham, & McCandliss, 2007; Caharel, Courtay, Bernard, 

Lalonde, & Rebaï, 2005; Leppänen, Moulson, Vogel-Farley, & Nelson, 2007; Leppänan, Hietanen, 

& Koskinen, 2008). However, many others have reported no modulation of the N170 by facial 

emotion (e.g., Ashley, Vuilleumier, & Swick, 2004; Balconi & Lucchiari, 2005; Herrmann, Aranda, 

Ellgring, Mueller et al., 2002; Krolak-Salmon, Fischer, Vighetto, & Mauguière, 2001; Münte, Brack, 

Grootheer, Wieringa et al., 1998; Pourtois et al., 2005; Smith, Weinberg, Moran, & Hajcak, 2013). 

 The eye region is used most prominently when discriminating fear from other 

expressions (Smith, Cottrell, Gosselin, & Schyns, 2005) and eyes have been shown to convey 

threat even when presented in isolation (Fox & Damjanovic, 2006; Whalen et al., 2004). Recently, 

it has been shown that participants make spontaneous saccades towards the eyes of emotional 

                                                           
2 A version of this chapter was originally published in Brain and Cognition (Neath & Itier, 2015) 

http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Courtay%20N%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Bernard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Reba%C3%AF%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16019117
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Lepp%C3%A4nen%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Moulson%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Nelson%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=17328702
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Herrmann%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Herrmann%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Ellgring%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Ellgring%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12208530
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=M%C3%BCnte%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=M%C3%BCnte%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Grootheer%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
http://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Grootheer%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9572577
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faces presented even for as short as 150ms (Gamer, Schmitz, Tittgemeyer, & Schilbach, 2013). 

Given that previous ERP studies reporting modulations of the N170 with fearful faces did not use 

an eye-tracker to confirm gaze position, and that the eyes are salient in fearful faces, it is possible 

that the participants made small eye movements towards the eyes or attended to the eyes more 

for fearful faces than other expressions. These possible movements to the eyes may be 

responsible for the modulations of the N170 by fearful expressions reported previously in the 

literature. In Exp.1, I tested this hypothesis by manipulating fixation to specific features of facial 

expressions using a gaze-contingent procedure. 

As the use of gaze-contingent procedures is very new in ERP face research, I also aimed 

to investigate more thoroughly the effect of fixation to features, in particular the sensitivity to 

the eyes, on other ERP components than the N170, namely the preceding P1 and the following 

Early Posterior Negativity (EPN) components. P1 is a positive component occurring ~80-120ms at 

occipital sites and is known to respond to the low-level characteristics of stimuli such as contrast, 

luminance, colour and spatial frequencies (Rossion & Jacques, 2008) and is also sensitive to 

attentional effects (Luck, Woodman, & Vogel, 2000; Mangun, 1995). However, it is unclear 

whether the P1 is sensitive to fixation to features and especially to eyes, and its sensitivity to 

emotional expressions has been controversial (see Vuilleumier & Pourtois, 2007 for a review). 

The EPN, beginning at ~150ms and largest between ~200-350ms at occipital-temporal sites, is a 

well-known marker of emotion processing with a more negative-going response for threatening 

faces (i.e., angry and fearful faces) compared to happy and neutral expressions (e.g., Rellecke, 

Sommer, & Schacht, 2013; Rellecke, Palazova, Sommer, & Schacht, 2011; Schupp, Junghöfer, 

Weike, & Hamm, 2004). No study to date has investigated whether EPN could be preferentially 
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modulated by attending to specific facial features bearing emotional significance such as the eyes 

in fearful faces or the mouth in happy faces.   

 I investigated whether fixation to the eyes (and mouth) of fearful, happy and neutral 

faces modulates P1, N170 and EPN responses. Faces were presented with fixation locations on 

the left eye, right eye, nose and mouth during a gender discrimination (GD) task. To ensure 

correct point of gaze, eye-tracking was used with a fixation-contingent stimulus presentation and 

any trial in which gaze deviated by more than 1.4° of visual angle around that fixation location 

was excluded. To further prevent participants from using anticipatory strategies the fixation-

cross was always presented in the center of the screen, while faces were moved around to obtain 

fixation on the desired feature, as done in Nemrodov et al. (2014) and de Lissa et al (2014). Given 

this experimental manipulation we expected an interaction between eye fixation location and 

hemisphere for the P1 amplitude as most of the face was situated in the left hemifield when 

fixation was on the right eye (the eye situated on the right side of the participant) and in the right 

hemifield when fixation was on the left eye (e.g., Luck, Heinze, Mangun, & Hillyard, 1990). I also 

expected to replicate Nemrodov et al.’s findings (2014) of a larger N170 response for fixation on 

the eyes compared to fixation on the nose and mouth. Crucially, if attention to the eyes was 

driving the previously reported N170 increase for fearful faces, I expected to see an emotion by 

fixation interaction with an enhanced N170 response for fearful faces only when fixation was on 

the eyes. Alternatively, if emotional expressions are processed holistically (Bimler, Swarek, & 

Paramei, 2013; Derntl, Seidel, Kainz, & Carbon, 2009; McKelvie, 1995), and no particular feature 

is any more important than any other feature for a given emotion then we expected to see a 

larger N170 response to fearful faces irrespective of fixation location. Finally, the possibility 
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remained that no modulation of the N170 by emotion would be found but I expected a 

modulation of the EPN, a classic marker of emotion, with a more negative-going response for 

fearful compared to happy and neutral faces as reported previously (e.g., Schupp et al., 2004). 

Whether EPN could also respond more to fixation on the eyes of fearful faces than to fixation on 

other facial features was unpredictable although the fact that EPN was sensitive to emotion even 

when eyes were covered (Leppänen, Hietanen & Koshinen, 2008) led to the prediction that 

fixation on the eyes would not matter at this stage.   

 

2.2 Methods 
 

2.2.1 Participants  
 

Forty-nine undergraduate students from the University of Waterloo (UW) were recruited 

and received course credit for their participation. All participants lived for at least 10 years or 

more in North America and reported normal or corrected-to-normal vision as well as no history 

of neurological or psychiatric disorder. Informed consent was obtained before starting the 

experiment and the study was approved by the Research Ethics Board at UW. For ten 

participants, their eye fixations could not be captured by the eye-tracker during calibration.  

These participants were therefore not tested. Of the 39 participants tested, 19 were rejected for 

the following reasons. To ensure overt attention to the fixated feature, trials with fixations 

greater than 1.4° of visual angle from the fixation location (see procedure below) were removed. 

For eleven participants, this procedure put the overall number of trials below our cut-off score 

of 40 (correct) trials per condition (i.e., less than 50% of the trials), for multiple conditions. These 
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11 participants were thus removed3.  Five participants were rejected due to too many artefacts 

also resulting in too few trials per condition. Finally, three were rejected due to high anxiety 

scores. Anxiety is known to interact with the processing of emotions like fear (e.g., Dugas, 

Gosselin, & Ladouceur, 2001); therefore, only participants with scores in the normal range below 

43 on the State-Trait Inventory for Cognitive and Somatic Anxiety questionnaire (STICSA; Ree, 

French, MacLeod, & Locke, 2008; Van Dam, Gros, Earlywine, & Antony, 2013), were included. The 

remaining 20 participants (8 females, 18-23 years, M = 20.06 years) were included in the data 

analyses. 

2.2.2 Stimuli  
 

 Photographs of 8 individuals (4 males, 4 females) each with fearful, happy and neutral 

expressions were selected from the MacBrain Face Stimulus Set4 (Tottenham et al., 2009). Images 

were converted to grayscale in Adobe™ Photoshop CS5 and an elliptical mask was applied on 

each picture so hair, ears and shoulders were not visible. All faces subtended a visual angle of 

6.30° horizontally and 10.44° vertically, and were presented on a gray background for an image 

visual angle of 9.32° horizontally and 13.68° vertically (see Fig.1). Images did not differ 

significantly in RMS contrast and pixel intensity between emotions (see analyses and result 

sections below).  

 

                                                           
3 Note that this high attrition rate indirectly shows that many participants make many eye movements even with 
257ms presentation times and that, although tiny, these eye movements are sufficient to put fixation on another 
facial feature given the size of the stimuli. 
4 Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. 
and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. Please 
contact Nim Tottenham at tott0006@tc.umn.edu for more information concerning the stimulus set. The models 

used in the present study were models # 2, 3, 6, 8, 20, 24, 33, 34 
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Figure 1. Stimulus and Fixation Location Example 

Left panel: examples of one neutral face presented at each fixation location. Participants fixated in the center of the 
monitor represented here by each rectangle and the face was presented offset so that gaze fixated four possible 
face locations: left eye, right eye, nose and mouth. Note that eye positions are from a viewer perspective (i.e., left 
eye is on the left of the image). This resulted in the face situated almost entirely in the upper visual field when 
fixation was on the mouth, mostly in the left visual field when fixation was on the right eye, and mostly in the right 
visual field when fixation was on the left eye. Right panel, up: one neutral face exemplar with picture size and angular 
distances between fixation locations (averaged across all emotions and face identities). The yellow circles represent 
the interest areas of 1.4° centered on each feature that were used to reject eye gaze deviations in each fixation 
condition (i.e., foveated areas which did not overlap) and to calculate local RMS contrast and pixel intensity for each 
picture. Right panel, bottom: exemplars of fearful, happy and neutral expressions used in the present study (from 
NimStim database). Note that this design and the faces used were identical across Exp.’s 1-3. 

 

 For each stimulus, exact coordinates corresponding to 4 feature locations on the face 

were recorded: left eye, right eye, nose and mouth. Please note that in this experiment, and in 

the remainder of this thesis, fixation positions are from a viewer perspective so that the left eye 

of the face is to the viewer’s left, and the right eye is on their right. Fixation-crosses on the nose 

and mouth were aligned with one another along an axis passing through the middle of the nose 

and face. Eye coordinates were determined by placing the cross on the center of the pupil. A 
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unique central fixation-cross was used and each face was presented offset so the predetermined 

center of each feature would land on the center of the fixation-cross (Fig.1). No picture was 

presented in the exact same location due to minor variations in the coordinates of each feature 

between the eight identities and the three expressions used.   

2.2.3 Apparatus and Procedure 
 

Participants sat in a sound-attenuated Faraday-cage protected booth 70cm from a 

Viewsonic P95f+ CRT 19-inch colour monitor driven by an Intel Quad CPU Q6700 with a refresh 

rate of 75Hz. Participants performed a gender discrimination task using a game controller to 

record their responses. For half the participants, they pressed the left key for depictions of male 

faces, the right key for female faces.  For the other half they pressed the right-key for males, left 

key for females.  Before the experiment started, participants were given an 8 trial practice session 

to introduce them to the experimental procedure. Each trial began with a 0-107ms jittered 

fixation-cross. Participants were instructed to fixate on the black centered fixation-cross to 

initiate the trial and to remain fixated there until the response screen appeared. To ensure that 

participants were fixating on the fixation-cross, a fixation-contingent trigger enforced the fixation 

on the cross for 307ms5. The face stimulus was then presented for 257ms, followed by a white 

screen with a question mark prompting their response. This response screen was presented until 

the participant responded, or for a maximum of 907ms (Fig.2). On average it took participants 

621ms (118ms S.D.) to respond (RTs were calculated from face onset; see Table 3). Participants 

were instructed to categorize faces by their gender as quickly and accurately as possible. After 

                                                           
5 In practice, it took a bit of time for participants to be correctly fixated on the fixation trigger for a minimum of 
307ms, resulting in an average of 964ms (1214ms S.D) between the first onset of the fixation cross and the onset 
of the stimulus presentation. When this time exceeded 10s, a mid-block calibration was done again. 
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their response, a screen appeared that read “BLINK” for 507ms. Participants were instructed to 

blink during this time to prevent as much as possible eye movement artifacts during the first 

500ms of trial recording. If the participant did not respond, or responded during the “blink” 

screen, the trial was considered a “miss” and was eliminated from further analysis. 

 

Figure 2. Gender Discrimination Trial Sequence (Exp.1) 

Trial example with right eye fixation: Participants were tested on 960 trials as follows. First the fixation point was 
displayed on the screen for a jittered amount of time (0-107ms) with a fixation trigger of 307ms. Then the grayscale 
picture was flashed for 257ms, immediately followed by a white screen with a question mark for 907ms during which 
participants indicated their response. Lastly, a blink screen appeared for 507ms. 
 

The block of 96 face trials (3 emotions X 4 fixation locations X 8 identities) was repeated 

10 times with a different trial order (randomized), yielding 80 trials per condition across blocks, 

for a total of approximately 1.5 hours of testing time. Participants then completed the 21-item 

of the trait test from the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA; Ree, 

French, MacLeod, & Locke, 2008). The STICSA is a Likert-scale assessing cognitive and somatic 

symptoms of anxiety as they pertain to one’s mood in general.  
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2.2.4 Electrophysiological Recordings 
 

 The EEG recordings were collected continuously at 516Hz by an Active-two Biosemi 

system at 72 recording sites: 66 channels in an electrode-cap under the 10/20 system-extended 

and three pairs of additional electrodes. Two pairs of electrodes, situated on the outer canthi and 

infra-orbital ridges, monitored eye movements; one pair was placed over the mastoids. A 

Common Mode Sense (CMS) active-electrode and a Driven Right Leg (DRL) passive-electrode 

acted as a ground during recordings. The electrodes were average-referenced offline.  

2.2.5 Eye-Tracking Recordings 
 

 Eye movements were recorded using a remote Eyelink 1000 eye-tracker from SR Research 

with a sampling rate of 1000Hz. The eye-tracker was calibrated to each participant’s dominant 

eye, but viewing was binocular. If participants spent over 10s before successfully fixating on the 

cross, a drift correction was used. After two drift corrections, a mid-block recalibration was 

performed. Calibration was done using a nine-point automated calibration accuracy test. 

Calibration was repeated if the error at any point was more than 1°, or if the average for all points 

was greater than 0.5°. The participants’ head position was stabilized with a head and chin rest to 

maintain viewing position and distance constant. 

2.2.6 Data Processing and Analyses 
 

Only correctly answered trials were used for analysis. Trials in which a saccadic eye 

movement was recorded beyond 1.4° visual angle (70px) around the fixation location were 

removed from further analysis (see Fig.1 for interest areas around each fixation location). This 

size ensured that the areas of interest around the features were non-overlapping. This step in 
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the pre-processing removed an average of 2.0% (±1.7) of trials across the 20 participants included 

in the final sample. 

The data were processed offline using the EEGLab (Derlome & Makeig, 2004) and ERPLab 

(http://erpinfor.org/erplab) toolboxes implemented in Matlab (Mathworks, Inc.) Average-

waveform epochs of 500ms were generated (100ms pre-stimulus-onset to 400ms post-stimulus-

onset) and digitally band-pass filtered (0.01–30Hz) using a two-way least-squares FIR filter. Trials 

containing artifacts >±70μV were then rejected (100μV was used for 6 participants). Trials were 

then visually inspected and those still containing artefacts were rejected. After trial rejection, 

participants with less than 40 trials in each condition (out of 80 initial trials) were rejected (the 

average number of trials per condition did not significantly differ across emotions (p = .31) or 

fixation location (p = .39)) (see Appendix A1 for final number of participants per condition).     

Contrast and Pixel intensity6. To evaluate possible influences of low-level factors, I 

measured the mean pixel intensity and root mean squared (RMS) contrast of each picture using 

a home-made Matlab program and compared them across emotions using paired sample t-tests, 

with p-values corrected for multiple comparisons. Pixel intensity was calculated as the mean of 

the image’s pixels intensity values and RMS contrast as the standard deviation of the pixels 

intensities (normalized between 0 and 1). 

 For each picture, the mean RMS contrast and pixel intensity were also calculated for 

circular areas of 1.4° visual angle around each fixation location (Fig.1) and were analyzed using a 

3 (emotion) X 4 (fixation location) repeated measure analysis of variance (ANOVA).  

                                                           
6 Note that the same stimuli were used in Exp.’s 1 to 3 and therefore contrast and pixel intensity values are the 
same in these experiments. 

http://erpinfor.org/erplab
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Behavioural Analysis. Repeated measures ANOVAs were conducted separately for 

percent errors and mean RTs. For each participant, only RTs within 2.5 standard deviations from 

the mean of each condition were kept in the mean RT calculation (Van Selst & Jolicoeur, 1994) 

which excluded 7.67% of the total number of trials. Within-subject factors included facial 

expression (3: fear, happiness, neutral) and fixation location (4: left eye, right eye, nose, mouth). 

Interactions were interpreted using simple main effects ANOVAs for emotion (fear, happy, 

neutral) conducted separately at each fixation location.  

ERP Analysis. For most participants, the P1 component was maximal at electrodes O1 and 

O2 and was thus measured at these sites between 80 and 130ms post-stimulus-onset (peak 

around 100ms) using automatic peak detection. Careful inspection of the data also suggested 

some emotion differences on P1 at Oz so P1 was also analyzed at Oz separately. In contrast to 

P1, the N170 component was maximal at different electrodes across participants, and within a 

given participant the N170 was often maximal at different electrodes across the two 

hemispheres. Thus, to best capture that component, the N170 peak was measured between 120-

200ms at the electrode where it was maximal for each subject and for each hemisphere (Table 

1). 

 
Table 1. Number of subjects for whom the N170 was maximal at left (P07, CB1, P9) and right (PO8, CB2, P10, and 
TP10) hemisphere electrodes. LH: left hemisphere; RH: right hemisphere 

 

 LH  RH 

P9 6 P10 8 

CB1 8 CB2 5 

PO7 6 PO8 5 

  TP10 5 

Total n 20  20 
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To measure the time course of the fixation and emotion effects, mean amplitudes were 

also calculated within six 50ms windows starting from 50ms to 350ms. Preliminary inspection of 

the data revealed different effects over two electrode clusters at occipital sites (O1, O2 and Oz) 

and at lateral-posterior sites (CB1/2, P9/10, P7/8 and PO7/8). Thus for each time window, 

separate analyses were conducted over these two clusters. Note that the lateral-posterior 

electrodes are those electrodes where the N170 was measured across participants and also 

included the visual P2 component (peaking around 200ms post-face onset) as well as the Early 

Posterior Negativity (EPN) component involved in emotion processing. P2 and EPN are broader 

components and best measured by mean amplitudes.  

Repeated measures ANOVAs were conducted using SPSS Statistics 22. Within-subject 

factors included hemisphere (2: left, right), facial expression (3: fear, happiness, neutral) and 

fixation location (4: left eye, right eye, nose, mouth) for P1 and N170 peaks. For mean amplitude 

analyses, an electrode factor was added for occipital sites (3: O1, O2, Oz) and lateral-posterior 

sites (4: CB1/2, P9/10, P7/8, PO7/8). If necessary further analyses of the interactions found were 

completed with separate ANOVAs for each fixation location or each emotion. All ANOVAs used 

Greenhouse-Geisser adjusted degrees of freedom and pairwise comparisons used Bonferroni 

corrections for multiple comparisons, following the ERP data analysis guidelines (Picton et al., 

2000).  
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2.3 Results 
 

2.3.1 Pixel intensity (PI) and RMS contrast 
 

 Post-hoc paired t-tests confirmed no differences between emotions (p > .05 for all 

comparisons) for mean pixel intensity and mean contrast values (Table 2). 

For mean RMS contrast in areas of 1.4° visual angle around each fixation, the highest 

contrast was seen for the left and right eyes (which did not significantly differ), followed by the 

mouth and then the nose (which did not significantly differ; effect of fixation location, F(1.34, 

9.40) = 16.34, p < .001, ηp
2 = .70, all paired comparisons at p-values < .05; see Table 2). However, 

the emotion by fixation location interaction (F(2.74, 19.18) = 11.48, p < .001, ηp
2 = .62) revealed 

that this specific pattern was seen only for neutral faces (F = 41.71, p < .001; all significant fixation 

location paired comparisons at p < .05)7.  For happy faces a larger contrast was seen for the mouth 

compared to the nose fixation (F = 6.07, p < .05). For fearful faces there was an effect of fixation 

location (F = 5.22, p < .05); however, pairwise comparisons were not significant.  During fixation 

to the left eye a larger contrast was seen for neutral compared to happy faces (F = 9.70, p < .01) 

and larger contrast for both fearful and happy faces compared to neutral during fixation to the 

mouth (F = 11.52, p < .01). No emotion differences were seen during fixation to the nose (p = .12) 

and an effect of emotion was seen for fixation to the right eye (F = 4.97, p < .05); however, no 

significant pairwise comparisons were found following the Bonferroni corrections. 

The lowest PI was seen for the left and right eyes (which did not significantly differ), 

followed by the mouth and the nose (which did not significantly differ; effect of fixation location, 

                                                           
7 For clarity of the text, for post-hoc results only F and p values will be reported and not the degrees of freedom (as 
done in Neath & Itier, 2015).  
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F(1.77, 12.36) = 42.29, p < .001, ηp
2 = .86, all paired comparisons at p-values < .01). The emotion 

by fixation location interaction was also significant (F(2.54,17.81) = 6.79, p < .05, ηp
2 = .49), due 

to larger PI on the mouth for happy compared to fearful and neutral faces (p-values < .05). During 

fixation to the left eye (p = .76) and right eye (p = .54) no differences between emotions were 

seen. During fixation to the nose, larger PI was seen for fearful compared to happy and neutral 

faces (F = 11.38, p < .05) and during fixation to the mouth larger PI was seen for happy compared 

to fearful and neutral faces (F = 20.99, p < .001). 

 

Table 2. Mean pixel intensity (PI) and RMS contrast values for full faces and within 1.4° radius around the center of 
the left eye, right eye, nose and mouth for fearful, happy and neutral expressions used in Experiment 1 to 3 (standard 
errors to the means in parenthesis). 

   Mean Pixel Intensity (PI) 
 (std. error) 

 Mean RMS Contrast 
(std. error) 

 Full 
Face 

Left 
Eye 

Right 
Eye 

Nose Mouth Full 
Face 

Left 
Eye 

Right 
Eye 

Nose Mouth 

Fearful .58 
(.01) 

.43 
(.02) 

.44 
(.04) 

.52 
(.02) 

.49 
(.03) 

.33 
(.01) 

.14 
(.01) 

.14 
(.01) 

.12 
(.01) 

.13 
(.02) 

Happy .57 
(.01) 

.44 
(.03) 

.44 
(.03) 

.51 
(.02) 

.55 
(.02) 

.34 
(.01) 

.13 
(.01) 

.14 
(.02) 

.11 
(.01) 

.13 
(.01) 

Neutral .57 
(.01) 

.43 
(.03) 

.43 
(.02) 

.51 
(.03) 

.50 
(.02) 

.34 
(.01) 

.14 
(.03) 

.14 
(.01) 

.11 
(.01) 

.10 
(.01) 

 

2.3.2 Behavioural Analyses 
 

Error rates. Participants tended to make more errors for fearful than neutral faces (main 

effect of emotion; F(1.79, 34.04) = 4.76, p < .05, ηp
2 = .20; fearful-neutral paired comparison at p 

= .06; see Table 3). Additionally, fewer errors were made during fixation on the nose compared 

to fixation on the left and right eye (main effect of fixation location; F(2.31, 43.89) = 3.58, p < .05, 

ηp
2 = .16; paired comparisons significant at p < .05). No differences were seen for miss rates.  
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Response times (RTs). Responses were slowest for fearful expressions (main effect of 

emotion, F(1.71, 32.41) = 21.57, p < .001, ηp
2 = .53; fearful-neutral and fearful-happy paired 

comparisons significant at p < .001; Table 3) and faster for nose fixation (main effect of fixation 

location, F(2.62, 49.77) = 7.42, p < .01, ηp
2 = .28; significantly faster for the nose than the mouth 

and right eye, p < .05). No other effects were seen. 

Table 3. Mean (A) percent error, (B) reaction time (RT) and (C) misses/no-response values for fearful, happy and 
neutral expressions presented during the gender discrimination task (standard errors to the means in parenthesis). 

  Mean Error (%)  
(std. error) 

Mean Reaction Time (RT) 
(ms) 
 (std. error) 

Mean Misses (%) 
(std. error) 

Fearful 9.7 
(1.0) 

629.54 
(12.61) 

9.3 
(0.9) 

Happy 8.1 
(1.0) 

619.94 
(12.45) 

9.1 
(0.9) 

Neutral 7.6 
(0.9) 

614.86 
(12.51) 

9.6 
(0.9) 

 

2.3.3 ERP Analyses 
 

2.3.3.1 Effects of fixation location and emotion at occipital sites (O1, O2, Oz). 

P1 Peak Amplitude. At O1/O2, P1 amplitude was overall largest for fixation to the mouth 

(main effect of fixation, F(2.73, 51.92) = 11.19, p < .001, ηp
2 = .37) (see Fig. 3A). An interaction 

between fixation location and hemisphere was also found (F(2.19, 41.56) = 18.96, p < .001,  ηp
2 = 

.50) due to eye fixations yielding opposite effects. On the left hemisphere, P1 was larger for the 

mouth and left eye (which did not differ significantly) compared to the right eye and the nose 

fixations (which did not differ) (F = 11.22, p < .001). On the right hemisphere, P1 was larger for 

the mouth and right eye (which did not differ significantly) compared to the left eye and nose 

fixations which did not differ (F = 15.83, p < .001; significant paired comparisons right eye-left 
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eye/nose p < .05, mouth-left eye/nose p < .001). No effects of emotion or emotion by fixation 

location interaction were seen (Fig. 3B).  

 



   

 
 

Figure 3. Effects of Fixation Location and Emotion at Occipital sites (Exp.1) 
(A) Grand-averages (across the participant group) featuring the P1 component for neutral faces at O1, O2, and Oz electrodes, showing effects of 
fixation locations with larger amplitudes for mouth fixation and opposite hemispheric effects for eye fixations. (B) Grand-average difference 
waveforms generated by subtracting ERPs to neutral from ERPs to fearful faces (F-N, solid line) and ERPs to neutral from ERPs to happy faces (H-N, 
dashed line) at O1, O2 and Oz. A clear difference peak for happy-neutral was seen between 100 and 150ms at Oz and O2 (gray band, peak of the 
effect around 120ms) and was confirmed by mean amplitude analysis at occipital sites during that time window (see main text and Table 4). (C)  
Grand-averaged waveforms for fearful, happy and neutral faces (across fixation locations) at Oz. The early effect of emotion for happy faces started 
on the P1 peak at Oz. The gray interval (100-150ms) is where the effect emerged, peaking at 120ms. The red vertical lines represent the limits of the 
period during which mean amplitudes were analyzed (50-350ms).The topographic map shows the voltage distribution of the H-N amplitude 
difference at 120ms where the “happy effect” was maximal at medial occipital site.  

 



   

 
 

P1 at Oz was also larger for fixation to the mouth compared to the left eye, right eye and 

nose which did not differ significantly from each other (main effect of fixation location, F(2.66, 

50.44) = 10.43, p < .001, ηp
2 = .35; significant paired comparisons with mouth fixation at p < .05) 

(Fig. 3A). However, in contrast to O1 and O2, an effect of emotion was found on P1 at Oz due to 

a reduced positivity for happy compared to fearful and neutral expressions (main effect of 

emotion, F(1.74, 33.13) = 6.68, p < .01, ηp
2 = .26; significant happy-fearful paired comparison p < 

.05, happy-neutral paired comparison p = .06) (see Fig 3C). Difference waveforms (fear-neutral 

and happy-neutral) confirmed this localized effect of emotion at medial occipital site and 

revealed that this “happy effect” was in fact largest around 120ms (Fig. 3B and 3C map), i.e., after  

the P1. This effect was confirmed with mean amplitude analyzes during the 100-150ms window 

(see below). For the remainder of the thesis, the “happy effect” will denote significantly smaller 

amplitudes for happy than neutral faces, and the “fearful effect” will denote significantly smaller 

amplitudes for fearful than neutral faces. 

Mean Amplitudes over Six Time Windows (O1, O2, Oz). Statistical results for these 

analyses (50-350ms) are reported in Table 4 and visually depicted in Figures 3 and 4.  

Between 50 and 100ms, fixation to one eye yielded opposite effects between the two 

hemispheres, with larger amplitudes for left eye fixation than right eye fixation on the left 

hemisphere and vice versa for the right hemisphere (Electrode by fixation location interaction, 

Table 4). These effects of fixation were virtually identical to those seen on P1 peak (analyzed at 

O1/O2) and disappeared by 150ms. Larger amplitudes for fixation to the mouth was seen as a 

main effect of fixation between 50 and 150ms. This effect re-appeared more weakly between 
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250 and 350ms, with larger amplitudes for mouth fixation significant during the last time window 

(Table 4, Fig. 3A). 

An emotion effect was first seen during the 100-150ms time window with smaller 

amplitudes for happy compared to neutral (and fearful) expressions (Table 4, Fig. 3C). An 

electrode by emotion interaction revealed this effect was only seen at O2 and Oz electrodes. This 

effect of emotion mirrors that found on the P1 peak at Oz reported previously. During the 150-

200ms interval smaller amplitudes were seen for both fearful and happy compared to neutral 

expressions but only for the mouth fixation condition (emotion by fixation location interaction, 

Table 4). Between 200 and 300ms, both fearful and happy expressions elicited smaller amplitudes 

compared to neutral expressions regardless of fixation location. During the 300-350ms window 

this effect of emotion was significant for happy faces only (happy-neutral comparison p =.003; 

happy-fearful p =.067).  

Thus, happy faces elicited smaller amplitudes than neutral faces at occipital sites from 

100 until 350ms, as clearly seen on the difference waveforms and their topographic maps (Fig. 4, 

see also Fig. 3B). In contrast, fearful faces elicited smaller amplitudes than neutral faces a bit 

later, starting at 150ms and vanishing by 300ms. Figure 4 also suggests that the effect for fear 

was mostly lateral (as discussed next) and only weakly occipital, while the opposite was found 

for happy faces.  



   

 
 

Table 4. Exp. 1 (GD task) statistical effects on mean amplitudes analyzed over six 50ms time windows at occipital sites (O1, Oz, O2), with F, p and ηp
2 values. LH, 

left hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; p** < .01; 
p*** < .001; p**** < .0001; ns, not significant.  Bonferroni-corrected paired comparison tests are also reported (e.g., H < F + N means that the main effect of 
emotion is due to significantly smaller mean amplitude for happy compared to both fearful and neutral expressions while H + F < N means that both happy and 
fearful faces elicited significantly smaller amplitudes than neutral faces). 

Main effects and 

interactions 
50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 

Electrode -   F = 6.50, p* , η
p

2 
= .26 

O1 + O2 > Oz 
- F = 3.73, p* , η

p

2 
= .16 

O1 + O2 > Oz 
F = 5.31, p*, η

p

2 
= .22 

O1 + O2 > Oz 
- 

Fixation location F= 11.23, p***, η
p

2 
= 

.37 
Mo > all 

F = 25.37, p****, η
p

2 
= 

.57 
Mo > all 

- . - F = 3.57, p*, η
p

2 
= .16 

(Mo + LE+) RE > No 
F = 5.03, p**, η

p

2 
=  

.21 
Mo > No 

Emotion - F = 11.51, p***, η
p

2 
= .38 

H < F + N 
F = 8.55, p**, η

p

2 
= .31 

H + F < N 
F = 7.87, p**, η

p

2 
= .29 

H + F < N 
F = 6.97, p**, η

p

2 
= .27 

H + F < N 
F = 9.29, p**, η

p

2 
= .33 

H < F + N 
Electrode X Fixation 

location F= 16.05, p****, η
p

2 
= 

.46 
 O1: F = 11.22, p****, 

η
p

2 
= .37 

Mo + LE > RE + No 
 O2: F = 15.83, p****, 

η
p

2 
= .46 

Mo + RE > LE + No 
 Oz: F = 10.43, p****, 

η
p

2 
= .35 

Mo > all 

F = 4.2, p**, η
p

2 
= .18 

 O1: F = 13.28, p****, 

η
p

2 
= .41 

Mo + LE > RE + No 
 O2: F =25.21, p****, 

η
p

2 
= .57 

Mo > all 
 Oz: F = 28.47, p****, 

η
p

2 
= .60 

Mo > all 

- - - F= 4.03, p**, η
p

2 
= .18 

 O1: F = 7.51, p**, η
p

2 
= 

.28 
Mo > LE + No 
 O2: No effect 

 Oz: F = 6.35, p**, η
p

2 
= 

.25 
Mo > No 

Electrode X Emotion - F = 3.70, p*, η
p

2 
= .16 

 O1: No  effect 

 O2: F = 5.77, p**, η
p

2 

=.23 
H < N + F 
 Oz: F = 18.35, p****, 

η
p

2 
= .49 

H < N + F 

- - - - 

Emotion X Fixation 

location 
- - F= 3.03, p*, η

p

2 
= .14 

 Mo: F = 22.58, p****, 

η
p

2 
= .54 

H + F < N  
 LE: no effect 

 RE: no effect 

 No: no effect 

- - - 

 



   

 
 

 
 

Figure 4. 2D Topographical Maps of Fearful-Neutral and Happy-Neutral Voltage Differences (Exp.1) 

Mean voltage distribution maps of the grand-average difference waveforms between fear and neutral (F-N) and 
happy and neutral faces (H-N) across six 50ms time intervals from 50ms to 350ms (averaged across fixation 
location). 
 

2.3.3.2 Effects of fixation location and emotion at lateral-posterior sites (CB1/2, P9/10, P7/8, 

PO7/8) 

 N170 Peak Amplitude. The N170 amplitude was larger for fixation to the left and right 

eye (which did not differ) compared to fixation to the mouth and nose which did not differ 

significantly (main effect of fixation location, F(2.46, 46.80) = 16.43, p < .0001, ηp
2 = .46; all paired 

comparisons at p-values < .01) (Fig. 5A). No other significant effects were seen and in particular 

there was no main effect of emotion, or any interactions involving emotion.  

P1-to-N170 amplitude. As effects of fixation location were found for P1 at occipital sites, 

I performed peak-to-peak analyses to track possible influences of P1 onto N170 measures at 

these lateral sites. I took the amplitude differences between the P1 and N170 at the electrode at 

which the N170 was largest for each hemisphere and each subject8. Amplitude differences were 

                                                           
8 Note that the P1 had to be re-measured at these lateral-posterior sites for this analysis 
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larger in the right compared to the left hemisphere (main effect of hemisphere, F(1, 19) = 5.14, 

p < .05, ηp
2 = 21; significant paired comparison p < .05) and were larger during fixation to both 

the left and right eyes (which did not differ) compared to the nose and mouth (which did not 

differ) (main effect of fixation location, F(1.79, 34.07) = 32.27, p < .001, ηp
2 = .63; significant left 

eye-nose/mouth and right eye-nose/mouth paired comparisons p < .001). This confirmed the 

fixation location found for the N170 peak. In addition however, an interaction between fixation 

location and hemisphere was seen (F(2.64, 50.22) = 16.42, p < .0001, ηp
2 = .46), due to opposite 

effects of eye fixation in each hemisphere, driven by the P1 (Fig. 5A). On the left hemisphere, the 

main effect of fixation location (F(2.43, 46.27) = 19.4, p < .0001, ηp
2 = .51) was due to larger 

amplitude differences for the left eye compared to all other fixation locations (amplitude for the 

right eye was also larger than for the mouth). On the right hemisphere, the fixation location effect 

(F(1.87, 35.67) = 34.31, p < .0001, ηp
2 = .64) was due to amplitudes being larger for both eye 

fixations (which did not differ) compared to both nose and mouth (which did not differ).  

Interestingly, in contrast to the lack of emotion effect for N170 peak, there were 

significant interactions between hemisphere and emotion (F(1.91, 36.29) = 4.54, p = .019, ηp
2 = 

.19) and hemisphere, emotion and fixation location (F(4.81, 91.31) = 2.96, p = .017, ηp
2 = .14). On 

the left hemisphere, an emotion by fixation location interaction (F(4.20, 79.71) = 3.15, p = .017, 

ηp
2 = .14) was due to a larger P1-N170 amplitude difference for happy faces compared to neutral 

and fearful faces (significant paired comparisons p < .01) that was seen only when fixation was 

on the mouth (mouth: effect of emotion, F = 10.10, p < .001; significant paired comparisons p < 

.01). There was no effect of emotion when fixation was on the left eye (p = .27), right eye (p = 

.54) or nose (p = .24). On the right hemisphere, the P1-N170 amplitude difference was larger for 
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happy compared to neutral expressions regardless of fixation location (main effect of emotion, 

F(1.85, 35.44) = 4.59, p =.019, ηp
2 = .20; significant happy-neutral paired comparison p < .05, fear-

neutral paired comparison borderline at p = .053).  

Overall, taking P1 into account (by calculating P1 to N170 peak differences) revealed 

interactions between fixation and hemisphere as seen for P1 peak, as well as emotion effects not 

seen on either the P1 (at O1/O2 sites) or the N170 peaks.   

Mean Amplitude analyses over Six Time Windows (CB1/2, P7/8, P9/10, PO7/8). 

Statistical results for these analyses (50-350ms) are reported in Table 5 and visually depicted in 

Figures 4, 5 and 6.  

A hemisphere by fixation location interaction was seen between 50ms and 100ms (Table 

5), due to fixation to the eyes yielding opposite effects on each hemisphere, with larger amplitude 

for fixation to the left eye compared to the right eye on the left hemisphere and vice versa for 

the right hemisphere. At 100-150ms, this fixation by hemisphere interaction became stronger, 

with larger amplitude for the left eye fixation compared to all other fixations on the left 

hemisphere, and larger amplitude for the right eye than the other fixations on the right 

hemisphere. These effects between 50 and 150ms were driven by the P1 as clearly seen on 

Fig.5A, and as also found in the P1-N170 amplitude difference analysis. Between 150 and 200ms, 

in line with the fixation effect seen for N170, the mean amplitudes were larger for both the left 

and the right eye fixations (which did not differ significantly) compared to both the nose and 

mouth fixations (which did not differ significantly), an effect that was most pronounced at P9/P10 

and CB1/CB2 sites. No effect of fixation location was seen after 200ms. 

 



   

 
 

Table 5. Exp. 1 (GD task) statistical effects on mean amplitudes analyzed over six 50ms time windows at lateral-posterior sites (CB1/2, P7/8, PO7/8, P9/10), with F, p 
and ηp

2 values. LH, left hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; 
p** < .01; p*** < .001; p**** < .0001; ns, not significant. Bonferroni-corrected paired comparison tests are also reported (e.g., F < H + N means that the main effect of 
emotion is due to significantly smaller mean amplitude for fearful compared to both happy and neutral expressions while F + H < N means that amplitudes were 
significantly smaller for both fearful and happy faces compared to neutral faces). 

Main 

effects and 

interactions 

 

50-100ms 

 

100- 150ms 

 

150- 200ms 

 

200-250ms 

 

250-300ms 

 

300-350ms 

Electrode F = 4.91, p* , η
p

2 
= .21 

PO7/8 < P9/10  

< CB1/2 < P7/8     

F = 16.10, p**** , η
p

2 
= .46 

P9/10 < CB1/2 

 < P7/8 < PO7/8  

F = 21.27, p*** , η
p

2 
= .53 

P9/10 < CB1/2 + P7/8 

< PO7/8  

F = 61.83, p****, η
p

2 
= 

.77 

P9/10 < CB1/2  

< P7/8 < PO7/8  

F = 53.27, p**** , 

η
p

2 
= .74 

P9/10 < CB1/2  

< P7/8 < PO7/8  

F = 47.69, p**** , η
p

2 

= .72 

P9/10 < CB1/2 

 < P7/8 < PO7/8  

Hemisphere - - - F = 5.72, p*, η
p

2 
= .23 

LH < RH 

- F = 14.52, p**, η
p

2 
= 

.43 

LH < RH 

Fixation 

location 

- F = 14.97, p****, η
p

2 
= .44 

No < all 

F = 14.18, p****, η
p

2 
= .43 

LE + RE < No + Mo 

- - - 

Emotion - - F = 13.87, p****, η
p

2 
= .42 

F < H + N 

F = 23.79, p****, η
p

2 
= 

.56 

F < H < N 

F = 5.88, p**, η
p

2 
= 

.24 

F < N 

F = 5.50, p*, η
p

2 
= .23 

H < N 

Electrode X 

Fixation 

location 

- F = 9.46, p****, η
p

2 
= .33 

 CB: F = 11.04, p****, η
p

2 
= .38 

No < all 

 P7/8: F = 12.01, p****, η
p

2 
= .39 

No < all 

 P9/10: F = 16.53, p****, η
p

2 
= .47 

No < M < LE + RE 

 PO7/8: F = 13.46, p****, η
p

2 
= .42 

No < LE+RE < M 

F = 5.32, p**, η
p

2 
= .22 

 CB: F = 16.64, p***,  η
p

2 
= 47 

LE+RE < No + Mo 

 P7/8: F = 3.59, p*, η
p

2 
= .16 

No sign. paired comp 

 P9/10: F = 15.94 p***, η
p

2 
= .46 

LE + RE < No + Mo 

 PO7/8: F = 5.67 p**, η
p

2 
= .23 

LE (+RE) < No (+ Mo) 

- - - 

Hemisphere 

X Fixation 

location 

F = 9.38, p***, η
p

2 
= .33 

 LH: F = 5.57, p**, η
p

2 
= .23 

LE > RE 

 RH: F = 3.49, p*, η
p

2 
= .16 

RE > LE (p=.082) 

F = 11.91, p****, η
p

2 
= .39 

 LH: : F = 11.64, p****, η
p

2 
= .38 

LE > all 

 RH: F = 14.96, p****, η
p

2 
= .44 

RE > all 

- - - - 

Hemisphere 

X Emotion 

- - - - F = 4.14, p*, η
p

2 
= 

.18 

 LH: F = 11.45, 

p***, η
p

2 
= .38 

F < H + N 

 RH: ns 

F = 3.61, p*, η
p

2 
= .16 

 LH: F = 7.72, p**, 

η
p

2 
= .29 

F + H < N 

 RH: ns 

Electrode X  

Hemisphere 

X Emotion 

F =3.23, p*, η
p

2 
= .15 

 PO7: F = 12.38, p****, η
p

2 
= .39; F 

< H + N 

 P7: F = 8.44, p***, η
p

2 
= .31; 

                       F < H + N 

- - - - - 



   

 
 

 

 

Figure 5. Effects of Fixation Location and Emotion at Lateral-Posterior Sites (Exp.1) 

(A) Grand-averages featuring the N170 component for neutral faces at P9 and P10 as a function of fixation location 
clearly showing larger amplitudes for eyes than nose and mouth fixation. (B) The early and later effect of emotion 
for fearful faces at temporal-parietal sites. Top: Grand-average for fearful, happy and neutral faces (across fixation 
locations) at PO7 site where the early fearful effect was maximal. Bottom: Grand-average difference waveforms 
generated by subtracting ERPs to neutral from ERPs to fearful faces (F-N, solid line) and ERPs to neutral from ERPs 
to happy faces (H-N, dashed line) at PO7. The gray intervals (50-100ms) and (150-300ms) are where the early and 
later emotion effects for fear were seen. The maps show the voltage difference between fearful and neutral faces 
(F-N) across the scalp at the latency at which the early (80ms) and later (180ms) effects were largest. 
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Figure 6. Fearful-Neutral and Happy-Neutral Difference Waves at Lateral-Posterior Sites (Exp.1) 

Grand-average difference waveforms generated by subtracting neutral from fearful and happy conditions (F-N and 
H-N, averaged across fixation locations) at lateral-posterior sites (CB1/2, P7/8, PO7/8, P9/10). The gray zones 
highlight the time windows during which the effect for fear was significant, an early effect restricted to P7 and PO7 
electrodes during 50-100ms and a later effect at all lateral-posterior sites (150-300ms). 

 
 
 
 

 



43 
 

 A very early effect of emotion was seen between 50 and 100ms that was restricted to 

PO7 and P7 (left hemisphere) electrodes (electrode by hemisphere by emotion interaction, Table 

5), with smaller amplitude for fearful faces compared to neutral (and happy) faces (Fig. 5B). This 

effect peaked at ~80ms. This fearful effect appeared again later beginning at 150ms and lasted 

until 300ms, this time at all lateral-posterior sites (Fig. 5B, Fig.6). During that time, amplitudes for 

fearful faces were smaller than amplitudes for both neutral and happy faces, with the fearful-

neutral difference peaking around 180ms (Fig. 5B). Mean amplitudes for happy faces were also 

significantly smaller than for neutral faces between 200-250ms and again later between 300 and 

350ms (Fig.6). Interestingly, between 250 and 350ms the emotion effects were seen only for the 

left hemisphere (P7, PO7, CB1 and P9; hemisphere by emotion interaction, Table 5), as clearly 

seen on Fig.4.  

2.4 Discussion 
 

The aim of the present gender categorization task was to test the effect of fixation to 

specific facial features on the neural response to facial expressions between 50 and 350ms 

(encompassing the P1, N170 and Early Posterior Negativity -EPN). Also tested was the idea that 

fixation to fearful eyes might be driving the debated N170 modulation by emotion. Using eye-

tracking to enforce correct fixation to facial features, analyses revealed that the P1 and N170 

peaks were sensitive to fixation location but not to emotion. Emotion effects, however, were 

seen at posterior sites, mostly medially and occipitally for happy expressions, and mostly laterally 

for fearful expressions.  
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2.4.1 Fixation location and facial emotion influenced gender discrimination   
 

Behavioural performance was impacted by fixation location, with fewer errors and 

shorter RTs when fixation was on the nose compared to other fixated locations. This result is in 

line with the idea that when the whole face is available, gender discrimination requires holistic 

processing (Brown & Perrett, 1993; Zhao & Hayward, 2010) which is most efficient around the 

face center, situated close to the nose (e.g., Bindemann, Scheepers, & Burton, 2009; de Heering 

et al., 2008). Note that this does not undermine the idea that some face parts might convey face 

gender better than others when presented in isolation, as recently reported (Best, Minshew, & 

Strauss, 2010). Most importantly, despite the task being emotion-irrelevant, emotion impacted 

behavioural performance as seen by participants’ trend toward larger error rates for fearful 

compared to neutral faces and significantly longer RTs for fearful faces compared to both happy 

and neutral faces. Similar results have been reported by Scheller, Büchel, & Gamer (2012) with 

lower hit rates for fearful and neutral than happy faces in a gender categorization task where 

faces were presented for 2 seconds. This finding is sensible given face gender discrimination 

requires virtually no attention (Reddy, Wilken. & Koch, 2004), leaving attention resources 

available to process the emotions as demonstrated here. Facial expression categories were 

processed during the present emotion-irrelevant task and impacted the efficiency of gender 

discrimination.  

2.4.2 Different sensitivity to fixation location for P1 and N170 
 

The P1 component is sensitive to low-level stimuli characteristics such as contrast, 

luminance, color and spatial frequencies (Rossion and Jacques, 2008). Research controlling for 

stimuli low-level differences have demonstrated that the P1 does not differ between object 
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categories while the following face-sensitive N170 does. Thus these components reflect distinct 

stages of visual processing with only the N170 reflecting high level vision and face categorization 

(e.g., Ganis et al., 2012; Jemel et al., 2003; Rossion & Caharel, 2011; Tarkiainen, Cornelissen, & 

Salmelin, 2002). 

As predicted, a clear fixation effect was seen with larger P1 amplitude for the right than 

for the left eye on the right hemisphere and vice versa for the left hemisphere. This effect was 

seen as early as 50-100ms at occipital sites (Fig.3A) and between 50 and 150ms at lateral-

posterior sites (Fig.5A). This fixation effect was also found on the P1-to-N170 analysis which was 

driven by the P1. This effect of fixation reflected hemifield presentation effects given the fact 

that most of the facial information was in the left visual field when fixation was on the right eye 

and in the right visual field when fixation was on the left eye (Fig.1). This hemifield effect was 

also reported in three recent studies using similar gaze-contingent presentations (de Lissa et al., 

2014; Nemrodov et al., 2014; Zerouali et al., 2013). 

 In addition, at occipital sites, a delayed and larger P1 response was seen when fixation 

was on the mouth compared to each of the other locations. This effect was seen during the entire 

epoch (although not significantly between 150 and 300ms, Fig.3A, Table 4) and likely reflected 

sensitivity to the position of the face on the screen. Most of the facial information is in the upper 

visual field when fixation falls on the mouth compared to the eyes or the nose. The P1 has been 

shown to vary with ipsi/contra-lateral presentations of simple checkerboards presented in the 

four visual field quadrants but does not vary between the upper and lower visual fields (Clark, 

Fan, & Hillyard, 1995; Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002, p101). One possibility 
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is that the visual system is more sensitive to the upper visual field for meaningful stimuli such as 

faces which are viewed most often in that area.  

As also predicted, I replicated the finding by Nemrodov et al. (2014) of larger N170 

amplitude for fixation on the left and right eyes (which did not differ significantly) compared to 

the nose and the mouth which also did not differ significantly (see also de Lissa et al., 2014). This 

effect is not attributable to a simple face position effect as seen for the P1. The N170 amplitude 

has been shown to decrease with face eccentricity (Rousselet, Husk, Bennett, & Sekuler, 2005); 

therefore, if this N170 amplitude modulation reflected a face position effect we would expect to 

see smaller, rather than larger, N170 amplitude for fixation to the eyes, given the more lateral 

position of the face for these fixation locations compared to the midline fixation locations (nose 

and mouth). Further demonstration that this N170 modulation reflects a true eye sensitivity was 

provided by Nemrodov et al. (2014) who showed that the same eye fixation locations did not 

yield these larger N170 amplitudes when the eyes were not present in fovea (in eyeless faces), 

despite the same positions of those faces on the screen. This sensitivity of the N170 component 

to eyes has been shown using isolated eye stimuli, with larger N170s to isolated eyes than full 

faces (e.g., Bentin et al., 1996; Itier et al., 2006, 2007, 2011) that is seen as early as four years of 

age (Taylor, Edmonds, McCarthy, & Allison, 2001). The N170 sensitivity to eyes has also been 

shown using the response classification technique Bubbles, which reveals portions of the face, in 

gender and emotion discrimination tasks (e.g., Rousselet et al., 2014; Schyns et al., 2003, 2007 

2009). The eye sensitivity within full faces as shown here provides further support to the 

hypothesis of an eye detector during the processing of the face structure (Nemrodov et al., 2014). 
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The current study demonstrates that this eye sensitivity is also seen to the same extent for faces 

expressing fear and happiness and is thus largely facial expression invariant.  

In contrast to the P1 and N170 components, there was no effect of fixation location after 

200ms at lateral-posterior sites (where P2 and EPN were seen), as also predicted. This result is in 

line with the idea that the eye sensitivity is specific to the face structural encoding stage as 

indexed by the N170.   

2.4.3 Early and later occipital effects for happy facial expressions 
 

Using stimuli that did not significantly differ in overall mean pixel intensity and contrast, 

an early happy effect was seen at medial occipital site Oz that began around 100ms and peaked 

around 120ms, i.e., between P1 and N170 peaks. After 150ms this effect was seen more broadly 

including lateral-occipital sites O1 and O2 and was sustained until 350ms. This effect was seen as 

a negative amplitude difference at occipital sites (happy-neutral difference waves) along with a 

positive counterpart at frontal sites on topographic maps (Fig.3-4). The effect spread a little to 

the posterior lateral sites between 200-250ms and 300-350ms (Table 5), with a seemingly left-

dominant distribution (Fig.4, hemisphere interaction only between 300 and 350ms). The P1-N170 

analysis at lateral sites also revealed a difference between happy and neutral expressions which 

was seen regardless of fixation location on the right hemisphere but was seen only for fixation 

on the mouth on the left hemisphere. The only other time window during which emotion 

interacted with fixation location was between 150 and 200ms at occipital sites (Table 4), with 

again a difference between happy and neutral expressions seen only for the mouth fixation. 

Although the present happy-neutral difference started on P1, it was maximal after P1, around 
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120ms, and no such effect was seen for fearful faces, suggesting that this effect was specific to 

the processing of happy expressions.   

Few studies have focused on the ERPs in response to happy faces and this occipital 

distribution is not often reported. The few studies that have found effects of facial expression on 

the P1 have reported larger P1 for fearful than neutral or happy faces (see Vuilleumier and 

Pourtois, 2007 for review) but typically no difference between happy and neutral faces. However, 

the present data suggest a very localized happy effect at midline site for P1, rather than at the 

classic lateral sites (including O1/O2), which might have been missed by most previous studies. 

In an explicit emotion categorization task, Morel et al. (2014) recently reported an early happy 

effect with a larger P1 for happy than neutral faces (i.e., the opposite as found here) in the right 

hemisphere, but this was seen only for highly anxious participants and was thus likely the result 

of attentional demands, rather than emotional effects per se. In non-anxious participants, no 

emotion difference was seen on the lateral P1 (similar to our non-anxious sample); medial 

occipital sites were not analyzed. During a face-decision task (categorizing faces as intact or 

smeared) Schacht and Sommer (2009) reported an enhanced negativity for happy compared to 

neutral (and angry) faces between 128-144ms at parieto-occipital sites. Their topographic map 

resembles the present occipital distribution although also included parietal areas. Midline sites 

were not measured in that study. Let’s note that although the present happy-neutral difference 

started on P1, it was maximal after P1, around 120ms, and no such effect was seen for fearful 

faces, which makes it unlikely a general emotional effect or a simple attentional effect. The data 

suggest that this effect was specific to the processing of happy expressions.   
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The present occipital effect for happy faces echoes results reported by Halgren et al. 

(2000) who recorded magnetic fields in response to various stimuli including happy and sad faces 

while participants identified repeated faces. Results indicated a midline occipital source in or near 

the calcarine fissure (around areas V1-V2) that discriminated happy from neutral expressions 

between 100-120ms post-stimulus. That source was separate from the more lateral and later 

source that corresponded to the magnetic equivalent of the N170, and was also sensitive to more 

sensory aspects of the stimuli. Halgren et al. (2000) proposed that a fast discrimination of 

diagnostic cues such as the smile, based on luminance and contrast, could occur within 100-

120ms in those early visual areas and then be relayed rapidly to the amygdala by direct V2-

amygdala connections. This explanation is possible here given the local pixel and contrast 

differences between emotions seen for the mouth area of our stimuli.  

The current findings however, further suggest that this occipital activity is seen all the way 

until at least 350ms. From 150-350ms, it was accompanied by more temporal negativities as well 

as frontal positivities, which suggests changes of the underlying generators with time. Overall 

this “happy effect” appears to recruit different spatio-temporal networks with distinctive scalp 

distributions than the commonly reported rapid processing of fearful faces discussed below. 

2.4.4 Early and later lateral-posterior effects for fearful expressions 
 

Early effects of fearful faces have been debated. Most studies have reported no 

modulation of the P1 by emotion (Palermo and Rhodes, 2007; Vuilleumier and Pourtois, 2007); 

however, a few have reported enhanced P1 for fearful compared to neutral faces in gender 

discrimination tasks (Pourtois et al., 2005; Wijers et al., 2012), oddball detection tasks (Batty and 

Taylor, 2003), and passive viewing of emotional faces (Smith et al., 2013). The current results 
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however, suggest modulations by fearful expression before the P1 and only for fearful faces; no 

effect of fear was seen on the P1 itself, at lateral or medial occipital sites. This early effect of 

fearful expressions was localized to the left hemisphere seen clearly at PO7 and to a lesser extent 

at P7 during the 50-100ms time window, peaking around 80ms (Fig.4-6).  It is unclear what this 

very early modulation represents and it will have to be reproduced before any conclusion can be 

drawn.  

After this very early effect, modulations of ERPs by fearful faces were next seen right after 

the N170 component and all the way until 300ms (Table 5, Fig.4-6). The effect of facial emotions 

on the N170 has been debated with several studies reporting no modulation by emotion (see 

reviews by Eimer & Holmes, 2007 and see Rellecke et al., 2013) while others did report increased 

N170 with fearful faces (e.g., Batty and Taylor, 2003; Blau et al., 2007; Leppänen et al., 2008). 

However, previous studies have not controlled gaze fixation on the features of facial emotional 

stimuli. This is important given recent reports of spontaneous saccades toward the eyes of fearful 

expressions even with stimuli presented for only 150ms (Gamer et al., 2013). I hypothesized that 

the early ERP modulations of the N170 by fearful faces previously reported might have been 

driven by attention to the eyes. I reasoned that if this was the case, then early ERP responses 

would be larger for fearful than happy or neutral faces when fixation was on the eyes but not 

when fixation was on the nose or mouth. The present results revealed no modulation of the N170 

peak amplitude by emotional faces and no interaction of emotion with fixation location. This 

result is in line with the lack of modulation of the N170 by emotion reported in previous gender 

discrimination tasks (Pourtois et al., 2005; Sato et al., 2001; Wijers & Banis, 2012). The lack of 

emotion by fixation interaction on the N170 suggests that the eye sensitivity demonstrated by 
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this component is largely independent of facial expression of emotion, as mentioned earlier. 

Attention to the eyes is thus unlikely the reason why previous studies reported early emotional 

differences.  

The effect for fearful faces was mostly seen at lateral-posterior sites (and to a lesser 

extent at occipital sites) and emerged ~150ms during the descending part of the N170 toward 

the P2 component. It peaked around 180-200ms, and was significantly different from happy and 

neutral faces until 300ms (Fig.4-6, Table 5). The distribution of this fearful effect across the scalp 

was similar to that reported by Eimer and Holmes (2002; topographic maps of that study reported 

in Eimer and Holmes, 2007), with bilateral posterior-temporal negativities along with a fronto-

central positivity. Eimer and Holmes (2002) however reported this effect starting around 110-

120ms, i.e., earlier than in the present study, and suggested the involvement of frontal brain 

areas. In contrast, as most of the present effects were seen at posterior sites, we believe that the 

frontal distribution is mostly the positive counterpart of a posterior negativity that is likely 

coming from posterior visual brain regions. At these lateral-posterior sites, this negativity never 

interacted with fixation location and thus seems to reflect activity linked to the processing of fear 

added onto the normal activity related to processing neutral faces, as proposed by other groups 

(Schacht & Sommer, 2009; Rellecke et al., 2013). This added negativity started around the same 

time as the N170 but was seen mostly after the peak, and again did not interact with the fixation 

location, suggesting it was different from the structural encoding reflected by the N170 

component.   

This fearful effect was thus seen right after the N170 until around 300ms and 

encompassed the visual P2 (~200ms) component and the well-known marker of emotion 
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processing EPN (Rellecke et al., 2013; Rellecke et al., 2011; Schupp et al., 2004). These results are 

in line with previous reports of emotion effects starting around or right after the N170 and lasting 

100ms or more (Eimer et al., 2003; Eimer & Kiss, 2007; Leppänen et al., 2007; Schupp et al., 2004; 

Sprengelmeyer & Jentzsch, 2006), here until about 300ms.  This added negativity related to the 

processing of fear has been suggested to arise from an enhanced processing of emotionally 

salient stimuli in cortical visual areas involved in the perception of emotionally salient stimuli 

(Schupps et al., 2004). The timing of this fear-related process coincides with amygdala activation 

reported in intracranial ERP studies in response to fearful faces ~150-200ms post-stimulus 

(Meletti et al., 2012; Krolak & Salmon, 2004; Pourtois, Spinelli, Seeck, & Vuilleumier, 2010a) as 

well as in a recent MEG study (Dumas et al., 2013).  

2.4.5 Conclusion 
 

To summarize and conclude, in this gender discrimination task where facial expressions 

were task-irrelevant, differential effects of fixation location and emotion were seen across 

various ERP components. A sensitivity to face position was seen early, on the P1 component. An 

eye sensitivity that was independent of the emotion expressed by the face was seen on the N170 

component, possibly reflecting the activity of an eye-detector in the processing of the face 

structure. The N170 peak was not sensitive to emotion; however, effects were seen for fearful 

faces right after the peak. A happy effect was seen at occipital sites that started around 100ms 

and lasted until 350ms. For fearful faces, an effect was seen around 50-100ms localized to the 

left hemisphere at lateral-posterior sites followed by a later effect bilaterally from 150 to 300ms, 

although stronger on the left hemisphere between 250 and 350ms. Results suggest happy and 

fearful expressions recruit different spatio-temporal networks with distinctive scalp distributions. 
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Results also highlight the importance of quantifying neural activity around P1 and N170 peaks as 

emotion effects may be missed by simply measuring these commonly studied ERP markers. 
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Chapter 3: Fixation to features and neural processing of fearful and happy facial 

expressions in an explicit emotion discrimination task (Experiment 2)9 

 

3.1 Introduction 
 

Research has pointed to the importance of different facial features for the recognition of 

different emotions. Calder, Young, Keane, and Dean (2000) showed that the top half of the face 

was most important for accurate recognition of fearful and angry expressions whereas the 

bottom half of the face was most important for happy expressions. Visual scanning studies have 

also shown expression specific saccadic eye movements, with equivalent saccades to the eyes 

and mouth for fear and mostly to the mouth for happiness (Eisenbarth, & Alpers, 2011). Studies 

using the Bubbles method (Smith, Gosselin, Cottrell, & Schyns, 2005; Schyns, Petro, & Smith 2007) 

identified specific facial features underlying the correct categorization of basic emotions. The 

smiling mouth is the critical diagnostic cue for happy expression categorization and wide open 

eyes for the categorization of fearful expressions. Studies combining the Bubbles method with 

EEG have suggested that the N170 peaks when the expression-specific diagnostic facial feature 

is encoded. Importantly, the “diagnostic feature” hypothesis implies that these expression-

specific diagnostic facial features are required for tasks requiring emotion categorization. In fact, 

the diagnostic feature framework suggests that different features might be used depending on 

task demands (Schyns et al., 2003, 2007, 2009; Smith & Merlusca, 2014). Each categorization task 

(e.g., gender, identity, facial expression) is associated with its own diagnostic cues, which are 

                                                           
9 A version of this chapter and chapter 4 combined, will be submitted to Biological Psychology (Neath & Itier, in 
prep) 



55 
 

attended to and processed in order for correct categorization of that stimulus (Schyns, Bonnar, 

& Gosselin, 2002). 

In the current thesis, Exp. 1 tested the impact of facial features on the neural response to 

whole fearful and happy expressions during a gender discrimination task (GD) and specifically, 

whether fixation to the eyes of fearful faces was driving previous reports of an enhanced N170 

to fearful faces. Using an eye-tracker and a gaze-contingent procedure to enforce fixation on 

facial features of fearful, happy and neutral expressions, Exp. 1 (GD) revealed different spatio-

temporal emotion effects for happy and fearful faces that were largely independent of fixation 

location. A weak interaction of emotion with fixation location was seen at occipital sites only 

during 150-200ms, with smaller amplitudes for both happy and fearful faces compared to neutral 

faces seen only when fixation was on the mouth. Thus, although limited temporally, these 

interactions between emotion and fixation location suggested a possibly important role of the 

mouth in processing both happy and fearful faces, while fixation to the eyes did not yield the 

predicted specific effects for the processing of fearful faces.  However, this lack of interaction 

between fearful expressions and fixation to the eyes may be the result of using a GD task, which 

was emotion-irrelevant, as previous studies reporting modulation of the neural response to facial 

expressions have employed emotion discrimination (ED) tasks (e.g., Leppänen et al., 2008; Schyns 

et al., 2007, 2009). If diagnostic facial features are tied to explicit emotion discrimination, I would 

expect to see an interaction between emotion and expression-specific diagnostic facial features 

during a task requiring emotion categorization. Therefore, following up on Expt.1 (GD), Exp.2 

tested the impact of fixation to facial features on the neural processing of facial emotions during 

an ED task. 
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In the present study, fearful, happy and neutral faces were again presented with fixation 

to the left eye, right eye, nose and mouth using the same gaze-contingent design as Exp. 1. A 

replication of Exp.1 regarding stimulus position effects on the P1 was expected, as well as the 

larger N170 amplitude for fixation to the eyes compared to the nose and mouth. I also hoped to 

reproduce the distinct spatio-temporal pattern of fearful and happy effects found in Exp.1. I 

expected that the task demands in the explicit emotion discrimination task would impact the 

fixation and emotion interactions such that an enhanced fearful effect would be seen for fixation 

to the eyes compared to the nose or mouth and a larger happy effect would be seen for fixation 

to the mouth compared to the eyes or nose, given the respective “diagnosticity” of these features 

for the two emotions. The interactions were expected around the timing of the N170 or later 

(onset of the semantic processing of facial emotions as seen in Exp. 1 during the timing coinciding 

with the EPN).   

3.2 Methods 
 

3.2.1 Participants 
 

Forty-seven undergraduate students from the University of Waterloo (UW) were 

recruited and received course credit for their participation. They all lived in North America for at 

least 10 years and reported normal or corrected-to-normal vision, no history of head-injury or 

neurological disease, and were not taking any medication. They all signed informed written 

consent and the study was approved by the Research Ethics Board at UW. At the start of the 

study, calibration of the eye-tracker failed for 8 participants who were not further tested. The 

remaining 39 participants were tested but 19 were rejected for the following reasons. One 

participant completed less than half of the study; four were removed due to artefacts resulting 
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in many conditions with fewer than our 40 trials per condition cut-off (50% of the initial trials per 

condition); 13 had too few trials after removing trials with eye movements outside of our defined 

fixation location region of interest of 1.4° of visual angle; one participant was rejected due to 

problems during EEG recordings. The results from 20 participants were kept in the final analysis 

(21 ± 3.1 years, all right-handed, 10 females). 

3.2.2 Stimuli 
 

Identical to Exp. 1 (refer to Table 2 on pg. 21 for PI and RMS contrast). 

3.2.3 Apparatus and Procedure 
 

Identical to Exp. 1 except for the task instructions. Participants were instructed to fixate 

on the black fixation-cross in the center of the screen in order to initiate each trial and to not 

move their eyes until the response screen appeared. To ensure that participants’ fixation was on 

the cross, a fixation contingent trigger enforced the fixation on the cross for 307ms. Due to 

sensitivity of the eye-tracker, on average participants took 728ms (926.02 S.D) between the onset 

of the fixation-cross and the stimulus presentation. The target face stimulus was then presented 

for 257ms, immediately followed by the response screen displaying a vertical list of the three 

emotions (emotion word order counterbalanced between participants). The response screen 

remained until the response. Participants were instructed to categorize faces by their emotion 

as quickly and accurately as possible using a mouse by clicking on the appropriate emotion label. 

They were instructed to keep their hand on the mouse during the entire experiment to avoid 

unnecessary delays. On average, it took participants 1293ms (256.6ms S.D.) to respond. After 

their response, a screen appeared that read “BLINK” for 507ms. Participants were instructed to 

blink during this time to prevent eye movement artifacts during the first 500ms of trial recording. 
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Figure 7. Emotion Discrimination Trial Sequence (Exp.2) 

Trial example with right eye fixation and fearful expression. First a fixation point was displayed on the screen for a 
jittered amount of time (0-107ms) with an additional fixation trigger of 307ms. Following this, a grayscale picture 
was flashed for 257ms. A response screen immediately followed the stimulus and displayed a vertical list of 
emotions; participants selected, using a mouse, the correct emotion label that the face was expressing. The 
response screen remained until the participant’s response, followed by a blink screen for 507ms.  

 

3.2.4 Electrophysiological Recordings 
 

Identical to Exp. 1 (cf. section 2.2.4 pg. 25). 

3.2.5 Eye-Tracking Recordings 
 

Identical to Exp. 1 (cf. section 2.2.5 pg. 25). 

3.2.6 Data Processing and Analyses 
 

Each trial was categorized as correct or incorrect based on the emotion categorization 

and only correct response trials were used for further analysis. In addition, for each participant 

we also kept trials in which RTs were within 2.5 S.D. from the mean of each condition (Van Selst 

& Jolicoeur, 1994) as a way to eliminate anticipatory responses (which could overlap with EPN 

component) or late responses, which excluded 7.05% of the total number of trials across the 20 

participants. As done in Exp.1 and to ensure foveation to defined fixation location areas (left eye, 
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right eye, nose and mouth), trials in which a saccadic eye movement was recorded beyond 1.4° 

visual angle (70 pixels) around the fixation-location were removed from further analysis. An 

average of 3.29% of trials were removed during this step across the 20 participants included in 

the final sample.   

The ERP data were processed offline in the same way as for Exp.1 (cf. section 2.2.6 pg. 

25). Epochs were 500ms long (100ms pre-stimulus baseline) and digitally band-pass filtered off 

line (0.01–30Hz). Trials were rejected using an automated procedure when containing artifacts 

>±70μV, then visually inspected and further rejected if necessary. After eye movements and 

artefact rejection, participants with less than 40 trials in any condition (out of 80 initial trials) 

were rejected (the average number of trials per condition did not significantly differ across 

emotions (p = .35) or fixation location (p = .20)) (see Appendix A2 for the final number of trials 

per condition).  

ERP Analyses. Using automatic peak detection, the P1 component was measured 

between 80 and 130ms post-stimulus-onset (peak around 100ms) at electrodes O1 and O2. 

Careful inspection of the data suggested emotion differences on P1 at Oz so P1 was also analyzed 

at Oz separately (as done in Exp. 1). The N170 peak was measured between 120-200ms at the 

electrode where it was maximal for each subject and for each hemisphere (see Table 6). Mean 

amplitudes were also calculated within 50ms windows starting from 50 to 350ms, separately for 

occipital sites (O1, O2 and Oz) and lateral-posterior sites (CB1/2, P9/10, P7/8 and PO7/8).   
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Table 6. Number of subjects in Exp. 2 for whom the N170 was maximal at left (P9, CB1, PO7, O1) and right (P10, 
CB2, P08, O2) hemisphere electrodes. LH: left hemisphere; RH: right hemisphere. 

 LH  RH 

P9 11 P10 14 

CB1 6 CB2 4 

PO7 2 PO8 1 

O1 1 O2 1 

Total n 20  20 

 

 

Repeated-measure ANOVAs were conducted separately for correct categorization and 

ERP amplitudes using SPSS Statistics 22. Within-subject factors included hemisphere (2: left, 

right), emotion (3: fear, happiness, neutral) and fixation location (4: left eye, right eye, nose, 

mouth) for P1 and N170 peaks. For mean amplitudes, electrode was another factor (3 occipital 

sites: O1, O2, Oz; 4 lateral-posterior sites: CB1/2, P9/10, P7/8, PO7/8). If necessary further 

analyses of the interactions found were completed with separate ANOVAs for each fixation 

location or each emotion. All ANOVAs used Greenhouse-Geisser adjusted degrees of freedom 

and pairwise comparisons used Bonferroni corrections for multiple comparisons. 

 

3.3 Results 
 

3.3.1 Behavioural Analyses 
 

The overall correct categorization rate was very good (≥ 80%, Table 7). Overall, 

participants made fewer correct responses for neutral than happy or fearful faces (main effect of 

emotion, F(1.61, 30.67) = 3.98, p< .05, ηp
2 = .17; significant neutral-happy paired comparison at 

p < .05). Correct responses were also slightly better for nose and mouth fixations compared to 

eye fixations (main effect of fixation location, F(2.35, 44.67) = 18.01, p < .005, ηp
2 = .24; left eye-
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nose and left eye-mouth paired comparisons at p < .05). No emotion by fixation location 

interaction was seen. 

Table 7. Mean correct responses for fearful, happy and neutral expressions presented during the emotion 
discrimination task in Exp. 2 (standard errors to the means in parenthesis). 

   Mean (%) Correct in ED task (std. error) 

 Overall Left Eye  Right Eye Nose Mouth 

Fearful 90.0 
(1.0) 

87.4 
 (1.2) 

90.8 
(1.2) 

90.0 
(1.0) 

 97.0 
(1.2) 

Happy 91.4 
(1.0) 

90.7 
(0.8) 

91.4 
(1.1) 

91.6 
(0.9) 

91.7 
(1.1) 

Neutral 88.4 
(1.0) 

85.9 
(1.9) 

87.5  
(1.8) 

88.8  
(1.2) 

91.4 
(1.0) 

Overall  88.0 
(1.0) 

89.9 
(1.0) 

90.5 
(1.0) 

91.3 
(1.0) 

 

3.3.2 ERP Analyses  

 
3.3.2.1 Effects of fixation location and emotion at occipital sites (O1, O2, Oz) 

 

P1 Peak Amplitude. For O1/2 sites, overall largest P1 amplitude was found for fixation to 

the mouth (main effect of fixation, F(2.22, 42.21) = 26.32, p < .0001, ηp
2 = .58) (see Fig. 8A). 

Fixation location also interacted with hemisphere (F(2.07, 39.27) = 10.24, p < .0001,  ηp
2 = .35) 

due to opposite hemispheric effects for fixation to each eye. On the left hemisphere (O1), P1 was 

larger for the mouth and left eye (which did not differ significantly) compared to the right eye 

and the nose fixations (which did not differ) (F = 27.75, p < .0001, significant paired comparisons 

at p < .0001). On the right hemisphere (O2), P1 was larger for the mouth and right eye (which did 

not differ significantly) compared to the left eye and nose fixations which did not differ (F = 14.45, 

p < .0001; significant paired comparisons p < .001). A small three-way interaction between 

hemisphere, fixation location and emotion was found (F(3.11, 59.1) = 3.25, p=.027, ηp
2 = .14), 
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however, no effect of emotion or interaction with emotion was found when each hemisphere 

was analyzed separately and no clear pattern was seen.   

At Oz electrode, P1 was also larger for fixation to the mouth compared to the left eye, 

right eye and nose which did not differ significantly from each other (main effect of fixation 

location, F(2.04, 38.71) = 34.62, p < .0001, ηp
2 = .65; significant paired comparisons with mouth 

fixation at p < .001) (Fig. 8A). Importantly, an effect of emotion was found due to a reduced 

positivity for happy compared to neutral expressions (main effect of emotion, F(1.98, 37.65) = 

5.74, p < .01, ηp
2 = .23; happy-neutral paired comparison p =.013) (see Fig 8B). This happy effect 

was best seen by difference waveforms (happy-neutral) and was largest right after the P1, around 

115ms (Fig. 8B and map). This effect was confirmed statistically with mean amplitude analyzes 

during the 100-150ms window (discussed below).  
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Figure 8. Effects of Fixation Location and Emotion at Occipital Sites (Exp.2) 

(A) Grand-averages featuring the P1 component for Exp. 2 (ED) for neutral faces at O1, O2, and Oz electrodes, 
showing effects of fixations with larger amplitudes for mouth fixation and opposite hemispheric effects for eye 
fixations. (B) Grand-average difference waveforms generated by subtracting ERPs to neutral faces from ERPs to 
fearful faces (F-N, solid line) and ERPs to neutral faces from ERPs to happy faces (H-N, dashed line) at Oz (across 
fixation locations). A clear difference peak for happy-neutral was seen between 100-150ms at Oz and O2 (light gray 
band, peak of the “happy effect” around 115ms, see topographic map) and was confirmed by mean amplitude 
analysis at occipital sites during that time window (see main text and Table 8). The grand-averaged waveforms for 
fearful, happy and neutral faces (across fixation locations) at Oz clearly show that this “happy effect” started on 
the P1 peak. (C) Between 150-200ms, both happy and fearful effects were seen at occipital sites for the mouth 
fixation condition only (smaller amplitudes for emotional than neutral faces) as shown by the bar graph. 

 



   

 
 

Table 8.  Exp. 2 (ED task) statistical effects on mean amplitudes analyzed over six 50ms time windows at occipital sites (O1, Oz, O2), with F, p and ηp
2 values. LH, 

left hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; p** < .01; 
p*** < .001; p**** < .0001; ns, not significant. Significant Bonferroni-corrected paired comparison tests (p < .05) are also reported (e.g., H < F + N means that 
mean amplitude for happy was significantly smaller compared to both fearful and neutral expressions, while H + F < N means that mean amplitudes for both 
happy and fearful faces were significantly smaller than to neutral expressions). Effects reported in italics in parenthesis are effects that were weak and not clear 
and thus were treated as non-significant and not discussed in the text. 

Main effects 

and 

interactions 
50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 

Electrode - - - F = 3.71, p* , η
p

2 
= .16 

O1 > Oz 
F = 4.45, p*, η

p

2 
= 

.19 
O1 + O2 > Oz 

F = 3.99, p*, η
p

2 
= .17 

O1 > Oz 
Fixation 
location 

- F = 35.25, p****, η
p

2 
= .65 

Mo > all and LE > RE 
F = 4.19, p*, η

p

2 
= .18 

Pairwise comparisons ns 
- - - 

Emotion - F =7.09, p**, η
p

2 
= .27 

H < F + N 
F = 9.32, p**, η

p

2 
= .33 

H + F < N 
F = 11.6, p****, η

p

2 
= 

.38 
H + F < N 

F = 12, p***, η
p

2 
= 

.39 
H + F < N 

F = 15.35, p****, η
p

2 
= 

.45 
H + F < N 

Electrode X 

Fixation 
location 

(F = 4.92, p**, η
p

2 
= .21 

• O1: ns 
• O2: ns 
• Oz: ns) 

F = 4.72, p**, η
p

2 
= .19 

 O1: F = 31.13, p****, η
p

2 
= 

.62 
Mo > LE > No + RE  
 O2: F =20.08 p****, η

p

2 
= .51 

Mo > all 
 Oz: F 37.35, p****, η

p

2 
= .66 

Mo > all and LE > RE 

F = 3.82, p*, η
p

2 
= .17 

 O1: F =4.17, p*, η
p

2 
= .18 

No > RE 
 O2: F 5.51 p**, η

p

2 
= .23 

No > LE + Mo 
 Oz: ns 

(F = 4.3, p**, η
p

2 
= .18 

 O1: ns 

 O2: ns 

 Oz: ns) 

(F = 3.55, p*, η
p

2 
= 

.16 
 O1: ns 

 O2: ns 

 Oz: ns) 

- 

Emotion X 
Fixation 

location 
- - F= 3.50, p**, η

p

2 
= .16 

 Mo: F =14.52, p***, η
p

2 
= 

.43 
H + F < N  
 No: ns 

 LE: ns 

 RE: ns 

- - - 

 

 



   

 
 

 

   

Figure 9. 2D Topographical Maps of Fearful-Neutral and Happy-Neutral Voltage Differences (Exp. 2) 

 
A) Mean voltage distribution maps of the grand-average difference waveforms between fear and neutral 
(F-N) and happy and neutral faces (H-N) across six 50ms time intervals from 50ms to 350ms (averaged 
across fixation location) in Experiment 2 (ED task). The early occipital effect for happy is clearly seen 
between 100-150ms while the fearful effect starts at 150-200ms. Different topographies are seen for the 
two emotions with an occipital distribution for the happy effect and a more lateral-posterior distribution 
for the fearful effect (with positivity at frontal sites). (B) Grand-average difference waveforms (F-N and H-
N, across fixation locations) at lateral-posterior sites (P7/8, PO7/8, P9/10, CB1/2). The gray zones indicates 
the time during which significant emotion effects were seen at all lateral-posterior sites (150-350ms, see 
Table 9). 

 



   

 
 

Mean Amplitudes over Six Time Windows (O1, O2, Oz). Statistical results for these 

analyses (50-350ms) are reported in Table 8 and visually depicted in Figures 8 and 9.  

More positive amplitudes were seen when fixation was to the mouth compared to the 

other facial features between 100 and 150ms, and this effect was strongest at Oz (electrode x 

fixation location interaction, Table 8). For O1 and Oz, larger amplitudes for left eye fixation than 

right eye fixation was also seen, reminiscent of the hemisphere by fixation effect seen on the P1 

peak. Between 150 and 200ms, overall more positive amplitudes during fixation to the nose were 

seen at O1 and Oz (electrode by fixation location). After 200ms, no more fixation location effect 

was seen.   

  An emotion effect was first seen during the 100-150ms time window with smaller 

amplitudes for happy compared to neutral (and fearful) expressions (Fig. 8B) confirming the 

happy effect found on P1 at Oz reported previously. At 150-200ms smaller amplitudes were now 

seen for both fearful and happy compared to neutral expressions; however, a significant emotion 

by fixation location interaction revealed this was only seen for the mouth fixation condition 

(Figure 8C bar graph). From 200 to 350ms both fearful and happy expressions elicited smaller 

amplitudes compared to neutral expressions regardless of fixation location.  

To summarize, a happy effect was seen at occipital sites from ~100 until 350ms, as clearly 

seen on the difference waveforms and their topographic maps (Fig. 9A, see also Fig. 8B). A Fearful 

effect was seen a bit later, starting at 150ms until 350ms. Interestingly, from 150 to 200ms both 

emotion effects occurred only during fixation to the mouth. Figure 9A also suggests that the fear 

effect was mostly lateral (as discussed next) and less occipital, while the opposite was found for 

happy faces.  
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3.3.2.2 Effects of fixation location and emotion at lateral-posterior sites (CB1/2, P9/10, P7/8, 
PO7/8) 

 

N170 Peak Amplitude. The N170 amplitude was larger for fixation to the left and right 

eyes (which did not differ) compared to fixation to the mouth and nose which did not differ 

significantly (main effect of fixation location, F(1.49, 28.29) = 12.63, p < .0001, ηp
2 = .40; all paired 

comparisons at p-values < .01) (Fig. 10A). This fixation effect was more pronounced on the right 

than on the left hemisphere (hemisphere by fixation location, F(1.57, 29.84) = 3.61, p<.05, ηp
2 = 

.56). The N170 amplitude was also larger in the right compared to the left hemisphere (main 

effect of hemisphere, F(1, 19) = 8.52, p < .01, ηp
2 = .31). No effects of emotion or emotion by 

fixation location interaction were seen. 

P1-to-N170 amplitude.  As done in Exp.1, peak-to-peak analyses were performed to track 

possible influences of P1 onto N170 measures at these lateral sites. Thus, P1 was measured again 

at the electrodes at which the N170 was largest for each hemisphere and each subject and the 

amplitude differences between the P1 and the N170 at these sites was then calculated. 

Amplitude differences were larger in the right compared to the left hemisphere (main effect of 

hemisphere, F(1, 19) = 19.94, p < .0001, ηp
2 = 51). There was also a main effect of fixation location, 

(F(1.95, 37.11) = 33.28, p < .0001, ηp
2 = .64), due to larger amplitudes for the eyes than for the 

nose and mouth, reproducing the effect of fixation location seen on the N170.  



   

 
 

Table 9.  Exp. 2 (Emotion discrimination task) statistical effects on mean amplitudes analyzed over six 50ms time windows at lateral-posterior sites (CB1/2, 
P7/8, PO7/8, P9/10), with F, p and ηp

2 values. LH, left hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, 
neutral. Main effects p values: p* < .05; p** < .01; p*** < .001; p**** < .0001; ns, not significant. Bonferroni-corrected significant paired comparison tests 
(p<.05) are also reported (e.g., F < H + N means that mean amplitude for fearful faces was significantly smaller compared to both happy and neutral 
expressions, while F + H < N means that mean amplitudes for both fearful and happy faces were significantly smaller than to neutral expressions). 

Main effects 

and interactions 
50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 

Electrode - F = 25.65, p**** , η
p

2 

= .57 

P9/10 < CB1/2 +  P7/8 < PO7/8  

F =42.96, p**** , η
p

2 

= .69 

P9/10 < CB1/2 + P7/8 
< PO7/8 

F = 36.37, p****, η
p

2 

= .66 

P9/10 < CB1/2  
< P7/8 < PO7/8  

F = 42.21, p**** , η
p

2 

= .69 

P9/10 + CB1/2  
< P7/8 < PO7/8  

F = 39.54, p**** , η
p

2 

= .68 

P9/10 < CB1/2 + P7/8 < PO7/8  

Fixation 

location 
- F = 9.63, p***, η

p

2 

= .34 

RE + No < LE + Mo  

F = 21.17, p****, η
p

2 

= .53 

All < No 

F = 8.25, p***, η
p

2 

= .30 

All < No 

- - 

Emotion - - F = 26.60, p****, η
p

2 

= .58 

F < H < N 

F = 42.89, p****, η
p

2 

= .66 

F < H < N 

F = 16.94, p****, η
p

2 

= .47 

F < H + N 

F = 19.05, p****, η
p

2 

= .50 

F < H < N  

Emotion X 

Electrode 
(F = 3.05, p*, η

p

2 

= .14 

 CB: ns 

 P9/10: ns  

 P7/8: ns 

 P07/08: ns) 

- - - - - 

Hemisphere X 

Fixation 

location 

F = 7.00, p**, η
p

2 

= .27 

 LH: F = 4.20, p*, η
p

2 

= 

.18 
Pairwise comparisons ns 

 RH: F = 3.48, p*, η
p

2 

= 

.16 
Pairwise comparisons ns 

F =12.54, p***, η
p

2 

= .29 

 LH: F = 12.54, p***, η
p

2 

= .39 

No + RE < LE 

 RH: F = 5.19, p**, η
p

2 

= .22 

No < Mo 

F = 6.19, p**, η
p

2 

= .53 

 LH: F = 11.31, p**, η
p

2 

= .37 

LE  + RE < No 

 RH: F = 18.39, p**, η
p

2 

= .45 

LE + RE (< ) Mo < No 

F = 3.61, p*, η
p

2 

= .16 

 LH: F = 3.80, p*, η
p

2 

= .17 

RE < No 

 RH: F = 6.66, p**, η
p

2 

= .26 

All < No 

(F = 3.56, p*, η
p

2 

= .16 

 LH: ns 

 RH: ns) 

- 

Hemisphere X 

Emotion 
- - - F = 3.48, p*, η

p

2 

= .05 

 LH: F =29.39, p***, η
p

2 

= 

.61; F < H + N 

 RH: F =29.34, p***, η
p

2 

= 

.61; F < H < N 

- - 

Emotion X 

Fixation 

location 

- - - - F = 3.21, p*, η
p

2 

= .15 

 LE: F = 15.12, p***, η
p

2 

= 

.44; F < H + N 

 RE: F = 14.60, p***, η
p

2 

= 

.44; F < H + N 

 No: no effect 

 Mo: F = 6.43, p**, η
p

2 

= 

.25; F + H < N 

F =2.77, p*, η
p

2 

= .13 

 LE: F =8.60, p**, η
p

2 

= .31; 

F < H + N 

 RE: F = 12.36, p***, η
p

2 

= 

.39; F < H + N 

 No: no effect 

Mo: F = 9.68, p**, η
p

2 

= .34; 

F+H < N 

Hemisphere X 

Emotion X 

Fixation 

location  

- F = 3.19, p*, η
p

2 

= .14 

 LH: no emotion effect 

 RH: emo x fix, F = 3.35, p*, η
p

2 

= 

.15 

LE: F = 8.71, p**, η
p

2 

= .31; H > N 

No: F =5.07, p*, η
p

2 

= .21 

F > H 
RE: ns 
Mo: ns 

- - -  



   

 
 

Figure 10. Effects of Fixation Location and Emotion at Lateral-Posterior Sites (Exp.2) 

(A) Grand-averages featuring the N170 component for neutral faces at P9 and P10 as a function of fixation location 
during Exp. 2 (ED task). (B) Grand-average difference waveforms generated by subtracting ERPs to neutral from ERPs 
to fearful faces (F-N, solid line) and ERPs to neutral from ERPs to happy faces (H-N, dashed line) at P10. The maps 
show the voltage difference between fearful and neutral faces (F-N) and happy and neutral (H-N) at 200ms post-
stimulus, when the fearful effect was largest. (C) Grand-averages for fearful, happy and neutral faces (across fixation 
locations) at P10 site where the effect was clearly seen. The gray interval over 250-350ms is where an emotion by 
fixation interaction was seen; the bar graph depicts the mean amplitudes averaged across 250-300 and 300-350ms 
intervals. Smaller amplitudes for fearful compared to both happy and neutral faces were seen for both eyes fixations 
while for the mouth fixation, smaller amplitudes were seen for both fearful and happy faces compared to neutral 
faces. 

Fixation location also interacted with hemisphere (F(2.78, 52.95) = 7.42, p < .0001, ηp
2 = 

.46) due to different effects of the eyes on each hemisphere: on the left hemisphere, amplitude 

for the left eye was larger than for the right eye (p =.002) while  on the right hemisphere, 

amplitude for both eye fixations did not differ.    
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Interestingly, there was also a significant main effect of emotion (F(1.99, 37.86) = 3.63, 

p=.036, ηp
2 = .16) that interacted with fixation location (F(3.84, 72.97) = 2.87, p = .031, ηp

2 = .13) 

due to a larger P1-N170 amplitude difference for happy faces compared to neutral (and fearful) 

faces that was seen only when fixation was on the mouth (mouth: effect of emotion, F = 6.24, p 

< .01, ηp
2 = .25; significant happy-neutral paired comparisons p < .05). There was no effect of 

emotion when fixation was on the left eye (p = .32), right eye (p = .94) or nose (p = .36). This 

interaction was also seen in Exp.1 for P1-N170 analysis although only on the left hemisphere, and 

is similar to the emotion by fixation location interaction seen for happy faces between 150 and 

200ms at occipital sites (Fig.10C, Table 8). Thus, when fixation was on the mouth, the happy effect 

started between the P1 and N170 peaks at lateral sites. 

Mean Amplitude analyses over Six Time Windows (CB1/2, P7/8, P9/10, PO7/8).  

Statistical results for these analyses (50-350ms) are reported in Table 9 and visually 

depicted in Figures 9 and 10.  

Between 100 and 150ms (which encompassed the P1), fixation location interacted with 

hemisphere (Table 9) such that on the left hemisphere, mean amplitudes were smaller for the 

nose and right eye fixation compared to the left eye fixation, while on the right hemisphere, 

amplitudes were significantly smaller for the nose than the mouth fixation. Between 150 and 

250ms, the mean amplitudes were most negative for the eyes and least negative for nose (main 

effect of fixation and hemisphere by fixation location interactions, Table 9). No effect of fixation 

location was seen after 250ms (the hemisphere by fixation location interaction seen during the 

250-300ms time window did not reveal any clear pattern). 
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An effect of emotion was first seen at 100-150ms in a small three-way interaction 

between hemisphere, emotion and fixation location. No emotion effect was seen in the left 

hemisphere. For the right hemisphere, emotion interacted with fixation location; however, no 

clear effects were seen. A main effect of emotion was seen between 150 and 350ms, with smaller 

amplitudes for fearful than neutral faces, best captured by difference waves and their 

topographies as a bilateral posterior negativity with positive counterpart at frontal sites (Fig.9); 

this fearful effect peaked around 200ms (Fig. 10B). During the same period, amplitudes were also 

smaller for happy than neutral faces although this happy effect was much weaker than the fear 

effect (Fig.9). Scalp topographies overall pointed at different underlying generators for the two 

emotion effects. Between 250 and 350ms, emotion interacted with fixation location (Table 9, Fig. 

10C). The effect for fearful expressions was seen when fixation was on the eyes and mouth, but 

not when fixation was on the nose. The happy effect was only seen when fixation was on the 

mouth.  

3.4 Discussion 
 

Using the same gaze-contingent procedure as Exp.1, I investigated the effects of fixation 

to different facial features on the neural processing of fearful, happy and neutral facial 

expressions in an explicit discrimination (ED) task. Overall emotion categorization performance 

was very good, with a small recognition advantage for emotional relative to neutral expressions, 

and followed a similar pattern of behavioural performance as previously reported, where 

emotion recognition is typically better for happy compared to fearful expressions (e.g., Palermo 

& Coltheart, 2004; Tottenham et al., 2009). A categorization performance advantage was also 

seen during fixation to the nose and mouth compared to the eyes, supporting the idea of an 
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emotion recognition advantage from facial information in the bottom half of the face (e.g., Blais, 

Roy, Fiset, Arguin, & Gosselin, 2012).   

 As predicted, a clear fixation effect was seen on P1 peak (Figure 8A, Table 8) with larger 

amplitude when fixation was on the mouth compared to the eyes and nose. This effect was also 

seen between 100 and 150ms at occipital sites and likely reflected sensitivity to the face position 

on the screen, given that most facial information was in the upper visual field during fixation to 

the mouth, as discussed in Exp.1 (Section 2.4.2). P1 amplitude was also larger for the right eye 

than the left eye on the right hemisphere and larger for the left eye compared to the right eye 

on the left hemisphere. The larger amplitude for the left than the right eye was also captured by 

mean amplitude analyses between 100 and 150ms (at O1 for occipital sites and on the left 

hemisphere for posterior lateral sites), and by the P1-N170 amplitude difference analysis on the 

left hemisphere. This fixation effect reflects hemifield presentation effects as most of the facial 

information was in the left visual field when fixation was on the right eye and in the right visual 

field when fixation was on the left eye (see Fig.1). These effects are similar to the fixation effects 

reported in Exp. 1 (although were most pronounced in the left hemisphere) and by recent studies 

using similar gaze-contingent procedures (de Lissa et al., 2014; Nemrodov et al., 2014; Zerouali 

et al., 2013). 

 As also expected, replicating Exp.1, larger N170 amplitudes were found for both eye 

fixations compared to the nose and mouth fixations (de Lissa et al., 2014; Nemrodov et al., 2014). 

This larger amplitude for the eyes was also found with the mean amplitude analysis at posterior 

lateral sites between 150 and 200ms and supports the idea of a special role for the processing of 

eyes at the level of facial structural encoding. This N170 eye sensitivity was seen to the same 
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extent for the three facial expressions, as in Exp.1, and there was no effect of emotion on this 

component, consistent with previous ERP studies requiring discrimination of facial expressions 

(e.g., Leppänen et al., 2008; Schupp et al., 2004; however see Hinojosa, Mercado, & Carretié, 

2015).  

Like Exp. 1, smaller amplitudes for happy relative to neutral expressions started on the P1 

and were seen mainly over occipital sites, ~100-350ms post-stimulus, while smaller amplitudes 

for fearful relative to neutral expressions started right after the N170, ~150-350ms post-stimulus 

mainly over posterior-lateral sites. The overall scalp distribution and timing of these happy and 

fearful effects were remarkably similar to Exp. 1 and support the idea of different neural 

generators underlying the processing of these two facial emotions.  

The localized emotion by fixation location interaction at occipital sites seen in Exp.1 was 

also reproduced in the current study between 150 and 200ms post-stimulus onset (Table 8), with 

smaller amplitudes (less positive, more negative going) for both happy and fearful relative to 

neutral expressions seen only during fixation to the mouth. The impact of the mouth for happy 

expressions started in fact earlier, as revealed by the P1-N170 amplitude difference.  

Novel to the current ED task was an emotion by fixation location interaction at lateral-

posterior sites between 250 and 350ms (coinciding with EPN) with more negative amplitudes for 

fearful compared to neutral expressions when fixation was on either the eyes or the mouth but 

not on the nose (Table 9). During that time window, amplitudes were also smaller (more 

negative) for happy than neutral expressions only during fixation on the mouth, with no effects 

of emotion seen during fixation on the nose. Previous studies reporting emotional modulation of 

the EPN have used a central fixation (i.e., fixation landing on the nose or nasion). Given fixation 
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was not enforced in previous studies it is possible that participants made small shifts in gaze 

towards the eyes and nose driving the effects. 

Previous studies of ERP modulations by expression-specific facial features have reported 

only the occipito-temporal distribution with larger N170 amplitudes for fearful eyes and happy 

mouths (e.g., Schyns et al., 2007, 2009; Calvo & Beltrán, 2014) and more negative-going response 

for fearful eyes beginning at the latency of the N170 until 240ms (encompassing the EPN; 

Leppänen et al., 2008). Systematic analyses including occipital and lateral-posterior sites in the 

current study revealed that the eyes impacted processing of fearful faces; however, the mouth 

impacted processing of both happy and fearful expressions. Information from the mouth may be 

required for early processing of happy faces (~115-120ms), seen mostly with an occipital 

distribution and to a lesser extent at lateral-posterior sites whereas processing of fearful 

expressions is seen later (~180ms) requiring information from the mouth and the eyes with a 

lateral-posterior distribution and to a lesser extent at occipital sites.  

Albeit different, the present results indeed found support for the importance of 

diagnostic features at the neural level. In line with visual scanning studies (Eisenbarth & Alpers, 

2011) the current study suggests that both the mouth and eyes are important for fearful faces, 

not just the eyes as suggested by others (e.g., Smith et al., 2005; Schyns et al., 2007, 2009). It is 

important to note, however, that these results might be specific to the current emotion 

discrimination task. Whether these features play an important role in the processing of fearful 

and happy expressions during tasks where less attention to the face is required (e.g., oddball 

detection) remains to be tested.  
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Chapter 4: Fixation to features and neural processing of fearful and happy facial 

expressions in an oddball task (Experiment 3)10 

 

4.1 Introduction 
 

In the current thesis, tasks requiring gender discrimination (GD, Exp.1) and explicit 

emotion discrimination (ED, Exp.2) revealed similar patterns of emotion effects with different 

scalp distributions for happy and fearful expressions.  These emotion effects did not interact 

with fixation location at the N170 level, suggesting that the structural encoding of the face, and 

processing of emotion may take place at separate stages. In contrast, these emotion effects 

were found to interact with fixation to facial features before or after the N170 and the pattern 

of these interactions varied between the two experiments. However, a large proportion of 

published reports of enhanced P1 and N170 components for fearful (compared to neutral) 

expressions have occurred in tasks where emotional faces were viewed passively (e.g., Blau et 

al., 2007; Pizzagalli et al., 2002; Schupps et al., 2004) or in oddball detection tasks requiring a 

face vs. non-face judgment (e.g., Batty & Taylor, 2003; Leppänen et al., 2007; Williams et al., 

2004). Therefore the current study tested the impact of fixation to facial features on the neural 

processing of fearful and happy expressions during an oddball detection task.  

When participants were instructed to categorize face gender in Exp.1, emotion effects for 

fearful expressions occurred largely independently of fixation location. For happy expressions, 

however, there was a small interaction such that the happy effect at occipital sites was seen 

during fixation to the mouth only between 150 and 200ms, and that interaction was also 

                                                           
10 A version of this chapter and chapter 3 combined, will be submitted to Biological Psychology (Neath & Itier, in 
prep) 
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significant with the P1-N170 peak difference analysis (on the left hemisphere) at posterior lateral 

electrodes. Importantly, this interaction was replicated in Exp. 2 when participants were explicitly 

instructed to discriminate between facial expressions.  In Exp. 2 the interaction could once again 

be seen in the P1-N170 peak difference analysis and at occipital sites during the same time 

window. A novel interaction seen during Exp.2 (ED) occurred at lateral-posterior sites between 

250 and 350ms (timing that coincides with the EPN) such that the fearful effect was seen during 

fixation to the eyes and the mouth but not during fixation to the nose, whereas a happy effect 

was seen only during fixation to the mouth (see bar graph on Fig.10). This suggests that fixation 

on these diagnostic cues impacted facial expression processing after the structural encoding of 

the face (as indexed by N170), during a time window coinciding with the processing of the 

emotional content (EPN, 250-350ms) during explicit emotion categorization. Facial features 

therefore impact the neural processing of fearful and happy expressions differently depending 

on task demands (i.e., gender vs. explicit emotion discrimination). Facial features may also impact 

facial expression processing differently during tasks requiring less attention to the face, an idea 

that I tested in Exp. 3 using an oddball (flower) detection task (ODD).  

 Using the same gaze-contingent procedure as Exp. 1 and 2, fixation to facial features was 

manipulated while participants were instructed to view a series of images and respond when 

they detected a flower thus making a face vs. flower judgment. Early P1 effects for fearful faces 

have been reported during oddball detection tasks (e.g., Batty & Taylor, 2003; Williams et al., 

2004). When controlling for low-level stimulus characteristics (pixel intensity and RMS contrast), 

Exp.’s 1 (GD) and 2 (ED) found no effect of fear for the P1 and N170; however, it is possible that 

this early effect for fear may be revealed in the current oddball detection task since the task 
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requires that less attention be placed on the face. This would suggest earlier processing of fearful 

faces only during tasks requiring a face vs. non-face judgment, compared to tasks requiring 

accurate categorization of face gender and facial expression, further suggesting the effect is 

driven by attention to the face placed by task demands and not by emotion per se. Replication of 

the distinct emotion effects for happy (occipital distribution) and fearful (lateral-posterior) 

expressions seen in Exp.1 and 2 would suggest a general emotion effect regardless of task 

demands. It was also possible that these emotion effects would interact with fixation to facial 

features. Replication of the interaction of the early effect for happy with fixation to the mouth,  

seen in Exp.1 and 2, would suggest the effect was driven by the salient smiling mouth regardless 

of task. Emotion by fixation location interactions seen later (~200-350ms) as seen in Exp.2, would 

suggest these diagnostic features (i.e., mouth and eyes) are not solely tied to explicit emotion 

discrimination. It is to be noted, however, that the role of diagnostic facial features during facial 

expression processing has only been tested in tasks requiring emotion or gender categorization 

and therefore it was difficult to make concrete a priori predictions concerning whether emotion 

effects would interact with fixation to facial features in this oddball task.  

4.2 Methods 
 

4.2.1 Participants 
 

Forty three-undergraduate students were tested at UW and received course credit. All 

participants lived in North America for at least 10 years and reported normal or corrected-to-

normal vision, no history of head-injury or neurological disease, and were not taking any 

medication. They all signed informed written consent and the study was approved by the 

Research Ethics Board at UW Seventeen participants were rejected: two for completing less than 
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half of the experiment thus rendering too few trials per condition; five for too many trials with 

artefacts resulting in too few trials per condition; 10 due to too few trials remaining after 

removing trials with eye movements greater than 1.4° of visual angle from the fixation location 

(see Fig. 1); and two due to high anxiety (scores higher than 43 on the STICSA, Ree et al. 2008). 

The results from 26 participants were kept in the final analysis (20.8 ± 1.7 years, 15 female, 22 

right-handed).  

4.2.2 Stimuli  
 

The face stimuli were the same as those used in Exp.’s 1 and 2. In addition, 6 flower images 

were used as oddball stimuli. To be consistent with the face images, all flower stimuli were 

converted to grayscale in Adobe™ Photoshop CS5 and an elliptical mask was applied (see Fig.11). 

As in Exp. 1 and 2, a unique central fixation-cross was used and each face was presented offset 

so the pre-determined center of each feature would land on the center of the fixation-cross. To 

keep in line with the experimental paradigm, coordinates corresponding to the left eye, right eye, 

nose and mouth of a randomly selected neutral face identity were used for all flower stimuli (see 

Fig. 1). 

 

Figure 11. Oddball Flower Stimuli (Exp.3) 

Example of oddball target flower stimuli used in Exp. 3.  
 

4.2.3. Apparatus and Procedure  
 

Participants completed an oddball detection task where they were instructed to press the 

space bar as quickly and accurately as possible to the target stimuli (flowers) which occurred 
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infrequently (20% of the time) amongst non-target stimuli (fearful, happy and neutral faces). 

Participants were given 8 practice trials. The experimental session used the same gaze-contingent 

procedure as in Exp. 1 except for the response screen (Fig. 12). On average participants took 

880ms (781 S.D) between the onset of the fixation cross and the stimulus presentation. The 

stimulus was immediately followed by a fixation cross that was presented for 747ms after a face 

stimulus or until response after a flower stimulus. Participants were instructed to blink during 

this time. The experimental block contained 96 face trials (3 emotions X 4 fixation locations X 8 

identities) and 24 flower trials (4 fixation locations X 6 flowers), and  was repeated 10 times in a 

randomized order, yielding 80 trials per face condition, across the 10 blocks. Participants then 

completed the 21 item trait anxiety test from the STICSA.  

 

Figure 12. Oddball Detection Trial Sequence (Exp.3) 

Trial example used in the Oddball task with right eye fixation and fearful expression. First a fixation point was 
displayed on the screen for a jittered amount of time (0-107ms) with an additional fixation trigger of 307ms. 
Following this, a grayscale picture was flashed for 257ms. The stimulus was followed by a fixation cross that was 
presented for 747ms for face trials or until response for flower trials. 

 

4.2.3 Electrophysiological recordings 
 

Identical to Exp.’s 1 and 2 (cf. section 2.2.4 pg. 25). 
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4.2.4 Eye-tracking recordings 
 

Identical to Exp.’s 1 and 2 (cf. section 2.2.5 pg.25). 

4.2.5 Data processing and analyses 
 

Identical to Exp.’s 1 and 2 (cf. section 2.2.6 pg.25). In this task 6.8% of trials across the 

final 26 participants were removed due to eye movements recorded beyond 1.4° visual angle 

(70px) around the fixation location. The final trial number did not differ significantly by emotion 

(p = .17) or fixation location (p = .33) (see Appendix A3 for final number of trials per condition). 

As done in Exp.’s 1 and 2, the N170 peak was measured between 120-200ms at the electrode 

where it was maximal for each subject and for each hemisphere (see Table 10). 

 

Table 10. Number of subjects in Exp. 3 for whom the N170 was maximal at left (P9, CB1, PO7, O1, TP9) and right 
(P10, CB2, P08, P8, O2) hemisphere electrodes. LH: left hemisphere; RH: right hemisphere. 

 
 LH  RH 

P9 10 P10 12 

CB1 11 CB2 6 

PO7 3 PO8 4 

P7 - P8 3 

O1 1 O2 1 

TP9 1 TP10 - 

Total n 26  26 

 

 

4.3 Results 

 

4.3.1 Behavioural Analyses 
 

Overall detection of flower stimuli was excellent (~98%) demonstrating that the 

participants were attending to the task. In addition, participants correctly withheld their 
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responses when they detected a facial stimulus (~99%) and this did not differ by emotion (p = 

.13) or fixation location (p = .17).  

4.3.2 ERP Analyses 

4.3.2.1 Effects of fixation location and emotion at occipital sites (O1, O2, Oz) 
 

P1 Peak Amplitude. For O1/2, P1 amplitude was larger in the right compared to the left 

hemisphere (F(1, 25) = 5.29, p < .05, ηp
2 = .18) and overall largest for fixation to the mouth (main 

effect of fixation, F(2.22, 55.42) = 12.62, p < .0001, ηp
2 = .34) (see Fig. 13A). As seen in Exp. 1, an 

interaction between fixation location and hemisphere (F(2.33, 58.25) = 19.65, p < .0001,  ηp
2 = 

.44) was due to eye fixations yielding opposite effects on each hemisphere. On the left 

hemisphere, P1 was larger for the mouth and left eye (which did not differ significantly) 

compared to the right eye and the nose fixations (which did not differ) (F = 20.32, p < .0001; ηp
2 

= .45). On the right hemisphere, P1 was larger for the mouth and right eye (which did not differ 

significantly) compared to the left eye and nose fixations which did not differ (F = 11.57, p < .001; 

ηp
2 = .32; significant paired comparisons p < .01). P1 at Oz was also larger for fixation to the mouth 

compared to all other fixation locations which did not differ significantly from each other (main 

effect of fixation location, F(2.42, 60.53) = 14.69, p < .0001, ηp
2 = .37; significant paired 

comparisons with mouth fixation at p < .05) (Fig. 13A).  

In contrast to Exp. 1 (GD task) and 2 (ED task), an effect of emotion was found for P1 at 

O1/2 sites, with reduced positivity for happy compared to neutral (and fearful) faces (main effect 

of emotion, F(1.89, 47.22) = 4.74, p = .015, ηp
2 = .16; significant paired comparisons happy-neutral 

p = .024 and happy-fearful p = .05). This emotion effect was also seen at Oz (main effect of 

emotion, F(1.97, 49.23) = 6.51, p < .01, ηp
2 = .21; Fig 13B), although only for the mouth fixation 
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(emotion by fixation location interaction at Oz, F(5.13, 128.30) = 3.86, p < .005, ηp
2 = .13; effect 

of emotion at mouth fixation: F =16.1, p<.001; significant happy-neutral and happy-fearful paired 

comparison at p < .005; no emotion effect for left eye (p =.82), right eye (p =.59) or nose (p =.082); 

Fig 13C P1 bar graph). Difference waveforms (fearful-neutral and happy-neutral, across fixation 

locations) clearly revealed this happy effect at occipital sites that was largest around 120ms (Fig. 

13B-C and map). This early effect was confirmed with mean amplitude analyzes during the 100-

150ms window (see below). 

 

 

 



   

 
 

Table 11. Exp. 3 (Oddball task) statistical effects on mean amplitudes analyzed over six 50ms time windows at occipital sites (O1, Oz, O2), with F, p and ηp
2 

values. LH, left hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; 
p** < .01; p*** < .001; p**** < .0001; ns, not significant. Bonferroni-corrected significant paired comparison tests (p < .05) are also reported (e.g., H < F + N 
means that mean amplitude for happy was significantly smaller compared to both fearful and neutral expressions, while H + F < N means that mean amplitudes 
for both happy and fearful faces were significantly smaller than to neutral expressions). 

Main effects and 

interactions 
50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 

Electrode F = 4.41, p* , η
p

2 
= .15 

O2 > Oz 
   

F = 12.71, p*** , η
p

2 
= .34 

O1 +O2 > Oz 
   

F =4.07 p* , η
p

2 
= .14 

No sign. paired comp. 

F = 12.83, p** , η
p

2 
= .34 

O1 + O2 > Oz 

F = 29.61, p****, η
p

2 
= 

.54 
O1 + O2 > Oz 

F = 15.66, p****, η
p

2 
= 

.38 
O1 + O2 > Oz 

Fixation location - F = 40.98, p****, η
p

2 
= .62 

Mo > all and LE > RE 

F = 7.48, p**, η
p

2 
= .23 

No > RE + Mo 

F = 6.67 , p**, η
p

2 
= .21 

All > Mo 

F = 4.55 , p**, η
p

2 
= .15 

LE > No 

- 

Emotion - F =16.32, p****, η
p

2 
= .40 

H < F + N 

F = 13.72, p***, η
p

2 
= .35 

H + F < N 

F = 16.65, p****, η
p

2 
= .40 

H + F < N 

F = 9.50, p***, η
p

2 
= 28 

H < N 

F = 12.46, p****, η
p

2 
= 

.33 
H + F < N 

Electrode X 

Fixation location 
F = 10.11, p***, η

p

2 
= .29 

• O1: F = 4.27, p*, η
p

2 
= .15 

LE > RE 

• O2: F =3.83 p*, η
p

2 
= .13 

RE > LE + No 
• Oz: ns 

•  

- F = 2.65, p*, η
p

2 
= .1 

• O1: F = 7.2, p**, η
p

2 
= .22 

No > RE + Mo; LE > RE 

• O2: F =7.83 p**, η
p

2 
= .24 

No > all 

• Oz: F =4.96 p*, η
p

2 
= .17 

No > RE + Mo 

- - - 

Electrode X 

Emotion 
- F = 4.20, p*, η

p

2 
= .14 

• O1: F = 9.09, p**, η
p

2 
= .27 

H < F + N 

• O2: F =15.93, p****, η
p

2 
= .39 

H < F + N 

• Oz: F = 16.91, p****, η
p

2 
= .40 

H < F + N 

F = 2.77, p*, η
p

2 
= .1 

• O1: F = 7.0, p**, η
p

2 
= .22 

H + F < N 

• O2: F =15.99 p***, η
p

2 
= .39 

H + F < N 

• Oz: F =12.54 p***, η
p

2 
= .33 

H + F < N 

- -  

Emotion X 

Fixation location 
- F =4.38, p**, η

p

2 
= 15 

• Mo: F = 21.22, p****, η
p

2 
= .46 

H < F + N 

• No: F = 8.98, p**, η
p

2 
= .26 

H < F + N 
• LE: ns 
• RE: ns 

•  

F= 3.22, p*, η
p

2 
= .11 

• Mo: F = 17.11, p ****, η
p

2 
= .41 

H + F < N 

• No: F = 4.40, p*, η
p

2 
= .15 

F < N 
• LE: ns 
• RE: ns 

•  

- - F= 3.26, p*, η
p

2 
= .12 

• Mo: F = 17.43, p 

****, 

η
p

2 
= .41 

F + H < N 
• No: ns 
• LE: ns 
• RE: ns 

•  

 

 



   

 
 

 

 

Figure 13. Effects of Fixation Location and Emotion Occipital Sites (Exp.3) 

(A) Grand-averages featuring the P1 component for Exp. 3 (ODD) for neutral faces at O1, O2, and Oz electrodes, 
showing effects of fixations with larger amplitudes for mouth fixation and opposite hemispheric effects for eye 
fixations. (B) Top row: Grand-average difference waveforms generated by subtracting ERPs to neutral from ERPs to 
fearful faces (F-N, solid line) and ERPs to neutral from ERPs to happy faces (H-N, dashed line) at O1, O2 and Oz 
(across fixation locations). A clear peak for the happy-neutral difference was seen between 100-150ms (gray band, 
peak of the effect around 120ms at which the topographic map is shown) and was confirmed by mean amplitude 
analysis at occipital sites during that time window (see main text and Table 11). Bottom row: Grand-averaged 
waveforms for fearful, happy and neutral faces (across fixation locations) at Oz showing the “happy effect” starting 
at P1 although only for the mouth fixation condition (left bar graph). (C) Emotion effects were seen only during 
fixation to the nose and mouth between 100-150ms (bottom left bar graph) and between 150-200ms (bottom 
middle bar graph); emotion effects were seen only for the mouth fixation during the 300-350ms interval (bottom 
right bar graph). 

 

  



   

 
 

 

 

 

 

 

Figure 14. 2D Topographical Maps of Fearful-Neutral and Happy-Neutral Voltage Differences 
(Exp.3) 

(A) Mean voltage distribution maps of the grand-average difference waveforms between fear 
and neutral (F-N) and happy and neutral faces (H-N) across six 50ms time intervals from 50ms to 
350ms (averaged across fixation location) during the oddball detection task. (B) Grand-average 
difference waveforms generated by subtracting neutral from fearful and happy conditions (F-N 
and H-N, averaged across fixation locations) at lateral-posterior sites (CB1/2, P7/8, PO7/8, 
P9/10). The gray zones highlight where the emotion effects were seen at all lateral-posterior 
sites (150-350ms; the happy effect started at 200ms). 

 

 



   

 
 

Mean Amplitudes over Six Time Windows (O1, O2, Oz). Statistical results for these 

analyses (50-350ms) are reported in Table 11 and visually depicted in Figures 13 and 14A. 

Between 50 and 100ms, fixation location interacted with electrode such that mean 

amplitudes at O1 were larger for left eye fixation than right eye fixation while the opposite was 

found at O2, reflecting a different effect of fixation to the eyes on each hemisphere, as seen on 

the P1 peak (Table 11, Fig. 13). More positive amplitudes were seen when fixation was on the 

mouth compared to the other facial features between 100 and 150ms (Fig.13A). From 150 to 

300ms various fixation effects were seen (Table 11) with no clear stable pattern. 

 As seen in Exp.1 and 2, an emotion effect was first seen during the 100-150ms time 

window with smaller amplitudes for happy compared to neutral (and fearful) expressions (Fig. 

13B-C), confirming the main effect found on P1 peak reported previously. However, in contrast 

to Exp.1 and 2, an emotion by fixation location interaction revealed this effect was seen for the 

nose and mouth fixation conditions, but not for the eyes fixation conditions (Table 11, Fig.13C, 

bottom left panel). From 150 to 200ms, both happy and fearful faces elicited smaller amplitudes 

than neutral faces although again, these effects were seen only for the mouth fixation (Fig.13C, 

bottom middle panel), as was also seen in Exp.1 and .2. For nose fixation, only the fearful-neutral 

difference was significant, while no emotion effect was seen when fixation was on the eyes. 

Between 100 and 200ms, these emotion effects were seen at all occipital sites but were slightly 

more pronounced at O2 and Oz (electrode by emotion interaction, Table 11). From 200 to 300ms 

happy expressions continued to elicit smaller amplitudes compared to neutral expressions 

regardless of fixation location (fear elicited smaller amplitudes than neutral from 200 to 250ms). 

However, from 300 to 350ms the happy and fearful effects were once again only seen for the 
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mouth fixation condition (Fig.13C, bottom right panel). Overall, the distribution of the happy and 

fearful effects over occipital sites was extremely similar to that seen in Exp.1 and Exp.2 (see 

Fig.14) with additional interactions between fixation location and emotion in 2 time windows. 

4.3.2.1 Effects of fixation location and emotion at lateral-posterior sites (CB1/2, P9/10, P7/8, 
PO7/8) 

 

N170 Peak Amplitude. The N170 amplitude was larger in the right compared to the left 

hemisphere (F(1,25) = 7.12, p = .013, ηp
2 = .22) and for fixation to the left and right eye (which 

did not differ) compared to fixation to the mouth and nose which did not differ significantly (main 

effect of fixation location, F(2.66, 66.41) = 23.52, p < .0001, ηp
2 = .49; all paired comparisons at p-

values < .001) (Fig. 15A). In contrast to Exp.1 the N170 was larger for fearful compared to neutral 

and happy faces which did not differ (Fig. 15B) (main effect of emotion, F(1.93, 48.33) = 10.34, p 

< .001, ηp
2 = .29; significant fearful-neutral and fearful-happy paired comparisons p < .01). There 

was also an emotion by hemisphere interaction (F(1.94, 48.37) = 4.33, p = .02, ηp
2 = .15) such that 

N170 amplitudes were larger for fearful compared to both neutral and happy faces in the left 

hemisphere (emotion effect, F = 11.28, p < .001; significant fearful-neutral paired comparison p 

=.028 and fearful-happy p = .001) however larger for fearful only compared to neutral faces in 

the right hemisphere (F = 6.61, p < .01; significant paired comparison p = .003).  

P1-to-N170 amplitude. Replicating Exp.1 and 2, amplitude differences were larger in the 

right compared to the left hemisphere (main effect of hemisphere, F(1, 25) = 14.79, p < .001, ηp
2 

= 37) and were larger during fixation to both the left and right eye (which did not differ) compared 

to the nose and mouth (which did not differ) (main effect of fixation location, F(2.32, 57.93) = 

37.56, p < .0001, ηp
2 = .60; significant left eye-nose/mouth and right eye-nose/mouth paired 

comparisons p < .0001). Once again, this confirmed the fixation location effect found for the N170 
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peak. An interaction between fixation location and hemisphere was also seen (F(2.05, 51.15) = 

7.20, p < .01, ηp
2 = .22), due to opposite effects of eye fixation in each hemisphere, driven by the 

P1 (Fig.15A): on the left hemisphere, amplitude was larger for the left than the right eye (p <.001) 

while the opposite was seen on the right hemisphere (RE > LE, p =.014).  

In line with the emotion effect at the N170, P1-N170 amplitude difference was overall 

largest for fearful faces (main effect of emotion, F(1.86, 46.60) = 6.40, p < .01, ηp
2 = .20; significant 

fearful-neutral comparison p = .002), but this effect interacted with hemisphere (F(1.89, 47.40) = 

4.92, p=.013, ηp
2 = .16). The analysis of each hemisphere separately confirmed an emotion effect 

for the right hemisphere (F =8.96, p=.001, ηp
2 = .26), with larger amplitude for fearful than neutral 

faces, but no emotion effect for the left hemisphere (p =.39). There was also a significant 

interaction between fixation location and emotion (F(4.09, 102.34) = 4.10, p = .004, ηp
2 = .14). A 

larger P1-N170 amplitude difference for fearful compared to happy faces was seen when fixation 

was on the nose (F = 6.50, p = .003; paired comparison p = .003) and for both fearful and happy 

compared to neutral faces when fixation was on the mouth (F = 7.59, p = .002; significant fearful-

neutral paired comparison p = .039 and happy-neutral p =.001). When fixation was on the right 

eye, (F =3.49, p =.045), amplitude tended to be larger for fearful than happy faces but the 

comparison did not reach significance (p =.078). No emotion effect was seen when fixation was 

on the left eye (p =.28). Thus, fearful and happy effects were only seen during mouth fixation 

between P1 and N170 components (~100-150ms).   
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Mean Amplitude analyses over Six Time Windows (CB1/2, P7/8, P9/10, PO7/8). 

Statistical results for these analyses (50-350ms) are reported in Table 12 and visually depicted in 

Figures 14 and 15.  

Between 50 and 100ms, fixation to the eyes had opposite effects on each hemisphere 

(fixation location x hemisphere interaction), reminiscent of the effect seen at occipital sites 

during that same time and on the P1. The pattern was less clear between 100 and 150ms, during 

the transition to the N170 component, but between 150 and 250ms, the mean amplitudes were 

more negative for the eyes than for the nose and mouth, capturing well the fixation effect 

reported on the N170. After 200ms no clear fixation effect was seen although amplitudes seemed 

slightly more positive for mouth fixation than for the other fixation locations (Fig.15A). 
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Figure 15. Effect of Fixation Location and Emotion at Lateral-Posterior Sites (Exp.3) 
(A) Grand-averages featuring the N170 component for neutral faces at P9 and P10 as a function of fixation location 
during the oddball detection task. (B) Left. Grand-averages for fearful, happy and neutral faces (across fixation 
locations) at P10 site featuring a larger N170 peak for fearful than neutral and happy faces. Right. Grand-average 
difference waveforms generated by subtracting ERPs to neutral from ERPs to fearful faces (F-N, solid line) and ERPs 
to neutral from ERPs to happy faces (H-N, dashed line) at P10. The maps show the voltage difference between fearful 
and neutral faces and between happy and neutral faces, across the scalp at a latency of 200ms where the effects 
were largest. (C) Emotion by fixation location interactions are displayed in the bar graph: Between 200-250ms 
(bottom left bar graph) smaller amplitudes for fearful compared to happy and neutral expressions were seen only 
during fixation to the right eye and smaller amplitudes for both happy and fearful compared to neutral expressions 
were seen only during fixation to the mouth; between 250-300ms (bottom middle bar graph) smaller amplitudes for 
fearful compared to neutral expressions were seen during fixation to the left and right eye and smaller amplitudes 
for happy compared to fearful and neutral expressions during fixation to the mouth; between 300-350ms (bottom 
right bar graph) smaller amplitudes for fearful and happy expressions compared to neutral were seen only during 
fixation to the mouth. .  



   

 
 

Table 12.  Exp. 3 (ODD) statistical effects on mean amplitudes analyzed over six 50ms time windows at lateral-posterior sites (CB1/2, P7/8, PO7/8, P9/10), with F, p and ηp
2 values. LH, left 

hemisphere; RH, right hemisphere; LE, left eye; RE, right eye; No, nose; Mo, mouth; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; p** < .01; p*** < .001; p**** < .0001; ns, not 
significant. Bonferroni-corrected significant paired comparison tests are also reported (e.g., F < H + N means that mean amplitudes for fearful faces were significantly smaller compared to both happy 
and neutral expressions, while F + H < N means that mean amplitudes for both fearful and happy faces were significantly smaller than to neutral expressions). 

Main effects 

and interactions 
50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 

Electrode F = 28.78, p**** , η
p

2 

= .54 

P9/10 < CB1/2 +  P7/8 < PO7/8  

F = 25.60, p**** , η
p

2 

= .45 

P9/10 < CB1/2 +  P7/8 < PO7/8  

F =31.9, p**** , η
p

2 

= .56 

P9/10 < CB1/2 + P7/8 
< PO7/8  

F = 52.48, p****, η
p

2 

= .68 

P9/10 < CB1/2 + P7/8 
< P7/8 < PO7/8  

F = 46.77, p**** , η
p

2 

= .65 

P9/10 + CB1/2  
< P7/8 < PO7/8  

F = 42.01, p**** , η
p

2 

= .63 

P9/10 + CB1/2 
 < P7/8 < PO7/8  

Hemisphere F = 5.59, p*, η
p

2 

= .18 

RH > LH 

- F = 5.54, p*, η
p

2 

= .18 

RH < LH 

F = 13.02, p**, η
p

2 

= .34 

RH > LH 

F = 16.84, p***, η
p

2 

= .40 

RH > LH 

F = 5.24, p*, η
p

2 

= .17 

RH > LH 

Fixation 

location 
- F = 8.82, p***, η

p

2 

= .26 

LE + Mo > No 

F = 32.00, p****, η
p

2 

= .56 

LE + RE  < Mo < No 

F = 4.12, p*, η
p

2 

= .14 

No > RE 

- F = 6.54, p**, η
p

2 

= .21 

Mo > RE 

Emotion F = 3.53, p*, η
p

2 

= .12 

H < F 

- F = 18.34, p****, η
p

2 

= .42 

F < H < N 

F = 15.44, p****, η
p

2 

= .38 

F + H < N 

F = 7.97, p**, η
p

2 

= .24 

F + H < N 

F = 11.02, p**, η
p

2 

= .31 

F + H < N  

Emotion X 

Electrode 
- F = 5.60, p**, η

p

2 

= 18 

• P9/10:F = 5.30, p**, η
p

2 

= .18 

F < H 
• P7/8: ns 
• PO7/PO8: ns 
• CB: ns 

•  

F = 2.96, p*, η
p

2 

= 11 

• P9/10: F=24.7, p****, η
p

2

= .5  

F < H + N 

• P7/8: F=10.78, p***, η
p

2

= .3; 

F < H + N 

• PO7/P8: F=11.63, p***, η
p

2

= .32 

F + H < N 

• CB: F =13.9, p***, η
p

2 

= .36 

 F < H + N 

   

Hemisphere X 

Fixation 

location 

F = 10.45, p***, η
p

2 

= .30 

• LH: F = 4.71, p**, η
p

2 

= .16 

LE > RE 

• RH: F = 5.46, p**, η
p

2 

=  .18  

RE > LE + Mo 
•  

F =4.77, p**, η
p

2 

= 16 

• LH: F =3.28, p*, η
p

2 

= .12  

LE  > No 

• RH: F =6.33, p **, η
p

2 

=  .20  

LE + RE + Mo > No 

-   F =4.13, p*, η
p

2 

= 14 

• LH: F =6.47, p*8, η
p

2 

= .21 

RE < LE + Mo 
• RH: ns 

•  

- 

Hemisphere X 

Emotion 
- - F = 5.04, p*, η

p

2 

= .17 

• LH: F =11.18, p***, η
p

2 

= .31 

F < H +  N 

• RH: F =19.23, p****, η
p

2 

= .44 

F < H < N 

F = 3.83, p*, η
p

2 

= .13 

• LH: F =10.3, p***, η
p

2 

= .29; 

 F < H +  N 

• RH: F =15.65, p****, η
p

2 

= .39  

F + H < N 

•  

F = 3.4, p*, η
p

2 

= .12 

• LH: F =5.5, p**, η
p

2 

= .18 

F < N 

• RH: F =8.33, p***, η
p

2 

= .25 

 F + H < N 

•  

 

Emotion X 

Fixation 

location 

F = 3.67, p**, η
p

2 

= .13 

• LE: ns 
• RE: ns 

• No: F = 8.43, p**, η
p

2 

= .25  

H < F 

• Mo: F = 3.8, p*, η
p

2 

= .13 

Pairwise comparisons ns 

•  

- - F = 3.42, p*, η
p

2 

= .12 

• LE: ns 

• RE: F = 5.72, p**, η
p

2 

= .19 

 F < H + N 
• No: ns 

• Mo: F = 15.79, p****, η
p

2 

= .39  

F + H <  N 

•  

F = 5.15, p**, η
p

2 

= .17 

• LE: F = 4.44, p*, η
p

2 

= .15 

F <  N 

• RE: : F = 4.34, p*, η
p

2 

= .15  

F <  N 
• No: ns 

• Mo: F = 11.78, p**, η
p

2 

= .32  

H < F + N 

•  

F =5.95, p***, η
p

2 

= .19 

• LE: ns 
• RE: ns 
• No: ns 

• Mo: F = 25.91, p****, η
p

2 

= .51 

 H < F < N 
•  



   

 
 

Small amplitude differences were seen between happy and fearful expressions between 

50 and 100ms as an interaction with fixation location, and between 100 and 150ms at one 

electrode pair only (Table 12). However, as no difference was seen between any emotion and 

neutral expressions, these sporadic effects are treated as meaningless. A true fear effect was 

seen at all lateral-posterior electrodes from 150 to 350ms, with smaller amplitudes for fearful 

than neutral expressions, best captured by difference waves as a sustained bilateral negativity 

(Fig. 14-15). A similar, albeit much weaker, happy effect was also seen during that time period, 

with smaller amplitudes for happy than neutral faces. From 200ms until 350ms these emotion 

effects interacted with fixation location (Table 12, Fig.15C). The fear effect was seen for fixation 

on the right eye between 200-300ms, for fixation on the left eye between 250 and 300ms, and 

for fixation on the mouth between 200-250ms and 300-350ms. The happy effect was seen only 

during the mouth fixation condition. No effect of emotion was seen when fixation was on the 

nose. 

4.4 Discussion 
 

 Using the same gaze-contingent procedure as Exp.1 and 2, I investigated the effects of 

fixation to different facial features on the neural processing of fearful, happy and neutral facial 

expressions during an oddball detection task. While this task required less attention to the face 

compared to the gender and emotion discrimination tasks, overall behavioural performance was 

excellent demonstrating that participants were in fact attending to the task.  

Consistent with Exp. 1 and 2, P1 and N170 peaks, as well as the P1-to-N170 amplitude 

difference, were sensitive to fixation location. Fixation effects on the P1 reflected differences in 

face position on the screen (Fig.1) whereas effects on the N170 reflected an eye sensitivity during 
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encoding of the structure of the face (Nemrodov et al., 2014). These effects were discussed in 

greater detail in chapter 2 (section 2.4.2).  

 Emotion effects were also consistent with Exp.’s 1 and 2, providing a second replication 

for distinct effects with different distributions for fearful and happy expressions. An early happy 

effect began ~100ms and lasted until 350ms at occipital sites (weakly at lateral-posterior sites), 

and the fearful effect was seen at ~150ms and lasted until 350ms at lateral-posterior sites (weakly 

at occipital sites). Despite no modulation of the N170 by emotion in Exp. 1 and 2, the N170 

amplitude was larger for fearful compared to neutral (and happy) expressions in Exp. 3. 

Inspection of the difference waves and topographical maps (Figures 4, 6, 9, and 14) revealed that 

the fear effect was extremely similar between the three experiments. It started around or right 

after the N170 and continued until 350ms, encompassing the so-called Early Posterior Negativity 

– EPN (Leppänen et al., 2008; Rellecke et al., 2013; Schupps et al., 2004; see Hinojosa, Mercado, 

& Carrietié, 2015). The reason why this effect starts slightly earlier in some studies (e.g., in the 

present ODD task) so as to impact the N170, but not in other studies (e.g., the gender task in 

Exp.1 and explicit task in Exp.2) remains unknown, but could be related to attentional task 

demands (Hinojosa, Mercado, & Carrietié, 2015). The present study cannot directly address this 

issue with sufficient statistical power, given that different participants were administered the GD, 

ED and ODD tasks. Again, as in the previous two studies, there was no early effect for fear on the 

P1. Previous reports of early fear effects in oddball detection tasks (e.g., Batty & Taylor, 2003; 

Williams et al., 2004) therefore may have been driven by low-level stimulus properties which 

were not controlled for.   
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 This was the first study to test the impact of fixation to facial features on the neural 

response to facial expressions during an oddball detection task and whether or not an interaction 

between emotion and fixation location would be seen was difficult to predict. Results revealed 

that the emotion effects for happy and fearful expressions did in fact interact with fixation to 

facial features. The early and later happy effect seen mostly at occipital sites (and to a lesser 

extent at lateral-posterior sites) interacted with fixation to mouth such that processing of happy 

expressions was seen only during fixation to the mouth between 100-200ms and 200-350ms at 

occipital sites and between 200 and 350ms at lateral-posterior sites. This early effect for happy 

expressions seen in early visual areas likely via the fast discrimination of the diagnostic smile 

(based on low-level characteristics as proposed by Halgren et al., 2000) occurs in tasks requiring 

various degrees of attention to the face. Information from the mouth also appears to be 

important for processing of the emotional content of the face as evidenced by interactions seen 

at lateral-posterior sites later during the timing of the EPN.   

The fear effect interacted with fixation to the mouth beginning at 150-200ms at occipital 

sites and at lateral-posterior sites between 200 and 300ms.  The fear effect was also seen during 

fixation to the eyes between 200 and 250ms. Thus information provided by the mouth and the 

eyes appears to be critical for processing of the emotional content of fearful expressions even 

when attention is not directed to the emotional content of the face, and also during emotion 

categorization tasks (Exp.2). This is in line with visual scanning studies where participants spent 

most time fixating on both eyes and the mouth of fearful faces (Eisenbarth & Alpers, 2011). The 

reason why the fear effect interacted with fixation to facial features in Exp.2 (GD) and Exp.3 

(ODD) but not in Exp.1 (GD) remains unclear and will be discussed in the general discussion.    
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Chapter 5: Impact of task demands on the neural processing of fearful and 

happy expressions 

 

5.1 Introduction 
 

The current literature regarding the time course of facial expression processing is 

inconsistent (Vuilleumier & Pourois, 2007). While it is commonly acknowledged that an enhanced 

negative-going potential for emotional expressions relative to neutral expressions is seen over 

posterior-lateral scalp electrodes, beginning as early as 150ms and largest between 200 and 

350ms (the early posterior negativity –EPN; e.g., Rellecke et al., 2011; Schupp et al., 2004), the 

sensitivity of the preceding P1 and face-sensitive N170 components to facial expressions remains 

debated. A possible explanation for the inconsistency in reported early emotional effects is the 

fact that various experimental tasks have been used during the ERP recording of emotional faces. 

A variety of emotion-relevant and emotion-irrelevant tasks have been employed including face 

vs. non-face judgments (oddball detection tasks, Batty & Taylor, 2003; Leppänen et al., 2007; 

Williams et al., 2004; Present thesis Exp.3), pure passive viewing of emotional faces (Blau et al., 

2007; Hermann et al., 2002; Pizzagalli et al., 2002; Schupp et al., 2004; Smith et al., 2013), 

categorization of face gender (gender discrimination, Pourtois et al., 2005; Sato et al., 2001; 

Wijers & Banis, 2014; Present thesis Exp.1) and categorization of facial emotion (explicit emotion 

discrimination, e.g., Eimer et al., 2003; Calvo & Beltrán, 2014; Leppänen et al., 2008; Schacht & 

Sommer, 2009; Present thesis Exp.2). The differences in attention directed to the face placed by 

these various task demands may impact the processing of facial emotions differently. 

The debated P1 modulation for fearful compared to neutral and happy faces has been 

most commonly reported in studies using tasks where emotion was irrelevant including oddball 
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detection tasks (e.g., Batty and Taylor, 2003; Williams et al., 2004) and passive viewing of 

emotional faces (e.g., Pizzagalli et al., 2002). This, together with reports of increased amygdala 

activation to fearful faces during emotion-irrelevant tasks, has led authors to suggest the 

automatic (i.e., involuntarily) and rapid detection of salient threatening fearful faces via a 

subcortical route involving the amygdala (see Palermo & Rhodes, 2007 for a review). If this is 

true, this early effect for fearful expressions would be seen only when attention is directed away 

from the emotional content of the face and therefore not in explicit emotion discrimination tasks; 

however, this has not been directly tested.  

The relationship between task and emotion effects reported on the face-sensitive N170 

are less clear. Early effects have been reported for fearful compared to neutral and happy faces 

during emotion-irrelevant (Batty & Taylor, 2003; Blau et al., 2007; Leppänen et al., 2007) and 

emotion-relevant tasks (e.g., Calvo & Beltrán, 2014; Leppänen et al., 2008; Morel et al., 2014). 

Additionally, a lack of sensitivity of the N170 to fearful expressions (compared to neutral 

expressions) has also been reported in both emotion-irrelevant tasks (Hermann et al., 2002; 

Meaux et al., 2014; Schupp et al., 2004; Smith et al., 2013; and see Vuilleumier & Pourtois, 2007 

and Rellecke et al., 2013) and emotion-relevant tasks (e.g., Eimer et al., 2003; Leppänen et al., 

2007). The current literature suggests that experimental procedure, including the type of 

reference used in the EEG montage (e.g., Rellecke et al., 2013), and possibly task demands 

(Hinojosa, Mercado, & Carrietié, 2015), may partly explain the inconsistent effects reported; 

however, experiments directly testing whether or not task impacts the early neural response to 

facial expressions is lacking. 
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In the current series of studies (Exp.’s 1 to 3), where task varied between experiments, 

results support the idea that the neural response to fearful and happy expressions may be 

impacted by task demands.  Effects seen for fearful faces (compared to neutral faces) showed 

some variations between tasks. An early effect for fear ~80ms (before the P1) localized to left 

hemisphere electrodes PO7 and P7 was seen only in Exp. 1 (GD). The added negativity for fearful 

faces at lateral-posterior sites emerged after the N170 in Exp. 1 (GD) and Exp. 2 (ED), while it was 

seen on the N170 peak itself in Exp. 3 (ODD). Additionally, this fear effect was not seen on the 

nose fixation during Exp.2 (ED) and Exp.3 (ODD) between ~250-350ms, however, occurred 

irrespective of fixation location in Exp.1. For happy faces, effects were seen at occipital sites 

emerging ~100ms with a first local peak around 115-120ms post-stimulus; however, the strength 

of this happy effect seemed to vary between studies. An effect was seen clearly on the P1 at 

lateral occipital electrodes in Exp.3 (ODD) but was localized at medial occipital site Oz in Exp.1 

(GD) and 2 (ED). Overall the distribution of the fearful and happy effects looked similar between 

tasks, but some differences in the timing of these effects were found between experiments that 

could be related to the task demands and the goal of the current study was to test this directly.   

The literature reviewed above, derived from many experiments with different subjects 

and methodology, together with the differences reported between the current series of studies 

using different tasks, suggests a possible influence of task demands. However, to test for the role 

of task demands with adequate statistical power, task needs to be tested within-subjects. A few 

neuroimaging studies have directly compared implicit and explicit tasks using facial expressions 

and found different activation patterns depending on the task (Lange et al., 2003; Straube et al., 

2004). Amygdala and inferior occipital gyrus activations were stronger during emotion-irrelevant 
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compared to emotion-relevant tasks for fearful compared to neutral faces (Lange et al., 2003). 

Straube et al. (2004) reported larger amygdala activation for angry faces during an implicit 

compared to an explicit emotion task, suggesting brain responses to threatening angry faces are 

most pronounced when facial expression is task-irrelevant. To the best of my knowledge there 

are at present only two ERP studies that have directly investigated the impact of task demands 

on the early neural response to facial expressions in a within-subject design. The first was a study 

by Wronka and Walentowska (2011). In this study participants were asked to categorize angry, 

happy and neutral expressions as either emotional or neutral during an emotion discrimination 

task and to categorize face gender in a separate task. Mean N170 amplitude (measured across a 

140-185ms window) was larger for emotional faces compared to neutral faces during the 

emotion discrimination task but not during the gender discrimination task. In contrast, an 

enhanced negativity (i.e., the EPN) measured between 240-340ms was seen for emotional 

compared to neutral faces during both tasks. Results suggested that voluntary attention to the 

expressions can influence face emotion processing ~140-185ms (encompassing the N170) 

whereas involuntary and mandatory differentiation of facial expression is seen later ~240-340ms. 

The second study by Rellecke et al. (2012) presented participants with angry, happy and neutral 

expressions while asking them to either passively view the faces, discriminate faces from words, 

identify face gender and explicitly identify the emotional expressions (four different tasks tested). 

Angry expressions elicited larger P1 and N170 amplitudes than neutral faces in both emotion-

relevant and emotion –irrelevant tasks while an increased response to happy expressions 

compared to neutral was seen only at a later time windows (200-600ms) during the gender and 

emotion discrimination tasks. These results suggested deep processing of threat-related (angry) 
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expressions regardless of task demands whereas processing of happy expressions requires 

attention to process the stimuli at a deeper level (Rellecke et al., 2012).  Although somewhat 

contradictory, these two studies provide further support for the idea that task-related factors 

affect the timing of brain responses to angry and happy expressions. However, the impact of task 

demands on processing of fearful expressions remains to be tested. 

Using eye-tracking to ensure fixation to the portion of the face desired, the current study 

tested the impact of task demands on the neural processing of fearful and happy expressions. 

Fixation location was not manipulated in this study. Instead, a central fixation landing on the tip 

of the nose (where holistic processing is most efficient) was used.  This central location is also 

what has been used in most previous research on facial expressions (either tip of nose or nasion 

– in between the two eyes). Fearful, happy, and neutral expressions were presented in three task 

conditions: (1) Gender discrimination requiring categorization of face gender (GD), (2) Emotion 

Discrimination requiring categorization of the facial expression (ED) and (3) Oddball detection 

where participants responded to infrequently presented flower stimuli (ODD). If task demands 

influenced the neural response to fearful and happy expressions, I expected task by emotion 

interactions; however, it was also possible that these emotional responses would be observed to 

the same extent in all tasks; in this instance main effects of emotion would emerge, but no 

emotion by task interactions.  

5.2 Methods 

5.2.1 Participants 
 

Fifty-two undergraduate students from the University of Waterloo (UW) were tested and 

received course credit for their participation. They all lived in North America for at least 10 years 
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and reported normal or corrected-to-normal vision, no history of head-injury or neurological 

disease, and were not taking any medication. They all signed informed written consent and the 

study was approved by the Research Ethics Board at UW. Twenty-three participants were 

rejected: four due to high anxiety scores (see procedure below), three due to completion of less 

than half of the study, three due to too many artefacts resulting in too few trials per condition, 

nine due to too few trials after removing trials with eye movements (see procedure section 

below), one due to problems recording the EEG file and three due to failure to calibrate 

participants’ eye movements with the eye-tracker. The results from twenty-nine participants 

were retained for the final analysis (20.4 ± 1.8 years, 15 male, 26 right-handed). 

5.2.2 Stimuli 
 

Stimuli consisted of fearful, happy and neutral facial expressions of 8 males and 8 females 

from the MacBrain Face Stimulus Sett11 (Tottenham et al., 2009) and 6 flower stimuli. A mirror 

version of each face was also included, made using Matlab (MathWorks, Inc.), to control for any 

minor differences in low-level contrast and pixel intensity between the left and right sides.  All 

images were converted to grayscale and an elliptical mask was applied in Adobe™ Photoshop 

CS5. The faces subtended 6.20° horizontally and 10.52° vertically when viewed from a distance 

of 70cm and were presented on a gray background for an image visual angle of 9.17° horizontally 

and 13.57° vertically. The pictures were presented over a white monitor background. Root mean 

square (RMS) contrast and pixel intensity (PI) of the pictures were calculated using custom 

                                                           
11 The models used in the present study were models # 2, 3, 6, 8, 20, 24, 33, 34 (used in Exp.’s 1to 3)  and 5, 7, 15, 
16, 21, 23, 27, 32 (Exp. 4 only) 
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Matlab (Mathworks, Inc) scripts (see Table 13). Paired t-tests (two-tailed) revealed no differences 

between emotions (p > .05 for all comparisons) for mean PI and RMS contrast. 

Table 13. Mean pixel intensity and RMS contrast values for the fearful, happy and neutral expressions used in Exp. 4 
(standard errors to the means in parenthesis). 

  Mean RMS 
Contrast 

(std. error) 

Mean Pixel 
Intensity 

(std. error) 

 Full face Full face 

Fearful .616 
(.002) 

.372 
(.010) 

Happy .616 
(.003) 

.371 
(.013) 

Neutral .616 
(.002) 

.368 
(.011) 

 

Participants had to fixate on the tip of the nose. In order to achieve this, the coordinates 

of the fixation location corresponding to the tip of the nose for each identity and expression was 

calculated, with minor variations between the 16 identities and the three expressions used.  

5.2.3 Apparatus and Procedure 
 

Participants sat in a sound-attenuated Faraday-cage protected booth 70cm from a 

ViewSonic G225f 21-inch colour monitor driven by an Intel Core I i7-3820 with a refresh rate of 

85Hz. Task conditions were presented in separate experimental blocks and the order of the tasks 

(oddball-detection (ODD), emotion discrimination (ED) and gender discrimination (GD)) was 

counterbalanced across participants. Task instructions were identical to those administered in 

Exp.’s 1 to 3 of the thesis: in the ED task, participants had to select the emotion (fear, happy or 

neutral) from a vertically-presented forced-choice response screen (emotion order 

counterbalanced across participants) by clicking on the correct label using a computer mouse; in 

the ODD task participants were told to press the space-bar for flower stimuli; and in the GD task 
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they discriminated between male and female faces by pressing one of two buttons on a game 

controller.  

Each trial began with a 12-106ms jittered fixation-cross (Figure 16). Participants were 

instructed to fixate on the black fixation-cross in the center of the screen in order to initiate each 

trial and keep their eyes fixated there until the response screen appeared. To ensure that 

participants were fixated on the cross, a fixation contingent trigger enforced the fixation on the 

cross for 306ms12. The target face (or flower in ODD) was then presented for 259ms. In the ODD 

and GD tasks, the target stimulus was immediately followed by a fixation cross that was 

presented for 2000ms. This timing was chosen to keep the trial duration time consistent between 

the three tasks and was in line with previous studies comparing tasks that reported ~2000ms for 

responses (e.g., Rellecke et al., 2012; Wronka & Walentowski, 2011). In the ED task, the target 

stimulus was immediately followed by the response screen that was presented until the 

response.  

A block consisted of 96 face trials (3 emotions X 16 identities X 2 standard and mirror-

reversed) and for the ODD task each block also contained 12 flowers. Each block was repeated 

three times with a different trial order (randomized), for a total of 96 trials per face condition.  

As in the previous experiments, practice trials were given before each task and following the 

computer task, participants completed the 21- item trait test from the STICSA anxiety scale (Ree, 

French, MacLeod, & Locke, 2008); only participants scoring in the normal range, below 43 were 

kept in the analyses (Van Dam, Gros, Earlywine, & Antony, 2013). 

                                                           
12 Due to sensitivity of the eye-tracker, on average participants took 864.07ms (909.22S.D) between the 
onset of the fixation-cross and the stimulus presentation. 
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Figure 16. Trial Sequence in the Task Comparison Study (Exp.4) 

Participants were tested on 900 trials as follows. First the fixation cross was displayed on the screen for a jittered 
amount of time (12-106ms) with a fixation trigger of 306ms. Then the grayscale picture was flashed for 259ms, 
immediately followed by a response screen. During the ODD and GD tasks a white screen with a fixation point 
appeared for 2000ms during which participants indicated their response. For the ED task the response screen 
remained until participants made their response. 

 

5.2.3 Electrophysiological recordings 
 

Identical to Exp.’s 1 to 3 (cf. section 2.2.4 pg.21-22), except that the EEG recordings were 

collected continuously at a 1024Hz sampling rate (instead of 516Hz).  

5.2.4 Eye-Tracking Recordings 
 

  Identical to Exp.’s 1 to 3 (cf. section 2.2.5 pg.22). 

5.2.5 Data Processing and Analyses  
 

Identical to Exp.’s 1 to 3 (cf. section 2.2.6 pg.22-23). For all tasks, only correctly answered 

trials were used for analysis. Each trial was categorized as correct or incorrect based on the 

emotion categorization, gender categorization or the detection of flowers. Correct trials were 

submitted to an outlier detection procedure whereby only trials with RTs within 2.5 standard 

deviations from the mean of each condition for each subject were retained (Van Selst & Jolicoeur, 
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1994).  This procedure (designed to exclude anticipatory or very long RTs) excluded 6.6% of the 

total number of trials (across the 29 participants). As in Exp.’s 1-3, trials in which a saccadic eye 

movement was recorded beyond 1.4° visual angle (70px) around the fixation-location (here the 

tip of the nose) were removed from further analysis. An average of 2.9% of trials were removed 

during this step across the 29 participants included in the final sample. After eye movements and 

artifact-contaminated trial rejection, participants with less than 30 trials in any condition (out of 

96 initial trials) were rejected (the average number of trials per condition did not significantly 

differ across emotions (p = .68) (see Appendix A4 for the final number of trials per condition). 

The P1 and N170 components were measured the same way as in Exp.’s 1-3 (P1 at O1, 

O2, Oz and N170 at the electrode at which it was maximal for each subject, see Table 14). Mean 

amplitudes at occipital and lateral-posterior sites were also calculated between 50ms and 350ms. 

ANOVAs were conducted using facial expression (3: fear, happiness, neutral), task (3: ODD, ED, 

GD), electrode (2 for P1, 3 for mean amplitude at occipital sites, 4 for mean amplitudes at lateral-

posterior sites) and hemisphere (2) as within-subject factors. All ANOVAs used Greenhouse-

Geisser adjusted degrees of freedom and pairwise comparisons used Bonferroni corrections for 

multiple comparisons. 

Table 14. Number of subjects for whom the N170 was maximal at left (P9, CB1, PO7) and right (P10, CB2, PO8) 
hemisphere electrodes. LH: left hemisphere; RH: right hemisphere 

 LH  RH 

P9 16 P10 20 

CB1 11 CB2 8 

PO7 2 PO8 1 

Total n 29  29 
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5.3 Results 

5.3.1 Behavioural Analyses.  

Gender Discrimination Task (GD). The number of errors (p = .91) and response times (p 

= .08) did not differ significantly by emotion (Table 15). There were also no differences for miss 

rates (i.e., no response).  

Table 15.  Mean (A) percent error in gender discrimination (responding male to a female face and vice versa), (B) 
mean reaction times (RT) and (C) mean misses for fearful, happy and neutral expressions presented during the 
gender discrimination task (standard errors in parenthesis). 

  Mean Error (%)  
(std.error) 

Mean Reaction Time 
(RT) (ms) 

 (std. error) 

Mean Misses (%) 
(std. error) 

Fearful 3.23 
(.01) 

699.22 
(19.63) 

.33 
(.00) 

Happy 3.11 
(.01) 

686.41 
(18.17) 

.37 
(.00) 

Neutral 3.11 
(.01) 

687.06 
(20.16) 

.41 
(.00) 

 

Emotion Discrimination Task (ED). The overall categorization rate was very good (≥ 

80%, Table 16). Overall, participants correctly categorized happy better compared to fearful 

and neutral faces (main effect of emotion, F(1.45, 40.72) = 5.00, p < .05, ηp
2 = .15; significant 

paired comparisons for happy-fearful p < .01 and happy-neutral p < .05). 

 

Table 16. Mean correct categorization responses for fearful, happy and neutral expressions presented during the 
emotion discrimination task in Exp. 4 (standard errors in parenthesis). 

  Mean (%) 
Correct 

(std. error) 

Fearful 95.28 
 (.01) 

Happy 99.08 
(.00) 

Neutral 96.70 
(.01) 
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Oddball Detection Task (ODD). Overall detection of flower stimuli was excellent (~99%) 

demonstrating that the participants were attending to the task. In addition, participants correctly 

withheld their responses when they detected a facial stimulus (~99%, Table 17) and this did not 

differ by emotion (p = .44). 

Table 17. Mean correct rejection (withheld responses) to fearful, happy and neutral expressions presented during 
the oddball detection task in Exp. 4 (standard errors in parenthesis). 

  Mean (%) Correct 
(std. error) 

Fearful 99.69 
 (.00) 

Happy 99.70 
(.00) 

Neutral 99.85 
(.00) 

 

5.3.2 ERP Analyses 
 

5.3.2.1 Effects of task and emotion at occipital sites (O1, O2, Oz). 

P1 Peak Amplitude. No effects were found for P1 analyzed at O1 and O2, or at Oz.  

Mean Amplitudes over Six Time Windows (O1, O2, Oz). Statistical results for these 

analyses (50-350ms) are reported in Table 18 and visually depicted in Figures 17 and 18.  



   

 
 

 
 

Figure 17. Effects of Task and Emotion at Occipital Sites (Exp.4) 

(A) Grand-averages for the three tasks (across emotions) at O1, O2, and Oz electrodes, showing effects of task between 300-350ms with smaller amplitudes for 
ED and ODD tasks compared to GD task. (B) Grand-average difference waveforms generated by subtracting ERPs to neutral from ERPs to fearful faces (F-N, solid 
line) and ERPs to neutral from ERPs to happy faces (H-N, dashed line) at O1, O2 and Oz. A clear difference peak for happy-neutral was seen between 110-120ms 
at Oz and O2 (gray band, peak of the effect around 115ms). (C)  Grand-averaged waveforms for fearful, happy and neutral faces (across tasks) at Oz. The early 
effect of emotion for happy faces started after the P1 peak at Oz. The gray interval (110-120ms) is where the effect emerged, peaking at 115ms. The orange 
vertical lines represent the limits of the period during which mean amplitudes were analyzed (50-350ms).The topographic map shows the voltage distribution of 
the H-N amplitude difference at 115ms where the “happy effect” was maximal at medial occipital  electrode Oz.



   

 
 

Task demands modulated amplitudes at occipital sites only during the 300-350ms window 

(Table 18, Fig.17A), with smaller amplitudes for oddball and explicit emotion discrimination tasks 

compared to the gender task.  

A significant effect of emotion was first seen during the 150-200ms time window with 

smaller amplitudes for fearful compared to neutral (and happy) expressions (Table 18). Although 

the happy-neutral comparison was not significant in this time window, the happy-neutral 

difference waveform and the topographic map (Fig. 17B and Fig.18) clearly showed an effect for 

happy faces localized to medial occipital site ~115ms. Given the similar happy effect found in 

Exp.’s 1-3 of the thesis, mean amplitudes were further analyzed between 110 and 120ms at Oz, 

confirming this extremely localized effect with reduced amplitudes for happy faces compared to 

neutral and fearful faces (main effect of emotion at Oz13; F(1.87, 52.35) = 4.60, p = .016, ηp
2 = .14; 

paired comparisons for happy-neutral at p = .07 and happy-fearful at p <.05). During the 200-

250ms and 250-300ms intervals, smaller amplitudes were seen for fearful compared to neutral 

expressions only. Between 300 and 350ms, both fearful and happy expressions elicited smaller 

amplitudes compared to neutral expressions.  

To summarize, a fearful effect was seen at occipital sites from 150 until 350ms, as clearly 

seen on the difference waveforms (Fig. 17B). In contrast, a marginal happy effect was seen 

between 110 and 120ms localized to medial occipital site Oz, and then later on between 300 and 

350ms. Importantly, emotion never interacted with task in any time window. 

 

                                                           
13 Note that an effect of emotion was also there when all three occipital electrodes were analyzed together 
(F=3.32, p=.05) but paired comparisons did not reach significance 
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Figure 18. 2D Topographical Maps of Fearful-Neutral and Happy-Neutral Voltage Differences (Exp.4) 
Mean voltage distribution maps of the grand-average difference waveforms between fear and neutral (F-N) and 
happy and neutral faces (H-N) across six 50ms time intervals from 50ms to 350ms (averaged across tasks). 

Figure 19. Effect of Task and Emotion at Lateral-Posterior Sites (Exp.4) 

Grand-averages featuring the N170 component at P9 and P10 as a function of (A) task (across emotions), and (B) 
emotion (across tasks).  (C) Grand-average difference waveforms generated by subtracting ERPs to neutral from ERPs 
to fearful faces (F-N, solid line) and ERPs to neutral from ERPs to happy faces (H-N, dashed line) at P10. The gray 
interval (150-350ms) is where the emotion effects for fear were seen. The map shows the voltage difference 
between fearful and neutral faces (F-N) across the scalp at the latency at which the effect was largest (180ms). 

 



   

 
 

Table 18. Exp. 4 (task comparison) statistical effects on mean amplitudes analyzed over six 50ms time windows at occipital sites (O1, Oz, O2), with F, p and ηp
2 

values. LH, left hemisphere; RH, right hemisphere; ODD, oddball detection task; ED, emotion discrimination task; GD gender discrimination task; F, fear; H, 
happy; N, neutral. Main effects p values: p* < .05; p** < .01; p*** < .001; p**** < .0001; ns, not significant. Bonferroni-corrected paired comparison tests are 
also reported (e.g., F < H + N means that the main effect of emotion is due to a significantly smaller mean amplitude for fearful compared to both happy and 
neutral expressions). 

Main effects and interactions 50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 
Electrode -   F = 13.37, p****, ηp

2 
= .32 

O1 + O2 > Oz 
F = 5.34, = .019, ηp

2 
= .16 

O1 > Oz 
F = 9.91, p** , ηp

2 
= .26 

O1 + O2> Oz 
F = 10.01, p**, ηp

2 
= .26 

O1 + O2 > Oz 
- 

Task - - - - - F = 11.76, p***, ηp

2 
= .30 

ODD + ED < GD 

Emotion - - F = 6.41, p**, ηp

2 
= .19 

F < H + N 
F = 3.74,  p*, ηp

2 
= .12 

F < N 
F = 5.16, p=.014, ηp

2 
= .16 

 F < N 
F = 7.62, p**, ηp

2 
= .21 

 F + H < N 

Electrode X Task - - - - - F = 4.4, p=.**, ηp

2 
= .14 

• O1: F = 7.31, p**, ηp

2 
= .21 

ODD < GD 
• O2: F =5.15, p**, η

p

2 
= .16 

ODD < GD 

• Oz: F = 18.12, p****, ηp

2 
= .39 

ODD + ED < GD 
       

 
 
 



   

 
 

Table 19.  Exp. 4 (task comparison) statistical effects on mean amplitudes analyzed over six 50ms time windows at lateral-posterior sites (CB1/2, P7/8, PO7/8, 
P9/10), with F, p and ηp

2 values. LH, left hemisphere; RH, right hemisphere; ODD, oddball detection task; ED, emotion discrimination task; GD gender 
discrimination task; F, fear; H, happy; N, neutral. Main effects p values: p* < .05; p** < .01; p*** < .001; p**** < .0001; ns, not significant. Bonferroni-corrected 
paired comparisons are also reported (e.g., F < H + N means that the main effect of emotion is due to a significantly smaller mean amplitude for fearful 
compared to both happy and neutral expressions). 

Main effects  
and interactions 

50-100ms 100- 150ms 150- 200ms 200-250ms 250-300ms 300-350ms 
Electrode F = 26.02, p**** , η

p

2 
= .48 

P9/10+P7/8 < CB1/2 
< PO7/8  

F = 58.88, p**** , η
p

2 

= .68 
P9/10 < CB1/2 
 < P7/8 < PO7/8  

F =73.14, p**** , η
p

2 
= .72 

P9/10 < CB1/2 + P7/8 
< PO7/8  

F = 92.39, p****, η
p

2 
= .77 

P9/10 < CB1/2 + P7/8 < 
PO7/8  

F = 79.12, p**** , η
p

2 
= .74 

P9/10 < CB1/2  
< P7/8 < PO7/8  

F = 64.97, p**** , η
p

2 
= .70 

P9/10 < CB1/2 
 < P7/8 < PO7/8  

Hemisphere - - F =7.88, p**, η
p

2 
= .22 

RH < LH  
- - - 

Task - - - F = 5.57, p=.01, η
p

2 
= .17 

GD < ODD 
F = 10.51, p***, η

p

2 
= .27 

GD < ODD + ED 
F = 4.59, p = .015, η

p

2 
=.14 

GD < ODD  
Emotion - - F =22.55 p****, η

p

2 
= .45 

F < H + N 
F = 10.96, p***, η

p

2 
= .28 

F < H + N 
F = 7.05, p**, η

p

2 
= .20 

F < N 
F = 3.74, p = .03, η

p

2 
= .12 

F < N 
Electrode X 

Task 
   - - - - F = 2.91, p = .028, η

p

2 
= .09 

• CB: F = 11.04, p ***, η
p

2 
= .28 

GD < ODD + ED 

• P9/10: F = 9.48 p ***, η
p

2 
= .25 

GD + ED < ODD 

• P7/8: F =9.41, p **, η
p

2 
= .25 

GD < ODD + ED 
• P07/8: ns 

- 

Electrode X 

Emotion 
- - F =3.60 p**, η

p

2 
= .11 

• CB: F =19.54 p****, η
p

2 
= .41; 

F < H + N 

• P9/10: F =16.39 p****, η
p

2 
= .37; 

F < H + N 

• P7/8: F 14.19 p****, η
p

2 
= .34; 

F < H + N 

• PO8/8: F =15.49 p****, η
p

2 
= .36;  

F < H + N 

- - - 



   

 
 

  

 

Figure 20. Fearful–Neutral and Happy–Neutral Difference Waveforms (Exp.4) 

Grand-average difference waveforms generated by subtracting neutral from fearful and happy conditions (F-N and 
H-N) at lateral-posterior sites (CB1/2, P7/8, PO7/8, P9/10). The gray zone highlights the time windows during 
which the effect for fear was significant at all lateral-posterior sites (150-350ms). 
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5.3.2.2 Effects of Task and emotion at lateral-posterior sites (CB1/2, P9/10, P7/8, PO7/8) 

 N170 Peak Amplitude. The N170 amplitude was larger in the right compared to the left 

hemisphere (main effect of hemisphere, F(1, 28) = 9.51, p < .01, ηp
2 = .25). No main effect of task 

was seen (p = .69), or task by emotion interaction (p=.56). However visual inspection of the grand-

averages suggested an effect of task at P9/P10 sites (Figure 19A). Given the task effect on the 

N170 reported in a recent meta-analysis (Hijonosa et al., 2015),  I decided to analyze P9/10 

separately14 and found that there was indeed a small main effect of task at these electrodes 

(F(1.60, 44.76) = 3.46, p = .05, ηp
2 = .25; significant paired comparison p < .05) such that N170 

amplitudes were smaller for the ODD compared to the ED task ( p= .021; no significant differences 

for ODD-GD or ED-GD comparisons).  

As seen on Figure 19B, the N170 amplitude was also larger for fearful compared to both 

happy and neutral expressions which did not differ (main effect of emotion, F(1.93, 54.11) = 9.51, 

p < .001, ηp
2 = .25;  significant comparisons for fear-neutral at p = .001 and fear-happy at p = .02). 

No interaction between task and emotion was seen. 

Mean Amplitude analyses over Six Time Windows (CB1/2, P7/8, P9/10, PO7/8).  

Statistical results for these analyses (50-350ms) are reported in Table 19 and visually 

depicted in Figures 18, 19, and 20.  

An effect of task was seen between 200 and 350ms with more negative amplitudes 

(smaller) for the GD task compared to the ODD task, with amplitudes for the ED task in between 

                                                           
14 Note that for this analysis, N170 was re-measured at P9/10 for all subjects; however, N170 was maximum at 
these sites for 16/29 participants for P9 and for 20/29 participants for P10, see Table 14 
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(Fig 19A). Between 250-300ms, amplitudes were also significantly more negative for the GD than 

the ED task at CB1/2 and P07/8 sites (emotion by electrode interaction).  

An effect of emotion was first seen between 150 and 200ms, with smaller amplitude for 

fearful faces compared to neutral and happy faces (Fig. 19B-C). The fear effect (fearful versus 

neutral faces) peaked around 180ms but was seen until 350ms (Fig. 18, 19B-C, Fig.20). Between 

150 and 250ms, amplitudes were also more negative for fearful than happy faces. However, 

amplitudes for happy faces were never significantly smaller than those for neutral faces in any 

time window. There were no interactions between emotion and task in any time window. 

 

5.5 Discussion 

 
 Various experimental tasks have been used during the ERP recording of emotional faces 

and reports of early emotion effects have been inconsistent. While task was varied in Exp.’s 1 to 

3 (with different participants completing the different tasks) a more powerful means of 

measuring the impact of task is to test task within-subjects. The present study directly tested 

the impact of task demands on the neural processing of fearful and happy expressions. 

The experiments presented in this thesis are of the first few to focus on effects of happy 

expressions at occipital sites. In Exp.’s 1 to 3, a happy effect was seen beginning ~100ms and 

peaking at ~120ms at medial occipital site Oz. This happy effect spread more laterally around 

150ms and was sustained until 350ms.  In the current task comparison study, only a very weak 

and temporally localized happy effect was seen on medial site Oz between 110 and 120ms (not 

significant on P1) and between 300 and 350ms at medial and lateral occipital sites. There was 

also no effect seen for happy faces at lateral-posterior sites. A critical difference between the 
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current study (Exp.4) and Exp.’s 1 to 3 was the manipulation of fixation location. In the current 

study, participants were always fixated on the center of the face (tip of the nose) whereas fixation 

also fell on the eyes and mouth in Exp.’s 1 to 3. In those studies, emotion interacted with fixation 

location at occipital sites between 150 and 200ms such that the fear and happy effects were seen 

only when participants were fixated on the mouth. This interaction was seen earlier at occipital 

sites for happy expressions only, between 100 and 150ms in Exp.3 and in all tasks at lateral-

posterior sites seen during P1-N170 amplitude difference. The fact that the early happy effect 

was only weakly seen around 115ms in the current study, when fixation did not fall on the mouth, 

supports the interpretation (initially proposed by Halgren et al., 2000) that this early happy effect 

reflects the fast discrimination of diagnostic cues such as the smile, based on local luminance and 

contrast, within 100-120ms in early visual areas (V1/V2), which is then relayed rapidly to the 

amygdala by direct V2-amygdala connections.  The fact that previous studies have used a central 

fixation (landing on the tip of the nose or nasion) may explain why this early happy effect was 

not often reported.  

 Early effects for fearful faces have been debated. Most studies have reported no 

modulation of the P1 by emotion (Palermo and Rhodes, 2007; Vuilleumier and Pourtois, 2007); 

however, a few using emotion-irrelevant tasks have reported enhanced P1 for fearful compared 

to neutral faces in gender discrimination tasks (Pourtois et al., 2005; Wijers et al., 2012), oddball 

detection tasks (Batty and Taylor, 2003; Williams et al. 2004), and passive viewing of emotional 

faces (Blau et al., 2007; Smith et al., 2013). Studies reporting this early effect have suggested 

rapid and automatic (i.e., involuntary) processing of intrinsically threatening fearful faces via a 

subcortical route involving the amygdala. In Exp. 1 (GD task) no effect of fear was seen on the P1 
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itself; however, an early effect of fearful expressions was localized to the left hemisphere during 

the 50-100ms time window, peaking around 80ms. This early effect for fearful faces was not 

replicated in the current study. Given its early timing and its extremely localized occurrence, this 

effect is most likely not a true task effect but rather a result of group differences. In the current 

study comparing emotion-relevant and emotion-irrelevant tasks there was also no modulation 

of the P1 by fearful expressions seen when mean stimulus contrast and pixel intensity were 

controlled for. This was also true for Exp.’s 1 to 3 when these same tasks were tested separately. 

Together, the findings of the present thesis suggest that previous reports of P1 modulations by 

fearful faces may have been driven by the stimuli differences in low-level characteristics such as 

contrast or luminance which were not controlled for (e.g., Batty & Taylor, 2003; Pizzagalli et al., 

2002).   

In the present experiment, modulations of ERPs by fearful faces were seen starting at the 

N170 component (~150ms) and all the way until 350ms at lateral-posterior sites (and to a lesser 

extent at occipital sites), regardless of task demands. This enhanced negativity for fearful faces 

seen also in Exp.’s 1 to 3, likely reflects activity linked to the processing of fear added onto the 

normal activity related to processing neutral faces, as proposed by other groups (Rellecke et al., 

2013; Schacht and Sommer, 2009). This added negativity started at the N170 but was seen mostly 

after the peak (during the timing of the visual P2 and EPN, Rellecke, Sommer, & Schacht, 2013; 

Rellecke et al., 2011; Schupp et al., 2004), suggesting it was different from the structural encoding 

reflected by the N170 component.   

The main goal of the current study was to test the impact of task demands on the neural 

processing of fearful and happy expressions. Importantly, there was no interaction between 
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emotion and task between 50 and 350ms post-stimulus (including P1, N170 and EPN), at occipital 

or posterior lateral sites. The inconsistencies reported in the literature for P1 and N170 are thus 

unlikely due to differences in task demands. Instead, the current data are in line with previous 

groups reporting enhanced negativity at lateral-posterior sites for fearful expressions (and to a 

lesser extent for happy expressions) beginning ~150-200ms post-stimulus (encompassing the 

visual P2 and EPN) and this negativity is sometimes captured by the N170 component. The exact 

reason why the effect is sometimes seen on the N170 remains unclear; however, the current 

study demonstrates it is not due to differences in attention to the face placed by task demands. 

While task did not interact with emotion, there was a main effect of task. This effect was 

seen beginning at the N170; however, this effect was not clearly established until ~200ms and 

lasted until 350ms. Overall, a reduced negativity was seen for the ODD task (more positive 

amplitude) compared to the GD task, with ED task in between. It is possible that this effect of 

task is a result of differences in task difficulty or differences in the amount and/or level of 

processing (e.g., Craik & Lockheart, 1972) between the tasks. The main effect of task on the 

neural processing of facial expressions was not a specific aim of this study and importantly it did 

not interact with facial expression. Future studies however may want to explore the impact of 

task demands on face processing.  

To summarize, the current study investigated the impact of task demands on the neural 

processing of fearful and happy expressions. An effect of task started at the N170 and was clearly 

established after 200ms (i.e., EPN). Replicating Exp. 1 to 3, an enhanced negativity at lateral-

posterior sites was seen for fearful expressions from ~150-300ms post-stimulus; however, the 

happy effect at occipital sites occurred weakly. Importantly, the emotion effects occurred 
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independently of task. The current results suggest that emotion effects for fearful and happy 

expressions occur irrespective of task-relevance and previous inconsistencies in the facial 

expression ERP literature are unlikely due to task demands.  
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Chapter 6: General Discussion 

 

Previous results from research investigating the time course of facial expression processing have 

been inconsistent. The main aim of this thesis was to investigate the impact of fixation to facial 

features on the neural processing of facial expressions (Exp.’s 1 to 3). Using eye-tracking to 

enforce correct fixation to facial features, I tested the effect of fixation to facial features on scalp-

recorded ERPs measured between 50 and 350ms, encompassing well studied face and emotion-

sensitive components (P1, N170 and EPN) during a gender discrimination – GD (Exp.1), emotion 

discrimination –ED (Exp.2) and an oddball detection –ODD (Exp.3) tasks. I also aimed to test 

whether attention to the face placed by task demands influences facial expression processing by 

directly comparing the GD, ED and ODD tasks completed by the same participants in Exp.4. Within 

this final chapter, results from all of the studies will be summarized to address both of these aims 

and will be discussed in terms of their implications for our understanding of early face and facial 

emotion perception.  

6.1 Impact of fixation to facial features during facial expression processing  

 

6.1.1 Importance of gaze-contingent procedure in ERP face research 
 

 An important contribution of this thesis is that it is the first known series of studies to 

investigate the impact of fixation to facial features of facial emotions using a gaze-contingent 

procedure. The studies presented in this thesis combined eye-tracking and EEG in order to 

achieve controlled fixation on facial features (left eye, right eye, nose and mouth in Exp.’s 1 to 3 

and the nose in Exp.4). Testing fixation to facial features within the context of the whole face is 

a novel paradigm and has never been published, to the best of my knowledge, in ERP emotion 

research. All trials in which participants made an eye movement away from the desired fixation 
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location were eliminated. This resulted in a very high attrition rate and a loss of 43 tested 

participants, many more than typical in classic EEG experiments. The fact that a high number of 

trials were removed indicates that many participants made quite a lot of eye movements even 

with a brief (i.e., 257ms) presentation time. Given the size of the stimuli, these eye movements 

were sufficient in size to allow fixation on facial features other than the to-be-fixated feature. In 

previous studies that did not enforce fixation to the face (i.e., the entire literature on ERPs and 

emotion) participants most likely made shifts in gaze.  As such, researchers conducting these 

studies could never be sure exactly where participants were looking.  Therefore despite the high 

attrition rate associated with this paradigm the results presented throughout this thesis 

highlights the need for controlling for fixation to the face during face and facial emotion ERP 

research. 

6.1.2 Different sensitivity of P1 and N170 to fixation location during face perception 
 

Effects of fixation to features using a gaze-contingent procedure has only been tested on 

the N170 (de Lissa et al., 2014; Nemrodov et al., 2014) for expressionless faces. Therefore in the 

current thesis I tested whether fixation impacted well-known face and emotion-sensitive 

components P1, N170 and EPN. 

In the current gaze-contingent paradigm faces were moved around a central fixation 

location in order to achieve fixation on desired facial features. This manipulation resulted in 

differential amounts of facial information presented in the visual fields, with fixation location 

effects on the P1 component. The P1 component is an early visual response generated within the 

extrastriate cortex that occurs ~80-120ms post-stimulus onset at occipital sites. The P1 is well-

known to respond to the low-level characteristics of stimuli including contrast, luminance, color 
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and spatial frequencies (Rossion and Jacques, 2008) and is also sensitive to attentional effects 

(Luck, Woodman, & Vogal, 2000; Mangun, 1995). In the current thesis, the clear hemifield effect 

on the P1 amplitude (seen also on P1-N170 peak difference) that I discussed in Section 2.4.2 (i.e., 

larger P1 amplitude for the right than for the left eye on the right hemisphere and vice versa for 

the left hemisphere) was virtually identical across Exp.’s 1 to 3. This hemifield effect was also 

reported in the first studies using the gaze-contingent procedure with expressionless faces (de 

Lissa et al., 2014; Nemrodov et al., 2014; Zerouali et al., 2013). In addition, the P1 sensitivity to 

face position was also revealed by a delayed and larger P1 response seen when fixation was on 

the mouth compared to each of the other locations (although less clearly for Exp. 3 – ODD task). 

It is possible that this result is due to the fact that the visual system is more sensitive to facial 

information in the upper visual field given faces are most often seen in that area. More facial 

information is indeed present in the upper visual field when fixation is on the mouth compared 

to the eyes and nose. 

The N170 was found to be sensitive to fixation location with a larger amplitude for fixation 

to the left and right eyes compared to the nose and the mouth. When controlling for low-level 

stimulus differences, the N170 reliably differs between object categories while the P1 does not, 

supporting the commonly held belief that both components reflect distinct stages of visual 

processing with only the N170 reflecting high level vision and face categorization (e.g., Ganis et 

al., 2012; Jemel et al., 2003; Rossion & Caharel, 2011; Tarkiainen, Cornelissen, & Salmelin, 2002; 

and see Desjardins & Segalowitz, 2013). This, along with the reasons I have outlined in Section 

2.4.2, proves that this fixation effect is not attributable to face position but rather reflects a true 

eye sensitivity. This effect was remarkably similar across emotions and across Exp.’s 1 to 3 
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demonstrating that this eye sensitivity occurs to the same extent for faces expressing fear and 

happiness and is thus largely facial-expression-invariant and task-invariant. While the effect of 

fixation to the eyes was not directly tested between tasks, the series of studies speaks to task-

invariance such that the eye sensitivity was seen in three separate tasks varying in degrees of 

attention required to the face. The eye sensitivity within full faces as shown here in three 

separate experiments, provides further support for Nemrodov et al.’s (2014) hypothesis of an 

eye-detector during the processing of the structure of the face. It is to be noted that mean pixel 

intensity (PI) and contrast did not differ between pictures; however, local PI and contrast did. In 

particular higher contrast and lower PI were seen for the eyes compared to the nose and mouth. 

Therefore the hypothesized eye detector might rely on low-level cues such as local contrast and 

pixel intensity, a possibility that will have to be tested by future studies.  

In contrast to the P1 and N170 components, there was no effect of fixation location after 

~200-250ms at lateral-posterior sites (where visual P2 and Early Posterior Negativity -EPN were 

seen) and this was true across Exp. 1 to 3. This result is in line with the idea that the eye sensitivity 

is specific to the face structural encoding stage as indexed by the N170.  Together these results 

illustrate nicely the temporal dynamics of the neural systems involved in face perception as 

outlined in classic face perception models (e.g., Bruce & Young, 1986; Haxby, Hoffman, & 

Gobbini, 2000). Low-level facial information is first detected in the visual system by the early 

visual areas as reflected by P1 sensitivity to face position. Processing of the structure of the face 

occurs later, as reflected by the N170 suggested to be generated by face-sensitive areas including 

the fusiform gyrus (FG), superior temporal sulcus (STS) and inferior occipital gyrus (IOG); during 
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that stage, a special sensitivity to eyes is seen.  No sensitivity to fixation was seen after the N170 

during the stages in which semantic information (e.g., expression of emotion) are encoded.  

6.2 Emotion processing occurs independently of face processing 
  
 Classic models of face perception suggest that face identity and facial expressions are 

processed independently (Bruce & Young, 1986; Haxby et al., 2000); however, reviews of EEG 

and fMRI studies have argued against the idea that these two processes are completely separate 

(Calder & Young, 2005; Vullieumier & Pourtois, 2007). In the current thesis I used ERPs as a tool 

to examine whether structural and emotional aspects of face encoding are independent or 

interacting processes. The N170, peaking around 170ms at occipital-temporal sites, is a well-

known marker of face processing and is thought to reflect the structural encoding of the face 

(e.g., Bentin, Allison, Puce, Perez, & McCarthy, 1996; Ganis, Smith, & Schendan, 2012; Jemel et 

al., 2003; Rossion et al., 2000; Rossion & Caharel, 2011). The effect of facial emotions on the N170 

has been debated with several studies reporting no modulation by emotion (see review by Eimer 

& Holmes, 2007; and see Rellecke et al., 2013) while others did report increased N170 with fearful 

compared to neutral expressions  (e.g., Batty and Taylor, 2003; Blau et al., 2007; Jetha et al., 

2012; Leppänen  et al., 2008). The current studies addressed this debate by testing whether or 

not processing of a facial feature (which is integrated into the face percept during structural 

encoding at the level of the N170) interacted with processing of facial expressions on the N170. 

Emotion effects seen for fearful and happy expressions did not interact with fixation location on 

the N170, and this was true in all Exp.’s 1 to 3. This suggests that the eye sensitivity (discussed 

above in Section 6.1.2) is largely independent of facial expression of emotion in both emotion-
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relevant and emotion-irrelevant tasks and thus argues for separate processing of face structure 

and facial emotion. 

  

6.3 Different spatio-temporal distributions for fearful and happy expressions  
 
6.3.1 Lack of support for P1 sensitivity to fearful faces 

 

Neuroimaging and clinical neuropsychological research has implicated the amygdala in 

the extraction of emotional content from facial expressions (see Vuilleumier & Pourtois, 2007 for 

a review). In particular, amygdala activation has been most commonly associated with the 

detection of fearful expressions (Adolphs et al., 2005; Morris et al., 1996; Phillips et al., 1998; 

Whalen et al., 2004). Neuroimaging research suggests that fearful faces activate a subcortical 

route (including the amygdala) that bypasses the cortical route, allowing for the rapid detection 

of fearful threatening faces (Threat hypothesis, LeDoux, 1996; Morris et al., 1998). For this 

reason, the study of fearful faces has dominated the ERP literature, testing for an early effect for 

fearful faces. While a few studies have reported an enhanced P1 for fearful compared to neutral 

faces (Batty and Taylor, 2003; Pourtois et al., 2005; Smith et al., 2013; Wijers et al., 2012), other 

studies report no modulation of the P1 by emotion (Palermo and Rhodes, 2007; Vuilleumier and 

Pourtois, 2007). Importantly, in some of these previous studies, stimuli low-level differences 

were often not controlled for (e.g., Batty & Taylor, 2003).  

Using stimuli that did not significantly differ in overall mean pixel intensity and contrast, 

Exp.’s 1 to 4 revealed no modulation of the P1 by fearful faces over neutral. In the GD task there 

was a modulation by fearful expression before the P1 at ~80ms for fearful faces that was localized 

to PO7 and P7 electrodes (Fig.4-6). This very early fear effect was, however, not replicated during 
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a direct comparison of tasks in Exp. 4 suggesting the effect was specific to the group. One 

possibility is that individual differences were driving this very early effect. There is suggestion 

that trait anxiety influences the processing of threat-related information (including fearful faces, 

Bar-Haim et al., 2007) and anxiety level has been shown to modulate early stages of information 

processing as reflected by the P1 (Walentowska & Wronka, 2012; Morel et al., 2014). Numerous 

neuroimaging studies have indeed shown increased amygdala activity in high trait anxious 

individuals during unconscious processing of fearful stimuli (Bishop, 2007; Etkin et al., 2004) 

when compared with low anxious individuals. Shyness trait has also been related to early 

processing of fearful faces (Jetha, Zheng, Schmidt, & Segalowitz, 2012). Jetha et al. (2012) 

reported an increased P1 amplitude for fearful compared to neutral faces in low-shy compared 

to high-shy individuals. It is to be noted that in the current thesis the P1 was not modulated by 

fearful expressions; however, there was a very early effect in Exp.1 before the P1 that may have 

been modulated by these individual differences. Whether or not individual differences are 

associated with early fear effects on the P1 provides a future direction for this ERP emotion 

research.  

The current series of experiments found no modulation of the P1 by fearful expressions 

and this was true in both emotion-relevant and emotion-irrelevant tasks. Therefore, the current 

thesis does not provide support for greater activation of early visual brain areas to intrinsically 

salient, threat-related stimuli (threat gist) as proposed by Luo et al. (2010) and reviewed in 

Vuilleumier and Pourtois (2007). Instead, the current results support findings of an effect for 

fearful expressions starting around or right after the N170 (Eimer et al., 2003; Eimer & Kiss, 2007; 

Leppänen  et al., 2007; Leppänen  et al., 2008; Schupp et al., 2004), as discussed next. 
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6.3.2 Effects of fearful expressions seen mostly at lateral-posterior sites 
 

Modulations of ERPs by fearful faces were seen right around the latency of the N170 

(~150ms), peaking around 180-200ms, lasting until ~300ms and this was true for Exp.’s 1 to 4.  

This fearful effect was mostly seen at lateral-posterior sites (and to a lesser extent at occipital 

sites) and encompassed the visual P2 (~200ms) component and the EPN – a well-known marker 

of emotion processing (Rellecke et al., 2013; Rellecke et al., 2011; Schupp et al., 2004). The effects 

for fearful expressions reported in this series of studies are in line with previous reports of 

emotion effects starting around or right after the N170 and lasting 100ms or more (Eimer et al., 

2003; Eimer and Kiss, 2007; Leppänen  et al., 2007; Schupp et al., 2004; Sprengelmeyer and 

Jentzsch, 2006) as previously discussed in Section 2.4.3. This “added emotional effect” for fearful 

expressions likely reflects activity linked to the processing of fear added onto the normal activity 

related to processing of the structure of the face in cortical visual areas, as proposed by other 

groups (Schacht and Sommer, 2009; Schupp et al., 2004; Rellecke et al., 2013). The timing of this 

fear-related process coincides with amygdala activation reported in intracranial ERP studies in 

response to fearful faces ~150-200ms post-stimulus (Meletti et al., 2012; Krolak & Salmon, 2004; 

Pourtois, Spinelli, Seeck, & Vuilleumier, 2010a) as well as in a recent MEG study (Dumas et al., 

2013). However amygdala activity per se is very unlikely recorded on the scalp with EEG and this 

fear effect is thus more likely the result of the enhancement of the activity of perceptual visual 

areas, such as the face-sensitive fusiform gyrus, by the amygdala. Modulations of the fusiform 



127 
 

gyrus by the amygdala has indeed been reported by a few intracranial studies (Pourtois, Spinelli, 

Seeck, & Vuilleumier, 2010b) and MEG studies (e.g., Dumas et al., 2013) in a similar time window.  

 

6.3.3 Effect for fearful expressions: It’s not just about the eyes 
 

 The wide open eyes are particularly salient for fearful expressions and are used most 

prominently when discriminating fear from other expressions (e.g., Calder et al., 2000). Recent 

ERP research that forced feature-based processing have suggested the importance of the eye 

region in the neural response to fearful expressions at the level of the N170 or later (Leppänen 

et al., 2008; Schyns et al., 2007, 2009). When presenting whole facial expressions, as seen in 

everyday life, results from the current thesis demonstrate that both the eyes and mouth are 

important for processing fearful expressions. In Exp.’s 1 to 3, an effect for fear was seen between 

150 and 200ms at occipital sites during fixation to the mouth only. In Exp.2 (ED) and Exp.3 (ODD), 

this interaction was also seen at lateral-posterior sites between 250-350ms (i.e., timing coinciding 

with EPN). The effect for fearful expressions was also seen during fixation to the eyes (no effect 

during nose fixation) between 250 and 350ms in Exp.2 and between 200 and 250ms in Exp.3. 

Thus, fearful cues in the eyes and mouth seem to both impact neural activity during the semantic 

processing of the emotional content of the face. This is in line with the results of Leppänen et al. 

(2008) where the added negativity in response to fearful expressions (between 160 and 240ms) 

was eliminated when the eye region was covered. One novel contribution of this thesis is the 

finding that the fearful mouth is also important during processing of fearful expressions, which 

was not tested in the Leppänen et al., study. This result supports recent behavioural studies that 

have demonstrated the importance of the mouth region in the recognition of fearful expressions. 
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During free viewing of the entire face participants made ocular eye movements equally towards 

the eyes and mouth of fearful faces (Eisenbarth & Alpers, 2011). Also, a recent study using 

Bubbles reported that the mouth area, even more than the eyes, is used to discriminate between 

the basic emotions (fear, sadness, happiness, anger and disgust) and neutral. Participants did use 

information from the eye region, though less so than the mouth region (Blais et al., 2012).  

 It is important to note that the effect for fearful expressions was seen regardless of 

fixation location in Exp. 1 (GD). The reasons for the lack of an interaction between expression and 

fixation location during this gender categorization task is unclear. The failure to find this 

interaction might be related to this particular task (GD) in this particular design (face moving 

around the screen from one trial to the next). The effect for fearful expressions was also seen in 

Exp. 4 regardless of task when fixation was restricted to the nose – a finding that replicates other 

studies using a central fixation (landing on the nasion or tip of the nose) (e.g., Rellecke et al., 

2011; Rellecke et al., 2013; Schupp et al., 2004). In previous studies, fixation was not enforced, 

however, allowing for the possibility of shifts in gaze to the eyes and/or mouth, possibly driving 

the reported fear effects. Fixation was enforced in the current Exp.4 however, and the effect was 

still seen. One could argue that because the face always appeared in the exact same position on 

the screen in Exp.4 it is possible that participants maintained fixation on the nose, but moved 

their attention covertly to the different facial features (perhaps pre-attending these locations 

even before the face was presented). In order to address these inconsistencies, future studies 

should test a direct comparison of task while manipulating fixation to facial features (other than 

nose) in order to better probe the possible influence of task demands on the use of various facial 

features during the processing of facial expressions.  
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6.3.4 An early and later effect for happy expressions seen mostly at occipital sites 
 

 Fearful and angry expressions involve signals of a potential threat whereas happy 

expressions convey signals of a potential benefit (Darwin, 1872). From a biological point of view, 

it is more advantageous to avoid a potential threat than to attend to a potential benefit in the 

environment. Following this adaptive view, we would expect our neurocognitive system to 

prioritize the recognition of threat-related compared to non-threat related facial expressions 

(Williams et al., 2006). Yet, this seems to be at odds with categorization tasks where facial 

expressions are explicitly identified. A consistent happy-face advantage has been shown using 

behavioural measures (e.g., Calder, Young, Keane, & Dean, 2000; Calvo & Lundqvist, 2008, 

Palermo & Coltheart, 2004; Tottenham et al., 2009) such that happy expressions are recognized 

more accurately and faster in studies comparing all basic emotions including neutral faces (Calder 

et al., 2000; Palermo & Colheart, 2004), when comparing subsets of emotions (e.g., Leppänen  & 

Hietanen, 2004; Juth, Lundqvist, Karlsson, & Ohman, 2005) and with various stimulus sets 

(Palermo & Coltheart, 2004). Despite this robust finding of superior and more rapid recognition 

of happy expressions, the study of threatening (i.e., fearful and angry) expressions has dominated 

the ERP literature. Although inconsistencies exist between studies, reports of early emotion 

effects as reflected by the P1 and N170 components have generally reported a negativity bias 

with increased responses mostly for negatively valenced (fearful or angry) expressions. A 

negativity bias has also been demonstrated for the EPN (e.g., Sato et al., 2001; Schupp et al., 

2005); however, the EPN has also been shown to reflect a general emotional response including 

both happy and fearful expressions (e.g., Rellecke et al., 2011; Schacht & Sommer, 2009; Schupp 

et al., 2006).  
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 In classic ERP studies with emotion, early effects are commonly measured at P1 and N170 

peaks. Systematic analysis of the current data, however, revealed emotion effects at timings 

between the classically studied peaks. Importantly, this revealed an early happy effect, seen 

across emotion-relevant and emotion-irrelevant tasks in Exp.’s 1 to 3. These results present a 

very localized happy effect at a midline site for P1 rather than at the classically measured sites 

(O1/O2).  Such midline effects may have been missed by previous studies. This happy effect 

started on the P1; however, it was maximal after the P1 (115-120ms). No such effect was seen 

for fearful faces, suggesting this happy effect is specific to the processing of happy faces and 

unlikely a general emotion effect or a simple attentional effect. These results suggest more rapid 

processing of happy than fearful expressions, which is in line with behavioural reports of faster 

discrimination of happy faces compared to the other basic emotions. This rapid processing of 

happy expressions is likely due to rapid discrimination of smiling mouth cues – a finding I will 

expand upon below.  

6.3.5 Importance of the mouth during happy expression processing 
 

The early effect for happy faces seen in Exp.’s 1 to 3 may have been driven by information 

provided by the mouth.  This consistent effect was seen in this series of studies which forced 

fixation on key facial features. Recall that interaction of this early happy effect with fixation 

location was seen in Exp.1 to 3.  At occipital sites between 150 and 200ms the happy effect was 

seen only for fixation on the mouth. A similar interaction was also seen earlier in the P1-N170 

analysis at lateral sites. In Exp. 4, when fixation always landed on the center of the face (tip of 

the nose), no early happy effect was seen significantly. Visual inspection of the 2D voltage map 

of the happy-neutral difference revealed there may have been such a mouth effect (this was 
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confirmed by mean amplitude analysis between 110 and 120ms) but this effect was very weak.  

This effect was only seen again much later between 300 and 350ms at occipital and lateral-

posterior sites. Together, these results from Exp.1 to 4, suggest that the early processing of happy 

expressions is driven by information from the mouth region.  

A similar proposal was made by Halgren and colleagues. Halgren et al. (2000) recorded 

magnetic fields in response to various stimuli including happy and sad faces while participants 

identified repeated faces. Results indicated a midline occipital source (around areas V1-V2) that 

discriminated happy from neutral expressions between 100-120ms post-stimulus. That source 

was separate from the more lateral and later source that corresponded to the magnetic 

equivalent of the N170, and was also sensitive to more sensory aspects of the stimuli. They 

proposed that a fast discrimination of diagnostic cues such as the smile, based on low-level 

properties such as luminance and contrast, could occur within 100 and 120ms in those early 

visual areas and then be relayed rapidly to the amygdala by direct V2-amygdala connections. This 

provides a possible explanation for the happy effect reported in the current thesis given the local 

pixel and contrast differences between emotions seen for the mouth area of our stimuli. The 

current findings however, further suggest that the importance of information provided by the 

mouth region during the processing of happy expressions was also seen all the way until at least 

350ms. From 150 to 350ms, the happy effect was also seen at lateral-posterior electrode sites 

and the happy effect was only seen during fixation to the mouth between 200 and 350ms in Exp.2 

(ED) and 3 (ODD). This suggests that the mouth also provides a cue for the semantic processing 

of the emotional content of the face that occurs during the added negativity for happy 

expressions (coinciding with the timing of the EPN).   
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Similar to the fearful effect, interactions with fixation location during the semantic 

processing of emotional information (i.e., 200-350ms post-stimulus) were not seen in Exp. 1 (GD 

task). As discussed above, a direct comparison of task while manipulating fixation to facial 

features of facial expressions would be required to better understand this result.  

6.3.6 Task did not interact with fearful and happy effects (at occipital and lateral-posterior 

sites) 

 Previous ERP research investigating facial expression processing has used various 

experimental procedures. Only two known studies in the literature directly compared task in a 

within-subjects design, both of which tested angry and not fearful expressions. Small differences 

also existed in the distribution of the effects seen in the current Exp. 1 -3 that varied in task, 

suggesting possible task related effects. For a more powerful test of task, I directly tested the 

impact of task (within-subjects design using tasks used in Exp.’s 1 to 3) on the neural response to 

fearful and happy expressions in Exp. 4. In order to avoid fatigue effects, fixation location was 

not manipulated.  For all tasks fixation was restricted to the tip of the nose, as typically done in 

face ERP research.  The results revealed no interaction between task and the effects of emotion 

for fearful and happy expressions (as discussed above). Therefore inconsistencies seen in the 

literature for early emotion effects and small differences between the current studies in Exp.’s 1 

to 3 are not likely a result of differences in task demands.  

 While task demands did not interact with fearful and happy emotion effects, main effects 

of task were seen. Smaller amplitudes for the ODD task compared to the GD and ED tasks was 

seen clearly between ~200-350ms. This effect of task likely reflects differences in the level of 
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processing of the face required by the tasks. A deeper processing may be required for gender and 

emotion judgments compared to a judgment of a face vs. non-face.  

 It is important to acknowledge that lack of emotion and task interaction may be limited 

to the scalp distribution (i.e., occipital and lateral-posterior) measured/analyzed and the tasks 

used in the current study. I measured/analyzed only a subset of scalp electrodes. There may 

potentially be interactions between task and emotion, elsewhere (e.g., frontal distribution). The 

current study, however, analyzed posterior distributions where visual processing occurs.  Still, an 

opportunity for future studies is to measure emotion effects, and the interaction with task, at 

other scalp locations.  

Finally, it is to be noted that the order of the presentation of tasks may have influenced 

the results. For example, completing the ED task first could have primed participants to attend 

to the emotional faces in the following ODD task differently. Task order was completely 

counterbalanced between participants; however, the total number of participants in each 

condition (~5 per condition) was too small for a meaningful analysis to be reported here. An 

investigation of task order, requiring many more participants, is another opportunity for future 

studies. 

6.4 Conclusions  

The series of studies presented in this dissertation are the first to test the impact of 

fixation to facial features and to directly test the impact of task demands on the processing of 

fearful and happy expressions using whole faces. Combining EEG and eye-tracking using a gaze-

contingent procedure novel to ERP face research, differential effects of fixation and emotion 

were revealed at various ERP components during gender discrimination (Exp.1), emotion 
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discrimination (Exp.2) and oddball detection (Exp.3) tasks. Differential effects for fearful and 

happy expressions were seen at posterior sites, earlier and mostly occipital for happy expressions 

and mostly lateral for fearful expressions. These emotion effects were also seen when these tasks 

were compared within-subjects in Exp. 4.  Importantly no given task seemed to potentiate these 

emotional effects. Happy cues from the mouth are required for early processing of happy 

expressions (i.e., happy gist), likely driven by low-level differences, and for the later semantic 

processing of the emotional content of the face. Fearful cues from both the mouth and the eyes 

are important for semantic processing of the emotional content of the face. Importantly, no 

interaction between emotion and fixation location was seen on the N170, arguing for separate 

processing of structural and emotional aspects of the face. Differential effects of fixation location 

were seen for the P1 and N170, with a sensitivity to face position (low-level) on the P1, followed 

by an eye sensitivity seen on the N170 component, possibly reflecting the activity of an eye-

detector in the processing of the face structure. In line with the idea that the eye sensitivity is 

specific to the face structural encoding stage, no effects of fixation were seen after the latency 

of the N170, suggesting this stage is associated with processing of semantic information (i.e., 

emotion). 

This thesis has highlighted the need for controlling for fixation in ERP emotion research.  

The thesis also underscores the importance of quantifying neural activity around P1 and N170 

peaks.  Emotion effects may be missed by restricting measurements strictly to the peaks of these 

commonly studied ERP markers. The current results also help to elucidate the much debated 

“early” emotion effects in the temporal domain and extend our current understanding of the role 

of facial features and task demands during facial expression processing.  
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Appendix 

 

A1. Final trial number in GD (Exp. 1) 
  Final Trial Number  

  Fear Happy Neutral 

Partic. Left Eye Right Eye Nose Mouth Left Eye Right Eye Nose Mouth Left Eye Right Eye Nose Mouth 

 
1 49 62 64 66 59 65 59 67 52 62 63 58 

 
6 60 61 61 62 63 64 57 60 68 62 61 62 

 
8 55 55 56 48 43 42 46 48 52 55 52 48 

 
9 59 51 53 55 54 55 61 45 51 59 58 51 

 
10 54 52 66 59 68 47 60 64 61 55 54 56 

 
11 54 55 53 54 55 54 44 48 48 55 52 45 

 
14 59 59 53 62 59 61 66 65 66 68 60 58 

 
16 52 55 58 49 60 61 54 56 64 58 59 60 

 
19 53 60 57 56 50 60 53 58 64 55 54 53 

 
20 52 54 50 53 48 46 51 46 43 47 46 49 

 
23 55 55 66 59 57 61 62 58 52 58 65 57 

 
29 53 57 55 54 61 58 67 60 54 54 58 55 

 
30 69 62 70 70 67 67 70 62 69 70 71 70 

 
31 46 56 54 60 53 53 57 52 48 48 64 54 

 
62 64 67 54 64 62 61 55 57 59 63 65 58 

 
65 59 62 56 63 70 69 59 65 63 69 61 62 

 
67 40 53 45 50 64 50 51 52 53 50 50 43 

 
69 44 44 47 40 42 40 45 40 42 56 46 51 

 
70 46 43 48 45 50 54 50 51 54 52 56 49 

 
75 56 56 56 63 61 65 61 65 64 66 70 64 
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A2. Final trial number in ED (Exp. 2) 
  Fearful Happy Neutral 

Partic. 
Number 

Left 
Eye 

Right 
Eye 

Nose Mouth Left 
Eye 

Right 
Eye 

Nose Mouth Left 
Eye 

Right 
Eye 

Nose Mouth 

 
1 61 60 61 51 52 59 52 51 47 59 58 51 

 
2 51 55 63 52 42 52 63 65 47 57 57 49 

 
3 56 61 61 54 67 66 59 58 68 71 58 64 

 
8 53 51 55 56 59 52 55 59 42 48 52 51 

 
9 61 70 73 68 73 71 67 75 73 67 73 69 

 
12 60 68 71 67 62 73 64 74 65 72 68 64 

 
13 42 44 40 35 44 49 38 39 41 49 45 44 

 
14 64 67 64 47 67 66 62 49 61 71 51 47 

 
15 52 60 63 64 60 64 62 72 58 61 66 68 

 
18 67 76 70 69 71 74 73 71 70 71 76 73 

 
20 74 75 73 74 74 75 69 76 52 64 73 66 

 
22 70 74 68 66 74 73 73 69 65 73 64 68 

 
26 51 56 47 53 54 47 55 55 45 60 57 59 

 
44 72 73 77 75 69 69 75 72 71 63 70 75 

 
46 62 59 68 61 69 59 58 58 52 55 50 58 

 
47 56 54 51 61 62 60 51 54 57 48 56 53 

 
51 63 68 66 68 70 71 68 72 74 64 72 71 

 
52 59 48 63 66 55 53 65 67 61 58 60 71 

 
60 71 75 75 72 63 70 69 67 71 64 73 73 

 
62 49 61 57 52 50 51 51 49 51 60 53 56 
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A3. Final trial number in ODD (Exp. 3) 
  Fear Happy Neutral 

Partic. 
Number 

Left Eye Right Eye Nose Mouth Left Eye Right Eye Nose Mouth Left Eye Right Eye Nose Mouth 

 
4 44 39 43 39 45 37 41 49 43 36 40 46 

 
5 59 67 64 63 58 64 60 65 61 58 59 67 

 
8 42 81 43 55 56 47 54 50 50 50 50 53 

 
12 54 52 49 55 52 55 50 52 50 52 47 55 

 
13 72 73 75 69 71 77 71 68 71 75 77 76 

 
14 50 55 55 52 43 57 49 57 50 49 55 60 

 
16 64 60 56 56 61 62 64 51 61 60 55 60 

 
17 49 40 40 43 48 40 45 42 40 46 48 40 

 
21 48 50 42 52 45 42 48 50 46 53 47 41 

 
22 46 34 41 42 44 39 48 48 43 44 45 48 

 
24 48 44 54 50 40 40 45 53 55 45 45 49 

 
25 43 40 40 55 40 55 46 42 41 47 48 46 

 
27 54 52 49 55 52 55 50 52 50 52 47 55 

 
28 61 59 62 65 61 69 64 59 62 61 64 68 

 
29 60 66 64 63 61 54 59 67 65 62 62 60 

 
30 48 50 50 48 49 51 49 49 51 50 53 54 

 
32 62 64 62 65 58 66 67 64 61 61 60 64 

 
33 75 76 75 73 74 76 77 78 78 79 73 80 

 
34 57 58 61 65 56 57 53 70 62 60 68 60 

 
36 48 56 54 46 51 57 56 51 52 55 55 53 

 
37 47 46 41 45 47 43 46 40 45 48 40 40 

 
39 63 66 62 63 65 63 63 63 64 65 60 61 

 
40 74 71 75 72 72 65 76 76 71 71 70 69 

 
41 47 42 42 50 52 53 48 42 53 51 47 49 

 
45 49 50 43 49 56 46 58 42 44 48 46 53 

 
46 53 56 59 56 56 58 54 53 60 51 54 54 
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A4. Final Trial Number Task Comparison 

 

  Fearful   Happy   Neutral  

Partic. 
Number 

ODD ED GD ODD ED GD ODD ED GD 

 
15 49 58 55 58 70 67 56 51 66 

 
17 37 51 43 58 68 69 52 60 46 

 
19 65 70 64 65 70 68 43 46 47 

 
21 78 76 70 81 74 73 71 67 69 

 
22 80 79 71 63 65 66 79 72 79 

 
23 67 66 62 60 68 67 61 75 62 

 
24 65 55 65 71 52 73 55 59 58 

 
26 66 73 70 71 71 78 63 67 64 

 
27 71 68 75 73 75 75 69 71 68 

 
29 49 49 47 69 76 69 68 67 72 

 
33 85 71 83 75 72 75 51 56 54 

 
34 62 67 69 53 75 70 61 65 70 

 
35 88 93 92 85 87 86 88 84 90 

 
37 89 91 88 87 78 87 73 76 81 

 
38 87 80 87 72 82 81 79 75 80 

 
41 41 47 37 55 72 73 64 54 59 

 
42 62 61 63 50 52 55 80 78 79 

 
47 62 62 60 72 66 73 68 73 79 

 
49 80 86 84 74 71 69 68 67 71 

 
50 62 60 50 57 51 62 63 51 63 

 
52 49 73 61 60 75 67 51 54 54 

 
55 66 67 64 58 62 46 57 53 61 

 
57 51 50 54 65 69 62 56 39 42 

 
58 64 64 65 73 76 84 58 66 61 

 
60 74 71 68 73 75 75 72 89 84 

 
61 72 70 70 52 42 60 52 40 54 

 
62 77 98 73 74 60 77 55 45 50 

 
64 75 80 80 72 67 80 55 65 61 

 
66 82 76 80 80 83 66 71 72 77 


