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Abstract

This research in centered around engineering approaches to improve the electro-optical

performance of interband cascade lasers. The enhancement strategies are ranging from

empirical design optimizations and fabrication and packaging techniques to design and

application of optical coating. These improvements resulted in room temperature (RT)

CW optical powers of 40 mW, as well as, internal loss and threshold current densities as

low as 4.9 cm−1 and 365 A/cm2 respectively. Moreover, additional improvements resulted in

devices with threshold current density as low as 320 A/cm2 and wall plug efficiency reaching

up to 5.9% for a 1 mm device producing 20.3 mW CW RT output power. Application of

Antireflection (AR) coatings to interband cascade lasers not only led to identification of

several promising material combinations for AR coatings in Mid-Infrared (Mid-IR) region of

the spectrum, but was also used to study the fundamental laser parameters such as internal

efficiency and leakage current. AR coatings ranging from 0.15 to 7E-4 were designed and

fabricated on ICL waveguide facets. By monitoring the laser performance before and after

coating a direct relation between carrier concentration and leakage currents was observed

and an optimal reflectivity value of 9.6E-3 was experimentally extracted in order to achieve

the maximum slope efficiency for a 1 mm device. As the next step toward utilization of

the Mid-IR ICLs a systematic approach to design of sub-wavelength cavities was developed

with universal applications in active plasmonic cavities. Key parameters such as quality

factor, confinement factor, and threshold gain have been calculated and their dependence of

cavity parameters are demonstrated which enables a flexible design for various applications.

In particular a coaxial cavity with energy confinement factor of 84% and mode volume of

0.14 (λ/2n)3 and quality factor of Q=515 was designed at 3.55µm. The dependence of

the emission wavelength to the surrounding refractive index was also demonstrated with

potential sensing applications.
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Chapter 1

Introduction

L
aser stands for Light Amplification by Stimulated Emission of Radiation. Ein-

stein’s theory of stimulated emission, i.e. transition of an electronic system to a

lower energy through interaction with photons and subsequent generation of new

photons that are identical to those of the incident radiation, laid the foundation for the

invention of laser [14]. When the first laser was demonstrated in 1960 [15] it was described

as “a solution looking for a problem”. Now half a century later, lasers have greatly influ-

enced science and technology as well as everyday lives.

Semiconductor lasers are one of the most important category of lasers that provide

inexpensive and compact light sources. Although compound semiconductors with direct

bandgap provide the basic form of a gain medium, they can only cover certain wavelengths

corresponding to the material’s energy gap. Quantum well lasers, on the other hand, uti-

lize quantum confinement to tailor the emission wavelength by adjusting the thickness

of the quantum wells (QWs). QWs facilitate electron-hole confinement and their quasi-

two-dimensional (quasi-2D) density of states near the band edge increases the differential
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gain [16]. These properties are the main reason behind the importance of QW lasers and

their widespread use in industry.

However, when it comes to long wavelengths in the infrared region, lower density of

states and scaling of the optical mode result in less overlap with the active quantum well

and lower material gain [16]. Lasing occurs when the overall gain exceeds the total loss. As

such, the reduced gain in QWs combined with increased loss factors including free carrier

absorption [17] and Auger recombination [18] render QWs inadequate for lasing in the long

wavelength region.

Sufficient gain may be achieved by exploiting multiple quantum wells (MQWs) in the

active region. Depending on whether the QWs are connected in parallel or in series, this

strategy can also improve the threshold voltage or current. Furthermore, the distance be-

tween the QWs should be much less than the wavelength, yet they must be sufficiently

separated in order to decouple and maintain their 2D density of states [16]. Therefore,

inserting thin potential barriers between adjacent QWs provides a straightforward config-

uration. Consequently for the parallel connection configuration the injected current divides

among the wells. The threshold voltages, hence, is minimized and the carrier density scales

directly with the number of QWs, designated by M .

Alternatively, injectors can replace the thin barriers to achieve a series configuration.

Connecting the QWs in series, where the same current passes through all QWs, increases

the differential efficiency, since each QW recycles the charge carriers of the preceding one.

The QWs in series, also known as the cascade, require a lower current and a higher voltage,

wherein the later scales directly with the multiplicity M . Given that Ohmic dissipation
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varies quadratically with current, the parallel configuration parasitic loss varies as M2

whereas that of the cascade configuration is independent of the QW numbers [18]. There-

fore cascaded QWs minimize the threshold power density (Pth). Moreover, as a consequence

of carrier recycling, the differential quantum efficiency (ηd) as well as the internal efficiency

(ηi) scale directly with M [2].

The Mid-Infrared (Mid-IR) region of spectrum from 3 to 5 µm, corresponds to an at-

mospheric transmission window and has diverse environmental, technological and medical

applications such as chemical spectroscopy and sensing [19], free-space communications,

military countermeasures, bio-molecular sensing [20], and medical diagnosis [21]. All of

these applications require a compact and highly efficient semiconductor laser source. In

addition, optical detection methods, which enable non-intrusive and real time monitoring,

also benefit from a laser source in this range. Sensitivities in the order of part per billion

(ppb) will be achievable for gas LIDAR (Light Detection and Ranging) and laser spec-

troscopy techniques such as Cavity Ring-Down Spectroscopy (CRDS), Intra-Cavity Laser

Absorption Spectroscopy (ICLAS), and photo-acoustic spectroscopy detection [19].

The Mid-IR part of the spectrum is particularly important because the fundamental vi-

bration modes of N-H, C-H, and O-H bonds lie in this region. These vibrational transitions

are present in all organic molecules and greenhouse gases like methane (CH4) and butane

(C4H10) [19]. Their strong absorption bands facilitate measurement of low concentrations

mixtures. Therefore, coherent light sources will significantly improve trace gas analysis,

single molecule detection, biochemical sensing, and other spectroscopic applications.

Mid-IR laser sources also have numerous application in bio-photonics. Due to water
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Figure 1.1: Infrared atmospheric “transmission window”, adopted from [1].

absorption in this region, which peaks at 3 µm, Mid-IR spectroscopic techniques can be

employed in diagnostics and treatment procedures [19]. Water, the principal component

of biological substances, is highly absorptive in Mid-IR region due to the presence of O-H

bonds. Consequently, the penetration depth of radiation in these frequencies is minimal,

which, in turn, allows for tissue ablation and surgeries to be performed with high precision

and minimum damage [19]. Mid-IR bio-sensing and imaging devices can be employed in

biomedical applications for disease detection and diagnostics by means of safe in-vivo tech-

niques [19]. Moreover, high density 2D planar arrays of nano-lasers with digitally tunable

emission spectrum can be used for high resolution biomedical imaging of living organisms.

The following lists different types of lasers that have been developed for continuous

wave (CW), room temperature (RT) emission in Mid-IR:

• conventional QW lasers,
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• quantum cascade lasers,

• type-II interband cascade lasers.

Conventional QW laser diodes suffer from poor hole confinement and high loss at long

wavelengths. Nevertheless, high gain associated with intra-well transitions in QWs can

offset the temperature-sensitive loss in narrow bandgap materials and result in low thresh-

old current densities. However, rapid thermal rollover still limits the output power [22].

Conventional QW lasers have become the primary infrared source in 2-3 µm wavelength

region [16]. For example, CW RT output powers as high as 1.4 W at 2.2 µm has been

demonstrated [23]. Recently, there has been much effort to extend the emission wavelength

beyond 3 µm. Threshold current densities of 0.6kA/cm2 were reported for GaSb-based

diode lasers at 3.4 µm [24]. Record output powers of 190 mW at 3.1 µm [25] and 15 mW

at 3.4 µm [23] show a trend that output power falls as the wavelength increases.

The well-known quantum cascade laser (QCL) performs best in the wavelengths above

4 µm. Infrared QCLs are usually comprised of 30-40 stages [17], providing high output

powers at the expense of high threshold power densities. QCLs utilize the intersubband

transition within the conduction band (CB) states. Therefore, electrons are the only car-

rier used in the light generation process and consequently they are considered as unipolar

lasers. The independence of the emission wavelength from material bandgap has enabled

the development of long-wavelength lasers based on wide-bandgap materials like GaAs

and InP, which not only enjoy a mature technology but also possess advantageous thermal

properties [26]. One of the fundamental characteristics of QCLs is the short carrier life-

time at the upper lasing level which is limited by optical phonons and surface roughness

scattering [17]. The small coupling efficiency between the lasing mode and spontaneous

emission is a direct consequence of this picosecond (ps) lifetime, which, in turn, results in
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a very narrow line-width for QCLs [27].

Although QCLs were first demonstrated at λ = 4.2 µm in 1994 [26], much of the

progress has been made at the long-wavelength region of infrared. Within 3-4 µm range,

QCLs suffer from inadequate conduction band offset, which causes poor electron con-

finement and carrier leakage, and results in excessive currents and thermal management

problems [21]. QCLs have achieved 5 W of CW RT output power with wall plug efficiency

(WPE) of 21% at 4.9 µm. The reported threshold current density (Jth) at this wavelength

is 1.25 kA/cm2. At 3.7 µm the CW output power at RT decreases to 1.1W with 6%

WPE and Jth=1.67 kA/cm2. This trend continues for λ = 3.4 µm, 3.2 µm and 3 µm with

CW output powers of 403 mW, 20 mW and 2.8 mW, respectively. The threshold current

density for devices emitting at 3 µm reaches 2.4 kA/cm2 in spite of high reflectivity (HR)

coated back facet and partially high reflectivity coated (PHR) front facet [21].

Mid-IR type-II Interband Cascade Lasers (ICLs) combine the interband transition of

QW lasers and cascading of QCLs in a type-II broken gap alignment. The invention of ICL

by Yang dates back to 1995 [28]. He proposed an active region based on type-II broken gap

alignment which naturally occurs in InAs/GaSb material system and was termed “leaky

quantum well approach”. Lining up the GaSb valence band minimum slightly higher than

the InAs conduction band maximum provides a“leaky window region” which enables the

spatial overlap between conduction and valence bands [28]. The laser core was comprised

of many active region connected by injection regions to enable electrical pumping [28].

Soon after this proposal, it was shown that adding a second GaSb well to the active re-

gions improves the design [29]. The additional GaSb well was designed sufficiently wide to

impede the carrier leakage via inter-valence transitions. This adjustment did not affect the
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optical transition rate, whereas altering the first well would have reduced the electron-hole

wave-function overlap [29].

The ICL active region has evolved from the original idea. A type-II W-design [29]

featuring a GaInSb hole well surrounded by two InAs electron wells with enhanced optical

gain constitutes today’s ICL active regions [2]. ICLs, unlike any other semiconductor lasers,

generate carriers internally at the electron-hole injection region interface. The conduction-

valence band overlap, a character of type-II alignment in the GaSb/InAs material system,

creates a semi-metallic interface in the presence of an electric field. Carrier generation at

this semi-metallic interface is controlled by quantum confinement as well as the applied

bias and serves to maintain the population inversion [16]. ICL is the only currently used

laser with this feature [2].

The number of cascaded active regions has decreased from 18 in early ICLs [30] to 5-7

in the recent devices [17]. This reduction has provided a balanced design capable of RT

operation and is in direct contrast to QCLs with several tens of stages in the laser core.

Another fundamental distinction between ICLs and QCLs is their upper lasing level carrier

lifetime. Nano-second (ns) carrier lifetime in ICLs is determined by Auger recombination

process, which greatly differs from that of QCLs. Therefore, an ICL requires lower thresh-

old current density [2].

Dedicated research efforts from several groups around the world, such as Naval Re-

search Laboratory (NRL), Maxion/University of Maryland(UMD)/University of Waterloo

(UW), Jet Propulsion Laboratory (JPL)/NASA, and University of Würzburg, resulted in

the ICL progress over the past decade [2, 3, 16, 17, 30–52]. ICLs have reached RT CW
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operation over the entire 3-5 µm spectrum with max output power of nearly 0.5 W at

3.7 µm [17]. Maximum WPE of 15% at room temperature [49] and maximum CW tem-

perature of TCW
max=118◦C [50] has been reported. ICLs can operate with threshold powers

as low as 29 mW [2] and threshold current densities as low as 100 A/cm2 [52] at RT.

Low threshold voltage and current densities are a fundamental feature of ICLs and are

not reliant on cavity design [16]. For chemical sensing application, power levels as low as

∼1 mW are sufficient, which means laser is operated close to threshold. Thus, for battery

operated applications that require minimal power consumption levels, ICLs are preferred

to QCLs [17] due to ICL’s low threshold power densities, 0.35kW/cm2 [2] versus that of

QCL’s, 10kW/cm2 [21].

Continuous-wave room-temperature operation of ICLs is not trivial and was not real-

ized at the start of this project. Much effort have been made throughout the course of the

project to improve the device performance. These efforts include various design optimiza-

tion. The doping level adjustments have been made in several epitaxial layers such as elec-

tron injector and separate confinement regions. Novel active regions, such as a δ-strained

ICL, were designed and tested. Similarly, the associated fabrication techniques were de-

veloped and perfected. Optical coatings, including high-reflectivity and anti-reflectivity

coating, were also investigated. Special efforts were dedicated to anti-reflection coating to

improve the output power of the ICLs. The experimental results associated with these

optimizations will be discussed in the following chapters.

Chapter 2 outlines various design aspects of ICLs and compares it to those of QCLs

in detail. The discussion on the fundamental underlying physics of the ICLs is essential
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for understanding the different design optimization schemes that are discussed later on.

Chapter 3 describes the fabrication techniques and their effect on the device performance.

Novel fabrication methods are described and their effects on the device performance is

discussed. Chapter 4 summarizes experimental design and characterization results. In

this chapter, several successful design changes together with the associated experimental

analysis are reviewed. Design, fabrication and characterization of anti-Reflection (AR)

coatings for high power operation are the subject of Chapter 5. Several dielectric materials

have been considered for anti-reflection coating and been characterized experimentally.

Most promising materials have been selected for investigation of laser performance before

and after the application of ARCs. This study has also been used to investigate the internal

laser parameters and provided insight to the fundamental underling mechanisms in laser

performance. Chapter 6 describes the design and simulation of novel sub-wavelength mid-

IR lasers. These devices have been introduced for the first time in the Mid-IR region in

this work. A systematic design approach for sub-wavelength cavities is developed that is

applicable to any wavelength in general. Important cavity merit such as quality factor

and confinement factor are discussed and related to laser parameter. Optimum cavity at

λ = 3.6µm is then designed and studied and the chapter concludes with the application of

such devices.

9



Chapter 2

Interband Cascade Laser - Design

and Simulation

2.1 Cascade or Non-Cascade

Multiple quantum wells (MQWs) are needed to provide sufficient gain to overcome the

cavity and material losses in Mid-IR wavelengths. These QWs can be connected either in

parallel or series, more commonly known as cascade. When QWs are connected in paral-

lel, as is the case in a conventional MQW diode laser, the electrons are injected into the

conduction band from the n-contact and holes to the valence band from the p-contact and

they divide between the quantum wells, where they recombine through radiative and/or

non radiative processes. In order to reach threshold, every quantum well must provide

a certain amount of gain, gth,m, and the combined gain should exceed the total loss. If

Jth,m is the required current in each QW which yields gth,m, then the total current at the

contacts will become MJth,m, where M is the number of quantum wells.
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In cascade configurations, the injected carriers cross all the QWs one by one. Upon

reaching each stage, carriers make a transition in the active well in that stage and move

onwards. Therefore, the total current is the same as the threshold current in one QW, i.e.

Jth,m [16],

Jth = MJth,m non-cascade, (2.1)

Jth = Jth,m cascade. (2.2)

On the other hand, to reach the threshold condition the voltage drop in each QW has

to be larger than the photon energy, Eg = ~ω, by a margin of ∆E, that is determined by

the total loss [2], analogous to Bernard-Duraffourg condition in conventional diode lasers.

In the parallel configuration, all QWs share common upper and lower lasing level, between

which the radiative transition occurs. Yet in the cascade scheme, the upper lasing level of

each stage should line up with the lower lasing level of the preceding stage. Therefore, the

threshold voltage in the series scheme is M times that of the parallel configuration,

Vth =
~ω + ∆E

q
non-cascade, (2.3)

Vth = M
~ω + ∆E

q
cascade, (2.4)

where q is the electron charge [16].

Combining the voltage/current requirement in both settings does not present an ad-

vantage from the threshold power Pth point of view. It is only in the presence of a series

resistance that the difference becomes apparent. The current passing through the parasitic

series resistance in a conventional QW laser is, thus, M times that of the cascade laser
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current. The dissipated power will be quadratic in current [16], i.e.,

Pth =
~ω + ∆E

q
MJth,m + ρM2J2

th,m non-cascade, (2.5)

Pth =
~ω + ∆E

q
MJth,m + ρJ2

th,m cascade. (2.6)

As Eq. 2.5 implies, the contribution of the first term in the right hand side decreases

relative to the second term for long wavelengths. This effect becomes more pronounced in

view of high threshold currents predicted for Mid-IR lasers. Therefore, the cascade-lasers

seem preferable as they decrease the contribution of the parasitic loss [16].

2.2 ICL and QCL, a Comparison

Cascade lasers were introduced with QCLs in 1994 [26], which is the most well-known

laser of this class. ICLs also belong to the cascade category of semiconductor lasers. ICLs

and QCLs fundamentally differ in their underlying mechanism of light emission. In QCLs,

intersubband transitions between the conduction sub-bands of QWs are responsible for

emission, whereas ICLs emit photons due to the interband transition between the con-

duction and valence bands. This fundamental difference causes major distinctions between

ICLs and QCLs. For ICLs most of the holes reside in the lowest sub-band, therefore, heavy

hole characteristics dominate the optical matrix element and result in Transverse Electric

(TE) emission [53]. For QCLs the conduction to conduction band transitions dominate;

therefore, the only non-vanishing optical matrix element is along the growth direction [53].

This leads to Transverse Magnetic (TM) polarized emission.

Another major consequence of the different transition mechanism in ICLs and QCLs
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is the carrier lifetime. The upper level lifetime for intersubband transition is restricted

by optical phonon and intersubband scattering, which is empirically found to be in the

picosecond (ps) range. In contrast the upper state lifetime in interband transitions is gov-

erned by Auger recombination, with lifetime of the order of nanosecond obtained from

empirical data [17]. As a result of the disparity between carrier lifetimes in these two types

of laser, an ICL exhibit a differential gain per current density two orders of magnitude

greater than that of a QCL. Therefore, ICLs can reach the gain required for lasing with

far less number of stages than their cascade counterpart and, thus, can operate with a

much lower voltage [17]. QCLs typically require at least 30-40 stages to sufficiently reduce

the current densities for CW operation [17], while the number of cascaded active region in

ICLs is between 5-12 [2]. The relevant voltage values range from 10 V to 15 V for QCLs

and from 2 V to 3 V for ICLs [2].

Another consequence of the short carrier lifetime in QCLs is a higher threshold current

density [2], which tends to increase at wavelengths below 4 µm due to surface roughness

scattering and carrier leakage [17]. QCLs current densities are in the order of 1 kA/cm2

while current densities as low as 100 A/cm2 have been observed in ICLs [52]. Combin-

ing the current and voltage ratios, the threshold power density in QCLs can be 30 times

higher than that of an ICL [17]. QCL threshold current density can be reduced by incor-

porating more stages, at the expense of increasing threshold voltage and power density [17].

QCLs also require higher voltage margin ∆E in addition to photon energy, Eq. 2.5. An

additional voltage drop per stage of many KBT is required in QCLs in order to prevent

thermal population of the lower lasing level [54], whereas ICLs voltage margin only needs to

overcome the total loss [2]. QCL voltage margin at each stage, is about 100-150 meV com-
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pared to 30 meV for ICLs, which is in the order of thermal energy at room temperature [17].

Nevertheless, QCLs are grown on wider bandgap substrates, such as GaAs and InP,

which have a significant advantage from the thermal point of view. For example, they allow

for cascading many stages whilst maintaining an efficient heat removal from the laser core.

ICLs on the other hand are antimonide-based lasers; thus, the number of stages are limited

if RT operation is to be realized. The wide bandgap and less temperature sensitive material

system of QCLs also means that even though the carrier lifetime is much shorter in QCLs,

it has a much weaker temperature dependence than the carrier lifetime in ICLs. Therefore,

QCLs usually have higher slope efficiency and can operate at much higher temperatures [2].

It is worth noting that since QCLs performs best at wavelengths above 4 µm and ICLs

in 3-4 µm the compared characteristics in the text refer to devices emitting at 4 µm where

comparison is most meaningful. Based on this comparison, it can be concluded that QCLs

are best suited for high temperature and high power applications whereas ICLs are ideal

for compact systems and battery operated field applications where moderate powers are

sufficient [17].

2.3 ICL Operation Principles

Interband cascade laser core consists of 5-12 stages. Each stage includes an active region,

a hole injector, and an electron injector, Fig. 2.1. The electrons that are injected from the

n-contact are confined in the active region conduction band where they make a radiative

or non-radiative transition to the valence band. They will then pass through the hole

injection valence band and transfer to the conduction band at the electron/hole injector
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Figure 2.1: Interband cascade laser band structure and relevant electron/hole wavefuctions,
Reprinted by permission from Macmillan Publishers Ltd: nature communications [2], copy-
right c© 2011.

interface and will be injected to the next active region subsequently. Having passed all

the cascades, they will be collected at the p-contact. In the two following subsections the

active and injection region will be discussed in detail.

2.3.1 Active Region

As seen in Fig. 2.2, the active region of an ICL, where the photon emission takes place,

has a W-shaped band diagram which is created by a GaInSb hole-well (h-well) surrounded
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Figure 2.2: Interband cascade laser W-shaped active region.

by two coupled InAs electron-wells (e-wells). The electron/hole wave-function overlap

determines the transition rate and is only considerable in the h-well. The two InAs e-wells

have slightly different widths to compensate for the wave-function shift in the presence of

applied voltage, i.e. quantum-confined Stark effect, and maximize the transition rate. The

presence of indium (In) in the composition of h-well imposes a compressive strain on the

lattice, which, in turn, results in a higher-energy heavy-hole (HH) sub-band. Therefore,

the optical transition with the Mid-IR energy of 0.3 eV-0.4 eV can be attained with thinner

e-wells. Reducing the thickness of InAs layers will contribute to a larger optical matrix

dipole [16]. The emission wavelength is tuned by adjusting the InAs active e-well thickness.

2.3.2 Electron/Hole Injector and Semi-Metallic Interface

In a cascade scheme, the electron and hole injectors function as a downward staircase that

facilitates the alignment of the lower lasing level in each stage with the higher level of the
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next. They also contribute to the length of the cascade unit cell and enable the application

of minimum required voltage per stage (0.3-0.4 V in Mid-IR) without having to surpass

the maximum field/unit length that is allowed by the material system. Since, the electrons

have higher mobility than holes, electron injectors usually constitute most of the active

region unit cell [16].

In Mid-IR ICLs, the electron injector is composed of InAs e-wells separated by AlSb

barriers. The hole injector consists of GaSb h-wells that are also separated by the same

barrier type. GaSb, known as intermediate gap semiconductor, has an energy gap of

Eg=0.812 eV [55]. The temperature dependence of the bandgap is often characterized

experimentally with two fitting parameters α and β, i.e.,

Eg(T ) = Eg(0)− αT 2

T + β
, (2.7)

where α=0.417 meV/K and β=140 K have been reported for GaSb [55].

InAs is a relatively small bandgap semiconductor, Eg=0.4 eV, with the temperature

dependence parameters α=0.276 meV/K and β=93 K. Comparing these values to indus-

try standard materials such as GaAs with Eg=1.5 eV, α=0.5405 meV/K and β=204 K

or InP with Eg=1.4236 eV, α=0.363 meV/K and β=162 K, it is evident that the devices

incorporating InAs are much more sensitive to temperature variations.

However, the motive behind the use of InAs is its special band alignment with GaSb.

The InAs/GaSb material system exhibits a Type-II broken alignment [55], where the con-

duction band of InAs is ∼0.21 eV lower than the valence band of GaSb [2], Fig. 2.3. Even

though quantum confinement leads to an indirect positive band gap of Eg in adjacent
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Figure 2.3: InAs/GaSb Type-II broken gap band alignment, Reprinted by permission from
Macmillan Publishers Ltd: nature communications [2], copyright c© 2011.

GaSb/InAs QWs and induces semiconductor characteristics in the junction, applying elec-

tric field can change the band alignment type from semiconducting to semi-metallic [2].

Junction bias will generate a negative band overlap of ESM that allows for population of

electron and holes in their respective wells at quasi-equilibrium [2].

As for any other cascade lasers, it is required that the lower lasing energy level of each

stage lines up with the upper lasing level at threshold. For an ICL wherein interband tran-

sition is essential, the upper (lower) lasing energy level is the quasi-Fermi level of electron

(holes) in the active QWs. Therefore, the quasi-Fermi level of the active h-well, the hole

injector, and the electron injector of each stage must be equal to that of the active e-well

in the next stage, as shown by the dashed line in Fig. 2.1 [2].

In the presence of an applied voltage, V, a band overlap of ESM at the semi-metallic

interface is induced. Assuming a common Fermi level for electron and hole injector as
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well as across the semi-metallic interface, the Fermi energy for electron and holes has the

following value [16],

Ef ≈ ESM
m∗r
m∗e

+ Ec, (2.8)

where m∗r is the reduced mass, m∗r = (m∗em
∗
h)/(m

∗
e+m∗h), and m∗e and m∗h are the electron’s

and hole’s effective mass. Taking a 2D density of state for both carriers, g(E)=4πm∗e/h/h
2,

at zero temperature, the field induced carrier density is [16],

n = p =

∫
g(E)dE =

4πm∗r
h2

ESM. (2.9)

The Fermi level can alternatively be evaluated from at valence band edge, which results

in an equivalent expression for the carrier density. Therefore, the semi-metallic electron-

hole injector interface generates equal number of electrons and holes. Holes are then

supplied to the valence band to maintain population inversion and electrons are injected

to the next stage as if they are recycled from the preceding stage [16]. Interband cascade

laser is the only current laser capable of internal generation of carriers [2].

Simulations using an 8-band k.p model and self-consistent calculation of conduction

and valence band and Poisson’s equation in the presence of an applied field [53] yields a

threshold carrier density of nth = 1.5 × 1012 cm−1 for interband transition in a W-shape

ICL active region [16]. The generation of this threshold carrier density requires a threshold

overlap energy of ESM,th = 130 meV at 300K [16].

On the other hand, the required voltage per stage should ideally exceed the photon
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energy by no more than a few KBT. Therefore the threshold voltage per stage is [16],

Vm =
~ω +KBT

q
, (2.10)

where q is the electron charge. In an ideal design, this voltage should be equal to the

voltage needed for creating the semimetallic band overlap required for generation of the

threshold carrier density [16]. If the required voltage per stage is more than what is needed

for generating the threshold carrier density, accumulation of extra carriers will cause addi-

tional Auger recombination and free carrier absorption. In contrast, insufficient potential

difference will result in inadequate carrier generation and a higher than necessary thresh-

old voltage. As the overlap energy is controlled by quantum confinement and electron-hole

center of mass distance, the design and doping of the injectors are parameters for optimiz-

ing the performance by the designer [2].

Insofar as the density of states in the electron injector is very high, most of electrons

will accumulate in the injector QWs rather than the active QWs, whereas holes are mostly

directed to the active region. Under such circumstances, the unbalanced carrier concen-

tration in the active region increases the free carrier absorption loss. Doping the electron

injector with silicon can balance the electron-hole concentration and has been shown both

theoretically and experimentally to improve the laser performance [2]. A balanced carrier

concentration means that more of the available electrons and holes will contribute to the

gain, thereby increasing the material gain. Subsequently, a considerably lower threshold

current density will be obtained. Slight threshold voltage improvement are also achieved

as no extra voltage is required to compensate for unequal number of the carriers. Further-

more, the reduction in carrier recombination reduces the waveguide internal loss [2].
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Each cascade stage of an ICL is about 450 Å thick. Moreover, empirical studies show

that the tradeoff between the thermal considerations and gain requirements results in the

optimum number of stages be equal to five [16]. Therefore the ICL’s active core has

thickness of about 200 nm.

2.4 δ-Strained Quantum well

In pursuit of an ICL design to provide higher gain, increasing the number of electron and

hole wells in the active region was considered. Figure 2.4a shows a cascade unit cell for

such a novel ICL design with three e-well and two h-wells. The idea behind this design

was to increase the optical matrix element by increasing the optical transition pathways

and was inspired by former work done in the group [56]. However, simulations showed

that the HH wave-function exhibits anti-symmetric parity, whereas the conduction band

wave-function remains symmetric. The overlap of the two in the first well then cancels

out that of the second well and, therefore, the extra hole well does not improve the device

performance. This design was subsequently modified by replacing the middle electron well

with an InAs barrier, as shown in Fig. 2.4b, in order to reduce the energy spacing between

the higher symmetric and anti-symmetric wave-functions in the conduction band, thereby

enhancing the optical dipole element and increasing the gain. The Current-Voltage-Light

(IVL) characteristic for the grown and fabricated devices from this design are reported in

chapter4.
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Figure 2.4: δ-Strained quantum well band structure (a) initial and (b) final design

2.5 Optical Mode and Waveguide Design

The ICL waveguide design is another important aspect of the final device as it affects the

internal loss and subsequently the required gain to reach threshold. The ICL core consists

of the active region and the electron and hole injectors and has an average refractive index

of 3.58. However, due to the high refractive index of GaSb substrate, 3.75, many stages

will be required to confine the mode to the active region. On the other hand, in order to

extract heat efficiently from the active region and prevent the thermal rollover, a minimum

number of stages must be used [16]. Therefore in order to confine the optical mode, the

active region has to be optically isolated from the substrate using thick lower cladding.

The lower cladding needs to have a higher band gap, lower refractive index and be lattice

matched to the substrate. However, no such material exists. The problem is solved by using

a superlattice consisting of many alternate layers. The active region is also sandwiched

between two GaSb separate confinement regions (SCRs) to pull the mode further into the

laser core. Moreover, to avoid excessive waveguide loss due to the interaction of the mode

with the contact, another low index cladding regions separate the laser core from the metal
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contact on the top. Cladding layers consist of InAs/AlSb supper-lattice with an average

refractive index of n=3.25 [16]. The layer structure of a typical ICL is schematically shown

in Fig. 2.5.

When no gain or loss is present, the transparency condition reads, Γagtr = αi, where,

αi = Γaαa + Γsαs + Γcαc, (2.11)

is the total waveguide internal loss, in which Γ and α denote the confinement factor and

loss, respectively, with the subscript referring to the active region (a), the SCR (s) and the

cladding (c). The total loss can be viewed as the weighted average of the material loss in

different layers and Γa + Γs + Γc = 1 [16].

Minimization of internal loss and the transparency condition requires two different

strategies. Since the wide bandgap GaSb SCRs have the lowest loss value, higher confine-

ment factor in this region will reduce the internal loss. Narrow bandgap materials and

large hole density are responsible for relatively high losses in the active region, whereas

high doping and interface roughness scattering of the supperlattice introduce high losses

in cladding [16]. Nevertheless, confining the mode in the SCRs increases the transparency

Substrate n=3.75

Separate Confinement Region n=3.75

Laser Core n=3.58

Separate Confinement Region n=3.75

Upper Clad n=3.25

Lower Clad n=3.25

Figure 2.5: ICL layer composition and the corresponding refractive indices
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gain and is not desired [16]. To confine the mode in the active region, moderately thick

SCRs should be used to balance the transparency gain and the internal loss. The thickness

of SCRs in the state of the art ICLs are about 500 nm which coincides with equal losses

in all the three regions [5, 16].

The cladding thickness is determined based on the assumption that the losses due to

the mode interaction with the substrate on one side and the contact on the other, must

not become more than 1 cm−1 higher than the loss of infinitely thick cladding [16]. Mode

simulations show that in order to meet this condition, the thickness of the top clad should

be around 1.6 µm and that of the bottom clad around 2.9 µm. Figure 2.6 depicts the

RSoft simulation of the mode profile for a 5-cascade ICL at 3.8 µm with the aforemen-

tioned thickness for the SCRs and top/bottom claddings. The simulations are performed

with RSoft BeamPROP simulator [57] with grid size 0.05µm. As shown in Fig. 2.6b and

Fig. 2.6d the presence of the SCH creates a dip in the mode shape. This behavior further

illustrates the sensitivity of the design to the thickness of the SCH layers. It is also ap-

parent for the Fig. 2.6d that this design minimizes the interaction of the mode with the

substrate or contact layers. It should be noted that the thickness of these layers have been

optimized for 3.8 µm and will scale with λ when the wavelengths is varied.

Inasmuch as the underlying physics of ICLs is very complicated, the summery presented

in this chapter may be complimented with the invaluable insights gained from the char-

acterization of operational devices and will illuminate the way for further progress. These

experimental methods will be discussed in the following chapters.

24



Contour Map of Transverse Index Profile at Z=0

X (μm)

30- 20- 10- 0 10 20 30

Y
 (

μm
)

2-

1-

0

1

2

3

4

3.358

3.8

(a)

Transverse Mode Profile

(m=0,neff=3.59501)

X (μm)

30- 20- 10- 0 10 20 30

Y
 (

μm
)

2-

1-

0

1

2

3

4

0.0

1.0

(b)

Cut of Index Profile at X=-0.15

Y (μm)
2- 1- 0 1 2 3 4

R
ef

ra
ct

iv
e 

In
de

x

1

2

3

(c)

Vertical Cut of Mode Profile at X=-0.15

Y (μm)
2- 1- 0 1 2 3 4

M
od

e 
A

m
pl

itu
de

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 2.6: Rsoft simulation results: (a) 2D refractive index map of an ICL waveguide
with 10 µm width and 3 µm height (b) fundamental mode profile (c) 1D refractive index
map (d) 1D cut of the fundamental mode.
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Chapter 3

Device Fabrication and Packaging

3.1 Introduction

Fabrication is one of the most important steps in any device study. It can affect or deter-

mine the device performance and/or lifetime. Laser fabrication is often more challenging

and sensitive to fabrication skills and conditions when compared to other semiconductor de-

vices. The fragility of III-V materials usually used in light emitting devices combined with

sample thinning and cleaving steps required for high quality mirror finish of Fabry-Pérot

lasers contribute to complexity of the device manufacturing. Moreover, special consid-

eration such as temperatures sensitivity or reaction with chemicals should be taken into

account for fabrication of multi-layer structures such as ICLs. This chapter describes the

processes involved in the fabrication of ICLs.
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3.2 Step by Step Fabrication Process

The device fabrication started with dicing the wafer into 1 cm × 1 cm samples using a

diamond scriber. The sample were then subjected to general solvent cleaning that included

rinsing with acetone and then with methanol and isopropanol for 30 seconds each. After

blow-drying with nitrogen, the samples were transferred to a 150 ◦C oven, where they were

baked for 10 minutes. This step removes any residual moisture on the individual segments

and prepares the surface for the photolithography step. In order to ensure that no organic

material remained on the surface, the samples were exposed to an oxygen plasma with

RF power of around 100 W that was low enough not to damage the top surface. Cleaned

samples were then directly transferred to the Plasma Enhanced Chemical Vapor Deposition

(PECVD) chamber where 0.8 µm of SiN was deposited on the sample with a deposition

rate of ≈ 170 Å/min. This SiN layer served as the etching mask for the subsequent etching

steps. The deposition recipe is as follows:

Plasma: LF power 23 W, 7 seconds Pulse time; RF power 20 W, 13 seconds Pulse time

Gas combination: 5%SiH4 (Silane) and 95%N2: 400sccm; NH3: 20sccm.

where LF power and RF power stand for low frequency and radio frequency power,

respectively. At this point the samples were patterned with the waveguide mask. In this

and all the following photo-lithography steps AZ R©5214E, a high resolution image reversal

photo-resist from AZ R© electronic material, was used.

Next, patterned samples were etched using an Oxford fluorine-based inductive couple

plasma (ICP) etcher and the photo-lithographic pattern was transferred to the underlying

dielectric. The SiN etching recipe with 4000 Å/min etch rate had the following gas and
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power combinations:

Plasma: RF power:50 W; ICP power: 300 W,

Gas combination: SF6: 40 sccm; O2: 5 sccm.

where ICP power stands for inductively coupled plasma power. The photo-resist was

then removed using a 3 step solvent cleaning process, identical to the one used for initial

cleaning, and followed by an exposure to oxygen plasma. The oxygen plasma cleaning

was necessary since part of the photo-resist had been polymerized during dry etching and

might not be removed using a simple solvent rinse.

An SEM image of the etched SiNwaveguide mask is shown in Fig. 3.1. This particular

design, usually referred to as the double trench structure, provides mechanical stability for

epitaxial-side (epi-side) down mounting of individual devices. Detailed design criteria for

waveguide mask are explained in section 3.3.

The SiN mask was then used to etch the waveguides. Wet or dry etching techniques

can be used to define the device features, each subjected to its own limitations. Dry etch-

ing combines the chemical and physical etching by utilizing bombardment of ions of the

reactive gases. These ion bombardment provides relatively perpendicular waveguide side-

walls but leaves behind a rough footage that contributes to the waveguide scattering loss.

Conversely, wet etching typically results in a smooth surface, but the sidewalls are more

slanted. The most important disadvantage of wet etching for any multi-layer substrate such

as ICLs is the peripheral etching that comes with etch techniques where chemical reactions

are dominant. When substrates that are comprised of different materials are exposed to a
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Figure 3.1: Double trench laser waveguides

chemical, each of the layers are etched with different speed, some more than others. Such

features not only contribute significantly to the waveguide loss but also create air gaps and

prohibit the heat extraction from the active region. Therefore, dry etching seems to be a

more appropriate technique for device definition. Nevertheless, a brief wet etching could

be used to ameliorate the side wall roughness, and experimental results show that it does

lower the waveguide loss.

Therefore, in fabrication of our ICLs, dry etching was followed by 20 second wet etching

and 30 second DI water rinse. For dry etching, an OXFORD Chlorine based ICP etcher

was used with the following combination of gases and RF powers with the etch rate of

about 5500 Å/min:

Plasma: RF power:100 W; ICP power: 400 W,

Gas combination: Ar: 2.5 sccm; BCL3: 12.5sccm.
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RT 200 rpm

Figure 3.2: Wet etching configuration

For the wet etching, 5 grams of tartaric acid (C4H6O6) dissolved in a mixture of phos-

phoric acid (H3PO4): hydrogen peroxide (H2O2): deionized water (DI), 30 ml : 30 ml:

90 ml by volume was used. This solution was prepared in advance and stirred at 200 rpm

for at least 30 minutes prior to use. During the etch, the waveguides were oriented par-

allel to the flow of the etchant, thereby creating a flow that smooth outs the sidewalls as

illustrated in Fig. 3.2.

Once the waveguides were etched, the SiN mask had to be removed. Part of SiN would

be etched during the dry etching of the waveguides. However, the recipes were further

refined to achieve a good selectivity between the dielectric and III-V material. Therefore,

SiN etch was considerably slowed down relative to that of the substrate, to approximately

900 Å/min. After the completion of the waveguide etch, the remaining SiN on the sub-

strate was removed by dry etching using the same SF4-based recipe used to etch the mask

in the first place.

Clean substrates were investigated using an optical microscope to make sure that all

the previously deposited SiN was removed. They were then immediately transferred to the
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PECVD chamber for another SiN deposition at 200 ◦C with the same recipe mentioned

earlier. The thickness of this layer was 3000 Å and was deposited over roughly 20 min-

utes. This layer would serve as the passivation layer for the device. The thickness of this

layer is of critical importance. If it is too thick, its isolating characteristic will prevent the

heat dissipation from the active region and if it is too thin, there is a chance that devices

are shorted through SiN pinholes or cracks on the sidewalls. Fortunately, the conformal

characteristics of deposited dielectric layers with PECVD ensures an even dielectric layer

even on the vertical sidewalls. Nevertheless, it is important to deposit adequate thickness

to achieve a suitable coverage. The minimum reliable thickness was found to be 3000 Å

through empirical studies.

Another photo-lithography step was performed on the passivation layer to open win-

dows on top of the waveguides though which the Ohmic contact would be made later. As

shown in Fig. 3.3 the dielectric opening had to fall exactly on top of the waveguides along

the 1 cm sample. Any misalignment that caused the window to extend over to the sidewalls

would short the lasers. Therefore, accurate angular alignment of the two masks was very

important. After patterning the dielectric opening, SiN was etched at the openings and

the photo resist was removed by solvents and oxygen plasma.

The next fabrication step was making the Ohmic contact. Since each waveguide would

become an individual device it should be electrically isolated from the neighboring waveg-

uides to allow for laser bar measurement. A third photo-lithography was then performed

to selectively protect an area between each two waveguide from metalization. However,

there is a fundamental difference between this photo-lithography and previous ones. In

this step instead of etching the open areas, the metal layers were deposited on top of the
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SiN Covered Region

Figure 3.3: Dielectric Opening on top of the laser waveguide

photo-resist and then the left-over photo-resist is removed by the aid of organic solvents.

Therefore, it was essential that the solvent reached the photo-resist in places that had to

be removed.

Image reversal lithography with a positive or negative photo-resist are both compatible

with this process. AZ R©5214E that had been used in the prior steps was formulated to work

well for negative and positive lithography techniques. In the image reversal case, the bake

and exposure were followed by another bake and flood exposure to reverse the soluble parts

of photo-resist. Figure 3.4 demonstrates the difference in the shape of the photo-resist in

positive and negative lithography. The undercut created in negative lithography would pro-

vide the access to the underlying resist as well as the separation between the metal patches.

Another issue which should be addressed when dealing with Ohmic contacts was the

thin layer of photo resist that remained in the open areas as a result of saturation of the

solvents during the developing process. This thin layer could cause the contacts to degrade
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and in some cases it could even cause delamination of the whole patch. A short exposure

to a weak oxygen plasma could remove this layer, however it would also affect the undercut

and in some cases could diminish it entirely. The power of the oxygen plasma and the dura-

tion of exposure had to be accurately calibrated in order to prevent damaging the undercut.

It has to be noted that up to this point the samples had been through multiple steps of

fabrication and even before they had been exposed to the ambient for a while. Therefore,

a thin layer of native oxide was formed on the InAs cap layer. This layer could degrade

the quality of the Ohmic contact. For this reason, right after photolithography the sam-

ples were rinsed with a 10% solution of HCL in DI water for 30 second followed by DI

water rinse for another 30 second and nitrogen blow dry. This solution is able to remove

the native oxide without damaging the photo-resist. The sample were then immediately

transferred to a vacuum chamber where the Ohmic contacts are deposited.

PhotoResist

PhotoResist

Au

SiN

Sample

Au

SiN

Sample

(a)

(b)

Figure 3.4: (a) Image reversal photo-lithography creating an undercut needed for lift-off (b) regular
photo-lithography and SEM picture of a properly created undercut.

The deposition of the Ohmic contacts was done with an electron beam evaporator that

hosted multiple target crusibles. In order to make an Ohmic contact to InAs, three metal

layers composed of titanium (Ti - 30 nm), platinum (Pt -100 nm ) and gold (Au - 300 nm)
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were evaporated. Ti promoted the adhesion of the metal layers to the substrate, Pt served

as a barrier to stop the diffusion of gold into the semiconductor region and gold functioned

as the metal contact layer.

Samples were then removed from the chamber and placed in acetone for a few minutes,

until metal liftoff was achieved and were then rinsed with methanol and isopropanol for

30 seconds each. Figure 3.5 shows an ICL sample after this step.

In order to achieve good heat extraction from the active region, an additional gold

layer with a thickness equal or more than 3 µm was required. However, depositing such

a thick layer using ebeam evaporation was not possible due to inherent inefficiency of the

evaporation techniques. Accordingly, electroplating was selected as the method of choice.

In this technique, current passes through a solution that contains gold with the sample

serving as the cathode. Electrodeposition occurs where current flows. Since the metal

paths were electrically isolated, they needed to be somehow connected to provide a single

current path. The samples were, thus, placed in an electron beam deposition chamber

and 150 nm of titanium was deposited on the one edge of the sample to connect all the

waveguides.

Since the waveguides had to be cleaved later to produce high quality facets for the laser

cavity, a thick layer of non crystalline material could potentially compromise the cleaving

step. Consequently, another negative photolithography step was performed to prevent the

deposition of the electroplated gold on a few lanes across the sample and perpendicular to

the waveguides. The distance between these lanes were usually 1 mm allowing for cleaving

laser waveguides that were multiple millimeters in length.
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Figure 3.5: an ICL sample after top contact deposition.

(a)

60°C 200 rpm
2.5mA

(b)

Figure 3.6: (a) an ICL sample after electrodeposition of gold (b) Electroplating Setup

In electroplating, the sample was immersed in a gold sulfite solution that was heated

to 60 ◦C while being stirred at 200 rpm for at least 30 minutes prior to use. As shown

in Fig. 3.6b, a current source was connected to the positive electrode and the sample was

grounded. An electrical current of 2.5 mA was passed through the sample for about 30

minutes resulting in deposition of about 3-5 µm of gold.

Since the electroplated gold is usually rough, with the roughness depending on the
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deposition rate, after electroplating and before removing the photo-resist, a thin layer of

evaporated gold was deposited to smooth out the surface. Liftoff then cleared the sample

of the unwanted metal. The roughness of electro-deposited gold can be visually observed

in Fig. 3.6a.

Next, the samples were fixed up side down on thin microscope slides using a solvent

soluble wax that melted at 150 ◦C . Back side of the laser samples were then polished down

to 120 µm with silicon carbide (SiC) sand papers of grid 400 and 800. A polishing mount

was used to control the thickness of the sample and to keep it flat on the sand paper. After

polishing, samples were soaked in warm acetone until they were freed from the glass slide.

They were then removed very carefully from the solvent and blow-dried extremely gently

given how fragile the laser sample was at the end of the processing.

Each 1 cm × 1 cm sample included roughly about 30 waveguides which could then

be cleaved to different lengths for use as laser bars or individual dies. A summery of the

process flow is shown in Fig. 3.8. Figure 3.7 shows an individual laser die after dicing and

cleaving as well as the ICL cleaved facet.

3.3 Mask design

The ICL devices were patterned by photolithography; therefore, photo mask design con-

stituted one of the most important steps in the fabrication process. The laser photo-mask

included four essential parts.

First was the waveguide mask. This part defined the width of the waveguides, the
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Figure 3.7: SEM picture of (a) An individual laser Die (b) an ICL cleaved facet
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distance from one device to the next, the width of the trench area and the first alignment

markers. The waveguide width was obtained from the mode profile simulations. In any

case the goal was to achieve the specification with the maximum possible width in order to

ease the fabrication process and avoid the need for ebeam lithography. Moreover, a wider

width would minimize the effects of scattering losses resulting from the interaction of the

mode with the sidewall roughness developed in the etching process.

When fabricating single mode devices for spectroscopic applications, simulations de-

termined the widest possible waveguides for single-mode operation. On the other hand,

when the priority was given to power generation, wider ridge lasers were desirable. In these

cases, a compromise had to be made between the power generation and the heat extraction

from the waveguide.

The second part of the photo-maks was the dielectric opening for patterning the di-

electric layer on top of the device. As mentioned earlier, accurate alignment of this mask

with the previous pattern on the sample was very important and special alignment markers

were designed to facilitate this step. It should be noted that as this window defined the

area of the Ohmic contact, it had an impact on the performance of the device. In order

to achieve the lowest contact resistivity, the contact area should be as broad as possible.

However, the angular alignment became progressively difficult as the opening gets bigger.

There were alternative techniques such as self alignment that can replace photolithography

and will be discussed in section 3.4.

The third mask was the one that defined the electrical isolation between each waveg-

uide. In this mask a distance had to be considered from the metal path of each device to
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Figure 3.8: Interband Cascade Laser Process Flow
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the next for electrical isolation. Moreover, the same gap would be used for dicing of indi-

vidual laser dies since electroplated gold would be grown on most of the metal covered areas.

The fourth and final mask was the cleaving mask which was identical to the metal mask

except for the additional cleaving lanes that had been placed in predefined distances along

the waveguides. Each cleaving lane was designed to be 20 µm wide.

3.4 Self-aligned fabrication

As device miniaturization continues, the fabrication steps that require high level of accu-

racy become more and more challenging. For example single-mode fabrication demands

narrow ridge devices with ridge widths of about a few microns, which makes the dielectric

opening definition increasingly difficult. Another example is the fabrication of micro-cavity

and nano-lasers where the initial structure is usually defined by electron-beam lithography.

In these cases self-aligned fabrication methods are highly desirable as they simplify the fab-

rication process and reduce the time and cost associated with multilevel mask alignment.

Planarization is a self-aligned fabrication technique that eliminates the need for critical

mask alignment and provides access to the tallest parts of the structure while protecting

the shallow regions.

In the case of the double trench structure, implementation of such techniques calls for

selective protection of the areas outside of the trench. Masking these areas can be achieved

using a metal or dielectric, provided that they have good selectivity over SiN.
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Figure 3.9: Planarization results for double trench waveguides. (a) an optical microscope
picture of a planarized and etched sample. (b-d) SEM pictures of the cross section of the
diced sample from different angles.
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In order to implement the planarization technique, new masks were designed to define

and protect the areas outside the trench. A Futurrex planarization polymer (PC3-1500)

was employed in combination with SiO2. This polymer was spun on the sample at 2000

rpm for 2 min and baked at 180◦C for 5 min. The baked polymer then was flood etched

to reveal the top of the waveguide as shown in Fig. 3.9a. The processed samples shown

in these pictures have been diced to enable the SEM imaging of the sample cross section.

Etching recipe was developed to etch the polymer an SiN on top of the waveguide in

10 min in order to avoid exposing the side wall’s dielectric and shorting the final device.

This recipe used the CF4/O2 combination and is summarized below

Plasma: RF power:100 W; ICP power: 150 W,

Gas combination: CF4: 20 sccm; O2: 5 sccm.

Figure 3.9 shows the result of planarization recipe that was applied to the double trench

waveguide. This technique allows for preservation of SiN on the sidewalls as is apparent

from Fig. 3.9b and 3.9b

3.5 Sample Packaging

Sample packaging is required for applications where reliable mechanical and thermal perfor-

mance are required. There individual laser dies were bonded either epi-side up or epi-side

down to an AlN sub-mount using a die bonder as shown in Fig. 3.10a. In epi-side down

mounting the laser waveguide was immersed into the solder for efficient heat extraction as

shown in Fig. 3.10b. For optimal thermal performance epi-down mounting was chosen for

ICL packaging [44].
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length mismatch than the epi-down mounting [56, 57]. The epi-up and the epi-down 

mounting using a conventional die attach equipment is shown in Figure 6-17. 

However, for thermal performance, the epi-up mount is not very attractive 

since the ICL has very low thermal conductivity cladding layers (1.4 um upper, and 4 

um lower) as we can see from table 4-1. The heat generated in the active region has to 

travel through the 4 um thick lower cladding layer and 100 um GaSb substrate before 

it reaches the heatsink. This longer path and low thermal conductivity cladding lead 

to an increase of the thermal resistance of the device. High thermal resistance 

prevents the IC laser from operating CW at room temperature. As we saw in Figure 4-

4, we can lower the thermal resistance by mounting the IC laser epi-down. The 

thermal simulation and experimental results show that we can improve the thermal 

resistance by approximately 20 % by doing the epi-down mounting.  

 

 

Figure 6-17. Epi-up and down mounting using either Indium or Au/Sn (a)

Device PackagingDevice Packaging

Indium

AlN Submount

12

(b)

Figure 3.10: (a) Laser die bonder (b) Die attach process

The packaging began with thermal evaporation of 3 µm of indium on 3 mm × 5 mm

× 2 mm aluminum nitride (AlN) sub-mounts. The sub-mounts were kept under vacuum

to avoid the oxidation of indium until they were ready to be used. The reason behind

the choice of indium for soldering was two fold. First, indium melts at a relatively low

temperature that seems to not cause any degradation to the device performance. Second

since it is a soft solder, it also compensated for the thermal expansion mismatch between

the laser and the mount. This is contrast to gold-tin eutectic solders used for commercial

laser packaging.

For epi-down mounting, the thickness of indium should exceed the ridge waveguide
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Figure 3.11: A packaged 5 mm interband cascade laser diode.

etch depth. A touch of indium flux prepared the sub-mount surface for the contact. The

submount was then placed securely on the bonder heating element and was progressively

heated up to 160 ◦C (indium melting temperature). Meanwhile, using the bonder vacuum

tip, the laser die was carried to the sub-mount. The vacuum tip also heated to avoid

temperature drop upon contact with the solder. When indium was melted, the vacuum

tip places the sample on the edge of the sub-mound and presses into the indium. The

sub-mount was then removed from the heater to minimize the heat exposure.

The sub-mounts are subsequently mounted on small blocks machined from copper using

H20E silver epoxy and cured at 150 ◦C for 10 minutes. Electrical connections were created

by wire bonding which completed the packaging process. Figure 3.11 shows a finished

5 mm packaged device.
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Chapter 4

Towards Room Temperature

Operation of ICLs

4.1 Introduction

This chapter focuses on the characterization of ICL devices. First, the measurement setup

and methodology are reviewed. Several design variants are characterized and design mod-

ifications for improving the ICL performance to achieve RT CW operation are compared.

The discussion then concentrates on the different aspects of device performance and unique

considerations required for the packaging. Finally, the temperature dependence of device

properties are measured and their implications are discussed.
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4.2 Characterization Methodology

In a laser diode the relationship between the optical power and the drive current follows [58],

Po = FfηiN
αm

αm + αi

hν

q
(I − Ith), (4.1)

where Ith is the threshold current, αi is the internal loss, ηi is the internal quantum effi-

ciency, N is the number of cascaded active regions, q is the electron charge, h is the Planck’s

constant, and ν is the emission frequency. The mirror loss αm is defined as [58]

αm =
1

2L
ln

1

RfRb

, (4.2)

where L is the length of the laser cavity and Rf and Rb are the power reflection coefficients

from the front and back facets, respectively. Since light is collected only from one facet

the factor Ff is needed to calculate the fraction of light coming out of the front facet [58]:

Ff =
(1−Rf )

(1−Rf ) +
√

Rf

Rb
(1−Rf )

. (4.3)

The term FfNηi
hν

q
αm/(αm + αi) is usually referred to as the differential efficiency and is

denoted by ηd. It is apparent that 1/ηd varies linearly with the cavity length [58],

1

ηd
=
hν

q

1

ηi
(1− αi

2L

ln[RfRb]
). (4.4)

Therefore, given Ith and ηd for several cavity lengths, ηi and αi may be extracted by linear

interpolation. It should be noted that this method is based on the assumption that ηi and

αi do not depend on L. While this is a good approximation for αi, it may not always hold
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for the internal efficiency since shorter cavities with higher threshold carrier concentrations

may have lower internal efficiencies. By assuming a linear gain near the threshold, i.e.

gth =

(
dg

dJ

∣∣∣∣
J=Jt

)
(Jth − Jt), (4.5)

where dg/dJ is the differential gain per unit current density, and Jt is the transparency

current density, and employing the gain condition for the lasing at threshold,

Γgth = αi + αm, (4.6)

yeilds the threshold current density as

Jth = Jt +
αi

Γ dg
dJ

− ln[RfRb]

2LΓ dg
dJ

(4.7)

where Eq. 4.2 is used to evaluate αm.

As can be seen in Eq. 4.7, Jth and L−1 also have a linear relationship that can be deduced

through a cavity length analysis by measuring several un-coated devices, Rf = Rb = R ,

with different lengths. It has been shown that JtΓdg/dJ is small compared to αi in ICLs [3]

and therefore the first term in Eq. 4.7 is negligible relative to the second term. Thus, the

ratio of the intercept to the slope of the Jth versus L−1 relation multiplied by ln(1/R) gives

the value of αi.

Extraction of the internal loss from threshold current density is less sensitive to tem-

perature variations and provides a more reliable method compared to that of the slope

efficiency. Besides, measurements of the threshold current density is often acheived with
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much higher accuracy than the slope efficiency, especially in cases where the thermal roll

off is significant.

In addition to the internal loss, Γdg/dJ at threshold can be obtained from a linear fit

to the Jth versus 1/L data. The 2D carrier density n can be calculated from the current

density via

n =
q

ηiτ
J (4.8)

where τ is the carrier lifetime.

Temperature dependent measurements of Jth and ηd are also performed to obtain the

characteristic temperatures T0, and T1 from

Jth(T
′) = Jth(T ) exp(

∆T

T0

) (4.9)

and

ηd(T
′) = ηd(T ) exp(

−∆T

T1

), (4.10)

respectively [58].

All the aforementioned parameters should be extracted in the pulsed mode, since it

allows for measurement of the internal parameters of a laser diode without any complication

introduced by thermal effects. Verifications such as the consistency of slope and threshold

current density upon slight increase in the duty cycle should be employed to confirm that

sufficiently short pulses have been used. This methodology allows for the extraction of

internal loss, internal efficiency, modal gain per unit current density, and characteristic

temperatures T0 and T1 from the pulsed light-current measurement.
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4.3 Laser Test Setup

Fabricated samples were measured in the form of a laser bar or an individual die, in

continuous wave (CW) or pulsed operation modes. For pulsed characterization, the laser

samples were placed on a flat copper block and were probed from the top as shown in

Fig. 4.1. The devices under measurement were forward biased by an Avtech voltage pulse

generator at a frequency of 1 kHz and duty cycle of 0.05%. A Stanford Boxcar integrator

triggered by the function generator sampled the voltages V1 and V2, as identified in Fig. 4.2,

over a 200 ns sampling window. This window was positioned in the middle of the 500 ns

pulse. A Judson lead-selenide (PbSn) detector was put directly in front of the laser to

measure the output light. The detector output was fed into a lock-in amplifier which

was also triggered with the voltages generator. As the voltage was increased the sampled

voltages V1 and V2 and the lock-in amplifier output were sent to a computer and voltage-

current and light-current characteristics were measured in real time.

Figure 4.1: Laser bar probe station

The advantage of this method is that many samples of the same length can be measured

successively to improves the accuracy of interpolations. Thus, overall characterization of

material and device properties were done with this method. However, since the samples

were loosely placed on the copper block, the thermal conduction was poor and cooling

could not be done effectively. Therefore, this configuration was only suitable for pulsed
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measurements.

+

_

Vbias

V1

V2

Diode Laser

id

Figure 4.2: Biasing circuit.

For CW measurements, an ILX Lightwave laser diode driver was used to drive the

device and the voltage was measured directly across the the laser die. Packaged lasers, as

discussed in section 3.5 were used for CW or temperature-dependent measurements to en-

sure good control over the measured electrical and thermal parameters. Packaged devices

were fixed on a thermoelectric-cooled copper holder. The copper holder was designed such

that water can circulate within to accelerate the cooling process. A thermoelectric cooler

was installed on the copper holder and mounted devices are attached to the cold plate. In

order to enable the characterization of laser diodes below the dew point [15 ◦C ], all the

electrical connections, as well as the connections to the Peltier cooler, were vacuum sealed

and enclosed by an aluminum cap with a glass window, as shown in Fig. 4.3. A vacuum

pump was used to draw the air and moisture from the enclosure to prevent water conden-

sation on the laser facet at temperatures below 15 ◦C . This arrangement also reduced the

convectional losses to allow for better thermal isolation of the device.

The experimental setup for wavelength measurement included a Spex 500M monochro-
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Figure 4.3: The Copper Holder of the ICL characterization setup.

mator with modified grating for mid-infrared as well as a visible laser (HeNe in this case).

The setup schematic is shown in Fig. 4.4. A Lightpath aspheric collimating lens with short

focal distance of 4 mm was used to collimate the ICL output. The visible laser was used

to trace the mid-IR beam and was only turned on during the alignment of the optics.
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Figure 4.4: ICL wavelength measurement setup.
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4.4 Interband Cascade Laser Characterization

In order to achieve high power CW operation, numerous ICL samples were grown and

tested, each providing new clues for further progress. The experimental data analysis to-

gether with the theoretical simulations resulted in advancements in every generation of

ICLs. Some of the grown and fabricated samples and their characteristics are reported in

this section.

The number of cascaded active regions, the doping level of the active region, and the

length of the electron injector were varied among samples to investigate their impact on

the device performance. In this study, the performance of the 12- , 6- and 5-cascade devices

are reported. Although more cascades provide more gain, low-cascade-number ICLs are

thermally more advantageous due to the low thermal conductance of the GaSb substrate.

This leads to a trade off between achieving the highest power and the operating temper-

ature. In order to avoid high internal loss due to the inter-valence absorption in p-doped

materials [3] the SCH in these devices were n-doped where tellurium was used as the dopant.

ICL wafers were grown by molecular beam epitaxy (MBE) on a GaSb (001) substrate

and fabricated using the techniques explained in chapter 3. Laser samples have been fabri-

cated at the Nano-center at the University of Maryland. The processed samples were first

cleaved into laser bars and then characterized using the low duty cycle pulsed measure-

ment technique explained earlier. These characterizations were done in the Laboratory for

Green Nano-photonics, Optoelectronics and Nano-sensing at the University of Maryland.

The measurements were subsequently analyzed to extract various device parameters such

as internal loss, internal efficiency, threshold current density, characteristic temperature

and differential efficiency using the method explained in section 4.2. The threshold current
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Figure 4.5: 0.5 mm Interband cascade laser bar

for each device was obtained by fitting a straight line to the light-current (LI) curve at

values above threshold. The extracted threshold currents for different lengths were then

gathered from multiple devices for further analysis.

The fabricated ICLs were also measured in continuous wave mode. Early generations

of the devices could sustain CW operation only below ambient temperature, the highest

of which was for the 6-cascade laser at 15 ◦C [3]. Once optimized, the 5-cascade lasers

reached CW operation above the ambient temperature with the output power in the order

of tens of milli-Watts and WPEs of about 6%.

4.5 Results and Discussions

Multiple lengths of the 12-cascade active region ICL were measured in the pulsed mode

at room temperature. The current-voltage (IV) and light-current (LI) characteristics for

a typical 1 mm, 2 mm and 3 mm devices are shown in Fig. 4.6. All of these devices were

8 µm wide, differing only in the cavity length. The threshold current for the ICLs in

Fig. 4.6a is 183 mA, 268 mA, and 323 mA for the 1 mm-, 2 mm-, and 3 mm-long devices,

respectively. The threshold current density was obtained by dividing the threshold current
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by the device dimensions. The extracted internal loss for 12-cascade ICL from the length

dependent threshold current density analysis, illustrated in Fig. 4.6b, was 8 cm−1 and the

extrapolated threshold current density at infinite length was 953.2 A/cm2.

Next, the number of cascades in the aforementioned structure was reduced from 12 to

6. Characterization of these devices revealed an internal loss of 7 cm−1. These results

showed that the effect of the number of cascades on the internal loss mostly comes from

the relative extent of the optical in the active and SCH regions as reflected in the device

confinement factor. [3, 59].

The next ICL design was a 6-cascade device where the p-doping of GaInSb and the

GaSb wells in the active region were lowered. The objective of the new design was to

assess the contribution of the absorption in these p-doped regions to the laser internal

loss [3]. Pulsed mode measurements of fabricated ICL devices of various lengths were per-

formed at room temperature. The LI and IV curves for 1 mm, 2 mm and 3 mm devices are

plotted in Fig. 4.7a. The width of these devices was 10 µm and their lengths varies. The

threshold current for the displayed devices were 237 mA for 1 mm, 342 mA for 2 mm and

427 mA for 3 mm long lasers. The internal loss obtained from the analysis of the threshold

current density versus length was 4.8 cm−1 for this structure as shown in Fig. 4.7b [3].

These results show that the 6-cascade device is similar to the 12-cascade in terms of the

threshold current density but exhibits a much lower loss. The fewer number of cascades as

well as lower p-type doping in the active region are believed to be the reason behind the

loss reduction. The lower internal loss is a key merit in the ICL performace as it plays an

important role in achieving a high temperature operation for these lasers.

To investigate the effect of the length of electron injector on the device performance a
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Figure 4.6: (a) IVL curve for 12-cascade ICL for cavity length 0.6 mm (solid line) 1 mm (dashed line)
2 mm (dotted line) (b) Threshold current density versus 1/cavity length

5-cascade ICL wafer was grown with the electron injector length reduced from 53 to 25 nm.

IV and LI characteristics of the fabricated devices for 4 different cavity lengths are shown
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Figure 4.7: (a) IVL curve for 6 cascade ICL for cavity length 1 mm (solid line) 2 mm (dashed line) 3 mm
(dotted line) (b) Threshold current density versus 1/cavity length [3]

in Fig. 4.8a. The threshold current for 1 mm, 2 mm, 3 mm and 5 mm devices shown in

Fig. 4.8a are 67 mA, 85 mA, 110 mA and 193 mA, respectively. These devices lased at
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appreciably lower threshold current density. The lower threshold was attributed to the

lower length of the electron injector. This low threshold current density is essential for

high temperature, high power CW operation. The threshold current density curve versus

inverse length, Fig 4.8b, revealed internal loss of 4.9 cm−1 for these devices, similar to their

6-cascade counterparts [3]. It further shows that the main contribution to the internal loss

comes from the doping types and levels as well as the extent of the mode penetration into

the low and high loss layers. The values of internal loss around 5 cm−1 are the lowest

reported values for ICLs.

Figure 4.9 shows the emission spectrum of a 3 mm-long 5-stage ICL operated in pulsed

mode at room temperature above threshold as measured using the setup explained in sec-

tion 4.2. The spectrum has a dominant peak at 3.8 µm at RT in pulsed mode operation.

Another 5-cascade ICL design was optimized and tuned for RT emission at 3.5 µm.

The wavelength was altered by adjusting the thickness of InAs active e-wells. Moreover, in

order to improve the performance of the prior design, additional doping was applied to the

electron injection region [2]. ICL devices were subsequently fabricated and characterized.

Figure. 4.10a shows the IV and LI characteristics of these lasers for several lengths. This

design demonstrated the lowest threshold current density amongst all of the fabricated

devices. The 1 mm, 2 mm and 3 mm devices lased at 55 mA, 85 mA and 115 mA, respec-

tively. Figure 4.10b shows the threshold current density versus inverse cavity length from

which an internal loss of 5.8 cm−1 can be extracted.

The δ-strained active region with an additional hole well and InAs barrier, which is ex-

plained in section 2.4, was also fabricated and characterized. This device did not perform
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Figure 4.8: (a) IVL curve for 5-cascade ICL for cavity length 1 mm (solid line) 2 mm (dashed line) 3 mm
(dotted line) and 5 mm (dotted-dashed line) (b) Threshold current density versus 1/cavity length [3]

as well as the five stage W-shaped active region and it requires further optimization to

reach a competitive performance. The LI and IV characteristics for several lengths of this
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Figure 4.9: Normalized intensity vs. emission wavelength for the 5-cascade ICL at 3.8 µm.

design are shown is Fig. 4.11a. The threshold current is 236 mA for 1 mm device, 306 mA

for 2 mm device, 432 mA for 3 mm device and 663 mA for 5 mm device. Figure 4.11b

shows the length dependence of the threshold current density. The internal loss of 6.4 cm−1

was extracted from a linear fit to these values.

In order to better understand the underlying reason for the lower performance of the

δ-strained ICLs, the emission spectrum above threshold was measured in the pulsed mode

at RT for a 2 mm-long laser die. The result is shown in Fig. 4.12. The two peaks in the

emission wavelength at 3.38 µm and 3.41 µm probably originate from the two transitions

in the active region. The presence of multiple transitions results in splitting of the carriers

between the available energy states and degrades the laser performance. It might be pos-

sible to eliminate the extra transition by optimizing the QW structure.
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Figure 4.10: (a) IVL curve for 5-cascade ICL for cavity length 1 mm (solid line) 2 mm (dashed line)
3 mm (dotted line)) (b) Threshold current density versus 1/cavity length

Both of the five cascade W-shaped active region ICLs reached CW operation at room

temperature. The CW IVL plot for a 3 mm 5-cascade device at 3.8 µm is shown in
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Figure 4.11: (a) IVL curve for δ-strained 5-cascade ICL for cavity length 1 mm (solid line) 2 mm (dashed
line) 3 mm (dotted line) and 5 mm (dotted-dashed line) (b) Threshold current density versus 1/cavity
length
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Figure 4.12: Intensity vs. emission wavelength for the δ-strained ICL

Fig. 4.13. This device reached a maximum emission power of 23 mW at the injection

current of 630 mA. Also plotted in these figures is the IVLs for HR-coated back facet and un-

coated front facet (HR/U). HR coating combination of (Ta2O5/SiO2/ Al/Ta2O5/SiO2) was

evaporated on the back facet of the laser with thickness composition of 5/25/150/5/45 nm,

respectively. Subsequently, the light output from the front facet increased to 28 mW at

640 mA. The threshold current of the original un-coated device was 167 mA which decreased

to 154 mA after HR coating.

Anti-reflection coating of the front facet of this device resulted in higher output power of

40 mW at room temperature [48].

The highest CW RT power was obtained from a 5 mm long 5-cascade ICL at 3.8 µm,

with the IVL characteristic shown in Fig. 4.14. The original 5 mm device lased at 199 mA

and reached the maximum output power of 36 mW at 990 mA. HR coating combination

identical to the one used for the 3 mm die was applied and reduced the threshold current
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Figure 4.13: CW IVL for a 3 mm long 5-cascade ICL at 3.8 µm

to 173 mA and increased the output power from the front facet to 39.9 mW at 1100 mA.

Maximum CW RT power of 62 mW was attained after AR coating of the front laser

facet [48].
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Figure 4.14: (a) CW IVL for a 5 mm long 5-cascade ICL at 3.8 µm
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Table 4.1: Summary of experimental results of various active region optimizations

Number of Cascades Active Region αi[cm] Jth[A/cm2] CW RT
Desgin Change (L=3 mm)

12 – 8 1350 ×

6 Lower number of 7 1317 ×
cascades

6 Lower p doping in the 4.8 1300 ×
GaInSb and GaSb QWs

5 Lower length of the 4.9 365 X
electron injector

5 Higher n doping in the 5.8 325 X
electron injector

5 δ-strained 6.4 1200 ×
active region

The maximum WPE from an un-coated laser die was achieved for the 5-cascade ICL

at 3.5 µm. Figure 4.15a shows the IVL curve for a 1 mm-long ICL. This device lased at

80 mA with the maximum power of 20.3 mW reached at 250 mA. This output power was

closed to maximum output power for the 3 mm device from the 5-cascade ICL at 3.8 µm.

The WPE reached the value of 5.9% at 170 mA, Fig. 4.15b. This value equals the QCL

WPEs in 3-4 µm range and compares with the highest values achieved for ICLs. The

experimental results obtained from different ICL designs are summarized in Table 4.1.
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Figure 4.15: (a) CW IVL for a 1 mm long 5-cascade ICL at 3.5 µm(b) WPE for a 1 mm long 5-cascade
ICL at 3.5 µm
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4.6 Series Resistance

Large series resistance in a laser diode creates thermal heating and degrades the device

performance at high powers and temperatures. Therefore, in the path to achieve less

temperature sensitive device operation, this parameter should be minimized. Although

most of the series resistance originates from the epitaxial layers, optimizing the contact

can also contribute to a lower resistance. Differential series resistance is calculated from

the liner fit to the the IV curve at values above threshold and is found to be around 2 Ω

for a 2 mm ICL.

4.6.1 Contact Resistance

The two factors determining the values of contact resistance are the contact area and con-

tact sheet resistance. Both of these elements were studied for a typical ICL laser die. Since

the cap layer in all the ICL materials is the same, 200 Å of InAs with doping levels of

∼ 1018 cm−3, the choice of the specific laser material does not affect the result.

The sheet resistance for a metal-semiconductor contact was measured using the Circular

Transmission Line Method (CTLM). δ-strained ICL samples were patterned with CTLM

structure shown in Fig. 4.16. After the usual HCL treatment, the Ti/Pt/Au stack used

in the ICL contact recipe, i.e. (30 nm/100 nm/150 nm), was patterned by standard

lithography and liftoff. The contact resistance was subsequently measured by four point

probe measurement technique to minimize the effects of the finite resistance of the probes

and wires. After measuring the resistance between the gold pad and each of the inner

circles, the resistance was plotted versus ln(R/r), where R = d + r and r is the radius of

the inner circle and is equal to 200 µm. d is the difference between the inner and outer
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Figure 4.16: CTLM Pattern for r = 200 µm and d=8, 14, 20, 30, 50 µm(left). Measured contact
resistance (right).

circles diameter, which equals to 8, 14, 20, 30, 50 µm. The sheet resistance Rsh and the

contact resistance ρc then relate to the slope and Y-intercept of the linear interpolation as

Slope =
Rsh

2π
(4.11)

Yintercept =
RshLt
rπ

, (4.12)
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where Lt is transfer length and is defined as L2
t = ρc/Rsh. The resistance values of

Rsh = 44.10 Ω/2, (4.13)

ρc = 2.16× 10−5 Ω.cm2. (4.14)

were extracted for this specific Ohmic contact. Sheet resistance translates to resistance

through R = RshW/L, where W and L are the contact width and length. This means

that for a 10 µm ridge laser with 1 mm length the resistance should be 0.216 Ω, which is

negligible compared to the overall ICL contact resistance of 1-2 Ω.

Another factor determining the contact resistance is the contact area. The current

flowing in the cap layer in the lateral direction experiences nearly two orders of magnitude

higher resistance compared to the current flowing in the growth direction. Consequently,

the area of the dielectric opening will affect the series resistance observed in the final

current-voltage curve of the laser. For verification, 1 mm laser dies from δ-strained sample

were fabricated with the largest dielectric opening possible by optical lithography. The up-

per limit was imposed by the required tilt accuracy in the mask alignment as the contact

width approached the width of the waveguide. Surpassing this limit can result in short-

ing paths in the SiN isolation layer. The SEM picture of the widest achievable dielectric

opening is shown in Figure 4.17a.

Figure 4.17b shows the comparison between the IV curves of the two sets of fabrication,

namely the 3 µm dielectric opening on 10 µm waveguides and 6-7 µm opening on 10 µm

waveguide. The observed improvement can be associated with less obscuration of the

contact area with resist residue as the wider openings are used, which is favorable from the
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Figure 4.17: (a) SEM picture of the dielectric opening. The two narrow lines on either side
of the waveguide are all that is left from the isolating SiN layer (b) The effect of narrow
(solid) and wide (dashed) dielectric opening on the series resistance of a 1 mm δ-strained
laser die.
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fabrication point of view. However, further improvement was not observed upon employing

the planarization techniques indicating the low contribution of this factor compared to the

resistance of the epitaxial layers.

4.6.2 Contact Metallization

Another approach to change and improve the series resistance, is to use a different metal-

lization scheme. Since the contact resistance was reasonably low, no effort were made to

lower it any further. However, due to laser degradation at high temperatures, other metal

combinations were investigated but their different contact resistance was not measured.

4.7 Packaging Considerations

4.7.1 Annealing

The stability of the laser samples at elevated temperatures has always been one of the main

concerns for ICLs, especially since the temperature in the active region may rise during

the CW operation regardless of the ambient temperature. The thermal resistance of a

fabricated device is not isotropic. Efficient heat extraction from the devices can be accom-

plished by mounting the devices epi-side down which brings the active region closer to the

heat-sink. Even though a soft mounting solder, like indium, requires the temperature of the

device to be raised to only 160◦C for a few minutes, industry standard calls for strength,

reliability and resistance to corrosion that is only offered by hard solders such as Au-Sn.

The melting temperatures of gold-tin alloys that are commonly used for telecommunica-

tion lasers ranges form 280 ◦C to 380 ◦C depending on the gold to tin ratio. Therefore,

to determine the compatibility of the ICLs with the hard solder packaging technique, an
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annealing study was conducted for temperatures around 350 ◦C . In this study, individual

lasers were annealed in the ambient for 5 min at different temperatures from 250 ◦C to

350 ◦C and the LI and IV characteristics were measured once the device was returned to

RT. Figure 4.18 plots the LI characteristics before and after annealing at 350 ◦C and shows

the increase of threshold current for a 2 mm 12-cascade ICL with a ridge width of 10µm.

The result of annealing over 10 laser dies with different lengths from various wafers

showed an increase in the threshold current density and decrease in the slope efficiency.

The threshold current density increased by 35% to 40% after 5 min exposure to 350◦C .
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Figure 4.18: LI characteristics for a 10µm ridge 12-cascade ICL subjected to the annealing
study. The devices were annealed in ambient and were tested again at room temperature
for comparison.

IV characteristic of the 2 mm-long 12-cascade ICL with a ridge width of 10 µm is
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shown Fig. 4.19. These graphs show the degradation in the diode characteristics of the

laser after the annealing. The ICL devices typically showed a 10-20% reduction in the

turn on voltage and 20-30% increase in the series resistance. This degradation seems to be

associated with the diffusion of contact metals (most especially gold) into the active region

and effectively degrading the quantum well structure. This degradation prohibited the use

of Au-Sb solders for device packaging.
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Figure 4.19: IV characteristics for a 10µm ridge 12-cascade ICL subjected to the annealing
study.

4.7.2 Metal Diffusion and Contact Metal

ICL wafers are grown in temperatures around 600 ◦C and it is only after the contact

deposition that they become sensitive to elevated temperature. Therefore, degradation

of the laser diode characteristics may be associated with the diffusion of contact metal
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into the active region, thereby compromising the laser performance. Secondary Ion Mass

Spectroscopy (SIMS) is the ultimate way of verifying this theory. However, SIMS measure-

ments were not accessible during the course of this project; therefore, alternative studies

were performed to determine the stability of different contact metallization schemes.

The usual Ohmic contact to the laser structure consists of Ti-30 nm /Pt-100 nm /Au-

150 nm. Titanium functions as an adhesive layer and platinum works as a diffusion barrier

for gold. The thickness of gold in the contact composition is not of critical importance

since it will be followed by 3-5 µm of electroplated gold.

Devices that use this composition were annealed to 350 ◦C for 5 minute (the universal

annealing condition for this study) and the threshold current increased by more than 30%

after annealing. Other combinations of these material system did not improve the perfor-

mance. Ti-10 nm/ Pt-200 nm/ Au-150 nm and Pt-5 nm/ Ti-40 nm/ Pt-40 nm/ Au-150 nm

did not outperform the standard recipe and Ti-60 nm/ Pt-40 nm/ Au-150 nm failed to

achieve a proper Ohmic contact.

Other contact combinations such as Mo-25 nm/ Pt-40 nm/ Au-150 nm and Cr-2 nm/

W-50 nm/Au-150 nm were also applied to ICLs. The Mo/Pt/Au combination exhibited

performance similar to the standard ICL contact recipe in terms of temperature degrada-

tion, while Cr/W/Au did not meet the Ohmic contact requirements.

The insensitivity of the device performance after annealing to the specific metallization

scheme led to the conclusion that the pinholes in the SiN isolation layer are responsible

for the metal diffusion. This problem may be resolved by increasing the SiN thickness or
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deposition of a thin SiO2 layer to block the SiN pinholes in future works.

4.8 Temperature Dependent Measurements of ICLs

The temperature dependence of internal laser parameters are of great importance as they

directly impact the CW laser operation at and above RT. Even when the laser is kept at

room temperature, the temperature inside the active region could be much higher and ul-

timately contribute to degrading the laser performance. In order to better understand this

aspect of the ICL performance, a 1 mm-long device from the best performing structure,

Fig. 4.15a, was selected and packaged. The choice of 1 mm cavity length was made to

maximize the mirror loss comparable to αi.

The mounted laser was placed in the vacuum chamber, and was operated at temper-

atures from -18 ◦C to 40 ◦C . The output light was collected using a lens and detected

with a small area Judson lead-selenide (PbSn) detector. The reading of the detector was

calibrated with the aid of an IR power meter. The lasers were operated in the pulsed mode

with a 0.05% duty cycle to ensure that the temperature of the mount is equal to that of

the active region. The measurement results are shown in Fig 4.20.

As can be seen from this figure, both the threshold current and the slope efficiency of

the device were significantly changed with temperature. The characteristic temperatures

T0 and T1, as described by Eq. 4.9 and 4.10, were evaluated for the threshold current and

slope efficiency, as shown in Fig. 4.21. The data was fitted with a characteristic temper-

ature T1=90 K for the slope efficiency. This low value of T1 indicates carrier loss due to

auger assisted carrier leakage. The value of T0 = 38 K was similarly extracted for the
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Figure 4.20: IV and LI for a 1 mm 5-cascade laser measured at different temperatures.

threshold current characteristic temperature.

From these measurements it was observed that the differential slope efficiency increased
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Figure 4.21: Temperature dependence of (a) slope efficiency [4] and (b) threshold current for a range of
temperatures between 250K and 320K

by a factor of about 1.5 when the temperature varied from room temperature to -20 ◦C

. Using the value of the slope efficiency at room temperature, the differential internal
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efficiency, ηi, can be calculated through

dP

dI
=
hν

2q
ηiN

αm
αm + αi

. (4.15)

The length dependent analysis of these ICLs resulted in a calculated internal loss of

about 5.8 cm−1, as was shown in Fig. 4.10b. This leads to the value of 0.67 for αm/(αm+αi)

factor in Eq. 4.15 for a 1 mm long laser. Consequently, an internal quantum efficiency per

stage of 31.6% at room temperature was derived.

The strong temperature dependence of the differential efficiency indicates a strong

temperature dependence of the internal quantum efficiency, indicating the important role

played by carrier leakage in the ICL devices. This behavior will be further investigated in

the next chapter [4].

4.9 Conclusion

From the active region design point of view, the effect of the number of cascades on the

device performance was experimentally investigated with 5-cascade devices outperforming

all their counterparts. Other similar studies also showed that five is the optimum number

of cascades that provided a reasonable balance between modal gain, internal loss, thresh-

old power density, and thermal management [16]. Moreover, the level of the p-doping in

the active region exhibited strong correlation with the internal loss, and lower loss was

achieved with the lower doping level. The most important improvement was accomplished

by reducing the length of the injection region which resulted in significant reduction in the

threshold current density and enabled the RT CW operation. Novel designs, such as the

δ-strained ICL, were also experimentally characterized and the potentials for improvements
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were highlighted, most notably in the wavelength measurements. Other characteristics of

the ICL devices such as the contact resistance and their permanent degradations at tem-

peratures around 350 ◦C were investigated. Finally, the temperature dependence of the

threshold current and slope efficiency were determined. The low characteristic tempera-

tures of the differential slope efficiency were linked to strong temperature dependence of

the internal efficiency.
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Chapter 5

Mid-Infrared Anti-Reflection

Coatings

5.1 Introduction

Infrared Mid-Infrared Anti-Reflection Coatings (Mid-IR ARCs) are widely used in a vari-

ety of applications where a low refractive index substrate like glass is used, e.g. passive

optical components. In these applications the main focus is on the optical characteristics

of the thin films. Whereas, optical coatings for semiconductor lasers not only require the

durability and stability of regular ARCs, but also have to possess the right set of electrical

characteristics and the index contrast to reach a low reflection on high-index semiconductor

substrates. There are also other considerations such as the sensitivity of a particular device

to heat, the compatibility of the device with a given material, and the size and geometry

of a surface over which the coating is applied. An example of the effect of substrate size on

the coating performance is the border effect [60], caused by the small surface of a laser facet

∼ 3× 10µm2 and the large thicknesses of order ∼ 1µm. These phenomenon can results in
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systematically thinner-than-intended coatings in ridge ICL waveguides compared to buried

heterostructure geometries that are commonly used in QCLs. One of the applications of

the ARCs is to achieve the highest output power for a given device, by increasing the slope

efficiency which is the focus of this study. Other applications include wide band ARCs

for tunable laser operation. ARCs are especially challenging in the mid-infrared region

due to the high thickness of coating material that is required for low reflectivity. For a

typical dielectric with the index of refraction ranging from 1.6 to 2.5, the quarter wave

thickness is of the order of half a micron. Moreover, the high index of the substrate limits

the theoretically achievable performance for a given material combination.

Another difficulty regarding to Mid-IR ARCs stems from the limited choice of material

combinations. Most of the materials that are usually favored in Mid-IR optical coatings

contain selenium (Se) or lead (Pb). Consequently, their evaporation can lead to generation

of toxic fumes and is not allowed in many research environments. Other materials such as

germanium or silicon, while transparent in Mid-IR, lack the adequate index contrast to the

GaSb substrates of ICLs, a problem that does not exist for glass optical coatings. Moreover,

for many of these materials, limited refractive index data is available in the infrared, and

even those values reported in the literature considerably vary from one source to another

due to different growth conditions. This issue, in turn, calls for in-house characterization

of the dielectrics that are intended for optical coatings in the Mid-IR. Needless to say that

the materials which are considered for ARC need to have very low absorption in the Mid-IR.

In this chapter, first the theoretical transmission and reflection formalism is reviewed

and the ARC design strategy is explained. Next, the fabrication considerations and tech-

niques are explained, and the materials considered for the ICL ARCs are reviewed. The
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chapter then moves on to the experimental validation of several coating combinations,

where the designed ARCs and their effect on the electro-optical performance of ICLs are

explained. The methodology for extraction of the reflectivity is subsequently discussed and

applied to the experimental results. Finally, the variation of internal laser parameters with

the application of ARC is addressed in the last section, proposing an optimization schemes

to design ARCs for Mid-IR cascade lasers.

5.2 Theory of Transmission and Reflection of Light

5.2.1 Fresnel Reflection

Transmission and reflection of electromagnetic waves at the boundary of two dielectric

media can be established by considering an incident plane wave and calculating the reflected

and transmitted components. Designating the direction perpendicular to the boundary as

x, as shown in Fig. 5.1, all the propagation vectors should be in the plane of incidence,

i.e. the xz plane. Assuming a monochromatic incident plane wave with frequency ω and

propagation vector k,

Ei exp[iωt− (ki.r)], (5.1)

where ki, is the propagation vector, the reflected and transmitted waves, Er and Et can

have the same form as Eq. 5.1 with the propagation vector kr and kt, respectively. The

magnitude of the wave numbers are:

ki = kr = ω
√
µε =

ω

c
n1 and kt =

ω

c
n2. (5.2)

where, n1 and n1 are the reflective index of the dielectric media. The continuity of the
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Figure 5.1: Transmission and reflection of a plane wave at the boundary of two dielectrics.

tangential component of the wave vectors requires, kix = krx = ktx. Therefore,

ki sin(θi) = kr sin(θr) = kt sin(θt). (5.3)

resulting in the equality of incident and reflected angles, θi and θr, respectively and,

n1 sin(θi) = n2 sin(θt). (5.4)

Equation 5.4 is the well-known Snell’s law.

Any electromagnetic wave can be expressed as the linear combination of TE (Transverse

Electric) or s (from senkrecht, German for perpendicular) and TM (Transverse Magnetic)

or p ( parallel) waves. These two polarizations are treated separately in what follows.

5.2.2 Transverse Electric Plane Wave

For TE polarization, the electric fields in medium 1 and 2, E±1 and E±2 , respectively, are

perpendicular to the plane of incidence and the magnetic fields, H±1 and H±2 lie in the plane
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Figure 5.2: Transmission and reflection of a TE polarized plane wave at the boundary of two dielectrics.

of incidence as shown in Fig. 5.2. Therefore, from the continuity of electric and magnetic

components parallel to the boundary,

E+
1 + E−1 = E+

2 + E−2

H+
1 cos θ1 −H−1 cos θ1 = H+

2 cos θ2 −H−2 cos θ2. (5.5)

Maxwell equations relate the magnitude of electric and magnetic fields of a plane wave

as, H = E/η, where, η =
√
µ/ε is the characteristic impedance. Using this relation,

Eq. 5.5 can be expressed as,

E+
1 + E−1 = E+

2 + E−2
cos θ1

η1

(E+
1 − E−1 ) =

cos θ2

η2

(E+
2 − E−2 ). (5.6)
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Equation 5.6 may also be written in matrix form, 1 1

cos θ1
η1

− cos θ1
η1

 E+
1

E−1

 =

 1 1

cos θ2
η2

− cos θ2
η2

 E+
2

E−2

 (5.7)

or

DTE1

 E+
1

E−1

 = DTE2

 E+
2

E−2

 (5.8)

where the DTEi is the dynamical matrix of medium i for TE-polarization,

DTEi =

 1 1

cos θi
ηi

− cos θi
ηi

 . (5.9)

When E−2 = 0, the transmission and reflection coefficients are defined as:

rTE =

(
E−1
E+

1

)
, tTE =

(
E+

2

E+
1

)
(5.10)

Assuming non-magnetic media, i.e. µ1 = µ2 = µ0, the Fresnel equation for TE polarization

is obtained,

rTE =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

=
k1x − k2x

k1x + k2x

tTE =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

=
2k1x

k1x + k2x

. (5.11)

5.2.3 Transverse Magnetic Plane Wave

For TM-polarized plane wave the electric field is in the plane of incidence, as schematically

illustrated in Fig. 5.3, and the boundary condition for the continuity of parallel components
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Figure 5.3: Transmission and reflection of a TM polarized plane wave at the boundary of two dielectrics.

of the fields becomes:

E+
1 cos θ1 + E−1 cos θ1 = E+

2 cos θ2 + E−2 cos θ2

H+
1 −H−1 = H+

2 −H−2 , (5.12)

which simplifies to,

cos θ1(E+
1 + E−1 ) = cos θ2(E+

2 + E−2 )

E+
1 − E−1
η1

=
E+

2 − E−2
η2

. (5.13)

Using the relation between electric and magnetic fields of a plane wave, H = E/η, equa-

tion 5.13 can be expressed in the matrix form, cos θ1 cos θ1

1
η1

− 1
η1

 E+
1

E−1

 =

 cos θ2 cos θ2

1
η2

− 1
η2

 E+
2

E−2

 , (5.14)
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or equivalently,

DTM1

 E+
1

E−1

 = DTM2

 E+
2

E−2

 , (5.15)

where the dynamical matrix of TM-wave in the medium i is:

DTMi =

 cos θi cos θi

1
ηi

− 1
ηi

 . (5.16)

Transmission and reflection coefficient at E−2 = 0 are defined as,

rTM =

(
E−1
E+

1

)
, tTM =

(
E+

2

E+
1

)
, (5.17)

and the non-magnetic media assumption, i.e. µ1 = µ2 = µ0, gives the Fresnel equation for

TM polarization,

rTM =
n1 cos θ2 − n2 cos θ1

n1 cos θ2 + n2 cos θ1

=
n2

1k2x − n2
2k1x

n2
1k2x + n2

2k1x

,

tTM =
2n1 cos θ1

n1 cos θ2 + n2 cos θ1

=
2n2

1k2x

n2
1k2x + n2

2k1x

. (5.18)

Since ICLs are TE polarized, the respective equations for TE polarization has been

used in the calculations describes in the rest of the chapter.

5.2.4 Reflectance and Transmittance

The Fresnel coefficients represent the ratio of the amplitude of the transmitted/reflected

to the incident field. Transmittance and reflectance are defined as the ratio of the reflected
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Figure 5.4: Multi-layer dielectric interface

and transmitted power to incident power normal to the boundary.

R =

∣∣∣∣n . Sr

n . Si

∣∣∣∣ , T =

∣∣∣∣n . St

n . Si

∣∣∣∣ (5.19)

where S = 1/2Re(E ×H∗) is the time average Poynting’s vector. The transmittance and

reflectance are related to the Fresnel coefficients for a nonmagnetic media via,

R =
∣∣r2
∣∣ , T =

n2 cos θ2

n1 cos θ1

∣∣t2∣∣ (5.20)

5.2.5 Matrix Formulation for Multi-layer Systems

Equations 5.8 and 5.15 can be used to describe transmission and reflection in such complex

multi-layer systems as illustrated in Fig. 5.4. From Eq. 5.8 and Fig 5.4,

Da

 E+
a

E−a

 = D1

 E+′

1

E−
′

1

 =⇒

 E+
a

E−a

 = D−1
a D1

 E+′

1

E−
′

1

 . (5.21)

Moreover,  E+′

1

E−
′

1

 =

 eiφ1 0

0 e−iφ1

 E+
1

E−1

 = P1

 E+
1

E−1

 (5.22)

87



where P1 is defined by,

P1 =

 eiφ1 0

0 e−iφ1

 (5.23)

and φ1 = k1xd1. Therefore, the electric fields pre- and post-transmission through an N-layer

material system are related via, E+
a

E−a

 = D−1
a

(
N∏
j=1

DjPjD
−1
j

)
Ds

 E+′
s

E−
′

s

 (5.24)

The overall transformation Matrix M for a multi-layer system is,

M = D−1
a

(
N∏
j=1

DjPjD
−1
j

)
Ds, (5.25)

where Di matrices are defined according to Eq. 5.8 and Eq. 5.15, for the two polarizations.

5.2.6 Mode Decomposition and ARC Design

The transmission and reflection formalism developed in the previous section only applies

to plane electromagnetic waves. However, in a semiconductor laser, light is confined in an

optical mode which is a composition of series of plane waves. In order to utilize the devel-

oped method and optimize the dielectric structure, the optical mode can be decomposed

to its plane wave components prior to application of the matrix formulation.

The Fourier transform decomposition of the optical mode,

Einc(kx) = F {Einc(x)} =

∫ ∞
−∞

E(x)e−ikxdx (5.26)

converts the electric field to spatial frequency domain. The x and z components of the
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Figure 5.5: Waveguide mode and multi-layer coating

wave vector are related as k2
x = n2

effk
2
0 − k2

z where k0 = 2π/λ is the free space propagation

vector. The angle of incidence for each kx is defined as θ = tan−1( kz
kx

).

The angular span of the mode can also be approximated by a Gaussian beam with

divergence cone half-angle of

θmax =
2

π

λ

2W0

. (5.27)

From the 1/e width of the Gaussian fit, W0, gives the same Wmax as the angular spread of

the mode in k-space.

The reflection coefficient, r(kx) for each kx and θ can be determined using the matrix

formulation. The reflected field from Eq. 5.10 and 5.17 is

Eref(kx) = r(kx)Einc(kx). (5.28)

The reflectivity is given by the overlap integral between the incident and reflected beams
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to account for the amount of light that is coupled back to the waveguide,

R =

∣∣∣∫∞−∞Einc(z)Eref(z)dz
∣∣∣2∣∣∣∫∞−∞Einc(z)2dz

∣∣∣2 . (5.29)

5.2.7 Merit Function

For a given set of material refractive indices, the goal is to find the corresponding thick-

nesses that result in the target reflectance, Rt(λ). Defining the parameter space X as:

X = {d1, d2, .., dN} (5.30)

the reflectance will become a function of X and λ, i.e. R(X,λ). The mean square formula

[61],

F (x) =

∫ λf

λi

[R(x, λ)−Rt(λ)]2dλ (5.31)

estimates the difference between the reflectivity of a multi-layer system and the target

reflectance. A Matlab program [5] based on the described matrix formulation evaluates

the merit function for the wavelength of interest over a range of material thicknesses. The

thicknesses corresponding to the function minimum are then selected and used in ARC

experiments.

5.3 Anti-Reflection Coating Facility with in-situ

Reflectometry

The e-beam evaporator used for the AR coatings deposition is shown in Figure 5.6. In this

evaporator the thickness of the deposited film can be monitored accurately with the in-
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situ reflectometer [62]. The reflectometer consists of a transmitter and a receiver arm, as

Home-built ebeam evaporator with in-situ ellipsometry 
f ti fl ti (AR) ti li tifor anti-reflection(AR) coating application

Design and fabrication of
id b d ti fl ti tiwideband anti-reflection coatings

for:
• Mid-infrared lasers (GaSb)
• Solar cells (GaAs)( )
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Rotating
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Operated, maintained, and troubleshot by 

the author

1.31 µm
Laser

19

Figure 5.6: E-beam evaporation Facility equipped with an in-situ reflectometer.

schematically illustrated in Fig.5.7. The transmitter arm includes a laser diode at 1.31 µm

a λ/4 wave-plate, and a polarizer. The receiver arm consists of a rotating analyzer and

91



a germanium detector. A 650 nm visible laser diode and multiple irises are placed in the

transmitter and receiver arm to aid the alignment. The germanium detector allows for the

detection of both lasers. Two Glan-Thomson polarizers are used in the system that work

in wavelengths from 350 nm to 2300 nm. The polarizer in the transmitter arm is installed

on a Newport URM80APP motorized stage that moves with the resolution of 0.001◦. The

analyzer in the receiver arm is mounted on a rotary stage which can turn at 60 rpm. The

rotary stage also provides the initial revolution angle for referencing.

The transmitter arm is designed at an angle of about 60◦ with respect to the chamber,

which is close to the Brewster angle, suppressing the reflections from a TM polarized light.

The collimated laser beam passes through the quarter wavelength plate, which can adjust

the polarization. A computerized system then measures the optical power as a function of

the analyzer angle in the vicinity of TE and TM polarizations determined by the polarizer

in the transmitter arm. The information extracted from these two measurements is used

to set the right angle for both polarizer and analyzer to obtain a pure TE-polarized light

in order to minimize the measurement error [63].

This system can be used as an ellipsometer as well as a reflectometer, both of which can

be employed in monitoring the thickness of optical coatings. Methods based on ellipsome-

try are, however, very sensitive, computationally demanding, and suffer from accumulative

error in multi-layer coatings. Single wavelength laser reflectometry simply uses the ex-

trema of the reflectance curve as an indication of multiples quarter wavelength thicknesses,

a method that is also known as the turning-value monitoring [64]. The decrease in the rate

of change of the reflectance curve at its extrema is one of the major sources of error in

the turning value monitoring method. An improvement over direct turning-point monitor-
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Figure 5.7: schematic of the e-beam evaporation facility equipped with an in-situ reflectometer [5].

ing can be achieved by monitoring the reflectance at a shifted wavelength, thereby taking

advantage of the much higher rate of change far from the turning points [63]. The turning-

value monitoring at a single shifted wavelength has been used in the following coating

experiments. Since it is not possible to measure the reflectance directly at the laser facet

due to its small dimensions ∼ 30 µm2, the monitoring has been done on a witness sample

which is usually a 1 cm × 1 cm silicon sample.

Given the refractive indices of the coating layers, and the thicknesses obtained from the

ARC design, the theoretical evolution of the optical power during film growth is calculated

in order to provide a map for the ARC fabrication. For example, the reflectometry map

for the ZnS-YF3 double layer ARC at λ = 3.4 µm with the final thickness of 265 nm for

ZnS and 422 nm for YF3 is given in Fig. 5.8. It should be noted that since monitoring the

thickness is performed at λ = 1.31µm on a silicon sample, the coating material indices

as well as the silicon substrate index, used in the generation of deposition map, should be

selected form the same point of wavelength in their dispersion curves. The incident beam

angle of 60◦ was also incorporated into the calculations.
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Figure 5.8: reflectometry map for a double layer ZnS-YF3 AR coating at λ = 3.4µm

5.3.1 Single Layer Coating

A quarter wavelength thick dielectric layer with an index of refraction within the range

defined by substrate refractive index and ambient comprises a single layer anti-reflection

coating. For single layer coating, from the matrix formulation, it can be shown that the

minimum reflectivity at normal incidence and TE polarization is reached when

n1 =
√
nans, (5.32)

where na and ns are the ambient and substrate refractive indices respectively. The change

in the effective index of the optical mode of the laser cavity for the various MBE-grown

structures and waveguide designs is relatively small with the average value of 3.59. There-

fore, the optimum index of refraction for a single layer coating is about 1.89. Figure 5.9
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Figure 5.9: Al2O3 single layer coating layer reflectivity designed for a 5-cascade ICL at 3.5µm.

shows the reflectivity spectrum of a 610 nm thick single layer Al2O3 ARC designed for an

ICL at 3.5µm. An index of refraction of 1.54 was used for Al2O3 at this wavelength. Op-

timum index is an ideal condition and represents one of many parameters that determine

the choice of the material. These parameters are further discussed in section 5.4.

5.3.2 Multi-Layer Coating

For multi-layer coatings and the normal wave incidence, the optimum index of refraction

for each layer is the geometric mean of the indices of refraction of the two adjacent layers.

Hence, the index of refraction of the mth layer of an M-layer stack is given by

nm = n
M+1−m

M+1
a n

m
M+1
s . (5.33)

This condition provides the optimum index for broadband coating at normal incidence
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and TE polarization. For double layer AR coating, two materials are needed with optimal

indices of,

n1 = n
2/3
a n

1/3
s ,

n2 = n
1/3
a n

2/3
s ,

(5.34)

where na is the air refractive index and ns is the effective index of the waveguide mode,

which is close to 3.59 for a narrow ridge interband cascade laser, yielding ideal index values

of n1 = 1.53 and n2 = 2.34.

In general, multi-layer coatings provide more degrees of freedom for tailoring the design

to the application needs such as a specific reflectivity or bandwidth requirement. Addi-

tionally, the order in which these materials are deposited is also an added freedom to the

design of a multi-layer coating. For a double layer coating, for example, the dielectric

coatings can be arranged in high-low (H/L) or low-high (L/H) combinations depending

of which material is deposited first on the substrate. The order will effect the bandwidth

of the coating. Figure 5.10 shows the contour map of the merit function for a wide span

of thicknesses. A more focused map over the first minimum, which corresponds to the

lowest required thickness of the two materials to provide the minimum reflectivity is also

shown. The corresponding reflectivity spectrum for the optimum thicknesses combination,

i.e. 266 nm of ZnS and 418 nm of YF3 is shown in Fig. 5.11. This coating is designed for

a narrow ridge delta-strained interband cascade laser at 3.4µm.

Comparison between Fig. 5.9 and Fig. 5.11 highlights the feasibility of much lower

reflectivity with double layer coating. While single layer coating is certainly an attractive

option due to its simplicity, more stringent ARC performance criteria calls for double or

even multi-layer coatings.
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Figure 5.10: ZnS-YF3 double layer merit function contour.
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Figure 5.11: ZnS-YF3 double layer reflectivity spectrum

5.4 Materials for Infrared Coatings

The materials that are considered for anti-reflection coatings must meet the design criteria

including transparency in the region of interest and matching refractive index to the appli-

cation demands as well as capability to form quality thin films by the intended fabrication

technique. Due to long wavelengths in the infrared region, coating thicknesses are usually
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in the order of hundreds of nanometers, which places an additional restriction on the thin

film quality due to the potential for added stress in a thick dielectric film.

The materials that were considered for ICL ARCs underwent three type of characteri-

zations:

• refractive index characterization,

• tape test,

• scanning electron microscopy (SEM).

The refractive indices for common materials can be found in the literature. However,

the reported values usually vary considerably from one reference to the other because of

the different quality and characteristics of the dielectric films formed by various deposition

techniques. In order to estimate the refractive index of the materials deposited using the

e-beam evaporator in which the actual ARC is made, a thin layer of the dielectric was

deposited on a silicon sample. The refractive index of this thin film was then measured in

the visible range, 0.4-0.7 µm using a Woollam ellipsometer.

The refractive index is, in general, a function of wavelength. Dispersion is the change in

the refractive index with wavelength. One of the most familiar phenomenon that presents

this fact is the formation of rainbow in the sky. Moreover, all of the materials have

absorption bands, which lead to anomalous dispersion. The wavelength regions that are

far from these absorption bands obey the normal dispersion. The refractive index of a

material is usually measured at discrete wavelengths and are fitted with proper dispersion

curves. In 1871 Sellmeier proposed a mathematical description that describes the material

as a collection of harmonic oscillators with different resonant frequencies/wavelengths.
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Sellmeier’s equation with general application to various materials and wavelengths is,

n2(λ) = 1 +
m∑
i=1

aiλ
2

(λ2 − λi)
(5.35)

where λi represents the wavelength of absorption bands, ai is the harmonic oscillator

strengths [65]. The normal dispersion curve was first proposed by Cauchy in 1836,

n = A+
B

λ2
+
C

λ4
(5.36)

where A,B and C are the characteristic constants of the material [66].

It can be shown that in the limit of λ� λi i=1,...,m, Cauchy equation can be derived

as an approximation to the Sellmeier’s equation. Therefore, based on the proximity of the

absorption bands of the materials that are used in ICL AR coating to the 3-4 µm region,

Cauchy or Sellmeier equations were chosen to fit the experimental ellipsometry data and

estimate the refractive index in the mid-IR region.

Additionally, for the multi-layer coating to work and last, the coating must adhere to

the substrate. A standard method for qualifying the adhesion of dielectric layer to the

substrate, as recognized by American Society for Testing and Materials (ASTM), is the

tape test [67]. This method can be easily employed by applying and removing a tape to

the calibration sample.

Finally, the SEM images of the dielectric coatings are used to examine the overall

appearance of the coating and provide information about the macroscopic quality of the

deposited layers. Figure 5.12 shows the SEM picture of double layer ZnS-SiO2 AR coating
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Figure 5.12: ZnS-SiO2 double layer AR coating in the absence of the Ta2O5 adhesion layer.

applied to the facet of an ICL without the Ta2O5 adhesion layer. This picture demonstrates

the fragility of the coating structure and the peeling at the corners caused by poor adhesion

of ZnS and accumulated stress in the deposition of thick dielectric layers.

In order to span a wide range of reflectivity with the simplest coating combination,

materials close to the optimum require refractive index were considered. For an ICL ridge

waveguide with the optimum single layer coating should have an index of refraction equal

to 1.87, i.e. the geometric mean of the effective refractive index of the waveguide and

air. However, considering the material limitation, it is not possible to match this ideal

value. Consequently, the available materials close to this index, Ta2O5, ZrO2, and Al2O3,

were selected. For double layer coating two materials with high and low refractive indices

are required. While choices for a low-index material are relatively broad, there are only a

few high-index materials that are suitable for optical coatings in the mid-infrared region

and possess the required index difference with the substrate. Given the optimal refractive

indices for a double layer coating, ZnS and TiO2 were considered for the high-index layer
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Table 5.1: Thin-film dielectrics and their measured refractive indices

Dielectric Materials Approximate Index of
Refraction at Mid-IR

ZrO2 1.84

Ta2O5 1.73

Al2O3 1.54

ZnS 2.24

TiO2 1.77

SiO2 1.37

YF3 1.41

with refractive indices around 2. For low-index layers YF3 and SiO2 with the index of

∼ 1.4 in the infrared region were used. All of these dielectrics were evaporated in the same

e-beam evaporation chamber where the actual ARC was made and were characterized

individually with a Woollam ellipsometer at shorter wavelengths. The refractive index was

then estimated though fitting Sellmeier or Cauchy equation to ellipsometry measurements

depending on the material characteristics. The details of these fittings are summarized in

Appendix. A. Table 5.1 lists the dielectric materials that have been selected as well as their

approximate refractive indices in the Mid-IR.

5.5 Experimental Results

In this section the experimental results for several ARC designs are reviewed. The details

of the dielectric thickness and reflectivity for each design are provided in Appendix B
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5.5.1 Single Layer AR Coating

Given that the refractive index of ZrO2 is 1.84 in the infrared region, a 480 nm layer of

ZrO2 was evaporated on the facet of a 5-cascade laser with the λ = 3.5 µm, as Fig. 5.13

shows. This coating did not result in any improvement in the slope efficiency. Several other

experiments with different ICLs also were unsuccessful with this material. Therefore, ZrO2

was not considered in the following experiments for improvement of laser output power.
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Figure 5.13: ZrO2 single layer AR coating for 5-cascade laser λ = 3.5 µm with cavity length of 2 mm.

Ta2O5 is the next promising candidate due to its close-to-optimum index of 1.73 and its

transparency at infrared. Figure 5.14 demonstrates the single layer coating of a 5-cascade

ICL laser with wavelength of 3.8 µm and dielectric thickness of 580 nm.

The degradation in the laser performance was seen on a number of samples. Further

investigations showed that this behaviour is associated with the columnar growth of the

dielectric, as it is apparent from the SEM picture in Fig. 5.15, resulting in rough surfaces

and diffusive reflectance. Therefore, Ta2O5 was also ruled out of the selection list for Mid-
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Figure 5.14: Ta2O5 single layer AR coating for 5-cascade laser λ = 3.8 µm with cavity length of 1 mm.

IR anti-reflection coatings.

Figure 5.15: SEM picture of the 5-cascade laser coated with 495 nm of Ta2O5

Al2O3 with the index of around 1.54 in the infrared region is not exactly a perfect

match for the single layer AR coating in the first glance. However, this dielectric forms

good quality thin films and it is widely used in optics. Figure 5.16 shows a 1 mm ICL with
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5-cascade at 3.5 µm coated with a 610 nm single layer of Al2O3. The slope efficiency has

improved by a factor of 1.33 as emphasized in the inset. Unfortunately Al2O3 evaporates

at relatively high e-beam gun power and was not compatible with the e-beam evaporator

equipped with the in situ refractometry. Therefore, it was not possible to monitor the

dielectric thickness as accurately as needed for optical coatings. Nevertheless, this result

shows that Al2O3 is a suitable candidate for a simple single layer coating in the mid-infrared

region.
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Figure 5.16: Al2O3 single layer AR coating for 5-cascade laser at λ = 3.5 µm with cavity length of
1 mm.

5.5.2 Double Layer AR Coating in ICL

ZnS-YF3 combination was first applied in L/H index arrangement to a δ-strained ICL with

cavity length of 1 mm. Figure 5.17 shows the measurement result for this device before

and after the AR coating. This coating resulted in improvement of the slope efficiency by

a factor of 1.5, as shown in the inset.
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Figure 5.17: YF3-ZnS double layer AR coating for δ-strained ICL with cavity length of 1 mm.

Figure 5.18 shows the result of H/L combination applied to a δ-strained ICL with cavity

length of 1 mm before and after AR coating. The severe degradation of the device was

correlated with diffusion of zinc into the active region, which subsequently causes a slow

diode turn-on after AR coating as seen in the current-voltage curve of Fig. 5.18. Moreover,

this combination failed the tape test that was done on the calibration sample indicating a

poor adhesion of this dielectric layers to the substrate.

Comparing this results to the YF3-ZnS double layer AR coating, where YF3 was as

the first deposited dielectric, suggest that this layer has served as a barrier preventing the

diffusion of zinc into the active region, thereby preserving the sharp turn on of the laser

diode. Therefore, this finding inspired the idea of preventing the laser degradation due to

zinc diffusion by adding an intervening layer between ZnS and the substrate. Since any

dielectric layer will add to the number of reflections in the coating, its presence can only

be neglected if it is optically thin. Among the materials used in the anti-reflection coatings

Ta2O5 showed superior adhesion quality and therefore, was used to remedy the adhesion
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Figure 5.18: ZnS-YF3 double layer AR coating for δ-strained ICL with cavity length of 1 mm.

of ZnS as well as its diffusion. Several experiments showed that a 10 nm layer of Ta2O5 is

not enough to achieve an acceptable level of adhesion as qualified by the tape test and at

least 20-30 nm should be deposited prior to evaporation of ZnS.

Subsequently, a ZnS-YF3 double layer coating was designed and applied to δ-strained

ICL at λ = 3.4 µm with cavity length of 2 mm. The measurement of light-current mea-

surement before and after coating showed a slope efficiency improvement of 1.5 times, as

shown in Fig. 5.19.

Thus, the YF3-ZnS thin film coating shows potential for Mid-IR application both in

High-Low and Low-High combinations.

Another material combination considered for double layer AR coating was TiO2-SiO2.

Since titanium possesses excellent adhesion property, the use of Ta2O5 was not required for

this combination. Figure 5.20 illustrates a 5-cascade ICL at λ = 3.5 µm and cavity length

of 1 mm before and after a double layer TiO2-SiO2AR coating. The coating improved the

laser slope efficiency by a factor of 1.47.
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Figure 5.19: ZnS-YF3 double layer AR coating applied to a δ-strained ICL with cavity length of 2 mm
and a Ta2O5 adhesion layer of 20nm.
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Figure 5.20: TiO2-SiO2 double layer AR coating for 5-cascade ICL at λ = 3.5 µm with cavity length of
1mm

The final AR coating combination that was applied to the interband cascade lasers was

the ZnS-SiO2 double layer. As it was the case with ZnS-YF3 combination, a 20-30 nm of

Ta2O5 is required for proper adhesion and for blocking the Zn diffusion.
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Figure 5.21 shows the result of a double layer ZnS-SiO2 that was applied to a 5-cascade

ICL with at λ = 3.8 µm. This combination resulted in improvement of slope efficiency by

a factor of 1.95.
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Figure 5.21: ZnS-SiO2 double layer AR coating for 5 cascade ICL at λ = 3.8µm with cavity length of
1mm and a Ta2O5adhesion layer of 20nm.

The performance of this AR coating is superior to the other combination that were

studied. The results of the reflectivity analysis, to be explained in the next section, show

that this coating approached the closest reflectivity to 1%. Therefore, when combined

with high reflectivity coating, this combination can result in considerable improvement in

an interband cascade laser output power. Subsequently, very low reflectivity double layer

ZnS-SiO2 coating was designed and applied to a 1 mm ICL at λ = 3.5µm.

The improvement of the slope efficiency shown in Fig. 5.22 is less than the case where

a moderately low reflectivity was targeted. In the following section this behavior will be

investigated.
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Figure 5.22: ZnS-SiO2 double layer AR coating for 5 cascade ICL at λ = 3.5µm with cavity length of
1mm and a Ta2O5adhesion layer of 20nm.

5.6 Anti-Reflection Coating and Measurement of Re-

flectivity

The reflectance of the applied AR coating can be extracted from the changes in the thresh-

old current before and after the coating. Assuming a linear dependence for the threshold

current density on gain [17], Jth of a laser will depend on mirror loss according to Eq. 4.7,

repeated here for convenience,

Jth = Jt +
αm + αi

Γ dg
dJ

(5.37)

where Jt is the transparency current density αi is the internal loss of the waveguide, αm is

the mirror loss, Γ is the optical confinement factor and dg
dJ

is the differential gain per unit

current density at transparency. Assuming that Jt is negligible compared to αi/Γ
dg
dJ

[3],

Eq. 5.37 can then be approximated as
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Jth =
αm + αi

Γ dg
dJ

=
1

Γ dg
dJ

(
αi +

1

2L
ln

1

RfRb

)
(5.38)

The AR coating reflectivity can then be extracted by comparing the threshold current

before and after the coating

Jth,A
Jth,B

=
αm,A + αi
αm,B + αi

(5.39)

where the subscript A and B refer to the parameter values after and before the coating

is applied. In order to extract αm,A, the value of αi is required. Thus, two separate experi-

ments must be conducted to extract the reflectivity of the coatings. One is a cavity length

analysis to extract αi using multiple lengths as described in section 4.2 and, second, com-

paring the threshold current densities before and after coating. Another way of extracting

the coating performance is through the ratio of the output power from the two laser facets

that is usually denoted by β and defined as

β ≡ Ff
Fb

=
1−Rf

1−Rb

√
Rf

Rb

. (5.40)

Using Eq. 5.40 requires access to both facets of the laser but is independent of the internal

parameters of a particular laser diode. Since the dielectric coatings are often deposited at

elevated temperatures in order to promote the formation of a denser and higher quality

film, they need to be mounted on a thermally conductive fixture, which often limits ac-

cess to one of the facets and prohibits the use of Eq. 5.40. Therefore, Eq. 5.39 together

with internal parameters extracted from device characterizations were used to evaluate the

coatings.

The current-voltage-light (IVL) characteristics were measured before and after the coat-
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Table 5.2: Summary of AR coating experiments

AR coating ICL Material L [cm] αi[cm−1] Ith,A/Ith,B Rf ,A Target
material combination Reflectivity

Al2O3 ICL-1 0.1 5.8 1.25 0.12 0.05

YF3-ZnS ICL-3 0.1 6.4 1.48 0.05 0.01

(Ta2O5)ZnS-YF3 ICL-3 0.2 6.4 1.35 0.05 0.01

TiO2-SiO2 ICL-1 0.1 5.8 1.41 0.06 0.01

(Ta2O5)ZnS-SiO2 ICL-2 0.3 4.9 1.49 0.02 0.01

(Ta2O5)ZnS-SiO2 ICL-1 0.1 5.8 2.6 7.2E-4 1E-5

ing were applied in the pulse mode with 0.05% duty cycle to avoid self-heating effects.

Threshold current and slope efficiency were extracted from the LI characteristics of the

lasers.

The reflectivities calculated for the different AR coatings ranges from 0.12 to 7× 10−4.

Table 5.2 summarizes the ratio of the change in the threshold current before and after

anti-reflection coating, the length of the particular device and its internal loss extracted

from the length dependent measurement as well as reflectivity of the coating extracted

from the change in the threshold current according to Eq. 5.39. The target reflectivity is

also reported in the last column of Table 5.2 [68].

The highest improvement of slope efficiency by a factor of 1.95 was achieved by ZnS-

SiO2 double layer AR coating with 2% reflectivity where the threshold current density was
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increased by 49%.

5.7 Carrier Leakage in ICLs

Extensive research has been dedicated to the band structure engineering in order to in-

crease the carrier confinement in the active quantum wells of Mid-IR lasers. However, they

are still suffering from low characteristic temperatures for the threshold current and more

importantly the slope efficiency [3, 17]. These issues have been attributed to alternative

non-radiative paths that allow the carriers to escape to higher energy levels resulting in

leakage currents. In particular, surface roughness scattering due to large band offsets in

the active region that exceed 2 eV, shown in Fig. 2.1, and auger assisted carrier leakage can

play a significant role in ICL leakage currents. Another mechanism that could potentially

contribute to temperature sensitivity in a cascaded structure is backfilling of the lower laser

level by electrons in the injector. However, this mechanism is specific to QCLs and does

not play a role in ICL operation [69]. ICL active region optimizations require a significant

overlap between electron and hole wave functions [2]. This is in contrast to QCLs where

the design focuses mostly on electron wavefunctions. This inherent difference between the

two makes active region bandgap engineering more challenging in ICLs [5]. Moreover, ICL

has so far been limited to GaSb material systems which limits the material selection for

quantum wells and barriers, again restricting the flexibility of the bandgap engineering.

High power operation can be achieved by increasing the number of cascades, and/or the

active area through modifying the physical dimensions of the waveguides. These strategies,

however, increase the self-heating of the device in CW operation. Facet coating is another

approach to enhance the output power by increasing the differential efficiency. In order
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to achieve higher performance through optical coating of the laser facets, the effect of

the mirror reflectivity on the internal characteristics of the devices needs to be carefully

examined. Anti-reflection coatings in essence increase the waveguides loss and, therefore,

results in a higher threshold current. This phenomenon, consequently, raises the carrier

density of the laser and could potentially lead to even higher leakage current. A higher

leakage reduces the internal quantum efficiency, thereby, possibly counter-balancing the

positive effect of the increased mirror loss in enhancing the external slope efficiency. In fact,

it has been observed for quantum cascade lasers that the slope efficiency actually decreases

for low reflectivity AR coatings compared to uncoated devices [70]. Thus, optimal AR

coatings need to be designed for power enhancement in IC lasers. In this section, different

levels of AR coatings with reflectvities ranging from 0.15 to 7× 10−4 are applied to ICLs

and the device performance in terms of increase in threshold current, leakage current

and slope efficiency are studies. The leakage current is extracted and its dependence on

increased carrier concentration is assessed. The wide range of AR coating reflectivities

accessible through in-situ monitoring of the dielectric thickness allowed for the study of

the effect of carrier leakage in ICLs. These are the first experimental results on this subject.

These results provide an understanding of how the leakage current increases with carrier

concentration within the active region and offers a method for optimizing the AR coatings

and maximizing the slope efficiency in ICLs.

5.7.1 Extraction of Leakage Current

Here, single- and multi-layer AR coatings that were applied to ridge waveguide ICLs cov-

ering a wide range of reflectivities have been analyzed to investigate the dependance of

internal laser parameters on mirror loss and carrier concentration. These results include

Al2O3 single layer AR coating and ZnS-YF3, ZnS-SiO2 and TiO2-SiO2, double layer AR
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Table 5.3: Internal loss, wavelength of emission and cavity length dependence of threshold
current for the ICLs that have been used in this study

ICL Material Threshold Current Density [A/cm2] vs. αi[cm−1] λ[µm]
inverse cavity length [cm−1]

ICL-1 Jth = 34.90L−1 + 208.9 5.8 3.5

ICL-2 Jth = 43.26L−1 + 221.3 4.9 3.8

ICL-3 Jth = 122.9L−1 + 816.2 6.4 3.4

coatings with reflectance ranging from 0.15 to 7 × 10−4 as summarized in Table 5.2. The

refractive indices of these materials were measured and the coatings have been designed for

the specific ICL wavelength and fabricated using the methodology described in previous

sections.

The Jth and L−1 relation for all ICL samples used in this study as well as the internal

loss and the emission wavelengths are summarized in Table. 5.3. The differential quantum

efficiency is related to the facet reflectivity via

ηd = FfηiN
αm

αm + αi
(5.41)

where ηi is the differential internal efficiency per stage, N is the number of stages which

is equal to 5 in this case, and Ff is the fraction of total output power delivered from the

front facet, determined by both facet reflectivities and is given by [58]

114



Ff =
1−Rf

(1−Rf ) +
√

Rf

Rb
(1−Rb)

(5.42)

The modification of facet reflectivities affects the slope efficiency by changing Ff and

αm. Furthermore, due to the increase in carrier concentration leading to higher leakage

current, ηi can also reduce appreciably. The differential internal efficiency is a measure of

the fraction of the total current above the threshold that results in carrier generation in

the active region. By using a four-level system, Botez et al. [69,71] expressed ηi in terms of

the differential pumping efficiency ηp and the laser transition differential efficiency ηtr [54]

as

ηi = ηtrηp = ηtr

(
1− Jleak,th

Jth

)
(5.43)

where Jleak,th is the leakage current density and Jth is the threshold current density.

It is this leakage current which is attributed to the high temperature sensitivity of the

threshold current density and slope efficiency of ICLs. The low characteristic temperature

of the threshold current and the slope efficiency, T0 and T1, respectively, indicate a sizable

contribution from the carrier leakage. As described in section 4.8, T1 and T0 are estimated

to be around 90 K and 38 K, respectively.

The same leakage current can also play an important role in the case of AR coated

devices. Due to a considerable increase in the threshold current density, particularly at

very low reflectivity, the threshold carrier density before and after coating changes dra-

matically which in turn affects the internal device parameters. Leakage current can then

be extracted from the changes in the slope efficiency.
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Though the leakage current did not explicitly appear in Eq. 5.37 for threshold current,

it can be easily shown that it is indeed part of the threshold current density. Using

J = (q/η′iτ)n, where n is the carrier concentration and η′i is the internal efficiency, Eq. 5.37

becomes

Jth =
q

η′iτ

[
nt +

αm + αi

Γ dg
dJ

]
. (5.44)

Substituting the value of η′i = ηinjηp ≈ ηp in Eq. 5.44, where ηinj is the carrier injection

efficiency, gives

Jth =
q

τ

[
nt +

αm + αi

Γ dg
dJ

]
+ Jleak. (5.45)

Thus, the linear approximation of gain to threshold current density in Eq. 5.37 accounts

for the leakage current within its formulation.

Using Eq. 5.41, the change in the differential quantum efficiency is related to the internal

laser parameters by

ηd,A
ηd,B

=
Ff,Aηp,A

αm,A

αm,A+αi

Ff,Bηp,B
αm,B

αm,B+αi

. (5.46)

where Ff , αm, are obtained from the reflectivity in Table 5.2. A and B subscripts cor-

respond to values after and before coatings, respectively. The ratio of differential pumping

efficiency after and before the AR coatings, ηp,A/ηp,B, is calculated from Eq. 5.46. In this

calculation, it is assumed that the laser transition differential efficiency ηtr does not change

in the process. The laser transition differential efficiency is not temperature dependent and
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is not expected to change with AR coatings significantly.

In order to obtain the value of the leakage current, the absolute value of the uncoated

laser internal differential efficiency is required. ηi was calculated using the calibrated slope

efficiency as described in section 4.8 with a measured value of 31.6% which is mainly limited

by the leakage current. Using the initial value of internal efficiency for the uncoated device

and the change of the internal efficiency obtained from Eq. 5.46, the final ηi after coating is

calculated. The threshold current densities before and after the coating are then inserted

in Eq. 5.43 to obtain the leakage current with the additional assumption that the ηtr is

unity. Here, it is important to note that the initial value of ηi and the contribution from the

transition efficiency will solely effects the ratio of the leakage current to threshold current

before and after the application of AR coating. The ratio of the internal efficiency and

subsequent optimization of anti-reflection coating is independent of these assumptions. The

extracted values of the ratio of the differential efficiencies; internal differential efficiencies

and leakage currents after and before are summarized in Table 5.4 [68].

5.7.2 Discussion

As seen from the Table IV, the ratio of the differential efficiency before and after coating

increases with reduced facet reflectivity up to 2% (as is expected) but then decreases for

the lowest reflectivity of 7×10−4. Similar results have been previously seen in AR coatings

on QCLs where the slope efficiency decreased at very low reflectivity [60, 70]. The reason

for this trend lies in the change of the internal efficiency as seen from the data in Table 5.4.

The degradation in the differential internal efficiency, ηi, before and after coating worsens

as the reflectivity of the facet reduces. The improvement of the differential efficiency re-

sulting from lowering the mirror loss compensates only part of the degradation of internal
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Table 5.4: summary of the extracted reflectivities, the ratio of slope efficiency, internal differential
efficiency, threshold current and leakage current after and before the AR coating is applied [68]

AR coating Rf ,A L [cm]
ηd,A
ηd,B

ηi,A
ηi,B

Ith,A
Ith,B

Ileak,A
Ileak,B

Ileak,A
Ith,A

/
Ileak,B
Ith,B

material combination

Al2O3 0.12 0.1 1.33 0.91 1.25 0.72 1.03

YF3-ZnS 0.05 0.1 1.5 0.83 1.48 0.74 1.07

(Ta2O5)ZnS-YF3 0.05 0.2 1.5 0.76 1.35 0.76 1.10

TiO2-SiO2 0.06 0.1 1.47 0.85 1.41 0.73 1.06

(Ta2O5)ZnS-SiO2 0.02 0.3 1.95 0.81 1.49 0.75 1.08

(Ta2O5)ZnS-SiO2 7.2E-4 0.1 1.7 0.67 2.6 0.79 1.17

efficiency caused by the increased carrier concentration. The relationship between the ra-

tios of the internal efficiency after and before coating as a function of the reflectivity of

the facet is plotted in Fig. 5.23. The internal efficiency ratio changes logarithmically with

reducing the facet reflectivity indicating a more drastic change for ultra-low reflectivities.

The decrease in the internal differential efficiency results from a substantial increase in

the leakage current as larger proportions of the carriers are leaking at lower reflectivity as

compared to the uncoated device. The results also show how the leakage current increases

as the carrier concentration increases in the active region. The initial value of internal

efficiency is required to calculate the ratio of leakage current to the threshold current and

its change with the mirror loss. For an internal efficiency of 31.6% and laser transition

efficiency of unity, the leakage to threshold current ratio increased by as much as 17%

by increasing the mirror with low reflectivity AR coated samples. However, the trend
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Figure 5.23: The ratio of internal differential efficiency after and before the coatings (ηi,A/ηi,B) as the
facet reflectivity is changed.

of increase in the leakage current and the ratio of the internal efficiency are of greater

importance. This leakage current is attributed to the thermal excitation of the injected

electrons to higher energy levels in the active region. Electrons in these higher energy levels

can either relax to lower energy levels or escape to continuum. The barrier height in the

active and injection region play an essential role in determining the leakage current in ICLs.

These results suggests that the optimization procedure for designing the anti-reflection

coatings for achieving the highest differential efficiency must take into account the intro-

duction of additional leakage in the device. For high power applications where maximum

differential efficiency is required, very low reflectivities can be counterproductive as they re-

sult in substantial increase in the leakage current and degrade the device performance. The

increase in the leakage current would in turn decrease the differential efficiency resulting
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in a less efficient device. In order to visualize such dependencies, the ratio slope efficiency

was calculated for a 1 mm device with internal loss of 6 cm−1, using the fitted logarithmic

function for internal efficiency. For comparison, the ratio of the slope efficiency was also

calculated for the same device assuming a constant internal efficiency. The results for both

scenarios are plotted in Fig. 5.24. As it can be seen from this plot, the slope efficiency

improves at first by lowering the reflectivity but starts to decrease as the reflectivity is

further lowered. For this particular case, the maximum slope efficiency improvement is 1.7

times and is obtained at a front facet reflectivity of ∼1%. It should be noted that this value

changes for different device lengths and also depends on the internal loss. High reflectivity

coating of the back facet is also recommended and would allow for higher improvement

with lower reflectivities [68].

5.8 Conclusions

In conclusion, in this chapter several dielectric materials were considered for the mid-IR

anti-reflection coatings and were experimentally evaluated through single and multi-layer

coating designs. These materials were optically characterised and the fabrication conditions

were optimized to yield the best coating. ZnS, YF3, SiO2, TiO2, and Al2O3 were selected

from the initial list as the most promising candidates. AR coating were designed and

applied to several. The change of threshold current and slope efficiencies were followed to

characterise the coating and investigate the change in internal laser parameters resulting

from the coating application. It was shown how the leakage current increases with carrier

concentration in the active region and the resulting reduction of the internal efficiencies

limits the improvement of the slope efficiency with AR coatings. While the reduction

of the front facet reflectivity allows for higher output power, the cost of increasing the
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carrier density has to be accounted for in order to find the optimum balance. If other

laser parameters are also affected, for example if the internal loss increases as a result of

the increase in carrier density, there could be a further reduction of the slope efficiency

after a certain point in lowering the facet reflectivity. These changes are expected to be

small compared to the effective loss associated with carrier leakage. Based on our previous

findings and similar works on Mid-IR QCL, the relatively low characteristic temperature of

the threshold current density and the slope efficiency in the semiconductor lasing materials

are linked to carrier leakage from the active quantum wells. The results of the anti-

reflection coating also indicate the sensitivity of these devices to the number of carriers in

the active region. Better carrier confinement in QCLs through application of high barriers

and tapered injectors [69, 72] has led to substantial improvement in QCL performance at

room and high temperatures. Future work should focus on implementing similar ideas

for ICLs to improve their performance and stability. A substantial improvement in the

wall-plug efficiency and in the amount of power that can be extracted from ICL lasers is

expected by appreciably reducing the carrier leakage in these types of lasers.
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Chapter 6

Mid-IR Subwavelength Lasers

6.1 Introduction

The size mismatch between electronic and photonic devices is mainly due to the funda-

mental difference between the wavelength of electrons and infrared photons. Material

selection and fabrication techniques can reduce this gap significantly, analogous to the way

a silicon nano-wire replaces an optical fiber in on-chip optical communication applications

and brings down the waveguide diameter to the nanometer scale [73]. The coherent light

sources are no exception to this miniaturization demand. Additionally, devices with smaller

dimensions allow for high density integration, require less power, and enable high speed

switching [74]. Vertical cavity surface emitting lasers (VCSELs) [75], photonic crystals

(PCs) [76], micro-disk lasers, [77] exemplify devices that operate with much lower mode

volumes compared to conventional semiconductor lasers. However, the overall structure

size remained significantly larger than the laser wavelength at least in one of the dimen-

sions for all these cases [73].
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In 1946, Purcell proposed that in subwavelength cavities, spontaneous emission rate will

increase and the relaxation lifetime will decrease when the spontaneous emission is coupled

to a single cavity mode [78]. This phenomenon is the main idea behind a thresholdless

laser, first proposed by Kobayashi et al. [79] [80]. Therefore for a thresholdless laser, the

loss due to coupling of spontaneous emission to free space modes is eliminated through

application of subwavelength cavities with sparse modal content. [80].

The first step in pursuit of a truely subwavelength laser was the study of metal loss

compensation by semiconductor gain media [81] [82] and subsequent proposals for possible

laser structures [83]. However, it was generally believed that the only candidate for small

lasers are the dielectric cavities with a low loss and it was not clear that the metal losses

can be overcome by semiconductor gain materials [84]. The first demonstration of lasing

in metallic-coated nano cavities, reported in 2007 [85], was a paradigm shift in laser minia-

turization, resulting in replacement of dielectric cavities with metallic ones altogether [86].

This electrically pumped nano-laser consisted of a semiconductor heterostructure pilar

coated with SiN and covered by gold with a final outer diameter of 260 nm and height of

300 nm. Lasing was observed at 77 K and 1.44 µm and light was collected through the

substrate. This cavity and similar structures rely on dielectric modes and are, therefore,

diffraction limited in all three dimensions.

In 2009, lasing in metal-insulator-metal subwavelength waveguides was demonstrated

in near-IR at 78 K with electrical injection [87]. The rectangular cavities were chosen to

permit independent size reduction in different dimensions. The waveguide width in this

study was varied from 90 nm to 350 nm with the smallest width equivalent to the optical

thickness of λ/4, far below the diffraction limit, owning to the plasmonic nature of the
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MIM structure. RT pulsed operation was also observed in wider devices. In the years

that followed, there have been numerous demonstrations of subwavelength lasers. In the

metallodielectric lasers by Nehzad et. al., bulk InGaAsP gain medium was covered by

SiO2 and aluminium to form cylindrical cavities with 450 nm (0.32λ) diameter support-

ing purely dielectric modes. Pulsed operation at RT was observed at λ = 1.43 µm [81].

Thresholdless lasing has also been demonstrated at 4.5 K and near infrared wavelength

from a coaxial cavity based on traveling surface plasmon polaritons (SPPs) with InGaAsP

QW gain medium [88].

The idea of spacer (Surface Plasmon Amplification by Stimulated Emission of Radi-

ation) is behind the smallest nano-laser reported to date. Spasers rely on localized SPP

modes and can surpass the diffraction limit in all three dimensions. The first spacer pro-

posed by Bergman et al., [89] consisted of gold nano particles covered with dye molecules

with an overall diameter of 44 nm (λ/12) and lasing at 531 nm which is the surface plasmon

resonance of gold nano-particles [90].

Even though, RT operation is required for on-chip applications of nano-lasers, the first

demonstrations are realized at low temperature. This is because of high semiconductor

gain and low metal loss at cryogenic temperatures. This has been the case for most of the

semiconductor laser technology [91]. It is worth noting that the last three nano-lasers that

were mentioned previously are all optically pumped. Real applications, however, require

RT CW operation of electrically pumped devices. Metallic cavities do provide a certain

advantage in this regard. Encapsulating the gain medium in a metallic shell allow for the

electrical connections to be integrated with the laser in contrast to conventional semicon-

ductors, where the connections were usually separated by intermediate cladding layers to
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avoid high losses [91]. In addition to facilitating the electrical connections, metals can serve

as efficient heat-sinks due to their high thermal conductivities.

Another advantage of metallic nano-cavities is that varying the emission wavelength

is readily controlled during the device fabrication. The dimensions of the cavity is what

ultimately defines the resonant mode and by adjusting these dimensions, the wavelength

can be positioned anywhere within the gain window of the active material [91]. The digital

tunability of nano-lasers allows for selection of emission wavelength during design and fab-

rication. This tunability is experimentally demonstrated in electrically pumped metallic

nano-pillars, where wavelength versus diameter with a slope of 2.7 was achieved [92].

Among different proposed cavity shapes, circular cavities can generate azimuthal polar-

ization [92,93], with possible applications in atom trapping [94], imaging, [95] and subwave-

length scanning [96]. As mentioned earlier selecting the desired mode with the required

polarization can easily be achieved in nano-cavities by adjusting the cavity dimensions.

Nevertheless, due to the emission of light from a subwavelength aperture, nano-lasers usu-

ally suffer from highly diverging beams [92]. Slight modifications to circular cavities can

improve divergence, e.g. implementation of a horn antenna in the lower part of the cavity,

as suggested by Hill and Marell in 2011 [97]. In this scheme, the cavity parameters, such

as confinement and quality factors, can be designed independently from the beam shaping

antenna [97] and tapering the pilar can be realized by implementing the proper etching

techniques [98].

Even though subwavelength cavities have been demonstrated in telecom wavelengths,

there are still challenges associated with their relatively high threshold gain requirements.
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Due to the longer wavelengths of mid-IR, compared to the telecommunication lasers, the

cavity can have a larger gain medium without compromising its subwavelength character.

A larger gain volume translates into a lower carrier density which, in turn, relaxes the

temperature constraints. The lower metal loss in the infrared region is also advantageous

in reducing the cavity loss. Moreover, the large volume of the gain medium means an

improved fabrication tolerance. The roughness of the sidewalls that contributes to non-

radiative recombination are a smaller fraction of the total volume in the mid-IR range.

Nano-laser cavities with azimuthal polarization may be arranged in arrays for high resolu-

tion imaging in infrared [96].

Miniature mid-IR lasers can be used in a verity of applications for on-chip sensing and

optical communications. To our knowledge there has been no experimental demonstration

of a nano laser in mid-IR to date. This chapter focuses on design and optimization of

mid-IR micro cavities based on plasmonic coaxial waveguide structures. Here a systematic

design methodology is developed and described that can be applied in mid-IR as well as

other wavelength ranges. These structures are particulary interesting for deep subwave-

length confinement of mid-IR light. Combined with W-structure QW associated with ICLs

plasmonic coaxial microcavities are demonstrated to be capable of providing nano-lasers.

The enhanced Purcell factors of these cavities shows great potential for thresholdless op-

eration.

6.2 Surface Plasmon Polaritons (SPP)

Coherent charge oscillations on metal surfaces can support wave propagation at a metal-

dielectric interface. These electromagnetic surface waves are tightly confined to the in-
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terface boundary and are called surface plasmon polaritons. In order to review the basic

properties of surface plasmon polaritons, the first step is to derive the wave equation. For

monochromatic radiation in linear and isotropic media, in the absence of external excita-

tions, Maxwell curl equations read,

∇× E = −iωµH, (6.1a)

∇×H = iωεE, (6.1b)

where E and H are the electric and magnetic field vectors, respectively, and µ and ε are

the permeability and permittivity of the medium, respectively. As shown in Fig. 6.1, for

propagation along the z axis, due to homogeneity in the y and z direction, both electric

and magnetic fields are simplified to

E(x, z, t) = E(x) exp(−iωt+ iβz), (6.2a)

H(x, z, t) = H(x) exp(−iωt+ iβz), (6.2b)

where β is the complex propagation constant. Inserting Eq. 6.2 in 6.1 results in the

Helmholtz wave equations, i.e.

d2E(x)

dx2
− k2

xE(x) = 0, (6.3a)

d2H(x)

dx2
− k2

xH(x) = 0. (6.3b)

where

k2
x = β2 − ω2µε. (6.4)
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Figure 6.1: Transverse field profile of a surface plasmon polariton along a meta-dielectric interface.

Equations 6.3 and 6.1 hold in both half spaces. For TM waves, with non-vanishing field

components Hy, Ex, and Ez, 6.3b results in

Hy(x) = Ci exp(−kx,ix) (6.5)

where Ci and kx,i refer to the amplitude and decay constant in the media with relative

dielectric permittivity of εr,i for i = 1, 2.

Substituting 6.5 in 6.1, returns [99]

Ex(x) =
β

ε0εr,i ω
Hy = Ci

β

ε0εr,i ω
exp(−kx,ix), (6.6a)

Ez(x) = sgn(x)
ikx,i
ε0εr,i ω

Hy = sgn(x)Ci
ikx,i
ε0εr,i ω

exp(−kx,ix). (6.6b)

Assuming the metal is the lower half space with x < 0 and dielectric is the upper half

space with x > 0, as shown in Fig. 6.1, and using the boundary conditions, i.e. continuity
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of the tangential field component Hy and Ez, requires that C1 = C2 and

kx,1
εr,1

=
kx,2
εr,2

(6.7)

Therefore, the propagation constant in the z direction follows

β = k0

√
εr,1εr,2
εr,1 + εr,2

. (6.8)

Equation 6.8 is is often referred to as the dispersion relation for SPPs.

Using the same technique for TE waves, with non-vanishing field components Ey, Hx,

and Hz, 6.3a yields

C(kx,1 + kx,2) = 0. (6.9)

Since a confined mode requires that kx,1 < 0 and kx,2 > 0,the condition 6.9 is satisfied only

when C = 0. This is an important conclusion as it shows that SPPs are only supported

by parallel or TM polarization, where the magnetic field is parallel to the dielectric-metal

boundary. It can be seen from Eq. 6.9 that this is a direct consequence of opposite signs

of permittivity at the interface.

The complex refractive index of metals is described using the Drude dielectric function,

ñ2 = ε = 1−
ω2
p

ω2 + iγω
(6.10)

where ωp is the plasma frequency, and γ is the damping coefficient. It is worth noting that

the plasma frequency is given by ωp = ne2

ε0m
, where n is the electron density, e is the electron

charge, and m is the effective mass of electrons in the metal band structure. The damping

coefficient γ = 1/τ , where τ is the relaxation time of the free electrons. Together they
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relate the macroscopic behaviour of metals to the lattice potential and electron interactions

and is called the plasma model.

Figure 6.2 shows the real and imaginary parts of silver refractive index reported in the

literature for λ from 0.206 to 12.40 µm [Babar and Weaver 2015 [6]], and from 0.188 to

1.937µm [Johnson and Christy 1972 [7]], and the fitted curves using the extended Drude

model dielectric function [100]

ε = ε∞ −
ω2
p

ω2 + iγω
(6.11)

where ωp = 1.4× 1016[rad/s−1], γ = 2.6× 1013[rad/s−1], and ε∞ = 5. ε∞ in the extended

Drude model accounts for the deviation of metal from free electron gas model in frequencies

close to ωp.

In the absence of damping, γ = 0, metal permittivity can be simplified to ε = 1−ω2
p/ω

2.

Using the simplified dielectric function for the metal in the SPP dispersion relation Eq. 6.8,

it can be shown that ε1+ε2 = 0 for ωsp = ωp/
√

1 + ε2. ωsp is the surface plasmon frequency.

The plasma frequency and surface plasmon frequency divide the frequency domain into

three regions as shown in Fig. 6.3.

• ωp < ω

In this region ε1 > 0 and metal behaves like a dielectric. It should be noted that

the validity of Drude model at high frequencies is limited to frequencies below the

interband transition of metals.

• ωsp < ω < ωp

where ε1 < 0 and ε1 + ε2 > 0. Since ε1ε2 < 0, in this region β is purely imaginary

and, therefore, no propagation is allowed in the frequency range for an ideal metal.
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Figure 6.2: Real and imaginary part of silver refractive index, Babar and Weaver 2015
(triagles) [6], Johnson and Christy 1972 (starts) [7], and fitted curve using the extended
Drude model dielectric function with ωp = 1.4 × 1016[rad/s−1], γ = 2.613[rad/s−1], and
ε∞ = 5
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Figure 6.3: Dispersion curve for surface plasmon for an ideal metal. The real (solid line) and imaginary
(dashed line) part of the propagation constant β are shown as well as the light line. Frequency and
propagation constant are both normalized to the plasma frequency.

133



• ω < ωsp

The propagation constant β varies from close to the light line for very low frequencies

to infinity for ωsp. In this region ε1 < 0 and ε1 + ε2 ≤ 0 and the dispersion curve is on

the right side of the light line resulting in bound states. For frequencies close to ωsp,

in addition to longitudinal confinement, the mode is also confined in the transverse

direction according to kx =
√
β2 − ω2µε. The modes close to the light line are loosely

confined with lower propagation loss.

In the case of real metals γ 6= 0 and, therefore, ε1+ε2 never goes to zero. This effectively

means that the propagation constant does not go to infinity and always has a real part

allowing for quasi bound propagation in ωsp < ω < ωp frequency range. In practice γ � ωp

even at room temperature and, therefore, confinement well below diffraction limit in the

dielectric can be achieved using SPP. However, there is a trade-off between the propagation

loss and confinement as highly confined modes suffer from larger loss in the z direction.

6.3 Metallic Optical Resonators

Metallic cavities enable the utilization of highly confined modes that are essential for laser

miniaturization. Reduction of the cavity mode volume below the λ3 of the resonating

mode leads to the emergence of cavity quantum electrodynamics (QED) phenomena, such

as spontaneous emission enhancement known as Purcell effect [78]. Moreover, due to the

presence of metals, some of the conventional definitions used for laser cavities should be

revised to incorporate loss and dispersion. Quantum mechanical treatment of the entire

device forms the basis of the development of nano-laser theory, and, in general applies to

the entire field.

A resonator is often characterized at the resonant frequency ω0 with its quality factor,
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Q, defined as

Q = ω0
Stored Energy

Power loss
. (6.12)

For an optical resonators, power loss = vgα × Stored Energy, where α is the Beer’s

law absorption coefficient for the beam intensity propagation through a medium, I =

I0 exp(−αx), and vg is the group velocity of the resonator mode vg = c0/ng where ng is

the group index. Therefore,

Q =
ω0

vgα
=
ω0

δω
, (6.13)

where δω is the linewidth of the resonant mode [101]. Given that photons are lost with a

rate of vgα, the quality factor can be rewritten as Q = ω0τp, where τp is the photon lifetime

in the cavity.

In cavities with high number of modes and uniform coupling to free space, the spon-

taneous emission factor in the rate equations, βsp, is the inverse of the number of modes

within the spontaneous emission bandwidth [58]. However, reduction in the number of

modes results in the enhancement of this factor and the observation of Purcell effect. The

lasing threshold is, thus, lowered as more of the spontaneous emission couples to the lasing

mode and βsp will approach unity in the case of a truely thresholdless laser. For example,

coaxial nano-laser at 4.5 K with spontaneous emission factor of βsp=0.99 has been demon-

strated [88].

The fraction spontaneous that is coupled to the lasing mode is called the spontaneous

emission factor β and is related to the Purcell factor F via,

β =
Fβ0

1− β0 + Fβ0

(6.14)
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where β0 is the bulk spontaneous emission factor without the Purcell enhancement, i.e.

F = 1, and β = β0, and β approaches 1 when F → ∞ [86]. Therefore, the Purcell factor

is a key parameter to quantify the degree of light-matter interaction [102] in a cavity. F

depends fundamentally on the level of confinement in the cavity which is determined by

two main parameters:

• quality factor Q

• effective mode volume; Veff .

The effective mode volume is defined as [102,103]

Veff =

∫
ε(r)|E(r)|2dr

ε(rmax)|E(rmax)|2
(6.15)

where rmax is the location of the maximum electric field. The effective volume is usually

normalized to and expressed in terms of (λ/2n)3. By applying the Fermi’s golden rule, the

Purcell factor is obtained as the ratio of spontaneous emission rate in the presence of the

cavity with respect to bulk and is expressed in terms of cavity parameters [102],

F =
6Q(λ/2n)3

π2Veff

. (6.16)

where n is the index of refraction at the location of maximum field. As seen from Eq. 6.16,

there are two mechanisms that increase the coupling of the spontaneous emission factor to

the lasing mode. First, increasing the cavity quality factor, i.e., decreasing the linewidth

of the lasing mode, and, second, is the reduction of the effective mode volume.

For metallic cavities, in general, Q is usually low due to metal loss. However, plas-

monic cavities excel at reducing the effective mode volume through highly confined fields
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in transverse directions. In contrast, laser waveguide consists of dielectric cavities with

weakly guided modes, which, in turn, allows for plane wave approximation of electromag-

netic fields.

The weekly guided modes and the dielectric nature of conventional Fabry-Pérot lasers

has led to the commonly used power confinement factor,

Γp =

∫
active

1
2
Re(E×H∗).ẑds∫

all
1
2
Re(E×H∗).ẑds

(6.17)

where z is the direction of propagation. Using Eq. 6.17 the confinement factor for a 5-

cascade ICL with 500 nm SCH is calculated to be 0.16.

This definition, although generally useful, is no longer valid for subwavelength metallic

cavities. For a strongly guided mode Eq. 6.17 results in larger than unity values of Γ [104].

In those cases the energy confinement factor ΓE must be used and is defined as,

ΓE =
stored energy in the active medium

total stored energy
. (6.18)

Equation 6.18 approaches to 6.17 only if the longitudinal component is negligible.

Electromagnetic energy is defined through the Poynting’s theorem

∫
V

[
E · ∂D

∂t
+ H · ∂B

∂t

]
dr =

∫
V

[J · E +∇ · (E×H)] dr. (6.19)

For a linear dispersionless medium D = εE and B = µH, where ε and µ are the complex
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permittivity and permeability of the medium, respectively. Therefore

u =
1

2
(E ·D + B ·H) (6.20)

denotes the total electromagnetic energy density. Accordingly, the Poynting’s theorem can

be rewritten as [105],
∂u

∂t
+∇ · S = −J · E (6.21)

where S = E×H is the Poynting vector.

The first term on the left hand side of Eq. 6.21 represents the rate of change in the

stored electromagnetic energy. The second term corresponds to power flow and the right

hand side is the dissipated power at a given point in the volume of interest [105].

In dispersive media, Eq. 6.20 is no longer valid and the effective electromagnetic energy

density follows

ueff =
1

2
Re

[
d(ω′ε(ω))

dω′

∣∣∣∣
ω′=ω

]
|E|2 +

1

2
Re

[
d(ω′µ(ω))

dω′

∣∣∣∣
ω′=ω

]
|H|2, (6.22)

where E(r) and H(r) are the harmonic electric and magnetic field. The first and second

term describe the electric and magnetic energy density, respectively. Noteworthy, in metals

below the plasma frequency, where the real part of permittivity assumes a negative value,

Eq. 6.22 ensures a positive energy density. For a non-magnetic medium, µ = µ0, Eq. 6.22

simplifies to,

ueff =
1

2
Re[εg(ω) + ε(ω)]|E(r)|2 (6.23)

138



where,

εg(ω) =
d(ω′ε(ω′))

dω′

∣∣∣∣
ω′=ω

(6.24)

is the group permittivity.

Hence, the energy confinement Eq. 6.18 reads,

ΓE =

∫
Va

dr
1

2
Re [εg,a(ω) + εR,a] |E(r)|2∫

V

dr
1

2
Re [εg(ω) + εR] |E(r)|2

, (6.25)

where the subscript a refers to the active region [106].

6.4 Principles of Lasing in Metallic Cavities

Is there a fundamental limit on the size of a laser?

Conventional dielectric semiconductor lasers are 1D cavities with weekly guided modes

in the transverse direction while the cavity is formed between two mirrors in the longitu-

dinal direction. In order to form a standing wave in a resonator of length L, the electric

field must repeat itself after a round-trip,

r1r2 exp([Gm − αi]L) exp(−2jβL) = 1, (6.26)

where r1 and r2 are the field reflectivity coefficients for the resonator mirrors, αi is the

waveguide internal loss, β is the propagation constant, and Gm is modal gain. The fraction

of the material gain that contributes to the amplification in the cavity is determined by
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the overlap of the electromagnetic mode and the gain medium, namely, the confinement

factor, GM = Γgm. From Eq. 6.26 and using β = 2πneff/λ0 the phase condition imposes a

lower bound on the resonator length via [58],

L = λ0/2neff (6.27)

where λ0 is the free space wavelength and neff is the effective index of the mode. This is

the so called diffraction limit. The only mechanism that can lower the absolute value of

L is the increase in the mode effective index. The effective index in a 5-cascade dielectric

waveguide is approximately 3.6 for, corresponding to a minimum L around 500 nm. In

order to increase the effective index above the ordinary semiconductor values, SPPs should

be used. As seen from Fig. 6.3, the effective index goes to infinity for localized SPPs and

allows for reduction of cavity beyond the diffraction limit. This is the fundamental concept

behind a spaser. For frequency ranges lower than ωsp, corresponding to propagating SPPs,

the dispersion relation provides effective indices higher than the dielectric waveguide, rep-

resented by the light line, which allows the phase condition to be fulfilled with smaller

values of L. The penalty for increasing the effective index is the increased propagation loss.

Equation 6.26 also requires the field amplitude to be amplified to compensate for the

waveguide loss and mirror reflection. Therefore [58].

Γgth = αi + αm = αtot (6.28)

where αm represents the loss of photons through the cavity mirrors is equal to 1
L

ln( 1
r1r2

).

Hence, increasing the length of the resonator lowers the gain requirement by virtue of

reducing the contribution of mirror loss to the total cavity loss. Consequently, reducing
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the cavity length in the longitudinal direction increases the gain requirement significantly.

This is the biggest challenge that must be overcome as the laser cavity size is reduced [104].

As mentioned in the discussion leading to Eq. 6.13, the quality factor is related to the

optical loss via Q = ω0/vgαtot and, therefore, the threshold gain can be expressed in terms

of the cavity quality factor

Γgth =
ω0

vgQ
=

2πng
λ0Q

(6.29)

where ng is the mode group velocity. In the study of laser cavities, it is useful to break

the quality factor into two parts: Qmat and Qrad. Qmat refers to material loss in the cavity

and Qrad describes the radiation out of the cavity. Using this notation the cavity quality

factor can be rewritten,

Q−1 =
vg(αm + αi)

ω0

= Q−1
mat +Q−1

rad. (6.30)

Subsequently, an external efficiency ηext can be defined

ηext =
Q

Qrad

, (6.31)

which quantifies the external radiation efficiency of the laser cavity [107].

The size limitation in the transverse direction is driven by the confinement requirement

and is due to low index contrast in dielectric guides. As the waveguide dimensions become

comparable to the wavelength, the mode extends considerably out of the waveguide and

the confinement factor becomes very poor. When confinement is imposed using metal to

form the cavity, the transverse size can be reduced to diffraction limit. Surpassing this
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Figure 6.4: Output power in vs derive current for a conventional semiconductor (solid line) and in the
limit when spontaneous emission is only coupled to a single lasing mode (dashed line).

limit is only possible through the use of SPPs. As shown in Eq. 6.4 and Fig. 6.3, plasmonic

modes can be confined in the transverse direction below the diffraction limit, which is not

achievable in a dielectric cavity.

Reducing the cavity size in all three dimensions results in significant reduction of the

effective mode volume Veff . Therefore, Purcell factor F, which is inversely proportional to

the effective volume, is increased in accordance with Eq. 6.16 and the spontaneous emission

coupling factor β is enhanced according to 6.14. The output power of a laser above the

threshold reads [58],

Pout =
~ω
q
ηi

αm
αm + αi

(I − Ith) (6.32)

whereas below threshold it follows

Pout =
~ω
q
η′i

αm
αm + αi

βI. (6.33)

These two relations manifest themselves in the famous LI curve for a semiconductor
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laser. In the limit of 100% efficiency, ηi = η′i = 1 as β approaches unity, i.e. as the

spontaneous emission is only coupled into a single lasing mode, the onset of threshold

disappears from input/output laser characteristic and the laser becomes thresholdless, as

shown in Fig. 6.4 [80]. This behavior has been experimentally demonstrated in coaxial

laser cavities at near infrared frequencies at cryogenic temperatures [88].

6.5 Mid-IR Microcavities Design and Simulations

As discussed earlier in previous sections, plasmonic cavities based on SPP standing waves

are very effective in reducing the mode volume, thereby, confining the field well below the

diffraction limit. Circularly symmetric cavities are particularly interesting for a number

of important applications such as imaging. From a wide range of cavity configurations,

coaxial cavity was chosen for its interesting properties, plasmonic modes, and compatibil-

ity with mid-IR active region. Therefore, in this section, we focus on a coaxial cavity and

study the structure in great detail. Figure 6.5 illustrates the general schematics of a coaxial

cavity. Due to its high plasma frequency and low loss, silver will be used throughout this

section as the metal in the core and cladding of the cavity structure. Figure 6.2 depicts the

dielectric function of silver at room temperature as obtained based on Drude model fit to

the experimental data of Babar and Weaver 2015 [6]. A semiconductor active region with

an effective refractive index of 3.41 at transparency is also considered as the gain medium

which partially fills the interior volume. At low temperature, T = 4K, the imaginary part

of the silver’s dielectric function is scaled down by a factor of 100 [85], and a temperature

variation of dn/dT = 2e−4[1/K] is assumed for the semiconductor region resulting in an

optical index of 3.35 [85,88]. All the simulations are conducted based on the finite-element

method (FEM) using COMSOL multiphysics.
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Figure 6.5: The Coaxial cavity

An illustrative way to design and optimize the plasmonic coaxial cavity involves treat-

ing the structure in terms of its basic building blocks, namely, the silver nanowire, coaxial

gain region,and surrounding metal. Here, the coaxial cavity is envisioned as a finite coax-

ial waveguide with proper reflectors at both ends. The modes of a coaxial waveguide,

especially its SPP mode, can be well understood as the result of the coupling between a

nanowire waveguide at the core to the surrounding cylindrical waveguide. This picture

provides deep insight into the nature of the underlying modes, which is essential for opti-

mization of the cavity structure. Full-wave 3D simulation results will be applied at the end

to verify and refine the obtained results. A similar cavity structure has been perviously

studied at 1.44µm [88].

To understand the role of the nanowire, first an infinitely long silver nanowire embedded

in a semiconductor medium is simulated. This structure supports a single mode. Figure 6.6

shows the magnitude of the electric field for the corresponding mode of a 200nm-diameter
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Figure 6.6: Magnitude of the electric field for a silver nanowire of 100 nm radius in a semiconductor
medium

silver nanowire at λ = 3.5µm. As is evident from the mode profile, optical energy exponen-

tially decays away from the silver-semiconductor boundary. Given the small penetration

of the fields into the metal, light is tightly confined to the vicinity of the nanowire in the

dielectric. This behaviour is closely reminiscent of the surface-wave character of SPPs at

flat metal-dielectric boundaries.

Figure 6.7 plots the real and imaginary parts of the effective index as a function of

the nanowire radius. The fact that the real part is greater than the dielectric’s index

of refraction confirms that this mode is indeed of plasmonic nature. Thus, similar to a

flat metal-dielectric boundary, metal nanowires inside a dielectric medium can support

propagating SPPs and, therefore, guide light. As the simulations demonstrate, the modal

characteristics, however, significantly depend on the nanowire radius. In the limit of a

large radius, the effective index approaches to that of a silver-dielectric flat boundary SPP,

i.e.
√
ε1ε2/(ε1 + ε2). Reducing the radius, on the other hand, results in an increase in

145



(a) (b)

Figure 6.7: (a) Real and (b) Imaginary part of the effective index of a nanowire silver waveguide in the
semiconductor medium versus the nanowire radius

the modal loss and effective index. Figure 6.7 indicates that the most interesting range

of radii, from an applied viewpoint, is between 100 nm to 300 nm where the real part

appreciably varies without much increase in the loss. Below 100 nm the loss shoots up and

above 300 nm the confinement offered by the plasmonic mode is not fully exploited.

As the next step, a dielectric-filled metal cylindrical waveguide is studied. In analogy

with the nanowire case, the metal is assumed to be silver and the inside dielectric is taken

to be made of the ICL semiconductor at transparency. Figure 6.8 depicts the magnitude of

electric field of the fundamental mode. Evidently, the optical energy is distributed within

the entire dielectric region, with its peak located at the center. This mode much resembles

that of a microwave cylindrical waveguide with PEC walls. The mode nature can be traced

back to successively reflecting light rays at the metal-dielectric boundary.

The real and imaginary parts of the effective index are plotted versus the waveguide

radius in Fig. 6.9. The mode exhibits a clear cut-off, where the effective index becomes
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Figure 6.8: Magnitude of the electric field for a semiconductor Pillar of 500 nm radius embedded in
silver

purely imaginary. The non-plasmonic nature of this mode is evident from its effective index

being always smaller that the dielectric’s index of refraction.

When combined together, a nanowire and a circular structure form a coaxial waveg-

uide. As an example, Figure 6.10 shows |E| for the plasmonic mode supported by such

a waveguide with inner radius (ri) of 100 nm and outer radius (ro) of 400 nm. A simple

comparison between this mode and the silver nanowire mode reveals that both essentially

rely on the propagation of SPPs along the nanowire at the silver-semiconductor boundary.

The outer conductor of the coaxial waveguide, however, limits the lateral extension of the

pure nanowire plasmonic mode, thereby producing a highly confined optical guided wave.

The effective index of this mode is plotted versus the wavelength from visible to in-

frared in Fig 6.11. The plasmonic mode is the one with an effective index higher than the

semiconductor refractive index. As seen in the figure, this mode does not show a cut-off,
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Figure 6.9: (a) Real and (b) Imaginary part of the effective index of a circular semiconductor waveguide
surrounded by silver

Figure 6.10: Magnitude of the electric field for the plasmonic mode of a coaxial waveguide with silver
as inner and outer metal. The inner and outer radii are 100 nm and 400 nm respectively
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Figure 6.11: Real part of the effective index for the fundamental mode of a coaxial waveguide with inner
radius of 100 nm, outer radius of 400 nm

and, therefore, is useful over a large range of wavelengths.

Figure 6.12 shows the change in the real and imaginary part of the waveguide effective

index for a fixed outer radius as the inner radius varies. For ri � ro, the effective index is

dominated by the nanowire characteristics and closely resembles Fig.6.7. As ri approaches

ro, the mode strongly interacts with the outer metal, which is evident from the additional

loss. Therefore, for a given ro, i.e. the transverse footprint of the final structure, there is

an optimum ri that minimizes the waveguide loss.

The step-by-step analysis allows us to develop a methodology for optimizing the struc-

ture for any wavelength operation. In order to obtain an initial design for the transverse

dimensions, a favourable ri is first chosen from nanowire simulation. Then, ro is taken as

the minimum outer diameter for which the loss is not significantly increased compared to

the pure nanowire mode. For an ri/ro combination, an effective index is derived for a given

wavelength.
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Figure 6.12: (a) Real and (b) Imaginary part of the effective index of a coaxial waveguide versus inner
metal radii. The outer radius is kept constant at 400 nm

In order to determine the length of the cavity the transverse resonance technique (TRT)

is used. TRT is a powerful means for analyzing optical and microwave resonators and

waveguides [108, 109]. This method involves modeling the cavity as a terminated waveg-

uide which supports resonant mode(s) as the result of the formation of standing waves

associated the underlying guided mode(s). The resonance condition, thus, corresponds to

that of a terminated transmission line, thereby, simplifying a vectorial 3D problem to a

1D scalar one. This approach is particularly helpful while designing a cavity based on a

particular waveguide. The main advantage of TRT lies in its ability in identifying the role

of the modal characteristic of the underlying guided mode(s), i.e. effective mode index,

as well as the magnitude and phase of the terminal reflections in the formation of the

resonant mode. In the following, TRT will be applied to design suitable cavity resonators

for mid-IR micro-cavities based on the surface plasmon polariton modes of the previous

section. Nevertheless, since TRT is only an approximate solution to the actual problem,

the results will be re-examined in the next section for accuracy and further optimization
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using a full-wave 3D analysis.

To form a coaxial cavity, the corresponding waveguide needs to be terminated at both

ends. Considering the fabrication aspect of such a structure, silver naturally will terminate

the top surface of the cavity since it will be deposited not only on the cavity side walls, but

also on the top surface. Nevertheless, the silver cladding can potentially support a SPP

mode of its own at the silver-semiconductor boundary on the top surface of the cavity.

Such an unwanted mode competes with the desired cavity mode and acts as an additional

loss channel. A simple remedy to this problem is to insert a dielectric buffer with sufficient

index contrast to the semiconductor medium in order to lift the degeneracy between the

desired SPP mode and the unwanted one.

The air can straightforwardly play the role of the termination at the other end, as it

is common to etch away the substrate to achieve better reflection on the bottom side of

the cavity. Having these two types of terminations in mind, TRT method was used to

calculate the resonant wavelength of a 1D transmission line that consists of an effective

semiconductor region terminated by air on one side and by SiO2/silver on the other side.

The effective index of the coaxial waveguide with ro = 400 nm and ri ≈ 100 nm was used

for the effective semiconductor region.

The index profile and the electric fields are shown in Fig. 6.13. Due to the asymmetric

terminations, the electric field maximum is not at the center of the cavity. Figure 6.14

shows the dependance of the resonant wavelength on the semiconductor and the SiO2 buffer

heights.
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(a) (b)

Figure 6.13: (a) Refractive index profile and (b) electric field of a 1D resonator comprised of a semicon-
ductor medium with effective refractive index of 3.7 terminated on one side with an air interface and on
the other side with a SiO2/silver boundary

(a) (b) (c)

Figure 6.14: Dependance of the resonant wavelength on (a,b) the height of the semiconductor and (c)
height of the SiO2s layer
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Once an estimate of the cavity dimensions are obtained, the cavity can be simulated

in order to calculate the fundamental resonance parameters. As described in the previous

section, the quality factor is the main cavity parameter that should be calculated and

optimized as it is directly related to the threshold modal gain and carrier density. It is

also beneficial to divide the cavity loss into material and radiation loss especially in the

case of laser cavities. The former identifies the lost energy and the latter is related to

the useable output radiation. Other figures of merit include the confinement factor, which

relates the modal gain to the material gain, and effective mode volume and Purcell factor,

which determines the contribution of cavity quantum electrodynamic (QED) effects in the

cavity behaviour.

The next round of optimization, therefore, involves the cavity as a whole. So far, it

was concluded that the inner radius of the cavity is around 100 nm and the height of the

semiconductor region and the dielectric buffer are 660 nm and 30 nm, respectively. In or-

der to maximize the cavity quality factor, a series of iterative simulations with parameter

sweep were performed for both ri and ro. These simulations showed that the optimum

inner diameter is indeed at 100 nm and the cavity quality factor is monotonically reduced

as ro is increased.

The curve associated with Qcav in Fig. 6.15a demonstrates variations of Q versus ro.

The overall quality factor can be divided into the radiation and loss contributions as de-

scribed in Eq. 6.30, both of which are also plotted in this figure. Qrad is calculated by

setting the imaginary part of silver permittivity to zero. Qmat is scaled by a factor of 5 in

Fig. 6.15a for ease of illustration. As the outer cavity radius is decreased, the material loss

is increased and Q deviates from its radiative value. Since these simulations are using the
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Figure 6.15: (a) Quality factor as a function of outer radius of the coaxial cavity at 4K. Overall quality
factor (stars) as well as Qrad (circles) and Qmat/5 (triangles)(b)External cavity efficiency as a function
of cavity outer radius, both at 4K. Simulation was perform using eigenfrequency solver of COMSOL
multiphysics in 2D axisymmetric mode.

low temperature dielectric constants, Qmat is much higher that Qrad and the radiative loss

ultimately determines the quality factor especially at larger values of ro. That explains the

monotonic dependence of the quality factor to the cavity outer radius.

Fig 6.15b shows the external efficiency ηext = Q/Qext as a function of ro. High values

of ηext are due to low material loss. Figure 6.16 shows the magnitude of the electric field

as well as the cavity index profile for the coaxial cavity with ri = 130 nm, ro = 400 nm,

height of the semiconductor region of 660 nm and dielectric buffer of 30 nm.

For room temperature values of the dielectric permittivities, the same strategy was

followed. First ro was set to 550 nm and ri was varied to obtain the maximum Q which

resulted in ri = 130 nm. Next ri was kept at 130nm and ro was varied. The maximum

Q in this case was achieved at 400 nm. The next iteration resulted in ri = 140 nm and

ro = 400 nm which confirms the convergence of this algorithm. This result is also in agree-
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(a) (b)

Figure 6.16: (a) Index profile and (b) magnitude of electric field for a vertical cross section of a coaxial
cavity with ri = 130 nm, ro = 400 nm, height of the semiconductor region of 660 nm and dielectric buffer
of 30 nm at 4K.

ment with what is approximated from the 2D waveguide analysis and proves the validity

of this method.

As shown in Fig.6.17b, contrary to the low-temperature case represented in Fig. 6.15,

the quality factor at RT exhibits a maximum value for a certain outer diameter. The reason

for this behaviour becomes more obvious when the quality factor is split into absorption

loss and radiation loss as shown in Fig. 6.17a. Due to higher loss at higher temperatures,

Qmat plays a much more dominant roll in the overall quality factor. Therefore, the tradeoff

between the high absorption at low values of ro and high radiation at higher ro region

creates an optimum value of the outer cavity dimensions.

The external cavity efficiency is also plotted in Fig. 6.18. Lower external efficiency is
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Figure 6.17: Quality factor as a function of outer radius of the coaxial cavity at RT. Overall quality
factor (stars) as well as Qrad/2 (circles) and Qmat (triangles)(b)External cavity efficiency as a function of
cavity outer radius.

due to higher loss at RT and could be adjusted by changing ro at the expense of lower

overall quality factor.

6.5.1 Full-Wave 3D Analysis

The full wave 3D analysis was also performed using finite-element method (FEM) in COM-

SOL. In order to obtain and analyze the various cavity modes, full-wave 3D analysis was

performed for the optimized cavity structure at RT with the following dimensions obtained

from waveguide and TRT analysis discussed so far,

• ro = 400 nm

• ri = 130 nm

• semiconductor region height = 660 nm

• SiO2 height = 30 nm
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Figure 6.18: External cavity efficiency as a function of cavity outer radius at RT

The electric field of the fundamental resonant cavity mode is shown in Fig. 6.19. The

magnetic field component parallel to the semiconductor-metal boundary, Hz, is zero for

this mode, which is expected for a plasmonic mode. Given the finite magnitude of the

longitudinal electric field, Ez, this mode is, strictly speaking, a TM mode. However, in-

side the cavity the longitudinal electric field is several orders of magnitude smaller than

the transverse components. Therefore, this mode exhibits a quasi-TEM behaviour, where

most of the energy is stored in the transverse field components. The strong Ex and Ey

components inside the cavity are sketched by Fig. 6.19d and 6.19e, respectively. The Ez

magnitude becomes appreciable only close to the output aperture of the cavity as shown

in Fig. 6.19c. Once the mode is obtained, various cavity merits are calculated through

data post processing according to the definitions introduced in the previous sections. For

the specific cavity mentioned above, the wavelength of the fundamental resonant mode is

at 3.5µm and the cavity has a quality factor of 118. The confinement factor and effec-

tive mode volume are calculated according to Eq. 6.25 and 6.15. For this structure, Veff

and Γ are equal to 0.14(λ/2n)3 and 84% respectively. The required modal gain is around

500 cm−1 and the Purcell factor has a value of 5.1× 102.
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In order to compare the cavity performance at room and low temperatures as well

as the dependance of the various parameters on the cavity dimensions and loss, several

structures have been simulated in full-wave 3D mode and the corresponding parameters

are summarized in Table. 6.1. It can be seen that some parameters like the quality fac-

tor depend on both physical geometry and the permittivity values whereas other merits

such as the confinement factor mostly depends on the modal behaviour and shows lower

sensitivity to temperature or geometry. The quality factor can be enhanced at low tem-

peratures by decreasing the outer diameter of the cavity. However, at RT, there exists

an optimum value for ro corresponding to the maximum Q. This is in agreement with the

TRT simulation data. The threshold gain is lower considerably at low temperature clearly

demonstrates the feasibility of the realization of this design at cryogenic temperature. Ad-

ditional experimental data is required to determine the actual temperature range for this

and similar design. Assuming a typical value of 0.005 for the spontaneous emission factor

in semiconductor lasers, the higher ends of the Purcell factors reported in Table. 6.1 yield

a spontaneous emission enhancement factor close to one and exhibits potential for thresh-

oldless operation. It is also worth to note that the optimum cavity parameters obtained

from the systematic 2D analysis are well lined up with the 3D simulations.

Other modes of the mid-IR micro-cavity are shown in Fig. 6.20. Aside from the

fundamental mode at λ = 3.5µm, the resonant wavelength of the nearest modes are at

λ = 4.85µm and λ = 2.83µm both with second order degeneracy. These modes fall outside

of the gain bandwidth of the active region and will not compete with the fundamental

mode. Thus, the device will operate in pure single mode. It is important to note the

following points:
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(a) (b)

(c)

(d) (e)

Figure 6.19: The electric field of the fundamental resonant mode of the optimized cavity at RT. (a)
Magnitude of the electric field in XY plane at Z=450 nm (b) in XZ plane at Y=0 (c) z component of the
electric field in YZ plane and (d) x and (e) y components of the electric field at XY plane at Z=450 nm
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Table 6.1

Parameter RT RT 4K 4K 4K

ro[nm] 400 400 400 350 300

ri[nm] 200 130 130 130 130

λ0[µm] 3.56 3.52 3.52 3.57 3.65

Q 107 118 810 1247 2014

ΓE 83% 84% 84% 83% 81%

Veff

(λ/2n)3
0.25 0.14 0.14 0.08 0.04

ΓGth[cm−1] 562 515 75 48 29

Fcav 2.60E+2 5.12E+2 3.51E+3 9.47E+3 3.06E+4

• The cavity modes are separated by a ∆f = 23 [THz]. This frequency spacing at

Mid-IR wavelength indicates a sparse modal content which allows for designing a

cavity where only the fundamental mode coincides with the gain bandwidth

• As opposed to the other cavity modes, the fundamental mode is not a degenerate

mode. Combined with the frequency spacing characteristics of the cavity, this means

that the cavity can operate in a single frequency mode.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 6.20: Modal content of the optimized mid-IR cavity. (a-c) The degenerate cavity mode at
λ = 4.85µm with Q=75 (d-e)The fundamental mode at λ = 4.85µm with Q=118 (f-g) Higher order mode
at λ = 2.83µm with Q=210 and second order degeneracy

161



6.5.2 Optical Pumping and Scattering from Cavity

Given that this cavity is designed for optical pumping, it is important to discuss how

efficiently the external excitation can be coupled into the cavity. For calculating the ef-

ficiency of the coupling of optical pump power to the cavity active region, the scattering

problem was solved for the optimum cavity design. A plane wave incidence is considered

at λ = 2.098µm, which corresponds to a HO:yttrium-aluminum-garnet (YAG) laser, as-

suming an imaginary refractive index of 0.05 for the gain medium [110]. The background

excitation is a plane wave electric field polarized in the x direction. Figure 6.21 shows the

scattered field together with the background excitation.

The scattered time average power flow is shown by the yellow arrows in Fig. 6.22. This

results shows the circulation of the pump power through the cavity. Calculating the ratio

of the absorbed power by the semiconductor region to the incident power on the device

aperture,

AbsorptionEfficiency =

∫
v
Pabs dv∫

s
Pinc ds

(6.34)

shows that 75% of the power impinged on the aperture is absorbed by the gain medium,

indicating the compatibility of this design with optical pumping methods. Therefore,

these devices can be efficiently pumped using a external laser at λ = 2.098µm. The input

excitation is coupled into the cavity and is absorbed by the gain medium. Atoms will

absorb energy from the field due to dipole interactions by going from ground to the excited

states leading to population inversion and lasing.

6.5.3 Electrical Pumping

Several modifications to the design are required in order for the coaxial cavity to become

compatible with electrical pumping schemes. First and foremost the metallic region of
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Figure 6.21: The background electric field, a plane wave in x direction, shown by white arrows and the
normalized magnitude of the scattered field [color plot] from the structure.
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Figure 6.22: The normalized time averaged power flow of the scattered field shown by yellow arrows and
the normalized magnitude of the scattered field from the structure [color plot].
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the cavity should not be in direct contact with the active region. Thin layers of dielectric

materials can be implemented to separate the active region from the metal. The thickness

and refractive index of the dielectric have to be carefully tuned to minimize the mode

perturbation. Other cavities such as a simple pillar could also be adapted to mid-IR

emission gain mediums. In these scenarios the cavity terminations can be controlled by

incorporating distributed Bragg reflectors (DFB) in the active region growth for maximum

performance.

6.6 Discussions and Conclusions

In this chapter a systematic approach was demonstrated to design a coaxial cavity. The

method not only enables the design of an optimum subwavelength plasmonic cavity at

Mid-IR wavelength region, but also is amenable to any other spectral region due to its

generality. Throughout the process, the role of each component on the final cavity merits

was quantitatively studied. This systematic approach can be summarized as follows:

1. The plasmonic waveguide design −→ the approximate silver nano-wire dimensions ri

2. The pilar waveguide design −→ outer diameter of the cavity ro

3. The coaxial waveguide −→ adjustment of ri and ro when combined is a single waveg-

uide and the effective index of the traveling wave

4. The transverse resonant technique −→ the component height determination and the

tuning of the cavity wavelength

5. 2D and 3D simulation −→ quality factor optimization.

6. Post processing and calculation of cavity parameters
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The design methodology is illustrated by a flow chart in Fig. 6.23. Due to the plasmonic

nature of the coaxial structure, high values of confinement and mode volumes much below

the diffraction limit were obtained. Given that for a laser cavity minimizing the threshold

gain is highly desirable, the 3D simulations have been focused on maximizing the quality

factor. It was shown that in the presence of loss, especially at non cryogenic temperatures,

the balance between loss and confinement results in an optimum design to achieve the most

efficient cavity.

The active region for a coaxial cavity at Mid-IR can utilize the W-shape quantum well

(QW) structure at the heart of an ICL. Several of these multi-QW periods can be stacked

together and grown on a GaSb substrate as shown in Fig. 6.24b. Such a cavity can have

applications in imaging and sensing. Figure 6.24a shows the dependance of the resonant

wavelength on the ambient refractive index.

The resonant wavelength can be varied by 25 nm for ambient refractive index change

of 0.1. This characteristic can be utilized in biological, chemical, or environmental sens-

ing where the emission wavelength is monitored in presence of the detectent. Another

interesting application of this design is in the field of Mid-IR imaging. Since the metal

cladding shields the evanescent tail of the cavity mode, many of these micro-structures

can be packed in a small region and may be pumped at the same time. As the resonant

wavelength can be tuned in these cavities by merely changing the dimensions, such as array

can cater to a range of wavelength not unlike a CCD camera. The radial polarization of

the fundamental mode will become highly beneficial in such applications.
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Figure 6.23: Flow chart of the systematic design method of a coaxial cavity
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Figure 6.24: (a) The coaxial cavity resonant wavelength versus ambient refractive index (b) Proposed
active region for the coaxial cavity at Mid-IR
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Chapter 7

Conclusions and Future Works

This thesis began by reviewing the operational pricniples of ICLs and highlighting the

unique properties of this category of cascaded lasers such as internal generation of electron

and holes. ICLs were then compared to QCLs from several viewpoints including their

material system, temperature sensitivity, record output power, number of cascades, po-

larization, and threshold power. It was argued that QCLs are best suited for high power

operation in the mid-IR and ICLs are ideal for low-power battery operated applications.

The list of milestones achieved are as follows:

• RT CW Operation

The fabrication of ICL was explored in detail. Several techniques such as planariza-

tion were proposed and implemented to add more flexibility to the fabrication meth-

ods for future devices close to optical lithography limits. Moreover, several new

generations of ICLs were developed based on novel designs, which ultimately led to

RT operation. Throughout these studies, different aspects of the ICL designs were

varied in order to assess their effects on the device performance. These variable pa-

rameters included the number of cascades (changing from 12 to 6 and 5), doping level
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of the active region’s p-doped areas, electron injector’s length, and electron injector’s

doping level. It was experimentally demonstrated that the number of cascades af-

fects the internal loss mainly through changing the confinement factor. Therefore, a

major reduction in the internal loss was achieved by means of lowering the p-doping

level in the GaInSb and GaSb wells in the active region. Furthermore, lowering the

threshold current was accomplished primarily through the reduction of the length of

electron injector. The lower loss and threshold current densities were the two main

milestones towards achieving room temperature operation. Further optimizations

such as increasing the n-doping of the electron injector resulted in additional reduc-

tion in the threshold current and improving the WPE. Maximum WPE of 6% was

achieved form a 1 mm device producing up to 22 mW of usable power.

• Fabrication and measurement of novel active region designs

In order to realize higher gain per cascade, novel active region designs, such as δ-

strained QW design, were experimentally characterized. Even though these initial

trials was proven far from optimized, their fabrication and measurements provided

valuable insight to their design shortcomings. For example, it was experimentally

shown that two distinct peaks were detectable in the output emission spectrum.

These peaks were associated with separate and competing optical transitions in the

active region. This discovery was linked to the high threshold current observed for

these devices. Additional iteration of similar design is an important subject for future

research which could lead to an active region design that outperform the W-active

region.

• Mid-IR anti-reflection coating design and fabrication for ICLs

As the next phase of the project, several material combinations were considered
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for ARC application in mid-IR lasers. Each material was individually characterized

from optical and fabrication points of view. Single and double layer ARCs were then

designed and applied to ICLs. For each experiment, the fabricated laser die was

packaged to allow precise control of the substrate temperature during the coating

evaporation. Throughout these experimental analyses, YF3, SiO2, Al2O3, TiO2, and

ZnS were identified as the most promising candidates from a wide range of materials

that were available at the time. The ARC design was always tailored to the specific

laser wavelength. Coatings for a wide range of reflectivities from 0.15 to 7×10−4 were

designed and fabricated. By monitoring the laser performance pre- and post ARC,

the leakage current in the interband cascade lasers with different carrier concentra-

tions was experimentally studied. Single layer Al2O3 and double layer ZnS-YF3,

ZnS-SiO2, and TiO2-SiO2 ARCs were applied to mid-IR ICL devices to achieve re-

flectance ranging. It was observed that for lower reflectivity coatings the leakage

current appreciably rises with increasing carrier concentration, thus, diminishing the

slope efficiency improvements and in fact degrading the slope efficiency at very low

reflectance. The ratio of leakage to threshold current was increased by 17% for high

carrier concentrations at very low AR coating values. The results also allowed for

experimental optimization of anti-reflection coatings for increased slope efficiency in

Mid-infrared ICLs. The existence of an optimal value for the anti-reflection coatings

in order to maximize the power in ICLs was deduced as an important result. Fu-

ture work should focus on implementing design ideas such as the implementation of

high barriers in the active region in order to improve the performance and stability

of these lasers. Substantial improvement in the wall-plug efficiency and in the ex-

tractable power from ICL lasers are expected by appreciable reduction the carrier

leakage.
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• Broadband Antireflection coating design, and fabrication for solar cells

As another application of ARCs, wide band coatings for GaSb solar cells were also

developed. In order to provide lower reflectivity over a wider spectral range the ARC

simulation tool was expanded to support three layer coating simulations. Further

material characterizations and fabrication optimizations were implemented which

resulted in 20% increase in solar cell efficiency and a record short circuit current.

These results were not discussed in this thesis since they were not directly related to

mid-IR lasers. Nevertheless, they were shared with the scientific community through

the following publication [111].

• Subwavelength Plasmonic cavity design at mid-IR

And last, but not least, the subwavelength micro cavities were considered at mid-IR

with the W-active region at the heart of the design. The cavity design methodology

was developed in a systematic way that is applicable to similar designs at other

wavelengths. The contribution of the fundamental building blocks were inspected

through simulations using FEM method in COMSOL multiphysicsr. It was shown

that due to the plasmonic nature of its mode, a coaxial cavity is able to confine the

mode well below the wavelength which opens the possibility of realizing thresholdless

lasers at these wavelengths. Optimal designs were investigated through 3D simulation

and post processing calculations. A quality factor of 118 was calculated for a coaxial

cavity with outer diameter 400 nm and height of ≈ 700 nm at RT. At low temperature

the quality factor was shown to improve to above 2000. The energy confinement

factor of about 84% was predicted with an effective volume below 0.25
Veff

(λ/2n)3
for

all the design variations. Future work should focus on the fabrication of such cavities

to correlate the simulation design with experimental data.
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Appendix A

Material Dispersion and Refractive

Indices in Mid-IR

Single Layer Coatings Materials

• Zirconium dioxide (ZrO2)

ZrO2 refractive index in the visible range is plotted in Fig. A.1 together with the

ellipsometry data. Cauchy equation was used to fit and estimate the refractive index

in the 3-4 µm region, and results in an index around 1.89 in the infrared region.
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Figure A.1: ZrO2 dispersion curve from SOPRA N&K Database [8], its Cauchy fit and experimental
ellipsometry data

• Tantalum pentoxide (Ta2O5)

Figure A.2 shows the refractive index spectrum of Ta2O5 in the visible range as well

as the ellipsometry data. Fitted curve using Cauchy approximation is also included.

The fitted values predict an index of 1.76 within 3µm-4µm range.
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Figure A.2: Ta2O5 dispersion curve from SOPRA N&K Database [8], its Cauchy fit and experimental
ellipsometry data
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• Aluminium oxide (Al2O3)

Al2O3 has absorption bands in the far-infrared and ultraviolet region is evident from

the Sellmeier equation [9]:

n2 − 1 = 1.4313493
λ2

λ2 − 0.07266312

+ 0.65054713
λ2

λ2 − 0.11932422

+ 5.3414021
λ2

λ2 − 18.0282512
(A.1)

The ellipsometry data was fitted with a Sellmeier equation similar to Eq. A.1 and it

is plotted in Fig. A.3.
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Figure A.3: Al2O3 Sellmeier dispersion curve [9], experimental ellipsometry data and its Sellmeier fit

High Index Materials

• Zinc sulfide (ZnS)

ZnS is one of the most widely used material in infrared region. The refractive index
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data [11] can be fitted with a Sellmeier dispersion equation [10] indicating absorption

bands in the ultraviolet and far infrared range.

n2 − 1 = 3.60981117
λ2

λ2 − 0.1698078042

+ 0.490409060e
λ2

λ2 − 0.3020367612

+ 0.273290892
λ2

λ2 − 33.89066532
(A.2)

The spectrum of the refractive index is plotted in Fig. A.4. The ellipsometry data

and a Sellmeier fit with parameters similar to Eq. A.2 are also shown in this figure.
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Figure A.4: ZnS Sellmeier dispersion curve [10,11], experimental ellipsometry data and its Sellmeier fit

Low Index Materials

• Yttrium fluoride (YF3)

YF3 is one of the low index materials that was used in multi-layer coatings. The
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known refractive index [12] and the ellipsometry data were fitted with a similar

Sellmeier equation for consistency, and are plotted in Fig. A.5 .
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Figure A.5: YF3 Sellmeier dispersion curve [12] and its Sellmeier fit, experimental ellipsometry data and
its Sellmeier fit.

• Silicon dioxide (SiO2)

The Sellmeier equation for SiO2 [9, 13] indicates three absorption bands at 0.06 µm,

0.11 µm, and 9.89µm.

n2 − 1 = 0.6961663
λ2

λ2 − 0.06840432

+ 0.4079426
λ2

λ2 − 0.11624142

+ 0.8974794
λ2

λ2 − 9.8961612
(A.3)

The data collected from the ellipsometry was fitted with a similar Sellmeier equation,

which gives a refractive index between 1.36 to 1.38 in 3 µm-4 µm region.
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Figure A.6: SiO2 Sellmeier dispersion curve [9, 13], experimental ellipsometry data and its Sellmeier fit

195



Appendix B

Double Layer AR Coating Designs

This appendix summarizes the parameters associated with the measured devices in Ta-

ble 5.2. Under each item, the ARC material and film thickness as well as the target and

measured reflectivity are listed. In each section, the contours of constant reflectivity versus

film thickness and the reflectivity curve versus wavelength are plotted.

• YF3-ZnS design for reflectivity of 1% at λ=3.4µm

YF3= 176 nm

ZnS= 164 nm
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Figure B.1: Contours of constant reflectivity versus film thickness for a double layer YF3-ZnS ARC for
an ICL-3 at λ=3.4µm
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Figure B.2: Reflectivity curve versus wavelength for a double layer YF3-ZnS ARC with thickness of
177 nm and 164 nm, respectively.

• ZnS-YF3design for reflectivity of 1% at λ=3.4µm

ZnS=244 nm

YF3=344 nm
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Figure B.3: Contours of constant reflectivity versus film thickness for a double layer ZnS-YF3 ARC for
an ICL-3 at λ=3.4µm
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Figure B.4: Reflectivity curve versus wavelength for a double layer ZnS-YF3 ARC with thickness of
244 nm and 344 nm, respectively.

• TiO2-SiO2 design for reflectivity of 1% at λ=3.5µm

TiO2= 330 nm

SiO2= 200 nm
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Figure B.5: Contours of constant reflectivity versus film thickness for a double layer TiO2-SiO2 ARC
for an ICL-1 at λ=3.5µm
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Figure B.6: Reflectivity curve versus wavelength for a double layer TiO2-SiO2 ARC with thickness of
330 nm and 200 nm, respectively.

• ZnS-SiO2 design for reflectivity of 1% at λ=3.8µm

ZnS=292 nm

SiO2=408 nm
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Figure B.7: Contours of constant reflectivity versus film thickness for a double layer ZnS-SiO2 ARC for
an ICL-2 at λ=3.8µm
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Figure B.8: Reflectivity curve versus wavelength for a double layer ZnS-SiO2 ARC with thickness of
292 nm and 408 nm, respectively.

• ZnS-SiO2 design for reflectivity of 1E-5% at λ=3.5µm

ZnS=287 nm

SiO2=447 nm
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Figure B.9: Contours of constant reflectivity versus film thickness for a double layer ZnS-SiO2 ARC for
an ICL-2 at λ=3.2µm
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Figure B.10: Reflectivity curve versus wavelength for a double layer ZnS-SiO2 ARC with thickness of
287 nm and 447 nm, respectively.
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