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Abstract 

The literature on the perception and generation of randomness suggests that people’s conception of 

randomness deviates from true randomness in predictable and consistent ways. In general, people see 

patterns or repetitions as evidence of non-randomness (Nickerson, 2002). In the 2D domain (e.g., grids) in 

particular, people believe that  random chance occurrences do not fall in clusters, in similar locations 

(e.g., same row or column), or on the corners and edges of the space (Falk, Falk & Ayton, 2009). A 

common explanation given is that spread-out and patternless occurrences in the interior of the grid are 

locally representative of what people believe random chance occurrences to look like. But why do people 

make this association in the first place? Given that random sequences are minimally compressible 

(Nickerson, 2002), Falk and Konold (1997) suggest that people judge the randomness of a sequence based 

on their tacit ability to encode it. Cells that are clustered or located on the edges of a grid are easier to 

encode (i.e., describe, memorize) and are thus judged as less random. This explanation, however, fails to 

account for people’s strong preference for the center of the grid, which is in itself a location that is easy to 

encode. Additional explanations based on positional biases for the center (Christenfeld, 1995) and variety 

seeking tendencies, including diversification bias (Read & Lowenstein, 1995), choice bracketing (Read, 

Lowenstein & Rabin, 1999), partition dependence (Fox, Ratner, & Lieb, 2005), and distinctiveness (Ayal 

& Zakay, 2009), only add to a patchwork of theories that cannot in themselves provide a complete 

explanation of the observed behaviour. Therefore, the main research objective of this thesis is to formally 

characterize and explain people’s choices when they generate random selections in structured two-

dimensional space.  

In Study 1, people’s choices were formally observed in a controlled experiment. Participants searched for 

an item (prize) that was hidden in a 9x9 grid by a random process. Trying to ‘match’ that random process, 

they generated selections that avoided the edge of the grid, and were spread out such that they were rarely 

near each other or in the same row or column.  Based on analysis of data from Study 1 as well as data 

from Falk et al. (2009), we observed that people group cells in a 2D grid by proximity - e.g., cells in the 

immediate vicinity of a selected cell, or by similarity - e.g., cells in the same row or column. Cells 

pertaining to a group are judged as having similar attributes, including similar probability assessments. 

Given a selected cell, we defined its ‘coverage’ to be the perceptually-formed grouping to which it 

belongs: fundamentally, a cell 'covers' similar or nearby cells. We then proposed that people judge the 

randomness of selected cells by their perceived coverage: the higher the coverage, the more random are 

the cells perceived. The effect of the grouping size on a group element’s judged probability was 

confirmed in Study 2. Based on the above, we designed a quantitative model that evaluates coverage in a 

2D grid, taking into account two factors. First, the size of an individual cell’s coverage is directly affected 
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by the size of the grid. Second, the aggregate coverage of multiple cells is not equal to the sum of 

coverages of the individual cells; rather, the calculation takes into account the amount of overlap between 

those individual cells’ coverages. It was shown that individual cells that fall on the edges and sets of cells 

that are clustered together all have low coverage values.  We tested the validity of the model in two 

experiments (Studies 3A and 3B) conducted using different 2D 6-cell arrangements. Study 3A showed 

that a cell’s calculated coverage predicts participants’ judgements of its randomness. Study 3B showed 

that the pairs of cells that participants judge to be most random have the highest aggregate coverage, as 

predicted, but a low sum of their individual cells’ coverages. In conclusion, our model of coverage 

provides a self-contained explanation and prediction of people’s perception of randomness in structured 

2D spaces. Notably, the model provides a single explanation for both the edge avoidance and spreading 

aspects of choice.  

  



v 

 

Acknowledgements 

First and foremost I would like to thank my supervisor, Professor Frank Safayeni. In all the years we have 

been working on this thesis he has been a devoted mentor, a tireless cheerleader, and a wise advisor. I 

have been in awe of his ability to dismantle whatever assumptions we might be making, to look at even 

the most tired topic from a new light, and to ask the right questions.  I could not have wished for a better 

advisor. I would also like to thank my committee members Professors Vanessa Bohns, Derek Koehler, 

Eric Lee, and Selçuk Onay, for their insightful questions and advice throughout the process and especially 

during major thesis milestones. A sincere thank you goes also to Tiffany Bayley, Parmit Chilana, Jennifer 

Engels, Christine Gilles, Laura Radulescu, Mina Rohani, and Linda Zacaj and their families for their 

continuous friendship and support throughout the years as well as for willingly serving as test subjects in 

countless pilot studies. 

The opportunity to pursue extended studies at the University of Waterloo is in itself a testament to the 

selfless sacrifices of my parents Mira and Perparim Zacaj. They were smart and hardworking engineers 

whose talents were underutilized in communist and later post-communist Albania. They later sacrificed 

their personal successes and ambitions to give me and my sister Linda a life of dignity and opportunity in 

Canada.  I am humbled and thankful. 

And finally, I want to thank my husband Adam who has supported the completion of this thesis not only 

emotionally – as is often the case with spouses – but also technically. He was instrumental in the 

programming of the computer interfaces for Study 1 and Study 2 , often working on the computer code 

for hours in the evenings. Adam, you are an amazing husband, friend, collaborator, and dad.  

  



vi 

 

Dedication 

To the memory of my dear uncle Valentin Prifti, who is sorely missed. 

  



vii 

 

Table of Contents 

Author’s Declaration ..................................................................................................................................... ii 

Abstract ........................................................................................................................................................ iii 

Acknowledgements ....................................................................................................................................... v 

Dedication .................................................................................................................................................... vi 

List of Figures ............................................................................................................................................... x 

List of Tables ............................................................................................................................................... xi 

1. Introduction ............................................................................................................................................... 1 

1.1 Spreading behaviour in the literature .................................................................................................. 2 

1.2 Study 1 – Controlled observation of choices in structured 2D space ................................................. 5 

1.3 Discussion ........................................................................................................................................... 9 

2. In search of an explanation ..................................................................................................................... 10 

2.1 Positional attributes and preference for the middle........................................................................... 10 

2.2 Perceptual groupings in the search space .......................................................................................... 11 

2.3 The production and perception of randomness ................................................................................. 12 

2.3.1 Local representativeness ............................................................................................................ 13 

2.3.2 Over-alternations ........................................................................................................................ 14 

2.3.3 Positive and negative recency effects ........................................................................................ 15 

2.3.4 Implicit encoding ....................................................................................................................... 16 

2.4 Variety, diversification, and distinctiveness ..................................................................................... 17 

2.5 Summary and conclusion .................................................................................................................. 19 

3. The concept of ‘coverage’....................................................................................................................... 21 

3.1 Coverage by proximity ..................................................................................................................... 21 

3.1.1 Probability assessments and radial distances in the 9x9 grid ..................................................... 22 

3.1.2 Probability assessments and radial distances in the 5x5 grid ..................................................... 23 

3.1.3 The size of CP ............................................................................................................................ 24 

3.2 Coverage by (row/column) similarity ............................................................................................... 25 

3.2.1 Probability assessments and r/c distances in the 9x9 grid .......................................................... 26 

3.2.2 Probability assessments and r/c distances in the 5x5 grid .......................................................... 27 

3.2.3 The size of CS ............................................................................................................................ 28 

3.3 Discussion ......................................................................................................................................... 29 

4. The size of coverage ............................................................................................................................... 32 

4.1 Evidence from Study 1 ...................................................................................................................... 32 



viii 

 

4.2 Evidence from the literature: category size bias and multi-stage lotteries ........................................ 34 

4.3 Study 2 – Effect of the group’s size on an element’s probability ..................................................... 35 

4.4 Discussion ......................................................................................................................................... 37 

5. The coverage maximization theory ......................................................................................................... 39 

5.1 The case of the single selection ......................................................................................................... 39 

5.1.1 Defining single-selection CP in the 2x3 grid ............................................................................. 39 

5.1.2 Study 3A - Single selection in 6-cell structure ........................................................................... 40 

5.2 The case of two selections ................................................................................................................ 43 

5.2.1 Defining double-selection coverage in the 2x3 grid .................................................................. 43 

5.2.2 Study 3B - Two selections in 6-cell structures ........................................................................... 45 

5.3 General discussion ............................................................................................................................ 49 

6. General discussion and opportunities for future research directions ...................................................... 52 

6.1 Summary of findings ......................................................................................................................... 52 

6.2 Alternative explanations and contribution ........................................................................................ 53 

6.3 Limitations and opportunities for future work .................................................................................. 56 

6.4 Conclusion ........................................................................................................................................ 57 

References ................................................................................................................................................... 58 

Appendix A: Study 1 supporting materials, data and methods ................................................................... 63 

A.1 Study user interface .......................................................................................................................... 63 

A.2 Data .................................................................................................................................................. 63 

A.3 Equations for calculating properties of choices ............................................................................... 64 

A.4 Transcripts of interviews .................................................................................................................. 66 

A.4.1 Instances of descriptions of ‘spread’ behaviour ........................................................................ 66 

A.4.2 Instances of descriptions of ‘selecting randomly’ ..................................................................... 67 

A.4.3 Instances of descriptions of distinctions between ‘centre’ and ‘edge’ ...................................... 68 

A.4.4 Instances of descriptions of changing region after negative feedback ...................................... 69 

Appendix B - Study 2 supporting materials and data ................................................................................. 71 

B.1 Example of graphics used in the video materials provided to participants ...................................... 71 

B.2 Complete transcripts of reasons provided by participants for their choices ..................................... 73 

B.2.1 Condition 1 – Choice of marble from big jar ............................................................................ 73 

B.2.2 Condition 1 – Choice of marble from small jar ......................................................................... 76 

B.2.3 Condition 2 – Choice of marble from big jar ............................................................................ 77 

B.2.4 Condition 2 – Choice of marble from small jar ......................................................................... 80 



ix 

 

Appendix C – Study 3 supporting materials ............................................................................................... 83 

C.1 Study 3A - Example of paper-based questionnaire supplied to study participants .......................... 83 

C.2 Study 3B - Example of web-based questionnaire supplied to study participants ............................. 86 

 

  



x 

 

List of Figures 

Figure 1 An imaginary game: Find a specific card in a well-shuffled deck ................................................. 1 

Figure 2 Example of 3 selections in the 9x9 grid - high P(A), yet low probability of selection ................. 15 

Figure 3 Illustration of radial distances from a corner reference cell in the 9x9 grid ................................. 22 

Figure 4 Observed and expected probabilities of radial distances in 9x9 grid ........................................... 23 

Figure 5 Observed and expected probabilities of radial distances in 5x5 grid ........................................... 24 

Figure 6 Illustration of row distances from a corner reference cell in the 9x9 grid .................................... 25 

Figure 7 Observed and expected probabilities of r/c distances in the 9x9 grid .......................................... 27 

Figure 8 Observed and expected probabilities of r/c distances in the 5x5 grid .......................................... 28 

Figure 9 CP of typical internal, edge, and corner cells in 9x9 grid ............................................................. 32 

Figure 10 CS of typical internal, edge, and corner cells in 9x9 grid ........................................................... 33 

Figure 11 CP of cells at a radial distance of 3 and 4 units from a prior selection in the 9x9 grid .............. 33 

Figure 12 CS of cells at a row distance of 3 and 4 units from a prior selection in the 9x9 grid ................. 34 

Figure 13 Coverage by proximity of a single selection in the 2x3 grid ...................................................... 40 

Figure 14 Illustration of the CP of two selections in 2x3 grid .................................................................... 44 

 

  

file:///D:/Dropbox/Research/PhD/AHurst_PhDThesis_20151202-electronic%20version.docx%23_Toc436832028


xi 

 

List of Tables 

Table 1: Search behaviour property descriptions .......................................................................................... 6 

Table 2 Comparison of participant selections to randomly generated sequences of selections .................... 6 

Table 3 Summary of properties of the search as described in the participants' interviews ........................... 7 

Table 4 Study 2 - Typical participant explanations for their choices.......................................................... 37 

Table 5 Results of Study 3A ....................................................................................................................... 42 

Table 6 Pairwise comparisons of selection rankings for structure #7 ......................................................... 43 

Table 7 Results of Study 3B ....................................................................................................................... 47 

 

 

 



1 

 

1. Introduction 

Consider the following scenario: You and a friend are playing a game of cards. You shuffle the deck well, 

spread the cards on a table and give your friend three guesses to find the ace of hearts. Your friend will 

likely  not pick three back-to-back cards; rather, she will try to select three ‘random’ cards, spreading her 

three choices and thus selecting cards from the beginning, middle, and end ‘regions’ of the deck, in a 

manner similar to that shown in Figure 1. She will likely also avoid selecting cards at both ends of the 

deck. 

 

 

 

 

Due to two particular characteristics of the stimulus - the low probability that any of the cards is the ace of 

hearts and the small number of guesses available to find the desired card - the overall probability of 

success is just 3/52. Given that the deck was well-shuffled, any of the cards in the deck had exactly the 

same probability of being the ace of hearts. One could argue that given the equal odds, the least effortful 

choice would be to simply select the first 3 cards. Instead, it is easily imagined that people are more likely 

to try and produce what they consider a ‘random’ set of selections. At the moment, without further 

consideration of whether one choice is more random than the other, at least two questions arise: Why do 

people not choose three consecutive cards?  And why do they avoid the very beginning and end cards in 

the deck? 

The main research objective of this thesis is to formally characterize and explain the combined spreading 

and edge avoidance phenomena described above. In this thesis we propose that the simple example 

described above illustrates some particular tendencies: First, the structure of the problem space (i.e., the 

cards on the table) is subject to perceptual processes on the part of the observer, who will perceive it as 

broken down into separate groupings (e.g., beginning, middle, and end). Second, elements within the 

same groupings are assumed to have some level of dependence on each other, such that the probability of 

one element affects the assumed probability of other elements in its grouping. In the cards example, once 

a card is selected, the player is less likely to select other cards immediately next to it. Third, the attributes 

(e.g., location, size) of these subjectively formed groupings affect the subjective assessments of 

      
  

              
  

            
  

  

        
      

                          

                                        

Figure 1 An imaginary game: Find a specific card in a well-shuffled deck 
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probability of the grouping’s elements (e.g., cards in the middle are more likely to be selected than cards 

at the ends of the deck). 

This thesis is structured in the following way: The remainder of this chapter provides further evidence for 

the observed spreading phenomenon in existing literature as well as in a new experimental study (Study 

1). In Chapter 2 we search for an explanation for the phenomenon in existing literature, evaluate potential 

existing explanations, and after finding them lacking, lay the groundwork for a new theoretical 

explanation. According to the proposed theory, spreading behaviour results from two drives. First, people 

avoid searching close to a location where search has been previously unsuccessful (discussed in Chapter 

3). Second, people seek to explore a new, large region (Chapter 4, Study 2). We then formalize this theory 

and test it by predicting and observing people’s selections in small 6-item search spaces (Chapter, 5, 

Study 3).  We conclude with a summary discussion of the contribution and its limitations and ponder 

future directions for research (Chapter 6).  

1.1 Spreading behaviour in the literature 

Starting with the assumption that, at least at some level, people try to generate a random series of 

selections when they draw the three cards from the shuffled deck, we look to find other examples of 

spreading behaviour in the literature on people’s perception and generation of randomness. 

Multiple studies and anecdotes confirm that our judgement of whether a chance event is random is often 

flawed. One of the often quoted stories that confirm biases in the perception of randomness is from the 

bombing of the city of London during WWII. The bombing did not seem random to its residents because 

certain areas of the city were bombed more than others. To confirm whether this was true, the city was 

divided into equal squares and the number of bombs in each square counted. It was found that the 

bombing had been indeed random (i.e., each area had been hit approximately the same number of times), 

but the perception of clusters made it seem like it possessed a certain pattern (Feller (1957) as cited by 

Bar-Hillel and Wagenaar (1991)).  

Another example comes from a recent study, in which participants were asked to choose 3 papers from 7 

numbered arbitrarily 1-7 (Rubinestein & Salant, 2006). While 39% of participants chose to select papers 

1-3 (likely an outcome of a minimal effort ‘strategy’), 44% chose one of the [1,4,7], [2, 4, 6], [2,5,7], [1, 

4, 6], [1,3,7], and [2,4,7] combinations, which represent just about 17% of the potential choices. Thus, 

selections that avoided neighbouring papers (i.e., ‘spread’ selections) were overrepresented. 

People’s difficulty in producing truly random sequences has been a much debated topic, with the earliest 

attributions to Reichenbach (1949) and many contributions since (as summarized by Bar-Hillel and  
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Wagenaar (1991) and Oskarsson, Van Boven, McClelland and Hastie (2009)). In a review of this 

literature, Nickerson (2002) states that:  

“People tend to avoid events they presumably believe would be considered evidence of 

nonindependence – repetitions, long runs, various types of regularities – and consequently produce 

them less frequently than would a process like that of tossing a coin or rolling a die…Binary 

sequences that people produce when they are trying to produce random ones have been reported 

typically to have more alternations (fewer repetitions) than would be expected by chance.” (p. 339)   

The bias towards more alternations is of particular interest. In truly random processes, when the outcome 

is a binary event with equal probability, the probability of alternations (calculated as (r-1)/(n-1), where r 

is the number of runs and n is the length of the sequence) should be close to 0.5 (Falk & Konold, 1997). 

Yet, when people try to mimic the products of such random processes, they tend to create sequences that 

have a probability of alternation closer to 0.6 (Falk & Konold, 1997; Oskarsson, et al., 2009). In other 

words, people judge over-alternating sequences as more random. When a sequence has ‘clusters’ of 

repeating elements it is judged as less random.  This tendency has been shown in both one-dimensional 

(1D) sequences and two-dimensional (2D) grids (Falk & Konold, 1997).  

An early example of over-alternations in the 2D domain comes from Falk (1975), as summarized by Falk, 

Falk, and Ayton (2009). In one study, participants were shown 10x10 grids of squares and asked to colour 

10 of the squares in a random way. In general, participants avoided colouring neighbouring cells and cells 

on the edge of the grid. In another study, one set of participants coloured 50 of the 100 squares, while 

another set judged the randomness of the produced grids. Grids that were rated to be most random had a 

more ‘spread’ appearance to them – ‘clumps’ of colored squares were minimized. In both studies, 

participants avoided marking neighbouring cells as much as possible, thus resulting in high alternation 

rates. 

While the studies reviewed above as well as other examples reviewed by Falk and Konold (1997) are 

informative, the stimuli they use have significant differences from the problem context we are after. In 

most of those examples, if the objective had been finding a particular square, the resulting probability of 

success would have been ½. For example, in the 10x10 matrix, 50 of the 100 squares are coloured. In 

head/tail-type sequences, the probability of each entity is also ½. These constitute interesting, however 

special cases. Our particular concern is spreading behaviour in the more general search context, where it 

is implied that the probability of a singular location to hold the desired object and the number of 

opportunities one has to guess its location may both be low. Below we summarize a limited number of 

prior studies that fit these criteria.  

In a rare experiment with a 2D stimulus, Lisanby and Lockhead (1991) asked participants to mark where 

a raindrop might fall in a rectangle drawn on a piece of paper, and then again, to mark a dot in the 
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rectangle in a non-random location. Participants placed their guesses of where the rain-drop might fall 

(i.e., what locations in the square were random
1
) along the diagonals of the square and avoided the edges 

and corners of the structure.  In the ‘non-random’ condition, they guessed non-random locations to be 

dead on the centre, in the corners, and along the edge.  The authors’ explanation for the observed patterns 

was that participants tried to place the random selections (i.e., raindrops) in ‘regions of balance’ away 

from non-random referents (corners, centre, etc.,) but not exactly at the balance points; rather, they were 

located slightly away from them, so that they may appear more unpredictable. 

In a more recent study by Ayal and Zakay (2009), participants were shown a computer program that 

randomly generated 3 integers from the 1-100 set and – in the case of the gain condition - were tasked 

with producing 3 numbers from 1 to 100 in the hopes that at least one of the numbers they came up with 

would coincide with one of the randomly generated ones. Participants were not shown visually how the 

integers 1 to 100 might be structured; it is, however,  plausible that without any other visual cues 

participants would simply imagine them arranged in a 1D sequence. The spreading (or, as the authors 

called it, the perceived diversity) of the numbers selected by participants was measured by their range and 

standard deviation. When compared to control and loss conditions, the numbers that participants guessed 

in the gain condition had a large range and standard deviation.  

Also in 2009, Falk et al. conducted a series of studies in which they asked participants to mark 3 cells in a 

5x5 grid in different conditions: (1) cooperative (where they were told to mark 3 cells so that someone 

else would be able to easily guess or guess the 3 cells that someone else marked hoping for the participant 

to find them), (2) competitive (where they were told to mark 3 cells so that someone else would not be 

able to easily guess or guess the 3 cells that someone else marked hoping for the participant to not find 

them), (3) random (the participant was asked to select 3 cells at random),  (4) indefinite (the participant 

was given no direction), and (5) aesthetic (the participant was told to mark the cells so that the 3 

selections were pleasing to the eye). It was found that under all conditions certain cells of the grid were 

more desirable than others; in no condition were all cells equally selected. In the competitive and random 

conditions in particular – participants preferred to select cells that were internal to the grid compared to 

cells that were located on the edges. They also avoided selecting adjacent cells.  

Finally, in a study of commercially produced (yet human-generated) advent calendars
2
, Sanderson (2014) 

found that in trying to randomly spread out the numbers 1 to 24 in the calendar space, people take into 

                                                      
1
The results where the same as when the participants were asked to produce a random location, mark the first place 

they could think of, and predict where the raindrop might fall (Lisanby & Lockhead, 1991).  
2
 “An advent calendar is a collection of 24 containers, labelled 1, …, 24 and each containing some surprise. Every 

day from December 1 to 24, one opens the container labelled with that day’s date to obtain the 

surprise.”(Sanderson, 2014, p.2)  
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account the location of previous numbers, such that the next location is chosen far from the previous 

locations.  

Based on the evidence from the studies reviewed above, there is reason to believe that when people 

attempt to generate random selections in 1D or 2D spaces, predictable patterns arise such as  the ‘spread’ 

of selections and the differentiation between the edge and the internal space. In this thesis, we are 

interested in the generation of these patterns in the context of searching for a randomly ‘hidden’ item in a 

structured space, generally assuming a low overall probability of success. Given a structured 2D search 

space – i.e., one in which the individual locations are ordered in rows and columns - it is believed that 

perception has an important role in subjective assessments of probability. People ‘see’ distinct groupings; 

for example, the edge is perceived as distinct from the more internal region of the space and individual 

cells are perceived in groupings such as quadrants, rows, and columns. People also avoid selections in 

locations that are close or similar to prior selections. Based on scattered findings from the small number 

of related studies (reviewed above), and given a context in which people are searching for a randomly 

located item in a structured space, we formulate the following predictions: 

Prediction 1: People will avoid selecting locations at the edge of the search space. 

Prediction 2: People will avoid selecting cells in the vicinity of prior (unsuccessfully guessed) locations 

Prediction 3: People will avoid selecting locations that are in the same row or column as prior 

(unsuccessfully guessed) selections 

1.2 Study 1 – Controlled observation of choices in structured 2D space 

Method. Participants were brought into an office and asked to sit in front a computer monitor. The 

monitor showed 81 small squares arranged in a 9x9 grid. The task was framed as a game the objective of 

which was finding a randomly placed item. Participants were told that a random (computerized) process 

had assigned a $10 gift certificate to one of the cells in the grid. They were then asked to make three 

selections; each selection represented an opportunity to uncover the square that contained the prize. After 

each selection, participants received feedback on whether it had been successful. A screen capture of the 

computer interface used to administer the study is shown in Appendix A.1. At the conclusion of the task, 

participants were interviewed by the experimenter and asked to answer open-ended questions, such as 

“Tell me, how did you go about making your selections?”, “You seem to have avoided the edges – was 

that on purpose?”, and “You seem to have spread your choices – why is that?” All interviews were audio 

recorded and later transcribed. 
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Participants. The study was completed by 37 participants. All were students in two undergraduate 

courses in Management Sciences at the University of Waterloo, who completed the study for course 

credit. No demographic statistics were formally recorded.  

Results. The selections of all participants were collected and their coordinates analyzed. Specific 

properties of the selections were identified as summarized in Table 1. (More detail about how each 

property is calculated for each participant is provided in Appendix A.3.) 

Table 1: Search behaviour property descriptions 

Property Description 

Distance 

from Edge 

Smallest distance from the edge of the search space to the three selections of each participant, 

averaged amongst all participants  

Minimum 

Distance 

Minimum (Euclidian)
1
 distance between selections for each participant, averaged amongst all 

participants 

Area 
Area of triangle created by the three selections of each participant, averaged amongst all 

participants  

Same XY 
Number of pairs of selections that fall in the same row or column, averaged amongst all 

participants  

A series of 90000
2
 selections (of 3 locations each) were randomly generated to approximate the 

theoretical attributes of a truly random distribution of choices. Given this assumption, participant 

selections were compared to the theoretical attributes using a 1-sample student’s t-test. The results of the 

comparison are summarized in Table 2.  

Table 2 Comparison of participant selections to randomly generated sequences of selections 

Property 
Theoretical 

mean  

Study participants  
(N=37) 

t-statistic 

(36 df) 

p-value 

  
Mean 

Standard 

Deviation   

Distance from Edge 

(units) 
0.24 0.46 0.51 2.60 0.02 

Minimum Distance 

(units) 
2.83 3.85 1.39 4.46 0.00 

Area 

(square units) 
6.33 8.62 6.29 2.22 0.04 

Same XY 

(# of occurrences) 
0.60 0.16 0.37 7.10 0.00 

 

                                                      
1
 Using city-block (Manhattan) distance yields a similar effect. 

2
 90000 instances of randomly generated sequences of three selections was a number large enough to allow the 

identified measures to converge to two decimal places of accuracy   
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When compared to randomly generated ones, participant selections are on average more distant from the 

grid’s edge; as predicted participants showed a tendency to avoid making selections on or near the edge. 

In addition, again when compared to randomly generated ones, participant selections have on average a 

high minimum distance between them. In a similar vein, the area of the triangle created by the selections 

of each participant is also larger. These two findings demonstrate that, as predicted, participants avoided 

clustering their choices and instead chose to spread them in the grid.  Finally, participants avoided making 

selections that fell in the same row or column. Overall Study 1 strongly supported our three predictions, 

providing a baseline characterization of human behaviour in the context of searching for a randomly 

located item in a structured space.  

Of particular interest are the opposing tendencies described by the first and second predictions. The first 

suggests that people avoid the edges, while the latter suggests that they try to spread their guessed 

locations. Of course maximum spreading would be achieved if all selections were on the edge. This is 

certainly not the case with the observed selections. Taking a closer look, we observe how far the 

participants place their second selection in relation to the first selection and the edge. This distance is 

presented as a ratio to the maximum possible distance (the latter calculated as distance of the first 

selection from the edge). Interestingly, over 67% of the participants placed their second selection at 0.5 - 

0.7 of the maximum distance. They chose to make their second selection far from the first, but not too far; 

the desire to spread was counteracted by the desire to stay away from the edge. 

We also analyzed the qualitative data collected through participant interviews, which were transcribed 

and analyzed using QSR NVivo 8 software. The complete transcribed text is presented in Appendix A.6, 

while Table 3 below summarizes the main types of comments that were gathered by the participants when 

describing their ‘strategy’ in searching for the square containing the prize. 

Table 3 Summary of properties of the search as described in the participants' interviews 

Property Description 

Spread  

26 references from 22 (59.5%) 

respondents 

Participants try to space out their selections as much as possible, often 

with the goal of ‘covering’ the most area. Sometimes, the search area 

is divided in regions, and then each selection ‘samples’ one region. 

See Appendix A.4.1  for instances of descriptions of this behaviour 

Random selections  

26 references from 22 (59.5%) 

respondents  

Participants describe their 3 selections as random. See Appendix A.4.2  

for instances of descriptions of this behaviour 

Distinction between ‘middle’ 

and ‘edge, corners’ of the grid  

35 references from 25 (67.6%) 

respondents 

Participants differentiate between the middle/centre and the 

edge/corners. The prize is perceived to be in the middle, and not 

likely at all to be in the edges or corners. See Appendix A.4.3  for 

instances of descriptions of this behaviour 



8 

 

Changing of region after 

negative feedback  

18 references from 16  (43.2%) 

respondents 

Participants do not like to place a selection too close to a previous 

selection. Once a selection is revealed to be bad, the next selection 

will be far away from the first, in a different area. See Appendix A.4.4  

for instances of descriptions of this behaviour 

A majority of the respondents commented on their strategy to spread throughout the grid, in order to 

‘cover’ as much of the search space as possible.  

“I don't know I just have a feeling that if I cover a lot more space I'd have a greater chance." 

The spreading/covering strategy was realized by sampling from different regions or areas of the grid: 

“So I just picked three spaces. I guess I spaced them out. I thought about picking 3 in a row, but I 

divided I guess in my head…maybe it will be in this quadrant, or this quadrant, or this quadrant, so 

I guess I picked one from each" 

However, even though most described a very specific strategy that spread their selections throughout the 

grid by sampling from different areas, most participants insisted that their search was ‘random’ and that 

they had simply selected three random cells: 

"I didn't really use any strategies; I just kinda randomly picked boxes" 

The formation of regions was constrained by the perception of ‘specialty’ cells in the grid. Participants 

did not select cells that were on the edges of the grid or in the corners. Instead, they believed that the 

square containing the prize was likely to be ‘non-distinct’: 

"Umm, I don't know it's hard to explain. If you think you got a grid, and [the prize]’s hidden there, 

odds are that it's not going to be, you know, in the corners. Odds are just as much it being there as 

not, but you only have 3 choices.  And I'm trying to make odds as good as possible. [I’m] trying to 

rule out a couple of places." 

Whenever participants clicked on a square, feedback was provided to let the participant know that that 

square did not contain the prize, encouraging them to try again. The responses indicated that knowing that 

they had clicked on a square that did not contain the prize drove them to make their next selection 

somewhere far from the original one. It appeared that the spreading behaviour was driven by two 

principles: the desire to cover as much of the grid as possible and the desire to place a subsequent 

selection at a distance from an original ‘failed’ selection: 

"For some reason I didn't want to pick anything close to it, even though I know that doesn't make 

any sense. But I picked this one after because it was totally in a different area, so I tended to pick 

something that was further away." 
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1.3 Discussion 

The designed experiment was intended to provide a controlled environment in which to observe choice in 

the longshot search context. All cells of the grid were equally likely to contain the prize. Moreover, the 

cells were completely independent; information about one square did not reduce the uncertainty in any of 

the other cells. As such, there was no strategy that participants could have employed to secure higher 

chances of finding the prize. Thus, the rational expected behaviour was the random selection of three 

locations in the grid. Participants certainly seemed to believe that they were doing precisely this. In the 

post-experiment interviews, a majority of participants insisted that their selections were ‘just random’. 

Yet, a comparison to objectively random selections suggested that clear patterns could be observed in 

participant choices.  Given the considerable size of the grid and limits to visual attention (Klemmer & 

Frick, 1953), participants could not discern all individual cells simultaneously; the configuration 

highlighted the potential perceptual groupings of cells, depending on their location in the grid.  

First, as predicted, the edge of the grid emerged as a distinct region that was avoided. This was also 

confirmed by the interview responses where a majority of the participants admitted to having 

differentiated between the edge/corners and the rest of the grid. The experimental results suggest that 

compared to the edge, the interior of the grid was perceived as more likely to contain the randomly 

located prize. 

Second, participants avoided making selections in locations that were near or similar to prior unsuccessful 

selections. Rather, they chose to spread their selections, placing them at a distance from earlier selections 

and in different rows/columns. This was made evident by the large minimum distance between selections, 

the large average area of the triangle formed by the three selections, and the low frequency of pairs of 

selections that were placed in the same row or column. The behaviour was also self-reported by the 

participants in the interviews. A majority admitted trying to space out their selections as much as possible 

and avoiding the placement of a selection too close to a previous one. 

Overall, the results indicate that we are dealing with two interrelated phenomena: First, the structure of 

the search space (or more generally, the presentation of the problem) is subject to the observer’s 

perception, who will perceive the space as broken down into separate groupings, which are created by 

proximity and similarity (e.g., edges, rows, columns). Second, the search behaviour is strongly affected 

by these perceived groupings – individual cells within the same grouping lose their independence and are 

believed to give the same or similar results.  Seeking to find a theoretical explanation for our findings, the 

next chapter provides a review of the literature and evaluates the effectiveness of existing theories in 

explaining the observed behaviour. 
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2. In search of an explanation 

Study 1 revealed that when it came to the task of guessing the location of a randomly assigned prize, most 

participants believed that their strategy was to produce a series of random guesses themselves. Yet, their 

selections differed from random in consistent and predictable ways. In particular, participants did not 

assign equal probabilities to all cells (and as a result avoided the edge of the grid in favour of the more 

internal cells) and tried to keep their choices spread out such that they were not in the same row, column, 

or other perceptually-formed sub-region of the grid. It appears that the resulting behaviour may have been 

influenced by positional biases, perceptual groupings of the search space, and beliefs about what 

randomness is and what it ought to look like. 

2.1 Positional attributes and preference for the middle  

In Study 1 we found that participants avoided selecting cells located at the edge of the grid, preferring 

instead to make their selections further from the edge than would have occurred should their selections 

have been truly random. The avoidance of the edge has also been reported by the very few studies that use 

similar 2D stimuli (Lisanby & Lockhead, 1991; Falk et al., 2009). So why is the edge avoided?  

Numerous studies in different domains have shown that the position of an item in a list of otherwise 

similar or even identical items can greatly affect the likelihood of that item being chosen. Examples 

include choosing paths from a set of same-length paths (Christenfeld, 1995), meals from a list of menu 

items (Dayan & Bar-Hillel, 2011), pictures arranged in a line (Rodway, Schepman, & Lambert, 2012), 

hotels from a list in a travel website (Eyal & Fleischer, 2014), and candidates from a list in a ballot card 

(Kim, Krosnick, & Casasanto, 2014).  

Preference for the position is shown to be dependent on context: in contexts that are similar to Study 1 – 

identical and equal probability options, no other contextual distractors – preference is consistently for 

centrally located items. For example, Christenfeld (1995) found that when having to choose from 

identical options (e.g., choosing from up to 9 rows of stocked cans or from a row of 4 bathroom stalls), 

people gravitated towards the middle. In another experiment, people had to put an ‘x’ in a row of 3 circles 

and circle an ‘x’ in a row of 4 ‘x’s. In both cases people preferred the central locations, with, especially in 

the case of the 4 ‘x’s, the distribution of choices leaning towards the left side. The preference for centrally 

located items has also been replicated in a number of other studies, e.g., Colman and Stirk (1999), Shaw, 

Bergen, Brown, and Gallagher (2000), and Falk et al. (2009). An early explanation for this tendency was 

that central locations are the ‘least thought’ (or minimal effort) options (Christenfeld, 1995). Shaw et al. 

(2000) wondered if the preference for centrality was tied to a preference for symmetry but their 

experiment did not support their hypothesis. In a similar vein, Falk et al. (2009) believed that the selection 
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of the central cell when participants were instructed to select one randomly was an unintentional carry-

over from other conditions in which that choice made sense (e.g., the center cell was a preferred choice in 

the ‘aesthetic’ condition due to its symmetry). According to a more recent explanation, central locations 

are chosen more often because visual attention is given to the central location in the moments before 

making a choice (Atalay, Bodur, & Rasolofoarison, 2012). 

The explanations above are limited in their ability to explain the behaviour of Study 1. While Study 1 is 

framed as low probability search, in the studies reviewed above participants casually selected an item 

among many, with any of the items being equally and fully rewarding. In Study 1, although the cells had 

equal probability of offering the prize (and so, objectively, any of them would have been a good 

selection), only 1 of the 81 cells had a reward attached to it. Participants were actively looking for the 

prize. In their interviews they suggested that while their intention was to make random selections, they 

had vague strategies in mind for how to do this – exerting a ‘minimal effort’ in making their choice did 

not seem to be at all a common strategy. Thus, it seems unlikely that participants were avoiding the edge 

as a result of a casual tendency to ‘going for the middle’.   

2.2 Perceptual groupings in the search space 

One of the decisions made in the design of Study 1 was the presentation of the structured search space, 

which ultimately came in the form of 81 individual cells structured in a 9x9 grid. Theories of visual 

attention inform us that people are generally limited in their ability to see multiple objects at once 

(Duncan, 1984).  When it comes to two-dimensional stimuli, people are only able to discern about 24 

unique positions, or roughly a 5x5 matrix (Klemmer & Frick, 1953). The chosen matrix size (9x9) was 

conducive to some level of grouping/simplification of the stimulus, or at the very least inability on the 

part of the subjects to ‘keep track’ of all individual 81 locations. Participants had a tendency to group 

subsets of individual cells and accordingly adjust their judgement of probability for those cells. 

How was the grouping/simplification of the stimulus achieved? Much of our understanding on how 

perceptual grouping occurs is based on Gestalt theory (see Wagemans et al. (2012) for a recent review).  

The meaning of Gestalt comes from German and can be roughly translated to “shape” or “form”. In 

Gestalt theory a gestalt refers to any “segregated whole”. An object (in space or time) is said to possess 

the Gestalt quality when it can be described as “regular”, “simple”, “harmonious”, and even 

“symmetrical” (Kohler, 1935, pp. 191-193). Wholes are perceived as such as a result of a specific 

organization of the stimuli. The organization is effortless and immediate, without any deliberation on the 

part of the perceiver. The spontaneous arrangement of the individual components occurs according to 

some well-established principles, commonly referred to as the laws of perceptual organization. 

Wertheimer (1950) describes many such principles and factors, most notably the factors of proximity and 
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similarity. Items that are perceived to be in proximity of each other are somehow ‘united’ to create a 

combined whole; the perceiver would in fact have difficulty perceiving the objects themselves 

individually, unless as part of, or in relationship to the whole. Similarly, objects that are similar in nature 

will be likely grouped together, even if they are not in proximity to each other. Tversky (1977) refined the 

definition of similarity by describing it as a feature-matching process; the more features two objects have 

in common (and the fewer features they don’t have in common), the more similar they are. When an 

arrangement of various shapes – some close to each other, and some further away – is given, the factors 

of similarity and proximity will determine how the perceiver will experience the arrangement. Depending 

on the configuration, one factor may be predominant over the other (Wertheimer, 1950). 

A regular structure such as the 9x9 grid used in Study 1 lends itself easily to groupings based on both 

proximity and similarity. In the participant interviews it became clear that they were well-aware of their 

selections’ membership to various groupings. First, the grid is effortlessly divided into rows and columns. 

Second, the edge is also a particularly strong perceptual grouping (Biederman & Ju, 1988). Cells 

belonging to the edge are in contact with the empty space surrounding the grid, in stark contrast to the 

internal cells of the grid which are all surrounded by other cells. Finally, more ‘fuzzy’ perceptual 

groupings are also created according to more general location properties (e.g., cells in the top-left 

quadrant of the grid).  

Overall, Gestalt theory provides a good theoretical framework for explaining the observed perceptual 

groupings of subsets of grid cells by participants. Therefore, the next questions concern the observed 

behaviour of participants’ selections with respect to those groupings. Why did they avoid making 

selections nearby prior selections? Why did they avoid making multiple selections in the same row or 

column? And finally, why did participants appear to avoid making selections on or near the edge of the 

grid? 

2.3 The production and perception of randomness 

In general, people make use of simple mathematics with ease. Simple judgements of probability are not 

difficult for us. We understand probability as a ratio of chances for and against us; the larger that ratio the 

better our chances. However, as they increase in complexity, problems involving judgements of 

probability can quickly become difficult. In a review of the literature on subjective probability (defined as 

“our judgements of the likelihood of uncertain events” (Kahneman & Tversky, 1972, p. 430)), Einhorn & 

Hogarth (1981) observe that “the picture of human judgement and choice that emerges…is characterized 

by extensive biases and violation of normative models…” (p. 55). Complex problems involving 

judgements of probability reveal significant departures of subjective probability assessments from 

objective probability.  
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Likely one of the most relevant series of experiments in so far as resemblance to our Study 1 is one of the 

studies conducted by Falk et al. (2009), as described in Section 1.1. Participants coloured 3 of the 25 cells 

(arranged in a 5x5 grid) in a variety of conditions: competitive, co-operative, random, aesthetic, and ‘no 

instructions’. Of particular relevance to us are the competitive and (especially) the random condition as 

they most resemble the setup in our Study 1. In those conditions, participants avoided edges and over-

alternated (i.e., avoided marking adjacent, or neighbouring cells). Because they found strong correlations 

among conditions (cooperative, competitive, random), the authors suggested that people have ‘default 

tendencies’ with regards to how they approach these problems and only make slight adjustments 

according to the condition; these default tendencies are symptomatic of a  shared understanding of what 

random choice might look like. Similarly, participants in our Study 1 insisted that since the process that 

had assigned the prize to one of the cells was random, all they had to do was also randomly select cells to 

guess the prize’s location; to them, the locations they chose in the grid appeared to be random.  

Yet, randomness, as a concept, is very elusive. People’s conception of what is random (in both perception 

and production) is different from what is objectively defined as such (Lisanby & Lockhead, 1991). 

Nickerson (2002) explains that the objective concept of randomness typically involves the properties of 

equiprobable outcomes, independence and unpredictability of sequential outcomes, and minimal 

compressibility (i.e., the inability to describe a sequence of outcomes by a rule, or procedure). However, 

when it comes to people’s subjective concept of randomness, it typically manifests as an avoidance of any 

evidence of non-randomness or regularities, such as repetitions. That is why, when people try to produce 

random sequences they end up having too few runs and too many alternations, compared to what would 

have been produced by a random process. While our ultimate interest is in the production and perception 

of randomness in 2D search spaces, much of the relevant literature concerns 1D sequences of usually 

equiprobable entities (e.g., a series of coin tosses). 

2.3.1 Local representativeness 

According to the representativeness heuristic, people judge the probability of a sample based on its 

perceived similarity to its parent population or to the process that generated it (Kahneman & Tversky, 

1972). In the case when the population is generated by a random process, the sample must also appear to 

be generated by such a process. This can be determined by factors such as the perceived irregularity (or 

absence of patterns) in the sample outcomes and the extent to which the sample is locally representative 

of the parent population (i.e., the sample exhibits the properties of the population not just as a whole, but 

also in all of its subparts).  Local representativeness is thought to be directly related to small sample bias 

(Tversky & Kahneman, 1971), because people expect even very small samples (or parts of the sample) to 

be representative of the population (Kahneman & Tversky, 1972).  
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One way to look at participants’ avoidance of selecting nearby cells and spreading them throughout the 

grid is that these selections were locally representative of randomness. In other words, participants were 

trying to make three selections as randomly as a computer would have. While this explanation could be 

attractive, it is far from satisfactory. The computer had assigned a prize to just one cell. If the participants 

believed that they had to match that random process, why not make one ‘random’ selection and then, 

upon receiving negative feedback, select nearby cells? Even if one accepts that spreading and the 

avoidance of edges is representative of chance, the question remains as to why that is.   

2.3.2 Over-alternations 

The avoidance of selecting cells near prior unsuccessful locations might be looked at as a form of over-

alternation. Alternations refer to the number of times the symbol types change in a sequence of 2D set. A 

binary sequence (i.e., one where two symbol types occur with identical frequency) of length n, can be 

characterized by its probability of alternations P(A)=(r-1)/(n-1), where r is the number of runs in the 

sequence, and n is the sequence length (Falk & Konold, 1997). In other words, P(A) is equal to the 

number of observed transitions divided by the total number of possible transitions. For example, the 

sequence OXXO has P(A) = (3-1)/(4-1) = 0.67. In 2D grids, P(A) is calculated in a similar manner, by 

counting the transitions along both the vertical and horizontal directions (Falk & Konold, 1997).  For 

example, in the case illustrated in Figure 2, the number of transitions in the horizontal and vertical 

directions is 6 each, whereas the total (possible) number of transitions in each direction is 8 transitions per 

row(column) multiplied by the total number of rows (columns). Therefore the P(A) of the configuration 

of selections in Figure 2 is (6+6)/(8*9+8*9) = 1/12 = 0.083. While, generally, when generating random 

sequences people tend to over-alternate, maximum alternation (P(A)= 1, e.g., OXOX) results in a perfect 

pattern that is considered too regular and thus not random. In a review of the literature on the subjective 

generation and perception of random (mostly binary) 1D and 2D sets, Falk and Konold (1997) observed a 

fairly stable probability of alternation P(A) of about 0.6 across many studies.   

The concept of alternations could be well suited to characterizing the participant selections in the 9x9 grid 

of Study 1. The 9x9 grid offers a maximum of 144 transitions between cells along horizontal and vertical 

directions. When only 3 selections are made, the number of transitions (i.e., r-1) can vary from a 

minimum of 4 (e.g., when all selections are grouped in the corner) to a maximum of 12 (when all 

selections are sufficiently spread out, such that there no two selections in cells adjacent or immediately 

diagonal to each other), with the resulting P(A) varying from 0.028 to 0.083. On the surface, the over-

alternation model could easily explain the results of Study 1: selections that are judged more random, are 

more spread, and as expected, have a higher P(A). Similarly, selections that are on the edge or corners 

have lower total alternations and thus judged less random. However, it is possible to achieve the 
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maximum P(A) with selections that we know participants would find not at all random, such as the 

example shown in Figure 2. Thus, in Study 1 over-alternation displays itself quite differently from the 

typical examples provided for the negative recency effect. Strictly speaking, participants could have over-

alternated simply by avoiding neighbouring cells – still, they could have easily ended up with all three 

selections localized in one area of the grid (or all in one row as shown), rather than having them all spread 

out in the entire space. 

         

 x        

         

 x        

         

 x        

         

         

         

Figure 2 Example of 3 selections in the 9x9 grid - high P(A), yet low probability of selection 

2.3.3 Positive and negative recency effects  

In the literature on the production of binary sequences in particular, the number of alternations has been 

described as being affected by two opposing tendencies: the negative and positive recency effects. The 

former is directly related to the number of alternations, whereas the latter to the run length (see Scholl and 

Greifeneder (2011) for a discussion of both) . 

When it comes to populations with a specific proportion value (e.g., coin tosses with an outcome 

proportion value of ½), people believe that each sequence will maintain the population’s proportion, and 

that each deviation from that proportion will be quickly counteracted by an opposite deviation. For 

example, coin tosses that result in a sequence of 3 Heads will be followed by a sequence of Tails (even 

though each coin toss is an independent event), in order to preserve the ‘fairness’ of the toss. This belief is 

called the negative recency effect (or gambler’s fallacy).  Some explanations for this effect are tied to 

memory limitations (Tune, 1964): participants can only create random sequences over a small number of 

elements and end up creating sequences that have too many alternations and are not overall random 

(Kareev, 1995). People try to ensure that even small portions of the sequence are locally representative of 

the population by retaining its Heads/Tails proportion (Kahneman & Tversky, 1972).   

Over-alternating is opposed by another tendency, termed the positive recency (or hot hand) effect. There 

are some domains (e.g., basketball shots (Gilovich, Vallone, & Tversky, 1985) and roulette winnings 

(Wagenaar, 1988)) in which people believe in streaks, and more commonly, that a positive streak will 

continue. According to a representativeness-based explanation, very small streaks (e.g., two good hits in a 

row) are representative of the generating process (in this case the skill of the player on that particular 
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day), and thus, longer positive streaks will be expected (Gilovich, Vallone, & Tversky, 1985)
1
. Another 

suggested explanation is that the hot hand phenomenon is a rational and adaptive approach that is 

sometimes applied inappropriately to situations in which outcomes are independent. Since in our daily 

experience resources are often clustered together, then it is normal to expect a streak, e.g., if a prey has 

been encountered then a similar prey can be found nearby (Wilke & Barrett, 2009). In a similar vein, Hsu, 

Griffiths, and Schreiber (2010) suggest that when trying to make ‘random’ selections, people avoid the 

kinds of regularities that they would encounter in the natural world. In a study using pictures of natural 

scenes, the authors found that neighbouring regions have similar intensity values – and since nature 

scenes are not considered random, having neighbouring cells with similar values would be evidence of 

regularity and non-randomness.   

Participants in Study 1 could potentially be using (a poor adoption) of the positive recency effect. Perhaps 

people view the absence of resources (i.e., prizes) as also existing in clumps. According to this 

explanation, after making an unsuccessful guess, people assume that locations that do not contain the 

prize are clumped together in the vicinity of that earlier guess and so they must make the second guess 

away from the first. It seems plausible that the characteristic of the earlier guess (i.e., its failure to contain 

the prize) is being generalized to cells surrounding it. This explanation is further pursued in Chapter 3.  

2.3.4 Implicit encoding 

In trying to explain why binary sequences that were judged most random had a ‘sweet spot’ of P(A) = 0.6 

(i.e., lots of alternations, but not so many that they make a pattern), Falk & Konold (1997) proposed that 

people judge the randomness of a sequence based on their (tacit) ability to encode the sequence, the ease 

(or more commonly, difficulty) of which can be judged or measured (e.g., through ease of memorization). 

Good patterns are easy to encode and can thus be easily compressed into a computer instruction that can 

reproduce them. In their studies, the authors provided participants with long binary sequences and asked 

them to judge whether the sequences were random, to memorize them, and to assess the difficulty of 

memorizing them. They found a correlation between these three measures: the sequences that were 

judged more random were also more difficult to memorize (as evidenced by the time it took participants 

to memorize them, as well as their own assessment of this difficulty).  

The encoding explanation is used to explain some of the behaviour observed in the experiments of Falk et 

al. (2009) with 5x5 grids, which as previously noted, are highly relevant to our research question due to 

the similarity of their stimulus to the one used in Study 1. Of all their conditions (co-operative, 

                                                      
1
 Here representativeness is used to explain both positive and negative recency tendencies, which are quite opposite in nature. 

Ayton and Fischer (2004) suggested that people employ the negative recency bias when they believe that the source is a natural 

event (e.g., a coin toss), and the positive recency bias when the source is human performance (e.g., throwing of darts). Another 

explanation is that some sporting events (e.g., golf putting (Gilden & Wilson, 1995)) have a natural positive recency and people 

are just assuming this is also the case in basketball. 
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competitive, random, aesthetic, and no instructions), the random condition is the most conceptually 

similar. It was found that in that condition participants avoided edges and over-alternated (i.e., avoided 

marking adjacent, or neighbouring cells). There were also some strong effects with regards to the 

selections of particular locations in the grid. For example, cell B4 – the cell diagonal to the top-left corner 

– was very popular. The authors suggested that its popularity might be explained by its lack of saliency 

(i.e., it has no distinguishing features, just like the number 7 in a string from 1 to 10). Another way of 

saying this is that describing the location of B4 would take longer than describing the location of, say, 

corner cells. The location of B4 is not easily encoded, and thus more random-seeming (Falk & Konold, 

1997). Another explanation offered relates to B4 having medium complexity, where complexity is 

calculated based on the number of cells that are similar (e.g., by rotation)
1
. Apparently items of medium 

complexity are judged as the most random (Garner, 1970; Falk & Konold, 1997). A similar explanation 

provided is that B4 belongs to the largest equivalency set (i.e., it belongs to the 16 cells that have 

complexity 4), and thus is perceived more random (Teigen, 1984).  

The concepts of ease of encoding, complexity, and equivalency sets can be used selectively to explain 

some of the behaviour observed, but they fail to explain the contradictions in the participant selections. 

For example, it is suggested that B4 is popular due to its medium complexity and difficulty to encode, yet 

the dead-middle of the grid (low complexity and easy to encode) is also very popular. Similarly, it is 

suggested that B4 is popular because it is in the largest equivalency set, but so are the mid-edge and the 

corner cells, yet they are not very popular. Although certainly strong, these concepts fail to describe 

participants’ choices in their entirety and can only be used piece-wise to explain some but not all aspects 

of choice.  

2.4 Variety, diversification, and distinctiveness 

One way of thinking about spreading is as a tendency to make selections from a variety of regions, rows, 

and columns. Existing literature suggests that when faced with making multiple choices at once, people 

are generally variety-seeking. A typical illustration is people’s purchase of a variety of candy, or a variety 

of yogurt flavours. Simonson (1990) found that people seek a greater variety when making decisions 

about multiple purchases simultaneously (e.g., buying yogurt for the week) compared to when making 

those choices sequentially (e.g., buying yogurt every day). Read and Lowenstein (1995) suggested that 

higher variety-seeking in simultaneous choice (as compared to sequential choice) is not normative, but 

rather a bias, which they called diversification bias. People choose more variety than they actually end up 

wanting. This bias arises as a result of the way sets of choices are subjectively partitioned.  When choices 

                                                      

1
 B4 has a complexity of 4 (i.e., there are 3 other locations like it). In the 5x5 grid, complexity ranges from 1 (in the 

case of the cell right in the centre of the grid) to 8 (in the case of the cell above B4 (B5)). 
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are bracketed together, a diversification heuristic is employed; whereas, when choices are partitioned into 

smaller brackets, the preferred choice is made each time – i.e., a utility maximization heuristic is 

employed. To illustrate, in an experiment with children trick-or-treating on Halloween, Read and 

Lowenstein (1995) found that when children were asked to choose two candy bars from two piles of two 

different candies, they diversified - all children chose two different candies. In contrast, when the children 

were asked to choose one candy from two different candy piles, twice (i.e., at different houses), they 

chose whichever candy they liked the best, leading to many ending up with two of the same kind of 

candy.  Read, Loewenstein and Rabin (1999) called this phenomenon choice bracketing; the most variety 

is sought under conditions of broad bracketing (e.g., buying yogurt for the week). Broad and narrow 

brackets imply large and small sets of choices, respectively.  

Why is variety sought in broad bracketing? If people choose variety, what is that variety with respect to? 

According to Fox, Ratner and Lieb (2005), people seek to spread their choices across different groupings 

(or what they refer to as partitions) using naïve diversification or uniform distribution (e.g., the 1/n rule 

(Benartzi & Thaler, 2001)). Partition dependence thus arises when different – subjective - partitions will 

lead to different choices.  The less informed the user is about attributes and differences between partitions 

(or the more equal they seem), the more likely she is to use the diversification heuristic (Fox et al., 2005).  

A similar framework comes from Ayal and Zakay (2009), who have proposed that people use diversity to 

minimize risk. They suggest that a richer diversity of options is perceived to be less risky; thus, in line 

with prospect theory (Kahneman & Tversky, 1979), they find that people prefer diversity under gains 

(i.e., risk avoidance under gains), but avoid it under losses (risk seeking under losses). One of the 

components of diversity is the distinctiveness of options.  To illustrate, in an experiment they presented 

participants with a computerized program that randomly selected three numbers from the 1-100 sequence. 

Participants were then asked to write down three numbers under conditions of gain (win money for each 

hit), loss (lose money for each hit), and neutrality (“guess what the computer will pick”).  It was found 

that the distinctiveness of the selections – measured using range and standard deviation - was highest for 

the condition of gain and lowest for the condition of loss. 

Diversification and distinctiveness can be useful conceptualizations of the spreading behaviour observed 

in Study 1. In particular, the finding that the diversification heuristic finds its most use when the options 

are ‘hidden’ and equal in probability is an important one. The grid experiment of Study 1 is an extreme 

version of lack of information. While participants might feel that the edge is less likely to contain the 

prize and thus be less likely to ‘diversify’ to the edge, within the grid there is no further preference 

between the individual cells, so the diversification heuristic – i.e., diversification between (the remaining) 

areas of the grid - prevails. Yet, how is this diversification achieved? With respect to what partitions do 
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people diversify?  Do people create the partitions first, and then choose one cell from each partition, or do 

they re-create partitions after each choice?  

Similar difficulties are encountered when using the distinctiveness concept: although it is generally 

understood that being in different rows or columns could justify calling two cells distinct, distinctiveness 

in other cases can be established only after the participants have made all three choices. One could 

potentially contour fuzzy distinct regions surrounding each selection, but it is not clear that participants 

are actually creating these regions before they make their selections.   

2.5 Summary and conclusion 

Based on the literature summarized in the sections above, there are a few theories and conceptualizations 

that can, to some extent, explain various aspects of the patterns observed in Study 1. Those patterns are 

the avoidance of the cells located on the edge of the grid and of cells that are close or similar to 

previously unsuccessful cells.  

We attempted to explain the avoidance of the edge using theories of positional bias, which suggest that 

people are naturally drawn to choose items from the center of a set of equal or similar items. Central 

locations afford symmetry, are minimally effortful, and draw our visual attention. These explanations, as 

well as the context they imply do not map well to the stimulus used in Study 1 and the observed 

behaviour of participants. Rather than casually selecting their 3 cells from the middle of the grid, 

participants were careful to spread their choices throughout the grid, each subsequent selection informed 

by the knowledge of the failure to find the prize in prior selections.  

Participants in Study 1 insisted that they were just ‘selecting cells randomly’, so it appeared attractive to 

describe the participants’ selections as displaying the same characteristics – over-alternations and minimal 

compressibility – as the ones reported in the literature on the production and perception of randomness. 

The explanation that participants were over-alternating in order to maintain local representativeness of 

what they expected randomness to look like was found to be lacking; over-alternation could have been 

achieved without requiring spreading of the selections throughout the grid. Similarly, the explanation that 

selections are deemed most random when they are least easy to encode was also limited in its 

applicability: easy to encode locations such as the dead-centre were found to be popular.  

Finally, some relevant insights came from the literature on diversification and distinctiveness, which 

suggest that people choose variety, especially under conditions of gain and simultaneous choice/broad 

bracketing. In particular, when people have little information about what distinguishes partitions in the 

set, they are more likely to seek variety with respect to the various partitions, attempting a near-uniform 

distribution of their choices through each partition.  While these theories could describe very well 
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participants’ behaviour of ‘seeking variety’ with regards to perceptual groupings (be it more easily 

defined rows/columns or more fuzzy sub-regions of the grid), they are intended to describe behaviour 

where the partitions are already pre-formed before the participant makes their choices. This was not the 

case in Study 1, where the grid is homogenous and few obvious partitions (e.g., the edge) exist. So while 

the labels appear helpful (diversification, variety, spreading), the explanations are not.  

In conclusion, the review of the literature has uncovered a host of somewhat relevant theories and 

concepts; however, to our knowledge, no theory alone is able to explain participants’ selections in Study 1 

in their entirety. One of the major difficulties has been that context of Study 1, a search context with no 

information and very low probability of success, is different from all the contexts that are examined by 

the reviewed literature. Thus, an opportunity exists to develop a new theory that can both explain Study1 

and also successfully predict people’s choices when faced with search task in structured spaces of 

different sizes and shapes.  

This new theory is built in three steps. In Chapter 3, we suggest that people avoid neighbouring cells after 

an unsuccessful guess because they generalize its properties (e.g., not containing the prize) to cells that 

are deemed to be like it, whether it be as a result of proximity or similarity. We name this concept the 

selection’s coverage and find strong evidence of it in both the 9x9 grid from Study 1 as well as the 5x5 

grid of Falk et al. (2009). In Chapter 4, we propose that participants are drawn to larger ‘unexplored’ 

areas of the grid and test the hypothesis that items belonging to larger sets are judged to be of higher 

probability, even if the sets are only perceptual and otherwise have no bearing on the objective probability 

of their elements. Finally, building on these first two steps, in Chapter 5 we propose a new theory that 

explains the participants’ selections as maximizing coverage. We also design and test a simple model to 

calculate coverage mathematically in some small pre-defined 2D search spaces.  
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3. The concept of ‘coverage’ 

When participants interacted with the grid in Study 1, grouping/simplification of the stimulus occurred at 

two different times. First, when people looked at the 9x9 grid, they were not able to discern between all 

81 cells (Klemmer & Frick, 1953; Duncan, 1984). The large number of cells was grouped or simplified to 

some level, with cells within a grouping becoming fairly indistinguishable from each other. Such 

groupings might have been the edges, the grid quadrants, etc. Second, once participants selected a cell in 

a chosen grouping, that (unsuccessful) cell served as a point of reference for new groupings of cells, 

which could have occurred by proximity (e.g., cells that are in the immediate vicinity of the selected cell), 

or by similarity (e.g., other cells in the same row or column).  

The focus of this chapter is on the second grouping process, that is, what happens once participants select 

a cell. Study 1 results as well as other supporting literature (Falk et al., 2009) suggest that people avoid 

selecting cells that are near or like cells that have resulted unsuccessful in prior selections. In other words, 

participants believe that these neighbouring or otherwise similar cells have a low probability of containing 

the prize. More generally, the location of cells relative to a ‘known’ (or reference) cell affects their 

(subjective) probability.  We thus propose that participants assign similar attributes (in this case the odds 

of being assigned a prize) to cells that are perceptually grouped together, whether the grouping principle 

is proximity or similarity. We define a cell’s coverage to be the set of other cells whose probability 

assessments are affected by knowledge about that cell’s attributes.  

The main objective of this chapter is to understand how coverage is created as a result of grouping by 

proximity and similarity. Of interest are the subjective probability assessments of cells inside and outside 

the coverage area and the effect of the size of the search space on the size of a cell’s coverage.  

3.1 Coverage by proximity 

We first analyze the effect of grouping by proximity on people’s assessment of probabilities. We refer to 

the group of cells whose probability assessments are affected by knowledge (of lack of success) of a 

nearby cell as the latter cell’s coverage by proximity (or CP). Based on our understanding that people 

avoid making selections near a prior selection, the effect of a cell’s outcome on probability assessments of 

neighbouring cells is assumed to decrease the further you are from it. Thus in our chosen framework, CP 

is assumed to decrease radially (but not necessarily linearly) the further one is from the cell of reference.  

Taking the context of a structured NxN grid, let xij be any cell x located in row i and column j . It can be 

argued that cells immediately adjacent to xij (xi-1,j, xi,j-1, xi+1,j, and xi,j+1) are perceptually closer than cells 

immediately diagonal to it (xi-1,j-1, xi-1,j+1, xi+1,j-1, and xi+1,j+1); however, for simplification, we assume that 

all have the same distance of 1 unit from xij, with that distance increasing in increments of 1 the further 
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you are from it. Given that equidistant cells form (roughly) concentric circles around the reference cell, 

we refer to this measure as radial distance. Given this framework, we can calculate the radial distance 

between any two cells in the grid. To illustrate, in the 9x9 grid of Study 1, given a cell of reference x11 in 

the top-left corner of the grid, other cells in the grid can be as close as 1 unit and as far as 8 units of radial 

distance from x11 (Figure 3). Given data from two different grid sizes – 9x9 in Study 1 and 5x5 in Falk et 

al. (2009), in the next three sections we analyze how probability assessments compare at different radial 

distances and deduce the size of CP in each grid. 

 

Figure 3 Illustration of radial distances from a corner reference cell in the 9x9 grid 

3.1.1 Probability assessments and radial distances in the 9x9 grid 

To better understand participant choices in the 9x9 grid, we first determine the expected theoretical 

distribution of radial distances between any two cells. Given that in the 9x9 grid radial distance between 

cells may range from 1 to 8 units, and given any selected (or reference) cell x, we calculate the likelihood 

that the next selected cell y will be at distance dxy equal to 1, 2, 3, …, 8. For example, consider the 

reference cell x11 in the top-left corner of the grid. Only 3 of the remaining 80 cells (x21, x22, and x12) are 

located at a radial distance of 1 unit; thus, assuming that all cells are equally likely to be selected, the 

probability that the next selected cell will be at a distance of 1 unit is 3/80. We then aggregate these 

probabilities for all 81 cells and calculate the expected likelihood of occurrence for each of the 8 radial 

distances dxy. We perform a similar analysis on all pairs of selections from Study 1. For each participant 

with selections 1, 2, and 3, we calculate d12, d23, and d13, which, when combining the selections of 37 

participants results in 111 radial distance values, all ranging from 1 to 8.  Given this data, we calculate the 

observed probability of occurrence of each radial distance.
 1
  

                                                      
1
 Note that the calculation of observed probabilities is not perfectly matched to the method used for the calculation 

of expected probabilities. For simplification, pairs of selections in each sequence of three selections are taken 

independently. For example, the observed distance between the second and the third selection is compared to the 

expected distance between two selections; however, this is not a perfect comparison – the existence of a prior (first 

selection) further limits the availability of locations for the third location. This is not captured in the calculation of 

expected probabilities. The same simplification is made in Sections 3.1.2, 3.2.1, and 3.2.2. It is believed that this 

simplification does not significantly affect the results of the comparison.  
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Figure 4 overlays the observed and expected radial distance distributions in the 9x9 grid. Both are 

curvilinear, with clear differences in the middle and in the extremes (Kolmogorov-Smirnov one-sample 

test D = 0.17, p < 0.01). The observed probabilities of occurrence for the ‘low’ (1 or 2 units) and ‘high’ (6 

units and up) radial distances are visibly lower than expected. This difference is in line with our earlier 

finding in Chapter 1 that participants avoided making selections too close to a previous selection. In 

addition, a selection that is 6, 7, or 8 units away from a prior selection is likely to fall on, or near the edge, 

and, as we already know, participants avoided making these types of selections. An opposite trend is 

found with regards to ‘medium’ (3-5 units) radial distances where the observed probabilities are visibly 

higher than expected. As already observed in Chapter 1, most participants chose to make their selections 

about halfway between a prior selection and the edge. 

 

Figure 4 Observed and expected probabilities of radial distances in 9x9 grid 

3.1.2 Probability assessments and radial distances in the 5x5 grid 

To better understand participant choices in the 5x5 grid, we first determine the expected theoretical 

distribution of radial distances between any two cells. Given that in the 5x5 grid radial distance between 

cells may range from 1 to 4 units, and given any selected (or  reference) cell x, we calculate the likelihood 

that the next selected cell  y will have a radiance distance of dxy equal to 1, 2, 3, or 4. For example, 

consider the reference cell x11 in the top-left corner of the grid. Only 3 of the remaining 24 cells are at a 

radial distance of 1 unit; thus, assuming again that all cells are equally likely to be selected, the 

probability that the next selected cell will be at a distance of 1 unit is  3/24. We then aggregate these 

probabilities for all 25 cells and calculate the expected likelihood of occurrence for each of the 4 radial 

distances dxy. We perform a similar analysis on all pairs of selections from the random condition of Falk 

et al. (2009). For each of the 250 participants with selections 1, 2, and 3, we calculate d12, d23, and d13, 

resulting in 750 radial distance values, all ranging from 1 to 4.  Given this data, we calculate the observed 

probability of occurrence for each radial distance.  
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Figure 5 overlays the observed and expected radial distance distributions in the 5x5 grid. As in the case of 

the 9x9 grid, both distributions are curvilinear, with clear differences in the middle and in the extremes 

(Kolmogorov-Smirnov one-sample test D = 0.12, p < 0.01).  The observed probabilities of occurrence for 

the ‘low’ (1 unit) and ‘high’ (4 unit) radial distances are visibly lower than expected. This difference is in 

line with the observation by Falk et al. (2009) that participants avoided making selections too close to a 

previous selection or on the edges. An opposite trend is found with regards to the ‘medium’ (2-3 units) 

radial distances where the observed probabilities are visibly higher than expected. Overall, findings of the 

5x5 grid follow closely those of the 9x9 grid.  

 

Figure 5 Observed and expected probabilities of radial distances in 5x5 grid 

3.1.3 The size of CP 

To determine the size of a cell’s CP, we focus on the smaller radial distances (1-2 units).  When 

comparing Figures 4 and 5, in the lower radial distances the observed and theoretical lines cross at 

different points. In the case of Study 1, the likelihood of cells being at a distance of 1 or 2 units from each 

other was smaller than expected, with that trend reversing itself at a distance of 3. In the case of Falk et al. 

(2009), that reversal occurs at a distance of 2 units. Put another way, in the 9x9 grid, participants are 

demonstrating a reluctance to place their selections within 1 or 2 units of a prior (unsuccessful) selection, 

signalling that their assessment of the probability of those cells having the prize was low. In contrast, in 

the 5x5 grid, participants are demonstrating a reluctance to place their selections within just 1 unit of the 

prior selection, implicitly showing they are attributing low probability only to the cells immediately 

adjacent or diagonal from the prior selected cell.  

It can thus be suggested that the size of the grid, or more generally the size of the search space, influences 

the size of a cell’s CP. Roughly speaking, in the 9x9 grid of 81 cells, a cell covers all cells that are 1 or 2 
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radial units away from it (24 cells in total, or 29.6% of the set). Similarly, in the 5x5 grid of 25 cells, a 

cell covers all cells that are 1 radial unit away from (8 cells in total or 33.3% of the set). Regardless of the 

grid size, a cell’s CP seems to be sized at about 1/3 of the grid.  

3.2 Coverage by (row/column) similarity 

In addition to grouping by proximity, we also analyze the effect of grouping by similarity on people’s 

assessment of probabilities. We refer to the group of cells whose probability assessments are affected by 

knowledge about a similar cell as the latter’s cell coverage by similarity (or CS). While it can be argued 

that cells can be grouped by similarity based on different attributes such as the row or column they belong 

to, symmetry, type (e.g., corners), etc., we limit the scope of our analysis to just groupings by rows and 

columns. Based on our understanding that people avoid making selections in the same row/column (r/c) 

as a prior selection, the effect of a selected cell’s outcome on probability assessments is expected to be 

strongest in that cell’s r/c and decreasing the further an r/c is from the cell of reference. We thus refer to it 

as the r/c distance between two cells. Thus in our chosen framework, coverage by similarity is assumed to 

decrease the further one is from the r/c of the cell of reference. 

We refer to the distance between two cell’s rows or columns as their r/c distance. Using the same notation 

as in the section on coverage by proximity, we declare that all cells in row i and column j have an r/c 

distance of 1 from cell xij, with that distance increasing in increments of 1 the further a cell’s r/c is from 

row i and column j. Given this framework, we can calculate the r/c distances between any two cells in the 

grid.  To illustrate, in the 9x9 grid of Study 1, given a cell of reference x11 in the top-left corner of the 

grid, other cells in the grid can be as close as 1 unit and as far as 9 units of row distance from x11 (Figure 

6). It should be noted that due to the symmetry of the grid, similarity calculations with respect to row 

groupings are identical to those of column groupings. 

 

Figure 6 Illustration of row distances from a corner reference cell in the 9x9 grid 
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As in the case of proximity, given data from two different sizes of grids – 9x9 in Study 1 and 5x5 in Falk 

et al. (2009), in the next three sections we analyze how probability assessments compare at different r/c 

distances and deduce the size of coverage by r/c similarity in each grid. 

3.2.1 Probability assessments and r/c distances in the 9x9 grid 

To better understand participant choices in the 9x9 grid, we first determine the expected theoretical 

distribution of r/c distances between any two cells. Given that in the 9x9 grid r/c distance between two 

cells may range from 1 to 9 units, and given any selected (or reference) cell x, we calculate the likelihood 

that the next selected cell y  will be at a r/c distance dxy equal to 1, 2, 3, …, 9.  For example, consider the 

reference cell x11 in the top-left corner. Of the remaining 80 cells in the grid, 8 are located at a row 

distance of 1 unit, with another 8 located at a column distance of also 1 unit. Assuming that all cells are 

equally likely to be selected, the probability that the next selected cell will be at an r/c distance of 1 from 

x is 8/80. We then aggregate these probabilities for all 81 cells and calculate the expected likelihood of 

occurrence for each of the 9 r/c distances dxy. We perform a similar analysis on all pairs of selections from 

Study 1. For each participant with selections 1, 2, and 3, we calculate r/c distances d12, d23, and d13, which, 

when combining the selections of 37 participants result in 111 distance values, all ranging from 1 to 9.   

Given this data, we calculate the observed probability of occurrence for each r/c distance. 

Figure 7 overlays the observed and expected r/c distance probability distributions in the 9x9 grid. While 

they have similar shapes, the distributions have clear differences in the middle and in the extremes 

(Kolmogorov-Smirnov one-sample test for rows D = 0.13, p<0.05; for columns D = 0.11, not-significant 

at alpha = 0.05). The rationale for the differences is similar to the discussion of proximity in the previous 

section. Overall, it appears that the likelihood that selections were made in the same r/c as a prior 

selection or in an adjacent r/c was less than what was expected theoretically.  Similar observations can be 

made on the other end of the spectrum, where the observed likelihood of r/c distances greater than 7 units 

was less than expected. These differences are in line with our earlier finding in Chapter 1. As we already 

know, participants avoided selections in the same row or column as a prior selection. Additionally, if two 

cells are 7 or more rows/columns part, it is likely that one, if not both cells are on or near the edge, which 

is also something participants avoid. An opposite trend is found with regards to cells at 3-5 r/c units of 

distance. For example, 61% of selected pairs of cells in Study 1 had cells at a distance of 3-5 rows from 

each other, while the expected likelihood was 39%.  
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Figure 7 Observed and expected probabilities of r/c distances in the 9x9 grid 

Of note in Figure 7 is the jaggedness of the observed column curve compared to the observed row and 

expected curves. We are not aware of any reasons that would explain the dip in the observed column 

curve at 4 units. In addition, no such irregularity is observed in the analysis of the much larger dataset 

from the 5x5 grid of Falk et al. (2009), as is shown in the next section in Figure 8. We thus attribute this 

irregularity to the limited data from Study 1 and predict that a larger data set would smooth out the 

observed column curve to more closely resemble the others. 

3.2.2 Probability assessments and r/c distances in the 5x5 grid 

To better understand participant choices in the 5x5 grid, we first determine the expected theoretical 

distribution of r/c distances between any two cells. Given that in the 5x5 grid r/c distance between cells 

may range from 1 to 5 units, and given any selected (or reference) cell x, we calculate the likelihood that 

the next selected cell y will have an r/c distance dxy equal to 1, 2, 3, 4, or 5. For example, consider the 

reference cell x11 in the top-left corner of the grid. Of the remaining 24 cells in the grid, 4 are located at a 

row distance of 1 unit, with another 4 located at a column distance of also 1 unit. Assuming that all cells 

are equally likely to be selected, the probability that the next selected cell will be at an r/c distance of 1 

from x is 4/24. We then aggregate these probabilities for all 25 possible points of reference and calculate 

the expected likelihood of occurrence for all of the 5 r/c distances dxy. We perform a similar analysis on 

all pairs of selections from the random condition of Falk et al. (2009). For each of the 250 participants 

with selections 1, 2, and 3, we calculate r/c distances d12, d23, and d13, resulting in 750 values.  Given this 
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data, we calculate the observed likelihood of occurrence for each r/c distance. The results are very similar 

to those that emerged from the analysis of data from Study 1.  

Figure 8 overlays the observed and expected r/c distance probability distributions in the 5x5 grid. Both 

the row and column curves are significantly different from the theoretical distribution (Kolmogorov-

Smirnov one-sample test for rows D = 0.17, p<0.01; for columns D = 0.13, p<0.01). The rationale for the 

differences is similar to the discussion of radial distances in the previous section. The likelihood that 

selections were made in the same r/c as a prior selection (distance of 1) was less than what was expected 

theoretically.  Similar observations can be made on the other end of the spectrum, where participants were 

less likely than expected to select cells that were 4 or 5 r/c units away from a prior selected cell. Again the 

explanation is tied to the avoidance of selecting cells in the same r/c as a previous selection and also 

avoiding selections on the edge of the grid.  Additionally, as was also found from the 9x9 grid data, the 

likelihood that participants placed their cells at a distance in the medium range (in this case 2-3 units) was 

higher than what was expected theoretically. Overall, findings from the 5x5 grid follow closely those of 

the 9x9 grid.  

 

Figure 8 Observed and expected probabilities of r/c distances in the 5x5 grid 

3.2.3 The size of CS 

To determine the size of a cell’s CS, we focus on the smaller r/c distances (1-2 units).  When comparing 

Figures 7 and 8, we find a similar trend to what we found when we looked at CP:  when we zero in on the 

lower r/c distances, the observed and expected probability graphs  cross at different points for the 9x9 and 
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5x5 grids. In the case of Study 1, the likelihood of cells being at an r/c distance of 1 or 2 units from each 

other was much smaller than expected, with that trend reversing itself at a distance of 3. In the case of 

Falk et al. (2009), that reversal occurs at an r/c distance of 2 units. Again, as previously discussed, this is 

an important difference that is an assumed result of the difference in size between the grids. In the 9x9 

grid, participants are demonstrating a reluctance to place their selections in the same r/c, or in an r/c 

adjacent to the r/c of a prior selection, signalling that their assessment of the probability of those cells 

having the prize was low. By contrast, in the 5x5 grid, participants demonstrated a reluctance to place 

their selections within just the same r/c of the prior selection, implicitly showing that they are attributing 

low probabilities only to that set.    

It can thus be suggested, in the case of grouping by r/c similarity, as was the case in grouping by 

proximity, that the size of the grid, or more generally the size of the search space, influences the size of a 

cell’s r/c similarity coverage. In the 9x9 grid of 81 cells, a cell covers 3 rows and columns (i.e., 44 cells 

not including the selected cell), or 54% of the set. In the 5x5 grid of 25 cells, a cell covers just other cells 

in the same row or column (i.e., 8 cells not including the selected cell), or 32% of the set in each case. 

Although the ratios are not as similar as the ones observed in the case of coverage by proximity, there is 

nevertheless a strong sense that CS, like CP, is directly affected by the size of the search space – the 

larger the space, the larger the coverage. 

3.3 Discussion 

The analysis of participant choices in the 9x9 and 5x5 grids demonstrated that probability distributions of 

different distances between two selections (whether they were calculated radially or by row or column) 

deviated from theoretically derived probability distributions consistently and predictably. It was shown 

(once again) that once a cell has been selected, the probability of selecting a second cell near or like it was 

less than would be expected had the selections been made truly randomly. In this chapter we introduced a 

new concept – coverage – as the set of cells whose probability judgements are affected by knowledge of 

the outcome of a prior selection. We defined CP and CS as those sets formed by proximity and similarity, 

respectively. 

The size and attributes of CP and CS were investigated in two separate contexts: the 9x9 grid of Study 1, 

where participants were making three selections in the hopes of finding a randomly located prize, and the 

random condition in Falk et al. (2009), where participants were simply making 3 random selections in a 

5x5 grid. Overall, it was found that the size of both CP and CS increased as the size of the grid increased. 

There are some limitations to the analysis presented so far. First, while we have conducted a similar 

analysis in the 9x9 and 5x5 grids, there are some differences in those experiments. There may be a 



30 

 

psychological difference between searching for a randomly located prize and simply randomly selecting 

three cells in the grid. In particular, in Study 1, participants received feedback after each selection, 

whereas in Falk et al. (2009) there was no wrong answer (and no feedback was necessary). At this time, 

we are inclined to believe that this difference is not particularly important. When asked about what 

prompted to make their selections the way they did, participants in Study 1 expressed that they were just 

selecting cells randomly; in trying to find a prize that was placed by a random process, participants were 

attempting to recreate a random process of their own. In addition, Falk et al. (2009) reported correlations 

between participant selections in the competitive and random conditions, evidence that participants were 

defaulting to ‘selecting randomly’ in both cases. 

A second limitation relates to the interaction of CP and CS. While we discovered the parameters of CP 

and CS in the 5x5 and 9x9 grids, we did not investigate how ‘much’ a cell is covered when under both the 

CP and CS of one or more selections. Rather, the two were discovered and analyzed separately and 

independently from each other. It is unclear at this point what the relative strength of these two types of 

coverage is, how they compare, and how this comparison might be affected by factors such as the size and 

shape of the grid and the number of selections.  

Finally, the parameters of CP and CS were determined in the specific circumstance where 3 selections 

were made in both the 5x5 and 9x9 grids. For example, it is reasonable to assume that the size of CP that 

was discovered - 1/3 of the grid – was directly related to the number of selections: to cover as much of the 

grid as possible given 3 selections, each selection must cover roughly 1/3 of the grid. It is possible that CP 

and CS depend on the ratio of the size of the grid and the number of selections. Currently, our analysis is 

not sufficiently developed to describe the sensitivity of CP and CS to these parameters.  

An interesting theoretical discussion can be had by tying the concept of coverage to the theory of 

generalization, which, Shepard (1987) argues, is psychology’s first general law. The theory of 

generalization is as such: 

 “Whenever a response has been learned in one stimulus situation, similar stimulus situations 

will also tend to elicit that response in proportion to their similarity, and that stimulus situation 

will also tend to elicit similar responses in proportion to their similarity.…It should be 

recognized that this is an exceedingly adaptive principle. As a rule, similar situations require 

similar responses.” (Logan, 1970, pp. 128-129)  

Multiple studies with animals have helped establish orderly gradients of generalization; an animal’s 

response to a stimulus can be strictly predicted by the gradient of similarity of that stimulus to the original 

(training) stimulus (Shepard, 1987). It is generally accepted that the generalization function – the 

probability that the animal will generalize their response given the psychological distance between the 
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stimulus and the reference – decays exponentially (or in some cases in Gaussian form (Nosofsky, 1992)) 

(Shepard, 1987).   

The observed participant behaviour of assigning similar probability assessments to cells that are 

perceptually grouped together is evocative of the theory of generalization – one could think of the 

properties of a prior selected cell that had resulted unsuccessful as being generalized to cells that are like 

it, whether this likeness is due to being close or being in the same row or column. In addition, the larger 

the psychological distance between a cell and a prior selection (whether one measures this psychological 

distance with regards to Euclidian distance, similarity, or a combination of the two), the less likely one is 

to generalize the selection’s properties to that cell, and the more likely to choose that cell as the next 

selection. This interpretation is also supported by the data from the 9x9 grid: when plotting the probability 

that a participant will not be selecting a cell (i.e., the probability that the cell is being judged as too similar 

to a prior selection and that the selection’s attributes are generalized to the cell) versus the (psychological) 

distance between the cell and the prior selection, the function that is achieved is Gaussian.  

There is thus undoubtedly an interesting resemblance of the concept of coverage to the concept of 

(stimulus) generalization; however, this idea is beyond the scope of this thesis and will not be further 

explored.  

Looking ahead, in Chapter 4, we investigate an important attribute of coverage: its size. Through an 

experiment (Study 2), we demonstrate that the size of a grouping affects the subjective probability of its 

elements. This finding is used to further develop the concept of coverage, resulting in a coverage 

maximization theory that is tested in Chapter 5.  
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4. The size of coverage  

As participants interacted with the grid of Study 1, their choice context changed with every selection. 

Initially, before a participant had made any selections, the search space was blank.  As previously 

mentioned, due to people’s inability to discern between all 81 cells, grouping/simplification of the 

stimulus occurred (e.g., edges, grid quadrants, etc.) Once the participants selected a cell in a chosen 

grouping, that cell enforced its own CP and CS (as discussed in Chapter 3). Thus, when making the 

second, and later, the third selection, participants were left to choose from the remaining cells and faced a 

new choice context - new groupings could be formed under the added constraint of avoiding areas 

covered by their previous selection(s). The thesis of this chapter is that, regardless of the choice context, 

participants try to choose a location in the grid that affords them the greatest coverage possible.  

4.1 Evidence from Study 1 

We begin by providing evidence of people’s preference for locations that maximize coverage in the 9x9 

grid used in Study 1. Participants made two types of decisions: choosing a first cell in the unexplored 

grid, and choosing a second (or third) cell after an unsuccessful first (or second) selection.  

Of interest in the first type of decision is participants’ established avoidance of cells on the edge and 

corners of the grid. A defining feature of those cells compared to internal cells in the grid is their low CP 

and CS. For example, consider Figure 9. Based on the analysis in Chapter 3, a typical cell (x) inside the 

grid has a CP of 24 cells. In contrast the largest CP achieved by cells on the edge (e) and corners (c) of the 

grid is 14 and 8 cells respectively. Participants’ avoidance of edge and corner cells could be construed as 

a tendency to seek cell locations that maximize CP (thus avoiding low-coverage cells).  

 
Figure 9 CP of typical internal, edge, and corner cells in 9x9 grid 

A similar conclusion can be reached with respect to CS (see Figure 10 for illustration). Based on the 

analysis in Chapter 3, a typical cell inside the grid (e.g., x) has a total CS of 44 cells (when summing up 

both similarity by column and row, whereas edge (e.g., e) and corner (e.g., c) cells would be limited to 38 

and 31 cells respectively.    
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Figure 10 CS of typical internal, edge, and corner cells in 9x9 grid 

The second type of decision occurs once one or more prior selections have been made in the grid and 

resulted unsuccessful. Consider the case when a selection (x) has been made and its coverage established 

(see Figure 11 for illustration). Cells a and b are both feasible alternatives for the location of the second 

selection. However, evidence from Section 3.1.1 suggests that location b would be preferred to location a. 

As was observed in Figure 4, the largest probability of a second selection (and at the same time largest 

deviation from expected probability) is at a radial distance of 4 units. Thus, rather than making their 

second selection immediately outside the coverage area at a radial distance of 3 units from x (i.e., cell a), 

participants are more likely to choose instead cells that are further (i.e., cell b which is 4 units away). The 

preference for cell location b supports the ‘maximizing-coverage’ prediction; cell b adds 23 ‘new’ cells to 

the total CP of the two selections, which is larger than the added CP brought by the selection of cell a (20 

cells).
1
  

 

Figure 11 CP of cells at a radial distance of 3 and 4 units from a prior selection in the 9x9 grid 

In that same type of decision, a similar analysis can also be performed with respect to CS. For example, 

consider the CS of a first selection x, and two alternative second selections a and b, at a row distance of 3 

and 4 units respectively (see Figure 12 for illustration).  While a and b are both feasible alternatives 

(being outside of the coverage area of x), evidence from Section 3.2.1 would suggest that b would be 

preferred to a. As was observed in Figure 7, the largest probability of a second selection (and at the same 

time largest deviation from expected probability) is at a row distance of 4 units.  Therefore, the predicted 

preference for cell b also supports our prediction that participants seek to maximize coverage; cell b 

brings an added CS of 26 cells, which is larger than that brought by cell a (17 cells). Of note is that in this 

                                                      

1
 The exact calculation of the total CP of two selections is discussed in detail in Chapter 5.   
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example we chose to discuss row similarity, rather than column similarity. The reason for this is the 

identified irregularity in the observed coverage by column similarity curve in Figure 7, as discussed in 

Section 3.2.1. 

 
Figure 12 CS of cells at a row distance of 3 and 4 units from a prior selection in the 9x9 grid 

In summary, known patterns of choice from Study 1 are consistent with the prediction that participants 

seek to select cells in the grid that afford the highest possible coverage. We further suggest that the reason 

for this is because while participants rightly assume that the prized cell is more likely to be in a larger 

grouping compared to a smaller one, they wrongly believe that individual cells within a larger grouping 

have a higher probability of containing the prize than individual cells in smaller groupings. We further 

explore this explanation in the next section.   

4.2 Evidence from the literature: category size bias and multi-stage lotteries  

People’s (erroneous) belief that individual chance events have an increased likelihood of occurrence when 

they belong to a larger category (compared to a smaller one) has been recently demonstrated in a series of 

experiments by Isaac and Brough (2014). For example, in one experiment participants were presented 

with an urn of 15 numbered balls of different colours – blue, grey, and white. While ball number 8 was 

always grey, the different conditions varied the number of balls belonging to each of the three colour 

categories. It was found that participants judged the likelihood of randomly selecting ball number 8 from 

the urn as being larger when the number of grey balls in the urn was larger, thus demonstrating what the 

authors termed ‘category size bias’. Categorization has thus the effect of distorting how participants 

process the information and of altering their choices. The mechanism provided by the authors to explain 

this bias was categorical inheritance: people expect an item to possess the attributes of a category it 

belongs to. Since larger categories are more likely to occur (e.g., a grey ball is more likely to be selected 

when there are more grey balls), people believe (erroneously) that individual items in those categories 

(e.g., grey ball number 8) are also more likely to occur.  

Objectively, the judgement of the category size and its effect on the individual outcome’s probability 

ought to be just the first calculation step in calculating the overall probability of that outcome. A second, 

often forgotten step, is calculating the likelihood of selecting the desired outcome from that chosen 



35 

 

category. Previously, two-step probabilities (also known as multi-stage lotteries) have been explored by 

Ronen (1973). Compound probabilities were explicitly broken down into two sub-events, each with their 

own well-defined probability outcomes. In one experiment, participants were asked to choose between 

different sequences of two-probability events. For example, a sequence was composed of two chance 

events: picking a blue marble from a bag of blue and white marbles, and then picking a red marble from a 

bag of red and green marbles. While the total (compound) probability of picking a blue marble  from the 

first bag followed by a red marble in the second bag was constant, participants systematically preferred 

those sequences in which the first event was higher in probability (and as a consequence, those that had a 

second event with lower probability), demonstrating a tendency towards early success. The preference for 

multi-stage lotteries with decreasing probabilities was also more recently confirmed by Budescu and 

Fischer (2001). Multiple explanations have been provided, with the most promising being that early 

success provides participants with more ‘hope’ and a higher likelihood of ‘staying in the game’, which is 

of subjective value (as also suggested by Ronen, 1973). As one participant stated, “The progress from one 

state to the other means something, it’s better to lose at a later stage” (Budescu & Fischer, 2001, p. 200) 

It is to be noted that while the preference for higher first-stage probabilities has been demonstrated in 

lottery-type domains, it may be supressed in other scenarios (Chung, von Winterfeldt, & Luce, 1994).  

In light of the above, we suggest that people’s selection of an individual cell from the 9x9 grid of Study 1 

can be modelled as a two-stage lottery. Consider an individual cell x that is grouped with a number of 

other cells in grouping X (e.g., the CP of x) that is contained in the search space N (i.e., the 81 cells of the 

grid). For cell x to contain the prize, a sequence of two separate events must have occurred: the prize must 

have been placed in the grouping X and the participant must have chosen the cell x in X that actually 

contained the prize. Thus, the probability that x in X contains the prize can be decomposed into a 

sequence of two probabilities: (1) the probability that X contains the prize, which is equal to X/N, and (2) 

the probability that x in X contains the prize, which is equal to 1/X. A multiplication of the two 

probabilities yields a total probability of 1/N, which is equal to the objective probability. Yet, given 

participant choices and prior research on the preference for early success in multi-stage lotteries, it would 

appear that participants do not assign equal probabilities to all cells x in the grid. Instead, the size of the 

category/grouping X affects their subjective probability and, given that participants seem to prefer 

choosing from the larger subsets, it is implied that of the two probabilities, X/N holds a higher weight in 

participants’ probability calculations than 1/X. 

4.3 Study 2 – Effect of the group’s size on an element’s probability 

The groupings created in the grid are perceptual and only loosely inferred from participants’ choices and 

post-experiment interviews. To test the prediction and explanation offered above, we designed an 
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experiment that retained the search aspect of the grid while removing the ambiguity of the perceptual 

groupings that were formed based on the grid structure. Rather than presenting the search space as a 

number of cells in a structured grid, the game was instead framed as a quest to select a red marble from a 

jar that contained a mix of blue and red marbles. The objective likelihood of this chance event was 1/10. 

Perceptual groupings of the marbles were enforced by effectively making a separation of the marbles in 

the original jar and segregating the marbles in two additional jars. Thus, marbles were grouped according 

to the common region principle, recently proposed by Palmer (1992). According to this principle, items 

will be grouped together if they are “located within a common region of space, i.e., if they lie within a 

connected, homogeneously colored or textured region or within an enclosing contour” (p. 438). Palmer 

argued that this principle differs from Wertheimer’s principles in that it was an extrinsic principle (the 

organization occurs because of something other than the items to be grouped), whereas all of 

Wertheimer’s principles are based on intrinsic factors – the items themselves dictated the organization.  

Method. Two conditions were designed. In an online survey participants were shown a short video 

developed in Microsoft Powerpoint. In the narrated (and subtitled) video an opaque jar was shown to 

contain a mix of 10(100 marbles): 9 (90) blue marbles and 1(10) red marble(s). A hand was shown to mix 

the marbles well and then the contents of the jar were poured into two additional jars. 8(80) of the marbles 

were shown to be poured into one jar and 2(20) in the other. Two hands were then shown to randomly 

draw one marble from each of the jars. Without revealing the colours of the selected marbles, participants 

were asked to predict which of the two marbles most people would judge to be more likely to be red. 

They were also asked to provide an explanation and probability calculation to support their choice. An 

example of the stimulus is provided in Appendix B.1.  

Participants. A total of 185 (55% male, mean age = 34.5 years) participants were recruited using 

Amazon Mechanical Turk. All participants completed both Condition 1 and Condition 2, in randomized 

order.  A few participants declined completing both conditions, and instead completed just one. They 

were not excluded from the analysis. 

Results. No positional effects were found with regards to the left-right presentation of jars (χ2 < 0.4, p > 

0.5). In addition, no order effects were found with regards to the presentation of the experimental 

conditions (χ2 < 1.8, p > 0.18). Results were thus aggregated.  

In both conditions, a majority of participants judged the marble selected from the larger jar to be more 

likely to be red (Condition 1: 81%, N=185, p<0.001; Condition 2: 62%, N=176, p<0.001). However, the 

proportion of participants that made that judgment significantly decreased in Condition 2 compared to 
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Condition 1(χ2= 15.38, p<0.001)
1
.  The full dataset of explanations provided by participants for their 

choices is given in Appendix B.2. Typical answers for each condition are provided in Table 4 below: 

Table 4 Study 2 - Typical participant explanations for their choices 

 Condition 1 Condition 2 

Explanation for 

choice of marble 

from big jar 

“There are more marbles in [the 

bigger] bowl, so most people would 

guess it has a higher chance of 

having the red marble.” 

“[The bigger bowl] should have more 

red balls total even though the 

proportion is likely to be the same as 

[the smaller bowl].” 

Explanation for 

choice of marble 

from small jar 

“Because if the red marble is in [the 

smaller] bowl,  there is a 50 percent 

chance of getting it” 

“There are less balls in total in [the 

smaller] bowl,  which most people might 

think would give them a better chance” 

 

4.4 Discussion 

In Study 2, as in Study 1, participants were presented with a problem in which the prized element was 

hidden in a set of identical items, with a low overall probability of it being found. While in Study 1 

participants created their own perceptual groupings of the cells in ways that came natural given the grid’s 

structured nature, in Study 2 the marbles were forced by the experimenter into two distinct groups (the 

larger and smaller jar). In both cases, the groupings should have had no bearing on participant choices. In 

the case of Study 1, all cells in the grid had exactly the same probability of containing the prize, 

regardless of their location and the size of their coverage. Similarly, in Study 2 every individual marble 

had the same exact probability of being red – 1/10; the placement in jars was an artificial separation and it 

should have had no effect on participants’ judgments. Yet, Study 2 demonstrated that participants 

believed that when directly comparing a marble that had been grouped in the larger category (larger jar) 

with one that had been grouped in the smaller category (smaller jar), the former had a higher probability 

of being red than the latter. In this case, the effect of the grouping’s size on the individual elements’ 

probability judgments was demonstrated unambiguously.  

Participants’ reasoning (based on their written explanations) was that the larger jar was more likely to 

contain the prized red marble (or, in the case of Condition 2, likely to contain more red marbles). While 

this is true, participants make no mention of the second stage of the probability calculation – while the 

                                                      
1
 An interesting effect can also be observed in the difference between male and female participants. Overall, it is 

observed that female participants, regardless of condition, are more likely to judge the marble selected from the 

bigger jar as more probable to be red (χ
2
= 3.93, p<0.05). A suggested explanation is based on prior research, which 

has shown small, but significant differences in men and women’s self-reported thinking styles; while men score 

themselves higher on ‘rational ability’, women score themselves higher on ‘experiential ability and engagement’ 

(Pacini & Epstein, 1999). Thus, according to this explanation women exhibit a stronger category size effect because 

they can more easily arrive at intuitive answers. 
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larger jar likely has more red marbles, it also has a larger number of blue marbles, which implies a 

smaller probability of actually selecting a red marble. In contrast, the minority participants who chose the 

smaller jar argued that, had one (or more) red marbles ended up in the smaller jar, the probability of 

selecting a red marble from there was high. These participants, unlike the other group, chose to focus their 

attention on the second stage of the probability calculation. Overall, the results of Study 2 indicate that 

most participants focus on the first stage of the probability calculation and choose alternatives that have 

higher first-stage probabilities, in line with prior research (Ronen, 1973; Budescu & Fischer, 2001).  

A second interesting finding of Study 2 is the decrease in Condition 2 from Condition 1 of the portion of 

participants that believed the marble from the larger jar was more likely to be red. The explanation for 

this trend is subtly inferred in the answers given by participants in Condition 2 that chose the marble from 

the small jar – they point out that given that 20 marbles ended up in the small jar, it is very likely that at 

least some of them were red. In fact, assuming a proportional distribution of the red marbles between the 

two jars, the probability of selecting a red marble from the small jar in Condition 2 is 2/20. In contrast, in 

Condition 1, it is much more difficult intuitively to proportionally ‘split’ the sole red marble between the 

two jars. Objectively, the probability of selecting a red marble from the small jar in Condition 1 is 0.2/2. 

In reality, however, most participants just guessed that the marble had ended up in the larger jar, making 

the probability of finding it in the smaller jar effectively 0. An alternative explanation for the difference 

between the two conditions can be argued in the form of the ratio bias effect (Miller, Turnbull, & 

McFarland, 1989) – 2/20 might seem more attractive than 0.2/2; however, the same explanation could 

also be used to predict an increased preference for the larger jar in the 100 marble condition – a 8/80 

probability might seem more attractive than 0.8/8.   

In Chapter 3 we discovered that people do not process individual outcomes independently; rather, due to 

perceptual grouping influenced by the context in which the outcomes are presented, probability judgments 

of any outcome in a group are strongly affected by knowledge about other outcomes in that group. In 

general, outcomes in a group are assumed to have similar probability judgments, even if the grouping 

process should have no relevant effect on their objective probability. In this chapter we have shown that 

there is a second factor that affects the probability judgment of an outcome in a group – the group’s size. 

Generally, the larger the group’s size, the higher the subjective probability of any individual outcome that 

is contained in the group. We now have evidence to suggest that when people select a cell in the grid, the 

size of the coverage that that cell can afford (which is dependent on the location of that cell as well as the 

location of prior selections) affects the judged probability that the cell contains the prize: the larger the 

available coverage, the higher the judged probability. In the next chapter, we construct and test a 

generalized coverage-based model of people’s choices in the multi-selection search context.  
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5. The coverage maximization theory 

In the previous chapters we have concluded that in the context of searching for a randomly hidden prize in 

structured space, people attempt to make ‘random’ selections in the space. The generation of these 

‘random’ selections is such that: (1) a selection has coverage, or set of cells that are judged to have similar 

probabilities, and (2) people seek to select cells that afford the highest coverage. Thus, summing up the 

predictions and evidence presented in the previous chapters, we can now suggest that people’s choices in 

the long-shot search context can be modelled as a tendency to maximize coverage. The objective of this 

chapter is to test coverage maximization as a model of choice in the multi-selection search context. 

In Chapter 3 we defined and found evidence for coverage based on both radial proximity (CP) and 

row/column similarity (CS). However, we did not delve into the interaction of the proximity and 

similarity grouping principles and thus did not construct a ‘total coverage’ model that incorporated the 

two. Taking into consideration the complexity of modelling and testing choice when both CP and CS 

might be at play, in this chapter we choose to model and test the ‘coverage maximization’ model of 

choice focusing on CP alone, taking CS into consideration only as a tie-breaker in cases of identical CP.  

Having derived the coverage principles from the 9x9 and 5x5 grids, in this chapter we define and test the 

coverage maximization model in the context of the smallest search space that we believe maintains the 

main attributes of the multi-selection search paradigm – 6-cell structures. Moreover, to minimize the 

influence of CS, we choose, as much as possible, simple structures that lack clear row/column 

organization. Despite its small size, we believe the 6-cell search context maintains the main psychological 

attributes of the multi-selection search paradigm. In addition, the choice presents several advantages, 

including the simplification of the computation of coverage, people’s general familiarity with similarly 

sized odds (e.g., throwing the dice), and – important for testing purposes – it offers  a minimal number of 

possible choices to study participants.  

5.1 The case of the single selection 

We first define and test coverage maximization in the context of a single selection. Having previously 

derived the coverage principles from the 9x9 and 5x5 grids, in this chapter we begin by modelling 

coverage in a simple 6-cell structure presented as a 2x3 grid. The 2x3 grid affords a simple, yet 2D 

configuration of the 6 cells.  

5.1.1 Defining single-selection CP in the 2x3 grid 

In Chapter 3, we found that in the 9x9 and 5x5 grids, the covered cells were all immediately adjacent to or 

just one cell removed from the selected cell.  A cell’s CP, depending on its location, was comprised of at 

most 29.6% and 33.3% of the total cells in the 9x9 and 5x5 grids respectively, indicating that the size of a 
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cell’s CP was proportional to the size of the grid. We propose that CP in the 2x3 grid can be modelled as 

shown in Figure 13: a cell’s coverage is extended to just ½ unit of radial distance, covering half of each 

immediately adjacent cell and a quarter of each cell that is immediately diagonal to it. For example, the 

two types of cells in the grid - x in the middle and c in the corner - have a total CP of 2 and 1.25 cells 

respectively. This ensures that a selected cell’s CP extends to at most 33% of the total grid area, in similar 

proportion to the CP in the larger grids.   

          
c 

    

              

  
x 

           

             

CP = 2     CP = 1.25 

Figure 13 Coverage by proximity of a single selection in the 2x3 grid 

Given a selection’s calculated CP, coverage maximization as a model of choice can be tested against real 

participant selections.  In particular, given a context in which people are asked to judge the likelihood that 

a particular location in the search space contains a randomly placed prize, we can test whether these 

judgments correlate with our predictions that people will prefer to select cell locations that have the 

highest coverage. We thus begin by first focusing on the case when a participant makes a single selection 

in the search space and put forward the following hypothesis: 

Hypothesis 1: In the case of a single selection, cells that have higher coverage are judged to be more 

likely to contain a randomly placed prize. 

Recall that one of the most relevant alternative models of choice reviewed in Chapter 2 was over-

alternations. The premise of the model was that the higher the probability of alternations P(A), the more 

random a series of selections will appear to people. If, however, P(A) becomes too large, the alternations 

become to appear as a pattern in themselves. Thus, in binary sequences/grids, choices that are judged the 

most random have P(A) around 0.6 (Falk & Konold, 1997). Study 3A below sought to not only test 

Hypothesis 1, but to also assess the predictive power of the over-alternations model in comparison to the 

coverage maximization model.  

5.1.2 Study 3A - Single selection in 6-cell structure 

Method. The survey was administered as a 3 page handout. The first page provided a description 

of the task, as shown below. In the following two pages, participants were shown 7 different 6-cell 

structures. In all structures, every cell was adjacent to at least another cell (i.e., no cells were ‘floating’). 
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For each structure, they were also shown 3
1
 different shaded cells and asked to rank the cells based on 

their judgement of frequency of selection by the fictitious game participants. To avoid rank-order and 

orientation biases, efforts were taken to randomize the order of presentation of the structures, the order of 

the options to be ranked, and the left-right orientation of the structures as much as possible, within the 

constraint of the paper-based delivery. A version of the complete questionnaire is provided in Appendix 

C.1.    

“A while back the following game was played with a large 

number of people. People were shown various 6-cell shapes. An 

example of such a shape is shown below: 

 

      

In each structure, a computer had randomly assigned a prize to 

one of the cells. The game players had to select the cell where 

they felt the prize might be.   

As you can imagine, players selected some cells more frequently 

than others. 

In the next page, you will see a variety of 6-cell structures. 

Examples of selected cells by people are shaded. Your task is to 

rank the selected cells in order from the one that you expect was 

the most frequently selected to the one that you expect was the 

least frequently selected:” 

 

Participants. The questionnaire was administered as an ungraded activity to students in an undergraduate 

Management Sciences course, an elective taken by students from a variety of disciplines.   

Results. The questionnaire was completed by 57 of the 60 students in attendance. Of interest was the 

level of agreement of participant rankings with the predicted coverage-based rankings. The metric chosen 

was the correlation between several judges and a criterion ranking (TC), which is the average of the 

Kendall rank-order correlations between the participants and the predicted ranking ( as described in Siegel 

and Castellan Jr, 1988, pp. 281-284). The higher is TC, the more in agreement judges are with the 

criterion ranking. 

Table 5 shows all the structures presented to participants, as well as the options of shaded cells to be 

ranked and their calculated CP and P(A) values
2
. For example, in the case of structure 1, cells c, e, and f 

                                                      

1
 In the case of structure #4, participants were only shown two shaded cells. The reason was that there were only two 

unique CP values (i.e., multiple cells had identical CPs) 
2
 In all cases, N = 57, except in the case of structure #6 (N = 56) 
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have a calculated CP of 1.5, 1, and 0.5, respectively. The shaded cells are ranked and presented in order 

of descending CP. The table also shows the correlation value TC and its associated statistical significance.  

The results of study 3A support Hypothesis 1. In all structures, there is an observed agreement among 

participant rankings and expected rankings. In all but structure #7, that agreement is significant at a level 

of 0.01. 

Table 5 Results of Study 3A 

6-cell shape 
Cells selected by fictitious game players, 

from highest P(A) to lowest 

Value and 

significance of 

Tc 

1.  

 

CP = 1.5 

P(A) = 3/5 

 

CP = 1 

P(A) = 2/5 

 

CP = 0.5 

P(A) = 1/5 

0.44 

(p < 0.000) 

2.  

 

CP = 1.75 

P(A) = 3/6 

 

CP = 1.25 

P(A) = 2/6 

 

CP = 0.5 

P(A) = 1/6 

0.24 

(p = 0.003) 

3.  

 

CP = 2 

P(A) = 4/5 

 

CP = 1 

P(A) = 1/5 

 

CP = 0.5 

P(A) = 1/5 

0.37 

(p < 0.000) 

4.   

 

CP =2 

P(A) = 3/7 

 

CP =1.25 

P(A) = 2/7 

N/A 
0.44 

(p < 0.000) 

5.  

 

CP =1.75 

P(A) = 3/6 

 

CP =1.5 

P(A) = 2/6 

 

CP = 0.75 

P(A) = 1/6 

0.31 

(p < 0.000) 

6.  

 

CP =1.75 

P(A) = 3/6 

 

CP =1.25 

P(A) = 2/6 

 

CP =0.75 

P(A) = 1/6 

0.30 

(p < 0.000) 

7.  

 

CP =1.75 

P(A) = 3/6 

 

CP =1.5 

P(A) = 2/6 

 

CP =0.75 

P(A) = 1/6 

0.08 

(p = 0.182) 

 

Of particular interest is the case of structure #7, where the correlation coefficient TC was not found to be 

significant. Further decomposing the pair-wise rankings as summarized in Table 6, we find that, as 

expected, the selections with the higher CP - e and a - are generally ranked higher than the low-CP cell d. 
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Unexpectedly, however, when comparing selections e and a to each other participant rankings go against 

our CP-based predictions. One possible explanation for the observed pattern of choice could be that cell a 

is located closer to the top-left region of the structure. In Study 1 as well as the studies of Falk et al. 

(2009) it was noted that people exhibited a preference for selections in the top-left of a structure, a 

tendency possibly borrowed from the learned behaviour of reading a page from top-left to right-bottom. 

When paired with the almost identical values of CP between a and e (difference of only 0.25), this 

preference may explain participants’ higher-than-expected ranking of a. 

Table 6 Pairwise comparisons of selection rankings for structure #7 

Selected cells  & their CP Results 

Value & 

significance of Tc 

 

CP = 1.75 

 

CP = 1.5 

# of participants that ranked ‘e’ higher than ‘a’ = 20 

# of participants that ranked ‘a’ higher than ‘e’ = 36 

-0.29 

(p = 0.12) 

 

CP = 1.75 

 

CP = 0.75 

# of participants that ranked ‘e’ higher than ‘d’ = 33 

# of participants that ranked ‘d’ higher than ‘e’ = 20 

0.18 

(p = 0.12) 

 

CP = 1.5 

 

CP = 0.75 

# of participants that ranked ‘a’ higher than ‘d’ = 38 

# of participants that ranked ‘d’ higher than ‘a’ = 18 

0.36 

(p = 0.006) 

 

With regards to how coverage maximization performs compared to a competing model – over-

alternations, in the case of cells chosen in the study, their CP correlated with their P(A) values, thus 

assuming that the higher the P(A), the more random the selection, P(A) made the same (good) predictions 

about participant choices. The only exception was in the case of Figure 3, where cells b and e had 

identical P(A) values but different CP values. In this case, participant rankings were in agreement with 

predictions made by CP: b was ranked higher than e (Tc = 0.23, p = 0.056). In contrast, over-alternations 

theory would have predicted that there would be no difference between the two cells. Nevertheless, given 

that for the most part, P(A) and CP values made the same predictions with regards to participant choices,  

Study 3A could not adequately compare the two models and could not categorically reject over-

alternations theory as a suitable alternative to coverage maximization.  

5.2 The case of two selections 

In this section, we test the coverage maximization model in the context of two selections. As such, the 

first step is determining CP is calculated in the case of multiple selections. 

5.2.1 Defining double-selection coverage in the 2x3 grid  

According to the framework described in the previous section, a cell in the vicinity of a selection can be 

covered by proximity at a level of 0, ¼, or ½. A question arises with regards to what happens when more 
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than one selection is made. In this case, two complications arise: (1) a selection may be made within a 

prior selection’s CP, and (2) the CPs of 2 or more selections may overlap.  

One approach, termed the additive approach, could be to simply add up the CPs of each individual 

selection, as if they had been made alone and independently. For example, according to this approach, if 

both cells x and c had been selected in the 2x3 grid (Figure 13), their total coverage would be the sum of 

those selections’ individual CPs, i.e., 2 + 1.25 = 3.25.  

Another approach, termed the holistic approach, takes a more ‘gestalt’ view of coverage, as illustrated in 

Figure 14. First, we assume that if a cell is selected, its selected status becomes its only attribute, and its 

inclusion in any prior or future selections’ CPs is discarded. Thus, since cells c and x are selected, the 

inclusion in each other’s CPs is not counted. Second, to determine the ‘coverage level’ of other cells in 

the grid, we take into consideration whether they are under the CP of 1 or 2 selected cells. Consider the 

following case: A first selection x has been made, and its coverage shaded in light grey, as shown in 

Figure 14. We next consider what happens when the second selection c is made.  The new selection 

brings its own CP, shaded in dark grey. The top right corner of the cell below c, and the bottom left corner 

of the cell immediately to the right of c are under the overlapping CP of both x and c, and thus shaded in 

black. Several options could be imagined for calculating the total coverage incurred by such a cell that is 

under the CP of multiple selections (i.e., in an area of overlapping CPs). 

       
c 

    

           

  
x 

     
x 

  

         

Figure 14 Illustration of the CP of two selections in 2x3 grid 

Option 1. According to this option, we assume that once an area of a cell has been covered, the added 

coverage brought on by an overlapping CP does not affect its perceived coverage. The area (A) of the cell 

that is under overlapping CP is counted just once, therefore total CP in the grid is calculated as: 

𝐶𝑃𝑂𝑝𝑡𝑖𝑜𝑛 1 = 𝐴𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑦 + 𝐴𝑑𝑎𝑟𝑘 𝑔𝑟𝑒𝑦 + 𝐴𝑏𝑙𝑎𝑐𝑘 = 1.25 + 0.5 + 0.5 = 2.25 

Option 1 has the advantage of simplicity, but one might question whether added (overlapping) CP onto a 

cell does not in fact increase its perceived coverage. Recall that the definition of CP is the set of cells 

whose probability judgements are affected due to their proximity to a selected cell. Once selection x has 

been made, because of its CP, the likelihood that the next selection will be located in the cell immediately 

to its left becomes lower. One could imagine that once selection c is made, the likelihood of that cell 

being selected in a potential third try is even lower than before. A lower judgment of probability would 
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imply a higher coverage. Option 2 below presents an alternative that takes the added coverage into 

account while also adjusting its influence given that it is added to prior coverage.  

Option 2. With each new overlap, the CP added is discounted by 50%. Therefore, total CP in the grid is 

calculated as:  

𝐶𝑃𝑂𝑝𝑡𝑖𝑜𝑛 2 = 𝐴𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑦 + 𝐴𝑑𝑎𝑟𝑘 𝑔𝑟𝑒𝑦 + 1.5 ∗ 𝐴𝑏𝑙𝑎𝑐𝑘 = 1.25 + 0.5 + 1.5 ∗ 0.5 = 2 

Option 2 is chosen for modelling (holistic) CP in double-selection choices.  Its suitability compared to 

Option 1 is further discussed later in this chapter.  

As in the case of a single selection, given a selection pair’s calculated CP in a small grid, coverage 

maximization as a model of choice can be tested against real participant selections.  In particular, given a 

context in which people are asked to judge the likelihood that the selection of two particular locations in 

the search space is going to result in finding a randomly placed prize, we can test whether these 

judgments correlate with our predictions based on the model described above. Based on our 

understanding of coverage and its effect on choice we would predict that people will prefer to select cell 

locations that have the highest coverage. 

Hypothesis 2: In the case of two selections, pairs of selections that have higher coverage are judged to be 

more likely to contain a randomly placed prize. 

A second objective relates to validating the holistic approach taken for calculating coverage in the double-

selection case.  

Hypothesis 3: In the case of two selections, coverage is perceived holistically (as calculated by Option 2), 

rather than as the sum of coverages of selections taken independently (as calculated by Option 1). 

As in the case of the single-selection case, in Study 3B (described below) we sought to not only test 

Hypotheses 2 and 3, but to also assess the predictive power of the over-alternations model (Falk & 

Konold, 1997) in comparison to the coverage maximization model.  

5.2.2 Study 3B - Two selections in 6-cell structures 

Method. The context used in Study 3B was very similar to the one used in Study 3A, but rather than 

being administered as a paper handout, the survey was conducted online. The first page provided a 

description of the task, as shown below. In the following pages, each participant was shown a random 

selection of 4 of the 7 structures used in Study 3A. For each structure, participants were shown 3 different 

pairs of shaded cells and asked to rank them based on their judgement of frequency of selection by the 

fictitious game participants. In general, for each structure, selection pairs were chosen such that the 
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holistic and additive CP calculations would result in different, if not opposing predictions. To avoid rank-

order and left-right orientation biases, the order of presentation of the structures, the order of the ranking 

options, and the orientation of the structures were all randomized. A version of the complete 

questionnaire is provided in Appendix C.2.   

A while back the following game was played by a large number of people. 

People were shown various 6-cell shapes. An example of such a shape is 

shown below:  

  

      

 In each structure, a computer had randomly assigned a prize to one of the 

cells. 

 

As part of the game, people could select two cells, in the hopes that one of the 

selected cells could be where the prize might be. 

 

As you can imagine, people selected some pairs of cells more frequently than 

others. 

 

In the next pages, you will see four 6-cell structures. Examples of pairs of cells 

selected by people are shown shaded in blue. Your task is to rank the selected 

pairs of cells in order from the pair that you expect was the most frequently 

selected to the pair that you expect was the least frequently selected. 

 

Participants. A total of 113 participants were recruited using Amazon Mechanical Turk.  

Results. As in Study 3A, of interest was the level of agreement of participant rankings with the 

hypothesized ranking based on CP values. Therefore, the correlation between several judges and the 

criterion ranking (TC) was once again chosen as the measurement metric.  

Table 7 shows all the structures presented to the participants, as well as the options of selection pairs to be 

ranked and their total CP values, calculated both holistically and additively. For example, in the case of 

structure 1, pairs ce, ac, and ae have a calculated additive CP of 2.5, 2.5, and 2, respectively. The 

selection pairs are ranked and presented in order of descending CP. In the case when a calculated CP 

(whether holistically or additively) was identical for two pairs of selections, the ranking was further 

decided based on an aspect of coverage that was deliberately chosen not to model in this chapter – 

coverage across rows and columns (CS). In Chapter 3 we found evidence that a selection covered all other 

cells in the same row (in the 5x5 grid) and even cells in adjacent rows and columns (in the 9x9 grid). In 

the case of the simple 6-cell structures used in Study 3B, it can be conceived that a selection covers all 

other cells in the same row, especially when the structure may lend itself more easily to the perception of 
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rows and columns. For example, in the case of structure #1, pairs ac and ce have identical additive CP 

values. In this case, the ac pair was predicted to rank higher than ce because since it has a selection in 

each of the two rows, it performs better in ‘covering’ all rows and columns of the structure. In contrast, ce 

has both selections in the bottom row. By design, expected (predicted) rankings differed depending on 

whether the holistic or additive CP calculation was used. Therefore, the correlation value TC and its 

associated statistical significance is shown for both predicted rankings.  

Finally, for each pair of selection, the calculated P(A) value is provided below the holistic CP value (for 

convenience). While in most cases, P(A) values are in the same order as holistic CP values, there are 

cases (holistic) CP values can distinguish between pairs where P(A) values cannot (e.g.,  bd and ac in 

structure #3). 

Table 7 Results of Study 3B 

6-cell shape: 
Selected pairs by (fictitious) game players, 

from highest total CP to lowest.  

Value& 

significance of 

Tc  

1.  

N = 56  

Additive  

CP= 2.5 

 

CP = 2.5 

 

CP = 2 

0.02 

(p = 0.417) 

Holistic 

 

CP = 2.5 

P(A) = 5/5 

 

CP = 2 

P(A) = 3/5 

 

CP = 1.25 

P(A) = 2/5 

0.21 

(p = 0.007) 

2.  

N = 61  

Additive  

CP = 3.25 

 

CP = 2.5 

 

CP = 2.5 

-0.07 

(p = 0.175) 

Holistic 

 

CP = 2.5 

P(A) = 4/6 

 

CP = 2.5 

P(A) = 4/6 

 

CP = 1.875 

P(A) = 3/6 

0.19 

(p = 0.012) 

3.  

N = 57  

Additive  

CP = 3 

 

CP = 2.5 

 

CP = 2.5 

-0.25 

(p = 0.001) 

Holistic 
 

CP = 2.5 

P(A) = 5/5 

 

CP = 2.5 

P(A) = 3/5 

 

CP = 1.75 

P(A) = 3/5 

0.24 

(p = 0.003) 
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4.  

N = 56 

 

Additive  

CP = 4 

 

CP = 2.5 

 

CP = 2.5 

-0.14 

(p = 0.04 ) 

Holistic 

 

CP = 2.5 

P(A) = 4/7 

 

CP = 2.5 

P(A) = 4/7 

 

CP = 2.5 

P(A) = 4/7 

-0.07 

(p = 0.18 ) 

5.  

N = 59  

Additive  

CP = 3.25 

 

CP = 2.5 

 

CP = 2.5 

-0.01 

(p = 0.45) 

Holistic 

 

CP = 2.5 

P(A) = 4/6 

 

CP = 2.25 

P(A) = 3/6 

 

CP = 1.875 

P(A) = 3/6 

0.05 

(p = 0.34) 

6.  

N = 60 

 

Additive  

CP = 3.5 

 

CP = 2.5 

 

CP = 2 

0.08 

(p = 0.19) 

Holistic 
 

CP = 2.75 

P(A) = 6/6 

 

CP = 2 

P(A) = 3/6 

 

CP = 1.375 

P(A) = 2/6 

0.24 

(p = 0.002) 

7.  

N = 60 

Additive  

CP = 3.5 

 

CP = 3.25 

 

CP = 2.5 

0.06 

(p = 0.27) 

Holistic 

 

CP = 2.75 

P(A) = 6/6 

 

CP = 2.5 

P(A) = 4/6 

 

CP = 1.875 

P(A) = 3/6 

0.20 

(p = 0.009) 

 

Overall, Hypothesis 2 is supported in the results of structures #1, 2, 3, 6 and 7. In all these cases, there 

was a statistically significant correlation between the participant rankings and the expected rankings that 

were based on the holistic CP calculation. For those structures, the null hypothesis that rankings are made 

randomly is rejected at a level of significance of 0.01.  

Of particular interest is the case of structure #4: all pairs had the same holistic CP, so we had attempted to 

predict ranking based on the differences in CS. This proved to be a difficult task. While, the pair af was 

ranked the highest as it covered 2 rows and 2 columns, it was more difficult to discern between ac and be, 

which covered 1 row/2 columns and 2 rows/1 columns respectively. An arbitrary decision was made to 
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rank ac higher than be. Yet, it was found that there was no general agreement among participants and no 

correlation with predicted rankings. As it would have been predicted by the CP values alone, no ranking 

order emerged from the participants’ choices.  One explanation for this is that structure #4, unlike other 

tested structures, has a highly regular and symmetric shape. It is thus possible that there are more factors 

at play than we have been able to capture (e.g., similarity according to symmetry) and that those factors 

are affecting coverage in more ways than we are able to take into account at this time.  

In the case of structure #5, it is found that there is a non-significant correlation between participant 

rankings and the rankings predicted through the holistic CP calculation. An explanation for this can be 

found again in CS. In particular, while the ce pair has a calculated CP that is just 0.25 higher than the af 

pair, the second pair has better CS, having a selection in each of the structure’s two rows. It is possible 

that given the low difference in CP, the large difference in CS has a significant impact on the perceived 

total coverage achieved by each pair, resulting in a fairly even ranking of the pairs. 

The additive CP calculation was not successful in predicting participant rankings in any of the structures. 

When considering the significant predicting power of the holistic CP calculation, it can be concluded that 

coverage is perceived holistically rather than additively, as proposed by Hypothesis 3.  

A final point is with regards to the competing model – over-alternations. Overall, in the case of the double 

selection (Study 3B), the predictive power of P(A) is not as good as in the case of the single selection 

(Study 3A). First, in some cases (e.g., ae and ce of structure #2), pairs of selections have the same P(A), 

but different (holistic) CP values. Thus CP is able to distinguish between and predict participants’ 

rankings of selection pairs when P(A) cannot. Second, according to the over-alternations model, maximal 

alternations appears too regular and thus are not judged as random; yet,  in some selection pairs that have 

high CP (and as predicted are also highly ranked by participants) have the maximum possible number of 

alternations P(A) = 1 (e.g., ce of structure #3 and be of structure #7). This would contradict the prediction 

that the selections that are judged as most random have a higher than expected, but not maximal P(A). 

5.3 General discussion 

Studies 3A and 3B tested the coverage maximization model of choice in a controlled context of search in 

small 6-cell structures. Whether one or two selections were made in the structure, participants believed 

that selections or pairs of selections that had the most coverage were also the ones more likely to be 

chosen to find a randomly located prize.  

When it comes to the case when more than one selection is made, Study 3B strongly supported the 

‘gestalt’ view of coverage: participant choices were in agreement with the rankings predicted by the 

holistic CP calculation and either uncorrelated, or negatively correlated with the rankings predicted by the 
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additive CP calculation. What this means in practice is that a selection pair containing a cell that would 

have had a high CP had it been a single selection, might end up not being chosen if the second cell it is 

paired with results in a low overall coverage for the pair.  With regards to how holistic CP was calculated, 

in Section 5.2 two options were presented for calculating the value of overlapping CP, with the second 

ultimately chosen in making the ranking predictions in Study 3B.  In all 7 structures, both options would 

have predicted the same rank order for all selection pairs – with deviations only in the magnitude of 

difference of calculated CP between the pairs. Therefore, without further studies it is impossible to 

confirm whether Option 2 is indeed superior to Option 1.  

As discussed at the beginning of this chapter, in studies 3A and 3B we chose to not use CS in determining 

the predicted rankings. The models of CP and CS in the 9x9 and 5x5 grids arrived at in Chapter 3 have 

not been yet been developed to the extent of the interaction of the two principles of perceptual 

organization. We assumed that given the small size of the chosen structures and their irregularities, CP 

would be dominant and the influence of CS would be minimized. Generally, choosing small simple 6-cell 

structures and basing rankings mostly on the calculated values of CP and only using a CS-type judgement 

to break ties proved sufficient in predicting participant choices. A future study could more carefully 

investigate the interplay of CP and CS and whether one is more dominant, especially as the grid size 

changes. Yet, modelling CS and assessing its influence and interplay with CP can prove difficult, 

especially in the smaller structures such as the ones used in studies 3A and 3B. In Chapter 3 coverage by 

similarity was only analyzed and defined based on groupings by rows and columns; however, one could 

easily imagine cell groupings that are formed based on other similarity principles, e.g., symmetry. In the 

smaller structures, in particular, where the rows and columns groupings are not as salient, it would be 

difficult to ascertain if a cell is covered by row/column similarity, by symmetry, or both.   

An important question that was asked was whether the over-alternations model could have made the same 

predictions with respect to participant choices.  While this model made good predictions in Study 3A (but 

no better than the coverage maximization model), its predictive power was weak in Study 3B, where it 

was not always able to distinguish between selection pairs.  

Another alternative theory – ease of encoding (Falk & Konold, 1997) – was not formally tested in this 

chapter. That is because we were not able to develop a suitable measure for the ‘encodability’ of the 

single selections and the selections pairs, due to the small size of the structures and the limited number of 

selections. Nevertheless, in Section 6.2 of the next chapter we further discuss the merits of this theory and 

assess its potential ability to predict participant choices in Studies 3A and 3B. 
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In summary, Study 3A and 3B showed that coverage maximization is a useful model for predicting 

participant choices in the case of searching for a randomly located item in a structured space. In the next 

chapter we summarize the main findings of this thesis, outline its overall contribution, and discuss the 

model’s limitations and future research directions. 
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6. General discussion and opportunities for future research directions 

6.1 Summary of findings 

This thesis began with the example of the simple task of ‘randomly’ choosing three cards from a deck of 

well-shuffled cards. Experience told us that most people would avoid the very first and the very last cards 

and spread their choices such that one card was selected from each of the beginning, middle, and end 

portions of the deck. A review of the literature found other examples of spreading-like behaviour from 

contexts as varied as dropping bombs (Feller, 1957), selecting papers (Rubinestein & Salant, 2006), 

creating advent calendars (Sanderson, 2014) and more generally the perception and generation of 

‘random’ 1D sequences (Falk & Konold, 1997; Ayal & Zakay, 2009) and 2D patterns (Falk, 1975; 

Lisanby & Lockhead, 1991; Falk et al., 2009; Hsu et al., 2010). They confirmed that when people try to 

generate random patterns, whether in 1D or 2D contexts, the selections are predictably ‘spread’. In 

addition, people differentiate between the internal region of space and the edge, generally avoiding the 

latter.  

Of particular interest in this thesis was the special case of the longshot (i.e., overall low probability of 

success) search in the 2D domain. Thus, the first study aimed to formally capture the spreading tendency 

in a 9x9 grid of cells. Participants were asked to select 3 cells from the 81-cell grid, in efforts to uncover a 

prize that was randomly assigned to one of the cells. All cells had exactly the same probability of 

containing the prize and were completely independent of each other. Yet, as predicted, participants 

avoided making selections at the edge of the grid and spread their three selections, such that a selection 

was rarely in a location too close or too similar (i.e., in the same row or column) to a prior selection.  

The question that arose was thus “Why do people spread?” Study 1 results as well as other supporting 

literature suggested that people avoid selecting cells that are near or like cells that have resulted 

unsuccessful in prior selections. We thus proposed that participants assign similar attributes (in this case 

the odds of being assigned a prize) to cells that are perceptually grouped together, whether the grouping 

principle is proximity or similarity. A selection’s coverage by proximity (CP) was defined as the group of 

nearby cells whose probability assessments are influenced by the outcome of that selection. Similarly, a 

selection’s coverage by row/column similarity (CS) in the grid was defined as the set of cells in the same 

or adjacent row/columns whose probability assessment are affected by the outcome of that selection. If a 

selection has resulted unsuccessful, the probability that other cells in that selections’ CP or CS will be 

selected next is lower than we would expect if the selections were made randomly. Both CP and CS were 

investigated in depth using data from the 9x9 grid of Study 1 as well as the 5x5 grid of Falk et al. (2009). 
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Another important prediction with respect to coverage was that in the context of search, participants try to 

choose a location in the grid that affords them the greatest coverage possible. This prediction was tested 

in Study 2, using a new context where the size of the grouping (i.e., coverage) was enforced rather than 

left to (individuals’) perceptual groupings.  As in Study 1, participants were presented with a problem in 

which the prized element (a red marble) was hidden in a set of identical items (blue marbles), with a low 

overall probability of it being found. The marbles were forced by the experimenter into two distinct 

groups (the larger and smaller jar). In both cases, the groupings should have had no bearing on participant 

choices. Yet, participants believed that when directly comparing a marble that had been grouped in the 

larger category (larger jar) with one that had been grouped in the smaller category (smaller jar), the 

former had a higher probability of being red than the latter. The effect of the grouping’s size on the 

individual elements’ probability judgments, as also previously found by Isaac and Brough (2014), was 

demonstrated unambiguously. 

The findings of Study 1 and Study 2, together with our understanding of the concept of coverage were 

synthesized into the thesis of this dissertation: people’s choices in the context of searching for a randomly 

located item can be modelled as a tendency to maximize coverage. The model was successfully tested in 

Studies 3A and 3B, using simple 6-cell structures. Participants were asked to judge the likelihood of 

certain cells being selected when trying to guess the location of a randomly assigned prize. Both cases of 

single and double selections were tested and in each, coverage maximization as a model of choice reliably 

predicted participant preferences. The higher the coverage achieved by the selection or pair of selections, 

the higher they were ranked by participants as a suitable choice for finding the prize. In summary, the 

coverage maximization model has provided a plausible answer to the questions posed at the beginning of 

this thesis: avoidance of the edges and spreading of choices are both outcomes of coverage maximization.  

6.2 Alternative explanations and contribution 

Various existing theories were explored in Chapter 2 in order to find an early explanation for spreading 

and the avoidance of the edge. On a first look, it seemed that a simple explanation for people’s choices 

would be representativeness (Kahneman & Tversky, 1972) – people were making selections that they 

thought were random, thus, the attributes of these selections (avoidance of edges, spreading) were 

representative of what participants thought selections made by a random process ought to look like. It was 

unclear, however, why those attributes were in fact representative of chance.  

One potentially good model for predicting participants’ choices came in the form of over-alternations as a 

form of negative recency.  In binary 1D and 2D structured spaces, Falk and Konold (1997) confirmed that 

sequences that were judged the most random had a probability of alterations P(A) at a “sweet spot” of 

roughly 0.6. In other words, while in general, the sequences that had a higher number of alternations were 
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judged to be more random, when the number of alternation approached its maximum, patterns of 

alternations emerged that made the sequence appear less random.  This framework can model choice in 

binary contexts very well, but its predictive power is lost in more general contexts. As illustrated in 

Chapter 2, in the 3-selection context of the 9x9 grid of Study 1, one can achieve a high P(A) with three 

selections spread out in just one row and still result in a pattern of selections that most participants would 

judge non-random. The alternations framework comes closest to our coverage theory in the context of the 

6-cell structures used in Study 3. Those contexts were not quite binary, but with the probability of success 

being 1/6 and 1/3 in Study 3A and 3B respectively, the parameters are at least comparable. In the case of 

the single selection (Study 3A), there was an almost perfect correlation between P(A) and CP; thus P(A) 

(as did CP) made the same (good) predictions about participant choices. The predictive power of P(A) is 

not as good in the case of the double selection (Study 3B). First, in some cases, pairs of selections would 

have the same P(A), but different CPs. Thus CP was able to distinguish between and predict participants’ 

rankings of selection pairs better than P(A) could. Second, in some cases, the selection pairs that had high 

CP (and as predicted were also highly ranked by participants) had the maximum possible number of 

alternations (P(A) = 1). This would contradict the prediction that the selections that are judged as most 

random have a higher than expected, but not maximal P(A).  

From a calculation point of view, the measurement of alternations is very similar to the measurement of 

coverage. In particular, the differences between the two are very small in smaller structures (e.g., 6-cell 

structures of Study 3), with just one point of departure: in addition to cells adjacent to a selection, which 

would also be counted by alternation, CP also takes into consideration cells diagonal to it. Conceptually, 

however, coverage is well-defined and substantially different from the alternations model. These 

differences become obvious in the cases of larger grids (where coverage increases to beyond just adjacent 

cells) and multiple selections (where we have a more subtle understanding of how cells that are close or 

similar to more than one selection are influenced). Finally, alternations can only resemble one aspect of 

coverage – CP – whereas we know that probably assessments are also influenced by the principle of 

organization of similarity, as we have defined through CS.  

Falk & Konold (1997) suggested that over-alternating sequences may be more difficult to encode, thus 

proposing that people judge the randomness of a sequence based on their (tacit) ability to encode the 

sequence. In their studies, they measured this through the ease (or more commonly, difficulty) of 

memorizing the sequence. There are cases where coverage maximization and ease of encoding would 

make similar predictions. For example, one could argue that cells at the edge of a grid are both easier to 

encode and also have lower coverage – both resulting in being perceived as less random. Another 

example is three adjacent cells compared to three cells spread out in the grid. Again, one could argue that 
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the three adjacent cells would be easier to encode/memorize/copy compared to the spread-out cells, with 

the latter, in both cases being thus judged as more random. Thus, the question that arises is “Could 

encoding be used to explain the results of Study 3”?  Our answer is “not likely”. For example, consider 

the case of the first 6-cell structure of Study 3A (Table 5). Cell c has a considerably larger CP than cell f, 

which also correlated with participant perceptions who ranked c higher than f. The ease of encoding 

theory would suggest that the selection that is considered more random would also be harder to 

memorize. However, one would have difficulty justifying c as more difficult to memorize than f. While f 

can be easy described (and therefore remembered) as the cell at the very right, c also has a very special 

location at the intersection of the two segments.  It can thus be concluded that while the model of over-

alternations and theory of encoding can often make good predictions, such that in some cases they overlap 

with the predictions made by the coverage maximization model, the latter has overall better predictive 

power and is more generalizable to non-binary 1D and 2D settings.  

Overall, the literature review conducted in chapter 2 did not provide a satisfactory account for the 

spreading and edge avoidance behaviour. In contrast, the coverage maximization model that was 

developed and tested in this thesis threads together the concepts of proximity, similarity, and size, and 

provides a cohesive explanation that alone can explain people’s choices in the context of searching for a 

randomly located item in a variety of set sizes and selection opportunities.  

When spreading behaviour was described and confirmed in Chapter 1, there was a temporary temptation 

to label the behaviour as a bias; ‘spreading bias’ would join a long existing list of cognitive biases
1
. An 

important contribution of this thesis, however, is the delivery of a systematic theory and rationale for this 

bias, and a detailed description of the processes in place that sum up to the observed spreading behaviour. 

Much of the current discussion on subjective probability is framed around dual-process theories. They 

may use different labels – e.g., cognitive-experiential self-theory (Epstein, 2003) and System 1 vs System 

2 (Stanovich & West, 2000; Kahneman & Frederick, 2002) – however, fundamentally these theories 

describe human cognition as subject to two kinds of processes: the first type (System1) is fast, effortless, 

and intuitive; the second (System 2) is slow, effortful, and rational. Some of the most well-known 

subjective probability biases – e.g., the ratio bias effect (Miller et al., 1989)  - have been interpreted or 

reinterpreted as due to shortcomings or inappropriate use of System 1 or conflict between the two systems 

(Denes-Raj & Seymour, 1994; Pacini & Epstein, 1999) . In that vein, one could argue a similar 

explanation for participant choices in the grid: people use their intuition and experience of what random 

selections ought to look like (i.e., System 1) when making their selections. However, the account that we 

have proposed in this thesis shows that there exists a ‘calculus’ for the observed pattern of choices. People 

                                                      

1
 See for example  https://en.wikipedia.org/wiki/List_of_cognitive_biases 
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make mistakes in their judgements, but these mistakes occur because of our perceptual limits. 

Mathematically, all cells in the grid are independent and their configuration is of no relevance to their 

probabilities. Objectively, under the right framing, groupings of the cells could impact judgements of 

probability. For example in the 9x9 grid, it is objectively correct to state that the probability that the prize 

is in one of the 4 corners of the grid is smaller than the probability that the prize is in one of the 49 

internal cells of the grid. The size of the grouping does matter objectively, just as it does subjectively. 

People’s failing however, is in taking this a step further and expecting a singular corner cell to be less 

likely of containing the prize than a singular internal cell.  Because of human perception, the cells within 

a grouping (whether by proximity or similarity) lose their independence. The selection of a cell becomes 

psychologically equivalent to the selection of all other cells in its proximity. Thus, the larger the grouping 

size, the larger the number of cells people feel they have already sampled through that one selection.   

6.3 Limitations and opportunities for future work 

Despite its success in predicting behaviour in the controlled experiment of Study 3, the coverage 

maximization model is in its infancy and thus has important limitations, providing ample opportunity for 

future research.  

First, in this thesis we have considered the process of generating random selections and the process of 

searching for a randomly assigned prize as interchangeable. The reason for this was because in Study 1, 

when asked about what prompted them to make their selections the way they did, most participants 

expressed that they were just selecting cells randomly. It was argued that in trying to find a prize that was 

placed by a random process, participants were attempting to recreate a random process of their own. This 

assumption was crucial in that it allowed us to use data from the ‘random condition’ of Falk et al. (2009) 

in order to extract the attributes of CP and CS in the 5x5 grid – a stepping stone in building our coverage 

maximization model. The assumption was also supported by the findings of Falk et al. (2009) themselves, 

who reported correlations between participant selections in the random and competitive conditions. 

Future studies could further investigate whether the behaviour of randomly selecting cells in the grid 

would differ (whether in process or outcome) from the behaviour of selecting cells with the intention of 

finding a randomly located item.  

A second limitation of the model is in the development of CS. In the larger grids (5x5 and 9x9), the 

groupings of cells according to rows and columns was salient enough that we were able to determine the 

parameters of coverage by row/column similarity. However, grouping by similarity can also be based on 

other factors, such as symmetry. This kind of grouping would be particularly salient in smaller grids; 

however, we have so far not accounted for this type of similarity in our CS calculation. Thus, an 

opportunity exists for future research that investigates coverage by ‘symmetric’ similarity.  
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Even with respect to CP, which we believe has been developed more robustly that CS, the model is still 

only developed in a very contrived context of a regular grid of cells. One may wonder whether CP can be 

easily used in other contexts. For example consider this prior study: Shaw et al. (2000) compared 

participant preferences when choosing to sit in one of three chairs where one of the end chairs was 

occupied by a backpack. In both the left-occupied and right-occupied conditions 68% of participants 

chose the center chair and 32% chose the unoccupied end chair. One could take this example as evidence 

that rejects the coverage theory; after all the backpack should have covered more than just the chair it was 

occupying and more participants should have avoided the centre chair. There is, however, an important 

detail:  the chairs were 3 feet apart. It is plausible that the chairs were distant enough that the backpack’s 

CP was limited to the chair it was occupying.  This example may provide a clue that even in the context 

of the grid of cells, CP might be affected not only by the size of the set and the number of selections, but 

also by the physical distance of the cells from each other.   

Another limitation relates to the interaction of CP and CS. While we discovered the parameters of CP and 

CS in the 5x5 and 9x9 grids, we did not investigate how ‘much’ a cell is covered when under both the CP 

and CS of one or more selections. In Study 3A and Study 3B, we used a search space context that 

purposefully minimized the influence of CS, allowing us to test the coverage maximization model using 

just CP and only referring to CS when needed as a tiebreaker. Future research could help test the relative 

strength of CP and CS, model their interaction more precisely, and discover their sensitivity to contextual 

factors such as the size and shape of the search space.  

Finally, the parameters of CP and CS were determined in the specific circumstance where 3 selections 

were made in both the 5x5 and 9x9 grids. For example, it is reasonable to assume that the size of CP that 

was discovered - 1/3 of the grid – was directly related to the number of selections: To cover as much of 

the grid as possible given 3 selections, each must cover roughly 1/3 of the grid. There exists thus an 

opportunity for future research that more carefully investigates the effect of the number of selections on 

the size and other attributes of coverage.   

6.4 Conclusion 

In conclusion, this thesis has described people’s choices when looking for an item that they believe could 

be anywhere in the structured search space (i.e., its location is randomly assigned). A newly developed 

model – coverage maximization – explains and predicts important aspects of choice including the 

avoidance of edges, avoidance of neighbouring selections, and the spreading of choices in the search 

space.  
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Appendix A: Study 1 supporting materials, data and methods 

A.1 Study user interface 

 

A.2 Data 

Mapping of choices can be seen below. For example, a choice in the top-left corner is labelled as ‘11’. 

11 12 13 14 15 16 17 18 19 

21 22 23 24 25 26 27 28 29 

31 32 33 34 35 36 37 38 39 

41 42 43 44 45 46 47 48 49 

51 52 53 54 55 56 57 58 59 

61 62 63 64 65 66 67 68 69 

71 72 73 74 75 76 77 78 79 

81 82 83 84 85 86 87 88 89 

91 92 93 94 95 96 97 98 99 

 

Below are the selections of each of the 37 participants. The choices are given using the mapping in the 

table above. For example, choice 1 (C1) of Participant 1 is cell 45, which is the cell that is located in the 

fourth row from the top and the fifth column from the left.  
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Participant C1 C2 C3 

1 45 79 83 

2 78 52 29 

3 38 56 24 

4 44 37 25 

5 87 61 36 

6 38 11 37 

7 22 96 37 

8 22 37 74 

9 55 23 87 

10 65 27 33 

11 13 56 83 

12 45 91 15 

13 57 32 84 

14 25 65 19 

15 48 64 24 

16 37 64 78 

17 22 88 19 

18 33 74 58 

19 59 68 38 

20 55 37 93 

21 45 63 87 

22 46 63 97 

23 52 27 88 

24 55 33 68 

25 44 87 28 

26 26 53 99 

27 43 17 75 

28 35 77 52 

29 38 53 27 

30 55 83 19 

31 63 26 78 

32 24 56 61 

33 14 99 82 

34 37 62 98 

35 43 17 55 

36 55 33 11 

37 33 55 88 

 

A.3 Equations for calculating properties of choices  

The distance between each pair of selections (x, y) was calculated using the Euclidian distance formula: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑛𝑦 𝑡𝑤𝑜 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠
𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

= √(𝑥1 − 𝑥2)2+(𝑦1 − 𝑦2)2 

The minimum distance between selections for each participant was found by calculating the pair distances 

between the first, second, and third selections and finding the smallest distance. 
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𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

= 𝑀𝑖𝑛 [√(𝑥1 − 𝑥2)2+(𝑦1 − 𝑦2)2, √(𝑥2 − 𝑥3)2+(𝑦2 − 𝑦3)2, √(𝑥1 − 𝑥3)2+(𝑦1 − 𝑦3)2)] 

The overall average minimum distance between selections for all participants was found by averaging 

the above across all participants: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝐴𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠

=
∑ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖

𝑁
𝑖

𝑁
 

Another measure that was calculated for each participant was the area of the triangle created by the three 

selections: 

𝐴𝑟𝑒𝑎𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = |
𝑥1(𝑦2 − 𝑦3) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2)

2
| 

The overall average area was found by averaging the above across all participants: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑟𝑒𝑎𝐴𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 =
∑ 𝐴𝑟𝑒𝑎𝑖

𝑁
𝑖

𝑁
 

It was important to know where the selections were falling relative to the edge of the search space. Hence, 

another measure was the minimum distance from the edge, the smallest distance of the selections from 

the edge. The equations below demonstrate the calculation made for each selection: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛[|𝑥 − 1|, |𝑥 − 9|] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡𝑜𝑝 𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛[|𝑦 − 1|, |𝑦 − 9|] 

∴     𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

= 𝑀𝑖𝑛[𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡𝑜𝑝 𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛] 

Accordingly, the minimum distance from the edge is found for each participant, and then, for all 

participants: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐸𝑑𝑔𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

= 𝑀𝑖𝑛[𝑀𝑖𝑛. 𝑑𝑖𝑠𝑡. 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 1, 𝑀𝑖𝑛. 𝑑𝑖𝑠𝑡. 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 2, 𝑀𝑖𝑛. 𝑑𝑖𝑠𝑡. 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 3 ] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐸𝑑𝑔𝑒𝐴𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 =
∑ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐸𝑑𝑔𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖

𝑁
𝑖

𝑁
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Finally, it was also important to measure how often participants were placing 2 or more selections in the 

same or column. For each participant this was calculated as the sum of all instances when pairs of 

selections had the same x or y coordinate. This value was then averaged across all participants.  

A.4 Transcripts of interviews  

A.4.1 Instances of descriptions of ‘spread’ behaviour 

1 "To me it's random...I did try to do a bit of a spread, trying to go into 3 different locations" 

2 “I don't know why I didn't bunch them all together, i just figured, kinda like playing battleship, before you have anything, 

just throw them all over the board." 

3 

 

"I guess you look at it…I went not entirely as far away as possible, and then the third one I put as far away as possible from 

the first two... but you spread them out as far as possible.  

4 “…and I didn't have any reasons for the next two, I just happened to choose them in different regions of the  map...so I 

didn't choose all three in a row right next to each other.. I choose them in different spots to maximize my chances of 

finding the prize" 

5 “…so you think of different areas.." 

6 "Why not all together" 

"I thought about it, but I thought I’d have a better chance if I put them all in different areas." 

7 "Technically it would make more sense to be all in one area..it was just something I thought...I don't know why exactly I 

did this, to be honest with you. I honestly I do not have a reason why I did that. I tried to try different areas" 

8 "You spread out your choices...why?" 

"I thought the chances of getting the prize is a lot higher if I just spread them" 

"Would you say that you tried to cover the whole space" 

"Yes, yes. I don't know I just have a feeling that if I cover a lot more space I'd have a greater chance." 

9 "Experiential? You picked one, why wouldn't your picks be all in one area?" 

"Umm...maybe just, like personal habits or something. I think that if I just focus on one point the chance will be lower. I 

think I don't know why, but I just did that 

10 Once you made your first pick, why did you go over here?" 

"Just to increase the spread.." 

"And why is that?" 

"To possibly increase my chances. I don't know how the program is written. I mean I just increased the spread. There's no 

difference between me clicking there and me clicking there...so, I just thought to be random, but I guess by nature you just 

increase the spread." 

11 "Which one was your first pick?" 

"This one...top left." 

"Second" 

"This one, because I guess it was the farthest away, I guess to check out the other half of the map. I don't know. 

"The third was a corner" 

12 “So I just picked three spaces. I guess I spaced them out. I thought about picking 3 in a row, but I divided I guess in my 

head…maybe it will be in this quadrant, or this quadrant, or this quadrant, so I guess I picked one from each" 

13 " First I went for the middle one, I guess, and then the remaining two picks I took ones from opposite quadrants." 

14 "Strategy?" 

"Kinda I guess, to cover the most area." 

"Okay, once you made that pick and it was bad, were there any particular boxes that you wouldn't have selected?" 

"it would have been like the middle one from one of the other four corners. I tried not to cluster, I wanted to spread out 

more" 

"Any other thoughts?" 

"Not really, I just tried to diversify where I pick my points" 

15 Your first choice was here…once you picked there, did it constrain where your next one was going to be?" 

"Yeah I guess I didn't want to pick the second one right next to it. Maybe a few rows and columns apart" 

Why? 

"I don't know...when you see lottery numbers being picked, they're usually far apart from each other so, it was just like" 

16 "What went through your mind?" 

"I just have been focusing on one square, the first one, since I started. I saw a pattern there, in that corner. It's mostly this 

square pattern that I see. When I picked this, I saw another square that was about this side. So corner doesn't, work, so let 

me try another edge..." 

"So you created 4x4 areas, and then tried to look at different spots in these areas? Once you picked your first one, were 

there any areas you wouldn't have picked?" 
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"I wouldn't have picked anything in this square." 

"So you wouldn't have picked anything in the square you had already explored" 

"I wouldn't have picked one, two , and three next to each other. It was not even an option for me. I didn't even think about 

it." 

"Why?" 

"It's just the variety. Saying it could be anywhere. I think my brain works that way. I would like to have a more expanded 

region of the three checks, compared to three checks that take away small area 

17 "Was there any thoughts that went through your mind?" 

"I just kinda tried to pick three different areas that were far from each other, I guess I could cover most of the space." 

18 Why not close by? 

"I don't know, I just put them farther apart." 

19 “Spread them out I guess. I know it doesn't really matter whether it's right next door or really far, but I've been playing 

battleship...no particular reason. For some reason I had a tendency to pick them in a square so that they were equidistant, 

but then I thought that would be unlikely. More guesswork" 

20 "Why not all together" 

"Chances are lower if they're all together. They're not, but intuitively I guess.. 

21 “I figured since it was kinda random, it didn't really matter where I picked, so I just tried to spread them out a little. I don't 

know, i just thought they should be spread out. I figured I could cover more area, I don't know why I did that! I just figured 

that if I covered more area, I would reveal more. I figured I should try to explore every part of the square. Cause you only 

get three choices, so I figured I’d do a triangle. 

22 "Avoidances?" 

"Kinda far away, I didn't want to make it near the first one. 9x9 grid, so I didn't want to select all three in one small area. I 

felt like if I had more range of selection...I know it doesn't matter...but I just did... 

23 “I always think that it's never going to be close to where you think it's going to be, it's always going to be far.. so that's why 

I always try to pick the biggest area, try to spread them out...I don't know I just...cause I feel like the odds of getting it are 

better if you spread it rather than putting all your eggs in one basket." 

24 "I thought about doing that (putting them together), but for some reason , it felt like it was slimming the chance of hitting it, 

because they were all so close, and it felt like it was just one, instead of 3" 

25 "why not all together?" 

"I think I personally would have spread them out, but I don't know if that would statistically help me all, but I think that I 

would just like to take out a larger portion of the boxes. 

26 “I guess it wasn't random, I don't know I tried to cover as many regions...I guess if you could cut it into thirds" 

A.4.2 Instances of descriptions of ‘selecting randomly’ 

1 They're just like random 

2 but then i really picked it random, where i was looking, i picked there.." 

3 

 

Umm.. I'm trying to think of ways that I could have gotten the answer, but in the end it just is random so I clicked random 

squares 

4 Uhhh...similar to Battleship, but there was no feedback, so it was randomly selecting a location, but I wouldn't pick 3 in a 

row, I didn't think it would be adjacent to where I had picked already, so I thought it would be best to sort of random my 

move.. 

5 "Uhh...not really for strategy I guess, the first one was completely random, 

6 It's supposed to be random so it doesn't matter where I pick." 

7 "It was pretty random...I don't know. 

8 First one it wouldn't matter where it is...I just picked any random one 

9 But then, i just randomized them in no particular pattern. 

10 The first one was really randomly...that's the thing 

11 no I just thought this was totally random because it's produced by a random number generator, so it didn't really matter. 

So yeah, just by intuition." 

12 .so, I just thought to be random, but I guess by nature you just increase the spread." 

13 Okay, each box has equal chances to win the prize, then 3/81 is a pretty small number. I guess, if I'm not really lucky 

today, I probably don't get the prize, so I just randomly picked three boxes, pretty much." Uhh...well I guess I chose it 

randomly and doesn't really have any reason that why I picked the second one, it just happened to be that one." 

14 "When you did this, did you have any strategy?" 

"I didn't really use any strategies, I just kinda randomly picked boxes" 

15 Basically I figured it was all random, so it didn't matter where I picked. So I just picked three spaces 

16 "Was there something prohibiting you from putting them all in one row?" 

"No, initially I was going to...when you first told me it was random I thought it doesn't matter, so I'd put them all in one 

row, but once I started clicking... No I wouldn't say that I looked at one point and I clicked it. i just kinda moved the 

mouse around and clicked." 

17 It was just luck, so the chances aren't too good, it's just 1/27. So since it's randomly generated, I just randomly clicked" 
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18 But then when you think about it...because it was randomly selected didn't think too much about it, it was just like click, 

click, click." 

19 "I didn't have a strategy, I just picked 3 random boxes..." 

20 "There wasn't really a particular strategy, since all the boxes are build the same. So really i just randomly picked a place." 

"There wasn't until the third one where I picked the corner, whereas the first two were kind of random." 

21 I thought it was randomly selected, so I didn't have a strategy or anything, I was just randomly clicking.." 

22 Basically, I just didn't know where to start, so I just started clicking randomly 

23 "I did them all random. I just looked and then I picked the one that shone at that moment." 

24 Uhh, I don't know, just, I was just trying my intuition, if i get a feeling, so the last one I was tryingto hit the centre, not 

reason for that all, just random selection" 

25 "Randomly, I don't know, it wasn't much of a process 

A.4.3 Instances of descriptions of distinctions between ‘centre’ and ‘edge’ 

1 “I was going to go for the centre” 

2 guess I tended to pick in the middle and not in the outside...I don't know why.. I didn't pick the edges. 

"The reason that I didn't choose the edges, I suppose is, I kinda separate into an edge probability and then everything 

except the edge probability, so I thought, well, it's probably not going to be on the edge, it's probably going to be inside 

the edge…I don't know why.. 

3 

 

Why no edges? 

"Not unconsciously, umm, sort of to me it's very little chance of actually succeeding in selecting the right square so I 

didn't..." 

4 "I wasn't really looking...I don't know...I didn't think putting them in the middle...even though it was random...I doubted 

it...and then I was thinking of going at the very first square…but I guess the chance it's the same but it didn't seem like it 

would be there" 

5 " I don't know ..it just.. there's as much chance of it being there as anywhere else...so...I guess that's why the prizes are 

hard to come by...they're hidden in the edge and not many people go there" 

6 "I was originally going to select the first 3 on the edge, one, two, and three, but I thought there was no reason to do that." 

7 I don't know...the way I tried to think of it, middle and then sides.. that's the approach i usually take 

"Umm.. normally I probably wouldn't have considered the corners, just because from experience it's never usually in the 

corners" 

8 "Well, at first, I though, kinda looked at the whole box, the column, and the rows, and thought, well, it might be at the 

centre.  

"Were there any places you avoided?" 

"Bottom right for some reason, just didn't feel like..." 

What about the edges? 

"Umm, no, didn't cross my mind at all. I just I don't I focused on the centre" 

9 "Were there places you avoided?" 

"Corners 

10 I don't know…psychologically those people who created this square...obviously the corners and the centre the prize 

cannot be under those 

11 "Uhh, I think that it's… I think that that would be a common behaviour, in that situation, people would not click the box 

on edge or on the angle, or like very at the edge ofthe picture...cause I think the experience tells me that I have a bigger 

chance if I click on the centre of the picture." 

12 "Why not the edges?" 

"It's just from habit. You typically stay away from edges…I don't know" 

13 "Avoidances?" 

"Logically, I want to say that it's from past experiences, but it seems like it wouldn't be in the very corner, or it's usually in 

the middle. There's no basis for that, inherently I thought about it being around there" 

"What do you mean by past experience?" 

"Umm, I don't know it's hard to explain. If you think you got a grid, and it's hidden there, odds are that it's not going to be 

you know in the corners. Odds are just as much it being there as not, but you only have 3 choices.  And I'm trying to make 

odds as good as possible. Trying to rule out a couple of places.." 

"Why rule out the corners?" 

"No reason, it's just something that I do." 

14 " First I went for the middle one, I guess, and then the remaining two picks I took ones from opposite quadrants." 

"Third one is at the edge, why?" 

"I just tried to try a fringe case I guess." 

15 "What about the fact that the edges didn't really.." 

"You just think that maybe it's not there. chances are it's in the middle. When you first look at it makes you focus right in 

the middle, so that why I picked in the middle. " 

16 Why that particular box for your first pick?" 
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"I guess nothing in particular, but mostly because it was in the middle. I guess it was what my eye looked at first." 

"Why no edges?" 

"No reason, I don't think there is a reason. I was going to pick this one and then i decided to change. I had a feeling it was 

that one, but clearly my feeling was wrong." 

"Any general thoughts?" 

"When I first was going to pick I was going to pick something on the edge, but I decided not to and picked something in 

the middle. I don't know why, it doesn't make any difference." 

17 I don't know, like, in my first pick I just chose the middle, because I think it's just unintended. I think the probability of 

having it in the middle is higher, even though I know that it's the same, but it just looks better so I picked the middle 

"Any avoidances?" 

"The corners..uhh, i guess, cause I play battleships, and when I play I don't play corners cause I think the chance is low, 

even though I know it's the same. In my mind it's telling me it can't be in the corners 

18 "Why no edges?" 

"I assumed it be somewhere closer to the middle, but not exact middle. 

19 Why corner? 

"I kinda thought that maybe there was some trick to it, maybe they wanted to hide it well, so they went to the corner, 

people wouldn't know to look there". 

20 Umm, the first one I chose this one first, I guess it just felt right. It's sort of central but off to the side a little bit. Second 

one, I wanted to go with the extremities, and the third one I wanted to get back to the middle, but not too close to the one I 

had already chosen 

"Why on the edge?" 

"I thought to pick it on the edge, the edges get often neglected, i didn't want to miss out. In general, I feel like people tend 

to think that they'd be more in the middle of the maze, as opposed to in the edges. 

21 I picked extremities, all four corners, close to the centre, as best as I could" 

"Why neglect the edges?" 

"Just intuitively it's the border, so it's not going to be there. But chances  are the same I guess" 

22 "I didn't even consider the edges at all. In my mind, I just thought they wouldn't be there. I just thought it would be 

somewhere in the centre-ish " 

23 First I thought maybe well, I wasn't really sure how this was going to go, so I just picked one to see how it was going to 

tell you whether it was right or wrong. That was just a totally random one, like a test one. Second one I picked the corner, 

just because it was a corner. I always pick one corner in any situation. " 

24 Uhh, I don't know, just, I was just trying my intuition, if i get a feeling, so the last one I was trying to hit the centre, not 

reason for that all, just random selection" 

25 Well I started out in the middle, just because it seems like it intersects all of the quadrants 

Why corner 

"it was a long shot, like a shot in the dark, they're evenly spaced, so it looked nice 

A.4.4 Instances of descriptions of changing region after negative feedback 

1 I thought if I couldn’t find it here, then I should go somewhere else 

2 I picked one that like say if I put it in the top left, the other one would be in the bottom right, somewhere where it 

wouldn't be close to the one I already did" 

3 

 

"The only strategy...I wouldn't pick the second one too close to the first one...so it's really, but then i really picked it 

random, where i was looking, i picked there.." 

"there's just small probability if I pick two really close to one another. There's probably more probability if I go 

somewhere else, different area there might be more probability" 

"Why? I guess if I pick the one that's over here on the spot, i feel that if i take a chance at a different position, then there's 

still a whole lot of other boxes on the other side that I could check, so I wouldn't waste all my three clicks on one little 

area…because there's so many choices, I wouldn't just stay in these four boxes here. 

4 "I guess proven wrong, if I click there, it's kinda like playing minesweeper, you push a check mark and if it's not there... 

all of the surrounding squares are disqualified, so I thought of changing it up a little bit...but it still ends up being 

relatively consistent... 

5 "Uhhh...similar to Battleship, but there was no feedback, so it was randomly selecting a location, but I wouldn't pick 3 in a 

row, I didn't think it would be adjacent to where I had picked already, so I thought it would be best to sort of random my 

move.. 

"Why not 3 in a row?" 

"Just seems unlikely that if you were to select...now in this situation it would have been to my advantage...but to me it 

seems unlikely that it would happen to be adjacent to the location that I already chose. There's no real empirical rational 

about that...it's just intuition.." 

6 "I guess it doesn't matter, it could have been anywhere, but it seems like if I go back to the battleship example, if you miss 

one place, chances are it's not going to be right next to it..it seems like even though there's just as much chance…in my 

head I thought it must be farther...on the other side" 
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7 "Because I divided the whole map into 4 quadrants and then basically chose one in each quadrant cause I’m thinking if it's 

not in that one fourth of the map, if I use all of three of chances in that one place then it's worse than if I put all three in 

different quadrants." 

8 "Were there are any areas you wouldn't have gone?" 

"Uhh, I guess. Uhh, well cause the prize can be anywhere, I first chose the top half, and then it's not there, so I guess 

unconsciously i picked the bottom half." 

9 "Were there any areas youwouldn’t have considered" 

"I wouldn't have picked boxes right around it, for now reason, that's just how my mind works I guess." 

"You spread them out quite a bit.." 

"I guess just to there was on the far sides of the boxes?" 

"Why?" 

"I'm not sure why, because it could be any box really, but I just figure that it most likely not be right beside it." 

10 Your first choice was here...once you picked there, did it constrain where your next one was going to be?" 

"Yeah I guess I didn't want to pick the second one right next to it. Maybe a few rows and columns apart" 

Why? 

"I don't know…when you see lottery numbers being picked, they're usually far apart from each other so, it was just like" 

It just didn't...it's not...when you look at it...two things right next to each other doesn't have a high chance of being 

picked...that's how you think about it. First thing that crosses your mind 

11 "What went through your mind?" 

"I just have been focusing on one square, the first one, since I started. I saw a pattern there, in that corner. It's mostly this 

square pattern that I see. When I picked this, I saw another square that was about this side. So corner doesn't, work, so let 

me try another edge.." 

"So you created 4x4 areas, and then tried to look at different spots in these areas? Once you picked your first one, were 

there any areas you wouldn't have picked?" 

"I wouldn't have picked anything in this square." 

"So you wouldn't have picked anything in the square you had already explored" 

"I wouldn't have picked one, two , and three next to each other. It was not even an option for me. I didn't even think about 

it." 

"Why?" 

"It's just the variety. saying it could be anywhere. I think my brain works that way. I would like to have a more expanded 

region of the three checks, compared to three checks that take away small area. 

12 "Constraints on your next pick" 

"For some reason I didn't want to pick anything close to it, even though I know that doesn't make any sense. But I picked 

this one after because it was totally in a different area, so I tended to pick something that was further away." 

13 For the second one, since I failed in the middle, maybe something upper left, and then that was wrong so I went down 

right. 

14 Usually don't click the one right next to it, cause it just feels that I’ll have a greater chance somewhere else. Intuition. 

Logically speaking every box has the same chance. so I don't know why I went somewhere else instead of the box right 

next to it." 

"why do people do it like that?" 

"Just seems like the first one when i chose it, i wasn't close at all, cause there were so many boxes, so when I chose it , it 

didn't feel like it would be right next to it." 

"So you felt completely wrong.." 

"I wouldn't have guessed somewhere next to it" 

15 Suddenly it just felt like I shouldn't be in the top and so I picked somewhere in the middle, and to the left. Because my 

first one was in the top, and the prize wasn't there, so it gave me the feeling that maybe it shouldn't be there on the top. 

And then the third one...total chance! I just waved the mouse around and it sort of landed close there" 

16 "Nothing it was just random. I was thinking to go a little bit far from the first one. I don't know, I didn't think about it, it 

was just involuntary.  
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Appendix B - Study 2 supporting materials and data 

B.1 Example of graphics used in the video materials provided to 

participants 
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B.2 Complete transcripts of reasons provided by participants for their 

choices 

B.2.1 Condition 1 – Choice of marble from big jar 

It is more likely the marbles went into the large bowl because more marbles went into the large bowl. 

more marbles 

With a larger sample size there may be a higher likelihood that the red marble is in this bowl 

The probability of red marble falling in bowl C is more. 

It may appear more likely that the red marble would be in the bowl with more. 

There is the possibility of having more red marbles in that bowl,  while the other bowl may not have any red. 

More marbles 

The larger variety makes it seem like you have a higher chance 

More options 

The likelihood of the one red marble going into bowl C is far more likely. 

Again,  people may think the larger number of marbles give them more chances to win. 

With more marbles there is more of a chance to find a red one 

because there are more marbles and a better chance of getting the red marble. 

better odds 

There is a higher chance the red marble was drawn into bowl c then bowl b. 

there are 8 chances for the red marble to be in bowl C,  while only 2 chances for it to be in bowl B 

The marble has a higher chance of being in bowl C. 

more balls,  higher odds 

Bowl C is more likely to have the red ball.  

There is a very good chance that B will not have a red marble  

has more marbles 

better chance went into bowl c 

Because there are more marbles and a greater chance of drawing red. 

there are more to choose from,  not just two 

There are more chances to pick a red marble in this bowl. 

they would assume that it gives you a better chance since there are more marbles 

there are more balls in the bowl 

It seems that with more marbles the chance would be higher 

Because there are more marbles in the bowl 

Because there are more marbles,  so the probability is greater to draw the red marble. 

More marbles could mean more chance of finding the red. 

more chance the red ended up in it 

more marbles in the bowl means more of a chance to get the red one 

Bowl C had 8 marbles in it,  so the odds are higher of getting the red marble. 

Since there is only one red ball,  bowl C would be more attractive as there are more balls. Which gives it a better chance.  

More marbles so people would think there is a higher chance that the red marble is in there. 

there\'s a bigger chance that the red is in C 

Chances are low that a red marble was placed in bowl B 
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The red ball can only be in one bowl and more than likely it will be that bowl 

Probability of the red marble ending up in the bowl C is higher than bowl b. 

Bowl B only holds two marbles,  and therefore is unlikely to have a red marble at all. 

more marbles available 

it just seems like you would have a better shot since there are more balls in that bowl 

More marbles in Bowl C 

There is only 1 red marble,  so it is more likely that the red marble is in the bigger bowl. Bowl B could possibly only have blue 

marbles. 

a larger group of marbles gives a better chance of picking a red one 

more marbles may mean better chance of getting the red marble 

You have better odds because there are 8 marbles in C opposed to just 2 in B. 

I think Bowl C appears better because it\'s got more choices but not too many.  

There is a better chance the red marble ended up in this bowl.  

There are more marbles to choose from in bowl C and chances are the red marble is in that bowl. 

There is a higher chance of being successful because the amount of balls in the bowl C probably has the red ball. 

To me,  nothing, but I suppose people would somehow think that they have a better shot with a bigger bowl.  It\'s a one in ten 

shot no matter what bowl you draw from. 

There are so few marbles in bowl b,  that it could be likely the red marble isn\'t in bowl B 

There is a higher chance of picking the red marble out of a bigger set of data 

There are more balls in Bowl C so there is more of a chance of getting the right ball. 

It is more likely that the red marble is drawn from it.  

In this case the chances that one of the two marbles in bowl B is red,  is low. 

There\'s a 50/50 chance of winning 

Bowl C would bring a higher winning ratio 

It has more marbles so more likely of a chance that it landed in that bowl. 

Maybe better odds. There may be no red marble in the bowl with 2 marbles. 

more marbles drawn from would seem to give a greater chance of a red one 

There are more marbles in Bowl C,  so more chances. 

greater number of balls 

there is more of a chance the red ball is in the larger bowl 

More options. 

There are most likely more red marbles. 

more marbles inside 

higher chance the red marble is in bowl c because of numbers. 

Because it\'s more likely the red marble wound up in that bowl,  even though the overall odds of getting it are the same either 

way 

More marbles are in there 

There\'s a good chance the small bowl wouldn\'t have any red marbles. 

Bowl C has a higher chance for the Red Marble to be in it. 

Higher chance of choosing a red marble. 

Bowl C because people might have a greater chance of drawing the red marble. It depends on how many red marbles are in the 

small bowl. There might be a 0% chance if there are no red marbles in the bowl. 

Most of the marbles went into bowl C. Since there was only one red marble,  the probability was that it went into that bowl. 

There is a higher chance that the red marble ended up in bowl c. 

It doesn\'t matter which bowl because the probability is still the same 
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It is easier to draw one out and there are more to chose from. 

More marbles means higher probability. 

There are likely to be more red marbles in the bowl with more marbles in general 

There is a better chance that the red marble is in that bowl. 

There is a much better chance that the red ball ended up in Bowl B. 

the randomness of order. 

More marbles,  therefore greater chance of getting the one 

More marbles were placed into Bowl B so there is a higher chance that the red marble went into this bowl. 

There are more chances to get a red marble 

There are more marbles total in this bowl,  which would lead people to believe it has a higher chance of having the red marble. 

more marbles increases your odds 

Just more options on marbles,  the chances of getting the red one goes way up. 

It\'s more likely that the red marble will be in the bowl with more marbles in it.  

There\'s a chance there might not be a single red marble in bowl c. thats why 

because there are more marbles in that bowl and it gives you a better chance of getting the red one 

more marbles in that bowl 

because there is a larger chance of getting a red marble from bowl b 

More chances to get the right marble? 

Because there are more opportunities for a marble to be red 

Since there are more marbles to pick from,  it seems like there is more chance that the red one is in there. 

there are more marbles in bowl B,  so most people would guess it has a higher chance of having the red marble. 

There are more marbles to choose from. 

there is more marbles in there 

there is a better chance of the red marble actually being in the bowl for Bowl B because it has a larger sample size. 

More marbles are in B so it is more likely the red marble is there 

There are more marbles in bowl B.  People will deduce that it is more likely the red marble is in bowl B.  Therefore it is most 

likely. 

more chance of the red one being in there 

Theres a better chance of a red in Bowl B. 

There are more marbles in Bowl B to choose from 

there are more balls 

There might be a better chance because bowl b has more marbles. 

Because there is more chance of the red marble being in bowl B 

there are more balls in bowl b,  so the chance of drawing the red marble is greater 

You only more marbles to choose from. lesser chance of pulling a red marble.  

there are more marbles in bowl b so there is a better chance the red one went in there 

more options 

only 2 marbles are in c  

There is a higher chance that the red marble is in bowl B because there are more marbles in there. 

you have more chances to pick the red marble 

More balls in the bowl,  higher chance that red is one of the eight 

There is more of a chance that the red marble ended up there.  

Bigger chance of getting red marble since there are more marbles. 
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There is a bigger likelihood than only blue were taken out of the larger bowl because there is only one red. So it is likely still in 

the larger bowl.  

It has more balls so more chances. 

They have more options and there is more probability that they\'ll end up with red ball. 

There\'s a greater chance of the red marble being in the larger bowl. 

It looks like there is only a one in five chance of the marble going into the little bowl 

the more marbles in the bowl the greater chance you will get the red one 

it has more marbles in it  

It would be extremely unlikely that the red marble would land into bowl C 

There are more marbles,  so more chances to be correct,  but actually it wouldn\'t make a difference. 

There is a better chance of the red marble being in the bigger bowl 

It seems more likely that the red ball would be mixed in with the bowl with more balls.  It seems less likely that out of 10 balls  

the red one would be in the bowl of 2. 

More marbles to choose from 

There are more marbles in bowl B,  so a higher chance of there being,  and picking a red marble. 

More marbles equals more chances. 

More opportunities for a red marble 

More balls in bowl b give better odds of having the red ball than the bowl C 

Because bowl B have more marbles changes of red marble will be find in B is higher than C 

There are more marbles 

More balls in my mind may equate to a better chance that the red ball is there. I actually would go for the 2 balls myself. 

There is a greater chance of the red marble landing into bowl B 

The likelyhood that the red ball is in bowl B is higher 8:10. 

with only 2 marbles in bowl c - there might not even be a red ball in there 

Bowl B is more likely to contain the red marnle 

Only one marble in the bowls is red,  so it seems more likely that it would be in the one with the most marbles to choose from. 

Bowl B is more attractive because it at least offers the illusion that there are more chances of getting a red marble. 

It contains more marbles. 

more marbles in bowl B 

Bowl B will have more chances of having the red ball 

with only 2 marbles the likelyhood that the 1 red marble is 1 of the 2 is much greater-seemingly-than being 1 red out of 8 

 

B.2.2 Condition 1 – Choice of marble from small jar 

Because if the red marble is in Bowl B there is a 50 percent chance of getting it 

Appears simpler 

I think they\'d think they\'d have a greater chance drawing from the small bowl.  

Because there are less marbles to choose from in bowl b 

More of a chance to select what you want.  

if indeed the red one ended up here then you will have a 50 percent chance of getting it, still 1 in 10 or a 10 percent chance, odds 

are either 50 percent but still ultimately only 10 percent to get the red ball 

I have a 1 in 2 chance of getting a red marble assuming that the red marble was dropped in bowl B. 

There are fewer marbles,  even though there is a smaller chance of the red one being present. 

I think people would look at the bowl with 2 marbles and think \"hey  so it\'s 50/50 right?\" 
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there is an equal chance of the ball being red or blue 

Greater odds of winning 

Less effort to draw marble.  

in my mind better odds 

is less i think is red 

There are only two choices,  so it appears that the probability of finding the red marble is 50%. 

Because if the ball is there they have a 50/50 chance to win.  

What makes this choice appear more attractive is that a person seems to have a better chance of drawing the proper marble from 

one with less blue marbles then one with red marbles. In otherwords the probability is higher. 

If one of the marbles happens to be red,  then there is a 50% chance of getting the marble 

Because there are less options in the bowl. 

They think they have a 50/50 chance of getting the red marble 

less marbles in the probability. 

Less risk at grabbing the red marble. 

Since there are only two marbles in Bowl C,  there is a 50-50 chance of getting red marble. 

Once again,  it\'s attractive because it seems like a higher chance with a smaller total. 

there are fewer marbles 

I think it\'s easier for people to understand and visualize. 

only two marbles to choose from 

If the red one fell in there,  50% chance of picking it 

There are fewer blue balls in bowl C.  

I think Bowl C is more attractive because it\'s a 50/50 chance that the ball is red. 

It has a smaller sample size 

Because most people will think the odds are 50/50,  forgetting that their a smaller chance the red marble will be in bowl C 

I guess because it appears to be a 50/50 chance,  even though it\'s really not 

Nothing,  there is no statistically higher probability of selecting the marble in either side. 

less marbles one had to be red 

 

B.2.3 Condition 2 – Choice of marble from big jar 

More marbles would offer a greater chance in most people minds. 

It is more likely that there are multiple red marbles in the larger batch 

The probability of finding a red marble is more in bowl C. 

Probably most people would prefer it since it has more marbles. 

More marbles may mean more chances to select the winning marble. 

Since it is a large bowl 

Because bowl C has more marbles in general 

There is a greater chance of their being a red marble in this bowl. 

because it has more sample. 

It has the most choices 

Bowl C has more marbles 

It appears that there would be a higher likelihood of getting a red marble 

There are more red marbles total in that bowl so people would believe they had a higher chance of winning. 
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more of a chance to get a red one 

there are more marbles. 

because there are more marbles at it appears you have a better chance of drawing one 

More chance for red balls being drawn into bowl C 

The likelihood is higher that there would be more red marbles in bowl C. 

more marbles 

There are more chances the red balls would be in the larger amount. 

There are more balls in C 

There are more marbles 

there are more marbles in C 

It should have more red balls total even though the proportion is likely to be the same.  

more chance to get red marble 

more balls in this bowl 

because there are more probability to have red marbels. 

More marbles seems more likely to produce a red one. 

higher % of drawing a red marble  

I think people would look at the larger number and think they had a better chance there. 

Same reason as before. Bowl C would have a better chance of getting a red ball because there are more balls.  

Better probability of choosing a particular color 

people think they have a better chance when they see more 

more marbles 

In Bowl B 

visually 

More marbles in the bowl 

There are more marbles and therefor more chances that a red one will be in there. 

there are less chances for the balls to be blue 

a larger chance of picking a red marble based on a larger group of marbles 

more marbles = better chance the red one is in there 

Bowl C contains more marbles so that odds of a red being in there are better. 

although perhaps untrue 

There is a bigger chance of it being in the bowl with more marbles. 

There is more chance of a red being in the larger bowl because there is a bigger likelihood that more blue were taken out of the 

bowl than red. This is because there are more blue to begin with. So more red are still in the larger bowl than the smaller.  

It has more balls to chose from. 

There are more options to choose from 

In bowl B 

More marbles would have ended up in C. 

the more marbles you have a better chance of getting the red 

There are more marbles and therefore a higher chance that there are red ones presents.  

Because there are more marbles in bowl c 

There will be more marbles in larger bowl and a higher likelihood that one red marble would be drawn. 

More marbles to choose from 

picking from a larger quantity of marbles so there would seem to be a greater chance of a red marble 
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There should be more total red balls in bowl C 

There is more likely to be more red marbles in bowl C. 

If more marbles are in Bowl C 

Higher chance of the red marble being in the bowl c 

Bowl C has more marbles so that at aleast gives the appearance that there is a greater chance of getting a red marble from bowl 

C. 

Because on average 

There are more overall marbles in there 

Bowl C has higher odds of containing more red marbles. 

The more marbles the higher the chance there will be more red ones. 

It might seem that the concentration of red balls is higher because the bowl is fuller 

People would assume they have a larger chance due to the larger amount of marbles 

It appears attractive because there are likely 8 red marbles in Bowl B 

There are more marbles 

I think there are more chances of getting a red marble 

It contains more marbles 

I would like to draw from the bowl b because there are more marbles and it makes the chances of getting a red marble go way up. 

greater chance there is a red marble 

There are a greater number of marbles to choose from in bowl B. 

More chances of getting the red marble 

Because there are more marbles in B so most people figure there is a better chance of getting a red one in B since there are more 

red marbles in B than in C 

There\'s a higher chance of it being in bowl B. 

larger number of balls 

There are more marbles and a great chance of drawing red. 

there are more to choose from 

There are more marbles in B 

They think the more marbles the better the choice. 

because there are more marbles in this bowl 

It seems like you have a better chance of picking out a red marble because there are more.  

Because there are more marbles which would yield a high er probability of not selecting a red marble. 

Bowl B had 80 marbles in it 

It seems that there are a lot of marbles but a bigger chance to have a red one 

There are more marbles and a better chance of drawing a red one. 

there are more marbles in b  

Because most of the red balls would probably end up in bowl b since it has the most marbles making the probability of drawing a 

red marble higher. 

more marbles in that bowl 

more balls more chances 

That there are more red marbles in there 

More options to choose from.  

More red marbles in it 

There will probably be more red marbles in that bowl to choose from.  

I could see people thinking that because more total marbles went into bowl B that the chances of the red marbles also being in 

there are increased. 
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Because most people would assume that more of the red marbles would go into this bowl. 

More marbles to choose from 

There are more marbles in that bowl,  so a larger opportunity to pick a red marble. 

They\'ll assume that since there\'s a small amount of red marbles,  the bowl with the most marbles will have a higher chance of 

holding that red marble. 

There are more options to get a red marble 

More marbles to choose from. 

There\'s more marbles 

more balls 

it is more likely that the red balls are in bowl B 

More options. 

There should be more red balls in 80 marbles 

Because there is more marbles. 

more marbles inside 

B has more marbles. 

Bowl B contains more marbles thus has a higher chance on containing a red marble. 

Higher chance of drawing a red ball. 

Having more balls in bowl B has better odds of drawing a red ball. 

Because it looks like people will have a greater chance of picking a red marble. 

There are more marbles,  so people might think that there is more of a chance of a red marble being drawn. 

more options to choose from probably more red marbles 

 

B.2.4 Condition 2 – Choice of marble from small jar 

Less marbles to choose from in the bowl. 

less marbles 

Because there are fewer marbles,  it makes people feel like they are more likely to draw the red marble. 

people would think less balls in the bowl would make it more likely to pick a red one 

I think there is a large enough grouping in B to draw a red but the smaller size would make people think they would be more 

likely to draw it 

Fewer marbles means a greater chance for getting a red marble 

there are less marbles in bowl b so that would lead people to believe there was a better chance 

Less chances of getting a blue marble,  and easier to pick one. 

There are less marbles so people may think their is a better chance of picking the red marble. 

There may be more of the reds in the bowl with lesser marbles. 

more marbles 

There are less marbles to choose from. 

I think it feels like there is a higher chance of drawning a small number from a smaller selection rather than a small number from 

a large selection. 

fewer marbles 

Less marbles would me a supposed better chance of picking red. 

It makes the odds appear to be more favorable. 

They might believe they can get a better chance with B. 

Only 20 marbles went into Bowl B. If 90 of the 100 marbles are red,  it seems like there would be more red marbles would be in 

Bowl B. 
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Even though it\'s not true,  it appears you have better odds with Bowl B since there are only 20 marbles. You feel like your odds 

have increased.  

There are less marbles to choose from.  

There is a higher chance of pulling out the marble I want because there is less marbles to choose from. 

seems to me as the best selection,  it\'s easier to imagine less marbles? 

I don\'t really know 

The bowl contains fewer marbles,  so if there were to be one more red marble than there statistically should have been,  then it 

would have a larger affect on the probability of pick the red marble assuming that the red marbles werent even distrubuted 

it is smaller it gives you a better chance 

Less marbles 

Better odds 

It seems that if the red marble was in this bowl you would have a greater chance of pulling one out since it has less. 

Maybe in this case there might be more chance with less marbles,  (more chance of red) but more marbles overall. 

lest marble annd red 

I think Bowl B would be more attractive because there are less bowls to chose from increasing the chance. 

There are a lot more blue marbles,  so bowl C has many more blue marbles than red ones 

Neither of them seems more attractive to me. I wouldn\'t have a preference. 

Because there are 20 marbles in bowl B 

There\'s smaller variables in this one. 

There are less marbles that could be blue in bowl B then bowl C. 

Fewer marbles 

There are less balls in total in bowl c,  which most people might think would give them a better chance 

There aren\'t as many blue marbles to contend with in  

less marbles. Easier to draw a red marble 

There\'s fewer chances of getting a wrong choice.  

There is a better chance of choosing a red marble from a small pool of marbles 

a chance that more red marbles may be in the 20 

You have a smaller sample,  and a higher chance of making multiple red marbles in the smaller bowl. 

Seems like the likely choice. 

I think you narrow your chances to a better one 

More of a chance 

has less marbles to pick from 

Since there are more marbles in bowl C,  it appears to me that there would be a better chance of selecting two red marbles. 

less marbles in bowl c increases the probability 

less marbles more chance 

Fewer total marbles 

Theres a higher chance of choosing a red ball from bowl c 

There are fewer marbles in that bowl 

It just seems like there would be more of a chance to pick red. 

It appears there is a greater chance of the red marble being pulled.  

Greater chance 

There are fewer marbles in bowl C,  yet enough to have a higher chance of pulling a red marble. 

Bowl C has less marbles so if they is a red one inside the bowl,  you have a better chance of finding it. 

There are less blue marbles in the bowl 
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There are fewer blue balls in bowl C 

Less balls,  I guess better chance of drawing a red ball. 

Because marbles (bowl C) is less marbles compared to B  

I just scared of Bowl B It has so many blue marbles,  i feel like my chances are better with a smaller stock to choose from 

Smaller sample size 

The bowl with fewer marbles gives a better chance to choose red. 

theer is a decent chance that one or more of the red balls went into c 

There are fewer balls to pick from which may contain a higher number of red balls. They may have a higher chance of winning. 

Fewer to pick from seems to imply and I infer that my chances are better choosing from fewer marbles.Perhaps deceptively-

fewer seems that my red marble is in the fewer bowl so when I reach to select from fewer-fewer means fewer BLUE marbles 

The ratio would stay about the same while splitting the marbels,  the small bowl of 20 would have less blue marbels,  increasing 

the odds of picking a red one. 
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Appendix C – Study 3 supporting materials 

C.1 Study 3A - Example of paper-based questionnaire supplied to study 

participants 

 

MSCI 311  

MODULE 8 – DECISION MAKING   

ACTIVITY 

Version A 

A while back the following game was played with a large number of people. People were shown 

various 6-cell shapes. An example of such a shape is shown below: 

      

 

In each structure, a computer had randomly assigned a prize to one of the cells. The game 

players had to select the cell where they felt the prize might be.   

As you can imagine, players selected some cells more frequently than others. 

In the next page, you will see a variety of 6-cell structures. Examples of selected cells by people 

are shaded. Your task is to rank the selected cells in order from the one that you expect was the 

most frequently selected to the one that you expect was the least frequently selected: 
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6-cell shape shown to participants: Rank Selected Cell 

 

 

Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

  

(___) 

 

(___) 

 

 

 

Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

 

(___) 

 

(___) 

 

 

 

Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

 

(___) 

 

(___) 
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Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (2): 

(___) 

 

(___) 

 

 

 

Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

 

(___) 

 

(___) 

 

 

 

Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

 

(___) 

 

(___) 

 

 

(___) 
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Rank the selected cells in order from the one that you 

expect to be the most frequently selected (1) to the one 

that you expect to be the least frequently selected (3): 

(___) 

 

(___) 

 

 

C.2 Study 3B - Example of web-based questionnaire supplied to study 

participants 
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