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Abstract 

Organic light emitting devices (OLEDs) are light emitting devices consisting of a stack of organic 

semiconductors sandwiched by electrodes. Since the first report of a high-efficiency device by Tang and 

Van Slyke in 1987, OLEDs have attracted considerable attention, particularly for use in flat panel 

displays. OLEDs provide these products improved power consumption, contrast, response speed, 

viewing angle, and compatibility with flexible displays.  The performance of OLEDs has improved 

considerably, especially in terms of stability and efficiency, so they can now meet the requirements for 

some display products. However, the commercialization of OLED displays remains limited and is 

hampered primarily by manufacturing issues. These issues include low manufacturing yield, high 

fabrication cost, and low display quality. Manufacturing issues are largely attributed to difficulties with 

the color patterning process, the fabrication process by which arrays of red, green and blue (RGB) 

OLEDs can be made side-by-side on one substrate in order to obtain a full-color display. Currently, 

RGB color patterning is done by sequential vacuum deposition of red, green and blue materials through 

a pre-patterned shadow mask, which is typically made of a thin metal sheet. This technique is widely 

known as fine metal mask (FMM) technology. However, this technique has several inherent limitations, 

including mask deformation, difficulties in mask-to-substrate overlay alignment, and ability to make 

masks with micrometer level dimensional accuracy. These limitations reduce the manufacturing yield, 

display resolution, and display aperture ratio (the ratio of the emissive area to the total surface area of a 

display). Despite the fact that several approaches for addressing these limitations in OLED displays 

have been proposed, there is still no commercially viable solution. 

 

In this thesis, two novel color patterning techniques for OLED displays are proposed. One approach 

utilizes laser-patterned polyimide (PI) sheets as shadow masks. This technique takes advantage of the 

good processability of PI by direct laser ablation, which makes it possible to cut through it to create slits 

with very high dimensional accuracies. In addition, because this is a dry process, the laser-patterning of 

the PI sheets can be done after the sheets are already stretched and mounted on the metal holder. This 

avoids post-patterning deformation of the masks by the stretching step. The use of laser also makes it 

possible to pattern the PI sheets after they have already been mounted on the thin film transistor (TFT) 

backplane substrates and thus, in a variant of this technique, allows for the shadow mask to be created 

in-situ. This in-situ shadow mask patterning technique can be expected to offer further accuracy 

advantages, since the slits are created by laser over the desired TFT locations directly, and thus 

eliminates the need for a subsequent mechanical alignment step. This approach can be particularly 

useful for RGB OLED patterning on flexible substrates where the poor mechanical and dimensional 

stability of substrates pose additional challenges for aligning shadow masks accurately. 

 

The other color patterning approach proposed here is based on the diffusion of a luminescent 

material from a donor substrate into the organic host material layer of the OLED that is pre-coated on 

the backplane substrate. The RGB color patterning in this case can be done without the use of shadow 

masks, so this approach offers significant advantages. The use of a pre-patterned micro stamp as the 

donor substrate allows the physical contact between the two substrates to be selectively limited to 
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certain areas, which in turn allows limiting this diffusion to only certain areas of the OLED substrate. 

Such selective diffusion can also alternatively be done through local heating via electric currents, using 

electrodes in the OLED backplane for this purpose. This eliminates the need for patterned stamps and 

mechanical alignment.  

 

 In this work, these two techniques are introduced and tested with the purpose of assessing their 

potential for RGB patterning. As part of this investigation, the effect of using these techniques on 

OLED performance is also studied. Finally, a first proof-of-concept utilization of the techniques for 

producing RGB OLEDs fabricated side-by-side on one substrate is demonstrated.  
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Chapter 1 

Introduction and Background 

Since the invention of the first high-efficiency organic light emitting device (OLED) by Tang and Van 

Slyke in 1987 using a bilayer structure and tris-(8-hydroxyquinoline) aluminum (Alq3)
[1]

, a great 

amount of research has been conducted in this area. From the early period on this research, the 

application of OLEDs to flat panel displays (FPDs) has attracted tremendous attention due to the unique 

advantages of OLEDs, which are suitable for FPDs, including their higher contrast, lower power 

consumption relative to liquid crystal displays (LCDs) and mechanical flexibility
[2][3][4][5]

. Although 

device performance of OLEDs such as efficiency and stability was limited in the early stage, OLEDs 

have now met performance requirements for some commercialized FPD products as a result of intensive 

research and efforts. As such, OLED displays are now emerging as an alternative to LCDs
[5][6][7]

.  

Nevertheless, the current mainstream technology in use in FPDs is still LCDs
[8]

. The 

commercialization of OLED displays is hampered primarily by manufacturing issues. These include 

low manufacturing yield, high fabrication cost, and low display quality. These manufacturing issues are 

largely attributed to difficulties with the color patterning process; i.e. the fabrication process by which 

red, green and blue (RGB) OLEDs can be made side-by-side in order to obtain a full-color display. 

Currently, RGB color patterning is done by sequential vacuum deposition of red, green and blue 

materials through a pre-patterned shadow mask, typically made of a thin metal sheet in what is widely 

known as fine metal mask (FMM) technology
[4][9][10]

. However, this technique has several inherent 

limitations. These include mask deformation, difficulties in mask-to-substrate overlay alignment, and 

ability to make masks with micrometer level dimensional accuracy. These limitations reduce the 

manufacturing yield, display resolution, and display aperture ratio (the ratio of the emissive area to the 

total surface area of a display).  

In this work, two novel alternative color patterning techniques are proposed. In one of these 

proposed techniques, polyimide (PI) sheets patterned by direct laser ablation are utilized as contact 
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shadow masks instead of the conventional FMMs
[11][12][13]

. This color patterning technique is referred to 

as “laser-patterned PI mask technique” in this thesis. Because of the good processability of PI sheets by 

direct laser ablation, which enables them to be cut through to create slits with very high dimensional 

accuracies
[14][15]

, high precision pixel patterning can be achieved by using laser-patterned PI masks. 

Furthermore, by utilizing a dry patterning process (i.e. laser ablation), it is possible to pattern them 

in-situ on the OLED backplane. In this work, the patterning technique where shadow masks are 

patterned in-situ on the substrate is referred to as “in-situ shadow mask patterning technique”. The 

in-situ shadow mask patterning technique has an additional advantage to achieve precise patterning 

even on flexible substrates where precise patterning is more challenging due to poor mechanical 

stability of the flexible substrates. Successful demonstration of RGB OLEDs with small feature sizes 

(~25 µm) fabricated through these two techniques is presented in this work. The results show that these 

techniques have a significant potential for enabling the fabrication of high resolution OLED displays.  

In addition to the laser-patterned PI mask technique, color patterning via diffusion of a luminescent 

material is also proposed, which is referred as a “diffusion-based technique” in this thesis. In this 

technique, emission color is not patterned by using shadow masks but by selective doping of a 

luminescent material via physical contact of a host layer with a donor layer. This being a maskless 

approach, patterning accuracy is not susceptible to issues such as the poor mechanical stability of masks 

or shadow effects. Furthermore, by utilizing local anode Joule heating for selectively inducing doping, 

it becomes possible to avoid the need for mechanical registration or alignment. The first demonstration 

of RGB color patterning of small molecule OLEDs by the diffusion-based technique is presented. 

Additionally, related techniques, including diffusion enhancement by solvent vapor exposure and the 

use of a semiconducting diffusion barrier to enhance the technical advantage and reliability of this 

technique, are also provided.  

The main focus of this work is to conduct the first proof–of-concept investigation of these 

techniques and to test their technical feasibility. The feasibility study on the laser-patterned PI mask 

technique includes assessment of the capability of the laser-patterned PI sheet as a shadow mask, 

investigation on the effect of direct contact of organic materials with PI on device performance, and 
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demonstration of RGB OLEDs with small feature sizes (<25 µm) fabricated side-by-side on one 

substrate. In addition to these studies, the effect of carrying out the mask patterning in-situ on the 

substrates on device performance is investigated. As an end goal of this study, RGB OLEDs fabricated 

through the in-situ shadow mask patterning technique are also demonstrated. For the diffusion-based 

technique, doping levels of a luminescent material achieved via physical contact between donor and 

acceptor layers are first examined, followed by investigations of its effects on device performance. RGB 

OLEDs are then fabricated by the selective diffusion technique to demonstrate its technical feasibility. 

In addition, diffusion enhancement by solvent vapor exposure and the use of a semiconducting diffusion 

barrier are also discussed as approaches for enhancing technical advantage and reliability of this 

technique. Finally, concentration profiles of the luminescent material doped via diffusion is 

theoretically estimated.  

 

1.1 Thesis organization 

In the first introductory chapter, basic information on OLED devices such as a standard structure 

and operational principle is provided. The standard architecture, advantages, and fabrication techniques 

of OLED displays are then described. The remaining issues of the current OLED display manufacturing 

and suggested solutions such as alternate color patterning techniques are then presented. Finally, the 

current status of OLEDs in display technology and OLED display businesses are briefly reviewed. 

In chapter 2, the proposed new color patterning techniques are introduced, and specific objectives 

of a series of studies on these techniques are summarized. This is followed by a brief description of 

general experimental procedures in chapter 3. The experimental results and discussions for these studies 

are presented in the following two chapters. Studies on the color patterning technique using 

laser-patterned PI sheets are presented in chapter 4. Studies on the technique via diffusion of a 

luminescent material are presented in chapter 5. 

Chapter 4 is divided into two sections where ex-situ shadow mask patterning and in-situ shadow 

mask patterning approaches are described in parallel. Each section consists of a series of subsections 
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describing specific experiments with introduction, experimental procedure, and discussion. Chapter 5 

consists of six sections. Sections 5.1, 5.2 and 5.3 describe the primary studies for the diffusion-based 

technique including examination of doping levels of a luminescent material, investigation of effects on 

device performance, and demonstration of RGB OLEDs. Sections 5.4 and 5.5 present related techniques 

including diffusion enhancement by solvent vapor exposure and the use of semiconducting diffusion 

barriers. In addition, theoretical analysis of dopant concentration profiles is presented in Section 5.6. 

 Finally, summary of research results and conclusions of this work are provided in chapter 6. 

 

1.2 Organic light emitting diodes - Introduction 

1.2.1 Working principle of OLEDs 

In general, organic semiconductors are organic materials made of molecules characterized by 

having a high density of carbon-carbon double bonds (Fig.1.1). In these double bonds, π molecular 

orbitals are created due to the overlap of 2p orbitals. Since π electrons are delocalized, electrons are able 

to move freely within the molecule, which contributes to the carrier transport property of organic 

electronics materials. In the case of highly conjugated molecules where multiple double carbon bonds 

are contained, continuous energy bands are formed due to presence of overlapping π-orbitals of a 

collection of atoms. The highest energy occupied molecular orbital and the lowest energy unoccupied 

molecular orbital are named highest occupied molecule orbital (HOMO) and lowest unoccupied 

molecule orbital (LUMO), respectively. Under the influence of an electric field, electrons in the LUMO 

level and holes in the HOMO level transport by hopping from one molecule to the next over an energy 

barrier between them. This carrier transport mechanism is called hopping transport, and is the dominant 

carrier transport mechanism in organic amorphous semiconductors. In addition to the carrier transport 

property, electron-photon interactions are able to occur in the visible range of the electromagnetic 

spectrum, since the typical band gap between bonding and anti-bonding orbitals of π molecular orbitals 

is 1.5-3.5 eV. Due to these optoelectrical properties, organic electric materials are useful in practical 

applications such as light emitting diodes and solar cells. 
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Figure 1.1 Chemical structure of the common OLED materials a) Alq3 b) 

N,N’-bis(lnaphthyl)-N,N’-diphenyl-1,10-biphenyl- 4,40-diamine (NPB). 

 

1.2.2 Basic structure of OLEDs 

Figure1.2 presents the typical structure of a N,N’-bis(lnaphthyl)-N,N’-diphenyl-1,10-biphenyl- 

4,40-diamine (NPB)/Alq3 bilayer OLED device. As shown in the figure, the standard bilayer device 

consists of heterojunction of two thin layers of OLED materials, a hole transport layer (HTL) and an 

electron transport layer (ETL), sandwiched by cathode and anode. In this device, NPB and Alq3 serve as 

a HTL and ETL, respectively. Transparent conductive electrode (TCE) such as indium tin oxide (ITO) 

is commonly used as an anode for light extraction. Figure 1.3 depicts carrier transport and 

recombination phenomenon in the bilayer device. When voltage is applied between the anode and 

cathode, electrons and holes are injected from the cathode and the anode, respectively. The injected 

carriers transport to the opposite direction, and when electrons and holes meet each other, 

recombination occurs. As a result, energy of the excited electrons is released as light, which is extracted 

from the TCE.  

 

Figure 1.2 Structure of the standard Alq3/NPB bilayer OLED device. 
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Figure 1.3 Schematic presentation for the energy diagram of the field-applied bilayer device. 

 

 The device architecture shown in Figure 1.2 is called bottom emitting architecture, since light is 

extracted through the bottom TCE or the glass substrate side. This architecture is widely used in lab 

experiments due to its relatively simple fabrication. However, the bottom emitting structure is not 

suitable for application in displays, since the opaque component of the driving circuits presented under 

the OLED pixels limits the aperture ratio of displays (Fig. 1.4(a)). Therefore, the top emitting 

architecture is preferred. In this architecture, light is extracted from the top TCE and deposited on the 

top of organic layers (Fig. 1.4 (b)). Since depositing ITO on organic layers causes damage to the 

underlying organic layers, a thin film of metal such as Al and Ag (~15 nm) are typically used as the 

TCE in this case. Higher aperture ratio can be achieved in this architecture, and thus, pixel sizes can be 

larger, resulting in reduced driving voltage given a luminescence, and longer device lifetime.  

 

Figure 1.4. Cross section view of a) bottom emitting device and b) top emitting device. 
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1.2.3 SMOLEDs vs PLEDs 

 Organic semiconductor materials used in OLEDs can be categorized into two types: small molecule 

materials and polymer materials. Although there is no clear definition to differentiate them, polymer 

materials can be in general characterized by long chains of repetitive individual molecules and its large 

molecular weight while other materials with small molecular weight can be categorized as small 

molecules. The chemical structure of typical small molecule and polymeric OLED materials are shown 

in Figure 1.1 and Figure 1.5, respectively. In general, small molecule OLEDs (SMOLEDs) and polymer 

OLEDs (PLEDs) are processed through different methods, which provide each with different 

advantages and disadvantages. PLEDs are generally processed through a wet process. This is because 

large polymer molecules with long chains cannot be deposited through vacuum evaporation, since 

main-chains of polymer molecules are broken before evaporation. Polymer OLED materials therefore 

have been developed to be soluble by chemical engineering such as introduction of alkyl or alkoxyl 

substituents for compatibility with wet processes.  

In contrast, SMOLEDs are generally processed by means of vacuum evaporation since small 

molecule materials can be evaporated without affecting molecular structures in vacuum condition. 

Furthermore, unlike polymer OLED materials, wet processes cannot generally be used with many 

OLED small molecule materials because their chemical structure makes them generally insoluble in 

common solvents. Chemical structure modification, such as the incorporation of bulky substituents, is 

required to achieve solubility since small molecule materials with planar and symmetric structure tend 

to be prevented from dissolution due to their close molecular stacking.  

 The advantage of wet processing is its compatibility with cost efficient mass production processes 

such as inkjet printing and blade coating. These methods do not require vacuum conditions, so the 

amount of material needed is lower than would be the case in vacuum evaporation. Therefore, the 

fabrication cost of PLEDs can be potentially much lower than that of SMOLEDs. In contrast, the 

primary advantage of vacuum evaporation process is that optimization of device structure is relatively 

easy. While multilayer deposition is generally difficult in wet processing due to inter-layer mixing, 



 

 8 

more complex device structures can be readily formed using vacuum evaporation. Also, precise 

thickness control and high film uniformity are relatively easily achieved in vacuum evaporation. 

Because of an optimized device structure, SMOLEDs generally have much higher device performance 

including efficiency and stability in comparison with PLEDs.  

In summary, due to the difference in the process methods, SMOLEDs are advantageous in terms of 

device performance while PLEDs are advantageous in term of fabrication cost in mass production. 

Currently, OLED display products mainly use SMOLEDs since the performance of PLEDs still does 

not meet requirements for display products
[16][17]

.  

  

 

Figure 1.5 Chemical structure of the common PLED materials: a) poly(phenylenevinylene) (PPV) and b) 

poly(fluorene) (PF). 

  

 

1.3  OLED displays 

1.3.1 Standard architecture and working principle of OLED displays 

RGB pixel structure for color generation 

Visual images of full color displays are created by a number of individual picture elements that are 

called pixels. Each pixel consists of red, green and blue (RGB) primary color sub-pixels that generate a 

useful range of color for visual images. In OLED displays, several RGB pixilation approaches, such as 

(a) side-by-side RGB OLEDs, (b) white OLEDs plus color filters (CFs), and (c) blue OLEDs with 
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fluorescent color conversion materials (CCMs), have been suggested
[4] [9]

 (Fig.1.6). The details of these 

approaches are briefly described here. 

 

- a) Side-by-side RGB OLEDs 

The RGB approach using side-by-side RGB OLEDs is conceptually very simple. In this approach, 

one pixel consists of independent red, green, and blue OLEDs, similar to traditional cathode ray tube 

displays (Fig.1.6 (a)). Since the light emitted from the emitting devices is directly seen without any 

additional layers such as CFs, this approach is superior in terms of utilization efficiency of light. 

However, this structure requires either separate growth or post-deposition patterning for arrays of RGB 

OLEDs. Separate growth of thin films is conventionally done using FMMs, but patterning accuracy of 

this method is limited due to inherent limitations of the shadow mask approach. Details of the issues 

arising by using this approach are discussed in the following section. Also, although a post-deposition 

patterning approach of OLEDs has great potential to achieve high resolution OLED patterning, 

conventional photolithographic techniques cannot be applied, because small molecule OLEDs are 

generally not compatible with solution processes. In summary, while this approach is desirable in terms 

of efficiency, there are difficulties in fabricating independent RGB OLEDs side-by-side.   

- b) White OLEDs plus color filters 

 A display architecture which uses white OLEDs plus CFs has been emerging in accordance with 

development of white OLEDs. The first white OLEDs that have demonstrated reasonable efficiency, 

0.83 lm/W, were created by blending different color dopants into a host organic layer by Kido et al. in 

1994
[18]

. As a result of development of materials and refinement of structures, the efficiency of white 

OLEDs has now reached to 90 lm/W at 1000 cd/m
2
 with 100,000 hours long life time, which meets 

requirements for practical application to displays
[19]

. In these highly efficient white OLEDs, multilayer 

structures with different emitting layers arranged in stacks is generally used to obtain white emission. In 

display applications, white OLEDs serve as a back light of displays, and RGB colors are produced by 

using CFs like LCDs (Fig.1.6 (b)). Therefore, the difficulty of sub-pixel to sub-pixel color patterning of 

OLEDs is eliminated in this method, contributing to relatively higher yield rate and lower fabrication 
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cost in comparison with the side-by-side RGB approach. However, the efficiency of this architecture is 

much less than that of the side-by-side RGB architecture, since light is absorbed (~70%) by the color 

filters in this case. This also results in shorter lifetime of OLEDs, since the OLED must be driven by 

higher current for obtaining required RGB pixel brightness.  

- c) Blue OLED with color conversion medium  

 This approach uses down conversion of blue light from an array of blue OLEDs to produce RGB 

pixels by means of converging the blue emission of the OLEDs into red and green emission using 

CCMs (Fig.1.6 (c)). The blue OLED is deposited on the entire substrate, and pre-patterned film of red 

and green fluorescent materials are positioned on the substrate. The blue light emitted from the 

underlying blue OLEDs is absorbed from the fluorescent materials, and the energy is re-emitted as 

either red or green light. Although the efficiency is limited by quantum yield of the fluorescent 

materials, and is less than that achieved by the side-by-side RGB approach, higher efficiency can be 

expected in comparison with the color filter method. Another disadvantage of this approach is 

unintentional color conversion in neighboring sub-pixels, which is caused by light waveguided to the 

neighbor sub-pixels in a glass substrate. Manipulation of a glass substrate is thus required to avoid this.  

 

In summary, the side-by-side RGB approach is the best in term of a utilization efficiency of light 

while the other approaches are advantageous in producing RGB colors. Ideally, the side-by-side RGB 

approach should be employed for OLED displays because the high light utilization efficiency 

contributes to lower power consumption and, more importantly, longer lifetime of OLEDs. In fact, most 

commercialized small-to-medium size AMOLED displays employ the side-by-side RGB method, even 

though display quality and manufacturing yield tend to be low. For large size displays, the white OLED 

plus CFs approach is employed because fabricating RGB OLEDs side-by-side on large size substrates is 

much more difficult than that on small size substrates. However, the advantage of the use of OLEDs is 

lost when the color filters are used. This results in unsuccessful commercialization of television size 

OLED displays due to competition with LCDs that use the same color generation approach using CFs.  
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Figure 1.6 RGB approaches for OLED displays: a) side-by-side RGB OLEDs, b) white OLEDs plus CFs, and c) 

blue OLEDs with CCMs. 

 

Brightness control 

LCDs have several inherent limitations such as contrast, viewing angle and response speed. These 

limitations mainly originate from their brightness control method. In LCDs, the RGB emissions are 

generated by the RGB color filters backlit by white emission from cold cathode fluorescent lamp 

(CCFL) or light emitting diodes (LEDs). The brightness of each sub-pixel is controlled by changing 

voltage applied to a liquid crystal (LC) layer that is sandwiched by polarizing filters. The axes of 

transmission of the polarizing filters are perpendicular to each other, so no light can pass through the 

layer stack without the LC layer. The LC layer allows controlling the polarization state of light by 

changing its molecular orientation, and so the amount of light passing the layer stack can be controlled. 

Since LC molecular orientation is aligned by applying voltage, the brightness of sub-pixels can be 

controlled by changing the voltage applied to the LC layer. The brightness control method in LCD tends 

to limit display performance such as contrast, viewing angle and response speed due to light leaking and 

slow response speed of molecules to voltage.  

In contrast, the brightness controlling system is much simpler in the case of OLED displays. Since 

OLEDs are self-emitting devices, the brightness of each sub-pixel can be controlled simply by varying 

the amount of current following through the corresponding emitting devices. OLED displays are 

therefore current-driven, while LCD displays are voltage-driven. The simple system of OLED displays 
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using self-emitting devices allows them to be thinner and lighter and provide higher color contrast and 

higher response speed over LCD displays. 

 

Addressing method 

Though OLED displays and LCDs employ different driving methods, the two common addressing 

methods used in LCDs can be also used in OLED displays
[4][10]

. These two addressing methods are 

known as passive-matrix system and active-matrix system. Passive-matrix OLED (PMOLED) displays 

consist of a matrix of row and column electrodes, where OLEDs are fabricated in the intersections of 

these electrodes (Fig.1.7). The OLED at each intersection forms a sub-pixel of a display. At the 

periphery of the matrix, integrated circuits are attached to both row and column electrodes to provide 

voltage to the sub-pixels that are to be illuminated. A video image can be created by sequentially 

scanning each row while the column voltages are applied in parallel. The scanning is done at a time 

frame of T, meaning voltage is applied to each row during a period of T/N, where N stands for the 

number of row lines. In the active-matrix system, therefore, the emission period for each sub-pixel 

becomes shorter as display resolution is higher. As a result, higher brightness is required at higher 

resolutions to produce the desired luminous effect, which results in shorter lifetime of devices. For this 

reason, PMOLED displays are mainly used only for display products that do not require high display 

resolution.  
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Figure 1.7 Schematic presentation for matrix driving of a PMOLED 

 

For display products with high resolution, active matrix system is generally used. Because of strong 

demand for high performance devices such as smart phones, FPDs currently mainly use AMOLED 

displays. In an active matrix system, each sub-pixel is located in the intersections of a matrix with row 

and column electrodes, like in a passive matrix system. However, each pixel consists not only of an 

OLED but also of a circuitry comprising of thin film transistors (TFTs) and a capacitor to drive it 

(Fig.1.8)
[10]

. The TFTs are fabricated on a glass substrate though deposition of metal electrode, 

amorphous silicon and insulator which are patterned by photolithographic methods. The glass substrate 

with TFTs is called a TFT substrate or backplane substrate. With reference to the associated TFT 

terminals, the row and column electrodes are often called gate and source electrodes in active matrix 

system. Figure 1.9 presents the typical OLED display circuit with two TFTs and one capacitor. This 

circuit is called 2T1C, which stands for the number of TFTs and capacitor. As can be seen, the gate of 

one of these TFTs (T1) is directly connected to the gate (row) electrode, and thus, when voltage is 

applied to one gate electrode, all the TFTs along the gate electrode are turned on. In this state, the 

voltage applied to the source (column) electrode is imposed to the gate of the other TFT (T2). Assuming 

T2 is operating in its saturation regime, the current flowing to the OLED is proportional to the value of 
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the voltage applied to the source electrode, and thus the luminance of the OLED is controlled. Due to 

the switching using TFTs, each pixel is independently controlled without affecting neighbor devices, 

contributing to higher contrast in comparison with the passive matrix system. Additionally, unlike 

passive matrix system, the current flowing to the emitting device is kept constant during whole time 

frame because of the applied voltage stored by the capacitor. Hence, high resolution and large size can 

be achieved without compromising device lifetime in the active matrix system. Due to these advantages, 

AMOLED is currently the mainstream system for OLED displays in spite of the complicated system 

and high fabrication cost of the TFT backplane
[4][5]

.   

 

 

Figure 1.8 Cross section view of OLEDs fabricated on a TFT substrate. 
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Figure 1.9 Typical OLED display circuit with two TFTs and one capacitor. Vsupply is the voltage of the power 

supply. 

 

1.3.2 RGB OLEDs fabrication technique using fine metal masks 

As stated in the previous section, the side-by-side RGB approach is ideal for OLED displays and 

currently employed for most commercialized OLED display products. Fabricating RGB OLEDs 

side-by-side is conventionally done by using FMMs (Fig.1.10)
[4][5]

. FMMs are made of thin metal 

sheets where slits are pre-patterned with a pixel pitch (distance between sub-pixels of the same color). 

The thickness of FMMs is usually made as thin as possible to minimize undesirable shadow effects. For 

example, 30 µm thick FMMs are typically used for fabricating AMOLED displays with the resolution 

of over 200 ppi (pixels per inch). FMMs for OLED display fabrication are conventionally patterned by 

a wet process such as chemical etching or electrodeposition. Direct patterning techniques such as 

electric discharge machining (EDM) and laser cutting can also be used, but feature sizes achieved by 

these techniques is limited to ~50 µm due to rough sidewalls and non-uniform lines
[20]

. Therefore, these 

techniques can be applied only to the FMMs for lower resolution displays.  

In fabricating RGB OLEDs side-by-side, the slits patterned on FMMs with a pixel pitch are aligned 

to one of the three color sub-pixels. OLED materials are then deposited on the sub-pixel electrode 

through these slits. Once deposition for one color OLED is completed, the shadow mask is shifted to the 
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next color sub-pixel and the same process will be repeated for the other colors. Because multilayer stack 

structures with fine thickness control and fine film quality is possible in thermal evaporation of small 

molecules, high performance RGB OLEDs with optimized structure are relatively easily fabricated with 

this approach.  

 

Figure 1.10. Schematic presentation for the conventional color patterning technique using FMMs. 

 

1.3.3 Limitation of current small molecule OLED display fabrication technology 

Fabricating RGB OLEDs side-by-side using FMMs has several inherent limitations which cause 

technical challenges in manufacturing OLED displays, however. One of these limitations is difficulty in 

making masks with micrometer level dimensional accuracy
[5][21][22]

. Conventionally, FMMs are 

patterned by a wet process such as chemical etching or electrodeposition. However, the patterning 

accuracy of metals achieved by these methods is limited, leading to non-uniform slit width varying by 

±10 µm. For smaller feature sizes less than 20 µm, dry processes such as reactive ion etching (RIE) and 

electron beam lithography (EBL) are required, but these techniques are not suitable for OLED display 

fabrication due to limitation in scalability and high fabrication cost
[20]

.  

Another issue for these techniques is deformation of masks upon their alignment over TFT 

substrates. Because these masks have to be made as thin as possible (typical FMM thickness: ~30 µm) 
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in order to reduce shadow effects and because these masks are strained by a stretcher upon mounting 

them on TFT substrates, these masks are easily deformed, resulting in misalignment of the masks over 

the substrates.  

Other issues include mechanical alignment inaccuracy between the masks and substrates, and 

shadow effects due to the thickness of FMMs. Because of inaccurate pixel patterning caused by these 

issues, pixel pitch tends to be large and aperture ratio tends to be low. Furthermore, the unreliability of 

the color patterning method also leads to low manufacturing yield, high fabrication cost, and low 

display quality.  

In this context, several alternate color patterning techniques have been suggested for more reliable 

color patterning process. These alternate approaches include contact printing techniques using 

pre-patterned stamps
[23][24]

, selective transfer (or sublimation) of organic layers from a donor substrate 

to the OLED substrate using lasers or other thermal transfer techniques
[25][26][27]

, and selective diffusion 

of a luminescent material
[28][29][30][31]

. Notable approaches are introduced in the following sections in 

detail. Nevertheless, these techniques remain under development, and there is still no commercially 

viable solution to this issue.  

Finally, it is worth noting that some latest personal digital assistant (PDA) products employ a high 

quality OLED display with resolution over 300 ppi
[32]

. However, this resolution is actually a “pseudo 

resolution” which is achieved by means of a special pixel matrix scheme, called “PenTile”, along with a 

rendering technique. The PenTile pixel layout typically consists of small green sub-pixels interleaved 

with alternating larger red and blue sub-pixels (RGBG) in each unit cell (Fig.1.11). Making good use of 

high sensitivity of human eyes to green color, this RGBG scheme can create as many pixels per inch as 

the RGB scheme, with one third fewer sub-pixels than that in the conventional matrix scheme, through 

the use of sub-pixel rendering
 [33][34]

. However, image quality is significantly compromised in this case, 

and the issue of low aperture ratio cannot be addressed by this approach.  
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Figure 1.11 Magnified view of an AMOLED with the PenTile layout. 

 

1.3.4 Alternative color patterning techniques 

Laser based printing techniques and photolithographic techniques for fabricating RGB small molecule 

OLEDs side-by-side have been suggested as an alternative to the FMM technique. Both techniques do 

not require use of shadow masks, so limitations associated with shadow masks can be eliminated. 

Although these techniques are still under investigation, they have great potential to achieve reliable 

color patterning in OLED display fabrication.   

 Laser based printing techniques 

There are several color patterning techniques using laser based printing, such as laser induced 

thermal imaging (LITI)
[25][26][35]

, radiation induced sublimation transfer (RIST), and laser induced 

pattern-wise sublimation (LIPS)
[36]

. LITI is the first to be proposed and is the most intensively studied 

among these techniques. LITI employs laser exposure to selectively transfer organic layers that are 

coated on a donor sheet to an acceptor substrate (Fig.1.12). In this method, thin organic films are first 

coated on the donor sheet. The pre-coated donor sheet is then laminated to a TFT back plane, and the 

organic layers on the donor sheet are transferred selectively to the sub-pixel on the TFT backplane by 

local laser exposure. It has been reported that, through this technique, organic layers can be transferred 

with uniform thickness and uniform dimensional line edges with reasonable device characteristics 
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which are on par with those of devices fabricated through standard thermal vacuum deposition 
[25][26]

. 

Because of the high precision transfer and high positioning accuracy of laser, high patterning accuracy 

of ±2.5~5 µm can be achieved by this method. 

Primary drawbacks of the LITI process are high production cost and adverse effects on device 

performance. The donor sheet used in this process consists of four layers: the support layer, the light to 

heat conversion layer (LTHC), the interlayer, and the transfer layer. Production cost of the LITI process 

tends to be high because the four layer donor sheet is not commercially available and not reusable due 

to deformation of the sheet. The adverse effects on device performance arise from the thermal transfer 

process by laser. Since organic materials are heated during laser exposure, morphological changes occur 

in organic materials with low glass transition temperature (Tg) resulting in poor device performance. 

Because of this limitation, the variety of materials used in LITI process is limited despite the fact that 

some high efficiency and long lifetime organic materials have low Tg. Therefore, although several 

display companies have pursed this technique, it has not been commercially viable.  

 

 

Figure 1.12. Schematic presentation for the transfer of an organic layer stack by laser exposure of LITI process.  

 

Photolithography 

In general, photolithographic patterning cannot be applied to OLED color patterning because 

organic materials are soluble in standard chemicals used in photolithography processes, such as 

photoresists, developers, and strippers. To avoid this, highly fluorinated chemicals such as 
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hydrofluoroethers (HFEs) are often used
[37][38]

. Because they are orthogonal to the majority of 

non-fluorinated organic electronic materials, solution processes can be performed without dissolving the 

organic materials. An advanced photolithographic approach is direct photolithographic patterning of 

OLEDs. In this case, a light emissive polymer with a photoresist-like property, which can be 

cross-linked to produce an insoluble polymer by exposure to UV light, is used
[39][40]

. Several 

photolithographic process steps such as deposition and stripping of resists can be eliminated with this 

method, which contributes to reducing risks in damaging organic layers. Three color polymer OLEDs 

patterned through this technique have been successfully demonstrated with reasonable electro-optical 

characteristics and efficiency. However, the variety of materials which are compatible with this method 

is limited and further investigation is required for higher device performance.  

While photolithographic patterning of OLEDs is initially studied for patterning of polymer OLEDs, 

application of photolithography to small molecule OLEDs is recently demonstrated
[41]

. Although details 

of this technique have not been disclosed, operating RGB OLEDs patterned with 20 µm subpixel pitch 

through the photolithographic technique has been demonstrated. However, the first report shows that 

the device performance drops due to the patterning process. For example, current efficiency decreases 

to one sixth of that of a control device, and lifetime decreases to half. Although further investigation is 

required to avoid the adverse effects on devices, this technique has a great potential to obtain full color 

displays with ultra-high resolution. 

 

1.4 Current status of OLEDs and OLED displays 

1.4.1 Current status of OLEDs in display technology 

The two main requirements of OLEDs for application to displays are high operational stability and 

high efficiency. In general, it is accepted that the lifetime of RGB color should be over 50,000h with a 

reasonable brightness level of at least 1000cd/m
2
 for large size OLED displays

[4][5]
. Considering the low 

aperture ratio of display panels, the brightness of each red, green, and blue sub-pixel has to maintain 

brightness of 3500, 7000, and 1500 cd/m
2
, respectively

[5]
. For small size displays, such as PDAs 
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including smart phones and tablets, the lifetime is required to exceed 30,000 h with an initial brightness 

of approximately 200-300 cd/m
2
 
[4]

.  

Although the first bilayer OLEDs demonstrated by Tang and Van Slyke demonstrate just 1.5 lm/W 

luminous efficiency and maximum 1000 cd/m
2
 brightness

[1]
, significant improvement has been made 

over the past 20 years in device stability and efficiency with the discovery of new materials and better 

understanding of degradation mechanisms.  

The significant advancement in terms of efficiency made on OLEDs is attributed to the discovery of 

phosphorescent OLED materials
[7][42][42]

. The first generation OLED material, which is used in the first 

bilayer OLEDs, is a fluorescent material. Because photons are emitted only with the recombination of 

singlet excitons in fluorescent materials, theoretical quantum yield of fluorescent material based OLEDs 

is limited to 25%. In contrast, in phosphorescent materials such as 

tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3), all excitons including triplet excitons can emit 

photons due to the presence of heavy atoms such as iridium or platinum, which increases spin–orbit 

coupling and allows radiative triplet transitions
[7][43]

. Therefore, 100% theoretical quantum yield is 

possible in phosphorescent OLEDs. The discovery and development of the phosphorescent materials 

have made dramatic improvement in the efficiency of OLEDs.  

In parallel to work on achieving high efficiency, intensive studies have been conducted for 

understanding degradation mechanisms and improving stability
[44][45]

. In the early stage of study on 

degradation phenomena, extrinsic degradation mechanisms such as dark spot formation or catastrophic 

failure are investigated
[46][47][48][49]

. Since extrinsic degradation is caused by external factors such as 

defects in organic layers and electrodes or exposure to water and oxygen, it has been found that this 

kind of degradation can be readily circumvented by adequate fabrication control and encapsulation
[50][51]

. 

However, though stability of OLEDs has been improved due to development of these techniques to 

avoid extrinsic degradation, intrinsic degradation, which occurs under operation without an external 

factor, is a more challenging problem to solve. Intrinsic degradation of OLEDs is still intensively 

investigated for further improvement in device stability
[44][45][52][53][54]

.  
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As a result of these developments, the current OLEDs demonstrate long lifetime with reasonable 

efficiency and brightness, which meet the requirements for some commercialized small size active 

matrix OLED (AMOLED) displays
[5]

. In fact, PDAs using small size AMOLED displays have already 

been in the market for several years. For large size displays, however, the required lifetime of blue 

phosphorescent OLEDs has not yet been reached. Further investigations are expected for 

commercialization of large size AMOLED displays. 

 

1.4.2 Current status of OLED display 

 

Company Sony Samsung LG 

 

 

 

OLED TV 

business to date 

- 2008 

First commercialized 
OLED TV [11”, 960*540, 
$2,500] 

- 2014 

Announce being 
withdrawn from OLED 
TV businesses 

 

- 2013 

Commercialized 55” 
OLED TV [55”, Full HD, 
$9,999] 

- 2014 

Announce no OLED TVs 
will be released in 2015 

- 2013 

First commercialized 
55” OLED TV [55”, 
Full HD, $15,000] 

- 2014 

[55”, Full HD, $6,999] 

-2015 

[65”, 4KUHD, $9,999] 

[77”, 4KUHD, $25,000] 

Current status Withdrawn Resume as needed Increasing invesment 

Color patterning 
method 

RGB by FMM & LITI RGB by FMMs White OLEDs plus CFs 

Table 1.1 Summary of an OLED television business to date. 

 

The first commercialized OLED television was launched by Sony in 2008 with 11” screen size and 

960 by 540 resolution. In 2013, new OLED televisions were released from two companies, Samsung 

Electronics and LG Electronics with a larger screen size of 55” and higher resolution of 1920 by 1080 

(Table 1.1). However, the commercialization of OLED displays still remains limited. For example, the 

latest report says the shipment of OLED televisions in 2014 is still limited to 7,7000 units (or ~0.003% 
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of the total television shipment in 2014)
[55]

. Also, there is now only one OLED television panel supplier 

in 2015 after Sony and Samsung Electronics decided to focus on LCDs because of the low profitability 

of the OLED television business.  

In comparison with large television size displays, OLED displays are relatively prevalent in small 

and medium sizes. The shipment share of OLED displays in small to medium size displays started 

increasing since 2010 when Samsung Mobile Display launched the first AMOLED smartphone: 4.4% in 

2010 and 8.4% in 2012
[56]

. The impact on smartphones is particularly significant, and in 2013, 

AMOLED displays had a 35% share of mobile phone display revenues
[57]

. Nevertheless, it is expected 

that the growth of OLED displays will stop mainly due to competition with the high performance low 

temperature polysilicon (LTPS) LCDs
[56][57]

.  

As discussed in previous sections, the commercialization of OLED displays is hampered primarily 

by immature manufacturing processes, which leads low manufacturing yield, high fabrication cost, and 

low display quality. In fact, the fabrication cost of OLED televisions is 8-10 times higher than that of 

amorphous silicon LCDs depending on process methods
[58]

. In particular, fabrication cost of 

side-by-side RGB OLED televisions is 25% higher than that of the televisions with white OLEDs with 

CFs. The OLED television business is therefore still not profitable due to the high fabrication cost, 

which caused display companies to step away from the OLED television business. Also, the resolution 

and fill factor (the ratio of the emissive area to the total surface area of a display) of OLED displays 

tends to be low in small to medium size displays. While the resolution and fill factor of recent LCD 

smartphones exceeds 300 ppi and 60%, respectively, those of AMOLED smartphones via the standard 

side-by-side RGB sub-pixel matrix scheme have been limited to ~200 ppi and ~40%, respectively
[32]

 

(Table 1.2).  
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.  

Table 1.2 Comparison between OLED display and LCD. 
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Chapter 2 

New Color Patterning Techniques for OLED Displays: Introduction and Research 

Objectives 

As stated in the previous chapter, OLED display manufacturing issues are largely attributed to the 

limitations of the FMM technology. Several color patterning techniques have been proposed, but there 

are still no commercially feasible alternatives since these techniques often raise production costs and 

compromise device performance. In this work, two new OLED color patterning techniques are 

proposed as alternatives. The first technique (Technique 1) involves color patterning using 

laser-patterned PI shadow masks. The second technique (Technique 2) involves color patterning via 

diffusion of a luminescent material. In this chapter, these techniques are introduced, and the objectives 

and general methodology of the experimental investigations of these techniques are presented.  

 

2.1 Introduction to the proposed techniques 

The new color patterning techniques include: Technique 1, color patterning using laser-patterned PI 

shadow masks; and Technique 2, color patterning via diffusion of a luminescent material. In Technique 

1, PI sheets that are patterned by laser ablation are utilized as shadow masks. The PI sheets are 

patterned either ex-situ off substrates or in-situ on substrate. The latter technique is specifically named 

in-situ shadow mask patterning technique. Technique 2 is based on the diffusion of a luminescent 

material from a donor substrate into the organic host material layer of the OLED that is pre-coated on 

an acceptor substrate. This is a sort of a maskless color patterning technique which does not require use 

of shadow masks.  
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2.1.1 Technique 1: Color patterning using laser-patterned PI sheets 

As discussed in the previous section, the causes of inaccurate color patterning in the conventional 

technique using FMMs include the limited accuracy of the FMM patterning techniques, post-patterning 

deformation of FMMs due to stretching upon mounting them on the metal frame, and shadow effects 

due to the thickness of FMMs (~30 µm). The proposed patterning technique using laser-patterned PI 

shadow masks have a potential to overcome all three of these issues
[13]

. First, precise patterning of 

masks can be achieved much more easily using PI sheets compared to using metal sheets. It is well 

known that PI can be patterned by direct laser ablation with very high dimensional accuracy, as 

indicated by the fact that even sub 100 nm patterning is possible by laser ablation, while the patterning 

accuracy of a thin metal (~30 µm) by a wet process is limited to ±10 µm
[14][15]

. Second, 

post-patterning deformation of masks by stretching can be limited in this technique since PI sheets can 

be patterned after they are already stretched and mounted on the metal holder, while FMMs are 

deformed due to stretching as depicted in Figure 2.1. Finally, since thin PI sheets (~7.5 µm) are 

commercially available and can be mounted directly on the TFT substrate as a contact shadow mask, 

shadow effects can be significantly reduced compared to those in FMMs. These advantages of using 

laser-patterned PI shadow masks enable us to precisely pattern pixels on TFT substrates, thus achieving 

high pixel density and high aperture ratio. 

Furthermore, taking advantage of the simple laser dry mask patterning process , it is possible to 

create masks after PI sheets are mounted on the TFT backplane substrate as depicted in Figure 2.2
[13]

. 

This technique is named the in-situ shadow mask patterning technique since PI shadow masks are 

patterned in-situ on the substrates. This in-situ shadow mask patterning technique can be expected to 

offer further accuracy advantages, since the slits are created by laser over the desired TFT locations 

directly and thus eliminates the need for a subsequent mechanical alignment step. This approach is 

particularly useful for pixel patterning on flexible substrates where the poor mechanical and 

dimensional stability of substrates pose additional challenges for aligning shadow masks accurately.  
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Figure 2.1 Comparison between the conventional patterning technique using FMMs and the patterning technique 

using laser-patterned PI sheet shadow masks.  

 

 

Figure 2.2 General scheme for RGB OLED display fabrication using the in-situ shadow mask patterning 

technique.  
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2.1.2 Technique 2: Color patterning via diffusion of a luminescent material  

In addition to the laser-patterned PI mask technique, another technique that utilizes diffusion as a 

way to introduce luminescent materials in order to achieve RGB colors is proposed. This technique is 

based on the diffusion of a luminescent material from a donor substrate into the organic host material 

layer of the OLED that is pre-coated on the backplane substrate. The use of a pre-patterned micro stamp 

as the donor substrate allows the physical contact between the two substrates to be selectively limited to 

certain areas. This in turn limits this diffusion to only certain areas of the OLED substrate (Fig. 2.3). 

This maskless color patterning method offers a significant advantage in term of patterning accuracy 

since limitations arising from using FMMs can be eliminated. Furthermore, such selective diffusion can 

also instead be done through local heating via electric currents, utilizing electrodes in the OLED 

backplane for this purpose, which eliminates the need for patterned stamps and mechanical alignment 

(Fig. 2.4). It is also possible to utilize local laser heating for selective diffusion. This technique is 

described in Appendix 1 in detail.  

 

Figure 2.3 General scheme for RGB OLED display fabrication using pre-patterned micro stamp as the donor 

substrate. 
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Figure 2.4 General scheme for the selective diffusion of a luminescent material through local heating via electric 

currents. Details of the process steps are shown in Section 5.3.  

 

2.2 Research objectives  

The main objective of this work is to provide an initial experimental assessment of these techniques 

for RGB color patterning of small molecule OLEDs. Toward this main over-arching objective, the 

specific objectives of the experimental investigations are as follows:  

 

I) Technique 1: Color patterning using laser-patterned PI masks 

1. Assessing and investigating the capacity of the laser-patterned PI sheet as a shadow mask 

2. Examining the effect of contact of organic layer with a PI sheet on device performance  

3. Demonstrating RGB OLEDs with very small feature sizes (<25 µm) fabricated side-by-side on one 

substrate using the laser-patterned PI mask technique 

4. Investigating the effect of laser ablation of PI sheets in-situ on an electrode on device performance 

5. Investigating the effect of laser ablation of PI sheet in-situ on an electrode with a protective layer 

on device performance 

6. Demonstrating RGB OLEDs with very small feature sizes (<25 µm) fabricated side-by-side on one 

substrate using the in-situ shadow mask patterning technique 
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II) Technique 2: Color patterning via diffusion of a luminescent material 

1. Assessing the effectiveness of physical contact between a donor and an acceptor substrate in 

bringing about sufficiently high doping levels via diffusion 

2. Examining electroluminescence (EL) characteristics of devices fabricated using this technique 

3. Demonstrating RGB color patterning by selective diffusion of a luminescent material 

4. Discussing possible issues and solutions for them 

5. Theoretically estimating luminescent material concentration profile 

 

2.3 General Methodology 

In this work, the investigation is primarily performed experimentally. The experimental study 

basically follows a part of the actual procedure for the proposed techniques. Such a study therefore 

helps us discover unexpected issues during the procedure. In addition, successfully demonstrating the 

use of these techniques can be strong evidence that the approach is technically feasible, and allows for 

expected and unexpected issues to be properly addressed.  

In many of the experiments performed in this work, OLED materials including Alq3, NPB, 

4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 

2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H, H,11H-10-(2-benzothiazolyl)quinolizino[9,9a,1gh]coumarin 

(C545T) are used as an emission layer(EML)/ETL, HTL, red dopant and green dopant, respectively. All 

these materials are typical fluorescent materials that are intensively studied in the field of OLEDs. The 

use of such typical materials is suitable for the first proof-of-concept study of the novel techniques. In 

addition, though luminescence efficiency of fluorescent materials is generally lower than that of 

phosphorescent materials, fluorescent materials have higher performance in term of stability. High 

stability is desirable for the experiments in this study because some experiments need to be performed 

in the ambient air, which can cause degradation of devices. Another reason for using these materials in 

this work is price. Because these are very common and mass produced materials, the price is much 
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lower than that of other materials such as phosphorescent materials. Vacuum deposition, which is 

conventionally employed for OLED display fabrication, will be used to deposit these materials. Because 

precise thickness control and high film uniformity are relatively easily achieved by vacuum deposition, 

this method promises a high level of reliability, enough to reproduce experimental results.  

Device performance of OLEDs is typically evaluated in term of efficiency, stability and emission 

color. Therefore, in order to investigate the effect of the use of the proposed techniques on device 

performance, current versus voltage (J-V) and luminance versus voltage (L-V) characteristics, EL 

spectrum, and EL and Vd stability measurement of devices fabricated through these techniques are 

measured. Emission uniformity and dark spot formation also need to be monitored to investigate effects 

on devices. In this case, EL images of devices are captured by optical microscope. Capabilities of 

shadow masks can be evaluated by thickness and dimensional uniformity of films deposited through the 

mask. Atomic force microscopy (AFM) is used as it has the ability to measure thickness profile with the 

vertical resolution limit of less than 1nm, which is small enough to measure typical organic layer 

thicknesses used in OLEDs. Detailed approaches for each experiment are given in each experimental 

section. 
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Chapter 3 

Experimental Procedure  

 

This chapter describes experimental procedures generally used in this research. To be more specific, 

procedures for substrate preparation, OLED device fabrication, and typical device characterization 

methods are shown in this chapter. Detailed approaches for each experiment are provided.  

 

3.1 Substrate preparation and OLED device fabrication 

The standard bottom emitting OLED devices are usually grown on ITO pre-coated glass substrates 

by thermal vacuum deposition. Before material deposition, the ITO coated glass substrate is 

ultrasonically cleaned in acetone solution and then rubbed with a cotton swab to remove contaminants 

on the surface. The substrates are again ultrasonically cleaned in isopropyl alcohol (IPA) solution, 

followed by drying on a hot plate at 100 °C.  

After cleaning, the substrates are loaded in the vacuum chamber of a thermal deposition system 

from EvoVac Deposition System. Figure 3.1 presents the photo of the inside of the chamber. There are 

several resistance heating evaporation sources on the bottom floor of the chamber, which enable 

multilayer deposition and co-deposition of several materials. The substrate is placed on a substrate 

holder located ~30 cm above the evaporation sources, to ensure film thickness uniformity. The base 

pressure of the chamber is kept below ~5×10
-6

 Torr, where organic materials are sublimated at 

100-500 °C. Organic materials loaded in the evaporation sources are heated to their sublimation 

temperature by resistive heating, and sublimed materials are then deposited on the substrate at a 

nominal deposition rate of 0.2-3 nm/s. The deposition rate is measured by crystal quartz sensors.  

Figure 3.2 presents an example of the architecture of standard bottom emitting OLEDs fabricated 

on an ITO coated glass substrate. In this substrate design, organic layers are deposited on the middle 

five ITO strips, and a metal cathode bridge is deposited across these middle five strips. When voltage is 
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applied between the ITO anode and the metal cathode, EL is observed from the bottom of the substrate 

through the transparent glass substrate.    

 

 

 

 

 

 

 

Figure 3.1. Photograph of the inside of the vacuum chamber. 

 

Figure 3.2. Typical architecture of the standard bottom emitting OLEDs. 

 

3.2 Device characterization 

Device performance testing includes measurement of PL and EL spectrum, J-V and L-V, and EL 

and voltage stability. PL spectrum of OLED materials is measured by a spectrophotometer upon certain 

wavelength light irradiation produced by a monochromator. EL spectrum of devices is measured by a 
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spectrophotometer at the current density of 20 mA/cm
2
. J-V and L-V characteristics of completed 

OLED devices are measured by using a photometer and a digital voltmeter. For testing the stability of 

OLED devices, EL intensity and driving voltage (Vd) of devices driven by an alternating current with a 

50% duty cycle are periodically recorded in a dry nitrogen condition.  
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Chapter 4 

Technique 1: Color Patterning Using a Laser-Patterned PI shadow mask  

 

This chapter describes a series of investigations on assessing the technical feasibility and potential of 

the color patterning technique using laser-patterned PI shadow masks. This chapter is divided into two 

sections. The first section (Section 4.1) describes investigations of the color patterning using PI shadow 

masks which are patterned ex-situ off substrate. This section consists of three subsections, each of 

which describes one of the investigations with an introduction, a description of the experimental 

procedure, and a discussion of its results. Subsection 4.1.1 assesses and investigates the capacity of the 

laser-patterned PI sheet as a shadow mask. Subsection 4.1.2 examines the effect of contact of an organic 

layer with a PI sheet on device performance. Subsection 4.1.3 demonstrates RGB OLEDs with very 

small feature sizes (<25 µm) fabricated side-by-side on one substrate using the patterning technique. 

The second section (Section 4.2) shows investigations on the variant technique using PI sheets which 

are patterned in-situ on substrates. This section also contains three subsections. Subsection 4.2.1 

investigates the effect of laser ablation of PI sheets in-situ on an electrode on device performance. 

Subsection 4.2.2 investigates the effect of laser ablation of PI sheet in-situ on an electrode with a 

protective layer on device performance. Subsection 4.2.3 demonstrates RGB OLEDs with very small 

feature sizes (<25 µm) fabricated side-by-side on one substrate using the in-situ shadow mask 

patterning technique.  

Material in this chapter has been published before. More specifically, material in Subsections 4.1.1, 

4.1.2, 4.1.3 and 4.2.3 was published in [Y. Kajiyama, K. Joseph, K. Kajiyama, S. Kudo, and H. Aziz, 

“Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned 

polyimide shadow masks,” Appl. Phys. Lett., 104(5), 053303 (2014)], and material in Subsections 4.2.1 

and 4.2.2 was published in [Y. Kajiyama, K. Joseph, K. Kajiyama, S. Kudo, and H. Aziz, “Recent 

progress on the vacuum deposition of OLEDs with feature sizes ≤ 20 µm using a contact shadow mask 
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patterned in-situ by laser ablation,” Proc. SPIE, 8829, 882919 (2013)]. Publisher’s permission to 

reproduce this material in this thesis has been obtained. 

 

4.1 Color patterning using PI shadow masks patterned ex-situ off substrate  

Several experiments are performed for the purpose of investigating technical feasibility of the 

laser-patterned PI mask technique. In order to show the capability of the laser-patterned PI sheet as a 

shadow mask, dimensional uniformity and edge shadow effects of an OLED material deposited through 

the laser-patterned PI sheet is investigated by AFM. Device performance of OLEDs with PI sheets in 

direct contact is examined to investigate the effect of direct application of the PI sheets on device 

performance. Finally, RGB OLEDs are fabricated side-by-side on one substrate using this technique. 

4.1.1 Assessing and investigating the capability of the laser-pattered PI sheet as a shadow 

mask 

Introduction 

 Conventionally, FMMs are patterned by a wet process such as chemical etching or electro 

deposition. However, poor patterning accuracy of these methods limits dimensional uniformity of 

masks leading to non-uniform slit width varying by ±10 µm
 [5][21][22]

. As an alternative, use of patterned 

polymer sheets as contact shadow masks has been suggested
[59][60]

. These masks are patterned by direct 

laser ablation of polymer sheets or spin coating of polymer materials on pre-patterned molds, which 

makes precise patterning of masks possible with ~5 µm feature sizes. In addition to the precise mask 

patterning, limited shadow effects is another advantage of the use of polymer shadow masks. Because 

these polymer shadow masks can be applied directly on substrates without damaging the underlying 

metal or organic thin layers, edge shadow effects due to the gap between substrates and shadow masks 

can be minimized. Because of these advantageous properties of polymer sheets as shadow masks, they 

are expected to be useful alternatives for FMMs.  
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In this experiment, in order to assess and confirm these properties of PI sheets as shadow masks, 

dimensional uniformity and shadow effects of an OLED film deposited through a PI sheet patterned by 

laser ablation is investigated by AFM. 

Experimental Procedure 

 In order to examine the capability of laser-patterned PI sheets as shadow masks for vacuum 

deposition of OLED materials, the thickness profile of an organic film deposited on a glass substrate 

through slits of the laser-patterned PI sheet is investigated by AFM. The laser used for ablation is 

266nm neodymium-doped yttrium aluminum garnet (Nd:YAG) solid-state laser from a Callisto VL-C30 

Laser System. Figure 4.1 shows the configuration of the laser system including a focusing unit and a 

scanning stage. The laser light emitted from the laser generator passing through a 0.5×3 mm optical slit 

is collected by a ×20 magnification UV lens. The collected laser light is then focused on the surface of a 

7.5 µm thick PI sheet by using Uranus Auto Focusing Unit with the focused beam size of 25 ×150 µm. 

25 µm wide slits can be created on the PI sheet by scanning the laser beam at an energy density and 

scanning speed of 1 J/cm
2
 and 60 µm/s, respectively. The laser-patterned PI sheet is then applied on a 

glass substrate, and a 140 nm thin layer of Alq3 is deposited through the 25 µm wide slits. The 

deposited Alq3 film is then analyzed by AFM.  
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Figure 4.1. Schematic presentation for the laser system. 

 

Results and discussion 

As can be seen from the 3D AFM image of the deposited material (Fig. 4.2(a)), the side walls of 

140 nm Alq3 film deposited through this shadow mask are quite uniform. The uniform side walls 

suggest that the laser patterned PI sheet shadow mask can function as a shadow mask without clogging 

or significant shadow effects near the edges. In addition, the high uniformity of the organic thin film 

edges confirms the ability of laser ablation to create slits in PI films with very high edge uniformity. 

The cross section view of the deposited material also tells us that shadow effects by the PI shadow mask 

edges are rather limited (Fig. 4.2(b)), evident in the almost vertical side walls. In conclusion, the high 

dimensional uniformity and the negligible edge shadow effects confirmed by this experiment verify that 

the laser patterned PI sheets indeed outperform conventional FMMs.  
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Figure 4.2. (a) 3D AFM image and (b) cross section view of an Alq3 layer (~140nm thick) deposited through a 

laser patterned PI shadow mask with 25 µm wide slits. 

 

4.1.2 Device Performance: examining the effect of contact of an organic layer with a PI sheet  

Introduction 

In the laser-patterned PI mask technique, the patterned PI sheets are directly applied on 

pre-deposited organic layers. Because the van der Waals bonding force of small molecule OLED 

materials is very weak, and because the material is susceptible to exposure to aggressive gasses such as 

moisture or oxygen, there is the possibility that direct contact with the PI sheet could compromise 

OLED device performance
[47][48][61][62][63]

. Specifically, one such possible adverse effect is dark spot 

formation. Dark spots could be formed because of structural defects which can be produced through 

friction between the PI sheet and organic layers. Dark spots could also form when moisture absorbs in 

the PI sheet, as exposure to moisture induces morphological change in organic films and/or gas 

evolution, leading to structural defects in cathode.  

Efficiency and stability of devices may also be compromised through direct contact with PI; 

particles left by the PI sheets and/or byproducts produced through chemical failure due to moisture and 

oxygen in PI sheets could act as luminescence quenchers and/or charge trapping sites. Tests were 
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conducted to investigate whether direct contact of organic films could cause these adverse effects, dark 

spot formation, J-V and L-V characteristics, and device stability of OLED devices.   

Experimental Procedure 

 Figure 4.3 presents the procedure for this experiment. In this experiment, PI sheets are first applied 

for an extended period of time (50 hours), in a dry N2 atmosphere, on ITO glass substrates on which 

NPB(60 nm)/Alq3(40 nm) bilayer organic stacks were coated. Such long contact times are used to 

ensure that any adverse effects on the organic layers from physical contact with PI sheets become 

significant and that they will well surpass what may occur from the much shorter contact times during 

device fabrication procedure. The PI sheets are then removed, and lithium fluoride (LiF)/Al cathode 

layers are deposited. For comparison, other devices which were fabricated through the same procedure, 

including storing for 50 hours in N2 before depositing the cathodes, without being in contact with PI 

sheets in this case, are tested to be used as control devices. 

 

 

 

 

 

Results and Discussion 

Figure 4.4 presents typical J-V and L-V characteristics and EL stability trends (at a constant current 

density of 20 mA/cm
2
) for devices in which the organic layers were put in physical contact with the PI 

film for 50 hours (denoted by “PI” in the figure labels) and the control devices (denoted by “Control”). 

Clearly, the contact with PI has no detectable adverse effect on device efficiency or EL stability over a 

period of 100 hours. Similarly, a comparative analysis of the dark spot growth behavior in the 

non-encapsulated devices after 50 hours shows no significant differences between the two devices, as 

can be seen from the EL images (Fig. 4.5) and the corresponding image analysis statistical data (Table 

Figure 4.3 Procedure for the experiment on effects of contact of an organic layer with PI. 
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4.1). These results confirm that the contact of the organic materials with PI sheets does not compromise 

OLED performance. 

 

 

Figure 4.4 (a) J-V and L-V characteristics and (b) normalized EL intensity and driving voltage under constant 

current density of 20 mA/cm2 for devices in which the organic layers are put in contact with PI 

sheets for 50 hours and control devices.  

 

 

Figure 4.5. EL images of (a) unencapsulated devices in which the organic layers are put in contact with PI sheets 

for 50 hours and (b) control devices which are kept in a dry nitrogen condition. 
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 Contact with PI Control 

% of dark area (%) 1.2% 0.97% 

Dark spot diameter(µm) ~5 µm ~6 µm 

Table 4.1 Percentage of dark spot area of the total emitting area and average dark spot diameter of the             

devices in which the organic layers are put in contact with PI sheets for 50 hours and control devices.  

 

4.1.3 Demonstrating RGB OLEDs with small feature sizes (<25 µm) fabricated side-by-side 

on one substrate  

Introduction 

 To further verify the feasibility and potential to achieve high resolution pixel patterning, RGB 

OLEDs with small feature sizes (<25 µm) are fabricated side-by-side on one substrate through this 

technique. In this demonstration, a PI sheet is first stretched and held on a metal frame, and then 

patterned by laser ablation. While post-patterning deformation can occur in FMMs due to this stretching 

step, it does not happen in this technique since the PI sheet is patterned after being held by a metal 

holder. Considering the limited shadow effects and high dimensional uniformity of the laser-patterned 

PI sheet, higher accuracy can be expected in color patterning by this method. 

Experimental Procedure 

In this experiment, a 7.5 µm thick PI sheet is first stretched and mounted on a metal frame, and then 

patterned by laser ablation to create 25 µm wide slits in a regular pattern with a pitch of 75 µm using 

266 nm Nd:YAG laser at an energy density of 1 J/cm
2
 as illustrated in Figure 4.6 (i) and (ii) 

respectively. The patterned film is then used as a shadow mask for depositing red and green OLEDs in 

sequence on an ITO-coated glass substrate via thermal evaporation in vacuum following the steps 

illustrated in Figures 4.6 (iii) through (iv). The OLEDs employ molybdenum trioxide (MoO3) as a hole 

injection layer (HIL), NPB as a HTL, DCJTB as a red dopant, C545T as a green dopant, 

2-tert-butyl-9,10-di(naphth-2-yl)anthracene (TBADN) as a blue EML and host, and Alq3 as an ETL. 
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The patterned PI shadow mask is placed directly on the substrate (on which the HIL (~3nm) and HTL 

(~60 nm) were already pre-deposited). A 5 nm red EML of TBADN doped with 2% DCJTB is then 

deposited on the pre-deposited layers through the mask. The mask is shifted by 25 µm from the initial 

position, and a 5 nm green EML of TBADN doped with 2% C545T is deposited. The shadow mask is 

removed, and a 20 nm blue EML of TBADN is applied, followed by the deposition of a 20 nm Alq3 and 

LiF/Al to serve as a common ETL and electron injection layer(EIL)/cathode, respectively. 

 

Figure 4.6. Procedure for RGB OLED fabrication using a pre-patterned PI sheet. 

 

Results and discussion 

Figure 4.7 shows microscopic EL images of the fabricated devices. As can be seen, red and green 

25 µm wide lines with high positional accuracy on a blue background are formed producing a uniform 

pattern with a 75 µm pitch. As expected, high dimensional uniformity and remarkably straight edges of 

the patterned lines are achieved, indicating that the laser patterned PI sheet functions as a shadow mask 

without any significant deformation or edge shadow effects. In addition, as shown in the previous 

experiment, the high EL uniformity and negligible visible defects from the red lines (the EMLs of 

which were in physical contact with the PI mask during step (iv) of Figure 4.6), indicate that contact 
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with the PI sheet does not cause significant damage or degradation in device performance, even when 

the organic layers are very thin (a ~5 nm EML in this case).  

These results demonstrate the strong potential of this technique to fabricate OLEDs with small 

feature sizes and high dimensional and positional accuracy on substrates. For example, the 

demonstrated pixel pitch of 75 µm corresponds to a display resolution of over 330 ppi, which indicates 

that the technique is indeed capable of realizing the fabrication of high resolution OLED displays 

through simple vacuum deposition processes. It should be also noted that the demonstrated pitch of 75 

µm is by no means a limit, and that achieving even smaller pitches should be readily possible given the 

high positional accuracies and by the fact that making much narrower slits in PI films can be readily 

achieved via laser ablation
[14][15]

. In addition, because of the thin PI masks and the ability to place them 

directly on the substrates without causing damage due to contact, this technique is capable of 

minimizing edge shadow effects (discussed in more detail below) and thus also the need for large 

inter-pixel distances, allowing almost 100% aperture ratios. 

 

 

Figure 4.7. EL images of OLEDs fabricated by the procedure in Fig.4.6. 
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4.1.4 Conclusions 

As a part of the feasibility study for the laser-patterned PI mask technique, capability of the plastic 

film mask as a shadow mask and the effect of contact of organic layers with a PI sheet on device 

performance have been investigated. The conclusions of this study are summarized as follows:  

 The laser-patterned PI sheets have the strong capability to deposit OLED materials with high line 

edge uniformity and limited shadow effects without compromising device performance 

 The contact of the organic materials with PI sheets does not compromise OLED performance 

 This technique has the potential to realize OLED displays with high resolution (>330 ppi) and 

higher aperture ratios (~100% ) relative to the current FMM technology 

 

4.2 In-situ Shadow Mask Patterning Technique 

As a derivative of the patterning technique using laser-patterned PI shadow masks, the in-situ 

shadow mask patterning method is proposed for higher resolution and precise pixel patterning on 

flexible substrates. Since the slits are created by laser over the desired TFT locations directly in this 

technique, mechanical alignment of masks can be eliminated, thus higher patterning accuracy can be 

achieved. This approach can be particularly useful for RGB OLED patterning on flexible substrates 

where the poor mechanical and dimensional stability of substrates pose additional challenges for 

aligning shadow masks accurately.  

The first two experiments focus on the effect of the laser patterning process on device performance 

since the in-situ laser process on a substrate could cause adverse effects on an electrode. In the first 

experiment, an OLED device is fabricated on an aluminum electrode where the PI sheet is patterned by 

laser ablation to investigate the effect of the patterning process on the aluminum electrode. The result of 

this experiment reveals that the patterning process causes significant contamination to the electrode 

because of residual contaminants of ablated films. To protect the electrode during laser ablation, a 

protective layer of PI is introduced beneath the top PI sheet, which will be patterned as a shadow mask 
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in the second experiment. Using the sacrificial protective layer of another PI sheet, a working OLED 

device with 16 µm by 130 µm sub-pixel size and with reasonable J-V characteristics has been 

successfully fabricated by the in-situ shadow mask patterning technique. Having verified that the in-situ 

shadow mask patterning step does not have adverse effects on the performance of OLEDs, RGB 

OLEDs with small feature sizes are fabricated using the in-situ shadow mask patterning technique.   

4.2.1 Device Performance : Investigating the effect of laser patterning of PI sheets in-situ on 

an electrode  

 Introduction 

Since the PI sheet is patterned by laser ablation in-situ on an electrode using the in-situ shadow 

mask patterning technique, there is the possibility that the surface of the electrode can be affected by the 

laser ablation process. To be specific, the electrodes can be contaminated by the residue of the PI sheet 

produced in the laser ablation process and/or the electrode surface can be oxidized due to laser exposure, 

which results in hindering carrier injection. This study, therefore, is conducted to investigate the effect 

of patterning of PI in-situ on substrate on an electrode, and to evaluate the performance of the device.  

Experimental Procedure 

To investigate the effect of the mask patterning process by laser ablation on the bottom electrode, 

an OLED device is fabricated on an aluminum electrode where a 12.5 µm thick PI sheet is patterned by 

laser ablation (Fig. 4.8). In this experiment, the PI sheet mounted on a 300 nm thick aluminum electrode 

is ablated by means of a 266 nm Nd:YAG laser with a beam size of 25 µm by 150 µm to create an 

opening on the PI sheet. The ablation process is done in two steps with different laser energy densities 

to reduce damage to the electrode. The PI sheet is first partially etched using a 0.4 J/cm
2
 laser power 

density, and then the laser intensity is reduced to 0.2 J/cm
2
 for the last stage of the ablation process. 

After the patterning process, the PI sheet is removed, and an OLED device with a transparent cathode is 

fabricated on the electrode. The device structure used is as follows: Al (300nm)/MoO3/NPB 

(60nm)/Alq3 (40nm)/ 4,7-Diphenyl-1,10-phenanthroline (Bphen) : Cesium carbonate (Cs2Co3) (10%, 
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10nm)/MoO3 (5nm)/Ag (14nm)/MoO3 (40nm). The EL of the fabricated device is then observed by 

optical microscopy. 

 

Figure 4.8 Schematic presentation for OLED device fabrication on the electrode where the PI sheet is patterned 

by laser ablation. 

 

Results and discussion 

As can be seen in Figure 4.9 (b), there is a widespread non-emissive section around the laser 

exposed area in the EL of the device which is fabricated on the electrode where the PI sheet is patterned. 

This is caused by either decreased electrical contact or decreased carrier injection because of the ablated 

film left on the electrode. In fact, significant contamination is observed around the laser exposed area on 

the electrode as shown in the microscopic image of the electrode (Fig. 4.9 (a)). In contrast, it seems that 

the middle laser exposed area is less affected, as the contaminants from the PI sheet initially left on the 

electrode are removed by further laser exposure, making the middle area cleaner. From this result, it can 

be said that although it might be possible to pattern a single sub-pixel with less than 25 µm feature sizes 

by this technique, it is difficult to achieve three color pixel patterning. The patterning process would 

significantly affect neighbor sub-pixels because of widespread contaminants from the PI sheet. 
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Figure 4.9 The electrode where the PI sheet is patterned (a) and EL of the fabricated device (b). 

 

4.2.2 Device Performance (II): Investigating the effect of laser patterning of a PI sheet in-situ 

on an electrode with a protective layer 

Introduction 

It has been shown that the laser ablation process causes significant detrimental effects on an 

electrode. Therefore, a protective layer of a second PI sheet is introduced beneath the top PI sheet, 

which will be patterned as a shadow mask, protecting the electrode during laser ablation.   

Experimental Procedure 

In this experiment, a protective layer of another PI sheet is introduced to prevent the electrode from 

being contaminated with the ablated film during the laser ablation process. To demonstrate the technical 

feasibility of this modified approach, the standard Alq3 bilayer OLED device is fabricated on a 16 µm 

by 130 µm sub-pixel size electrode by the in-situ shadow mask patterning technique using the 

protective layer. The sub-pixel size electrode is the ITO coated glass substrate where silicon nitride 

(SiNx) thin film is patterned on the ITO like the actual sub-pixel of the TFT substrate as shown in 

Figure 4.10. This sub-pixel size electrode is introduced in this experiment for two purposes: to 

investigate the effect of use of the in-situ shadow mask patterning on electrical property or J-V 
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characteristics of devices, and to investigate how accurately material can be deposited on a desired 

location. For the sub-pixel size electrode preparation, a 100 nm thick SiNx thin layer is first deposited 

on the ITO coated glass substrate via PECVD using silane and ammonium gases. The deposited SiNx 

layer is then patterned by using the standard photolithographic technique: photoresist (AZ3312) spin 

coating at 3000 rpm for 60 seconds and prebaking on a hot plate at 90 °C for 60 seconds, UV exposure 

through a photo mask for 5 seconds and post-baking at 120 °C for 60 seconds, developed (AZ300MIF) 

for 30 seconds, wet etching using buffered hydrogen fluoride (BHF) for 10 seconds, and photoresist 

stripping using acetone.   

Figure 4.11 depicts the procedure of the sub-pixel size OLED fabrication using the in-situ shadow 

mask patterning technique. A two sheet stack of 7.5 µm PI sheets are mounted on the sub-pixel size 

electrode, and only the top PI sheet will be etched by 266 nm Nd:YAG laser at 1 mJ/cm
2
 to create the 

desired aperture. The beam size of the laser is 25 µm by 150 µm, and the laser head is aligned over the 

sub-pixel size electrode by the positioning stage. After etching of the top sheet, the lower PI sheet, 

which acts only as a protective (or “sacrificial”) layer for protecting electrode during the laser ablation 

step, is removed by being physically pulled out, and the top patterned PI sheet is brought in contact.  

 

 

Figure 4.10 Schematic presentation for the ITO coated glass substrate where the SiNx layer is patterned. 
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Figure 4.11 Schematic presentation for the patterning of the sub-pixel size OLED device using the in-situ shadow 

mask patterning technique.  

 

Results and discussion 

While the electrode is significantly contaminated due to the patterning process in the previous 

experiment, the patterning of the PI sheet in this experiment is successfully achieved without any 

contamination of the electrode because of the introduction of the protective layer (Fig. 4.12(b)). The 

result of this experiment also shows the accuracy of patterning achieved by this technique. As can be 

seen in Figure 4.12(a), the aperture of the PI film shadow mask is precisely created over the sub-pixel, 

and OLED materials are deposited with the width of ~25 µm on the 16 µm wide sub-pixel. In addition, 

the patterning technique does not compromise device performance as indicated by the uniform EL and 

the reasonable J-V characteristics, which is on par with that of the device fabricated on the same 

sub-pixel structure without shadow masks (Fig. 4.12(c)) (Fig. 4.13). Thus, these results show that the 

in-situ shadow mask patterning technique has a great potential to achieve high resolution patterning of 

OLEDs without compromising device performance. 
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Figure 4.12 Microscopic images of (a) patterned PI sheet over the sub-pixel, (b) deposited materials on the 

electrode, and (c) EL of the patterned device. 

 

 
Figure 4.13 J-V characteristics of the fabricated device.  
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4.2.3 Demonstrating RGB OLEDs with very small feature sizes (<25 µm) fabricated 

side-by-side on one substrate  

 Introduction 

Having verified that the in-situ shadow mask patterning step does not have any adverse effects on 

performance of OLEDs, RGB OLEDs with small feature sizes are fabricated by using the in-situ 

shadow mask patterning technique as previously demonstrated in RGB OLED fabrication by using the 

PI shadow masks patterned using laser ablation ex-situ. 

Experimental Procedure 

As the in-situ shadow mask patterning technique does not compromise device performance, 

demonstration of RGB OLEDs fabrication using this technique has been conducted as depicted in 

Figure 4.14. In this procedure, 25 µm wide green EML lines of TBADN doped with 2% C545T are first 

deposited on glass substrates pre-coated with ITO, HIL and HTL, again using a pre-patterned PI 

shadow mask to produce a pattern with 75 µm pitch. A two sheet stack of 7.5 µm PI sheets is placed on 

the substrate. The top PI sheet is then laser-exposed to create 25 µm wide slits while the bottom PI sheet 

of the stack serves as a shield to protect the underlying organic layers and the substrate from 

contamination by the debris from the ablation process. The bottom sheet is removed after the laser 

ablation step is completed, allowing the now patterned PI sheet to be brought in direct physical contact 

with the substrate (step (iii) in Fig. 4.14). A red EML of TBADN doped with 2% DCJTB is then 

deposited through the patterned PI sheet. Finally, the PI sheet shadow mask is removed, and the blue 

EML, ETL, and cathode layers are deposited. 
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Figure 4.14 Procedure for RGB OLED fabrication using a PI sheet patterned in-situ on the substrate. 

 

Results and discussion 

Figure 4.15 presents a microscopic EL image of the OLEDs produced by this technique. As can be 

seen, 25 µm wide red and green emitting lines with good EL uniformity are obtained, and the red 

emitting lines are positioned accurately next to the green lines, which again demonstrate the ability of 

this technique to achieve RGB patterning at the level of accuracy required for high resolution displays 

(i.e. 330 ppi). Furthermore, the laser ablation step for creating the slits in the PI sheet is in this case 

carried out in-situ while the sheet is already mounted on the substrate (and more precisely on the HTL 

of the red emitting lines, as shown in Figure 4.14 (ii)). Nevertheless, EL from the red emitting lines is 

clearly uniform. This uniform emission verifies that the in-situ laser patterning process does not 

adversely affect the organic layers or device performance. Here too, EL from the green lines is also 

clearly uniform, which again shows that placing the PI film on the substrate in direct physical contact 

with the underlying organic layers does not result in any significant damage to them. 

A close examination however reveals that some dark spots appear on the devices. This is perhaps 

due to ablation debris from some limited unintentional ablation of the bottom protective PI sheet which 

is left on the back side of the top sheet after the lower sheet is removed. This contamination issue could 
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be avoided by replacing the bottom protective PI sheet with any other thin sheet which is resistant to 

laser ablation, such as a thin glass sheet.  

As demonstrated in this experiment, the in-situ shadow mask patterning technique enables us to 

pattern OLEDs precisely without compromising device performance. The slits can be created anywhere 

in the top PI sheet by laser ablation to correspond to locations of certain features on the underlying TFT 

substrate. This technique has a strong potential to achieve high resolution OLED displays even on 

flexible substrates. 

 

 

Figure 4.15 EL images of OLEDs fabricated by the procedure in Fig.4.14. 

 

4.2.4 Conclusions 

The effect of patterning of PI in-situ on an electrode by laser ablation on device performance has 

been investigated in this chapter. The conclusions of this study are summarized as follows:  

 The mask patterning process by laser ablation in-situ on the substrate causes significant 

contamination of the electrode 
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 The contamination can be avoided by introducing the sacrificial protective layer of another PI sheet 

to protect the electrode during laser ablation, allowing to pattern shadow masks in-situ on the 

substrate without compromising device performance 

 This technique has a strong potential to achieve high performance OLED displays with high 

resolution (>330 ppi) and high fill factor (~100%) even on flexible substrates 
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Chapter 5 

Technique 2: Color Patterning via Diffusion of a Luminescent Material 

 

This chapter describes a series of investigations to assess technical feasibility and potential of the color 

patterning technique via diffusion of a luminescent material for full color small molecule OLED 

displays. The chapter consists of six sections. The first three sections show the main results of this study. 

Section 5.1 assesses the effectiveness of physical contact between a donor and an acceptor substrate in 

bringing about sufficiently high doping levels via diffusion. Section 5.2 examines electroluminescence 

characteristics of devices fabricated using this technique. Section 5.3 demonstrates RGB color 

patterning by selective diffusion of a luminescent material. Possible issues and solutions are then 

discussed in the following two sections. Section 5.4 assesses the potential of solvent vapor exposure as 

a method to accelerate solid state diffusion. Section 5.5 assesses the potential of a semiconducting 

diffusion barrier as a method to block undesirable diffusion. Finally, Section 5.6 provides a brief 

theoretical analysis of the concentration profile achieved by the doping method via diffusion.  

 Material in this chapter has been published before: more specifically, material in Sections 5.1, 

5.2, 5.3 and 5.4 was published in [Y. Kajiyama, K. Kajiyama, and H. Aziz, "Maskless RGB color 

patterning of vacuum-deposited small molecule OLED displays by diffusion of luminescent dopant 

molecules," Opt. Express, 23, 16650-16661 (2015)]. Material in Sections 5.5 was published in [Y. 

Kajiyama, K. Kajiyama, and H. Aziz, " Diffusion Barriers for Achieving Controlled Concentrations of 

Luminescent Dopants via Diffusion for Mask-less RGB Color Patterning of Organic Light Emitting 

Devices," Opt. Express, 23, 30783-30792 (2015)]. Publisher’s permission to reproduce this material in 

this thesis has been obtained. 
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5.1 Assessing the effectiveness of physical contact between a donor and acceptor substrate to 

achieve sufficiently high doping levels via diffusion  

Introduction 

The maskless color patterning technique via diffusion of a luminescent material has great potential 

to be a more reliable alternative to the FMM technique. Nevertheless, this color patterning approach has 

to date been limited to polymer OLEDs
[28][29][30][31][64]

. Its utilization for RGB color patterning of small 

molecule OLEDs, due to their superior electroluminescence performance are currently the mainstream 

technology for OLED displays, has not been reported. This is perhaps because of several perceived 

difficulties in extending the approach to small molecule OLEDs. For example, relative to polymers, 

vacuum-deposited organic small molecule materials form denser thin films, so they can be expected to 

be less amenable to significant doping by diffusion through a solid state contact. In addition, small 

molecule materials have lower mechanical yield strength, which makes them more susceptible to 

damage by physical contact with the donor substrate.  

There are some reports on molecular diffusion in small molecule OLEDs. For example, 

improvement in device performance of bilayer small molecule OLEDs due to thermal annealing  

around or below the material’s Tg has been reported
[65]

. The improvement of device performance can be 

attributed to the mixing of the materials due to molecular diffusion, which results in elimination of 

heterointerface. Further direct evidence of molecular diffusion has been shown by molecular depth 

profiling of an annealed NPB/Alq3 bilayer OLED device using secondary ion mass spectrometry with 

large argon cluster ion beams
[66]

.  

However, although these results indicate significant molecular diffusion could occur in organic 

layers, in the proposed diffusion-based techniques, luminescent material molecules need to be diffused 

into a host layer via physical contact between these two layers. Diffusion via physical contact could be 

more challenging because of non-uniform contact and less inter-molecule interaction between two 

layers. Therefore, the present study is performed to investigate whether diffusion of luminescent 
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material molecules from a donor to an acceptor film on separate substrate placed in physical contact can 

bring about the doping levels required for achieving the desired color spectra.  

Experimental Procedure 

 The purpose of this study is to confirm physical contact between a luminescent material coated on 

one substrate and an OLED host material coated on another substrate can allow for doping of the latter 

by the former to sufficient levels through solid state diffusion. Three variables including contact time, 

temperature, and material are considered in this investigation. First, dependency on contact time is 

studied, followed by similar investigations taking temperature and material as variables.     

 In this test, the amount of luminescent material molecules introduced to the host film by diffusion is 

estimated by measuring changes in the optical absorbance of the host film after the contact. Figure 5.1 

depicts detailed experimental steps. In this experiment, NPB and DCJTB are used as the host and the 

luminescent dopant, respectively. These materials are vacuum-deposited on different substrates. 20 nm 

of NPB is deposited on a quartz substrate, which is referred as an “acceptor” substrate, and 20 nm of 

DCJTB is deposited on a glass substrate, which is referred as a “donor” substrate. After depositing the 

materials on their respective substrates, the two substrates are placed in physical contact by holding 

them together using a 5 mm thick neodymium magnet plate (remanent magnetization of 1.22-1.28 T) 

and a 2 mm thick steel plate. They are then heated on a hot plate at 100 °C for a certain period of time 

(30, 60, 90, or 105 minutes) in a dry nitrogen environment, to allow for the diffusion of DCJTB 

molecules into the NPB film to occur. In each case, one half of the NPB film surface is left without 

contact with the donor substrate, to be used as reference (this half corresponds to the right part of the 

substrate depicted in diagrams (ii) and (iii) of Figure 5.1). The donor substrate is then removed, and 

UV-Vis absorption spectra of the acceptor film are measured. 

 In addition, similar experiments are performed to investigate dependency on temperatures and 

materials. In the experiments, while the contact time is fixed at 60 minutes, variable temperatures of 60, 

80, 100 and 120 °C and variable host materials of 4,4’-N,N’-dicarbazolebiphenyl (CBP), NPB, TBADN 
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and Alq3 are used. The host materials are chosen based on Tg of these materials: CBP (Tg=60℃), NPB 

(Tg=99℃), TBADN (Tg= 126℃), and Alq3 (Tg=175℃).   

 

Figure 5.1. A schematic diagram illustrating the steps of the procedure followed for introducing luminescent 

dopant from a donor substrate to an acceptor substrate.  

 

Results and discussion 

Figure 5.2 presents the absorption spectra collected from the acceptor films contacted with the 

donor substrates for the various periods of contact time. Spectra from the “non-contacted” NPB areas 

are also included in the figures in each case for comparison. As can be seen, the host films contacted 

with the donor substrate show higher absorbance in the 450-550 nm range relative to the non-contacted 

reference films. This increase in absorbance becomes increasingly more significant with longer contact 

time. As this wavelength range corresponds to an absorption band of DCJTB (with a peak at ~510 nm), 

the increased absorbance clearly points to the presence of DCJTB molecules in the NPB as a result of 

diffusion from the donor film which, not surprisingly, is more significant with longer contact time.  

Figure 5.3(a) presents traces that correspond to the mathematical differences between the spectra from 

the contacted area versus those from the non-contacted areas, verifying that the spectral differences due 

to the contact indeed correspond to a band with a peak around 510 nm, consistent with DCJTB 

absorption.  

The height of this peak increases linearly with contact time (Fig. 5.3(b)). Since the absorbance is 

proportional to the number of DCJTB molecules in the film, the linear correlation indicates that the 

diffusion of DCJTB molecules from the donor substrate to NPB film occurs throughout the contact time 
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and proceeds at a constant rate in the time frame of our measurements (i.e. during at least the first 105 

minutes of contact). Such constant mass transfer rate is not unreasonable considering that the diffusion 

rate and the change in concentration remain relatively limited. The fact that the amount of DCJTB in the 

acceptor film increases with contact time verifies that the transfer of molecules from the donor film 

does not occur in a single mass transfer step that occurs upon contact (e.g. as in the case of contact 

printing or LITI) but rather the result of continuous molecular diffusion that continues with time. In 

Figure 5.3 (b), the absorbance at 510 nm of 5 nm NPB films doped with various DCJTB concentrations 

(from 2-16% by volume) made by co-deposition for comparison is also included (after subtracting 

absorption from NPB and substrate background). As shown in the figure, the DCJTB absorbance in the 

films contacted with the donor substrate is equivalent to that of a co-deposited film with a 2-10% 

DCJTB concentration, indicating that the number of molecules in the two cases is comparable.  

Since the typical DCJTB concentration in OLEDs made by co-deposition is 1-2%
[67]

, it follows 

from these results that the diffusion process can produce sufficient doping levels. It is worth noting that 

no significant morphological changes (based on optical microscopy examination) or changes in the 

optical absorption spectra are observed in the heated NPB films despite heating to a temperature close 

to the NPB glass transition temperature. This may be attributed to NPB resistance to crystallization even 

at 100°C
[68]

. It is also possible that the substrate temperature remains slightly lower than the hot plate 

temperature due to heat losses through the magnet and the metal plate. 
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Figure 5.2. UV-Vis absorption spectra of the acceptor host films after contact with the donor substrate for 30min 
(a), 60min (b), 90min (c) and 105min (d). The dotted traces represent spectra collected from the 
non-contacted areas for reference.  

 
Figure 5.3 (a) UV-Vis absorption spectra of the acceptor host films after contact with the donor substrate for the 

various times after subtracting the background absorption by NPB and the substrate. (b) The 
corresponding absorbance at 510 nm vs contact time (bottom axis). The absorbance of 5 nm NPB 
films doped with various DCJTB concentrations at the same wavelength after subtracting absorption 
from NPB and substrate background are shown for comparison (top axis). 
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The absorption spectra collected from the acceptor films contacted with the donor substrates for the 

various temperatures and materials at the fixed contact time of 60 minutes are presented in Figure 5.4 

with those of control films. The absorbance of the acceptor films after subtracting that of the 

corresponding control films at the DCJTB peak absorption peak wavelength of 510 nm is summarized 

in Figure 5.5. As can be seen, the absorbance significantly increases from 100°C regardless of materials. 

Considering that this temperature is fairly close to Tg of the dopant material (DCJTB), this result 

indicates that the doping level is dominantly dependent on Tg of the dopant. Not surprisingly, doping 

level also depends on Tg of the acceptor materials: doping level is higher with lower Tg of the acceptor 

material at the same temperature. For example, the absorbance at 120°C of NPB(Tg=99°C), 

TBADN(Tg=126°C), and Alq3(Tg=175°C) is ~0.05, 0.035 and 0.02, respectively. This experimental 

result indicates that proper combinations of dopant and host materials for this technique can be chosen 

based on Tg of these materials. Finally, it should be noted that the absorbance of the CBP film contacted 

with the donor substrate is lower than that of the control film at 120°C, unlike what is seen for other 

materials. This is because significant crystallization occurs in the neat CBP film, while it is less 

significant in the CBP film contacted with the donor substrate. Here, the presence of dopant molecules 

prevents the film from crystallization. 
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Figure 5.4 UV-Vis absorption spectra of the acceptor host films ((a) CBP, (b) NPB, (c) TBADN and (d) Alq3) 

after contact with the donor substrate for 60 min at (1) 60°C, (2) 80°C, (3)100°C and (4) 120°C. The 

dotted traces represent spectra collected from the non-contacted areas for reference. 
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Figure 5.5 Absorbance of the acceptor films (CBP, NPB, TBADN and Alq3) at the DCJTB peak absorption peak 

wavelength of 510 nm after contact with the donor substrate for 60min at various temperature from 

60°C to 120°C. The absorbance of the corresponding control films is subtracted.  

 

5.2 Examining electroluminescence characteristics of devices fabricated using this technique 

Introduction 

 Although the previous experiments demonstrate that a sufficient amount of luminescent material 

molecules can be transferred through solid state diffusion from a donor substrate to dope a host film on 

another substrate, achieving good device performance also having an optimal doping concentration and 

profile. While dopant concentration can be relatively well controlled in the case of conventional 

co-deposition methods, controlling the concentration and profile may be more difficult in case of 

diffusion. For example, if the diffused dopant molecules remain near the host material film surface (due, 

for example, to a limited diffusivity of the dopant into the host material bulk) one can expect the dopant 

concentration to be very high at the surface which could lead to concentration quenching effects and, as 

a result, a lower device efficiency. In contrast, if they diffuse easily across the host layer and penetrate 

deep into the charge transport layers, a high driving voltage (due to charge trapping by the dopant in the 

charge transport layers) and/or inefficient host-to-guest energy transfer (due to a lower than desired 
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dopant concentration in the host) may result. Therefore, the electroluminescence characteristics are 

compared between devices doped by this technique versus those of devices doped via the conventional 

co-deposition method. 

 

Experimental Procedure 

 The “diffused-dopant” devices are fabricated through the steps shown in Figure 5.6. First, a ~3 nm 

thick MoO3 HIL, a ~60 nm thick NPB layer that functions as both a HTL and a host are 

vacuum-deposited on an ITO coated substrate (acceptor substrate). The substrate is then placed in 

physical contact with a glass “donor substrate”, pre-coated with a ~20 nm thick layer of DCJTB using 

the same magnet plate as before, and heated to 100 °C in a dry nitrogen environment for one of various 

periods of time (15, 30, and 60 minutes). After heating, the donor substrate is removed, the acceptor 

substrate is placed in the vacuum system, and a ~40 nm thick Alq3 ETL, followed by a ~0.5 nm thick 

LiF EIL and a ~70 nm Al cathode are deposited to complete the device.  

 

 

Figure 5.6. A schematic diagram illustrating the steps of the procedure followed for fabricating OLEDs. (ii) and 

(iii) illustrate the steps of introducing the dopant via diffusion.  
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Results and discussion 

Figure 5.7 presents the EL spectra of the devices produced through the procedure in Figure 5.6.  

Spectra from reference devices with similar structure (ITO/ MoO3 (3 nm)/NPB (60-x nm)/NPB:DCJTB 

(x nm, y%)/Alq3 (40 nm)/LiF (0.5 nm)/Al (70nm) where x=0, 10, 5, 2.5 or 0.2 nm, and y=0, 2, 4, 8 or 

100%), in which the NPB:DCJTB layer is fabricated by the conventional co-deposition of NPB and 

DCJTB are also included for comparison (the dotted traces). In these reference devices different 

thicknesses are used for the doped layer in order to obtain comparable overall number of dopant 

molecules in all devices.  

As can be seen, the spectra of the reference devices demonstrate a redshift as the concentration of 

DCJTB increases. It is worth noting that this redshift is not due to aggregation of DCJTB molecules 

(based on the insignificant spectral shift in the absorption spectra of NPB films doped with various 

DCJTB concentrations (see Appendix 2)) but rather is due to a progressive decrease in contribution 

from Alq3 as DCJTB concentration increases, which makes energy transfer from the Alq3 to the DCJTB 

increasingly more efficient. As shown in Figure 5.7, the spectra of the diffused-dopant devices are 

equivalent to reference devices with 2-8% DCJTB concentration. For example, in the 30-60 minute 

diffused-dopant devices, the 540 nm Alq3 emission band is almost absent and the main DCJTB band 

has a maximum at ~620 nm, very similar to the spectral features of the 4-8% DCJTB reference devices. 

This result indicates that the two devices have very similar dopant concentrations, which indicates that 

diffusion can readily produce very similar doping levels as those produced by co-deposition.  

Also, from Figure 5.8 the J-V and L-V characteristics of the two sets of devices are similar. For 

example, the driving voltage and luminance at 20 mA/cm
2
of the diffused-dopant devices are ~6.7 V and 

200-1000 cd/m
2
 (power efficiency ~ 0.43-2.35 lm/W), comparable to the 2-8% DCJTB control devices. 

The similar device characteristics indicate that contact with the donor substrate and/or heating does not 

cause significant damage or defects to devices. However, a close examination reveals that the efficiency 

of the diffused-dopant device is slightly lower than that of the control device with the similar EL 

spectrum. For example, while the device contacted with the donor substrate for 60 minutes and the 

control device doped with 8% DCJTB have the similar EL spectrum, the power efficiency of the 
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diffused-dopant device of 0.43 lm/W is lower than that of the control device of 0.56 lm/W. This is 

likely due to non-uniform dopant concentration profile.  

Because the luminescent material is transferred to the host through physical contact with the donor 

substrate, the concentration of DCJTB is likely high at the surface of the NPB layer, causing 

concentration quenching. This non-uniform concentration profile can be overcome by using a diffusion 

barrier, which is discussed in the following section. Finally, it should be noted that the effect of thermal 

stress on the device performance is generally negligible at this temperature. In fact our experiments 

show that NPB/Alq3 devices in which the NPB layer is heated to 100 °C for 60 minutes have a 

luminance of ~800 cd/m
2
 and a driving voltage of ~6.9 V at 20 mA/cm

2
 (power efficiency of ~1.75 

lm/W). These are typical values for this device architecture despite the same thermal stress condition 

used above for deriving the diffusion. 

From these results it has been shown that doping an OLED host material by solid state diffusion 

from a donor substrate can produce optimal device performance, comparable to devices produced 

through the standard fabrication technique. The results also show that the physical contact does not 

cause significant damages to devices. The results demonstrate the technical viability and potential of the 

approach as a maskless color patterning approach. 
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Device 15min 30min 60min 

CIE (535 447) (584 402) (598 389) 

Device 0% 2% 4% 8% 100% 

CIE (365 526) (557 427) (584 404) (605 382) (622 366) 

Figure 5.7. Red, green and blue colored solid lines: EL spectra of the devices fabricated following the procedure 

in Fig. 5.6 for various contact times. Black lines: EL spectra of reference devices with 0, 2, 4, 8 and 

100% DCJTB fabricated by conventional co-deposition. Corresponding CIE coordinates of these 

devices are also included.  
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Figure 5.8. Red, green and blue colored solid lines: J-V and L-V characteristics of devices fabricated following 

the procedure in Fig. 5.6. Black lines: those of reference devices with 2, 4, 8 and 100% DCJTB 

concentration.  

5.3 Demonstrating RGB color patterning by selective diffusion of a luminescent material 

Introduction 

Next, in order to demonstrate the potential of the approach for OLED RGB color patterning, red, 

green and blue OLEDs are fabricated side-by-side on one substrate by this approach. For RGB color 

patterning, the diffusion of the luminescent material from the donor substrate needs to be limited to 

certain selected areas of the OLED host material on the acceptor substrate. Although this can generally 

be done by the use of pre-patterned donor substrates (e.g. in the form of micro stamps) or by screen 

printing that will restrict the physical contact between the two substrates to the desired areas
[29][30][31][64]

, 

local Joule heating is employed, using for that purpose the OLED ITO anodes that are already present 

on the OLED substrate, to achieve this positional selectivity of diffusion 
[28][69]

. Unlike stamping and 

screen printing where mechanical alignment between the stamp or the print screen and the substrate is 

required, this technique provides an opportunity to achieve positional selectivity without any 

mechanical alignment which makes it even simpler and capable of providing higher accuracies. In this 
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approach, the donor and acceptor substrates are already in physical contact, and heated by passing 

current through ITO anodes on the OLED backplane. This causes local heating in the desired areas only. 

Thus, dopant molecules can be selectively diffused to the desired areas of the OLED host layer on the 

backplane substrate.  

Experimental Procedure 

In this demonstration, a glass substrate on which three strips of ITO anodes are already patterned is 

used. The ITO strips will serve as anodes of red, green and blue OLEDs. The OLEDs are fabricated 

through the procedure shown in Figure 5.9. A ~3 nm MoO3 and a ~60 nm NPB are deposited on the 

entire substrate through conventional vacuum deposition (without a shadow mask) to serve as HIL and 

HTL and host, respectively, for the three devices. For color patterning, DCJTB and C545T are 

selectively doped from separate donor substrates into the NPB host layer on the acceptor substrate by 

local Joule heating using the respective ITO strips. For Joule heating, a 13V bias is applied between the 

two ends of the respective ITO anodes for 60 minutes. After the red and green doping steps are 

completed, a ~10 nm of TBADN, a ~15 nm of 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi) 

and a cathode are deposited on the entire substrate (again without a shadow mask). The TBADN layer 

functions as a blue emission layer (EML) for the blue device, whereas the TPBi layer functions as an 

ETL for all the three devices. 
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Figure 5.9 A schematic diagram illustrating the steps of the procedure followed for fabricating red, green and 

blue OLEDs. (ii) and (iv) show the Joule heating steps used to induce the diffusion for introducing the 

red and green dopants selectively in devices x and y, respectively.  

 

Results and discussion 

Figure 5.10 (a) and 10 (b) show an EL image and EL spectra, respectively, of these devices. Clearly, 

the technique is capable of producing red, green and blue OLEDs side-by-side on the same substrate. It 

should be emphasized that the different OLED emission colors are obtained without using shadow 

masks, stamps or any sort of mechanical alignment between the donor substrate and the OLED 

backplane substrate. Therefore, this diffusion-based technique appears to be capable of realizing 

maskless RGB OLED color patterning reliably for display fabrication. It should be pointed out that in 

theory lateral diffusion of the dopant may also occur, causing the dopant to spread outside of the desired 

area boundaries. Our preliminary investigations reveal that such lateral diffusion is limited to ~5-10 µm. 

For high resolution displays this lateral diffusion can perhaps be readily prevented through the use of 

pre-patterned grooves or separators in the OLED substrate. 
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Finally, it should be pointed out that the EL spectrum of the red device contains some blue 

emission from TBADN. This residual emission could be reduced by optimizing device structure and the 

process parameters such as the diffusion time and voltage applied across ITO strips for Joule heating. 

 

Device B G R 

CIE (144 091) (284 535) (476 341) 

Figure 5.10 (a) EL images and (b) EL spectra of the devices fabricated following the procedure in Fig. 5.9. 

Corresponding CIE coordinates of these devices are also included. 

 

5.4 Assessing solvent vapor exposure as a method to accelerate solid state diffusion 

Introduction 

The previous results demonstrate that the use of physical contact between donor and acceptor 

substrates for introducing dopants is capable of producing OLEDs with typical performance. However, 

from a manufacturing standpoint, the long diffusion time required for sufficient dopant transfer could be 

disadvantageous. For instance, the previous experiment shows that in order to obtain a device with EL 
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spectrum similar to that of a reference device with 4% DCJTB concentration made by conventional 

co-deposition, 30 minutes of contact are required. Such long diffusion times can limit the value of the 

technique as it would result in long manufacturing time, low throughput and high production costs. 

Therefore, in order to reduce the required contact time, the effect of solvent exposure is explored as a 

method to accelerate diffusion. It is well known that molecular diffusion into an acceptor organic 

material can be enhanced upon exposing the material to a suitable solvent as a result of the increased 

free volume that the solvent absorption produces in the material. This approach was utilized for 

promoting diffusion in polymer OLEDs in the past 
[64][70][71]

. As a preliminary investigation for testing if 

this approach can be applied to small molecule OLEDs, the effects of solvent vapor exposure on 

organic layers and device performance are investigated.  

Experimental Procedure 

First, in order to test if molecular diffusion in solid state organic films can be enhanced by solvent 

vapor exposure, changes in the PL spectrum of a vacuum-deposited NPB(60 nm)/DCJTB(10 nm) 

bilayer stack coated on a glass substrate is monitored. The detailed experimental setup for exposing the 

sample to solvent vapor is shown in Figure 5.11.  

Next, effects of solvent vapor exposure on device performance are investigated. Figure 5.12 depicts 

the experimental procedure. OLED films are deposited through standard thermal vacuum deposition on 

an ITO coated glass substrate. The substrate is then placed in a sealed test box filled with toluene vapor 

to expose the deposited films to toluene vapor, for 30 minutes. This long exposure time is used in order 

to ensure that any effects on the organic layers from solvent exposure become significant and will well 

surpass what may occur from the much shorter exposure times during the device fabrication procedure.  

After vapor exposure, the substrate is put back in the vacuum system, and the rest of the OLED 

films and cathode are deposited to complete devices. In this experiment, three different types of OLED 

layers are exposed to solvent vapor: (1) HTLs, (2) HTL/dopant bilayers and (3) HTL:dopant mixed 

layers. In test 1, effects of exposing a neat layer of a HTM to solvent vapor on device performance is 

tested. Two common HTMs, NPB and 4,4’,4’’-tri(N-carbazolyl) triphenylamine (TcTa), are exposed to 
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solvent vapor as shown in the step (ii) of Figure 5.12. The complete device structures are shown in 

Table 5.1. In test 2, effects of intermixing of a HTL/dopant bilayer due to solvent vapor exposure on 

device performance is investigated. Two different HTL/dopant bilayers, NPB(60 nm)/DCJTB(2.4 nm) 

and NPB(45 nm)/C545T(2.4 nm) are exposed to solvent vapor (complete structures shown in Table 5.1).  

In test 3, effects of exposing a host:dopant premixed layer on device performance is investigated. Two 

different host:dopant premixed layers, NPB:DCJTB and NPB:C545T, are exposed to solvent vapor 

(complete structures shown in Table 5.1). 

 

 

Figure 5.11 Schematic presentation for the experimental setup for exposing the sample to solvent vapor. 

 

 

Figure 5.12 A schematic diagram illustrating the steps of the procedure followed for fabricating OLEDs. (ii) 

illustrate the steps of exposing the sample to solvent vapor. 
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  Complete structure  

Test (1) 
NPB(60nm)/(Solvent)/Alq3(40nm) 

TcTa(40nm)/(Solvent)/TPBi(40nm) 

Test (2) 
NPB(60nm)/DCJTB(2.4nm)/(Solvent)/Alq3(40nm) 

NPB(45nm)/C545T(2.4nm)/(Solvent)/Bphen(40nm) 

Test (3) 
NPB:DCJTB(4%,60nm)/(Solvent)/Alq3(40nm) 

NPB:C545T(45nm,4%)/(Solvent)/Bphen(40nm) 

* All devices have MoO3(3nm) and LiF(0.5nm)/Al(70nm) 

 as HIL and EIL/cathode, respectively. 

Table 5.1 Complete device structures. (Solvent) indicates the solvent vapor exposure step. 

 

Results and discussion 

Figure 5.13 shows PL spectra collected from the stack before and after 6 minutes of exposure to the 

solvent vapor under 360 nm excitation. As can be seen from the figure, the PL spectrum of the 

unexposed bilayer stack corresponds mostly to NPB emission, with no significant emission from 

DCJTB.  This is due to concentration quenching effects in DCJTB which makes luminescence from a 

neat layer very weak. However, the PL spectrum becomes drastically different after exposure to solvent 

vapor for 6 minutes, and emission becomes dominated by 605 nm emission from DCJTB whereas the 

NPB emission is quenched. The change indicates significant interlayer molecular diffusion between the 

NPB layer and the DCJTB layer which dilutes the DCJTB, thereby making it capable of efficient 

luminescence. Simultaneously, NPB is quenched by energy transfer to the DCJTB molecules that now 

dope the entire NPB layer. Figure 5.14 shows PL images taken under UV excitation of the bilayer 

before and after the acetone vapor exposure. The result suggests that exposing the acceptor substrate to 

solvent can result in a significant enhancement in the diffusion rate, making it possible to reduce the 

time required for introducing dopants via contact with a donor substrate to only a few minutes. 
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Figure 5.13 PL spectra of the NPB/DCJTB bilayer stack before and after the acetone vapor exposure. The spectra 

are collected under 360nm excitation.  

 

 

Figure 5.14 PL images of the NPB/DCJTB bilayer stack before (a) and after (b) the acetone vapor exposure. 

 

Figure 5.15 presents the J-V and L-V characteristics of the devices whose HTL is exposed to 

solvent vapor (test 1). The inset is the current versus luminance (J-L) characteristics, which indicate the 

current efficiency by its slope. As can be seen, no significant effects on the J-V and L-V characteristics 

and the current efficiency are observed when the neat layer of the HTLs is exposed to solvent vapor. 

This result indicates that solvent exposure does not cause detrimental effects on devices such as 

molecular decomposition or significant morphology changes which could cause electrical shorting short 

of devices. It should be noted, however, that solvent exposure causes significant crystallization to 



 

 78 

organic thin films depending on materials. For example, a thin film of CBP, which is susceptible to 

crystallization, is crystalized due to solvent vapor exposure in a few minutes. 

 

 

Figure 5.15 J-V and L-V characteristics of the devices whose HTL (NPB (a) and TcTa (b)) is exposed to toluene 

vapor. The inset is the J-L characteristics. 

 

 Figure 5.16 presents the J-V and L-V characteristics of the devices where their HTL/dopant bilayer 

is exposed to solvent vapor (test 2) with the J-L characteristics in the inset. As can be seen, the current 

efficiency of those devices is significantly increased due to solvent vapor exposure around 10 times 

higher than that of the control device. This improvement in efficiency results from molecular diffusion 

due to solvent vapor exposure. While the efficiency of the control device is low due to concentration 

quenching in the neat layer of the dopant, the efficiency of the solvent-exposed device is relatively high 
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because of lower dopant concentration that results from molecular diffusion between the HTL and the 

dopant layer. The lower dopant concentration of the solvent-exposed devices is also indicated by EL 

spectrum (Fig. 5.17). As can be seen, the EL spectrum is blue-shifted due to solvent vapor exposure. 

This spectral shift is likely due to decreased aggregation of dopant molecules because of lower dopant 

concentration. This result further confirms that solvent vapor exposure causes significant molecular 

diffusion. 

 

Figure 5.16 J-V and L-V characteristics of the devices where the HTL/dopant bilayer ((a) NPB/DCJTB and (b) 

NPB/C545T) are exposed to toluene vapor. The inset is the J-L characteristics. The dotted lines 

represent those of the corresponding control devices. 
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Figure 5.17 EL spectrum of the devices where the HTL/dopant bilayer (NPB/DCJTB (red) and NPB/C545T 

(blue)) is exposed to toluene vapor. The dotted lines represent those of the corresponding control 

devices. 

 

Figure 5.18 presents the J-V and L-V characteristics of the devices where their host:dopant 

premixed layer is exposed to solvent vapor (test 3) with the J-L characteristics in the inset. As can be 

seen, while the change in efficiency of the device with C545T is relatively small, the efficiency of the 

device with DCJTB is significantly reduced due to solvent exposure. This significant decrease in 

efficiency of the device with DCJTB may be explained by aggregation of DCJTB molecules which 

occurs during molecular diffusion. The aggregation of DCJTB molecules is indicated by the EL 

spectrum of the device which is red-shifted due to solvent vapor exposure (Fig. 5.19). 
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Figure 5.18 J-V and L-V characteristics of the devices where the HTL:dopant bilayer ((a) NPB:DCJTB and (b) 

NPB:C545T) is exposed to toluene vapor. The inset is the J-L characteristics. The dotted lines 

represent those of the corresponding control devices. 

 

 

Figure 5.19 EL spectrum of the devices where their HTL:dopant bilayer (NPB:DCJTB (red) and NPB:C545T 

(blue)) is exposed to toluene vapor. The dotted lines represent those of the corresponding control 

devices. 
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In summary, this study shows that the effects of solvent vapor exposure highly depend on materials. 

For example, while HTL materials such as NPB and TcTa are not affected by solvent vapor exposure, 

materials which are more susceptible to crystallization such as CBP are significantly crystalized. Also, 

while the efficiency significantly drops when the NPB:DCJTB premixed layer is exposed to solvent 

vapor, the efficiency drop is relatively small compared in the case of the NPB:C545T premixed layer. 

This efficiency drop of the NPB:DCJTB mixed layer due to solvent exposure may be attributed to 

aggregation of DCJTB molecules during molecular diffusion. While the enhancement of diffusion by 

solvent vapor exposure has great potential to accelerate diffusion, further systematic investigations are 

required to clarify effects of solvent exposure and to understand mechanisms.  

 

5.5 Assessing semiconducting diffusion barrier as a method to block undesirable diffusion 

Introduction 

While the capability of the technique for OLED color patterning is demonstrated, controlling 

doping levels through diffusion is expected to be difficult, which could limit device performance. For 

example, the diffusion of the luminescent material molecules may extend beyond the EML into the 

HTL. The presence of dopant molecules into the HTL may cause them act as charge traps, which could 

result in higher driving voltage. Additionally, the dopant concentration is likely to be non-uniform 

across the EML, with higher concentrations near the surface. Such non-uniformity and high dopant 

concentrations near the surface could decrease device efficiency due to concentration quenching effects.  

In order to overcome the aforementioned limitations, the use of semiconducting diffusion barriers 

made of organic and inorganic material mixtures is proposed for achieving controlled and uniform 

concentrations of luminescent dopants in the EML. The use of these diffusion barriers allows for 

controlling the diffusion depth and achieving uniform concentration by means of blocking undesirable 

dopant diffusion. This is the first time that diffusion barriers are used in the field of organic 

semiconductors. Figure 5.20 illustrates this idea by comparing diffusion-based doping with and without 

the diffusion barrier. The barrier effectively blocks the diffusion of the dopant molecules in the 
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underlying organic layers and thus allows limiting the diffusion to only the desired depth (step (b-ii) of 

Fig. 5.20). By limiting the diffusion depth, it also allows for obtaining a uniform dopant concentration 

across the EML (step (b-iv) of Fig. 5.20). For diffusion barriers, MoO3 mixed with the hole transport 

material (HTM) used in the HTL is utilized. Due to the relatively high density and small molecular size 

of MoO3, the HTM:MoO3 mixture can be expected to have higher density relative to the neat HTM, 

thereby blocking the diffusion of the dopant material. At the same time, the relatively high conductivity 

of HTM:MoO3 mixtures, caused by the formation of a charge transfer (CT) complex, prevents 

disruption of charge transport across the device
 [72][73]

.  

The effectiveness of the diffusion barrier in the doping method via diffusion is investigated through 

following three experiments. First, the effectiveness of the HTM:MoO3 film in substantially reducing 

the inter-diffusion of luminescent materials present in two layers located on opposite sides of the barrier 

is tested. In this case, changes in PL are used to detect any inter-mixing that may result from such 

inter-diffusion. The tests are done for two different scenarios in which either heating (at 100 °C) or 

exposure to solvents (toluene) is used to drive and accelerate the diffusion process. Next, the diffusion 

barrier is introduced in OLED devices, and its capability of controlling a dopant concentration is 

investigated. Finally, OLEDs with the diffusion barrier are fabricated through the doping method via 

diffusion. The ability of this approach to produce OLEDs with highly controlled device structure and 

performance when a luminescent material is doped into a host layer via diffusion is demonstrated by 

this experiment.   
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Figure 5.20 Scheme for the diffusion-based doping method without (a), and with (b) the diffusion barrier. 

5.5.1 Assessing the effectiveness of using a MoO3:HTM film in reducing inter-diffusion of 

luminescent materials  

Experimental Procedure 

The effectiveness of using a HTM:MoO3 film in reducing inter-diffusion of luminescent materials 

between two layers located on opposite sides of it is tested. For this purpose, organic stacks in which the 

HTM:MoO3 film is sandwiched between two organic layers containing different luminescent materials 

are used, and PL measurements are utilized for detecting any inter-mixing that may occur as a result of 

inter-diffusion. NPB, C545T, and DCJTB are used as a host, green dopant, and red dopant material, 

respectively. The organic layer stack consists of NPB:C545T(5%, 40 nm)/NPB:MoO3(50%, 5 

nm)/DCJTB(3 nm) (Fig. 5.21 (b)). Since DCJTB has a lower band gap than that of C545T, any 

intermixing between the two materials due to diffusion would lead to quenching of C545T 

luminescence by DCJTB as a result of energy transfer. As such, any changes in PL spectra over time 
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would correlate with the extent of intermixing between the two layers due to diffusion across the 

HTM:MoO3 film. For comparison, stacks of the same structure except with the NPB:MoO3 layer 

replaced with a 5 nm thick neat layer of NPB are also fabricated to be used as reference (i.e. represents 

the case of no diffusion barrier). The complete structure of the reference stacks is therefore 

NPB:C545T(5%, 40 nm)/NPB(5 nm)/DCJTB(3 nm) (Fig. 5.21 (a)). All stacks are fabricated by the 

sequential deposition of the organic layers using standard thermal vacuum deposition on glass 

substrates. After fabrication, the substrates (with the stacks) are placed on a hot plate at 100 °C for 

driving molecular diffusion. 

Results and discussion 

Figures 5.21 (b) and (e) show PL spectra collected every 10 minutes from the organic stacks 

without and with the diffusion barrier, respectively, under 360 nm excitation. As can be seen from the 

figures, the initial (at t=0 min, i.e. before heating) spectra collected from the two stacks correspond 

almost entirely to C545T emission, with no significant emission from DCJTB. The absence of DCJTB 

emission can be attributed to concentration quenching effects which make luminescence from a neat 

layer of DCJTB very weak. Upon heating, the PL spectra of the organic stack without the diffusion 

barrier start exhibiting a red shift, and after 50 minutes, the emission becomes dominated by 605 nm 

DCJTB emission (Fig. 5.21 (b)). This spectral change clearly points to the diffusion of DCJTB 

molecules into the NPB:C545T layer, resulting in quenching of C545T and efficient luminescence from 

DCJTB that now dopes the layer. In contrast, the spectra from the stack with the diffusion barrier 

exhibits very little change and remain dominated by ~530 nm emission from C545T even after heating 

for 50 minutes (Fig. 5.21 (e)). The differences between the PL changes in the two samples are also 

evident in the PL images taken under UV excitation (Fig. 5.21 (e) and (f)). These results clearly 

demonstrate that the NPB:MoO3 film is indeed capable of preventing DCJTB molecules from diffusing 

to the opposite side. 
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Figure 5.21 (a) and (d) the structure of the organic layer stacks without and with the diffusion barrier film, 

respectively; (b) and (e) spectra collected every 10 minutes from the organic stacks; and (e) and (f) 

PL images of the stacks before and after heating. 

 

In the experiment for the other scenario (in the case of diffusion driven by solvent vapor), the same 

experiment is performed whereby another set of organic stacks are exposed to toluene vapor for 2 

minutes instead of heating to 100 °C. Figure 5.22 (b) and (e) show the PL spectra from the stacks 

without and with the NPB:MoO3 barrier film respectively for this experiment. The same phenomenon is 

also observed here, where again the PL spectra of the organic layer stack without the diffusion barrier 

exhibit a change from green to red emission upon solvent exposure pointing to the diffusion of the 

DCJTB into the NPB:C545T layer whereas the PL spectra from the stack containing the diffusion 

barrier layer remain unchanged. These results confirm that the HTM:MoO3 film functions as an 

effective diffusion barrier that can be used with both heat-assisted and solvent vapor-assisted 

diffusion-based doping processes. 
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Figure 5.22 (a) and (d) the structure of the organic layer stacks without and with the diffusion barrier film, 

respectively; (b) and (e) spectra collected from the organic stacks before and after solvent vapor 

exposure; and (e) and (f) PL images of the stacks before and after solvent vapor exposure. 

 

5.5.2 Investigating capability of the diffusion barrier for controlling a dopant concentration  

Experimental Procedure 

Next, the diffusion barrier is introduced in OLED devices, and its capability of blocking molecular 

diffusion and limiting diffusion depth is assessed. In this experiment, OLED devices with the diffusion 

barrier are fabricated through standard thermal vacuum deposition, and changes in performance due to 

thermal diffusion are monitored. The device structure used in this experiment consists of a ~3 nm MoO3 

HIL, a 60-x nm thick NPB doped with 50% MoO3 layer, a x nm thick NPB neat layer, a 0.6 nm thick 
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DCJTB neat layer, a ~40 nm thick Alq3 ETL layer, a ~0.5 nm thick LiF EIL, and a ~70 nm Al cathode 

(device A). In one device x is 10nm whereas in the other device x is 15nm. The complete structure of 

the device is therefore ITO/MoO3(3 nm)/NPB:MoO3(60-x nm, 50%)/NPB(x nm)/DCJTB(0.6 

nm)/Alq3(40 nm)/LiF(0.5 nm)/Al(70 nm) where x=10 or 15 nm (Fig. 5.23 (a)). The NPB:MoO3 layer in 

this device functions as both a HTL and diffusion barrier. The completed devices are then heated to 

100 °C for one hour in order to drive diffusion of the DCJTB molecules into the NPB layer. During that 

time the device EL spectrum and current efficiency are measured regularly every 10 or 15 minutes. In 

addition to the device with the neat layer of DCJTB (device A), a control device with the same structure 

is also fabricated. However, in this case NPB and DCJTB are premixed by co-deposition while the 

volume ratio between NPB and DCJTB remains constant. The complete structure of the control device 

(device B) is therefore ITO/MoO3(3 nm)/NPB:MoO3(60-x nm)/NPB:DCJTB(x nm, y%)/Alq3(40 

nm)/LiF(0.5 nm)/Al(70 nm) (Fig. 5.23 (b)). In one device x is 10 nm and y is 6% whereas in the other 

device x is 15 nm and y is 4%. Note that the volume ratio between DCJTB and NPB of the device with 

the neat layer of DCJTB (device A) is the same as that of the corresponding control device (device B): 

10 nm NPB to 0.6 nm DCJTB is ~6% and 15 nm NPB to 0.6 nm DCJTB is ~4%. This means that these 

devices with the neat DCJTB layer would have the same structure as the control devices after heating if 

DCJTB molecules uniformly diffused in the NPB layer without diffusing into the adjacent diffusion 

barrier and Alq3 layer. 
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Figure 5.23 Schematic presentation for the device structure of (a) device A and (b) device B.  

Results and discussion 

Figure 5.24 shows the EL spectra from the two devices with the neat DCJTB layer collected 

periodically while at 100 °C. As can be seen, the EL spectra show a significant blue-shift with time. 

This spectral shift reflects a decrease in DCJTB concentration that occurs as a result of its diffusion into 

the NPB layer, and thus becomes uniformly mixed with the NPB molecules. (It should be noted that the 

diffusion of DCJTB into the adjacent Alq3 layer is generally limited because of the high glass transition 

temperature of Alq3 (~176 °C) which well exceeds the temperatures used here
[66]

).  

As DCJTB molecules spread across the NPB layer, their aggregation gradually diminishes, 

resulting in the observed blue-shift in the spectra. An examination of the un-normalized EL spectra (not 

shown here) shows that the DCJTB luminescence intensity also increases with time as expected, 

consistent with an associated decrease in concentration quenching effects. The spectral shift slows down 

with time and stops almost completely after about 40 minutes of heating at this temperature. This 

indicates the ending of the DCJTB net mass transfer and redistribution process, signaling that a uniform 

concentration level of DCJTB across the entire NPB layer has been reached.  

The same trend can be observed in the current efficiency trend, where again efficiency increases are 

initially observed, but then the trend plateaus almost completely after ~40 minutes (Fig. 5.25). Clearly, 
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the efficiency trend follows the change in DCJTB concentration. Quite remarkably, the final EL 

spectrum of the device with the neat DCJTB layer (device A) is very similar to that of the 

corresponding control device (device B). This shows that the DCJTB concentration in the devices with 

the neat DCJTB layer is similar to the concentration in the corresponding control devices, indicating 

that the inclusion of the NPB:MoO3 diffusion barrier limits the diffusion of the DCJTB to the top 10 or 

15 nm NPB host layer. Note that the final efficiency of the heated devices is higher than that of the 

control devices. This could be attributed to improved interface structure between layers due to diffusion 

and/or optimized carrier balance due to heating
[74]

. 

 

 

Figure 5.24 EL spectra from the devices (with 15nm NPB (a) and 10nm NPB (b)) with the neat DCJTB layer 

collected periodically while at 100 °C. The dotted lines represent the EL spectra of the 

corresponding control devices. 
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Figure 5.25 Current efficiencies collected every few minutes from the devices with the neat DCJTB layer during 

the heating step for the device with the 15nm host NPB layer (the blue solid line); and the device 

with the 10nm host NPB layer (the red solid line). The dotted lines represent the current efficiency 

of the corresponding control devices. 

  

5.5.3 Demonstrating the ability of the diffusion barrier to produce OLEDs with highly 

controlled device structure and performance 

Experimental Procedure 

 The use of HTM:MoO3 diffusion barriers in OLEDs is demonstrated for obtaining controlled 

doping levels when a luminescent material is introduced in a host via diffusion. In the previous 

experiment, the neat DCJTB layer is deposited on the host NPB layer through standard thermal vacuum 

deposition. In this experiment, however, a luminescent material is introduced into a host material layer 

via diffusion by contact with a donor substrate, and both the diffusion depth and dopant concentration 

are controlled by utilizing the diffusion barrier.  

Device fabrication steps including the diffusion-based doping step are depicted in Figure 5.26. First, 

a ~3 nm thick MoO3 hole injection layer (HIL), a 60-x nm thick NPB doped with 50% MoO3 layer, and 

a x nm thick NPB neat layer are vacuum-deposited on an ITO coated glass substrate (acceptor substrate). 
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In one device x is 10nm whereas in the other device x is 15nm. The MoO3-doped NPB layer in this 

device functions as both a HTL and diffusion barrier whereas the neat NPB layer functions as host to be 

doped by DCJTB via diffusion. The acceptor substrate is then placed in physical contact with a glass 

“donor substrate” pre-coated with a ~20 nm thick layer of DCJTB by holding them together using a 5 

mm thick neodymium magnet plate (remanent magnetization of 1.22-1.28 T) and a 2 mm thick steel 

plate. Still in contact, the substrates are heated for 100 minutes on a hot plate at 100 °C in a dry nitrogen 

environment in order to drive the diffusion of DCJTB from the donor substrate into the NPB layer on 

the acceptor substrate. After heating, the donor substrate is removed, the acceptor substrate is put back 

in the vacuum system, and a ~40 nm thick Alq3 ETL followed by a ~0.5 nm thick LiF EIL and a ~70 

nm aluminum cathode are deposited to complete the device. The schematic presentation for the 

dopant-diffused device is shown in Figure 5.27 (a). Finally, in order to drive the DCJTB deeper into the 

NPB layer and achieve a more uniform dopant concentration, the completed devices are heated to 

100 °C for one hour. During that time the device EL spectrum and current efficiency are measured 

periodically every few minutes.  

For reference, the device used in the previous experiment is used again in this experiment. The 

structure of the control device is therefore ITO/MoO3(3 nm)/NPB:MoO3(60-x nm)/NPB:DCJTB(x nm, 

y%)/Alq3(40 nm)/LiF(0.5 nm)/Al(70 nm), where x is 10 nm and y is 6% whereas in the other device x 

is 15 nm and y is 4% (Fig. 5.27 (b)). The amount of DCJTB in the control device would correspond to 

the amount in the “diffused-dopant” device for the 100 minute contact duration used above. This 

DCJTB amount was estimated based on the experimental results in Section 5.1 where diffusion of 

molecules from the donor to the acceptor substrates proceeds at a constant rate for at least the initial 100 

minutes. Given this linear correlation between the number of DCJTB molecules and time, the amount of 

DCJTB that gets diffused from the donor substrate into the host during any given contact duration (in 

this case 100 minutes) can be accurately estimated.  
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Figure 5.26 A schematic diagram illustrating the steps of the procedure followed for the diffused-dopant OLEDs. 

(i)-(iii) illustrates the steps of introducing the dopant via diffusion and (iv) illustrates the subsequent 

heating step used for making the DCJTB concentration uniform across the layer. 

 

 

Figure 5.27 Schematic presentation for the device structure of (a) the dopant-diffused device and (b) the control 

device. The concentration of DCJTB in NPB is supposed to be graded as shown in the figure since 

DCJTB is transferred to the host through physical contact. The structure with the graded 

DCJTB concentration appears in the step (iii) of Fig. 5.26. 

 

Results and discussion 

Figures 5.28 and 5.29 show the EL spectra and current efficiency, respectively, of the two 

“diffused-dopant” devices collected periodically at 100 °C. Similar to the previous experiment, 
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significant blue-shift of the EL spectrum and efficiency increases are initially observed, and then slow 

with time. This is again due to the DCJTB redistribution process, indicating a uniform concentration 

level of DCJTB across the entire NPB layer. The final EL spectrum and efficiency of each of the two 

dopant-diffused devices are similar to those of the corresponding control devices. This shows that the 

DCJTB concentration in the “diffused-dopant” devices is very similar to that in the corresponding 

control devices, indicating that earlier estimation of the amount of DCJTB diffused into the NPB in a 

given period of contact time was accurate. This indicates that highly controlled doping levels can indeed 

be achieved when using this doping method. It also shows that the NPB:MoO3 diffusion barrier is still 

effective when a luminescent material is introduced via diffusion, and makes it possible to use diffusion 

followed by a simple heating step to reach uniform and predictable dopant concentration levels in 

OLEDs.  
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Figure 5.28 EL spectra collected every few minutes from the “diffused-dopant” devices during the heating step 

(of Fig.5.26 (iv)) for the device with the 15nm host NPB layer (a); and the device with the 10nm 

host NPB layer (b). The dotted lines represent the EL spectra of the corresponding control devices. 
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Figure 5.29 Current efficiencies collected every few minutes from the “diffused-dopant” devices during the 

heating step (of Fig.5.26 (iv)) for the device with the 15 nm host NPB layer (the blue solid line); and 

the device with the 10 nm host NPB layer (the red solid line). The dotted lines represent the current 

efficiency of the corresponding control devices. 

 

5.6 Theoretical analysis of dopant concentration profile  

Introduction 

The transient dopant concentration profiles of the OLED devices produced by thermal diffusion 

(“diffused-dopant” devices), which corresponds to the devices fabricated in Section 5.2, are estimated 

based on the Fick’s diffusion theory. Although dopant concentration profiles of the devices can be 

roughly inferred from the experimental results, actual dopant concentration profiles have not been 

confirmed. The theoretical analysis helps estimate actual dopant concentration profiles in the 

“diffused-dopant” devices. In addition, the theoretical analysis allows us to roughly estimate the time 

required to obtain desirable dopant concentration.  
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Two parameters including the diffusion coefficient of the organic film “D” and the mass transfer 

coefficient “h” are required for the theoretical analysis. These two parameters are determined from the 

other two experimental observations. The diffusion coefficient “D” is obtained from the experimental 

observation in Subsection 5.5.2. In this experiment, OLED devices with the diffusion barrier are 

fabricated, and efficiency changes due to thermal diffusion with heating time are monitored. The mass 

transfer coefficient “h” is introduced for the molecular mass transfer between the donor film and the 

host film which are physically contacted. The mass transfer coefficient is obtained from the 

experimental observation in Section 5.2. In this experiment, the luminescent material is transferred 

through solid state diffusion from a donor substrate to dope the host film on another substrate, and the 

amount of the luminescent material in the host film with contact time is monitored. By comparing the 

experimental observations with theoretical fits, the diffusion coefficient and the mass transfer 

coefficient are determined. After determining the two parameters, the transient dopant concentration 

profiles of the OLED devices produced by thermal diffusion are theoretically obtained.  

This section consists of three subsections. First, the diffusion coefficient D and the mass transfer 

coefficient h are determined in Subsections 5.6.1 and 5.6.2, respectively. Then, the transient dopant 

concentration profiles of the“diffused-dopant” devices are then theoretically estimated in Subsection 

5.6.3.  

5.6.1 Determining the Diffusion Coefficient  

Model and Equations 

The diffusion coefficient of the organic film “D” is obtained from the experimental observation in 

Subsection 5.5.2. The model considered here is adjacent NPB and DCJTB layers sandwiched by 

impermeable layers (Fig. 5.30). This model corresponds to the experiment performed in Subsection 

5.5.2. In the actual device, the impermeable layers correspond to the Alq3 layer and the NPB:MoO3 

diffusion barrier (Fig. 5.31). Assuming that molecular diffusion is directional perpendicular to the plane 

of the layers, molecular diffusion obeys Fick’s diffusion theory, and the layers sandwiching the organic 
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layers are completely impermeable, the transient dopant concentration C(x,t) is given by infinite sum of 

error function: 

 

𝐶(𝑥, 𝑡) =
1

2
𝐶0∑{erf (

−(𝑥 − 𝑑𝑠) − 2𝑛(𝑑𝑠 + 𝑑𝑎)

2√𝐷𝑡
) + erf (

(𝑥 − 𝑑𝑠) + 2𝑑𝑠 + 2𝑛(𝑑𝑠 + 𝑑𝑎)

2√𝐷𝑡
)}

∞

𝑛=0

+
1

2
𝐶0 ∑{erf (

−(𝑥 − 𝑑𝑠) + 2𝑛(𝑑𝑠 + 𝑑𝑎)

2√𝐷𝑡
) + erf (

(𝑥 − 𝑑𝑠) + 2𝑑𝑠 − 2𝑛(𝑑𝑠 + 𝑑𝑎)

2√𝐷𝑡
)}

∞

𝑛=1

 

                                                                 ----------------- (eq. 5.1) 

*erf(z): Error function erf⁡(z) =
2

𝜋
1
2⁄
⁡∫ exp⁡(−

𝑧

0
𝜂2)𝑑𝜂   

where x represents the distance from the impermeable/DCJTB interface, C0 the initial concentration of 

the DCJTB layer, ds and da the thickness of the DCJTB and the NPB layers, and D denotes the diffusion 

coefficient of DCJTB molecules in the matrix. In addition, in order to evaluate uniformity of dopant 

concentration profile across the host layer, a uniformity parameter U(t) is introduced. This parameter 

corresponds to the difference between the maximum dopant concentration (CMax(t)) and the minimum 

dopant concentration (CMin(t)) within the two organic layers divided by the sum of them: 

𝑈(𝑡) = −(𝐶𝑀𝑎𝑥(𝑡) − 𝐶𝑀𝑖𝑛(𝑡))/(𝐶𝑀𝑎𝑥(𝑡) + 𝐶𝑀𝑖𝑛(𝑡))  ----------------- (eq. 5.2) 

Note that CMax(t) corresponds to the dopant concentration at the interface between the impermeable 

layer and the DCJTB layer (x=0), and CMin(t) corresponds to the one at the interface between the NPB 

layer and the impermeable layer (x = ds + da) at time t in this model.  
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Figure 5.30 Schematic representation for the theoretical model. Adjacent NPB and DCJTB layers are sandwiched 

by impermeable layers in this model. 

 

Figure 5.31 The actual device structure for the model in Fig. 5.30. 

 

Results and discussion 

Figure 5.32 shows the change in the uniformity parameter of dopant concentration (U(t)) with time 

for various diffusion coefficients. The experimental result of the change in luminescent efficiency due 

to heating with time is also shown. As discussed, the efficiency increases initially but then the trend 

plateaus almost completely after ~40 minutes. Since the efficiency change stops following the end of 

the dopant redistribution process, the efficiency and uniformity reach the plateau at the same time. The 

diffusion coefficient D is therefore extracted by fitting the uniformity parameter U(t) to the efficiency 

change. As shown in the figure, the uniformity parameter with the diffusion coefficient of 𝐷 = 4⁡ ×
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⁡10−20⁡(m2
/s) reaches the plateau after ~40 minutes. This allows us to determine the diffusion 

coefficient of the organic film as 𝐷 = 4⁡ ×⁡10−20⁡(m2
/s). It would be interesting to estimate the 

transient dopant concentration profile across the organic layers using the extracted diffusion coefficient 

D (Fig. 5.33). It is clearly demonstrated that the concentration of DCJTB significantly decreases with 

time at the boundary with the Alq3 layer (x=0) where the recombination zone exists. The decrease in 

dopant concentration at the recombination zone with time is consistent with the experimental 

observation which shows the increase in efficiency with heating time.  

 

 

Figure 5.32 The change in the uniformity of dopant concentration (U(t)) with time for various diffusion 

coefficients (right axis). The experimental result of the change in luminescent efficiency due to 

heating with time is also shown (left axis). 
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Figure 5.33 The transient dopant concentration distribution across the NPB layer.  

 

5.6.2 Determining the Mass Transfer Coefficient   

Model and Equations 

 The mass transfer coefficient between the donor film and the host film when in physical contact is 

obtained from the experimental observation in Section 5.1. Here, DCJTB molecules are transferred to 

the host NPB film via diffusion by physical contact between the DCJTB donor film and the host NPB 

film (Fig. 5.34). In this model shown in Figure 5.35, in addition to the assumptions used in the previous 

model, an infinite source is assumed for the donor DCJTB film. Also, since the DCJTB molecules are 

transferred through physical contact in this case, a diffusion resistance exists between the DCJTB film 

and the NPB film. The mass transfer rate between the donor film and the host film is assumed to be 

proportional to the difference in concentrations at the interface. Based on these assumptions, the 

diffusion equation can be solved as follows: 

 

𝐶(𝑥, 𝑡) = 𝐶0 − ∑ 𝐴𝑛 cos(𝜆𝑛𝑥) exp(−𝜆𝑛
2𝐷𝑡)∞

𝑛=1      ---------------- (eq. 5.3) 
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𝐴𝑛 =
2𝐶0 sin 𝜆𝑛𝐿

𝜆𝑛𝐿 + sin 𝜆𝑛𝐿 cos 𝜆𝑛𝐿
 

(𝜆𝑛satisfies:⁡ cot 𝜆𝑛𝐿 =
𝜆𝑛𝐿

(ℎ𝐿/𝐷)
) 

where L represents the thickness of the host film.  

 

 

Figure 5.34 Schematic representation for the actual experiment considered in this model.  

 

Figure 5.35 Schematic representation for the theoretical model based on the actual experiment in Fig. 5.34. 

DCJTB molecules are transferred to the host NPB film via diffusion by physical contact in this 

model. 

 

Results and discussion 

The total amount of the dopant in the host film over time for various mass transfer coefficients is 

shown in Figure 5.36 with the experimental result obtained in Section 5.1. The total amount of the 

dopant across the entire host film is given by the integration with respect to C(x,t) from 0 to L. 

Diffusion coefficient D is assumed to be the same as the diffusion coefficient determined in the 
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previous model since the same host film and temperature are used in this experiment. The mass transfer 

coefficient h is determined as ℎ = 2.16 × 10−21 by fitting the theoretical result to the experimental 

result.  

 

 

Figure 5.36 The total amount of the dopant in the host film with time for various mass transfer coefficients. The 

total amount is shown as the relative amount to the amount of DCJTB in 5nm NPB doped with 4% 

DCJTB by volume.  

 

5.6.3 Estimating the Transient Dopant Concentration Profile  

Finally, by using the diffusion coefficient and the mass transfer coefficient that are determined in 

the previous models, the transient dopant profile of the “diffused-dopant” device, which corresponds to 

the device fabricated in Section 5.2, is obtained (Fig. 5.37). The same equation (eq. 5.3) used in the 

previous model is applied since the molecular diffusion process via contact is the same in both 

experiments (experiments in Sections 5.1 and 5.2). From this result, it has been shown that the 

concentration distribution tends to be non-uniform across the host film as expected. This result justifies 
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the use of the diffusion barrier to achieve uniform dopant concentration in the diffusion-based technique. 

This theoretical analysis also allows us to obtain the mass transfer rate as shown in Subsection 5.6.2. 

From the estimated mass transfer rate, the time required to transfer the desirable amount of a dopant can 

be roughly estimated.  

 

 

Figure 5.37 The transient dopant profile of the “diffused-dopant” device.  

 

5.7 Conclusions 

In this chapter, the potential of the diffusion of a luminescent material from a donor substrate 

placed in physical contact with the OLED substrate is assessed as an approach for maskless RGB color 

patterning of small molecule OLED displays. Also, the use of solvent vapor exposure is explored as a 

method to reduce diffusion time. In addition, the potential of a semiconducting diffusion barrier as a 

method to block undesirable diffusion is assessed. Finally, the transient dopant concentration of the 

dopant-diffused device is theoretically estimated. The result shows that the dopant concentration of the 



 

 105 

devices is graded as expected. This justifies the use of the diffusion barrier to achieve uniform dopant 

concentration in the diffusion-based technique. In addition, the result allows us to estimate the time 

required to obtain the desirable amount of dopant in the host film via diffusion. The conclusions of a 

series of these studies are summarized as follows: 

 

 Doping levels typical for those used in OLEDs can be achieved through solid state diffusion 

between donor and host films which are placed in physical contact 

 Devices produced by the technique demonstrate performance similar to those produced by standard 

co-deposition 

 Red, green and blue OLEDs can be fabricated side-by-side on one substrate without the use of 

shadow masks by selective diffusion of a luminescent material using local ITO Joule heating 

 Diffusion time can be significantly reduced by solvent vapor exposure 

 Exposing a neat layer of a HTM to solvent vapor does not affect device performance while 

efficiency is reduced when a HTM:dopant premixed layer is exposed 

 The use of the semiconducting diffusion barriers allows controlling the diffusion depth and 

achieving uniform concentration of luminescent dopants in OLEDs when using diffusion-based 

fabrication processes 

 The graded dopant concentration of the diffused-dopant devices is confirmed by theoretical 

analysis, which justifies the use of the diffusion barrier in the diffusion-based technique 

 A simple model for estimating the time required to transfer amount of dopant from a donor film to 

a host film via diffusion is provided  
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Chapter 6 

Summary and Future Work  

In this work, two novel RGB color patterning techniques for OLED display fabrication are proposed as 

alternatives to the FMM technique. The potential and technical feasibility of these approaches are 

investigated. The summary of results and the conclusions for the investigations on each technique are 

shown in parallel as follows. 

 

6.1 Technique 1: Color patterning using the laser-patterned PI shadow masks 

Summary of research results  

The first technique is color patterning using the laser-patterned PI sheet as a contact shadow mask. 

First, the capability of the laser-patterned PI sheet as a shadow mask and the effect of contact of organic 

layers with the PI sheet on device performance are investigated. The results of these investigations 

verify that the laser-patterned PI sheets have strong capability to deposit OLED materials with high line 

edge uniformity and limited shadow effects without compromising device performance. Furthermore, 

RGB OLEDs have been successfully fabricated by standard thermal vacuum deposition utilizing the 

laser-patterned PI shadow masks. The results show that this technique has strong potential for achieving 

high performance displays with high pixel density (>330 ppi) and high aperture ratio (~100%) without 

compromising device performance. In addition, as a variant of this technique, the in-situ shadow mask 

patterning technique is also proposed. For this technique, the protective layer is introduced to avoid 

contamination of the underlying substrates. By using the protective layer, the OLED device with the 

size of 16 µm-by-130 µm sub-pixel size is fabricated through the in-situ shadow mask patterning 

technique without affecting device performance. Finally, the RGB OLEDs with small feature sizes less 

than 25 µm are successfully fabricated on one substrate using this technique. The research results are 

summarized below. 
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Conclusions and future work 

The successful fabrication of RGB OLEDs with small feature sizes and high aperture ratio indicates 

that the laser-patterned PI mask technique is reliable enough to be put into practical use. In fact, test 

samples of the laser-patterned PI shadow masks have been fabricated and the practical applicability in 

actual display production is currently being tested. In contrast, further investigations and improvement 

are required for the in-situ shadow mask patterning technique. In particular, defects are observed in the 

emissive areas of the devices fabricated though this technique. This is perhaps due to ablation debris 

from some limited unintentional ablation of the bottom protective PI sheet which is left on the back side 

of the patterned PI sheet. The contamination issue could be addressed, for example, by replacing the 

bottom protective PI sheet with any other thin sheet which is resistant to laser ablation, such as a thin 

glass sheet. Alternatively, the contamination may be also be reduced by utilizing dry etching when the 

PI sheet is penetrated to create apertures. Investigations on these alternative approaches are required to 

use this technique in a practical manner.  

 

6.2 Technique 2: Color patterning via diffusion of a luminescent material 

Summary of research results  

The other technique proposed here is color patterning via selective diffusion of a luminescent 

material from a donor substrate to an acceptor substrate. First, doping levels of a luminescent material 

achieved via diffusion and effects on device performance are studied. The results show that doping 

levels typical for those used in OLEDs can be achieved through solid state diffusion between donor and 

host films which are placed in physical contact. The investigations on device performance reveal that 

devices produced by this technique demonstrate performance comparable to those produced by standard 

co-deposition. Furthermore, using the maskless color patterning technique, RGB OLEDs are 

successfully fabricated side-by-side on one substrate. In this demonstration, positional selectivity of 

diffusion is achieved through local Joule heating using the OLED ITO anodes for that purpose. Shadow 

masks, microstamps or any mechanical alignment for color patterning is therefore not employed to 
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obtain the different OLED emission colors in this case, which offers significant advantage in color 

patterning processes.  

From these results, it has been demonstrated that the diffusion-based maskless color patterning 

technique is technically feasible and potentially provides us an opportunity to achieve OLED display 

fabrication with higher reliability. In addition, it is demonstrated that diffusion time can be significantly 

reduced by solvent vapor exposure. The reduction of diffusion time enhances the technical value of this 

technique. However, the preliminary results show that exposing a premixed HTM:dopant layer to 

solvent exposure can reduce device efficiency depending on materials. Further investigations are 

required to clarify effects on device performance. Also, the use of the semiconducting diffusion barrier 

is introduced as a method to control diffusion depth and dopant concentrations. OLED devices doped 

via diffusion are fabricated with highly controlled diffusion depth and dopant concentration utilizing the 

diffusion barrier. The result demonstrates that the use of the diffusion barrier is helpful to control 

diffusion depth and dopant concentrations when a luminescent material is doped via diffusion. Finally, a 

simple model for predicting the dopant concentration profile and the approximate time needed to obtain 

a certain desired dopant concentration level is provided.  

Conclusions and future work 

Although RGB OLEDs have been successfully fabricated by using the diffusion-based maskless 

color pattering technique, the development of this technique is still in the early stages. Further 

investigations are required for practical use. For example, the resolution limitation needs to be 

investigated. The resolution is likely limited due to lateral diffusion of the dopant in the host layer, 

which causes the dopant to spread outside of the desired area boundaries. Preliminary investigations 

reveal that such lateral diffusion is limited to ~5-10 µm. For high resolution displays, this lateral 

diffusion can perhaps be readily prevented through the use of pre-patterned grooves or separators in the 

OLED substrate. Also, compatibility of this technique with wide variety of materials needs to be tested. 

The results have shown that the diffusion property depends on Tg of organic materials. However, the 

diffusion property could also depend on other factors such as molecular structure and density of films. 

In order to demonstrate applicability of this technique to a wide variety of materials, further systematic 
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studies are required. In addition, while the enhancement of diffusion by solvent vapor exposure has 

been confirmed, the effects on devices have not been clarified. The preliminary investigation indicates 

that device efficiency can be significantly reduced when a HTM:dopant premixed layer is exposed to 

solvent vapor depending on materials. In order to clarify the mechanism and to discover methods to 

reduce the adverse effects, further investigation is necessary. Such investigations may include effects of 

solvent vapor exposure on morphology and optical properties of organic films in addition to 

investigations on the effects on device performance.  
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Appendix 1 Selective Diffusion Using Laser Local Heating 

In this work, selective diffusion is achieved by utilizing local ITO Joule heating as demonstrated in 

Section 5.3. Alternatively, selective diffusion can also be achieved by utilizing local laser heating. This 

appendix describes the proposed procedure of this approach and shows the very first result of a 

preliminary investigation to assess its technical feasibility. 

Introduction 

 As demonstrated in Section 5.3, local ITO Joule heating can be utilized to selectively dope a host 

layer with a luminescent material. Instead of local Joule heating, this approach utilizes local laser 

heating (Fig. 0.1). The advantage of this approach is that existing TFT backplanes can be used, while an 

additional circuit needs to be built to pass current through the ITO anodes in the case of the local Joule 

heating method. This approach is also similar to the LITI process, but the required temperature is 

relatively lower, which reduces the risk of compromising device performance
[26]

. In this preliminary 

investigation, it is determined whether a luminescent material can be transferred via diffusion from a 

donor to an acceptor film on separate substrate placed in physical contact by laser local heating.  

 

 

Figure 0.1 General scheme for the selective diffusion of a luminescent material through local heating via laser 
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Experimental Procedure 

In this experiment, the host NPB layer is selectively doped with DCJTB via diffusion by local laser 

heating. Figure 0.2 presents the procedure for fabricating the OLED that is doped via laser local heating. 

First, a ~3 nm MoO3 and a ~60 nm NPB are deposited on an ITO coated glass substrate to serve as the 

HIL and HTL and host, respectively (acceptor substrate). DCJTB are then selectively doped from a 

separate donor substrate into the NPB host layer on the acceptor substrate by local laser heating. The 

donor substrate is a quartz substrate where the layer stack of a ~150 nm Alq3:Silver(Ag) mixture, a 

~100 nm Ag and a ~20 nm DCJTB is deposited. The Alq3:Ag mixture layer serves as a light to heat 

conversion (LTHC) layer due to high light absorption
[75]

. The Ag layer between the LTCH and DCJTB 

layers serves as a light reflective layer and also a protective layer to prevent the DCJTB layer from 

mixing with the LTCH layer. The acceptor and donor substrates are placed in physical contact, and the 

donor substrate is locally heated by laser exposure in a dry nitrogen environment for 30 minutes with a 

laser power of 15 W/cm
2
, a beam diameter of 1.2 mm, and a laser wavelength of 532 nm. After that, the 

donor substrate is removed, the acceptor substrate is put back in the vacuum system, and a ~40 nm thick 

Alq3 ETL followed by a ~0.5 nm thick LiF EIL and a ~70 nm Al cathode are deposited to complete the 

device. The EL image of the device is then captured by optical microscope.  

 

 

Figure 0.2 A schematic diagram illustrating the steps of the procedure followed for fabricating OLEDs 

selectively doped via diffusion by local laser heating.  

 



 

 119 

Results and discussion  

Figure 0.3 shows the EL image of the OLED fabricated through the procedure in Figure 0.2. As can 

be seen, red emission is partially observed on the green background. The red emission is emitted from 

the DCJTB transferred via diffusion from the donor substrate to the NPB host layer by laser heating. 

This result indicates that a luminescent dopant can be selectively transferred via diffusion by laser local 

heating without causing significant detrimental effects on devices.  

This approach is still in the first stage of investigation. Further studies need to be performed for 

practical application. For example, a potential critical issue of this technique is the non-uniformity of 

spatial doping level. As shown in the figure, it seems that the doping level is higher in the middle of the 

laser-exposed area and lower around the periphery, which likely reflects the non-uniformity of the 

temperature profile. A method needs to be developed to achieve more uniform spatial doping levels. 

Also, further investigations on device performance including quantitative device characteristics need to 

be conducted.  

 

 

Figure 0.3 EL image of the OLED fabricated through the procedure in Fig. 0.2 
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Appendix 2 Absorption Spectrum of NPB Doped with DCJTB  

 

Figure 0.4 The absorption spectra of 5nm of NPB films doped with various DCJTB concentrations (0-16%). 

 

Supplementary Figure 0.4 presents the absorption spectra of 5 nm NPB films doped with various 

DCJTB concentrations (from 0-16% by volume) made by co-deposition, which are served as reference 

data for the results in Figure 5.3 (b) (background absorption by NPB and the substrate is subtracted in 

Figure 5.3 (b)). As can be seen, the peak wavelength does not significantly change with DCJTB 

concentration, suggesting that molecular aggregation does not significantly increase with concentration 

in this range. It is therefore possible to use UV-vis optical absorption spectra to estimate the relative 

amount of DCJTB molecules in the host films (as done in Section 5.1). 
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Appendix 3 ITO Temperature vs Bias Voltage 

 

Figure 0.5 Temperature vs bias voltage of the ITO strip  

 

Figure 0.5 presents the temperature vs bias voltage of the ITO strip used in this work. The 

temperature of the ITO strip is measured by thermocouples. The sheet resistance of the ITO film is 15 

Ω, which provides the ITO strip with the resistance of ~100 Ω. In the experiment shown in section 5.3, 

13 V is applied to the ITO trip. According to this result, the temperature of the ITO strip reaches 

~120 ℃ at this bias voltage. However, the actual temperature of the ITO film should be lower than 

~120 ℃ because of heat dissipation via the donor substrate which is placed in physical contact with 

the acceptor substrate. Therefore, significant thermal damage does not occur to the NPB film (Tg = 

99 ℃) even though the organic film is deposited on the ITO film.  

 


