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Abstract

In this thesis, we focus on solving multidimensional HJB equations which are derived from
optimal stochastic control problems in the financial market. We develop a fully implicit,
unconditionally monotone finite difference numerical scheme. Consequently, there are no
time step restrictions due to stability considerations, and the fully implicit method has
essentially the same complexity per step as the explicit method. The main difficulty in
designing a discretization scheme is development of a monotonicity preserving approximation
of cross derivative terms in the PDE. We primarily use a wide stencil based on a local
coordination rotation. The analysis rigorously show that our numerical scheme is `∞ stable,
consistent in the viscosity sense, and monotone. Therefore, our numerical scheme guarantees
convergence to the viscosity solution.

Firstly, our numerical schemes are applied to pricing two factor options under an un-
certain volatility model. For this application, a hybrid scheme which uses the fixed stencil
as much as possible is developed to take advantage of its accuracy and computational ef-
ficiency. Secondly, using our numerical method, we study the problem of optimal asset
allocation where the risky asset follows stochastic volatility. Finally, we utilize our numeri-
cal scheme to carry out an optimal static hedge, in the case of an uncertain local volatility
model.
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Chapter 1

Introduction

1.1 Overview

A key sufficient requirement for ensuring convergence to the viscosity solution of multidi-
mensional Hamilton-Jacobi-Bellman (HJB) equations is that the discretization be monotone
[6, 7]. In this thesis, we are particularly interested in optimal stochastic control problems
in the financial market where the control appears in the diffusion tensor. In this case, con-
struction of a monotone scheme is a non-trivial matter. In general, no fixed stencil finite
difference scheme can produce a monotone scheme for arbitrary multidimensional diffusion
tensors [33]. To ensure monotonicity for problems with non-constant diffusion tensors, first
order wide stencil methods have been suggested. That is, the stencil increases in size (rela-
tive to the node spacing) as the grid is refined. Previous work has focused on explicit wide
stencil schemes [14, 30]. In this thesis, we focus on fully implicit methods (hence avoiding
timestep restrictions due to stability considerations).

As to the discretization method, we will primarily use a wide stencil based on a local
coordinate rotation. An alternative approach is based on factoring the diffusion tensor. This
idea of factoring the diffusion tensor, has a long history in stochastic control, see for example
[56, 17, 52]. For a recent overview of these methods, we refer the reader to [30]. Another
variant of the wide stencil method is discussed in [14, 13]. However, as noted in [30], the
computational complexity of computing the coefficients of the wide stencil technique in [14]
is quite large, which leads to problems if the coefficients need to be recomputed at every
node and every policy iteration (as would be required in our implicit approach).

As a concrete application of our method, we firstly develop the numerical scheme for
pricing two-factor contingent claims under the well known uncertain volatility model. How-
ever, the reader should have no difficulty applying the techniques in this paper to other
optimal stochastic control problems formulated as HJB equations. Secondly, we modify this
scheme to study the pre-commitment mean variance asset allocation under stochastic volatil-
ity. Lastly, we provide a practical approach to value options with volatility uncertainty when
calibrating local volatility values to market quotes.
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1.1.1 Uncertain Volatility Model

The uncertain volatility model was first independently developed by Lyons [55] and Avel-
laneda et al. [5]. In this case, the volatility of the risky asset is assumed to lie within a range
of values. As such, prices obtained under a no-arbitrage analysis are no longer unique. All
that can be computed are the best-case and worst-case prices, for a specified long or short
position. By assuming the worst case, an investor can hedge his/her position and obtain a
non-negative balance in the hedging portfolio, regardless of the actual volatility movement,
provided that volatility remains within the specified range.

Several studies have already considered the uncertain volatility for one factor problems.
A European call option with transaction costs and uncertain volatility is considered in [32].
Barrier options under uncertain volatility were studied in [3] and [16], as well as American
options and a portfolio of uncertain volatility options. American options were also studied in
[66]. Using market bid-ask spreads, an uncertain volatility calibration method was suggested
in [20]. A fully implicit PDE scheme is developed for discretely observed barrier options in
[40]. These studies are all based on numerical solution of the HJB equations.

In the one-dimensional (single factor) case, it has been shown in [61] that seemingly
reasonable discretizations of the uncertain volatility PDE may not converge to the viscosity
solution, which is the financially relevant solution. Consequently, it is important to ensure
that the numerical scheme is l∞ stable, consistent in the viscosity sense, and monotone.
These properties guarantee convergence to the viscosity solutions [7].

Two factor uncertain volatility models were discussed in [62], however, the scheme was not
guaranteed to be monotone. The main difficulty in constructing compact multi-dimensional
monotone schemes is the presence of the mixed derivative term, which appears in any case
where there is a non-zero correlation between the two underlying assets. In certain cases,
monotone schemes can be constructed for very restrictive grid spacing conditions and for
certain classes of diffusion tensors [58], but this approach is not very general. In this thesis,
we develop an unconditionally monotone numerical scheme for the two factor uncertain
volatility model.

1.1.2 Pre-commitment mean variance asset allocation

Consider the following prototypical asset allocation problem: an investor can choose to invest
in a risk free bond, or a risky asset, and can dynamically allocate wealth between the two
assets, to achieve a pre-determined criteria for the portfolio over a long time horizon. In the
continuous time mean variance approach, risk is quantified by variance, so that investors aim
to maximize the expected return of their portfolios, given a risk level. Alternatively, they aim
to minimize the risk level, given an expected return. As a result, mean variance strategies
are appealing due to their intuitive nature, since the results can be easily interpreted in
terms of the trade-off between the risk and the expected return.
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In the case where the asset follows a Geometric Brownian Motion (GBM), there is con-
siderable literature on the topic [53, 10, 76, 73]. The multi-period optimal strategy adopted
in these papers is of pre-commitment type, which is not time-consistent as noted in [11, 8].
A comparison between time-consistent and pre-commitment strategies is given in [74], for
continuous time mean variance optimization. We note that since a time consistent strategy
can be constructed from a pre-commitment policy by adding a constraint [74], the time
consistent strategy is sub-optimal compared to the pre-commitment policy, i.e., it is costly
to enforce time consistency. In addition, it has been shown in [71] that pre-commitment
strategies can also be viewed as a target-based optimization which involves minimizing a
quadratic loss function. It is suggested in [71] that this is intuitive, adaptable to investor
preferences, and is also mean variance efficient.

Most previous literature on pre-commitment mean variance optimal asset allocation has
been based on analytic techniques [53, 76, 10, 75, 57]. These papers have primarily employed
martingale methods [10, 75, 57] or tractable auxiliary problems [53, 76]. However, in general,
if realistic constraints on portfolio selection are imposed, e.g., no trading if insolvent and a
maximum leverage constraint, then a fully numerical approach is required. As shown in
[72], in the case where the risky asset follows a GBM, realistic portfolio constraints have a
significant effect on the efficient frontier.

Another modeling deficiency in previous work on pre-commitment mean variance optimal
asset allocation is the common assumption that the risky asset follows a GBM. However,
there is strong empirical evidence that asset return volatility is serially correlated, shocks to
volatility are negatively correlated with asset returns, and the conditional variance of asset
returns is not constant over time. As a result, it is highly desirable to describe the risky asset
with a stochastic volatility model. In this case, the standard formulation of mean variance
optimal asset allocation problems gives rise to a two-dimensional non-linear HJB PDE. In
this thesis, we develop a numerical method for the pre-commitment mean variance portfolio
selection problem when the underlying risky asset follows a stochastic volatility model.

1.1.3 Uncertain Local Volatility

Assume that the underlying asset satisfies the following stochastic differential equation under
the risk-neutral measure

dS

S
= rdt+ σ(S, t)dW, (1.1)

where W is a standard Brownian motion, and σ(S, t) is a deterministic function that varies
with both asset price S and time t. From Dupire’s formula [35], the local volatility function
can be explicitly and uniquely determined from European call prices and their sensitivities
with respect to strike and maturity. However, this requires European call options for a
continuum of strikes and maturities. Market European option prices are typically limited
to a relatively few different strikes and maturities. Hence, this requirement is not met in
practice. This makes the problem of determining the local volatility function a well-known

3



ill-posed problem. Furthermore, the prices are only observed to within bid-ask spreads so
there exists a noise component in the market data.

Many computational procedures, e.g., [22, 25], are developed to address the difficulties
of calibrating a local volatility surface. All these techniques are based on similar ideas:
loss functions, penalty functions and minimisation techniques. A loss function measures
the difference between the market prices and the prices generated by the calibrated model.
The penalty function imposes a regularised constraint to deal with the ill-posed calibration
problem. Finally, the calibration problem is formulated as a minimisation problem where the
objective function is involved in both the loss and penalty function. A best-fit local volatility
model is then determined by the calibration procedure.

Choosing a pre-specified calibration method restricts the solution to a more well-behaved
class, but the resulting solution does not contain information on its uncertainty. A calibration
method depends on the discretization of the local volatility function; the choice of the loss
function (absolute error or mean squared error); the choices of the weights for the calibrated
instrument in the loss function; and the regularising assumptions. All these components
play crucial roles in the calibration procedure. There is no reason to believe that this best-fit
model is the best approximation of the underlying process. There are infinitely many models
which can reproduce the market prices.

Realizing the shortcoming of the best-fit approach, another approach is to no longer focus
on finding a best-fit solution, but finding an entire distribution of solutions. Thus, instead
of calibrating the local volatility function which best replicates market prices, all models
are tracked which replicate market prices to within an acceptable tolerance level of error.
Using an evolutionary algorithm, Hamida and Cont [44] construct a family of local volatility
models compatible with a given set of European call bid and ask prices. Gupta [41] recasts
the calibration problem into a Bayesian framework. This approach makes it possible to
assess the stability of the estimators by observing how the Bayesian posterior distribution
varies with small changes in the prior and calibration prices.

In this thesis, we adapt the Bayesian framework [41] to determine the volatility bound
for the local volatility function. In contrast to constant lower and upper volatility bounds in
[4, 55], the range of the volatilities in our framework is bounded by state-dependent functions.
We will refer to this model as uncertain local volatility to differentiate this model from
the classic uncertain volatility model. However, the spread between minimal and maximal
prices produced by this approach is sometimes so large as to make price bounds somewhat
unrealistic. To address this issue, static hedging can be used to decrease the spread between
the minimal and maximal prices.

1.2 Contributions

The major contributions of this thesis with regard to numerical solution for the two factor
uncertain volatility model are as follows.
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• A fully implicit, consistent, unconditionally monotone numerical scheme is first de-
veloped for a two factor uncertain volatility model. This method is based on a local
coordinate rotation. The discretized algebraic equations are solved using policy iter-
ation. Our discretization method results in a local objective function which can be a
discontinuous function of the control. Hence some care must be taken when apply-
ing policy iteration [48]. Since we use implicit timestepping, there are no time step
restrictions due to stability considerations, an advantage over the method in [30].

• Each policy iteration requires solution of an unstructured sparse M-matrix at each
iterate. Since the stencil potentially changes at each policy iteration, this means that
the data structure of the sparse matrix must be recomputed at each policy iteration.
In this thesis, we use a preconditioned Bi-CGSTAB iterative method for solving the
sparse matrix [64]. However, the cost of constructing the data structure and solving the
matrix is in fact negligible in comparison to the cost of solving the local optimization
problem at each grid node. Assuming that the number of policy iterations is bounded
as the mesh size tends to zero (which is in fact observed experimentally) the fully
implicit method has essentially the same complexity per step as the explicit method
in [30].

• To make the numerical scheme consistent, the stencil length is increased to the order
of
√
h, where h is the mesh discretization parameter. When solving PDEs on bounded

domains, the naive numerical scheme may require points outside the computational
domain. We propose a simple method to avoid this problem, which retains consistency.

• A monotone scheme is constructed by factoring the diffusion tensor in [30]. We compare
this approach to the method based on a local coordinate system rotation. Although
both of these wide stencils are first order, our numerical experiments indicate that the
use of the locally rotated coordinate system seems to perform better than constructing
a local coordinate system based on factoring the diffusion tensor.

• We prove that these methods converge to the viscosity solution of the uncertain volatil-
ity HJB equations.

• We also derive a hybrid numerical scheme that combines use of a fixed stencil [19, 58]
and a wide stencil. The fixed stencil is a second-order approximation (for smooth test
functions), but this discretization cannot ensure monotonicity at every node in general.
We propose an algorithm which uses the fixed stencil as much as possible to take
advantage of its accuracy and computational efficiency, while still keeping the numerical
scheme monotone. This can be viewed as the multi-dimensional generalization of the
standard “central differencing as much as possible” scheme in one dimension [72]. Our
tests show that this hybrid technique is generally more smoothly convergent and more
accurate than a pure wide stencil scheme. Note that use of an explicit scheme coupled
with the hybrid discretization would not result in a practical method, due to the small
timesteps required for stability.
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The major contributions of this thesis with regard to numerical solution for continuous
time mean variance asset allocation under stochastic volatility are as follows.

• A fully implicit, consistent, unconditionally monotone numerical scheme is developed
for the HJB equation, which arises in the embedding formulation [76, 53] of the pre-
commitment mean variance problem under our model set-up.

• Accurate efficient frontiers are constructed by using a semi-Lagrangian timestepping
method to handle the drift term, and an improved method of linear interpolation
at the foot of the characteristic in the semi-Lagrangian discretization. In particular,
the improved interpolation method uses the exact solution value at a single point,
dramatically increasing the accuracy of the numerical results. Any type of constraint
can be applied to the investment policy.

• We prove that the scheme developed in this thesis converges to the viscosity solution
of the nonlinear HJB value equation.

• In order to trace out the efficient frontier solution of our problem we use two tech-
niques: the PDE method and the Hybrid (PDE - Monte Carlo) method [68]. We also
demonstrate that the Hybrid method is superior to the PDE method.

• We carry out several numerical experiments, and illustrate the convergence of the
numerical scheme, as well as the effect of modeling parameters on efficient frontiers.

The major contributions of this thesis with regard to pricing options with uncertain local
volatility are as follows.

• We provide a practical framework to valuing options with volatility uncertainty when
calibrating the local volatility function to the market quotes.

• By using the approach of reformulating the local volatility calibration problem into a
Bayesian framework, we construct a reasonable pair of the lower and upper bounds for
the local volatility values.

• We demonstrate how the use of an optimal static hedge can reduce model calibration
risk.

1.3 Outline

Chapters 2 to 4 develop a numerical scheme for the two-factor uncertain volatility model.
Chapter 2 describes the numerical scheme, and shows numerical results. In chapter 3 we
prove that our numerical scheme guarantees convergence to the viscosity solution. Chapter

6



4 discusses the policy iteration algorithm used to solve the discretized algebraic equations
using implicit timestepping.

Chapter 5 studies numerical solution of the HJB formulation for continuous time mean
variance asset allocation under stochastic volatility. Chapter 6 discusses the uncertain local
volatility model. Chapter 7 concludes.
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Chapter 2

An Unconditionally Monotone
Numerical Scheme for the Two Factor
Uncertain Volatility Model

In this chapter, a fully implicit, consistent, unconditionally monotone numerical scheme is
first developed for a two factor uncertain volatility model. This chapter is organized as fol-
lows: Section 2.1 gives a formulation of an associated HJB equation for the two factor option
pricing problem under uncertain volatility model. We discuss the optimization problem in-
volved in the HJB equation in Section 2.2. In Section 2.3, we detail the discretization of the
HJB equation. Numerical results are presented and discussed in Section 2.4. This chapter
focuses on a presentation of the scheme, and numerical tests. Proofs of convergence to the
viscosity solution are postponed to Chapter 3.

2.1 Formulation

Let U(S1, S2, τ) be the value of a European option contract written on asset prices S1 and
S2, which both follow the stochastic processes under the risk neutral measure

dS1 = (r − q1)S1dt+ σ1S1dW1,

dS2 = (r − q2)S2dt+ σ2S2dW2,
(2.1)

where r is the risk-free interest rate, qi, i = 1, 2 are the dividend yields for Si. σi, i = 1, 2 are
volatilities, and Wi, i = 1, 2 are Wiener processes with dW1dW2 = ρ dt. Following standard
arguments, the underlying PDE for the no-arbitrage price of the option contract U(S1, S2, τ)
is given by

Uτ = LU ,
U(S1, S2, 0) =W(S1, S2),

(2.2)
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which is defined over (S1, S2, τ) ∈ [0,+∞]× [0,+∞]× [0, T ]. W(S1, S2) is the terminal payoff
of the option contract. The linear differential operator L is defined as

LU = V · ∇U + (D∇) · ∇U − rU ,
D ∈ R2 × R2; V ∈ R2;

∇ =

( ∂
∂S1
∂
∂S2

)
, V =

(
(r − q1)S1

(r − q2)S2

)
, D =

1

2

(
σ2

1S
2
1 ρσ1σ2S1S2

ρσ1σ2S1S2 σ2
2S

2
2

)
,

(2.3)

where ∇ is the gradient operator, V is the drift tensor, and D is the diffusion tensor. Note
that the notation (D∇) · ∇U is to be interpreted as

(D∇) · ∇U =
σ2

1S
2
1

2
US1S1 + ρσ1σ1S1S2 US1S2 +

σ2
2S

2
2

2
US2S2 . (2.4)

Now we generalize PDE (2.2) to the uncertain volatility model that was first developed
in [5] and [55]. That is, σi is an uncertain volatility in the processes (2.1), but lies within
a range, e.g., σ1 ∈ [σ1,min, σ1,max] and σ2 ∈ [σ2,min, σ2,max]. In addition, uncertain correlation
between the two underlying assets is permitted, e.g., ρmin ≤ ρ ≤ ρmax. When the volatilities
σ1, σ2, and the correlation ρ are uncertain, the diffusion tensor in the PDE (2.2) for the
price of an option contract is no longer unique. Nevertheless, the maximal and minimal
solution values of an option contract are given by the following Hamilton-Jacobi-Bellman
(HJB) PDEs

Uτ = V · ∇U + sup
Q∈Z

((D∇) · ∇U)− rU , (2.5a)

Uτ = V · ∇U + inf
Q∈Z

((D∇) · ∇U)− rU , (2.5b)

where the control Q = (σ1, σ2, ρ), and the admissible set of the controls is given by

Z = [σ1,min, σ1,max]× [σ2,min, σ2,max]× [ρmin, ρmax],

σ1,min ≥ 0, σ2,min ≥ 0, −1 ≤ ρmin ≤ 1, −1 ≤ ρmax ≤ 1.
(2.6)

We can consider equation (2.5a) to be the worst case cost of hedging a short position in the
contract, while equation (2.5b) is the worst case cost of hedging a long position. Without loss
of generality, we only consider the sup problem in the following discussion. All the results
of the thesis hold in the inf case as well.

2.2 Restriction of control set Z

Before we introduce our discretization method, we take a short digression here to discuss the
maximization of the right hand side of equation (2.5a). We consider (for the time being) that
all the derivatives which appear on the right hand side of equation (2.5a) are constructed
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from known, smooth functions. Since consistency in the viscosity sense is defined in terms
of smooth test functions [7], this will be relevant to our discretization approach.

To maximize the solution value in equation (2.5a), it suffices to maximize the diffusion
terms. Let Γkl ≡ ∂2U

∂Sk∂Sl
, k, l = 1, 2. Assume for the moment that Γkl is constant, independent

of the control. In this notation, the diffusion terms in (2.5a) become

sup
Q∈Z

((D∇) · ∇U) = max
(σ1,σ2,ρ)∈Z

(
σ2

1S
2
1

2
Γ11 + ρσ1σ2S1S2Γ12 +

σ2
2S

2
2

2
Γ22

)
. (2.7)

Since Z (2.6) is a compact set, the supremum is simply the maximum value.

It is easy to see that the optimal correlation value is a bang-bang control. That is, the
optimal ρ ∈ {ρmin, ρmax}, depends only on the sign of the cross derivative Γ12.

ρ (Γ12) =

{
ρmax Γ12 ≥ 0

ρmin Γ12 < 0.
(2.8)

With ρ given from (2.8), a quadratic-form optimization with linear constraints needs to
be solved. The problem is formulated as

max
σ

σTMσ ≡ max
σ1,σ2

(
σ1 σ2

)( S2
1

2
Γ11 ρ(Γ12)S1S2

2
Γ12

ρ(Γ12)S1S2

2
Γ12

S2
2

2
Γ22

)(
σ1

σ2

)
, (2.9)

subject to
σ1,min ≤ σ1 ≤ σ1,max, σ2,min ≤ σ2 ≤ σ2,max. (2.10)

Proposition 2.1. Suppose that Γik exist ∀i, k. The optimal value of the objective function
in (2.7) can be determined by examining values only on the boundary of Z, denoted by ∂Z.

sup
Q∈Z

((D∇) · ∇U) = sup
Q∈∂Z

((D∇) · ∇U) . (2.11)

Proof. From equation (2.8), the choice of the optimal correlation ρ is either ρmax or ρmin,
depending on the sign of the cross derivative term. Thus, the optimal correlation is always
either end of its range [ρmin, ρmax].

The quadratic form in equation (2.9) is σTMσ. A critical point is such that Mσ = 0.
When M is a non-singular matrix, the critical point is (0, 0), which is either outside Z or on
the boundary of Z. When M is singular, the critical points are on the line{

(σ1, σ2)

∣∣∣∣S2
1

2
Γ11σ1 +

ρ(Γ12)S1S2

2
Γ12σ2 = 0

}
.

If this line intersects Z, then the optimal value is attained on ∂Z. If this line does not
intersect Z, then the optimal value is also on ∂Z. Hence, in all cases, the optimal value can
be attained by examining the objective function on ∂Z.
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Remark 2.1. Proposition 2.1 will prove useful when we design a numerical scheme. In
the case when the discretization stencil depends on the control, no analytical expression is
available for the optimal value. We can then discretize the control set and search over the
boundary ∂Z, instead of the entire three dimensional set Z. Consistency in the viscosity
sense is defined in terms of smooth test functions, hence our assumption that Γi,k exist is not
restrictive and we can then use Proposition 2.1 to prove that this is a consistent discretization
(in the viscosity sense).

2.3 Discretization

In the thesis, we develop an unconditionally monotone finite difference numerical scheme
for the two factor uncertain volatility model. However, a standard finite difference scheme
cannot ensure monotonicity due to the cross derivative term. For example, the fixed point
stencil method in [58] requires a restrictive grid spacing, which cannot always be satisfied,
to preserve monotonicity. In our problem, the diffusion tensor is non-constant and non-
diagonally dominant. Monotonicity is formally defined in [7], and we will discuss this in
more detail in Chapter 3. For now, it suffices to note that we can develop an unconditionally
monotone scheme by choosing a discretization which eliminates the cross derivative term in
equation (2.5a).

We will focus mainly on a wide stencil method based on a local coordinate rotation, but
we include some comparisons with the factoring technique in [30]. Furthermore, we propose
a hybrid algorithm which combines use of a fixed point stencil [19, 58] with a wide stencil.
This algorithm uses the fixed point stencil as much as possible to take advantage of its
accuracy and computational efficiency, but still keeping the numerical scheme monotone.

We discretize equation (2.5a) over a finite grid N = N1×N2 in the spatial space (S1, S2).
Define a set of nodes {(S1)1, (S1)2, . . . , (S1)N1} in the S1 direction and {(S2)1, (S2)2, . . . , (S2)N2}
in the S2 direction. Denote the nth time step by τn = n∆τ, n = 0, . . . , Nτ , with Nτ = T

∆τ
.

Let Uni,j be the approximate solution of the equation (2.5a) at ((S1)i, (S2)j, τ
n).

It will be convenient to define

∆(S1)max = max
i

((S1)i+1 − (S1)i) , ∆(S1)min = min
i

((S1)i+1 − (S1)i) ,

∆(S2)max = max
i

((S2)i+1 − (S2)i) , ∆(S2)min = min
i

((S2)i+1 − (S2)i) .
(2.12)

We assume that there is a mesh discretization parameter h such that

∆(S1)max = C1h, ∆(S2)max = C2h, ∆(S1)min = C
′

1h, ∆(S2)min = C
′

2h, ∆τ = C3h, (2.13)

where C1, C2, C
′
1, C

′
2, C3 are constants independent of h.
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2.3.1 The fixed point stencil

We use a seven-point stencil [19, 58] to discretize the cross-partial derivative ∂2U
∂S1∂S2

. Denote

∆+(S1)i = (S1)i+1 − (S2)i, ∆−(S1)i = (S1)i − (S1)i−1,

∆+(S2)j = (S2)j+1 − (S2)j, ∆−(S2)j = (S2)j − (S2)j−1.
(2.14)

We approximate the cross-partial derivative at ((S1)i, (S2)j, τ
n) using one of the following

stencils, as illustrated in Figure 2.1, depending on the sign of ρ. For ρ ≥ 0, we use

∂2U
∂S1∂S2

≈
2Uni,j + Uni+1,j+1 + Uni−1,j−1

∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j
−

Uni+1,j + Uni−1,j + Uni,j+1 + Uni,j−1

∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j
.

(2.15)
For ρ < 0, we use

∂2U
∂S1∂S2

≈ −
2Uni,j + Uni+1,j−1 + Uni−1,j+1

∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j
+

Uni+1,j + Uni−1,j + Uni,j+1 + Uni,j−1

∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j
.

(2.16)

x

x

x

x

x

x

x

(a) ρ ≥ 0

x

x

x

x

x

x

x

(b) ρ < 0

Figure 2.1: The seven-point stencil for ρ ≥ 0 and ρ < 0. The seven points used in the stencil
depend on the sign of ρ.

Standard three point differences are used for the ∂2U
∂S1∂S1

and ∂2U
∂S2∂S2

terms. First order
partial derivatives in (2.5a) are approximated with second order central differencing as much
as possible. Algorithm A.1 in Appendix A shows how to select central, forward and backward
differencing to minimize the appearance of negative coefficients in the discretization [72]. The
linear differential operator L in (2.5a) is discretized to form the discrete linear operator LQf .

LQf U
n
i,j = (αS1

i,j − γi,j)Uni−1,j + (βS1
i,j − γi,j)Uni+1,j + (αS2

i,j − γi,j)Uni,j−1 + (βS2
i,j − γi,j)Uni,j+1

+ 1ρ≥0(γi,jUni+1,j+1 + γi,jUni−1,j−1) + 1ρ<0(γi,jUni+1,j−1 + γi,jUni−1,j+1)

− (αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r)Ui,j,
(2.17)
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where αS1
i,j , β

S1
i,j , α

S2
i,j , β

S2
i,j , and γi,j are defined in Appendix A. The notation LQf indicates that

the equation coefficients are functions of the control Q.

The positive coefficient condition [39] is

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, βS2

i,j − γi,j ≥ 0,

γi,j ≥ 0, αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r ≥ 0, 1 ≤ i < N1, 1 ≤ j < N2.
(2.18)

We remind the reader that the positive coefficient condition is sufficient in order to ensure
monotonicity [39].

Due to the presence of the γi,j term in (2.17), the discretization does not ensure that the
positive coefficient condition (2.18) is satisfied even if our choice of the seven-point operator
ensures that γi,j ≥ 0. However, our algorithm makes the positive coefficient condition hold
on as many grid nodes as possible with a fixed stencil. Only when the cross derivative
term disappears in the HJB equation (2.5a) can we guarantee that the positive coefficient
condition always holds for a fixed point stencil.

Remark 2.2. It is possible to carry out a logarithmic transformation on equation (2.5a).
In the new coordinate system (logS1, logS2), the diffusion tensor becomes constant for a
fixed control. If we discretize the PDE on the space (logS1, logS2), a positive coefficient
discretization can be constructed for a very restrictive grid spacing condition [19], but this
approach is not very general, and the diffusion tensor is not constant if local volatility surfaces
are used, which is common in practice. Consequently, we prefer to use the more meaningful
discretization in (S1, S2) coordinates.

2.3.2 Local coordinate rotation: the wide stencil

We now consider the wide stencil discretization method. Suppose we discretize equation
(2.5a) at grid node (i, j) for a fixed control. Consider a virtual rotation of the local coordinate
system clockwise by

θi,j =
1

2
tan−1

(
2ρσ1σ2(S1)i(S2)j

(σ1(S1)i)2 − (σ2(S2)j)2

)
. (2.19)

That is, (y1, y2) in the transformed coordinate system is obtained by using the following
matrix multiplication (

S1

S2

)
=

(
cos θi,j − sin θi,j
sin θi,j cos θi,j

)(
y1

y2

)
. (2.20)

We denote the rotation matrix in (2.20) as Ri,j. This rotation operation will result in a zero
correlation in the diffusion tensor of the rotated system. That is, the cross derivative term
will be eliminated. Under this grid rotation, the second order terms in equation (2.2) are, in
the transformed coordinate system (y1, y2),

ai,j
∂2V
∂y2

1

+ bi,j
∂2V
∂y2

2

, (2.21)
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where V is the value function V(y1, y2, τ) in the transformed coordinate system, and

ai,j =

(
(σ1 cos(θi,j)(S1)i)

2

2
+ ρσ1σ2(S1)i(S2)j sin(θi,j) cos(θi,j) +

(σ2 sin(θi,j)(S2)j)
2

2

)
,

bi,j =

(
(σ1 sin(θi,j)(S1)i)

2

2
− ρσ1σ2(S1)i(S2)j sin(θi,j) cos(θi,j) +

(σ2 cos(θi,j)(S2)j)
2

2

)
.

(2.22)

The diffusion tensor in (2.21) is diagonally dominant with no off-diagonal terms, and
consequently a standard finite difference discretization for the second partial derivatives is a
positive coefficient scheme. The rotation angle θi,j depends on the grid node and the control,
therefore it is impossible to rotate the global coordinate system by a constant angle and build
a grid over the space (y1, y2). The local coordinate system rotation is only used to construct
a virtual grid which overlays the original mesh. We have to approximate the values of U on
our virtual local grid using an interpolant JhU on the original mesh. To keep the numerical
scheme monotone, linear interpolation is the most accurate interpolation we can use. Thus,
Jh is a linear interpolation operator. Moreover, to keep the numerical scheme consistent, we
need to use the points on our virtual grid whose Euclidean distances are O(

√
h) from the

central node, where h is the mesh discretization parameter (2.13). This results in a wide

stencil method since the relative stencil length increases as the grid is refined (
√
h
h
→ ∞

as h → 0). The wide stencil method is illustrated in Figure 2.2. With a slight abuse of
notation, we define the following

Un(S) ≡ U(S1, S2, τ
n), S =

(
S1

S2

)
, Vn(y) ≡ V(y1, y2, τ

n), y =

(
y1

y2

)
. (2.23)

Then, the second order terms in equation (2.5a) at ((S1)i, (S2)j, τ
n) are approximated as

ai,j
Vn
(
yi,j +

√
he1

)
+ Vn

(
yi,j −

√
he1

)
− 2Vn (yi,j)

h

+ bi,j
Vn
(
yi,j +

√
he2

)
+ Vn

(
yi,j −

√
he2

)
− 2Vn (yi,j)

h

≈ ai,j
JhUn(Si,j +

√
h(Ri,j)1) + JhUn(Si,j −

√
h(Ri,j)1)− 2Un(Si,j)

h

+ bi,j
JhUn(Si,j +

√
h(Ri,j)2) + JhUn(Si,j −

√
h(Ri,j)2)− 2Un(Si,j)

h
,

(2.24)

where Si,j = ((S1)i, (S2)j), yi,j = RT
i,jSi,j, (Ri,j)k is k-th column of the rotation matrix Ri,j

(2.20), and

e1 =

(
1
0

)
, e2 =

(
0
1

)
.

To satisfy the positive coefficient condition, we then use an upstream finite differencing to
discretize the first order derivatives.
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S1

S2

θi,j

√

h

b

b

b

b

b

Figure 2.2: The wide stencil method based on local coordinate rotation.

2.3.3 Boundary conditions

We shall assume that the discretization is posed on a bounded domain for computational
purposes. The discretization is applied to the localized finite region (S1, S2) ∈ [0, S1,max] ×
[0, S2,max].

No boundary condition is needed on the lower boundaries S1 = 0 or S2 = 0. The equation
(2.2) reduces to

∂U
∂τ

=


(r − q2)S2

∂U
∂S2

+
S2

2σ
2
2

2

∂2U
∂S2

2

− rU , for (S1, S2) ∈ {0} × (0, S2,max),

(r − q1)S1
∂U
∂S1

+
S2

1σ
2
1

2

∂2U
∂S2

1

− rU , for (S1, S2) ∈ (0, S1,max)× {0},

−rU , at (S1, S2) = (0, 0).

(2.25)

The cross derivative term vanishes on the lower boundaries. Thus, we can use a standard
finite difference stencil to construct a monotone scheme on the lower boundaries.

In order to preserve monotonicity of the discretization, a Dirichlet boundary condition is
imposed on the upper boundaries S1 = S1,max or S2 = S2,max. As pointed out in [6], we can
expect any errors incurred by imposing approximate boundary conditions at S1 = S1,max or
S2 = S2,max to be small in areas of interest if S1,max or S2,max is sufficiently large. As S1 →∞
or S2 → ∞, we normally use financial reasoning to determine the asymptotic form of the
solution. The upper boundary may be approximated by a time-dependent value

U(S1, S2, τ) ≈ Ū(S1, S2, τ) = C0(τ) + C1(τ)S1 + C2(τ)S2. (2.26)

Equation (2.26) is substituted into equation (2.5a), and expressions for C1(τ), C2(τ) are
easily obtained, since the diffusion terms vanish.
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2.3.4 Avoid using points below the lower boundaries

To make the numerical scheme consistent in a wide stencil method, the stencil length needs
to be increased to use the points beyond the nearest neighbors of the original grid. As
shown in Section 2.3.2, we use the four points Si,j ±

√
h(Ri,j)k, k = 1, 2 in (2.24), when we

approximate the second order terms (2.21). Therefore, when solving the PDE on a bounded
region, this numerical discretization (2.24) may require points outside the computational
domain.

When a candidate point we use is outside the computational region at the upper bound-
aries, we directly use the asymptotic solution as specified in (2.26) at the point. However,
we have to take special care when we may use a point below the lower boundaries S1 = 0
or S2 = 0. The possibility of using points below the lower boundaries only occurs when the
node (i, j) falls in the region

[h,
√
h]× (0, S2,max] ∪ (0, S1,max]× [h,

√
h]. (2.27)

We propose a simple method to avoid this problem, which retains consistency. That is, when
one of the four candidate points Si,j ±

√
h(Ri,j)k, k = 1, 2 is below the lower boundaries,

we then shrink its corresponding distance to h, instead of
√
h. This treatment ensures that

all data required is within the computational domain. The details of the method are given
in Algorithm 2.1. We will formally prove that this simple method retains consistency in
Chapter 3.

Algorithm 2.1 Avoid using the points below the lower boundaries when approximating the
∂2V
∂y2k

, k = 1, 2

1: Let Sk,left = Si,j −
√
h(Ri,j)k and hk,left =

√
h

2: if Sk,left below the lower boundaries then
3: hleft = h
4: end if
5: Let Sk,right = Si,j +

√
h(Ri,j)k and hk,right =

√
h

6: if Sk,right below the lower boundaries then
7: hright = h
8: end if
9: The second derivative term ∂2V

∂y2k
at yi,j = RT

i,jSi,j are approximated as
10:

JhU(Si,j−hk,left(Ri,j)k)−U(Si,j)

hk,left
+
JhU(Si,j+hk,right(Ri,j)k)−U(Si,j)

hk,right

hk,left+hk,right
2

. (2.28)
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2.3.5 Factoring the diffusion tensor

In [30], the wide stencil method based on factoring the diffusion tensor is surveyed. For the
convenience of the reader, we briefly summarize this method here. For more details we refer
readers to [30]. Let the diffusion tensor in (2.2) be

D =
1

2
CTC.

Then, the second order terms in (2.5a) are approximated as

((D∇) · ∇U) ≈ 1

2

(
JhU(S +

√
hC1) + JhU(S−

√
hC1)− 2U(S)

h

+
JhU(S +

√
hC2) + JhU(S−

√
hC2)− 2U(S)

h

)
+O(h),

(2.29)

where Ck is k-th column of C. From the stochastic processes of the two asset prices (2.1),
it is natural to choose

C =

(
σ1S1 0

σ2ρS2 σ2

√
1− ρ2S2

)
.

That is, C is the lower triangular matrix associated with the Cholesky decomposition of the
diffusion tensor.

This consistent approximation is also a first order approximation and compatible with
a monotone numerical scheme. Although the defining ideas, between this method and the
local coordinate rotation introduced in Section 2.3.2, are different, we can relate them by re-
interpreting the approximation (2.29). Firstly, we virtually transform the coordinate system
as follows: (

S1

S2

)
= C

(
y1

y2

)
. (2.30)

This transformation will result in a zero correlation in the diffusion tensor of the transformed
system. After applying this local virtual coordinate transformation, we then construct a local
discretization in a manner similar to the method used for the rotation method in Section
2.3.2. The transformation (2.30) is both a stretching and rotation of the coordinate system,
not an orthogonal rotation (2.20) as in Section 2.3.2. Thus, in (2.29), we shall use points
whose Euclidean distance from (S1, S2) are |

√
hCk|, k = 1, 2, which is state dependent on

S1 and S2. For example, the points we use may be far away from the central node (i, j),
especially when the grid state (S1)i or (S2)j is large. However, as noted in [14] and [52],
it is highly desirable to limit the use of points that are far away from the central node.
When we use the method of locally rotating coordinate system, the candidate points are
always

√
h|(Ri,j)k| =

√
h away from the central node. In our numerical experiments, we will

compare the performance of these two methods.
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2.3.6 Maximal use of a fixed point stencil

We will derive a hybrid scheme which combines use of the fixed point stencil (Section 2.3.1)
with the wide stencil based on a local coordinate rotation (Section 2.3.2). The fixed point
stencil is a second-order approximation of the diffusion terms, but this discretization cannot
ensure a positive coefficient method at every node in general. The computational cost is
also highly increased when we use a wide stencil. This is due to the fact that we have an
analytical solution for the local optimization problem for the fixed point stencil case. On the
other hand, when using a wide stencil, we need to discretize the control set and then perform
a linear search to find the optimal value for the control. Furthermore, the fixed point stencil
uses seven neighbor nodes for a reference node, but the wide stencil method potentially uses
as many as twenty nodes. Thus, when using the implicit timestepping method with solving
sparse matrices, the fixed point stencil is more computational efficient than the wide stencil
method. We propose an algorithm which uses the fixed point stencil as much as possible to
take advantage of its accuracy and computational efficiency, while still satisfying the positive
coefficient condition. Note that our algorithm is also applicable if we factor the diffusion
tensor, as in [30].

Lemma 2.1. The positive coefficient condition (2.18) for a fixed point stencil is satisfied for
an arbitrary Q = (σ1, σ2, ρ), if the following constraints hold

(1) We must select equation (2.15) if ρ ≥ 0 and equation (2.16) if ρ < 0 to approximate the
cross derivative term.

(2) The following sufficient conditions are satisfied,

for ρ ≥ 0

(S2)j max(∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j

≤ σ1

σ2ρ
, (2.31a)

(S2)j
(S1)i max(∆+(S2)j,∆−(S2)j)

∆+(S1)i∆
+(S2)j + ∆−(S1)i∆

−(S2)j
∆+(S2)j + ∆−(S2)j

≥ σ1ρ

σ2

, (2.31b)

for ρ < 0

(S2)j max (∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j

≤ σ1

σ2|ρ|
, (2.32a)

(S2)j
(S1)i max(∆+(S2)j,∆−(S2)j)

∆+(S1)i∆
−(S2)j + ∆−(S1)i∆

+(S2)j
∆+(S2)j + ∆−(S2)j

≥ σ1|ρ|
σ2

. (2.32b)

Proof. We select equation (2.15) if ρ ≥ 0 and equation (2.16) if ρ < 0 to approximate the
cross derivative term, this choice then ensures γi,j ≥ 0. The condition (2) is sufficient to
ensure that the following inequalities

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, αS2

i,j − γi,j ≥ 0,

hold. For more details see [58, Chapter 9.4].
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Note that we use the seven point stencil method to approximate the cross-derivative
term. An alternative discretization approach which is compatible with a monotone scheme
is a weighted average of the approximations as described in [65]. A similar grid spacing
condition is derived to ensure the positive coefficient condition in [65].

Theorem 2.1. Assume that

(1) We must select equation (2.15) if ρ ≥ 0 and equation (2.16) if ρ < 0 to approximate the
cross derivative term.

(2) The grid spacings satisfy the following conditions in terms of extreme values of the control
Q = (σ1, σ2, ρ).

(2.31a) for (σ1,min, σ2,max, ρmax) and (2.31b) for (σ1,max, σ2,min, ρmax), if ρmin ≥ 0,

(2.32a) for (σ1,min, σ2,max, ρmin) and (2.32b) for (σ1,max, σ2,min, ρmin), if ρmax ≤ 0,

(2.31a) for (σ1,min, σ2,max, ρmax), (2.31b) for (σ1,max, σ2,min, ρmax),

(2.32a) for (σ1,min, σ2,max, ρmin), and (2.32b) for (σ1,max, σ2,min, ρmin), if ρmin ≤ 0 ≤ ρmax.
(2.33)

With these conditions and Algorithm A.1, the positive coefficient condition (2.18) is satisfied
for ∀Q ∈ Z. We denote the domain where the conditions (2.33) are satisfied by Ωf .

Proof. For the case ρmin ≥ 0, if the constraint (2.31) holds for all Q ∈ Z, we have

(S2)j max(∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j

≤ inf
Q∈Z

σ1

σ2ρ
=

σ1,min

σ2,maxρmax

,

(S2)j
(S1)i max(∆+(S2)j,∆−(S2)j)

∆+(S1)i∆
+(S2)j + ∆−(S1)i∆

−(S2)j
∆+(S2)j + ∆−(S2)j

≥ sup
Q∈Z

σ1ρ

σ2

=
σ1,maxρmax

σ2,min

.

(2.34)

The proof is similar for the other two cases.

In Algorithm A.1, we select upstream differencing (forward or backward differencing)
and central differencing for the first order derivative terms. When the conditions in The-
orem 2.1 are satisfied, upstream differencing ensures that the positive coefficient condition
holds. However, central differencing is used as much as possible to minimize discretization
error. Consequently, given a control Q, if central differencing satisfies the positive coefficient
condition, central differencing will be preferred.
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Remark 2.3. Grid spacing conditions in Theorem 2.1 depend on the space state (S1, S2),
thus the structure of a grid is not always such that these conditions are met everywhere. We
shall not enforce these conditions, but indeed check whether they are satisfied at a given grid
node.

Our algorithm is summarized as follows. The domains are defined in Table 2.1. The
fixed point stencil introduced in Section 2.3.1 is used in the domain Ωf . For the case
((S1)i, (S2)j, τ

n+1) ∈ Ωw, we need to use a wide stencil based on a local coordinate rotation to
discretize the second derivative terms (D∇)·∇U in the HJB equation (2.5a). When using the
wide stencil discretization, we use upstream finite differencing for the first order derivatives.
We avoid using points below the lower boundaries for ((S1)i, (S2)j, τ

n+1) ∈ Ωw∗ . We use the
asymptotic solution (2.26) of the HJB equation at a point outside the computational region
at the upper boundaries. From the discretization (2.24), we can see that the measure of Ωout

converges to zero as h→ 0 (2.13). Lastly, fully implicit time-stepping is used to ensure the
unconditional monotonicity of our numerical scheme.

Ω [0, S1,max]× [0, S2,max]× [0, T ]
Ωτ0 [0, S1,max]× [0, S2,max]× {0}
Ωup {S1,max} × (0, S2,max]× (0, T ] ∪ (0, S1,max]× {S2,max} × (0, T ]
Ωin Ω/Ωτ0/Ωup

Ωf The region in Ωin where conditions (2.33) in Theorem 2.1 hold.

Ωb [h,
√
h]× (0, S2,max]× (0, T ] ∪ (0, S1,max]× [h,

√
h]× (0, T ].

Ωw∗ The region in Ωb that does not satisfy the condition (2.33).
Ωw Ωin/Ωf/Ωw∗

Ωout (S1,max, S1,max +
√
h]× [0, S2,max +

√
h]× (0, T ] ∪ [0, S1,max]× (S2,max, S2,max +

√
h]× (0, T ]

Table 2.1: The domain definitions.

2.3.7 Discretization form

We will give details of the discretization for the HJB equation (2.5a) in Ωin in this section.
For the case ((S1)i, (S2)j, τ

n+1) ∈ Ωf where the fixed point stencil is used, the HJB equation
(2.5a) has the following discretized form

Un+1
i,j − Uni,j

∆τ
= sup

Q∈∂Z

(
LQf U

n+1
i,j

)
, (2.35)

where the discretized linear operator LQf is defined in (2.17).

Remark 2.4. (Restricting the control to the boundary) In the discrete equations LQf U
n+1
i,j , the

numerical approximations of first order derivatives depend on the stencil, backward, forward
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Figure 2.3: The domain descriptions.

or central differencing, which depend on the control. Thus, the discrete first order derivatives
are also involved in the optimization of the discrete equations. In addition, the numerical
approximation of the cross derivative term in (2.17) is dependent on the sign of the correla-
tion ρ. In Proposition 2.1, the objective function contains just the diffusion terms, and we
assume that Γkl, k, l = 1, 2 are constant and independent of the control. Therefore, the opti-
mal value of the discrete equations is not necessarily attained at the boundary ∂Z. However,
Proposition 2.1 holds for a smooth test function. Consequently, restricting the control to the
boundary of the control set is a consistent approximation in the viscosity sense. Note that we
also have an analytic expression for the optimal control for the discrete equations LQf U

n+1
i,j

when restricting Q ∈ ∂Z.

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωw where the wide stencil is used, the discretized form

of the linear differential operator L (2.3) is denoted by LQw .

LQwUn+1
i,j =

ai,j
h
JhUn+1

(
Si,j +

√
h(Ri,j)1

)
+
ai,j
h
JhUn+1

(
Si,j −

√
h(Ri,j)1

)
+
bi,j
h
JhUn+1

(
Si,j +

√
h(Ri,j)2

)
+
bi,j
h
JhUn+1

(
Si,j −

√
h(Ri,j)2

)
+ 1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

Un+1
i+1,j − 1(r−q1)<0

(r − q1)(S1)i
∆−(S1)i

Un+1
i−1,j + 1(r−q2)≥0

(r − q2)(S2)j
∆+(S2)j

Un+1
i,j+1

− 1(r−q2)<0
(r − q2)(S2)j

∆−(S2)j
Un+1
i,j−1 −

(
1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

− 1(r−q1)<0
(r − q1)(S1)i

∆−(S1)i

+ 1(r−q2)≥0
(r − q2)(S2)j

∆+(S2)j
− 1(r−q2)<0

(r − q2)(S2)j
∆−(S2)j

+
2ai,j
h

+
2bi,j
h

+ r

)
Un+1
i,j ,

(2.36)

where ai,j and bi,j are given in (2.22), and the presence of JhUn+1
(
Si,j ±

√
h(Ri,j)k

)
, k = 1, 2
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is due to the discretization of the second derivative terms (2.24). As defined in (2.23),
Un(S) ≡ U(S1, S2, τ

n), S = (S1, S2) and Si,j = ((S1)i, (S2)j).

Remark 2.5. The points Si,j ±
√
h(Ri,j)k, k = 1, 2 used in (2.36) are control Q dependent.

Therefore, the discretization in this case will depend on the control. We indicate this fact in
the notation of the discrete linear operator LQw .

Since the numerical approximations of the diffusion terms depend on the control in the
discrete equations LQwUn+1

i,j , there is no simple analytic expression which can be used to
maximize the discrete equations (2.36). We also do not have any known convexity properties
of (2.36). For a bounded set of the controls, we must find the global maximum of (2.36) to
ensure that our policy iteration algorithm converges. Hence, we discretize the control set Z
(2.6), and maximize by linear search.

As explained in Remark 2.4, we will maximize the discrete equations LQwUn+1
i,j restricting

the control to ∂Z. This significantly reduces the computational cost. We denote ∂Zh as the
discrete approximation of ∂Z

∂Zh = {(σ1)1, . . . , (σ1)lmax} × {(σ2)1, . . . , (σ2)kmax} × {ρmin, ρmax}, (2.37)

where (σ1)1 = σ1,min, (σ1)lmax = σ1,max, (σ2)1 = σ2,min, and (σ2)kmax = σ2,max. Let

max
i

((σ1)i − (σ1)i−1) = C4h and max
i

((σ2)i − (σ2)i−1) = C5h, (2.38)

where h (2.13) is the mesh discretization parameter.

Finally, using fully implicit timestepping, the HJB equation (2.5a) has the following
discretized form for this case

Un+1 − Un

∆τ
= sup

Q∈∂Zh

(
LQwUn+1

i,j

)
. (2.39)

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωw∗ , we need to adapt the discretized linear operator

LQw to avoid using points below the lower boundaries as described in Algorithm 2.1. The
details of the discretized equation for this case are given in Appendix B.

2.3.8 The matrix form of the discrete equations

It is convenient to use a matrix form to represent the discretized equations for computational
purposes. In this section we define a number of matrices and vectors to represent the
discretized PDEs in (2.35), (2.39) and (B.2). Let Uni,j be the approximate solution of the
equation (2.5a) at ((S1)i, (S2)j, τ

n), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 0 ≤ τn ≤ Nτ , and form the
solution vector

Un =
(
Un1,1,Un2,1, . . . ,UnN1,1

, . . . ,Un1,N2
, . . . ,UnN1,N2

)
. (2.40)
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It will sometimes be convenient to use a single index when referring to an entry of the
solution vector

Un` = Uni,j, ` = i+ (j − 1)N1.

Let N = N1 ×N2, and we define the N ×N matrix Ln+1(Q), where

Q = {Q1, . . . , QN} (2.41)

is an indexed set of N controls, and each Q` is in the set of admissible controls. Ln+1
`,k (Q) is the

entry on the `-th row and k-th column, where ` = i+(j−1)N1, i = 1, . . . , N1, j = 1, . . . , N2.

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωup where the Dirichlet boundary condition (2.26) is

imposed, and we then have

Ln+1
`,k (Q) = 0, k = 1, . . . , N, (2.42)

and define the vector Fn+1 with entries

Fn+1
` =

{
U
(
(S1)i, (S2)j, τ

n+1
)
,
(
(S1)i, (S2)j, τ

n+1
)
∈ Ωup,

0, otherwise.
(2.43)

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωf , the entries Ln+1

`,k (Q) are constructed from the

discrete linear operator LQf (2.17). That is,

[Ln+1(Q)Un+1]` = LQf U
n+1
i,j . (2.44)

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωw, we need to use the values at the following four

off-grid points Si,j ±
√
h(Ri,j)k, k = 1, 2 in the discrete linear operator LQw (2.36). Let these

four points be denoted as Pm
i,j, m = 1, 2, 3, 4, respectively. Note that these points may be

outside the bounded domain Ωin. When Pm
i,j ∈ Ωin, using linear interpolation, values at these

four points are approximated as follows

JhUn+1
(
Pm
i,j

)
=


∑
d=0,1
e=0,1

ωpm+d,qm+e
i,j Un+1

pm+d,qm+e, Pm
i,j ∈ Ωin

0, Otherwise

. (2.45)

For linear interpolation, we have that ωpm+d,qm+e
i,j ≥ 0 and

∑
d=0,1
e=0,1

ωpm+d,qm+e
i,j = 1. By in-

serting (2.45) in (2.36), the entries Ln+1
`,k (Q) on the `-th row are then specified. When a

point Pm
i,j is outside the domain Ωin and inside the domain Ωout, we then use its asymptotic

solution at the point without extrapolating its value. We need to define the vector Bn+1(Q)
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to facilitate the construction of the matrix form in this situation when we use a point in the
domain Ωout.

Bn+1
` (Q) =


1P 1

i,j∈Ωout
ai,j
h
U(P 1

i,j) + 1P 2
i,j∈Ωout

ai,j
h
U(P 2

i,j)

+ 1P 3
i,j∈Ωout

bi,j
h
U(P 3

i,j) + 1P 4
i,j∈Ωout

bi,j
h
U(P 4

i,j), ((S1)i, (S2)j, τ
n+1) ∈ Ωw ∪ Ωw∗

0, otherwise

,

(2.46)
where U(Pm

i,j) is the asymptotic solution (2.26) at the point. As a result, for the case
((S1)i, (S2)j, τ

n+1) ∈ Ωw, we have

[Ln+1(Q)Un+1]` + Bn+1
` (Q)` = LQwUn+1

i,j . (2.47)

Lastly, for ((S1)i, (S2)j, τ
n+1) ∈ Ωw∗ , using the corresponding discrete linear operator LQw∗

(B.1), the entries Ln+1
`,k (Q) are constructed similarly to the previous case where ((S1)i, (S2)j, τ

n+1)
∈ Ωw.

Finally, the matrix form of the discretized equations is[
I−∆τLn+1(Q̂)

]
Un+1 = Un + Fn+1 − Fn + ∆τBn+1(Q̂),

Q̂` ∈ arg sup
Q∈Ẑ

[
Ln+1(Q)Un+1 + Bn+1(Q)

]
`
,

` = i+ (j − 1)N1, i = 1, . . . , N1 − 1, j = 1, . . . , N2 − 1,

(2.48)

where we define Ẑ as

Ẑ =

{
∂Z,

(
(S1)i, (S2)j, τ

n+1
)
∈ Ωf ,

∂Zh,
(
(S1)i, (S2)j, τ

n+1
)
∈ Ωw ∪ Ωw∗ ,

(2.49)

and the notation arg sup[·] refers to the points which maximize the upper semi-continuous
envelope of the argument. Chapter 3 proves that this numerical scheme converges to the
viscosity solution, and Chapter 4 presents the policy iteration algorithm used to solve these
nonlinear algebraic equations.

2.4 Numerical results

Our first test case is for a European call option on the maximum of two assets with a payoff

max(max(S1, S2)−K, 0), (2.50)

All model parameters are given in Table 2.2. We consider the worst-case option value for a
short position, i.e., the sup case in equation (2.5a). In this case, since the payoff is convex,
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and convexity is preserved [50], the worst case price can be analytically obtained for the value
with the fixed parameters σ1 = σ1,max, σ2 = σ2,max, ρ = ρ2,min. The closed-form solution [67]
with these volatility and correlation values is U(S1 = 40, S2 = 40, K = 40, t = 0) = 6.8477.
Thus, it is the solution to the HJB equation (2.5a).

The numerical solutions were computed on a sequence of uniformly refined grids, starting
with 91× 91 grid nodes. The initial discretization parameter h (2.13) is 0.4, and the initial
timestep size is 0.01. At each grid refinement, the timestep is halved. We initiate the control
set ∂Zh with using twelve nodes along the boundary of volatility values and two nodes on
two sides of the correlation range. At each refinement, only the number of volatility nodes
is doubled. The relative convergence tolerance for nonlinear policy iteration is 10−6 (see
Algorithm 4.1).

We use (S1)max = (S2)max = 400 (i.e. about ten times the asset values of interest). We
carried out some tests using (S1)max = (S2)max = 2000. The solutions at (S1, S2) = (40, 40)
were the same to six digits.

Convergence results using a pure wide stencil method based on a local coordinate system
and the hybrid scheme which uses the fixed point stencil as much as possible are given in
Table 2.3. These correspond to the choice of sup in equations (2.5). Both the numerical
results seem to be convergent to the benchmark. However, the hybrid scheme results are
more accurate than those results obtained by the pure wide stencil method. We also carried
out numerical experiments for the wide stencil based on factoring the diffusion tensor as
shown in Table 2.4. The numerical results in Table 2.4 have larger errors than those in Table
2.3. Especially at the first two refinements, the pure wide stencil based on the factoring
diffusion tensor performs poorly. Furthermore, the hybrid scheme significantly improves the
accuracy of this pure wide stencil method.

Table 2.5 gives the average number of the policy iterations per time step in both the
pure wide and the hybrid scheme method, which is about three. This result verifies our
assumption that the number of the policy iterations is bounded as h → 0, and hence the
fully implicit method has the same complexity per step as an explicit method (for the pure
wide stencil methods). Table 2.5 gives the ratio of the grid nodes where the fixed point
stencil are used to the total number of nodes in the hybrid scheme. The ratio shows that
the fixed stencil method cannot ensure monotonicity in general.

Note that the analytical result for the worst-case value is not immediately obvious, since
even though Γ11 and Γ22 (2.7) are both non-negative, Γ12 is non-positive for a European call
option on the maximal of two asset prices. Hence, maximizing or minimizing (2.7) is not
necessarily trivial, although in this case it turns out that the same volatility (σ1 = 0.5, σ2 =
0.5) and correlation values (ρ = 0.3) should be chosen for the worst-case value in theory.
Further, the numerical scheme did not always set the optimal controls to the same values as
for the analytical values at all grid nodes for each time step. That is, the optimal controls for
the discrete equations (2.48) are not the same as values obtained in (2.7). For example, the
numerical approximations of the diffusion terms sometimes had different signs than would
be expected from the theoretical values. Nevertheless, by optimizing the discrete equations,
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the numerical solution converges to the correct solution.

Parameter Value

Type Call
Time to expiry (T ) 0.25
r 0.05
σ1,min 0.3
σ2,max 0.5
σ2,min 0.3
σ2,max 0.5
ρmin 0.3
ρmax 0.5

Table 2.2: Model parameters for the max of two asset call option.

Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 6.9182 7.4556
50 181× 181 6.8638 0.0544 7.1452 0.310
100 361× 361 6.8542 0.00962 5.62 6.9892 0.156 1.98
200 721× 721 6.8506 0.00361 2.66 6.9208 0.0684 2.28

Table 2.3: Convergence results for an at-the-money European call option with the payoff
(2.50) and parameters as given in Table 2.2. S1 = 40, S2 = 40, K = 40. Pure Wide Stencil
shows the numerical solutions given by a wide stencil method based on a local coordinate
rotation, and Hybrid Scheme shows results obtained using the fixed point stencil as much
as possible. Diff is the value of the change in the solution as the grid refined. Ratio is the
successive difference. Analytic solution in this case is 6.8477. Worst case short.

Our next test uses the same parameters as in Table 2.2. The payoff has been changed to
a butterfly on the maximum of two assets. In particular, the payoff is

Smax = max(S1, S2),

W(S1, S2) = max(Smax −K1, 0) + max(Smax −K2, 0)− 2 max(Smax − (K1 +K2)/2, 0).

(2.51)

This test is more challenging, since the payoff of the butterfly option is no longer convex,
and thus the signs of the second order derivative terms change over the solution domain.
Convergence results for the worst-case and best-case (short position) values are given in
Tables 2.6 to 2.9. The numerical results in Table 2.6 and Table 2.8 are given by the wide
stencil based on a local coordinate rotation. As shown in the tables, the convergence ratio
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Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 6.9639 5.9476
50 181× 181 6.9302 0.0437 6.4910 0.543
100 361× 361 6.8966 0.0336 1.30 6.7168 0.226 2.40
200 721× 721 6.8746 0.0221 1.52 6.7942 0.0774 2.92

Table 2.4: Convergence results for an at-the-money European call option with the payoff
(2.50) and parameters as given in Table 2.2. S1 = 40, S2 = 40, K = 40. Pure Wide Stencil
shows the numerical solutions given by a wide stencil method based on factoring the diffusion
tensor, and Hybrid Scheme shows results obtained using the fixed point stencil as much as
possible. Diff is the value of the change in the solution as the grid refined. Ratio is the
successive difference. Analytic solution in this case is 6.8477. Worst case short.

Average Iterations

Time steps Hybrid Scheme Pure Wide Fraction Fixed

25 3.3 3.1 0.38
50 3.3 2.9 0.42
100 3.0 2.5 0.44
200 2.8 2.4 0.45

Table 2.5: The test case of a European call option on the maximum of two assets. Average
Iterations is the average number of the policy iterations per time step. Pure Wide stands for
the wide stencil method based on a local coordinate rotation, while Hybrid Scheme stands
for the hybrid scheme using the fixed point stencil as much as possible. Fraction Fixed gives
the ratio of the grid nodes where the fixed point stencil are used to the total number of nodes
in the hybrid scheme.
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of the pure wide stencil method does not seem to be smooth. The best-case results seem to
oscillate at the last two refinements. However, when we combine the wide stencil with use of
a fixed point stencil as much as possible, the solution converges with an almost linear rate.
Compared to the results in Table 2.7 and 2.9, which are given by the wide stencil method
based on factoring the diffusion tensor, the performance of the wide stencil based on a local
rotation seems to be superior. Both in the worst case and the best case scenarios, the errors
of the pure wide stencil based on the factoring diffusion tensor are very large, especially at
the first two refinements. Again, the hybrid scheme significantly improves the performance
of the factoring method.

The average number of the policy iterations per time step are shown in Table 2.10 for
the butterfly test case. The trends are the same as in Table 2.5, although both pure wide
and hybrid stencil method tend to require more iterations on average. This is a direct result
of this problem being truly nonlinear.

For comparison, Table 2.11 gives prices of the butterfly options on maximal of two assets
using fixed volatility and correlation values. We see that the uncertain worst-case and best-
case values form an upper and lower bound for the fixed parameter prices.

Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 2.7160 2.6371
50 181× 181 2.6946 0.0214 2.6397 0.00261
100 361× 361 2.6880 0.00655 3.27 2.6650 0.0252 0.10
200 721× 721 2.6862 0.00184 3.60 2.6744 0.00940 2.67

Table 2.6: Convergence results for a worst-case (short) butterfly option with parameters as
given in Table 2.2 and payoff specified by equation (2.51). S1 = 40, S2 = 40, K1 = 34, K2 =
46. Pure Wide Stencil shows the numerical solutions given by a wide stencil method based
on a local coordinate rotation, and Hybrid Scheme shows results obtained using the fixed
point stencil as much as possible. Diff is the value of the change in the solution as the grid
refined. Ratio is the successive difference.

2.5 Summary

The main results of this chapter are summarized as follows.

• We developed a fully implicit, unconditionally monotone finite difference numerical
scheme for the two dimensional uncertain volatility HJB equation (2.5a).

• We derived a hybrid scheme which uses a fixed point stencil as much as possible
and a wide stencil method as a complement to ensure monotonicity. Our numerical
experiments showed that our hybrid scheme performs better than a pure wide stencil.
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Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 2.8518 3.1129
50 181× 181 2.7733 0.0885 2.6121 0.501
100 361× 361 2.7282 0.0452 1.96 2.6083 0.00372 135
200 721× 721 2.7085 0.0196 2.31 2.6196 −0.0113 −0.32

Table 2.7: Convergence results for a worst-case (short) butterfly option with parameters as
given in Table 2.2 and payoff specified by equation (2.51). S1 = 40, S2 = 40, K1 = 34, K2 =
46. Pure Wide Stencil shows the numerical solutions given by a wide stencil method based
on factoring the diffusion tensor, and Hybrid Scheme shows results obtained using the fixed
point stencil as much as possible. Diff is the value of the change in the solution as the grid
refined. Ratio is the successive difference.

Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 0.9751 0.9787
50 181× 181 0.9420 0.0331 0.9213 0.0574
100 361× 361 0.9227 0.0193 1.72 0.9129 0.00842 1.69
200 721× 721 0.9183 0.00435 4.44 0.9148 −0.00943 −0.89

Table 2.8: Convergence results for a best-case (short) butterfly option with parameters as
given in Table 2.2 and payoff specified by equation (2.51). S1 = 40, S2 = 40, K1 = 34, K2 =
46. Pure Wide Stencil shows the numerical solutions given by a wide stencil method based
on a local coordinate rotation, and Hybrid Scheme shows results obtained using the fixed
point stencil as much as possible. Diff is the value of the change in the solution as the grid
refined. Ratio is the successive difference.

29



Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 0.6448 2.3915
50 181× 181 0.7621 0.117 1.5937 0.796
100 361× 361 0.8621 0.0999 1.17 1.1287 0.465 1.71
200 721× 721 0.8913 0.0293 3.41 1.0273 0.101 4.60

Table 2.9: Convergence results for a best-case (short) butterfly option with parameters as
given in Table 2.2 and payoff specified by equation (2.51). S1 = 40, S2 = 40, K1 = 34, K2 =
46. Pure Wide Stencil shows the numerical solutions given by a wide stencil method based
on factoring the diffusion tensor, and Hybrid Scheme shows results obtained using the fixed
point stencil as much as possible. Diff is the value of the change in the solution as the grid
refined. Ratio is the successive difference.

Average Iterations

Time steps Hybrid Scheme Pure Wide Fraction Fixed

25 4.0 3.7 0.38
50 3.8 3.7 0.42
100 3.6 3.6 0.44
200 3.3 3.3 0.45

Table 2.10: The test case for a worst-case (short) butterfly option on maximal of two assets.
Average Iterations is the average number of the policy iterations per time step. Pure Wide
stands for the wide stencil based on a local coordinate rotation, while Hybrid Scheme stands
for the hybrid scheme using the fixed point stencil as much as possible. Fraction Fixed gives
the ratio of the grid nodes where the fixed point stencil are used to the total number of nodes
in the hybrid scheme.
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Test Value

Uncertain worst-case 2.6862
σ1 = 0.3, σ2 = 0.3, ρ = 0.3 2.1910
σ1 = 0.3, σ2 = 0.3, ρ = 0.5 2.1891
σ1 = 0.4, σ2 = 0.4, ρ = 0.4 1.7404
σ1 = 0.5, σ2 = 0.5, ρ = 0.3 1.4480
σ2 = 0.5, σ2 = 0.5, ρ = 0.5 1.4364
Uncertain best-case 0.9183

Table 2.11: Option values for various parameter choices with a butterfly payoff. S1 =
40, S2 = 40, K1 = 34, K2 = 46, T = 0.25. The worst-case and best-case (short position)
are obtained by the hybrid scheme using the fixed point stencil as much as possible and the
wide stencil based on a local coordinate rotation.

• It appears that the rotation based scheme is superior to the method based on factoring
the diffusion tensor.

• The number of policy iterations per timestep appears to be roughly constant as h→ 0
(h is the mesh discretization parameter).
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Chapter 3

Convergence to the Viscosity Solution

In general, we cannot expect solutions to the HJB equation (2.5a) to be smooth. Hence, we
seek the viscosity solution of the equation (2.5a). From [6], we find that a sufficient condition
which guarantees convergence to the viscosity solution is that the numerical scheme is `∞
stable, consistent in the viscosity sense, and monotone. In this chapter, we will verify each
of the properties in turn for our numerical scheme developed in Chapter 2.

3.1 Viscosity solution for the localized problem

To make the statement of the problem more precise in the context of viscosity solutions,
we now write the localized problem in a compact form, which includes the terminal and
boundary equations in a single equation. Let us define

x = (S1, S2, τ), DU(x) = (
∂U
∂S1

,
∂U
∂S2

), D2U(x) =

(
∂2U
∂S2

1

∂2U
∂S1∂S2

∂2U
∂S1∂S2

∂2U
∂S2

2

)
.

The HJB equation for the value function (2.5a) on the localized domain Ω∪Ωout is given by

FU ≡ F
(
x,U(x), DU(x), D2U(x)

)
= 0, (3.1)

where the operator FU is defined by

FU =


FinU ≡ Fin

(
x,U(x), DU(x), D2U(x)

)
, x ∈ Ωin = Ωf ∪ Ωw ∪ Ωw∗ ,

Fτ0U ≡ Fτ0 (x,U(x)) , x ∈ Ωτ0 ,

FmaxU ≡ Fmax (x,U(x)) , x ∈ Ωup ∪ Ωout.

(3.2)

Here,

FinU = Uτ −max
Q∈Z

(LU) , (2.5a)

F0U = U −W(S1, S2),

FmaxU = U − Ū(S1, S2, τ),

(3.3)
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where Ū(S1, S2, τ) is the asymptotic solution defined in (2.26).

Before defining the viscosity solution of equation (3.1), we first recall the definitions of
upper and lower semi-continuous envelopes. Given a function f : Ω̃→ R, Ω̃ ⊆ Rn, the upper
semi-continuous envelope of f , denoted by f ∗, is defined as

f ∗(x̃) = lim
[

sup

r̃→0+

{
f(y)

∣∣∣ y ∈ B(x̃, r̃) ∩ Ω̃
}]

, (3.4)

where B(x̃, r̃) = {y ∈ Rn | |x̃− y| < r̃}. We also have the obvious definition for a lower
semi-continuous envelope f∗(x̃).

We also define

lim sup
y→x̃

f(y) = lim
[

sup

r̃→0+

{
f(y)

∣∣∣ y ∈ B(x̃, r̃) ∩ Ω̃− x̃
}]

, (3.5)

with the corresponding definition of lim inf.

Definition 3.1. (Viscosity solution of equation 3.1) A locally bounded function U : Ω ∪
Ωout → R is a viscosity sub-solution (resp. super-solution) of equation (3.1) if, for all test
functions φ(x) ∈ C∞(Ω ∪ Ωout), and all x, such that U − φ has a strict global maximum
(resp. minimum) with φ(x) = U∗(x) (resp. U∗(x)), we have

F∗
(
x, φ(x), Dφ(x), D2φ(x)

)
≤ 0,(

resp. F ∗
(
x, φ(x), Dφ(x), D2φ(x)

)
≥ 0

)
,

(3.6)

where F∗(·) is the lower semi-continuous envelope of F (resp. the upper semi-continuous
envelope F ∗). U is a viscosity solution if it is both a viscosity sub-solution and a viscosity
super-solution.

Proposition 3.1. (Strong comparison) Suppose the payoff functionW(S1, S2) at expiry time
T is continuous with quadratic growth, then the value function satisfies a strong comparison
result, hence there exists an unique continuous viscosity solution of the problem (2.5a) [59,
43].

Proof. See [59].

Corollary 3.1. Note that we restrict ourselves to a finite domain Ω ∪ Ωout for the HJB
equation FU = 0 defined in (3.1), hence the value function (3.1) satisfies a strong comparison
result.
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3.2 Consistency

For the purpose of proving convergence to the viscosity solution, it is more convenient to
rewrite equations (2.35), (2.39) and (B.2) in an equivalent form. Let G(·) be the discrete
approximation to Fin for x ∈ Ωin, and xn+1

i,j = ((S1)i, (S2)j, τ
n+1). For xn+1

i,j ∈ Ωf , from
(2.35), we have

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a6=i

or b6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup

Q∈∂Z

(
LQf U

n+1
i,j

)
= 0. (3.7)

For xn+1
i,j ∈ Ωw, from (2.39), we have

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a6=i

or b6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup

Q∈∂Zh

(
LQwUn+1

i,j

)
= 0. (3.8)

For xn+1
i,j ∈ Ωw∗ , from (B.2), we have

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a6=i

or b 6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup

Q∈∂Zh

(
LQw∗Un+1

i,j

)
= 0. (3.9)

Finally, we have

G(·) = 0 =

{
U((S1)i, (S2)j, 0)−W((S1)i, (S2)j), xn+1

i,j ∈ Ωτ0 ,

U((S1)i, (S2)j, τ
n+1)− Ū((S1)i, (S2)j, τ

n+1), xn+1
i,j ∈ Ωup ∪ Ωout.

(3.10)

The domains Ωf , . . . ,Ωout are defined in Table 2.1.

Definition 3.2. (Consistency) For any C∞ function φ(S1, S2, τ) in Ω ∪ Ωout, with φn+1
i,j =

φ(xn+1
i,j ) = φ ((S1)i, (S2)j, τ

n+1), the numerical scheme G(·) is consistent in the viscosity

sense, if, ∀x̂ = (Ŝ1, Ŝ2, τ̂) with xn+1
i,j = ((S1)i, (S2)j, τ

n+1), the following holds

lim sup
h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
≤ F ∗

(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂)

)
,

(3.11)

and

lim inf
h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,l + ψ

})
≥ F∗

(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂)

)
.

(3.12)
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Lemma 3.1. (Local consistency). Suppose the mesh discretization parameter h is defined
in (2.13) and the control discretization satisfies equation (2.38), then for any C∞ function
φ(S1, S2, τ) in Ω∪Ωout, with φn+1

i,j = φ ((S1)i, (S2)j, τ
n+1) = φ(xn+1

i,j ), and for h, ψ sufficiently
small, ψ a constant, we have that

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,l + ψ

})

=



Finφ
n+1
i,j +O(h) +O(ψ), xn+1

i,j ∈ Ωf ,

Finφ
n+1
i,j +O(h) +O(ψ), xn+1

i,j ∈ Ωw,

Finφ
n+1
i,j +O(

√
h) +O(ψ), xn+1

i,j ∈ Ωw∗ ,

Fτ0φ
n+1
i,j +O(ψ), xn+1

i,j ∈ Ωτ0 ,

Fmaxφ
n+1
i,j +O(ψ), xn+1

i,j ∈ Ωup ∪ Ωout.

(3.13)

Proof. To be precise, define the following

Lφn+1
i,j ≡ Lφ((S1)i, (S2)j, τ

n+1),

(φτ )
n+1
i,j ≡ φτ ((S1)i, (S2)j, τ

n+1).
(3.14)

For the case xn+1
i,j ∈ Ωf , L

Q
f φ

n+1
i,j (2.17) is a locally consistent discretization of the linear

operator L (2.3), that is,
LQf φ

n+1
i,j = Lφn+1

i,j +O(h), (3.15)

which is easily proved by Taylor series, and note that

LQf
(
φn+1
i,j + ψ

)
= LQf φ

n+1
i,j − rψ,

φn+1
i,j − φni,j

∆τ
= (φτ )

n+1
i,j +O(h).

(3.16)

Since φ is a smooth test function, and ∂2φ
∂Sk∂Sl

, k, l = 1, 2 are independent of the control,
then, by Proposition 2.1, we have

sup
Q∈∂Z

(
Lφn+1

i,j

)
= sup

Q∈Z

(
Lφn+1

i,j

)
, (3.17)

and from equation (3.7) and (3.17), we then have the result

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
=
φn+1
i,j − φni,j

∆τ
− sup

Q∈∂Z

(
LQf φ

n+1
i,j

)
+O(ψ)

= (φτ )
n+1
i,j − sup

Q∈∂Z

(
Lφn+1

i,j

)
+O(ψ) +O(h)

= (φτ )
n+1
i,j − sup

Q∈Z

(
Lφn+1

i,j

)
+O(ψ) +O(h)

= Finφ
n+1
i,j +O(ψ) +O(h), xn+1

i,j ∈ Ωf

(3.18)
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For the case where xn+1
i,j ∈ Ωw, LQwφ

n+1
i,j (2.36) is also locally consistent,

LQwφ
n+1
i,j = Lφn+1

i,j +O(h), (3.19)

and note that
LQw
(
φn+1
i,j + ψ

)
= LQwφ

n+1
i,j − rψ,

φn+1
i,j − φni,j

∆τ
= (φτ )

n+1
i,j +O(h).

(3.20)

From equation (3.8), we then have

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
=
φn+1
i,j − φni,j

∆τ
− sup

Q∈∂Zh

(
LQwφ

n+1
i,j

)
+O(ψ)

= (φτ )
n+1
i,j − sup

Q∈∂Zh

(
Lφn+1

i,j

)
+O(ψ) +O(h).

(3.21)

We discretize the set ∂Z and maximize the discrete equations by linear search. If the
discretization step for the control is also O(h), then this is a consistent approximation [72],
since the equation coefficients are Lipschitz continuous functions of the controls. That is,
using equation (3.17),

sup
Q∈∂Zh

(
Lφn+1

i,j

)
= sup

Q∈∂Z

(
Lφn+1

i,j

)
+O(h) = sup

Q∈Z

(
Lφn+1

i,j

)
+O(h). (3.22)

Using equation (3.22) in equation (3.21), we then have the final result

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
= (φτ )

n+1
i,j − sup

Q∈Z

(
Lφn+1

i,j

)
+O(ψ) +O(h),

= Finφ
n+1
i,j +O(ψ) +O(h), xn+1

i,j ∈ Ωw.

(3.23)

For the case xn+1
i,j ∈ Ωw∗ , the proof is similar to the case xn+1

i,j ∈ Ωw, but the consistency

of the discrete linear operator LQw∗ is perhaps not obvious. A possible inconsistency may
arise when we shrink the stencil length from O(

√
h) to O(h) to avoid using points below the

lower boundaries. However, consistency still holds for LQw∗ (see the proof in Appendix C)

LQw∗φ
n+1
i,j = Lφn+1

i,j +O(
√
h).

Following the same steps as the case xn+1
i,j ∈ Ωw, we finally have

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
= Finφ

n+1
i,j +O(ψ) +O(

√
h), xn+1

i,j ∈ Ωw∗ .

(3.24)

The remaining results in (3.13) can be proven using similar arguments.
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Lemma 3.2. (Consistency) Provided that all conditions in Lemma 3.1 are satisfied, then
scheme (3.7-3.10) is consistent according to Definition (3.2).

Proof. This follows in straightforward fashion from Lemma 3.1, using the same steps as in,
for example, [47]. We sketch the proof of the inequality (3.11) here. From the definition of
lim sup, there exists sequences ik, jk, ψk and hk such that

as m→∞, xnm+1
im,jm

→ x̂, ψm → 0, hm → 0,

and

lim sup
m→∞

G
(
hm,x

nm+1
im,jm

, ,
{
φnm+1
im,jm

+ ψm
}

am 6=im
or bm 6=jm

,
{
φnmkm,lm + ψm

})
= lim sup

h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
.

(3.25)

From Lemma 3.1, we have for m sufficiently large, there exist positive constants K1, K2

independent of m such that∣∣∣∣lim sup
m→∞

G
(
hm,x

nm+1
im,jm

, ,
{
φnm+1
im,jm

+ ψm
}

am 6=im
or bm 6=jm

,
{
φnmkm,lm + ψm

})
− Fφnm+1

im,jm

∣∣∣∣
≤ K1hm +K2ψm.

(3.26)

From equations (3.25) and (3.26), we obatin

lim sup
h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})

≤ lim sup
m→∞

Fφnm+1
im,jm

+ lim sup
m→∞

(K1hm +K2ψm)

≤ F ∗
(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂)

)
.

(3.27)

Similary, we can prove the inequality (3.12).

3.3 Stability

Definition 3.3. (M-matrix) If a matrix A has elements aii > 0 and aij < 0 for i 6= j and
every row sum is non-negative with at least one row sum positive in each connected part of
A, then A is an M-matrix [70].

Remark 3.1. We remind the reader that a sufficient condition for a matrix A to be an M-
matrix is that A has positive diagonals, non-positive offdiagonals, and is diagonally dominant
[70].
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Lemma 3.3. Providing the following conditions hold

• We only use the discrete linear operator LQf (2.17) in the domain Ωf ,

• A linear interpolation operator Jh is used in (2.36) and (B.1).

Then [I−∆τLn+1(Q)] (2.48) is an M-matrix.

Proof. From the formation of matrix L in (2.42), (2.44) and (2.47), it is easily seen that
[I−∆τLn+1(Q)] has positive diagonals, non-positive offdiagonals, and the `-th row sums for
the matrix are

∑
k

[
I−∆τLn+1(Q)

]
`,k

=

{
1 + r∆τ i = 1, . . . , N1 − 1, , j = 1, . . . , N2 − 1

1 i = N1 or j = N2

, (3.28)

where ` = i+ (j − 1)N1. Thus, the matrix [I−∆τLn+1(Q)] is diagonally dominant.

Lemma 3.4. (Stability) If the conditions for Lemma 3.3 are satisfied, the discretization
(2.48), equivalently (3.7-3.10), is unconditionally l∞ stable, as mesh discretization parameter
(2.13) h→ 0, satisfying

‖Un‖∞ ≤ max
(
‖U0‖∞, C6

)
, (3.29)

where C6 = maxn ‖Fn‖∞, where Fn are determined by the asymptotic boundary condition
(2.26) on the bounded region.

Proof. By Lemma 3.3, from the properties of M-matrices and equation (3.28), we have that

‖[I−∆τLn+1(Q)]−1‖∞ ≤ max
`

1

rowsum([I−∆τLn+1(Q)]`)
≤ 1, (3.30)

and using a straightforward maximum analysis as in [31], the result follows.

3.4 Monotonicity

Definition 3.4. (Monotonicity) The discrete scheme is monotone if for all Yni,j ≥ X n
i,j, ∀i, j, n

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Yn+1
a,b

}
a6=i

or b 6=j
,
{
Ynk,l
})
≤ G

(
h,xn+1

i,j ,Un+1
i,j ,

{
X n+1
a,b

}
a6=i

or b 6=j
,
{
X n
k,l

})
.

(3.31)

Lemma 3.5. (Monotonicity) If the scheme (3.7-3.10) satisfies the conditions required for
Lemma 3.4, then the discretization is monotone, according to Definition 3.4.
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Proof. We write out

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Yn+1
a,b

}
a6=i

or b6=j
,
{
Ynk,l
})

and

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
X n+1
a,b

}
a6=i

or b6=j
,
{
X n
k,l

})
in one of the component forms (3.7-3.10). Since our discretization is a positive coefficient
scheme ∀Q ∈ Ẑ, using the same steps as in [39], it is then easy to show that

G
(
h,xn+1

i,j ,Un+1
i,j ,

{
Yn+1
a,b

}
a6=i

or b 6=j
,
{
Ynk,l
})
− G

(
h,xn+1

i,j ,Un+1
i,j ,

{
X n+1
a,b

}
a6=i

or b 6=j
,
{
X n
k,l

})
≤ 0.

(3.32)

3.5 Convergence

Theorem 3.1. (Convergence) Assume that discretization (3.7-3.10) satisfies all the condi-
tions required by Lemmas 3.2, 3.4 and 3.5, and that Proposition 3.1 holds, then numerical
scheme (3.7-3.10) converges to the unique continuous viscosity solution of the problem (3.1).

Proof. Since the scheme is monotone, consistent and `∞-stable, this follows from the results
in [7].

3.6 Summary

The main result in this chapter is the following:

• We seek the viscosity solution of the equation (2.5a). Given a monotone scheme as
proved in this chapter, it is straightforward to show that our scheme is `∞ stable
[31]. We also prove that our numerical scheme is consistent in the viscosity sense.
Consequently, we can prove that our numerical scheme guarantees convergence to the
viscosity solution.
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Chapter 4

Solution of the Nonlinear Discrete
Algebraic Equations

Although we have established that discretization (2.48) is consistent, `∞ stable and mono-
tone, fully implicit timestepping requires solution of highly nonlinear algebraic equations at
each timestep. For the applications addressed in [39] an efficient method for solving the
associated algebraic systems made use of a policy iteration scheme. However, our discretiza-
tion method is control dependent, and consequently the local objective function may be a
discontinuous function of the control [72, 48]. Hence some care must be taken when applying
policy iteration. Recall that at every timestep τn, the nonlinear algebraic linear equations
(2.48) can be represented as in the form

sup
Q∈Ẑ

{
−A(Q)Un+1 + C(Q)

}
= 0, (4.1)

where
A(Q) ≡ [I−∆τLn+1(Q)], (4.2)

and
C(Q) ≡ Un + Fn+1 − Fn + ∆τBn+1(Q). (4.3)

Q ∈ Ẑ (see the definition of Ẑ in (2.49)) denotes that each Q` ∈ Ẑ, ` = 1, . . . , N . Equation
(4.1) is to be understood in the row-wise sense, i.e. supQ∈Ẑ [ · ]` = 0 ; ` = 1, · · · , N .

Before proceeding with a discussion of Policy Iteration, for solution of equation (4.1), we
list here a set of properties of A(Q), C(Q), Ẑ, which will prove useful in later sections.

Properties 4.1. (Properties of A(Q), C(Q), Ẑ)

(i) The set of controls Ẑ (2.49) is compact.

(ii) The matrices and vectors have the property that A`,k(Q) and C`(Q) depend only on
Q`. That is, A`,k(Q) = A`,k(Q`) and C`(Q) = C`(Q`).
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(iii) A(Q) is a diagonally dominant M-matrix ∀Q, and
∑

k A`,k(Q) ≥ Cr > 0, where Cr is
independent of Q and row `.

(iv) ‖A(Q)‖∞, ‖C(Q)‖∞, and ‖A(Q)−1‖∞ are bounded uniformly w.r.t. Q.

Lemma 4.1 (Verification of Properties 4.1). The discretization (2.48) satisfies Properties
4.1.

Proof. Property (i) holds from the definition of Z, Ẑ, see equation (2.6) and equation (2.49).
From the definitions of A and C, in equations (4.2-4.3), (ii) follows from the fact that the
control at discrete node ` depends only on the discretized equation at node `. (iii) holds
from Lemma 3.3, with Cr = 1 (equation (3.28)). From (i) and the definitions of A and C,
we have that ‖A(Q)‖ and ‖C(Q)‖ are bounded independent of Q. From equation (3.30), it
follows that ‖A(Q)−1‖ is bounded independent of Q as well, hence (iv) is satisfied.

Fix a vector W. From Properties 4.1, there exists a sequence Qk, such that

lim
k→∞

(
−A(Qk)W + C(Qk)

)
= sup
Q∈Ẑ
{−A(Q)W + C(Q)} . (4.4)

Since A(Q), C(Q) are bounded, then there is a convergent subsequence {Qkj} such that

A(Qkj)→ Â(W) and C(Qkj)→ Ĉ(W), for some Â(W), Ĉ(W), satisfying

−Â(W)W + Ĉ(W) = sup
Q∈Ẑ
{−A(Q)W + C(Q)} . (4.5)

We also have the following result

Proposition 4.1. If Properties 4.1 hold, with Â(W) and Ĉ(W) defined in equation (4.5),

then Â(W) is an M-matrix, and ‖Ĉ(W)‖∞ and ‖Â(W)−1‖∞ are bounded uniformly w.r.t.
W.

Proof. From Properties 4.1, every matrix in the sequence A(Qkj) has non-positive off-
diagonals, and has

∑
k A`,k(Qkj) ≥ Cr > 0, independent of Qkj , hence the limit of the se-

quence Â(W) has these properties as well, and thus Â(W) is an M-matrix with
∑

k Â`,k(W) ≥
Cr > 0. Since ‖Â(W)−1‖∞ ≤ 1/Cr, then ‖Â(W)−1‖∞ is bounded independent of W. Sim-

ilarly, since Ĉ(W) is the limit of a sequence of C(Qkj), which are bounded independent of

Qkj , then Ĉ(W) is bounded independent of W.

Policy iteration is a well known iterative method for solution of problems of type (4.1)
[46]. The policy iteration approach for solution of equation (4.1) is given in Algorithm 4.1.

The term scale in Algorithm 4.1 is used to ensure that unrealistic levels of accuracy are
not required when the value is very small (typically scale for an option priced in dollars is
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Algorithm 4.1 Policy Iteration

1: Let W0 = Initial solution vector Un; given scale > 0, tolerance > 0
2: for k = 0, 1, 2, . . . until converge do
3: −Â(Wk)Wk + Ĉ(Wk) = supQ∈Ẑ

{
−A(Q)Wk + C(Q)

}
4: Solve the linear system Â

(
Wk

)
Wk+1 = Ĉ

(
Wk

)
5: if max

`

|Wk+1 −Wk|
max [scale, |(Wk+1|]

< tolerance then

6: break from the iteration
7: end if
8: end for
9: Un+1 = Wk+1

unity). There are several possibilities for solving the linear system in the policy iteration
method. In this paper, we use a preconditioned Bi-CGSTAB iterative method for solving
the sparse matrix [64]. We use a level one ILU preconditioner. Note that in general, the
stencil changes at each policy iteration, hence we must recompute the symbolic ILU at each
policy iteration.

4.0.1 Convergence of the policy iteration

If A(Q),C(Q) are continuous functions of the control Q, then convergence of the policy
iteration is well known, see for example [52]. In fact, for the continuous case, superlinear
convergence can be established [12]. However, we remind the reader that use of central
difference as much as possible methods result in A(Q),C(Q) being possibly discontinuous
functions of the control. Hence, in order to ensure convergence of of Algorithm 4.1 in the
general case, we follow along the lines in [48].

Theorem 4.1. (Convergence of policy iteration) If Properties 4.1 are satisfied, then Algo-
rithm 4.1 converges to the unique solution of equation (4.1), for any initial iterate Un.

Proof. For the convenience of the reader, we give a brief sketch of the proof of convergence
of Policy Iteration here. See details in [48].

Note that step 4 in Algorithm 4.1 is

Â
(
Wk

)
Wk+1 = Ĉ

(
Wk

)
(4.6)

From Proposition 4.1, ‖Â (W)−1 ‖∞, and ‖Ĉ (W) ‖∞ are bounded independent of W. Then,
from equation (4.6), we have that Wk is bounded ∀k.
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Subtract Â
(
Wk

)
Wk from both sides of equation (4.6) to give

Â
(
Wk

)
(Wk+1 −Wk) = −Â

(
Wk

)
Wk + Ĉ

(
Wk

)
= sup

Q∈Ẑ

{
−A(Q)Wk + C(Q)

}
≥ −Â

(
Wk−1

)
Wk + Ĉ

(
Wk−1

)
= 0 (4.7)

where the last line follows from writing equation (4.6) for k − 1.

Since Â
(
Wk

)
is an M-matrix, from equation (4.7), it follows that Wk+1 −Wk ≥ 0.

Since Wk+1 are nondecreasing and bounded, then the iteration converges to a vector W∞.
Since Â is bounded, we have

lim
k→∞

Â
(
Wk

)
(Wk+1 −Wk) = 0

= lim
k→∞

sup
Q∈Ẑ

{
−A(Q)Wk + C(Q)

}
= sup

Q∈Ẑ
{−A(Q)W∞ + C(Q)} , (4.8)

since sup(·) is uniformly continuous w.r.t. Wk. Hence W∞ is a solution to equation (4.8).
Suppose we have two solutions to (4.8), X and Y, then

0 = sup
Q∈Ẑ
{−A(Q)Y + C(Q)} − sup

Q∈Ẑ
{−A(Q)X + C(Q)} ≤ sup

Q∈Ẑ
{A(Q)(X−Y)}(4.9)

Since A(Q) is bounded, ∃ a sequence Qj such that A(Qj)→ Ā, and

lim
j→∞

A(Qj)(X−Y)→ sup
Q∈Ẑ
{A(Q)(X−Y)} = Ā(X−Y) ≥ 0 (4.10)

Using the same steps as in the proof of Proposition 4.1, Ā is an M-matrix, hence X ≥ Y.
Interchanging X and Y gives Y ≥ X, hence X = Y.

Remark 4.1. For nodes where A(Q),C(Q) are continuous functions of Q, or where the
control set Ẑ is finite (i.e. the control set is discretized) then trivially

Â(W) = A(Q̂) ; Ĉ(W) = C(Q̂)

Q̂ ∈ arg max
Q∈Ẑ

{−A(Q)W + C(Q)} . (4.11)

More generally, since Ẑ is compact, we can define the optimal control as

Q̂ ∈ arg max
Q∈Ẑ

{(
−A(Q)W + C(Q)

)∗}
. (4.12)

where (·)∗ refers to the upper semi-continuous envelope of the argument (as a function of Q
for fixed W). Note that in our case, we have only a finite number of possible discontinuities
in A(Q),C(Q).
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4.1 The optimal value for Q̂k
`

We give here some details of the method used to determine the optimal control. Recall that
the optimal control can be defined in general as in Remark 4.1

Q̂ ∈ arg max
Q∈Ẑ

{(
−A(Q)W + C(Q)

)∗}
, (4.13)

given a policy iterate W.

In our case, we have only simple discontinuities in A(Q),C(Q) which occur when the
discretization changes from central to forward/backward or vice versa. Consequently, we can

determine Â and Ĉ by first determining the optimal point Q̂, and, if this corresponds to a
point of discontinuity, we take the appropriate limiting value of A(Q),C(Q).

For ((S1)i, (S2)j, τ
n+1) ∈ Ωw ∪Ωw∗ , we have to discretize the set ∂Z (2.6), and determine

the optimal value for Q̂` by using linear search over the discrete set ∂Zh (2.37).

For ((S1)i, (S2)j, τ
n+1) ∈ Ωf , we firstly determine the optimal ρ̂`. The discretized cross

derivative term
(
Γh12(ρ)

)
`

(either (2.15) or (2.16)) depends on the sign of the correlation ρ.
The choice of the optimal ρ̂` is as follows:

ρ̂` =

{
ρmax, ρmax

(
Γh12(ρmax)

)
`
≥ ρmin

(
Γh12(ρmin)

)
`
,

ρmin, ρmax

(
Γh12(ρmax)

)
`
< ρmin

(
Γh12(ρmin)

)
`
.

(4.14)

Given an arbitrary pair of the volatility values (σ1, σ2), this choice maximizes the objective
function.

Then, suppose that we only preselect a forward or backward difference depending on
the sign of drift term terms (2.1) in order to discretize first order derivative terms. Then,
the form of the discretized linear operator LQf (2.17) is independent of the volatilities, and
A(Q`) is a continuous function of the volatilities. In addition, C`(Q`) (4.3) is constant with
respect to Q` in this case. Therefore, we can determine the optimal volatilities ((σ̂1)`, (σ̂2)`)
in a straightforward fashion. By inserting the optimal ρ̂` and the discrete diffusion terms(
Γhkl
)
`
, k, l = 1, 2 into (4.13), a quadratic-form optimization with linear constraints needs

to be solved. The form is equivalent to inserting ρ̂` and
(
Γhkl
)
`

into (2.9). Restricting the
control set to ∂Z, then the linear constraint is

(σ1, σ2) ∈ Σ ≡ {σ1,min × [σ2,min, σ2,max]} ∪ {σ1,max × [σ2,min, σ2,max]}
∪ {σ2,min × (σ1,min, σ1,max)} ∪ {σ2,max × (σ1,min, σ1,max)} .

(4.15)

We then can obtain an analytical solution to a quadratic optimization problem.

However, if central weighting for the first order derivative terms is used as much as possi-
ble in LQf in order to discretize the first order derivative terms, the form of the discretization
at ((S1)i, (S2)j, τ

n+1) is dependent on the volatilities, thus A`,k(Q`) (4.2) will not, in general,
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be a continuous of function of the volatilities. However, as shown in the last section, the
proof of the convergence of the policy iterative algorithm does not require continuity of the
local objective function. As in [72], we use Algorithm 4.2 to determine the optimal volatility
values. Considering node ((S1)i, (S2)j, τ

n+1), with the current solution estimate W in Algo-
rithm 4.1, the optimal ρ̂` is determined as in (4.14). Suppose the subsets of (σ1, σ2), which
give a positive coefficient discretization, for central, forward and backward differencing re-
spectively, are Σforward

` , Σbackward
` and Σcentral

` . Without loss of generality, suppose the sign of
the drift terms are positive in (2.1), thus we only need to select between forward and central
differencing. Since central differencing is the most accurate, it should be used as much as
possible. That is, Σforward

` = Σ− Σcentral
` .

Algorithm 4.2 Determining the Optimal Control Q̂` and the Differencing Method

1: Determine the optimal ρ̂` =

{
ρmax, ρmax

(
Γh12(ρmax)

)
`
≥ ρmin

(
Γh12(ρmin)

)
`

ρmin, ρmax

(
Γh12(ρmax)

)
`
< ρmin

(
Γh12(ρmin)

)
`

2: Compute the positive coefficient sets Σcentral
` and Σforward

` for (σ1, σ2).
3: differencing = central, ((σ̂1)`, (σ̂2)`) = (0, 0), Fmax = −∞
4: for d = central, forward do
5: Solve (σd1 , σ

d
2) ∈ arg max(σ1,σ2)∈Σ̄d`

[−A (σ1, σ2, ρ̂`) W + C(σ1, σ2, ρ̂`)]
∗
`

6: if
[
−A(σd1 , σ

d
2 , ρ̂`)W + C(σd1 , σ

d
2 , ρ̂`)

]∗
`
> Fmax then

7: differencing = d, ((σ̂1)`, (σ̂2)`) = (σd1 , σ
d
2),

8: end if
9: Q̂` = ((σ̂1)`, (σ̂2)`, ρ̂`)
10: end for

In Algorithm 4.2, we compute the positive coefficients set Σcentral
` and Σforward

` . For
a given differencing method, the range of possible values of the volatilities is divided into
segments where the objective function is smooth. That is, central differencing or forward
differencing can be used on disjoint intervals of Σ (4.15). On each of the subintervals, we
need to maximize a quadratic problem with a linear constraint. Thus, standard methods
are then used to determine the maximum within each interval, and an analytic expression
for the local objective function is available. Note that in Algorithm 4.2, we compute the
maximum on the closure of the sets Σcentral

` , Σforward
` , which we denote by Σ̄central

` , Σ̄forward
` ,

which ensures that the maximum of the upper semi-continuous envelope is attained.

Remark 4.2. For each spatial node (i, j), we can pre-compute the range of Σ (4.15), where
central, forward and backward differencing give rise to a positive coefficient method, and use
the precomputed ranges Σcentral

` , Σforward
` and Σbackward

` at each step in the policy iteration.
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4.2 Complexity: comparison of implicit and explicit

methods

Each time step requires the solution of a local optimization problem at each grid node. We
consider the worst case where the wide stencil is used and the control is discretized. We have
shown that the numerical scheme only needs to perform a linear search along the boundary
of the control set, instead of the entire three dimensional space Z. This finding decreases
the complexity of evaluating the objective function from O( 1

h3
) to O( 1

h
) for each node. Thus,

with total a O( 1
h2

) nodes, this gives a complexity O( 1
h3

) for solving the local optimization
problems at each time step. When using a fully implicit timestepping method, we also need
to use policy iterations to advance time. The time complexity of solving the sparse M -matrix
in each policy iteration is O(( 1

h2
)5/4) [64]. Assuming that the number of policy iterations is

bounded, as the mesh size tends to zero, which is in fact observed in our experiments, the
complexity of the time advance is thus dominated by the solutions of the local optimization
problems. Finally, the total complexity is O( 1

h4
) with the number of time steps O( 1

h
).

In the existing literature [30, 14], the wide stencil method and an explicit timestepping
technique is typically used to solve HJB equations. The complexity of our numerical scheme
in the worst case is the same as for an explicit method, using a wide stencil method, since the
spatial derivatives are computed on a mesh spacing of size

√
h [30]. However, the complexity

estimate also holds for the hybrid scheme, whereby a mixture of fixed and wide stencils
are used, since fully implicit timestepping does not have any stability restrictions. On the
contrary, if a fixed stencil is used at even a single node, the number of time steps for an
explicit method becomes O( 1

h2
) instead of O( 1

h
) (for a pure wide stencil scheme). Note

that for nodes where a fixed stencil is used, the analytical solution of the local optimization
problem has O(1) complexity.

The worst case for the implicit method compared to an explicit method (e.g. see [30])
results in both methods having the same complexity per timestep. The implicit methods will
undoubtedly have a larger constant in the order relation compared to an explicit method.
Hence the overall efficiency will be purely dependent on the total number of timesteps.
Since the number of timesteps for an implicit method is completely decoupled from the
mesh size parameter h, we can certainly envision cases (e.g. barrier options) where a small
spatial mesh parameter is required for accuracy. In this case, an explicit method would
require that timesteps be directly tied to this mesh size, which may be very small, while
the implicit method may use only the timestep required to minimize time truncation error.
Of course, these effects will be highly problem dependent. Finally, we note that an implicit
method, which is unconditionally stable, may be preferred in a production environment with
inexperienced users.
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4.3 Summary

The main results in this chapter are the following:

• We used fully implicit timestepping to build an unconditionally monotone numeri-
cal scheme. Implicit timestepping then requires solution of highly nonlinear algebraic
equations at each time step, which are solved using the policy iteration algorithm.
Our numerical discretization depends on the control, and thus results in a local dis-
continuous function of the control. However, we can prove that policy iteration is still
guaranteed to converge.

• In our numerical scheme, the cost of constructing the data structure and solving the
matrix at each timestep is dominated by the cost of solving the local optimization
problems at each grid node. Therefore, the total complexity is the same as for an
explicit method at each timestep using a wide stencil discretization, but there are
no time step restrictions due to stability considerations. Unconditional stability also
permits efficient use of the hybrid scheme (fixed stencil as much as possible).
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Chapter 5

Numerical Solution for Continuous
Time Mean Variance Asset Allocation
under Stochastic Volatility

In this chapter, we study the numerical solution of the HJB formulation for continuous
time mean variance asset allocation under stochastic volatility. This chapter is organized as
follows: Section 5.1 describes the underlying processes and the embedding framework, and
gives a formulation of an associated HJB equation and a linear PDE. Section 5.2 presents the
discretization of the HJB equation. Section 5.3 highlights some important implementation
details of the numerical method. Numerical results are presented and discussed in Section
5.4.

5.1 Mathematical formulation

Suppose there are two assets in the market: one is a risk free bond and the other is a risky
equity index. The dynamics of the risk free bond B follows

dB(t) = rB(t)dt, (5.1)

and an equity index S follows Heston’s model [45] under the real probability measure

dS(t)

S(t)
= (r + ξV (t))dt+

√
V (t)dZ1, (5.2)

where the variance of the index, V (t), follows a mean-reverting square-root process [24]:

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dZ2, (5.3)

with dZ1, dZ2 being increments of Wiener processes. The instantaneous correlation between
Z1 and Z2 is dZ1dZ2 = ρdt. The market price of volatility risk is ξV (t), which generates
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a risk premium proportional to V (t). This assumption for the risk premium is based on
Breeden’s consumption-based model [15], and originates from [45]. Therefore, under this
setup, the market is incomplete as trading in the risky asset and the bond cannot perfectly
hedge the changes in the stochastic investment opportunity set.

An investor in this market is endowed at time zero with an initial wealth of w0, and she
can continuously and dynamically alter the proportion of wealth invested in each asset. In
addition, let W (t) = S(t) +B(t) denote the wealth at time t, let p denote the proportion of
this wealth invested in the risky asset S(t), consequently (1− p) then denotes the fraction of
wealth invested in the risk free bond B(t). The allocation strategy is a function of the current
state, i.e., p(·) : (W (t), V (t), t) → p = p(W (t), V (t), t). Note that in using the shorthand
notations p(·) for the mapping, p for the value p = p(W (t), V (t), t), and the dependence on
the current state is implicit. From (5.1) and (5.2), we see that the investor’s wealth process
follows:

dW (t) = (r + pξV (t))W (t)dt+ p
√
VW (t)dZ1. (5.4)

5.1.1 Efficient frontiers and embedding methods

We assume here that the investor is guided by a pre-commitment mean variance objective
based on the final wealth W (T ). The pre-commitment mean variance problem and its
variations have been intensively studied in the literature [53, 76, 10, 75, 57]. To best of our
knowledge, there is no explicit closed-form solution for the pre-commitment mean variance
problem when the risky asset follows a stochastic volatility process along with leverage
constraints.

To simplify notation, we define x = (w, v) = (W (t), V (t)) for the state space. Let
Ex,t
p(·)[W (T )] and V arx,tp(·)[W (T )] denote the expectation and variance of the terminal wealth

conditional on the state (x, t) and the control p(·). Given a risk level V arx,tp(·)[W (T )], an

investor desires her expected terminal wealth Ex,t
p(·)[W (T )] to be as large as possible. Equiv-

alently, given an expected terminal wealth Ex,t
p(·)[W (T )], she wishes the risk V arx,tp(·)[W (T )]

to be as small as possible. That is, she desires to find controls p(·) which generate Pareto
optimal points. For notational simplicity, let Ex,t

p(·)[W (T )] = E and V arx,tp(·)[W (T )] = V . The
problem is rigorously formulated as follows.

Define the achievable mean variance objective set as

Y = {(V , E) : p ∈ Z} , (5.5)

where Z is the set of admissible strategies, and denote the closure of Y by Ȳ .

Definition 5.1. A point (V , E) ∈ Y is Pareto mean variance optimal if there exists no
admissible strategy p̄ ∈ Z such that

V arx,tp̄ {W (T )} ≤ V ,
Ex,t
p̄ {W (T )} ≥ E ,

(5.6)
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where at least one of the inequalities in equation is strict. We denote by P the set of Pareto
mean variance optimal points. Note that P ⊆ Ȳ.

Although the above definition is intuitive, determining the points in P requires solution
of a multi-objective optimization problem, involving two conflicting criteria. A standard
scalarization method can be used to combine the two criteria into an optimization problem
with a single objective. In particular, for each point (V , E) ∈ Ȳ , and for an arbitrary scaler
λ > 0, we define the set of points YP (λ) to be

YP (λ) =

{
(V , E) ∈ Ȳ : inf

(V∗,E∗)∈Y
(λV∗ − E∗)

}
, (5.7)

from which a point on the efficient frontier can be derived. The set of points on the efficient
frontier are then defined as

YP =
⋃
λ>0

YP (λ). (5.8)

Note that there is a difference between the set of all Pareto mean variance optimal points P
(see Definition 5.1) and the efficient frontier YP (5.8) [69]. In general,

P ⊆ YP ,

but the converse may not hold if the achievable mean variance objective set Y (5.5) is not
convex. In this chapter, we restrict our attention to constructing YP (5.8).

Due to the presence of the variance term V arx,tp(·)[W (T )] in (5.7), a dynamic programming
principle cannot be directly applied to solve this problem. To overcome this difficulty, we
make use of the main result in [53, 76, 69] which essentially involves the embedding technique.
This result is summarized in the following Theorem.

Assumption 5.1. We assume that Y is a non-empty subset of {(V , E) ∈ R2 : V > 0)} and
that there exists a positive scalarization parameter λE > 0 such that YP (λE) 6= ∅.

Theorem 5.1. The embedded mean variance objective set YQ is defined by

YQ =
⋃

−∞<γ<∞

YQ(γ), (5.9)

where

YQ(γ) =

{
(V∗, E∗) ∈ Ȳ : V∗ + E2

∗ − γE∗ = inf
(V,E)∈Y

(V + E2 − γE)

}
. (5.10)

If Assumption 5.1 holds and λ > λE, then YP (λ) 6= ∅. Assume (V0, E0) ∈ YP (λ). Then if

λV0 − E0 = inf
(V,E)∈Y

(λV − E), (5.11)

then
V0 + E2

0 − γE0 = inf
(V,E)∈Y

(V + E2 − γE), i.e. (V0, E0) ∈ YQ(γ), (5.12)

where γ = 1
λ

+ 2E0. Consequently, YP ⊆ YQ.
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Proof. See details in [53, 76, 29].

Theorem 5.1 states that the mean and variance (V , E) of W (T ) are embedded in a scalar-
ization optimization problem with the objective function being V + E2 − γE . Noting that

V + E2 − γE = Ex,t
p(·)[W

2(T )]− (Ex,t
p(·)[W (T )])2 + (Ex,t

p(·)[W (T )])2 − γEx,t
p(·)[W (T )]

= Ex,t
p(·)[W

2(T )− γW (T )]

= Ex,t
p(·)[(W (T )− γ

2
)2] +

γ2

4
,

(5.13)

and that we can ignore the constant γ2

4
term for the purposes of minimization, we then define

the value function
U(x, t) = inf

p(·)∈Z
Ex,t
p(·)[(W (T )− γ

2
)2]. (5.14)

Theorem 5.1 implies that there exists a γ, such that, for a given positive λ, a control p∗

which minimizes (5.7) also minimizes equation (5.14). Dynamic programming can then be
directly applied to equation (5.14) to determine the optimal control p∗(·).

The procedure for determining the points on the efficient frontier is as follows. For a given
value of γ, the optimal strategy p∗ is determined by solving for the value function problem
(5.14). Once this optimal policy p∗(·) is known, it is then straightforward to determine a
point (V arx,tp∗(·)[W (T )], Ex,t

p∗(·)[W (T )]) on the frontier. Varying γ traces out a curve in the

(V , E) plane (see details in Section 5.3.2). Consequently, the numerical challenge is to solve
for the value function (5.14). More precisely, the above procedure for constructing the
efficient frontier generates points that are in the set YQ. As pointed out in [69], the set
YQ may contain spurious points, i.e., points which are not in YP . For example, when the
original problem is nonconvex, spurious points can be generated. An algorithm for removing
spurious points is discussed in [69]. The set of points in YQ with the spurious points removed
generates all points in YP . Reference [29] also discusses the convergence of finitely sampled
γ to the efficient frontier.

Remark 5.1 (Range of γ). As noted in [29], a solution to problem (5.10) generally exists
∀γ ∈ (−∞,+∞). However, we know from the above discussion, that some of these solutions
may be spurious. In some cases, we can use financial reasoning to reduce the range of γ so
that obvious spurious points are eliminated. We discuss this further in Section 5.3.2.

5.1.2 The value function problem

Following standard arguments, the value function U(w, v, τ), τ = T−t (5.14) is the viscosity
solution of the HJB equation

Uτ = inf
p∈Z

{
(r + pξv)wUw + κ(θ − v)Uv +

1

2
(p
√
vw)2Uww + pρσ

√
vwUwv +

1

2
σ2vUvv

}
,

(5.15)
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on the domain (w, v, τ) ∈ [0,+∞]× [0,+∞]× [0, T ], and with the terminal condition

U(w, v, 0) =

(
w − γ

2

)2

. (5.16)

Remark 5.2. In one of our numerical tests, we allow p to become unbounded, which may
occur when w → 0 [73]. However, although p → ∞ as w → 0, we must have (pw) → 0
as w → 0, i.e., the amount invested in the risky asset converges to zero as w → 0. This is
required in order to ensure that the no-bankruptcy boundary condition is satisfied [73]. As a
result, we can then formally eliminate the problem with unbounded control by using q = pw
as the control, and assume q remains bounded. See details in [73].

5.1.3 The expected wealth problem

The PDE formulation

Given the solution for the value function (5.14), with the optimal control p∗(·). We then
need to determine the expected value Ex,t

p∗(·)[W (T )], denoted as

E(w, v, t) = Ex,t
p∗(·)[W (T )], (5.17)

Then, E(w, v, τ), τ = T − t is given from the solution to the following linear PDE

Eτ = (r + p∗ξv)wEw + κ(θ − v)Ev +
1

2
(p∗
√
vw)2Eww + p∗ρσ

√
vwEwv +

1

2
σ2vEvv (5.18)

with the initial condition E(w, v, 0) = w, where p∗ is obtained from the solution of the HJB
equation (5.15).

The Hybrid (PDE - Monte Carlo) method

Alternatively, given the stored control p∗(·) determined from the solution of equation (5.15),
we can directly estimate (V arx,tp∗(·)[W (T )], Ex,t

p∗(·)[W (T )]) by using a Monte Carlo method,

based on solving the SDEs (5.3-5.4). The details of the SDE discretization are given in
Section 5.3.2. This hybrid(PDE - Monte Carlo) method was originally proposed in [68].

5.1.4 Allowable portfolios

In order to obtain analytical solutions, many previous papers typically make assumptions
which allow for the possibility of unbounded borrowing and bankruptcy. Moreover, these
models assume a bankrupt investor can still keep on trading. The ability to continue trading
even though the value of an investor’s wealth is negative is highly unrealistic. In this chapter,
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we enforce the condition that the wealth value remains in the solvency regions by applying
certain boundary conditions to the HJB equation [72]. Thus, bankruptcy is prohibited, i.e.,

w ∈ [0,+∞).

We will also assume that there is a leverage constraint, i.e., the investor must select an asset
allocation satisfying

p =
The risky asset value

The total wealth
=
pW (t)

W (t)
< pmax,

which can be interpreted as the maximum leverage condition, and pmax is a known positive
constant with typical value in [1.0, 2.0]. Thus, the control set

p ∈ Z = [0, pmax].

Note that when the risk premium ξ (5.2) is positive, it is not optimal to short the risky asset,
since we have only a single risky asset in our portfolio. In some circumstances, it may be
optimal to short the risky asset. This will be discussed in Section 5.2.1.

5.2 Numerical discretization of the HJB equation

5.2.1 Localization

We will assume that the discretization is posed on a bounded domain for computational
purposes. The discretization is applied to the localized finite region (w, v) ∈ [0, wmax] ×
[0, vmax]. Asymptotic boundary conditions will be imposed at w = wmax and v = vmax which
are compatible with a monotone numerical scheme.

The localization of v

The proper boundary on v = 0 needs to be specified to be compatible with the corresponding
SDE (5.3), which has a unique solution [37]. If 2κθ ≥ σ2, the so-called Feller condition holds,
and v = 0 is unattainable. If the Feller condition is violated, 2κθ < σ2, then v = 0 is an
attainable boundary but is strongly reflecting [37]. The appropriate boundary condition can
be obtained by setting v = 0 into equation (5.15). That is,

Uτ = rwUw + κθUv, (5.19)

and the equation degenerates to a linear PDE. On the lower boundary v = 0, the variance
and the risk premium vanishes, according to (5.4), so that the wealth return is always the risk
free rate r. The control value p vanishes in the degenerate equation (5.19), and we can simply
define p∗(w, v = 0, t) ≡ 0 which we need in the estimation of (V arx,tp∗(·)[W (T )], Ex,t

p∗(·)[W (T )])
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using the Monte Carlo simulation. In this case, since the equity asset has zero volatility with
drift rate r, the distinction between the equity and risk free asset is meaningless.

The validity of this boundary condition is intuitively justified by the fact that the solution
to the SDE for v is unique, such that the behavior of v at the boundary v = 0 is determined
by the SDE itself, and hence the boundary condition is determined by setting v = 0 in
equation (5.15). A formal proof that this boundary condition is correct is given in [36]. If
the boundary at v = 0 is attainable, then this boundary behaviour serves as a boundary
condition and guarantees uniqueness in the appropriate function spaces. On the other hand,
if the boundary is non-attainable, then the boundary behaviour is not needed to guarantee
uniqueness, but is nevertheless very useful in a numerical scheme.

On the upper boundary v = vmax, Uv is set to zero. Thus, the boundary condition on
vmax is set to

Uτ = inf
p∈Z

{
(r + pξv)wUw +

1

2
(p
√
vw)2Uww

}
. (5.20)

The optimal control p∗ at v = vmax is determined by solving the equation (5.20). This
boundary condition can be justified by noting that as v → ∞, then the diffusion term in
the w direction in equation (5.15) becomes large. As well, the initial condition (5.16) is
independent of v. As a result, we expect that

U ≈ C ′w + C ′′, v →∞,

where C ′ and C ′′ are constants, and hence Uv ≈ 0 at v = vmax.

The localization for w

We prohibit the possibility of bankruptcy (W (t) < 0) by requiring that limw→0(pw) = 0 [73],
so, on w = 0, the equation (5.15) reduces to

Uτ = κ(θ − v)Uv + σ2vUvv. (5.21)

When w → +∞, we assume that the asymptotic form of the exact solution is

U(w → +∞, v, τ) = Ū(w) = H2(τ)w2 +H1(τ)w +H0(τ), (5.22)

and make the assumption that p∗(wmax, v, 0) at w = wmax is set to zero. That is, once the
investor’s wealth is very large, she prefers the risk free asset. This can be justified from the
arguments in [26, 27].

Alternative localization for w

U(w, v, τ) is the viscosity solution of the HJB equation (5.15). Recall that the initial condi-
tion for problem (5.14) is

U(w, v, 0) =

(
W (T )− γ

2

)2

.
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For a fixed gamma, we define the discounted optimal embedded terminal wealth at time t,
denoted by Wopt(t), as

Wopt(t) =
γ

2
e−r(T−t). (5.23)

It is easy to verify that Wopt(t) is a globally minimum state of the value function U(w, v, t).
Consider the state (Wopt(t), v), t ∈ [0, T ], and the optimal strategy p∗(·) such that p∗(w, v, T ) ≡
0, T > t. Under p∗(·), the wealth is all invested in the risk free bond without further re-
balancing from time t. As a result, the wealth will accumulate to W (T ) = γ

2
with certainty,

i.e., the optimal embedded terminal wealth γ
2

is achievable. By definition (5.14), we have,

U(Wopt(t), v, t) = inf
p(·)∈Z

{
Ex,t
p(·)[(W (T )− γ

2
)2]
}

= Ex,t
p∗(·)[(W (T )− γ

2
)2] = 0. (5.24)

Since the value function is the expectation of a non-negative quantity, it can never be less
than zero. Then, the exact solution for the value function problem at the special point
Wopt(t) must be zero. This result holds for both the discrete and continuous re-balancing
case. For the formal proof, we refer the reader to [27].

Consequently, the point w = γ
2
e−rτ is a Dirichlet boundary U(γ

2
e−rτ , v, τ) = 0, and

information for w > γ
2
e−rτ is not needed. In principle, we can restrict the domain to

0 ≤ w ≤ γ
2
e−rτ . However, it is computationally convenient to restrict to the size of the

computational domain to be 0 ≤ w ≤ γ
2
, which avoids issues with a moving boundary, at a

very small additional cost. Note that the optimal control will ensure that U(γ
2
e−rτ , v, τ) = 0

without any need to enforce this boundary condition. This will occur since we assume
continuous rebalancing. This effect that W (t) ≤ Wopt(t) is also discussed in [71]. It is
interesting to note that, in the case of discrete rebalancing that it is optimal to withdraw
cash from the portfolio if it is ever observed that W (t) > Wopt(t). On the other hand, [9]
show that if the market is complete, then it is never optimal to withdraw cash from the
portfolio. This is discussed in [26, 27].

In the case of an incomplete market, such as discrete rebalancing or jump diffusions, if we
do not allow withdrawing cash from the portfolio, then the investor has an incentive to lose
money if W (t) > Wopt(t), as pointed out in [26]. In this rather perverse situation, it may be
optimal to short the risky asset, so that the admissible set in this would be Z = [pmin, pmax]
with pmin < 0.

We have verified, experimentally, that restricting the computational domain to w ∈
[0, γ/2] gives the same results as the domain w ∈ [0, wmax], wmax � γ

2
, with asymptotic

boundary condition (5.22).

Remark 5.3 (Significance of W (t) ≤ Wopt(t)). If we assume that initially W (0) < Wopt(0)
(otherwise the problem is trivial if we allow cash withdrawals), then the optimal control will
ensure that W (t) ≤ Wopt(t),∀t. Hence continuous time mean variance optimization is time
consistent in efficiency [26]. Another interpretation is that continuous time mean variance
optimization is equivalent to minimizing the quadratic loss with respect to the wealth target
Wopt(T )[71].
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Remark 5.4 (Significance of W (T ) ≤ γ/2). From Remark 5.3 we have trivially that W (T ) ≤
γ/2, hence from equation (5.14), the investor is never penalized for large gains, i.e. the
quadratic utility function (5.14) is always well behaved. Consequently, continuous time mean
variance optimization is fundamentally different from the single period counterpart.

5.2.2 Discretization

In the following section, we discretize equation (5.15) over a finite grid N = N1 ×N2 in the
space (w, v). Define a set of nodes {w1, w2, . . . , wN1} in the w direction and {v1, v2, . . . , vN2}
in the v direction. Denote the nth time step by τn = n∆τ, n = 0, . . . , Nτ , with Nτ = T

∆τ
.

Let Uni,j be the approximate solution of the equation (5.15) at (wi, vj, τ
n).

It will be convenient to define

∆wmax = max
i

(wi+1 − wi) , ∆wmin = min
i

(wi+1 − wi) ,

∆vmax = max
i

(vi+1 − vi) , ∆vmin = min
i

(vi+1 − vi) .
(5.25)

We assume that there is a mesh discretization parameter h such that

∆wmax = C1h, ∆wmin = C2h, ∆vmax = C
′

1h, ∆vmin = C
′

2h, ∆τ = C3h, (5.26)

where C1, C2, C
′
1, C

′
2, C3 are constants independent of h.

In the following sections, we will give the details of the discretization for a reference node
(wi, vj), 1 < i < N1, 1 < j < N2.

The wide stencil

Following similar arguments in Chapter 2, we need to use a wide stencil method to construct
a monotone and consistent discretization for equation (5.15). We will use the wide stencil
method developed in Chapter 2 to discretize the second derivative terms. For more details,
we refer the reader to Section 2.3.2. Suppose we discretize equation (5.15) at grid node (i, j)
for a fixed control. For a fixed p, consider a virtual rotation of the local coordinate system
clockwise by the angle ηi,j

ηi,j =
1

2
tan−1

(
2ρpσwivj

(p
√
vjwi)2 − (σ

√
vj)2

)
. (5.27)

That is, (x1, x2) in the transformed coordinate system is obtained by using the following
matrix multiplication (

w
v

)
=

(
cos ηi,j − sin ηi,j
sin ηi,j cos ηi,j

)(
x1

x2

)
, (5.28)
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where Ri,j is the rotation matrix. Under this grid rotation, the second order terms in
equation (5.18) are, in the transformed coordinate system (x1, x2),

ai,j
∂2W
∂x2

1

+ bi,j
∂2W
∂x2

2

, (5.29)

where W is the value function W(x1, x2, τ) in the transformed coordinate system, and

ai,j =

(
1

2
(p
√
vjwi)

2 cos(ηi,j)
2 + ρpσwivj sin(ηi,j) cos(ηi,j) +

1

2
(σ
√
vj)

2 sin(ηi,j)
2

)
,

bi,j =

(
1

2
(p
√
vjwi)

2 sin(ηi,j)
2 − ρpσwivj sin(ηi,j) cos(ηi,j) +

1

2
(σ
√
vj)

2 cos(ηi,j)
2

)
.

(5.30)

Let us rewrite the HJB equation (5.15) as

sup
p∈Z
{Uτ − (r + pξv)wUw − LpU} = 0, (5.31)

where the linear operator Lp is defined as

LpU = κ(θ − v)Uv +
1

2
(p
√
vw)2Uww + pρσ

√
vwUwv +

1

2
σ2vUvv. (5.32)

The drift term κ(θ − v)Uv in equation (5.32) is discretized by a standard backward or
forward finite differencing discretization, depending on the sign of κ(θ − v). Overall, the
discretized form of the linear operator Lp is then denoted by Lph

LphU
n+1
i,j = 1κ(θ−vj)≥0

κ(θ − vj)
h

Un+1
i,j+1 − 1κ(θ−vj)<0

κ(θ − vj)
h

Un+1
i,j−1

+
ai,j
h
JhUn+1

(
xi,j +

√
h(Ri,j)1

)
+
ai,j
h
JhUn+1

(
xi,j −

√
h(Ri,j)1

)
+
bi,j
h
JhUn+1

(
xi,j +

√
h(Ri,j)2

)
+
bi,j
h
JhUn+1

(
xi,j −

√
h(Ri,j)2

)
−
(

1κ(θ−vj)≥0
κ(θ − vj)

h
− 1κ(θ−vj)<0

κ(θ − vj)
h

+
2ai,j
h

+
2bi,j
h

)
Un+1
i,j ,

(5.33)

where h is the discretization parameter, and the superscript p in Lph indicates that the

discretization depends on the control p. Jh is a linear interpolation operator. xi,j =

(
wi
vj

)
,

ai,j and bi,j are given in (5.30), and (Ri,j)k is k-th column of the rotation matrix.

Remark 5.5. In Chapter 2, we proposed a hybrid method to minimize the use of a wide
stencil discretization. Suppose that we use a fixed stencil method to discretize equation (5.15),
and construct the uniform grid with grid sizes ∆w and ∆v. The standard finite difference
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method is used to approximate the second order derivative terms, and the seven point stencil
method (see Section 2.3.1) is used to approximate the cross-derivative term. Then, the grid
spacing condition under which a fixed stencil is monotone is, for equation (5.15),

|ρ|σwi
p
√
vj
≤ ∆v

∆w
≤

σ
√
vi

|ρ|pwi
.

However, for ∀p ∈ [0, pmax], such a grid spacing does not exist to ensure that the fixed stencil
method is monotone. Therefore, we only use the wide stencil method for this problem. It also
reminds us of the necessity of a wide stencil method when discretizing a multidimensional
HJB equation.

Semi-Lagrangian timestepping scheme

When p→ 0, equation (5.15) degenerates, with no diffusion in the w direction. As a result,
we will discretize the drift term (r + pξv)wUw in equation (5.15) by a semi-Lagrangian
timestepping scheme in this section. Initially introduced by [34, 60] for atmospheric and
weather numerical prediction problems, semi-Lagrangian schemes can effectively reduce the
numerical problems arising from convection dominated equations.

Firstly, we define the Lagrangian derivative DU
Dτ

(p) by

DU
Dτ

(p) = Uτ − (r + pξv)wUw, (5.34)

which is the rate of change of U along the characteristic w = w(τ) defined by the risky asset
fraction p through

dw

dτ
= −(r + pξv)w. (5.35)

We can then rewrite equation (5.31) as

sup
p∈Z

{
DU
Dτ
− LpU

}
= 0. (5.36)

Solving equation (5.35) backwards in time from τn+1 and τn, for a fixed wi, gives the
point at the foot of the characteristic

(wi∗ , vj) = (wie
(r+pξvj)∆τ

n

, vj), (5.37)

which in general is not on the PDE grid. We use the notation Uni∗,j to denote an approximation
of the value U(wi∗ , vj, τ

n), which is obtained by linear interpolation to preserve monotonicity.
The Lagrangian derivative at a reference node (i, j) is then approximated by

DU
Dτ

(p) ≈
Uni,j − Uni∗,j(p)

∆τn
, (5.38)
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where Uni∗,j(p) denotes that wi∗ depends on the control p through equation (5.37). For the
details of the semi-Lagrangian timestepping scheme, we refer the reader to [18].

Finally, by using the implicit timestepping method, combining the expressions (5.33) and
(5.38), the HJB equation (5.36) at a reference point (wi, vj, τ

n+1) is then discretized as

sup
p∈Zh

{(Un+1
i,j − Uni∗,j(p)

∆τn

)
− LphU

n
i,j

}
= 0, (5.39)

where Zh is the discrete control set. Since there is no simple analytic expression which
can be used to minimize the discrete equations (5.39), we need to discretize the admissible
control set Z and perform linear search. This guarantees that we find the global maximum
of equation (5.39), since the objective function has no known convexity properties. If the
discretization step for the controls is also O(h), where h is the discretization parameter, then
this is a consistent approximation [72].

5.2.3 Matrix form of the discrete equations

Our discretization is summarized as follows. The domains are defined in Table 5.1. For the
case (wi, vj) ∈ Ωin, we need to use a wide stencil based on a local coordinate rotation to
discretize the second derivative terms, and use the semi-Lagrangian timestepping scheme to
handle the drift term (r + pξv)wUw. The HJB equation is discretized as (5.39), and the
optimal p∗ in this case is determined by solving (5.39). For the case Ωvmax , the HJB equation
degenerates to (5.20). In this case, the drift term is also handled by the semi-Lagrangian
timestepping scheme. With a vanishing cross-derivative term, the degenerate linear operator
Lp can be discretized by a standard finite difference method. The corresponding discretized
form Dp

h is given in Appendix D. The value for case Ωwmax is obtained by the asymptotic so-
lution (5.22), and the optimal p∗ is set to zero. At the lower boundaries Ωwmin

and Ωvmin
, the

HJB equation degenerates to a linear equation. The wide stencil and the semi-Lagrangian
timestepping scheme may require the value of the solution at a point outside the computa-
tional domain, denoted as Ωout. Details on how to handle this case are given in Section 5.3.3.
From the discretization (5.39), we can see that the measure of Ωout convergences to zero as
h → 0. Lastly, fully implicit time-stepping is used to ensure unconditional monotonicity of
our numerical scheme. We use policy iteration to solve nonlinear algebraic equations at each
timestep. We refer the reader to [48, 39] and Chapter 4 for details of the policy iteration
algorithm.

It is convenient to use a matrix form to represent the discretized equations for computa-
tional purposes. Let Uni,j be the approximate solution of the equation (5.15) at (wi, vj, τ

n),
1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 0 ≤ τn ≤ Nτ , and form the solution vector

Un =
(
Un1,1,Un2,1, . . . ,UnN1,1

, . . . ,Un1,N2
, . . . ,UnN1,N2

)
. (5.40)
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Notation The domain
Ω [0, wmax]× [0, vmax]
Ωin (0, wmax)× (0, vmax)
Ωwmax The upper boundary w = wmax

Ωvmax The upper boundary v = vmax

Ωwmin
The lower boundary w = 0

Ωvmin
The lower boundary v = 0

Ωout (wmax,+∞)× (0,+∞) ∪ (0,+∞)× (vmax,+∞)

Table 5.1: The domain definitions.

It will sometimes be convenient to use a single index when referring to an entry of the
solution vector

Un` = Uni,j, ` = i+ (j − 1)N1.

Let N = N1 ×N2, and we define the N ×N matrix Ln+1(P), where

P = {p1, . . . , pN} (5.41)

is an indexed set of N controls, and each p` is in the set of admissible controls. Ln+1
`,k (P) is

the entry on the `-th row and k-th column of the discretized matrix Ln+1(P). We also define
a vector of boundary conditions Fn+1(P).

For the case (wi, vj) ∈ Ωwmax where the Dirichlet boundary condition (5.22) is imposed,
we then have

Fn+1
` (P) = Ū(wmax), (5.42)

and

Ln+1
`,k (P) = 0, k = 1, . . . , N. (5.43)

For the case (wi, vj) ∈ Ωvmin
∪ Ωwmin

∪ Ωvmax , the differential operator degenerates, and
the entries Ln+1

`,k (P) are constructed from the discrete linear operator Dp
h (see the Appendix

D, equation (D.1) ). That is,

[Ln+1(P)Un+1]` = Dp
hU

n+1
i,j . (5.44)

For the case (wi, vj) ∈ Ωin, we need to use the values at the following four off-grid points

xi,j ±
√
h(Ri,j)k, k = 1, 2 in (5.33), and we denote those values by Ψm

i,j, m = 1, 2, 3, 4,
respectively. When Ψm

i,j ∈ Ω, using linear interpolation, values at these four points are
approximated as follows

JhUn+1(Ψm
i,j) =


∑

d=0,1
e=0,1

ωfm+d,gm+e
i,j Un+1

fm+d,gm+e, Ψm
i,j ∈ Ω

0, otherwise
. (5.45)
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For linear interpolation, we have that ωfm+d,gm+e
i,j ≥ 0 and

∑
d=0,1
e=0,1

ωfm+d,gm+e
i,j = 1. Then,

inserting (5.45) in (5.33), the entries Ln+1
`,k (P) on `-th row are specified. When we use

Ψm
i,j ∈ Ωout, we directly use its asymptotic solution Ū(Ψm

i,j) (5.22). Thus, we need to define
the vector Gn+1(P) to facilitate the construction of the matrix form in this situation when
we use a point in the domain Ωout.

Gn+1
` (P) =


1Ψ1

i,j∈Ωout
ai,j
h
Ū(Ψ1

i,j) + 1Ψ2
i,j∈Ωout

ai,j
h
Ū(Ψ2

i,j)

+ 1Ψ3
i,j∈Ωout

bi,j
h
Ū(Ψ3

i,j) + 1Ψ4
i,j∈Ωout

bi,j
h
Ū(Ψ4

i,j), (wi, vj) ∈ Ωin,

0, otherwise

(5.46)
where ai,j and bi,j are defined in equation (5.30). As a result, for the case (wi, vj) ∈ Ωin,

[Ln+1(P)Un+1]` + Gn+1
` (P) = LphU

n+1
i,j , (5.47)

where Lph is defined in equation (5.33).

Let Φn+1(P) be a linear Lagrange interpolation operator such that

[Φn+1(P)U]l =

{
JhUni∗,j, (wi∗ , vj) ∈ Ω

Ū(wi∗) (5.22), (wi∗ , vj) ∈ Ωout

, (5.48)

where Uni∗,j is defined in (5.37).

The final matrix form of the discretized equations is then[
I−∆τnLn+1(P̂)

]
Un+1 = Φn+1(P)Un + ∆τnGn+1(P) + Fn+1 − Fn,

p̂` ∈ arg min
p∈Zh

[
Φn+1(P)Un + ∆τn

(
Ln+1(P)Un+1 + Gn+1(P)

)]
`
,

` = i+ (j − 1)N1, i = 2, . . . , N1 − 1, j = 2, . . . , N2,

(5.49)

where Zh is the discretized control set Z.

Remark 5.6. Note that [I−∆τnLn+1(P)]`,k, [Φn+1(P)]` and [Gn+1(P)]` depend only on p`.

5.2.4 Convergence to the viscosity solution

Assumption 5.2. If the control p is bounded, Equation (5.15) satisfies the strong comparison
property, hence a unique continuous viscosity solution to equation (5.15) exists [30].

Provided that the original HJB equation satisfies Assumption 5.2, we can show that
the numerical scheme (5.49) is `∞ stable, consistent and monotone, and then the scheme
converges to the unique and continuous viscosity solution [7]. We give a brief overview of
the proof as follows.
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• Stability: From the formation of matrix L in (5.43), (5.44) and (5.47), it is easily seen
that [I−∆τLn+1(P)] (5.49) has positive diagonals, non-positive offdiagonals, and the
`-th row sum for the matrix is∑

k

[
I−∆τLn+1(P)

]
`,k
> 0, i = 1, . . . , N1, j = 1, . . . , N2, (5.50)

where ` = i + (j − 1)N1, hence the matrix [I − ∆τLn+1(P)] is diagonally dominant,
and thus it is an M -matrix (see Definition 3.3 in Chapter 3). We can then easily show
that the numerical scheme is l∞ stable by a straightforward maximum analysis as in
[31].

• Monotonicity: To guarantee monotonicity, we use a wide stencil to discretize the
second derivative terms in the discrete linear operator Lph (5.33) (see proof in Section
3.4). Note that using linear interpolation to compute Uni∗,j (5.38) in the semi-Lagrangian
timestepping scheme also ensures monotonicity.

• Consistency: A simple Taylor series verifies consistency. As noted in Section 5.3.3,
we may shrink the wide stencil length to avoid using points below the lower bound-
aries. We can use the same proof in Section 3.2 to show this treatment retains local
consistency. Since we have either simple Dirichlet boundary conditions, or the PDE
at the boundary is the limit from the interior, then we need only use the classical
definition of consistency here. The only case where the point Uni∗,j (5.38) in the semi-
Lagrangian timestepping scheme is outside computational domain is through the upper
boundary w = wmax, where the asymptotic solution (5.22) is used. Thus, unlike the
semi-Lagrangian timestepping scheme in [18], we do not need the more general defini-
tion of consistency [7] to handle the boundary data.

5.2.5 Policy iteration

Our numerical scheme requires the solution of highly nonlinear algebraic equations (5.49) at
each timestep. We use the policy iteration algorithm [39] to solve the associated algebraic
system [39, 48]. Regarding the convergence of the policy iteration, since the matrix [I −
∆τLn+1(P)] (5.49) is an M -matrix and the control set Zh is a finite set, it is easy to show
that policy iteration is guaranteed to converge [39].

Remark 5.7. In this application of policy iteration, the control set is discrete, thus it is
straightforward to determine the optimal control, and guarantee the convergence of the algo-
rithm.
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5.3 Implementation details

5.3.1 Complexity

Examination of the algorithm for solving discrete equations (5.49) reveals that each timestep
requires the following steps.

• In order to solve the local optimization problems at each node, we perform a linear
search to find the minimum for p ∈ Zh. Thus, with total O(1/h2) nodes, this gives a
complexity O(1/h3) for solving the local optimization problems at each time step.

• As noted in Section 4.0.1, we use a preconditioned Bi-CGSTAB iterative method for
solving the sparse matrix at each policy iteration. The time complexity of solving the
sparse M -matrix is O((1/h2)

5
4 ) [64].

Assuming that the number of policy iterations is bounded, as the mesh size tends to
zero, which is in fact observed in our experiments, the complexity of the time advance
is thus dominated by the solution of the local optimization problems. Finally, the total
complexity is O(1/h4).

5.3.2 The efficient frontier

In order to trace out the efficient frontier solution of problem (5.7), we proceed in the fol-
lowing way. Pick an arbitrary value of γ and solve problem (5.14), which determines the
optimal control p∗(·). There are then two methods to determine the quantities of inter-
est (V arx0,0p∗ [W (T )], Ex0,0

p∗ [W (T )]), namely the PDE method and the Hybrid (PDE - Monte
Carlo) method. We will compare the performance of these methods in the numerical exper-
iments.

The PDE Method

For a fixed γ, given U(w0, v0, 0) and E(w0, v0, 0) obtained by solving the corresponding equa-
tions (5.15) and (5.18) at the initial time with W0 = w0 and V0 = v0, we can then compute
the corresponding pair (V arx0,0p∗(·)[W (T )], Ex0,0

p∗(·)[W (T )]), where x0 = (w0, v0). That is,

Ex0,0
p∗(·)[W (T )] = E(w0, x0, 0),

V arx0,0p∗(·)[W (T )] = U(w0, v0, 0)− γE(w0, x0, 0)− γ2

4
− E(w0, v0, 0)2,

(5.51)

which gives us a single candidate point YQ(γ). Repeating this for many values of γ gives us
a set of candidate points.
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We are effectively using the parameter γ to trace out the efficient frontier. From Theorem
5.1, we have that γ = 1

λ
+ 2E0. If λ → ∞, the investor is infinitely risk averse, and invests

only the risk free bond, hence in this case, the smallest possible value of γ is

γmin = 2w0 exp(rT ). (5.52)

In practice, the interesting part of the efficient frontier is in the range γ ∈ [γmin, 10γmin].
Finally, the efficient frontier is constructed from the upper left convex hull of YQ [69] to
remove spurious points. In our case, however, it turns out that all the points are on the
efficient frontier, and there are no spurious points, if γ ≥ γmin.

The Hybrid (PDE - Monte Carlo) discretization

In the hybrid method, given the stored optimal control p∗(·) from solving the HJB PDE
(5.15), (V arx0,0p∗(·)[W (T )], V arx0,0p∗(·)[W (T )]) are then estimated by Monte Carlo simulations. We

use the Euler scheme to generate the Monte Carlo simulation paths of the wealth (5.4), and
an implicit Milstein scheme to generate the Monte Carlo simulation paths of the variance
process (5.3). Starting with W0 = w0 and V0 = v0, the Euler scheme for the wealth process
(5.4) is

Wt+∆t = Wt exp
((
r + p∗ξVt − 0.5(p∗

√
Vt)

2
)

∆t+ p∗
√
Vt∆tφ1

)
, (5.53)

and the implicit Milstein scheme of the variance process (5.3) [51] is

Vt+∆t =
Vt + κθ∆t+ σ

√
Vt∆tφ2 + σ2∆t(φ2

2 − 1)/4

1 + κ∆t
, (5.54)

where φ1 and φ2 are standard normal variables with correlation ρ. Note that this discretiza-
tion scheme will result in strictly positive paths for the variance process if 4κθ > σ2 [51]. For
the cases where this bound does not hold, it will be necessary to modify (5.54) to prevent
problems with the computation of

√
Vt. For instance, whenever Vt drops below zero, we

could use the Euler discretization

Vt+∆t = Vt + κ(θ − V +
t )∆t+ σ

√
V +
t

√
∆tφ2, (5.55)

where V +
t = max(0, Vt). [54] reviews a number of similar remedies to get around the problem

when Vt becomes negative and concludes that the simple fix (5.55) works best.

5.3.3 Outside the computational domain

As a wide stencil method is used in our numerical scheme, the stencil length needs to be
increased to use the points beyond the nearest neighbors of the original grid. Therefore, when
solving the PDE in a bounded region, the numerical discretization may require points outside
the computational domain. When a candidate point we use is outside the computational
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region at the upper boundaries, we can directly use its asymptotic solution (5.22). For a
point outside the upper boundary w = wmax, the asymptotic solution is specified by the
equation (5.22). For a point outside the upper boundary v = vmax, by the implication of the
boundary condition Uv = 0 on v = vmax, we have,

U(w, v, τ) = U(w, vmax, τ), v > vmax. (5.56)

However, we have to take special care when we may use a point below the lower boundaries
w = 0 or v = 0, because the equation (5.15) is defined over [0,∞] × [0,∞]. We can use
Algorithm 2.1 to avoid this problem by shrinking the stencil to remain inside the domain
(see details in Section 2.3.4). This simple treatment ensures that all data required is within
the domain of the HJB equation.

In addition, due to the semi-Lagrangian timestepping (Section 5.2.2) , we may need to
evaluate the value of an off-grid point (wi∗ = wie

(r−pξvj)∆τn , vj) (5.37). This point may be
outside computational domain through the upper boundary w = wmax (the only possibility).
When this situation occurs, the asymptotic solution (5.22) is used.

5.3.4 An improved linear interpolation scheme

When solving the value function problem (5.15) or the expected value problem (5.18) on a
computational grid, it is required to evaluate U(·) and E(·), respectively, at points other than
a node of the computational grid. This is especially important when using semi-Lagrangian
timestepping. Hence, interpolation must be used. As mentioned earlier, to preserve the
monotonicity of the numerical schemes, linear interpolation for an off-grid node is used in
our implementation. [28] introduces a special linear interpolation scheme applied along the
w-direction to significantly improve the accuracy of the interpolation in a 2-D impulse control
problem. We modify this algorithm in our problem set-up.

We then take advantage of the results in Section 5.2.1 to improve the accuracy of the
linear interpolation. Assume that we want to proceed from timestep τn to τn+1, and that
we want to compute U(w̄, vj, τ

n) where w̄ is neither a grid point in the w-direction nor the
special value Wopt(T − τn), where Wopt is defined in equation (5.23). Furthermore, assume
that wk < w̄ < wk+1 for some grid points wk and wk+1. For presentation purposes, let
wspecial = Wopt(T − τn) and Uspecial = 0. An improved linear interpolation scheme along the
w-direction for computing U(w̄, vj, τ

n) is shown in Algorithm 5.1. Note that the interpolation
along v-direction is a plain linear interpolation, thus we only illustrate the interpolation
algorithm in w-direction.

Following the same line of reasoning used for the function value problem, we have that

E(v,Wopt(t), t) =
γ

2
.

By using this result, a similar method as Algorithm 5.1 can be used to improve the accuracy
of linear interpolation when computing the expected value E(w̄, vj, τ

n).
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Algorithm 5.1 Improved linear interpolation scheme along the w-direction for the function
value problem

1: if wspecial < wk or wspecial > wk+1 then
2: set wleft = wk, Uleft = Unk,j, wright = wk+1, and Unright = Unk+1,j

3: else
4: if wspecial < w̄ then
5: set wleft = wspecial, Uleft = Uspecial, wright = wk+1, and Unright = Unk+1,j

6: else
7: set wleft = wk, Uleft = Unk,j, wright = wspecial, and Unright = Uspecial
8: end if
9: end if
10: Apply linear interpolation to (wleft,Uleft) and (wright,Uright) to compute U(w̄, vj, τ

n)

Remark 5.8. For the discretization of the expected value problem (5.18), we still use the
semi-Lagrangian timestepping to handle the drift term (r + p∗ξv)wEw. Since it may be
necessary to evaluate Eni∗,j at points other than a node of the computational grid, we need to
use linear interpolation.

5.4 Numerical experiments

In this section, we present numerical results of solution of equation (5.15) applied to the
continuous time mean variance portfolio allocation problem. In our problem, the risky
asset (5.2) follows the Heston model. The parameter values of the Heston model used in our
numerical experiments are taken from [1] based on empirical calibration from S&P 500 index
and VIX index dataset during 1990 to 2004 (under the real probability measure). Table 5.2
lists the Heston model parameters, and Table 5.3 lists the parameters of the mean variance
portfolio allocation problem.

κ θ σ ρ ξ
5.07 0.0457 0.48 −0.767 1.605

Table 5.2: Parameter values in the Heston model

For all the experiments, unless otherwise noted, the details of the grid, the control set,
and timestep refinement levels used are given in Table 5.4.
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Investment Horizon T 10
The risk free rate r 0.03
Leverage constraint pmax 2
Initial wealth w0 100
Initial variance v0 0.0457

Table 5.3: Input parameters for the mean variance portfolio allocation problem.

Refinement Timesteps W Nodes V Nodes Zh Nodes
0 160 112 57 8
1 320 223 113 15
2 640 445 225 31
3 1280 889 449 63

Table 5.4: On each refinement, a new grid point is placed halfway between all old grid points
and the number of timesteps is doubled. A constant timestep size is used. wmax = 6 × 106

and vmax = 3.0. The number of finitely sampled γ points is 50. Note that increasing wmax by
an order of magnitude and doubling vmax results in no change to the points on the efficient
frontier to five digits. Increasing the number of γ points did not result in any appreciable
change to efficient frontier (no spurious points in this case).

5.4.1 Effects of the improved interpolation scheme for the PDE
method

In this subsection, we discuss the effects on numerical results of the linear interpolation
scheme described in Section 5.3.4. We plot expected values against standard deviation, since
both variables have the same units. Figure 5.1a illustrates the numerical efficient frontiers
obtained using standard linear interpolation. It is clear that the results are very inaccurate
for small standard deviations. It appears that the numerical methods were not able to
construct the known point on the exact efficient frontier

(V arx,tp∗(·)[W (T )], Ex,t
p∗(·)[W (T )]) = (0, w0e

rT ) ≈ (0, 134.9859).

This trivial case corresponds to the case where γ = γmin (5.52), and the investor invests only
in the risk free bond and not in the risky asset. However, as shown in Figure 5.1a, in this
special case, the standard deviation obtained by the numerical scheme using standard linear
interpolation is far from the exact solution.

Figure 5.1b shows the numerical efficient frontiers obtained with the improved linear
interpolation scheme, where Algorithm 5.1 is utilized. It is obvious that the numerical effi-
cient frontiers obtained with the improved linear interpolation scheme are more reasonable,
especially for the small standard deviation region. In particular, the special point where the
variance is zero is now approximated accurately. This result illustrates the importance of
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using the optimal embedded terminal wealth Wopt(t) and its function value for linear interpo-
lation in constructing accurate numerical efficient frontiers. In all our numerical experiments
in the following, the improved linear interpolation scheme is used.
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Figure 5.1: Close-up of efficient frontier for small standard deviations. (a) No Special Inter-
polation. (b) Special interpolation.

5.4.2 Convergence analysis

In this section, we illustrate the convergence of our numerical scheme, and compare the
performance of two methods, namely the PDE method (Section 5.3.2) and the Hybrid method
(5.3.2), for constructing the mean variance frontier under our model set-up.

Figure 5.2 shows that the mean standard deviation efficient frontiers computed by both
the PDE method and the Hybrid method converge to the same frontier as the computational
grid is refined. Our numerical results demonstrate that the Hybrid frontiers in general
converge faster to the limit results than the pure PDE solutions. This same phenomenon
was observed in [68]. As shown in Figure 5.2, the frontiers obtained by the Hybrid method
are almost identical for refinement level 1 and 2. Note that for both methods, the optimal
control is always computed by solving the HJB PDEs.

The same timesteps are used in both PDE method and Monte Carlo simulations, for each
refinement level. For example, the frontiers labeled with “Refine = 1” for both methods in
Figure 5.2 use the time steps as specified as Refinement level 1 in Table 5.4. To achieve small
sampling error in Monte Carlo simulations, 106 simulations are performed for the numerical
experiments. The standard error in Figure 5.2 can then be estimated. For example, consider
a point on the frontier with the large standard deviation value which is about 350. For the
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expected value of W (T ), the sample error is approximately 350/
√

106 ≈ 0.35, which could
be negligible in Figure 5.2.

We will verify our conclusion by examining several specific points on these efficient fron-
tiers in Figure 5.2. Table 5.5 and Table 5.6 show computed means and standard deviations
for different refinement levels when γ = 540. The numerical results indicate first order con-
vergence is achieved for both the PDE method and the Hybrid method. In this case, our
numerical results demonstrate that the Hybrid frontiers converge faster to the limit results
than the PDE solutions. Table 5.7 and Table 5.8 show computed means and standard de-
viations for different refinement levels when γ = 1350. The numerical results indicate first
order convergence is achieved for the PDE method. In this case, our numerical results also
demonstrate that the Hybrid frontiers converge faster to the limit results than the PDE solu-
tions. However, the convergence ratio for the Hybrid method is erratic. As we noted before,
in this case, the sample error for the estimate of the mean value is about 0.2 ' 200/

√
106,

which makes the convergence ratio estimates in Table 5.8 unreliable. The sample error may
cause the phenomenon of the erratic convergence ratio in the Hybrid method results. To
decrease the sample error to, for example, 0.02, the number of simulation paths would have
to increase to 100×106, which is unaffordable in terms of the computational cost. Note that
in the case γ = 540, with the small standard deviation, the sample error for the mean is
about 0.05 ' 50/

√
106.

Remark 5.9 (Efficiency of the Hybrid method.). We remind the reader that for both the
Hybrid and PDE methods, the same (computed) control is used. The more rapid convergence
of the Hybrid method is simply due to a more accurate estimate of the expected quantities
(with a known control). This result is somewhat counter-intuitive, since it suggests that a
low accuracy control can be used to generate high accuracy expected values. We also observe
this from the fact that a fairly coarse discretization of the admissible set Zh generates fairly
accurate solutions.

Refine Mean Change Ratio Standard Deviation Change Ratio
0 207.1434 71.3924
1 210.4694 3.3260 65.5090 −5.88336
2 212.1957 1.7263 1.92 62.0862 −3.42288 1.72
3 213.1481 0.95238 1.81 60.4738 −1.61237 2.12

Table 5.5: The convergence table for the PDE method. Small standard deviation case with
γ = 540.

5.4.3 Sensitivity of Efficient Frontiers

In this subsection, we show some numerical sensitivity analysis for the major market pa-
rameters, namely the leverage constraints pmax, the risk premium parameter ξ, the mean
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Figure 5.2: Convergence of frontiers in the PDE method and the Hybrid method. The
frontiers labeled with “PDE” are obtained from the PDE method (Section 5.3.2). The
frontiers labeled with “Hybrid” (Section 5.3.2) are obtained from a Monte Carlo simulation
which uses the optimal controls determined by solving the HJB equation (5.15).

Refine Mean Change Ratio Standard Deviation Change Ratio
0 212.2993 56.6128
1 213.2077 0.908 57.7652 1.152
2 213.7573 0.550 1.65 58.2987 0.534 2.16
3 213.9903 0.233 2.36 58.5253 0.227 2.35

Table 5.6: The convergence table for the Hybrid method. Small standard deviation case
with γ = 540.
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Refine Mean Change Ratio Standard Deviation Change Ratio
0 320.5139 217.0009
1 325.5443 5.030 212.1886 −4.812
2 328.2670 2.723 1.85 209.8434 −2.345 2.05
3 329.8172 1.550 1.76 208.9045 −0.939 2.50

Table 5.7: The convergence table for the PDE method. Large standard deviation case with
γ = 1350.

Refine Mean Change Ratio Standard Deviation Change Ratio
0 329.4411 206.0875
1 330.5172 1.076 206.8351 0.748
2 330.7066 0.189 5.68 207.1958 0.361 2.07
3 331.2820 0.575 0.33 207.3707 0.175 2.06

Table 5.8: The convergence table for the Hybrid method. Large standard deviation case
with γ = 1350.

reversion level for the variance θ, the volatility of the variance σ, the correlation ρ between
the risky asset and the variance, and the mean reversion speed κ. In our numerical tests,
the corresponding frontiers are generated as the market parameter of interest changes, and
the values of the remaining parameters are fixed and are listed in Table 5.2 and Table 5.3.
We use the Hybrid method with the discretization level 2.

As observed in Figure 5.3, with pmax = {1, 1.5, 2,+∞}, larger values of the leverage
constraints pmax result in much more dominant efficient frontiers. From Figure 5.4, with
ξ = {0.5, 1.605, 2.5}, we can see that larger values of ξ result in much more dominant
efficient frontiers. The maximal standard deviation point (γ = +∞) on the efficient frontier
with ξ = 0.5 is only about 191, which is much smaller than those with larger ξ values. From
Figure 5.5, θ = {0.01, 0.0457, 0.36}, we can see that larger values of the mean reversion level
θ for the variance, result in much more dominant efficient frontiers. The maximal standard
deviation point (γ = +∞) on the efficient frontier with θ = 0.01 is only about 108, which is
much smaller than those with larger θ values. From Figure 5.6, σ = {0.2, 0.48, 0.7}, we can
see that larger values of the volatility of the variance σ result in a slightly more dominant
efficient frontiers in general. In particular, these efficient frontiers in large standard deviation
region with different σ values values are almost identical.

On the other hand, from Figure 5.7, with ρ = {−0.767,−0.3, 0}, we can see that an
increase in the correlation ρ produces frontiers with a slightly smaller expected value for a
given standard deviation. These efficient frontiers in the large standard deviation region with
different ρ values are almost identical. The effect of the κ values on the efficient frontier is
more complex. From Figure 5.8, κ = {1, 5.07, 20}, in the small standard deviation region, an
increase in κ produces frontiers with a smaller expected value for a given standard deviation.
However, when the standard deviation increases to about 230, the larger values of κ gradually
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result in more significant dominant efficient frontiers.
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Figure 5.3: Sensitivity analysis of the efficient frontiers with respect to different leverage
constraints pmax. The Heston parameters and the remaining model parameters are given in
Table 5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.

5.4.4 Comparison between constant volatility and stochastic volatil-
ity cases

In this chapter, the risky asset follows the stochastic volatility model (5.2-5.3). In this
Section, we will compare the constant volatility and stochastic volatility cases in terms of
mean variance efficiency for the continuous time pre-commitment mean variance problem.
With a constant volatility, the risky asset is the governed by the following geometric Brownian
Motion (GBM) process:

dS

S
= (r + µ)dt+ σSdZs. (5.57)

To compare with the stochastic volatility case in Table 5.2, the constant volatility σS is set
to
√
θ ≈ 0.2138, and the risky return over the risk free rate µ is set to ξσ2

S = 0.0733485,
which has the same mean premium of the volatility risk as the stochastic volatility model
(5.2). This then corresponds to the case where the variance V (t) in (5.2) is fixed to the mean
reversion level θ. The remaining mean variance problem parameters are the same as listed
in Table 5.3.

Figure 5.9 illustrates the fact that the efficient frontiers produced by using the stochastic
volatility sightly dominates the curve produced by the constant volatility model. With the
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Figure 5.4: Sensitivity analysis of the efficient frontiers with respect to different risk premium
factor ξ values. The remaining Heston parameters and the model parameters are given in
Table 5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.
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Figure 5.5: Sensitivity analysis of the efficient frontiers with respect to different mean rever-
sion level θ values. The remaining Heston parameters and the model parameters are given
in Table 5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.
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Figure 5.6: Sensitivity analysis of the efficient frontiers with respect to different volatility
of the variance σ values. The remaining Heston parameters and the model parameters are
given in Table 5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.
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Figure 5.7: Sensitivity analysis of the efficient frontiers with respect to different correlation
ρ values. The remaining Heston parameters and the model parameters are given in Table
5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.
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Figure 5.8: Sensitivity analysis of the efficient frontiers with respect to different mean vari-
ance speed κ. The Heston parameters and the remaining model parameters are given in
Table 5.2 and Table 5.3. The Hybrid method with discretization level 2 is used.

Heston model’s parameters in Table 5.2, we may conclude that the efficient frontier produced
by the constant volatility is a good approximation of the frontier generated by the stochastic
volatility model. From Figure 5.9, however, we see that if the mean reversion speed κ is set
to a small value, e.g. one, in the stochastic volatility case, the efficient frontiers computed
using a constant volatility model will be considerably different from those computed using
the stochastic volatility model. The quantity 1/κ is measured in years and is related to the
time over which a volatility shock dissipates. Specially, the half-life of a volatility shock is
ln 2
κ

.

Finally, using the portfolio allocation strategy that is precomputed and stored from the
constant volatility case, we then carry out a Monte Carlo simulation where the risky asset
follows the stochastic volatility model. We then compare the results using this approximate
control, with the optimal control computed using the full stochastic volatility model. From
Table 5.9, we can see that the mean variance pairs computed using the optimal strategy are
very close to the strategy computed using the GBM approximation. Based on several tests,
a good heuristic guideline is that if κT > 40, then the GBM control is a good approximation
to the true (optimal control).
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γ = 540 γ = 1350
Control Process Price Process Mean Stnd Dev Mean Stnd Dev

GBM GBM 209.50 59.68 330.09 213.01
GBM Stoch. Vol. 212.68 58.42 329.13 207.23

Stoch. Vol. Stoch. Vol 213.99 58.53 331.28 207.37

Table 5.9: Given a γ, the optimal portfolio allocation strategy is computed and stored
assuming a control process, which is either GBM or stochastic volatility. The mean variance
pairs are then estimated by Monte Carlo Simulation, using the stored controls, assuming
that the actual price process follows either GBM or stochastic volatility. For the stochastic
volatility case, the parameters are given in Table 5.2. For the GBM case, the variance is
fixed to the mean value of the stochastic volatility case.

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

450

Standard Deviation

E
xp

ec
te

d
 V

al
u

e

stochastic vol with κ = 1

constant vol

stochastic vol with κ = 5.07

Figure 5.9: Efficient Frontier Comparison between constant volatility and stochastic volatil-
ity cases. For the stochastic volatility cases, κ = 1, 5.07, and the remaining stochastic
volatility parameters are given in Table 5.2. The GBM parameters are given in Section
5.4.4.
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5.5 Summary

The main results of this chapter are summarized as follows.

• We use the wide stencil method developed in Chapter 2 to overcome the main diffi-
culty in designing a monotone approximation. We show that our numerical scheme
is monotone, consistent, and `∞-stable. Hence, the numerical solution is guaranteed
to converge to the unique viscosity solution of the corresponding HJB PDE, assuming
that the HJB PDE satisfies a strong comparison property.

• Using semi-Lagrangian timestepping to handle the drift term and an improved method
of linear interpolation, allows us to compute accurate efficient frontiers. Standard
linear interpolation gives poor results for small values of standard deviation. When
tracing out the efficient frontier solution of our problem, we demonstrate that the
Hybrid (PDE - Monte Carlo) method [68] converges more rapidly than the pure PDE
method. Similar results are observed in [68].

• We find that if the mean reversion time 1
κ

is small compared to the investment horizon
T , then a constant volatility GBM approximation to the stochastic volatility process
gives a very good approximation to the optimal strategy. A reasonable rule of thumb
is that if κT > 40, then the GBM control is a good approximation to the optimal
control.
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Chapter 6

Option Pricing with Local Volatility
Uncertainty

In this chapter, we value options with local volatility uncertainty. We formulate the uncertain
local volatility model in Section 6.1. Section 6.2 reformulates the calibration problem into
a Bayesian framework. Static hedging is used to decrease the spread between the minimal
and maximal prices, and is introduced in Section 6.3. Finally, we carry out numerical
experiments on pricing two-dimensional basket options under the uncertain local volatility
model in Section 6.4.

6.1 The mathematical formulation

Consider a financial market with d reference assets, whose prices are denoted as S =
(S1, . . . , Sd). Suppose there is a family of local volatility models (pricing measures) Q ∈ Q.
Under a risk neutral measure Q, the dynamics of each asset price Si is as follows

dSi
Si

= (r − qi)dt+ σidWi, i = 1, . . . , d, (6.1)

where r is the risk-free interest rate, qi, i = 1, . . . , d are the dividend yields for Si, σi are
volatilities, and Wi are Wiener processes with dWidWj = ρijdt. Specifically, we assume that
σi lies with a range, e.g.,

σi ∈ [σi, σi], (6.2)

where σi is non-anticipative, and bounded in an interval. We emphasis that the bounds can
be deterministic functions of price Si and time t. That is, σi ≡ σi(Si, t) and σi ≡ σ̄i(Si, t).
In addition, uncertain correlation between the two underlying assets Si and Sj is permitted,
e.g.,

ρij ∈ [ρ
ij
, ρij], , i 6= j, 1 ≤ i, j ≤ d. (6.3)
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Similarly, the correlation bounds could be deterministic functions of the underlying assets
and time t, e.g., ρ

ij
≡ ρ

ij
(Si, Sj, t). Let θ = (σ1, . . . , σd, {ρi,j}1≤i,j≤d), where σi represents

the volatility function associated with the asset price Si, and {ρi,j}1≤i,j≤d is the correlation
matrix. Let Qθ denote the set of possible parameters defined in (6.2) (for volatilities) and
(6.3) (for correlations). We call this model an uncertain local volatility model.

As in Chapter 2, when the volatilities σi and correlations ρij are uncertain, the price of
the option contract is no longer unique. Let U(S, t) denote the value of a derivative at time
t written on St with maturity T and final payoff X(S), then at any time 0 ≤ t ≤ T , we must
have

U(S, t) = inf
θ∈Qθ

Eθ
t

[
e−rTX(S)

]
≤ U(S, t) ≤ sup

θ∈Qθ
Eθ
t

[
e−rTX(S)

]
= Ū(S, t). (6.4)

That is, the contingent claim value is bounded by U(S, t) and Ū(S, t). Then, we solve
the option pricing problems in terms of backward time τ = T − t, and denote Ū(S, τ) =
Ū (S, T − t). By the principle of the dynamic programming, the maximal value Ū(S, τ) is
governed by the following HJB PDE,

∂Ū
∂τ

=
d∑
i=1

rSi
∂Ū
∂Si

+ sup
θ∈Qθ

(
d∑

i,j=1

1

2
ρi,jσi(Si, τ)σj(Sj, τ)

∂2Ū
∂Si∂Sj

)
− rŪ ,

U(S, 0) = X(S),

(6.5)

and similarly, the minimal value U(S, τ) is governed by

∂U
∂τ

=
d∑
i=1

rSi
∂U
∂Si

+ inf
θ∈Qθ

(
d∑

i,j=1

1

2
ρi,jσi(Si, τ)σj(Sj, τ)

∂2U
∂Si∂Sj

)
− rU ,

U(S, 0) = X(S).

(6.6)

In general, (6.5) and (6.6) cannot be solved analytically, and we have to resort to the nu-
merical scheme developed in Chapter 2.

Note that the maximal (minimal) prices could be connected to the superhedging strategy
problem for a short (long) derivative position. Consider a one factor derivative with the payoff
X(S) written on the stock S as an example. Without any assumption on the volatility except
that it lies in the [σmin, σmax] range, the maximal and minimal values are obtained by solving
(6.5) and (6.6), respectively. Suppose we short the derivative with the maximal price Ū(S, 0)

and dynamically hedge the derivative with ∂Ū(S,t)
∂S

shares of stock. This strategy is guaranteed
to produce a non-negative value of the hedging portfolio whatever the realised path, provided
that volatility lies in the specified range. This approach is termed a superhedging strategy
approach to derivative pricing. In the worst-case scenario, the hedging portfolio will have
value zero. Thus, the maximal price Ū(S, 0) is the worst-case price for a short position.
Note the price Ū(S, 0) is cheapest superhedging price when a seller who shorts a delta-
hedged derivative desires a non negative value. Similarly, the worst-case price for a long
position is the minimal price U(S, 0). From this perspective, the minimal and the maximal
value can be interpreted as bid and ask prices for a long or short position.
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6.2 The local volatility bounds

For ease of exposition, in this section, we restrict attention to a single asset local volatility.
Suppose in the financial market, there are options written on S whose prices are observed.
Denote the option payoffs as (Ci), i ∈ I and their observed market prices by (V ∗i )i∈I , which
are used as model calibration inputs. In practice, instead of a unique price (V ∗i )i∈I , we only
have quotes for a bid price V bid

i and ask price V ask
i . We here use an interesting idea [42] which

finds an entire distribution of model parameters (local volatility values on discrete nodes),
instead of calibrating a unique best-fit local volatility model. This approach reformulates
the calibration problem into a Bayesian framework to attain a posterior distribution for
model parameters. The approach is outlined in the following section. We refer the reader to
[42] for details. Using the posterior distribution of the model parameters, we can construct
confidence intervals of the parameters, and then reasonable bounds of the local volatility
function are obtained.

Firstly, the key characteristics expected of the local volatility surface that can be recast
into a Bayesian prior are identified. There are three properties we could expect of σ(S, t):

• Positive: σ(S, t) > 0 for all values of S and t.

• Smoothness: there should be no sharp spikes or troughs in the surface; this ensures
pricing and hedging is stable.

• Asymptotics: For small values of t especially, σ(S, t) should be close to today’s at-the-
money implied Black-Scholes volatility σatm.

The following approach is used to reformulate prior beliefs for σ (short for σ(S, t)) into a
norm cost functional ‖ · ‖ so that parameters which better satisfy the prior beliefs have
smaller norm. The natural Gaussian prior is then

p(σ) ∝ exp

{
−1

2
βp‖ log(σ)− log(σatm)‖2

κ

}
, (6.7)

where ‖ · ‖κ is a Sobolev norm given by

‖u(x, y)‖κ = (1− κ)‖u(x, y)‖2
2 + κ‖|∇u(x, y)|‖2

2, (6.8)

where the gradient operator ∇ = ( ∂
∂x
, ∂
∂y

). Working in the logarithmic space guarantees σ is
positive. The first part of the norm is to ensure greater prior density is attached to σ that
are closer to the at-the-money volatility, and the second part ensures that the volatility is
smooth. βp quantifies how strong our prior assumptions are: a higher value of βp indicating
greater confidence in our assumptions.

To make the method practically feasible, the local volatility surface σ(S, t) is firstly
restricted to a finite-dimensional space, and σ(S, t) is represented by a grid of nodes whose
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positions are given by: s1 < · · · < sj < . . . sJ in the spatial direction and 0 = t1 < · · · < tL
in the temporal direction. The discrete representation of σ(S, t) is defined by the parameter
vector

θ = (log σ1, log σ2, . . . , log σM), (6.9)

where M = J × L, and as spline interpolant Θ(·, ·) of θ. Then, σ(S, t) = exp(Θ(S, t)).

Let V ∗i = 1
2
(V bid

i + V ask
i ) be the market observed price at time t of a European call and

Vi(θ) be the corresponding model price for the same derivative when the model parameter
is θ. Define δi as the basis point bid-ask spread V ask

i − V bid
i for the i-th option. Initially, the

basis point error for the i-th option is modeled as

104

S0

(Vi(θ)− V ∗i ) ∼ N(0, δ2
i ), (6.10)

where S0 is the spot stock price, and N(·, ·) is a normal density. Hence the tracking error is
measured as basis points relative to the stock price. The 104

S0
in (6.10) is due to the fact that

a basis point refers to a relative spread of 10−4S0. This is interpreted as the observed price
V ∗i is the model value Vi(θ) with a normally distributed noise. For computational purposes,
the above definition will be slightly modified. The basis point square error function for a
calibration problem is then defined as

G(θ) =
I∑
i=1

wi

(
104 (Vi(θ)− V ∗i )

S0

)2

, (6.11)

where wi are weights summing to one. The positive Bayesian posterior weight is only attached
to parameters θ which on average reproduce prices to within the average basis point bid-ask
spread. That is,

G(θ) ≤ δ2, (6.12)

where δ2 =
∑

i∈I wiδ
2
i is the pre-specified (determined by the bid-ask spread) average ba-

sis point square error tolerance. Then, the likelihood function P (V |θ), the probability of
observing the data V given θ, is as follows

p(V |θ) ∝ 1G(θ)≤δ2 exp

{
− 1

2δ2
G(θ)

}
. (6.13)

As a result, those parameters θ which reproduce prices closest to the market observed prices
V ∗i give the greatest likelihood values.

Combining the prior (6.7) and likelihood functions (6.13), using the Bayes rule, we get
the explicit form for the posterior function

p(θ|V ) ∝ 1G(θ)≤δ2 exp

{
− 1

2δ2

(
G(θ) + β‖θ − θ0‖2

κ

)}
, (6.14)

where β = βpδ
2. Thus, any parameter θ with positive posterior density gives model prices

for the calibration options within the bid-ask spread. This is how the Bayesian approach
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reformulates the traditional local volatility calibration methods into a unified and rigor-
ous framework. Note that maximising the posterior (6.14) is equivalent to minimising the
expression

− 1

2δ2

(
G(θ) + β‖θ − θ0‖2

κ

)
, (6.15)

which is precisely the form of functional [49, 25] use as an objective function to find their
optimal calibration parameter.

6.3 Lagrangian uncertain volatility model

Recall that the minimal and maximal prices correspond to the bid-ask spread if option buyers
and sellers price options using worst-case scenarios, from their own points of view. However,
the spread is sometimes so large as to make an uncertain volatility method difficult to apply
in practice, even if we use the method presented in 6.2 to construct reasonable volatility
bounds. To address this issue, the Lagrangian uncertain volatility model was introduced
in [5]. In this model, optimal static hedges are computed for the given problem using
predetermined options with known market prices. The residual payoff is then priced using
an uncertain volatility model.

Firstly, we briefly review the Lagrangian uncertain model. Consider an agent who must
deliver the payoff of an option (a short position pricing problem), and wishes to statically
hedge his exposure using a set of liquid options. Let X(S) be the payoff of the target option.
Assume that N options will be used to form a static hedge, and the market prices V ∗i exist
for all N of these options. For simplicity, we will ignore bid-ask spreads in V ∗i , and assume
that all options under consideration expire at the same time. If the static hedge is formed
by holding λi of each underlying option, then the residual payoff is given by

W (S, T ) = X(S)−
N∑
i=1

λiCi(S), (6.16)

where Ci(S) is the payoff of the ith option.

The maximal value of the static-hedged derivative is the cost of options
∑N

i=1 λiV
∗
i and

the maximal value (i.e. cost of hedging for a short position) for the residual payoff (6.16),
where λ = (λ1, . . . , λN). Then, the optimal static hedge for maximal pricing is determined
from the solution of

inf
λ

sup
θ∈Qθ

(
Eθ

[
e−rTW (S, T ) +

N∑
i=1

λiV
∗
i

])
. (6.17)

We can interpret equation (6.17) as: find the static hedge which gives the cheapest cost
of hedging which ensures that the writer will have a non-negative balance in the hedging

82



portfolio. Let

V̄(S, 0;λ) = sup
θ∈Qθ

(
Eθ

[
e−rTW (S, T ) +

N∑
i=1

λiV
∗
i

])
, (6.18)

this problem (6.17) can be then written as

inf
λ
V̄(S, 0;λ). (6.19)

Due to the form of this optimization, the problem (6.17) is known as the Lagrangian
uncertain volatility model. Suppose that

λ̂ = arg inf
λ
V̄(S, 0;λ),

and the value V̄(S, 0; λ̂) is then the final price for the target derivative. When the λ̂i are all
equal to zero, V̄(S, 0; λ̂) degenerates to the maximal price Ū(S, 0) under a regular uncertain
volatility model. In general, however, the minimization in (6.17) is attained for λ̂i 6= 0.
The residual will not be a convex function, and the full nonlinear uncertain volatility model
must be used for pricing. Note that even if the payoff X(S) is convex, the addition of
different options for static hedging makes the residual payoff non-convex. Thus, the optimal
volatilities lie inside their ranges, and the hedging portfolio is cheaper for a short position
and more expensive for a long position than at the extreme volatility values σ̄i(Si, t) or
σi(Si, t). Accordingly, the total cost V̄(S, 0; λ̂) of the hedging portfolio obtained from (6.17)
will be less than Ū(S, 0). In fact, in terms of the financial pricing framework, V̄(S, 0; λ̂) is
the maximal arbitrage-free value for the derivative, conditional on the market prices V ∗i of
the hedging instruments. More precisely, the problem (6.17) is equivalent to the following
problem

sup
θ∈Qθ

Eθ
[
e−rTX(S)

]
,

subject to Eθ
[
e−rTCi

]
= V ∗i , V ∗i = 1, . . . , N.

(6.20)

Note the validation of this statement requires the condition that there exists at least one
group of arbitrage-free parameters of Eθ

[
e−rTCi

]
= V ∗i , i = 1, . . . , N [5].

We will illustrate the superhedging strategy for a short position combined with static
hedging. Suppose we are selling a one factor derivative with the exotic payoff X(S) written
on the stock S. Assume that we use a single European call option, whose market price is
V ∗, as the only instrument in the static hedge. By solving the corresponding problem (6.17),
we determine the optimal number of contracts λ̂ and the final value V̄(S, 0; λ̂) for the target
derivative.

Initially, we will buy λ̂ contracts of the European call option, and sell the derivative for

the price V̄(S, 0; λ̂). We then perform dynamic hedging for the portfolio with ∂V̄(S,t;λ̂)
∂S

shares
of stock. This strategy is guaranteed to yield a non-negative value of the hedging portfolio,
regardless of the realised volatility path, provided that volatility lies in the specified range.
In the worst-case scenario, the hedging portfolio will have value zero at expiry. Thus, the
price V̄(S, 0; λ̂) is the worst-case price for a short position with the optimal static hedge.
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6.3.1 Solution of the optimization problem (6.17)

The algorithm for solving the optimization problem (6.17) is described here. Since the
objective function V̄(S, 0;λ) (6.18) is a supremum (with respect to θ) of linear functions in
λi, the problem is convex with respect to λi. Futhermore, the objective function V̄(S, 0;λ)
is a differentiable function of λi as shown in [5]. Thus, we can use a standard optimization
method, e.g., BFGS method for minimizing the problem [38]. The BFGS method requires
the computation of the objective function as well as the first order derivatives, but the
computation of a Hessian matrix is not required. In each optimization iteration, given a
vector of λ, the objective function needs to be evaluated. The value V̄(S, 0;λ) is obtained
by solving the corresponding HJB equation. The first order derivative with respect to λk is
computed by the numerical approximation

V̄(S, 0;λ+ εek)− V̄(S, 0;λ)

ε
, (6.21)

where ek is the unit basis vector. V̄(S, 0;λ+εek) is obtained by solving the corresponding HJB
equation. To solve the optimization problems, we need to numerically solve the corresponding
HJB equations N + 1 times (one for the objective function value and N times for computing
the first order derivatives with respect to λk, k = 1, . . . , N) in each optimization iteration.

Similarly, the optimal static hedge for the minimal pricing is obtained by solving

sup
λ

inf
θ∈Qθ

(
Eθ

[
e−rTW (S, T ) +

N∑
i=1

λiV
∗
i

])
, (6.22)

which finds the most expensive minimal value of the static-hedged derivative. In general,
the final value obtained from (6.22) will be greater than the minimal price U(S, 0) computed
using an uncertain volatility model.

6.4 Numerical results

We will carry out numerical experiments on pricing two-dimensional basket options as a con-
crete example under an uncertain local volatility model in this section. Firstly, we construct
the reasonable volatility bounds using market data. We then investigate basket option prices
with volatility uncertainty. Lastly, we use the static hedging method to decrease the spread
between the maximal and minimal prices.

6.4.1 Local volatility bound construction

For pricing two-factor basket options, we here calibrate two market datasets. Firstly, we take
real S&P implied volatility data with 10 strikes and 7 maturities used in [22] to determine
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the market prices of I = 70 corresponding European call options. The market implied
volatilities in October, 1995 are given in Table E.1. Let the pre-specified basis point square
error tolerance δ in (6.12) be 10 basis points, where δ is chosen based on the averaged bid-ask
spreads. Given the price data E.1, we obtain the posterior distribution P (θ|V ) (6.14). It is
not feasible to analytically find P (θ|V ). The best we can do is try to draw samples from this
distribution using the Markov Chain Monte-Carlo (MCMC) Metropolis algorithm. As shown
in Figure 6.1, 249 groups of the model parameters (6.9) with 50000 chains generated from
the posterior distribution were tracked. For comparison, the best-fit local volatility surface
is calibrated by minimizing equation (6.15). The trust-region method [21] is used to solve
this non-convex optimization problem. The best-fit volatility surface is shown in Figure 6.3.
The calibration error G (6.11) between market mid-price quotes and best-fit local volatility
model prices is about 2.3 basis points.

Using this posterior distribution of the model parameters (6.9) in Figure 6.1, we can
construct confidence intervals of the parameters. This facilitates construction of a reasonable
pair of the lower and upper bounds for the local volatility values. Figure 6.2 shows the 95%
pointwise confidence intervals of the 249 accepted samples. As shown in Figure 6.2, close
to the spot price S0, the bounds are very tight, and the further away from at-the-money,
the larger these bounds become. Especially in the wings and for short times, the spread
of volatilities are significant. These pointwise confidence intervals consequently serve as the
lower and upper volatility bounds of the local volatility surface.

Similarly, we then calibrate European call options written on the FTSE-100 given in
Table E.2 [49, 42]. Let the pre-specified basis point square error tolerance δ in (6.12) be 5
basis points, where δ is chosen based on the averaged bid-ask spreads. Given the price data
in E.2, we obtain the posterior distribution P (θ|V ) (6.14). Then, we draw samples from
this distribution using the Markov Chain Monte-Carlo (MCMC) Metropolis algorithm. 172
groups of the parameters with 50000 chains generated from the posterior distribution were
tracked. For comparison, the best-fit local volatility surface is also calibrated by minimizing
equation (6.15). The calibration error G (6.11) between market quotes and best-fit local
volatility model prices is about 0.9 basis points. We then construct the volatility bounds
using the 95% pointwise confidence intervals of the tracked samples. Then, the upper and
lower volatility bounds are illustrated in Figure 6.4. The best-fit volatility surface in this
case is shown in Figure 6.5.

6.4.2 Basket option pricing with uncertain local volatility

Firstly, we carry out the numerical experiments for the two dimensional basket European
call options. The payoff of the basket call option is as follows

max(ω1S1 + ω2S2 −K, 0), (6.23)

where K is the strike price, and ωi is the weight for each individual asset price. Both of the
individual assets are assumed to follow the uncertain local volatility model. The volatility
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Figure 6.1: For S&P500 dataset in Table E.1: using MCMC Metropolis Sampling, 249
surfaces from the posterior distribution were tracked.

Figure 6.2: Using the 249 accepted local volatility surfaces in Figure 6.1, 95% confidence
intervals are found pointwise. These confidence intervals are then used for the upper and
lower volatility bounds.
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Figure 6.3: For the S&P500 dataset in Table E.1: the best-fit local volatility surface is
calibrated by minimizing the error function (6.15). The middle(blue) surface is the best-
fit local volatility surface. The top(red) and bottom(green) surfaces are upper and lower
volatility bounds in Figure 6.2.
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Figure 6.4: For S&P500 dataset in Table E.1: Using the 172 accepted local volatility surfaces,
95% confidence intervals are found pointwise. The top(red) and bottom(green) surfaces are
upper and lower volatility bounds.
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Figure 6.5: For the FTSE-100 dataset in Table E.2: the best-fit local volatility surface is
obtained by minimizing the error function (6.15).

bounds constructed from the two market datasets in the last section will be used in the
numerical experiments. The volatility bounds for the first individual asset S1 are given in
Figure 6.2, and the volatility bounds for the second individual asset S2 are given in Figure
6.4. In general, the correlation between two assets is allowed to be uncertain, and lies in a
range [ρmin, ρmax]. However, for these experiments, we force the correlation to be constant
to investigate only the effect of the volatility uncertainty in the basket option pricing. The
model parameters are given in Table 6.1. The maximal and minimal prices for the basket
call options are given in Table 6.2. The maximal and minimal solutions are obtained by
solving the numerical HJB equations (6.5) and (6.6).

For comparison, we then use the best-fit local volatility surface for S1 shown in Figure 6.3
and the best-fit local volatility surface for S2 shown in Figure 6.5. Using the best-fit volatility
surface in the option pricing is the standard approach in the financial industry. The basket
call option prices produced with these fixed local volatility surfaces are given in Table 6.3.
The numbers in the parentheses in Table 6.2 are the relative distance between the maximal
(minimal) prices and the values obtained by the best-fit volatility surfaces. Especially for
out-of-the-money basket options, these relative distances are quite significant, as well as the
spread between maximal and minimal prices. Nevertheless, a large spread signals the degree
of risk in pricing and hedging these contracts due to the uncertainty in the calibrated local
volatility surfaces [23].

Suppose that the volatility of the asset price S1 and S2 is assumed to lie within the upper
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and lower bound shown in Figure 6.2, regardless of the actual volatility movement. For
a short position, the seller can dynamically hedge his position and obtain a non-negative
balance in the hedging portfolio if the maximal values prices are offered. Thus, the prices by
the uncertain local volatility model are obviously more robust. However, the best-fit prices
are exposed to model risk when the model used in the derivative pricing does not coincide
with the real asset price stochastic process.

Basket option type European Call
Initial price S1 100
Initial price S2 100

Basket weight ω1 and ω2 0.5; 0.5
Interest rate r 0.05

ρ 0.5

Table 6.1: The model Parameters.

K = 80 K = 90 K = 100 K = 110 K = 120

T = 0.25 Min 20.9945(0.05%) 11.1892(1.33%) 3.0158(13.78%) 0.1221(59.58%) 0.0003(96.74%)
Max 21.0895(0.41%) 11.6563(2.79%) 4.1032(17.30%) 0.6099(101.89%) 0.0625(548.16%)

T = 0.50 Min 21.9836(0.23%) 12.4491(2.55%) 4.6792(12.40%) 0.6919(42.33%) 0.0275(78.78%)
Max 22.2956(1.19%) 13.4474(5.26%) 6.3248(18.41%) 2.0063(67.24%) 0.4203(224.56%)

T = 1.0 Min 23.9463(0.63%) 14.8614(3.59%) 7.3632(10.99%) 2.4568(27.41%) 0.4480(52.44%)
Max 24.6770(2.40%) 16.4822(6.92%) 9.6352(16.47%) 4.7246(39.60%) 1.8407(95.40%)

T = 1.5 Min 25.8683(0.90%) 17.0905(3.79%) 9.6741(3.90%) 4.3885(20.96%) 1.4450(37.65%)
Max 26.8149(2.73%) 19.9978(12.58%) 12.3595(22.78%) 7.2699(30.94%) 3.8052(64.18%)

T = 2.0 Min 27.6968(1.16%) 19.1609(3.91%) 11.7920(9.31%) 6.2827(17.66%) 2.7431(29.93%)
Max 28.8363(2.90%) 21.2918(6.77%) 14.4016(10.76%) 9.6349(26.28%) 5.8165(48.58%)

Table 6.2: The maximal and minimal prices of the basket call options with respect to strike
price K and maturity T . The model parameters are given in Table 6.1. The volatility bounds
for S1 are illustrated in Figure 6.2, and the volatility bounds for S2 are given in Figure 6.4.
The number in the parentheses is the relative distance between the maximal (minimal) prices
and the values obtained by the best-fit volatility surfaces.

6.4.3 Static hedging

In Table 6.2, the spread between the maximal and minimal prices sometimes seem too large
to be used as the bid-ask offers. To decrease the spread, we can use a more conservative
tolerable level of basis point error δ (6.12) in the posterior distribution function (6.14).
Furthermore, when constructing the lower and upper volatility bounds, instead of using
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K = 80 K = 90 K = 100 K = 110 K = 120

T = 0.25 21.0044 11.3403 3.4979 0.3021 0.009636

T = 0.5 22.0343 12.7749 5.3414 1.1997 0.1295

T = 1.0 24.0990 15.4152 8.2727 3.3844 0.9420

T = 1.5 26.1024 17.7632 10.0666 5.5520 2.3177

T = 2.0 28.0227 19.9409 13.0029 7.6299 3.9148

Table 6.3: The prices of the European basket call options using the best-fit local volatility
surfaces with respect to strike price K and maturity T . The best-fit local volatility surface
for S1 is given in Figure 6.3 and the best-fit local volatility surface for S2 is given in Figure
6.5. The model parameters are given in Table 6.1.

95% pointwise confidence intervals, a smaller confidence intervals level, e.g. 68%, could be
applied. All these approaches could make the volatility bounds more tight. Consequently,
the spread between the maximal and minimal prices will be decreased. Here we shall use
the optimal static hedging outlined in Section 6.3 to reduce this spread.

Firstly, we will show an interesting example. Consider three contracts (A,B,C) with
terminal cash flows at the maturity

CashflowA = max(ω1S1 + ω2S2 − 90, 0),

CashflowB = −max(ω1S1 + ω2S2 − 100, 0),

CashflowC = −max(ω1S1 + ω2S2 − 110, 0),

(6.24)

and all having the same maturity 0.5 year. The other parameters are given in Table 6.1.
Consider another contract D, with the terminal cash flow

CashflowD = CashflowA + CashflowB + CashflowC .

If we price these contracts using an uncertain local volatility model, then we obtain the
contract values

VA = 13.4474, VB = −4.6792, VC = −0.6919, VD = 7.3480. (6.25)

The volatility bounds used for S1 and S2 are given in Figures 6.2 and 6.4, respectively. Note
that,

VD < VA + VB + VC ,

since

VD = sup
θ∈Qθ

Eθ
(
e−rT (payoffA + payoffB + payoffC)

)
≤ sup

θ∈Qθ
Eθ(e−rTpayoffA) + sup

θ∈Qθ
Eθ(e−rTpayoffB) + sup

θ∈Qθ
Eθ(e−rTpayoffC)

= VA + VB + VC .

(6.26)
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Method Maximal Minimal Spread
No static hedge 6.3248 4.6792 1.6456

Optimal static hedge 5.6042 4.9296 0.6746

Table 6.4: Spread values for uncertain volatility pricing for a basket option without static
hedging, and optimal static hedging with one asset call options. The strike price of the
basket option is 100, and the maturity is 0.5. The model parameters are given in Table 6.1.

Problem λ̂1 λ̂2

Maximal pricing 0.46 0.49
Minimal pricing 0.28 0.37

Table 6.5: The optimal hedging positions.

Thus, under an uncertain local volatility model, the additive property of the contract prices
is not preserved. Note that the value of derivatives is still homogeneous of degree one in the
quantities: the value of n contracts is n times greater than one unit of the same contract.

We then illustrate the method of static hedging to decrease the bid-ask spread by a
numerical experiment. Suppose that we price a European basket call option with strike
K = 100 and maturity T = 0.5. The other model parameters are listed in Table 6.1. The
static hedge portfolio will be composed of two European call options C1 and C2, each written
on one single asset S1 and S2, with strikes of 100 and 100, respectively. The market value of
C1 for the one-factor call option written on S1 is taken to 4.9725. This is simply the Black-
Scholes price with the implied volatility provided in Table E.1. The market value of C2 for
the one-factor call option written on S2 is 6.9407. This is also the Black-Scholes price with
the implied volatility provided in Table E.2. The residual payoff (6.16) is then as follows

Residual payoff = max(ω1S1 + ω1S2 − 100, 0)− λ1 max(S1 − 100, 0)− λ2 max(S2 − 100, 0),
(6.27)

where λi is the number of units of contract Ci. The task is then to find the optimal static
hedging position λ1 and λ2 via solving the optimization problem (6.17) or (6.22), for maximal
pricing or minimal pricing. After solving (6.17), we find that the maximal price is 5.6042,
and the optimal static hedge position is to buy 0.46 units of C1 and 0.49 units of C2. After
solving (6.22), the minimal price is 4.9296, and the optimal static hedge position is to buy
0.28 units of C1 and 0.37 units of C2. These spread values are summarized in Table 6.4.
Hence, by statically hedging the basket option, the spread of has been greatly reduced from
1.6456 (6.3248 − 4.6792) to 0.6746 (5.6042 − 4.9296). This difference gives a more realistic
bid-ask spread when pricing for buying or selling an option contract. Using this approach,
we have reduced the uncertainty due to model calibration errors significantly.

The payoff of the original call option and the residual of the hedged option (for the
minimal price) are shown in Figure 6.6. The magnitude of the payoff has been significantly
reduced with static hedging. Note that although the payoff of the basket option is convex, the
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addition of two European call options for static hedging make the residual payoff non-convex.
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Figure 6.6: The terminal payoff of the unhedged basket option and the residual payoff with
optimal static hedge (for the minimal price).

6.5 Summary

The main results of this chapter are as follows.

• By reformulating the local volatility calibration problem into a Bayesian framework,
we construct a reasonable pair of the lower and upper bounds for the local volatility
values.

• If the maximal and minimal values of a contract computed with the bounds for the
local volatility functions give rise to a large spread, this indicates that using the best fit
local volatility surfaces results in a large model uncertainty. By incorporating a static
hedge, this model uncertainty can be reduced substantially.
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Chapter 7

Conclusions and Future Work

We are particularly interested in solving multidimensional HJB equations which are derived
from optimal stochastic control problems in the financial market. We developed a fully
implicit, unconditionally monotone finite difference numerical scheme. Consequently, there
are no time step restrictions due to stability considerations, and the fully implicit method has
essentially the same complexity per step as the explicit method. The discretized algebraic
equations are solved using policy iteration. In some cases our discretization method results
in a local objective function which is a discontinuous function of the control. Therefore, we
took particular care in guaranteeing the convergence of the algorithm when applying policy
iteration.

The main difficulty in designing a discretization scheme is development of a monotonicity
preserving approximation of the cross derivative term in the PDE. We primarily used a wide
stencil based on a local coordination rotation. We also derived a hybrid numerical scheme
which combines use of a fixed stencil to minimize the use of the wide stencil if the grid
spacings could satisfy certain conditions.

The analysis rigorously showed that our numerical scheme is `∞ stable, consistent in the
viscosity sense, and monotone. Therefore, our numerical scheme guarantees convergence to
the viscosity solution.

Firstly, our numerical schemes have been applied to pricing two factor options under an
uncertain volatility model. For this application, a hybrid scheme which uses the fixed stencil
as much as possible was developed to take advantage of its accuracy and computational
efficiency. Secondly, using our numerical method, we studied the problem of optimal asset
allocation where the risky asset follows stochastic volatility. By applying a semi-Lagrangian
timestepping method to handle the drift term and an improved linear interpolation, we
could construct accurate efficient frontiers. An interesting fact is found that if the mean
reversion time 1

κ
is small compared to the investment horizon T , then a constant volatility

GBM approximation to the stochastic volatility process gives a good approximation to the
optimal strategy. Finally, we have utilized our numerical scheme to carry out an optimal
static hedge, in the case of an uncertain local volatility model.
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7.1 Future work

We suggest the following directions for future work.

• In the thesis, to keep the numerical scheme monotone, linear interpolation is the most
accurate interpolation we can use. [63, 30] shed light on using higher order interpo-
lation, and it would be interesting to use a higher order interpolation to improve the
accuracy of a numerical scheme.

• Optimal trade execution is an important application of the HJB equations in the finan-
cial market. It would be interesting to study the simultaneous liquidation of multiple
assets that have correlated price movements using the numerical scheme developed in
the thesis.

• We could apply our numerical methods to three factor problems. For example, an
optimal asset allocation problem which has three assets, i.e., risky stock index, a short
term bond and a long term bond. This optimal allocation strategy could be investigated
by solving a corresponding three factor HJB equation.
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Appendix A

Discrete equation coefficients in the
fixed stencil

The coefficients in the linear operator (2.17) are given in the following. We use three point
operators for the first and second derivatives. Central Differencing in S1 and S2 direction:

αS1,central
i,j =

[
(σ1(S1)i)

2

((S1)i − (S1)i−1)((S1)i+1 − (S1)i−1)
− (r − q1)(S1)i

(S1)i+1 − (S1)i−1

]
,

βS1,central
i,j =

[
(σ1(S1)i)

2

((S1)i+1 − (S1)i)((S1)i+1 − (S1)i−1)
+

(r − q1)(S1)i
(S1)i+1 − (S1)i−1

]
,

αS2,central
i,j =

[
(σ2(S2)j)

2

((S2)j − (S2)j−1)((S2)j+1 − (S2)j−1)
− (r − q2)(S2)j

(S2)j+1 − (S2)j−1

]
,

βS2,central
i,j =

[
(σ2(S2)j)

2

((S2)j+1 − (S2)j)((S2)j+1 − (S2)j−1)
+

(r − q2)(S2)j
(S2)j+1 − (S2)j−1

]
.

(A.1)

Forward/Backward Differencing in S1 and S2 direction (upstream):

αS1,ups
i,j =

[
(σ1(S1)i)

2

((S1)i − (S1)i−1)((S1)i+1 − (S1)i−1)
+ max

(
0,− (r − q1)(S1)i

(S1)i − (S1)i−1

)]
,

βS1,ups
i,j =

[
(σ1(S1)i)

2

((S1)i+1 − (S1)i)((S1)i+1 − (S1)i−1)
+ max

(
0,

(r − q1)(S1)i
(S1)i+1 − (S1)i

)]
,

αS2,ups
i,j =

[
(σ2(S2)j)

2

((S2)j − (S2)j−1)((S2)j+1 − (S2)j−1)
+ max

(
0,− (r − q2)(S2)j

(S2)j − (S2)j−1

)]
,

βS2,ups
i,j =

[
(σ2(S2)j)

2

((S2)j+1 − (S2)j)((S2)j+1 − (S2)j−1)
+ max

(
0,

(r − q2)(S2)j
(S2)j+1 − (S2)j

)]
.

(A.2)

γi,j =

{
ρ(S1)i(S2)jσ1σ2

((S1)i+1−(S1)i)((S2)j+1−(S2)j)+((S1)i−(S1)i−1)((S2)j−(S2)j−1)
, if ρ >= 0,

− ρ(S1)i(S2)jσ1σ2
((S1)i+1−(S1)i)((S2)j−(S2)j−1)+((S1)i−(S1)i−1)((S2)j+1−(S2)j)

, if ρ < 0.
(A.3)

The algorithm to select upstream and central differencing is given as follows
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Algorithm A.1 Differencing method in the Sk, k = 1, 2 direction

if αSk,centrali,j − γi,j ≥ 0 then

αSki,j ← αSk,centrali,j

βSki,j ← βSk,centrali,j

else
αSki,j ← αSk,upsi,j

βSki,j ← βSk,upsi,j

end if
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Appendix B

The discretized equation for the case(
(S1)i, (S2)j, τ

n+1
)
∈ Ωw∗

For the case ((S1)i, (S2)j, τ
n+1) ∈ Ωw∗ , using Algorithm 2.1 to avoid using points below the

lower boundaries, the discrete linear operator LQw (2.36) needs to be modified to the form
LQw∗ .

LQw∗Un+1
i,j =

ai,j
h1,left(h1,left + h1,right)

JhUn+1 (Si,j − h1,left(Ri,j)1)

+
ai,j

h1,right(h1,left + h1,right)
JhUn+1 (Si,j + h1,right(Ri,j)1)

+
bi,j

h2,left(h2,left + h2,right)
JhUn+1 (Si,j − h1,left(Ri,j)2)

+
bi,j

h2,right(h2,left + h2,right)
JhUn+1 (Si,j + h2,right(Ri,j)2)

+ 1(r−q1)≥0
(r − q1)(S1)i

∆+(S1)i
Un+1
i+1,j − 1(r−q1)<0

(r − q1)(S1)i
∆−(S1)i

Un+1
i−1,j

+ 1(r−q2)≥0
(r − q2)(S2)j

∆+(S2)j
Un+1
i,j+1 − 1(r−q2)<0

(r − q2)(S2)j
∆−(S2)j

Un+1
i,j−1

−

(
1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

− 1(r−q1)<0
(r − q1)(S1)i

∆−(S1)i
+ 1(r−q2)≥0

(r − q2)(S2)j
∆+(S2)j

+ 1(r−q2)<0
(r − q2)(S2)j

∆−(S2)j
+

ai,j
h1,left(h1,left + h1,right)

+
ai,j

h1,right(h1,left + h1,right)

+
bi,j

h2,left(h2,left + h2,right)
+

bi,j
h2,right(h2,left + h2,right)

+ r

)
Un+1
i,j ,

(B.1)
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where hk,left, hk,right, k = 1, 2 are determined by Algorithm 2.1. Then, using fully implicit
timestepping, the HJB equation (2.5a) has the following discretized equation for this case

Un+1 − Un

∆τ
= sup

Q∈∂Zh

(
LQw∗Un+1

i,j

)
. (B.2)
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Appendix C

Proof of the local consistency of L
Q
w∗

Proof. We use the discrete linear operator LQw∗ (B.1) in the region xn+1
i,j ∈ Ωw∗ . Ωw∗ is the

region in Ωb where the conditions (2.33) are not satisfied and then the wide stencil is used.
As defined in Table 2.1, Ωb is

Ωb ≡ [h,
√
h]× (0, S2,max]× (0, T ] ∪ (0, S1,max]× [h,

√
h]× (0, T ], (C.1)

where h (2.13) is a mesh discretization parameter.

We divide this region Ωb into two parts. The first part Ωb1 is defined as

Ωb1 ≡ [h,
√
h]× [h,

√
h]× (0, T ], (C.2)

and Ωb2 = Ωb/Ωb1 .

S1

S2

{ {

Ωb2

Ω
b
2

Ωb1

√
h

√
h {h

{h

Figure C.1: The region Ωb.
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Algorithm 2.1 guides us as to how to shrink the stencil length to avoid using points below
the lower boundaries when approximating the second order terms ∂2V

∂y2k
, k = 1, 2 (2.21). If

xn+1
i,j ∈ Ωw∗ ∩Ωb2 , we only need to change either the value of hk,left or hk,right from

√
h to h,

but not both. Only if xn+1
i,j ∈ Ωw∗∩Ωb1 , we may shrink hk,left and hk,right to h simultaneously.

For the case xn+1
i,j ∈ Ωw∗∩Ωb2 , without loss of generality, let hk,left = h and hk,right =

√
h.

Suppose φ is a smooth test function and we use linear interpolation operator Jh, then we
have

Jhφn+1(Si,j−h(Ri,j)k)−φn+1(Si,j)

h
+
Jhφn+1(Si,j+

√
h(Ri,j)k)−φn+1(Si,j)√

h

h+
√
h

2

=

φn+1(yi,j−hek)−φn+1(yi,j)+O(h2)

h
+

φn+1(yi,j+
√
hek)−φn+1(yi,j)+O(h2)
√
h

h+
√
h

2

=

φn+1(yi,j−hek)−φn+1(yi,j)

h
+

φn+1(yi,j+
√
hek)−φn+1(yi,j)√
h

h+
√
h

2

+O(
√
h)

=
∂2φ

∂y2
k

+O(
√
h) +O(

√
h), k = 1, 2

(C.3)

which follows from Taylor series expansion and that the error of linear interpolation for a
smooth function φ is O(h2). Thus, our discretization to the second order terms at xn+1

i,j is
consistent.

For the case xn+1
i,j ∈ Ωw∗ ∩ Ωb1 , when we shrink hk,left and hk,right to h simultaneously,

following the same steps in the previous case, we have

Jhφn+1(Si,j−h(Ri,j)k)−φn+1(Si,j)

h
+
Jhφn+1(Si,j+h(Ri,j)k)−φn+1(Si,j)

h
h+h

2

=
∂2φ

∂y2
k

+O(1). (C.4)

In this case, the approximation of ∂2φ
∂y2k

is locally inconsistent. However, by observing the fact

that the value of ai,j and bi,j in the region Ωb1 is O(h) (see equation (2.22)), our discretization
at xn+1

i,j is still locally consistent. That is,

ai,j

(
∂2φ

∂y2
1

∣∣∣∣
yi,j

+O(1)

)
︸ ︷︷ ︸

approximation of ∂
2φ

∂y21

+ bi,j

(
∂2φ

∂y2
2

∣∣∣∣
yi,j

+O(1)

)
︸ ︷︷ ︸

approximation of ∂
2φ

∂y22

=

(
ai,j

∂2φ

∂y2
1

+ bi,j
∂2φ

∂y2
2

)
+O(h) = ((D∇) · ∇φ)

∣∣
xn+1
i,j

+O(h).

(C.5)

In LQw∗ , we use the standard forward or backward finite differencing, depending on the sign
of drift r− qk, k = 1, 2 to discretize the first order derivatives in (2.5a). The approximations
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of the first order derivatives are clearly locally consistent to O(h). Finally, we have, in the
worst case,

LQw∗φ
n+1
i,j = Lφn+1

i,j +O(
√
h). (C.6)
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Appendix D

The discrete linear operator D
p
h

With vanishing cross-derivative term, the degenerate linear operator Lp (2.3) can be dis-
cretized by a standard finite difference method. The degenerate linear operators Lp in
(5.19), (5.20), and (5.21) are approximated as the discrete form

Dp
hU

n
i,j = αwi,jUni−1,j + βwi,jUni+1,j + αvi,jUni,j−1 + βvi,jUni,j+1 − (αwi,j + βwi,j + αvi,j + βvi,j)Ui,j, (D.1)

where αwi,j, β
w
i,j, α

v
i,j and βvi,j are defined as follows

αwi,j =
(
√
vpwi)

2

(wi − wi−1)(wi+1 − wi−1)
,

βwi,j =
(
√
vpwi)

2

(wi+1 − wi)(wi+1 − wi−1)
,

αvi,j =

[
(σ
√
vj)

2

vj − vj−1)(vj+1 − vj−1)
+ max

(
0,−κ(θ − vj)

vj − vj−1

)]
,

βvi,j =

[
(σ
√
vj)

2

(vj+1 − vj)(vj+1 − vj−1)
+ max

(
0,
κ(θ − vj)
vj+1 − vj

)]
.

(D.2)

The coefficients αwi,j, β
w
i,j, α

v
i,j and βvi,j are all non-negative, and is compatible with a monotone

scheme. On the upper boundary v = vmax, the coefficients αvi,N2
and βvi,N2

= 0 degenerate to
zero, and on the lower boundary w = 0, αw1,j and βw1,j are set to zero. On the lower boundary

v = 0, αwi,1 = 0, βwi,1 = 0, αvi,1 = 0, and βwi,1 = κθ
vj+1−vj , j = 1.
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Appendix E

Datasets

Maturity Strike (K), % of Spot

85 90 95 100 105 110 115 120 130 140
0.175 0.190 0.168 0.133 0.113 0.102 0.0970 0.120 0.142 0.169 0.200
0.425 0.177 0.155 0.138 0.125 0.109 0.1030 0.100 0.114 0.130 0.150
0.695 0.172 0.157 0.144 0.133 0.118 0.1040 0.100 0.101 0.108 0.124
0.940 0.171 0.159 0.149 0.137 0.127 0.1130 0.106 0.103 0.100 0.110
1.000 0.171 0.159 0.150 0.138 0.128 0.1150 0.107 0.103 0.099 0.108
1.500 0.169 0.160 0.151 0.142 0.133 0.1240 0.119 0.113 0.107 0.102
2.000 0.169 0.161 0.153 0.145 0.137 0.1300 0.126 0.119 0.115 0.111

Table E.1: For the S&P 500 dataset on October, 1995: market implied volatilities. The spot
price of the underlying at time 0 is S0 = 590, the interest rate is r = 0.059 and dividend
rate d = 0.026. This dataset is often used as the benchmark dataset in the local volatility
calibrations papers [22, 2].

Maturity Strike (K), % of Spot
70 80 85 90 95 100 105 110 115 120 130 140 150

0.08 0.19 0.18 0.22 0.22 0.22 0.21 0.19 0.18 0.18 0.18 0.16 0.16 0.15
0.25 0.19 0.18 0.21 0.21 0.22 0.21 0.19 0.18 0.18 0.17 0.16 0.16 0.15
0.50 0.18 0.18 0.20 0.21 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15
0.75 0.18 0.18 0.19 0.20 0.20 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15
1.0 0.17 0.17 0.18 0.19 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.16
1.50 0.16 0.17 0.17 0.18 0.19 0.19 0.18 0.18 0.18 0.17 0.16 0.16 0.16
2.0 0.15 0.16 0.17 0.17 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.16

Table E.2: Market implied volatilities for FTSE-100 index used in [49, 42]. The spot price
of the underlying at time 0 is S0 = 5000, the interest rate is r = 0.05 and dividend rate
d = 0.03. Strikes (K) are in percentage of initial spot and maturities (T ) are measured in
years.
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