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Abstract

The New York Times Annotated Corpus and the ACM Digital Library are two prototypical
examples of document collections in which each document is tagged with keywords and
significant phrases. Such collections can be viewed as high-dimensional document cubes
against which browsers and search systems can be applied in a manner similar to online
analytical processing against data cubes. The tagging patterns in these collections are
examined and a generative tagging model is developed that can mimic the tag assignments
observed in those collections. When a user browses the collection by means of a Boolean
query over tags, the result is a subset of documents that can be summarized by a centroid
derived from their document term vectors. A partial materialization strategy is developed
to provide efficient storage and access to centroids for such document subsets. A customized
local term vocabulary storage approach is incorporated into the partial materialization
to ensure that rich and relevant term vocabulary is available for representing centroids
while maintaining a low storage footprint. By adopting this strategy, summary measures
dependent on centroids (including bursty terms, or larger sets of indicative documents) can
be efficiently and accurately computed for important subsets of documents. The proposed
design is evaluated on the two collections along with PubMed (a held-back document
collection) and several synthetic collections to validate that it outperforms alternative
storage strategies.

Finally, an enhanced faceted browsing system is developed to support users’ exploration
of large multi-tagged document collections. It provides summary measures of document
result sets at each step of navigation through a set of indicative terms and diverse set of
documents, as well as information scent that helps to guide users’ exploration. These sum-
maries are derived from pre-materialized views that allow for quick calculation of centroids
for various result sets. The utility and efficiency of the system is demonstrated on the New
York Times Annotated Corpus.
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Chapter 1

Introduction

Large document collections such as the New York Times Annotated Corpus (the NYT)
and the ACM Digital Library (ACM) cover many diverse topics. It can be a daunting task
to decide what to read when approaching a new topic or to find which combinations of
topics deserve more attention. As an aid to readers, various tags (usually keywords and
significant phrases) are assigned to each document in these collections, reflecting the topics
covered by that document. In a large collection, each tag can be assigned to hundreds or
thousands of documents.

Following standard practice in information retrieval, we model a document as a bag of
terms represented by a document term vector (DTV), which is a vector of values where
each entry corresponds to a term together with the term’s (normalized) frequency in that
document. A set of DTVs can be aggregated to obtain a set centroid for the corresponding
documents, which can be used to summarize the document set. Given the centroid, a
system can produce other summary measures, such as a representative set of “bursty”
terms [Goorha and Ungar, 2010, Popescul and Ungar, 2000], the medoid [Gelbukh et al.,
2003, Cutting et al., 1992], or a diverse set of indicative documents [Deolalikar, 2014].

Access to a collection of documents with rich metadata can be facilitated with the use
of facets [Teevan et al., 2008], where facets represent dimensions or aspects of a subject
according to which documents in a collection are organized. Common facets include topical
categories, location, colour, time, etc. Each facet consists of a set of values that are
organized in a flat or hierarchical structure. A document can have multiple facets and
zero or more values assigned from each facet. A collection of documents with facets can
be navigated by using facet values as filters. For a set of selected facet values, a faceted
browser will show all documents that satisfy the specified filters. Facets can be combined
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with keyword search to produce what is referred to as faceted search. Faceted search
enhances traditional search by providing users with additional information about the result
set, which includes some information about the facets and facet values found in the result
set. It also allows the user to iteratively select from the provided facet values to refine the
query and narrow down the search results.

In addition to the DTV, each document in our collections is assigned a set of tags that
are external to the document. Each metadata tag is a value chosen from a facet that
corresponds to a conceptual dimension used to describe the data [Yee et al., 2003]. For
simplicity, we assume that the facets are unstructured (i.e., that the value space within
a facet is not hierarchically organized) and that each document is assigned zero or more
values from each of the facets. Following standard practice, we assume that the assigned
tags have been selected with care: They are typically of high quality and identify topics
or important concepts found in the document.

A facet-based browsing environment supplements a traditional search engine by adding
facilities that allow users to benefit from the metadata tags. With the help of faceted search
a user may start to explore the ACM tagged document collection by issuing a traditional
search request, say [databases cloud]. As in other systems, the user is presented with the
top k matching documents, but in addition the user is also informed by the system of the
tags associated with those documents. In response to [databases cloud], the user might
learn that all the corresponding documents are tagged “database,” 90% are tagged “cloud
computing,” 55% of the top responses are also tagged “service-oriented architecture,” 35%
are tagged “security and privacy,” and 10% are tagged “genome informatics.” (Instead
of precise percentages, similar information might instead be provided in the form of tag
clouds.) The user could then select tags of interest to formulate a refined query by issuing
a Boolean query over tags (i.e., “slicing and dicing” the collection).

Faceted search helps to narrow a large result set down to a more manageable size for
browsing, and a study at the University of North Carolina library showed that it was pre-
ferred by users over traditional search interfaces based on text content alone [Ramdeen
and Hemminger, 2012]. In a variety of other settings, user studies have found that sys-
tems supporting faceted search and browsing are superior to traditional search engines and
to systems based on clustering by document content [Fagan, 2013]. For example, Yee et
al. [Yee et al., 2003] found that “Despite the fact that the interface was often an order of
magnitude slower than a standard baseline, it was strongly preferred by most study partici-
pants. These results indicate that a category-based approach is a successful way to provide
access to image collections.” Kipp and Campbell [Kipp and Campbell, 2010] found that
“Users would find direct access to the thesaurus or list of subject headings showing articles
indexed with these terms to be a distinct asset in search.” Hearst [Hearst, 2006] concluded
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that “Usability results show that users do not like disorderly groupings like [those pro-
duced by clustering systems], preferring understandable hierarchies in which categories are
presented at uniform levels of granularity.” Pratt et al. [Pratt et al., 1999] found that “a
tool that dynamically categorizes search results into a hierarchical organization by using
knowledge of important kinds of queries and a model of the domain terminology . . . helps
users find answers to those important types of questions more quickly and easily than
when they use a relevance-ranking system or a clustering system.” Zhang and Marchion-
ini [Zhang and Marchionini, 2005] found that “[A faceted search and browsing] interface
will bring users added values beyond simple searching and browsing by in fact combining
these search strategies seamlessly.” Faceted search has thus emerged as a valuable tech-
nique for information access in many e-commerce sites, including Wal-Mart, Home Depot,
eBay, and Amazon [Tunkelang, 2009]. Development of faceted search interfaces has also
been the focus for companies such as Endeca1, whose interfaces are used by many websites.

We envision an enhanced interface that, in addition to a traditional faceted search
interface, provides summary information about the resulting document set. As the first
step in this direction, we want to provide summary information about document sets
resulting from queries issued over tags. For example, a summary may consist of the k most
representative articles in the sub-collection that satisfies the query, the most common terms
used within articles in that sub-collection, and the distribution of tags that are assigned
to articles in the sub-collection. If the summary matches the user’s information need,
individual articles in that set can be retrieved; otherwise the user can reformulate the
query (often narrowing down the result set by specifying additional tags or expanding it
by removing some tags from the query) to arrive at a more appropriate set of articles.
For an analyst (or even a casual reader) armed with the New York Times, this approach
might uncover sets of articles that provide a comprehensive summary of news reports on a
specific subtopic of interest. For a computer scientist investigating an unfamiliar research
area through the ACM Digital Library, providing summaries based on tag-based queries
can identify the most relevant articles to read in the area and how those articles relate to
topics identified by other tags.

We rely on the previous studies to validate the utility of faceted search and browsing:
It is prevalent, effective, and satisfies users’ needs. In this dissertation, we concentrate
on making such systems more efficient. If a document collection is already provided with
meaningful metadata tags so that faceted search and browsing is feasible, the main problem
that needs to be solved is to find a fast way of calculating centroids, which are required to
provide summaries of document sets that match users’ tag-based queries. Because some

1http://www.endeca.com (now part of Oracle)
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sets can be very large, aggregating large amounts of data in order to calculate summary
measures may be too time-consuming to be performed online.

For conventional data warehouses, Online Analytical Processing (OLAP) systems have
been developed in order to speed up the aggregation of multidimensional data through
full or partial materialization of summaries. In these systems, data cubes serve as the
model for describing OLAP operations [Gray et al., 1997]. A cubes’ dimensions reflect
the attributes that characterize the facts stored in the cube’s cells; for example, a set
of sales records might have dimensions for date of sale, location of sale, type of product
sold, customer demographics, etc. Thus, OLAP dimensions correspond to facets, and
attribute values correspond to facet values. However, this direct mapping between facets
and OLAP dimensions only exists when each document in the collection has at most one
facet value that comes from each facet [Ben-Yitzhak et al., 2008]. When documents have
multiple values that come from the same facet, the facet values need to be mapped to
the multidimensional schema (Section 2.6.1) or single-dimensional schema (Section 2.6.2)
in order for them to be modeled with a data cube. For example, if we had a document
that gives a review for a romantic comedy film, then that document would have two values
from the genre facet assigned to it: romance and comedy. Rather than storing the genre
facet as a dimension of an OLAP cube, its facet values need to be mapped to either a
multidimensional or a single-dimensional schema. We adapt OLAP’s approach to partial
materialization in order to provide summaries at each step of a faceted search when space
is limited.

Unfortunately, current OLAP systems are designed for data collections that have tens
of dimensions and will not work for document collections that have hundreds of facets with
millions of tags. To handle such a large number of dimensions, we propose to materialize
centroids for sub-collections that correspond to all documents sharing small subsets of
tags. Thus, centroids are stored for predetermined subsets of the data, and calculating
centroids for arbitrary subsets corresponding to users’ queries requires aggregating data
from several overlapping subsets (because documents with multiple tags will contribute to
multiple materialized centroids). The techniques used in current OLAP systems, however,
do not accommodate such overlap.

An additional problem that needs to be addressed involves the choice of vocabulary
used for representing the stored centroids. Due to the extremely large number of unique
terms found in document collections (the NYT has a vocabulary size of approximately 2
million unique terms), storing a full shared global vocabulary that is used for representing
centroids of all classes would consume an unacceptable amount of space. As a result, it
is feasible to store only a small subset of this global vocabulary. However, the vocabulary
available for representing a centroid of any given class has a direct effect on the summary
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information that the user will receive. If the vocabulary contains only a few terms that are
informative for the given class, then the indicative terms and documents that are derived
from its centroid may not provide meaningful summaries. As a result, the popular approach
of using a reduced shared global vocabulary that is formed by taking the top k informative
terms from each class may not be effective in enabling the creation of informative class
summaries. Instead an alternative local vocabulary storage approach needs to be developed
that provides a rich vocabulary for representing class summaries and has a low storage cost.
The large vocabulary found in both the NYT and ACM document collections makes this
an important problem that needs to be addressed.

This dissertation is focused on proving the following statement:

Thesis Statement: Efficient calculation of text centric aggregate measures on sets of
documents defined through queries over tags in multi-tagged document collections can be
accomplished by deriving the measures from materialized views. There exists a partial
materialization strategy that can simultaneously satisfy the following four requirements:

1. allows fast computation of aggregate measures,

2. provides a rich vocabulary,

3. consumes a small amount of storage, and

4. supports document collections with a wide variety of realistic tagging patterns.

1.1 System Requirements

In this section, we describe requirements and associated challenges for a system that will
support online analytical processing for a large document collection. The requirements
are derived in part by examining characteristics of the PubMed interface to biomedical
literature [Ebbert et al., 2003].

PubMed includes more than 24 million abstracts and corresponding citations to articles,
which are annotated with a variety of tags2 chosen from Medical Subject Headings (MeSH),
the National Library of Medicine controlled vocabulary thesaurus used for indexing articles

2For consistency within this dissertation, we continue to use “tag” to refer to a metadata term assigned
to an article from a controlled vocabulary, even though PubMed’s use of “tag” refers to the attachment of
a facet label to a query term.
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for PubMed; the EC/RN Number, assigned by the Food and Drug Administration (FDA)
Substance Registration System for Unique Ingredient Identifiers; and Supplementary Con-
cept tags, which include chemical, protocol or disease terms. The PubMed interface sup-
ports searching for documents using a standard text search, matching query terms against
the abstract, the citation, and all assigned metadata tags, as well as by specifying that
some of the query terms should be restricted to matching MeSH terms (or some other
facet) only.

PubMed users looking for relevant articles can benefit immensely from searching with
the aid of metadata tags [Mosa and Yoo, 2013]. PubMed is a very large collection and the
sizes of sets of search results are often large. Because the search results are returned in
reverse chronological order (unlike results returned by web search engines that are ordered
by presumed relevance to the query), its users can certainly benefit from more efficient
calculation of aggregate measures that summarize the contents of query results.

1.1.1 Supported Measures

As explained earlier, a document is considered to be a bag of terms and is represented by its
document term vector (DTV). To conserve space and avoid storing stop words and other
uninformative terms, only m terms are stored in each DTV; their corresponding frequency
values are normalized by the length of the document. The available choices for choosing
the m terms to store as part of each document’s DTV are described in Chapter 6. For the
time being we assume that there is a shared global vocabulary and the same m terms are
stored for each DTV in the collection.

In order to provide meaningful summaries about a document set (e.g., set of diverse
documents indicative of the contained topics, set of indicative terms, or many other multi-
document summaries), we need to compute the set centroid C, which can be represented
by a vector of term frequencies equal to the mean of all the DTVs for documents that
belong to that set. However, instead of storing the means directly, for a set of documents
S, we store its centroid CS as a dictionary that maps terms to sum values along with the
count of documents found in the set, which is then easily updated when documents are
added to or removed from the set:

CS[term].sum =
∑

d∈S

d[term] (1.1)

CS.size = |S| (1.2)

6



where d is a normalized DTV of length m. Thus, a set centroid vector has length m
regardless of how many documents are in the set. From the stored measures, the mean
frequency of a term in document set S is derived using Equation 1.3.

CS[term].freq =
CS[term].sum

CS.size
(1.3)

In addition to sum, each term in S stores the count of documents in the set that have the
corresponding term:

CS[term].count = |{d ∈ S | d[term] > 0}| (1.4)

The stored set size along with the counts of documents with each term are used to calculate
the mutual information of terms, which is required for feature selection (Section 2.4.6).

1.1.2 Supported Queries

Associated with each document is a set of “metadata” tags, each of which is assumed to
represent some aspects of the document’s content. We allow the user to pose queries as
Boolean formulas over tags, such as Election ∧ President ∧ (Stocks ∨ Stock Market).
Conjunctions of terms narrow down the scope of documents to those that involve all the
concepts represented by the conjuncts. The use of negation is allowed, but only in the form
“and not” to allow a conjunction with the complement of the documents having a given
term, as in the example President ∧ ¬Election. Disjunction provides a means of query
expansion, allowing synonyms and related tags to be included in a query [Manning et al.,
2008]. After an initial query, a user might issue subsequent queries that are refinements
of the original query and include one or more additional conjuncts (slicing/dicing). This
type of behaviour can occur when using a browsing interface to navigate a collection, as is
explained in the next section.

1.1.3 Expected Workload

Users explore a multi-tagged document collection through a browser front end that enables
them to invoke Boolean queries. As part of their exploration, they may pose queries and
read summaries (in the form of data derived from set centroids, such as a set of diverse
documents indicative of the contained topics or a set of indicative terms). After users
examine summaries of document sets, they may choose to narrow down the result set by
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Figure 1.1: Analysis of unique tags per query

issuing more specific queries. The browsing system we are developing is required to provide
quick responses to the generated queries.

We rely on data from a PubMed query log3 [Mosa and Yoo, 2013] to help characterize
a feasible query workload. Among 2,996,301 queries collected over a single day, 16,928
queries include only terms chosen from facets that have a controlled vocabulary (specifically,
MeSH terms [MH], MeSH major topics [MAJR], MeSH subheadings [SH], filters [FILTER],
EC/RN Numbers [RN], and supplementary concepts [NM]), with the possible addition of
one or more pure text terms. Treating each text conjunct or disjunct as if it were a single
tag, these queries involve anywhere from 1 to 46 tags, with the majority of the queries
using between 1 and 3 tags (Figure 1.1).

Figure 1.2 tallies the number of distinct tags (y-axis) that have been found to co-occur
with k other tags (x-axis), as observed in the PubMed query logs. For example, assume
that the query log consists of the following four queries: Music, Music AND Jazz, Music
AND Opera, Music AND Movies OR Theatres. In that query log, the tag ‘Music’ appears
in queries with four other tags and is included in the tally corresponding to the bar at
x = 4. The tags ‘Movies’ and ‘Theatres’ each co-occur with two tags, and the tags ‘Jazz’
and ‘Opera’ co-occur with only one tag. The query log analysis provided in Figure 1.2
shows that in the queries posed by users, some tags appear together with many different

3Available at ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/DAYSLOG.
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Figure 1.3: Distribution of operator counts in PubMed query log: a) AND, b) OR, c) NOT

tags.

The usage patterns of the three Boolean operators are summarized in Figure 1.3, which
shows that the “NOT” operator occurs in 1% of queries, the “OR” operator occurs in
18% of the queries, and the “AND” operator occurs in 62% of the queries; 31% of queries
are of length 1 and so use no operators. These observations suggest that a realistic query
workload will likely include primarily short queries that are predominantly conjunctive, as
has been observed for other Web search systems before the inclusion of auto-completion
for suggesting long queries [Jansen et al., 2000].

In summary, our expectation is that (after some preliminary traditional searches of the
text) users explore a collection by starting with a small set of tags of interest and then
iteratively refining their queries to be more focused by including additional tags. For some
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queries, query expansion will be applied to incorporate some alternative tags. Thus, most
queries will be conjunctions of tags (i.e., no negations and only occasionally disjunctions
to accommodate alternative tags), most queries will be short, and most queries will match
sets that include a large number of documents.

1.1.4 Query Processing Model

We assume that documents are stored as files and that the collection is indexed by a
mapping from document IDs to the corresponding files. In order to support queries over
tags, we further assume the existence of an inverted index that stores a postings list of
document IDs for each of the tags. Finally, we assume that normalized document term
vectors have been precomputed and that an index from document IDs to DTVs (as might
be produced by a standard search engine) is also available.

With this minimalistic storage structure, tag queries may be answered using the fol-
lowing steps:

1. Use the inverted index over tags to return the set S of document IDs that satisfy the
query.

2. Initialize the document set centroid CS to be empty.

3. For each s ∈ S:

(a) Retrieve DTV for s.

(b) Add DTV to document set centroid CS using Eqs. 1.1 and 1.4.

This algorithm requires |S| DTVs to be read from secondary storage, which will be
quite slow for large sets. Even for systems with sufficient main memory to store the whole
collection, it will be beneficial to avoid online aggregation of |S| documents, especially
when supporting many concurrent users. Therefore, it is desirable to bound the number
of documents that must be retrieved for each query.

One way to reduce the cost of answering a query is to store precomputed centroids for
well-chosen sets of documents P and to use these at query time to reduce the number of
documents that must be retrieved. Given a document set S, we find a highly overlapping
set P ∈ P and retrieve the precomputed set centroid CP as well as the DTVs for all
documents in S4P = (S − P )∪ (P − S), the symmetric difference between sets S and P .
To calculate CS, the DTVs of the retrieved documents are added to or subtracted from
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the centroid of P (Eqs. 1.1 and 1.4) in order to compensate for the difference between S
and P . As a result, instead of retrieving |S| DTVs, we need to retrieve |S ∪ P | − |S ∩ P |
DTVs as well as CP . As a special case, S ∈ P, in which case we merely need to retrieve
CS and avoid accessing any DTVs.

When choosing P, the sets for which we precompute and store centroids, its size is
constrained by the amount of available storage space. To benefit from P, we wish to select
sets that closely match the expected query load. To this end, we adopt the practice of
using partial materialization of document cubes [Harinarayan et al., 1996].

1.1.5 Design Objective

We wish to provide a fast response to user queries by having an upper bound on the number
of documents or centroids of materialized sets that need to be retrieved from secondary
storage. At the same time we wish to minimize the number of set centroids that need to
be precomputed and materialized to accomplish this. We focus on providing upper bound
guarantees on execution costs for (positive) conjunctive queries, since they are expected to
be most frequent: For each such query, no more than k DTVs or set centroids need to be
accessed, for some fixed k. Queries that involve disjunction and negation will be answered
using multiple conjunctive subqueries, and they may therefore require more than k DTVs
or set centroids in total.

A document cube provides an excellent mechanism for structuring the collections of
documents so as to answer Boolean queries on tags. Each cell in the cube represents the
set of documents that have a specific tag assignment, and each cuboid represents document
sets that are aggregated (“rolled up”) by grouping on specific tags and ignoring others. As a
result, conjunctive tag queries can be answered by selecting specific cells from appropriate
cuboids, and centroids of document sets that correspond to other Boolean queries can
be computed by combining the centroids from selected cuboid cells. The problem to be
addressed is to determine which cells or cuboids to materialize to balance space and time.
In addition, for each materialized cell, we wish to ensure that the stored vocabulary is large
and relevant for the queries that it will be used to answer, so that the indicative terms
and indicative documents generated from the centroid are of high quality while consuming
minimal amount of space.

11



1.2 Contributions

This thesis includes the following contributions:

• Detailed analyses of tagging patterns in two representative multi-tagged document
collections: the New York Times Annotated Corpus and the ACM Digital Library;

• development of a generative tagging model for the tagging patterns observed in the
NYT and ACM collections;

• a storage design that permits fast calculation of centroids for document sets that re-
sult from both short and long conjunctive queries over tags, and supports aggregation
of overlapping sets;

• development and evaluation of several partial materialization strategies for high-
dimensional, sparse data;

• development and evaluation of several vocabulary storage techniques;

• application of the proposed partial materialization strategy to support various text
centric document set summary measures; and

• implementation of an enhanced faceted browser that takes advantage of the developed
partial materialization to efficiently provide the user with summaries for various sets
of documents that the user is navigating through.

1.3 Thesis Overview

The thesis is organized as follows. Background and related work on folksonomies, tag
recommendation systems, browsing systems, facet selection, document set summarization,
OLAP for data warehouses, document warehouses, and topic modeling are summarized in
Chapter 2. The properties of two prototypical multi-tag document collections are exam-
ined in Chapter 3. Based on the observed properties of the two collections, a generative
tagging model is proposed and fitted to the two collections in Chapter 4; this generative
model is used to generate additional synthetic data. A novel individual cell materialization
strategy that supports efficient computation of document set centroids and a set of partial
materialization techniques built on top of it are described and evaluated in Chapter 5.
The evaluation is conducted on the NYT, ACM, PubMed and several synthetic collections
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generated from the derived generative tagging model. Various vocabulary storage strate-
gies are explored and evaluated in Chapter 6. An enhanced faceted browsing system that
supports efficient access to summary operations over sets of documents is developed in
Chapter 7. Finally, conclusions and future work are summarized in Chapter 8.
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Chapter 2

Background and Related Work

2.1 Folksonomies and Tag Recommendation Systems

The New York Times and the ACM Digital Library rely on tags being chosen by users
with care so as to maximize the reuse of tags where applicable and to distinguish between
concepts through the use of disjoint tag sets where possible. To achieve these ends, the
collections employ controlled vocabulary for some facets and allow only limited use of
uncontrolled vocabulary.

In contrast, many social Web sites, such as Delicious and Flickr, allow users to at-
tach arbitrary tags to documents to organize content on the Web. Tags can be chosen
by users at will, and different users may assign different tags to the same object. This
results in so-called folksonomies [Hearst, 2009] that include many tags per document, large
tag vocabularies, and significant noise. Faceted browsing has been implemented over folk-
sonomies in systems such as dogear [Millen et al., 2006], and the complex tagging patterns
involved can benefit from more efficient exploration, which is the aim of our work.

To help reduce noise, there is much research on tag recommender systems, which are
designed to help users assign tags to documents. We expect that good recommender
systems would approximate users’ tagging behaviour in order to provide the correct tags.
Also, as tag recommender systems become more popular, their use will influence users’
tagging behaviour, in which case we can expect that the tags suggested by a good tag
recommender system will correspond to the tags assigned to a document.

User studies that examine users’ perceptions of the role and value of tags [Kim and Rieh,
2011] showed that one common view of tags is as keywords (tags describe key aspects of the
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document) and another common view is for categorization. This is supported by another
study [Ames and Naaman, 2007], a taxonomy of tagging motivations in ZoneTag/Flickr,
which concluded that one of the purposes of tags is to show context and provide content
description.

Content-based tag recommender systems assume that tags for a specific resource can
be extracted by processing the textual information about the resource to be annotated.
These approaches adopt techniques from information retrieval [Baeza-Yates and Ribeiro-
Neto, 1999] in order to extract relevant terms to label a resource. More specifically, term
frequency and inverse document frequency have been shown to yield good keyword identi-
fication results [Budzik and Hammond, 1999, Efthimiadis, 1995, Witten et al., 1999], and
their use has been adopted by tag recommendation systems [Brooks and Montanez, 2006].
Content authors and editors do not explicitly compute inverse document frequency when
tagging an article, but their intuition regarding which words are informative replaces the
use of this measure by human judgment.

In related work, a tag recommender system that relies on topic modeling was developed
to provide an annotator with a set of diverse tags that represent the various topics covered
in the document [Bi and Cho, 2013]. The generative model in the system simulated the
users’ tagging process in a social tagging system. It assumed that for any resource there
are a multitude of topics, and that when users tag a resource, they first identify topics of
interest from the resource, after which they express the chosen topics via a set of words
(tags). Each topic accordingly corresponds to a probability distribution over tags, which
gives the probability of picking out a tag with respect to a certain topic. The user studies
performed as part of the evaluation of the system suggested that users preferred the tags
suggested by this new system. In another tag recommender system, a model based on
Latent Dirichlet Allocation (LDA) was also shown to perform well [Krestel et al., 2009].

From these previous studies, we conclude that a carefully annotated document has tags
representing all the topics that have sufficiently high presence in that document.

2.2 Browsing Document Collections

In place of faceted search, which has been described in the introductory chapter, browsing
systems might rely on document clustering. For example, traditional search engines are
designed to provide a user with a ranked list of documents that satisfy a query, and
clustering may be performed on top of the result set in order to organize similar documents
into groups [Zamir and Etzioni, 1999]. Because clustering can be fully automated, it can
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be applied to text collections that have not been assigned metadata tags. However, if
clustering is applied online and if it were to be applied to result sets consisting of thousands
of documents, it would impose unacceptably long delays. To avoid this bottleneck, systems
such as Clusty.com perform clustering on the top k results only. On the other hand, if
clustering is applied offline, cluster labels can be interpreted to be metadata tags and the
techniques proposed here can be similarly applied.

Scatter/Gather is a well-known document search interface based on clustering [Cutting
et al., 1992]. Users explore a document collection by dynamically clustering a set of
documents (scattering), selecting clusters of interest based on their summaries, and then
treating all documents in the selected clusters as one set (gathering). These steps are then
repeated to further investigate the contents of the sub-collection. The summaries used to
characterize clusters take the form of a set of representative terms, chosen on the basis of
frequency alone, together with the headlines of the documents closest to the centroids.

Like Scatter/Gather, our proposed system allows users to repeatedly select subsets of
the document collection, examining summaries for each grouping of documents to deter-
mine whether or not to include specific groupings in the refinements. However, unlike
Scatter/Gather, the system we envision is based on a multi-valued, faceted labeling for
each document rather than on hard clusterings; thus even if cluster labels at each step
were to be treated as if they were metadata tags for externally-specified classes, Scat-
ter/Gather would correspond to a single-valued labeling of documents. Furthermore, in
Scatter/Gather it is difficult for users to predict what clusters will be generated since the
grouping criterion is hidden, unlike when aggregation is specified through tags visible to
user. Finally, we envision a search system in which a user is free to broaden the search at
any step, rather than being expected to restrain themselves only to narrowing down the
result set.

To make Scatter/Gather usable in an interactive manner, offline hierarchical clustering
can be performed on the document collection [Cutting et al., 1993]. In this approach,
meta-documents corresponding to a union of documents are created offline, and during
the scatter phase the meta-documents are clustered instead of the actual documents, thus
reducing the number of items to be clustered and thereby reducing execution time. Doc-
ument clustering is therefore only approximated. In addition, inter-document distances
are computed based on selected features instead of the full text of the meta-documents,
thus again reducing execution time. Interestingly, the third variant of our proposal stores
centroids for meta-classes, somewhat akin to Scatter/Gather’s meta-documents, but those
centroids are corrected to exact centroids for the associated classes before they are used in
browsing.
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An even faster implementation of Scatter/Gather (LAIR2) was developed by Ke et
al. [Ke et al., 2009], based on precomputing a complete (binary) hierarchical clustering
of the documents. Thus, for a collection with N documents, LAIR2 materializes N − 1
clusters. Then, instead of clustering documents during the browsing stage, it retrieves
prematerialized nodes from the cluster hierarchy. Like the previous approach, however,
the authors are only concerned with improving the execution time and do not consider the
storage cost required to store every sub-cluster of a full hierarchical clustering. In contrast,
the amount of storage required by a browsing system, as well as execution time, is central
to our work.

One difficulty in browsing via tags is to determine which tags are present in the collec-
tion and how tags are related to each other. A query and browsing interface can display
the distribution of tags that are assigned to articles in each result set, thereby suggesting
tags that can be used for further refinement. For broadening a search, the system could
display tags that are associated with carefully chosen supersets of the result set. Alterna-
tively, the system could provide a mechanism to browse the tags themselves (as opposed
to the documents associated with those tags) through an interface to a thesaurus or ontol-
ogy [Côté et al., 2010, Mu et al., 2014, Shiri et al., 2011]. We make no assumptions about
the structure of the tag space for our work, and the incorporation of tag-browsing facilities
is orthogonal to our work.

2.3 Facet Selection

As was mentioned in the introductory chapter, facets and facet values (corresponding to
tags) presented to the user by the faceted browser play an important part in guiding users’
exploration of the result set. The challenge with presenting facets and corresponding facet
values, especially for large result sets, is that there often are too many available facet
values, which leads to information overload for the users [Tunkelang, 2009]. To address
this issue, a variety of facet and facet value selection algorithms have been proposed that
reduce the number of facet values shown [Kashyap et al., 2010, Li et al., 2010, Roy et al.,
2008, Dash et al., 2008]. Facet value selection is driven by the goal of minimizing the
navigational cost. Our approach towards producing an indicative set of documents relies
on having access to a well chosen set of tags that are made available by facet selection
algorithms.

Before the faceted values can be selected, we first need to identify all the candidates
and their corresponding counts for all documents in a result set. This can be expensive to
compute online for large result sets. One approach to improving the computation speed of
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the document counts has been proposed by Dash et al. [Dash et al., 2008]. The approach
relies on compressed bitmaps for storing the posting lists of documents in an inverted
index for each tag and a novel bitset tree directory structure that reduces the number of
unnecessary bitset intersections that are performed between tags.

2.4 Document Set Summarization

When navigating through many document sets it may often be too time consuming to
examine all documents found in each document set of interest. For this reason document
sets are often summarized. By viewing a set summary, a user can get a quick overview of its
contents. Common measures for summarizing sets of documents include cluster centroid,
cluster labels, representative documents, and multi-document summarization. Efficient
access to the centroids of corresponding classes will be beneficial to most implementations
of these measures.

2.4.1 Cluster Centroid

A cluster centroid has been used in various works as a measure for summarizing the contents
of a group of documents. In Scatter/Gather [Cutting et al., 1992] a cluster profile (which
is equivalent to a centroid) was used for summarizing groups of documents. This cluster
profile was further used to derive other group summaries such as the most frequent terms
in the profile. In the MiTexCube system [Zhang et al., 2011], sets of documents have been
summarized by first clustering them and then representing each cluster by their centroid.

2.4.2 Cluster Labeling

Standard clustering algorithms group documents, after which cluster labeling needs to
be performed on the generated clusters in order to produce descriptive, human-readable
labels. One approach towards generating cluster labels is through the use of a differential
cluster labeling technique, which picks terms by comparing the distribution of terms in
one cluster with that of another [Manning et al., 2008]. One popular differential cluster
labeling technique picks terms that are frequent and predictive [Popescul and Ungar, 2000]
as defined in Equation 2.1.

p(term|cluster)× p(term|cluster)
p(term)

(2.1)
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A concept of ‘bursty’ terms has been used in temporal text analytics. This is similar
to differential cluster labels, in that it identifies terms that experience higher frequency of
occurrence for some segment of time as compared to their usual frequency of occurrence.
Goorha et al. used the definition given in Equation 2.2 to extract bursty terms in a Twit-
ter feed [Goorha and Ungar, 2010] by comparing a term’s usage in some chosen class of
documents of interest against that term’s usage in the corpus as a whole. A variant of
the bursty term measure has also been used in analyzing blog posts [Bansal and Koudas,
2007].

(term count in class)

(term count in corpus)0.95
(2.2)

In both the cluster labeling and bursty terms identification scenarios, the best candidate
terms are frequent in a collection and have higher relative frequency in the subset than in
the superset.

Since document clustering is usually performed with few features, it is important to
note that cluster labels need to be derived from the full text of the documents and not
from the subset of features used in clustering. Thus, one needs to evaluate the relative
frequencies of each term found in centroid vectors of multiple clusters. Having quick access
to all the required centroids can allow for fast generation of labels.

2.4.3 Indicative Documents

Another popular approach to summarizing a cluster is through a representative sample of
documents. A representative sample of a large collection (where the sample has a similar
word distribution as the population from which it is taken) has the number of documents
coming from each topic proportional to its size. Such a sample has multiple documents
coming from a dominant topic, and smaller topics may not be included at all. This approach
may not provide an appropriate level of diversity in the representative set, and, as a result,
it might limit the amount of new information a user gets from reading each additional
document. Alternatively, a diverse set of documents that provides a broad perspective on
the different topics found in the cluster might be more appropriate. Users studies showed
that most users prefer to see a diversified sets of documents for representing clusters in
aggregator websites [Abbassi et al., 2013].

A common approach to representing a cluster is through a medoid, which is a document
that has the lowest average cosine distance to all other documents in the cluster [Gelbukh
et al., 2003] or equivalently has the lowest cosine distance to the centroid. A represen-
tative set of size k consists of k documents closest to the centroid. The Scatter/Gather
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algorithm [Cutting et al., 1993] uses the titles of such documents to summarize the gener-
ated clusters. However, it turns out that medoids often do not make good “representative”
documents because the large number of dimensions found in the cluster can cause what
is called the “curse of dimensionality” [Rajaraman and Ullman, 2011], where due to the
large number of dimensions, all documents are equally far from one another and, in turn,
far from the centroid. Under such circumstances it was shown by Deolalikar [Deolalikar,
2014] that documents that “cover” the concepts represented in the centroid, picked with a
coverage-based approach, make significantly and consistently better representative docu-
ments than the documents that are closest to the centroid. A similar approach of picking
documents as representatives of a cluster based on their coverage of terms found in the
cluster centroid was also previously described in [Gelbukh et al., 2003].

Whether the closest to centroid or “cover” based approach is used for picking represen-
tative documents, in both cases, access to the centroid of the document set is required.

2.4.4 Search Result Diversification

There is a large body of research on search result diversification [Santos et al., 2015].
However, that work deals with diversification of results to ambiguous text queries, for
which different results are optimal depending on the interpretation of the query. That
body of work is not directly applicable to our scenario since we do not deal with queries
that are issued over text, but instead the queries are issued over tags that are assumed to
be well-chosen and far less ambiguous.

Search queries over text produce a ranked list of results based on the tf-idf measure,
where the top k ordered results are derived efficiently from the inverted index and the
diversification is performed on the ordered list afterwards. For example, the Maximal
Marginal Relevance (MMR) [Carbonell and Goldstein, 1998] search result diversification
approach is initialized with a ranked lists of results (ordered by query relevance), from which
the top ranked document is selected as the first representative. Each following document
is iteratively selected, such that the query relevance and distance from previously selected
documents are maximized. This selection approach ensures that all the chosen documents
are relevant to the query and have low redundancy.

Search queries over tags produce a result set of documents, where there is no ordering.
In our situation, documents are assigned single instances of tags (we are not considering
folksonomies, where the same tag can be assigned to a document by many users). As a
result, documents matching a query over tags cannot be ordered based on the tag frequency.
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Ordering can be imposed on the documents in the result set by using the text found
in the documents. If we have access to the centroid of the result set, we can order the
documents in the result set by their cosine distance to the centroid or by their coverage of
the important terms found in the centroid [Deolalikar, 2014]. For a large result set, ordering
the documents can be time consuming. An inverted index is not designed to support the
calculation of documents’ centroid distance, and so, it may be necessary to retrieve the
DTVs of all documents in the result set and calculate the distances directly. However,
once an ordering is imposed on the result set, search result diversification approaches can
be applied.

2.4.5 Multi-document Summarization

Multi-document summarization techniques are used to generate a textual summary for a set
of related documents. The generated summary is a shorter version of the source text which
preserves the overall meaning and information content. The text summarization methods
can be classified as extractive and abstractive. An extractive summarization method selects
important sentences or paragraphs from the original document and concatenates them into
a shorter form. The importance of each sentence is decided based on its statistical and
linguistic features. Abstractive summarization does not reuse existing sentences or words,
but instead generates sentences based on the statistical and linguistic features directly.

There are many different approaches to perform such multi-document summariza-
tion, based on abstraction and information fusion, topic-driven summarization, clustering,
graphs, and ranking [Gupta and Lehal, 2010, Das and Martins, 2007]. Of particular rel-
evance here are multi-document summarization methods that rely on using the centroids
of document sets [Radev et al., 2004], which is the measure for which we are designing an
efficient infrastructure.

2.4.6 Feature Selection

A major difficulty associated with text clustering or categorization is the high dimension-
ality of the feature space. The native feature space of a document collection consists of
all the unique terms that occur in the collection. Even in a moderate-sized text collection,
there can be tens or hundreds of thousands of unique terms [Yang and Pedersen, 1997].
Such a feature space is prohibitively large for many learning algorithms. As a result, it is
highly desirable to reduce the size of the feature space without sacrificing the accuracy of
the categorization or clustering algorithms. The size of the feature space also has an impact
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on the total storage cost of the collection, which is an important concern that needs to
be addressed when designing a materialization strategy for a document warehouse. From
the perspective of storage cost and clustering, it is desirable to have a small feature space,
so that resulting clusters can be computed quickly and their summaries take little space.
However, in order to handle nonprevalent topics, such that they can be detected, and doc-
uments belonging to them correctly categorized or clustered, the available feature space
used to describe the collection has to be rich. As a result, the feature space needs to be
large enough to support the rarer topics but small enough so that space is not wasted on
uninformative features.

A conventional approach for reducing the feature space in natural language processing
is to remove all stop words, as well as those that globally occur fewer than five times [Apté
et al., 1994]. Language specific stop words, such as ‘the’ in English, occur very frequently
and convey little information about the documents. The infrequent words are unreliable
indicators for use as features and often are the result of misspelling. The feature space
can be reduced further by normalizing all the terms (converting to lower case, stemming,
removing punctuation, etc.) and removing numerical values from consideration.

In addition to the above text processing techniques, there exists a multitude of fea-
ture selection techniques that pick specific terms out of the original vocabulary to be used
for clustering. These rely on document frequency thresholding, information gain, mutual
information, χ2 testing, or term strength [Yang and Pedersen, 1997, Garnes, 2009, Sebas-
tiani, 2002]. This is in contrast to feature extraction techniques, such as latent semantic
indexing, that transform the set of features available into a new and typically smaller set
of features [Garnes, 2009, Sebastiani, 2002]. Since a feature produced by feature extraction
techniques may not correspond to any one term, such features do not make good candidate
labels for clusters.

We do not perform document clustering or classification in our work, but we do need
to select vocabulary (the features) that will be used to characterize a set of documents. As
part of our preprocessing we rely on mutual information I(W ;C) for performing feature
selection [Manning et al., 2008], as defined in Equation 2.3

I(W ;C) =
∑

c∈C

∑

w∈W

p(w, c) log

(
p(w, c)

p(w)p(c)

)
(2.3)

where W corresponds to a random variable indicating the presence (absence) of a term in
a document and C corresponds to a random variable indicating the presence (absence) of
a tag assignment to a document, p(w, c) is the joint probability of a specific term and tag
being assigned to a document, p(w) is the probability of a word occurring in a document,
and p(c) is the probability of a tag in question being assigned to document.

22



Feature selection methods produce a ranked list of features which it is hoped are good
towards training a classifier for one specific category. That is, feature selection methods
are usually specific to the category (set of documents) being characterized [Garnes, 2009].
Category-specific features are often called local. Because it is often impractical to have a
separate set of features for each category, often the ranked feature lists are merged into
one common feature list that is used for all categories. Such a category-independent list
of features is called global. When there exist n categories, a common approach to merging
the features includes taking the top k/n features from each category and creating a global
feature list of size k. Another merging approach is to measure the average score of each
feature over all n categories and then picking the top k features based on their average
score [Manning et al., 2008].

In a comparative analysis between a local and global dictionary approach, Apté et
al. showed that the local dictionary approach drastically reduces the dimensionality [Apté
et al., 1994]. As the number of topics in a collection grows, a global dictionary with even as
many as 10,000 words will be insufficient to handle rare topics, but increasing its size will
further increase the dimensionality problem. The local dictionary approach was shown
to be both faster and more accurate than relying on a global dictionary (which usually
contains features that are less specialized for the categories). However, even with all these
advantages of using a local feature set, the global approach is predominantly used because
the benefit of having a common document representation usually outweighs the loss of
accuracy [Manning et al., 2008].

2.5 OLAP for Data Warehouses

As was explained in Chapter 1, OLAP systems are used to aid users with multidimensional
analysis. Because multidimensional analysis often requires aggregated measures over some
of the dimensions (e.g., average sale prices for each product per day, regardless of loca-
tion and customer), OLAP systems provide the materialization of selected cuboids defined
over a subset of dimensions, storing precomputed aggregates in each resulting cell. The
dimensionality of a cuboid is equal to the number of unaggregated dimensions, and the
space is proportional to the number of cells (the product of the number of possible values
in each unaggregated dimension). Thus a d-dimensional cuboid stores aggregated values
in cells indexed by the possible values for each of the d unaggregated dimensions, and if
each dimension is binary requires O(2d) space.
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2.5.1 Full Materialization

OLAP systems that materialize all possible cuboids offer the best response time to user
queries. However, full materialization requires O(2n) space for cubes with n dimensions.
Compression can be applied to achieve full materialization while reducing the storage
cost; this can save space in situations where there is significant repetition in cell mea-
sures, as is the case with sparse cubes. Compression techniques for data cubes include
condensed cubes [Wang et al., 2002], dwarf cubes [Sismanis et al., 2002], and quotient
cubes [Lakshmanan et al., 2002]. However, these techniques do not scale to a high number
of dimensions [Li et al., 2004].

2.5.2 Partial Materialization

Partial materialization techniques are used to materialize a subset of cuboids (also referred
to as views) from the lattice of cuboids [Harinarayan et al., 1996]. When answering a
query, instead of fetching the data from the base cuboid and performing aggregation on
it, the cuboid corresponding to the query can be calculated from the closest materialized
superset cuboid. Therefore, the subset of cuboids to materialize is picked so as to minimize
the time needed for the expected query workload, while requiring no more than a given
amount of storage.

Thin cube shell materialization is a partial materialization where only the base cuboid
and certain low-dimensional (most highly aggregated) cuboids are stored [Li et al., 2004].
More specifically, in addition to the base cuboid, the strategy stores all cuboids having
exactly d dimensions, where d � n, n is the total number of dimensions, and there are(
n
d

)
d-dimensional cuboids. Alternatively, we could materialize all cuboids having d or

fewer dimensions, which would further reduce the execution time of short queries at the
expense of additional storage space. However, d-dimensional cuboids can be used to answer
queries that involve at most d dimensions only; this involves choosing a materialized cuboid
and aggregating the data for the dimensions omitted in the query. On the other hand,
queries involving more than d dimensions are answered by aggregating over the base cuboid.
Picking a larger d for materialization results in increased storage cost and increases the
time required to calculate queries with few dimensions, but picking a small d results in
much longer computation time for queries with more than d dimensions. If the expected
workload has a wide range of queries, there may not be a fixed d that is appropriate.

As an improvement over a thin cube shell, Li et al. [Li et al., 2004] proposed a shell
fragment approach for dealing with high-dimensional cubes. The technique relies on the
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assumption that high-dimensional data have limited interactions among dimensions (tags).
It assumes that on average any one tag interacts with at most K other tags, where K is
at most five and these tag interactions can usually be well clustered. Under such circum-
stances when a collection has T unique tags, it can be partitioned into T/K nonoverlapping
fragments. Depending on the properties of the data and the query workload, it may be
necessary to choose fragments of various sizes. However, larger fragments require more
storage space. If the tag interactions cannot be clustered well, it may be necessary to
store overlapping fragments to provide satisfactory query response time, in which case
more fragments need to be stored. This, in turn, leads to greater storage requirements.
For each of these fragments a full cube materialization is stored; thus, all the cuboids of
dimensions ranging from 1 to K are materialized. This results in 2K − 1 cuboids mate-
rialized per fragment, where a cuboid with d dimensions has 2d − 1 cells, which therefore
implies

∑K
i=1

(
K
i

)
(2i − 1) cells for a fragment. For a fragment of size K = 3, 19 cells per

fragment are needed. For scenarios in which the prematerialized fragments do not enclose
the user’s query, again the view needs to be calculated from the base cuboid, which can be
time-consuming.

Recently, a ‘Smart Cubes’ [Antwi and Viktor, 2014] approach was developed as a further
improvement over the shell fragment. Like the shell fragment approach, it partitions the
dimensions into fragments, but to conserve space, it performs a partial materialization on
each of the fragments. In addition, the smart cubes system is designed to adapt to change
in query patterns. If it starts receiving new queries that require access to dimensions that
span multiple fragments, it will dynamically replace old materialized fragments with new
ones, so that it maintains a satisfactory response time for the new query workload.

2.6 Document Warehouses

A document warehouse is like a data warehouse, except that instead of performing analyses
over tabular data, it supports analyses over documents. OLAP systems designed for doc-
ument warehouses require dimensions that provide useful organization of documents and
text centric measures that are appropriate for analyzing the text found in the documents.
Dimensions for storing tags were developed to allow the analysis of tagged collections [Jin
et al., 2010]. In other work, a textual dimension was created to enhance the functionality of
OLAP on documents by providing a term hierarchy for the terms found in documents [Lin
et al., 2008]. This term hierarchy allows the user to roll-up and drill-down on the terms be-
tween very specific and general terms. A topic dimension that consist of a topic hierarchy
was developed to allow users to explore documents based on the topics they cover [Zhang
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et al., 2009, Mendoza et al., 2015]. A dimension that contains an ontology of keywords
was integrated with another OLAP system [Inokuchi and Takeda, 2007]. OLAP in doc-
ument warehouses has been used to provide users with summaries of related documents
through the use of centroids of the clusters found in cells of a cube [Zhang et al., 2011], the
top k representative keywords based on a local tf-idf [Ravat et al., 2008], and the propor-
tions of topics covered by the documents of interest [Zhang et al., 2009, Mendoza et al.,
2015]. In addition, systems that integrate keyword search with OLAP [Ben-Yitzhak et al.,
2008, Simitsis et al., 2008] have been developed to provide users with aggregate measures
for OLAP data cubes on documents returned for a query by performing aggregation on
the resulting document set online.

Efficient storage strategies for OLAP over nonoverlapping sets of documents have been
proposed [Zhang et al., 2011], and a fully materialized approach that deals with overlapping
sets has also been proposed [Jin et al., 2010], but efficient storage strategies that can handle
overlapping document sets—the focus of this thesis—have not been explored. In tagged
document collections, tags are treated as dimension values. Two different forms of schema
can be used for determining how tags are assigned to dimensions: multidimensional schemas
and single-dimensional schemas.

2.6.1 Multidimensional Schema

A multidimensional schema (MDS) stores each tag in a separate binary dimension, where
0 signifies that the corresponding tag is not assigned and 1 signifies that it is [Jin et al.,
2010]. For example, if a document d1 has tags (Finances, Stocks) and d2 is tagged with
(Stocks) only, then d1 is stored in cell (1, 1) and d2 is stored in cell (0, 1) of the 2-D
cuboid with those two dimensions. This cuboid can answer the query Finances ∨ Stocks
by aggregating cells (1, 1), (0, 1), and (1, 0) together, where, for this small example, the
cell (1, 0) is empty. By having a separate dimension for each tag, we can ensure that
aggregations performed on a cuboid do not double count any documents. Storing a data
cube for MDS is a challenge when there are many tags.

2.6.2 Single-dimensional Schema

A single-dimensional schema (SDS) stores all tags in one dimension. The dimension can
take on a value ranging from 1 to T , where T is the number of unique tags in the collection.
This approach works well in situations where each document is assigned only a single tag.
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Zhang et al. [Zhang et al., 2011] used this approach for organizing a collection of documents
into nonoverlapping cells and developed a partial materialization scheme on top of it.

To avoid having a separate dimension for each tag, as is the case with MDS, Jin et al. [Jin
et al., 2010] explored using SDS for storing documents with multiple tags. Unfortunately,
using SDS can result in the same document being assigned to multiple cells, which is
problematic when the cells in a cuboid are aggregated. Continuing with the example
above, because there is only one “tags” dimension, cell(Finances) stores d1 and cell(Stocks)
stores both d1 and d2. In this situation, simply adding the counts for cell(Finances) and
cell(Stocks) to count the number of results for the query Finances ∨ Stocks will result in
double counting d1. We adopt the solution to this problem developed by Jin et al., namely
storing document membership information for each cell, so that when multiple cells are
aggregated, cell overlaps can be detected and compensations applied. Jin et al. use a full
materialization on a small data set and focus on the union operation only; optimizing
conjunctive queries involving overlapping cells has not been considered.

2.7 Topic Modeling

A topic model is defined as a generative probabilistic model that uses a few distribu-
tions over a vocabulary to describe a document collection. Techniques based on Latent
Dirichlet Allocation (LDA) [Blei et al., 2003] and the Correlated Topic Model (CTM) [Blei
and Lafferty, 2007] have been effective in modeling how text in documents is generated.
Topic modeling techniques have also been used for recommending tag assignments to doc-
uments [Bi and Cho, 2013, Krestel et al., 2009], as explained in Section 2.1.

As described by Blei and Lafferty [Blei and Lafferty, 2005],

LDA assumes that the words of each document arise from a mixture of topics.
The topics are shared by all documents in the collection; the topic proportions
are document-specific and randomly drawn from a Dirichlet distribution. LDA
allows each document to exhibit multiple topics with different proportions, and
it can thus capture the heterogeneity in grouped data that exhibit multiple
latent patterns.

The LDA model assumes that an N -word document is created with the following generative
process, which is depicted in Figure 2.1 [Blei et al., 2003]:

1. Draw topic distribution θd|α from Dir(α)
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Figure 2.1: LDA generative model

2. For n ∈ {1, ..., N}:

(a) Draw topic assignment Zd,n|θd from Mult(θd)

(b) Draw word Wd,n|{Zd,n, β1:K} from Mult(βZd,n
)

where K is the total number of topics, β1:K defines the word distribution for each of the K
topics that is drawn from the Dirichlet distribution defined by γ, θd is the topic distribution
of document d that is drawn from the Dirichlet distribution defined by α, Zd,n is the chosen
topic for the nth word and is drawn from the multinomial distribution defined by θd, and
Wd,n is the word generated.

CTM has a generative process that is very similar to LDA, except that the topic pro-
portions assigned to each document θd are drawn from the logistic-normal distribution
(obtained by drawing η from multivariate normal distribution N (µ,Σ) and then perform-
ing a logistic transformation on it) which, unlike the LDA model, captures correlations
between topics assigned to documents [Aitchison and Shen, 1980]. CTM assumes that an
N -word document is created with the generative process that is illustrated in Figure 2.2
and is identical to the LDA process shown above, except replacing step 1 with the follow-
ing [Blei and Lafferty, 2007]:

1. Draw ηd|{µ,Σ} from N (µ,Σ) and let θd = exp{ηd}∑
i exp{ηi}

where µ is a K-dimensional mean vector and Σ is a K×K covariance matrix that together
define a multivariate normal distribution N .

Because it can model some dependencies among topics, CTM is more precise in model-
ing topics and generating terms than is LDA. As explained by Blei and Lafferty [Blei and
Lafferty, 2005],
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Figure 2.2: CTM generative model

this limitation [of the LDA model] stems from the independence assumptions
implicit in the Dirichlet distribution on the topic proportions. Under a Dirich-
let, the components of the proportions vector are nearly independent; this leads
to the strong and unrealistic modeling assumption that the presence of one topic
is not correlated with the presence of another.

In addition to CTM, there exist other topic models that generate correlated topics, such
as the discrete infinite logistic-normal distribution model [Paisley et al., 2012], the general-
ized Dirichlet distribution model [Caballero et al., 2012], pachinko allocation model [Li and
McCallum, 2006], and nonparametric pachinko allocation model [Li et al., 2007]. However,
CTM is simpler than the other approaches. There were no publicly available software
implementations of these other models at the time of our analysis, but once they become
available, they are worth consideration.
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Chapter 3

Document Collections

To motivate the design of our proposed index, we evaluate document collections from
two different domains: the New York Times Annotated Corpus (the NYT) [Sandhaus,
2008] and the ACM Digital Library (ACM) [White, 2001]. PubMed is used as a held out
collection for testing purposes only, and we do not analyze it here.

3.1 New York Times Annotated Corpus

The NYT collection includes 1.8 million articles spanning 20 years. The collection has
1 million tags that cover many different facets, such as people, places, companies, and
descriptors, and multiple tags can be assigned to each article. Out of the various types
of tags contained in the collection, we consider only the tags found in the general online
descriptors, which are the ones that correspond to the text found in the articles. Fig-
ure 3.1(NYT) shows a tag assignment for a single document found in the NYT collection.
In our analysis we consider only the major tags, those that have been assigned to at least
200 documents, yielding 1,015 such tags that are applied to 1.5 million documents.

The tagging patterns exhibited by a document collection affect system design choices
and determine whether any of the previously developed OLAP materialization strategies
can be applied. We analyzed the tagging pattern for the NYT using measures adopted
from analyzing tagging patterns in folksonomies such as Delicious [Cattuto et al., 2009].
These measures capture the frequency of tags appearing in the collection, the distribution
of tag counts per document, and the amount of co-occurrence between the 10 most frequent
tags and other tags.
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Figure 3.1: An article from a) NYT with corresponding general online descriptors assigned
to it, and b) ACM with corresponding category and keyword tags assigned to it

a) NYT
Article headline
Stocks drop in Tokyo
General online descriptors
Stock prices and trading volume
Stocks and bonds
Finances
Prices (Fares, Fees and Rates)

b) ACM
Title of article
The complex dynamics of collaborative tagging
Categories and subject descriptors
H.5.3 [Group organisational interfaces]: collaborative computing
I.2.4 [Artificial intelligence]: knowledge representation
Keywords
Tagging Del.icio.us Power laws
Complex systems Emergent semantics Collaborative filtering

The plot of tag frequencies is shown in Figure 3.2(NYT). The frequencies are normalized
by the count of the most popular tag, which happens to be Finances, with a count of 142
thousand documents. At the other end of the spectrum, the least frequent tag (with our
cutoff) has 201 documents. When the tag frequencies are sorted in descending order, the
distribution resembles Zipf’s law.

The number of tags assigned per document is shown in Figure 3.3(NYT). This ranges
from 34% of the documents being assigned just one tag to a few documents having 43 tags,
with 2.7 tags per document on average. Figure 3.4(NYT) shows the amount of document
overlap between each of the 10 most popular tags and all the other tags, with the other tags
shown in descending order by their frequency of co-occurrence. The presence of multiple
tags per document and the high co-occurrence among the tags produce many nonempty
document sets that match the conjunction of multiple tags.

3.2 ACM Digital Library

The much smaller ACM collection contains 66 thousand abstracts of articles organized
with categories, general terms, and keywords. In our analysis we consider the categories
and keywords tags only, since there are only 16 general terms available. Figure 3.1(ACM)
shows an instance of a tag assignment for a single article found in the ACM collection.
Since this collection is so much smaller than the NYT, we include all the tags with at least
five occurrences in our analysis, resulting in 9,098 tags that satisfy this criterion.

The plot of tag frequencies is shown in Figure 3.2(ACM). Again, the tags are normalized
by the count of the most popular tag, which happens to be H.5.2, with a count of 2,144
documents. The least frequent tag with our cutoff has been assigned to five documents.
Just as for the NYT, the distribution of tag frequencies resembles Zipf’s law.
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Figure 3.2: Tag assignment frequency in a) NYT and b) ACM

Figure 3.3: Distribution of the number of tags per document for a) NYT and b) ACM
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Figure 3.4: Tag co-occurrence frequencies for the 10 most frequent tags in a) NYT and b)
ACM

The number of tags assigned per document ranges between 1 and 41, as shown in
Figure 3.3(ACM). The mean number of tags per document is 4.1 (when both keywords
and categories are combined). As was true for the NYT collection, the distribution has a
very wide range, with the majority of documents having fewer than 10 tags. Since there
is a higher mean number of tags per document in the ACM, we expect a larger number of
tag conjunctions to produce nonempty document sets.

Figure 3.4(ACM) shows the proportion of documents that have one of the 10 most
popular tags and some other tags. The shape of the ACM graph is somewhat similar to
that for the NYT, but its magnitude is significantly higher, showing that the ACM tags
are more inter-correlated.

3.3 Deeper Analysis of Tagging Patterns

For additional insight into the tagging patterns exhibited by the NYT and ACM collec-
tions, two more properties are analyzed. The first property refers to the order of tag
co-occurrences, while the second property refers to the similarity between sets in the col-
lections.
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Table 3.1: Number of conjunctions of n tags that contribute to high multi-way co-
occurrence for the NYT and ACM, with threshold limits of 50 for the NYT and 5 for
the ACM.
n 1 2 3 4 5 6 7 8 9 10 11 12 Total

NYT 1,015 16,448 20,905 12,217 5,289 2,401 1,152 493 151 27 2 60,100
ACM 9,098 14,262 5,280 3,860 3,700 3,199 2,390 1,520 776 297 79 13 44,474

3.3.1 Higher Order Tag Co-occurrence

We define a collection to have a high n-way co-occurrence among its tags if the number of
documents having n tags in common is greater than k for many different combinations of
tags. Such document sets are of interest because their document count may be too high
to have the set centroid calculated online, and this measure indicates the dimensionality
of cuboids that need to be materialized in order to answer queries on tags efficiently.

The tag co-occurrence measures we have described for the NYT and ACM collections
show that there is significant correlation among various pairs of tags, but it does not tell
us if there is also high n-way co-occurrence for n > 2. The threshold used for determining
whether an n-way co-occurrence is high should be set to be the size of a document set for
which it would be efficient to calculate a summary online. For our experiments, we have
chosen k = 50, which is quite appropriate for the NYT. However, the ACM is significantly
smaller, and we wish to test how well our approaches scale up; therefore, we have chosen
to use k = 5 for the ACM in order to expose its tagging structure in more detail.

Table 3.1 shows that there are many surprisingly large tag sets where the corresponding
document count is above the threshold. If tags were assigned to each document indepen-
dently of other tags, then the chance that the intersection of more than four tags would
result in a document set of size greater than the threshold would be low. The multi-way
correlation that exists between tags has a big impact on the number of cells that need to
be materialized.

3.3.2 Overlap Between Document Sets

The similarity between two sets of documents Sa and Sb can be quantified by evaluating
the size of their symmetric difference |Sa4Sb|. We consider two sets as similar if |Sa4Sb|
is less than or equal to the predefined threshold k, which is again set to 50 for the NYT
and 5 for the ACM.
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Table 3.2: Percent overlap of cells for given query lengths
NYT

1 2 3 4 5 6 7 8 9 10 11
1 3 1 0 0 0 0 0 0 0 0
2 55 38 34 40 53 63 72 82 100
3 94 90 90 95 99 100 100 100
4 100 100 100 100 100 100 100

ACM
1 2 3 4 5 6 7 8 9 10 11 12

1 5 9 15 16 14 11 9 6 3 1 0
2 71 87 96 98 100 100 100 100 100 100
3 98 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100

Let D be a document collection and let A ⊆ 2D and B ⊆ 2D be sets of document sets.
We define the k-overlap Ok(A,B) between A and B as follows:

Ok(A,B) =
|{Sa ∈ A | ∃Sb ∈ B ∧ |Sa4Sb| < k}|

|A|
(3.1)

By applying Ok(A,B) to pairs of sets reflected in Table 3.1, we can compute the per-
centage of overlap between document sets corresponding to the conjunction of i tags and
document sets corresponding to the conjunction of j tags. This is summarized in Table 3.2,
where the ith column shows the percentage of overlap with sets of size j (j < i) and all
entries are 100 for i > j ≥ 4. Thus, cells corresponding to grouping by five tags or more
have a very high similarity score to cells corresponding to four or fewer tags. Examination
of the tags reveals that often after the first few tags are assigned to a document, additional
tags are semantically similar to ones already present. Like Blei and Lafferty [Blei and
Lafferty, 2005], we hypothesize that the tags assigned to documents reflect the inclusion
of certain topics and that a document covers a limited number of correlated topics. As
more tags are assigned to a document, eventually there will be multiple tags referring to
the same topic.

The high similarity between document sets in a collection can be exploited to reduce
the number of centroids that are materialized.
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3.4 Significance of Tagging Patterns

The analyses of tagging patterns found in the NYT and ACM reveal important challenges
associated with such document collections. First, since there are many popular tags, some
of which are assigned to as many as 140,000 documents, it is infeasible to compute set
centroids for corresponding document sets online. Instead, it is necessary to precompute
the data in order to guarantee satisfactory response times. Second, since many documents
are assigned multiple tags and there is high correlation among the tags, it is reasonable to
expect users to issue queries using tag conjunction. The more tag combinations that can
be meaningfully conjoined, the more possible sets of documents exist about which a user
can enquire. Third, surprisingly many tags can appear in a conjunctive query that yields a
large document set. This leads to the existence of many sets for which centroids need to be
computed; far more than one would expect if tags were assigned randomly. Materializing
centroids for all these combinations is infeasible.

Fortunately, there is a lot of overlap between sets of documents of different query
lengths. Because of this overlap, we can achieve considerable savings in storage cost by
developing a suitable partial materialization strategy that can scale to large document
collections with large numbers of tags. We explore this further in Section 5.3.

3.5 Vocabulary Properties of Collections

As described in Section 2.4.6, there are two approaches to storing the vocabulary (features)
used by the documents in a collection: local and global. With local vocabulary a different
set of features are used for each category, and the features used to describe a document
depend on the categories it belongs to (determined by the tags assigned to it). With global
vocabulary all categories share a common set of features that are used to represent all
documents.

The number of unique terms and their distribution in a document collection affects the
amount of space required for storing centroids of document sets and which vocabulary stor-
age technique will be most appropriate to use for representing the data. Before analyzing
document content in the NYT and ACM collections, we perform standard preprocessing
steps to clean and reduce the size of the vocabulary. As part of the preprocessing we
remove all terms that contain numbers, convert all terms to lower case, remove stop words
(33 terms), apply a Porter Stemmer, and remove all terms with global term frequency
below five.
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Table 3.3: Effect of the number of top k features taken from each tag on the size of global
vocabulary

k Global vocabulary size
Features/Tag NYT ACM

All 238,065 13,015
1,000 127,589 13,001

800 104,290 13,000
500 64,358 13,000
358 46,576 13,000
100 17,128 12,999
50 10,666 12,994
25 6,766 12,960
5 2,479 10,318
2 1,410 5,930
1 867 3,635

After the above five preprocessing steps are applied, 238,065 unique terms remain in the
NYT collection, and 13,015 in the ACM collection. Storing a full vocabulary for document
collections consumes a lot of space and at the same time for any one tag only a small
fraction of the total vocabulary is relevant. The uninformative terms can be removed from
the vocabulary by applying a feature selection technique such as mutual information, and
only keeping the most important terms for each tag. Table 3.3 shows the effect on the size
of global vocabulary of picking the top k features of the sub-collection corresponding to
each tag. For example, keeping the top 500 terms for each tag based on mutual information
results in storing 64,358 terms for the NYT collection, whereas keeping the top term for
each tag in the ACM collection results in storing a global vocabulary of 3,635.1

Since the terms used in the global vocabulary are chosen from tag specific terms, the
majority of them show up as features for only a small number of tags, as the plots in
Figure 3.5 indicate. The plots correspond to the cumulative distribution function of the
proportion of all terms that are found within tag vocabularies in the NYT and ACM
collections. The plot of the NYT uses a vocabulary size of 64,358, and the plot of the
ACM uses a vocabulary size of 3,635. In the NYT collection roughly 80% of terms are

1Often, the same term is picked as a representative for multiple tags, which leads to a smaller than
expected global vocabulary. For example, in the NYT collection the term ‘tax’ is chosen as a representa-
tive feature for seven different tags that include “Taxation”, “Federal Taxes (US)”, “Income Tax”, “Tax
Evasion”, “Tax Credits”, “Sales Tax”, and “Excise Taxes”.
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found in five or fewer tags out of 1,015 available, while in the ACM collection around 80%
of terms are found in fewer than three out of 9,098 available tags. This suggests, that in
both collections, the vocabulary is localized, such that, for different tags there are different
terms that are relevant.

The expressiveness of a shared global vocabulary is examined in Figures 3.6 for the NYT
and 3.7 for the ACM, which show the average number of top k tag specific terms that are
available when a global vocabulary storage technique is used. The global vocabulary for
the NYT consists of 2,479 terms (formed by taking the top 5 tag-specific features from
each of the tags found in the collection) and for the ACM consists of 3,635 terms (formed
by taking the top tag-specific feature from each of the tags found in the collection). The
global vocabulary of the NYT on average contains only 49.3 of the top 100 tag specific
terms (coverage of 49.3%) and 161.7 of the top 500 tag specific terms (coverage of 32.3%),
while the global vocabulary of the ACM on average contains 23.7 of the top 50 tag specific
terms (coverage of 47.4%) and 181.1 of the top 500 tag specific terms (coverage of 36.2%).
From these results, we can conclude, that the global vocabulary representation of the NYT
and ACM collections provides poor coverage of the tag specific features.

3.6 Summary

In this chapter, we examined the tagging patterns found in the NYT and ACM collections,
and we highlighted the challenges of developing an infrastructure that can support efficient
access to summaries over such collections. In Chapter 4, we develop a generative model that
attempts to reproduce and generalize the tagging patterns we have observed in the NYT
and ACM. The observations serve to inform the development of materialization strategies
that support efficient storage and access to summary information for sets of documents
found in the NYT and ACM collections, as well as other collections that contain similar
tagging patterns.

In this chapter, we also examined how the term vocabulary (of text found in the body
of each article) is distributed throughout different tag-defined sets in the NYT and ACM
collections, and we described the challenges of using a shared global vocabulary to support
the storage of rich summaries. In Chapter 6, we develop alternative vocabulary storage
approaches to address these observed challenges.
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Chapter 4

Generative Tagging Model

The motivation for deriving a generative tagging model for the tagging patterns observed
in the NYT and ACM collections is so that we can synthesize document collections with
a wide variety of realistic tagging patterns, on which we can evaluate our materialization
strategies.

With a generative tagging model we can establish a controlled environment for evaluat-
ing the effectiveness of our materialization strategies on multi-tagged document collections
with various properties. This can provide us with a good understanding of the types of
collections that our infrastructure can support. In addition, by having a generative tag-
ging model, against which we have tested our proposed materialization strategies, we can
characterize a class of multi-tagged document collections that can benefit from our work:
Any collection that can be fitted to our proposed generative tagging model and whose
parameters are within our tested range, is a good candidate to benefit from our proposed
materialization strategies.

Thus, building on earlier work [Bi and Cho, 2013, Blei and Lafferty, 2005, Blei and
Lafferty, 2007], we describe a generative tagging model based on correlated topic modeling.
We adapt the technique to generate tags instead of document content and then fit the
model to our two prototypical document collections. Afterwords, the variables of the fitted
model are further generalized by fitting them to appropriate distributions. This allows
us to approximate the resulting tag generation model in place of using the inferred latent
variables from the NYT and ACM directly. The result is a model that allows us to generate
a wide variety of realistic tagged document collections.
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4.1 Algorithm for Tag Generation

Topic models have the simplified view that the text in documents results from terms being
randomly sampled from the topics that are implicitly present in the document. The tag
patterns observed in documents can be viewed as an extension to this model: Instead of
generating terms to include in a document’s content, we wish to generate the document’s
tags. To accomplish this, we need to adapt the text generation algorithm to accommodate
the properties of tags:

1. Tags should be drawn only from topics that have a significant presence (i.e., exceeding
a given threshold F ).

2. Topic models for text assume that each document consists of N words, where N is
large. The number of tags assigned per document is much smaller, varies from docu-
ment to document, and depends on the set of contributing topics for each document.
A document in the NYT has on average 2.7 tags while a document in the ACM has
on average 4.1 tags.

3. Words in the text of a document can occur multiple times, but documents do not
have repeated instances of the same tag assigned to them.

With respect to point 1, the topic distributions generated for individual documents
(θd) when using correlated topic modeling tend to include many topics that are assigned a
non-zero proportion of the probability density function [Caballero et al., 2012]. This is not
problematic when generating words that are to be included in a document’s text content.
However, since tags are assigned to a document only when topics have a significant presence
in the document’s text, we constrain tag generation to derive only from topics that have a
distributional proportion exceeding the threshold value F .

If we did not apply a threshold, the presence of a large number of topics with small
proportions would result in the generation of undesirable tags. For example, if we assume
that a generative model for the ACM collection has 70 topics, then any document generated
with this model has a tag distribution θd that allocates a nonzero value to each of the 70
topics. Typically, when a document is generated, a couple of topics are assigned a large
value while the remaining topics are assigned small nonzero values. However, the CTM
generative model has a tendency of producing ‘small nonzero’ values that are not small
enough and can cause problems in aggregate. For instance, if the generated θd has a
distribution where topic one is assigned a value of 0.4, topic two a value of 0.26, and the
remaining 68 topics a value of 0.005 each. Then with this distribution, there is a very high
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likelihood (34 %) that the generative model will assign to a document an undesirable tag
from one of the 68 topics that are non-representative of the document. By only drawing
from topics that exceed a threshold, we prevent the undesirable tags from being drawn.
We found experimentally that setting the threshold F to 9% performs well in selecting the
‘right amount’ of contributing topics.

Elaborating on point 2, the number of tags in documents in both the ACM and NYT
collections is fairly small, but varies widely. We hypothesize that the number of tags
assigned to a document depends on both the number of contributing topics found in the
text and which specific topics contribute to the tagging. We model this observation by
drawing a tag count for each of the significant topics present in the document and then
aggregating all the individual counts as is formally defined in Algorithm 1. Since, in our
model, the number of tags assigned to a document depends on the number of contributing
topics, it was necessary to have the threshold F set appropriately (which was determined
by tweaking the F parameter until the generative model produced a total tag count for the
synthetic collection that matched the total number of tags found in the original collection).

Algorithm 1 Get tag count for document

Input: Filtered topic distribution θd; Tag count distribution τt for each potential topic
Returns: Tag count
N = 0
for all t ∈ θd with non-zero proportion assigned do

Draw c from Mult(τt)
N = N + c

end for
return N

For the third point above, it is straightforward to avoid repeating tags by merely sam-
pling for terms without replacement. Note that in our approach, we do not generate a
text first and then choose words from that text to serve as tags. Rather we generate tags
directly from the model. As a result, because the terms available in the vocabulary of tags
are discriminatory, there is no need to rely on inverse document frequency to eliminate
common terms.

Algorithm 2 formally describes tag generation. For the correlated topic model (CTM),
the topic simplex S, from which a topic distribution is chosen, is derived from a logistic–
normal distribution (Fig. 2.2). (If the latent Dirichlet allocation model were to be used
instead, the simplex S would have a Dirichlet distribution.)
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Algorithm 2 Tag generation algorithm

Input: Topic simplex S over K topics; Topic threshold F ; Collection size D; Tag
distribution for topics β = {β1, ..., βK}; Tag count distribution for topics τ = {τ1, ..., τK}
Returns: Set of assigned tags for each document
Document set D ← ∅
for d ∈ 1..D do

Draw topic distribution θd from S
for all t ∈ θd do

θ[t]← (θd[t] > F ) ? θd[t] : 0
end for
θ ← θ/

∑
θ[t]

Tag count Nd ← getTagCountForDocument(θ, τ)
Tag set Td ← ∅
for n ∈ 1..Nd do

Draw topic Z from Mult(θ)
Draw tag W from Mult(βZ) without replacement
Td ← Td ∪ {W}

end for
D ← D ∪ {Td}

end for
return D
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4.2 Fitting the Generative Model

The generative model is instantiated by fixing the following parameters: the probability
distribution of the K topics P (Topic) captured by µ and the pairwise topic covariance ma-
trix Σ, the probability distribution of tags in each of the K topics P (Tag|Topic) captured
by βk, and the tag count per document distribution P (Tag Count|Document) captured by
the topic filter threshold F and the tag count per topic distribution P (Tag Count|Topic)
represented by τk.

We fit the CTM1 generative model against the NYT and ACM collections and then
evaluate how well the learned model can mimic the tagging behavior found in the two
collections. Due to the cost of training topic models with CTM and its inability to handle
very large collections [Caballero et al., 2012], only a subset of the ACM and NYT collections
are used for training and validation purposes. For the NYT collection we have taken a
uniform sample of 10% of the original collection for analysis and a model with 30 topics
learned based on half of that data (5% of original collection) and validated on the other
half. For the ACM we used 20% of the collection to generate a model with 70 topics,
again learning and validating on disjoint halves of that sample. For both collections, the
number of topics for the generative model was chosen by examining generative models
with a wide range of topic counts and selecting the model that generated tagging patterns
with high order of co-occurrence among the tags and had a high likelihood of generating
tagging patterns observed in held out documents. For the ACM collection we examined
generative tagging models with topic counts ranging between 45 and 150, while for the
NYT collection we examined generative tagging models with topic counts ranging between
20 and 30. Since Paisley et al. [Paisley et al., 2012] also considered 30 topics in their
analysis of the NYT, it suggests that our choice of the topic count to use for our NYT
generative tagging model is reasonable. Our goal is to have a generative tagging model that
creates complex tagging patterns with high order of co-occurrence, and not to identify the
most accurate and intuitive topics for the collection, and so, picking an optimal number
of topics is not critical to our work. The other parameters used for fitting the two models
are specified in Table 4.1.

4.3 View of the Inferred Topics

The distributions of topic means for the generative models learned for the NYT and ACM
collections are shown in Figures 4.1 and 4.2 respectively, and the corresponding topic

1We use the CTM implementation provided by Blei at http://www.cs.princeton.edu/˜blei/ctm-c/.
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Table 4.1: Setting parameters for CTM
Parameter CTM Value

em max iter 500
var max iter 500
cg max iter 500
em convergence 10−4

var convergence 10−6

cg convergence 10−5

covariance estimate mle

correlation matrices are shown in Figure 4.3 for the NYT and Figure 4.4 for the ACM. In the
correlation matrices, the green colour corresponds to positive correlations, the red colour to
negative correlations, and the size of the boxes to the strength of correlation. In Figure 4.5
we show the correlation matrix for 30 topics in the NYT collection inferred from text as
was observed by Paisley et al. [Paisley et al., 2012]. (The two NYT correlation matrices
were derived from different subsets of the NYT collection.) The correlations between the 30
topics inferred from tags in the NYT are significantly weaker than the correlations between
the top 30 topics inferred from text. Since each document has many fewer tags than words
in its text, it is reasonable to see weaker correlations for topics inferred from tags. We
do not see this discrepancy as a problem with the modeling because the topics that were
identified with a higher correlation had a semantic relationship between their tags, and the
tags that belonged to topics with higher correlation co-occurred together more frequently
than tags that came from less correlated topics. So, although the effects of correlation
were much weaker in the tag generative model, they were still present. Furthermore, by
manipulating the correlation matrix, we were able to control the frequency of co-occurrence
among tags that come from correlated topics in a predictable way, which makes us believe
that the model is working appropriately. For example, in Table 4.9 we compare the effect
of using different correlation matrices on the tagging patterns generated by the generative
tagging models. We compared a generative model that uses an identity matrix as the
correlation matrix (S2) against a generative model that uses the correlation matrix from
the learned ACM model (Figure 4.4) that was boosted by multiplying all correlations by 3
(S5). As is demonstrated by S5, when there exist strong correlations among topics, more
tags will co-occur with each other.

In Table 4.2 we show two pairs of correlated topics that were inferred by the CTM for
the NYT collection, and in Table 4.3 we shows two pairs of correlated topics that were
inferred for the ACM. For each tag we show the probability of the tag being generated by
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Figure 4.1: Topic distribution in the CTM model of the NYT with 30 topics
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Figure 4.2: Topic distribution in the CTM model of the ACM with 70 topics
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Topic correlation Matrix in the NYT CTM30 Simplex

Figure 4.3: Topic correlation matrix for 30 topics in the NYT inferred from tags
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Topic correlation Matrix in ACM CTM70 Simplex

Figure 4.4: Topic correlation matrix for 70 topics in the ACM inferred from tags
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Topic 1: campaign, democratic, candidate, republican, election, voter, political, presidential, vote, party
Topic 2: game, victory, second, score, third, win, team, play, season, lose
Topic 3: president, executive, chief, vice, name, director, advertising, chairman, senior, company
Topic 4: team, player, season, coach, game, play, football, league, contract, sign
Topic 5: add, heat, pound, cup, oil, minute, water, large, dry, serve
Topic 6: building, build, house, space, site, project, construction, area, foot, plan
Topic 7: drug, patient, treatment, study, disease, risk, health, treat, cancer, cause
Topic 8: economy, economic, percent, growth, increase, government, states, economist, price, rate
Topic 9: police, officer, arrest, man, charge, yesterday, official, crime, drug, release
Topic 10: share, company, stock, buy, percent, investment, acquire, sell, investor, firm
Topic 11: budget, tax, cut, increase, taxis, state, plan, propose, reduce, pay
Topic 12: shot, point, play, game, hit, ball, night, shoot, player, put
Topic 13: computer, internet, information, site, technology, system, software, online, user, program
Topic 14: art, artist, museum, exhibition, painting, collection, gallery, design, display, sculpture
Topic 15: government, political, country, international, leader, soviet, minister, states, foreign, state
Topic 16: book, story, write, novel, author, life, woman, writer, storey, character
Topic 17: attack, kill, soldier, bomb, bombing, area, official, report, group, southern
Topic 18: song, sing, band, pop, rock, audience, singer, voice, record, album
Topic 19: market, stock, price, fall, trading, dollar, investor, trade, rise, index
Topic 20: trial, lawyer, charge, prosecutor, case, jury, guilty, prison, sentence, judge
Topic 21: play, movie, film, star, actor, character, theater, role, cast, production
Topic 22: dance, stage, perform, dancer, company, production, present, costume, theater, performance
Topic 23: peace, israeli, palestinian, talk, palestinians, territory, arab, leader, visit, settlement
Topic 24: guy, thing, lot, play, feel, kind, game, really, little, catch
Topic 25: science, theory, scientific, research, human, suggest, evidence, fact, point, question
Topic 26: court, law, state, legal, judge, rule, case, decision, appeal, lawyer
Topic 27: image, photograph, picture, view, photographer, subject, figure, paint, portrait, scene
Topic 28: report, official, member, commission, committee, staff, agency, panel, investigate, release
Topic 29: wine, restaurant, food, menu, price, dish, serve, meal, chicken, dining
Topic 30: graduate, marry, father, degree, receive, ceremony, wedding, daughter, son, president

Fig 4. New York Times: The ten most probable words from the 30 most popular topics. At top are the positive and
negative correlation coefficients for these topics calculated by taking the dot product of the topic locations, `Tk `k′

(separated for clarity).

topics chosen at random; these are also shown as a function of the number of documents seen.
In general, these plots indicate that the parameters are far along in the process of converging to
a local optimum after just one pass through the entire corpus. Also shown in Figure 10 is the

empirical word count per topic (that is, the values
∑

m,n I(C
(m)
n = k) as a function of k) after

the final iteration of the first pass through the data. We see that the model learns approximately

Figure 4.5: Topic correlation matrix for 30 topics in the NYT inferred from text along with
the ten most probable words for each topic
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the topic. The results appear to be intuitively acceptable.

4.4 Evaluating the Topic Model

We hypothesize that a good set of topics has been inferred when there is coherence among
the top-K tags in each topic (tags are associated with a single overarching semantic con-
cept) and the tag distributions between topics are dissimilar (i.e., there is little redundancy
between topics).

4.4.1 Measuring Topic Coherence

In the ACM collection the category tags contain a coding scheme that is composed of
a letter followed by one or two numbers (e.g., H.1.3), which together identify the tags’
location in a hierarchical tree. Recall that we ignored this hierarchical structure when we
created our learned topic model. Nevertheless, we hypothesize that tags located close to
each other in the category tree tend to be more similar to each other than those that are
far, and if many similar tags appear together in the same topic, the topic will be coherent.
We define the similarity of two hierarchical tags σ(t1, t2) as the length of the common prefix
for those tags. For example, H.1.2 has similarity score 3 with itself, similarity score 2 with
H.1.3, and similarity score 0 with A.1.2. Topic coherence can then be calculated using
Equation 4.1.

C(C) =
1

|C|
∑

Ti∈C

1(|Ti|
2

)
∑

t1,t2∈Ti
t1<t2

P (t1|Ti)P (t2|Ti)σ(t1, t2) (4.1)

where C is a collection of topics, each topic Ti is composed of a distribution of category tags
t, and P (t|T ) is the probability of category tag t appearing in topic T . Higher scores imply
that the topics in the collection have more related category tags, which is expected of good
topic assignments. Since keyword tags found in the ACM do not have any hierarchical
data, they do not contribute towards the topic coherence score. Thus, the topic coherence
score is calculated from a modified set of topics which had all the keyword tags removed
from their distributions and were renormalized.

Table 4.4 shows that topics inferred for the ACM with correlated topic modeling have
higher category similarity scores than topics that are generated through a random process
of assigning each of the tags found in documents to a random topic. This suggests that
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Table 4.2: Sample of correlated topics and their top-k tags for the NYT
Topic 11 Topic 17

Tag % Tag %
Murders and Attempted Murders 18.5 Crime and Criminals 23.6
Blacks 14.7 Demonstrations and Riots 8.8
Police 11.7 Sex Crimes 6.5
Drug Abuse and Traffic 9.1 Freedom and Human Rights 5.2
Transit Systems 5.7 Christians and Christianity 4.5
Robberies and Thefts 5.2 Prisons and Prisoners 4.1
Assaults 3.6 Sentences (Criminal) 4.0
Police Brutality and Misconduct 3.5 Child Abuse and Neglect 3.6
Subways 3.3 Religion and Churches 2.8
Violence 3.2 Fines (Penalties) 2.5

Sum 78.6 Sum 65.6
Topic 4 Topic 16

Tag % Tag %
Prices (Fares, Fees and Rates) 35.0 Finances 42.8
International Trade and World Market 15.0 Mergers, Acquisitions and Divestitures 10.7
Sales 13.3 Stocks and Bonds 10.6
Currency 8.5 Credit 3.6
Ratings and Rating Systems 6.4 Frauds and Swindling 3.4
Records and Achievements 5.9 Banks and Banking 2.9
Auctions 5.8 Futures and Options Trading 2.2
Small Business 1.7 Government Bonds 2.1
Discount Selling 1.5 Bankruptcies 1.9
Coffee 1.1 Executives and Management 1.7

Sum 94.2 Sum 81.9
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Table 4.3: Sample of correlated topics and their top-k tags for the ACM
Topic 10 Topic 23

Tag % Tag %
machine learning 5.7 I.2.6: 12.3
genetic programming 5.3 G.1.6:Global optimization 5.5
J.6:Computer-aided
design (CAD) 5.0 I.2.8: 4.6
genetic algorithm 3.7 evolutionary algorithms 4.0
I.2.8:Heuristic methods 3.2 F.2.1: 3.9
I.2.2:Program synthesis 3.2 I.2.8:Heuristic methods 3.6
I.2.6:Concept learning 2.6 evolutionary computation 3.5
I.2.8:Plan execution,
formation, and generation 2.2 multi-objective optimization 3.1
heuristics 1.8 G.3:Probabilistic algorithms

(including Monte Carlo) 3.1
I.2.6:Induction 1.7 genetic algorithms 2.8

Sum 34.5 Sum 46.5
Topic 18 Topic 52

Tag % Tag %
C.2.1:Wireless communication 50.8 wireless sensor networks 18.8
C.2.1:Network communications 9.7 C.2.2:Routing protocols 15.3
C.2.3: 6.6 C.2.1:Network topology 13.3
wireless ad hoc networks 3.9 adaptation 11.0
OFDM 3.1 performance evaluation 7.1
cognitive radio 2.2 C.2.2:Protocol verification 3.3
rate control 1.7 topology control 2.8
medium access control 1.3 congestion control 2.8
capacity 1.3 broadcast 2.4
ad hoc networking 0.9 data collection 1.9

Sum 81.5 Sum 78.8
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Table 4.4: Category similarity score comparison for topics generated using the CTM, and
randomly generated topics on the ACM

Category quality score (C)
Topic count CTM Random

ACM 70 0.1380 0.0525

the ACM collection does have some coherent latent topics into which the CTM is grouping
the tags. (A similar analysis could not be performed on the NYT collection since it does
not have hierarchical tags.)

4.4.2 Measuring Topic Separation

The distance between topic distributions can be evaluated using the Jensen-Shannon mea-
sure [Lee, 1999] described in Equation 4.2. We consider both the average Jensen-Shannon
distance between all pairs of topics (Equation 4.3) and average minimum Jensen-Shannon
distance (Equation 4.4). Table 4.5 summarizes topic distances of topics produced by the
CTM generative model and topics that are generated through a random process of assign-
ing each of the tags found in documents to a random topic. In both collections the topics
inferred through the CTM model have greater separation than randomly generated topics,
although the difference for the ACM collection are not as profound as for the NYT. We
hypothesize that since in the ACM collection there are significantly more tags than in the
NYT (9,098 in ACM vs. 1,015 in NYT), it is more likely that the randomly generated
topics will have a higher average distance and average minimum distance from each other.

JS(q, r) =
1

2

[
D(q‖ q+r

2
) +D(r‖ q+r

2
)
]

(4.2)

where

D(q‖r) =
∑

y

q(y) log
q(y)

r(y)

JSavg(T ) =

∑
q,r∈T,r 6=q JS(q, r)

(‖T‖
2

) (4.3)

JSmin(T ) =

∑
q∈T minr∈T,r 6=q(JS(q, r))

|T |
(4.4)
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Table 4.5: Distance between topic distributions generated by the CTM and randomly
CTM Random

Topic count JSavg(T ) JSmin(T ) JSavg(T ) JSmin(T )
NYT 30 0.6501 0.5785 0.0394 0.0372
ACM 70 0.6675 0.5969 0.5421 0.5181

Table 4.6: Likelihood analysis on the generation of test data
Test type Log-likelihood

NYT set of held out documents -14.88
NYT 50% tags replaced by random ones -19.58
NYT 100% tags replaced by random ones -21.96
ACM set of held out documents -28.39
ACM 50% tags replaced by random ones -33.18
ACM 100% tags replaced by random ones -35.80

4.4.3 Evaluating Models’ Ability to Generate Correct Tagging
Patterns

The learned models are evaluated by comparing the likelihood of generating all the tagging
patterns observed in a set of held out documents against the likelihood of generating
the tagging patterns found in sets that had the tags assigned to documents randomly.
Two variants of document sets with random tag assignments are considered. In the first
approach, the original set of held out documents is used, and for each document 50% of
its tags are randomly selected and replaced by a new set of randomly selected tags. In
the second approach, for each document in the original set of held out documents, all the
tags are replaced by a new set of tags that are randomly selected with uniform probability.
We conclude that the models were successfully trained to generate the tagging patterns
that appear in the collections examined: Table 4.6 shows that the model is more likely to
generate the tagging pattern observed in the held out documents than the tagging patterns
that result from adding noise.

4.5 Properties of Tags Generated by the Models

The learned models were used to generate tag assignments, which were then compared to
the original collections, with respect to the properties described in Chapter 3:

57



Figure 4.6: Tag assignments in generated vs. original collections a) NYT and b) ACM

1. the tag frequency distribution,

2. the tag count per document distribution,

3. the pairwise tag co-occurrence patterns,

4. the distribution of higher-order tag co-occurrence, and

5. the number of distinct tag sets with large amount of similarity.

Due to the large size of the NYT collection, tags for a smaller collection—10% of size of the
NYT—were generated, and, similarly to the ACM, the threshold limit for online document
aggregation is assumed to be 5 instead of 50 (the value for the whole NYT collection).

Figure 4.6 overlays the normalized tag frequency distributions observed in the original
collections (Figure 3.2) with that of the learned model, showing that it tracks the original
distribution fairly closely for all but the least frequent tags. The learned model has a bias
towards selecting the popular tags for assignment to documents, which in turn leads to
some of the less popular tags not being assigned to any documents. For the NYT collection,
out of 1,015 available tags, the generative model only assigned the 744 most popular tags
to the generated documents. While for the ACM collection, out of 6,109 available tags,
the generative model only assigned the 4,890 tags. (The ACM generative model is capable
of only generating 6,109 tags because only that many tags were observed in the training
set of the generative model.)
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Figure 4.7: Distribution of the number of tags for synthetic tag assignment generated using
CTM for a) NYT and b) ACM

The tag count per document distributions observed in the original sampled collections
(Figure 3.3) can be compared to the distributions in the learned model (Figure 4.7). The
learned model of the NYT has the mean tag counts per document close to the original
sampled collection and the general shapes of the curves are similar. For the learned model
of the ACM, the mean tag counts per document are close to the original sampled collection
but the shape of the curve differs. However, a similar distribution shape can be achieved by
reducing the threshold F , at the expense of increasing the mean tag count per document.
All the observed distributions of tag count per document resemble the zero-truncated
Poisson distribution.

Comparing the pairwise tag co-occurrence observed in the original sampled collections
(Figure 3.4) to those for the learned model (Figure 4.8), shows that the top tags co-occur
with many other tags and apparently resemble a Zipf-like distribution.

The amount of higher order tag co-occurrence is shown in Table 4.7 (which repeats the
ACM data from Table 3.1 for convenience). The learned model includes many documents
that have many tags in common, although the sets of shared common tags do not grow as
large as in the original collections, especially for the ACM-Model.

Similarity among document sets in the NYT and ACM (Table 3.2) can be compared
to the corresponding generated collection (Table 4.8). Although, there is some similarity
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Figure 4.8: Tag to tag co-occurrence graph of the 10 most frequent tags for synthetic
collection generated by CTM in a) NYT and b) ACM

Table 4.7: Number of conjunctions of n tags that contribute to high multi-way co-
occurrence (with threshold limit 5)

1 2 3 4 5 6 7 8 9 10 11 12 Total
NYT Fragment 1,015 18,657 26,199 16,995 7,733 3,423 1,757 951 423 130 24 2 77,309

Model 744 15,795 18,524 7,244 1,646 310 62 11 1 44,337
ACM Original 9,098 14,262 5,280 3,860 3,700 3,199 2,390 1,520 776 297 79 13 44,474

Model 4,890 15,675 2,836 213 7 23,621
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Table 4.8: Percentage overlap of cells corresponding to two different query lengths using
Ok(A,B) in the a) NYT-Model and b) ACM-Model

NYT-Model
1 2 3 4 5 6 7 8 9

1 0 0 2 8 27 58 82 100
2 20 12 27 56 81 91 100
3 70 54 73 87 91 100
4 96 94 95 100 100

ACM-Model
1 2 3 4 5

1 0 0 0 0
2 16 2 0
3 76 71
4 100

observed between different tag intersection levels in the synthetic collections, it is not as
profound as in the original collections, especially for the ACM-Model.

In the development of the generative tagging models, our goal was not to create perfect
generative models for the NYT and ACM collections, but rather to create a generative
tagging model that produces synthetic collections that exhibit realistic tag assignment
patterns. As a result, the various differences between the generated tag assignment patterns
and the tag assignments found in original collections, do not indicate a failure of the
approach; the tag assignment patterns generated do have many properties that are similar
to those observed in the original data.

4.6 Additional Synthetic Models

The tag distribution β1:K for each of the K topics in both the NYT and ACM collection
is drawn from Dir(γ) and so topics for a synthetic collection can be generated by drawing
from the Dirichlet distribution with an appropriate γ. Higher γ values will result in tag
distributions where many tags have similarly low probability of occurrence, which will
result in little co-occurrence among tags. A low γ value will generate tag distributions
that have few dominant tags with high probability, which will produce a large amount of
tag co-occurrence among the popular tags.
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An instance of a document collection is analogous to an instance of a document: just as
each document is assumed to be generated by drawing a topic distribution from a simplex
(with a logistic-normal distribution for the CTM model), a distribution of topic means
µ for a whole document collection can be drawn from a simplex with Dirichlet distribu-
tion Dir(ϕ) (since we do not care about correlation when drawing topic distributions for
collections).

The topic covariance matrix Σ is used to control which topics will be drawn together
when the topic distribution for a document is drawn. When Σ is a diagonal matrix then
the generative model becomes equivalent to Latent Dirichlet Allocation.

In the inferred models for both the NYT and ACM, the tag count distributions are
best approximated by zero-truncated Poisson distributions, as specified by Equation 4.5
where λ varies between 0.01 and 2.27 for the NYT-Model and between 0.06 and 2.86 for
the ACM-Model. The Kolmogorov-Smirnov test was used on top of the observed tag count
distributions for topics found in both the NYT and ACM to evaluate if they were drawn
from zero-truncated Poisson distribution. For the 30 topics found in the NYT, 21 of them
could not be rejected by the Komogorov-Smirnov test; while for the 70 topics in the ACM,
42 of them could not be rejected. In addition, in the original LDA paper by Blei et al.[Blei
et al., 2003], the word count for each document is drawn from Poisson distribution. This
suggests that the approach of choosing the number of tags assigned to a document by
drawing it from a zero-truncated Poisson distribution is reasonable.

Pztp(k, λ) =
λk

(eλ − 1)k!
(4.5)

The variability of the λ parameters defining the tag count per topic distributions in both
collections suggests that the number of tags assigned to a document depends on the topics
it covers.

The distribution of tag counts per topic can be modeled by first taking the set of tags
assigned to each document and determining the most likely source topic for each tag using
Equation 4.7. The identified topics for each document are then aggregated to produce
topic counts per document.

P (topicx|tagy, docz) =
P (tagy|topicx)P (topicx|docz)

P (tagy|docz)
(4.6)

arg max
topicx

P (tagy|topicx)P (topicx|docz) (4.7)

62



By drawing the topic distribution vector µ from Dir(ϕ), tag distribution β for each
topic from Dir(γ), tag count distribution for each topic from Pztp(k, λ), setting a topic
threshold F , and inducing various types of topic correlations, we can generate realistic
synthetic collections with various characteristics. For example, we can reduce the topic
filter threshold to induce more topics per document and, in turn, generate more tags per
document. We can modify the entries in the topic covariance matrix to increase/decrease
the number of times certain topics co-occur in documents or increase the mean of the tag
counts in the topic distribution to induce more tags per topic and thus more tags per
document. Finally, we can lower the γ parameter that defines the Dirichlet distribution
from which tag distribution for topics is drawn to increase the dominance of the most
popular tags.

By testing our partial materialization techniques (described in Chapter 5) on synthetic
collections generated by the proposed tag generative model, we can observe how robust
the partial materialization techniques are to collections with different characteristics. With
that purpose in mind, we use the parameters specified in Table 4.9 to generate synthetic
collections. At the bottom of the table, we display the resulting effects on tag distributions.

4.7 Conclusions

We developed a generative tagging model that generates tagging patterns that mimic
those observed in the NYT and ACM collections. The synthetic datasets produced by
this generative model are used for evaluating the performance of various materialization
strategies examined in Chapter 5.

For deriving the generative tagging model we used the correlated topic model, which
was able to reproduce the tagging patterns observed in the NYT and ACM collection
reasonably well. We did not focus on deriving a perfect fit of the generative models to the
observed collections but instead aimed at a model that can create a synthetic collection
with the observed properties. Challenges that have been pointed out in the literature
were also observed by us: The biggest one is that many parameters, such as the number
of topics, need to be set for the model before it is fitted. The discrete infinite logistic–
normal distribution model [Paisley et al., 2012] does not require the user to specify the
number of topics, which may make it easier to learn the generative model. The CTM has
a tendency to assign a nonzero proportion to many topics, which is undesired and not a
problem with the generalized Dirichlet distribution [Caballero et al., 2012]. As a result,
it may be worthwhile in the future to investigate how other generative models perform in
reproducing the tagging patterns found in the document collections.
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Table 4.9: Input parameters and resulting tagging patterns for synthetic collections
NYT ACM S1 S2 S3 S4 S5 S6
Model Model

Topic 30 70 30 70
count (K)

Unique 1,015 6,109 1,015 6,109
tag count
Document 145,701 66,041 145,701 66,041

count
Topics’ Inferred Inferred Dirichlet Dirichlet Dirichlet

tag from from (γ = 0.005) (γ = 0.001) (γ = 0.0005)
distrib. NYT ACM
Topic Inferred Inferred Dirichlet
means from from (ϕ = 20)
distrib. NYT ACM
Topic Inferred Inferred No Triple No

covariance from from correlation tag correlation
matrix, NYT ACM correl.

Tag count Inferred Inferred zero trunc. zero trunc. zero trunc. zero trunc.
per topic from from Poisson, λ ∈ Poisson, λ ∈ Poisson, λ ∈ Poisson, λ ∈

NYT ACM [0.01,2.27] [0.06,2.86] [1.06,3.86] [0.06,2.86]
Min. pre- 9% 9% 9% 9% 7% 9%

sence req’d
for tag

Materialization threshold (k=5)
Query NYT ACM S1 S2 S3 S4 S5 S6
length Model Model

1 744 4,890 617 1,532 1,583 1,758 1,669 1,040
2 15,795 15,675 28,020 14,259 21,776 54,204 28,692 16,258
3 18,524 2,836 36,296 6,266 10,759 103,073 49,951 9,606
4 7,244 213 7,196 1,455 2,962 95,189 38,030 2,849
5 1,646 7 540 133 348 51,913 14,127 605
6 310 15 6 12 15,784 2,201 76
7 62 2,895 95 7
8 11 449
9 1 70
10 5

Total 44,337 23,621 72,684 23,651 37,440 325,340 134,765 30,441
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Chapter 5

Partial Materialization

In this chapter, we address the problem of supporting efficient calculation of centroids for
sets of documents defined through Boolean queries over tags in multi-tagged document
collections. We work under the assumption that full materialization is not feasible due
to limited storage space and that users require query results within a fixed amount of
time. To address this problem, we require a partial materialization strategy that can
support high dimensional data with hundred of thousands of dimensions and perform
well on our expected query workload. Since none of the existing approaches satisfy our
requirements, we introduce three novel fine-grained partial materialization strategies. We
demonstrate that our approaches enable efficient storage and retrieval of centroids in multi-
tagged document collections such as the NYT and ACM. The performance of the proposed
partial materialization strategies are evaluated against competing approaches on both real
and synthetic collections to demonstrate their superiority. In Chapter 7, we illustrate how
these strategies for deriving centroids can be incorporated into a faceted browsing system
that addresses the larger problem introduced in Chapter 1.

5.1 Storing Document Member Sets

To support intersection and union operations on cells with overlapping sets of documents,
the IDs of member documents need to be accessible for any given cell. Rather than stor-
ing document membership information for cells, even for those that are materialized, we
store the list of defining tags with each materialized cell and rely on the postings list of
documents for each tag to find the corresponding set of document IDs (Section 1.1.4). By
storing each tag’s postings list as a compressed bitmap with Word-Aligned Hybrid (WAH)
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encoding [Lemire et al., 2010], we require 17.8MB for the NYT collection, which has 1.5
million articles, and 1.7MB for the ACM collection, which has 66 thousand articles. With
such a low memory footprint, it is feasible to have the tag postings lists stored in mem-
ory. Thus, this approach conserves storage space and efficiently supports finding the set of
documents associated with a cell.

5.2 Granularity of Materialization

As part of the materialization process we need to select the data that will be stored.
As explained in Section 2.5, the selection decisions have traditionally been made at the
granularity of whole cuboids. However, one could also make the selection decision at a
finer level of granularity that involve individual cells. We compare the two materialization
approaches and show that by using individual cell materialization instead of full cuboid
materialization, we can save on both the storage cost and the cost of servicing the expected
query workload.

Before describing the two approaches in detail, we first illustrate with the help of
Figure 5.1 which set of data found in a lattice of cuboids for a set of three tags (t1, t2.t3)
will be materialized by each approach. Depending on which queries need to be supported,
the full cuboid materialization strategy will materialize an appropriate subset of cuboids
found in the lattice. For example, all three 2-D cuboids might be materialized to support
all queries that involve two tags, or the 3-D cuboid may be materialized to support all
queries that involve three tags. On the other hand, the individual cell materialization
strategy only materializes the cells that are marked grey.

5.2.1 Full Cuboid Materialization

A d-D cuboid, which can answer all queries that involve the subset of dimensions found
in it, has

∏d
i=1 ni cells, where ni is the number of unique values in dimension i. Since

in a multidimensional schema each tag dimension has only two values (0 and 1), a d-D
cuboid has 2d cells. However, the cell that has all dimensions set to zero (i.e., none of
the tags present) is not required when evaluating queries with at least one positive term
(Section 1.1.2), and so only 2d − 1 cells need be stored.

An example of a 3-D cuboid is shown in the first two columns of Table 5.1a. The cuboid
consists of seven cells, one for each assignment of three tags (except for the cell that has
all dimensions set to zero). Although a d-D cuboid can answer all queries involving any
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Figure 5.1: Lattice of cuboids.
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Table 5.1: a) 3-D cuboid for tag set {t1, t2, t3} b) I(T ) for tag set {t1, t2, t3}
Dim Cell Computation
t1 t2 t3 centroid from I(T) cells
1 0 0 Ct1∧¬t2∧¬t3 Ct1 − Ct1∧t2 − Ct1∧t3 + Ct1∧t2∧t3
0 1 0 Ct2∧¬t1∧¬t3 Ct2 − Ct1∧t2 − Ct2∧t3 + Ct1∧t2∧t3
0 0 1 Ct3∧¬t1∧¬t2 Ct3 − Ct2∧t3 − Ct1∧t3 + Ct1∧t2∧t3
1 1 0 Ct1∧t2∧¬t3 Ct1∧t2 − Ct1∧t2∧t3
1 0 1 Ct1∧t3∧¬t2 Ct1∧t3 − Ct1∧t2∧t3
0 1 1 Ct2∧t3∧¬t1 Ct2∧t3 − Ct1∧t2∧t3
1 1 1 Ct1∧t2∧t3 Ct1∧t2∧t3

Dim Cell
t1 t2 t3 centroid Source
1 * * Ct1 1-D cuboid
* 1 * Ct2 1-D cuboid
* * 1 Ct3 1-D cuboid
1 1 * Ct1∧t2 2-D cuboid
1 * 1 Ct1∧t3 2-D cuboid
* 1 1 Ct2∧t3 2-D cuboid
1 1 1 Ct1∧t2∧t3 3-D cuboid

or all of the d tags defining the cuboid, it is optimized to answer queries that include all d
dimensions; if fewer are specified, several cell measures must be aggregated. For example,
Ct1 (the centroid for all documents having tag t1, regardless of whether or not they also
have tags t2 and t3) can be computed as Ct1∧t2∧t3 + Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 + Ct1∧¬t2∧¬t3 ,
which requires accessing four of the 3-D cuboid’s cells. In general, to answer a conjunctive
query involving t tags by using a d-D cuboid defined over d tags with d ≥ t, the set of tags
defining the cuboid must include the set of tags used in the query and 2d−t cells must be
aggregated.

5.2.2 Individual Cell Materialization

Given a tag set T = {t1, . . . , td}, instead of materializing a whole d-D cuboid, this strategy
materializes I(T ), the set of cells corresponding to all conjunctive queries without negation,
which can be defined as follows:

I(T ) = {Xt.alltags | t ∈ (2T − ∅)} (5.1)

where Xt is a cuboid for tag set t and alltags refers to the cell corresponding to all tags
present. Table 5.1b shows the set of cells that will be materialized for T = {t1, t2, t3}. The
source column of the table identifies the cuboid from which the cell is taken.

For |T | = d, this approach materializes 2d − 1 cells, which is equal to the number of
cells in the d-D cuboid. As shown in the last column of Table 5.1a, the set centroids for
any cell in the 3-D cuboid for tag set {t1, t2, t3} can be derived using the set of cells in
I({t1, t2, t3}). In general, similar conversions can be derived by taking advantage of the
inclusion–exclusion principle.
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Table 5.2: Cost of answering simple queries using a materialized t-D cuboid versus the
individual cell materialization strategy

Query Cost
Length Pattern Count t-D cuboid I(T )

1 t1 t 2t−1 1
2 t1 ∧ t2

(
t
2

)
2t−2 1

2 t1 ∧ ¬t2 t(t− 1) 2t−2 2
2 t1 ∨ t2

(
t
2

)
3× 2t−2 3

5.2.3 Query Performance Evaluation

For tag set T , full cuboid materialization and I(T ) both require the same number of cells
to be stored, and both can answer all Boolean queries over T . However, the cost to answer
a query depends on which set of materialized cells the query engine stores. Table 5.2
shows the number of cells that need to be aggregated to compute the answers to all queries
involving one or two of t tags using a t-D cuboid vs. using individual cells included in the
corresponding I(T ). In this table, the column labeled “count” shows how many distinct
queries have the format shown in the column labeled “pattern”; for example, given four
possible tags, there are 12 distinct queries that involve the conjunction of one (positive)
tag and one negated tag; to answer any one of these queries, we need to access four cells
in the cuboid (for every combination of tag presence and absence for the remaining tags),
but only the two cells from I(T ) that correspond to the sets of documents having each tag.

Table 5.3 compares the cost of computing set centroids for all possible 3-tag queries
when relying on a materialized 3-D cuboid against the cost when relying on cells ma-
terialized using I(T ). For three tags, there are seven nonoverlapping sets of documents
(corresponding to the seven cells in the 3-D cuboid) and thus 27 − 1 equivalence classes of
queries. For each class, we found the minimum-length query (one with fewest literals) and,
using these, tabulated the number of queries of each possible length against the cost (num-
ber of cells) needed to answer them under each materialization strategy. The 127 queries
that were used to produce the table are listed in the Appendix. For very short queries, the
query cost is lower when using I(T ) than when using the cuboid, and, importantly, the
difference—as well as the length of query for which I(T ) outperforms the cuboid—becomes
more pronounced as the number of dimensions in the materialized cuboids increases.

To compare query runtime when adopting the full cuboid materialization model against
using the I(T ) model, we design a neutral query workload that has no bias toward any
type of queries: each query includes at most three tags (with repetitions allowed), and
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Table 5.3: Number of minimal queries having given costs and query lengths when using a
3-D cuboid (Cub) or I(T ) strategy

Query length
1 2 3 4 5 6 7 8 9 10

Cost Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T) Cub I(T)
1 3 3 7 1
2 9 6 6 9 3
3 3 15 12 9 15 3 3 5
4 3 3 15 6 4 16 12 3 1 1
5 9 6 9 9 6 3
6 3 3 3 6 1 1 3
7 1 1 6 3 4 1

the frequency of occurrence for each query depends only on its length and is independent
of how many times it requires negation, union, intersection, or a combination of these
operations. Using Table 5.3, Table 5.4 shows the average cost when using the I(T ) and
complete cuboid (C) materialization strategies to answer queries when the query length
probability distribution is uniform, zero truncated Poisson, and geometric. For all but
the uniform distribution (where performance differs by only 10%), I(T ) materialization
outperforms the full cuboid materialization approach, even when all queries involve fewer
than four distinct tags.

Additionally, we evaluated the performance of the two materialization strategies with
a query workload model derived from the analysis of the PubMed query log. Since it was
observed that the ‘NOT’ operator occurred in only 1% of queries, the derived model will not
generate queries that have that operator. This leaves us with 18 queries that it can generate,
which are characterized by the number of ‘AND’ and ‘OR’ operators that they use. The
probability of seeing queries with a ‘AND’ operators and o ‘OR’ operators is calculated from
the probability distribution observed in Figure 1.3 under the assumption of independence
of the two distributions. Table 5.4 shows that I(T ) materialization outperforms complete
cuboid (C) materialization on the resulting generated workload.

Since we expect short queries to be more frequent than long ones, it is advantageous
to use the individual cell materialization strategy.

5.2.4 Storage Performance Evaluation

The choice of materialization strategy affects the storage efficiency of the system, which
can be evaluated by looking either at the amount of storage space necessary to support a
fixed set of queries or at the number of queries that can be answered when a fixed amount
of storage space is used. In this section, the storage efficiency of I(T ) materialization is
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Table 5.4: Average cost of answering query

Prob distribution Average cost
of tag count C I(T)

Uniform 3.7 4.1
Zero truncated Poisson (mean=1) 3.6 1.6
Zero truncated Poisson (mean=2) 3.5 2.3
Zero truncated Poisson (mean=3) 3.4 2.9
Geometric 3.6 1.9
Based on PubMed query log 3.0 1.3

compared to two partial materialization strategies that rely on full cuboid materialization:
thin cube shells and shell fragments.

Thin Cube Shell

The thin cube shell approach, described in Section 2.5.2, relies on materializing all cells
in all cuboids of a prescribed depth. As a result, the number of cuboids, and in turn
the number of cells, that would need to be materialized grows rapidly as the number of
dimensions increases. For a collection with T tags, thin cube shell materialization with
d-dimensional cuboids requires

(|T |
d

)
(2d − 1) cells to be materialized. In contrast, the I(T )

approach that supports all queries up to d tags requires
∑d

i=1

(|T |
d

)
cells to be materialized.

For example, since the NYT uses 1,015 tags, there are
(

1,015
3

)
three-dimensional cuboids,

which corresponds to 1.2×109 cells that would need to be materialized by the thin cube shell
strategy. On the other hand, the I(T ) approach requires 1.7× 108 cells to be materialized,
which is 7 times less. However, for most of those tag combinations there are at most 50
corresponding documents, and often there are none at all. Therefore, there is no need to
materialize all cells with the I(T ) approach or all cuboids with the thin cube shell approach.
With I(T ) materialization, unnecessary cells can be easily pruned, and only 38,368 cells
are required to answer all queries that involve up to three distinct tags and contain more
than 50 documents (which corresponds to the sum of the first three columns in Table 3.1)
or 60,100 cells are required to ensure all the conjunctive queries that produce a result set
above the threshold size can be answered efficiently. On the other hand, the thin cube
shell approach requires 25,010 3-D cuboids to be stored, which corresponds to 175,070 cells
(at 7 cells per cuboid). That is, the thin cube shell approach requires almost three times
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as many cells as the I(T ) approach if the cuboid size is chosen to be 3, and the multiplier
gets larger as the prescribed cuboid size increases.

Shell Fragments

The shell fragment approach, proposed by Li et al. [Li et al., 2004] and described in
Section 2.5.2, relies on materializing all cuboids for each fragment, where the fragments
form a partitioning of the tags. For the NYT’s 1,015 tags, we would need to store 338
fragments corresponding to tag triples and one fragment corresponding to the remaining
tag, which would result in 6,423 cells being stored (at 19 cells per fragment for the triples).
This is 11% of the size needed by the I(T ) storage approach that stores all 60,100 cells
(and can answer all conjunction queries that produce result sets of size greater than 50),
but that design is efficient only for queries including tags that are all found in the same
fragment—at most 338 out of 20,905 tag triples that correspond to document sets larger
than our threshold. When the tags specified in a query are not all found in the same
fragment, the set of fragments that contain all the involved tags need to be intersected to
identify which documents need to be aggregated online, and the response time might be
unacceptable if the number of documents that need to be aggregated is above the threshold.
If we choose to partition by six tags per fragment instead, we will require 111,496 cells
(86% more than what is needed by I(T )), and still at most 170 out of 2,401 important
sextets of tags will appear within a single fragment.

The effectiveness of answering conjunctive queries of various lengths on the NYT and
ACM collections, when relying on shell fragment materialization with fragment sizes of six
and three, are analyzed in Table 5.5. The fragments used are nonoverlapping and chosen
using a greedy heuristic that builds fragments that can answer the longest conjunctions.
In both the NYT and ACM collections only a very small percentage of conjunctions can
be answered using the nonoverlapping shell fragments. Thus, the partial materialization
generated by shell fragments cannot guarantee acceptable performance when tags co-occur
with many other tags and there is a high order of tag co-occurrences, as is true in both
the NYT and ACM collections.

5.3 Partial Materialization Strategies

Because each centroid term vector includes a (sum, count) pair for each of the m most
significant terms found in the document collection (Section 1.1.1), and for our collections
m = 500, the space for storing a single centroid can be as much as 4KB (if uncompressed).
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Table 5.5: Analysis of the number of conjunctive queries producing result sets above the
threshold size that can be answered when 6-D or 3-D shell fragment materialization is used
on a) NYT b) ACM

NYT
Query Unique 6-D shell fragment 3-D shell fragment
length conjunctions Count % Count %

1 1,015 1,015 100.00 1,015 100.00
2 16,448 1,002 6.09 564 3.43
3 20,905 585 2.80 119 0.57
4 12,217 280 2.29 0 0.00
5 5,289 90 1.70 0 0.00
6 2,401 13 0.54 0 0.00
7 1,152 0 0.00 0 0.00
8 493 0 0.00 0 0.00
9 151 0 0.00 0 0.00
10 27 0 0.00 0 0.00
11 2 0 0.00 0 0.00

Total 60,100 2,985 4.97 1,698 2.83
ACM

Query Unique 6-D shell fragment 3-D shell fragment
length conjunctions Count % Count %

1 9,098 9,098 100.00 9,098 100.00
2 14,262 2,006 14.07 1,199 8.41
3 5,280 797 15.09 186 3.52
4 3,860 350 9.07 0 0.00
5 3,700 114 3.08 0 0.00
6 3,199 17 0.53 0 0.00
7 2,390 0 0.00 0 0.00
8 1,520 0 0.00 0 0.00
9 776 0 0.00 0 0.00
10 297 0 0.00 0 0.00
11 79 0 0.00 0 0.00
12 13 0 0.00 0 0.00

Total 44,474 12,382 27.84 10,483 23.57

73



Even if centroids were compressed, they will still require considerable space. Therefore, it
is worthwhile to avoid materializing cells as much as feasible.

To this end, three partial materialization strategies are proposed: threshold materializa-
tion (TM), threshold materialization with ancestors (TMA), and materialization of cluster
centroids (MCC). For each materialization strategy, we give algorithms for choosing the
centroids to materialize and for answering queries using those centroids with appropriate
compensations when a requested cell centroid is not materialized.

5.3.1 Threshold Materialization

Assuming that we can afford to access and aggregate at most k documents when computing
a centroid (Section 1.1.4), we start by precomputing and materializing the centroids for all
conjunctive queries for which the result contains at least k documents. We therefore need
to identify which combinations of tags produce “cells of significant size” after intersection,
as enumerated for Table 3.1. Algorithm 3 returns a list M of intersection cells that have
more than k member documents.

Algorithm 3 TM: Find cells exceeding threshold filter

Input: Threshold k; Tags T = {(ti, ti → S{ti})}
Returns: Set of (candidate) cells with their centroids
M ← ∅, u← ∅
L← u.augmentSet(T ) . start with a list of tag sets of size 1

while |L| > 0 do
u← L.dequeue()
if |Su| > k then . include augmented tag sets that represent more than k documents

M ←M ∪ {(u,Cu)}
L.enqueue(u.augmentSet(T )) . ... and continue to check supersets of u

end if
end while
return M

The algorithm is based on the simple observation that including additional tags in a
conjunctive query cannot increase the number of documents in the resulting intersection. It
starts with all possible single tags, which correspond to 1-D cells, and the set of documents
associated with each tag. Using the method augmentSet(), it then repeatedly includes one
more tag in the conjunction. (The method returns a list of sets, each augmenting the base
set with one tag not already included in that base. To avoid repeated consideration, only
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tags that have a higher index than the maximum tag index in set u are included in the
list of sets returned by u.augmentSet(T ).) The tag sets (together with their corresponding
document sets) that have more than k documents and therefore require further exploration
are kept in a queue L. Each time the number of documents in a cell exceeds the threshold
k, it is included in the result set, the intersections with each remaining tag is computed,
and the resulting augmented tag sets are enqueued on L for further consideration. The
algorithm continues to examine cells with more and more intersecting tags until no further
candidates have more than k documents.

Given this partial materialization, the following steps are performed to evaluate a query:

1. Transform the query into an equivalent representationR using the inclusion–exclusion
principle.

2. For each resulting conjunction, check if the corresponding cell has been materialized
and, if so, retrieve the centroid measure.

3. For each of the nonmaterialized conjunctions:

(a) determine the set of documents in the intersection (merge the tags’ postings
lists);

(b) retrieve and aggregate the document term vectors to generate the corresponding
centroid measure.

4. Combine the centroid measures in accordance with R.

5.3.2 Threshold Materialization with Ancestors

Table 3.2 shows that the set of documents found by intersecting a set of tags G is often
equal to or very similar to the set found by intersecting tags in G′ ⊂ G. With this insight,
we extend Algorithm 3 to include the additional materialization constraint that the size
of the symmetric difference between each cell and its closest materialized ancestor must
be greater than k. This materialization approach, described by Algorithm 4, is designed
to take advantage of the similarity between cells that involve similar tags. (The method
M.getClosestAncestor(u) retrieves the closest materialized ancestor for u as measured by
symmetric difference.) Notice, however, that even if a cell is not materialized because
it is similar to a materialized ancestor, some of its descendant cells might still require
materialization; in this respect, the approach uses a greedy algorithm rather than finding
the optimal set of cells to materialize. Nevertheless, for collections with a large amount of
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co-occurrence between tags, this approach will provide significant storage savings, and for
collections with very little similarity, it will perform like the TM algorithm.

An additional lookup table is stored for this strategy, where for each nonmaterialized
cell c having more than k documents, we store a pointer to the closest materialized ancestor
a. Although this requires a small amount of space, it is far less than what is required to
store a centroid.

Algorithm 4 TMA: Find cells exceeding threshold filter given materialized ancestors

Input: Threshold k; Tags T = {(ti, ti → S{ti})}
Returns: Set of cells with their centroids
M ← ∅, u← ∅
L← u.augmentSet(T )
while |L| > 0 do

u← L.dequeue()
if |Su| > k then . centroid might need to be materialized

a←M.getClosestAncestor(u)
if |Sa4Su| > k then . ... but not if the document set is sufficiently close to an ancestor

M ←M ∪ {(u,Cu)}
else

M ←M ∪ {(u, ∗a)} . ... (in which case, just point at that ancestor)

end if
L.enqueue(u.augmentSet(T ))

end if
end while
return M

The following steps are now required to evaluate a query:

1. Transform the query into an equivalent representationR using the inclusion–exclusion
principle.

2. For each resulting conjunction, check if it has been materialized and, if so, retrieve
the centroid measure.

3. For each of the nonmaterialized conjunctions:

(a) determine Sc, the set of documents in the intersection (merge postings lists for
the given tags);
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(b) if |Sc| ≤ k, retrieve and aggregate the document term vectors to generate the
corresponding centroid measure.

(c) if |Sc| > k:

i. retrieve document member set S∗a;

ii. retrieve and aggregate the document term vectors in set S∗a − Sc and call
the result δC;

iii. compute the centroid measure to be the value C∗a − δC.

4. Combine the centroid measures in accordance with R.

5.3.3 Materialization of Cluster Centroids

A third approach is to compute centroids for carefully selected document sets that do
not necessarily correspond to cells in the data cube. Instead of depending on the closest
materialized ancestor to provide an approximate centroid, it stores centroid measures of
sets that do not correspond to any specific query but from which a result to a query can
be derived. For document collections with little similarity among cells, this algorithm will
materialize at most as many cells as Algorithm 3.

Algorithm 5 starts by calling the candidateCells() function (returning the sets of docu-
ments for the cells chosen to be materialized by Algorithm 3) to obtain the set M of docu-
ment sets representing cells whose centroids cannot be computed by merely combining at
most k document term vectors. Next, the method closePairs() initializes a priority queue
Q that will contain (ci, cj, δ) triples, ordered by ascending δ, where ci, cj ∈M ∧ ci 6= cj and
δ = |Sci4Scj |. In this method, all child and sibling relationships among pairs of cells are
examined to identify those pairs (ci, cj) that have a low δ. This corresponds to initializing
Q with the following candidate pairs: ci ⊂ cj ∧ |cj| − |ci| = 1 (parent–child relationship)
or |ci| = |cj| ∧ |ci4cj| = 2 (sibling relationship).

The algorithm then applies complete-link clustering [Manning et al., 2008] to find col-
lections of highly overlapping document sets. Unlike traditional hierarchical clustering,
however, we do not care about the order in which clusters are merged, as long as all the
members of each cluster satisfy the complete linkage requirement that they are within a
symmetric distance of 2k from the furthest member in the cluster (which ensures that all
the sets’ centroids can be computed from the cluster centroid by considering at most k
documents). This relaxation in preserving the cluster hierarchy allows an efficient imple-
mentation for large numbers of cells by using a standard union-find algorithm [Sedgewick
and Wayne, 2011]. To accomplish its clustering, the algorithm first invokes the method
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Algorithm 5 MCC: Find clusters for materialization

Input: Threshold k; Tags T = {(ti, ti → S{ti})}
Returns: Set of clusters with their centroids
M ← candidateCells(k, T ) . use Algorithm 3 to identify all sets requiring materialization

Q←M.closePairs() . collect pairs of sets with small symmetric distance

G.initializeClusters(M) . every candidate cell is initially in its own cluster

while |Q| > 0 do
q ← Q.dequeue() . greedily merge clusters using union-find

p1 ← G.getCluster(q.c1)
p2 ← G.getCluster(q.c2)
if p1 6= p2 then

pu ← p1 ∪ p2

if pu.maxDistance() ≤ 2k then . if all pairs are within 2k, merge clusters

G[q.c1].setCluster(pu)
G[q.c2].setCluster(pu)
M ←M − {p1} − {p2}
M ←M ∪ {pu}

end if
end if

end while
return M
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initializeClusters() to generate a disjoint set data structure G, where G[Mi] = Mi, that is
used to track which cells (document sets) are assigned to which clusters (partitions). The
method getCluster() retrieves the partition to which a specified cell belongs, setCluster()
assigns a specified cell to a partition, and p.maxDistance () returns max

ci,cj∈C
(|Sci4Scj |).

Algorithm 5 returns a set of partitions p1, . . . , pn, where each partition pi represents a
cluster of cells S(i,1), . . . , S(i,in) and each S(i,j) corresponds to a conjunction of tags. For
each partition pi, we determine a set of documents Spi , that is, within distance k of each
S(i,j) (which must exist since no two documents in the partition are further than 2k apart).
The term centroid Cpi for this “artificial cell” is then calculated by aggregating together
all the document term vectors found in Spi .

This strategy requires all the Cpi measures to be materialized and the required cell
centroids to be computed based on the closest materialized artificial cell. To accomplish
this, we store a table with four attributes: cell, cluster, docsToAdd, docsToRemove; where
cell corresponds to a cell representing a conjunction of tags, cluster is the centroid for
the partition to which that cell is assigned, docsToAdd is the set of document IDs in the
cell but missing when computing the partition centroid, and docsToRemove is the set of
document IDs included when computing the partition’s centroid but missing from the cell.
The documents in docsToAdd and docsToRemove need to be retrieved and aggregated to
the partition’s centroid measure to determine the centroid for the cell. By construction,
|docsToAdd |+ |docsToRemove| ≤ k.

Thus, at query time the following steps are performed to evaluate a query:

1. Transform the query into the equivalent representationR using the inclusion–exclusion
principle.

2. For each resulting conjunction j, find the cluster centroid measure Cpj from the
cluster reference table.

3. If there is no match, retrieve and aggregate the document term vectors to generate
the corresponding centroid measure.

4. Otherwise, retrieve the documents included in the docsToAdd and docsToRemove
attributes and aggregate them with Cpj .

5. Combine the centroid measures in accordance with R.

79



Table 5.6: Tag assignment to documents.
d1 d2 d3 d4 d5 d6

t1 X X X X X X
t2 X X X X X
t3 X X X X

Table 5.7: Materialized cells for TM, TMA, and MCC materialization strategies.
TM TMA MCC

S1 = {t1} {d1, d2, d3, d4, d5, d6} {d1, d2, d3, d4, d5, d6}
S2 = {t2} {d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
S3 = {t3} {d1, d2, d3, d6} {d1, d2, d3, d6}
S4 = {t1, t2} {d1, d2, d3, d4, d5}
S5 = {t1, t3} {d1, d2, d3, d6}
S6 = {t2, t3} {d1, d2, d3}
S7 = {t1, t2, t3} {d1, d2, d3}

Sa {d1, d2, d3, d4}

5.3.4 Comparative Example of Materialization Strategies

In this section, we demonstrate how the use of different materialization strategies affects
which sets of documents have their centroids materialized, and how these materialized cen-
troids are used to answer queries over tags. For simplicity, we assume a document collection
that consists of six documents: d1, . . . , d6; a set of 3 tags: t1, t2, t3, whose assignment to
documents is specified in Table 5.6; and materialization threshold k = 2.

Table 5.7 shows the document sets for which centroids are stored for each of the three
materialization strategies. The TM approach materializes centroids for all document sets of
size greater than 2 after considering every conjunction of tags, which results in materializing
centroids for seven document sets. With TMA, only three document set centroids are
materialized (corresponding to document sets for single tag queries: t1, t2, and t3), since
the other conjunctions are descendants of them and the size of the symmetric difference
between them and the materialized sets is no more than the threshold 2. With MCC
only a single centroid is materialized (for a set of documents that correspond to no tag
conjunction), from which the centroids of all the conjunctive queries can be derived with
no more than 2 DTVs involved.

Table 5.8 demonstrates how the materialized centroids produced by each of the three
materialization strategies are used to derive a centroid for various conjunctive queries over
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Table 5.8: Answering conjunctive queries with TM, TMA, and MCC materialization strate-
gies.

Query TM TMA MCC
t1 C1 C1 Ca + d5 + d6

t2 C2 C2 Ca + d5

t3 C3 C3 Ca − d4 + d6

t1 ∧ t2 C4 C2 Ca + d5

t1 ∧ t3 C5 C3 Ca − d4 + d6

t2 ∧ t3 C6 C3 − d6 Ca − d4

t1 ∧ t2 ∧ t3 C7 C3 − d6 Ca − d4

tags. Since with the TM strategy the materialized centroids match the document sets
requested by the queries, no further work needs to be performed to produce the required
results. When relying on the TMA and MCC strategies, the centroid for a query answer
is derived by aggregating the centroid of the closest materialized document set with DTVs
from individual documents.

5.4 Performance of Partial Materialization

Our approach to partial materialization was designed to perform well for the tagging pat-
terns we observed in the NYT and ACM. In this section, we show that it indeed does
well for those collections, as well as for the much larger PubMed collection1. The PubMed
corpus consists of 244,553,378 MeSH terms (which we treat as tags) that are assigned to
20,997,401 documents, corresponding to 11.65 tags per document on average. The corpus
identifies 71,690,729 assigned tags as “major,” that is, the topics play a major part in the
associated paper, yielding on average 3.28 major tags per document. PubMed’s average
major tag count per document is between the NYT and ACM; the number of documents
and total number of tags are larger than the NYT, even when considering only the ma-
jor tags; and the depth of tag co-occurrence is shallower than for either of the other two
collections (compare Table 5.9 to Table 3.1).

In the remainder of this section, the performance of the three partial materialization
strategies (TM, TMA, and MCC, which rely on the proposed I(T ) materialization defined
in Section 5.2.2) are compared against six other materialization strategies. Specifically,
we compare them against the shell fragment materialization (SF) with both 3-D and 6-D

1Available at http://mbr.nlm.nih.gov/Download/2014/Data/Full MH SH items.gz.
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Table 5.9: Number of conjunctions of n tags that contribute to high multi-way co-
occurrence for PubMed, with threshold limit of 50.

n 1 2 3 4 5 6 7 8 9 10 11 12 Total
PubMed 114,946 218,596 38,392 7,410 1,305 221 43 5 380,918

cuboids2, thin cube shell materialization (CS) with both 3-D and 6-D cuboids, material-
ization of hierarchical clusters used by Scatter/Gather (SG), and a standard IR approach,
which is equivalent to the strategy with no materialization (NM).

Shell fragments are nonoverlapping, and for the evaluation they are chosen using a
greedy heuristic that builds fragments that can answer the longest conjunctions. Similarly,
thin cube shells were generated by a greedy algorithm tuned to minimize the number of
stored cuboids while ensuring that all conjunctions of less than or equal to a fixed length
can be answered from materialized cuboids. For both the shell fragment and thin cube
approaches, each d-dimensional cuboid records its d dimensions and a centroid measure.
In addition, both approaches also require a mechanism to map tags to the corresponding
dimension column of the cuboid. If there is no cuboid that contains all the tags found in
a query, that query is answered by accessing the postings list of documents with each tag
(as is true when no appropriate centroid is materialized in using any of the strategies).

The LAIR2 [Ke et al., 2009] implementation of Scatter/Gather was designed to support
a browsing interface in which exploration of the collection starts from a root set of document
clusters and then follows various paths offered by the stored cluster hierarchy. To support
this interface, it is necessary to store the hierarchy, as well as the centroid, representative
documents, and most frequent terms for each cluster that corresponds to a node in the
hierarchy. This infrastructure, however, does not provide support for efficient computation
of a centroid for a set of documents that results from a conjunctive tag query, since it
is extremely unlikely that the query result set matches any of the stored document sets
exactly. As a result, Scatter/Gather must revert to online aggregation from the base
documents like standard IR approaches.

The performance of each of the nine strategies is evaluated in terms of the amount of
storage space it consumes and the execution cost of answering queries. Precision is not a
consideration, since all matches are exact, as required by our problem definition.

2For the ACM-Model collection the longest conjunctive queries are of length 5 and so instead of mate-
rializing shell fragments and shell cuboids of size 6, we materialize cuboids of size 5 so that they are not
penalized by storing unnecessary data.
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5.4.1 Storage Cost

Table 5.10 shows the storage space consumed by each of the materialization strategies.
Every strategy, including NM (no materialization), requires postings lists to map from
tags to sets of documents associated with those tags, in order to answer queries that must
rely on the base data (or to compensate for document sets that do not match the stored
centroids exactly when using the I(T ) strategies). Thus the first column reflects the space
for the postings lists alone. The remaining columns show the additional space used by
each algorithm to store the materialized cells and other required supporting data when
a centroid is represented by 500 terms. Figure 5.2 depicts the storage requirement as a
multiplier with respect to the space used by TM.

Table 5.10: Storage cost comparison for materialization strategies (megabytes)

NM TM TMA MCC CS3 CS6 SF3 SF6 SG (range)
NYT 18 248 129 104 686 2,252 42 447 [130, 5,603]
ACM 2 172 97 81 401 2,017 222 3,849 [52, 255]

PubMed 462 1,918 1,812 1,734 6,143 20,644 3,246 49,106 [2,051, 79,888]
NYT-Model 2 171 135 114 674 1,948 20 317 [114, 560]
ACM-Model 2 92 90 77 422 *860 120 *790 [53, 255]

S1 2 280 258 223 1,293 3,251 17 261 [114, 561]
S2 1 91 80 68 400 1,047 38 649 [52, 255]
S3 2 145 123 101 631 1,611 40 672 [52, 255]
S4 2 1,245 775 525 3,206 18,475 45 746 [53, 256]
S5 2 517 390 301 1,655 8,813 42 708 [53, 255]
S6 1 117 90 71 464 1,115 26 440 [52, 254]

* 5-D cuboids used for the ACM-Model for CS6 and SF6

Recall that, in addition to the cluster centroids, MCC must store a cluster reference
table with as many as k document IDs for every cell that would be materialized by TM.
In practice, many fewer IDs need to be stored: The mean number of documents in the
difference between an unmaterialized cell and the corresponding cluster centroid is 8.1 for
the NYT, 0.75 for the ACM, and 4.6 for PubMed; for the NYT-Model it is 0.9, and it
is 0.9 for the ACM-Model; it is similarly low for the other six synthetic collections. As a
result, even with the additional cost of storing the cluster reference table, MCC requires
less space than either TM or TMA.
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Figure 5.2: Space multiplier relative to TM.

The shell fragment strategy using 3-D cuboids consumes less space than other par-
tial materialization strategies for all collections other than the ACM, ACM-Model, and
PubMed, but it exhibits very poor query time performance, as shown in Section 5.4.2.

In order to save clustering time, Scatter/Gather requires space that is proportional to
the collection size but independent of the tag patterns, so it performs relatively well on
small collections with rich tag structures, such as S4. To provide a fair comparison to our
approaches, we applied a similar partial materialization strategy for storing the clusters
in the hierarchy: Only nodes exceeding the predefined size threshold k for each collection
are materialized. As a result, the number of nodes that need to be materialized for Scat-
ter/Gather depends on the form of the dendogram representing the cluster hierarchy: If k
individual documents are always clustered before any two clusters are merged, N

k
clusters

would need to be stored, but in the worst case, the dendogram is essentially linear and
N − k clusters might need to be materialized. The corresponding ranges of space that
bracket the actual space that would be required by Scatter/Gather are shown in the final
column of the Table 5.10. Scatter/Gather does not scale well to very large collections such
as the NYT and PubMed, where for the NYT (at least 25%) more space is required and
for PubMed (at least 18%) more space is required than when using MCC. For the ACM
collection the partially materialized cluster hierarchy for LAIR2 might be competitive in
space with MCC, but when we performed hierarchical clustering on the documents in the
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ACM collection using single linkage and cosine similarity, we found that 208MB would be
required; this is closer to the upper bound of the range than to the lower bound and 2.6
times as much space as required by MCC. We hypothesize that for the other collections the
actual storage space used for LAIR2 would be similarly much higher than the theoretical
lower bound.

In summary, the TM, TMA, and MCC approaches, which rely on individual cell mate-
rialization I(T ), typically require fewer cells to be stored, and thus less storage space, than
alternative approaches, and among these three, the MCC approach is the most storage
efficient.

5.4.2 Query Execution Cost

Table 5.11 and Figure 5.3 show the number of cell accesses required to answer all possible
conjunctive queries having a result that contains more than k documents. The TM and
Scatter/Gather strategies are not included in the table. TM precalculates and materializes
all answers to such queries, and hence its cost is universally 1 (with standard deviation 0).
The Scatter/Gather approach, on the other hand, has similar query time performance for
retrieving centroids of nodes stored in its cluster hierarchy, as would be expected from a
fully materialized solution; however, it was not designed to calculate centroids for document
sets that do not map to any of the nodes found in the hierarchy. Therefore, for almost all
conjunctive queries Scatter/Gather does not have the necessary infrastructure to compute
centroids from its materialized data, and therefore, it must resort to the approach with no
materialization. As a result the mean number of cells accessed per query across all queries
for SG is just marginally less than the figures shown in the NM column of the table.

Since the query time is proportional to the average number of cells that need to be
aggregated, these results represent comparative run times when each centroid is equally
likely to be requested. By design, all three materialization strategies based on individ-
ual cell materialization (TM, TMA, MCC) have a computation cost that is less than the
collection-specific computation threshold k and less than when using thin cube shells or
shell fragments. On the other hand, when no cells are materialized (NM)—when IR is
used alone—or when using Scatter/Gather with or without prematerialization, the com-
putational costs far exceed acceptable response times.

Thus, summarizing space and time, all three I(T ) approaches have excellent query time
performance (low mean and small standard deviation) while consuming generally the least
amount of storage compared to the other materialization techniques. Furthermore, the
three options provide a good space–time tradeoff, with TM being the largest and fastest
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Table 5.11: Mean number of cells aggregated per query (with standard deviations σ)
Collection # Queries TMA MCC CS3 CS6 SF3 SF6 NM

NYT 60,100 4.9σ=9 9.1σ=14 38σ=88 11σ=11 162σ=533 152σ=432 238σ=1461

ACM 44,474 1.4σ=1 1.8σ=1 3.6σ=2 14σ=11 5.9σ=6 5.5σ=6 12σ=37

PubMed 380,918 2.3σ=6 5.6σ=12 4.5σ=17 20σ=9 73σ=123 67σ=114 265σ=964

NYT-Model 44,337 1.4σ=1 1.9σ=1 3.4σ=9 10.3σ=6 17.2σ=47 15.2σ=33 27.7σ=221

ACM-Model 23,621 1.1σ=0 1.9σ=2 2.3σ=1 *9.1σ=4 7.4σ=8 *6.9σ=7 19σ=49

S1 72,684 1.2σ=1 1.9σ=1 2.2σ=3 10.9σ=5 17σ=38 15.2σ=29 25.5σ=163

S2 23,651 1.3σ=1 2.0σ=2 2.3σ=2 14σ=6 11σ=16 8.7σ=12 23σ=75

S3 37,440 1.3σ=1 2.1σ=2 2.4σ=3 13σ=6 11σ=17 9.2σ=13 20σ=69

S4 325,340 1.8σ=1 2.5σ=1 5.5σ=7 7.0σ=5 13σ=23 12σ=19 14σ=44

S5 134,765 1.5σ=1 2.3σ=2 4.3σ=5 8.1σ=5 13σ=21 12σ=19 16σ=51

S6 30,441 1.4σ=1 2.1σ=1 2.7σ=4 13σ=6 12σ=19 8.7σ=12 22σ=83

* 5-D cuboids used for the ACM-Model for both CS6 and SF6

Figure 5.3: Mean number of cells accessed per query.
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Figure 5.4: Space–time tradeoff for I(T ) strategies, where all points are relative to TM. (for
each collection, the upper left point represents MCC and the lower right point represents
TMA)

and MCC being the smallest but slowest for all 11 data collections (see Figure 5.4, where
TM resides at the lower right-hand corner of the graph—at (1.00,1)—for each collection).
Scatter/Gather can be fast, but only if it consumes an unacceptable amount of space for
large collections and only if the query workload is severely restricted to correspond to the
sets of documents that happen to be chosen by the clustering algorithm. Shell fragments
with 3-D cuboids can be space-efficient, but only at the expense of unacceptably slow
execution.

5.5 Conclusions

The focus of this chapter was on developing a partial materialization infrastructure that
supports fast calculation of centroids for sets of documents defined through Boolean queries
over tags in large multi-tagged document collections. We developed a novel materialization
strategy that stores data at the granularity of individual cells instead of full cuboids, the
traditional approach used by competing high dimensional OLAP systems. We have shown
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that by storing data at higher granularity we can achieve a lower storage cost than is
possible with full cuboid materialization, while at the same time providing a lower query
execution cost for expected query workloads. Furthermore, we developed three partial
materialization strategies that work on top of the individual cell materialization and provide
further saving in space. The proposed partial materialization strategies were compared
against competing approaches on a set of three real and eight synthetic collections and
were shown to provide a significant savings in storage and query execution costs.

In this chapter we focused on efficient storage and calculation of the set centroid mea-
sure, which is essential input for deriving a medoid, a larger set of indicative documents, or
a set of indicative terms. The next step is to investigate what is the appropriate vocabulary
that should be stored in each of the centroids such that the derived measures will be of
high quality. After that we will show how these partial materialization strategies can be
used effectively in a faceted browsing system.
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Chapter 6

Dealing with a Diverse Vocabulary

The choice of term vocabulary stored as part of materialization has an impact on both the
amount of storage space that a materialization plan will require and on the contents of the
summary measures produced. In particular, the storage cost of a materialization plan is
directly related to the number of terms used to represent a centroid of a document set. In
the evaluation of the various partial materialization strategies in Chapter 5, the number of
terms stored per centroid was fixed arbitrarily at 500 terms, globally defined for the whole
collection and common to centroids summarizing each of the document sets. However,
using locally-defined vocabularies might improve the computation of centroids and yield
better collections of indicative documents and indicative terms (see Section 2.4.6).

It is important for materialized centroids to contain good coverage of the top k terms
relevant to the specific document set, since the two text centric summary measures that
we are supporting (sub-collection indicative terms and indicative documents) are derived
directly from the stored centroids. The choice of centroid vocabulary has a direct effect
on the indicative terms produced and the set of indicative documents chosen. If the key
terms to a specific document set are missing from the centroid, then the quality of the
indicative terms will be affected since more generic terms will be used as indicative terms
instead, which may be less meaningful and informative. In addition, the documents chosen
as representatives may not be the ones that represent the key concepts to the set. For this
reason it is important for the centroids to store many set-specific terms for each possible
set of documents.

Since the total available global vocabulary for the NYT is 238,065 terms and for the
ACM is 13,015, as indicated in Table 3.3, and the current approach only uses 500 terms
out of that vocabulary to describe the centroids, it is questionable whether this vocabulary
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is rich enough to effectively summarize the sets of documents in the collection. If for
each collection the global vocabulary was instead determined by taking the single most
significant term from each of the 1,015 tags found in the NYT and 9,098 tags found in the
ACM, then, after removing duplicates, a global dictionary consisting of 867 terms would be
required for the NYT and 3,635 terms would be needed for the ACM. However, to obtain
a better coverage of concepts, more than one term would likely need to be contributed by
each tag to the global vocabulary. A more reasonable global vocabulary would be formed
if each tag contributed its top 5 terms to the global vocabulary, which would result in a
global vocabulary of 2,479 for the NYT and 10,318 for the ACM. The relationship between
the size of global vocabulary and the number of top k terms contributed by each tag was
shown in Table 3.3.

However, having a larger global vocabulary can significantly increase the storage cost
of the whole materialization, as can be observed in Table 6.1, where increasing the global
vocabulary in the NYT from 867 to 2,479 (taking the top single feature from each tag vs.
taking the top five features from each tag) results in an increase of the storage cost of the
partial materialization by a factor of 2.5. Increasing the global vocabulary for the ACM
collection from 3,635 to 10,318 (taking the top single feature from each tag vs. taking the
top five features from each tag) results in an increase of the storage cost of the partial
materialization by a factor of 1.6.

Not only is increasing the global vocabulary costly, but the earlier analysis of the term
occurrence distribution in multiple tags in Figure 3.5 shows that most tag informative
terms occur in few tags and the global vocabulary has poor containment of the top k tag
specific terms, as shown in Figure 3.6 for the NYT and Figure 3.7 for the ACM: In the case
of the NYT, on average only 49 out of 100 terms were covered by the global vocabulary,
and for the ACM 24 out of 50 terms were contained. When taking the top 500 terms for
each of the tags in the NYT or ACM collection, on average only 162 terms are covered by
the global vocabulary in the NYT and 181 terms by the global vocabulary in the ACM.
The observed locality of terms and mediocre coverage of the top k tag specific terms raises
questions about the suitability of using a global vocabulary to support document collections
that cover many topics with topic-specific vocabulary.

Thus to ensure that the majority of the top k terms are available for each tag (to
provide good candidate indicative terms for single tag queries), a large global vocabulary
is required, which will consume a large amount of storage. To ensure that the global
vocabulary contains indicative terms for sets of documents corresponding to a multi-tag
query, even more global terms may need to be stored.
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Table 6.1: Storage cost (bold entries reflect parameters that yield similar storage costs for
the three approaches)

Storage approach NYT ACM
No Filtering 171,727,281 10,441,546
Global with 5 terms from each tag 28,083,167 7,420,447
Global with 2 terms from each tag 17,168,627 5,934,915
Global with 1 terms from each tag 11,062,033 4,752,044
Local with 800 terms from each tag 28,174,351 7,394,189
Local with 796 terms from each tag 28,065,827
Local with 500 terms from each tag 19,387,494 5,826,801
Local with 358 terms from each tag 4,753,754
Local with 50 terms from each tag 961,202
Enriched–local with 190 terms from each tag 4,753,285
Enriched–local with 91 terms from each tag 27,993,308

6.1 Alternative Vocabulary Storage Choices

To address the shortcomings of the global vocabulary storage approach, and following the
options available for feature selection, two alternative vocabulary storage approaches are
examined: local and enriched–local vocabulary storage.

6.1.1 Local

The local vocabulary storage approach stores a potentially different set of terms for each
materialized centroid and the number of terms stored per centroid may also vary. For a
materialized centroid CT corresponding to the set of documents ST identified by a con-
junction of tags in set T , the local vocabulary V L

T corresponds to the union of individual
tag vocabularies for the tags found in T as defined in Equation 6.1

V L
T =

⋃

t∈T

Vt (6.1)

where Vt is a vocabulary of an individual tag that stores the top k terms based on mutual
information.

For example, a centroid Cdatabases for a document set Sdatabases corresponding to a sin-
gle tag query “databases” has a local vocabulary V L

databases that uses the top k terms for
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Table 6.2: Ratio of vocabulary size of tags with shared documents vs. randomly chosen
tags in a) NYT (top 500 terms per tag) and b) ACM (top 100 terms per tag).

NYT
Overlapping Random Overlapping

Conjunction Instance Mean Standard Instance Mean Standard vs.
length count ratio dev. count ratio dev. random

1 1,015 1.0 0.00 1,015 1.0 0.00 1.00
2 16,448 1.7 0.14 100,000 1.9 0.07 0.90
3 20,905 2.1 0.21 100,000 2.7 0.13 0.78
4 12,217 2.4 0.26 100,000 3.4 0.18 0.70
5 5,289 2.7 0.31 100,000 4.1 0.22 0.65
6 2,401 3.1 0.31 100,000 4.8 0.27 0.65
7 1,152 3.5 0.24 100,000 5.4 0.30 0.64
8 493 3.8 0.15 100,000 6.0 0.34 0.63
9 151 4.0 0.10 100,000 6.6 0.37 0.61

10 27 4.2 0.08 100,000 7.1 0.40 0.59
11 2 4.4 0.01 100,000 7.7 0.43 0.57

ACM
Overlapping Random Overlapping

Conjunction Instance Mean Standard Instance Mean Standard vs.
length count ratio dev. count ratio dev. random

1 9,098 1.0 0.00 9,098 1.0 0.00 1.00
2 14,262 1.8 0.12 100,000 2.0 0.02 0.91
3 5,280 2.3 0.26 100,000 2.9 0.04 0.78
4 3,860 2.9 0.39 100,000 3.9 0.06 0.75
5 3,700 3.6 0.44 100,000 4.8 0.07 0.75
6 3,199 4.3 0.50 100,000 5.7 0.09 0.75
7 2,390 5.0 0.52 100,000 6.6 0.11 0.76
8 1,520 5.6 0.50 100,000 7.5 0.13 0.75
9 776 6.2 0.45 100,000 8.4 0.14 0.74

10 297 6.8 0.38 100,000 9.2 0.16 0.74
11 79 7.3 0.29 100,000 10.0 0.18 0.73
12 13 7.8 0.17 100,000 10.9 0.20 0.72

that tag, while a centroid Cdatabases∧cloud computing for a query “databases ∧ cloud com-
puting” which is a conjunction of two tags uses local vocabulary V L

databases∧cloud computing
that is composed of the union of the top k terms coming from vocabularies Vdatabases and
Vcloud computing.

Even though the local vocabulary for a conjunction of tags has to store vocabularies
for multiple tags, the increase in vocabulary size is not substantial if the tags involved
have at least several shared documents. This is in contrast to the size of vocabulary that
would result when combining vocabularies for randomly chosen set of tags. Table 6.2 shows
how the vocabulary size of a centroid varies with the number of tags in the conjunction
of tags that have more than the threshold number of shared documents (referred to as
“Overlapping”) and contrasts it to the size of vocabularies for randomly chosen sets of
tags (referred to as “Random”). The “Conjunction length“ column refers to the number
of different tags that are being considered; “Instance count” corresponds to the number
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of tag sets that are considered, for “Overlapping” we consider the same tag sets that
were previously identified in Table 3.1, while for “Random” we consider 100,000 random
combinations of tag sets; the “Mean ratio” column measures the ratio of the size of union
of the vocabularies of chosen tag sets to the size of individual tag vocabulary k and is

expressed as
|⋃t∈T Vt|

k
.

The smaller the “Mean ratio”, the larger the overlap between the vocabularies of the
tags considered. The “Overlapping vs. random” column displays the ratio of these means.
The vocabularies for a set of tags with overlapping documents have a noticeable amount
of shared vocabulary in contrast to when a random set of tags are considered.

In addition, although an increase in the number of tags in the conjunctive queries
results in a larger vocabulary that is available for representing the centroid, in reality only
a small subset of that vocabulary has non-zero values. This is because as more tags are
used in a conjunction, there are fewer remaining documents and their focus is narrowed
down and more specialized. When documents share a large number of tags, this usually
implies that the documents are very similar to each other and in turn are using very similar
vocabularies. As a result, a large portion of the available vocabulary does not appear in
any of the remaining documents and in turn the centroid must store fewer terms with non-
zero values. The centroid storage approach proposed in Section 6.2 allows for an efficient
storage of such centroids.

6.1.2 Enriched–local

The local vocabulary storage approach is designed to provide a rich vocabulary for an-
swering single tag or conjunctive queries, which are expected to be dominant. However,
since users can pose disjunctive queries or have them automatically generated by a sys-
tem through query expansion, the vocabulary available for such queries should also be rich
enough to provide meaningful indicative terms. In order to address this concern we develop
an enriched–local vocabulary storage approach.

The enriched–local vocabulary storage approach is a modification to the local vocab-
ulary storage. For each materialized centroid, in addition to terms stored by the local
vocabulary approach, it stores all the terms that come from the tags that are known to
co-occur with the tags found in the tag conjunction defining the centroid. The set of tags
from which the terms are included for the centroid is derived using Equation 6.3.

N(T ) =
⋂

t∈T

getMaterializedConjuncts(t) (6.2)
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Table 6.3: Co-occurring tags that result in materialized centroids for conjunctions
Tag Co-occurring tag list
t1 t1, t2, t3, t4, t5, t6
t2 t1, t2, t3, t4, t7, t8
t3 t1, t2, t3, t4, t5, t7

Table 6.4: Enriched–local storage vocabularies for various materialized centroids along
with the sets of tag vocabularies used to form them.

Enriched–local vocabulary Set of tag vocabularies used
V E
t1

Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt5 ∪ Vt6
V E
t2

Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt7 ∪ Vt8
V E
t3

Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt5 ∪ Vt7
V E
t1∧t2 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4
V E
t1∧t3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt5
V E
t2∧t3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt7
V E
t1∧t2∧t3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4

V E
T =

⋃

t∈N(T )

Vt (6.3)

where T corresponds to a set of tags used in a conjunction that identifies a materialized
centroid, getMaterializedConjuncts() returns a set of tags that together with tag t have a
materialized conjunction, Vt is vocabulary for tag t.

Given three tags: t1, t2, t3; with tag co-occurrence relationships specified in Table 6.3,
the enriched–local storage materialization strategy would assign to each of the centroids a
vocabulary that is the union of vocabularies for the listed set of tags as shown in Table 6.4.

The use of co-occurring tags and their vocabularies to enrich the vocabularies of ma-
terialized centroids can be problematic when there exist tags that co-occur with many
others. This phenomenon is observed in both the NYT and ACM collection as is shown
in Figure 3.4, where there exist a few tags that co-occur with many other tags. However,
the majority of tags co-occur with only a few tags, and those that co-occur with many
tags have a limited impact on the vocabulary size due to having many common terms
(Table 6.2). As a result, a materialization strategy that uses enriched–local vocabulary
storage is feasible for storing the NYT and ACM collections, as is shown in Table 6.1.
However, the strategy requires that the local vocabulary that is contributed by each tag
be reduced from 358 terms to 190, for the ACM; and from 796 to 91, for the NYT. This
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reduction is necessary to have the enriched–local vocabulary storage consumption aligned
with the other approaches.

6.2 Efficient Storage of Set Centroid

For a set of tags T defining a conjunction, the centroid CT is defined in terms of vocabulary
VT . However, when the size of vocabulary VT is large, it is possible that many of the terms
in CT have a value of zero. Such a situation can occur when using global, local or enriched–
local vocabulary. To avoid wasting unnecessary space storing vocabulary terms with zero
values, we define centroid PT that only stores values for terms present in the centroid. The
terms absent from PT but found in the vocabulary VT have an implicit value of zero. Given
VT and centroid PT , the centroid CT is derived using Equations 6.4 and 6.5.

CT [term].sum =

{
0 if term ∈ VT ∧ term /∈ PT
PT [term].sum if term ∈ PT

(6.4)

CT [term].count =

{
0 if term ∈ VT ∧ term /∈ PT
PT [term].count if term ∈ PT

(6.5)

For the local and enriched–local vocabulary storage techniques, all the vocabularies
for the materialized centroids can be stored as bitmap entries in a database table and
compressed using World-Aligned Hybrid (WAH) encoding [Lemire et al., 2010] to minimize
the consumed space. The zero values for terms in a centroid CT are retrieved by comparing
the terms found in the centroid PT to those stored in the vocabulary table. The PT data
is stored as tables.

6.3 Available Vocabulary for Query Result

As described in Chapter 5, the individual cell materialization strategy I(T) stores a set of
centroids that satisfy Equation 5.1. As a result, when relying on I(T), in order to calculate
a centroid CQ for a query Q, CQ needs to be transformed into an expanded form through
the use of the inclusion–exclusion principle, so that each term in the expanded form satisfies
the ‘alltags ’ constraint. Once the query is in this expanded form, it can be answered by
aggregating the centroid values for all corresponding terms.
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Table 6.5: Transformation steps in a query
Query Transformation

Ct1∧(t2∨t̄3) Original
C(t1∧t2)∨(t1∧t̄3) Disjunctive normal form
Ct1∧t2 + Ct1∧t̄3 − Ct1∧t2∧t̄3 Inclusion–exclusion principle
Ct1∧t2 + (Ct1 − Ct1∧t3)− (Ct1∧t2 − Ct1∧t2∧t3) Negation removal
Ct1 − Ct1∧t3 + Ct1∧t2∧t3 Query in form answerable

by materialization model

Ct1∨t2 Original
Ct1 + Ct2 − Ct1∧t2 Query in form answerable

by materialization model

For example, when given a query t1 ∧ (t2 ∨ t̄3), the centroid Ct1∧(t2∨t̄3) is calculated by
aggregating centroids Ct1 , Ct1∧t3 and Ct1∧t2∧t3 ; when given a query t1∨t2, the centroid Ct1∨t2
is calculated by aggregating centroids Ct1 ,Ct2 ,Ct1∧t2 as shown in Table 6.5. Additional
examples of queries in this expanded form can be found in Table 5.1.

In all three materialization strategies proposed in Chapter 5 (TM, TMA, MCC), only
a subsets of cells are materialized. As a result, some of the centroids are obtained from
materialized cells, while others are derived by aggregating individual DTVs. For example in
the case of TM, only centroids with document count above the materialization threshold are
materialized. Based on this property, queries issued to the system can be classified by the
number of materialized centroids found in their expanded form (that need to be aggregated
to produce a requested centroid). Given a query Q, the resulting centroid CQ is derived
by aggregating centroids found in XQ, where XQ is the set of centroid terms found in
expanded form of CQ after the inclusion–exclusion principle transformation and negation
removal have been applied to CQ. The function M(XQ) returns a set of materialized
centroids found in XQ. If |M(XQ)| = 0, Q is classified as a query with zero materialized
centroids; if |M(XQ)| = 1, Q is classified as a query with one materialized centroid; and if
|M(XQ)| ≥ 2, Q is classified as query with many materialized centroids. These classes are
examined in more detail in the following subsections.

When local or enriched–local vocabulary storage is used, an increase in the number of
materialized centroids that need to be aggregated can result in a reduction of available
vocabulary for representing the derived centroid. This vocabulary reduction is attributed
to the fact that only the shared vocabulary that is found in all materialized centroids can
be used. Meanwhile, each materialized centroid can potentially have a distinct vocabulary,
which can lead to few terms that are found in all materialized centroids. On the other hand,
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since the global vocabulary approach uses a common vocabulary, there are no complications
associated with aggregating multiple materialized centroids.

6.3.1 Zero Materialized Centroids

Given a query Q, the resulting centroid CQ is computed entirely from aggregating the
corresponding set of DTVs found in SQ. Since CQ is calculated fully from the DTVs
which did not have any terms filtered out, its vocabulary VQ has all terms available for
representing the centroid.

6.3.2 One Materialized Centroid

Given a query Q, the resulting centroid CQ is calculated by aggregating the single centroid
Cx ∈ M(XQ) with all DTVs of documents found in XQ −M(XQ) (the non-materialized
centroids) to produce CQ. The use of the materialized centroid Cx in the aggregation
reduces the aggregation cost at the expense of reducing the available vocabulary VQ for
representing CQ, which is set to Vx, where Vx is the vocabulary available to Cx.

For centroid Ct1∧(t2∨t̄3), calculated by aggregating centroids Ct1 , Ct1∧t3 , and Ct1∧t2∧t3 , if
only Ct1 is materialized then the vocabulary Vt1∧(t2∨t̄3) available for representing Ct1∧(t2∨t̄3)

is limited to the vocabulary found in Vt1 . Vocabulary present in DTVs but not in Vt1
is removed to avoid producing incorrect values for these terms in the centroid Ct1∧(t2∨t̄3).
Otherwise, an incorrect value would be assigned to Ct1∧(t2∨t̄3)[w] if there is a document
d ∈ St1 such that ∃w ∈ Vd ∧ w /∈ Vt1 ∧ w ∈ (Vt1∧t3 ∪ Vt1∧t2∧t3).

6.3.3 Many Materialized Centroids

Given a query Q, the resulting centroid CQ is calculated by aggregating all centroids
Cx ∈ M(XQ) with all DTVs of documents found in XQ −M(XQ) (the non-materialized
centroids) to produce CQ. Since there exist multiple centroids in M(XQ), the vocabulary
VQ available for representing CQ is derived by Equation 6.6.

VQ =
⋂

q∈M(XQ)

Vq (6.6)

As an example, in the case of centroid Ct1∧(t2∨t̄3) if all three centroids from which
it is derived are materialized, then the vocabulary Vt1∧(t2∨t̄3) available for representing
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Table 6.6: Set of tag vocabularies available for answering query based on local and
enriched–local storage approach.

Query Aggregation Local storage Enriched–local storage
t1 ∨ t2 Ct1 + Ct2 − Ct1∧t2 Vt1 ∩ Vt2 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4
t1 ∨ t3 Ct1 + Ct3 − Ct1∧t3 Vt1 ∩ Vt3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt5
t2 ∨ t3 Ct2 + Ct3 − Ct2∧t3 Vt2 ∩ Vt3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt7
t1 ∨ t2 ∨ t3 Ct1 + Ct2 + Ct3 − Ct1∧t2 Vt1 ∩ Vt2 ∩ Vt3 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4

−Ct1∧t3 − Ct2∧t3 + Ct1∧t2∧t3
t1 ∧ t̄3 Ct1 − Ct1∧t3 Vt1 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 ∪ Vt5
t1 ∧ (t2 ∨ t̄3) Ct1 − Ct1∧t3 + Ct1∧t2∧t3 Vt1 Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4

Ct1∧(t2∨t̄3) is limited to the vocabulary found in Vt1 ∩ Vt1∧t3 ∩ Vt1∧t2∧t3 . Terms absent from
this vocabulary are removed from centroid Ct1∧(t2∨t̄3) to avoid computing incorrect values
for them.

In a disjunctive query Q, the size of XQ is equal to 2n − 1, where n is the number of
tags in Q. As the size of XQ grows, often the size of M(XQ) grows as well. As the size of
M(XQ) grows, the size of vocabulary VQ can be drastically reduced in size when there is
little shared vocabulary among the Vi ∈M(XQ), since VQ is defined by the intersections of
all vocabularies found in M(XQ). For example, a query t1∨t2∨t3 will have 23−1 centroids
in the expanded form, which implies 0 ≤ |M(Xt1∨t2∨t3)| ≤ 7 and results in a corresponding
number of vocabularies intersected.

When there are multiple materialized centroids in the expanded form on which CQ
relies, there may be a significant difference in the available vocabulary for VQ depending
on whether local vocabulary V L

Q or enriched–local vocabulary V E
Q is used. For example,

given a centroid Ct1∨t2 defined by query t1 ∨ t2, when local vocabulary V L
t1∨t2 is used, the

vocabulary is limited to Vt1 ∩ Vt2 ∩ Vt1∧t2 = Vt1 ∩ Vt2 ∩ (Vt1 ∪ Vt2) = Vt1 ∩ Vt2 . Alternatively,
when enriched–local vocabulary V E

t1∨t2 is used with tag co-occurrences defined in Table 6.3,
the available vocabulary is limited to Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 . As another example, for query
t1∧(t2∨t̄3), the local vocabulary V L

t1∧(t2∨t̄3) is limited to Vt1 , while enriched–local vocabulary

V E
t1∧(t2∨t̄3) is limited to Vt1 ∪ Vt2 ∪ Vt3 ∪ Vt4 .

Additional examples of available vocabularies for various queries when local and enriched–
local vocabularies are used are shown in Table 6.6. The enriched–local vocabulary approach
provides a larger available vocabulary for representing centroids.
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6.4 Incorporating Vocabulary Storage into MCC Par-

tial Materialization

The previously proposed MCC partial materialization strategy was designed on top of a
global vocabulary and did not take into consideration the use of local or enriched–local
vocabulary storage approaches. Below we show how both of these vocabulary storage
approaches can be used with MCC.

6.4.1 Cell Vocabulary

The MCC strategy relies on materialization of centroid CP for each artificial cell P ∈ P,
where P is a set of derived artificial cells. For each cell P there exist a set of JP tag
conjunctions (corresponding to cells identified to have ‘alltags ’) such that for each J ∈ JP ,
the centroid CJ is derived from CP by adding or removing DTVs found in individual
documents. Each J ∈ JP can involve conjunction of different tags and in turn require a
different vocabulary. To ensure that all CJ can be derived from CP , the vocabulary VP
must contain the vocabularies of all VJ as defined in Equation 6.7.

VP =
⋃

J∈JP

VJ (6.7)

Since the materialized centroid CP uses vocabulary VP , VP can be used for all CJ such
that J ∈ JP . Since VJ ⊆ VP for all J ∈ JP , centroid CJ benefits from having a larger
vocabulary as a side effect of satisfying the MCC requirements.

6.4.2 Generating Materialization Plan

In Section 5.3.3, we developed the MCC partial materialization strategy, which relies on
Algorithm 5 to produce a set of partitions P = {P1, ..., Pn}. For each partition P ∈ P,
a set of documents SP that belongs to the partition is determined. For each set SP , the
corresponding centroid CP needs to be calculated and materialized. In this section, we
show how such materialization is performed when using a local vocabulary for representing
each centroid. This is easily extended to support enriched–local vocabularies instead.

The materialization process is divided into two steps:

1. generation of materialization plan,
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2. materializing centroids based on the materialization plan.

Algorithm 6 is used to generate a materialization plan M for all centroids CP , where
P ∈ P, under the assumption that a local vocabulary is used. The algorithm takes as input
P and the mapping J that specifies the set of tag conjunctions JP that rely on each P ∈ P.
The algorithm works by retrieving each P , one by one, in ascending order based on the
number of documents belonging to the partition |SP |. For each partition P , the set of tag
conjunctions JP that are derived from it, are retrieved from J.

The tag conjunctions J ∈ JP are used to define a parent-child relationship between the
centroids CP for P ∈ P, such that the centroid CPi

can be used to help with computation
of CPj

, where Pi, Pj ∈ P. For example, if JPi
contains t1 ∧ t2 and JPj

contains t1, then
centroid CPi

may be used to help compute CPj
since document set St1 is a superset of

St1∧t2 . For each P , all the candidate partitions that may help with reducing the cost of
aggregation of CP are put into a list L. The mapping of materialized partition centroids
and which tag conjunctions can benefit from them is stored in T , which serves as a lookup
table.

For each P , the materialization plan MP is determined by first checking if there already
are some pre-materialized partitions held in L which could be leveraged to speed up the
aggregation process. If L is empty then CP is calculated by aggregating all the documents
found in SP . Otherwise, L is scanned to find suitable candidates l whose centroid Cl
can be used towards the computation of CP and in turn reduce the number of individual
documents that need to be aggregated. For a centroid Cl, where l ∈ L, to be considered a
suitable candidate for use as part of the materialization plan MP , it needs to significantly
reduce the number of documents that need to be fetched. It also needs to have a vocabulary
that is a superset of VP , which is ensured when the centroid in question is used for deriving
centroids of tag conjunctions that are a superset of those that are answered by CP . Multiple
candidate partitions are picked from L in a greedy manner so as to provide a maximum
reduction in the number of individual documents that need to be aggregated to derive CP .

Since the materialization plan M for the set of partitions P is generated in ascending
order of |SP |, the centroids that are processed at the early stage of the materialization plan
can be used as part of the materialization plan of bigger centroids, which are processed
later in the plan.

Once the materialization plan M is determined, Algorithm 7 uses this plan to calculate
the centroids for all CP , where P ∈ P. As the first step in materialization of each centroid
CP , function getAggregationOfElements() is called to aggregate all centroids Cr where
r ∈MP .block with the document term vectors of documents listed in MP .docs to produce
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Algorithm 6 Generating materialization plan

Input: P, the partitions requiring materialized centroids; J, an indexed set of sets of
tag conjunctions supported by each partition
Returns: Materialization Plan M
M← ∅, ∀J∈JT [J ]← ∅
for P ∈ getSortedByAscDocCount(P) do

L← ∅, MP ← ∅
for J ∈ JP do . partitions potentially useful for calculating CP are put in L.

L← L ∪ T [J ]
end for
MP .docs← SP
if L 6= ∅ then

tP ← getTags(JP ) . retrieves all the tags found in conjunctions that rely on P .

for l ∈ getSortedByDescDocCount(L) do . greedy search for useful building blocks.

Mstored ←M[l]
tstored ← getTags(Jl)
if tP .isSubSetOf (tstored) then . only candidates with richer vocabulary are considered.

if |MP .docs|−|MP .docs−Mstored.getDocs()|
|Mstored.getDocs()| > 0.5 then . significant reduction required.

MP .block ←MP .block ∪ l
MP .docs←MP .docs−Mstored.getDocs()

end if
end if

end for
end if
M.add(P,MP )
for J ∈ JP do . generates a list of potential building block candidates for tag conjunctions.

parents← getParentCombinationsOfCell(J)
for p ∈ parents do

T [p].enque(P )
end for

end for
end for
return M
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a cluster term vector CP . The vocabulary VP is then trimmed by removing all terms
whose global frequency is below 5. As an additional vocabulary trimming step, all the
tag conjunctions J ∈ JP are retrieved and used to determine the local vocabulary that VP
needs to support, and everything else is filtered out. After all the filters have been applied
to the VP , centroid CP is saved in C.

Algorithm 7 Instantiating the materialization plan

Input: Materialization Plan M
Returns: List of Materialized Clusters C
C← ∅
for (P,M) ∈M do

CP ← getAggregationOfElements(M)
CP .removeGlobalInfrequentTerms()
tags← getTags(JP )
VP ← getLocalDictionaryForTags(tags)
CP .applyDictionaryFilter(VP)
C.enque(CP )

end for
return C

6.5 Evaluation

As stated at the beginning of this chapter, the vocabulary available for answering queries
affects the set of indicative terms and indicative documents that will be returned to users.
We have chosen to use burstiness to select indicative terms (see Section 2.4.2). For any
set of documents, in order to guarantee that the best bursty terms are picked, it would be
necessary to store term occurrence statistics for all terms found in the document set. By
storing the full global vocabulary V F , each set of documents SQ specified by query Q has
vocabulary V F

Q available to derive the bursty terms or pick indicative documents. However,
since storing the whole vocabulary is not practical because of its size, we want to make sure
that for any set of documents SQ, the vocabulary VQ available for the set contains the top k
terms found in V F

Q based on mutual information. We evaluate the three vocabulary storage
approaches—global, local, and enriched–local—on their ability to provide the top k terms
for various queries Q. The recall performance of a vocabulary storage approach V A on
providing the top k terms found in V F

Q for query Q is measured using k-precision [Candan
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and Sapino, 2010] defined in Equation 6.8, and normalized Discounted Cumulative Gain
(nDCGk) [Candan and Sapino, 2010] defined in Equation 6.10.

precision(k,Q,A) =
|V F
Q [1 : k] ∩ V A

Q |
k

(6.8)

where V F
Q [1 : k] returns a set of top k terms based on mutual information for the set of

documents SQ.

DCGk = rel1 +
k∑

i=2

rel i
log2 i

(6.9)

nDCGk =
DCGk

IDCGk

(6.10)

where reli is the relevance score of term i, and corresponds to the mutual information
of the term. IDCGk is the Discounted Cumulative Gain for V F

Q . For our analysis, we
assume that k is set to 100 for the NYT and 50 for the ACM. A smaller k is chosen for
the ACM collection since it has a much smaller vocabulary than the NYT (13,015 terms
for the ACM vs. 238,065 terms for the NYT), has a larger number of tags (9,098 for the
ACM vs. 1,015 for the NYT), has less documents (66 thousand for the ACM vs 1.5 million
for the NYT), and many of the tag defined document sets have few documents. All these
factors contribute to the existence of fewer set specific terms in the ACM on which we can
evaluate the effectiveness of the different storage approaches.

In order to perform a fair comparison of the three vocabulary storage approaches, the
vocabulary size of each approach is configured such that the total storage space consumed
by a MCC partial materialization with each vocabulary storage approach is roughly the
same. Table 6.1 shows the total storage cost of using MCC partial materialization with
each of the three vocabulary storage techniques under various vocabulary sizes.

The global vocabulary storage approach is configured to use 2,479 terms for the NYT
collection, which are generated by taking the top 5 terms based on mutual information for
each of the 1,015 tags, and 3,635 terms for the ACM collection which are generated by
taking the top single term from each of the 9,098 tags based on mutual information. The
local vocabulary storage approach is configured to store the top 796 terms per tag for the
NYT and 358 for the ACM collection. The enriched–local vocabulary storage approach is
configured to store the top 91 terms per tag for the NYT and 190 terms per tag for the
ACM collection. (A smaller number of terms per tag are chosen with the enriched–local
approach than the local approach because in the former approach more tags contribute to
the vocabulary of each materialized centroid.)
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6.5.1 Effect of Vocabulary Storage Approach on Representative
Terms

In Table 6.7, we illustrate how the choice of vocabulary storage approach affects the set of
indicative terms shown to the user as a summary for a document set satisfying the query
“Finances AND Personal Finances AND Bankruptcies.” The indicative terms available for
summarizing the set are compared against the gold standard in which the full vocabulary
is stored. Only the local storage vocabulary approach is able to provide the same set of
indicative terms in its summary as the gold standard. For the “Other terms” found by the
enriched-local and global vocabulary storage approaches, we indicate the ranking of the
term as found in the full vocabulary.

6.5.2 Evaluating Term Coverage

The three vocabulary storage approaches are evaluated on over 400,000 queries which vary
in length and in the types of operators used. Four types of queries are examined:

1. Single tag queries.

2. Conjunction queries ranging in length from 2-12.

3. Disjunction queries ranging in length from 2-12.

4. Queries containing a mix of conjunctions and disjunctions, and varying in length
from x to y.

Single Tag Queries

Analysis of the three vocabulary storage approaches on all possible single tag queries for
both the NYT and ACM collection are shown in Table 6.8. The analysis confirms that the
global vocabulary storage approach provides inferior performance.

Conjunction Queries

In the analysis of all conjunctive queries with significant overlap of documents (at least 50
for the NYT, and 5 for the ACM), the global vocabulary approach had the lowest recall,
while the local approach had the highest recall and was near optimal. The details of the
comparison are summarized in Table 6.9.

104



Table 6.7: Comparing the top 20 indicative terms returned for query “Finances AND
Personal Finances AND Bankruptcies” when relying on full, local, enriched–local, or global
vocabularies.

Rank Storage
Full Local Enriched–local Global

1 chewco* X
2 receivership* X
3 causei* X
4 debtor* X X
5 filer* X
6 campeau* X
7 ljm* X
8 bankruptci* X X X
9 enron* X X X

10 fastow* X X
11 creditor* X X X
12 sherron* X
13 repai* X X
14 solvent* X
15 andersen* X X
16 kopper* X
17 repay* X X
18 auditor* X X X
19 petit* X
20 chapter* X X X

Match 20 20 10 5
count
Other file*(22),debt*(23), file*(22),debt*(23),
terms ow*(24),auction*(27), auction*(27),sec*(29),

unsecur*(28),sec*(29), reorgan*(30),lender*(32),
reorgan*(30), partnership*(36),
lender*(32), liabil*(37),asset*(40),

bankrupt*(34), charit*(48),treasuri*(50),
liabil*(37) mortgag*(53),code*(55),

estat*(56),wife*(60)
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Table 6.8: Coverage analysis on single tag queries for the three vocabulary storage ap-
proaches.
Collection k Query k-precision nDCGk

count Local Global Enriched Local Global Enriched
local local

NYT 100 1,015 100 49.3 96.5 1.000 0.868 0.999
ACM 50 9,098 100 47.4 100 1.000 0.846 1.000

Table 6.9: Coverage analysis on conjunctive queries for the three vocabulary storage ap-
proaches on the NYT (top 100) and the ACM (top 50)
Collection Tag Query k-precision nDCGk

count count Local Global Enriched Local Global Enriched
local local

NYT 2 16,448 87.5 46.6 75.6 0.951 0.748 0.903
3 20,905 89.6 47.8 77.8 0.960 0.748 0.914
4 12,217 93.1 49.4 81.1 0.976 0.753 0.932
5 5,289 96.5 50.7 84.1 0.989 0.746 0.949
6 2,401 98.5 50.2 85.1 0.995 0.715 0.957
7 1,152 99.5 48.8 84.9 0.999 0.680 0.958
8 493 99.9 48.1 84.9 1.000 0.662 0.959
9 151 100 48.1 85.2 1.000 0.659 0.959

10 27 100 48.2 85.6 1.000 0.660 0.959
11 2 100 48.5 86.5 1.000 0.661 0.960

ACM 2 14,262 80.8 46.4 74.0 0.950 0.790 0.931
3 5,280 83.8 44.8 81.4 0.955 0.764 0.955
4 3,860 94.2 41.0 92.6 0.986 0.726 0.988
5 3,700 98.0 40.6 95.2 0.997 0.715 0.996
6 3,199 99.0 42.4 94.4 0.999 0.721 0.996
7 2,390 99.6 44.4 93.2 1.000 0.730 0.996
8 1,520 99.8 45.8 92.0 1.000 0.736 0.995
9 776 100 46.2 91.2 1.000 0.738 0.995

10 297 100 46.2 90.6 1.000 0.737 0.995
11 79 100 46.0 90.2 1.000 0.737 0.994
12 13 100 46.0 90.0 1.000 0.736 0.994
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Disjunctive Queries

Disjunctive queries correspond to queries in which the only operator present is “OR”. The
queries analyzed range in length from two to eight tags. When a long disjunctive query is
transformed using the inclusion–exclusion principle it results in many centroids that need
to be aggregated. By testing the vocabulary storage approaches on such queries, we can
learn how well they handle scenarios where the query spans many vocabularies.

For this test we only performed disjunctions on tags that are known to have significant
document overlaps and correspond to the sets of tags whose conjunctions were materialized.
Tags with no document overlap are not considered as query candidates. This decision was
made because the document collections cover many distinct topics most of which share
very little vocabulary among each other (Table 6.2), performing a union on such sets is
not expected to provide any meaningful summary or insight. For example, when a person
is examining articles in the NYT, we would not expect them to request a summary on a
union of articles about “Stocks and Bonds” and “Food Recipes”.

As shown in Table 6.10, the local vocabulary storage approach performs poorly while
the enriched–local is performing well, even for long disjunctions. The main reason for this
probably stems from the local vocabulary storage approach having a very small vocabulary
available for these queries, as is shown in Table 6.11. The “Cell count” column indicates
the number of centroids |XQ| that need to be aggregated.

Since most queries are short and contain few disjunctions, the poor performance of the
local vocabulary approach on very long disjunctions may not be significant. However, the
performance was poor even for a two tag query.

Mixed Queries

Mixed queries consist of queries that are a mix of “AND” and “OR” operators. Such
queries are of interest because they can be a product of an automatic query expansion
performed by a system such as PubMed [Lu et al., 2009]. Each set of queries that was used
for analysis involved tags that had a significant document overlap.

Three types of mixed queries are considered:

1. Disjunction of two tags joined with the rest of tags, e.g., (t1 ∨ t2) ∧ t3 ∧ t4

2. Disjunction of three tags joined with the rest of tags, e.g., (t1 ∨ t2 ∨ t3) ∧ t4

3. Disjunction of four tags joined with the rest of tags, e.g., (t1 ∨ t2 ∨ t3 ∨ t4) ∧ t5
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Table 6.10: Coverage analysis on a sample of disjunctive queries for the three vocabulary
storage approaches on the NYT (top 100) and the ACM (top 50)
Collection Tag Query k-precision nDCGk

count count Local Global Enriched Local Global Enriched
local local

NYT 2 1,182 44.4 57.3 97.5 0.580 0.836 0.995
3 2,135 45.7 62.4 98.8 0.606 0.853 0.997
4 1,555 44.3 65.0 98.9 0.599 0.859 0.997
5 855 37.8 66.6 98.6 0.532 0.862 0.996
6 518 27.3 67.0 98.0 0.400 0.863 0.994
7 307 19.3 66.8 97.3 0.289 0.862 0.992
8 142 15.2 66.8 96.4 0.228 0.861 0.989

ACM 2 1,766 56.2 75.2 100 0.797 0.951 1.000
3 1,689 50.2 77.2 100 0.795 0.960 1.000
4 1,605 34.2 76.4 100 0.664 0.967 1.000
5 1,615 23.6 77.8 100 0.574 0.973 1.000
6 1,072 17.8 78.8 100 0.526 0.976 1.000
7 273 17.2 81.0 100 0.509 0.980 1.000
8 58 14.6 81.2 100 0.480 0.982 1.000

108



Table 6.11: Size of available vocabulary for a sample of disjunctive queries.
Collection Tag Query Enriched Local Cell count

count count local (|XQ|)
NYT 2 1,182 1,121.7 230.0 3

3 2,135 1,419.4 188.8 7
4 1,555 1,368.3 163.0 15
5 855 1,168.3 127.2 31
6 518 1,040.4 87.2 63
7 307 961.0 61.9 127
8 142 855.5 50.9 255

ACM 2 1,766 700.7 119.3 3
3 1,689 1,112.5 63.8 7
4 1,605 1,215.0 40.4 15
5 1,615 1,214.1 24.1 31
6 1,072 1,215.8 15.7 63
7 273 1,284.9 13.5 127
8 58 1,296.1 9.7 255

As shown in Table 6.12, the local vocabulary approach performs best on such mixed
queries and is thus able to handle limited query expansions on a single tag. The enriched–
local approach performed almost as well, and for queries with few conjunctions, it usually
slightly outperformed the local approach. When there are many conjunctions, the result
includes a small set of documents which are more uniform, and as a result, can be effectively
handled by the local vocabulary storage approach. Both the local and enriched–local
approaches maintained a large vocabulary from which the optimal terms could be retrieved,
as is shown in Table 6.13.

We also tested the three approaches on a fourth form of mixed query:

4. Conjunctions of disjunctive tag pairs, e.g., (t1 ∨ t2) ∧ (t3 ∨ t4)

On this type of mixed query, the enriched–local approach outperformed the local ap-
proach in most situations, especially when an even number of tags were used disjunctively.
The results for this are shown in Tables 6.14 and 6.15.

The recall analysis on all these queries clearly indicates that the global vocabulary
storage approach performs poorly with respect to how much space it consumes. The
higher recall achieved by both, the local and enriched–local vocabulary storage approaches,
justifies the extra effort and infrastructure that is required to support them.
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Table 6.12: Coverage analysis on a sample of mixed queries for the three vocabulary storage
approaches on a) NYT (top 100) and b) ACM (top 50).

NYT
Disjunction Tag Query k-precision nDCGk

length count count Global Local Enriched Global Local Enriched
local local

2 3 4,365 56.0 95.2 92.3 0.820 0.981 0.976
2 4 6,480 53.7 96.7 88.6 0.795 0.989 0.963
2 5 6,330 51.1 97.4 86.5 0.758 0.991 0.958
2 6 5,970 48.8 98.9 85.5 0.711 0.996 0.959
2 7 4,977 47.7 99.6 84.5 0.679 0.999 0.959
2 8 3,444 47.6 99.9 84.3 0.667 1.000 0.958
3 4 4,659 58.7 97.3 96.6 0.838 0.989 0.991
3 5 6,790 55.8 97.4 92.4 0.802 0.988 0.978
3 6 8,520 52.0 97.3 88.6 0.740 0.988 0.970
3 7 8,645 49.4 98.4 85.8 0.690 0.995 0.964
3 8 7,168 48.5 99.1 84.8 0.667 0.997 0.961
4 5 6,221 60.7 97.4 97.6 0.846 0.989 0.994
4 6 11,385 57.4 96.4 93.5 0.792 0.982 0.983
4 7 16,170 53.0 96.2 88.6 0.714 0.985 0.972
4 8 16,030 50.3 97.6 86.0 0.671 0.993 0.965

ACM
Disjunction Tag Query k-precision nDCGk

length count count Global Local Enriched Global Local Enriched
local local

2 3 6,261 48.3 92.2 93.2 0.819 0.987 0.992
2 4 12,156 40.0 95.8 95.0 0.726 0.991 0.994
2 5 23,840 39.7 98.4 95.8 0.710 0.998 0.997
2 6 35,175 41.6 98.8 94.6 0.716 0.999 0.996
2 7 13,964 41.2 99.6 98.4 0.707 1.000 0.999
2 8 6,160 45.0 99.8 99.8 0.728 1.000 1.000
3 4 8,104 44.1 94.4 97.4 0.790 0.991 0.998
3 5 23,840 39.2 97.0 96.2 0.728 0.997 0.997
3 6 46,900 40.9 97.6 94.6 0.726 0.998 0.996
3 7 34,324 42.0 98.6 95.6 0.723 0.999 0.997
3 8 12,320 44.6 100 99.8 0.729 1.000 1.000
4 5 8,125 43.7 93.6 98.4 0.795 0.990 0.999
4 6 16,095 37.4 98.0 98.8 0.716 0.996 0.999
4 7 15,312 36.6 99.4 99.4 0.694 0.999 0.999
4 8 15,400 43.6 99.8 99.8 0.730 1.000 1.000
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Table 6.13: Vocabulary size analysis on a sample of mixed queries for the three vocabulary
storage approaches on a) NYT and b) ACM.

NYT
Disjunction Tag Query Enriched Cell

length count count Global Local local count
(|XQ|)

2 3 4,365 2,479 1,141.2 1,429.7 3
2 4 6,480 2,479 1,721.5 1,572.7 3
2 5 6,330 2,479 2,358.0 1,911.5 3
2 6 5,970 2,479 2,926.6 2,539.9 3
2 7 4,977 2,479 3,250.4 3,053.8 3
2 8 3,444 2,479 3,372.0 3,464.4 3
3 4 4,659 2,479 1,044.5 1,406.3 7
3 5 6,790 2,479 1,787.2 1,539.9 7
3 6 8,520 2,479 2,553.5 2,135.6 7
3 7 8,645 2,479 3,067.9 2,790.9 7
3 8 7,168 2,479 3,279.3 3,329.1 7
4 5 6,221 2,479 1,024.9 1,278.8 15
4 6 11,385 2,479 1,844.9 1,603.8 15
4 7 16,170 2,479 2,651.5 2,473.6 15
4 8 16,030 2,479 3,100.5 3,233.6 15

ACM
Disjunction Tag Query Enriched Cell

length count count Global Local local count
(|XQ|)

2 3 6,261 3,635 866.7 1,254.9 3
2 4 12,156 3,635 1,680.3 1,752.3 3
2 5 23,840 3,635 2,079.4 1,989.8 3
2 6 35,175 3,635 2,342.3 2,157.7 3
2 7 13,964 3,635 2,095.6 2,014.4 3
2 8 6,160 3,635 2,045.2 1,944.7 3
3 4 8,104 3,635 968.2 1,506.4 7
3 5 23,840 3,635 1,771.2 1,842.6 7
3 6 46,900 3,635 2,195.6 2,076.2 7
3 7 34,324 3,635 2,239.5 2,095.6 7
3 8 12,320 3,635 2,039.9 1,942.4 7
4 5 8,125 3,635 810.2 1,459.0 15
4 6 16,095 3,635 1,475.8 1,709.5 15
4 7 15,312 3,635 1,813.7 1,890.9 15
4 8 15,400 3,635 2,007.3 1,921.3 15
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Table 6.14: Coverage analysis on a sample of mixed queries for the three vocabulary storage
approaches on a) NYT (top 100) and b) ACM (top 50).

NYT
Tag Query Query k-precision nDCGk

count type count Global Local Enriched Global Local Enriched
local local

4 (t1 ∨ t2) ∧ (t3 ∨ t4) 1,804 60.3 86.5 97.8 0.842 0.930 0.994
5 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ t5 5,830 57.9 96.3 94.3 0.815 0.981 0.984
6 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) 6,685 61.5 84.3 96.5 0.821 0.901 0.990
7 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) ∧ t7 29,420 56.1 92.7 91.2 0.739 0.962 0.979

ACM
Tag Query Query k-precision nDCGk

count type count Global Local Enriched Global Local Enriched
local local

4 (t1 ∨ t2) ∧ (t3 ∨ t4) 6,684 47.4 88.1 98.4 0.812 0.979 0.999
5 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ t5 35,904 38.1 97.5 98.7 0.723 0.995 0.999
6 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) 37,586 38.3 94.9 98.9 0.745 0.990 0.999
7 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) ∧ t7 105,461 36.9 99.1 99.3 0.711 0.999 0.999

Table 6.15: Vocabulary size analysis on a sample of mixed queries for the three vocabulary
storage approaches on a) NYT and b) ACM.

NYT
Tag Query Query Cell Enriched

count type count count Global Local local
(|XQ|)

4 (t1 ∨ t2) ∧ (t3 ∨ t4) 1,804 9 2,479.0 705.7 1,430.7
5 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ t5 5,830 9 2,479.0 1,530.9 1,468.6
6 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) 6,685 27 2,479.0 1,149.4 1,271.1
7 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) ∧ t7 29,420 27 2,479.0 2,190.3 1,834.8

ACM
Tag Query Query Cell Enriched

count type count count Global Local local
(|XQ|)

4 (t1 ∨ t2) ∧ (t3 ∨ t4) 6,684 9 3,635.0 695.4 1,372.5
5 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ t5 35,904 9 3,635.0 1,405.2 1,642.9
6 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) 37,586 27 3,635.0 1,138.6 1,545.2
7 (t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t5 ∨ t6) ∧ t7 105,461 27 3,635.0 1,688.3 1,802.7
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6.6 Conclusions

The NYT collection is shown to have a large vocabulary, which requires a prohibitive
amount of storage space, even when only a subset of views are materialized, as is the case
with the proposed MCC partial materialization. To reduce the consumed storage to a
feasible size, feature selection based on the mutual information measure can be applied to
reduce the size of vocabulary.

Both the NYT and ACM collections cover many topics and exhibit local vocabularies
for each of those topics. This was shown to be problematic for the commonly used global
vocabulary storage approach, which produced a poor vocabulary coverage for all result sets.
The local and enriched–local vocabulary storage approaches were developed as alternatives
to the global vocabulary storage approach to address the vocabulary locality issue and pro-
vide significant improvement in vocabulary coverage of result sets over the global approach
while consuming the same amount of space. Depending on the expected query workload,
either local or enriched–local approach is appropriate. Using local or enriched–local vo-
cabulary storage increases complexity in the architecture of the system, and requires the
development of rules for cell aggregation and a plan for cell materialization. However, the
additional complexity in the system is justified by the amount of improvement in vocab-
ulary coverage that is achieved, especially considering that rich vocabulary is required in
order to support high quality summarization measures.

In our analysis, we limited ourselves to using mutual information. Different feature
selection measures would lead to picking a different set of features. However, different
features would still be expected for distinct topics, and we would expect the described
vocabulary storage approaches to perform similarly when other feature selection measures
are used instead.

Only a single type of global vocabulary selection approach was tested (one that picks
the top k features from each tag). However, the weakness of the global vocabulary storage
approach stems from its small global vocabulary being unsuitable to handle collections
that cover many topics with distinct local vocabularies. As a result, even if different global
vocabulary selection technique were used, it still would not be able to provide a better
vocabulary coverage than the local or enriched–local approaches.

During the comparative evaluation of the three vocabulary storage approaches, we
aimed to provide the best coverage for a fixed storage space. From these experiments
we learned that the local and enriched–local approaches outperform the global approach.
However, we did not attempt to further optimize the two approaches. For example, we did
not examine how much the vocabulary size of the two approaches can be reduced while still
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providing an acceptable coverage. As Tables 6.11, 6.13, and 6.15 illustrate, the available
vocabulary for many result sets is quite large, and it would be worthwhile to investigate if it
could be reduced without having a significant impact on the resulting vocabulary coverage.

It may also be of interest to explore additional variants of the local and enriched–local
approaches, such as having the tags clustered, and instead of having a separate vocabulary
for each tag, have a shared vocabulary for all tags belonging to the same cluster.
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Chapter 7

Enhancing Faceted Browsers

Using the infrastructure developed in previous chapters, we have developed an enhanced
faceted browser interface that, in addition to letting a user perform traditional faceted
browsing and searching, provides a user with summary information about the resulting
document set. In our implementation, the summary includes a set of diverse documents
indicative of the contained topics and a well-chosen set of indicative terms. In addition, the
information scent [Goodwin et al., 2012] is enhanced by providing a set of indicative terms
for each of the important sub-collections of the result set. With these summary measures
in place, a user is able to quickly grasp the topics covered by large result sets.

The summary measures presented to the user are derived with the help of a partial
materialization module that consumes a minimal amount of storage while providing fast
access to rich and accurate summaries. The partial materialization module implements
the MCC partial materialization strategy (described in Section 5.3.3) and uses the local
vocabulary storage approach (described in Section 6.1.1). The utility and efficiency of the
system is demonstrated on the New York Times Annotated Corpus.

7.1 Information Scent

Since faceted browsers help users navigate and explore the result sets of documents in
a collection through a continuous refinement of queries (by selecting tags as filters), it
is important for users to make effective use of the refinement options. It was shown
by Pirolli et al. that by providing users with information scent, which was defined as
“proximal cues to the value of distal information” [Pirolli et al., 2000], the users can
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navigate through the collection faster. This idea is also central to multi-menus, as defined
much earlier by Raymond [Raymond, 1984]. Tunkelang suggests that “faceted search
systems can increase the information scent associated with a refinement option by offering
previews of the content associated with that selection”[Tunkelang, 2009]. For our system,
we choose to provide previews by showing indicative terms.

For example, to aid a user with exploration of a set of documents tagged with “Music”,
the system provides the general summary for the corresponding set, as well as summaries for
10 additional subsets defined by intersecting a set of documents tagged with “Music” with
another frequent tag such as “Recordings (Audio)” or “Opera”. The complete summary for
documents with a tag “Music” along with its most significant subsets is shown in Table 7.1.
Summaries of additional subsets are presented in Tables 7.2, 7.3, and 7.4.

7.1.1 Sets of Interest

In order to incorporate the information scent into a faceted browser, we need to provide
a preview for each navigational direction a user may take. Since our expectation is that a
user starts with an underspecified query and then slices and dices to obtain a more specific
topic by providing additional tags in a conjunction, we need to provide a summary preview
for each of the possible subsets the user may want to explore next.

A set of documents SQ defined by query Q, contains a set of tags T with which the
documents of SQ are tagged. Each tag t ∈ T is a potential candidate to request a new set
SQ∧t. As a result, there are |T | potential sets into which a user may want to navigate, for
which we need to provide a preview. Since |T | can be large, it may be both expensive for
the system to generate and overwhelming for the user to consume previews for all possible
subsets. For this reason, we present the user with preview for only N subsets.

A common challenge that has been addressed in the faceted search literature [Wei et al.,
2013] is ranking the facets to display. Wei at el. has identified two major types of facet
ranking methods: those that consider each facet independently of others, and those that
consider the correlation between facets.

One approach to choosing N subsets independently of others is to pick the top N largest
subsets based on their document count. Since this approach ranks each subset indepen-
dently of others, it is reasonable when the top N subsets do not overlap. However, when
there is significant overlap between the chosen subsets, there will be redundant informa-
tion present in summaries of different sets (i.e., common indicative terms among different
subsets). Those redundant summaries may be at the expense of providing summaries that
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Table 7.1: Summary generated for the query “Music” in the NYT (part 1).

Query Music
Document count 57,192
Indicative document Anniversaries Fill the Halls With Melody
Indicative terms sonata*,orchestra*,album*,concerto*,beethoven*,

guitar*,brahm*,quartet*,philharmon*,melodi*,
schubert*,mezzo*,bassist*,melod*,saxophonist*,
pianist*,symphoni*,saxophon*,bariton*,cello*

Rarely occurring terms report*

Sub query Music AND Recordings (Audio)
Document count 7,728
Indicative document A Once Proud Industry Fends Off Extinction
Indicative terms cassett*,cd*,reissu*,emi*,disk*,grammophon*

,bmg*,soni*,label*,disc*,rca*,
record*,album*,analyst*,nonesuch*,releas*,
chart*,parel*,billion*,soundtrack*

Rarely occurring terms tulli*,pm*,averi*,intermiss*,tomorrow*,
ticket*,tonight*,fisher*,carnegi*,saturdai*,
hall*,alic*,costum*,metropolitan*,sundai*,
recit*,auditorium*,lincoln*,festiv*,concert*

Sub query Music AND Opera
Document count 6,408
Indicative document Rossini Hold the Pasta Sauce
Indicative terms opera*,libretto*,figaro*,puccini*,donizetti*,

verdi*,metropolitan*,coloratura*,costum*,wagner*,
operat*,luciano*,aria*,rossini*,und*,
stage*,scene*,tenor*,la*,dramat*

Rarely occurring terms saxophonist*,bassist*,guitarist*,rapper*,drummer*,
guitar*,album*,songwrit*,band*,sonata*,
jam*,rap*,punk*,drum*,jazz*,
improvis*,funk*,hop*,saxophon*,rock*
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Table 7.2: Summary generated for the query “Music” in the NYT (part 2).

Sub query Music AND Classical Music
Document count 3,580
Indicative document Bernstein And Bach, Zankel And Zippos
Indicative terms movement*,intermiss*,beethoven*,mahler*,classic*,

bach*,concerto*,shostakovich*,bartok*,cello*,
sonata*,schumann*,schoenberg*,liszt*,stravinski*,
philharmon*,orchestra*,chopin*,violin*,brahm*

Rarely occurring terms rapper*,songwrit*,rap*,drummer*,album*,
saxophonist*,band*,guitarist*,rock*,blue*,
guitar*,drum*,roll*,ballad*,pop*,song*,singer*

Sub query Music AND Jazz
Document count 2,956
Indicative document JAZZ
Indicative terms jazz*,marsali*,theloni*,coltran*,wynton*,bop*,

saxophonist*,ellington*,trombonist*,trumpet*,saxophon*,
improvis*,alto*,bassist*,drummer*,swing*,
afro*,trombon*,cymbal*,gig*

Rarely Occurring Terms schubert*,brahm*,aria*,haydn*,wagner*,mezzo*,
sonata*,verdi*,opera*,mozart*,concerto*,strauss*,
beethoven*,philharmon*,choral*,conductor*,symphoni*,
cellist*,conduct*,recit*

Sub query Music AND Rock Music
Document count 2,252
Indicative document Springsteen: An Old-Fashioned Rocker in a New Era
Indicative terms rock*,punk*,roll*,beatl*,rocker*,elvi*,band*,fan*,

springsteen*,dylan*,mtv*,guitar*,album*,jam*,riff*,
catchi*,dj*,keyboardist*,gig*,anthem*

Rarely occurring terms sonata*,concerto*,brahm*,aria*,schubert*,mozart*,
haydn*,soloist*,philharmon*,conductor*,recit*,mezzo*,
symphoni*,soprano*,opera*,orchestra*,carnegi*,violinist*,
beethoven*,bach*
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Table 7.3: Summary generated for the query “Music” in the NYT (part 3).

Sub query Music AND Festivals
Document count 2,594
Indicative document Some Riffs on a Dream Jazz Festival
Indicative terms festiv*,tanglewood*,wynton*,marsali*,lincoln*,

jazz*,bop*,afro*,averi*,concertgo*,
avant*,tribut*,saxophon*,saxophonist*,improvis*,
fisher*,trumpet*,featur*,gard*,open*

Rarely occurring terms emi*,cassett*,cd*,disk*,album*,releas*,record*

Sub query Music AND Theater
Document count 1,843
Indicative document CLASSICAL MUSIC AND DANCE GUIDE
Indicative terms broadwai*,theater*,ballet*,leagu*,theatric*,costum*,

dancer*,show*,film*,art*,gershwin*,stage*,danc*,
star*,through*,lincoln*,cabaret*,nation*,present*,premier*

Rarely occurring terms sonata*,chord*,saxophon*,bassist*,improvis*,saxophonist*,
textur*,concerto*,guitar*,tempo*,rhythmic*,guitarist*,
soloist*,label*,bass*,cd*,phrase*,tone*,drummer*,pianist*

Sub query Music AND Computers and the Internet
Document count 1,828
Indicative document EMI to Drop Digital Locks In Web Sales
Indicative terms analyst*,servic*,protect*,revenu*,billion*,

net*,system*,bmg*,law*,court*,
compani*,feder*,inc*,chief*,soni*,
percent*,disc*,investor*,emi*,cost*

Rarely occurring terms trio*,quartet*,soprano*,recit*,soloist*,
chamber*,concerto*,pm*,tenor*,bariton*,
solo*,ballad*,ensembl*,sang*,pianist*,
sundai*,symphoni*,carnegi*,violinist*,choru*
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Table 7.4: Summary generated for the query “Music” in the NYT (part 4).

Sub query Music AND Motion Pictures
Document count 1,577
Indicative document Forget the Movie. Listen to the CD
Indicative terms film*,soundtrack*,senat*,rate*,agenc*,

protect*,court*,star*,studio*,democrat*,
law*,analyst*,foreign*,billion*,game*,
scene*,theater*,million*,govern*,cultur*

Rarely occurring terms sonata*,quintet*,textur*,virtuos*,tempo*,
soloist*,melod*,rhythmic*,brahm*,recit*,
quartet*,chord*,solo*,cello*,bariton*,
chamber*,concerto*,tenor*,phrase*,drum*

Sub query Music AND Art
Document count 1,397
Indicative document Footlights
Indicative terms art*,ballet*,artist*,film*,through*,theater*,

nation*,dancer*,cultur*,celebr*,saturdai*,
anniversari*,premier*,open*,modern*,festiv*,
danc*,featur*,lincoln*,state*

Rarely occurring terms riff*,melod*,tempo*,melodi*,disk*,
rhythmic*,chord*,sang*,sonata*,phrase*,
tone*,label*,harmon*,cd*,ballad*,
bass*,guitar*,keyboard*,improvis*,album*
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have a broader coverage of the document set of focus. In addition, when the largest sub-
sets are close in size to the set of focus, their summary will provide little additional value
because it will be too similar to the general summary.

Similarly, when an indicative set of documents is derived from medoids of overlapping
sets, its documents may be too similar to each other and contain redundant information.
We expect that medoids that come from two sets where a large number of documents
are shared will have a greater similarity to each other than medoids that come from two
non-overlapping sets. As a result, the overlap of sets should be considered when choosing
the indicative sets.

To ensure that the information scent provides previews for sub-topics that are signifi-
cant, diverse, and provide good coverage for the set of focus, we need to consider both a
subset’s size and its similarity to the previously selected subsets. To achieve this we use the
UniformSuggestions facet value selection algorithm developed by Kashyap et al. [Kashyap
et al., 2010], which is designed to select a subset of facet values to present to a user such
that the overall expected navigation cost is minimized while at the same time every result
is reachable through the presented facet values. The navigation cost is minimized when
the selected facet values correspond to subsets of moderate size with minimal overlap. The
UniformSuggestions is a greedy algorithm that incrementally selects tags that have a high
entropy (have moderate selectivity), are popular, and reference many documents that were
not accessible through the previously selected tags.

After the subsets are identified, their centroids are derived and used to produce the
indicative terms, as explained in Section 7.2, and a set of diverse documents indicative of
the contained topics, as explained in Section 7.3.

7.1.2 Subset Coverage

Since subsets are defined in terms of tags, the tagging patterns found in the document
collection affect the subsets that are available for each set of focus and how well these
subsets cover the documents in it. Subsets SQ∧t for all possible values of t, may not be
able to cover all the documents found in the document set SQ.

⋃

t∈T

SQ∧t ⊆ SQ (7.1)

This problem occurs because documents are assigned varying numbers of tags as is indi-
cated in Figure 3.3. For example, in the NYT collection 34% of documents have a single
tag only.
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Since for different sets of focus, the corresponding subsets can vary in size and coverage,
a different number of subsets may be required for each set of focus in order to provide
adequate coverage.

7.1.3 Query Workload

By supporting information scent we change the expected workload processed by the system.
Specifically, the system needs to process an increased number of queries, and the average
query length is increased.

When a user issues a query to the system, the system needs to generate summaries for
N + 1 sets of documents; the set of focus and its N subsets. This increase in the number
of simultaneous queries issued to the system puts additional strain on it and amplifies the
need for fast computation of the centroid measure and the summaries derived from it.

The shift in the query workload to longer queries has an impact on the effectiveness
of various partial materialization strategies. For example, if the partial materialization
module was implemented using a full cuboid materialization strategy such as the thin cube
shell or shell fragments, then in order to support the longer queries, cuboids of higher
dimensionality (that consume more space) would need to be materialized by the module,
which would result in an increase in the amount of storage space required by the module.
In addition, the shell fragment approach assumes that tags are not combined with many
other tags. However, to produce information scent we need to perform many such queries,
which would result in poor query answering performance.

On the other hand, the individual cell materialization strategies such as MCC do not
need any adjustments to support the new query workload and their storage size is unaf-
fected. In addition, their good query performance allows for the larger number of queries to
still be answered within a reasonable amount of time. As a result, individual cell material-
ization strategies are easily extended to support information scent and are an appropriate
choice for the partial materialization module.

7.2 Indicative Terms

Given a document set of interest Sc and a superset Sp ⊇ Sc (its context), the burstiness
of a term w is measured using B+(w,CSc , CSp) as defined in Equation 7.2 (which is based
on the bursty term measure defined in Equation 2.2 of Section 2.4.2), where CSc is the
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centroid of set Sc and CSp is the centroid of the context set Sp :

B+(w,CSc , CSp) =
CSc [w].freq

CSp [w].freq0.95 (7.2)

A term is considered bursty if it has a sufficiently higher frequency of occurrence in set
Sc than its frequency of occurrence in the context set Sp: B+(w,CSc , CSp) > t, where t is
pre-defined threshold (set to 1 in our system). Since different sets of documents are using
different vocabularies, only terms that are present in both vocabularies VSc and VSpare
considered. The top k or fewer (if fewer than k terms are above the threshold) bursty
terms found in CSc based on their burstiness measure constitute the set of indicative terms
Bk(Sc, Sp) for Sc relative to Sp:

Bk(Sc, Sp) = {w|w ∈ VSc ∩ VSp ∧B+(w,CSc , CSp) > t}[1 : k] (7.3)

Since the absence of terms may often be as informative as their presence, we also want
to show terms that occur significantly less in the set than in its superset. Therefore, we
define negative burstiness, denoted B−(w,CSc , CSp), as defined in Equation 7.4.

B−(w,CSc , CSp) =
CSp [w].freq

CSc [w].freq0.95 (7.4)

The top k or fewer terms in CSc with B−(w,CSc , CSp) > t are then displayed as part of the
summary, representing a set of rare terms (denoted B−k (Sc, Sp), and defined in Equation 7.5)
for Sc relative to Sp.

B−k (Sc, Sp) = {w|w ∈ VSc ∩ VSp ∧B−(w,CSc , CSp) > t}[1 : k] (7.5)

Since both B and B− are derived from the same centroids CSc and CSp , no additional
retrieval costs are endured to support B− in addition to B measure.

As an example, in Table 7.1 we show a set of positive and negative bursty terms (la-
beled “indicative terms” and “rarely occurring terms,” respectively) for the document set
returned in response to the query “Music”, along with the bursty terms associated with
its two largest subsets: “Music AND Recordings (Audio)”, and “Music AND Opera.” The
indicative terms for the query are derived using B20(SMusic, SG), where SG corresponds
to all documents in the corpus. While the indicative terms for queries “Music AND
Recordings (Audio)” and “Music AND Opera” are defined with respect to “Music” us-
ing B20(SMusic∧Recordings(Audio), SMusic) for the former and B20(SMusic∧Opera, SMusic) for the
latter, and the rarely occurring terms using the corresponding negated formulae. The
remaining top 10 subsets for query “Music” are shown in Tables 7.2, 7.3, and 7.4.
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7.3 Indicative Documents

As an additional summary of a collection, we provide the user with a set of diverse doc-
uments indicative of the topics in the collection. These documents do not necessarily
correspond to a representative sample of the document set, but instead expose the variety
of content available. We expect that a set of diverse indicative documents will maximize
the amount of information a user gains about the larger collection.

7.3.1 Approaches to Diversification

Using multiple documents to cover all the important concept terms found in the centroid of
a set may be appropriate for summarizing a flat set, but in a collection with multi-tagged
documents, as is the case with the NYT, most sets can be partitioned into further subsets.
For example, a set of documents defined by the “Music” tag can be partitioned further
into subsets, such as “Music AND Opera,” derived by intersecting multiple dominant tags
found in the set. These subsets impose a hierarchy over the set, which can be used for
choosing a set of diverse documents indicative of the contained topics, similarly to what
was proposed by Vee et al. [Vee et al., 2008]. A set generated through this approach has
documents that represent concepts found in many centroids of various subsets in the set
of interest and so will have a richer diversity than is possible with the coverage approach
whose documents are optimized to cover a single centroid. This approach parallels the use
of query reformulations to provide diverse sets of results for Web searches [Santos et al.,
2010].

Instead of calculating the medoid directly from the cosine distance of each document
in relation to the centroid, we wish to take advantage of the infrastructure provided by
standard information retrieval system such as Lucene. A standard Lucene ranking function,
given a query, ranks a document highly if the terms specified in a query appear frequently
in the document and the document contains many of the terms specified in the query.
Usually, higher weights are assigned by ranking functions to query terms that are rare,
but since all bursty terms are relatively rare in the corpus, the ranking function will not
likely have a strong bias towards choosing documents that represent only some of the query
terms.

The properties used for ranking documents by an IR system align with the properties
used for evaluating whether or not a document is a good representative of a set (i.e., it
provides good coverage of the important concept terms of the centroid and those terms
occur frequently in the document). As a result, the highest ranked document to a query
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Table 7.5: Analysis of documents returned for a query on bursty terms with respect to the
corresponding tags (where only result sets of size greater than 100 are considered)

Query Instance Percentage of Rank of top
type count documents document

having tags having tags
tx 1,015 62.4σ=23.0 1.44σ=1.42

tx ∧ ty 5,179 70.7σ=20.6 1.25σ=0.98

consisting of the bursty terms of a set centroid make a good representative document for
the corresponding set.

Documents annotated with common tags often share similar terms, which results in
a meaningful centroid of a set that contains some dominant concept terms. This may
allow for a mapping between tags and text queries, such that when there are m documents
with tag t, there exists a query of text terms that will produce a result set whose top
m documents are all tagged with tag t. The advantage of using the text query is that it
produces a ranked result set whose highest ranked document provides a good representation
for the set.

We have examined the quality of this mapping between tags and the top 20 bursty
terms describing the corresponding centroids (Table 7.5) to determine whether documents
that contain the bursty terms tend to be in the expected subset (having the corresponding
tag). The mapping was evaluated over all sets that have at least 100 documents and
are defined by a single tag or by a conjunction of two tags. The top 20 bursty terms
representing each of those sets were used to formulate queries. For each of those queries,
a large proportion of the top 100 documents in the ranked lists of results are annotated
with the corresponding tag or tags. Thus, there is a high correlation between the tags and
the use of bursty terms in the content text. In addition, the highest ranked result to the
query on the bursty terms predominantly comes from the set that was used to generate
the bursty terms. Furthermore, since many relevant documents are found in the top 100
results, various IR optimization techniques that take advantage of early termination can
be used without fear of missing a representative document.

7.3.2 Finding Indicative Documents

We introduce a new approach for choosing a set of diverse documents indicative of the
contained topics for a set of interest in a multi-tagged document collection that uses Tag-
Expansion as part of its document selection process. Given a query Q defining a set of
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documents SQ, and MN defining the list of chosen subsets with the UniformSuggestions
algorithm described in Section 7.1.1, let Sm0 , Sm1 , ..., Smn be an ordered sequence of subset
found in MN , and Sm0 = SQ. We denote DQ(N, k) to be the N + 1 diverse documents for
SQ defined using Equation 7.7.

DQ(i, k) =

{
R(Bk(SQ, SG)) if i = 0

R(Bk(Smi
, SQ)) if i > 0

(7.6)

DQ(N, k) =
N⋃

i=0

DQ(i, k) (7.7)

where SG corresponds to all documents in the corpus and R(x) returns the document in
SQ that is top ranked when posing the text query using the terms in the set x.

For example, DMusic(0, 20) is found by taking the top 20 positive bursty terms, which
include stemmed words such as sonata, orchestra, album, concerto, and beethoven, and
issuing a text query with those terms. The highest ranked document in set SMusic is chosen
as a indicative document, which happens to be the document with title Anniversaries Fill
the Halls With Melody as shown in Table 7.1. DMusic(1, 20) is found using the bursty terms
in the largest subset, “Music AND Recordings (Audio),” and DMusic(2, 20) uses the subset
“Music AND Opera.” For our example, DMusic(2, 20) is displayed in Table 7.1, and these
three documents together form a set of diverse documents indicative of the contained topics
for SMusic.

When the diverse documents are chosen from the N subsets, the cost of computation
is small because we benefit from the calculations made to support information scent.

7.4 System Architecture

The architecture of the faceted browsing system is shown in Figure 7.1a. The system is
designed around the partial materialization module shown in Figure 7.1b, which is central
to efficient system performance and the main topic of this thesis. The partial material-
ization module is designed to ensure fast access to requested centroids for document sets
defined through Boolean operations over tags, while consuming minimal storage. The de-
tails of how the module derives a centroid from a Boolean query has been discussed in
Section 5.3.3. The fast access to the centroid measure for document sets makes it feasible
to produce the proposed summary measures for many sets within a short amount of time,
so that a user can interactively explore large document collections.
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Figure 7.1: a) System for supporting faceted browsing and b) zoomed in view of partial
materialization module
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The system produces summaries for documents corresponding to a query over tags
specified by a user by first accessing a Tag-Tag Index along with a Tag-Document Index
(found in the Partial Materialization Module) to determine the indicative subsets that will
be used to produce the summary for the document set of focus. For the query “Music”, sub-
queries such as “Music AND Recordings (Audio)” and “Music AND Opera” are generated.
The original query along with theN sub-queries are then fed into the partial materialization
module, which produces a centroid for each of the queries along with the centroid for the
whole corpus.

The resulting centroids are compared against each other to derive both positive and
negative bursty terms (Eqns. 7.2 and 7.4) for the result set and subsets of focus. The
positive bursty terms are then used to form multiple text queries (a separate query for
each set of bursty terms) (Eqns. 7.6 and 7.7). The highest ranked documents returned
from each search along with the corresponding bursty terms are returned to the user to
produce the summary of the resulting set.

The user interface is developed as a Web app, and Lucene is used for indexing the
documents and for supporting text queries through the standard ranking function.

7.5 Evaluation

7.5.1 Time Analysis for Retrieving Centroids

To give more clarity about the savings in query execution costs that is achieved by using
our materialization strategies, we measured the time required to generate the requested
centroid by a system that implements no materialization (NM) and one that implements
the MCC materialization strategy.1 We measured the performance of the two systems
on seven conjunctive queries over the NYT collection reflecting various set sizes as shown
in Table 7.6. The time required to answer a query using NM depends on the number
of documents that need to be aggregated and generally increases with the number of
documents that need to be aggregated. Surprisingly, it takes more time to answer the
query ‘Music’ than the query ‘Finances’, which has 2.5 times more documents. We suspect
that this might be because of how the documents are clustered on the disk. The time
required to answer a query when MCC materialization is used depends on the number of
blocks that need to be retrieved as well as the number of additional documents that need

1The time required for answering each query was measured on a cold start to ensure that no data was
preloaded into memory.
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Table 7.6: Time comparison between MCC and NM
Query Doc. Blocks Docs Time (ms) NM/

count retr. retr. MCC NM MCC
Finances 142,609 1 0 1,311 122,237 93.24
Music 57,192 1 0 1,191 136,608 114.70
Dancing 13,798 1 0 1,168 71,735 61.42
Music AND Opera 6,408 1 0 1,284 60,096 46.80
Health Insurance and Managed Care 658 1 49 3,329 11,026 3.31
AND Prices (Fares, Fees and Rates)
Finances AND Personal Finances 50 1 0 1,389 3,085 2.22
AND Bankruptcies
Design AND Auctions 49 0 49 3,457 3,243 0.94

to be retrieved to adjust the retrieved block to correspond to the appropriate set. As these
seven queries demonstrate on a real system, the time required to produce the answer when
using MCC is bounded and takes a fraction of time required by NM. These results are
similar to what was shown in Section 5.4.2.

7.5.2 Approaches to Picking Diverse Documents

We evaluate the utility of the proposed TagExpansion approach to selecting a set of in-
dicative documents by comparing it against two alternative techniques that have been
previously proposed in the literature: ClusterMedoid and ClusterPrinDocs.

The ClusterMedoid2 approach to selecting diverse set of documents against which
we compare our TagExpansion approach has been used in systems such as the Scat-
ter/Gather [Cutting et al., 1992], where a set of documents SQ is clustered using k-means
clustering into N disjoint clusters based on terms found in CQ. A medoid document is then
taken from each cluster to form a set of diverse documents indicative of the produced clus-
ters. Since clustering is performed online, this method is slow when |SQ| is large because
retrieving a large number of documents from the disk and then performing clustering on
them is time consuming.

The implementation of ClusterPrinDocs [Deolalikar, 2014] produces a set of up to N
documents used for summarizing a document set SQ by picking documents that together

2The ClusterMedoid name is only used for the sake of distinction between the other algorithms that are
being compared, and has not been labeled this way in the Scatter/Gather literature.
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cover all the terms found in the centroid CQ. The algorithm relies on a coverage-profile P
that, for each term in the centroid, specifies the amount of occurrence required by a term in
the selected set of documents in order to be considered covered. As part of our evaluation,
the values of the coverage-profile are set to the mean term frequencies of the centroid.
The documents used for summarizing a set are picked by ranking the documents in the
set by how well they cover the uncovered terms in the coverage-profile. The documents
that are ranked highest are picked as indicative documents and the coverage profile is
updated to account for the terms covered by the newly picked documents. The updated
set of uncovered terms in the coverage profile is then used to re-rank the documents so
that the next highest ranked document can be picked. This process continues until the
coverage-profile is fully covered or N documents are picked. In our implementation of
the algorithm, we have used the uncovered set of terms from the coverage profile to issue
queries and relied on Lucene’s inverted index and scoring function to pick the indicative
documents in the same manner as we have done with our TagExpansion approach. (The
ClusterPrinDocs algorithm in its original form uses an inefficient ranking implementation
that requires all the set member documents to be retrieved from disk before the ranking
can be performed.)

Since both the TagExpansion and ClusterPrinDocs approaches require access to cen-
troid data of the underlying set in order to derive the indicative documents, they both
benefit from the fast access to centroid data provided by the partial materialization mod-
ule developed in this thesis.

Both the TagExpansion and ClusterPrinDocs algorithms are iterative and their selection
process of the next indicative document is independent of the size N and so DQ(N − 1) ⊆
DQ(N). On the other hand, the ClusterMedoid approach produces a completely different
set of indicative documents for different values of N .

To provide a frame of reference for evaluating the performance of the three above
approaches, we consider a fourth approach towards selecting a diverse set of documents,
which selects a random set of N documents with a uniform probability.

All the approaches are evaluated on 1,006 single tag queries that produce result sets
ranging in size between 201 and 46,246 documents. We examine sets of indicative docu-
ments of size 10 and 20.

7.5.3 Measures Used

There are various measures used in the search result diversification literature for quantifying
the quality of the result set [Santos et al., 2015]. However, these measures deal with

130



evaluating the quality of a diversified search result ranking for underspecified queries,
where each underspecified query is assumed to address multiple aspects of an information
need and the diversified result sets are evaluated based on how many different aspects of
the information need they cover and how good they are at representing each aspect. Since
in our situation we do not have queries or access to aspects (unless one would treat each tag
as an aspect), these measures cannot be applied to our scenario. As a result, we introduce
a set of measures that are more appropriate to our situation.

The indicative document sets produced by the above four approaches are examined on
seven measures in order to get insight about the properties of the results produced by them.
The seven measures include time, average minimum document distance, average document
distance, term coverage, weighted term coverage, tag coverage, and weighted tag coverage.
In all cases, the reported performance of the random approach is the mean of 100 random
samples. All measures that rely on terms (average minimum document distance, average
document distance, term coverage, and weighted term coverage) use the top 500 features
in the set of focus based on mutual information. The details of each of the measures are
defined as follow:

• Time measures the time, in seconds, that is required to compute the set of indica-
tive documents. The time consumed by the ClusterPrinDocs depends on the cost
of answering multiple keyword queries and the cost of retrieving the DTVs of all
the indicative document. For the TagExpansion, since the indicative documents are
picked by relying on the same set of centroids as are used for supporting information
scent, the time consumed is only affected by the cost of issuing N queries of length 20
(number of bursty terms used in queries). For the ClusterMedoid, since it performs
clustering on individual documents, the time cost is affected by the time required to
retrieve all the DTV’s and then clustering them.

• Average Minimum Document Distance is the average minimum cosine distance
between the DTVs of the documents found in the set of indicative documents. Since
many features are projected out, it is possible for some documents to have zero
remaining features (which results in a maximum distance between it and all other
documents).

• Average Document Distance is the average cosine distance between DTVs of the
documents found in the set of indicative documents.

• Term Coverage examines what percentage of the 500 features in the set of focus
are present in the set of indicative documents.
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Table 7.7: Analysis on diverse indicative documents chosen by four different strategies on
1,006 single tag queries. Ten documents are chosen per set and 500 features are used for
evaluating distances between documents and centroids.

Algorithm
Measure Tag Cluster Cluster Random

Expansion PrinDocs Medoid
Time (s) 2.57σ=2.21 *2.86σ=3.90 24.94σ=72.01

Avg Min Doc Dist 0.45σ=0.08 0.42σ=0.08 0.42σ=0.08 0.50σ=0.06

Avg Doc Dist 0.66σ=0.08 0.59σ=0.09 0.60σ=0.09 0.69σ=0.06

Term Coverage 0.66σ=0.12 0.85σ=0.09 0.71σ=0.11 0.56σ=0.11

Term Weighted Coverage 0.92σ=0.04 0.98σ=0.01 0.95σ=0.03 0.89σ=0.04

Tag Coverage 0.10σ=0.07 0.07σ=0.05 0.09σ=0.05 0.08σ=0.04

Tag Weighted Coverage 0.56σ=0.16 0.53σ=0.16 0.54σ=0.16 0.50σ=0.16

• Weighted Term Coverage is similar to the term coverage measure, except that
each term has a weight assigned equal to its frequency in the centroid. The measure
is normalized by dividing it by the sum of all the term frequencies found in the
centroid.

• Tag Coverage is the percentage of all distinct tags that are found in the set of focus
that are present in the indicative set of documents. This measure is equivalent to
the subtopic recall at rank k, introduced by Zhai et al. [Zhai et al., 2003] to measure
the percentage of subtopics covered by the top k documents.

• Weighted Tag Coverage is similar to the tag coverage measure, except that the
weight of each tag is equal to the ratio of documents in the set of focus that have the
tag. The score is normalized by dividing by the maximum achievable score.

7.5.4 Observations

The properties of the sets of diverse documents generated by the four approaches are shown
in Table 7.7 for sets of size 10, and in Table 7.8 for sets of size 20. For some sets of focus, the
ClusterPrinDocs can produces less than the pre-specified number of indicative documents
because the coverage-profile is fully covered with fewer documents. Similarly, some sets
of focus have fewer subsets than the pre-specified number of requested documents, which
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Table 7.8: Analysis on diverse indicative documents chosen by four different strategies on
1,006 single tag queries. Twenty documents are chosen per set and 500 features are used
for evaluating distances between documents and centroids.

Algorithm
Measure Tag Cluster Cluster Random

Expansion PrinDocs Medoid
Time (s) 2.93σ=3.55 3.18σ=3.13 22.51σ=39.00

Avg Min Doc Dist 0.42σ=0.06 0.41σ=0.06 0.41σ=0.07 0.46σ=0.05

Avg Doc Dist 0.67σ=0.07 0.63σ=0.08 0.64σ=0.08 0.69σ=0.06

Term Coverage 0.78σ=0.11 0.94σ=0.07 0.81σ=0.09 0.70σ=0.10

Term Weighted Coverage 0.96σ=0.03 0.99σ=0.01 0.98σ=0.01 0.95σ=0.02

Tag Coverage 0.15σ=0.09 0.12σ=0.07 0.14σ=0.08 0.12σ=0.06

Tag Weighted Coverage 0.67σ=0.12 0.62σ=0.14 0.64σ=0.14 0.60σ=0.14

causes the TagExpansion to produce smaller sets. In such situations, the four approaches
are evaluated on the maximum number of documents that can be achieved by all.

Since many of the observed results for the four algorithms appear close to each other,
we have performed a Wilcoxon signed-rank test [Candan and Sapino, 2010] on all the
results, comparing TagExpansion to the other approaches. Based on this test, all but
the difference between TagExpansion and ClusterPrinDocs for “time” in Table 7.7 are
statistically significant.

The time measure highlights the main drawback of the ClusterMedoid approach, which
makes it infeasible to be used in our system. As the size of the document set of focus grows,
it takes unacceptably long to compute the corresponding set of indicative documents. In
contrast, the TagExpansion, takes the least amount of time to compute the indicative
documents. This short computation time is achieved by reusing the same bursty terms
that are used to support information scent. However, if the set of indicative documents
is derived from different subsets than the ones used for supporting information scent,
then the required computation time will be considerably higher. Additionally, with the
TagExpansion, all N queries are known in advance and can be issued simultaneously and
parallelized. This is not possible with ClusterPrinDocs, which needs to retrieve the DTVs of
the best documents for each query, in order to update the coverage-profile and determine
what is the next query that it needs to issue. In addition, the initial keyword queries
generated by the ClusterPrinDocs are long (500 terms in our experiments), and in turn,
more expensive to compute than then the queries generated by TagExpansion (20 terms).

Compared to ClusterPrinDocs and ClusterMedoid, TagExpansion has the highest av-
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erage minimum document distance and highest average distance between indicative doc-
uments, which suggests its documents are the most diverse out of the three. Randomly
chosen documents have a larger average minimum and average document distance than
TagExpansion, but the reason for this is that the randomly chosen documents often have
none or very few of the desired features, as can be seen from the low value for the term
coverage. This suggests that randomly chosen documents are more diverse but less indica-
tive of the important concepts of the set. The TagExpansion algorithm, on the other hand,
maintains a high average minimum document distance while also maintaining a high term
coverage.

For the term coverage, the ClusterPrinDocs performs the best, which is expected since
it is designed to maximize the coverage of the centroid.TagExpansion, instead, searches for
documents that have bursty terms, which are different from the actual features used in the
set of focus. The TagExpansion performs better than the other algorithms on the measures
that evaluate the indicative document sets based on tag coverage since it is designed to
provide diversity on tags.

Since in a faceted browser we expect the user to navigate through a selection of tags
and we assume that the tags are of high quality, we expect it is more desirable to have the
documents provide a good representation of the tags found in the result set. As a result,
the TagExpansion approach appears to be an appropriate choice for selecting a diverse set
of indicative documents.

7.6 Conclusions

Whereas a standard faceted browser in response to a user’s query on a tag “Music” would
produce a list of all documents that have that tag (which happen to be 57,192 documents),
as well as a list of subsets and the number of documents within each subset (“Recordings
(Audio)” with 7,728 documents, “Opera” with 6,408 documents, etc.), our system, in
addition, provides a set of diverse documents that come from the various subsets (defined by
queries “Music AND Recordings (Audio)”, “Music AND Opera”, etc.) as well as indicative
terms for the documents labeled with “Music.” In addition, our system provides a set
of indicative terms for the subsets, to provide an information scent for the user that can
inform their navigation decision as to which subset they may want to explore further.
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Chapter 8

Conclusions and Future Directions

Our work has been motivated by the goal of enabling users to explore large multi-tagged
document collections efficiently. To this end, we aimed to enrich the capabilities of faceted
browsers through the addition of result set summarization, so that users can explore and
quickly understand the contents of a large collection. To achieve this goal, the challenge was
to develop a system that, in response to a query on tags (that defines a set of documents),
quickly produces a rich and accurate summary. The system was built under the constraint
of limited storage space, as well as a need to be robust and capable of handling different
collections. The solution developed in this thesis addresses all of these challenges.

To produce summary measures in a short time while consuming minimal space, we
took inspiration from OLAP, where partial materialization strategies are used to address
these challenges. However, multi-tagged document collections contain unique properties
that prohibit the reuse of previously developed materialization strategies. As a result, we
performed a detailed analysis of the tagging patterns found in the New York Times and the
ACM Digital Library, based on which we developed a novel individual cell materialization
strategy and various partial materialization strategies that work on top of it. We compared
our partial materialization strategies to competing approaches and demonstrated that our
techniques consume less space and offer faster response time on expected queries.

Furthermore, based on the NYT and ACM collections, we developed a generative tag-
ging model that mimics the tagging patterns observed in the two collections. This gener-
ative model was then used to generate a wide range of synthetic collections with various
properties, which, along with the held-back PubMed collection, were used to demonstrate
the robustness of our approach to a variety of collections.

To support rich summaries while consuming minimum space, we analyzed the distri-
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bution of terms inside document collections. Since document collections tend to have very
large vocabularies that are not feasible to be stored in full, we reduced the size of vo-
cabulary through feature selection and evaluated multiple vocabulary storage approaches.
Based on our analysis, we have developed a local and an enriched-local vocabulary stor-
age approach that provide a much richer vocabulary than the traditional global storage
approach for summarizing document sets while consuming the same amount of space. We
have then showed how those vocabulary storage techniques can be incorporated into the
proposed partial materialization and developed an algorithm for efficient materialization.

Finally, an enhanced faceted browsing system was built around the developed partial
materialization module to demonstrate the benefits of having the document set summaries
available to the user and accessible in an interactive manner. The system was designed to
provide information scent and summaries for result sets through the use of indicative terms
and a diverse set of indicative documents. These are calculated by leveraging the fast access
to centroids for sets of interest and their subsets. The set of diverse indicative documents
is chosen through a novel approach that transforms a tag query to a text query and takes
advantage of the infrastructure provided by standard information retrieval systems.

As part of our work we have combined the areas of OLAP, partial materialization, infor-
mation retrieval, topic modeling, feature selection, cluster labelling, text summarization,
and faceted browsing in a unique way to build a complete solution that can be applied to
many different multi-tagged document collections and help in their exploration, analysis,
and knowledge discovery. In the remainder of this chapter, we indicate some of the many
directions in which this research can be continued.

In our work we have made many assumptions about how users would explore a collection
and the type of queries they would pose. We have relied on the PubMed query workload
for modeling the type and length of expected queries. We also made assumptions about
what makes a good indicative document. To confirm that our assumptions reflect real
world usage, it would be useful to perform user studies.

The NYT and ACM collections motivated the need for picking a set of indicative docu-
ments for summarizing a result set by taking advantage of the tagging patterns. However,
by not having access to the ground truth, we were unable to evaluate if, in fact, any of the
approaches produced good results. It would be beneficial to find a suitable test collection
on which those approaches could be evaluated.

We have developed an approach that picks a set of indicative documents by leveraging
fast access to bursty terms. However, further analysis of this approach should be performed
to determine what is an appropriate scoring function to use for ranking the queries on
bursty terms.
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In the current implementation, we determine the bursty terms for a subset by comparing
the frequencies of the terms against their frequencies in the superset. The identified bursty
terms are then used to generate a query. However, a different set of bursty terms would
be obtained if the frequencies of the terms in the subset were compared against the global
frequencies. This, in turn, would result in a different query and (presumably) a different
indicative document. Does one approach perform better than the other?

Currently we have summarized sets of documents through indicative documents that
correspond to documents that contain bursty terms. In a similar fashion, it would be
interesting to investigate if documents that have a high occurrence of terms that are rare in
the set provide any useful information to the user. Do those documents present unexpected
information that would be of value and are analogues to an outlier?

In the current materialization design, we did not consider the temporal dimension.
Since most documents are annotated with the date of creation, incorporating time into the
design would be an interesting next step.

As part of the current analysis of tagging patterns in the document collections, we
only considered a flat vocabulary of tags; the hierarchical properties of tags were ignored.
For example, the category tags in the ACM, such as C.2.1:Wireless communication and
C.2, were treated as completely independent. The location of tags in the taxonomy was
ignored. If the vocabulary of tags is hierarchical, then corresponding operations of ”roll-
up” and ”drill-down” within the hierarchies should be supported. It would be interesting
to investigate if there is any value and associated challenges to supporting a richer tag
taxonomy.

In the current design we have not considered updates, which could be caused by tags
added to documents or new documents added to the collection. Examining how to have
the partial materialization system handle such updates incrementally without rebuilding
the materialization may be an interesting extension to the research.

We have shown in this thesis that it is possible to have a materialization strategy that
can support queries over tags. We have also shown that there is some alignment between
the results that are produced to a text query on bursty terms and a query posed on tags.
Based on this observation, it would be interesting to investigate if the aggregation of the
result set produced by a keyword search could benefit from using the materialized cells. If
the queries posed by users are composed of what we refer to as bursty terms, then there is
a possibility that we could take advantage of the materialized cells. To test this hypothesis
we would need access to query logs.

Currently, we have only applied the system to help explore document collections. How-
ever, it would be interesting to apply the system to help with exploration and summariza-
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tion of review websites, such as hotel reviews, restaurant reviews, product reviews, and
Google Play reviews. Review websites have much redundant text since there are a lot of
individuals commenting on the same items, and individuals reading reviews could greatly
benefit from the summarization.
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Appendix A

List of all Queries Involving 3 Tags

In Table A.1, we list all the possible query patterns that can be performed with three tags.
The query patterns are in their shortest form, since we expect the user to issue shortest
queries for expressing their intent. The queries are in ascending order based on the number
of operators used. For each query, we provide the number of query combinations that
use the specific pattern. In addition, we provide the cost and the cells that need to be
aggregated when the query is answered using full cuboid materialization strategy as well as
individual cell materialization strategy. All together, there are 127 possible queries, which
are grouped into 39 different query patterns.

The query patterns annotated with an asterisk do not contain the negation operation.
They produce the 18 queries output by the query workload generator that is derived from
the analysis of the PubMed query log, as is described in Section 5.2.3.
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Table A.1: List of all 127 queries that can be performed with three tags and the corre-
sponding cost associated with answering them when relying on cuboid materialization and
individual cell materialization.

Id Query Cost Cuboid I(T)
Len Pattern # 3-D I(T) aggregation aggregation

*1 1 t1 3 4 1 Ct1∧¬t2∧¬t3 + Ct1∧t2∧¬t3 Ct1
+Ct1∧¬t2∧t3 + Ct1∧t2∧t3

*2 2 t1 ∧ t2 3 2 1 Ct1∧t2∧¬t3 + Ct1∧t2∧t3 Ct1∧t2
3 2 t1 ∧ ¬t2 6 2 2 Ct1∧¬t2∧¬t3 + Ct1∧¬t2∧t3 Ct1 − Ct1∧t2

*4 2 t1 ∨ t2 3 6 3 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − Ct1∧t2
+Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3
+C¬t1∧t2∧t3 + Ct1∧t2∧t3

*5 3 t1 ∧ t2 ∧ t3 1 1 1 Ct1∧t2∧t3 Ct1∧t2∧t3
6 3 t1 ∧ t2 ∧ ¬t3 3 1 2 Ct1∧t2∧¬t3 Ct1∧t2 − Ct1∧t2∧t3
7 3 t1∧ 3 3 2 Ct1∧¬t2∧¬t3 + Ct1∧t2∧¬t3 Ct1 − Ct1∧t2∧t3

(¬t2 ∨ ¬t3) +Ct1∧¬t2∧t3
*8 3 t1 ∧ (t2 ∨ t3) 3 3 3 Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 Ct1∧t2 + Ct1∧t3

+Ct1∧t2∧t3 −Ct1∧t2∧t3
9 3 t1 ∧ (¬t2 ∨ t3) 6 3 3 Ct1∧¬t2∧¬t3 + Ct1∧¬t2∧t3 Ct1 − Ct1∧t2

+Ct1∧t2∧t3 +Ct1∧t2∧t3
*10 3 t1 ∨ t2 ∧ t3 3 5 3 Ct1∧¬t2∧¬t3 + Ct1∧t2∧¬t3 Ct1 + Ct2∧t3

+Ct1∧¬t2∧t3 + C¬t1∧t2∧t3 −Ct1∧t2∧t3
+Ct1∧t2∧t3

11 3 t1 ∧ ¬t2 ∧ ¬t3 3 1 4 Ct1∧¬t2∧¬t3 Ct1 − Ct1∧t2
−Ct1∧t3 + Ct1∧t2∧t3

12 3 t1 ∧ ¬t3 ∨ t2 6 5 5 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − Ct1∧t2
+Ct1∧t2∧¬t3 + C¬t1∧t2∧t3 −Ct1∧t3 − Ct1∧t2∧t3
+Ct1∧t2∧t3

13 3 (t1 ∨ t2) ∧ ¬t3 3 3 6 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − Ct1∧t2
+Ct1∧t2∧¬t3 −Ct1∧t3 − Ct2∧t3

+Ct1∧t2∧t3
*14 3 t1 ∨ t2 ∨ t3 1 7 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3

+C¬t1∧¬t2∧t3 + Ct1∧t2∧¬t3 −Ct1∧t2 − Ct1∧t3
+Ct1∧¬t2∧t3 + C¬t1∧t2∧t3 −Ct2∧t3 + Ct1∧t2∧t3
+Ct1∧t2∧t3
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Id Query Cost Cuboid I(T)
Len Pattern # 3-D I(T) aggregation aggregation

15 4 t1 ∧ ¬t2 3 4 3 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − 2Ct1∧t2
∨¬t1 ∧ t2 +Ct1∧¬t2∧t3 + C¬t1∧t2∧t3

16 4 t1 ∧ ¬t2∨ 6 4 3 Ct1∧¬t2∧¬t3 + Ct1∧¬t2∧t3 Ct1 − Ct1∧t2 + Ct2∧t3
∨t2 ∧ t3 +C¬t1∧t2∧t3 + Ct1∧t2∧t3

17 4 t1 ∧ ¬t3 6 4 4 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − Ct1∧t2
∨¬t1 ∧ t2 +Ct1∧t2∧¬t3 + C¬t1∧t2∧t3 −Ct1∧t3

18 5 t1 ∧ (t2 ∧ ¬t3 3 2 3 Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 Ct1∧t2 + Ct1∧t3
∨¬t2 ∧ t3) −2Ct1∧t2∧t3

19 5 t1 ∧ (t2 ∧ t3 3 2 4 Ct1∧¬t2∧¬t3 + Ct1∧t2∧t3 Ct1 − Ct1∧t2 − Ct1∧t3
∨¬t2 ∧ ¬t3) +2Ct1∧t2∧t3

20 5 t1 ∧ ¬t2 6 3 4 Ct1∧¬t2∧¬t3 + Ct1∧¬t2∧t3 Ct1 − Ct1∧t2 + Ct2∧t3
∨¬t1 ∧ t2 ∧ t3 +C¬t1∧t2∧t3 −Ct1∧t2∧t3

*21 5 t1 ∧ (t2 ∨ t3) 1 4 4 Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 Ct1∧t2 + Ct1∧t3
∨t2 ∧ t3 +C¬t1∧t2∧t3 + Ct1∧t2∧t3 +Ct2∧t3 − 2Ct1∧t2∧t3

22 5 t1 ∧ ¬t2 3 5 4 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2
∨t2∧ +Ct1∧¬t2∧t3 + C¬t1∧t2∧t3 −2Ct1∧t2 + Ct1∧t2∧t3
(¬t1 ∨ t3) +Ct1∧t2∧t3

23 5 t1∧ 3 5 4 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2
(¬t2 ∨ ¬t3) +Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 −Ct1∧t2 − Ct1∧t2∧t3
∨¬t1 ∧ t2 +C¬t1∧t2∧t3

24 5 t1 ∧ ¬t2 ∧ ¬t3 6 3 5 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − 2Ct1∧t2
∨¬t1 ∧ t2 +C¬t1∧t2∧t3 −Ct1∧t3 + Ct1∧t2∧t3

25 5 t1 ∧ ¬t2 ∧ ¬t3 3 3 5 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧t3 Ct1 − Ct1∧t2 − Ct1∧t3
∨t2 ∧ t3 +Ct1∧t2∧t3 +Ct2∧t3 + Ct1∧t2∧t3

26 5 ¬t3 ∧ (t1 ∧ ¬t2 3 2 6 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − 2Ct1∧t2
∨¬t1 ∧ t2) −Ct1∧t3 − Ct2∧t3

+2Ct1∧t2∧t3
27 5 t1 ∧ (t2 ∨ ¬t3) 3 4 6 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − Ct1∧t2

∨t2 ∧ ¬t3 +Ct1∧t2∧¬t3 + Ct1∧t2∧t3 −Ct1∧t3 − Ct2∧t3
+2Ct1∧t2∧t3

28 5 t1 ∧ ¬t2 3 5 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
∨¬t1 ∧ (t2 ∨ t3) +C¬t1∧¬t2∧t3 + Ct1∧¬t2∧t3 −2Ct1∧t2 − Ct1∧t3

+C¬t1∧t2∧t3 −Ct2∧t3 + Ct1∧t2∧t3
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29 5 t1 ∧ ¬t2 3 6 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
∨¬t1 ∧ t2 ∨ t3 +C¬t1∧¬t2∧t3 + Ct1∧¬t2∧t3 −2Ct1∧t2 − Ct1∧t3

+C¬t1∧t2∧t3 + Ct1∧t2∧t3 −Ct2∧t3 + 2Ct1∧t2∧t3
30 6 ¬t1 ∧ t2 ∧ t3 3 4 3 Ct1∧¬t2∧¬t3 + Ct1∧t2∧¬t3 Ct1 + Ct2∧t3

∨t1 ∧ (¬t2 ∨ ¬t3) +Ct1∧¬t2∧t3 + C¬t1∧t2∧t3 −2Ct1∧t2∧t3
31 6 t1 ∧ ¬t2 ∧ ¬t3 3 2 4 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧t3 Ct1 − Ct1∧t2

∨¬t1 ∧ t2 ∧ t3 −Ct1∧t3 + Ct2∧t3
32 6 t1 ∧ ¬t2 ∧ ¬t3 6 4 5 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − 2Ct1∧t2

∨t2 ∧ (¬t1 ∨ t3) +C¬t1∧t2∧t3 + Ct1∧t2∧t3 −Ct1∧t3 + 2Ct1∧t2∧t3
33 6 t1 ∧ ¬t2 ∨ t2 1 6 6 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3

∧¬t3 ∨ ¬t1 ∧ t3 +C¬t1∧¬t2∧t3 + Ct1∧t2∧¬t3 −Ct1∧t2 − Ct1∧t3
+Ct1∧¬t2∧t3 + C¬t1∧t2∧t3 −Ct2∧t3

34 6 ¬t1 ∧ (t2 ∨ t3) 3 4 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
∨t1 ∧ ¬t2 ∧ ¬t3 +C¬t1∧¬t2∧t3 + C¬t1∧t2∧t3 −2Ct1∧t2 − 2Ct1∧t3

−Ct2∧t3 + 2Ct1∧t2∧t3
35 8 t1 ∧ (t2 ∧ ¬t3 1 3 4 Ct1∧t2∧¬t3 + Ct1∧¬t2∧t3 Ct1∧t2 + Ct1∧t3

∨¬t2 ∧ t3) +C¬t1∧t2∧t3 +Ct2∧t3 − 3Ct1∧t2∧t3
∨¬t1 ∧ t2 ∧ t3

36 8 t1 ∧ (t2 ∧ t3∨ 3 3 6 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 − 2Ct1∧t2
¬t2 ∧ ¬t3)∨ +Ct1∧t2∧t3 −Ct1∧t3 − Ct2∧t3
¬t1 ∧ t2 ∧ ¬t3 +3Ct1∧t2∧t3

37 8 ¬t3 ∧ (t1 ∧ ¬t2∨ 1 3 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
¬t1 ∧ t2) ∨ ¬t1∧ +C¬t1∧¬t2∧t3 −2Ct1∧t2 − 2Ct1∧t3
¬t2 ∧ t3 −2Ct2∧t3 + 3Ct1∧t2∧t3

38 8 t1 ∧ ¬t2 ∧ ¬t3∨ 3 5 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
¬t1 ∧ (t2 ∨ t3) +C¬t1∧¬t2∧t3 + C¬t1∧t2∧t3 −2Ct1∧t2 − 2Ct1∧t3
∨t2 ∧ t3 +Ct1∧t2∧t3 −Ct2∧t3 + 3Ct1∧t2∧t3

39 10 t1 ∧ (t2 ∧ t3∨ 1 4 7 Ct1∧¬t2∧¬t3 + C¬t1∧t2∧¬t3 Ct1 + Ct2 + Ct3
¬t2 ∧ ¬t3)∨ +C¬t1∧¬t2∧t3 + Ct1∧t2∧t3 −2Ct1∧t2 − 2Ct1∧t3
¬t1 ∧ (t2∧ −2Ct2∧t3 + 4Ct1∧t2∧t3
¬t3 ∨ ¬t2 ∧ t3)
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