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Abstract 

In this thesis, we describe the design of tubular network systems that must occupy, as best 

as possible, regions that demonstrate some kind of longitudinal symmetry. In order to 

simplify the problem, the region of the container is discretized into a sequence of prism 

blocks 𝐵1, 𝐵2, …𝐵𝑁. The problem is decomposed into two parts: 1. Pack tubes in these 

blocks, 2. Connect these packed tubes at the ends of each block.   

In the first part, since each block is prismatic, the problem of packing tubes is equivalent to 

the packing of circles in the cross-sectional area of each block. In this case, we assume that 

the cross-sectional area of each block is a polygon. We investigate a series of algorithms to 

pack circles, including a rather naive approach as well as the GGL [2] circle packing 

algorithm. Then we modify the GGL algorithm to pack circles in regions that are more 

complicated. Based on the GGL, we will also invent new algorithm that provides more 

satisfactory packing results. 

In the second part, we connect the packed tubes from Part one to form a complete network 

system. First we consider the simplest case -- constructing a tubular system in a container 

with no variations, i.e., a single block.  We solve this problem in terms of the travelling 

salesman problem (TSP) which is a classical problem in discrete optimization. For containers 

with varying cross-sections, we connect tubes at end of each block independently instead of 

constructing a complete system. This problem can be reduced to a perfect matching (PM) 

problem at each end. We apply similar integer programming algorithms to both perfect 

matching problem and TSP. However, the design of complete tubular network system in a 

container exhibiting longitudinal symmetry remains an open problem for future work. 
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Chapter 1 

Introduction 

In this thesis, we will design a tubular network system in a longitudinal symmetry container. 

This means that the surface container is constructed by lofting a branch of cross-sections along 

a straight line (See Figure 3 , a discretized version of a container) . A practical example of this 

network design is the following: 

Figure 1 Redneck barbeque pool heater [1] 

 

The tubular system in Figure 1 is embedded in a region enclosed by barbeque for the purpose 

of heating water in a pool. There are one inlet and one outlet of the system. Water flows into 

the system via the inlet; the stove heats the water stored in the system, and hot water will 

come out from the outlet. From the figure, it can be seen that the barbeque was the shape of a 

prism, which means that the cross-sections of the container are identical. In this network, only 

one size of tube is used. The purpose of this thesis is to design a more generalized version of 

the barbeque pool heater. For example, we want to design a network system with tubes of 

multiple sizes. We also wish to consider the containers with varying cross-sections in the 

longitudinal direction. In order to simplify such complicated region, we discretize the shape of 

the container into finite blocks 𝐵1, 𝐵2 …𝐵𝑁 as shown in Figure 2 and Figure 3.  
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Figure 2 Discretized region V 

 

In the left part of Figure 2, the region V is the shape of the container from atop view. We discretize 

the longitudinal axis of region V. In the right part of Figure 2, the region V is filled up with discrete 

blocks 𝑩𝟏, 𝑩𝟐, 𝑩𝟑, 𝑩𝟒. Note that each block 𝑩𝒊 exhibits no variation in the longitudinal direction --- 

its cross-section remains constant. 

Each block 𝐵𝑖 may be packed with a set of parallel tubes as shown on Figure 3. 

Figure 3 Parallel tubes in each Bi 

 
In this thesis, we assume that the shape of the container is discretized into the 𝐵𝑖  blocks 

described as above. The two major steps for designing network system in the container are 

1. Pack tubes with different sizes into each 𝐵𝑖. 

2. Connect tubes at the ends of each 𝐵𝑖 to form a complete network with one inlet 

and one outlet. 
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Chapter 2 discusses the mathematical aspects of step 1. Since each 𝐵𝑖 has constant cross-

section and each tube has circular cross-section, packing tubes into 𝐵𝑖 is equivalent to packing 

circles into a closed planar region 𝐷𝑖  where 𝐷𝑖  is the cross-section of 𝐵𝑖. This problem is a 

classical optimization problem called “circle packing”. (In Figure 3, the 𝐷𝑖  are rectangular, but in 

this thesis, the 𝐷𝑖  are assumed to be arbitrary polygon). It is wellknown that packing unequal 

circles into an arbitrary region is a NP-hard problem, which means there is no polynomial time 

algorithm that can find an optimal packing in general. However, this does not mean that circle 

packing is unsolvable. Some approaches such as greedy algorithm [13] and heuristic search [12] 

can provide feasible packing in some particular regions such as circular regions. In Chapter 2, we 

will investigate an algorithm developed by George, George and Lamer in 1995, to be referred as 

GGL algorithm [2]. The GGL algorithm is a heuristic algorithm that packs unequal circles into a 

rectangular region. We will generalize the GGL algorithm to more complicated region such as 

trapezoid and L-shaped region. We will also develop a new algorithm that uses exactly the 

opposite idea of GGL. This new algorithm will provide a packing that is more suitable for our 

purpose as compared to GGL. Finally, we will develop another algorithm to keep packed circles a 

prescribed distance away from the boundary of region. 

After obtaining a packing, we need to connect these packed tubes. However, the information 

of packed circles is not adequate for determining connections between tubes. For instance, 

with only the information of packing, we cannot determine whether we allow two tubes to be 

connected to one tube. Chapter 3 plays a role of translating the information of packing to a 

mathematical instance for connection. In this chapter, we will define fundamental elements 

for connection, and in the rest part of the thesis, all connections and operations are based on 

these fundamental elements. Then we define a new criterion for connection. Based on this 

new criterion, we will construct a graph instance that stores all the possibilities of connections, 

and we call it the connection graph. In step 2 above, when we make decisions of connections, 

we actually choose the edges from the graph. Therefore, Chapter 3 is a transition from step 1 

to step 2. 
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The actual step 2 is discussed in Chapter 4 and Chapter 5. These two chapters have many 

similarities: both of them correspond to a type of connection between tubes to a mathematical 

instance in graph theory, and both of them apply similar combinatorial optimization algorithm 

called the cutting plane algorithm to solve their respective problems.  

 In Chapter 4, we will focus on a network system in region with non-varying cross-sections, for 

example, the barbeque pool heater. The system discussed in this chapter is one long tube that 

connects every tube packed in the cross-section. We provide a correspondence between this type 

of connection to the travelling salesman problem (TSP) in the connection graph. TSP is a classical 

NP-hard problem. Numerous researches have been done on TSP in past fifty years. The best 

deterministic algorithm is dynamical programming which is still 𝑂(𝑛22𝑛) [20]. Some non-

deterministic algorithm such as genetic algorithm [16] or heuristic algorithm [17] can also solve 

TSP in small problem cases. In this chapter, we will solve TSP via a non-deterministic algorithm 

based on integer programming [14].  

Chapter 5 discusses tube connections in regions with varying cross-sections. Unlike Chapter 4, 

the one long tube network is infeasible in this case. In fact, instead of designing the whole 

tubular network, we find connections in each cross-section independently in this chapter. It is 

reduced to another classical discrete optimization problem called perfect matching problem in 

the connection graph of each cross-section. Fortunately, the perfect matching problem has a 

𝑂(|𝑉|3) polynomial algorithm called the “blossom algorithm”, developed by Edmonds [31]. In 

this chapter, we will solve matching problem via the similar integer programming method in 

Chapter 4, and this algorithm is a deterministic for perfect matching. 

Although we can find connections in each cross-section, assembling them may not yield a 

feasible network system. Therefore, as Chapter 5 is the last chapter of this thesis, designing a 

feasible network system in region with varying cross-sections still remains an open problem in 

future. 

The Matlab implementation of the GGL algorithm [2] and the anti-GGL algorithm [6] in Chapter 

2 is the author’s own work. Dr. Sean Peterson gave advice for the idea of Chapter 3. The one-
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path network system and C implementation of subtour elimination for TSP [14] are the author’s 

own contributions. The first part of Chapter 5 (Section 5.1) comes from Wenzhe Jiang’s thesis. 

[24] The C++ program of cutting plane for matching was written with the help of Yinuo Liu, a 

Master’s student from the Department of Computational Mathematics at the University of 

Waterloo. 

There is one major difference between this thesis and MMath thesis of Wenzhe Jiang [24] 

(which also solves the connection problem) which needs to be mentioned. In [24], the author 

generates all possible networks for a given region to be occupied.  From these networks, a 

"best" network can be extracted.  In this thesis, however, we reduce the design problem to a 

problem involving graphs and then apply combinatorial optimization algorithms to find an 

optimal solution.  As such, the method described in this thesis produces only one "best" 

tubular network system. 
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Chapter 2 

Circle-Packing 

The top priority in the design problem is to obtain a feasible tubular network with maximum 

storage volume. Thus, the connection design between tubes is less important compared to the 

cross-sectional area covered by straight tubes. In this problem, we assume that all the tubes 

have circular cross-sections, and the cross-section area covered by tubes is now reduced to 

pack circles in 𝑅2 into an arbitrary closed region D with maximizing the area covered by the 

packed circles. However, this problem is generally NP-hard even in a rectangular or circular 

region; that means there is no deterministic polynomial-time algorithm to solve this problem. 

Some algorithms such as heuristic algorithm and greedy algorithm are described in [3]，[13] 

and [12], but their algorithms either pack circles into a specific region i.e. circle region, or 

require an intolerably large running time which will not help in this case. We need to pick an 

algorithm and modify it to satisfy our requirement.  

One more constraint that needs to be considered is the cost of tubes. Although the volume of 

network is our top priority, we cannot ignore the cost of designing. Indeed, if volume is 

everything, we can just pack the whole cross-section with very small circles; however, the 

design cost of this packing is very large. In order to simplify the problem, we only allow three 

fixed size circle, say the radii of circles are 𝑅1, 𝑅2, 𝑅3, to be packed in the region D. 

Now the problem becomes of packing circles with three radii 𝑅1, 𝑅2, 𝑅3 into an arbitrary closed 

region D with packing area to be maximized. It is still a very hard problem. We need to start 

from something easy and solvable and then looking forward to the hard problem. A good start 

is to try a very naive approach to packing circles of one size into a region D. 

2.1 A Very Naïve Approach to the Packing Problem 

Announcement: This section is the first attempt of packing circles. It is rough and simple, but it 

is related to the actual circle packing we use in section 2.4.  
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Lao-tzu has a quote, “A journey of a thousand miles begins with a single step” [34]. Therefore, 

every hard problem has a first approach. For our circle-packing problem, we can at least have a 

try to put circles of one radius into some bounded region that cover our packing region D 

completely, and remove the circles that be outside desired region. In order to implement the 

approach, we need following four steps: 

1. Generate a minimum-bounding box that covers the region. 

2. Put first circle into the center of minimum-bounding box. 

3. Try to fill the bounding box with circles. 

4. Delete the circles with center outside the region D or touching the boundary of D. 

It seems to be as easy as 1-2-3 that even a child can come up. However, its implementation is 

not as easy as the idea. Several trade-offs and simplifications are necessary.  

In the rest of the section, we assume that the boundary of D, 𝜕D, is parameterized as 

(𝑥(𝑡), 𝑦(𝑡)), with 𝑡 ∈ [0, 𝐿]. D is the region inside 𝜕D. 

2.1.1 Bounding Box of a Region 

A bounding box of D is the rectangle that encloses D. As shown on Figure 4. 

Figure 4 Bounding box of a closed region 

 

In fact, as a mathematical problem, the 2-D bounding rectangle is not a hard problem. As we 

parameterize 𝜕D= {(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 𝐿]}, the simplest case of the bounding box of D is the 

rectangle region defined by {[min(𝑥(𝑡)) ,max(𝑥(𝑡))] × [min(𝑦(𝑡)) ,max(𝑦(𝑡))], 𝑡 ∈ [0, 𝐿]}. We 

just need to compute the maximum and minimum value of x and y coordinate with t in the 
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interval [0, L]. The computation of maximum and minimum value of single variable function 

can be found in any fundamental calculus textbook. We can compute the derivative of the 

function and let it to be zero. Then compare the value of the function on zero derivative points 

and endpoints.  

Although maximum and minimum can be found by hand with simple calculus, it is barely 

infeasible for computer to compute in analytical way. In numerical way, we have to use the  

Algorithm 1 Golden Section Search Algorithm [9] 

Let 𝝋 =
√𝟓−𝟏

𝟐
, set a tolerance, find min of f in [0,L] 

1. Compute f(a) and f(b). 

2. Let c=b+ 𝜑(a-b), d=a+ 𝜑(b-a), compute f(c) and f(d). 

3. If f(c)<f(d), then set (b,f(b)):=(d,f(d)), (d,f(d)):=(c,f(c)), goto step 2 without computing 

d. 

4. If f(c)>=f(d), then set (a,f(a)):=(c,f(c)), (c,f(c)):=(d,f(d)), goto step 2 without computing 

c. 

  5. Keep iterating until |c-d|<tolerance, then c or d is our minimum. ∎ 

The above algorithm is for computing the minimum.  If we want to compute the maximum, we 

just keep step 1,2,5 and modify step3 and step 4 as following: 

3. If f(c)>f(d), then set (b,f(b)):=(d,f(d)), (d,f(d)):=(c,f(c)), goto step 2 without computing 

d. 

4. If f(c)<=f(d), then set (a,f(a)):=(c,f(c)), (c,f(c)):=(d,f(d)), goto step 2 without computing 

c. 

It should be noted that the algorithm might not converge if f does not have a maximum or 

minimum. But it could not happen in our case since 𝜕D is a closed curve and 𝑥(𝑡), 𝑦(𝑡) are 

always bounded. 
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In addition, the 3D bounding box problem is much more complicated than 2D case. Joseph 

O'Rourke has a cubic time algorithm for 3D bounding box in 1985 [4], but it is beyond the 

scope of this thesis 

2.1.2 Fill the Bounding Box with Circles 

This is the only step that we will use in the future discussion of circle packing. (In the Anti-GGL 

packing, it is used to generate the first and second circle).  

We will put our first circle into the geometry center of the bounding rectangle as shown in 

Figure 5. Then we put a circle right tangent to it, as in Figure 6  

Figure 5 Put circle in the center 

 

Figure 6 Put a circle next to first one 

 

Then we continue to put circles around these two circles’ four directions. It is easy to check if a 

circle is inside a rectangle, we will discuss this in next section. We can stop packing when no 

more circles can be placed in the rectangle, as shown in Figure 7. 

Figure 7 Fill the rectangle with circles 

 

Now we have a circle packing in the bounding box of the region instead of a circle packing in 

the region. We then need to delete these circles that are not right packed in the region. 
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2.1.3 Deleting Circles 

There are two situations in which we shall delete a circle: 

1. Its center lies outside the region but inside the bounding box 

2. Its center lies inside the region but it intersects with the boundary of the region 

Case1: In the first case we need to determine if a point is inside a closed curve. Suppose we 

have a point (𝑥0, 𝑦0) and we want to determine if it is in the closed curve 𝜕𝐷 =

{(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 𝐿]}. We can set the point in the complex plane, let 𝑧0 = 𝑥0 + 𝑦0𝑖, 

consider the contour integral of the function 𝑓(𝑧) =
1

𝑧−𝑧0
 around contour 𝜕𝐷 with counter-

clockwise orientation, 

∮ 𝒇(𝒛)
𝝏𝑫

𝒅𝒛 = ∮
𝟏

𝒛 − 𝒛𝟎𝝏𝑫

𝒅𝒛  

Note that 𝑓(𝑧) is analytic in the whole complex plane except at 𝑧0. If 𝑧0 is inside 𝜕𝐷, then 𝜕𝐷 

encloses a pole of 𝑓(𝑧) so that by Cauchy-Goursat theorem, the above integral is non-zero. 

Otherwise, if 𝑧0 lies inside 𝜕𝐷, 𝑓(𝑧) is analytic inside 𝜕𝐷; and the above integral is zero.  

Almost every elementary complex analysis book will teach how to evaluate the above integral by 

hand. Problems arise, however, when we must must program to compute it. In fact, the numerical 

algorithm for computing contour integral is not as efficient as single variable integration; most of 

these algorithms employ linear interpolation to approximate 𝜕𝐷 by a polygon and then compute 

the contour integral along the edges of the polygon. However, if we want to determine whether a 

point lies inside a polygon, there is an algorithm that is more efficient than computing contour 

integral: 

Algorithm 2 Crossing number algorithm [8] 

Suppose that we want to determine if point z lies inside polygon P. We first draw a ray 

starting z in a direction that will not intersect with the vertices of the polygon. If the ray 
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intersects the edges of the polygon an odd number of times, z lies inside P, as Figure 8. 

Otherwise z is outside P as Figure 9. 

Figure 8 Ray intersects edges odd times, 
z is inside 

 

Figure 9 Ray intersects edges even time
s, z is outside 

 

This algorithm needs to compute intersection of line segments (See Algorithm 5 Line Segment 

Intersection). ∎ 

Case2: Recall that the second case assumes that the center of circle lies inside the region D. 

However, the circle intersects 𝜕𝐷. To find these circles that intersects boundary, we need to 

use the definition of circle. Since a circle is defined as a set of point that have equal distance to 

a fixed point, we can compute the minimum distance of a circle’s center to edges of the 

polygon; if the distance is strictly less than the radius of the circle, then it intersects 𝜕𝐷; 

otherwise it does not intersect with 𝜕𝐷.  

In 2D, computing the minimum distance between a point and a curve is not too hard. The 

distance between point 𝑧0 = (𝑥0, 𝑦0) and curve 𝜕𝐷 = {(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 𝐿]} is defined as 

min {𝑑(𝑡) = √(𝑥0 − 𝑥(𝑡))
2
+ (𝑦0 − 𝑦(𝑡))

2
, 𝑡 ∈ [0, 𝐿]} 

The distance function 𝑑(𝑡) is indeed a single variable function of t; to compute its minimum, 

we can still use Algorithm 1 Golden Section Search Algorithm . 

2.1.4 Summary of the Naïve Approach  

After we delete all infeasible circles, we have a packing, as shown in Figure 10 



 

  12 

Figure 10 Delete infeasible circles, dash lane circles are deleted 

 

However, how efficient is this packing? It is only a feasible packing. It is obvious that in  Figure 

10 that we can pack at least one more circle into the rectangle. And how efficient is this 

approach? Definitely the mathematical principle is simple, but a lot of numerical computations 

are required, making it very low in efficiency, as is the computation of contour integral. 

If we summarize this approach, we can say: 

 Pros:  Continuous region boundary, accurate. 

Cons:  Low packing area efficiency. 

Numerical difficult, i.e. computing contour integral 

Cannot be generalized to multiple radii. 

It should be noted that if we discretize the boundary into polygon, we could use Algorithm 2 

Crossing number algorithm . In this way, the only advantage of this method, continuous 

boundary, will no longer exist.  

As a conclusion, this approach does not provide a proper solution that satisfy our requirement. 

We reject it, but have learned a valuable lesson: a continuous boundary is not suitable for 

implementation on a computer. In practice, we have to discretize the boundary any way.  

2.2 The Dawn: GGL-based Circle-Packing Scheme [2] 

After the failure of naïve approach, we have a basic concept of what algorithm we are looking 

for. First, although the algorithm is designed for some simple regions such as rectangles and 

circles, we can generalize it to arbitrary polygonal regions. Next, the algorithm should work 
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with different size of circles. Finally, the algorithm should require as few numerical 

computations as possible. 

Based on the above three characteristics, a circle-packing algorithm which we shall call GGL 

circle-packing algorithm gives us hope. GGL stands for the surnames of the three authors, 

George, George and Lamar. They write a paper on circle packing in 1995 [2]. Their paper works 

with rectangular regions and unequal circle radii, but can be modified for our purpose. In this 

section, we will discuss an implementation of the GGL algorithm which includes all its concepts, 

definitions, constraints and subroutines. We shall also will generalize the algorithm to L-shaped 

regions and trapezoid regions.  

2.2.1 Basic Concepts and Notations 

Before moving to the actual algorithm, a few notations and constraints need to be noted: 

1. Our packing region is a rectangle. In Cartesian coordinate, it is defined as 𝐷 = [0, 𝐴] ×

[0, 𝐵]. We can put the left bottom corner at the origin without lose of generality.  

2. Then we define the concept of side number: 

Figure 11 Side of rectangle 

 

As shown on Figure 11, we have four sides with side numbers defined in counter-

clockwise order: 

(a). Side 1: The left vertical boundary line, 𝑥 = 0, 0 ≤ 𝑦 ≤ 𝐵, side number s=1. 

(b). Side 2: The bottom horizontal boundary line, 0 ≤ 𝑥 ≤ 𝐴, 𝑦 = 0, side number s=2. 
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(c). Side 3: The right vertical boundary line, 𝑥 = 𝐴, 0 ≤ 𝑦 ≤ 𝐵, side number s=3. 

(d). Side 4: The upper horizontal boundary line, 0 ≤ 𝑥 ≤ 𝐴, 𝑦 = 𝐵, side number s=4. 

When we move to more general regions, i.e. L-shaped region, there will be more sides, 

but the concept of side number can still be applied and defined in a counter-clockwise 

direction. 

3. A set of N circles to be considered for use in the packing. The radii of these circles are 

denoted by 𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑁. Moreover, if we want to pack as many circles as possible, we could 

simply set N to be a very large integer, large enough so that the total area of circle set is 

strictly larger than the area of rectangle. 

4. An “occupancy variable” 𝛿𝑖, to denote whether the i-th circle is used in the packing: 

𝛿𝑖 = {
1, 𝑖𝑓 𝑖 − 𝑡ℎ 𝑐𝑖𝑟𝑐𝑙𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 𝑅𝑖 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

5. If i-th circle is used, so that 𝛿𝑖 = 1, the coordinates of its center are denoted by (𝑥𝑖 , 𝑦𝑖). 

Packed circles must satisfy two constraints: 

a. They must be in the rectangle region or touch the boundary 

𝑅𝑖 ≤ 𝑥𝑖 ≤ 𝐴 − 𝑅𝑖,𝑅𝑖 ≤ 𝑦𝑖 ≤ 𝐵 − 𝑅𝑖 . 

b. The distance between centers of any two circles must be greater than the 

summation of their radii. In particular, this constraint can be described more intuitively 

as follows: Any two circles in the packing can intersect at one point at most: 

√(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
≥ 𝑅𝑖 + 𝑅𝑗 . 

2.2.2 Rules and Formulas for Packing Circles 

The basic mechanism of the GGL packing algorithm is to place new circles along packed circles 

or sides of the rectangle. Thus, we need to have a subroutine to place a circle along a side, to 

place a circle between a side and an existing circle and to place circle between two existing 

circles. All that we need to compute is the coordinates of the packed circle’s center. Suppose 

that the k-th circle, of radius 𝑅𝑘, 𝑘 ≥ 1, is being considered for packing. 
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1. Placement along the side. Particularly, k=1 in this case. 

(a). Position No.1, lower left corner, denoted as p=1. The center coordinates are 

(𝑅𝑘, 𝑅𝑘). It can be placed only if it is not overlapping with any other circles. (See Figure 

12) 

Figure 12 Position No.1, Bottom left 

 

(b). Position No.2, lower right corner, denoted as p=2. The center coordinates are (𝐴 −

𝑅𝑘, 𝑅𝑘). Same restriction as p=1. (See Figure 13) 

Figure 13 Position No.2, lower right corner 

 

Note that there is no placement of circles along the upper side. In GGL algorithm, as 

described in [2], packing is done from the bottom. 

2. Placement between a side and an existing circle. 
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This is a more general case. Suppose an i-th circle with radius 𝑅𝑎, center (𝑥𝑎, 𝑦𝑎) is already 

packed. We want to determine three possible placements of a circle of radius R with respect 

to this circle and a side. 

  (a). Tangent to i-th circle and touching side 1. (See Figure 14) 

Figure 14 Tangent to side 1 and circle i 

 

For a solution exist, we must have that 

𝑥𝑎 ≤ 2𝑅 + 𝑅𝑎. 

 In this case, x=R and obtain two solutions for y: 

𝑦 = 𝑦𝑎 ± √(𝑅𝑎 + 𝑥𝑎)(2𝑅 + 𝑅𝑎 − 𝑥𝑎) . 

Since the GGL algorithm generally packs circles from the bottom of the region upward, we 

shall ignore the solution with negative sign. Thus we have only one solution: 

𝑦 = 𝑦𝑎 + √(𝑅𝑎 + 𝑥𝑎)(2𝑅 + 𝑅𝑎 − 𝑥𝑎).  

(b) Tangent to i-th circle and touching side 2. 

This is basically a 90 degree rotated version of the previous problem. For a solution exist, 

we must have that  

𝑥𝑎 ≤ 2𝑅 + 𝑅𝑎. 

In this case, y=R and we can obtain a solution for x: 

𝑥 = 𝑥𝑎 + √(𝑅𝑎 + 𝑦𝑎)(2𝑅 + 𝑅𝑎 − 𝑦𝑎). 
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Note that it is same as (a) in that there are two solutions. The other solution has a 

negative sign in the middle. However, we only want to consider packing from left to right. 

The negative solution is omitted. (See Figure 15) 

Figure 15 Tangent to side 2 and circle i 

 

 (c). Tangent to i-th circle and touching side 3. This is simply an flipped version of (a). For 

a solution to exist, we must have that 

𝑥𝑎 ≤ 𝐴 − 2𝑅 − 𝑅𝑎. 

In this case, x=A-R and the two solution for y are 

𝑦 = 𝑦𝑎 + √(𝑅𝑎 + 𝑅)2 + (𝑥𝑎 − (𝐴 − 𝑟))
2
. 

Once again, we choose the positive one which corresponds to upward circles. (See 

Figure 16) 

Figure 16 Tangent to side 3 and circle i 
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We have not considered the side 4 yet. Actually, in the original version GGL, as we 

mentioned before, only consider packing upward and right. When we move to a 

modified version of GGL, side 4 will be considered. 

3. Placing a circle between two circles. 

Suppose we have two already packed circles, say a and b, with radii 𝑅𝑎 𝑎𝑛𝑑 𝑅𝑏, center 

(𝑥𝑎, 𝑦𝑏) and (𝑥𝑎, 𝑦𝑏), respectively. We consider packing a circle with radius R and center (x,y) 

tangent to both circles (See Figure 17). In this case, same as before, we know the radius, and 

we want to compute the coordinates (x,y) of the packed circle. 

We can suppose that 𝑥𝑎 ≤ 𝑥𝑏 without lose of generality. To solve this problem, we connect 

the centers of a, b and circle we want to pack to make a triangle. The angles that we will use 

in our calculation are identified in Figure 18. 

Figure 17 Packing a circle between a and b 

 

Figure 18 Triangle formulized by centers 

 

Here, L is the distance between the two fixed centers,  

𝐿 = √(𝑥𝑎 − 𝑥𝑏)
2 + (𝑦𝑎 − 𝑦𝑏)

2. 

First of all, for a solution to exist, it is necessary that 

𝐿 < 𝑅𝑎 + 2𝑅 + 𝑅𝑏. 

or 

𝐿 − 𝑅𝑎 − 𝑅𝑏 < 2𝑅. 

Use the cosine law to compute angle 𝛽, 
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(𝑅𝑏 + 𝑅)2 = (𝑅𝑎 + 𝑅)2 + 𝐿2 − 2(𝑅𝑎 + 𝑅𝑏)𝐿𝑐𝑜𝑠𝛽. 

⟹ 𝑐𝑜𝑠𝛽 =
𝐿2 + (𝑅𝑎 + 𝑅)2 − (𝑅𝑏 + 𝑅)2

2(𝑅𝑎 + 𝑅𝑏)𝐿
. 

Also from the definition of trigonometric functions 

𝑐𝑜𝑠𝜃 =
𝑥𝑏 − 𝑥𝑎

𝐿
, 𝑠𝑖𝑛𝜃 =

𝑦𝑏 − 𝑦𝑎

𝐿
. 

We also have that  

(𝑅𝑎 + 𝑅) cos(𝛽 + 𝜃) = 𝑥 − 𝑥𝑎 

(𝑅𝑎 + 𝑅) sin(𝛽 + 𝜃) = 𝑦 − 𝑦𝑎. 

Rearrange to express x and y 

𝑥 = 𝑥𝑎 + (𝑅𝑎 + 𝑅) cos(𝛽 + 𝜃) 

𝑦 = 𝑦𝑎 + (𝑅𝑎 + 𝑅) sin(𝛽 + 𝜃). 

Moreover, we have angle summation formula 

cos(𝛽 + 𝜃) = 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃 

sin(𝛽 + 𝜃) = 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝜃. 

Finally, rewrite    𝑠𝑖𝑛𝛽 = ±√1 − cos2 𝛽. 

As a result, we can conclude with an algorithm that will be used through the rest of circle-

packing chapter: 

Algorithm 3 Two Circle Packing Algorithm 

Suppose we have two circles a and b with radius 𝑅𝑎 and 𝑅𝑏, center (𝑥𝑎, 𝑦𝑏) and (𝑥𝑎, 𝑦𝑏). 

We want to pack a circle with radius R tangent to both circles. Assume such circle exists, 

then the two centers of packed circle (x,y) can be expressed as  

𝑥 = 𝑥𝑎 + (𝑅𝑎 + 𝑅)(
𝐿2 + (𝑅𝑎 + 𝑅)2 − (𝑅𝑏 + 𝑅)2

2(𝑅𝑎 + 𝑅𝑏)𝐿

𝑥𝑏 − 𝑥𝑎

𝐿
∓ √1 − (

𝐿2 + (𝑅𝑎 + 𝑅)2 − (𝑅𝑏 + 𝑅)2

2(𝑅𝑎 + 𝑅𝑏)𝐿
)

2
𝑦𝑏 − 𝑦𝑎

𝐿
) 

𝑦 = 𝑦𝑎 + (𝑅𝑎 + 𝑅)(√1 − (
𝐿2 + (𝑅𝑎 + 𝑅)2 − (𝑅𝑏 + 𝑅)2

2(𝑅𝑎 + 𝑅𝑏)𝐿
)

2
𝑥𝑏 − 𝑥𝑎

𝐿
±

𝐿2 + (𝑅𝑎 + 𝑅)2 − (𝑅𝑏 + 𝑅)2

2(𝑅𝑎 + 𝑅𝑏)𝐿

𝑦𝑏 − 𝑦𝑎

𝐿
). 

∎ 
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From the formula, there are two feasible circles since 𝑠𝑖𝑛𝛽 has two possible signs. In the 

original GGL case, we only consider 𝑠𝑖𝑛𝛽 = √1 − cos2 𝛽 because we want to pack circles 

upward; it corresponds to the negative sign in formula for x and the positive sign in formula 

for y. We shall use both sign in future discussion. 

One more thing to be mentioned is that the previous algorithm is derived using fundamental 

geometry. The computational complexity is O(1). We can also derive another method via 

analytical geometry. Note that the distance from the center of the circle we want to pack to 

the center of a is exactly 𝑅 + 𝑅𝑎, and to b is exactly 𝑅 + 𝑅𝑏. Thus we have the following 

equations: 

√(𝑥 − 𝑥𝑎)2 + (𝑦 − 𝑦𝑎) = 𝑅 + 𝑅𝑎 

√(𝑥 − 𝑥𝑏)
2 + (𝑦 − 𝑦𝑏) = 𝑅 + 𝑅𝑏. 

The above equations formulate a quadratic system with two equations and two unknown 

variables. Therefore, the system has solutions; Algorithm 3 provides the analytic form of the 

solutions, but we can still solve the system numerically by using a solver such as Newton-

Raphson method or Jacobian’s method [9]. Although the built-in system solver in MATLAB is 

very efficient, it is still slower than using analytical form in Algorithm 3. Solving the system in 

MATLAB takes about 0.7 second, but computing the formula in Algorithm 3 only takes 0.3 

second. As a conclusion, it is always efficient to compute an analytic formula rather than to 

employ a numerical root finding scheme. 

2.2.3 Possible Positions of Placing a Circle 

Here is the big picture for GGL packing algorithm: We examine all possible positions in which a 

new circle can be placed. If some feasible positions are found, we pack a new circle in one of 

these the positions. Since we have described a strategy for placing a new circle in previous 

subsection, now we need to determine the number of positions that may be possible for a 

circle. At this point, we do not actually care whether a circle can be placed at any of the 

positions. 
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 Circle No.1. The first circle of the set is placed in Position NO.1, i.e. the lower left 

corner. This is the first case when k=1 in 2.2.2. This is the only one position available 

to the first circle. 

 Circle No.2. There are five positions to consider for Circle NO.2: 

1. Position No.1, lower left corner. 

2. Position No.2, lower right corner. 

3. Side 1, tangent to Circle No.1 and touching side 1. 

4. Side 2, tangent to Circle No.1 and touching side 2. 

5. Side 3, tangent to Circle No.1 and touching side 3. 

Note: It may be possible that one or more of the above positions are permissible if their 

all constraints are satisfied. A decision will have to be made about the position to choose. 

This problem will be discussed in next subsection 2.2.4 Position Strings. 

 Circle No.3. We assume that Circle No.1 and Circle No.2 are packed. Clearly, the five 

positions that were available to Circle 2 are also available to Circle No.3. But now the 

presence of Circle No.2 makes possible another 3 positions, leading to 8 positions. 

However, there is one more position, which is the position between Circle No.1 and 

No.2. As a result, there are nine possible positions for Circle No.3. 

In general, let 𝑓𝑘 define the number of positions possible to circle k, assuming that k-1 circles 

have been packed. Then 𝑓𝑘 must satisfy the following recursion relation, 

𝑓𝑘 = 𝑓𝑘−1 + 3 + (𝑘 − 2) = 𝑓𝑘−1 + 𝑘 + 1 

The term 𝑓𝑘−1 comes form the fact that positions that were possible to Circle NO.k-1, due to 

the k-1 packed circles, must be possible to Circle NO.k. But now we have an additional circle, 

i.e. Circle NO.k-1 in the packing. It will yield three additional positions, i.e. those tangent to it 
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and sides 1,2 and 3. And then there are k-2 pairings between Circle No.k-1 and Circle k-2 

previously packed circles to produce additional k-2 positions. 

The final formula for the 𝑓𝑘 is  

𝑓𝑘 = {

1,                      𝑘 = 1,

𝑘2 + 3𝑘

2
, 𝑘 ≥ 2.

 

Now we suppose that i circles have been packed into the region. We now wish to pack the k= 

(i+1)-st circle into the box. Since i circles have been packed, the position numbers 1,2…𝑓𝑖 have 

already been used. The first three position number to the (i+1)-th circle are assigned as 

follows: 

 Circle i and Side NO.1: position 𝑝 = 𝑓𝑖 + 1 

 Circle i and Side NO.2: position 𝑝 = 𝑓𝑖 + 2 

 Circle i and Side NO.3: position 𝑝 = 𝑓𝑖 + 3 

Number of possible placements determined by Circle i and side 𝑠 ∈  {1,2,3}: 

𝑝 = 𝑓 + 𝑠 = 𝑖2 + 3𝑖2 + 𝑠 =
1

2
(𝑖 + 1)(𝑖 + 2) + 𝑠 − 1. 

The next set of position numbers come from the use of Circle i and one of the previous circles, 

say Circle j with 1 ≤ 𝑗 < 𝑖. We let s=3 and then add j. 

Placement of circle i+1 determined by Circle i and Circle j: 

𝑝 =
1

2
(𝑖 + 1)(𝑖 + 2) + 𝑗 + 2 

=
1

2
(𝑖2 + 3𝑖) + 𝑗 + 3. 

Here is a table that illustrates the position number, the number of possible positions, of i with 

respect to the number of packed circles j and number of sides s: 
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Table 1 Position number of circle i 

i s=1 s=2 s=3 j=1 j=2 j=3 j=4 j=5 

1 3 4 5      

2 6 7 8 9     

3 10 11 12 13 14    

4 15 16 17 18 19 20   

5 21 22 23 24 25 26 27  

6 28 29 30 31 32 33 34 35 

2.2.4 Position Strings 

Now suppose that i circles have been packed and we are faced with the problem of deciding 

where to place the (i+1)-th circle. There are 

𝑓𝑖+1 =
1

2
[(𝑖 + 1)2 + 3(𝑖 + 1)] 

possible positions. Then we can try to place a new circle at position NO.1, compute the 

coordinates for the new circle and test the constraints, i.e. new circle in the rectangle and not 

overlap with packed circles. If all constraints are satisfied, we place the circle in the position. If 

one or more the constraints are violated, we reject this position and move to next position. We 

repeat this process until the circle successfully placed or we have examined all possible 

positions.  After we examine all 𝑓𝑖+1 positions, if the new circle still cannot be placed, we just 

move on to (i+2)-th circle. 

However, it is not mandatory to start at position NO.1. In the GGL paper, they introduce the 

idea of “position strings”, lists or strings of position numbers. We define the position string P as 

follows: 

𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑁), 
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where N is the number of circles to be considered in packing. The element 𝑝𝑘 denotes the 

initial position to be examined when the k-th circle is being considered for packing.  

Because the first circle is always placed in Position NO.1, we have 𝑝1 = 1. Position string can be 

arbitrarily defined, for example: 

𝑝1 = 1, 𝑝2 = 2, 𝑝3 = 10, 𝑝4 = 4, 𝑝5 = 8,… , 𝑝𝑁 = 53 

In fact, in the GGL paper [2], they define position strings randomly.  

For a given 1 < 𝑘 ≤ 𝑁, the feasible values that a position number 𝑝𝑘 can assume are 1,2…𝑓𝑛𝑘
, 

where 𝑛𝑘 is the actual number of circles that have been packed into the rectangle when k-th 

circle is being considered. Since this number cannot be known ahead of time, one does not 

worry about setting feasible values. 

Once a position string P has been defined, and we wish to use it in the circle-packing algorithm, 

it must be decoded in order to determine the initial position of the circle currently being 

packed. The following scheme has been used to decode a position number 𝑝𝑘 for the placement 

of Circle NO.k. 

-If 𝑝𝑘 is feasible, i.e., 𝑝𝑘 < 𝑓𝑘 then we consider Position 𝑝𝑘for the placement of the k-th circle. 

-If Circle NO.k may be packed at Position 𝑝𝑘, i.e., all constraints are satisfied, it is placed there 

and we move to the next position variable, i.e.,𝑝𝑘+1 to consider the packing of Circle NO.(k + 

1). 

-If Circle No.k cannot be packed at Position 𝑝𝑘, then we examine position 𝑝𝑘+1, etc. If we 

reach the final possible position 𝑓𝑛𝑘
without being able to pack Circle NO.k, we then start at 

Position NO.1 and proceed, if necessary, to consider Positions 2, 3, up to 𝑝𝑘−1. If Circle No.k 

cannot be packed, then we will set 𝛿𝑘 = 0 and proceed to consider Circle NO.(k + 1) at 

position 𝑝𝑘+1. 

In fact, choosing a different position string may not improve the number of circles in the 

packing. In the next subsection where numerical experiments are presented, we see that a 
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packing result with position string P=(1,1…1) could be better than the result of a complicated 

position string. However, what position string gives us is not an improvement of results; it brings 

us the variety of result. As we choose different position strings, we can have a totally different 

result. Then we can choose several different random position strings and pick the one which 

yields the best packing result.  

2.2.5 Some Numerical Experiments of Original GGL Algorithm 

Experiment 1. We first try N=30 identical circles with radius 𝑅 = 0.15 packing in rectangle with 

A=2, B=1. Position string is P=(1,1...1). The result is shown in Figure 19. Running time is 5 

seconds, 21 circles are packed, 74.22% of rectangle’s area is covered. 

Figure 19 GGL Experiment 1 

 

Figure 20 GGL Experiment 2 

 

The running time is not so bad, but this is a small experiment with limited number of circles for 

testing if the algorithm works.  

Experiment 2. The rectangle is A=1, B=1. We try N=100 circles with 50 𝑅1 = 0.1 circles and 50 

𝑅2 = 0.05 circles. We still use position string P=(1,1...1). The result is shown on Figure 20. The 

running time is 12 seconds and the percentage of area covered by packed circles is 75.4%. 

Experiment 3. We use all same circles as Experiment 2. However, in this case, we let P= (1,2…. 

N). The result is shown on Figure 21. 69.9% area of the rectangle is packed. 
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Comparing the result of Experiment 2 and Experiment 3, the only difference is that they use 

different position strings. Experiment 3 use a more complicated position string. But it does not 

produce a better result than a simple position string does in Experiment 2. 

Experiment 4.  In this case, we use position string P={random N number}. A rectangle with A=2, 

B=2, but three set of circle radii: 50 𝑅1 = 0.1 circles, 50 𝑅2 = 0.05√2 circles and 50 𝑅3 = 0.05 

circles. Thus, N=150. See Figure 22. In this case, 78.74% area of the region has been packed, 

which is a good result. However, the computational time is 637.65 seconds. It seems very 

abnormal since we have increased the region by a factor of 4 and added 50 circles to the set. If 

we take an inspection on the analysis report of the Matlab code, we could see the reason.  

In Figure 23 is presented the analysis report of the Matlab code. We can see that most of 

computational resource is occupied by the function “lookup” which looks for a possible i, j and 

s in the Table 1 based on a position number 𝑓𝑘. There is no doubt that it is the most time 

consuming function since the table increases quadratically with respect i. And this needs to be 

done for all N circles. Thus, the computational complexity of GGL is at least 𝑂(𝑁3). 

Figure 21 GGL Experiment 3 

 

Figure 22 GGL Experiment 4 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



 

  27 

Figure 23 Analysis Report of Experiment 4 

 

Although running GGL algorithm is not cheap but acceptable, many of its concepts, such as 

position number, position strings, constraints of circles and sides , along use Algorithm 3, will 

contribute to future modifications of the algorithm.  

2.3 Modified GGL-Packing 

In this section, a few generalizations of the original GGL algorithm will be discussed. The 

original GGL algorithm works within a rectangular region because the constraints and position 

numbers are built based on a rectangle. Since the GGL algorithm uses constraints and position 

numbers, we can pack circles in other types of regions provided that we design constraints and 

position numbers based on these regions 

We first generalize GGL to trapezoid region, which is similar to rectangle. Then we continue to a 

more complicated L-shape region, which will involve in adding a new side and generating new 

position number. 

2.3.1 GGL in Trapezoidal Regions 

The trapezoid is the simplest modification of a rectangle having same number of sides. 

Therefore, applying GGL in trapezoidal region does not require changing the formula of 

position numbers or adding a new side number. Also, the constraints for two circles always 

hold, which means that we can always apply Algorithm 3 to place a circle between two existing 

Profile Sum m ary
G enerated 16-Jul-2015 12:07:42 using cpu tim e.

Function N am e C alls T otal T im e Self Tim e* Total Tim e Plot
(dark band =  self tim e)

ggl_rectangle 1 637.653 s 59.888 s

ggl_rectangle> lookup 1312090 466.677 s 466.677 s

ggl_rectangle> constraints 95778 80.422 s 80.422 s

ggl_rectangle> tw ocircle 1258293 29.152 s 29.152 s

ggl_rectangle> side_num 53517 1.366 s 1.366 s
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circles. The only changes we must make for trapezoidal region are the constraints between a 

circle and a side and placement of a circle along a side. 

The trapezoidal region is shown in the following Figure 24: 

Figure 24 Trapezoidal Region 

 

The four corners are located at (0,0), (A,0), (D,B), (C,B). Note that D could also be less than A. 

Side 2 is on the x-axis and side 4 is parallel to side 2. 

The slopes of side 1 and side 3 are 𝑚1 =
𝐶

𝐵
 and 𝑚2 =

𝐵

𝐷−𝐴
 respectively.  

All other definitions remain the same as in  2.2.1. 

1. The placement of a circle with radius R, center (x,y) along these two sides will be different 

from rectangle: 

 Position NO.1. The circle at lower left corner in Figure 24. Clearly y=R, x can be 

expressed as following 

𝑥 =
𝑅

𝑚1
+ 𝑅√1 +

1

𝑚1
2 , 𝑤𝑖𝑡ℎ  𝑚1 =

𝐶

𝐵
. 

 Position NO.2. The circle at lower right corner in Figure 24. y=R, and x is: 

𝑥 = 𝐴 +
𝑅

𝑚2
− 𝑅√1 +

1

𝑚2
2, , 𝑤𝑖𝑡ℎ  𝑚2 =

𝐵

𝐷 − 𝐴
. 
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2. The placement of a circle with radius R and center (x, y) along a non-vertical side and 

touching an existing circle a with radius 𝑅𝑎 and center (𝑥𝑎, 𝑦𝑎):  

Suppose that the side we want to place along is given by 𝑦 = 𝑚𝑥 + 𝑏.In order for such a circle 

to exists, it must satisfy the following:  

The distance d from (𝑥𝑎, 𝑦𝑎) to the side [36] must be greater than or equal to 𝑅𝑎 + 𝑅 

and smaller than or equal to 𝑅𝑎. As shown on Figure 25, 

𝑅𝑎 ≤ 𝑑 =
|𝑦𝑎 − 𝑚𝑥𝑎 − 𝑏|

√1 + 𝑚2
≤ 𝑅𝑎 + 2𝑅. 

Figure 25 Distance from a circle 

 

If the previous inequalities are satisfied, we can conclude the existence of such a circle with 

radius R. We can also compute its center. Figure 25 illustrates the idea of computing (x, y). The 

center (x, y) of the circle of radius R that touches the aforementioned circle and the line at only 

one point lies on the line y = mx + c, where c is given by 

𝑐 = {
𝑐− = 𝑏 − 𝑅√1 + 𝑚2, (𝑥𝑎, 𝑦𝑎) 𝑙𝑖𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑙𝑖𝑛𝑒 𝑦 = 𝑚𝑥 + 𝑏,

𝑐+ = 𝑏 + 𝑅√1 + 𝑚2, (𝑥𝑎, 𝑦𝑎) 𝑙𝑖𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑙𝑖𝑛𝑒 𝑦 = 𝑚𝑥 + 𝑏.
 

The x-coordinate is given by 
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(1 + 𝑚2)𝑥2 + 2(𝑚𝑐 − 𝑚𝑦𝑎 + 𝑥𝑎)𝑥 + [𝑥𝑎
2 + (𝑐 − 𝑦𝑎)2 − (𝑅 + 𝑅𝐴)2] = 0 

Since y lies on the line y = mx + c, we can easily compute it 

There are two roots to this quadratic equation, say 𝑥− < 𝑥+. It may be advantageous to choose 

the root according to the slope m of the side against which the circle of radius R is being 

packed. Since GGL packs circles upward, we may wish to choose 𝑥+ in the case that m >0 and 

𝑥− in the case that m<0, as sketched below. 

Figure 26 Choosing a root with respect to the slope 

 

3. Constraints of circle a with radius 𝑅𝑎 and center (𝑥𝑎, 𝑦𝑎) inside a trapezoid.  

 (a). Side NO.1: 𝑦 = 𝑚1𝑥 

 If  𝑚1 > 0, then 𝑦𝑎 ≤ 𝑚1𝑥𝑎 

 If  𝑚1 < 0, then 𝑦𝑎 ≥ 𝑚1𝑥𝑎 

 If  𝑚1 = ∞, then 𝑥𝑎 ≥ 0 

(b). Side NO.2: 𝑦𝑎 ≥ 0 

(c). Side NO.3: 𝑦 = 𝑚2(𝑥 − 𝐴) 

 If  𝑚1 > 0, then 𝑦𝑎 ≥ 𝑚2𝑥𝑎 

 If  𝑚1 < 0, then 𝑦𝑎 ≤ 𝑚2𝑥𝑎 

 If  𝑚1 = ∞, then 𝑥𝑎 ≤ 𝐴 
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(b). Side NO.4: 𝑦𝑎 ≤ 𝐵 

The GGL algorithm for trapezoidal regions has only complicated center placement and 

constraints. It does not introduce any new side or new position number scheme. 

2.3.2 GGL in L-shaped Regions 

The regions discussed in previous sections all have four sides and convex boundary. But in 

practice, containers can have other shapes. It is important to generalize GGL for regions with 

more sides as well as non-convex boundaries. The simplest such region is the L-shaped region.  

The L-shaped region can be defined as following Figure 27: 

Figure 27 L-shape region 

 

1. Position number formula 

The coordinates, positions and sides are marked in Figure 27. There are three fundamental 

positions to be packed, p1, p2 and p3 compare to two positions in rectangle and trapezoid 

region, and we also have 5 sides since we do not use side 6 when packing upward. Because of 

the increased number of sides and fundamental positions, the indexing of positions will be 

different than for the previous GGL schemes in rectangular and trapezoidal regions. 
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It is not difficult to determine the number 𝑓𝑘 of positions available to the k-th circle in the 

packing. We see that 

𝑓𝑘 = 3 + ∑ (4 + 𝑖)

𝑘−1

𝑖=1

 

= 3 + 4(𝑘 − 1) +
(𝑘 − 1)𝑘

2
 

=
𝑘2 + 7𝑘 − 2

2
 

2. Placement of a circle along a side and tangent to an existing circle. 

There are some similarities, as well as some differences, between the GGL algorithms for L-

shaped regions and rectangular regions which place a circle of radius R and center (x, y) 

tangent to both a side and an already packed circle of radius 𝑅𝑎 centered at (𝑥𝑎, 𝑦𝑎).  

 Packing on Sides 1 and 2 of the L-shaped regions are identical to us GGL algorithms 

for rectangular regions (See 2.2.2).  

 Side 3 of the L-shaped region may be treated with the algorithm for side 3 (See 2.2.2) 

in the rectangle region, but only if the center of the circle of radius R is placed at 

(𝑎1 − 𝑅, 𝑦), where 𝑦 ∈  [𝑅, 𝑏1]. 

 Side 4 of the L-shaped region may be treated with the side 2 (See 2.2.2) of the 

rectangle region, but only if the center of the circle is placed at (𝑥, 𝑏1 + 𝑅), where 

𝑥 ∈  [𝑎1, 𝑎2] 

 Side 5 of the L-shaped region may be treated with the same algorithm as side 3 (See 

2.2.2) for rectangular regions, with the exception that the region [0, B] is replaced 

with [𝑏1, 𝑏2]. 

However, the side 3 and side 4 cases are more complicated than what they are in rectangular 

regions because of the non-convex corner (𝑎1, 𝑏1). As shown in Figure 28, it is possible to place 

a new circle based on the corner and an existing circle. 
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Figure 28 Circle on the corner of side 3 and side 4 

  
 

In either of the modifications of the side 3 or 4 algorithm to place a circle of radius R so that it 

touches a circle of radius 𝑅𝑎 centered at (𝑥𝑎, 𝑦𝑎) and the corner point  (𝑎1, 𝑏1), we may use 

the following strategy. First of all, it is necessary that the circle (𝑥𝑎, 𝑦𝑎) is close enough to the 

corner point: 

√(𝑥𝑎 − 𝑎1)
2 + (𝑦𝑎 − 𝑏1)

2 ≤ 𝑅𝑎 + 2𝑅. 

If the above inequality is satisfied, then we can compute the center (x, y) by the following 

equations: 

(𝑥 − 𝑥𝑎)2 + (𝑦 − 𝑦𝑎)2 = (𝑅 + 𝑅𝑎)2 

(𝑥 − 𝑎1)
2 + (𝑦 − 𝑏1)

2 = 𝑅2. 

Note that this is the same as what we did in Algorithm 3. The system is quadratic with two 

equations and two unknown variables. It will have two sets of solutions. However, from the 

Figure 28, there will be only one feasible solution. Another one will lies outside the L-region. It 

is hard to analyze which solution we want analytically, but we can still compute the numerical 

results of the system and compare to the boundary of the region or use Algorithm 2 Crossing 

number algorithm . 
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2.3.3  Future of the GGL Circle-Packing Scheme 

We are getting closer to our packing goal. As was done for trapezoidal and L-shaped regions, we 

can generalize the GGL algorithm to arbitrary polygons. However, problems always arise when 

an idea is brought into practice. We have encountered new problems and the GGL has to be 

modified further to satisfy our requirement. 

2.4 New Packing Scheme Based on GGL 

The GGL packing scheme uses the idea of starting from the bottom left corner, packing to the 

right and upward along the boundary and corners of the region, and finally packing tangent to 

existing circles with Algorithm 3. Since we place large circle first, it places large circles at the 

corner or along the boundary. In fact, the GGL packing scheme uses a strategy similar to game 

of GO called “Gold corner, silver edge and grass center” [13] which states the priority of the 

placement of stones in the game. The GGL strategy is designed based on the physical problem 

of putting pipes into a rectangle box. This is quite different from the problem of packing tubes in 

the cross-section of a container to designing a tubular network. More constraints need to be 

considered when design such a network. First, the tubular network should have some resistance 

to unexpected impact. Since the surface tension on large circles are bigger than smaller circles 

with same thickness when suffering impact, we want to place large circles in the center of the 

container and smaller circles near the boundary. Next, due to flow resistance [5], we want to 

pack as many big circle as possible. The GGL has no control over the sizes of circles. However, 

this means if the GGL has inspected all big circles but there are still positions available to big 

circles, it will continue to pack small circles instead of packing big circles. 

For this reason, we have invented a new scheme that uses some concepts and ideas from GGL, 

but packs circles that satisfy the requirements above. Moreover, as we concluded in 2.1.4, for 

the convenience of programming in computer, the boundary of a closed region D, denoted as 

𝜕𝐷, should be discretized into an approximate polygon, say P. Instead of packing circles into D, 

we should be able to pack circles in P with this new packing scheme. We should be able to 
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keep packed circles away from P by a certain distance. The first step is to define an arbitrary 

polygon in Cartesian coordinates.  

Note: In this section, we all assume that the region to be placed is a polygon. Also the set of 

circles to be placed have three radii with 𝑅1 > 𝑅2 > 𝑅3. 

2.4.1 Defining an Arbitrary Polygon 

Suppose that a polygon P has 𝑛𝑠 vertices and edges. It is convenient to put the first vertex at 

the origin of a Cartesian coordinate system in the plane and one of the edges of the vertex on 

the x-axis. We can now define the coordinates of the rest of the vertices, denoting these 

coordinates as 𝐶𝑘 = (𝑐𝑘𝑥, 𝑐𝑘𝑦), 1 ≤ 𝑘 ≤ 𝑛𝑠. Then define the displacement vectors 𝑉𝑘 =

(𝑣𝑘𝑥, 𝑣𝑘𝑦), 1 ≤ 𝑘 ≤ 𝑛𝑠 , representing the movement from the first vertex, situated at the 

origin, along the boundary ∂P and back to the origin in a counterclockwise manner, i.e. the 

usual orientation in vector calculus. An example is shown in Figure 29. Note that the boundary 

in the particular example is composed of vertical and horizontal segments. This need not to be 

the case in general. The example is presented to illustrate the idea. This coordinate can be 

used for any polygon.  

Figure 29 Example of a polygon with displacement vectors 

 

The coordinates in Figure 29 are the vertices’ coordinates i.e. 𝐶𝑘 = (𝑐𝑘𝑥, 𝑐𝑘𝑦). The 

displacement vectors can be computed from the 𝐶𝑘 by 
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𝑉𝑘 = 𝐶𝑘+1 − 𝐶𝑘 . 

In Figure 29, the eight displacement vectors are: 𝑣1 = (1, 0) − (0, 0) = (1 − 0,0 − 0) =

(1, 0), 𝑣2 = (1, 1) − (1, 0) = (1 − 1,1 − 0)(0, 1), 𝑣3 = (1, 0), 𝑣4 = (0, 1), 𝑣5 = (−3, 0), 𝑣6 =

(0,−1.5), 𝑣7 = (0,−0.5) 

However, when we want compute 𝑉8, there is no 𝐶9 since we have only 𝑛𝑠 = 8 vertices. In this 

case, we need to use 𝐶0 as 𝐶9 since we come back to the origin. Thus. 

𝑉𝑛𝑠
= 𝐶0 − 𝐶𝑛𝑠

. 

Of course, we have a formula to convert 𝑉𝑘 to 𝐶𝑘: 

𝐶𝑘 = ∑𝑉𝑖

𝑘

𝑖=1

. 

Since we need to go back to origin, the net displacement must be zero: 

∑𝑉𝑖

𝑛𝑠

𝑖=1

= 𝟎. 

This is a usual way to check the correctness of displacement vectors. 

We define the polygon in terms of its both displacement vectors and vertex coordinates since 

they will both be useful in implementation. Conversions between them are built-in into my 

computer program.  

2.4.2 Polygon’s Area  

Suppose we have a polygon P with 𝑛𝑠 vertices and a vertices coordinates 𝐶𝑘 and displacement 

vectors 𝑉𝑘, 1 ≤ 𝑘 ≤ 𝑛𝑠. Now we want to compute the area of P, i.e. Area (P). 

We can use Green’s theorem:  P is simply connected, and 𝜕𝑃 is piecewise smooth. Then for a 

𝐶1 planar vector function 𝐹(𝑥, 𝑦) = (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)), we have that 

∮ 𝐹 ∙ 𝑑𝑟 = ∬(
𝜕𝐹2

𝜕𝑥𝑃 𝜕𝑃

−
𝜕𝐹1

𝜕𝑦
)𝑑𝐴. 
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If we want to compute the area of P, we need a vector function  F such that  
𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
= 1. It is 

convenient to use 𝐹(𝑥, 𝑦) = (−𝑦, 0). Suppose that 𝐿𝑖 is the line segment of the i-th edge in 

counter-clockwise orientation. We may rewrite Green’s theorem as followings: 

Algorithm 4 Polyarea 

𝐴𝑟𝑒𝑎(𝑃) = ∬(
𝜕𝐹2

𝜕𝑥𝑃

−
𝜕𝐹1

𝜕𝑦
)𝑑𝐴 = ∬1𝑑𝐴

𝑃

 

= ∮ 𝐹 ∙ 𝑑𝑟 = ∑∫ 𝐹 ∙ 𝑑𝑟
𝐿𝑖

𝑛𝑠

𝑖=1 𝜕𝑃

 

= ∑∫ 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦
𝐿𝑖

𝑛𝑠

𝑖=1

 

= ∑∫ −𝑦𝑑𝑥
𝐿𝑖

𝑛𝑠

𝑖=1

 

=
1

2
( ∑ (𝑐(𝑖+1)𝑥 + 𝑐𝑖𝑥)𝑣𝑖𝑦 + (𝑐0𝑥

𝑛𝑠−1

𝑖=0

+ 𝑐𝑛𝑠𝑥)𝑣𝑛𝑠𝑦) ∎ 

Apply the above formula to polygon in Figure 29, apply above formula, we have 

𝐴𝑟𝑒𝑎 =
1

2
( (2)(1) + (4)(1) + (−2)(−1.5) + 0) = 4.5. 

If we compute the area by adding rectangles in the region, we have 

𝐴𝑟𝑒𝑎 = 1.5 ∗ 1 + 2 ∗ 1 + 1 ∗ 1 = 4.5. 

which is same with the area we computed by the formula.  

2.4.3 Anti-GGL Scheme [6] 

The GGL scheme packs circles at corners and sides first. It then places new circles with respect to 

a side and an existing circle or two existing circles. However, as we mentioned in the beginning of 

this section, the result yielded by this packing scheme may not be suitable for a tubular network. 
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Thus, we come up with a so called “anti-GGL” scheme. The prefix “anti” indicates that this 

scheme will not only be different from the GGL, but will be opposite to GGL in its strategy.  

The main idea of anti-GGL is as follows. Unlike GGL, the anti-GGL scheme packs circles from 

interior to boundary. It will place the first circle with the biggest radius at or near the 

geometrical center of the region, just like what we have done in 2.1.2. The centroid 𝐶 =

(𝑥𝑐 , 𝑦𝑐) of a polygon P defined in previous subsection can be computed by Green’s theorem as 

follows [11], 

𝑥𝑐 =
1

6𝐴
∑ (𝑐𝑖𝑥 + 𝑐(𝑖+1)𝑥)(

𝑛𝑠−1

𝑖=0

𝑐𝑖𝑥𝑐(𝑖+1)𝑦 − 𝑐(𝑖+1)𝑥𝑐𝑖𝑦) 

𝑦𝑐 =
1

6𝐴
∑ (𝑐𝑖𝑦 + 𝑐(𝑖+1)𝑦)(

𝑛𝑠−1

𝑖=0

𝑐𝑖𝑥𝑐(𝑖+1)𝑦 − 𝑐(𝑖+1)𝑥𝑐𝑖𝑦) 

where A=Area(P) computed by Algorithm 4. 

Once a large circle placed at (𝑥𝑐 , 𝑦𝑐), we then place another large circle tangent to it (See 

Figure 30, 1 indicates the first circle, 2 indicates the second circle).  

Figure 30 Placement of first and second circle 

 

Note that, the second circle does not necessarily to be packed to the right of the first one. In fact, 

the right position may be infeasible in some cases, in which case we will try the other three 

directions of circle 1. Usually, however, we pack it to the right if the position is available. 
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Then, based on these two circles, we can use Algorithm 3 to place more circles in the polygon 

region. In this case, we have no packing restriction on direction, which means we can use both 

solutions in Algorithm 3. When we place a new circle, we first choose a position from our 

position string based on our position number in anti-GGL, and compute the center of the 

circle. If the new circle satisfies all of constraints for a circle contained in the polygon, we keep 

it in the packing. Otherwise, reject the circle and continue by trying the next circle in the set. 

This step is basically same as GGL. Since the first part of our circle set is composed of large 

circles, the algorithm will pack as many large circles as possible into the region, from center to 

boundary. We keep on packing circles until we try every circle in our circle set. 

There are two other major differences between the GGL and the anti-GGL scheme: position 

number and constraints. 

2.4.4 Position Number in Anti-GGL Scheme 

The main idea of the anti-GGL even seems to be simpler than the GGL. For example, it does not 

involve in any packing along a side and an existing circle, which is the cruelest computation in 

the GGL. However, since we do not use sides for packing, the position number in the anti-GGL 

will be different. In fact, the position string in the anti-GGL is much simpler. Here is a table for 

the position number of i-th circle and j-th circle in theanti-GGL 

Table 2 Position number in anti-GGL 

i j=1 j=1 j=2 j=2 j=3 j=3 j=4 j=4 

2 1 2       

3 3 4 5 6     

4 7 8 9 10 11 12   

5 13 14 15 16 17 18 19 20 
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We see that the circle index i start from 2 since the first circle has already been packed. Also for 

each j we have two values since we consider both solutions in Algorithm 3. 

The position available to circle 𝑘 ≥ 3 can be expressed as 

𝑓𝑘 = (𝑘 − 1)(𝑘 − 2). 

The position number of circle placed based on Algorithm 3 of circle i and a existing circle j is 

𝑝 = 𝑓𝑖 + 2(𝑗 − 1) + 1 

    = (𝑖 − 1)(𝑖 − 2) + 2(𝑗 − 1) + 1 

    = 𝑖(𝑖 − 3) + 2𝑗 + 1. 

However, from the table we know that a given j could have two position numbers since we use 

both solutions in Algorithm 3. Thus, the other position number is 

𝑝 = 𝑖(𝑖 − 3) + 2𝑗 + 2 

We choose the one depending on what position we want to pack. 

2.4.5 Constraints in Polygon 

Suppose we have a circle centered at (𝑥′, 𝑦′) with radius 𝑅′. There are two conditions for the 

circle inside the polygon P: 

1. (𝑥′, 𝑦′) must be inside P. 

2. If (𝑥′, 𝑦′) is inside P, the distance from each edge and vertex of P to (𝑥′, 𝑦′) must be no 

smaller than 𝑅′. 

Violation of any of the conditions above will result in an infeasible circle, i.e. a circle not packed 

in P. 

For first condition, we could use Algorithm 2 Crossing number algorithm  to judge if (𝑥′, 𝑦′) is 

inside P. Algorithm 2 needs to count intersections between a ray and a segment. Since we 

perform the algorithm in a closed region, we could choose a line segment that is long enough 

to simulate a ray. Now the problem becomes one of computing the intersection of two line 
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segments or concluding they do not have one. Using the convexity of line segment can achieve 

this goal. 

Definition 1 Convex set. A set S is convex if an only if ∀ 𝒔𝟏, 𝒔𝟐 …𝒔𝒏 ∈ 𝑺, and non-negative 

numbers ∑ 𝝀𝒊
𝒏
𝒊=𝟏 = 𝟏, we have 

∑𝝀𝒊𝒔𝒊

𝒏

𝒊=𝟏

∈ 𝑺. 

A line is a convex set. Moreover, a line segment is the convex hull of its two endpoints (Details 

about convex hull will be discussed in 5.2.4.) Now, we can derive the following: 

Algorithm 5 Line Segment Intersection 

Suppose we have line segment 𝑎𝑏̅̅ ̅ with end points (𝑥𝑎, 𝑦𝑎), (𝑥𝑏 , 𝑦𝑏) and line segment 𝑐𝑑̅̅ ̅  with 

end points (𝑥𝑐 , 𝑦𝑐), (𝑥𝑑 , 𝑦𝑑). We want determine whether they have an intersection. We first 

compute their slopes: 𝑘𝑎𝑏 =
𝑦𝑏−𝑦𝑎

𝑥𝑏−𝑥𝑎
, 𝑘𝑐𝑑 =

𝑦𝑐−𝑦𝑑

𝑥𝑐−𝑥𝑑
. If 𝑘𝑎𝑏 = 𝑘𝑐𝑑, they are parallel i.e. case 1 in 

Figure 31 or overlap with each other, and this is trival. Otherwise, we continue to compute the 

equations of line ab (the line passing (𝑥𝑎, 𝑦𝑎), (𝑥𝑏 , 𝑦𝑏)) and line cd by “two-point formula”: 

𝑙𝑖𝑛𝑒 𝑎𝑏: 𝑦 − 𝑦𝑎 = 𝑘𝑎𝑏(𝑥 − 𝑥𝑎) 

𝑙𝑖𝑛𝑒 𝑐𝑑: 𝑦 − 𝑦𝑐 = 𝑘𝑐𝑑(𝑥 − 𝑥) 

In this case, 𝑘𝑎𝑏 ≠ 𝑘𝑐𝑑, line ab and line cd must have an intersection, say (𝑥0, 𝑦0), expressed as 

(𝑥0, 𝑦0) = (
𝑦𝑐𝑘𝑎𝑏 − 𝑦𝑎𝑘𝑐𝑑 + 𝑥𝑎𝑘𝑐𝑑𝑘𝑎𝑏 − 𝑘𝑎𝑏𝑘𝑐𝑑𝑥𝑐

𝑘𝑎𝑏 − 𝑘𝑐𝑑
,
𝑦𝑐 − 𝑦𝑎 + 𝑘𝑎𝑏𝑥𝑎 − 𝑘𝑐𝑑𝑥𝑐

𝑘𝑎𝑏 − 𝑘𝑐𝑑
) 

All cases of possible (𝑥0, 𝑦0) are illustrated in Figure 31. 

Now we compute the convex parameters 𝜆𝑎𝑏 of (𝑥0, 𝑦0) and line ab and 𝜆 𝑐𝑑 of (𝑥0, 𝑦0) and 

line cd. By the Definition 1 

𝜆𝑎𝑏 (𝑥𝑎, 𝑦𝑎) + (1 − 𝜆𝑎𝑏)(𝑥𝑏, 𝑦𝑏) = (𝑥0, 𝑦0) 

𝜆𝑐𝑑  (𝑥𝑐, 𝑦𝑐) + (1 − 𝜆𝑐𝑑)(𝑥𝑑 , 𝑦𝑑) = (𝑥0, 𝑦0)  

We can use only x-coordinates to compute 𝜆𝑎𝑏 =
𝑥0−𝑥𝑏

𝑥𝑎−𝑥𝑏
, 𝜆𝑐𝑑 =

𝑥0−𝑥𝑑

𝑥𝑐−𝑥𝑑
. 
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Figure 31 All cases of two line segments 

 
Case 1 Parallel  

 Case 2 Intersection on the extension of both line segment 

 
Case 3 Intersection on the extension of one line segment 

 
Case 4 Segments have intersection 

From Figure 31, we see that different 𝜆s will yield in different cases. But only when 0 ≤

𝜆𝑎𝑏 ≤ 1, 0 ≤ 𝜆𝑐𝑑 ≤ 1 hold simultaneously, the line segments 𝑎𝑏̅̅ ̅ and 𝑐𝑑̅̅ ̅ will have 

intersection, i.e. case 4 in Figure 31.  

Moreover, it is possible that 𝑘𝑎𝑏 or 𝑘𝑐𝑑 does not exist, i.e. one line is vertical. In this case, we 

just compare the x-coordinate of the vertical one with the x-coordinates of the endpoints of 

another segment.  ∎ 

The complexity of Algorithm 5 is O(1). In our polygon P, we can set 𝑎 = 𝐶𝑘, 𝑏 = 𝐶𝑘+1, 𝑐 =

(𝑥′, 𝑦′) i.e., the center of circle. And for d, we can choose a point that is definitely outside the 

polygon to simulate a ray, for example, 𝑑 = (0,max{𝑐𝑘𝑦} + 1). Then for each 𝑘 = 1: 𝑛𝑠, apply 

Algorithm 5 with a,b,c,d  defined above. Finally, we count the number of intersections and 

figure out its parity to see if the center is located inside P.  
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If the center lies inside P, we need to check the second condition, i.e. (𝑥′, 𝑦′) stays away 

enough from the boundary of P. This is generally easy to do for convex polygons because we 

only need to compute the distance from (𝑥′, 𝑦′) to each edge 𝐶𝑘𝐶𝑘+1 denoted by 𝑑𝑘. The 

slope of edge e is 𝑒𝑘 =
𝑣𝑘𝑦

𝑣𝑘𝑥
, we have point-line distance formula [36]: 

𝑑𝑘 =
|𝑦′ − 𝑒𝑘𝑥

′ + 𝑒𝑘𝑐𝑘𝑥 − 𝑐𝑘𝑦|

√1 + 𝑒𝑘
2

 

Then we compute 𝑑 = min {𝑑𝑘, 𝑘 = 1: 𝑛𝑠}, and compare d with 𝑅′. If 𝑑 ≥ 𝑅′, then the circle 

lies sufficient far from boundary so that a feasible circle. Otherwise, the circle intersects with 

the boundary of the polygon at more than one points and is therefore infeasible. 

However, the situation is tricky when we work with non-convex polygons. As shown in Figure 

32, the circle is actually in the polygon, but the distances from its center (𝑥′, 𝑦′) to two edges 

that form a non-convex corner are all smaller than its radius 𝑅′. 

Figure 32 A case around non-convex corner 

 

Since the projections of (𝑥′, 𝑦′) is on the extensions of edge 𝐶𝑘𝐶𝑘+1 and edge 𝐶𝑘+1𝐶𝑘+2, the 

distance from the center to the edge is no longer useful for a judgment of their intersections. 

In this case, we should compare 𝑅′ to the distance from the center to the non-convex corner 
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k+1. In order to decide whether the projection from (𝑥′, 𝑦′) to 𝐶𝑘𝐶𝑘+1 is on its extension, we 

can follow most of the derivation of Algorithm 5 Line Segment Intersection. We first write 

down the equation of line 𝐶𝑘𝐶𝑘+1 and the line passing through (𝑥′, 𝑦′) and perpendicular to 

𝐶𝑘𝐶𝑘+1, and then compute their intersection (𝑥0, 𝑦0). Finally we compute the convex 

parameter 𝜆 for (𝑥0, 𝑦0) on line segment 𝐶𝑘𝐶𝑘+1 by the same way described in Algorithm 5. 

Once we have 𝜆, we can make our decision: 

If 0 ≤ 𝜆 ≤ 1, (𝑥0, 𝑦0) is on 𝐶𝑘𝐶𝑘+1. Then we apply the same strategy as convex polygon. 

Otherwise, (𝑥0, 𝑦0) is on the extension of 𝐶𝑘𝐶𝑘+1. Then we compute the distances from the 

center to the vertices 𝐶𝑘 and 𝐶𝑘+1, say 𝑑𝑘 = √(𝑥′ − 𝑐𝑘𝑥)
2 + (𝑦′ − 𝑐𝑘𝑦)

2
 and 𝑑𝑘+1 =

√(𝑥′ − 𝑐(𝑘+1) 𝑥)
2
+ (𝑦′ − 𝑐(𝑘+1) 𝑦)

2
 respectively.  

If min{𝑑𝑘, 𝑑𝑘+1} ≤ 𝑅′, the circle is feasible in P. Otherwise, it is infeasible. 

Note that the above decision-making process is mandatory for all edges of P since we do not 

know which corner is non-convex in advance.  

2.4.6 Some Numerical Experiments of Anti-GGL Scheme 

It is necessary to test the anti-GGL in some complicated polygonal region since it is totally 

different from the GGL. In the tests, we all assume that our packing uses the circle set with 30 

circles with radius 𝑅1 = 0.2, 30 circles with radius  𝑅2 = 0.1√2 ,30 circles with radius 𝑅3 =

0.1And position strings are random permutations of  𝑛𝑠. 

Experiment NO.1. Anti-GGL in Vertical-Horizontal Region As shown in Figure 33, we packed 

circles from the set defined above in a non-convex region with rectangular corners. The region 

has 12-sides and it is definitely more complicated than the L-shaped region. From the picture 

we can see that the center part of the region is packed entirely with big circles, as expected. 

The percentage of area covered by packing is 73.04%, which is quite enough for our design 

goal. 
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Figure 33 Anti-GGL Experiment 1 

 

Figure 34 Anti-GGL Experiment 2 

 

Experiment NO.2. Anti-GGL in a Complicated Polygon. In this experiment, we pack circles in a 

non-convex polygonal region. This is a typical case with all characteristics of a complicated 

polygon. In Figure 34, the percentage of covered area of packing is 75.58%. Since we use random 

position string, we could run several iterations and choose the best one. However, this technique 

does not work very well in anti-GGL scheme. In fact, after running the experiment 100 times, the 

covered area is only 76.21%, which means a slight improvement. Therefore, for anti-GGL, it is not 

worth to run a lot of iterations for the algorithm. 

2.4.7 Summary of Anti-GGL 

From the above experiments, we see that the anti-GGL scheme provides a packing solution that 

satisfies all our requirements; the solution has big circles in the center with smaller circles 

surrounding them. Also, since the scheme considers big circles first, it packs almost the maximum 

number of big circles that can be packed in the region. The position string in the anti-GGL is not as 
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essential as it is in the GGL. No matter what position string we choose, the anti-GGL will always pack 

the same number of big circles. A different position string will only affect the position priority of 

smaller circles, and thus it has little contribution to covered area since the most area are covered by 

big circles.  But the total area covered by packed circles in the anti-GGL is not as good as the GGL. 

The reason for this phenomenon is that the GGL uses sides as a reference for placement of a new 

circle. As such, the GGL actually makes the most use of the shape of the region. However, in 

practice, especially for tubes in a container, we want to keep tubes away from the sides of container 

for some distance because we need to fill a certain amount of insulating material between tubes 

and the container wall. From this aspect, the anti-GGL is more practical than the GGL in this tubular 

network problem and it was finally implemented for packing tubes.  

2.5 Packing in a Shrunken Polygon 

Although the anti-GGL can keep circles away from sides, there is no method to control the distance 

between sides and circles. For example, if we want to place a circle with radius R and the center 

which has a distance R from a side, anti-GGL will pack the circle tangent to the side. If we want to 

keep all circles away from sides for a certain distance, the above situation should be avoided. This 

can be achieved by shrinking the polygon P by a certain distance d, and running anti-GGL in the 

shrunken polygon.  

2.5.1 Problem Description  

Suppose we have a polygon P defined by 𝐶𝑘 = (𝑐𝑘𝑥, 𝑐𝑘𝑦), and the displacement vectors 𝑉𝑘 =

(𝑣𝑘𝑥, 𝑣𝑘𝑦), 1 ≤ 𝑘 ≤ 𝑛𝑠 as in subsection 2.4.1. Our goal is to shrink polygon P to a new polygon 

P’ by moving all sides inward by a distance d. In this way, the sides of P’ are parallel to P 

corresponding sides of P. A visual example is illustrated in Figure 35. 
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Figure 35 An example of shrink polygon P to P' by d 

 

2.5.2 Compute the Vertices of P’ 

By the way in which we define a polygon, we can either compute the coordinates of vertices 

𝐶𝑘
′ of P’ or compute the displacement vectors 𝑉𝑘

′ of P’. In this case computing 𝐶𝑘
′  is more 

convenient. In fact, for each corner of P, it is adjacent to two edges of P. If we translate the 

lines of two edges in the directions of their normal vectors toward interior of P with length d 

and compute the intersection of the translated lines, this intersection will be a corner of P’. 

This idea is illustrated in Figure 36. With this idea, we can derive the following algorithm: 

Algorithm 6 Shrinking Polygon 

Our polygon is described in previous subsection. We want to compute 𝐶𝑘
′  for P’. 

Suppose a corner k formed by line 𝐶𝑘−1𝐶𝑘 and 𝐶𝑘𝐶𝑘+1.  Now the first step is to translate 

𝐶𝑘−1𝐶𝑘 in a direction of its normal vector with length d. Since we define the polygon in a 

counter-clockwise orientation, the unit normal vector toward the interior region of P can be 

defined as a 
𝜋

2
-rotation of unit vector of 𝑉𝑘 counter-clockwise. The rotation matrix is  

𝑅 = [
cos (

𝜋

2
) −sin (

𝜋

2
)

sin (
𝜋

2
) cos (

𝜋

2
)

] = [
0 −1
1 0

]. 
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Figure 36 Intersection of translated edge vector 

 

The desired normal vector with length d can be computed by (See Figure 36) 

𝑛𝑘 = 𝑑 ∙ 𝑅
𝑉𝑘−1

‖𝑉𝑘−1‖
. 

The line 𝐶𝑘−1𝐶𝑘 in vector form is  

(𝑥, 𝑦) = 𝐶𝑘−1 + 𝑡1 ∙
𝑉𝑘−1

‖𝑉𝑘−1‖
. 

After translation by 𝑛𝑘, the line is (𝑥𝑘 , 𝑦𝑘) = 𝐶𝑘−1 + 𝑛𝑘 + 𝑡1 ∙
𝑉𝑘−1

‖𝑉𝑘−1‖
. 

Then we perform the previous step for line 𝐶𝑘𝐶𝑘+1, the translated line is 

(𝑥𝑘+1, 𝑦𝑘+1) = 𝐶𝑘 + 𝑛𝑘+1 + 𝑡2 ∙
𝑉𝑘

‖𝑉𝑘‖
. 

The intersection of (𝑥𝑘, 𝑦𝑘) and (𝑥𝑘+1, 𝑦𝑘+1) is 𝐶𝑘
′  which is the coordinate desired (See Figure 

36). Setting these two line equations equal, we obtain 

𝐶𝑘−1 + 𝑛𝑘 + 𝑡1 ∙
𝑉𝑘−1

‖𝑉𝑘−1‖
= 𝐶𝑘 + 𝑛𝑘+1 + 𝑡2 ∙

𝑉𝑘

‖𝑉𝑘‖
 

𝑡1 ∙
𝑉𝑘−1

‖𝑉𝑘−1‖
− 𝑡2 ∙

𝑉𝑘

‖𝑉𝑘‖
= 𝐶𝑘 − 𝐶𝑘−1 + 𝑛𝑘+1 − 𝑛𝑘 

(𝑡1, 𝑡2)

[
 
 
 

𝑉𝑘−1

‖𝑉𝑘−1‖

− 
𝑉𝑘

‖𝑉𝑘‖]
 
 
 

= 𝐶𝑘 − 𝐶𝑘−1 + 𝑛𝑘+1 − 𝑛𝑘 
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(𝑡1, 𝑡2) = (𝑉𝑘−1 + 𝑛𝑘+1 − 𝑛𝑘)

[
 
 
 

𝑉𝑘−1

‖𝑉𝑘−1‖

− 
𝑉𝑘

‖𝑉𝑘‖]
 
 
 
−1

. 

After we have the pair (𝑡1, 𝑡2), we can substitute it into the line equation for (𝑥𝑘 , 𝑦𝑘) or 

(𝑥𝑘+1, 𝑦𝑘+1) to obtain the intersection 𝐶𝑘
′ .  

Do all the previous steps for 𝑘 = 1 𝑡𝑜 𝑛𝑠, with 𝐶𝑛𝑠+1 = 𝐶0.  ∎ 

Note: The major step in computing 𝐶𝑘
′  is solving (𝑡1, 𝑡2). Since above system is 2-by-2, computing 

inverse of matrix [

𝑉𝑘−1

‖𝑉𝑘−1‖

− 
𝑉𝑘

‖𝑉𝑘‖

] only takes O(1) complexity, which means that computing each 𝐶𝑘
′ is 

O(1). Since the algorithm compute 𝐶𝑘
′  for every vertex, the complexity for Algorithm 6 is O (n), 

where n is the number of sides of the polygon. 

Figure 37 Shrink Experiment 2 by 0.1 
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We shrunk he polygon in Figure 34 by d=0.1, and then packed same circle set in the shrunken 

polygon. The result is shown in Figure 37. 

2.6 Summary of the Chapter 

In this chapter, we have investigated several algorithms for circle packing. Starting with the simplest 

approach, we concluded with a big picture of the algorithm we want. Based on this, the GGL packing 

scheme seems to be a perfect choice. We studied, implemented, modified and generalized the GGL 

scheme in order to satisfy requirements of our problem. However, the GGL is designed for physical 

problem with gravity such as putting bottles into a vertical box. Although the packing provided by 

GGL has high packing efficiency, it is not suitable for tubes in a container due to resistance to impact 

and flow heat transfer. Then, we developed a new algorithm called the anti-GGL algorithm. we 

studied all the concepts of the GGL algorithm such as position number and constraints in a polygon 

region, and packed circles with the priority of packing bigger circles in center. Anti-GGL is actually a 

combination of the idea in our simple approach and techniques in the GGL. In fact, anti-GGL in 

polygonal region is the algorithm we have been using to pack tubes into cross-section areas.  

We also develop an algorithm for shrinking polygon to control the distance between packed tubes 

and container boundary. Nevertheless, shrinking a polygon is not only meaningful for packing tubes, 

but also for design of container shapes. With the shrinking algorithm, we could design containers 

with similar cross-sectional shapes, but the details about complicated 3D surface of a container is 

beyond the scope of this thesis. 

Circle packing is the most important part of our design since a good packing of tubes directly 

corresponds to the total volume of the tubular system. It is, however, a start of the whole 

design problem. After that, making connections between packed tubes will be another problem. 
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Chapter 3 Preparations for Connection 

In this chapter, several definitions and assumptions will be discussed in order to formulate a 

method to connect packed tubes in a cross-sectional area. We first define the fundamental 

elements for connection. These elements are basically deformed and holed straight tubes. A 

feasible tubular network must be able to be decomposed into combinations of finite elements. 

Then we will investigate the interference problem between tubes while trying to make a simple 

combination of two elements. We have a new definition to quantify how bad the interference 

is, and this definition will be an important criterion for making decision of connection. Finally, 

we convert the information of packed circles in a cross-section into a graph with all possible 

connection. In next two chapters for solving connection problem, the method is based on the 

result of this chapter. Thus, this chapter is a transition between tube packing and tube 

connection.  

3.1 Fundamental Elements 

Connection between tubes is not trivial since it is not reasonable to make an arbitrary 

connection. In fact, once a tubular network system is produced, some simulations of flow 

dynamics and heat transfer are required [5]. Some connections will result complicated dynamic 

situations such as turbulence and vortices. Such connections should be avoided since they may 

affect the accuracy of simulation. However, sometimes a complicated geometry is required to 

make a necessary connection. Thus it is essential to figure out the connections that are 

necessary and feasible. The fundamental components of these connections are called elements. 

A tubular network system should be constructed by using only finite number of these elements.  

In particular, in order to simplify the network and simulation, we should define as few 

elements as possible. For an existing connection, it is much better to reduce it to combinations 

of existing elements rather than define new elements. In our entire design strategy, we actually 
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need only three fundamental elements. We will also need to introduce a modified element in 

future, but it will be introduced in order to solve different problem. 

1. I-block element 

Figure 38 I-block 

 As shown on Figure 38, this block is actually a straight tube with same radii at both ends. This 

element is required everywhere since it is a tubular network and most of packed tubes are 

straight cylinder tubes. The flow and heat transfer are simple for straight tubes with a given 

length. Thus, the length is arbitrary. 

2. L-block element 

Figure 39 L-block 

Abstract representation of L-block  

 

Perspective view of L-block  

 

Front view of L-block 

 

Side view of L-block 

 

Abstract representation of I-block  

 

Perspective view of I-block 
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Sometime it is referred as “bend”, a 90-degree bend with same radii on both ends. It can also be 

considered as a quarter torus with zero inner radius. This element will be used most frequently 

when connecting tubes at the ends of the container.  

3. T-block element 

Figure 40 T-block 

Abstract representation of T-block 

 

Perspective view of T-block 

 

Front view of T-block 

 

Side view of T-block 

 

We also call it “tee”. It is designed for a tube with radius R1 merge to a tube with same radius in 

a perpendicular direction. Since the element should be structurally stable, the length of the 

tube coming in is R1, and the length of the tube receiving the merging is 2R1. If the tubes are 

shorter, the block will not form a complete merging operation.  

Since there are not many merging operations in our design, this block is used much less often 

than L-block, but it has to be allowed. 
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In this thesis, all network design and tube operations are based on above three fundamental 

elements. From their picture, we could see that each element has only one radius. It means that 

the above three elements could only connect tubes with same radius. Although it is believed 

that connecting tubes with multiple radii would be much harder, we only need one more 

element for multiple size tubes. The idea of this new element comes from a fundamental 

element of connection. Thus, it is beneficial to discuss the simple case of equal radii before 

moving onto the new element. 

3.2 End-caps and Interference 

Consider the simplest type of connection----connecting two adjacent straight tubes with same 

radius at their ends. We can connect them by using two L-blocks facing each other, i.e. a “180-

degree bend”.  (See Figure 41) 

Figure 41 Endcaps 

 

 

This connection is usually used at the ends of each cross-section. Therefore, it is called an end-

cap connection. In Figure 41, the blue parts are end-cap connections.  
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It is almost trivial to make one end-cap connection. However, problem arises when making 

more than one end-cap connection, especially when their connections are close to each other. 

3.2.1 Interference 

Consider the case shown in Figure 42, where we have connected tube c1 and tube c2 with end-

caps constructed by two bends. We also have a tube c3 with same radii, which is packed by 

anti-GGL scheme tangential to both c1 and c2. We are unable to make any end-cap connection 

with c3 since the end-cap of c1 and c2 will block some space enclosed by tube c3 (In Figure 42, 

the two line segments tangent to both c1 and c2 define the end-cap, the dashed line is the 

space above c3 that is blocked by the end-cap). Since the end-cap interferes with our other 

connection, we call this problem interference problem of end-caps. The interference always 

exists if we use Algorithm 3 Two Circle Packing Algorithm to place new circles such as the GGL 

algorithm and the anti-GGL algorithm. In the packing result of naïve approach, interference will 

not occur because Algorithm 3 is not employed. 

Figure 42 Interference of end-cap 

 

 

 

Note that the interference is not limited to an end-cap between two adjacent circles. In the 

right part of Figure 42, we could also see that, an end-cap can be constructed by using two L-

blocks on two tubes and an I-block connecting two L-blocks. This end-cap connects two non-
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adjacent circles. There will also be circles between their connection, so it is also an interference 

problem.  

As mentioned in the summary of the first chapter, we use the anti-GGL with shrunken polygons 

to pack tubes. In this case, the interference will be a major problem, and it must be solved. The 

elements we have right now cannot contribute to the solution of this problem. Therefore, we 

need to create new element. But before that, we need a certain way to measure how bad 

interference is.  

3.2.2 Interference Ratio  

Suppose we have three circles with centers c1,c2,c3 and radius r1,r2,r3, i.e. the circles are 

arbitrary but do not intersect. Suppose that we connect c1 and c2 with an end-cap connection. 

We now determine how much will c3 interfere with the end-cap between c1 and c2.  

Figure 43 General formulization of interference 

 

At this time, we consider the general formulization of multiple circle sizes despite additional 

complication involved in connecting two tubes with different radii. 



 

  57 

From Figure 43, we see that the actual part of c3 that interfere with the end-cap between c1 

and c2 is characterized by the the dashed line. In order to avoid interference, the dotted line in 

Figure 43 is the maximum allowable radius of the narrowest part of the end-cap. Thus, we 

define the interference ratio of c1, c2 w.r.t to c3 is  

𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝛾 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒

min{𝑟1, 𝑟2}
. 

The key part of computing 𝛾 is to compute the length of dotted line. 

In fact, 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑜𝑡 𝑙𝑖𝑛𝑒 = (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐3 𝑡𝑜 𝑙𝑖𝑛𝑒 𝑐1𝑐2) − 𝑟3. 

Note that the above case will only happen if center c3 is in the white area in Figure 43. If c3 is in 

the shadowed area in Figure 43, it will not interfere with the end-cap of c1 and c2. This can be 

easily checked by computing ∠𝑐3𝑐1𝑐2 and ∠𝑐3𝑐2𝑐1 using cosine law in △ 𝑐1𝑐2𝑐3. If any of 

∠𝑐3𝑐1𝑐2 or∠𝑐3𝑐2𝑐1 is greater or equal to 90 degree, c3 is in the shadowed area. 

Now we suppose c3 is in the white area. The distance from c3 to line c1c2 is actually the height 

of △ 𝑐1𝑐2𝑐3 over edge c1c2. We can compute the area of △ 𝑐1𝑐2𝑐3  by Helen’s formula: 

𝑎𝑟𝑒𝑎 𝑜𝑓 △ 𝑐1𝑐2𝑐3 = √𝑝(𝑝 − |𝑐1𝑐2|)(𝑝 − |𝑐2𝑐3|)(𝑝 − |𝑐1𝑐3|),  

𝑤ℎ𝑒𝑟𝑒 𝑝 =
|𝑐1𝑐2| + |𝑐2𝑐3| + |𝑐1𝑐3|

2
 

Also, 

𝑎𝑟𝑒𝑎 𝑜𝑓 △ 𝑐1𝑐2𝑐3 =
1

2
|𝑐1𝑐2| ∙  (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐1𝑐2) 

Equating the right hand side, we may solve for the height of c1c2, 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐1𝑐2 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐3 𝑡𝑜 𝑙𝑖𝑛𝑒 𝑐1𝑐2 =
2√𝑝(𝑝 − |𝑐1𝑐2|)(𝑝 − |𝑐2𝑐3|)(𝑝 − |𝑐1𝑐3|)

|𝑐1𝑐2|
 

so that 
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𝛾 =

2√𝑝(𝑝 − |𝑐1𝑐2|)(𝑝 − |𝑐2𝑐3|)(𝑝 − |𝑐1𝑐3|)
|𝑐1𝑐2|

− 𝑟3

min{𝑟1, 𝑟2}
 

From the above formula, we see that if 𝛾 ≤ 0, circle c3 will block the line segment between c1 

and c2, and c1 and c2 will never be connected. This is the easy case. We will now discuss the case 

𝛾 > 0. 

3.2.3 Interference Tolerance 

Now we apply 𝛾 as a criterion in our packed tubes. Assume that 𝛾 > 0, since 𝛾 ≤ 0 is trivial. 

From the definition of 𝛾, if 𝛾 ≥ 1, there will be no interference between c1 and c2. Therefore, 

the tricky case is when 0 < 𝛾 < 1, and our discussion focus on this situation. Due to the 

placement of a new circle in anti-GGL, most of our packing is “triangular packing”, i.e. left case 

in Figure 42, three circles with same radii tangent to each other. Despite of interference, this 

connection has to be allowed because most of circles placed by anti-GGL are in this form. In 

fact, 𝛾 = 0.7321 for this triangular packing, and it is very fundamental. Based on the formula in 

previous subsection, the smaller 𝛾 indicates a larger interference. All pairs of circles for which 

𝛾 ≥ 0.7321 are eligible for connecting since the interference is better that the fundamental 

case. In practical, we may need this condition to be weaker, i.e. we will allow some connections 

with smaller 𝛾. Therefore, we could set a tolerance 𝜸 denoted by 𝛾𝑡𝑜𝑙, and we could connect all 

pairs of tubes with 𝛾 ≥ 𝛾𝑡𝑜𝑙 to be connected. 

Note that 𝛾𝑡𝑜𝑙 is not trivial or arbitrary. It cannot be greater than the fundamental case. In our 

standard problem, the range for choosing 𝛾𝑡𝑜𝑙 is 0 < 𝛾𝑡𝑜𝑙 ≤ 0.7071 < 0.7321. We will explain 

why 0.7071 is the upper bound of 𝛾𝑡𝑜𝑙 in the next two subsections. 

3.2.4 Approaches to Interference 

Based on the argument in previous subsections, we actually want to ensure that connection 

have “good”, i.e. high 𝛾, interference. For bad interference, i.e. 𝛾 < 𝛾𝑡𝑜𝑙, we do not want to 

make any connection at all. Since the elements defined in subsection 3.1 is not adequate for 
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this problem, we need to define new elements for solving interference. However, when 

introducing the new element, the following principles should be considered: 

1. The geometry of the elements should be simple. This principle is for convenience of 

simulation. An element such as an X-block is not allowed anywhere. 

2. Introducing elements as less as possible. If we really need more than one element, it is 

better if they have similar geometrical shapes. 

3. The elements should be smooth. The elements should not have any sharp edge. This is 

most concerned because flow near sharp edges can be very complicated. 

4. The elements can be used in other cases.  

5. Loss of volume is minimized. Solving the interference problem involves shrinking the 

end-caps. In our design problem, maximizing the volume of the tubular system is the 

top priority. Shrinking end-cap would result in some volume lose, and we want the lost 

volume to be minimum.  

Using above five principles, we can try to determine how good an interference solution is. The 

first approach to our interference problem is the narrowed end-cap shown on Figure 44. 

Figure 44 Narrowed end-cap 

 

Figure 45 Bend with two radius 

 

Is this solution good? We can check our five principles. The elements we introduce are (i). a 

straight tube with changing diameters. (ii). a bend with non-zero inner radius. They are simple, 

but the introduced elements can only be used in this case. Almost everything can be 
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implemented without these two element. The worst part for this solution is that it loses too 

much volume. Half of the volume of end-cap is wasted in the thin bends connecting two tubes. 

As a result, this solution is neither the best nor the worst. It is just a naive approach to shrink 

the end-cap. 

Now, it is time to bring back to our original elements from subsection 3.1. If we create a new 

element by modifying some fundamental elements, this element would definitely satisfy all 

five principles except principle 4. A natural idea is to modify the bend, i.e. the L-block. As 

shown on Figure 45, if we allow the two ends of bend to have different radii and one moves 

from the center of one circle to the center of the other circle in an elliptical path, we have 

produced a more satisfactory shrunken end-cap.  

3.2.5 The New Element: Modified L-block 

From the above idea in Figure 45, we create this new element, called a modified L- block. 

Assume if that R2<R1, some views of the modified L-block are shown below: 

Figure 46 Modified L-block 

Abstract representation   

 

Perspective view 

 

Front view 

 

Side View  
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Very fortunately, we can generate a more beautiful representation of the geometry of this 

element. Note that the 3D model tool for drawing this element is different from previous 

elements. The 3D models of elements in section 3.1 were created by SoildWorks. However, 

the 3D representation of modified L-block shown above was produced using Mathematica. 

Mathematica allows one to work with mathematical parameterization for the surface of 

modified L-block. The formula of the parameterization is  

x(θ, ϕ) =
𝑅1𝑅2(1 + 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜙

√𝑅12 cos2 𝜙 + 𝑅22 sin2 𝜙
, 

y(θ, ϕ) =
𝑅1𝑅2(1 + 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜙

√𝑅12 cos2 𝜙 + 𝑅22 sin2 𝜙
, 

z(θ, ϕ) =
𝑅1𝑅2𝑠𝑖𝑛𝜃

√𝑅12 cos2 𝜙 + 𝑅22 sin2 𝜙
. 

𝑊ℎ𝑒𝑟𝑒 𝜃 ∈ [0,2𝜋], 𝜙 ∈ [0,
𝜋

2
] , 𝑅1 𝑎𝑛𝑑 𝑅2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑟𝑎𝑑𝑖𝑖 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑𝑠. 

A derivation of the above formula is presented in Appendix A. 

The range of 𝜙 ∈ [0,
𝜋

2
] will only yield a single element, a 90-degree bend. If we choose 𝜙 ∈

[
𝜋

2
,
3𝜋

2
], the result is an end-cap with connecting two tubes with radius R1 but with a radius 

R2<R1 between them, as shown in Figure 47. 

Figure 47 End-cap of Modified L-block  

 
 

This is exactly what we need. In ultimate design problem, we packing shall be tubes with three 

radii i.e. 𝑅1 = √2𝑅2 = 2𝑅3. We can choose the radii of two ends of a modified L-block to be 
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𝑅1 = 𝑅1, 𝑅2 = 𝑅2. The R2 corresponds to the dotted line in Figure 43. The interference ratio in 

this case is  

𝛾 =
𝑅2

𝑅1
=

𝑅2

𝑅1
=

1

√2
= 0.7071 

The nice thing is that 0.7071 < 0.7321, which means that it works in the “triangular packing” 

case. This is the reason why choosing 0.7071 as the upper bound of 𝛾𝑡𝑜𝑙 in subsection 3.2.3. 

One advantage of defining the modified L-block in this way is that it can be used in other 

connections, for example, connecting two tubes with different radii, i.e. 𝑅1 = √2𝑅2 in our 

standard problem. In Figure 48, two tubes with different radii are connected by an end-cap 

constructed by a L-block and a modified L-block.  

Figure 48 End-cap of two tubes with different radii 

 

This element was introduced in order to solve the interference problem, but it seems to 

provide a practical way of connecting tubes with two different radii. In conclusion, the 

modified L-block element comes from our original fundamental element, so it is simple, 

smooth and efficient. However, by choosing some specific radii for the element, it can also be 

used in other connections such as end-cap connections between two different tubes. It 

satisfies all five principles for defining a new element, and thus it is a perfect new element. 

3.3 Graph Representation for Possible Connection 

Now with a complete list of elements and interference ratios, we can decide which pairs of 

tubes are eligible to be connected. Once we have determined all possible connection, we need 

to construct a mathematical representation that could represent the relationship of possibility 

of connection. Graph provides a good mathematical representation. 
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Definition 2 Graph [10] A graph G=(V, E) consists two sets V and E 

 The elements in V are called vertices. 

 The elements in E are called edges. 

 Each edge has a set of one or two vertices associated to it, which are called endpoints. An 

edge is said to join its endpoints. 

For our problem, we construct a graph by setting the set of centers of tubes as the vertices V 

and adding connecting two vertices with an edge if the corresponding tubes can be connected. 

Note that such a graph is constructed at every cross-section of packed tube. At first, we need 

to initialize an interference tolerance 𝛾𝑡𝑜𝑙 > 0. Any two tubes with interference ratio greater 

than 𝛾𝑡𝑜𝑙 will not be connected so that their corresponding vertices will not form an edge in 

the graph. The algorithm is described by mean of pseudocode: 

Algorithm 7 Constructing Connection Graph 

Input: n Packed tubes/circles with centers (c1,c2,…cn). 𝛾𝑡𝑜𝑙 > 0, interference tolerance. 

Output: Graph G with edges that define all possible connections 

Initialization: Graph G=(V, E), V=(c1,c2,…cn), i.e. centers of packed tubes. 𝐸 = ∅ 

 for circle i =1:n 

  for circle j=(i+1):n 

   if line segment ci-cj intersects with polygon boundary (Algorithm 5) 

    continue 

   else 

    compute  

   𝛾 = 𝑚𝑖𝑛{𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑤. 𝑟. 𝑡 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑡𝑢𝑏𝑒𝑠}  

    if 𝛾 ≥ 𝛾𝑡𝑜𝑙 

     add edge (ci,cj) to graph G 

    else  

     continue 

  endfor 

 endfor 

  Output graph G after all iterations are finished. ∎ 
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This algorithm basically checks all possible pairs of connections. The good news is that both 

Algorithm 5 and computing interference ratio are O(1). The bad news is that the running time 

of this algorithm is not better than the GGL packing algorithm. In fact, it takes n(n-1) 

operations to check all possible pairs of tubes. Also for each pair, computing the minimum of 

interference ratio of the pair w.r.t all other tubes in the packing set takes (the operations of 

computing one interference ratio)*(n-2); since the first part is O(1), the complexity of this part 

is O(n-2). The complexity for the whole algorithm is O(n(n-1)(n-2))=𝑂(𝑛3). 

A visual example of one output with corresponding packed circles is shown on Figure 49. It is 

created by Matgraph---a plugin of Matlab for graph theory [18]. 

Figure 49 An example of connection graph 

 

In this figure, we choose 𝛾𝑡𝑜𝑙 = 0.7071. Green dots are the vertices of connection graph G. The 

blue lines are the edges of G, which define possible connections. In this case, we could see that 

some edges cross each other; thus these crossing edges cannot be chosen as connection at the 

same time. In our Matlab implementation, we output another list which contains all crossing 

edges; Every time when we make connection decisions, we will inspect this list to see if there are 

any conflicts. Algorithm 7 can be significantly improved to linear complexity. In fact, it is not 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6



 

  65 

necessary to check all pairs of tubes. We do not want to connect two tubes that are too far away 

from each other. For each tube, we consider connecting it with the tubes within some 

neighborhood of it. In this case, we can use information from our anti-GGL packing scheme to 

construct a neighborhood with fixed radius for each tube. We need only to check possible 

connections within this region. The data structure of this improvement needs to use the idea of 

adjacent list; detail for this improvement and complexity analysis can be found in the Appendix B. 

However, this improvement requires information from a sequential packing algorithm such as 

anti-GGL packing scheme, which means that it has to be built into the packing algorithm 

program. If the packing algorithm is not GGL or anti-GGL, this improvement may not be better 

than Algorithm 7. Therefore, since this improvement does not work for given arbitrary packing, it 

is not implemented in our case. 

3.4 Moving towards the Connection Problem 

The output of Algorithm 7, graph G, is the final result of this chapter. In the next two sections, 

we will discuss algorithms for choosing connections at one cross-section. These algorithms are 

classical discrete optimization algorithms, and they will be performed on our connection graph 

G. The edges selected by these algorithms as solutions define connections that we decide to 

make. Details about what kinds of connections we want and how these algorithms work will 

not be discussed here, but since G is sparse, there will be some tricks involved in these 

algorithms.  

Moreover, in this chapter, we have defined the fundamental elements: I-block, L-block, T-block 

and modified L-block. In Chapter 5, we will use these elements to construct operations on 

tubes at different cross-sections. Based on these elements, we shall illustrate what operations 

we allowed and what operations are disallowed.  

In conclusion, this chapter provides all the background information as well as connection graph 

G constructed from packed circles for making decisions about connecting. It is a transition 
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between our circle packing problems and connecting problems. Although this chapter is non-

technical, it is still fundamental and essential.  
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Chapter 4 One-Path Network and Travelling Salesman 

Problem (TSP) 

Designing a tubular network system by connecting tubes in regions with varying cross-sections 

is a generally difficult problem. In this chapter, we will investigate this problem by starting with 

the construction the simplest tubular network system---the one-path network system. This 

system is designed for packed tubes in a container with non-varying cross-sections (like the 

barbeque pool heater), so the container in this chapter has two identical ends.  

Although this system is the simplest, the connection problem for designing such system is non-

trivial. In fact, we will reduce the connection problem in this case as a classical combinatorial 

optimization problem called the travelling salesman problem (or TSP) with the connection graph G 

defined in last chapter. The TSP problem is NP-Complete, so there is no polynomial-time algorithm 

that can generally solve this problem. However, it does not mean that TSP cannot be solved in 

some special cases. As we concluded in last chapter, our connection graph G is sparse and 

Euclidian. Therefore, we can play some tricks when we choose our algorithm for TSP.  

4.1 One-Path Network System 

Before we continue with the details of our problem, several clarifications and assumptions are 

necessary. Suppose we have a prism container with longitudinal symmetry, i.e. non-varying cross-

section and identical ends. We also have tubes packed in the cross-sections of the container. 

Because of the longitudinal symmetry, the packed tubes are straight tubes and the packed circles 

in the front end and rear end are same. Thus, the connection graphs for packing in front end and 

rear end are also same; we denote this graph by G for both ends. Actually, in this chapter, we will 

apply our algorithm on one graph for two ends since they have identical connection graphs.  

Now we can define the one-path network system. We choose a tube as inlet and another tube 

as outlet, and we make connections between all tubes. If the connected tubes form one long 

tube, this system is called a one-path network system. Moreover, the inlet and outlet of our 
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system should be same as the ones we choose. An example of one-path network system is 

presented in Figure 50. 

Figure 50 Small example of one-path system 

 

In Figure 50 (a), 5 circles are packed into the region of rectangle. On (b), it can be seen that the 

packing is identical at two ends. We choose tube 1 as inlet and tube 5 as outlet, and then we 

connect 1 to 2, 2 to 3, 3 to 4 and 4 to 5. This connection forms a long tube with 1 as inlet and 5 

as outlet. In this case, the inlet and outlet are on different ends. It seems to be trivial, but this 

example only illustrates the concept of one-path system. It does not show any complexity of the 

system. In fact, the connection graph in Figure 50 is the simplest graph called path. However, 

from this example, we can conclude some characteristic of one-path system. 

 The one-path system contains no T-blocks. A T-block produces bifurcation in the network. A 

long tube has no bifurcation. 

 All tubes are connected. Every tube in the packing except the inlet and outlet are 

connected by two end-caps, one end-cap at each end. No tube will be left alone without 

being connected to other one. 
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 The locations of inlets and outlet depends on the number of packed tubes. If the number 

of packed tubes is odd, i.e. 5 in Figure 50, the inlet and outlet are situated on different 

side. Otherwise, they are on the same side. 

As a result, we have a big picture of what connections we want to pick. If we have chosen the 

inlet and outlet, we want a connection that visits every tube exactly once at each end in 

alternating order. Since we have one connection graph for both ends, that is equivalent to pick 

edges in G that these edges visit every vertex in G. Note that edges G contains all possibility of 

connections for both ends. Thus, edges picked as connections should visit every vertex exactly 

once for the inlet and outlet vertices and twice for all other vertices. Now the question is that: Is 

there any concept in graph theory that dealing with the visitation of every vertex? The answer is 

yes; it is the concept of a Hamiltonian cycle. 

4.1.1 Hamiltonian Cycle 

Definition 3 [10] Walk. A walk in a graph G is an alternating sequence of vertices and edges: 

𝑊 = 𝑣0, 𝑒1, 𝑣1, 𝑒2, … , 𝑒𝑛, 𝑣𝑛 

such that for j=1,…,n, the vertices 𝑣𝑗−1and 𝑣𝑗 and end-points of 𝑒𝑗 

Definition 4 [10] Path. A path is a walk with no repeating edges or vertices. 

Definition 5 [10] Cycle. A cycle is a path with 𝑣0 = 𝑣𝑛. 

With all above definitions, we can define a Hamiltonian cycle.  

Definition 6 [10] Hamiltonian Cycle. A Hamiltonian cycle of graph G is a cycle that visits 

each vertex of G exactly once. 

An example of a Hamiltonian cycle in a connection graph G is shown on Figure 51 which is the 

connection graph of packing of big circles in Figure 34. The red lines comprise the cycle. Finding a 

Hamiltonian cycle is a classical problem in combinatorial optimization. It is NP-complete, so there 

is no deterministic polynomial time algorithm to solve it. The best known deterministic algorithm 

is dynamical programming which has a run time of  𝑂(𝑛22𝑛) [20]. It is a little better than 
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enumerating all possible cycles which is 𝑂(𝑛!), but it is still infeasible for graphs with more than 

30 vertices. Therefore, we need to consider non-deterministic algorithms. 

Figure 51 Hamiltonian cycle in a connection graph 

 

Moreover, in our system, we do not want a long closed tube. We want a long tube with a 

chosen inlet and a chosen outlet. Therefore, instead of cycle, path is a more useful instance for 

our problem. Similar to Hamiltonian cycle, a Hamiltonian path of graph G is a path from a 

vertex to another vertex that visits each vertex of G exactly once. If we set the start vertex as 

the inlet and end vertex as outlet, a Hamiltonian path between them will correspond to a one 

long tube between the inlet and outlet. 

4.1.2 Corresponding Hamiltonian Path to a One-path Network System 

This subsection perhaps is the key of this chapter. 

 Figure 52 shows how a Hamiltonian path in G corresponds to a one-path network in cube 

container. Several explanations are required.  
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Figure 52 Relation between Hamiltonian path and a one-path network system 

 

In this Figure 52, 9 tubes are packed in a cube container with a square cross-section. Obviously, 

the packing is neither GGL nor anti-GGL. It looks like the naïve approach, but it does not matter 

because this is enough to illustrate the idea. The left diagram in Figure 52 is the packing and 

the connecting graph G. Both blue and red lines are edges in G. The red lines are the edges 

chosen to define the Hamiltonian path starting from tube 1 to tube 9. As shown in the right 

diagram in Figure 52, tube 1 is the inlet of the system and tube 9 is its outlet. The right part is 

the 3D representation of the packed tubes with connection. The red arcs represent the end-

cap connections that correspond to the red edges in left part. The red dotted line indicates 

that the end-cap is on the front side of the container, and the red dashed line indicates that 

the end-cap is on the rear side of the container. This description also applies in the left 

diagram. As a result, we can make the following conclusion:  

1. The edges in the paths are end-cap connections between two endpoints of the edge.  

2. The inlet and outlet are the, respectively, start vertex and end vertex of the path.  

3. If an edge is in the odd position of the path, the corresponding end-cap is on the rear 

side of the container. If an edge is in the even position of the path, the corresponding 

end-cap is on the front side of the container.  
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4. Since the path visits every tube exactly once, each tube except inlet and outlet are 

connected alternately on the front side exactly once and on the rear side exactly 

once.  

Thus, the connection of the Hamiltonian path forms a system composed of one long tube. 

4.1.3 Weighted Hamiltonian Path 

Now we have the relation between a Hamiltonian path and corresponding connections. The 

problem is how to find such a path. From our discussion of Hamiltonian cycles we know that to 

find a Hamiltonian path is not easier than to find a Hamiltonian cycle. Therefore, enumerating 

all such path and find the one we want is not feasible. In fact, we do not want all Hamiltonian 

paths. We just want the “best” one among all paths. Although the “best” is not defined here, 

we can still give an abstract representation of it.  

Suppose we have a graph G=(V,E) such that for each edge 𝑒 ∈ 𝐸, we have a weight 𝑤𝑒. For each 

Hamiltonian path in the graph, we sum the weights of the edges which comprise the path. The 

best Hamiltonian path will have the maximum or minimum sum among all Hamiltonian paths. This 

problem is called the weighted Hamiltonian path problem.  

In our connection graph, the weights 𝑤𝑒 still remain unclear. They could be the Euclid distances 

between two vertices or some factor where depends on the interference ratio. However, since 

the 𝑤𝑒 are considered to be arbitrary, we will focus on solving the weighted Hamiltonian path 

problem rather than how weights are defined. 

Although the weighted Hamiltonian path problem is not famous, its brother --- weighted 

Hamiltonian cycle problem --- is a classical and well studied problem in combinatorial 

optimization. The other widely used name for weighted Hamiltonian cycle problem is the 

travelling salesman problem or TSP in abbreviation. This problem was first discussed in the 19th 

century as follows: A salesman wants to travel to several cities, visiting each city only once, and 

come back to the starting city with the shortest tour length [27]. Much research has been done 

on this problem since the 20th century. Now there is even an App from App Store on iPhone could 

solve small TSP [35]. However, the best deterministic algorithm for TSP is still based on dynamic 
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programming. It has a complexity of 𝑂(𝑛22𝑛) and has not been improved for 50 years [20]. For 

our problem, we want the TSP path instead of TSP cycle. In next subsection, we will show that 

solving TSPP (TSP path) is equivalent to solving TSP cycle. We assume that we shall minimize our 

total weight on the path in all instances of TSP. 

4.1.4 TSPP≡𝒑TSP 

In order to prove the TSP path problem is equivalent to the TSP cycle problem, we need to 

assume that we can solve TSPP first, we solve a particular TSP by calling the solver of TSPP a 

polynomial number of times. This process is called computational reduction. In this case, we 

say TSP reduces to TSPP, denoted by TSP≤𝑝TSPP. If we can prove that TSPP can also reduce to 

TSP denoted by TSPP≤𝑝TSP, we can conclude that TSPP is polynomially computationally 

equivalent to TSP, denoted by TSPP≡𝑝TSP. 

Proof: TSP≤𝑝TSPP 

Since a cycle is a special case of a path, we could set the starting vertex and ending 

vertex in the TSPP to be the same. Once we run this TSPP, it will provide a cycle which is 

the solution of the TSP. This part is trivial. 

TSPP≤𝑝TSP 

Suppose that we have a graph G=(V, E), with weight 𝑤𝑒 𝑓𝑜𝑟 𝑒 ∈ 𝐸 and a TSP solver. If 

we want to solve the TSPP between two vertices v and u of V. we can do the following: 

We add a new edge between u and v with a weight of negative infinity weight. If the 

edge uv already exists, we replace its weight with negative infinity. This will not affect 

the TSPP because the TSPP between u and v will never use the edge between them. In 

practice, we cannot implement negative infinity; we will set this weight to be the 

negative of the summation of all weights in E. In other words, the absolute value of this 

weights must be greater than any cycle in the graph. We denote this new graph by G’. 
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If we run a TSP solver on G’, the edge uv will be chosen in the TSP tour. To see this, 

suppose the negative, the TSP solution does not contain this edge. Let the TSP solution 

be denoted by T and 𝑤(𝑇) the sum of the weights of all the edges in T. For any tour T’ 

using uv, we have 

𝑤(𝑇) ≤ 𝑤(𝑇′) = 𝑤𝑢𝑣 + 𝑤(𝑃𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣 𝑣𝑖𝑠𝑖𝑡𝑠 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑟𝑡𝑒𝑥). 

This is true by our assumption that T is a TSP tour, we rewrite it as follows: 

𝑤(𝑇) − 𝑤(𝑃𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣 𝑣𝑖𝑠𝑖𝑡𝑠 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) ≤ 𝑤𝑢𝑣. 

Recall, however, that we set that 𝑤𝑢𝑣 to be smaller than the negative of the summation 

of all weights. Therefore, it cannot be greater than the left hand side. We have arrived 

at contradiction 

Therefore, the TSP tour in G’ must contain uv. Moreover, the path from u to v which 

visits all other vertices corresponds to the TSPP in G. It is clear that this path is the TSPP 

in G’. If there is another such path that is smaller than this path, it will be in our TSP 

tour of G’. Since the only difference between G and G’ is the edge uv and the TSPP in G’ 

does not contain uv, it is also the TSPP in G from u to v. 

As a result, we have solved the TSPP in G by calling the TSP solver polynomial times, 

thus we prove the theorem ∎ 

4.1.5 From Practical to Abstract 

Now we can reverse the logical order of this section: We know that TSP is polynimially 

equivalent to TSPP, and TSPP is a Hamiltonian path. By the argument of first two subsections, a 

Hamiltonian path in a connection graph corresponds to a one-path network system in a prism 

container. Following this process, we can reduce the one-path network system design to a TSP 

in connection graph G of the packed tubes if we choose appropriate weights for each edge in G. 

Although weights of connections still remain unclear, it does not affect the fact that researching 
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TSP is beneficial. In the rest of this chapter, we will focus on mathematical technique of solving 

TSP in the connection graph G despite any practical aspects of design problems. 

4.2 Subtour Elimination with Branch and Cut Algorithm for TSP 

[14][15] 

As TSP is a well-studied problem in combinatorial optimization, many approaches have been 

developed, including deterministic algorithms such as dynamical programming (𝑂(𝑛22𝑛)) [20] 

and enumerating all tours (𝑂(𝑛!)). A remarkable aspect of tours in TSP is that the minimum 

spanning tree (MST) [22] is the lower bound of TSP [27]. Thus, we can enumerate tours by 

starting with an MST. This action can improve the feasibility of enumerating up to a graph with 

thirty vertices, but it is already the end of the deterministic algorithm. Later, some 

approximation algorithms for TSP cames out. The most famous algorithm is Christofides 

algorithm [19]. It is a 
3

2
-approximate algorithm which means that the solution provided by this 

algorithm is not greater than 1.5 times that of optimal TSP. However, the output of this 

algorithm is almost near 1.5 of optimal TSP. Moreover, it requires that the weights of edges 

satisfy the triangle inequality. Since at this point, we want the weights to be arbitrary, this 

algorithm is not considered here even though it is still the best approximation algorithm for 

TSP at present. 

Based on the above facts, we need to consider non-deterministic algorithms. These algorithms 

do not guarantee an optimal solution or termination. A typical non-deterministic algorithm is 

the nearest neighbor Heuristic Algorithm [19]. There is absolutely no control over the quality of 

its result. Another non-deterministic algorithm is the Genetic Algorithm [16], but the 

implementation of full genetic algorithm is complicated. Connection graphs G in our tubular 

network problem are sparse, i.e. there are not too many edges. Therefore, a desirable algorithm 

should exploit, at least to some degrees, the sparseness of G, and the implementation is not too 

difficult. Finally, we decide to use subtour elimination with branch and cut algorithm [15]for our 
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TSP in connection graph. This algorithm is based on integer programming, and it is a non-

deterministic algorithm that may not terminate. 

4.2.1 Characteristic Vector and Integer Programming 

Given a graph, G=(V,E),  with weights 𝑤𝑒, such that for each edge 𝑒 ∈ 𝐸, we define the 

following variables 

𝑥𝑒 = {
1, 𝑖𝑓 𝑒 𝑖𝑛 𝑐ℎ𝑜𝑠𝑒𝑛 𝑖𝑛 𝑇𝑆𝑃 𝑡𝑜𝑢𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑥𝑒 is called the characteristic variable of edge e. The vector 𝑥 = (𝑥1, 𝑥2 …𝑥|𝐸|) with dimension 

|E| is called the characteristic vector of G. 

For each vertex 𝑣 ∈ 𝑉, in order to form a tour, exactly two edges of each vertex must be 

chosen in the TSP. Thus, the sum of the characteristic variables of all edges incident to v is 

equal to 2. We denote the set of all edges incident to v as 𝛿(𝑣). We have the following integer 

programming (in short IP) problem for the TSP: 

min∑ 𝑤𝑒𝑥𝑒

|𝐸|

𝑖=1
 

s.t. 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 , 

𝑥𝑒 ∈ {0,1}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸. 

The IP problem is also NP-hard. Therefore, trying to solve the TSP by solving the above IP is still 

infeasible. However, this mathematical formulation of TSP provides a greater opportunity to 

study the problem in depth. We can start dealing with the IP by assuming x is not integer. 

4.2.2 Linear Programming Relaxation  

Since the above IP problem is a 0-1 IP, i.e. the choice for variables is either 0 or 1, we can allow 

the variables to be a fractional between 0 and 1. We just need to change the constraints 𝑥𝑒 ∈

{0,1} into 0 ≤ 𝑥𝑒 ≤ 1. In this way, the IP becomes a linear programming. This procedure is 

called linear programming relaxation.  
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This linear programming problem is called relaxed linear programming in short RLP. (See 

below.) If we solve this RLP by simplex or interior point methods, we shall see below the 

solution x may not be the solution we want. 

Relaxed linear programming of TSP 

min∑ 𝑤𝑒𝑥𝑒

|𝐸|

𝑖=1
 

s.t. 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 , 

0 ≤ 𝑥𝑒 ≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸. 

Most of the time, the solution of the above RLP is fractional, and a fractional solution cannot 

correspond to a tour in G. It is, however, possible the solution of above RLP is integer. However, 

if even the solution is an integer vector, it may not correspond to a TSP tour (See Figure 53). If 

we take a close look at this kind of solution in the graph G (As in Figure 53), we could see some 

pattern of this solution  

Figure 53 Subtour of an integer solution 

 

Figure 54 Difference of TSP and subtour 

 

 

The corresponding edges of the RLP solution are red lines in Figure 53. The solution is integral 

and satisfies all constraints in original IP. However, it is not a TSP tour. It contains several small 

cycles; we call these cycles subtours. In fact, a solution with subtours does not violate the 
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constraints in the IP of TSP. In order to get rid of subtours in our RLP solution, we need to 

understand the difference between subtours and TSP tours.  

4.2.3 Difference between Subtour and TSP Tour 

We need the following definition to understand the difference: 

Definition 7 Cut. [27] In a graph G=(V, E), a cut of vertices subset 𝐴 ⊆ 𝑉, is a set of edges 

such that one end point is in A and another is not in A, denoted by 𝛿(𝐴). Note that 𝛿(𝑣) 

for 𝑣 ∈ 𝑉 is the set of all edges that are adjacent to 𝑣. 

Definition 8 Connected. [27] A graph is connected if and only if there is a walk between each 

pair of vertices. 

Definition 9 Component. [27] A component is a subgraph H such that no subgraphs of G 

that contain H is connected. Note that a component is always connected. 

Since a TSP tour is a cycle that visits every vertex, each edge in the tour has to intersect the cut 

of each subset of V at least twice.(See Figure 54.) We can formulate this argument as a 

constraint in IP as follows: 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ 2, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑆 ⊆ 𝑉.   (∗) 

On the other hand, the subtour solution such as the one in Figure 53 will have components. 

The cuts of these components have no intersections with the edges in the tour. As a result, a 

RLP solution with subtours will violate the above inequality for some subset 𝑆 ⊆ 𝑉. 

Therefore, the differences between TSP tours and subtours are given in the above inequalities. 

However, since these inequalities are generated for all subsets of V, there are 2|𝑉| many 

inequalities. It is not practical to add all of them to our IP. In fact, not all of these constraints 

are violated by the subtour solution. This fact brings up the idea of “cutting plane”. 

4.2.4 Cutting Plane Method [14] 

The main idea of the cutting plane method is “only add the constraints that are necessary”. We 

only need the constraints of the vertex subsets whose cuts contains at most one edge from our 

subtour solution. In the last subsection, we have observed that each component in subtour 
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solution has no edges intersecting with the subtour solution. We can use this fact as our cutting 

plane. 

We construct a new graph G*= (V*, E*) from G=(V,E) using the following strategy: 

 V*=V.  If 𝑥𝑒 ≥ 0, then 𝑒 ∈ 𝐸∗.  Otherwise, 𝑒 ∉ 𝐸∗. 

In other words, G* is the subgraph of G with same vertex set V and edges in E with a non-zero 

RLP solution. G* is called a LP graph of G. 

Therefore, if there are subtours in our RLP solution, G* will not be connected. Moreover, each 

component in G* corresponds to a subtour in the RLP solution. We just need to use a depth-

first search to find all components of G*, say 𝑆1, 𝑆2 …𝑆𝑚. The cuts of 𝑆1, 𝑆2 …𝑆𝑚 violate (∗) in 

4.2.3. We can add the following constraints, called subtour inequalities, to our IP: 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆𝑖)) ≥ 2, 𝑖 = 1,2…𝑚 

After adding the above inequalities to the IP, we solve the RLP of the updated IP. We keep 

repeating this procedure until we produce a connected G*, i.e. subtours are eliminated in the 

RLP solution. However, a connected G* does not imply a TSP tour. A counter example is shown 

on Figure 55. 

Figure 55 A fractional solution with no subtour 

 

The red lines are the edges in G*. It is easy to see that G* does not contain any subtours, but it 

is not a TSP tour. The reason is that the RLP solution is fractional. In previous subsections, we 
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try to eliminate the subtour, but we have not made any effort to guarantee integrity of our 

solution in RLP. After we eliminate all subtours, we can start to search for the integral solution 

of our RLP. 

4.2.5 Branch and Cut [15] 

The branch and cut for TSP is first introduced in [15]. It is similar to a brute-force search. After 

we have a connected G*, we have a RLP, that looks like this: 

RLP for TSP with subtour constraints 

min∑ 𝑤𝑒𝑥𝑒

|𝐸|

𝑖=1
 

S.T. 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉, 

∑(𝑥𝑒, 𝑒 ∈ 𝛿(𝑆)) ≥ 2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑆 ⊂ 𝑉 , 

0 ≤ 𝑥𝑒 ≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸. 

The solution vector x of above RLP contains 0’s, 1’s or fractional numbers between 0 and 1. We 

only take care of fractional solutions. Suppose that for an edge e with 0 < 𝑥𝑒 < 1, we 

manually add a constraint 𝑥𝑒 = 1 to our RLP, and solve the updated RLP to get a new solution 

vector 𝑥1. Then we recover the original RLP, and set 𝑥𝑒 = 0 as a constraint and solve the new 

RLP to get solution 𝑥0. Note that since we are adding artificial constraints, an integer vector 

solution is a TSP tour but it may not be an optimal TSP. Thus, in each step, we store the current 

smallest tour value in a variable, and update this value when we find a smaller tour. 

The branch cut strategy looks like a brute-force search, but it is different. Every time we update 

the RLP, we need to solve an updated RLP. Its solution is different from that of the previous 

RLP, and we continue the strategy on the new solution.(See Figure 56.) Therefore, the depth of 

the search tree of branch and cut is undetermined.  
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Figure 56 Brach and cut 

 

For each branch in Figure 56, it reaches the bottom if the solution vector is integral. If all 

branches reach the bottom, the branch and cut searching terminates and we output the 

bottom solution vector with smallest tour value; this solution corresponds to the optimal TSP 

tour in G. 

4.2.6 Some Thoughts on the Algorithm for TSP 

A pseudocode of the process of the entire algorithm (from start of 4.2.1 to the end of 4.2.5) is 

provided in Appendix C. The algorithm is implemented in the C programming language with 

linear programming solver ILOG Cplex [21]. We try the program on a particular example with 

100 vertices and 1012 edges; the running time of this example is 96.14 seconds which is not too 

bad. This result is fantastic as compared to enumeration and dynamical programming. However, 

there are still some remaining questions such as termination of the algorithm, the constrains in 

RLP and why to choose this algorithm for connection graph. 

Termination: As we claimed earlier, the termination of this algorithm is not guaranteed. This is 

because we have no control on the depth of the searching tree of branch and cut. In fact, the 
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depth depends on the number of fractional coordinates of the solution vector in each RLP in the 

searching tree, but we cannot know how many fractional solutions there are in a LP before 

solving it. Therefore, it may happen that the number of fractional solutions increase or does not 

change in one branch of the searching tree. In this case, the algorithm may not terminate in a 

desirable time. A typical example of this phenomenon is running the algorithm on the pr76 

problem (a problem instance from the TSPLIB [23]). The algorithm is unable to terminate after 

two hours.  

Constraints of the RLP: Even after adding all the subtour inequalities to an RLP, an integral 

solution is not guaranteed. The reason is that a RLP with subtour inequalities is still not enough 

to “describe” the TSP. (There is a quotation mark on the word describe, which means that it is 

not an actual description by using words. In the next chapter, we will study the idea of this 

“describe” in depth.) Simply speaking, we are still missing constraints; the missing constraints 

are called comb inequalities [14]. Missing comb inequalities can cause a solution vector with 

lots of fractional coordinates. It will also affect the depth of the search tree. Details about 

comb inequalities are beyond the scope of this thesis. 

Connection graph instance: One advantage of the connection graph is its sparseness. In our 

applications, the number of edges in a connection graph is not very large. Therefore, the RLP of 

connection graph does not have a lot of variables. This fact reduces the possibility of fractional 

solution in RLP. In section 4.2.6, we see that the algorithm can solve a sparse graph with 100 

vertices in a tolerable time, but it cannot solve the pr76 problem which is a dense graph with 

76 vertices. We played a trick when we choose our algorithm for TSP: subtour elimination for 

TSP is efficient in sparse graph, and connection graphs for our packed tubes problem are 

sparse with no more than 100 vertices. We do not have an algorithm that is efficient in general, 

but we do have an algorithm that is efficient in our case. 

4.3 Summary of the Chapter 

This chapter is the first chapter about the connection problem; it has two parts: 
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Part 1. Making a correspondence between the simplest one-path network system and a TSP 

cycle in the connection graph. 

Part 2. Solving the TSP in connection graph by subtour elimination [14] and branch cut 

algorithm [15]. 

The first part converts the practical problem into a mathematical problem in graph theory. The 

second part solves the mathematical problem using a known algorithm. Although we try to 

design a simplest network system in a prism container, the mathematical representation of this 

problem is one of the hardest problem in optimization. Fortunately, due to the particular 

structure of connection graphs for packed tubes, TSP becomes solvable. 

There are two points which still remain unanswered: 

1. The weights of connection graphs. We still have not defined the weights in our 

connection graph. As such we are solving TSP with arbitrary weights. There are 

many choices for the weights. They can be distances between tubes, interference 

ratios or types of connections between tubes. This is an open question for future 

work. 

2. The crossing edges. For example, in the connection graph of Figure 49, they are 

edges crossing each other. They cannot be allowed in the same system. However, 

our algorithm for TSP does not have this restriction.  

In future, we will consider more complicated regions, i.e. containers with varying cross-

sections. In the situation, TSP will no longer correspond to a simple system because the 

connection graph for each cross-section will be different.  
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Chapter 5 Connections in Varying Cross-sections 

The one-path network is designed for the prism container, i.e. the packed tubes in each cross-

section have the same connection graph. In reality, the container could have different cross-

sections. For example, the tubular network system in Figure 41 (Section 3.2), it is designed for a 

dumbbell shape container. The packing of tubes in first two cross-sections is shown on Figure 

57. There are 9 circles in the first cross-section which is enclosed by the black square. There are 

4 circles in the second cross-section which is enclosed by the red dashed line square region in 

the bottom left corner.  

Figure 57 simple example on 

changing cross-sections 

 

Figure 58 The example in all 4 sections 

 

Note that Figure 57 illustrates the cross-sections and packed tubes only at the first two 

transition parts of the system in Figure 41 --- the packing at one end and the packing on both 

sides of the transition from the outer “bag” to the inner region. The third cross-section has 4 

circles and the fourth cross-section has 9 circles. They are symmetric to cross-sections 1 and 2, 

respectively. As shown in Figure 58, the red part is the third cross-section, which is identical to 

the red dashed line square in Figure 57.  

Since the connection graphs in different cross-section may be different, it is obvious that one 

mathematical instance for designing such a complicated system will not be adequate. In order 

to start, we will find a mathematical instance in graph theory corresponding to connections in 

one cross-section, i.e. we only connect tubes in one cross-section despite the fact that we are 
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connecting network involving all cross-sections of the container. Therefore, our algorithm for 

connection works in one connection graph. This is basically the first step of connection in 

multiple cross-sections. Finding a connection for multiple cross-sections still remains an open 

problem for the future work. But before finding our algorithm, the most important thing is to 

understand how tubes change when the cross-sections change, i.e. what happens in the two 

big cubes in Figure 58. Thus, the first part of this chapter is about operations between tubes.  

5.1 Operations between Tubes [24] 

Recall our rules for fundamental elements as stated in section 3.1, all operations between tubes 

should be decomposable into combinations of finite elements. An end-cap is one operation 

formed by two L-blocks or modified L-blocks. It does not change the number or position of 

tubes. The operations described in this section are used in networks with varying cross-sections. 

As such, they will be used to change the number or position of tubes [24]. All of these 

operations are formed by fundamental elements.  

1.  Merge operations. 

Figure 59 Single merge and its 
decomposition 

 

Figure 60 Consecutive merge 

 

Merge operations will merge two tubes into one tube. A simplest merge operation is the single 

merge shown in Figure 59: Tube 1 and tube 2 merge into one tube at tube 2’s position. From 

Figure 59, it is easy to see that a single merge can be decomposed into three I-block, a T-block 

and a L-block or modified L-block. If the sizes of tube 1 and tube 2 are different, we shall use 

modified L-block. Otherwise, we use an unmodified L-block.  
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We can add another single merge immediately after tube 2, as shown in Figure 60. After 

merging tube 1 to tube 2, we continue to merge these merged tubes into tube 3. This is called 

a consecutive merge. The decomposition of the consecutively merge is not shown on Figure 60 

because it is just a combination of two single merge. Theoretically, we can continue this 

process and merge many tubes into one tube. However, in this thesis, we consider only single 

merge and consecutive merges for simplicity.  

2. Shift operation 

Figure 61 Shift operation 

 

The shift operation will shift the position of a tube to another tube location, as shown in Figure 

61 Shift operation. This operation can be decomposed into two I-block and two L-blocks or 

modified L-blocks. If we use a modified L-block, we can shift a tube into another tube with 

different size. Theoretically, we could combine many shift operations in order to shift the tube 

to any position. However, in our case, we only allow a single shift operation, and we do not 

even allow a consecutive shift, once again for simplicity. 

3. Combined operation 

Figure 62 Merge-shift-merge (MSM) 

 

We can combine a single merge and a single shift, as shown at the top of Figure 62; we first 

merge two tubes and then shift merged tubes to other position as shown at the bottom of 
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Figure 62. After combining a single merge and a single shift, we can put another single merge 

in the space made available by the shift. This operation is called merge-shift merge; it changes 

the number of tubes from 4 to 2. We shall consider only this combined operation in this thesis. 

In summary, the only operations we considered in this thesis are single merge, consecutive 

merge, single shift and merge shift merge.  

Note that for the purpose of good visualization aspect, in our figures of operations, our figures 

of operations will show the tubes to be in the same plane. In reality, we can rotate the tubes in 

the operations with respect to some axis. 

5.1.1 Connection between Operations 

We now apply the operations described in preceding the to the network in Figure 57; 9 tubes 

in first cross-section will become 4 tubes in next cross-section. Here is an example of how to 

use operations to perform this change of cross-sections: 

Figure 63 An example of application of operations  

 

In Figure 63, the red lines denote operations. The red line with a length of two times of circle 

radii represents the single merge operation; from the figure we see that tube 7 merges to tube 

4. The red line with length of four circle radii represents the consecutive merge operation; tube 

9 merge to tube 8 and together they merge to tube 5. The red line with length of six circle radii 

represents the merge-shift-merge operation; tube 6 merges to tube 3 and together they shift 



 

  88 

to tube 2’s position, and then tube 2 merges to tube 1. The arrows in the figure show the 

direction in which they operate. 

Figure 63 displays only one possible combination of operations. There are many combinations 

of operations to reach the same goal. For more examples, please see [24].  

Now we suppose we have already had a combination of operations and we want to connect 

tubes in different operations by end-caps. If we connect two tubes in one cross-section, we 

need to find a set of end-cap connections such that each end-cap connection is disjoint from 

the others. This is equivalent to finding a set of disjoint edges in connection graph. In addition, 

we need to modify our connection graph in order to form a feasible network [24]: 

 The edge formed by tubes in a single merge operation should be deleted. 

 The edge formed by tubes in the first two positions of a consecutive merge 

operation should be deleted. 

 If an inlet or outlet is in any operation, we delete the corresponding vertex from 

connection graph. 

With such modified connection graph, we can treat our connection in one cross-section 

problem as a matching problem in this graph. 

5.2 Cutting Plane for Matching [26] 

Definition 10 Matching. [27] In a graph G= (V, E), a matching M is a subset of E for which no 

edges in M share the same end-point. A vertex is in a matching M if it is an end-point of 

an edge in M. In this case, we say that this vertex is matched by M. 

From the definition, a matching is exactly a set of edges such that each edge is disjoint from 

others. However, a feasible matching may not correspond to a feasible connection in a cross-

section. In fact, a feasible connection should connect all tubes in the cross-section. Therefore, 

we want a matching that matches all vertices in the modified connection graph. In graph 

theory, a matching that matches all vertices is called a perfect matching, denoted as PM. Note 
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that a PM may not exist, here we assume that PM exists as we will focus on solving it. We 

assign each edge an arbitrary weight 𝑤𝑒, and wish to find the PM for which the total weight of 

edges in it is maximized or minimized. This is called an optimal PM. 

Optimal PM is also a well-studied problem in combinatorial optimization. Unlike TSP, optimal 

PM can be solved in polynomial time. The most famous algorithm is the Blossom algorithm 

invented by Edmonds in 1965 [31]. It is a polynomial time algorithm with complexity 𝑂(|𝑉|4), 

and there is an efficient C++ implementation of this algorithm [33]. Due to the difficulty of 

implementation of the Blossom algorithm, we shall solve PM in another method. Recalling the 

idea of the cutting plane, we will use cutting plane method to solve PM [26]. Fortunately, the 

termination of cutting plane method for PM is guaranteed. Therefore, no branch and cut 

search is required.  

5.2.1 A General View of the Cutting Plane Method for Perfect Matching (PM) 

In a manner similar to that described in 4.2.1. We could define the characteristic vector of a 

PM as 

𝑥𝑒 = {
1, 𝑖𝑓 𝑒 𝑖𝑛 𝑐ℎ𝑜𝑠𝑒𝑛 𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑃𝑀,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The IP for PM is  

IP for perfect matching 

min∑ 𝑤𝑒𝑥𝑒

|𝐸|

𝑖=1
 

s.t. 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 , 

𝑥𝑒 = {0,1}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸. 

The constraint ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 means that each vertex is matched only 

once by the PM. Since every vertex is matched, these equalities must hold.  
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As was the case for the IP for TSP, we relax the IP for PM by setting 0 ≤ 𝑥𝑒 ≤ 1. However, due 

to the constraints on vertices, we only need that 𝑥𝑒 ≥ 0. The result is a relaxed linear 

programming for the IP of PM.  

However, solving this RLP does not give a matching, i.e. there may be fractional solutions in the 

solution vector. A example of such a fractional solution of RLP is shown in Figure 64. From the 

figure, it can be seen that the problem of fractional solutions is caused by subset with odd 

number of verteices. 

Figure 64 Example of fractional solution in odd set 

 

For each odd subset of vertex 𝑺 ⊆ 𝑽, a feasible matching can only match at most |𝑺| − 𝟏 vertices, 

which means that at most 
|𝑺|−𝟏

𝟐
 edges can be matched. An integral solution of RLP automatically 

implies this, but a fractional solution does not. Let 𝜸(𝑺) (not the interference ratio) denote the set 

of edges uv such that 𝒖 ∈ 𝑺 𝒂𝒏𝒅 𝒗 ∈ 𝑺. We can write above argument in terms of an inequality: 

∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ≤
|𝑆| − 1

2
, ∀𝑆 ⊂ 𝑉, |𝑆| = 𝑜𝑑𝑑  

This inequality is called the blossom inequality [31]. It must hold for a solution of feasible 

matching. Since S is any odd subset of V, there are 2|𝑉|−1 such inequalities. As our argument in 

last chapter, we do not need to add them all. We only need to find the subsets S for which the 

blossom inequalities are violated by S. We then add the blossom inequalities for S to our RLP. 

This strategy is exactly same as was used by the cutting plane method in TSP. However, by 

adding blossom inequalities, the termination of cutting plane method for PM is guaranteed. In 

TSP, adding all subtour inequalities cannot guarantee termination. The reason for this 
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difference will be explained in subsection 5.2.4. A flow chart of the entire algorithm is 

described below: 

Algorithm 8 Cutting Plane Method for Perfect Matching [26] 

 ∎ 

There are a number of unclear points in this flow chart that will be explained in the next two 

subsections. 
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5.2.2 Step 1-Step 4 and Step 6-7: General Process of Cutting Plane Method 

Step 1~3, 6 and 7 are exactly same as in the cutting plane method for TSP. We just solve the 

RLP and determine if the solution vector is integral. Step 6 is just adding cutting planes to the 

RLP and solve the new RLP again. Step 7 is a criterion that an integral solution corresponds to 

the optimal solution in original IP.  

Step 4 is a little different from the cutting plane method for TSP: We construct G* by adding 

these edges in G with non-zero RLP solutions, but G* has a weight on each edge with 𝑤𝑒∗ =

𝑥𝑒∗  if 𝑒∗ is an edge in both G and G*. In some books, this step is referred to as “blossom 

inequalities for some cuts”.  Blossom inequalities, however, are defined for 𝛾(𝑆) instead of 

cuts. Recall Definition 7 about 𝛿(𝑆) (the cut of vertex subset S). This definition is totally 

opposite to 𝛾(𝑆) in the blossom inequality. That being said, the arguments of the two 

definitions are actually not in conflict. In fact, the blossom inequality has two forms: 

∀𝑆 ⊂ 𝑉, |𝑆| = 𝑜𝑑𝑑 

∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ≤
|𝑆| − 1

2
⟺ ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ 1 

The LHS is the original blossom inequality and the RHS is called blossom inequality of cut form. 

They two are equivalent. For details about the proof, please see Appendix D. 

Since there is a ready-made algorithm to find cuts with a specific value, using the blossom 

inequality for cut as cutting plane is more convenient. In fact, the purpose of step 5 is to find a 

cut in G*=(𝑉, 𝐸∗, 𝑥𝑒∗) with total weight less than 1. 

5.2.3 Step 5: Odd Cuts in G* 

In step 5, the Padberg and Rao procedure [30] uses Gomory-Hu tree [26] to find an odd cut 

with weight less than 1. In order to understand the procedure, we need to understand the 

Gomory-Hu tree of G* (in short GH(G*)). 

Definition 11 Tree. A tree is a connected graph with no cycle. 
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Definition 12 Gomory-Hu Tree. [28] The Gomory-Hu tree of graph G*=(𝑉, 𝐸∗, 𝑥𝑒∗) is defined 

by 

𝑉(𝐺𝐻(𝐺∗)) = 𝑉(𝐺∗), ∀𝑢, 𝑣 ∈ 𝑉(𝐺∗), 𝑖𝑓 𝑢𝑣 ∈ 𝐺𝐻(𝐺∗), 𝑡ℎ𝑒𝑛 𝑤𝑢𝑣 = 𝑀𝐴𝑋𝐹𝐿𝑂𝑊(𝑢, 𝑣, 𝐺∗); 

𝑖𝑓 𝑢𝑣 ∉ 𝐺𝐻(𝐺∗), 𝑡ℎ𝑒𝑛 min{𝑤𝑖𝑗: 𝑖𝑗 ∈ 𝑃𝐴𝑇𝐻(𝑢, 𝑣, 𝐺𝐻(𝐺∗))} = 𝑀𝐴𝑋𝐹𝐿𝑂𝑊(𝑢, 𝑣, 𝐺∗); 

𝑙𝑒𝑡 𝑚𝑛 = {𝑚𝑛 ∈ 𝐺𝐻(𝐺∗): 𝑤𝑚𝑛 = 𝑚𝑖𝑛{𝑤𝑖𝑗: 𝑖𝑗 ∈ 𝑃𝐴𝑇𝐻(𝑢, 𝑣, 𝐺𝐻(𝐺∗))} , 

𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒 𝑚𝑛 𝑖𝑛 𝐺𝐻(𝐺∗)𝑔𝑖𝑣𝑒𝑠 𝑡𝑤𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑔𝑖𝑣𝑒𝑠 𝑎 

 𝑚𝑖𝑛𝑚𝑢𝑚 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑢 − 𝑣 𝑐𝑢𝑡 𝑖𝑛 𝐺∗ 

In this definition, 𝑀𝐴𝑋𝐹𝐿𝑂𝑊(𝑢, 𝑣, 𝐺∗) corresponds to the maximum flow between node v and 

u in graph G*. 𝑃𝐴𝑇𝐻(𝑢, 𝑣, 𝐺𝐻(𝐺∗)) denotes the path between u and v in Gomory-Hu tree of 

graph G*.  

We can compute the GH tree by a very simple algorithm [28]. This algorithm first computes 

maximum flow between all pairs of vertices, and then use the vertices of G* and flow values to 

construct a tree. The maximum flow between two vertices can be computed by the Ford-

Fulkerson algorithm [29] in 𝑂(𝑉𝐸∗2) time. This simple algorithm uses |V|(|V| − 1) times 

computation of maximum flow. Therefore, obtaining GH(G*) by this algorithm has a complexity 

𝑂(𝑉3𝐸∗2). 

Once we have a GH tree of G*, we can search for edges in GH(G*) with edge weights less than 

one. This can be done by a depth-first search which has a complexity O(V). If we find an edge in 

GH(G*) with weight less than 1, we delete this edge. The two components yielded by deleting 

this edge will be a cut in G* with cut weight less than 1. If the component size is odd, this cut is 

exactly the cut which violates the blossom inequality for cut. We add the blossom inequality of 

the smaller component to RLP, and we retrieve the deleted edge in GH(G*). If the component 

size is even, we continue to search other edges. We respect above procedure until we have 

investigated all edges in GH(G*) with edge weights less than one. This method is called the 

Padberg and Rao procedure [30]. 

The Padberg and Rao procedure guarantees to produce odd cuts that violate the blossom 

inequality [26]. The drawback of the Padberg and Rao procedure is its price. Since depth-search 
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only takes 𝑂(𝑉), the most consuming part of Padberg and Rao is computing GH(G*). The 

complexity of Padberg and Rao procedure is 𝑂(𝑉3𝐸∗2 + 𝑉) = 𝑂(𝑉3𝐸∗2).  

After we add the blossom inequalities of all odd cuts produced by Padberg and Rao to the RLP, 

we solve the RLP again and go through step 3-6 until we have an integral solution vector.  

However, how do we know that Algorithm 8 will terminate with an integral vector? We do not 

have any techniques like branch and cut to keep solution integral. In fact, the answer to this 

question is given in the statement at the end of section 5.2.1; we need to understand the 

difference between TSP cutting plane and PM cutting plane. 

5.2.4 Termination of Algorithm 8 

We need to understand the characteristic vectors of matching in high dimensional space. 

Definition 13 Convex Hull. [27] The convex hull of a finite set S is the set of all vectors that 

can be written as a convex combination of elements S. 

As an example in 2.4.5, a line segment is the convex hull of its two end-points.  

Definition 14 Perfect Matching Polytope. [27] The convex hull of characteristic vectors of all 

perfect matchings are called the perfect matching polytope.  

From the above definition, we could see that the perfect matching polytope is a polyhedral in 

high dimensional space.  

The RLP for PM with blossom inequalities are  

min∑ 𝑤𝑒𝑥𝑒

|𝐸|

𝑖=1
 

s.t. 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑣)) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 , 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ 1, ∀𝑆 ⊂ 𝑉, |𝑆| = 𝑜𝑑𝑑, 

𝑥𝑒 ≥ 0. 
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In [27],a theorem called Matching Polytope Theorem is proved. One corollary of the theorem 

states that the perfect matching polytope is defined by the above RLP. Moreover, the blossom 

inequalities are exactly the hyperplanes of the perfect matching polytope. Therefore, adding 

blossom inequalities is equivalent to adding hyperplanes. If we solve our RLP, the solution will 

be one of the extreme points of the perfect matching polytope. Keeping on solving RLP will 

keep on searching on the extreme points of perfect matching polytope, and by Definition 14, 

the extreme points will contain characteristic vectors of perfect matchings; therefore, we can 

definitely terminate at a integral solution which is a perfect matching that minimizes the 

objective function. As a result, an integral solution is guaranteed by solving the RLP with added 

blossom inequalities.  

On the contrary, an RLP with subtour inequalities does not define the TSP polytope (The convex 

hull of all TSP characteristic vector.) Therefore, solving RLP with subtour elimination will not 

search the extreme points of the TSP polytope. The algorithm may not necessary terminate at 

an integral solution which corresponds to a TSP tour. 

5.2.5 Running Time of Algorithm 8 

Algorithm 8 is implemented in C++ with ILOG Cplex Optimization Library. We run the program 

on 1000 random graphs with 1000 vertices. Figure 65 are the histogram and scatter plot of 

running time of 1000 random graph. 

From the results in Figure 65, we could see that cutting plane for matching is not slow. In most 

graphs with 1000 vertices it can find an optimal matching within 25 seconds. There is only one 

outlier in our 1000 random graphs which takes more than 1500 seconds. On the other hand, 

finding a TSP in a sparse graph with 100 vertices can take 90 seconds. Therefore, the matching 

problem is much easier than TSP, but we cannot use matching to solve TSP. 
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Figure 65 Running time results 

  

5.3 Bifurcation End-cap and b-matching  

Now we consider a more general end-cap: An end-cap with two tubes merging into one tube. 

Since it can be decomposed into fundamental elements (as shown on Figure 66), it is a 

theoretically feasible connection. We shall refer to this end-cap as a bifurcation end-cap. 

Figure 66 Bifurcation end-cap 

 

The bifurcation end-cap is constructed with a T-block and two L or modified L-block. Since we 

allow modified L-blocks, merging tubes with different radii is also allowed.  
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The only issue of bifurcation end-cap is the “T-block”. This “T-block” will be different from 

what was discussed in 3.1. A sketch of this “T-block” is presented in Figure 67. We can see that 

this “T-block” has an angle at the bottom tube of the T-block. Its geometry is an open problem 

and it is beyond the scope of this thesis. For the remaining of this thesis, we treat the “T-

block” in bifurcation end-cap as the T-block in 3.1. 

Figure 67 “T-block” in bifurcation end-cap 

 

Based on the above discussion, the bifurcation end-cap is not qualified to be a feasible 

operation for tube connection. However, from this operation one can derive a series of 

interesting matching problem. By Definition 10, a matching can match a vertex only once, i.e. a 

tube can connect to another tube only by means of an end-cap. However, we can now also 

connect two tubes to one tube with a bifurcation end-cap. This is equivalent to allow a 

matching which connects some vertices twice. In combinatorial optimization, there is a 

general instance which describes this type of matching. 

Definition 15 b-matching [27]. Suppose a vector 𝑏 ∈ 𝑍|𝑉|, for each vertex v, a matching 𝑀 ⊂

𝐸 with |𝑀 ∩ 𝛿(𝑣)| = 𝑏𝑣 is called a b-matching. 

From the definition of b-matching, if 𝑏 = 𝟏|𝑉|, the b-matching is simply a perfect matching. In 

our case, we want 𝑏 = {1,2}|𝑉|, i.e. for some tubes, we want them to be connected with two 

other tubes; for other tubes, we want them to be connected with only one other tube. 
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5.3.1 Solving b-matching 

Sometimes b-matching is called as “general matching”. The first algorithm for b-matching is 

given by Pulleybank in his Phd thesis [25]. The algorithm borrows the idea of blossom 

algorithm and generalizes it to general matching. It is not polynomial time algorithm, however, 

since our b value is not large (less than 3), we can solve our b-matching problem using 

Algorithm 8 Cutting Plane Method for Perfect Matching. We modify our graph G to a produce 

new graph Gb, and apply Algorithm 8 on Gb to get a optimal perfect matching in Gb. The 

optimal PM in Gb corresponds to the optimal b-matching in G. This procedure, as shown in 

Figure 68,  is called data reduction and it is invented by Tutte in 1957 [27].  

Figure 68 Data reduction for b-matching 

∎ 

Although this process is polynomial time, it will increase the problem size of the perfect 

matching. Since 𝑏 = {1,2}|𝑉|, Gb will have a vertex set that is almost twice of G and an edge 

set that is almost four times of G. Fortunately, our b vector is not too large; Gb is not largely 

increased in size.  Moreover, if the L-1 norm of b is bounded by a polynomial function of the 

problem instance, solving b-matching by combining Algorithm 8 and data reduction for b-

matching is strong polynomial time [27]. Since we only allow T-block, L-block, modified L-block 
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and I-block, we cannot form an end-cap that connects more than two tubes to one tube. 

Therefore, L-1 norm of b in the connection graph is no larger than 2, and finding a b-matching 

in connection graph is polynomial time [27]. 

Therefore, we can conclude that finding a connection with bifurcation end-cap is as hard as 

finding a connection with end-cap only if we use matching instance to find connection.   

5.4 Summary of the Chapter 

The situation treated in this chapter is more complicated than Chapter 4. Here we have 

multiple cross-sections, and each of them has its own circle packing; there are also operation 

between tubes in a cross-section. In this case, we cannot associate a feasible network with a 

single mathematical instance like TSP. Thus, instead of finding a feasible network for the whole 

system, we try to connect tubes in each cross-section individually. Note that assembling 

optimal connections in each cross-section may not provide an optimal network system, but an 

optimal connection in one cross-section is a good reference for designing the whole system. 

Therefore, it is beneficial to study the optimal connection in one cross-section. 

We reduce the connection in one cross-section into a matching problem in the connection 

graph of the given cross-section. The general matching problem is a classical problem in 

combinatorial optimization, and it is a problem can be solved with a polynomial time 

algorithm. Since our connection graph is sparse, we can apply the cutting plane method to 

matching for the same reason as TSP. Unlike TSP, Algorithm 8 Cutting Plane Method for Perfect 

Matching is guaranteed to terminate because of the structure of the matching polytope. 

Furthermore, we generalize our connection in one cross-section to allow two tubes connect to 

one tube. This generalization requires a more general version of matching called b-matching. 

The b-matching can be solved by solving perfect matching and data reduction. Since our 

connection graph is always sparse, solving b-matching in the connection graph is polynomial. 

Therefore, we conclude that b-matching is as hard as perfect matching in connection graph. 
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In conclusion, the matching algorithm (including the b-matching) does not provide an optimal 

network for the system. Combining optimal connections in each cross-section can not yield an 

optimal system. For example, in Chapter 4, we could not solve TSP by solving perfect matching 

on both ends individually, so optimal connections on each end do not yield an optimal one-

path system. However, optimal matching on each cross-section provides a good reference for 

examining the quality of whole network system. 
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Chapter 6 Conclusion and Future Works 

In this thesis, we have divided our problem of designing tubular networks system in an 

arbitrary container exhibiting longitudinal symmetry into two parts: 

1. Packing tube cross-sections into the container cross-sections. We reduce this problem to 

a circle packing problem. 

2. Connecting packed tubes in the blocks to produce a system. For the prism container, we 

solve this by solving TSP. For varying cross-sections, we try to solve for each cross-section 

independently by using matching; but the optimal connection in each cross-section does 

not give an optimal network system. 

Tube connections are based on packed tubes. We have defined fundamental elements, 

interference ratio and connection graph in order to translate the information of packed tubes to 

the instance for connection.  

6.1 Conclusions 

Now we will conclude the two parts mentioned above. 

6.1.1 Part 1: Circle Packing 

In the circle packing chapter, we have investigated two major circle packing algorithms: 

1. GGL algorithm.[2]  This algorithm places circles in a rectangle along three positions: 

corners, a side and an existing circle and two existing circles. For each existing circle, a 

position number is defined as the number of all possible positions to place a new circle 

along the circle. The GGL algorithm places a new circle based on the position number of an 

existing circle. Since the GGL algorithm uses the shape of region as packing reference, the 

packing density of the result is good (around 70%-80%, see 2.2.5). The complexity of GGL is 

polynomial, and it is at least 𝑂(𝑁3). This means the algorithm is not efficient, but it is 
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enough for our design purpose since there will be no more than one hundred tubes in one 

cross-section.  

We also generalize the GGL algorithm to more complicated regions such as trapezoid or L-

shaped regions. This generalization dos not modify the idea of GGL; it only requires 

changing the number of feasible positions for each circle since there are unparalleled sides 

in trapezoid and more sides and corners in L-shaped region. Therefore, the complexity of 

GGL in complicated region is same as GGL in rectangle. 

As a conclusion, working on GGL algorithm is on the right track since its idea can be 

generalized to more complicated regions without a great deal of modification. However, 

due to flow and heat transfer issues [5], we want to place big circles in the center of the 

cross-section, but GGL will always try to place large circles at corner or along sides. 

Therefore, anti-GGL is developed based on the concept of position number in GGL, but it 

approaches in an exactly opposite direction. 

2. Anti-GGL Algorithm.[6] In anti-GGL, we start with placing a large circle in the centroid of 

the region, and we put a circle next to the first circle immediately. Then place new circles 

along two existing circle. Note that in anti-GGL, we do not use corner or sides as reference 

to place new circles, so the position number in anti-GGL is much simpler than GGL. 

According to this fact, we generalize anti-GGL algorithm to an arbitrary polygon. The 

packing density of anti-GGL is not as good as GGL, but it can be improved by jiggling [24]. 

Moreover, we also develop an algorithm to shrink the polygonal region by a certain 

distance; this algorithm is helpful when we want to keep tubes away from the boundary of 

container. 

In practical, we use anti-GGL with shrinking as the algorithm for packing tubes. 

6.1.2 Part 2 Connection between Tubes 

1. Foundations for Connection.  The foundations for connection are fundamental elements, 

interference ratio and connection graph. The fundamental elements are I-block, L-block, T-
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block and modified L-block; every operation and connection can be decomposed to 

combination of finite fundamental elements, i.e. the end-cap connection can be 

decomposed to two L-blocks. The interference problem occurs when the end-cap 

connection for connecting two tubes overlaps with a third tube. An “interference ratio” is 

defined to characterize quantitatively the interference between two tubes. This ratio is 

used as a criterion to determine if two tubes are eligible to be connected by end-cap. We 

store all pairs of tubes that are eligible to be connected in a connection graph. Each edge in 

connection graph corresponds to an end-cap connection of the endpoints. As a result, we 

translate the circle packing result to a connection graph in which we will make connection 

decisions. 

2. One-path Network. If we connect every tube to form one long tube, this network system 

is called one-path network. This network only exists in packed tubes of a prism container, i.e. 

the redneck barbeque pool heater. Since the connection graphs at all cross-sections are the 

same, we can correspond the one-path network system to a travelling salesman problem 

(TSP) in the connection graph. The TSP is NP-hard, but we can solve it for small graphs. As we 

have no more than one hundred tubes in any one cross-section and the connection graphs 

are sparse, we can apply the idea of the cutting plane for solving TSP [14]. However, TSP 

cannot be solved with only cutting planes; we also need to branch and cut search [15] based 

on the result of cutting plane. Since the search tree of branch and cut is undetermined, this is 

a non-deterministic algorithm for which termination is not guaranteed. It does work, 

however, in our connection graphs.  

3. Connections in Varying Cross-sections. If the cross-sections are varying, we are unable 

to construct one-path networks. In this case, we define operations that connect the tubes 

between two different cross-sections; then we connect these operations by end-cap. 

Instead of forming a complete network system, we connect tubes at each cross-section 

independently. We reduce this problem to a perfect matching problem on connection 

graph of each cross-section. The perfect matching problem can also be solved via the 
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cutting plane method. In fact, due to the structure of matching polytope [27], cutting plane 

algorithm for perfect matching [26] is a deterministic algorithm and no branch and cut 

search is required. Our result shows that cutting plane for matching is efficient in a graph 

with 1000 vertices. However, assembling perfect matching on each cross-section may not 

provide a feasible network system. Therefore, designing a complete tubular network 

system in varying cross-sections still remains an open problem, but perfect matching on 

each cross-section could be an important reference for future work. 

6.1.3  Emphasizing the Difference between This Thesis and [24] 

In Wenzhe Jiang’s MMath thesis [24], the author uses depth-first search and minimum degree 

matching to find all feasible solutions for connection problem associated with a given tubular network.  

A "best solution" may then be found by examining every feasible solution.  In this thesis, however, we 

have tried a different approach. We convert the connection problem into a TSP or perfect matching 

problems in the corresponding connection graph. By solving these optimal TSP and PM problems, the 

solutions may correspond to an optimal connection design in the tubular system. This method does not 

enumerate every possible connection; it will produce one optimal solution. The only one exception is in 

the case of the branch and cut method for TSP. In fact, the solutions to the RLPs at the bottom of the 

tree in Figure 56 are all integer valued. Therefore, the solutions to these RLPs correspond to TSP tours 

in a connection graph, but they may not to be optimal TSP tours. Since we know that each TSP tour in 

connection graph corresponds to a one-path network, we have produced more than one feasible 

solution for the connection problem. However, we do not try to generate all feasible solutions. 

6.2 Future Works 

Here are some open problems: 

6.2.1 Non-simple Connected Cross-section 

In this thesis, all cross-sectional regions have been assumed to be simple connected, i.e. there 

is no holes. Here is an example of a non-simply connected region: 
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Figure 69 Non-simple connected region 

 

Packing circles in region D is a future direction. In Figure 69, the center of circle should be in 

polygon D but not in P. By applying Algorithm 2 Crossing number algorithm , this constraint is 

not hard to implement.  

6.2.2 Weights on Connection Graph 

In section 4.1.3 and 5.1.1, in these chapters, we mentioned that the weights 𝑤𝑒 are not 

specified in connection graph. We considered 𝑤𝑒 as arbitrary positive numbers and solve TSP 

and matching in general instance. In fact, as a design problem, 𝑤𝑒 should have some physical 

meaning. A common example of representation of  𝑤𝑒 is the Euclid distance between the 

centers of two tubes, but 𝑤𝑒 can be more meaningful. For example, 𝑤𝑒 can represent flow 

resistance factor or heat transfer between tubes or interference between two tubes.  

6.2.3 Connection Graph of System 

In section 3.3 Graph Representation for Possible Connection, the connection graph is 

constructed for one cross-section, and this assumption holds through the whole design 

process. In fact, problems arise in Chapter 5 when connecting tubes in varying cross-section. 

Since connection graphs are different in different cross-sections, we have to connect each 

cross-section independently. A possible way to resolve this problem is to construct connection 

graph for the whole network system. For example, the 9-4-9 problem in Figure 58: 
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Figure 70 Incomplete network system for 9-4-9 

 

Figure 70 is an example of incomplete network system with only operations, the numbers are 

tubes. Constructing a connection graph based on this system is essential in order to find a 

feasible network system. 

6.2.4 CAD Work for Tubular Network System 

In this thesis, our discussion has focused more on formulating design problem as mathematical 

instance such as circle packing, TSP and matching. We have actually provided very few visual 

examples. However, a computer 3D model would be very beneficial to comprehending our 

design purpose. Here is a visual example of what we want to design: Figure 71 is a SolidWork 

3D model of a 9-4-9 system.  

Figure 71 3D model for 9-4-9 
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The system in Figure 71 is not designed by any of the methods developed in this thesis. The 

packing and connection were this example are done by hand [24]. In future, we make 

correspondence between the abstract mathematical results to computer 3D model like Figure 

71. This will be the most practical work among all future works.  
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Appendix A 

Derivation the parameterization of modified L-block 

Recall the parameterization of a torus: 

𝑥(𝜃, 𝜑) = (𝑅 + 𝑟𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑, 

𝑦(𝜃, 𝜑) = (𝑅 + 𝑟𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑, 

𝑧(𝜃, 𝜑) = 𝑟𝑠𝑖𝑛𝜑 , 

𝜃 𝑎𝑛𝑑 𝜑 𝑎𝑟𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑘𝑒 𝑎 𝑓𝑢𝑙𝑙 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑖. 𝑒. 0 ≤ 𝜃, 𝜑 ≤ 2𝜋, 

𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑟𝑢𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑡𝑢𝑏𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟. 

 

From above figure of the modified L-block. We could see that it can be generated in a way 

quite similar to torus, with the following exceptions: 

1. The inner radius is zero. 

2. The tube radius is a function with respect to 𝜑 

3. The center line of modified L-block is an ellipise with semi-major axis R1 and semi-minor 

axis R2. 

Now, based on above three characteristics of modified L-block, we can construct its 

parameterization as follows.  

First, since the inner radius is zero, so that 𝑟 = 𝑅 
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𝑥(𝜃, 𝜑) = (𝑅 + 𝑅𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑, 

𝑦(𝜃, 𝜑) = (𝑅 + 𝑅𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑, 

𝑧(𝜃, 𝜑) = 𝑅𝑠𝑖𝑛𝜑. 

Note that 𝑅 = 𝑅(𝜑). Since the center of the tube exhibits an elliptical path, we can employ the 

the equation of an ellipse in polar coordinates: 

𝑅(𝜑) =
𝑅1𝑅2

√(𝑅1 cos(𝜑))2 + (𝑅2 sin(𝜑))2
, 

𝑤ℎ𝑒𝑟𝑒 𝑅1, 𝑅2 𝑎𝑟𝑒 𝑚𝑖𝑛𝑜𝑟 𝑎𝑛𝑑 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑒𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  

Then, we substitute 𝑅(𝜑) to obtain 

x(θ, 𝜑) =
𝑅1𝑅2(1 + 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑

√𝑅12 cos2 𝜑 + 𝑅22 sin2 𝜑
, 

y(θ, 𝜑) =
𝑅1𝑅2(1 + 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑

√𝑅12 cos2 𝜑 + 𝑅22 sin2 𝜑
, 

z(θ, 𝜑) =
𝑅1𝑅2𝑠𝑖𝑛𝜃

√𝑅12 cos2 𝜑 + 𝑅22 sin2 𝜑
. 

The above result is the parameterization of modified L-block as required. 
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Appendix B 

Improvement of Algorithm 7 

When we pack circles using either GGL or anti-GGL algorithms, we need to check the 

constraints for the placement of a new circle. This process involves the computation of 

distances from the new circle to all other circles in the packing. For each packed circle, we can 

store all packed circles whose centers lie within a certain distance from that circle, i.e. circles in 

the neighbourhood, in a linked list. In our computation, we have defined this distance to be 

four times of the radius of the circle.  

 

The above diagram shows how circles within a neighbourhood is stored in a linked list. The first 

column stores the pivot circles of the neighbor. Each row stores the circles which lie within the 

neighbourhood of the circle at the beginning of the row. For example, Circle2, Circle3, Circle4 

and so on are in the neighbourhood of Circle1 (First row, pivot circle is Circle1). CircleN-1, 

CircleN-2, CircleN-m and so on are in the neighbourhood of CircleN (N-th row, pivot circle is 

CircleN). The length of each row may differ, but it is bounded by a constant.  

Now we modify Algorithm 7 as following: 

In Algorithm 7, we have 

𝛾 = 𝑚𝑖𝑛{𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑤. 𝑟. 𝑡 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑡𝑢𝑏𝑒𝑠}. 

We change this step to 

Circle1 → Circle2 → Circle3 → Circle4 → ….. 

Circle2 → Circle1 → Circle1 → Circle5 → ….. 

Circle3 → Circle1 → Circle2 → Circle8 → ….. 

…
.. 

 

CircleN → CircleN-1 → CircleN-2 → CircleN-m → ….. 
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𝛾

= min {𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔𝑛𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑖 𝑤. 𝑟. 𝑡 𝑎𝑙𝑙 𝑐𝑖𝑟𝑐𝑙𝑒𝑠  

𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑙𝑖𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖} 

We check the interference ratios within the neighbourhood of a circle. We assume that we will 

avoid the connections that are longer than two times of the circle radius. 

This improves Algorithm 7 to linear time. Since the number of circles in a neighbourhood is a 

constant, computing 𝛾 within a neighbourhood is O(1). As we compute interference rations for 

every packed circle, the running time of Algorithm 7 with this improvement is O(1)*O(n)=O(n). 
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Appendix C 

Algorithm 9 Cutting Plane and Branch and Cut for TSP (Pseudocode) 

Initialize:  

LP←RLP for TSP without subtour constraints 

TVAL←Length of some tour 

solve(LP): Solve the LP, provides the solution x* and optimal 
object value LPval.  
 
subtour(LP){ 
 //cutting plane part// 
 Construct G* based on x* 
 While(G* is connected){ 

  Let 𝑆1, 𝑆2 …𝑆𝑘 be the node sets of component of G* 

  LP←LP+(𝑥(𝛿(𝑆𝑖)) ≥ 2, ∀𝑖 = 1,2…𝑘); 
 } 
 [x*, LPval]=solve(LP); 

 if (LPval≥TVAL) return; 
 if (x* is integral) { 

TVAL←LPval;  

return; 
} 
//Branch and cut part// 

 choose branching edge e such that 𝑥𝑒
∗ is fractional 

 LP←LP+(0 ≤ 𝑥𝑒 ≤ 0);// set upper bound of 𝑥𝑒 to be 0.// 

 subtour(LP); 

 LP←LP+(0 ≤ 𝑥𝑒 ≤ 1);// Reset. 
 LP←LP+(1 ≤ 𝑥𝑒 ≤ 1);// set lower bound of 𝑥𝑒 to be 1.// 

 subtour(LP); 

 LP←LP+(0 ≤ 𝑥𝑒 ≤ 1);//Reset.// 
} 
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Appendix D 

Blossom Inequality of Cut Form  

Suppose that 𝑥𝑒 is the characteristic vector for perfect matching, then 

∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ≤
|𝑆| − 1

2
⟺ ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ 1. 

Proof: Since  𝑥𝑒 is the characteristic vector for perfect matching, then for each 𝑆 ⊆ 𝑉, every 

vertex in S should be matched. We have the following: 

∑(𝑥𝑒 , 𝑒 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑆) = |𝑆|. 

Note that for each edge 𝑒 which has an endpoint in 𝑆, there are two cases: 

Case1: Both endpoints of e are in S. This is the case that 𝑒 ∈ 𝛾(𝑆). In this case, two endpoints of 

e are matched and they are all in S. 

Case2: One endpoint of e is in S. This is the case that 𝑒 ∈ 𝛿(𝑆). In this case, only one of the 

matched endpoints of e is in S  

We can rewrite the left hand side, and the above equality will become to 

2∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) + ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) = |𝑆|. 

Thus, 

∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) = |𝑆| − 2∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ,∑(𝑥𝑒, 𝑒 ∈ 𝛾(𝑆)) =
|𝑆| − ∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆))

2
. 

If  ∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ≤
|𝑆|−1

2
, then ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ |𝑆| − 2

|𝑆|−1

2
= 1. 

If  ∑(𝑥𝑒 , 𝑒 ∈ 𝛿(𝑆)) ≥ 1, then ∑(𝑥𝑒 , 𝑒 ∈ 𝛾(𝑆)) ≤
|𝑆|−1

2
. 

QED 
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