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Abstract 

 Noting the steadily worsening problem of depleted fossil fuel sources, alternate energy sources 

become increasingly important, such as thermoelectrics that may use waste heat to generate electricity. 

To be economically viable, the thermoelectric figure-of-merit, zT, – related to the energy conversion 

efficiency – needs to be in excess of unity (zT > 1). Modifications of Tl5Te3 show great promise as 

thermoelectrics due to their intrinsically low thermal conductivity. 

 Herein thallium lanthanide tellurides Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) have been 

prepared and their high temperature electrical and thermal transport properties investigated. Single phase 

samples were obtained. The electrical conductivity and thermal conductivity increased across the 

lanthanide series from La to Tb. On the other hand, the Seebeck coefficient values decreased with Ln 

varying from La to Tb. Tl9SmTe6 or Tl9GdTe6 constituted an exception, as the Seebeck coefficient of 

Tl9SmTe6 was smaller than that of Tl9GdTe6. Tl9LaTe6 had the largest figure-of-merit zT = 0.51 at 550 K. 

Thereafter, Tl10–xLaxTe6 samples were prepared with x = 0.90, 0.95, 1.00, 1.05, 1.10, aiming toward 

higher zT through composition optimization and expanding of the measurement temperature range. With 

the increasing La content, the unit cell volume increased, while the electrical conductivity, thermal 

conductivity and lattice thermal conductivity decreased. An opposite trend between Seebeck coefficient 

and electrical conductivity was observed. The highest zT = 0.57 was realized for Tl9LaTe6 at 600 K. 

 The isostructural series Tl9Sb1–xTe6, Tl9–xSb1+xTe6, Tl9Bi1–xTe6 and Tl9–xBi1+xTe6, with x ranging 

from 0 to 0.05, were prepared from the elements in the stoichiometric ratios, and the thermoelectric 

properties determined. In theory, these tellurides are narrow gap semiconductors when x = 0, with all 

elements in common oxidation states, according to (Tl+)9(Sb3+/Bi3+)(Te2–)6. The as-prepared samples of 

this 9-1-6 stoichiometry however exhibited relatively high electrical conductivity, which decreased with 
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increasing temperature, indicative of the presence of extrinsic charge carriers. The Seebeck coefficient 

was generally above +100 μV K–1. Decreasing the Sb or Bi content then increased the hole concentration, 

and thus increased the electrical conductivity while decreasing the Seebeck coefficient. The best feature 

of these thermoelectrics was their low thermal conductivity, being consistently well below 0.7 W m–1K–1. 

Combined with reasonable electrical conductivity and high Seebeck coefficient, high zT values in excess 

of 1 can be achieved via simple hot-pressing as well, after experimental optimization of the carrier 

concentration via introducing deficiencies on the Bi site. Moreover, the variants with Sb instead of Bi 

exhibited similar thermoelectric performance, a result of the combination of a better electrical 

performance and higher thermal conductivity. 

 To investigate the effects of Sn- and Pb-doping, several samples with the nominal composition 

Tl9Bi1–xSnxTe6, Tl9Bi1–yPbyTe6 (0 ≤ x, y ≤ 0.15), Tl9Sb1–mSnmTe6 and Tl9Sb1–nPbnTe6 (0 ≤ m, n ≤ 0.10) 

were investigated. Thermoelectric property measurements showed that increasing doping caused 

increases in electrical and thermal conductivity, while decreasing the Seebeck coefficient. Mixed results 

were obtained for the lattice thermal conductivity, which decreased in some cases, but increased in others. 

At around 500 K, competitive zT values were obtained for Tl9Bi0.95Sn0.05Te6, Tl9Bi0.95Pb0.05Te6, 

Tl9Sb0.97Sn0.03Te6, and Tl9Sb0.95Pb0.05Te6, namely 0.95, 0.94, 0.83 and 0.71, respectively. Higher dopant 

concentrations led to lower zT values. 

 The 8-2-6 variants Tl4SnTe3 and Tl4PbTe3 were reported to attain a thermoelectric figure-of-merit 

zTmax = 0.74 and 0.71 at 673 K, respectively. Here, the thermoelectric properties of both materials are 

presented in dependence of x in Tl10–xSnxTe6 and Tl10–xPbxTe6, with x varying between 1.9 and 2.05, 

culminating in zTmax values in excess of 1.2. These materials are charge balanced when x = 2, according 

to (Tl+)8(Sn2+)2(Te2–)6 and (Tl+)8(Pb2+)2(Te2–)6 (or: (Tl+)4Pb2+(Te2–)3). Increasing x caused an increase in 

valence electrons, and thus a decrease in the dominating p-type charge carriers. Thusly, larger x values 
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occurred with a smaller electrical conductivity and a larger Seebeck coefficient. In each case, the lattice 

thermal conductivity remained under 0.5 W m–1K–1, resulting in several samples attaining the desired 

zTmax > 1. The highest values thus far are exhibited by Tl8.05Sn1.95Te6 with zT = 1.26 and Tl8.10Pb1.90Te6 

with zT = 1.46 around 685 K. These materials are very competitive compared to other leading bulk 

materials as well, including the n-type triple-filled skutterudite Ba0.08La0.05Yb0.04Co4Sb12, the p-type Zintl 

phase Yb13.6La0.4MnSb11 and p-type Tl0.02Pb0.98Te until 673 K.   
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1. Introduction  

1.1. Application of Thermoelectrics 

 Thermoelectrics could be defined as the science and technology related to thermoelectric 

generation and refrigeration. Thermoelectric devices have many advantages, such as high reliability, no 

moving parts, efficiency independent of size, no maintenance, acoustically silent, and environmentally 

friendly.1  

 Thermoelectric effects mainly refer to the Seebeck effect, Peltier effect and Thomson effect. The 

Seebeck effect is used to directly convert thermal energy into electricity. Since the 1960s, thermoelectric 

power generator has supplied power to the spacecrafts, working in the temperature range of ~500 K to 

1273 K. Another interesting applications of the Seebeck effect is in the automotive industry where 

approximately 70% the energy generated from the gasoline combustion is lost in the form of heat.2  

 Conversely, the Peltier effect is used as thermoelectric refrigerators involving the generation or 

absorption of the heat when an electrical current is flowing through the closed thermoelectric circuit. The 

Peltier effect is commercially utilised in wine storage cabinets, night-vision systems, beverage and picnic 

coolers, automobile seats and in electronic systems like laser diodes cooling.3  

 

1.2. Thermoelectric Efficiency and Figure-of-Merit 

 The maximum efficiency of a thermoelectric power generator (max) or a thermoelectric 

refrigerator (max) is expressed as 

 H C
max

H C H

1 1

1

T T ZT

T ZT T T
h

- + -
=

+ +
 (1-1) 
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 C H C
max

H C

1

1 1

T ZT T T

T T ZT
j

+ -
=

- + +
 (1-2) 

where T is the mean temperature of the hot-side (TH) and the cold-side (TC). The maximum coefficient of 

performance is directly related to the dimensionless figure-of-merit (zT) of the thermoelement 

  
2

zT T
 


  (1-3) 

Here  [m] is the electrical conductivity,  [V K1] is the Seebeck coefficient,  W mKisthe 

total thermal conductivity and T [K] the absolute temperature. To achieve high zT, a high Seebeck 

coefficient and large electrical conductivity are required, enabling the generation of a high voltage and a 

high current. Meanwhile, the thermal conductivity should be comparatively low as a large temperature 

gradient must be maintained. Therefore thermoelectric materials ideally behave as ‘phonon-glass 

electron-crystal’(PGEC) materials because crystalline semiconductors provide the best compromise 

between  Seebeck coefficient and electrical conductivity, and glasses show some of the smallest lattice 

thermal conductivity values.4 The maximum zT values are available in degenerate semiconductors with 

carrier concentrations between 1019 and 1021 cm–3. A typical thermoelectric module consists of many 

(typically 18  128) pairs of p-type and n-type semiconducting thermoelements, which are connected 

electrically in series and thermally in parallel. In practical applications, thermoelectric materials with zT > 

1 are thought to be especially efficient.5  

 

1.2.1. Electrical Conductivity 

The electrical conductivity of a solid is given by the well-known formula  

 
ne   (1-4) 
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where n is the carrier concentration and  the electron drift velocity per unit electric field, or the 

mobility.6 The expressions for transport properties of single type carriers in a single energy band could 

be derived by solving the Boltzmann transport equation.7 The formal expression for the Boltzmann 

transport equation is 

 
sc

k r

df df dk dr
f f

dt dt dt dt
 

 
       
 

 (1-5) 

where t is the time, k
 and r

  are the wave and position vectors of electrons and f the non-equilibrium 

function. If the electrical field and temperature gradient lie along the x-axis, then d k dt e 


 ,

  r
f f T dT dx     and     k

f f E dE dk f E        . Under the relaxation time 

approximation  

 0

sc

f fdf

dt 
    

 
 (1-6) 

The solution is stated in term of the unperturbed Fermi-Dirac distribution function f0  

  0
B

1
( )

1 exp ( ) /
f E

E k T


 
 (1-7) 

Where E is the electron’s energy,   is the chemical potential and kB the Boltzmann constant. It is 

assumed that 0 0f f f   and then f could be replaced by f0 on the right-hand side of Equation (1-5). It is 

also assumed that the surfaces of constant energy in phase space are spherical and the energy E is 

proportional to k2, 2 2( ) (2 *)E k m . Now the first-order steady state solution to the Boltzmann 

transport equation could be expressed as 

 0
0( ) ( ) ( ) ( )

df E dT
f E f E E E e

dE T dx
         


 (1-8) 

Subsequently, the electric current density and heat current density are 
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 0( ) ( )[ ( ) ( )]J ne e g E E f E f E dE  



    (1-9) 

 0( ) ( )( ) ( )[ ( ) ( )]Q n E g E E E f E f E dE   



      (1-10) 

where n is the carrier concentration,    ( ) 2 3 *E E m   is the averaged carrier velocity along one axis 

and 3/2 3 1 2( ) 4 (2 *)g E m h E   is the density of states in a unit volume of free space in three dimensions. 

Here 2 3
dm* N m=  is the density of states effective mass for all valleys, N is the number of degenerate 

valleys and md the density of states effective mass for individual valley. The maximum value of N is 

limited by the crystalline symmetry. The largest N is 48 in cubic, followed by 24 in hexagonal, 16 in 

tetragonal, 8 in orthorhombic, and 4 or less in the other crystal systems.8 From the charge density and 

heat current density and the standard definitions, we could get the expressions for the transport 

coefficients for conduction perpendicular to directions of confinement. Now let the temperature gradient 

be zero, 0dT dx   and the electric field is  So the electrical conductivity is   

 
2 2 0

0

( )
( ) ( ) ( )

dT dx

df EJ
e g E E E dE

dE
  







     (1-11) 

When the relaxation time  could be expressed by a power law, 0E   where  is the characteristic 

constant for a particular scattering process and 0  is a constant determined by scattering process and 

material properties, the electrical conductivity and equilibrium carrier concentration could be expressed 

as  

  
3/2

2 1/2 3/2
0 B 1 23

8 (2)
( *) ( ) ( 3 / 2)

3
e m k T F

h



   

   (1-12) 

    
3 2 3/2

B d B
0 1 2 1 22 2 3

2 4 (2 * )
( ) ( )

2

k Tm m k TN
n g E f E dE F F

h
 






    
   (1-13) 
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0
( )

1

j

j x

x
F dx

e 



  is the jth order Fermi integral and B/ k T  is the reduced chemical potential. 

Then the mobility is 

 
 
 

1 2
0 B

1 2

2
( ) ( 3 / 2)

3 *

Fe
k T

m F
 

  


   (1-14) 

1.2.2. Seebeck Coefficient 

In 1821, Thomas Johann Seebeck discovered that when two elements were connected electrically 

in series and thermally in parallel and if the junctions were maintained at different temperatures, an open 

circuit electromotive force would be detectable. 

The produced voltage difference (ΔV) was directly proportional to the temperature difference 

between the hot side and the cold side (ΔT = TH – TC)  

 
a b H C

( 0)
dV dV V V

T
dT dT T T T

a
æ ö æ ö D D÷ ÷ç ç= - = = D ÷ ÷ç ç÷ ÷ç çè ø è ø D -

 (1-15) 

which defines the differential Seebeck coefficient  between the elements a and b. All superconductors 

have zero Seebeck coefficients below their critical temperatures. 

Alternatively, let the electric current be zero in Equation (1-10)  

 0( ) ( ) ( ) ( ) 0
df E dT

J ne e g E E E E e dE
dE T dx

       




          
  (1-16) 

 2 20 01
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

df dfdT
e g E E E dE g E E E E dE

dE T dx dE
     

 

 
     (1-17) 

Then the Seebeck coefficient is 

 
 
 

2
0

2
0

0

( ) ( ) ( ) /1

( ) ( ) ( ) /
J

g E E E E df dE dE

dT eT g E E E df dE dE
dx

  
 









 
     
 




 (1-18) 
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which is positive for holes and negative for quasi-free electrons. In combination with the expression for 

carrier velocity, the Seebeck coefficient could be expressed as 

 
 
 

3/2

1/2

5 / 2 ( )

3 / 2 ( )

Fk

e F
B 



 
 

 




       
 (1-19) 

By employing the Bethe-Sommerfeld expansion, we arrive at 

 
2

2 0
1 B( )

3 E

K
K k T

E m

p

=

æ ö¶ ÷ç@ ÷ç ÷çè ø¶  (1-20) 

 
2 0( ) ( ) ( ) ( )n

n

df
K g E E E E dE

dE
  




   (1-21) 

and the Mott formula9  

 
[ ]22

1 B

0

( )1

3
E

ln EK k T

eT K e E
m

sp
a

=

¶
= =

¶  (1-22) 

 

1.2.3. Thermal Conductivity 

 Thermal conductivity comes mainly from two sources: (1) heat energy transported by carriers (E) 

and (2) heat conducted through phonons (L), i.e. E L    . The electronic term (E) is derived as 

follows 

 

0

2 2 20

0

2

2 0

2 0

( ) ( )( ) ( )[ ( ) ( ) ]

1
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1
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e g E E E E dE g E E E E dE
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g E E E dE
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



      

      

  

 





 











        

    

  




 




2 21
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g E E E E dE
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  



 

 (1-23) 
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
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
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 





 (1-24) 

According to the Wiedemann–Franz law10: E L T  , then Lorenz number L is expressed by 

 
22

5/2 3/2E

1/2 1/2

( 7 / 2) ( ) ( 5 / 2) ( )

( 3 / 2) ( ) ( 3 / 2) ( )

F Fk
L

σT e F F
B  

 

   
   

 

 

                   

 (1-25) 

By analogy with the kinetic theory of gases, the lattice thermal conductivity is given by 

 
1

3
C lL V   (1-26) 

where l is the mean free path of the phonons, CV is the heat capacity of the lattice per unit volume and υ 

is the average phonon velocity.11  

 The lattice thermal conductivity is the only parameter entering the figure-of-merit that is not 

related to the electrical properties. Slack proposed a theory to evaluate the thermal conductivity from 

crystallographic data, assuming that the most contribution to the lattice thermal conductivity is from the 

acoustic phonons, which possess higher group velocity than optical phonons.12 

  

3
D

2 32
atom

m

N T
L

 


  (1-27) 

where m  is the average atomic mass, D  is the Debye temperature,  is the Grüneisen parameter, 

3
C atomV N   is a measure of atomic distance with CV  being the unit cell volume and atomN  the number 

of atoms per cell. The Debye temperature could be estimated by Lindemann’s formula13 

 
1/2 1/3 1/2

m m m
D 5/6 1/2

( ) ( ) ( )
120

( ) ( )

T T

m m

     (1-28) 

where mT  is the melting point and m  the mass density. Equation (1-27) could be expressed as 
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T
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L
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

  (1-29) 

Therefore low melting point, high average atomic masses, a large number of atoms per unit cell, and 

large atomic distances will enable a low lattice thermal conductivity. 

 To which extent the figure-of-merit could be optimized, could be estimated by comparing the 

actual lattice thermal conductivity with the minimum lattice thermal conductivity min, which is achieved 

assuming that the mean free path of the phonons is half of the wavelength of the phonons. min is 

calculated according to Cahill’s formulation14, 

 
( )

i

21 3 3
2

min B i 20
i6 1

xT

x
i

T x e
k dx

e

Qp
D u

Q
-

æ öæ ö ÷ç÷ç ÷= ç÷ç ÷÷ çç ÷çè ø è ø -
å ò  (1-30) 

where the summation is over the one longitudinal and two transverse modes,  represents the average 

volume per atom, Ɵi = υi(ħ/kB)(6π2)1/3, and i is the sound velocity for the longitudinal and transverse 

modes. 

 

1.3. State-of-the-art Thermoelectrics 

1.3.1. Bismuth Telluride and IVA Tellurides 

 The commercialized thermoelectric refrigeration material, Bi2Te3, was first investigated as a 

thermoelectric candidate in 1954. It crystallizes in a layered structure (Figure 1.1) with space group R3¯-

m.15 The hexagonal unit cell dimensions at room temperature are a = 3.8 Å and c = 30.5 Å. The atomic 

layers stacked along the c-axis form the sequence ··· Te[1]–Bi–Te[2]–Bi–Te[1] ···. The tellurium and 

bismuth layers are connected together by strong ionic-covalent bonds, whereas the bonding between 

neighbouring Te layers is based on weak van der Waals-type forces.16 Consequently, this weak binding 
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1.4.1. Ag9TlTe5, Tl2SnTe5 and Tl2GeTe5 

 Ag9TlTe5 has a zT of 1.23 at 700 K because of its extremely low glass-like thermal conductivity 

which is explained by the small average sound velocity (1203 ms1), Young’s modulus (23.4 GPa) and 

Debye temperature (120 K) stemming from the weak interatomic bonding.48 Tl2SnTe5 also exhibits an 

extremely low thermal conductivity and an impressively high zT (estimated to be 0.85 at 400 K), which 

is competitive to that of Bi2Te3. Neutron scattering experiments show that there are large atomic 

displacement parameters (ADPs) for the Tl ions and some of the Te atoms, which mean those atoms are  

weakly bonded in the structure, leading to the abnormally low lattice thermal conductivity.49 

Crystallographic details of Ag9TlTe5, Tl2SnTe5 and its analogue Tl2GeTe5 are summarized in Table 1.1.49  

 

1.4.2. Modifications of Tl5Te3 

 The crystal structure and our own unpublished investigations on transport properties of Tl5Te3 are 

shown in Figure 1.5.50 As seen from the figure, Tl5Te3 indeed possesses a low thermal conductivity ( ~ 

3.0 W m–1K–1) and it is metallic with  = 2500 1cm and  = 18 V K1 at 320 K.  

 Tl9LaTe6, Tl9BiTe6, Tl9SbTe6, Tl4SnTe3, and Tl4PbTe3 belong to a large group of ternary 

compounds, which can be derived from the isostructural Tl5Te3. Tl9LaTe6, Tl9SbTe6 and Tl9BiTe6 are 

ordered variants of Tl5Te3.
51 The Tl atoms occupy two sites, namely the Wyckoff positions 4c (Tl1) and 

16l (Tl2) of space group I4/mcm (with four formula units of Tl5Te3 per unit cell). The La,52, 53 Sb and Bi 

atoms then replace half of the Tl1 atoms on 4c. With Tl adopting the 1+ oxidation state and Te being 2−, 

these materials were calculated using density functional theory (DFT) 54, 55 methods to be semi-

conducting (with band gaps < 0.5 eV), which is in accordance with the formulations (Tl+)9La3+(Te2)6,
52 

(Tl+)9Sb3+(Te2)6 and (Tl+)9Bi3+(Te2)6.
51 Our experiments showed that the formally undoped, electron 
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precise materials Tl9BiTe6 and Tl9SbTe6 are actually heavily doped, p-type semiconductors, with the 

electrical conductivity slowly decreasing with increasing temperature. 

Table 1.1 Crystallographic details of Ag9TlTe5, Tl2SnTe5
56 and Tl2GeTe5

57 

Chemical formula Ag9TlTe5 Tl2SnTe5 Tl2GeTe5 

Formula weight [g/mol] 1813.20 1165.48 1119.41 

Space group R3¯c I4/mcm P4/mbm 

a [Å] = b 11.431 8.306 8.243 

c [Å] 41.945 15.161 14.918 

Z 12 4 4 

ADPs(Å2)* 
Tl(1):0.017(0.026) Tl(1):0.048(0.042) 

Tl(2):0.047(0.049) Tl(2):0.025(0.021) 

X-ray density [g/cm3]  7.40 7.34 

*In each case, the second ADP value is from neutron diffraction data. ADP evaluates the mean-square 

displacement amplitude of an atom about its equilibrium position in a crystal.58 

 

 Böttcher et al. reported Tl4SnTe3 and Tl4PbTe3 to be ternary substitution variants of Tl5Te3 

(In5Bi3 structure type, space group I4/mcm), where the E ( = Sn, Pb) atoms occupy one Tl site, namely 

Tl1 on Wyckoff site 4c.59, 60 As the second metal site, Tl2 on 16l, has a multiplicity of 16, compared to 4 

for Tl1, the Tl : E ratio is 4 : 1 as in Tl4ETe3, when both metal sites are fully occupied by either Tl or E 

atoms. Then, all atoms can be in their most common oxidations states, resulting in the semiconducting 

charge-balanced formula (Tl+)4E
2+(Te2)3. The lattice parameters of Tl5Te3 and its modifications are 

presented in Table 1.2. 
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450 K when prepared by zone-melting, and reaching zT = 0.86 at 560 K after hot-pressing due to its 

intrinsic low lattice thermal conductivity (< 0.4 W·m1K1). 

 No data from off-stoichiometry materials such as Tl9Sb1xTe6 (with deficiencies on the Sb site), 

Tl9xSb1+xTe6 (with a higher Sb/Tl ratio), Tl10–xSnxTe6 and Tl10–xPbxTe6 (with different E/Tl ratios) were 

known. In addition, disadvantageous high porosity (15% - 20%) was at least in part responsible for the 

relatively poor thermoelectric performance, causing additional charge carrier scattering at the grain 

boundaries.64 Enhancement in thermoelectric performance is anticipated if the density is improved via an 

efficient consolidation and densification method. In this work, several series of the variants of Tl5Te3 

have been prepared by hot-pressing and their crystal structure, electronic structure and high temperature 

electrical and thermal transport properties are investigated. 

a) The effects of lanthanides on crystal structure and physical properties of Tl9LnTe6 (Ln = La, Ce, 

Pr, Nd, Sm, Gd, Tb) are analyzed. Thereafter, Tl10-xLaxTe6 (x = 0.90, 0.95, 1.00, 1.05, 1.10) are prepared 

aiming toward higher zT through composition optimization and measurement temperature range 

broadening. The effects of La contents on the unit cell volume and thermoelectric properties are also 

discussed. These results are published with me as first author in Journal of Alloys and Compounds. 

b) The following samples Tl9Bi1–xTe6 with 0  x  0.05, Tl9–xBi1+xTe6 with 0  x  0.05, Tl9Sb1–xTe6 

with 0  x  0.03, and Tl9–xSb1+xTe6 with 0  x  0.03 are investigated. A substantial improvement of the 

thermoelectric figure-of-merit, zT, is achieved in both the Bi and Sb systems over the previous data on 

hot-pressed Tl9BiTe6 and cold-pressed Tl9SbTe6, respectively. These results are published with me as 

first author in Chemistry of Materials. 

c) To investigate the effects of Sn- and Pb-doping, several samples with the nominal composition 

Tl9Bi1−xSnxTe6, Tl9Bi1−yPbyTe6 (0 ≤ x, y ≤ 0.15), Tl9Sb1−mSnmTe6 and Tl9Sb1−nPbnTe6 (0 ≤ m, n ≤ 0.10) 

are prepared and their thermoelectric property measured. Considering that Sn and Pb have one valence 



17 
 

electron less than Sb and Bi, the Sn and Pb substitutions are expected to induce extrinsic p-type carriers 

in Tl9SbTe6 and Tl9BiTe6. Furthermore, the disorder of random atomic substitution may introduce mass 

and strain fluctuations in the material, which is expected to scatter the phonons, thereby decreasing the 

lattice thermal conductivity. These results are published with me as first author in Journal of Applied 

Physics.  

d) Tl10–xSnxTe6 with 1.95  x  2.05 and Tl10–xPbxTe6 with 1.90  x  2.05 are investigated. The 

thermoelectric properties of both materials are presented in dependence of x in Tl10–xSnxTe6 and Tl10–

xPbxTe6. Increasing x causes an increase in valence electrons, and thus a decrease in the dominating p-

type charge carriers. Thusly, larger x values occur with a smaller electrical conductivity and a larger 

Seebeck coefficient. In each case, the lattice thermal conductivity remains under 0.5 W m–1K–1, resulting 

in several samples attaining the desired zTmax > 1. The highest values thus far are exhibited by 

Tl8.05Sn1.95Te6 with zT = 1.26 and Tl8.10Pb1.90Te6 with zT = 1.46 around 685 K. These results are 

published with me as first author in Advanced Energy Materials.  
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2. Experimental Methods 

2.1. Preparation of the Samples 

2.1.1. Synthesis  

 The starting materials were preserved in an argon-filled MBRAUN glove box. Both the oxygen 

and water contents are less than 0.1 ppm in the glove box, which helps to prevent the elements from 

oxidation. The elements were weighed according to the stoichiometric ratio, loaded into silica tubes, and 

then transferred to a vacuum line. The silica tubes were then sealed under a vacuum on the order of 103
 

mbar with an oxygen-hydrogen torch. The tubes were finally put into a programmable cube resistance 

furnace. 

 

2.1.2. Consolidation  

 Primary techniques widely employed in the densification of thermoelectric materials include 

cold-pressing (CP), hot-pressing (HP) and spark plasma sintering (SPS). In HP the heat is provided by 

external heating elements, while in SPS the heat generation is internal. SPS applies large DC Pulsed 

Current to the powder materials in the die and generates sparks and thusly momentary ultra-high 

temperature between the powder particles, which will start the neck formation among the particles and 

develop the sintering process at lower temperature than traditional sintering methods. Here the samples 

are sintered by the Oxy-Gon FR-210-30T-ASA-160-EVC hot-press furnace system. The powder Is 

loaded into a graphite die and then pressed under a uniaxial pressure and Argon atmosphere. The details 

for the pressing process will be described briefly in each chapter.  
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2.2. Characterization and Measurement  

2.2.1. X-ray Diffraction  

 X-rays are electromagnetic waves with wavelength of ~1 Ångström (1 Å = 1010 m). X-ray 

diffraction experiments follow Bragg’s law  

 2 sind nq l=   (2-1) 

Here n is an integer, λ is the wavelength of incident wave, d is the spacing between the lattice planes, and 

θ is the angle between the incident beam and the scattering planes. An INEL powder diffractometer with 

position-sensitive detector and Cu K1 radiation is used for phase characterization herein.  

 In the late 1960s, Dr. Hugo Rietveld, a Dutch physicist, proposed a method to refine a crystal 

structure from its powder diffraction profile. The Rietveld method employs directly the individual 

intensities Yi at each scattering angle (θ) from powder diffraction patterns and is a complex structure 

refinement and minimization procedure. The quantity minimised is in general form 

 [ ]2i i i
1

( ) ( )
n

i

S w Y obs Y calc Minimum
=

= - =å  (2-2) 

n is the total number of points measured in the experimental powder diffraction pattern; Yi(obs) is the 

observed intensity of the ith data point; Yi(calc) is the calculated intensity of the ith data point; wi = 

1/Yi(obs) is the weight of the ith data point. In the process of obtaining a particular best refinement results, 

several parameters should be adjusted in the least squares refinement, including lattice parameters, 

atomic positions, site occupancies, thermal vibrational parameters, peak shape and width parameters, 

preferred orientation, and so on. The following figure-of-merits are customarily proposed to characterize 

the quality of the refinement.65  

The profile residual (or reliability) factor, Rp: 
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The weighted profile residual, Rwp: 
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The Bragg residual, RB: 
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The expected profile residual, Rexp: 
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The goodness of fit, 2(chi-squared): 
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Ij (obs) is the ‘observed’ integrated intensity of the jth Bragg peak, which has been calculated after the 

observed intensity of every data point in the powder diffraction profile has been portioned according to 

the calculated intensities of the contributing Bragg peaks; Ij (calc) is the calculated integrated intensity of 

the Bragg peak; m is the number of independent Bragg reflections; p is the number of free least squares 

parameters. All figures-of-merit except RB include a contribution from the background. Here Rietveld 
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refinements were performed using the General Structure Analysis System (GSAS)66 via the graphical 

interface EXPGUI.67  

 

2.2.2. Single Crystal X-ray Diffraction  

 The single crystal measurements were carried out on a Bruker Kappa APEX II diffractometer 

with graphite-monochromatic Mo K (λ = 0.71073 Å) radiation. The crystal is centered by changing its 

position along the X, Y and Z direction. The SMART software integrated into the APEX2 package is 

utilized for data collection. After corrections for Lorentz and polarization effects, the data were corrected 

for absorption by fitting a function to the empirical transmission surface as sampled by multiple 

equivalent measurements using SADABS and the structure solution and refinements performed with the 

SHELXTL package.68 The internal residual value (Rint) is used to determine the quality of data collected.  
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O mean
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F F
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Rint depends on the observed structure factor, FO. The square roots of the corrected data yields the 

observed structure factor, 

 
(hkl)
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P
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F

L
=  (2-9) 

where K is a scaling factor and LP is the Lorentz (geometric) correction and polarization correction 

parameter.  Because our materials are composed by heavy atoms, the chosen method for solving crystal 

structures was the direct method. 

 The quality of the refinement is evaluated by R factor (R1) and weighted R factor (wR2) defined as   
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with FO and FC the observed and calculated structure factors, respectively. w is the weighting parameter.  

2.2.3. Scanning Electron Microscopy 

 Scanning electron microscopy (SEM) has been proven to be effective in studying the texture 

(sizes, shapes), topography, surface and fracture features of powders or bulk pieces.69 SEM mainly works 

in the reflection mode and has the resolution in the range of ~100 nm to ~1000 nm. Energy Dispersive X-

ray analysis (EDX) is an analytical technique commonly comes with SEM. Selected pellets were 

analyzed after the hot-pressing procedure by energy dispersive X-ray spectroscopy (Zeiss, with 

integrated EDAX Pegasus 1200 detector) using an acceleration voltage of 25 kV.  

 

2.2.4. Electronic Structure Calculation  

 Electronic structure calculation is of great importance to understand and predict the properties of 

the materials. Electronic structure of a compound could be obtained from first principles, in which 

process not any adjustable parameters are involved. One just needs to input the electronic charge, 

electron mass, atomic numbers, and masses of the atoms of the material, since all the properties arise 

from the interaction between the nuclei and the electrons. Nuclei obey classical mechanics; by contrast, 

electrons are governed by quantum mechanics.70 

 DFT proposed by Kohn and Hohenberg in 1964 presented a huge breakthrough with respect to 

the handling of electron-electron interaction. The ground-state density of electrons plays a fundamental 

role in the DFT. DFT is computationally inexpensive because the density has only three degrees of 

freedom, in contrast to 3N for the many-body wave function. DFT is based on two theorems: (1) the 
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external potential is a functional of the ground-state density, which means density is the fundamental 

variable; (2) the total energy is lowest for the right ground-state density. In 1965 Kohn and Sham showed 

that the right electron density can be obtained by a one-electron equation (Kohn-Sham equation).71 The 

Kohn-Sham equation is described below: 
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where m denotes the electron mass; r


the position of an electron. The Kohn-Sham equation is similar to 

Hartree or Hartree-Fock method but this includes the effects of exchange and correlation. Some 

approximation should be used to solve the Kohn-Sham equation for the exchange-correlation potential 

( )XC ru


 is unknown. The simplest approximation is the local density approximation (LDA), which has 

been proved efficient in most cases. However, sometimes it overestimates binding energy and 

underestimates the bond lengths and thus the lattice constants. To rectify these problems, to some extent, 

Perdew developed generalized gradient approximation (GGA) in 1991.72 When it comes to band gaps in 

semiconductors and insulators, both LDA and GGA will yield comparatively small values. 

 There are many other methods to solve the Kohn-Sham equation to obtain the band structure for a 

periodic solid. Augmented plane wave (APW) method proposed by Slater (1937) is one the oldest 

methods and remains one of the accurate methods to calculate energy bands. The method uses the 

muffin-tin form of the electron-ion potential. The potential around an ion is hypothetically considered to 

be spherically symmetric within a sphere of radius (the muffin-tin radius) and is constant in the 

interstitial area.  
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 Another method using the potential in the muffin-tin form is the Korringa-Kohn-Rostoker (KKR) 

method using a Green’s function formulation. Both AWP and KKR methods are capable of calculating 

accurately, but they are time-consuming to obtain self-consistent calculations since they involve a 

complicated, non-linear energy dependent secular matrix. In 1975, Andersen developed the linear 

augmented plane wave (LAPW) method and the linear muffin tin orbital (LMTO) method to solve the 

band structure in a more efficient way. Nowadays it is feasible to get rid of the muffin-tin approximation 

and use full-potential (FP). The methods using FP form are FP-LAWP and FP-LMTO. The tight-binding 

(TB) method or the linear combination of atomic orbitals (LCAO) method that uses tightly bound atomic 

orbitals as bases has also been developed to obtain the band structure. The LMTO method cast in the TB 

form is called the TB-LMTO method. Nonetheless, most of the LMTO calculations have been performed 

using the atomic-spheres-approximation (ASA) in which muffin-tin spheres are blown up until 

overlapping and volume-filling spheres are utilised.73 

 

2.3. Measurements of Physical Properties  

2.3.1. Electrical Resistivity and Seebeck Coefficient Measurement  

 The electrical resistivity and Seebeck coefficient were measured on ZEM-3 (ULVAC-RIKO, Inc). 

The two R-type thermocouples are spring-mounted and pressed onto the pellet with a uniform pressure 

ensuring good near-ohmic contacts, but sufficiently gentle to avoid damage. In the electrical resistivity 

measurement, a constant current is applied to the sample and the voltage drop between the same wires of 

the thermocouple is determined by subtracting the thermo-electromotive force between leads. After the 

sample is heated to and held at a programed temperature, the lower block is heated to provide a 

temperature gradient. Seebeck coefficient is obtained by measuring the upper and lower temperatures 
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and thermal electromotive force between the same wires of the thermocouples.  

 

2.3.2. Thermal Conductivity Determination  

 Thermal conductivity is determined by the measurement of thermal diffusivity (), specific heat 

(CP) and density (m):  

 m PCk lr=  (2-14) 

 One of the widely used methods to measure thermal diffusivity is the laser flash method. Thin 

disks or squares are selected for the measurement. One face of the sample is irradiated by a pulsed laser 

and an infrared detector observes the temperature fluctuation of the rear face. The time t1/2, taken to reach 

one-half of the steady-state temperature rise, is employed to calculate the thermal diffusivity. 

 
2

2
1 2

1.37d

t
l

p
=  (2-15) 

where d is the thickness of the sample. The thermal diffusivity measurements were carried out on the 

Flash Line 3000 (ANTER Corp.) with a Xenon flash lamp. 

 The specific heat is calculated following the Dulong-Petit law, P avg3C R M= , where R is the gas 

constant and Mavg the average molar mass. The Dulong-Petit values often serve as a good approximation 

in particular at low temperatures, while experimental data are often difficult to be reliably obtained.74 For 

validation, temperature dependent CP values for Tl9BiTe6 were calculated using the Neumann-Kopp75, 76 

law with the experimental data on Tl2Te and Bi2Te3. Those data yielded slightly higher CP with 

increasing temperature, e.g. by 9% at 500 K. 

 The densities of the pellets were determined with a Sartorius® mechatronics density 

determination kit following the Archimedes’ method. The densities were calculated from 
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where W(a) is the weight of the pellet in the air, W(fl) is the weight of the pellet in liquid (water or 

ethanol),(fl) is the density of the liquid and (a) = 0.0012 g/cm3 the density of the air under standard 

conditions (293.15 K, 101.325 kPa). 0.99983 is used to eliminate the error caused by depth of immersion. 
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3. Thermoelectric Properties of Tl9LnTe6 (Ln = La, 

Ce, Pr, Nd, Sm, Gd, Tb) and Tl10−xLaxTe6 

3.1. Introduction 

 Previously, a series of Tl9LnTe6 (Ln = rare earth elements), isostructural to Tl9BiTe6, were 

prepared by the cold-pressing and sintering method and their electrical and thermal properties 

determined.53 Here the Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) series was revisited at first. Samples 

with relatively high densities were obtained by hot-pressing. Their crystal structure and thermoelectric 

properties were also measured and analyzed, with La turning out to be forming the best Tl-Ln telluride of 

this series. Subsequently, Tl10−xLaxTe6 (x = 0.90, 0.95, 1.00, 1.05, 1.10) with various Tl/La ratios were 

prepared with the hope of further optimizing thermoelectric properties through adjusting carrier 

concentration. 

 

3.2. Experimental Process 

 Samples with the nominal composition Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) and 

Tl10−xLaxTe6 (x = 0.90, 0.95, 1.00, 1.05, 1.10) were prepared from the starting materials (Tl granules, 

99.9%, Strem Chemicals; La, ingots, 99.9%; Ce ingots, 99.9%; Pr powder, −40 mesh, 99.9%; Nd, 

powder, −40 mesh, 99.9%; Sm powder, −40 mesh, 99.9%; Gd, powder, −40 mesh, 99.9%; Tb, powder, 

−40 mesh, 99.9%;Te broken ingots, 99.99+%, Strem Chemicals). To prevent the reaction between the 

silica and the rare earth elements, the fused silica tubes were coated with carbon film formed by the 

decomposition of ethanol. The samples then were gradually heated to 1200 K within 24 hours, kept at 



28 
 

this temperature for 30 hours, gradually cooled down to 673 K within 160 hours, followed by switching 

off the furnace. The hot-press sintering pressure, sintering temperature and sintering time are 45 MPa, 

613 K and 1.5 hours, respectively. Rietveld refinements were performed on Tl9LaTe6, Tl9CeTe6, 

Tl9PrTe6, Tl9.05La0.95Te6, and Tl8.95La1.05Te6 based on the Tl9BiTe6 model. 

 

3.3. Results and Discussion 

 The Powder XRD results, Rietveld refinements and thermoelectric properties of the thallium 

lanthanide tellurides compounds are discussed separately in this section. Firstly, we present the results 

for Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb), and then we show the effects of the Tl/La ratio on the 

crystal structure and thermoelectric properties of Tl10-xLaxTe6.  

 

3.3.1. Powder XRD Results and Rietveld Refinements of Tl9LnTe6 

 Figure 3.1 shows the room temperature powder XRD patterns of Tl9LnTe6 (Ln = La, Ce, Pr, Nd, 

Sm, Gd, Tb). The XRD patterns reveal that the samples from Tl9LaTe6 to Tl9TbTe6 give patterns similar 

to that of Tl9BiTe6 (PDF No. 84-2448). No impurity diffraction peaks were observed except for a tiny 

amount of La3−yTe4 found in Tl9LaTe6. An attempt to prepare "Tl9YbTe6" yielded a pattern 

corresponding to that of Tl5Te3 with presence of YbTe, which agrees well with the observations from 

Babanly et al. who reported that "Tl9YbTe6" could not have been prepared.77  

 Crystallographic details of Tl9LaTe6, Tl9CeTe6 and Tl9PrTe6 are presented in Table 3.1. The unit 

cell volumes of Tl9PrTe6 (1038.42(2) Å3) and Tl9CeTe6 (1032.98(2) Å3) are smaller than that of Tl9LaTe6 

(1049.65(2) Å3), as expected based on lanthanide contraction with the radii of La3+, Ce3+ and Pr3+ ions 

being 103 pm, 102 pm, and 99 pm, respectively. However, it is interesting to note that Tl9CeTe6 has a 
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3.3.2. Thermoelectric Properties of Tl9LnTe6  

 The thermoelectric properties of Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) are presented in 

Figure 3.2, and the values at 315 K and at 550 K shown in Table 3.2. Figure 3.2(a) reveals the 

temperature dependence of the electrical conductivity of all Tl9LnTe6 samples. In each case,  decreases 

monotonously with increasing temperature, typical for heavily doped semiconductors. While these 

materials are formally charge-balanced, p-type defects are often observed in such heavy metal tellurides, 

as also found in Bi2Te3 and Tl9BiTe6, causing a large number of carriers (> 1019 cm–3) to be present 

without thermal activation.  

 Across the thallium lanthanide telluride series,  gradually increases from  = 190 Ω−1cm−1 for 

Tl9LaTe6 to 1039 Ω−1cm−1 for Tl9TbTe6 at 315 K, i.e. from the left to the right in the Periodic Table. This 

evolution could be readily interpreted in terms of that the band gaps (Eg) of these Tl9LnTe6 compounds 

decrease across the series. The smaller energy gap makes it easier for intrinsic carriers to transit from the 

valence band to the conduction band, leading to an increased .53 The  values of Tl9SmTe6 (e.g., 942 

Ω−1cm−1 at 315 K) are an exception to the general trend across the series, as they are higher than the ones 

of the representative to its right, Tl9GdTe6 with  = 884 Ω−1cm−1 at 315 K. It is reasonable to attribute 

this discontinuity (a difference of 7%) to an experimental error, for example a slightly higher Tl : Sm 

ratio or lower Tl : Gd ratio than planned or from the determination of the electrical conductivity itself, 

usually estimated to have an error of 5%. The latter seems less likely here, because the same 

discontinuity is also found in the Seebeck coefficient and thermal conductivity.  

 Typically the sample with a higher electrical conductivity is accompanied by a lower Seebeck 

coefficient. This principle is indeed true for the thallium lanthanide telluride series investigated here, as 

shown in Figure 3.2(b). All samples have positive  values, implying the dominant carriers in the 
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Table 3.2 Thermoelectric properties of various Tl9LnTe6 samples at 315 K and at 550 K. 

Sample 
 

(–1cm–1) 

 

(V K–1) 

P.F. 

(W cm–1K–2) 



(W m–1K–1) 

L

(W m–1K–1) 

zT 

Ln = La 190 \ 69 125 \ 211 3.0 \ 3.1 0.41 \ 0.33 0.30 \ 0.27 0.23 \ 0.51 

Ln = Ce 371 \ 130 96 \ 163 3.4 \ 3.5 0.54 \ 0.39 0.31 \ 0.27 0.20 \ 0.49 

Ln = Pr 550 \ 193 85 \ 146 3.9 \ 4.1 0.65 \ 0.48 0.30 \ 0.29 0.19 \ 0.47 

Ln = Nd 661 \ 243 70 \ 134 3.3 \ 4.3 0.78 \ 0.57 0.34 \ 0.33 0.13 \ 0.42 

Ln = Sm 942 \ 350 57 \ 112 3.0 \ 4.4 1.01 \ 0.75 0.36 \ 0.39 0.09 \ 0.32 

Ln = Gd 884 \ 312 62 \ 121 3.4 \ 4.6 0.95 \ 0.68 0.36 \ 0.36 0.11 \ 0.37 

Ln = Tb 1039 \ 401 53 \ 107 2.9 \ 4.6 1.07 \ 0.80 0.35 \ 0.39 0.09 \ 0.31 

 

 The power factor, P.F. = 2, for these thallium lanthanide tellurides is depicted in Figure 3.2(c). 

Here the temperature dependence of these compounds could be categorized into two groups. Tl9LaTe6, 

Tl9CeTe6 and Tl9PrTe6 exhibit only a very small temperature dependence in the whole temperature range, 

while the P.F. values of the other samples rise in a similar fashion to . All the P.F. values fall in the 

range of 2.8 W cm–1K–2 to 4.6 W cm−1K−2 across the lanthanide series from La to Tb. At around 550 

K, the P.F. increases from 3.1 W cm−1K−2 for Tl9LaTe6 to 4.6W cm−1K−2 for Tl9GdTe6 and Tl9TbTe6.  

 The thermal conductivity data are plotted in Figure 3.2(d). Similar to the electrical conductivity, 

the thermal conductivity decreases with increasing temperature and increases across the lanthanide series. 

From Tl9LaTe6 to Tl9TbTe6, all samples display a general low thermal conductivity ( < 1.1 W m−1K−1), 

which gradually decreases with increasing temperature. Generally speaking, samples with larger 

electrical conductivity exhibit higher thermal conductivity because E is proportional to  via the 
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Wiedemann-Franz law E = LT.10 For instance,  increases from 0.40 W m−1K−1 of Tl9LaTe6 to 1.07 W 

m−1K−1 of Tl9TbTe6 at 325 K, correlating well to the changes in electrical conductivity.  

 To further understand the effect of lanthanide on the lattice thermal conductivity, L, we 

calculated L via L   − E. The Lorenz number L was calculated under the single parabolic band and 

acoustic phonon scattering (scattering parameter λ =  0.5) assumption.79 The calculated lattice thermal 

conductivity is illustrated in Figure 3.2(e). From Tl9LaTe6 to Tl9TbTe6, all samples exhibit very low L 

values, consistently below 0.4 W m−1K−1. Moreover, the L curves are very flat, which is characteristic of 

compounds with the thermal conductivity approaching the phonon-glass limit. The same L behavior was 

also found in the Sn- and Pb- doped Tl9BiTe6 and Tl9SbTe6.
80 As also can be observed from Figure 

3.2(e), Tl9LaTe6, Tl9CeTe6 and Tl9PrTe6 exhibit the lowest L; Tl9SmTe6, Tl9GdTe6 and Tl9TbTe6 show 

higher L without a clear trend; Tl9NdTe6 has a L in between. Theoretically, the increase in atomic mass 

across the period should decrease L, while the decrease in Tl : Ln mass fluctuation from Tl9LaTe6 to 

Tl9TbTe6 should cause an increase in L. To some extent, the experimental results are consistent with this 

mass fluctuation theory, although the parameter associated with the point defect scattering is small.  

 The dimensionless thermoelectric figure-of-merit zT was calculated via zT = T2/ and 

summarized in Figure 3.2(f). It was observed that zT increases with increasing T. Across the series from 

Tl9LaTe6 to Tl9TbTe6, a decrease in zT is observed. Tl9LaTe6 has the largest zT values (0.23 – 0.51) 

among them, whilst Tl9TbTe6 has the minimum (0.09 – 0.31). In short, the formally electron-precise 

material Tl9LaTe6 performs best, reaching zT = 0.51 around 550 K, which is almost 2.5 times the value 

obtained from the cold-pressed and sintered Tl9LaTe6.
50 Its substantially higher thermoelectric figure-of-

merit benefits significantly from the consolidation method, which yielded 98% of the theoretical density. 

By contrast, the cold-pressed La sample has a density of only 80%.52  
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regular with increasing Ln content, because of the decreasing effect of the lone pair of Tl+, as previously 

discussed in the Tl10-xLaxTe6 cases.52 

 

Table 3.3 Crystallographic information for Tl9.05La0.95Te6, Tl9LaTe6 and Tl8.95La1.05Te6 

Chemical formula Tl9.05La0.95Te6 Tl9LaTe6 Tl8.95La1.05Te6 

M [g/mol] 2747.23 2743.96 2740.68 

a = b [Å] 8.9379(1) 8.93175(8) 8.92966(8) 

c [Å] 13.1160(3) 13.1575(2) 13.1712(2) 

V [Å3] 1047.78(2) 1049.65(2) 1050.25(1) 

Z 2 2 2 

RP
a \ RB

b 0.066 \ 0.127 0.055 \ 0.077 0.051 \ 0.075 

aRP = |yo - yc| / |yo|  bRB = |Io - Ic| / |Io| 

 

3.3.4. Thermoelectric Properties of Tl10−xLaxTe6  

 The temperature and composition dependence of the thermoelectric properties of Tl10−xLaxTe6 (x 

= 0.90, 0.95, 1.00, 1.05) are shown in Figure 3.4, and the values at 315 K and 600 K are listed in Table 

3.4. Larger x, i.e. a higher La content, occurs with a higher number of electrons and thus fewer charge 

carriers (holes). The electrical conductivity  thusly declines with increasing La content/decreasing hole 

concentration (Figure 3.4(a)). For example, at 315 K, the Tl10−xLaxTe6 sample with x = 0.90 exhibits a  

value of 470 Ω−1cm−1, compared to only  = 100 Ω−1cm−1 for x = 1.05. The samples with x = 0.90 and x 

= 0.95 display a sharply decreasing  with increasing T, in contrary the other two samples exhibit a small 

change in the magnitude. As an illustration,  of Tl9LaTe6 slowly decreases from  = 195 Ω−1cm−1 at 315 
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 According to the results of the electrical conductivity measurements,  is anticipated to rise with 

increasing La concentration as well as with increasing temperature. In fact, both trends are observed 

clearly in Figure 3.4(b). Electronic structure calculations imply that as x increases in Tl10–xLaxTe6, a 

transition from metallic (x = 0) to p-doped semiconducting (x < 1) then to n-doped semiconducting (x > 1) 

behavior is anticipated.52 This p-n transition has been demonstrated in Tl9–xBi1+xTe6.
81 In the cases 

studies here,  increases from  = +83 V K–1 when x = 0.95 to  = +165 V K–1 when x = 1.05 at 300 

K. Even though the specimen with x = 1.05 is expected to be a n-type semiconductor, its positive sign of 

the Seebeck coefficient indicates hole conduction is dominant in the sample, probably due to defects in 

the structure, or possible due to small side products such as La3−xTe4 not observed in the X-ray diagram, 

which affect the Tl : La ratio of the main product.  

 

Table 3.4 Thermoelectric properties of various Tl10−xLaxTe6 samples at 315 K and at 600 K. 

Sample 


(Ω–1cm–1) 



(μV K–1) 

P.F. 

(μW cm–1K–2) 



(W m–1K–1) 

L

(W m–1K–1) 

zT 

x = 0.90 467 \ 176 64 \ 154 2.0 \ 4.2 - \ 0.60 - \ 0.41 - \ 0.42 

x = 0.95 343 \ 126 83 \ 175 2.4 \ 3.8 0.60 \ 0.49 0.38 \ 0.36 0.12 \ 0.47 

x = 1.00 190 \ 62 125 \ 227 3.0 \ 3.2 0.41 \ 0.33 0.30 \ 0.27 0.23 \ 0.57 

x = 1.05 94 \ 30 165 \ 278 2.6 \ 2.3 0.34 \ 0.28 0.29 \ 0.25 0.24 \ 0.49 

 

 Figure 3.4(c) presents the overall electrical performance (power factor) for the samples. Samples 

x = 1.00 and 1.05 with low electrical conductivity exhibit power factors with slight temperature 

dependence, similar to Tl9CeTe6 and Tl9PrTe6. On the other hand, x = 0.90 and x = 0.95 have P.F. values 

ascend in a similar fashion to . 
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 The total thermal conductivity  consists of the electronic and the lattice contribution. It is 

reasonable to assume that samples with the larger electrical conductivity exhibit larger , as expected 

according to the Wiedemann-Franz law.10 Figure 3.4(d) shows that  values around 0.4 W m−1K−1 were 

obtained when x = 1.00 and x = 1.05, which are close to those determined for zone-refined Tl9BiTe6 ( = 

0.46 W m−1K−1)62 and hot-pressed Tl9BiTe6 ( = 0.39 W m−1K−1).61  

 It could be concluded from Figure 3.4(e) that the lattice thermal conductivity are weakly 

dependent on the temperature, as evidenced by the relatively flat curve for each case. Samples with 

higher amount of La show lower values of lattice thermal conductivity, suggesting that the higher mass 

of La, compared to Tl, results in lower L. 

 In the end, zT values calculated from the measured , , and  are plotted in Figure 3.4(f). In the 

whole temperature range, zT first increases with x increasing from 0.90 to 1.00, then it drops moderately 

for x = 1.05 in spite of a lower thermal conductivity (0.36 – 0.28 W m−1K−1). Tl9LaTe6 with a low 

thermal conductivity (< 0.4 W m−1K−1) was bestowed with the highest zT = 0.57 at 600K in this work.  

 

3.4. Conclusions 

 p-Type polycrystalline thallium lanthanide tellurides with the nominal composition Tl9LnTe6 (Ln 

= La, Ce, Pr, Nd, Sm, Gd, Tb) and Tl10−xLaxTe6 (x = 0.90, 0.95, 1.00, 1.05) have been successfully 

fabricated by a combination of the melting-slow cooling-down process and hot-pressing technique. Their 

crystal structure, high temperature electrical and thermal transport properties were investigated.  

 These compounds are isostructural to Tl9BiTe6, crystallizing in the space group I4/mcm. Rietveld 

refinement results show that Tl9CeTe6 has an exceptionally small unit cell volume of 1032.98(2) Å3, and 

the unit cell expands with increasing La contents in Tl10−xLaxTe6. 
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 The electrical conductivity and thermal conductivity increase across the lanthanide series. On the 

other hand, the Seebeck coefficient values decrease with Ln varying from La to Tb. Tl9SmTe6 appears to 

be the exception of these general trends. Possessing the lowest thermal conductivity (0.33 – 0.41 W m−1 

K−1), Tl9LaTe6 has the largest figure-of-merit, zT = 0.51 at 550 K (and 0.57 at 600 K).  

 As for the Tl10−xLaxTe6 (x = 0.90, 0.95, 1.00, 1.05) series, the electrical conductivity, thermal 

conductivity and lattice thermal conductivity decrease with the increasing lanthanum contents and the 

opposite trend is observed for the Seebeck coefficient. The highest zT = 0.57 is realized for Tl9LaTe6 at 

600 K.   
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4. Thermoelectric Properties of Variants of Tl9SbTe6 

and Tl9BiTe6 

4.1. Introduction  

 It is not a coincidence that state-of-the-art thermoelectric materials include elements from the 6th 

period (such as Ba, La, Yb, Pb, Bi), as heavy elements are known to contribute to low thermal 

conductivity, an important asset of enhanced thermoelectrics. This appears to be particularly true for 

materials containing thallium, as toxic as they may be.52, 61, 63, 82, 83 In particular, Tl9BiTe6 exhibits high 

zT values at intermediate temperatures, namely zT = 0.86 at 590 K after hot-pressing,61 and even up to 

(extrapolated) zT = 1.2 at 500 K after zone-refining.62 Its lighter homologue, Tl9SbTe6, was investigated 

as well prior to this work, and reported to achieve zT = 0.41 at 591 K after cold-pressing and sintering.84 

With this contribution, we demonstrate that Tl9SbTe6 can yield zT values around unity as well, and that 

the thermoelectric properties of both Tl9SbTe6 and Tl9BiTe6 can be further improved by varying the Tl/E 

ratio with E = Sb, Bi.  

 

4.2. Experimental Procedures  

 The compounds were synthesized from the respective elements stored in an argon-filled glove 

box (Tl granules, 99.9%, Strem Chemicals; Sb powder, 99.5%, -100 mesh, Alfa Aesar; Bi granules, 

99.997%, 1 – 2 mm, Alfa Aesar; Te broken ingots, 99.99+%, Strem Chemicals). The evacuated and 

sealed ampoules were gradually heated to 923 K within 12 hours in a resistance furnace, held at 923 K 

for 24 hours, and then slowly cooled down to 703 K within 120 hours, followed by switching off the 

furnace to cool down to room temperature.  
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the Tl9Bi1xTe6 samples with 0  x  0.05 at 325 K and at 500 K are summarized in Table 4.1. 

 

Table 4.1 Thermoelectric properties of various Tl9Bi1xTe6 samples at 325 K (first value) and at 500 K 

(second value).  

Property x = 0 x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05 

/(V K–1) 200 \ 285 183 \ 263 164 \ 239 153 \ 216 149 \ 211 141 \ 198 

(–1cm–1) 182 \ 83 246 \ 112 258 \ 147 342 \ 185 360 \ 195 373 \ 210 

P.F./(W cm–1K–2) 7.2 \ 6.7 8.2 \ 7.8 7.0 \ 8.4 8.0 \ 8.7 7.9 \ 8.7 7.4 \ 8.2 

/(W m–1K–1) 0.50 \ 0.35 0.48 \ 0.40 0.54 \ 0.40 0.59 \ 0.45 0.65 \ 0.50 0.59 \ 0.50 

zT 0.47 \ 0.98 0.55 \ 0.99 0.42 \ 1.07 0.44 \ 0.98 0.40 \ 0.88 0.40 \ 0.82 

 

 Like in the earlier reports, the conductivity values of the samples measured here decrease steadily 

with increasing temperature (top left of Figure 4.3), parallel to the zone-refined Tl9BiTe6, whereas the 

decrease of Kurosaki's hot-pressed sample is smaller. As a consequence, it compares well to our Tl9BiTe6 

at low temperature and to our Tl9Bi0.99Te6 above 420 K. The smaller temperature dependence may be 

caused by (less temperature dependent) more grain boundary scattering of Kurosaki's hot-pressed sample, 

although its density was given to be 98% of the maximum as well.61 The combination thereof (more 

scattering, same density) implies smaller grain sizes. Its slightly higher conductivity at 325 K of 190 

cm−, compared to 180 cm, would then be caused by a larger carrier concentration. In contrast, 

the zone-refined sample has the lowest values here (140 cmat 325 K),62 while one could postulate 

that it should have the smallest dependence on grain boundaries because of its preparation directly from 

the melt. In that case, this sample would have the smallest number of charge carriers, and thus the largest 



45 
 

Seebeck coefficient, which does not depend as strongly on grain boundary scattering.   

 This is indeed the case, as revealed in the Seebeck curves shown in the top right part of Figure 4.3: 

the zone-refined Tl9BiTe6 sample has the largest Seebeck coefficient, namely  = +280 V K1 at 325 K, 

compared to Kurosaki's +160 V K1 and our +200 V K1.61, 62 It is therefore likely that our sample of 

the same nominal composition actually has an intermediate carrier concentration. Moreover, increasing 

the Bi deficiency and thusly the number of p-type carriers leads to a steady decline of the Seebeck 

coefficient, e.g. from +200 V K1 when x = 0 down to 140 V K1 when x = 0.05. Assuming 

experimental errors of 3% (smaller than in case of the conductivity, as the numbers do not depend on the 

dimension measurements), the Seebeck values are generally significantly different as well, aside from the 

samples with x = 0.03 and x = 0.04 (+153 V K1 vs. +149 V K1). In each case, the Seebeck 

coefficient increases almost linearly with increasing temperature, and all curves run parallel - with the 

exception of the zone-refined sample.  

 Overall, the electrical performances of these samples are very comparable, and show little 

temperature dependence, as expressed in the numerator of the figure-of-merit, the power factor P.F. = 

. This is a consequence of the opposing trends in both the values and the temperature dependence of 

 and . At 325 K, the P.F. varies from 7.0 W cm1K2 when x = 0.02 to 8.2 W cm1K2 when x = 

0.01, compared to minimal and maximal values of 6.7 W cm1K2 when x = 0 and 8.7 W cm1K2 

when x = 0.03 and x = 0.04 at 500 K. For comparison, the literature P.F. values of the zone-refined and 

hot-pressed Tl9BiTe6 samples are P.F. = 10.7 W cm1K2 and 5.1 W cm1K2 at 325 K,61, 62 

respectively, with the P.F. curves displaying comparably flat slopes. Thusly, our samples here all 

perform better electrically than Kurosaki's hot-pressed Tl9BiTe6, independent of the exact Bi content, and 

worse than the zone-refined material.61, 62  
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 The thermal conductivity data are depicted in the bottom left part of Figure 4.3. All samples show 

overall low thermal conductivity (< 0.7 W m1K1) in accord with earlier data, which slowly decreases 

with increasing temperature. The differences between the various samples are less distinct than in the 

electrical conductivity data because of the smaller importance of the charge carrier concentration. 

Generally, the samples with larger Bi deficiency (having larger electrical conductivity, ) exhibit higher 

thermal conductivity, , as well, but there are exceptions, most notably at the lower temperatures. At 325 

K,  increases from 0.48 W m1K1 when x = 0.01 to 0.65 W m1K1 when x = 0.04, but one should note 

that the x = 0 sample as well as the x = 0.05 are very close to the minimal and maximal value, 

respectively, in part within the assumed error of 5%.   

 To gain insight into the effect of the different carrier concentrations on , we estimated their 

contribution to the thermal conductivity via the Wiedemann-Franz law, E = LT,10 with L = Lorenz 

number, using the value for non-degenerate semiconductors of 1.5  108 W  K2.
 
This results in E 

values between 0.09 W m1K1 (x = 0) and 0.18 W m1K1 (x = 0.05) at 325 K. The lattice contribution to 

the thermal conductivity, L =  – E, thus varies between L = 0.36 W m1K1 and 0.41 W m1K1, 

confirming the exceptionally low values published before for these materials, namely L = 0.30 W 

m1K1 for Kurosaki's hot-pressed Tl9BiTe6 and L = 0.39 W m1K1 for the zone-refined Tl9BiTe6 (all 

numbers extrapolated for 325 K using the same Lorenz number)61, 62 noting that many thermoelectric 

materials including Bi2Te3 and PbTe typically exhibit values above 1 W m1K1. While the lower L of 

Kurosaki's hot-pressed Tl9BiTe6 can be understood by larger grain boundary scattering as postulated 

above,61 all these values come close to the so-called minimum thermal conductivity for a fully disordered 

solid composed of the elements Tl-Bi-Te, which was calculated to be around min = 0.2 W m1K1.62 
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 Finally, the figure-of-merit, zT, was calculated for all samples using the experimentally 

determined thermal conductivity data and polynomial fits for the power factor, which was obtained for a 

larger range of temperature than . Thus, no extrapolation was necessary. All zT values increase 

approximately linearly with increasing temperature, e.g. for Tl9BiTe6 from 0.47 at 325 K up to 0.98 at 

500 K. This compares favorably with Kurosaki's hot-pressed Tl9BiTe6 (0.40  0.78),61 but remains 

behind the zone-refined material (0.72  1.0 at 430 K, extrapolated to 1.2 at 500 K).62 According to 

Kurosaki's data, zT is expected to continue to increase up to 591 K for these materials, with the melting 

point being around 813 K.61 While different Bi deficiencies lead to quite different transport properties, 

the zT values are all comparable, and do not follow any clear trend. The two best samples in this series 

are Tl9Bi0.99Te6, with zT varying from 0.55 to 0.99, and Tl9Bi0.98Te6, with zT values of 0.42  1.1.  

 From the above-mentioned experimental errors, the error in zT follows to be around 8%. Within 

those 8%, several of the Tl9Bi1xTe6 samples have equivalent zT values, and the best one reaches about 

90% of zTmax of the zone-refined sample,62 i.e. its zTmax does not differ significantly assuming a 

comparable error for the zone-refined sample. On the other hand, most of these samples are significantly 

better than the Tl9BiTe6 hot-pressed by Kurosaki et al.,61 with an improvement of up to 1.1/0.78 = 41% at 

500 K.   

 To investigate the impact of a reduction of the charge carriers as well, we tried to increase the Bi 

content in Tl9BiTe6 by replacing more Tl atoms according to the formula Tl9xBi1+xTe6. As shown in the 

top left of Figure 4.4 in comparison to the data of Tl9BiTe6 already presented in Figure 4.3, the electrical 

conductivity decreases with increasing x as expected, from 180 1cm1 when x = 0 down to 80 1cm1 

when x = 0.01 and even down to only 1.8 1cm1 when x = 0.05 at 325 K. The initial carrier 

concentration of the x = 0.05 sample is so small that the electrical conductivity increases with increasing 
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 Decreasing the carrier concentration of stoichiometric Tl9BiTe6 is disadvantageous with respect 

to the thermoelectric performance, because of a large drop in the power factor below 5 W cm1K2 

when x = 0.01 and 0.02 W cm1K2 when x = 0.05, yielding significantly lower zT values (bottom right 

of Figure 4.4).  

 In analogy to Figure 4.3, the thermoelectric key properties of the Tl9SbTe6 variants are 

summarized in Figure 4.5. All seven Sb samples investigated are included in one figure, using filled 

symbols for the Tl9Sb1–xTe6 series and open symbols for the Tl9xSb1+xTe6 series. In contrast to the Bi-

containing materials, no clear trends were detected. This may be a consequence of experimental error 

(including the weighing) combined with the smaller ranges of both x and the properties. For example at 

325 K, the electrical conductivity values range from  = 420 1cm1 to 530 1cm1 (Tables 4.2 and 

4.3), compared to the range of 180 1cm1 to 370 1cm1 for Tl9Bi1–xTe6 and to 1.8 1cm1 for 

Tl8.95Bi1.05Te6. Likewise, the range of the Seebeck coefficient is much smaller for Tl9Sb1xTe6 ( = +105 

V K1   = +120 V K1at 325 K) than for Tl9Bi1–xTe6 (+140 V K1  +210 V K1 at 325 K). 

Overall, the changes with increasing temperature are comparable, namely decreasing  and increasing , 

and the electrical performance, i.e. the power factor, is similar, stemming from generally higher  and 

lower  of the Sb-containing samples. For example, the maximum P.F. of the Sb series is almost 

identical to the one of the Bi series: 8.5 W cm1K2 for Tl9Sb0.98Te6 vs. 8.7 W cm1K2 for both 

Tl9Bi0.97Te6 and Tl9Bi0.96Te6, all reached at T = 500 K. Moreover, P.F. steadily increases with increasing 

temperature for the Sb series, but not for the Bi series. Last, the power factor of the cold-pressed and 

sintered Tl9SbTe6 reported earlier 84 is significantly lower with approximately 6.0 W cm1K2 at 500 K, 

culminating in 6.5 W cm1K2 at 591 K.  
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Table 4.2 Thermoelectric properties of various Tl9Sb1xTe6 samples at 325 K (first value) and at 500 K 

(second value). 

Property x = 0 x = 0.01 x = 0.02 x = 0.03 

/(V K1) 115 \ 192 121 \ 200 107 \ 177 105 \ 173 

(1cm1) 490 \ 226 449 \ 203 532 \ 272 500 \ 265 

P.F./(W cm1K2) 6.5 \ 8.4 6.6 \ 8.1 6.0 \ 8.5 5.5 \ 7.9 

/(W m1K1) 0.72 \ 0.50 0.71 \ 0.53 0.69 \ 0.54 0.72 \ 0.54 

zT 0.29 \ 0.84 0.30 \ 0.78 0.28 \ 0.81 0.24 \ 0.73 

 

 Table 4.3 Thermoelectric properties of various Tl9–xSb1+xTe6 samples at 325 K (first value) and at 500 K 

(second value).  

Property x = 0 x = 0.01 x = 0.02 x = 0.03 

/(V K1) 115 \ 192 106 \ 179 113 \ 191 118 \ 200 

(1cm1) 490 \ 226 532 \ 260 419 \ 227 435 \ 201 

P.F./(W cm1K2) 6.5 \ 8.4 6.0 \ 8.3 5.4 \ 8.3 6.1 \ 8.1 

/(W m1K1) 0.72 \ 0.50 0.71 \ 0.53 0.59 \ 0.46 0.67 \ 0.46 

zT 0.29 \ 0.84 0.27 \ 0.80 0.29 \ 0.90 0.29 \ 0.88 

 

 Overall, the zT values of the Tl9Sb1–xTe6 series appear to be slightly lower than those of the Bi 

samples, in particular at lower temperatures, with zTmax values ranging from around 0.73 to 0.84 at 500 K, 

compared to 0.82 to 1.1 at 500 K for Tl9Bi1–xTe6. On the other hand, the Sb-rich samples outperform the 

Bi-rich samples (and Tl9Sb1–xTe6) with 500 K zT values between 0.80 and 0.90 vs. 0.01 and 0.63.  
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 Table 4.4 summarizes the key data of the best Bi and Sb samples introduced here, as well as the 

literature data on Kurosaki's hot-pressed 61 and Wölfing's zone-refined Tl9BiTe6,
62 and cold-pressed, 

sintered Tl9SbTe6.
84 A substantial improvement of the thermoelectric figure-of-merit, zT, was achieved 

both in the Bi and Sb system over the previous data on hot-pressed Tl9BiTe6 and cold-pressed Tl9SbTe6, 

respectively. For example at 500 K, we report zT values of 1.1 for Tl9Bi0.98Te6 (and 0.98 for Tl9BiTe6) 

and 0.90 for Tl9.02Sb0.98Te6 (and 0.84 for Tl9SbTe6), compared to 0.78 for Tl9BiTe6 
61and 0.34 for 

Tl9SbTe6.
84 Wölfing's zone-refined Tl9BiTe6 remains the best sample, having the lowest electrical 

conductivity and the highest Seebeck coefficient, with an extrapolated zT = 1.2 at 500 K.  

 

Table 4.4 Thermoelectric properties of various Tl9ETe6 samples at 325 K (first value) and at 500 K 

(second value). a) Measured at 450 K. b) Extrapolated value.  

Property 
E = Sb 

sintered84 

E = Bi 

hot pressed61 

E = Bi 

zone refined62 

E = Sb 

this work 

E = Bi 

this work 

/(V K1) 80 \ 106 163 \ 218 280 \ 399 115 \ 192 200 \ 285 

(1cm1) 781 \ 396.8 193 \ 123 136 \ 60 490 \ 226 182 \ 83 

P.F./(W cm–1K2) 4.9 \ 5.9   6.5 \ 8.4 7.2 \ 6.7 

/(W m1K1) 0.88 \ 0.86 0.39 \ 0.39 0.46 \ 0.39a) 0.72 \ 0.50 0.50 \ 0.35 

zT 0.2 \ 0.34 0.40 \ 0.78 0.72 \ 1.2 0.29 \ 0.84 0.47 \ 0.98 

zTmax [T] 0.42 [591 K] 0.86 [590 K] 1.2 [500 K]b) 0.93 [567K] 0.98 [500 K] 

 

 Considering the high electrical conductivity of the cold-pressed Tl9SbTe6 of 780 1cm1, 

compared to 490 1cm1 of the hot-pressed Tl9SbTe6, that particular sample seems to suffer more from 
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a too high charge carrier concentration than from the consolidation method, despite having the same 

nominal composition. We thus postulate that our samples have fewer defects and/or impurities. Further 

improvements appear to be possible by optimizing the materials on both the micro and the nano level, as 

demonstrated for PbTe.86, 87 Moreover, different partial substitutions may enhance, or decrease, the 

performance, such as introducing lanthanides,52, 53 or Sn atoms,83 which remains to be investigated, as 

discussed in the following chapters.  
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5. Thermoelectric Properties of Tt-doped Tl9BiTe6 

and Tl9SbTe6 (Tt = Sn, Pb) 

5.1. Introduction  

 In the previous chapter, we revealed the results on the preparation and transport measurements 

(between 325 K and 500 K) of Tl9Bi1xTe6, Tl9Sb1xTe6 and their variants. Decreasing the Sb/Bi contents 

(cation vacancies) results in higher p-type carrier concentrations. High zT values of around unity were 

obtained for several samples. Apart from creating vacancies, alloying is also a common strategy for 

optimization of thermoelectric efficiency.88, 89 For this contribution, we fabricated Sn- and Pb-doped 

Tl9SbTe6 and Tl9BiTe6. Considering that Sn and Pb have one valence electron less than Sb and Bi, the Sn 

and Pb substitutions are expected to induce extrinsic p-type carriers in the materials. Furthermore, the 

disorder of random atomic substitution may introduce mass and strain fluctuations in the material, which 

is expected to scatter the phonons, thereby decreasing the thermal conductivity.90 With this in mind, we 

began to investigate the effects of the Sn- and Pb-content on crystal structure and thermoelectric 

properties of Tl9SbTe6 and Tl9BiTe6 variants.  

 

5.2. Experimental Details 

 Several samples with the following nominal composition were investigated: Tl9Bi1xSnxTe6, 

Tl9Bi1yPbyTe6 (0 ≤ x, y ≤ 0.15), Tl9Sb1mSnmTe6 and Tl9Sb1nPbnTe6 (0 ≤ m, n ≤ 0.10). The compounds 

were synthesized from the respective elements (Tl granules, 99.9%, Strem Chemicals; Sb powder, 

99.5%, 100 mesh, Alfa Aesar; Bi granules, 99.997%, 1 - 2 mm, Alfa Aesar; Sn granules, 99.9%, Alfa 
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Table 5.1 Crystallographic information for Tt-doped Tl9BiTe6 and Tl9SbTe6 (Tt = Sn, Pb) 

Chemical formula Tl9BiTe6 Tl9Bi0.85Pb0.15Te6 Tl9Bi0.85Sn0.15Te6 

M [g/mol] 2814.03 2813.76 2800.49 

T [K] 296(2) 296(2) 296(2) 

[Å] 1.5406 1.5406 1.5406 

space group I4/mcm I4/mcm I4/mcm 

a [Å] = b 8.85533(7) 8.85391(7) 8.84966(8) 

c [Å] 13.0482(2) 13.0308(2) 13.0173(2) 

V [Å3] 1023.20(1) 1021.51(1) 1019.47(1) 

Z 2 2 2 

RP \ RB 0.049 \ 0.099 0.050 \ 0.095 0.049 \ 0.118 

Chemical formula Tl9SbTe6 Tl9Sb0.90Pb0.10Te6 Tl9Sb0.90Sn0.10Te6 

M [g/mol] 2759.74 2735.22 2726.38 

T [K] 296(2) 296(2) 296(2) 

 [Å] 1.5406 1.5406 1.5406 

space group I4/mcm I4/mcm I4/mcm 

a [Å] = b 8.82981(9) 8.84079(7) 8.83001(8) 

c [Å] 13.0126(2) 13.0263(2) 13.0077(2) 

V [Å3] 1014.54(2) 1018.13(1) 1014.19(1) 

Z 2 2 2 

RP \ RB 0.056 \ 0.095 0.043 \ 0.085 0.0505 \ 0.079 
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 The XRD patterns demonstrate that all the samples are single phase, having adopted the 

tetragonal Tl5Te3-type structure. No diffraction peak of any impurity was detected. The XRD peaks of 

the Sn and Pb doped Tl9BiTe6 and Tl9SbTe6 variants slightly deviated from standard XRD patterns of 

Tl9BiTe6 (PDF No. 84-2448) and Tl9SbTe6 (PDF No. 84-2449), which is caused by chemical 

substitutions, e.g. of Bi with Sn. Doping Tl9BiTe6 with Pb and Sn decreased the unit cell size, whereas 

doping Tl9SbTe6 with Pb increased the unit cell, as expected based on the different atomic radii. With 

each substitution of Sn and Pb on a Bi and Sb site, we expect to remove one valence electron, which 

should affect the transport properties. The temperature dependences of the electrical conductivity, , of 

all samples are plotted in Figure 5.2. In each case,  decreases with increasing temperature, typical for 

degenerate semiconductors. An increasing doping level (i.e., increasing Sn and Pb amount) is expected to 

increase the number of holes, the dominant charge carriers according to earlier reports.13,81 This expected 

trend is experimentally observed: with increasing x in Tl9Bi1xSnxTe6, the electrical conductivity at 300 K 

increased stepwise from  = 220 1cm1 when x = 0 to 520 1cm1 when x = 0.15. It is worth noting 

that at the same doping level, the Pb doped samples have a higher electrical conductivity than the Sn 

doped ones. For example,  = 910 1cm1 when y = 0.15 is much higher than the 520 1cm1 when x = 

0.15. With an estimated relative error of ±5%, these differences are significant. Moreover, the 

temperature dependence of the Pb-containing samples is larger than that of the Sn samples, reminiscent 

of the differences of Tl10xPbxTe6 and Tl10xSnxTe6.
91 The same general trends were also observed in the 

Pb doped Tl9SbTe6 samples, while for Sn-doping,  only increased for the highest dopant concentration, 

m = 0.10. With hole doping, smaller increases in  were obtained: considering that for each hole 

replacing one trivalent Bi atom, three electrons are missing; thus Tl9Bi0.95Te6 ( = 3730 1cm1)81 has 

the same formal electron count as Tl9Bi0.85Sn0.15Te6.  
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values rise in a similar fashion to  with the exception of undoped Tl9BiTe6, which shows weak negative 

temperature dependence. For the Tl9BiTe6-based compounds, the doped samples exhibit lower power 

factors compared with the mother compound when the temperature is below 370 K. However, at higher 

temperatures, the electrical performance of the doped samples exceeds that of the pristine Tl9BiTe6, 

culminating in a power factor of P.F. = 8.4 W cm1K2 for Tl9Bi0.85Sn0.15Te6 and 9.8 W cm1K2 for 

Tl9Bi0.90Pb0.10Te6, compared to 6.9 W cm1K2 for Tl9BiTe6 (all at 500 K). The 9.8 W cm1K2 

constitute the highest power factor we have experienced in Tl5Te3-based materials to date, matching the 

extrapolated one of zone-refined Tl9BiTe6 at 500 K (9.8 W cm1K2).62 In comparison, all the doped Sb 

samples display slightly lower power factor in the whole temperature range. The P.F. values of the 

Tl9SbTe6 series increase as the temperature increases, and then almost level off (around 8 W cm1K2) 

in the temperature range of 400 K – 500 K or even decrease at the end of this range, for example in case 

of Sn-doped samples. 

  The thermal conductivity data obtained from the laser flash method are depicted in Figure 5.5. 

All samples show an overall low thermal conductivity ( < 1.0 W m1K1), which slowly decreases with 

increasing temperature. Generally speaking, as a consequence of the significant changes in charge carrier 

concentration, the samples with higher Sn and Pb content (having larger electrical conductivity, ) 

exhibit higher thermal conductivity. At 325 K,  increases from 0.48 W m−1K−1 when x = 0.00 to 0.75 W 

m1K1 when x = 0.15. With the experimental error assumed to be ±5%, one should also note that the Pb-

doped samples usually show higher total thermal conductivity values compared with their Sn-doped 

counterparts in both Tl9BiTe6 and Tl9SbTe6 series, which correlates well with their high electrical 

conductivity values. 
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of the melting method and the hot-pressing technique. XRD results indicate that all the samples 

crystallize in the Tl5Te3-type structure, with Bi and Sb occupying the 4c site of the space group I4/mcm. 

The substitution of Sn and Pb atoms for Bi and Sb are considered to be p-type doping from the viewpoint 

of valence band filling, which is reflected in the results of the thermoelectric property measurements: 

increasing the Sn or Pb content results in an increase in the hole carrier concentration, and thus a 

decrease in Seebeck coefficient and an increase in both electrical and thermal conductivity. The highest 

power factor values were found for the slightly doped Bi samples. No clear conclusion regarding the 

composition dependence of the lattice thermal conductivity could be drawn from the results presented, 

probably due to the relatively small contents of the dopants in combination with experimental errors. In 

the end, the best thermoelectric properties still belong to the cases of pristine Tl9BiTe6 and Tl9SbTe6. As 

such, it would be interesting to see whether Sn and Pb could be used to substitute for Tl, e.g. according to 

Tl9xBiPbxTe6, in order to decrease the carrier concentration (number of holes) because increasing it 

ultimately led to decreasing thermoelectric performance. Of course, the toxicity of thallium remains a 

concern, as well as the toxicity of lead, antimony and tellurium to a smaller extent. We will therefore 

attempt to replace thallium gradually with less toxic elements such as indium. 
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6. Thermoelectric Properties of Tl10–xSnxTe6 and 

Tl10–xPbxTe6 

6.1. Introduction 

 Tl9BiTe6’s isostructural counterparts Tl4ETe3  Tl8E2Te6 with E = Sn and Pb instead of Bi, were 

reported to attain significantly smaller zT values, reaching approximately zTmax = 0.7 at 673 K.63 Here we 

describe how we were able to approximately double zTmax via optimization of the Tl : E ratio and the 

densification procedure, culminating in zT  1.5 in case of Tl8.10Pb1.90Te6 and zT  1.3 in case of 

Tl8.05Sn1.95Te6, both around moderate 685 K.  

 

6.2. Experimental Section 

 The following samples were investigated: Tl10xSnxTe6 with 1.95  x  2.05 and Tl10xPbxTe6 with 

1.90  x  2.05. The reactions started from the respective elements (Tl granules, 99.9%, Strem 

Chemicals; Sn shot, 99.99+%, 3 mm, Alfa Aesar; Pb powder, 99.9%, Alfa Aesar; Te broken ingots, 

99.99+%, Strem Chemicals). The tubes were heated to 923 K within twelve hours, i.e. beyond the 

melting points between 830 K and 850 K, held at this temperature for 24 hrs, and then cooled down 

within 120 hours to 703 K. All samples were hot-pressed under a flow of argon at 45 MPa at 523 K for a 

period of 2 h. 

 To further verify the crystal structure, a single crystal of the Tl4PbTe3 sample was selected for 

structure studies. A Bruker Kappa APEX II utilizing Mo K radiation was employed for the data 

collection at room temperature. Data were collected by scans of 0.3° in  and  in nine blocks for a total 
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of 3928 frames, with exposure times of 20 seconds per frame. After correcting for Lorentz and 

polarization effects, the structure refinements were performed with the SHELXTL package.68 The 

refinements starting from the Tl5Te3 structure, with Pb on the 4c site, converged quickly without any 

noticeable problems, resulting in the residual values of R1 = 0.019 and wR2 = 0.046 (all reflections).  

 Two hot-pressed pellets of the starting compostions Tl8.05Sn1.95Te6 and Tl8.10Pb1.90Te6 were 

analyzed after the physical property measurements by EDX. No impurity elements were found, and the 

pellets appeared to be homogenous with the elements close to the desired ratios. 

 The WIEN2k package, which employs the full-potential linearized augmented plane wave (FP-

LAPW) method within density functional theory (DFT),54, 55 was utilized for calculations on Tl5Te3, 

Tl4SnTe3 and Tl4PbTe3. The generalized gradient approximation (GGA) from Perdew, Burke and 

Ernzerhof was used for exchange and correlation energies.93 We chose 2.5 Bohr as muffin-tin radii (RMT) 

for all atoms, and set the product RMT  Kmax = 7. For the self-consistent energy calculations, 240 

independent k points were selected on a grid of 14  14  14 with an improved tetrahedron method 

within the irreproducible wedge of the first Brillouin zone. The energy convergence was set to be 10−4 

Ry for the self-consistency. In addition, the modified Becke-Johnson local density functional was also 

employed to obtain more accurate band gaps.94, 95 

 

6.3. Results and Discussion 

6.3.1. Crystal Structures 

 No additional peaks were detected in the powder patterns of any of the samples discussed here, 

except for very minor ones in the cases of Tl7.95Sn2.05Te6 (barely visible) and Tl7.95Pb2.05Te6, indicative of 

the formation of SnTe and PbTe, respectively. The XRD patterns are shown in the Figure 6.1.  
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0.022 Å2 (Table 6.4). The latter may contribute to low thermal conductivity, as shown for various 

clathrates.96 Similarly, the respective values obtained by Böttcher et al. were Ueq = 0.024 Å2 for Tl2 vs. 

0.010 Å2 - 0.015 Å2 for the other sites. Such differences were observed in other examples of this 

structure as well, namely in Tl4SnTe3 (Ueq(Sn1) = 0.014 Å2, Ueq(Tl2) = 0.024 Å2) and in Tl9.4La0.6Te6 

(Ueq(Tl1/La1) = 0.028 Å2, Ueq(Tl2) = 0.037 Å2) with mixed Tl and La occupancies on the 4c site.52  

 

Table 6.1 Lattice parameters of Tl10xSnxTe6 in comparison to Tl5Te3 and Tl4SnTe3 reported by Böttcher 

et al.*. 

Parameter Tl5Te3* x = 1.95 x = 2.0 x = 2.05 Tl4SnTe3* 

a [Å] 8.9320(2) 8.8315(3) 8.832(1) 8.8380(3) 8.819(2) 

c [Å] 12.589(4) 13.0385(5) 13.054(2) 13.0550(5) 13.013(3) 

V [Å3] 1003.9(5) 1016.9(1) 1018.3(5) 1019.73(9) 1012.1(4) 

 

Table 6.2 Lattice parameters of Tl10xPbxTe6 in comparison to Tl5Te3 and Tl4PbTe3 reported by Böttcher 

et al.*. 

Parameter Tl5Te3* x = 1.9 x = 1.95 x = 2.0 Tl4PbTe3* 

a [Å] 8.9320(2) 8.8582(3) 8.85705(6) 8.8566(3) 8.841(2) 

c [Å] 12.589(4) 13.0718(6) 13.08541(2) 13.0880(4) 13.056(3) 

V [Å3] 1003.9(5) 1025.7(1) 1026.42(2) 1026.62(9) 1020.4(4) 
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Table 6.3 Crystallographic details of Tl4PbTe3. 

Formula weight [g/mol] 1407.47 

T of measurement [K] 295(2) 

 [Å] 0.71073 

space group I4/mcm 

a [Å] 8.8449(3) 

c [Å] 13.0729(6) 

V [Å3] 1022.72(7) 

Z 4 

µ [mm–1] 87.5 

calcd [g/cm3] 9.14 

R(Fo)
a) \ wR (Fo

2)b) (all data) 0.019 \ 0.046

a) R(Fo) = ||Fo|-|Fc|| / |Fo|; 
b) wR (Fo

2) = [ [w(Fo
2 - Fc

2)2] / [w(Fo
2)2] ]1/2 

 

Table 6.4 Atomic positions and atomic displacement parameters of Tl4PbTe3. 

Atom site x y z Ueq/Å
2 

Pb1 4c 0 0 0 0.0221(2) 

Tl2 16l 0.14661(3) x + ½ 0.15933(3) 0.0307(2) 

Te1 4a 0 0 ¼ 0.0181(2) 

Te2 8h 0.33700(5) x + ½ 0 0.0158(2) 
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 The large atomic displacement parameters may be a consequence of the highly irregular 

coordination of Tl2 by five Te atoms at distances between 3.16 Å and 3.59 Å (Table 6.5). Böttcher et al. 

found basically equivalent Tl2–Te distances between 3.17 Å and 3.59 Å.59 The Te coordination of the 

Pb1 atom is much more regular, showing six Te atoms at Pb–Te distances of 3.27 Å and 3.31 Å 

(Böttcher: 3.26 Å, 3.31 Å). That Tl adopts less regular coordination spheres than Pb, was also observed 

in the quaternary Tl-Pb chalcogenides Tl18Pb2M7Q25 (M = Ti, Zr, Hf; Q = S, Se)38 and Tl2PbMQ4 (M = Zr, 

Hf; Q = S, Se).39  

 

Table 6.5 Selected interatomic distances [Å] of Tl4PbTe3 in comparison to Böttcher's report. 

Distance No. this work Böttcher's 

Pb1–Te1 2 3.2682(2) 3.264(1) 

Pb1–Te2  3.3111(2) 3.313(2) 

    

Tl2–Te2  3.1639(6) 3.174(6) 

Tl2–Te2  3.4437(5) 3.432(4) 

Tl2–Te1  3.5856(3) 3.586(2) 

    

Tl2–Tl2  3.5085(8) 3.503(2) 

Tl2–Tl2  3.5138(6) 3.515(5) 

Tl2–Tl2  3.6678(7) 3.653(7) 
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 For more structural details, it is referred to earlier work on Tl4ETe3
59 and Tl9LaTe6, where the 

consequences of Tl : La mixing on the 4c site are discussed.52 In case of the latter, a significant phase 

range was detected for Tl10xLnxTe6, with 0.2  x  1.32, and several different lanthanides, Ln, were 

used.53  

 

6.3.2. Electronic Structures 

 Electronic structure calculations for Tl5Te3 and Tl4SnTe3 were first presented by Miller et al., 

who utilized the Extended Hückel approximation in 1996.97 This resulted in Tl5Te3 being a metal and 

Tl4SnTe3 a narrow gap semiconductor with a gap of 0.7 eV. We obtained qualitatively equivalent results 

using the DFT-based LMTO method (Egap = 0.3 eV), and showed that the intermediate Tl9SnTe6 should 

be a p-type extrinsic semiconductor. In Figure 6.2, the density of states of Tl5Te3, Tl4SnTe3 and Tl4PbTe3 

are presented, calculated with a full potential DFT method. Again, this yields metallic properties for 

Tl5Te3, and the PBE approach results in touching of the valence and conduction bands for Tl4SnTe3 and 

Tl4PbTe3, while mBJ yields (more trustworthy) gaps of 0.2 eV and 0.3 eV, respectively. Noteworthy for 

the latter two DOS are the rather steep slope just below the Fermi level, EF, indicative of large Seebeck 

coefficient values when p-doped. This p-doping may be conveniently achieved via decreasing the E = Sn, 

Pb amount, as both E atoms have one more valence electron than Tl.  

 

6.3.3. Thermoelectric Properties 

 We determined the properties of the series Tl10xSnxTe6 with 1.95  x  2.05 and Tl10xPbxTe6 

with 1.90  x  2.05. In both cases, the samples with x = 2.05, i.e. the most E-rich samples, contained 

small amounts of the binary telluride ETe. Thus, the actual E amount in the target compound is most 
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Table 6.7 Thermoelectric properties of Tl10xPbxTe6 with 1.95 ≤ x ≤ 2.05 at  320 K (first value) and at  

685 K (second value) in comparison to Tl4PbTe3 reported by Kosuga et al.*. 

Property x = 1.9 x = 1.925 x = 1.95 x = 2 x = 2.05 Tl4PbTe3* 

(1cm1) 1520 \ 199 1344 \ 169 1343 \ 139 1174 \ 79 417 \ 44 781 \ 95 

/(V K1) 9 \ 213 12 \ 219 17 \ 238 36 \ 281 76 \ 299 54 \ 233 

P.F./(W cm1K2) 0.13 \ 9.0 0.21 \ 8.1 0.39 \ 7.9 1.5 \ 6.2 2.4 \ 3.9 2.3 \ 5.2 

/(W m1K1) 1.21 \ 0.45 1.27 \ 0.43 1.30 \ 0.44 1.03 \ 0.36 0.78 \ 0.33 1.20 \ 0.49 

zT 0.05 \ 1.42 0.01 \ 1.31 0.01 \ 1.22 0.05 \ 1.16 0.10 \ 0.82 0.06 \ 0.71 

 

 The electrical conductivity, , data between 300 K and 700 K are displayed in Figure 6.3, in 

comparison to the results from Kosuga et al.,63 (labeled JAP, 2006 for J. Appl. Phys., 2006). In each case, 

 decreases with increasing temperature, indicative of a large number of charge carriers. This is true even 

in case of the nominally intrinsic semiconductors with x = 2, including the samples from Kosuga et al., 

whose values and slopes resemble the ones from our samples of the same formula. With these materials 

being p-type conductors, the carrier concentration and thusly the electrical conductivity should generally 

decrease with increasing E content. Highly unusual is the large temperature dependence of the Pb 

samples, whereas the Sn samples exhibit more usual, relatively flat curves. As a consequence, the Pb 

samples exhibit much higher  values than the Sn samples around room temperature, and comparable 

values above 600 K. For example,  of Tl8.1Pb1.9Te6 decreases from 1520 1cm1 at 320 K to 200 

1cm1 at 685 K, and Tl7.95Pb2.05Te6 from 420 1cm1 to 44 1cm1, compared to the smaller  range 

of Tl8.05Sn1.95Te6 (from 550 1cm1 to 150 1cm1). Considering an estimated experimental error of 
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conductivity, which ultimately leads to high zT values in combination with moderate power factors. The 

improvements compared to the literature data on Tl4SnTe3 and Tl4PbTe3 (zT = 0.71 and 0.74 at 680 K) 

are significant (and occur at all temperatures), amounting to relative advancements of approximately 75% 

and 90%. The highest zT values were obtained in the cases of Tl8.05Sn1.95Te6 with zT = 1.26 and 

Tl8.10Pb1.90Te6 with zT = 1.46, both below 700 K.  
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7. Summary and Outlook 

 In this thesis, several series of p-type polycrystalline thallium tellurides have been successfully 

fabricated by a combination of the melting-slow cooling-down process and hot-pressing technique. The 

9-1-6 modifications include Tl9LnTe6 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb), Tl10−xLaxTe6 (x = 0.90, 0.95, 

1.00, 1.05). Tl9Bi1−xTe6 (0 ≤ x ≤ 0.05), Tl9−xBi1+xTe6 (0 ≤ x ≤ 0.05), Tl9Sb1−xTe6 (0 ≤ x ≤ 0.03), 

Tl9−xSb1+xTe6 (0 ≤ x ≤ 0.03), Tl9Bi1xSnxTe6(0 ≤ x ≤ 0.15), Tl9Bi1yPbyTe6 (0 ≤ y ≤ 0.15), Tl9Sb1mSnmTe6 

(0 ≤ m ≤ 0.10) and Tl9Sb1nPbnTe6 (0 ≤ n ≤ 0.10). The 8-2-6 variants are Tl10xSnxTe6 (1.95  x  2.05) 

and Tl10xPbxTe6 (1.90  x  2.05). Their crystal structure, electronic structure and high temperature 

electrical and thermal transport properties were also investigated. These findings resulted in publications 

in Journal of Alloys and Compounds, Chemistry of Materials, Journal of Applied Physics and Advanced 

Energy Materials.  

 One of the most impressive features of these themoelectrics is their low thermal conductivity 

values ( < 1.1 W m1K1), as shown in Figure 7.1. Our results demonstrate that replacing an optimal 

portion of the Tl in Tl5Te3 by lanthanide elements, tetrels (Tt = Sn and Pb) and pnicotgens (Pn = Sb and 

Bi) will effectively tuning the transport properties from metallic to semiconducting, thereby culminating 

in enhanced thermoelectric performance. For example, zT = 0.51 at 550 K, zT = 0.84 at 500 K, zT = 0.98 

at 500 K, zT = 1.02 at 685 K and zT = 1.16 at 685 K were obtained for Tl9LaTe6, Tl9SbTe6, Tl9BiTe6, 

Tl4SnTe3 and Tl4PbTe3, respectively. Through slightly adjusting the carrier concentration, higher zT 

values were obtained in the cases of Tl8.05Sn1.95Te6 with zT = 1.26 and Tl8.10Pb1.90Te6 with zT = 1.46, 

both below 700 K. These extraordinary zT values make thallium tellurides competitive to the other state-

of-the-art thermoelectric materials for intermediate temperature (400 – 700 K) power generation. 
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Whether or not these tellurides can be further improved, for example via optimizing of the particle size 

or nanostructuring or partial Se/Te substitution remains the topic of further investigations. 

 

 

Figure 7.1 Thermoelectric properties of stoichiometric modifications of Tl5Te3 
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