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Abstract

Protection from electric power hazardous has been used ever since applications of 

electricity were discovered. Hazards in the electric system can be in the form of over 

voltage or over current leading to catastrophic system and equipment failure, resulting in 

physical damage or even to human fatalities. Electrical protection is achieved by installing 

protection devices throughout distribution system to isolate faulty branches and mitigate

fault development.

Fire is a principal cause of buildings damages and related personal injuries. A major 

contributor to buildings’ fire originates from electrical arc faults caused by electric 

distribution equipment and appliances failures. To remedy this problem, regulatory bodies 

required electric arc faults protection. Over the years this requirement was enforced by 

different electric codes and expanded to cover most of residential building areas and all 

living spaces. 

Arc fault circuit interrupters (AFCI) are devised to complement existing protection 

methodologies and devices, focusing on electric arc detection and preventions of 

subsequent risks, mainly fire ignition. Circuit interruption occurs whenever characteristics 

of arc failure is detected, either from current, voltage or electromagnetic radiation. 

Detecting the arc faults, and hence increasing the reliability of interruption, is a challenge, 

given that some household appliances produce arc-like behaviors in normal operating 

conditions, like electronic light dimmers and solid state controlled variable speed drives.

This research focuses on developing an intelligent low voltage series arcing detection 

scheme based on pattern recognition, with immunity to false tripping. This point is the 

main drawback of most published work and issued patents on arc detection to date,

mainly due to the difficulty of modelling such a transient behavior, especially on low 
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current arc cases. Real data is generated in lab simulating series arc conditions at different 

combinations of linear and non-linear loads. Appliances current are recorded as well. Two 

disjoint datasets are used for training and testing of the proposed system with no 

components shared between the two datasets to verify classifier generality. The proposed 

pattern recognition method proved to be highly immune to false tripping in line with 

benchmark regulatory standard, and can be adapted to similar hard to model non-

stationary problems.
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Chapter 1

Introduction

1.1 Introduction

Today, more than ever, we rely on electric power for every aspect in our daily 

living, from commercial and industrial to households’ applications, and its use in 

transportation is on the rise with increased penetration of electric vehicles.

Electric power is delivered to users at different voltage levels to best suite 

consumer applications. This power delivery is through insulated conductor wiring 

with relevant voltage and current rating specifications. Electric power comes with 

inherent risks associated with delivery and usage, including shocks, and fires 

started by faulty wiring and appliances, and so various electric standards, best 

practices, and protective devices have been developed to reduce these risks.

An electric current poses a real hazard when it exceeds predetermined ratings 

or flows through an unintended path, such as in short circuits and current leakage 

from devices and cables, and may lead to equipment and property damage. Thus, 
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a range of devices have been introduced over the years, from thermal, differential 

circuit protection, to ground and arc fault circuit interrupters.

1.2 Motivation

Fire hazard can produce substantial property and financial losses, not to mention 

loss of lives. There is a diverse range of fire ignition sources, from misuse of 

flammable materials and gases, to exposure to hot surfaces and electrical sources. 

Electrical appliances and electrical distribution systems contributed to 10% of fires 

in Canada during 2007, resulting in 11% of total fire related death cases and 7% 

of registered fire related injuries [1]. It is estimated that around 47,700 fires were 

reported in the US during 2011 involving building’s electrical distribution systems 

and devices, leading to 418 civilian deaths and around $1.4 billion in property 

damage [2]. 

The US national electric code (NEC) revision introduced in 2002, required 

the protection of specific living space in new buildings against arc faults, and the 

stricter requirements of NEC 2011 mandated protection of almost all areas in new 

as well as existing buildings [3]. The different AFCI products in the market are

being limited to high current arc detection, shadowed with unintended tripping 

for low current arc faults, and requiring operational reliability enhancements to 

reduce unintended interruption.
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1.3 Scope of Work

This research aims to develop and validate a pattern recognition system for low 

voltage series arc fault detection, with special attention to false tripping immunity. 

The designed system should be capable to discriminate between real arc and arc-

like behaviors produced from different electric appliances to eliminate spurious 

tripping, while possessing a non-intrusive nature. Practical deployment for online 

circuit protection is emphasized throughout the research. Canadian standards 

association (CSA) standards are used as the benchmark for data generation and 

requirements validation [4].

1.4 Thesis Outline

This thesis consists of six chapters organized as follows, Chapter 2 is a literature 

review on arc inception process, arc characteristics and current detection 

techniques, along with a detailed review of arc protection issued patents, with 

limitations compared to current electrical protection standards. Chapter 3 

provides a brief background of signal processing techniques for stationary and non-

stationary signal analysis. These techniques constitute the corner stone of this 

work, by capturing arc discriminant signals and forming the link between the 

machine and physical system layer. Chapter 4 presents an overview of pattern 

recognition systems and different types of machine learning typologies and 

dimensionality reduction. Particular attention is given to support vector machines, 

as it is used for classification purposes in the proposed system. In Chapter 5, the 
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proposed system is introduced from system level down to component level; 

different stages and components are detailed, including current sensing, feature 

extraction and selection, normalization and classifier training, a benchmark arc 

generator and dataset generation. Concluded with system performance measures 

evaluation and analysis. Chapter 6 presents conclusions and findings of the work, 

and list possible further improvements considerations. 
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides background and reviews the literature on the low voltage 

electrical arc problem. The discussion includes how an arc is created, what causes 

it, different types of arcs, factors governing arc initiation and extinguishing, 

specific characteristics, detection techniques, as well as a review of some patents 

issued on this problem.

2.2 Electrical Arc

Electrical arcing can be defined as the presence of an unintentional conductive 

path parallel to an insulation medium between two points of different electric 

potential, accompanied with luminous discharge, electromagnetic radiation and 

acoustic waves [4]. This definition can be expanded to include parallel and series 
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arcs. The danger of an electric arc is in its capability to ignite fires, as arc-

generated temperatures are very high; high enough to melt conductor metals and 

ignite insulation and nearby combustible material [5].

2.2.1 How Arcs are Created

An electric arc is a form of electric discharge, resulting from the creation of 

conductive path between two points of different electrical potential, and serving 

to equate existing potential difference by moving electrons from a low to a high 

potential side. Arcs will be created whenever the potential difference is greater 

than the insulation material breakdown voltage, depending on the insulation 

medium’s specific properties [6].

The main causes of electric arcs are cable insulation failure and loose or 

broken wire connections [5, 7]. Such failures can be due to material degradation 

or mechanical damage. Insulation material can deteriorate by aging, high ambient 

temperature and humidity, or use out of its design limits, like over voltage or 

exposure to high heat as in the case of conductor over load. Mechanical damage 

can result from exercising stress or strain force on the conductor, with effects on 

the conductor or insolation medium characteristics. Loose wiring may result from 

exposure to vibration, corrosion or incorrectly fastened screws, while broken 

conductors can be the result of repeated misuse by forcefully pulling cable cords, 

resulting in electric arcs by the intermittent make and break of connection cycles.

Arc generation and characteristics are controlled by different factors, ranging 

from electrode materials, physical dimensions, voltage difference between arc 

terminals, gap separating contacts, conductive path electrical properties, load 
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current and voltage, local cooling and generated electric field in between [8, 9]. 

Whenever these requirement are present and favorable, arc inception will result 

in arc initiation; otherwise, arc fault would be suppressed and extinguished.

2.2.2 Types of Arc

Arc faults can occur between any combinations of wires within an electric circuit, 

in parallel or in series with the connected load. 

(a) (b) (c)

Figure 1. Arc fault types, (a) Line to neutral, (b) line to ground and (c) series arc faults

Parallel arcing is the presence of an arc between two parallel conductors in 

the circuit, such as in line-to-neutral or line-to-ground shown in Figure 1.a and 

1.b. A parallel arc can result from external mechanical damage in insulation 

materials, causing a current path from one conductor to the other, or from thermal 

stress caused by conductor over loading or external heat exposure resulting in 

degraded insulators leading to insulator materials hardening and developing cracks 

with subsequent arcing [10, 11].

In contrast, series arcing is an unintended arc present in a series with a 

current-limiting load, as in Figure 1.c. It is caused by improperly fastened wiring 

or a break within conductor strands with repetitive connections making and 

breaking under loading condition. The result is generation of copper oxide film 



8

with higher resistance and contact point heating to high temperatures, resulting 

in glowing contact, with the possibility of igniting wire insulation and surrounding 

materials. Insulation materials’ decomposition by arc-produced heat produces 

flammable gases and pressure waves, which can be ignited by arc currents, which

have more than enough energy to ignite the generated gases [10, 11].

A parallel arc’s current is higher than the rated current and it is limited by 

the source supply current and all connected components in the current path, 

usually to around 75 amperes [8]. A series arc’s current on the other hand is within 

normal current range, with a less than rated rms value [12, 13].  Figure 2 shows

the difference between normal and series arc currents for a purely resistive load.

Figure 2. Normal and series arc current of purely resistive load
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2.2.3 Arc Fault Characteristics

Electric arc is characterized by luminous discharge, high signal distortion of 

current and voltage waveforms, negative V-I relationship [14], and an

electromagnetic radiations [15, 8, 14]. Also accompanied with generation of radio 

frequency signal noise, in the megahertz to gigahertz band, which is governed by 

arc specific variables; like resistance, inductance, capacitance and arc current [15, 

8]. The generated noise is present during arc current conduction and suppressed 

during zero arc current.

2.2.4 Arc Fault Detection Techniques

Arc current waveform has high randomness and unpredictable behavior, this 

nature is different from one load to another, making it difficult to reliably 

discriminate arc from non-arc conditions. Distinct characteristics in frequency 

domain, time domain and frequency-time domains were investigated in the 

literature [16, 11, 8]. 

Time domain analysis relies on the self-extinguishing characteristics and 

broadband radio frequency noise of arc current during zero crossing, half cycle 

asymmetry and high ݀݅/݀ݐ in the first half of the half-cycle. Fault current 

exceeding 75 ampere is considered a distinct feature of parallel arc fault [8]. The 

induced current gap is governed by the contact separating distance and the ratio 

between arc resistance and inductive component of the load, bigger current gap is 

associated with parallel arc. Arc current high rise rate after zero gap is another 

aspect; which is effected by the current gap duration and arc type, being slower 

for parallel arc compared to series arc [16, 11]. 
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Frequency domain analysis uses fast Fourier transform (FFT), revealed high 

third harmonic component which can be effected by loading conditions, elevated 

spectral energy in the frequency band of 100 Hz to 1.5 KHz, with high frequency 

component in the range of 2 – 5 KHz, resulting from the sharp current rise after 

zero crossing with distinct presence in the case of parallel arcing [11]. Another 

method proposed in [17] utilizes high pass filter with low cut-off frequency for 

eliminating power frequency component from voltage signal.

Time-frequency domain methods based on Wavelet transform detection 

technique is presented in [18, 19], using wavelet coefficients mean-difference 

algorithm on detailed signal coefficient extracted through dyadic multiresolution 

wavelet decomposition, and high energy band detection at reference frequencies

respectively.

Other methods proposed in [20, 15] were based on acoustic, infrared and 

radio frequencies generated by arc fault, and electromagnetic radiation in KHz-

to-MHz range respectively.

2.3 Masking Loads

Arc fault detectors need to reliably distinguish real arcing conditions from normal 

arcing generated in some household appliances. Typical loads generating arc-like 

behavior are electronic light dimmers, air compressors, vacuum cleaners, power 

tools and power line communication modules. Light dimmers has periods of zero 

current, air compressors and vacuum cleaners generate high noise and high inrush 
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current during start-ups, while power tools produce current intermittency as a 

function of rotational speed, power line communication generates noise. All 

previously mentioned appliances share some characteristics that could be viewed 

as indication of an arc failure.

2.4 Previous Work and Limitations

The arc detection problem has received a great deal of attention from researchers 

interested in electrical safety, resulting in different patents and commercially 

available products. NEC 2002 requires the protection by AFCI for all single phase 

branch circuits with 125 V supply voltage and current rating from 15 to 20 A [21].

With more attention is given to the problem after the introduction of NEC 2011,

which extends the required protection to all distribution circuits in new and 

existing buildings [3].

U.S. Pat. No. 4,658,322 issued to Rivera, describes a method of arc detection 

for electrical equipment with vented enclosures. It was devised for use with single 

equipment in a marine environment with immunity to electromagnetic 

interference [22]. This method is based on thermodynamic principles through 

internal and external differential pressure measurement, internal temperature, and 

a photic sensor to detect the occurrence of arc flash. 

U.S. Pat. No. 5,185,684 issued to Beihoff et al, based on the detection of 

established distinct electromagnetic fields around current carrying conductors 

during arc conditions; through monitoring specific frequencies using a combination 
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of passband filters and amplifiers to detect arc presence and generating a trip 

signal. This method uses a special transducer for measuring electric and magnetic 

fields separately [23].

U.S. Pat. No. 5,223,795 and 5,432,455 issued to Blades; discloses a method 

based on monitoring radiated energy, as well as high frequency noise in power line 

voltage and current in 10 KHz – 1 GHz range. This method employs digital signal 

processing techniques for detecting noise gap present every half-cycle providing

immunity to high frequency noise sources [24, 25]. Being not capable of detecting 

series arc with inductive load or contact arcing is considered the main drawback 

for this method.

U.S. Pat. No. 4,376,243 and 5,280,404 issued to Ragsdale, designed for DC 

powered electric rod furnace arc protection. This is achieved by amplifying high 

frequency signal and counting the number of arc pulses within a predefined 

sampling window. This method provides good noise immunity and based on analog 

circuitry and using cheap microprocessor are considered good advantages [26, 27].

U.S. Pat. No. 5,805,398 issued to Rae et al, operates on the principle of time 

decay accumulation of clipped pulses present during arc faults [28], aims to 

overcome false tripping due to tungsten bulb burnout and inrush current of cold 

tungsten filament energization by a solid state dimmer.

U.S. Pat. No. 5,818,237 issued to Zuercher et al, presents a method immune 

to solid state dimmers and inrush currents. Monitoring signal step increases with 

two signal envelops; by the addition of detected pulses with attenuation over time,

a second envelop uses a lower time constant then the first envelop time constant.
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Arc signal is considered present when a random step increase from half-cycle to 

the other is detected [29].

U.S. Pat. No. 6,128,169 issued to Neiger et al, utilizes high frequency signal 

content and AC signal energy, with high peaks in either component is 

characterized for arc fault. Measurement of the line impedance is made using a 

dedicated circuit and a permanently connected testing load. Arc condition is 

detected whenever the line impedance increases leading to arc fault [30].

U.S. Pat. No. 8,089,737 B2 issued to Parker et al, presents a method based 

on sensing and compressing broadband noise present in power circuits and 

detecting noise signal minimum values [31]. Measuring the noise minimum and 

maximum values from different half-cycles is achieved through measuring the 

range between maximum and minimum values of the sensed noise signal; then by 

counting the number of samples exceeding predetermined first level to determine 

a condition characterized by: 

1. Range of higher than a predefined level.

2. Minimum value occurring at either beginning or end of the half-cycles.

3. Counter is increased if the number of samples higher than first level is 

greater than the predetermined third level, and decreased otherwise. 

Fault condition is detected whenever the counter reaches a set value. Issued 

patents are capable of identifying parallel arc faults with good accuracy, mainly 

due to the clear and easily recognizable associated characteristic as described 

earlier, although they suffer from the inconsistency and low reliability for series 

arc detection, especially when compared with masking loads.



14

2.5 Summary and Discussion

This chapter presented the arcing phenomenon, causes behind it, potential 

consequences, and different types of arcing in low voltage electric circuits. Distinct 

arc fault features in time, frequency and time-frequency domains investigated in 

literatures are reviewed, plus existing detection techniques and their main 

principles, as well as patents issued for arc detection.

Although an arc current possesses distinct features in time, frequency and 

time-frequency domains, it is not feasible to rely on one feature alone to reliably 

detect the presence of transient arcing conditions, especially when considering 

masking loads like lamp dimmers and vacuum cleaners etc. Previous work has 

focused on the arc detection problem from different perspectives, resulting in a 

combination of successes and cases of low detection reliability, mainly due to the 

techniques used and the extreme random behavior of the arcing phenomenon. All 

patents on arc detection issued to date have been based on a combination of 

individual aspects, making their methods prone to false tripping rate when applied 

to all masking loads existent in ordinary households. No method has until now 

considered analyzing the complete signal waveform and utilizing machine learning 

principles and techniques to detect arc conditions in low voltage.



15

Chapter 3

Wavelet Transform

3.1 Introduction

Wavelet transform (WT) has been employed in different fields, ranging from 

mathematics and engineering to physics. The wavelet theory was formalized and 

found applications in seismic signal analysis, digital signal processing and 

computer vision [32]. WT is regarded as an extension to short time Fourier 

transform (STFT) for non-stationary signals; unlike fixed window used in STFT, 

WT employs variable window allowing longer window for lower frequencies and 

shorter window at higher frequencies resulting in better time-frequency resolution.

This chapter will present brief background for short time Fourier transform, 

wavelet transform in continuous and discreet forms, wavelet multiresolution 

analysis, and wavelet packet transform (WPT).
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3.2 Short Time Fourier Transform

Fourier transform (FT) is a well-established spectral analysis technique, where it 

decomposes original signal to its frequency spectrum contents. By definition, FT 

is limited to stationary signals only due to the used infinite basis. FT for signal 

is given by equation 1.

(1)

Short-Time Fourier Transform was introduced to estimate timely sinusoidal 

signal components in frequency and phase [32]. STFT for signal f(t) and moving 

window ݐ)∗݃ − ߬) is given by equation 2.

(2)

The fixed window size is a decisive factor for transient signal analysis of the 

same resolution in time and frequency [33], as smaller window size than transient 

time would result in loosing vital frequency information, in contrary, longer 

window will result in better frequency and poor time resolution [34].
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3.3 Wavelet Transform

WT provides a compromise over STFT by having a variable time and 

frequency resolutions, which is achieved using a predefined mother wavelet 

function instead of Gaussian window as in STFT [32]. 

WT decomposes the signal by using high-pass and low-pass orthogonal 

filters, G and H respectively, producing detailed and approximate signals followed 

by down sampling operation.

Continuous wavelet transform (CWT) is given by equation 3, where is the 

basis function, a and b are scaling and translation parameters respectively [32].

(3)

Discreet wavelet transform (DWT) can be obtained by discretizing scaling 

and translation parameters to the form , , [32], as in 

equation 4.

(4)

Figure 3 shows wavelet decomposition tree, where f(n) is the original discreet 

signal, a1 and d1 are approximate and detailed signal coefficients respectively.
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Figure 3. Wavelet transform decomposition

3.4 Multiresolution Analysis

Multiresolution analysis (MRA) is the successive decomposition of signal using 

specific filter banks, producing a multiresolution decomposition with coarser 

resolution at higher decomposition level. Pyramidal decomposition is achieved 

using wavelet filter banks that satisfies containment, decrease, increase, dilation 

and generator conditions [35].

In wavelet multiresolution framework, approximate signal is further 

decomposed depending on the decomposition levels required with MRA.

Figure 4. Two level multiresolution wavelet decomposition tree
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Figure 5. Multiresolution wavelet decomposition frequency spectrum

Figure 4 depicts a two levels multiresolution wavelet decomposition tree, 

where f(n) is the original discreet signal, a1 and d1 are approximate and detailed 

signal coefficients at level 1 respectively, a2 and d2 are resulting coefficients at 

decomposition level 2. Figure 5 shows frequency distribution of DWT decomposed 

signal at three levels.

3.5 Wavelet Packet Transform

Discrete wavelet packet transform (DWPT) is similar to multiresolution DWT, 

with the difference of detailed signal coefficients being expanded with every 

decomposition level using the same wavelet filters, as with multiresolution analysis 

wavelet transform. 

Figure 6 depicts a pyramidal decomposition scheme for signal f(n) with 

resulting approximate and detailed components, while Figure 7 shows the 

frequency spectrum of decomposed signal components at three levels.

Frequency Spectrum



20

Figure 6. Two level multiresolution wavelet packet decomposition tree

Figure 7. Multiresolution wavelet packet decomposition frequency spectrum

Frequency Spectrum
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Chapter 4

Pattern Recognition Systems

4.1 Introduction

This chapter introduces the basic concepts of pattern recognition and machine 

learning principles; presenting benefits, drawbacks and limitations, with focus on 

supervised learning and support vector machines. Background of the different 

algorithms for data dimensionality reduction and features selection is reviewed, as 

well as pattern recognition classification performance measures.

4.2 Pattern recognition 

Pattern recognition (PR) is one of the artificial intelligence areas that has been 

gaining momentum over the past couple of decades. PR applications are found in 

many different sectors ranging from medical, financial, security and engineering 

to name a few. PR aims to identify existing patterns in nature and data. The two 
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main tasks of PR are classification and clustering, where the former targets data 

point assignments between two or more groups, while the latter groups all data 

points of similar characteristics in one group.

Machine learning will prove useful in any of the following cases [36]:

1. Difficulty of task definition unless by the use of examples; where input and 

output examples are presented to the machine in a training format in order 

to model the underlying relationship between input and output data.

2. The possibility of design environment changes during deployment of the 

intelligent system, which requires system adaptation and no redesign 

activity, as well as the lack of knowledge of some working environment 

definition during design phase. Machine learning approach can keep track 

of the dynamic environment and continually update application related 

knowledge.

3. The discovery of new and interesting relationships in large data sets.

4.2.1 Types of Machine Learning

Machine learning is typically categorized into supervised learning and 

unsupervised learning; supervised learning intern is subdivided into classification 

and regression, where unsupervised learning is also known as clustering. 

Classification is the process of classifying data points into different classes 

or categories based on common features, this process is known as supervised 

learning. Classification relies on the fact that training data being used is labelled, 

where label is the information in which class each data point belongs to, these 

labels are used to train the classifier or classification model by example to 
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distinguish between the existing different classes based on distinct class features.

Classes can take a categorical or nominal values [37]; categorical labels as in the 

case of binary or multi-class problems, while nominal value labels are for regression 

and forecasting problems. The main goal is estimating the underlying model in 

the training set between input instances and class labels, and then predicting class 

labels for novel input instances which has not been seen by the learning algorithm 

before. In other words, the inferred training model should possess enough 

generalization to be applied on novel data points, and avoid closely overfitting the 

training data. Many different classification algorithms exist with varying 

performance and computational complexities [38], like Bayesian classification, 

artificial neural networks and support vector machines etc. Some of the current 

applications of classification are electrocardiogram analysis (ECG), email spam 

filtering and game playing are. Regression is similar to classification except it uses 

a real value labels, where the resulting model would be used to forecast the real 

time series and predict future instances [37].

Clustering on the other hand, tackles unlabeled data to identify what 

interesting patterns do exist. Data clustering could be viewed as grouping data 

points with similar features and attributes together, where the number of groups 

is not defined beforehand. The selection of best clustering algorithm heavily 

depends on the nature and size of the target data.
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4.3 Support Vector Machines

Support vector machines (SVM) is one of the most influential algorithms in the 

area of machine learning, it is used for classification and regression purposes for 

linear and non-linear data. SVMs’ unique capabilities relies on reaching the global 

optimum and achieving a good generalization from training data.

SVM works by projecting the training data instance features into a high 

dimensional features space using a non-linear mapping, then solving for maximum 

separating marginal hyperplane in the new space [39]. This approach faces two 

difficulties:

1. How the algorithm will generalize from the training data, especially when 

most of the separating hyperplanes will not provide good generalization.

2. How to handle and reduce the computational cost of the produced higher 

dimensional space.

The optimal separating hyperplane is characterized by having the maximum 

margins between different class vectors. This plane will take into account a subset 

of the training data called support vectors, where the lower the  number of support 

vectors the higher the generalization ability will be [40].

Considering linearly separable training dataset , where training 

instance is associated with class label , and , where

݊ is the number of training set instances. Separating hyperplanes is given by

equation 5.
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(5)

Where is a weight vector, , and ܾ is scaler vector. Figure 8

shows SVM optimal plane for two dimensional feature space.

Figure 8. Two dimensional separation problem showing optimum hyperplane, support vectors 
and optimal margins

Training dataset set is considered linearly separable when there is a vector and 

a set of constants ܾ such that 

, if (6)

, if (7)

By combining the above two equations 

(8)

The resulting optimal hyperplane equation is given by



26

(9)

Yielding optimum separation and maximum margins, with maximum separation 

margin of .

Optimal hyperplane is the unique plane minimizing the dot product ܹ.ܹ, 

under constrain (8), which is in the form of quadratic programming problem; such 

problem solution involves problem formulation using Lagrangian multiplier and 

solving using Karush-Kuhn-Tucker (KKT) conditions [40]. Obtained support 

vectors are the bases for classifying data points and directly controls produced 

classifier complexity [39].

While in the case of linearly inseparable data, the goal will be modified to 

achieve optimal separation with the error, extension to linear SVM can be 

achieved using other non-linear mappings and solving in the new higher 

dimensional space.

Reduction of associated computational cost with dot product calculation in 

the new feature space is attained by applying specific kernel functions to the input 

data, which is found to be equivalent to computing dot product in the feature 

space. This procedure requires the addition of Lagrange multiplier upper bound 

to the optimization formulation which is best obtained experimentally [39].

SVM differentiate between classes by maximizing the separation distance 

between classes; being capable of reaching the global optimum regardless of the 

training set. Other SVM attractive features is the insensitivity to overtraining, 

where overtraining sensitivity can pose a serious concern during training phase,
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as which data samples should be used for classifier training, providing good 

generalization performance and having limited number of parameters to be tuned. 

Although training computational complexity is high, due to the quadratic 

optimization problem, and the experimental nature of penalty term setting are 

the main drawbacks of this technique [41].

4.4 Dimensionality Reduction and Features

Selection

Classifier performance is tied to the training sample size, the number of features 

available and classification algorithm. The curse of dimensionality is where the 

association between sample space and feature space is of high proportions, with 

exponential relationship as in the case for naïve table-lookup [42]. Peaking 

phenomenon is where the probability of sample misclassification does not increase 

with increased number of features, while the addition of new features will 

practically reduce the classifier performance in case of low training sample to 

feature size [41].

Dimensionality reduction of high dimensional features set will benefit 

pattern recognition algorithms by simplified classifier model, as well as yielding 

higher accuracy, faster computational time and reduced computational cost. This 

dimensional reduction should be tackled with care as it might remove some of the 

discriminant features resulting in classification errors. Dimensionality reduction 

can be achieved by transforming the existing feature set to a lower dimensional 
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space using linear or non-linear transformations, linear transforms as principal 

component analysis (PCA) or linear discriminant analysis (LDA), while non-linear 

transforms as kernel PCA or multidimensional scaling (MDS). The generated 

features from the new projection may not contain any physical meaning compared 

with the original features set [41].

Feature selection is the selection of a subset of m features from feature set d

that results in the lowest classification error. The obvious method is to test all 

possible combination in the feature set via exhaustive search, while this approach 

guarantees optimality on the expense of excessive computational burden, 

exhaustive search becomes infeasible as d becomes large. The only selection 

algorithm guaranteeing optimality except exhaustive search is based on branch 

and bound algorithm [43], other search strategies exists in literature ranging from 

individual feature ranking, sequential forward selection (SFS), sequential 

backward selection (SBS), plus l take away r and sequential forward and backward

floating selection (SFFS/SBFS). The best group of features may not contain the 

best individual features and thus optimality is not guaranteed. Sequential search 

methods suffer from subset nesting, where SFFS and SFBS has the advantage of 

back tracking over SBS and SFS, which is considered a generalization of plus l

take away r providing a close to optimal solution with an affordable computational 

complexity [41].
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4.5 Summary

This chapter has reviewed the basic theory of pattern recognition, listing 

conditions where pattern recognition techniques is better suited, main types of 

machine learning and expected benefits, an overview of supervised learning, theory 

of support vector machines, dimensionality reduction and feature selection.

Machine learning techniques application to problems of high difficulty, or 

practically impossible to solve using conventional methods, resulting in good 

performance which can be attributed to machine learning unique capabilities of 

solving complex formulated problems. SVM classifier unique capabilities places it 

as one of the top choices for classification problems, this is due to the mix of its 

favorable attributes and acceptable drawbacks; since training phase is made offline 

and can use as much data as possible resulting in a better generalization.

Computational complexity reduction can be achieved by reducing the 

number of features and eliminating any inconclusive features, translating into a 

reduced feature space and reduced overall complexity and increased efficiency.
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Chapter 5

Proposed Solution

5.1 Introduction

This chapter presents the proposed solution for the problem of series arc fault 

detection in low voltage systems. Firstly, the problem is broadly defined, followed 

by governing regulatory standards. The proposed solution is then introduced, and

its different stages of operation; with elaboration of each process stage. Finally, 

the complete system’s practical evaluation and performance measures are 

described.

5.2 Problem definition

Arc faults may exist in low voltage distribution wires with the presence of specific 

preconditions, and may lead fire ignition. The danger of LV arcs is in the difficulty 
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associated with detecting the presence of arc conditions, and reliably 

discriminating them under different masking loads. Operating on a system 

frequency of 60 Hz poses a great challenge for computational complexity, 

especially with the added requirements for AFCI to ”trip whenever 8 arcing half 

cycles occur within 0.5 s interval” [4]. This requirement dictates that the detection 

algorithm monitor the current signal, or voltage signal, one half-cycle at a time 

and detect arc conditions whenever they occurs.

5.3 Proposed Technique

The proposed solution is a pattern recognition system based on wavelet packet 

transform and classification algorithm to classify arc from non-arc conditions. The 

PR approach is chosen due to the great difficulty in modeling transient nature of 

arc fault, and the superior performance of supervised PR methods.

Throughout the design of the system, the emphasis is on keeping 

computational cost to the minimum, and making the algorithm practically 

attractive and more realistically implementable for real time monitoring. Using 

non-intrusive detection technique favors current signal over voltage signal as the 

basis of arc detection, as it can be measured without altering circuit wires’

connection and routing.
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5.3.1 Over all system

The Proposed system is based on pattern recognition principles for arc condition 

detection, and examines current cycle waveform through specific arc features and 

classification technique. It consists of three main stages, current sensing stage, 

feature generation and extraction stage, and arc detection stage. The current 

sensing stage is composed of current transducer and analog-to-digital signal 

converter; the feature extraction stage uses WPT with special filter bank for signal 

decomposition and feature extraction from selected WPT node coefficients; and 

the arc detection stage consists of a PR classifier and instances counter that 

initiates a trip signal whenever a preset value is reached. Figure 9 shows the 

overall system components, and Figure 10 shows process flow chart for arc 

detection.

Figure 9. Overall arc fault interruption system
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Figure 10. Arc detection process flow chart.
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5.3.2 Current Sensing Stage

Current signal monitoring is the first step in the proposed method, and aims to 

capture the conductor current waveform using a sensitive current transformer with 

a high frequency response. A high frequency content is expected with transient 

behavior such as electric arcing. Current sensing is practically achieved using a 

wideband split core current transformer with internal sampling resistance, as 

shown in Figure 11.

Figure 11. Split core current transducer

Table 1. Current Transformer Specification

Rated Input Current 10A

Rated Output Voltage 1V

Core Material Ferrite

Type Split Core
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A split core type is selected for practicality and ease of use with existing 

circuits for the purposes of real data collection and in later steps complete system 

validation.

Current signal is sampled at a rate of 30,720 sample per second for a 60 Hz 

system frequency, corresponding to 512 samples per current cycle. Current signal 

data is practically acquired using MATLAB Data Acquisition Toolbox.

5.3.3 Feature Generation and Extraction Stage

The sampled current signal does not represent any discriminatory features in its 

raw form in the time domain. Thus, signal projection into another domain is 

required to produce a feature format usable in machine learning algorithms. This 

stage consists of two steps; features generation and feature extraction.

Features are generated by decomposing current signals through 

multiresolution wavelet packet transform into five decomposition levels, as shown 

in Figure 12. A special case of infinite impulse response filter (IIR) is used as a 

WPT filter bank. Two half-band all-pass poly phase filters are used to design low-

pass and high-pass filters. The specialized elliptic filter design (L=3) provided 

excellent frequency roll-off characteristics and lower computational complexity

[44, 45, 46], hence very good frequency band separation for the WPT. The output 

coefficients at each WPT tree node represent signal features in their raw format. 

This procedure decomposes original signals into smaller bands within the signal 

frequency spectrum. 
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The feature extraction step retrieves information contained in the WPT 

coefficients. WPT tree nodes contain a number of coefficients. Depending on their 

position within the tree, the higher the decomposition level, the lower the number 

of coefficients and the smaller the frequency band represented. Various feature 

extraction methods exist in literature, including coefficient energy, root mean 

square, or entropy, all of which are suitable for feature extraction from wavelet 

transform coefficients, but the Euclidean norm method is found to be the most 

suitable for this problem. Discriminant information is extracted from tree 

coefficients using the coefficients’ Euclidean norm. The Euclidean norm of a 

coefficient vector ݌ = (௡݌) is given by equation 10.

(10)

Figure 12. Wavelet packet decomposition tree

The Euclidean norm proves to provide a compromise between classification 

accuracy and reduced computational cost. Table 2 compares different feature 

extraction methods, using the same training and testing datasets and a training 

scheme with a full feature set.
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Table 2. Comparison of different feature extraction methods for series arc detection

Feature Extraction 
Method

Accuracy

Training Testing

RMS 97.4251 97.3730

Euclidean norm 97.9439 98.8730

Entropy “Shannon” 96.6701 97.8495

Entropy “Log-Energy” 92.5895 89.6641

5.3.4 Arc Detection Stage

In this stage, arc detection is carried out using features extracted in the previous 

stage to classify a current signal as normal or generated from an arc fault, followed 

by arc instances counter controlling the trip signal generation. Investigation of 

different machine learning algorithms suggests using SVM due to its various 

positive traits. This stage consists of several steps, ranging from features 

normalization and selection, to classifier training.

The generated features preprocessing step eliminates feature dominance and 

any existing bias due to a higher feature magnitude compared with more 

representative features of lower magnitude on classification accuracy. Features are 

scaled using min-max normalization to the range . By finding the minimum 
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and maximum values, and  of the given feature vector , the normalized 

feature instance can be found using equation 11.

(11)

Feature selection aims to identify the features best correlated to the class 

label and to eliminate any redundant or insignificant features. Using only a subset 

of features would have a direct effect on classification accuracy and overall 

performance time, due to reduced feature generation and extraction time and 

minimized classifier feature space. A floating search was used to investigate feature 

selection using four selection criteria: the sum and minimum of estimated 

Mahalanobis distances and the sum and minimum of squared Euclidean distances. 

Table 3 shows that the minimum estimated Mahalanobis distance provides the 

most discriminate feature set, with a total of 50 features.

The selected feature set is [2,31,62,6,61,60,30,59,63,14,13,4,9,26,29,58,12,24,

52,25,28,57,56,54,27,55,51,49,1,15,10,5,48,50,19,7,53,11,23,8,17,32,18,21,40,22,36,3

5,46,47] out of 63 feature. This feature vector is not globally optimal, and thus 

some loss in system accuracy is anticipated. Branch and bound search cannot be 

used due to its computational complexity and the limited computing power

available. Figure 13 shows the selected features decomposition tree.
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Table 3. Floating search feature selection methods comparison

Total Number of 
Selected Features

Accuracy

Maha-s Maha-m Ecul-s Ecul-m

10 96.1037 96.7043 81.5933 81.5933

20 96.9177 96.2380 97.4077 97.1864

30 97.2181 97.7634 97.6843 98.1348

40 98.5142 98.5300 98.6406 98.7276

50 98.7908 99.0042 98.8856 98.8619

63 98.8777 98.8777 98.8777 98.8777

Figure 13. Selected features decomposition tree, selected features are highlighted in grey

SVM classification algorithm is used for arc detection, using a labelled 

dataset based on current signal extracted features using WPT. The LIBSVM 

library [47] is used in this research for its performance and portability to other 

environments, that is, its ease of deployment to an embedded environment. Linear 

kernel is found to be the most suitable for the generated features, as suggested by
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principal component analysis (PCA) projection of the training set. SVM is capable 

of reaching global optima, and above all immune to over training, which would 

prove helpful during the training phase features-normalization step, since 

minimum and maximum feature values need to be fixed in the training phase 

leading to the use of training set with high instance count. The SVM classifier is

trained using a 10-fold cross validation training scheme, by randomly splitting the 

training dataset into 10 parts and using nine parts for training and one part rest 

for testing. By repeating the process for all other cases and taking their average 

accuracy, a linear SVM kernel with a cost parameter of 1 is found to produce the 

highest classification accuracy. PCA also shows high separation margins between 

feature clusters. 



41

Table 4 shows the training and testing accuracies for the 10-fold partitions.

Figure 14. 10-fold cross validation classifier training and testing accuracies
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Table 4. 10-fold cross validation classifier training and testing accuracies

Training 
Cases

Accuracy

Training Testing

1 97.9966 99.0041

2 97.8700 99.0120

3 97.8274 98.9804

4 97.5748 98.9646

5 97.9966 98.9725

6 97.6803 99.0437

7 97.9544 98.9646

8 97.7224 98.9962

9 98.3129 99.0041

10 98.1864 98.9567

Average 97.9122 98.9900

Classifier output is fed to an arc-fault counter initiating a trip signal whenever 

counter exceeds a preset threshold. The arc counter is similar to a shift-register 

where each bit is equivalent to one current signal cycle, overall number of bits 

spans for half a second. 
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5.3.5 Integrated System

Enabling an intelligent system to gain problem-specific knowledge and achieve

benchmark performance requires various steps from training to deployment. Some 

steps can be carried out offline and the selected parameters used online. Feature 

scaling, selection and classifier training and tuning are the most important offline 

steps.

Features are scaled using min-max normalization, where the minimum and 

maximum value of each feature is calculated during the training phase and used 

to scale new sample points. Training-feature selection reduces the online feature 

extraction step, depending on the selected subset and the relative WPT pruned 

tree sections. Classifier kernel selection and tuning will search for a mapping with 

the least support vectors. Figure 15 shows the different steps involved in the 

different system development phases.

Figure 15. Overall system stages and steps for training and deployment phases
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5.4 Dataset

Lab-generated data is used in this research to mimic real life conditions so as not 

to rely on synthetic arc data. Two separate datasets are used for this purpose: one 

for training the other for validation. The SVM classifier is trained using a subset 

of the training dataset and tested using another subset, while the validation 

dataset is used to validate the classifiers’ generalization ability to detect arc 

conditions present in unseen loads and load combinations.

5.4.1 Dataset Generation

Arc generation was performed in a lab environment in accordance with a 

benchmark setup [4]. This includes generating arc conditions using different loads 

ranging from linear and non-linear load combinations; using different kinds of light 

bulbs, including incandescent, florescent, CFL and LED; as well as, employing

other household appliances such as vacuum cleaners, power tools and electronic 

light dimmers, etc. 

An arc generator consists of two electrodes, one of copper and another of 

carbon graphite placed in the contact path within Plexiglas tubing, with blade 

connectors providing the arc-generator’s external connection. Both electrodes have

a diameter of 6.4 mm, with the copper electrode having a pointed sharp end of 

around 20 mm length for arc initiation, and the carbon electrode having a flat 

end. The Plexiglas tubing serves as a physical motion guide for contact making 

and breaking and as an insulator to the surrounding environment. Figure 16 shows 

the arc generator used in this research.
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Figure 16. Benchmark arc generator

5.4.2 Training and Validation dataset

The training dataset consisted of linear and non-linear load combinations of 

varying proportions. The linear load is represented by a purely resistive load,

where the non-linear load is in the form of a compact florescent lamp (CFL) of 

13W, combined in parallel with variable linear loads resulting in twelve different 

load combinations. Table 5 presents training set linear and nonlinear conditions 

with their corresponding wattage. Figure 17 shows some training set load 

combinations’ current waveforms.

Other load cases are added to the training set to widen diversity and increase 

classifier generality when applied to the validation set. These cases included 

appliances containing AC motors, variable speed drives, and electronic dimmers. 

Figure 17 shows some training load combinations’ current waveforms for normal 

and arc conditions. Figure 18 shows the current waveforms for different speeds of 

a variable-speed controlled AC motor such as in a stand mixer. Figure 19 and

Figure 20 show an electronic controlled light dimmer current at different firing 

angles and three kinds of light bulbs, respectively. Figure 21 shows the through 
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current of different masking loads present in common household appliances. The 

training set consist of 47,419 sampled current cycles, 18,719 arcing cases and 

28,700 non-arcing cases.

Table 5. Training dataset load combination

Combination % Wattage (W)

Linear Non-
Linear Linear Non-

Linear

100 0 100.00 0

95 5 247.00 13

90 10 117.00 13

80 20 52.00 13

70 30 30.33 13

60 40 19.50 13

50 50 13.00 13

40 60 8.67 13

30 70 5.57 13

20 80 3.25 13

10 90 1.44 13

0 100 0 13
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Training set load combinations’ waveforms, (a) 0% linear and 100% nonlinear load 
(000/100), (b) 020/080, (c) 040/060, (d) 060/040, (e) 080/020, (f) 100/000
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Stand mixer current waveform at different speeds
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(a) (b)

(c)

Figure 19. Light dimmer current waveform at different firing angles, (a) 60 deg, (b) 90 deg, (c) 
120 deg



50

(a) (b)

(c) (d)

Figure 20. Different light bulbs current waveforms, (a) fluorescent lamp, (b) CFL lamp, (c) LED 
lamp, (d) all three in parallel
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(a) (b)

(c) (d)

(e)

Figure 21. Rotating equipment current waveforms, (a) coffee grinder, (b) food processor, (c) hair 
dryer at low speed, (d) hair dryer at high speed, (e) power tool at high speed

The validation dataset consists of nine linear and non-linear load 

combinations, with different proportions than the training set. Table 6 presents 

the validation set linear and nonlinear combinations with their corresponding 
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wattage. Other load cases are added to the validation set to examine classifier 

performance and generality, and to comply with the benchmark test in [4]. Specific 

loads are incorporated in the validation set, namely light dimmers and an 

electronically controlled variable-speed drive. The validation set consists of 12,653 

data points, 1,853 arcing cases and 10,800 non-arcing cases. Figure 22 shows some 

validation set current waveforms.

Table 6. Validation dataset load combinations

Combination % Wattage

Linear Non-
Linear Linear Non-

Linear

97 3 420.33 13

85 15 73.67 13

75 25 39.00 13

65 35 24.14 13

55 45 15.89 13

45 55 10.64 13

35 65 7.00 13

25 75 4.33 13

15 85 2.29 13
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(a) (b)

(c) (d)

(e) (f)

Figure 22. Validation Dataset Load Combinations, (a) 15/85, (b) 25/75, (c) 45/55, (d) 55/45, (e)
75/25, (f) 97/03
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5.5 Performance evaluation

The overall performance of the proposed system is analyzed using the overall 

accuracy, error rate and precision to gives extra confidence, especially with the 

disjoint training and testing sets. A comparison of one case of training compared 

with testing is shown in Table 7. Where accuracy is the overall detection rate for 

positive and negative labels, the error rate is 1-Accuracy, precision is the ratio 

between a true positive and true positive and false positives, and F-measure is the 

harmonic mean of precision and recall.

Table 8 show a confusion matrix for training and testing as per Table 7. The 

receiver operating characteristic shows very good classification behavior as shown 

in Figure 23.

Table 7. Classification and training performance measures

Measure (%) Training Testing

Accuracy 98.1864 98.9567

Error 0.01814 0.01043

Precision 99.3370 95.9423

True Positive Rate 
(Recall) 96.0470 96.9700

False positive rate  
(fpr) 0.4180 0.7030

True Negative Rate 
(Specifity) 99.5810 99.2900

False negative rate 
(fnr) 3.9520 3.0220

F-measure 0.976643 0.964534
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Table 8. (a) Classifier training confusion matrix, (b) classifier testing confusion matrix

0 2858 74 0 10,724 56

1 12 1798 1 76 1797

0 1 0 1

(a) True label (b) True label

(a) (b)

Figure 23. Receiver operating characteristic, (a) training, (b) testing
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5.6 Discussion

The system proposed in this chapter aims to solve series arc-detection problem 

using signal processing and machine learning techniques. This approach is chosen 

to cope with the transient nature of the problem and the extreme difficulty of 

formulating an exact problem model. The proposed system is designed to meet 

standard requirement performance [4], and to be deployable in an embedded 

environment by having a manageable computational cost. Investigation of 

different signal processing techniques combined with machine learning algorithms 

is found to produce the best performance with the least complexity. From feature

generation and extraction to classification technique, computational cost reduction 

was pursued while performance-accuracy is maintained. Practical fault simulations 

are carried out in a lab environment mimicking real life loads, generating training

and validation dataset using a benchmark arc generator [4].

The classifier performance measure indicates high accuracy with a low error 

rate. The high true positive rate of 96.79% implies the high capability of arc 

detection, with the very low false positives rate of 0.703% correlating to high 

immunity to masking loads and nuisance tripping, coupled with the very high true 

negative rate of 99.29% supported with high F-measure. These performance figures 

can be improved further with refinements in feature selection and classifier tuning.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research has proposed a practical solution to low voltage series arc detection 

problem using pattern recognition techniques, with immunity to false tripping due 

to masking loads. Although other research on this problem has been conducted 

over the years, most solutions have some weaknesses due to their limited 

application scope. The proposed method is based on multiresolution wavelet 

packet signal decomposition and support vector machines. The method delivers 

satisfactory performance within benchmark standard’s requirements and a reduced 

computational cost. It is also inherently versatile enough to be ported and with 

minor adjustments used on other difficult-to-model electric protection problems.

Although the proposed system produced very specific and measured 

performance indices, it still faces some hard and soft limitations. A hardware 
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limitation was encountered in the data acquisition stage, as PC sound card is used 

for current data acquisition. The actual sampling rate is found to be lower than 

theoretically calculated to produce the required results. As a result, each captured 

sampled current cycle is representative of more than one current cycle, with 

tangible effects when logging current signals in continuous time.

The proposed method is tested using the test dataset containing equipment 

listed on CSA certification standard, exclusive from the training set, not including 

any electronically controlled variable speed switch power tools, or switch 

changeover under load. Nonetheless, a variable speed stand mixer under varying 

operational speeds is included in the set.

6.2 Future work and system improvements

Optimum methods for deploying the proposed system to an enclosed embedded 

system need to be investigated, taking into consideration the overall system 

complexity, plus the individual components level. The architecture used may rely 

on FPGA or DSP chips, not to mention ADC chip and the embedded system 

clocks.

Another important aspect for further investigation is the relation between 

the current signal sampling rate and system accuracy. In other words, what is the 

lowest sampling rate that achieves the desired performance? Another possibility 

is the relation between the sampling rate and the required computing power from 
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the system side, since a higher sampling rate directly correlates to high captured 

definition and system accuracy.

The most important aspect of improvement exists within the classification 

algorithm itself. Support vector machines produces class labels using decision 

margins based on support vectors. Reducing the total number of classifier support 

vectors would reduce computational costs, either by special selection of training 

set components or by feature engineering within the classification algorithm.
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