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Abstract 

Accurate and timely information on road weather and surface conditions in winter seasons is a necessity 

for road authorities to optimize their winter maintenance operations and improve the safety and mobility 

of the traveling public. One of the primary tools for acquiring this information is road weather 

information systems (RWIS). While effective in providing real-time and near-future information on 

road weather and surface conditions, RWIS stations are costly to install and operate, and therefore can 

only be installed at a limited number of locations. To tackle this challenging task, this thesis develops 

various different approaches in an attempt to determine the optimal location and density over a regional 

highway network. The main research findings are summarized as follows. 

First, a heuristic surrogate measure based method (SM) has been developed. Two types of location 

ranking criteria are proposed to formalize various processes utilized in the current practice, including 

weather and traffic related factors. Consideration of these two types of factors captures the needs to 

allocate RWIS stations to the areas with the most severe weather conditions and having the highest 

number of traveling public. A total of three location selection alternatives are generated and used to 

evaluate the current Ontario RWIS network. The findings indicate that the current RWIS network is 

able to provide a reasonably good coverage on all location criteria considered. 

Second, a cost-benefit based method (CB) has been proposed to give an explicit account of the potential 

benefits of an RWIS network in its location and density planning. The approach has been constructed 

on a basis of a sensible assumption that a highway section covered by an RWIS station is more likely 

to receive better winter road maintenance (WRM) operations. A case study based on the current RWIS 

network in Northern Minnesota show that the highest projected 25-year net benefits are approximately 

$6.5 million with cost-benefit ratio of 3.5, given the network of 45 RWIS stations.  

Third, a more comprehensive and innovative framework has been developed by using the weighted 

sum of average kriging variance of winter road weather conditions. Methodologically, the formulation 

of the RWIS location optimization problem is foundational with several unique features, including 

explicit consideration of spatial correlation of winter road weather conditions and high travel demand 

coverage. The optimization problem is then formulated by taking into account the dual criteria 

representing the value of RWIS information for spatial inferences and travel demand distribution. The 

spatial simulated annealing (SSA) algorithm was employed to solve the combinatorial optimization 
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problem ensuring convergence. A case study based on four study regions covering one Canadian 

province (Ontario), and three US states (Utah, Minnesota, and Iowa) exemplified two distinct scenarios 

–redesign and expansion of the existing RWIS network. The findings indicate that the method 

developed is very effective in evaluating the existing network and delineating new site locations. 

Additional analyses have been conducted to determine the spatial continuity of road weather conditions 

and its relation to the desirable RWIS density based on the case study results of the four study areas. 

Road surface temperature (RST) was used as a variable of interest, and its spatial structure for each 

region was quantified and modelled via semivariogram. The findings suggest that there is a strong 

dependency between the RWIS density and the autocorrelation range - the regions with less varied 

topography tend to have a longer spatial correlation range than the region with more varied topography.  

The approaches proposed and developed in this thesis provide alternative ways of incorporating key 

road weather, traffic, and maintenance factors into the planning of an RWIS network in a region.  

Decision on which alternative to use depends on availability of data and resources. Nevertheless, all 

approaches can be conveniently implemented for real-world applications.  
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Chapter 1 

INTRODUCTION 

1.1 Background 

During winter months, many regions in the US and Canada often experience a high frequency of 

inclement weather events, which can have a detrimental impact on the safety and mobility of motorists. 

Generally, road collision rates increase dramatically during inclement weather conditions due to 

degradation of visibility and traction on the roadway. A study by Goodwin (2002) indicated that in the 

United States, more than 22% of total collisions occurred during winter weather conditions, while a 

study by Qiu and Nixon (2008 a) revealed that snow storms would increase the collision rate by 84%. 

Ontario Road Safety Annual Reports (MTO, 2001-2010) show that vehicle collisions occurring during 

wet, slushy, snowy, and icy conditions accounted for up to 27.5% of total collisions. Wallman (2004) 

found that the average collision rate during a winter season would be 16 times higher in black ice 

conditions than in dry road conditions. 

There is also extensive evidence showing that inclement winter events can significantly affect traffic 

mobility. A study by Liang et al. (1998) found that snow events would reduce the average operating 

speed by 18.13 km/hr, while Kyte et al. (2001) showed that snow could cause up to 50% reduction in 

speed. A comprehensive analysis by Agarwal et al. (2005) indicated that snow events at various severity 

levels caused 4.29-22.43% and 4.17-13.46% reductions in capacity and average operating speed, 

respectively. More recently, 1Kwon and Fu (2011) and 2Kwon et al. (2013) confirmed that winter 

weather events could negatively affect the mobility of road users; they established an empirical 

relationship between road conditions, and capacity and free-flow-speed (FFS) of urban highways. Their 

findings indicate that slippery roads can reduce the capacity and FFS by 44.24% and 17.01%, 

respectively. In general, snow storms that typically result in poor road conditions are strongly related 

to high collision rates, reduced roadway capacity, and reduced vehicle speed (Wallman and Å ström, 

2001; Datla and Sharma, 2008). 

                                                      
1 Kwon, T.J., and Fu, L. (2011). Effect of Inclement Weather Conditions on Macroscopic Traffic Behavior. Paper presented at the 9th  

International Transportation Specialty Conference, Canadian Society for Civil Engineering, Edmonton, AB., 2011. 
2 Kwon, T.J., Fu, L., and Jiang, C. (2013). Effect of Winter Weather and Road Surface Conditions on Macroscopic Traffic Parameters. 

accepted for publication in Transportation Research Record: Journal of the Transportation Research Board, National Research Council. 
Washington D.C. 
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To minimize these safety and mobility impacts caused by winter weather events, an effective snow and 

ice control program is required to deliver various winter road maintenance services such as snow 

plowing, sanding, and salting. Not only can efficient and effective winter road maintenance programs 

reduce the risk of vehicle collisions but they can also vitalize and promote traffic movement. Fu et al. 

(2005) and Usman et al. (2012) showed with strong statistical evidence that lower rates of collisions on 

roads are associated with better road surface conditions that could result from improved winter 

maintenance operations such as anti-icing, pre-wetting, and sanding. Qiu and Nixon (2008) explored 

direct and indirect causal effects of adverse weather and winter maintenance actions on mobility in the 

context of traffic speed and volume. Their findings confirmed that plowing and salting operations have 

significant positive effects on increasing the speed at which it is safe to drive. 

While winter road maintenance is indispensable, it entails substantial financial costs and environmental 

damage. North American transportation authorities, for instance, expend more than $3-billion annually 

on winter road maintenance activities such as doing snow removal and applying salt and other 

chemicals for ice control (Ye et al., 2009; Highway Statistics Publications, 2005). Use of these 

chemicals has become an increasing environmental concern because they could contaminate the ground 

and surface water, damage roadside vegetation, and corrode infrastructures and vehicles. To reduce the 

costs of winter road maintenance and the use of salts, many transportation agencies are seeking ways 

to optimize their winter maintenance operations and improve the safety and mobility of the traveling 

public.  

One approach to improving the decision-making process for road maintenance is to make use of real-

time information (i.e., for monitoring the current road conditions) and forecasts (i.e., for predicting the 

near-future road conditions) through utilization of innovative technologies such as road weather 

information systems (RWIS). This thesis is particularly concerned with a problem of locating RWIS 

stations in such a way that the benefits to maintenance personnel and road users can be maximized. 

1.2 Road Weather Information Systems (RWIS) 

RWIS can be defined as a combination of advanced technologies that collect, transmit, process, and 

disseminate road weather and condition information to help winter road maintenance (WRM) personnel 

make timely and proactive winter maintenance decisions. The system collects data using environmental 

sensor stations (ESS), and nowcast and forecast roadway-related weather and surface conditions. 
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Implementation of this information not only enables the use of cost-effective WRM but also helps 

motorists make more informed decisions for their travel.  

There are two types of RWIS ESS (hereafter referred to as RWIS station as they are being used 

interchangeably), namely, stationary and mobile. A stationary RWIS station is installed in situ within 

or along a roadway and collects data at a fixed location, while a mobile RWIS station is installed on a 

patrol vehicle and collects data as it travels along the road network. Due to their different data collection 

mechanisms, the stationary system provides high temporal but low spatial coverage, while the mobile 

provides low temporal but high spatial coverage. Therefore, the information collected on road 

conditions between RWIS stations must be interpolated and/or generated using other sources (Ye et al., 

2009). An RWIS station discussed in this thesis connotes a stationary station, which typically consists 

of atmospheric, pavement, and/or water-level monitoring sensors that constantly (every 10-15 min) 

collect road weather and surface conditions measurements. Furthermore, each RWIS station reports 

road surface condition status based on current observations: areas that experience hazardous road 

surface conditions (HRSC), which include snow/ice warning, ice warning, wet below freezing, and 

frost, are flagged for a prompt remedial winter maintenance action, as summarized in Table 1-1. 

An RWIS generally consists of pavement and atmospheric sensors, remote processing units (RPU), 

central processing units (CPU), and communication hardware (e.g., wired and wireless) as depicted in 

Figure 1-1. The most visible components of stationary RWIS are roadside towers equipped with an 

RPU, to which pavement and atmospheric sensors are connected. Measurements from a typical RWIS 

station include but are not limited to air and pavement temperatures; wind speed and direction; 

(sub)surface temperature and moisture; precipitation type, intensity and accumulation; visibility; dew 

point; relative humidity; and atmospheric pressure (Manfredi et al., 2008). While not commonly 

included as part of an RWIS station, water level sensors are deployed in flood-prone areas to monitor 

site-specific characteristics and conditions. Some stations are also equipped with live webcams to 

provide information on conditions at the sensor location. These measurements from RPU can be made 

available directly via a dynamic message sign (DMS) to alert road users of any hazardous road 

conditions, and/or transmitted to a server where all data from remote locations are processed, compiled, 

and sent to the end users. Forecasting services from external sources may be combined with the RWIS 

data to generate short-term road surface temperature and condition forecasts. RWIS data can also be 

accessed directly by maintenance personnel via, for instance, web interface for monitoring and 

analyzing real-time site-specific road conditions and trends, and acquiring the latest forecasts.  
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Table 1-1: RWIS Surface Condition Status Definition  

(adopted from Mn/DOT SCAN Web, 2015) 

Surface Condition Status Description 

Snow/Ice Warning 
Continuous film of ice and water mixture at or below freezing (32oF / 

0oC) with insufficient chemical to keep the mixture from freezing 

Ice Warning 
Continuous film of ice and water mixture at or below freezing (32oF / 

0oC) with insufficient chemical to keep the mixture from freezing 

Wet Below Freezing 
Moisture on pavement sensor with a surface temperature below freezing 

(32oF / 0oC) 

Frost 
Moisture on pavement at or below freezing (32oF / 0oC) with a 

pavement temperature at or below the dew point temperature 

Ice Watch Thin or spotty film of moisture at or below freezing (32oF / 0oC) 

Snow/Ice Watch Thin or spotty film of moisture at or below freezing (32oF / 0oC) 

Chemical Wet 
Continuous film of water and ice mixture at or below freezing (32oF / 

0oC) with enough chemical to keep the mixture from freezing 

Wet 
Continuous film of moisture on the pavement sensor with a surface 

temperature above freezing (32oF / 0oC) 

Damp Thin or spotty film of moisture above freezing (32oF / 0oC). 

Trace Moisture 
Thin or spotty film of moisture above freezing (32oF / 0oC). Surface 

moisture occurred without precipitation being detected. 

Absorption at Dew Point Currently not detected 

Dry Absence of moisture on the surface sensor 

Other Conditions not explicitly included in this table 

No Report The surface sensor is not operating properly and requires maintenance 

Error The surface sensor is not operating properly and requires maintenance 
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Figure 1-1: Major components of an RWIS station 

Since the advent of sensor based-RWIS technologies in European counties between late 1970s and 

early 1980s, the system has gradually earned recognition for being a primary tool to aid and improve 

WRM operation decisions. Subsequently, the system was extensively adopted and used across Europe 

and North America as a means to enhance road weather and condition monitoring and prediction 

capabilities.  

 

1.3 Current Practices on RWIS Network Planning 

Transportation agencies that are interested in installing RWIS stations often face two relevant questions: 

how many RWIS stations should be installed to cover the road network and where should the new 

RWIS stations be placed.  Answering the first question is equivalent to determining the optimal density 

and spacing of RWIS stations, i.e., determining the number of stations that are required to provide an 

adequate coverage of a region of interest. Despite of the importance of this problem, there are few tools 

and guidelines currently available guiding the decision process. A single reference most widely being 

adopted is the RWIS sitting guideline developed by FHWA in 2008, which recommends an average 
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spacing of 30-50km along a roadway (Manfredi et al, 2008). However, this recommendation appears 

to be originated from the existing practice and experience with little scientific justification.  Intuitively, 

the number of RWIS stations required for a region depends on the spatiotemporal variability of the 

region. Regions with winter weather conditions of high spatial variability would require a higher 

number of RWIS stations than those with uniform weather conditions. Currently, authorities 

responsible for RWIS planning have no reference available to assist them deciding the optimal density 

for their regions.  Their decisions are primarily dictated by available budget with no information on the 

adequacy of their RWIS network thus the cost effectiveness of their investment. 

In comparison, the problem of selecting suitable locations for a given number of RWIS stations has 

received relatively more attention recently because of its critical role in governing the overall 

effectiveness of the sensor suite and the representativeness of its observations on various road weather 

and conditions. As part of a Federal Highway Administration (FHWA) study, Manfredi et al. (2005) 

proposed a heuristic process for choosing the location of RWIS stations. First, weather zone maps that 

show regions exhibiting similar weather characteristics or patterns (i.e., regional representativeness) 

are examined with the support of meteorologists. Regional representativeness in this context refers to 

an area that experiences uniform and stable road weather and surface conditions such that it minimizes 

the possibility of adverse local weather effects and influences from other non-weather factors including 

heat, moisture, and wind barriers. Once the regions are determined in accordance with regional site 

guidelines, local maintenance personnel are consulted to identify the unique characteristics of each 

region and provide a general assessment of potential candidate locations. In this stage, planners ensure 

that the station would be located to satisfy road weather information requirements. Examples of these 

requirements include: 

1. Areas with poor road surface conditions (RSC) such as historically cold spots that are likely 

to create slippery conditions, or spots likely to experience significant drifting snow, 

2. Low-lying road segments where surface flooding may occur, 

3. Areas with low visibility due to, for instance, a large local moisture source, and 

4. High-wind areas with frequent occurrences of hurricanes along a confined valley or ridge 

top. 
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Other than those mentioned above, there are other local sitting considerations such as power, 

communication, aesthetics, safety, and security.  

Thermal mapping (TM) is a technique that has been applied to determine the location of RWIS stations 

at some of the hot-spots described above (Gustavsson, 1999). TM is a process of identifying the 

variation pattern of pavement surface temperature along roadways by creating road surface temperature 

(RST) profiles. TM makes it possible to precisely identify cold trouble spots (i.e., potential location of 

RWIS stations) that may require more frequent monitoring and additional maintenance treatments 

(Zwahlen et al., 2003).  Nevertheless, it requires substantial amount of time and effort, particularly for 

cities that are in need of a large-scaled implementation, posing a significant limitation of its 

applicability at the regional level. 

Fu and Kwon (2012) conducted a survey (see Appendix C) to review and examine the current best 

practices for locating RWIS stations. In this survey, most of the North American survey participants 

stated that they would consider requirements similar to those mentioned above (i.e., hot spots such as 

ice and frost) when there was a need to install an RWIS station. The survey also revealed that 

participants would consider other non-weather-related requirements, including highway class, collision 

rate, traffic volume, and frequency of winter maintenance operations including salting and plowing. 

These results indicate that in locating RWIS stations transportation agencies would consider not only 

the meteorological representativeness but also the potential number of users - travelers who would be 

served.  The survey further showed that making a decision on where to locate a station generally entails 

a series of discussions and interviews with many individuals including meteorologists, traffic engineers, 

regional/local maintenance personnel, and other industry experts. Despite such efforts, there are always 

tradeoffs in choosing one location over another because a location which satisfies one site condition 

may not be optimal for another site condition. For example, an area with high winds may not have 

significant snow accumulation. Another important factor to consider when installing an RWIS station 

is the proximity of power and communication utilities to ensure that the data could be obtained and 

processed in real time. Furthermore, RWIS station deployments are always constrained by tight budgets 

(Buchanan and Gwartz, 2005).  
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1.4 Factors Affecting Road Surface Conditions 

Information on spatial variation of road surface conditions (RSC) along a roadway is deemed essential, 

particularly for highway authorities and road users to know when and where hazardous conditions are 

likely to occur during adverse winter weather events. Likewise, this information is critical when 

determining candidate RWIS locations as it helps delineate hot-spots as emphasized earlier (e.g., cold 

and icy).  

The variation of RSC over a road network is affected by many factors, ranging from atmospheric and 

climatic, to geographical and topological.  For example, the likelihood of having black ice or frost is 

determined by the energy receipt and loss at the road surface (Shao et al., 1997). This energy flow is 

affected by a number of factors, namely, atmospheric conditions (e.g., cloud cover, wind speed, and 

precipitation type and rate), climate patterns in both micro and macro levels, geographical features (e.g., 

vegetation cover and presence of buildings/obstructions), topographical settings (e.g. mountainous, flat, 

or rolling), and traffic. In addition, locational attributes such as latitude, longitude, elevation, distance 

to coast, and relative topography have been shown to affect RSC by a significant amount (Eriksson and 

Norrman, 2001). Vehicular traffic is another important contributing factor: an increased volume of 

slowly moving vehicles can produce temperature differences of up to 2 oC (White et al., 2006). These 

factors collated together can cause a considerable amount of variation in RSC from one location to 

another; for instance, winter RST during night-time can fluctuate as much as 10 oC along a regional 

roadway (Shao et al., 1996).  

As mentioned earlier, a thermal mapping technique can be utilized to quantify the spatial variations of 

nocturnal RST on any given stretch of roads. This technique has long been in favor of local RWIS 

planners who could amicably examine thermal fingerprints and install RWIS stations at common 

trouble spots. However, thermal mapping can be very laborious and costly due to its nature requiring 

in-situ data collection, it remains a challenge to adopt and apply this technique for mapping spatial 

variation over large regional road networks, which is required for RWIS network planning. Therefore, 

it is essential to develop an effective methodology for representing and mapping spatial variation of 

RSC as an input to the RWIS location optimization process. 
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1.5 Problem Statement 

While effective in providing valuable information, RWIS stations are expensive to install and operate 

and, therefore, can only be deployed at a limited number of locations. Considering the vast road network 

that often needs to be monitored and the varied road conditions that could develop during winter, RWIS 

stations must be placed strategically to ensure they are collectively most informative in providing the 

inputs required for accurate estimation of the road weather and surface conditions of the whole highway 

network. Currently, however, there are significant gaps in knowledge and methodology for effective 

planning of RWIS stations over a regional road network. The following paragraphs summarize the 

limitations of the current methods and the needs for new approaches to the problem of locating RWIS 

stations: 

 The current RWIS deployment schemes are mostly heuristic, dependent heavily on subjective 

opinions of maintenance personnel with the lack of rationales and consistencies for choosing one 

location over another when determining RWIS sensor sites. Thus it is critical to formalize those 

heuristic approaches being adopted in practice such that the process of locating RWIS can be 

more systematic.  

 While the heuristic approaches for choosing sensor locations are intuitive and reflection of field 

experts, an ultimate approach would be to take a full account of the costs and benefits of an 

RWIS. There are a few RWIS cost-benefit studies conducted in the past; however they do not 

provide systematic evidence of prospective monetary savings from RWIS installations. As such, 

it is necessary to develop an RWIS cost-benefit model by establishing a clear relationship 

between the various criteria being used in practice and their associated benefits to RWIS stations, 

and use such models to delineate new potential RWIS stations locations so as to maximize the 

benefits to all RWIS users. 

 

 As discussed earlier, RWIS information makes possible to perform proactive winter maintenance 

operations such as anti-icing, which reduces the amount of time required to restore the roads to 

clear and dry state at lower costs. Since the largest portion of RWIS benefits lies in the use of 

RWIS information, it is sensible to locate the stations in such a way that would produce the most 

accurate prediction on the RSC of the entire network. This is similar to the problem of 
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maximizing the monitoring capabilities of a sensor network, which requires addressing the 

challenge of developing correlation patterns of RSC based on the spatial RWIS measurements.  

 

 

1.6 Objectives 

As described, road authorities currently follow a laborious and time-consuming, yet subjective and ad-

hoc process when deciding RWIS station locations. Furthermore, decisions on suitable RWIS locations 

can often become challenging, given that multiple factors must be considered. The primary goal of this 

thesis, therefore, is to develop and evaluate alternative approaches for determining the optimal RWIS 

station locations over a regional highway network. This thesis has the following specific objectives: 

1. Formalize various heuristic approaches for determining the candidate RWIS station locations 

by incorporating criteria being considered in practice, and evaluate the implications of 

alternative location selection criteria. 

2. Construct a cost-benefit based approach to the problem of finding the optimal location of RWIS 

stations by taking an explicit account of the benefits of RWIS information such as reduced 

maintenance costs and collisions. 

3. Develop a spatial inference based approach such that the resulting RWIS network provides the 

optimal sampling pattern by considering the spatial variability of key RSC variables (i.e., 

hazardous road surface conditions) and interactions between candidate RWIS station locations. 

4. Evaluate the existing RWIS network, make recommendation of new potential RWIS station 

locations using the proposed methodology, and demonstrate the effectiveness and applicability 

of the proposed methods through case studies. 

5. Develop guidelines for determining the optimal RWIS network size (density or spacing) 

based on the spatial variability of road weather conditions of a region. 
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1.7 Organization of Thesis 

This thesis consists of five chapters. The remaining thesis is organized as follows:  

In Chapter 2, a literature review is presented covering current RWIS station location selection practices, 

RWIS benefits and costs, geostatistical analysis for spatial inference, and facility location models.  

Chapter 3 describes the proposed methodology which consists of three distinctive methods including 

surrogate measures (SM) based approach, cost-benefit (CB) based approach, and spatial inference (SI) 

based approach.  

Chapter 4 first presents a sensitivity analysis of the optimization parameters, and describes the real-

world case studies, which encompass study areas, data descriptions and processing, and application of 

the three methods developed herein. 

Chapter 5 highlights the main contributions of this research and potential extensions for future research. 
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Chapter 2 

LITERATURE REVIEW 

In past decades, several RWIS station location selection strategies have been explored and developed. 

Some have used heuristic measures while others have considered the variability of weather conditions 

for locating RWIS stations. However, there still exist some research gaps and challenges that are 

associated with designing an optimal RWIS network at a regional level. This Chapter provides the 

literature review on the past efforts on locating and/or optimizing RWIS stations using different location 

criteria. 

This chapter is divided into four parts. In the first section, previous studies on RWIS station location 

selection strategies are presented. In the second part, past studies demonstrating the RWIS benefits and 

costs are described. The third section explains a kriging method for making spatial inference, which 

forms a foundation for developing an approach that maximizes the monitoring capabilities of an RWIS 

network. Finally, the fourth section discusses the discrete facility location problems and several solution 

algorithms.  

 

2.1 RWIS Station Location Selection Strategies 

As previously discussed, the existing guidelines and current best practices that most transportation 

agencies have adopted for deciding where to locate RWIS stations may not be optimal and can often 

be challenged. Despite these challenges, very few studies have been conducted to address RWIS 

location problems.  

Eriksson and Norrman (2001) undertook a study on optimally locating RWIS stations in Sweden where 

they identified conditions hazardous to road transport as a criterion for locating RWIS stations at the 

regional level. In their study, they identified 10 different slipperiness types using one winter season of 

RWIS data, and linearly regressed each type with location attributes including latitude, longitude, 

elevation, distance to coast, etc. With the resulting regression model, they mapped out the occurrences 

of each slipperiness type over the entire study area. Candidate RWIS sites were recommended based 

on the estimated slipperiness counts and four different landuse groups. Although their proposed method 

seems to provide a good reference for analysis of station locations with respect to various locational 
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attributes and landuse types, it is a heuristic approach considering only one location criterion—road 

weather condition. In addition, those authors did not provide much explanation/justification as to how 

their four landuse groups such as forest/water, open/water, forest, and open areas were determined. 

Such a categorization scheme is deemed subjective and thus scientifically less persuasive.  

Another study by World Weather Watch (2009) conducted climatological study on determining RWIS 

station locations. Focusing on the general guidelines adopted by many transportation agencies, this 

study reviewed micrometeorological variations by investigating local physiography, topography, 

temperature, and snow precipitation amount in a small study area. The study also took into account 

hotspots that require regular monitoring as identified by the maintenance personnel. By combining all 

those factors, a list of high-risk sites were identified as the recommended locations for new RWIS 

stations in the region.  

Alberta Department of Transportation conducted a similar but more inclusive study, in which a new 

approach was proposed to determine the location of RWIS stations by identifying and analyzing the 

RWIS-deficient regions (RDR) and by following general budget guidelines, respectively (Mackinnon 

and Lo, 2009). Similar to what the general guidelines suggest, their approach consisted of two parts: 

macro or regional assessments, and micro or local assessments. In the macro assessment phase, they 

took into account several factors when determining the RDR, factors such as traffic loads, accident 

rates, climatic zones, availability of meteorological information, and discussions with regional road 

maintenance personnel and key stakeholders. In the micro assessment phase, among the selected 

subsets of new potential RWIS locations, a final site was selected by conducting detailed field visits to 

ensure site suitability and project feasibility, for example, by ensuring appropriate sensor selection and 

configuration, conformance with budget, and access to power.  

These two studies, while logical in methodology, lack scientific and systematic formulation of 

justification on how all those factors/criteria are put together to determine the potential high-risk sites. 

More importantly, both studies did not provide a clear linkage between the considered criteria and the 

purposes of RWIS stations. For instance, the latter study included accident rates as one of their potential 

location selection criteria, but did not establish a solid rationale as to why such a criterion should be 

given a priority when choosing a new location. Without a valid justification/explanation on why each 

location selection criterion is considered and utilized, incorporation of such selection criteria in the 

studies cannot be legitimized. 
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Two recent studies by Jin et al. (2014) and Zhao et al (2015) attempted to address the RWIS location 

problem using a mathematical programming approach. Jin et al. (2014) used weather-related crash data 

and converted to a Safety Concern Index, using which the locations providing a good spatial coverage 

were identified as optimal locations. Zhao et al. (2015) applied the concept of influencing area to 

capture the effects on weather severity and traffic volume, and delineated a list of potential RWIS 

stations locations with the distance to existing RWIS stations considered explicitly. While the spatial 

variability is partially accounted in these two studies, the effect of distance and spatial patterns 

associated with a particular region are not fully utilized, and furthermore, the models presented do not 

account for the ultimate use of RWIS information for spatial inference.  

Currently, the majority of provincial and municipal transportation agencies rely heavily on the 

experience of regional/local maintenance personnel for determining the potential RWIS station 

locations. All of the information (e.g., historically icy spots) is put together through a series of face-to-

face meetings with key stakeholders and field experts to narrow down various candidate locations to a 

manageable size and decide based on the budget availability. Finding a solution through this process is 

laborious and time-consuming. Hence, a method, which formalizes all these heuristics for the purpose 

of locating candidate RWIS stations, is of high priority. 

 

2.2 RWIS Benefits and Costs 

As stated briefly earlier, information available from RWIS, for instance, detailed and tailored weather 

forecasts, can provide substantial benefits to users. Before RWIS technology was introduced, highway 

maintenance agencies reacted to current road conditions or forecasts obtained from only the publically 

available weather sources. Road patrollers were typically sent out to check road weather conditions, 

and when roads became icy or snow-covered, maintenance personnel were notified. This type of 

reactive response was inefficient and expensive in both time and materials (Boselly, 1992). On the other 

hand, RWIS provides information that offers proactive ways of doing business, and therefore, more 

efficient and cost-effective WRM operations can be realized to promote faster and safer road conditions. 

Table 2-1 identifies and summarizes the benefits of using RWIS-enabled winter maintenance practices.  
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Table 2-1: RWIS-Enabled Winter Maintenance Practices and Associated Benefits 

(adopted from Boon and Cluett, 2002) 

RWIS-Enabled 

practices 

Associated Benefits 

Anti-icing • Lower material costs 

• Lower labor costs 

• Higher level of service (improved road conditions), travel 

time savings, and improved mobility 

• Improved safety (fewer crashes, injuries, fatalities, property damage) 

• Reduced equipment use hours and cost 

• Reduced sand cleanup required 

• Less environmental impact (e.g., reduced sand/salt runoff, improved 

air quality) 

• Road surfaces returned to bare and wet more quickly 

• Safe and reliable access, improved mobility 

Reduced Use of Routine 

Patrols 

• Reduced equipment use hours and cost 

• Improved labor productivity 

Cost-Effective 

Allocation of Resources 

• Reduced labor pay hours 

• Reduced weekend and night shift work 

• Improved employee satisfaction 

• Reduced maintenance backlog 

• More timely road maintenance 

• Increased labor productivity 

• Overall higher level of service 

• More effective labor assignments 

Provide Travelers Better 

Information 

• Better prepared drivers 

• Safer travel behavior 

• Reduced travel during poor conditions 

• Fewer crashes, injuries, fatalities and property damage 

• Increased customer satisfaction 

• Improved mobility / reduced fuel consumption 

• Safer, more reliable access 

Additional Benefits • Share weather data for improved weather forecasts 

• Support the development of road weather forecast models 

• Insurance companies by determining risks of potential weather impacts 

• Use for long-term records and climatological analyses 
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When tailored road weather forecast information is available from RWIS, it becomes possible to predict 

near-future road weather conditions. With such information, anti-icing chemicals can be applied before 

a snow-storm hits, to prevent or minimize the formation of the bonded snow and ice layers (C-SHRP, 

2000). When snow and ice are prevented from bonding to the road surface, the surface becomes less 

slippery, thus increasing traffic safety and mobility. Since the treatment is done proactively, a smaller 

amount of chemical is required to prevent the bonding than when applied to existing snow and ice 

layers, and thus reducing the environmental impact. According to more than 100 case studies, anti-icing 

in conjunction with RWIS can result in substantial cost savings, particularly from reduced 

material/labor/equipment usage (Epps and Ardila-Coulson, 1997).  

Another potential benefit of implementing RWIS technology is reduction in the need for routine patrols 

for monitoring road conditions (Boselly, 1993). With the availability of RWIS information, the number 

of routine patrols can be reduced significantly by directly observing the site conditions without visiting 

the site in person; the camera sensor becomes the eyes of road maintenance supervisors, who can now 

monitor the current situation of the site in a remote area without exhausting the use of road patrols. 

Having a smaller number of patrols results in reduced equipment usage and improved labor productivity 

(Boon and Cluett, 2002). 

Cost-effective allocation of WRM resources is also possible by using site-specific road weather and 

condition information available from individual RWIS stations. Road maintenance supervisors can 

better mobilize the available crew and equipment in terms of time and location. This efficiency can lead 

to more effective labor assignments, thus increasing labor productivity and improving employee 

satisfaction (Ye et al., 2009).   

RWIS makes it possible to disseminate information on current and near-future road conditions via 

websites and dynamic message signs so that travellers can make better decisions on when, where, and 

how to travel. A recent study on RWIS and vehicle collision rates showed that a well maintained RWIS 

network significantly reduces collision rates (Greening et al., 2012).  

Implementing RWIS technology can also improve weather forecasts by the sharing of weather data 

available from RWIS. Use of additional weather information from individual RWIS stations can 

enhance future weather prediction capability by generating more accurate forecasts. Insurance 

companies can also benefit from using RWIS data to help determine risks of potential impacts from 
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foreseeable weather events. Furthermore, state climatologists and other organizations such as 

government and university can use RWIS data for long-term climatological analyses and for the 

development of road weather forecast models (Manfredi et al., 2005).   

Some of the abovementioned benefits, particularly the foreseeable savings from anti-icing techniques, 

have been evaluated quantitatively through cost-benefit analyses in a limited number of past studies. 

The Strategic Highway Research Program of the National Research Council initiated a research project 

in 1991 to evaluate the cost-benefit effectiveness of RWIS (Epps and Ardila-Coulson, 1997). The 

authors investigated the potential for reducing collisions and minimizing material, equipment, and labor 

costs when anti-icing operations were done before an anticipated adverse weather event. Their study 

concluded that under certain conditions, the implementation of RWIS and anti-icing strategies could 

result in cost savings to highway agencies and reduce collisions by up to 15 percent. Their study also 

claimed that areas not under RWIS coverage would have ice- and snow-covered pavements for 

approximately 50 percent of the time, compared with about 40 percent of time for areas under RWIS 

coverage.  

Another study performed in Milwaukee, Wisconsin evaluated the effectiveness of WRM operations 

and the associated economic implications for motorists (Hanbali, 1994). The study found that traffic 

collision costs and traffic severity during inclement weather conditions could be reduced by as much 

as 88 percent and 10 percent, respectively. In addition, the benefit-to-cost ratio of winter maintenance 

operations was 6.5 to 1.  

A more recent study by McKeever et al. (1998) introduced a systematic method for highway agencies 

to evaluate the costs and benefits of implementing RWIS technology based on a synthesis of the 

preceding results. The authors developed a life cycle cost-benefit model to account for direct costs (e.g., 

RWIS installation, operating, and maintenance costs), direct savings (e.g., patrol, labor, equipment and 

material savings), and social cost savings (e.g., collision cost savings). The findings suggested that the 

incremental net present worth of installing a single RWIS station would be $923,000 over a 50-year 

life cycle. These foreseeable benefits were calculated based on some site specific conditions (i.e., 

weather, traffic, and maintenance) with the assumed uniform reduction rate, hence would not be 

applicable to other sites (McKeever et al., 1998). 



 

18 

As pointed out earlier, one of the main RWIS benefits is its ability to allow an agency to transition with 

confidence to an anti-icing strategy. From late 1980s to early 1990s, many US transportation agencies 

documented the benefits of RWIS driven anti-icing operations. Although the approaches undertaken to 

quantitatively assess and/or estimate the benefits are largely vague, they provide a good indication of 

RWIS benefits associated with anti-icing operations. Table 2-2 summarizes the findings reported by 

individual agencies.  

While the aforementioned studies provide some quantitative evidence that implementing RWIS is cost-

effective relative to having no RWIS, especially by the use of RWIS enabled anti-icing operations, the 

methods used in these studies are limited in several ways with the inability to quantify the sole benefits 

of RWIS being the primary one. This is a challenging task because in practice, in addition to the RWIS 

information, many other sources of information are often used in the maintenance decision making 

process. Thus, there is a need to develop an approach for determining the benefits associated 

exclusively with RWIS that can be incorporated into a cost-benefit based model for finding the most 

beneficial RWIS location.  

Table 2-2: Cost Saving Resulting from Anti-Icing (adopted from Boselly, 2001) 

Agency Reported Cost Savings 

Colorado DOT 

 Sand use decreased by 55%. All costs considered, winter 

operations now cost $2,500 per lane mile versus $5,200 

previously. 

Kansas DOT 
 Saved $12,700 in labour and materials at one location in the 

first eight responses using an anti- icing strategy. 

Oregon DOT 
 Reduced costs for snow and ice control from $96 per lane 

mile to $24 per lane mile in freezing rain events. 

Washington DOT  Saved $7,000 in labour and chemicals for three test locations. 

ICBC (Insurance 

Corporation of 

British Columbia) 

 Accident claims reduced 8% on snow days in Kamloops, BC: 

estimated savings to ICBC $350,000-$750,000 in Kamloops 

 Potential annual savings of up to $6 million with reduced 

windshield damage. 
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2.3 Kriging for Spatial Inference 

In designing an environmental or meteorological monitoring network, development of efficient 

planning procedures is deemed a fundamental task for accurately understanding the spatial variations 

of, for instance, hazardous road surface conditions (HRSCs), which can be readily estimated using 

RWIS information (refer to Table 1-1). The problem can then be formulated as an optimal monitoring 

network design where the primary concern is to locate a given set of RWIS stations such that the best 

possible estimation results are guaranteed. Such problem formulation can be justified under a 

reasonable assumption that the more accurate the RWIS estimation measurements are, the more benefits 

are likely to be obtained by utilizing various efficient winter maintenance operations (e.g., anti-icing).  

Kriging is a geostatistical technique widely used in optimizing a monitoring network. The technique is 

able to provide a best linear unbiased estimator (BLUE) for variables that have tendency to vary over 

space (Yeh et al., 2006). The main idea behind kriging is that the predicted outputs are weighted 

averages of sample data, and the weights are determined in such a way that they are unique to each 

predicted point and a function of the separation distance (lag) between the observed location, and the 

location to be predicted. In addition, kriging provides estimates and estimation errors at unknown 

locations based on a set of available observations by characterizing and quantifying spatial variability 

over the area of interest (Goovaerts, 1997). 

Previous studies in a variety of different fields revealed the applicability and usefulness of geostatistics 

as a tool for an optimal selection of sites for monitoring environmental (e.g., groundwater) and 

meteorological (e.g., average air temperature) variables. For example, a number of authors used the 

geostatistics technique to optimize the groundwater observation wells by delineating the locations 

having maximum kriging error variance (Prakash and Singh, 1998; Cameron and Hunter, 2002; Nunes 

et al., 2004; Nunes et al., 2007; Yeh et al., 2006; Brus and Heuvelink, 2007). Another study conducted 

by van Groenigen et al. (1999) employed a heuristic optimization approach namely simulated annealing 

(SA) to determine the optimal soil sampling schemes for obtaining the minimal kriging variance. 

Another study by Amorim et al. (2012) addressed the problem of planning a network of weather 

monitoring stations observing average air temperature. The authors used the geostatistical uncertainty 

of estimation and indicator formalism to consider in the location process a variable demand surface, 

depending on the spatial arrangement of the stations, where the optimal set of locations were determined 

by incorporating two heuristic methods such as simulated annealing and generic algorithms.  
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The following sections introduce the kriging paradigm and three of its most important variants: simple 

kriging, ordinary kriging, and universal kriging. 

2.3.1 The Idea of Kriging 

Kriging is a generic term coined by geostatisticians for a family of generalized least-squares regression 

algorithms in recognition of the pioneering work of a mining engineer, Danie Krige (1951). Kriging 

provides estimates at unknown locations based on a set of available observations by characterizing and 

quantifying spatial variability of the area of interest. Let x and xk be location vectors for estimation point 

and a set of observations at known locations, respectively, with k = 1, . . . , m, and Z be a variable of 

interest. Based on m number of observations, we are interested in estimating a condition at any given 

location, denoted by ).(ˆ xZ The expression of a general kriging model is as follows (Goovaerts, 1997): 
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where m(x) and m(xk) are expected values (means) of  the random variables Z(x) and Z(xk), and k  is a 

kriging weight assigned to datum Z(xk) for estimation location x.  

The kriging estimator varies depending on the model adopted for the random function Z(x) itself. All 

kriging variants share the same goal of finding weights k  that minimize the variance of the estimator:  

                       )()()(2 xZxZVarxE 


  under the constraint,  0)()(  xZxZE


                   2-2 

The random field, Z(x) can be decomposed into two components namely residual component R(x), and 

a trend component m(x), and expressed as )()()( xmxRxZ  with R(x) interpreted as a RF having a 

stationary zero mean and covariance CR(h): 
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where h is a lag or separation distance between the observed points, and CR(h) is the residual covariance 

function, which is typically obtained from a semivariogram model, ).(h Under a second order 
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stationarity assumption (i.e., constant mean, and covariance is dependent solely on distance vector h 

between any pairs of points), the following expression is satisfied (Goovaerts, 1997): 

 

                                                   )()()0()( hSillhChC RR                      2-4 

where Sill denotes the semivariance value for large lag distances where spatial autocorrelation between 

the data appears to be very small thus negligible. Therefore, the semivariogram that is used in the 

kriging system represents the residual component of the variable of interest. Each of three main variants 

of kriging can be distinguished according to the model considered for the trend component, m(x). 

2.3.1.1 Simple Kriging (SK) 

Simple kriging (SK) assumes the mean, m(x), to be known and constant over the entire study area as 

depicted in Figure 2-1. Black dots appeared in this figure can be measured values of, for instance, any 

environmental or meteorological variable. The centerline represents the mean of the measurements that 

are constant over the global domain (i.e., 0 to 40) whereas the vertical dashed lines delineate arbitrary 

local segments or boundaries.  

 
Figure 2-1: An example of Simple Kriging (SK) 
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With such assumptions, Equation 2-1 can be rewritten as: 
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where )(ˆ xZ SK
and )(xSK

k are SK estimate at and vector of SK weights for the estimation point, x.  

This estimate is then unbiased since E[𝑍(𝑥𝑖) − 𝑚] = 0, such that E[𝑍̂𝑆𝐾(𝑥)] = E[𝑍(𝑥)] = 𝑚. 

The estimation error, 𝑍̂𝑆𝐾(𝑥) − 𝑍(𝑥), can be regarded as a linear combination of random variables 

representing residuals, R(x) at the estimation point and R(xk) at the data point: 
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where 𝑅(𝑥𝑘) = 𝑍(𝑥𝑘) − 𝑚  and 𝑅(𝑥) = 𝑍(𝑥) − 𝑚 . Using the variance rules, the estimation error 

variance )(2 xE at site x is shown in Equation 2-7 (Olea, 1999): 
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The optimal SK weights, which minimize the estimation error variance, are subsequently obtained by 

taking the derivative of Equation 2-7 with respect to each of the SK weights and setting each derivative 

to zero. This leads to the following system of equations (Goovaerts, 1997): 
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Since SK assumes the constant mean, the covariance function for Z(x) can be explained in the same 

way that for the residual component, R(x), i.e., C (h) = CR (h), the SK system can be written directly in 

terms of C(h): 
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The SK error variance is then given by: 
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For a more compact display of the results, Equation 2-9 can be conveniently expressed in a matrix form 

as  
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is the matrix of covariances between data points, and 
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is the vector of covariances between the data and estimation points. 

Once the SK weights are determined via Equation 2-11, the kriging estimates can be determined using 

Equation 2-1 and the SK error variance can be computed as: 
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2.3.1.2 Ordinary Kriging (OK) 

It has been shown that SK entails a strong assumption of known and constant mean over the entire 

domain for solving the problem of finding weights that minimize the variance of the estimation error.  

On the contrary, Ordinary kriging (OK) assumes the mean to be unknown but constant over each local 

neighboring area as depicted in Figure 2-2.  

This indicates that OK accounts for local fluctuations of the mean by limiting the domain of stationarity 

of the mean to the local neighbourhood (Olea, 1999). This is a valid assumption particularly when 

dealing with environmental or meteorological variables that typically show numerical fluctuations over 

space (Goovaerts, 1997; Ahmed et al., 2008). 
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Figure 2-2: An example of Ordinary Kriging (OK) 

Hence, the kriging estimator can be expressed as (Olea, 1999): 
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The unknown local mean is filtered from the linear estimator by forcing the OK weights to sum to 1. 

The OK estimator can then be written as: 
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Again, the weights are determined such that the estimated variance is minimized under non-bias 

condition,  .0)()(  xZxZE


 The above constrained minimization problem can be transformed into 

an unconstrained problem using Lagrangian transformation as follows (Olea, 1999): 
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where C(x,x) is the variance of z(x), C(xk, xj) is the covariance between z(xk) and z(xj),and μ is the 

Lagrange multiplier. Then the weights that produce the minimum estimation variance are the solution 

to  
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Unlike in SK where C(h) = CR (h) is satisfied so that the SK system can be expressed directly in terms 

of C(h), the unit-sum constraint on the weights permits OK to be expressed in a form of semivariogram

),(h instead of ).(hCR
Once the OK weights and Lagrange parameter are determined by solving the 

system of equations illustrated in Equation 2-15, the OK error variance can be defined by Equation 2-

17 (Olea, 1999): 
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Again, for a more compact display of the results, the following equation expressed in a matrix form can 

be used to determine the kriging weights:  

                                                                OKOKOK vVx 1)( 
                                         2-18
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Upon determination of OK weights, the OK error variance can be calculated as: 
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2.3.1.3 Universal Kriging (UK) 

In the last decade, there has been an increasing interest in hybrid interpolation techniques, which gained 

much attention among geostatisticians. Hybrid techniques are referred to as methods which combine 

two conceptually different approaches to modeling and mapping spatial variability. One of these hybrid 

methods is called universal kriging (UK) which is based on point observations and regression of the 

target variable on spatially exhaustive auxiliary information (Hengl et al., 2007). It is mathematically 

equivalent to the methods known as kriging with external drift (KED) and regression kriging (RK), 

where auxiliary predictors are used to solve the kriging weights (Hengl et al., 2007). Recall that the 

local estimation of the mean in SK and OK allows one to account for any global trend (i.e., constant 

mean) in the data over the entire study area. This implies that these algorithms implicitly consider a 

non-stationary random function model where spatial autocorrelation is limited within each search 

boundary (Goovaerts, 1997).  In some situations, such assumption may not hold true since the local 

mean of, for instance, air temperature, could also coherently vary over space with respect to some 

auxiliary variables such as elevation, geographical and topographical settings (Amorim et al., 2012). 

Furthermore, prior research indicated that in many cases, UK has been proved to be superior to the 

plain geostatistical techniques yielding more detailed results and higher accuracy of prediction by 

incorporating various covariates in modeling the trend component (Bourennane el al., 2000; Hengl et 

al., 2004).  

Having understood the underlying mechanism of UK, its concept is very similar to OK, except that 

instead of fitting just a local mean of the estimation point of the search boundary, a linear or higher-

order trend in the x, y coordinates are used to model the local trend as depicted in Figure 2-3.  
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Figure 2-3: An example of Universal Kriging (UK) with a fitted second-order polynomial trend 

Since the trend is typically associated with a smoothly varying component of the z-variability, a linear 

combination of coordinates is commonly employed to model the trend component, m(x), which is given 

by (Goovaerts, 1997): 

                                                    
yaxaayxmxm 210),()( 

 
                                             2-20 

where (x, y) are the coordinates of the location x. Including such a model in Equation 2-1 involves the 

same kind of extension used for OK which, in fundamental, uses a zeroth-order trend model instead of 

a linear trend model with demand on a prior determination of trend functions and the covariance of the 

residual component, CR(h) (Bohling, 2005).  

 

2.3.2 Semivariogram 

In order to use kriging, one must identify and quantify the underlying spatial structure of the 

regionalized random variable to be monitored. In geostatistics, this problem is addressed by assuming 

that the correlation or covariance between any two locations is a function of separation and orientation 

delineated by the two locations.  The underlying functional relationship is called semivariagram and 

can be calibrated in advance using available data. The development of such semivariagram is essential 
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in most geostatistical analyses (Olea, 2006). Assuming an isotropic spatial process (equal in all 

directions), spatial autocorrelation can be expressed as a function of distance between two locations 

(i.e., isotropic intrinsic stationary). If the process is second order stationary (and thus intrinsic 

stationary), the covariance between any two random errors depends only on the distance and direction 

that separates them, not their exact locations (Webster and Oliver, 1992).  

The semivariogram model used for capturing the spatial autocorrelation is expressed as follows:  
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Where γ̂(ℎ) is the sample semivariogram, z(xk) is a measurement taken at location k, and m(h) is the 

number of pairs of observations separated by the lag distance, h. The number of pairs included in 

semivariogram estimation should, at least, be equal to 30 as set by Journel and Huijbrets (1978). 

Likewise, the lag distance of the sample semivariogram should be constrained to half the diameter in 

the sampling domain for all directions of analyses (Journel and Huijbrets, 1978). An important 

assumption of the above estimator is the absence of any systematic variations; hence if there exists any 

spatial patterns, then they must be removed first to be trend-free. An example of the sample variogram 

is illustrated in Figure 2-4. 

 
Figure 2-4: An example of a typical semivariogram (adapted/revised from Flatman et al., 1987) 
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where sill, a, C1, C0, and h represent the level of the plateau (if it exists), the lag distance where the 

semivariogram reaches the sill (i.e., degree of spatial correlation), the partial sill, the nugget effect 

which accounts micro scale variation and measurement errors (or any spatial variability that exists at a 

distance smaller than the shortest distance of two measurements), and the lag distance. Note that 

identical results can also be attained using covariogram or covariance function, which can be easily 

derived from semivariograms. Typically, a mathematical model is utilized to describe the sample 

semivariances owing to the fact that true spatial structure of a region is never known (Oliver and 

Webster, 1990). There are a larger number of mathematical formulas/equations that can be fitted to 

describe the semivariances of the sample data, but the most commonly employed models are described 

in Table 2-3 (Olea, 2006). 

Table 2-3: Most commonly used semivariogram models (adopted from Olea, 2006) 

 

Exponential 
















a

h

eChEx

3

1)(  

 

Gaussian 

























2

3

1)( a

h

eChG  

 

Spherical 















































haC

ah
a

h

a

h
C

hSp

,

0,
2

1

2

3

)(

3

 

 

Pentaspherical 
























































haC

ah
a

h

a

h

a

h
C

hPe

,

0,
8

3

4

5

8

15

)(

33

 

 

Cubic 










































































haC

ah
a

h

a

h

a

h

a

h
C

hCu

,

0,
4

3

2

7

4

35
7

)(

7532

 

 

Since it is critical to select the model that best replicates the shape of the spatial variability over the 

region of interest, one needs to assess the goodness of fit for each model. One possible approach would 

be to pick the best model by simple visual inspection. However it can be, at times, difficult to judge 

due to the subjectiveness, and hence, another approach involving a quantitative assessment via 
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crossvalidation is desired. Crossvalidation is a verification process in which each observation is 

removed with replacement to produce an estimate at the same site of the removal (Olea 1999). The 

error incurred in this process is measured by taking the difference between the “actual value” and the 

“estimated value”. This process continues until all observations are tested. Once done, the analyst can 

obtain useful information about the semivariogram model parameters, and judge based on some 

statistical measures including root-mean-square-error (RMSE), which indicates how closely the fitted 

model predicts the measured values (i.e., smaller the better), and average standard error (ASE) and 

mean standardized errors (MSE) which represent the average of the prediction standard errors, and the 

mean of the standardized errors (i.e., closer to zero the better), respectively. A selection of the model, 

however, must be carried out cautiously because errors are not independent and there could be some 

other confounding factors that contribute to the error values (Olea, 2006). 

 

2.4 Facility Location Problems and Solution Methods 

Facility location problems have been well studied by operations researchers and engineers. Many 

innovative modeling techniques and solution algorithms have been developed, varying widely in terms 

of fundamental assumptions, mathematical complexity and computational performance (Klose and 

Drexl, 2005). In a broad perspective, there are two main different types of facility location models: 

discrete and continuous. Discrete facility models utilize discrete sets of demands and candidate 

locations. Continuous models, in contrast, assume that facilities can be located anywhere in the service 

area, whereas demands arise only at discrete locations (Daskin, 2008). In this research, discrete facility 

location problems (DFLP) are of particular interest, hence concisely reviewed in the following section 

along with a brief description on common solution algorithms.  

 

2.4.1 Discrete Facility Location Problems (DFLP) 

As mentioned, discrete facility location problems assume that there are a discrete set of demands to be 

serviced by facilities and a discrete set of sites where the facilities could be located. The location 

problems are typically formulated as integer or mixed integer programming problems (Revelle et al., 

2008). Figure 2-5 summarizes the three broad types of discrete location problems including covering- 

and median-based problems, and others such as dispersion problems.  
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Figure 2-5: Breakdown of discrete location problems (adopted from Daskin, 2008) 

Covering-based problems are constructed under the assumption that there is some critical coverage 

distance within which demands must be served if they are to be marked as “covered” or “served 

adequately” (Daskin, 2008). Such problems are typically implemented in designing systems for 

emergency services as there exists practical and legislative guidelines for coverage. The location set 

covering model aims to minimize the number of facilities needed to cover all demands (i.e., provide 

services to all customers) with constraints stipulating that each demand node should be covered 

(Toregas et al., 1971).  However, in solving the set covering problem, the number of facilities required 

to cover all demand nodes often surpasses the available budget. Likewise, the model does not 

distinguish between the different sizes of demand nodes (i.e., large vs. small).  

Acknowledging these limitations, Church and Revelle (1974) formulated the maximum covering 

problem in an attempt to locate a pre-specified number of facilities (i.e., p facilities) such that the 

number of covered demands would be maximized. The model differentiates between the big and small 

demands and allows some nodes to be left uncovered under a situation where the number of sites 

required to cover all nodes exceeds p. If the number of facilities required to cover all demand nodes 

exceeds the available resources, relaxing this constraint for total coverage could be one option (i.e., 

max covering). but alternatively one can choose to relax the service standard until a standard, which 
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allows for total coverage with available resources, is found, an approach known as the p-center model 

(Hakimi, 1965). The p-center model minimizes the maximum distance between a demand node and the 

nearest sited facility (i.e., find the smallest possible coverage distance with every node being covered). 

While covering based problems treat the coverage of a node as binary depending on whether a node is 

covered or not covered, the p-median model locates p number of facilities such that the demand-

weighted total or average distance between demands and the nearest facility is minimized (Hakimi, 

1964). The model constraints stipulate that each node is assigned while limiting the assignments only 

to open or selected sites (Daskin, 2008).  The drawback of this model is that it implicitly assumes that 

the cost of siting a facility at any given candidate location is equal to that for all locations. Recognizing 

such limitation, an extension to this model (known as the uncapacitated fixed charge or the plant 

location model) has been formulated originally by Balinski (1965). In this model, the sum of the facility 

location costs and the transportation costs are minimized under constraints identical to those enforced 

in the p-median problem, except that the constraint on the number of facilities to locate is removed as 

the model automatically penalizes a larger number of facilities (Revelle et al., 2008).  

Lastly, there are other problems that do not belong to either of those two categories mentioned earlier. 

P-dispersion model is one of those problems and its objective is to maximize the minimum distance 

between any pair of facilities. This model can be applied when locating, for instance, franchise outlets 

in such a way that the cannibalization of one’s own market by another franchisee can be minimized by 

controlling the minimum distance between the two (Daskin, 2008).  

 

2.4.2 Solution Algorithms 

Prior research has proved that most discrete facility location problems are NP-hard (i.e., non-

deterministic polynomial-time hard), for which only heuristic approaches are viable to solve large-sized 

problems (Revelle et al., 2008). Heuristic approaches combine the search of good or fair quality 

solutions with the limited computation time for solving complex and large-scale problems by removing 

the constraint of achieving a globally optimum solution (Amorim et al., 2012).  Many different heuristic 

methods for solving NP-hard problems have been introduced, among which four most commonly 

adopted methods for solving location problems are briefly described below. 
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Simulated Annealing (SA) algorithm follows the principles presented by Metropolis et al., (1953) on 

statistical thermodynamics, and was first introduced by Kirkpatrick et  al. (1983) as an algorithm to 

solve well-known combinatorial optimization problems. In the searching process, the SA not only 

accepts better but also worse solutions based on a certain probability in such a way that the risk of 

falling prematurely into local minima is reduced (Qin et al., 2012). Therefore, the algorithm is able to 

find high quality solutions that are not dependent on the selection of the initial solution compared to 

other local search algorithms. Another advantage of the SA is the ease of its implementation, but the 

need for relatively longer processing time remains as its drawback. 

Spatial Simulated Annealing (SSA) is a spatial counterpart to simulated annealing, and has gained 

popularity over the last decade among operations researchers for its improved performance over its 

non-spatial counterparts (van Groeningen, 1997; van Groenigen and Stein, 1998). In searching for the 

optimality, this algorithm utilizes a vector h to control the direction and the length, with which random 

perturbations are made iteratively until some user-defined stopping conditions are met. It is this unique 

generation mechanism that has made the algorithm more attractive when dealing with optimizing a 

sensor network in two-dimensional geographic space (Brus and Heuvelink, 2007; Zhu et al., 2010; 

Mohammadi et al., 2012; Amorim et al. 2012; Pereira et al., 2013). More in-depth discussions on this 

method will be provided in Section 3.2.3 of this thesis. 

Genetic Algorithm (GA) is another heuristic search technique which is formulated based on the 

analogy of natural evolution into search algorithm (Arifin, 2010). Similar to SA, it is also capable of 

computing the (near) global optimal solutions by avoiding to become trapped at a local optimum. GA 

starts with a bottom up approach by creating the initial population of randomly generated solutions 

called individuals or chromosomes (the process known as generation) and measures the fitness value 

of each individual of population through an objective function. It then performs recombination and 

mutation to generate a new population, from which the fitness value is checked and the individual with 

higher fitness values is evolved to form a new generation.  The iterative process continues until stopping 

criteria are met, at which the individual with best fitness value is selected as an optimal solution. Like 

any other heuristic search algorithms, there is no absolute assurance that GA will find a global optimum 

and it has more parameter to adjust than SA thereby making the implementation more difficult (Arifin, 

2010). 
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Tabu Search (TS), in principle, uses adaptive memory and responsive exploration to determine the 

optimal solutions (Glover and Laguna, 1997). The adaptive memory part of tabu search enforces a set 

of rules and disqualified solutions (i.e., tabu list) to filter which solutions will be admitted to the 

neighborhood to be explored in local search. Responsive exploration integrates the basic concept of 

intelligent search where good solution features are exploited while searching for new promising regions. 

The process iterates until some user specified conditions are met (e.g., a time limit or a threshold on the 

fitness score), at which, the best solution observed so far during the iterative process is returned. Given 

the underlying mechanism of the method being heuristic, it may miss some promising areas of the 

search space; hence the solution found is not guaranteed to be the global optimum (Glover, 1989).  
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Chapter 3 

PROPOSED METHODOLOGY 

Recognizing the complexity of the RWIS location planning problem and the variation and limitations 

in data availability, three distinct approaches are proposed and the detailed descriptions of each of the 

proposed method are provided in this chapter. This is followed by a description of the solution algorithm 

considered in this thesis, and a comparison of the three alternatives. Lastly, a method for evaluating 

RWIS location solutions is presented. 

3.1 An Overview of RWIS Station Site Selection Framework 

To address the complexity of the RWIS location problems, three distinct approaches are proposed 

differing in system settings, optimization criteria, and data needs. The first method is a surrogate 

measures (SM) based approach intended to formalize the current best practices of locating RWIS 

stations using various heuristic rules capturing not only weather-related factors (e.g., snowy roads) but 

also traffic-related factors (e.g., traffic volume). The second method is a cost-benefit (CB) based 

approach based on the assumption that historical maintenance costs and collision data are available 

that allow development of cost-benefit models at a patrol route level. The third approach, also the most 

sophisticated, is a spatial inference (SI) based approach introduced to incorporate the spatial 

interactions between RWIS stations such that an optimal sampling pattern can be achieved given a 

predefined objective function.  

Figure 3-1 shows the overview of the proposed location selection methods discussed herein. As can be 

seen in this figure, there are many different types of data required to tackle the objectives, and those 

are weather (e.g., RWIS), geographic, highway network, traffic volume, vehicle collision, and winter 

maintenance data.   

Since large amounts of datasets are to be assimilated, a geographical Information Systems (GIS) based 

platform will be used for an effective data handling. GIS has long been recognized as a powerful yet 

efficient tool, particularly for spatial data management since it can bring about more rapid handling and 

processing of any data with locational attributes (e.g., data with latitude and longitude). For this reason, 

GIS is widely adopted by transportation and climate research communities where GIS is elected as a 

main platform to better facilitate model accessibility, database maintenance and updating, and 
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cartographic display of model results (Alterkawi, 2001; Caeiro et al., 2002; Goodchild, 2000; 

Arampatzisa et al., 2004).  

In order to reduce the mathematical complexity of the proposed approaches, the region under 

investigation will be discretized and divided into a grid of equal-sized zones or cells. According to 

FHWA’s sitting guidelines (Manfredi et al., 2008), the spacing of RWIS sites is suggested to be in the 

range between 30 and 50 kilometers. Alternatively, area per station (i.e., average coverage per one 

station) can be used as a proper spacing. Using the appropriate size, the grid covering the entire study 

area will be created, and then major road segments are superimposed onto the grid in such a way that 

only the cells containing the road segments can be selected for further analysis. 

 

Figure 3-1: An overview of the proposed methodology 
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There are three primary reasons for adopting this representation. First, provision of a point location of 

an RWIS station may not be suitable for a real world application as there are often several other factors 

such as line of sights, right-of-way, etc. which must also be considered prior to deciding the exact 

location. Second, averaging the observations (i.e., collision frequencies) at the cell level is expected to 

provide a better estimate of expected collision frequencies. Lastly, structuring the problem discretely 

helps increase the computational efficiency.  

The following descriptions of notations will commonly be used when formulating a problem for each 

proposed approach. Let i denotes a demand point (e.g., the needs of RWIS information for more 

effective and efficient WRM operations leading to an increase in safety and mobility of travelling public) 

with i ∈ 1, . . . , N, where N is a total number of demand points. Let k be an RWIS station index with  k 

∈ 1, . . . , M, where M is a total number of RWIS stations to be deployed. It is also assumed that the 

demand points are the potential sites where RWIS stations can be located. Let X be the solution set, 

where X ∈ (x1, . . . , xM), and xk = i if i is assigned with an RWIS station. Figure 3.2 shows an example 

of a discretized network with the notations defined herein. 
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Figure 3-2: An example with i = { 1, . . . , 16}, k = {1, 2, 3, 4}, and X = {x1, x 2, x 3, x 4}={5,7,12,13} 

In this example, there are a total of 16 potential locations (i.e., circles), 4 of which are allocated with 

RWIS stations (i.e., triangles). For example, the RWIS station located at the bottom left corner can be 

explained by its notations; it is indexed as the 4th RWIS station, located at the 13th cell (i.e., x4 = 13).  
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Case studies will be conducted to evaluate the three alternative approaches and their solution sets, which 

will then be evaluated to describe the unique features of individual solution sets accordingly. For each 

solution set, the existing RWIS network (if available) will be used to evaluate the model outputs and 

recommend new location settings. A summary of the assessments will be made available for use as 

general guidelines to improve decision support on RWIS installation and siting. A comprehensive 

description on each component of the proposed method is provided in the following sections. 

 

3.2 Proposed Approaches – The Idea 

In this section, the three proposed alternative approaches, which are based on “surrogate measures”, 

“cost-benefit”, and “spatial inference”, are described in details. 

3.2.1 Alternative 1: Surrogate Measures (SM) Based Approach 

As emphasized earlier, the current RWIS deployment schemes are inconsistent, and dependent heavily 

on subjective opinions of maintenance personnel with a lack of quantitative rationales for choosing a 

location. Thus, it is of high interest to investigate the feasibility of formalizing various heuristic 

approaches being adopted in practice such that the process of locating RWIS becomes more transparent, 

consistent and justifiable. Figure 3-3 shows the flowchart of the surrogate measures (SM) based 

approach for choosing provisional RWIS station locations. Three different groups of criteria, which 

include weather, traffic, and maintenance factors, are processed and normalized to calculate the total 

average score in each cell of the grid. Subsequently, a set of solutions for each individual criterion and 

combined criterion will be generated for further evaluation. 

3.2.1.1 Regional Location Selection Criteria 

As discussed previously, RWIS stations are installed to collect road weather and surface condition data 

and their value is reflected in the use of these RWIS data, including improved mobility and safety (i.e., 

benefit for motorists), and reduced winter road maintenance (WRM) costs and salt usage (i.e., benefit 

for agency and environment). Therefore, it is critical to clearly define the criteria that can be used to 

measure the “goodness” of a location for installing an RWIS station. The following is a list of surrogate 

location selection measures representing the main criteria considered by maintenance personnel in 

planning RWIS installation:  



 

39 

 

Figure 3-3: Flowchart of Surrogate-Measures Based Approach 

Weather-related Factors: 

Intuitively, RWIS stations should be placed in locations that experience severe yet less predictable 

weather patterns and thus are in need of real-time monitoring. Therefore, it is important to analyze the 

spatial distribution patterns of some critical weather variables such as temperature and precipitation.  

For example, the variability of surface temperature (VST), and mean surface temperature (MST) are 

important factors to be considered as they can provide a definite measure of how much the surface 

temperature would vary over time and space. Late November to early December is the time of year 

with the highest probabilities of having black ice or frost. The higher elevation and greater distance 

away from large water bodies can both contribute to generating colder surface temperatures. This 

gradually leads to longer winter months with higher likelihood of having frost on road surface, and thus 

exposes a great danger to motorists. Note that VST is standard deviation calculated using all available 

surface temperature observations. Snowfall water equivalent (SWE), which describes the amount of 

water contained in snow pack (kg/m2), and can be an important factor as it makes logical sense that an 

RWIS station needs to be situated in areas where snowfalls occur the most. This is particularly true 

when having a better monitoring capability can intuitively increase mobility and safety by performing 
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a prompter WRM operation (Ye et al., 2009). It is worthwhile noting that use of SWE as a weather 

surrogate measure can be, at times, misleading because it may not provide sufficient information on the 

actual amount of snowfall that is accumulated on the road surface. However, use of discrete grid 

covering a large area should minimize this bias and provide a good indication of adverse weather 

conditions. Other factors such as hazardous road surface conditions (HRSC) such as frost and ice can 

also be considered as they provide important information about locations with high probability of such 

conditions. Hence, the abovementioned weather factors are proposed to be included in the analysis for 

selecting a candidate location of an RWIS station. 

Traffic-related Factors:  

Intuitively greater benefits can be obtained from RWIS when they are placed in locations of a greater 

number of travelling public. A recent study conducted by Greening et al. (2012) showed that a well 

maintained RWIS network would in fact reduce the accident rates by a significant amount, which in 

turn would bring huge savings. Notwithstanding the fact that other factors such as vehicle technology 

and weather severity could cofound the effect of real-time information from RWIS, their work clearly 

demonstrated that the use of RWIS information could potentially prevent accidents. Furthermore, the 

survey dedicated to providing the current practices of deploying an RWIS system showed that more 

than 60% of participated DOTs would also consider highway class along with collision rate and traffic 

volume. Their intension for taking highway class into account is similar to considering traffic volume 

in the context of providing benefits to a higher number of road users. As such, the traffic-related factors 

such as collision frequency or rate, traffic volume and highway class are included as location selection 

criteria. 

Maintenance-related Factors:  

As discussed, one of the primary reasons for installing an RWIS station is to reduce the maintenance 

costs. The benefits of utilizing additional information received from RWIS can intuitively increase by 

situating them in locations where the demand for maintenance operations and thus costs are high. 

Implementation of anti-icing operations, for instance, has been found to reduce the total maintenance 

costs through many case studies (Ketcham et al., 1996; Parker, 1997). Three dominant groups of 

maintenance operation costs can be broken down to labour (lab), equipment (equip), and material (mat) 

costs. Therefore, the costs from these three sources could be included in the analysis as a goodness 

measure for locating RWIS stations. 
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3.2.1.2 Problem Formulation - SM Based Approach 

In order to consider all three types of surrogate location selection factors in a systematic framework, a 

weighting scheme is proposed to combine them into a single measure. As a result, the RWIS station 

location problem can be formulated to maximize the weighted total score of the three location selection 

factors, subject to a budget constraint. This problem fundamentally shares a similar trait with covering-

based problems in DFLP. More specifically, the problem can be mapped into a max-covering problem, 

where facilities provide services (i.e., RWIS information) to each demand point such that the number 

of covered demands would be maximized. As mentioned in Chapter 2, the max-covering model is able 

to distinguish between big and small demands and allow some locations to be left uncovered when the 

number of locations required to cover all sites exceeds predefined p facilities.  

Consider the problem that a total of M RWIS stations are to be located over a region. Let sw𝑥𝑘
, st𝑥𝑘

, 

and sm𝑥𝑘
 denote the scores of weather, traffic, and maintenance, respectively, of station k; the 

associated weights are represented by ω𝑤 , ω𝑡 , and ω𝑚 . Therefore, the problem for the surrogate 

measure based approach is formulated as:  
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where S is the total score function defined as the weighted sum of the scores of all selected sites, and 

and xk is the location of an RWIS station k. The weights associated with the location criteria may vary 

by regions, which may be decided based on the series of interviews with regional maintenance 

personnel. The total available budget limits the number of RWIS stations to be located. During 

installation, the stations may be equipped with different sensors based on various requirements. 

Furthermore, the annual maintenance costs for individual sites may also vary depending on the 

proximity to maintenance facilities. As such, the budget constraint can be formulated as: 
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where 𝐶𝑥𝑘
 and B represent individual installation cost at location xk and total available budget, 

respectively. The solution algorithm for solving the above optimization problem will be discussed later 

in this chapter.  
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It is worthwhile mentioning that a discrete network representation is considered in all proposed methods 

as structuring the problem discretely helps increase the computational efficiency. Equally important, 

provision of a point location of an RWIS station may not be suitable for a real world application as 

there are often several other factors such as line of sights, right-of-way, etc., which must also be 

considered prior to deciding the exact location.  

3.2.1.3 Estimating the Surrogate Measures 

In order to solve the proposed location problem (i.e., determining hot-spots) based on the total score 

function defined in Equation 3-1, the three aforementioned surrogate measures, namely weather, traffic, 

and maintenance, need to be known at all demand points (i.e., potential RWIS stations locations) such 

that the score for individual components at every site can be calculated. However, it is almost inevitable 

that some factors must be estimated due to the nature of data being unavailable at all locations. For 

instance, weather factors are obtained from existing RWIS stations and/or local weather stations that 

their values must be estimated at unobserved locations. A number of past studies show that weather 

variables (e.g., temperature) tend to have a linear relationship with environmental and locational 

variables (Hurrell, 1996; Eriksson and Norrman, 2000; Stull, 2010; Wang et al., 2011).  As such, a 

multiple linear regression (MLR) analysis will be employed to model the variables of interest.  A MLR 

has a following functional form (Geladi and Kowalsk, 1986): 
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where Y, X, 𝛼, 𝛽, and p are response and explanatory variables, intercept, coefficients, and the number 

of variables being considered, respectively. According to the findings of the literature (Eriksson and 

Norrman, 2001), variables such as latitude (lat), longitude (long), distance to water (dw), relative 

topography at different search radius in kilometers (RT1,5,10,20) will be used as explanatory variables.  

 

3.2.2 Alternative 2: Cost-Benefit (CB) Based Approach 

While the heuristic approaches for choosing sensor locations are based primarily on intuition and 

experiences by field experts, an RWIS cost-benefit model will be able to provide a more defendable 

way for prioritizing the candidate sensor locations. As stated earlier, there are several RWIS cost-
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benefit studies conducted in the past; however they do not provide evidence of sufficient granularity 

that can be directly used for location optimization. As such, it is necessary to develop an RWIS cost-

benefit model by establishing a clear relationship between the various criteria being used in practice 

and their associated benefits to RWIS stations.  In addition, using the cost-benefit model as a basis, an 

RWIS location optimization model should be developed to help RWIS planners evaluate and assess 

their existing RWIS network, and further delineate new potential locations so as to maximize the 

benefits to all RWIS users.  

One possible approach to estimating the expected benefits to RWIS installations is comparing the 

maintenance costs, and safety and mobility outcomes between highways with and without RWIS 

stations nearby. This approach requires information from an existing RWIS network, which can then 

be used for developing cost-benefit models to estimate benefits and costs in all demand points (i.e., 

potential sites). Figure 3-4 shows a flowchart of the proposed CB approach for determining the optimal 

RWIS station location and density at a regional level. As shown, the method consists of three steps: 

data preparation and integration, RWIS benefit and cost modeling, and analysis of RWIS station 

location and density (i.e., generate optimal solutions).  

 

3.2.2.1 RWIS Cost-Benefit Quantification 

As shown in Step 1 in Figure 3-4, three sources of data are needed for the intended cost-benefit analysis 

and location optimization of an RWIS network. Collision data are filtered in such a way that only the 

wintery collisions derived from RWIS information are retained, which include those that occur during 

adverse weather and surface conditions such as icy and slushy. Although collisions could occur for 

reasons other than inadequate maintenance operations in areas with no RWIS station, it is assumed that 

collisions that occur during hazardous conditions could be considered as preventable, to some extent, 

if information from RWIS is available to maintenance personnel to enable them perform proactive 

and/or responsive maintenance actions. Maintenance data include labor, material (salt, sand and brine), 

and equipment (plower and salter). Traffic count data are represented by annual average daily traffic 

(AADT), which can be converted to winter average daily traffic (WADT), million vehicles kilometer 

travelled (MVKT), and bare-pavement target regain time (BTRT). All three types of data are integrated 

into one data set and expressed in terms of predefined base routes using a GIS for further analysis (to 

be discussed more in later sections). 
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Figure 3-4: Flowchart of Cost-Benefit Based Approach 
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In Step 2, models will be developed to estimate the total benefit that could be derived from installation 

of an RWIS station at a given highway section as compared to the scenario of no RWIS station, such 

as reductions in maintenance costs, collisions and traffic delay. As mentioned previously, some RWIS 

benefits (e.g., environment) are difficult to quantify, hence only the first two benefit items, which are 

also the two largest benefit sources, are considered, and can be defined by  

                                                                                         3-4 

                                                                                            3-5 

where Bi
Maintenance = expected maintenance benefit, or, reduced annual maintenance costs due to 

installation of an RWIS station at area i (i.e., demand point);  

Bi
Safety = expected safety benefit, or, reduced annual collision costs due to installation of an 

RWIS station at area i;  

MCi
RWIS = expected total annual maintenance cost for the given area i if there is an RWIS station 

nearby;  

MCi
NO RWIS = expected total annual maintenance cost for the given area i without an RWIS 

station nearby;  

ACi
RWIS = expected total annual collision cost for the given area i if there is an RWIS station 

nearby;  

ACi
NO RWIS = expected total annual collision cost for the given area i without an RWIS station 

nearby. 

As shown in Equations 3-4 and 3-5, the two dependent variables of interest are the expected 

maintenance cost and expected collision cost for two distinct scenarios: one with RWIS and the other 

without RWIS. The rationale for adopting this method is that a highway section covered by a nearby 

RWIS station is more likely to receive more efficient and cost-effective WRMs than those far from 

RWIS stations. This rationale can be justified in that information coming from RWIS enables 

maintenance staff to predict near-future road weather conditions and apply anti-icing chemicals before 

a snow storm hits, thus preventing or minimizing the formation of bonded snow and ice layers (C-

SHRP, 2000). Furthermore, since the treatment is done proactively, a smaller amount of chemical is 
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needed to prevent bonding than when snow and ice already exist (Epps, 1997).  Note that the proposed 

method assumes that all winter maintenance personnel use RWIS information in their WRM decision-

making process such that maintenance costs and collision frequency can be reduced. This assumption 

is well supported by our interviews of maintenance personnel, which has revealed that RWIS 

information is always utilized in making more informed decisions whenever such information is 

available.   

To quantify the sole benefits of RWIS, all existing station locations are buffered, and the roads that fall 

into these buffered areas are labeled as RWIS influenced roads and the rest labeled as RWIS 

uninfluenced roads. Since the size of diameter describes the maximum distance a single RWIS station 

could cover, it is critical to determine the representative size.  A simple approach would be to use 30 

km – 50 km as suggested by FHWA’s RWIS sitting guidelines (Manfredi et al., 2008) or use the existing 

density. Using the appropriate size of buffer, the corresponding data at these two zones will be extracted 

for further analysis.  

Once the data are classified and matched accordingly, a multiple linear regression technique will be 

employed to model the maintenance and accident costs. Since accident costs are not directly available, 

comprehensive costs of motor vehicle crashes by severity information (i.e., K-A-B-C scales, FHWA, 

1994) will be used to convert each type of accidents to monetary figure. The average costs for each 

severity type also include many other costs incurred as a consequence of the collisions, and the most 

notable components include traffic delays (i.e., extra time, fuel, and pollution) and out-of-pocket 

expenses. This indicates that the safety benefit component incorporated in the proposed model would 

also capture (at least partially) the mobility benefits of RWIS. 

The third step is to divide the region of interest into a grid of equally sized cells, or zones, which are 

assumed to be the minimum spatial unit for allocating a candidate set of RWIS stations. Once the grid 

covering the entire region is constructed, the base route is superimposed onto the grid, with only the 

cells containing the base route selected for further analysis. This process automatically eliminates the 

unnecessary cells and reduces the degree of complexity by removing the non-candidate cells.  
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3.2.2.2 Problem Formulation - CB Based Approach 

Based on the cost-benefit location criteria defined, the RWIS station location problem can be 

formulated as to maximize the total net benefit, subject to a budget constraint. Using the cost-benefit 

models developed, the maintenance and collision costs for each cell with and without RWIS are readily 

estimated, which can then be used to estimate the benefit of RWIS station at each demand point for any 

given year.  

The RWIS costs considered herein are summarized below (McKeever et al., 1998): 

 Capital Costs (Total system) : $42,010 (every 25 years), 

 Capital Costs (Total system): $10,446 (every 5 years), 

 Total Operation and Maintenance Costs: $5,460 (per year), 

The following equation is used for calculating the net present value (NPV): 
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where r, t, and n represent discount rate, year, and the expected life of RWIS stations (i.e., 25 years), 

respectively. C indicates a cash flow, which can be calculated by taking the difference between the 

RWIS benefits and costs.  

Once the benefits and costs are assigned to each cell for all candidate cells (i.e. demand points), the 

objective function can be formulated in a similar way to the one used for Alternative 1, and is to 

maximize the total net benefits calculated from the two benefits and annualized costs: 
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where B is the objective total benefit function defined as the sum of the benefits of all selected sites 

minus the annualized costs. 𝐵𝑥𝑘
𝑀𝑎𝑖𝑛𝑡𝑎𝑛𝑎𝑐𝑒and 𝐵𝑥𝑘

𝑆𝑎𝑓𝑒𝑡𝑦
 are expected benefits from reduction in annual 

maintenance and collision costs due to installation of an RWIS station, respectively, as defined in 
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Equations 3-4 and 3-5. 𝐶𝑥𝑘
 denotes the annualized costs associated with installing, operating, and 

maintaining a single RWIS station. Again, the budget constraint used in the SM approach (i.e., 

alternative 1) can also be utilized for this formulation (refer to section 3.2.1.2). Similar to Alternative 

1, this problem is comparable to a max-covering problem in DFLP. 

Lastly, the recommended density is used as a threshold to decide how many stations are to be deployed 

at a region. It should be noted that the further analysis is required to pinpoint the exact location of 

individual RWIS stations by considering other local siting requirements including power, 

communications, obstructions, ease in access for maintenance, and etc., as discussed previously. 

Furthermore, it is important to recognize that there exist other factors such as human behavior and 

vehicle conditions that may contribute to the occurrence of accidents regardless of the 

availability/presence of RWIS information during winter seasons. However, it is believed that the 

impact of these factors will likely be minimized by taking the difference of total annual collision costs 

between those in RWIS influenced areas and in RWIS uninfluenced areas as the outcomes will 

represent the benefits that are expected solely by the presence of RWIS stations. 

 

3.2.3 Alternative 3: Spatial Inference (SI) Based Approach 

While the first two proposed approaches are intuitive and easy to comprehend, they have some 

limitations. For example, SM is a surrogate-based approach that does not explicitly model the benefits 

of RWIS, which can only partially captured by the traffic, weather, and maintenance parameters. For 

CB, the RWIS benefit models are constructed based on the empirical data (from exiting RWIS stations) 

such that the findings may not be applicable to other areas. Likewise, it is challenging to determine all 

the underlying benefits (e.g., societal and environmental benefits) associated with RWIS. More 

importantly, both approaches do not take into consideration that data from RWIS stations can be 

collectively used to make inference about the conditions over a whole region – not just those that are 

covered by RWIS. It is this monitoring capability of RWIS network that is the foundation of the third 

method proposed to determine the optimal configuration (or spatial arrangement) of RWIS stations. 

As previously discussed, RWIS information makes it possible to perform proactive winter maintenance 

operations such as anti-icing (i.e., applying salt, mostly in liquid form, in advance of an event), which 

reduces the amount of time required to restore the roads to a clear and dry state at lower costs. When 

the RWIS data are used to infer the conditions of the whole region, the benefits of anti-icing can be 
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equally extended over the whole region and should be considered in location optimization. This 

argument remains valid under the assumption that an increase in estimation or monitoring capability of 

hazardous road surface conditions (HRSCs) will contribute to improving the overall quality of winter 

road maintenance operations.  

In order to model the monitoring capability of an RWIS network, it is proposed to apply a popular 

geostatistical approach called kriging as described earlier. The monitoring capability of a given RWIS 

network is captured by determining the kriging error variances (i.e., the expected estimation errors). A 

nice property of the kriging errors is that they can be determined as part of the estimation process on 

the basis of the spatial correlation structure over the domain, which can be obtained as a function of 

distance (and perhaps direction) as a prior (van Groenigen and Stein, 1998). In other words, its error 

estimate depends entirely on the data configuration and the covariance functions, not on the actual 

observations themselves. This indicates that kriging errors can be used as a criterion to optimize and 

evaluate an RWIS location solution. In addition, another optimization criterion, namely vehicular 

collision frequency, is introduced to reflect the needs of installing an RWIS station for reducing / 

preventing collisions in its vicinity.  

Selection of these criteria has been decided based primarily on the findings from a survey dedicated to 

reviewing and examining the current best practices for locating an RWIS station in North America (See 

Appendix C). In this survey, participants responded that they would consider weather related hot-spots, 

such as those commonly encountered when roads are icy, snowy, or frosty, as posing the greatest 

potential danger to motorists. Equally important, they would also consider high traffic and accident-

prone areas that serve a large number of travelers as key factors to consider in RWIS station placement.  

Therefore, the third method is proposed on the basis of the idea of minimizing the total spatial inference 

(i.e., estimation) errors for determining the optimal configuration (or spatial arrangement) of an RWIS 

network in a geographic space. The third approach is the most refined and sophisticated method, but 

requires much less data than the first two approaches, and can be conveniently generalized and applied 

to other regions. Figure 3-5 shows the flowchart of the proposed spatial inference based approach. The 

following section provides a detailed description of the kriging method as well as the location 

optimization criteria. 
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Figure 3-5: Flowchart of Spatial Inference Based Approach 

 

3.2.3.1 Kriging for Spatial Inference 

The core idea of kriging is that the estimated outputs are weighted average of observation data, and the 

optimal weights are determined based on their underlying spatial structure, and assigned to the observed 

location, and the location to be predicted. 

Again, i is a demand point where i ∈ 1, . . . , N, with N being a total number of demand points, k is an 

RWIS station index, where k ∈ 1, . . . , M, with M being a total number of RWIS stations to be installed, 

and their locations are known and denoted by a vector X, where X = [x1, …, xM] and xk represents the 

location (cell label) of RWIS station k. As discussed in Chapter 2, kriging is concerned with the 

estimation of z(i) at any demand point, and this could be any “meaningful” variable of interest to be 
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estimated from a set of known locations, X. z is a variable of interest, which is observable at the M 

locations., based on which we are interested in estimating the condition at any given location i, denoted 

by 𝑧̂(𝑖|𝑋), which is an estimate of the true value z(i) given observations at X. Figure 3.6 illustrates an 

example of discretized network and how the condition at any given location i can be estimated. 

 

Figure 3-6: A discretized sample network – an estimation of any given point i.   

The goal of using a geostatistical kriging technique is to estimate a value and its associated error of z(i) 

at an unobserved location using a set of known observations. Recall from Chapter 2 that the kriging 

error variance (for ordinary kriging) at locations i is given by (Goovaerts, 1997), 
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The kriging weights k , can then be determined by Equation 3-9, which is conveniently expressed in a 

matrix form (refer to Section 2.3.1) 
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where  
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, is the matrix of covariances between known data points 

 Tm ixCixCixCv 1),,(),,(),,( 21  is the vector of covariances between the data and estimation 

points.  

As discussed in Chapter 2, semivariogram modeling approach will be conducted to determine the 

underlying covariances, followed by the cross-validation to ensure that the modeled semivariogram is 

accurate and representative. Once the kriging weights are determined via Equation 3-9, the kriging error 

variance can be computed as: 
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It is worthwhile to note that the method described above is used to solve the kriging system of equations 

in terms of covariances, instead of semivariances. This is primarily for convenience in handling the 

square matrices, despite the slight loss in generality (Olea, 1999). Under a second order stationarity 

assumption, both the covariance and semivariogram functions are related and their outputs are 

equivalent.    

3.2.3.2 Road Collision Frequency 

As discussed previously, RWIS stations are installed to collect weather and road surface condition data 

and their value is reflected in the use of these RWIS data to make more informed decisions including 

improved mobility and safety (i.e., benefit for motorists), and reduced winter road maintenance costs 

and salt usage (i.e., benefit for agency and environment). A number of prior studies have suggested that 

an RWIS station should be located at high-traffic-demand areas (Garrett et al, 2008; Buchanan and 

Gwartz, 2005; Mackinnon and Lo, 2009). Such a hypothesis is constructed based on a rational 

assumption and intuition that installation at such areas would increase the benefits for road users. For 
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this reason, the majority of the North American transportation agencies (and other regions) are inclined 

to incorporate macro level traffic criteria such as collisions, traffic volume, and highway type / class.  

Furthermore, a study conducted by Greening et al. (2012) showed that a well maintained RWIS network 

would likely reduce accident rates by a significant amount, which in turn would bring huge savings. 

Another recent study by 3Kwon et. al (2014) provided numerical evidence of significant monetary 

benefits for installing an RWIS station in terms of reduction in maintenance costs and collision 

frequency. Likewise, a group of RWIS network planners from Minnesota (i.e., study site) provided a 

priority list of factors that should be considered, wherein collision frequency was ranked first. Hence, 

in addition to the first criterion representing HRSC frequencies, minimizing collision frequency is 

added as another criterion in designing a well-balanced RWIS network. It is worthwhile noting that 

when collision frequency data are unavailable, a comparable measure to collision frequency namely 

road class will be used instead.  

 

3.2.3.3 Problem Formulation – SI Based Approach 

Considering the nature of the proposed problem using the spatial inference or estimation errors, the 

RWIS station location problem can be classified as a p-median facility location problem, where the 

demand is defined based on the demand-weighted distance to all other available RWIS sites (i.e., one 

location is interrelated with all other locations).  

As discussed, average kriging variance is calculated to reflect the needs for installing RWIS stations 

for improved winter road maintenance operations (i.e., locations with higher errors require more 

attention than others with lower errors), and sum of average kriging variance should therefore be 

minimized. The traffic criterion pertaining to a vehicular collision frequency, on the other hand, should 

be maximized since an RWIS station should be located at high-risk areas. Therefore, in order to 

combine these two criteria, collision frequency measurements must be inverted such that the problem 

can be solved as a minimization problem.  

                                                      
3 Kwon, T. J., Fu, L. & Jiang, C. (2014). RWIS Stations – Where and How Many to Install: A Cost Benefit 

Analysis Approach, Canadian Journal of Civil Engineering (CJCE), DOI: 10.1139/cjce-2013-0569 
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To formulate the problem as an integer programming problem, a decision variable yki is introduced 

where i ∈ 1, . . . , N, and k ∈ 1, . . . , M with yki = 1 if an RWIS station k is assigned to cell i, 0 

otherwise. Following the previous notation, yk,i is related to xk in X as follows: 

         MkNiiyx
i

ikk  ,,,                              3-11 

The fitness function (objective function) combining the two location criteria is expressed in the 

following discrete formula:  
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where,  

 

 an index set that defines all of the candidate RWIS station locations in the 

study area, 

X a subset of  and a solution set, X = [x1, …, xm],  

N a total number of all highway grid cells, 

M a total number of RWIS stations to be deployed, 




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ck,i a total cost of an RWIS station k at site i, 

B   a total available budget, 

 )|)(ˆ2 Xiz  the square root of the kriging error variance at i given X 

1

i    the inverse of mean collision frequency at i, and 

21 ,    the weights for criteria 1 and 2 

 

In Equation 3-12, the objective function represents the sum of average kriging variance of estimating 

the HRSC frequency and average collision frequency, given X. The kriging variance term is root-

squared, as appeared in the first part of the objective function so that estimation errors can be expressed 

in the same unit as the observations themselves. The weighting factors can be viewed as a way to 

combine the two measures into a common unit. The second term of the objective function represents 

the sum of average collision frequency. The binary decision variable yki is there to take account for 

those measured only when an RWIS station location, k is allocated to site i. Average collision frequency 

is calculated using the minimum gridded cell, within each of which, all collision events are aggregated. 

It is important to point out that the candidate cells are pre-determined by filtering out those cells that 

do not contain any segment of the highway network under investigation. This reduces the solution space 

of the optimization model significantly and thus the computational time. The constraint provided in 

Equation 3-13 represents the cost limit of installing RWIS stations in the study region. During 

installation, the stations may be equipped with different sensors based on various requirements. 

Furthermore, the annual maintenance costs for individual sites may also vary depending on the 

proximity to maintenance facilities. Hence, cki is added to take account for all supplementary costs in 

addition to the cost of installing a single RWIS station k at site i. Another constraint that appears in 

Equation 3-14 ensures that a fixed number of RWIS stations are deployed. The weighting terms, 

21 ,  are added so that an RWIS planning department can adjust and/or apply different weights 

according to their importance. For simplicity and convenience herein, a fixed number (and a uniform 

cost) of RWIS stations are deployed.  
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It is worthwhile noting that some sites may not have access to power and/or communication utilities; 

another important factor that must be considered to ensure that the data can be obtained and processed 

in real time (Manfredi et al., 2008). The optimization framework introduced therein, however, can be 

easily extended to take additional factors into account by introducing another binary decision variable 

(i.e., 1 if a potential RWIS site has power/communication network in its vicinity, and 0 otherwise). 

Alternatively, the cells that do not satisfy the local requirements can be filtered out first such that only 

candidate locations are considered.  

 

3.2.3.4 Optimization with Spatial Simulated Annealing (SSA) 

The problem formulated previously is a non-linear integer programming (NIP) problem which is 

computationally intractable; heuristic techniques are often required to solve these types of problems of 

realistic sizes. In this research, a variant of one of the most successful techniques called spatial 

simulated annealing is used (SSA,van Groeningen and Stein, 1998). 

SSA is an iterative combinatorial optimization algorithm in which a sequence of combinations is 

produced by deriving a new combination from slightly and randomly modifying the previous 

combination (van Groenigen et al., 1999). SSA is a spatial counterpart to simulated annealing (SA, 

Kirkpatrick et al. 1983), specifically designed to optimize sampling designs of environmental variables 

using kriging. SA is a stochastic metaheuristic search algorithm first proposed by Metropolis et al. 

(1953) and mimics the annealing of metal. SA is fundamentally same as Monte Carlo annealing, 

probabilistic hill climbing, statistical cooling, and stochastic relaxation (Aarts and Korst, 1989). The 

term “annealing” is related to the metallurgical process of metal alloy heating and relaxed cooling to 

increase toughness and reduce brittleness (Goovaerts, 1997). The method has a unique generation 

mechanism for transforming a randomly chosen sampling point over a vector h - the direction chosen 

at random, and the length also drawn randomly in the interval [0 and hmax], thus giving the sampling 

scheme the chance to “freeze” in its optimal sampling design by terminating with very small 

perturbations (van Groeningen, 1997). This method is proven to produce dramatic improvements 

compared to its non-spatial counterparts (van Groeningen, 1997; van Groenigen and Stein, 1998). 

In principle, by discretizing the region of interest, kriging variance for all possible combinations of the 

station locations could be evaluated and the combination that produces the smallest value would be 

selected as the optimal solution. However, this is impractical as the number of combinations would be 
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formidable, meaning that an exhaustive search over all possible outcomes is computationally infeasible. 

In the search process, SSA not only accepts improving solutions, but also worsening solutions, based 

on a certain probability that is defined to minimize the risk of falling prematurely into local minima 

(van Groeningen and Stein, 1998). Therefore, the algorithm is able to find high quality solutions that 

are not dependent on the selection of the initial solution compared to other local search algorithms.  

SSA has gained its popularity due to its robustness and easy implementation, particularly for optimizing 

sampling schemes in situations where observations are spatially correlated in geographic space (Sacks 

and Schiller, 1998; van Groenigen et al., 1999; Heuvelink, 2006; Brus and Heuvelink, 2007; Zhu et al., 

2010; Heuvelink et al., 2010; Melles et al., 2011; Mohammadi et al., 2012; Amorim et al. 2012; Pereira 

et al., 2013). The workflow of the SSA algorithm is depicted in Figure 3-7.  

 

Figure 3-7: Workflow of Spatial Simulated Annealing Algorithm 
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First of all, there are a few parameters that must be specified prior to running the algorithm, including 

initial probability of accepting an inferior solution p, absolute temperature Ta, and cooling factor or 

cooling temperature c. The probability p is set to avoid selection of local minima. Absolute temperature 

Ta is used as a stopping criterion; but one may simply use the number of iterations or alternatively 

decide if there is lack of progress in improving the quality measure (i.e., combination of kriging 

variance and vehicular frequency). Cooling factor c controls the rate at which p decreases to zero. Thus, 

smaller cooling factors would converge slowly while higher numbers would provide slow cooling. 

Once initial parameters are set, optimization begins with a random solution X0 ∈ Xm where X denotes 

the collection of possible solutions with m being the number of observations. The iterations then move 

forward with a sequence of random perturbations X𝑛+1 of  X0 with a probability 𝑃(𝑋𝑛 → 𝑋𝑛+1) of 

being accepted. Thus, even if a new solution does not improve the quality measure (i.e. objective 

function), the algorithm could still accept it to avoid being trapped in a local optimum, as described 

above. This transition probability follows the principles presented by and defined as Metropolis 

criterion (Metropolis et al., 1953): 
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Where is a so-called objective function with 
 nX:)( to be optimized (i.e., minimized in 

our case), and c is a positive control parameter (i.e., cooling temperature). Thus, if Xn+1 is accepted, 

iterations proceed and the new cooling schedule is used for the next randomly perturbed configuration 

Xn+2; iterations continue until the stopping condition is met; and the best solution is presented as an 

optimal configuration (Aarts and Korst, 1989; van Groenigen et al., 1999). The c value of the 

Metropolis criterion (Eq. 3-15) gradually decreases during the optimization using an Equation 

suggested by Aarts and Korst (1989): 

                                                         ,..,.2,1,1  kcc kk                                                      3-17 

where  α denotes a constant parameter, generally chosen to be close to 1 (e.g., 0.999), and k denotes 

the number of the performed optimization iterations. The simplest and most commonly adopted cooling 

schedule of SSA is to configure in such a way that p could exponentially decrease as a function of 


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number of iterations and the initial cooling factor to ensure convergence (Heuvelink et al., 2006; Brus 

and Heuvelink, 2007; Melles et al., 2011).  

When the SSA algorithm is used to solve the optimization problem formulated earlier, it is critical to 

investigate the effect of the parameters setting on the solution as well as the running times. Despite its 

importance, there is very limited information available to decide what ranges of SSA parameters should 

be chosen when running the optimization. Thus, a simple yet informative sensitivity analysis method, 

namely, one-at-a-time designs (OATD, Yang et al. 2009), will be carried out to determine the sensitivity 

of individual SSA parameters on the optimization outcomes.  
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Chapter 4 

CASE STUDIES 

4.1 Study Areas 

The proposed approaches are examined via four case studies covering one Canadian province (Ontario), 

and three US states (Utah, Minnesota, and Iowa) using various dataset provided by each region under 

investigation. These four regions are a good candidate as they already have a well distributed and dense 

RWIS network with distinctive and unique meteorological (lake effect) and topographical 

(mountainous) characteristics, from which more reliable assessments can be realized. The findings from 

each region should provide sensible guidelines and measures as to how the optimal location and density 

would vary from one region to another.  

Ontario is the second largest Canadian province, situated in east-central Canada, and has a continental 

climate like most other provinces of Canada. Northern Ontario has long, very cold winters and short 

summers whereas the southern part enjoys the tempering effect of the Great Lakes. Southwestern 

Ontario is typically flat with many rolling hills. To its north contains mainly flat and wet surface. Utah 

is situated in the Mountain States (also called the Mountain West) from one of the nine geographic 

divisions of the United States. Because of its geographic location, Utah has extremely varied 

topography with a large portion of the State being mountainous. The lowest area is in the southwestern 

part with altitude of 750m, while the highest points lies in the northeastern part with altitude higher 

than 4000m. Utah is also known for very diverse climates – for instance, there are definite variations 

in temperature with altitude and with latitude. Average temperature differences between the southern 

and northern counties at around similar altitudes typically range between 6 and 8 degrees with the 

northern counties having lower temperatures. The topographies of Iowa and Minnesota, on the other 

hand, consist mainly of rolling plain and flat prairie. The differences of their lowest and highest altitudes 

are also small, ranging from the lowest points of 183m and 146m to the highest points of 702m and 

509m for Minnesota and Iowa, respectively. Iowa and Minnesota’s climates, because of their latitude 

and interior continental location, are characterized by marked seasonal variations. 

Ontario, Iowa, Minnesota, and Utah currently have 140, 67, 97, and 96 RWIS stations in place, 

respectively, and their RWIS network expansion initiatives are underway to deploy an additional 

number of stations over the next 5 to 10 years in all regions.  
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 4-1: Study areas under investigation and the existing RWIS networks: (a) Ontario, (b) 

Iowa, (c) Minnesota, and (d) Utah 

 

4.2 Data Descriptions 

This section provides a description of various different data sources, which are used in the analyses 

described in the later sections. 
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Weather Data  

The weather data from several different sources, namely, road weather information system (RWIS), 

National Weather Service (NWS), and Daymet are incorporated. Daymet provides weather data 

including surface weather and climatological summaries available in different temporal resolutions. 

The data comes in a raster format, which can be conveniently integrated on a GIS platform for 

extracting various weather records (Thornton et al, 2012). RWIS data, in particular, are a primary 

source in classifying the various types of hazardous road conditions due to its unique measurements 

focusing on road surface conditions. The four transportation agencies provided their regional RWIS 

data which were collected at 10-15-min intervals over three consecutive winters (i.e., October to March) 

between 2010 and 2013 (2006 – 2008 for Ontario). The data came stratified by individual stations each 

containing nearly one million rows of measurements including the variable of interest - surface 

condition status. There are a total of 15 surface status codes describing current representative surface 

conditions expressed in a descriptive format (see Section 1.2). These status descriptions are listed in 

order of severity and further classified into four different categories with the most critical category 

listed first. In this study, the top category representing so-called hazardous road surface conditions 

(HRSC) were considered, and they were snow/ice warning, frost, wet below freezing, and snow/ice 

watch.  

Geographic Data 

Geographical parameters including latitude, longitude, and altitude provide a good measure of weather-

related characteristics of data with locational attributes. For instance, altitude can play a significant role 

in triggering the temperature variations of a road surface since temperatures at high altitude can be 

noticeably different from those at lower altitude. When altitude information is not available, Digital 

Elevation Model (DEM) can be used instead to extract the said information as well as other road 

geometric and topographic features such as slope, and relative topography, which is a measure of 

surface roughness. 

Maintenance Data  

Maintenance data contains winter maintenance cost records. Each maintenance record is expressed 

using a unique project identification number along with information on labor, equipment, sand, salt, 

and brine costs.  
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Traffic Volume Data  

Annual average daily traffic (AADT) data includes location description, highway type/class, geocoding 

information, and section length. This data are used, where necessary, to determine bare-pavement target 

regain time (BPRT) as well as million vehicle kilometers travelled (MVKT) as additional parameters 

in this study. 

Collision Data  

Historical collision data sets contain individual crash records with detailed information. Each record 

lists time, day, month, year, data reliability, location, severity (i.e., fatality, injury, and property 

damage), number of vehicles involved, type of collision, surrounding weather, and surface condition 

information. Another form of collision data is also available which provides an annual accident number 

along with geocoding information for mapping onto a GIS platform. 

Highway Network Data  

The highway network consists of geocoded line features onto which traffic and collision data can be 

mapped. This is also known as linear highway-referencing system (LHRS) defined as a location-

referencing method that is used to identify a specific location with respect to a known point (Baker and 

Blessing, 1974). 

 

4.3 Data Processing 

As indicated above, there are six main categories of different data sources that need to be processed 

and merged onto a corresponding road segment/grid. This road segment of equal length are used as the 

minimum spatial unit for determining the provisional RWIS station locations. For this, a GIS based 

platform is implemented due to the large amount of data sets to be processed in an efficient manner. A 

schematic diagram of the steps involved in data integration and aggregation on a GIS platform is 

depicted in Figure 4-2.  
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Figure 4-2: A Schematic Diagram for Data Processing and Merging 

Weather Data Processing 

As mentioned, the weather data are utilized in this study. Different weather variables such as 

precipitation amount and surface temperature collected from RWIS, and Daymet are used as surrogate 

measures to delineate the candidate RWIS station locations. Some select weather variables will also be 

used as predictors in the modeling phases to improve the explanatory power of target variables. 

Furthermore, the data are also used to appreciate and capture the spatial variability (i.e., weather trends) 

in the region of interest. RWIS data in particular are a primary source in classifying the various types 



 

65 

of hazardous road conditions due to its unique measurement characteristics that are focused primarily 

on road weather surface and conditions. RWIS data that were provided by the four transportation 

agencies consisted of nearly 60 million rows of data, thus a script program was written to efficiently 

process all the data, returning a yearly (seasonal) average of HRSC frequency for each corresponding 

RWIS station for all regions. All available weather data are then merged onto an equal-sized grid on a 

GIS database platform. 

Geographic Data Processing 

Digital elevation model (DEM) are distributed and packaged in small tiles. To keep files sizes and 

processing times manageable, a title with 1-km spatial resolution (appropriate for large-scale study) are 

used in this study. Since the data are stored as ASCII files, GIS software are utilized to convert them to 

raster files for display on a GIS platform. A set of converted tiles are mosaicked to a single raster tile 

to increase the computational efficiency. 

Traffic and Collision Data Processing 

Traffic data are received in a form of annual average daily traffic (AADT). A few derivatives of AADT 

such as WADT, MVKT, and BTRT are calculated for analysis in this study. Since the focus of the 

analysis is winter (i.e., periods when RWIS information is being utilized), winter average daily traffic 

(WADT) are used to provide a more representative value, and calculated on a basis of the number of 

winter days assumed in the analysis. Million vehicle kilometers travelled (MVKT) will also be used as 

a measure of traffic flow or exposure. Another measure is bare-pavement target regain time (BTRT). 

During winter storms, a winter maintenance schedule requiring staggered work hours may be used to 

provide the level of service recommended. Each maintenance area, district, and division develops a 

schedule of effort needed to achieve BTRT, thus it can be an essential surrogate measure for 

representing the type of highway and the target level of service.  

Collision data consists of additional information describing the type of individual collisions along with 

weather conditions at the time of collision. These collision data are filtered in such a way that only the 

preventable collisions derived from RWIS information can be retained, which include those that occur 

during adverse weather and surface conditions such as icy and slushy. Although collisions could occur 

for reasons other than inadequate maintenance operations in areas with no RWIS station, it is assumed 

that collisions that occur during hazardous conditions could be considered as preventable if information 
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from RWIS was available to maintenance personnel to help them perform proactive and/or responsive 

maintenance actions.  

Maintenance Data Processing 

Maintenance data are expressed in terms of annual winter maintenance costs in three different 

categories: labor (hours), equipment, and material (sand, salt, brine). Each maintenance record is 

described using a unique project identification number. Using a project ID number as a reference, 

the three data components are fused to calculate the total annual maintenance costs.  

Data Merging 

Once all the required data are processed as explained previously, highway network data are used as a 

base route onto which the pre-processed data are integrated and merged. The primary purpose of this 

step is to allocate all the data with different spatial resolutions to an equal-sized road segment or grid 

such that each road segment or grid can be considered as a candidate RWIS station location. This step 

will require a significant effort in geo-processing the individual sets of data on a GIS platform to obtain 

the representative values for each parameter being considered. 

 

4.4 Application of the Proposed Methods 

4.4.1 4Application of the SM Method 

This section discusses the application of our first RWIS location optimization approach – SM for 

analysing the Ontario RWIS network planning problem. Two types of surrogate measures, namely, 

weather- and traffic-related factors, are considered. 

                                                      
4 This section is based on a published paper: Kwon, T. J., & Fu, L. (2013). Evaluation of alternative criteria for 

determining the optimal location of RWIS stations. Journal of Modern Transportation, vol. 21., pp 17-27. 

DOI: 10.1007/s40534-013-0008-9 



 

67 

4.4.1.1 Surrogate Measures 

It was mentioned earlier that RWIS stations should be located at areas that exhibit severe yet less 

predictable weather events such that the benefits of RWIS (i.e., enhanced monitoring capability) can 

be maximized.  

Mean Surface Temperature (MST) and Variability of Surface Temperature (VST): The two 

commonly used indicators for measuring winter weather severity are the mean surface temperature 

(MST) and the variability of surface temperature (VST) as defined by the standard deviation of surface 

temperature. For the areas (or grid cells) that are covered by nearby observation stations (e.g., regular 

weather station or RWIS), both measures can be directly estimated using observations. For the areas 

that are not covered, it is necessary to apply a technique to estimate these variables. In this research, 

regression models are developed for the relationship between the two temperature measures to several 

known variables including latitude (lat), longitude (long), elevation (elev), distance from water (dw), 

and relative topography (RT). The justification for choosing such variables is that latitude is expected 

to affect the spatial variation of surface temperature, whereas longitude may capture the influence of 

winds. Elevation in meters above mean sea level could be linked to the variability of surface 

temperature (e.g., higher the elevation, lower the temperature), and distance from large water bodies, 

the Euclidean distance in kilometers, represents the degree of continentality (Eriksson and Norrman, 

2001). Lastly, relative topography is included to describe the exposure, and is calculated by taking the 

difference in elevation between each station location and an average of pixels within the respective 

radius range (e.g., 1km, 3km, and 5km).  

Since the monthly variation of surface temperature can vary significantly from one month to another, 

the two dependent variables, VST and MST, are modeled on a monthly basis. For the Ontario case 

study, 3-year surface temperature data collected in 2006 to 2008 from a total of 45 Ontario RWIS 

stations for the month of January are used for modeling.  ArcGIS 10.1 is used as a base platform for 

this study, where digital elevation model (DEM) with 1-km spatial resolution as well as water layers 

including lakes and sea are utilized to obtain the aforementioned auxiliary information. Once all the 

required information has been obtained, SPSS is used to perform the multiple linear regression (MLR) 

analysis with all variables being tested at the 5% significance level. The resulting equations for the two 

dependent variables are as follows: 
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                                4-1  

    4-2 

The above calibrated equations are used to calculate both VST and MST values for each cell for all 

cells. Figure 4-3 shows the resulting VST and MST maps.  

 

Figure 4-3: Processed VST (left) and MST (right) Maps 

From Equations 4-1 and 4-2, it can be clearly seen that all regression coefficients make intuitive sense. 

For instance, latitude, longitude, and distance to water have a positive correlation with VST implying 

that as values of each parameter increase, so does the VST. It is true particularly during colder months 

that surface temperature would likely vary at a greater range at high latitude regions. Furthermore, VST 

is likely higher as it moves into deeper continents which are typically more mountainous causing a 

larger temperature variation. These phenomena are explained graphically in Figure 4-3 (left) that VST 

cells in southern regions and/or nearby lakes tend to exhibit less variation compared to other cells. As 

for the MST, all the regression coefficients except for distance to water are found to be negative. This 

is observed since the minimum surface temperature would drop as it moves to the northern regions with 

higher elevations. Notice that MST can vary by a significant amount (~20oC) between the northernmost 

and southernmost cells in Figure 4-3 (right).  

 

Precipitation (Snowfall): Distribution of precipitation amounts, particularly of snowfall amounts must 

thoroughly be investigated to determine the regions where heavy snowfalls are likely to occur so that 

recommendations for RWIS stations can be made accordingly. This can be done by analyzing the long-

term historical snowfall observations. Daymet is an online weather data archive where daily surface 

%2.72,974.5)(011.0)(161.0)(076.0)(403.0 2
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weather and climatological summaries are available for public use (Thornton et al., 2012). Snow-water-

equivalent (SWE) describes the amount of water contained within the snowpack expressed in kg/m2. 

The average annual summary maps for SWE are obtained for periods from 2001 and 2005 covering the 

entire North America. Since these files came in a raster format, 5-year average map is generated by 

taking an average of all available SWE layers using ArcGIS 10.1. Once all the maps have been 

combined and averaged, each cell is assigned with the corresponding SWE value (i.e., sum of all SWE 

data within each cell) for the entire grid. Note that because the SWE data is available at the level of 

individual grid cell (1km2), there is no need to develop models to infer this variable over the entire 

region as in the case of MST and VST.  Figure 4-4 (a) shows the processed SWE map, where central 

regions seem to have the most snowfalls, and the amounts are being gradually diminished as it moves 

to outer regions. Far-most southern regions are appeared to have the least amount of snow. 

Traffic Volume (WADT), Accident Rate (WAR), & Highway Type (HT): It was emphasized earlier 

that an RWIS station should be located in places where traffic volumes and accident rates are high such 

that the benefits to road users can be maximized. This reasoning can also be applied to highway type 

where higher classes of highways should be given a higher priority when installing an RWIS station. 

For this reason, winter average daily traffic (WADT), winter accident rate (WAR), and highway type 

(HT) are considered as the new surrogate measures for locating RWIS stations. Traffic information 

management center at the MTO provided data for the 2000 to 2010 provincial highways winter traffic 

volumes and accident numbers along with highway class, all of which are geocoded with linear highway 

referencing system (LHRS). MTO currently has a total of 2588 geocoded locations across the province. 

With these geocoded locations, WADT data have been mapped onto the grid where the data are 

averaged and assigned to the corresponding cells. WAR used in the analysis is defined as the number 

of reportable accidents occurring during winter months on a particular highway section for every 

million vehicle kilometers (MVK) travelled on that section during the same periods. Representative 

section lengths for all geocoded points are used when calculating WAR. As for HT, four different types 

that are currently being used by MTO are defined. Following the similar approach of other traffic 

dataset, HT data have been first geocoded using the LHRS and then the averaged values are assigned 

to each cell.  

Figure 4-4 (b), (c), and (d) depicts the processed WADT, WAR, and HT, respectively. As can be seen 

in the figure, WAR and WADT data are appeared to share some common traits that there are many 

number of “high-risk” cells in the southern region for having relatively heavier traffic loads and higher 
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accident rates. This makes a logical sense that increase in exposure would likely increase the number 

of accidents. On the other hand, northern regions consist of many low-valued cells indicating that they 

are less important when considering traffic as a location criterion. Similar conclusions can be drawn by 

analyzing the HT figure that a great number of high-class highways are situated in the southern region 

suggesting the needs of RWIS stations. 

 
Figure 4-4:  (a) SWE, (b) WADT, (c) WAR, and (d) HT 

4.4.1.2 Evaluation of Alternatives 

In this section, different alternatives are evaluated by applying them to relocate Ontario’s existing 

RWIS stations and comparing the results to their current locations. For each alternative, the objective 

function formulated earlier is used to determine the candidate locations based on their values of the 

given selection criterion. For the analysis, different weighting schemes are considered for weather and 

traffic factors, and the maximum number of stations allowed to be installed was set to 140.  
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Alternative 1: Weather Factors Only 

The weather factors are used to evaluate the current RWIS network in the province of Ontario. VST 

values in each cell have been added to the corresponding cell of SWE. Note that both factors are 

normalized with a range between 0 and 1 to enforce a fair comparison.  Figure 4-5 describes the result 

of the combined location selection criteria. It also shows the current Ontario RWIS stations that have 

been superimposed on the map. Highlighted cells represent the optimized 140 cells that are 

recommended as potential RWIS station locations.  

As can be seen in the figure, a map generated by combining two weather factors suggests potential 

RWIS sites to be in the middle to upper part of the region, where VST and SWE are also found to be 

significant in those regions. A percent of matching (POM), which describes an evaluation metric for 

benchmarking the current location setting, is found to be 30% by having 42 cells matched with the 

existing RWIS station locations. Notice that there are many cells (i.e., highlighted) in the central regions 

where no RWIS stations are there to monitor the highly varying weather conditions with historically 

heavy snowfall events. From this analysis, it can be stated that the current RWIS location setting is less 

susceptible to capturing the variability of weather conditions.  

 

Figure 4-5: Alternative 1 with the weather factors combined 
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Alternative 2: Traffic Factors Only  

A second alternative considers the two traffic-related factors, namely, WAR and HT (without weather 

factors). The intent of this analysis is to determine the potential RWIS stations locations considering 

traffic factors only, and evaluate the current RWIS network setting on the coverage of traffic demands.  

Figure 4-6 illustrates the proposed 140 locations of RWIS stations when considering the traffic factors 

only. Notice that the map now focuses more on the areas where high accident rates/highway class exist. 

This alternative suggests that almost all southern parts of the province should have RWIS stations 

installed while many parts in the northern region are left uncovered. 110 of the 140 existing RWIS 

stations (79%) would be located at the same sites based on this alternative.  Such a high matching rate 

should not be viewed as an indication that this location criterion is better than Alternative 1; instead, it 

should rather be considered as an indication that these factors are heavily weighted in Ontario’s current 

RWIS location planning practice.  

 

Figure 4-6: Alternative 2 with the traffic factors combined 
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Alternative 3: Weather & Traffic Factors Combined 

A third alternative is proposed by combining both weather and traffic factors to balance out the 

deficiencies and limitations of alternatives 1 and 2. Figure 4-7 shows the proposed 140 locations where 

RWIS stations are recommended to be sited when considering the combined factors. The POM for 

alternative 3 is found to be the highest (i.e., 85%) and the visual inspection also shows that the identified 

cells are better distributed over the entire province than that of alternatives 1 and 2. It is also worthwhile 

to emphasize that the percent of matching is based on the evaluation with respect to the current locations 

of Ontario RWIS stations, and thus does not provide an absolute measure of the performance. 

 

Figure 4-7: Alternative 3 with all factors combined 

4.4.1.3 Summary 

In this section, the surrogate measure based approach (SM) for choosing the potential locations of 

RWIS stations at a regional level has been investigated through a case study. Two types of surrogate 

measures are considered, including three weather related factors (variability of surface temperature 

(VST), mean surface temperature (MST), and snow water equivalent (SWE)) and three traffic related 
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factors (winter average daily traffic (WADT), winter accident rate (WAR), and highway type (HT)).  

The weather criteria are to follow the logic that RWIS should be placed to areas where the weather is 

most severe and varied while the traffic criteria meet the rationale that serving a higher number of 

travelling publics would provide more benefits.  A total of three location selection methods have been 

formulated. Alternative 1 takes account for the weather factors only while alternative 2 includes traffic 

factors only. Alternative 3 is a combination of alternatives 1 and 2. These alternatives are used to 

evaluate the current Ontario RWIS network. The findings have revealed that Alternative 1 is more 

focused on the northern region comprising of highly varying weather conditions, while Alternative 2 is 

more focused on the southern region with heavy traffic loads. The high POM rate of Alternative 2 

indicates that the current RWIS network has been set up in such a way that it predominantly considers 

the need of covering the road network. Likewise, the large difference between the traffic and weather 

related criteria suggests that the RWIS stations may not have been located optimally. Alternative 3 

seems to balance the limitations of the first two alternatives by showing the potential candidate RWIS 

locations across the whole province. It is unknown how much of weight needs to be put on each of the 

criteria discussed here, but it is clear that the proposed framework is easy to apply when planning an 

RWIS network expansion by introducing different weights to individual criteria based on their 

importance. 

 

4.4.2 5Application of the CB Method 

This section shows the application of the cost-benefit based approach (CB) for analyzing the Minnesota 

RWIS network.  Considering the amount of data that need to be prepared, integrated, and processed, 

only the northern part of Minnesota is evaluated, which currently has a total 46 RWIS stations covering 

a road network of approximately 11,500km, as depicted in Figure 4-8. 

The individual RWIS stations and the Minnesota highway network are shown by red circles and yellow 

lines, respectively. Figure 4-8 also shows a grid of cells, each having an area of 30 x 30 km2. This 

spatial resolution was determined based on the survey, which revealed that most states would keep a 

distance of 20 to 50 km between two RWIS stations. Also, Mn/DOT set 30 km as a desired spacing for 

locating RWIS stations, although this criterion is not a requirement and can be adjusted according to 

                                                      
5 This section is based on a published paper: Kwon, T. J., Fu, L. & Jiang, C. (2014). RWIS Stations – Where 

and How Many to Install: A Cost Benefit Analysis Approach, Canadian Journal of Civil Engineering 

(CJCE), DOI: 10.1139/cjce-2013-0569 
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different standards and needs (Rockvam et al, 1998). As mentioned previously, the state highway 

network is used to extract only the cells that intersect with the lines, because others are not considered 

as potential RWIS candidate sites – cells placed on top of the lake area cannot have RWIS stations. It 

should be noted that the methodology discussed in the following section can equally applied to any grid 

size. 

 

Figure 4-8: Case-study area with RWIS stations (red circles) and highway network (yellow 

lines)  

4.4.2.1 Data Processing and Integration 

Three sets of data – maintenance, collision, and traffic data – were provided by Mn/DOT. The data 

were processed and then integrated into one data set for use in later steps. Software used was ArcGIS 

10.1 and QGIS 1.8, primarily for processing and compiling geocoded data and analyzing mapped 

information.  

Maintenance data were received in an Excel file containing all 1,836 winter maintenance event records 

collected over a total of 16 winter months from 2011 to 2013.  Each maintenance record was expressed 

using a unique project identification number along with information on labor, equipment, sand, salt, 
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and brine costs. Using a project ID number as a reference, the results of all available maintenance event 

records were added and averaged to obtain the annual average cost for each maintenance route. Data 

on geocoded base route created for the purpose of mapping the maintenance data were provided by 

Mn/DOT. Using the base route data, the processed maintenance data were joined by matching the 

project ID numbers, and thus became geocoded to be presented on the map.   

Collision data collected over a 5-year period (i.e., 2008 to 2013) contained individual crash records 

with detailed information. Each record listed day, month, year, data reliability, location, and severity, 

number of vehicles involved, type of collision, weather, and surface condition information. As noted 

earlier, it is important to consider only the collisions that can potentially be avoided by the proactive 

and responsive WRM operations using information from (at least partially) nearby RWIS. As such, 

18,360 records were extracted for collisions that occurred during inclement weather conditions such as 

freezing rain and blowing snow, and hazardous RSCs such as wet snow, slush, and ice. Using locational 

attributes (e.g., latitude and longitude), individual collision records were superimposed onto the base 

map, and the sum of all available collisions was calculated for each base route, for a total of 369 

available routes.  

Traffic data consisted of 1369 geocoded annual average daily traffic counts collected over a 10-year 

period starting in 2001. Since the interest in this study focuses on winter seasons, winter average daily 

traffic was calculated by utilizing a simple conversion factor. The conversion factor implemented in 

this study was determined based on the empirical evidence confirming that the magnitude of the 

difference of the average daily traffic between normal days and wintry days being stable and consistent. 

However, it is important to note that the application of the uniform conversion factor for an entire 

analysis region may not be appropriate nor representative as the traffic counts could vary depending on 

the location of analysis. Furthermore, million vehicle kilometers travelled (MVKT), to be used as a 

measure of traffic flow or exposure, was calculated using the following equation: 

                                                                                       4-3 

where Section Length is expressed in kilometers and was determined using a geometry tool available 

in ArcGIS for all routes. Note that a numerical value of 212 (i.e., number of wintry days in one year) 

was used instead of 365 to correctly reflect the wintry traffic exposure.  

000,000,1

212 gthSectionLenAADT
MVKT



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Another important measure used in analysis is the target bare-pavement target regain time (BTRT) of 

a highway route. During winter storms, a winter maintenance schedule requiring staggered work hours 

may be used to provide the level of service recommended. Each maintenance area, district, and division 

develops a schedule of effort needed to achieve target BTRT, thus it can be an essential surrogate 

measure for representing the type of highway. This is particularly important for enforcing pair-wise 

comparisons for constructing RWIS benefit models. By following the bare lane indicator guidelines 

shown in Table 4-1, traffic count data were used to determine the BTRT (e.g., WADT of 1,000 is given 

BTRT of 9 hrs).  

Once completed, traffic data together with three new measures – WADT, MVKT, and BTRT – were 

integrated and merged onto the base routes to form a new database, each measure being expressed in 

terms of base route. These three measures were included in the RWIS benefit-cost modeling phase to 

investigate their degree of implications to the savings from reduced maintenance costs and collision 

frequencies.   

Table 4-1: Bare lane indicator guidelines 

Classification Traffic Volume Bare-pavement Target Regain Time 

Super Commuter Over 30,000 1 - 3 hrs. 

Urban Commuter 10,000 - 30,000 2 - 5 hrs. 

Rural Commuter 2,000 - 10,000 4 - 9 hrs. 

Primary 800 - 2,000 6- 12 hrs. 

Secondary Under 800 9 - 36 hrs. 

 

4.4.2.2 Modeling the RWIS Benefits and Costs  

As previously described, the two dependent variables of interest are maintenance cost and collision 

number expressed as their corresponding base routes for two distinct scenarios: one with RWIS and the 

other without RWIS. The rationale for adopting this method is that a highway section covered by a 

nearby RWIS station is more likely to receive more efficient and cost-effective WRMs than those far 

from RWIS stations. Although RWIS information alone may not provide sufficient information to 

maintenance personnel in their decision-making process, use of additional information (i.e., RWIS data) 

will certainly help provide better estimations, leading to better WRM servicing. This is particularly true 
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when the pavement surface condition forecasts become available to maintenance staff to decide and 

apply anti-icing chemicals before a snow storm hits such that the formation of bonded snow and ice 

layers can be prevented or minimized (C-SHRP, 2000). Furthermore, since the treatment is done 

proactively, a smaller amount of chemical is needed to prevent bonding than when snow and ice already 

exist (Epps and Ardila-Coulson, 1997). Note that the proposed method relies on a reasonable 

assumption that winter maintenance personnel would use RWIS information in their WRM decision-

making process to some extent, which would lead to reduction in maintenance costs and collision 

frequency. This assumption is well supported by several prior studies (Strong and Fay, 2007; Buchanan 

and Gwartz, 2005; Boselly, 2001), and survey results (see Appendix C). 

Figure 4-9 shows the existing RWIS stations, buffered zones, and the roads that are covered or not 

covered by RWIS stations, illustrated by yellow and red circles, and blue and red lines, respectively.  

 
Figure 4-9. Implementation of the proposed method 

As the figure shows, the routes that contain RWIS stations were selected and categorized as routes with 

RWIS, while the rest was assigned to routes without RWIS. Note that for this case study, a buffer zone 

with a 30-km diameter was chosen as in the current practice an average separation distance between 20 
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km and 50 km would typically be used as a guide for installing another regional RWIS station 

(Manfredi, et al., 2005). This assumption was made to best separate the two categories of routes such 

that the effect of RWIS could be properly presented and investigated. Such an assumption may not hold 

true at times, and the maximum range that RWIS could influence may vary by locations. However, the 

underlying methodology for quantifying the RWIS benefits can equally apply, regardless the grid size 

selected for analysis. 

Once the two groups of routes were identified, the data – including length of route, maintenance cost, 

collision frequency, WADT, MVKT, and BTRT – were extracted from the integrated database 

constructed earlier, for further analysis. Two groups of data were then compared and matched according 

to their highway type and location by conducting a pair-wise comparison so as to enforce a fair 

assessment (e.g., the number of roads that are Class 1 in RWIS influenced areas should be equal to that 

in RWIS uninfluenced areas). Multiple linear regression analyses were conducted to develop models 

relating unit maintenance costs and collision frequency as a function of various variables. All variables 

were tested at the 5% significance level to determine the statistically significant factors that affect the 

variation of maintenance cost and collision frequency for the two groups. The resulting equations for 

the two dependent variables are as follows: 

 

                     𝑈𝑀𝐶𝑖
𝑅𝑊𝐼𝑆 = 0.094 × 𝑊𝐴𝐷𝑇 − 52.593 × 𝐵𝑇𝑅𝑇 + 1956.568, 𝑅2 = 53.5%               4-4 

 

                  𝑈𝑀𝐶𝑖
𝑁𝑜 𝑅𝑊𝐼𝑆 = 0.128 × 𝑊𝐴𝐷𝑇 − 29.003 × 𝐵𝑇𝑅𝑇 + 2196.544, 𝑅2 = 45.7%             4-5 

 

                                            𝐶𝐹𝑖
𝑅𝑊𝐼𝑆 = 20.486 × 𝑀𝑉𝐾𝑇 + 1.118, 𝑅2 = 65.8%                               4-6 

 

                                       𝐶𝐹𝑖
𝑁𝑜 𝑅𝑊𝐼𝑆 = 64.872 × 𝑀𝑉𝐾𝑇 + 1.229, 𝑅2 = 61.7%                                4-7 

where UMC and CF are unit maintenance cost in $/lane-km, and collision frequency, respectively. With 

the unit maintenance cost (i.e., UMCi
RWIS and UMCi

No RWIS), the annual maintenance cost of a given 

maintenance route (i.e., MCi
RWIS and MCi

No RWIS) can be expressed as the product of total route lane 

kilometers by the unit maintenance cost. Similarly, the annual collision cost of a given maintenance 

route (i.e., ACi
RWIS and ACi

No RWIS) can be determined by multiplying the collision frequency (i.e., 

CFi
RWIS and CFi

No RWIS) by unit collision cost. According to FHWA’s collision costs (FHWA, 1994) and 
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historical collision data, the unit collision cost was estimated to be $17,472, which was used in this 

analysis. Analyses of these equations and their coefficients show that the highway routes with RWIS 

have lower estimated maintenance costs and lower number of collisions than those of the routes without 

RWIS, clearly indicating the benefits of installing RWIS stations. Note that the resulting equations have 

moderate R-square values, which is expected as there are likely many other factors than the ones 

considered in this study to affect the observed variability in the collision frequency and maintenance 

costs. Collisions are rare events and are often caused by a combination of multiple factors related to the 

driver, the vehicle and the environment.  It should be noted that the benefit and cost models could be 

further improved by considering other potential contributing factors such as savings due to reduced 

patrolling and travel time costs, realized by more effective and efficient winter maintenance operation 

activities. 

 

4.4.2.3 Analysis of Optimal Number of RWIS Stations 

With the explicit account of the potential benefits of a RWIS network, the CB method also provides an 

opportunity to investigate the optimal number of RWIS stations for a given region.  This section shows 

how such an analysis can be performed using the same Minnesota network.  

The costs associated with a RWIS system can be estimated on the basis of various nominal cost statistics 

reported in literature.  Based on the literature, RWIS stations normally last for 25 years and the average 

cost is about $90,000, which includes the costs of utility installation, traffic control, training sessions, 

and contract administration (Buchanan and Gwartz, 2005). In addition, RPU and CPU need to be 

upgraded every 5 years at a projected cost of $10,446. Also, each RWIS station needs to be monitored 

regularly to ensure that the data being collected are correct and that the station is operating well, a task 

that would typically cost $5,460 per year (McKeever et al., 1998). Therefore, the annualized cost for 

installing, operating, and maintaining a typical RWIS station would be $11,149. It should be noted that 

the unit cost of an RWIS station could vary largely over different vendors, and are also dependent on 

many other factors including the type and number of sensors used. The cost items used in the case study 

was based on what is currently available in the literature, and new values can be easily implemented in 

the analysis to see how they would affect the results.  

Figure 4-10 shows the NPV of 25-year life cycle RWIS benefits and costs, and net benefits expressed 

in terms of number of stations, respectively. As clearly depicted in the figure, the optimal number of 
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RWIS stations is 45 stations, given the total benefits from cost reductions in maintenance and collision. 

The number was found simply by taking the difference between the values of two lines, RWIS benefits 

and RWIS costs, at their corresponding number of station; the station having the greatest difference in 

two values was selected as the optimal number. Note that the optimal number found in this study is 

very similar to the current RWIS network, which includes a total 42 RWIS stations.  

 
 

 
 

Figure 4-10: 25-year life cycle RWIS benefits & costs (top), and projected net benefits (bottom) 
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This finding suggests that the proposed method can be used to test the current RWIS setting, examine 

whether it needs a greater or a smaller number of RWIS stations, and recommend where to locate the 

next RWIS stations. As illustrated at the bottom figure, using the defined number, the total net benefit 

over the next 25 years is projected to be approximately $6.5 million. Additionally, using these benefits 

and costs, the cost-benefit ratio is found to be approximately 3.5. Note that the optimal number found 

in this study could have been different if there were changes in the inputs (i.e. cost or life expectancy 

of a single RWIS station as suggested in the referenced literature). However, it is worthwhile to 

emphasize that the method illustrated herein is dedicated to providing a systematic framework, which 

can easily be applied to regions in need of estimating the foreseeable monetary benefits to support their 

decision-making in how many RWIS stations should be deployed. 

 

4.4.2.4 Analysis of Optimal RWIS Location 

In the next step for determining the optimal RWIS station locations, the estimated benefits for both 

maintenance and collision were sorted in descending order such that cells with higher benefits can be 

given priority for consideration over cells with lower benefits. The optimal number of RWIS stations 

found in the previous step was used as a threshold to select the top 45 cells as the optimal RWIS station 

locations in the area being analyzed. Figure 4-11 shows the select top 45 cells (colored cells) 

recommended as the optimal locations, where the highest benefits can be obtained from maintenance, 

collision avoidance, and the combined savings.  

In all sub-figures, it can be seen that the recommended sites are generally well distributed over almost 

entire region except the north part of the state that is relatively less covered by RWIS. This can be 

attributed to the models that do not account for topographical and meteorological variations. Analysis 

of such variations is essential because inclusions of those factors in the models would likely increase 

the explanatory power such that the benefits associated with those variations can be better modeled. It 

is important to note that the foreseeable monetary benefits presented herein may not be perceived as 

absolute benefits that are expected to occur across all different regions with different traffic and weather 

conditions as they could conceivably vary when other evaluation criteria are used.  



 

83 

 
(a) 

 
(b) 

 
(c) 

Figure 4-11. The optimal RWIS station locations using maintenance benefits (a), collision 

benefits (b), and the combined benefits (c) criteria 
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It is worthwhile to emphasize that the proposed method has provided a framework, with which the 

existing RWIS network can be evaluated quantitatively. The underlying work should be regarded as an 

incremental effort to the existing literature in lack of quantitative evidence for corroborating that an 

implementation of such is truly beneficial. Therefore, it is anticipated that the proposed method will 

provide provincial highway agencies with a useful tool they need to evaluate and optimize their RWIS 

network. 

4.4.2.5 Summary 

In this section, the cost-benefit based method (CB) described in the previous section was applied to 

analyze the location and density of the Minnesota RWIS network. The method is the first of its kind to 

attempt to formalize the ultimate benefits of a RWIS network. A case study based on the current RWIS 

network in Northern Minnesota was used to test the applicability of the proposed method. RWIS benefit 

models were developed for two groups of highway maintenance routes representing one covered by 

RWIS and the other not covered by RWIS, using three types of data including maintenance costs, 

collisions, and traffic counts. For data preparation, the study area was divided into 139 equal-size cells, 

and auxiliary information was extracted from individual cells to estimate the annual costs for both 

maintenance and collisions. The 25-year life cycle benefits and costs were then determined using the 

calibrated models and used in identifying the optimal station density and location. The highest projected 

25-year net benefits were found to be approximately $6.5 million, corresponding to a network of 45 

RWIS stations. The corresponding cost-benefit ratio was found to be approximately 3.5. The optimal 

station density was found to be similar to the current density of 42 in northern Minnesota. When 

determining the locations, the benefits based on each criterion have been sorted in a descending order 

to prioritize the cells with greater benefits. The optimal station density was used as a threshold to select 

only the top 45 cells for all three criteria – maintenance, collision and combined benefits – and the 

corresponding POMs were found to be 80%, 75.6%, and 77.8%, respectively. Similar yet high POMs 

indicate that the current RWIS setting is able to provide a reasonably good coverage on all three criteria. 

The findings in this study indicate that the proposed method is methodologically sound and, thus, is 

suitable for analyzing whether a RWIS network of any given region has reached or surpassed the 

optimal density and for recommending where to locate additional RWIS stations if needed. As 

mentioned previously, it needs to be cautioned that the data used and the models developed in this study 

are aggregated on an annual basis such that the factors that would influence the operational decisions 

(i.e., when to perform WRM) may be concealed. However, for the high-level planning purpose, the 
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proposed method could serve as part of a decision support tool for optimizing the needs of RWIS 

stations in terms of their locations and density at a regional level. 

4.4.3 678Application of the SI Method  

The third alternative – Spatial Inference (SI) based approach is formulated on the basis of minimizing 

the spatial inference errors (i.e., kriging variance) of RWIS measurements while maximizing the 

coverage of accident-prone and/or high travel demand areas. This optimization framework takes 

explicit account of the value of information from an RWIS network, providing the potential to enhance 

the overall efficacy of winter maintenance operations and the safety of the travelers. The features of 

this method are demonstrated using four real world case studies from Ontario, Minnesota, Iowa and 

Utah. Note that all the analyses were performed on a Windows operating desktop computer equipped 

with a 3.39 GHz processor and 8.00 GB of RAM, and a series of functions coded in R (R Development 

Core Team, 2008) was used in this study. 

 

4.4.3.1 Sensitivity analysis of the SSA algorithm 

Prior to applying the SI method to the available study areas, it is essential to conduct a sensitivity 

analysis of the optimization parameters such that the values, with which reliable solutions can be 

achieved, can be identified. In this study, a simple one-at-a-time-designs (OATD) sensitivity analysis 

is implemented to quantify the effects of the three SSA parameters on the optimization outputs. The 

three parameters considered include cooling factor (c), absolute temperature (Ta), and probability of 

accepting inferior designs (p). The cooling factor dictates how fast the algorithm cools down and 

controls the rate at which the p decreases to zero. Thus, if the large cooling factor is used, the algorithm 

will cool down slowly whereby reducing the chance of being trapped in a local minima. Absolute 

temperature in this study indicates the stopping criterion, which is given by a number of iterations 

                                                      
This section is based on the following published and submitted papers:  
6 Kwon, T. J., Fu, L., Melles, S., and Perchanok, M. (2015). Optimizing the locations of road weather information 

system (RWIS) stations – a sampling design optimization approach. Proceedings of the XXVth World Road 

Congress, Seoul, Nov 2-6, 2015. 
7 Kwon, T.J., Fu, L., & Melles, S. (2015). Location optimization of road weather information system (RWIS) 

network considering the needs of winter road maintenance and the traveling public. (Submitted to Computer 

Aided Civil and Infrastructure Engineering on July 2015) 
8 Kwon, T.J., Fu, L., & Perchanok, M. (2015). Spatiotemporal variability of road weather conditions and optimal 

RWIS density – Case Studies. Proceedings of the 95th Annual TRB conference, Washington D.C., Jan 10-14 
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without improvement in search of a better design.  The benchmarking parameters of SSA were initially 

set as c = 1000, Ta = 200, and p = 0.2 based on prior studies (Kirpatrick, 1984; Heuvelink et al., 2006; 

Brus and Heuvelink, 2007; Melles et al., 2011). In addition, a total of three different autocorrelation 

ranges including 150km (long), 100km (intermediate), and 50km (short) were utilized to see how they 

would affect the optimization outputs. To reduce the computational time, a synthetic example having a 

total area of 250 km2 was used, and a total number of RWIS stations to be located was fixed to 5. Note 

that the objective function values reported in this section were normalized to enforce a fair comparison 

between the three different range groups. 

First, fix the absolute temperature Ta and the probability of taking on worsening solutions p, and let the 

cooling factor c change in the range of 𝑐 ∈ [10, 1000]. The optimal solutions and the implementation 

time are shown in Figure 4.12. It can be found from Figure 4.12 that the long range would require a 

cooling factor of 700 to obtain a reliable solution. In addition, the intermediate and short ranges would 

require around 100 to converge. This is probably due to the fact that given a longer spatial 

autocorrelation range, a larger number of calculations are required for the algorithm to obtain a reliable 

result. As anticipated, higher the cooling factors are, the more it would take for the solutions to 

converge. For the balance between the solution and the implementation time, the cooling factor can be 

chosen in the range of [700, 1000], which are comparable with the literature since the higher cooling 

factors would yield slow cooling whereby more improved solutions could be achieved  (van Groenigen 

and Stein, 1998; Yang et al., 2009; Pereira et al., 2013).  

   

Figure 4-12: Results in different cooling factors 
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Second, fix the cooling factor c and the probability of taking on worsening solutions p, and let the 

absolute temperature Ta change in the range of Ta ∈ [30, 500].  The optimal solutions and the 

implementation time are shown in Figure 4.13. Similar results were found that a lower value of Ta 

would be required when a shorter range was used than when a longer range was used. The results 

indicate that it would require Ta of 100, 200, and 300 for short, intermediate and long ranges, 

respectively. Similarly, the optimizing running times increase with the values used for Ta, and are 

proportionally related to the length of autocorrelation ranges. This makes intuitive sense as the shorter 

ranges would need lesser amount of computations as opposed to the longer ones. When it is used for 

all-range, the absolute temperature should be chosen in the range of [300, 500]. Again, choosing higher 

Ta values makes intuitive sense since they would provide a higher chance of finding a “better” solution 

than the previously searched and stored solutions, as evidenced by the number of prior studies (Yang, 

2009; Strimbu and Paun, 2012). 

   

Figure 4-13: Results in different absolute temperatures 
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of 0.2 would be recommended for all ranges, which agree with the literature (Kirpatrick, 1984; 

Heuvelink et al., 2006; Brus and Heuvelink, 2007). 

   

Figure 4-14: Results in different probabilities 

Therefore, the three SSA parameters, namely, the absolute temperature Ta and the cooling factor c, and 

the probability of accepting worsening designs p are set based on the results obtained in this section 

when running the spatial inference (SI) based optimizations.  

 

4.4.3.2 All-new optimal RWIS network 

This section conducts an analysis of the hypothetical problem of relocating the entire set of existing 

RWIS stations for each of four regions. The objective of the exercise is to gain valuable information 

with the current location settings and simulate how optimal locations will change when assigning 

different weights to the two different criteria considered in this study. As discussed earlier, the greatest 

benefit of the proposed approach is its ability to simulate and optimize RWIS station locations under 

any given settings that users define. This ability is advantageous as the costs associated with 

establishing any monitoring stations are very high (Chang et al., 2007). Likewise, it provides decision 

makers with the freedom to choose different weights depending on the needs of the traveling public, 

winter road maintenance requirements, and their respective priority in locating RWIS stations.  

The square root of kriging variance of HRSC frequencies as well as the collision frequencies discussed 

in Section 3.2.3 were implemented as the dual criteria in the objective function to maximize the 
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monitoring capability of hazardous surface conditions, and the coverage of accident-prone areas. A 

uniform grid of 1km by 1km was used as the minimum spatial unit in all optimization performed in this 

section. The RWIS network optimized under two different scenarios (weather only, and weather and 

traffic combined) is presented in Figure 4-15.  In this figure, the optimized RWIS stations are denoted 

by green circles. Due to unavailability of collision data across the entire region of Utah, another traffic 

criterion representing highway class has been used instead. The aggregated collision frequencies and 

kriged HRSC measurements are superimposed on the same map to help better appreciate and recognize 

how assignment of different criteria could contribute to deciding the optimal location for an individual 

RWIS station. It is worthwhile to note that for each scheme, the optimization was run three times and 

the outputs were visually compared to confirm that the optimization outputs were very similar and 

comparable to each other. The intent of multiple tryouts was to ensure that the SSA algorithm had 

reached a (near) optimal solution without being trapped in local minima; an inherent problem of the 

SSA algorithm and all other metaheuristic algorithms currently available today.  

Figure 4-15 (Column Crit1) represent a case when kriging variance is solely used in the objective 

function to minimize the spatially averaged kriging variance. In all of these figures, it is evident that 

RWIS stations are concentrated at locations with high HRSC occurrences, particularly in the darker 

areas representing a high occurrence of hazardous road surface conditions, without offering much 

consideration to the travelling public. It is also clear that sites are well distributed over the entire study 

regions maximizing the coverage at a global scale. In the right-hand side of Figure 4-15, the traffic 

criterion (i.e., Crit 2), representing vehicular collision (or road class for Utah), has been added to the 

first criterion with equal weights. As can be seen clearly, incorporation of the traffic criterion was able 

to capture high travel demand areas, providing an improved balance. Such a difference in its pattern is 

well manifested; a higher number of RWIS stations have been allocated to areas exposed to higher 

traffic demand. Note that the locational attributes (i.e., lat/long) of the all-new RWIS sitting plans are 

provided in Appendix A of this thesis. 

As for the iteration schedule of the performed optimizations, Figure 4-16 illustrates the decrease of the 

dual objective function as the number of iterations increases for three runs (i.e., Minnesota case). It is 

apparent after around 6,000 iterations, the objective function for all runs starts to level off and slowly 

reaches its minimum value as evidenced by the lower value obtained at the 10,000th iteration.   
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Figure 4-15: All new optimized RWIS station locations 
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Figure 4-16: Decrease of the combined objective function as a function of iterations (Minnesota) 

As explained previously, the SSA algorithm has a mechanism that reduces the risk of falling 

prematurely into local minima, provided that there is a certain probability and a decaying function 

controlling how fast the objective function converges. Such behavior is well presented by the 

continuous fluctuations and peaks observed until it stabilizes at around 6,000 iterations.  In terms of 

computational efficiency, optimization took an average running time of approximately 9 hours for 

optimizing each given network. 

To evaluate the overall efficacy of each optimized network (Fig. 4-15) with respect to the existing 

network (Fig. 4-1), the objective function was used to calculate its corresponding numerical value for 

all individual outputs as well as the current RWIS network. This evaluation metric is simply the lowest 

value obtained at the end of each optimization. For the existing network, a comparable yet equivalent 

approach is exercised by adding the averaged kriging variance and vehicular collision frequency given 

the current RWIS station locations. Table 4-2 below compares the lowest objective function value 

(three runs) associated with each optimal solution and the current network, along with percentage of 

improvement  (i.e., percentage of differences between the base and the optimal scenarios). As expected, 

percentage of improvement, which can also be interpreted as perceived benefits, was found to vary 

between 11% and 16%, signifying that the optimized networks are “better” in terms of monitoring 

capabilities of various hazardous road surface conditions while considering the needs of serving the 

traveling publics, as defined in the objective function. 
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Table 4-2: Comparison of objective function values of the optimized and current networks. 

Scenarios 
Obj. Function 

Optimized / Base Case 
% Improvement 

Ontario  0.4154 / 0.4771 12.94% 

Iowa 0.7425 / 0.8748 15.12% 

Minnesota 0.6854 / 0.8182 16.23% 

Utah 0.7921 / 0.8942 11.14% 

 

4.4.3.3 Expansion of current RWIS network 

In the previous section, the proposed method was applied to delineate optimal locations for the entire 

existing set of RWIS stations. This section shows how to apply the proposed method to develop 

expansion plan for the four regions. The optimization problem was modified to reflect the changes in 

the base condition. The objective function is evaluated at each iteration considering that there are 

permanently fixed RWIS stations (existing) throughout the entire optimization process. Identical 

optimization parameters and weighting schemes (w1 = w2 =1) were used to locate 20, 40, 60 additional 

RWIS stations (green circles) for all four study areas, and the locations of 20 stations are depicted in 

Figure 4-17. Note that the optimization results for 40 and 60 additional RWIS stations locations are 

provided in Appendix B of this thesis. 

As can be seen in this figure, if the location optimization objective is to minimize the total kriging 

variance, new stations would be located in the vicinity of existing stations (cyan circles). Likewise, 

incorporation of the traffic criterion was able to capture high travel demand areas (shown in red-colored 

areas), providing an improved balance. From a visual inspection, it can be asserted that new stations 

nicely fill gaps in the existing RWIS network. Furthermore, evaluation of objective function values 

show that the current network of Ontario, Iowa, Minnesota, and Utah was improved in terms of the 

defined objective function by 14.7%, 15.9%, 16.3%, 13.6% , respectively with the placement 20 

additional stations. 

It is worthwhile noting that the optimization formulation developed herein is able to leverage the 

existing RWIS network in neighboring states, for instance, to further improve the forecasting and 

monitoring capabilities of regional weather conditions. 
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(a)            (b) 

 
(c)                     (b) 

Figure 4-17: Placement of 20 Additional RWIS Stations for (a) Ontario, (b) Iowa, (c) Minnesota, and (d) Utah 
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4.4.3.4 Optimal density and its relationship to spatial variability 

The aim of this section is to investigate the hypothesis that the optimal RWIS density or spacing for a 

region is dependent of the spatial variability of the road weather conditions of the region.  To examine 

this hypothesis, a geostatistical approach introduced earlier is implemented to characterize the spatial 

variability of a variable of interest over a given region, which is subsequently applied to determine the 

corresponding optimal RWIS density or spacing for the region. To fulfill this task, topological and 

climate patterns of the four study areas under analysis are first characterized and compared. Without 

loss of generality, road surface temperature (RST) is selected as the variable of interest to represent the 

overall road weather conditions. The data came stratified by individual stations each containing 

measurements including the variable of interest – road surface temperature (RST). To assure the 

validity of the data, a data quality check was performed and definite outliers (i.e., -9999 oC) recorded 

as a result of sensor malfunctions were removed. The data from the four study areas together contained 

nearly 80 million rows of data; hence VBA scripts were written to process the entire datasets, returning 

a seasonal and a monthly average of RST stratified by station. These processed datasets will be an input 

to constructing a semivariogram model on two different temporal units, monthly and seasonal. 

For each region, a semivariogram model discussed in the previous sections is constructed to determine 

the spatial variability of RST, especially, autocorrelation range – a separation distance at which the 

measurements are no longer correlated to each other. In addition, an optimal RWIS density is 

determined through an optimization process that minimizes the total condition inference errors across 

the underlying road network.  

To investigate the spatial correlation range of the RWIS measurement, the processed RST data were 

implemented as per the general modelling guidelines discussed earlier. Locational attributes (i.e., 

latitude and longitude) of each RWIS station were extracted and implemented to de-trend any existing 

patterns. Semivariogram models were calibrated using R with packages gstat (Pebesma, 2004) and 

automap (Hiemstra et al., 2009). 

Figure 4-18 shows the sample and fitted semivariogram models using the seasonal RST data and Table 

4-3 provides a summary of semivariogram model parameters including sill, nugget, and range, and 

cross-validation results illustrating the accuracy of the fitted models for both monthly and seasonal 

data.  
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Figure 4-18: Sample and fitted semivariogram models for four regions 

(a). Ontario 

(b). Iowa 

(c). Minnesota 

(d). Utah 
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Table 4-3: Summary of Semivariogram Parameters and Cross-validation Using Monthly and 

Seasonal RST for All Study Sites 

State 
Month/ 
Seasonal 

Model 
Model Parameters Cross-validation 

Nugget Sill Range (km) MAE COR RMSE 

Iowa 

Oct Sph 0.00 1.10 88.96 0.60 0.70 0.98 

Nov Gau 2.20 3.20 142.71 1.37 0.51 1.70 

Dec Exp 0.43 5.90 106.08 1.25 0.46 2.19 

Jan Sph 0.00 2.12 100.16 0.63 0.67 1.02 

Feb Sph 0.00 1.14 111.63 0.67 0.77 1.02 

Mar Sph 0.00 1.66 61.95 0.90 0.69 1.33 

Seasonal Sph 0.00 0.58 90.48 0.57 0.86 0.81 

Utah 

Oct Gau 0.00 9.70 21.39 2.60 0.42 3.41 

Nov Sph 0.46 3.42 50.29 1.34 0.55 1.69 

Dec Gau 2.30 5.40 33.74 1.59 0.42 2.22 

Jan Gau 0.68 2.40 37.31 1.10 0.55 1.46 

Feb Gau 0.88 2.70 40.12 1.10 0.63 1.43 

Mar Gau 1.10 5.90 26.71 1.55 0.62 1.94 

Seasonal Exp 0.27 2.78 40.47 1.24 0.53 1.55 

Minnesota 

Oct Sph 0.00 2.70 62.68 1.31 0.60 1.87 

Nov Sph 0.37 5.00 133.60 1.41 0.25 2.65 

Dec Gau 0.00 5.50 83.59 1.22 0.68 2.23 

Jan Sph 1.60 3.50 116.26 1.02 0.60 2.02 

Feb Sph 0.00 0.47 114.31 0.52 0.90 0.71 

Mar Sph 0.27 2.80 78.99 1.20 0.59 1.94 

Seasonal Sph 0.00 0.94 95.47 1.15 0.75 2.14 

 Oct Gau 0.00 6.50 43.21 1.83 0.55 3.07 

 Nov Gau 1.20 4.30 97.29 2.97 0.64 2.49 

 Dec Gau 0.65 3.40 102.50 1.43 0.87 2.01 

Ontario Jan Sph 0.00 1.90 99.29 1.22 0.90 1.64 

 Feb Sph 0.42 1.90 70.28 1.19 0.88 1.76 

 Mar Gau 0.00 2.70 59.76 0.86 0.85 1.10 

 Seasonal Gau 0.12 1.27 72.84 1.15 0.72 1.64 
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MAE and RMSE represents mean absolute error and root mean squared error. COR indicates the 

correlation between the predicted and observed values (ideally 1). As anticipated, spatial correlation of 

RST at Iowa and Minnesota (Figure 4-18 (b & c)) having relatively less varied topography is shown to 

have a longer spatial correlation range suggesting that on average, the RST measurements at those two 

regions vary less (thus more predictable) when compared to those at Utah, which undergoes a more 

varied topography. In addition, Ontario, which has a moderate topographic variability, has a spatial 

correlation range falling between the ranges of other three regions. Likewise, the spatial structure of 

RST from Utah is less stable and tends to fluctuate in a greater range (in y-axis) as the separation 

distance increases, whereas the other two regions have a less fluctuation of semivariances contributing 

to the higher prediction power.  

Another inference that can be made by observing the resulting statistics is that for all four regions, the 

discrepancies tend to be relatively higher for shoulder months (i.e. October and March) than non-

shoulder months (i.e. November, December, January, and February). This could be due to the fact that 

the weather patterns typically vary in a wider range over these shoulder months, making it more difficult 

to have accurate predictions. Furthermore, during these months, spatial continuity of the weather-

related variable (RST) is also affected, resulting in a shorter range. The mean range using the monthly 

data for Ontario, Iowa, Utah, and Minnesota are found to be 78.72km, 101.91km, 34.93km, and 

98.24km, respectively, which generally agree with the average ranges found using the seasonal data 

(72.84km, 90.48km, 40.47km, and 95.47km for Ontario, Iowa, Utah, and Minnesota, respectively). 

Slightly different ranges resulted from using the monthly data could be due to the generalization or 

aggregation of all monthly RST data. 

In the next step for determining the optimal density, the proposed optimization model was first 

implemented in designing an optimal RWIS network using the kriging variance of the seasonal RST 

data as an optimization criterion (i.e., minimization of kriging variance). For each region, the 

constrained optimization was run in an iterative fashion by adding one additional RWIS station to the 

network and its corresponding fitness value was recorded. The optimization continued until the total 

number of stations reached 350 – an arbitrary number ensuring that the key pattern in error-density 

relationship is fully revealed. For each study region, the average running time was approximately 3 

days by a window operating desktop computer running with a 3.39 GHz processor and 8.00 GB of 

RAM. ArcGIS 10.2 (ESRI, 2011) and Q-GIS (Quantum GIS Development Team, 2011) were used to 
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process all the geo-spatial data and R (R Development Core Team, 2008) was used as a base platform 

for running all the optimization in this study  

To enforce a valid and fair comparison, the fitness values were normalized and the number of stations 

added to the network was converted to two distinct measures - the number of stations per unit areas 

(100km by 100km) and the number of stations per unit highway length (100km). The normalization 

was necessary because the total area (and length) of each study area was different, thus comparing the 

fitness value directly to the number of stations added will not be considered valid. The two different 

density measures considered in this study provide transportation agencies with the freedom of choosing 

a different measure of units depending upon the type of analyses to be conducted. For instance, if the 

analysis is intended for a rural area having a smaller size of road network, the use of the number of 

stations per unit highway length would be considered a more preferable choice as the other measure 

would suggest an overly high number of stations to be installed.  

Figures 4-19 and 4-20 show the comparison of RWIS density charts for all four regions, expressed as 

a function of the two different analysis units. A quick visual inspection of the two figures shows that 

Iowa and Minnesota having a similar topographic characteristic (less varied topography) requires a less 

number of stations per unit area of 10,000km2 (and per unit length of 100km), while Utah (more varied 

topography) requires a considerably more number of stations to achieve the comparable objective 

function values. Likewise, Ontario with moderately varied topographic characteristics requires a higher 

number of RWIS stations than Iowa and Minnesota but a fewer number than Utah.  Another important 

conclusion that can be drawn is that regions with a longer spatial continuity (Iowa and Minnesota as 

defined in semivariograms) will require a less number of stations to cover the same area (and the same 

highway length) than a region with a much shorter spatial continuity (Utah). This makes intuitive sense 

since the measurements taken at a less varied topographic region will be able to represent a larger area 

and length.  

Given the shape of the all four curves, it is quite challenging to pin point the optimal density. Instead, 

a rate of change was calculated for every point and when the change was around 5% (again, an arbitrary 

number selected for a comparison only), the corresponding density was considered as optimal. As a 

result, Iowa, Minnesota, Ontario would require 2.0, 2.2, and 2.9 stations per every 10,000km2, 

respectively, whereas Utah would need 4.5 stations to cover the same area, indicating that a 

topographically varied region will likely need about 2 times more the number of RWIS stations required 
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by a less varied region. When the unit length is used, Iowa, Minnesota, Ontario would require 0.7, 0.8, 

and 1.0 stations per every 100km, respectively, whereas Utah would need 1.6 stations to cover the same 

length of a highway section. 

To further test the aforementioned hypothesis, the relationship between the optimal number of RWIS 

station required per unit area/length and the semivariogram parameter - range is examined, as illustrated 

in Figures 4-21 and 4-22. Although the relationship relies on a small number of case studies, it reveals 

a clear linkage between the two measures, demonstrating the usability of the correlation range in any 

given area (and length) for conveniently determining the station density. For instance, if the analysis of 

interest is the number of stations per unit area, a region with 60km range (for the given variable of 

interest) would require, on average, 3.5 RWIS stations per every 10,000 km2 so as to have an adequate 

coverage. Similarly, if the analysis of interest is the number of stations per unit length, a region with 

the same range would require 1.3 RWIS station per every 100 km. There is no doubt that more case 

studies are required to obtain a promising result, it certainly provides valuable information, particularly 

for highway authorities initiating a state-wide RWIS implementation plan. 

 

4.4.3.5 Summary 

In this section, an innovative framework was introduced for the purpose of locating RWIS stations over 

a regional highway network. In the proposed method, the weighted sum of average kriging variance of 

hazardous road surface conditions (HRSC) was used to determine the optimal RWIS network design.  

This method relies on a sensible assumption that minimizing the total estimation error would, in due 

course, contribute to improving the global effectiveness and efficiency of winter road maintenance 

operations. Road traffic data were also incorporated and weighted to provide a balanced network that 

considers demands of the traveling public. Case study based on four study regions exemplified two 

distinct scenarios – redesign and expansion of the existing RWIS network. Findings indicate that 

optimally redesigned RWIS networks are, on average, 13.58% better than the existing RWIS network. 

The study further revealed that the deployment of 20 additional RWIS stations would improve the 

current network, on average, by 15.13%, respectively.  
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Figure 4-19: A comparison of RWIS density charts – per unit area (10,000km2)  

 

 

Figure 4-20 : A comparison of RWIS density charts – per unit length (100km) 
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Figure 4-21: A linear relationship of range vs density (per 10,000km2) 

 

 

Figure 4-22: A linear relationship of range vs density (per 100km) 
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Sensitivity analysis was conducted to determine the sensitivity of the optimization parameters including 

cooling factor (c), absolute temperature (Ta), and probability of accepting an inferior design (p), and 

further investigate how the change of each parameter would affect the optimization outputs. A synthetic 

study area was used to locate a total of five RWIS stations. The findings indicate that to maintain the 

balance between the solutions and the implementation time, the values of c, Ta, and p should be chosen 

in the ranges of [700, 1000], [300, 500], and [0.2, 0.3], respectively. 

Additional study was conducted to determine the spatial continuity of road surface temperature (RST). 

To do so, the spatial structure of RST for each region was quantified and modelled via semivariogram. 

The findings suggest that the regions with less varied topography (Iowa and Utah) tend to have a longer 

spatial correlation range than the region with more varied topography (Utah). As such, a number of 

RWIS required to have an adequate coverage was found to be 2.0, 2.2, 2.9, and 4.5 per 10,000km2, and 

0.7, 0.8, 1.0, and 1.6 per 100km, for Iowa, Minnesota, Ontario, and Utah, respectively. The results 

indicate that a more topographically varied region would require a higher number of stations to provide 

a comparable coverage over a less varied region.  

The overall findings of this study show that the new approach is easy and convenient to implement, 

thus appropriate for real-world applications by integrating key features (road weather and traffic) 

considered in practice.   
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Chapter 5 

CONCLUSIONS AND FUTURE RESEARCH 

Acquiring timely and accurate information on road weather and surface conditions during winter 

seasons has long been considered indispensable for highway authorities, who are responsible for 

efficient winter road maintenance (WRM) operations. Better information leads to more effective WRM 

operations, in return, improve the safety and mobility of road users. Road weather information systems 

(RWIS) have gained much attention and become popular over the last decade amongst highway 

authorities for its capability to provide information required to sustain their road network in a safe 

condition. However, RWIS stations are expensive to install and operate, and thus can only be installed 

at a limited number of locations. Due to the uncertainties associated with winter road weather and 

surface conditions, RWIS stations must be placed strategically to ensure that they are most informative 

in providing the inputs required for stimulating competent winter maintenance operations and provision 

of timely information to travelers.  

This thesis has attempted to tackle this challenging problem of RWIS network planning process by 

proposing and developing three distinct approaches, providing all-new alternatives dedicated to finding 

the optimal location and density over a regional highway network. This chapter highlights the main 

contributions of this research with directions for future research. 

 

5.1 Major Contributions 

This section provides a set of major contributions of this research and they are as follows:  

 Synthesization of the current best practice and guidelines for planning RWIS network: 

This research provided a detail literature review including a comprehensive and systematic 

examination and classification of the existing approaches and methods, and survey results 

based on 25 municipal and provincial transportation agencies, offering new insights into the 

current best practices and technologies being used in real-world situations. 

 Formalization and implementation of heuristic surrogate measure (SM) based method 

for locating RWIS stations: Two types of location ranking criteria are proposed as an attempt 
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to formalize various processes utilized in the current practice, including weather related factors 

and traffic related factors such as winter average daily traffic, winter accident rate, and highway 

type. Consideration of these two types of factors captures the needs to allocate RWIS stations 

to the areas with the most severe weather conditions and having the highest number of traveling 

public. A total of three location selection alternatives have been evaluated: alternatives 1 and 2 

take into account weather and traffic factors. Alternative 3 is a combination of alternatives 1 

and 2. The resulting models and solution processes are new in the literature, which generalize 

the existing methods and are easy to be applied for solving real world problems and be extended 

with any new decision measures. 

 Development of a cost-benefit (CB) based approach to the RWIS location problem: The 

cost-benefit based approach proposed in this thesis is the first of its kind to attempt to formalize 

the ultimate benefits of RWIS data, namely, improving the efficiency of the winter road 

maintenance and mitigating the negative impacts of winter weather such as safety and mobility. 

This approach assumes that data related to weather, traffic and costs of winter road maintenance 

operations are available for modeling the differences in maintenance costs and road safety 

between highways covered by RWIS and those without RWIS coverage. A regional RWIS 

cost-benefit based location optimization model has been developed and used in determining 

the candidate RWIS station locations, which for the first time provides decision makers with a 

platform to quantify the benefit-to-cost ratio of any given investment (RWIS installation) and 

make an explicit trade-off between costs and benefits. 

 Development of a spatial inference (SI) based location optimization approach: This 

approach adopts the idea from spatial sampling theory which considers the spatial variability 

of a measurement (e.g. hazardous road surface and weather conditions) in determining the 

optimal sampling designs. The application of this sampling idea for determining the RWIS 

stations provides an all new alternative to the previous two approaches with improved 

generalization potential. This approach is formulated on the basis of the assumption that an 

increase in monitoring capability will contribute to enhancing the effectiveness and efficiency 

of WRM operations. In addition, the method offers unique features of taking into account of 

the dual criteria representing the value of RWIS information for spatial inferences and travel 

demand distribution. When estimating the condition of any particular location, the method 

accounts for spatial interaction of multiple RWIS stations. The method presented herein is the 
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first in the literature targeted at simulating and optimizing RWIS station locations under any 

given settings, providing decision makers with the freedom to balance the needs of the traveling 

public, winter road maintenance requirements, and their respective priority in locating RWIS 

stations. 

 Investigation of spatiotemporal characteristics of road weather condition factors: An 

investigation of spatial autocorrelations of road weather condition parameters on two temporal 

units reveals that the range - a separation distance at which the measurements are no longer 

correlated to each other, are strongly correlated with unique topographical features of the study 

areas under analysis. The findings documented herein provide very important piece of 

information suggesting that the regions with less varied topography tend to have a longer spatial 

correlation range than the region with more varied topography.  

 Establishment of RWIS sitting guidelines: The method of determining the optimal density 

(number of stations required per unit area and per unit length) in a given region required to 

provide adequate coverage is new – the first of its kind that provides transportation agencies 

with a tool that helps them determine the optimal density of one of the most important 

transportation sensor infrastructure - RWIS network. The core research finding is summarized 

in multiple RWIS density charts providing an easy way of determining the optimal density at a 

region. Although the relationship relies on a small number of case studies, it reveals a clear 

linkage between the two measures, demonstrating the usability of the correlation range in any 

given area for conveniently determining the station density.  

 Development of a web-based RWIS station location allocation optimization service - 

www.LoRWIS.com: An application has been created offering unique services to RWIS 

planning transportation agencies with a user-friendly web environment, as depicted in Figure 

5-1. The main service includes RWIS deployment planning, providing all-new optimal RWIS 

expansion scenarios. It also provides an option of choosing different weights for the 

optimization criteria considered, and a map tool that gives an easy-to-use visualization option. 

Other services include weather pattern analysis and traffic data analysis. 
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Figure 5-1: A web-based RWIS deployment planning and analyses tool – www.LoRWIS.com 

 

5.2 Recommendations for Future Research 

The following is a list of recommendations on the possible extensions to this research. 

 For SM approach, first, VST and MST models can be improved by utilizing a geostatistical 

interpolation technique such as kriging. Several studies have found that kriging would provide a 

better estimation than regression, especially when variables are spatially dependent on each other 

http://www.lorwis.com/
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(Hengl et al., 2003; Mesquita and Sousa, 2009). In addition, methodical guidelines need to be 

established for determining a number of RWIS stations to be allocated within a cell. This is 

particularly important for DOTs wanting to install more than one RWIS station within, for instance, 

as used herein minimum spatial unit of 50 km2 to enhance and extend their monitoring capability 

and spatial coverage. 

 

 For CB approach, first, savings from other sources such as patrol savings and travel time savings 

should be quantified and added to the maintenance and safety benefits to facilitate a more complete 

analysis. Second, road weather and land-use information should be incorporated in the modeling 

process to take account for the effects of topographical and micrometeorological variations on 

RWIS benefits and costs. Third, since the use of a buffer zone with a 30-km diameter can be 

questionable, a geospatial analysis is required to spatially examine the extent to which the effect 

of an RWIS station would last, and adjust the parameter accordingly. Fourth, as the costs of a 

single RWIS station could vary depending on many criteria, a range of different values should be 

tested and validated to see how it would affect the findings.  

 

 For SI approach, first, other variants of kriging, such as regression kriging or universal kriging 

(Bourennane el al., 2000; Hengl et al., 2004; Amorim et al., 2012), can be used to take into account 

auxiliary variables in order to obtain more accurate and detailed results in modeling the trend 

component of the regionalized random variable (e.g., HRSC measurements). Second, other 

heuristic algorithms including greedy algorithm (Cormen et al., 2001; Baume et al., 2011), 

genetic algorithm (Arifin, 2010), and tabu search (Glover and Laguna, 1997) should also be 

explored and tested. Third, in addition to the global performance measure used in this study, it 

would be worthwhile to use and/or develop another evaluation metric that quantitatively examines 

the degree of similarities (e.g., spatial/areal overlap analysis) between the optimized and existing 

network. This will provide a more definite measure of appreciating the similarity or closeness of 

one network design to another.  

 

 SI approach developed in this thesis deals with a single domain – space, and because almost all 

environmental variables, including the RWIS measurements, have a strong tendency to vary both 

in space and time, an incorporation of additional variable namely time is considered important to 

generate more sensible solutions. The use of this so-called space-time kriging has gained 



 

109 

popularity over the past decade due to its renowned capability of capturing the variability of an 

environmental parameter over two important domains - space and time (Gething et al. (2007); 

Heuvelink and Griffith (2010); Cressie and Wikle (2011)), and should therefore be explored and 

implemented in the RWIS station location allocation optimization process.  

 

 Lastly, more case studies should be conducted to investigate the generality and sensitivity of the 

model results to external conditions including network size, size of grid, and input parameters 

including use of other traffic variables (accident rates/frequencies, annual average daily traffic), 

and weather variables (snow intensity, road surface temperature). 
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Appendix A - All New Optimized RWIS Network 

Locations of All-New RWIS Stations – Single Criterion [Crit1] 

Station  
Number 

Ontario Iowa Minnesota Utah 

x y x y x y x y 

1 -79.1696 43.1603 -94.7426 41.0132 -94.2698 46.8998 -110.3500 39.2990 

2 -82.2211 42.3332 -96.3190 42.4893 -92.5713 47.4999 -110.2134 38.9847 

3 -74.6003 45.5018 -93.5756 42.1868 -95.6312 44.0682 -111.8595 40.7189 

4 -76.0756 45.3178 -93.7795 41.0237 -93.3941 45.6372 -112.1474 39.2278 

5 -80.9250 48.5453 -91.8633 42.4528 -94.0561 46.0380 -110.8048 39.5840 

6 -82.0626 45.9445 -91.1575 41.6331 -96.5044 47.3391 -112.3288 41.8055 

7 -79.7915 47.3496 -95.8723 41.5579 -93.1782 44.8886 -113.0790 37.6956 

8 -79.9161 47.8557 -94.2625 42.0192 -95.5340 44.4215 -112.5228 41.8961 

9 -94.8048 49.7137 -93.3143 40.7557 -96.6708 46.8749 -112.4241 40.6830 

10 -86.0894 49.7849 -93.5416 42.4572 -95.1072 44.0790 -111.8393 39.7463 

11 -80.3644 43.6964 -94.3871 41.0720 -96.3427 44.7247 -111.5165 41.0370 

12 -75.6209 45.0558 -95.7877 41.2628 -95.9582 47.5165 -109.3815 38.1655 

13 -91.9715 48.7256 -95.8046 42.4782 -93.4370 46.2040 -111.9508 40.6931 

14 -79.7639 43.6026 -94.2471 43.0730 -91.7646 47.9260 -111.6601 41.0405 

15 -80.6232 48.5916 -93.6119 41.5980 -96.3550 43.6170 -111.6452 40.1758 

16 -82.6337 42.0680 -91.8498 43.1821 -96.0154 45.7060 -112.6149 38.1469 

17 -84.3280 46.6666 -92.6257 43.0792 -92.8989 45.3633 -111.4042 40.9877 

18 -81.0655 49.0599 -95.7994 40.6951 -94.0879 43.6611 -111.7088 40.7542 

19 -84.2000 49.7437 -93.6226 43.2672 -96.3829 46.0468 -109.5981 40.3884 

20 -74.6900 45.0653 -90.6965 42.4353 -94.2228 44.7941 -112.2014 41.7111 

21 -92.9553 49.8151 -93.5689 41.4303 -95.6494 43.6356 -112.0143 41.2243 

22 -91.5023 48.7121 -92.8879 40.7290 -93.4507 47.8507 -111.8016 40.3691 

23 -80.1618 48.0751 -91.7739 43.2894 -95.4494 45.0985 -112.5151 38.8013 

24 -93.0823 48.7169 -90.6986 42.5323 -93.0091 44.8817 -109.4841 37.5001 

25 -94.2699 49.7302 -91.0958 42.4967 -92.6374 43.5577 -113.2015 40.7225 

26 -77.3022 45.8820 -95.3961 41.3257 -94.6815 48.7030 -110.8061 38.8658 

27 -78.9587 45.3543 -91.2530 42.0939 -94.4317 44.0355 -111.6134 40.7553 

28 -79.9308 43.1536 -95.1903 42.6536 -94.5477 48.3271 -112.6201 38.4877 

29 -80.5248 43.4942 -93.4985 41.6198 -91.4869 43.5212 -112.7807 41.9732 

30 -79.2357 42.9142 -92.4235 41.0249 -94.0218 44.1479 -111.7283 38.9150 

31 -79.3249 44.9605 -92.5617 41.7011 -91.3857 47.1924 -111.1039 39.2567 

32 -81.3021 42.8273 -92.4812 42.7275 -92.0098 43.6035 -112.4905 38.5908 

33 -86.8901 48.7756 -90.2102 41.8842 -96.2268 47.9952 -112.7002 37.2211 

34 -79.7941 45.0686 -93.9002 42.0226 -92.8958 44.5036 -109.2998 37.8717 
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35 -85.1516 48.5185 -91.1445 40.8222 -90.8559 47.5617 -111.5066 40.7297 

36 -76.8740 45.6248 -96.0915 42.9999 -94.9796 43.6221 -112.8828 37.8370 

37 -78.3460 44.2657 -95.0045 41.4142 -94.2769 45.5227 -112.2523 39.1190 

38 -80.0748 43.9195 -92.6361 41.2960 -91.4020 43.9252 -109.9358 37.6012 

39 -80.8631 43.0211 -95.8009 43.2076 -94.7493 47.1094 -112.0380 40.7694 

40 -79.8055 43.3141 -91.5672 41.0174 -96.3742 45.2639 -111.7780 41.1327 

41 -92.5182 49.6896 -93.7862 41.5911 -92.5213 44.1515 -112.0205 41.1251 

42 -93.9156 49.0972 -92.3737 42.4838 -95.5424 45.4745 -112.3751 38.5467 

43 -88.6413 48.6780 -92.9218 42.0261 -92.8912 46.9068 -112.3523 38.9495 

44 -81.3063 48.5055 -91.3520 42.4736 -93.6648 45.7439 -112.0625 41.5369 

45 -84.3571 46.8847 -95.8569 41.2071 -93.9143 44.4729 -109.6077 37.2540 

46 -83.6429 49.6864 -90.5826 41.5954 -93.2539 48.6071 -112.7488 40.7569 

47 -79.3293 45.5402 -93.2155 43.1337 -95.9270 46.1359 -112.6601 38.3761 

48 -82.3371 42.9918 -93.1378 41.3235 -93.0092 45.7728 -111.5130 38.7980 

49 -90.7125 49.1160 -94.6906 43.1214 -93.3436 43.6388 -109.6900 38.9514 

50 -89.1186 48.8310 -94.1993 42.5062 -94.9220 47.5116 -111.3478 38.7676 

51 -78.5391 43.9211 -94.6478 41.5009 -95.4322 44.6938 -111.8294 39.8918 

52 -80.9529 43.9501 -93.8470 40.7259 -94.2131 47.8722 -111.2751 41.0681 

53 -78.1836 45.4987 -91.5535 41.6388 -92.4071 44.3130 -112.5955 38.6603 

54 -79.6482 44.6908 -93.5715 41.7275 -95.3688 45.9103 -111.9092 39.6138 

55 -79.6367 44.1218 -95.1697 43.1133 -93.3112 44.5572 -109.0933 39.1904 

56 -85.9824 48.6907 -92.8093 43.2958 -92.8484 48.1214 -113.7460 39.0618 

57 -84.8049 48.0906 -91.8960 42.6693 -96.3389 43.9956 -109.3432 38.9789 

58 -89.8955 48.8025 -93.5739 41.9977 -92.7849 43.8822 -111.9315 38.8792 

59 -76.7716 44.2807 -93.7271 42.7263 -96.0206 45.0848 -110.0455 38.9495 

60 -90.3334 48.6655 -92.0213 41.6707 -93.2757 45.0434 -111.9916 39.4741 

61 -79.5364 43.7142 -95.3361 41.6511 -93.9514 46.7139 -111.9386 41.0156 

62 -79.4569 43.1879 -90.6378 42.0559 -93.3559 44.9307 -112.3002 40.6674 

63 -94.1851 48.7063 -95.3861 42.0284 -94.9959 45.2153 -109.4397 37.6580 

64 -94.0573 49.4282 -92.0502 42.1573 -93.7304 44.8524 -111.7186 40.2786 

65 -76.6133 45.4610 -94.2401 42.7219 -95.2652 47.1544 -111.7303 40.0631 

66 -79.4215 44.6426 -93.0304 41.7019 -95.7903 48.8435 -109.2258 39.0794 

67 -79.9102 43.9602 -94.1447 41.5071 -94.9114 46.1079 -111.9194 40.6385 

68 -93.8598 49.8464   -96.2925 46.4814 -112.2412 38.6018 

69 -80.1099 43.4452   -96.6989 45.5509 -112.5779 40.7250 

70 -87.8214 49.6568   -95.8878 46.8659 -111.0670 38.8452 

71 -79.4068 46.1877   -94.6437 44.9239 -111.2578 40.3033 

72 -84.5848 47.3109   -93.1280 45.0122 -112.0879 41.6221 

73 -94.5394 49.7898   -90.0025 47.8395 -112.1513 38.6854 

74 -80.3308 46.4441   -93.3146 45.1783 -109.8899 38.9263 
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75 -77.7623 44.4603   -93.5249 47.2566 -112.0327 41.3279 

76 -81.5602 42.9682   -95.3882 48.1237 -111.6001 38.8821 

77 -84.0516 46.3396   -93.4261 44.7729 -112.1787 40.7475 

78 -75.5115 44.7302   -94.9370 45.7294 -111.9073 40.4426 

79 -86.7070 49.7443   -92.1896 43.7174 -110.4578 38.9305 

80 -75.0423 44.9926   -97.0335 48.0237 -112.0840 39.3353 

81 -78.7970 44.8006   -94.2572 46.3599 -111.4092 40.8035 

82 -94.5870 48.7206   -92.7751 46.4206 -112.1693 41.9104 

83 -78.5709 44.1059   -93.3096 44.2601 -109.6659 38.6359 

84 -78.9333 44.1024   -94.5486 45.6273 -112.0644 38.8051 

85 -79.0889 43.8322   -95.3129 46.4245 -112.1837 39.9339 

86 -84.9946 49.7560   -93.8511 45.3106 -112.0475 41.4221 

87 -77.1907 44.8664   -94.8902 46.6212 -110.6934 38.3928 

88 -81.2088 44.5302   -91.9961 44.1481 -111.1984 39.9308 

89 -81.7630 42.5515   -92.1052 46.7953 -111.9069 40.8553 

90 -80.8800 48.8850   -92.4601 46.6896 -113.2108 37.5074 

91 -92.5999 48.7565   -93.2711 44.0441 -111.8558 38.9371 

92 -78.0320 44.9479   -94.8543 44.3805 -111.4053 40.4960 

93 -77.3928 44.1937   -93.3101 44.3411 -110.4374 40.1661 

94 -79.9814 45.3415   -94.0828 45.4167 -112.6521 38.2716 

95 -77.0121 44.2519   -96.8858 48.7307 -113.8214 40.7429 

96 -76.2028 44.3386   -92.8151 46.1237 -111.8852 40.5268 

97 -82.4340 42.6061   -93.7931 43.8796 -113.5330 37.1250 

98 -75.4147 45.3472        

99 -77.7716 44.0733        

100 -79.1250 44.4309        

101 -84.0686 46.3517        

102 -88.2495 49.0388        

103 -82.9040 42.2115        

104 -81.9249 42.9921        

105 -89.3030 48.3752        

106 -89.9002 48.2404        

107 -74.9042 45.3419        

108 -82.1449 49.3403        

109 -80.2492 43.1636        

110 -82.8566 49.5263        

111 -79.8107 46.7437        

112 -81.3828 43.5489        

113 -79.2780 45.2811        

114 -78.0679 46.2235        
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115 -80.5678 46.0013        

116 -93.9160 48.8285        

117 -81.7585 46.2840        

118 -81.3875 49.1305        

119 -92.8154 49.7865        

120 -91.8480 49.4557        

121 -80.2984 48.3974        

122 -91.3118 49.2991        

123 -82.9726 46.1941        

124 -81.3147 45.0249        

125 -93.3271 49.8413        

126 -79.2857 43.9947        

127 -80.5075 43.1365        

128 -79.0926 46.2726        

129 -82.6218 46.3765        

130 -79.6576 44.4335        

131 -93.6397 48.6191        

132 -79.6895 48.1193        

133 -79.1551 46.5360        

134 -88.0839 49.4895        

135 -84.8268 47.7556        

136 -89.5638 48.0389        

137 -81.3911 46.6082        

138 -80.5487 42.8299        

139 -89.6360 48.4194        

140 -80.9318 43.3705             
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Locations of All-New RWIS Stations – Dual Criteria [Crit1+ Crit2] 

Station  
Number 

Ontario Iowa Minnesota Utah 

x y x y x y x y 

1 -79.1696 43.1603 -94.7426 41.0132 -94.2698 46.8998 -111.9041 38.9011 

2 -82.2211 42.3332 -96.3190 42.4893 -92.5713 47.4999 -110.2162 38.9832 

3 -74.6003 45.5018 -93.5756 42.1868 -95.6312 44.0682 -111.8426 39.7689 

4 -76.0756 45.3178 -93.7795 41.0237 -93.3941 45.6372 -111.3226 41.0436 

5 -80.9250 48.5453 -91.8633 42.4528 -94.0561 46.0380 -112.2767 40.6827 

6 -82.0626 45.9445 -91.1575 41.6331 -96.5044 47.3391 -112.4404 40.6836 

7 -79.7915 47.3496 -95.8723 41.5579 -93.1782 44.8886 -109.4732 37.4343 

8 -79.9161 47.8557 -94.2625 42.0192 -95.5340 44.4215 -110.7864 39.5795 

9 -94.8048 49.7137 -93.3143 40.7557 -96.6708 46.8749 -112.1722 41.9460 

10 -86.0894 49.7849 -93.5416 42.4572 -95.1072 44.0790 -113.5865 37.0883 

11 -80.3644 43.6964 -94.3871 41.0720 -96.3427 44.7247 -112.7440 40.7544 

12 -75.6209 45.0558 -95.7877 41.2628 -95.9582 47.5165 -109.6901 38.9511 

13 -91.9715 48.7256 -95.8046 42.4782 -93.4370 46.2040 -111.8983 39.6468 

14 -79.7639 43.6026 -94.2471 43.0730 -91.7646 47.9260 -111.8007 40.6872 

15 -80.6232 48.5916 -93.6119 41.5980 -96.3550 43.6170 -113.0813 37.6496 

16 -82.6337 42.0680 -91.8498 43.1821 -96.0154 45.7060 -109.3372 37.8723 

17 -84.3280 46.6666 -92.6257 43.0792 -92.8989 45.3633 -112.9256 37.8126 

18 -81.0655 49.0599 -95.7994 40.6951 -94.0879 43.6611 -112.5623 40.7239 

19 -84.2000 49.7437 -93.6226 43.2672 -96.3829 46.0468 -111.8295 39.8912 

20 -74.6900 45.0653 -90.6965 42.4353 -94.2228 44.7941 -111.8619 41.1397 

21 -92.9553 49.8151 -93.5689 41.4303 -95.6494 43.6356 -111.6847 40.0994 

22 -91.5023 48.7121 -92.8879 40.7290 -93.4507 47.8507 -111.1111 41.1985 

23 -80.1618 48.0751 -91.7739 43.2894 -95.4494 45.0985 -111.9030 40.5749 

24 -93.0823 48.7169 -90.6986 42.5323 -93.0091 44.8817 -111.9975 41.1997 

25 -94.2699 49.7302 -91.0958 42.4967 -92.6374 43.5577 -111.8574 40.7184 

26 -77.3022 45.8820 -95.3961 41.3257 -94.6815 48.7030 -111.3960 40.9149 

27 -78.9587 45.3543 -91.2530 42.0939 -94.4317 44.0355 -110.5142 40.1776 

28 -79.9308 43.1536 -95.1903 42.6536 -94.5477 48.3271 -112.6188 38.1444 

29 -80.5248 43.4942 -93.4985 41.6198 -91.4869 43.5212 -113.7777 40.7395 

30 -79.2357 42.9142 -92.4235 41.0249 -94.0218 44.1479 -109.4812 37.6085 

31 -79.3249 44.9605 -92.5617 41.7011 -91.3857 47.1924 -112.2876 39.0617 

32 -81.3021 42.8273 -92.4812 42.7275 -92.0098 43.6035 -110.7279 40.2060 

33 -86.8901 48.7756 -90.2102 41.8842 -96.2268 47.9952 -109.5587 37.1428 

34 -79.7941 45.0686 -93.9002 42.0226 -92.8958 44.5036 -111.3488 38.7667 

35 -85.1516 48.5185 -91.1445 40.8222 -90.8559 47.5617 -111.6482 40.1865 

36 -76.8740 45.6248 -96.0915 42.9999 -94.9796 43.6221 -111.9393 41.0129 

37 -78.3460 44.2657 -95.0045 41.4142 -94.2769 45.5227 -111.9499 40.7942 
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38 -80.0748 43.9195 -92.6361 41.2960 -91.4020 43.9252 -111.7176 40.2755 

39 -80.8631 43.0211 -95.8009 43.2076 -94.7493 47.1094 -111.8916 40.9026 

40 -79.8055 43.3141 -91.5672 41.0174 -96.3742 45.2639 -111.9548 39.5235 

41 -92.5182 49.6896 -93.7862 41.5911 -92.5213 44.1515 -110.8623 38.8596 

42 -93.9156 49.0972 -92.3737 42.4838 -95.5424 45.4745 -111.6926 40.7468 

43 -88.6413 48.6780 -92.9218 42.0261 -92.8912 46.9068 -112.0278 41.3047 

44 -81.3063 48.5055 -91.3520 42.4736 -93.6648 45.7439 -113.1731 40.7257 

45 -84.3571 46.8847 -95.8569 41.2071 -93.9143 44.4729 -112.2943 41.7964 

46 -83.6429 49.6864 -90.5826 41.5954 -93.2539 48.6071 -110.3745 38.9151 

47 -79.3293 45.5402 -93.2155 43.1337 -95.9270 46.1359 -109.5506 38.5690 

48 -82.3371 42.9918 -93.1378 41.3235 -93.0092 45.7728 -112.7897 41.9735 

49 -90.7125 49.1160 -94.6906 43.1214 -93.3436 43.6388 -111.9557 40.6627 

50 -89.1186 48.8310 -94.1993 42.5062 -94.9220 47.5116 -112.1775 41.6979 

51 -78.5391 43.9211 -94.6478 41.5009 -95.4322 44.6938 -111.5996 38.8858 

52 -80.9529 43.9501 -93.8470 40.7259 -94.2131 47.8722 -111.2197 41.0956 

53 -78.1836 45.4987 -91.5535 41.6388 -92.4071 44.3130 -112.7138 38.0296 

54 -79.6482 44.6908 -93.5715 41.7275 -95.3688 45.9103 -111.4784 41.0055 

55 -79.6367 44.1218 -95.1697 43.1133 -93.3112 44.5572 -112.3572 38.9390 

56 -85.9824 48.6907 -92.8093 43.2958 -92.8484 48.1214 -111.9119 40.7833 

57 -84.8049 48.0906 -91.8960 42.6693 -96.3389 43.9956 -112.5563 38.7660 

58 -89.8955 48.8025 -93.5739 41.9977 -92.7849 43.8822 -111.7632 40.0203 

59 -76.7716 44.2807 -93.7271 42.7263 -96.0206 45.0848 -113.3468 37.2466 

60 -90.3334 48.6655 -92.0213 41.6707 -93.2757 45.0434 -112.5972 38.6526 

61 -79.5364 43.7142 -95.3361 41.6511 -93.9514 46.7139 -113.1903 37.5569 

62 -79.4569 43.1879 -90.6378 42.0559 -93.3559 44.9307 -112.0230 41.1302 

63 -94.1851 48.7063 -95.3861 42.0284 -94.9959 45.2153 -112.6129 38.5187 

64 -94.0573 49.4282 -92.0502 42.1573 -93.7304 44.8524 -112.0463 39.4151 

65 -76.6133 45.4610 -94.2401 42.7219 -95.2652 47.1544 -111.7864 39.9642 

66 -79.4215 44.6426 -93.0304 41.7019 -95.7903 48.8435 -109.7588 40.3069 

67 -79.9102 43.9602 -94.1447 41.5071 -94.9114 46.1079 -111.8326 40.3794 

68 -93.8598 49.8464   -96.2925 46.4814 -112.2932 38.5779 

69 -80.1099 43.4452   -96.6989 45.5509 -112.0411 38.8228 

70 -87.8214 49.6568   -95.8878 46.8659 -112.0605 41.5111 

71 -79.4068 46.1877   -94.6437 44.9239 -112.7834 37.9001 

72 -84.5848 47.3109   -93.1280 45.0122 -111.4194 40.8060 

73 -94.5394 49.7898   -90.0025 47.8395 -112.4461 38.8646 

74 -80.3308 46.4441   -93.3146 45.1783 -110.9705 39.2883 

75 -77.7623 44.4603   -93.5249 47.2566 -112.1354 38.7127 

76 -81.5602 42.9682   -95.3882 48.1237 -113.4082 37.1922 

77 -84.0516 46.3396   -93.4261 44.7729 -112.0850 39.3087 
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78 -75.5115 44.7302   -94.9370 45.7294 -109.5818 37.2777 

79 -86.7070 49.7443   -92.1896 43.7174 -111.5227 40.7216 

80 -75.0423 44.9926   -97.0335 48.0237 -111.8333 41.8183 

81 -78.7970 44.8006   -94.2572 46.3599 -112.0503 41.4170 

82 -94.5870 48.7206   -92.7751 46.4206 -111.7278 41.0781 

83 -78.5709 44.1059   -93.3096 44.2601 -111.5940 41.0558 

84 -78.9333 44.1024   -94.5486 45.6273 -112.0806 41.6079 

85 -79.0889 43.8322   -95.3129 46.4245 -109.5670 40.4402 

86 -84.9946 49.7560   -93.8511 45.3106 -112.6509 38.4137 

87 -77.1907 44.8664   -94.8902 46.6212 -113.0533 37.7340 

88 -81.2088 44.5302   -91.9961 44.1481 -109.4105 37.7339 

89 -81.7630 42.5515   -92.1052 46.7953 -111.8968 40.4361 

90 -80.8800 48.8850   -92.4601 46.6896 -111.8939 40.5005 

91 -92.5999 48.7565   -93.2711 44.0441 -112.6526 38.2800 

92 -78.0320 44.9479   -94.8543 44.3805 -111.8108 40.6330 

93 -77.3928 44.1937   -93.3101 44.3411 -112.1072 40.7706 

94 -79.9814 45.3415   -94.0828 45.4167 -113.2428 37.3978 

95 -77.0121 44.2519   -96.8858 48.7307 -112.6913 37.2261 

96 -76.2028 44.3386   -92.8151 46.1237 -112.4413 41.8494 

97 -82.4340 42.6061   -93.7931 43.8796 -111.1913 38.8176 

98 -75.4147 45.3472        

99 -77.7716 44.0733        

100 -79.1250 44.4309        

101 -84.0686 46.3517        

102 -88.2495 49.0388        

103 -82.9040 42.2115        

104 -81.9249 42.9921        

105 -89.3030 48.3752        

106 -89.9002 48.2404        

107 -74.9042 45.3419        

108 -82.1449 49.3403        

109 -80.2492 43.1636        

110 -82.8566 49.5263        

111 -79.8107 46.7437        

112 -81.3828 43.5489        

113 -79.2780 45.2811        

114 -78.0679 46.2235        

115 -80.5678 46.0013        

116 -93.9160 48.8285        

117 -81.7585 46.2840        
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118 -81.3875 49.1305        

119 -92.8154 49.7865        

120 -91.8480 49.4557        

121 -80.2984 48.3974        

122 -91.3118 49.2991        

123 -82.9726 46.1941        

124 -81.3147 45.0249        

125 -93.3271 49.8413        

126 -79.2857 43.9947        

127 -80.5075 43.1365        

128 -79.0926 46.2726        

129 -82.6218 46.3765        

130 -79.6576 44.4335        

131 -93.6397 48.6191        

132 -79.6895 48.1193        

133 -79.1551 46.5360        

134 -88.0839 49.4895        

135 -84.8268 47.7556        

136 -89.5638 48.0389        

137 -81.3911 46.6082        

138 -80.5487 42.8299        

139 -89.6360 48.4194        

140 -80.9318 43.3705             
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Appendix B – Location Plans for Adding New RWIS Stations 

                                                      40 Additional Stations     60 Additional Stations 

 

 



 

128 

                                                      40 Additional Stations     60 Additional Stations 
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Locations of 20 Additional RWIS Stations 

Station  
Number 

Ontario Iowa Minnesota Utah 

x y x y x y x y 

1 -79.9208 43.1376 -96.2381 42.2266 -90.7397 47.6298 -112.2882 39.0622 

2 -82.8731 42.2395 -93.3527 42.8084 -96.7960 48.2711 -111.4833 38.7768 

3 -82.6046 42.0682 -90.9113 41.6352 -93.3193 46.6236 -111.8018 40.3696 

4 -79.7479 44.5313 -91.9164 41.0027 -95.8441 46.0485 -110.1243 40.1748 

5 -81.2538 42.8775 -95.7975 40.9770 -95.3034 47.2865 -112.0795 41.6011 

6 -79.6436 44.6787 -94.3597 41.4926 -92.3065 44.4737 -112.4483 40.6817 

7 -92.7913 49.7859 -95.6731 41.3749 -94.6463 46.2206 -111.6787 41.0460 

8 -89.2200 48.4651 -93.7781 41.3491 -94.4948 44.9291 -111.3293 41.0399 

9 -79.2621 46.3839 -96.0991 41.9656 -94.5666 45.4390 -110.2113 38.9856 

10 -82.1269 49.3431 -93.3286 41.0151 -94.2937 46.5161 -112.2450 38.6045 

11 -89.2984 48.3940 -92.9986 41.6809 -93.5684 47.2371 -112.4339 38.8724 

12 -83.0225 46.2066 -93.8496 43.0997 -95.0119 45.1088 -112.9434 37.8067 

13 -93.7089 48.6347 -95.5659 41.5008 -93.5713 45.4332 -109.8648 38.9309 

14 -79.2827 45.4881 -95.0074 41.4943 -93.6085 43.6832 -112.0989 40.7697 

15 -76.9863 45.7154 -94.2241 42.7728 -93.2696 44.2143 -109.5951 40.3876 

16 -94.3425 49.7911 -92.4862 41.6930 -95.1243 46.7479 -113.7783 40.7381 

17 -78.4518 44.1990 -93.7886 41.1930 -95.2724 47.9287 -113.0761 37.6974 

18 -84.3493 46.7330 -92.2371 41.6949 -96.1683 48.1238 -112.0267 41.3041 

19 -79.8252 45.2301 -91.2941 42.9517 -96.6982 48.7785 -109.3835 38.9554 

20 -79.2981 45.0072 -95.6516 42.8019 -96.0043 45.2163 -111.8120 39.9347 
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Locations of 40 Additional RWIS Stations 

Station  
Number 

Ontario Iowa Minnesota Utah 

x y x y x y x y 

1 -79.9208 43.1376 -96.2381 42.2266 -90.7397 47.6298 -112.2882 39.0622 

2 -82.8731 42.2395 -93.3527 42.8084 -96.7960 48.2711 -111.4833 38.7768 

3 -82.6046 42.0682 -90.9113 41.6352 -93.3193 46.6236 -111.8018 40.3696 

4 -79.7479 44.5313 -91.9164 41.0027 -95.8441 46.0485 -110.1243 40.1748 

5 -81.2538 42.8775 -95.7975 40.9770 -95.3034 47.2865 -112.0795 41.6011 

6 -79.6436 44.6787 -94.3597 41.4926 -92.3065 44.4737 -112.4483 40.6817 

7 -92.7913 49.7859 -95.6731 41.3749 -94.6463 46.2206 -111.6787 41.0460 

8 -89.2200 48.4651 -93.7781 41.3491 -94.4948 44.9291 -111.3293 41.0399 

9 -79.2621 46.3839 -96.0991 41.9656 -94.5666 45.4390 -110.2113 38.9856 

10 -82.1269 49.3431 -93.3286 41.0151 -94.2937 46.5161 -112.2450 38.6045 

11 -89.2984 48.3940 -92.9986 41.6809 -93.5684 47.2371 -112.4339 38.8724 

12 -83.0225 46.2066 -93.8496 43.0997 -95.0119 45.1088 -112.9434 37.8067 

13 -93.7089 48.6347 -95.5659 41.5008 -93.5713 45.4332 -109.8648 38.9309 

14 -79.2827 45.4881 -95.0074 41.4943 -93.6085 43.6832 -112.0989 40.7697 

15 -76.9863 45.7154 -94.2241 42.7728 -93.2696 44.2143 -109.5951 40.3876 

16 -94.3425 49.7911 -92.4862 41.6930 -95.1243 46.7479 -113.7783 40.7381 

17 -78.4518 44.1990 -93.7886 41.1930 -95.2724 47.9287 -113.0761 37.6974 

18 -84.3493 46.7330 -92.2371 41.6949 -96.1683 48.1238 -112.0267 41.3041 

19 -79.8252 45.2301 -91.2941 42.9517 -96.6982 48.7785 -109.3835 38.9554 

20 -79.2981 45.0072 -95.6516 42.8019 -96.0043 45.2163 -111.8120 39.9347 

21 -79.9654 45.3326 -92.9147 42.7468 -94.3180 45.1070 -109.3925 38.3035 

22 -79.9218 47.8628 -91.3373 41.6628 -95.4485 44.4753 -109.6880 38.9520 

23 -79.2334 45.3396 -93.3501 43.2195 -95.5102 43.6407 -112.7135 38.0300 

24 -85.0717 49.7570 -91.1887 41.1508 -91.8802 43.9281 -109.7709 40.3068 

25 -93.0022 49.8158 -91.7760 42.1711 -93.7509 46.3903 -111.6923 41.7660 

26 -93.9810 49.8260 -93.9825 42.0313 -92.9942 45.2924 -111.6999 39.1754 

27 -92.3321 49.5833 -92.8796 43.1279 -93.2842 45.8778 -111.5023 41.4452 

28 -93.0675 48.7193 -96.1794 43.3146 -95.1561 47.5259 -110.9347 39.3430 

29 -80.9321 43.3698 -96.0427 41.7611 -94.0556 47.3299 -110.8019 39.5830 

30 -80.1121 48.0324 -92.0791 42.9664 -95.3724 49.0007 -112.1009 40.3079 

31 -89.1507 48.4917 -94.9348 41.7782 -95.2848 48.2579 -111.8690 41.6894 

32 -80.5697 48.5494 -94.7000 42.7346 -94.8556 45.9788 -111.5295 39.4709 

33 -74.7446 45.4359 -93.5693 42.2271 -95.7903 44.4458 -111.8212 39.7278 

34 -91.3306 49.3057 -91.9222 41.3389 -96.5416 47.6028 -111.8339 38.9290 

35 -88.3234 49.0101 -95.1448 42.3974 -93.0138 43.6626 -111.9114 39.6038 

36 -79.7908 47.6970 -93.7734 41.6518 -96.0466 44.7918 -109.9779 40.3044 
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37 -77.3701 44.2001 -92.1364 42.3936 -96.2716 43.9405 -110.3785 38.9193 

38 -93.9172 48.8362 -90.4000 41.5989 -95.7043 46.7213 -109.5185 37.3306 

39 -89.3178 48.3502 -91.8135 41.6856 -94.4549 44.3233 -109.3323 37.8720 

40 -82.0945 42.9909 -93.5742 42.4008 -94.6189 43.6615 -111.8355 41.8467 
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Locations of 60 Additional RWIS Stations 

  

Station  
Number 

Ontario Iowa Minnesota Utah 

x y x y x y x y 

1 -79.9208 43.1376 -96.2381 42.2266 -90.7397 47.6298 -112.2882 39.0622 

2 -82.8731 42.2395 -93.3527 42.8084 -96.7960 48.2711 -111.4833 38.7768 

3 -82.6046 42.0682 -90.9113 41.6352 -93.3193 46.6236 -111.8018 40.3696 

4 -79.7479 44.5313 -91.9164 41.0027 -95.8441 46.0485 -110.1243 40.1748 

5 -81.2538 42.8775 -95.7975 40.9770 -95.3034 47.2865 -112.0795 41.6011 

6 -79.6436 44.6787 -94.3597 41.4926 -92.3065 44.4737 -112.4483 40.6817 

7 -92.7913 49.7859 -95.6731 41.3749 -94.6463 46.2206 -111.6787 41.0460 

8 -89.2200 48.4651 -93.7781 41.3491 -94.4948 44.9291 -111.3293 41.0399 

9 -79.2621 46.3839 -96.0991 41.9656 -94.5666 45.4390 -110.2113 38.9856 

10 -82.1269 49.3431 -93.3286 41.0151 -94.2937 46.5161 -112.2450 38.6045 

11 -89.2984 48.3940 -92.9986 41.6809 -93.5684 47.2371 -112.4339 38.8724 

12 -83.0225 46.2066 -93.8496 43.0997 -95.0119 45.1088 -112.9434 37.8067 

13 -93.7089 48.6347 -95.5659 41.5008 -93.5713 45.4332 -109.8648 38.9309 

14 -79.2827 45.4881 -95.0074 41.4943 -93.6085 43.6832 -112.0989 40.7697 

15 -76.9863 45.7154 -94.2241 42.7728 -93.2696 44.2143 -109.5951 40.3876 

16 -94.3425 49.7911 -92.4862 41.6930 -95.1243 46.7479 -113.7783 40.7381 

17 -78.4518 44.1990 -93.7886 41.1930 -95.2724 47.9287 -113.0761 37.6974 

18 -84.3493 46.7330 -92.2371 41.6949 -96.1683 48.1238 -112.0267 41.3041 

19 -79.8252 45.2301 -91.2941 42.9517 -96.6982 48.7785 -109.3835 38.9554 

20 -79.2981 45.0072 -95.6516 42.8019 -96.0043 45.2163 -111.8120 39.9347 

21 -79.9654 45.3326 -92.9147 42.7468 -94.3180 45.1070 -111.8367 38.9315 

22 -79.9218 47.8628 -91.3373 41.6628 -95.4485 44.4753 -109.1337 39.1652 

23 -79.2334 45.3396 -93.3501 43.2195 -95.5102 43.6407 -110.9689 38.8453 

24 -85.0717 49.7570 -91.1887 41.1508 -91.8802 43.9281 -111.9495 39.5520 

25 -93.0022 49.8158 -91.7760 42.1711 -93.7509 46.3903 -112.0738 38.7937 

26 -93.9810 49.8260 -93.9825 42.0313 -92.9942 45.2924 -112.8190 37.8663 

27 -92.3321 49.5833 -92.8796 43.1279 -93.2842 45.8778 -109.4826 37.4157 

28 -93.0675 48.7193 -96.1794 43.3146 -95.1561 47.5259 -112.7114 38.0269 

29 -80.9321 43.3698 -96.0427 41.7611 -94.0556 47.3299 -111.6322 38.9018 

30 -80.1121 48.0324 -92.0791 42.9664 -95.3724 49.0007 -112.3631 40.6627 

31 -89.1507 48.4917 -94.9348 41.7782 -95.2848 48.2579 -109.2625 39.0536 

32 -80.5697 48.5494 -94.7000 42.7346 -94.8556 45.9788 -113.5724 37.0946 

33 -74.7446 45.4359 -93.5693 42.2271 -95.7903 44.4458 -111.7572 41.1140 

34 -91.3306 49.3057 -91.9222 41.3389 -96.5416 47.6028 -111.8395 39.7737 

35 -88.3234 49.0101 -95.1448 42.3974 -93.0138 43.6626 -113.1731 37.5866 
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36 -79.7908 47.6970 -93.7734 41.6518 -96.0466 44.7918 -109.6885 38.9501 

37 -77.3701 44.2001 -92.1364 42.3936 -96.2716 43.9405 -111.9716 41.0642 

38 -93.9172 48.8362 -90.4000 41.5989 -95.7043 46.7213 -111.1427 38.8255 

39 -89.3178 48.3502 -91.8135 41.6856 -94.4549 44.3233 -111.9486 40.8282 

40 -82.0945 42.9909 -93.5742 42.4008 -94.6189 43.6615 -111.8766 39.6641 

41 -77.1631 45.7916 -95.8221 43.1617 -94.3644 45.9740 -109.4774 37.5974 

42 -79.3094 45.1377 -91.6763 42.9921 -95.9403 43.9914 -112.7826 41.9735 

43 -79.0521 44.2356 -93.5690 41.9011 -92.7255 47.8681 -112.5026 39.3552 

44 -76.3068 44.3267 -92.3727 41.6936 -94.6752 45.6525 -113.2736 37.2133 

45 -76.8112 45.5711 -93.8439 42.7323 -95.0325 44.7982 -109.7685 40.3071 

46 -83.3751 47.7660 -91.0353 41.8875 -93.2406 45.4995 -111.7994 41.7439 

47 -90.9487 50.3065 -92.6184 41.9946 -93.8754 45.1748 -111.1487 41.7453 

48 -78.3517 44.2585 -92.5674 40.7268 -93.7454 44.1190 -112.3484 38.9608 

49 -81.6814 47.7375 -95.3755 41.0314 -95.4521 45.2477 -111.5921 38.3915 

50 -82.5553 42.2429 -93.3521 43.4804 -96.8382 45.6018 -112.4346 37.8193 

51 -84.0673 46.3523 -95.4262 43.1864 -96.1053 46.2667 -111.5300 39.4734 

52 -79.4417 44.5725 -93.4366 42.6979 -91.4266 47.6482 -112.2704 38.1724 

53 -84.7915 47.9804 -91.6485 41.8139 -94.3401 44.7247 -113.4449 37.1615 

54 -81.3711 46.3722 -93.2577 41.3515 -93.8047 46.9863 -111.3867 38.2812 

55 -94.6320 49.7765 -92.7658 42.3647 -94.2825 46.9098 -111.8304 41.8628 

56 -80.3906 43.1582 -92.2961 43.3515 -93.2005 47.5020 -112.2762 40.3042 

57 -93.7808 51.0061 -91.8846 42.2387 -92.3939 43.5097 -112.3362 41.6263 

58 -79.4710 42.9432 -91.0601 42.2947 -94.7929 43.9500 -110.9713 40.2048 

59 -80.5915 46.0298 -92.1852 42.4517 -95.9337 45.5797 -111.8325 41.6346 

60 -75.8990 45.3123 -93.9236 40.5903 -92.4725 46.0140 -111.1022 39.2584 
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Appendix C – Survey Results of Current RWIS Sitting Practices 

Q1: Current RWIS Deployment: Total number of RWIS Stations 

Utah DOT 94 (This includes 7 portable RWIS trailers) 

Minnesota DOT 93 

Kansas DOT 43 KDOT plus 10 on turnpike 

PA DOT 94 

Illinois DOT 57 

NDDOT 24 

Utah DOT 74 permanent RWIS sites, 7 Portable RWIS. 

Virginia DOT 82 

Ohio dot 173 

PEI 5 

Ministry of Transportation, 

B.C. 
64 

GNWT DOT 1 

MTO 140 stations 

Alberta Transportation 

84 stations are now connected, 17 have been installed and will be 

connected this year, 17 more will be installed between 2013 and 

2016 

Alaska DOT 55 

Region of Waterloo, 

Ontario 
3 (2 in now , 1 next year) 

Illinois DOT 58 

UDOT 73 

Ohhio DOT 172 

NDDOT North Dakota 23 

Michigan DOT 23 

MDOT/ Michigan 35 

KDOT 43 

Wisconsin DOT 60 

Iowa DOT 68 
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Q2: Total number of RWIS stations with webcam 

 

Utah DOT 59 

Minnesota DOT 85 

Kansas DOT 8 KDOT sites 

PA DOT 82 

Illinois DOT 14 

NDDOT 10 

Utah DOT 44 

Virginia DOT 56 

Ohio dot 2 

PEI 5 

Ministry of Transportation, 

B.C. 
31 

GNWT DOT 1 

MTO 47 

Alberta Transportation All RWIS stations are equipped with the cameras 

Alaska DOT 5 

Region of Waterloo, 

Ontario 
1 (2 by next year) 

Illinois DOT 8 

UDOT 73 

Ohhio DOT 1 

NDDOT North Dakota 11 

Michigan DOT 23 

MDOT/ Michigan 35 

KDOT 8 

Wisconsin DOT 0 

Iowa DOT 49 

 

Q3: Total number of RWIS stations with traffic detector 

Utah DOT 5 

Minnesota DOT 0 

Kansas DOT 5 with Groundhog sensors 

PA DOT 0 
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Illinois DOT 12 

NDDOT 0 

Utah DOT 2 Portable RWIS Trailers 

Virginia DOT 3 

Ohio dot 100 

PEI 0 

Ministry of Transportation, 

B.C. 
0 

GNWT DOT 0 

MTO 2 

Alberta Transportation None 

Alaska DOT 4 

Region of Waterloo, 

Ontario 
0 

Illinois DOT 8 

UDOT 0 

Ohhio DOT 150 

NDDOT North Dakota 0 

Michigan DOT 6 

MDOT/ Michigan 35 

KDOT 0 

Wisconsin DOT 0 

Iowa DOT 47 

 

Q4: Total number of RWIS stations linked to dynamic message sign 

Utah DOT 1 

Minnesota DOT 0 

Kansas DOT 0 

PA DOT 2 

Illinois DOT 0 

NDDOT 0 

Utah DOT 1 is currently being contructed. 

Virginia DOT 0 

Ohio dot 1 

PEI 0 



 

137 

Ministry of Transportation, 

B.C. 
3, 2 more in development 

GNWT DOT 0 

MTO 0 

Alberta Transportation 
None but planning to install and integrate RWIS with DMS at two 

bridge locations 

Alaska DOT 0 

Region of Waterloo, 

Ontario 
0 

Illinois DOT 0 

UDOT 0 

Ohhio DOT 0 

NDDOT North Dakota 0 

Michigan DOT 0 

MDOT/ Michigan none directly, several in same vicincity 

KDOT 0 

Wisconsin DOT 0 

Iowa DOT 0 

 

Q5: Total number of RWIS stations with non-intrusive pavement condition sensors 

Utah DOT 
44 (+7 additional road temperature only sensors would make the total 

51)) 

Minnesota DOT 0 

Kansas DOT 1 Lufft 

PA DOT 0 

Illinois DOT 0 

NDDOT 0 

Utah DOT 11 

Virginia DOT 25 

Ohio dot 2 

PEI 0 

Ministry of Transportation, 

B.C. 
1 

GNWT DOT 1 

MTO 1 
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Alberta Transportation None of the stations use non-intrusive sensors 

Alaska DOT 1 

Region of Waterloo, 

Ontario 
0 

Illinois DOT 3 

UDOT 45 

Ohhio DOT 2 

NDDOT North Dakota 0 

Michigan DOT 0 

MDOT/ Michigan 2 

KDOT 1 

Wisconsin DOT 1 

Iowa DOT 1 

 

Q6: Total number of RWIS stations linked to Fixed Automated Spray Technology (FAST) 

Utah DOT 4 (internal system) 

  

Minnesota DOT 1 

Kansas DOT 0 

PA DOT 16 

Illinois DOT 1 

NDDOT 2 

Utah DOT Possibly 3 but they the data is strictly internal to spray system. 

Virginia DOT 0 

Ohio dot 0 

PEI 0 

Ministry of 

Transportation, B.C. 
0 

GNWT DOT 0 

MTO 8 

Alberta Transportation 
Two,-presently there are two fully functioning integrated RWIS-

FAST systems at two bridge locations 

Alaska DOT 0 

Region of Waterloo, 

Ontario 
0 (1 roughed in for future use if needed on new Fairway Bridge) 
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Illinois DOT 1 

UDOT 0 

Ohhio DOT 0 

NDDOT North Dakota 2 

Michigan DOT 0 

MDOT/ Michigan 1 

KDOT 0 

Wisconsin DOT 0 

Iowa DOT 0 

 

Q7: What are the vendors of your RWIS? (e.g., Vaisala) 

Utah DOT 
Campbell Scientific, Vaisala, (High Sierra, Lufft - ordered through 

Campbell) 

Minnesota DOT Vaisala 

Kansas DOT Vaisala and Lufft 

PA DOT Vaisala, SSI, Boschung 

Illinois DOT Vaisala 

NDDOT Vaisala 

Utah DOT Campbell Sci, Vaisala, Lufft, RM Young, 

Virginia DOT Vaisala 

Ohio dot Vaisala 

PEI Vaisala (Approach Navigations Systems Inc) 

Ministry of 

Transportation, B.C. 
We build our stations in house with a variety of sensors 

GNWT DOT AMEC Earth & Environmetal 

MTO Vaisala, Campbell Scentific, Lufft, SSI, Boschung 

Alberta Transportation Vaisala (SSI) for older stations and Lufft for all new stations 

Alaska DOT Vaisala 

Region of Waterloo, 

Ontario 
Lufft and Vaisala (formerly SSI) 

Illinois DOT Vaisala 

UDOT Campbell Scientific 

Ohhio DOT Vaisala 

NDDOT North Dakota SSI Vaisala 

Michigan DOT Vaisala 
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MDOT/ Michigan Vaisala, Lufft, Campbell, 

KDOT Vaisala 

Wisconsin DOT Vaisala, Lufft 

Iowa DOT Vaisala, Zydax, NovaLynx, Sutron, High Sierra 

 

Q8: What are the typical sensor components of your RWIS? 

 

 

Q9: What is your total annual RWIS maintenance cost? 

Utah DOT 

$77,651.16 - FY14, $53,082.00 - FY15, $204,487.52 - Proposed 

FY16.  FY16 budget allows for replacement parts to address an 

aging system.. 

Minnesota DOT 175000 

Kansas DOT $150,000 for repair and upgrades 

PA DOT 400000 

Illinois DOT 250000 

NDDOT 75000 
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Utah DOT 
$69,556.84 for response maintenance and preventative 

maintenance.  Unknown cost for parts at this time. 

Virginia DOT 300000 

Ohio dot +/- $630k 

PEI $27,500 for operation and maintenance of 5 units 

Ministry of 

Transportation, B.C. 
approx $500K 

GNWT DOT 40000 

MTO approx. $500,000 

Alberta Transportation 

The RWIS infrastructure is managed under two contracts: first 

contract -  for 80 existing stations with an operations/maintenance 

summer cost of app. $600 per station per month and winter cost of 

app. $2,000 per station per month, second contract: for the newly 

installed and future stations with a monthly cost of $800 per 

station per month throughout the year plus $250 per station per 

month for forecasting services only during the winter months Oct. 

15- March 31. 

Alaska DOT $350K 

Region of Waterloo, 

Ontario 
A field visit to clean and inspect.  Very little. 

Illinois DOT 250000 

UDOT 110000 

Ohhio DOT 620000 

NDDOT North Dakota 

We don't have funds set aside, I would guess near the $50,000 

but our system is very old and needs many repairs. It is being 

pieced together to keep running right now. 

Michigan DOT 143000 

MDOT/ Michigan 3,800/site/year, plus traffic control and spare parts 

KDOT 50000 

Wisconsin DOT 130000 

Iowa DOT 
$163,200 for maintenance contract plus ~$40,000 unscheduled 

maintenance 
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Q10: What is the average installation cost per station? 

Utah DOT 40000 

Minnesota DOT 90000 

Kansas DOT 30000 

PA DOT 40000 

Illinois DOT 80000 

NDDOT 120000 

Utah DOT $50,000 with Non-invasive Road Sensors. 

Virginia DOT 50000 

Ohio dot $2k 

PEI 55000 

Ministry of 

Transportation, B.C. 
$55K 

GNWT DOT 200000 

MTO 75000 

Alberta Transportation 

Based on the recent contract: $132,000 pe station, RWIS 

installations at interchanges varied from $135,000 to $180,000 due 

to long cable connections ( to the bridge sensors), power 

provisions.  Integrated RWIS -DMS at the bridge sites will be in the 

order of $250,000 

Alaska DOT 

This is a wide variance due to the geographic extent of Alaska and 

the type of site being installed.  An average cost over the lifetime of 

the RWIS network would be $125K 

Region of Waterloo, 

Ontario 
80,000 for new fully loaded site 

Illinois DOT 50000 

UDOT 30000 

Ohhio DOT 40000 

NDDOT North Dakota 
Currently nearly $80,000, new specification hopefully near $30,000 

or less 

Michigan DOT 107000 

MDOT/ Michigan 130000 

KDOT 30000 

Wisconsin DOT 35000 

Iowa DOT ~$60,000 



 

143 

 

Q11: How many RWIS stations do you plan to deploy next year? 

 

Q12: How many RWIS stations do you plan to deploy in next 5 years? 

Utah DOT Around 30 to 40 sites. 

Kansas DOT 
No full sites, possibly some mini sites at existing ITS message 

boards. 

Illinois DOT 60 

Utah DOT 20 

PEI 0 

GNWT DOT 4 to 7 

MTO 0 

Alberta Transportation 8 more stations will be deployed: 1 in 2014 and 7 in 2016 

Alaska DOT 
10, but there may be some installs of very limited sensor arrays, 

aka temperature and camera only 

Region of Waterloo, 

Ontario 
2 

Illinois DOT 15 

UDOT 8 

NDDOT North Dakota 

We are currently updating our specifications and hope to have all 

our sites updated to a new system in the next 5 to 10 years 

depending on funding. 

Michigan DOT Unknown 
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MDOT/ Michigan Just 16 next year 

KDOT 0 

Iowa DOT 3 

 

Q13: How do you make decisions on the number of RWIS to be deployed? 

 

Utah DOT 
We currently are addressing regional spacing concerns.  

Construction projects dictate some new sites. 

Alberta Transportation 

We have taken into consideration climate and meteorological 

conditions, safety and operational problems. Initial RWIS network 

plan included NHS and the need to create a Canada wide RWIS 

network along the major national highways, some key provincial 

highways were also included in the initial deployment. Budget was 

another consideration which mainly had an impact on the 

schedule - after we determined the need for the RWIS stations.  

New RWIS program which is being implemented now was based 

on the need to provide coverage for other areas in the province to 

improve forecasting and provide RWIS observations along the 

remaining major provincial highways.  An expansion study was 

conducted which also looked at safety and traffic volumes and 

several stations were also recommended for "hot spots". 

Alaska DOT meet Department strategic goals 

Region of Waterloo, 

Ontario 
Based on weather zone report and field experience 



 

145 

UDOT New roads or road projects that have need and funding for RWIS. 

MDOT/ Michigan jurisdictional changes on a route 

Wisconsin DOT Highway improvement projects 

 

Q14: Do you have a pre-defined spacing requirement? (e.g., RWIS at every 50 km) 

 

 

Utah DOT 

Our current plan is to have a RWIS site every 50 miles on US 

highways and Interstate routes and within every 10 miles within 

variable speed limit projects.  We hope to fulfill these goals with in 

the next few years. 

NDDOT We try to use  a 30 mile radius for spacing 

Ohio dot Every 30 miles 

Ministry of 

Transportation, B.C. 
Not applicable in mountainous terrain with many micro-climates 

Alberta Transportation 
In general, the minimum requirement for spacing between the 

stations is at least 50 km . 

Alaska DOT 

based on maintenance station needs.  A typical need is to know that 

is going on at the maintenance station boundaries.  A second 

requirement would be a particular area that has challenging weather 

conditions. 

Region of Waterloo, 

Ontario 
20km range 

UDOT 

But it is less distance-based, and more phenomenon-based. In 

complex topography, you have to hit the points that have particular 

need of observation, or that can be representative of a large area. 

Ohio DOT 30 miles 
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Wisconsin DOT We do prefer one every 30 miles, but it's not a requirement 

 

Q15: What are the main factors (or considerations) for deciding the location of RWIS stations at 

both local and regional scales? 

 

Utah DOT 
Areas of high traffic crashes, research projects, seasonal road 

closures and traffic management. 

Minnesota DOT 

When possible, we try to pick areas that are representative of general 

atmospheric conditions in the surrounding area. MnDOT’s RWIS 

network was carefully selected using input from multiple sources 

including meteorologists, maintenance supervisors, and through 

thermal mapping.  MnDOT conducted a series of interviews with 

representatives from all maintenance operations offices within the 

Department.  These in-person meetings allowed the Department to 

identify those potential locations which are subject to impaired travel 

conditions such as reduced visibility or hazardous pavement 

conditions (wet or frozen pavement, frost, blowing snow etc.).  In 

addition, the Regional Weather Information Center (RWIC) of the 

University of North Dakota, in conjunction with MnDOT, conducted site 

assessment and evaluation of potential RWIS sites throughout the 

State of Minnesota.  These sites were evaluated as to whether the 

information from those sites could be used as inputs to mesoscale 

weather forecasting models or would be used only for detection of 

localized conditions.  Also the sites were evaluated in respect to their 
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location to the nearest National Weather Service Automated Weather 

Observing System (AWOS) site.  Consideration was given to 

obstructions, both natural and man-made, which may affect 

atmospheric and road sensing capabilities. 

Utah DOT 

Heavily weighted to weather forecaster needs and shed maintenance 

supervisor needs.  Like to place them near shed maintenance 

boundaries. 

Virginia DOT ESS Warrent 

Ministry of 

Transportation, B.C. 
Locations where winter maintenance is most challenging 

MTO Weather zones 

Alberta 

Transportation 

Regional climate and meteorological patterns were analyzed (based 

on input from meteorologists and regional/local staff) to determine 

areas which needed more RWIS coverage (more observations to fill in 

the gaps to improve forecasting capabilities). Also collisions, historical 

winter road conditions and traffic patterns were analyzed (historical 

data plus input from local/regional staff) to select the worst road 

segments which needed accurate RWIS observations from the 

sensors and cameras - to improve maintenance responses.  At the 

micro scale local staff was very helpful in determining which locations 

met the FHWA guidelines for selecting the sites (shading, proximity to 

water and traffic, etc.). 

Alaska DOT 
travel corridors, maintenance station boundaries, other agency needs, 

e.g., railroad, FAA 

Region of Waterloo, 

Ontario 

Representative conditions ex. One on a bridge, one in snow belt, west 

side of region etc. 

MDOT/ Michigan change in maintenance areas, 

Wisconsin DOT Improvement project locations 

 

Q16: What other non-weather related factors do you consider when deciding the candidate 

locations? 
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 Other (please specify) 

Utah DOT 
Out of view of private residences, available communication, available 

solar power (canyons, etc), favor bridges (first to freeze) 

Kansas DOT None of these are strong factors in our siting considerations. 

Utah DOT The greater the distance away from the maintenance shed, the better. 

Ohio dot budget 

Iowa DOT 
Access to power and communications, distance from maintenance 

facility 

 

Q17: Do you have any standardized guidelines that help you identify the candidate locations? 

Utah DOT RWIS siting reports/guidelines are performed on most RWIS sites. 

Minnesota DOT 
See answer to question 13 above.  More documentation may be 

available as well. 

Utah DOT 

We do in terms of the vicinity considerations.  A full siting reports is 

done within 5 miles of the desired location with power, communication 

and obstruction considerations. 

Virginia DOT ESS Warrant 

MTO MTO Guidelines/ TAC guidelines 

Alberta 

Transportation 

We use North American guidelines and practices from other 

jurisdictions. 
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Alaska DOT 

The initial sites were installed based on extensive stakeholder 

interviews.  Since then we have done targeted updates with the 

maintenance and operations staff.  These documents are available if 

you would like. 

Region of Waterloo, 

Ontario 
Yes 

UDOT 

We decide general location using the aforementioned factors, and 

have a 5-year deployment plan that meets those factors. We also have 

siting reports that are written up for each siting area that specifies the 

best exact spot for the site. 

Ohio DOT fhwa 

MDOT/ Michigan FHWA siting guidelines 

KDOT FHWA -HOP-05-026 RWIS ESS Siting Guidelines 

 

Q18: What are the common procedures/practices being undertaken prior to deciding the optimal 

location of RWIS stations? 

Utah DOT 

Identify weather patterns and micro climates.  Consider shed 

boundaries.  Street lighting for low light cameras.  Traffic/crash data.  

Local bridges. 

Minnesota DOT 

MnDOT’s RWIS network was carefully selected using input from 

multiple sources including meteorologists, maintenance supervisors, 

and through thermal mapping.  MnDOT conducted a series of 

interviews with representatives from all maintenance operations offices 

within the Department.  These in-person meetings allowed the 

Department to identify those potential locations which are subject to 

impaired travel conditions such as reduced visibility or hazardous 

pavement conditions (wet or frozen pavement, frost, blowing snow 

etc.).  In addition, the Regional Weather Information Center (RWIC) of 

the University of North Dakota, in conjunction with MnDOT, conducted 

site assessment and evaluation of potential RWIS sites throughout the 

State of Minnesota.  These sites were evaluated as to whether the 

information from those sites could be used as inputs to mesoscale 

weather forecasting models or would be used only for detection of 

localized conditions.  Also the sites were evaluated in respect to their 
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location to the nearest National Weather Service Automated Weather 

Observing System (AWOS) site.  Consideration was given to 

obstructions, both natural and man-made, which may affect 

atmospheric and road sensing capabilities. 

Kansas DOT Existing sites only. 

PA DOT Under Development 

Illinois DOT Asking experienced field staff in the area. 

NDDOT 
We will meet with the district and often times have a field review prior 

to choosing the final location. 

Utah DOT 
A full siting report is done within 5 miles of a desired location.  Shed 

supervisors and weather forecasters are surveyed. 

Virginia DOT If it warrants one. 

Ohio dot site surveys 

PEI 
Discussions with regional staff on locations that would best represent 

weather patterns for a specific area. 

Ministry of 

Transportation, B.C. 

Discussion with maintenance personnel, investigation of accident 

history, thermal mapping 

GNWT DOT 
No standard procedures are presently in place for determining general 

location of RWIS stations. 

MTO 
Reviewing of existing RWIS stations within Weather Zones and 

spacing between stations 

Alberta 

Transportation 

We conducted an RWIS expansion study which looked at various 

factors and aspects - as described above. 

Alaska DOT 
DOT needs  Availability of power and comm  Repsentativeness of the 

site (aka RWIS Siting Guidelines)  Maintenance 

Region of Waterloo, 

Ontario 

Availability of Land, Site conditions that are appropriate, priority of 

location based on traffic, winter conditions, topography, lack of existing 

site owned by MTO, etc. 

Illinois DOT Work with experienced district staff, they know where their needs are. 

UDOT 

Required siting is done at each proposed area. Proposed areas are a 

combination of maintenance, road project needs, public need, weather 

forecaster need, etc. 

Ohio DOT traffic volume 

NDDOT North 

Dakota 

We work with each district to find out their problem areas as well as 

looking at the current density and try to obtain a 30 mile radius density. 
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MDOT/ Michigan A concept of operations for that area.  Stakeholder meetings, 

Wisconsin DOT 
Determine need in coordination with local maintenance folks.  Include 

in improvement project plans. 

Iowa DOT 

Our RWIS Committee collects site requests from area supervisor.  The  

requests are analyzed by the committee and a few are selected, per 

the budget. 

 

 

Q19: Do you think a computer software tool for locating new RWIS stations would be necessary 

and useful? 

 If yes, please describe 

Utah DOT 

It would be helpful but it would not dictate where RWIS is located.  

Often terrain and weather patterns ultimately dictate where RWIS 

stations are installed. 

Minnesota DOT 

I believe that a computer software tool could be very useful if it 

incorporates all the needed factors like how will the site fit in with 

weather forecasting, etc. 

PA DOT If used in conjunction with local maintenance management input 

Ohio dot possibly. depending on the agency need 

MTO 
Only if it takes into account new technologies (ie. thermal mapping, 

Intelldrive, mobile tracking) 

Alberta 

Transportation 

It would be beneficial to have Canadian guidelines and perhaps a 

computer program incorporating every aspects both at the macro and 

micro levels. 

Region of Waterloo, 

Ontario 

If the model took into consideration the types of storms, traffic 

volumes, other available sites, etc. 

MDOT/ Michigan not sure....  could be just a manual 

KDOT It could provide guidance for installations based on facts not opinions 

Wisconsin DOT It would have to be climate based. 

Iowa DOT not necessary, but maybe helpful 
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Q20: In general, what are the greatest challenges that you often encounter when locating RWISs? 

Utah DOT 

Power sources and communications.  Cell phone coverage is limited 

in a rural and mountainous state such as Utah.  Balancing operational 

distance of non-invasive road sensors and clear zone requirements.  

Occasionally right of way is a concern, especially bordering NFS and 

BLM lands.  Soil conditions. 

Minnesota DOT 
Funding, access to power and good communication for the data 

stream. 

Kansas DOT Not a current issue for us. 

PA DOT 
Suitability of desired location, access to power and communication 

(wired or wireless) 

Illinois DOT Funding has been our greatest challenge. 

NDDOT 
Trying to balance the density vs. problem areas. If you focus on 

problem areas your data becomes skewed to a worse degree. 

Utah DOT 
Communication.  Cell phone coverage can be limited in rural areas.  

Right of way, especially BLM and NFS land. 

Virginia DOT Cost 

Ohio dot Construction planning 

PEI 
Finding the balance between regional coverage and ideal locations 

for capturing all weather patterns. 

Ministry of 

Transportation, B.C. 

Communications options for data retrieval in remote locations, 

availability of AC power (reliance on solar power problematic at many 

locations) 

GNWT DOT 
Local and regional representation, winter maintenance operations, 

budget constraints, and availability of power and communication. 

MTO Power, and ROW limitations 

Alberta 

Transportation 

At the macro level - it is a time consuming process to gather and 

analyze the historical data, also the process requires input from many 

professionals.  Consolidating the data and making decisions without 

clear guidelines. At the micro level - it would be helpful to have a clear 

procedure with a clearly described process for the field staff. 

Alaska DOT Power and communication  Priority  maintenance and O&M 

Region of Waterloo, 

Ontario 

Since we only have installed weather stations in rural locations, 

acquiring land was very time consuming.  Picking the preferable site 

was the next toughest along with determining our needs. 
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Illinois DOT Lack of budget 

UDOT 

Lack of communication to the site. Utah has areas of no cell 

coverage, and many of these are frequently hazardous weather 

locations. 

Ohio DOT none 

NDDOT North 

Dakota 

Most often we would like to deploy in remote areas that lack power 

and communications. This creates cost issues. 

MDOT/ Michigan budget - installation and maintenance costs. 

Wisconsin DOT Cost. 

Iowa DOT 
Weighing all the pros and cons.  There never seems to be a perfect 

site all around. 

 

Q21: What winter maintenance operations do you perform using real-time (e.g., current 

observation) RWIS data? 

 Other (please specify)   

Minnesota DOT Maintenance operational planning and deploying crews. 

Kansas DOT Camera images 

Ministry of 

Transportation, B.C. 
Sweeping 

Region of Waterloo, 

Ontario 
Occasionally 

UDOT Probably all of these. 

Ohhio DOT storm tracking 

MDOT/ Michigan in general maintenance staff do not access the real time data. 
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Q22: What winter maintenance operations do you perform using near-future (e.g., forecast) RWIS 

data? 

 

 Other (please specify) 

Utah DOT 
Weather group provides forecast tools for operational decision 

makers. 

Minnesota DOT Maintenance operational planning and deploying crews. 

Utah DOT 
We have no site specific RWIS forecasts rather a detailed forecast 

for the entire route. 

Alaska DOT seasonal weight restrictions primarily 

UDOT Our maintenance activities use forecasts from human forecasters. 

Ohio DOT storm tracking 

 

Q23: Do you use RWIS (forecast) data for a resource planning and preparation (e.g., staff, 

equipment, and material)? 

 

 
If yes, please describe what RWIS data (e.g., near-future pavement 

temperature) you use 

Utah DOT 
Weather Group supports in house weather briefings and conference calls to 

all decision makers within UDOT. 

Minnesota 

DOT 

forecasted wind, pavement temperature, precipitation, air temp, dew point, 

RH, etc. 

Kansas DOT Standby and crew call out based on pavement forecast data. 
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NDDOT The RWIS data is used by Meridian to aid in their forecasting. 

Utah DOT 
We have no site specific RWIS forecasts rather a detailed forecast for the 

entire route.  The RWIS data helps verify and adjust short term forecasts. 

Ohio dot pavement temperature. sub-surface temperature, precip 

PEI 
near future pavement temperature, precipitation type, road conditions, wind 

speed 

Ministry of 

Transportation

, B.C. 

Hwy Maintenance is privatized - the contractors do this. 

GNWT DOT snowfall amounts, air temperature, pavement temperature 

MTO Its one of the tools that our AMC contractors use. 

Alberta 

Transportation 

I am not directly involved in Maintenance.  I can provide contact information 

for your further inquiries. 

Alaska DOT pavement and sub-surface temperatures, camera images 

Illinois DOT pavement temperature forecast 

Ohio DOT pavement temperature 

NDDOT North 

Dakota 
RWIS Data is used by MDSS 

MDOT/ 

Michigan 
pavement temps and precipitation (ie to prevent an ice bond from forming) 

Iowa DOT 
pavement temperature, wind, visibility, humidity, precip probability, precip 

type 

 

Q24: What other sources of information (other than from RWIS) do you incorporate for initiating 

the winter maintenance operations? 
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Other (please specify) 

Utah DOT 

Weather Group uses all available weather data at their disposal.  The 

Weather Group is under the Traffic Management Division and not under 

Road Maintenance.  Weather Group supports the entire state DOT. 

Minnesota 

DOT 
Maintenance Decision Support System (MDSS) 

PA DOT Paid private weather forecast service 

Illinois DOT Forecast from contracted weather service 

Utah DOT 
We often use NWS locations.  We will use local weather data when trusted 

by the meteorologist in areas of sparse data. 

Ohio dot Private weather consultants 

Ministry of 

Transportation

, B.C. 

Winter Maintenance Specifications (contract documents) 

MTO Patroller observations 

Alberta 

Transportation 
EC, Local weather networks 

Alaska DOT 

FAA Weather Cameras, other weather cameras, We have a good 

cooperative relationship with the National Weather Service and the Federal 

Aviation Administration (FAA has installed two web cameras at RWIS sites 

and will do another in 2013).  We also have cooperative agreements with the 

National Park Service and River Forecast Center (NWS), and the Depart of 

Fish and Game.  See Alaska Weather Links on our web site. 

Region of 

Waterloo, 

Ontario 

Intellicast and other websites that show large storms (clippers and Colorado 

lows,etc) forming days away.  Presence of salt residual on road. 

UDOT Not sure the distinction here. 

Ohio DOT consultants 

MDOT/ 

Michigan 
past experience of weather conditions in that area 

Wisconsin 

DOT 
MDSS 

Iowa DOT communications from other maintenance supervisors 
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Q25: Please feel free to leave any comments or suggestions on the RWIS site selection process. 

Minnesota 

DOT 

It is very important to include Meteorologists in the decision to make sure 

your RWIS system is able to be used to help on a broader scale (weather 

forecasting models), but also to find out which atmospheric sensors you will 

actually need since you don't want to double up if there is another weather 

station close to the area you are considering for an RWIS.  You may just 

need to have pavement information and camera and no or limited 

atmospherics needed. 

Kansas DOT RWIS and information it provides through our weather service provider are 

tools used by our Maintenance decision makers. 

Illinois DOT If citing is a concern portable RWIS sites could be used to help with 

gathering data to make a decision. 

Virginia DOT What you see on the road is a environmental sensor station not an RWIS 

Ohio dot this would be a good tool for developing users 

Ministry of 

Transportation

, B.C. 

In complex mountainous terrain there is no optimal spacing of stations.  Site 

selections are based on operational needs for data to support local decision 

making. 

Alaska DOT I invite you to take a look at the information we provide to travelers and the 

maintenance engineers (for seasonal weight restrictions) on our RWIS public 

web site at http://roadweather.alaska.gov.  The Alaska Weather Links 

demonstrates the partnerships that DOT has developed.  Also note the 

cooperative observations we provide (Mentasta Pass, Klondike) 

Ohio DOT any rwis activity needs front line user buy in or it is a not worth the effort 

 

 


