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Abstract

Reducing power consumption in computational processes is important to software devel-
opers. Ideally, a tremendous amount of software design efforts goes into considerations that
are critical to power efficiencies of computer systems. Sometimes, software is designed by a
high-level developer not aware of underlying physical components of the system architecture,
which can be exploited. Furthermore, even if a developer is aware, they design software geared
towards mass end-user adoption and thus go for cross-compatibility. The challenge for the soft-
ware designer is to utilize dynamic hardware adaptations. Dynamic hardware adaptations make
it possible to reduce power consumption and overall chip temperature by reducing the amount
of available performance. However these adaptations generally rely on input from temperature
sensors, and due to thermal inertia in microprocessor packaging, the detection of temperature
changes significantly lag the power events that caused them.

This work provides energy performance evaluation and power consumption estimation of ap-
plications running on a server using performance counters. Counter data of various performance
indicators are collected using the CollectD tool. Simultaneously, during the test, a Power Meter
(TED5000) is used to monitor the actual power drawn by the computer server. Furthermore,
stress tests are performed to examine power fluctuations in response to the performance counts
of four hardware subsystems: CPU, memory, disk, and network interface. A neural network
model (NNM) and a linear polynomial model (LPM) have been developed based on process
count information gathered by CollectD. These two models have been validated by four different
scenarios running on three different platforms (three real servers.) Our experimental results show
that system power consumption can be estimated with an average mean absolute error (MAE)
between 11% to 15% on new system servers. While on old system servers, the average MAE is
between 1% to 4%. Also, we find that NNM has better estimation results than the LPM, resulting
in 1.5% reduction in MAE of energy estimation when compared to the LPM.

The detailed contributions of the thesis are as follows: (i) develop a non-exclusive test bench
to measure the power consumption of an application running on a server; (ii) provide a practical
approach to extracting system performance counters and simplifying them to get the model pa-
rameters; (iii) a modeling procedure is proposed and implemented for predicting the power cost
of application software using performance counters. All of our contributions and the proposed
procedure have been validated with numerous measurements on a real test bench. The results
of this work can be used by application developers to make implementation-level decisions that
affect the energy efficiency of software applications.
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Chapter 1

Introduction

Electrical energy is fundamental to all computer systems [1], [2]. However, it is not ubiquitous,
and it is expensive. Those in the business of operating high-volume data centres, servers, and bit-
coin mining farms all collectively have an interest in understanding how their systems’ resources
are utilized. Often times however, fitting vast numbers of components with thermal detection
instrumentation is not economically feasible.

Reducing power consumption in computational processes is also important to software de-
velopers [3], [4], [5]. Ideally, a tremendous amount of software design efforts goes into con-
siderations that are critical to power efficiencies of computer systems. Sometimes, software is
designed by a high-level developer not aware of underlying physical components of the system
architecture, which can be exploited. Furthermore, even if a developer is aware, they design soft-
ware geared towards mass end-user adoption and thus go for cross-compatibility. The challenge
for the software designer is to utilize dynamic hardware adaptations. Dynamic hardware adap-
tations make it possible to reduce power consumption and overall chip temperature by reducing
the amount of available performance. However these adaptations generally rely on input from
temperature sensors, and due to thermal inertia in microprocessor packaging [6], [7], [8], [9], the
detection of temperature changes significantly lag the power events that caused them.

A work-around to dynamically gauge a system’s performance is to use performance counters
that have been demonstrated to effectively proxy power consumption [10], [11]. Performance
counters count the instances of local processor events and calls, and thus eliminate the need for
sensors distributed about various parts of the system. However, considerable modelling chal-
lenges exist in relating the statistical count information to what is truly happening internally with
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respect to power consumption. Consequently, there is considerable financial interest in develop-
ing accurate models that use the performance counts to cost-effectively provide up-to-date power
consumption information. With customization, engineers can target and customize specific as-
pects of system responses in response to stress tests.

This work aims to provide energy performance evaluation and power consumption estima-
tion of an application running on a server using performance counters. Counter data of various
performance indicators will be collected using the CollectD tool. Simultaneously during the
test, a Power Meter (TED5000) will be used to monitor the actual power drawn by the computer
server. Furthermore, stress tests are performed to examine power fluctuations in response to the
performance counts of four hardware subsystems: CPU, memory, disk, and network interface.
A neural network model (NNM) and linear polynomial model (LPM) have been trained based
on process count information gathered by CollectD. These two models have been validated by
four different scenarios running on three different platforms (three real servers). We provide a
modelling procedure and tools that help to estimate system power consumption without the need
of using a power meter device.

1.1 Problem Description

The power consumption is majorly affected by the design of the software application [3], [12].
In order to reduce the power consumption, many new techniques have been introduced lately
for the mobile phones [5] and software systems in particular [3] [4]. The major cost involved in
maintaining a data centre is the power bill [13], and hence analysis should be carried out in order
to understand how the energy consumption be minimized while running applications on servers.
While the application software is in the design phase, there are ways to minimize the energy cost
but they take much of time and effort. Therefore, designers do not pay much attention on the
cost aspect of their applications software as they have to make various decisions pertaining to the
design of the application software. Thus they do not know how much energy would be consumed
by the application software when they are tested on real servers in the data centres.

In this thesis, a number of problems are addressed which share a common objective of achiev-
ing energy efficiency in data centre. We cover two primary challenges regarding software appli-
cation development process. The first challenge is to have high-level energy cost information
so that software developer can take advantage of that during the design phase of energy effi-
ciency applications. The second challenge is to have a consistent energy evaluation test bench
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for comparing test results of system power consumption. We propose a non-exclusive measure-
ment test bench that considers the values of different subsystem parameters during a test, and
propose a modelling procedure that can be used with an existing application development pro-
cess to achieve better energy efficiency.

1.2 Solution Strategy and Contributions

We develop a non-exclusive test bench to measure the power consumption of an application
running on a server. The test bench comprises a power meter and a monitoring computer that
acquires power readings from the power meter and system performance counters from the server.
Our test bench can be used to measure the total power cost of a server. By using this test bench,
we proposed a modeling procedure that would help in predicting how much energy would be
consumed by a particular application software.

Through the use of this modeling procedure, a developer can estimate the system power
consumption without the need of using an actual power meter device. Also, it can help the
developers to measure the power consumption of their applications software which can help
them to come up with an energy efficient design. Most of this work has been published in 2015
[14].

This study makes three important contributions:

1. It shows how system performance counters can be used to model power consumption pro-
files for applications software running on server.

2. It lays out a modelling methodology to estimate the power profile of application software,
which avoids repeated power modelling for the same server but different applications soft-
ware.

3. An experiment is performed to contrast the different energy consumption behaviours in
terms of different models, platforms and different load scenarios.

3



1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present a comprehensive liter-
ature review of power efficiency of data centre. In addition, various methodologies of energy
efficiency improvement are discussed. We also compare our test bench and modeling procedure
with the existing work. In Chapter 3, System model of test bench, implementation details and
collecting and simplifying data for determining variables for power consumption model have
been explained. We also present our modeling procedure to estimate the power consumption
of application software running on servers. Chapter 4 lays out two power consumption models
(Neural Network and Polynomial) that have been implemented and validated using three plat-
forms and four different scenarios. Some concluding remarks are provided in Chapter 5.
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Chapter 2

Literature Review

2.1 Power Efficiency of Data Centres

Data centre are design to deliver a wide range of services such as cloud computing and storage
services to vast variety of organizations and enterprises. During the last two decades, the term
data centre started to gain a lot of recognition as the best replacement for old computer rooms.
Many markets drivers are related to economic and financial applications such as the growth of
online business and banking services; while, some other drivers focus on educational aspects
including distance learning and online degrees. Regardless which market driver is motivating
this trend towards using data centres, tremendous and real benefits can be earned from using
these cloud computing facilities properly. At the beginning, data centres were designed in the
absence of established standard and policies. As a result, service providers were focusing mainly
on performance, reliability and quality of service delivered to consumers. This focus to raise
the cost associated with powering and cooling those huge structures and creating the problem of
high power expenditure. Consequently, this exaggerated energy amount consumed by data cen-
tres made energy management a critical aspect in designing and developing these huge facilities.
The rising energy consumption of such facilities is great concern due to its adverse financial and
environmental costs.

Generally, energy consumption can be described as the average power in watt consumed per
second:

Energy(joule) = AveragePower(watt)⇥ T ime(sec) (2.1)
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If the energy amount spent by any data centre is relatively small, then that data centre can be
considered as energy efficient, but this is not always the case in real time applications. Due to
the increasing demand on cloud computing and web services such as search, music downloads,
video-on-demand, and social networking, most currently used servers are far away from being
green data centres. Data centres are consuming large amounts of power on regular basis, and this
issue is becoming more and more serious as demands on computing service are increasing. Due
to its adverse impacts on the environment and the global economy, excessive power consumption
in data centres needed to be regulated, managed and reduced to lower and acceptable levels or
what is known as energy efficiency. According to Irrek and Stefan from Wuppertal institute in
Germany [15], the term efficiency can be defined as the ratio of benefits to expenses. Energy
efficiency, therefore, describes the ratio between the benefit gained and the energy used. By ap-
plying physics laws and using equation 2.1, energy efficiency can be found as shown in equation
2.2.

EnergyEfficiency =
workload

energy

=
workload

power ⇥ time

(2.2)

or simply:

EnergyEfficiency =
performance

power

(2.3)

Energy Efficient data centres are the perfect solution to the growing energy loss, but what
makes any data centre energy efficient or green? There are some green metrics that can be ap-
plied to determine whether a given data centre is energy friendly or not. Table 2.1 presents some
suggested green metrics for data centres [16].

The power usage effectiveness (PUE) metric is the most important factor and standard metric
for measuring data centres’ energy efficiency. It represents the ratio between the total power
going into a data centre and the amount of power used to run IT equipment (servers, storage,
and network). The power usage effectiveness (PUE) metric was introduced by the green grid, an
association of IT professionals focused on increasing the energy efficiency of data centres [17],
[18], [19]. If the value of PUE is equal to 1, then efficiency represents the optimal achievable
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METRIC DESCRIPTION FORMULATION

PUE Power usage effectiveness PUE = total data centre source energy
IT source energy

CUE Carbon usage effectiveness CUE = total CO2 emission from total data centre energy
IT source energy

ERF Energy reuse factor ERF = Reuse energy outside of the data centre
total data centre source energy

DCeP Data centre energy productivity DCeP = useful work produced
total data centre source energy consumed producing this work

Table 2.1: Green Metrics for Data Centres

efficiency, which means that all power entering the facility is consumed at IT equipment and
nothing is wasted. In real time applications, PUE value of 1 has not been achieved yet, and 1.12
is the closest number to it, which was announced by Google Company [19]. Power must be
transferred to power support infrastructure. In addition, some of the power is consumed due to
losses in the power system. The remaining power then goes to run the IT load. We can improve
data centre energy efficiency and reduce our PUE by minimize either the power going to the
support infrastructure or losses in the power system [19]. When we apply green metrics in the
designing process of future data centres, the construction expenses will be higher if compared
with energy inefficient structures, but this is only a one-time expense and cost-related savings
over time are much higher.

2.2 Energy Efficiency Improvement Methodologies

Before we introduce the main two categories to manage energy usage in data centres, we will
present some considerations to be taken into account in order to design functional energy man-
agement techniques.

• Examine data centre’s components to find out what components are spending more power
when compared to other components.

• Think of some possible ways to manage power consumption in these components individ-
ually.

• Try to apply these solutions and test their efficiency on each components energy expendi-
ture.
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• Examine the whole computing system with one component being adjusted at a time, so that
you will know the effect of each part of the data centre on the total energy consumption
and performance.

• Using trial and error. You can figure out the best way to manage energy under different
situations and loads.

• Different data centres require different tuning procedures to reduce total energy usage,
which means what may apply for one data centre may not work on other data centres.

• Hardware based techniques and using power efficient components require software modi-
fication in order to achieve the best results.

The public perception of data centres’ large power budget is encouraging and motivating
owners of such facilities and operators to take an action to reduce the costs. Based on the related
work, we can categorize energy management strategies into hardware and software based efforts.

2.2.1 Hardware Based Efforts

Hardware equipment is becoming better suited to control energy in data centres; as a result, a lot
of research has been done to develop functional solutions to produce energy conscious hardware
components. Based on the existing work that we have surveyed, we divide the hardware based
efforts into two main categories: circuits-based (low-level hardware component optimizations)
and architecture-based (hardware organization, also known as physical design).

1. Circuit-based: Most recently developed models involve low-level (circuit-based) tech-
niques which manage energy loss in data centres such as utilizing energy efficient circuits, clock
gating, or dynamic voltage-frequency scaling [20]. These techniques focus on improving the in-
ternal circuits’ functionality of a data centre by using less power consuming circuits, preventing
clock signal from entering inactive sections and lowering operation voltage/frequency of these
circuits. All these approaches share a common principle of achieving more/same performance
with less power, but some differences are applied. Zeydel and Oklobdzija claim that designing
energy efficient circuits such as Limited Switch Dynamic Logic (LSDL) ensures minimal power
consumption with a desirable level of system performance at a constant delay, and possible power
savings would be 30-50% [21]. However, when using this approach to reduce energy, the system
speed/frequency is slightly decreased, and high performance standards cannot be accomplished.
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Bol shows that utilizing energy efficient circuits’ technique is more valuable for applications that
require low or medium performance requirements [22].

Another example of circuit-based approaches is clock gating. Clock gating techniques are
simply based on cutting off the clock signal from inactive regions of digital circuits. When the
clock signal does not reach a specific part of a circuit, power savings can be made because the
unnecessary switching activities of flip flops and clock buffering tree can be avoided. Yeo and
Lee [23] recently proposed two techniques for clock gating known as Latch-free clock gating
and Latch-based clock gating. In Latch-free clock gating method, two input AND gate is em-
ployed to allow or cut off the clock signal while in the Latch-based clock gating method, the
clock signals enabled or disabled using level sensitive latch. The main drawback of using clock
gating approaches is due to additional propagation delays/time, which may reduce the circuit
frequency/speed.

In addition to energy efficient circuits and clock gating, we can increase power savings of a
data centre by the dynamic voltage-frequency scaling (DVFS) technique. The basic principle of
this technique is to lower a microprocessor’s operating voltage and/or frequency (number of in-
structions a processor may handle in a specific time interval) and thus increasing energy savings
because the active power of a CMOS circuit decreases linearly with frequency and quadratically
with voltage as shown in equation 3 [23]. Mechanisms like PowerNow [24], Cool’nQuiet [25],
are good examples of the DYFS approach. Generally, these measures can slow down CPU clock
frequency or power off parts of the chips, if they are idle [26] [27].

PowerNow technique is a built in mechanism in AMD’s processors, and it is designed to
decrease both the CPU’s frequency/clock speed and operating voltage in an automatic and inde-
pendent style when the data centre is idle or when its load is low. This voltage/frequency scaling
method has many benefits such as reduce power consumption, generated heat and noise because
it supports several power modes known as high-performance, power-saver and automatic mode
[24].

In high-Performance mode, the highest possible performance is achieved at maximum volt-
age and frequency; whereas, the Power-Saver mode ensures that the microprocessor’s operation
is under the minimum rated voltage and speed limits with the most possible power efficiency.
Finally, the automatic mode both frequency and voltage are adjusted automatically depending
on the application’s performance requirements and only the right amount of power will be dissi-
pated [24] [28].
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Cool’nQuiet technique is similar to PowerNow because they share the same principle of re-
ducing the operating voltage and clock speed when the system is idle to lower the dissipated heat,
lost power and generated noise, which can be understood by its name [25]. The main difference
between the two methods is that Cool’nQaiet is more suitable with server chips, while PouerNow
is used for mobile chips. In general, DVFS technique can increase power savings to as high as
36% for web-services workloads [28]. However, working at lower voltage and/or frequency may
affect the system’s overall performance [23].

2. Architecture-based: these approaches reduce data centres’ energy waste based on their
physical design. One of these approaches is using more power-efficient alternatives [29]. This ap-
proach focuses on replacing power-consuming hardware components with more power-efficient
alternatives which achieve the same task with less energy [29] [30]. For example, more energy
conscious blade servers can replace rack-mount servers because Blade servers consume about
10% less power than equivalent rack mount servers [31]. Another example, use energy-efficient
power supplies and fans instead of server power supplies that are in use today and are operating
at lower efficiencies [29] [31]. Larger power supplies and fine cost more, but is a one-time ex-
pense and the power savings are worth it [31].

Felter et al [32] introduced another approach that is called power shifting. Power shifting
dynamically re-allocates the system’s power among the most active components based on each
component’s activity. In other words, this technique prevents any data centre from working
with its maximum energy which in turn reduces energy consumption and increases savings. The
process of re-distributing the power can be accomplished through many mechanisms such as
threshold-based throttling which dynamically divides power among active components using
workload-sensitive policies. By employing power shifting in any data centre, power expendi-
ture decreases with almost no/little impact on the system’s performance and quality of service.
However, if for any reason the sum of active components’ power budgets exceeded the system’s
budget, a significant drop in performance or even a power supply failure may be resulted.

Grrumurthi et al [33] recently proposed another approach to reduce power consumption by
using multi-speed disks. This approach is called dynamic rotations per minute or DRPM, and it
modulates disk speed (rpm) dynamically. Standard disks spin at a constant speed rate of 10,000
or 15,000 rpm; while multi-speed disks can spin at various speed rates depending on the exist-
ing workloads and thus avoiding working with full speed all the time. For instance, lower spin
speed will be assigned to lower workloads, which increases power savings when the data cen-
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tre is idle or when it is running low loads. Unlike other techniques that spin down the disks,
DRPM can decrease the speed rate and restore to normal level in a shorter time, which makes
this techniques very effective in servicing requests that with a short idleness interval in between.
Although DRPM method ensures serving requests at lower speed rates and with considerable
power savings, multi-speeds disks are not used vastly in today’s data centres.

Although most of power-reduction mechanisms focus on microprocessors’ architects, some
active research is concerned in developing on-chip memories or caches. Zhu et al [34] presented
a new technique that includes storage cache replacement. This approach selects specific blocks
from certain disks in the main memory cache and preserve then, which enables these disks to
operate in lower power modes for longer time intervals.

Also, Yeo and Lee [23] introduced an Architecture-based approach called Selective Cache
Ways which reduces the power dissipation in processor’s caches. This technique switches off
selective subset of cache ways to allow associative cache at run-time. These cache ways are
created by portioning the on-chip cache into multiple subarrays to minimize latencies, and these
cache ways can be turned off by a certain application when the cache activities are low. The
selective cache ways techniques have a little impact on performance, and it can improve the
overall cache energy dissipation by 40%.

2.2.2 Software Based Efforts

In order to minimize power consumed by hardware equipment which runs the variety of appli-
cations and services within data centres, power-management software efforts have been created
and implemented. With this power-management software efforts equipment in a data centre can
modify how they operate in order to optimize energy savings. Depending on the surveyed work,
we can categorize four software based approaches as follows:

1. Optimizing software: Because most of the existing software codes were written at a time
when energy expenditure was not a key factor in designing data centres, it is more efficient to
optimize these codes in a way they achieve high performance in fewer clock cycles and make
better use of underlying hardware capabilities. By optimizing software codes to consider energy
as well as performance, extra benefits can be earned such as monitoring and dynamically con-
trolling power consumption in an effective way. Furthermore, if researchers kept on optimizing
existing software, only required software components would be running at any particular time
with minimal Power wasted [35].
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2. Server consolidation: consolidation allows different tasks to share available resources, so
they use less equipment and less power. Whenever system resources are not fully utilized, the
system may allow other tasks to share the resources or allow the unshared resources to enter a
suspended or reduced power mode to save energy. System consolidation includes two mecha-
nisms hardware location and Virtualization.

Hardware location mechanism enables some hardware components to be grouped together
depending on some similarities. For example, when hardware components with similar heat load
densities and operating temperature are grouped, minimal fan power and more cooling system
performance can be accomplished. Similarly, virtualization has a similar principle to hardware
location, which is running several independent virtual operating systems on only one physical
processor. By using virtualization, we can run different operating systems without lowering the
CPU’s utilization, and we can also reduce both the number of servers in a data centre and the
power consumed by each server without compromising on the system’s performance [35] [36].

2.3 System Power Consumption Models

Diverse models, which are created with performance counter information, have been used as a
predictor of temperature [37], total system power consumption [9], [11], [38], and subsystem
power [10], [39], [40], [41]. Even though those models are simple and fast, they are sensitive
to benchmarks chosen for model calibration. Furthermore, those models do not consider full
system power consumption. For overall power consumption, each of those models requires one
or more measurement phases to determine the contribution of each subsystem. Although all the
components vary in their power demands with respect to certain process calls, on average, micro-
processors are the largest consumers of power, while other subsystems constituted 40-60 percent
of the total power [11].

Must of those models were built using performance counters, and linear regression has been
used to train those models [10], [11]. The feasibility of using performance events to model
real-time use of power in a computer system has been effectively demonstrated. Performance
events, which are readily visible and accessible from the CPU, are highly correlated to power
consumption in all the subsystems, including memory, I/O, disc and processor. The authors
of the paper [10] produced effective performance counter models that independently measured
power for the six main components within a computer: microprocessor, graphics processing unit
(GPU), chipset, memory, I/O, and disk. The authors at [42], [43] developed an automated test
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bench that developers can use to measure the energy cost of the their applications for their vari-
ous design choices.

Our work is different from those works as follows: (i) our power model of a system is de-
veloped through analyzing the various count information from CPU, memory, disk and network
interactions; (ii) our test bench estimates the power cost of an application running on server
without the need for power sensing hardware; (iii) neural network model and linear polynomial
model have been used to train the power consumption model. In order to properly model system
performance via counter-based models, it is necessary to have a methodology to completely rep-
resent the power consumption of a system, which is what we do in this work.

2.4 Review of Existing Research

Luo et al. [44] have highlighted several key aspects of the power consumption, methods of con-
trolling and reducing it in the cloud data centers. They mention the importance of virtualized
systems for conserving energy which would empower the users to turn off sources that are not
in use, thereby saving power. Through virtual systems, the cloud data centers can save a large
amount of power by turning off machines that are not in use, also helping the data centers to
maintain a temperature that is suitable for its performance. Liang Lao has also touched upon the
need to understand the users, their profiles and their usage patterns to analyze the actual extent of
power that would be required and adopt the most suitable strategy of allocating data and energy
resources.

Zhang et al. [45] presented their arguments for having a benchmark of assessing the con-
sumption of power based on the applications used and the pattern of usage of the users. So,
they have emphasized on a more user-centric approach for the assessment of the consumption
of energy. They also highlighted the importance of associating the user-centric approach to as-
sess the energy consumption patterns and arrive at a more concrete model. A computing device
can have several running applications, from web browsers, text-editor applications to complex
professional applications all of which have specific energy utilization. Zhang and Hindle have
based their approach on three situations and scenarios and have applied the most widely used
standardized bench-markings. It was observed that applications can a varied pattern of energy
consumption when undergoing the same operation. It was also observed that the platform of the
application had a significant bearing on the amount of energy it consumes. Among the other
significant observations, Zhang and Hindles scenarios presented facts that web based programs
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consume a lot more energy than others and also the mote-worthy point that idle applications also
consume energy.

Kothiyal et al. [46] have analyzed and thrown light on several ways by which the power
consumption of devices can be lowered. The paper discusses various methods of controlling
the power consumption used in devices to allow users a better experience. They throw light
on several methods of file compression algorithms that can be implemented on several types of
different data files and assess their results and energy usage performance. They elaborately ex-
presses the mechanism that has been used to achieve the purpose of the paper. The paper talks
about compressing the files at the processing stage and writing them to the disk. Once this is
done, the files could be read and accessed from the disk and decompressed, therefore, helping in
reducing energy consumption. They talk about the effectiveness of the compression algorithms
as an important tool that determines the performance and effective power consumption in a com-
puting device.

Sabharwal et al. [3] discussed about a computing system that encourages environment friendly
standards by trying to reduce energy consumption. The emphasis on creating a process for main-
taining , controlling and monitoring energy consumption levels has brought to light the need for
software and hardware solutions that can monitor the energy consumption levels and focus on
greener methods. They talked extensively about optimizing the energy usage at the software and
the usage of specific energy efficient techniques like Green Scheduling which assesses the energy
usage. So, if a computing system is able to implement green and energy efficient techniques in
its processing stage, it can conserve a lot of energy and contribute to the green initiative. The
article also stresses on energy conservation through energy efficient software which incorporate
several energy conservation methods that can be implemented in the design phase of the soft-
ware. Although, incorporating energy efficient techniques right at the designing stage can be a
difficult process, the concept of virtual machines provide a likely solution. This concept allows
developers and programmers to design their compilations on different platforms single or mul-
tiple nodes. Their paper has extensively focused on providing hardware and software support in
providing an energy efficient computing system.

Sun et al. [47] developed a solution of achieving a low cost mechanism for assessing the
power levels at the sub-system which has been named as DiPART or Disaggregated Power Anal-
ysis in Real Time. This tool would help estimate and analyze the power levels at the sub-system
based on several events and a power sensor that encompasses the system.
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McCullough et al. [48] discussed about simpler models and their compatibility with more
advanced platforms and has discussed if they can be compatible to the individual subsystems
that are operating within a system. They also discussed about having a concrete management
and monitoring solution of the power consumption levels than following the present practice
of assumptions based on specific benchmarks and standards. They throw light upon the fact
how the platforms are capable of adding its own power monitoring and assessment system to its
performance. These power assessment systems used in the platforms by the manufacturers can
be more accurate and precise in its measurement and response
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Chapter 3

Modelling the Energy Cost of Application
Software for Developers

This chapter presents a non-exclusive test bench to measure the power consumption of an appli-
cation running on a server. The test bench consists of power meter and development computer
that extracts the power readings and the performance counters of system during running a work-
load on the server.

Also, this chapter provides modelling procedure that help software developers to evaluate
energy performance of their applications. Different models can be trained based on process
count information gathered by CollectD and actual real-time power consumption monitored by
a TED5000 power meter. By using measurement of actual system running different workloads,
power models for four subsystems (CPU, memory, disk and network interface) on three platforms
(three real servers) are developed and validated. Through the use of this modeling procedure, a
developer can estimate the system power consumption without the need of using an actual power
meter device.

3.1 System Model of Test Bench

The test bench in our power modeling process has been shown in Figure 3.1. The definitions of
all the terms are as follows:
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Server: A system that runs the software application that the developer is interested in evalu-
ating the energy cost of the application.
Load: It is the software application of which we want to evaluate the energy performance.
Performance Counter: We used CollectD which is an open source daemon that collects system
performance counters periodically.
Power Meter: An external device that is used for measuring the power drawn by the server. We
used TED5000.
Wall Power: This supplies the AC power.
Development Environment: This is a computer equipped with the software tool (MATLAB)
that are used to analyze and model the data coming from the Server and the Meter.

Our test bench is used to measure the total power cost of a server. To set up the test bench
for power measurement, we connected the power meter to the server via a Current Transformers
(CRT) and connected the server and the development environment to the same LAN (Local Area
Network).

Figure 3.1: Test Bench Framework
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3.2 Modeling Process

Figure 3.2: Modelling Process

Our modelling process involves several steps that have been illustrated in Figure 3.2. The
first step is to run the workload and the performance counters (collectD) on the server that is
connected to the power meter (TED5000). For the workload, we used a stress tool called stress,
which is a simple tool used to impose varying amounts of load on the CPU, memory, I/O, and
disk. We used it to produce heavy load on selected subsystems (CPU, memory, and disk) in
order to drive the basic correlation between their utilization and power consumption. We will
explain more about the workload in section 3.3. To collect the performance information for each
subsystem, we implemented CollectD. We used CollectD to collect performance metrics from
four subsystems (CPU, memory, disk and interface). More explanation about CollectD will be
in section 3.4.

The second step is to analyze the collected data to perform modelling. In the development
machine, we wrote a Matlab code that helps to simplify the subsystem performance data files.
Each subsystem has many metrics collected for it. We reduced the metrics to have only four main
metrics, one for each subsystem: CPU, memory, disk, and interface. We explained the reduction
process of the metrics in section 3.4.

The final step is to formulate the model based on the performance metrics and the power
meter data that have been collected during the load process to predict the power. A Neural Net-
work technique and Polynomial technique are used to fit the data relating performance metrics
to the power variation for the system. By using the four subsystem metrics as input variables and
power meter data as a target variable, we performed power estimation model that predicts the
power consumption of application running on server. In section 3.5, we will give further details
about formulating the power estimation model.
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3.3 Workload Design

The workload is important for developing and tuning the power models. Our workload is chosen
based on its apparent utilization of a subsystem. In order to meet the requirement of subsystem
utilization, we employ the stress tool to produce very high utilization.

The stress tool is a simple tool used to impose varying amounts of stress on operating sys-
tems. We use it to produce heavy loads on selected subsystems (CPU, memory and disk) in order
to drive the basic correlation between their utilization and power consumption.

For a server with eight core CPUs, we fully loaded all of them gradually one by one for one
minute per core until we reached 100% CPU load. Also, the memory was loaded gradually to
reach 100%. Disk also was loaded with the stress tool. For the interface, downloading a large
file (about 7 Gigabyte) was the load. Loading CPU, memory and disk took 24 minutes and the
interface load took about 40 minute. The workload for each platform is showing in table 3.1.

Table 3.1: Workload Design

Utility Workload

CPU loading each core to 100% for 1 minute
Main Memory Gradually loading memory until reach 100 %
Hard Disk Gradually loading disk to 100 % for 8 minute
Interface loading the interface by downloading large files (7 Gigabytes)

In Figure 3.3, we plot the CPU utilization behavior during loading the four resources (CPU,
memory, disk, and interface) using the stress test. Fig. 3.3(a) shows the CPU Utilization during
stressing of the four subsystems: CPU, memory, disk and interface. From 0-800 seconds, the
load was in the CPU. Loading the memory was from 800-1200 seconds. However, the load was
in the disk from 1200-2000 seconds, while the interface load was from 2000-2900 seconds. It
is clear that the CPU utilization is affected by loading each subsystem. Fig. 3.3(b) shows how
memory utilization has been affected by loading the four subsystems. Fig. 3.3(c) shows the disk
utilization, and Fig. 3.3(d) shows the interface utilization.

19



Figure 3.3: Resources Utilization During Applying High Load
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3.4 Collecting and Simplifying the Data

To collect the performance information for each subsystem, we implemented CollectD. CollectD
[49] is an open source UNIX daemon that collects resource performance metrics periodically. It
has several plugins to collect data from a specific application or service, and/or to write data
to a particular storage medium [50]. We used cpu, memory, disk, interface and TED plugins,
and stored the data as CSV (Comma Separated Values) files on the monitoring station. On the
monitoring station (disk top computer with Windows OS), we used MATLAB to simplify the data
and determine the variables that will used to build the power prediction model. More information
about each plugin are given below.

3.4.1 Actual Power

A measurement of the actual power is collected by using the energy detective device (TED 5000).
TED5000 has been used because it is simple to install and its readings are very accurate [51].
The installation instructions can be found on the TED website URL located in References, ”TED
Support” [52]. Figure 3.4 shows the metering components that we used. The definitions of all
components are as follows:

1. CTs: The Current Transformers were installed by pressing on the handles and clipping
them over the server’s power line, and connecting the other side of the CTs to the MTU.

2. MTU: The Measuring Transmitting Unit is responsible to collect the power data.

3. Power Cable: It is a power cable for MTU which connects to the MTU. On the other end,
there are three leads the white lead, the black lead and the red lead.

4. Gateway: It was plugged into the wall power port (120 VAC outlet).

5. Ethernet Cable: It is connected from the gateway to the router that is hosting the LAN.

In our test bench, the CRT will send the power reading to a Gateway tool and from this tool
to the router over an Ethernet cable. The machine that has CollectD running on it is connected
to the same router. In this way, CollectD can take the power reading from TED because they are
all on the same local area network (LAN). On of the CollectD plugins called TED plugin. TED
plugin collects the power measurements from the energy detective device TED5000. The plugin
code is as follows:
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Figure 3.4: TED Components

TED plugin code:

<P l u g i n python>
Module p a t h ” / u s r / l i b / c o l l e c t d ”
Im po r t ” t ed5000 ”

<Module ted5000>
Host ” 1 2 9 . 9 7 . 1 0 . 8 5 ”
DkipZeroes ” t r u e ”
Verbose ” f a l s e ”

</Module>
</ P lug in>

The Host Ip address (e.g, 129.97.10.85) is the TED’s getaway address that collects the actual
power read and is connected to the router.

3.4.2 CPU

Regarding CPU (Central Processing Unit), the measurement was CPU usage as a percentage.
This measurement was collected via the CPU plugin, which measures the fraction of the time
spent by the CPU in several states that described in table 3.2 [53].

However, CollectD gives the CPU utilization core by core. For our system that has 8 cores,
CollectD will return the utilities for each core separately as CPU1,CPU2,...CPU8.
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Type Instance Matrix Description

CPU core# idle
Percentage of time that the CPU or CPUs
were idle and the system did not have an out-
standing disk I/O request.

interrupt Percentage of time spent by the CPU or CPUs
to service hardware interrupts.

nice
Percentage of CPU utilization that occurred
while executing at the user level with nice
priority.

softirq Percentage of time spent by the CPU or CPUs
to service software interrupts.

steal
Percentage of time spent in involuntary wait
by the virtual CPU or CPUs while the hyper-
visor was servicing another virtual processor.

system

Percentage of CPU utilization that occurred
while executing at the system level (kernel).
Note that this does not include time spent ser-
vicing hardware and software interrupts.

user
Percentage of CPU utilization that occurred
while executing at the user level (applica-
tion).

wait
Percentage of time that the CPU or CPUs
were idle during which the system had an
outstanding disk I/O request.

Table 3.2: CPU Collected Performance Data

By applying different loads on the server to observe the CPU states, we found that System
and User states have the most performance count. Thus, we calculate the CPU usage as the
addition of System and User parameters. We will have CPU Usage = (system + user) and
CPU Idle = (idle+ interrupt+ nice+ softer+ steal+wait) for each CPU core. Then, we
add all the eight CPU usage files together to get one CPU Utilization file as follow:

CPU Utilization = CPU1 Usage+ CPU2 Usage+ ......+ CPUc Usage

where c is the core numbers.
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It is important to note that CollectD collects statistics measured in jiffies (units of scheduling),
instead of percentage. On most Linux kernels there are 100 jiffies to a second, but depending on
both internal and external variables, this might not be always true. However, it is a reasonable
approximation.

3.4.3 Memory

Type Instance Matrix Description

Memory buffered The amount of memory used as buffers.

cached The amount of memory used for caching.

free The amount of idle memory.

used The amount of memory used.

Table 3.3: Memory Collected Performance Data

For memory resources, we defined the percentage used as the core measurement. This per-
centage used was calculated using the measurement that was collected via the CollectD memory
plugin. Memory plugin has the four measurement files (Table3.3 [53]): Used (used by appli-
cations), Buffered (block devices’ caches), Cached (used to park file data), and Free (not being
used).

The Linux kernel minimizes the free memory by growing the cache, but when an application
requires extra memory, cached and buffered memory are released to give extra memory to ap-
plications. Therefore, we considered in the calculation of the percentage used only the memory
Used measurement file.

3.4.4 Disk

For hard-disk, we measured the performance statistics using the CollectD disk plugin. This
plugin gives different measurement files. Disk-Merged read/write is for number of read/write
operations. Disk-Octets read/write is for bytes read/write from/to disk per second. Disk-Ops
read/write is for read/write operation from/to disk per second. Disk-time read/write is for aver-
age time an I/O read/write operation took to complete. See Table 3.4 [53] for more description.
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Type Instance Matrix Description

Disk sda/sda1/sda2/sdb disk merged read

The number of read operations, that could
be merged into other, already queued oper-
ations, i. e. one physical disk access served
two or more logical operations.

disk merged write

The number of write operations, that could
be merged into other, already queued opera-
tions, i. e. one physical disk access served
two or more logical operations.

disk octets read Bytes read from disk per second.

disk octets write Bytes written to disk per second.

disk ops read Read operation from disk per seconds.

disk ops write Write operation to disk per seconds.

disk time read
Average time an I/O- read operation took to
complete, equivalent to svctime of vmstat,

disk time write
Average time an I/O-write operation took to
complete, equivalent to svctime of vmstat.

Table 3.4: Disk Collected Performance Data

However, we took the data from Disk-Octets read/write files and combined them together in
one file called the disk activities file. If the server platform has more than one disk, CollectD will
return measurement files for each disk. We add all disk activities’ files coming from each disk to
have one total disk activities file.

3.4.5 Interface

For network interfaces, we used CollectD interface plugin, and we chose bytes per second as the
unit. The interface plugin in CollectD collects different measurements as ”transfer” or ”receive”.
Table 3.5 [53] has description for each measurements file. It provides the rate of error, rate of
bytes, and rate of packets transferred or received. Here we are considering the rate of bytes
”transfer/receive” because it is the actual bytes received/transmitted by the network interface.
We combined these data files together to have the interface activities file. Moreover, utilization
is provided by CollectD for each ethernet port in the machine.
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Type Instance Matrix Description

Interface eth0 if errors rx
Rate of Error in receiving data by network
interface.

if errors tx

The number of write operations, that could
be merged into other, already queued opera-
tions, i. e. one physical disk access served
two or more logical operations.

if octets rx Rate of Bytes received by network interface.

if octets tx
Rate of Bytes transferred by network
interface.

if packets rx
Rate of packets received by network
interface.

if packets tx
Rate of packets transferred by network
interface.

Table 3.5: Interface Collected Performance Data

3.5 Power Estimation Model

In Figure 3.5, we present a generic measurement procedure that can create instance of informa-
tion model to estimate the power consumption of software application. Developers can follow
this simple procedure to get an idea about the power consumption of their software applications
during the development stage. Our measurement procedure involves two main phases:

First phase: The Initialization Phase

This phase needs to be executed only one time for an execution platform, and it includes four
steps:

1. Set up the power meter device with the platform for which you need to estimate software
application power consumption.

2. Run the workload and the performance counters on the platform which is connected to the
power meter.
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Figure 3.5: The Initialization and Operation Phases for The Modelling Process.
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3. Simplify and reduce the collected performance data to create the modelling variables:

• Calculate and reduce data to have only four values in resource utilization vectors
(RU): CPU, Memory, Disk, Interface (Equation 3.1):

RU =< cpu,memory, disk, interface > (3.1)

• Create Resource Utilization matrix RUt (Equation 3.2) and Actual Power matrix Pat

(Equation 3.3).

RUt = [cput,memoryt, diskt, interfacet] (3.2)

Pat = [wattt] (3.3)

• Fix the missing data (NuN) by the average value of the previous cell and the next
cell:

missing(RUt) =
(RUt�1) + (RUt+1)

2
(3.4)

4. Formulate the model based on the resource utilization data (RUt) and the actual power data
(Pat) to predict the power consumption (Equation 3.5 and 3.6).

model = f(input, target) (3.5)

model = f(RUt, Pat) (3.6)

Second phase: The Operation Phase

In this phase, we predict the power consumption of any application running on the same plat-
form that is used in the first phase. This phase is executed once for each case of an application,
and it includes three steps:
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(a) Run the software application (app A) and CollectD simultaneously with the intended scenario
for t seconds.

(b) Simplify and reduce application resource utilization data ARU during the same t time.

ARUt = [< CPUt,Memt, Diskt, Intert >] (3.7)

(c) Input ARU and training model file (model) to power estimate model function (fpem) to get
the estimation power Pe.

Pet = fpem(model, ARUt) (3.8)

Thus, developers need to create the application resource utilization table (ARU) for the soft-
ware application that is running on the server by running the application with the performance
counter. Then, they will use the training model file (model) and ARU table as an input to estimate
the application power consumption. Thus, the operation phase is ended by giving the estimation
power (Pe) data of the application running on the sever.

After a subsystems power consumption model has been trained, it does not require retraining
when applied to the same server. So, the developer will train the model once for a platform and
then apply their applications to predict their power consumption. However, if applying the model
to another server platform, retraining is required.

To validate our measurement and modelling procedure, three different platforms, four dif-
ferent scenarios and two different modeling techniques have been used. An explanation and
discussion about the validation will be in Cahpter 4.
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Chapter 4

Accurate Power Consumption Model

4.1 Introduction

The ever growing software engineering challenge is to increase energy efficiency of the software
systems [54]. The energy demands are ever increasing because of the increasing consumption
of energy in data centres, networks and mobile phones. In the current scenario, mobile phones
are used by almost all individuals and hence the energy demands are quite high [55]. Thus it is
very important to find an energy saving software system [56]. The hardware which is currently
available in the market has high capabilities and hence they are inevitably high on consumption
of energy as well. The providers of operating systems are using the energy saving mode in order
to make the systems consume lesser amount of energy [57].

However the truth is that neither the operating system optimization nor the hardware opti-
mization is good enough to meet the ever rising energy demands. In the recent investigations it
has been found that it is the application software which increases the consumption of energy at
the OS and the hardware level [58].

The most contradicting optimization goals are the performance of the software system and the
energy efficiency [59]. This can be explained through an example of optimizing the response time
of an enterprising application by duplicating the number of replicas of the system. When more
and more replicas are introduced, it automatically increases the energy consumption. However
when the component resource demand decreases, it automatically decreases the consumption of
energy. Thus it can be pointed out that the performance metric and energy consumption work on
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the same parameters of resource demand and the capabilities of the hardware. This takes us to
evaluate performance counters and understand the power demand and consumption patterns of
the software applications.

4.2 Neural Network Model

The human brain processes are different than the working of a digital computer and this has
given rise to the Neural Networks (NN), or artificial neural networks [60]. Human brain has very
complex way to process information, and neural network is a simplified model of this complex
process. It simulates interconnected processing units in a way can be said that resemble the
neurons. Neural network models (NNMs) are multivariate statistical models that used to relate
predictor variables x1, ...., xp to response variables y1, ...., yq.

This particular model is divided into multiple layers where each layer either consists of some
original or constructed variables. Most common structure consists of three layers namely the in-
put layer, which has the predictor variables, the hidden layer, which is comprised of constructed
variables, and the outer layer, which comprised of responses variables.

NNM is a flexible model that contains number of parameters and resembles a neural network
with nearly universal approximation property. In order to estimate the parameters, the minimum
of the overall residual sum of squares is taken over all the responses and all the observations.
This is a nonlinear least-squares problem.

Based on that, we used this modeling technique to model the power consumption of sys-
tem and validate its accuracy in predicting the power consumption of application running on
the server. We used the Neural Network Toolbox software in MATLAB for training the data. A
Neural Network Fitting tool (nftool) is used to the data relating performance metrics to the power
variation for the system. Typically, neural network is trained so that a specific input leads to a
particular target output. By using the four subsystem metrics as input variables (CPU, memory,
disk, interface network) and power meter readings as target variable, we performed neural net-
work model (NNM) that predicts the power consumption of application running on data centre.
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4.2.1 Modeling Process

To formulate the power consumption model, we used Neural Network Fitting tool. Typically,
neural network is trained so that a specific input leads to a particular target output. Here, we used
the resource utilization matrices as an input and the actual power watts as a target output. Both
resource utilization metrics and actual power watts are measured and collected per second during
the workload.

The resource utilization measurements are compiled into one matrix RU with one column for
each metric (time, cpu, memory, disk, interface) and a row for each time sample (equation 4.1).
The actual power measurements are saved in another matrix Pa with one column for each metric
(time, watt) and a row for each time sample (equation 4.2).

RU = [time, cpu,memory, disk, interface] (4.1)

Pa = [time, watt] (4.2)

While we are collecting data from different measurements per second, there are probabilities
for missing some data. To observe any missing data, we matched and unified the time of the
resource utilizations matrix with the time of the actual power matrix to have one matrix M as
follows:

M = [timet, powert, CPUt,memt, diskt, interft] (4.3)

If there is a cell missing data, we will fill it by the average value of the previous cell and the
next cell. For example, if we have a missing value (NuN) in CPU column for t second (cput),
we fill the NuN with the average of the previous value (cput�1) and the next value (cput+1) as
follows:

(cput) =
(cput�1) + (cput+1)

2
(4.4)

After fixing the missing data, we used RU matrix as the input variable and Pa matrix as the
target variable based on the following equation:
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net = f(input, target) (4.5)

where net is the model network file, and f is the neural network fitting function.

Figure 4.1: Estimated power consumption (model power) and measured power consumption
(actual power) during the loading of each subsystem to the maximum load.
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After we got the training model file (net), we can use it to predict the power consumption
of a software application running on the same server platform. The performance of the neural
network prediction model is shown in Figure 4.1. The figure presents the actual power, model
power (estimated power) and the average error. It is clear that the estimated power is very close
to the actual power with Mean Absolute Error (MAE) equal to 13.76 watts.

4.2.2 Validation

For validation, we used three real servers, server 1, server 2 and server 3, as described in Tables
(4.1, 4.2 and 4.3), respectively.

Table 4.1: Description of server 1

Parameter Real Server (Dell PowerEdge 2950)

Processor 7x Intel Xeon, 3 GHz, 8 cores
Hard Disk 1.7 Tera Bytes SAS
Main Memory 32 GB DIMM
Operating System Linux (Ubuntu 13.10)
Observable Subsystems CPU, Memory, Disk and Interface

Table 4.2: Description of server 2

Parameter Real Server (HP ProLiant DL385G5)

Processor Quad-Core AMD OperonTM , 2.3 GHz, 4 core
Hard Disk 55.2 Giga Bytes
Main Memory 15.7 GB DIMM
Operating System Linux (Ubuntu 14.04 LTS)
Observable Subsystems CPU, Memory, Disk and Interface

We applied four different workload scenarios in the server to validate the model. In each
scenario, we observed the mean absolute error (MAE) of the model. Specifically, we evaluated
the Mean Absolute Error of power estimation (MAEp), the Minimum Error (MinError), and the
Maximum Error (MaxError) which calculated as Equation (4.6, 4.7).

MaxError =
MAEp

MaxPower

⇤ 100 (4.6)
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Table 4.3: Description of server 3

Parameter Real Server (Dell PowerEdge 2950)

Processor Intel Xeon CPU 5160 @ 3.00 GHz x 4
Hard Disk 277.8 Giga Bytes
Main Memory 7.8GiB
Interface ethernet cable, 100 Mb/s
Operating System Linux (Ubuntu 14.04 LTS)

MinError =
MAEp

MinPower

⇤ 100 (4.7)

The MaxPower is the highest point the power reached during the workload, and MinPower is
the lowest point. Moreover, the Error was calculated as the difference between the actual power
and the model output (the estimation power) as in Equation (4.8).

Error = ActualPower �ModelPower (4.8)

Also, we calculated the Mean Absolute Error of energy estimation (MAEe) as Equation 4.9.

MAEe =
Error

ActualPower

⇤ 100 (4.9)

The four scenarios that we applied to validate our modeling procedure are described bellow:

- The First Scenario is Downloading: In this scenario we tried to load the system with a real load.
That has been done by downloading large fils from the internet. We used Firefox browser to
access a web-page that has many movies in high quality. We downloaded four movies from
the same web-page at the same time, that has in total around 7 Gigabytes. Then we applied our
models to estimate the power consumption of this experiment after collecting the data during
the downloading.

- The Second Scenario is Gaming: For this scenario we installed a video game in the server and
collected the system performance during plying the game. We played the game for about 30
minute.
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- The Third Scenario is Local Movie: In this scenario we played a high quality movie file that has
been already downloaded to the server. We collected the performance matrices during playing
the movie as a full screen view for 30 minutes.

- The Fourth Scenario is Youtube: A high definition YouTube video is used for this scenario.
During playing the YouTube video for 20 minutes, we collected the performance data of the
system.

We used Neural Network modelling technique to build the power estimation model. Then,
we applied this model to predict the power consumption for the four scenarios.

Figure 4.2 shows the actual power and the estimation power during the downloading scenario
in server 1. The MAEp was 56.45 watts with minimum rate 13.97% and maximum rate 11.38%,
and the MAEe was 12.64%.

Figure 4.2: Estimated power consumption (model power) and measured power consumption
(actual power) during downloading 7GB movie files in server1.

In each scenario, we observed the mean absolute error of power estimation (MAEp) and the
Mean Absolute Error of energy estimation (MAEe). The results are presented in Table (4.4),
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Table (4.8) and Table (4.9 present the estimated errors for those various scenarios in server1,
server 2 and server 3 respectively.

Table 4.4: MAEp and MAEe for Various workloads in server 1

Downloading MAEp (MinError, MaxError) (13.97% , 11.38%)
MAEe 12.64%

Gaming MAEp (MinError, MaxError) (17.94% , 14.82%)
MAEe 15.30%

Local Movie MAEp (MinError, MaxError) (14.77% , 11.21%)
MAEe 11.8%

Youtube MAEp (MinError, MaxError) (15.59% , 12.52%)
MAEe 13.15%

Table 4.5: MAEp and MAEe for Various workloads in server 2

Downloading MAEp (MinError, MaxError) (3.66% , 2.78%)
MAEe 1.52%

Gaming MAEp (MinError, MaxError) (5.07% , 4.00%)
MAEe 4.17%

Local Movie MAEp (MinError, MaxError) (3.99% , 3.14%)
MAEe 3.02%

Youtube MAEp (MinError, MaxError) (5.69% , 4.33%)
MAEe 4.13%
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Table 4.6: MAEp and MAEe for Various workloads in server 3

Downloading MAEp (MinError, MaxError) (2.84% , 3.61%)
MAEe 0.09%

Gaming MAEp (MinError, MaxError) (0.71% , 0.87%)
MAEe 0.34%

Local Movie MAEp (MinError, MaxError) (1.98% , 2.54%)
MAEe 0.85%

Youtube MAEp (MinError, MaxError) (2.47% , 3.07%)
MAEe 2.10%

4.3 Polynomial Model

We use polynomial regression to create model that helps to estimate and predict the power con-
sumption of application over the range of the platform’s subsystem utilization. Regression anal-
ysis can be defined as a statistical technique which is used for investigating and modeling the
relationship among the variables as an rth degree polynomial.

In this model, we have n observations y = y1, ....., yn called the response or dependent
variables and xi = xi,1, ....., xi,p for i=1...n that are predictor or regressor variables. The simplest
linear regression is of the form y = c0 + c1x + e. In this formula c represents the coefficients
used in describing the response as a linear function of predictors plus a random error e. The
polynomial regression of order k can be written as:

y = C0 + C1x+ C2x
2 + C3x

3 + C4x
4 + ...+ Cnx

k (4.10)

Multiple predictor variables are used in the input data set which cause the response y to be
related to p which is the regressor/predictor variable. The model then becomes:

y = c0 + c1x1 + c2x2 + ....+ cpxp + e (4.11)

Here y and x are vectors of n numbers (observations). The fitting of a regression model to
the observations is done by solving the (p+1 c) coefficients.
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4.3.1 Multivariable Polynomial Model

Figure 4.3: RMSE for different polynomial-degree models for server 1

In our case, we have four predictor variables and one dependent variable. The predictor
variables are the subsystems’ utilization (CPU, memory, Disk, and Interface) and the dependent
variable is the actual power. Thus, we use multiple polynomial regression technique to calculate
the polynomial equation and find the best fit for our data. The multiple polynomial regression
can be written as:

y = Cm1x
m
1 + ...+ Cmnx

m
n + ...+ C11x1 + ...+ C1nxn + C0 (4.12)

By using this equation (4.12), we can write the multiple polynomial regression equation for
any degrees. For instance, the second degree of multiple polynomial regression will be as:
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Figure 4.4: RMSE for different polynomial-degree models for server 2

y = c0 + c1x1 + c2x2 + c3x3 + c4x4 + c5x1x2 + c6x1x3 + c7x1x4

+ c8x2x3 + c9x2x4 + c10x3x4 + c11x1
2 + c12x2

2 + c13x3
2 + c14x4

2

(4.13)

The following regression is the third degree of multiple polynomial regression:

y = c0 + c1x1 + c2x2 + c3x3 + c4x4 + c5x1x2 + c6x1x3 + c7x1x4 + c8x2x3 + c9x2x4 + c10x3x4

+ c11x1x2x3 + c12x1x2x4 + c13x1x3x4 + c14x2x3x4 + c15x1
2 + c16x2

2 + c17x3
2 + c18x4

2

+ c19x1
2
x2 + c20x1

2
x3 + c21x1

2
x4 + c22x2

2
x1 + c23x2

2
x3 + c24x2

2
x4

+ c25x3
2
x1 + c26x3

2
x2 + c27x3

2
x4 + c28x4

2
x1 + c29x4

2
x2 + c30x4

2
x3

+ c31x1
3 + c32x2

3 + c33x3
3 + c34x4

3

(4.14)
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Figure 4.5: RMSE for different polynomial-degree models for server 3

We tried different degrees of of multiple polynomial model, and we observe the root main
square error (RMSE) for each model. The following figures (4.3, 4.4 and 4.5) show the RMSE
for each polynomial model degree for server 1, server 2 and server 3, respectively.

After we observed all different degrees models, we found that the first degree polynomial
model is the model whose RMSE is the minimum. Thus, our model equation can be as follow:

Y = C0 + C1Xcpu + C2Xmem + C3Xdisk + C4Xinter (4.15)
where Cn are the coefficients that we can use to predict the power of application.

Then power profile can be written as:

EnergyProfile = (C0 C1 C2 C3 C4) (4.16)

To formulate the power consumption model, we followed the modeling procedure steps. Both
resource utilization metrics and actual power watts are measured and collected per second during
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the workload. We used the resource utilization matrices (UR) as predictor variables and the
actual power watts (Pa) as a dependent variable based on the following equation:

poly = f(UR,Pa) (4.17)
where poly is the model file, and f is the polynomial fitting function.

After we got the training model file (poly), we can use it to predict the power consumption of
a software application running on the same server platform.

Figure 4.6: The performance of the polynomial prediction model for server 1.

The performance of the polynomial prediction model for server 1 is shown in Figure 4.6. The
figure presents the actual power, the estimated power (model power) and the average error. It is
clear that the estimated power is very close to the actual power with Mean Absolute Error (MAE)
equal to 27.37 watts. Figure 4.7 and 4.8 present the performance of the polynomial prediction
model for server 2 and server 3, respectively.
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Figure 4.7: The performance of the polynomial prediction model for server 2.

4.3.2 Validation

We used the same three servers that we used before to validate the Neural Network model, server
1, server 2 and server 3, as described in Table 4.1, Table 4.2 and Table 4.3, respectively. Also, we
used the same four scenarios that described in Section (4.2.2). Downloading (first scenario) is
stressing the most the interface. Gaming (second scenario) is stressing the memory and the CPU
for processing. Also, playing a local movie (third scenario) is loading the most the disk and the
memory. Finally, playing a Youtube video (fourth scenario) is loading the most the interface and
the memory.

After we created the linear polynomial models (LPM) for each server, we predicted the power
consumption for the four scenarios in each server. Then, we calculated MAEp and MAEe which
are shown on Table (4.7, 4.8 and 4.9).

43



Figure 4.8: The performance of the polynomial prediction model for server 3.

4.4 The Accurate Model

After we created the neural network model (NNM) and linear polynomial models (LPM) of
heavy workload for the three servers, we predicted the power consumption for the four scenarios
in each server. Then, we calculated MAEp and MAEe. Tables (4.10, 4.11 and 4.12) compare the
errors of the two different prediction mechanisms: NNM and LPM in each server. Charts (4.9,
4.10 and 4.11) present the MAE in percentage for NNm and LPM in each server.

For neural network model, we found that in Server 1 the MAEe of NNM was between 11.80%
and 15.30%. However, the MAEe in Server 2 was between 1.51% and 4.17%, and in Server 3 the
MAEe was between -1.63% and 3.25%. For polynomial model, we found that MARe in server 1
is between 10% to 15%. In server 2, MARe is between 1% to 4% while it is between -4% to 1%
in server 3. We noticed that when the estimated power is higher than the actual power, the error
value will give a negative number. After comparing the errors for both models, we found that
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Table 4.7: MAEp and MAEe for Various workload scenarios in server 1

Downloading MAEp (MinError, MaxError) (11.72% , 9.55%)
MAEe 10.60%

Gaming MAEp (MinError, MaxError) (18.19% , 15.03%)
MAEe 15.51%

Local Movie MAEp (MinError, MaxError) (17.96% , 13.63%)
MAEe 14.35%

Youtube MAEp (MinError, MaxError) (17.52% , 14.04%)
MAEe 14.78%

Table 4.8: MAEp and MAEe for Various workload scenarios in server 2

Downloading MAEp (MinError, MaxError) (3.56% , 2.70%)
MAEe 1.38%

Gaming MAEp (MinError, MaxError) (4.74% , 3.74%)
MAEe 3.90%

Local Movie MAEp (MinError, MaxError) (4.74% , 3.73%)
MAEe 3.78%

Youtube MAEp (MinError, MaxError) (5.15% , 3.91%)
MAEe 3.67%

NNM gives lesser error than the LPM on the three servers with 3% difference. We also noticed
that the old system server, such as server 2 and server 3, give better result in estimation power
consumption with average MAE between 1% to 4%. While in the new system server, such as
server 1, the average MAE is between 10% to 15%.
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Table 4.9: MAEp and MAEe for Various workload scenarios in server 3

Downloading MAEp (MinError, MaxError) (4.38% , 3.45%)
MAEe -3.29%

Gaming MAEp (MinError, MaxError) (4.01% , 3.28%)
MAEe -3.61%

Local Movie MAEp (MinError, MaxError) (2.46% , 1.88%)
MAEe 0.24%

Youtube MAEp (MinError, MaxError) (2.65% , 2.13%)
MAEe -2.12%

Table 4.10: MAEp and MAEe errors of models in Server 1.

Neural Network Polynomial

Download MAEp(Min,Max) 13.97%,11.38% 11.72%, 9.55%
MAEe 12.64% 10.60%

Gaming MAEp(Min,Max) 17.94%,14.82% 18.19%, 15.03%
MAEe 15.30% 15.51%

Local movie MAEp(Min,Max) 14.77%,11.21% 17.96%, 13.63%
MAEe 11.80% 14.35%

Youtube MAEp(Min,Max) 15.59%,12.52% 17.52%, 14.04%
MAEe 13.15% 14.78%

4.5 Making models available to the other developers

After the power estimation model for specific server configuration has been prepared by model
developer, the model can be used by application developers to estimate the power consumption
of their application software. The application developer need to decide on which server the ap-
plication software will be run. Then, after the model has been prepared by the model developers,
developers can use it to estimate the energy cost of the application software instead of wasting
time on direct measurement.
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Table 4.11: MAEp and MAEe errors of models in Server 2.

Neural Network Polynomial

Download MAEp(Min,Max) 3.66%,2.78% 3.56%, 2.70%
MAEe 1.51% 1.38%

Gaming MAEp(Min,Max) 5.06%,3.99% 4.74%, 3.74%
MAEe 4.17% 3.90%

Local movie MAEp(Min,Max) 3.98%,3.13% 4.74%, 3.73%
MAEe 3.01% 3.78%

Youtube MAEp(Min,Max) 5.69%,4.33% 5.15%, 3.91%
MAEe 4.13% 3.67%

Table 4.12: MAEp and MAEe errors of models in Server 3.

Neural Network Polynomial

Download MAEp(Min,Max) 2.84%,3.61% 4.38%, 3.45%
MAEe 0.09% -3.29%

Gaming MAEp(Min,Max) 0.71%,0.87% 4.01%, 3.28%
MAEe 0.34% -3.61%

Local movie MAEp(Min,Max) 1.98%,2.54% 2.46%, 1.88%
MAEe 0.85% 0.24%

Youtube MAEp(Min,Max) 2.47%,3.07% 2.65%, 2.13%
MAEe 2.10% -2.12%
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Figure 4.9: MAE of NNM and LPM for each scenario in server 1.
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Figure 4.10: MAE of NNM and LPM for each scenario in server 2.
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Figure 4.11: MAE of NNM and LPM for each scenario in server 3.
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Chapter 5

Conclusion

Given the significant interest in the dynamic use of processes to count power consumption, and
the high correlation of subsystems involved in this process, including CPU utilization, memory
access and I/O with different power commands, process counts can enable developers to cost
effectively measure by real-time proxy estimate of power usage and performance. In Chapter
2, we provided a literature survey of power efficiency of data centre. We discussed various
methodologies of energy efficiency improvement. We also compared our test bench and model-
ing procedure with existing works, and presented some related research.

In Chapter 3, We explained system model of test bench, implementation details and collecting
and simplifying data for determining variables for power consumption model. We also presented
our modeling procedure to estimate the power consumption of application software running on
servers. Our test bench is able to capture the characteristics of a system by correlating a number
of user level utilization matrices that conclusively predict hardware performance counters with
power consumption during high loads.

Chapter 4 presented two power consumption models (Neural Network and Polynomial) that
have been implemented and validated using three platforms and four different scenarios. we
demonstrated the feasibility of using a neural network model and a linear polynomial model
to predict power consumption using the subsystem performance demonstrated as a means of
measuring power meter, server and process count tool. A neural network model and linear poly-
nomial model have been trained based on the process count information gathered by CollectD
and the actual real-time power consumption monitored by a TED5000 power meter during ap-
plying the workload on three real servers. Our research reveals that a complete system power can
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be estimated via a new system server with an average MAE of energy estimation between 10%
to 15%. While in the old system server, the average MAEe of energy estimation is between 1%
to 4%.

Thus, We were able to introduce a cost effective way to create a model for predicting the
power consumption of any application. With this ability developers can test their software and
be able to understand how its behaviour from a power consumption point of view, can be tested
in terms of performance and scalability. After the model has been prepared by the model de-
velopers, developers can use it to estimate the energy cost of the application software instead
of wasting time on direct measurement. This methodology may offer a variety of solutions to
developers involved in sophisticated model development. In the future, we are aiming to ob-
serve if the accuracy of the predicted power can be affected by the design of the workload. We
also aiming to build a software tool that can does the whole modeling process by pressing few
buttons. This tool will help the software developers to create power models that can predict the
power consumption of their application software during the developing stage.
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