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Abstract 
As critical elements of the physical infrastructure that enables ubiquitous wireless 
connectivity, radio frequency power amplifiers (RFPAs) are constantly pushed to the limits of 
linear but efficient operation. Digital predistortion, as a means of circumventing the limitations 
of this inherent linearity – efficiency trade-off, has been a subject of prolific research for well 
over a decade. However, to support the unrestrained growth of broadband mobile traffic, 
wireless networks are expected to rely increasingly on heterogeneously-sized small cells 
which necessitate new predistortion solutions operating at a fraction of the power consumed 
by digital predistortion approaches. 

This thesis pertains to an emerging area of research involving analog predistortion (APD) – a 
promising, low-power alternative to digital predistortion (DPD) for future wireless networks. 
Specifically, it proposes a mathematical function that can be used by the predistorter to 
linearize RFPAs. As a preliminary step, the challenges of transitioning from DPD to APD are 
identified and used to formulate the constraints that APD imposes on the predistorter function. 
Following an assessment of the mathematical functions commonly used for DPD, and an 
analysis of the physical mechanisms of RFPA distortion, a new candidate function is 
proposed. This function is both compatible with and feasible for an APD implementation, and 
offers competitive performance against more complex predistorter functions (that can only be 
implemented in DPD). 

The proposed predistorter function and its associated coefficient identification procedure are 
experimentally validated by using them to linearize an RFPA stimulated with single-band 
carrier aggregated signals of progressively wider bandwidths. The solution is then extended to 
the case of dual-band transmission, and subsequently validated on an RFPA as well. The 
proposed function is a cascade of a finite impulse response filter and an envelope memory 
polynomial and has the potential to deliver far better linearization results than what has been 
demonstrated to date in the APD literature.  
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Chapter 1 
Introduction 

1.1 Background 
For designers of radio frequency power amplifiers (RFPAs), the inherent trade-off between 
efficiency and linearity has always been a challenge. With increasing pressure on the 
Information and Communication Technology (ICT) sector to reduce its carbon footprint, new 
ways are being sought to improve the average efficiencies of RFPAs, which consume the most 
power in RF front ends. Efficiency improvement techniques that are gaining traction, such as 
Envelope Tracking [1] and Doherty [2], employ transistor topologies and modes of operation 
that compromise the linearity of RF front ends, leading to unwanted spectral emissions and 
degraded signal quality at the transmitter. Concurrently, the need to support higher data rates 
in an increasingly connected society has resulted in communication signals experiencing a 
widening of modulation bandwidth and an increase of peak to average power ratio (PAPR), 
which aggravates nonlinearity and memory effects in RFPAs. These trends have necessitated 
explicit measures to improve the linearity of RFPAs by counteracting their nonlinearity and 
memory effects. Based on the approach, the measures can be broadly categorized as (i) 
feedback linearization, (ii) feed-forward linearization, and (iii) predistortion. Each of these is 
briefly reviewed below. 

Despite its conceptual simplicity and highly adaptive nature, feedback linearization [3] is 
prone to instability, and is therefore limited to narrow bandwidths and low frequencies of 
operation. Feed-forward linearization [4] experiences no such direct bandwidth limitation but 
requires meticulous design and incurs considerable power overhead, making it an unattractive 
solution. Several approaches exist under the broad classification of predistortion, all of which 
involve some means of predistorting the RFPA input signal such that its distortions negate 
those generated by the amplifier to create a distortion-free output. One approach is to cascade 
nonlinear semiconductor devices (e.g., Schottky diodes [5] or FET transistors [6]) before the 
RFPA and judiciously configure them to predistort the RF signal. While this approach is 
viable for wideband signals and consumes less power relative to other solutions, it generally 
yields limited linearization success and is not adequate for solid-state RFPAs driven with 
wideband modulated, high PAPR signals. For these applications, digital predistortion (DPD) 
has become the approach of choice. DPD involves the use of digital signal processing (DSP) to 
deliberately introduce distortions in a baseband signal, which is then up-converted and fed into 
the RFPA. The predistortion is generated by a mathematical ‘inverse’ model of the PA, 
identified using a suitable learning algorithm. When the identification is done correctly, 
cascading this inverse model before the RFPA results in a distortion-free output. 

Due to advancements in the processing power, programmability and size of digital circuitry, 
and the ease with which it can be integrated into the existing baseband processing of front 
ends, DPD has become a popular solution for linearizing RFPAs in wireless network base-
stations. It has received considerable attention in the literature as well, as evidenced by the 
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myriad of papers discussing learning algorithms [7, 8], mathematical formulations ranging 
from the simple memory polynomials [9, 10] to the complex and powerful family of Volterra 
series [11, 12], and even meta-analyses contrasting different DPD solutions [13, 14]. 

1.2 Emerging Trends 
As wireless networks evolve from 3G to 4G to support the needs of an increasingly data-
hungry digital society, the status of DPD as the predominant linearization technique is being 
challenged. RF front ends must adapt to emerging trends – such  as the utilization of ultra-high 
frequencies, concurrent transmission in multiple frequency bands, and deployment of small 
cells in heterogeneous networks – that are essential to realizing low-latency, high throughput, 
and ubiquitous wireless connectivity. As will be discussed in subsequent chapters, DPD will 
not continue to be viable going forward, due to reasons of excessive power consumption of its 
digital circuitry. The search for low-power DPD-alternatives has already prompted research 
efforts in which the minimization or complete removal of digital circuitry is a common theme. 

Among the endeavors to realize digital-free predistortion, [15] is an attempt to partially reduce 
power consumption by shifting the burden of predistortion from digital baseband to the RF 
domain. While not without merit, this approach is ill-equipped to linearize RFPAs with 
memory effects. In [16], digital circuitry in the core of the predistorter is replaced entirely with 
analog circuit blocks, and the capability to address limited memory effects is introduced. 
Despite being the first prototype of a truly analog predistorter, the assumptions used in its 
design make it unsuitable for linearizing RFPAs in modern communication scenarios where 
memory effects can be significant. More recently, the first instance of packaged, fully 
integrated, analog predistortion (APD) circuit was reported in [17], with an unprecedented low 
power consumption of 200 mW. While full details of the solution have not been disclosed, 
evidence suggests that it employs an analog circuit realization of an envelope memory 
polynomial (EMP) [10]. The objective of this thesis is to propose a different mathematical 
formulation than EMP, which is demonstrably inadequate for the linearization of RFPAs 
transmitting wideband modulated signals. The architecture of the analog predistorter is 
scrutinized to reveal its limitations, which are taken into account in developing the proposed 
formulation. The efficacy of the proposed solution in linearizing a physical RFPA under 
wideband signal stimuli is demonstrated, and it is extended for concurrent dual-band 
transmission scenarios, followed by similar demonstrations. Methods and challenges of 
predistorter model identification are addressed as well.  

1.3 Thesis Organization 
The rest of this thesis is organized as follows. Chapter 2 provides the required background to 
appreciate the causes and effects of nonlinearity and memory effects in RFPAs, and describes 
in detail how DPD works to counteract them. The challenges faced in trying to adapt DPD 
systems to evolving RF front ends are highlighted, and the motivation and approach to seeking 
alternative solutions, with the aim of reducing power consumption of the overall predistorter, 
are discussed. APD is considered as a viable alternative. 
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Chapter 3 begins with an analysis of the APD architecture and its compatibility with pre-
existing DPD schemes. Only the envelope memory polynomial is found to satisfy the 
constraints imposed by the APD architecture, but it is found to be inadequate for predistorting 
wideband communication signals. The performance of the EMP is considerably improved by 
cascading it after a finite impulse response (FIR) filter, but this complicates the identification 
of the coefficients. Two solutions for coefficient identification are presented, with trade-offs 
between computational cost and accuracy. The performance of the proposed FIR-EMP 
formulation is validated with measurement results on a physical RFPA, and compared against 
that of other standard DPD formulations.  

In Chapter 4, the single-band FIR-EMP solution and the associated coefficient identification 
solutions are extended to the dual-band case. Changes to the theoretical formulation and to the 
experimental test setup are described. The efficacy of the proposed dual-band solution, 
compared to competing dual-band DPD formulations, is then demonstrated on the same RFPA 
as used in the single-band case.  

Chapter 5 concludes the thesis with a discussion of the benefits and caveats of the proposed 
solution, and a discussion of future work to enhance and extend the solution for more 
challenging scenarios. 
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Chapter 2 
Background 

This chapter is organized as follows. Section 2.1 discusses the causes and effects of non-ideal 
RFPA behaviors (which are often aggravated in the pursuit of efficient operation) and 
introduces the figures of merit commonly used to assess their severity, and impact on signal 
integrity. Section 2.2 provides a review of digital predistortion — a popular method of 
correcting the impact of RFPA nonlinearity and memory effects — and discusses learning 
architectures, predistorter formulations, and coefficient identification algorithms associated 
with DPD. Section 2.3 highlights the issue of excessive power consumption in the 
conventional DPD architecture, and underscores the need for an alternative, low-power 
predistortion scheme which is described in Chapter 3.  

2.1 Nonlinearity and Memory Effects in RFPAs 
The pursuit of efficiency in RFPAs bears an antagonistic relationship with the pursuit of 
linearity. This is perhaps best illustrated through Figures 1 and 2, which show how efficiency 
and nonlinearity vary as a function of the RFPA class of operation (indicated by the 
conduction angle). Efficiency can be improved by increasing the conduction angle (Figure 1), 
but not without incurring penalties in linearity, as evidenced by the growing amplitude of 
harmonic components (Figure 2). 

 
Figure 1: Efficiency as a function of the class of operation [18]  
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Figure 2: Nonlinearity as a function of the class of operation [18] 

To efficiently transmit modulated signals with high PAPR, designers must ensure that RFPAs 
are efficient not only at peak power, but also at back-off levels closer to the average power of 
the signal. Techniques such as load modulation (Doherty) and drain modulation (Envelope 
Tracking) are commonly used to achieve this, but at the cost of linearity. The Doherty 
technique employs ‘class AB’– main and ‘class C’– auxiliary amplifiers, while the ET 
technique employs non-constant drain voltage; both approaches contribute to nonlinear 
behavior that results in new frequency components appearing at the RFPA output. Frequency 
components generated by harmonic distortion appear at multiples of the carrier frequencies, 
while those generated by intermodulation distortion (as a result of interactions between 
multiple input frequency components) appear around the carriers and close to the intended 
frequency of operation, as shown in Figure 3. Without countermeasures, these distortion 
products can interfere with out-of-band communication, and degrade communication in-band 
as well.  
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Figure 3: Distortion products created by a nonlinear RFPA [19] 

 

Even after purely static nonlinearities are compensated, RFPA’s may still exhibit distortion 
products that vary as a function of carrier spacing and modulation bandwidth – these are 
caused by memory effects. While not introducing new distortion products, memory effects 
introduce dynamic behavior in the amplitude and phase of existing distortion products. Based 
on the physical phenomena that cause them, memory effects can be categorized as: 

• Electrical memory effects [20], which are caused by interactions between the 
transistor’s distortion products and the surrounding matching and bias networks (which 
cannot always be designed to have flat amplitude and phase responses over frequency).  

• Thermal memory effects [20], which are attributable to the dynamic self-heating of the 
RFPA and the change in electrical properties (such as gain) that occur as a result. 
While there is some debate as to whether the time constant of thermal effects is short 
enough to result in transient behavior during communication, back-of-the-envelope 
calculations suggest they can be of the order of microseconds, which is well within the 
timescale of modulated signal variation [21]. 

• Semiconductor trapping effects, which are the result of electron-bandgap interactions 
within the active element of the RFPA [22]. Their contribution to memory effects is 
less significant compared to electrical and thermal effects in most RFPAs. They are 
more prevalent in exotic semiconductors such as GaAs. 

Another categorization of memory effects distinguishes between linear and nonlinear memory, 
based on the electrical circuit phenomenon responsible. Linear memory effects are caused by 
the frequency dispersive nature of matching networks around the transistor, and would distort 
the communication signal even in the absence of transistor nonlinearity. Nonlinear memory 



 

7 
 

effects, however, exist as a consequence of the transistor’s nonlinear distortion products. 
When signals with multiple frequency components are subjected to the transistor’s transfer 
characteristic, they give rise to intermodulation products, some of which appear at the 
difference frequencies of the various tones. In the case of signals with closely spaced tones 
(i.e. for the majority of modulated communication signals), some of these difference 
frequencies are located in the baseband (i.e they are relatively close to the direct current, or 
DC, as opposed to being in the passband, where the RF carrier is located). These baseband 
distortion currents cannot be filtered out by the bias network of the transistor which supplies it 
with DC power, and they interact with the drain impedance to cause low frequency 
fluctuations of the drain voltage. This ‘accidental’ drain modulation changes the nonlinear 
behavior of the transistor from one moment to the next, giving rise to nonlinear memory. The 
distinction between linear and nonlinear memory is recognized in the literature [23, 24], and 
becomes particularly important later in this thesis because of its implications on the 
mathematical inverse model of the RFPA that is used for predistortion. 

A useful way to visualize the distortions introduced by the power amplifier (PA) is to plot an 
amplitude-to-amplitude distortion (AM/AM) characteristic, which shows how the power of the 
output signal outP  varies as a function of the input signal’s power inP . For purposes of 
characterization, the signals used to generate the AM/AM plot are typically normalized to an 
average power level of 0 dBm, and the ratio of the powers is plotted on the y-axis to show 
distortions in gain relative to a baseline of 0 dB. A similar visualization can be done for the 
amplitude-to-phase distortion (AM/PM) characteristic, which shows how the phase of the 
output signal phase outPhase  varies as a function of the input signal’s power. For purposes of 
characterization, the signals used to generate the AM/PM plot are typically delay-adjusted to 
have 0º average phase difference, so that distortions in the phase shift are displayed relative to 
a baseline of 0º. 

Figure 4 illustrates the AM/AM and AM/PM of a Gallium Nitride (GaN) Doherty PA, when 
characterized with a long term evolution (LTE) signal of 40 MHz modulation bandwidth and 
10.4 dB PAPR. It should be noted that these plots are not a complete representation of the 
power amplifier’s transfer characteristic, since they are only valid for (i) the range of power 
levels over which the RFPA was driven, (ii) the particular modulated signal used to excite it, 
and (iii) its bias conditions at the time. Nonetheless, the curvature in the AM/AM and AM/PM 
(where ideally one would expect flat lines for a constant amplitude and phase characteristic 
across the range of input power) clearly illustrates nonlinear behavior, while the dispersion in 
plot data suggests that amplitude and phase distortions are not only a function of the input 
signal magnitude at any given time, but past times as well (memory effects). 
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Figure 4: AM/AM (top) and AM/PM (bottom) of a Doherty PA driven by an LTE signal  

As mentioned, the nonlinear behavior of the RFPA gives rise to both harmonic distortion 
products and intermodulation products. While the former can be removed using filters 
designed to reject the appropriate frequencies, the latter appear adjacent to the communication 
band of interest and must be addressed by linearization. A figure of merit to assess the severity 
of spectral distortion is the adjacent channel power ratio (ACPR, Eq. 2.1) which measures the 
logarithmic ratio of total power in a specified adjacent band adjP  and the total power within the 

communication band inP  (specified in dB). Reduction of out-of-band distortion products leads 
to a more negative ACPR, which is desirable. Figure 5 shows a power spectral density plot of 
the output of a Doherty PA with and without linearization, which clearly demonstrates the 
reduction in ACPR that can be realized with predistortion. While the ACPR is an indicator of 
out-of-band distortions, it yields no insight regarding in-band distortions, which affect the 
integrity of the data being transmitted. The error vector magnitude (EVM, Eq. 2.2) is used to 
quantify the latter, and is a measure of the magnitude of error introduced in the baseband IQ 

data errP , relative to the magnitude of the error-free data refP  (specified in %). Reduction 

of in-band distortion leads to a smaller EVM, which is desirable. Both EVM and ACPR 
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reduction are important measures of success for linearization schemes, as a reduction of one of 
them does not necessarily translate to a reduction in the other. 

 

 
Figure 5: Power spectral density of Doherty PA output, showing out-of-band distortions  

with (grey) and without (black) linearization 
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2.2 Linearization using Digital Predistortion 
Regardless of the mathematical model and learning algorithm used, all digital predistortion 
schemes share certain principles of operation and a common architecture (Figure 6). A digital 
signal processor (the training engine) runs an estimation algorithm that calculates the 
coefficients of the predistorter. The estimation algorithm must be provided with signal data 
from the output of the RFPA ( )RFy t , which is acquired and digitized by the transmitter 
observation receiver (TOR) and associated analog-to-digital converters (ADC) to yield ( )y n . 
The set of coefficients, once identified, are then used to update the predistortion engine that 
synthesizes the predistorted signal ( )PDx n  from the undistorted signal ( )x n  using an 
appropriate mathematical formulation implemented with digital circuitry (adders, multipliers, 
etc.). The digital predistorted signal is then sampled by the digital-to-analog converters (DAC) 

1920 1840 1860 1880 2000 2020 2040 2060 2080 2100
-90

-80

-70

-60

-50

-40

-30

-20

Frequency (MHz)

Po
w

er
 (

dB
m

)
Power Spectral Density

in band 

out of 
band 

(2.1) (2.2) 



 

10 
 

and then modulated onto a radio frequency carrier signal to generate the predistorted input to 
the RFPA , ( )PD RFx t . The qualifier ‘digital’ in digital predistortion refers specifically to the fact 

that the predistorted signal is synthesized in the digital domain. Predistortion can be realized 
using both direct and indirect learning (also known as the model reference adaptive control 
and self-tuning regulator approaches, respectively), which involve distinct architectures [7, 8]. 
The indirect learning scheme (Figure 7) uses the input and output of the RFPA to generate a 
reverse (post-inverse) model of the RFPA. The coefficients of this post-inverse model are 
copied over to the predistorter, verbatim. For the training of the post-inverse, the error being 
minimized is the difference between the output of the reverse model ( )z n , and the input to the 
RFPA ( )PDx n ; the operative assumption is that when the post-inverse is fed with the output of 
the RFPA, it will ideally recreate the input of the RFPA.  
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Engine

coeff.

DAC Modulator RFPA

TORADCDigital Signal 
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Figure 6: Block diagram of a digital predistorter for a single-band transmitter 
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Figure 7: Indirect learning architecture for DPD  
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Opponents of the indirect learning approach argue that, because the RFPA and its inverse are 
non-commutative, identifying a post-inverse of the RFPA and placing a copy of it before the 
RFPA does not fully negate distortions. This has led to the proposal of direct learning as an 
alternative (Figure 8), in which the pre-inverse of the RFPA is identified and used as the 
predistorter. For the training of the pre-inverse, the error being minimized is the difference 
between the output of the RFPA ( )y n , and the input ( )x n  of the predistorter; the operative 
assumption here is that when the RFPA is cascaded after its true pre-inverse there will be no 
difference between the normalized output ( )y n  and input ( )x n  of the system.  

Nonlinear 
System (RFPA)

Adaptive Training for 
Pre-inverse Model

Predistorter 
Model

xPD(n) y(n)

e(n)

x(n)

update 
coefficients TOR

+
-

 
Figure 8: Direct learning architecture for DPD 

The indirect learning method is conceptually easier to understand, because it attempts to 
identify a RFPA post-inverse model directly from the observed ( )y n  and ( )PDx n  signals, i.e. 

some closed-form function that maps ( )y n  to ( )PDx n ,. In the case of direct learning, an 
equivalent function in terms of ( )x n  and ( )y n  cannot be formulated, as ( )y n  is the result of a 
cascade of the predistorter and the RFPA, and the model for the latter is never identified. 
Essentially, indirect learning attempts a faithful construction of the RFPA post-inverse by 
reversing its transfer characteristic, while direct learning arrives at the RFPA pre-inverse while 
being agnostic to its transfer characteristic. Since this thesis is concerned with the proposal and 
validation of a new predistorter formulation, the conceptually simpler and more widely 
adopted approach of indirect learning has been used throughout. However, it is acknowledged 
later in the thesis that direct learning is necessary to truly realize a low-cost analog predistorter 
due to the architectural implications of the indirect approach. 

Among various predistortion formulations, one of the most comprehensive ones is the Volterra 
series [25], which has been used extensively in the modeling of physiological systems, satellite 
communication links and microwave circuits. While is efficacy in modeling RFPAs is 
undisputed, the computational complexity of the Volterra series has discouraged its adoption 
into real-time, low-power applications where processing power is limited. In recognizing that 
all terms (or kernels) of the Volterra series are not equally critical in modeling, successful 
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attempts have been made to reduce its complexity, through the ad-hoc pruning of kernels [26], 
through a priori pruning based on the knowledge of physical mechanisms by which RFPAs 
non-idealities are generated [27], and even by directly deriving a complexity reduced 
formulation from a physically inspired multi-block model of the RFPA [12]. Further 
simplifications to the Volterra series have been devised, which significantly compromise 
modeling efficacy in return for simplicity. The memory polynomial [9] is the most prevalent 
of these, as it provides a moderate compromise between complexity and performance. The 
envelope memory polynomial is a simpler variant of the memory polynomial that discards 
linear memory terms and only models nonlinear memory effects [10]. Yet another class of 
formulations are the Hammerstein and Wiener [28], which decouple nonlinearity and memory 
terms into either a cascade of a memoryless nonlinearity followed by a linear / weakly 
nonlinear memory filter (Hammerstein / Augmented Hammerstein [29]) or the reverse 
(Wiener). Disposing the memory terms entirely results in the memoryless or static polynomial 
[30], which is decidedly on the simple end of the spectrum and hardly appropriate for 
contemporary linearization challenges. Equations 2.3 and 2.4 show the expressions for the 
Volterra series and static polynomial, respectively. In the equations below, M  and m  are the 
memory depth and index, respectively, N  and k  are the nonlinearity order and index, 
respectively, and kh  and ka  are the complex-valued coefficients. Figure 9 illustrates the 
relative positions of these formulations in terms of their “complexity” and their modelling 
capability, which are always at odds. Complexity in this case refers to mathematical 
complexity, and can be coarsely assessed by the number of complex multiplications needed to 
realize the predistortion function. At the top-end of modelling capability, the complexity VOLC  
of the Volterra series is a function of its nonlinearity order N  and memory depth M  (assumed 
uniform for all kernels) and quickly becomes unmanageable as N and M grow, as shown by 
Eq. 2.5. In contrast, the complexity STATC  of the memoryless polynomial is only a function of 
its nonlinearity, as in Eq. 2.6, and allows for easy implementation. 
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Figure 9: Relative complexity and capability of predistorter formulations 

While the choice of formulation determines the theoretical accuracy with which an RFPA can 
be linearized, a far more practical concern is the accurate identification of the optimal 
coefficients that bring the model performance close to its theoretical limit. It is the accuracy of 
coefficient estimation, rather than model capability, that usually becomes the limiting factor in 
linearization success, as will be noted in later chapters. All the formulations previously 
referenced, from the Volterra series to the memoryless polynomial, share a common property 
that greatly lessens the burden of coefficient identification – they are linear functions of the 
unknown coefficients. This property allows the use of the least squares estimation (LSE) 
technique (i.e., linear regression) to estimate the optimal coefficients. In the indirect learning 
architecture, for example, application of least squares requires two sets of  data vectors, 

 and , where  is comprised of data points from the digitized output signal of the PA and 
 is comprised of corresponding data points from the input signal to the PA, and  is the 

length of the vectors, usually chosen to be 10,000 to ensure a representative sample. For 
reverse modelling, a matrix , comprised of  basis vectors determined by the choice of 
formulation, is generated from  which, when multiplied with the vector of unknown 
coefficients , should ideally reconstruct  (for reverse modelling). The unknown  is then 
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determined using the Moore-Penrose pseudoinverse of A , †A  as shown in Eq. 2.7 (matrix 
dimensions are shown in subscripts).  
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Using linear regression guarantees that the identified coefficients are truly optimal in a least 
square sense, and allows the data-fitting capability of a formulation to be assessed. However, 
the LSE approach involves the storage of massive data vectors, inversion of an m m×  matrix, 
as well as m L×  complex multiplications – requiring computational resources and memory 
that are prohibitive to low-power, real-time applications. The less computationally intensive 
alternative to LSE is the Recursive Least Squares (RLS) technique which recursively estimates 
the coefficients. The RLS solver must be supplied with an initial guess of the coefficients. At 
each step, the solver updates its guess with a correction that is equal to the product of a 
calculated gain, and the error in predicting the current observation with the current guess. 

The prime advantage of using RLS is that it does not need to store or manipulate large vectors 
of inputs and observations – after each update to the coefficients, the input and observation 
points used in the calculation of the update are discarded. Furthermore, an RLS algorithm can 
track changes in the operating conditions of the PA on a sample-by-sample basis and update 
the coefficients of the predistorter in real-time whereas the LSE technique recalculates the 
coefficients every time it is applied, and it can only be applied once enough samples of the 
input and output of the PA have been aggregated.  

The caveat with RLS is that, unlike the LSE which yields the truly optimal coefficients, it 
converges to the vicinity of the optimal coefficients, with subsequent updates causing the 
solution to fluctuate around the optimal. It is possible to make the solver converge closer to the 
optimum by scaling down the step-size of the correction, but the added accuracy comes at the 
cost of a slower convergence rate, resulting in higher cumulative complexity due to repeated 
matrix inversions. 

LSE and RLS are archetypal instances of block-wise vs. recursive estimation methods, and 
attempts to reduce their complexity and/or improve their accuracy have been the subject of 
several publications, a comprehensive assessment of which is beyond the scope of this thesis. 
Nonetheless, recursive and real-time estimation methods remain a promising approach for 
practical implementations of predistortion solutions. 

Ideally, an accurate identification of the reverse PA model would result in a perfect 
reconstruction of the PA input from the PA output. Therefore, a common approach to assess 
the optimality of an identified predistorter model is to feed it with all of the points comprising 
the data-vector Y  (the normalized output of the PA used for identification), and measured how 
accurately it re-constructs the data-vector X  (the normalized input of the PA used for 

(2.7) 
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identification). The ‘goodness’ of fit between the actual and reconstructed data ( ix  vs ˆix ) is 
measured using the normalized mean squared error (NMSE, Eq. 2.8). NMSE values below  
– 40 dB usually indicate an acceptable degree of accuracy for predistortion applications.  
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2.3 Alternatives to Digital Predistortion 
Several emerging trends in the field of wireless communications are beginning to challenge 
the utility of digital predistortion as means of RFPA linearization. Future wireless networks 
are envisioned to feature greater number of micro, pico, and femto-cells, which will be 
situated strategically to augment localized weak-spots within the large coverage area of the 
base-stations in order to provide seamless and uniform network connectivity regardless of 
location. Because of their much smaller coverage area, these small cells will need physically 
smaller amplifiers capable of transmitting at watt or sub-watt levels at the most. Interestingly, 
the degree of non-idealities that need to be corrected for in small cells will change very little 
compared to macro-cells, for the following reason: nonlinearity and memory effects are by-
products of design choices made to maximize RFPA efficiency (such as the choice of biasing, 
topology, and matching networks) and there is no reason to believe that efficiency will be any 
less of a concern for small cells, especially with growing pressure on the ICT industry to 
reduce its carbon footprint. Consequently, the corrective capabilities of linearization 
techniques such as DPD are not expected to change through the transition from macro-cell to 
small-cell. For base-station macro-cells, the power overhead incurred by DPD (in the order of 
watts) was a relatively small price to pay for being able to transmit hundreds of watts using 
efficiently designed RFPAs. In the case of small-cells, the DPD power consumption will not 
scale down (since the requirement for linearity is unchanged), and will be a massive price to 
pay for being able to transmit a couple of watts efficiently. This motivates seeking alternative 
predistortion techniques that perform comparably to DPD without consuming as much power. 

Proposing a low-power alternative necessitates understanding the factors responsible for the 
high power consumption in DPD. The reader is referred back to Figure 6 of the previous 
section, which showed the architecture of a typical single-band transmitter with a DPD system 
to linearize the RFPA.  

The primary source of power consumption is the baseband digital circuitry, particularly the 
DACs preceding the modulator. In order to maintain the fidelity of the signal through the 
conversion process, the sampling rate of the DAC must at least be twice as high as the highest 
frequency component of the baseband signal, as per the Shannon-Nyquist theorem. 
Unfortunately, higher sampling rates equate to higher power consumption in DACs, and the 
problem is aggravated by digital predistortion, which causes the baseband signal to experience 

(2.8) 
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a 5×  bandwidth expansion [31]. Thus, an undistorted WCDMA signal of 20 MHz bandwidth 
will roughly occupy 100 MHz of bandwidth after predistortion, and will need to be sampled by 
two 200 Ms/s DACs (for the in-phase and quadrature phase components). Commercial DACs 
operating at this sampling rate, even low-resolution ones [32], will consume hundreds of 
milliwatts alone – and this is over and above the power consumption of the digital 
predistortion circuitry, which will need to be clocked at the same rate. Another major source of 
power consumption is the transmitter observation receiver which employs ADCs to digitize 
the distorted output signal of the RFPA and provide it to the DPD engine to train the 
predistorter. Much in the same fashion as the predistorter, the RFPA causes the transmitted 
signal to experience a bandwidth expansion that is detrimental to the power consumption of 
the ADCs. For small cells transmitting at watt and sub-watt levels, these sources of power 
dissipation easily negate the improvement in efficiency offered by linearization. The problem 
will only worsen as communication signals experience a widening of modulation bandwidth to 
support increasingly high data-rate applications. LTE-A is expected to provide support for 
contiguous carrier-aggregated signals with modulation bandwidths reaching up to 100 MHz 
[33], while 5G air interfaces are expected to support modulation bandwidths in the range of 
several hundred MHz to a GHz [34], underscoring the need for alternative predistortion 
architectures where power consumption can be managed more reasonably with respect to 
widening modulation bandwidth. Analog predistortion is a strong contender in this regard, and 
the next chapter develops a formulation that is suited for an APD architecture.  
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Chapter 3 
Single-band Analog Predistortion 

This chapter is organized as follows. Section 3.1 discusses architectural differences between 
DPD and APD, and how they translate to savings in power consumption for APD while 
creating additional challenges in the design of the predistorter engine. Section 3.2 discusses 
compatibility issues between the APD architecture and the majority of pre-existing DPD 
formulations – with the exception of the envelope memory polynomial. Limitations of the 
EMP for wideband linearization are identified, and subsequently addressed by proposing a 
cascaded FIR-EMP formulation. In Section 3.3, the challenge of identifying the proposed 
formulation’s coefficients is addressed using two possible identification schemes, and in 
Section 3.4, its performance is validated using an experimental setup involving a physical 
RFPA excited with single-band, wide bandwidth communication signals. 

3.1 Transition from Digital to Analog 
Of the prior works that served as prototypical demonstrators of single-band APD, a brief 
discussion of which has already been presented in section 2.2, [17] achieves predistortion of 
narrowband signals with unprecedented low power by directly predistorting the RF signal 
using an analog engine as opposed to conventional DPD approaches which predistort the 
baseband signal using a digital engine. The transitions from digital to analog, and baseband to 
RF, strongly influence the constituents and architectural layout of the predistorter. The 
architecture in turn imposes limitations on the type of predistorter formulation that can be 
synthesized. In this chapter, these limitations are examined in order to construct a new 
predistorter formulation that is compatible with the APD architecture and boasts robust 
performance in wideband contexts. Challenges of identifying the predistorter’s coefficients are 
discussed as well. The proposed formulation (and method of identification) is evaluated on its 
ability to linearize a physical RFPA transmitting single-band wide bandwidth signals and 
compared against other common predistortion formulations. 

Figure 10 depicts the architecture of a single-band analog predistorter that has been integrated 
into a transmit path containing the RFPA. Contrasting this with the DPD architecture of Figure 
6 reveals how the predistortion engine has relocated from the digital to the analog domain, 
where low power circuitry can employed to generate the predistortion correction signals ( )cI t  

and ( )c tQ , which are then administered directly to the undistorted signal ( )RF tx  to generate 
the predistorted signal , ( )PD RF tx  which is fed into the PA. As a consequence of this relocation, 

the baseband signal ( )nx  is still undistorted prior to up-conversion. This plays a major role in 
reducing power consumption as the baseband DACs, which no longer need to accommodate 
the 5×  bandwidth expansion caused by predistortion and can be clocked at much lower 
speeds. 
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Figure 10: Block diagram of an analog predistorter for a single-band transmitter 

The caveat of this relocation is that the predistorter engine no longer has access to the digital 
in-phase and quadrature-phase signals that carry both the amplitude and phase information of 
the undistorted signal, which restricts the predistorter output to be a function of just the 
undistorted signal amplitude or envelope (sensed by the envelope detector). As a benefit, 
because the signal envelope varies with the frequency of baseband and not the frequency of 
the carrier, the analog predistorter engine does not need to operate at radio frequencies. 
However, the amplitude-only restriction severely limits the efficacy of the predistorter for 
wideband signal transmission. Trivially, this limitation could be avoided by making both the 
baseband in-phase and quadrature phase signals available to the predistorter using two 
approaches, but neither of them are feasible. One approach would be use a demodulator 
(quadrature coupler, mixer, local oscillator) in place of an envelope detector to re-obtain the 
baseband signals from the RF, which is severely wasteful in terms of cost, size and power 
consumption. The other approach is to directly give the predistorter engine access to the in-
phase and quadrature-phase baseband signals; this precludes having the elegance of an RF-in-
RF-out predistorter and creates two divergent paths for the baseband signal, (one through the 
modulator and another through the engine) both of which must be carefully co-designed to 
reduce path delay and gain mismatch – such design complications are best avoided. Another 
caveat of the relocation is that the digital signal processor that trains the predistorter 
coefficients no longer has access to the predistorted input of the RFPA, since the training 
occurs in digital baseband and the predistortion in the analog pass band (compared to DPD, 
where both training and predistortion occur in the same domain). A second TOR would be 
required to convey RFPA input data to the training engine, which would defeat the objective 
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of reducing power overhead. Realistically, the digital signal processor (DSP) in Figure 10 
would need to implement direct learning in the absence access to the RFPA input. While this 
thesis validates the proposed predistorter formulation with indirect learning as a first step, the 
importance of eventually transitioning to direct learning has been stressed in the discussion of 
future work. 

A distinct feature of the APD architecture also differs significantly in that it uses a vector 
multiplier to adjust the amplitude and phase of the undistorted RF signal to obtain the 
predistorted RF output, based on the correction signals ( )cI t  and ( )cQ t . These correction 
signals are synthesized by an analog engine that operates on the envelope of the undistorted 
signal, which carries only amplitude information. Furthermore, to account for the finite time 
needed by the analog engine to synthesize, a deliberate delay element must be introduced into 
the path of the undistorted signal to ensure that it is synchronized with the correction signals. 
In contrast, the DPD engine directly operates on the in-phase and quadrature-phase 
components of the undistorted baseband signal (which carry both amplitude and phase 
information) and generates the predistorted baseband output directly without needing delay 
synchronization.   

APD will also introduce challenges specific to analog integrated circuit design. A digital 
predistorter can be implemented on commercial field programmable gate arrays (FPGA’s) by 
programming the appropriate multiplication and addition operations to be carried out using a 
hardware description language. For APD, specific predistorter formulations must be 
implemented with custom-designed integrated circuits to perform operations of multiplication 
and addition on analog voltage/current signals. Designers must worry about (i) the impact of 
circuit organization and layout on thermal noise and delay mismatch, (ii) the limited dynamic 
range of the circuits which can cause signals to be clipped or driven into the noise floor, and 
(iii) the effect on accuracy of unavoidable circuit non-idealities such as signal offset and 
device mismatch. These concerns grow exponentially as the predistorter formulation becomes 
more complicated and the number of mathematical operations, complex multiplications in 
particular, increases. Consequently, not all predistorter formulations are well suited to the 
transition from digital to analog. The Volterra series, for example, is poorly suited to APD 
despite its tremendous linearization capacity. The design of an analog Volterra predistorter 
would be intractable due to the complexity of the formulation, besides which, any theoretical 
improvements in modelling accuracy that it could offer compared to simpler formulations 
would be offset by the cumulative impact of analog circuit non-idealities. Selecting a 
formulation that only retains essential mathematical terms while being compatible with the 
APD architecture is necessary, as will be discussed in the coming section. 

It should also be noted that while the APD architecture addresses the issue of DAC power 
consumption due to the bandwidth expansion caused by predistortion, it has no impact on the 
ADC power consumption in the TOR. The issue will not be addressed in this thesis, since 
independent research efforts are underway to limit this power consumption by reducing the 
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‘observation bandwidth’ of the TOR and thus limiting the sampling rate and clocking speed of 
its associated circuitry [35]. 

3.2 Analog-friendly Predistorter Model 
Of the numerous predistorter formulations reviewed in Chapter 2, very few are compatible 
with analog predistortion, because of the restrictions imposed by its architecture and hardware 
design challenges. A central limitation arises from its use of the vector multiplier, which 
applies the predistortion as a correction to the amplitude and phase of the undistorted signal. 
The vector multiplier operation is depicted in Figure 11.  
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Figure 11: Operation of the vector multiplier 
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Eq. 3.1 shows how the vector multiplication with RF signals is equivalent to a baseband 
operation in which the predistorted output ( )PD tx is obtained by multiplying the undistorted 

input ( )tx  with a corrective ‘gain’ that is equal to ( ) ( )c ct j tI Q+ . Thus, for a predistorter 
formulation to be compatible with the APD architecture, it has to be possible to express its 
output – the predistorted signal – as a product of its input – the undistorted signal – and a 
corrective gain. Furthermore, the corrective gain must only be a function of the envelope of 
the undistorted signal, as the analog predistortion engine which synthesizes the gain only 
senses the amplitude through the envelope detector and not the phase. The majority of 
predistortion formulations do not satisfy this criterion, but it is easy to show that the envelope 
memory polynomial does. Eq. 3.2 shows how the time-domain analog equivalent of the 

(3.1) 
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discrete representation of the EMP can be re-arranged into the needed form. A similar 
rearrangement can be applied to the static polynomial to show that it is compatible with APD 
as well. However, the well-known memory polynomial cannot be expressed in the desired 
form, as shown in Eq. 3.3, because it includes certain memory terms of the form 

( ) ( ) kx t m x t mt t− −  that cannot be expressed as a function of ( )tx . The Volterra series, its 

inherent complexity notwithstanding, is also unsuitable for APD for the same reason. Given 
the limited choice between either the static polynomial or envelope memory polynomial, and 
the modelling advantages of the latter, the candidate for an APD formulation becomes 
obvious.  
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Figure 12: Block diagram of a single-band analog predistorter engine 

The schematic of an analog predistortion engine to realize the EMP formulation is presented in 
Figure 12. The figure shows the multipliers, adders, and DACs necessary to realize the 
correction signal ( )c tI . An identical structure would be used to generate ( )c tQ , except with 

the DACs being used to generate the imaginary part , (Im) ( )m k ta , of the complex coefficients. 

The correction signals do not possess terms of the form ( ) ( ) kx t m x t mt t− − . These terms 

can only be synthesized by either (i) down-converting the RF signal to re-obtain the baseband 
signal, or (ii) enabling access to the baseband signal prior to its up-conversion, neither of 
which are feasible for reasons already discussed. In [10], where EMP was proposed, 
discarding these problematic memory terms does not appear to have any significant impact on 
modelling performance, and the EMP and MP appear comparable at first glance. Further 
investigation reveals that the performance of the two formulations diverges as the modulation 
bandwidth of the test signal is increased – the EMP struggles to match the performance of the 
MP. The difference is evident from Figure 13, which compares the spectra of progressively 
wider bandwidth signals linearized by MP (black) against EMP (blue) and no predistortion 
(red). While the linearized spectra are identical in the case of very narrow modulation 
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bandwidths, at 20 MHz the ACLR of the EMP-linearized spectrum is about 10 dB worse than 
the MP-linearized spectrum, and the discrepancy continues to increase for wider bandwidths. 

 
Figure 13: RFPA spectra linearized using MP (black), EMP (blue), and unlinearized (red) 

An AM/AM and AM/PM plot generated using the predistorted signal can reveal how effective 
the predistorter formulations are in modelling the reverse gain and phase characteristics of the 
PA. Figure 14(a). and 14(b). show the AM/AM and AM/PM curves modelled by the MP and 
EMP formulations respectively, contrasted against the reference curve of the PA. While both 
MP and EMP are able to reasonably model the nonlinearity and dispersion of the RFPA 
transfer characteristic at high power levels (Figures 14(c). and 14(d).) where nonlinear 
memory effects dominate, the EMP is unable to model the linear memory effects of the PA 
that manifest at low signal power, as evidenced by the lack of dispersion in the teal-colored 
curves. It is well understood that modulated signals that occupy a larger frequency bandwidth 
are more sensitive to frequency dispersion and will stimulate more memory effects in RFPAs; 
the inability of the EMP to model linear memory effects would explain why it performs 
progressively worse at higher bandwidths. 
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Figure 14: Contrast between AM/AM and AM/PM modeled using the MP and EMP 

Unfortunately, the limitation of the EMP is attributable to the same property that makes it a 

viable candidate for APD, namely the absence of terms ( ) ( ) kx t m x t mt t− − . Of particular 

significance are the terms associated with index 0k = , i.e., linear memory terms of the form 
( )x t mt−  that can be generated by passing ( )x t  through a finite impulse response (FIR) 

filter. These terms are essential to the modelling of linear memory effects that arise due to 
frequency dispersion caused the matching networks before and after the transistor. (FIR filters 
have been widely used to correct chromatic dispersion in optical communication systems as 
well [36, 37]); this was verified in MATLAB simulation by observing that the EMP 
formulation, when supplemented by the addition of terms of a finite impulse response filter to 
form a parallel structure (i.e., ‘FIR||EMP’ in Figure 15), performs as well as the full memory 
polynomial in modelling the reverse characteristic of an RFPA driven with wideband signals 
ranging up to 80 MHz. Nonetheless, it is not feasible to realize these FIR terms in an APD 
implementation because they are not functions of the signal envelope. 

-40 -30 -20 -10 0 10
-10

-5

0

5

10
AM/AM Distortion

Pin (dBm)

P ou
t/P

in
 (

dB
)

 

 

Measured
MP
EMP

-50 -40 -30 -20 -10 0 10
-100

-50

0

50

100
AM/PM Distortion

Pin (dBm)

Ph
as

e ou
t-P

ha
se

in
 (

de
g)

 

 

Measured
MP
EMP

(a). 

(b). 

(c). 

(d). 



 

25 
 

Case: k>0, m>0
|x(n-m)|k 

Case: k=0, m>0
x(n-m) 

Case: k>0, m=0
|x(n)|k 

memoryless 
nonlinearity

nonlinear 
memory

linear 
memory (FIR)

EMP

MP

FIR‖EMP

 
Figure 15: Relationships between the mathematical bases of MP, EMP, and FIR||EMP 

As a solution to the above conundrum, an alternative arrangement is proposed, which cascades 
the FIR filter before the EMP formulation, instead of placing it in parallel. This re-
arrangement has a specific advantage: it allows the FIR filtering to be realized effortlessly in 
the digital baseband domain using delay blocks, while allowing the EMP to be implemented 
using analog circuitry as previously proposed. Figure 16 shows the block diagram of the 
proposed FIR-APD scheme, which differs from the APD scheme of Figure 10 only by the 
inclusion of an FIR-filter implemented in digital. The resulting FIR-APD formulation is shown 
in Eq. 3.4, in which M  and N  are the memory depth and nonlinearity orders of the EMP, and 
V  is the order of the FIR filter. Results in the measurement section confirm that, even in a 
cascade re-arrangement, the FIR filter is able to provide the much needed capability of 
modeling linear memory effects which, when combined the capability of the APD to model 
static nonlinearity and nonlinear memory effects, provides the essential bases for describing 
the non-ideal transfer characteristics of contemporary RFPAs. The proposed formulation bears 
some similarity to earlier cascaded models such as the Hammerstein and Wiener. It should be 
noted that the inclusion of the filtering action does not ‘predistort’ the baseband signal 
significantly to impact power consumption – thus the proposed FIR-APD architecture still 
retains the advantages of the APD architecture while promising an improvement in 
linearization performance. 
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Figure 16: Block diagram of the FIR-APD system for a single-band predistorter 

3.3 Analog Predistorter Model Identification 
The discussion of predistorter model identification in Section 1 referred to the use of block-
wise and recursive estimation techniques such as the pseudo-inverse based LSE and the RLS 
for determining the coefficients. Unfortunately, these commonly employed linear 
identification techniques are precluded from use with the proposed FIR-APD scheme because 
it does not satisfy the necessary condition of being linear with respect to the unknown 
coefficients. As illustrated with Figure 17 and Eq. 3.5, this issue is not unique to FIR-APD, 
and would arise for any predistorter formulation that is the composition two functions, in 
which the latter is nonlinear (such as the Wiener model). 

( )G ⋅ ( )H ⋅

q(n) r(n) s(n)

 
Figure 17: Cascading two functions to yield a composite function 
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The issue can be addressed with recourse to nonlinear optimization; specifically, MATLAB’s 
unconstrained nonlinear optimization function fminunc, was leveraged to demonstrate the 
highest modeling potential achievable with the proposed FIR-EMP formulation. Fminunc was 

(3.5) 
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programmed to find the optimal coefficient vector optc  that minimizes an objective function 

( )objf c  defined in Eq. 3.6. In the cost function of Eq. 3.6, [ ]T
v mkc a b=  is the concatenation of 

the coefficients of the EMP and FIR filter from Eq. 3.4, ix  are the training samples of the 

RFPA input, and ( , )FIR EMP if c y−  is the estimate of ix  yielded by Eq. 3.4 when it is evaluated 

with training samples of the RFPA output iy . 
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The objective function above essentially calculates the normalized mean square error that was 
presented in Eq. 2.8, sans logarithmic conversion. Minimization of this function will ensure 
that the resulting coefficients provide a good fit between the measured and modelled data, 
provided the training samples are chosen to be a representative subset of the entire signal. 
Usually, it is sufficient to choose training samples consisting of 10% of the entire set of data-
points comprising x  and y . The samples are also chosen from around the peak regions of the 
input and output signals, where the most pronounced nonlinear behavior is present, to ensure 
that the predistorter model captures the full extent of the nonlinearity.  

It should be noted that ( , )FIR EMP if c y−  is a nonlinear function of the coefficients, owing to the 
composite nature of the proposed formulation, which motivates the use of fminunc in the first 
place. Fminunc itself can employ several different algorithms for optimization, which include 
the Quasi-Newton [38], Nelder-Mead [39], and Trust-Region [40] algorithms. The trust-region 
algorithm requires a user-specified gradient function for the predistorter formulation, which in 
the case of FIR-APD, entails determining partial derivatives of a tedious composite function 
with respect to each of its unknown coefficients. The simplex method of Nelder-Mead 
algorithm, which neither requires nor employs any gradient information, is generally less 
efficient. The Quasi-Newton method, which requires no user-specified gradient function but 
approximates it using the observed behavior of the objective function, was chosen for this 
work. Even though the coefficients yielded by this process cannot guarantee a global minimum 
in the NMSE, measurement results in the next section will demonstrate that with these 
coefficients, the envelope memory polynomial can outperform the memory polynomial from 
which it was derived. 

As is true for any iterative optimization problem, the choice of an initial guess can affect the 
convergence to an optimal solution. To avoid prohibitively long search times, and to reduce 
the chances of converging on sub-optimal minima, a reasonable first guess for the coefficients 
can be constructed as follows. A parallel FIR||EMP model can be assumed for the predistorter, 
which is linear in the coefficients and has been shown to model the reverse transfer 
characteristic well. The coefficients of this model are identified using least squares estimation, 

(3.6) 
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as described in Section 1. The EMP coefficients of this model are used as part of the first 
guess, while its parallel FIR coefficients are discarded and a cascade FIR filter with unity gain 
is used to complete the first guess (i.e. the first coefficient of the FIR filter is assumed 1, and 
the rest, zero). This is just one of many possible approaches at arriving at an initial guess; 
another approach could involve identifying a Hammerstein model as a first step, using its 
linear memory coefficients as the first guess for the FIR filter, and using its static polynomial 
coefficients as the first guess for the static part of the EMP (while setting its other coefficients 
to zero). 

While the recourse to nonlinear algorithms allows the FIR-APD formulation to be evaluated to 
its fullest potential against other DPD formulations, it is not a practically viable solution, as it 
demands tremendous computational resources that cannot be provided by real-time, on-chip 
digital signal processing solutions for small cell applications. The fminunc implementation in 
MATLAB attempts to minimize the objective function by iteratively varying the choice of the 
coefficients using a line-search (where the search direction is informed by the Quasi-Newton 
approach chosen above). Each iteration involves a costly evaluation of the objective function, 
and the computational burden can grow quickly as the number of coefficients increase with 
higher model order – leading to excessively long computation times or prohibitive 
requirements in processing power. For an FIR-EMP model with a modest 25 complex 
coefficients, for example, the above approach would involve a search vector with 50 real-
valued entries. 

Promising alternatives to nonlinear optimization can be found in the literature, which involve 
reducing the composite identification problem into two separate, linear identification 
problems, one for each function of Figure 17. This would be readily possible if the 
intermediate signal ( )v n  was available from the measurements of the RFPA, but it is not. 
However, it can be approximated in one of two ways. One possible approach [28] involves 
expressing the intermediate signal as both a function G  of ( )x n , and a function 1H −  of ( )y n , 
where ( )x n  and ( )y n  are available data from the RFPA input and output, G  is the function 

comprising the first block of the cascade in Figure 17, and 1H −  is the inverse of the function 
comprising the second block. These simultaneous expressions involving ( )v n  are then 
rearranged to yield a linear expression involving ( )x n , ( )y n , and the coefficients of G  and 

1H − , which can be solved to find ( )v n . With ( )v n  available, both the first and second blocks 
of the cascade can be identified separately with LSE, using the dataset pairs ( )x n  and ( )v n , 
and ( )v n  and ( )y n , respectively. Another method [41] involves constructing a forward model 
of the RFPA using the Volterra series, which can mimic the RFPA’s transfer characteristics 
with a high degree of accuracy. This forward model is then fed with a sufficiently low power 
signal which is assumed to stimulate only the linear memory effects and not the dynamic 
nonlinearity; this is a reasonable assumption, since for values of ( ) 1x n m−   dynamically 
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nonlinear terms of the form ( ) ( ) kx n m x n m− −  become negligible. The ‘small signal’ output 

and input of the forward model can then be used to extract coefficients of an FIR filter using 
LSE; these coefficients are substituted into the first block of the cascade, so that the 
intermediate signal ( )v n  can now be estimated. With ( )v n  available, the second block can be 
identified. While the first method above has only been used for the identification of Wiener 
models, the latter approach has been applied to the proposed model with success [41]. 
However, both approaches involve repeated applications of LSE, which involves matrix 
inversions and the manipulation of large data vectors; hence, computationally friendlier 
identification schemes, such as RLS, should be investigated as future work. 

3.4 Single-band Linearization Results 
The performance of the proposed single-band FIR-APD model was tested by using it to 
linearize a wideband GaN broadband Doherty PA [42] driven to near-saturation at a peak 
output power of 43 dBm with communication signals of progressively increasing modulation 
bandwidth. The setup of the experimental testbed is shown in Figure 18.  

Since this thesis concerns the development and testing of an analog predistorter formulation 
and not the analog integrated circuitry itself, the coefficient estimator and predistorter engine 
have been realized completely in MATLAB, and the non-idealities of a physical APD engine 
have been abstracted to allow a bare assessment of the predistorter formulation. An arbitrary 
waveform generator performs bits-to-RF conversion on the digital baseband data that is 
uploaded to it via MATLAB. The driver amplifier is used to adjust power of the RF signal so 
that the RFPA is driven close to peak power, which in is verified using the power meter. The 
attenuator brings the output of the RFPA to a level that is suitable for the digitizer, while the 
downconverter shifts the output to a low intermediate frequency, such that the digitizer can 
perform digital downconversion on the signal. The digitizer feeds this recovered baseband 
signal back to the MATLAB engine, which uses it to re-identify predistorter coefficients in 
each iteration.  
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Figure 18: Experimental setup for the validation of single-band FIR-EMP 

The following steps are performed at each iteration to identify the coefficients: 

(i) Predistorter coefficients from the previous step are used to generate a sequence of 
100,000 IQ points (corresponding to a 1ms slice of predistorted signal) that are 
uploaded to the AWG. 

(ii) The AWG continuously transmits the predistorted sequence until the digitizer has 
captured a chunk of the RFPA output signal. The transmitted and captured signal are 
then used to identify the coefficients of the RFPA pre-inverse using least-squares (as 
per the process described in section 1). These coefficients replace the previous ones, 
and are used to generate the predistorted signal for the next iteration. 

(iii)The above process usually needs to be repeated for 2-3 iterations until the predistorter 
performance becomes relatively steady from one iteration to the next – when this 
occurs, the final iteration records relevant measures of performance (such as EVM and 
ACPR) for RFPA operation with and without the predistorter. These are presented 
below. 

The performance of the proposed FIR-EMP formulations is documented in Table 1 and 
contrasted against that of other single-band formulations; the linearized output spectra of the 
RFPA are shown in Figures 19-21 for three test signals of progressively higher modulation 
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bandwidth and PAPR (chosen to stimulate more non-ideal effects make linearization 
progressively more challenging): (i) a WCDMA ‘1001’ signal (20 MHz BW) (ii) an intra-band 
non-contiguous carrier-aggregated WCDMA ‘111’ and 15 MHz LTE signal (40 MHz total 
BW), and (iii) another intra-band non-contiguous carrier-aggregated WCDMA ‘1111’ and 20 
MHz LTE signal (80 MHz total BW).  

Table 1: Performance comparison of single-band predistorter formulations 

Signal PAPR 
(dB) 

BW 
(MHz) 

Predistortion 
Scheme 

NMSE 
(dB) 

- ACPR-L 
 (dB) 

- ACPR-U 
 (dB) 

EVM 
 (%) 

# of  
Coeff. 

WCDMA
4C-1001 7.11 20 

No pred. -- 33.1 28.7 8.4 -- 

Volterra DDR -43.9 51.9 51.3 0.8 91 

MP -40.1 50.7 51.4 2.3 21 

FIR-EMP (NL) -47.0 50.3 49.8 0.9 22 

WCDMA
3C-111 

- 

LTE15 

8.4 40 

No pred. -- 36.1 29.8 6.4 -- 

Volterra DDR -42.8 48.9 48.1 1.0 91 

MP -38.3 48.0 47.3 1.7 21 

FIR-EMP (NL) -46.1 47.9 46.2 1.1 22 

WCDMA
4C-1111 

- 

LTE20 

9.6 80 

No pred. -- 38.2 29.0 7.1 -- 

Volterra DDR -39.5 46.6 45.0 1.4 91 

MP -35.0 44.4 44.2 2.4 21 

FIR-EMP (NL) -43.0 45.4 42.7 1.6 22 

 
In all cases, the DDR Volterra, with its abundance of coefficients, represents the best 
achievable performance against which to compare the other formulations’. While all of the 
predistortion schemes suffer as the signal bandwidth increases, the modelling capability of the 
standard memory polynomial degrades rapidly compared to the Volterra series – this is evident 
from the increase in NMSE, and accompanying increase in out-of-band distortion (ACPR) and 
in-band distortion (EVM). The proposed FIR-EMP however, not only outperforms the MP 
using the same number of coefficients, but successfully competes with the DDR Volterra, 
using only a fraction of its coefficients (1/4th). These results provide evidence that the series 
of transformations that lead from the MP to the FIR-EMP retains essential modelling terms. 
Furthermore, only 1-2 dB of ACPR suppression is lost by using the FIR-EMP model instead 
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of the Volterra, suggesting that the FIR-EMP employs the bulk of essential terms needed to 
correct most of the nonlinearity and memory effects, and that introducing additional terms 
provides diminishing returns in terms of linearization performance. In light of the considerable 
design challenges and circuit non-idealities of an APD implementation, additional modelling 
terms of Volterra and Volterra-like formulations are perhaps best avoided. 

 

 
Figure 19: RFPA output spectrum for 20 MHz single-band signal 
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Figure 20: RFPA output spectrum for 40 MHz single-band signal 

 
Figure 21: RFPA output spectrum for 80 MHz single-band signal 
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Chapter 4 
Dual-band Analog Predistortion 

This chapter is organized as follows. Section 4.1 provides the motivation for extending the 
single-band FIR-EMP formulation to dual-band, and Section 4.2 describes the extension and 
proposes a dual-band equivalent of the APD architecture from Chapter 3. In Section 4.3, the 
problem of coefficient identification in a dual-band context is discussed, and the single-band 
identification scheme previously proposed is extended to dual-band identification. Section 4.4 
presents measurement results for the proposed formulation using the same RFPA as before, 
but under dual-band excitation. 

4.1 Motivation for Dual-band Transmission 
Wireless transmitters capable of concurrent multi-band transmission, i.e. the simultaneous 
transmission of multiple modulated signals at multiple, potentially widely separated 
frequencies, have been an area of great interest. Concurrent multi-band transmission can 
enable multi-functionality in wireless devices, such as the ability to interface with the global 
positioning system, transmit data over wireless local area networks, and make voice calls, all 
at the same time. Simultaneous transmission over multiple frequency bands also increases the 
effective transmission bandwidth and hence, data throughput of wireless systems. 
Additionally, it can improve the frequency diversity of the system, reducing its susceptibility 
to path loss and interference which are especially problematic for high frequency transmission 
in dense, urban environments. Given the success of single-band linearization using FIR-EMP, 
its extension to concurrent dual-band transmission scenarios would be desirable. 

4.2  Extension to Dual-band 
While dual-band transmitters initially employed separate RFPAs designed to achieve optimum 
efficiency in each of their respective bands, advances in design techniques have enabled the 
realization of single RFPAs to concurrently amplify the signals in both bands, which 
significantly reduces the cost and size of the transmitter. In such cases, where a nonlinear 
RFPA is fed with a dual-band signal that is the sum of the signals of the individual bands, a 
new class of distortion products appear at the output. In addition to the harmonic and 
intermodulation distortion present in single-band scenarios, dual-band amplification gives rise 
to cross-modulation distortion products, which are the result of interactions between frequency 
components of both bands. To account for these distortion products, dual-band versions of 
previously mentioned functions such as the Volterra series and the memory polynomial have 
been proposed in the literature, which include nonlinear cross-terms [43, 44]. The dual-band 
FIR-EMP (2D-FIR-EMP) function must be similarly formulated, and the procedure for 
deriving it is similar to the single-band case. The dual-band equivalent of the memory 
polynomial, shown in Eq. 4.1, is turned into an envelope-based formulation by disposing of 
terms that are problematic for an APD implementation. The resulting 2D-EMP is then 
augmented with FIR filters (one for each band) to provide the 2D-FIR-EMP formulation (Eq. 
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4.2). The block diagram of the 2D-FIR-EMP predistorter is shown in Figure 22, and should be 
contrasted with Figure 16. Duplication of hardware (such as the envelope detector, delay 
element, and vector multiplier) is necessary in the transition from single-band to dual-band.   
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Figure 22: Block diagram of the FIR-APD system for a dual-band predistorter 
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An analog block implementation of the 2D-FIR-EMP is possible, but the visualization of it is 
fairly onerous; hence, a hardware block diagram at a higher level of abstraction is presented in 
Figure 23. The figure shows arrays of analog delay blocks generating the delayed versions of 

1( )x t  and 2 ( )x t ; for each delay branch, these envelope signals are fed into a separate 

nonlinear basis generator – a network of multipliers that self-multiply and cross-multiply the 
envelopes of the two bands – to generate the required bases of the 2D-FIR-EMP. These 
nonlinear signals are then forwarded to the coefficient multiplier blocks, where arrays of low 
power DACs and multipliers are used to scale the bases according to the real and imaginary 
parts of the complex coefficients. The correction signals from each delay branch are then 
summed to generate the overall I  and Q  correction signals, one for each band.  

Nonlinear
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Multiplier 

Block 1
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. . . 
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Dual-band
Analog Predistortion Engine

QC1(t)

QC2(t)

coeff.apd(1)

coeff.apd(2)   
Figure 23: Block diagram of a dual-band analog predistorter engine 

A quick inspection of Eq. 4.2 reveals that the dual-band formulation would have roughly 
quadruple the number of bases (and coefficients) compared to the single-band case (see Eq. 
3.4). The first doubling occurs simply because each of the bands in a dual-band scenario 
require their own predistorter formulation; another doubling occurs within the predistorter 
formulations in each band – in addition to generating the intra-band distortion that is present in 
single-band scenarios, nonlinear RFPAs amplifying dual-band signals generate cross-band 
distortions that need to be linearized using additional bases. As a result of this cross-band 
distortion, the predistorter formulations for band-1 and band-2 need to be nonlinear functions 
of the input from both bands. Because of the added complexity this will introduce to the 
analog engine, in terms of the required number of multipliers and adders that need to be 
realized, a pruning of the 2D-FIR-EMP model is necessary. An assumption of ‘fading 
memory’ can be made on the non-ideal nature of the RFPA, which allows the memory depth 
of the formulation to be progressively reduced as the nonlinearity order increases. This 
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assumption has been proposed in prior literature [45, 46], in which its usage was justified on 
rather empirical grounds. However, progressive truncation of the memory depth is a 
reasonable proposition, considering the physical origins of these non-ideal effects. Section 1 
discussed how interactions between intermodulation distortion currents and the drain 
impedance of the RFPA gave rise to dynamically nonlinear behavior. Typically, distortion 
products that are more recent have greater impact on the instantaneous drain modulation that 
affects the RFPA output; furthermore, higher order distortion products are generally smaller 
than lower order ones and have less impact on the drain modulation. As a result, the 

coefficients mka  corresponding to dynamic nonlinear bases of the form ( ) ( ) kx n m x n m− −  

typically become smaller as m  and k  become large, to the point where those bases can simply 
be neglected without compromising linearization performance. Thus, a pruned formulation of 
the 2D-FIR-EMP is presented in Eq. 4.3 in which the memory depth ( )M k  varies according 
to the nonlinearity order k ; this pruned formulation will be used in the rest of the thesis. 
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4.3 Dual-band Predistorter Model Identification 
The 2D-FIR-EMP model is nonlinear in its coefficients, like its single-band counterpart. 
Similar to what was done in section 3.2, the nonlinear optimizer will first be proposed to 
identify coefficients that can demonstrate the potential of the 2D-FIR-EMP formulation; 
decoupled least squares estimation will then be proposed as a less computationally intensive 
alternative. However, the cascaded nature of the proposed predistorter poses a challenge to 
coefficient identification that is specific to dual-band (and multi-band scenarios), which is 
discussed below. 

From the dual-band EMP formulation, it is evident that each of the correction signals of band-
1 (and band-2) is a nonlinear function of the signal envelopes of both bands. These signal 
envelopes, in turn, are linear, filtered versions of the undistorted signal, as per Eq. 4.2. As a 
result, the correction signal for band-1 is affected by the 2D-EMP coefficients of the first band 

(1)
,m kb , and the FIR filter coefficients of both bands, (1)

va  and (2)
va . Likewise, the correction 

(4.3) 
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signal for band-2 is affected by the 2D-EMP coefficients of the second band (2)
,m kb , and the FIR 

filter coefficients of both bands, (2)
va  and (1)

va . This co-dependency can be problematic if one 
chooses to identify the optimal coefficients of the two bands independently – a tactic that is 
commonly employed in dual-band digital predistortion schemes where the respective 
formulations of the bands are decoupled from one another. 

When using nonlinear optimization, the co-dependency issue can be circumvented by 
redefining the separate problems of finding optimal solutions in each band, to a single 
optimization problem. This is achieved by defining the coefficient vector to be optimized as 

2Dc , which is the concatenation of the coefficient vectors of the two bands, and the cost 
function ,2 2( )obj D Df c  to be the average of the normalized mean square error between the 

measured and estimated input of the PA in the two bands (Eq. 4.5).  
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Just as in Section 3.2, the Quasi-Newton approach was used to search for the optimal 
coefficients. However, the search space for the concatenated coefficient vector will be larger 
compared to its single-band counterpart, and will require considerably more iterations to 
converge on an optimal solution. The computationally less intensive alternative to this 
approach is to extend the decoupled linear identification approaches discussed in Section 3.2 
to the dual-band case, which has been recommended for future work. The approach would 
remain the same, but it would need to be performed twice, once to find (1)

,2opt Dc  based on 

signals 1 1 2( ), ( ), ( )x t y t y t , and once to find (2)
,2opt Dc  based on signals 2 2 1( ), ( ), ( )x t y t y t . 

Whether this approach would be significantly impacted by the coefficient co-dependency 
issue, described above, is a matter of further investigation. 

4.4 Dual-band Linearization Results 
The performance of the proposed dual-band FIR-APD model was tested by using it to linearize 
the same broadband Doherty PA of Section 3.4, driven to near-saturation at a peak output 
power, using an inter-band carrier aggregated 15 MHz bandwidth WCDMA ‘101’ signal and a 
15 MHz bandwidth LTE signal with 300 MHz carrier frequency separation, and a combined 
PAPR of 9.3 dB. The setup of the experimental testbed was very similar to that of the single-

(4.5) 
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band case, except that for the dual-band signal, the downconverter creates intermixing 
products that, once captured by the digitizer, interfere with the fidelity of the feedback signal. 
Thus, the downconverter and digitizer were replaced with a N9030A PXA signal analyzer. 

The performance of the proposed FIR-EMP scheme is documented in Table 2 along with that 
of other dual-band linearization schemes that are extensions of the single-band memory 
polynomial and BBE Volterra schemes. The linearized output spectra of the RFPA for band-1 
and band-2 are shown in Figures 24-25. The proposed 2D-FIR-EMP, when identified with 
nonlinear optimization, can successfully compete with 2D-DPD, even when it is pruned to 
have a fraction of the coefficients. These results provide indisputable evidence of essential 
modeling terms being preserved through the transformations that lead us from the 2D-DPD to 
the 2D-FIR-EMP. 

Table 2: Performance comparison of dual-band predistorter formulations 

Signal BW 
(MHz) 

Predistortion 
Scheme 

NMSE 
(dB) 

- ACPR-L 
 (dB) 

- ACPR-U 
 (dB) 

EVM 
 (%) 

# of  
Coeff 

WCDMA 
3C-101 

 (Band 1) 
15 

No pred. -- 35.8 35.1 4.7 -- 

2D-BBE 
Volterra -43.7 51.9 52.5 0.7 27 

2D-DPD -43.5 52.2 51.8 0.7 45 

2D-FIR-EMP 
(NL) -43.4 51.6 52.3 0.7 20 

LTE15 
(Band 2) 15 

No pred. -- 35.5 34.5 4.6 -- 

2D-BBE 
Volterra -43.9 52.4 53.4 0.7 27 

2D-DPD -44.3 51.8 53.0 0.7 45 

2D-FIR-EMP 
(NL) -44.1 51.3 51.5 0.8 20 

 



 

40 
 

 
Figure 24: RFPA band-1 output spectrum for dual-band signal 

 
Figure 25: RFPA band-2 output spectrum for dual-band signal 
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Chapter 5 
Conclusions and Future Work 

5.1 Conclusions 
As low-power small cells employing highly nonlinear power amplifiers are increasingly 
adopted into common usage, traditional RFPA linearization techniques such as digital 
predistortion need to be replaced with low-power, affordable alternatives such as analog 
predistortion. The objective of this thesis was to propose a predistorter formulation that is 
well-adapted to the APD architecture and the constraints it imposes, while performing 
competitively against well-established DPD formulations. Based on the research underlying 
this thesis, the following conclusions can be drawn: 

Straightforward adaptations of DPD formulations to APD are precluded by hardware 
limitations in generating the required mathematical bases. The envelope memory polynomial 
is an obvious choice for APD schemes due to: (i) its low complexity, (ii) the fact that it can be 
expressed as a complex gain correction on the undistorted signal, and (iii) that fact that this 
gain is only a function of the undistorted signal magnitude (and not the phase). 

However, the performance of the EMP suffers as modulation bandwidth of the communication 
signal increases, limiting its scope to narrow-band communication. The linearization failure 
was attributed to the loss of linear memory terms in the transition from MP to EMP, and this 
was confirmed by noting the recovery in performance when the EMP is augmented with a 
parallel FIR filter. 

More importantly, the modelling benefit of the linear memory terms can be realized even 
when the FIR is cascaded before the EMP. The cascade structure allows the FIR filter to be 
realized trivially in digital baseband, while the EMP is realized in analog – thus allowing both 
the advantages of accurate digital signal processing and low-power analog circuitry to be 
leveraged for predistortion. 

As demonstrated through measurement results for a GaN Doherty RFPA, the resulting FIR-
EMP formulation can successfully predistort single-band signals of up to 80 MHz modulation 
bandwidth, even achieving better linearity than the memory polynomial model from which it 
was derived. However the cascade model is nonlinear with respect to the unknown coefficients 
and precludes the use of least squared methods. Nonlinear coefficient identification using the 
Quasi-newton approach was used to demonstrate the unhindered performance of the model. 

The proposed FIR-EMP formulation and nonlinear coefficient estimation were extended to 
dual-band transmission. To stymy the growth in coefficients that arise in dual-band scenarios, 
a coefficient pruning based on the assumption of fading memory assumption was used. The 
pruned 2D-FIR-EMP formulation retained competitive performance with other dual-band 
extensions of well-known predistortion schemes such as the memory polynomial and baseband 
equivalent Volterra.  
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5.2 Future Work 
It is evident that coefficient identification can be the limiting factor in realizing the benefits of 
the proposed analog predistortion formulation. As an alternative to nonlinear estimation, the 
use of alternating least squares should be investigated to improve the estimation accuracy. 
Also known as the co-ordinate block descent approach, this algorithm would assume initial 
coefficients for the FIR and EMP blocks, and update them in an alternating manner to reduce 
the combined mean-squared error of the model. To avoid the matrix inversions and 
manipulation of large data vectors associated with the pseudo-inverse based least squares, 
recursive least squares should be employed for the alternating estimation. Adopting a recursive 
approach would allow the use of a direct learning architecture, in which access to the input of 
the RFPA is no longer required. As acknowledged in Section 3.1, this is essential to realizing 
the power savings of the APD architecture.  

Ultimately, the performance of the proposed FIR-EMP scheme should be validated by 
implementing the EMP formulation in an analog circuit, where physical non-idealities such as 
circuit noise, finite dynamic range, device mismatch, and time-delay misalignment can limit 
the performance. Finally, given the success of FIR-EMP in single and dual-band, its 
performance should be investigated for tri-band scenarios, similar to what has been done for 
the memory polynomial, and the Volterra series. 
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