
Design and Validation of a Context-Aware

Publish-Subscribe Model

by

Akshat Kumar

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2015

© Akshat Kumar 2015

ii

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

A system is said to be context-aware if it can extract, interpret and use contextual information to adapt its

functionality and enhance its utility. Context awareness allows the application to gain sensitivity for many

environmental parameters that are beyond the reach of conventional systems. Human factors related to

context include information about the user (knowledge of habits, emotional state), the user’s social

environment (co-location of others, social interaction, group dynamics), and the user’s tasks (spontaneous

activity, engaged tasks, general goals). With access to this contextual information, there are many exciting

possibilities for applications involving direct human interaction.

 Software modelling is one of the first steps in the life cycle of a software system. Software models can

lead to the discovery of errors in a system, which is useful as the early discovery of such flaws can enable

the designers to update the inexpensive system model. By not using system models before the

development of the full scale system, we risk the discovery of major problems later on in the lifecycle,

which will be more expensive to fix.

 Validation of any software system is an essential part of the development lifecycle. The validation of

context-aware systems is especially challenging as the input range of the system is loosely defined. But

despite this it is very important to validate context-aware systems thoroughly because it is possible that a

subset of possible inputs to the system can be part of a failure-critical user interaction. Modeling and

validation are important activities in the development or enhancement of all software systems. While

software modelling helps check the properties of the systems before actual development, software

validation is essential for ensuring the quality of the software based on the original software requirements.

 This thesis focuses on the modeling and the validation of formal case study design models for context-

aware systems based on the event based and publish-subscribe pattern. The study validates formal case

study design models against relevant properties using a model checker.

iv

Acknowledgements

I would like to thank Professor Paulo Alencar, for his patience, understanding, kindness and guidance. I

learned a lot while working with him and I am proud to be his student. I thank Eduardo Barrenechea and

Rolando Blanco for their help at times of need. I am thankful to Professor Daniel Berry for serving as my

co-supervisor. I also thank Professor Donald Cowan and Professor Gladimir Baranoski for agreeing to

serve as members of my thesis committee.

Immense gratitude towards my family, my parents Meera and Ashok, and my brother Anugrah for their

unconditional love.

Finally, thanks to my friends Peng Peng and Gaurav Gupta for sharing their wisdom and inspiring

optimism.

v

Dedication

Dedicated to my grandfather Shri Krishna Chandra Vaishya

vi

Contents

Author's Declaration .. ii

Abstract ... iii

Acknowledgements .. iv

Dedication .. v

List of Tables .. ix

List of Figures .. x

1. Introduction ... 1

1.1 Background ... 2

1.2 Related areas ... 3

1.2.1 Context-aware systems .. 3

1.2.2 Distributed event-based systems .. 3

1.2.3 Mobile systems .. 4

1.3 Problem statement ... 4

1.3.1 Lack of models for context-aware publish-subscribe (CAPS) systems 4

1.3.2 Need of rigorous representations for CAPS systems ... 5

1.3.3 Lack of validation approaches for CAPS systems ... 5

1.4 Proposed approach .. 6

1.4.1 Designing CAPS models .. 7

1.4.2 Formal specification of the CAPS models ... 7

1.4.3 Validation of CAPS case study design models .. 7

1.4.4 Evaluation .. 8

1.5 Contributions... 8

1.6 Outline of dissertation ... 9

vii

2. Related work.. 10

2.1 Context-aware systems ... 10

2.2 Publish-subscribe event based systems ... 13

2.3 Mobile systems ... 14

2.4 Formal validation .. 15

3. Proposed approach ... 17

3.1 Modeling ... 17

3.1.1 Informal models ... 17

3.1.2 Formal models ... 29

3.2 Validation .. 34

3.2.1 Structural properties ... 35

3.2.2 Behavioral properties ... 35

3.2.3 XMC syntax ... 36

4. Case studies.. 38

4.1 Cellphone behavior adaptation.. 39

4.1.1 Informal model ... 39

4.1.2 Formal model and validation ... 41

4.2 Cellphone as controller ... 44

4.2.1 Informal model ... 44

4.2.2 Formal model and validation ... 47

5. Conclusion and future work .. 51

5.1 Additional case studies ... 51

5.2 Enriching the filter definition language .. 51

5.3 Enhancement of legacy systems ... 52

5.4 Development of a reusable framework ... 52

viii

Appendix A General design model XSB source code .. 53

A.1 creation_script_db .. 53

A.2 nested_list_approach .. 61

A.3 context_filter .. 64

A.4 xmc_utils .. 67

Appendix B Case study XSB source code ... 70

B.1 cellphone_behavior_adaptation_case_study_specific_behavior .. 70

B.2 cellphone_as_controller_specific_behaviour ... 71

Appendix C Case study XMC source code ... 76

C.1 Cellphone behavior adaptation ... 76

C.2 Cellphone as controller ... 86

Bibliography .. 97

ix

List of Tables

Sample predicates for file creation_script_db ... 31

Sample predicates for file nested_list_approach ... 32

Sample predicates for file context_filter ... 32

Sample predicates for file xmc_utils ... 33

Sample properties for case study cellphone behaviour adaptation ... 42

Cellphone behaviour adaptation other properties ... 43

Sample properties for case study cellphone as controller ... 49

Cellphone as controller other properties ... 50

x

List of Figures

Proposed Approach ... 6

Design environment and component... 19

Design event schema and events ... 20

Design context elements and context set .. 22

Design advertisements and subscriptions ... 24

Content filter design .. 26

Context filter design .. 27

Content & context filter terms .. 28

Approach for case study validation ... 38

Cellphone behaviour adaptation - Components .. 39

Cellphone behaviour adaptation - Events ... 40

Cellphone as a controller - Components ... 45

Cellphone as a controller - Events .. 47

file:///E:/Thesis/Reviewed/MMathThesis-AkshatKumar-revised_5.docx%23_Toc438213009

1

Chapter 1

1. Introduction

With the advent of mobile devices and the internet, it has become possible and in many cases necessary to

adapt services to the context or particular situation of the user. Although the literature on context-aware

systems presents a variety of definitions for context, a well-accepted definition proposed by Dey [1],

Abowd et al. [2] and Hong et al. [3] asserts that context is simply the situation of an entity. For example,

human factors related to context include information on the user (e.g. knowledge of habits, emotional

state), the user’s social environment (e.g. co-location of others, social interaction, group dynamics) and

the user’s tasks (e.g. spontaneous activity, engaged tasks, general goals) [4].

 Systems that can extract contextual information, interpret it and use it to adapt the system’s

functionality and enhance system utility are labelled as context-aware systems [5, 6]. One of the first

examples of context-aware system was presented by Schilit and Theimer [7]. In their research, the authors

described a system in which users interact with many different mobile and stationary computing

platforms, and argued that such a system can adapt according to environmental factors such as the

location of use, the collection of nearby objects, as well as the changes to those objects over time.

Previous research has demonstrated that context awareness allows systems to be sensitive to factors that

were beyond the reach of conventional systems. As reported by Hong et al. [3], context-awareness offers

unique advantages since it can reduce input costs, enhance the user experience and enable context

sharing.

 Much research in the related area of event-based systems has focused on Publish-Subscribe (PubSub)

systems Jacobsen et al. [8], describes the publish-subscribe approach as a messaging design pattern that is

commonly used for decoupling different components of a system in which the senders of messages, called

publishers, do not send messages directly to specific receivers, called subscribers. Birman and Joseph [9]

have shown that in PubSub, the publishers can generate events with little or no information about the

existence or number of subscribers that have some interest in the event, and the subscribers on the other

hand do not need to know about the publishers that exist in the system. Overall, in recent years research

into the use of the PubSub pattern in the area of context-aware systems has attracted attention [10].

2

 This thesis presents, a novel approach for modeling and validating software systems that support both

context-awareness and the publish-subscribe design pattern. By using formal validation techniques, the

study has been able provide formal proofs for relevant properties of the formal case study design models.

1.1 Background

Software modeling and validation are important activities for the development or enhancement of all

software systems. Software modelling also helps validate the properties of the systems before its actual

development. Software validation is the process that ensures that the model is free from failures and

complies with the requirements [11] .

 Software modelling involves the creation and analysis of the description of any aspect of a software

system. The software model can comprise postulates, data and interfaces presented as a mathematical

description of an entity. The use of the system models for validation can result in the early discovery of

bugs in the system [12, 13]. By not using system models before the development of the full scale system

we risk the discovery of bugs later on in the lifecycle, which can be much more expensive to fix [14].

 Proper software validation, is an essential part in the successful development of software systems.

Software validation is the process that ensures that the model is free from failures and complies with its

requirements [11], unlike software verification, which determines whether or not the products of a given

phase of a software development process fulfill the specifications established in the previous phase [11].

However this thesis focuses on the validation of the software model against the requirements. The

importance of validation is further enhanced in the case of failure-critical applications. Accidents caused

due to software faults in such areas can lead to irreversible loss or harm. Vieira et al. [15] argued that the

validation of context-aware systems is especially challenging as the input range of the system is loosely

defined. But despite these difficulties, it is argued that it is very important to validate context-aware

system models thoroughly because it is possible that a subset of all possible inputs to the system can

result in the failure of a critical operation. There is a growing need to automate the validations of all

software and, according to Costa et al. [16], the rate of technological advances makes automated

validation of system models more desirable.

3

1.2 Related areas

1.2.1 Context-aware systems

A system is said to be context-aware if it can extract, interpret and use contextual information to adapt its

functionality and enhance its utility [5, 6]. Context awareness can enable users of the system to handle

vast amount of information by understanding the user’s situation as it guides the user through otherwise

complicated processes and help users adapt to their environment effortlessly by helping systems to

segregate “what is important?” and “what is not important?” [17, 18].

 These systems need to process dynamic and ambiguous contextual information and manage large

datasets in real-time. For processing this information, they need to interpret and reason about contextual

information. In addition, any context-aware system must be able to understand the contextual information

and perform reasoning about the user’s situation and needs [4]. There are essentially three main strategies

for context reasoning namely, the ontological, rule-based and distributed approaches [19, 20, 21].

1.2.2 Distributed event-based systems

Several publications that appeared in recent years document the rise in the popularity of event-based

systems owing to immergence of the internet and mobile computing platforms. Event-based systems are

made up of components called publishers and subscribers that have no direct connection to each other. An

event-based system is different from other systems in that the components of an event-based system know

little or nothing about each other and, more specifically, these components don't communicate by direct

method invocation. This allows these systems to become more loosely coupled. Helmer et al. [22] report

that event based systems, which rely on asynchronous communication, are more scalable and more

reliable than other systems. In contrast to synchronous communication processes, asynchronous processes

do not have to stop working while waiting for data. Generally, this means that event sources push data

about event publishers to event subscribers.

 Barrenechea et al. [23] described three main characteristics of distributed event-based systems, namely

time decoupling, space decoupling and synchronization decoupling. Time decoupling enables publishers

and subscribers to publish and receive events at the different times. A publisher can publish an event even

if the subscriber is offline. Conversely, a subscriber may be notified of events even if the publisher is

offline. Space decoupling means the publisher and subscriber do not need to know of each other’s

existence. A publisher can send out events even when no subscribers are available to receive the event

and, conversely, a subscriber can exist in the system even when no publisher exists in the system.

4

Synchronization decoupling enables subscribers to be notified asynchronously by publishers through

event messages. This implies that a publisher does not need to wait for a subscriber to receive events.

1.2.3 Mobile systems

Advances in mobile computing and distributed systems have been the driving force behind the high

penetration rate of mobile computing devices into new geographical areas. Currently, mobile devices are

the prevalent personal computing devices used in all parts of the world, and mobile internet usage has

outpaced desktop/laptop usage worldwide [24]. However, the introduction of mobile systems is

presenting new challenges to system design. For example, software adaptability has become a major

concern since applications running over mobile platforms need to be more adaptable as the environmental

conditions of mobile devices change. In addition, environmental changes typically did not need to be

considered in the case of traditional fixed computing platforms.

 Previous research clearly indicates that context awareness can be especially useful for mobile

computing platforms, as it can help these platforms adapt to changes in their environments. For several

years researchers have devoted their efforts to translating lessons learned from research results on context

awareness into mobile systems. As a consequence, many mobile platforms provide sensors that can be

used by context-aware applications running on these platforms. According to Pascoe and Lyons [25, 26]

today the world is at the tipping point of widespread adoption of a new kind of platform based on

wearable computers. Though the idea has been around for some time now, it is only now that this class of

devices has been made available to consumers. Wearable computers are being recognized as the

technology that will drive the next big advances in the field.

1.3 Problem statement

This work is motivated by three major problems in the area of context-aware applications. These

problems are discussed in the following sub-sections.

1.3.1 Lack of models for context-aware publish-subscribe (CAPS) systems

In recent years, research into context-aware systems has become very popular, but studies in the topic are

still lacking. In my view, many of the previous studies in the field of context-aware systems and

ubiquitous computing have focused on improvement of applications and aspects involved in direct

interaction with the users. According to Baldauf [4], there has been limited effort dedicated to addressing

the problems related to the underlying framework abstractions and models such as the development and

use of standard communication protocols and the enforcement of standard privacy and security norms. To

5

the best of my knowledge, there is a lack of research on applying the principles of publish-subscribe

architectures to context-aware systems.

 Eugster et al. [27] report that large-scale systems can achieve component decoupling by using

variations of a publish-subscribe architecture. Jacobsen et al. [8] has shown that aspects of publish-

subscribe patterns can be effectively used to enhance many features of context-aware systems. There is

also a lack of research on the development of design practices that can lead to better compatibility

between components developed by different vendors. This is a major drawback for the area as the full

utility of context-aware systems will only be delivered to the users when devices can exchange

information seamlessly without compatibility issues.

1.3.2 Need of rigorous representations for CAPS systems

Thus, more research efforts are needed to understand better the design abstractions and models of CAPS

systems. The provision of CAPS models can help us to understand better, the basic components,

relationships and interactions underlying such systems. In essence, I believe that there is a need for formal

specification techniques for CAPS systems.

 Hierons et al. and Gaudel [12, 13] state that formal specifications are mathematically-based techniques

whose purpose is to help with the implementation of systems and software. They are used to describe a

system, to analyze its behavior, and to aid in its design by validating key properties of interest through

rigorous and effective reasoning tools [12]. Formal specifications are a great way to reduce the ambiguity

about the behaviour of a system, and formal specification techniques can assist in the modelling, design

and implementation of reliable software system [28].

 It is difficult to judge a design on its own. It can only ever be considered suitable with respect to some

desired behaviour. Using formal specification can minimize the ambiguity regarding the desired

behaviour of a system. The process of defining a formal specification itself ensures to a large extent that,

all aspects of the system behaviour have been considered deeply, this can assist in the discovery of any

ambiguities or gaps in system behaviour. Unlike informal specifications, formal specification can be

validated using formal validation techniques. According to my review, there has been no previous work in

the area that used formal specifications for the validation of models for CAPS systems.

1.3.3 Lack of validation approaches for CAPS systems

A key deficiency in most of the frameworks proposed in the literature in the area of context-aware

systems is that none of them provide formal proofs for relevant structural and behavioral properties.

Formal validation refers to proving or disproving the correctness of intended algorithms underlying a

6

system with respect to a certain formal specification or property [29]. With formal specifications, it is

possible to use automated formal validation techniques to demonstrate that a system model is correct with

respect to its requirements. This allows incorrect system designs to be revised before any major

investments have been made in developing an actual system [14]. Formal validation has been widely used

in the development of safety-critical systems in many areas, e.g., banking, healthcare and law-

enforcement. The motivation behind the use of formal validation in these areas is to improve the

robustness of the system and to predict the behaviour of the system in all possible conditions.

 Elements from context-aware systems are slowly being adopted in many areas that involve direct

interaction with the user. The motivation behind this adoption is reducing the cost of user input,

enhancing user experience and taking advantage of collective context. However, these systems need to

behave as expected, especially those that run on safety-critical environments. In many cases there are

properties that must be satisfied, and the assurances provided by formal validation techniques can ensure

that this is the case.

1.4 Proposed approach

This thesis introduces a new approach for modeling and formal validation for a CAPS system. Figure 1

presents the procedure followed in the course of the study.

Figure 1 Proposed Approach

7

The approach consists of four steps:

1. The first step of the study is to construct an informal general design model based on the CAPS

requirements, and then to produce informal case study design models based on the case study

requirements.

2. Based on the informal design models, the formal general design model is developed, followed by

the formal case study design models, which are extensions of the formal general design model.

3. Based on the case study requirements, relevant structural and behavioral properties are identified.

4. Finally, using a model checker, the formal case study design models are validated against the

selected properties.

1.4.1 Designing CAPS models

The study started by designing an informal general design model using Unified Modelling Language

(UML). The informal design model defines the different components included in the general design

model and outlined the capabilities of each of these participant components. The informal design model

also provides the relationships and interactions between the components of the model. Section 3.1.1.1 will

present the informal general design model in more detail. More details regarding the informal case study

design models are presented in Chapter 4.

1.4.2 Formal specification of the CAPS models

Based on the approach presented in Figure 1 the approach uses the informal general design model for

developing its formal specification. The formal case study design models were developed by extending

the formal general design model. This thesis explores a new approach for the automated formal validation

of the formal case study design models. This is a novel approach, as this is the first study to examine the

use of formal validation of CAPS models based on the modular notion of environments and on three

levels of filtering (i.e., type, content and context filtering). Further details about the formal general design

model are presented in Section 3.1.2.1 and the details about the formal case-studies design models are

presented in Chapter 4. The source code for the formal general design model can be found in Appendix A

and the source code for formal case study design models is provided in Appendix B.

1.4.3 Validation of CAPS case study design models

In order to validate the formal case study design models, this study validated the models with respect to

specific properties based on the case study requirements. These properties were subdivided into structural

and behavioral properties. Structural properties define the relationships between the components, and

8

behavioral properties describe the range of valid operations that can be performed by a component. The

properties were validated for each case study individually using a model checker. The properties that were

validated using the simulations were defined using a platform specific language called XL.

 The syntax of the process and property definition language used by the model checker is presented in

Section 3.2.3. Further details regarding the properties validated against the formal case study design

models are presented in Sections 4.1.2 and 4.2.2. The source code of the properties using the property and

process definition language is presented in Appendix C.

1.4.4 Evaluation

To evaluate the approach, the study uses the formal specification of the model and conducted two case

studies based on it.

 The formal design models are based on Prolog and process calculus expressions. The validation uses a

model checker provided by XMC. Prolog definitions are used to define structural relationships, and the

process calculus expressions are used to encode application behavior.

 The case studies involved modeling of real-world scenarios. Each case study extends the model and

provides basis for the validation of the model based on the properties. The properties are defined based on

the requirements of the case study.

 The first case study involves two components, a cellphone and a calendar application. This case study

considers the behavioral adaptation of the cellphone triggered by events from the calendar application.

 The second case study involves the eight components listed in Section 4.2.1.1. This case study

investigates the behavioral adaptation in the other components in the environment triggered by events

from the cellphone.

1.5 Contributions

This thesis introduces an innovative approach for modeling and formal validation for CAPS systems. By

using formal validation techniques, the study has been able to provide automated formal proofs of

relevant properties of the formal case study design model based on its requirements. The contributions of

the thesis include:

 Providing an informal general design model for CAPS systems;

 Developing the formal specification of the general CAPS design models;

 Developing case studies by extending the informal and formal general design model; and

9

 Conducting the formal validation of case study design models based on structural and behavioral

properties.

1.6 Outline of dissertation

The remainder of the thesis is organized as follows. Chapter 2 outlines existing research work related to

the thesis. Chapter 3 explains the proposed approach, and describes the different entities and relationships

present in the general design model, the informal general design model and the kinds of properties that

will be used using formal validation. Chapter 3 also outlines the implementation of the general design

model using a formal specification language and gives a brief description of how the properties are

implemented, then it presents the syntax of the process and the property description languages used for

the validation. Chapter 4 provides the outline of the case study, and presents an example driven

description about their formal specification and their properties. Chapter 5 completes the thesis by

providing conclusions and possible areas for future investigation.

10

Chapter 2

2. Related work

This work is based on a substantial body of previous work performed by the research community in

related areas. This chapter will mention previous work that helped us in the definition of this study. The

rest of the chapter will be divided into sections focusing on work from individual areas.

2.1 Context-aware systems

The area of context-aware systems is highly researched and there has also been significant development

in other areas that share many of the concerns that were originally introduced by consideration of context-

aware systems area. This section will present relevant work from research into context-aware systems.

 Context-aware systems can be designed and implemented in many ways. Each approach depends on

special requirements and conditions such as the location of sensors (local or remote), the number of

possible users, the type of resources (high-end-PCs or small mobile devices) or the flexibility of the

system. Furthermore, the method of acquisition of contextual information is very important when

designing context-aware systems because it can predefine the architectural style of the system.

 A context-aware system can use three types of sensors: physical sensors, virtual sensors and logical

sensors [30] for the acquisition of contextual information. Physical sensors are hardware sensors capable

of capturing physical data like light, audio, motion or location. Location has received a large amount of

research, but other types of context have also recently been explored. Virtual sensors capture contextual

information from software application, the operating system or network. Detection of a new appointment

on a calendar application is an example of a virtual sensor. Some systems have used virtual sensors to

infer some properties of the physical sensors. For example Wi-Fi networks are widely used today to infer

location [31]. Virtual sensors have not received as much research attention as physical sensors although

they seem promising. The third type of sensor that appears in the literature talks about is a Logical sensor.

These sensors combine information to derive a higher-level of context. There has not been much research

on logical sensors.

 Chen, Finin & Joshi [32] present three approaches for the acquisition of contextual information. The

Direct sensor access approach, which is applicable to devices or platforms that have sensors built-in.

11

Drivers for the sensors are usually hardwired into the application, so they are tightly coupled. Hence the

approach is not suitable for distributed systems because of their inability to support components that are

capable of managing multiple concurrent sensors. A Middleware infrastructure approach introduces a

layered architecture to context-aware systems with the intention of hiding low-level sensor details. In

comparison to direct access, this assists in extensibility since the client code does not need to be modified

and it also simplifies reusability of hardware dependent sensing code because of the strict encapsulation.

A Context server distributed approach extends the middleware based architecture by moving contextual

data to a context server to facilitate concurrent multiple access. This approach also removes

computational requirements from the clients as most of the computation intensive operations are

performed by the context server.

 Winograd [33] proposed a similar classification of three approaches for context management. First

Widgets are software components that provide a public interface for hardware sensors. This approach is

tightly coupled, it increases efficiency but is not robust in relation to component failures. Second,

Networked services, which resembles the context server architecture proposed in [32], except that a global

widget manager is used to find networked services. Third, Blackboard model, that represents a data-

centric view like publish-subscribe. In this approach the processes post messages to a shared media, the

called blackboard, and subscribe to it to be notified when some specified event occurs.

 Contextual information needs to be encapsulated as context models. A context model stores context

data in a machine consumable form. Strang and Linnhoff-Popien [34] classified most popular context

modelling approaches. Key-Value models represent the simplest data structure for context modelling.

Markup scheme models use a hierarchical data structure consisting of markup tags with attributes.

Graphical models use modelling standards like UML by Sheng and Benatallah [35] and an extension of

ORM by Hendricksen et al. [36] for representing context models. Object oriented models encapsulate the

details of context processing and representation. A popular example of this approach is Hydrogen

presented by Hofer et al. [37]. Logic based models, as proposed by McCarthy and Buvac [38]. The logic

approach uses facts, expressions and rules to define a formal context model. Ontology based models are a

very promising instrument for modelling contextual information because of their formal expressiveness

and their potential to aid in the reasoning about contextual information.

 Context-aware systems dealing with location information are widespread and the demand for them is

growing because of the increasing spread of mobile devices. Example of previous work in this area can be

found in Priyantha et al. [39], Espinoza et al. [40], Burrell and Gay [41] and Kerer et al. [42]. These

papers present different techniques for sensing the location of the user including GPS satellites, mobile

phone towers, badge proximity detectors, cameras, magnetic card readers and barcode readers. These

12

systems use only one aspect of context, namely location information. The use of different types of context

atoms such as noise, light and location allows the combination to form high-level context objects, which

are necessary to build more adaptive, useful and user-friendly systems. Muñoz et al. [43] demonstrated

this adaptation by extending an instant messaging system with context-awareness to support information

management within a hospital setting.

 Context-aware systems are designed for dealing with special types of context. They are well-suited for

specific conditions. The goal of most frameworks proposed for context-aware systems is to simplify the

development by providing an abstract framework. The architecture Context Managing Framework

presented by Korpipää et al. [44] is derived from a classical hierarchical infrastructure with some

centralized components. It is useful to overcome memory and processor constraints of small mobile

devices but provides one single point of failure and thereby lacks robustness. The Service Oriented

Context-Aware Middleware (SOCAM) project introduced by Gu et al. [45] uses a central server as well,

called a context interpreter. Context Awareness Sub-Structure (CASS) presented in Fahy and Clarke [46]

is based on an extensible centralised middleware approach. Context Broker Architecture (CoBrA) Chen et

al. [32, 47], it is an agent based architecture for supporting context-aware computing. A central

component of CoBrA is an intelligent context broker that maintains and manages a shared contextual

model on behalf of a community of agents. Another framework based on a layered architecture is built in

the Hydrogen project Hofer et al. [37]. The Hydrogen project distinguishes between a remote and a local

context. The remote context represents information that is known to another device, while the local

context represents the knowledge our own device is aware of. The Sentient Object Model proposed by

Biegel and Cahill [48] is an example of a context-aware middleware approach. A sentient object is an

encapsulated entity consisting of three main parts: Sensory capture, Context hierarchy and Inference

engine. The Gaia project presented by Roman et al. [49] is another middleware infrastructure. It aims at

supporting the development and execution of portable applications for interactive physical systems (active

spaces).

 Sehic, Nastic & Vögler [50] propose a programing model for context-aware applications called Entity-

Adaptation. Their motivation for this work is to improve the modularity of the source code and make

more of the components in a context-aware application reusable. The researchers plan to achieve this by

decoupling the code of the context-aware application with the boilerplate code used for interacting with

the physical environment. The researchers also introduce a framework that provides the stakeholders with

support for the development and execution of context-aware applications developed using the entity-

adaptation programing model called the CAPA framework. The researchers [50] use one case study for

the demonstration and evaluation of the Entity-Adaptation programing model and the CAPA framework.

13

The case study considered the design, development and deployment an application for a building

management system. The previous system in place was in form of two separate systems that were later

combined into a single system.

2.2 Publish-subscribe event based systems

Event-based systems have emerged as a key technology for achieving scalable information dissemination.

In particular, they have been used as communication backbone within publish/subscribe (PubSub)

communication systems. Their aim is to reduce the network and computational overhead for event

diffusion to a set of interested recipients.

 There are a number of PubSub architectures with different fundamental characteristics. One possible

decomposition as proposed classifies the systems into the general categories of subject-based or content-

based systems [51]. In subject-based systems, a message belongs to one of a fixed set of groups, channels,

or topics. Subscription targets a group, channel, or topic, and the user receives all events that are

associated with that group. For example, in a subject-based system for stock trading, a participant could

select one or two stocks then subscribe based on stock name if that were one of valid groups. In contrast

content-based systems are not constrained to the notion that a message must belong to a particular group.

Instead, the decision on where to direct a message is made on a message-by-message basis based on a

query or predicate issued by a subscriber. Liu and Palae [51] also present other classifications for PubSub

systems are presented based on System Architecture, Matching Algorithm, Event distribution scheme,

Reliability and Security.

 Guruduth et al. [52] presented a PubSub system called Gryphon, targeted towards the distribution of

large volumes of data to thousands of clients. It is a content-based publish subscribe system with a client-

server architecture. Events are matched to subscribers using a matching tree that is constructed in the

preprocessing phase before the system is operational.

 Rowstron et al. [53] presented Scribe, a subject-based PubSub system. It is built on Pastry [54], a

generic peer-to-peer object location and routing substrate as layer on the Internet. For Scribe, each node

can act as a publisher, a root of a multicast tree, and a subscriber to a topic, a node within a tree, or any

reasonable combination of the roles. Scribe’s matching algorithm is based on numeric keys and node IDs,

each node in the network has a unique numeric identifier (node ID) and the numeric key is a number

which can be used to identify the topic.

14

 Zhuang et al. [55] presented Bayeux, a multicast event distribution system that scales to arbitrarily

large receiver groups while tolerating failures in routers and network links. It is based on Tapestry [56]

that provides a decentralized peer-to-peer architecture. Each Tapestry node can assume the roles of server,

router, and client. Bayeux allows messages to locate objects and route them across an arbitrarily-sized

network. For Bayeux a multicast system needs only to duplicate a packet when the receiver node

identifiers become divergent.

 Siena proposed by Carzaniga [57] is a content-based scalable event-notification. Its architecture is

client-server based which allows two types of clients, publishers and subscribers, exchange messages

through a Siena server. Matching in Siena is accomplished at the server with a Binary Decision Diagram

[58]. Geoffrey and Pallickara [59] presented NaradaBrokering, it can be categorized as a content-based

publish subscribe system with a hierarchical topology of servers for event dissemination within a cell and

peer to peer traffic between cells. Slominski, Aleksander, et al. [60] presented XMessages, which is a

hybrid subject-based and content-based PubSub system using a client server graph architecture. The

filtering is based on the content of messages.

 Padres presented by Fidler et al. [8] is a popular a content-based PubSub system which uses distributed

middleware. Padres has been designed to support several novel concepts in PubSub that are necessary in

the workflow management. Matching in padres is performed using a powerful rule engine to enable

composite subscriptions.

2.3 Mobile systems

Mobile systems have limited resources, such as battery life, network bandwidth, storage capacity, and

processor performance. These restrictions may be alleviated by computation off-loading: sending heavy

computation to resourceful servers and receiving the results from these servers [61].

 High performance for multimedia tasks is required while preserving battery life. Energy conservation

in computing platforms was non-existent prior to the development of the mobile computing platforms, as

a result this problem has received a significant amount of research. There have been attempts to reduce

the energy consumption of all aspects of mobile computing platforms. Simultaneously there have been a

lot of improvements in the capabilities of the batteries that are used to power the mobile devices. Barr

[62] presented approach to reduce the number of bits transmitted by developing a special compression

technique that consumes less energy. Krashinsky and Balakrishnan [63] present a new protocol as an

enhancement to the popular power saving variant of IEEE 802.11, their motivation is the removal of the

mandatory performance degradation that is a related effect of the power saving mode.

15

 Smit et al. [64] presented Chameleon, an approach in which reconfiguration is applied dynamically at

various levels of a mobile system. Their major motivation was to have an energy-efficient system while

achieving an adequate Quality of Service for applications. In Chameleon, the granularity of

reconfiguration is chosen in accordance with the computation model of the task to be performed [65]. The

philosophy used is that operations on data should be at the place where it is most energy efficient and

minimises the required communication. Partitioning is an important architectural decision, which dictates

where applications can run, where data can be stored, and the complexity of the mobile system and the

cost of communication services. Their approach is based on a dynamic matching of the architecture and

the application.

 Energy has become an important quality metric for mobile apps. Recent studies by Gui et al. [66] have

shown that energy related complaints can represent a significant source of user unhappiness with mobile

applications. Hao et al. [67] propose a new approach, eCalc, which can help the developer by providing

code-level estimates of energy consumption. eCalc achieves this using estimation techniques based on

program analysis of the mobile application.

 Li et al. [68] propose an approach for reducing display energy by automatically changing the color

schemes used by a web app so that the pages consume less energy when displayed on OLED displays

used by energy constrained devices. The first step is a static analysis that examines the server-side code of

the web app and builds a model representing the potential HTML content that it could generate. In the

second step, the approach parses this model to identify the visual relationships between tags. In the third

step of the approach is to determine the colors of the text and background of the different HTML

elements.

2.4 Formal validation

Formal validation of hardware and software systems has gained popularity in industry since the advent of

the famous “Pentium bug” in 1994, which caused Intel to recall faulty chips and take a loss of $475

million [69]. The model checking problem involves the construction of an abstract model of a system or

subsystem, followed by the construction of a specification formula and finally establishing if the model

semantically implements the specification.

 Model checking is a technique to validate a system description against a specification [70]. Given a

system description and a logical specification, the model checking algorithm either proves that the system

description satisfies the specification, or reports a counterexample that violates the specification. The

input to a software model checker is the program source or system description, and a temporal safety

16

property. The specification is usually given by program instrumentation that defines a monitor automaton,

which models if a program execution violates the desired property.

 Holzmann & Joshi [71] present a software verification approach. This novel approach allows the

application code to be verified directly by the model checker. This means that developers do not need to

implement a model in the application in the language of the model checker. However, the approach does

require the developers to write a ‘test-harness’ in the language of the model checker. The model checker

being used for the approach of Holzmann & Joshi is the SPIN model checker.

 Jhala et al. [70] present a model checker for software validation called BLAST, for programs written in

the C programming language. Blast constructs, explores, and refines abstractions of the program state

space based on lazy predicate abstraction and interpolation-based predicate discovery.

 XSB [72] & XMC [73] have previously been used for rigorous analysis of software design patterns

[74]. The author tries to address the problems in ensuring the integrity and reliability of these composed

systems because of their complex software topologies, interactions, and transactions. The author is

concerned about the consequences of the complex interactions between different patterns that might be

used in a large software system. The author focuses on object-oriented patterns, and argues that since

most existing techniques for modeling software design components such as UML are based on informal

design notations they lack the support to analyze the pattern interactions formally.

17

Chapter 3

3. Proposed approach

This thesis introduces an innovative approach for modeling and formal validation for CAPS systems.

Recently some work has been done in applying publish subscribe design to context-aware systems.

Blanco [10] proposed an adaptable component model for context-aware systems based on a publish-

subscribe design and distributed event-based systems. However, the study does not consider neither

formal models nor the properties these models should satisfy. In contrast, this thesis presents an original

approach based on formal validation techniques.

 The CAPS models are specified in XSB Prolog and a variant of process calculus supported by the

XMC model checker process language. The validation of the formal CAPS models relies on structural and

behavioral properties that the formal models should satisfy. These properties are implemented in the XL

scripting language [75] and the validation is automated by using the XMC model checker [73]. The

approach is evaluated through two case studies.

3.1 Modeling

As per the study approach represented in Figure 1, we will be using both informal and formal models in

this study.

3.1.1 Informal models

The informal models are based on the requirements of the general model and the requirements of the case

study respectively.

3.1.1.1 General informal design model

The general design model comprises basic elements that communicate with each other by using events. In

this model the basic logical elements are environment and component. An environment can be said to be

a special kind of component. Hence, it is correct to say that components are the root elements of the

general design model.

18

 The general design model needs to identify relationships between the elements. The relationships

define the capabilities of elements. The relationships are also used to determine the complex relative-roles

that can exist because of multiple interconnected components. Relations are also needed to associate a

component to its context.

 The intent of a component to publish or share a particular kind of information with other components

needs to be identified by the general design model. In this case the component produces information in

the form of events [76]. The general design model be able to determine whether a component is interested

in receiving a particular kind of information. In this case the component is said to be a consumer of

information in the form of events.

 The ability of the general design model to isolate the context of each component and to combine the

context of multiple components, are very important for context-aware systems. For example, in the case

of an environment containing two components, the context of the environment is the combination of the

contextual information of the individual components and the context of the environment itself.

 Finally, the general design model needed to support different types of events. This is achieved by using

event types for defining events prior to the transmission of the event, as events are thought as instances of

event schemas. An event is said to be of a certain type if the key-value contained in event is an exact

match for the event schema defined for the type.

Environments and components

The most basic element of the general design model is the component. A component is used to group

relevant contextual information. A component can be a producer of information in which case it has the

role of event-publisher. A component can also be a consumer of information, in which case it is said to

have the role of event-subscriber. A component can have multiple roles at the same time, thus enabling a

component to have a rich behavior.

 Another element is the environment, which is a special kind of component. An environment has some

extra features. The first feature is that an environment can contain other components and environments,

thus enabling the formation of complex hierarchies of components and environments leading to rich

context based interactions. Using this capability, environments can used to define regions by grouping

components based on location, utility or other properties. The second distinguishing feature of

environments is that environments can filter propagation of events to its subordinate components by using

context filters. In Figure 2 show the relation between a component and an environment using a UML class

diagram.

19

Figure 2 Design environment and component

Event schemas and events

Events are the only medium of communication used by the general design model. Events are used for

both carrying data and signaling. In case of data transfer, the data itself is broken into chunks and then the

data piggybacks on an event as its payload. When each event reaches its destination the receiver can

reassemble the parts into the whole message. In the case of signaling the payload information is generally

much smaller than in the case of data transfer. This means that in most cases the entire message can be

conveyed to the receiver through a single event. Figure 3 highlights the differences between an event

schema and an event.

20

Figure 3 Design event schema and events

 Each event is associated with a single event-type. An event-type is defined by a single event-schema

[77]. Every event-schema contains a name for the event-type and one or more key-value pairs as

attributes. The event name is the unique identifier used to identify an event-type. It should be a string that

can contain lowercase alphabets and digits, but the name cannot have a digit as its first character.

 Each event attribute is a key-value pair, where the key is the identifier for the corresponding value with

the event instance as the scope. In the case of an event-schema, all the values represent their types. The

event schema can use exactly one of the three permissible types which are integer, float and string.

Context elements and context sets

Previous work in the area has shown that the definition of context is highly dynamic [78, 79]. One of the

few facts regarding context that is widely accepted by the community is that context of an entity can be

formulated from the contexts of its subordinate components. By using this idea, context can be thought of

as divided into hierarchical levels, where each successive level contains information that is based on

lower levels of contextual information. For instance let’s consider a four way traffic intersection that has

multiple cars on each side of the road. Each car in itself has its own context that is fully sufficient for all

the systems that are dependent on it. The context of an individual car can contain information like the

21

amount of remaining fuel, the identity of the driver, identity of the passengers, the destination address, the

source address, historical data about the car, etc. The overarching context of the intersection contains

information that is derived from the context of individual cars, and some additional information available

only to the intersection. It can contain information like the number of cars waiting at the intersection, the

side of the intersection that has the highest amount of traffic. In this case, the context of the intersection

can be said to be at a higher level than that of the individual cars. Figure 4 represents the relation between

environments, context sets and context variables.

 Certain contextual elements can be derived indirectly by reasoning based on events from different

sources that are otherwise unrelated by using logical sensors [30]. For example, it might be safe to infer

that the user is in a meeting if based on the location event from the users phone and a calendar schedule

event from the users planner. If the event from the planner signals that a meeting has started and the

location event signals that the user’s current location is in the office, it is safe to say that the user is

present in the meeting. However, the user’s phone and the calendar would on their own be unable to make

such an inference as the information is not available to any single one of the components, but only to an

overarching environment.

 Context-elements can be grouped together to define Context-sets. A context-set can contain zero or

more key-value pairs from different context-elements. The context-set of a component is the collection of

all context-elements that are comprise its context. Referring back to the traffic intersection example, the

context-set of the traffic intersection will contain all the context-elements from the individual context-sets

of all the cars on the traffic intersection. The context-set of an environment is the super-set of all the

context-sets of its subordinate components and environments.

22

Figure 4 Design context elements and context set

Advertisements and subscriptions

As in the case object oriented languages, where objects are instances of classes, in this model events are

instances of event-schemas. This means that when an event is said to be of a certain type, then it is

guaranteed to contain all the information mentioned by the event-schema and in the correct format. These

guarantees are important as it means that the component receiving the event will never receive a

malformed event that has no utility for the component. Figure 5 highlights the differences in the

composition of advertisements and subscriptions with respect to filters.

23

 Components can express their interest in receiving the events of a specific event-schema by means of

event subscription. An event subscription is a contract between a component and an environment that

contains the component. It requires the environment to forward events of a specific type to the

component, subject to some conditions. Apart from uniquely identifying the component and the

environment, the subscription is bound to a single event-schema. This means that the environment is not

allowed to forward events of a different type to the component. If for example a component has a single

subscription for the event type ‘x’, then it can only receive the events of that of type ‘x’ and no other type.

Event subscription can also contain an expression for context filter and a separate expression for content

filter associated with the subscription. The filter expressions can be empty, in which case the respective

filter acts like an all-pass filter.

The subscription context filter is computed by the environment and uses the context-set of the

environment rather than the context-set of the component. This means that the context variables that are

not accessible by the component can be used for the context filter. This is useful for enabling the context

filter to exploit a wider set of environmental conditions. For example, if the climate control is interested

in the temperature event, but only when the user is in the vicinity of the room, conventionally such a

feature will need the modification of the climate control to have a built-in proximity sensor however, by

using the general design model, such features can be easily implemented without the modification of the

component’s individual capabilities and by utilizing the already available information, the climate control

can subscribe to the temperature event and use a context filter that uses the location event from the user’s

mobile phone for achieving the feature. Figure 7 depicts the details about the composition of the context

filter. Figure 8 highlights the differences in the terms used to specify content and context filters.

24

Figure 5 Design advertisements and subscriptions

 The subscription content filter is computed by the component itself based on the contents of the event.

These filters are useful when the component needs to narrow down its interest in an event based on the

contents of the event. For example in the climate control example, if the climate control is interested in

the temperature event only when the temperature is beyond a certain threshold limit, then it can use the

content filter that subjects the contents of the event to the condition that verifies that the temperature is

beyond the threshold. Figure 6 presents the details regarding the composition of the content filter. Figure

8 highlights the differences in the terms used to specify content and context filters.

 Components can communicate their ability and desire to publish certain kinds of information by using

advertisements. An advertisement is a contract between a component and an environment that contains

the component. It requires the environment to forward events of a certain type published by the

component. Each advertisement uniquely identifies the participating component, environment and also

the type of the event to be published, i.e. the component is not allowed to publish types of events other

than those mentioned in the advertisement. For example, a component has a single advertisement for

publishing the events of type ‘x’, then it is only allowed to publish events of type ‘x’ and no other. The

advertisement can also provide a filter expression for the context filter associated with the advertisement.

The context filter expression can be empty, in which case the filter acts like an all-pass filter.

 The advertisement context filter is computed by the environment and uses the context-set of the

environment rather than the context-set of the component. This means that the context variables that are

not accessible by the component can be used for the context filter. This is useful to enable the context

filter to be dependent on rich environmental conditions. For example, if an office intercom system is

25

interested in connecting the call only when the user is not in a meeting, conventionally such a feature will

need the modification of the intercom system to incorporate the information about the user’s schedule

however, by using the general design model, such features can be easily implemented without the

modification of the component’s individual capabilities and by utilizing the already available information.

The intercom system can advertise the call event with the appropriate context filter expression that uses

the schedule events from the user’s calendar. If an event does not pass the advertisement context filter, it

is not propagated further. This means that the event publisher has control of the events and can decide the

conditions in which the events published by it are relevant. Figure 7 depicts the details about the

composition of the context filter.

26

Figure 6 Content filter design

27

Figure 7 Context filter design

28

Figure 8 Content & context filter terms

3.1.1.2 Case study informal design models

As shown in Figure 1, the informal case study design models need to be based on specific case study

requirements. The informal case study design models are extensions of the informal general design

model. More details regarding the informal models of the case studies are presented in Chapter 4.

29

3.1.2 Formal models

The formal general design model and the case study design models are based on the informal general

design model and the informal case study design models respectively. In addition, according to Figure 1,

the formal case study design models are extensions of the formal general design model.

3.1.2.1 General formal design model

This section will present the formal general design model. These specifications are represented in XSB-

Prolog [80].

 Brief discussions about XSB Prolog have been presented in the previous chapters. The language

manual defines XSB as a research oriented Logic Programming System. The most prominent way XSB-

prolog is different from other popular implementations of Prolog like SWI-Prolog, GNU-Prolog is that

XSB uses tabled resolution.

 Tabled resolution is useful for recursive query computation, allowing programs to terminate correctly

in many cases where other versions of Prolog could not. This makes XSB very useful for applications that

require parsing, program analysis, model-checking, data mining, diagnosis and temporal reasoning.

The formal specification of the model has been divided into six files with names listed below,

1) creation_script_db.P

2) nested_list_approach.P

3) context_filter.P

4) xmc_utils.P

 The source code for the above files is provided in Appendix A. Apart for the source code the only thing

needed to reproduce the study are the XSB-prolog and XMC platforms. Files (5) and (6) are specific to

the case studies that were used to validate the properties of the general design model based on real-world

scenarios. The description about the contents of each file is presented below.

30

3.1.2.1.1 creation_script_db

The file provides the definitions for the predicates that can be used to create a hierarchy of components

and environments, and it also provides an API that can be used to define different elements and relations

involved in the case study.

 The implementation for the basic protocols for event dissemination through the hierarchy of the

components are also defined in the file. The predicates that are a part of the event distribution protocols

use more specialized predicates provided by nested_list_approach file.

 Table 1 provides some of the file’s predicates, for aiding better understanding about it’s contents. For

more details about the file, please refer to Appendix A.1, which contains the complete implementation of

the file in XSB-prolog.

Predicate Signature Description

create_environment This predicate is used to create a new environment. The

predicate is a part of the interface that this file defines for the

definition of the environment-component hierarchy. After the

successful execution of this predicate the environment thus

created can be used in the creation of other elements or

relationships.

create_subscription

This predicate is used to create a new relation between the

elements that have been previously defined. This predicate is a

part of the set of predicates that define the interface for the

creation of components and components. After the successful

execution of the predicate a subscription relation is defined

between the event schema and the component.

simulate_event_component

This predicate is used when there is a need to trigger an event in

the component, the predicate will start the dissemination of the

event through the hierarchy of components that have be

previously defined. The predicate completes its execution after

the distribution of the entire hierarchy has been completed

through the consideration of all the components and the

relations.

31

get_reachable_environments

This predicate is part of the internal predicates that are used by

other higher level predicates for the dissemination of an event at

each component that the event encounters. The event

dissemination protocol decides on its next component by using

recursive calls of this predicate for each component the event

visits. The predicate enforces the protocol for the event

distribution.

Table 1 Sample predicates for file creation_script_db

3.1.2.1.2 nested_list_approach

This file provides predicates that are used by higher level predicates in the creation_script_db file. The

file defines specialized predicates that are used to handle the nested list data structure that has been used

for the implementation of multiple concepts in the modelling of the general design model.

 Table 2 provides some of the predicates contained in the creation_script_db, for aiding better

understanding about the contents of the file. For more details about the file, please refer to Appendix A.2,

which contains the complete implementation of the file in XSB-prolog.

Predicate Signature Description

unify_event This predicate is used to validate the event before it is

disseminated through the component hierarchy. The predicate

completes successfully if the event instance matches the event

schema that has been previously defined. The predicate

requires both the event instance and event schema to be in the

nested list format. The predicate compares the length of the

event instance and the event schema before the more

complicated matching of individual key-value pair contained in

the nested list.

compare_elements This predicate is used by the unify_event predicate that is

described previously. This predicate compares iterates the

nested lists by making recursive calls to itself.

32

flatten2 This predicate is used to convert the nested list into a flat list of

depth of one. This is useful for many higher level

functionalities.

Table 2 Sample predicates for file nested_list_approach

3.1.2.1.3 context_filter

The predicates in this file are used to compute the result of the content-filter and the context-filter based

on the filter expression that has been previously defined. The file contains predicates that can be used for

computing both the content and context filters. However, the two filters need to be handled in slightly

different way. The content filter is computed against the contents of the event instance itself. The context

filter is computed against the context-set of the parent environment.

 Presented in Table 3 are samples of some of the predicates contained in the context_filter, for aid in a

better understanding about the file’s contents. For more details about the file, please refer to Appendix

A.3, which contains the complete implementation of the file in XSB-prolog.

Predicate Signature Description

can_pass_event This predicate is used to compute the result of a content-filter,

the filter is computed by using the filter expression and the

contents of the event instance. The predicate completes

execution if the event is found to pass the filter.

faltten_to_key_value_pairs This predicate is used to convert the nested list into a flat list of

key-value pairs of maximum depth of two. This predicate is

used by the can_pass_event predicate.

compute_logic_molecule This predicate is used to compute the result of a single

expression involving 2 terms and an operation.

compute_logic This predicate is used to compute a simple expression

involving a single king of operation and 2 terms.

Table 3 Sample predicates for file context_filter

33

3.1.2.1.4 xmc_utils

The predicates in this file are used by the XMC processes to interact with the XSB code. The predicates

are used for making the implementation of XMC process simpler. The file enhances code reuse as the

predicates contained are used by XMC for both the case studies.

 Presented in Table 4 are some of the predicates contained in the xmc_utils, for aiding better

understanding about the contents of the file. For more details about the file, please refer to Appendix A.4,

which contains the complete implementation of the file in XSB-Prolog

Predicate Signature Description

assertTriggPredicate This predicate is used for recording that some event was

received by a component. This predicate is executed by

the event response predicates defined in case study

specific files.

cleanupComponentTriggPredicates This predicate is used by XMC process to clear the

database of any previous records about receiving events by

a component. This predicate is useful when the XMC

property requires multiple instances of event reception.

hasComponentReceivedResult This predicate is used by the XMC to check if a

component has received an event of a specific kind. The

predicate checks the XSB database for records that could

be previously stored by assertTriggPredicate.

no_duplicates This predicate completes successful execution if the list

provided to it does not have any duplicate members.

Table 4 Sample predicates for file xmc_utils

3.1.2.2 Case study formal design models

As shown in Figure 1, the formal case study design models need to be based on the informal case study

design models. The formal case study design models are extensions of the formal general design model.

More details regarding the formal case study design models are presented in Chapter 4.

34

3.2 Validation

This section will describe how the formal case study design models are validated. The validation uses a

model checker to validate properties of these models. These properties are based on the case study

requirements.

 The model checker used in the validation is XMC [73]. The XMC model checker supports the

specification of both processes and properties for the validation of the models. The formal general design

model is achieved by using an end-user logic programming language Prolog, and the process and the

property specifications are achieved by using the platform specific language of the model checker called

XL.

 The validation was done using the model checker provided by XMC. The XMC model checker is

seamlessly able to integrate with the general design model which is defined using XSB. The compatibility

between XSB and XMC was the primary reason behind the choice of language.

 The XMC system contains a compiler for XL, a model checker for XL and µ-calculus. XMC itself is

implemented using XSB Prolog, which supports the ability to integrate XSB models with XMC. This

study used XMC v1.0 and XSB v2.6. Based on my experience, installing XMC was not trivial, as it was

found that most of the XMC versions were compatible with only specific XSB versions. The selection of

the computing platform for the XMC-XSB system was also more complicated than expected. The reason

for this might be that the system is actively being developed and lacks adequate documentation. After

attempting to compile the XMC-XSB system successfully on many platforms, the entire environment was

setup successfully by using an older version of Linux, Redhat version 9, nicknamed Shrike.

 The XL scripting language has two distinct uses, the first is the definition of processes based on the

value passing Calculus of Communicating Systems (CCS) [81], and the second is a property definition

language based on µ-calculus. The XL syntax that governs both the aspects of the language is presented

in section 3.2.3. The source code for the formal general design model and the properties are presented in

further detail Section 3.1.2.1.

35

3.2.1 Structural properties

Structural properties define the relationships between the components. A structural property can be

considered to have the following form:

H ← B1, … , Bn, n ≥ 0 ,

 H, B1, … , Bn are atoms. H is the head of the property, whereas, B1, … , Bn are the body of the

property.

3.2.2 Behavioral properties

Behavioral properties describe the range of valid operations that can be performed by a component. A

behavioural property ϕ is defined using µ-calculus expressions. The properties are expressed using fixed

point equations, where µ is the operator used to signify a least fixed point equation and the ν operator is

used for the greatest fixed point equations. The least fixed point equation starts its computation from the

minimal element and then expands to a greater element iteratively. For the greatest fixed point equation

the computation starts from the greatest element and then reducing iteratively.

 The modal µ-calculus supports the use of constants (tt) and (ff), and the standard logical connectors’

disjunction (˅) and conjunction (˄). The modal µ-calculus supports actions. The box modality ([a]ϕ)

represents that the behavioral property ϕ holds for all the single-step reachable states by an action called a

transition. The diamond modality (<a>ϕ) represents that it is possible for an action to lead to a state for

which ϕ holds true. It is common practice to use the ν formulae for safety properties that require

something to never happen, whereas it is also a common practice to use the µ formulae for liveliness

properties that require something to happen. In short, it is safe to say that ν is for safety and µ is for

liveness.

The syntax of µ-calculus is as follows,

ɸ ::= Z | tt | ff | ɸ ˄ ɸ | ɸ ˅ ɸ | <A>ɸ | [A]ɸ | µZ.ɸ | νZ.ɸ ,

 where Z is a set of formula variables, A is a set of actions, tt and ff are propositional constants, ˄ and ˅

are logical connectors, <A>ɸ denotes that possibly after action A, the formula ɸ holds, [A]ɸ asserts that

after action A, the formula ɸ will always hold, the formula µZ.ɸ and νZ.ɸ stand for the least fixed point

and the greatest fixed point.

36

3.2.3 XMC syntax

The XMC system contains a compiler for XL. The XL language performs two distinct functions. The first

is the definition of processes based on the value passing Calculus of Communicating Systems (CCS) [81],

and the second is a property definition language based on µ-calculus. This chapter presents the syntax of

the XL language.

 XL is a language for specifying asynchronous concurrent systems. It inherits the parallel composition

(written as ‘|’), and choice operators (‘#’), the notion of channels, input (‘!’) and output (‘?’) actions, and

synchronization from Milner's value-passing calculus. XL also has a sequential composition (‘;’),

generalizing CCS's prefix operation, and a built-in conditional construct (‘if’). Complex processes may be

defined starting from the elementary actions using these composition operations. Process definitions may

be recursive; In fact, as in CCS, recursion is the sole mechanism for defining iterative processes.

Processes take zero or more parameters.

3.2.3.1 XL Process Definition Language

One of the basic objects in XL is a process. Processes are defined using the infix ::= operator. The left

hand side of a definition is a process term, the name of the process, along with a set of variables that form

the parameters of the process. The right hand side is a process expression. Process definitions are

terminated by a period (‘.’).

 A process p with n parameters is invoked as p(t1, t2… tn), where ti are arbitrary terms whose types are

consistent with the corresponding parameters in the definition of p. A process is distinguished by its name

and the number of parameters it takes. In other words, one can define many distinct processes with name

p as long as the number of parameters are all different. By convention, a process p that takes n parameters

is written as p/n.

Computation

An XL process can intermingle with computation. All variables in XL are single-assignment variables.

Computation is specified as a Prolog predicate, either defined in the same specification file using inline

Prolog or imported from a different file or library. Prolog predicates may be defined in an XL

specification, by enclosing the definition between a ‘{*’ and ‘*}’.

 Terms can be compared using the following relational operations: ==, \== for testing equality and

inequality of arbitrary terms; >=, =<, > and < for inequalities over terms representing integers; = for

unification of two terms, and \= for testing the inability to unify of two terms. Relational expressions may

be built from these base comparisons using conjunction (/\), disjunction (\/) or negation (~).

37

Communication

Written as C?A or C!A, these expressions denote values (A) read from or written to a channel (C). For a

channel C that is used for signalling (i.e., no values are passed along it), XL uses C?* and C!* to denote

sending and receiving signals along them.

 The expression C!A , the value A needs to be associated with a value when the output function is

enabled. The input expression C?B, most often B is simply a variable when B is a term, synchronization

occurs only when the value specified in the corresponding output action on channel C unifies with B.

3.2.3.2 XL Property Specification Language

XMC currently supports properties specified in alternation-free modal mu-calculus. The mu-calculus

formulas are written in an equational form, and supports parameters and values. Properties are specified

using fixed point equations, where each equation is of the form f + = e or f - =e. The operator + = denotes

a least fixed point equation and - = denotes a greatest fixed point equation. These symbols reflect the

computation itself: least fixed points are computed by starting from the minimal element and iteratively

expand it; greatest fixed points start from the maximal element and iteratively reduce it.

 The left hand side of a fixed point equation denotes the (parameterized) name of the formula, and the

right hand side (RHS) is the expression denoting the formula itself. The RHS is a Boolean expression

(using connectives ˅ and ˄ denoting disjunction and conjunction respectively) of modal expressions, and

two base propositions: tt denoting true and ff denoting false. Modal expressions are formed by prefixing a

mu-calculus expression with a modality: < > denoting diamond, or existential modality and [] denoting

box, or universal modality.

38

Chapter 4

4. Case studies

This chapter presents the two case studies to illustrate the study approach. For each case study, first I

present the informal case study design models and use real world scenarios that these cases involve, and

then I formalize these models to obtain their formal specifications. After that, I define properties specific

to each case study, and validate the formal models with respect to their properties. The specification for

the each of the formal case study design models is presented in Appendix B.

 The properties are specified using the XMC XL property specification language, and the scenarios are

specified using the XMC XL process specification language. The properties are validated against the case

study specifications. Because the XMC model checker is built upon the XSB Prolog, the XMC XL

processes use specific XSB Prolog predicates. Figure 9 highlights within a box, the different activities

involved in the validation of the formal case study design models.

Figure 9 Approach for case study validation

39

4.1 Cellphone behavior adaptation

This case study involves the investigation of the mechanisms involved in changes in the behaviour of a

cellphone triggered by events from other components in the system. Figure 10 depicts the arrangement of

the components involved in the case study and, as shown in Figure 10, the cellphone contains the calendar

application. Figure 11 presents the events that are involved in the case study.

4.1.1 Informal model

4.1.1.1 Participants

 Cellphone

 Calendar Application

Figure 10 Cellphone behaviour adaptation - Components

40

4.1.1.2 Scenario

 The calendar application generates the meeting started event. This happens when the time

changes to the time of a scheduled meeting.

 The cellphone generates the location event to signal a change in the user’s location.

 The cellphone generates the incoming call event.

- If the meeting has not started yet i.e., the meeting started event has not yet been received,

then the call will be allowed to pass through to the user.

- If the meeting started event has already been received, but the latest location event has

signalled that the user is not at the office, then the call is allowed to pass through to the

user.

- If the meeting started event has already been received and the latest location event signals

that the user is at the office and the call is not from a preferred caller, then the call is not

allowed to flow to the user and is blocked by the cellphone.

- If the meeting started event has already been received and the latest location event signals

that the user is at the office and the call is from a preferred caller, then the call is allowed

to flow to the user.

Figure 11 Cellphone behaviour adaptation - Events

41

4.1.2 Formal model and validation

The formal model for the cellphone behaviour adaptation is validated against the properties relevant to

this case. The XMC properties and processes for the case study are defined in the t1.xl file. Table 5

presents some of the process and properties that are specified in this file for this case-study. For more

details, please refer to the Appendix C.1, which contains the complete specifications in XL.

XMC Process XMC Property Description

send_before_receive_a

fter_cs_one
causality_cs_one This property verifies that an event

can only be received by the target

component after it has been sent by

the sending component.

runtime_validity_cs_o

ne

runtime_validity_propert

y_cs_one
This property checks if the

hierarchy of components is

consistent while events are

travelling between components.

unique_components_cs_

one

uniqueComponent_cs_one This property verifies that all the

components in the hierarchy are

unique. This means that all the

components have a unique name.

unique_subscriptions_

cs_one

uniqueSubscription_cs_on

e
This property verifies that all the

advertisement event schema-

component relations are unique.

This means that there should be

exactly one advertisement relation

involving an event schema and a

component.

chk_advertisement_rel

ation_cs_one

valid_adv_relations_cs_o

ne
This property verifies that an

advertisement can only be created

for the event schemas that have

been defined prior to the creation of

the advertisement.

42

chk_env_component_rel

ation_cs_one

valid_env_component_rela

tions_cs_one
This property verifies the validity

of the environment-component

hierarchy by ensuring that an

environment cannot contain a

component that has not been

properly defined prior to the

definition of the relation.

chk_event_without_sub

scription_cs_one

never_receive_event_with

out_subscription_cs_one
This property verifies that for a

component to receive any event it

needs to be properly defined prior

to sending the event through the

component hierarchy.

Table 5 Sample properties for case study cellphone behaviour adaptation

4.1.2.1 Formal validation

This section presents the specification of some properties and processes and the automated validation of

some of the process specifications against the properties using XMC. To illustrate how I perform the

automated formal validation, I provide the definition of two properties that were validated. First, the

definition of the process send_before_receive_after_cs_one is provided, which represents the

scenario in which events are sent and received:

send_before_receive_after_cs_one ::=

 chk_send_event

 ; chk_receive_event

 .

The property called causality_cs_one is specified as follows:

causality_cs_one += [recvnew]tt \/ ([-]causality_cs_one /\ [sendnew]tt).

When causality_cs_one was validated against the process specification it was found to be true.

Second, the definition of the process runtime_validity_cs_one is provided, which represents the

scenario where we check the structural validity of the model while an event is sent:

runtime_validity_cs_one ::=

43

 chk_send_event

 | chk_relations_duplicates_cs_one

 .

The property called runtime_validity_property_cs_one is specified as follows:

runtime_duplicates_property_cs_one += unique_all_cs_one.

runtime_relations_property_cs_one += all_valid_relations_cs_one.

runtime_validity_property_cs_one += unique_all_cs_one /\

all_valid_relations_cs_one.

When runtime_validity_property_cs_one was validated against the process specification it was

found to be true. Some of the other properties that were found to be true are provided in Table 6.

Description XMC Property

A component that is not an environment

can not contain components

valid_env_component_relations_cs_one

A component cannot receive an event type

for which the event schema has not been

defined

never_receive_undefined_event_cs_one

A component cannot send an event type for

which the event schema has not been

defined

never_send_undefined_event_cs_one

A subscription cannot be created for an

event type for which the event schema has

not been defined

valid_subs_relations_cs_one

An advertisement cannot be created for an

event type for which the event schema has

not been defined

valid_adv_relations_cs_one

A subscription cannot be created for a

component that is not defined

valid_subs_relations_cs_one

An advertisement cannot be created for a

component that is not defined

valid_adv_relations_cs_one

All events can have one and only one

definition of event schema

uniqueEvent_cs_one

All advertisement relations should be

unique

uniqueAdvertisement_cs_one

All subscription relations should be unique uniqueSubscription_cs_one

All environment-component relationships

should be unique

uniqueEnvironmentComponentRelation_cs_one

Table 6 Cellphone behaviour adaptation other properties

44

For further details about the specification of other processes and properties used in the validation of this

case study model please refer to Appendix C.1.

4.2 Cellphone as controller

This case study, observes the scenario in which the cellphone triggers adaptations in other components.

Initial events from the cellphone trigger a chain of events between components that leads to a

multifaceted change the system. Figure 12 shows the relationships between the components involved in

the case study and, as shown in Figure 12, the case study involves numerous nested environments. Figure

13 shows the events used in this case study.

4.2.1 Informal model

4.2.1.1 Participants

 User’s Cellphone

 Alarm application

 True Remote Control Application (TRCA)

 Smart Home Controller Unit (SHCU)

 Home Security System

 Home Climate Control Unit

 Car Computer Controller Unit (CCCU)

 Car Engine Starter

45

Figure 12 Cellphone as a controller - Components

46

4.2.1.2 Scenario

 The alarm application sends an Alarm Event.

 The cellphone generates the Cellphone Time Change Event. This signals that some time has

passed after the alarm had gone off.

 The cellphone generates the Location Event. This signals that the user is still at home after the

alarm event and the time changed event.

 The TRCA generates the Remote Starter Action Event. This signals the CCCU to start the car

engine to prepare for the users departure.

 The CCCU responds to the remote starter event with the Result of Remote Starter Event. This

event carries as its payload if the engine was successfully started by the car engine starter.

 The TRCA responds to the result of remote starter event with the Notify User of Car Engine

Started Event. This event signals to the user cellphone that the car engine has started and it’s

ready for their departure.

 The user starts driving away from home. This is detected by the Cellphone Subsequent Location

Event, and the event contains multiple successive locations of the user. The user is assumed to be

moving away from home if the successive locations are further and further away from home.

 After the detection that the user is moving away from home, the TRCA generates two instances

of Trigger Home Action Event. One of the instances carries instructions for the activation of the

home security system, while the other caries temperature information for the home climate

controller.

 On receiving the Trigger Home Action Event for security system, the SHCU activates the home

security system and generates the Result of Home Action Event. This event carries as a payload if

the home security system has been successfully activated.

 On receiving the Trigger Home Action Event for climate control system, the SHCU configures

the climate control component and then generates the Result of Home Action Event. This event

carries as a payload if the climate control was successfully configured.

 The TRCA receives the Result of Home Action Event for security system it generates the Notify

User of Home Action Event. This event notifies the user cellphone if the security system has been

activated successfully.

47

 The TRCA receives the Result of Home Action Event for climate control system it generates the

Notify User of Home Action Event. This event notifies the user cellphone if the climate control

system has been configured successfully.

Figure 13 Cellphone as a controller - Events

4.2.2 Formal model and validation

The formal model for the cellphone as controller is validated against the properties relevant to this case.

The XMC properties for the case study are defined in the t2.xl file. In Table 7 presents some of the

process-property pairs defined in this file for the case-study. For more details please refer to the Appendix

C.2, which contains the complete implementation in XL.

48

XMC Process XMC Property Description

fidelity_chk fidelity This property verifies that the

contents of the events are not

altered in any was while the

event id transiting through the

component hierarchy. This

property ensures that no

information is lost while the

event is in transition.

chk_disconnected_component chk_component_connection This property checks an

aspect of the event

dissemination protocol

defined by the general design

model by checking if an

orphan component can

receive an event.

unique_events uniqueEvent This property verifies if all

the event schemas are unique,

this means that all the event

schemas need to have unique

names.

testContextFilter(1) filterNotBlocking This property verifies if the

context filter of the receiving

component functions

properly. The process sends

an instance of an event

schema that should not be

blocked according to the

receiving components

subscription.

testContextFilter(0) filterBlocking This property verifies if the

context filter of the receiving

49

component functions

properly. The process sends

an instance of an event

schema that should be

blocked according to the

receiving components

subscription.

Table 7 Sample properties for case study cellphone as controller

4.2.2.1 Formal validation

This section presents the specification of some properties and processes and the automated validation of

some of the process specifications against the properties using XMC. To illustrate how I perform the

automated formal validation, I provide the definition of two properties that were validated. First, the

definition of the process fidelity_chk is provided, which represents the scenario in which the

contents of events are checked to have not changed between sending and receiving the event:

fidelity_chk ::=

 send_event_for_fidelity

 ; receive_event_for_fidelity

 .

The property called fidelity is specified as follows:

fidelity += never_fidelity_fail.

never_fidelity_fail -= [fidelityTestFailed]ff /\ [-]never_fidelity_fail.

When fidelity was validated against the process specification it was found to be true.

Second, the definition of the process chk_disconnected_component is provided, which represents

the scenario where a disconnected component is checked to not be able to receive any events:

chk_disconnected_component ::=

 disconnect_component

 ; chk_disconnected_component_send_notify_event_disconnected

 ; reconnect_component

50

 .

The property called chk_component_connection is specified as follows:

possible_event_received_when_connected += <eventByComponentWhileConnected>tt

\/ <->possible_event_received_when_connected.

never_event_received_when_disconnected -=

[eventByComponentWhileDisconnected]ff /\ [-

]never_event_received_when_disconnected.

chk_component_connection += possible_event_received_when_connected /\

never_event_received_when_disconnected.

When chk_component_connection was validated against the process specification it was found to be

true. Some of the other properties that were found to be true are provided in Table 8.

Description XMC Property

An event can only be received after it

has been sent

causality

The contents of the event should not be

altered once it has been sent

fidelity

An event cannot be received if it not sent never_receive_spontaneous_event

Event cannot be received if the target

component is not subscribed for it

never_receive_event_without_subscription

Event cannot be sent if the component

does not hold an advertisement of the

event type

never_send_event_without_advertisement

Event cannot be received if it doesn’t

pass the context filter associated with the

receiving component’s subscription for

the event type.

filterBlocking

Event cannot be received if it does not

pass the content filter associated with

receiving component’s subscription for

the event type

contentFilterBlocking

Event cannot be sent if the event does

not match the event schema defined for

the event type

never_able_to_send_event_with_invalid_schema

Table 8 Cellphone as controller other properties

For further details about the specification of other processes and properties used in the validation of this

case study model please refer to Appendix C.2.

51

Chapter 5

5. Conclusion and future work

This study has demonstrated a novel approach for designing and validating of a context-aware publish-

subscribe model. It uses a model checker to provide formal proofs of the properties related to the case

studies. By using formal verification, it is hoped to encourage future work in terms of the exploration of

additional cases studies and other properties. To my knowledge, this is the first study to investigate the

application of formal mechanisms for the validation of a modular CAPS model based on the notion of

environments and different levels of filters (e.g., type, content, and context).

 The study also showcased the XSB-Prolog and XMC platforms and their capabilities to be used for the

validation of frameworks and general design models that are often proposed in the research community. It

is believed that the use of formal proofs for supporting claims in areas relating to software engineering

will inspire greater confidence from the industry towards new ideas proposed by the researchers. A result

supported by the formal proof obtained by a model checker will significantly assuage any doubts that are

faced by the industry practitioners.

 Below are some suggestions on possible topics for future work.

5.1 Additional case studies

More research effort can be focused on further validation of the general design model. The

implementation of more case studies can be done with minimal effort by using the API developed in this

thesis. Further validation can also be done by validating more advanced properties. Adding more

properties to the validation can lead to improvement of the general design model and discovery of more

areas of applications that are a good match for the properties.

5.2 Enriching the filter definition language

A promising future enhancement can be enriching the filter language that is used for the context and the

content filters. The enhancement of the filter language will enable more complex adaptation rules to be

implemented. This enrichment can be done by the introduction of more specialized operators or routines

that can be used in the expression language.

52

5.3 Enhancement of legacy systems

Another area of future work is the enhancement of the general design model to be able to perform feature

enhancement of legacy systems easily by using wrappers. A wrapper can enforce content and context

filters to adapt the behaviour of legacy systems without requiring any changes to their own source code.

Further research can explore the feasibility of the general design model in the context of Internet of

Things (IoT) [82]. I feel that the general design model can provide feature enhancement to the cheap, low

power sensors and actuators involved in IoT.

5.4 Development of a reusable framework

Finally, effort can be allocated towards the development of a reusable framework based on the general

design model using widely adopted languages such as Java. The implementation of such a framework can

support the development of software systems based on the general design model that use real-world

components.

53

Appendix A General design model XSB source code

A.1 creation_script_db

% PREDICATE TO CREATE ENVIRONMENT WITH A LIST OF CONTEXT VARIABLES

create_environment(Environment_name, Context_var_list):-

 %not(environment_instance(Environment_name)),

 assert(environment_instance(Environment_name)),

 % CREATE A COMPONENT INSTANCE FOR EACH ENVIRONMENT SO THAT THE ENVIRONMENT CAN BE

NESTED INSIDE ANOTHER ENVIRONMENT

 assert(component_instance(Environment_name)),

 % ASSOSIATE CONTEXT VARIABLES TO THE NEW ENVIRONMENT

 add_context_variable_list_environment(Environment_name,Context_var_list).

% PREDICATE TO CREATE A COMPONENTWITH A LIST OF CONTEXT VARIABLES

create_component(Component_name, Context_variable_list):-

 %not(component_instance(Component_name)),

 assert(component_instance(Component_name)),

 % ASSOSIATE THE CONTEXT VARIABLES TO THE NEW CONTEXT

add_component_context_variable_list(Component_name,Context_variable_list).

% PREDICATE TO DECLARE A NEW EVENT SCHEMA, THE EVENT SCHEMA IS REPRESENTED IN A NESTED

LIST FORMAT WHERE DATA IS REPRESENTED AS KV PAIR

create_event_schema(Event_id,Event_schema_list):-

 assert(event_schema(Event_id,Event_schema_list)).

% PREDICATE TO CREATE AN ADVERTISEMENT FOR A COMPONENT, AN ADVERTISEMENT IS ASSOSIATED

WITH A COMPONENT, AN EVENT TYPE, AN ENVIRONMENT AND A CONTEXT FILTER. AN ENVIRONMENT

IS NEEDED BECAUSE ADVERTISEMENTS ARE NOT SHARED BETWEEN ENVIRONMENTS. THEREFORE IF A

sADVERTISEMENTS FOR EACH PARENT ENVIRONMENT. THE ADVERTISEMENT ALSO STORES A CONTEXT

FILTER EXPRESSION THAT AN EVENT NEEDS TO PASS BEFORE REACHING THE IMMEDIATE PARENT

ENVIRONMENT.

create_advertisement(Component_name,Environment_name,Event_id,Context_filter_

expression):-

 % CHECKING IF THE COMPONENT ALREADY EXISTS

 component_instance(Component_name),

 % CHECKING IF THE ENVIRONMENT EXISTS

 environment_instance(Environment_name),

 % CHECKING IF THE COMPONENT IS CONTAINED IN THE ENVIRONMENT

 environment_component(Environment_name,Component_name),

 % CHECKING IF THE EVENT TYPE EXISTS

 event_schema(Event_id,_),

assert(event_advertisement_entry(Component_name,Environment_name,Event_id,Con

text_filter_expression)).

% PREDICATE TO CREATE AN ADVERTISEMENT FOR AN ENVIRONMENT. . THE ADVERTISEMENT ALSO

STORES A CONTEXT FILTER EXPRESSION THAT AN EVENT NEEDS TO PASS BEFORE REACHING THE

IMMEDIATE PARENT ENVIRONMENT.

create_advertisement(Environment_name,Event_id,Context_filter_expression):-

 % CHECKING IF THE ENVIRONMENT EXISTS

 environment_instance(Environment_name),

 % CHECKING IF THE EVENT TYPE EXISTS

 event_schema(Event_id,_),

54

assert(event_advertisement_entry(Environment_name,Environment_name,Event_id,C

ontext_filter_expression)).

% PREDICATE TO CREATE A SUBSCRIPTION FOR A COMPONENT, A SUSCRIPTION IS ASSOSIATED WITH

A COMPONENT, AN ENVIRONMENT, AN EVENT TYPE, A CONTEXT FILTER AND A CONTENT FILTER. AN

ENVIRONMENT IS NEEDED AS SUBSCRIPTIONS ARE NOT SHARD AMONG ENVIRONMENTS. THEREFORE IF

A COMPONENT WANTS TO SUBSCRIBE TO AN EVENT FROM MULTIPLE PARENTS IT WILL NEED MULTIPLE

SUBSCRIPTIONS FOR EACH PARENT ENVIRONMENT. A CONTENT FILTER IS EVALUATED BASED ON THE

CONTENT FILTER EXPRESSION AND THE CONTENTS OF THE EVENT. A CONTEXT FILTER IS EVALUATED

BASED ON THE CONTEXT FILTER EXPRESSION AND THE VALUES OF THE CONTEXT VARIABLES HOSTED

BY THE PARENT ENVIRONMENTS.

create_subscription(Component_name,Environment_name,Event_id,Content_filter_e

xpression,Context_filter_expression):-

 % CHECKING IF THE COMPONENT EXISTS

 component_instance(Component_name),

 % CHECKING IF THE EVENT TYPE EXISTS

 event_schema(Event_id,_),

assert(event_subscription_entry(Component_name,Environment_name,Event_id,Cont

ent_filter_expression,Context_filter_expression)).

add_component_context_variable_list(Component_name,[]).

% THESE PREDICATES ARE USED TO ITERATE THE LIST OF CONTEXT VARIABLES OF COMPONENTS

add_component_context_variable_list(Component_name,[H|T]):-

 add_component_context_variable(Component_name,H),

 add_component_context_variable_list(Component_name,T).

% THIS PREDICATE IS USED TO STORE EACH CONTEXT VARIABLE

add_component_context_variable(Component_name,[Key,Value|[]]):-

 assert(context_variable(Component_name,[Key,Value])).

% THIS PREDICATE IS USED TO ADD A COMPONENT TO AN ENVIRONMENT. THIS PREDICATE CAN ALSO

BE USED TO NEST ENVIRONMENTS AS EACH ENVIRONMENT IS ALSO ASSERTTED AS A COMPONENT.

add_component_to_environment(Environment_name, Component_name):-

 % CHECK IF ENVIRONMENT EXISTS

 environment_instance(Environment_name),

 % CHECK IF THE COMPONENT EXISTS

 component_instance(Component_name),

 assert(environment_component(Environment_name,Component_name)),

findall(X,context_variable(Component_name,X),Component_context_variable_list)

,

 write(Component_context_variable_list),nl.

% THIS PREDICATE IS USED TO ITTERATE THE LIST OF ENVIRONMENT CONTEXT VARIABLES

add_context_variable_list_environment(Environment_name,[H|T]):-

 assert(context_variable(Environment_name,H)),

 add_context_variable_list_environment(Environment_name,T).

add_context_variable_list_environment(Environment_name,[]).

% THIS PREDICATE IS USED TO ADD A LIST OF COMPONENTS TO ENVIRONMENT

add_component_list_environment(Environment_name,[H|T]):-

 add_component_to_environment(Environment_name,H),

 add_component_list_environment(Environment_name,T).

55

add_component_list_environment(Environment_name,[]).

% THIS PREDIACTE IS USED FOR GETING ALL THE EVENT TYPES FOR AN ENVIRONMENTS

SUBCOMPONENTS FOR THAT HAVE ADVERTISEMENTS

get_event_id_list_advertisement_environment(Environment_name,Event_id_list):-

findall(X,environment_event_advertisement(Environment_name,X),Event_id_list).

% THIS PREDICATE IS TRUE IS THE ENVIRONMENT OR ONE OF ITS COMPONENTS HAS AN

ADVERTISEMENTS FOR THE EVENT TYPE

environment_event_advertisement(Environment_name,Event_id):-

 % CHECK IF THE ENVIRONMENT EXISTS

 environment_instance(Environment_name),

 % CHECK IF THE EVENT TYPE EXISTS

 event_schema(Event_id,_),

 % CHECK IF THE COMPONENT IS CONTAINED INSIDE THE ENVIRONMENT

 environment_component(Environment_name,Component_name),

event_advertisement_entry(Component_name,Environment_name,Event_id,Context_fi

lter_expression).

% THIS PREDICATE IS TRUE IS THE ENVIRONMENT OR ONE OF ITS COMPONENTS HAS AN

SUBSCRIPTIONS FOR THE EVENT TYPE

environment_event_subscription(Environment_name,Event_id):-

 %CHECK IF THE ENVIRONMENT EXISTS

 environment_instance(Environment_name),

 % CHECK IF THE EVENT TYPE EXISTS

 event_schema(Event_id,_),

 % CHECK IF THE COMPONENT IS CONTAINED INSIDE THE ENVIRONMENT

 environment_component(Environment_name,Component_name),

event_subscription_entry(Component_name,Environment_name,Event_id,Content_fil

ter_expression,Context_filter_expression).

% PREDICATE TO CHECK IF ANY OF THE N DEGREE CHILD OF THE COMPONENT HAS A SUBSCRIPTION

FOR THIS KIND OF EVENT

component_event_subscription(Component_name,Event_id):-

event_subscription_entry(Component_name,Environment_name,Event_id,Content_fil

ter_expression,Context_filter_expression).

component_event_subscription(Component_name,Event_id):-

 % GET A CHILD CONTAINED INSIDE THE COMPONENT

 environment_component(Component_name,Sub_component_name),

 component_event_subscription(Sub_component_name,Event_id).

% PREDICATE TO CHECK IF ANY OF THE N DEGREE CHILD OF THE COMPONENT HAS AN

ADVERTISEMENT FOR THIS KIND OF EVENT

component_event_advertisement(Component_name,Environment_name,Event_id):-

event_advertisement_entry(Component_name,Environment_name,Event_id,Context_fi

lter_expression).

component_event_advertisement(Component_name,Environment_name,Event_id):-

 environment_component(Component_name,Sub_component_name),

56

component_event_advertisement(Sub_component_name,Component_name,Event_id).

% PREDICATE TO GET ALL THE FIRST DEGREE COMPONENTS OF AN ENVIRONMENT

get_component_list_environment(Environment_name,Component_name_list):-

 findall(X,environment_component(Environment_name,X),Component_name_list).

% THIS PREDICATE IS USED TO SIMULATE AN EVENT ORIGINATION FROM A COMPONENT

simulate_event_component(Component_name,Environment_name,Event_id,Event_data_

list):-

 component_instance(Component_name),

 % TYPE FILTER START, THIS IS A CHECK IF THE COMPONENT HAS AN ADVERTISEMENT FOR

THIS TYPE OF EVENT

event_advertisement_entry(Component_name,Environment_name,Event_id,Context_fi

lter_expression),

 % TYPE FILTER END

 % CONTEX FILTER START, SINCE THE OUTGOING EVENT S ONLY NEED TO PASS THE CONTEXT

FILTER AND NOT THE CONTENT FILTER

findall(X,get_context_variables(Environment_name,_,X),Environment_context_var

iable_list),

 write('Context filter expression -

'),write(Context_filter_expression),nl,

 write('Context filter data'),write(Environment_context_variable_list),nl,

 compute(Context_filter_expression,Environment_context_variable_list),

 write('Context filter passed'),nl,

 % CONTEX FILTER END

 % VALIDATE THE EVENT TO ONE OF THE KNOWN EVENT SCHEMAS

 [Event_type|Et] = Event_data_list,

 event_schema(Event_type,Event_schema),

 % VALIDATE IT FURTHER BY A DATA TYPE CHECK OS OF THE VALUES OF THE KV PAIRS

 !,unify_event(Event_data_list,Event_schema),

 % THE BELOW IS USED TO THE ACTIONS THAT ARE TAKEN BY THE COMPONENT ON THE ARRIVAL

OF THIS TYPE OF EVENT

!,trigger_component_event_response(Component_name,Event_type,Event_data_list)

,

 % WE NOW MOVE TO THE ENVIRONMRNT THAT CONTAINS THE COMPONENT

get_reachable_environments(Event_type,Event_data_list,[Environment_name],Comp

onent_name,[Component_name],Reachable_environment_list),

 nl,write('Event '),write(Event_id),write(' Visited List --

>'),write(Reachable_environment_list),nl.

% THIS PREDICATE IS USED TO SIMULATE AN EVENT ORIGINATION FROM AN ENVIRONMENT

simulate_event_environment(Environment_name,Event_id,Event_data_list):-

 environment_instance(Environment_name),

 % TYPE FILTER START

event_advertisement_entry(Environment_name,Environment_name,Event_id,Context_

filter_expression),

57

 % TYPE FILTER END

 % VALIDATE THE EVENT TO ONE OF THE KNOWN EVENT SCHEMAS

 [Event_type|Et] = Event_data_list,

 event_schema(Event_id,Event_schema),

 % VALIDATE IT FURTHER BY A DATA TYPE CHECK OS OF THE VALUES OF THE KV PAIRS

 !,unify_event(Event_data_list,Event_schema),

 % THE BELOW IS USED TO THE ACTIONS THAT ARE TAKEN BY THE COMPONENT ON THE

ARRIVAL OF THIS TYPE OF EVENT

!,trigger_component_event_response(Component_name,Event_type,Event_data_list)

,

 % WE NOW MOVE TO THE ENVIRONMRNT THAT CONTAINS THE ENVIRONMENT

get_reachable_environments(Event_id,Event_data_list,[Environment_name],Enviro

nment_name,[],Reachable_environment_list),

 nl,write('Event '),write(Event_id),write(' Visited List --

>'),write(Reachable_environment_list),nl.

process_event_environment(Environment_name,Event_id,Event_data_list,Calling_c

omponent_name):-

event_subscription_entry(Environment_name,Environment_name,Event_id,Content_f

ilter_expression,Context_filter_expression),

 write('processing event '),write(Event_id),write(' for environment

'),write(Environment_name),nl,

 write('calling component '),write(Calling_component_name),nl,

 % CONTEX VARIABLE START

 (environment_component(Environment_name,Calling_component_name)

 ->

findall(X,get_context_variables(Environment_name,_,X),Environment_context_var

iable_list)

 ;

findall(X,get_context_variables(Calling_component_name,_,X),Environment_conte

xt_variable_list)

),

 write('Context filter expression -

'),write(Context_filter_expression),nl,

 write('Context filter data'),write(Environment_context_variable_list),nl,

 compute(Context_filter_expression,Environment_context_variable_list),

 write('Context filter passed'),nl,

 % CONTEX VARIABLE END

 % CONTENT FILTER START

 can_pass_event(Event_data_list,Content_filter_expression),

 write('**Passed** Component Content Filter -

'),write(Environment_name),nl,

 % CONTENT FILTER END

trigger_component_event_response(Environment_name,Event_id,Event_data_list).

58

process_event_environment(Environment_name,Event_id,Event_data_list,Calling_c

omponent_name).

% ONE OF THE DEFINITIONS OF THE A RECURSIVE PREDICATE FOR ITERATING THROUGH ALL THE

COMPONENTS IN AN ENVIRONMENT

get_reachable_environments(Event_type,Event_data_list,[],Calling_component_na

me,I,I).

% ONE OF THE DEFINITIONS OF THE A RECURSIVE PREDICATE FOR ITERATING THROUGH ALL THE

COMPONENTS IN AN ENVIRONMENT

get_reachable_environments(Event_type,Event_data_list,[Rh|Rt],Calling_compone

nt_name,I,O):-

get_reachable_environments(Event_type,Event_data_list,Rh,Calling_component_na

me,I,O2),

get_reachable_environments(Event_type,Event_data_list,Rt,Calling_component_na

me,O2,O).

% THIS PREDICATE IS USED TO COMPUTE THE EFFECT OF AN EVENT ON REACHING AN ENVIRONMENT

get_reachable_environments(Event_type,Event_data_list,Component_name,Calling_

component_name,I,O):-

 environment_instance(Component_name),

 % CHECKING THAT THE ENVIRONMENT HAS NOT BEEN VISITIED BEFORE

 not(member(Component_name,I)),

 write('Visiting Environment - '),write(Component_name),nl,

 % write('_-> Already Visited - '),write(I),nl,

 % ADD THE NAME OF THIS ENVIRONMENT IN THE LIST TO PREVENT VISITING IT AGAIN

 append(I,[Component_name],I2),

process_event_environment(Component_name,Event_type,Event_data_list,Calling_c

omponent_name),

 % FIND ALL THE ENVIRONMENTS THAT CONTAIN THIS ENVIRONMENT

 % THIS CALL IS SPREADING THE ENENT UPWARDS TOWARDS THE PARENT ENVIRONMENTS

 findall(X,environment_component(X,Component_name),Environment_name_list),

 % write('|-> Parent Environments - '),write(Environment_name_list),nl,

 % THE METHOD RECURSIVELY TO VISIT PARENT ENVIRONMENT

get_reachable_environments(Event_type,Event_data_list,Environment_name_list,C

omponent_name,I2,I3),

 % write('@@'),write(I3),nl,

 % WE ARE NOW LOOKING FOA ALL THE COMPONENTS AND ENVIRONMENTS CONTAINED IN THIS

ENVIRONMENT

findall(X,environment_component_event_subscription(Component_name,X,Event_typ

e),Sub_component_name_list),

 % write('|-> Sub of '),write(Component_name),write(' -

'),write(Sub_component_name_list),nl,

 % NOW WE ARE GOING TO SPRED THE EVENT DOWNWARDS TOWARDS THIS ENVIRONMENTS

CHILDRREN COMPONENTS AND ENVIRONEMENTS

get_reachable_environments(Event_type,Event_data_list,Sub_component_name_list

,Component_name,I3,O).

59

% THIS PREDICATE IS USED TO COMPUTE THE EFFECT OF AN EVENT ON REACHING A COMPONENT

get_reachable_environments(Event_type,Event_data_list,Component_name,Calling_

component_name,I,O):-

 not(environment_instance(Component_name)),

 component_instance(Component_name),

 % CHECKING THAT THE ENVIRONMENT HAS NOT BEEN VISITIED BEFORE

 not(member(Component_name,I)),

 append(I,[Component_name],O),

 % TYPE FILTER START, CHECKING IF THE COMPONENT HAS SUBSCRIBED TO THIS TYPE OF

EVENT

event_subscription_entry(Component_name,Environment_name,Event_type,Content_f

ilter_expression,Context_filter_expression),

 % TYPE FILTER END

 write('##Matching## Component Found - '),write(Component_name),nl,

 % CONTEX VARIABLE START

findall(X,get_context_variables(Calling_component_name,_,X),Environment_conte

xt_variable_list),

 write('Context filter expression -

'),write(Context_filter_expression),nl,

 write('Context filter data'),write(Environment_context_variable_list),nl,

 compute(Context_filter_expression,Environment_context_variable_list),

 write('Context filter passed'),nl,

 % CONTEX VARIABLE END

 % CONTENT FILTER START

 can_pass_event(Event_data_list,Content_filter_expression),

 write('**Passed** Component Content Filter - '),write(Component_name),nl,

 % CONTENT FILTER END

 write('Visiting Component - '),write(Component_name),nl,

 % NOW WE EXECUTE THE PREDICATE THAT SIGNALS THAT THE EVENT HAS BEEN ACCEPTED BY

THE COMPONENT, IT IS ALSO WHERE THE COMPONENT SERVICES THE EVENT

trigger_component_event_response(Component_name,Event_type,Event_data_list).

% ONE OF THE DEFINITIONS, IT IS USED TO PREVENT THE BREAK IN THE RECURSION CHAIN IF

THE COMPONENT DOES NOT SUBSCRIBE TO A EVENT TYPE

get_reachable_environments(Event_type,Event_data_list,Component_name,Calling_

component_name,I,O):-

 not(environment_instance(Component_name)),

 component_instance(Component_name),

 not(member(Component_name,I)),

 append(I,[Component_name],O),

 write('Visiting Component - '),write(Component_name),nl,

not(event_subscription_entry(Component_name,Environment_name,Event_type,Conte

nt_filter_expression,Context_filter_expression)).

% THIS PREDICATE IS USED AS AN ALL PASS DEFINITION FOR THE RECURSIVE PREDICATE

get_reachable_environments(Event_type,Event_data_list,Component_name,Calling_

component_name,I,I).

60

get_context_variables(Environment_name,Component_name,Environment_context_var

iable):-

 Component_name = Environment_name,

 context_variable(Environment_name,Environment_context_variable).

environment_component_event_subscription(Environment_name,Component_name,Even

t_id):-

 environment_component(Environment_name,Component_name),

 event_subscription_entry(Component_name,Environment_name,Event_id,_,_).

environment_component_event_subscription(Environment_name,Component_name,Even

t_id):-

 environment_component(Environment_name,Component_name),

 environment_instance(Component_name).

% THIS PREDICATE IS USED TO FETCH THE CONTEXT VARIABLES OF AN ENVIRONMENT, AND THE

COMPONENTS CONTAINED WITHIN IT

get_context_variables(Environment_name,Component_name,Environment_context_var

iable):-

 environment_instance(Environment_name),

 ancestor(Environment_name,Component_name),

 context_variable(Component_name,Environment_context_variable).

% THIS PREDICATE IS USED TO GET A CONTEXT VARIABLE CREATED FOR AN ENVIRONMENT

get_context_variables(Environment_name,Component_name,Environment_context_var

iable):-

 context_variable(Environment_name,Environment_context_variable).

get_context_variables(Environment_name,Component_name,Environment_context_var

iable):-

 environment_instance(Environment_name),

 ancestor(Environment_name,Sub_environment_name),

 context_variable(Sub_environment_name,Environment_context_variable).

% USED TO FIND THE ACESTORY OF A COMPONENT OR ENVIRONMENT

ancestor(Environment_name,Component_name):-

 environment_component(Environment_name,Component_name).

% USED TO FIND THE ACESTORY OF A COMPONENT OR ENVIRONMENT

ancestor(Environment_name,Component_name):-

 environment_component(Sub_environment_name,Component_name),

 ancestor(Environment_name,Sub_environment_name).

% THE PREDICATE IS USED TO CAHNGE THE VALUE OF A CONTEXT VARIABLE

change_context_variable_value(Context_variable_name,Context_variable_new_valu

e):-

 context_variable(Component_name,[Context_variable_name,Old_value]),

 retract(context_variable(Component_name,[Context_variable_name,_])),

 write('Setting new value '),write(Context_variable_new_value),write(' for

context variable '),write(Context_variable_name),nl,

assert(context_variable(Component_name,[Context_variable_name,Context_variabl

e_new_value])).

61

A.2 nested_list_approach
% THIS PREDICATE IS USED TO CREATE NESTED EVENT SCHEMAS, IT GENERATES SCHEMAS FOR

EVENTS THAT CONTAIN OTHER EVENTS. THIS IS NO LONGER DIRECTLY USED NOW BUT IT IS A

USEFULT UTILITY WHEN THINKING ABOUT LARGE EVENT SCHEMAS.

lower_event([Key,Value|[]],I,O):-

 % CHECK IF THE KEY IS AN DEFINED EVENT TYPE

 not(event_schema([Key|SchemaTail])),

 % CHECK IF THE VALUE IS AN DEFINED EVENT TYPE

 not(event_schema([Value|SchemaTail])),

 not(is_list(Key)),

 not(is_list(Value)),

 %nl,write(Key),write('-'),write(Value),nl,

 Kvp = [Key,Value],

 append(I,[Kvp],O).

lower_event([Head|[]],I,O):-

 lower_event(Head,I,O).

lower_event([Head|Tail],I,O):-

 lower_event(Head,I,Os1),

 lower_event(Tail,Os1,O).

lower_event(Type,I,O):-

 % FETCH THE SCHEMA DEFINITTION OF THE SCHEMA TYPE

 event_schema([Type|SchemaTail]),

 %write(Type),write('->'),

 append(I,[Type],Os1),

 %write([SchemaTail]),nl,

 % RESOLVE THE COMPONENTS OF THE SCHEMA DEFINITION FOR OTHER NESTED TYPES

 lower_event(SchemaTail,[],Os2),

 append(Os1,[Os2],O).

lower_event(Type,I,O):-

 not(event_schema([Type|SchemaTail])),

 %write(Type),write('*-'),nl,

 append(I,[Type],O).

step_forward([Head|[]]).

step_forward([Head|Tail]):-

 %write(Head),

 lower_event(Head),

 step_forward(Tail).

% THIS IS THE ENTRY PREDICATE FOR THE EVENT SCHEMA GENERATOR

top_event(Type,O):-

 % write('Resolving Schema'),nl,

 lower_event(Type,[],O).

% THIS PREDICATE IS USED TO CHECK IF THE PROVIDED EVENT AND THE SCHEMA UNIFY

unify_event(Event,Schema):-

 % write('Start'),nl,

 [Eh|Et] = Event,

 % For computing the schema internally, this is no longer needed but can be a

helpful utility.

 % top_event(Eh,Schema),

62

 % write('Schema Decided'),nl,

 % EASIEST CHECK FIRST, CHECK IF THE LENGHTS OF THE 2 ARE SAME, IF NOT WE DO NOT

NEED TO CHECK FURTHER

 !,unify_length(Event,Schema),

 % write('length compared'),nl,

 % IF THE LENGHS MATCH, WE MOVE ON THE ELEMENTS OF THE EVENT AND COMPARE THE KEYS

AND THE TYPE OF VALUES

 !,compare_elements(Event,Schema).

 % write('Schema compared'),nl.

% THIS PREDICATE IS USED TO ITERRATE THE EVENT AND THE SCHEMA TOGATHER

compare_elements([Eh|[]],[Sh|[]]):-

 %write('End'),nl,

 !,compare_elements(Eh,Sh).

compare_elements([Eh|Et],[Sh|St]):-

 %write('middle'),nl,

 !,compare_elements(Eh,Sh),

 compare_elements(Et,St).

% CHECK IF THE EVENT ELEMENT IS AN INTEGER

compare_elements(Eventelement,integer):-

 %write('comparing-integer => '),write(Eventelement),write('='),write(integer),nl,

 !,integer(Eventelement).

% CHECK IF THE EVENT ELEMENT IS A FLOAT

compare_elements(Eventelement,float):-

 %write('comparing-float => '),write(Eventelement),write('='),write(float),nl,

 !,float(Eventelement).

% CHECK IF THE EVENT ELEMENT IS A STRING

compare_elements(Eventelement,string):-

 %write('comparing-string => '),write(Eventelement),write('='),write(string),nl,

 !,atom(Eventelement).

% THIS DEFINITION OF THE PREDICATE ENSURES THAT ALL THE KEYS ARE THE SAME BETWEEN THE

EVENT AND THE SCHEMA

compare_elements(Sameelement,Sameelement).

% THIS PREDICATE IS SUCESSFULL IF THE LENGHT OD THE 2 NESTED LISTS ARE THE SAME

unify_length(Event,Schema):-

 % FLATTEN THE SCHEMA NESTED LIST TO A FLAT LIST

 flatten2(Schema,FlatSchema),

 % FLATTEN THE EVENT NESTED LIST TO A FLAT LIST

 flatten2(Event,FlatEvent),

 % FIND THE LENGHT OF THE SCHEMA FLAT LIST

 length(FlatSchema,Lengthschema),

 % FIND THE LENGHT OF THE EVENT FLAT LIST

 length(FlatEvent,Lengthevent),

 % UNIFY THE 2 LENGHTS

 Lengthschema=Lengthevent.

% UTILITY PREDICATE TO FLATTEN A NESTED LIST

flatten2([], []) :- !.

flatten2([L|Ls], FlatL) :-

 !,

 flatten2(L, NewL),

 flatten2(Ls, NewLs),

63

 append(NewL, NewLs, FlatL).

flatten2(L, [L]).

64

A.3 context_filter

% THIS PREDICATE IS USED TO CHECK IS AN EVENT CAN PASS THROUGH THE FILTER

can_pass_event(Event,Filter_expression):-

 % WE FALTTEN THE EVENT FROM A NESTED LIST TO A LIST OF KEY-VALUE PAIRS

 faltten_to_key_value_pairs(Event,[],Flat_kv_pairs),

 % write(Flat_kv_pairs),nl,

%replace_keys_by_values(Context_filter_expression,Flat_kv_pairs,Logic_filled_expressio

n),

 compute(Filter_expression,Flat_kv_pairs).

% THESE PREDICATES ARE USED TO FLATTEN THE NESTED LIST OF KV PAIRS INTO A FLAT LIST OF

KV PAIRS

faltten_to_key_value_pairs([H|[]],I,Flat_kv_pairs):-

 % write('(2)-> '),write(H),write(' '),

 faltten_to_key_value_pairs(H,I,Flat_kv_pairs).

faltten_to_key_value_pairs([H|T],I,Flat_kv_pairs):-

 % write('(1)-> '),write(H),write(' '),

 faltten_to_key_value_pairs(H,I,O1),

 faltten_to_key_value_pairs(T,O1,Flat_kv_pairs).

faltten_to_key_value_pairs([Key,Value|[T]],I,Flat_kv_pairs):-

 not(is_list(Key)),

 is_list(Value),

 % write('(4)-> '),write(Key),nl,

 faltten_to_key_value_pairs(Value,I,O1),

 faltten_to_key_value_pairs(T,O1,Flat_kv_pairs).

faltten_to_key_value_pairs([Key,Value|[]],I,Flat_kv_pairs):-

 not(is_list(Key)),

 not(is_list(Value)),

 % write('(5)-> '),write(Key),nl,

 Kvp = [Key,Value],

 append(I,[Kvp],Flat_kv_pairs).

faltten_to_key_value_pairs([Key,Value|[]],I,Flat_kv_pairs):-

 not(is_list(Key)),

 is_list(Value),

 % write('(6)-> '),write(Key),nl,

 faltten_to_key_value_pairs(Value,I,Flat_kv_pairs).

% compute([3,=,3],Result).

% compute([[3,=,3],&,[3,=,3]]).

% compute([[[5,=,3],or,[5,=,3]],or,[[5,=,5],or,[5,=,3]]]).

% THIS PREDICATE PRODUCES A BOOLEAN OUTPUT FOR THE INPUT OF FILTER EXPRESSION AND LIST

OF KEY-VALUE PAIRS

compute(Filter_expression,Flat_kv_pairs):-

 % write('starting filter computation'),nl,

 compute_logic_molecule(Filter_expression,Flat_kv_pairs).

% THIS A SHORT EXECUTION PATH FOR IF THE FILTER EXPRESSION IS NOT PROVIDED FOR A

COMPONENT

compute([],_).

65

% THIS PREDICATE IS USED TO COMPUTE THE FITER EXPRESSION RECURSIVELY, IT BREAKS THE

FILTER EXPRESSION INTO NESTED LISTS OF 3 ELEMENTS EACH

compute_logic_molecule([Term_1,Operator,Term_2|[]],Flat_kv_pairs):-

 !,

 % CHECKING IF THE OPERATOR IS SUPPORTED

 member(Operator,[>,<,=<,>=,and,or,=\=,=]),

 % write('term1 = '),write(Term_1),nl,

 % write('term2 = '),write(Term_2),nl,

 % CHECKING IF EITHER THE FIRST OR THE SECOND TERM OF THE EXPRESSION IS A LIST IN

ITS SELF, THIS WOULD MEAN THAT THE EXPRESSION IS A NESTED EXPRESSION, IN HTIS CASE THE

PREDICATE IS CALLED ON THE INNER EXPRESSION RECURSIVELY

 (not(is_list(Term_1))-

>get_value_for_key(Term_1,Flat_kv_pairs,R1);(compute_logic_molecule(Term_1,Fl

at_kv_pairs)->R1 = true;R1 = fail)),

 (not(is_list(Term_2))-

>R2=Term_2;(compute_logic_molecule(Term_2,Flat_kv_pairs)->R2 = true;R2 =

fail)),

 compute_logic(R1,Operator,R2).

% THIS PREDICATE IS USED TO FETCH THE VALUE CORRESPONDING TO A KEY FROM A LIST OF KEY-

VALUE PAIRS.

get_value_for_key(R1,[[Key,Value]|T],V1):-

 % write('looking for '),write(R1),write(' comparing with '),write(Key),nl,

 (R1==Key->V1 = Value;get_value_for_key(R1,T,V1)).

get_value_for_key(R1,[[Key,Value]|[]],V1):-

 % write('looking for '),write(R1),write(' comparing with '),write(Key),nl,

 (R1==Key->V1 = Value;fail).

% THIS PREDICATE HANDLES THE EQUALITY OPERATOR

compute_logic(R1,=,R2):-

 % write(R1),write('='),write(R2),nl,

 (R1 == R2

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE > OPERATOR

compute_logic(R1,>,R2):-

 % write(R1),write('>'),write(R2),nl,

 (R1 > R2

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE < OPERATOR

compute_logic(R1,<,R2):-

 % write(R1),write('<'),write(R2),nl,

 (R1 < R2

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE =< OPERATOR

compute_logic(R1,=<,R2):-

 % write(R1),write('=<'),write(R2),nl,

 (R1 =< R2

66

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE >= OPERATOR

compute_logic(R1,>=,R2):-

 % write(R1),write('>='),write(R2),nl,

 (R1 >= R2

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE =/= INEQUALITY OPERATOR

compute_logic(R1,=\=,R2):-

 % write(R1),write('=\='),write(R2),nl,

 (\+(R1 == R2)

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE AND OPERATOR

compute_logic(R1,and,R2):-

 % write(R1),write(' and '),write(R2),nl,

 (R1,R2

 -> true

 ; fail

).

% THIS PREDICATE HANDLES THE OR OPERATOR

compute_logic(R1,or,R2):-

 % write(R1),write(' or '),write(R2),nl,

 (R1;R2

 -> true

 ; fail

).

67

A.4 xmc_utils

assertTriggPredicate(Component_name,Event_id,Event_data):-

 assert(triggered(Component_name,Event_id,Event_data)).

cleanupAllTriggPredicates :-

 retract(triggered(_,_,_)).

cleanupComponentTriggPredicates(Component_name):-

 retract(triggered(Component_name,_,_)).

cleanupComponentTriggPredicates(Component_name).

cleanupComponentEventTriggPredicates(Component_name,Event_id):-

 retract(triggered(Component_name,Event_id,_)).

hasComponentReceived(Component_name,Event_id,Event_data):-

 triggered(Component_name,Event_id,Event_data).

hasComponentReceived(Component_name,Event_id):-

 triggered(Component_name,Event_id,_).

hasComponentReceivedResult(Component_name,Event_id, Result):-

 triggered(Component_name,Event_id, _),

 Result = 1.

hasComponentReceivedResult(Component_name,Event_id, Result):-

 Result = 0.

distance(X1,Y1,X2,Y2,D):-

 D is sqrt(((X2-X1) * (X2-X1)) + ((Y2-Y1) * (Y2-Y1))).

no_duplicates(L) :-

 setof(X, member(X, L), Set),

 length(Set, Len),

 length(L, Len).

all_environemtns(In_list,Out_environment_name_list):-

 findall(X,environment_instance(X),Environment_name_list),

 append(In_list,Environment_name_list,Out_environment_name_list).

all_components(In_list,Out_component_name_list):-

 findall(X,component_instance(X),Component_name_list),

 append(In_list,Component_name_list,Out_component_name_list).

all_event_names(In_list,Out_event_name_list):-

 findall(X,event_schema(X,_),Event_name_list),

 append(In_list,Event_name_list,Out_event_name_list).

all_advertisements(In_list,Out_advertisement_list):-

 findall(X(Y),event_advertisement_entry(X,_,Y,_),Advertisement_list),

 append(In_list,Advertisement_list,Out_advertisement_list).

all_subscriptions(In_list,Out_subscription_list):-

 findall(X(Y),event_subscription_entry(X,_,Y,_,_),Subscription_list),

68

 append(In_list,Subscription_list,Out_subscription_list).

all_context_variables(In_list,Out_context_variable_list):-

 findall(X,context_variable(_,[X,_]),Context_variable_list),

 append(In_list,Context_variable_list,Out_context_variable_list).

all_environment_component_relation(In_list,Environment_component_relation_lis

t):-

 findall(X(Y),environment_component(X,Y),Relation_list),

 append(In_list,Relation_list,Environment_component_relation_list).

all_environment_component_relation_as_nested_lists(In_list,Environment_compon

ent_relation_list):-

 findall([X,Y],environment_component(X,Y),Relation_list),

 append(In_list,Relation_list,Environment_component_relation_list).

validate_env_component_relation_list([H|T]):-

 validate_env_relation(H),

 validate_env_component_relation_list(T).

validate_env_component_relation_list([H|[]]):-

 validate_env_relation(H).

validate_env_relation([Environment_name,Component_name]):-

 environment_instance(Environment_name),

 component_instance(Component_name).

all_advertisements_relation_as_nested_lists(In_list,Advertisement_component_e

vent_relation_list):-

findall([Component_name,Event_id,Environment_name],event_advertisement_entry(

Component_name,Environment_name,Event_id,_),Relation_list),

append(In_list,Relation_list,Advertisement_component_event_relation_list).

validate_advertisement_relation_list([H|T]):-

 validate_advertisement_relation(H),

 validate_advertisement_relation_list(T).

validate_advertisement_relation_list([]).

validate_advertisement_relation([Component_name,Event_id,Environment_name]):-

 component_instance(Component_name),

 environment_instance(Environment_name),

 event_schema(Event_id,_).

all_subscription_relation_as_nested_lists(In_list,Subscription_component_even

t_relation_list):-

findall([Component_name,Event_id,Environment_name],event_subscription_entry(C

omponent_name,Environment_name,Event_id,_,_),Relation_list),

 append(In_list,Relation_list,Subscription_component_event_relation_list).

validate_subscription_relation_list([H|T]):-

 validate_subscription_relation(H),

 validate_subscription_relation_list(T).

69

validate_subscription_relation_list([]).

validate_subscription_relation([Component_name,Event_id,Environment_name]):-

 component_instance(Component_name),

 environment_instance(Environment_name),

 event_schema(Event_id,_).

all_context_variable_relation_as_nested_lists(In_list,Context_variable_relati

on_list):-

findall(Component_name,context_variable(Component_name,_),Component_list),

 append(In_list,Component_list,Context_variable_relation_list).

validate_context_variable_relation_list([H|T]):-

 component_instance(H),

 validate_context_variable_relation_list(T).

validate_context_variable_relation_list([]).

validate_no_dual_membership_list([H|T]):-

 validate_no_dual_membership(H),

 validate_no_dual_membership_list(T).

validate_no_dual_membership_list([]).

validate_no_dual_membership([Component_name,Event_id,Environment_name]):-

 (

not(event_advertisement_entry(Component_name,Environment_name,Event_id,_))

 -> true

 ; fail

).

70

Appendix B Case study XSB source code

B.1 cellphone_behavior_adaptation_case_study_specific_behavior

trigger_component_event_response(users_phone,locationEvent,Event_data):-

 write('users_phone reacting to location event'),nl,

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(latitude,Flat_kv_pairs,Latitude_value),

 get_value_for_key(longitude,Flat_kv_pairs,Longitude_value),

 write('Latitude - '),write(Latitude_value),nl,

 write('Longitude - '),write(Longitude_value),nl,

 distance(Latitude_value,Longitude_value,5,5,Distance),

 write('Distance calculated - '),write(Distance),nl,

 change_context_variable_value(distanceToWorkContextElement,Distance),

 assertTriggPredicate(users_phone,locationEvent,Event_data).

trigger_component_event_response(calendar_application,meetingStartedEvent,Eve

nt_data):-

 write('calendar_application reacting to meeting started event'),nl,

 change_context_variable_value(meetingInProgressContextElement,1),

assertTriggPredicate(calendar_application,meetingStartedEvent,Event_data).

% INCOMING CALL EVENT START

trigger_component_event_response(users_phone,incomingCallEvent,Event_data):-

 % Meeting has started

 context_variable(_,[meetingInProgressContextElement,1]),

 % The user is at work

 context_variable(_,[distanceToWorkContextElement,0.0]),

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(callerName,Flat_kv_pairs,Caller_name),

 % Caller is in the preferred list

 member(Caller_name,[akshat,anugrah]),

 change_context_variable_value(inBusinessMeetingContextElement,1),

 write('users_phone reacting to incoming call event'),nl,

 write('BusinessMeetingPreferredCallerProfile - LET IT THROUGH'),nl,

 assertTriggPredicate(users_phone,incomingCallEvent,Event_data).

trigger_component_event_response(users_phone,incomingCallEvent,Event_data):-

 % Meeting has started

 context_variable(_,[meetingInProgressContextElement,1]),

 % The user is at work

 context_variable(_,[distanceToWorkContextElement,0.0]),

 change_context_variable_value(inBusinessMeetingContextElement,1),

71

 write('users_phone reacting to incoming call event'),nl,

 write('BusinessMeetingProfile - BLOCK CALL'),nl.

trigger_component_event_response(users_phone,incomingCallEvent,Event_data):-

 write('users_phone reacting to incoming call event'),nl,

 write('NotInMeetingProfile - NORMAL CALL'),nl,

 assertTriggPredicate(users_phone,incomingCallEvent,Event_data).

% INCOMING CALL EVENT END

trigger_component_event_response(Component_name,Event_id,Event_data):-

 component_instance(Component_name),

 event_schema(Event_id,_),

 assertTriggPredicate(Component_name,Event_id,Event_data).

trigger_component_event_response(Component_name,Event_id,Event_data).

B.2 cellphone_as_controller_specific_behaviour

trigger_component_event_response(true_remote_control_application,alarmGoesOff

Event,Event_data):-

 write('Component true_remote_control_application reacting to the

alarmGoesOffEvent.'),nl,

 change_context_variable_value(alarmOccured,1),

 write('AFTER 1 MINUTE PASSES...'),nl,

assertTriggPredicate(true_remote_control_application,alarmGoesOffEvent,Event_

data),

simulate_event_environment(user_cellphone,cellphoneTimeChangedEvent,[cellphon

eTimeChangedEvent,[[dateTime,hammerTime]]]).

trigger_component_event_response(true_remote_control_application,cellphoneTim

eChangedEvent,Event_data):-

 write('Component true_remote_control_application reacting to the

cellphoneTimeChangedEvent.'),nl,

 context_variable(Component_name,[alarmOccured,1]),

 change_context_variable_value(activationTimeHasElapsedContextElement,1),

assertTriggPredicate(true_remote_control_application,cellphoneTimeChangedEven

t,Event_data),

simulate_event_environment(user_cellphone,cellphoneLocationEvent,[cellphoneLo

cationEvent,[[latitude,0.0],[longitude,0.0]]]).

trigger_component_event_response(true_remote_control_application,cellphoneLoc

ationEvent,Event_data):-

 write('Component true_remote_control_application reacting to the

cellphoneLocationEvent.'),nl,

 context_variable(Component_name,[alarmOccured,1]),

context_variable(Component_name,[activationTimeHasElapsedContextElement,1]),

72

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(latitude,Flat_kv_pairs,Latitude_value),

 get_value_for_key(longitude,Flat_kv_pairs,Longitude_value),

 distance(Latitude_value,Longitude_value,0,0,Distance),

 write('Distance from home calculated - '),write(Distance),nl,

 Distance = 0.0,

 change_context_variable_value(mustStartCarEngineContextElement,1),

assertTriggPredicate(true_remote_control_application,cellphoneLocationEvent,E

vent_data),

simulate_event_environment(true_remote_control_application,remoteStarterActio

nEvent,[remoteStarterActionEvent,[[action,start]]]).

trigger_component_event_response(user_cellphone,notifyUserOfCarEngineStartedE

vent,Event_data):-

 write('@@@ Component user_cellphone reacting to the

notifyUserOfCarEngineStartedEvent. @@@'),nl,

assertTriggPredicate(user_cellphone,notifyUserOfCarEngineStartedEvent,Event_d

ata).

trigger_component_event_response(car_computer_control_unit,remoteStarterActio

nEvent,Event_data):-

 write('Component car_computer_control_unit reacting to the

remoteStarterActionEvent.'),nl,

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(action,Flat_kv_pairs,Action_type),

 Action_type = start,

 write('ATTEMPTING TO START CAR ENGINE.'),nl,

 write('Triggering ResultOfRemoteStarterAction Event.'),nl,

assertTriggPredicate(car_computer_control_unit,remoteStarterActionEvent,Event

_data),

simulate_event_environment(car_computer_control_unit,resultOfRemoteStarterAct

ionEvent,[resultOfRemoteStarterActionEvent,[[action,start],[result,1]]]).

trigger_component_event_response(true_remote_control_application,resultOfRemo

teStarterActionEvent,Event_data):-

 write('Component true_remote_control_application reacting to the

resultOfRemoteStarterActionEvent.'),nl,

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(result,Flat_kv_pairs,Action_result),

 write('Triggering NotifyUserOfCarEngineStarted Event.'),nl,

assertTriggPredicate(true_remote_control_application,resultOfRemoteStarterAct

ionEvent,Event_data),

simulate_event_environment(true_remote_control_application,notifyUserOfCarEng

ineStartedEvent,[notifyUserOfCarEngineStartedEvent,[[result,Action_result]]])

.

73

trigger_component_event_response(true_remote_control_application,cellphoneSub

sequentLocationEvent,Event_data):-

 write('Component true_remote_control_application reacting to the

cellphoneSubsequentLocationEvent.'),nl,

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(latitude0,Flat_kv_pairs,Latitude_value0),

 get_value_for_key(latitude1,Flat_kv_pairs,Latitude_value1),

 get_value_for_key(latitude2,Flat_kv_pairs,Latitude_value2),

 get_value_for_key(longitude0,Flat_kv_pairs,Longitude_value0),

 get_value_for_key(longitude1,Flat_kv_pairs,Longitude_value1),

 get_value_for_key(longitude2,Flat_kv_pairs,Longitude_value2),

 distance(Latitude_value0,Longitude_value0,0,0,Distance0),

 distance(Latitude_value1,Longitude_value1,0,0,Distance1),

 distance(Latitude_value2,Longitude_value2,0,0,Distance2),

 write('Distance0 - '),write(Distance0),nl,

 write('Distance1 - '),write(Distance1),nl,

 write('Distance2 - '),write(Distance2),nl,

assertTriggPredicate(true_remote_control_application,cellphoneSubsequentLocat

ionEvent,Event_data),

 (

 Distance0 < Distance1,Distance1 < Distance2

 ->

 write('Cellphone moving away from Home'),nl,

 change_context_variable_value(mustTriggerHomeActionsContextElement,1),

simulate_event_environment(true_remote_control_application,triggerHomeActionE

vent,[triggerHomeActionEvent,[[action,setTemprature],[value,23]]]),

simulate_event_environment(true_remote_control_application,triggerHomeActionE

vent,[triggerHomeActionEvent,[[action,engageSecurityAlarm],[value,1]]])

 ;

 % pass without doing anything

 write('Cellphone NOT moving away from Home'),nl).

trigger_component_event_response(smart_home_controller_unit,triggerHomeAction

Event,[triggerHomeActionEvent,[[action,setTemprature],[value,Value]]]):-

 write('Component smart_home_controller_unit reacting to the

triggerHomeActionEvent for setting temperature.'),nl,

 write('SETTING TEMPRATURE TO '),write(Value),nl,

assertTriggPredicate(smart_home_controller_unit,triggerHomeActionEvent,Event_

data),

simulate_event_environment(smart_home_controller_unit,resultOfHomeActionEvent

,[resultOfHomeActionEvent,[[action,setTemprature],[value,Value],[result,1]]])

.

trigger_component_event_response(smart_home_controller_unit,triggerHomeAction

Event,[triggerHomeActionEvent,[[action,engageSecurityAlarm],[value,Value]]]):

-

74

 write('Component smart_home_controller_unit reacting to the

triggerHomeActionEvent for engage security alarm.'),nl,

 write('ENGAGING ALARM SYSTEM'),nl,

assertTriggPredicate(smart_home_controller_unit,triggerHomeActionEvent,Event_

data),

simulate_event_environment(smart_home_controller_unit,resultOfHomeActionEvent

,[resultOfHomeActionEvent,[[action,engageSecurityAlarm],[value,Value],[result

,1]]]).

trigger_component_event_response(smart_home_controller_unit,triggerHomeAction

Event,Event_data):-

assertTriggPredicate(smart_home_controller_unit,triggerHomeActionEvent,Event_

data),

 write('Component smart_home_controller_unit reacting to the

triggerHomeActionEvent of UNKNOWN type'),nl.

trigger_component_event_response(true_remote_control_application,resultOfHome

ActionEvent,[resultOfHomeActionEvent,[[action,engageSecurityAlarm],[value,Val

ue],[result,Result]]]):-

 write('Component true_remote_control_application reacting to the

resultOfHomeActionEvent for engageSecurityAlarm.'),nl,

assertTriggPredicate(true_remote_control_application,resultOfHomeActionEvent,

Event_data),

simulate_event_environment(true_remote_control_application,notifyUserOfHomeAc

tionEvent,[notifyUserOfHomeActionEvent,[[action,engageSecurityAlarm],[value,V

alue],[result,Result]]]).

trigger_component_event_response(true_remote_control_application,resultOfHome

ActionEvent,[resultOfHomeActionEvent,[[action,setTemprature],[value,Value],[r

esult,Result]]]):-

 write('Component true_remote_control_application reacting to the

resultOfHomeActionEvent for setTemprature.'),nl,

assertTriggPredicate(true_remote_control_application,resultOfHomeActionEvent,

Event_data),

simulate_event_environment(true_remote_control_application,notifyUserOfHomeAc

tionEvent,[notifyUserOfHomeActionEvent,[[action,setTempraturesetTemprature],[

value,Value],[result,Result]]]).

trigger_component_event_response(user_cellphone,notifyUserOfHomeActionEvent,E

vent_data):-

 write('@@@ Component user_cellphone reacting to the

notifyUserOfHomeActionEvent '),

 faltten_to_key_value_pairs(Event_data,[],Flat_kv_pairs),

 get_value_for_key(action,Flat_kv_pairs,Action_value),

 write('For '),write(Action_value), write('. @@@'),nl,

assertTriggPredicate(user_cellphone,notifyUserOfHomeActionEvent,Event_data).

trigger_component_event_response(Component_name,Event_id,Event_data):-

 component_instance(Component_name),

75

 event_schema(Event_id,_),

 assertTriggPredicate(Component_name,Event_id,Event_data).

trigger_component_event_response(Component_name,Event_id,Event_data).

76

Appendix C Case study XMC source code

C.1 Cellphone behavior adaptation

% CHECK THAT NO LOSS IS ENCOUNTERED WHILE SENDING THE EVENTS, AND THAT IT IS

POSSIBLE THAT THE EVENT IS RECEIVED

% mck(chk_send_receive,lossless)

chk_send_event ::=

simulate_event_component(calendar_application,users_phone,meetingStartedEvent

,[meetingStartedEvent,[[meetingName,board_meeting],[date,sfsdfs],[startTime,s

dfsdf],[duration,1]]])

 ; action(sendnew)

 .

chk_receive_event ::=

hasComponentReceivedResult(calendar_application,meetingStartedEvent,Result);

 if (Result==1)

 then

 {

 action(recvnew)

 }

 .

chk_send_receive ::=

 chk_send_event

 ; chk_receive_event

 .

losslesstx += [-sendnew]losslesstx /\ <->tt.

losslessrx += <recvnew>tt \/ <->losslessrx.

lossless += losslesstx /\ losslessrx.

% CHECK THAT NO LOSS IS ENCOUNTERED WHILE SENDING THE EVENTS, AND THAT IT IS

POSSIBLE THAT THE EVENT IS RECEIVED

% RECEIVER CONTEXT FILTER

chk_receiver_context_filter_unblocked ::=

 change_context_variable_value(name,phone)

 ;

simulate_event_environment(users_phone,locationEvent,[locationEvent,[[latitud

e,1],[longitude,1]]])

 ; chk_receiver_context_filter_received_unblocked.

chk_receiver_context_filter_blocked ::=

 change_context_variable_value(name,someotherphone)

 ;

simulate_event_environment(users_phone,locationEvent,[locationEvent,[[latitud

e,1],[longitude,1]]])

 ; chk_receiver_context_filter_received_blocked.

chk_receiver_context_filter_received_blocked ::=

77

 hasComponentReceivedResult(calendar_application,locationEvent,Result)

 ; if (Result==1)

 then

 {

 action(receivedLocationEventBlocked)

 }

 .

chk_receiver_context_filter_received_unblocked ::=

 hasComponentReceivedResult(users_phone,locationEvent,Result)

 ; if (Result==1)

 then

 {

 action(receivedLocationEventUnblocked)

 }

 .

never_receive_blocked_event -= [receivedLocationEventBlocked]ff /\ [-

]never_receive_blocked_event.

possibly_receive_unblocked_event += <receivedLocationEventUnblocked>tt \/ <-

>possibly_receive_unblocked_event.

% RECEIVER CONTEXT FILTER

% UNIQUE COMPONENTS

% mck(chk_duplicates,unique_all).

chk_duplicates_cs_one ::=

 unique_environments_cs_one

 ; unique_components_cs_one

 ; unique_events_cs_one

 ; unique_advertisements_cs_one

 ; unique_subscriptions_cs_one

 ; unique_context_variables_cs_one

 ; unique_environment_component_relation_cs_one

 .

unique_environments_cs_one ::=

 all_environemtns([],All_env_list)

 ; if (no_duplicates(All_env_list))

 then

 {

 action(noDuplicateEnv)

 }

 .

unique_components_cs_one ::=

 all_components([],All_component_list)

 ; if (no_duplicates(All_component_list))

 then

 {

 action(noDuplicateComponent)

 }

 .

unique_events_cs_one ::=

 all_event_names([],All_event_list)

78

 ; if (no_duplicates(All_event_list))

 then

 {

 action(noDuplicateEvent)

 }

 .

unique_advertisements_cs_one ::=

 all_advertisements([],All_advertisement_list)

 ; if (no_duplicates(All_advertisement_list))

 then

 {

 action(noDuplicateAdvertisement)

 }

 .

unique_subscriptions_cs_one ::=

 all_subscriptions([],All_subscription_list)

 ; if (no_duplicates(All_subscription_list))

 then

 {

 action(noDuplicateSubscription)

 }

 .

unique_context_variables_cs_one ::=

 all_context_variables([],All_context_variable_list)

 ; if (no_duplicates(All_context_variable_list))

 then

 {

 action(noDuplicateContextVariable)

 }

 .

unique_environment_component_relation_cs_one ::=

all_environment_component_relation([],All_environment_component_relation_list

)

 ; if (no_duplicates(All_environment_component_relation_list))

 then

 {

 action(noDuplicateEnvironmentComponentRelation)

 }

 .

unique_all_cs_one += uniqueEnv_cs_one /\ uniqueComponent_cs_one /\

uniqueEvent_cs_one /\ uniqueAdvertisement_cs_one /\ uniqueSubscription_cs_one

/\ uniqueContextVariable_cs_one /\ uniqueEnvironmentComponentRelation_cs_one.

uniqueEnv_cs_one += [-noDuplicateEnv]uniqueEnv_cs_one /\ <->tt.

uniqueComponent_cs_one += [-noDuplicateComponent]uniqueComponent_cs_one /\ <-

>tt.

uniqueEvent_cs_one += [-noDuplicateEvent]uniqueEvent_cs_one /\ <->tt.

uniqueAdvertisement_cs_one += [-

noDuplicateAdvertisement]uniqueAdvertisement_cs_one /\ <->tt.

uniqueSubscription_cs_one += [-

noDuplicateSubscription]uniqueSubscription_cs_one /\ <->tt.

79

uniqueContextVariable_cs_one += [-

noDuplicateContextVariable]uniqueContextVariable_cs_one /\ <->tt.

uniqueEnvironmentComponentRelation_cs_one += [-

noDuplicateEnvironmentComponentRelation]uniqueEnvironmentComponentRelation_cs

_one /\ <->tt.

% UNIQUE COMPONENTS

% VALIDATE RELATIONS

chk_all_relations_cs_one ::=

 chk_env_component_relation_cs_one

 ; chk_advertisement_relation_cs_one

 ; chk_subscription_relation_cs_one

 ; chk_context_variable_relation_cs_one

 ; chk_for_dual_role_cs_one

 .

chk_env_component_relation_cs_one ::=

all_environment_component_relation_as_nested_lists([],All_environment_compone

nt_relation_list)

 ; if

(validate_env_component_relation_list(All_environment_component_relation_list

))

 then

 {

 action(allValidEnvComponentRelation)

 }

 .

chk_advertisement_relation_cs_one ::=

all_advertisements_relation_as_nested_lists([],Advertisement_component_event_

relation_list)

 ;

if(validate_advertisement_relation_list(Advertisement_component_event_relatio

n_list))

 then

 {

 action(allValidAdvertisements)

 }

 .

chk_subscription_relation_cs_one ::=

all_subscription_relation_as_nested_lists([],Subscription_component_event_rel

ation_list)

 ;

if(validate_subscription_relation_list(Subscription_component_event_relation_

list))

 then

 {

 action(allValidSubscriptions)

 }

 .

80

chk_context_variable_relation_cs_one ::=

all_context_variable_relation_as_nested_lists([],Context_variable_relation_li

st)

 ;

if(validate_context_variable_relation_list(Context_variable_relation_list))

 then

 {

 action(allValidContextVariable)

 }

 .

chk_for_dual_role_cs_one ::=

all_subscription_relation_as_nested_lists([],Subscription_component_event_rel

ation_list)

 ;

if(validate_no_dual_membership_list(Subscription_component_event_relation_lis

t))

 then

 {

 action(allValidNoDualMembership)

 }

 .

all_valid_relations_cs_one += valid_env_component_relations_cs_one /\

valid_adv_relations_cs_one /\ valid_subs_relations_cs_one /\

valid_context_variable_relations_cs_one /\ valid_no_dual_membership_cs_one.

valid_env_component_relations_cs_one += [-

allValidEnvComponentRelation]valid_env_component_relations_cs_one /\ <->tt.

valid_adv_relations_cs_one += [-

allValidAdvertisements]valid_adv_relations_cs_one /\ <->tt.

valid_subs_relations_cs_one += [-

allValidSubscriptions]valid_subs_relations_cs_one /\ <->tt.

valid_context_variable_relations_cs_one += [-

allValidContextVariable]valid_context_variable_relations_cs_one /\ <->tt.

valid_no_dual_membership_cs_one += [-

allValidNoDualMembership]valid_no_dual_membership_cs_one /\ <->tt.

% CAUSALITY

% mck(send_before_receive_after,causality).

send_before_receive_after_cs_one ::=

 chk_send_event

 ; chk_receive_event

 .

causality_cs_one += [recvnew]tt \/ ([-]causality /\ [sendnew]tt).

% CAUSALITY

% SPONTANEOUS EVENT

% mck(chk_spontaneous_event, never_receive_spontaneous_event)

chk_spontaneous_event_cs_one ::=

 cleanupComponentTriggPredicates(calendar_application)

81

 ; hasComponentReceivedResult(calendar_application,locationEvent,Result)

 ; if(Result == 1)

 then

 {

 action(spontaneousEventReceived)

 }

 .

never_receive_spontaneous_event_cs_one -= [spontaneousEventReceived]ff /\ [-

]never_receive_spontaneous_event.

% SPONTANEOUS EVENT

% EVENT WITHOUT ADVERTISEMENT

% mck(chk_event_without_advertisement,

never_send_event_without_advertisement)

chk_event_without_advertisement_cs_one ::=

 if

(not(simulate_event_environment(users_phone,meetingStartedEvent,[meetingStart

edEvent,[[meetingName,board_meeting],[date,sfsdfs],[startTime,sdfsdf],[durati

on,1]]])))

 then

 {

 action(unableToSendEventWithoutAdvertisement)

 }

 .

never_send_event_without_advertisement_cs_one += [-

unableToSendEventWithoutAdvertisement]never_send_event_without_advertisement

/\ <->tt.

% EVENT WITHOUT ADVERTISEMENT

% EVENT WITH INVALID SCHEMA

chk_invalid_event_schema_cs_one ::=

 if

(not(simulate_event_component(calendar_application,users_phone,meetingStarted

Event,[meetingStartedEvent,[[meetingName,board_meeting],[date,sfsdfs],[startT

ime,sdfsdf],[duration,xx]]])))

 then

 {

 action(unableToSendEventWithInvalidSchema)

 }

 .

never_able_to_send_event_with_invalid_schema_cs_one += [-

unableToSendEventWithInvalidSchema]never_able_to_send_event_with_invalid_sche

ma /\ <-> tt.

% EVENT WITH INVALID SCHEMA

% NON EXISTANT COMPONENT CANNOT SEND EVENT

chk_cannot_send_non_exist_component_cs_one ::=

82

if(not(simulate_event_component(non_existent_component,users_phone,meetingSta

rtedEvent,[meetingStartedEvent,[[meetingName,board_meeting],[date,sfsdfs],[st

artTime,sdfsdf],[duration,1]]])))

 then

 {

 action(nonExistentComponentUnableToSendEvent)

 }

 .

never_send_event_non_existent_component_cs_one += [-

nonExistentComponentUnableToSendEvent]never_send_event_non_existent_component

/\ <->tt.

% NON EXISTANT COMPONENT CANNOT SEND EVENT

% COMPONENT CANNOT SEND EVENT THAT IS NOT DEFINED

chk_cannot_send_non_exist_event_cs_one ::=

 if

(not(simulate_event_environment(calendar_application,nonExistentEvent,[nonExi

stentEvent,[[action,99],[value,23]]])))

 then

 {

 action(unableToSendUndefinedEvent)

 }

 .

never_send_undefined_event_cs_one += [-

unableToSendUndefinedEvent]never_send_undefined_event /\ <->tt.

% COMPONENT CANNOT SEND EVENT THAT IS NOT DEFINED

% FIDELITY

% mck(fidelity_chk,fidelity).

send_event_for_fidelity_cs_one ::=

simulate_event_component(calendar_application,users_phone,meetingStartedEvent

,[meetingStartedEvent,[[meetingName,board_meeting],[date,sfsdfs],[startTime,s

dfsdf],[duration,1]]])

 ;

assert(event_fidelity_chk(users_phone,meetingStartedEvent,[meetingStartedEven

t,[[meetingName,board_meeting],[date,sfsdfs],[startTime,sdfsdf],[duration,1]]

]))

 .

receive_event_for_fidelity_cs_one ::=

 hasComponentReceivedResult(users_phone,meetingStartedEvent,Result)

 ; if (Result==1)

 then

 {

 triggered(users_phone,meetingStartedEvent, Event_data)

 ;

event_fidelity_chk(users_phone,meetingStartedEvent,Event_data_stored)

 ; if (Event_data_stored == Event_data)

 then

83

 {

 action(fidelityTestPassed)

 }

 else

 {

 action(fidelityTestFailed)

 }

 }

 .

fidelity_chk_cs_one ::=

 send_event_for_fidelity_cs_one

 ; receive_event_for_fidelity_cs_one

 .

fidelity_cs_one += never_fidelity_fail.

possible_fidelity_pass_cs_one += <fidelityTestPassed>tt \/ <-

>possible_fidelity_pass.

never_fidelity_fail_cs_one -= [fidelityTestFailed]ff /\ [-

]never_fidelity_fail.

% FIDELITY

% VALID STATE WHILE EVENT IS TRAVERSED

% mck(runtime_validity,runtime_validity_property).

runtime_duplicates_cs_one ::=

 chk_send_event

 | chk_duplicates_cs_one

 .

runtime_relations_cs_one ::=

 chk_send_event

 | chk_all_relations_cs_one

 .

runtime_validity_cs_one ::=

 chk_send_event

 | chk_relations_duplicates_cs_one

 .

chk_relations_duplicates_cs_one ::=

 chk_all_relations_cs_one

 ; chk_duplicates_cs_one

 .

runtime_duplicates_property_cs_one += unique_all_cs_one.

runtime_relations_property_cs_one += all_valid_relations_cs_one.

runtime_validity_property_cs_one += unique_all_cs_one /\

all_valid_relations_cs_one.

% VALID STATE WHILE EVENT IS TRAVERSED

% EVENT WITHOUT SUBSCRIPTION

chk_event_without_subscription_cs_one ::=

84

simulate_event_environment(users_phone,incomingCallEvent,[incomingCallEvent,[

[callerName,akshat],[callingNumber,a99]]])

 ;

hasComponentReceivedResult(calendar_application,incomingCallEvent,Result)

 ; if (Result == 1)

 then

 {

 action(receivedEventWithoutSubscription)

 }

 .

never_receive_event_without_subscription_cs_one -=

[receivedEventWithoutSubscription]ff /\ [-

]never_receive_event_without_subscription_cs_one.

% EVENT WITHOUT SUBSCRIPTION

% CONTENT FILTER CHECK

chk_content_filter_blocking_cs_one ::=

 chk_content_filter_send_blocked_event_cs_one

 ; chk_content_filter_receive_blocked_event_cs_one

 .

chk_content_filter_send_blocked_event_cs_one ::=

simulate_event_environment(users_phone,locationEvent,[locationEvent,[[latitud

e,5],[longitude,1]]])

 .

chk_content_filter_receive_blocked_event_cs_one ::=

 hasComponentReceivedResult(calendar_application,locationEvent,Result)

 ; if (Result==1)

 then

 {

 action(receivedBlockedEvent)

 }

 .

chk_receiver_content_filter_blocking_cs_one -= [receivedBlockedEvent]ff /\ [-

]chk_receiver_content_filter_blocking.

% CONTENT FILTER CHECK

% DISCONNECTED COMPONENT

chk_disconnected_component_cs_one ::=

 disconnect_component_cs_one

 ; chk_disconnected_component_send_cs_one

 ; reconnect_component_cs_one

 .

disconnect_component_cs_one ::=

 retract(environment_component(users_phone,calendar_application))

 .

85

reconnect_component_cs_one ::=

 assert(environment_component(users_phone,calendar_application))

 .

chk_disconnected_component_send_cs_one ::=

 cleanupComponentTriggPredicates(calendar_application)

 ;

simulate_event_environment(users_phone,locationEvent,[locationEvent,[[latitud

e,1],[longitude,1]]])

 ; hasComponentReceivedResult(calendar_application,locationEvent,Result)

 ; if(Result == 1)

 then

 {

 action(eventByComponentWhileDisconnected)

 }

 .

never_event_received_when_disconnected_cs_one -=

[eventByComponentWhileDisconnected]ff /\ [-

]never_event_received_when_disconnected_cs_one.

% DISCONNECTED COMPONENT

% UNDEFINED COMPONENT CANNOT RECEIVE EVENT

chk_undefined_component_cannot_receive_event_cs_one ::=

 cleanupComponentTriggPredicates(undefined_component)

 ;

simulate_event_environment(users_phone,locationEvent,[locationEvent,[[latitud

e,1],[longitude,1]]])

 ; hasComponentReceivedResult(undefined_component,locationEvent,Result)

 ; if(Result == 1)

 then

 {

 action(undefinedComponentReceivedEvent)

 }

 .

never_receive_event_undefined_component_cs_one -=

[undefinedComponentReceivedEvent]ff /\ [-

]never_receive_event_undefined_component_cs_one.

% UNDEFINED COMPONENT CANNOT RECEIVE EVENT

% COMPONENT CANNOT RECEIVE AN EVENT FOR WHICH A SCHEMA IS NOT DEFINED

chk_cannot_receive_undefined_event_cs_one ::=

 cleanupComponentTriggPredicates(users_phone)

 ; hasComponentReceivedResult(users_phone,undefined_event_type,Result)

 ; if(Result == 1)

 then

 {

 action(undefinedEventReceived)

 }

 .

86

never_receive_undefined_event_cs_one -= [undefinedEventReceived]ff /\ [-

]never_receive_undefined_event_cs_one.

C.2 Cellphone as controller

% RECEIVER CONTEXT FILTER

% mck(testContextFilter(1),filterNotBlocking)

% mck(testContextFilter(0),filterBlocking)

send_trigger_home_action_event ::=

simulate_event_environment(true_remote_control_application,triggerHomeActionE

vent,[triggerHomeActionEvent,[[action,setTemprature],[value,23]]])

 ; action(sendTriggerHomeActionEvent)

 .

chk_received_trigger_home_action_event ::=

hasComponentReceivedResult(smart_home_controller_unit,triggerHomeActionEvent,

Result)

 ; if (Result==1)

 then

 {

 action(receivedTriggerHomeActionEvent)

 }

 .

testContextFilter(Pass) ::=

 change_context_variable_value(mustTriggerHomeActionsContextElement,Pass)

 ; send_trigger_home_action_event

 | chk_received_trigger_home_action_event

 .

filterBlocking += contextFilterBlock1 /\ contextFilterBlock2.

contextFilterBlock1 += <sendTriggerHomeActionEvent>tt \/ <-

>contextFilterBlock1.

contextFilterBlock2 -= [receivedTriggerHomeActionEvent]ff /\ [-

]contextFilterBlock2.

filterNotBlocking += contextFilterBlock1 /\ contextFilterNonBlock1.

contextFilterNonBlock1 += <receivedTriggerHomeActionEvent>tt \/ <-

>contextFilterNonBlock1.

% RECEIVER CONTEXT FILTER

% BLOCKING RECEIVER CONTENT FILTER

% mck(testContentFilter,contentFilterBlocking).

% mck(testContentFilterNotBlocked,contentFilterNotBlocking).

send_alarm_event_blocked ::=

simulate_event_component(alarm_application,user_cellphone,alarmGoesOffEvent,[

alarmGoesOffEvent,[[dateTime,sometime]]])

 ; action(sendBlockedAlarmEvent)

 .

87

send_alarm_event_not_blocked ::=

simulate_event_component(alarm_application,user_cellphone,alarmGoesOffEvent,[

alarmGoesOffEvent,[[dateTime,othertime]]])

 ; action(sendBlockedAlarmEvent)

 .

chk_received_alarm_event ::=

hasComponentReceivedResult(true_remote_control_application,alarmGoesOffEvent,

Result)

 ; if (Result==1)

 then

 {

 action(receivedAlarmEvent)

 }

 .

testContentFilter ::=

 send_alarm_event_blocked

 ; chk_received_alarm_event

 .

testContentFilterNotBlocked ::=

 send_alarm_event_not_blocked

 ; chk_received_alarm_event

 .

contentFilterBlocking += contentFilterBlock1 /\ contentFilterBlock2.

contentFilterBlock1 += <sendBlockedAlarmEvent>tt \/ <->contentFilterBlock1.

contentFilterBlock2 -= [receivedAlarmEvent]ff /\ [-]contentFilterBlock2.

contentFilterNotBlocking += contentFilterBlock1 /\ contentFilterNonBlock1.

contentFilterNonBlock1 += <receivedAlarmEvent>tt \/ <-

>contentFilterNonBlock1.

% BLOCKING RECEIVER CONTENT FILTER

% UNIQUE COMPONENTS

% mck(chk_duplicates,unique_all).

chk_duplicates ::=

 unique_environments

 ; unique_components

 ; unique_events

 ; unique_advertisements

 ; unique_subscriptions

 ; unique_context_variables

 ; unique_environment_component_relation.

unique_environments ::=

 all_environemtns([],All_env_list)

 ; if (no_duplicates(All_env_list))

 then

 {

 action(noDuplicateEnv)

88

 }

 .

unique_components ::=

 all_components([],All_component_list)

 ; if (no_duplicates(All_component_list))

 then

 {

 action(noDuplicateComponent)

 }

 .

unique_events ::=

 all_event_names([],All_event_list)

 ; if (no_duplicates(All_event_list))

 then

 {

 action(noDuplicateEvent)

 }

 .

unique_advertisements ::=

 all_advertisements([],All_advertisement_list)

 ; if (no_duplicates(All_advertisement_list))

 then

 {

 action(noDuplicateAdvertisement)

 }

 .

unique_subscriptions ::=

 all_subscriptions([],All_subscription_list)

 ; if (no_duplicates(All_subscription_list))

 then

 {

 action(noDuplicateSubscription)

 }

 .

unique_context_variables ::=

 all_context_variables([],All_context_variable_list)

 ; if (no_duplicates(All_context_variable_list))

 then

 {

 action(noDuplicateContextVariable)

 }

 .

unique_environment_component_relation ::=

all_environment_component_relation([],All_environment_component_relation_list

)

 ; if (no_duplicates(All_environment_component_relation_list))

 then

 {

 action(noDuplicateEnvironmentComponentRelation)

 }

89

 .

unique_all += uniqueEnv /\ uniqueComponent /\ uniqueEvent /\

uniqueAdvertisement /\ uniqueSubscription /\ uniqueContextVariable /\

uniqueEnvironmentComponentRelation.

uniqueEnv += [-noDuplicateEnv]uniqueEnv /\ <->tt.

uniqueComponent += [-noDuplicateComponent]uniqueComponent /\ <->tt.

uniqueEvent += [-noDuplicateEvent]uniqueEvent /\ <->tt.

uniqueAdvertisement += [-noDuplicateAdvertisement]uniqueAdvertisement /\ <-

>tt.

uniqueSubscription += [-noDuplicateSubscription]uniqueSubscription /\ <->tt.

uniqueContextVariable += [-noDuplicateContextVariable]uniqueContextVariable

/\ <->tt.

uniqueEnvironmentComponentRelation += [-

noDuplicateEnvironmentComponentRelation]uniqueEnvironmentComponentRelation /\

<->tt.

% UNIQUE COMPONENTS

% VALID RELATIONS = ROLE INTEGRITY + ACTION INEGRITY

% mck(chk_all_relations,all_valid_relations).

chk_all_relations ::=

 chk_env_component_relation

 ; chk_advertisement_relation

 ; chk_subscription_relation

 ; chk_context_variable_relation

 ; chk_for_dual_role

 .

chk_env_component_relation ::=

all_environment_component_relation_as_nested_lists([],All_environment_compone

nt_relation_list)

 ; if

(validate_env_component_relation_list(All_environment_component_relation_list

))

 then

 {

 action(allValidEnvComponentRelation)

 }

 .

chk_advertisement_relation ::=

all_advertisements_relation_as_nested_lists([],Advertisement_component_event_

relation_list)

 ;

if(validate_advertisement_relation_list(Advertisement_component_event_relatio

n_list))

 then

 {

 action(allValidAdvertisements)

 }

 .

90

chk_subscription_relation ::=

all_subscription_relation_as_nested_lists([],Subscription_component_event_rel

ation_list)

 ;

if(validate_subscription_relation_list(Subscription_component_event_relation_

list))

 then

 {

 action(allValidSubscriptions)

 }

 .

chk_context_variable_relation ::=

all_context_variable_relation_as_nested_lists([],Context_variable_relation_li

st)

 ;

if(validate_context_variable_relation_list(Context_variable_relation_list))

 then

 {

 action(allValidContextVariable)

 }

 .

chk_for_dual_role ::=

all_subscription_relation_as_nested_lists([],Subscription_component_event_rel

ation_list)

 ;

if(validate_no_dual_membership_list(Subscription_component_event_relation_lis

t))

 then

 {

 action(allValidNoDualMembership)

 }

 .

all_valid_relations += valid_env_component_relations /\ valid_adv_relations

/\ valid_subs_relations /\ valid_context_variable_relations /\

valid_no_dual_membership.

valid_env_component_relations += [-

allValidEnvComponentRelation]valid_env_component_relations /\ <->tt.

valid_adv_relations += [-allValidAdvertisements]valid_adv_relations /\ <->tt.

valid_subs_relations += [-allValidSubscriptions]valid_subs_relations /\ <-

>tt.

valid_context_variable_relations += [-

allValidContextVariable]valid_context_variable_relations /\ <->tt.

valid_no_dual_membership += [-

allValidNoDualMembership]valid_no_dual_membership /\ <->tt.

% VALID RELATIONS

% FIDELITY

% mck(fidelity_chk,fidelity).

send_event_for_fidelity ::=

91

simulate_event_environment(true_remote_control_application,triggerHomeActionE

vent,[triggerHomeActionEvent,[[action,setTemprature],[value,23]]])

 ;

assert(event_fidelity_chk(true_remote_control_application,triggerHomeActionEv

ent,[triggerHomeActionEvent,[[action,setTemprature],[value,23]]]))

 .

receive_event_for_fidelity ::=

hasComponentReceivedResult(smart_home_controller_unit,triggerHomeActionEvent,

Result)

 ; if (Result==1)

 then

 {

triggered(smart_home_controller_unit,triggerHomeActionEvent,Event_data)

 ;

event_fidelity_chk(true_remote_control_application,triggerHomeActionEvent,Eve

nt_data_stored)

 ; if (Event_data_stored == Event_data)

 then

 {

 action(fidelityTestPassed)

 }

 else

 {

 action(fidelityTestFailed)

 }

 }

 .

fidelity_chk ::=

 send_event_for_fidelity

 ; receive_event_for_fidelity

 .

fidelity += never_fidelity_fail.

possible_fidelity_pass += <fidelityTestPassed>tt \/ <-

>possible_fidelity_pass.

never_fidelity_fail -= [fidelityTestFailed]ff /\ [-]never_fidelity_fail.

% FIDELITY

% CAUSALITY

% mck(send_before_receive_after,causality).

send_before_receive_after ::=

 change_context_variable_value(mustTriggerHomeActionsContextElement,Pass)

 ; send_trigger_home_action_event

 ; chk_received_trigger_home_action_event

 .

causality += [receivedTriggerHomeActionEvent]tt \/ ([-]causality /\

[sendTriggerHomeActionEvent]tt).

92

% CAUSALITY

% VALID STATE WHILE EVENT IS TRAVERSED

% mck(runtime_validity,runtime_validity_property).

runtime_duplicates ::=

 send_trigger_home_action_event

 | chk_duplicates

 .

runtime_relations ::=

 send_trigger_home_action_event

 | chk_all_relations

 .

runtime_validity ::=

 send_trigger_home_action_event

 | chk_relations_duplicates

 .

chk_relations_duplicates ::=

 chk_all_relations

 ; chk_duplicates

 .

runtime_duplicates_property += unique_all.

runtime_relations_property += all_valid_relations.

runtime_validity_property += unique_all /\ all_valid_relations.

% VALID STATE WHILE EVENT IS TRAVERSED

% SPONTANEOUS EVENT

% mck(chk_spontaneous_event, never_receive_spontaneous_event)

chk_spontaneous_event ::=

 cleanupComponentTriggPredicates(true_remote_control_application)

 ;

hasComponentReceivedResult(true_remote_control_application,alarmGoesOffEvent,

Result)

 ; if(Result == 1)

 then

 {

 action(spontaneousEventReceived)

 }

 .

never_receive_spontaneous_event -= [spontaneousEventReceived]ff /\ [-

]never_receive_spontaneous_event.

% SPONTANEOUS EVENT

% EVENT WITHOUT ADVERTISEMENT

% mck(chk_event_without_advertisement,

never_send_event_without_advertisement)

chk_event_without_advertisement ::=

93

 if

(not(simulate_event_component(alarm_application,user_cellphone,resultOfHomeAc

tionEvent,[resultOfHomeActionEvent,[[action,string],[value,string],[result,st

ring]]])))

 then

 {

 action(unableToSendEventWithoutAdvertisement)

 }

 .

never_send_event_without_advertisement += [-

unableToSendEventWithoutAdvertisement]never_send_event_without_advertisement

/\ <->tt.

% EVENT WITHOUT ADVERTISEMENT

% EVENT WITH INVALID SCHEMA

chk_invalid_event_schema ::=

 if

(not(simulate_event_environment(true_remote_control_application,triggerHomeAc

tionEvent,[triggerHomeActionEvent,[[action,99],[value,23]]])))

 then

 {

 action(unableToSendEventWithInvalidSchema)

 }

 .

never_able_to_send_event_with_invalid_schema += [-

unableToSendEventWithInvalidSchema]never_able_to_send_event_with_invalid_sche

ma /\ <-> tt.

% EVENT WITH INVALID SCHEMA'

% EVENT WITHOUT SUBSCRIPTION

chk_event_without_subscription ::=

simulate_event_environment(true_remote_control_application,notifyUserOfCarEng

ineStartedEvent,[notifyUserOfCarEngineStartedEvent,[[result,1]]])

 ;

hasComponentReceivedResult(smart_home_controller_unit,notifyUserOfCarEngineSt

artedEvent,Result)

 ; if (Result == 1)

 then

 {

 action(receivedEventWithoutSubscription)

 }

 .

never_receive_event_without_subscription -=

[receivedEventWithoutSubscription]ff /\ [-

]never_receive_event_without_subscription.

% EVENT WITHOUT SUBSCRIPTION

% NON EXISTANT COMPONENT CANNOT SEND EVENT

94

chk_cannot_send_non_exist_component ::=

if(not(simulate_event_component(non_existent_component,user_cellphone,alarmGo

esOffEvent,[alarmGoesOffEvent,[[dateTime,othertime]]])))

 then

 {

 action(nonExistentComponentUnableToSendEvent)

 }

 .

never_send_event_non_existent_component += [-

nonExistentComponentUnableToSendEvent]never_send_event_non_existent_component

/\ <->tt.

% NON EXISTANT COMPONENT CANNOT SEND EVENT

% COMPONENT CANNOT SEND EVENT THAT IS NOT DEFINED

chk_cannot_send_non_exist_event ::=

 if

(not(simulate_event_environment(true_remote_control_application,nonExistentEv

ent,[nonExistentEvent,[[action,99],[value,23]]])))

 then

 {

 action(unableToSendUndefinedEvent)

 }

 .

never_send_undefined_event += [-

unableToSendUndefinedEvent]never_send_undefined_event /\ <->tt.

% COMPONENT CANNOT SEND EVENT THAT IS NOT DEFINED

% COMPONENT CANNOT RECEIVE AN EVENT FOR WHICH A SCHEMA IS NOT DEFINED

chk_cannot_receive_undefined_event ::=

 cleanupComponentTriggPredicates(true_remote_control_application)

 ;

hasComponentReceivedResult(true_remote_control_application,undefined_event_ty

pe,Result)

 ; if(Result == 1)

 then

 {

 action(undefinedEventReceived)

 }

 .

never_receive_undefined_event -= [undefinedEventReceived]ff /\ [-

]never_receive_undefined_event.

% COMPONENT CANNOT RECEIVE AN EVENT FOR WHICH A SCHEMA IS NOT DEFINED

% UNDEFINED COMPONENT CANNOT RECEIVE EVENT

chk_undefined_component_cannot_receive_event ::=

 cleanupComponentTriggPredicates(undefined_component)

95

 ;

simulate_event_environment(true_remote_control_application,notifyUserOfCarEng

ineStartedEvent,[notifyUserOfCarEngineStartedEvent,[[result,1]]])

 ;

hasComponentReceivedResult(undefined_component,notifyUserOfCarEngineStartedEv

ent,Result)

 ; if(Result == 1)

 then

 {

 action(undefinedComponentReceivedEvent)

 }

 .

never_receive_event_undefined_component -=

[undefinedComponentReceivedEvent]ff /\ [-

]never_receive_event_undefined_component.

% UNDEFINED COMPONENT CANNOT RECEIVE EVENT

% UNCONNECTED COMPONENT

chk_disconnected_component ::=

 disconnect_component

 ; chk_disconnected_component_send_notify_event_disconnected

 ; reconnect_component

 .

chk_disconnected_component_send_notify_event_connected ::=

simulate_event_environment(true_remote_control_application,notifyUserOfCarEng

ineStartedEvent,[notifyUserOfCarEngineStartedEvent,[[result,1]]])

 ;

hasComponentReceivedResult(user_cellphone,notifyUserOfCarEngineStartedEvent,R

esult)

 ; if(Result == 1)

 then

 {

 action(eventByComponentWhileConnected)

 }

 .

chk_disconnected_component_send_notify_event_disconnected ::=

 cleanupComponentTriggPredicates(user_cellphone)

 ;

simulate_event_environment(true_remote_control_application,notifyUserOfCarEng

ineStartedEvent,[notifyUserOfCarEngineStartedEvent,[[result,1]]])

 ;

hasComponentReceivedResult(user_cellphone,notifyUserOfCarEngineStartedEvent,R

esult)

 ; if(Result == 1)

 then

 {

 action(eventByComponentWhileDisconnected)

 }

 .

disconnect_component ::=

96

retract(environment_component(true_remote_control_application,user_cellphone)

)

 .

reconnect_component ::=

assert(environment_component(true_remote_control_application,user_cellphone))

 .

possible_event_received_when_connected += <eventByComponentWhileConnected>tt

\/ <->possible_event_received_when_connected.

never_event_received_when_disconnected -=

[eventByComponentWhileDisconnected]ff /\ [-

]never_event_received_when_disconnected.

chk_component_connection += possible_event_received_when_connected /\

never_event_received_when_disconnected.

97

Bibliography

[1] A. K. Dey, "Understanding and Using Context," Personal and Ubiquitous Computing, pp. 4-7, 2001.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles, "Towards a Better

Understanding of Context and Context-Awareness," Symposium on Handheld and Ubiquitous

Computing, pp. 304-307, 1999.

[3] D. K. Dan Hong and V. Y. S. Chiu, "Requirements Elicitation for the Design of Context-Aware

Applications in a Ubiquitous Environment," in International Conference on Electronic Commerce,

New York, NY, 2005.

[4] M. Baldauf, "A Survey on Context-Aware Systems," International Journal of Ad Hoc and Ubiquitous

Computing, Geneva, SWITZERLAND, 2007.

[5] R. J. Robles and T. H. Kim, "Review: Context Aware Tools for Smart Home Development,"

International Journal of Smart Home, 2010.

[6] G. Thyagaraju and U. P. Kulkarni, "Design and Implementation of User Context aware

Recommendation Engine for Mobile using Bayesian Network, Fuzzy Logic and Rule Base,"

International Journal of Computer Applications, 2012.

[7] B. Schilit and M. Theimer, "Disseminating Active Map Information to Mobile Hosts," Network, IEEE,

vol. 8, no. 5, pp. 22 - 32, 1994.

[8] H.-A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy and R. S. Kazemzadeh, "The

padres distributed publish/subscribe system," in Feature Interactions in Telecommunications and

Software Systems, 2005.

[9] K. Birman and T. Joseph, "Exploiting Virtual Synchrony in Distributed Systems," Symposium on

Operating systems principles, vol. 21, no. 5, pp. 123 - 138, 1987.

[10] L. Blanco, An Adaptive Context-Aware Publish Subscribe Component Metamodel, Waterloo, ON,

Canada: University of Waterloo, 2015.

[11] J. S. Collofello, Introduction to Software Verification and Validation, Carnegie Mellon University

Software Engineering Institute, 1988.

[12] R. M. Hierons, P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward, H. Zedan, K.

Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe, M. Harman and K. Kapoor,

"Using Formal Specifications to Support Testing," ACM Computing Surveys, vol. 41, no. 2, 2009.

[13] M.-C. Gaudel, "Formal Specification Techniques," in ICSE, 1994.

98

[14] J. Westland, "The Cost Behavior of Software Defects," Decision Support Systems, vol. 37, no. 2, pp.

229 - 238, 2004.

[15] V. Vieira, K. Holl and M. Hassel, "A Context Simulator As Testing Support for Mobile Apps," in

Symposium on Applied Computing, Salamanca, Spain, 2015.

[16] E. S. Da Costa, R. d. A. C. Reis and A. C. Dias-Neto, "Extension of Sikuli Tool to Support Automated

Tests to Windows Phone Context-Aware Applications," in UBICOMM, 2015.

[17] B. Schilit, N. Adams and R. Want, "Context‐Aware Computing Applications," in Mobile Computing

Systems and Applications, Santa Cruz, California, 1994.

[18] B. Schilit and N. York, "Context-Aware Computing Applications," pp. 85-90, 1995.

[19] P. J. Brown, J. D. Bovey and X. Chen, "Context‐Aware Applications: From the Laboratory to the

Marketplace," IEEE Personal Communications, 1997.

[20] A. R. Ana, Á. M. G. Carvalho and C. G. Ralha, "Agent-Based Architecture for Context-Aware and

Personalized Event Recommendation," Expert Systems with Applications, vol. 41, no. 2, pp. 563-

573, 2014.

[21] H. Guermah, T. Fissaa, H. Hafiddi, M. Nassar and A. Kriouile, "An Ontology Oriented Architecture

for Context Aware Services Adaptation," International Journal of Computer Science Issues, vol. 11,

no. 2, 2014.

[22] S. Helmer, A. Poulovassilis and F. Xhafa, Reasoning in Event-Based Distributed Systems, Springer,

2011.

[23] E. S. Barrenechea, P. S. C. Alencar, R. Blanco and D. Cowan, "Context-Awareness and Adaptation

in," University of Waterloo, Waterloo, Ontario, Canada.

[24] R. Chaffey and D. Thurner, Mobile Marketing Strategy Guide, Smart Insights.

[25] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable Computers," in Symposium on

wearable computers, 1996.

[26] K. Lyons, "What can a Dumb Watch Teach a Smartwatch?: Informing the Design of Smartwatches,"

in International Symposium on Wearable Computers, 2015.

[27] P. T. Eugster, P. A. Felber, R. Guerraoui and A.-M. Kermarrec, "The Many Faces of

Publish/Subscribe," ACM Comput. Surv., vol. 35, pp. 114--131, 2003.

[28] A. v. Lamsweerde, "Formal Specification: A Roadmap," in Proceedings of the Conference on The

Future of Software Engineering, Limerick, Ireland, 2000.

[29] A. Sanghavi, "What is Formal Verification?," EE Times Asia, 21 May 2010.

99

[30] P. Ferreira, Distributed Context-Aware Systems, Springer.

[31] A. Uzun, M. Salem and A. Kupper, "Exploiting Location Semantics for Realizing Cross-Referencing

Proactive Location-Based Services," IEEE International Conference on Semantic Computing, pp. 76-

83, 2014.

[32] H. Chen, T. Finin and A. Joshi, "An Ontology for Context-Aware Pervasive Computing

Environments," Special Issue on Ontologies for Distributed Systems, Knowledge Engineering

Review, vol. 18, pp. 197--207, 2003.

[33] T. Winograd, "Architectures for Context," Human-Computer Interaction, vol. 16, no. 2, pp. 401-419,

2001.

[34] T. Strang and C. Linnhoff-Popien, "A Context Modeling Survey," in First International Workshop on

Advanced Context Modelling, Nottingham, England, 2004.

[35] Q. Z. Benatallah and S. a. Boualem, "ContextUML: a UML-based modeling language for model-

driven development of context-aware Web services," Mobile Business, pp. 206 - 212, 2005.

[36] K. Henricksen, J. Indulska and A. Rakotonirainy, "Generating Context Management Infrastructure

from High-Level Context Models," in International Conference on Mobile Data Management, 2003.

[37] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann and W. Retschitzegger,

"Context-Awareness on Mobile Devices - The Hydrogen Approach," System Sciences, 2003.

[38] J. McCarthy and S. Buvac, "Formalizing Context," Fall Symposium on Context in Knowledge

Representation and Natural Language, p. 99–135, 1997.

[39] N. B. Priyantha, A. Chakraborty and H. Balakrishnan, "The Cricket Location-Support System,"

nternational Conference on Mobile Computing and Networking, 2000.

[40] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore and M. Bylund, "GeoNotes: Social and

Navigational Aspects of Location-Based Information Systems," in Ubicomp 2001: Ubiquitous

Computing, Springer, 2001, pp. 2-17.

[41] J. Burrell and G. Gay, "E-graffiti: Evaluating Real-World Use of a Context-Aware System," in

Interacting with, 2002, p. 301–312.

[42] C. Kerer, S. Dustdar, M. Jazayeri, D. Gomes, A. Szego and J. A. B. Caja, "Presence-Aware

Infrastructure Using Web Services and RFID Technologies," in Proceedings of the 2nd European

workshop on object orientation and web services, Oslo, Norway, 2004.

[43] M. A. Muñoz, V. M. Gonzalez, M. Rodríguez and J. Favela, "Supporting Context-Aware

Collaboration in a Hospital: An Ethnographic Informed Design," in Groupware: Design,

Implementation, and Use, Autrans, France, Springer, 2003, pp. 330-344.

100

[44] P. Korpipää and J. Mäntyjärvi, "An Ontology for Mobile Device Sensor-Based Context Awareness,"

in Modeling and Using Context, Stanford, CA, USA, Springer, 2003, pp. 451-458.

[45] T. Gu, H. K. Pung and D. Q. Zhang, "A Middleware for Building Context-Aware Mobile Services," in

Vehicular Technology Conference, 2004.

[46] P. Fahy and S. Clarke, "CASS–A Middleware for Mobile Context-Aware Applications," in Workshop

on context awareness, MobiSys, 2004.

[47] H. Chen, T. Finin and A. Joshi, "Semantic Web in a Pervasive Context-Aware Architecture," 2014.

[48] G. Biegel and V. Cahill, "A Framework for Developing Mobile, Context-Aware Applications," in

Pervasive Computing and Communications, 2004.

[49] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell and K. Nahrstedt., "A

Middleware Infrastructure for Active Spaces," IEEE Pervasive Computing, pp. 74-83, 2002.

[50] S. N. Sehic and M. Stefan. Vögler, "Entity-Adaptation : A Programming Model for Development of

Context-Aware Applications," Symposium on Applied Computing, pp. 436-443, 2014.

[51] Y. Liu and B. Plale, "Survey of Publish Subscribe Event Systems," Indiana University Department of

Computer Science, pp. 1-19, 2003.

[52] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Storm and D. C. Sturman, "An Efficient

Multicast Protocol for Content-Based Publish-Subscribe Systems," Distributed Computing Systems,

pp. 262 - 272, 1999.

[53] A. Rowstron, A.-M. Kermarrec, M. Castro and P. Druschel, "Scribe: The Design of a Large-Scale

Event Notification Infrastructure," in Networked Group Communication, London, UK, Springer,

2001, pp. 30-43.

[54] A. Rowstron and P. Druschel, "Pastry: Scalable Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems," in Middleware 2001, Heidelberg, Germany, Springer, 2001, pp.

329-350.

[55] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz and J. D. Kubiatowicz, "Bayeux: An Architecture for

Scalable and Fault-Tolerant Wide-Area Data Dissemination," in Network and operating systems

support for digital audio and video, 2001.

[56] B. Y. Zhao, J. Kubiatowicz and A. D. Joseph, "Tapestry: An Infrastructure for Fault-Tolerant Wide-

Area Location and Routing," University of California at Berkeley, Berkeley, CA, USA, 2001.

[57] A. Carzaniga, D. S. Rosenblum and A. L. Wolf, "Design and Evaluation of a Wide-Area Event

Notification Service," Transactions on Computer Systems, vol. 19, no. 3, pp. 332-383, 2001.

[58] A. Campailla, S. Chaki, E. Clarke, S. Jha and H. Veith, "Efficient Filtering in Publish-Subscribe

Systems Using Binary Decision," in International Conference on Software Engineering, 2001.

101

[59] G. C. Fox and S. Pallickara, "An Event Service to Support Grid Computational Environments," in

Concurrency and Computation: Practice and Experience 14, 2002, pp. 13-15.

[60] A. Slominski, Y. Simmhan, A. Rossi, M. Farrellee and D. Gannon, "Xevents/Xmessages: Application

Events and Messaging Framework for Grid," Indiana University, Extreme Lab, 2001.

[61] K. Kumar, J. Liu, Y. H. Lu and B. Bhargava, "A Survey of Computation Offloading for Mobile

Systems," Mobile Networks and Applications, vol. 18, no. 1, pp. 129-140, 2013.

[62] K. C. Barr, "Energy Aware Lossless Data Compression," MASSACHUSETTS INSTITUTE OF

TECHNOLOGY, 2002.

[63] R. Krashinsky and H. Balakrishnan, "Minimizing Energy for Wireless Web Access with Bounded

Slowdown," MOBICOM, 2002.

[64] G. J. Smit, P. J. Havinga, L. T. Smit, P. M. Heysters and M. A. Rosien, "Dynamic Reconfiguration in

Mobile Systems," in Field-Programmable Logic and Applications: Reconfigurable Computing Is

Going Mainstream, Springer, 2002, pp. 171-181.

[65] M. Galster, D. Weyns, D. Tofan, B. Michalik and P. Avgeriou, "Variability in Software Systems - A

Systematic Literature Review," IEEE, 2014.

[66] J. G. Halfond, S. Mcilroy, M. Nagappan and W. G. J., "Truth in Advertising: The Hidden Cost of

Mobile Ads for Software Developers," in International Conference on Software Engineering, 2015.

[67] S. Hao, D. Li, W. G. J. Halfond and R. Govindan, "Estimating Android Applications’ CPU Energy

Usage via Bytecode Profiling," in Green and Sustainable Software, 2015.

[68] D. Li, A. H. Tran and W. G. J. Halfond, "Optimizing Display Energy Consumption for Hybrid Android

Apps," in Software Development Lifecycle for Mobile, 2015.

[69] T. Coe, "Computational Aspects of the Pentium Affair," Computational Science & Engineering, vol.

2, no. 1, pp. 18 - 30, 1995.

[70] D. Beyer, T. a. Henzinger, R. Jhala and R. Majumdar, "The Software Model Checker Blast:

Applications to Software Engineering," International Journal on Software Tools for Technology

Transfer, vol. 9, no. 5-6, pp. 505-525, 2007.

[71] G. J. Holzmann and R. Joshi, "Model-Driven Software Verification," in Model Checking Software,

Barcelona, Spain, Springer, 2004, pp. 76-91.

[72] K. Sagonas, T. Swift and D. S. Warren, "XSB As an Efficient Deductive Database Engine," SIGMOD

Rec., vol. 23, pp. 442--453, 1994.

[73] C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roychoudhury and V. N.

Venkatakrishnan, "XMC: A Logic-Programming-Based Verification Toolset," in Computer Aided

Verification, Chicago, IL, USA, Springer, 2000, pp. 576-580.

102

[74] J. Dong, Design Component Contracts: Modeling and, Waterloo, Ontario, Canada: University of

Waterloo, 2002.

[75] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift and D. S. Warren,

"Efficient Model Checking Using Tabled Resolution," in Computer Aided Verification, Haifa, Israel,

Springer, 1997, pp. 143-154.

[76] R. Blanco, J. Wang and P. Alencar, "A Metamodel for Distributed Event Based Systems," in

Proceedings of the Second International Conference on Distributed Event-Based Systems, New

York, USA, 2008.

[77] R. Blanco and P. Alencar, "Towards Modularization and Composition in Distributed Event Based

Systems," University of Waterloo, Waterloo, Ontario, Canada, 2009.

[78] J. W. Kaltz, J. Ziegler and S. Lohmann, "Context-aware Web Engineering: Modeling and

Applications," Informatik, 2005.

[79] N. Ryan, J. Pascoe and D. Morse, "Enhanced Reality Fieldwork: the Context Aware Archaeological

Assistant," in Computer Applications and Quantitative Methods in Archaeology, 1997.

[80] T. Swift and d. S. Warren, "XSB: Extending Prolog with Tabled Logic Programming," Theory and

Practice of Logic Programming, vol. 12, no. Special Issue 1-2, pp. 157--187, 2012.

[81] L. Aceto, K. G. Larsen and A. Ingólfsdóttir, An Introduction to Milner’s CCS, 2004.

[82] C. Z. A. Perera, P. Christen and D. Georgakopoulos, "Context Aware Computing for The Internet of

Things: A Survey," Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414 - 454, 2014.

