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Abstract

Image-Based Localization (IBL) is the problem of computing the position and orientation of a
camera with respect to a geometric representation of the scene. A fundamental building block
of IBL is searching the space of a saved 3D representation of the scene for correspondences
to a query image. The robustness and accuracy of the IBL approaches in the literature are not
objective and quantifiable.

First, this thesis presents a detailed description and study of three different 3D modeling
packages based on SFM to reconstruct a 3D map of an environment. The packages tested are
VSFM, Bundler and PTAM. The objective is to assess the mapping ability of each of the tech-
niques and choose the best one to use for reconstructing the IBL 3D map. The study results show
that image matching which is the bottleneck of SFM, SLAM and IBL plays the major role in
favour of VSFM. This will result in using wrong matches in building the 3D map. It is crucial
for IBL to choose the software that provides the best quality of points, i.e. the largest number of
correct 3D points. For this reason, VSFM will be chosen to reconstruct the 3D maps for IBL.

Second, this work presents a comparative study of the main approaches, namely Brute Force
Matching, Tree-Based Approach, Embedded Ferns Classification, ACG Localizer, Keyframe
Approach, Decision Forest, Worldwide Pose Estimation and MPEG Search Space Reduction.
The objective of the comparative analysis was to first uncover the specifics of each of these
techniques and thereby understand the advantages and disadvantages of each of them. The testing
was performed on Dubrovnik Dataset where the localization is determined with respect to a 3D
cloud map which was computed using a Structure-from-Motion approach. The study results
show that the current state of the art IBL solutions still face challenges in search space reduction,
feature matching, clustering, and the quality of the solution is not consistent across all query
images.

Third, this work addresses the search space problem in order to solve the IBL problem. The
Gist-based Search Space Reduction (GSSR), an efficient alternative to the available search space
solutions, is proposed. It relies on GIST descriptors to considerably reduce search space and
computational time, while at the same exceeding the state of the art in localization accuracy.
Experiments on the 7 scenes datasets of Microsoft Research reveal considerable speedups for
GSSR versus tree-based approaches, reaching a 4 times faster speed for the Heads dataset, and
reducing the search space by an average of 92% while maintaining a better accuracy.
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Chapter 1

Introduction

Image-Based localization (IBL) addresses the problem of estimating the 6 DoF camera pose in an

environment, given a query image and a representation of the scene (i.e., map). This is different

from SLAM (Simultaneous Localization And Mapping) in that in SLAM, the camera pose is

tracked while moving through the scene and is prone to drift errors, which are usually reduced

by looking for loop closures to remove the errors resulting from accumulated drift. In addition,

in IBL, typically the map or scene representation is not being modified while in SLAM it is.

IBL does not have an initial seed location to initiate the search for the pose and shares a kinship

with the kidnapped robot problem in that the pose of the camera is wide open to all possibilities.

The techniques used in IBL can also be used to improve SLAM processes but that will not be

discussed in this work. IBL is mainly implemented in many interesting applications specially

robot localization and loop closure, place recognition, SFM and augmented reality(AR).
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1.1 Problem Description

The implementation of IBL consists of three main stages:

1 Keypoints matching: keypoints can also be referred to as features and have been asso-

ciated with a descriptor, which is usually a measure of the texture at a particular scale

around the feature point. The descriptor is matched against other keypoints. Unfortu-

nately, the keypoints are not invariant to illumination, blur , or viewpoint beyond certain

limits. When dealing with an environment where there are thousands, sometimes millions

of 3D points and their associated descriptors, the matching problem is the major challenge

in IBL; which essentially is the curse of dimensionality problem.

2 Image registration: It is the process of getting the largest number of correct matches of a

particular viewpoint amongst all the candidate scenes. An image has to have a sufficient

number of correct matches in order to be registered and thus qualify for the pose estimation

step.

3 Pose estimation: after an image is registered, the query image position and orientation

within the map representation is estimated and then refined. Pose estimation is highly

dependent on the quality of the matches from image registration.

There are two standard ways to solve the IBL problem:

1 2D-2D: where a set of 2D features from the query image is matched against the 2D features

from the database image, which essentially defines the image pose.
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2 2D-3D: where a set of 2D features from the query image is matched against the 3D points

representing the scene and this set is used to optimize the camera pose.

1.2 Motivation and Objective

Building a sparse map with the least amount of points which clearly describes the scene using a

single cheap camera has been evolving for several years now. The most notable and successful

approaches were based on Structure From Motions (SFM) and the best known approaches are

currently Bundler [55, 56, 62] and VSFM [65, 64]. The evolution of Bundler in 2008 allowed

IBL to start focusing on real-time applications using a 3D map in any environment. In this

thesis, three different 3D modeling packages based on SFM are tested: VSFM [63], Bundler [62]

and PTAM [24]. The objective is to assess the mapping ability of each of the techniques and

choose the best one to use for reconstructing the IBL 3D map. These approaches have a major

shortcoming of using wrong matches in building the map. It is crucial for IBL to choose the

software that provides the best quality of points, i.e. the largest number of correct 3D points. For

this reason, this thesis will show that VSFM is the best package to reconstruct the 3D maps for

IBL.

This thesis presents a comparative study of the main state of the art for IBL, namely Brute

Force Matching, Tree-Based [35], Embedded Ferns Classification [12], ACG Localizer [46],

Keyframe Matching Approach [16], Decision Forest [49], Worldwide Pose Estimation[28] and

MPEG Search Space Reduction [19]. The objective of this comparison was to first uncover the

specifics of each of these techniques and thereby understand their advantages and disadvantages.

These approaches have many shortcomings in terms of accuracy and computational performance
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mainly in search space reduction, clustering, feature matching and the quality of the solution is

not consistent across all query images.

The focus is on reducing the search space problem as mean to solve the IBL problem. Most

of the previous work focuses on reducing the search space in order to to improve the Visual

Words system [46] instead of presenting a new localization system. Recently, Heisterklaus et

al. [19] presented a new localization system to tackle the search space problem by using MPEG

descriptors to generate artificial images to cover the space.

Sattler et al. [46] provided one of the most accurate and robust search space systems for

IBL called the Visual Words approach. It aimed to accelerate the Keypoint Matching step by

reducing the search space via clustering features into visual words. However the comparison

study presented in this work shows that the Visual Words approach loses information due to the

quantization effect. This work proposes a new IBL system. It is named Gist-based Search Space

Reduction (GSSR). GSSR uses global descriptors to find candidate keyframes in the database,

then matches against the 3D points that are only seen from these candidates using local descrip-

tors stored in a 3D cloud map.

1.3 Statement of Contributions

The major contributions which this thesis presents are:

1 The main contribution is to solve the search space problem in IBL by using context and

combining global and local descriptors using an SfM map. Even though GIST descrip-

tors [58] have been used for many purposes, especially for topological localization[36, 52],
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this work appears to be the first work to present a keyframe approach with global descrip-

tors in IBL. This work is documented is Chapter 5. The material of this work has been

submitted to the Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Confer-

ence. Co-authors include: Charbel Azzi, John Zelek, Daniel Asmar and Adel Fakih. I

hereby verify that I am the principal author.

2 This work aims to provide researchers with a knowledge about this rapidly growing prob-

lem: main steps, main approaches and drawbacks. To our knowledge this work appears to

be the first to present a comprehensive study on IBL. This work is documented is Chap-

ters 2 and 4. The material of this work will be submitted to Robotics and Automation

Magazine, 2016 IEEE. Co-authors include: Charbel Azzi, John Zelek, Daniel Asmar and

Adel Fakih. I hereby verify that I will be the principal author.

1.4 Thesis Outline

The remainder of this report is structured as follows:

• Chapter 2 will give a brief history about IBL. It also introduces the IBL problem and inputs.

Then, the IBL main stages are introduced and described in details; keypoint matching,

image registration and pose estimation.

• Chapter 3 presents an introduction of the scene representation. It also describes in detail

the three chosen SFM reconstruction packages for testing. The chapter also presents the

results and shortcomings of the testing to choose the best package for constructing the IBL

map.
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• Chapter 4 is a detailed description of the start-of-the-art methods. It also presents the

results from the comparison study and states and analyses the results for each of the main

approaches along with the standard datasets used.

• Chapter 5 starts by describing the search space problem. Then it presents the details of the

proposed system along with a brief description on GIST. It also presents the experiments,

the results and discussion on the proposed technique.

• Finally, Chapter 6 summarizes and concludes this thesis.

6



Chapter 2

Literature Review1

2.1 History of IBL

In the earliest stages, IBL was cast as an image retrieval problem, which consists of estimating

the location by matching a query image to a database of images.

The earliest working IBL system was developed in 2004 by Robertson et al. [41] when they

represented the scene by a 2D map of manually rectified images. They rectified a query image

and matched it to all the database images, then estimated the image pose. Zhang et al. [67]

improved the previous system by using SIFT [30] features for matching and referring to the GPS

tags. Schindler et al. [48] and Knopp et al. [26] solved the problem by efficiently matching the

query image to a certain number of database images instead of matching against all of them on a

1The content of this chapter will be submitted to the Robotics and Automation Magazine, 2016 IEEE. Co-authors
include: Charbel Azzi, John Zelek, Daniel Asmar and Adel Fakih. I hereby verify that I will be the principal author.
The material will be paraphrased.
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city-scale scene. These were the first large-scale IBL approaches. These approaches worked on

a database consisting of tens of thousands of images. Hays et al [18], Avrithis [5] and Chen et al

[9] improved IBL to deal with a database that consists of more than a million images. Hays et

al. [18] incorporated a probabilistic model to estimate the query image position from a database

of millions of images. Avrithis [5] projected all the image features into a global coordinate

building a 2D scene map. Chen et al. [9] achieved localization by dividing the database images

into sets and individually matching to each set. Zamir et al. [66] used a GPS tags to find the

nearest neighbours based on SIFT descriptor matching and then estimated the camera pose.

The representation of the unknown environment can be done in two ways: either a 3D point

cloud map consisting of 3D points along with their feature descriptors and their visible keyframes

obtained from SfM, or a dense, featureless 3D point cloud obtained from a RGB-D technique [49,

16, 37].

Recently, some powerful SfM techniques, mainly Bundler [62, 55, 56], allowed the repre-

sentation of an environment by a 3D point cloud map. This improvement allowed IBL to solve

the localization by matching to a 3D map instead of matching to images. IBL relied on Bundler

to represent city-scale scenes accurately and robustly with rich and dense information. The first

approaches [21, 3, 61] focus on trying to get as many matches as possible between the query

image and the 3D map. Irschara et al. [21] presented the first successful IBL system to match a

query image to a 3D point cloud map constructed from a database of retrieved photos.

Li et al. [28, 29] and Sattler et al. [45, 46] tackled the problem of dimensionality in IBL

when they tried to solve the IBL problem using city-scale datasets. Their aim was to perform

the correspondence matching using only a small subset of possible matches. Their objective was

8



also to get the camera pose based on this subset. Recently, Shotton et al. [49] tried to solve the

2D-3D correspondence problem in small indoor scenes using a featureless 3D map. Donoser et

al. [12] introduced the Embedded Random Ferns approach, where they used classifiers instead

of descriptors to solve the matching problems in city-scale scenes. More recently, Heisterklaus

et al. [19] tried to solve the IBL problem by reducing the search space for small-scale indoor

environments. They classified the database images into multiple views and tried to find the

view from where the query image was taken. Lately, Shotton et al. [16, 17] adopted the 2D-2D

approach to solve the IBL problem in small-scale indoor scenes. They introduced a keyframe

approach based on random ferns to try to find the closest keyframes to the query image and then

performed a simple 2D-2D match without the use of any 3D map.

All of the techniques show shortcomings in their result, particularly in search space reduction,

feature matching, clustering and sensitivity to where the query image is taken. At this time, the

work of Sattler et al. has produced some of the bast results in IBL. The latest approaches focused

on improving their work by trying to mainly reduce the search space or achieve better matching

accuracy. This thesis will present a review of Sattler’s et al. and the other main approaches.

Then, a comparative study on each approach will be presented to benchmark the different IBL

systems. The study will also reveal the shortcomings of each approach.

2.2 IBL Problem

Solving the IBL problem consists of estimating the 6 DoF camera pose of a query image in an

unknown scene, given a representation of that scene.
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IBL can be solved using one of two approaches, namely 2D-3D matching or 2D-2D matching.

2D-3D matching consists of matching 2D features from a query image to a 3D point cloud map

of the environment. The 3D map can be extracted either using Structure from Motion (SfM)

techniques [62, 55, 56, 65, 59], or via RGB-D techniques [16, 49, 37]. In the former case, the

map consists of a set of 3D points, along with their corresponding feature descriptors. In the latter

case, the map consists of a featureless 3D point cloud. Alternatively, 2D-2D matching consists

of matching a query image to a group of keyframe images that represent the scene. Figure 2.1

illustrates the main components in IBL.

IBL solutions face several challenges that can affect their robustness, accuracy and speed.

Firstly, feature matching is dependent on feature viewpoint invariance; otherwise it is suscepti-

ble to false matches due to scale, blur, and illumination changes. Secondly, IBL is also prone

to the curse of dimensionality when dealing with scenes where there are thousands, sometimes

millions of 3D points and their associated descriptors. In such situations, finding the exact cor-

respondences becomes challenging. In addition, repeated patterns and structures as well as re-

flected surfaces can also compound the problem.

IBL relies on three main building blocks for its solution as shown in Figure 2.1: (1) Keypoint

matching which involves extracting the features and descriptors, then matching them to get the

correspondences (2) Image registration to remove the wrong matches returned from the previous

step and to send the images with enough inliers to the next step and (3) Pose estimation where

the query pose is estimated and refined.
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Figure 2.1: Image-Based Localization Main Components

2.3 KeyPoint Matching

The first step of IBL consists of establishing correspondences between keypoints extracted from

query images with features extracted from a database keyframe. First, features are detected inside

an image and then they are matched.

2.3.1 Feature Extraction

A feature is a salient point inside an image. Its robustness depends on its invariance to changes

in scale and orientation. Many different types of feature detectors are available in the literature,

with each one exhibiting different advantages and disadvantages. SIFT [30] has traditionally

become the most popular feature detector; while it is somewhat robust to changes in viewpoint,
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the computational overhead is very high. SURF [6] is another type of feature. SURF has a

poor performance with changes in rotation when it is compared to SIFT which significantly

influences the accuracy of the extracted feature points.The PCA-SIFT [23] proposes to reduce

the computational overhead of SIFT by reducing its dimensionality; however, this comes at the

cost of reduced accuracy and robustness. Affine SIFT [32] incorporated greater invariance to

affine transformations, which showed more robust and accurate performances than the vanilla

SIFT, but the feature extraction process takes a longer time. BRIEF [7] uses binary tests to

classify trees. Their descriptor is a binary descriptor of 256 entries. It performs very poorly with

changes in rotation, which restrict its use in IBL since it will affect the localization accuracy

due to incorrect matches. ORB [43] is a fast binary descriptor based on BRIEF [7] and was

introduced to solve the rotation problems with BRIEF. It performs better then regular BRIEF and

faster then SIFT but still less accurately and less robustly than SIFT. FAST [42] uses a Harris

corner filter and gives fast performance but suffers from sensitivity to orientation. This makes

its use in IBL very specific to some scenes, mainly indoor scenes where the rotation effect is

present. GPU-SIFT [54] is a parallel processing implementation of SIFT on GPU in real time to

speed up the SIFT performance.

SIFT is most commonly used feature detector in IBL. It is mainly the most popular feature

detector. Nevertheless, SIFT might not be the best accurate and robust feature detector method

but this is not discussed in this thesis and is left for future work.

Once features are detected, one needs to recognize them from different viewpoints, and ac-

cordingly, each image feature is associated with a description of its local neighbourhood, which

is known as an image descriptor.
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2.3.2 Feature Matching

Features are matched across frames by relying on their descriptors, which encode the image ap-

pearance in the local neighbourhood of each feature. Finding the matches between descriptors is

usually solved using linear search(or brute force) in IBL. The most obvious method for matching

relies on brute force, where each image feature is compared to each feature descriptor in the

database. Unfortunately, although effective, the process is very slow especially in large-scale

scenes, where thousands or millions of 3D points have to be tested for a match.

Nearest Neighbour Search (NN) [14, 60] is the most common method used in IBL. Here, the

search space is divided into subspaces of lower dimensions, thereby resulting in searching for

matches in lower image scales. The disadvantage of such techniques is that the computational

time grows exponentially when the size of the scene increases. To address its shortcoming known

as Approximate Nearest Neighbour Search (ANN) [2, 4] attempts to find the neighbour that is

most similar to the matched feature. Although it does not necessarily find the exact neighbour, it

finds the most similar neighbour which in some cases might be the exact one.

To this date there are not any exact search methods that are faster then BF. All other methods

like NN and ANN are optimization methods and are not considered exact. The main challenge of

Image-based localization'is to find the correct matches. Thus the optimized methods used have

to minimize the number of false matches while achieving fast computational times.

Fast Library of ANN (FLANN) [35] is a library of fast ANN methods to speed up the search

in high dimensional spaces. These methods use either multiple randomized kd-trees or hierar-

chical k-means trees:
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1 Kd-trees [35] iteratively split the k-dimensional set of descriptors space. The data is split

at each tree level at the value where the data scores the largest variance. This results in a

hierarchy of splits called search trees. It tries to find the nearest neighbours by traversing

all the leaves in the tree. Increasing the search space dimension requires a large amount of

time to search all the leaves. An alternative more efficient approach proposed by [53] con-

sists of visiting a reduced number of leaf nodes to find the approximate nearest neighbour.

In the method known as the Forest of Randomized kd-trees [34], the split is chosen ran-

domly among the ones featuring the largest variance. It increases the efficiency and gives

similar accuracy to the kd-trees in approximating the nearest neighbour but at the cost of

high memory requirements. The kd-trees method is the most common approach used in

IBL [45] for matching. It presents the best compromise between accuracy and computa-

tional time. Nevertheless, in larger environments where there are thousands or millions of

descriptors, the matching speed of kd-trees decreases.

2 Hierarchical k-means trees [34] also known as a vocabulary trees [38] use k-means clus-

tering to iteratively split the descriptors group into k clusters. The clustering stops when

each cluster contains less then k descriptors. The approach traverses the tree to find the ap-

proximate nearest neighbour corresponding to the closest cluster centre in each node. Due

to its efficiency, hierarchical k-means is commonly used in IBL for matching descriptors.

Nevertheless, it is subjected to miss correct correspondences due to quantization effects

where a feature can get assigned to a cluster that does not contain many of its matches.

As an alternative to matching features, another approach is based on learning classes of fea-

tures. Here, descriptors corresponding to the same feature are used to train a machine-learning
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algorithm; then, any new feature is classified based on the attributed class of its descriptor.

Donoser et al. [12] presented an alternative to the Approximate Nearest neighbour (ANN)

by introducing a discriminative classification step called embedded random ferns. Their goal

was to improve the feature matching by considering previous sightings of a specific feature as a

class. This system scored a higher number of matches than tree-based but the quality of these

matches remained questionable. The major shortcoming is the weakness of the classifier in

global matching and its reliance on GPS tags to partition the search space into smaller regions.

This approach will be further explained and discussed in Section 4.

2.4 Image Registration

The second building block of IBL is image registration, which is performed via 2D-3D corre-

spondence, 2D-2D image matching, or classification.

2.4.1 2D-3D

The image registration step aims to find the correct matches (inliers) between a query image and

a database of 3D points. . The standard approach to find the set of 2D-3D correspondences is by

utilizing the tree-based approach(based on FLANN). To clarify this point, a number of features

that are matched using the keypoint matching technique are not correct and using them would

result in inaccurate localization. Therefore, it is necessary to follow the keypoint-matching step

by image registration to help reduce the number of erroneous matches. To help remove false

matches, one must perform what is known as the ratio test [30], where a match is only accepted
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if the similarity between the distances to the first and second nearest neighbour is less then a

certain threshold. Then RANSAC [40] is applied to remove the remaining outliers. RANSAC

iteratively selects a random subset of all the matches, then uses this subset to estimate the camera

transformation, and verifies the estimated transformation against all other matches. If the number

of inliers after RANSAC applied is higher then 12 then the image can be considered registered

and subsequently qualifies for pose estimation. Otherwise, it is discarded. The threshold of 12

inliers proposed by [29] is chosen to be high enough to make it unlikely for a false candidate to

have this many inliers and low enough for true candidates with a low number of features not to

be rejected.

The Tree-based approach (FLANN) is so slow when dealing with medium to large scale en-

vironments because it performs the matching against the whole search space. During the past

years, several improvements to image registration were proposed. Li et al. [28] presented a visi-

bility graph(P2F), which sorts the 3D points in a map in terms of their visibility from the camera

viewpoint corresponding to the different photos that were used to construct the map. Then, they

used 3D-2D to guarantee that a sufficient number of inliers is found. Their algorithm stops after

100 correspondences are found. Then RANSAC is used to remove the outliers. Their local-

ization results outperformed the tree-based approach in terms of speed but were less accurate.

Li et al. [29] further improved the image registration by introducing co-occurrence RANSAC.

This consists of a probabilistic model that uses a visibility model [29] to choose the highest set

of 2D-3D matches that tends to co-occur using RANSAC. Then, they used 3D-2D checking to

guarantee that a sufficient number of inliers were found. This approach slowed their previous

approach but resulted in higher accuracy.

Sattler et al. [45] introduced a Vocabulary-Based Prioritized System (VPS) to improve im-
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age registration. They clustered 3D points into bag-of-words and then sorted them based on

a priority cost before matching them through a tree-based approach, stopping after one hundred

matches were found. Their system is considerably faster then tree-based, P2F, and Co-occurrence

RANSAC, but not as accurate as tree-based. Sattler et al. [46] improved their VPS system for

registration by introducing active search, where the surroundings of a 2D-3D match are searched

to find its nearest neighbours., This is followed by a 3D-2D matching to recover the matches

from their VPS. Their system was faster then all the other approaches but lost some accuracy to

VPS. All these registration approaches tackled city-scale scenes.

Shotton et al. [49] presented a different registration approach. They used a regression ran-

dom forest method to train a featureless 3D map, reconstructed from RGB-D techniques. They

matched the 2D points of a query image to their trained map to get the 2D-3D correspondences.

Their method tackled small-scale environments and was faster, although less accurate than tree-

based. Their work was not tested on city-scale sets and therefore cannot be easily compared to

the previously mentioned registration approaches.

2.4.2 2D-2D

Although 2D-3D is more accurate and faster than 2D-2D in re-localization applications, image

registration is performed using 2D-2D techniques to save computational time needed for fast

localization. The scene is represented by a database of keyframes that cover that environment.

2D-2D image registration consists of assigning to each query image the corresponding keyframe

that is most similar. Then, the set of 2D-2D correspondences between the matched images is

computed. Similar to the 2D-3D matching, these matches are subjected to the ratio test [30] and
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RANSAC [40] in order to remove the outliers. Again, if a sufficient number of inliers are found,

the image is considered registered and the image qualifies for pose estimation.

In the work of Shotton et al. [16], an efficient encoding of each keyframe is performed by

training their internal 2D pixels using random ferns and then matching each keyframe to the

query image. The keyframes with the smallest distance to the query are then used to perform a

2D-2D match and thereby guarantee robust image registration. Their system performed better

(in terms of accuracy and speed) at re-localization when a query image was close to a keyframe.

2.4.3 Classification

In addition to the more common 2D-3D, and 2D-2D image registration techniques, classification

techniques can also be used to improve image registration. It is notable that although classifi-

cation can be used as an alternative to the above techniques, it can also be used with 2D-3D or

2D-2D to further improve the registration.

In classification techniques, Heisterklaus et al. [19] images are binned into multiple views

using global descriptors. Then synthetic camera poses are created to cover all the remaining

spaces in the environment; this is needed to ensure more robust correspondences in less time.

Their system showed promising registration improvements.

2.5 Pose Estimation

Any image in which a sufficient number of features are matched and subsequently image regis-

tration is successful can be used for estimating the camera pose (translation and rotation). Cal-
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culating the camera pose of a camera depends on the underlying matching that was performed

(i.e., 2D-3D or 2D-2D).

In the case of 2D-3D matching, the n-point perspective (pnp) method is used. It starts by

computing the location of the 3D map points in the local frame of the camera. Then, the cam-

era pose is estimated by calculating a rigid geometric transformation between the position of

the points in the local frame and their position in the global frame. The computation of the

transformation between local and global frames requires information about the intrinsic camera

parameters. This information can be either known or unknown. In the case of known intrinsic

parameters (mainly focal length and distortions), the rigid transformation is estimated from three

2D-3D matches and is referred to as three-point perspective pose problem (p3p). P3P defines the

pose by aligning local and global point positions and yields up to 4 solutions. Kneip et al. [25]

presents a very efficient solution to IBL using p3p. The six-point perspective pose problem (p6p)

is widely used to compute the transformation in the case of unknown intrinsic parameters. It

computes a full projection camera matrix including the focal length estimation from six 2D-3D

matches and yields a single solution. Recently, Sattler et al. [47] presented a new method to

estimate the transformation by using p3p while sampling the focal length. They achieved same

accuracy as standard PnP with much faster speed. It is used to avoid evaluating all the solutions

returned from PnP. Iterative pnp can optionally be used to refine the estimated camera pose.

In the case of the 2D-2D correspondence case, the camera pose is estimated using the funda-

mental matrix of the camera. The method consists of estimating the camera fundamental matrix

from a set of points using the epipolar geometry constraint between two cameras in the case of

unknown intrinsic parameters. In the case of a calibrated camera (known intrinsic parameters),

the 5-point algorithm estimates the projection matrix, here called essential matrix, from at least
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5 2D-2D matches. The pose is usually then refined by using non linear error minimization tech-

niques. In IBL, Levenberg-Marquardt (LM) [15], Gauss-Newton [44] and M-estimators [20] are

the refinement approaches commonly used.

2.6 Summary

This chapter presented a literature review about IBL; The history of IBL was presented. Then the

IBL problem was described and its three main stages (Keypoints matching, image registration

and pose estimation) were presented. Each stage was fully described and the main works done in

each stage were presented. These main approaches appear to have many shortcomings in terms

of accuracy and computational performance mainly in search space reduction, clustering, feature

matching and the quality of the solution is not consistent across all query images. The main

approaches will be studied and the main shortcomings of each will be revealed in Chapter 4 to

prove that IBL problem is not yet solved. In the next chapter, the focus will be on choosing the

best software to reconstruct the 3D map of the environment.
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Chapter 3

Creating The Scene Representation

3.1 Introduction

In this modern era, cameras are found everywhere. They are relatively cheap, light, and produce

high-resolution images. These factors, along with the advances in Computer Vision, make a

camera the sensor of choice for producing 3D models of any environment. Applications range

from aerial mapping to mapping of indoor and outdoor land scenes, to mapping of underwater

environments. Both filter-based techniques (Visual Simultaneous Localization and Mapping or

Visual SLAM) [57, 11] and non-filtering methods (e.g., Structure From Motion or SFM) [31, 33,

24, 65] produce maps by concurrently localizing the position of the camera in the map. While

all types of localization and mapping produce maps during localization, the quality of the maps

differs based on the specifics of each implementation. The majority of real time localization

applications tend to build the maps on the fly. This poses limitations that are still unsolved using
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a monocular camera. There are many notable limitations. First, obtaining an accurate real world

scale that is crucial for many applications like Augmented Reality(AR) is very hard with the

use of a single monocular camera. Second, the computational time and memory requirements

related to the platform that these applications are run on limit the algorithm use and can pose

some constraints on the map and the environment size. For instance, PTAM [24] was mainly

built for indoor AR applications and PTAMM [8] was built for mobile platforms with limitations

on the size of the maps. The memory of the phone can deal with sparse maps with a limited

number of features. Third, the built map quality is affected by the time and memory complexity

which affects the robustness of the tracking. There are lots of applications that do not require the

maps to be built on the fly. Having a good sparse 3D map which is used only for tracking can

solve the above limitations concerning the IBL problem.

Building a sparse map with the least amount of points which clearly describes the scene using

a single cheap camera has been evolving for several years now. The most notable, successful

approaches were based on SFM and the best known approaches are currently Bundler [55, 56, 62]

and VSFM [65, 64]. The evolution of Bundler in 2008 allowed IBL to start focusing on real-time

applications using a 3D map in any environment. In this chapter, three different 3D modeling

packages based on SFM are tested: VSFM [63], Bundler [62] and PTAM [24]. The objective

is to assess the mapping ability of each of the techniques and choose the best one to use for

reconstructing the IBL 3D map.

22



3.2 Packages Description

In this section we describe the basic functionality steps behind each of the packages. We will

present the main methods used to do the 3D reconstruction so that we can differentiate between

each package and understand the reasons behind the different results that will be shown later.

3.2.1 Bundler

The latest version of Bundler was released in 2010. This software aims to demonstrate the

success of SFM techniques on unorganized images sets that may be found on the Web. The

package uses a robust modified SFM approach to reconstruct 3D scenes out of these unordered

images. The main methods upon which Bundler works are described below [55]:

A) Feature matching: Bundler uses the SIFT feature detector. Then, each pair of images is

matched to get the Fundamental matrix. Here Bundler runs its own optimization to get a

robust Fundamental matrix(F-matrix) using RANSAC as follows:

1) Compute a candidate F-Matrix for each RANSAC iteration using the eight point algo-

rithm.

2) Run non-linear refinement of it.

3) Remove the outlier matches and get the recovered F-matrix.

4) Check if the number of remaining matches is less then 20, then remove all the matches.

B) Modified SFM: Bundler organizes the matches into a connected set of matched keypoints

across multiple images called a ’track’. The modified SFM approach is summarized below:
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1) Bundler initializes cameras using pose estimation to avoid getting stuck in bad local

minima. This is done by adding multiple cameras at a time.

2) Bundler uses different approaches to choose the initial 2 images. It chooses the pair

of images that have the largest number of matched features and then estimates the camera

parameters of this pair.

3) Bundler starts to add multiple cameras to the optimization. It begins by adding the cam-

era with the greatest number of matches (whose 3D position has been already estimated)

then follows that by adding any camera that has 0.75 of the total number of matches.

4) For each added camera, Bundler initialize the extrinsic and intrinsic parameters using

Direct Linear Transformation (DLT). It also reads EXIF tags of the image where they take

the focal length and compare it to the estimated one from DLT to initialize it.

5) For each added camera, Bundler adds tracks observed by that camera. Each track is

added if it was observed by at least one recovered camera.

6) Bundler uses sparse BA to minimize the reprojection error at each iteration. After every

run of the optimization, Bundler detects 3D outlier points that have high reprojection error

in a track and then removes that track. Then optimization is rerun again until no outliers

remain.

3.2.2 VisualSFM

The latest version of VSFM was released in 2013. The main target of this package was to reach

a linear time incremental SFM. Wu in his paper [64] explains the major improvements that his
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software presented to build a better 3D reconstruction. Basically, VSFM improved the SFM

algorithm done in Bundler. The main methods upon which this software work are described

below:

1) VSFM uses a new feature matching approach called "Preemptive Feature Matching". This

method consists of: a) Sorting the SIFT features of each image in a decreasing scale order,

b) Generating the frame pairs to be either fully matched or by taking a subset of images to

be matched, c) Looping over each image pair by first choosing a number h corresponding

to the first h features to be matched. Then, it is essential to check if the number of matches

is less than a certain threshold, then repeat the matching, and if it is not then do regular

matching and geometry estimations.

2) VSFM uses multicore bundle adjustment [65] where the aim of BA is to refine the 3D

position of features and camera parameters by minimizing the non-linear reprojection error

function. This method uses implicit multiplication of the known Hessian matrices and

Schur complements by the use of the Jacobian matrix. In this way, the function is linearized

at each iteration.

3) VSFM uses a modified version of incremental SFM from Bundler. First, the software starts

to do full BA only when the size of a model is increased by a certain threshold ratio due to

the large amounts of cameras being added. But to reduce the error accumulation, VSFM

always runs local partial/local BA on a certain number of recent frames. Second, point

filtering is done on the 3D points that had large reprojection errors.

4) The last part of incremental SFM is Retriangulation (RT) where VSFM retriangulate the
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failed feature matches. This is done to recover these points and to have more features in

the scene. Here the reprojection error threshold is increased to reach that goal. Then a full

BA and point filtering is run again to improve the reconstruction and reduce the errors.

Thus, VSFM is characterized by the preemptive feature matching, multicore BA and incre-

mental SFM that uses a mix of BAs and RT to maintain the accuracy of the 3D reconstruction.

3.2.3 PTAM

PTAM was released in 2007. Many updates were made on it and the latest was PTAMM (parallel

tracking and multiple mapping) in 2011. The main approach is described in [24] and [8]. It splits

the tracking and mapping into 2 parallel threads. The main approach is described below:

A) Mapping is the main part that we are interested in when dealing with 3D scene recon-

struction. The main difference from other SFM softwares is that they only update the

map based on a keyframe. In other words, they have their own way to add frames to the

mapping thread. The main algorithm works as follows:

1) PTAM uses stereo initialization: They take the first 2 keyframes, run FAST-10 features

extraction, match the 2 images to get the F-matrix, use RANSAC to remove outliers, recal-

culate F-matrix using inliers, optimize for getting the correct Essential matrix and finally

triangulate the 3D points.

2) Adding Keyframes: PTAM only adds a frame, which becomes a keyframe, to continue

constructing the map based on satisfying the following 3 conditions: a) if tracking quality
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is good, b) if a minimum of 20 frames has passed since the last keyframe was added and

c) if the camera has moved a minimum distance from the last keyframe pose.

3) 3D points are added to the map by feature matching along epipolar lines between the

latest keyframe added to the map and its closest keyframe in terms of camera position

using triangulation.

4) BA: LM algorithm is used to refine the camera positions and 3D triangulated points.

When a new keyframe is added, BA is interrupted.

B) Tracking is run parallel to the mapping thread. The main steps are summarized below:

1) At each frame grabbed by the camera, the image is converted to grayscale. Then a 4

level pyramid is created for each frame. Fast-10 feature detector is run at each level.

2) A predicted camera pose is estimated using a decaying velocity model.

3) 3D map points are projected into the image according to the frame predicted pose in

point 2 using a calibrated pin hole camera model.

4) 50 3D points are projected at coarse level into the image plane and searched for. Given

successful patch matches between the new image and its closest keyframe, the camera

pose is updated by minimizing an objective function that accounts for the reprojection

error. Then 1000 points are projected at a fine level and the same procedure is repeated to

refine the updated pose.
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3.3 Results

3.3.1 Datasets and Testing Methodology

Three datasets composed of hundreds of images taken by our camera (point grey as raw data,

logitech as png). Each dataset is described below:

1. Jbeil Roman Theatre:

Images of a very old Roman Theatre located in Byblos-Jbeil were taken by a non-calibrated

Logitech camera. The images were taken as Keyframes inside PTAM where 31 keyframes

were stored for testing for this scene as input images to other packages to ensure having a

fair comparison.

2. University of Waterloo Robotics Group Lab:

2000 Images for a well dense lab located at the University of Waterloo were taken as

raw data from an uncalibrated Point Grey Camera. The best 400 frames out of the 2000

were chosen to reconstruct this scene. The aim was to show the camera effect of the

reconstruction by taking the images as raw uncompressed data.

3. University of Waterloo Engineering 5 Building:

400 Images for a symmetrical shaped building were taken as raw data from our Point Grey

uncalibrated camera to be the input images to the packages. This building was chosen due

to its symmetrical shape effect on the reconstruction along with its reflection effects caused

by the glass
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The three packages were used as blackboxes where some parameters were tuned to have a

fair comparison. In VSFM, we changed the maximum feature matching number, and it was tuned

so that more features can be matched. The minimum and maximum reprojection error thresholds

were tuned by trial and error and we set the best ones equally for the three packages. In Bundler,

the camera initialization thresholds were tuned. In PTAM, the number of minimum keyframes

was lowered along with the minimum distance threshold from the camera to get more keyframes,

since the goal is to tackle the mapping thread of PTAM.

3.3.2 Results

This section will present the reconstructed 3D maps scenes for each dataset used along with their

corresponding reprojection errors.

Roman Theater Dataset The reconstructed 3D sparse maps for Jbeil Roman theater are shown

in Fig. 3.1. Fig. 3.1a and 3.1b show a side and a front view of the resultant sparse map of the

theater from VSFM respectively. Fig 3.1c and 3.1d also show a side and a front view for the map

reconstructed from PTAM respectively. Fig. 3.1e show the Bundler reconstructed map. It is clear

that the reconstruction from VSFM and PTAM was good and it clearly shows the layout of the

theater, with a fair advantage to VSFM where it shows a more robust structure of the monument.

In contrast, the Bundler reconstruction was poor and did not even reflect the theater aspect.

The reprojection error in pixels associated with the reconstructed maps from Bundler and

VSFM are shown in Fig. 3.2. Fig. 3.2 shows that the error coming from VSFM is a bit higher

than the one coming from Bundler. The total average reprojection error for VSFM was 3.09
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whereas it scored 2.47 for Bundler. The main reason why Bundler had a lower error than VSFM

is simply because of the number of 3D features. The sparse map from VSFM had 8661 features

whereas PTAM’s map had 7100 and Bundler’s map had only 3246. So Bundler’s reprojection

error was lower than the VSFM reprojection error because it was computed on 2.8 times less

number of features. The number of features also reflects the fact that VSFM and PTAM returned

good maps with a fair advantage to VSFM’s map.
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(a) Jbeil map from VSFM side view

(b) Jbeil map from VSFM front view

(c) Jbeil map from PTAM side view

(d) Jbeil map from PTAM front view

(e) Jbeil map from Bundler

Figure 3.1: Reconstructed 3D sparse maps for Jbeil Roman Theatre
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Figure 3.2: Reprojection error Vs feature ID associated with the reconstructed maps for Jbeil
Roman Theatre

University of Waterloo Robotics Group Lab Dataset The reconstructed 3D sparse maps for

the University of Waterloo Robotics Lab are shown in Fig. 3.3. Fig. 3.3a shows the resultant

sparse map of the lab from VSFM. Fig. 3.3b shows the Bundler reconstructed map. This time,

Bundler showed an acceptable reconstruction where the lab can be identified. But compared to

VSFM the Bundler results become marginally bad since VSFM showed again a really good 3D

sparse map. In Fig. 3.3a we can clearly see that VSFM maintained the lab structure and main

components and a person can clearly identify some of the lab components such as the Canadian
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(a) UW Robotics Lab map from VSFM

(b) UW Robotics Lab map from Bundler

Figure 3.3: Reconstructed 3D sparse maps for UW Robotics Lab

flag.

The reprojection error in pixels associated with the reconstructed maps from Bundler and

VSFM are shown in Fig. 3.4. The figure shows that the error coming from VSFM is lower than

the one coming from Bundler. The total average reprojection error for VSFM was 1.35 whereas

it scored 3.01 for Bundler. The sparse map from VSFM had 12881 features whereas Bundler’s

map had 8962. Those numbers reflect the sparsity of the map and the fact that VSFM again

returned the best map. Alternatively, Bundler this time was able to get an acceptable number of

features to build its map.
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University of Waterloo Engineering 5 Building Dataset The reconstructed 3D sparse maps

for the University of Waterloo’s Engineering 5 Building are shown in Fig. 3.5. Fig. 3.5a shows

the resultant sparse map of the lab from VSFM. Fig. 3.5b shows the Bundler reconstructed map.

Again VSFM showed a good reconstruction where the E5 building structure was clearly visible.

Although the map was visually good, we must note that it was returned in 2D plane and not in

3D plane. This is due to the symmetrical shape and the lighting reflections coming from the glass

of that building. In contrast, the Bundler reconstruction was pretty poor and did not even reflect

Figure 3.4: Reprojection error Vs feature ID associated with the reconstructed maps for UW
Robotics Lab
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the building aspect.

The reprojection error in pixels associated with the reconstructed maps from Bundler and

VSFM are shown in Fig. 3.6. The figure shows that the error coming from VSFM is more then 2

times higher than the one coming from Bundler. The total average reprojection error for VSFM

was 13.24 whereas it scored 5.44 for Bundler. Those numbers show that the VSFM reconstructed

map is indeed a decent one, but there is something wrong in the 2D reprojections. The sparse map

from VSFM has 16478 features, while Bundler’s map had only 2994. So Bundler’s reprojection

error was lower than the VSFM reprojection error because it was computed on 5.5 times less

number of features. The number of features also demonstrates the fact that VSFM is again the

best package.
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(a) UW E5 Building map from VSFM

(b) UW E5 Building map from Bundler

Figure 3.5: Reconstructed 3D sparse maps for UW Engineering 5 (E5) Building
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Figure 3.6: Reprojection error Vs feature ID associated with the reconstructed maps for UW E5
building
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3.4 Analysis and Discussion

In this section, the analysis of the results is discussed and the shortcomings of each tested package

are revealed, along with their effect on IBL.

First, VSFM'’s robust and accurate mixing of Re-triangulation (RT) and BA is a major reason

it produced the best sparse maps. Reconstruction shows that the RT step is handling the drifting

errors where some features marked as outliers were re-optimized using RT. a Many of them

were found to be inliers and were refined using BA. This gave VSFM a main advantage over

PTAM and Bundler since t PTAM and Bundler only run optimization and do not re-triangulate

the outliers.

Second, it was noticed that VSFM’s multicore BA gave their optimization of the camera

parameters and features positions more accuracy over Bundler and PTAM. Bundler used only

regular global BA when they had to add multiple cameras to the optimization to save time. -

Thus, their BA estimations returned lots of outliers. PTAM, on the other hand, used a mixed

global and local BA which gave their maps a large number of inliers and helped to reduce the

accumulation error.

Third, image matching which is the bottleneck of SFM, SLAM and IBL plays the major role

in favour of VSFM. VSFM’s preemptive feature matching approach gave VSFM a high number

of robust matches relative to PTAM and Bundler. This method offers a very low computational

cost and allows one to focus efforts on the features that are most likely to be matched. This,

combined with the mixing of RT and BA, allowed a large number of inliers, and so a large

number of features in the reconstructed map. This is a major necessity for IBL since good

quality matches in the map lead to more inliers and better localization accuracy. Bundler'’s major
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problem causing poor results was its own image matching. It is summarized by the numbers of

cameras registered for the reconstruction. A very large number of cameras failed to initialize,

leaving the reconstruction with a small amount of registered cameras (for example only 328

images out of the 400 were registered for the E5 Building dataset). This affected the number

of features, thus the complete reconstruction. It is mainly caused by two major things. First,

the images could not be matched because they belong to a part of the scene which might be

disconnected from each other. In addition, there was excessive blur and noise, and little overlap

with other images. This results in a very few number of matches, where Bundler set a threshold

of 20 remaining matches in order to register the camera. Second, Bundler uses a prior pose

estimation to initialize the camera to avoid getting stuck in local minima. W This failed in l

many cases and marked the images as bad ones, and therefore did not initialize them. The poor

quality of matches that Bumdler returns will give less localization accuracy.

Fourth, Bundler used a camera model that does not handle the lens distortion, which causes

large reconstruction errors. This is why in Bundler’s maps there exist a lot of reconstructed

features that should be marked as outliers.

Fifth, it was noticed that PTAM sometimes inserted wrong features into the map with high

errors. This happened when tracking quality was poor.

Finally, some chosen environments might be challenging to reconstruct, especially those who

have symmetrical or repeating structures or do not have strong features like the E5 Building

dataset. Even VSFM had problems reconstructing such scenes.

To summarize, all of these main algorithmic differences explained above are tabulated in

Table 3.1. It is crucial for IBL to choose the software that provides the best quality of points, i.e.
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VSFM PTAM Bundler
Image Matching SIFT ×

FAST × ×
Preemptive Matching × ×

Prior Pose Estimation for Initialization × ×
SFM RT and BA mix × ×

Global BA
Local BA ×

Multicore BA × ×
Motion Model Handle Lens Distortion ×

Affected by Tracking × ×

Table 3.1: Main algorithmic differences for each package.

the largest number of correct 3D points. For this reason, VSFM was chosen to reconstruct the

3D maps for IBL.
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Chapter 4

IBL State of the Art Evaluation1

In this chapter the state of the art in IBL techniques will be described. Also, the different datasets

used in IBL will be discussed. The methodology that was followed to ensure a fair comparison

is also presented. Then, the results of the study on each of the available approaches will be

presented. This will be followed with a comparison utilizing the results taken from the papers

describing closed-source systems. Finally, the results will be analyzed and discussed by present-

ing the shortcomings and strengths of each approach.

4.1 Main Approaches Description

In this section the state of the art in IBL techniques are presented. Table 4.1 lists six different

systems taken from the literature, along with the advantages and disadvantages of each system.
1The contents of this chapter will be submitted to the Robotics and Automation Magazine, 2016 IEEE. Co-

authors include: Charbel Azzi, John Zelek, Daniel Asmar and Adel Fakih. I hereby verify that I will be the principal
author. The material will be paraphrased.
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Table 4.1: This table shows the area of contributions for each major approach in the main steps
of IBL and its scalability application

Main Steps in Image-Based Localization Scale Applicability
Keypoint
Matching Registration Pose Estimation

(Localization) City-Scale Small-Scale

Decision Forest -
Shotton

Shotton’s Learning
Approach × × ×

Modified
RANSAC × × ×

Keyframe Approach -
Shotton

Shotton’s Relocalization
Approach × × ×

Visual Words -
Sattler

Visual Words
Vocabulary Tree × ×

Active
Search × ×

Worlwide Pose Estimation -
Snavely

Co-occurence
RANSAC × × ×

Bi-directional
Search × × ×

Embedded Ferns -
Donoser

Classification Approach
Using Ferns × ×

MPEG Search Space Reduction -
Heisterklaus Synthetic Camera Generation × × ×

IBL techniques are typically designed for two different types of scale; namely, (1) small indoor

scales, which consist of hundreds of images and result in tens of thousands of 3D points and (2) a

large city-scale, in which the representative database contains thousands of images and millions

of 3D points. Some of these selected techniques are open-source in nature and they are the most

commonly referred to. The list includes the decision forest [49], the Keyframe approach [16],

Visual Words [46], Worldwide Pose Estimation [28], Embedded Ferns [12] and MPEG search

space reduction [19].

42



4.1.1 Decision Forest

Shotton et al. [50] presented an IBL system that focused on improving the Keypoints matching

and pose estimation steps. Their main contributions were: (1) their regression forest to represent

the scene and (2) their modified RANSAC for pose estimation.

Their main technique is illustrated in Figure 4.1 They used an RBD-D sensor to get both

RGB images and their corresponding depth. The images have known poses computed from the

RGB-D technique [49, 16, 37]. They determined the pixel location of each image and used this

position to train a regression forest [1, 27, 51]. The depth and camera poses are used to compute

the 3D scene coordinates by training the forest at every image pixel. The forest is mainly used to

generate a mathematical representation of the scene from the input database images from which

the output will be the 3D position of each pixel point. This will result in a featureless 3D map.

The pixels of a query image are matched to the 3D map points through the regression forest. Then

a modified version of Preemptive RANSAC based on energy minimization is used to remove the

outliers. If more then 12 inliers are found, the image is registered and its pose is estimated and

optimized.

4.1.2 Keyframe Approach

Shotton et al. [16] presented a keyframe approach for re-localization application. Their main idea

focuses on finding the closest keyframe to the query image to correct the current pose estimation

using a new simplified random ferns [39] approach.

Their database consists of RGB-D keyframes of indoor scenes. They start by dividing each
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keyframe in the database into m equal pixel locations. Thus each image is divided into m ferns

and each fern is divided into 4 nodes to represent the intensity of each pixel (RGB and Depth).

They encode each fern in the image by doing a simple binary test. A query image is taken and

divided to m equal locations and compared respectively to all the keyframes in the database using

the trained ferns. Then, the block hamming distance (BlockHD) between the query image and

each keyframe is computed from the resulting binary test. The hamming distance is a number

that denotes the difference between two binary blocks and the blockHD counts the number of

differing blocks. The closest keyframes with the smallest distance to the image are chosen and

matched via standard FLANN in order to obtain the 2D-2D correspondences. If more then 12

inliers are found after RANSAC, than the image is registered and its pose is estimated.

4.1.3 ACG Localizer

Sattler et al. [46, 45] presented a complete IBL system that aimed to reduce the search space

problem when dealing with large city-scale environments. They improved the keypoint match-

ing step by their Vocabulary Prioritized Search (VPS) [45] algorithm, described in the previous

section, and their active search method improved the image registration step. They used a 3D

point cloud map where they presented their VPS, illustrated in Figure 4.2, to cluster the 3D points

into bag-of-words and form a vocabulary tree. Each point is stored by the mean of all its SIFT

descriptors [30]. The tree is sorted based on a priorities strategy that takes into account the co-

visibility of each 3D point in the database image. Then, they start their active search algorithm,

illustrated in Figure 4.3 by performing a standard FLANN 2D-3D matching between the query

image descriptors and the 3D point in the vocabulary tree until one hundred matches are found.
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There is a high probability that the nearest neighbours of a matched 3D point will have matches

in the query image. Thus, the neighbours of each matched 3D point undergo a 3D-2D matching

with 2D features in the query image. The outliers are then removed via RANSAC and if more

then 12 inliers are found, the image is registered.

4.1.4 Worldwide Pose Estimation

Snavely et al. [28] address the image registration step in IBL and propose an improvement based

on their co-occurrence RANSAC and bi-directional contributions. They worked on a city-scale

mapping of the environments. Their work consists of performing a standard FLANN 2D-3D

between the query features and all the 3D maps until one hundred matches are found. Co-

occurrence RANSAC is then applied on those matched. It consists of dividing the resultant

matches into subsets. Then they use a probabilistic model to return the subsets with the highest

probability. These subsets are the starting set that RANSAC will begin with to remove the

outliers. If more then 12 inliers are found, then the query is registered and qualifies for pose

estimation. Otherwise, the matches undergo a bi-directional search, which consists of performing

a 3D-2D matching to guarantee that a sufficient number of inliers is found.

4.1.5 Embedded Ferns

Donoser et al. [12] presented a new keypoints matching technique that can be used for IBL. Their

main contribution was presenting a new classification technique called embedded ferns.

They followed the principle of 2D-3D approach by [46] but they replaced the standard
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FLANN to get the 2D-3D by a discriminative classification step called embedded random ferns.

They basically used all the descriptors representing each 3D point to train a classifier, then used

random ferns based on the projections. They only stored the classifier and removed the images

and descriptors to save memory. They required a GPS prior on camera position to restrict the

classification into certain areas of the scene from which the query image is taken.

4.1.6 MPEG Search Space Reduction

Heisterklaus et al. [19] improved the keypoints matching and image registration steps. Their

main idea is to reduce the search space in large city-scale environments by presenting synthetic

views to cover the space for faster 2D-3D matching.

For each keyframe in the database, they extract the MPEG Compact Descriptors for Visual

Search descriptor (CDVS) [13]. Each one consists of a global descriptor and compressed lo-

cal descriptors. A CDVS test model is used to generate a compact model of the real and the

synthetic camera views within an image based on frustum culling. Thus, for each keyframe, its

corresponding three hundred most relevant features and its global descriptor are stored to form

the compact 3D model. The three hundred most relevant SIFT descriptors are extracted from a

query image along with its CDVS descriptor. These 300 descriptors are matched via 2D-2D with

the 3D model to get a score for match. Then the 2D-3D correspondences are computed from

the highest scored matched 2D-2D. If enough inliers are found after RANSAC, then the image

is registered and its pose is estimated.
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Figure 4.1: Decision Forest Pose IBL System. (Shotton et al., 2013)
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Figure 4.2: Vocabulary-based Prioritized Search(VPS). (Sattler et al., 2011)

Figure 4.3: Active Search System. (Sattler et al., 2012)
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4.2 Datasets and Methodology

Table 4.2 presents the eight datasets used for the assessment of IBL systems. The first six

datasets are large and represent some major cities in the world. The sets were reconstructed

using Bundler [62] from images that are available on the web.

The query images are the test images against which the approaches are validated. The table

shows the number of 3D points that each map consists of. Dubrovnik [29], Rome [29], Quad

and Vienna [22] datasets consist of a few million 3D points reconstructed from images taken by

Flickr users. The Aachen [46] dataset also has a few millions 3D points and the query images

were taken by Flickr users via telephone over a two year period. This makes them more difficult

to process than the previous three datasets due to geometrical defection and changes that could

have happened during two years. Landmark 1k [28] is the most popular 1k landmark on Flickr

and together with San Francisco [28], they are considered the largest datasets, featuring tens of

million of 3D points. Microsoft researcher introduced the 7 scene Dataset [50] which consists of

images for seven different indoor scenes taken using an RGB-D Kinect.

Table 4.2: The major datasets used in IBL along with the total number of database images, query
images and 3D points.

Dataset Total # of Images # of Query Images # of 3D points [Million]
Dubrovnik [29] 6044 800 1.9
Rome [29] 15179 1000 4.1
Vienna [22] 1324 266 1.1
Quad [10] 6514 348 1
Aachen [46] 3047 369 1.5
Landmarks 1k [28] 204000 1000 38
San Francisco [28] 610000 803 30
7 Scene [50] 26000 17000 -
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To ensure a fair comparison, the evaluation methodology that was followed is presented. All

testing was done on an Intel Core i7-4930K CPU with 3.40GHz x12 with 32 GB Memory. Only

three out of the six main approaches provided an open source for testing. Their source code is in

the evaluation pipeline. Since Dubrovnik dataset provides metric ground truth and is mostly used

for testing localization accuracy in IBL, it was chosen to run the testing. First, Brute Force and

tree-based are used to match all the query images to the 3D map in the dataset. Then the resultant

correspondences undergo first a ratio test to remove the ambiguous matches, then a cross match

to remove the repeated matches. Following this, RANSAC removes the remaining outliers from

those matches. If more then 12 inliers are found, then the image is registered and its pose is

estimated using P6P. The estimated pose is compared to the metric provided with the dataset.

For ACG localizer, a clustering file is provided where all 3D points are clustered into 100k

clusters. The provided file is used to run their pipeline. Then, another clustering file is created

using the same library they used to test the quantization effect. The same thresholds values

used in tree-based and BF are set for the ratio test, RANSAC re-projection error and number of

iterations. The resulting correspondences from their software are subjected to the cross-matching

step. For Embedded Ferns, only a general classifier code was provided. It was needed to parse

the Dubrovnik dataset in the way described in their paper to be able to test it on the provided

classifier. Their system was automated to be run on each query image through the classifier. The

resultant matches were subjected to the ratio test, the cross matching step, and then RANSAC

using the same threshold values. As for the Keyframe Approach, their keyframe approach was

implemented for each image in the dataset. Then, for each query image its corresponding fern

was created and matched to the dataset. The closest 100 keyframes in the database were chosen

and matched against their corresponding 3D map points. The resultant matches also undergo the
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ratio test, the cross matching step, and then RANSAC using the same threshold values.

4.3 Results

Table 4.3 shows the results of our study on the Dubrovnik dataset conducted on the 3 provided

main approaches (ACG localizer, Embedded Ferns and Keyframe Approach) along with the

results from Brute Force and FLANN.

As expected, Brute Force and tree-based registered almost all the images with the best lo-

calization accuracy by the best mean and median errors with a slight advantage to Brute Force.

Nevertheless, these approaches were very slow where brute force needs an average of 28.9s to

register one query image and tree-based 3.6s to do the same job. Thus, these two approaches

cannot be used in real time. The main goal of all of the other approaches was to make IBL

feasible for real time application by speeding the registration while trying to maintain the same

level of accuracy as tree-based . The results from ACG Localizer using the provided clustering

approximately matched the results reported in their paper. ACG localizer gave a good mean error

compared to tree-based with almost the same median error while being more then 10 times faster.

Since this approach relies on clustering, another clustering file was created to test the sensitivity

to the well known problems of clustering on the same dataset. The approach lost significant

accuracy with the new clustering in the mean and median error but maintained the same speed.

Although the Keyframe Approach scored the fastest registration times, their localization results

on this dataset were poor since the average mean and median were very high compared to the

other approaches. Embedded Ferns presented the worst results. Their offline training took a few

days. Concerning their results, they returned the worst mean and median average errors with
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Table 4.3: Results on Dubrovnik dataset for the provided main approaches using our method-
ology. The results include the number of registered images out of the total images, the average
mean and the average median in meters, and the average registration time in seconds.

Approach Total # Images # Registered Images Mean [m] Median [m] Average Time [s]
Brute Force 800 798 8.7 0.8 28.9
FLANN 800 794 10.4 1.1 3.6
ACG Localizer with provided clustering 800 797 31.4 1.3 0.28
ACG Localizer with our clustering 800 754 52.3 7.8 0.29
Keyframe Approach 800 697 182.1 64.3 0.21
Embedded Ferns 800 769 252.4 92.9 5.2

slow speed.

Table 4.4 reports the results of the other 3 main approaches in IBL that did not provide

open source codes for testing. Their experiments were conducted on other major dataset stated

in Table 4.2. The Decision Forest approach tackled small indoor scenes that were tested on 7

scene dataset. The average results on all the 7 datasets were taken. 68.3% of their images had

average mean translational error less then 5cm and rotational error less then 5 degrees. The

median on these registered images was less then 1% and the average time for registration was

very fast (0.1s). On the other hand, Worldwide Pose Estimation registered 68.4% of their images,

tested on Quad dataset, with average mean and median error very close to tree-based but with

slower speed. The MPEG Search Space Reduction approach was tested on Aachen, and they

only reported an average median error of 5m.

Table 4.4: Results taken from the corresponding papers of the non-available approaches. They
include the dataset each approach was tested on, the % of registered images, the average time in
second, and the average mean and median.

Approach Dataset % Registered Images Mean Median [m] Average Time [s]
Decision Forest [49] 7 Scene Dataset 68.3 T < 5cm R < 5deg <1% 0.1
Worldwide Pose Estimation [28] Quad 68.4 5.5m 1.6 ’few seconds’
MPEG Search Space Reduction [19] Aachen - - 5 -
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4.4 Analysis and Discussion

The results in the previous section show that IBL still lacks accuracy and robustness particu-

larly in the main approaches. In this section the shortcomings found for each approach will be

presented.

All the approaches share some common problems. These problems are the main ones that

IBL still faces, though it was improved to some extent. RANSAC performance in the Image

Registration phase is not robust in many situations. This problem is important and has not been

addressed for a while. SIFT extraction and the nature of the descriptors in the matching phase

are also still challenging problems.

ACG localizer suffered from the quantization effect in three ways: (1) the problem resides in

missing the best correspondences because the matched descriptor might not be assigned to the

correct visual word, (2) the clustering will result in an uneven distribution between visual words

where some of them will contain a large number of descriptors, thus technically a non-efficient

search space reduction and (3) the k-means clustering itself which in large-scale scenes faces

challenges in scaling to this kind of size due to its inherent sequential nature. The Keyframe

Approach was sensitive to the distance between the keyframes and the query needs to be taken as

close as possible to the path followed while taking the keyframes. For this reason, this approach

will perform much better for small or building scale scenes, not on a city-scale like Dubrovnik.

As for Embedded Ferns, the paper addresses the matching as a classification step and they re-

ported results better than tree-based in image registration. Nevertheless, they only provided a

general classification code. Their main problem was that their classifier is not good enough for

global matching. This is due to the need to use GPS prior on camera positions to restrict classifi-
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cation by dividing city-scale scenes into small groups where each query image will be placed in

one specific group based on the GPS tag.

Decision Forest reports problems of ambiguity in the environment. This approach relies on

the depth provided, thus it will require a significant amount of work be done on the RGB images.

Also their modified RANSAC only works for the decision forest modeled in their paper. As for

Worldwide Pose Estimation, their co-occurrence RANSAC will fail when all features are from

the same environment. Also, similar or identical features will probably cause false registrations.

MPEG Search Space Reduction reports that their approach is not robust to illumination changes.

Also, bad estimation of the focal length and skew coefficient were the cause of incorrect local-

ization.

Solving IBL consists of solving its three main steps: keypoints matching, image registration

and pose estimation. This comparison revealed major deficiencies that still face IBL: Matching is

one of the major problems that affects the robustness and accuracy of IBL due to the nature of the

descriptors which causes lots of false matches (scale, blur, illumination and camera perspective).

Another major problem is the dimensionality of the environment consisting of millions of 3D

points where the need of efficient and robust matching arises along with managing memory

consumption.
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Chapter 5

GIST-based Search Space Reduction

(GSSR) System1

The comparative study proved that IBL still faces many problems. The shortcomings of the main

approaches were discussed in the previous section. In the following section it was chosen to focus

on reducing the search space problem as the mean to solve the image-based localization problem.

A new image-based localization approach based on reducing the search space is proposed. It

consists of using global descriptors to find candidate keyframes in the database and then search

against the 3D points that are only seen from these candidates using local descriptors stored in a

3D cloud map as shown in Figure 5.1. The proposed novel solution has the desirable properties

of speed and accuracy built in.

1The contents of this chapter have been submitted to the Computer Vision and Pattern Recognition (CVPR),
2016 IEEE Conference. Co-authors include: Charbel Azzi, John Zelek, Daniel Asmar and Adel Fakih. I hereby
verify that I am the principal author. The material used was paraphrased.
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5.1 Search Space Problem

In the literature, there are two main approaches for the search space problem; the first one pro-

posed by Sattler et al. [46], also known as the ACG localizer, and reduces the search space by

clustering features into visual words. This method has three notable disadvantages. First, it risks

missing the best correspondences because the matched descriptor might not be matched to the

correct visual word. Second, the clustering sometimes results in an uneven distribution between

visual words, resulting in inefficient search space reduction. Third, it relies on K-means cluster-

ing, which in large-scale scenes faces challenges in scaling to this kind of size due to its inherent

sequential nature. Heisterklaus et al. [19] tackles the search space problem by using an MPEG

descriptor in order to generate artificial images to cover the space. The technique is not invariant

to lighting changes and is extremely sensitive to inaccuracies in the intrinsic camera parameters.

5.2 GIST-based Search Space Reduction (GSSR)

Gist-Based Search Space Reduction (GSSR), illustrated in Figure 5.1, is proposed to overcome

scaling issues as well as other traits such as illumination variance. GSSR relies on the GIST

global scene descriptor [58], which has shown to have relation to how humans perceive the GIST

of a scene. GIST scene measures are not dependent on illumination changes. While most search

space reduction methods rely on bag of words to do so, GSSR relies on GIST descriptors [58] to

establish context for both the saved images in the database as well as for any query image.

The GIST descriptor proposed in [58] aims to develop a low-dimensional representation for

each image. Figure 5.2 illustrates the GIST pipeline. The proposed descriptor represents the
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Figure 5.2: GIST descriptor computation.(Torralba et al.,2006)

dominant spatial structure of a scene. Thus, GIST summarizes the gradient information (scale

and orientation) for different parts of an image. It starts by convolving the image with 32 Gabor

filters at 4 intensity scales, 8 color feature orientations, producing 32 feature maps of the same

size of the input image. Then it divides each feature map into 16 regions of 4x4 grids. Finally, a

512 GIST descriptor is computed by concatenating the 16 averaged values of all 32 feature maps

(16x32 = 512).

GSSR is shown in Algorithm 1. In a pre-processing offline stage, a 3D map of the target

environment is built using SfM. The resulting map is parsed and contains the following (see

Figure 5.3):

• 3D points + their SIFT [30] descriptors + keyframes in which each 3D point was observed.
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• Keyframes + a single GIST for each keyframe

Once GSSR is initiated, each query is processed to produce its own GIST descriptor as well as

its SIFT descriptors. The GIST distance between the query and all the keyframes is computed (L2

norm of the GIST feature). If the distance is below a threshold then the keyframe is considered

a candidate match, otherwise it is discarded since it does not belong to the same view of the

query image. The threshold chosen here is determined empirically and can lead to unsuitable

keyframes that do not share a large enough number of 3D points with the query image. In order

to remove these outlier keyframes, a simple random consensus test is done as a refinement step.

Each candidate keyframe is checked with all the other candidates according to:

Fk =
∑

N
i=1 Pi(KFi,KFk)

N
, (5.1)

where N is the total number of candidate keyframes and Pi is the number of 3D points in

common between the tested candidate KF and the keyframe at i, KFi. Pi is computed in an offline

stage after the map is reconstructed and parsed. If the ratio Fk is high enough then the candidate

keyframe qualifies for localization, otherwise it is discarded. The net result at this point is a

constellation of keyframes that qualify for localization. This technique is similar in spirit to the

work of Shotton [16, 17].

In the next stage, the search space is reduced by matching only to 3D points seen in the qual-

ified keyframes. This consists of only considering 3D points that are viewed by the constellation

of keyframes. Then 2D-3D matching between SIFT descriptors and retained 3D points (i.e., only

seen by the qualified keyframes) is done using ANN [35]. If more than 12 inliers are found, the
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image is registered, if not it is discarded. The empirical value of 12 is taken from the relevant

body of literature [29]. Finally, the pose is refined using the qualified registered image.
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Figure 5.3: Inputs into the GSSR system
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Algorithm 1: GSSR Algorithm
1Get the GIST for each KF(Keyframe) + the 3D pts and all the Kf’s each pt is visible in
from VSFM map + the camera transformation estimates from VSFM

2Take a query image Q and extract its GIST
3for all database KFs do
4 Compute the cost C(Q,KFi) = GIST distance between Q and KFi
5 if C(Q,KFi)< N(min)threshold then
6 Qualify KFi for next step
7 else if C(Q,KFi)> N(max)threshold then
8 Discard KFi
9for All qualified KFs do

10 if KFi have enough number of visible 3D pts between the other KFs then
11 Qualify KFi to localization step
12 else
13 Discard KFi
14 . Match the query to the 3D pts coming from the final qualified KFs:
15Take the 3D pts viewed only in the qualified KFs
16Perform a 2D-3D match between the query and those 3D pts
17Image Registration: Reject outliers via RANSAC and ratio test. If enough Inliers are

found then Image qualifies to the Pose Estimation otherwise discard the image
18Pose Estimation
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5.3 Experiments

This section describes the experiments that were conducted to validate GSSR. First, the

datasets are described (including ground truth) and then the evaluation methodology is presented

for the benchmarking of GSSR against the tree-based technique.

5.3.1 Datasets

For the evaluation of GSSR, the 7 scenes datasets provided by Microsoft Research [16, 49] is

used. These datasets are presented in Table 5.1 and consist of seven different indoor locations;

each mapped using an RGB-D Kinect camera, resulting in a 3D metric ground truth map for each

scene. The choice of each scene represents different photometric challenges, namely (1) motion

blur and illumination changes, (2) flat surface and repetitive structures (especially in the Stairs

dataset), and (3) reflectivity (especially in the RedKitchen dataset). Each dataset offers training

data, which can be used for the 3D reconstruction of the scene, as well as a test dataset, which

can be used as query images. These datasets are used to build the ground truth model and the 3D

map in order to evaluate GSSR and compare it against other IBL techniques.

5.3.2 Evaluation Methodology

This section describes how the 3D map is built as well as how the ground truth with metric scale

is obtained.
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(a) Chess scene (b) Chess 3D Map

(c) Fire scene (d) Fire 3D Map

(e) Heads scene (f) Heads 3D Map

(g) Office scene (h) Office 3D Map

(i) Pumpkin scene (j) Pumpkin Map

(k) RedKitchen scene (l) RedKitchen 3D Map

(m) Stairs scene (n) Stairs 3D Map

Figure 5.4: 3D point cloud map for each scene reconstructed from VSFM [65]
64



Table 5.1: The 7 scenes dataset by Microsoft research

Keyframes Query
Chess 4000 2000 69557
Fire 2000 2000 146973
Heads 1000 1000 87332
Office 6000 4000 77926

Pumpkin 4000 2000 55536
RedKitchen 7000 5000 80172

Stairs 2000 1000 42463

#,Images #3D,PointsDataset

First, the training and test images in each dataset are processed by VSFM [65] to yield a

full 3D reconstruction for each scene. Next, the test images are considered as ground truth by

removing their corresponding 3D points from the reconstructed model, along with their corre-

sponding SIFT descriptors and poses. Each 3D point is then represented by the mean value of all

of its SIFT desrcriptors. Finally, ground truth provided by the dataset [16, 49] is used to obtain a

metric scale for the ground truth. This is done by aligning the ground truth map from [16, 49] to

the ground truth and then extracting scale between the two.

In the evaluation of GSSR against the tree-based approarch the following should be noted:

• All tests were performed on an Intel Core 7-4930K CPU with 3.4 GHzx12 with 32GB

memory.

• In the keyframe approach of GSSR, keyframes that have a normalized distance to a query

image less then 0.2 are accepted for the refinement step.
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• Only 3D map points that are seen from the qualified keyframes are matched to the 2D

features from the query. This is in contrast to the tree-based method, where all 2D features

are matched to all 3D map points.

• To ensure a fair comparison, tree-based and GSSR are first subjected to Lowe’s ratio

test [30] with a value of 0.8 to remove the ambiguous matches, then a cross-match is done

to remove the repeated matches. RANSAC and PnP [25] removes the remaining outliers

from those matches.

• As proposed in all the IBL approaches, a query image is registered if more then 12 inliers

are found and its pose is estimated using PnP. The threshold of 12 inliers is proposed

by [29], it is chosen to be high enough to make it unlikely for a false candidate to have

this many inliers and low enough for true candidates with low number of features not to be

rejected.

• The estimated pose is then compared to the metric ground truth.

• The main criterion for comparison is to evaluate the pose (translational and rotational)

errors for each scene with respect to the ground truth. An accurately localized image is

considered if it has a translational error less then 2cm and a rotational error less then 2

degrees.
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5.4 Results

This section presents the results of the experiments conducted in Section 5.3. Results include

performance of the GIST matching, results of the GSSR, as well as benchmarking against other

IBL systems.

5.4.1 GIST Matching

Samples of query images from each scene to show the GIST clustering capability to the closest

keyframes to the query image. Figure 5.5 shows the distance between the GIST descriptor of a

query image taken at random and 1000 keyframes from the Chess dataset. For example in 5.5a

the query image is number 400 on the x axis and the clusters of points(KFs) around it are the

ones who have the smallest distance. Note the close matching of the GIST descriptors of the

keyframes located in the vicinity of Frame 400. Another cluster is noted around images number

600-700 where the user revisits part of scene corresponding to Image 400. Results on the other

six datasets are similar.

5.4.2 Performance of GSSR

Table 5.2 presents the results of the GSSR approach benchmarked against the tree-based ap-

proach. On all seven databases GSSR produces superior localization accuracy in terms of trans-

lational and rotational errors and standard deviations. The main advantage of the GSSR appears

in the computational time, featuring significant speed-ups in performance, where for the Heads

dataset note a speed-up of roughly 4 times faster. Finally, using GSSR, there is a notable increase
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Figure 5.5: This graph shows the GIST distance between a sample query image randomly taken
from each dataset to a 1000 Keyframes in the corresponding dataset. The query is taken among
from the 1000 Keyframes for better visualization where for example in 5.5a the query image is
number 400 on the x axis and the clusters of points around it are the ones who have the smallest
distance to it
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in the percentage of inliers, where for the stairs dataset, more than twice the number of inliers

was detected. These results are better appreciated in graphical form in Figure 5.6a.

In terms of the 3D points used for each scene, note in Table 5.4 the efficiency of GSSR at

reducing the search space, where for the Heads database it reaches a reduction nearing 96%,

with an average of 92% of the original data points while maintaining a better accuracy then tree-

based. This reduction has a direct implication on the reduced computational costs incurred in

GSSR versus the tree-based approach. Figure 5.6b shows these results in graphical form.

In addition to this direct comparison, GSSR is further compared to the published results of

Shotton et al. [16, 49] on the same datasets using the decision forest [49] and the the Keyframe

approach [16]. The results are shown in Table 5.3. The percentage accuracy reported in the table

is calculated as the number of query images featuring a translational error less than 2cm and

at the same time a rotational error less than 2 degrees. The exception is for the decision forest

technique where the published accuracy is based on translational errors smaller than 5cm and

rotational errors less than 5 degrees. Note the considerable improvement in GSSR over the other

techniques. Even for difficult scenes like Pumpkin, RedKitchen and stairs, featuring ambiguous

scenes GSSR performance is superior to the prior art.
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Table 5.2: GSSR performance benchmarked against the tree-based approach

GSSR Tree'Based GSSR Tree'Based GSSR Tree'Based GSSR Tree'Based
1115 Chess 0.2914/0.1 0.3139/0.25 0.315/0.17 0.3235/0.19 34 107 58.7 52.5
1200 Fire 0.148/0.02 0.149/0.02 0.5412/0.23 0.5557/0.26 56 201 65.1 50.0
496 Heads 0.226/0.05 0.232/0.05 0.7275/0.62 0.7379/0.61 18 93 50.8 42.5
470 Office 0.234/0.05 0.238/0.05 0.2814/0.05 0.2959/0.06 28 98 51.5 45.2
524 Pumpkin 0.291/0.08 0.311/0.15 0.2839/0.07 0.2902/0.11 18 54 60.0 58.2
828 RedKitchen 0.151/0.01 0.156/0.03 0.4842/0.36 0.4922/0.38 28 108 55.4 49.9
415 Stairs 1.647/1.32 1.652/1.58 2.751/2.05 2.8517/2.09 22 31 28.1 13.1
721 Average 0.426/0.24 0.436/0.30 0.784/0.50 0.793/0.53 29 99 52.8 44.5

Averag
e/#SIFT/
Feature

Dataset %/InliersAverage/Time(ms)T/Error/(cm)
Mean/SD

R/Error/(Deg)
Mean/SD

Table 5.3: GSSR performance in terms of accuracy benchmarked against the tree-based, Decision
Forest, and Keyframe approach. Note the improvement over the tree-based approach for all
datasets and the considerable improvements over the decision forest and the Keyframe approach

GIST%Approach Tree.Based Decision%Forest Keyframe%Approach
Chess 2000 97.4 97 92.6 85.3
Fire 2000 98 96.5 82.9 72
Heads 1000 93.2 93 49.4 79.8
Office 4000 99.2 98.8 79.1 74.7

Pumpkin 2000 99.3 98.1 73.7 62.8
RedKitchen 5000 97.5 96 72.9 54.1

Stairs 1000 40.3 36 27.8 34.1
89.3 87.9 68.3 66.1Average

%%Accurate%ImagesDataset #Query%
Images

5.5 Discussion

The results presented in the previous section demonstrate the accuracy and robustness of GSSR

where it exhibits powerful capabilities of querying the search space. Indeed, the fact that GSSR

presents higher inlier ratios than tree-based justifies the results of higher accuracies.
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Since the 2D features of a query image is matched to 3D points belonging exclusively to the

constellation of keyframes, a large number of correct matches are more likely to be found.

Figure 5.7 shows the camera trajectories on the Heads, RedKitchen and Stairs scenes. Note

the accuracy and consistency of GSSR in following the ground truth path of the camera. The

graph also shows a smoother track than the tree-based approach, especially in regions where

tree-based looses track but GSSR does not.

As far as search space reduction, the experimental results show a marked decrease in search

space by an average of approximately 92% and yet the system maintains superior accuracy than

the tree-based method.

It is notable that the translation and rotational errors differed from one scene to another. The

most significant drop in accuracy is for both GSSR and tree-based is for the Stairs dataset. This

is most probably due to the repetitive structure of the stairs in that scene.

GSSR showed notable improvement over the Decision Forest and Keyframe systems, which

performed decently on the Pumpkin and RedKitchen datasets. This is probably due to the reflec-

tivity nature of those scenes, where the ground, the cupboards and the kitchen structure cause

lots of reflections in the images, which may result in false positive matches.

Like all IBL system, GSSR performs generally decently with structures such as the Stairs

dataset and relatively better than state-of-the art approaches, which register very few images.

Note that most of the state-of-the-art approaches other then Descion Forest and Keyframe Ap-

proach did not even register any image. This is due to the repetitive nature of the structure of the

scene, which causes false positive matches.
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Table 5.4: Search space reduction efficiency of GSSR

Dataset Intial*
#3D*Points

#3D*Points*
after*GSSR

%Search*
Space*

Reduction
Chess 69557 6248 91.0
Fire 146973 14470 90.2
Heads 87332 3727 95.7
Office 77926 7603 90.2

Pumpkin 55536 4444 92.0
RedKitchen 80172 7428 90.7

Stairs 42462.5 5027 88.2
Average 79994 6992 91.1
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Figure 5.6: 5.6a shows the average numbers of inliers for each scene. 5.6b shows the number
of 3D points for each scene initially in the map and after the GSSR
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Figure 5.7: Tracking of the camera motion using GSSR (*) and tree-based IBL (+) for the Heads,
RedKitchen and Stairs scenes. Ground truth is shown as (o).
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Chapter 6

Conclusion

Solving IBL consists of solving its three main steps: keypoints matching, image registration

and pose estimation. Matching is one of the major problems that affects the robustness and

accuracy of IBL due to the nature of the descriptors which causes lots of false matches (scale,

blur, illumination and mainly camera perspective). Another major problem is the dimensionality

of the environment consisting of millions of 3D points where the need of an efficient and robust

matching procedure arises along with managing memory consumption.

This thesis presents a detailed description and study of three different 3D modeling packages

based on SFM to reconstruct a 3D map of an environment. The packages tested are VSFM,

Bundler and PTAM. Image matching which is the bottleneck of SFM, SLAM and IBL plays

the major role in favour of VSFM. VSFM’s preemptive feature matching approach combined

with the mixing of RT and BA gave VSFM a high number of robust matches relative to PTAM

and Bundler. These allowed a large number of inliers, and so a large number of features in the
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reconstructed map. This is a major necessity for IBL since good quality matches in the map lead

to more inliers and better localization accuracy. For this reason, VSFM was chosen to reconstruct

the 3D maps for IBL.

This work presents a detailed description of the pipeline of IBL and the main approaches to

solve this problem. Also, a comparison study presented benchmark results for the available main

approaches on the Dubrovnik dataset used in this field. Brute force and tree-based showed the

best localization accuracy but are very slow. The results showed that Visual Words (ACG Lo-

calizer) presented the best results through its sensitivity to clustering. The Keyframe Approach

should be used with small-scale applications. Embedded ferns gave good registration perfor-

mance but very bad localization quality and poor time efficiency due to its restriction to divide

the large-scenes into small subsets. To sum up, Visual Words has the best IBL system that tack-

les the search space problem. Nevertheless, this system and the other main approaches still lack

accuracy and robustness and the major problems of IBL are still problematic.

This work also presents a novel approach for the search space reduction problem in IBL.

GSSR was bench-marked on the 7 scenes dataset of Microsoft. Results show better localization

accuracy then tree-based, decision forest, and Keyframe approaches. More importantly, GSSR

showed considerable speed-ups in computational times, sometimes 4 times a faster then the tree-

based approach. The speed-up is primarily due to the ability of GSSR to considerably reduce the

search space and yet produce superior accuracy compated to other state-of-the-art techniques.
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