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Abstract

The thesis addresses the stability, input-to-state stability (ISS), and stabilization prob-
lems for deterministic and stochastic hybrid systems with and without time delay. The
stabilization problem is achieved by reliable, state feedback controllers, i.e., controllers
experience possible faulty in actuators and/or sensors. The contribution of this thesis is
presented in three main parts.

Firstly, a class of switched systems with time-varying norm-bounded parametric uncer-
tainties in the system states and an external time-varying, bounded input is addressed. The
problems of ISS and stabilization by a robust reliable H∞ control are established by using
multiple Lyapunov function technique along with the average dwell-time approach. Then,
these results are further extended to include time delay in the system states, and delay sys-
tems subject to impulsive effects. In the latter two results, Razumikhin technique in which
Lyapunov function, but not functional, is used to investigate the qualitative properties.

Secondly, the problem of designing a decentralized, robust reliable control for deter-
ministic impulsive large-scale systems with admissible uncertainties in the system states
to guarantee exponential stability is investigated. Then, reliable observers are also consid-
ered to estimate the states of the same system. Furthermore, a time-delayed large-scale
impulsive system undergoing stochastic noise is addressed and the problems of stability and
stabilization are investigated. The stabilization is achieved by two approaches, namely a
set of decentralized reliable controllers, and impulses.

Thirdly, a class of switched singularly perturbed systems (or systems with different
time scales) is also considered. Due to the dominant behaviour of the slow subsystem,
the stabilization of the full system is achieved through the slow subsystem. This approach
results in reducing some unnecessary sufficient conditions on the fast subsystem. In fact,
the singular system is viewed as a large-scale system that is decomposed into isolated,
low order subsystems, slow and fast, and the rest is treated as interconnection. Multiple
Lyapunov functions and average dwell-time switching signal approach are used to establish
the stability and stabilization. Moreover, switched singularly perturbed systems with time-
delay in the slow system are considered.
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Chapter 1

Introduction

The term "Hybrid" has been widely used recently. Generally, it means a composite of

heterogeneous sources, while, mathematically, a hybrid system is a dynamical system hav-

ing behaviours modelled by differential equations describing the continuous evolution, and

difference equations representing the discrete events. This coexistence of the continuous

and discrete dynamics is frequently encountered in practice which makes it the focus of

researchers’ attention for the last few decades. Some typical examples that exhibit both

continuous and discrete dynamics in their behaviour are listed as follows

• Bouncing ball, in which an abrupt changes occur to the velocity direction. The

state variables are continuous during the discrete events of the instance changes (the

impacts with the surface) [136].

• Biological systems, in which sudden changes (discrete events) occur during a

continuous state, such as periodic vaccinations or treatments in epidemic models
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[107,155].

• Classical mechanics, in which the velocities of a multi-body system are disturbed

by sudden changes either due to an external force, a stop object [162], or a collision

or due to change in the length (in a constrained pendulum case) [37].

• Communication systems, in which the communications can be achieved by abrupt

impulses. The process implies that, at discrete times, the receiver’s state is updated

by sampling all state variables together and sending them from the transmitter to

the receiver [77, 78].

• Power converter, where in the boost circuit with clamping diode, there are four

modes and two switch positions that are on and off. The transitions from a mode to

another between the on and off switches are controlled, but the transitions from a

section to another of the diode remain unknown [162].

• Water level monitor, in which two continuous and two discrete variables are pre-

sented. The continuous variables are the water level y(t), and the time passed since

last signal x(t). the discrete variables are the pump status P (t) ∈ {on, off}, and the

last sent signal from the monitor S(t) ∈ {on, off}. When the water reaches specific

levels, the sensor will send a signal to the pump to switch it on or off, and these

dynamics represent a hybrid system [3].
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Hybrid systems have found applications in various areas such as mechanical and elec-

trical engineering, industrial robotics, aerospace industry and traffic control, population

dynamics, epidemic disease models, control systems, neural networks, secure communica-

tions and much more. Further examples and references in hybrid systems can be found

in [4, 24,25,54,91] and the references therein.

The combination of continuous and discrete behaviours leads to more valuable and

significant dynamical phenomena that can not be achieved by exclusively continuous or

exclusively discrete dynamics [54]. This combination commonly arises in two contexts:

either a family of subsystems and a logic-based discrete law to jump amongst them or a

continuous system to experience some abrupt changes or sudden jumps. The first class

is known as switched systems and the latter one is known as impulsive systems.

Impulsive switched systems are another type of hybrid systems where jumps occur

whenever switchings occur.

1.1 Switched Systems

Switched systems describe phenomena that are characterized by a finite number of dy-

namical subsystems (modes) and a logic-based switching rule (signal) that governs the

switchings between the modes to achieve a desired performance of the system. Switched

systems appear in two frameworks. Either by the nature of the system as many natural

and engineering systems natures are changing dynamics according to certain environmental

3



factors, or by controlling the system as many continuous systems are stabilized by several

control signals.

Figure 1.1.1: Automatic Heater Control.

Example 1.1.1. [63] An automatic heater control which is controlled by a furnace is

designed to respond to different temperatures, e.g. 70 < T < 75, and is an example of the

first framework described earlier. The switching is determined by environmental factors

(the temperature). Here we have two modes q = {ON,OFF}, see Figure 1.1.1.

Example 1.1.2. [63] An example of the second framework is the supervisory switching

control system which is shown in Figure 1.1.2. The stability of the process is achieved by

several controllers each of them is designed to accomplish a specific task. In this case, the

supervisory control organizes the switching among them.

Example 1.1.3. (Manual Transmission Gear Control) [113] Consider a car with a manual

four gear transmission. The motion is determined by the position of the car x(t) and the

velocity v(t). The system has two control signals, the gear gear ∈ {1, 2, 3, 4} and the

position of the accelerator pedal u. x(t), v(t) are both continuous state variables while

4



Figure 1.1.2: Logic-based supervisory switching control.

the gear gear is discrete. Every gear represents a mode, and the driver is the decision

maker who takes the action of switchings between the gears (modes). See Figure 1.1.3 for

illustration.

Figure 1.1.3: Gear Shift Control.

Many real world applications are modelled as switched systems. Applications include

automotive industry, aircraft control, switching power converters and many other fields

(see for example [93,94,124,147,162] and the references therein).

A remarkable feature of switched systems is that the stability properties are not inher-

5



ited. In other words, even if all the subsystems are stable, the switched system may not

be stable. However, stability of such system can be attained if a proper switching rule is

applied. The stability of switched systems has received much attention, and been stud-

ied using either common Lyapunov function method [44, 132, 166], or multiple Lyapunov

function method [35, 188]. A number of authors discussed the stability using the first ap-

proach, but due to complexity, restrictions, or even nonexistence of the common Lyapunov

function, the latter one is more convenient and practical to handle switched systems [93].

The main focus of stability study is to design a suitable switching rule that guarantees the

stability property. In [131], it has been shown that the stability of the switched system

composed entirely of stable subsystems can be preserved if the dwell-time τd, the time

between any two consecutive switchings, is sufficiently large, i.e. every subsystem must be

activated for at least τd time. From practical perspective, the latter dwell-time condition

may not hold in some situations, such as aging systems or systems with finite escape time.

However, one can get the same stability result if the average dwell time τa is satisfied [64].

These two switching rules were utilized to fulfil the stability purpose for switched systems

involving some unstable modes among the subsystems [66,94,189]. Intuitively, to restrain

the growth effect of the unstable modes, the stable ones must be activated longer. A

more general switching law, Markovian switching, has also been used where the switchings

between the system’s modes follow a random rule [94, 120]. The dwell-time and average

dwell-time approaches have been intensively exploited in literature to obtain stability crite-

ria for large class of, linear, nonlinear switched systems, with and without time-delay, with

6



and without the perturbation effects, and switched systems with control. For the review of

the switched system literature, see [4, 26, 33, 35, 40, 54, 67, 91, 93–95, 129, 147, 192–194, 197]

and the references therein.

1.2 Impulsive Systems

In practice, many dynamical processes encounter some abrupt jumps (impulses) at certain

moments during the continuous physical evolutions. These systems are referred to as

impulsive systems, a special type of hybrid systems, in which the durations of these jumps

(impulses) are often negligible and thus can be approximated as instantaneous impulses.

Motivation examples of impulsive systems include

Example 1.2.1 (Optimal control). [134]

Suppose an optimal control problem that represents a certain physical process and given

by

x′ = f(t, x, u) (1.1)

The problem is to choose u in a given set of controls such that the solution x has a desired

behaviour in a time interval [t0, T ] to minimize some cost functional. If this control function

has to be chosen from a set of integrable functions defined on [t0, T ], then the solution x of

the control system may have discontinuities (impulses).

Example 1.2.2 (A bouncing ball). [136] Consider a bouncing ball that is jumping on

a horizontal surface (Fig. 1.2.1). Here, Newton’s law of motion governs the continuous

7



motion of the falling ball, which is dropped from an initial height h0. We consider the ball

as a point mass. The friction of the surface decreases the ball’s energy µ. This process is

Figure 1.2.1: A bouncing ball

modelled by a second order differential equation

m
d2x

dt2
= F (1.2)

where m is the ball’s mass, F = −mg, is the force, and g is the acceleration. When the ball

reaches the surface, its vertical velocity rv reversed and decreased, where v is the incoming

velocity before an impact, and 0 ≤ r ≤ 1. The dynamics of this process are given by

ẋ1 = x2, ẋ2 = −g, ẋ3 = v0 (1.3)

where x1 represents the vertical position of the ball, x2 the vertical velocity, and x3 the

horizontal position of the ball with initial condition xT = (x1, x2, x3) = (h0, 0, 0), and the

impulse condition

ITk = (x1,−µx2, x3), for u(x) = x1 = 0 (1.4)
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Each bounce displays continuous motion while at each impact the velocity undergoes a

sudden change .

Example 1.2.3 (Price expectations and governmental price adjustments in marketing).

[53] Consider market model with n merchandises. The vectors QT
s = (Q1

s, ..., Q
n
s ), QT

d =

(Q1
d, ..., Q

n
d) and P T = (P 1, ..., P n) represent the supply, demand, and price, respectively.

Assume that

Qs = S(t, P (t), P ′(t), P ′′(t))

and

Qd = D(t, P (t), P ′(t), P ′′(t))

where P ′(t), P ′′(t) are the changes of prices and the expectation of the price rising respec-

tively. Assume that the price adjustment process is given by

P ′ = g(Qs, Qd)

Solving for P ′′ gives

P ′′ = F (t, P (t), P ′(t))

So, the dynamics of the prices remain continuous, but at certain times, say, 0 < t1 <

t2 < ... < tn < T , the government will adjust the prices, according to certain law, creating

impulses (sudden jumps in the prices) during the continuous evolution at which the price

P (t) is replaced by the new price Ik(P (tk)), k = 1, 2, ..., n. This will also affect the actual

changes of the price P ′(t) and replace it by Lk(P (tk), P
′(t, k)) creating another jumps.
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Example 1.2.4 (Insulin treatment). For diabetics, the sugar level in the blood should be

maintained in a certain interval, say [a, b]. During the day, due to having foods, the sugar

level increases slowly in the blood (this is the continuous evolution) approaching the upper

bound of the interval b, say b−ε. So, at certain times during the day, say, 6 am, 2 pm, and

10 pm, the insulin should be injected to keep the sugar level under b. So, at these times,

the sugar level suddenly jumps to some value near a, say, a+ ε creating impulses.

Y

Y ′

6 am 2 pm 10 pm

a

b

Impulsive systems have many applications in control systems [31, 100], population dy-

namics [36, 101, 103], neural networks [88, 108], secure communications [77, 78], physics,

biology, robotic industry, aeronautics, and many others. The stability of impulsive sys-

tems have received a great deal of attention, and have been intensively investigated in the

literature [2, 27, 28,32,85,91,100,167,183].

Impulses have , sometimes, a significant role in maintaining the continuation of the

solutions of the models [85] or stabilizing the system in some unstable non impulsive sys-
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tems [99, 100]. Theoretically, dealing with impulsive systems is more challenging than the

one of classical continuous ordinary differential equation systems, that is the solution is

piecewise continuous which leads to a number of difficulties. In some cases, impulses are

considered as a disturbance to the system, and stable systems may lose stability due to

impulsive effects. On the other hand, if impulses are applied to unstable systems logically,

they may stabilize them. Consequently, the classical qualitative properties such as exis-

tence, continuous dependence on initial data, stability results on the continuous systems

may be violated and/or need some extra conditions or even a totally new interpretation.

Moreover, in the state-dependent impulses, a beating phenomenon, pulses are happening

infinitely many times on a hyper-surface, could arise.

1.3 Impulsive Switched Systems

Switched systems with impulsive effects generate a wider class of applications that are rich

of significant dynamical phenomena. Stability analysis of these systems has attracted many

authors in the last three decades (see, e.g. [91,92,175,180,186]). The applications include

biological systems since there are continuous changes in the regular operations and abrupt

changes occur caused by the impulse factor. Further examples in population dynamics can

be found in [36]. The following are simple examples where this combination of switchings

and impulses occurs

Example 1.3.1 (Population control). [91] Suppose that the state vector X(t) is the pop-
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ulation of a country, and U(t) is the policy of that country which is the control. Let Ω

indicates the whole set of the population, and is divided into n subsets. The problem can

be described as

Ũ(t) = Ki(X(t)), where X(t) ∈ Ωi. (1.5)

It means that if a country is in need of population, the policy will encourage people to have

more children, and the reverse is true.

Example 1.3.2 (A switched Server System with Arrival Rate Less than Service Rate).

[91] Consider a system of four buffers and one server, After the server removes the work

from any buffer i = 1, 2, 3, 4, it switches to the next buffer with a positive reset time t that

the server removes work at a unit rate and gives work to next buffer at a constant rate

of pi (Σ4
i=1pi < 1). The switching process between the buffers forms a cycle which repeats

itself in a closed-loop manner. This system is composed of five continuous variable systems

(CVS) given as follows

CV S1 =


Ẋ1(t) = p1 − 1

Ẋ2(t) = p2

Ẋ3(t) = p3

Ẋ4(t) = p4

, CV S2 =


Ẋ1(t) = p1

Ẋ2(t) = p2 − 1

Ẋ3(t) = p3

Ẋ4(t) = p4

, CV S3 =


Ẋ1(t) = p1

Ẋ2(t) = p2

Ẋ3(t) = p3 − 1

Ẋ4(t) = p4

,

CV S4 =


Ẋ1(t) = p1

Ẋ2(t) = p2

Ẋ3(t) = p3

Ẋ4(t) = p4 − 1

, CV S =


Ẋ1(t) = p1

Ẋ2(t) = p2

Ẋ3(t) = p3

Ẋ4(t) = p4

,

where CV Si (i = 1, 2, 3, 4) denotes the process that the server removes work from buffer

i, and CV S denotes the process that the server switches from one buffer to another, Xi(t)
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denotes the work in buffer i at time t. Then, the relation between these CVSs can be seen

in Figure 1.3.1.

Figure 1.3.1: The Switchings between the buffers

1.4 Hybrid Systems with Time-Delay

The classical stability results of hybrid systems used ordinary differential equations

(ODEs), which depend on the present states only ignoring any information from their his-

tory. As a matter of fact, many real world phenomena and man-made plants are subject to

some time-delay. Namely, the past information contribute in forming a better idea about

the future system behaviour. This class of equations is referred to as delay differential
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equations (DDEs). Since time-delay is unavoidable in practice, considering time-delay

in hybrid systems is more realistic and practical. Time-delay in secure communication

systems, population dynamics, ship stabilization and many other application has an im-

portant role and has motivated many researchers to implement time-delay in the models

under study. Stability analysis of DDEs, compared with the stability analysis of ODEs, is

more challenging. For instance, the presence of a small time-delay may cause undesirable

behaviour such as discontinuities, loss of uniqueness, chaos. On the other hand, delay

can improve the performance [38]. Fortunately, some of useful tools such as Lyapunov-

Razumikhin technique, Lyapunov Krasovskii functional (LKF) method, Ha-

lanay inequalities have been developed to deal with a large class of hybrid systems with

time-delay. A considerable progression has been achieved in this field since 1980’s and

up until now, for more readings, one may refer to [8, 38, 51, 55, 59–61, 71, 84] and many

references therein. Implementing time-delay to hybrid systems, gives rise to three classes

of delayed hybrid systems, which are switched systems with time-delay, impulsive

systems with time-delay, and switched impulsive systems with time-delay. Some

applications of switched delay systems are epidemic disease models and consensus in dy-

namical networks. Moreover, many significant applications have motivated researchers

to consider impulsive delayed systems. The most interesting applications include secure

communications and cellular neural networks (CNNs).

Stability criteria for dynamical systems has attracted researcher’s attention for a long

time. The universally most efficient used stability tool is Lyapunov second method,
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which is named after Aleksandr Lyapunov (1892). A feature of this method is that one

may analyze the stability of the systems without any knowledge of the solution. Later,

another stability concept, bounded-input, bounded-output (BIBO), was developed for

linear systems. This technique implies that the boundedness of the output of the system

is maintained if a bounded input is applied to the system states. The connection between

these two stability methods is known as input-to-state stability (ISS), which was first

introduced by Sontag in 1989, in which an input function is included in the system model

and no measured output is present. The ISS notion deals with the system response to a

norm (particularly L2)-bounded disturbance when the unforced system is asymptotically

stable. ISS is an efficient tool to investigate stability-like criteria of nonlinear systems that

are subject to input disturbance, which is frequently encountered in practice. As a result,

it becomes important in the modern nonlinear control theory and design. When that input

disturbance is identically zero, ISS concept reduced to the conventional Lyapunov stability

of the system. For further readings and applications on ISS property, one may consult

[151–154, 160, 161]. Numerous research works have discussed the ISS criteria of hybrid

systems with and without time-delay. In [169], the ISS property for switched nonlinear

systems with time-delay has been achieved using piecewise LKF approach and average

dwell time scheme. Furthermore, the delay was considered in the state and the switchings,

i.e., in system switchings and controller switchings. Later in [171], a new piecewise LKF

was constructed for the nonlinear switched systems with time-varying input delay to satisfy

ISS assuming that the Lyapunov function for the nominal system is available and using a
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mode-dependent average dwell-time scheme. ISS for impulsive systems has gained much

attention in the literature [21, 42, 43]. The authors in [42] have used Razumikhin-type

technique to guarantee ISS for impulsive systems with time delay. They have considered the

situation when the continuous dynamics are ISS but the discrete dynamics are not and the

converse case. In [43], the same authors addressed the problem of ISS for networked control

systems by an impulsive system method. Here, the system was viewed as an interconnected

system of impulsive subsystems and the method of LKF was adopted, and thus, sufficient

conditions, based on linear matrix inequalities (LMI), were derived to guarantee ISS for

the proposed systems. Sufficient conditions to achieve ISS property for impulsive switched

systems with time-delay were stablished in [98]. A number of papers addressed the problem

of ISS for stochastic hybrid systems (see e.g. [17, 19,21,158,191]).

1.5 Reliable Control

The reliable control is the controller that tolerates actuator and/or sensor failures while

maintaining a desired performance. The control components failure is frequently encoun-

tered in reality, yet the immediate repair may not be available such as in aerospace or

submarine vehicles. Therefore, designing a reliable controller to guarantee an acceptable

level performance becomes crucial. The trend to design reliable controllers has increased,

see for instance [46,143,163,165,182]. In most of the available results about reliable control,

the faulty actuators are modelled as outages i.e., the output is assumed to be zero. In [182],
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a more general failure model was adopted which consists of a scaling factor with upper and

lower bounds to the control action. In [19,112,143,165], the output signal is considered as a

disturbance signal with bounded magnitude that is augmented with the system disturbance

signal. Many research articles have addressed the problem of reliable control for a various

types of systems. For switched systems, [67] handled the problem of designing robust H∞

reliable control for uncertain switched systems using Schur’s complement and LMI, while

for positive switched systems with time-delay where both stable and unstable modes are

involved, LKF approach and LMI together with average dwell-time signal were employed

in [174] to accomplish exponential stability via reliable control. The latter approach was

also adopted in [139] for uncertain mechanical systems to guarantee asymptotic stability.

Recently, robust reliable control for neutral-type systems with time-delay was considered

in [123,142]. There are also many results of reliable control of deterministic and stochastic

systems, one may refer to [50,52,56,65,69,116,173] and the references therein.

1.6 Large-Scale Systems (LSS)

In real world systems, it has been realized that for many control systems, either the sys-

tem is naturally modelled as an interconnected system or the system cannot be analyzed

via the known simple approaches due to its complexity. This complexity may be due to

high dimensionality, delays, uncertainties, or data structure restrictions. The notion of

LSS1 represents a dynamical system that is characterized by several dynamics, or a system
1Also known as interconnected or composite systems.
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that needs to be split up into independent manageable subsystems. There are mainly two

structures of LSS, multi-channel systems, and interconnected systems (see Figure 1.6.1).

Motivating applications arise in interconnected power systems, computer and telecommuni-

cation networks, economic systems, nuclear reactors, mobile robotics, multiagent systems,

traffic systems, to name a few [22,23,75,117,144,187].

(a) n-channel System. (b) interconnected Systems.

Figure 1.6.1: Large-Scale System.

A common approach to analyze the stability of LSS is to decompose the system into

lower order, isolated subsystems and establish the stability of each subsystem ignoring the

interconnection part. Then, this available information is used together with the intercon-

nection, which is treated as a perturbation, to get a conclusion about the stability of the

interconnected system. LSS problem has received a great deal of attention over the past

few decades. Interested readers may refer to [16, 29, 48, 57, 70, 72, 79, 97, 102, 106, 115, 122,
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126, 128, 140, 148, 185]. In [97], robust exponential stabilization of large-scale uncertain

impulsive with coupling time delay was studied, and Lyapunov method and Razumikhin

technique where used to design controller in terms of linear matrix inequalities. In [102], a

comparison method was used to discuss robust stability of large-scale dynamical systems

of ODEs. This method was developed later in [106] to study the same problem with time

delay.

1.7 Singularly Perturbed Systems (SPS)

Systems involving multiple time-scale dynamics arise in a large class of applications in

science and engineering such as celestial mechanics, many-particle dynamics, and climate

systems, mechanical systems, and many other areas [190], and known as singularly per-

turbed systems. They can be viewed as a class of LSS in which two or more time-scale

dynamics are coexisting and interacting. They are characterized by small parameters mul-

tiplied by the highest derivatives. The stability problem of these systems has attracted

many researchers; see [5, 7–9, 76, 81, 82, 104, 135, 137, 138, 141] and some references therein.

The exponential stability for linear and nonlinear singularly perturbed systems with time-

delay and uncertainties has been addressed in [76]. In this work, the KLF method has

been employed to prove the exponential stability. In [90], the global asymptotic stability

criteria for a class of impulsive singularly perturbed systems were proved using the KLF

and free weighting approach. The sufficient conditions were formulated in terms of LMIs.
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Motivated by what have been discussed earlier, the focus of the present thesis is on

studying the stability properties of the presented types of hybrid systems with and without

time-delay via reliable feedback control technique.

The contents of this thesis is outlined as follows: Chapter 2 has the basic definitions and

problem formulations. The rest of this thesis is displayed in three parts. In Part I, the prob-

lem of robust and reliable H∞ control and ISS has been introduced for uncertain switched

systems with and without time delay. The same problem for the impulsive systems with

time-delay and for the impulsive switched systems with time-delay is investigated. Part II

addresses the exponential stability criteria for the Impulsive LSS via robust and reliable

feedback control and the state estimation problem. In part III, the stability analysis of

switched singularly perturbed systems with and without time-delay is illustrated. Chapter

7 has the stochastic one. Conclusions and some future study directions.

1.8 Summary of Contribution

The research contribution of the present thesis is shown below

• Robust and reliable H∞ control and ISS for uncertain hybrid systems with

and without time-delay (Part I): The novelty here is to develop new sufficient

conditions that guarantee the input-to-state stabilization and H∞ performance of the

hybrid system in the presence of the disturbance, state uncertainties, and nonlinear

lumped perturbation not only when all the actuators are operational, but also when
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some of them experience failure. To accomplish this goal, we assume that every single

mode is input-to-state stabilized by a robust reliable controller. The methodology of

multiple Lyapunov functions and average dwell-time signals are used to analyze the

input-to-state stabilization.

For the systems with time-delay, i.e., switched system, impulsive systems, and im-

pulsive switched systems, Razumikhin type technique is employed to obtain the ISS

results.

• Robust and reliable control for impulsive LSS (Part II) This part addresses

the problem of exponential stabilization of impulsive large-scale systems (ILSS) with

admissible uncertainties in the system states via a robust reliable decentralized con-

trol. Furthermore, reliable observers are also considered to estimate the states of the

system under consideration. The faulty actuator/sensor outputs are assumed to be

zero. Moreover, the input-to-state stability via reliable controller and stabilization

via impulses problems are considered for the stochastic ILSS with time delay. The

results are achieved using a scalar Lyapunov function.

• Reliable control stabilization of switched singularly perturbed systems

(Part III) The exponential stability for a class of switched singularly perturbed

systems not only when all the control actuators are operational, but also when some

of them experience failures is discussed. Multiple Lyapunov functions and average

dwell-time switching signal approach are used to establish the stability criteria for
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the proposed systems. A full access to all the system modes is assumed to be avail-

able, though the mode-dependent, slow-state feedback controllers experience faulty

actuators of an outage type. The system under study is viewed as an interconnected

system that has been decomposed into isolated, lower order, slow and fast subsys-

tems, and the interconnection between them. Moreover, time-delay is considered for

this system. Halanay inequalities are utilized to prove the exponential stability result

for the delayed systems.
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Chapter 2

Mathematical Background and
Formulations

In this chapter, we present some basic materials that will be needed in the rest of this

thesis.

2.1 Preliminaries and Basic Concepts

Denote by N the set of all natural numbers, R+ the set of all non-negative real numbers,

Rn the n-dimensional Euclidean space and its norm ‖x‖ =
√∑n

i=1 x
2
i for every x ∈ Rn,

Rn×m the set of all n×m real matrices. Let C([a, b],D) (PC([a, b],D)) denote the space of

continuous (piecewise continuous) functions mapping [a, b], with a < b for any a, b ∈ R+,

into D, for some open set D ⊆ Rn. Also, denote by C1,2(R+×Rn;R+) the space of all real-

valued functions V (t, x) defined on R+×Rn such that they are continuously differentiable

once in t and twice in x.
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Consider the following system of time-variant ordinary differential equations (ODE),

ẋ(t) = f(t, x(t)), (2.1)

where x ∈ Rn, t ∈ R+, and f : I × D → Rn is continuous on I × D with I ⊆ R+ and

D ⊆ Rn such that it contains the origin. For a given (t0, x0) ∈ I ×D with x0 = x(t0), the

corresponding initial-value problem (IVP) related to equation (2.1) can be written as

{
ẋ(t) = f(t, x(t)),
x(t0) = x0.

(2.2)

A continuously differentiable function φ(t) defined on an interval I ⊂ R+ such that φ(t) ∈ D

for all t ∈ I is said to be a solution of the IVP (2.2) if φ̇(t) = f(t, φ(t)) for all t ∈ I, and

φ(t0) = x0 with t0 ∈ I.

Theorem 2.1.1. If f is continuous on I ×D, then for any (t0, x0) ∈ I ×D there exists at

least one solution of the IVP (2.2) in I.

Definition 2.1.2. A function f(t, x) defined on I ×D is said to be locally Lipschitz in x

if there exists a constant L > 0, called Lipschitz constant, such that

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖

for any points (t, x1) ∈ I ×D and (t, x2) ∈ I ×D. Moreover, if this inequality holds for all

x ∈ Rn, then f is said to be globally Lipschitz in x.

Theorem 2.1.3. If f(t, x) is continuous with respect to first variable and locally Lipschitz

continuous with respect to second variable, then for any (t0, x0) ∈ I × D there exists a

unique solution of the IVP (2.2).
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A point xeq ∈ Rn is said to be an equilibrium point of the differential equation in (2.1),

or trivial solution of system (2.2) if f(t, xeq) = 0 for all t ≥ t0. Since any equilibrium

point can be shifted to the origin, throughout this thesis we will deal xeq ≡ 0 (or x ≡ 0, for

simplicity of notation). In the following, we state the definitions of some stability concepts.

Definition 2.1.4 (Stability). Let x(t) = x(t, t0, x0) be the solution of IVP (2.2) for any

t ≥ t0, then the trivial solution x ≡ 0, is said to be

(i) stable if, for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that

‖x0‖ < δ implies ‖x(t)‖ < ε for any t ≥ t0;

(ii) uniformly stable if (i) holds with δ = δ(ε);

(iii) asymptotically stable if (i) holds and there exists a positive constant δ = δ(t0)

such that

‖x0‖ < δ implies lim
t→∞

x(t) = 0;

(iv) globally asymptotically stable if (iii) holds with an arbitrary large constant δ;

(v) uniformly asymptotically stable if it is uniformly stable and there is a positive

constant δ, independent of t0, such that, for all ‖x0‖ < δ, limt→∞ x(t)→ 0, uniformly

in t0; that is, for any η > 0, there is T = T (η) > 0 such that, for all ‖x0‖ < δ,

‖x(t)‖ < η, ∀t ≥ t0 + T ;
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(vi) globally uniformly asymptotically stable if (v) holds with an arbitrary large

constant δ;

(vii) exponentially stable if there exist positive constants δ, k and λ such that

‖x(t)‖ ≤ k‖x0‖e−λ(t−t0), whenever ‖x0‖ < δ, and t ≥ t0;

(viii) globally exponentially stable if (vii) holds with an arbitrary large constant δ;

(ix) unstable if (i) does not hold.

In the following, we define some important classes of function that will be used in rest

of the thesis.

Definition 2.1.5. Let D ⊂ Rn be an open set containing x = 0. A function W : D → R

is said to be positive-definite on D if it is continuous on D, W (0) = 0, W (x) > 0 for

x ∈ D\{0}; it is said to be radially unbounded if it is positive-definite and W (x)→∞

as ‖x‖ → ∞.

Definition 2.1.6. The upper right-hand Dini derivative of V (t, x) that is continuous in t

and locally Lipschitz in x along the solution of (2.1) is defined by

D+V (t, x) = lim
h→0+

sup
1

h

[
V (t+ h, x+ hf(t, x))− V (t, x)

]
.

Furthermore, if V (t, x) has continuous partial derivatives with respect to t and x, This

derivative becomes

V̇ (t, x) =
∂V (t, x)

∂t
+∇xV (t, x) · f(t, x)
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where ∇xV (t, x) is the gradient vector of V with respect to x.

Definition 2.1.7. A continuously differentiable function V : D → R is said to be a

Lyapunov function if it is positive-definite and non increasing in its domain, i.e.,

V (0) = 0, V (x) > 0, for x ∈ D\{0} and V̇ ≤ 0 in D. (2.3)

The following theorem provides sufficient conditions to guarantee stability and asymp-

totic stability of the autonomous system

ẋ(t) = f(x), (2.4)

Theorem 2.1.8. Let x = 0 be an equilibrium point of (2.4), and V : D → R where D

contains x = 0 be a continuously differentiable function satisfying (2.3). Then, x = 0 is

stable. It is said to be asymptotically stable if

V̇ < 0 in D\{0}.

Consider the positive-definite function V (x) = xTPx, where P is a positive-definite

matrix. Then, the following inequalities hold

λmin(P )‖x‖2 ≤ xTPx ≤ λmax(P )‖x‖2 (2.5)

where λmin(P ) and λmax(P ) are the maximum and minimum eigenvalues of P , respectively.

Consider the linear system

{
ẋ = Ax, t ≥ 0
x(0) = x0

(2.6)
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where x ∈ Rn and A ∈ Rn×n. The stability properties can be analyzed by Lyapunov

stability theory as follows. Define V (x) = xTPx as a Lyapunov function candidate of

system (2.6), where P is a positive-definite matrix satisfies the Lyapunov equation

ATP + PA = −Q

with Q being a positive-definite matrix. Then, the derivative of V (x) along the trajectories

of (2.6) is given by

V̇ = ẋTPx+ xTPẋ = xT (ATP + PA)x = −xTQx < 0,

which implies that the equilibrium point of system is asymptotic stable.

In practice, transforming physical phenomena into mathematical models often includes

uncertain factors due to modelling mismatches, linearization, approximations or measure-

ment errors, etc. It has been realized that considering such uncertainties results in more

accurate systems; see for instance [16,46,57,97,176]. Consider the uncertain system

{
ẋ = (A+ ∆A)x, t ≥ t0
x(t0) = x0,

(2.7)

where ∆A is a piecewise continuous function representing parameter uncertainty with

bounded norm, we always assume the following assumption holds throughout this thesis

Assumption A. The admissible parameter uncertainties are defined by

∆A(t) = DU(t)H, ∀ t ∈ R+,
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with D, H being known real matrices with appropriate dimensions that give the structure

of the uncertainty, and U(t) being unknown real time-varying matrix representing the

uncertain parameter and satisfying ‖U(t)‖ ≤ 1.

To further analyze the stability properties of nonlinear systems, the following class

functions, also known as comprison functions, are needed [79].

Definition 2.1.9. A function α ∈ C([0, a],R+) is said to be in class K if α(0) = 0, and it

is strictly increasing. It is said to be in class K∞ if it is in class K, a =∞, and α(r)→∞

as r →∞.

Definition 2.1.10. A function β ∈ C([0, a] × R+,R+) is said to belong to class KL if

β(·, s) ∈ K for each fixed s, β(r, ·) is decreasing for each fixed r, and β(r, s) → 0 as

s→∞.

Assume that x ≡ 0 of the nonlinear system (2.2) is asymptotically stable. If this system

undergoes a bounded-energy disturbance input w ∈ PC(R+,Rm), what can be said about

the qualitative behaviour of the output x of the forced system

{
ẋ = f(t, x, w), t ≥ t0
x(t0) = x0

(2.8)

where f : [0,∞) × Rn × Rm → Rn is piecewise continuous in t and locally Lipschitz in x

and w. The input w(t) is a piecewise continuous bounded function of t for all t ≥ 0.

The following definition gives an answer to this question.
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Definition 2.1.11 (Input-to-State Stability [79]). System (2.8) is said to be ISS if there

exist functions β ∈ KL and γ ∈ K such that, for any x0 and w, the solution x(t) exists for

all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
t0≤s≤t

‖w(s)‖). (2.9)

Clearly, for a large enough t, β → 0 and the solution will eventually be bounded by

a class K function γ, which depends on the input. One can easily notice that if input

w(t) = 0, for all t ≥ t0, the ISS property reduces to the classical asymptotic stability of

the trivial solution of the corresponding unforced system.

To analyze the ISS of (2.8), one can use Lyapunov-type theorem to provide a set of

sufficient conditions as follows:

Theorem 2.1.12. [79] Let x(t) = x(t, t0, x0) be the solution of (2.8). Let V : [0,∞) ×

Rn → R be a continuously differentiable function such that the following conditions hold

for any (t, x, w) ∈ R+ × Rn × Rm

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (2.10)

∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x, u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖w‖) > 0 (2.11)

for all (t, x, w) ∈ [0,∞) × Rn × Rm where α1, α2 are class K∞ functions, ρ is a class K

function, and W (x) is a continuous positive definite function on Rn. Then, system (2.8)

is ISS with γ = α−1
1 ◦ α2 ◦ ρ.
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2.2 Switched Systems

Consider the following control system

{
ẋ = f(t, x) + u(t),
x(t0) = x0,

(2.12)

where u : R+ → Rn is the control input given by

u(t) =
∞∑
k=1

Bk(x(t))lk(t),

where Bk is the control gain matrix and lk(·) is the ladder function defined by

lk(t) =

{
1, τk−1 ≤ t < τk
0, otherwise.

Then, u(t) can be written as

u(t) = Bk(x(t)), t ∈ [τk−1, τk), k ∈ N,

that is the controller changes its values at each time instant t = τk, which means that u is

a switched controller. Therefore, the closed loop system (2.12) takes the form

{
ẋ = f(t, x) +Bkx(t), t ∈ [τk−1, τk), k ∈ N,
x(t0) = x0,

This system is called a switched system. Generally, a non-autonomous switched system

may take the form

{
ẋ = f%(t)(t, x), t ≥ t0,
x(t0) = x0,
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where f%(t) : R+×D → Rn represents a family of non-autonomous ODEs, % is the switching

signal which is a piecewise constant function defined by % : [t0,∞) → S = {1, 2, · · · , N},

for some N ∈ N. The role of % is to switch among the system modes. For each i ∈ S, fi :

R+ × D → Rn, and {fi : i ∈ S} is a family of sufficiently smooth functions. The index

set S is assumed to be finite in the present thesis. The switching moments {τk}∞k=0 satisfy

τ0 < τ1 < · · · < τk < · · · with limk→∞ τk =∞. It is worth mentioning that there are three

types of switching signals: time dependent [64,131], state dependant, including the initial

state [17], Markovian switching [94]. In the present thesis, we are mainly concerned with

the time-dependent switching signals.

The switched system can be rewritten as

{
ẋ = fi(t, x), i ∈ S, t ∈ [τk−1, τk),
x(t0) = x0, k ∈ N. (2.13)

The solution of system (2.13) evolves according to the continuous dynamics of the active

continuous mode, while at the switching moments τk, the switching rule changes from

f%(τk−1) in [τk−1, τk) to f%(τk) in [τk, τk+1).

In the time-dependent switching case, the existence and uniqueness results of (2.13)

are analogous to those from the fundamental theory of ODEs with the method of steps,

where the initial value for each mode operating on the subinterval [τk, τk+1) is x(τk).

On the other hand, the stability properties of switched systems are not inherited from

the single-mode systems. As mentioned in Chapter 1, the stability properties of system
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modes is neither sufficient nor necessary unless the activation times of the modes follow

a certain switching law. In fact, in analyzing the stability or stabilization of switched

systems, there are three main problems [94], namely

1. Stability under Arbitrary Switching.

2. Stability under Slow or Constrained Switching.

3. Stability under Switching Control.

In the present thesis, we are mainly concerned about the stability under constrained switch-

ing. As mentioned earlier, the stability of a switched system is not inherited, i.e., a switched

system may be unstable even if all the individual subsystems are stable.

The method of common Lyapunov function, i.e., a single Lyapunov function whose

derivative decreases along the solutions of all the individual subsystems of (2.13), has been

firstly used to analyze the stability of the switched system, yet it is found to be very

restrictive because finding one Lyapunov function for all modes may be difficult to find or

even does not exist. Another useful tool can be used here, known as multiple Lyapunov

function approach. The idea of the latter notion is to have a decreasing Lyapunov function

along the solution of each mode and, moreover, these Lyapunov functions form a decreasing

sequence at the switching moments, i.e., Vi+1(x(t)) ≤ Vi(x(t)). Adopting this approach,

stability of a switched system composed entirely of stable subsystems can be guaranteed

if the switching between the subsystems is sufficiently slow. This is known as dwell-

time (τd) switching, in which the time between any two consecutive switching moments
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is sufficiently large [131], i.e., inf{tk+1 − tk : k ∈ Z+} ≥ τd, fore a given τd > 0. From

a practical perspective, the dwell-time condition might be restrictive and might not hold

in some physical situations, such as aging systems or systems with finite escape time.

However, one can get the stability result if the more general concept called the average

dwell-time τa is satisfied [64]. If the number of switches N(t0, t) in the interval (t0, t) for

a finite t satisfies

N(t0, t) ≤ N0 +
t− t0
τa

, (2.14)

where N0 is the chatter bound, then the switching signal % is said to satisfy the average

dwell-time condition τa. The average dwell-time condition (2.14) allows fast switchings on

some intervals and compensate for it by dwelling more on some other intervals. For more

information on the stability of switched systems under slow switchings, see [39,64,93,147].

2.3 Impulsive Systems

An impulsive system, which is another type hybrid systems, describes phenomena that

experience abrupt changes in the system state during the system continuous evolution.

Consider the control system

{
ẋ = f(t, x) + u(t),
x(t0) = x0,

(2.15)
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where u : R+ → Rn is the control input given by

u(t) =
∞∑
k=1

Ik(x(t))δ(t− τk),

with Ik being the impulsive effects and δ(·) being the Dirac delta function defined by

δ(t− τk) =

{
0, t 6= τk
∞, t = τk.

The sequence of times {τk}∞k=1, also known as impulsive moments, is a strictly increasing se-

quence with limk→∞ τk =∞. Moreover, when t 6= τk, the system has continuous dynamics,

while at τk’s, the system evolution encounters instantaneous changes (impulses).

Integrating (2.15) over [τk, τk + h], for a small h, yields

x(τk + h)− x(τk) =

∫ τk+h

τk

(
f(s, x(s)) +

∞∑
k=1

Ik(x(t))δ(t− τk)
)
ds

This implies that, as h→ 0+,

∆x(t)|τk = x(τ+
k )− x(τk) = Ik(x(τk)),

where x(τ+
k ) = limh→0+ x(τk + h), and x(τk) = x(τ−k ), i.e., the solution is assumed to be

left-continuous. Thus, (2.15) can be written as

ẋ = f(t, x), t 6= τk, (2.16a)

∆x(t) = Ik(x(t)), t = τk, (2.16b)

x(t0) = x0, k ∈ N. (2.16c)
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where f : R+ × D → Rn and D ⊂ Rn is an open set. System (2.16) is referred to as an

impulsive system. A function φ(t) = φ(t, t0, x0) on some interval I containing t0 is said to

be a solution of (2.16) if [28]

1. if (t0, x0) ∈ R+ ×D, then φ(t0) = x0 and (t, φ(t)) ∈ R+ ×D for all t ∈ I;

2. for t ∈ I and t 6= τk, φ̇(t) = f(t, φ(t));

3. at t = τk ∈ I, φ(τ+
k ) = φ(τk) + Ik(φ(τk)), and φ(t) is continuous from the left.

In fact, the solution of the impulsive systems evolves as follows: Let φ(t) = φ(t, t0, x0)

be the solution of φ̇ = f(t, φ) starting at the initial point (t0, x0), the point Pt(t, φ(t)) starts

the motion, governed by the ODE (2.16a), from the initial point (t0, x0) along the solution

curve {(t, φ) : t > t0, φ = φ(t)} until the time t = τ1 > t0. At this moment (i.e., at t = τ1),

the evolution undergoes a sudden jump by some amount Ik(x(t)), given by the deference

equation (2.16b), transferring the point Pτ1 = (τ1, φ1 = φ(τ1)) to the point Pτ+
1

= (t, φ+
1 (t)).

Then, the point Pt continues its movement along the solution curve φ(t) = φ(t, t1, φ
+
1 ) in

the same way as previous starting from the initial point (t, φ+
1 ) until the second impulsive

moment at t = τ2, then another jump occurs transferring Pτ2 to the point Pτ+
2

and the

process proceeds in the same manner as long as the solution exists.

Definition 2.3.1 (Existence and Uniqueness). [28] If the function f ∈ C1(R+×D;Rn)

and x+ Ik(x(t)) ∈ D for each x ∈ D and k ∈ N, then the IVP (2.16) has a unique solution

for each (t0, x0) ∈ R+ ×D.
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Based on the impulsive moments types, impulsive systems can be classified as follows

1. Systems with impulses at fixed times, i.e., t = τk.

2. Systems with impulses at variable times, i.e., t = τk(x).

3. Systems with impulses satisfying the spatio-temporal relation κ(t, x) = 0.

In the case of fixed-time impulses, the solutions starting at different initial time jump at

the same impulsive moments. Other than this case, a challenge that might arise is that

solutions evolving from different initial times/states jump at different impulsive moments

Furthermore, a “pulse phenomena" in which the solution hits a hyper-surface infinitely

many times, or a “confluence" in which different solutions merge after some time may be

encountered in the systems with variable time impulses. In the present thesis, we are

mainly concerned with systems experience impulsive actions at fixed times.

2.4 Delay Differential Equations (DDEs)

For r > 0, let Cr be the space of all continuous functions that are defined from [−r, 0]

to Rn. For any t ∈ R+, let x(t) be a function defined on [t0,∞). Then, we define a

new function xt : [−r, 0] → Rn by xt(s) = x(t + s) for all s ∈ [−r, 0], and its norm by

‖xt‖r = supt−r≤θ≤t ‖x(θ)‖. The positive r represents the time delay.
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A general nonlinear functional differential equation may have the form

ẋ = f(t, xt), (2.17)

where, for D ⊂ Cr, the functional f : R+ ×D → Rn.

Given t0 ∈ R+ and an initial continuous function φ(s), the corresponding IVP is given

by

{
ẋ = f(t, xt),
xt0(s) = φ(s), s ∈ [−r, 0].

(2.18)

A function x(t) = x(t, t0, φ) is said to be a solution of (2.18) on [t0 − r, t0 + a) for a > 0 if

x ∈ C([t0 − r, t0 + a),Rn), x(t) satisfies (2.18) for t ∈ [t0, t0 + a) and x(t0 + s) = φ(s) for

s ∈ [−r, 0]. In (2.18), the delay is finite. In this case, the continuity of x on [t0 − r, t0 + a]

implies the continuity of xt on [t0, t0 + a] for a > 0.

Theorem 2.4.1 (Existence). If f ∈ C(R+ × D;Rn) where D ⊂ Cr is an open set, then

for any (t0, φ) ∈ R+ ×D there exists at least one solution of the IVP (2.18).

Definition 2.4.2. A function f(t, x) defined on R+ × D is said to be Lipschitz in ψ if

there exists a constant L > 0 such that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ L‖ψ1 − ψ2‖r for all (t, ψ1), (t, ψ2) ∈ R+ ×D.

Theorem 2.4.3 (Uniqueness). If f is continuous in t and Lipschitz in ψ, then, for any

(t0, φ) ∈ R+ ×D, there exists a unique solution of the IVP (2.18).

38



In the following, we state the definitions of the stability notions of delay systems.

Definition 2.4.4 (Stability). Suppose f(t, 0) = 0 for all t ∈ R+. The trivial solution

x(t) = 0 of IVP (2.18) is said to be

(i) stable if, for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that

‖φ‖r < δ implies ‖x(t)‖ < ε for any t ≥ t0 − r;

(ii) uniformly stable if (i) holds with δ = δ(ε);

(iii) asymptotically stable if (i) holds and there exists a positive constant δ = δ(t0)

such that

‖φ‖r < δ implies lim
t→∞

x(t) = 0;

(iv) globally asymptotically stable if (iii) holds with an arbitrary large constant δ;

(v) uniformly asymptotically stable if it is uniformly stable and there is a positive

constant δ, independent of t0, such that, for all ‖φ‖r < δ, limt→∞ x(t)→ 0, uniformly

in t0; that is, for any η > 0, there is T = T (η) > 0 such that, for all ‖φ‖r < δ,

‖x(t)‖ < η, ∀t ≥ t0 + T ;

(vi) globally uniformly asymptotically stable if (v) holds with an arbitrary large

constant δ;

(vii) exponentially stable if there exist positive constants δ, k and λ such that

‖x(t)‖ ≤ k‖φ‖re−λ(t−t0), whenever ‖φ‖r < δ, and t ≥ t0;
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(viii) globally exponentially stable if (vii) holds with an arbitrary large constant δ;

(ix) unstable if (i) does not hold.

There are two main methods to analyze stability of delay systems. One is called

Lyapunov-krasovskii functional method, which uses Lyapunov functional, and the other

method is Razumikhin type technique, which uses Lyapunov function. In the present the-

sis, Razumikhin method is adopted to analyze the stability of delay systems. Razumikhin

approach deals with the delay by assuming the delay terms are bounded by some non delay

terms which leads to cases similar to those of ODEs.

2.4.1 Razumikhin-Type Theorem

The contents of this subsection are taken from [84]. Razumikhin-type theorem is an ef-

fective method to analyze the stability of DDEs. It explores the possibility of using the

derivative of a function on Rn to generate sufficient conditions that guarantee stability. A

powerful feature of this approach is to have a control on the relationship between ‖x(t)‖

and ‖x(t+ s)‖, s ∈ [−r, 0].

Let V : Rn → R be a positive definite continuously differentiable function. Then, its

derivative along the solution of (2.17) is given by

V̇ (x(t)) =
∂V (x(t))

∂x
· f(xt) (2.19)

In order for V̇ (x(t)) to be nonpositive, it is required that x(t) dominates x(t+ s). In fact,
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by the uniform stability definition, if xt is initially in a ball B = B(0, δ) in C. Then, in

order to leave this ball, it has to reach the boundary of B at some time t∗. Thus, at time

t∗, we have ‖x(t∗)‖ = δ, and ‖x(t∗+s)‖ < δ for s ∈ [−r, 0), and so d/dx||x(t∗)|| ≥ 0. Thus,

one can get the stability result by showing this is impossible.

Theorem 2.4.5. Suppose f : R × C → Rn maps R × (bounded sets of C) into bounded

sets of Rn, u, v, w : R+ → R+ are continuous, nondecreasing functions satisfying u(0) =

v(0) = w(0) = 0, and u(s), v(s) are positive for s > 0. Assume that there is a continuous

function V : R× Rn → R such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ R, x ∈ Rn (2.20)

The following statements are true:

(i) the solution x=0 of (2.17) is uniformly stable if

V̇ (t, x(t)) ≤ −w(|x(t)|) whenever V (t+s, x(t+s)) ≤ V (t, x(t)), s ∈ [−r, 0] (2.21)

(ii) the solution x=0 of (2.17) is uniformly asymptotically stable if w(s) > 0 for s > 0

and there is a continuous decreasing function p(s) > s for s > 0 such that

V̇ (t, x(t)) ≤ −w(|x(t)|) whenever V (t+ s, x(t+ s)) < p(V (t, x(t))), s ∈ [−r, 0]

(2.22)

If u(s)→∞ as s→∞, then x = 0 is globally asymptotically satble.
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2.5 Hybrid Systems with Time Delay

Considering a time delay in the switched system (2.13) leads to the so-called switched

system with time delay, which may have the form

{
ẋ = fi(t, xt), i ∈ S,
xt0(s) = φ(s), s ∈ [−r, 0],

(2.23)

where fi : R+×D → Rn for all i, and φ ∈ C([−r, 0],D). A special class of (2.23) is obtained

when s = −r. In this case, we have xt = x(t − r). Accordingly, the delayed differential

equation becomes

ẋ = fi(t, x(t− r)), i ∈ S. (2.24)

Assumption A, mentioned earlier, can be adjusted to suit the switched systems with time

delay. Consider the linear switched systems with time delay

{
ẋ = (Ai + ∆Ai)x+ (Āi + ∆Āi)x(t− r),
xt0(s) = φ(s), s ∈ [−r, 0], r > 0

(2.25)

Assumption A. For any i ∈ S and ∀ t ∈ R+,

∆Ai(t) = DiUi(t)Hi and ∆Āi(t) = D̄iŪi(t)H̄i,

withDi, Hi, D̄i, H̄i being known real matrices with appropriate dimensions, and Ui(t), Ūi(t)

being unknown real time-varying matrices and satisfying

‖Ui(t)‖ ≤ 1 and ‖Ūi(t)‖ ≤ 1.
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Similarly, considering a time delay in the system state and impulsive function of the

impulsive system (2.16) leads to the impulsive system with time delay

ẋ = f(t, xt), t 6= τk, k ∈ N (2.26a)

∆x(t) = Ik(t, xt−), t = τk, (2.26b)

xt0(s) = φ(s), s ∈ [−r, 0]. (2.26c)

where f : R+ × PC([−r, 0];D) → Rn and φ ∈ PC([−r, 0];D) equipped with the norm

‖φ‖r = sup−r≤s≤0 ‖φ(s)‖ with PC being a class of piecewise-continuous function stated in

the following definition. We should mention that the solution of (2.26) is assumed to be

right-continuous, and the impulsive function in (2.26b) is taken to be time-varying.

Definition 2.5.1. [30] For any a, b ∈ R with a < b and for some set D ⊂ Rn, define the

following classes of functions

PC([a, b],D) =
{
ψ : [a, b]→ D|ψ(t+) = ψ(t),∀ t ∈ [a, b); ψ(t−) exists in D, ∀ t ∈ (a, b];

and ψ(t−) for all but at most a finite number of points t ∈ (a, b]
}
,

PC([a, b),D) =
{
ψ : [a, b)→ D|ψ(t+) = ψ(t), ∀ t ∈ [a, b); ψ(t−) exists in D, ∀ t ∈ (a, b);

and ψ(t−) for all but at most a finite number of points t ∈ (a, b)
}
,

and

PC([a,∞),D) =
{
ψ : [a,∞)→ D|∀ c > a, ψ|[a,c] ∈ PC([a, c],D)

}
.
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In this definition, on a finite interval, the jump discontinuities form a finite set, while

they form a countably infinite set on an infinite interval.

In the following, we state the definitions of some stability concepts of impulsive systems

with time delay.

Definition 2.5.2 (Stability). [30] Let x(t, t0, φ) be any solution of (2.26). The trivial

solution x(t) = 0 of IVP (2.26) is said to be

(i) stable if, for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that if

‖φ‖r < δ with φ ∈ PC([−r, 0],D)

implies

‖x(t, t0, φ)‖ ≤ ε for any t ≥ t0 − r;

(ii) uniformly stable if (i) holds with δ = δ(ε);

(iii) asymptotically stable if (i) holds and for each t0 ∈ R+ there exists a positive

constant δ = δ(t0) such that

‖φ‖r < δ with φ ∈ PC([−r, 0],D)

implies

lim
t→∞

x(t, t0, φ) = 0;

(iv) globally asymptotically stable if (iii) holds with an arbitrary large constant δ;
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(v) uniformly asymptotically stable if it is uniformly stable and there is a positive

constant δ, such that for any η > 0, there is T = T (η, δ) > 0 such that, if

‖φ‖r < δ with φ ∈ PC([−r, 0],D)

implies

‖x(t, t0, φ)‖ ≤ η, ∀t ≥ t0 + T ;

(vi) globally uniformly asymptotically stable if (vi) holds with an arbitrary large

constant δ;

(vii) exponentially stable if there exist positive constants δ, k and λ such that, if

‖φ‖r < δ with φ ∈ PC([−r, 0],D)

implies

‖x(t)‖ ≤ k‖φ‖re−λ(t−t0), t ≥ t0;

(viii) globally exponentially stable if (vii) holds with an arbitrary large constant δ;

(ix) unstable if (i) does not hold.

In the same manner, one can define the impulsive switched systems with time delay as

follows: 
ẋ(t) = fi(t, xt), t 6= τk, i ∈ S,
∆x(t) = Iik(t, xt−), t = τk,
xt0(s) = φ(s), s ∈ [−r, 0],

(2.27)

where fi : R+ × PC([−r, 0];D)→ Rn for any i ∈ S, and φ ∈ PC([−r, 0];D).
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2.6 Interconnected or Large-Scale Systems (LSS)

Due to complexity, some systems are characterized by LSS, which is an interconnection of

lower order subsystems. A LSS also known as an interconnected system or a composite

system. A common way to analyze such high order systems is by decomposing them into

isolated subsystems and establish the stability of each subsystem ignoring the interconnec-

tion part. Then, this available information is used together with the interconnection, which

is treated as a perturbation, to get a conclusion about the stability of the interconnected

system. For the LSS to be (exponentially) stable, it is required that the degree of stability

of the isolated subsystems as a whole be greater than the interconnection strength. This

type of relation is represented by the so-called M -matrix. The results in this section are

taken from [79]. Consider the following nth order interconnected system

ẇi =fi(t, w
i) + gi(t, w

1, w2, · · · , wi, · · · , wl)

wi(t0) =wi0, (2.28)

where i = 1, 2, · · · , l, wi ∈ Rni is the ith subsystem state, such that Σl
i=1ni = n, and

xT = (w1T w2T · · · wlT ). Assume that the trivial solution x ≡ 0 is an equilibrium point of

system (2.28), i.e.,

fi(t, 0) = 0, gi(t, 0) = 0, ∀ t ≥ 0, and ∀ i.

The corresponding l isolated subsystems are given by

ẇi = fi(t, w
i), i = 1, 2, · · · , l (2.29)

46



To analyze the stability of (2.28), assume that all these systems have uniformly asymptoti-

cally stable equilibrium points, and there are l corresponding Lyapunov functions V i(t, wi).

For βi > 0, define

V (t, x) =
l∑

i=1

βiV
i(t, wi) (2.30)

as a composite Lyapunov function candidate for the interconnected system. Then, the

derivative of V (t, x) along the trajectories of (2.28) is given by

V̇ (t, x) =
l∑

i=1

βi

[∂V i

∂t
+
∂V i

∂wi
fi(t, w

i)
]

+
l∑

i=1

βi
∂V i

∂wi
gi(t, x) (2.31)

Since the isolated subsystems are assumed to be uniformly asymptotically stable, the

first term in the right hand side of (2.31) is bounded above by a strictly negative term.

Thus, the second term, which is indefinite, is assumed to be bounded by some nonnegative

upper bound.

Now, assume that for ‖x‖ < c with c > 0, V i(t, wi) and gi(t, x) satisfy the following

conditions

(i)
∂V i

∂t
+
∂V i

∂wi
fi(t, w

i) ≤ −aiφ2
i (w

i) for t ≥ 0;

(ii)
∥∥∥∂V i

∂wi

∥∥∥ ≤ biφi(w
i);

(iii) ‖gi(t, x)‖ ≤
l∑

j=1

γijφj(w
j), for i = 1, 2, · · · , l and t ≥ 0,
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where ai and bi are positive constants, φi is a positive-definite function, and γij are non-

negative constants. From (2.31), one gets

V̇ (t, x) ≤
l∑

i=1

βi

[
− aiφ2

i (w
i)
]

+
l∑

i=1

βibiγijφi(w
i)φj(w

j)

which can be written as

V̇ (t, x) ≤ −1

2
φT (BS + STB)φ

where φ = (φ1, φ2, · · · , φm)T , B = diag(β1, β2, · · · , βl), and S = [sij] is an l× l matrix such

that

sij =

{
ai − biγij, i = j
−biγij, i 6= j

. (2.32)

According to Lyapunov stability theory, the asymptotic stability of the composite system

(2.28) can be achieved if there exists a matrix B such that

BS + STB > 0. (2.33)

The following lemma gives a sufficient condition to guarantee the existence of matrix B

Lemma 2.6.1. There exists a diagonal matrix B > 0 satisfying (2.33) if and only if S is

an M-matrix; that is, all its leading successive principle minors are positive, i.e.,

det


s11 s12 · · · s1k

s21 s22 · · · s2k

· · · · · · · · · · · ·
sk1 sk2 · · · skk

 > 0, k = 1, 2, · · · , l.
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TheM -matrix has an important role here. The diagonal elements represent the stability

degree for the isolated subsystems, while the nonpositive off-diagonal elements represent

the strengths of the interconnections.

Theorem 2.6.2. Consider the LSS (2.28). Suppose that for all t ≥ 0 and ‖x‖ < c with

c > 0, V i(t, wi) and gi(t, x) satisfy the conditions (i)-(ii), where V i(t, wi) is a positive-

definite decrescent Lyapunov functions for the ith isolated subsystem. Suppose further that

the matrix S defined in (2.32) is an M-matrix. Then, the trivial solution is uniformly

asymptotically stable. It is, moreover, globally uniformly asymptotically stable if all as-

sumptions hold globally and V i(t, wi) are radially unbounded.

2.7 Singularly Perturbed Systems (SPS)

Systems involving multiple time-scale dynamics are known as SPS. They can be viewed as

a class of LSS where the multi time-scale subsystems are the isolated subsystems, and the

interaction between them is the perturbation to the system. SPS are characterized by small

parameters multiplied by the highest derivatives creating the fast and slow subsystems.

The contents of this section are taken from [79] unless otherwise specified. Consider the

following autonomous SPS

ẋ = f(x, z), (2.34a)

εż = g(x, z), (2.34b)
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where x ∈ Rm, z ∈ Rn are, respectively, the system slow and fast states, 0 < ε� 1, and f

and g are locally Lipschitz in a domain containing the origin. Assume that (x, z) = (0, 0)

is an isolated equilibrium point. Thus, we have

f(0, 0) = 0, g(0, 0) = 0.

In order to analyze the stability properties, we set ε = 0. This reduces the dimension of

the system from m + n to m because the differential equation (2.34b) declines into the

following algebraic equation

0 = g(x, z).

The foregoing equation is assumed to have the isolated real root

z = h(x).

For simplicity, we shift the equilibrium point to the origin by considering the transformation

y = z − h(x).

Then, the SPS is

ẋ = f(x, y + h(x)), (2.35a)

εẏ = g(x, y + h(x))− ε∂h
∂x
f(x, y + h(x)). (2.35b)

The corresponding slow reduced subsystem is

ẋ = f(x, h(x)) (2.36)
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has an equilibrium x = 0, and

dy

ds
= g(x, y + h(x)),

where s = t/ε, and x is treated as a fixed parameter, has an equilibrium point at y = 0.

Sufficient conditions for SPS (2.34) to be asymptotically stable have been provided in the

following theorem.

Theorem 2.7.1. Consider the SPS (2.34). Assume there exist two Lyapunov functions

V (x) and W (x, y) for the slow and fast subsystems respectively, positive-definite functions

ψ1, ψ2,W1,W2, and positive constants a1, a2, b1, b2, γ such that the following conditions

hold

∂V

∂x
f(x, h(x)) ≤ −a1ψ

2
1(x);

∂W

∂y
g(x, y + h(x)) ≤ −a2ψ

2
2(y);

W1(y) ≤ W (x, y) ≤ W2(y);

∂V

∂x

[
f(x, y + h(x))− f(x, h(x))

]
≤ b1ψ1(x)ψ2(x);

[∂W
∂x
− ∂W

∂y

∂h

∂x

]
f(x, y + h(x)) ≤ b2ψ1(x)ψ2(x) + γψ2

2(y).

Then, there is a positive constant ε∗ =
a1a2

a1γ + b1b2

such that the origin (x, z) = (0, 0) is

asymptotically stable for all 0 < ε < ε∗.
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2.8 Reliable Control

The contents of this section are taken from [149,165]. Consider the linear control system

{
ẋ = Ax+Bu,
x(t0) = x0,

(2.37)

where x ∈ Rn is the system state, u ∈ Rq is the control input of the form u = Kx with

K ∈ Rq×n being the control gain matrix, A ∈ Rn×n is a non Hurwitz1 matrix, B ∈ Rn×q.

The matrix pair (A,B) is assumed to be stabilizable (i.e., A + BK is Hurwitz). The

closed-loop system is

{
ẋ = (A+BK)x,
x(t0) = x0.

(2.38)

To analyze the reliable stabilization with respect to actuator failures, let u ∈ Rq. The

q control actuators are divided into two sets. Σ ⊆ {1, 2, ..., q} the set of actuators that are

susceptible to failure, i.e., they may occasionally fail, and Σ ⊆ {1, 2, ..., q} − Σ the other

set of actuators which are robust to failures and essential to stabilize the given system.

The elements of Σ are redundant in terms of the stabilization but necessary to improve

the system performance, while the elements of Σ are required to stabilize the system and

assumed that they never fail, i.e., the pair (A,BΣ) is assumed to be stabilizable.

Consider the decomposition of the control matrix

B = BΣ +BΣ,

1 A Hurwitz matrix is a matrix in which all eigenvalues have negative real parts.
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where BΣ and BΣ are the control matrices associated with Σ and Σ, respectively, and

BΣ and BΣ are generated by zeroing out the columns corresponding to Σ and Σ, respec-

tively. Let σ ⊆ Σ corresponds to some of the actuators that experience failure. Then, the

decomposition becomes

B = Bσ +Bσ,

where Bσ and Bσ have the same definition of BΣ and BΣ, respectively. The closed-loop

system with reliable control becomes

{
ẋ = (A+BσK)x,
x(t0) = x0.

(2.39)

Consider the following input/output system


ẋ(t) = Ax(t) +Bu(t) +Gw(t),
z(t) = Cx(t) + Fu(t)
x(t0) = x0,

(2.40)

where w is an external disturbance such that w(t) = Kwx(t), and the control input is of

the form u(t) = Kux(t). In analyzing the system output behaviour using the H∞− norm,

we are mainly interested in an optimization problem of the form

inf
u

sup
w
J(u,w) <∞, (2.41)

where

J(u,w) =

∫ ∞
t0

(zT z − γ2wTw)dt (2.42)
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for some positive constant γ. Then, by the definitions of u and w, we get

J(u,w) =

∫ ∞
t0

xT (CT
c Cc − γ2KT

wKw)xdt, (2.43)

where Cc = C + FKu.

Consider

d(xTPx) = (ẋTPx+ xTPẋ)dt (2.44)

= xT [(A+BKu +GKw)TP ]x+ xT [P (A+BKu +GKw)]x

where P is a symmetric matrix.

Adding and subtracting d(xTPx) to J leads to

J(u,w) =

∫ ∞
t0

xT
[
(A+BKu +GKw)TP + P (A+BKu +GKw) + CT

c Cc − γ2KT
wKw

]
xdt

− x(∞)TPx(∞) + xT (t0)Px(t0)

If we assume that A+BKu +GKw is stable, x(∞) = 0. Then

J(u,w) = xT (t0)Px(t0) (2.45)

where P satisfies the Riccati-like equation

(A+BKu +GKw)TP + P (A+BKu +GKw) + CT
c Cc − γ2KT

wKw = 0. (2.46)

The maximization condition for J with respect to Kw in (2.45) is

∇KwP = 0, (2.47)

where the gradient ∇KwP is defined as follows:

(∇KwP )ij =
∂P

∂Kwij

. (2.48)
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So that, from the Ricattti-like equation, we have

(A+BKu +GKw)T∇KwP +GTP +GTP +∇KwP (A+BKu +GKw)− 2γ2Kw = 0.
(2.49)

By (2.47), we get

Kw =
1

γ2
GTP. (2.50)

Similarly, the minimization condition of J is

∇KuP = 0. (2.51)

So that, one can get

Ku = −BTP (2.52)

Substituting Ku and Kw in the Ricatti-like equation gives

ATP + PA+ CT
c Cc − P (BTB − 1

γ2
GTG)P = 0. (2.53)

The H∞ has received a great deal of attention in control theory [68, 69, 80, 143, 156,

176, 177, 179, 180]. It is a useful measure used to guarantee the performance of the plant

when dealing with control problems that involve robust design. However, in the event of

control component failures, the stability or performance of the plant may not be achieved

by such designs. Therefore, it would be advantageous if it is associated with a reliable

control design to handle such failures when they occur. As a result, many researchers

have considered the robust reliable H∞ control since 1992 up until now. Interested readers

may refer to [67, 112, 143, 182]. In [143], the authors discussed uncertain linear systems
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with disturbances where the norm-bounded uncertainty occurs in the system state. The

main objective was designing a robust feedback-reliable controller so that the system is

quadratically stabilized with an acceptable performance level not only when the actuators

are operational, but also when failure occurs in some control components; moreover, a

state feedback control design was used in that work. In [112], a more general design was

established for uncertain switched linear systems with norm-bounded uncertainties in both

the system state and the output. The authors used the linear matrix inequality approach

and convex combination technique to design a robust reliableH∞ controller and a switching

rule so that the system maintains the global quadratic stability with a good performance

not only when the actuators are operational but also for the faulty case.

2.9 Stochastic Differential Equations

In this section, we present some basic concepts that will be used later.

Definition 2.9.1. Let I ⊂ R+ and Ω be a sample space of an experiment. A Stochastic

process X(t, ω) (or X(t), for notation simplicity ) is a family of random variables {Xt(ω) :

t ∈ I and ω ∈ Ω}.

Definition 2.9.2. Let (Ω,F ,P) be a complete probability space. An almost surely (a.s.)

continuous stochastic processW (t) for all t ∈ R+ is said to be Wiener (or Brownian motion)

process if

1. P{ω : W (0) = 0} = 1;
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2. for any 0 ≤ s < t <∞, the increment W (t)−W (s) is independent of W (s)−W (u)

for all 0 ≤ u < s;

3. for all t ∈ R+ and h > 0, the increment W (t+ h)−W (t) is Gaussian (or normally)

distributed with

E[W (t+ h)−W (t)] = µh;

E[(W (t+ h)−W (t))2] = σ2h,

where the mean µ ∈ R and the variance σ2 is a positive constant.

Particularly, W is said to be a standard Wiener process if µ = 0 and σ2 = 1.

A typical nonlinear stochastic systems with time delay or systems with stochastic func-

tional differential equations may be defined by{
dx(t) = f(t, xt)dt+ g(t, xt)dW (t), t ∈ [t0, T ],
xt0(s) = φ(s), s ∈ [−r, 0],

(2.54)

for any t0, T ∈ R+ with T ≥ t0, where x ∈ Rn is the delayed system state, W (t) =

(W1(t),W2(t), · · · ,Wm(t))T is an m−dimensional Wiener process, f : R+ × Rn → Rn is

the drift coefficient of the process x, f : R+ × Rn → Rm is the diffusion coefficient of the

process x, and φ : [−r, 0]→ Rn is the initial function process.

The stochastic integral equation corresponding to the IVP in (2.54) is

x(t) = φ(0) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs) dW (s), (2.55)
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where t ≥ t0. The first integral is a Riemann integral almost surely (a.s.) and the second

one is called an Itô integral satisfying

E
[ ∫ t

t0

g(s, xs) dW (s)
]

= 0,

E
∥∥∥∫ t

t0

g(s, xs) dW (s)
∥∥∥2

=

∫ t

t0

E‖g(s, xs)‖2 ds.

Considering impulse effects in (2.54) leads to the following stochastic impulsive systems

with time delay (SISD)

dx(t) = f(t, xt)dt+ g(t, xt) dW (t), t 6= τk, (2.56)

∆x(t) = I(t, xt−), t = τk,

xt0(s) = φ(s), s ∈ [−r, 0],

where τk represents an impulsive moment, for k = 0, 1, 2, · · · , and satisfies 0 = τ0 < τ1 <

τ2 < · · · and limk→∞ τk =∞.

Itô formula. For any t0 ∈ R+ and t ≥ t0, assume that x(t) is an Rn-dimensional stochastic

process satisfying

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (a.s.), (2.57)

Let V ∈ C1,2(R+ × Rn;R+). Then, for any t ≥ t0, V is a stochastic process satisfying

dV (t, x) = LV (t, x)f(t, x)dt+ Vx(t, x)g(t, x)dW (t), (a.s.)

where operator L (or LV as a single notation) is defined by

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
tr[gT (t, x)Vxx(t, x)g(t, x)],
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where “tr” stands for the trace of a matrix.

In the above formula, C1,2(R+ × Rn;R+) denotes the space of all real-valued functions

V (t, x) defined on R+ × Rn such that they are continuously differentiable once in t and

twice in x. For instance, if V (t, x) ∈ C1,2(R+ × Rn;R+), then we have

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(∂V (t, x)

∂x1

, · · · , ∂V (t, x)

∂xn

)T
, Vxx(t, x) =

(∂2V (t, x)

∂xi∂xj

)
n×n

.

Definition 2.9.3. Let x = x(t, t0, φ) be the solution of system (2.56). The trivial solution

x ≡ 0 is said to be locally exponentially stable in the pth moment if there exist positive

constants λ, λ̄ and c such that

E
[
‖x(t)‖p

]
≤ λ̄E

[
‖φ‖pr

]
e−λ(t−t0), ∀t ≥ t0,

for any initial function φ such that E
[
‖φ‖pr

]
< c, and t0 ∈ R+. It is said to be globally

exponentially stable if c is chosen arbitrarily large.
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Part I

Robust Reliable H∞ Control and
Input-to-State Stabilization for

Uncertain Hybrid Systems
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This part discusses input-to-state stabilization (ISS) of a class of hybrid systems with

time-varying norm-bounded parametric uncertainties in the system states. The main ob-

jective is to design a robust reliable H∞ control that guarantees ISS not only when all

the actuators are operational, but also when some of them experience failure. The faulty

actuator output is assumed to be nonzero, which is treated as a disturbance signal that is

augmented with the system disturbance input.

The input disturbance of the system is assumed to be time varying with norm-bounded

energy. The faulty output can be treated either as an outage (i.e., zero output) or a non-

zero disturbance that augmented with the system input disturbance. The latter case is

more practical because most of the control component failures occur unexpectedly, and at

the same time an immediate repair may not be feasible. Therefore, designing a reliable

controller to guarantee an acceptable level of performance becomes crucial. We also assume

the system jumps amongst a finite set of modes.

Thus, new sufficient conditions have been developed here to guarantee the input to

state stabilization and H∞ performance of the hybrid system in the presence of the input

disturbance, state uncertainties, and nonlinear lumped perturbation not only when all the

actuators are operational, but also when some of them experience failure.

To achieve this result, we assume that every individual subsystem is input-to-state

stabilized by a robust reliable controller. As well known, a peculiar phenomenon of a

switched system is that the stability or boundedness of each individual mode does not
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guarantee the boundedness of the switched system unless the switching moments are ruled

by a logic-based switching signal.

The methodology of multiple Lyapunov functions is used to analyze the input-to-state

stabilization. This approach results in solving a finite number of Riccati-like matrix equa-

tions to obtain the feedback control laws for each mode, which includes some tuning pa-

rameters to reduce the conservativeness of the control design. Simultaneously, to properly

orchestrate the jump among the system modes, the dwelling times or switching moments

are evaluated by the average dwell-time switching rule, where it is ensured that the aver-

aged dwell times of all modes should be sufficiently large.

Finally, some numerical examples with simulations are presented to clarify the theoret-

ical results.
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Chapter 3

Switched Systems

The main contribution of this part is designing a robust reliable H∞ control that guar-

antees exponential input-to-state stabilization of uncertain hybrid systems. The system

under study is a switched system that has a time-varying, norm-bounded uncertainty in

the system state, a nonlinear term that is linearly bounded, and a disturbance that belongs

to L2[0,∞). Two cases of the control actuators have been considered which are operational

actuators and faulty actuators. In the latter case, the output is treated as a disturbance

signal that is augmented with the system disturbance. In addition, multiple Lyapunov

functions, which lead to solving Riccati-like equations, and the average dwell-time con-

dition are used to provide sufficient conditions to guarantee ISS property of the system.

An illustrative numerical example with simulation is presented to show both cases. The

material of this chapter forms the basis of [10].
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3.1 Problem Formulation and Preliminaries

L2[t0,∞) denotes the space of square integrable vector-valued functions on [t0,∞) and ‖·‖2

denotes L2[t0,∞)-norm (i.e., w ∈ L2[t0,∞) means ‖w‖2
2 =

∫∞
t0
‖w(t)‖2 dt <∞).

Consider a class of uncertain switched systems given by


ẋ = (A%(t) + ∆A%(t))x+B%(t)u+G%(t)w + f%(t)(x),
z = C%(t)x+ F%(t)u,
x(t0) = x0,

(3.1)

where x ∈ Rn is the system state, u ∈ Rq is the control input, w ∈ Rp is an input

disturbance, which is assumed to be in L2[t0,∞), and z ∈ Rr is the controlled output. %

is the switching law which is a piecewise constant function defined by % : [t0,∞) → S =

{1, 2, · · · , N}. The role of % is to switch among the system modes. For each i ∈ S, Ai

is a non Hurwitz matrix, Ki ∈ Rq×n is the control gain matrix such that u = Kix, where

(Ai, Bi) is assumed to be stabilizable, fi(x) ∈ Rn is some nonlinearity, Ai, Bi, Gi, Ci and Fi

are known real constant matrices, and ∆Ai is a piecewise continuous function representing

parameter uncertainty with bounded norm. For any i ∈ S, the closed-loop system is


ẋ = (Ai + ∆Ai +BiKi)x+Giw + fi(x),
z = Cicx,
x(t0) = x0,

(3.2)

where Cic = Ci + FiKi.

As mentioned in Chapter 2, for the reliability analysis, we have

Bi = Biσ +Biσ.
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Furthermore, the augmented disturbance input to the system becomes

wFσ = (wT (uFσ )T )T ,

where uFσ ∈ Rq is the failure vector whose elements corresponding to the set of faulty

actuators σ, and F here stands for "failure". Since the control input u is applied to the

system through the normal actuators, and the outputs of the faulty actuators are assumed

to be arbitrary signals, the closed-loop system becomes
ẋ = (Ai + ∆Ai +BiσKi)x+Gicw

F
σ + fi(x), i ∈ S = {1, 2, ..., N},

z = Cicx,
x(t0) = x0,

(3.3)

where Gic = (Gi Biσ). In the following, we define the concept of ISS.

Definition 3.1.1 (Exponential Input-to-State Stability). System (3.2) is said to be robustly

globally exponentially ISS if there exist positive constants λ, λ and a function ρ ∈ K such

that

‖x‖ ≤ λ‖x0‖e−λ(t−t0) + ρ( sup
t0≤τ≤t

‖w(τ)‖), ∀ t ≥ t0,

for any solution x(t) = x(t, t0, x0) of (3.2).

Definition 3.1.2 (input-to-state stability with an H∞- norm (ISS-H∞)). Given a constant

γ > 0, system (3.2) is said to be ISS-H∞ if there exists a state feedback law u(t) = Kix(t),

such that, for any admissible parameter uncertainties ∆Ai, the closed loop system (3.2) is

globally exponentially ISS, and the controlled output z satisfies

‖z‖2
2 =

∫ ∞
t0

‖z‖2 dt ≤ γ2‖w‖2
2 +m0,
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for some positive constant m0.

Lemma 3.1.3. [6] For any arbitrary positive constants ξi, i = 1, · · · , 6, and a positive

definite matrix P , we have

(i) 2xTP (∆A)x ≤ xT (ξ1PDD
TP + 1

ξ1
HTH)x.

(ii) 2xTPGw ≤ xT (ξ2PGG
TP )x+ 1

ξ2
wTw.

(iii) 2xTPf(x) ≤ xT (ξ3P
2 + 1

ξ3
δI)x such that ‖f(x)‖2 ≤ δ‖x‖2 with δ > 0.

Moreover, if x(t− r) ∈ Cr, ‖x(t− r)‖2
r ≤ q‖x‖2 with q > 1, then

(iv) 2xTPĀx(t− r) ≤ xT (ξ4PĀ(Ā)TP + q
ξ4
I)x.

(v) 2xTP (∆Ā)x(t− r) ≤ xT (ξ5PD̄D̄
TP + q

ξ5
‖H̄‖2)x.

(vi) 2xTPf(x(t − r)) ≤ xT (ξ6P
2 + 1

ξ6
δqI)x, where δ > 0 such that ‖f(x(t − r))‖2 ≤

δ‖x(t− r)‖2
r.

3.2 Main Results

In this section, we present and prove two theorems. The first theorem discusses the robust

reliable H∞ controller for system (3.2) to guarantee the globally exponentially ISS when

all the actuators are operational while the second theorem deals with the faulty actuator

case, namely, system (3.3).
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Theorem 3.2.1. Let the controller gain Ki and the constant γi > 0 be given, and assume

that Assumption A holds. Then, the switched control system (3.2) is robustly globally

exponentially ISS with an H∞-norm bound γ if the average dwell-time condition holds, and

there exist positive constants ξ1i, ξ2i, ξ3i, and a positive definite matrix Pi satisfying the

Riccati-like equation

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + ξ1iPiDiD

T
i Pi +

1

ξ1i

HT
i Hi + CT

icCic + ξ2iPiGiG
T
i Pi

+ ξ3iP
2
i +

1

ξ3i

δiI + αiPi = 0, (3.4)

where δi is a positive constant such that

‖fi(x)‖2 ≤ δi‖x‖2. (3.5)

Proof. Let x(t) = x(t, t0, x0) be the solution of system (3.2). For any i ∈ S, define

Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then, the derivative

of Vi(x) along the trajectory of (3.2) is

V̇i(x) = ẋTPix+ xTPiẋ

= [(Ai + ∆Ai +BiKi)x+Giw + fi(x)]TPix+ xTPi[(Ai + ∆Ai +BiKi)x+Giw + fi(x)]

= xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)]x+ 2xTPi(∆Ai)x+ 2xTPiGiw + 2xTPifi(x)

≤ xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + ξ1iPiDiD

T
i Pi + ξ2iPiGiG

T
i Pi +

1

ξ1i

HT
i Hi

+ ξ3iP
2
i +

1

ξ3i

δiI]x+
1

ξ2i

wTw

≤ − αiVi(x) +
1

ξ2i

wTw,
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where we used (3.5) and Lemma 3.1.3 in the second bottom line, and condition (3.4) in

the last line. Hence, for each subinterval [tk−1, tk) we have

V̇i(x) ≤ −(αi − θi)Vi(x)− θiVi(x) +
1

ξ2i

wTw

= −αiVi(x)− θiVi(x) +
1

ξ2i

wTw,

where

αi = αi − θi and 0 < θi < αi.

The foregoing inequality implies that

V̇i(x) ≤ −αiVi(x), for all t ∈ [tk−1, tk),

provided that

Vi(x) >
1

θiξ2i

‖w‖2, (3.6)

by (2.5),

‖x‖ > ‖w‖√
θic2ξ2i

=: ρi(‖w‖).

Then, for all t ∈ [tk−1, tk),

Vi(x(t)) ≤ Vi(x(tk−1))e−αi(t−tk−1) provided that ‖x‖ > ρ(‖w‖), (3.7)

where

ρ(‖w‖) = max
i∈S
{ρi(‖w‖)}.
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From (2.5), we have for any i, j ∈ S

Vj(x(t)) ≤ µVi(x(t)), µ =
c2

c1

, (3.8)

where c1 = mini∈S{λmin(Pi)} and c2 = maxi∈S{λmax(Pi)}.

Activating modes 1 and 2 on the first and second intervals, respectively, we have

V1(x(t)) ≤ V1(x0)e−α1(t−t0), t ∈ [t0, t1) provided that ‖x‖ > ρ(‖w‖)

and

V2(x(t)) ≤ V2(x(t1))e−α2(t−t1), t ∈ [t1, t2) provided that ‖x‖ > ρ(‖w‖)

≤ µV1(x(t1))e−α2(t−t1) provided that ‖x‖ > ρ(‖w‖)

≤ µe−α2(t−t1)e−α1(t1−t0)V1(x0) provided that ‖x‖ > ρ(‖w‖).

Generally, for i ∈ S and t ∈ [tk−1, tk), we have

Vi(x(t)) ≤ µk−1e−αi(t−tk−1)e−αi−1(tk−1−tk−2) · · · e−α1(t1−t0)V1(x0)

provided that ‖x‖ > ρ(‖w‖).

Letting α∗ = min{αi; i ∈ S}, one may get

Vi(x(t)) ≤ µk−1e−α
∗(t−t0)V1(x0)

= e(k−1) lnµ−α∗(t−t0)V1(x0) provided that ‖x‖ > ρ(‖w‖).

Using the average dwell-time condition with N0 = η
lnµ
, τa = lnµ

α∗−ν , (ν < α∗), for some

arbitrary positive constant η, we get

Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ‖x‖ > ρ(‖w‖).
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This implies by Theorem 2.1.12 that

‖x‖ ≤ b‖x0‖e−ν(t−t0)/2 + γ( sup
t0≤τ≤t

‖w(τ)‖), t ≥ t0,

where b =
√
eηc2/c1, and γ(s) =

√
c2
c1
ρ(s). This completes the proof of exponential ISS.

To prove the upper bound on the output magnitude ‖z‖, for any i ∈ S, we introduce

the performance function

Ji =

∫ ∞
t0

(zT z − γ2
iw

Tw)dt.

Then,

Ji =

∫ ∞
t0

(zT z − γ2
iw

Tw) dt+

∫ ∞
t0

V̇i dt− Vi(∞) + Vi(x0)

≤
∫ ∞
t0

(zT z − γ2
iw

Tw) dt+

∫ ∞
t0

V̇i dt+ Vi(x0)

≤
∫ ∞
t0

(zT z − γ2
iw

Tw) dt+ Vi(x0) +

∫ ∞
t0

{xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)

+ ξ1iPiDiD
T
i Pi +

1

ξ1i

HT
i Hi + ξ3iP

2
i +

1

ξ3i

δiI − γ−2
i PiGiG

T
i Pi + γ−2

i PiGiG
T
i Pi]x

+ 2xTPiGiw} dt

= Vi(x0) +

∫ ∞
t0

{xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + ξ1iPiDiD

T
i Pi +

1

ξ1i

HT
i Hi

+ ξ3iP
2
i +

1

ξ3i

δiI + γ−2
i PiGiG

T
i Pi + CT

icCic]x} dt

−
∫ ∞
t0

γ2
i (w − γ−2

i GT
i Pix)T (w − γ−2

i GT
i Pix) dt.
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The last term is strictly negative, so, using condition (3.4) with γ−2
i = ξ2i, we get

Ji ≤ Vi(x0)− αiPi ≤ Vi(x0)

which leads to

‖z‖2
2 ≤ γ2‖w‖2

2 +m0,

where m0 = maxi∈S{Vi(x0)}, and γ = maxi∈S{γi}.

Remark 3.2.2. Theorem 3.2.1 provides sufficient conditions to ensure robust global ex-

ponential ISS of uncertain switched systems with norm-bounded uncertainty in the system

state. The algebraic Riccati-like equation given in (3.4) is to guarantee the existence of

the positive-definite matrix Pi (for all i ∈ S), which implies that the solution trajectories

of the subsystems are decreasing outside a certain neighbourhood of the disturbance w(t).

The role of average dwell time condition is to organize the switching among the system

modes which eventually guarantees the exponential ISS. Condition (3.5) is made to ensure

that nonlinear perturbation f is bounded by a linear growth bound. The positive tuning

parameters ξ1, ξ2 are presented to reduce the conservativeness of the Riccati equation.

Theorem 3.2.3 (Reliability). Let the constant γi > 0 be given. Assume that Assumption

A holds, the switched control system (3.3) is robustly globally exponentially ISS-H∞ if the

average dwell-time condition holds, the controller gain Ki = −1
2
εiB

T
iσPi, for some constants

εi > 0, and positive definite matrix Pi, and there exist positive constants ξ1i, ξ2i, ξ3i, εi, and
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a positive definite matrix Pi satisfying the Riccati-like equation

ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic − εiBiΣB

T
iΣ

+ ξ3iI)Pi +
1

ξ1i

HT
i Hi + CT

icCic

+
1

ξ3i

δiI + αiPi = 0, (3.9)

where δi is a positive constant such that

‖fi(x)‖2 ≤ δi‖x‖2. (3.10)

Proof. Let x(t) = x(t, t0, x0) be the solution of system (3.3). For any i ∈ S, define

Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then, the derivative

of Vi(x) along the trajectory of (3.3) is

V̇i(x) = xT [ATi Pi + PiAi + 2Pi(∆Ai) + (BiσKi)
TPi + PiBiσKi]x+ 2xTPiGicw

F
σ + 2xTPifi(x)

= xT [ATi Pi + PiAi + 2Pi(∆Ai)− εiPi(Biσ)(Biσ)TPi]x+ 2xTPiGicw
F
σ + 2xTPifi(x)

≤ xT [ATi Pi + PiAi + ξ1iPiDiD
T
i Pi + ξ2iPiGicG

T
icPi +

1

ξ1i

HT
i Hi + ξ3iP

2
i +

1

ξ3i

δiI

− εiPi(Biσ)(Biσ)TPi]x+
1

ξ2i

(wFσ )TwFσ

≤ xT [ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic − εiBiΣB

T
iΣ

+ ξ3iI)Pi +
1

ξ1i

HT
i Hi

+
1

ξ3i

δiI]x+
1

ξ2i

(wFσ )TwFσ

= − αiVi(x) +
1

ξ2i

(wFσ )TwFσ ,
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where we used (3.10) and Lemma 3.1.3 in the third bottom line, the fact that [143]

BiΣ(BiΣ)T ≤ Biσ(Biσ)T ,

and condition (3.4) in the last line. Then, for all t ∈ [tk−1, tk), we have

V̇i(x) ≤ −αiVi(x)− θiVi(x) +
1

ξ2i

(wFσ )TwFσ ,

where αi = αi − θi and 0 < θi < αi. This implies that

V̇i(x) ≤ −αiVi(x), for all t ∈ [tk−1, tk)

provided that

‖x‖ > ‖wFσ ‖√
θic2ξ2i

=: ρi(‖wFσ ‖).

As done in Theorem 3.2.1, one may get

Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ‖x‖ > ρ(‖w‖),

where ρ(‖w‖) = maxi∈S{ρi(‖w‖)}. This also implies that

‖x‖ ≤ b‖x0‖e−ν(t−t0) + γ( sup
t0≤τ≤t

‖wFσ (τ)‖), t ≥ t0,

where b =
√
eηc2/c1, γ(s) =

√
c2
c1
ρ(s). This completes the proof of exponential ISS.

As for the upper bound on ‖z‖, one may follow the same steps in Theorem 3.2.1, where

Ji =

∫ ∞
t0

(zT z − γ2
i (w

F
σ )TwFσ )dt,
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to obtain

‖z‖2
2 ≤ γ2‖wFσ ‖2

2 +m0,

where m0 = maxi∈S{Vi(x0)}, and γ = maxi∈S{γi}, which completes the proof.

Example 3.2.4. Consider system (3.2) where S = {1, 2},

A1 =

[
0.2 0.1
0 −6

]
, B1 =

[
−7 1
0.1 0.2

]
, C1 =

[
2 0.1
0 2

]
, F1 =

[
0.1 −2
0.1 0

]
,

D1 =

[
1
0

]
, H1 =

[
0 1

]
, G1 =

[
1 0
0 1

]
, f1 = 0.01

[
sin(x1)
sin(x2)

]
,U1 = sin(t),

ε1 = 2, ξ11 = 0.2, γ1 = 0.1, α1 = 2, ξ21 = γ−2
1 , ξ31 = 1, and θ1 = 1 with t0 = 0.

From (3.5) one may get δ1 = 0.01. As for the second mode, we take

A2 =

[
−9 0.2
0 0.1

]
, B2 =

[
0.1 0.5
0.1 −8

]
, C2 =

[
1 0
0 0.5

]
, F2 =

[
0.1 0
−3 0.1

]
,

D2 =

[
0
1

]
, H2 =

[
1 0

]
, G2 =

[
1 0
0 1

]
, f2 = 0.01

[
sin(x1)
sin(x2)

]
,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.3, γ2 = 0.15, α2 = 2.5, ξ22 = γ−2
2 , ξ32 = 1, and θ2 = 1.5.

From (3.5), one may get that δ2 = 0.01. Let the system input disturbance be defined by

w(t) =

[
sin(t)
sin(t)

]
.

Case 1. [All the actuators are operational]
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When all the control actuators are operational, we have from Riccati-like equation,

P1 =

[
1.6437 0.0149
0.0149 0.2499

]
, P2 =

[
0.1633 0.0859
0.0859 0.2724

]
,

with c11 = λmin(P1) = 0.2498, c12 = λmax(P1) = 1.6439, c21 = λmin(P2) = 0.1161, c22 =

λmax(P2) = 0.3197, so, c1 = 0.1161, c2 = 1.6439, and the control gain matrices are

K1 =

[
11.5047 0.0796
−1.6467 −0.0649

]
, K2 =

[
−0.0062 −0.0090
0.1514 0.5342

]
.
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)

Figure 3.2.1: Input-to-state stabilization: Operational actuators.

Thus, the matrices

A1 +B1K1 =

[
−81.9796 −0.5220

0.8211 −6.0050

]
, and A2 +B2K2 =

[
−8.9249 0.4662
−1.2121 −4.1741

]
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are Hurwitz. The average dwell time is τa = lnµ
α∗−ν = 2.7898, with ν = 0.05. Figure 3.2.1

shows the simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖) (bottom), where

ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, and τa = 3.

Case 2. [Failure in the second actuator in the first mode and first actuator in the second

mode]

When there is a failure in the second actuator, i.e., B1Σ = {2} and B1Σ =

[
−7 0
0.1 0

]
,

and B2Σ = {1} and B2Σ =

[
0 0.5
0 −8

]
, we have from Riccati-like equation,

P1 =

[
1.1265 −0.1913
−0.1913 0.3110

]
, P2 =

[
0.1676 0.0980
0.0980 0.2436

]
,

with c11 = λmin(P1) = 0.2683, c12 = λmax(P1) = 1.1691, c21 = 0.1005, c22 = 0.3107, so

c1 = 0.1005, c2 = 1.1691, and the control gain matrices

K1 =

[
7.9046 −1.3703

0 0

]
, K2 =

[
0 0

0.1751 0.4750

]
.

Thus, the matrices

A1 +B1K1 =

[
−55.1320 9.6920

0.7905 −6.1370

]
, and A2 +B2K2 =

[
−8.9125 0.4375
−1.4006 −3.7000

]

are Hurwitz, and τa = 2.5834.
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Figure 3.2.2: Input-to-state stabilization: Faulty in the second actuator.

Figure 3.2.2 shows the simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖)

(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, τa = 3.

If we consider the system disturbance input

w(t) =

[
e−0.2t sin(t)
e−0.2t sin(t)

]
,

we get the same result, and this shows that the system state is decaying following the decayed

disturbance. The simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖) (bottom) are

shown in Figures 3.2.3 and 3.2.4.
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Figure 3.2.3: Input-to-state stabilization with a decaying disturbance: Operational case.
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Figure 3.2.4: Input-to-state stabilization with a decaying disturbance: Faulty actuators.
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3.3 Conclusion

This chapter has addressed the problem of designing a robust reliable H∞ controller that

guaranteed the global exponential ISS to uncertain switched systems. We have consid-

ered a time-varying parameter uncertainty in the system state, an L2 norm-bounded input

disturbance, and a linearly bounded nonlinear term. The output of the faulty actuators

has been treated as a disturbing signal that has been augmented with the system distur-

bance. We have shown that, using the average dwell-time to organize the switching among

the system modes, and multiple Lyapunov functions, the switched system is exponentially

input-to-state stabilizable, when every individual mode is exponentially input-to-state sta-

bilized by a reliable feedback controller so long as the average dwell-time is sufficiently

large.
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Chapter 4

Switched Systems with Time Delay

In this chapter, time-delayed switched systems that is subject to external disturbance are

considered. The main focus is to establish the problem of ISS of the system, which is

analyzed by using Lyapunov-Razumikhin approach. The jump among the system modes

follow the average dwell-time switching law. Some numerical examples are considered to

illustrate the results of this Chapter. The contents of this chapter forms the basis of [156].

4.1 Problem Formulation and Preliminaries

Consider the following switched system

{
ẋ = f%(t)(xt, w(t)),
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(4.1)

where x ∈ Rn is the system state, and w ∈ Rp is an input disturbance, which is assumed to

be in L2[t0,∞). For r > 0, let Cr be the space of all continuous functions that are defined
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from [−r, 0] to Rn. For any t ∈ R+, let x(t) be a function defined on [t0,∞]. Then, we

define the function xt : [−r, 0]→ Rn by xt(s) = x(t+ s) for all s ∈ [−r, 0], and its norm by

||xt||r = supt−r≤θ≤t ||x(θ)||, where r > 0 is the time delay. % is the switching rule which is

a piecewise constant function defined by % : [t0,∞)→ S = {1, 2, · · · , N}. So system (4.1)

can be expressed as follows

{
ẋ = fi(xt, w(t)), i ∈ S
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(4.2)

Definition 4.1.1. System (4.2) is said to be globally exponentially ISS if there exist λ >

0, λ̄ > 0 and a function γ ∈ K such that the solution x(t) exists ∀t ≥ t0 and satisfies

||x|| ≤ λ̄||φ||re−λ(t−t0) + γ
(

sup
t0≤τ≤t

||w(τ)||
)
.

4.2 Main Results

In this section, we shall state and prove our main results. The following theorem gives

sufficient conditions of global exponential ISS property of the system.

Theorem 4.2.1. For any i ∈ S, let Ki and a differentiable class K function γ be given.

Assume that there exist positive constants c1, c2, r, β, and a continuously differentiable

function Vi : Rn → R+ such that

(i) c1‖x‖2 ≤ Vi(x) ≤ c2‖x‖2 for all t ≥ t0 − r;
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(ii) V̇i(ψ(0)) < −λVi(ψ(0)) whenever Vi(ψ(s)) ≤ qVi(ψ(0)), and γ(supt0≤θ≤tk |w(θ)|) ≤

Vi(ψ(0)) for ψ ∈ Cr, s ∈ [−r, 0] and t ∈ [tk−1, tk), where q = max{µh, eλr} > 1 and

µ = c2/c1;

(iii) for all k, r ≤ tk − tk−1 ≤ β and the average dwell time condition holds, and β > 0;

(iv) for s ∈ [−r, 0] and h > 1, Vi(x(t+ s)) ≤ hVj(x(t)) for any i, j ∈ S and any t ≥ t0.

Then, system (4.2) is globally exponentially ISS.

Proof. Let x(t, t0, φ) be any solution of system (4.2) with xt0 = φ and vi(t) = Vi(x(t)).

First, we want to show that every mode is globally exponentially ISS using conditions (i)

and (ii). For any i ∈ S, and k ∈ N, t ∈ [tk−1, tk), we shall show that

vi(t) ≤ c2||xtk−1
||2re−λ(t−tk−1) + γ( sup

t0≤s≤t
||w(s)||). (4.3)

Let

Qi(t) =

{
vi(t)− c2||xtk−1

||2re−λ(t−tk−1) − γ(supt0≤s≤t ||w(s)||), t ∈ [tk−1, tk), k ∈ N
vi(t)− c2||xt0||2re−λ(t−t0), t ∈ [t0 − r, t0).

We need to show that Qi(t) ≤ 0 for all t ≥ t0 − r. For t ∈ [t0 − r, t0], it is clear that

Qi(t) ≤ 0. By condition (i),

vi(t) ≤c2‖x‖2

≤c2‖xt0‖2
r

≤c2‖xt0‖2
re
−λ(t−t0) since − λ(t− t0) > 0 for t ∈ [t0 − r, t0]. (4.4)
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So, we have

Qi(t) = vi(t)− c2‖xt0‖2
re
−λ(t−t0) ≤ 0

Step 1, for t ∈ [t0, t1), we need to show

Qi(t) = vi(t)− c2‖xt0‖2
re
−λ(t−t0) − γ( sup

t0≤θ≤t1
‖w(θ)‖) ≤ 0. (4.5)

For any i ∈ S, let αi > 0 be arbitrary, and we show Qi(t) ≤ αi for [t0, t1). If not, then

there would exist some t ∈ [t0, t1) so that Qi(t) > αi. Let

t∗i = inf{t ∈ [t0, t1) : Qi(t) > αi, i ∈ S}.

We also have

Qi(t0) ≤ vi(t0)− c2‖xt0‖2
r ≤ c2(‖x(t0)‖2 − ‖xt0‖2

r) ≤ 0.

Since we have Qi(t) ≤ 0 < αi for t ∈ [t0 − r, t0], then t∗i ∈ (t0, t1). Also, since Qi(t) is

continuous on [t0, t1), then we have

Qi(t
∗
i ) = αi and Qi(t) ≤ αi for [t0 − r, t∗i ].

Then, we have

vi(t
∗
i ) = Qi(t

∗
i ) + c2‖xt0‖2

re
−λ(t∗i−t0) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖) (4.6)

and for s ∈ [−r, 0], we have

vi(t
∗
i + s) =Qi(t

∗
i + s) + c2‖xt0‖2

re
−λ(t∗i+s−t0) + γ( sup

t0≤θ≤t∗i+s
‖w(θ)‖)

≤αi + c2‖xt0‖2
re
−λ(t∗i−t0)eλr + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)
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≤
[
αi + c2‖xt0‖2

re
−λ(t∗i−t0) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
eλr

= eλrvi(t
∗
i )

≤ qvi(t∗), (4.7)

where from (4.6), we use

γ( sup
t0≤θ≤t∗i

‖w(θ)‖) ≤ vi(t
∗
i ).

Thus, from condition (ii), we have

v̇i(t
∗
i ) ≤ −λvi(t∗i )

which implies

Q̇i(t
∗
i ) = v̇i(t

∗
i ) + λc2‖xt0‖2

re
−λ(t∗i−t0) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤− λvi(t∗i ) + λc2‖xt0‖2
re
−λ(t∗i−t0) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤− λ
[
vi(t

∗
i )− c2‖xt0‖2

re
−λ(t∗i−t0) − γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
=− λαi. (4.8)

Then, Qi(t) is decreasing at t∗i which contradicts it being increasing at t∗ according to the

definition of t∗. Thus, we get Qi(t) ≤ αi for all t ∈ [t0, t1). Let αi → 0+, then we have

Qi(t) ≤ 0 for t ∈ [t0, t1).
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Step 2, for any i ∈ S assume Qi(t) ≤ 0 for all t ∈ [tk−1, tk) for k = 1, · · ·m.

Qi(tm) = vi(tm)− c2‖xtm‖2
r − γ( sup

t0≤θ≤tm+1

‖w(θ)‖)

≤ c2

(
‖x(tm)‖2 − ‖xtm‖2

r

)
− γ( sup

t0≤θ≤tm+1

‖w(θ)‖)

≤ 0.

Step 3, we will show that Qi(t) ≤ 0 for all t ∈ [tm, tm+1), i.e., we need to show that

vi(t) ≤ c2||xtm||2re−λ(t−tm) + γ( sup
t0≤s≤t

||w(s)||).

To do so, one needs to prove that Qi(t) ≤ αi for all t ∈ [tm, tm+1) and any i ∈ S. If this

were not true, then there would exist some t ∈ [tm, tm+1) such that for any i ∈ S we have

Qi(t) > αi. Let

t∗i = inf{t ∈ [tm, tm+1) : Qi(t) > αi, i ∈ S}

by the continuity, we have Qi(t
∗
i ) = αi and Qi(t) ≤ αi for all t ∈ [tm, t

∗
i ), i.e., Q̇i(t

∗
i ) > 0.

Thus, we have

vi(t
∗
i ) = αi + c2‖xtm‖2

re
−λ(t∗i−tm) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖). (4.9)

We want to show vi(t
∗
i + s) ≤ vi(t

∗
i ) for s ∈ [−r, 0].
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Case 1. If t∗i + s ∈ [tm, tm+1), then we have for each i ∈ S

vi(t
∗
i + s) =Qi(t

∗
i + s) + c2‖xtm‖2

re
−λ(t∗i+s−tm) + γ( sup

t0≤θ≤t∗i+s
‖w(θ)‖)

≤αi + c2‖xtm‖2
re
−λ(t∗i−tm)eλr + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤
[
αi + c2‖xtm‖2

re
−λ(t∗i−tm) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
eλr

= eλrvi(t
∗
i ) ≤ qvi(t

∗
i ). (4.10)

Case 2. If t∗i + s ∈ [tm − r, tm). Then, since for any i, j ∈ S and for any t ≥ t0 − r,

vi(t) ≤ µvj(t), µ =
c2

c1

≥ 1. (4.11)

Then, we have from the foregoing inequality and condition (iv)

vi(t
∗
i + s) ≤µvj(t∗i + s)

≤µhvi(t∗i )

≤ qvi(t∗i ), (4.12)

where q = max{eλr, µh}. Also, from (4.9), we have that

γ( sup
t0≤θ≤t∗i

‖w(θ)‖) ≤ vi(t
∗
i ).

Thus, from condition (ii), we have

v̇i(t
∗
i ) ≤ −λvi(t∗i )
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which implies

Q̇i(t
∗
i ) = v̇i(t

∗
i ) + λc2‖xtm‖2

re
−λ(t∗i−tm) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤ − λvi(t∗i ) + λc2‖xtm‖2
re
−λ(t∗i−tm) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤ − λ
[
vi(t

∗
i )− c2‖xtm‖2

re
−λ(t∗i−tm) − γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
= − λαi. (4.13)

Then, Qi(t) is decreasing at t∗i which contradicts it being increasing at t∗i according to the

definition of t∗i . Thus, we get Qi(t) ≤ αi for all t ∈ [tm, tm+1). Let αi → 0+, then we have

Qi(t) ≤ 0 for t ∈ [tm, tm+1). By induction, we have Qi(t) ≤ 0 for all t ≥ t0 − r. Thus, we

have for t ∈ [tk−1, tk),

vi(t) ≤ c2||xtk−1
||2re−λ(t−tk−1) + γ( sup

t0≤s≤t
||w(s)||). (4.14)

By condition (i), one can show

‖x‖ ≤ √µ||xtk−1
||re−λ(t−tk−1)/2 +

√
1

c1

γ( sup
t0≤s≤t

||w(s)||). (4.15)

This proves that every mode is globally exponentially ISS. Second, we shall show that the

whole switched system is globally exponentially ISS. Since condition (i) is assumed to hold

for all t ≥ t0 − r, then we have from (4.14)

Vi(x(t)) ≤ µVi(x(tk−1 − r))e−λ(t−tk−1) + γ( sup
t0≤s≤t

||w(s)||), (4.16)
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Activating modes i, j and l on the first, second and third intervals, respectively, we have

for t ∈ [t0, t1)

Vi(x(t)) ≤ µVi(xt0)e−λ(t−t0) + γ( sup
t0≤s≤t1

||w(s)||),

and for t ∈ [t1, t2)

Vj(x(t)) ≤µVj(xt1)e−λ(t−t1) + γ( sup
t0≤s≤t2

||w(s)||)

≤µ2Vi(xt1)e−λ(t−t1) + γ( sup
t0≤s≤t2

||w(s)||)

≤µ2
[c2

c1

Vi(xt0)e−λ(t1−r−t0) + γ( sup
t0≤s≤t1−r

||w(s)||)
]
e−λ(t−t1) + γ( sup

t0≤s≤t2
||w(s)||)

≤µ3eλrVi(xt0)e−λ(t1−t0)e−λ(t−t1) + µ2γ( sup
t0≤s≤t1

||w(s)||)e−λ(t−t1)

+ γ( sup
t0≤s≤t2

||w(s)||)

≤µ3eλrVi(xt0)e−λ(t−t0) + (µ2 + 1)γ( sup
t0≤s≤t2

||w(s)||),

and for t ∈ [t2, t3)

Vl(x(t)) ≤µVl(xt2)e−λ(t−t2) + γ( sup
t0≤s≤t3

||w(s)||)

≤µ2Vj(xt2)e−λ(t−t2) + γ( sup
t0≤s≤t3

||w(s)||)

≤µ2
[
µ3eλrVi(xt0)e−λ(t2−r−t0) + (µ2 + 1)γ( sup

t0≤s≤t2−r
||w(s)||)

]
e−λ(t−t2) + γ( sup

t0≤s≤t3
||w(s)||)
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≤µ5e2λrVi(xt0)e−λ(t2−t0)e−λ(t−t2) +
(
(µ2)2 + µ2

)
γ( sup

t0≤s≤t2−r
||w(s)||)e−λ(t−t2)

+ γ( sup
t0≤s≤t3

||w(s)||)

≤µ5e2λrVi(xt0)e−λ(t−t0) + (µ4 + µ2 + 1)γ( sup
t0≤s≤t3

||w(s)||).

Generally, for i ∈ S and t ∈ [tk−1, tk), we have

Vi(x(t)) ≤µ2k−1e(k−1)λre−λ(t−t0)Vi(xt0) +
( k−1∑
j=0

(µ2)j
)
γ( sup

t0≤s≤tk
||w(s)||)

≤µ2k−1e(k−1)λre−λ(t−t0)Vi(xt0) + k(µ2)k−1γ( sup
t0≤s≤tk

||w(s)||)

≤µk(µeλr)k−1e−λ(t−t0)Vi(xt0) + k(µ2)k−1γ( sup
t0≤s≤tk

||w(s)||)

≤µk(%)k−1e−λ(t−t0)Vi(xt0) + k(µ2)k−1γ( sup
t0≤s≤tk

||w(s)||)

≤ (µ%)k%−1e−λ(t−t0)Vi(xt0) + k(µ2)k−1γ( sup
t0≤s≤tk

||w(s)||)

≤ ek ln(µ%)−ln(%)−λ(t−t0)Vi(xt0) + Γ(t),

where % = µeλr and Γ(t) = k(µ2)k−1γ(supt0≤s≤tk ||w(s)||) is class K function. Using the

average dwell-time condition with N0 = η
ln(µ%)

, τa = ln(µ%)
λ−ν , (0 < ν < λ), for some arbitrary

positive constant η, we get

Vi(x(t)) ≤ eη+lnµ−ν(t−t0)Vi(xt0) + Γ(t)

≤De−ν(t−t0)‖xt0‖2
r + Γ(t)
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where D = c2µe
η. This implies that

‖x‖ ≤ b‖xt0‖re−ν(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
eη, and γ̄(t) =

√
Γ(t)/c1 is class K. This completes the proof of exponential

ISS.

As a special case, consider the following uncertain switched systems with time delay
ẋ = (A%(t) + ∆A%(t))x+ (Ā%(t) + ∆Ā%(t))x(t− r) +B%(t)u+G%(t)w + f%(t)(x(t− r)),
z = C%(t)x+ F%(t)u,
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(4.17)

where x ∈ Rn is the system state, , u ∈ Rl is the control input, and w ∈ Rp is an input

disturbance, which is assumed to be in L2[t0,∞) and z ∈ Rr is the controlled output.

% : [t0,∞)→ S = {1, 2, · · · , N} is the switching rule and r > 0 is the time delay. For each

i ∈ S, Ai is a non Hurwitz matrix, Ki ∈ Rl×n is the control gain matrix such that u = Kix,

where (Ai, Bi) is assumed to be stabilizable, fi(·) ∈ Rn is some nonlinearity, Ai, Bi, Gi, Ci

and Fi are known real constant matrices, and ∆Ai, ∆Āi are piecewise continuous functions

representing system parameter uncertainties. For any i ∈ S the closed-loop system is
ẋ = (Ai + ∆Ai +BiKi)x+ (Āi + ∆Āi)x(t− r) +Giw + fi(x(t− r)),
z = Cicx, Cic = Ci + FiKi

xt0(s) = φ(s), s ∈ [−r, 0], r > 0,
(4.18)

Thus, the closed-loop system in the faulty case becomes
ẋ = (Ai + ∆Ai +Biσ̄Ki)x+ (Āi + ∆Āi)x(t− r) +Gicw

F
σ + fi(x(t− r)),

z = Cicx,
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(4.19)
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where Gic = (Gi Biσ).

Then we have the following results

Corollary 4.2.1. For any i ∈ S, let Ki and γi > 0 be given. Assume that Assumption A

holds and there exist positive constants ξji (j = 1, 2, 4, 5, 6), αi, a positive-definite matrix

Pi satisfying

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T

+ ξ6iI)Pi +
1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I + CT
icCic + αiPi = 0 (4.20)

where δi > 0 such that ‖fi(ψ)‖2 ≤ δi‖ψ‖2
r. Assume further that ‖w‖2 ≤ ξ2iα

∗
iVi(x) with

α∗i < αi and for all k, r ≤ tk− tk−1 ≤ β where β > 0, and the average dwell time condition

holds. Then, system (4.18) is robustly globally exponentially ISS-H∞.

Proof. For all t ∈ [t0 − r,∞), let x(t) = x(t, t0, φ) be the solution of system (4.18). For

any i ∈ S, define Vi(x) = xTPix as a Lyapunov function candidate. We need to check if

the conditions of Theorem 4.2.1 hold. It is clear that condition (i) holds as

λmin(Pi)‖x‖2 ≤ Vi(x) ≤ λmax(Pi)‖x‖2

and so

c1‖x‖2 ≤ Vi(x) ≤ c2‖x‖2

where c1 = mini∈S{λmin(Pi)} and c2 = maxi∈S{λmax(Pi)}.
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For condition (ii), we have

V̇i(x) = [(Ai + ∆Ai +BiKi)x+ (Āi + ∆Āi)x(t− r) +Giw + fi(x(t− r))]TPix

+ xTPi[(Ai + ∆Ai +BiKi)x+ (Āi + ∆Āi)x(t− r) +Giw + fi(x(t− r))]

= xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)]x+ 2xTPi(∆Ai)x+ 2xTPiGiw

+ 2xTPifi((t− r)) + 2xTPi(∆Āi)x(t− r) + 2xTPiĀix(t− r)

≤ xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T

+ ξ5iD̄i(D̄i)
T + ξ6iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I]x+
1

ξ2i

wTw

≤ − αiVi(x) +
1

ξ2i

wTw

≤ − λiVi(x) ≤ −λVi(x),

where λi = αi − α∗i , λ = mini∈S{λi} and we used Lemma 3.1.3, and condition (4.20).

Hence, condition (ii) holds. The rest of the proof is similar to the proof of Theorem 4.2.1.

Thus, we have

‖x‖ ≤ b‖xt0‖re−α(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
eη, and γ̄(t) =

√
Γ(t)/c1 is class K such that Γ(s) = k(µ2)k−1 ‖w(s)‖2

ξ2α∗ and

ξ2α
∗ = mini∈S{ξ2iα

∗
i }. This completes the proof of globally exponentially ISS.
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To prove the upper bound on ‖z‖, for any i ∈ S, let Ji =
∫∞
t0

(zT z − γ2
iw

Tw)dt. Then,

Ji =

∫ ∞
t0

(zT z − γ2
iw

Tw) dt+

∫ ∞
t0

V̇i dt− Vi(∞) + Vi(x0)

≤
∫ ∞
t0

(zT z − γ2
iw

Tw) dt+ Vi(x0) +

∫ ∞
t0

{
xT [(Ai +BiKi)

TPi + Pi(Ai +BiKi)

+ Pi(ξ1iDiD
T
i + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T + ξ6iI)Pi +

1

ξ1i

HT
i Hi

+ (
qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I + γ−2
i PiGiG

T
i Pi − γ−2

i PiGiG
T
i Pi]x+ 2xTPiGiw

}
dt

= Vi(x0) +

∫ ∞
t0

{
xT [(Ai +BiKi)

TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD
T
i + ξ4iĀi(Āi)

T

+ ξ5iD̄i(D̄i)
T + ξ6iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I + γ−2
i PiGiG

T
i Pi

+ CT
icCic]x

}
dt−

∫ ∞
t0

γ2
i (w − γ−2

i GT
i Pix)T (w − γ−2

i GT
i Pix) dt.

The last term is strictly negative, using (4.20) with γ−2
i = ξ2i, we get Ji ≤ Vi(x0) which

leads to

‖z‖2
2 ≤ γ2‖w‖2

2 +m0,

where m0 = maxi∈S{Vi(x0)}, and γ = maxi∈S{γi}.

Remark 4.2.2. Corollary 4.2.1 provides sufficient conditions to ensure the robust global

exponential ISS property. The algebraic Riccati-like equation in (4.20) is to guarantee

the existence of the positive-definite matrix Pi (for all i ∈ S), which implies that the
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solution trajectories of the subsystems are decreasing outside a certain neighbourhood of the

disturbance w(t). The role of the average dwell time condition is to organize the switching

among the system modes. ξ1, ξ2 are tuning parameters to reduce the conservativeness of

the Riccati-like equation.

Corollary 4.2.2 (Reliability). For any i ∈ S, let the constant γi > 0 be given, and assume

that Assumption A holds and there exist positive constants ξji, (j = 1, 2, 4, 5, 6), εi, αi,

Ki = −1
2
εiB

T
iσ̄Pi, and a positive-definite matrix Pi such that the following algebraic Riccati-

like equation holds

ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic − εiBiΣ̄B

T
iΣ̄ + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T

+ ξ6iI)Pi + (
qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I +
1

ξ1i

HT
i Hi + CT

icCic + αiPi = 0, (4.21)

where δi > 0 such that ‖fi(ψ)‖2 ≤ δi‖ψ‖2
r. Assume further that ‖wFσ ‖2 ≤ ξ2iα

∗
iVi(x) with

α∗i < αi and for all k, r ≤ tk− tk−1 ≤ β where β > 0, and the average dwell time condition

holds. Then, system (4.19) is robustly globally exponentially ISS-H∞.

Proof. Let x(t) = x(t, t0, φ) be the solution of (4.19). ∀i ∈ S, define Vi(x) = xTPix as a

Lyapunov function candidate for the ith mode. Then, as shown earlier, condition (i) of

Theorem 4.2.1 is satisfied. For condition (ii), the derivative of Vi(x) along the trajectory

94



of (4.19) is given by

V̇i(x) ≤ xT [ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T − εiBiΣ̄B

T
iΣ̄

+ ξ6iI)Pi +
1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I]x+
1

ξ2i

(wFσ )TwFσ

≤ − αiVi(x) +
1

ξ2i

(wFσ )TwFσ

≤ − λiVi(x) ≤ −λVi(x),

where λi = αi − α∗i , λ = mini∈S{λi} and we used Lemma 3.1.3, condition (4.21), and the

fact

BiΣ̄B
T
iΣ̄ ≤ Biσ̄B

T
iσ̄.

Thus, we have

‖x‖ ≤ b‖xt0‖re−α(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
eη, and γ̄(t) =

√
Γ(t)/c1 is class K such that Γ(s) = k(µ2)k−1 ‖wFσ (s)‖2

ξ2α∗ and

ξ2α
∗ = mini∈S{ξ2iα

∗
i }. This completes the proof of globally exponentially ISS.

As for the upper bound ‖z‖, one can follow the same steps in Corollary 4.2.1, where

Ji =

∫ ∞
t0

(zT z − γ2
i (w

F
σ )TwFσ )dt.

Example 4.2.3. Consider system (4.18) with S = {1, 2},

A1 =

[
0.2 0.1
0 −6

]
, B1 =

[
−3 1
0.1 0.2

]
, C1 =

[
2 0.1
0 2

]
, F1 =

[
0.1 −2
0.1 0

]
,
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Ā1 =

[
0.1 0.1
0.2 1

]
, D1 =

[
1
0

]
, H1 =

[
0 1

]
, D̄1 =

[
0
1

]
, H̄1 =

[
1 0

]
,

G1 =

[
1 0
0 1

]
, f1 = 0.1

[
sin(x1(t− 1))
sin(x2(t− 1))

]
,U1 = sin(t),

ε1 = 2, ξ11 = 0.2, γ1 = 0.1, α1 = 2, ξ21 = γ−2
1 , ξ41 = 0.1, ξ51 = 0.3, ξ61 = 0.2, M1 =

2, β = 3, θ1 = 0.05, and δ1 = 0.1. As for the second mode,

A2 =

[
−9 0.2
0 0.1

]
, B2 =

[
0.1 0.5
0.1 −1

]
, C2 =

[
1 0
0 0.5

]
, F2 =

[
0.1 0
−3 0.1

]
,

Ā2 =

[
0.3 0.2
0 0.1

]
, D2 =

[
0
1

]
, H2 =

[
1 0

]
, D̄2 =

[
1
0

]
, H̄2 =

[
0 1

]
,

G2 =

[
0.5 0
0 1

]
, f2 = 0.01

[
sin(x1(t− 1))
sin(x2(t− 1))

]
,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.3, γ2 = 0.15, α2 = 2.5, ξ22 = γ−2
2 , ξ42 = 0.2, ξ52 = 0.09, ξ62 =

0.1, M2 = 1.1, θ2 = 0.15, and δ2 = 0.01. The disturbance wT (t) = 1.2[sin(t) sin(t)].

Case 1. When all actuators are operational, we have

P1 =

[
0.7234 −0.0157
−0.0157 0.5559

]
, P2 =

[
11.6224 −1.2007
−1.2007 10.6159

]
,

with c11 = λmin(P1) = 9.8173, c12 = λmax(P1) = 12.4211, c21 = λmin(P2) = 26.6962, c22 =

λmax(P2) = 54.1990, so, c1 = 9.8173, c2 = 54.1990, and

K1 =

[
34.9874 −4.6636
−11.3823 −0.9225

]
, K2 =

[
−1.2381 −0.5812
−7.7135 7.3350

]
.
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Figure 4.2.1: Input-to-state stabilization, φ(s) = 1− s, s ∈ [−1, 0] : Operational case.

Thus, the matrices Ai +BiKi (i = 1, 2) are Hurwitz and τa = lnµ
α∗−ν = 1.1783, with ν = 0.5,

the upper bound of the disturbance magnitude is 0.1031, and the cheater bound N0 = 0.5853.

Case 2. When there is a failure in the first actuator, i.e., B1Σ = {1} and B1Σ̄ =[
0 1
0 0.2

]
, and B2Σ = {2} and B2Σ̄ =

[
0.1 0
0.1 0

]
, we have

P1 =

[
11.7139 −3.1981
−3.1981 11.5155

]
, P2 =

[
53.1251 −4.8927
−4.8927 27.3562

]
,

with c11 = λmin(P1) = 8.4151, c12 = λmax(P1) = 14.8144, c21 = 26.4585, c22 = 54.0228, so
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Figure 4.2.2: Input-to-state stabilization, φ(s) = 1− s, s ∈ [−1, 0] : Faulty actuators.

c1 = 8.4151, c2 = 54.0228, and the control gain matrices

K1 =

[
35.4616 −10.7459

0 0

]
, K2 =

[
0 0

−7.8638 7.4506

]
.

Thus, the matrices Ai + BiKi (i = 1, 2) are Hurwitz and τa = 1.2823, the upper bound of

the disturbance magnitude is 0.1033, and the cheater bound N0 = 0.5378.

Figure 4.2.1 and 4.2.2 show the simulation results of ‖x‖ (top) and ρ(s) (bottom) for

both cases, where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, τa = 3. The figures

show the input-to-state stability of the system where the state magnitude ‖x‖ is bounded

below by the system disturbance magnitude.
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When we consider the system disturbance input

w(t) =

[
e−0.2t sin(t)
e−0.2t sin(t)

]
,

we get the same result, and this shows that the system state is decaying as well. The

simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖) (bottom) are shown in Figures

4.2.3 and 4.2.4.

0 5 10 15 20 25
0

0.5

1

1.5

t

||
x
||
 &

 ρ
(|

|w
||
)

Figure 4.2.3: ISS with a decaying disturbance, φ(s) = 1−s, s ∈ [−1, 0] : Operational case.
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Figure 4.2.4: ISS with a decaying disturbance, φ(s) = 1− s, s ∈ [−1, 0] : Faulty actuators.

4.3 Conclusion

The system under investigation has been exponentially stabilized by state feedback robust

reliable controllers. The Lyapunov-Razumikhin technique along with average dwell time

approach by multiple Lyapunov functions has been utilized to fulfill our purpose, which

implies that the results are delay independent. The output of the faulty actuators has been

treated as a disturbing signal that has been augmented with the system disturbance.
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Chapter 5

Impulsive Switched Systems with Time
Delay

This chapter deals with the problem of exponentially input-to-state stabilization of im-

pulsive switched systems with finite time delay. To analyze this qualitative property of

each mode, we use the technique of multiple Lyapunov functions along with Razumikhin

condition, and to achieve the ISS property of the switched system, we use the average

dwell-time switching law. Some illustrative examples are presented to clarify the proposed

theoretical results. The contents of this chapter forms the basis of [11].

5.1 Problem Formulation and Preliminaries

Consider the following impulsive switched system with time delay given by


ẋ = f%(t)(xt, w(t)), t 6= tk
∆x(t) = Ik(t, xt−), t = tk, k ∈ N
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(5.1)
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where x ∈ Rn is the system state, f%(t), Ik%(t) : R+×PC([−r, 0],Rn)→ Rn, φ ∈ PC([−r, 0],Rn),

the impulsive times tk satisfying t0 < t1 < t2 < · · · < tk < · · · , with limk→∞ tk = ∞,

∆x(tk) = x(t+k ) − x(t−k ) where x(t+k ) and x(t−k ) are the right and left limits at tk respec-

tively, and w ∈ Rp is an input disturbance, which is assumed to be in L2[t0,∞). For

r > 0, let Cr be the space of all continuous functions that are defined from [−r, 0] to

Rn. For any t ∈ R+, let x(t) be a function defined on [t0,∞]. Then, we define the func-

tions xt, xt− ∈ PC([−r, 0],Rn) are defined by xt(s) = x(t + s), xt−(s) = x(t− + s) for all

s ∈ [−r, 0], respectively, and the linear space PC([−r, 0],Rn) is equipped with the norm

||xt||r = supt−r≤θ≤t ||x(θ)||, where r > 0 is the time delay. % is the switching rule which is

a piecewise constant function defined by % : [t0,∞)→ S = {1, 2, · · · , N}. So system (5.1)

can be expressed as follows


ẋ = fi(xt, w(t)), i ∈ S
∆x(t) = Ik(t, xt−), t = tk, k ∈ N
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(5.2)

Definition 2. A function V : R+ × Rn → Rn is said to belong to class ν if

(i) V ∈ C([tk−1, tk)× Rn,Rn) and V (t, x) is left continuous at each tk;

(ii) V (t, x) is continuously differentiable at all x ∈ Rn, and for all t ≥ t0, V (t, 0) ≡ 0.
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5.2 Main Results

In this section, we present our main results. The following theorem gives sufficient condi-

tions of global exponential ISS property of the proposed system.

Theorem 5.2.1. For any i ∈ S, let Ki and a differentiable class K function γ be given.

Assume that there exist positive constants c1, c2, r, β, dki, and a class ν function Vi such

that

(i) c1‖x‖2 ≤ Vi(x) ≤ c2‖x‖2 for all t ≥ t0 − r;

(ii) V̇i(ψ(0)) < −λVi(ψ(0)) whenever Vi(ψ(s)) ≤ qVi(ψ(0)), and γ(supt0≤θ≤tk |w(θ)|) ≤

Vi(ψ(0)) for ψ ∈ Cr, s ∈ [−r, 0] and t ∈ [tk−1, tk), where q = max{µh, eλr} > 1 and

µ = c2/c1;

(iii) for all k, r ≤ tk − tk−1 ≤ β and the average dwell time condition holds, and β > 0;

(iv) for s ∈ [−r, 0] and h > 1, Vi(x(t+ s)) ≤ hVj(x(t)) for any i, j ∈ S and any t ≥ t0;

(v) Vi(ψ(t−k ) + Iki(ψ(t−k ))) ≤ (1 + dki)Vj(ψ(t−k )) for any i, j ∈ S and any t ≥ t0 with∑∞
k=1 dki <∞, and d0i = 0.

Then, system (5.2) is globally exponentially ISS.

Proof. Let x(t, t0, φ) be any solution of system (5.2) with xt0 = φ and vi(t) = Vi(x(t)).

First, using conditions (i) and (ii), we show that every mode is globally exponentially ISS.
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For any i ∈ S, and k ∈ N, t ∈ [tk−1, tk), we show that

vi(t) ≤ c2

k−1∏
j=0

(1 + dji)||xtk−1
||2re−λ(t−tk−1) + γ( sup

t0≤s≤t
||w(s)||). (5.3)

Let

Qi(t) =

{
vi(t)− c2

∏k−1
j=0(1 + dji)||xtk−1

||2re−λ(t−tk−1) − γ(supt0≤s≤t ||w(s)||), t ∈ [tk−1, tk), k ∈ N
vi(t)− c2||xt0||2re−λ(t−t0), t ∈ [t0 − r, t0).

We need to prove that Qi(t) ≤ 0 for all t ≥ t0−r. It is clear that Qi(t) ≤ 0 for t ∈ [t0−r, t0].

From condition (i), we get

vi(t) ≤c2‖x‖2 (5.4)

≤c2‖xt0‖2
r (5.5)

≤c2‖xt0‖2
re
−λ(t−t0). (5.6)

So, we have

Qi(t) = vi(t)− c2‖xt0‖2
re
−λ(t−t0) ≤ 0

Step 1, for t ∈ [t0, t1), we need to show

Qi(t) = vi(t)− c2‖xt0‖2
re
−λ(t−t0) − γ( sup

t0≤θ≤t1
‖w(θ)‖) ≤ 0. (5.7)

For any i ∈ S, let αi > 0 be arbitrary, and we show Qi(t) ≤ αi for [t0, t1). If not, then

there would exist some t ∈ [t0, t1) so that Qi(t) > αi. Let

t∗i = inf{t ∈ [t0, t1) : Qi(t) > αi, i ∈ S}.
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Qi(t0) ≤ vi(t0)− c2‖xt0‖2
r ≤ c2(‖x(t0)‖2 − ‖xt0‖2

r) ≤ 0

Since we have Qi(t) ≤ 0 < αi for t ∈ [t0 − r, t0], then t∗i ∈ (t0, t1). Also, since Qi(t) is

continuous on [t0, t1), then we have

Qi(t
∗
i ) = αi and Qi(t) ≤ αi for [t0 − r, t∗i ].

Then, we have

vi(t
∗
i ) = Qi(t

∗
i ) + c2‖xt0‖2

re
−λ(t∗i−t0) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖) (5.8)

and for s ∈ [−r, 0], we have

vi(t
∗
i + s) =Qi(t

∗
i + s) + c2‖xt0‖2

re
−λ(t∗i+s−t0) + γ( sup

t0≤θ≤t∗i+s
‖w(θ)‖)

≤αi + c2‖xt0‖2
re
−λ(t∗i−t0)eλr + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤
[
αi + c2‖xt0‖2

re
−λ(t∗i−t0) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
eλr

= eλrvi(t
∗
i )

≤ qvi(t∗), (5.9)

where from (5.8), we use

γ( sup
t0≤θ≤t∗i

‖w(θ)‖) ≤ vi(t
∗
i ).

Thus, from condition (ii), we have

v̇i(t
∗
i ) ≤ −λvi(t∗i )
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which implies

Q̇i(t
∗
i ) = v̇i(t

∗
i ) + λc2‖xt0‖2

re
−λ(t∗i−t0) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤− λvi(t∗i ) + λc2‖xt0‖2
re
−λ(t∗i−t0) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤− λ
[
vi(t

∗
i )− c2‖xt0‖2

re
−λ(t∗i−t0) − γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
=− λαi. (5.10)

Then, Qi(t) is decreasing at t∗i which contradicts how t∗ was defined. Thus, we get Qi(t) ≤

αi for all t ∈ [t0, t1). Let αi → 0+, then we have Qi(t) ≤ 0 for t ∈ [t0, t1).

Step 2, for any i ∈ S assume Qi(t) ≤ 0 for all t ∈ [tk−1, tk) for k = 1, · · ·m.

Qi(tm) = vi(tm)− c2

m∏
j=0

(1 + dji)‖xtm‖2
r − γ( sup

t0≤θ≤tm+1

‖w(θ)‖)

≤ (1 + dmi)
[
vj(t

−
m)− c2

m−1∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t−m−tm−1)

]
− γ( sup

t0≤θ≤tm+1

‖w(θ)‖)

= (1 + dmi)Qj(t
−
m)− γ( sup

t0≤θ≤tm+1

‖w(θ)‖)

≤ 0 < αi.

Step 3, we will show that Qi(t) ≤ 0 for all t ∈ [tm, tm+1), i.e., we need to show that

vi(t) ≤ c2

m∏
j=0

(1 + dji)||xtm||2re−λ(t−tm) + γ( sup
t0≤s≤t

||w(s)||).

We need to prove that Qi(t) ≤ αi for all t ∈ [tm, tm+1) and any i ∈ S. If this were not true,
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then there would exist some t ∈ [tm, tm+1) such that for any i ∈ S we have Qi(t) > αi. Let

t∗i = inf{t ∈ (tm, tm+1) : Qi(t) > αi, i ∈ S}

by the continuity, we have Qi(t
∗
i ) = αi and Qi(t) ≤ αi for all t ∈ [tm, t

∗
i ], i.e., Q̇i(t

∗
i ) > 0.

Thus, we have

vi(t
∗
i ) = αi + c2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖). (5.11)

We want to show vi(t
∗
i + s) ≤ vi(t

∗
i ) for s ∈ [−r, 0].

Case 1. If t∗i + s ∈ [tm, tm+1), then we have for each i ∈ S

vi(t
∗
i + s) =Qi(t

∗
i + s) + c2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i+s−tm) + γ( sup

t0≤θ≤t∗i+s
‖w(θ)‖)

≤αi + c2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm)eλr + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤
[
αi + c2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm) + γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
eλr

= eλrvi(t
∗
i ) ≤ qvi(t

∗
i ). (5.12)

Case 2. If t∗i + s ∈ [tm − r, tm). Then, since for any i, j ∈ S and for any t ≥ t0 − r,

vi(t) ≤ µvj(t), µ =
c2

c1

≥ 1. (5.13)
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Using the foregoing inequality and condition (iv), we get

vi(t
∗
i + s) ≤µvj(t∗i + s)

≤µhvi(t∗i )

≤ qvi(t∗i ), (5.14)

where q = max{µh, eλr}. Also, from (5.11), we have that

γ( sup
t0≤θ≤t∗i

‖w(θ)‖) ≤ vi(t
∗
i ).

Thus, from condition (ii), we have

v̇i(t
∗
i ) ≤ −λvi(t∗i )

which implies

Q̇i(t
∗
i ) = v̇i(t

∗
i ) + λc2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤ − λvi(t∗i ) + λc2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm) − γ̇( sup

t0≤θ≤t∗i
‖w(θ)‖)

≤ − λ
[
vi(t

∗
i )− c2

m∏
j=0

(1 + dji)‖xtm‖2
re
−λ(t∗i−tm) − γ( sup

t0≤θ≤t∗i
‖w(θ)‖)

]
= − λαi. (5.15)

Then, Qi(t) is decreasing at t∗i which is a contradiction. Thus, we get Qi(t) ≤ αi for all

t ∈ [tm, tm+1). Let αi → 0+, then we have Qi(t) ≤ 0 for t ∈ [tm, tm+1). By induction, we
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have Qi(t) ≤ 0 for all t ≥ t0 − r. Thus, we have for t ∈ [tk−1, tk),

vi(t) ≤ c2

k−1∏
j=0

(1 + dji)||xtk−1
||2re−λ(t−tk−1) + γ( sup

t0≤s≤t
||w(s)||), (5.16)

By condition (i), one can show

‖x‖ ≤

√√√√µ
k−1∏
j=0

(1 + dji)||xtk−1
||re−λ(t−tk−1)/2 +

√
1

c1

γ( sup
t0≤s≤t

||w(s)||). (5.17)

This proves the global exponential ISS for each subsystem. Second, we willshow that

the whole switched impulsive system is globally exponentially ISS. Since condition (i) is

assumed to hold for all t ≥ t0 − r, then we have from (5.16)

Vi(x(t)) ≤ µ
k−1∏
j=0

(1 + dji)Vi(x(tk−1 − r))e−λ(t−tk−1) + γ( sup
t0≤s≤t

||w(s)||), (5.18)

Activating modes i, j and l on the first, second and third intervals, respectively, we have

for t ∈ [t0, t1)

Vi(x(t)) ≤ Vi(xt0)e−λ(t−t0) + γ( sup
t0≤s≤t1

||w(s)||),
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and for t ∈ [t1, t2)

Vj(x(t)) ≤µ
1∏
j=0

(1 + dji)Vj(xt1)e−λ(t−t1) + γ( sup
t0≤s≤t2

||w(s)||)

≤µ2

1∏
j=0

(1 + dji)Vi(xt1)e−λ(t−t1) + γ( sup
t0≤s≤t2

||w(s)||)

≤µ2

1∏
j=0

(1 + dji)
[c2

c1

Vi(xt0)e−λ(t1−r−t0) + γ( sup
t0≤s≤t1−r

||w(s)||)
]
e−λ(t−t1) + γ( sup

t0≤s≤t2
||w(s)||)

≤µ3

1∏
j=0

(1 + dji)e
λrVi(xt0)e−λ(t1−t0)e−λ(t−t1) + µ2

1∏
j=0

(1 + dji)γ( sup
t0≤s≤t1

||w(s)||)e−λ(t−t1)

+ γ( sup
t0≤s≤t2

||w(s)||)

≤µ3

1∏
j=0

(1 + dji)e
λrVi(xt0)e−λ(t−t0) + (µ2

1∏
j=0

(1 + dji) + 1)γ( sup
t0≤s≤t2

||w(s)||)

and for t ∈ [t2, t3)

Vl(x(t)) ≤µ
2∏
j=0

(1 + dji)Vl(xt2)e−λ(t−t2) + γ( sup
t0≤s≤t3

||w(s)||)

≤µ2

2∏
j=0

(1 + dji)Vj(xt2)e−λ(t−t2) + γ( sup
t0≤s≤t3

||w(s)||)
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≤µ2

2∏
j=0

(1 + dji)
[
µ3

1∏
j=0

(1 + dji)e
λrVi(xt0)e−λ(t2−r−t0)

+ (µ2

1∏
j=0

(1 + dji) + 1)γ( sup
t0≤s≤t2−r

||w(s)||)
]
e−λ(t−t2) + γ( sup

t0≤s≤t3
||w(s)||)

≤µ5(1 + d2i)
1∏
j=0

(1 + dji)
2e2λrVi(xt0)e−λ(t2−t0)e−λ(t−t2)

+
(
(µ2)2(1 + d2i)

1∏
j=0

(1 + dji)
2 + µ2

2∏
j=0

(1 + dji)
)
γ( sup

t0≤s≤t2−r
||w(s)||)e−λ(t−t2)

+ γ( sup
t0≤s≤t3

||w(s)||)

≤µ5(1 + d2i)
1∏
j=0

(1 + dji)
2e2λrVi(xt0)e−λ(t−t0)

+
(
µ4(1 + d2i)

1∏
j=0

(1 + dji)
2 + µ2

2∏
j=0

(1 + dji) + 1
)
γ( sup

t0≤s≤t3
||w(s)||).

Generally, for i ∈ S and t ∈ [tk−1, tk), we have

Vi(x(t)) ≤µ2k−1e(k−1)λr

1∏
j=0

(1 + dji)
2∏
j=0

(1 + dji) · · ·
k−1∏
j=0

(1 + dji)e
−λ(t−t0)Vi(xt0)

+ k(µ2)k−1

1∏
j=0

(1 + dji)
2∏
j=0

(1 + dji) · · ·
k−1∏
j=0

(1 + dji)γ( sup
t0≤s≤tk

||w(s)||)
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=µk(%)k−1Ge−λ(t−t0)Vi(xt0) + k(µ2)k−1Gγ( sup
t0≤s≤tk

||w(s)||)

= (µ%)k%−1Ge−λ(t−t0)Vi(xt0) + k(µ2)k−1Gγ( sup
t0≤s≤tk

||w(s)||)

≤ ek ln(µ%)−ln(%)+lnG−λ(t−t0)Vi(xt0) + Γ(t)

where % = µeλr and Γ(t) = k(µ2)k−1Gγ(supt0≤s≤tk ||w(s)||) is class K function with G =∏1
j=0(1 + dji)

∏2
j=0(1 + dji) · · ·

∏k−1
j=0(1 + dji). Using the average dwell-time condition with

N0 = η
ln(µ%)

, τa = ln(µ%)
λ−ν , (0 < ν < λ), for some arbitrary positive constant η, we get

Vi(x(t)) ≤ eη+lnGµ−ν(t−t0)Vi(xt0) + Γ(t)

≤De−ν(t−t0)‖xt0‖2
r + Γ(t)

where D = c2Gµe
η. This implies that

‖x‖ ≤ b‖xt0‖re−ν(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
Geη, and γ̄(t) =

√
Γ(t)/c1 is class K. This completes the proof.

As a special case, consider the following uncertain impulsive switched systems with

time delay


ẋ = (A%(t) + ∆A%(t))x+ (Ā%(t) + ∆Ā%(t))x(t− r) +B%(t)u+G%(t)w

+f%(t)(x(t− r)), t 6= tk
∆x(t) = Ik%(t)(x(t−)) = Ck%(t)x(t−), t = tk, k = 1, 2, · · · ,
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(5.19)

where x ∈ Rn is the system state, the impulsive times tk satisfying t0 < t1 < t2 < · · · < tk <

· · · , with limk→∞ tk = ∞, ∆x(tk) = x(t+k ) − x(t−k ) where x(t+k )(or x(t−k )) is the state just
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after (or before) the impulse at tk, Ik : Rn → Rn is the impulsive function, u = Kx ∈ Rl is

the control input, and w ∈ Rp is an input disturbance, which is assumed to be in L2[t0,∞)

For each i ∈ S, Ai is a non Hurwitz matrix, Ki ∈ Rl×n is the control gain matrix such

that u = Kix, where (Ai, Bi) is assumed to be stabilizable, fi(·) ∈ Rn is some nonlinearity,

Ai, Bi, Gi are known real constant matrices with proper dimensions, and ∆Ai, ∆Āi are

piecewise continuous functions representing system parameter uncertainties with bounded

norms.

For any i ∈ S the closed-loop system is


ẋ = (Ai + ∆Ai +BiKi)x+ (Āi + ∆Āi)x(t− r) +Giw + fi(x(t− r)), t 6= tk,
∆x(t) = Iki(x(t−)) = Ckix(t−), t = tk, k = 1, 2, · · · ,
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(5.20)

Assume that the output of faulty actuators is an arbitrary energy-bounded signal which

belongs to L2[t0,∞). To analyze the reliable stabilization with respect to actuator failures,

for any i ∈ S, we write the decomposition

Bi = Biσ +Biσ̄.

Furthermore, the augmented disturbance input to the system becomes wFσ = (wT (uFσ )T )T ,

where uFσ ∈ Rl is the failure vector whose elements corresponding to the set of faulty

actuators σ, and F here stands for “failure". Since the control input u is applied to the

system through the normal actuators, and the outputs of the faulty actuators are assumed
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to be arbitrary signals, the closed-loop system becomes
ẋ = (Ai + ∆Ai +Biσ̄Ki)x+ (Āi + ∆Āi)x(t− r) +Gicw

F
σ + fi(x(t− r)),

∆x(t) = Iki(x(t−)) = Ckix(t−), t = tk, k = 1, 2, · · · ,
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(5.21)

where Gic = (Gi Biσ). Then we have the following results

Corollary 5.2.1. For any i ∈ S, let Ki and γi > 0 be given. Assume that Assumption

A holds and there exist positive constants ξji (j = 1, 2, 4, 5, 6), a positive-definite matrix Pi

such that

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T

+ ξ6iI)Pi +
1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I + αiPi = 0 (5.22)

where δi > 0 such that

‖fi(ψ)‖2 ≤ δi‖ψ‖2
r. (5.23)

Assume further that ‖w‖2 ≤ ξ2iα
∗
iVi(x) with α∗i < αi and for all k, r ≤ tk− tk−1 ≤ β where

β > 0, the average dwell time condition holds, and Vi(x(t−k ) + Iki(x(t−k ))) ≤ dkiVi(t
−
k ), 0 <

dki < e−λ(tk+1−tk) ≤ 1, for all k ∈ N. Then, system (5.20) is robustly globally exponentially

ISS.

Proof. For all t ∈ [t0 − r,∞), let x(t) = x(t, t0, φ) be the solution of system (5.20). For

any i ∈ S, define Vi(x) = xTPix as a Lyapunov function candidate. We need to check if

the conditions of Theorem 5.2.1 hold. It is clear that condition (i) holds as

λmin(Pi)‖x‖2 ≤ Vi(x) ≤ λmax(Pi)‖x‖2
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and so

c1‖x‖2 ≤ Vi(x) ≤ c2‖x‖2

where c1 = mini∈S{λmin(Pi)} and c2 = maxi∈S{λmax(Pi)}.

For condition (ii), we have

V̇ (x) = ẋTPix+ xTPiẋ

= xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)]x+ 2xTPi(∆Ai)x+ 2xTPiGiw

+ 2xTPifi((t− r)) + 2xTPi(∆Āi)x(t− r) + 2xTPiĀix(t− r)

≤ xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T

+ ξ5iD̄i(D̄i)
T + ξ6iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I]x+
1

ξ2i

wTw

= − αiVi(x) +
1

ξ2i

wTw

≤ − λiVi(x) ≤ −λVi(x),

where λi = αi − α∗i , λ = mini∈S{λi} and we used Lemma 3.1.3, and condition (5.22).

Hence, condition (ii) holds. The rest of the proof is similar to the proof of Theorem 5.2.1.

Thus, we have

‖x‖ ≤ b‖xt0‖re−α(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
Geη, and γ̄(t) =

√
Γ(t)/c1 is class K such that Γ(s) = k(µ2)k−1G‖w(s)‖2

ξ2α∗ and

ξ2α
∗ = mini∈S{ξ2iα

∗
i }. This completes the proof.
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Corollary 5.2.2 (Reliability). For any i ∈ S, let the constant γi > 0 be given, and assume

that Assumption A holds and there exist positive constants ξji, (j = 1, 2, 4, 5, 6), εi, αi,

Ki = −1
2
εiB

T
iσ̄Pi, and a positive-definite matrix Pi such that the following algebraic Riccati-

like equation holds

ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic − εiBiΣ̄B

T
iΣ̄ + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T

+ ξ6iI)Pi + (
qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I +
1

ξ1i

HT
i Hi + αiPi = 0, (5.24)

where δi > 0 such that ‖fi(ψ)‖2 ≤ δi‖ψ‖2
r. Assume further that ‖wFσ ‖2 ≤ ξ2iα

∗
iVi(x) with

α∗i < αi and for all k, r ≤ tk− tk−1 ≤ β where β > 0, and the average dwell time condition

holds. Then, system (5.21) is robustly globally exponentially ISS.

Proof. Let x(t) = x(t, t0, φ) be the solution of (5.21). ∀i ∈ S, define Vi(x) = xTPix as a

Lyapunov function candidate for the ith mode. Then, as shown earlier, condition (i) of

Theorem 5.2.1 is satisfied. For condition (ii), the derivative of Vi(x) along the trajectory

of (5.21) is given by

V̇i(x) ≤ xT [ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic + ξ4iĀi(Āi)

T + ξ5iD̄i(D̄i)
T − εiBiΣ̄B

T
iΣ̄

+ ξ6iI)Pi +
1

ξ1i

HT
i Hi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
δiqi
ξ6i

)I]x+
1

ξ2i

(wFσ )TwFσ

≤ − αiVi(x) +
1

ξ2i

(wFσ )TwFσ

≤ − λiVi(x) ≤ −λVi(x),
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where λi = αi − α∗i , λ = mini∈S{λi} and we used Lemma 3.1.3, condition (5.24), and the

fact

BiΣ̄B
T
iΣ̄ ≤ Biσ̄B

T
iσ̄.

Thus, we have

‖x‖ ≤ b‖xt0‖re−α(t−t0)/2 + γ̄(t), t ≥ t0,

where b = µ
√
Geη, and γ̄(t) =

√
Γ(t)/c1 is class K such that Γ(s) = k(µ2)k−1G‖w

F
σ (s)‖2
ξ2α∗ and

ξ2α
∗ = mini∈S{ξ2iα

∗
i }. This completes the proof.

Example 5.2.2. Consider system (5.20) where S = {1, 2},

A1 =

[
0.3 0.1
0.2 −6

]
, B1 =

[
−3 0.5
1 0.2

]
, C1 =

[
3 0.3
0 2

]
, F1 =

[
0.1 −2
1 1

]
,

A1 =

[
0.6 0.1
0.2 1

]
, D1 =

[
1
0

]
, H1 =

[
0 1

]
, D1 =

[
0
1

]
, H1 =

[
1 0

]
,

G1 =

[
2 0
0 1

]
, f1 = 0.1

[
sin(x1(t− 1))
sin(x2(t− 1))

]
,U1 = sin(t),

ε1 = 2.2, ξ11 = 0.1, γ1 = 0.1, α1 = 2.5, ξ21 = γ−2
1 , ξ41 = 0.1, ξ51 = 0.03, ξ61 =

0.25, M1 = 1.5, and θ1 = 0.05 with t0 = 0. From (5.23) one may get δ1 = 0.1.

As for the second mode, we take

A2 =

[
−9 0.2
0 0.1

]
, B2 =

[
1 0.2

0.1 −1

]
, C2 =

[
1 0
0 0.5

]
, F2 =

[
0.1 0.2
−4 0.1

]
,
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A2 =

[
3 0.2
2 0.1

]
, D2 =

[
0
1

]
, H2 =

[
1 0

]
, D2 =

[
1
0

]
, H2 =

[
0 1

]
,

G2 =

[
0.5 0
0 2

]
, f2 = 0.01

[
sin(x1(t− 1))
sin(x2t(t− 1))

]
,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.2, γ2 = 0.15, α2 = 2, ξ22 = γ−2
2 , ξ42 = 0.2, ξ52 = 0.09, ξ62 =

0.15, M2 = 1.1 and θ2 = 0.15. From (5.23), one may get that δ2 = 0.01. Let the system

input disturbance be defined by

w(t) =

[
sin(t)
sin(t)

]
.

Case 1. [All the actuators are operational]
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Figure 5.2.1: Input-to-state stabilization: Operational actuators.
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When all the control actuators are operational, we have from Riccati-like equation,

P1 =

[
0.6126 −0.0560
−0.0560 1.0827

]
, P2 =

[
1.4169 −0.0746
−0.0746 0.5356

]
,

with c1 = 0.5293, c2 = 1.4232, and the control gain matrices are

K1 =

[
2.0832 −1.3757
−0.3246 −0.2074

]
, K2 =

[
−0.3524 0.0053
−0.0895 0.1376

]
.

Thus, the matrices

A1 +B1K1 =

[
−6.1120 4.1235
2.2183 −7.4172

]
, and A2 +B2K2 =

[
−9.3703 0.2328
0.0543 −0.0371

]

are Hurwitz. The average dwell time is τa = lnµ
α∗−ν = 2.7835 and δ = 3.0543.

Figure 5.2.1 shows the simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖)

(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρ(s) = s/
√
c2θξ2, τa = 3, and the initial

function φ(s) = cos(1− s) for all s ∈ [−1, 0].

Case 2. [Failure in the first actuator in the first mode and second actuator in the second

mode] When there is a failure in the first actuator, i.e., Σ1 = {1} and B1Σ =

[
0 0.5
0 0.2

]
,

and Σ2 = {2} and B2Σ =

[
1 0

0.1 0

]
, we have from Riccati-like equation,

P1 =

[
0.6025 −0.0880
−0.0880 1.0891

]
, P2 =

[
0.8166 −0.0619
−0.0619 0.5317

]
,
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with c1 = 0.5188, c2 = 1.1046, and the control gain matrices

K1 =

[
2.0849 −1.4884

0 0

]
, K2 =

[
0 0

−0.0563 0.1360

]
.
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Figure 5.2.2: Input-to-state stabilization: Faulty actuators.

Thus, the matrices

A1 +B1K1 =

[
−5.9547 4.5653
2.2849 −7.4884

]
, and A2 +B2K2 =

[
−9.0113 0.2272
0.0563 −0.0360

]
are Hurwitz, and τa = 2.4678.

Figure 5.2.2 shows the simulation results of ‖x‖ (top) and γ(‖w‖) =
√
c2/c1ρ(‖w‖)

(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρ(s) = s/
√
c2θξ2, τa = 3, and the initial

function φ(s) = cos(1− s) for all s ∈ [−1, 0].

120



0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

t

||
x
||
 &

 ρ
(|

|w
||
)

Figure 5.2.3: ISS with a decaying disturbance: Operational actuators.

When choosing a vanishing disturbance such as

w(t) = e−0.2t

[
sin(t)
sin(t)

]
,

the solution decays exponentially to zero in both cases as shown in Figures 5.2.3 and 5.2.4.
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Figure 5.2.4: ISS with a decaying disturbance: Faulty actuators.

5.3 Conclusion

This chapter has discussed the problem of input-to-state stabilization via a robust and

reliable H∞ controller of a class of uncertain impulsive switched systems with time delay.

The system under investigation has been input-to-state stabilized by the state feedback

controller. The Lyapunov- Razumikhin technique along with average dwell time approach

by multiple Lyapunov functions has been used to achieve the results. In addition, we have

considered a time-varying parameter uncertainty in the system state, and an L2 norm-

bounded input disturbance. The output of the faulty actuators has been treated as a

disturbing signal that has been augmented with the system disturbance. The results are

delay independent, and robust with respect to any admissible uncertainty.
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Part II

Stability and Stabilization of Uncertain
Impulsive Large-Scale Systems (ILSSs)
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This part discusses the stability and ISS of a class of uncertain impulsive large-scale

deterministic and stochastic systems without and with time delay. In this part, we aim

to design a robust reliable control that guarantees exponential stability and ISS not only

when all the actuators are operational, but also when some of them experience failure.

The faulty output is treated as an outage (i.e., zero output in the case of exponential

stability analysis) and as a non-zero disturbance that augmented with the system input

disturbance (in the case of ISS analysis).

Thus, new sufficient conditions have been developed here to guarantee the exponential

stability and input to state stabilization of the considered LSS in the presence of the state

uncertainties, nonlinear lumped perturbation and input disturbance (in the case of ISS

analysis) not only when all the actuators are operational, but also when some of them

experience failure.

The methodology of scalar Lyapunov function (the linear combination of Lyapunov

functions of the isolated subsystems) is used to analyze the stability and ISS for the in-

terconnected system. Moreover, in the system with time delay, Lyapunov-Razumikhin

technique is adopted.

Finally, some numerical examples with simulations are presented to clarify the theoret-

ical results.
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Chapter 6

Robust and Reliable Control of
Uncertain ILSSs

The main objective of this chapter is to design a robust reliable control that guarantees

global exponential stability of uncertain ILSS. The faulty actuator/sensor output is treated

as an outage i.e., complete failure. Scalar Lyapunov function that is the linear combination

of the Lyapunov functions of the corresponding isolated subsystems is used to analyze the

stability of the LSS, and consequently, a Riccati-like equation is solved. For the ILSS to

be exponentially stable, it is required that the degree of stability be greater than the inter-

connection. This type of relation is represented by the so-called test matrix. Furthermore,

the state estimation to the large-scale system is also considered using the time-domain

approach. Moreover, in this work, Luenberger observer is used to estimate the states. The

material of this chapter forms the basis of [157].
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6.1 Problem Formulation and Preliminaries

Consider the interconnected system
ẇi = (Ai + ∆Ai)w

i +Biui + fi(w
i)

+gi(w
1, w2, · · · , wi, · · · , wl), t 6= tk,

∆wi(t) = Ik(w
i(t−)) = Cikw

i(t−), t = tk, k = 1, 2, · · · ,
wi(t0) = wi0,

(6.1)

where i = 1, 2, · · · , l, wi ∈ Rni is the ith subsystem state, such that
∑l

i=1 ni = n, Ai ∈

Rni×ni is not a Hurwitz matrix for each i, the impulsive times tk satisfying t0 < t1 <

t2 < · · · < tk < · · · , with limk→∞ tk = ∞, ∆wi(tk) = wi(t+k ) − wi(t−k ) where w(t+k )(or

w(t−k )) is the state just after (or before) the impulse at tk, and the function Ik : Rni → Rni

is the impulsive function, ui = Kiw
i ∈ Rq is the control input for the ith subsystem,

where Ki ∈ Rq×ni is the control gain matrix, fi : Rni → Rni , is some nonlinearity, gi :

Rn1×Rn2×· · ·×Rnl → Rn is the interconnection. The functions fi and gi satisfy Lipschitz

condition. Ai, Bi, and Cik are known real constant matrices with proper dimensions, and

∆Ai is a piecewise continuous function representing parameter uncertainty with bounded

norm.

System (6.1) can be written in the following form
ẋ = (A+ ∆A)x+Bu+ F (x) +G(x), t 6= tk,
∆x(t) = Ik(x(t−)) = Ckx(t−), t = tk, k = 1, 2, 3, · · · ,
x(t0) = x0,

(6.2)

where

xT = (w1T w2T · · · wlT ),
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((A+ ∆A)x)T =
((

(A1 + ∆A1)w1
)T (

(A2 + ∆A2)w2
)T · · · ((Al + ∆Al)wl

)T)
,

(Bu)T =
(

(B1u1)T (B2u2)T · · · (Blul)T
)
,

(F (x))T =
(
f1(w1)

T
f2(w2)

T · · · fl(wl)
T
)
,

(G(x))T =
(
g1(x)

T
g2(x)

T · · · gl(x)
T
)
,

(Ckx)T =
(

(C1kw
1)T (C2kw

2)T · · · (Clkw
l)T
)
.

From (6.1), the corresponding isolated subsystems are


ẇi = (Ai + ∆Ai)w

i +Biui + fi(w
i), t 6= tk,

∆wi(t) = Cikw
i(t−), t = tk, k = 1, 2, · · · ,

wi(t0) = wi0,
(6.3)

where i = 1, 2, · · · , l, and the corresponding closed-loop system is

 ẇi = (Ai + ∆Ai +BiKi)w
i + fi(w

i), t 6= tk,
∆wi(t) = Cikw

i(t−), t = tk, k = 1, 2, · · · ,
wi(t0) = wi0.

(6.4)

Then, the closed-loop systems for the faulty case becomes

 ẇi = (Ai + ∆Ai +Biσ̄Ki)w
i + fi(w

i), t 6= tk,
∆wi(t) = Cikw

i(t−), t = tk, k = 1, 2, · · · ,
wi(t0) = wi0.

(6.5)

The main objective of this chapter will be discussed in two sections, namely, the reliable

control and the state estimation using Lunberger observer.
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6.2 Reliable Control

In this section, we present four theorems. Theorem 6.2.1 and Theorem 6.2.4 discuss the

robust controller for the impulsive isolated subsystems (6.3) to guarantee the global expo-

nential stability for the operational and faulty actuator cases respectively. Theorem 6.2.7,

and Theorem 6.2.9 deal with the interconnected system (6.2) without and with actuator

failures respectively.

Theorem 6.2.1. Let the controller gain Ki be given, and assume that Assumption A

holds. Then, the trivial solution of system (6.4) is robustly globally exponentially stable if

the following inequality holds

lnαik − νi(tk − tk−1) ≤ 0, k = 1, 2, · · · , (6.6)

where αik = λmax[(I+Cik)TPi(I+Cik)]
λmin(Pi)

, with Pi being a positive-definite matrix satisfying the

Riccati-like equation

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + ξ1iPiDiDi

TPi +
1

ξ1i

Hi
THi + ξ3iPi

2

+
δiI

ξ3i

− σiPi = 0 (6.7)

where ξ1i and ξ3i are any positive constants, 0 < νi < −σi, σi < 0, and δi is a positive

constant such that

‖fi(wi)‖2 ≤ δi‖wi‖2. (6.8)
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Proof. Let wi(t) = wi(t, t0, w
i
0) be the solution of system (6.4). For all i = 1, 2, · · · , l,

define V i(wi) = wi
T
Piw

i as a Lyapunov function candidate for the ith subsystem. Then,

V̇ i(wi) = ẇi
T
Piw

i + (wi)TPiẇi

= [(Ai + ∆Ai +BiKi)w
i + fi(w

i)]TPiw
i + (wi)TPi[(Ai + ∆Ai +BiKi)w

i + fi(w
i)]

= wi
T
[
(Ai +BiKi)

TPi + Pi(Ai +BiKi)
]
wi + 2wi

T
Pi(∆Ai)w

i + 2wi
T
Pifi(w

i)

≤ wi
T
[
(Ai +BiKi)

TPi + Pi(Ai +BiKi) + ξ1iPiDiDi
TPi +

1

ξ1i

Hi
THi + ξ3iPi

2

+
δiI

ξ3i

]
wi

= σiV
i(wi),

where we used (6.8) and Lemma 3.1.3 in the second bottom line, and condition (6.7) in

the last line. Then, for all t ∈ (tk−1, tk], k = 1, 2, · · · , one may have

V i(wi(t)) ≤ V i(wi(t+k−1))eσi(t−tk−1). (6.9)

At t = t+k , we have

V i(wi(t+k )) ≤ λmax(Lik)w
iT (tk)w

i(tk)

≤ αikV
i(wi(t−k )), (6.10)

where αik = λmax(Lik)
λmin(Pi)

, and Lik = [I + Cik]
TPi[I + Cik].

From (6.9) and (6.10), we have for t ∈ [t0, t1],

V i(wi(t)) ≤ V i(wi0)eσi(t−t0),
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and for t ∈ (t1, t2],

V i(wi(t+1 )) ≤ αi1V
i(wi0)eσi(t1−t0),

V i(wi(t)) ≤ V i(wi(t+1 ))eσi(t−t1),

which leads to

V i(wi(t)) ≤ αi1V
i(wi0)eσi(t1−t0)eσi(t−t1)

= αi1V
i(wi0)eσi(t−t0), for t ∈ [t0, t2].

Generally, for t ∈ (tk−1, tk], we have

V i(wi(t)) ≤V i(wi0)αi1 αi2 · · · αik eσi(t−t0)

=V i(wi0)αi1e
−νi(t1−t0) · · · αike−νi(tk−tk−1)e(σi+νi)(t−t0)

≤V i(wi0)e(σi+νi)(t−t0), t ≥ t0,

where 0 < νi < −σi and we used condition (6.6) to get the last inequality. The foregoing

inequality implies that

‖wi‖ ≤ γi‖wi0‖e(σi+νi)(t−t0)/2, t ≥ t0,

where γi =
√

λmax(Pi)
λmin(Pi)

. This completes the proof of globally exponential stability of wi =

0.

Remark 6.2.2. Theorem 6.2.1 gives sufficient conditions to ensure robust global exponen-

tial stability for each isolated impulsive subsystem (6.4) by a state feedback controller. The
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time between impulses has to be bounded, and this condition is summarized in (6.6). The

nonlinearity is assumed to be bounded by some linear growth bound. Condition (6.7) guar-

antees that the Lyapunov function is decreasing along the trajectory of system (6.4), that

is, the continuous system is stabilized by the feedback controller.

Remark 6.2.3. Condition (6.8) of Theorem 6.2.1 is assumed to hold globally, witch is

a strong requirement on the function fi(w
i). If we just want local exponential stability,

condition (6.8) may be relaxed to hold on a bounded region.

The following theorem, on the other hand gives sufficient conditions to ensure robust

global exponential stability for all the isolated impulsive subsystems when some control

components (actuators) experience failure.

Theorem 6.2.4 (Reliability for isolated subsystems). The trivial solution of system (6.5)

is robustly globally exponentially stable if Assumption A, and condition (6.6) hold with Pi

being a positive-definite matrix satisfying the Riccati-like equation

Ai
TPi + PiAi + Pi(ξ1iDiDi

T − ε1iBiσ̄Biσ̄
T + ξ3iI)Pi +

1

ξ1i

Hi
THi +

δiI

ξ3i

− σiPi = 0, (6.11)

where ξ1i, ε1i and ξ3i are positive constants such that the controller gain Ki = −1
2
ε1iBiσ̄

TPi,

0 < νi < −σi, σi < 0, and δi is a positive constant such that condition (6.8) holds.

Proof. Let wi(t) = wi(t, t0, w
i
0) be the solution of system (6.5). As done in Theorem 6.2.1,
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define V i(wi) = wi
T
Piw

i. Then

V̇ i(wi) ≤ wi
T
[
Ai

TPi + PiAi + Pi(ξ1iDiDi
T − ε1iBiσ̄Biσ̄

T + ξ3iI)Pi

+
1

ξ1i

Hi
THi +

δiI

ξ3i

]
wi

≤ wi
T
[
Ai

TPi + PiAi + Pi(ξ1iDiDi
T − ε1iBiΣ̄BiΣ̄

T + ξ3iI)Pi

+
1

ξ1i

Hi
THi +

δiI

ξ3i

]
wi

= σiV
i(wi(t)),

where we used the fact BiΣ̄BiΣ̄
T ≤ Biσ̄(Biσ̄)T in the second last line and condition (6.11)

in the last line. Following the same procedure as in the previous proof will show that the

trivial solution of the closed-loop impulsive system (6.5) is robustly globally exponentially

stable.

Having established the stabilizability of isolated subsystem in Theorems 6.2.1 and 6.2.4,

we prove the same properties for the interconnected systems. The following definition is

needed.

Definition 6.2.5. System (6.4) (or (6.5)) is said to possess property A ( or B) if it satisfies

the conditions in Theorem 6.2.1(or 6.2.4).

Remark 6.2.6. Property A implies that all the impulsive isolated subsystems are robustly

globally exponentially stable in the normal actuators case, while Property B implies the

same result is hold in the faulty case.
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Theorem 6.2.7. Assume that system (6.4) possesses property A. Suppose further that, for

any i, j = 1, 2, · · · , l, there exist positive constants bij such that

2wi
T
Pigi(w

1, w2, · · · , wi, · · · , wl) ≤ ‖wi‖
l∑

j=1

bij‖wj‖, (6.12)

and the test matrix S = [sij]l×l is negative definite where

sij =

{
βi(σ

∗
i + bii), i = j

1
2
(βibij + βjbji), i 6= j

, (6.13)

for some constant σ∗i = σiλmax(Pi) < 0, and positive constant βi. Then, the trivial solution

of system (6.2) is robustly globally exponentially stable if the following inequality holds

lnαk − φ(tk − tk−1) ≤ 0, k = 1, 2, · · · , (6.14)

for 0 < φ < θ where θ = −λmax(S)

λ̄β∗ with λ̄ = min{λmax(Pi) : i = 1, 2, · · · , l} and β∗ =

min{βi : i = 1, 2, · · · , l}, αk =
[

max{λmax[(I + Cik)
TPi(I + Cik)] : i = 1, 2, · · · , l}

]
/λ∗,

with λ∗ = min{λmin(Pi) : i = 1, 2, · · · , l} and Pi being a positive-definite matrix defined in

Property A.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (6.2). Define the composite Lya-

punov function

V (x(t)) =
l∑

i=1

βiV
i(wi)
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as a Lyapunov function candidate for interconnected system (6.2) where βi is a positive

constant, and V i(wi) is a Lyapunov function for the ith isolated subsystem. Then, along

the trajectory of (6.2), we have

V̇ (x) =
l∑

i=1

βiV̇
i(wi)

≤
l∑

i=1

βi{σi‖wi‖2 + 2wi
T
Pigi(w

1, w2, · · · , wi, · · · , wl)}

≤
l∑

i=1

βi{σi‖wi‖2 + ‖wi‖Σl
j=1bij‖wj‖}

= zTSz,

where zT = (‖w1‖, ‖w2‖, · · · , ‖wi‖, · · · , ‖wl‖) and S is a negative definite matrix with the

maximum eigenvalue λmax(S). Then, one can write

V̇ (x) ≤ −θV (x),

where θ = −λmax(S)

λ̄β∗ with λ̄ = min{λmax(Pi) : i = 1, 2, · · · , l} and β∗ = min{βi : i =

1, 2, · · · , l}. The last inequality implies that, for all t ∈ (tk−1, tk],

V (x(t)) ≤ V (x(t+k−1))e−θ(t−tk−1), (6.15)

and, at t = t+k ,

134



V (x(t+k )) =
l∑

i=1

βiw
iT (tk)

[
(I + Cik)

TPi(I + Cik)
]
wi(tk)

≤ L∗∗
l∑

i=1

βiw
iT (tk)w

i(tk)

≤ L∗∗

λ∗

l∑
i=1

βiV
i(wi)

= αkV (x(t)), (6.16)

where αk = L∗∗

λ∗
, L∗∗ = max{λmax(Lik) : i = 1, · · · , l} with Lik =

[
(I + Cik)

TPi(I + Cik)
]

and λ∗ = min{λmin(Pi) : i = 1, · · · , l}. From (6.15) and (6.16), we have for t ∈ [t0, t1],

V (x(t)) ≤ V (x0)e−θ(t−t0),

and for t ∈ (t1, t2], we have

V (x(t+1 )) ≤ α1V (x(t1))

≤ α1V (x0)e−θ(t1−t0),

and

V (x(t)) ≤ V (x(t+1 ))e−θ(t−t1)

≤ α1V (x0)e−θ(t1−t0)e−θ(t−t1),

that is

V (x(t)) ≤ α1V (x0)e−θ(t−t0), t ∈ [t0, t2].
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Therefore, for all t ∈ (tk−1, tk],

V (x(t)) ≤ V (x0)α1 α2 · · · αk e−θ(t−t0)

≤ V (x0)α1e
−φ(t1−t0) α2e

−φ(t2−t1) · · · αk e−φ(tk−tk−1)e−(θ−φ)(t−t0)

≤ V (x0) e−(θ−φ)(t−t0), t ≥ t0, (6.17)

where 0 < φ < θ. The forgoing inequality together with

C∗‖x‖2 ≤ V (x) ≤ C∗∗‖x‖2,

where C∗ = λ∗β∗, and C∗∗ = λ∗∗β∗∗ with λ∗∗ = max{λmax(Pi) : i = 1, · · · , l} and

β∗∗ = max{βi : i = 1, · · · , l}, implies that

‖x‖ ≤ E‖x0‖ e−(θ−φ)(t−t0)/2, t ≥ t0,

where E =
√

C∗∗

C∗ . That is, the trivial solution of the composite system (6.2) is robustly

globally exponentially stable.

Remark 6.2.8. Theorem 6.2.7 shows that the interconnected system can be robustly ex-

ponentially stabilized by the controllers of the isolated subsystems in the case where all the

actuators are operational. Condition (6.12) estimates the interconnection, which is viewed

as a perturbation, by an upper bound. The test matrix is needed to guarantee that the degree

of stability is greater than the interconnection.

The following theorem shows that the proposed reliable controllers are robust even in

the presence of the interconnection effect. The proof is similar to that of Theorem 6.2.7,

and thus, it is omitted here.
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Theorem 6.2.9. Assume that system (6.5) possesses property B. Suppose that for any

i, j = 1, 2, · · · , l, there exist positive constants bij such that the condition in (6.12) holds

and the test matrix S = [sij]l×l, defined in Theorem 6.2.7, is negative definite, ε1i is a

positive constant such that Ki = −1
2
ε1iBiσ̄

TPi. Then, the trivial solution of system (6.2) is

robustly globally exponentially stable if (6.14) holds with Pi being a positive-definite matrix

defined in Property B.

Example 6.2.10. Consider the composite system with l = 2, and the following information

for the subsystems

A1 =

[
0 1
−11 0

]
, A2 =

[
0 1
−10 0

]
, B1 =

[
−5 3
−1 2

]
, B2 =

[
1 −3

0.1 −4

]
,

D1 =

[
1
0

]
, D2 =

[
0
1

]
, H1 =

[
0 1

]
, H2 =

[
1 0

]
,U1 = U2 = sin(t),

f1 = 0.5

[
0

sin(w2)

]
, f2 = 1.5

[
0

sin(w4)

]
, C1k =

[
2 0
0 2

]
, C2k =

[
3 0
0 3

]
,

for all k = 1, 2, · · · , σ1 = −2, σ2 = −2.5, ξ11 = 2, ξ12 = 0.5, ξ31 = 1, ξ32 = 1, ε11 =

1, ε12 = 0.7, β1 = 1, β2 = 2, b11 = 0.3, b22 = 1.5, b12 = 0.5, b21 = 0.3 and t0 = 0. From

(6.8), one may get δ1 = 0.25 and δ2 = 2.25.

Case 1. When all the control actuators are operational, we have from Riccati-like equation,

P 1 =

[
0.5427 −0.2419
−0.2419 0.1955

]
, P 2 =

[
2.9461 −1.2229
−1.2229 0.7834

]
,
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with λmin(P 1) = 0.0713, λmax(P 1) = 0.6669, λmin(P 2) = 0.2323, λmax(P 2) = 3.4971, so

that λ∗ = 0.0713, λ∗∗ = 3.4971, and the control gain matrices are

K1 =

[
1.2358 −0.5071
−0.5722 0.1674

]
, K2 =

[
−0.9883 0.4006
1.3814 −0.1873

]
.

Thus, Ai + BiKi for i = 1, 2, are Hurwitz, and the time intervals tk − tk−1 ≥ 2.3328 for

the first subsystem, and tk − tk−1 ≥ 2.7421 for the second subsystem.

The test matrix here is given by

S =

[
−1.0338 0.55

0.55 −14.4855

]
,

which is negative definite matrix, and tk − tk−1 ≥ 4.4142 for the interconnected system.
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(a) Isolated subsystem 1.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

t

||
w

2
||

(b) Isolated subsystem 2.

Figure 6.2.1: Operational actuators.
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Figure 6.2.2: Interconnected system: Operational case.

Case 2. When there is a failure in the second actuator in the first subsystem and first

actuator in the second subsystem, i.e., Σ1 = {2} and B1
Σ̄

=

[
−5 0
−1 0

]
, and Σ2 = {1} and

B2
Σ̄

=

[
0 −3
0 −4

]
, we have from Riccati-like equation,

P 1 =

[
0.5806 −0.2330
−0.2330 0.2008

]
, P 2 =

[
3.0616 −1.2448
−1.2448 0.7834

]
,

with λmin(P 1) = 0.0901, λmax(P 1) = 0.6913, λmin(P 2) = 0.2351, λmax(P 2) = 3.6099, so

λ∗ = 0.0901, λ∗∗ = 3.6099, and the control gain matrices are

K1 =

[
1.3351 −0.4820

0 0

]
, K2 =

[
0 0

1.4719 −0.2103

]
.
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Thus, Ai + Biσ̄Ki for i = 1, 2, are Hurwitz, and the time intervals tk − tk−1 ≥ 2.2286 for

the first subsystem and tk − tk−1 ≥ 2.7519 for the second subsystem.
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(a) Isolated subsystem 1.
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(b) Isolated subsystem 2.

Figure 6.2.3: Faulty actuators.

Figures 6.2.1 and 6.2.3 show the isolated subsystems for both cases, while the inter-

connected system is shown in Figures 6.2.2 and 6.2.4 for the operational and faulty cases

respectively.

If we consider

f1 = 0.5

[
w1

w2
2

]
, f2 = 1.5

[
w3

w2
4,

]
,

one can show that condition (6.8) is satisfied only inside the region D = {(w1, w2, w3, w4) ∈

R4 : w1 ∈ R, −2 ≤ w2 ≤ 2, w3 ∈ R, −1.5 ≤ w4 ≤ 1.5}. Thus, x = 0 is locally exponen-

tially stable. The local stability and the instability of the trivial solution are shown in

Figures 6.2.5(a), and 6.2.5(b), respectively.
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Figure 6.2.4: Interconnected system: Faulty case.
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(a) (w10 , w20 , w30 , w40) = (1, 1.6, 0.4, 1.71).
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(b) (w10 , w20 , w30 , w40) = (1, 1.6, 0.4, 1.751).

Figure 6.2.5: Normal case with f1 = 0.5[w1 (w2)2]T and f2 = 1.5[w3 (w4)2]T .
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6.3 State Estimation

To characterize the system state variables’ evolution, it is helpful to have access to all these

variables. However, this may not be the case due to complexity of output measurements

or high cost. Therefore, it is necessary to design an observer to estimate the system

output using the available information. This problem of state estimation has drawn much

attention. See [1, 47,163,165,182] and many references therein. This section discusses the

state estimation of the ILSS. Consider the isolated subsystem


ẇi = (Ai + ∆Ai)w

i +Biui + fi(w
i), t 6= tk,

∆wi(t) = Cikw
i(t−), t = tk, k = 1, 2, · · · ,

yi(t) = Ciw
i(t),

wi(t0) = wi0,

(6.18)

where yi(t) ∈ Rni is the measured output vector. Define the Luenberger observer as follows


˙̂wi = (Ai + ∆Ai)ŵ

i +Biui + fi(ŵ
i) + Li(yi − Ciŵi), t 6= tk,

∆ŵi(t) = Cikŵ
i(t−), t = tk, k = 1, 2, · · · ,

ŵi(t0) = ŵi0,
(6.19)

where Li ∈ Rni×ni is the observer gain matrix. Define the state estimation error by

ei = wi − ŵi. Then, the closed-loop error system becomes


ėi = (Ai + ∆Ai − LiCi)ei + fi(w

i)− fi(ŵi), t 6= tk,
∆ei(t) = Cike

i(t−), t = tk, k = 1, 2, · · · ,
ei(t0) = wi0 − ŵi0 = ei0,

(6.20)

Definition 6.3.1. The pair (A,B) is said to be detectable if there exists a matrix F such

that A− FB is Hurwitz.
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We will use the same stability analysis followed in the last section to establish the

observability problem of system (6.18).

Theorem 6.3.2. Let the observer gain Li be given, and assume that Assumption A holds,

and (Ai, Ci) be detectable. Then, the trivial solution of the error system (6.20) is robustly

globally exponentially stable if the following inequality holds

lnαik − νi(tk − tk−1) ≤ 0, k = 1, 2, · · · , (6.21)

where αik = λmax[(I+Cik)TPi(I+Cik)]
λmin(Pi)

, with Pi being a positive-definite matrix satisfying the

Riccati-like equation

(Ai − LiCi)TPi + Pi(Ai − LiCi) + ξ1iPiDiDi
TPi +

1

ξ1i

Hi
THi + aiI

− σiPi = 0, (6.22)

where ξ1i is any positive constants, 0 < νi < −σi, σi < 0, ai > 0 such that

2ei
T
Pi[fi(w

i)− fi(ŵi)] ≤ ai‖ei‖2. (6.23)

Proof. Let ei(t) = ei(t, t0, e
i
0) be the solution of the error system (6.20). For all i =

1, 2, · · · , l, define V i(ei) = ei
T
Pie

i as a Lyapunov function candidate for the ith subsystem.

Then,

V̇ i(ei) = ei
T

[(Ai − LiCi)TPi + Pi(Ai − LiCi)]ei + 2ei
T
Pi∆Aie

i + 2ei
T
Pifie

i

≤ ei
T

[(Ai − LiCi)TPi + Pi(Ai − LiCi) + ξ1iPiDiDi
TPi +

1

ξ1i

Hi
THi

+ aiI]ei = σiV
i(ei),
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where we used (6.23) and Lemma 3.1.3 in the second bottom line, and (6.22) in the last

line. The last inequality implies that, for t ∈ (tk−1, tk], k = 1, 2, · · · ,

V i(ei(t)) ≤ V i(ei(t+k−1))eσi(t−tk−1), (6.24)

and at t = tk,

V i(ei(t+k )) ≤ αikV
i(ei(t−k )), (6.25)

where αik = λmax(Lik)
λmin(Pi)

, and Lik = [I + Cik]
TPi[I + Cik].

From (6.21), (6.24), and (6.25), we have for t ≥ t0,

V i(ei(t)) ≤V i(ei0)e(σi+νi)(t−t0),

where 0 < νi < −σi. The last inequality implies that

‖ei‖ ≤ γi‖ei0‖e−(ξi−νi)(t−t0)/2, t ≥ t0,

where γi =
√

λmax(Pi)
λmin(Pi)

. Then, the trivial solution is globally exponentially stable which

completes the proof.

The following theorem gives sufficient conditions to ensure robust global exponential

stability for all the isolated impulsive subsystems when some control components experience

failure.

As done in the reliable stabilization, for i = 1, 2, · · · , l, consider the decomposition of the

observer matrix Ci = CiΩ +CiΩ̄, where CiΩ, CiΩ̄ are the observer matrices associated with
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Ω, Ω̄ respectively, and CiΩ, CiΩ̄ are generated by zeroing out the columns corresponding to

Ω̄ and Ω, respectively. For a fixed i ∈ {1, 2, · · · , l}, let ω ⊆ Ω corresponds to some of the

sensors that experience failure, and assume that the output of faulty sensors is zero. Then,

the decomposition becomes Ci = Ciω + Ciω̄, where Ciω and Ciω̄ have the same definition

of CiΩ and CiΩ̄, respectively. The closed-loop impulsive error system for the faulty case

becomes


ėi = (Ai + ∆Ai − LiCiω̄)ei + fi(w

i)− fi(ŵi), t 6= tk
∆ei(t) = Cike

i(t−), t = tk, k = 1, 2, · · ·
ei(t0) = wi0 − ŵi0 = ei0,

(6.26)

Theorem 6.3.3. The trivial solution of system (6.26) is robustly globally exponentially

stable if Assumption A holds, (Ai, Ciω̄) is detectable, and condition (6.21) holds with Pi

being a positive-definite matrix satisfying the Riccati-like equation

Ai
TPi + PiAi + Pi[ξ1iDiDi

T − ε1iCiΩ̄CiΩ̄T ]Pi +
1

ξ1i

Hi
THi + aiI − σiPi = 0, (6.27)

where ξ1i, ε1i are positive constants such that the observer gain Li = 1
2
ε1iCiω̄

TPi, 0 < νi <

−σi, σi < 0, the matrices Pi, Ciω̄ are commutative, and ai > 0 such that (6.23) holds.

Proof. For all i = 1, 2, · · · , l, let ei(t) = ei(t, t0, e
i
0) be the solution of system (6.26). As

done in the previous proof, define V i(ei) = (ei)TPie
i as a Lyapunov function candidate for
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the ith subsystem. Then, one may have

V̇ i(ei) ≤ ei
T
[
(Ai − LiCi)TPi + Pi(Ai − LiCi) + ξ1iPiDiDi

TPi

+
1

ξ1i

Hi
THi + aiI

]
ei

≤ ei
T
[
Ai

TPi + PiAi + Pi(ξ1iDiDi
T + ε1iCiω̄Ciω̄

T )Pi +
1

ξ1i

Hi
THi

+ aiI
]
ei

≤ ei
T
[
Ai

TPi + PiAi + Pi(ξ1iDiDi
T − ε1iCiΩ̄CiΩ̄T )Pi +

1

ξ1i

Hi
THi

+ aiI
]
ei

= σiV
i(ei(t)),

where we used the fact CiΩ̄(CiΩ̄)T ≤ Ciω̄(Ciω̄)T , in the second last line and condition (6.27)

in the last line. Following the same procedure as in the previous proof will show that

the trivial solution of the closed-loop impulsive error system (6.26) is robustly globally

exponentially stable.

Definition 6.3.4. System (6.20)(or (6.26)) is said to possess property C (or D) if it

satisfies the conditions in Theorem 6.3.2 (or 6.3.3).

Remark 6.3.5. Property C implies that all the impulsive error isolated subsystems are

robustly globally exponentially stable in the normal actuators case, while Property D implies

the same result is held in the faulty case.
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Considering the interconnection gi in system (6.18) results in the interconnected system


ẇi = (Ai + ∆Ai)w

i +Biui + fi(w
i) + gi(w

1, w2, · · · , wl), t 6= tk,
∆wi(t) = Cikw

i(t−), t = tk, k = 1, 2, · · · ,
yi(t) = Ciw

i(t),
wi(t0) = wi0,

(6.28)

Similarly, we define the response system as follows


˙̂wi = (Ai + ∆Ai)ŵ

i +Biui + fi(ŵ
i) + gi(ŵ

1, ŵ2, · · · , ŵl)
+ Li(yi − Ciŵi), t 6= tk,

∆ŵi(t) = Cikŵ
i(t−), t = tk, k = 1, 2, · · · ,

ŵi(t0) = ŵi0,

(6.29)

Then the closed-loop error system becomes


ėi = (Ai + ∆Ai − LiCi)ei + fi(w

i)− fi(ŵi) + gi(w
1, w2, · · · , wl)

− gi(ŵ1, ŵ2, · · · , ŵl), t 6= tk,
∆ei(t) = Cike

i(t−), t = tk, k = 1, 2, · · ·
ei(t0) = wi0 − ŵi0 = ei0,

(6.30)

System (6.30) can be written in the following form


ėc = (A+ ∆A− LC)ec + F (x)− F (x̂) +G(x)−G(x̂), t 6= tk,
∆ec(t) = Ik(ec(t

−)) = Ckec(t
−), t = tk, k = 1, 2, 3, · · · ,

ec(t0) = ec0,
(6.31)

such that

xT = (w1T w2T · · · wlT ),

x̂T =
(

(ŵ1)T (ŵ2)T · · · (ŵl)T
)
,
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eTc = (e1T e2T · · · elT ),

((A+ ∆A− LC)ec)
T =

[[
(A1 + ∆A1 − L1C1)e1

]T [
(A2 + ∆A2 − L2C2)e2

]T
· · ·
[
(Al + ∆Al − LlCl)el

]T]
,

(F (x))T =
(
f1
T (w1) f2

T (w2) · · · flT (wl)
)
,

(F (x̂))T =
(
f1
T (ŵ1) f2

T (ŵ2) · · · flT (ŵl)
)
,

(G(x))T =
(
g1
T (x) g2

T (x) · · · glT (x)
)
,

(G(x̂))T =
(
g1
T (x̂) g2

T (x̂) · · · glT (x̂)
)
,

(Ckec)
T =

(
(C1ke

1)T (C2ke
2)T · · · (Clke

l)T
)
.

Theorem 6.3.6. Assume that system (6.20) possesses property C, and the observer gain

L is given. Suppose further that for any i, j = 1, 2, · · · , l, there exists a positive constant

bij such that

2ei
T
Pi[gi(w

1, w2, · · · , wl)− gi(ŵ1, ŵ2, · · · , ŵl)] ≤ ‖ei‖Σl
j=1bij‖ej‖, (6.32)

and the test matrix S = [sij]l×l is negative definite where

sij =

{
βi(σ

∗
i + bii), i = j

1
2
(βibij + βjbji), i 6= j

, (6.33)
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for some constant σ∗i = σiλmax(Pi) < 0, and a positive constant βi. Then, the trivial

solution of system (6.31) is robustly globally exponentially stable if the following inequality

holds

lnαk − φ(tk − tk−1) ≤ 0, k = 1, 2, · · · , (6.34)

for 0 < φ < θ where θ = −λmax(S)

λ̄β∗ with λ̄ = min{λmax(Pi) : i = 1, 2, · · · , l} and β∗ =

min{βi : i = 1, 2, · · · , l}, αk =
[

max{λmax[(I + Cik)
TPi(I + Cik)] : i = 1, 2, · · · , l}

]
/λ∗,

with λ∗ = min{λmin(Pi) : i = 1, 2, · · · , l} and Pi being a positive-definite matrix defined in

Property C.

Proof. Let ec(t) = ec(t, t0, ec0) be the solution of system (6.31). Define the composite

Lyapunov function

V (ec(t)) =
l∑

i=1

βiV
i(ei)

with V i(ei) being the Lyapunov function for the ith isolated subsystem and βi > 0. Then,

one may get after using property C and (6.32),

V̇ (ec) ≤
l∑

i=1

βi

{
σi‖ei‖2 + 2ei

T
Pi[gi(w

1, · · · , wl)− gi(ŵ1, · · · , ŵl)]
}

≤
l∑

i=1

βi

{
σi‖ei‖2 + ‖ei‖Σl

j=1bij‖ej‖
}

= zTSz,
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where zT = (‖e1‖, ‖e2‖, · · · , ‖el‖). Then,

V̇ (ec) ≤ −θV (ec),

where θ = −λmax(S)

λ̄β∗ with λ̄ = min{λmax(Pi) : i = 1, 2, · · · , l} and β∗ = min{βi : i =

1, 2, · · · , l}. The rest of the proof is similar to that of Theorem 6.2.7, thus, it is omitted

here.

The following theorem shows that the proposed reliable sensors are robust in the pres-

ence of the interconnection effect. One can prove this result as done in the previous

theorem.

Theorem 6.3.7. Assume that system (6.26) possesses property D. Suppose further that

for any i, j = 1, 2, · · · , l, there exist positive constants bij such that the condition in (6.32)

holds, and the test matrix S = [sij]l×l, defined in theorem 6.3.6, is negative definite, ε1i is

a positive constant such that Li = 1
2
ε1iCiω̄

TPi, where Pi and Ciω̄ are commutative. Then,

the trivial solution of system (6.31) is robustly globally exponentially stable if (6.34) holds

with Pi being a positive-definite matrix defined in Property D.

Example 6.3.8. Consider the composite system with l = 2, where

A1 =

[
−4 0
0 4

]
, A2 =

[
5 0
0 −5

]
, C1 =

[
1.5 0
0 1.5

]
, C2 =

[
3 0
0 3

]
,

D1 =

[
1
0

]
, D2 =

[
0
1

]
, H1 =

[
0 1

]
, H2 =

[
1 0

]
,U1 = U2 = sin(t),
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f1 = 0.5

[
0

sin(w2)

]
, f2 = 1.5

[
0

sin(w4)

]
, C1k =

[
2 0
0 2

]
, C2k =

[
3 0
0 3

]
,

for all k = 1, 2, · · · , σ1 = −2, σ2 = −2.5, ξ11 = 2, ξ12 = 0.5, ε11 = 1, ε12 = 0.7, β1 =

1, β2 = 2, b11 = 1, b22 = 1.5, b12 = 0.5, b21 = 0.3. From (6.8), one may get δ1 = 0.25 and

δ2 = 2.25.

Case 1. When all the control sensors are operational, we have from Riccati-like equation,

P 1 =

[
0.0416 0

0 4.5182

]
, P 2 =

[
2.2800 0

0 0.2512

]
,

with λmin(P 1) = 0.0416, λmax(P 1) = 4.5182, λmin(P 2) = 0.2512, λmax(P 2) = 2.2800, so,

λ∗ = 0.0416, λ∗∗ = 4.5182, and the observer gain matrices are

L1 =

[
0.0312 0

0 3.3887

]
,L2 =

[
2.3940 0

0 0.2638

]
.

Thus, Ai−LiCi for i = 1, 2, are Hurwitz, and the time intervals tk− tk−1 ≥ 3.6238 for the

first subsystem, and tk − tk−1 ≥ 2.4891 for the second subsystem.

Figure 6.3.1 shows the isolated subsystems while Figure 6.3.2 shows the interconnected

error system in the operational case.
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(b) Isolated subsystem 2.

Figure 6.3.1: Operational sensors.
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Figure 6.3.2: Interconnected system: Operational case.
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Case 2. When there is a failure in the first sensor in the first subsystem and second

sensor in the second subsystem, i.e., Ω1 = {1} and C1
Ω̄

=

[
0 0
0 1.5

]
, and Ω2 = {2} and

C2
Ω̄

=

[
3 0
0 0

]
, we have from Riccati-like equation,

P 1 =

[
0.0411 0

0 4.5182

]
, P 2 =

[
2.2800 0

0 0.2942

]
,

with λmin(P 1) = 0.0411, λmax(P 1) = 4.5182, λmin(P 2) = 0.2942, λmax(P 2) = 2.2800, so

λ∗ = 0.0411, λ∗∗ = 4.5182, and the observer gain matrices

L1 =

[
0 0
0 3.3887

]
,L2 =

[
2.3940 0

0 0

]
.

Thus, Ai + LiCiω̄ for i = 1, 2, are Hurwitz, and the time intervals tk − tk−1 ≥ 3.6300,

and tk − tk−1 ≥ 2.4101 for the first and second subsystems respectively. For Case 1 and

Case 2, the test matrix is

S =

[
−8.364 0.55

0.55 −8.4

]
.

Figure 6.3.3 shows the isolated subsystems while Figure 6.3.4 shows the interconnected error

system, ‖ec‖ for the faulty sensors case.
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(b) Isolated subsystem 2.

Figure 6.3.3: Faulty sensors.
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Figure 6.3.4: Interconnected system: Faulty case.
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6.4 Conclusion

This chapter has addressed the problem of designing a robust reliable controller that guar-

antees the global exponential stability of uncertain ILSS with fixed impulses. We have

analyzed the stability for such a complex system by decomposing the system into lower

order, isolated subsystems, and the interconnection was treated as a system perturbation.

The isolated subsystems were assumed to be globally exponentially stabilized by the state

feedback controllers and the interconnection was estimated by an upper bound that is

smaller than the stability degree of the isolated subsystems in order to guarantee the sta-

bility of the interconnected system. The scalar Lyapunov functions have been utilized to

fulfil our purpose, and this approach has led to solving a Riccati-like equation. In addition,

the output of the faulty actuators has been treated as an outage. As an application to

this result, the problem of state estimation has been considered, where scalar Lyapunov

functions (or time-domain) approach has been used. To the best of author’s knowledge,

this approach has not been used before where the frequency-domain approach has been

used instead in most of the available results [125,163,165,182]. To illustrate the theoretical

results, two examples have been discussed with simulations.
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Chapter 7

ISS and Stabilization of LSSIS with
Time Delay

This chapter addresses the input-to-state stabilization of nonlinear large-scale stochastic

impulsive systems (LSSIS) with time delay. Scalar Lyapunov function is utilized to ana-

lyze ISS. Furthermore, the impulsive stabilization is discussed for LSSIS with time delay.

Lyapunov-Razumikhin approach is used to accomplish our goal. The materials of this

chapter form the basis of [12].

7.1 Problem Formulation and Preliminaries

Consider the following LSSIS with time delay


dwi = fi(t, w

i
t + gi(t, w

1
t , w

2
t , · · · , wit, · · · , wlt) +Giwi)dt+ σii(t, w

i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(t
−, wit−), t = tk, k ∈ N,

wit0(s) = φi(s), s ∈ [−r, 0)
(7.1)
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where i = 1, 2, · · · , l, wi ∈ Rni is the ith subsystem state, such that
∑l

i=1 ni = n, the

impulsive times tk satisfying t0 < t1 < t2 < · · · < tk < · · · , with limk→∞ tk = ∞,

∆wi(tk) = wi(t+k ) − wi(t−k ) where w(t+k )(or w(t−k )) is the state just after (or before) the

impulse at tk, Ik : R+ × Rni → Rni is the impulsive function, fi : R+ × Rni → Rni , is

a nonlinear function, gi : R+ × Rn1 × Rn2 × · · · × Rnl → Rn is the interconnection and

wi ∈ Rpi is an input disturbance to the ith isolated subsystem, which is assumed to be in

L2[t0,∞) and Gi ∈ Rni×pi where
∑l

i=1 pi = p. The functions fi and gi satisfy Lipschitz

condition. σ : R+ × Rn → Rn×n, where σ(t, xt) = (σij(t, w
i
t)), Wi : R+ → Rni .

System (7.1) can be written in the following form


dx = F (t, xt +Gw)dt+ σ(t, xt)dW, t 6= tk, x ∈ Rn

∆x(t) = Ik(t
−, xt−), t = tk, k ∈ N,

xt0(s) = Φ(s), s ∈ [−r, 0]
(7.2)

where

xT = (w1T w2T · · · wlT ),

fT (t, xt) =
(
fT1 (t, w1

t ) f2(t, w2
t )
T · · · fl(t, wlt)

T
)
,

gT (t, xt) =
(
gT1 (t, xt) g

T
2 (t, xt) · · · gTl (t, xt)

)
,

F (t, xt) = f(t, xt) + g(t, xt),

ITk (t, xt) =
(
IT1k(t, w

1
t ) I2k(t, w

2
t )
T · · · Ilk(t, wlt)

T
)
,

W T = (W1
T W2

T · · · Wl
T ), Φ(s)T = (φ1(s) φ2(s) · · · , φl(s)),
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GT = (G1
T G2

T · · · Gl
T ), wT = (w1

T w2
T · · · wlT ),

From (7.1), the corresponding isolated subsystems are


dwi = fi(t, w

i
t +Giwi)dt+ σii(t, w

i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(t
−, wit−), t = tk, k ∈ N,

wit0(s) = φi(s), s ∈ [−r, 0),
(7.3)

where i = 1, 2, · · · , l.

Definition 7.1.1. The trivial solution of system (7.2) is said to be robustly globally input-

to-state stable in the mean square if there exist positive constants λ, λ̄ such that

E
[
‖x(t)‖2

]
≤ λ̄E

[
‖Φ‖2

r

]
e−λ(t−t0) + ρ( sup

t0≤τ≤t
‖w(τ)‖), ∀t ≥ t0,

for any solution x(t) = x(t, t0,Φ) of (7.2), Φ = (φ1 φ2 · · ·φl)T ∈ Rn, and t0 ∈ R+.

7.2 Input-to-State Stabilization via Reliable Control

In this section, we present the main objective of this chapter.

Theorem 7.2.1. Assume there exist positive constants ai, bi, λ, α > r, σi < 0 and a

positive-definite and decrescent function V i(t, ψi(0)) for all (t, ψ(0)) ∈ [t0−r,∞)×PC([−r, 0],Rn).

Then, the trivial solution, wi ≡ 0, of system (7.3) is ISS in the mean square if the following

conditions hold

(i) c1i‖ψi(0)‖2 ≤ V i(t, ψi(0)) ≤ c2i‖ψi(0)‖2;
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(ii) for all k ∈ N, t 6= tk and ψi ∈ PC([−r, 0],Rn), we have E
[
LiV i(t, ψi)

]
≤ σiE

[
‖ψi(0)‖2

]
provided that E

[
V i(t+s, ψi)

]
≤ qE

[
V i(t, ψi(0))

]
where q ≥ e2λα with λ = maxi∈S{−σi},

s ∈ [−r, 0], and γ(suptk−1≤s≤tk ‖wi(s)‖) ≤ E
[
V i(t, ψi(0))

]
for ψi ∈ Cr, and t ∈

[tk−1, tk);

(iii) for all t = tk, k ∈ N,

E
[
V i
(
tk, ψ

i(0) + Iik(t
−
k , ψ

i(t−k ))
)]
≤ dikE

[
V i(t−k , ψ

i(0))
]

(7.4)

where ψi(0−) = ψi(0), and dik > 0;

(iv) for all k ∈ N, r ≤ tk+1 − tk ≤ α, and ln(dik) + λα < −λ(tk+1 − tk).

Proof. To prove the assertion of the theorem, we have the following claim

Claim. For any t ∈ [tk−1, tk), k ∈ N, conditions (i)− (iv) imply that

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t−tk−1) + γ( sup

tk−1≤s≤t
‖wi(s)‖) (7.5)

where λ > 0 and M > 1.

Proof of the claim. Choose M > 1 such that

c2E
[
‖φi‖2

r

]
< ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1) ≤ qc2E

[
‖φi‖2

r

]
, (7.6)

where γ(t) = γ(supt0≤s≤t(‖wi(s)‖)) and c2 = maxi=1,··· ,l{c2i}. Using the mathematical

induction method, we prove the claim for all k ∈ N. Let wi = wi(t, t0, φi) be the solution
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of the isolated subsystem (7.3).

Step 1, for k = 1, i.e. t ∈ [t0, t1), we show that

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1). (7.7)

From (7.6), we have for t ∈ [t0 − r, t0]

E
[
V i(t, wi(t))

]
≤ c2E

[
‖wi‖2

]
≤ c2E

[
‖φi‖2

r

]
< ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1). (7.8)

If (7.7) were not true, then for s ∈ [−r, 0], there would exist t ∈ (t0, t1) such that

E
[
V i(t, wi(t))

]
> ME

[
‖φi‖2

r

]
e−λ(t1−t0)

> c2E
[
‖φi‖2

r

]
≥ E

[
V i(t0 + s, wi(t0 + s))

]
. (7.9)

From the continuity, there exists t∗ ∈ (t0, t) such that

E
[
V i(t∗, wi(t∗))

]
= ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1) (7.10)

and for all t ∈ [t0 − r, t∗], we have

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1). (7.11)

Also, there exists t∗∗ ∈ [t0, t
∗) such that

E
[
V i(t∗∗, wi(t∗∗))

]
= c2E

[
‖φi‖2

r

]
(7.12)
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and for t ∈ [t∗∗, t∗]

E
[
V i(t, wi(t))

]
≥ c2E

[
‖φi‖2

r

]
. (7.13)

Hence, from (7.11), (7.6), and (7.13), for all t ∈ [t∗∗, t∗], and s ∈ [−r, 0], we have

E
[
V i(t+ s, wi(t+ s))

]
≤ c2E

[
‖φi‖2

r

]
< ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1)

≤ qc2E
[
‖φi‖2

r

]
≤ qE

[
V i(t, wi(t))

]
.

Therefore, we have E
[
LiV i(t, wit)

]
≤ 0 for t ∈ [t∗∗, t∗]. By Itô’s formula over [t∗∗, t∗], we

have

E
[
V i(t∗, wi(t∗))

]
= E

[
V i(t∗∗, wi(t∗∗))

]
+

∫ t∗

t∗∗
E
[
LiV i(s, wis)

]
ds︸ ︷︷ ︸

≤0

which implies

E
[
V i(t∗∗, wi(t∗∗))

]
≥ E

[
V i(t∗, wi(t∗))

]
. (7.14)

By (7.10), (7.12) and (7.14), we have

c2E
[
‖φi‖2

r

]
≥ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1),

which is a contradiction, and so (7.5) is true when k = 1.

Step 2, assume (7.5) is true for k = 1, 2, · · · ,m, that is

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(tk−t0) + γ( sup

t0≤s≤tk
‖wi(s)‖), t ∈ [tk−1, tk) (7.15)
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Step 3, we show (7.15) is true for k = m+ 1, i.e.,

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ( sup

t0≤s≤tm+1

‖wi(s)‖), t ∈ [tm, tm+1) (7.16)

If (7.16) is not true, we define

t̄ = inf
{
t ∈ [tm, tm+1) : E

[
V i(t, wi(t))

]
> ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ( sup

t0≤s≤tm+1

‖wi(s)‖)
}
.

By the continuity of E
[
V i(t, wi(t))

]
, there exists t̃ ∈ [tm, t̄), such that

E
[
V i(t̃, wi(t̃))

]
= ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ( sup

t0≤s≤tm+1

‖wi(s)‖) (7.17)

and

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ( sup

t0≤s≤tm+1

‖wi(s)‖), t ∈ [tm, t̃) (7.18)

Since, at t = t+m, we have

E
[
V i(tm, w

i(tm))
]
≤ dimE

[
V i(t−m, w

i(t−m))
]

< dim

{
ME

[
‖φi‖2

r

]
e−λ(tm−t0) + γ(tm)

}
≤ e−λαe−λ(tm+1−tm)

{
ME

[
‖φi‖2

r

]
e−λ(tm−t0) + γ(tm)

}
= e−λα

{
ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm)e−λ(tm+1−tm)

}
≤ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm)e−λ(tm+1−tm)
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≤ME
[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm)

≤ME
[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm+1)

< E
[
V i(t̄, wi(t̄))

]
(7.19)

i.e., E
[
V i(tm, w

i(tm))
]
< e−λα

{
ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm+1)

}
< E

[
V i(t̄, wi(t̄))

]
, so

that there exists t∗ ∈ (tm, t̄) such that

E
[
V i(t∗, wi(t∗))

]
= e−λα

{
ME

[
‖φi‖2

r

]
e−λ(tm+1−t0)+γ(tm+1)

}
and E

[
L+
i V

i(t∗, wi(t∗))
]
> 0.

(7.20)

We know t∗ + s ∈ [tm−1, t̄) for s ∈ [−r, 0].

By (7.15) and (7.20), we have

E
[
V i(t∗ + s, wi(t∗ + s))

]
≤ME

[
‖φi‖2

r

]
e−λ(tm−t0) + γ(tm)

= ME
[
‖φi‖2

r

]
e−λ(tm+1−t0)eλ(tm+1−tm) + γ(tm+1)

≤ eλαME
[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm+1)

≤ eλα
{
ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) + γ(tm+1)

}
≤ e2λαE

[
V i(t∗, wi(t∗))

]
≤ qE

[
V i(t∗, wi(t∗))

]
where q ≥ e2λα > 1 and s ∈ [−r, 0]. Thus, from (ii), we have E

[
L+
i V

i(t∗, wi(t∗))
]
< 0 which

contradicts (7.20). Thus, (7.5) must be true for k = m + 1. Hence, by the mathematical

induction, (7.5) is true for t ∈ [tk−1, tk), k ∈ N.
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Remark 7.2.2. Theorem 7.2.1 gives sufficient conditions to ensure ISS for each isolated

stochastic impulsive subsystem (7.3). The time between impulses has to be bounded, and

this condition is summarized in (iv). Condition (iii) guarantees that the Lyapunov function

is decreasing along the solution trajectories of the system. We should remark that the pth

moment ISS can be proved with slight modifications in the proof and theorem statement by

replacing each ‖ · ‖2 by ‖ · ‖p.

Having established the stabilizability of isolated subsystem in Theorems 7.2.1, we prove

the same properties for the interconnected systems.

Theorem 7.2.3. Assume that the composite system, system (7.2), satisfies the following

conditions:

(i) every isolated subsystem satisfies the conditions in Theorem 7.2.1.

(ii) for any i, j = 1, 2, · · · , l, there exist positive constants bij such that

gTi (t, ψ)V i
ψi(0)(t, ψ

i(0)) ≤ ‖ψi(0)‖
l∑

j=1

qbij‖ψj(0)‖, (7.21)

where q is defined in Theorem 7.2.1.

(iii) the test matrix S = [sij]l×l is negative definite where

sij =

{
βi(σi + qbii), i = j
q
2
(βibij + βjbji), i 6= j

, (7.22)

for some constant σi < 0, and positive constant βi.
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Then, the trivial solution of system (7.2) is ISS in the mean square.

Proof. Let x(t) = x(t, t0,Φ) be the solution of system (7.2). Define the composite Lyapunov

function V (t, x(t)) =
∑l

i=1 βiV
i(t, wi) as a Lyapunov function candidate for interconnected

system (7.2) where βi is a positive constant, and V i(t, wi) is a Lyapunov function for the

ith isolated subsystem. From (i) in theorem 7.2.1, for any i, there exist c1i, c2i > 0 such

that

c1i‖wi‖2 ≤ V i(t, wi) ≤ c2i‖wi‖2 ≤ c2i‖wit‖2
r

which implies

l∑
i=1

βic1i‖wi‖2 ≤
l∑

i=1

βiV
i(t, wi)︸ ︷︷ ︸

V (t,x(t))

≤
l∑

i=1

βic2i‖wit‖2
r

Clearly, V (t, x(t)) is positive-definite and decrescent function. Therefore, there exist

c1, c2 > 0 such that

c1‖x(t)‖2 ≤ V (t, x(t)) ≤ c2‖x‖2 ≤ c2‖xt‖2
r

Since, σij(t, wj) ≡ 0 for all i 6= j, the infinitesimal diffusion operator becomes

LV i(t, x) = LiV i(t, wi) + gTi (t, xt)V
i
wi(t, w

i)

Thus, we have

E
[
LV (t, x)

]
=

l∑
i=1

βiE
[
LV i(t, x)

]
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=
l∑

i=1

βiE
[
LiV i(t, wi) + gTi (t, xt)V

i
wi(t, w

i)
]

≤
l∑

i=1

βi

{
σiE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]}

= zTSz,

where zT =
(
E
[
‖w1‖

]
,E
[
‖w2‖

]
, · · · ,E

[
‖wi‖

]
, · · · ,E

[
‖wl‖

])
and S is a negative definite

matrix with the maximum eigenvalue λmax(S). Then, one can write

E
[
LV (t, x)

]
≤ λmax(S)

l∑
i=1

E
[
‖wi‖2

]
≤ 0,

whenever E
[
V (t, xt))

]
≤ qE

[
V (t, x)

]
. Moreover, for each ψi ∈ Cr and t ∈ [tk−1, tk), we

have

γ( sup
tk−1≤s≤tk

‖wi(s)‖) ≤ E
[
V i(t, ψi(0))

]
We know that

‖w‖ ≤
l∑

i=1

‖wi‖

Then,

sup
tk−1≤s≤tk

‖w‖ ≤
l∑

i=1

sup
tk−1≤s≤tk

‖wi‖

So,

γ( sup
tk−1≤s≤tk

‖w‖) ≤
l∑

i=1

γ( sup
tk−1≤s≤tk

‖wi‖)
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which leads to

γ( sup
tk−1≤s≤tk

‖w‖) ≤
l∑

i=1

γ( sup
tk−1≤s≤tk

‖wi‖) ≤
l∑

i=1

E
[
V i(t, wi)

]

Then, we have

γ( sup
tk−1≤s≤tk

‖w‖) ≤ βiγ( sup
tk−1≤s≤tk

‖w‖) ≤
l∑

i=1

βiE
[
V i(t, wi)

]

At t = t+k , we have

E
[
V (t+k , x(t+k ))

]
=

l∑
i=1

βiE
[
V i(t+k , w

i(t+k ))
]

≤
l∑

i=1

βidkE
[
V i(t−k , w

i(t−k ))
]

= dkE
[
V (t−k , x(t−k ))

]
. (7.23)

Thus, the conditions of Theorem 7.2.1 are all satisfied and so x ≡ 0 is ISS in the mean

square.

Remark 7.2.4. Theorem 7.2.3 shows that the unperturbed interconnected system is ex-

ponentially stable when the isolated subsystems are stable. Condition (7.66) estimates the

interconnection, which is viewed as a perturbation, by an upper bound. The test matrix is

needed to guarantee that the degree of stability of the isolated subsystems is greater than

the interconnection.
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The following theorem shows that the interconnected system is ISS in the presence of

the stochastic perturbation.

Theorem 7.2.5. Assume that system (7.2) satisfies conditions (i) and (ii) of Theorem

7.2.3 and the following conditions hold

(iii) for any i, j = 1, 2, · · · , l, there exist positive constants ei such that

E
[
(yi)TV i

ψi(0)ψi(0)(t, ψ
i(0))(yi)

]
≤ qeiE

[
‖yi(0)‖2

]
, (7.24)

where yi = σ(t, ψj), the ith row of the matrix σ.

(iv) for any σ(t, ψj), i, j = 1, 2, · · · , l, there exists dij > 0 such that

E
[
‖σij(t, ψj)‖2

]
≤ dijE

[
‖ψi(0)‖2

]
(v) the test matrix S = [sij]l×l is negative definite where

sij =

{
βi(σi + qbii) + 1

2

∑
k=1, k 6=i qβkekdki, i = j

q
2
(βibij + βjbji), i 6= j

, (7.25)

for some constant σi < 0, and positive constant βi.

Then, the trivial solution of system (7.2) is ISS in the mean square.

Proof. Let x(t) = x(t, t0,Φ) be the solution of system (7.2). Define the composite Lyapunov

function as in Theorem 7.2.3. The infinitesimal diffusion operator becomes

LV i(t, x) = LiV i(t, wi) + gTi (t, xt)V
i
wi(t, w

i) +
1

2

l∑
i=1

tr
[
σTij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]
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Thus, we have

E
[
LV (t, x)

]
=

l∑
i=1

βiE
[
LiV i(t, wi) + gTi (t, xt)V

i
wi(t, w

i)

+
1

2

l∑
i=1

tr
[
σTij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]]

≤
l∑

i=1

βi

{
σiE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]

+
1

2

l∑
j=1,i 6=j

qeiE
[
‖σij(t, wjt )‖2

]

≤
l∑

i=1

βi

{
σiE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]

+
1

2

l∑
j=1,i 6=j

qeidijE
[
‖wj‖2

]}

= zTSz.

The rest of the proof is similar to the previous one and thus omitted here.

Consider the following interconnected system

dẇi =
[
(Ai + ∆Ai)w

i + (Āi + ∆Āi)w
i
t +Biui + fi(w

i
t)

+gi(w
1
t , w

2
t , · · · , wlt) +Giwi

]
dt+ σii(t, w

i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(w
i(t−)) = Cikw

i(t−), t = tk, k ∈ N,
wit0(s) = φi(s), s ∈ [−r, 0],

(7.26)
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where i = 1, 2, · · · , l, wi ∈ Rni is the ith subsystem state, such that Σl
i=1ni = n, Ai ∈ Rni×ni

is a non-Hurwitz matrix for each i, the impulsive times tk satisfying t0 < t1 < t2 < · · · <

tk < · · · , with limk→∞ tk = ∞, ∆wi(tk) = wi(t+k ) − wi(t−k ) where w(t+k )(or w(t−k )) is the

state just after (or before) the impulse at tk, and Ik : Rni → Rni is the impulsive function,

ui = Kiw
i ∈ Rq is the control input for the ith subsystem, where Ki ∈ Rq×ni is the control

gain matrix, fi : Rni → Rni is some nonlinearity, gi : Rn1 × Rn2 × · · · × Rnl → Rn is

the interconnection. fi and gi satisfy Lipschitz condition. Ai, Bi, and Cik are known real

constant matrices with proper dimensions, and ∆Ai is a piecewise continuous function

representing parameter uncertainty with bounded norm. wi ∈ Rpi is an input disturbance

to the ith isolated subsystem, which is assumed to be in L2[t0,∞) and Gi ∈ Rni×pi where∑l
i=1 pi = p.

System (7.26) can be written in the following form

 dẋ =
[
(A+ ∆A)x+ (Ā+ ∆Ā)xt +Bu+ f(xt) + g(xt) +Gw

]
dt+ σ(t, xt)dW, t 6= tk,

∆x(t) = Ik(x(t−)) = Ckx(t−), t = tk, k ∈ N,
xt0(s) = Φ(s), s ∈ [−r, 0],

(7.27)

where

xT = (w1T w2T · · · wlT ),

((A+ ∆A)x)T =
((

(A1 + ∆A1)w1
)T (

(A2 + ∆A2)w2
)T · · · ((Al + ∆Al)w

l
)T)

,

(Bu)T =
(

(B1u
1)T (B2u

2)T · · · (Blu
l)T
)
,

(F (x))T =
(
f1(w1)

T
f2(w2)

T · · · fl(wl)
T
)
,
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(G(x))T =
(
g1(x)T g2(x)T · · · gl(x)T

)
,

(Ckx)T =
(

(C1kw
1)T (C2kw

2)T · · · (Clkw
l)T
)
.

GT = (G1
T G2

T · · · Gl
T ), wT = (w1

T w2
T · · · wlT ),

From (7.26), the corresponding isolated subsystems are


dẇi =

[
(Ai + ∆Ai)w

i + (Āi + ∆Āi)w
i
t +Biui + fi(w

i
t) +Giwi

]
dt

+ σii(t, w
i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(w
i(t−)) = Cikw

i(t−), t = tk, k ∈ N,
wit0(s) = φi(s), s ∈ [−r, 0],

(7.28)

where i = 1, 2, · · · , l, and the corresponding closed-loop system is


dẇi =

[
(Ai + ∆Ai +BiKi)w

i + (Āi + ∆Āi)w
i
t + fi(w

i
t) +Giwi

]
dt

+ σii(t, w
i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(w
i(t−)) = Cikw

i(t−), t = tk, k ∈ N,
wit0(s) = φi(s), s ∈ [−r, 0],

(7.29)

To analyze the reliable stabilization with respect to actuator failures, for i = 1, 2, · · · , l,

consider the decomposition of the control matrix Bi = Biσ + Biσ̄ Then, the closed-loop

systems for the faulty case becomes


dẇi =

[
(Ai + ∆Ai +Bi

σ̄Ki)w
i + (Āi + ∆Āi)w

i
t + fi(w

i
t) +Giwi

]
dt

+ σii(t, w
i
t)dWi(t), t 6= tk,

∆wi(t) = Iik(w
i(t−)) = Cikw

i(t−), t = tk, k ∈ N,
wit0(s) = φi(s), s ∈ [−r, 0],

(7.30)

Corollary 7.2.1. Let the controller gain Ki be given, and assume that Assumption A holds.

Assume further that there exist positive constants λ, α > r, σi < 0 and a positive-definite
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and decrescent function V i(t, ψi(0)) for all (t, ψ(0)) ∈ [t0− r,∞)×PC([−r, 0],Rn). Then,

the trivial solution, wi ≡ 0, of system (7.29) is ISS in the mean square if the following

conditions hold

(i) λmin(Pi)‖ψi(0)‖2 ≤ E
[
V i(t, ψi(0))

]
≤ λmax(Pi)‖ψi(0)‖2;

(ii) for all k ∈ N, t 6= tk and ψi ∈ PC([−r, 0],Rn), we have E
[
LiV i(t, ψi)

]
≤ σiE

[
‖ψi(0)‖2

]
provided that E

[
V i(t+s, ψi)

]
≤ qE

[
V i(t, ψi(0))

]
, where q ≥ e2λα with λ = maxi∈S{−σi},

s ∈ [−r, 0], and γ(suptk−1≤s≤tk ‖wi(s)‖) ≤ E
[
V i(t, ψi(0))

]
for ψi ∈ Cr, and t ∈

[tk−1, tk);

(iii) for all t = tk, k ∈ N,

E
[
V i
(
tk, ψ

i(0) + Iik(t
−
k , ψ

i(t−k ))
)
‖
]
≤ dikE

[
V i(t−k , ψ

i(0))
]

(7.31)

where ψi(0−) = ψi(0), and dik > 0;

(iv) for all k ∈ N, r ≤ tk+1 − tk ≤ α, and ln(dik) + λα < −λ(tk+1 − tk), where dik =

λmax[(I+Cik)TP i(I+Cik)]
λmin(P i)

, with P i being a positive-definite matrix satisfying

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
qiδi
ξ6i

)I +
1

ξ1i

HT
i Hi + γiqiPi

+ Pi
[
ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T + ξ5iD̄iD̄
T
i + ξ6iI

]
Pi − αiPi = 0 (7.32)

where ξji, j = 1, · · · 4, are any positive constants, 0 < νi < −αi, αi < 0, γi and δi are

positive constants such that

tr[σTii(t, w
i
t)Piσii(t, w

i
t)] ≤ 2γiqiψ

iT (0)Piψ
i(0) (7.33)
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and

‖fi(wi)‖2 ≤ δi‖wi‖2. (7.34)

Proof. Let wi = wi(t, t0, φi) be the solution of the isolated subsystem (7.29), and V i(t, wi(t)) =

wiPiw
i be a Lyapunov function candidate. Then,

LV i(t, wi) =wi
T [

(Ai +BiKi)
TPi + Pi(Ai +BiKi)

]
wi + 2wi

T
Pi∆Aiw

i + 2wi
T
PiĀiw

i
t

+ 2wi
T
Pi∆Āiw

i
t + 2wi

T
Pifi(w

i
t) + 2wi

T
PiGiw

i +
1

2
tr[σTii(t, w

i
t)Piσii(t, w

i
t)]

Claim. For any t ∈ [tk−1, tk), k ∈ N, conditions (i)− (iv) imply that

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t−t0) + γ( sup

tk−1≤s≤tk
‖wi(s)‖) (7.35)

where λ > 0 and M > 1.

Proof of the claim. Choose M > 1 such that

c2E
[
‖φi‖2

r

]
< ME

[
‖φi‖2

r

]
e−λ(t1−t0) + γ(t1) ≤ qc2E

[
‖φi‖2

r

]
, (7.36)

where γ(t) = γ(supt0≤s≤t(‖wi(s)‖)) and c2 = maxi=1,··· ,l{λmax(Pi)}. Using the mathemati-

cal induction method, one can follow the same proof of Theorem 7.2.1 to prove the claim
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for all k ∈ N. Thus, by the claim, Lemma 3.1.3, and condition (iv), we have

LV i(t, wi) ≤ wi
T
{

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
qiδi
ξ6i

)I

+ Pi
[
ξ1iDiD

T
i + ξ2iGiG

T
i + ξ4iĀi(Āi)

T + ξ5iD̄iD̄
T
i + ξ6iI

]
Pi +

1

ξ1i

HT
i Hi

+ γiqiPi

}
wi +

1

ξ2i

wTi wi

= αiV
i(t, wi) +

1

ξ2i

wTi wi

Applying Itô’s formula, and take the expectation gives

LE[V i(t, wi)] ≤ αiE[V i(t, wi)]− θiE[V i(t, wi)] + θiE[V i(t, wi)] +
1

ξ2i

wTi wi, t ∈ (tk−1, tk),

for all i = 1, · · · l and all t 6= tk.

Then, we have for each subinterval t ∈ (tk−1, tk),

LE[V i(t, wi)] ≤ αiE[V i(t, wi)]− θiE[V i(t, wi)] +
1

ξ2i

wTi wi,

where αi = αi + θi, and 0 < θi < −αi. The forgoing inequality implies that

LE[V i(t, wi)] ≤ αiE[V i(t, wi)], for all t ∈ (tk−1, tk),

provided that

−θiE[V i(t, wi)] +
1

ξ2i

wTi wi < 0

that is

E[V i(t, wi)] >
1

θiξ2i

wTi wi

174



This implies, by (i)

E
[
‖wi‖2

]
>
‖wi‖2

θiξ2ic2

:= ρi(‖wi‖),

where c2 = max{λmax(Pi) : i = 1, · · · , l}.

At t = tk, we have

E[V i(t, wi(t+k ))] ≤ dikE
[
V i(t−k , w

i(t−k ))
]

≤ dikME
[
‖φi‖2

r

]
e−λ(t−t0) + γ( sup

tk−1≤s≤tk
‖wi(s)‖)

≤ e−λ(α+tk+1−tk)ME
[
‖φi‖2

r

]
e−λ(t−t0) + γ( sup

tk−1≤s≤tk
‖wi(s)‖)

≤ME
[
‖φi‖2

r

]
e−λ(t−t0) + γ( sup

tk−1≤s≤tk
‖wi(s)‖)

Which implies

E
[
‖wi‖2

]
≤ M̂E

[
‖φi‖2

r

]
e−λ(t−t0) +

1

λmin(Pi)
γ( sup

tk−1≤s≤tk
‖wi(s)‖)

where M̂ = M
λmin(Pi)

.

Corollary 7.2.2 (Reliability for isolated subsystems). The trivial solution of system (7.30)

is robustly ISS in the mean square if all the conditions of Corollary 7.2.1 hold with replacing

(7.32) with

ATi Pi + PiAi + Pi
[
ξ1iDiD

T
i + ξ2iGciG

T
ci − εiBiΣ̄B

T
iΣ̄ + ξ4iĀi(Āi)

T + ξ5iD̄iD̄
T
i + ξ6iI

]
Pi

+ (
qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
qiδi
ξ6i

)I +
1

ξ1i

HT
i Hi + γiqiPi − αiPi = 0 (7.37)

such that the control gain matrix ki = −1
2
εiB

T
iσ̄Pi, where εi > 0.
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Proof. Let wi = wi(t, t0, φi) be the solution of the isolated subsystem (7.30), and V i(t, wi(t)) =

wiPiw
i be a Lyapunov function candidate. Then,

LV i(t, wi) ≤ wi
T
{
ATi Pi + PiAi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
qiδi
ξ6i

)I +
1

ξ1i

HT
i Hi + γiqiPi

+ Pi
[
ξ1iDiD

T
i + ξ2iGciG

T
ci − εiBiσ̄B

T
iσ̄ + ξ4iĀi(Āi)

T + ξ5iD̄iD̄
T
i + ξ6iI

]
Pi

}
wi

≤ wi
T
{
ATi Pi + PiAi + (

qi
ξ4i

+
qi
ξ5i

‖H̄i‖2 +
qiδi
ξ6i

)I +
1

ξ1i

HT
i Hi + γiqiPi

+ Pi
[
ξ1iDiD

T
i + ξ2iGciG

T
ci − εiBiΣ̄B

T
iΣ̄ + ξ4iĀi(Āi)

T + ξ5iD̄iD̄
T
i + ξ6iI

]
Pi

}
wi

= αiV
i(t, wi) +

1

ξ2i

(wFσ )TwFσ

where we used the claim in Corollary 7.2.1, Lemma 3.1.3, condition (7.37), and the fact

BiΣ̄B
T
iΣ̄
≤ Biσ̄B

T
iσ̄. The rest of the proof is similar to the proof of Corollary 7.2.1 and thus

omitted here.

Definition 7.2.6. System (7.29) (or (7.30)) is said to possess property A ( or B) if it

satisfies the conditions in Corollary 7.2.1(or 7.2.2).

Remark 7.2.7. Property A implies that all the stochastic impulsive isolated subsystems

are robustly ISS in the mean square in the normal actuators case, while Property B implies

the same result is hold in the faulty case.

Corollary 7.2.3 (Interconnected system (Normal Case)). Assume that the composite sys-

tem, system (7.27), satisfies the following conditions:
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(i) System (7.29) possess property A;

(ii) for any i, j = 1, 2, · · · , l, there exist positive constants bij such that

gTi (t, ψ)V i
ψi(0)(t, ψ

i(0)) ≤ ‖ψi(0)‖
l∑

j=1

qibij‖ψj(0)‖, (7.38)

where qi is defined in Corollary 7.2.1;

(iii) for any i, j = 1, 2, · · · , l, there exist positive constants ei such that

E
[
(yi)TV i

ψi(0)ψi(0)(t, ψ
i(0))(yi)

]
≤ qeiE

[
‖yi(0)‖2

]
, (7.39)

where yi = σ(t, ψj), the ith row of the matrix σ.

(iv) for any σ(t, ψj), i, j = 1, 2, · · · , l, there exists dij > 0 such that

E
[
‖σij(t, ψj)‖2

]
≤ dijE

[
‖ψi(0)‖2

]
;

(v) the test matrix S = [sij]l×l is negative definite where

sij =

{
βi(σi + qbii) + 1

2

∑
k=1, k 6=i qβkekdki, i = j

q
2
(βibij + βjbji), i 6= j

, (7.40)

for some constant σi = αiλmax(P i) < 0, and positive constant βi.

Then, the trivial solution of system (7.27) is ISS in the mean square.
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Corollary 7.2.4 (Interconnected system (Faulty Case)). Assume that system (7.30) pos-

sesses property B. Suppose further that the conditions (ii)-(iv) of Corollary 7.2.3 hold, and

εi is a positive constant such that Ki = −1
2
εiB

i
σ̄
T
P i where Pi is a positive-definite matrix

defined in Property B. Then, the trivial solution of system (7.27) is ISS in the mean square.

The proof of Corollary 7.2.3(7.2.4) follows directly from the proof of Theorem 7.2.5.

7.3 Stabilization via Impulses

In this section, we state and prove a result on the exponential stabilization of the large-scale

stochastic system by Impulsive controller

Theorem 7.3.1. Assume there exist positive constants λ, β, c1i, c2i, c̄i and V i(t, ψi(0)) for

all (t, ψi(0)) ∈ [t0 − r,∞)× Rn with ψi(0) ∈ PC([−r, 0],Rn) such that

(i) c1i‖ψi(0)‖2 ≤ V i(t, ψi(0)) ≤ c2i‖ψi(0)‖2;

(ii) for all k ∈ N, t 6= tk and ψi ∈ PC([−r, 0],Rn), we have E
[
LiV i(t, ψ)

]
≤ c̄iE

[
V i(t, ψi(0))

]
provided that Ei

[
V i(t + s, ψi)

]
≤ qE

[
V i(t, ψi(0))

]
, where q ≥ γeλr > 1, s ∈ [−r, 0],

with γ ≥ 1;

(iii) for all t = tk, k ∈ N,

E
[
V i(tk, ψ

i(0) + Iik(t
−
k , ψ

i(t−k )))‖
]
≤ dikE

[
V i(t−k , ψ

i(0))
]

(7.41)

where 0 < dik ≤ 1;
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(iv) for all k ∈ N, ln(dik) + (λ+ α)(tk+1 − tk) ≤ 0, and γ ≥ e(λ+c)(t1−t0).

Then, the trivial solution, wi ≡ 0, of system (7.3) is exponentially stabilizable in the mean

square.

Proof. To prove the assertion of this theorem, we have the following claim.

Claim. For any t ∈ [tk−1, tk), k ∈ N, conditions (i)− (iv) imply that

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t−t0) (7.42)

where λ > 0 and M > 1.

Proof of the claim. Choose M > 1 such that

0 < c2E
[
‖φi‖r

]
e(λ+c)(t1−t0) ≤ME

[
‖φi‖2

r

]
≤ c2γe

λrE
[
‖φi‖2

r

]
, (7.43)

From (i), we have

E
[
V i(t, wi)

]
≤ c2E

[
‖wi‖2

]
≤ c2E

[
‖φi‖2

r

]
< ME

[
‖φi‖2

r

]
e−(λ+c)(t1−t0)

< ME
[
‖φi‖2

r

]
e−λ(t1−t0)

That is, for all t ∈ (t0 − r, t0],

E
[
V i(t, wi)

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0) (7.44)
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We want to prove

E
[
V i(t, wi)

]
≤ME

[
‖φi‖2

r

]
e−λ(t−t0), t ∈ [tk−1, tk) (7.45)

Using the mathematical induction method, we prove the claim for all k ∈ N. Let wi =

wi(t, t0, φ) be the solution of the isolated subsystem (7.3) with wit0 = φi(s).

Step 1, for k = 1, i.e. t ∈ [t0, t1), we show that

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0) (7.46)

If (7.46) were not true, then for s ∈ [−r, 0], there would exist t ∈ [t0, t1) such that

E
[
V i(t, wi(t))

]
> ME

[
‖φi‖2

r

]
e−λ(t1−t0) (7.47)

Define

t∗ = inf{t ∈ [t0, t1) : E
[
V i(t, wi(t))

]
> ME

[
‖φi‖2

r

]
e−λ(t1−t0)} (7.48)

From the continuity of E
[
V i(t, wi(t))

]
over (t0, t1), then t∗ ∈ (t0, t1) and

E
[
V i(t∗, wi(t∗))

]
= ME

[
‖φi‖2

r

]
e−λ(t1−t0) (7.49)

and for all t ∈ [t0 − r, t∗], we have

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0) (7.50)

Define

t∗∗ = sup{t ∈ [t0 − r, t∗) : E
[
V i(t, wi(t))

]
≤ c2E

[
‖φi‖2

r

]
} (7.51)

Then, t∗∗ ∈ [t0, t
∗) and

E
[
V i(t∗∗, wi(t∗∗))

]
= c2E

[
‖φi‖2

r

]
(7.52)
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and for t ∈ (t∗∗, t∗]

E
[
V i(t, wi(t))

]
> c2E

[
‖φi‖2

r

]
(7.53)

In fact, (7.52), and (7.53) imply that

E
[
V i(t∗∗, wi(t∗∗))

]
< E

[
V i(t, wi(t))

]
(7.54)

Now, for all t ∈ [t∗∗, t∗], and s ∈ [−r, 0] and t+ s ∈ [t∗∗, t∗], we have

E
[
V i(t+ s, wi(t+ s))

]
≤ME

[
‖φi‖2

r

]
e−λ(t1−t0)

≤ c2γe
λrE
[
‖φi‖2

r

]
e−λ(t1−t0)

< c2γe
λrE
[
‖φi‖2

r

]
= γeλrE

[
V i(t∗∗, wi(t∗∗))

]
≤ qE

[
V i(t∗∗, wi(t∗∗))

]
≤ qE

[
V i(t, wi(t))

]
Therefore, we have E

[
V i(t+ s, wi(t+ s))

]
≤ qE

[
V i(t, wi(t))

]
. Thus, from (ii), we have

E
[
LiV i(t, wit)

]
≤ cE

[
V i(t, wi(t))

]
, t ∈ [t∗∗, t∗]. (7.55)

By Itô’s formula over [t∗∗, t∗] and the forgoing inequality, one may get

E
[
V i(t∗, wi(t∗))

]
= E

[
V i(t∗∗, wi(t∗∗))

]
+

∫ t∗

t∗∗
E
[
LiV i(s, wis)

]
ds

≤ E
[
V i(t∗∗, wi(t∗∗))

]
+ c

∫ t∗

t∗∗
E
[
V i(s, wi(s))

]
ds

Then, by Gronwall inequality, we have
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E
[
V i(t∗, wi(t∗))

]
≤ E

[
V i(t∗∗, wi(t∗∗))

]
ec(t

∗−t∗∗)

= c2E
[
‖φi‖2

r

]
ec(t

∗−t∗∗)

< c2E
[
‖φi‖2

r

]
ec(t1−t0)

≤ME
[
‖φi‖2

r

]
e−λ(t1−t0)

= E
[
V i(t∗, wi(t∗))

]
(7.56)

which is a contradiction, and so (7.45) is true when k = 1. Step 2, assume (7.45) is true

for k = 1, 2, · · · ,m, that is

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(tk−t0), t ∈ [tk−1, tk) (7.57)

Step 3, we show (7.57) is true for k = m+ 1, i.e.,

E
[
V i(t, wi(t))

]
≤ME

[
‖φi‖2

r

]
e−λ(tm+1−t0), t ∈ [tm, tm+1). (7.58)

If (7.58) is not true, we define

t∗ = inf
{
t ∈ [tm, tm+1) : E

[
V i(t, wi(t))

]
> ME

[
‖φi‖2

r

]
e−λ(tm+1−t0)

}
Since, at t = t+m, we have

E
[
V i(tm, w

i(tm))
]
≤ dmE

[
V i(t−m, w

i(t−m))
]

< dmME
[
‖φi‖2

r

]
e−λ(tm−t0)

≤ e−(λ+c)(tm+1−tm)ME
[
‖φi‖2

r

]
e−λ(tm−t0)

< ME
[
‖φi‖2

r

]
e−λ(tm+1−t0) (7.59)
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Thus, at t = tm, we have E
[
V i(tm, w

i(tm))
]
< ME

[
‖φi‖2

r

]
e−λ(tm+1−t0). We know that

t∗ ∈ (tm, tm+1) and

E
[
V i(t∗, wi(t∗))

]
= ME

[
‖φi‖2

r

]
e−λ(tm+1−t0) (7.60)

and

E
[
V i(t, wi(t))

]
< ME

[
‖φi‖2

r

]
e−λ(tm+1−t0), t ∈ [tm, t

∗) (7.61)

Define

t∗∗ = sup{t ∈ [t0 − r, t∗) : E
[
V i(t, wi(t))

]
≤ dmME

[
‖φi‖2

r

]
e−λ(tm−t0)} (7.62)

Then, t∗∗ ∈ [t0, t
∗) and

E
[
V i(t∗∗, wi(t∗∗))

]
= dmME

[
‖φi‖2

r

]
e−λ(tm−t0) (7.63)

and for t ∈ (t∗∗, t∗]

E
[
V i(t, wi(t))

]
> dmME

[
‖φi‖2

r

]
e−λ(tm−t0) (7.64)

By (7.63) and (7.64), we have

E
[
V i(t, wi(t))

]
> E

[
V i(t∗∗, wi(t∗∗))

]
(7.65)

For t ∈ [t∗∗, t∗] and some s ∈ (−r, 0], we have two cases. Either t+ s ≥ tm, or t+ s < tm.
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Case 1. When t+ s ≥ tm, we have

E
[
V i(t+ s, wi(t+ s))

]
≤ME

[
‖φi‖2

r

]
e−λ(tm+1−t0)

≤ME
[
‖φi‖2

r

]
e−λ(t+s−t0)

≤ME
[
‖φi‖2

r

]
e−λ(t−t0)eλr

≤ γdmME
[
‖φi‖2

r

]
e−λ(tm−t0)eλr

≤ γeλrE
[
V i(t∗∗, wi(t∗∗))

]
≤ qE

[
V i(t∗∗, wi(t∗∗))

]
< qE

[
V i(t, wi(t))

]
Case 2. When t + s < tm, we assume that t + s < [tl−1, tl], for some l ∈ N, and l < m,

then we have

E
[
V i(t+ s, wi(t+ s))

]
≤ME

[
‖φi‖2

r

]
e−λ(tl−t0)

≤ME
[
‖φi‖2

r

]
e−λ(t+s−t0)

< qE
[
V i(t, wi(t))

]
In both cases we have for t ∈ (t∗∗, t∗), s ∈ (−r, 0], we have E

[
V i(t + s, wi(t + s))

]
<

qE
[
V i(t, wi(t))

]
. Thus, we have

E
[
LiV i(t, wit)

]
≤ cE

[
V i(t, wi(t))

]
As done in Step 1, we use Itô’s formula and Grownwall inequality to get a contradiction.

Thus, (7.45) must be true for k = m+ 1. Hence, by the mathematical induction, (7.45) is

true for t ∈ [tk−1, tk), k ∈ N.
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From (i) and (7.45), one can get

E
[
‖wi‖2

]
≤ λ̄E

[
|φi|2r

]
e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N

where λ̄ = M
c1
.

Theorem 7.3.2. Assume that the composite system, system (7.2) with σij(t, wj) ≡ 0 for

all i 6= j,, satisfies the following conditions:

(i) every isolated subsystem is impulsively stabilized, i.e., every isolated subsystem satis-

fies the conditions in Theorem 7.3.1;

(ii) for any i, j = 1, 2, · · · , l, there exist positive constants bij such that

gTi (t, ψ)V i
ψi(0)(t, ψ

i(0)) ≤ ‖ψi(0)‖
l∑

j=1

qbij‖ψj(0)‖, (7.66)

where q is defined in Theorem 7.2.1;

(iii) the test matrix S = [sij]l×l is positive-definite where

sij =

{
βi(c̄i + qbii), i = j
q
2
(βibij + βjbji), i 6= j

, (7.67)

for some positive constant βi.

Then, the trivial solution of system (7.2) is exponentially stable in the mean square.
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Proof. Let x(t) = x(t, t0,Φ) be the solution of system (7.2). Define the composite Lya-

punov function V (t, x(t)) =
∑l

i=1 βiV
i(t, wi) as a Lyapunov function candidate for inter-

connected system (7.2) where βi is a positive constant, and V i(t, wi) is a Lyapunov function

for the ith isolated subsystem. From (i) in Theorem 7.2.1, for any i, one can show that

there exist c1, c2 > 0 such that

c1‖x(t)‖2 ≤ V (t, x(t)) ≤ c2‖x‖2 ≤ c2‖xt‖2
r

Since, σij(t, wj) ≡ 0 for all i 6= j, the infinitesimal diffusion operator becomes

LV i(t, wi) = LiV i(t, wi) + gTi (t, xt)V
i
wi(t, w

i)

Thus, we have

E
[
LV (t, x)

]
=

l∑
i=1

βiE
[
LV i(t, x)

]

=
l∑

i=1

βiE
[
LiV i(t, wi) + gTi (t, xt)V

i
wi(t, w

i)
]

≤
l∑

i=1

βi

{
c̄iE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]}

= zTSz,

where zT =
(
E
[
‖w1‖

]
,E
[
‖w2‖

]
, · · · ,E

[
‖wi‖

]
, · · · ,E

[
‖wl‖

])
and S is a positive-definite

matrix with the maximum eigenvalue C = λmax(S). Then, one can write

E
[
LV (t, x)

]
≤ C

l∑
i=1

E
[
‖wi‖2

]
,
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whenever E
[
V (t, xt))

]
≤ qE

[
V (t, x)

]
.

At t = t+k , we have

E
[
V (t+k , x(t+k ))

]
=

l∑
i=1

βiE
[
V i(t+k , w

i(t+k ))
]

≤
l∑

i=1

βidkE
[
V i(t−k , w

i(t−k ))
]

= dkE
[
V (t−k , x(t−k ))

]
. (7.68)

Thus, the conditions of Theorem 7.3.1 are all satisfied and so x ≡ 0 is exponentially stable

in the mean square.

Theorem 7.3.3. Assume that system (7.2) satisfies conditions (i) and (ii) of Theorem

7.3.2 and the following conditions hold

(iii) for any i, j = 1, 2, · · · , l, there exist positive constants ei such that

E
[
(yi)TV i

ψi(0)ψi(0)(t, ψ
i(0))(yi)

]
≤ qeiE

[
‖yi(0)‖2

]
, (7.69)

where yi = σ(t, ψj), the ith row of the matrix σ;

(iv) for any σ(t, ψj), i, j = 1, 2, · · · , l, there exists dij > 0 such that

E
[
‖σij(t, ψj)‖2

]
≤ dijE

[
‖ψi(0)‖2

]
;

(v) the test matrix S = [sij]l×l is positive definite where

sij =

{
βi(c̄i + qbii) + 1

2

∑
k=1, k 6=i qβkekdki, i = j

q
2
(βibij + βjbji), i 6= j

, (7.70)
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for some positive constant βi.

Then, the trivial solution of system (7.2) is exponentially stable in the mean square.

Proof. Let x(t) = x(t, t0,Φ) be the solution of system (7.2). Define the composite Lya-

punov function as in Theorem 7.3.2. The infinitesimal diffusion operator becomes

LV i(t, x) = LiV i(t, wi) + gTi (t, xt)V
i
wi(t, w

i) +
1

2

l∑
i=1

tr
[
σTij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]

Thus, we have

E
[
LV (t, x)

]
=

l∑
i=1

βiE
[
LiV i(t, wi) + gTi (t, xt)V

i
wi(t, w

i)

+
1

2

l∑
i=1

tr
[
σTij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]]

≤
l∑

i=1

βi

{
c̄iE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]

+
1

2

l∑
j=1,i 6=j

qeiE
[
‖σij(t, wjt )‖2

]

≤
l∑

i=1

βi

{
c̄iE
[
‖wi‖2

]
+ E

[
‖wi‖

l∑
j=1

qbij‖wj‖
]

+
1

2

l∑
j=1,i 6=j

qeidijE
[
‖wj‖2

]}

= zTSz.
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where zT =
(
E
[
‖w1‖

]
,E
[
‖w2‖

]
, · · · ,E

[
‖wi‖

]
, · · · ,E

[
‖wl‖

])
and S is a positive-definite

matrix with the maximum eigenvalue C = λmax(S). The rest of the proof is similar to the

previous one and thus omitted here.

7.4 Conclusion

Throughout this chapter, we have addressed LSSISs. The focus has been on developing

some sufficient conditions to guarantee ISS and stabilization by reliable controller and im-

pulsive effects. To prove the qualitative properties, we have considered the decomposition

approach followed in Chapter 6 and used the Lyapunov-Razumikhin technique.
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Part III

Reliable Control Stabilization for
Singularly Perturbed Systems
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In this part, we address the switched control singularly perturbed systems (SCSPS)

without and with time delay where the controllers are subject to faulty actuators. The

continuous states are viewed as an interconnected system with two-time scale (slow and

fast) subsystems. Moreover, due to dominant behaviour of the reduced systems, the sta-

bilization of the full order systems is achieved through the controller of the slow reduced

order subsystem. This in turn results in lessening some unnecessary sufficient conditions

imposed on the fast subsystem. The stability analysis is obtained by multiple Lyapunov

function method after decomposing the system into isolated, lower order, slow and fast

subsystems, and the interconnection between them.

It has been observed that if the degree of stability of each isolated mode is greater than

the interconnection between them, the underlying interconnected mode of the switched

system is exponentially stable. Moreover, if switching among the system modes follows the

average dwell-time rule, then the SCSPS is also exponentially stable. Finally, numerical

examples and simulations are provided to justify the proposed theoretical results.
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Chapter 8

Switched Control Singularly Perturbed
Systems

In the present chapter, we aim to study the stability property of switched singularly per-

turbed systems via reliable controller for two cases, namely when all the actuators are

operational and when some of them experience failures. The faulty actuator output is

treated as an outage. The reduced system, which depends on the slow (dominant) system,

is used to design the stabilizing reliable controller. The Lyapunov function and average

dwell time condition argument are used to establish the exponential stability criteria. As

said, we have adopted the decomposition approach. The relationship between the stability

degrees of the isolated subsystems and the interconnection strength is usually formulated

by the so-called M -matrix. An illustrative example is provided to clarify the validity of

our results. The material of this chapter forms the basis of [13].
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8.1 Problem Formulation and Preliminaries

Consider the following system

ẋ = A11%(t)x+ A12%(t)z +B1%(t)u, (8.1a)

ε%(t)ż = A21%(t)x+ A22%(t)z +B2%(t)u, (8.1b)

x(t0) = x0, z(t0) = z0, (8.1c)

where x ∈ Rm, z ∈ Rn are the system slow and fast states respectively, u ∈ Rl is the

control input of the form u = Kx for some control gain K ∈ Rl×m, % : [t0,∞) → S =

{1, 2, · · · , N} is a piecewise constant function known as the switching signal (or law). For

each i ∈ S, A11i ∈ Rm×m, A12i ∈ Rm×n, A21i ∈ Rn×m, A22i ∈ Rn×n, are known real

constant matrices with A22i is a nonsingular Hurwitz matrix, B1 ∈ Rm×l, B2 ∈ Rn×l, and

0 < εi � 1. Setting εi = 0 implies that z = hi(x) = −A−1
22i

[A21ix+B2iu]. Plug z into (8.1a)

gives the slow reduced subsystem ẋs = A0ixs + B0iu where A0i = A11i − A12iA
−1
22i
A21i , and

B0i = B1i − A12iA
−1
22i
B2i . Choose u = Kxs such that (A0i , B0i) is stabilizable.

For simplicity of notation, we use x in lieu of xs to refer to the slow reduced system.

Definition 8.1.1. The trivial solution of system (8.1) is said to be globally exponentially

stable (g.e.s.) if there exist positive constants L, and λ such that

‖x(t)‖+ ‖z(t)‖ ≤ L(‖x(t0)‖+ ‖z(t0)‖)e−λ(t−t0), t ≥ t0 ∈ R+,

for all x(t) and z(t), the solutions of system (8.1), and any x0 ∈ Rm, z0 ∈ Rn.
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8.2 The Main Results

In this section, we present our main results.

8.2.1 Normal Case

For any i ∈ S, the closed-loop system becomes


ẋ = (A11i +B1iKi)x+ A12iz,
εiż = (A21i +B2iKi)x+ A22iz,
x(t0) = x0, z(t0) = z0.

(8.2)

Theorem 8.2.1. The trivial solution of system (8.1) is globally exponentially stable if the

average dwell-time condition holds, and the following assumptions hold

(i) Re[λ(A22i)] < 0, and (A0i , B0i) is stabilizable;

(ii) there exist positive constants aji, j = 1, · · · , 6 such that

2xTP1iA12ihi(x) ≤ a1ix
Tx, (8.3)

2xTP1iA12i(z − hi(x)) ≤ a2ix
Tx+ a3i(z − hi(x))T (z − hi(x)), (8.4)

2(z − hi(x))TP2iR1ix ≤ a4ix
Tx+ a5i(z − hi(x))T (z − hi(x)), (8.5)

(z − hi(x))TR2i(z − hi(x)) ≤ a6i(z − hi(x))T (z − hi(x)) (8.6)

where hi(x) = −A−1
22i

(A21i + B2iKi)x, P2i is the solution of the Lyapunov equa-

tion AT22i
P2i + P2iA22i = −Iin , where Iin is an identity matrix, R1i = A−1

22i
(A21i +

B2iKi)[A11i +B1iKi−A12iA
−1
22i

(A21i +B2iKi)], and R2i = 2P2iA
−1
22i

(A21i +B2iKi)A12i;
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(iii) there exist a positive constant εi such that −Āi is an M-matrix where

Āi =

[
λmax(Ni)
λmax(P1i

)
a3i

λmin(P2i
)

a4i

λmin(P1i
)

a6i

λmin(P2i
)
− (1−a5iεi)

εiλmax(P2i
)

]
,

where Ni = −Qi+(a1i+a2i)I+MTPi+PiM
T such that M = A12iA

−1
22i

(A21i +B2iKi)

and (A0i +B0iKi)
TP1i + P1i(A0i +B0iKi) = −Qi for a given Ki.

Proof. Let Vi(x) = xTP1ix andWi((z−hi(x))(t)) = (z−hi(x))TP2i(z−hi(x)) be Lyapunov

function candidates for the slow and the fast subsystem, respectively. Then,

V̇i(x) = ẋTP1ix+ xTP1iẋ

=
[
(A11i +B1iKi)x+ A12iz

]T
P1ix+ xTP1i [(A11i +B1iKi)x+ A12iz]

= xT [(A11i +B1iKi)
TP1i + P1i(A11i +B1iKi)]x+ 2xTP1iA12iz

= − xTQix+ 2xTP1iA12i(z − hi(x)) + 2xTP1iA12ihi(x)

≤ xT (−Qi + a1iI + a2iI)x+ a3i(z − hi(x))T (z − hi(x))

≤ λmax(Ni)

λmax(P1i)
Vi(x) +

a3i

λmin(P2i)
Wi((z − hi(x))(t)), (8.7)

where Ni = −Qi + (a1i + a2i)I + MTPi + PiM
T such that M = A12iA

−1
22i

(A21i + B2iKi) is
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negative definite. We also have

Ẇi((z − hi(x))(t)) = (ż − ḣi(x))TP2i(z − hi(x)) + (z − hi(x))TP2i(ż − ḣi(x))

= [
1

ε
((A21 +B2K)x+ A22z)− ḣ(x)]TP (z − h(x))

+ (z − h(x))TP [
1

ε
((A21 +B2K)x+ A22z)− ḣ(x)]

= [
1

εi
A22i(z − hi(x))− ḣi(x)]TP2i(z − hi(x))

+ (z − hi(x))TP2i [
1

εi
A22i(z − hi(x))− ḣi(x)]

=
1

εi
(z − hi(x))T [AT22i

P2i + P2iA22i ](z − hi(x))− 2(z − hi(x))TP2iḣi(x)

= − 1

εi
(z − hi(x))T (z − hi(x))− 2(z − hi(x))TP2iḣi(x)

≤ (a5i −
1

εi
)(z − hi(x))T (z − hi(x)) + (z − hi(x))TR2i(z − hi(x))

+ a4ix
Tx

≤ a4i

λmin(P1i)
Vi(x) +

[ a6i

λmin(P2i)
− (1− a5iεi)

εiλmax(P2i)

]
Wi((z − hi(x))(t)).

(8.8)

where R2i = 2P2iA
−1
22i

(A21i +B2iKi)A12i . Combining (8.7) and (8.8), we get[
V̇i(x)

Ẇi

(
(z − hi(x))(t)

) ] ≤ [ λmax(Ni)
λmax(P1i

)
a3i

λmin(P2i
)

a4i

λmin(P1i
)

a6i

λmin(P2i
)
− (1−a5iεi)

εiλmax(P2i
)

][
Vi(x)

Wi

(
(z − hi(x))(t)

) ] .
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Then, we have

Āi =

[
λmax(Ni)
λmax(P1i

)
a3i

λmin(P2i
)

a4i

λmin(P1i
)

a6i

λmin(P2i
)
− (1−a5iεi)

εiλmax(P2i
)

]
.

Then there exists ηi = −λmax(Āi) > 0 such that for t ∈ [tk−1, tk),

Vi(x) ≤
(
Vi(x(tk−1)) +Wi

(
(z − hi(x))(tk−1)

))
e−ηi(t−tk−1),

and

Wi

(
(z − hi(x))(t)

)
≤
(
Vi(x(tk−1)) +Wi

(
(z − hi(x))(tk−1)

))
e−ηi(t−tk−1),

For any i, j ∈ S, M > 1, we have

Vj(x(t)) ≤ µ1Vi(x(t)),

Wj

(
(z − hj(x))(t)

)
≤ µ2Wi

(
(z − hi(x))(t)

)
.

Let µ = max{µ1, µ2}, then we have

Vj(x(t)) ≤ µVi(x(t)),

Wj

(
(z − hj(x))(t)

)
≤ µWi

(
(z − hi(x))(t)

)
.

Starting with Vi, we have for t ∈ [t0, t1)

V1(x(t)) ≤
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−η1(t−t0)

For t ∈ [t1, t2), we have

V2(x(t)) ≤
[
V2(x(t1)) +W2

(
(z − h2(x))(t1)

)]
e−η2(t−t1) (8.9)
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we know that for t = t1, we have

V2(x(t1)) ≤ µ
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−η1(t1−t0)

and similarly,

W2

(
(z − h2(x))(t1)

)
≤ µ

[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−η1(t1−t0).

Then for t ∈ [t0, t2), (8.9) becomes

V2(x(t)) ≤ 2µ
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−η1(t1−t0)e−η2(t−t1).

Then, for all t ≥ t0, we have

Vi(x(t)) ≤ 2µe−η1(t1−t0) · 2µe−η2(t2−t1) · · · 2µe−ηk−1(tk−1−tk−2)

×
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−ηk(t−tk−1).

Let η = min{ηj : j = 1, 2, · · · , k}. Then

Vi(x(t)) ≤ (2µ)k−1
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e−η(t−t0)

≤
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
e(k−1) ln ρ−η(t−t0),

where ρ = 2µ. Applying the average dwell-time condition with N0 = γ
ln ρ

, γ is an arbitrary

constant, τa = ln ρ
(η−η∗)

with η > η∗ leads to

Vi(x(t)) ≤
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
eρ−η(t−t0)
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and

Wi

(
(z − hi(x))(t)

)
≤
[
V1(x(t0)) +W1

(
(z − h1(x))(t0)

)]
eρ−η(t−t0)

This implies that there exists L > 0 such that

‖x(t)‖+ ‖z(t)‖ ≤ L(‖x(t0)‖+ ‖z(t0)‖)e−η∗(t−t0)/2.

8.2.2 Faulty Case

To analyze the reliable stabilization with respect to actuator failures, for any i ∈ S, consider

the decomposition of the control matrix Bi = Biσ+Biσ̄. Since the control input u is applied

to the system through the normal actuators, the closed-loop system becomes

ẋ = (A11i +B1σ̄iKiσ̄)x+ A12iz, (8.10a)

εiż = (A21i +B2σ̄iKiσ̄)x+ A22iz, (8.10b)

x(t0) =x0, z(t0) = z0. (8.10c)

where Kiσ̄ = −1
2
βiB

T
0iσ̄Piσ̄, with B0iσ̄ = B1σ̄i − A12iA

−1
22i
B2σ̄i , and Piσ̄ is a positive definite

matrix such that (A0i + B0iσ̄Kiσ̄)TPiσ̄ + Piσ̄(A0i + B0iσ̄Kiσ̄) = −I. Setting εi = 0, one

may get z = hiσ̄(x) = −A−1
22i

(A21i + B2σ̄iKiσ̄)x. In the following theorem, we assume that

σ̄i = Σ̄i.

Theorem 8.2.2. The trivial solution of system (8.10) is globally exponentially stable if the

average dwell-time condition and the following assumptions hold for any i ∈ S

199



(i) Re[λ(A22i)] < 0, and AT11i
P1i + P1iA11i + βiP1i

(
A12iA

−1
22i
B2Σ̄iB

T
1Σ̄i
−B1Σ̄iB

T
1Σ̄i

)
P1i +

αiI = 0;

(ii) there exist positive constants aji, j = 1, · · · , 6 such that

2xTP1iA12ihiΣ̄(x) ≤ a1ix
Tx, (8.11)

2xTP1iA12i(z − hiΣ̄(x)) ≤ a2ix
Tx+ a3i(z − hiΣ̄(x))T (z − hiΣ̄(x)), (8.12)

2(z − hiΣ̄(x))TP2iR1iΣ̄
x ≤ a4ix

Tx+ a5i(z − hiΣ̄(x))T (z − hiΣ̄(x)), (8.13)

(z − hiΣ̄(x))TR2Σ̄i(z − hiΣ̄(x)) ≤ a6i(z − hiΣ̄(x))T (z − hiΣ̄(x)), (8.14)

where hiΣ̄(x) = −A−1
22i

(A21i + B2Σ̄iKiΣ̄)x, P2i is the solution of AT22i
P2i + P2iA22i =

−Iin, R1iΣ̄
= A−1

22i
(A21i + B2Σ̄iKiΣ̄)[A11i + B1iKi − A12iA

−1
22i

(A21i + B2Σ̄iKiΣ̄)] where

KiΣ̄ = −1
2
βiB

T
0iΣ̄
PiΣ̄, and R2Σ̄i = 2P2iA

−1
22i

(A21i + 1
2
βiB2Σ̄iB

T
2Σ̄i

(A12iA
−1
22i

)TP1i)A12i −

1
2
βiB2Σ̄iB

T
1Σ̄i
P1i;

(iii) there exist a positive constant εi such that −ĀiΣ̄ is an M-matrix where

ĀiΣ̄ =

[
λmax(NiΣ̄)

λmax(P1i
)

a3i

λmin(P2i
)

a4i

λmin(P1i
)

εi(a5i+a6i)−1
εiλmax(P2i

)

]
.

Proof. Let Vi(x) = xTP1ix and Wi

(
(z − hΣ̄i(x))(t)

)
= (z − hΣ̄i(x))TP2i(z − hΣ̄i(x)) be
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Lyapunov function candidates. Then, we have

V̇i(x) = ẋTP1ix+ xTP1iẋ

=
[
(A11i +B1Σ̄iKiΣ̄)x+ A12iz

]T
P1ix+ xTP1i

[
(A11i +B1Σ̄iKiΣ̄)x+ A12iz

]
= xT

[
(A11i −

1

2
βiB1Σ̄iB

T
0iΣ̄PiΣ̄)TP1i + P1i(A11i −

1

2
βiB1Σ̄iB

T
0iΣ̄PiΣ̄)

]
x

+ 2xTP1iA12i(z − hiΣ̄(x)) + 2xTP1iA12ihiΣ̄(x)

= xT
[
AT11i

P1i + P1iA11i + βiP1i

(
A12iA

−1
22i
B2Σ̄iB

T
1Σ̄i
−B1Σ̄iB

T
1Σ̄i

)
P1i

]
x

+ 2xTP1iA12i(z − hiΣ̄(x)) + 2xTP1iA12ihiΣ̄(x)

≤ xT (−αi + a1i + a2i)Ix+ a3i(z − hiΣ̄(x))T (z − hiΣ̄(x))

≤ −αi + a1i + a2i

λmax(P1i)
Vi(x) +

a3i

λmin(P2i)
Wi

(
(z − hΣ̄i(x))(t)

)
(8.15)

We also have

Ẇi

(
(z − hΣ̄i(x))(t)

)
= (ż − ḣiΣ̄(x))TP2i(z − hiΣ̄(x)) + (z − hiΣ̄(x))TP2i(ż − ḣiΣ̄(x))

=
[ 1

εi
((A21i +B2Σ̄iKiΣ̄)x+ A22iz)− ḣiΣ̄(x)

]T
P2i(z − hiΣ̄(x))

+ (z − hiΣ̄(x))TP2i

[ 1

εi
((A21i +B2Σ̄iKiΣ̄)x+ A22iz)− ḣiΣ̄(x)

]
= − 1

εi
(z − hiΣ̄(x))T (z − hiΣ̄(x))− 2(z − hiΣ̄(x))TP2iḣiΣ̄(x)
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≤ (a5i −
1

εi
)(z − hiΣ̄(x))T (z − hiΣ̄(x)) + a4ix

Tx

+ (z − hiΣ̄(x))TR2Σ̄i(z − hiΣ̄(x))

≤ a4i

λmin(P1i)
Vi(x) +

[εi(a5i + a6i)− 1

εiλmax(P2i)

]
Wi((z − hiΣ̄(x))(t)), (8.16)

where R2Σ̄i = 2P2iA
−1
22i

(A21i − 1
2
βiB2Σ̄iB

T
1Σ̄i
P1i + 1

2
βiB2Σ̄iB

T
2Σ̄i

(A12iA
−1
22i

)TP1i)A12i .

Combining (8.15) and (8.16), we get the M -matrix −ĀiΣ̄ with

ĀiΣ̄ =

[
λmax(NiΣ̄)

λmax(P1i
)

a3i

λmin(P2i
)

a4i

λmin(P1i
)

εi(a5i+a6i)−1
εiλmax(P2i

)

]
.

Proceeding as done in the proof of Theorem 8.2.1, we get the desired result.

Example 8.2.3. Consider system (8.1) with S = {1, 2},

A111 =

[
−5 0
0 −10

]
, A121 =

[
0.1 2
0.1 0

]
, A211 =

[
1 3
2 1

]
, A221 =

[
1 −2
3 −2

]
,

A112 =

[
−3 1
0 −6

]
, A122 =

[
1 0

0.1 0.3

]
, A212 =

[
2 3
1 1

]
, A222 =

[
−2 1
1 −1

]
,

B11 =

[
−5 0.5
0.1 0.15

]
, B21 =

[
3 −1
1 4

]
, B12 =

[
4 5

0.5 1

]
, B22 =

[
2 −2
1 3

]
,

ε1 = 0.01, β1 = 0.5, a11 = 0.1, a21 = 0.15, a31 = 0.02, a41 = 0.01, a51 = 70, Q1 = −4I,

ε2 = 0.02, β2 = 0.25, a12 = 0.3, a22 = 0.2, a32 = 0.2, a42 = 0.02, a52 = 30, and Q2 = −I.
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Figure 8.2.1: Singularly perturbed switched system: Operational actuators.

Case 1. When all actuators are operational, we have

P11 =

[
0.1025 0.0274
0.0274 0.0615

]
, P12 =

[
0.1697 0.0616
0.0616 0.1322

]
,

P21 =

[
1.5 1
1 1.75

]
, P21 =

[
0.5 0.5
0.5 1

]
,

and

K1 =

[
0.0217 0.0031
0.0840 0.0238

]
, K2 =

[
−0.1638 −0.0869
−0.1449 −0.0842

]
.

Thus, the matrices A0i +B0iKi (i = 1, 2) are Hurwitz and τa = lnµ
α∗−ν = 1.8330.
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Case 2. When there are failures in the first actuator of B1i, and the second actuator of

B2i for both modes, i.e.,

B1Σ̄1
=

[
0 0.5
0 0.15

]
, B2Σ̄1

=

[
3 0
1 0

]
, B1Σ̄2

=

[
0 5
0 1

]
, B2Σ̄2

=

[
2 0
1 0

]
,

we have

P11 =

[
0.0993 0.0257
0.0257 0.0606

]
, P12 =

[
0.2828 0.1570
0.1570 0.2145

]
,

P21 and P22 are the same as for the normal case, and

K1 =

[
−0.1024 −0.0278
−0.0134 −0.0055

]
, K2 =

[
−0.1355 −0.0991
−0.1964 −0.1249

]
.
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Figure 8.2.2: Singularly perturbed switched system: Faulty actuators.

Thus, the matrices A0i +B0iKi (i = 1, 2) are Hurwitz and τa = lnµ
α∗−ν = 4.1498.
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Figures 8.2.1 and 8.2.2 show the simulation results of ‖x‖ (top) and ‖z‖ (bottom) for the

normal and the faulty cases respectively.

8.3 Conclusion

This chapter has established new sufficient conditions that guaranteed the global exponen-

tial stability of SCSPS. The output of the faulty actuators has been treated as an outage.

We have shown that, using the average dwell-time condition with multiple Lyapunov func-

tions, the full order switched system has been exponentially stabilized by using the state

feedback control law u = Kix A numerical example has been introduced to clarify the

proposed results.
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Chapter 9

Switched Control SPS with Time Delay

In the present chapter, we extend the results of chapter 8 for switched singularly perturbed

systems with time delay via reliable controller when all the actuators are operational as

well as when some of them experience failures. An illustrative example is provided to

illustrate our results. The contents of this chapter form the basis of [14].

9.1 Problem Formulation and Preliminaries

Consider the following system

ẋ = A11ix+ Ã11ix(t− r1) + A12iz + Ã12iz(t− r1) +B1iu, (9.1a)

εiż = A21ix+ Ã21ix(t− r1) + A22iz +B2iu, (9.1b)

xt0(s) = φ1(s), zt0(s) = φ2(s), s ∈ [−r, 0], r = max{r1, r2, r3}, (9.1c)

where x ∈ Rm, z ∈ Rn are the system slow and fast states respectively, u ∈ Rl is the

control input, and Ajki , Ãjki , j, k ∈ {1, 2}, i ∈ S = {1, 2, · · · , N} are known real constant
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matrices with A22i is a nonsingular Hurwitz matrix, and 0 < εi � 1. For r = max{r1, r2, r3}

where rj = jr1 > 0 for all j = {1, 2, 3}, let Cr be the space of all continuous functions that

are defined from [−r, 0] to Rn. For any t ∈ R+, let x(t) be a function defined on [t0,∞).

Then, we define xt : [−r, 0] → Rn by xt(s) = x(t + s) for all s ∈ [−r, 0], and its norm by

‖xt‖r = supt−r≤θ≤t ‖x(θ)‖, where r > 0 is the time delay. φ1(t), φ2(t) ∈ Cr. K ∈ Rl×n is

the control gain matrix such that u = Kx, where (A11i , B1i) is assumed to be stabilizable.

Setting εi = 0 turns (9.1b) into the algebraic equation

z = hi(x) = −A−1
22i

[(A21i +B2iKi)x+ Ã21ix(t− r1)], (9.2)

and zt = z(t − r1) = −A−1
22i

[
(A21i + B2iKi)x(t − r1) + Ã21ix(t − r2)

]
. Plug z and zt into

(9.1a) gives the slow reduced subsystem

ẋs = (A0i +B0iKi)xs(t) + C0ixs(t− r1) +D0ixs(t− r2), (9.3)

where A0i = A11i − A12iA
−1
22i
A21i , B0i = B1i − A12iA

−1
22i
B2i , C0i = Ã11i − A12iA

−1
22i
Ã21i −

Ã12iA
−1
22i

(A21i + B2iKi), and D0i = −Ã12iA
−1
22i
Ã21i . Choose Ki such that A0i + B0iKi is

Hurwitz.

Then, the closed-loop system becomes


ẋ = (A11i +B1iKi)x+ Ã11ix(t− r1) + A12iz + Ã12iz(t− r1),

εiż = (A21i +B2iKi)x+ Ã21ix(t− r1) + A22iz,
xt0(s) = φ1(s), zt0(s) = φ2(s), s ∈ [−r, 0], r = max{r1, r2, r3},

(9.4)

Definition 9.1.1. [105] The trivial solution of system (9.4) is said to be exponentially
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stable if there exist positive constants L, and λ such that

‖x(t)‖+ ‖z(t)‖ ≤ L(‖xt0‖r + ‖zt0‖r)e−λ(t−t0), t ≥ t0

for all x(t) and z(t), the solutions of system (9.4).

Lemma 9.1.2. [59] Consider the following differential inequality

ẏ ≤ −αy(t) + β sup
t−r≤θ≤t

y(θ), t ∈ [t0,∞), t0 ≥ 0

where α, and β are positive constants such that α > β > 0. Then, there exists a positive

constant η such that y(t) ≤ ‖y0‖re−η(t−t0), t ≥ t0, where η is a unique positive solution of

g(η) = −η + α− βeηr = 0.

9.2 The Main Results

In this section we introduce our main theorems and proofs.

9.2.1 Normal Case

Theorem 9.2.1. The trivial solution of system (9.4) is globally exponentially stable if the

following assumptions hold for each i ∈ S

(i) Re[λ(A22i)] < 0, and (A0i +B0iKi)
TP1i + P1i(A0i +B0iKi) = −Qi;

208



(ii) there exist positive constants ν, aji, βji, j = 1, · · · , 7 such that

2xTP1i

[
A12ihi(x) + Ã12ihi(x(t− r1))

]
≤ a1i‖x‖2 + a2i‖x(t− r1)‖2

r1

+ a3i‖x(t− r2)‖2
r2
, (9.5)

2xTP1i

[
Ã11ix(t− r1) + A12i

(
(z − hi(x))(t)

)
+ Ã12i

(
(z − hi(x))(t− r1)

)]
≤ a4i‖x‖2 + a5i‖z − hi(x)‖2 + a6i‖x(t− r1)‖2

r1
+ a7i‖(z − hi(x))(t− r1)‖2

r1
, (9.6)

(z − hi(x))TR1i(z − hi(x)) ≤ ν‖z − hi(x)‖2, (9.7)

−2(z − hi(x))TP2i

[
α1x+ α2x(t− r1) + α3x(t− r2) + α4x(t− r3)

+ α5((z − hi(x))(t− r1)) + α6((z − hi(x))(t− r2))
]

≤ β1i‖x‖2 + β2i‖z − hi(x)‖2 + β3i‖x(t− r1)‖2
r1

+ β4i‖x(t− r2)‖2
r2

+ β5i‖x(t− r3)‖2
r3

+ β6i‖(z − hi(x))(t− r1)‖2
r1

+ β7i‖(z − hi(x))(t− r2)‖2
r2
,

(9.8)

where hi(x) = −A−1
22i

[
(A21i + B2iKi)x + Ã21ix(t − r1)

]
, P2i is the solution of the

Lyapunov equation AT22i
P2i + P2iA22i = −Iin , where Iin is an identity matrix, α1 =

−A−1
22i

(A21i + B2iKi)
[
A11i + B1iKi − A12iA

−1
22i

(A21i + B2iKi)
]
, α2 = A−1

22i

[
(A21i +

B2iKi)
[
A12iA

−1
22i
Ã21i + Ã12iA

−1
22i

(A21i +B2iKi)− Ã11i

]
− Ã21i

[
A12iA

−1
22i

(A21i +B2iKi)−

(A11i+B1iKi)
]]
, α3 = A−1

22i

[
[(A21i+B2iKi)Ã12i+Ã21iA12i ]A

−1
22i
A21i+Ã21i [Ã12iA

−1
22i

(A21i+

B2iKi)−Ã11i ]
]
, α4 = A−1

22i
Ã21iÃ12iA

−1
22i
Ã21i, α5 = −A−1

22i

[
(A21i+B2iKi)Ã12i+Ã21iA12i

]
and α6 = −A−1

22i
Ã21iÃ12i;
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(iii) γ1i = λmax(Ni)
λmax(P1i

)
+ β1i

λmin(P1i
)
< 0, γ2i = a5i

λmin(P2i
)

+ εi(ν+β2i)−1
εiλmax(P2i

)
< 0, and −γi > δi, where

γi = max
{
γ1i, γ2i

}
, δ1i = max

{
a2i+a6i+β3i

λmin(P1i
)
, a7i+β6i

λmin(P2i
)

}
, δ2i = max

{
a3i+β4i

λmin(P1i
)
, β7i

λmin(P2i
)

}
,

and δi = δ1i + δ2i + β5i

λmin(P1i
)
;

(iv) for each i ∈ S, the average dwell-time condition holds.

Proof. Let Vi(x) = xTP1ix andWi((z−hi(x))(t)) = (z−hi(x))TP2i(z−hi(x)) be Lyapunov

function candidates for the slow and the fast subsystem, respectively. Then, we have

V̇i(x) = ẋTP1ix+ xTP1iẋ

=
[
(A11i +B1iKi)x+ Ã11ix(t− r1) + A12iz + Ã12iz(t− r1)

]T
P1ix

+ xTP1i

[
(A11i +B1iKi)x+ Ã11ix(t− r1) + A12iz + Ã12iz(t− r1)

]
= − xTQix+ 2xTP1i

[
Ã11ix(t− r1) + A12iz + Ã12iz(t− r1)

]
≤ xT (−Qi + (a1i + a4i)I)x+ a5i‖z − hi(x)‖2 + (a2i + a6i)‖x(t− r1)‖2

r1

+ a7i‖(z − hi(x))(t− r1)‖2
r1

+ a3i‖x(t− r2)‖2
r2

≤ λmax(Ni)

λmax(P1i)
Vi(x) +

a5i

λmin(P2i)
Wi

(
(z − hi(x))(t)

)
+
a2i + a6i

λmin(P1i)
‖Vi(x(t− r1))‖r1

+
a7i

λmin(P2i)
‖Wi

(
(z − hi(x))(t− r1)

)
‖r1 +

a3i

λmin(P1i)
‖Vi(x(t− r2))‖r2 , (9.9)

210



where Ni = −Qi + (a1i + a4i)I is negative definite. We also have

Ẇi((z − hi(x))(t)) = (ż − ḣi(x))TP2i(z − hi(x)) + (z − hi(x))TP2i(ż − ḣi(x))

= [
1

εi
A22i(z − hi(x))− ḣi(x)]TP2i(z − hi(x))

+ (z − hi(x))TP2i [
1

εi
A22i(z − hi(x))− ḣi(x)]

= − 1

εi
(z − hi(x))T (z − hi(x))− 2(z − hi(x))TP2iḣi(x)

≤ (β2i −
1

εi
)(z − hi(x))T (z − hi(x)) + (z − hi(x))TR1i(z − hi(x))

+ β1i‖x‖2 + β3i‖x(t− r1)‖2
r1

+ β4i‖x(t− r2)‖2
r2

+ β5i‖x(t− r3)‖2
r3

+ β6i‖(z − hi(x))(t− r1)‖2
r1

+ β7i‖(z − hi(x))(t− r2)‖2
r2

≤ β1i

λmin(P1i)
Vi(x) +

[εi(ν + β2i)− 1

εiλmax(P2i)

]
Wi((z − hi(x))(t))

+
β3i

λmin(P1i)
‖Vi(x(t− r1))‖r1 +

β4i

λmin(P1i)
‖Vi(x(t− r2))‖r2

+
β5i

λmin(P1i)
‖Vi(x(t− r3))‖r3 +

β6i

λmin(P2i)
‖Wi((z − hi(x))(t− r1))‖r1

+
β7i

λmin(P2i)
‖Wi((z − hi(x))(t− r2))‖r2 (9.10)

where R1i = 2P2iA
−1
22i

(A21i +B2iKi)A12i .
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Adding (9.9) and (9.21), we get

U̇i(x) =V̇i(x) + Ẇi((z − hi(x))(t))

≤
( λmax(Ni)

λmax(P1i)
+

β1i

λmin(P1i)

)
Vi(x) +

(a2i + a6i + β3i

λmin(P1i)

)
‖Vi(x(t− r1))‖r1

+
a3i + β4i

λmin(P1i)
‖Vi(x(t− r2))‖r2 +

β5i

λmin(P1i)
‖Vi(x(t− r3))‖r3

+
( a5i

λmin(P2i)
+
εi(ν + β2i)− 1

εiλmax(P2i)

)
Wi((z − hi(x))(t))

+
a7i + β6i

λmin(P2i)
‖Wi((z − hi(x))(t− r1))‖r1 +

β7i

λmin(P2i)
‖Wi((z − hi(x))(t− r2))‖r2

≤ γi

(
Vi(x) +Wi((z − hi(x))(t))

)
+ δ1i

(
‖Vi(x(t− r1))‖r1 + ‖Wi((z − hi(x))(t− r1))‖r1

)
+ δ2i

(
‖Vi(x(t− r2))‖r2 + ‖Wi((z − hi(x))(t− r2))‖r2

)
+

β5i

λmin(P1i)

(
‖Vi(x(t− r3))‖r3 + ‖Wi((z − hi(x))(t− r3))‖r3

)
≤ γiUi(x(t)) + δi sup

t−r<θ<t
Ui(θ) (9.11)

where γi = max
{
λmax(Ni)
λmax(P1i

)
+ β1i

λmin(P1i
)
, a5i

λmin(P2i
)
+ εi(ν+β2i)−1

εiλmax(P2i
)

}
, δ1i = max

{
a2i+a6i+β3i

λmin(P1i
)
, a7i+β6i

λmin(P2i
)

}
,

δ2i = max
{

a3i+β4i

λmin(P1i
)
, β7i

λmin(P2i
)

}
, and δi = δ1i + δ2i + β5i

λmin(P1i
)
.
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Then, by Lemma 9.1.2, there exists ηi > 0 such that for t ∈ [tk−1, tk),

Ui(t) ≤ ‖Ui(x(tk−1 − r))‖re−ηi(t−tk−1)

=‖Vi(x(tk−1 − r)) +Wi

(
(z − hi(x))(tk−1 − r)‖re−ηi(t−tk−1)

≤
(
‖Vi(x(tk−1 − r))‖r + ‖Wi

(
(z − hi(x))(tk−1 − r)

)
‖r
)
e−ηi(t−tk−1)

which leads to

Vi(x) ≤ Vi(x(t)) +Wi((z − hi(x))(t))

≤
(
‖Vi(x(tk−1 − r))‖r + ‖Wi

(
(z − hi(x))(tk−1 − r)

)
‖r
)
e−ηi(t−tk−1), (9.12)

Similarly,

Wi

(
(z − hi(x))(t)

)
≤
(
‖Vi(x(tk−1 − r))‖r + ‖Wi

(
(z − hi(x))(tk−1 − r)

)
‖r
)
e−ηi(t−tk−1),

For any i, j ∈ S, we have

Vj(x(t)) ≤ µ1Vi(x(t)),

Wj

(
(z − hj(x))(t)

)
≤ µ2Wi

(
(z − hi(x))(t)

)
.

Let µ = max{µ1, µ2} ≥ 1, then we have

Vj(x(t)) ≤ µVi(x(t)),

Wj

(
(z − hj(x))(t)

)
≤ µWi

(
(z − hi(x))(t)

)
.

Starting with V1, we have for t ∈ [t0, t1)

V1(x(t)) ≤
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η1(t−t0)
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For t ∈ [t1, t2), we have

V2(x(t)) ≤
[
‖V2(x(t1 − r))‖r + ‖W2

(
(z − h2(x))(t1 − r)

)
‖r
]
e−η2(t−t1) (9.13)

we know that for t = t1, we have

V2(x(t1)) ≤ µ
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η1(t1−t0).

Similarly,

W2

(
(z − h2(x))(t1)

)
≤ µ

[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η1(t1−t0)

So that

‖V2(x(t1 − r))‖r ≤ µ
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η1(t1−t0−r)

and

‖W2

(
(z−h2(x))(t1− r)

)
‖r ≤ µ

[
‖V1(x(t0− r))‖r +‖W1

(
(z−h1(x))(t0− r)

)
‖r
]
e−η1(t1−t0−r).

Then, for t ∈ [t0, t2), (9.13) becomes

V2(x(t)) ≤ 2µ
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η1(t1−t0)eη1re−η2(t−t1)

Generally, we have for t ∈ [tk−1, tk),

Vi(x(t)) ≤
i−1∏
l=1

2µe−ηl(tl−tl−1)eηlr ×
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−ηi(t−ti−1)
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Let η = min{ηj : j = 1, 2, · · · , i}, and η̄ = max{ηj : j = 1, 2, · · · , i− 1}. Then

Vi(x(t)) ≤ (2µeη̄r)i−1
[
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
e−η(t−t0)

=
(
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
)
e(i−1) ln ρ−η(t−t0)

where ρ = 2µeη̄r. Applying the average dwell-time condition with N0 = γ
ln ρ

, γ is an

arbitrary constant, τa = ln ρ
(η−η∗)

with η > η∗ leads to

Vi(x(t)) ≤
(
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
]
eγ−η

∗(t−t0)

and similarly,

Wi((z − hi(x))(t)) ≤
(
‖V1(x(t0 − r))‖r + ‖W1

(
(z − h1(x))(t0 − r)

)
‖r
)
eγ−η

∗(t−t0)

This implies that there exists L > 0 such that

‖x(t)‖+ ‖z(t)‖ ≤ L(‖x(t0 − r)‖r + ‖z(t0 − r)‖r)e−η
∗(t−t0)/2,

which completes the proof.

Remark 9.2.2. Every subsystem in (9.4) is treated as an interconnected system. The ad-

equate approach to analyze the stability of this type of systems is to decompose it into lower

order subsystems ignoring the interconnection, study the stability of each mode. Then, use

this information with the interconnection to draw a conclusion about the stability prop-

erty. Condition (ii) means that the perturbation part (the interconnection) is assumed to

be bounded. Condition (iii) is needed to guarantee the exponential stability property, which

needs the stability degree to be larger than the interconnection.
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9.2.2 Faulty Case

For any i ∈ {1, 2}, consider the decomposition of the control matrix Bi = Biσ +Biσ̄. Then,

the closed-loop system becomes

ẋ = (A11i +B1σ̄iKiσ̄)x+ Ã11ix(t− r1) + A12iz + Ã12iz(t− r1), (9.14a)

εiż = (A21i +B2σ̄iKiσ̄)x+ Ã21ix(t− r1) + A22iz, (9.14b)

xt0(s) = φ1(s), zt0(s) = φ2(s), s ∈ [−r, 0], r > 0, (9.14c)

where Kiσ̄ = −1
2
βiB

T
0iσ̄Piσ̄, with B0iσ̄ = B1σ̄i − A12iA

−1
22i
B2σ̄i , and Piσ̄ is a positive definite

matrix such that (A0i + B0iσ̄Kiσ̄)TPiσ̄ + Piσ̄(A0i + B0iσ̄Kiσ̄) = −Qiσ̄. Setting εi = 0 turns

(9.14b) into an algebraic equation which has the following solution

z = hiσ̄(x) = −A−1
22i

[(A21i +B2σ̄iKiσ̄)x+ Ã21ix(t− r1)] (9.15)

and zt = z(t− r1) = −A−1
22i

[(A21i +B2σ̄iKiσ̄)x(t− r1) + Ã21ix(t− r2)].

In the following theorem, we assume that all susceptible actuators have experience

failures, i.e. σ̄ = Σ̄.

Theorem 9.2.3. The trivial solution of system (9.14) is globally exponentially stable if the

following assumptions hold for each i ∈ S

(i) Re[λ(A22i)] < 0, and

AT11i
P1i + P1iA11i + 1

2
βiP1i

(
A12iA

−1
22i
B2Σ̄iB

T
1Σ̄i

+ (A12iA
−1
22i
B2Σ̄iB

T
1Σ̄i

)T − 2B1Σ̄iB
T
1Σ̄i

)
P1i

+ αiI = 0
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(ii) there exist positive constants aji, βji, j = 1, · · · , 7 such that

2xTP1i

[
A12ihiΣ̄(x) + Ã12ihiΣ̄(x(t− r1))

]
≤a1i‖x‖2 + a2i‖x(t− r1)‖2

r1

+ a3i‖x(t− r2)‖2
r2
, (9.16)

2xTP1i

[
Ã11ix(t− r1) + A12i

(
(z − hiΣ̄(x))(t)

)
+ Ã12i

(
(z − hiΣ̄(x))(t− r1)

)]
≤ a4i‖x‖2 + a5i‖z − hiΣ̄(x)‖2 + a6i‖x(t− r1)‖2

r1
+ a7i‖(z − hiΣ̄(x))(t− r1)‖2

r1
,

(9.17)

−2(z − hiΣ̄(x))TP2iḣiΣ̄(x) ≤ β1i‖x‖2 + β2i‖z − hiΣ̄(x)‖2 + β3i‖x(t− r1)‖2
r1

+ β4i‖x(t− r2)‖2
r2

+ β5i‖x(t− r3)‖2
r3

+ β6i‖(z − hiΣ̄(x))(t− r1)‖2
r1

+ β7i‖(z − hiΣ̄(x))(t− r2)‖2
r2
, (9.18)

where hiΣ̄(x) = −A−1
22i

[
(A21i + B2Σ̄iKiΣ̄)x + Ã21ix(t − r)

]
with KiΣ̄ = −1

2
βiB0iΣ̄PiΣ̄,

and P2i is the solution of the Lyapunov equation AT22i
P2i + P2iA22i = −Iin , where Iin

is an identity matrix.

(iii) γ1i = λmax(NiΣ̄)

λmax(P1i
)

+ β1i

λmin(P1i
)
< 0, γ2i = a5i

λmin(P2i
)

+ εiβ2i−1
εiλmax(P2i

)
< 0, and −γi > δi, where

γi = max
{
γ1i, γ2i

}
, δ1i = max

{
a2i+a6i+β3i

λmin(P1i
)
, a7i+β6i

λmin(P2i
)

}
, δ2i = max

{
a3i+β4i

λmin(P1i
)
, β7i

λmin(P2i
)

}
,

and δi = δ1i + δ2i + β5i

λmin(P1i
)
.

(iv) for each i ∈ S, the average dwell-time condition holds.
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Proof. Let Vi(x) = xTP1ix and Wi

(
(z − hΣ̄i(x))(t)

)
= (z − hΣ̄i(x))TP2i(z − hΣ̄i(x)) be

Lyapunov function candidates for the slow and the fast subsystem, respectively. Then, we

have

V̇i(x) = xT
[
(A11i +B1Σ̄iKiΣ̄)TP1i + P1i(A11i +B1Σ̄iKiΣ̄)

]
x+ 2xTP1iA12i(z − hiΣ̄(x))

+ 2xTP1iA12ihiΣ̄(x) + 2xTP1iÃ11ix(t− r1) + 2xTP1iÃ12i(z − hiΣ̄(x))(t− r1)

+ 2xTP1iÃ12ihiΣ̄(x(t− r1))

= xT
[
AT11i

P1i + P1iA11i +
1

2
βiP1i

(
A12iA

−1
22i
B2Σ̄iB

T
1Σ̄i

+ (A12iA
−1
22i
B2Σ̄iB

T
1Σ̄i

)T

− 2B1Σ̄iB
T
1Σ̄i

)
P1i

]
x+ 2xTP1i

[
Ã11ix(t− r1) + A12i(z − hiΣ̄(x))

+ Ã12i(z − hiΣ̄(x))(t− r1) + Ã12ihiΣ̄(x(t− r1)) + A12ihiΣ̄(x)
]

≤ λmax(NiΣ̄)

λmax(P1i)
Vi(x) +

a5i

λmin(P2i)
Wi((z − hiΣ̄(x))(t)) +

a2i + a6i

λmin(P1i)
‖Vi(x(t− r1))‖r1

+
a7i

λmin(P2i)
‖Wi((z − hiΣ̄(x))(t− r1))‖r1 +

a3i

λmin(P1i)
‖Vi(x(t− r2))‖r2 , (9.19)
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where NiΣ̄ = (−αi + a1i + a2i)I is negative definite.

Ẇi

(
(z − hΣ̄i(x))(t)

)
=
[ 1

εi

(
(A21i +B2Σ̄iKiΣ̄)x+ Ã21ix(t− r1) + A22iz

)
− ḣiΣ̄(x)

]T
P2i(z − hiΣ̄(x))

+ (z − hiΣ̄(x))TP2i

[ 1

εi

(
(A21i +B2Σ̄iKiΣ̄)x+ Ã21ix(t− r1) + A22iz

)
− ḣiΣ̄(x)

]
=
[ 1

εi
A22i(z − hiΣ̄(x))− ḣiΣ̄(x)

]T
P2i(z − hiΣ̄(x))

+ (z − hiΣ̄(x))TP2i

[ 1

εi
A22i(z − hiΣ̄(x))− ḣiΣ̄(x)

]
= − 1

εi
(z − hiΣ̄(x))T (z − hiΣ̄(x))− 2(z − hiΣ̄(x))TP2iḣiΣ̄(x)

≤ (β2i −
1

εi
)‖z − hiΣ̄(x)‖2 + β1i‖x‖2 + β3i‖x(t− r1)‖2

r1

+ β4i‖x(t− r2)‖2
r2

+ β5i‖x(t− r3)‖2
r3

+ β6i‖(z − hiΣ̄(x))(t− r1)‖2
r1

+ β7i‖(z − hiΣ̄(x))(t− r2)‖2
r2

≤ β1i

λmin(P1i)
Vi(x)− (1− β2iεi)

εiλmax(P2i)
Wi((z − hi(x))(t))

+
β3i

λmin(P1i)
‖Vi(x(t− r1))‖r1 +

β4i

λmin(P1i)
‖Vi(x(t− r2))‖r2

+
β5i

λmin(P1i)
‖Vi(x(t− r3))‖r3 +

β6i

λmin(P2i)
‖Wi((z − hiΣ̄(x))(t− r1))‖r1

+
β7i

λmin(P2i)
‖Wi((z − hiΣ̄(x))(t− r2))‖r2 , (9.20)
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Adding (9.19) and (9.20), we get

U̇i(x) ≤
(λmax(NiΣ̄)

λmax(P1i)
+

β1i

λmin(P1i)

)
Vi(x) +

(a2i + a6i + β3i

λmin(P1i)

)
‖Vi(x(t− r1))‖r1

+
a3i + β4i

λmin(P1i)
‖Vi(x(t− r2))‖r2 +

β5i

λmin(P1i)
‖Vi(x(t− r3))‖r3

+
( a5i

λmin(P2i)
+

εiβ2i − 1

εiλmax(P2i)

)
Wi((z − hi(x))(t))

+
a7i + β6i

λmin(P2i)
‖Wi((z − hi(x))(t− r1))‖r1 +

β7i

λmin(P2i)
‖Wi((z − hi(x))(t− r2))‖r2

≤ γi

(
Vi(x) +Wi((z − hi(x))(t))

)
+ δ1i

(
‖Vi(x(t− r1))‖r1 + ‖Wi((z − hi(x))(t− r1))‖r1

)
+ δ2i

(
‖Vi(x(t− r2))‖r2 + ‖Wi((z − hi(x))(t− r2))‖r2

)
+

β5i

λmin(P1i)

(
‖Vi(x(t− r3))‖r3 + ‖Wi((z − hi(x))(t− r3))‖r3

)
≤ γiUi(x(t)) + δi sup

t−r<θ<t
Ui(θ) (9.21)

where γi = max
{
λmax(NiΣ̄)

λmax(P1i
)
+ β1i

λmin(P1i
)
, a5i

λmin(P2i
)
+ εiβ2i−1
εiλmax(P2i

)

}
, δ1i = max

{
a2i+a6i+β3i

λmin(P1i
)
, a7i+β6i

λmin(P2i
)

}
,

δ2i = max
{

a3i+β4i

λmin(P1i
)
, β7i

λmin(P2i
)

}
, and δi = δ1i + δ2i + β5i

λmin(P1i
)
.

Proceeding as done in the proof of Theorem 9.2.1, we get the desired result.

Example 9.2.4. Consider system (9.1) with S = {1, 2},

A111 =

[
−3 0
1 −7

]
, A121 =

[
1 2

0.1 0

]
, A211 =

[
2 0.5
1 1

]
, A221 =

[
1.5 −2
3 −3

]
,
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Ã111 =

[
−1 −0.4
0.2 0.8

]
, Ã121 =

[
−1 0.1
−0.5 −0.2

]
, Ã211 =

[
−1 0.5
−0.5 −1

]
,

A112 =

[
−5 1
0 −3

]
, A122 =

[
−2 0
0.1 3

]
, A212 =

[
1.5 3
2 1

]
, A222 =

[
−3 2
1.5 −2

]
,

Ã112 =

[
1 0.3

0.2 −1

]
, Ã122 =

[
0.01 −0.2
−1 0.5

]
, Ã212 =

[
−2 0.5
0.5 0.5

]
,

B11 =

[
−6 0.5
01 0.15

]
, B21 =

[
3 −2

1.5 4

]
, B12 =

[
3 4
1 1.5

]
, B22 =

[
2 −3
1 2

]
,

ε1 = 0.01, β1 = 0.5, a11 = 0.1, a21 = 0.15, a31 = 0.02, a41 = 0.15, a51 = 2, a61 =

0.15, a71 = 0.05, β11 = 0.1, β21 = 1, β31 = 0.01, β41 = 0.02, β51 = 0.015, β61 =

0.2, β71 = 0.1, Q1 = −4I. ε2 = 0.02, β2 = 0.25, a12 = 0.3, a22 = 0.02, a32 = 0.015, a42 =

0.2, a52 = 0.3, a62 = 0.01, a72 = 0.4, β12 = 0.1, β22 = 0.5, β32 = 0.02, β42 = 0.02, β52 =

0.25, β62 = 0.1, β72 = 0.01, Q2 = −I, and the initial conditions φ1 = sin(t), φ2 =

cos(t+ 1).

Case 1. [All the actuators are operational] For the first mode, the closed loop system is

given by


ẋ1

ẋ2

εż1

εż2

 =


−2.0074 −0.0059 1 2
0.9425 −7.0131 0.1 0
0.6941 0.6085 1.5 −2
2.6602 0.7528 3 −3



x1

x2

z1

z2

+


−1 −0.4 −1 0.1
0.2 0.8 −0.5 −0.2
−1 0.5 0 0
−0.5 −1 0 0



x1(t− r1)
x2(t− r1)
z1(t− r1)
z2(t− r1)

 .
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For the second mode, the closed loop system is given by


ẋ1

ẋ2

εż1

εż2

 =


−5.7150 −0.2098 −2 0
−0.2563 −3.4302 0.1 3
1.6338 3.1093 −3 2
1.6898 0.4890 1.5 −2



x1

x2

z1

z2

+


1 0.3 0.01 −0.2

0.2 −1 −1 0.5
−2 0.5 0 0
0.5 0.5 0 0



x1(t− r1)
x2(t− r1)
z1(t− r1)
z2(t− r1)

 .

Case 2. [Faulty actuators] For the first mode, assume we have faulty in the second actuator

of B11, and the first actuator of B21, and for the second mode, assume we have faulty in

the first actuator of both B12 and B22 i.e.,

B1Σ̄1
=

[
−6 0
1 0

]
, B2Σ̄1

=

[
0 −2
0 4

]
, B1Σ̄2

=

[
0 4
0 1.5

]
, B2Σ̄2

=

[
0 −3
0 2

]
,

The closed loop system is given by


ẋ1

ẋ2

εż1

εż2

 =


−3.6758 0.1850 1 2
1.1126 −7.0308 0.1 0
1.0713 0.5768 1.5 −2
2.8574 0.8463 3 −3



x1

x2

z1

z2

+


−1 −0.4 −1 0.1
0.2 0.8 −0.5 −0.2
−1 0.5 0 0
−0.5 −1 0 0



x1(t− r1)
x2(t− r1)
z1(t− r1)
z2(t− r1)

 .
For the second mode, the closed loop system is given by


ẋ1

ẋ2

εż1

εż2

 =


−5.6224 0.0651 1 2
−0.2334 −3.3506 0.1 0
1.9668 3.7012 1.5 −2
1.6888 0.5325 3 −3



x1

x2

z1

z2

+


−1 −0.4 −1 0.1
0.2 0.8 −0.5 −0.2
−1 0.5 0 0
−0.5 −1 0 0



x1(t− r1)
x2(t− r1)
z1(t− r1)
z2(t− r1)

 .

Figure 9.2.1 shows the simulation results of ‖x‖ (blue) and ‖z‖ (red) when all the actuators

are operational. Figure 9.2.2 shows the simulation results of ‖x‖ (in blue) and ‖z‖ (in red)

when failure occurs.
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Figure 9.2.1: Singularly perturbed switched system with time delay: Operational actuators.
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Figure 9.2.2: Singularly perturbed switched system with time delay: Faulty actuators.
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9.3 Conclusion

This chapter has addressed the global exponential stability problem of switched singularly

perturbed systems with time delay via reliable controller of the individual slow subsystems

under the average dwell-time signal law. The output of the faulty actuators has been

treated as an outage. Halanay inequality has been employed to achieve the desired results.

We have shown that, using the average dwell-time with multiple Lyapunov functions, the

switched system is exponentially stabilizable, when the slow subsystem is exponentially

stabilized by a reliable feedback controller.
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Chapter 10

Conclusions and Future Works

Throughout this thesis, the focus has been on studying some qualitative properties of

hybrid systems including switched systems, impulsive systems, and impulsive switched

systems. As stated in the early chapters, hybrid systems are very important in describing

many dynamical systems in engineering and sciences. These systems become more realistic

if a part of the system state history and some environment random processes are taken

into account, which results in the so-called stochastic hybrid systems with time delay.

Having introduced the definitions of hybrid systems and their usefulness, and provided

the background and preliminaries in Chapters 1 and 2, the contributions of this thesis and

some possible future works are summarized in this chapter.

In Part I, we have established some results on input-to-state stability and stabilization

(ISS) of switched, impulsive systems with and without time delay. The ISS analysis has

been achieved by multiple Laypunov functions and, to organize the switching among the

system modes, we have used the average dwell time switching law. As for the delay systems,
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Lyapunov-Razumikhin approach has been considered. So that, as a future work, one may

use Laypunov functional or La Salle’s Theorems. Moreover, throughout this part the

stabilization has been established by using state feedback control law with possible faulty

actuators. This may suggest considering systems with faulty sensors.

Part II deals with the stability and stabilization of large-scale systems with/without

random noise and with/without time delay. These systems have been decomposed into

smaller, low order subsystems. In fact, one may apply this approach to study some network

systems that are stabilized by decentralized controllers with possible failures in pre-specified

sets of actuators or sensors.

In Part III, the focus has been on developing some results regarding stability and stabi-

lization of singularly perturbed systems with/without time delay. The reliable stabilization

has been achieved through the slow subsystem due to their dominant behaviour. One may

study these systems with impulsive effects, or consider some external input disturbance and

establish the ISS properties. Furthermore, if these systems are subject to some random

noises, then one may conduct some researches on the stability and stabilization in certain

stochastic senses.
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