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Abstract 

Risky decisions made by humans exhibit characteristics common to each decision.  The related systems 

experience repeated abuse by risky humans and their actions collude to form a systemic behavioural set.  

Financial fraud is an example of such risky behaviour. Fraud detection models have drawn attention since 

the financial crisis of 2008 because of their frequency, size and technological advances leading to 

financial market manipulation.  Statistical methods dominate industrial fraud detection systems at banks, 

insurance companies and financial marketplaces.  Most efforts thus far have focused on anomaly 

detection problems and simple rules in the academic literature and industrial setting.  There are unsolved 

issues in modeling the behaviour of risky agents in real-world financial markets using machine learning.  

This research studies the challenges posed by fraud detection, including the problem of imbalanced class 

distributions, and investigates the use of Reinforcement Learning (RL) to model risky human behaviour.   

 

Models have been developed to transform the relevant financial data into a state-space system.  

Reinforcement Learning agents uncover the decision-making processes by risky humans and derive an 

optimal path of behaviour at the end of the learning process.  States are weighted by risk and then 

classified as positive (risky) or negative (not-risky).  The positive samples are composed of features that 

represent the hidden information underlying the risky behaviour.  

 

Reinforcement Learning is implemented as unsupervised and supervised models.  The unsupervised 

learning agent searches for risky behaviour without any previous knowledge of the data; it is not “trained” 

on data with true class labels.  Instead, the RL learner relates samples through experience.  The supervised 

learner is trained on a proportion (e.g. 90%) of the data with class labels.  It derives a policy of optimal 

actions to be taken at each state during the training stage.  One policy is selected from several learning 

agents and then the model is exposed to the other proportion (e.g. 10%) of data for classification.  RL is 

hybridized with a Hidden Markov Model (HMM) in the supervised learning model to impose a 

probabilistic framework around the risky agent’s behaviour. 

 

We first study an insider trading example to demonstrate how learning algorithms can mimic risky agents.  

The classification power of the model is further demonstrated by applying it to a real-world based 

database for debit card transaction fraud. We then apply the models to two problems found in Statistics 

Canada databases: heart disease detection and female labour force participation. 
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All models are evaluated using appropriate measures for imbalanced class problems: “sensitivity” and 

“false positive”.  Sensitivity measures the number of correctly classified positive samples (e.g. fraud) as a 

proportion of all positive samples in the data.  False positive counts the number of negative samples 

classified positive as a proportion of all negative samples in the data.  The intent is to maximize 

sensitivity and minimize the false positive rate.  All models show high sensitivity rates while exhibiting 

low false positive rates.  These two metrics are ideal for industrial implementation because of high levels 

of identification at a low cost.   

 

Fraud detection rate is the focus with detection rates of 75-85% proving that RL is a superior method for 

data mining of imbalanced databases.  By solving the problem of hidden information, this research can 

facilitate the detection of risky human behaviour and prevent it from happening.   
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Chapter 1 

Introduction 

Data mining of large databases has increased in societal importance as computers are faster, storage is 

larger and a large amount of data of varying data types is encountered.  Generally, data mining is the 

search for patterns, behaviours and anomalies that cannot be easily calculated from the data or gleaned 

from a visual representation.    

Databases in industry generated by human behaviour often may have examples that reflect an exchange of 

risk for reward, for example, financial market trading.  Risk may be both a qualitative and quantitative 

measurement of what someone is willing to sacrifice for a potential reward [ [1], [2], [3]].  High risk is 

usually associated with high rewards. An example of a risk-reward system is a financial market in which 

the corresponding risky behaviour is insider trading. Health is another example of a system in which there 

is a risk-reward relationship associated with lifestyle characteristics such as high stress and poor diet [4].   

A paradigm shift in the approach to data mining of risk-reward systems is introduced in this thesis by 

modeling, isolating and exploiting two types of risky human behaviour: collusion and repeated abuse.  

Collusion is a secret agreement between two or more persons for a deceitful or illegal purpose [5].  This 

definition is extrapolated to be “two or more database features” for a “risky” purpose where a “feature” is 

a column in the dataset.  A recent example of collusion in finance is in the foreign exchange markets 

where traders at different leading global financial institutions colluded to manipulate benchmark foreign 

exchange rates between 2009 and 2012 [6].   

Repeated abuse occurs when consistently higher than average rewards are associated with risky activity.  

“Abuse” is a term known to be associated with taking advantage of a system, such as finance or the 

human body.   

A general exploration of collusion and repeated abuse has not been previously researched in data mining 

literature and is the foundation of this thesis [7].  In addition to a lack of modeling general behaviours in 

risk-reward systems, current data mining solutions are limited by unadaptive solutions [8], domain-centric 

models [7], a lack of knowledge-based components [8] as well as lack of focus on misclassification [7].   

In the following sections, the risk-reward problem will be described in the context of data mining as well 

as the representative learning and decision-making models.  Performance evaluation and the need for 

algorithm design to meet the needs of industry are also discussed.   In the last section the thesis outline 

will be presented.  
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1.1 Problem Description 

The main objective of most data mining applications is to accurately identify specified samples in the 

dataset.   The objective of this research is to detect risky behaviour with a classifier.  The classifier is 

evaluated based on its ability to find the risky samples (called sensitivity or recall) and misclassify non-

risky samples as risky (called false positive).  The datasets are primarily bi-class imbalanced; these are 

datasets in which there are two classes and the majority class (non-risk) is much larger than the minority 

class (risk).  Ultimately the problem is to construct the most sensitive classifier with the lowest 

misclassification rate, not necessarily the most accurate classifier.  The problem of characterizing risky 

behavior is approached using machine learning algorithms and statistical models.   

1.1.1 Description of risk – reward relationship for data mining 

Risky behaviour in risk-reward systems is modeled by feature values in the database sample 

corresponding to high rewards.  The features are types of “behaviour” and the reward is a feature in the 

database summing up the benefit of that behaviour.  Collusion and repeated abuse are represented by 

several samples having the same feature values corresponding to high rewards.  In specific scenarios, high 

rewards can be associated with smart investing, or healthy living, for example. It is assumed that cases 

such as these do not exhibit the same feature values in all samples whereas risky samples in the thesis 

applications do share feature values.   

1.1.2 Learning and decision making 

To learn is to acquire knowledge, understanding, or mastery (of) by study, or experience [9].  Learning to 

solve a problem requires decision-making: selecting the optimal steps to reach a solution.   

Machine learning has been employed by data miners across many industries to solve problems such as 

forecasting consumer behaviour (retail [10], online advertising [11]), and anomaly detection (health [4], 

finance [7] [12]).  In this thesis, machine learning is used to learn the behaviour of the risky person 

through experience.  The learning process consists of an “agent” making decisions as it explores the 

database to derive optimal decisions for achieving the highest rewards.  Machine learning algorithms are 

known to require a lot of experience to draw conclusions [13]; this means they use a lot of data and time.  

To minimize this aspect, a statistical model was integrated with the optimal behaviour paths to uncover 

the samples with groups of feature values resulting in the highest rewards.   

1.1.3 Classification of imbalanced databases 

“Bi-class” or “binary” classification problems can be considered as anomaly detection problems, 

particularly in imbalanced databases [14].  For the purpose of binary classification, risky samples are 
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labeled as “positive” and non-risky samples as “negative”.  Because of the imbalanced distribution of the 

classes, traditional classifiers can easily find the negative class because there are so many samples to use 

for modeling.  These classifiers do not describe the positive class data at all and usually consider it as part 

of the negative class.  This results in high misclassification costs, which are unacceptable in industrial 

applications [15].  Approaches to the problem manifest in three ways: data level techniques to balance the 

data, algorithm techniques which model the minority class, cost-sensitive methods that combine data and 

algorithm techniques by assigning misclassification costs to classes [15].  He and Garcia [16] describe the 

objective of classification for imbalanced data is to obtain high accuracy for the minority class while not 

jeopardizing the accuracy of the majority class.  Therefore, an algorithm technique is used in this thesis to 

solve the problem.   It is evaluated by specific metrics to reflect the ability of the classifier to identify the 

minority class.  This objective is further explored in the thesis.   

1.1. Research objectives and scope 

The objective of this research is to accurately represent the risky behavioural patterns of agents in risk-

reward systems.  The problem is approached by constructing three models: an unsupervised 

Reinforcement Learning Search model, a Reinforcement Learning Classifier and a hybridized classifier 

using a Reinforcement Learning algorithm and a Hidden Markov Model.  To capture the agents’ risky 

behaviour three learning algorithms are employed: ε-greedy, Optimal Learning, and Boltzmann learning.  

The classifier is evaluated on four real-world databases, one of which contains balanced classes to test its 

applicability outside of anomaly detection problems.  Ultimately, the intention is to integrate the model 

into an industrial system; the goal is achieved when a sensitive classifier is constructed with minimal 

misclassification.   

1.2. Thesis outline 

The requisite background knowledge and a general literature review of relevant research on machine 

learning and statistical models in the context of data mining are presented in Chapter 2.  In Chapter 3, the 

Reinforcement Learning algorithms and Hidden Markov Model formulations are proposed.  The methods 

are then applied to financial fraud, heart disease, and female labour force participation in Chapter 4.  The 

conclusions and contributions to knowledge are summarized in Chapter 5. 
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Chapter 2 

Background and Literature Review 

2.1 Introduction 

The exciting problem of representing risky behavioural patterns of humans in risk-reward systems is best 

understood contextually.  Collusive and repeatedly abusive behaviour are known to be systemic in 

financial fraud and are both manifestations of “greed” [17].  The research conducted here was motivated 

by the author witnessing such behaviour for insider trading while working at a bank.  The specific type of 

insider trading observed is called “front running”, the practice of manipulating rates on a client's order to 

skim off extra points for the bank.  Manipulation usually involves some knowledge of future trades (e.g. 

insider information) to know the direction of the market.  This type of financial fraud can be collusive and 

frequently involves repeated abuse; a trader who is willing to front run one client is likely willing to front 

run many clients.  Front running is the main lever Bernie Madoff used [18] [19] to execute his Ponzi 

scheme in the years preceding the Global Financial Crisis of 2008; it is a common practice in the financial 

markets regulated in the equity and derivative markets by IIROC [20] in Canada.  One of the chief 

investigators of the Madoff case, Harry Markopolos, claims that front running is a widely occurring, 

common abuse that is openly tolerated [19] but has widespread consequences.  It is therefore necessary to 

characterize and identify this behaviour in the trading book so as to prevent and minimize the damage to 

investors and the financial markets.   

Palshikar and Apte [21] approached collusion detection using a graph-clustering algorithm, playing on the 

“network” aspect of collusion sets. Their work inspired Wu et al [22] to focus on one type of collusion-

based financial crime – circular trading in stock markets.  This is a practice of colluders (called a 

“collusion set”) circulating a large amount of shares within a short period of time to feign demand for the 

stock.  They approached the problem using a standard HMM with the Nelder-Mead simplex method for 

parameter estimation.  The term "collusion" appears [19] several times in descriptions of fraudulent 

scenarios where multiple participants perpetuated fraud.  The manipulation of foreign exchange [6] and 

interest rates [23] are examples of collusive behaviour for which legal proceedings are in progress for 

traders at several banks colluding over instant messaging to manipulate rates for profit.   

More generally, insider trading is a crime for which systems have been constructed for detection.  In the 

American stock exchange, NASDAQ [24], the problem of insider trading is attacked by reviewing market 

activity for stocks that will have material news released that day by the stock-issuing company [25]. Their 

treatment of insider trading is focused on trading that occurs on material non-public information. The 

main limitation is that the system is not flexible for new domains or markets and requires a lot of 

maintenance due to its level of detail.  Other fraud detection systems rely on scenarios of events (time-
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based) and known patterns [8]. The scenarios and patterns are updated after consultation with domain 

experts, a detection paradigm that lacks automated adaptability.   

On a larger scale, financial fraud is a pervasive practice ranging from mortgage fraud to accounting fraud, 

money laundering to insider trading [7].  This research focuses on two types of financial fraud: insider 

trading (including front running), and plastic card fraud (debit card fraud).  Lu states two challenges to 

fraud research [26]: 1) secrecy with regards to techniques - banks do not want people to know their 

techniques so the public can get around them, 2) limited availability of real fraud records. These 

challenges were overcome by accessing public information and using techniques gleaned from the 

author's work experience in the financial industry.   

The authors of [27] comment that the major task in fraud detection is the construction of algorithms or 

models that can learn how to recognize a variety of patterns [27].  While collusion and repeated abuse can 

be viewed as two patterns, they cover a large behavioural space and generalize a lot of patterns.  They are 

also not content specific and, within an adaptable system, can classify many types of behaviour under one 

umbrella.   

Zhang and Zhou [27] emphasized that fraud detectors require systems that can detect rare events, outliers 

or noise.  There is evidence that financial fraud is often executed by the same individual repeatedly via 

transactions in which he is making higher than normal profits [17]. Traders are aware that sophisticated 

algorithms exist to detect their transactions. Therefore, the risk of being detected is lower when trades are 

slightly more profitable than average trades as opposed to executing extremely profitable trades.  

Repeated abuse can be characterized by frequency and density.  Plastic card fraud experiences this 

phenomenon where several transactions are executed rapidly and in nearby locations.  A systems diagram 

of a typical industrial financial fraud detection system with inputs and outputs is shown in Figure 2-1.   

 

Figure 2-1: Financial fraud detection systems diagram 

Financial transactions are the raw data that is preprocessed, grouped and classified based on the System 

Model used by the financial institution.  Examples of the System Model are Linear Regression, Artificial 

Neural Networks, and Rule-based systems [7].  The resulting patterns are compared to known patterns 

System Model Known patterns

Fraudulent 

transaction 

ID

Financial 

transactions
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and those that either match known patterns of fraud or do not match regular patterns of behaviour are 

output as fraudulent transactions or “breaks” [28].  These breaks are not necessarily descriptive.  The 

entire transaction is visible, but the reasons for which it was flagged are because it broke a rule or was 

anomalous to known behaviour.  Since the fraud detection is conducted on a one-off basis, seemingly fair 

transactions go undetected.  However, when several “fair” transactions are grouped together by an 

individual or asset, the behaviour can be illegal.  Therefore, current industrial methods are not focused on 

detecting groups of fraudulent behaviour such as those modeled in this thesis.   

In [19], Francis suggests that financial regulators must act like public health experts and constantly search 

for pathologies (e.g. criminal pathologies) that have the capacity to spread and cause severe crisis.  The 

health analogy of pathology of financial fraud allowed us to consider general systems that demonstrate 

risky pathologies.   

Financial systems are generalized as “risk-reward” systems because humans acting on the system absorb 

some level of risk for reward.  This system representation can then be extended to other systems in which 

risk is exchanged for reward.  An example of such a system is the human body.  Humans make risky 

decisions with respect to their lifestyle choices in exchange for heart disease.  Conversely, a non-risky 

(healthy) lifestyle is typically rewarded with long life.  Repeated abuse is a characteristic of human 

systems where poor choices are made daily.  Additionally, different choices can collude in the human 

body with deleterious results [4].  Dahlof observed that moderate risk levels in several risk factors is often 

more dangerous to health than large risk in one risk factor. Heart disease is commonly detected by 

searching clinical data where there are more cases of health than disease. 

Diagnosis of heart disease has been approached from a risk perspective in the literature [29] [30].  The 

authors remark that in the emergency room, clinicians require a decision-making tool to assess risk and 

diagnosis.  Liu et al [30] use a combination of data level sampling processed through an ensemble of 

support vector machine classifiers (SVM) from which a risk score is generated.  They simulate the real-

world medical setting where more than one opinion is sought before making final decisions.   

Heart disease has been generalized in this research to a “risk-reward” system based on the literature and 

that it is related to “risky behaviour”.  Health is certainly a more complicated domain with underlying 

genetic and biological systems that we cannot necessarily control nor fully understand.  In the interest of 

studying imbalanced databases we pursued heart disease with the understanding that a domain expert 

would be required in order to accomplish a more thorough investigation in the health care domain.   

In the context of data mining, isolating cases of collusion and repeated abuse can be a classification 

problem: from a group of samples, a subset is classified as risky, and the rest of the samples are classified 

as non-risky.  This can also be considered as an anomaly detection problem in which the model figures 

out or is instructed as to what is “normal” behaviour, and then uses a distance calculation to compare new 
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samples to “normal” samples.  The main problem with an anomaly approach is that suspicious samples 

are dependent on described normal or average behaviour in the database, and anything else is labeled 

fraud.  

Many different algorithms have been developed to solve the problem of fraud detection, and more 

generally, classification: linear regression (LR), artificial neural networks (NN), support vector machines 

(SVM), and K-nearest neighbor (KNN).  Because classification is a broad area, the following literature 

review is performed only on some of the methods related to fraud detection and generally, imbalanced 

databases.  Imbalanced databases have many more samples belonging to some classes than others 

whereas balanced databases have a consistent number of samples attributed to each class.  A deeper 

discussion of imbalanced databases will follow later in Chapter 2.  The literature review will also discuss 

Reinforcement Learning and Hidden Markov Models which were used to develop new methods for 

classification of imbalanced databases in the thesis.  The sections in this chapter will present detailed 

background information on relevant concepts and mathematical formulations popular in the literature.     

2.2 Important Reinforcement Learning concepts and techniques 

Reinforcement Learning (RL) is a computational approach to learning from interaction between an agent 

and its environment [31]. It is a type of goal-directed learning in which the agent receives a numerical 

reward signal. RL is model-free; it does not fit the data to a function nor estimate function parameters.  In 

practice, this means that it does not require a transition probability matrix as in a Markov Decision 

Process (MDP) [32].  It simply begins searching through the environment without any examples of 

desired behaviour by making decisions and assigning scores to each example of behaviour [33].  The 

study of behaviour dates back to 1911 in which Thorndike [34] studied animal psychology.  He concluded 

that animals learn from experience and associations, not memory or imitation.  In particular, repetition of 

an experience consecrates a reaction in the animal’s mind to reach a goal.  RL applies the concept of 

repetition by frequently visiting states of the system that provide the highest reward.   

RL is classically applied in the field of control theory where actions are repeated and modified until 

stability or an optimal policy is achieved [33] [13].  The applications range from manufacturing to playing 

games to optimal routing [35].   RL appeared in the data mining literature as part of a Learning Classifier 

System in 1978 but gained popularity in the early 1990s [36].  Since then, RL has been applied to 

classification [37] [38], clustering [39] [40], and outlier detection problems [41].    

The application of RL in this thesis was motivated by financial fraud investigative techniques used by Lu 

[41].  Lu's exploration of fraud detection hinged off constructing a “fraud case builder”. The goal of the 

algorithm was not to find fraud; instead it was to gather the elements contributing to fraud, and build 

policies that dictate fraudulent behaviour. RL is an improvement to current systems by performing the 
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role of identifying suspicious data. Due to its “trial and error” approach, it eliminated the need for expert 

intervention because it built a body of evidence based on best rewards [42].  Sawh et al. [43] applied RL 

to two problems in finance: derivation of an optimal trading strategy and detection of insider trading.  Lu 

[41] and Sawh et al. [43] demonstrated how operating in a model-free environment increased the agent’s 

ability to detect new instances of anomalous data.  RL does not require knowledge of the entire 

environment; calculations are based on a temporal differencing equation which only looks one step ahead.  

This is in contrast to learning models that examine an entire database or network [44].  RL examines data 

directly by linking records with large rewards; other learning methods often group records based on 

statistical features [45].   The main disadvantage of RL is that sometimes the problem can have a large 

state space; it takes a long time to converge and requires a lot of data to learn the problem [33] [46].  The 

ability to operate unconstrained can be a disadvantage because it might identify anomalies that do not 

characterize anomalous behaviour and draw incorrect conclusions.   Improvement to RL techniques will 

be presented later in this thesis.   

2.2.1  Reinforcement Learning components 

The RL problem is described by three main components: an agent, an environment and an action. In 

engineering terms, the components are analogous to a controller, a controlled system/plant and a control 

signal. A schematic of the components is shown in Figure 2-2. 

 

Figure 2-2: Component diagram of agent-environment interaction 

The agent interacts with the environment by an action. Once the action is taken, the environment produces 

a numerical reward. The agent receives the information, evaluates it and selects an action based on the 

evaluation. The action takes the agent to the next state. In defining an environment, anything that cannot 

be changed arbitrarily by the agent is considered to be part of the environment. 

Generally, states are the information available to the agent, actions are any decision it wants to learn how 

to make, and rewards represent desired outcomes. For example, if the system problem is a human 

Agent

Environment

ActionReward State
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throwing a ball, then the states are the different positions of the human muscles in the act of throwing.  

The action is throwing the ball and the reward is the accuracy of the throw.  

The difference between MDPs and RL is that RL does not require transition probabilities to move 

between states; rather, change of state is dictated by action selection. A reward function is also not 

required by RL. Instead, the reward is computed and collected as the agent traverses the environment.  

An important step in RL is that the agent must collect a reward before recognizing a new state as part of 

the feedback loop. In the example of throwing a ball, a human must assess the accuracy of his throw 

before throwing again.  In doing so, he can modify his eye-hand coordination and muscle movement so 

that the next throw is more accurate. In the sport of baseball, athletes repeatedly throw balls to train their 

muscles during practice so that they do so automatically and accurately under the pressure of a game.  

2.2.2 Bellman Action-Value equation 

RL applies a temporal differencing method called the Bellman Action-Value equation (BAV) [31] for 

solving MDPs:  

𝑄𝑡(𝑖, 𝑎) = 𝑄𝑡(𝑖, 𝑎) + 𝛼[𝑟𝑖𝑗
𝑡 (𝑎) + 𝛾𝑄𝑡(𝑗, 𝑏) − 𝑄𝑡(𝑖, 𝑎)] (2-1) 

In the BAV equation (2-1), 𝑖, 𝑗 are the states, 𝑎, 𝑏 are actions, and 𝑟𝑖𝑗(𝑎) is the reward obtained when the 

agent moves from state 𝑖 to state 𝑗 via action 𝑎. The equation also supplies a learning rate, α, which 

controls the rate of convergence of the model. RL methods can be episodic or continuous. For episodic 

applications, the discounting factor 𝛾 = 1 because the applications do not require discounting in time. All 

applications in this thesis were episodic.  The symbol for time, 𝑡, represents the simulation number and if 

the RL algorithm is run over the input table 100 times, then t = 1, … ,100. 

The agent begins at state 𝑖 and takes action 𝑎. The agent's position is represented by a “state-action” pair, 

(𝑖, 𝑎). The agent then obtains a new state-action pair, (𝑗, 𝑏), from where the next iteration will begin. The 

resulting values output from equation (2-1) are called “Q-values”. Q-values are stored in a matrix called a 

“Q-table” where each cell represents a value for 𝑄(𝑖, 𝑎).  The matrix is of size (number of states x number 

of actions). Q-values are considered to be “weightings” on each state-action pair.   

Once the simulation has converged and the Q-table is complete, the optimal action (i.e. decision) is 

determined for each state.  This translates into the optimal behaviour of the agent in each state.  To do 

this, the heaviest weightings for each state are examined.  The corresponding actions are the underlying 

behaviour to be extracted and studied.  Therefore the maximum Q-value is selected for each state. The 

resulting column vector of states is called the “V-table”.  

The V-table represents the “optimal policy”. A policy is a stochastic rule by which the agent selects 

actions as a function of states [31]. The optimal policy maps the best action for each state. The best action 
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represents the action that returns the highest reward in that state. The agent's objective is to maximize the 

amount of reward it achieves over time. The V-table gives the maximum return across all actions for each 

state.  

Knowledge of the optimal policy is useful to decision-makers in three significant ways.  It indicates what 

action to take, in the future, when in that state.  It indicates the action resulting in the highest reward for 

each state.  In a reverse engineering problem it indicates the optimal path of states and actions for the 

environment.   

Temporal differencing is appropriate for data mining applications because it links records in a database. 

By differencing between two Q-values in equation (2-1), it finds a differential, or a distance in Q-values. 

The size of this difference contributes to the Q-value, and ultimately, the weighting of that state. For those 

states that are close in weights, the Q-value is smaller and thus the state-action pair is similar to the other 

state-action pairs. However, when the Q-values greatly differ, the larger Q-values represent a deviating 

state-action pair.  Over many simulations one state-action pair is compared with several others and a 

distinct set of state-action pairs stand out as significantly weighted.  

2.3 Learning algorithms 

In Reinforcement Learning optimal policies are used to take actions.  These policies are constructed by 

learning algorithms.  The learning algorithms “learn” the problem by balancing between exploration and 

exploitation.  Exploration of the database occurs when the learning agent varies the actions it takes in 

order to explore opportunities for finding higher rewards.  This behaviour is equivalent to a non-risky 

human who varies his decisions according to the environment.  Exploration also allows the agent to 

search for collusive agents in the database.  Exploitation occurs when the learning agent has found the 

action that consistently returns higher rewards and repeatedly takes that action in order to achieve the 

highest expected value.  This is the behaviour of a risky agent who repeatedly abuses a system.   

The behaviour of the decision-makers must be learned based on the assumption that risky human 

behaviour is adaptive; in this sense the learning agent is “unsupervised” in that it is not told which state to 

go to and does not realize a reward until it reaches that state.  RL is an unsupervised model when it is not 

trained on data containing the true classes (i.e. labeled data).  When the agent is exposed to true class 

labels during the learning process it is “supervised” because it is trained on labeled data. The models in 

this thesis use RL in both its unsupervised and supervised forms.  

There are four common policies in the literature: random, greedy, ε-greedy and Softmax [31].  The 

random policy is purely exploration; there is no preferred action.  Therefore the probability of selecting an 

action is 
1

|𝐴(𝑖)|
 where |𝐴(𝑖)| represents the number of actions available at state 𝑖.  The random policy is 



 

 11 

called Sarsa in the literature [31].  Sarsa stands for: State, Action, Reward, State, Action. It tends to be 

exploratory and time-consuming.  

The greedy policy is a purely exploitative learning algorithm, called Q-learning.  Because action 𝑎 has the 

highest Q-value for state 𝑖 and is selected each time the state is visited, 𝑄(𝑖, 𝑎) increases and therefore the 

same action is selected each time.  Q-learning is an exploitative method that follows the greedy behavior.  

Q-learning is considered to be an “off-policy” method because it is always maximizing(𝑖, 𝑎) ∀ 𝑎 ∈ 𝐴(𝑖). 

Therefore the policy for action selection is not “learned”; it is the same every time.   

The ε-greedy policy balances exploration and exploitation based on the value of ε.  Actions in the set of 

admissible actions are selected with probability  
𝜖

|𝐴(𝑖)|
.  The Softmax policy, also known as Boltzmann 

Learning [47] is another method of balancing exploration with exploitation.  The probability of selecting 

an action is given by the following formula:  

𝑃(𝑎) =
𝑒𝑄(𝑖,𝑎)/𝜏

∑ 𝑒𝑄(𝑖,𝑧)/𝜏
𝑧∈|𝐴(𝑖)|

 (2-2) 

where 𝑄(𝑖, 𝑎) is the action-values for state 𝑖 when action 𝑎 is taken.  𝜏 is a positive number called 

temperature which is the variable used for tuning the model to the problem.  When the temperature is high 

the probabilities of taking all actions are the same; as the temperature decreases with the number of 

samples, the higher probabilities are assigned to actions with higher values for 𝑄(𝑖, 𝑎).  This results in an 

exponentially increasing probability for the most frequently selected action.  Boltzmann learning has the 

advantage of not spending a lot of time on bad alternatives and works best when there are a small number 

of alternatives (e.g. less than 100) [47].   

The third learning algorithm employed in this thesis is a statistical method outside of the RL literature; it 

is called “Adaptive learning” [47].  This is a novel approach to learning in the RL setting introduced by 

this thesis.  In honour of Powell’s text this learning algorithm will be called “optimal learning” going 

forward.  Optimal learning is set in a Bayesian framework; the Bayesian perspective is primarily 

interested in estimating the mean and variance of µ which is the true mean of the random variable W.  In 

the RL setting, the random variable W represents the reward associated with a RL action and is recast as 

𝑊𝑎.  The model assumes that a prior distribution of belief about the unknown parameter 𝜇𝑎 exists and that 

selection of one action over another is independent. 

The action with the highest estimated mean reward is selected when the agent enters a state.  The mean 

for the action selected is updated with the reward the agent collects.   

It is assumed  𝑊𝑎~𝑁(𝜇𝑎 , 𝜎𝑊𝑎

2 ). 𝜃𝑎
𝑛 is used to estimate 𝜇𝑎 after n observations for action a.  𝛽𝑎

𝑛 is used to 

estimate the precision of 𝑊𝑎 as  𝛽𝑎
𝑊 =

1

𝜎𝑊𝑎
2 .   

𝜃𝑎
𝑛  is iteratively updated using equation (2-3):  
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𝜃𝑎
𝑛+1  =

𝛽𝑎
𝑛𝜃𝑎

𝑛 + 𝛽𝑎
𝑊𝑊𝑛+1

𝛽𝑎
𝑛 + 𝛽𝑎

𝑊  (2-3) 

𝛽𝑎
𝑛 is iteratively updated using equation (2-4):  

𝛽𝑎
𝑛+1 = 𝛽𝑎

𝑛 + 𝛽𝑎
𝑊 (2-4) 

Once the agent collects a reward W
n+1

 is set equal to the reward which represents the newest information 

in the model.  The equations for 𝜃𝑎
𝑛 and 𝛽𝑎

𝑛are then updated for each action.  Then the action producing 

the highest mean is selected: max𝑎∈𝐴 𝜃𝑎
𝑛.   

The learning algorithms presented in this section were selected based on their diversity; varying from 

simple to complex, and a mix of artificial intelligence with statistical methods.  Moreover, they most 

similarly mimicked a risky agent in a risk-reward system by repeatedly abusing the system (i.e. 

exploitation) while colluding with other agents (i.e. exploration).   

The RL algorithm finds the optimal path of a risky agent.  The path outputs are Q-values and rewards.  

This research used Q-values to determine risk in the RL Search and RL Classifier models.  To assess state 

riskiness using rewards, a Hidden Markov Model was applied.   

2.4 Important Hidden Markov Model concepts and techniques 

The intuition behind Markov models is to use the Markov property to simplify a Markov chain of events.   

𝑃[𝑋𝑡+1|𝑋𝑡, 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋0] = 𝑃[𝑋𝑡+1|𝑋𝑡] (2-5) 

(2-5) says that the value of 𝑋𝑡 in the next time step is only determined by the most recent value of 𝑋𝑡 and 

not the entire set of values 𝑋𝑡 has taken in the past [48].  

In practice, this means treating a stochastic process {𝑋𝑡|𝑡 ∈ 𝑇} as a first-order Markov process.  Typical 

Markov model analysis assumes that the state sequence of the process is known and observable.  In a 

Hidden Markov Model (HMM), the state sequence through which the process passes is unobservable.   

The objective of the HMM is to use a sequence of observations of the dynamics of the process to uncover 

the underlying hidden states [32].   

Formally, a HMM is applied when the problem is to recover a sequence of states 𝑥(𝑡) from observed data 

𝑦(𝑡). The main assumption is that a Markov chain is the underlying process with internal states hidden 

from the observer [32].  HMM solves the conditional probability in equation (2-6).   

𝑃[𝑦(𝑡)|𝑥(𝑡)] (2-6) 

The observations are the output of the system, and are also referred to as “emissions”.  HMMs are applied 

to state-based systems where the system outputs an emission when it arrives in a state.  There are a finite 

number of possible emissions and states.   
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Hidden Markov Models are doubly stochastic processes.  According to Ibe [32], this means that an 

underlying stochastic process is unobservable and can only be observed through another stochastic 

process that produces a sequence of observations.  Using one observed stochastic process to derive 

another stochastic process makes it a doubly stochastic process.  Figure 2-3 shows the two processes and 

the link between the states that make them sequential.   

 

Figure 2-3: HMM representation 

The square boxes represent the emissions O1, O2, O3, O4 that are some observable output from the 

system.  These observations relate to hidden states S1, S2, S3, S4.  The goal of a HMM is to find the 

states, in the correct order, that produced the emissions.  The state sequence is found based on the 

information stored in two matrices: a transition matrix, 𝑃[𝑥(𝑡 + 1)|𝑥(𝑡)] which describes the probability 

of an agent’s transitions between states and an emissions matrix, 𝑃[𝑦(𝑡)|𝑥(𝑡)], which describes the 

probability of the output given the current state.   

HMMs have many applications, the most popular being in speech recognition [49].  The observed data in 

this case is sounds and the hidden states represent words.  The application of HMM in this thesis was 

motivated by Eisler’s application of HMM to uncover financial market volatility [50]. Volatility measures 

the uncertainty about returns of a stock [1] which is not directly observable from the stock prices 

themselves.  Volatility is instrumental in the decisions made by financial market agents because it gives 

the perception of the risk associated with that stock [51]. Eisler et al. selected HMM so they could 

visualize the sample path taken by volatility over time.  The research by this thesis is intended to uncover 

risky behaviour, a hidden process like volatility.   

HMMs appear in the financial fraud literature as well.  Wu et al [22] observed financial trades to uncover 

multi-variable states where the variables indicate whether a transaction is malicious and part of a 

collusion set.  Khan et al [52] used HMMs to uncover spending behaviour via observed credit card 

transactions.   

In the literature there are two types of problems solved using HMM: 
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1. To derive the sequence of states, indexed by time, from a set of observations. 

2. To assign probabilities of classes in the test dataset. 

The main disadvantage of HMM is that model training can take long and convergence is not guaranteed 

[32].  The model is constrained by probabilistic assumptions which can be too restrictive for some 

systems.  The documented limitations were overcome in this research by training the model using RL and 

then applying the HMM probabilistic model assumptions to quickly derive risky states.   

2.4.1 HMM components 

In a HMM model with N states, γ emissions and 𝑡 = {1, 2,3, … , T} steps in a sequence, the fundamental 

variables are as follows: 

𝑆: finite set of N states 𝑆 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁} 

Ω : finite set of 𝛾 types of observations Ω = {Ω1, Ω2, Ω3, … , Ω𝛾} 

𝑄 : hidden states 𝑄 = {𝑞1, 𝑞2, 𝑞3, … , 𝑞T} 

O: path of observable emissions 𝑂 = {𝑜1, 𝑜2, 𝑜3, … , 𝑜T} 

𝑄 is a subset of 𝑆  

K : observation paths 𝐾 = {𝑘1, k2, k3, … , 𝑘𝐾} 

𝑆 is a hidden Markov process that is observed through Ω; therefore Ω = 𝑓(𝑆) for some function 𝑓.  𝑆 is 

the state process and Ω is the observation process.  The model parameters calculated prior to solving the 

HMM are the transition probabilities (𝑃 = {𝑝𝑖𝑗}), emissions probabilities (Φ = {𝜙𝑖(𝑜𝑇)}) and initial state 

probabilities (𝜋 = {𝜋𝑖});   When describing an HMM it is customary to denote the triplet 𝜆 = (𝑃, Φ, 𝜋) 

for the model parameters used to fully define the model.   

The transition probabilities 𝑃 = {𝑝𝑖𝑗} reflect the probability of moving from state 𝑖 to state 𝑗 in a discrete 

first-order Markov chain. The Markov equation for transitioning between states is given by,  

𝑃(𝑞𝑡+1 = 𝑗|𝑞𝑡 = 𝑖, 𝑞𝑡−1 = 𝑙, 𝑞𝑡−2 = 𝑚, … , 𝑞0 = 𝑛) = 𝑃(𝑞𝑡+1 = 𝑗|𝑞𝑡 = 𝑖) = 𝑝𝑖𝑗, (2-7) 

describing the assumption that the future state depends only on the current state. 

The probabilities satisfy conditions 1 and 2 [32]: 

1. 0 ≤ 𝑝𝑖𝑗 ≤ 1 

2. ∑ 𝑝𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑁𝑗 , since the states are mutually exclusive and collectively exhaustive. 

They are displayed in an [N x N] matrix 𝑃 which will also be called a “transition probability matrix” 

(TM) in this thesis.  It takes the form: 

𝑃 = [

𝑝11 ⋯ 𝑝1𝑁

⋮ ⋱ ⋮
𝑝𝑁1 ⋯ 𝑝𝑁𝑁

] 
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The TM models the transitions between states thereby giving a fully-defined space from which to derive a 

state sequence.   

A state transition diagram is a graphical representation of 𝑃.  One is shown in Chapter 3 describing the 

fundamental transition assumptions underlying the algorithms developed during this research.   

Another component of 𝜆 is Φ = {𝜙𝑖(𝑜𝑇)}, the emissions matrix (EM).  It is an [N x γ] matrix mapping 

the probability of an observation given that the system is in a specific state. 

𝜙𝑖 = 𝑃(𝑜𝑡|𝑆𝑖) (2-8) 

The EM can be calculated using two methods:  

1. Empirical method.  The probabilities are derived from observations resulting from some dynamic 

process which transitions through states in sample data.   

2. Theoretical method.  The probabilities are derived from a probability distribution of expected 

observations when in each state. 

Note that the rows of the EM sum to 1.  This is because the total probability of state output emissions 

must equal 1. 

The final component of λ are the initial state probabilities, 𝜋 = {𝜋𝑖}, otherwise known as the marginal 

probabilities.  𝜋𝑖  describes the probability of a single event occurring.  A joint probability is the 

probability that two events will occur simultaneously.  𝑝𝑖𝑗 is a joint probability because it gives the 

probability of an agent being in 𝑠𝑖 and going to 𝑠𝑗.  The marginal probability describes the probability that 

the system is in 𝑠𝑖, not accounting for where it transitioned to or from,  and is used as the initial 

probability for state  𝑠𝑖 of the system.   

The system of equations represented by 𝐴𝑥 = 𝑏 is used to solve for π.  𝐴 = 𝑃 with the last row of 𝑃 

replaced with 1s to satisfy the sum of probability condition [53].  𝑥 is a vector of 𝑁 marginal probabilities 

and 𝑏 = [0,0, … 1]. 

The resulting probability output from the HMM is a posterior state probability.  It is the conditional 

probability of being at a state given an observation and model λ.   

𝑃(𝑄|𝑂, 𝜆) (2-9) 

This calculation results in a [N x 𝛾] matrix.  Posterior probabilities condition on observations so the total 

probability for the observation is distributed among the states.  The columns of a posterior probability 

matrix sum to 1.  

2.4.2 HMM assumptions 

There are three fundamental assumptions that need to be satisfied to use a HMM model [32]:  
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1. Markov Assumption 

The next state in a system depends only on the current state, and the transition probabilities are 

defined by equation (2-7).  The HMM is first-order.  

 

2. The stationarity assumption 

The state-transition probabilities are independent of the actual time the transitions take place.  

Thus, for any two times 𝑡1 and  𝑡2,  

 

𝑃(𝑞𝑡1+1 = 𝑗|𝑞𝑡1
= 𝑖)) = 𝑃(𝑞𝑡2+1 = 𝑗|𝑞𝑡2

= 𝑖, ) = 𝑝𝑖𝑗 (2-10) 

3. The observation independence assumption 

The current observation or output is statistically independent of previous observations.   

2.4.3 HMM fundamental problems 

There are three fundamental problems that can be solved using HMM: 

1. The learning problem.  Given a set of observation sequences find a HMM that best explains the 

observation sequence.  Find 𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝑃(𝑂|𝜆). 

2. Evaluation problem. Given a model  𝜆 = (𝑃, Φ, 𝜋), find the probability that observation sequence 

𝑂 = {𝑜1, 𝑜2, 𝑜3, … , 𝑜T} comes from that model.  Find 𝑃(𝑂|𝜆). 

3. Decoding problem.  Given a model, 𝜆 = (𝑃, Φ, 𝜋), find the most likely sequence of hidden states 

that could have generated a given observation sequence.  Find 𝑄∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑃(𝑄, 𝑂|𝜆).   

The learning problem estimates the HMM parameters 𝑃, Φ, 𝜋 given a set of observations in a training set.  

The Baum-Welch algorithm is commonly used to solve this problem [32].  In this thesis, HMM 

parameters are calculated empirically from the observations collected by the RL agent, a procedure 

described in Chapter 3.  The Baum-Welch algorithm is not used. 

The goal of solving the evaluation problem is to find  𝑃(𝑂|𝜆).  The evaluation problem estimates the 

probability of an emission 𝑜𝑡 given the model 𝜆 = (𝑃, Φ, 𝜋).  The most straightforward way to find this 

probability is to enumerate all possible state sequences of length T and then sum their output probabilities 

[54].  The method forms a trellis of states and calculates the probability of each state occurring at a 

specific time in the sequence, 𝑡𝑖. [32].  For the calculation, compute a forward probability variable 𝛼𝑡(𝑖) 

as defined in equation (2-11). 

𝛼𝑡(𝑖) =  𝑃(𝑜1, 𝑜2, … . , 𝑜𝑡 , 𝑞𝑡 = 𝑠𝑖|𝜆) 𝑡 = 1, … , 𝑇; 𝑖 = 1, … , 𝑁 (2-11) 

𝛼𝑡(𝑖) represents the probability of being in state 𝑠𝑖 at time 𝑡 after having observed sequence 

{𝑜1, 𝑜2, … , 𝑜𝑇} .  It is calculated by summing probabilities for all incoming arcs in the trellis node.  The 

forward algorithm is implemented by the following steps: 
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Initialization: 

𝛼1(𝑖) = 𝜋𝑖 𝜙𝑖(𝑜1)  1 ≤ 𝑖 ≤ 𝑁 (2-12) 

 

In the initialization step, the forward probability variable for state i is calculated as the marginal 

probability for state i multiplied by the emission probability of observation 1 (𝑜1) coming from state i.   

Induction:  

𝛼𝑡+1(𝑗) = {∑ 𝑝𝑖𝑗

𝑁

𝑖=1

𝛼𝑡(𝑖)} 𝜙𝑗(𝑜𝑡+1)   1 ≤ 𝑡 ≤ 𝑇 − 1;  1 ≤ 𝑗 ≤ 𝑁 (2-13) 

Iteratively the forward probability variable moves along a path of states using the transition probability, 

the forward probability from the previous step and the emission probability corresponding to the emission 

and state.  The forward probability variable accumulates probability as it goes down a path so there is no 

need to save intermediate probability values.   

Termination: 

𝑃(𝑂|𝜆) = ∑ 𝛼𝑇(𝑖)

𝑁

𝑖=1

= ∑  𝑃(𝑂, 𝑞𝑇 = 𝑠𝑖|𝜆)

𝑁

𝑖=1

 (2-14) 

 

The model terminates at the end of the observation sequence T.  It sums over all terminal probabilities 

from all state paths.  The forward algorithm is linear in time. The output is a [1xK] matrix with one 

probability assigned to each sequence of observations.  

The Viterbi algorithm is commonly described in the literature to solve the decoding problem: find the 

most likely path of states specified by 𝑃, Φ, and O [55] [56] [54]. The output of the algorithm is a set of 

optimized sequential states.  Optimality is defined by the state sequence that has the highest probability of 

producing the given observation sequence.   

This research takes the perspective on risky human behaviour that it is independent of time.  Because of 

this, a unique approach has been invented using posterior probabilities to solve the decoding problem 

independent of time as described in Chapter 3.   

This section has provided an overview of the fundamental assumptions, problems and applications for 

HMM.  The probabilistic assumptions provide a holistic approach to analysis of state-based systems.  

2.5 Classification 

Classification is a supervised learning method by which data is optimally grouped together based on 

similar characteristics. Supervised learning methods are trained on data with labels assigning the correct 

class to the sample.  After training, the classifier is validated on the same dataset to tune the parameters 
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and then tested on a separate set of unlabeled data to evaluate its ability to identify the correct classes.  In 

contrast, unsupervised methods such as clustering are trained on unlabeled data and draw conclusions 

based on specified conditions and metrics [57].  Classifiers are implemented using a variety of techniques; 

a short summary of statistical and machine learning classifiers are presented in this section.   

2.5.1 Statistical Classification 

The oldest classification methods are statistical and can be described in two phases; the “classical phase” 

is based on linear discrimination [58], whereas the “modern” phase is more flexible looking for joint 

distributions of features in each class.  Statistical classification is characterized by having an explicit 

underlying probability model to describe each class [49] [57].  Examples of modern statistical classifiers 

are linear regression [7], rule-based methods [59], peer-group analysis [60], Bayesian methods [45], 

Hidden Markov Model classifier [49], and Gaussian mixture models [61].   

In risk models, statistical tools are founded upon comparing observed data with expected values and 

generating "behaviour profiles" [62].  The output model is typically the same: the system generates 

"alerts" which are in the form of a "risk score" describing a probability of suspicion.  According to [60], 

there are two approaches for using statistical methods for fraud detection, depending on whether the 

pattern of the fraud is known or not.  If known, then pattern matching techniques are employed for 

classification.  If unknown, anomaly detection methods are used.  Anomaly detection methods can be 

considered as "one-class" problems where the normal behaviour is characterized and everything else is 

outliers.   

The advantage of statistical methods is that they have been around for a long time and are therefore 

industrially acceptable in the current infrastructure.  They are well understood, fast, quick to train, and 

achieve good accuracy for simple datasets.  The biggest drawback is these models are usually constructed 

by statisticians and lack knowledge-based components.  When new data arrives the parameters must be 

re-estimated to capture the dynamics of the new information. When used on imbalanced databases, they 

model the negative class and, as a result, have trouble finding the positive class.   

Rule-based methods are considered as statistical classifiers because they are of a logical form: If 

{condition} then {outcome} and are implemented as a result of statistical analysis.  The financial industry 

is heavily dependent on such methods because they are easy to implement, understand and investigate.  

Furthermore, a lot of banking fraud scenarios can be summarized into such conditional statements and has 

thus kept banking fraud to the low levels at which they currently exist [63].   

Krivko [59] uses a hybrid model for plastic card fraud detection systems.  His model first finds deviations 

of data from an account model of aggregated spending behaviour whereby he creates models for "groups" 
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then runs the deviating groups through a rule-based filter.  Krivko's model is adaptive by modifying the 

degree of risk as new transactions enter the time window.   

Current methods in the banking industry are rule-based ( [59], [62], [64], [7]) which have proven to be 

successful but mostly used because they are easy to understand and implement. While rules have been 

sufficient, they are limited to fixed values and thus are not always dynamic.  This constraint provides an 

opportunity for fraudsters to exploit the gaps in the rules.   

Linear regression (LR) is a statistical model whereby one or more input variables 𝑥𝑖 are used to predict 

one output variable 𝑦.  When linear regression is used for binary classification it is called a logistic 

regression model and outputs a binary value.  It is a very popular method in the fraud detection literature.   

Jha et al [65] apply a logistic regression model to credit card fraud; it is also used as a benchmark in [10] 

and is referred to 16 times as a financial fraud detection model in Ngai et al's literature review [7].  LR 

estimates parameters based on the dominating class in a binary problem and thus is insufficient for 

imbalanced problems.   

HMM is considered to be a statistical classifier because it is fully described using probability.  The 

properties of the HMM that make it so popular is the ease of implementation and a solid mathematical 

basis for classification problems.   Khorasani et al use HMM to classify Parkinson’s disease using human 

gait data [66].  They apply the Baum-Welch algorithm for training the model and estimating 𝑃,Φ and π.  

Their results show success on a balanced database.  HMM is the most used classifier in emotion 

classification [49].  The drawbacks of HMM classifiers are that they require proper initialization for the 

model parameters before training and a long training time is often associated with them [49].  Other 

design issues of the HMM classifier include determining an optimal number of states, the type of 

observations and the optimal number of observation symbols.   

Gaussian mixture models (GMM) have attracted considerable interest for data mining applications [61]. 

The underlying assumption of the GMM is that the dataset can be modeled using a Gaussian probability 

density function.  In this research the dataset was purposely not modeled, or fitted to any distributions.  

Therefore GMMs were not applied.   

The linear regression model is used as a benchmark for the results of this thesis.  Rule-based models were 

reviewed due to their popularity in the financial industry and the Hidden Markov Model classifier was 

described because it is integrated in the invention proposed by this research.   

2.5.2 Machine Learning  

Machine Learning encompasses automatic computing procedures that learn a task from example.  It 

endeavours to sufficiently mimic human perception, reasoning, and learning to make decisions from 

incomplete information [67]. Reinforcement learning is a machine learning technique.  Examples of 
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machine learning classifiers are support vector machines (SVM) [68], and k-nearest neighbour classifiers 

[57].  Artificial neural networks (NN) are often considered under the general umbrella of “artificial 

intelligence” [58] but because of its learning capabilities to approximate human reasoning it will be 

considered here as a machine learning technique for classification.   

Support vector machines (SVM) were developed in 1995 for binary classification problems [68] for 

linearly separable data.  Based in pattern recognition, SVM maximizes a margin by creating a hyperplane 

which separates the classes.  SVMs are often selected for classification because of their reliable 

performance and efficiency [30]. However, it is overwhelmed by the majority class instances in the case 

of imbalanced data sets [69].   

K-nearest neighbour (KNN) is a machine learning algorithm which classifies samples according to a 

similarity measure, for example, Euclidean distance.  It can be used in a supervised manner where it is 

first trained on labeled data and then the training samples are assigned to classes. It can also be used in an 

unsupervised manner by pre-selecting a number of clusters and then assigning samples using the distance 

measure to each cluster. When used in this manner it is called “K-means”.  The main advantage of KNN 

methods is that they are easy to use, intuitive and have had a lot of success on balanced databases.  KNN 

was used to classify companies that violate accounting disclosure rules [70].  The positive class was 40% 

which made it a relatively balanced database.  In the biomedical classification space, Majid et al balanced 

their database and then apply KNN to identify cancer [71].  The variable k indicates the number of 

neighbours to be located nearby the classified sample.  Majid et al ran tests on both the imbalanced 

dataset and the preprocessed, balanced dataset; performance values increased tremendously when the data 

was balanced.  After testing many values for k, the best results were when k=1.   

Artificial neural networks (NN) consist of layers of interconnected nodes; these interdependencies 

incorporate nonlinearity allowing for very general functions to be modeled.  NN combine the complexity 

of some of the statistical techniques with the machine learning objective of imitating human intelligence; 

in NN learning is done at an “unconscious” level by creating a non-linear equation and there is no 

accompanying ability to make learned concepts transparent to the user [58].   

NNs are the most advanced fraud detection models implemented industrially.  An example of an 

industrial leader is FICO [72] in their Falcon Fraud Manager for plastic card fraud detection [73].  Their 

systems provide alerts for plastic card fraud.  Equifax [74] also uses a neural network based solution in 

their product called Equifax Gemini Verify Score [75] which is industrially known to be the best product 

on the market.   

Ogwueleka et al [10] applied NN in their study of customer relationship management at an international 

retail bank.  At the time of publication, they were the first to apply NN for predicting the behavior of 

customers in banks.  The purpose was to classify customers as “normal loyal customers” and “abnormal 
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customers”.  They also compared their method to a logistic regression model which achieved 72%  

positive classification rate versus their NN positive classification rate of 94%.   

Generally, the disadvantages of NNs are that they do not always converge and that empirical testing must 

be performed to find the number of nodes in the hidden layer.  This can be a time-consuming process.  

Also, learning requires a large number of passes through the learning examples before converging.  NNs 

are known to overfit (describe the noise instead of the underlying relationship in the data) and are difficult 

to interpret because of its black-box form.  Also, adaptability is an issue because of the requirement to 

retrain the weightings on the nodes.  Industrially, the main drawback is that the black-box nature of the 

NN makes it hard for users to understand what is going on and the results are largely ignored or 

incorporated with another model for fraud detection.   

2.6 Feature representation 

While the topic of this thesis is not feature selection, classification cannot be discussed without it.  

Feature selection reduces the dimension of multivariate data or extracts features from an original dataset 

[76].  Data mining tools hinge off the underlying data selected for mining. 

A variety of feature selection methods exist in the literature as a method of dimensionality reduction [57].  

The goal is to minimize the number of features prior to use of the classifier so as to only use variables 

important for understanding the underlying phenomena.  A few popular feature selection methods were 

applied in this research (PCA [57], Jensen-Shannon divergence [77]) but the one sharing the same 

philosophical basis as the thesis was the Las Vegas Filter [78]. 

The fundamental basis of the Las Vegas Filter (LVF) is to find independent discrete features.  The LVF 

evaluates the quality of its feature sets by calculating an inconsistency criterion (IC).  Inconsistency 

means that the database rows match (without considering their class labels).   By not including the class 

labels, it is an unsupervised learning method for feature selection [76].  It therefore finds independent 

features by selecting feature sets with as few matching rows as possible. The benefits of the LVF are that 

it is [78]: 

1. Simple to implement 

2. Calculates quickly 

3. Presents many possible solutions 

4. Independent of a learning algorithm 

The main variables are: N = total number of features;  S= current set of features;  Sbest = best set of 

features; C=number of features; Cbest= best number of features; IC = inconsistency criterion;  

gamma=threshold for IC;  db = dataset. 
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The LVF begins by considering a random subset of all features (S<=N).  It modifies the database to only 

include feature set S and counts the number of rows that match other rows resulting in the inconsistency 

criterion , IC.  Common risky behavior such as collusion and repeated behaviour is reflected in a database 

as rows possessing the same feature values for a set of features.  This translates into a high value for IC 

which is represented by IC(count) in the algorithm.  The difference between IC and the number of 

negative samples represent the anomalies in the database.  These are the number of rows that do not 

match any other rows, and are not negative samples, represented by IC(final) in the algorithm.  The 

purpose of the dimension reduction exercise was to minimize the anomalies in the database relative to all 

samples.  The LVF also revealed that when there are less matching rows, more features are required for 

uniqueness.  Since the goal of the exercise was to minimize the search space it required a minimal number 

of features that manifested into a minimal number of states.  The algorithm is shown in Table 2-1.   

Table 2-1: Las Vegas Filter 

Las Vegas Filter – Main  

1 Define variables: N = total number of features, S= current set of features, Sbest = best set of 

features, C=number of features, Cbest= best number of features, IC=inconsistency criterion,  

gamma=threshold for IC, db = dataset 

2 S=randomSet(N); C=numFeatures(S) 

3 If C<=Cbest; check IC Function 

4 If IC(final)<gamma; Sbest=S, Cbest=C 

5 PrintCurrentBest(S) 

 

IC Function 

1 For j = 1:num_rows 

2 Samp=data(j,S) 

3 Check if there are any other rows in the dataset that are the same as samp EXCEPT for the class 

label 

4 Increase IC(count) by 1 everytime samp has similar rows 

5 After the entire db is surveyed, calculate:  

IC(final) = (IC(count) – number of negative samples)/num_rows 
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2.6.1 Reward selection 

The focus of the research was on risk-reward systems.  The features in the database representing risky 

behaviour were the inputs for the search agent.  The reward for the agent was a feature in the database 

that summarized the expected returns of the agent.  In the financial fraud scenario, reward was the profit 

on the trade.  In heart disease applications, the reward was “age” because an increased length of life is a 

reward for human health.   

Two methods were used to find the reward best representative of the risk-reward systems studied: 

1. Context-based reward.  Intuitively determine the reward from knowledge of the system. 

2. Correlation.  The feature with the most positive correlation coefficient to the class vector is the 

reward.   

The correlation coefficient represents the degree to which two variables movements are correlated [79].  It 

varies from -1 to +1 where +1 represents perfect correlation (two variables move together) and -1 

represents negative correlation (two variables move opposite directions).  For variables x and y it is 

calculated by 𝜌𝑥𝑦 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
.   

2.7 Input data preprocessing 

Inevitably in data mining some discretization of the data must occur [57] where the data is sliced into 

disjunct sub-intervals that are subsequently treated as discrete attribute values.  A loss of information 

results from the process however it is necessary for summarizing data to output comprehensible 

knowledge by the system.   

Two methods of discretization were applied in this thesis: hard discretization using statistical quantiles 

and soft discretization using a fuzzy inference model.   

Hard discretization is defined by a threshold which generates boundaries between two crisp sets without 

overlapping.  Quantiles are a statistical method where the k
th
 quantile of a set of values divides the data so 

that k% of the values are below k and (100-k)% of the values lie above.  Quantiles are described using 

cumulative probabilities, from 0 to 1.  For example, the lower quantile is denoted by Q(0.25),  returning 

the value below which 25% of the values exist in the vector.   

The Matlab [80] function “quantile” was used in this research.  For vector 𝑥 with 𝑁 elements the method 

is: 

1. Sort the values in vector 𝑥 and attribute them to quantiles by calculating (0.5/𝑁), (1.5/

𝑁), … , (𝑁 − 0.5)/𝑁).   

2. Linear interpolate to compute quantiles between (0.5/𝑁) and (𝑁 − 0.5)/𝑁). 
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For example, let vector 𝑥 = [1,2,3, 4, 5, 6].  𝑄(0.5) = 3.5.  This means that 50% of the values in x lie 

below 3.5.  𝑄(0.33) = 2.5 which means that one-third of the values lie below 2.5.  In discretization, Q(p) 

are used to create adaptive intervals in which to bucket the continuous data. 

Soft discretization is defined by a fuzzy set pair which forms a fuzzy partition between sets that can be 

overlapping.  Zadeh [81] proposed fuzzy logic for the first time in 1965.  It was invented to handle 

uncertain and imprecise knowledge in real world applications [67].  It is a powerful tool for decision 

making and is used as part of a Fuzzy Inference System (FIS).  FIS is a form of classifier that fuzzifies 

input data, combines it based on rules and then produces an output.  The 5 components of an FIS are: 

1. Pre-processor to modify the raw data (e.g. normalize) to be put into the FIS.   

2. Fuzzy input model which models each attribute in the raw data with membership functions.  This 

is called “fuzzifying” the data. 

3. A set of rules using logical operators to combine the attributes and map the data to an output 

membership function. 

4. If a Mamdami model is used, then the output data must be operated on using a T-norm (e.g. min 

operator) to obtain the crisp output value (defuzzification). 

5. If Sugeno model is selected, the output is already crisp and no further operations occur.   

Bagheri et al [82] used an FIS as part of a forecasting tool for foreign exchange rates.  Another financial 

forecasting application can be found in [83].  It was also applied in a breast cancer study [84] plus many 

other areas.   

The advantages of a FIS are: 

1. Does not require large memory storage. 

2. Inference speed is very high. 

3. It can handle incomplete information.  

4. It can handle qualitative and quantitative data. 

The disadvantages of a FIS are: 

1. It is inflexible: rules are not adaptable since they cannot be inferred from the data as easily and 

are usually controlled by the designer.   

2. Input and output data is fit to a membership function; the data is “modeled” 

It is a particularly good way to combine data which is why it performs well as a classifier using if, and, or 

statements.  In this thesis it was used only as a data preprocessor for input into the Hidden Markov Model 

using membership functions and rules.  [82] and [83] both suggest that that the bellshaped membership 
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function is the one “usually adopted”.  The fuzzy model used in the thesis is a Mamdami type and 

described in Chapter 3.   

2.8 Imbalanced databases 

The classification literature has evolved into distinguishing between balanced and imbalanced problems 

[85], [15].  A balanced problem is when the classes are evenly distributed among the samples.  In an 

imbalanced problem a small number of samples belong to one class (minority class) and this is the class 

that is identified as positive samples (e.g. fraud, heart disease).  Imbalanced problems can arise in binary 

classification problems where a small sample of the population is a positive sample.  Haibo He [86] 

described the fundamental problems facing learning algorithms in the imbalanced database space.  The 

first is that there is a limited amount of theoretical understanding on the principles and consequences of 

the problem.  Secondly, he addressed the need for publicly available benchmarks specially dedicated to 

imbalanced problems. Thirdly, practitioners should be using metrics for assessing the quality of 

imbalanced databases specifically.   Until this delineation, accuracy (the number of correctly classified 

samples for all classes) was the benchmark for evaluation.  [87] and [49] used accuracy to evaluate their 

classifiers and compare them.  This is the simplest way to evaluate a classifier, and is the only reasonable 

choice for multiclass classifiers.   

General solutions for handling imbalanced data at the data level are to undersample the majority class and 

oversample the minority class during training [30].  The SMOTE technique is popular in the literature 

[15] [88] for managing the imbalanced data by generating “synthetic” examples of the minority examples 

instead of oversampling with replacement [89] so that there is more balance in the number of minority 

and majority samples.  At the algorithm level Kernel-based methods and active learning [86] are 

employed; ensemble methods are prominent in the literature [15] [85] whereby several classifiers are used 

to make decisions.  Data and algorithm solutions are combined to create cost-sensitive methods to adjust 

the costs of classes to counter the class imbalance [88] [14].   

The general systems structure for classifying imbalanced data is to have several data sampling methods 

produce sets that are processed by individual classifiers.  The output of the individual classifiers are 

typically entered into a risk score calculation [88], a voting method [15] or cost structure [14] to 

determine the class for each sample.  There is a lot of research into multiclass imbalanced models, the 

details of which can be found in [85] and [14].   

2.9 Evaluation measures 

Several measures have evolved for evaluating the ability of the classifier to find positive samples in an 

imbalanced database.  The need for this was motivated by the fact that, if for example, 5% of the 
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population has heart disease and the classifier has a 95% classifier accuracy, then it is possible that the 

classifier identified all of the healthy samples correctly, but none of the unhealthy samples.  

Binary classifier results can be presented in a confusion matrix [90] given in Table 2-2 .  A confusion 

matrix is a result visualization tool typically used to measure the accuracy of classification models.  

Table 2-2: Confusion Matrix 

  Predicted 

 

Actual 

 Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Each column of the matrix represents the instances in a predicted class, while each row represents the 

instances in an actual class. The values from the upper left of the matrix to the bottom right represent 

correctness, or “classified”. This counts the positive samples predicted to be positive (TP) and negative 

samples predicted to be negative (TN).  The opposite diagonal is considered “misclassified”. These values 

represent the positive samples predicted as negative (FN) and negative samples predicted as positive (FP).  

The benchmark metric is accuracy which measures the overall correctness of a classifier: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (2-15) 

Accuracy provides a general evaluation of the classifier however in an imbalanced database, it does not 

accurately represent where the classifier fails.   

Receiver operator characteristic (ROC) analysis is used to compare classification models or select 

possibly optimal models given different learning parameters [14].  The area under the ROC curve (AUC) 

measure has been found to exhibit the desirable property of describing balance in a model when compared 

to overall accuracy for machine learning algorithms [91].  It is commonly used in the case of imbalanced 

data where the class distributions are skewed [92].  The actual ROC is a plot of the false positive rate on 

the x-axis and the true positive rate on the y-axis.  There are many ways to calculate the AUC [91].  

However recent literature has determined that capturing a single point on the ROC is sufficient [93] and 

that it is appropriate for imbalanced data [94].   

ROC analysis provides two measurements: “sensitivity” and “specificity”.  Sensitivity is the classification 

rate of positive samples.  A positive sample in thesis examples is “fraud”, “heart disease” and 

“employed”.  Sensitivity in the case of fraud is also called the “fraud detection rate”. Specificity is the 

classification rate of negative samples; in these applications a negative sample is a fair trade, a healthy 

human, or unemployment.  Using the variables in the confusion matrix,  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2-16) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

(2-17) 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (2-18) 

 

One benefit of a confusion matrix is that it is easy to see if the system is confusing two classes (i.e. 

commonly mislabeling one as another).   The Type-I error is the misclassification of negative samples.  It 

is also referred to as “false positive”.  The Type-II error is the misclassification of positive samples.  It is 

also referred to as “false negative”. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (2-19) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (2-20) 

ROC analysis focuses on proportions of total positive samples and total negative samples to evaluate the 

classifier from a cost-benefit perspective of modeling.  In contrast, accuracy is a proportion of correct 

positive and negative samples and is an evaluation of performance.   

The value of using ROC analysis for imbalanced databases is best elucidated with an example.  Let there 

be an imbalanced database with two classes in which 14% of the samples belong to the minority class and 

86% of the samples belong to the majority class.  The goal of the classifier is to identify as many of the 

minority class examples as possible (i.e. the benefit of the classifier) without misclassifying majority class 

samples as belonging to the minority class (i.e. the cost of the classifier). The example classifier results 

are shown in Table 2-3.  

Table 2-3: Example confusion matrix 

  Predicted 

 

Actual 

 Positive Negative 

Positive 8 6 

Negative 6 80 
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Based on equation (2-15), the accuracy of the classifier is 
88

100
= 88%.  This means it correctly classified 

88% of the samples.  The result is largely because of the classifier’s ability to correctly identify the 

majority class samples and misleads one to think that the classifier is performing very well.   

From ROC analysis we calculate sensitivity, the proportion of correctly classified positive samples.  Note 

that the calculation uses values from the row of actual positive (top row) in the confusion matrix.  In this 

example, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
8

14
= 57%.  The classifier correctly identified 57% of the minority class 

samples.  The classifier specificity is the ability to correctly identify the samples belonging to the majority 

class.  The calculations are derived from the row of actual negative (bottom row) in the confusion matrix.  

In this example, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
80

86
= 93%.  The classifier is very good at identifying the majority class.  

AUC is therefore the average of sensitivity and specificity: 𝐴𝑈𝐶 =
57%+93%

2
= 75%.  AUC is 13% lower 

than the accuracy; this is because sensitivity is specified as a quantity in the calculation.  Because the 

classifier could identify 57% of the minority class correctly, it is not considered to be as “good” in terms 

of the AUC metric versus the accuracy metric.  In fact, it is harder to get a “good” value in AUC versus 

accuracy in imbalanced databases.  However, to use accuracy would be misrepresentative of the 

classifier’s ability to correctly identify the minority class samples which is the entire point of the exercise.   

From a cost-benefit perspective, the cost of the classifier is represented by false positive which is another 

metric to assess the classifier’s ability to model the minority class.  When false positive is high, it means 

that it cannot properly delineate between the minority and majority class.  In this case, 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =

6

86
= 7% which is very good; the classifier does not spend a lot of time recognizing majority class 

samples as belonging to the minority class.   

In order to apply these evaluation measures the researcher must know how many positive samples exist in 

the database.  However, real-world settings do not always lend to full information about the system.  But 

if someone is comparing methods they can all have the most expected frauds as the number of positive 

samples (in the denominator) and then all methods are treated fairly.   

This thesis focuses on two measures: maximizing sensitivity and minimizing the false positive rate.   

The sensitivity and false positive rates can be viewed in a ROC graph [95].  It depicts the cost-benefit 

tradeoff for a discrete classifier.  An example of an ROC graph from Fawcett [95] is in Figure 2-4.  

Generally, the most northwest points on the graph (e.g. point D) are the best classifiers because they have 

high sensitivity and low false positive.  They are considered to be “conservative” classifiers because they 

make positive classification with strong evidence of few false positive errors.   
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Figure 2-4: ROC curve for five discrete classifiers 

Classifiers on the northeast side of an ROC graph (e.g. point B) are considered to be “liberal” because 

they make positive classifications with weak evidence and are often associated with high false positive 

rates.  C lies on the diagonal line and represents random performance.  Any points lying below the 

diagonal line perform worse than random guessing.   

We now review and critic other measures accepted for evaluating imbalanced datasets in the literature ( 

[14], [96]).  The F-measure is composed of two concepts: precision and recall.  Precision is the 

percentage of relevant objects identified for retrieval; recall is defined as the percentage of retrieved 

objects that are relevant.   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2-21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2-22) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2-23) 

 

The F-measure is used when the learning objective is to achieve a balanced performance between 

identification rate (recall) and identification accuracy (precision).  One drawback of the F-measure is that 

it neglects the correct classification of negative samples (specificity) and only reflects the importance of 

retrieval of positive examples (sensitivity) [93].  It does not account for misclassification whatsoever.  

Also, since it uses values from both rows in the confusion matrix, it is inherently sensitive to class skews 

[95].   
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Another metric for evaluation is G-mean.  It is used when the learning objective is to balance 

identifications rates between positive class and negative class.  It is calculated as: 

𝐺 − 𝑚𝑒𝑎𝑛 = √
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
×

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= √

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

 (2-24) 

It also does not account for misclassification whatsoever.   

2.10 Summary 

In this chapter, relevant research articles, including a few different machine learning and statistical 

techniques applied to risky imbalanced databases, have been reviewed.  Many similar methods are 

utilized to tackle both imbalanced and balanced databases; however they often require knowledge of the 

entire environment, only operate well when supervised, and rely on a lot of data pre-processing to balance 

the data.  Moreover, most of these techniques cannot cope well in large-scale real-world problems.  In the 

next chapter, we introduce improvements to RL techniques and a new Hidden Markov Model 

hybridization for imbalanced databases.   
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Chapter 3 

State-space Machine Learning Algorithms for Classification 

3.1 Introduction 

In this chapter, the mathematical framework within which the database was modeled is introduced.  The 

behavioural paradigm is described followed by a systems diagram of the three models presented by this 

research: RL Search, RL Classifier (RL) and RL-HMM hybrid. The RL section provides details on the 

steps used by the three models.  Thereafter, three learning algorithms are presented along with the unique 

application of them within the RL framework to search for specific behaviours.  Finally, the novel 

hybridization of a Hidden Markov Model (HMM) with RL and the classification method is proposed.  

This research takes an original approach to the definition of risk using two explicit behaviours:  

“collusion” and “repeated abuse” as defined in Chapter 1.  Three behavioural patterns are modeled for the 

insider trading problem: 

 Case 1: collusion  - both the trader and the stock are fraudulent 

One trader executed many trades on one stock based on insider information.   

 Case 2: repeated abuse - one trader, many stocks –the trader is fraudulent, not the stock 

One trader is executing many trades across several stocks and is repeatedly achieving higher than 

average profits. This is a case where the trader is risky, and is taking on risk for reward, independent 

of the stock.   

 Case 3: repeated abuse - one stock, many traders - the stock is fraudulent, not the traders 

Several traders are aware of insider information on one stock therefore they all trade that stock and 

achieve higher than average profits.   

 

These three cases can be generalized.  Consider a multi-variable system of 𝑚 = 1, … , 𝑀 features in a 

database.  Each feature can be expressed as 𝛿𝑚 discrete values (e.g. categorical survey data, binary signal, 

discretized risk levels) in the database.  A combination of at least one value from feature  

𝑚1, and 𝑚2 respectively can represent Case 1.  Cases 2 and 3 can be represented by at least one value 

from any feature 𝑚 appearing repeatedly in database records where a reward is higher than average.   

In Section 2.8, three challenges to solving imbalanced databases were described: limited theoretical 

understanding, lack of publicly available benchmarks, and appropriate evaluation metrics.  The challenge 

of understanding the problem was addressed in this thesis by specifying scenarios that focus on risk-

reward relationships.  Isolating imbalanced databases in this manner allowed for a system design that 
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targeted a theoretically distinct group of systems.  The lack of publicly available benchmarks was 

addressed by selecting a diverse set of databases both public and private: financial fraud (private), heart 

disease (public), and female labour force participation (public). Finally, the classification algorithms were 

evaluated using metrics derived from ROC which assessed the accuracy of identifying both the minority 

and majority classes, namely sensitivity, and false positive. 

3.2 Thesis models 

Reinforcement learning (RL) was applied in two ways in this research.  The RL agent always plays the 

role of the “risky” agent searching for higher than average rewards. 

1. RL was used in its basic form as a search algorithm receiving informative feedback.   

2. RL was used as a supervised classification algorithm that was trained on labeled data, validated to 

select a learning algorithm and tested on non-labeled data. 

The former model will be called the “RL Search” algorithm hereafter and the latter will be called the 

Reinforcement Learning –Hidden Markov Model hybrid classifier (“RL-HMM hybrid”). A third model, 

the “RL Classifier” is a by-product of the RL-HMM hybrid model.  The RL-HMM hybrid model has two 

forms of discretization, quantile (HyQ) and fuzzy (HyF) and will be referred to using these acronyms 

throughout the following sections 

 

All models addressed the imbalance problem by using a learning agent to discover the patterns of the 

risky minority class and weight them higher than the majority class.   

 

The RL Search algorithm appropriated the capability of “control” for which it is normally applied [97].  It 

revisited states with similar attributes and higher than average rewards.  It was not trained; it was simply 

exposed to the entire database and received rewards as feedback to build the Q-table.  Once the search 

was complete based on the number of records it visited, the Q-table was converted to a V-table.  The V-

table was sorted by weights and the top c% of states was considered to be positive.  There were three 

search algorithms used for which results are shown: ε-greedy, optimal learning and Boltzmann learning. 

 

The RL-HMM hybrid (HyQ, HyF) models began with training, validating and testing the RL agent.  

There were two outputs of the testing phase of RL: the first was the Q-values which were converted to a 

V-table and classified as in the RL Search algorithm.  This model was the RL Classifier.  The second 

output was several paths of rewards collected by the risky agent by taking optimal actions determined in 

the training phase.  The risky agent’s paths were subsequently modeled using the Markov property to 
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derive transition and emission matrices.  The matrices were used to calculate posterior probabilities of 

risky states of which the top c% of states were considered to be positive.  This model was the RL-HMM 

hybrid (HyQ, HyF).   

The value for c was derived by testing several cutoff values and graphing sensitivity versus specificity.  

The value at which these two curves intersected was selected as the optimal cutoff value c. 

 

The difference between the RL Classifier and RL Search models was that the former was trained on 

labeled data; the latter was not.  Both were novel approaches to simulating the behaviour of a risky agent.  

Existing methods spend a lot of time manipulating the balance of majority and minority classes in the 

database.  This requires a large amount of input data pre-processing which may be too slow for an 

industrial environment.  Here the imbalanced problem was approached by using the learning agent to 

explore the data to find behaviour exhibited by minority class agents.  A cutoff was then used to select the 

number of samples classified as positive.  

A general representation of the three models is presented in Figure 3-1.   

 

Figure 3-1: Classification algorithms 
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At the first stage the input data was cleaned and features were selected for class, reward and RL actions.  

RL then went through two separate processes.  The path on the left of the diagram is the RL Search 

model.  RL learned risky behaviour using three algorithms and Q-tables were calculated for each learning 

agent.  The optimal Q-values (weightings on the states) were sent to the classifier to label states as 

positive and negative, and assigned labels to individual records.  The output of the RL Search model is 

represented in Figure 3-1 as data modules.  These are three vectors of class labels, one for each learning 

algorithm. 

The path on the right begins with training RL on labeled data.  After testing, the resultant optimal Q-

values were sent to the classifier as above for the RL Classifier, the output of which was one vector 

containing class labels for each record. 

The path on the right also outputted the rewards (observations) from the RL labeled data for the RL-

HMM hybrid (HyQ, HyF) models.  There were two separate discretization processes: quantiles and fuzzy.  

After the rewards were discretized they were sent separately to the Hidden Markov Model which assigned 

a probability of risk to each state.  As with the previous two models the risk probabilities were sent to the 

classifier.  The output of this stage was two vectors containing class labels for each record, one vector for 

each respective discretization model.   

Overall there were six classification vectors output from the models in this thesis; three from the RL 

Search, one from RL Classifier and two from RL-HMM hybrid (HyQ, HyF).  

3.3 Reinforcement Learning model  

Reinforcement learning was selected to model human behaviour in risk-reward systems because: 

1. It has been used in the past to model decision-making processes [41] 

2. The decision-making agent is searching for a reward [31],  an exact analogy to the systems 

modeled in this research 

3. It is model-free; the lack of parameters allows for several behaviours to be modeled [41] across a 

diverse set of applications 

3.3.1 State-space definition 

Let us assume that the learning agent operated in a multi-variable state space.  Each state was defined by 

the number of features in the database used in the search.  For the insider trading problem the state was 

defined as 𝑠𝑖 = (𝑡𝑟𝑎𝑑𝑒𝑟𝑔, 𝑠𝑡𝑜𝑐𝑘𝑙) for 𝑖 = 1,2, … , 𝑁 states, 𝑔 = 1,2, … , 𝛿1 traders; and  𝑙 = 1,2, … , 𝛿2 

stocks.   

Case 1 (collusion) in the behavioural model was fully described by one state 𝑠𝑖, but many different cases 

of collusion can occur.  In Case 2 (trader is fraudulent), the first variable in the state, 𝑡𝑟𝑎𝑑𝑒𝑟𝑔, was 
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constant, but the second variable 𝑠𝑡𝑜𝑐𝑘𝑙, could change.  In Case 3 (stock is fraudulent) the second 

variable in the state, 𝑠𝑡𝑜𝑐𝑘𝑙, was constant and the first variable 𝑡𝑟𝑎𝑑𝑒𝑟𝑔 could change. 

Furthermore, many records were related to each state.  This can be seen with a simple example in Table 

3-1.  The feature trader is assumed to take on two values (1,2) and the feature stock also takes on two 

values (1,2).  The records are treated as “samples” in a probability space Ω; the table has 10 records. 

Profit represents the amount of money made or lost on a financial market trade.  Class represents the 

binary classifier label.  1 represents a fair transaction, 2 represents a fraudulent transaction.   

Table 3-1: Records in a database 

Record# trader stock profit class 

1 1 1 11.62 1 

2 2 1 26.06 2 

3 1 1 16.02 1 

4 1 2 18.52 1 

5 1 2 -12.34 1 

6 1 2 11.89 1 

7 2 2 21.56 1 

8 2 2 23.83 1 

9 2 1 29.59 2 

10 1 1 -15.19 1 

 

Each unique combination of feature values is abstracted to represent a “state”.  For the records in Table 

3-1, the states are shown in Table 3-2.  The states define the state space S.   

 Table 3-2: States 

State# trader stock 

1 1 1 

2 1 2 

3 2 1 

4 2 2 

 

State space S covers the entire sample (record) space.  In this framework, information was collected from 

each sample in the database but was grouped by state.  Operating in a state space had many advantages.  It 

allowed for relating the samples through state transition and decreased the input data tracking space 
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because only states were monitored. It was efficient, concise and descriptive to use states.  In a multi-

variable state notation the insider trading problem of Table 3-2 is defined by 4 states: 𝑠1 = (1,1),   

𝑠2 = (1,2), 𝑠3 = (2,1), 𝑠4 = (2,2).   

In this example, both fraudulent records (record# 2,9 in Table 3-1) are defined by state 𝑠3 = (2,1) and is 

a fraudulent state representing Case 1, collusion (trader 2 and stock 1).     

3.3.2 Action definition 

The features of the database were used as "actions" in the RL algorithm. The algorithm could only arrive 

at a new state through one feature.  Actions were the decision-variables moving the learning agent from 

state to state.   

In a system with M features, a state is defined by multiple variables, e.g. 𝑠𝑖 = (𝑚1, 𝑚2, … 𝑚𝑀) where m 

represents each distinct feature.  There were M actions in action set A that could be taken in states 

𝑖 = 1, … , 𝑁 where action 𝐴𝑗 corresponded to selecting feature 𝑚𝑗 for 𝑗 = 1, … , 𝑀 features.   

The insider trading problem of Table 3-1 is a system with 𝑁 = 4 states, 𝑀 = 2  features (𝑡𝑟𝑎𝑑𝑒𝑟, 𝑠𝑡𝑜𝑐𝑘).  

There are two actions in action set A, 𝑡𝑟𝑎𝑑𝑒𝑟 and 𝑠𝑡𝑜𝑐𝑘.   

3.3.3 Link analysis 

The records in a database were linked by features and grouped by states. The table was searched by 

linking the same feature values occurring in two states.  For example, in Table 3-2 States 1 and 3 can be 

linked via the state variable = stock because the feature value for both is defined by stock = 1.  Therefore 

when in State 1, if action=stock then the agent moves to a record where the feature value for stock = 1.  

That record is then translated into a state for calculations.  Incidentally, States 1 and 3 cannot be linked 

via the action= trader because they have different feature values for this state variable. At the extreme, an 

agent in state 1 can never get to state 4 directly.  Figure 3-2  is a state transition diagram which describes 

possible agent moves for the insider trading example.  State transitions to itself are always possible in the 

model but are not shown in the figure.   
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Figure 3-2: Possible state transitions in the insider trading problem 

The concept of linking states together is not new to the fraud detection literature.  Link analysis can relate 

known fraudsters to other individuals using record linkage and social network methods.   These methods 

are popular in telecommunications fraud in which it is recognized that “fraudsters seldom work in 

isolation from each other” [98].  This theme was extended in this thesis by applying it to risky behaviour; 

fraudsters do not commit fraud once [17].  They are repeated abusers individually in addition to acting in 

collusion with other fraudsters and fraudulent assets.   

To demonstrate how the link analysis works, examine the first 4 records for the insider trading problem in 

Table 3-1 and represent them in Table 3-3.  The first column lists both the record number and state 

number as described in Table 3-1 and Table 3-2.  Columns 2 through 4 are the same as in Table 3-1.   

Table 3-3: Link analysis using 4 records 

Record#

/State# 

trader 
stock 

Profit 

1/1 1 1 11.62 

2/3 2 1 26.06 

3/1 1 1 16.02 

4/2 1 2 18.52 

 

When the current record# is 1, the current state# is 1.  Let action = trader.  State 1 has a value = 1 for 

action=trader.  Therefore the system can move to another record where trader = 1.  It therefore has the 

options to move to records 3 and 4.  If record # 3 is selected, the next state is #1.  If record #4 is selected, 

the next state is #2. 
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Lu’s method of transitioning [41] and action definition is the same as described above.  The difference 

between his paper and this thesis is that he considers records = states.  He treats each record separately, 

which enlarges the calculation space.  This research recasted and summarized the database records into 

states.  The fundamental difference of defining states in this thesis allowed for the use of the Bellman 

Action-Value equation, BAV, to calculate Q-values which were interpreted as state weightings by the 

classifier.   

3.3.4 Reward 

Rewards were collected from each record and attributed to the state to which that record belonged.  The 

reward was used to update the Q-value for that state through the BAV in equation (2-1).  The approach 

was ideal for collusive behaviour because Q-values store sample information [99].  That is the difference 

between machine learning and statistical learning; machine learning employs BAV to summarize 

information while statistical methods require all of the data all of the time and uses basic summary 

statistics such as the mean of a random variable.  Using the variables in equation (2-1) and the previous 

example, the following shows the BAV calculations:  

 Current state is 1 

 the model moves to record #4 (state 2)  

 next action = stock  

 initialize Q-value =0  

 learning rate = 0.1, 

 gamma =1 (episodic task) 

 t=1 for the first iteration through the database 

𝑄𝑡(𝑖, 𝑎) = 𝑄𝑡(𝑖, 𝑎) + 𝛼[𝑟𝑖𝑗
𝑡 (𝑎) + 𝛾𝑄𝑡(𝑗, 𝑏) − 𝑄𝑡(𝑖, 𝑎)] 

𝑄1(1,1) = 𝑄1(1,1) + 𝛼[𝑟1,2
1 (1) + 𝛾𝑄1(2,2) − 𝑄1(1,1)] 

𝑄1(1,1) = 0 + 0.1[11.62 + 1(0) − 0] 

𝑄1(1,1) = 1.162 

For Table 3-2 the learning agent would move to state #2, the current action =stock, and calculations 

would be for 𝑄1(2,2).  The Q-table for the insider trading problem is described by the variables in Table 

3-4.   
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Table 3-4: Q-table for insider trading problem 

 Action 1 = trader Action 2 = stock 

State 1 𝑄(1,1) 𝑄(1,2) 

State 2 𝑄(2,1) 𝑄(2,2) 

State 3 𝑄(3,1) 𝑄(3,2) 

State 4 𝑄(4,1) 𝑄(4,2) 

 

The Q-table looks like Table 3-5 when the search is complete.   

Table 3-5: Q-table for insider trading problem using ε-greedy learning 

E-greedy Action 1 = trader Action 2 = stock 

State 1 1.1620 0.5670 

State 2 0 0.1200 

State 3 8.0743 1.7487 

State 4 0.6000 0 

 

In all applications, the reward was weighted by the number of visits to that state.  This was because if one 

state was repeatedly visited, then it was an example of collusion or repeated abuse and therefore must 

stand-out from the other states.  When a state was found to have larger rewards than the others, it was 

considered “riskier”. 

Ultimately, a maximizing function was applied to the Q-table resulting in the V-table to obtain the 

maximum Q-values for each state, shown in Table 3-6.   

Table 3-6: V-table for insider trading problem using ε-greedy learning 

ε-greedy Maximum Q-value 

State 1 1.1620 

State 2 0.1200 

State 3 8.0743 

State 4 0.6000 

 

The values in the V-table correspond to the hidden behaviours generating each state.  In State 3, the 

fraudulent state, the maximum Q-value corresponds to action= trader.  This could be an example of Case 
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#1 and/or Case #2.  Knowledge of the hidden behaviour that leads to the risky weighting on the state is a 

clue or starting point for human fraud investigators.   

3.3.5 Learning algorithms 

Action selection was the decision-making process in the model.  The role of decision-maker was played 

by the agent searching the database which was driven by the learning model.  Generally, the agent moved 

through the model using the following steps in Table 3-7: 

Table 3-7: General search algorithm 

General search algorithm 

1  current state = 𝑖, current action = 𝑎, 

2  get reward 𝑟𝑖,𝑗(𝑎) resulting from state-action pair (𝑖, 𝑎) 

3  move to state 𝑗 

4  select action 𝑏 using decision-making rules 

5  calculate Q-value via the Bellman Action-Value equation using 𝑄(𝑖, 𝑎) and 𝑄(𝑗, 𝑏) 

6  
convert  new variables to current variables:  𝑗 → 𝑖, 𝑏 → 𝑎 

7 go to 2 

 

It is at Step 4 in Table 3-7 that each learning algorithm demonstrated its specific decision-making 

capability.  The three learning algorithms used to uncover risky behaviour were: ε –greedy, optimal 

learning and Boltzmann learning.   

All learning algorithms were initialized during training with the first record, the corresponding state to 

that record, and a random action.   

 

The ε -greedy learning is a balance between Q-learning and Sarsa [31]. Q-learning selects the action for 

which the Q-value is largest in the current state.  Sarsa randomly selects an action.   The ε -greedy 

condition is invoked each time the model arrives at a state: 

if rand< ε, Sarsa; else, Q-learning 

For example, in Table 3-4, if the model is in State 1 and rand> ε, then the action a would be selected by 

the condition: 𝑚𝑎𝑥𝑎(𝑄(1, 𝑎)).   

Each application had an optimal value for ε; the model explored (Sarsa) the database ε% of the time, and 

exploited (Q-learning) the database (100- ε)% of the time.  When ε=0 the model never converged because 

it was ONLY exploiting the database.  The ε -greedy algorithm is shown in Table 3-8.   
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Table 3-8: ε -greedy learning algorithm - general 

ε -greedy learning algorithm – general 

1  current state = 𝑖, current action = 𝑎, 

2  get reward 𝑟𝑖,𝑗(𝑎) resulting from state-action pair (𝑖, 𝑎) 

3  move to state 𝑗 

4 generate random number (rand) 

5 if rand< ε, assign a random action b for that state; else, select the action b for which the 

maximum Q-value exists for that state 

6 calculate Q-value via the Bellman Action-Value equation using 𝑄(𝑖, 𝑎) and 𝑄(𝑗, 𝑏) 

7  
convert  new variables to current variables:  𝑗 → 𝑖, 𝑏 → 𝑎 

8 go to 2 

 

The agent’s behaviour is best demonstrated using a state transition diagram as in Figure 3-3.  The diagram 

shows the direction of transitions between states, and indicates the agent’s preferred states.   

 

Figure 3-3: ε-greedy learning 

The ε -greedy agent is a mix of exploration and exploitation.  It explores the database but does not 

necessarily return to states. For example, it goes from State 2 to State 1 but does not return to State 2.  

The same behaviour is observed between State 2 and State 4.  State 3 is visited from both possible states, 

1 and 4, and has bi-directional arcs between those states.  This shows that the agent navigates to State 3 

frequently which is the only fraudulent state in this scenario.   

Optimal learning is a statistical method implemented to take advantage of the adaptive statistical 

method.  The algorithm estimated the mean of the reward received by the agent when it selected an 

action.  In theory it was looking for the optimal action to take at each step to achieve the highest 
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reward.  Testing showed that optimal learning selected the same action repeatedly, likely because it was 

originally designed for estimating one random variable.  It was applied in this research to estimate 

multiple random variables, therefore it was modified by a random component to balance exploitation and 

exploration in a manner similar to ε -greedy learning.  Consequently the agent exploited the states using 

an optimal learner by selecting the action that had the highest mean reward; it also explored the states 

randomly based on ε.  This method of decision-making for RL was novel and a contribution to knowledge 

from this research.  The algorithm is shown in Table 3-9; the state transition diagram is in Figure 3-4.   

Table 3-9: Optimal learning algorithm 

Optimal learning algorithm 

1  current state = 𝑖, current action = 𝑎, 

2  get reward 𝑟𝑖,𝑗(𝑎) resulting from state-action pair (𝑖, 𝑎) 

3  move to state 𝑗 

4 update theta and beta based on 𝑟𝑖,𝑗(𝑎) and current action = 𝑎 

 if rand< ε, assign a random action b for that state; else, select the action b for which  theta 

is the highest (𝑚𝑎𝑥𝑎(𝜃𝑎)) 

6 calculate Q-value via the Bellman Action-Value equation using 𝑄(𝑖, 𝑎) and 𝑄(𝑗, 𝑏) 

7  
convert  new variables to current variables:  𝑗 → 𝑖, 𝑏 → 𝑎 

8 go to 2 

 

Figure 3-4: Optimal learning 
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The optimal learning agent visits all states from all other states; it has a bi-directional relationship with all 

possible states.  It is the most explorative and exploitative learning algorithm in the suite of algorithms 

applied in this thesis.  The difference between it and the ε-greedy algorithm is the value that is being 

maximized for the action-selection; optimal learning selects the action with the highest mean average 

reward whereas ε-greedy selects the action with the highest value in the current state.   

Boltzmann learning is a process of estimating action probabilities.  They were all initialized to be the 

same,  𝑝(𝑎) =
1

𝐴
.  Because the initial probabilities are the same and actions were selected using a max 

function, the model was biased to action 1.  This was because the probability for the current action (not all 

actions) was updated so when the max function was applied, the current action was selected again.  This 

resulted in an exponential probability of action behaviour.  As a consequence, the learning agent became 

stuck in local optimums.  However, it had the potential to perform well in an imbalanced database 

because of this same property.  

The most important parameter in the Boltzmann exploration learning algorithm is the temperature, τ.  A 

genetic algorithm was applied to optimize this parameter for the application.  Unfortunately it took too 

long and was rendered inefficient for this model.  Therefore the parameters for training and validation 

were fixed to τ= number of records*2, and τ was decreased by 𝜌 = 2 on each iteration after testing of 

several fixed parameters.  The Boltzmann learning algorithm is shown in Table 3-10.   

Table 3-10: Boltzmann learning algorithm 

Boltzmann learning algorithm 

 initialize 𝜏 = number of records*2, 𝜌 = 2 

1  current state = 𝑖, current action = 𝑎, 

2  get reward 𝑟𝑖,𝑗(𝑎) resulting from state-action pair (𝑖, 𝑎) 

3  move to state 𝑗 

 calculate 𝑒𝑄(𝑖,𝑎)/𝜏  

 calculate ∑ 𝑒𝑄(𝑖,𝑧)/𝜏
𝑧∈|𝐴(𝑖)|  

4 
calculate 𝑃(𝑎) =

𝑒𝑄(𝑖,𝑎)/𝜏

∑ 𝑒𝑄(𝑖,𝑧)/𝜏
𝑧∈|𝐴(𝑖)|

 for action a 

 select action b for which the probability is the highest (𝑚𝑎𝑥𝑎(𝑃(𝑎)) 

6 calculate Q-value via the Bellman Action-Value equation using 𝑄(𝑖, 𝑎) and 𝑄(𝑗, 𝑏) 

7  
convert  new variables to current variables:  𝑗 → 𝑖, 𝑏 → 𝑎 

8 go to 2 
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In Figure 3-5 the state transition diagram for the Boltzmann agent is shown.  It visits fewer states (notice 

the absence of State 4?) because it is exploitative. 

 

Figure 3-5: Boltzmann learning 

 

The three learning algorithms and their observed properties are in Table 3-11. 

Table 3-11: Comparing learning algorithms 

Learning 

algorithm 

Decision-making 

condition 

General Observations Q-table 

ε -greedy If rand< ε, select a 

random action, 

else, select the 

action with the 

highest Q-value 

ε -greedy struggles to converge on small 

datasets; it remains in the local optimal 

states and does not explore further.  It is 

challenging to converge to an optimal policy 

because the Q-values for all other states = 0.   

 

 

Balanced 

Optimal 

learning 

If rand< ε, select a 

random action, 

else, select the 

action with the 

highest mean 

reward 

Optimal learning balances between 

exploitation and exploration and visits more 

states.   

Least sparse 
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Boltzmann 𝑃(𝑎)

=
𝑒𝑄(𝑖,𝑎)/𝜏

∑ 𝑒𝑄(𝑖,𝑏)/𝜏
𝑏∈|𝐴(𝑖)|

 

 

Boltzmann is exploitative; it uses the same 

action repeatedly.  

Most sparse 

 

In some datasets there were states that did not share feature values with any other states.  This resulted in 

a local optimal state which was not necessarily the state for which the agent was searching. 

The type of learning agent selected depended on the behaviour most suitable to the problem.  Generally, 

in a database where there were few positive samples, ε-greedy and optimal learning were better to use 

because they explored the database searching for the rare samples.  When the problem was to search for 

one positive sample Boltzmann quickly found and exploited it.  

3.3.6 Deriving an optimal policy 

Optimality in RL hinges off of Bellman’s “Principle of Optimality” [100].  In an optimal policy, the 

sequence of decisions is optimal no matter the state in which the agent begins. An optimal policy was 

derived for each of the three learning algorithms via a training/validation/testing paradigm for the RL 

Classifier and RL-HMM hybrid (HyQ, HyF) model.   

Learning occurred during the training phase and used a training dataset to obtain the optimal decisions 

(actions) to be taken at every state.  These optimal actions demonstrated the behaviour used to construct a 

predictive relationship in the optimal policy.  The reward in the training phase was the true class 

assignment (column 5 in Table 3-1); this was the supervised learning phase of the algorithm.   

All of the learning algorithms collected rewards and processed them through the Bellman action value 

equation to calculate Q-values, 𝑄(𝑆𝑛) (Table 3-5).   The optimal value for each state was given when the 

Q-values were maximized for each state resulting in a V-table (Table 3-6), an example of which is shown 

in the second column of Table 3-12.   

Table 3-12: V-table for the insider trading problem ε-greedy learning 

State V-table = max(Q-

table) 

Corresponding 

optimal action 

1 1.1620 1 

2 0.1200 2 

3 8.0743 1 

4 0.6000 1 
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On each iteration through the database, the resulting optimal values 𝑉𝜋′ were compared to the optimal 

values generated by the previous learning iteration through the training dataset, 𝑉𝜋.  Optimality was 

calculated based on 𝜁: 

𝜁 = 𝑉𝜋′(𝑆𝑡) > 𝑉𝜋(𝑆𝑡) (3-1) 

for all states after t observations.   

The optimal stopping criterion was based on a convergence value, conv.   

𝜁 ≥ 𝑐𝑜𝑛𝑣 ∗ 𝑁 (3-2) 

When conv=0.7, it meant that at least 70% of the states were visited and assigned a weight.  If 𝜁 did not 

meet the optimal stopping criterion, the learning agent went through another episode of searching.  The 

convergence constraint was implemented to speed up the processing time.  In the process of filling the Q-

table, the weights on the significant states increased faster than the others and converged.  However, it did 

not mean that the search space had been covered.  Therefore the search had to be constrained to ensure a 

sufficient number of states were visited to produce good results.   

An optimal policy was the set of actions associated with the maximal values for each state once the 

algorithm converges.  An example of an optimal policy is in column 3 of Table 3-12.   

In the case of the insider trading problem, the weights represent the stocks and traders involved in 

frequent high returns relative to other stocks and traders. This deviation is calculated by the temporal 

differencing calculation of the BAV. The deviation becomes apparent in the differencing of state in the 

equation: 𝑄(𝑗, 𝑏) − 𝑄(𝑖, 𝑎).  This is also where the distinction in action emerges, that is, the action 

resulting in the highest reward.  After training, the optimal actions for each algorithm are shown in Table 

3-13.   

Table 3-13: Optimal policy for all learning algorithms 

State ε-greedy Optimal learning Boltzmann learning 

1 1 2 1 

2 2 1 1 

3 1 2 1 

4 1 1 1 

Boltzmann was the most exploitative learning algorithm in contrast to optimal learning which was the 

most balanced decision-maker. 

The next step was validation to select the optimal learning agent.  In this stage, the optimal policy was 

assessed on the training set using the rewards in column 4 of Table 3-1.  The policy was then evaluated as 

a classifier using a confusion matrix.  c% of heavily weighted states were labeled as positive samples.  
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The remaining states were considered to be negative samples.  Since the ground truth vector used in the 

classification scheme assigned class by record, the assumption was that if a state is fraudulent, then all 

records belonging to that state are fraudulent too.   

The best learning algorithm was selected using “correct rate” which was calculated as the sum of the 

diagonal of the confusion matrix.  Values on the diagonal are correctly predicted samples.  The correct 

rate was selected during the validation phase to identify the agent with the best ability to differentiate 

between positive and negative samples.  In contrast, if the learning agent was selected based on 

sensitivity, then it was possible to have a high false positive rate as well.  Therefore the best all-around 

learner was promoted to the testing phase along with its optimal policy. 

A testing data set was independent of the training data; it was used to evaluate the quality of the classifier 

and its optimal policy.  It was an off-policy method because the actions were not variable; they were fixed 

by the optimal policy derived from the most correct learner during the validation phase.  These optimal 

actions were decisions made in each state on a test database and Q-values were calculated.   

It was possible that states existed in the testing data that did not exist in the training data.  Therefore no 

optimal policy existed for those states.  In this scenario, the model defaulted to the original learning 

algorithm decision making process.  If this scenario arose during initialization, the model selected a 

random action because there was no information collected yet to inform the decision maker.   

This completed the learning agent’s work.  It was trained, validated and tested.   

For the RL Classifier, the output was a V-table sorted by Q-values in which c% of states and their 

corresponding samples were labeled as positive.  

For the RL-HMM hybrid (HyQ, HyF) model, the output of the testing phase was a path of rewards 

collected by the agent.  These rewards were considered to be “observations” made by the agent as it 

conducted an optimal search through the database.  The next step was to uncover the states that generated 

the optimal rewards.  These states were then flagged as fraudulent.  The fraudulent states were uncovered 

by a Hidden Markov Model.   

3.4 Hidden Markov Model 

The decision to include a Hidden Markov Model (HMM) component was guided by the following 

observations: 

1. The RL Classifier took several hours to achieve acceptable results for an industrial setting.   

2. The RL Classifier required several thousand records to achieve acceptable results. 

3. The RL Classifier resulted in one sequence of state transitions, or paths.  Further research was 

conducted to find a method of generating multiple paths, possibly from different learning agents, 

to add variety and increase the probability of identifying the correct path. 
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The purpose of the HMM in the model was to accept the sequence of rewards collected by the RL 

learning agent and derive state probabilities, independent of time.  The method assigned a probability to 

each state conditional on observations, O, and model = (𝑃, Φ, 𝜋), the state transition probabilities, 

emissions matrix and initial state probabilities.  States with higher probabilities were considered to 

represent positive samples.   

One important design issue addressed in the HMM was that of a left-to-right topology or a fully 

connected topology [49].  As shown in Chapter 2, the left-to-right topology is time dependent and the 

model advances through states in time. Wu’s study of collusion [99], for example, uses HMM.  They used 

the Viterbi algorithm to find the most likely state sequence which were time-dependent.  For risk 

applications, this research assumed that “when” the risky state was visited was less important than the 

“frequency” of visits to that state.  Because of this condition, the HMM was redesigned to calculate state 

probabilities independent of time while still using a left-to-right topology.   

Other design issues brought forth by [49] are optimal number of states, type of observations and optimal 

number of observations.  These were addressed by assuming:  

1. Use only those unique rows as states in the training and testing databases. 

2. Discretize the reward vector (the observations) using quantiles or a fuzzy logic model. 

3. Limit the observation symbols to three so as to describe risk in terms of three levels: low, medium 

and high.   

Each of these assumptions ensured an efficient model covering the entire database with a concise result.   

3.4.1 Observation vector discretization 

The rewards, which are now considered to be “observations” in the HMM context, were continuous 

values.  Using the values as-is would retain the information however it created a large and sparse 

emission matrix due to a large number of observations with disparate values.  Therefore the observation 

path data was discretized prior to input into HMM.  Discretization occurred twice: the first was before 

calculating the emissions matrix. The second time was for calculating the path probabilities because they 

were based on the emissions matrix.  As described in Chapter 2, two methods were used for 

discretization:  quantiles (hard) and fuzzy logic model (soft).  The mechanics of each follows.  

The model used quantile discretization by bucketing data into three risk buckets representing, low (1), 

medium (2) and high (3) risk.  The selected quantiles were Q(0.5)  and Q(0.9).  The low bucket contained 

all values that fell below or were equal to the 50
th
 quartile, in other words, below the mean of the data.  

Medium risk was between Q(0.5) and  Q(0.9).  The high risk bucket contained values above and including 

the 90
th
 quartile.    
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In the trading data in Table 3-1, the third column represents the observations of the system which are 

trading profits and losses.  The observations before and after discretization are shown in Figure 3-6.  The 

upper graph is continuous. The bottom graph shows the data after discretization: 5 observations are in the 

low risk bucket, 4 are medium risk and 1 observation is high risk. 

 

 

Figure 3-6: Quantile discretization 

The fuzzy data model was a one input – one output Mamdani model [101].  A Mamdani model was 

selected so that both the input and output of the FIS could be modeled by membership functions.   

Let X={x} be a set of points.  In this example X represents the observations collected by the learning 

agent.  Let A be the fuzzy set representing the input data.  Let B represent the fuzzy set representing the 

output data.  Then fuzzy set A in X is characterized by membership function 𝑓𝐴(𝑥) which maps each 

point in X to the interval [0 1].   After testing many membership functions, those resulting in the highest 

standard deviation in output values were selected for discretization: Gaussian membership function for 

𝑓𝐴(𝑥), and triangular for 𝑓𝐵(𝑥).  Because it is only a single-input, single-output model, a T-norm operator 

was not required.  To defuzzify the data from the triangular function to the crisp output value, the centroid 

method was used and the values were rounded to [1,2,3] to represent each risk level. 

One of the constraints on the FIS is that the parameters need to be modified for every database.  The main 

practice in the literature is to train the parameters when they are entered into the system which takes a lot 

of time and is not the focus of the thesis.  Therefore, partially adaptable constraints were set for 𝑓𝐴(𝑥).  

The input range for  𝑓𝐴(𝑥) is [min(x), max(x)].   

r1=[min(vect(:,i)) max(vect(:,i))];%for entire range 
r2=[0.15*max(vect(:,i)) -10];% lo  
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r3=[0.15*max(vect(:,i)) 0.5*max(vect(:,i))]; %med 
r4=[0.15*max(vect(:,i)) max(vect(:,i))]; %high 

 

The output parameters could remain the same each time for 𝑓𝐵(𝑥) because the data is purposely restricted 

to 3 categories.  Therefore the output range is [0,3].   
a=addvar(a,'output','risk',[0 3]); 
a=addmf(a,'output',1,'lo','trimf',[-1.2 0 1.2]); 
a=addmf(a,'output',1,'med','trimf',[0.3 1.5 2.7]); 
a=addmf(a,'output',1,'high','trimf',[1.8 3 4.2]); 

 

The three corresponding rules in this FIS were:  

If A is low then B is low 

else 

if A is medium then B is medium 

else 

If A is high then B is high  

The two membership functions are shown in Figure 3-7.  

 

 

Figure 3-7: Single-input Mamdani fuzzy model membership functions and input-output curve 

The “high” input space is the most narrow to compensate for the imbalanced nature of the research 

problems.  The resulting output curve is shown in Figure 3-8.   
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Figure 3-8: Output curve for Mamdani FIS 

The nature of imbalance is also reflected in the output curve in where most samples are mapped to the 

majority classes, low and medium risk.  

Figure 3-9 shows the entire sample dataset before and after fuzzy discretization.  The upper graph shows 

the raw data.  In the lower graph, the green line represents the crisp fuzzy output.  It was thereafter 

rounded to obtain [1, 2, 3] and is represented by the blue bars.   

 

Figure 3-9: Fuzzy discretization 
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3.4.2 HMM Assumptions 

The three main assumptions for HMM were described in Chapter 2.  They were satisfied in this research 

as follows: 

1. Markov Assumption 

The RL agent moved to a next state based on the current state during the learning process. 

2. Stationarity assumption.   

The RL agent’s search was independent of time.  The learning algorithm operated within a 

simulation environment therefore transitions could occur between states at any step in the 

process.   

3. Observation independence assumption   

Statistical independence of observations was assumed in this research based on two 

characteristics of the system:  

i. The data used in the thesis was generated empirically by human behaviour so there were 

no underlying statistical assumptions about the data.   

ii. The learning agent used “action-selection” to select observations within the machine 

learning paradigm versus drawing samples from a distribution.  Therefore observations 

were considered to be independent insofar as the selection of an observation in one step 

did not influence the observation collected in the next step.   

3.4.3 Mathematical formulation 

The final output of the RL algorithm for RL-HMM hybrid (HyQ, HyF) was a path of rewards collected 

from an agent moving through states making optimal decisions.  Optimality in this case refers to 

maximizing risk and rewards.  K reward paths were generated by the learning agent.  The observations 

were used to estimate the transition probability matrix (TM), Emissions matrix (EM), and the marginal 

probabilities (π) in the HMM.  The following section describes the probabilistic framework used to derive 

TM, EM and π.   

 

The probabilistic framework is described using the data in Table 3-1, referring to feature = trader as “C” 

and feature=stock as “T”.   

There are 20 points in the probability space representing observable input variables collected from a 

system.  In this example there are 4 events; feature C=1 (C1), feature C=2 (C2), feature T=1 (T1), feature 

T=2 (T2).  The probability space with 4 events is shown in a Venn diagram in Figure 3-10.   
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Figure 3-10: Sample Venn diagram 

Based on the values in Table 3-1, the event probabilities are calculated in Table 3-14. 

Table 3-14: Probability of feature value occurring 

Feature and Feature value Probability 

P(C1) 6/20 

P(C2) 4/20 

P(T1) 5/20 

P(T2) 5/20 

 

The overlap in the Venn diagram represents the rows in the database, each of which is an entire 

description of the sample.  The probability for each pair is derived by counting the rows in Table 3-1 and 

shown in Table 3-15. 

Table 3-15: Probability of pairs of values occurring in the table 

Feature and Feature value Probability 

P(C1)P(T1) 3/10 

P(C1) P(T2) 3/10 

P(C2)P(T1) 2/10 

P(C2) P(T2) 2/10 

 

Each unique combination of feature values is abstracted to represent a “state” through which the 

intelligent agent can search to uncover hidden information.  For the records in Table 3-1, the states are 

shown in Table 3-2.   

T1 

C2 
T2 

C1 
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The probability of each state occurring can be derived from the Venn diagram and the probabilities in 

Table 3-16.  For a 2-dimensional state-space definition there are  𝑖 = 1,2, … , 𝑁 states; feature values 

𝑔 = 1,2, … , 𝛿1 for feature 1; and feature values  𝑙 = 1,2, … , 𝛿2  for feature 2.  The probability of a state is 

an OR combination because the state is arrived at through one feature value at a time.   

𝑃(𝑆𝑖) = 𝑃(𝐶𝑔 ∪ 𝑇𝑙) = 𝑃(𝐶𝑔) + 𝑃(𝑇𝑙) − 𝑃(𝐶𝑔)𝑃(𝑇𝑙) (3-3) 

Plugging in the values from Table 3-14  and Table 3-15 into equation (3-3), the state probabilities are 

shown in Table 3-16.   

Table 3-16: State probabilities 

 

Feature value Probability 

P(S1) (6/20)+(5/20)-(3/10) = 0.25 

P(S2) (6/20)+(5/20)-(3/10) = 0.25 

P(S3) (4/20)+(5/20)-(2/10) = 0.25 

P(S4) (4/20)+(5/20)-(2/10) = 0.25 

 

Feature selection is translated as “actions” to the search agent.  For two features, there are two actions, A1 

and A2.  A1 corresponds to selecting feature C, A2 corresponds to selecting feature T.   

When an agent is selecting a state to go into, it is determined by an action.  If the agent is in record 1 it is 

in state 1. When the action is A1, the agent is looking for another record where C=1 (records 3, 4, 5, 6, 

10).  When the agent arrives at a new record, it is translated into the state-space described in Table 3-2.  

For this example, the agent is in state 1 and can move to state 1 or state 2.  If  A2 is selected, then the 

agent is looking for another record where T=1 (records 1,2,3,9,10) translating into State 1 or 3.   

The state transition diagram is described in Figure 3-11.  The large ovals represent the states and contain 

the state names and their feature values.  The arrows show which states the agent can transition to from 

the current state.  The smaller ovals near the arrows show the action that can lead to the new state.   
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S2 [1 2]

S3 [2 1]

S1 [1 1] S4 [2 2]

A1 OR A2

A1 OR A2

A1 OR A2

A1 OR A2

A1

A1

A2

A2

 

Figure 3-11: State transition diagram 

The probability of selecting an action is determined from the learning algorithms converging to an 

optimal policy.  The optimal policy defines the best action for each state that will return the highest 

reward.   

The probability of selecting feature C is defined by 𝑃(𝐴1); the probability of selecting feature T is 

defined by 𝑃(𝐴2).   These probabilities are determined empirically by observing the search agent.  In this 

example, for explanation purposes, assume action probabilities: 𝑃(𝐴1) = 0.4; 𝑃(𝐴2) = 0.6.  This means 

that the agent selects 𝐴1 for 40% of the states, and 𝐴2 for 60% of the states.  Actions are independent; the 

agent can only select one at a time, and thus explore the database based on one feature at a time. Actions 

play a fundamental role in learning how to search the state space and must be included in the conditional 

probability calculations for congruency with the algorithm search engine.   

 

The rule of Total Probability and Bayes’ Theorem [32] [53] is invoked to incorporate action selection into 

the probabilistic calculations and calculate the TM.   

The theorem states that a partition of a set 𝐴 is a set {𝐴1, 𝐴2, … , 𝐴𝑀} with three properties: 

1.  Set of subsets (probability space made up of subsets) 

2. Subsets are mutually disjointed (independence) 

3. All subsets are collectively exhaustive (they cover the entire probability space) 
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𝑃(𝐴𝑘|𝐴) =
𝑃(𝐴|𝐴𝑘)𝑃(𝐴𝑘)

∑ 𝑃(𝐴|𝐴𝑖)𝑃(𝐴𝑖)𝑛
𝑖=1

 (3-4) 

Define 𝑆 as the set 𝑆 made up of states {𝑆1, 𝑆2, 𝑆3, 𝑆4}.  They are independent, and cover the entire 

probability space (i.e. the space through which the agent searches).  The purpose of this exercise is to 

derive the state transition probabilities e.g. 𝑃(𝑆2|𝑆1); the probability of reaching state 2 given that the 

agent is in state 1.  Because moving between states is based on the action taken, the conditional 

probability can be restated in terms of actions e.g.  𝑃(𝑆2|𝑆1)= 𝑃(𝑆2|𝐴1).  As shown in Figure 3-11, the 

agent can only reach state 2 from state 1 by selecting action 1.  This theory is applied to update the 

probability of event 𝑆𝑖 given the information 𝐴𝑘. 

The definition of total probability can be applied to solve for arriving at a state based on an action.   

 

𝑃(𝑆𝑖|𝐴𝑘) =
𝑃(𝐴𝑘|𝑆𝑖)𝑃(𝑆𝑖)

∑ 𝑃(𝐴𝑘|𝑆𝑖)𝑃(𝑆𝑖)𝑛
𝑖=1

 (3-5) 

  

Equation (3-5) can be expanded to obtain a more explicit version in equation (3-6).   

 

𝑃(𝑆2|𝐴1) =
𝑃(𝐴1|𝑆2)𝑃(𝑆2)

𝑃(𝐴1|𝑆1)𝑃(𝑆1) + 𝑃(𝐴1|𝑆2)𝑃(𝑆2) + 𝑃(𝐴1|𝑆3)𝑃(𝑆3) + 𝑃(𝐴1|𝑆4)𝑃(𝑆4)
 (3-6) 

 

To solve for (3-6) find 𝑃(𝐴1|𝑆2) in equation (3-7).   

 

𝑃(𝐴1|𝑆2) =
𝑃(𝐴1 ∩ 𝑆2)

𝑃(𝑆2)
 (3-7) 

 

Actions and states are independent because the probability of selecting one does not influence the 

probability of the other.  Therefore equation (3-7) becomes: 

𝑃(𝐴1) 

Because of independence the simplification of equation (3-7) works for all occurrences of where the 

probability of an action is conditional on a state.  Equation (3-6) is simplified to:  

 

𝑃(𝑆2|𝐴1) =
𝑃(𝐴1)𝑃(𝑆2)

𝑃(𝐴1)𝑃(𝑆1) + 𝑃(𝐴1)𝑃(𝑆2) + 𝑃(𝐴1)𝑃(𝑆3) + 𝑃(𝐴1)𝑃(𝑆4)
=

0.4(0.25)

4(0.4)(0.25)
=

1

4
 

 

4 in the denominator represent the 4 states which are of equal probability in this example.   
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Because all of the states have equal probability the conditional probabilities of moving between states are 

all the same: ¼.   

For self-same probability (the probability of remaining in the same state) the equation is as follows based 

on equation (3-5): 

𝑃(𝑆2|𝑆2) = 𝑃(𝑆2|𝐴2) + 𝑃(𝑆2|𝐴1) =
1

4
+

1

4
=

1

2
 

 

The calculations for all of the transition probabilities are in Table 3-17.  The final transition matrix is in 

Table 3-18.   

Table 3-17: Transition probability calculations 

Transition state 

probability equation 

Equivalent based on 

equation 3 
Probability 

𝑷(𝑺𝟐|𝑺𝟏) 𝑃(𝑆2|𝐴1) 1/4 

𝑷(𝑺𝟐|𝑺𝟐) 𝑃(𝑆2) 1/2 

𝑷(𝑺𝟐|𝑺𝟑) 0              0 

𝑷(𝑺𝟐|𝑺𝟒) 𝑃(𝑆2|𝐴2) 1/4 

   

𝑷(𝑺𝟑|𝑺𝟏) 𝑃(𝑆3|𝐴1) 1/4 

𝑷(𝑺𝟑|𝑺𝟐) 0              0 

𝑷(𝑺𝟑|𝑺𝟑) 𝑃(𝑆3) 1/2 

𝑷(𝑺𝟑|𝑺𝟒) 𝑃(𝑆3|𝐴1) 1/4 

   

𝑷(𝑺𝟒|𝑺𝟏) 0              0 

𝑷(𝑺𝟒|𝑺𝟐) 𝑃(𝑆4|𝐴2) 1/4 

𝑷(𝑺𝟒|𝑺𝟑) 𝑃(𝑆4|𝐴1) 1/4 

𝑷(𝑺𝟒|𝑺𝟒) 𝑃(𝑆4) 1/2 

   

𝑷(𝑺𝟏|𝑺𝟏) 𝑃(𝑆1) 1/2 

𝑷(𝑺𝟏|𝑺𝟐) 𝑃(𝑆1|𝐴1) 1/4 

𝑷(𝑺𝟏|𝑺𝟑) 𝑃(𝑆1|𝐴2) 1/4 

𝑷(𝑺𝟏|𝑺𝟒) 0               0 

 

The transition probabilities are expressed in a matrix in Table 3-18.    
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Table 3-18: Transition probability matrix 

 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

𝑺𝟏 1/2 1/4 1/4 0 

𝑺𝟐 1/4 1/2 0 1/4 

𝑺𝟑 1/4 0 1/2 1/4 

𝑺𝟒 0 1/4 1/4 1/2 

 

The resulting TM is a matrix of size [N x N].  The transition matrix is different for every path generated 

by the RL model because the probability of actions 𝑃(𝐴𝑖)∀𝑖 ∈ 𝐴 changes with every RL learning agent.   

The emissions matrix is calculated empirically from the database from the reward path and states.  The 

algorithm is in Table 3-19.   

Table 3-19: Empirical calculation of emissions matrix 

1 Discretize all possible emissions (hard and soft discretization method) 

2 For each state, calculate the number of times each emission occurs 

3 Calculate the percentage of times each emission occurs for each state as a percentage of total 

emissions from that state 

 

The resulting EM is a matrix of size [N x T].  It is static within one application because it is calculated 

from all possible rewards, not just the rewards collected by the learning agent.   

The marginal probabilities are calculated from the TM.  The TM does not usually begin with full rank; 

there are sometimes dependent rows in the TM, for example, a row of zeros for unvisited states.  The 

resulting matrix is of full rank after the marginal probability calculations and the system has a solution.  

Sometimes the TM is close to singular (noninvertible) due to its sparsity.  In these cases it cannot 

calculate marginal probabilities and a new set of training data is selected for the problem.   

3.4.4 HMM fundamental problems revisited 

As discussed in Chapter 2.4.3 there are three fundamental problems that can be solved using HMM.  All 

three problems are solved sequentially in this research to derive the state probabilities.  Table 3-20 

describes the solution methods applied in comparison to common solutions in the literature.   

Table 3-20: Solving HMM fundamental problems 

Type of problem Common solution Thesis 

Learning Baum-Welch Reinforcement learning 
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Evaluation Forward algorithm Forward algorithm 

Decoding Viterbi algorithm Posterior probabilities  

 

The purpose of the learning problem is to train model parameters which can be time-consuming and not 

necessarily converge [32].  The RL algorithm was selected to overcome these constraints and take 

advantage of the properties of a learning agent in a model-free environment.  In comparison to the 

commonly used, highly constrained Baum-Welch algorithm [32], [102], [66], [103], the only optimization 

condition on the RL learning agent is that it had to visit at least 70% of all states during training.  The 

model parameters, 𝜆 = (𝑃, Φ, 𝜋), are then calculated empirically from the observation path.   

The evaluation problem was solved using the forward algorithm as described in Chapter 2.  It is applied to 

each observation path generated by the RL algorithm.  The solution of the evaluation problem, 𝑃(𝑂𝑘|𝜆), 

is a matrix of size [K x 1].  This provides the probability of each path belonging to model 𝜆.  The most 

probable observation path of the K paths is then selected by solving 𝑚𝑎𝑥𝑘  𝑃(𝑂𝑘|𝜆).    

The final step is the decoding problem.  The goal is to find the optimal state sequence Q corresponding to 

the observation sequence O.  It is commonly solved using the Viterbi algorithm [32] [54] which is 

dependent on time.  Abusive and collusive behaviour can occur with frequency in small time frames, but 

are not necessarily sequential from an overall system point of view.    A unique method of manipulating 

the observation probabilities to uncover state probabilities 𝑃(𝑄|𝑂, 𝜆) independent of time was derived in 

this research.   

Step 1: calculate the posterior probabilities, 𝑃(𝑄𝑖|𝑜𝑡 , 𝜆),  

Step 2: isolate 𝑃(𝑄𝑖) by  

a) solving  𝑃(𝑂) = 𝑃(𝑂𝑘|𝜆) 𝑥 𝑂𝑘  

b) solving 𝑃(𝑄𝑖) = 𝑃(𝑄𝑖|𝑜𝑡 , 𝜆) ∙ 𝑃(𝑂)  

where 𝑃(𝑂) is the probability of an observation occurring at any step in the process.   

The Viterbi algorithm hinges off of assigning probabilities to arcs in the trellis of states.  The method used 

in this thesis considered the path insofar as it was required for posterior probability calculation.  It then 

separated the posterior probabilities from time by multiplying the conditional posterior probability by the 

observation probability in step 2a.   

The algorithm for the HMM procedure is shown in Table 3-21.  
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Table 3-21: Hidden Markov Model procedure 

Step # 

 

 Algorithm 2 Uncovering risky states in risk-reward system  

1  Generate K paths of T observations using the RL agent 

2  For the k
th
 observation path, ∀ 𝑁 states in the testing database: 

 2-1 Calculate transition matrix (TM) based on the Markov Assumption 

 2-2 Calculate emissions matrix (EM) (only once) 

 2-3 Calculate marginal probabilities (𝜋) 

 2-4 Preprocess observation path using statistical quantiles  and fuzzy membership function 

 2-5 Assign a probability of belonging to model 𝜆 

3  Select the path with the highest probability 

4  Calculate posterior probabilities  

5  Calculate probability of each observation occurring at any step t 

6  Calculate probability of each state occurring at any step t 

 

3.5 Classification 

Class labels were assigned by ordering the states by their probabilities from highest to lowest and labeling 

the top c% states as positive samples.  The cutoff value was important to the quality of results; when c is 

large, then more states are considered to be positive samples.  While this may “widen the net” cast for 

positive samples, it may also include many false positives, particularly in an imbalanced database where 

there are few positive samples.  However, if c was too small, it missed some of the positive samples 

resulting in a lot of false negative results but worst of all, missing some risky states.   Several cutoff 

values were tested and the resulting sensitivity was graphed versus specificity.  The value at which these 

two curves intersected was selected as the optimal cutoff value. 

The ground truth vector used in the classification scheme assigned class by record.  The assumption is 

that if a state is fraudulent, then all records belonging to that state are fraudulent too.  It is possible for a 

variable combination to be sometimes fair, and sometimes fraudulent in the real-world.   However, 

assuming that every record described by a state is assigned the same class is congruent with the sought 

after behaviours of collusion and repeated abuse.   

For evaluation, sensitivity, false positive and AUC are used because the purpose of the learning agent is 

to learn behaviours so it can correctly identify fraudulent samples.  Misclassifying a sample as fraudulent 

means that it has not properly learned the behaviours.  This is why we need to look at false positives: to 
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understand misclassification and hence, an in-depth understanding of the classifier’s ability to model the 

minority class.  A similar argument could be made about false negatives but since we already discuss 

sensitivity the quantity itself does not bring much value to the argument.  Additionally, we use ROC 

graphs to discuss the results.  ROC is referred to as a “cost-benefit tradeoff for a discrete classifier” graph 

[95].  “Cost” is referring to the cost of the classifier (e.g. time, energy), not the cost in economic terms.  

Notably, we do not calculate the accuracy metric because it does not appropriately reflect the classifier’s 

effectiveness on imbalanced database. 

The algorithm that processed the results from Table 3-21 for classification is described in Table 3-22.   

Table 3-22: Classification steps 

Step # 

 

Algorithm 3 Classifying risky states in risk-reward system  

1 The resultant vector is all of the states with a probability assigned to each one.  We order 

the vector in ascending order and select a cutoff, c.  The top c% samples are considered 

to be true positive, (100-c)% are considered to be fair. 

2 Assign labels on each state to the corresponding records and evaluate.   

 

3.6 Benchmark models 

The K-means model was used to benchmark against the RL Search model because it is unsupervised.   

Four models were selected from the literature as benchmarks for the RL and RL-HMM hybrid (HyQ, 

HyF) classifiers: Logistic regression (LR), Artificial Neural Network (NN), Support Vector Machine 

(SVM) and K-nearest neighbour (KNN).  All models were implemented using built-in Matlab functions 

[80] 

LR and NN are probabilistic classifiers [95] and therefore output numeric values that represent the degree 

to which an instance is a member of a class.  SVM and KNN are discrete classifiers and output only a 

class label.  The outputs of the probabilistic classifiers were rounded to 0 and 1to match the output of the 

classifiers developed by this research.     

Other modeling considerations were that the NN used for benchmarking had 10 hidden layers and is 

applied through the built-in Matlab function nn_routine [80].  For the KNN classification model, 𝑘 = 1 

which has shown best results in the literature [71].   
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3.7 Summary 

In this chapter, we demonstrated application of RL techniques for data mining and hybridized them with a 

probability-constrained HMM to lower the samples required to speed up the learning process of RL 

techniques.  An adapted statistical learning model, optimal learning, was introduced in a novel decision-

making application to RL.  We also presented a new methodology to find the state probabilities from a 

HMM model independent of time.   

Machine learning models have been developed for imbalanced database applications to uncover risky 

behaviour.  They were applied in both unsupervised and supervised environments.   

In the next chapter, these techniques will be tested on various case studies.   
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Chapter 4 

Experimental Results 

 

4.1 Introduction 

In the following sections, the RL Search, RL Classifier and RL-HMM hybrid (HyQ, HyF) Classifier are 

applied to four databases.  They are as follows: 

1. Insider trading: A synthetic database of equity trades generated from real-world scenarios. 

2. Debit card fraud database (DCFD):  A database generated from real-world numerical distributions 

of fraudulent and non-fraudulent debit card banking transaction data.    

3. Canadian heart health database (CHHD): A Statistics Canada survey of Canadians to find the rate 

of heart disease.  

4. Female labour force study (LFS) 2013: A Statistics Canada employment survey.  The goal of this 

exercise is to detect female employment indirectly based on survey data.  It is a balanced 

database.   

Testing on the four databases will be shown for all algorithms devised in this thesis in four separate 

sections.  In each section, we will initially present details about the database and the feature selection 

process.  Next, a discussion about the RL parameters will be presented.  Then the application of the 

unsupervised model, RL Search, will be presented on varying proportions of the data (10%-100%).  The 

results for the RL Search algorithm will be evaluated in terms of sensitivity (i.e. the fraud detection rate) 

and false positive (i.e. the misclassification of the classifier) against the benchmark algorithm, K-means.  

We will also show the standard deviation of these metrics when RL Search is run over several iterations 

to demonstrate the robustness of the unsupervised learning algorithms. Standard deviation is calculated 

after many trials to evaluate consistency of the model.  If standard deviation is high it means that the 

algorithm is highly dependent on the data in the training set.  Otherwise, any deviation in the results is 

because of the proportionally smaller test set.   

 

A summary of the database specifications is in Table 4-1.   

 

 



 

 64 

Table 4-1: Summary of database specifications 

Table name Balance 
Number of 

features 
Positive sample 

Number of 

samples in 

database 

Rate of 

positive 

samples in 

database 

Insider trading Imbalanced 2 
Insider trading 

fraud 
5000 4.2% 

Debit card fraud 

database 
Imbalanced 2 

Worthless 

Deposit Fraud 
5001 7.2% 

CHHD Imbalanced 4 Heart disease 9035 11.52% 

Labour Force 

Survey February 

2013 (female 

samples only) 

Balanced 3 

Female labour 

force 

participation 

24597 64% 

 

Next, we will show the results for the supervised algorithms.  The RL Classifier results will be shown 

calculated in tandem with the results of the RL-HMM hybrid (HyQ, HyF) classifier for crisp and fuzzy 

discretization.  The RL Classifier and RL-HMM hybrid (HyQ, HyF) performance was evaluated using 

train/test sets of 90%/10% and 80%/20%.  The results are presented in an ROC graph and compared to 

LR, NN, SVM, and KNN classifiers.  Each section will conclude with a comparison of AUC for all 

unsupervised and supervised algorithms. AUC is the average of sensitivity and specificity, used to 

measure the overall effectiveness of the classifiers as discussed in Section 2.9.  After the financial fraud 

applications we will explain why the supervised algorithms used a lower number of records than the 

unsupervised and were yet able to achieve nearly the same results.  The chapter will conclude with a 

summary of the behaviour of the learning algorithms across the databases, and the AUC of proposed 

thesis algorithms for all four databases.   A summary of models and notation is shown in Table 4-2.   

Table 4-2: Model summary and notation for thesis algorithms results. 

Type of learning Model Learning agent Notation 

Unsupervised RL Search e-greedy e-greedy 

Unsupervised RL Search Optimal learning OptLearn 

Unsupervised RL Search Boltzmann learning Boltzmann 

Unsupervised K-means  Kmeans 
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Supervised RL Classifier Best learning algorithm  RL 

Supervised RL-HMM Hybrid Best learning algorithm with 

quantile discretization 

HyQ 

Supervised RL-HMM Hybrid Best learning algorithm with 

fuzzy discretization 

HyF 

Supervised Linear regression  LR 

Supervised Artificial neural network  NN 

Supervised Support vector machine  SVM 

Supervised KNN  KNN 

 

A simulated insider trading problem is presented first to reveal the learning algorithms’ ability to mimic 

described risky behaviours and demonstrate the mechanics of the classifiers.  For this application 

intermediate calculation and results will be shown for the reader’s understanding.   

4.2 Insider trading 

The problem of insider trading was described by three cases in Chapter 3.  There were two steps to 

generating the data: 

1. Generate random data 

2. Generate patterns 

The first step was performed using a random assignment of values.  Random values from 1-250 were 

assigned to the first feature (trader); random values from 251-500 were assigned to the second feature 

(stock).  There existed 500 input values in the data.  The reward was generated by taking the absolute 

value of the “randn” function in Matlab which takes samples from the normal distribution.   

There were 212 records and 16 states in the fraudulent pattern, distributed into three cases.  The number 

of records and states are in brackets beside each case (records; states).  For example, the overall (records; 

states) for fraudulent patterns is (212; 16).   

When Attribute A = “trader” and Attribute B = “stock” then there are 250 traders booking N trades on 250 

stocks.  The three fraudulent patterns are: 

 Case 1: collusion  - both the trader and the stock are fraudulent (81; 6) 

 Case 2: one trader, many stocks –the trader is fraudulent, not the stock (56; 4) 

 Case 3: one stock, many traders - the stock is fraudulent, not the traders (75; 6) 

Case 1 has 3 pairs of collusion; there are three scenarios where one trader executed many trades on one 

stock based on insider information.  Altogether, 81 trades were executed by 3 traders on 2 stocks which 
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are summarized into 6 states.  Case 2 has one trader executing 56 trades on 4 stocks, summarized into 4 

states.  Case 3 has 6 traders executing 75 trades on 1 stock, summarized into 6 states.  

Algorithmically, the data was generated by:  

1) Random data was produced for a total of N-212 records 

2) The 212 pattern records were randomly added to the dataset 

3) The data was divided into training and testing sets 

As the number N records increased, the number of fraudulent cases was held constant.  The fraudulent 

data was effectively “buried” deeper in the data with each increase in records. The corresponding good 

(fair trades) versus bad (fraudulent trades) percentage values are shown in Table 4-3.   

Table 4-3: Insider trading characteristics of the data sets 

Records # Good # Bad %Good - %Bad 

1000 records 788 212 78.8-21.2 

2000 records 1788 212 89.4-10.6 

3000 records 2788 212 92.9-7.1 

4000 records 3788 212 94.7-5.3 

5000 records 4788 212 95.8-4.2 

 

4.2.1 Database 

For N=1000 records, the data can be seen in Figure 4-1.  The larger, red circles represent the fraudulent 

records.  The smaller, blue circles represent the non-fraudulent records.  21.2% of the records are 

fraudulent in this case.   
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Figure 4-1: Insider trading reward distribution for a database of 1000 records. 

4.2.2 Reinforcement Learning parameters 

The RL algorithm parameters are:  

1. {𝑆}: {𝑇𝑟𝑎𝑑𝑒𝑟 1 − 250, 𝑆𝑡𝑜𝑐𝑘 251 − 500)} 

2. {𝐴}: {𝑡𝑟𝑎𝑑𝑒𝑟, 𝑠𝑡𝑜𝑐𝑘} 

3. 𝑅(𝑆, 𝐴):   𝑝𝑟𝑜𝑓𝑖𝑡 𝑜𝑟 𝑙𝑜𝑠𝑠 𝑜𝑛 𝑡𝑟𝑎𝑑𝑒 𝑎𝑠 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 

There are 62,500 possible states in the database (i.e every trader and every stock = 250^2). However, all 

stocks were not traded by all traders and vice-versa therefore the state-space is much smaller than 62,500.  

For example, in the database of 1000 insider trading records there were 883 states altogether.   

4.2.3 RL Search Experimental Results 

The unsupervised learning results are presented first to demonstrate the behaviour of a learning agent 

permitted to explore and exploit the database without any prior knowledge.  This procedure is analogous 

to running a learning machine in the background during a business day to collect information about 

trading behaviour. Because this database was generated, results are shown for 5 databases with 1000, 

2000, 3000, 4000, 5000 trades.   
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 The number of records to be sampled = x% of N*2 (2 times the number of records in the 

database) where x is the proportion of the database to which the learning agent is exposed (10-

100).   

 The cutoff, c, is 20%.  That means 20% of all states were classified as fraudulent 

 For the exploratory component of the learning algorithms, ε= 0.8 which means that the learning 

agent explores 80% of the time.  

 𝛼 = 0.1.   This means the agent learns slowly and only takes 1% of the reward value each 

iteration 

The RL Search algorithm is an unsupervised search through the database where decisions are made based 

on the learning algorithms’ conditions.  Sample maximum Q-values are shown in Figure 4-2. 

 

Figure 4-2: Insider trading RL Search paths 

State 92 and State 610 are fraudulent collusive transactions found by ε-greedy and OptLearn agents.  

Boltzmann visits fewer states but has much higher Q-values.  One of the fraudulent collusive states it 

finds is at state 21 (the Q-value = 15) which Boltzmann revisits frequently.  To observe the gradual 

performance of the RL Search algorithm the ROC is presented in Figure 4-3.   
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Figure 4-3: Insider trading ROC for RL Search 

The ROC diagram shows values for testing percentages from 10-100%. Each circle represents the 

sensitivity vs. false positive value for each testing percentage; there are 10 circles for each algorithm with 

the 10% values being the most southern circles on the ROC graph for each respective algorithm. Southern 

circles represent lower sensitivity because, for an imbalanced database, it is likely that the smaller 

portions of the data do not contain any positive samples.   All algorithms begin to migrate to the northern 

part of the ROC as the testing percentages increase, reflecting the ability to better identify fraud with 

more samples.  For example, the green circles are migrating northward in the graph to reflect the 

increasing sensitivity of the optimal learning algorithm.  In contrast, the red circles for Kmeans begin in 

the southern half of the graph, migrate to the “random” point in the graph (as described in Section 2.6 as 

being on the diagonal line) and then one point, 100% exposure shows a high sensitivity (~75%) but 

maintains a higher false positive rate (~50%).  The increased exposure does not appear to improve results 

for K-means until it is exposed to 100% of the database.  Overall, results become increasingly better for 
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database.  On the x-axis the record size is represented by (_#) beside the algorithm name where # is the 

number of thousands of records.  The different colours on the bars represent the testing percentages.  A 

discussion of the results will follow the figures.    
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Figure 4-4: Insider trading sensitivity rate for unsupervised algorithms across all testing percentages 
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Figure 4-5: Insider trading false positive rate for unsupervised algorithms across all testing percentages 
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Figure 4-6: Insider trading AUC for unsupervised algorithms across all testing percentages
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The RL Search ε-greedy learning agent is the best performing fraud detector.  The AUC is near and 

excessive of 80% for varying percentages and sizes of the database. Kmeans appears to have the highest 

fraud detection rates but it also has the highest false positive rate.  The results highlight the possibility that 

Kmeans cannot truly recognize the fraudulent trades.  The Kmeans AUC is commensurate with this 

assessment by being less than 70% for all percentages of the database, for all sizes of the database.  

As the number of records increase, so does the ability of ε-greedy and OptLearn to identify positive 

samples.  These results support the use of RL for large databases.  The combination of RL improvement 

when exposed to more data, and its ability to find fraud which is being buried deeper into the data proves 

the industrial capabilities of RL Search for financial fraud. 

Interestingly, the lowest false positive rate for thesis algorithms is for the largest database, 5000 records.  

This means that even though the fraud is buried deeper into the data, the RL Search mechanisms can 

identify the related samples, the risky behavioural scenarios, and not mislabel them.  This is the power of 

the link analysis and decision-making mechanisms in this research.  The learning agents focus on the 

fraudulent scenarios and revisit them because of larger than average rewards and common feature values.  

This is the situation in true financial fraud databases therefore RL Search could work tremendously well 

for automatic fraud detection screening.   

Consistency is necessary for any industrial application.  The standard deviation of sensitivity and false 

positive rates are shown in Table 4-4.  RL Search provides consistently low false positive rates meaning 

that the learning agents know the difference between fraudulent and fair trades.  Kmeans has the highest 

variability in sensitivity which further proves the assertion that the performance of Kmeans is random and 

does not seem to have any systematic relationship with the number of records.  

Table 4-4: Unsupervised learning insider trading standard deviation (%) 

 Kmeans ε-greedy Optlearn Boltzmann 

Sensitivity 23.75 7.95 8.38 3.51 

False Positive 2.09 0.75 0.70 0.55 

 

4.2.4 RL Classifier and RL-HMM hybrid (HyQ, HyF) 

The ROC is used to demonstrate the performance of thesis models in comparison to benchmark models 

for supervised learning.  All model parameters are the same as for unsupervised learning except for the 

number of records which is only 500.  The results are shown for datasets of 90%-training, 10%-testing 

(represented by 0.1) and 80%-training, 20%-testing (represented by 0.2).  For the insider trading example, 

graphs exemplifying every step of the process will be shown for the reader’s understanding.   
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During supervised training the reward is equal to the class.  Figure 4-7 shows the optimal Q-values for 

each state for each learning algorithm for 80%-training, 20%-testing.  Note that the state numbers are not 

necessarily the same as in the unsupervised graphs due to the random sample selection in the testing 

paradigm.  ε-greedy and optimal learning emphasize a state just after the 0
th
 state, and then around the 

500
th
 state.  They both revisit several states during their searches.  Boltzmann appears to visit a few states 

repeatedly around the 150
th
 state.   

 

Figure 4-7: Q-tables for training data 

Figure 4-8 shows the Q-values by state after applying the optimal policy to the training data during the 

validation stage.  At the validation stage the reward is the reward profit or loss as a percentage of total 

profit of all trades in the database.  In Figure 4-8 ε-greedy places particular emphasis on the 500
th
 state 

plus some states around the 100
th
 state.  Optimal learning revisits a state just after 0 repeatedly, and a few 

others but not as much.  The Boltzmann learning agent continues to revisit a few states around the 150
th
 

state.   
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Figure 4-8: Q-table for validation on training data 

The ε-greedy learner is selected in this example because it has the most correctly identified samples.  

Figure 4-9 shows the Q-values when ε-greedy is applied to the testing database.  It revisits a few of the 

states between 130 and 140.  The state numbers do not correspond between training and testing datasets 

due to the size of the datasets.  This is the end of the RL Classifier procedure; the Q-values in Figure 4-9 

are sent to the RL Classifier for ranking and labeling.   

 

Figure 4-9: Q-values for testing data. 
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The rewards associated with the optimal path (derived in the V-table discussed in Section 2.2.2) during 

testing are sent to the RL-HMM hybrid (HyQ, HyF) model.   This path of rewards is converted to discrete 

emissions for the HMM using soft and hard discretization.  A sample set of paths after discretization is 

shown in Figure 4-10.   

 

Figure 4-10: Paths after discretization 

The fuzzified paths are only medium and high risk whereas the quantized path has all three levels of risk 

with an average level of medium. Note that these are observations for 100 steps.   

The next step in the procedure is to use these reward paths to empirically solve for λ, and then calculate 

the posterior probabilities to solve the HMM decoding problem.  A graph of posterior probabilities for 

each state is shown in Figure 4-11.   
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Figure 4-11: Posterior probabilities for insider trading problem 

These are the posterior probabilities by state conditional on the observation.  This shows the probability 

of a state occurring given observation and model.  It is dependent on time.  In order to decouple it from 

time, it must be multiplied by the probability of an observation occurring at any step.  Once this 

multiplication occurs, the final state probability of risk is found, shown in Figure 4-12.  

 

 

Figure 4-12: State probability of risk for insider trading problem 

The resulting ROC for the supervised models is shown in Figure 4-13 on a database of 5000 records of 

which 100 are sampled.  Note that the ROC x-axis has been modified for easier reading.  All other 

parameters are the same as in the RL Search model.   
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Figure 4-13: ROC for supervised models insider trading 

SVM and KNN outperform thesis algorithms by 15% in terms of balance overall when tested on 10% of 

the database.  When tested on 20% of the database the outperformance rate drops to 9%.   

The overall balance of both supervised and unsupervised algorithms is expressed by AUC in Figure 4-14.   

The overall effectiveness of supervised models is not as good in comparison to unsupervised models for 

algorithms proposed in this thesis.  Thesis models perform quite similarly and have a lower 

misclassification rate than the benchmark, SVM.  
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Figure 4-14: Insider trading AUC 

This section demonstrated that reinforcement learning is an appropriate tool for solving the problem of 

financial fraud.  It maintains high fraud detection rates while mislabeling a marginal number of fair trades 

no matter how deep, and rare, the fraudulent trades are buried in the database.  The unsupervised RL 

Search is a suitable algorithm for industrial applications to detect financial fraud.   

The unsupervised testing scenario when the learning agent saw 100% of the data represents the real-world 

procedure of running an automatic fraud detection screening tool after the trading day to detect fraudulent 

behaviour retroactively.  This process could also run throughout the day, and then the intra-day detected 

states and associated actions could be compared with the end-of-day process for further substantiation of 

fraudulence.   

4.3 Debit card transaction fraud 

While the public’s attention has focused on corporate financial fraud since the financial crisis of 2008, 

retail banking fraud has continued to be impacted by adaptive methods of fraudsters.  The purpose of this 

study was to classify worthless deposit fraud (WDF) at ATM machines.  This type of fraud occurs when 

an account holder deposits a blank piece of paper into an ATM machine but says he is depositing $100 

(the amount is arbitrary).  $100 is then withdrawn within seconds thereafter [104].   
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The main characteristic of WDF is frequent transactions in a short period of time.  In banking terms, this 

type of transactional behavior is referred to as “aggressive behavior”.   In terms of this thesis, the 

behaviour is translated to be "repeated abuse".   A secondary fundamental characteristic is that account 

tenure is short; a customer with a long history with the bank does not suddenly begin defrauding the bank.   

4.3.1 Database 

The database in this study was constructed based on similar characteristics of true datasets found in 

Canadian financial institutions where this author worked for decades and gained considerable knowledge 

and expertise.  The behaviour of the variables and fraudulent scenarios were derived from true transaction 

database statistics.  The database was constructed by maintaining realistic proportions of fraudulent 

transactions versus non-fraudulent transactions.  Realistic parameter values for mean and standard 

deviation were maintained in the underlying data.   

Financial raw data falls into 3 categories: data describing characteristics of the user (e.g. name, address), 

the account (e.g. account number, portfolio name, tenure), and the actual transaction (e.g. time, price, 

amount).  For WDF the requisite data is a subset of account and transaction data: 4 raw variables (account 

number, transaction type, transaction amount, tenure) and 4 derived variables (time difference between 

transaction variables).  

The time difference variables represent the amount of time elapsed between two transactions on one 

account.  There are 4 combinations of transactions possible at an ATM:  "deposit, deposit" (dep_dep), 

"deposit, withdrawal" (dep_wd), "withdrawal, withdrawal" (wd_wd), "withdrawal, deposit" (wd_dep).    

The time difference variables were modeled based on true database statistics using the unit of time = 

hours.  The distributions over the database commonly look like an exponentially decaying function.  

Since they were also bounded from the top and bottom the double-bounded probability density function 

(DB-PDF), the Kumaraswamy distribution [105], was selected for modeling.  All values are strictly 

positive.  The parameters for fraudulent and non-fraudulent transactions are shown in Table 4-5.   

Table 4-5: DB-PDF parameters for time difference model. 

 dep_dep dep_wd wd_wd wd_dep 

FRAUD     

𝒙𝒎𝒊𝒏 0 0.004 0.002 0.004 

𝒙𝒎𝒂𝒙 168 167 168 168 

𝑭𝟎 0.1 0.1 0.1 0.1 

𝒂 0.4 0.1 0.1 0.215 

𝒃 1.9 1.7 1.285 1.15 
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Non-Fraud     

𝒙𝒎𝒊𝒏 1 1.0 1 1.0 

𝒙𝒎𝒂𝒙 168 168 168 168 

𝑭𝟎 0.2 0.45 0.24 0.15 

𝒂 0.8 0.82 0.9 0.95 

𝒃 1.0 1.0 1.0 1.0 

 

In all cases, a<1 and b>=1 which corresponds to graph “C” in [105] where the graph is asymptotic with 

the x-curve, peaking at 𝑥𝑚𝑖𝑛 and dampening towards 𝑥𝑚𝑎𝑥.   

Fraudsters execute their transactions at an ATM machine faster than “regular” customers of the bank so as 

not to be caught.  This behaviour is exemplified in the histograms of Figure 4-15 where transaction 

behaviour between a deposit and withdrawal for fraudulent and non-fraudulent transactions is shown.  

The x-axis of the graphs is time, in hours, between transactions and the y-axis is the number of 

transactions.  The time elapsed between a deposit and a withdrawal for most fraudulent transactions is 

less than 20 hours. 

    

Figure 4-15: Time difference variables distribution for deposit and withdrawal 

In engineering, velocity is the change in position (of a body) divided by the change in time [106].  A 

concept called “transaction velocity” is defined in finance as the change in financial position divided by 

the change in time.  A deposit or withdrawal changes the financial position in an account and transaction 

velocity is calculated in equation (4-1).   

 

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
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(4-1) 

 

This calculation was performed for all 4 pairs of transaction types.   
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The database, called the “debit card fraud database (DCFD)” was constructed with several types of 

fraudulent scenarios based on real-world events.  There are two sets of scenarios: ATM fraud scenarios 

and organized crime scenarios.  All transactions were randomly inserted into the final database while 

maintaining real-world statistical integrity.  The final database statistics are shown in Table 4-6.   

Table 4-6: DCFD statistics 

Total transactions #fair #fraud %fraud 

5000 4637 363 7.2% 

Total account #s #fair #fraud %fraud 

2036 1958 78 3.8% 

 

These proportions make DCFD an imbalanced database problem.   

4.3.2 Reinforcement Learning parameters 

This problem is cast as an episodic task. The algorithm begins its search at the first record in the 

transaction table. The episodic search is complete after a specified number of records are visited.  

The system parameters are as follows: 

1. {𝑆}: {𝐴𝑐𝑐𝑜𝑢𝑛𝑡 1 − 2036, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 251 − 500} 

2. {𝐴}: {𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟} 

3. 𝑅(𝑆, 𝐴):   𝑚𝑎𝑥(𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)/𝑡𝑒𝑛𝑢𝑟𝑒 

For the DCFD database there are 509,000 possible states.  Not all states exist; for example, one account 

transacting only at one terminal eliminates 249 states.  

The reward for every record is the largest transaction velocity divided by the tenure. The reward is 

therefore a function of the transaction amount, account tenure and the time elapsed between the previous 

and current transactions.   

The reward changed after every action, with every state, with every transaction. The experiment was to 

detect suspicious transactional patterns based on the ratio of transaction velocity to tenure.   The 

calculation of transaction velocity was with respect to two transactions so rewards for one account were 

thus implicitly linked. The learning agent searched for larger than average transaction velocity.  When the 

tenure was short, the reward increased.   

4.3.3 RL Search experimental results 

The unsupervised learning results are presented first to demonstrate the behaviour of a learning agent 

permitted to explore and exploit the database without any prior knowledge.  This procedure is analogous 
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to running a learning machine in the background during a business day to collect information about 

customer transactional behaviour.   

 All learning algorithm parameters are as described in Chapter 3.   

 The number of records to be sampled = x% of 5,000 (2 times the number of records in the 

database) where x is the proportion of the database to which the learning agent was exposed.   

 The cutoff is 20%.  That means 20% of all states were classified as fraudulent 

 For the exploratory component of the learning algorithms, ε= 0.8 which means that the learning 

agent explores 80% of the time.  

 𝛼 = 0.1.   This means the agent learns slowly and only takes 1% of the reward value each 

iteration 

The first set of results show how all three RL Search algorithms perform relative to the benchmark, K-

means in Figure 4-16 and Figure 4-17.  The models were shown gradually more of the database, from 

10% to 100%.  The results for RL Search become increasingly better as it sees more of the database.   

 

Figure 4-16: DCFD RL Search Sensitivity 

RL Search outperforms K-means for every dataset except for at 90% when K-means outperforms 
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database and on.  This result exhibits the ability of RL Search to use link analysis to consistently locate 

fraudulent activity and focus on it as the dataset increases.  It is likely that, for an imbalanced database, 

the smaller proportions of the data did not contain any positive samples.  However as the exposure 

increases, so does the sensitivity of RL Search.  This increased exposure does not appear to improve 

results for K-means. Figure 4-17 shows the false positive rates for the unsupervised algorithms. 

 

Figure 4-17: DCFD RL Search False Positive 

The false positive rate is the classification of regular customers classified as committing WDF.  It is less 

than 20% for all RL Search algorithms.  K-means is almost at 50% which means it misclassifies non-

fraud samples frequently, and far too often for industrial implementation.  One of the goals of this thesis 

is to construct a machine learning algorithm that can achieve high sensitivity and low false positive.  In 

the DCFD test, a real-world based database, we have achieved that goal.    

Over several runs of the data the standard deviations are shown in Table 4-7 demonstrating the 

consistency of RL Search algorithms.  Once again, Boltzmann has the lowest standard deviation for both 

metrics while K-means has the highest variability. 
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Table 4-7: Unsupervised learning DCFD standard deviation (%). 

 Kmeans ε-greedy Optlearn Boltzmann 

Sensitivity 12.15 6.46 6.95 1.25 

False Positive 0.87 0.27 0.34 0.25 

 

Supervised learning results will be presented next to demonstrate the power of RL and its hybrid as 

classifiers. 

4.3.4  RL Classifier and RL-HMM hybrid (HyQ, HyF) 

The ROC is used to demonstrate the performance of thesis models in comparison to benchmark models 

for supervised learning.  All model parameters are the same as for unsupervised learning except for the 

number of records which is only 500.  The results are shown for datasets of 90%-training, 10%-testing 

(represented by 0.1) and 80%-training, 20%-testing (represented by 0.2).  

The performance of supervised algorithms can be seen in Figure 4-18.  Thesis algorithms perform better 

than LR and NN.  LR identifies all of the non-fraudulent transactions as demonstrated by a 0% false 

positive rate.  Neither algorithm finds many fraudulent transactions.   

KNN performs the best out of the benchmark algorithms.  The thesis algorithms have higher sensitivity 

and false positive rates.  RL-HMM Classifier (HyF) and RL Classifier are competitive with SVM in terms 

of sensitivity.  However, both SVM and KNN strike a balance between high sensitivity and low false 

positive.   The DCFD database shows the same results for both types of data discretization for the RL-

HMM hybrid model, HyF and HyQ in the graph.  Thesis algorithms are more liberal than all benchmark 

algorithms in the language of Section 2.9 .  Despite the fact that they are liberal, they also have low false 

positive rates which are the goal of this thesis.  Notice that when the testing set increased to 20%, the 

thesis algorithms’ sensitivity rate became closer to the KNN sensitivity rate.  False positive rates remain 

consistent over the two testing sets for all algorithms. 
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Figure 4-18: DCFD ROC for supervised models 

In Figure 4-19 the AUC is compared across all classifiers.  AUC reflects the ability of the model to 

balance true positive and true negative detection rates.  RL-HMM hybrid (HyQ, HyF) models are the best 

performers of thesis algorithms at ~80%.  KNN is the best performer overall while the Artificial Neural 

Network did not detect anything.  

 

 

Figure 4-19: DCFD AUC 
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From these results it can be concluded that the KNN model is best for WDF if there exists time and 

samples to train the model.  However, if the industrial application requires an automated fraud detection 

screening tool for continuous monitoring with frequent flags emitted from the model, any of the RL 

Search learning agents will be able to detect the fraud with a low false positive rate.  Therefore, for the 

purpose of financial fraud detection (e.g. insider trading, debit card transaction fraud) the unsupervised 

thesis algorithms perform better than supervised thesis algorithms and KNN type algorithms in terms of 

the key metrics used in the thesis, sensitivity and false positive.  

Overall, the RL learners and the machine learning framework invented in this thesis are superior tools for 

financial fraud detection.  

4.3.5 Analysis of database size in financial fraud 

One of the motivations for creating a supervised learning algorithm was the potential of decreasing the 

number of records the learner had to search to learn the risky behaviours.  We discovered that was in fact 

true.  We did not have to rely solely on the agent for information because we modeled the agent’s paths 

within the succinct probabilistic framework of HMM.  Sample values for testing 10% of the database for 

RL Classifier and RL-HMM hybrid (HyQ, HyF) are shown in Table 4-8 to demonstrate this phenomenon. 

Table 4-8: AUC for large databases in supervised fraud detection algorithms 

Number of 

records 

            

100  

            

100  

            

100  

         

1,000  

         

1,000  

         

1,000  

         

10,000  

         

10,000  

         

10,000  

Supervised 

algorithm type 

RL HyQ HyF RL HyQ HyF RL HyQ HyF 

Insider trading 54% 65% 65% 63% 59% 59% 60% 59% 59% 

DCFD 75% 76% 76% 72% 73% 73% 73% 73% 73% 

 

As the number of records increased for insider trading, the overall effectiveness of the classifier, 

represented by AUC, did not improve drastically.  We presented results for number of records = 500 for 

[RL, HyQ, HyF] which had an average AUC of [62%, 57%, 57%] respectively.  RL-HMM hybrid (HyF) 

gets up to 60% AUC for 10,000 records but that value was not enough to justify increasing the 

computational time for all supervised learners.   

In the case of DCFD, AUC decreases after 100 records in Table 4-8, and from our testing 500 records was 

optimal with AUC of [76%, 75%, 72%] respectively.  Ultimately, in both cases the unsupervised learners 

were superior to any of the supervised learning algorithms, whether the database was large or small.   
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4.4 Canadian Heart Health Database 

The Canadian Heart Health Database (CHHD) is a survey of Canadians from 1986-1992 examining their 

lifestyles with respect to factors that are known to impact heart health. 
1
 The purpose of this experiment 

was to search for relationships between features in the database to discover causes of cardiovascular 

disease (CVD) by classifying CHHD samples as “CVD” or “healthy”.  It was a binary classification 

problem in which “CVD” was a positive response, and “healthy” was a negative response.   

Risk factors tend to cluster and interact to increase CVD [4], an observation which opens up an area for 

significant research using data mining of hidden information.  Specific blood pressure or blood 

cholesterol levels, for example, have little clinical relevance when considered in isolation from other risk 

factors.  [4].  The work in this paper is based on a Master of Science thesis in Health Studies and 

Gerontology in 2012 [107].  It draws many of its initial propositions with respect to preprocessing and 

feature selection from the thesis.  In contrast to Liu et al’s work [88], this thesis shows how to use non-

biometric data in a behaviour based model to diagnose CVD.   

4.4.1 Database 

The database was preprocessed in a similar process to [107].  After preprocessing, the database had 9035 

samples and 151 features.   The sample CHHD database had an 11.52% rate of positive samples making 

CHHD an imbalanced database problem. 

Features were selected based on a combination of context-based and LVF, shown in Table 4-9.  The 

bracketed variable is the name used in the CHHD database.  The significant variables selected by the LVF 

were non-biometric and focused on behavioural attitudes and actions.  The feature types are categorical so 

that the RL agent can link states using common category values between samples.   

The most significant variable in the study was [SEX].  According to [108] and conversations with a 

researcher in heart health [109], CVD research in the past has failed when applied to women because 

studies were focused on males.  Once [SEX] was used as a feature in the research, researchers were able 

to detect female CVD faster and design customized treatment to suit their needs.    

The feature [GPAGE2] represents age and was an intuitive selection for reward because age is typically a 

reward for the risk of lifestyle habits.   

 

 

 

                                                      
1
 The database was obtained from Statistics Canada via the Ontario Data Documentation, Extraction Service and 

Infrastructure (ODESI) under DLI license giving free access for academic purposes.  The identification number is: 
chhd_E_198-1992 
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Table 4-9: CHHD features 

Feature Variable type Feature selection 

method 

Feature 

type 

#of 

categories 

[SEX] SEX Socio-demographic Context Binary 2 

[CIGCAT] 

CIGARETTES SMOKED 

CATEGORIES 

Lifestyle LVF Categorical 6 

[BPPORK] HBP 

RELATED TO: PORK? 

Awareness LVF Categorical 3 

[SALTFOOD] HOW 

OFTEN IS SALT ADDED 

AT THE TABLE? 

Lifestyle LVF Categorical 5 

[GPAGE2] AGE 

GROUPED IN 10 YEARS 

Socio-demographic Context Categorical 6 

 

The class variable for each record is designed in this thesis as a binary indicator of heart disease.  The 

“CVD” classification is a combination of responses to three questions: Have you ever had a heart attack?  

Have you ever had a stroke?  Do you have any other heart disease?  It is assumed that if a patient 

answered any of these three questions with yes, that patient is classified as “CVD”.  If not, then it is 

classified as “healthy”.  

4.4.2 Reinforcement Learning parameters 

The system parameters are as follows: 

4. {𝑆}: {[𝑆𝐸𝑋]1,2; [𝐶𝐼𝐺𝐶𝐴𝑇]1 − 6; [𝐵𝑃𝑃𝑂𝑅𝐾]1 − 3; [𝑆𝐴𝐿𝑇𝐹𝑂𝑂𝐷]; 1 − 5} 

5. {𝐴}: {𝑠𝑒𝑥, 𝑐𝑖𝑔𝑐𝑎𝑡, 𝑏𝑝𝑝𝑜𝑟𝑘, 𝑠𝑎𝑙𝑡𝑓𝑜𝑜𝑑} 

6. 𝑅(𝑆, 𝐴):   [𝐺𝑃𝐴𝐺𝐸2] 

Dahlof, [4] suggested non-biometric data considered with other risk factors should be examined in the 

study of heart disease.  Because RL is designed for collusion and repeated abuse, it is applying his theory 

of grouping together non-biometric risk factors  

4.4.3 RL Search experimental results 

 The number of records to be sampled = x% of 9035 where x is the proportion of the database to 

which the learning agent was exposed.     
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 The cutoff is 15%.  That means 15% of all states (and then corresponding records) were classified 

as CVD.   

 For the exploratory component of the learning algorithms, ε= 0.5 which means that the learning 

agent explores 50% of the time.  

 𝛼 = 0.1.   This means the agent learns slowly and only takes 1% of the reward value each 

iteration 

The sensitivity of RL Search algorithms and Kmeans to heart disease is shown in Figure 4-20.   

 

Figure 4-20: CHHD RL Search Sensitivity 

Optimal learning was the most sensitive model and K-means was the least consistent.  The LVF tests 

revealed that there exists a lot of anomalies in the data which is evident from the Boltzmann results; it had 

the hardest time finding anything, likely because it focused on a few states.   
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Figure 4-21: CHHD RL Search False Positive. 

All false positive graphs in Figure 4-21 mirror the sensitivity graph.  This means that the models mislabel 

as many samples as they label correctly.  The unsupervised learners cannot tell the difference between 

CVD and health.  

Over several runs of the data the standard deviations are shown in Table 4-10, once again demonstrating 

the consistency of RL Search algorithms.   

Table 4-10: Unsupervised learning CHHD standard deviation (%). 

 Kmeans e-greedy Optlearn Boltzmann 

Sensitivity 22.56 4.63 3.77 2.41 

False Positive 19.11 3.06 2.88 1.80 

 

4.4.4 RL Classifier and RL-HMM hybrid (HyQ, HyF) 

All model parameters are the same as for unsupervised learning except for the number of records to be 

sampled which was 100.   
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The sensitivity of all algorithms is quite low.  Thesis algorithms are almost random since they are on the 

line of Figure 4-22. 

 

Figure 4-22: CHHD ROC for supervised models 

State probabilities in Figure 4-23 are also low which shows the lack of confidence of the RL-HMM 

hybrid (HyQ, HyF) model and hence the liberal classification results.   

  

Figure 4-23: CHHD state probabilities for supervised models 
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the optimal action for one state did not seem to apply for all records corresponding to that state because of 

the amount of dissimilarity in positive samples over the same feature values.   

The behavioural analysis has shown promise as a tool but because the same symptom in two different 

samples can result in different outcomes, the model cannot draw conclusions about collusion of risky 

behaviour.  Interestingly, RL-HMM hybrid (HyQ) was the most sensitive of the algorithms and shows the 

most promise for future research in CHHD.     

In Figure 4-24 the AUC is compared across classifiers.  Model performance is similar across classifiers 

except for neural network which was unable to find anything correctly and SVM which is marginally 

better than the rest.   

 

Figure 4-24: CHHD AUC 
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added to the analysis.  Non-biometric data provided the most information to the RL models.  Awareness 

and lifestyle features appeared often as significant.  For example, the [SALTFOOD] variable gave better 

information than blood pressure.  This proves that the RL Classifier is indeed a behavioural model. A 
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no-CVD samples (in terms of AUC).  There are very few feature sets that have repeatable samples.  That 

is, for any one combination of feature values, there are few samples with the exact same feature values.  

Because the RL technique is based on linking exact feature values and common samples based on 

behavior, the RL classifier could not find CVD as accurately as other methods.  The  main reason why we 

believe that the RL classifier worked for fraud data and not medical data is because there is more entropy 

in the CHHD; this means that there was more information in the data; the records are not as similar for 

disease (different feature values can produce disease) as for fraud (fraud cases have similar feature 

values) so statistical methods may work in these cases.  In this sense, fraud is more deterministic may be 

because of the human intervention. RL Classifier is best applied to databases where at least one of the 

feature values is the same for the positive samples.  CVD therefore should not be detected as an organized 

crime where several features have a few of the same values for a group of samples that are colluding to 

produce a positive sample.   

However, RL Classifier has revealed that lifestyle and awareness features play a key role in CVD 

identification.  Future work can focus on such variables as listed in this section to further the data mining 

research into CVD. 

4.5 Female Labour Force Participation 

The purpose of this study is to model the decision to participate in the labour market.  The goal is to 

evaluate the relevance of explanatory variables that most contribute to the decision to enter the labour 

market.  The study is segregated into female participation in the labour market.  The work in this study 

was motivated by [110], a study of female labour force participation in Venezuela based off the data in 

the Venezuelan Household survey.   

A study of labour force participation requires a data mining tool to uncover the features which are 

considered in the decision to participate in the labour market.  The features in the decision-making 

process can be considered to be “hidden” information and is a component of "behavioural economics" 

[110].  From an economic perspective, the problem is perceived as one of allocating finite time to work, 

leisure and family.  By selecting "work", there is a form of exposure for someone to leave the home and 

participate economically.  In this sense, "work" can be considered as "risk" because of the exposure to the 

conditions of "work" (e.g. physical, mental) with the opportunity cost to leisure, and family. Therefore 

this study is commensurate with previous work performed on studies of risk in human behaviour [43].   

In this study, we will apply the framework used by [110] to Canadian household data.   
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4.5.1 Database 

The female labour force participation study was conducted on a public database compiled by Statistics 

Canada through the Labour Force Survey (LFS) in February, 2013 [111].  The features selected by the 

LVF for the problem are shown in Table 4-11 and a summary of database statistics is shown in Table 

4-12.  Note that only the female records were used for this thesis study to detect female labour force 

participation and uncover the related decision variables.   

Table 4-11: LFS features 

Feature Variable type Feature selection 

method 

Feature 

type 

#of 

categories 

[MARSTAT] Marital 

Status 

Socio-demographic LVF Binary 2 

[EFAMTYPE] Type of 

economic family 

Lifestyle LVF Categorical 3 

[SP_AGE] Age of spouse Biometric LVF Categorical 4 

 

Female participants in the labour force survey are high (>50%) of samples in the database.  This would be 

considered as a “balanced database” since the proportion of positive and negatives classes are almost 

even.  

Table 4-12: LFS Database statistics – February 2013 

 FEMALE 

#rows 24597 

#positive samples 15861 

%rate of positive 

samples 
64% 

 

The variable describing “labour force status”, [LFSSTAT], is the class variable.  This question was 

divided into 6 categories in the Labour Force Survey: (1) employed, at work, (2) employed, absent from 

work, (3) unemployed, temporary layoff, (4) unemployed, job searcher, (5) unemployed, future start, (6) 

not in labour force.  We considered (1) to be the “economically active population” and treated these 

samples as positive.   All other categories were considered to be negative samples in that they represented 

unemployment, or in case of (2), a cost to the employer.  
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 “Hourly earnings” was selected as the reward for the system.  These are the responses to the question: 

“usual hourly wages”.   There are several blanks in the two databases; there is no reason given for this 

from Statistics Canada so we assumed that a) the respondent did not want to provide the information or b) 

the respondent did not collect an hourly wage.  We handled this from a data mining point of view by 

assuming that if HRLYEARN = blank, then it is zero.  It was selected because it was the most highly 

correlated variable with the class variable, labour force status.  Additionally, hourly earnings are a reward 

for labour and therefore a contextual argument can be made for its inclusion.   

4.5.2 Reinforcement Learning parameters 

The system parameters are as follows: 

1. {𝑆}: {[𝑀𝐴𝑅𝑆𝑇𝐴𝑇]1,2; [𝐸𝐹𝐴𝑀𝑇𝑌𝑃𝐸]1 − 3; [𝑆𝑃_𝐴𝐺𝐸]1 − 4} 

2. {𝐴}: {𝑚𝑎𝑟𝑠𝑡𝑎𝑡, 𝑒𝑓𝑎𝑚𝑡𝑦𝑝𝑒, 𝑠𝑝_𝑎𝑔𝑒} 

3. 𝑅(𝑆, 𝐴):   [𝐻𝑅𝐿𝑌𝐸𝐴𝑅𝑁] 

There are 24 states in this model.  That reflects the number of similar samples that can be grouped under 

one state.   

4.5.3 RL Search experimental results 

 The number of records to be sampled = x% of 23091 where x is the proportion of the database to 

which the learning agent was exposed.   

 The cutoff is 20%.  That means 20% of all states were classified as “employed”. 

 For the exploratory component of the learning algorithms, ε= 0.7 which means that the learning 

agent explores 70% of the time.  

 𝛼 = 0.1.   This means the agent learns slowly and only takes 1% of the reward value each 

iteration 
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RL Search performed very well in terms of sensitivity (Figure 4-25) however the false positive rates are 

also relatively high (Figure 4-26).  

 

Figure 4-25: LFS RL Search Sensitivity 

 

Figure 4-26: LFS RL Search False Positive 
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The optimal learning agent was the best learner, achieving over 80% sensitivity to female employment 

and 50-60% misclassification.  

Over several runs of the data the standard deviations are shown in Table 4-13, demonstrating the 

consistency of RL Search algorithms.  Boltzmann learning is highly variable in this application to a 

balanced database in contrast to its performance in the previous three imbalanced applications.  Its jagged 

performance as the exposure to the database increased is evidence of its inability to distinguish between 

“employed” and “unemployed”. The other three algorithms experienced a less dramatic jagged behaviour, 

with optimal learning being the most steady as it was exposed to more data.    

Table 4-13: Unsupervised learning DCFD standard deviation (%). 

 K-means ε-greedy Optlearn Boltzmann 

Sensitivity 27 3 2 18 

False Positive 7 3 6 21 

4.5.4 RL Classifier and RL-HMM hybrid (HyQ, HyF) 

The ROC is used to demonstrate the performance of thesis models in comparison to benchmark models 

for supervised learning.  All model parameters are the same as for unsupervised learning except for the 

number of records which is only 100.  The results are shown in Figure 4-27 for datasets of 90%-training, 

10%-testing (represented by 0.1) and 80%-training, 20%-testing (represented by 0.2).  

 

Figure 4-27: LFS ROC for supervised models 
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Classifier has a high false positive rate with medium sensitivity which mimics the results of the RL 

Search model.  

 

 

Figure 4-28: LFS AUC 

Linear regression model is the most balanced model for LFS.  RL-HMM hybrid (HyQ) performed 

competitively on a balanced database.   
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employment is dependent on the family.   
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4.6 Summary of results 

One of the goals of this research was to assess the suitability of the three learning algorithms for risk-

reward systems.   

The ε-greedy learning agent achieved a good balance between exploitation and exploration for the 

imbalanced databases.  The advantage of this learning method is that it did not necessarily return to non-

risky states.  In particular, since it explored the database 80% of the time for financial fraud applications it 

was given an opportunity to find more fraudulent states which is beneficial because of the low ratio of 

fraudulent states to non-fraudulent states.    

Optimal learning was also a balanced learner, obtaining AUC values close to ε-greedy.  It visited more 

states than ε-greedy and therefore covered more of the state-space. 

 

The optimal learner’s learning method was to estimate the mean reward for each action, and then select 

the action with the highest mean reward. The ε-greedy learner exploited the database by selecting the 

action for which the Q-value was highest.  In both cases, the maximized value (mean reward, Q-value) 

was calculated using the reward from the previous step in the algorithm.  However, the ε-greedy learner 

had an additional piece of information: the distance between state-action pairs as calculated by the BAV 

(Equation (2-1)).  Since it did not select actions with lower Q-values it did not return to non-risky states.  

In contrast, the optimal learner only had reward information however this had an advantage; since it saw 

more of the state-space it linked more fraudulent states together.  Therefore both learning algorithms are 

recommended for applications in risk-reward systems.   

 

Boltzmann learning estimated action probabilities.  It became stuck in local optimums because it was 

biased to action 1.  This bias helped the learner in the imbalanced database because there were many 

records belonging to a few states but it did not achieve AUC values as high as the other learning 

algorithms.  An exploration component is necessary for a learning algorithm to find positive samples in 

imbalanced databases.   
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A summary of the classifier results follows in Table 4-14. The values are the average AUC over 10%-100% of the database for unsupervised 

algorithms.  For the supervised models, the table shows the average AUC over 10% and 20% of the database used for testing.  

  

Table 4-14: AUC: Summary of Results 

 

 

RL Search 

ε-greedy 

RL Search 

Optimal learning 

RL Search 

Boltzmann 

Insider trading AUC 76 74 61 

DCFD AUC 81 80 73 

CHHD AUC 51 51 51 

LFS AUC             57 64 55 

 RL Classifier 
RL-HMM Hybrid Classifier 

Quantile discretization 

RL-HMM Hybrid Classifier 

Fuzzy discretization 

Insider trading AUC 62 57 57 

DCFD AUC 76 75 72 

CHHD AUC 51 53 50 

LFS AUC 67 79 62 
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Thesis algorithms performed well on insider trading and DCFD, particularly when it was untrained.  RL 

sees more records and has more opportunity to explore the database in an unsupervised environment.  Of 

the non-fraud databases, the RL-HMM Hybrid (HyQ) achieved the best results of the thesis algorithms.  

This shows that the hybridization of RL and HMM could be pursued for more general applications. 
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4.7 Summary 

In this chapter we investigated the performance of developed RL methods in 4 different case studies: 

insider trading, debit card transaction fraud, heart disease, and female employment.  The results have 

shown that unsupervised and supervised applications of RL have good results.  After testing on 

different types of imbalanced and balanced databases, a few key observations can be made.   

RL better performs in an unsupervised environment when exposed to large datasets. When fraud is 

buried deeper into the database RL Search can identify fraud, related samples, and not mislabel them.  

RL Search is the best at finding financial fraud in terms of speed, sensitivity and low misclassification 

cost.  The RL techniques developed in this thesis are best applied to databases where at least one of 

the feature values is the same for positive samples.  This is the framework within which the 3 

behavioural scenarios were constructed.  RL-HMM hybrid (HyQ), with quantized discretion, 

performed competitively with benchmark algorithms on a balanced database.  Thesis algorithms show 

consistency as repeatable results are necessary for industrial application.   
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Chapter 5 

Summary and Conclusions 

The main objective in this thesis was to develop machine learning classification algorithms to 

uncover risky human behaviour in imbalanced databases, financial industry databases being our main 

targets.  Reinforcement learning (RL) agents can isolate risky human behaviour using a state-space 

framework for linking risky data samples.   

In the first part, the focus was on applying an unsupervised RL algorithm to financial fraud because 

RL is adaptive and model-free.  Three learning algorithms were applied, two of which are popular, 

one of which is new to the RL literature: ε-greedy, Boltzmann learning and the statistical mean 

estimation method termed “optimal learning” (new).  There are several contributions in this part 

which can be summarized as follows: 

 Establishing a state-space framework in which unique combinations of feature values represented 

a “state”.  The framework decreased the search space and summarized behaviour into states 

which proved to be an ideal method for imbalanced databases containing the three fraudulent 

scenarios. 

 A new approach to feature selection.  Instead of looking for a feature set resulting in a sparse 

dataset, this research required a feature set with common attributes.  This was reflected by 

selecting features that had common feature values occurring in many rows.  In fact, dependent 

rows were preferred.  This allowed for detection of collusive and repeatedly abusive behaviour.   

This thesis has shown that it is not the individual features that make a better classifier; it is how 

features work together and collude to result in the target variable.  This approach of dependent 

rows for feature selection is novel to the literature for use by RL.   

 Development of appropriate models and the demonstration of how to apply these three RL 

learning agents to financial fraud are presented.  Three scenarios were clearly delineated to 

describe risky behaviour in financial fraud databases, drawn from the author’s experience 

working in the financial industry.   They describe two types of risky human behaviour:  collusion 

and repeated abuse. The RL Search algorithms were consistent across samples and showed 

superior results.  The results (for example, fraud detection rates of 75-85%) support the ability of 

RL Search to be a good screening tool to search very large databases and so can be implemented 

industry-wide.  It is unlikely for an institution to have training data for financial fraud.  Therefore, 
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a solution with unlabeled data for financial fraud is the most practical solution.  The learning 

agents are also consistent with standard deviation of sensitivity and false positive <5%.   

 Application of an adaptive learning statistical technique to multi-variable reinforcement learning 

problem.   Typical learning techniques select actions based on a decision to exploit or explore 

information.  Optimal learning modified this approach by selecting actions based on the highest 

estimated mean of the rewards received by taking an action (exploitation).  It benefitted from an 

exploration component and proved to be the best learning agent for finding financial fraud (AUC 

of 75-80%).  Researchers would benefit from the optimal learning algorithm introduced in this 

thesis because it covers more of the state-space allowing it to link together positive states.   

 Introduction of the terminology “risky human behaviour” to the field of machine learning for data 

mining by successfully applying three learning algorithms. 

In addition, the RL Search algorithm was applied to non-financial problems: heart disease 

(imbalanced classes), and female labour force (balanced classes).  

The research then focused on supervised learning and introduced a new probabilistic framework to 

completely describe the database like a probability space.   This was done in order to construct a 

novel hybridization of Reinforcement Learning and Hidden Markov (RL-HMM hybrid- HyQ, HyF) 

models for decision-making and classification of datasets. Combining these two approaches allowed 

for rapid calculations and multiple path generation for class probability estimation.  Additionally, the 

RL agent’s paths were used for empirically solving the HMM “learning” problem for application to 

imbalanced databases.  The following achievements can be pointed out:  

 The HMM decoding problem is classically dependent on time.  This research produced a novel 

method of solving the decoding problem for posterior probabilities independent of time.  By 

separating the model from time, the marginal probability of states was used to evaluate the state 

risk.    

 When RL-HMM hybrid (HyQ, HyF) was applied to the two generated databases (financial fraud 

databases), they did not converge to a HMM solution.  However, it did converge for all public 

databases.  Public databases are considered to be those published by Government bodies (the 

Government of Canada in this case).  Private databases are those with protected, corporate 

information which is not released to the public.  We generated our own “private” databases using 

statistical and behavioural knowledge gained from work experience.   
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RL-HMM hybrid (HyQ, HyF) can perform well on real industrial data.  HMM in particular is 

known to be too slow for industrial implementation however hybridizing it with RL for training 

the transition and emission matrices facilitates software efficiency.    

 The RL-HMM hybrid (HyQ, HyF) model minimized the number of records required for 

searching.  This is an improvement to RL methods which are known to require a lot of data.   

 The RL- HMM hybrid (HyQ, HyF) models were more conservative than the RL Classifier model.  

This was the purpose of the hybridization; a “conservative” model makes positive classification 

only with strong evidence so they make few false positive errors.  This is at the cost of less 

positive classifications.  RL is model-free so the results are consistent with the literature that RL 

classifier is a more “liberal” classification algorithm, making positive classifications with weak 

evidence so they classify nearly all positives correctly.   

 RL-HMM hybrid (HyQ, HyF) performed well on a balanced database proving that imposing a 

probabilistic framework in a smaller state-space can improve the RL agents’ detection rates.   

The supervised models were exposed to the same data as the unsupervised models. Once again, they 

were competitive with benchmark models.  In fact, we observed that linear regression is inapplicable 

to binary imbalanced databases because it models the majority class (the negative class).  Also, when 

KNN is supervised, it performed better than when it is unsupervised on thesis databases.   

All the mentioned methods have advantages and disadvantages which can be summarized as follows: 

1. RL is a superior method for data mining of imbalanced databases.  It consistently produces a 

high rate of sensitivity with a low false positive rate.  It performs best in a binary, 

unsupervised learning environment.     

2. All learning methods can be applied in an on-policy (real-time decision-making) and off-

policy (simulation) situation.  The RL Search and RL Classifier algorithms are model-free 

which means they do not need transition probabilities.  They accurately identify positive 

states and can discard negative states efficiently.  However, they both require a lot of data to 

increase overall accuracy and therefore take longer than benchmark algorithms.     

3. Thesis algorithms perform exceptionally well on imbalanced databases because they zone in 

on a few related positive states and give them the highest weight.  The data constraint on the 

algorithms is categorical, discrete values.   

4. Learning algorithms extend the traditional scheme of programming to include domain 

knowledge induced by examples and subject matter expert (SME) input.  But they do not 
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remove the need for an SME to validate classifier results which, in this author’s humble 

opinion, should not be the goal of data mining – machine autonomy.  

5. The RL models perform best in an environment where the feature set has many repeatable 

samples.  That is, for any one combination of feature values, there are many samples with the 

exact same feature values.  

5.1 Future work 

1. Strictly in terms of financial fraud data, the detectable behaviour can be extended to 

organized crime which involves both insiders and a network of outsiders.  This can be 

accomplished by culling multiple sources of data from banks, brokerage companies, credit 

rating agencies and regulators to investigate financial fraud.  RL Search could function the 

same but would have to be integrated with a large SQL database for example, keyed on a 

timestamp and entity.   

2. RL algorithms could be used as a data filter because of their ability to locate positive samples 

so well.     

3. To take advantage of the specific learning capabilities of each learning agent, a weight could 

be assigned to each agent and operate as an ensemble.   

4. The computation of the optimal policy requires the best action for each state to be selected.  

In the thesis framework, that action represents a feature.  RL Classifier and RL-HMM hybrid 

(HyQ, HyF) could be used strictly for discovering trends in attributes, for example, 

uncovering knowledge of the specific features values contributing to employment, heart 

disease or the exact name of the stock and/or trader committing fraud.   

5. For feature selection further research should go into using methods like LVF that will test a 

group of features and use the relationship among features to predict the class variable.   

6. Big Data applications can use RL Search because of its increasing accuracy when exposed to 

large datasets.  RL Search decreases the search space into states, and then does not need to 

keep every reward in memory because the value of the RL Search is summarized in the Q-

value.  It is efficient, cost-effective, and has a high sensitivity rate with a low false positive 

rate.  
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