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A B S T R A C T

The need to understand the effect of policy decisions on environmental indicators
is strong. The emergence of new technologies brought about by connected vehicle
technologies, which are difficult to evaluate in field settings, means that policies
must often be evaluated with software models. In these cases, however, the trans-
portation model and the emissions model are often separate, and multiple different
ways to connect these models are possible. Although the estimations provided by
each model will vary, each method also differs in terms of the computational time.

This research is motivated by the need to understand the consequences of choos-
ing a particular method to link a traffic and emissions model. Within the literature,
aggregated approaches that simply use average speeds and volumes are often
selected for their convenience and lower data needs. A number of different sce-
narios were therefore constructed to compare the estimates of these aggregated
approaches to other methods that use disaggregated data, such as the use of indi-
vidual discrete trajectories, the use of a velocity binning scheme that characterises
networks based on their velocity profile or the use of a clustering algorithm devel-
oped for this study. This research presents a clustering algorithm that can be used
to reduce the computational loads of an emissions estimation process without loss
of accuracy.

The results of the analysis highlight the consequences of choosing each ap-
proach. Aggregated approaches produce unreliable estimates as they are backed
by assumptions that may not be valid in every case. Using individual trajectories
creates high computational loads and may not be feasible in all cases. The wealth
of data available from a traffic microsimulation mean that using an aggregated
approach neglects to utilise the full potential of the model; however, the hybrid ap-
proaches presented in this research (clustering and velocity binning) were found
to make excellent use of this data while still minimizing computational demands.
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Part I

B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

This part is divided into two chapters. The first chapter gives some
background on the major tools used in this project. These tools in-
clude VISSIM, a traffic microsimulation model, and the United States
Environmental Protection Agency (US EPA)’s MOVES, as well as a few
other minor tools. Where relevant, this section highlights specific de-
tails about these tools. The literature review explores some of the cur-
rent literature in the area, including situations where these models have
been applied.

1



1
B A C K G R O U N D

Greenhouse gas emissions have received considerable attention from decision mak-
ers in the past few decades. The transportation sector represents a major source
of greenhouse gas emissions, which have grown substantially over the past few
decades. The Intergovernmental Panel on Climate Change (IPCC) estimates that
between 1970 and 2004 transportation emissions have grown by 120 per cent, and
without changes in current energy use patterns emissions from transportation will
continue to increase at a rate of 2 per cent per year [44]. To better understand
these effects, transportation researchers continue to develop and refine the models
used to estimate transportation-related emissions with substantial progress made
over the past few decades. Consequently, today’s transportation researchers have
a variety of tools at their disposal that can be used to assess and evaluate policy
proposals. Because of the complexity of a transportation system, different mod-
elling platforms are normally used to model each aspect of the transportation
system. In the context of emission estimation, this often involves the use of two
(or more) models: a transportation model capable of simulating traffic operations
on a network and an emissions model capable of estimating vehicle generated
emissions. While this approach gives the transportation researcher flexibility, as
the emissions model can be used for other purposes (such as field data), it also
creates the need to connect the output from one model to the other. The need for
this connection creates additional possibilities and considerations, as the manner
in which the models are connected affects both the accuracy of the estimate and
the computational loads.

1.1 transportation models

Transportation models can be broadly categorised into two major groups: micro-
simulation models capable of simulating the behaviour of individual vehicles and
macro-simulation models that estimate the behaviour of a network at an aggre-
gate level. The advantages and disadvantages of either type of model is typical of
any similarly framed problem: micro-scale models are able to capture and provide
more disaggregate features of a system, such as the behaviour of individual ve-
hicles, as well as the larger-scale data that macro-scale models can provide, such
as network operating characteristics. A variety of different models are available
on today’s market, and differ in the technical aspects governing their operation
and computational demand. VISSUM and EMME are two examples of macro-
scale transportation models while VISSIM, CORSIM and Paramics are examples of
micro-scale transportation models. The selection of one alternative over the other
is often determined by the needs of the project as well as considerations of cost
(including considerations of currently owned software). This research project fo-
cusses primarily on developing a framework to connect traffic and emissions mod-
els by utilising vehicle trajectories, assuming a micro-scale simulation approach is
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1.2 pollution models

necessary. For reasons of convenience and cost, VISSIM was selected for use in this
study; however, the framework explored in this research could easily be adapted
to fit other models as well.

1.2 pollution models

The need to accurately estimate emissions before making policy decisions has led
to the development of a number of different models and approaches. As is the
case for transportation models, emissions models can also be compared in terms
of macro-scale and micro-scale models. One of the most prominent modelling plat-
forms available for emissions today is the US EPA’s MOVES model. MOVES has been
developed by the US EPA through substantial research and also includes databases
containing default values that can be used to quickly develop robust estimates.
As an emissions model, MOVES combines elements of macro-scale models and
micro-scale models, and can be used to estimate emissions at national and county
levels (similar to traditional emissions factor models) and at smaller project scales.
Prior to the development of MOVES, the US EPA’s main model for the estimation
of transportation emissions was the MOBILE model [59], which is an example
of a macro-scale model that estimates emissions without giving consideration to
the detailed aspects of a transportation system. These models are often criticized
for their inaccurate modelling of driver behaviour, as they are based on average
driving characteristics [5].

In contrast, micro-scale models such as MOVES or the Comprehensive Modal
Emissions Model (CMEM) [57] are capable of estimating emissions on a per-second
basis. Unlike macro-scale models, micro-scale models can be used to estimate the
effect of subtle changes in the operation of transportation system, such as driver
behaviour or the operation of individual intersections. Of course, this increased
ability comes with a price: an increase in the data required for a successful and
accurate estimation of emissions and a decrease in the size of network that can
be successfully modelled with today’s computer hardware. In the real world it
is often difficult to obtain highly detailed information on a vehicle’s operation,
and therefore many models (such as MOVES) also include options to make an esti-
mation with more aggregated data. For example, MOVES is able to use extremely
disaggregate data, such as a record of a vehicle’s speed on a per-second basis,
or more aggregated data, such as a vehicle’s average speed, to arrive at an emis-
sions estimate. Aggregated approaches can be very useful when analysing and
evaluating situations that are not suited to an highly macro-scaled approach (such
as emissions factor models) or to highly micro-scaled approaches (such as using
accurate vehicle position data).

1.3 model integration

While the data requirements for analyses of real-world situations can be very
high, when coupled with a traffic-micro simulation model, a micro-scale pollu-
tion model can be used as a powerful tool. In the literature these models can
then be used as part of a "bottom-up" approach to emissions modelling, where
scenarios or policy alternatives are evaluated at a micro-scale level before being

3



1.4 research objectives

considered in a region-wide macro-scale model. This coupling can be achieved in
a variety of different ways, and the approach selected varies depending on the
needs of the situation. Micro-simulation models are able to provide substantial
data, but the scale of data available can create substantial computational burdens,
especially on large or complex networks. The result is a trade-off where analysing
more aggregate data simplifies the analysis and reduces the computational burden
while analysing more disaggregate data increases the accuracy of the estimations
but also increases the complexity of the analysis. Although individual modelling
platforms work differently, the basic principles of their operation are very similar,
and methods developed to link particular combinations of models can often be
extended to incorporate other models as well.

1.4 research objectives

Broadly speaking there are three main methods to integrate transportation and pol-
lution models so that the results of a traffic simulation can be used in an emission
model: a disaggregate approach that uses the trajectories of individual vehicles,
an aggregate approach that uses average speeds and volumes on roadways, and
hybrid approaches that perform some aggregation. Aggregate approaches reduce
computational burdens and accuracy while disaggregate methods increase com-
putational burdens and accuracy. This research therefore seeks to investigate and
quantify these trade-offs. In addition to this, this research has also sought to de-
velop hybrid approaches that reduce computational burdens while minimising the
impact on the accuracy of emission estimates.

To accomplish these objectives a reliable integration method must first be devel-
oped and tested using common approaches demonstrated in the literature. After
developing sufficient background, the proposed hybrid method must also be devel-
oped and incorporated into an integration tool that can be used to reliably link the
two chosen models. This research uses VISSIM due to its availability and MOVES as
it is one of the newest models available. After an integration tool has been success-
fully created, a number of scenarios must then be devised to quantitatively assess
the performance differences of these methods.

A link between a transportation model and an emission model can be a very
useful tool when evaluating real-world policy proposals. Within the field of trans-
portation, connected vehicle technologies have received considerable attention. While
many of the benefits of connected vehicle technologies are safety related, the in-
creased information and connectivity available also has the potential to effect pos-
itive changes in the environmental impact of vehicles. This research therefore also
seeks to apply linked transportation and emissions models to evaluate the environ-
mental impact of an ECO-driving system that uses connected vehicle technologies
in a simulated environment.

1.5 thesis organisation

This thesis is divided into three parts consisting of eight chapters.
The first part contains introductory material and includes two chapters: this

chapter (Chapter 1) introduces the research problem and gives some basic back-
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1.5 thesis organisation

ground on the concepts discussed in the remainder of this work while Chap-
ter 2 gives some details on relevant operational characteristics of MOVES as well
as previous studies that effectively link a micro-scale traffic and pollution model.
This chapter also discusses current proposals of connected vehicle technologies
and studies on ECO-driving systems. Finally Section 2.7 provides detail on data-
clustering methods, including the general operating principle and previous appli-
cations of the algorithm chosen for application in this thesis.

The second part details the methodologies and research process used and one
chapter. In this part, Chapter 3 gives an overview of the process developed to link
VISSIM and MOVES and also includes detail on the tool developed to evaluate an
ECO-driving system.

Finally, the third part gives the results and provides a discussion on their impli-
cations. In this part, Chapter 4 provides the results of the evaluation comparing the
different integration methods, and includes some discussion on the appropriate-
ness of each method. Chapter 5 provides the results of the ECO-driving evaluation
and Chapter 6 provides a final discussion of the work done in this research and
areas needing additional attention.
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2
L I T E R AT U R E R E V I E W

Air pollution, and specifically air emissions from transportation vehicles, is an
area that has seen much research in the past few decades. Indeed, increased pub-
lic awareness and concern for environmental issues means that controlling and
understanding the effects of pollution has become a significant focus. In the trans-
portation sector, understanding the scale and effects of pollution is often done
through the use of various models. Before developing a framework to link these
models, it is important to review the process by which the models being used
operate on as well as previous applications of this concept in the literature.

2.1 emissions modelling

As mentioned briefly in Section 1.2, emissions models can be broadly classified
into two groups depending on the scale of their analysis: macroscopic and micro-
scopic. The selection of a model from either of these two categories depends on
research needs, with macroscopic models often suitable for large-scale analyses
such as national or province-wide emission estimates and microscopic models of-
ten suitable for smaller subsets of a larger network. Macro-scale models such as the
US EPA’s MOBILE model often use an emissions factor approach when estimating
emissions. In this approach, the model estimates an emission factor in either mass
of pollutant per unit time or mass of pollutant per distance travelled. These values
can then be combined with estimates of network parameters (such as total Vehicle
Miles Travelled (VMT)) to develop vehicle emissions inventories for a particular
network [61]. As one of the first approaches developed for emission modelling,
emission factor models such as MOBILE are the product of extensive research and
data.

2.2 microscopic emission models

In contrast to macroscopic emissions modelling, microscopic models were devel-
oped to address a number of limitations of the existing emissions factor approach.
Emissions factor models are unable to accurately characterise driving behaviour
(as they are based on average driving characteristics). These models operate on
an aggregate level, and ignore the effects of individual driver behaviour, such as
individual acceleration rate patterns. These models are often also based on pre-
determined driving cycles (e.g. the Federal Test Procedure) which form base emis-
sion rates that are then adjusted through correction factors for aspects such as
speed, fuel type, temperature, etc [5]. While capable of providing regional level
estimates, these models are not suitable for use in analysing the complex effects
of micro-scale policy proposals, such as ramp metering, signal timing and coordi-
nation changes, and emerging Intelligent Transportation System (ITS) technologies,
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and as such other approaches have been developed in the past to address these
challenges.

2.2.1 Modal Emissions Modelling

Unlike emission factor models, modal emissions modelling is a micro-scale ap-
proach to the emission estimate process that subdivides a vehicle’s operating pat-
tern into modes. In these models a vehicle’s operating mode describes elements of
its operational behaviour, such as cruising, idling, accelerating, decelerating. [5].
The number of modes considered varies from model to model, and often include
further subdivision on the basis of speed or acceleration rate. Many of the micro-
scale emission models developed and employed in the research community, such
as MOVES [59] and CMEM [57], are modal emissions models. Research into the
emission patterns of vehicles operating in each of these modal states has been
conducted in the past, and these results have been used by various agencies to
develop microscopic modal emissions models.

2.2.1.1 The Autmobile Exhaust Emission Analysis Model

The first modal emissions model developed was the "Automobile Exhaust Emis-
sion Modal Analysis Model". Developed in 1974 by the US EPA [8], this model al-
lowed the estimation of vehicle emissions over an arbitrary driving sequence. The
model also allowed for predictions of fuel economy through the use of a carbon-
balance equation of the resulting emissions [33]. Emissions data from over one
thousand light duty vehicles (manufactured between 1957 and 1971) were used
to build the model [8]. The model inputs were based on the Surveillance Driv-
ing Sequence (SDS), which includes 37 discrete driving modes (derived from five
steady-state speeds). These 37 modes were expanded into a continuous function
through regression that allows estimation of emissions for any combination of
speed and acceleration, which can then be integrated over a vehicle’s drive cycle
to arrive at an estimate of its emissions [33].

2.2.1.2 CALINE4

Subsequent models were built based on the framework established in the US EPA’s
and were more computationally efficient, simpler, and more straightforward. One
of the earliest examples of this is the CAlifornia LINE Source Dispersion Model,
Version 4 (CALINE4) model. CALINE4 was developed by the California Department
of Transportation in the 1980’s and can be used for dispersion modelling of Car-
bon Monoxide (CO) (which it is still used for today), Particulate Matter (PM) and
Nitrogen Oxides (NOx) [11]. Although the CALINE4 final estimates of the model are
derived from a Gaussian diffusion based dispersion model, the inputs for this final
stage are provided by a modal emissions model that was patterned after an ear-
lier model developed by the Colorado Department of Highways called CDOH [8].
The CALINE4 model defined four operating states for vehicles: deceleration, idling,
acceleration, and cruising. The model uses the time-in-mode approach to develop
the emissions profiles of all the vehicles in the modelled network. The modal emis-
sions factors for these states were derived from SDS data restricted to the California
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region and included around 80 vehicles. Unlike previous approaches, which aver-
age the emissions of vehicles for particular operating conditions, the underlying
model factors were developed using a disaggregated approach.

2.2.1.3 CMEM

In addition to these models, the modal approach has been used to develop other
models, such as VEHSIME [39] and, more recently, CMEM. CMEM was originally
developed by a team at the University of California, Riverside in the 1990’s to
meet the demand for a micro-scale emission model [57]. As was the case with
the CALINE4 model, the CMEM project was conceived with the aim of developing
a modal emissions model for light-duty vehicles such as passenger cars and small
trucks that could interface with existing transportation models and datasets [6].
CMEM was also developed to address issues present in other modal emissions
models [6]. Models such as the US EPA’s described in Section 2.2.1.1 depend solely
on a vehicle’s speed and acceleration and cannot adequately consider other vari-
ables such as road grade or weather. CMEM was therefore designed to use a physi-
cal modelling approach that subdivides emission processes into components that
correspond to the underlying physical and chemical processes for each operating
state. Under this approach, separate models were developed for each of the en-
gine/emissions technologies modelled, including different engine combinations
(e.g. spark ignition, diesel), fuel delivery systems (e.g. fuel injection), emission con-
trol systems, and catalyst usage (e.g. no catalyst, oxidation catalyst). The physical
models are then combined with vehicle operating parameters such as temperature,
air density, road grade, air conditioning use, etc to arrive at estimates of emission
rates [6].

The CMEM model gives the researcher the ability to specify a number of different
network parameters. The vehicle characteristics described previously form the ba-
sics of the fleet distribution in the modelled network, and can be specified directly
(or a default distribution can be used). At its highest temporal resolution, second-
by-second information on vehicles can be provided (e.g. per-second speed, grade,
etc) from which emissions estimates are generated [6]. CMEM was designed to in-
terface with existing traffic micro-simulation models easily. Software plug-ins to
interface the model with popular micro-simulation platforms such as PARAMICS
have also been developed [13].

The CMEM model has been validated by comparing its emission estimates to
both field measurements and emission measurements of other models established
at the time (e.g. MOBILE). As part of the model’s validation, Barth et al. compared
the emissions predictions of the CMEM model to independently generated emis-
sions from vehicles following pre-defined driving schedules. and showed that the
the CMEM model made emission estimates that were generally within the range
of the tested vehicles [7]. The model was found to under-estimate emissions for
some high-emitting vehicles, however. When compared to other established mod-
els (such as the US EPA’s MOBILE model) it was found that it provided similar
emission estimates at low to medium speeds. However, the models deviated from
each other at very low and very high speeds. At very low speeds CMEM gener-
ally provided estimates that were lower than the models compared. At very high

8



2.3 the motor vehicle emissions simulator (moves)

speeds, CMEM provided estimates that were higher for some pollutants (e.g. Hy-
drocarbons (HC)) but lower for other pollutants (e.g. NOx) [7].

2.2.2 Limitations of a Micro-scale Approach

Micro-scale models in general suffer from a number of limitations. Although these
models can be integrated with micro-scale traffic models (such as VISSIM, COR-
SIM, etc), there are limits in their ability to estimate larger, regional level emissions.
In the case of emissions models, substantial inputs on the operating characteristics
of individual vehicles is required, and this data may not be available or may be
difficult to obtain from a traffic simulation model. The complexity of these models
mean they do not scale linearly with network size and are therefore only viable
for small-scale analyses [6].

2.3 the motor vehicle emissions simulator (moves)

MOVES is a software package produced and made available by the US EPA [60].
The software is available for download from the US EPA’s website free of charge
and can be used to model a variety of emissions from mobile sources. MOVES

replaces the US EPA’s former tool for estimating emissions factors from highway
sources, namely, MOBILE. MOBILE was originally developed in 1978 and was one
of the first models to generate highway vehicle emission factors. The MOBILE
model was continuously updated, as technology progressed, forming the basis for
MOVES, which superseded it in 2010 [60]. Fundamentally MOBILE is an emissions
inventory model and operates at a macro level only. While retaining the macro
level modelling capabilities of MOBILE, MOVES incorporates new features to sim-
ulate emissions at smaller scales as well. Modelling in MOVES is done at three
possible scales: National, County and Project. At the project level, MOVES is able to
use detailed information about vehicle trajectories and operating states to estimate
the emissions of a micro-level network. This allows it to be used in tandem with
a traffic model and forms the basis of the work done for this research project. The
fundamental principles behind the software’s operation, implementation and its
uses is publicly available from the US EPA’s website. The following sections will
serve to highlight critical aspects of the model’s operation, limitations and capa-
bilities. The specific operating aspects of MOVES are important to understand, at
least at a broad level, as the accuracy and validity of any method used to process
the data before it is input into MOVES is affected by its operating behaviour. This
is particularly important in the context of this project, which seeks to compare
and contrast the different ways of connecting MOVES to a transportation micro-
simulation model.

MOVES is derived from the large body of work that the US EPA has done on
previous models and the substantial data it has collected on emission rates across
the country. This data is included with MOVES as a database that can provide
default values for many aspects of the model on a county-by-county basis. Readers
interested in learning more about the specific operating principles of MOVES are
encouraged to read the US EPA’s Design and Implementation Plan [60].
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(a) The emissions processes used in MOVES.

(b) Total Activity by Emissions Process.

Figure 1: Emissions Processes and Their Operation (from [59])

2.3.1 Model Design Philosophy

The MOVES design is modular, general purpose, data driven, easy-to-use, and high
performance [59]. The general design framework applied by the US EPA in MOVES

progresses through the following four stages.

2.3.1.1 Calculate the Total Activity for a Given Emission Process

In MOVES, an emission process is defined as a unique emission pathway [59]. Each
emission process is handled separately within the model and may not always pro-
duce output on the same pollutant as another process. In essence, each emission
process can be likened to a sub-model, having its own set of inputs (which may
be the same as another emissions process) and outputs. A list of the emissions
processes used in MOVES is shown in Figure 1a.

The total activity is defined as the product of a population and a per-source
activity. An activity’s definition depends on the emission process under considera-
tion. Most activities are characterised on the basis of source-time, which is further
subdivided into Source Hours Operating (SHO) or Source Hours Parked (SHP). This
selection stands in contrast to other possible schemes, such as the more common
VMT, as it allows emissions that do not vary over distance to be aggregated to-
gether (e.g. idle time). Of course, given an average speed, it is possible to convert
between a distance-based unit system or a time-based one; thus, the systems are
interchangeable from the user’s perspective. MOVES permits a user to specify a
variety of different units in both the input and output stage, but is designed to
characterize each process at the software level based on source-time Agency [59].
Figure 1 details the activity basis for each emissions process.

2.3.1.2 Distribute the Total Activity into Source and Operating Mode Bins

The concept of operating modes and source bins is fundamental to the MOVES

model. From a software perspective, the concept of binning represents a way to
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(a) Operating Mode Parameters by Emission Process.

(b) Example of Source and Operating Mode Bins.

Figure 2: Source operating mode bins (from [61]

categorize data and permit modelling at a very large scale. This method of organi-
zation is one of the distinctions between MOBILE and MOVES. The change permits
the development of modal emission rates that do not depend on additional mod-
elling analyses (such as regression) and removes the dependence that the MOBILE
model had on correction factors [20, 59].

An operating mode is defined as the "breakdown of total activity necessary to
reflect differences in emission rates" [61]. As shown in Figure 2a, the operating
modes subdivided from the activity of an emissions process varies depending on
the process. This organization is also reflected in the databases holding the emis-
sions rates, which, in MOVES, are also categorized based on their associated oper-
ating mode. Each of the associated operating mode parameters is then generated,
be it from default data (soak times, start times), user supplied data, or calculations
based on inputs. Like operating bins, source bins allow for discrete categoriza-
tion of the model’s parameters, but subdivided by source type rather than activity.
Source types themselves are specific classes of on-road or off-road vehicles, such
as, for example, a passenger car, and are subdivided on parameters such as fuel
type or mileage. The resulting combination of a source bin and operating mode
bin is thus unique, such as the one shown in Figure 2, forming the basis for all of
the parameters in the model. Additional information about these processes can be
found in reports done by the US EPA and studies done by other researchers [61, 20].

2.3.1.3 Calculate an Emission Rate

After traffic input has been divided into their respective operating mode bins,
MOVES uses this input to calculates an emission rate. It is at this stage that MOVES

considers additional parameters that modeller can specify, such as weather. An
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emission rate is estimated for each element (e.g. link, depending on the scale)
specified by the modeller in each mode of operation.

2.3.1.4 Aggregate Emission Rates Across all Modes

The MOVES model ultimately aggregates all the data using the distinct source
and operating bins discussed in Section 2.3.1. Data is aggregated according to
the distributions specified by the user (or assumed by the software), including
volume, fuel type distribution, fleet age distribution, etc. The basic principle can
be characterized with the following equation:

ξTotal,u = Tu ×
N∑

n=1

Ru,n ×Bu,n

Where ξ is Emissions, T is total activity, u is the use type (or source type), N is the
total number of bins, R is the emission rate, and B is the bin distribution.

2.3.2 Data Interaction

One of the most obvious changes between MOBILE and MOVES is the use of a
relational rather than flat file database. Specifically, the MOVES model stores all its
input and output data in an SQL compatible database. The popular open-source
database system, MySQL, is included with the MOVES setup package [60], but
theoretically any SQL database could be used. The choice of an SQL type database
allows both the MOVES software and the user to interact with the data using SQL

queries, opening the door for the development of custom tools that take advantage
of SQL’s features.

Input Data

The MOVES model permits users to supply their own input data, but also provides
default databases with its software packages. Input databases contain the follow-
ing [59]:

• Total Activity Information

• Operating Mode Distributions

• Source Bin Distributions

• Meteorology Data

• Fuel Data

• Emission Rate Information

Some of the information in these databases, such as weather, is stratified according
to county and state boundaries. Any analysis conducted in MOVES must therefore
also specify a geographic location before any of the provided data can be used.
Since MOVES is developed for an American context, only data on US counties are
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provided, and any non-US data must be provided by the modeller. While a ver-
sion of the MOBILE model adapted for a Canadian context exists(version 6.2c)
[17], similar adaptations for MOVES have not yet been developed. As this research
project does not involve location-constrained case studies, an arbitrary US county
can been selected to for analysis.

Vehicle Data

While MOVES does estimate emissions on a per-second basis, it is still able to accept
per-second data on vehicles for project level analyses. In addition to per-second
data, MOVES also accepts more macro-scale data, such as average speeds, velocities
and lengths for links in a network. This allows traffic models to be connected in
a variety of different ways; the primary aim of this research project is to evaluate
the accuracy and computational requirements for each of these methods.

2.3.3 Broader Implications

MOVES allows modelling at multiple scales, including the option to work at the na-
tional, state, county and project level. At the project level, MOVES can act as a sort
of emissions micro-simulator and accepts input in three major formats: average
speeds, drive schedules and operating mode distributions. As described in previ-
ous sections, MOVES fundamentally operates on these so-called "operating mode"
schedules. As such, inputs other than operating mode distributions are automati-
cally converted by the software into this format before any analysis is undertaken.
For the case of average speeds, MOVES automatically converts an average speed
into an operating mode distribution using a "typical" or "default" configuration.
This is important, as the emissions and accuracy of the model is strongly influ-
enced by the discrete parameters of a vehicle’s operation, such as acceleration or
deceleration, and so assuming a constant velocity would likely lead to an under-
estimation of emissions [54].

2.3.4 Emission Estimate Differences Between Competing Models

Although many of the models discussed have similar operating principles, often
each of these models provide emission estimates that can be substantially differ-
ent from each other. As discussed in Section 2.2.1.3, the CMEM was designed to
address the limitations of emission factor models, such as MOBILE. The modal
approach in the CMEM framework forms the basis of MOVES’s own approach to
micro-scale simulation, and was also designed to address limitations of previous
models by extending them through a multi-scale approach. As a recently devel-
oped model, there have not been many studies that compare the output of MOVES

to other established models, especially at the micro-scale. A recent study by Cham-
berlin et al. found that CMEM and MOVES provided comparable estimates for NOx

emissions but widely different results for CO emissions [13]. The researchers iden-
tified a number of items considered in the MOVES model that are not considered in
the CMEM model, such as weather, fuel type, additional pollutant processes, more
robust emission rate source data and different approaches to modelling emissions.
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As discussed in Section 2.2.1.3, CMEM uses an analytical approach derived from
models of the physical processes of combustion to build the model; in contrast,
MOVES uses a statistical approach that groups vehicles by specific power and speed
[13].

Other studies have been done comparing the macro-scale estimates of MOVES.
For example, a study by Bai et al. compared emission estimates from MOVES at
the county level in terms of Carbon Dioxide (CO2) and Methane (CH4) to EMFAC,
which is a mobile source emissions model used in California. Their study found
that while MOVES produces similar estimates for CO2, it provided estimates that
were less than half those of EMFAC for CH4. These results were estimated for
conditions in 2002; projections to the future are possible in both modelling frame-
works, and the researchers also generated emission estimates for 2030. In this in-
stance, the researchers found MOVES provided CO2 estimates that were 40% higher
and CH4 estimates that were nearly double those of EMFAC. However, these eval-
uations were conducted at a preliminary stage of MOVES’s development [3], and
the results of the study will likely be different if it were repeated with the current
model. The researchers also identified several differences between the modelling
approaches of each of the platforms, and noted that MOVES uses a combination of a
Vehicle Specific Power (VSP) approach with speed bins and vehicle operating times
rather than speed correction factors and VMT commonly used by other models like
EMFAC and MOBILE.

Another recent study compared the output of MOVES to its predecessor model,
MOBILE. The study, conducted by Sonntag and Gao [55], revealed that the esti-
mates of each of the models differ most prominently at low speeds (less than 20

mph). At these speeds, the researchers found that MOVES predicts higher emis-
sions for most of the pollutants modelled, particularly from heavy-duty vehicles.
PM emissions were also found to vary more strongly with a vehicle’s speed in
MOVES, an aspect that was not similarly noticed in MOBILE. At the county level,
the researchers also found that MOVES provided NOx estimates that were higher
and HC estimates that were lower than MOBILE. As was the case with the previ-
ous study, the researchers completed their evaluation on a preliminary version of
MOVES.

A need still exists in transportation literature for additional evaluations of the
MOVES model. Although the US EPA has developed the model using substantial
data, emission estimates will differ between the various models, and understand-
ing these differences will allow researchers and model developers to improve the
current state of emission modelling.

2.4 transportation models

Accurate models of transportation systems has been the focus of research, and
a number of different systems have been developed by both private, public and
research entities. As with emissions models, transportation models can be differen-
tiated by scale, including micro and macro-scale models. Popular micro-scale sys-
tems include VISSIM [51], PARAMICS [50], and SUMO [16] while popular macro-
scale systems include VISSUM [51], EMME [26], and MATSim [43]. Although the
theory behind models may be similar, each of these models may vary in their
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exact implementation, and consequently the approximation of traffic behaviour
produced by each model may be different. As the focus of this research work is
on micro-scale simulation, the next few subsections will briefly discuss competing
micro-simulation models, including studies comparing their output.

2.4.1 PARAMICS

PARAMICS was originally developed as a project of the Edinburgh Parallel Com-
puting Centre, with the aim of developing a model that used supercomputing
techniques, including parallel data processing and analysis [50, 12]. In the orig-
inal proposal by Cameron et al. [12] PARAMICS was developed to address the
limitations of macroscopic models, which could not properly simulate real traffic
behaviour in congested situations. Macro-scale models were also recognised as un-
able to properly reproduce the dynamic and fluctuating nature of transportation
systems, and as a result were not suited for certain types of analyses. PARAM-
ICS was created to demonstrate that micro-scale analyses could be conducted on
large geographic areas and could predict and model congestion accurately. The re-
searchers in Cameron et al. used real-world data from the Scottish Trunk Network
to evaluate their model, which contained data on around 150,000 vehicles. The
model was developed for the CM-200 super-computer and pioneered parallelism
in computing to solve transportation problems. The original PARAMICS model
included separate models for each of the major areas of driver behaviour: speed
modification/control, car-following, gap acceptance, overtaking, and lane chang-
ing. Each of these models included equations that governed a vehicles behaviour
and could be evaluated during the model’s evaluation time-steps; these equations
considered elements such as driver reaction, impedance of vehicles ahead, etc. The
initial model developed lacked sufficient data for proper calibration, but verifica-
tion of the travel behaviour generated by the model, such as flow density rela-
tionships showed that it approximated real-world behaviour with accuracy. At the
same time, the researchers recognised that there were limits to the accuracy of their
models. For example, the car following behaviour used in the original model had
a limited ability to model the "wave"-like behaviour of vehicle motion commonly
seen in congested traffic flow. Today PARAMICS is developed and maintained by
a private entity [50], but continues to see use in research settings.

2.4.2 Simlation of Urban MObility (SUMO)

SUMO is an open-source multi-modal traffic simulation package developed by
researchers at the Institute of Transportation Research at the German Aerospace
Centre [31]. SUMO has the ability to import networks from other popular trans-
portation suites (such as VISSIM, MATSim) or from other GIS-based network for-
mats, such as OpenStreetMap or GIS Shapefiles. As a microscopic traffic simulator,
SUMO simulates each vehicle individually and specifies explicit routes for them,
including origin, intermediate and destination nodes/roads. Unlike other micro-
scale simulation models, SUMO is able to simulate large-scale networks, including
networks of entire cities. The simulative behaviour of SUMO’s traffic model is de-
rived primarily from a model proposed by Stefan Krauß[31, 32], which is notable
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for its simplicity and high execution speed. The model is not without limitations,
including conservative gap sizes, low gap acceptance during lane changing, and
poor scaling if the simulation time step is changed.

2.4.3 VISSIM

VISSIM was developed in the early 1990’s and is a discrete-stochastic traffic simu-
lator. It is currently developed by the PTV Group [51]. At the time of development,
VISSIM distinguished itself in its ability to model both fixed-time traffic signals
and signals that interfaced with traffic through virtual detectors [18]. The original
model included two separate programs, a traffic flow model and a signal control
model. For the traffic flow component, VISSIM originally used the car-following
model proposed by Wiedemann [63], which is a psycho-physical spacing model.
Under this model, a faster vehicle approaching a slower vehicle decelerates until
reaching a threshold value. This threshold value is a function of speed difference
and spacing, but allows for a bunching "wave" effect since it simulates the inability
of drivers to perceive small speed and distance differences [18]. In addition to this
model, the complex rules governing lane-changing behaviour were also included
in the program. Since its original development, the program has been modified
to incorporate additional newer models and to take advantage of technological
developments in computing. VISSIM models transportation networks through the
use of one-way links, enabling nearly any network to be physically represented
in the software. Today’s version of VISSIM also includes the ability to simulate
pedestrains and non-road transit vehicles like trams.

2.4.4 Estimate Differences among Commonly Used Models

The myriad of available simulation models mean that for a given problem, a vari-
ety of reasonable estimates can be obtained. As is the case with emissions models,
researchers have therefore compared the outputs of each of these models to better
understand their limitations and differences. For example, a recent study by Ma-
ciejewski [37] compared the output of SUMO, VISSIM, and TRANSIMS. In terms
of modelled network capacity, the researchers found that the SUMO model had a
capacity that oscillated between 85 to 100% of the measured traffic flow on the net-
work they were modelling, depending on whether or not vehicle parameters were
thoroughly calibrated. In contrast, VISSIM and TRANSIMS had modelled capac-
ities that were between 130 to 140% of the measured traffic flow. SUMO’s model
also had a greater number of vehicles present in the network than either VISSIM
or TRANSIMS for scenarios with identical volumes and network configurations.
Despite the differences, the researchers generally found that traffic features iden-
tifiable in one model were similarly identifiable in the other. For example, the
researchers noted that for all models, capacity issues began to appear first at the
same intersection and movement for simulations run in each of the models.
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2.5 integrating traffic micro-simulation models with moves

To better understand the complex relationship between traffic and pollution, it is
often necessary to link a traffic model and pollution model, such as MOVES, to-
gether. Since models vary in their implementation, ad hoc methods must often be
developed to link specific model combinations. However, despite their differences,
many models share common elements and a method developed and tested on one
specific combination of models could be then applied on another. As discussed in
Section 2.3.2, there are a variety of different ways to connect the output of a traffic
model to MOVES, and broadly speaking they can be grouped into three major cate-
gories based on the way vehicle data is input into MOVES: aggregated approaches,
disaggregate approaches and hybrid approaches that are partially aggregated.

2.5.1 Aggregated Integration Methods

The approach selected can be important, as emissions estimates will vary depend-
ing on specific traffic characteristics, such as speed [9], and methods that obscure
these aspects can lead to inaccurate estimates. In a recent study, Marsden et al.
[42] develop a model that can be used to estimate emissions in real-time using
loop detector data. Their model was designed to account for the different vehicle
operating modes (acceleration, cruising, idling, deceleration) as well as many other
aspects such as the state of repair of the vehicle’s emission control system and the
type of engine (gasoline or diesel powered). The results of their study compares
the results of their model and highlights the inadequacy of an average-speed ap-
proach to emissions modelling; they note that macro-scale models are unable to
model the detailed effects of new technology has on driving patterns. They also
note that high-emitters can be a significant contributor to emissions at an inter-
section, as in one of their scenarios 10% of the vehicles produced 50% of the CO
emissions [42].

In the context of aggregated approaches, a number of studies have also been
done in MOVES that take advantage of the wealth of data available. Many of these
studies employ aggregated approaches and often aggregate data from traffic mod-
els, generating lists of links with average speeds and volumes. For example, Xie
et al. [66] developed an integrated tool to link the PARAMICS model to MOVES.
To evaluate their tool, they modelled a section of a motorway in Greenville and
used an origin-destination travel matrix to generate travel demands. Their analy-
sis was conducted at the project level, and used the default settings in MOVES for
attributes such as vehicle age distributions and fuel formulations. The output from
the PARAMICS model was analysed using Microsoft Access, but input tables were
simplified and only included link volumes, average speeds and vehicle type dis-
tributions. Although the study used an aggregated approach, they demonstrated
the usefulness of an integration framework by evaluating the effects of a shift in
fuel use to compressed natural gas for transit vehicles. In the scenarios they tested,
they estimated that emissions would decrease by 34% if 40% of busses switched
from diesel to compressed natural gas [66].

One of the major limitations of an average speed approach is the loss of time-
based granularity in analysis data, especially if the analysis in question covers a
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multi-hour period. At the project level, MOVES limits the time-frame of an emis-
sions analysis to a one hour time period. To estimate emissions for multi-hour
periods, some studies have used MOVES to provide individual estimates of emis-
sions for each time period and then aggregating (or analysing) these results for
a daily period. One study to use this approach was conducted by Veeregowda et
al. [62] The researchers attempted to analyse the effect a mega mixed-use develop-
ment project in New York City would have on the surrounding area’s air quality.
The researchers focus on PM2.5 emissions and use the CORSIM model to simulate
the traffic effects. The authors analysed an entire 24 hour day’s traffic, and used
MOVES to estimate emissions factors for each of the day’s hours. The subsequent
emissions factors were then aggregated together to generate four emissions fac-
tors, one for the over-night period, one for each of the AM and PM peak periods,
and one for the mid-day period. Although the use of an average speed approach
results in the loss of some of CORSIM’s simulated data, the authors indicate that
this method is infeasible due to the scale of data that would need to be analysed
and due to computational limits [62].

2.5.2 Hybrid and Disaggregate Approaches

Disaggregate approaches are not often employed in the literature due to the exten-
sive data and computational requirements. Research at a micro-scale into CO2 and
other emissions is relatively new, and the methods and models applied continue
to improve and evolve as technology changes.

Despite this, a few studies have been done that integrate MOVES with a micro-
scale traffic model using various levels of disaggregate data. One of the most recent
studies to do this was conducted by Abou-Senna et al. [2]. Their study compared
and analysed various ways to link a VISSIM micro-simulation model with MOVES.
The authors evaluated three different ways to link VISSIM and MOVES together,
each using one of the three main ways of providing input to MOVES for project-
level analyses. The first approach utilised average speeds and volumes, the second
used second-by-second link drive schedules, and finally the third used an external
analysis to provide operating mode distributions directly to MOVES. The authors
compared the estimates of CO, NOx, PM2.5, PM10 and CO2 for of each those
methods. The authors evaluated the estimates of these pollutants as vehicles tra-
versed 11 links of a network designed to compare the methods. The first method is
typical of the approaches discussed in the previous section. In the second method,
the authors did not provide fully disaggregate link drive schedules to MOVES for
analysis, but rather grouped similarly performing vehicles together. As discussed
in Section 2.3, MOVES fundamentally operates at an operating mode level; the au-
thors recognise this and designed their final method to capitalise on the ability of
a modeller to specify this distribution directly. The authors developed an appli-
cation to generate the input for this method which they called VISSIM/MOVES
Integration Software (VIMIS) and use the concepts of VSP to generate operating
mode distributions externally. One of the benefits of this approach is that it has
the potential to substantially reduce computational burdens. The authors note that
vehicle trajectory records for their test network could reach sizes of 10 gigabytes
and are not accessible using conventional programs. Through the use of their ex-
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Figure 3: The effect of input method on emissions estimates, results from [2]

ternal analysis program, the subsequent tables generated for analysis are only
300 kilobytes. The subsequent analysis conducted by the authors revealed that on
an overall basis the average speed approach produced the highest emissions esti-
mates while the link drive schedules produced the lowest estimates. The results
of the op-mode distribution generated by their VIMIS software was in the mid-
dle of the two methods. The results of their study for CO2 emissions has been
included here for reference in Figure 3, illustrating the aforementioned trends of
their study [2]. Their analysis, shown in Figure 3, highlights the fact that an aver-
age speed approach can often still be used to great effect in understanding overall
emissions trends, though as the authors note some of the differences in estimates
can be substantial. The researchers concluded that, for the case of their scenario,
providing MOVES with average speeds generally results in an over-estimation of
emissions while the grouped link drive schedules resulted in lower emissions. The
researchers assert that the operating mode approach is more accurate as it consid-
ered operating parameters provided by VISSIM that are ignored by MOVES when
converting drive schedules, though they acknowledge that this would be difficult
to validate in field settings. The model they developed was subsequently applied
in an analysis at a test-bed prototype of Florida’s I-4, which is a limited access
highway corridor [1].

As one of the few detailed studies analysing the different ways to link traffic
and emissions models, the method proposed by Abou-Senna et al. [2] is of partic-
ular interest, and indeed no other comparable studies were found in the extensive
literature review conducted. Despite its detail, their study focusses strongly on
the development of their VIMIS tool and as a result some of the details of their
analysis’s methodology were not clear. For example, although the authors mention
that they group similarly performing vehicles together before inputting link drive
schedules to MOVES, the authors did specify how vehicles were grouped together.
Due to their network’s scale, it also appears it was infeasible to consider each vehi-
cle individually in MOVES, and thus the authors make no comparisons using link
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drive schedules that fully describe vehicles travelling on their network. As their
analysis and evaluations focus on motorways, the effect of extensive periods of
idling, stop-and-go situations caused by signals and congestion are not discussed
in their study.

Although no other studies have been done that compare different integration
methods, a recent study by Papson et al. [49] applied a novel approach to aggre-
gate data from SYNCHRO before inputting it in MOVES. As was the case with the
study done by Abou-Senna, the authors process the output of a model externally
into four modes: accelerating, decelerating, cruising and idle. Unlike the approach
in Abou-Senna, the authors did not use this process to specify an operating mode
distribution, rather they use it to build a representative link drive schedule. The
representative schedule was divided into four links, each representing one of the
aforementioned activity modes. The advantage of their approach is a reduction in
the data required to arrive at an estimate of emissions. A traffic analysis in SYN-
CHRO is not a micro-level analysis, however SYNCHRO is able to provide some
performance metrics from urban networks, including the control delay of traffic
movements and vehicle queues. The approach, called "Time in Mode Analysis",
then uses these variables to generate estimates of the time vehicles spend in each
of the four modes. While aggregate in nature, this approach is able to provide
more accurate representations of vehicle travel patterns than the simple use of
average speeds [49].

2.5.3 Integration Applications for Policy Evaluations

An effective link between a traffic micro-simulation model and a pollution model
allows a greater depth of analysis than would be possible from each model individ-
ually; but, ultimately an integration framework is only useful if it can be applied
to solve problems. In previous literature, these frameworks have been successfully
used to evaluate the effect of policy decisions and proposals. For example, a re-
cent study by Int Panis et al. [27] aimed to determine what effect an Intelligent
Speed Adaptation system, which caps the maximum speed of a vehicle to the lo-
cal limit, would have on emissions of CO, NOx, etc. To evaluate the proposed
system, they modelled a real-world transportation network in Ghent, Belgium us-
ing DRACULA, which is a network-wide traffic microsimulation package and es-
timated emissions using an empirical-based model. They tested different levels of
market penetration for the proposed system but ultimately found that while the
proposed system successfully reduced average speeds, the effect on emissions was
not so clear, and no statistically significant reductions were observed [27]. Despite
this, their approach successfully demonstrated the potential of an integrated ap-
proach in the analysis of an emerging technology, and the results of their study
will be useful for policy and decision makers.

Another study by Boriboonsomsin et al. [10] evaluated the effect of High Oc-
cupancy Vehicle (HOV) lane configurations on vehicle emissions. The authors in-
tegrated the PARAMICS model with the CMEM model and evaluated a 12 mile
section of State Route 91 E in California. The researchers developed an integrated
framework and used it to evaluate the differences in emissions between HOV lanes
that are access controlled with separate ingress/egress sections and configurations
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where access is continuous. Their evaluation found that continuous access to HOV

lanes had lower emissions than access-controlled ones, primarily due to the effect
of weaving concentrated in the egress/ingress sections. Unlike studies done using
MOVES, the CMEM model is designed to be used with traffic-microsimulation mod-
els and in this study the authors use the trajectories of individual vehicles. While
this feature of the CMEM model may sound attractive, the model has some limi-
tations that stem from its development. The model was developed through data
collected by 343 light duty vehicles tested in laboratory situations. Since data was
collected in laboratory settings using a dynamo-meter, it does not accurately repre-
sent real-world driving conditions. CMEM is also unable to estimate emissions from
heavy goods vehicles such as trucks and busses and does not estimate particulate
emissions [48].

A study done by Rakha et al. [52] has also shown that the CMEM model can ex-
hibit abnormal behaviour. The authors used data from databases provided by the
Oak Ridge National Laboratory and US EPA to compare the MOBILE5a, MOBILE6,
VT-Micro and CMEM models. In particular, the authors found that CMEM exhib-
ited strange behaviours in its estimates of CO emissions at low speeds and high
acceleration rates. The study also found that CMEM underestimated emissions for
acceleration manoeuvres when compared to the databases’ field data. In contrast,
the authors found that the performance of the MOBILE6 and VT-Micro was in line
with the US EPA field data.

2.6 connected vehicles

Connected vehicles are a much-discussed topic in current literature. Broadly speak-
ing, there are two major forms of connected vehicle technologies, with each serv-
ing a distinct purpose: Vehicle-to-Vehicle (V2V) communications and Vehicle-to-
Infrastructure (V2I) communications. V2V technologies allow vehicles to communi-
cate with each other, exchanging information to support technologies such as colli-
sion warnings, emergency braking, lane change warnings and blind spot warnings
[47, 28]. These technologies have been demonstrated to have significant safety ben-
efits when used in a connected vehicle environment, with the potential to address
the causes of about 81 per cent of vehicle crashes [47]. Existing proposals, how-
ever, require dedicated short-range communications operating at 5.9 GHz to be
installed on each participating vehicle.

Similarly, V2I technologies allow vehicles to exchange information with sur-
rounding infrastructure. Like V2V technologies, both infrastructure and vehicles
must be equipped with a communications device to participate [47, 28]. V2I tech-
nologies have the potential to address the causes of about 26 per cent of all crashes
[47]. V2I technologies proposed in the literature can broadcast Signal Phase and
Timing (SPaT) information, transit information, pedestrian movements, and traffic
information to participating vehicles [47, 28].

Beyond their safety benefits, these technologies could provide network opera-
tors, drivers and researchers with data on an unparalleled scale. Their low latency
and dedicated nature means more data could be exchanged than would be possi-
ble over shared communication systems such as cellphone-based systems. Many
different ways to take advantage of these systems have been proposed. For ex-
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Figure 4: A Speed Advice Speedometer

ample, previous studies have demonstrated the possibility of connected vehicle
technologies to optimise signals while allowing priority to be yielded to emer-
gency vehicles [23], estimate queue length [35], and implement strategies such as
ECO-Driving (see section Section 2.6.1).

2.6.1 ECO-Driving

As discussed in Section 2.6, V2I technologies can be used to broadcast and collect in-
formation to and from vehicles. Broadcasting SPaT information to vehicles has been
demonstrated to have potential safety benefits (e.g. a vehicle is aware that a signal
is red and takes action to prevent red-light running) [47], but implementations
in literature have also demonstrated the potential of this information to reduce
emissions. ECO-driving systems proposed in the literature use connected vehi-
cle technologies to exploit the link between driving behaviour and reduce overall
emissions. Driving behaviour is modified through an advisory system that selects
optimal speeds for a driver to follow. A 2014 study by Hobeika et al. [24] highlights
this potential by modelling the emissions of drivers categorised in three groups:
aggressive, moderate and defensive. Their study found that if aggressive drivers
change their habits and become defensive drivers, HC, CO and emissions of NOx

would decrease by 15 to 21 per cent. Another study by De Vlieger et al. [15] found
that aggressive driving can increase fuel consumption by 40% and emissions by a
factor 8. They also found that aggressive driving can increase the incidence of traf-
fic jams and that the effect of driving behaviour is most pronounced on gasoline
fuelled vehicles. ECO-driving systems expand on this by not only attempting to
reduce instances of aggressive driving, but also through speed advice on approach
to intersections.

2.6.1.1 Interaction with Drivers

Speed advice can be provided in a variety of ways, but common proposals in the
literature often present this information to drivers on the speedometer [64] in a
manner similar to that in Figure 4. In this way, whenever the driver checks his or
her speed, the recommended speed they should travel at is also presented with it.

22



2.6 connected vehicles

The nature of ECO-driving systems is optional in nature, and ultimately it
remains to be seen whether such systems would gain widespread acceptance.
However, past research has suggested that drivers may be willing to adopt more
eco-friendly approaches to driving. An extensive survey of over 5000 individuals
done in 2012 by Tommer and Hotl on drivers in Europe found that drivers be-
lieved speed advice systems similar to the ones discussed previously were useful.
Respondents generally agreed that these systems could help save fuel and con-
tribute positively to the environment. Despite this, the respondents generally also
affirmed their desire for such systems to be optional; many respondents also in-
dicated that such systems are not worth paying extra for, though the results were
mixed and varied depending on the country of the respondent. In addition to the
issue of adoption, the authors also suggest that such systems may not be benefi-
cial in all cases. The authors note that such systems could pose a distraction to the
driver and could have other safety implications [56].

2.6.1.2 Evaluations in the Literature

ECO-driving seeks to reduce instances of acceleration and deceleration and can
operate through a device that recommends speeds to a driver [64]. Systems such
as these continue to get attention from various organisations and governmental
agencies. For example, a current project under-way at the United States Depart-
ment of Transportation called AERIS is applying a simulation-based approach to
evaluate the feasibility of strategies such as ECO-driving on a real-world corri-
dor. The ECO-driving analysis conducted as part of the AERIS program aims to
evaluate the effectiveness of providing driving advice to drivers. While the full
research has not been published yet, as part of the program a PARAMICS-based
traffic simulation model based on a real-world network in Palo Alto, California is
being developed. Preliminary work has demonstrated a 4% reduction in fuel con-
sumption and a 6% reduction in travel time, depending on traffic conditions, on
a hypothetical motorway segment. On an arterial network, preliminary modelling
work has demonstrated fuel savings of 5%, but a 2% increase in travel time [58].

Other studies have also demonstrated the potential of this method through both
simulations and field demonstrations. For example, a study by Xia et al. con-
ducted in 2012 used both a simulation-based and field-based approach to eval-
uate an ECO-driving system [64]. Simulations were conducted in PARAMICS, and
field tests were conducted at a test intersection. The results revealed reductions of
around 14 per cent in both fuel consumption and CO2 emissions. Both the simula-
tion and field tests were conducted for single intersections with signals operating
on a fixed time schedule. This limits the applicability of the method to real-world
situations. Other studies have been conducted in the past as well. A study by Li
et al. in 2009 demonstrated that an individual vehicle has the potential to reduce
its emissions and fuel consumption by up to 7 per cent and 8 per cent respectively
[36]. Still yet, another study by Barth et al. showed potential reductions in fuel
consumption and CO2 emissions by about 12 per cent [4]. Another study done by
Xia [65] analysed the effect of a number of different parameters on an advanced
algorithm that included V2I-based communications. The researchers conducted a
sensitivity analysis and found that communication range had a strong effect on

23



2.6 connected vehicles

their algorithm’s effectiveness. Fuel savings ranged from 30 per cent with infinite
range to below 5 per cent with only 200 metres of communication.

2.6.1.3 Algorithmic Theory

The literature available on ECO-driving includes a number of different ways to
calculate a vehicle’s optimal speed. These methods vary in terms of their complex-
ity and potential to reduce vehicle emissions. According to Mandava et al., the
simplest ECO-driving model solves the following basic equation [40]:

max (v =
D

tp
) Where:


tp ∈ [tg, tr) or tp = t′g if s = red

tp ∈ [0, tr) or tp = t′g if s = green)

v 6 vlimit

(1)

Where v is the optimised speed of the vehicle, D is the distance to the stop bar,
vlimit is the speed limit, tg and tr are the green and red times respectively of the
signal and tp is the phase time being considered for optimisation. This equation
represents the simplest approach to ECO-driving, and does not consider elements
such as deceleration time, queue length, or other limitations. This algorithm also
considers only the signal ahead of the vehicle, but other studies have shown that
more optimal paths may be found if multiple signals are considered in the eval-
uation [14]. The downside of this approach is that the intended path a vehicle
wishes to choose must be known, and that relevant SPaT (or speed) information
also be provided to the vehicle. In an advisory context, drivers may also be more
distrustful of the system if it appears to intentionally skip green lights that would
otherwise be achievable.
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2.7 data clustering

Often when dealing with large amounts of data, it becomes necessary to imple-
ment some form of clustering. Traffic micro-simulation models have the potential
to produce large amounts of data. A vehicle traversing a network can have thou-
sands of data points associated with its trajectory, and a large network can have
thousands of vehicles entering it per hour. The computational requirements for cal-
culating the emissions of each discrete vehicle modelled in the simulation therefore
increases exponentially. Clustering reduces this computational load. This section
explores potential algorithms available in the literature that could be adapted to
group individual trajectories together. Particular attention is given to the algorithm
selected for this work, k-means clustering, but some exploration of alternatives is
also presented.

2.7.1 K-Means Clustering

As an algorithm, the k-means process is relatively simple to understand. As its
name implies, the aim of a k-means process is to partition N observations in k sets
such that the in-set variance of all the sets is a minimized. While many variations
of the algorithm exist, initial proposals followed the same basic procedure: First, in
initial seeding of k groups is chosen, each of which are assigned an initial "mean"
value. Sample points are then successively added to the group whose mean it is
closest to. After adding all points, the mean of the groups is recalculated. Each of
the k-means therefore represent the mean of the k groups selected at the onset of
the model (giving rise to the algorithm’s name). An iterative process thus follows
where after assigning all the points, the means are then updated and the points
are re-assigned. This process could continue until there is no substantial change
in the assignment process, or the means themselves do not change significantly
[38, 22]. It is important to note, however, that while a k-means algorithm will
converge, this convergence may not be to the optimal solution and could oscillate
indefinitely [38].

To determine the nearest mean to an individual point, a sum-of-squares ap-
proach is usually employed. Sums-of-squares can be thought of as a representa-
tion of the Euclidean distance between two points, and thus minimizing its value
is akin to selecting the "nearest" point. The mathematical aim of the algorithm is
therefore to reduce in-group sum of squares across all groups [21]. This does not
always need to be done through the iterative procedure discussed previously. Har-
tigan and Wong suggest an algorithm which switches points between clusters as
an alternative the iterative procedure [21].

As all the k-means algorithms discussed still require an initial seeding, it should
be no surprise therefore that the selection of an appropriate seed can improve both
the algorithm’s results and efficiency. Initial groups could be selected randomly
[38], sequentially from the dataset (e.g. first x points), or evenly from the data [21].
In their algorithm, Hartigan and Wong recommend ordering the points based on
their distance from the mean, and then selecting points at even intervals based on
how many groups are desired [21]. This approach has the advantage of ensuring
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that no group will be empty after the initial assignment (since the point selected
for the initial mean will definitely be added to the group).

2.7.1.1 Selecting a Value for k

There are many approaches to the selection of the value of k in the literature, and
some of the simplest involve formulas based on the number of points in the data.
For example, one possible rule of thumb suggested is to use the following equation
[41]:

k =
√
n/2 (2)

While approaches such as these have merits, they ultimately have no relationship
to the data and may not always result in an optimal choice. Another possible
approach is the use of a goodness-of-fit value or some other indicator of the dif-
ferences between individual members of clusters and the average trajectory. These
methods ultimately form a "heuristical" approach to the selection of k, called the
"elbow" method. In these approaches the appropriate indicator value chosen is
graphed against the cluster count on an ordinary x-y plot. As the cluster count
increases the value of this indicator value will change, but this change will be-
gin to decrease and eventually the graph will visibly "flatten" [30]. This flattening
occurs due to the diminishing returns of increasing the cluster count. Ultimately
the selection of the cluster count with this method will not be "precise" as the
chief limitation of this approach is that the determination is often made visually
using ad hoc rules. As such, more advanced methods proposed in the literature
exist and the problem of selecting optimum values of k is an area where many
implementations will differ from each other. For example, a recent study in the
literature used a machine-learning approach using hidden Markov models that
automatically adjusts k and evaluates each tested value, discarding those that did
not satisfy the conditions of the Markov model. In their study, the researchers pro-
grammed heuristic rules into their algorithm to guide the selection and evaluation
of k [53].

2.7.1.2 Applications in the literature

An understanding of past applications of a k-means approach can provide insight
into its ability to solve the problems of this research. Since its development, the
k-means algorithm has seen various applications and improvements across mul-
tiple fields. Within the field of transportation, current research work is still being
done that uses various forms of k-means algorithms. For example, a study in 2014

by Lentzakis et al. [34] compared a weighted k-means approach and a k-harmonic
means approach to group links in a network into clusters based on their traffic
parameters. Their study revealed that centre-based clustering algorithms (such
as k-means) can be very effective in partitioning urban traffic networks. Of the
two methods studied, the weighted approach was also found to perform better.
Another study by Ferreira et al. [19] in 2013 further expand on the original k-
means algorithm by taking a vector-based approach. While fundamentally similar
to the k-means algorithm originally proposed, their algorithm applied techniques
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developed in computer graphics and visualisation and they demonstrate its effec-
tiveness on a number of different datasets, including GPS traces of people and
vehicles. Finally, as mentioned previously, Saunier and Sayed demonstrate a ve-
hicle tracking algorithm for intersections and traffic-conflict detection that uses a
k-means clustering approach [53]. In their study, the number of clusters is gener-
ated automatically using a heuristic approach. A clustered approach was necessary
in their setting as the automatic vehicle software would often trace a path for a ve-
hicle in the video frame that was different than a previous vehicle moving in the
same manner. Clustering allowed these trajectories to be grouped together, and the
heuristic approach for cluster seeding removes the need of the modeller to guess
an appropriate number for the final cluster count. While these trajectories are dif-
ferent than those that would be generated by a micro-simulation software package,
many of the concepts are similar. Their approach demonstrates the applicability,
simplicity, and power of a k-means approach.

2.7.2 Other Clustering Algorithms

There are always a number of different approaches that can be taken to solving
a problem, and data clustering is no exception. Indeed, as discussed in the previ-
ous section, there are many algorithms that build on the concepts of the k-means
approach (such as Ferreira et al. [19]). Broadly speaking, clustering algorithms
can be grouped into two groups: hierarchical or partitional. The k-means algorithm
is a partitional algorithm. In contrast, hierarchical algorithms function either by,
starting with each individual data point, progressively merging similar pairs of
points to form a cluster hierarchy or, starting with all the data points in one clus-
ter, by dividing clusters into smaller clusters successively. Each successive stage
of the algorithm, be it divisive or agglomerative, represents a hierarchical level.
The most popular hierarchical algorithms are the single-link and complete-link algo-
rithms, whereas k-means is the most popular partitional algorithm [29].

2.7.3 Conclusion

The k-means is a popular algorithm due to its simplicity when compared to other
alternatives, but as mentioned in previous sections, suffers from the issue of re-
quiring the researcher to specify a value for the cluster count (k). K-means is also
limited by the method employed to generate the clusters. For example, the use of
Euclidean distance means that certain data relationships (e.g. spirals vs. lines) may
not be clustered in the best manner.
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Part II

R E S E A R C H M E T H O D O L O G Y

After developing a sound background in the literature surrounding the
topic, an application was developed to link VISSIM and MOVES together.
This section details the methodology used to link VISSIM and MOVES

together, including descriptions of the scenarios used to evaluate the
possible methods. The methodology developed through this method
was subsequently applied to evaluate the potential of an ECO-driving
system. This section also details the methodology and algorithms used
to evaluate this proposal.
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3
V I S S I M - M O V E S I N T E G R AT I O N

Using the concepts and ideas explored in the literature review, a technical frame-
work to link the output of VISSIM to MOVES was developed. MOVES is able to
analyse data at varying levels of aggregation and has multiple levels of analysis,
including national, county and project levels. For this research, the analysis in
MOVES was conducted using a project level analysis. As discussed in Chapter 1,
MOVES always operates at an "activity" level, regardless of the modelling scope
and aggregation level.

3.1 integration framework overview

A successful analysis in MOVES can be done using a variety of different methods,
and each method differs in the manner in which the output from the traffic simula-
tor is prepared for input. The approaches one can take to link traffic and emissions
models can be broadly classified on a spectrum that ranges from fully disaggre-
gate to aggregate. The most disaggregated of approaches is to simply use the raw
output from the traffic model in the emissions model while the most aggregated
approaches treat the traffic micro-simulation model similar to a macro-simulation
model where only total volume and average speed are used. Hybrid approaches
are also possible and fall somewhere in-between, and can include methods such
as data clustering or velocity binning. The level of aggregation provided results in
a trade-off where increasing the level of disaggregation simultaneously increases
both the accuracy of the estimation and the computational time. To quantitatively
assess this trade-off, this study compares and contrasts the results of different
types of integration, including the following three that have been commonly used
in the literature:

1. AS: These methods model a network of links and use link volumes and link
average speeds to arrive at emissions estimates. These approaches are the
simplest that can be employed and often have the lowest computation re-
quirements. As discussed previously, when MOVES is provided with average
speeds, it uses a default operating mode profile to divide the time a vehi-
cles spend on the network into the various operating modes it simulates
(e.g. accelerating, decelerating, idling, cruising). This is markedly better than
estimating emissions solely as a "cruising speed", but still suffers from inac-
curacies depending on the networks being modelled. This accuracy is further
affected by how the network is partitioned in MOVES

2. VB: In this method, vehicles traversing a network are stratified according
to their average speed. There are a variety of different methods to achieve
this stratification, as stratification could be provided for individual links (or
sub-links) or simply for the network-at-large. Since MOVES automatically par-
titions vehicles into operating mode distributions, this method may interfere
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Figure 5: Overview of the Integration Framework

with this process as the speed a vehicle travels at directly affects its operat-
ing mode distribution. For example, lower average speeds may be caused by
frequent stops at traffic signals or by lower speed limits; however, these two
scenarios would still have different emissions profiles.

3. Vehicle Trajectory Based (VT): In this method, MOVES is provided with vehi-
cle trajectories for each vehicle directly. This method is the most disaggregate
possible, and trajectory outputs from a simulation model (e.g., VISSIM) are
only converted to a format that MOVES can accept with no additional aggre-
gation. In this method each vehicle is modelled as an individual link with a
volume of 1 and a link drive schedule that fully describes its speed for each
second. Estimating emissions using the trajectories of individual vehicles is
very time consuming, making it infeasible to model networks of large scale.

In addition to these methods, a hybrid approach has also been proposed and
tested. This approach uses the K-means algorithm discussed in the literature re-
view to aggregate individual trajectories further. The use of trajectories also pre-
cludes the need to develop and apply an understanding of the complex relation-
ship between a vehicle’s trajectory and its operating mode, as trajectories are di-
rectly interpreted by MOVES. This approach will also simplify the analysis, as the
data generated by the micro-simulation model (which can be substantial) is con-
densed.

The relationship of these approaches in the overall context of the analysis can
be seen in Figure 5. As shown in this figure, a successful analysis first starts with
the definition of the goals of the scenario and the specification of all relevant in-
puts. In the case of this study, scenarios take the form of networks designed to
compare the accuracy of each of the methods (Section 3.7), scenarios designed to
test the computational time of the clustering algorithm, and scenarios applying the
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method to evaluate an ECO-Driving system based on Connected Vehicle (CV) tech-
nologies (Section 3.7.3). These inputs are required for a microsimulation analysis
to be conducted, which in this study is conducted using VISSIM.

VISSIM can provide two types of output, time-based data on all operating pa-
rameters of vehicles (such as speed, acceleration, etc), and aggregated statistics on
the network. In the case of this study, the methods of linking the output of VISSIM
to MOVES can thus be further categorised by whether or not subsequent data anal-
ysis is required. This is illustrated in Figure 5, as the AS and VT approaches only
require that VISSIM’s output be reformatted such that MOVES can understand it.
In contrast, the VB and Clustering approaches require additional processing and
analysis, either using spreadsheet programs such as Excel, or through the imple-
mentation of another algorithm.

At the end of every analysis, MOVES provides an output database table contain-
ing emission estimates for the requested parameters. In the case of this analysis,
output was requested for CO, CO2, and Energy Consumption. Ultimately, each of
these methods have their own advantages and disadvantages, and each varies in
the complexity of the approach and the amount of external data processing that is
required. These methods are discussed in greater detail in the following sections,
including descriptions of the process by which data is extracted, the process by
which data is analysed, and the process by which data is encoded to be imported
into MOVES.

3.2 application inputs

The primary goal of this research project was the development of an integration
framework to link VISSIM and MOVES, and to then test and evaluate that frame-
work. This research project therefore includes three scenarios: The first scenario
is designed to compare the emission estimates of all the integration approaches
to each other in terms of perceived accuracy and computational time, with the VT

approach forming the reference baseline. The second scenario is designed to eval-
uate the computational performance of the algorithm developed to cluster vehicle
trajectories, with the aim of assessing its potential for use on larger-scale networks.
The final scenario applies the framework to evaluate a technology based on con-
nected vehicle systems, namely, ECO-driving.

3.3 vissim

VISSIM is a complex program and is able to simulate many aspects of a trans-
portation system’s operation. VISSIM includes a comprehensive user-interface that
allows the modeller to interact with the software to configure the simulation (see
Figure 6). For the purposes of this analysis the majority of VISSIM’s customisable
options were left at their default settings, including all settings for the car follow-
ing model. The tools provided by the UI allow the modeller to specify the location,
direction, width and orientation of links, speed limits, rights of way, traffic lights,
vehicle routes and other features. Specific configurations are detailed in Section 3.7
for each of the evaluation scenarios developed for this research project.
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Figure 6: VISSIM’s main UI

3.4 aggregated output

At the simplest level, vehicles and simulated components can be thought of in an
aggregate manner. In this approach, the average speed and total volume of vehicles
on each link can be extracted from the micro-simulation model. This approach is
the simplest possible and provides the quickest computation times in MOVES.

3.4.1 Obtaining Data from VISSIM

VISSIM is readily able to provide this information on a link-by-link basis, and this
information can be extracted directly from VISSIM in a format that can be easily
converted to one understandable by MOVES. In the diagram shown in Figure 6 the
tool that provides this information is shown (Link Segement Results, the list-box
in the bottom right), and information can be exported from this tool into Excel for
further analysis.

The scale of aggregation employed in this approach is up to the modeller, there-
fore, and a variety of different combinations are possible. The networks shown in
Figure 11 can be aggregated in two major ways. The first is to consider each leg
as an independent link (e.g. giving 8 links in total in Network 1) and the second
is to consider each direction of travel as an independent link (e.g. giving a total of
4 links in Network 1). While seemingly more detailed, the first method may not
be superior. This is because MOVES does not assume that vehicles always cruise at
the provided average speeds, as discussed in Section 2.3.3, but rather that some
default driving regime is followed. Therefore, a more disaggregated approach may
not always provide the best results.
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Figure 7: Integration Tool GUI

This study therefore evaluates both methods of organizing the network, though
ultimately traffic analysts and modellers may select one arrangement over another
due to reasons other than accuracy and increased data disaggregation (such as
existing networks already coded as complete links).

3.5 trajectory output : an integrated tool

While simple methods like AS approaches can be readily prepared solely using
VISSIM and Excel, alternative methods require additional tasks that can be tedious
to do without automation. Therefore, an integrated tool was developed for this
study to translate the outputs from VISSIM into formats usable by MOVES. As
indicated in Section 3.6.1, MOVES requires three tables of input to be provided to it
for each scenario. The integrated tool therefore analyses the output of VISSIM (a
vehicle record file for all vehicles on the network, Figure 32 on page 89) and uses
it to build the three tables required. This tool was developed using Visual C# and
includes an interactive Graphical User Interface (GUI) for ease of use. A sample
of the GUI is shown in Figure 7. The GUI allows a user to navigate to and select
the VISSIM trajectory file to be used in the analysis and also to specify a folder to
place the output files. A variety of options for the program are also configurable.
The "Project Name" field allows the user to specify the name of the project that
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will be included in all output files (for example, if the name was "foo" then all
tables would have names starting with "foo"). The "Time Offset" field is required
as it allows a user to specify the time range that the data operates at. Since vehicles
in a VISSIM simulation only appear at vehicle inputs located at the starts of links,
it is customary to allow vehicles to flow through the network for a time before
recording data. Timestamps in the output will then be shifted by a certain amount
of time, and this factor allows that to be accounted for since MOVES only permits
second stamps that range from 0 to 3600. The "County ID" field is included in
many of the output tables, but is not a feature of VISSIM and so must be specified
manually. While VISSIM has the ability to model different road types, this is not
analysed by the tool and thus a default must be specified for all links. For most
networks this will not be an issue as often only a small area with only one road
type will be simulated. Finally, the last field specifies the number of clusters to
be used when generating tables for a clustered analysis. This tool has been used
in some way to complete all the remaining analyses, the specifics of which are
discussed in the following sections.

3.5.1 Using the Raw Output

As is the case with the aggregated approaches, the use of raw trajectories requires
little processing of the VISSIM output. For this scenario the tool simply uses the
output of VISSIM to generate the three tables required for a sucessful MOVES run.
Individual vehicles are modelled in MOVES as individual links with volumes of
one. MOVES is not a fully micro-scale model, and the subsequent analysis that it
conducts is computationally intensive. Indeed, while little processing is required
by the tool a successful run in MOVES can take well over an hour, depending on
the network’s size. Despite this, this method can be useful when analysing small
networks and is taken as a representation of the most accurate estimation of emis-
sions possible in this study and the results of all other methods are compared to
the output of this scenario. The integrated tool therefore always generates output
for this scenario in the form of the three tables mentioned earlier: a link drive
schedule table which contains discrete trajectory information for all vehicles (see
Section B.1.2); a table of links which contains the distance individual vehicles travel
and their average speed (see Section B.1.1) and a table of sources on each link
which essentially identifies each vehicle’s type (Section B.1.2).

3.5.2 Velocity Binning

The VB approach seeks to aggregate individual vehicles on the basis of the speed
they travel, but fundamentally the approach is analytically similar to the AS ap-
proach as a network of links is provided without any trajectories to MOVES. These
links contain the average velocity, length, and volume of vehicles in each respective
bin. Despite its similarities to the AS approach the VB method’s inputs were still
derived through the use of individual vehicle trajectories. The VB approach takes
advantage of one of the data tables created when generating input for each indi-
vidual vehicle (as described in Section 3.5.1), which includes a table that contains
the distance and average speed of each vehicle on the network. Vehicles listed in
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this data table were then grouped together with other vehicles of similar velocity
using ordinary functions in Microsoft Excel. For this study, vehicles travelling on
each network and in each scenario were grouped into 7 different bins. For the case
of the first network, these bins were spaced at intervals of 5 kph starting at 15 kph
and going to 45 kph. The larger size of the second network made this increment
infeasible, however, and an increment of 2 kph was used instead, beginning at 22

kph and going until 34 kph. After grouping individual vehicles, their velocities
and travel distances were averaged together to arrive at an input table of 7 links.
A sample data table can be seen in Appendix B.

3.5.3 A Clustered Approach

Clustering the individual trajectories of vehicles from the raw data is a simple way
of reducing the computational load. In the literature review a k-means approach
was discussed extensively. A k-means approach is a potentially powerful way of
reducing the computational load while retaining a higher level of disaggregation
than using average speeds or volumes. The k-means approach groups data points
in k clusters. In the context of this study, each trajectory can be thought of as
a data point, and the k clusters generated by the algorithm can be thought of
as k "links", with the number of trajectories in each cluster corresponding to its
volume. Unlike other aggregated approaches, each "link" in this approach is a
fully described trajectory representing the average of each vehicle in the cluster. A
program to implement the k means algorithm was developed as an extension to
the program described in Section 3.5. This extension was also developed in C# and
runs immediately after the VISSIM input data has been parsed. The subsequent
sections describe each step of the algorithm used to cluster the trajectories as coded
in the extension. There are 4 major steps.

1. Set the parameters of the clustering algorithm.

2. Initialize the k-means algorithm and seed the clusters.

3. Run the k-means algorithm.

4. Export the results when the halting condition is met.

3.5.3.1 Set the parameters of the clustering algorithm

As mentioned previously, the results of the k-means algorithm depends on the
number of clusters the modeller wishes to create. There are a variety of different
ways to derive this number, but its selection is primarily a function of the level
of detail required counter-balanced with the computational load. It is ultimately
the modeler’s decision as to what constitutes an optimal value for k, but generally
the aim is to select a value that provides the highest disaggregation while also
minimizing the computational loads that will be incurred. The F-ratio is the ratio
between the explained and unexplained variance; this ratio will be higher when
cluster counts are low and lower as cluster counts increase. While the F-test is
often used to evaluate samples when conducting an ANOVA, in this instance the
F-value is used as a heuristic to select a value for k. This method is a variant of
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what is commonly called the "elbow method", where an appropriate cluster count
is selected visually from a point in the plot where flattening is observed to occur
[30]. Arriving at an estimate using this approach requires multiple iterations of the
algorithm with different values of k, so for this study multiple values of k ranging
from 20 to 400 were tried. The results of this approach are discussed further in
Section 4.1

Beyond the selection of k, the extension developed also contains two different
ways to pre-process the data. To reduce computational loads and to allow individ-
ual assessment of link segments, it may be preferable to first partition a vehicle’s
trajectory according to the links those trajectory portions travel on. This is the rec-
ommended default for the program, and the result is that the total cluster count
will be partitioned to each of the links in the network according to the number of
vehicles that travel on them. Clustering will then be done on the link-level, with
multiple clusters representing a single link. Alternatively, the program contains
a simple O-D path analysis algorithm that can be applied to analyse smaller net-
works. If this option is selected, vehicles are grouped with other vehicles who
travel on an identical set of network links (i.e. an identical path through the net-
work) and the subsequent clustering continues at the O-D level. As was the case
with the link-based method, total cluster counts are partitioned evenly to each of
the O-D paths according to the volume on each path.

3.5.3.2 Initialize the k-means algorithm and seed the clusters

In the literature describing the k-means approach, particular attention is given
to the methods by which the algorithm is initialized. Because of the algorithm’s
design, an initial condition must be provided and then an iterative approach is
used to arrive at a final solution. The selection of a poor initial condition can
create additional computational loads as the algorithm will take longer to con-
verge. Extremely poor selections of the initial conditions can create further issues
if successive iterations trap the results of the convergence test in a local minimum,
resulting in a sub-optimal solution. Therefore, in this research project the k-means
algorithm was seeded such that initial clusters were spaced evenly. Trajectories
were ordered according to the raw sum square difference from a null trajectory.
In this work, the sum of squares for any trajectory is calculated according to the
following equation:

SSi =

n∑
j=1

(
vav,j − vi,j

)2 (3)

In this equation SSi is the sum of squares for trajectory i. For a given trajectory,
there are n data points representing each individual speed measurement. There-
fore, vav,j and vi,j represent the individual speed measurements at point j of the
average trajectory and trajectory i respectively, where j increments from 1 to length
of the trajectory, n. Of course, in the initial seeding no average trajectory is being
considered, and the equation reduces to the following form:

SSi =

n∑
j=1

(
vi,j
)2 (4)
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Figure 8: Sum Square Continuum

The manner in which these equations are written means that the "trajectories" are
not trajectories in the sense of a representation of position with respect to time,
but rather these trajectories trace the speed of a vehicle travels with respect to
time. The choice of speed over position does not affect the result: the order of "tra-
jectories" would be the same regardless for vehicles on the same path (as speed
affects position). However, since speed-based trajectories on different paths may
be similar to those on other paths, vehicles were first divided into groups based
on their paths. The number of clusters for each path was then proportionally as-
signed based on the number of vehicles in the path (with a minimum of 1 cluster
for each path). Then, as illustrated in Figure 8, If the trajectories are ordered within
their path-groupings according to the results of equation 4, then a continuum of
the trajectories can be imagined, from which initial trajectories can be selected at
intervals of N/k, where N is the total number of trajectories and k is the desired
number of clusters. It is important to note, however, that while vehicles were first
divided according to the paths they took this division is not necessary in an emis-
sions analysis. Emissions are not dependant on the location of the vehicle, rather
they are affected mostly by the speed and acceleration a vehicle travels at.

3.5.3.3 Run the k-means algorithm

After initialization, the algorithm proceeds to assign trajectories to each of the
clusters. Sums of squares are computed for all trajectories sequentially for each of
the available clusters. The order of selected trajectories is arbitrary, and in this case
is simply the order by which the vehicles appear in the simulation. Mathematically,
the process to derive the sum of squares is the same as that listed in equation 3.
Since vehicles travelling at different speeds will cover ground slower or faster than
each other, this means that the "length" (i.e. the number of data points) of the
trajectories may not be the same even for vehicles on the same path. Consequently,
it is necessary to devise a method to accommodate trajectories of differing length.
For this work, when either the average trajectory (vav,j) or vehicle trajectory (vi,j)
for point j does not exist, that point’s value is taken to be zero instead. After the
sums of squares have been computed, the trajectory is assigned to the cluster with
the lowest sum of square, which represents the group it is most similar with. The
average trajectory of the cluster is then recomputed for each point j according to
the following equation:

vav,j =

n∑
i=1

vi,j

n
(5)
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As was the case in equation 3, vav,j is the average velocity at point j, vi,j is the
velocity of trajectory i at point j and n is now the total number of trajectories in
the cluster group represented by vav. In this equation, values for vj are computed
such that vav is as long as the longest member in its cluster. A value of zero is
substituted in the above equation where no data point exists for trajectory i.

3.5.3.4 Export the results when the halting condition is met

The halting condition for a k-means algorithm can be a complicated topic. Depend-
ing on the parameters seeded to the algorithm, it is possible that a solution to the
algorithm be unattainable in a reasonable amount of time. Original proposals of
the algorithm indicate that the algorithm is to continue until no further changes to
the cluster assignments is observed [22]. This is the logic applied for this project.
More specifically, the stopping criterion is met when the difference between succes-
sive iterations for all average trajectories is less than 2.5 per cent. Furthermore, an
additional constraint is imposed requiring all clusters to have a minimum volume
of 1. In a k-means algorithm, it is very possible that, especially for large cluster
sizes, successive iterations will create clusters that have volumes of zero. There-
fore, after each iteration clusters with no volume are reseeded with means from
the largest cluster and iterations continue until no zero-volume clusters remain. To
prevent the algorithm from iterating forever, a cap of 999 iterations was imposed
in the implementation of the algorithm, though convergence was often observed
within 10 iterations for nearly all cluster sizes.

A successful run of the clustering algorithm will create the three tables required
for input into MOVES, and the process for running MOVES after completing the
clustering process then becomes nearly identical to the process described in Sec-
tion 3.5.1.

3.5.4 Running an Integrated Simulation

The tools and procedures developed and described in the previous sections ulti-
mately come together when a simulation is run to completion. Because the tools
are separate from each other, there is no need to run them all at the same time, and
indeed, additional runs in MOVES can be made by analysing the data from VISSIM
in a different way. For each of the proposed scenarios discussed in Section 3.7.1
the following procedure was followed:

• First, two networks were coded in VISSIM according to the diagram in Fig-
ure 11. Volumes were then set according to each of the planned volume
scenarios, beginning with the low and progressing on to the moderate and
variable volume scenarios.

• After all scenarios ran successfully in VISSIM, the resulting outputs were im-
ported into Excel spreadsheets and CSV files for analysis using the integrated
tool discussed in Section 3.5.

• MOVES input tables were prepared directly from VISSIM’s output data using
Excel for the AS method.
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Figure 9: Main Menu of MOVES

• The integrated tool was used to generate MOVES input tables for the individ-
ual trajectory method and the k-means cluster-based approach. The "Elbow"
method was used to select the value of k that would be used in MOVES for
analysis.

• The data tables generated by the integrated tool for the individual trajectory
method were used to generate the input for the VB method.

• A RunSpec was set-up in MOVES using the common configurations discussed
in Section 3.6.1. Individual data tables were imported into MOVES and sepa-
rate estimations were done for each of the data tables generated.

3.6 moves

In MOVES simulations are prepared as "RunSpecs" using a graphical editor in-
stalled with the software. This editor, shown in Figure 9, allows customisation
of any detail or setting available in MOVES.

In Figure 9, the list-menu on the left details every major component of the Run-
Spec that must be configured. These configurations affect the results of the emis-
sion estimates, as the inclusion, exclusion or modification of certain parameters
will change the model’s behaviour. The following sub-section details the most im-
portant settings configured in MOVES that affect the model’s behaviour, and are
common to all model runs.
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3.6.1 Common MOVES RunSpec Configurations

The output of all of the individual scenarios discussed Section 3.7 are eventually
analysed in MOVES. With the exception of volume inputs, these scenarios all share
common settings in MOVES that allow their output to be compared directly. Volume
inputs are entered in a separate tool from the menu items shown in Figure 9, and
as such these settings are generally the same across all scenarios.

For the case of the "Scale" tab, as discussed extensively in previous sections the
"Project" scale was selected. The scale tab also allows setting of the calculation type,
which was set to "Inventory"; selecting this option means MOVES will tabulate total
emissions across the network for all vehicles.

Settings in the "Time Spans" tab are partially constrained by the selection a
project level analysis, as MOVES restricts the analysis to a single hour (to simulate
additional hours, additional runs must be executed). For this analysis, the year
was set to 2014, the month was set to March, the day was set to a weekday, and
the hours were set to 0900h to 0959h. At this scale, these settings are generally
only used by MOVES to select appropriate weather conditions to include in the
simulation.

The "Geographic Bounds" tab allows selection of a county from any US State.
For the purposes of this analysis Erie County, NY was arbitrarily selected due to
its proximity to Canada. There are no Canadian regions included in the MOVES

databases by default, but as this analysis does not include any real-world data,
this selection has been made solely to satisfy the requirements of a MOVES run.

The "Vehicles/Equipment" tab allows specification of the vehicles running on
the network from a myriad of different options. These options include combina-
tions of fuel and vehicle size, such as Diesel powered Long-haul Trucks, or Com-
pressed Natural Gas powered Transit Vehicles. While the options are vast, any
combination of vehicle selected must also be included in the VISSIM simulation as
vehicle type distributions (or individual vehicle types) must also be specified with
volume inputs. For simplicity only two types of vehicles have been included in
this analysis: Gasoline Powered Passenger Cars and Gasoline Powered Light Com-
mercial Trucks. These vehicles are a primary component of urban traffic; VISSIM’s
default vehicle distribution also includes only two vehicle types (Passenger Cars
and Commercial Vehicles) and the addition of more vehicles would not increase
the strength of the analysis.

The "Road Type" tab allows the type of road included in the network to be spec-
ified. For a project level analysis, these road types are also included later when
volume data is imported. For this analysis, only Urban Unrestricted Access road-
ways were included.

The "Pollutants and Processes" tab allows the modeller to specify which pol-
lutants should be included in the model’s results. MOVES is able to estimate the
quantities of a large number of pollutants from different states of vehicle opera-
tion. In addition to running exhausts, these states include start exhausts, extended
idle exhausts (such as at parking), evaporative fuel losses, etc. However, the selec-
tion of additional operation states increases the data requirements. For example, if
"extended idle exhausts" are requested for each of the pollutants modelled, MOVES

must also be provided with an estimate of idle time to include in the calculations.
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Figure 10: MOVES Data Importer

Furthermore, the selection of additional pollutants increases the model run time
and can also increase the amount of data required. For simplicity, only "running ex-
haust" emissions were selected for Carbon Monoxide, Total Energy Consumption
and Carbon Dioxide.

Finally, the "Strategies" and "Advanced Performance" tabs contain options not
relevant to this project and no additional configurations were selected from these
tabs for any runs. The "Manage Input Data Sets" and "Output" tabs allow config-
uration of the databases used to provide vehicle inputs and emissions estimates
respectively. A database schema was created for each scenario’s input and output.

Additional Data

MOVES also provides a specialized data importing tool that is able to import tab-
ular files (such as CSV files or Excel Files) into a database format. The graphical
interface of this data importer is shown in Figure 10. The data importer contains
several tabs that can be used to export default data or import formatted data from
VISSIM. Vehicle trajectory data must be formatted in a drive schedule table that
include a column for the link the vehicle is travelling on, a column indicating the
vehicle’s speed, a column indicating the grade the vehicle is currently traversing
over, and a column indicating the time those measurements were taken at. A Sam-
ple data table has been included in Section B.1.2 on page 86.

Additionally, all scenarios also require a table of links to be provided that in-
cludes the link number, county number, road type, link length, link volume, link
average speed, and the link average grade (see Section B.1.1 on page 83. Although
this table is required for inputs into MOVES it differs slightly in its function be-
tween the different methods. When a drive schedule is provided for a link, MOVES

will use the drive schedule to estimate emissions rather than the average speed
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provided in this table (which must still be provided). Furthermore, if individual
trajectories are provided a link is also provided in this table for each individual
vehicle, and the volume is set to 1 (see Figure 27).

Finally, a table must also be provided that specifies the vehicle distributions on
each link as a decimal (see Section B.1.3 on page 86). In the case where individual
trajectories are used, as was the case with the link table, a single vehicle is travel-
ling the link and so its type distribution includes only one vehicle (see Figure 30.
This type distribution comes directly from VISSIM and the integrated tool trans-
lates VISSIM’s built in vehicle types to a matching type in MOVES. On all other
methods, the sourceTypeHourFraction is used to indicate what percentage of vehi-
cles travelling the link are of each type. For a particular link, the sum of the values
in sourceTypeHourFraction must be 1. When using AS methods, these values are sim-
ply set to 0.9 for passenger vehicles (MOVES vehicle type 21) and 0.1 for commercial
vehicles (MOVES vehicle type 32). On all other methods, this value depends on the
percentage of vehicles travelling the link, and in the case of the clustered method
this is directly provided by the integrated tool.

Once created, all these tables are imported using the "Links", "Link Source
Types", and "Link Drive Schedules" tabs on the project data manager.

In addition to these tables, the project data manager allows default tables for
Fuel, Age Distribution and Weather to be exported for inspection and import. Even
if default data is to be used, the modeller must export these tables first. For the
case of this study, default data was not modified for any of these tabs.

3.7 evaluation scenarios

The methods discussed in the previous sections were then applied in three differ-
ent scenarios, with the first scenario focussing on comparing the computational
time and accuracy of each the methods, the second focussing on evaluating the
computational performance of the clustering approach, and the third focussing on
an application of this approach to asses an emerging CV technology.

3.7.1 Scenario 1: Evaluating Accuracy

The accuracy of the methods used to connect MOVES to VISSIM will vary depend-
ing on the network being analysed. This is because, as discussed previously, when
using aggregate methods MOVES makes assumptions about the behaviour of ve-
hicles on the network that affects estimates. The geometry of the network has an
influence on this, as the number of signals and their layout, including elements
such as left turn lanes, right turn ramps, etc will affect how drivers operate their
vehicle.

3.7.1.1 Network Configurations

To evaluate the differences in the estimates provided by each of the methods dis-
cussed in Section 3.1, two different networks were devised. These networks were
devised with the aim of evaluating differences in terms of sensitivity, and to obtain
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(a) Network 1

(b) Network 2

Figure 11: Vissim Test Networks

an idea of the effect of network size on the calculation time. These networks are
shown in Figure 11.

The first network, shown in Figure 11a, is a single intersection with four two-
lane approaches. The signal at the intersection operates on a 90 second cycle and
provides equal time to all approaches. This signal has been configured with VIS-
SIM’s Ring Barrier Controller which accurately simulates the operating principles
of modern North American traffic signals. Turning movements were permitted on
this network, and left turn lanes were also included to accommodate turning vehi-
cles (though no protected/permissive left turn phases were included). 10 per cent
of vehicles were set to turn left and 10 per cent to turn right at the intersection. To
facilitate the subsequent analysis, each link in VISSIM was modelled as a distinct
link. This approach allows average speed and volume to be obtained natively from
VISSIM for each link.

The second network, shown in Figure 11b, is more complex and includes five sig-
nal controlled intersections. To simplify the analysis, only volume flowing on the
main corridor was analysed for all scenarios. Turning movements were therefore
not considered in this method. In this network, links were also modelled distinctly
between the various intersections (in contrast to defining a single link spanning all
intersections).

These two network orientations were specifically selected to analyse the effect of
increasing complexity on emissions estimates. On a complete corridor, such as the
one modelled in Network 2, vehicles make multiple stops if they are required to
stop at multiple traffic lights. In contrast, vehicles on Network 1 will only ever have
to stop at the single intersection, and thus even if both scenarios have the same
average speed, the emissions profile may be different between them. Network 2

was designed to simulate corridor with directional flow, and signals were timed
according to the Highway Capacity Manual to give progression in the east-west
direction. The signal progression was developed for the medium volume scenario
and remained unchanged for all test scenarios. Signals for this network were timed
on the assumption of low volume for non-corridor directions (500 vehicles per
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scenario network 1 volume network 2 volume

Low Volume 350 vph, all approaches 750 vph EB, 500 vph WB

Medium Volume 700 vph, all approaches 700 vph EB and WB

500 vph for the first 20 min, 500 vph EB and 250 vph WB for the first 20 min,

Variable Volume 700 vph for the next 20 min, 700 vph EB and 350 vph WB for the next 20 min,

800 vph for the last 20 min, 900 vph EB and 450 vph WB for the last 20 min.

Table 1: Network Volumes

hour) and using a cycle length of 90 seconds. On both networks, speed limits were
also set to 60 kilometres per hour for all simulated links. Vehicle composition was
set at 10 per cent light commercial vehicles and 90 per cent passenger cars. All
links drawn in VISSIM were also set to have widths of 3.3 metres.

3.7.1.2 Volumes

In addition to differences in network geometry, multiple volume scenarios were
also tested. Higher volumes can cause congestion and increase average speeds,
which can also affect driver behaviour and emissions, while lower volumes pro-
vide less impedance to travelling vehicles and increase average speed. For this
study, three different volume scenarios were tested on each of the two networks,
including a high volume scenario, low volume scenario and variable volume sce-
nario. These volumes are detailed in Table 1 and are different for each network.

Each volume and network combination was tested in VISSIM for one hour (as
MOVES restricts input at the project level to one hour). In the case of the variable
volume scenario, the volume was changed every 20 minutes and were designed
to start at a low uncongested volume, and rise steadily to a higher congested
volume. The high volume scenarios were designed to operate the intersection at
or near capacity (i.e. vehicles queuing at a red light are generally able to clear the
intersection when it is green). Conversely the low volume scenarios operate well
below capacity and vehicles queuing at a red light are always able to clear the
intersection on green.

3.7.2 Scenario 2: Evaluating the Computational Performance of Clustering

Similar to scenario 1, scenario 2 was designed to evaluate the computational perfor-
mance of the integration framework. This scenario, however, focussed exclusively
on the potential for the clustered approach to reduce computational burdens as
networks increase. To evaluate this potential, a series of networks increasing in
size were coded into VISSIM. The base network consisted of the same network
shown in Figure 11a. Larger networks were built by placing additional intersec-
tions at the end of the base network (and subsequently added intersections) and
adding additional feeder links. The result is a corridor-type that increases in size
and has a shape similar to the network in Figure 11b. Unlike the network in Fig-
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ure 11b, these test networks were designed with equal spacing and identical signal
timing patterns for all intersections, and ranged in size from 2 intersections to 16

intersections. Output from the VISSIM simulations run on this network were then
used to create clustered MOVES input files using the clustering algorithm, and the
computation time required to estimate these clusters was evaluated.

3.7.3 Scenario 3: ECO-Driving Analysis

Although the focus of this scenario is an application of the integration framework
developed, it is important to note that specific aspects of the scenario may merit
more rigorous study. The benefits of an ECO-driving approach is based on the
premise that a vehicle is receiving speed advice and then reacts to that advice using
human driving characteristics. Additionally vehicles following this vehicle will
also react and slow down. All these aspects are governed parameters of the micro-
simulation model that govern driver behaviour. For this scenario, however, no
focus was given to setting these parameters. Instead, default settings were used in
VISSIM. Speed advice was simulated by dynamically altering a vehicle’s "desired
speed" parameter, which in VISSIM represents the speed a vehicle wishes to attain
and hold at that particular instant. This speed does not need to be the speed limit
and is overridden by other aspects of driver behaviour, such as the need to stop at
a traffic light or yield the right of way to another vehicle.

This analysis ultimately sought to evaluate the benefits of an ECO-driving sim-
ulation in a realistic corridor. Many previous studies have used test scenarios such
as one way corridors or single intersections to evaluate the merit, but such evalu-
ations may over-state the benefits of an ECO-driving system as they often ignore
elements of signal design such as coordination and progression. For this study a
corridor was designed in VISSIM using a real-world roadway in Hamilton, On-
tario as the model. Representations of this corridor is shown in Figure 12. The
network contains 5 intersections, of which four were classified as "minor" and
one was classified as "major". Past research has shown that high congestion can
decrease the effectiveness of ECO-based systems [25, 36] and that low volumes
can also decrease their effectiveness [65]. With the exception of the major road, all
roadways in the network (including the corridor) are two-lane roads. All roadways
also have left turn lanes to allow left turning vehicles to queue. The major road is
a larger road and has four lanes and also contains separate left turn lanes. While
the layout of the roadways follows the real-world roadways, specific geometrical
features have been omitted or modified to simplify the analysis.

There are a number of different parameters that can be tested in such models,
but limitations of time and resources often mean focusing on a specific area. Since
volume-based effects are not the focus of this research, volumes were selected to
reflect moderate use conditions. The volumes used in this study are shown in Ta-
ble 2. The main corridor has directional volumes with more volume flowing in the
eastbound direction. All minor streets have the same volume (200 vph), while the
major street has the highest volume (as it was a four lane road). These volumes
were synthesised specifically for this study and do not reflect actual use condi-
tions. The distinction of "major" and "minor" intersections was set primarily for
the purposes of signal coordination and timing. All signals were timed according
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3.7 evaluation scenarios

(a) Terrain Map of Network

(b) Network Properties and Links

Figure 12: Vissim Test Networks

direction volume

EB Corridor (1 to 5) 500 vph

WB Corridor (5 to 1) 350 vph

Minor Street (both ways) 200 vph

Major Street (both ways) 750 vph

Table 2: Network Volumes
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3.7 evaluation scenarios

to the procedure specified in the Highway Capacity Manual (hand calculations).
Signal offsets were also set to give progression for vehicles travelling across the
corridor, and signals at all intersections except the major one have identical cycle
lengths (90 seconds). In contrast, the signal at the major intersection has a different
cycle length and gives more time to the through movements of the major street’s
direction. These differences in signal timing are common in the real world, where
signals along one corridor cannot always be timed to allow progression on every
street in every direction.

Market penetration can have the strongest effect on this system, and its effective-
ness on a large-scale often depends on this; therefore a number of different values
for the penetration rate were tested.

3.7.3.1 A Dynamic Testing Tool

While the integrated tool described in Section 3.5 allows for VISSIM and MOVES

to be linked together, a separate tool is required to implement the ECO-driving
system. As the proposed ECO-driving system modifies the behaviour of vehicles
based on parameters of the simulation (singal phase and timing, vehicle position,
etc) it was necessary to create a tool that could interact with VISSIM while it is
running. VISSIM natively provides an interface that can support this operation,
called the Component Object Model (COM). COM allows a program written in a
specific language (e.g. Python or C#) to communicate with the VISSIM application
within the program using calls in the language.

A program was therefore written to communicate with VISSIM and implement
an ECO-driving system. This program was written in C# and was designed as
a separate program from the integrated tool described in Section 3.5. When pro-
gramming an application using COM, an iterative loop structure is normally used
and in each iteration of this loop the VISSIM simulation is advanced a time-step
and the program runs any commands it may have to do. This is reflected in the
program’s general structure shown in Listing 1.

The code in this listing is taken directly from the application developed to imple-
ment the ECO-driving system. Using the COM system, a VISSIM file that contains
all the initial settings for the network (such as volumes, signal timing and link lay-
out) is loaded by the program and interfaced with. In Listing 1 this is visible by the
declaration of the VissimOperations delegator. The "delegator" handles all the com-
mands directed at VISSIM, and immediately on declaration it’s constructor runs
the commands shown in Listing 2. Interaction with VISSIM is ultimately facili-
tated by the VissimClass class, which becomes available to the programmer when
VISSIM’s COM interface is linked to the program. As soon as a call is made to
VissimClass.LoadNet VISSIM immediately loads and begins running. The program
does not continue until VISSIM loads completely; to the user this process is clearly
visible, as an ordinary VISSIM window similar to the one shown in Figure 6 will
be shown.

Despite granting the ability to interact with VISSIM, the uses of VissimClass are
very restrictive and aspects of a simulation cannot be accessed in the same man-
ner as ordinary variables in a program through features of the C# language. For
example, vehicles on the network are contained in the VissimClass.Net.Vehicles, but
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Listing 1: Excerpt of the Program’s General Operation

static void Main(string[] args) {

try {

/* This passes the VISSIM file to a class that */

/* starts VISSIM with the loaded network. The class */

/* is bound as a variable and can be called later */

VissimOperations Delegator =

new VissimOperations(@"C:\VissimFiles\2.inpx");

/* This starts a loop iterating until the desired */

/* runs are complete */

for (int run = 0; run < total_runs; run++) {

/* The delegator runs a single simulation step in */

/* VISSIM. After that step is run it calls checks */

/* the parameters of the simulation and throws an */

/* error if something is wrong */

if (!Delegator.VissimSingleStep()) {

throw new Exception("Error running a step . . . ");
}

}

}

catch (Exception e) {

Console.WriteLine("Error");
}

} �

Listing 2: The VissimOperations Function

public VissimOperations(string location) {

this.vissim_simulation = new VissimClass();

this.rnd = new Random();

this.current_seed = rnd.Next(1, 20000);

/* Tells VISSIM to load the file passed to it */

this.vissim_simulation.LoadNet(location);

/* After loading the file, specialised data strut- */

/* are used to hold information about the network. */

this.SignalTracker = new SignalPhaseTracker(vissim_simulation.Net);

this.VehicleTracker = new VehicleTracker();

/* As in an ordinary VISSIM run, we need to let the */

/* simulation play out a little before saving data */

this._runJunkSteps();

} �
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Listing 3: The VissimSingleStep Function

public bool VissimSingleStep() {

/* Calls a function that advances the simulation and */

/* updates the program’s record of signal states */

this._simulate_update_step();

/* To reduce computational load, vehicles are only */

/* polled every 5 steps (1 simulated second). After */

/* polling vehicles, the program sets desired speeds */

if (this._current_step%5 == 0) {

this._update_vehicles();

this._update_ECO_desired_speed();

}

this._current_step++; //increment the step counter.

return true;

} �
this list cannot be interacted with through commands such for loops, rather the It-
erator attribute of VissimClass.Net.Vehicles (VissimClass.Net.Vehicles.Iterator) is used
to cycle through the vehicles in the list. Another example of these limitations can
be found in the procedure to retrieve vehicle attributes. Vehicles retrieved through
the Iterator are interacted with through the IVehicle class. To retrieve an attribute,
a call is made to IVehicle.get_AttValue("string"), a sub-function of the IVehicle class,
with "string" being substituted for the desired vehicle attribute. So, to retrieve a ve-
hicle’s position a call must be made to IVehicle.get_AttValue("Pos"). Because these
values are returned from this "generic" function, they must also be converted to ap-
propriate C# data type (such as integers, floats, doubles, etc). This "disconnect" of
VISSIM objects from the language means that all attributes must first be imported
into operable data types before actions and analyses can be done on them quickly,
as accessing attributes repeatedly using the COM interface incurs a computational
penalty. This disconnect also affects software debugging tools as variables and at-
tributes held within VISSIM are not accessible while debugging unless imported
first. Despite this disconnect, the VissimClass allows complete control of many at-
tributes of the simulation, and documentation is provided in VISSIM’s help file
(though this documentation can be hard to follow).

After the simulation has been loaded, as is the case in scenarios where VISSIM is
run without an external program, it is necessary to first allow vehicles entering the
network to populate all links completely (as vehicles only enter at source points
and links will start empty). The commands in Listing 2 thus end when this is com-
plete and control returns to the next line after VissimOperations in Listing 1. The
iterative procedure described at the start of this section commences, where each
iteration of the for loop makes a call to VissimOperations.VissimSingleStep (shown
in Listing 3. As discussed previously, limitations in the COM interface means that
important variables and aspects of the simulation are tracked in separate data
structures for use in the program. The computational intensity of polling VIS-
SIM is fully evident when polling all vehicles in the network. The call to _simu-
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late_update_step() therefore only updates the program’s record of signal states (in
addition to advancing the VISSIM simulation a single step). By default, a single
step in VISSIM translates to 0.2 simulated seconds; that is to say, for each "step"
VISSIM simulates what would happen in 0.2 seconds if the simulation was a re-
flection of the real world. As ECO-driving proposals in the real world often only
receive information on a per-second basis, to reduce computational loads it was de-
cided to update ECO-driving speeds and estimates every five time steps (reflected
in the modulo operation shown at the end of Listing 3). Even with this reduction,
the ECO-driving program substantially increases a VISSIM run’s operating time.

After updating the position of vehicles, new vehicles detected in the system are
assigned as "normal" or "ECO-driving" vehicles using a random number generator.
The proportion of vehicles following the ECO-driving logic is set according to the
scenario being tested. All Vehicles following an ECO-driving regime then have
their position checked. For all scenarios tested a range of 400 metre was selected
as the maximum distance a vehicle could be from a traffic light before it follows an
ECO-driving regime. Vehicles within 400 metres of a traffic signal then have their
speed set according to the following equation:

max (v =
D

tp + tq
) And:


tp ∈ [tg, tr) or tp = t′g if s = red

tp ∈ [0, tr) or tp = t′g if s = green)

v 6 vlimit

(6)

Similar to the equation given in Section 2.6.1.3, in this equation v is the optimised
speed of the vehicle,D is the distance to the stop bar, vlimit is the speed limit, tg and
tr are the green and red times respectively of the signal and tp is the phase time
being considered for optimisation. However, unlike the equation in Section 2.6.1.3,
this equation includes an additional term, tq, which is a buffer value included
to account for the possibility of a queue at the traffic signal. In this study it is
assumed that no knowledge of the queue length is available, and the value for tq
also accounts for the time it takes for the existing queue to dissipate. This value
was set at five seconds; if this value is set too high it can negatively affect the
performance of the algorithm (as vehicles will slow down more than is required),
and if it is too low the vehicle will have to slow down too much when it encounters
vehicles ahead.

After determining the appropriate ECO-driving speed, the desired speed of
these vehicles in VISSIM is changed to reflect this target. If no successful speed
can be found using an ECO-driving approach, then no modifications are made.
When a vehicle’s desired speed is set in VISSIM, VISSIM adjusts the speed of the
vehicle using its own internal logic.

3.7.3.2 Integration with MOVES

The program created to implement the ECO-driving approach interacts and com-
plements VISSIM, but the output provided by VISSIM is the same as that described
in Chapter 3 and the relationship between all the components is visualised in Fig-
ure 13. This implementation used a fully disaggregate approach, and the input
into MOVES consisted of the raw vehicle trajectories. This approach, while consid-
ered the most accurate possible, added to the motivation for the development of
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Figure 13: VISSIM’s main UI

an alternative approach that would reduce computational burdens. Individual sce-
narios in this analysis took multiple hours to complete, with some runs in MOVES

taking well over 6 hours on the computer used to estimate emissions.
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Part III

R E S U LT S , D I S C U S S I O N A N D F U T U R E W O R K

The methods discussed in the previous part were then applied to arrive
at emissions estimates. The results of the different integration methods
were compared to each other on the basis of accuracy and computation
time. For the case of the ECO-driving algorithm, the results of the ECO-
driving process are compared to a base-line case to determine if the
proposal has merit as an emissions-reduction strategy. Finally, this part
closes with a discussion of the implications of these results and the
potential for future work.
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4
R E S U LT S : S C E N A R I O 1 A N D 2

For scenario 1, the framework discussed in Chapter 3 was used to evaluate 6 sub-
scenarios on two networks. These scenarios include a high, low and varying vol-
ume scenario for each of the two networks designed in VISSIM. The VISSIM out-
puts were then given as input into MOVES, generating output from five different
methods on three pollutants (CO, CO2 and Total Energy). For scenario 2, a number
of networks progressively increasing in size were tested to evaluate the computa-
tional demands of the algorithm. The following sections discuss these results and
their implications, starting with the results from scenario 1

1.

4.1 selecting an appropriate value for k

As mentioned in Section 3.5.3.1, a number of different values for kwere explored in
the analysis process. This values ranged from a minimum of 20 on the low end to a
maximum of 400 on the high end. While the clustering algorithm generated input
tables for MOVES for each of these values, only one of these should be selected for
each scenario tested. Computational limitations mean that it is infeasible for each
cluster value to be evaluated in MOVES, and doing so would defeat the purpose of
the clustering. As such, it is necessary to devise a method that allows selection of
the cluster count simply. In Section 2.7.1.1 a few possible methods for the selection
of k are discussed, and ultimately for this project it was determined that a simpler
method should be used in this evaluative phase of the integration tool, namely,
the "elbow" method. As discussed in Section 2.7.1.1, this method is a heuristic
that selects a value of k according to the point where a graph of the indicator
coefficient and cluster count selected changes sharply. One possible indicator that
can be used is the F statistic, which is the ratio of the between-group variance to
the within-group variance. Ordinarily, the F statistic can be calculated using the
following equation:

F =

∑
i

(Ȳi−Ȳ)
2

(K−1)∑
ij

(Yij−Ȳi)
2

(N−K)

(7)

In this equation Ȳ is the average trajectory for all vehicles in the sample and Ȳi is
the average trajectory for cluster i. K is the total number of clusters and N is the
number of vehicles in the entire sample. Finally Yij is an individual trajectory j
in cluster i. Because individual trajectories are not a single point, in actuality this

1 Most of these results will also be presented at the 95th Annual Meeting of the Transportation Re-
search Board [46].

53



4.1 selecting an appropriate value for k

equation is expanded to accommodate the individual trajectory elements. There-
fore,

(
Ȳi − Ȳ

)2 is calculated using the following procedure:

(
Ȳi − Ȳ

)2
=

P∑
p=1

(
Ȳi,p − Ȳp

)2 (8)

Where p is the individual entry of the cluster average trajectory Ȳi and the overall
average trajectory Ȳ and P is the total number of entries in trajectory Ȳ. Similarly,(
Yij − Ȳi

)2 is expanded using the following procedure:

(
Yij − Ȳi

)2
=

P∑
p=1

(
Yij,p − Ȳi,p

)2 (9)

Where p now represents the individual entry of trajectories Yij and the cluster
average trajectory Ȳi with P being the total number of entries in trajectory Ȳi. As
the cluster count changes, it is obvious that the result of Equation 7 will eventually
reach a floor value that is close to zero. This occurs because the value of N −

K begins to approach zero when the cluster count approaches the value of the
number of total data points, causing the denominator of the equation to tend
towards infinity.

4.1.1 Results for All Scenarios

For all clustered results, the F ratios calculated according to Equation 7 was also
done. The resulting graphs were then plotted using R, a statistical software pack-
age to estimate the optimal value for the cluster count.

4.1.1.1 Results for Network 1

Because the volumes of Network 1 and Network 2 are different the optimal values
for the cluster count may be different between the two networks. The complexity
of the clustering analysis is influenced firstly by the number of individual vehicle
trajectories in the network (as these are the elements clustered) and secondly by
the length of those trajectories (as these increase the difficulty of finding a solution
to the clustering problem). In the case of Network 1, the resulting F ratios for each
of the different cluster counts and volume scenarios is shown in Figure 14. By
applying the heuristic discussed in Section 4.1, values of 100 were selected for the
optimum cluster count in the Medium and Variable volume scenarios (Figure 14b
and Figure 14c respectively) while a value of 75 was selected for the Low Volume
scenario (Figure 14a). These values all correspond to the location in the graphs
marked by a sudden change in the rate of decrease of the F ratio. It is logical to
expect a lower value for k in the low volume scenarios as the number of vehicles
to cluster will be lower. Although the variable and medium volume scenarios are
different, the total number of vehicles running through the scenarios is similar, so
the resulting optimal cluster count is similar.
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(a) Low Volume (b) Medium Volume

(c) Variable Volume

Figure 14: F Values from Network 1

4.1.1.2 Results for Network 2

Finally, the same process can be applied to Network 2, with the results shown in
Figure 15. Similar to Network 2, the medium volume scenario and variable volume
scenarios have similar optimal cluster counts, and an application of the heuristic
resulted in the selection of a value of 150. In contrast, a cluster count of 100 was
selected for the low volume scenarios. The increased complexity of Network 2

when compared to Network 1 has likely resulted in the higher cluster counts, as
both networks have similar volumes. Once the optimal value of k was selected
using this heuristic, the input files associated with those values were then used as
inputs in MOVES to generate the results discussed in the rest of this chapter.

4.2 results from network 1

When the process described in Chapter 3 is applied to network 1 (shown in figure
Figure 11a, the results shown in Figure 16 are obtained. These results include
emissions estimates from MOVES on CO2 and CO emissions as well as the total
energy consumed by vehicles on the network. In these results the estimates derived
from using VISSIM’s un-aggregated vehicle record (see Section 3.5.1 is highlighted
in red. Similarly, the results from medium and variable volume scenarios can be
seen in Figure 17 and Figure 18 respectively. the values used to generate these
graphs and the percentage difference between each method and the individual
trajectory method have also been included in the Appendix. The data tables in
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4.2 results from network 1

(a) Low Volume (b) Medium Volume

(c) Variable Volume

Figure 15: F Values from Network 2

that section, particularly those highlighting the difference between the estimates
provided by each method are better at highlighting an interesting facet of the data:
an underestimation of the fuel consumed provided an identical underestimation
of CO2 emissions. For example, if the VB approach estimates a fuel consumption
that is 4.4% higher (see Table 3) than when individual trajectories are used, then
it will also estimate CO2 emissions that are 4.4% higher. This is not to say that
these estimates are identically higher or lower. Indeed, for this particular example,
but for all practical purposes the difference is very minute. This was always the
case when comparing the different methods to each other (but not always the case
in every analysis conducted using MOVES). The reasons behind this difference are
not clear, especially since CO estimates are dramatically lower for all methods,
however as the majority of a vehicle’s emissions will be CO2, it does make sense
to some degree that an estimate of lower fuel consumption will correspond to a
similarly lower estimate of CO2 emissions.

In general, the results of this network show that the clustering and VB ap-
proaches have similar performances in terms of accuracy, as for all volume sce-
narios their estimates for CO2 emissions and total energy consumed were within
5% of the estimates provided when raw trajectories were used. When compared
to each other, the VB approach always gave higher estimates than the clustered
approach, and, with the exception of CO emissions, gave higher estimates than
when individual trajectories were used. In all cases, pre-processing vehicle trajec-
tories and subdividing them by links resulted in higher emissions estimates than
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4.2 results from network 1

(a) CO2

(b) CO

(c) Energy

Figure 16: Results from Network 1, Low Volume Scenario
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(a) CO2

(b) CO

(c) Energy

Figure 17: Results from Network 1, Medium Volume Scenario
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(a) CO2

(b) CO

(c) Energy

Figure 18: Results from Network 1, Variable Volume Scenario
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4.3 results from network 2

when O-D pairs were used. For CO2 and Energy estimates this makes a link-based
approach less accurate.

The AS approaches performed the poorest of all the approaches tried, though
to some extent this was expected. Estimates of CO2 emissions and total energy
consumed from these approaches was always 5% below those provided when in-
dividual trajectories were used, and for some volume scenarios were up to 12%
below those estimates. In general the AS approaches performed similar to each
other; however, the increased disaggregation provided by the second method ap-
pears to have increased the accuracy of the approach to a certain extent. In all
cases in Network 1, the second method (modelling each leg of an approach sep-
arately) provided estimates that were closer to those when individual trajectories
were used than the first method.

All methods generally substantially under-estimate CO emissions. The reasons
for this under-estimation are not immediately apparent and more investigation is
necessary to determine why this occurred. Previous studies [24] have shown that
CO emissions are highly sensitive to the manner in which vehicles are operated in,
and since these emissions are orders of magnitude below those of CO2 emissions
they appear to react more sensitively when any aggregation is performed. Surpris-
ingly, despite providing estimates for CO2 emissions and Energy consumption that
were greater than those of the VB approach, a link-based approach to clustering
provided similar estimates of CO emissions to the O-D approach.

The effect of volume on emissions estimates is generally not substantial on the
accuracy of most methods, except for the cases of the AS approaches. As can be
seen by the figures discussed previously, AS approaches under-estimated emis-
sions more severely when the volume was higher (see Figure 17 and Figure 18)
than when the volume was lower (see Figure 16). This suggests that the default
operating mode distribution MOVES uses when estimating emissions based on av-
erage speeds may not consider the effects of traffic well.

4.3 results from network 2

Although somewhat similar, the results from Network 2 (shown in Figure 19, Fig-
ure 20, and Figure 21) possess a number of noticeable differences. In contrast to
the results of Network 1, estimates for CO emissions for all methods are generally
closer to those provided when individual trajectories are used. This is particularly
true for the VB approach where for the medium and variable volume scenarios
the estimates provided were around 6% higher when individual trajectories were
used. This is markedly different than the estimates in Network 1, as all methods
provided estimates that were more than 15% below those when individual trajec-
tories were used.

Although the estimates for the low volume scenario were all similar to each,
the case is dramatically different for the medium and variable volume scenarios
on this network. For these volume scenarios, the cluster approach continued to
provide an estimate for CO2 and total energy consumption that was similar to
the estimates provided by the individual trajectories, but all other approaches had
mixed or poor performance. While the VB approach’s estimates for CO emissions
were the closest, the approach substantially over-estimated emissions of CO2 and
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(a) CO2

(b) CO

(c) Energy

Figure 19: Results from Network 2, Low Volume Scenario
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4.3 results from network 2

(a) CO2

(b) CO

(c) Energy

Figure 20: Results from Network 2, Medium Volume Scenario
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4.3 results from network 2

(a) CO2

(b) CO

(c) Energy

Figure 21: Results from Network 2, Variable Volume Scenario
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4.4 results of scenario 2

total energy consumption for these two volume scenarios. As was the case for
network 1, the aggregated approaches performed similarly to each other, and the
second method generally had estimates that were closer to those of the individ-
ual trajectory method. The high accuracy the AS methods demonstrated in the
variable volume scenario is interesting, and it is apparent that the default operat-
ing mode distribution for this method lends itself well to this scenario, where a
certain amount of congestion occurs on a larger network but is not severe or exces-
sive. The variable performance of AS methods however mean they are unreliable
in situations where an accurate estimate is required.

As was the case in Network 1, the estimates provided from the data-clustering al-
gorithm were generally similar to those of the individual trajectory method (within
6%) for CO2 and total energy consumption, but were not very accurate for CO es-
timations. Again, a link-based approach to trajectory clustering resulted in higher
estimates of CO2 emissions and Energy consumption, despite providing an esti-
mate for CO emissions that was similar to the O-D approach.

4.4 results of scenario 2

As described in Section 3.2, the second scenario was designed to evaluate the com-
putational scaling of the algorithms. As the clustering algorithm is iterative in
nature, the time it takes to generate output can be somewhat variable. This vari-
ability increases with both cluster count and volume. To evaluate this variability, a
series of networks were tested solely with the clustering algorithm. The networks
tested had sizes ranging from 1 intersection to 32 intersections. The results of the
clustering analysis were also used to obtain emission estimates in MOVES, solely
for the purpose of evaluating the time the subsequent estimation in MOVES would
take. The results can be seen in Figure 22.

It is important to note that, in this figure, the cluster count (k) is also increasing
with network size, ranging from 50 for the smaller network to 500 for the larger
network. The time of the subsequent estimation in MOVES is most strongly influ-
enced by this number, as each additional cluster is an additional link, including
a drive schedule, that must then be modelled in MOVES. In general, the model
estimation time scales linearly. The estimation time in MOVES forms the majority
of the time required for a successful analysis, and the time required for this anal-
ysis increases faster than the time required to generate the clustered inputs. On
the balance, this means that the time savings when compared to the use of indi-
vidual vehicles will be more pronounced from a proportional perspective as the
network size increases. In general, the time required to generate the clustered in-
put is loosely tied to the cluster count; however, if the value of k is too high or
too low, then the algorithm will have difficulty converging, and estimation time
will be high. For optimal values of k, much of the program’s time is spent parsing
the vehicle trajectory data. As the program subdivides all vehicles according to
their trajectory as vehicles are parsed, there is generally no difference in estima-
tion time between the O-D based approach and the link based approach. Separate
trials conducted on the 32 intersection network with different values of k did not
differ substantially in estimation time, and from a user’s perspective the majority
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4.4 results of scenario 2

(a) Time scaling by Intersection Count

(b) Time scaling by Cluster Count

Figure 22: Execution Times of the Clustering Process
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of the time required for a successful estimation will come from data preparation,
including configuring MOVES and VISSIM.

In terms of MOVES execution times, for these networks the estimation time varies
more strongly with volume, which in the case of cluster counts is directly related
to the value of k. A higher value of k increases the execution time in MOVES
in a roughly linear manner. Although the network increases in length (resulting
in larger vehicle trajectories), in this test network the volume does not change
substantially from one scenario to the next (only vehicles on the corridor are
modelled). As such, when un-clustered individual vehicle trajectories are used
in MOVES, the run times do not vary substantially from run to run. Using individ-
ual trajectories generally results in an execution time of 40 to 45 minutes for this
network (about 1200 unique vehicles pass through the network over the analysis
time). The volume-based trend in execution times shown in Figure 22 appears to
be linear in nature, at least for the network tested here; and so, if the value of k (or
the total volume) were doubled the execution time in MOVES would be similarly
doubled. In contrast, doubling the trajectory length does not necessarily result in
a doubling of the execution time, as the increased network size did not drastically
increase computation time when compared to the effect of volume.

These results support the rationale that data clustering can be used to dramat-
ically reduce computational time for a successful MOVES run. A data clustering
approach to the problem affords the modeller more control over the computation
time (e.g. by specifying a low value for k) and scales better with network size
than MOVES does. Although these tests are limited, larger scale tests will be con-
ducted in future research work. The constraints of micro-simulation can ultimately
more of a concern than the data clustering process, as developing test networks in
VISSIM can require substantial time and data.

4.5 discussion

Although the VB approach had estimates that were sometimes better than those
of the clustering algorithm, their results (much like those of the AS approaches)
were variable and influenced by the dynamics of the simulation. Since the VB ap-
proach still uses average speeds to arrive at estimates for emissions, the method
still depends on a default operating mode distribution; as such, when simulated
conditions such as volume change substantially the accuracy of the estimates also
appears to change. This effect is most prominently visible in the difference be-
tween the estimates provided in Network 2’s variable volume scenario (see Fig-
ure 21) and low volume scenarios (see Figure 19). In the low volume scenario each
method produces estimates for CO2 emissions that are lower than those provided
when individual trajectories are used. However, in the variable volume scenario,
the AS and VB approaches (which are based on the use of average speeds) instead
provide emissions estimates that are now higher than those of the individual trajec-
tory method. In contrast the clustered approach provides consistent performance
regardless of the volume or network configuration, with CO2 and total energy esti-
mates always no more than 6% below those provided when individual trajectories
are used.
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4.5 discussion

Despite this, the AS methods can still be useful in situations where accuracy is
not as important but where computational time is a concern. Excluding prepara-
tion time, a successful run of MOVES that uses individual trajectories ranged from
30 minutes for low volumes on the simple network to 2 hours for the variable
volumes on the larger network. In contrast, the AS and VB approaches took less
than 5 minutes to run after the data and input was prepared while the clustering
approach took between 5 to 10 minutes to run in MOVES after data and input were
prepared. All methods require some data preparation before input into MOVES,
though the integrated tool developed for this project simplifies the task exten-
sively for the individual trajectory and clustered approaches. Despite this, due to
the need to decide a value for k, inputs for the clustered approach require addi-
tional time to prepare (between 5 to 15 minutes per scenario) though this could
easily be reduced through improvements to the integrated tool.

In terms of pre-processing before data clustering, it is clear that the link-based
approach provides estimates that are often less accurate than the O-D approach.
This is likely due to the manner in which the network was designed in VISSIM.
The use of connector links to join approach legs of an intersection mean that por-
tions of a vehicles acceleration and deceleration profile are split across multiple
links. This means that a full and complete acceleration profile from rest to cruise
speed is never modelled in MOVES as one continuous trajectory, but rather as two
separate pieces, with the small connector holding half of acceleration and deceler-
ation profile as well as many vehicle’s at rest portions. Future implementations of
this algorithm may benefit from a trajectory analysis approach whereby vehicle tra-
jectories are first separated into segments representing various operating modes,
and then clustering can be run on these segments.

The results of this analysis demonstrated that the proposed clustering system
has the potential reduce computational requirements while maintaining a con-
sistent level of performance and accuracy. The clustered approach had the most
consistent performance of all the methods tested (when compared to the use of in-
dividual trajectories) and has the potential to reduce computational times on larger
more complicated networks. Additional improvements are still possible, with fur-
ther investigation of the method’s performance with other pollutants and by im-
proving its ability to provide accurate estimates for minor pollutants such as CO.
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5
R E S U LT S : S C E N A R I O 3

The final scenario evaluated was an application of the developed framework to
analyse an ECO-driving system. It includes four sub-scenarios developed to evalu-
ate different aspects of the system on the tested corridor. Each sub-scenario evalu-
ated a different market penetration rate. The primary goal of the evaluation was to
understand of the benefits of an ECO-driving system on a real-world network with
the secondary goal of evaluating the effect of market penetration on emissions1.

5.1 preliminary observations of eco-driving behaviour

During the development of the ECO-driving algorithm, a number of cursory obser-
vations were conducted in VISSIM while the ECO-driving algorithm was running.
These observations were conducted with the goal of verifying that the coded algo-
rithm was working and could successfully affect the travel behaviour of vehicles.
During the development of the algorithm, this step was important, especially as a
complete run of the algorithm for a one hour simulated period could take multi-
ple hours in the real-world and a subsequent analysis in MOVES would take even
longer. The screen captures shown in Figure 23 were observed from the VISSIM
simulation and highlight the operation of the algorithm. In Figure 23a the second
vehicle on approach to the intersection in the westbound direction was randomly
selected to operate as an ECO-driving vehicle. This vehicle is highlighted in the
figure as a magenta vehicle. Upon entering the control area of the ECO-driving
system, the vehicle immediately slows down as the current signal facing it is red.
After a few seconds have passed, we see that in Figure 23b the vehicle ahead
of the ECO-driving vehicle has almost arrived at the intersection’s stop bar and
is deceleration (indicated by the magenta colour in VISSIM) to stop at the red
light. The ECO-driving vehicle has successfully reduced its speed and by the time
the conflicting direction’s signal has changed to amber we see that a substantial
queue of vehicles also "following" an ECO-driving algorithm has formed behind
the original ECO-driving vehicle. Finally, by the time the signal changes to green
in Figure 23d the vehicle has successfully cleared the intersection and resumes
normal operation.

While this image sequence highlights one of the better observations of the al-
gorithm’s operation there were also many cases where the operation was not so
successful. For example, in some cases where vehicle queues waiting at the in-
tersection were long, vehicles following ECO-driving speeds are blocked by the
dissipating queue and forced to slow down or stop completely. In the absence of
incorporating queue length into the algorithm, the frequency of this behaviour is
controlled largely by the buffer term in Equation 3.7.3.1.

1 The results of this analysis were presented at the 2015 Annual CSCE Conference [45].
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5.1 preliminary observations of eco-driving behaviour

(a) On approach to intersection, just after the algorithm has started running

(b) Vehicle slows down, a queue begins to form behind it

(c) The opposing signal changes to yellow and green is imminent

(d) ECO-driving algorithm completes successfully and vehicle resumes normal operation

Figure 23: ECO-driving, Simulation Example
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5.2 results of the eco-driving analysis

Figure 24: Emissions Reductions by Market Penetration

5.2 results of the eco-driving analysis

After successfully evaluating and developing the ECO-driving algorithm, the re-
sults of the VISSIM simulation were analysed and input into MOVES. For this analy-
sis, the most disaggregate approach possible was selected and individual vehicles
were modelled separately in MOVES. As the effect of ECO-driving is subtle, this
approach was selected to ensure that the variations in driver behaviour could be
fully captured. This analysis was also conducted before rigorous development and
evaluation of the clustered analysis discussed Chapter 3 was completed, and the
exceptionally high computational demands observed in this analysis were a pri-
mary motivating factor for the development of an alternative approach.

As per the methodology described in Section 3.7.3, estimates from MOVES were
obtained for four scenarios, three with penetration rates of 10%, 25%, and 50%
respectively. To minimize computational burdens, estimates were only made for
two pollutants (CO2 and NOx) as well as total fuel consumption. The results of
the analysis are summarized in Figure 24, and complete data tables have been
included in Appendix A.

While many of the studies reviewed in the literature have cited emissions and
fuel consumption rates reductions in excess of 4%, the results of this analysis
are somewhat more muted, ranging from 1.3% to 2%. This reduced performance
stems largely from the fact that vehicles are quickly able to form platoons and
capture "green waves" that allow them to stop only at one or two traffic signals.
Additionally, the effect of the buffer term in Equation 3.7.3.1 likely has some effect
on the process as well. Many of the studies conducted in Section 2.6.1 do not deal
with the issue of queues, either neglecting to mention them or ignoring their effect
as it only becomes pronounced as volume increases. Indeed, the authors of one
of the studies mentioned in Section 2.6.1 (Xie et al) indicate that as congestion
becomes an issue on a network, the benefit of an ECO-driving system decreases
as vehicles encounter unexpected acceleration/deceleration [65].

Despite these limitations, in general, a corresponding reduction in fuel consump-
tion is also followed by a reduction in CO2 emissions by approximately the same
amount. NOx emissions were observed to decrease more substantially, and these
reductions are caused by the decreased incidences of sharp accelerations or decel-
erations which affects minor pollutants more strongly. The effect of varying the
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5.3 discussion

penetration rate was mixed, and conclusive statements cannot be made about its
effect. As penetration rate increased from 10% to 25%, emissions and fuel con-
sumption decreased, but only marginally. However, when the penetration rate
was increased to 50%, CO2 emissions and energy consumption increased instead
(though NOx emissions decreased further). While this result is somewhat counter-
intuitive, it is important to note that ECO-driving vehicles that follow other ECO-
driving vehicles will have a substantially reduced effect on system-wide emissions,
as if they would already follow and ECO schedule if the leading vehicle modifies
its behaviour. Additionally, the effect of the buffer term shown in Equation 3.7.3.1
could be detrimental in this case. This term will lead to increased separation be-
tween vehicles since ECO-driving vehicles following other ECO vehicles will fol-
low their own speed advice, which could be lower due to the buffer term, rather
than maintain the minimum following distance.

5.3 discussion

More research is still needed and additional scenarios should be run to further
investigate some of the aspects of an ECO-driving system’s operation revealed in
this analysis. The buffer term was largely set through cursory examinations of the
network’s operation and an estimation of the average queue dissipation time at
all intersections, and may not be set at an optimal value. In investigation into in-
corporating queue length estimates is also worthwhile and could be implemented
in VISSIM to test theoretical operational characteristics. Other parameters of the
simulation were also set using values gleaned from the literature, including the
maximum range of the ECO-driving system. Finally the design of the network is
restrictive as it includes mostly two lane roads. Although this may be the case in
real-world networks, such networks also include multi-lane roadways where vehi-
cles are able to pass an ECO-driving vehicle and thereby reduce the effectiveness
of the system.
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6
F I N A L D I S C U S S I O N A N D F U T U R E W O R K

6.1 major findings

At the onset, this research’s primary aim was to develop a system that can be
used to integrate the VISSIM traffic microsimulation platform with the MOVES

emissions estimator. The subsequent survey of the literature and initial attempts
revealed that there are a variety of different ways to accomplish this linkage and
each of them have disadvantages in terms of computational requirements, data
requirements, and accuracy.

This research was successful at comparing the three major categories of ap-
proaches, namely, aggregated approaches, hybrid approaches, and disaggregate
approaches. In the literature reviewed, this study is the first to use individual
vehicle trajectories in a MOVES-based project-level analysis of a multiple signal in-
tersection and is also one of the few that specifically compares the differences in
the estimates that each method provides. Using individual vehicle trajectories in
MOVES is very useful at a small scale, and, while mentioned in guides put out by
the US EPA, it has seen few applications in the literature.

Although it provides MOVES with substantial data, the use of individual trajec-
tories in MOVES results in excessive computational burdens, especially on large
networks. The clustering algorithm proposed in this study succeeds in creating
a compromise that captures some of the aspects of driver behaviour while also
reducing computational burdens. This proposal is one of the first of its kind in
the literature, and applies aspects of data clustering to a trajectory-based context.
k-means algorithms such as the one proposed in this study have been successfully
applied to solve vehicle trajectory-based problems in the past, but the proposals
in this study represent a novel application that uses them to simplify an analysis
and reduce computational burdens.

The algorithm’s cluster estimates are also generally logical, especially when one
considers the parameters of the problem: namely, grouping vehicles which may
have drastically different travel patterns together. For example, Figure 25 shows
the resulting cluster estimations for one of the scenarios tested on the single in-
tersection network. In Figure 25a we see the individual vehicles included in the
estimation of a particular cluster’s average trajectory. Although some isolated ve-
hicles deviate noticeably from the cluster’s estimated trajectory, the trajectories in
this group are very similar. Of particular note, however, is the grouping of vehi-
cles travelling in a somewhat wide range of speeds (vehicles included often deviate
from the average trajectory’s speed by as much as 5 mph). This means that some of
the detail of driver behaviour, particularly some of the traits of aggressive driving
(e.g. consistently exceeding the speed limit), are lost when the clustering algorithm
is run. Despite this, some variation is still captured, as the other clusters represent-
ing this O-D pair also include regions where the speed is higher or lower than
this example (see Figure 25b). It is important to note that as time-speed trajecto-
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6.1 major findings

(a) Vehicles present in a sample cluster

(b) Clusters present in an O-D pair

Figure 25: Cluster Compositions
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6.2 limitations and future work

ries, these trajectories are not all the same length, and trajectories where the signal
does not impede the vehicle’s movement will be noticeably shorter. The clustering
algorithm captures the variation of arrival at different phases of a signal’s red tim-
ing, and multiple different durations of "zero speed" explain the majority of the
differences between individual clusters.

The overall analysis has also demonstrated that while AS approaches can be
unreliable, the amount of data and computational time required to apply them
is substantially lower than all other methods. Hybrid approaches such as the VB

approach or the clustered approach require additional data, but are not as compu-
tationally intensive as direct use of individual vehicle trajectories. When an anal-
ysis is conducted using a traffic micro-simulator, complete information is often
available and often the only obstacle is computational power and time. As such,
hybrid approaches represent a compromise that still utilises the increased power
of a micro-simulation model while also limiting the computational power required
to run an evaluation.

Finally, the developed framework has many different potential applications, and
has the potential to assist policy makers evaluating competing proposals and new
technologies. CV technologies are an emerging field and generate substantial in-
terest in both the Transportation and wider community. The results of this study
show that an ECO-driving system built on CV technologies has the potential to
reduce emissions, even if such systems are not equipped on all vehicles.

6.2 limitations and future work

While the integrated tool developed has been successfully tested in this research,
some improvements could still be made. As a functional tool, additional attention
is required in the development of its UI. As a consequence of some programming
design decisions one major disadvantage of the UI is that users are unable to inter-
act with it while it is running. Although it will provide updates to the user through
a text-box, the window itself freezes and cannot be moved. This can lead users to
conclude the application is not working correctly. This issue can be fixed by im-
proving the way the programmed GUI interacts with the core components of the
program. Although the integrated tool calculates the F-statistic value, a researcher
must still run the tool multiple times and change the cluster count manually to
obtain a representative sample. This creates duplicate tables and additional un-
needed computational burdens, as tables will also be generated for the raw input.
No options are currently provided to disable certain output components.

While on the subject of GUIs, it is also worth mentioning that no GUI was de-
veloped for the ECO-driving algorithm, and the creation of one would be required
before such a tool could be used by other researchers. This tool was developed as
a console-based application, and it could potentially be incorporated into the tool
designed to integrate VISSIM and MOVES.

Beyond cosmetic issues, the analysis conducted also has a number of other lim-
itations. The use of a heuristic in the k-means approach means that the value of
k selected could vary between different modellers. Within the literature, applica-
tions of the k-means approach often apply some form of a heuristic, however the
reliance of the algorithm on a user’s discretion could be removed. Future imple-
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6.2 limitations and future work

mentations will therefore work to improve this aspect of the clustered approach.
The results analysis also revealed potential issues with the link-based approach to
pre-processing the data before clustering. As mentioned, full and complete accel-
eration profiles that include vehicles going from rest to cruise speed were never
modelled as a continuous trajectory in MOVES when using a link-based approach
because of the way the network was coded in VISSIM. Future implementations of
this algorithm would benefit from a different approach, such as the implementa-
tion of a trajectory analysis algorithm that partitions trajectories according to their
operating regime. This approach may also remove oddities introduced by MOVES’s
dependence on speed-time profiles, which creates trajectories of unequal length
that results in some clusters being used solely to capture operational variations
(such as vehicles stopping for shorter times due to arriving at a signal later) rather
than vehicle operation characteristics.

In the ECO-driving analysis, more research is needed, including a full sensitivity
analysis of all the major factors affecting the models. The analysis conducted in
the study has only focussed on a few aspects: market penetration and network
geometry in relation to previous studies. Other factors, some of which have been
explored in other studies, include assessments of the effect of communication’s
range, volume, queue length, the number of lanes on a link and the speed limit.
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Part IV

A P P E N D I X
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A
D ATA TA B L E S

The following data tables in this chapter are directly aggregated from MOVES for
each scenario. Data tables present here include those from the evaluation of the
integrated tool discussed in Chapter 4 and ECO-Driving discussed in Chapter 5

a.1 data tables from the integrated tool

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 1.02 272.35 3790

Aggregated, 2 1.06 275.70 3836

Binning 1.23 308.60 4294

OD-Cluster, 75 1.17 289.09 4023

Link-Cluster, 75 1.19 327.57 4558

Raw 1.71 295.53 4112

Table 3: Network 1, Low Volume Results

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 2.00 541.11 7529

Aggregated, 2 2.13 550.79 7664

Binning 2.56 637.96 8877

OD-luster, 100 2.31 594.28 8269

Link-Cluster, 100 2.29 666.43 9273

Raw 3.58 617.95 8599

Table 4: Network 1, Medium Volume Results
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A.1 data tables from the integrated tool

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 1.86 503.65 7008

Aggregated, 2 1.97 512.36 7129

Binning 2.37 589.87 8208

OD-Cluster, 100 2.18 562.10 7821

Link-Cluster, 100 2.14 636.33 8854

Raw 3.30 569.57 7925

Table 5: Network 1, Variable Volume Results
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A.1 data tables from the integrated tool

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −40.48 −7.84 −7.84

Aggregated, 2 −38.08 −6.71 −6.71

Binning −28.03 4.42 4.42

OD-Cluster, 75 −31.53 −2.18 −2.18

Link-Cluster, 75 −30.28 10.83 10.83

Table 6: Network 1, Low Volume Per Cent Difference from Individual Trajectory Estimates

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −44.04 −12.43 −12.43

Aggregated, 2 −40.56 −10.87 −10.87

Binning −28.32 3.24 3.24

OD-Cluster, 100 −35.44 −3.83 −3.83

Link-Cluster, 100 −35.92 7.81 7.81

Table 7: Network 1, Medium Volume Per Cent Difference from Individual Trajectory Esti-
mates

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −43.46 −11.57 −11.57

Aggregated, 2 −40.11 −10.04 −10.04

Binning −28.13 3.57 3.57

OD-Cluster, 100 −33.98 −1.31 −1.31

Link-Cluster, 100 −35.12 11.72 11.72

Table 8: Network 1, Variable Volume Per Cent Difference from Individual Trajectory Esti-
mates
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A.1 data tables from the integrated tool

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 2.85 777.69 10821

Aggregated, 2 2.93 782.24 10885

Binning 3.42 858.89 11951

OD-Cluster, 100 2.86 843.34 11735

Link-Cluster, 100 2.99 938.02 13052

Raw 3.87 871.70 12129

Table 9: Network 1, Low Volume Results

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 2.85 777.69 10821

Aggregated, 2 2.93 782.24 10885

Binning 4.49 1131.24 15741

OD-Cluster, 150 3.22 941.38 13099

Link-Cluster, 150 3.39 1054.49 14673

Raw 4.32 969.37 13489

Table 10: Network 1, Medium Volume Results

method CO (kg) CO2 (kg) energy (mj)

Aggregated, 1 2.86 779.27 10843

Aggregated, 2 2.93 782.24 10885

Binning 3.42 858.89 11951

OD-Cluster, 150 2.47 715.29 9953

Link-Cluster, 150 2.69 827.80 11518

Raw 3.24 734.91 10226

Table 11: Network 1, Variable Volume Results
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A.1 data tables from the integrated tool

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −26.23 −10.78 −10.78

Aggregated, 2 −24.36 −10.26 −10.26

Binning −11.51 −1.47 −1.47

OD-Cluster, 100 −26.17 −3.25 −3.25

Link-Cluster, 100 −22.71 7.62 7.62

Table 12: Network 1, Low Volume Per Cent Difference from Individual Trajectory Esti-
mates

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −33.96 −19.77 −19.77

Aggregated, 2 −32.29 −19.30 −19.30

Binning 3.79 16.70 16.70

OD-Cluster, 150 −25.46 −2.89 −2.89

Link-Cluster, 150 −21.6 8.78 8.78

Table 13: Network 1, Medium Volume Per Cent Difference from Individual Trajectory Es-
timates

method CO (%) CO2 (%) energy (%)

Aggregated, 1 −11.61 6.04 6.04

Aggregated, 2 −9.55 6.44 6.44

Binning 5.82 16.87 16.87

OD-Cluster, 150 −23.57 −2.67 −2.67

Link-Cluster, 150 −16.65 12.63 12.63

Table 14: Network 1, Variable Volume Per Cent Difference from Individual Trajectory Esti-
mates
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A.2 data tables from the eco-driving analysis

a.2 data tables from the eco-driving analysis

method CO (kg) CO2 (kg) energy (mj)

Control 175.26 19040 259332

10% 172.20 18775 255734

25% 172.10 18730 255121

50% 171.71 18756 255487

Table 15: Total Aggregated Emissions by ECO-Driving Market Share

method CO (%) CO2 (%) energy (%)

10% 1.39 1.40 1.75

25% 1.63 1.63 1.81

50% 1.49 1.50 2.03

Table 16: Per Cent Emissions Reductions by Market Share
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B
F I G U R E S A N D E X A M P L E S

These figures include illustrations of the UIs and inputs into the various programs.

b.1 input tables for moves

Much of the intermediate input prepared for MOVES is in comma separated files
exported by the integration tool. These files can be extremely large, therefore only
portions of them are included here to show their general format.

b.1.1 Sample Table of Links

The table of links is common to all methods used to input data to MOVES. Every
method must provide this table, though it differed slightly between the different
methods.

Figure 26: Sample Link Table for VB or AS Methods. This table specifically used for a VB

input.
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B.1 input tables for moves

Figure 27: Sample Link Table Containing Individual Trajectories. This is structurally iden-
tical to the previous one, but each link is a unique vehicle and so has a volume
of 1. Link numbers are derived from VISSIM and not every number is repre-
sented.
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B.1 input tables for moves

Figure 28: Sample Link Table For Clustered Input. Although similar to the previous table,
the links in this table are the averages of the individual clusters.
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B.1 input tables for moves

b.1.2 Sample Table of Drive Schedules

This table is only used for the clustered and individual trajectory input methods.
It contains per-second speed information.

Figure 29: Sample Drive Schedule Table. Link IDs must correspond to an entry in the table
of links.

b.1.3 Sample Table of Link Source Distributions

This table outlines the type distribution of vehicles on the network. It is required
for all input methods and is derived from settings made in VISSIM.
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B.1 input tables for moves

Figure 30: Link Sources Sample Table, Individual Trajectories. In this case the value of
sourceTypeHourFraction is always 1 as links represent individual vehicles.
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B.1 input tables for moves

Figure 31: Link Sources Sample Table, Clustered Trajectories. In this case the value of
sourceTypeHourFraction represents the fraction of vehicles of a particular source
type; each link’s entries must always sum to 1.
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B.2 other figures

b.2 other figures

Figure 32: Raw Output of VISSIM. This output is configurable, but if certain columns are
not included then the integrated tool will not run.
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