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Abstract

Turbulence is one of the most interesting and important, yet poorly understood, aspects
of fluid mechanics. The transition from an unstable laminar flow to a fully turbulent flow
can follow many paths depending on the background flow, stratification, and the boundary
conditions. This study reconsiders a well-studied transition route, namely shear instability
of a stratified fluid. The primary objectives of this study are the quantification of the
effects of confinement by no slip walls on the evolution of Kelvin-Helmholtz (KH) billows,
the application of metrics from turbulence theory to this flow, and the visualization of
the dominant three-dimensional dynamics of the flow at a given time. The results are
presented in three chapters.

First, the evolution of confined KH billows is examined as it is affected by the vertical
domain in a tilted-tube type numerical experiment for a variety of vertical domains and
stratifications. The results indicate that confinement dramatically affects the evolution of
the KH instability and the induced regions of viscous dissipation. A novel flow structure is
the development of anti-billows in the unstratified portion of the domain prior to spanwise
destabilization of the flow.

Borrowing from turbulent literature the second and third invariants of the velocity
gradient tensor (Q and R) are examined as a tool for the visualization and categorization
of flow topology. These tools are used to analyze several canonical fluid flows (such as
channel flow and Burgers vortex) from an analytical point of view; they are then applied
to transitional flows (namely KH billow formation and evolution).

Simple extensions to the confined KH billows and turbulent metrics are presented in the
final chapter with emphasis on verification of established techniques and an eye for future
research directions. The role of no-slip boundaries is investigated and deemed critical to
the results of the KH billow simulations. The turbulent metrics Q and R are applied to a
different type of numerical simulation (large eddy simulation) and a variety of visualiza-
tion techniques from the literature is compared with a goal of unambiguously identifying
coherent structures.
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Chapter 1

Introduction

Few scientifically literate individuals would need to be convinced that the many naturally
occurring motions of water are worth studying. These motions cover an amazing range of
scales from droplets modified by surface tension, to ocean currents observable from space.
A fundamental, and to this day poorly understood, aspect of many flows is the interaction
between disparate scales and the role of this scale interaction in the transition between an
initially laminar flow and a turbulent end state. In this work, we seek to better understand
a well-described transition route - the formation and subsequent destabilization of Kelvin
Helmholtz billows - in a confined setting, i.e. in the presence of boundaries. The interaction
between large-scales (those associated with the background shear) and small-scales (such
as the boundary layer produced by no-slip boundaries) is an aspect of a classical problem
which has the potential to illuminate broader aspects of the transition to turbulence.

1.1 Hydrodynamics: Qualitative Concepts

Shear instability is a ubiquitous and important aspect of fluid flows at all scales - from
the atmosphere, to the ocean and lakes, and all the way down to small-scale flows like
pipe or tilted tube problems. The formation and growth of instabilities in a shear flow
is the primary mechanism for converting the large background energy present in these
systems into mixing, viscous dissipation, and other relevant dynamics. Shear instabilities
also provide a well-studied ‘backbone’ of the transition to a turbulent state, a regime which
is oft-described but still quite incompletely understood [25].



1.1.1 Classical Turbulence Theory

While historically, the motion of fluids has been described by a variety of approximate
theories (e.g. potential flow, Stokes flow), turbulence is an essential aspect of real physics
and engineering problems involving fluids. Since almost any real flow is turbulent to some
extent, the nature of the transition to turbulence, and the subsequent evolution of the
turbulent flow, is a widely applicable field of study that can help us better understand the
nature of many flows.

As a brief motivation it is worth reiterating the classical picture of turbulence as de-
scribed by Kolmogorov [53] as an early attempt to describe the behaviour of isotropic
homogeneous turbulence. Interestingly, Kolmogorov’s theory is not dependent on what
actual partial differential equations govern fluid motion.

Kolmogorov, expanding on Richardson’s idea of the spectral energy cascade - the pro-
cess whereby energy is moved from the large (injection) scale down to the dissipation scale
- hypothesized that the statistics of small scales are isotropic and depend only on viscosity,
v, and the rate of dissipation, €. The outline of Kolmogorov’s theory is that energy is
transferred from larger to smaller eddies down the smallest scale. At this small scale is
where the turbulent energy is dissipated. Assuming isotropy (turbulence has no prefered
direction), similarity (statistics of small-scale motion are universal and determined by &
and v), and the existence of a smallest scale, Kolmogorov argued that since at the smallest
scales kinematic viscosity and dissipation are the most important terms, then it is the
balance between these two quantities that provides the length scale of the smallest eddies.

Viscous dissipation in a fully turbulent flow is defined as the double contraction of the
rate of strain tensor € = 2ve;;e;; from conservation laws. It is only at the small scales that
the energy dissipation is effective. A critical part of the classical framework presented by
Kolmogorov is that in turbulent flows large-scale mechanisms of vortex stretching create
regions where small scale dissipation becomes important and dissipates the initially input
energy. If we assume that € does not depend on v, but is instead determined by inviscid
properties of large eddies (of size [ and velocity scale u’) we arrive at the scaling that energy
of the eddy is proportional to (u’)? and the timescale is of order “7/ Thus the rate of energy

P : . (w)?
dissipation in the fluid can be given by € ~ *=~.

. . C . 2 . . S 2
The dimensions of dissipation are % and the units of kinematic viscosity are %.

Based on dimensional analysis Kolmogorov concluded that the smallest scales are of size



This is known as the Kolmogorov length scale (see the discussions in [55] or [25] for more
details)

Kolmogorov also postulated that between the injection scale and the smallest scale
there exists an inertial subrange where the viscosity is not important and energy scales
with dissipation and wavenumber (eddy size). This is the five thirds law which relates
the energy to the wavenumber as S ~ %3k75/3. This result is in good agreement with
experimental observations.

1.1.2 Hydrodynamic Instabilities

While Kolmogorov’s scaling laws are a time-tested method of describing isotropic turbu-
lence, they are a purely phenomenological theory and does not explicitly use the Navier-
Stokes equations. In contrast to this hydrodynamic stability theory is a method of attempt-
ing to quantify the nature of the onset of instabilities of fluid flows which may develop into
full turbulence. This method uses the Navier-Stokes equations - which are derived from
conservation laws - to predict the rate of growth of certain modes for a perturbation (often
assumed to be small) of the initial flow. This initial flow often takes a simple form that is
assumed to be representative of a broader class of naturally occurring flows.

The transition between laminar and turbulent flow is a complex process. The exact
nature of the transition depends on the type of flow and the driving forces, i.e. background
shear flow for Kelvin Helmholtz (KH) billows, temperature gradients for convection prob-
lems, gravitational (or Rayleigh-Taylor) instability when more dense fluid overlies less
dense fluid. Understanding the onset and evolution of these instabilities is the key to un-
derstanding transitional flows and in turn understanding the formation and evolution of
any turbulent system. In classical (Kolmogorov) theory the energy spectrum in the inertial
range scales with wave number as k=3 up to a dissipation threshold. This leads to the

estimate that the degrees of freedom in an isotropic turbulent flow scale as Reégl [93], where
Re = % is the Reynolds number. This implies that a high Reynolds number flow would
require a great deal of computational power to resolve and hence simple flows provide a
more tractable building blocks with which to understand at least some parts of turbulence.

1.2 Governing Equations

In this section background relating to the governing equations and approximations are
discussed. In particular, we focus on the Boussinesq approximation.



A fluid system is described by the velocity field of a continuum of fluid particles. A
fundamental aspect of continuum mechanics is the so called continuum hypothesis - the
assumption that any matter within classical physics can be treated as a continuum when
viewed for sifficiently large length scales when compared to the size of individual molecules.
This assumption allows us to treat the displacement or velocity fields of a solid or fluid as
a continuous field that is well defined at infinitely small points. Due to the large size of
Avogadro’s number (i.e. the large number of molecules in a mol of matter) the continuum
hypothesis is a reasonable assumption which produces extremely accurate results. The
continuum hypothesis leads naturally to the idea of the fluid parcel (sometimes called a
fluid particle). The fluid parcel is an infinitely small amount of fluid (formally a finite
volume taken in the limit to zero) which can be “tagged”, whose motion can be considered
as the fluid evolves and which carries well defined properties (temperature, density and so
on).

The constantly evolving nature of fluid flows leads to a natural discussion of frames of
reference. As an initially tagged fluid parcel evolves it changes not only position but also
shape. This means that we must consider the path of the fluid parcel as it moves through
space and time. The Lagrangian reference frame follows the position of an individual
parcel. This can be likened to taking measurements on a boat as it is swept along by the
current, or from a weather balloon as it is advected by the wind. The Eulerian reference
frame assumes an external, stationary observer and considers the motion of the fluid within
the region that observer’s measurable region. This is often likened to watching a river from
the bank, or measuring with a probe at a fixed location.

Since the field theories of classical physics, including fluid mechanics, are presented
from the Eulerian point of view, one of the most fundamental concepts in fluid mechanics
is the idea of the material derivative (also known as the substantial derivative, or particle
derivative):

D 9 0

Dl ot + uza—xi
(following Einstein summation convention whereby repeating indices indicate a sum over
that index). The material derivative represents how a variable at a fixed location changes
with respect to time and due to the motion of the fluid particles. Thus the first term
is a partial derivative with respect to time and the second is the inner product of the
fluid velocity and the spatial change of the variable. The first part is known as the local
derivative, and the second part as the advective derivative [55].

The behaviour of the various fields of interest (such as velocity, density, temperature
and pressure) is described by a system of partial differential equations known as the Navier-
Stokes equations.



1.2.1 Navier-Stokes Equations

Once you add the discussion of Eulerian and Lagrangian variables above you can naturally
define a material volume as the volume consisting of the fluid particles you “tag” at the
initial time.

Conservation of mass means that the time derivative of the mass of a material volume,

V(t), is constant
dM (t) Dp — Ou
= — av = 0.
dt ///V(t) (Dt +p8$i)

Here the Reynolds Transport Theorem has been used to move the time derivative inside
the integral. By the Dubois-Reymond Lemma the above expression implies that

This is known as the continuity equation.

From Newton’s laws (specifically the conservation of linear momentum, with an addi-
tional algebraic manipulation using the continuity equation) we know that
Dui aTij

This equation equates the evolution of the velocity field (the acceleration following a fluid
particle) and the forces experienced by the fluid, namely the body force due to gravity,
and the forces due to neighbours in the continuum as expressed (using Cauchy’s theorem)
as the divergence of the stress tensor [55]. For a Newtonian fluid the stress can be written
as

Tij = —p5¢j + 2,uel-j + /\emm(sigﬁ

where e;; = % <g;”_ + %) is called the rate of strain tensor. We can rewrite the trace of
7 i
the rate of strain tensor as %. If the fluid is incompressible (as our system is) we instead

of compressibility the condition that

811%'

= 0.
8:@-

Since the bulk viscosity, A is multiplied by the divergence of velocity in the stress relation
this term is often ignored. Note that the divergence of the velocity is not exactly zero but



rather very small. Since this approximation holds very well for water and specifically for
the types of flows we are interested in this makes for an excellent approximation.

The equation of motion for a Newtonian fluid is given by

Du;  9p 0 5 Ou;
P = 8xi+pgz+a7[2u6u gu(a—%)%L (1.1)

where u = (u,v,w) is the velocity, p is the fluid density, ¢ is the acceleration due to
gravity, p is pressure, u is the viscosity, and e;; is the rate of strain tensor. The material
derivative operator is (once again) defined as £ = % + uiﬁ. This is the general form of

Dt
the Navier-Stokes equation.

J

In the case where the temperature differences are small within the fluid and the viscosity
can be taken as spatially constant the terms inside the square bracket can be rewritten as

| 8:6(32xk u; + +52-u,]. In the case of incompressible flow we have the additional restriction

that

gZ? = 0, so the Navier-Stokes equations reduce to

P Dt N _al’i + P + Maxkﬁxkuz (12)
0ui

=0 1.3

. (1.3)
Dp

Pr_o. 1.4

D =0 (1.4)

1.2.2 Boussinesq Approximation

A fundamental cornerstone of modern fluid mechanics as it relates to water is the sim-
plifying assumption of the Boussinesq approximation. Following the note by Spiegel and
Veronis [35] and the derivation in Kundu’s Fluid Mechanics textbook [55] we will present
here a brief summary of how the full nonlinear equations governing a fluid can be simplified
to produce the set of equations which we will be simulating throughout this work.

The two fundamental assumptions underlying the Boussinesq approximation are as
follows [55, 85]: the fluctuations in density result primarily from thermal (and not pressure)
effects; and in the equations for momentum and mass conservation the density fluctuations
can be neglected except when they are coupled to the gravity force in the buoyancy term.

If the density field varies slowly throughout the domain we can decompose the density
field into a mean reference density, pg, the stratification term, p(z), and the motion-induc