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Abstract  

Heterojunctions of metal oxide semiconductors with quantum dots (QD) have been deployed in a 

number of advanced electronic devices. Improvement in the devices’ performance requires in-

depth studies on charge carrier transfer dynamics. In this work, charge carrier dynamics, at the 

interface on zinc oxide nanowires (ZnO NW) with cadmium selenide QDs, were investigated. 

 ZnO NWs were synthesized and characterized through the chemical vapor deposition (CVD) and 

hydrothermal methods. Both methods yielded highly crystalline ZnO structures. The 

hydrothermally grown NWs were doped with aluminum (Al) and the spectroscopy analyses 

showed that Al was successfully incorporated into the ZnO crystalline structure. 

Colloidal cadmium selenide/zinc sulfide (CdSe/ZnS) core/shell QDs were incorporated into 

synthesized ZnO NW arrays. The interaction and wettability of two different QD ligands 

(Octadecylamine and oleic acid) on the self-assembly of QDs in the NW spacing were investigated 

using electron microscopy. Afterwards, the charge carrier transfer dynamics at the heterojunction 

of NW/QD were studied employing time resolved photoluminescence spectroscopy (TRPL). A 

hypothesis on charge transfer kinetics, based on the experimental measurements, was provided. It 

was realized that photocharging of QDs is the main reason for substantial PL quench, when holes 

are not effectively removed from the photoexcited QDs by a hole-transporting medium. 

Furthermore, the TRPL measurements showed that the hole transfer rate by a polysulfide 

electrolyte is slower than that of an electron; one main reason in impeding the device performance 

in quantum dot-sensitized solar cells (QDSSC). 

The NW/QD heterojunction was deployed in the structure of a QDSSC. The current-voltage 

behavior of the cells under various conditions was characterized in both dark and light conditions. 

The underlying problems hindering the device performance were identified by these 

characterizations. 

Heterojunction of ZnO NWs with a GaN thin film was also deployed in the structure of an LED. 

The NWs were grown on GaN film using the hydrothermal method. The fabricated device 
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exhibited light emission under both forward and reverse bias injection currents. The 

electroluminescence and PL characterizations revealed that the light emission from the fabricated 

device depends on the point defects and interface states of the two semiconductors. 
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Chapter 1:  Introduction 

One dimensional (1D) zinc oxide nanostructures have been studied extensively over the last 

decade due to their unique properties and applications in various electronic and opto-electronic, 

electrochemical, and electromechanical devices. ZnO 1D structures have been employed in the 

architecture of devices like: piezoelectric nanogenerators, sensors, field emission devices, 

lasers, light emitting diodes (LED), and solar cells. It is a direct wide-bandgap semiconductor 

with exciton binding energy of about 60 meV. Zinc oxide can be grown one dimensionally 

since it has a Wurtzite crystal structure. The basal polar planes of hexagonal ZnO induce 

directional growth of ZnO. It can be synthesized via vapor phase and solution-based methods 

such as chemical vapor deposition (CVD), sputtering, molecular beam epitaxy (MBE), sol-gel, 

hydrothermal and solvothermal. Therefore, they are flexible to be applied on diverse types of 

substrates [1, 2].  

Since ZnO is a wide-bandgap metal oxide like titanium oxide (TiO2), it has been utilized in the 

structure of dye-sensitized solar cells (QDSSC) and quantum dot-sensitized solar cells (DSSC). 

ZnO has electron mobility 4 times higher than TiO2 and can easily be synthesized into 

anisotropic structures [3]. Energy band alignment of ZnO is close to that of TiO2. However, 

reported ZnO-based QDSSCs have been less efficient than their TiO2 counterparts. The reason 

relies on zinc oxide’s high surface defects and poor stability.  

1.1. Quantum-dot-sensitized solar cells 

Quantum-dot-sensitized solar cells (QDSSC) are a class of advanced solar cells that have been 

vastly studied. They can be considered as the extension of dye-sensitized solar cells (DSSC). 

Although their working principles are very similar, they have some differences. Dyes have 

been replaced by quantum dots in the structure of the device due to some advantages like higher 
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absorption coefficient, multiple carrier generation and quantum confined size tenability. 

QDSSCs can be categorized into two groups: those with QDs synthesized in situ in the 

architecture and others fabricated using pre-synthesized colloidal QDs (CQD). The former 

structure was believed to have a better performance than the latter. However, recent studies 

have elucidated that there can be advantages over the in situ-sensitized QDs.  

Capturing hot carriers before cooling down is one feature of QDSSCs. When QDs absorb a 

photon with energy greater than their bandgap, a hot carrier is generated. Theoretically, if the 

hot electron is transferred into the adjacent metal oxide, it can generate higher open circuit 

potentials. Since cooling times of hot carriers are much faster than current electron transfer 

rates, they cannot contribute to a charge transfer. Achieving higher electron transfer rates than 

current ones can lead to benefiting from hot carriers. The other significant theoretical feature 

that has been proposed for QDSSCs is carrier multiplication. If a photon with energy two times 

the bandgap energy is absorbed, it can excite another electron through the thermalizing process 

[4]. Although carrier multiplication has been debatable, some groups have reported evidence 

of the phenomenon [5]. The debate aside, the time scale of carrier multiplication is a barrier to 

their use. QDs with multiple charge carriers recombine very fast; thus requiring adequate 

passivation in addition to high carrier transfer rate [4].  

QDSSCs have shown smaller currents and fill factors as compared to DSSCs, since the 

structures have a high number of surface defects and charge carrier trapping in QDs. The 

maximum power conversion efficiency that has been reported for QDSSCs is ~6%, which is 

still below that of DSSCs (11%) [6, 7]. It has been suggested that the main reason for low 

efficiency of these cells involves back electron transfer to the electrolyte and from metal oxide 

to the QDs’ traps. As a result, the trap states play an important role in charge carrier transfer 

and consequently acquired efficiency from QDSSCs [8]. Therefore, improvement and 

investigation of charge carrier transfer rates is essential for obtaining devices that can compete 

conventional solar cells. 

Time resolved spectroscopy techniques, such as emission lifetime and transient absorption, are 

quantitative methods used to study electron transfer from the sensitizer (QD) to the metal 

oxide. The techniques involve excitation of the sensitizer with a pump pulse of known temporal 

width. Following the excitation, the sample’s emitted photon (for emission lifetime) or excited 

state absorption spectrum (for transient absorption) is collected within a known delay time. 



3 
 

The average lifetime of the excited state of the sensitizer is acquired by fitting the measured 

signals versus delay time to a kinetic model. If the sensitizer is adjacent to an electron acceptor 

material, the observed lifetime decreases due to an additional pathway of electron transfer 

which results in excited state depopulation. Assuming that the electron transfer is the only 

additional pathway, the donor/acceptor electron transfer rate can be calculated as the following 

equation: 

ket ≅
1

𝜏𝐷/𝐴
−  

1

𝜏𝐷
 

(1.1) 

Where τD/A and τD are the average lifetime of donor/acceptor and isolated donor, respectively. 

The average lifetime of the isolated donor (QD) is a linear combination of radiative (kr), 

nonradiative (knr), and electron transfer (ket) rate constants [4]. 

In addition to electron transfer from the sensitizer to the metal oxide, efficient electron transfer 

from electrolyte to the sensitizer and from counter electrode to electrolyte is required to have 

a proper liquid junction. Furthermore, electron transfer from the opposite directions, electron 

transfer from the metal oxide to the electrolyte and from the sensitizer, causes loss in the device 

performance. As a result, studies on electron transfer rates involving electrolytes, or hole 

scavenging agents provide better elucidation of device optimization.  

1.2. UV-Blue LEDs 

Using nanowires in the structure of LEDs has attracted great interest due to their various 

advantages as compared to thin-film based devices. Nanowires are expected to display 

enhanced performance in light emission. If used in the LED structure, they can act as direct 

waveguides and lead to light extraction without the use of reflectors and lenses. Furthermore, 

the emission efficiency can be enhanced in the case of nanowires because the grain boundaries 

and consequently nonradiative recombination at the joint defects will be eliminated. Since the 

contact area between p- and n-type materials is reduced, the junction will have high quality 

with interfacial strain and defect density. Applications like super-luminescent UV-LEDs and 

LDs are promising for nanowire integration. Despite GaN being used as the main wide-

bandgap semiconductor for UV-blue LEDs, it is difficult to grow GaN nanowires. The 

potential alternative material for making UV-blue LED nanostructures is ZnO. It has a bandgap 
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similar to GaN’s and a large exciton binding energy (60 meV) which is favorable for room 

temperature light emission. GaN and ZnO both have hexagonal crystal structures with a small 

lattice mismatch of ~ 1.9%.  Growth of stable and reproducible p-type ZnO for homojunction 

LED realization is still in the development phase. As a result, n-type ZnO has been developed 

on other p-type materials specifically GaN which has the closest structure to ZnO’s [9].  

1.3. Thesis Organization 

The objective of this thesis is to develop and characterize ZnO nanowires (NW) for 

optoelectronic applications. This study in particular focuses on interface phenomena between 

ZnO NWs and other materials, specifically QD sensitizers. Since charge carrier transfers 

between different interfaces play an important role in the performance of many optoelectronic 

devices, especially photovoltaic cells, the charge carrier kinetics in the QDSSC system were 

investigated. Although charge carrier dynamics and dye/metal oxide reactions have been 

extensively studied, the corresponding mechanisms are not yet fully understood. Following 

this, the developed 1D nanostructures were employed in the architecture of two types of 

optoelectronic devices: QDSSC and LED. The device performance was then characterized 

using electrical and spectroscopic techniques. The underlying mechanisms are discussed at the 

end. 

Chapter 1 is a general introduction and overview of the thesis and presents the motivation and 

objectives of this work. 

Chapter 2 presents a review on the structure and properties of ZnO. The working principles of 

QDSSCs along with recent achievements in the field are also discussed. A brief review of UV-

blue LED is demonstrated. Various growth mechanisms for 1D nanostructures are 

demonstrated at the end. 

Chapter 3 demonstrates the experimental procedures on ZnO NW synthesis as well as 

characterization techniques. ZnO NWs were grown using chemical vapor deposition (CVD) 

and the hydrothermal method in various substrates. Silicon and quartz wafers along with pre-

sputtered Al:ZnO (AZO) film were used as the substrate for ZnO NW growth. The highly 

conductive and transparent AZO film that was used as a transparent conductive oxide (TCO) 

film in this work was developed by group members: Navid M.S. Jahed and Mohsen 
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Mahmoudisepehr. Aluminum doped ZnO NWs were also synthesized and characterized using 

a hydrothermal process.  

Chapter 4 discusses the incorporation of CdSe/ZnS QDs (as sensitizer) into ZnO NWs using 

Evaporation Driven Self-Assembly (EDSA) methods. The self-assembled microstructure of 

QDs embedded into NWs are presented in detail and the self-assembly mechanisms are 

discussed. Then, the photostability of the incorporated QDs was studied using absorption 

spectroscopy. 

Chapter 5 highlights the importance of studies of charge carrier dynamics in sensitizer/metal 

oxide and sensitizer/metal oxide/electrolyte interfaces. Emission decay lifetime of CdSe/ZnS 

core/shell QDs anchored to ZnO NWs was acquired employing a time correlated single-photon 

counting (TCSPC) method. Emission lifetimes of QD/ZnO NW, QD/ZnO NW/electrolyte and 

the corresponding curves of a four exponential decay model along with fitted curves are 

presented. The electron and hole transfer mechanisms and kinetics are also discussed. The 

effect of QD size and metal oxide structure (ZnO film versus ZnO NW) are demonstrated as 

well. Dr. Bahareh Sadeghimakki, our post-doctoral fellow, had a significant contribution in 

experimental designs and measurements that are presented in this chapter.  

Chapter 6 presents the QDSSCs fabricated based on a ZnO NW/CdSe structure along with 

device characterization. The effect of different parameters of the structure like hydrogen 

annealing, QD ligand, ZnO NW doping, and blocking layer is verified. 

Chapter 7 illustrates the experimental procedure on ZnO NW/GaN heterojunction LED 

fabrication and characterization. The electroluminescence (EL) spectra of the device under 

forward and reverse injection currents are presented and discussed.  

Chapter 8 summarizes the results and contribution of the work and provides suggestions for 

improvement of the QDSSC and LED devices. 
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Chapter 2:  Literature Review 

In this chapter, properties and technologies of zinc oxide (ZnO) and its one-dimensional structures 

are demonstrated. A discussion of the structural and optical properties of quantum dots along with 

their synthesis techniques follows. Methods and mechanisms of NW growth will be presented in 

the final section. The thermodynamics and kinetics of the NW growth mechanism using a vapor-

liquid-solid method are also revealed.  

2.1. Properties and Technologies of Zinc Oxide Nanostructures 

Zinc oxide nanostructures have become an important field of research since the last decade due to 

their eminent properties in electronics and optoelectronics. Zinc oxide thin films have been applied 

in different areas such as sensors, transducers, and catalysts since the 1960s. New mechanical, 

electrical, chemical, and optical properties are observed in the nanostructures as a result of surface 

and quantum confinement effects. Studying one-dimensional structures is advantages because 

elucidating the fundamental phenomena in low dimensional systems which will enhance the 

development of high performance nanodevices [10].  

ZnO has versatile applications which originate from its crystal structure. Its crystal structure is a 

non-centro-symmetric hexagonal wurtzite that results in piezoelectricity and is applied accordingly 

in mechanical actuators and piezoelectric sensors. Furthermore, it is distinguished as a direct 

semiconductor with a wide bandgap (3.37 eV) that can be used in short wavelength optoelectronic 

devices. ZnO shows excitonic emission at room temperature due to its high exciton binding energy 

(60 meV) [10]. 

2.1.1. Crystal and Surface Structure of ZnO 

Wurtzite ZnO is a hexagonal crystal structure consisting of lattice parameters a=0.3296 and 

c=0.52065 nm. Oxygen and zinc ions are placed in tetrahedral positions and are stacked 

alternately as shown in Figure 2-1. Therefore, ZnO has piezoelectricity and pyroelectricity due 
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to its tetrahedral coordination. The ZnO crystal structure contains polar surfaces, the most 

common being the basal surface. (0001) surfaces are positively charged and zinc terminated 

while (0001) planes are negatively charged and oxygen terminated. As a result, the structure 

has a normal dipole moment and is spontaneously polarized along the c-axis. In most polar 

structures, facets or surface reconstructions occur to keep structural stability; which is true in 

the case of ZnO. Zinc oxide ∓(0001) planes show stability without reconstruction and are 

atomically flat. Two other non-polar surfaces that are commonly seen in ZnO structures are 

{21 1 0} and {01 1 0} which have lower energy than {0001} facets [10].  

 

Figure 2-1 Tetrahedral coordination of Zn-O in wurtzite structure [11] 

2.1.2. Electrical Properties of ZnO 

Available ZnO samples have a large variety of qualities making it difficult to characterize the 

electrical properties. Different values have been reported for the background carrier 

concentration due to various layer qualities but it is normally around 1016 cm-3. The maximum 

doping concentrations for n-type and p-type ZnO that have been reported corresponds to ~1020 

electrons cm-3 and ~ 1019 holes cm-3, respectively; although, that amount of p-type conductivity 

has not been achieved experimentally. Because ZnO has an exciton binding energy of 60 meV, 

it has good potential for use in optoelectronic devices. The low doped n-type and p-type ZnO 

have electron Hall mobility of µ=200 cm2V-1S-1 and 5-50 cm2V-1S-1, respectively [11].  
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2.1.3. Optical Properties of ZnO 

Band structure and lattice dynamics affect the optical properties of ZnO. A broad peak from 

~1.9 to ~2.8 eV in the luminescence spectrum of ZnO is attributed to structural defects. This 

green band is not well understood and is usually ascribed to singly ionized oxygen vacancies. 

Figure 2-2 illustrates ZnO photoluminescence spectra measured at 4.2 K in which excitonic, 

donor acceptor pair and green emission can be seen [11]. 

 

Figure 2-2 Photoluminescence spectrum of n-type bulk ZnO (He-Cd excitation) showing excitonic, 

donor acceptor pair and green band emission. The longitudinal optical phonons with the 

corresponding phonon replicas are indicated on the graph [11] 

2.1.4. ZnO Nanostructures 

Nanostructures of ZnO have been vastly investigated over the past decade due to their application 

in a broad range of electronic and optoelectronic devices. ZnO nanostructures are one of the three 

top nanomaterials (along with carbon nanotubes and silicon nanowires) that have been the most 

studied and cited [12].They are also biocompatible and bio-safe nanostructures which can be 

utilized in medical applications [13].  

They can be grown in diverse morphologies like nanowires, nanobelts, nanosprings, nanorings, 

and nanotetrapods due to their crystal structure. As stated in section 1.1.3, they are comprised of 

polar and non-polar surfaces; accordingly, the growth direction can be tuned by changing the 

growth rate along different directions [12].  
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These nanostructures have been investigated for potential applications in light emitting diodes 

(LED) [14], field emission [15], gas sensors [16], and dye-sensitized solar cells [17]. Lasing is 

facilitated by excitonic recombination in low dimensional nanostructures, since the density of 

states near the bandgap edges is higher in the nanostructures [18]. Because exciton binding energy 

of ZnO (60 meV) is larger than the thermal energy at room temperature (25 meV), it is a good 

candidate for lasing applications [19]. Since ZnO is transparent, its 1-D nanostructures can be 

efficiently applied in solar cell devices as charge carrier conductors and also the optical 

components of photovoltaic devices [20]. Therefore, it is an important nanostructure to be studied 

for future use of these applications in industry. 

2.1.5. Fabrication Methods of ZnO One-dimensional Nanostructures 

ZnO nanostructures have been synthesized by different methods including chemical vapor 

deposition (CVD) through vapor-liquid-solid (VLS) mechanism [21], hydrothermal [22], metal 

oxide chemical vapor deposition (MOCVD) [23], pulsed laser deposition [24], electrochemical 

deposition [25], and so on. Although various processes have been employed for their growth, CVD 

through a VLS mechanism has been mainly applied for controlled and high quality growth. The 

other popular and low cost process is the hydrothermal method. In the following section, principles 

of these two major methods for ZnO NW growth along with other common techniques for one-

dimensional nanostructures will be demonstrated. 

2.2. Nanowire Fabrication Methods 

Nanostructures have received great interest in recent years due to their unique properties that are 

different from bulk materials. Among these nanostructure materials nanostructured 

semiconductors have various applications in electronic, catalytic, photonic and energy convertor 

devices. These unique properties can be explained due the limited motions of electrons in the 

confined dimensions of the nanomaterials. The interest in utilizing the unique properties of 

nanostructures for practical applications increases with a deep understanding and tailoring of these 

materials. To date, a huge variety of materials have been synthesized and incorporated in devices 

demonstrating their potential to outperform currently used technology. However, the transition 
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from fundamental science to industrial application requires an even deeper understanding and 

control of morphology and composition at the nanoscale [26, 27]. 

The one-dimensional nature of nanowires allows material synthesis in traditionally inaccessible 

compositional regions. Nanowire bandgap can be tuned according to size variation and these 

tunable electronic structures hold great promise in photovoltaic, solid-state lighting and solar-to-

fuel energy conversion. Techniques that are used to grow nanowires have developed to a level 

where desired composition, heterojunctions and architectures can be readily synthesized today 

[28].  

Growth parameters like vapor phase species, partial pressure, catalyst material and size, 

concentration of solution in solution-based routes, growth temperature, etc., affect the crystal 

structure and properties of synthesized nanowire. As a result, thermodynamics and kinetics study 

of nanowires growth is necessary in the controlled synthesis of 1-D nanostructures. 

Inorganic 1-D nanostructures have been synthesized applying different methods that can be 

categorized into two major groups: (1) vapor phase techniques (2) solution-based techniques. 

Controlling size, composition, and crystallinity of NWs are important parameters in their 

fabrication processes [29].  

Nucleation and growth are the two important aspects of solid formation from vapor or liquid phase. 

Initial formation of atom clusters because of supersaturation and precipitation of a species on a 

surface or in a solution is defined as nucleation. In contrary to 0-D or 2-D structures, growth 

symmetry breaking is required for the synthesis of 1-D dimensional structures. Some nanowires 

can be grown by a method that is inherently anisotropic to the crystalline structure. Nevertheless, 

for some materials like Si and GaAs the necessary driving force for 1-D growth is not provided by 

their crystal structures. Therefore applying growth conditions that are symmetry breaking to crystal 

structures are important. In addition, defect-free growth and exact control of diameter and length 

size are required in some applications or fundamental research. In some applications of periodic 

or non-periodic arrays of aligned nanostructures, low temperature growth is required for 

compatibility with existing processes, and adaptability for multi-component architectures may be 

important [30]. 
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2.2.1. Vapor-Liquid-Solid (VLS) Growth  

One of the most commonly used methods for growing nanowires from a gas phase reaction is 

Vapor-Liquid-Solid growth. A liquid alloy/solid interface promotes the anisotropic growth of 

crystal in this mechanism. A metal that the species of nanowires are soluble in is used as catalyst 

or seed. Metal particles are deposited on the substrates by methods such as sputtering or spin 

coating of colloidal solution. The binary phase diagram of the metal and the species of interest is 

used to explain the growth stages. The elements of nanowire are vaporized by different techniques 

(thermal evaporation, laser ablation or carbothermal evaporation); or alternatively, gas compounds 

containing the desired element are used to provide vapor of nanowires species (CVD or MOCVD 

methods). Solute atoms are deposited on the liquid surface of the metal cluster due to its large 

accommodation coefficient. The metal and solute form a liquid alloy when the temperature of the 

chamber is higher than their eutectic point. After the liquid alloy becomessupersaturated, the 

nanowire phase precipitates from the alloy particle at the solid-liquid interface. The maximum 

temperature for nanowire growth is up to the temperature in which the metal particles remain solid 

in the absence of solutes vapor. An increase of solute vapor dissolution in metal particles results 

in an alloy formation and liquefying. Nucleation of the nanowire starts when the concentration of 

desired species increases in the metal cluster. As the nucleation of nanowire occurs, further 

condensation/dissolution of the solute vapor into the particles increases the precipitation of the 

nanowire elements from the alloy. The incoming gaseous species diffuse and condense at the solid-

liquid interface and suppress secondary nucleation. Then the interface is pushed forward or 

backward to form nanowire. This growth mechanism has been applied to synthesize different 

nanowires like elemental NWs, oxides, carbides, phosphides, etc. [29, 30]. 

ZnO NWs have been fabricated through this method using gold as the metal catalyst on different 

substrates like silicon, sapphire, or GaN thin film [31-33]. Vapor phase zinc is commonly produced 

using a carbothermal reaction between ZnO and carbon powders [34]. In addition, zinc powder or 

metal organic materials (diethylzinc) have also been employed to supply zinc vapor [35, 36].  

Growth parameters like partial pressure of vapor phase species, catalyst material and size, growth 

temperature, precursor materials, and carrier gas flow affect the crystal structure and properties of 

synthesized nanostructures. 
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2.2.2. Vapor-Solid Growth 

Vapor-solid growth which is used to grow whiskers can also be applied to nanowire synthesis. In 

this method, the vapor or desired material is formed by evaporation, chemical reduction or gaseous 

reaction. The vapor transports and condenses on the substrate surface without the aid of a metal 

catalyst. Oxides and metal whiskers with micrometer diameters are synthesized by this process. If 

the nucleation and growth process is controlled 1-D nanostructures can also be grown using this 

method [29]. 

2.2.3. Carbothermal Reaction 

Carbothermal reactions are used to generate elemental species for growing nanowires of oxides, 

carbides and nitrides. As an example, a mixture of carbon (activated carbon, graphite or carbon 

nanotube) with an oxide produces sub-oxides or metal vapor species which produces the nanowire 

of interest following the reaction with C, N2, O2 or NH3. The following reactions generally occur 

in carbothermal reactions: 

Metal Oxide + C → Metal Sub-Oxide + CO 

Metal Sub-Oxide + O2  → Metal Oxide Nanowires 

Metal Sub-Oxide + NH3 → Metal Nitride Nanowires + CO + H2 

Metal Sub-Oxide + N2 → Metal Nitride Nanowires + CO 

Metal Sub-Oxide + C → Metal Carbide Nanowires + CO 

 Based on the desired product the sub-oxide is heated in the presence of O2, NH3, N2 or C to 

synthesize oxide, nitride or carbide nanowires [29]. 

2.2.4. Solution-Based Growth 

Solution-based growth is one of the substitutes for vapor-phase methods. Low synthesis 

temperature is the advantage of these methods over vapor-phase methods [30]. One-dimensional 
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growth is obtained using the anisotropic growth imposed by the crystal structure of the material, 

confinement by templates, kinetic control of supersaturation, or proper capping agent [29]. 

2.2.5. Solution-Liquid-Solid Method 

Solution-Liquid-Solid (SLS) method is similar to VLS method, but a metalorganic liquid-phase is 

used as the source material instead of a vapor-phase source. Low melting point metals such as Sn, 

In, and Ba are applied as the catalyst. The liquid-phase precursors decompose under low 

temperature ( 200°C) and dissolve into the metal. The desired species then precipitates from the 

alloy particle and forms the nanowire with high crystalline quality.  This method has been widely 

employed to fabricate group III-V semiconductor nanowires. However, group II-VI semiconductor 

nanowires can be synthesized by this method if appropriate surfactants are used [29]. 

2.2.6. Hydrothermal and Solvothermal Synthesis 

Hydrothermal and Solvothermal syntheses are based on heating a solution which is composed of 

a solvent with specific metal precursors and crystal growth regulating or templating agents like 

amines. The mixture, in a sealed container, is put into an autoclave to carry out the crystal growth. 

When the solution is aqua it is called hydrothermal synthesis, whereas in the solvothermal method 

the solution is alcohol-based [30].  

This method is a well-known process for growing ZnO nanostructures. It can be carried out on 

various types of substrates in temperatures lower than 100º C. A seed layer prepared by spin 

coating of ZnO nanoparticles, RF sputtering, pulsed laser deposition (PLD), or sol-gel is usually 

used to improve the density of grown arrays. Nucleation will be faster, if growth is carried out in 

a medium of alcohol [37].  

Zinc nitrate, zinc acetate, and zinc chloride have been employed as zinc sources. 

Cetyltrimethylammonium (CTAB), Polyacrylic acid (PPA), Sodium dodecyl sulfate (SDS), 

Hexamethylenetetramine (HMTA), and Polyvinylpyrrolidone(PVP) have been used as surfactants, 

additives, and modifiers to grow a desired nanostructure [37].  
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Dissolving zinc salt in water results in the release of aqua ions. Various types of zinc (II) hydroxyls 

like ZnOH+(aq), Zn(OH)2(aq), Zn(OH)2(s), Zn(OH)-
3 (aq), and Zn(OH)4

2-(aq) are formed in the 

solvent. The stability of these complexes depends on the PH and temperature of the solution. The 

nuclei of ZnO are formed when these complexes are dehydrated. Continuous condensation of the 

hydroxyls directs the growth of ZnO structures [38]. 

For example, hydrolysis of zinc nitrate [Zn(NO3)2.6H2O] in water with the addition of 

hexamethylenetetramine (HMTA) or decomposition of zinc acetate [Zn(CH3-CO2)2] in the 

presence of trioctylamine leads to the formation of one-dimensional structures of ZnO. The shape 

of the final structure depends on solution PHs, types of additives, and solvents. Doping of grown 

structures with transition metals is also possible [38]. 

2.2.7. Template-Based Growth 

In this method, a template is used as a scaffold against which the precursor is formed to 

nanostructures and its morphology is complementary to that of the template. The templates are 

materials containing nanoscale channels such as porous alumina or polycarbonate membranes. The 

nanoscaled channels are filled using solutions, sol-gel or electrochemical methods. The nanowires 

are then released from the template by removing the host matrix by a method such as etching. The 

straightforward alignment of nanowires and flexibility of deposition methods are the advantages 

of this method. The diameters of the nanowires are controlled by the diameters of the template 

pores. The disadvantage of this method is that the nanowires produced are not usually single 

crystalline. Nanowires of inorganic materials like Au, Ag, Pt, TiO2, MnO2, ZnO, CdS, CdSe and 

conductive polymers have been synthesized employing template-based methods.  

Nanowires themselves can be used as templates for growing other kinds of nanowires. The 

template nanowire and the new one may be attached to form a coaxial nanowire or may react with 

the second nanowire and produce a new material. Nanotubes can also be grown by removing the 

template nanowire [29, 30]. 



15 
 

2.2.8. Highly Anisotropic Structures 

Those materials that have anisotropic bonding in their structures like polysulphur nitride (SN)x 

grow one-dimensionally. Other materials like selenium, tellurium and molybdenum chalcogenides 

easily grow one-dimensionally because the anisotropic bonding in their structures dictates the 

growth along the c-axis. Because the covalent bonds along the c-axis are stronger, and they are 

therefore more favorable than the weak Van der Waals forces between the chains [29]. 

2.2.9. Optical and E-beam Lithography 

Optical lithography has been an industrial standard for semiconductor device fabrication for 

decades. Resist technology and optics have developed significantly resulting in smaller features 

on a device. Shorter wavelength radiation sources lead to higher image resolution as given by the 

following equation, which is derived from Rayleigh criterion: 

𝐶𝐷 =
𝑘𝜆

𝑁𝐴
 

(2.1) 

CD is the minimum critical dimension that can be imaged in a photoresist using a given process 

with latitude factor k, and emission wavelength λ (nm), and a numerical aperture NA, where 

NA=nsinθ, where n is the refractive index of the medium in which the final projection lens is 

operating and θ is the half angel of the maximum cone of light that exits the final lens of the system. 

ArF lasers with an emission wavelength of 193 nm are currently employed in VLSI manufacturing. 

Other measures like reduction lenses have also been improved to enhance image resolution. 

Features with CD values of a fraction of the radiated wavelength can be formed by interference 

lithography. To achieve a fraction of the initial wavelength, a number of coherent beams of 

radiation are focused on a spot to create an interference pattern. The period of interference pattern 

is a fraction of the initial wavelength. This technique is typically used to produce structures such 

as gratings. Another approach to reducing CD is immersion of the final projection lens of the 

radiation source in a medium with a higher refractive index than that of air. The NA value of the 

system increases, resulting in a reduction of CD features that can be imaged in the photoresist. 

This technique is known as immersion lithography [39].  
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Ordered arrays of semiconductor NWs, with great control over feature size and placement, can be 

obtained by optical lithography due to significant technological advances in this field, as 

demonstrated above. Layered structures, such as silicon-on-insulator, which are developed by 

metal organic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE), are used to 

fabricate lateral NWs by optical lithography. Fabrication of gratings or line structures in the resist 

material and consequent transfer of the grating pattern to the substrate through an etching process 

are the procedures of lateral NW fabrication [39].  

Similarly, dot or polygonal structure patterns of resists on a bulk or layered substrate are used to 

fabricate vertical NWs. The maximum lateral dimensions of the dots are below 100 nm and an 

appropriate anisotropic etch process is employed to transfer the mask pattern deep into the 

substrate.  

The most common etch processes for pattern transfers are inductively coupled plasma (ICP) and 

reactive ion etch (RIE). Metal assisted etch (MAE) and anisotropic wet etch have also been used 

for pattern transfer to the substrate.  

In addition to optical lithography, other lithography techniques such as electron beam lithography 

(EBL), nano-imprint lithography (NIL), extreme ultraviolet (EUV) lithography, X-ray lithography 

(XRL), ion-beam lithography (IBL), end electron beam induced deposition (EBID) lithography 

have been considered for top-down fabrication of NWs. EBL is the most important technique for 

top-down fabrication of NWs. High resolution masks of EUV and XRL are generally fabricated 

by the EBL technique. The EBL direct-write process is also used to produce NIL stamps. EBID 

lithography is essentially an EBL process that is combined with a gas injection system. The gas 

injection system disperses gaseous precursors for mask formation. The gases decompose under an 

electron beam and directionally deposit on the substrate. Features of sub-10-nm at sub-20-nm 

pitches have been produced by EBL. As a result, further development of EBL processes and 

instrumentation is essential for current and future VLSI manufacturing.  

The exposure time required for full wafer layouts in the EBL process leads to low throughput of 

wafers, which is the primary concern for high volume manufacturing. Several factors such as area 

of the wafer to be exposed, electron beam current, tone of the resist, electron energy, and the 

sensitivity of the resist affect the exposure time [39].  
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2.2.10. Thermodynamics and Kinetic Aspect of Nanowire Growth 

One of the most common methods for growing one-dimensional nanostructures is vapor-liquid-

solid (VLS). In this method a metal is used as catalyst and the constituents of the nanowire are 

adsorbed on the metal particles. The growth process is divided into 3 steps: (1) gas phase solutes 

of interest are dissolved into a molten metal droplet; (2) solute diffuses through and onto the 

droplet; (3) it precipitates from the molten metal droplet. Metals such as Au, Fe, Ni and Co have 

been used as catalysts. The catalyst supports tip-led growth by inhibiting multiple nucleation 

events from each droplet. In order to understand the role of the metal catalyst, one must consider 

factors that prevent nucleation from the molten metal droplet causing tip-led growth of a single 

nanowire [40].  

Investigating growth kinetics of nanowires is also important due to controlled growth and 

morphology for different applications. Dissolution kinetics at the vapor-liquid interface and 

diffusion of atoms into the metal cluster are factors that affect growth kinetics. Dissociative 

adsorptions on catalyst metal surfaces can be enhanced by using certain metals and heterogeneous 

catalyst metals. This enhanced dissociative adsorption of gaseous species will raise the selective 

dissolution of solutes. Therefore, metal catalysts result in an increase of dissolution kinetics [40]. 

2.2.11. Thermodynamic Relationships of Nucleation from Molten Metal Droplets 

In a VLS process, solution of solutes from the gas phase into a metal droplet leads to 

supersaturation of the droplet. Then, nucleation throughout the metal surface or precipitation at the 

substrate-metal interface is followed by homoepitaxy. Thermodynamics of nucleation from 

supersaturated molten droplets is discussed below. 

A molten metal droplet is formed due to minimizing its free energy. The Gibbs-Thomson equation 

expresses the difference in chemical potential (µ) between a curved surface (radius,r) and planar 

surface (radius,r = ∞): 
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μr − μ∞ =
2γΩ

r
 

(2.2) 

; Where   is the surface energy of the droplet and   is the molar volume of the species within 

the nuclei. Critical diameter of pure phase nuclei and the difference between a spherical droplet 

and the planar surface is described by Equation (2.2). The chemical potentials at equilibrium for 

the droplet and planar surface are as follows: 

μl = μg (2.3) 

μl
∞ = μg

∞ (2.4) 

Subtracting Equation (2.4) from (2.3): 

μg = kTln[
P

P∞
] 

(2.5) 

[
P

P∞] is the supersaturation of vapor phase within the gas phase, kis Boltzmann constant and T is 

the temperature. The partial pressure,P , of the gas phase in equilibrium with a liquid droplet of 

known size can be obtained using Equations (2.2)-(2.5): 

kTln [
P

P∞
] =

2γΩ

r
 

(2.6) 

Equation (2.6) shows that supersaturation of the droplet needs higher partial pressure of the 

gaseous solutes in equilibrium with a droplet than a planar surface. This equation can be expressed 

as: 

Pr = P∞exp (
2γΩ

rkT
) 

(2.7) 

Where Pr and P∞ are the partial pressures of the gas-phase solutes in equilibrium with a droplet of 

radius r and a planar surface respectively. Equation (2.7) can also be used to find the critical 

nucleation size for pure phase condensation: 

rc =
2γΩ

kTln [
P

P∞]
 

(2.8) 

rc is the critical nuclei size [40]. 



19 
 

Nucleation of solid-phase growth species out of a metal droplet is thermodynamically possible 

when the Gibbs free energy is minimized. Gibbs free energy change for nucleation is equal to: 

ΔGT = ΔGV ×
4

3
πr3 + ∆Gs × πr2 

(2.9) 

The first term is the change of free energy as a result of volume change and the second one is the 

effect of the nucleus curvature determined by creation of surface area. When ∆GT <0, nucleation 

is thermodynamically favorable. As a result, the critical nuclei size can be determined as: 

∂∆GT

∂r
= 0 

(2.10) 

Therefore the critical nucleation radius r* will be: 

r∗ =
−2σ

∆GV
 

(2.11) 

Where,σ is the interfacial energy.  

Volume free energy, ∆GV, is expressed by: 

∆GV =
RT

Ω
ln (

C

C∗
) 

(2.12) 

C is concentration within a liquid alloy and C* is equilibrium concentration. So the driving force 

for the nucleation is equal to C/C*. As a result, the critical nucleus diameter, dc, is equal to: 

dc =
4σΩ

RTln (
C
C∗)

 
(2.13) 

Equilibrium concentration *C  is a function of temperature and is specified as the equilibrium 

composition from the liquidus line of a binary phase diagram. Determining the supersaturation, C

, during the initial stages of nucleation is difficult and depends on process conditions. Goesele et 

al. derived a relation between the composition in a liquid droplet and partial pressure of solute in 

the gas phase steady stages of the growth [41]: 

rc
min =

2Ωsσs

kTln (
Psi

P̅si
) + kTln(

P̅si

P̅si
eq)

 
(2.14) 
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Here P̅ is the pressure in the reference state, Ωs is molar volume of silicon and σs is the surface 

energy of the droplet. Equation (2.14) illustrates that the driving force consists of two factors; first, 

supersaturation of a liquid droplet that leads to nucleation and second, supersaturation in the vapor 

phase that keeps the spherical shape of the droplet [40]. 

Critical size of nuclei for various metal-solute systems can be estimated using Equation (2.14). It 

can be shown that even for solute concentration, more than eutectic composition (50% in Au-Si 

system), the critical size of nuclei is as large as several microns. As a result, when the metal particle 

size is very small (several ten nanometers) multiple nucleation will not occur and solute 

precipitates at the solid-liquid interface. Thus, nucleation is suppressed and a nanowire grows with 

a metal particle on its tip, known as tip-led growth. Increasing a metal catalyst relative to its critical 

nucleation size leads to the growth of multiple nanowires out of a large droplet.  

If a low-melting metal is used instead of a catalytic metal the eutectic solubility of species of 

interest is low. Based on Equation (2.13) the critical diameter of nuclei will be very small. For 

example, the critical nuclei diameter for Ga-Si system is equal to 10 nm at 1000K with silicon 

concentration less than 3 at% in gallium. Figure 2-6 shows the binary phase diagram of Au-Si and 

Ga-Si [40]. 

 

 

Figure 2-3 Binary phase diagram of (a) Au-Si (b) Ga-Si [40] 
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The change of the critical nuclei diameter as a function of dissolved silicon concentration for Au-

Si and Ga-Si systems are illustrated in Figure 2-7. At 1000K when silicon concentration in Ga is 

less than 10 at% the resulting nuclei will have a diameter of 5 nm; whereas, it will be less than 100 

nm if the Si concentration is more than 40 at% in Au [40]. 

 

 

Figure 2-4 Critical nuclei diameter of as a function of the dissolved concentration (atm%) in Ga-Si and 

Au-Si binary solutions (T=1000 K) [40] 

 

2.2.12. Selection of Catalyst Metal for VLS Growth of Nanowires 

In order to fabricate nanowires with tip-led growth mode, eutectic solubility or liquidus curve of 

the metal and solute of interest should be considered. This can be explained using the Ga-Sb phase 

diagram that is shown in Figure 2-8. As can be seen, there are two eutectic points with one in a 

high concentration Ga zone with a low solubility of ~10-4 at% Sb in Ga (region I) and the other is 

in a Sb rich zone with a solubility of 10.6 at% Ga in Sb (region II). Growth of single GaSb 

nanowires with Sb as the catalyst occurs in region II of the Ga-Sb phase diagram. Because of high 

equilibrium, solubility of Ga in Sb tip-led growth, with Sb acting as catalyst, occurs instead of 

spontaneous nucleation. Tip-led growth of a group V element is not similar to group III metal 

droplet tip-led growth. As observed in region II of Figure 2-8, Ga is highly soluble in Sb therefore 

the critical nuclei size is in the order of the Sb droplet size. So spontaneous nucleation does not 
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occur and the Sb cluster directs the one-dimensional growth of the GaSb nanowire. In conclusion, 

mode of nucleation and nanowire growth for VLS mechanisms can be predicted using eutectic or 

equilibrium solubility as a measure. As a result, to grow a nanowire with a VLS mechanism, a 

metal catalyst with a small droplet size and high eutectic solubility of growth elements should be 

selected [40]. 

 

Figure 2-5 Binary phase diagram of Ga-Sb. Region I is the eutectic in the Ga rich zone, with very low 

solubility of Sb in Ga and region II is the eutectic in the Sb rich zone, with a high solubility of Ga in Sb 

[40] 

2.2.13. Kinetics of VLS Equilibrium 

The reference state is usually considered a planar liquid surface in a thermodynamic equation for 

VLS growth. The equilibrium reference vapor pressure is equal to the pressure of the vapor in 

equilibrium with the surface. Thus, supersaturation of species ‘i’ is defined as any vapor pressure 

above reference vapor pressure, which causes the formation of a spherical droplet. This 

equilibrium pressure is required to maintain the spherical droplet. The driving force 

(supersaturation) in terms of chemical potentials can be expressed as a function of droplet 

diameter, d, as: 

μi,V
eq

= μi,V
∞ +

4Ωα

d
 

(2.15) 
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It can be understood from the above equation that the chemical potential of the spherical droplet 

is more than the chemical potential of planar interface under supersaturation. The supersaturation 

occurs when the operating pressure becomes more than equilibrium pressure that leads to 

dissolving of vapor of the solute ‘i’ into the droplet as shown in Figure 2-9. The following 

equations express supersaturation in terms of chemical potential and droplet diameter: 

 [μi,V − μi,V
eq

] = [μi,V − μi,V
∞ ] −

4Ωα

d
 

(2.16) 

Or 

∆μi,V = ∆μi,V
∞ −

4Ωα

d
 

(2.17) 

Where ∆µi,V is the change of chemical potential of species ‘i’ in the vapor phase and the liquid 

droplet and ∆µ∞
i,V represents that difference at the reference state [40]. 

If the nanowire growth rate is limited by dissolution kinetics, it will be influenced by vapor phase 

supersaturation as it affects the dissolution rate. The dissolution and growth rate are proportional 

to the net impingement rate, R, that can be specified using species partial pressure while correcting 

for equilibrium partial pressure expected for a spherical droplet of radius r. Using equation (2.7) 

to estimate pressure difference (P-Pr), the net impingement flux can be determined as: 

R ∝ {
P − P∞exp (

2σV1Ω
rkT

)

(2πmkT)
1
2

}n 

(2.18) 

The nth power is not defined as the precise relationship between net impingement flux and growth 

rate is not known. The above equation shows that the growth rate can be zero below a particular 

size because there is no supersaturation.  

Givargizov [8] presented a model for precipitation kinetics’ limited growth of nanowire due to 

supersaturation: 

𝑉1/𝑛 =
Δ𝜇0

𝑘𝑇
𝑏1/𝑛 −

4Ω𝛼

𝑘𝑇
𝑏1/𝑛 

(2.19) 

Here V is growth rate and b is a constant.  
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The dependence of growth rate on diameter can be determined by plotting V1/n versus 1/d. The plot 

shows that larger diameter leads to higher growth rate [40]. 

 

Figure 2-6 Schematic illustration of the relation of chemical potentials and various stages of droplet and 

nanowire formation: (a) when the vapor is in equilibrium with a reference state (b) when the vapor is at 

supersaturation to support droplet formation (at equilibrium vapor pressure) and (c) when the vapor is 

at a pressure higher than equilibrium vapor pressure, which controls the dissolution kinetics [40] 

 

2.3. Quantum Dots 

Quantum dots (QD) or nanostructured semiconductors are considered to fill the gap between bulk 

and molecular levels. This category of semiconductors is known as zero-dimensional 

nanostructure, < 30 nm; which shows different electrical and optical properties than their 

molecules and bulk counterparts. QDs have attracted great attention over the last two decades since 

their fundamental properties are size dependent. Their small size results in discrete quantized 

energy in the density of states (DOS). The I-V curve and DOS of QDs has a staircase-like shape 

due to the presence of one electronic charge in the QDs repelling the addition of another charge. 

The step size of the I-V curve or DOS has an inverse relation with the QDs’ radius [42].  

2.3.1. Structure of Quantum Dots 

QDs are nanoparticles composed of 100-1000 atoms, with their bandgap size dependent upon 

factors like the bond type and strength with the nearest neighbors. The luminescent emissions of 

isolated atoms are sharp, narrow peaks; whereas QDs display narrow optical line spectra. QDs 

show significant differences in the exciton energy, optical absorption, and electron-hole pair 

recombination when their size is changed. The unique optical properties of QDs can be utilized in 

optoelectronic devices like light emitting diodes (LED) and solar cells. QD properties are 

controlled during the synthesis since they are dependent on the QDs’ size, shape, impurities, 

crystallinity, and defects. The size dependent properties of QDs is a result of (1) variation of 
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surface-to-volume ratio with size, and (2) quantum confinement effects. QDs show various 

emission colors with size changes. Figure 2-7 exhibits PL emission color of CdSe QDs having 

various sizes [42].  

 

 

Figure 2-7 Top: emission colors from CdSe QDs excited by near-UV lamp, Bottom: PL Spectra of some 

of the CdSe QDs [42] 
 

Quantum confinement effect in QDs leads to DOS modification near the band edges. DOS of QDs 

sits between the discrete atomic and continuous bulk materials (Figure 2-8 ). When the energy 

level spacing of a nanocrystal is greater than kT (where k is Boltzmann’s constant and T is 

temperature), the quantum confinement effect is observed. Electron and hole mobility in the crystal 

is restricted by energy differences larger than kT. If the size of the particle is less than a particular 

value, depending on the type of semiconductor, the bandgap energy increases. This increase is 

observed as a blue shift in the absorption edge or luminescence peak of the QD. This is known as 

quantum confinement effect. The composition of the semiconductors also affects the bandgap 

energy. QDs have discrete and well-separated energy states as they have a smaller number of atoms 

than bulk. Therefore, the wave functions of the electronic states of each energy level are more 

atomic-like. The Schrödinger wave equation solutions for QDs are very similar to electrons bound 

to a nucleus; thus, they are also called artificial atoms. The intraband energy level spacing of QDs 

lie in the range of 10-100 meV. Alloying of QDs can also alter their bandgap [42].  
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Figure 2-8 Schematic illustration of DOS of atoms, molecules, QDs, and bulk materials [43] 

 

The exciton Bohr radius for bulk semiconductors is defined by the following equation: 

𝑟𝐵 =
ℏ2𝜀

𝑒2
 (

1

𝑚𝑒
+  

1

𝑚ℎ
) 

(2.20) 

Where, me and mh are the effective mass of electrons and, holes, ɛ, ћ, and e are the optical dielectric 

constant, reduced Planck’s constant, and the charge of an electron, respectively. The motion of 

electrons and holes are spatially confined to the dimension of the QD if the QD’s radius, R, is 

equal to or smaller than its Bohr radius, rB. The confinement effect leads to an increase of the 

exciton transition energy along with a blue shift in the luminescence band edge. The exciton and 

biexciton (exciton-exciton interaction energy) binding energy is much larger than that of bulk 

materials. The effective mass approximation model (EMA) and linear combination of atomic 

orbital (LCAO) theory are used to predict exciton properties [42].  
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2.3.2. Effective Mass Approximation Model 

This model is used to predict quantum confinement based on the Particle-in-Box Model. It was 

introduced by Efros and modified by Brus [10, 106]. The model assumes a particle in a potential 

well with a barrier of infinite potential at the particle boundary. The relationship between the 

particle’s energy and wave vector (k) for a free particle in the box is expressed by the following 

equation: 

𝐸 =
ℏ2𝑘2

2𝑚∗
 

(2.21) 

In the EMA model, it is assumed that the above relation holds for an electron or hole in the 

semiconductor thus, near the band edge the energy band is parabolic. A QD with a diameter of R 

exhibits a shift of bandgap energy (∆Eg) due to confinement of the exciton which is expressed as 

follows: 

∆𝐸𝑔 =
ℏ2𝜋2

2𝜇𝑅2
−  

1.8𝑒2

𝜀𝑅
=

ℏ2𝜋2

2𝑅2
(

1

𝑚𝑒
+  

1

𝑚ℎ
) − 

1.78𝑒2

𝜀𝑅
− 0.248𝐸𝑅𝑦

∗  
(2.22) 

Where, µ is the electron-hole pair reduced mass and E*
Ry is Rydberg energy. The first term of the 

above equation corresponds to a relation between particle-in-a-box confinement energy and the 

QD’s radius, R. The second term represents the Columbic interaction energy and the Rydberg 

energy term is not dependent on size, which is negligible, unless the dielectric constant of the 

semiconductor is small. As the radius of the QD is decreased, the first excitonic transition (i.e., the 

bandgap) increases. In a small QD regime the E-k relationship is not approximated parabolic and 

the EMA model is not valid anymore [42]. 

2.3.3. Linear Combination of Atomic Orbital Theory-Molecular Orbital Theory 

The evolution of the electronic structure of clusters from atoms/molecules to QDs to bulk materials 

and bandgap size dependence can be predicated in more detail by employing the linear 

combination of atomic orbitals-molecular orbital (LCAO-MO). A schematic illustration of the 

results obtained using this approach is shown in Figure 2-9 . In a molecule of Si composed of two 

atoms, bonding and anti-bonding molecular orbitals are produced after two atoms are combined. 

QDs in this approach are considered as large molecules. The spacing between the discrete energy 
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band structures changes from large steps to small ones as the number of atoms increases. The 

occupied highest and unoccupied lowest molecular quantum states are called the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. The 

energy difference between the top of HOMO and bottom of LUMO is equal to the bandgap; which 

increases as the number of mixed atoms are reduced and discrete energy levels are formed. 

The LCAO-MO model provides a calculation method for the electronic structure of much smaller 

QDs as compared to the EMA model. In contrast, this method is not suitable for energy level 

calculation of large QDs because of complex mathematics and limited computing systems. The 

ratio of QD’s radius R to excitonic Bohr radius (rB) determines the degree of quantum confinement.  

Electrochemical measurement is employed to determine the bandgap of QDs. The oxidation and 

reduction potential of QDs film is determined using cyclic voltammetry (CV). The measurement 

is carried out in a standard three-electrode cell. Current-potential curves in the CV method are 

obtained at a pre-defined sweep rate. QDs, coated on a gold plate, platinum wire, or indium tin 

oxide on a glass, are used as the working electrode with platinum electrode acting as a counter 

electrode. The reference electrode is usually Fc/Fc+ couple and the cell’s potential is normalized 

to its potential [42]. 

 

 

Figure 2-9 Combination of atomic orbital to molecular orbital , to QD structure, and to bulk bandgap 

of Si [44] 
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2.3.4. Luminescence Properties 

Under external energy excitation (photon irradiation, electric field, or primary electron), electron 

and hole gain high energy due to the transition of electrons from a ground state to an excited state. 

The electronic structure of the material determines the energy for optical absorption. The excited 

electron and hole may form an exciton. The excited electron may relax to a lower energy state by 

recombining with a hole and then go back to ground state. The released excess energy of 

recombination may be either radiative (photon emission) or nonradiative (phonon or Auger 

electrons emission). 

Radiative relaxation of an electron results in spontaneous luminescence from QDs. The 

luminescence emission may arise from the band edge or near band edge transitions or 

defect/quantum activator states.  

Band edge and near band edge (exciton) emissions are the most common relaxation processes in 

intrinsic semiconductors and insulators. QDs’ lowest energy states are referred to as 1se-1sh (or 

exciton state). Depending on the average size of the particles, the full width at half maximum 

(FWHM) of a band edge emission at room temperature varies from 15-30 nm. For example, 

luminescence of ZnSe QDs can be tuned by size over the spectral range 390-440 nm, with FWHM 

as narrow as 12.7-16.9 nm. The PL emission from QDs is not as simple and well-understood as 

that of bulk. CdSe QDs with a diameter of 3.2 nm, for example, have a radiative lifetime of about 

1µs at 10 K while the bulk structure’s radiative lifetime is ~1 ns. This difference is explained by 

the surface states involved in emission. Absorption and PL spectra are often used to determine the 

band structure of semiconductors. These spectra exhibited different properties when measurement 

was carried out at 15 K. A couple of additional peaks appeared in PL emission, along with 1se-1sh. 

These peaks were assigned as classically forbidden 1se-1ph and 1se-2sh. The Stokes shift was also 

observed to be size dependent in QDs. These differences were attributed to an increase in distance 

between the optically active state and forbidden ground exciton state with a size reduction of QDs.  

Although QDs have advantages like better photostability, wide absorption edges, narrow and 

tunable emission over organic dyes, they may show a random, intermittent luminescence that is 
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called ‘blinking’. In blinking, QD light emission is followed by a dark period. It is proposed that 

photoinduced ionization of QDs, which leads to separation of electrons and holes, is the 

mechanism behind blinking of QDs. Quenching of ionized QDs is dominated by nonradiative 

Auger recombination. However, this model is not completely supported by experimental results. 

For instance, the Auger process should have a quadratic dependence of the average blinking time 

on excitation intensity, whereas a linear behavior is observed in experimental results. An inverse 

power law predicts the probability, P(t), of the blinking period as given by the following Equation: 

𝑃(𝑡) = 𝐴. 𝑡−𝑚 (2.23) 

Where, m is an exponent between 1 and 2 and A is a constant.  

A number of additional mechanisms have been proposed to elucidate the blinking phenomenon, 

including thermally activated ionization, resonant electron tunneling between the excited states of 

QDs and dark trap states that wander randomly in energy, or electron tunneling through fluctuating 

barriers or into a uniform distribution of traps. However, the effect is still not properly explained. 

Figure 2-10 shows the blinking effect during luminescence emission from a 2.9 nm CdSe QD [42]. 

 

 

Figure 2-10 Blinking effect during luminescence emission from a 2.9 nm CdSe QD [45] 
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Localized impurity or activator quantum states in the bandgap can lead to radiative emission from 

QDs. Defect states are located inside the bands and depending on their type, the state can act as a 

donor or an acceptor. Electrons or holes are attracted to these defect sites due to Coulombic 

attraction. Trapped charges or defect sites can be modeled as a hydrogenic system, where binding 

energy is decreased by the dielectric constant of the material. Depending on the location of defect 

states in the bandgap, they are categorized into shallow or deep levels. Shallow defects generally 

show radiative relaxation at sufficiently low temperatures so that carriers are not excited out of the 

defect states by thermal energy (kT). Deep levels on the other hand, are long-lived and experience 

nonradiative recombination. The initial photoexcited states in the sample are also determined by 

the excitation energy. However, this state is short-lived due to thermalization of the photoexcited 

carriers via phonon emission. A recombination event is usually orders of magnitude slower than 

relaxation to within kT of the lowest vibrational level of the excited states.  

Despite different passivation methods of QDs, defect states are formed at the surface of QDs due 

to a large surface-to-volume ratio. The concentration of the surface states depends on the synthesis 

and passivation processes. The charge carriers and excitons are trapped at surface states and the 

optical and electrical properties are generally degraded by increasing the rate of nonradiative 

recombination. However, radiative emission can originate from surface states in some 

semiconductors like ZnO nanoparticles.  

The luminescence emission of defects can be used to identify their energy. The concentration of 

defects is proportional to their emission intensity. Intensity of PL and its spectral distribution 

changes with variation of the excitation energy due to contribution from different energy levels of 

defects and the band structure of the host [42].  

2.3.5. Quantum Yield of QDs 

Fluorescence quantum yield (Q.Y) is an important figure of merit in the context of optimization 

of QDs synthesis. The quantum yield of a fluorophore is expressed as the ratio of the number of 

emitted photons to the number of absorbed photons. Depending on the fluorophore being in a solid 

or solution state, various methods have been used to measure quantum yield [46]. Quantum yield 

is determined by comparison of the integrated emission intensity from the QDs to the integrated 
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emission of a standard sample. The absorbance value of the sample and standard should be kept 

below 0.08 at the excitation wavelength. The following equation has been used to calculate Q.Y 

[47, 48]: 

𝑄𝑌 = 𝑄𝑌𝑆𝑡

1 − 10−𝐴𝑆𝑡

1 − 10−𝐴
×

𝜂2

𝜂𝑆𝑡
2 ×

𝐼

𝐼𝑆𝑡
 

(2.24) 

Where, QY and QYSt are quantum yields (St: standard), A and ASt are absorbance values at the 

excitation wavelength, η and ηSt are refractive indices of the solvents, and I and ISt are integrated 

emission areas for the QD sample and standard.  

2.3.6. Top-Down Synthesis Methods of QDs 

A bulk semiconductor is thinned to form QDs in top-down approaches. QDs with diameters of ~30 

nm can be formed using electron beam lithography, reactive-ion etching (RIE) and/or wet chemical 

etching. The shape and size of the QDs along with packing geometries can be controlled employing 

these methods. Arrays of zero-dimensional dots have also been fabricated utilizing focused ion or 

laser beams. Incorporation of impurities and structural imperfections by patterning are the major 

disadvantages of the top-down process. In dry etching, a radio frequency voltage is applied to 

reactive gas species and decomposes the gas molecules to more reactive fragments. The gas species 

has high kinetic energy that strikes the surface and etches a pattern sample. The reaction products 

are volatile. GaAs/AlGaAs QDs have been fabricated with the RIE method. The QDs were as 

small as 40 nm and a mixture of boron trichloride and argon was used as the etching gas [49]. The 

RIE process has been employed to fabricate close-packed arrays of QD semiconductors. 

QDs with high lateral precision can be fabricated with the focused ion beam (FIB) technique. The 

highly focused beam is used to sputter the surface of the semiconductor. The ion beam size 

determines the shape, size, and inter-particle distance of QDs. Ion beams with a minimum diameter 

of 8-20 have been reported. Selective deposition of a gaseous precursor, with a resolution of ~100 

nm is possible, employing the FIB technique. However, this process damages the surface and it is 

slow with low throughput. Electron beam lithography also produces QD patterns. The lithography 

process is followed by an etching or lift-off process. A high degree of flexibility for designing 

nanostructures is provided by this approach. This technique is capable of producing any shape with 
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precise separation and periodicity. It has been utilized for the fabrication of III-V and II-VI 

semiconductor QDs as small as 30 nm.  

2.3.7. Bottom-Up Approach for QD Synthesis 

The bottom-up techniques employed for synthesis of QDs are divided into wet-chemical and 

vapor-phase methods. The wet-chemical approach includes: sol-gel, hot-solution decomposition, 

electrochemistry, and competitive reaction chemistry. Molecular beam epitaxy (MBE), sputtering, 

liquid metal ion sources, and aggregation of gaseous monomers are placed in the vapor-phase 

category [42].  

Wet Chemical Methods 

Controlled precipitation from a single solution or a mixture of solutions is the basis of wet-

chemical approaches. Both nucleation and growth occur in the precipitation process. Nucleation 

can be homogeneous, heterogeneous or secondary [42].  

Hot-Solution Decomposition Process 

In this process, organometallic compounds are pyrolyied at high temperatures (~300 ̊C). The 

method was first established and discussed by Bawendi and co-workers in 1993 [14]. Alkyl, 

acetate, oxide, and carbonates of Group II elements are mixed with phosphine or bis(trimethyl-

silyl) of Group VI as the precursors. Trioctyl-phosphine oxide (TOPO, a coordinating solvent) is 

first degassed and dried at 200-350 ̊C under vacuum (1 Torr) in a three-neck round flask. For the 

synthesis of CdSe, Cadmium precursor and tri-n-octyl-phosphine (TOP) selenide are mixed in a 

dry box and injected into the flask with vigorous stirring at a temperature of ~300 ̊C. The injected 

precursors and TOPO in the flask form the QD nuclei. The QDs grow through Ostwald ripening 

which is relatively slow. The smaller QDs attach to large size QDs due to their higher free energy 

and disappear in Ostwald ripening. The process results in the slow growth of QDs at the reaction 

temperature of ~230-250 ̊C. The reaction temperature depends on coordinating agents, solvents, 

and precursors. The coordinating agent, e.g. TOPO, is used to stabilize the QD dispersion, 

passivate the surface, and provide an absorption barrier to limit the growth of the QDs. The reaction 

time and temperature control the final size of the QDs. In addition to process parameters and 

precursors, purity of the coordinating solvent controls the size and shape of the synthesized QDs. 
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Experimental studies show that TOPO with 90% purity is better for synthesis of uniform QDs than 

pure TOPO. Since the synthesis temperature is high in this process, the defects are annealed and 

QDs monodisperse in the solvent with a standard deviation about the average size of 5% [50].  

Sol-Gel Process 

This process has been employed to synthesize various nanoparticles and QDs. A metal precursor 

(generally alkoxides, acetates or nitrates) in an acidic or basic medium is solved. Nanoparticles 

dispersed in a solvent by Brownian motion are called sol. The process has three steps: hydrolysis, 

condensation (sol formation), and growth (gel formation). The hydrolysis of the metal precursor 

occurs in the medium followed by condensation to form a sol then polymerization leads to a 

network formation (gel). Although the process is simple and cost effective, it suffers from broad 

size distribution and a high volume of defects [42].  

Vapor-Phase Methods of QDs Synthesis 

In situ self-assembled structures of QDs have been grown using vapor-phase methods. The QDs 

are grown in an atom-by-atom process on a non-patterned substrate. The grown layer is often an 

epitaxial layer followed by nucleation and growth of small islands (Volmer-Weber mode-VW), or 

as small islands (QDs) directly on the substrate (Stranski-Krastanov mode-SK). The growth mode 

depends on the interfacial energy and lattice mismatch. If the deposited material has a good match 

with the substrate, the QDs grow by the SK mode. However, the sum of the interfacial energy at 

the substrate and growing layer (γ12) and the growing layer surface energy (σ1) is larger than the 

substrate surface energy (σ2), i.e. , σ1 + γ12 > σ2. In other cases, QDs formed due to strain relaxation 

required for maintaining epitaxy. The growing film breaks to isolated islands or QDs (VW mode) 

to reduce the system’s total free energy when the film is thick enough to induce a large strain 

energy. 

Molecular beam epitaxy (MBE) is another technique to deposit elemental, compound or alloy QDs 

on a heated substrate under ultra-high vacuum (~10-10 Torr). In this process, a beam of atoms or 

molecules is formed by evaporation of an aperture source. Solid sources like elemental Ga and As 

or a combination of solid and gas sources are used to form MBE’s beam. A high concentration of 

carbon may be left in MBE grown QDs due to utilization of metal-organics. Self-assembly of III-

V and II-V semiconductor QDs have been grown by the MBE method [51-53]. 
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QDs have also been grown on a substrate by physical vapor phase deposition (PVD) methods. 

Pulse ablation, electron beam heating, or resistive heating is employed to evaporate the source for 

PVD deposition. QDs can be grown in self-assembly by the chemical vapor deposition (CVD) 

technique. The reaction between the precursors occurs at a particular temperature and pressure. 

The gaseous precursors diffuse to a heated substrate and react to form a film. The byproducts in 

gas phase are removed from the chamber. Strain-induced SK or surface energy mechanisms govern 

the growth of InGaAs and AlInAs QDs using the CVD technique. QDs grow in a self-assembly 

manner without a template using the PVD technique. However, size fluctuation of grown QDs 

results in inhomogeneous optoelectronic properties [42].  

2.3.8. Organic Surface Passivation of QDs 

Colloidal QDs are capped with organic molecules in order to obtain monodispersion in solvents. 

Organic ligands on the QD surface provide colloidal suspension and the ability to bio-conjugate 

the QDs. A suitable organic ligand should bond with surface atoms of QDs. The most widely used 

ligands include phosphine (e.g., tri-n-octyl phosphine oxide-TOPO) or mercaptan (-SH). Coverage 

of surface atoms with organic ligand may be spatially hindered since most of the ligands are 

distorted in shape and are larger than a surface site. Simultaneous passivation of anionic and 

cationic sites using organic ligands is another issue, and is a very complex task. Some dangling 

bonds at the surface cannot be passivated by organic agents. Furthermore, the organic ligated QDs 

are not photo-stable. The ligands bonding at the interface is generally weak which results in 

passivation failure and new surface states formation under UV illumination. These surface states 

are sites of luminescence quenching and preferential photodegradation [42].  

2.3.9. Inorganic Surface Passivation of QDs 

As the particle size is reduced, the surfaces play an important role in nanocrystal structure and 

optical properties. High surface-to-volume ratio of small QDs results in surface traps, which 

influences PL properties like emission efficiency, spectral shape, position and dynamics. 

Interaction of QDs with their chemical environment also occurs through their surfaces. Surface 

chemistry of colloidal QDs (CQD) and consequently their physical and chemical properties can be 
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controlled, which is their main advantage over their epitaxial QD counterparts. Inorganic surface 

treatments, similar to organic surface treatment, can improve or modify QD properties. QDs coated 

with epitaxial layers of an inorganic material (shell) showed an order of magnitude enhancement 

in PL efficiency as compared to organic-capped QDs. The quantum efficiency enhancement is due 

to improved coordination of surface-unsaturated or -dangling bonds, as well as enhanced electrons 

and holes confinement to the core QD. When the bandgap of the shell material is larger than the 

core semiconductor, the confinement of electrons and holes to the core is increased. CdSe QDs 

have been coated with either ZnS or CdS as the shell layer.  

The best result of surface passivation of QDs by shell layer is obtained if the initial size distribution 

is narrow. The stability of the QD core during and after the growth can be monitored using 

absorption spectra, since absorption spectra are unchanged by surface properties. Absorption 

redshifting should not occur if the conduction band offset between the core and the shell 

semiconductor is large enough to restrict the electron wave function to the core. Observation of a 

redshift in absorption spectra of core/shell QDs with a large conduction band offset indicates core 

growth during shell synthesis. If the shell components are mixed or alloyed into the core interior, 

the absorption band edge shifts to intermediate energy of the respective materials comprising the 

alloyed nanoparticle [42].  

PL spectra also give insight on the quality of shell passivation. Presence of a broad tail or hump to 

the red side of the sharp band edge emission indicates the existence of deep trap emission and poor 

passivation. Successful shell passivation results in sharp band edge emission. A schematic 

illustration of organically and inorganically passivated QDs is depicted in Figure 2-11.  
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Figure 2-11 Schematic illustration of (a) an organically capped QD and (b) an inorganically capped 

QD (core/shell). (c) the energy band diagram of the core/shell QD [43] 
 

2.4. Quantum Dot-Sensitized Solar Cell 

Solar energy is one of the alternative energies to oil and coal which can help the reduction of global 

warming. Three generations of photovoltaic cells exist to date; namely first, second and third 

generation solar cells. Each category is based on the underlying technology applied in the 

fabrication of these cells. The first generation cells are single or polycrystalline p-n junction silicon 

which has an 85% market share of photovoltaic (PV) convertors. The production of these cells 

costs more than conventional energy sources due to high purity requirements, high fabrication 

temperature, and the large amount of material consumed for cell fabrication. Thin films, 

sandwiched between a conducting substrate and a back electrode, are the second generation. PV 

cells based on CdTe thin film have almost 15% of the market share. Other PV thin film cells like 

CuInS, CuInSe, CuInGaSe, amorphous and nanocrystalline silicon have also been 

commercialized. There is a thermodynamic limit for light to electric power conversion, known as 

the Shockley-Queisser limit, for both first and second generation solar cells. The limit is due to the 

loss of photon absorption with energies lower than the bandgap energy and conversion of photon 

energy to heat when the absorbed light has a higher energy than the bandgap.  Third generation 

solar cells can have higher conversion efficiency as they are based on new PV concepts like multi-

junction cells, optical up- and down convertors, multiple carrier generation by impact ionization, 

impurity band cells, etc. [54].  
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For the past decade a large amount of research has been carried out on quantum dot (QD) properties 

and applications. Because their bandgap energy can be changed by altering their size, they can 

absorb light over a wide range. Consequently, QD-based absorbers can be applied in third 

generation multi-junction PVs to improve the efficiency [54].  

The working principle of QD-based PV cells lies on quantum-confined excitons in the absorber 

material, providing tuneable and size-dependent absorption spectrum. QD-solar cells (QDSC) are 

composed of a layer of QDs embedded in a wide bandgap material [54]. QDSCs have similarities 

and differences to dye-sensitized solar cells (DSSC) and extremely thin absorber (ETA) cells 

which will be discussed. The absorber layer in a layered QD cell is placed between electron- and 

hole- conductors [54].  

A large surface area is supplied by widebandgap nanostructured semiconductors where a thin layer 

of absorbers are embedded in the nanostructure. Tens to hundreds of QD monolayers provide a 

light pass that can compensate the low optical density of QDs. A similar concept is applied to 

DSSCs and ETA cells as well. Power conversion efficiencies above 10% have been observed with 

DSSCs [54].  

Wide bandgap semiconductor (WBSC) structures like nanowires (NW) nanotubes, and 

mesoporous films have been utilized as nanostructures. These nanostructures are sensitized with a 

monolayer of QDs and the space between the QD layer and the nanostructure is filled with a redox 

electrolyte (Figure 2-3). After light absorption, the excited electron goes to the conduction band 

(CB) of the WBSC and the electron loss in the QD is compensated by the redox electrolyte. 

Charges and oxidized redox species diffuse to the front electrode (a transparent conducting oxide 

(TCO)) and the counter electrode (CE), respectively [54]. 
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Figure 2-12 Schematic representation of QDSCs based on a) a mesoporous, wide bandgap 

semiconductor film b) NWs and c) inorganic nanotubes. The QD-sensitized nanostructures are 

immersed in redox electrolyte (EL), and the circuit is closed by a counter electrode (CE). The latter is 

usually illuminated through a transparent counter electrode (TCE). d) Energy-band diagram showing 

the conduction- (CB) and valence-band (VB) edges of the wide bandgap semiconductor (wbSC), the 

ground and excited level of the QD and the redox potential Eredox. Upon illumination, electrons are 

injected from the excited QD state into the wide bandgap semiconductor, while the oxidized QD is 

recharged by the redox electrolyte [54] 

 

Because the absorber layer in QDSSCs, DSSCs, and ETA cells is very thin, there is no extended 

space charge region, unlike p-n junction solar cells. The electrostatic potential distribution across 

DSSCs in dark working conditions is still being explored. Studies of DSSCs, made of mesoporous 

TiO2 film and an organic electrolyte consisting of I−/I3
− redox couple, indicated that band edge 

movement under light illumination can be neglected and the variation of electrostatic potential is 

seen close to TCO/TiO2 interface. The electron quasi Fermi level EFn shifts toward the CB edge 

under light injection, as the concentration of electrons in the TiO2 film rises. However, the redox 

potential Eredox can be considered constant because of a high concentration of redox species in the 

cell (Figure 2-3(d)). The energy difference EFn- Eredox is equal to open circuit voltage Voc under 

open circuit conditions when electron injection and recombination are in balance. If the sunlight 

is not concentrated, the EFn shift into the CB is not probable and the maximum Voc is equal to the 

CB edge ECB and Eredox of the electrolyte. The estimated upper limit for a TiO2 based DSSC, with 

an electrolyte consisting of  I−/I3
− , is 1.1 eV. This is higher than experimental measurements (700-

800 mV). Since recombination kinetics at TiO2/electrolytes and FTO/electrolytes are different, at 

Voc a gradient of EFn within the mesoporous film does exist. As a result, an attempt is made to 

cover the FTO surface with a wide bandgap blocking layer. In a ZnO NW-based DSSC, high 

doping density was applied to form substantial band bending in larger rods, producing 
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photovoltage by accumulation of electrons in the space-charge layer at the surface of the NWs 

[54]. 

Working principles of QDSSCs have been discussed less than DSSCs and many conclusions made 

for DSSCs can be applied to QDSSCs. Understanding the working principles of QDSSCs requires 

considering a few parameters such as various materials used for QDSSCs, structural differences 

and lack of counter electrodes for certain electrolytes. The pH of aqueous electrolytes can affect 

the energy level alignment of oxide semiconductors and change their band edges. In addition, the 

density of surface traps can differ based on electrolyte pH, and electron accumulation in those 

states causes a photoinduced band edge shift; while organic electrolytes consisting of I−/I3
− do not 

show such an effect on band edges. The recombination kinetics and the cell performance can also 

be affected by the QD coverage of the nanostructured electron conductor [54]. 

To summarize, QDSCs and DSSCs work is based on similar principles, however other effects like 

band edge shift can be observed in QDSCs, depending on the type of materials used in the 

fabrication of the cell [54]. 

To avoid sealing difficulties in the large scale application of DSSCs and QDSSCs, the liquid 

electrolyte should be replaced by a solid state hole conductor. Furthermore, the highest 

photovoltages have been reached for solid state based DSSCs. The main problem of solid state 

devices is high shunt current because of a large recombination current at TCO/solid hole conductor 

interface. To prevent the recombination, the FTO electrode should be covered by compact wbSC 

layers. Contrary to liquid-based devices, solid state cells will exhibit higher efficiency when a good 

blocking layer is applied [54]. 

2.4.1. QD Sensitization Methods 

The photoelectrodes in a QDSSC structure can be sensitized using various techniques. In this 

section, the most common techniques for developing low cost QDSSCs are reviewed. The QDs 

have been sensitized onto the photoelectrodes through two strategies: (a) in-situ synthesis of QDs 

on the surface of the electrode, (b) attachment of pre-synthesized colloidal QDs (CQD) on the 

electrode surface. Chemical bath deposition (CBD), successive ionic layer adsorption/reaction 

(SILAR), and electrochemical deposition are the techniques for the former strategy. The latter 
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strategy includes linker molecules, direct absorption, electrophoretic deposition, and spray 

pyrolysis. 

A high control of QD properties (crystallinity, size, bandgap, distribution) can be achieved using 

CQDs, however low QD loading was obtained in the first reports. Directly synthesized QDs, on a 

photoelectrode surface have resulted in better performance than the indirectly sensitized structures, 

due to higher QD loading and light harvesting efficiency. Direct attachment of QDs to the 

electrodes provides better electrical coupling and lower charge transfer resistance. However, cells 

fabricated using CQDs have higher potential for development of efficient devices. Directly grown 

QDs have a broader distribution in size and poorer crystallinity than the CQDs. 

CQDs can be attached to the electrodes with or without linker assistance. The linker assisted 

attachment of QDs provides higher coverage and loading than the direct attachment approach. The 

linker molecules or ligands generally have functional groups like carboxylic, thiol, or amine groups 

to be attached on one side to the QDs and the other side to the semiconductor electrode. These 

linkers play an important role in the power conversion efficiency of the cells. Agglomeration can 

also be avoided by using ligated CQDs. The long dipping time of sensitization is one drawback of 

this technique. The loading time can be significantly reduced employing an electrophoretic 

technique, where an electric field is applied to two electrodes dipped in a CQD solution. 

In the CBD method, QD deposition on various substrates (conduction or nonconducting) is 

achieved at an elevated temperature. It is a simple method for QD deposition and the low growth 

temperature allows for size control over the synthesized QDs. Although surface coverage by the 

CBD method is effective, it generally results in a nanocrystalline film pattern rather than 

nanoparticles. 

The SILAR method is an emerging technique for deposition of both binary and ternary QDs. It is 

a low cost simple method for the large area deposition of QDs. It can be applied to all types of 

materials at low temperatures, avoiding substrate corrosion and oxidation. In this method the 

average particle size is controlled by the number of cycles [55]. 



42 
 

2.4.2. ZnO NW-Based QDSSCs 

QDSSCs based on ZnO NWs have been reported. The sensitization of different QDs (CdS, CdSe, 

CuInS2) has been carried out through direct and indirect attachment. Although efficiencies as high 

as 4% have been reported for direct attachment of QDs to ZnO NWs by the SILAR and CBD 

techniques [56, 57], the efficiency gained for devices fabricated by indirect attachment of QDs 

(linker assisted) is still below 1% [58-61]. This low efficiency in linker/ligand-assisted based cells 

is due to low QD loading into the ZnO NW structure and unknown interactions at the interface of 

ligands/NWs. The interaction of various ligands on the ZnO NWs have not been studied 

comprehensively. The ligands that have efficient attachment and wettability with TiO2-based 

QDSSCs or DSCCs are not compatible with the ZnO structure due to its lower stability than TiO2. 

In a recent report, Mercaptophosphonic acid is introduced as an efficient ligand for QD 

sensitization of ZnO NWs. However, the fabricated devices based on this ligand still have low 

efficiency (0.46%) [62]. Therefore, in-depth study of the interactions and wettability between 

ligated QDs and a ZnO surface is required. 

Furthermore, charge carrier transfer dynamics at the heterojunction of the wide bandgap 

semiconductors/QDs is not fully understood. The effect of a hole transporting medium needs to be 

considered on the charge carrier transfer rate. Most existing reports have not considered this effect 

on the electron transfer rate; and the non-radiative Auger recombination has been confused by the 

electron transfer [63-69]. Comprehensive studies are also required in this area in order to have a 

better understanding of the underlying physics and consequently engineer the device performance. 

2.5. UV-Blue LEDs 

Blue light emitting diodes (LED) and violet laser diodes were effectively produced when the 

quality of crystal growth of GaN improved substantially. These new robust devices provided a 

new frontier in the optoelectronics field [70].  

Group III nitride semiconductors are suitable for making visible to short wavelength and UV 

region optical devices. Growth of high quality crystals with controlled conductivity is essential to 

develop such devices. The difficulty of growing high quality epitaxial crystals of GaN with 

controllable conductivity delayed the fabrication of LEDs for many years [70]. 
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In 1986 Akasaki and his coworkers were able to achieve significant improvement in the crystalline 

quality of GaN and consequently p-type conduction [71]. They could control the p-type 

conductivity in nitrides treated with low energy electron beam irradiation (LEEBI) in 1989 [72]. 

The first blue/UV LED was fabricated the same year by this group. In 1990, room temperature 

stimulated emission was achieved, essential for laser action. These achievements encouraged many 

scientists to put forth intense efforts in advancing the devices leading to commercialization [70].  

Heteroepitaxial growth of GaN was adapted in the early days due to difficulty growing large bulk 

single crystal GaN. Single crystal GaN was developed applying hydride vapor phase epitaxy 

(HVPE) on a sapphire substrate. Unlike other III-V compounds, such as InP and GaAs, growing 

crack-free flat surfaces of GaN was difficult. Furthermore, high residual donor concentration 

(1019 cm−3) resulted in difficulty achieving controllable p-type conductivity in GaN. Akasaki 

developed a metal-insulator-semiconductor-based (MIS) blue LED using the molecular beam 

epitaxy (MBE) method with a 0.12% efficiency which was the highest at the time. However, MBE 

was a slow method to grow GaN film with acceptable quality. On the other hand HVPE is a fast 

growth method that results in poor crystalline quality and film thickness controllability. 

Consequently, these methods were not suitable for fabricating high quality devices. However, 

metal organic phase epitaxy (MOVPE) has a growth rate between the other two epitaxial methods 

and seemed suitable for developing nitrides on highly mismatched substrates. Besides, the alloy 

composition and impurity doping can be controlled easily by changing the flow rate of source 

gases in the system [70]. 

High quality single crystal GaN was developed employing a low temperature buffer layer in an 

MOVPE chamber. Growth on a low temperature AlN buffer layer resulted in a two order of 

magnitude decrease in residual electron concentration in GaN film. Electron concentration was 

even decreased to 1015 cm−3 and electron mobility increased to several hundred 𝑐𝑚2𝑉−1𝑠−1. 

Using a buffer layer also resulted in lower crystal defects, such as dislocations [70]. 

2.5.1. P-type Conduction in GaN 

Many groups attempted to achieve p-type conduction in GaN doped with Zn but were not 

successful. In 1987, the Akasaki group found that the zinc-related photoluminescence emission 
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profoundly increases when the high quality Zn-doped GaN grown on an AlN buffer layer was 

irradiated with an electron beam during cathodoluminescence (CL) measurements. The activation 

of acceptors was called the LEEBI effect; however, it did not result in p-type conduction. Later 

on, it was realized that Mg is a shallower acceptor than Zn since its electronegativity is between 

Zn and Ga. Therefore, high quality GaN crystal was doped with Mg and irradiated with an electron 

beam. As a result, low resistivity p-type conduction was achieved in GaN for the first time in 1988. 

Consequently, the world’s first p-n junction blue/UV LED was fabricated with satisfactory I-V 

characteristics.  

The LEEBI effect mechanism is not clear yet. A Columbic explosion model is proposed as a 

possible mechanism. Irradiation of a material with electrons, having at least 6 kV of energy, 

generates many Auger electrons, resulting in electronic configuration changes (columbic 

explosion) in the irradiated part. As a result, atoms that are weakly bonded can move. Therefore, 

when GaN is irradiated, Mg-H bonds dissociate and result in Mg activation as an acceptor.  

Mg activation was later achieved using other methods like thermal annealing, UV and 

electromagnetic wave radiation at elevated temperatures below 400℃ [20-22].  

In order to have p-type conductivity in GaN, the residual donors should first be reduced and the 

Mg acceptors need to be activated by releasing hydrogen. Hydrogen diffuses into the film from 

the source gases in the MOVPE process [70]. 

2.5.2. N-type Conduction in GaN  

Silicon has been used as the n-type dopant in the structure of GaN. However, its conductivity was 

not satisfactory due to the high density of residual donor in GaN films grown without using a low 

temperature buffer layer. After applying AlN as a buffer layer for the growth of GaN, high 

crystalline quality of GaN was maintained, resulting in controlled n-type conductivity as well. SiH4 

gas has been used in the MOVPE process as the source gas for Si doping. Today, it is a method 

used worldwide to control n-type conduction [70].  

All of these breakthroughs, development of high quality GaN, conductivity control of nitride- 

based film, and the p-n junction LED invention, have led to intense research and publication in 
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this area and consequently commercialized high-brightness blue LEDs, long-lifetime violet LDs 

and high speed nitride-based transistors [70].  

2.5.3. Progress in Nitride-Based LEDs and Violet LDs 

The highest external quantum efficiency, 𝜂𝑒𝑥𝑡, was 0.1% before the breakthroughs. In 1992, the 

external efficiency achieved 1.5% and the first LED was commercialized with an external 

efficiency of 2.7% in 1993 [70]. 

To increase the blue LED and violet LD performance, GaInN was developed as an active layer. 

The primary blue LEDs based on GaInN alloy in double-heterostructure (DH) devices functioned 

via donor and acceptor pair emission instead of band edge emission due to low crystalline quality. 

Achieving high quality GaInN/GaN quantum well (QW) and multiple QWs (MQW) resulted in 

dramatic band edge emission. The structure is currently applied as the active layer in blue LEDs. 

Today, blue LEDs made of GaInN/GaN MQW exhibit 𝜂𝑒𝑥𝑡 of 36% and brightness better than 

incandescent lamps [70].  

Threshold power, Pth, for stimulated emission from nitrides was very high for the primitive devices. 

Before 1986, stimulated emission with optical excitation was only possible at low temperatures 

and high Pth. In 1990, Akasaki et.al achieved room temperature stimulated emission from a GaN 

film fabricated on an AlN buffer layer. They also showed that Pth will significantly decrease if 

DHs or separate-confinement heterostructures (SCH) are used. This reduction in Pth is due to the 

decrease in the refractive index of nitrides with increasing bandgap energy [70]. 

It is demonstrated that the band edge emission from GaInN/GaN MQW increments significantly 

when the width of the well is smaller than the Bohr radius of GaN. This phenomenon is due to 

suppression of the quantum-confined Stark effect (QCSE) caused by the presence of a large 

piezoelectric field in the GaInN well.  

2.5.4. ZnO NW-Based LEDs 

Wide bandgap semiconductors like ZnO are suitable for UV-Blue LED and lasers. In order to 

achieve sufficient optical gain for lasing action in an electron-hole plasma (EHP) in wide bandgap 
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materials, the carrier concentration needs to be high. Typically, a high lasing threshold is required 

for the EHP process which is a common mechanism for conventional laser diode operation. 

Excitonic recombination is a more efficient radiative alternative process to EHP in 

semiconductors. Semiconductors show low threshold stimulation emission through excitonic 

recombination. Efficient excitonic laser action at room temperature can be achieved in 

semiconductors with exciton binding energy much greater than thermal energy at room 

temperature (26 meV). As a result, ZnO is a good candidate with an exciton binding energy of 60 

meV, which is substantially higher than that of ZnS (22 meV) and GaN (25 meV) [76]. 

Low dimensional semiconductor nanostructures can further reduce the threshold as quantum size 

effects yield a substantial density of states at the band edges, increasing radiative recombination 

due to carrier confinement [76].  

Due to difficulty with p-type doping of ZnO, fabrication of homojunction ZnO diodes has been 

impeded. Instead, n-ZnO/p-GaN heterojunction structures are suggested for optoelectronic device 

applications. The crystal structure of GaN has a low lattice mismatch (1.9%) with ZnO lattice. 

Although heterojunction devices have lower efficiency than homojunction devices since the 

energy barrier formed at the junction interface reduces carrier injection efficiency due to the large 

band offset. Nanosized junctions can solve this issue by increasing the carrier injection rate at 

nanocontacts [77]. 

2.6. Conclusion 

In this chapter, a review on ZnO structure and properties was presented. ZnO is a wide-bandgap 

semiconductor with numerous applications particularly in optoelectronic devices. Afterwards, 

various techniques of NW growth and the thermodynamics and kinetics theories of NW synthesis 

were discussed. Quantum dot structural and optical properties along with their synthesis techniques 

were demonstrated as well. Then, the structure of QDSSCs and UV-blue LEDs were illustrated. 

The latest reports on the application of ZnO NWs in the architecture of these two devices were 

also presented. This research addresses the synthesis and characterization of ZnO NWs, along with 

the electrical and optical properties of ZnO NW interfaces with QDs for optoelectronic 

applications. In the following chapter, growth methods of ZnO NWs and their structural and 

optical characterization will be expressed.  
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Chapter 3:  Experimental Results on Zinc Oxide NW Growth 

and Characterization 

Zinc oxide is a wide-bandgap semiconductor with great potential applications in various 

optoelectronic devices such as chemical and gas sensor, UV-light emitter, piezoelectric 

transducer, spin-functional devices, and surface acoustic wave devices. The wide bandgap of 

ZnO makes it suitable for photonic applications in a UV or blue spectral range. Efficient 

excitonic emission is observed in ZnO due to its high exciton-binding energy, 60 meV, at room 

temperature. Furthermore, doping of ZnO with transition metals makes it promising for 

spintronic applications [2].  

ZnO nanostructures have attracted intense interest as they can be synthesized by a variety of 

methods in very different morphologies. There are various morphologies of ZnO 

nanostructures such as nanowires, nanotubes, nanotetrapods, nanoribbons/belts. The 

nanostructures have been grown by methods like thermal evaporation, laser ablation, 

hydrothermal synthesis, metal-organic vapor phase epitaxy (MOVPE), and template-based 

synthesis. Solution-based methods are low temperature, inexpensive, simple and scalable, thus 

attracting more interest in developing this material [2, 78].  

In this Chapter, growth and characterization of ZnO NWs via two different methods will be 

discussed. In the first part, ZnO nanowires synthesized using the chemical vapor deposition 

(CVD) method will be presented. Subsequently, the second method of fabrication, 

hydrothermal synthesis, along with their morphology and optical characterization will be 

illustrated. Finally, experimental and characterization of n-type doping of ZnO NWs will be 

presented.  

3.1. ZnO NWs Fabrication via CVD Method 

The nanowires of ZnO were fabricated by applying the CVD method using a VLS mechanism. 

A thin film of gold as the catalyst layer was deposited on Si (100) substrates. Subsequently, 
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the nanowires were grown on the gold film through a carbothermal reaction. In the following 

sections, details of the fabrication procedure will be explained. 

Following the synthesis, the grown nanostructures were characterized employing scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry 

(XRD), and photoluminescence (PL) spectrophotometry.  

3.1.1. Substrate Preparation 

Step (1) 

In order to remove organic and inorganic contamination on the Si wafers, they were cleaned using 

the RCA cleaning process. First, the wafers were sonicated in acetone and rinsed in DI water to 

remove organic contamination. Second, they were immersed in an RCA1 solution (DI water: 

ammonium hydroxide: hydrogen peroxide 5:1:1) at 80ºC for 13 minutes and rinsed in DI water. 

Third, the wafers were inserted in an RCA2 solution (DI water: chloric acid: hydrogen peroxide 

5:1:1) to remove metal ions at the same temperature and time period as the RCA1 process. Finally, 

the substrates were blow-dried by nitrogen gas. 

Step (2) 

A thin layer of gold was deposited on the cleaned Si wafers as the catalyst layer. A thermal 

evaporation system (Cressington 308R) was employed to deposit the catalyst layer. High purity 

gold (99.99%) was evaporated under application of a160 A current at a pressure of 10-7 mbar. After 

150 seconds of evaporation, a film with a thickness of 30-40 nm was deposited on the substrates. 

3.1.2. Experimental process of ZnO Nanowire Growth Using CVD Technique  

ZnO nanowires were synthesized in a low pressure chemical vapor deposition (LPCVD) system 

under carrier gas flow. Since the growth process was developed in an LPCVD system (Figure 3-

1) which was built for poly-silicon and nitride deposition, the system was reconfigured and 

different growth conditions were studied to reach an optimum point for ZnO NW growth. A 

mixture of ZnO and carbon powder with different ratios (1:4 molar ratios and 1:1 weight ratio) 

was used for the precursors. The precursors were grounded and put in a quartz boat then placed in 



49 
 

the horizontal quartz chamber of the CVD machine. The Si wafers were placed at various positions, 

such as downstream of the chamber at lower temperatures or above the boat of source material. 

Precursor temperature was 1000ºC, while the wafer temperature was varied from 600 ºC to 1000 

ºC. The deposition duration varied from 10 minutes to 1hour. The chamber pressure altered from 

30 Torr to 200 Torr to verify the effect of zinc partial pressure on the morphology of the grown 

ZnO nanostructures. The schematic of experimental setup is shown in Figure 3-2. 

A large number of experiments were carried out to achieve the growth of ZnO NWs. Initially, it 

was difficult to control the process and obtain repeatable conditions, as the reactor was designed 

for other purposes. A significant amount of optimization steps were required in order to obtain 

controllable and repeatable processes. During the experiment period, the setups were modified a 

few times. At the start, the growth was carried out under nitrogen flow. Later, it was found that 

adding 2% oxygen facilitates NW growth. In the following sections, the results of the experimental 

conditions that led to NW growth will be discussed.  

 

 

Figure 3-1 Image of the LPCVD system used for growth of ZnO NWs 
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Figure 3-2 Schematic illustration of experimental setup in the quartz tube furnace of LPCVD system 

3.1.3. Explanation of Growth Mechanism of ZnO NWs using CVD Method 

During the process, Zn vapor is produced from the source materials by the following reaction: 

ZnO(s) + C(s) → Zn(g) + CO(g) (3.1) 

The following reactions will also happen at the source: 

2C(s) + O2(g) → 2CO(g) 

2CO(g) + O2(g) → 2CO2(g) 

(3.2) 

(3.3) 

Vapor-phase Zn molecules are transported to the substrate and are absorbed by the gold particles. 

The diffusion of zinc into the gold particles leads to alloying of gold by zinc [79]. Then, zinc will 

precipitate out of the alloy particle when it is supersaturated. Subsequently, the precipitating zinc 

is oxidized, leading to the formation of NWs. This growth mechanism is known as the vapor-

liquid-solid (VLS) mechanism [80, 81].  

2Zn(l) + O2(g) → 2ZnO(s)  (3.4) 

According to the Ellingham diagram, displayed in Figure 3-3, reaction (3.1) occurs at temperatures 

above 970ºC. The amount of vapor-phase zinc released by reaction (3.1) depends on the reaction’s 

temperature. Therefore, at constant temperature conditions, the release rate of Zn vapor can be 

assumed to be constant under various chamber pressures [79]. Figure 3-3 depicts the Ellingham 

diagram showing free energy and temperatures of zinc and carbon monoxide reactions. 
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Figure 3-3 Ellingham diagram, showing free energy and temperatures of zinc oxide  and carbon 

monoxide reactions, that was used to determine the reaction temperature of precursors  for the ZnO NW 

growth in CVD system 

 

A gray/white film was deposited on the substrates at the end of the process. Figures 3-4(a) and (b) 

show the SEM images of ZnO NWs grown at a pressure of 30 Torr. The chamber pressure was 



52 
 

reduced to provide the required zinc supersaturation for NW nucleation and growth. The grown 

NWs have a diameter size distribution between 50-200 nm and a length of a few microns. A TEM 

image of a single NW is shown in Figure 3-4(c), in which a gold nanoparticle can be seen at the 

tip of the NW. The EDX line-scan analysis (Figure 3-4(d)) proves that the tip is composed of gold 

with a small amount of zinc and oxygen diffusion in it and the wire consists of zinc and oxygen. 

Contrary to assumed VLS growth mechanisms of ZnO NWs, the catalyst particle is not an alloy 

of Au-Zn which implies another growth mechanism is governing the ZnO NW growth. Besides, 

oxygen is not soluble in gold, neither in the solid nor the liquid state. Consequently, oxygen cannot 

diffuse in the catalyst to reach the interface. The VLS growth, as discussed in Chapter 2, proceeds 

by supersaturation of the liquid catalyst with the growth material. An alloy of the growth material 

and the catalyst is formed during the growth; which also exists subsequent to the cooling process. 

Therefore, valuable information on the growth mechanism can be found through chemical 

composition analysis of the catalyst [82].  

Studies on the nucleation and growth mechanism of III-V compound semiconductors, like GaAs 

and InAs NWs, revealed that the solubility of As in the Au catalyst is very low. It was also 

suggested that the growth occurs via a solid diffusion mechanism that is different from VLS. These 

findings imply that the growth mechanism of compounds can deviate from the standard VLS 

growth of elemental semiconductors. Alternative models like surface diffusion have been 

suggested based on thermodynamic and kinetic studies [83].  

As mentioned earlier Au particles contain a very low amount of Zn element hence, the interior of 

the particle is solid at the growth temperature. However, a thin liquid alloy film is formed at the 

surface of the catalyst particles. Another proof of surface alloying is the non-faceting shape of the 

Au particles after cool down, that is the result of isotropic surface tension produced by the liquid 

alloy film. A further reason for the existence of a liquid film on gold particles is the surface melting 

of the pre-melting phenomenon. Nanoparticles of various metals have shown this pre-melting at 

temperatures well below the bulk melting point due to the extreme surface curvatures [84].  
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Figure 3-4 (a) and (b): SEM images of ZnO NWs, (c): TEM image of a single NW, (d): EDX line-scan 

analysis of the NW from the gold particle to the NW’s body (the NW in image (c)) 

 

Zinc concentration gradient at the growth interface is the driving force for Zn diffusion either 

through bulk or liquid at the surface. The diffusion coefficient of Zn in gold is 7.4×10-13 m2s-1. 

There is no data available on the diffusion coefficient of Zn in the Au-Zn liquid alloy; however, 

the diffusion coefficient is in the range of 10-8 m2s-1 for elements in the liquid phase. As a result, 

Zn will preferably reach the growth interface, by surface liquid diffusion, due to the large 

difference in the diffusion coefficients. The path for surface and bulk diffusion is similar and 

independent of the starting point.  
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Figure 3-5 Schematic illustration of zinc atoms diffusion path on gold surface and growth of ZnO NW at 

the ledges at gold/vapor/ZnO interface 

 

The length increase of the NWs occurs via atomic scale nucleation and growth where Zn atoms 

are supplied by a catalyst surface region and oxygen from the vapor. The (0001) zinc terminated 

face is the fast growing face in contact with gold, favorable nucleation site. The prism side faces 

do not thicken during the growth. Nucleation of new layers starts at the interface of the three faces: 

solid ZnO, vapor, and the catalyst liquid surface. In addition to zinc capturing, gold also acts as a 

catalyst to weaken the double bonding of oxygen and facilitate oxygen dissociation. Consequently, 

the activated oxygen molecules will diffuse to the Au-ZnO interface to react with incoming zinc 

atoms at the appropriate nucleation sites. The reacting atoms will attach to preferable sites of steps 

or kinks, where two steps meet at the interface, similar to attachment of ad-atoms at free surfaces 

of growth face (Figure 3-5). The size of ZnO4 tetrahedron, equivalent of c/2 of the ZnO unit cell, 

may be the minimum height of the growth ledge. Figure 3-4(c) shows a flat interface at Au-ZnO, 

which means the lateral ledge growth for completion of a ZnO layer is faster than the nucleation 

of a new ledge at the interface. Fast diffusion of species along the Au-ZnO interface is required to 

meet this condition. Since noble metals and oxides have weak chemical bonding, zinc and oxygen 

atoms preferably diffuse at the Au-ZnO interface. In addition, interfacial energy depends on the 

interface geometry or orientation relation and consequently the atomic structure. When Au crystals 

are not in a special orientation with the growing ZnO crystal, general heterophase interfaces are 

created. This is statistically the most probable situation. As a result, high-indexed planes of the 

metal, with only a small number of atoms, are in contact with the oxide crystal [85].  
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If the interface of the oxide with the catalyst is bowl-shaped, it is proposed that such geometry is 

created when new ledges nucleate on top of the existing one before the lateral growth of the ledges 

completes. A hindered diffusional transport of species can cause this growth mechanism. If 

nucleation occurs only at the outer rim of the metal particle, oxide nanotubes may grow. The bowl-

shaped and faceted interface is formed because of the special crystallographic orientation 

relationship between the ZnO and Au particle causing various transport properties at the interfaces 

[83]. 

3.1.4.  Structural Characterization of Grown ZnO NWs  

The high resolution TEM (HRTEM) images of grown NWs show perfect single crystal structures 

(Figure 3-6). The selected area electron diffraction (SAED or SAD) pattern is displayed in the 

inset. The dot SAED pattern of the NW confirms each NW is a single crystal. 

 
 

Figure 3-6 (a) TEM image of a few NWs, the inset is the SAD image of the circled NW. (b) HRTEM 

image of a NW. Atomic rows can be seen in the figure and indicates a highly crystalline structure. 

 

A couple of experiments were carried out at higher chamber pressures in the range of 100- 200 

Torr. Straight and randomly aligned NWs with a diameter of 50-100 nm and length of several 
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hundred nanometers to a few microns can be observed in SEM images of the samples synthesized 

at 150 Torr (Figure 3-7). A noticeable difference in the SEM and TEM structural results for 

samples grown at pressures between 100 to 200 Torr was not observed. They have almost the same 

morphology and crystal structure. The growth for all the samples is along [001] direction and all 

have NWs with perfect crystalline structures. The samples synthesized at pressures higher than 

100 Torr show shorter NWs and lower surface density coverage as compared to the ones 

synthesized at 30 Torr. This is due to the lower partial pressure of zinc gas in the chamber. As a 

result, the lower the partial pressure, the lower the growth rate is. 

Figure 3-8(a) illustrates the TEM image of a NW synthesized at 150 Torr. Figure 3-7(b) shows the 

SAED pattern which indicates the NW is a single crystal. The HRTEM image (Figure 3-4(c)) 

shows a perfect crystalline structure with a lattice plane spacing of 5.2 𝐴° along the wire axis, 

indicating it grew along [001] direction, which is the fastest growth direction for hexagonal ZnO 

[86].The lattice plane spacing in the other direction is 2.8 𝐴° which represents (100) planes. 

  

Figure 3-7 SEM images of ZnO NWs on Si substrate synthesized at 150 Torr (a) top (b) 45º tilted view 
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Figure 3-8 (a) TEM image of a single NW grown at 150 Torr (b) SAD pattern of the NW (c) HRTEM 

image of a NW, showing atomic rows and growth direction 

 

  

Figure 3-9 (a) TEM image of NWS fabricated at 200 Torr. Inset is the SAD pattern of the indicated 

wire (b) HRTEM of the NWs shown in (a) 

  

TEM image of another sample synthesized at 200 Torr pressure is displayed in Figure 3-9. It can 

be observed that the crystal structure and growth direction are the same as previous results. 
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3.1.5. X-ray Diffraction Characterization of Grown ZnO NWs 

The X-ray diffraction patterns of ZnO NWs synthesized at two different pressures are shown in 

Figure 3-10. The spectrum confirms the existence of a ZnO phase in the samples. The XRD peaks 

are indexed to the zincite structure of ZnO and gold by Joint Committee on Powder Diffraction 

Standards (JCPDS) card number 36-1451 and 4-0784 respectively.  

 

 

Figure 3-10 X-ray diffraction spectrum of ZnO NWs grown at 150 and 200 Torr 

 

The EDX analysis of the NWs demonstrates that the wires are comprised of zinc and oxygen 

elements (Figure 3-11). The quantitative EDX reveals oxygen deficiency in the structure.  
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Figure 3-11 EDX spectrum of a single nanowire 

 

3.1.6. Synthesis of ZnO NWs on a Pre-Sputtered ZnO film 

To verify the effect of the seed layer, a couple of samples were synthesized on Si wafers which 

were pre-sputtered with ZnO films. The sputtered film thickness was 180 nm and it had an 

amorphous structure. ZnO NW synthesis was accomplished under the same conditions as stated 

above. The precursor temperature was 1000 °C and the wafer was placed on top of the precursor 

boat. The synthesis was carried out at 150 Torr under N2+ 2% O2 gas flow. The sample was kept 

at the maximum temperature for 1 hour. The SEM image of the grown structure is displayed in 

Figure 3-12. As it can be seen, NWs are grown with random alignment on the substrate and low 

density. In order to increase area coverage and NW length, another sample was fabricated using 

the same condition but with a longer reaction time (2 hours). The morphology of the second sample 

was similar to the previous one. It seems that the amorphous structure is not favorable for growth 

of high density NWs. Annealing of the sputtered seed layer may improve the crystal structure. 
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Figure 3-12 SEM image of NWs fabricated on a ZnO pre-sputtered Si wafer 

 

3.1.7. Growth of ZnO NWs on Quartz Wafers 

Growth of ZnO NWs on quartz wafers was also carried out at conditions similar to Si wafers. The 

source materials and the reaction temperatures were the same. The synthesis was completed on 

wafers without metal catalyst deposition. The chamber pressure was kept around 30 Torr and Ar 

gas was used as the carrier gas. After 1 hour the samples were cooled down to room temperature. 

A white film was subsequently deposited on the quartz wafer.  

Microscopic verification of the synthesized film on a quartz wafer reveals that straight ZnO NWs 

can grow on quartz without the aid of a catalytic metal. Figure 3-13 shows the morphology of the 

NWs using a SEM microscope. The TEM image displayed in Figure 3-14 illustrates that these 

NWs have highly ordered crystalline structures. However, the wafer coverage was low. These 

results show that growth of highly crystalline ZnO NWs on a transparent substrate at high 

temperatures is possible.  
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Figure 3-13 SEM images of ZnO NWs grown on quartz waferby CVD method  

 

  

Figure 3-14 (a) TEM image of a ZnO NW synthesized on a quartz wafer (b) SAED pattern of the NW 
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3.1.8. Optical Characterization of NWs Grown by CVD 

The optical properties of the NWs were characterized employing PL spectroscopy. The NWs 

grown on Si substrate were illuminated by a xenon lamp with an excitation wavelength of 330 nm. 

The PL spectra of two samples synthesized at different chamber pressures are exhibited in Figure 

3-15. As it can be seen, the PL spectra for both samples are quite similar and show a high intensity 

emission at 378 nm (3.27 eV) wavelength. This emission corresponds to near band edge free 

exciton emissions [87]. A very low intensity emission around 506 nm is observed as well. The 

green emission is attributed to singly ionized oxygen vacancies. The recombination of a photo-

excited hole with a singly ionized charge state leads to green emission [88]. The high ratio of UV 

to green emission intensity in the samples indicates a very high quality crystal structure of the As-

grown NWs via CVD method. ZnO nanostructures fabricated using a hydrothermal route usually 

show high visible emission (blue, green, red) which is attributed to high levels of atomic defects 

in the structure [89-91]. These NWs can be applied in UV light emitting diodes and lasers. In 

addition, they can be used in a new generation of photovoltaic devices as transparent and highly 

conducting electrodes due to their high crystalline structures. 

 

 
Figure 3-15 PL spectra of NWs grown at different chamber pressures. Sample A: 150 Torr, sample B: 

200 Torr 
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3.2. ZnO NWs Fabrication Using Hydrothermal Method 

Growth of ZnO nanostructures on any arbitrary substrates is possible employing wet chemical 

methods since ZnO seed can be deposited on various substrates like Si wafers, glass, thermoplastic 

polyurethanes (TPU), polydimethylsiloxane (PDMS), organic fibers, etc. The seed layer is coated 

on the substrate prior to the growth process. Sputtering and spin coating of a sol or quantum dots 

has been widely used to coat a seed layer for ZnO nanostructure growth. The seed layer provides 

a favorable site for nucleation of the nanostructures. The grain size of the polycrystalline seeds 

determines the width of the As-grown NWs. Growth on the seed layer takes place at a lower 

supersaturation than the homogenous growth since the interfacial energy between the crystals and 

the substrate is lower than that between the crystals and solution. Growth on the seed layer leads 

to a high density of NWs. The seed layer thickness controls the density of NWs. If the seed layer 

is very thin, no NW will form since the rate of dissolution is higher than that of deposition. For 

seed layers thicker than a critical value only the outermost layer of the seed affects the growth [1]. 

In the following sections, hydrothermal growth of ZnO NWs along with their microstructure and 

optical analysis will be illustrated. 

3.2.1. Experimental Process of ZnO NWs Synthesis Using Hydrothermal 

Technique 

ZnO NWs were synthesized using a hydrothermal method on (i) AZO films coated on glass 

substrates, and (ii) GaN films coated on sapphire substrates. The AZO films were sputter-deposited 

in an RF-magnetron sputtering system on 4-inch diameter glass (Corning) substrates. Some films 

were also deposited on Si substrates for structural analysis. The deposited AZO films were 600 

nm thick with a sheet resistance of ~ 5-10 Ω/□ , and average optical transparency of 85% in the 

visible range. The GaN-coated sapphire substrates were purchased from a commercial supplier. 

The p-type GaN films were 2µm thick and were Mg-doped. In both cases, the growth of ZnO NWs 

was carried out in a stainless steel autoclave system. Equimolar aqueous solutions of zinc nitrate 

dehydrate (Zn (NO3)2 .6H2O) and hexamethylenetetramine (HMTA, C6H12N4) with concentrations 

of 25 mM were prepared as reagents. The wafers were placed with the growth surface facing down 

in the solution and were kept in the autoclave for one hour at 90°C. After this growth process, the 

wafers were rinsed in deionized water and air-dried. Figure 3-16 depicts the stainless steel 

autoclave system image and schematic illustration of the hydrothermal growth. 
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Figure 3-16 (a) Stainless steel autoclave system used for hydrothermal synthesis of ZnO NWs (b) 

Schematic demonstration of hydrothermal growth in an autoclave system 
 

3.2.2. Explanation of Growth Mechanism by Hydrothermal Method 

Zinc nitrate provides the Zn2+ ions required for ZnO NW formation and O2- is provided by H2O 

molecules of the solvent. HMTA is a nonionic cyclic tertiary amine and during the growth process 

it acts as a weak base and PH buffer that keeps the solution’s PH value between 6 and 7 [92]. It 

hydrolyzes in water gradually and releases the molecular strain energy by producing CH2O and 

NH3. If the hydrolysis of HMTA takes place quickly, OH- concentration in the solution will 

increase and cause quick precipitation of Zn2+ ions in the solution. Quick precipitation of Zn2+ 

results in fast consumption of the nutrient and prohibition of anisotropic growth of ZnO NWs. NH3 

has two roles. First, it provides a basic environment that is required for Zn(OH)2 formation. 

Second, it stabilizes the aqueous Zn2+ by coordinating with Zn2+ ions. ZnO is produced by 

dehydration of Zn(OH)2 when heated in an oven, microwave, sunlight or under ultrasonication [1].  

ZnO has an inherent anisotropic structure with polar and non-polar planes. The (001) planes are 

polar with an electric dipole between their opposite ends and they have high surface energy. 

Therefore, nonpolar facets form larger surfaces under thermodynamic growth conditions. Seed 

layers (nucleation sites) reduce this thermodynamic barrier leading to the growth of nanowires 

with a higher aspect ratio and uniformity. It is also proposed that HMTA attaches to nonpolar 

surfaces of ZnO and prevents  attachment of the precursor to these surfaces. Therefore, it is also 

considered as a facilitator of one-dimensional growth along [0001] direction. The following 

reactions take place in the solution during the growth process [93, 94]: 
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Zn(NO3)2. 6H2O →  Zn2+ + 2NO3
− + 6H2O (3.5) 

(CH2)6N4 + 6H2O → 6CH2O + 4NH3 (3.6) 

NH3 + H2O → NH4
+ + OH− (3.7) 

2OH− + Zn2+ → Zn(OH)2 (3.8) 

Zn(OH)2 → ZnO + H2O (3.9) 

All these reactions are in equilibrium and changes in precursor concentration, growth time, and 

growth temperature will push the reaction equilibrium forward and backward. The NW density is 

generally controlled by precursor concentrations. The morphology and aspect ratio of NWs are 

controlled by growth time and temperature. Reaction (3.6) causes an increase in the system entropy 

which means an increase of reaction temperature pushes the reaction forward. The above reactions 

take place very slowly at room temperature. The counter ions affect the morphology of ZnO 

although they are not involved in the growth process [1]. 

3.2.3. Structural Characterization of ZnO NWs 

Figures 3-17(a) and (b) show the TEM and HRTEM images of the RF-sputtered AZO film used 

as one of the starting layers for the growth of ZnO NWs. Due to the limitation of the TEM method 

on the substrate type and the film thickness, AZO films for this analysis were sputtered on Si 

substrate using identical conditions to deposition on glass substrate except for the smaller film 

thickness (~300nm). The HRTEM image in Fig. 3-17(b) clearly shows the partial crystalline 

structure of the AZO film. 

The SEM images of Figure 3-18(a) and (b) show the top- and cross-section-views of the ZnO NWs 

grown on AZO-sputtered glass wafers. Upright and ordered arrays of NWs with a diameter of 50-

300 nm and height of about 1µm have been obtained.  
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Figure 3-17 (a) TEM, and, (b) HRTEM, images of the RF-sputtered AZO film on silicon substrate. The 

film thickness was 300nm. 

 

  

Figure 3-18 SEM morphology of the grown ZnO NWs on a ZnO film; (a) top-view, (b) cross-section-

view 

 

The HRTEM image of Figure 3-19(a) reveals a highly crystalline structure in the synthesized ZnO 

NWs with easily observable atomic rows. The inset in Figure 3-19(a) is the selected area electron 

diffraction (SAED) pattern of a ZnO NW. The dot pattern further confirms that the structure is 

single crystalline, and the lattice spacing measurements reveal that the growth proceeded along 

[001] direction. The inter-planar spacing was found to be 0.26nm which corresponds to (002) 

planes in the hexagonal wurtzite structure of ZnO. The in-situ EDX spectrum obtained for the 

samples (in the TEM system) confirms the elemental content of Zn and O (Figure 3-19(b)) 
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however, it indicates that the atomic ratio is not stoichiometric. The atomic ratio of oxygen is lower 

than the stoichiometric ratio (the O/Zn atomic ratio determined from quantitative EDX analysis is 

equal to 0.91) which can also be understood from the PL spectra, which is discussed later. 

 

  

Figure 3-19 (a) HR-TEM image of a ZnO NW synthesized on a ZnO film. The inset is the SAED pattern 

of the NW b) the EDX spectrum of the ZnO NW showing the elemental content in the NW. 

 

Figures 3-20(a) and (b) depict the morphology of the synthesized ZnO NWs on the p-type GaN 

film grown on a sapphire substrate at different magnifications. It is important to note that no seed 

layer was used for NW growth in this case. The achieved NW growth was completely vertical 

because the lattice mismatch between in-plane crystal structures of these two materials is very 

small, about 1.97% [95, 96]. In LED structures, such ordered NW arrays act as a direct waveguide 

and the emitted light can be extracted without application of lenses or reflectors [95]. These NWs 

were employed to fabricate LEDs, as will be illustrated in chapter 7. 
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Figure 3-20 SEM images (with two different magnifications) of vertical ZnO NWs grown on GaN film: 

(a) 2µm (b) 1µm scale bar 

 

3.2.4. Optical Properties of Hydrothermally Grown ZnO NWs 

The optical properties of the ZnO NW/AZO film and ZnO NW/GaN film structures were 

investigated using PL spectroscopy. Figure 3-21 shows the normalized PL spectra for ZnO film, 

p-type GaN film, ZnO NWs grown on GaN and AZO films with the maximum count of 4×104, 

2.5×104, 12.1×104 and 67.5×104, respectively. Samples were illuminated by a 900W Xenon lamp 

at an excitation wavelength of 320nm. In GaN film PL spectrum, an intense peak is observed at 

around 379-390 nm which corresponds to donor-acceptor pair emission in Mg-doped GaN [97]. 

The shoulder peak at 364 nm is due to near band edge emission in GaN, which becomes less 

intense as the concentration of Mg increases in the material [98]. Deep level emission appeared at 

around 750 nm in the GaN spectrum as well [99]. In AZO film, the shoulder peak at 378nm 

corresponds to near band edge emission. Peaks at 428 nm and 460 nm are attributed to 

vacancy/interstitial oxygen/zinc type defects [100]. The UV emission at 378 nm in the ZnO NW 

spectrum attributes to near band edge emission. The broad peak at 550 nm has been attributed to 

various defects like singly ionized oxygen vacancy, interstitial zinc, oxygen vacancy, and antisite 

oxygen. Assignment of green emission has been controversial; however, the singly-ionized oxygen 

vacancy hypothesis is the one most cited. Although this hypothesis is supported by annealing of 

samples at 600 °C which resulted in decrease of green emission, it has been challenged by Wang 

and his colleagues [101]. The defects causing the green emission are proposed to be at the surface 

(30 nm from the surface).Yellow emission has mostly been observed in ZnO nanostructures 
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prepared by solution methods employing zinc nitrate and hexamethylenetetramine. The yellow 

emission has been attributed to interstitial oxygen. In contrast to green emission defects, the yellow 

emission defects are not located at the surface [89, 102].This visible emission could also be 

predicted from the EDX results, which showed the oxygen content is not stoichiometric. Excess 

oxygen and zinc interstitials are responsible for red-near IR (NIR) emissions [103-105]. 

As can be seen, the spectrum from the ZnO NW /GaN heterojunction is similar to the one from 

ZnO NWs on ZnO film indicating that the emission from the heterojunction is mainly coming from 

ZnO NWs. The presented grown structure of ZnO NWs on GaN has the potential for LED 

application. 

 

 

Figure 3-21 Normalized PL spectra of ZnO film (pink), GaN film (green) and ZnO NWs grown on ZnO 

(red) and on GaN (blue) films. 

3.2.5. Doping of Hydrothermal Grown ZnO NWs 

ZnO NWs synthesized by the hydrothermal method were doped with aluminum (Al) by adding 

aluminum nitrate to the NW growth solution. Different concentrations of aluminum nitrate were 

added to the solution: 2, 1, 0.5, and 0.1 atomic %. To study the crystal structure of the doped 

samples, XRD analysis was carried out. Figure 3-22 shows the XRD patterns (normalized) 

collected from these samples. 
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The undoped sample has a peak at 34.37 degrees, corresponding to planar spacing d=2.599 Å, and 

the (002) lattice plane. Since the other high intensity peaks are missing, it means that the ZnO film 

is oriented in a single direction (out of the film plane).The sample containing 2 at% aluminum 

shows some preferred orientation but more random than the undoped one. However, samples with 

0.1, 0.5, and 1 at% aluminum dopant have an additional phase that could not be identified.  

 

Figure 3-22  XRD pattern of ZnO NWs doped with various aluminum atomic percentages 

 

The Al-doped samples were also studied using PL spectroscopy. The PL spectra of the ZnO NWs 

along with Al-doped ZnO NWs are depicted in Figure 3-23. By decreasing the Al concentration a 

reduction in the intensity of visible emission along with an increase in the UV emission is 

observed. The spike at ~640 nm in the curves is a measurement artifact caused by a problem in a 

band-pass filter.  

 Near band edge (NBE) emission in ZnO originates from free excitons at about 3.26 eV. Yellow-

green missions (2.14 - 2.24 eV) known as deep level emissions (DLE) correspond to oxygen states 

related to lattice defects. When electrons occupying singly ionized oxygen vacancies (Vo
+) are 

recombined with holes, green emission is observed in the PL spectrum of ZnO. Doubly ionized 

oxygen vacancies (Vo
++) emit yellow light when excited. An increase of Al concentration in the 

ZnO structure leads to lower DLE intensity due to compensation of Al ions in the ZnO lattice. 

Generally, the most accepted mechanism for ZnO visible emission is oxygen vacancy. There are 

three charge states of oxygen vacancies: VO
+,   which has captured an electron and is singly 
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positively charged relative to the lattice; VO
++, which has not captured any electrons and is doubly 

positively charged relative to the lattice; and neutral oxygen vacancy VO
0, that has captured two 

electrons and is neutral relative to the lattice. Figure 3-24 shows the level of these defects in the 

bandgap of ZnO and it can be concluded that the blue emission originates from electron transition 

from VO
0 centers to the valence band edge. It can be observed from the PL spectra that INBE/IDLE 

increases by increasing Al concentration, indicating Al doping has improved optical properties of 

the ZnO structure [106]. 

 

 

Figure 3-23 PL spectra of hydrothermally grown ZnO NWs with various Al concentrations as dopant 

 

 
Figure 3-24 Energy band diagram of ZnO and oxygen vacancy levels 
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The chemical states of Zn, O, and Al at the surface of Al-doped ZnO NWs were analyzed using 

X-ray photoemission spectroscopy (XPS). The spectra obtained from XPS (Figure 3-25) show core 

line Zn 2p3/2 at 1022.7 eV which is larger than the value of 2p3/2 in bulk ZnO. This indicates that 

the majority of Zn atoms are in the formal valence state of Zn2+ within an oxygen deficient matrix. 

Metallic zinc with binding energy of 1021.5 eV was not found in the samples which indicates that 

Zn is in an oxidized state. A Zn 2p1/2 peak was also observed at ~1045 eV. Al peak intensity was 

much lower than Zn peak intensity. The core line of Al 2p3/2 is located at ~74.8, which can be 

attributed to Al-O bonding. No metallic peak of Al centered at 72.7 was observed. Therefore, the 

XPS results show that Al was incorporated into the ZnO structure. O 1s core spectra at ~532 eV is 

attributed to adsorbed oxygen [107-109] 

 

 

Figure 3-25 XPS spectra of ZnO NWs doped with various concentration of Al 
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.  

Figure 3-26 XPS analysis of ZnO NW doped with various concentrations of Al showing Al 2p3/2 core 

levels 

3.3.  Conclusion 

ZnO NWs were successfully synthesized on various substrates like Si, glass and quartz using the 

CVD and hydrothermal methods. The microstructure analysis of the synthesized NWs showed 

highly crystalline structures were grown by both the CVD and hydrothermal techniques. The 

visible defect-related PL emission of the hydrothermally grown NWs was much more profound 

than the CVD grown ones. These PL results indicate the presence of high-point defects in 

hydrothermally grown NWs.  

A thin film of gold was used as the catalyst for synthesis of NWs through CVD. TEM and EDX 

line scan analyses of CVD grown NWs showed that the growth mechanism is different from the 

VLS mechanism that is proposed for most elemental NWs. Gaseous zinc that is formed from the 

precursor’s reaction diffuses into the gold particle’s surface and a surface alloy is formed. The 

surface of the gold melts at temperatures well below melting point due to extreme surface 

curvature. Gold also acts as catalyst for dissociation of oxygen atoms. Nucleation and growth of 

NWs occurs at the interface of solid ZnO, vapor, and liquid gold. Oxygen atoms diffuse into the 

alloy interface and react with the zinc atom. 
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On the other hand, NWs synthesized by the hydrothermal method were formed by dehydration of 

the Zn(OH)2 compound in the solution. HMTA was utilized as a PH buffer that controls the 

precipitation rate of ZnO onto the substrate. The inherent anisotropic structure of ZnO induces 

one-dimensional growth in hydrothermal synthesis.  

The possibility of n-type doping of ZnO NWs using hydrothermal growth was also investigated. 

The XPS analysis of the doped NWs revealed that Al was incorporated into the structure of NWs 

in oxidized form. Furthermore, Al doping of the hydrothermally grown NWs resulted in reduction 

of visible PL emission due to Al compensation in the ZnO sites. 

 In the next chapter, studies on the interface of NWs with QDs will be presented. Investigation of 

NW interface phenomena with other materials has a significant importance for optoelectronic 

device applications.  
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Chapter 4:  ZnO NW/QD Interfaces: Experimental Realization 

of Structures 

Wide-bandgap metal oxide semiconductors sensitized with quantum dots (QD) are the main 

building blocks of quantum-dot-sensitized solar cells (QDSSC). Investigation of QD interface 

interactions with the metal oxide is significant in understanding and optimizing the fabricated 

devices. This chapter presents the microstructure study on CdSe/ZnS QD incorporation into ZnO 

NWs using various methods, along with the result of the incorporation method on QDs’ self-

assembly arrangement. In addition, the stability of incorporated QDs, under illumination with 

different surrounding media, was investigated by absorption spectroscopy. 

4.1. ZnO NWs Sensitization with QDs Using Evaporation Driven Self-Assembly 

Technique 

Nanocrystalline structures have been grown on semiconductor film by methods like MBE and 

MOVPE. Arrays of dots are grown in the Stranski-Krastanov mode employing vapor phase 

deposition techniques. For instance, high quality dot arrays of InAS on GaN were developed by 

MBE [110]. However, these techniques have a high cost and slow processing rate. An alternative 

method to fabricate self-assembly of quantum dots deposition of colloidal QDs from suspension 

on a desired wafer by simple evaporation driven self-assembly techniques.  

Evaporation driven self-assembly (EDSA) is one of the widely used techniques for generating self-

assembled layers of nanoparticles and nanocrystals. The method is inexpensive, material general, 

high throughput, and suitable for mono- and multi-layer deposition [111].  

The desired assembly can be achieved with the knowledge of inter-particle and particle-substrate 

interactions (van der Waals, electrostatic, short-range steric, hydrophobic, and osmotic 

interactions). Highly-ordered assembly structures are obtained if nanoparticles can freely diffuse 

across the substrate. In other words, the inter-particle interactions are larger than the particle-

substrate interactions and nanoparticles find their lowest energy configuration [111]. 
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Spin-coating, drop-casting, and dip-coating are considered as a class of EDSA method [111].  

Interactions between particles that are mediated by fluid interfaces are known as capillary forces. 

These forces play an important role in self-assembly of microscopic and macroscopic particles. A 

capillary bridge is formed between two particles by the liquid. The capillary force is perpendicular 

to the planes of the contact lines on the particle surface. Capillary-bridge forces can be either 

attractive or repulsive. Concave capillary bridge means attractive forces and the convex ones 

indicate repulsive forces [112]. 

Lateral capillary forces are formed at the overlap of the perturbation (menisci) around two 

particles. The lateral force is attractive if the overlapping menisci around two particles are similar 

and repulsive if the menisci are dissimilar [112].  

The spacing between the NWs acts like a nano-channel with capillary forces that suck-in the CQD 

suspension. Subsequently, 2D and 3D arrays of particles fill up the channels under appropriate 

conditions. It has been proven that the particles are moved to micro-capillaries by the action of 

hydrodynamic drag force created by water evaporation at the capillary exits [113]. 

In this section, self-assembled incorporation of QDs into ZnO NWs is addressed. The QDs were 

embedded into NWs (grown by the hydrothermal method on AZO film) through two different 

methods of EDSA: drop-cast and spin-coat along with soaking the NWs in the colloidal solution. 

Then, the microstructure of the incorporated QDs was studied employing TEM and high-resolution 

SEM (HRSEM).  
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Figure 4-1 TEM images of QDs deployed into NWs by drop-casting method 

 

4.1.1. ZnO NWs Sensitization with ODA-Capped QDs by Drop-Casting 

ODA-capped CdSe/ZnS QDs dispersed in toluene solvent were used to sensitize the ZnO NWs. 

The QDs were incorporated into ZnO NWs through the drop-casting technique. Wettability of the 

colloidal QDs with a ZnO NW surface is of crucial importance for uniform coverage of the surface. 

Concentration of QDs in the solvent can alter the wetting angle of colloids with ZnO NWs. Various 

concentrations of QDs dissolved in toluene were investigated to find the optimized concentration 

for self-assembled incorporation of CdSe QDs into the NW structure. The colloidal CdSe/ZnS 

QDs capped with ODA were purchased from a commercial supplier. The stock solution with 

5mg/ml concentration was diluted to various concentrations. The microstructural analyses of the 

incorporated QDs into NWs showed that colloidal QDs with a concentration of 0.2 mg/ml had the 

optimum wettability with ZnO NWs along with self-assembly arrangement among the NWs. All 
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sensitization processes were carried out in a nitrogen-purged glovebox. For drop-cast QDs, 0.1 ml 

of the solution was applied on the substrate. Then, the samples were left in the glovebox to dry.  

The TEM microstructures of the QDs incorporated into NW by drop-casting are depicted in Figure 

4-1.The HRTEM images in Figure 4-2 show the QDs deployed over the facet of a single ZnO NW; 

also clearly showing the crystalline structure of the QDs (marked with white circles). The QDs, 

incorporated by the drop-cast method, penetrated into the space between the NWs and settled in 

orderly positions. The cross-section SEM image of Figure 4-3(a) depicts that the space between 

the NWs is fully filled with QDs. The HRSEM top-view image in Figure 4-3(b) clearly shows the 

arrangement of QDs between the NWs and indicates that the QDs are distributed in self-assembly. 

As can be seen in Figure 4-3(a), the shape of menisci is concave, indicating that the capillary force 

is attractive. 

  

Figure 4-2 HRTEM images of QDs (marked with circles) anchored to ZnO NW's wall through 

drop-casting 

 

The high surface energy of the NWs’ top planes, (0001), results in their poor QD coverage. The 

side planes, {011̅0} and {21̅1̅0}, are non-polar planes and perpendicular to the basal plane. These 

non-polar facets have a lower surface energy than the polar ones, thus, under thermodynamic 

growth conditions they grow larger than basal planes. The low surface tension of the side facets of 

ZnO NWs results in better wettability of the NWs’ sidewalls to QDs and consequently high 

coverage of these planes with QDs [114, 115]. 
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Figure 4-3 HRSEM images of CdSe QDs embedded into NWs by drop-casting(a) cross-section (b) and 

(c) top view 

4.1.2. Explanation of Self-Assembly Arrangement of QDs 

When CQDs were incorporated into ZnO NWs, a ring pattern of QDs was observed on the 

substrates. The solvent evaporated from the edges of the drop toward the interior center. This can 

be explained by theory of self-assembled rings. Theoretical and optical studies have illustrated that 

the particles transport. Arrangement in these systems is determined by a dominant hydrodynamic 

drag force which is the result of liquid evaporation [112]. This well-ordered arrangement of 

particles normally involves two stages: nucleation and growth. Attractive lateral capillary forces 

among micro/nano-particles induce a nucleation phase; while the growth is promoted by the 

laminar flow of the liquid, caused by evaporation, toward the array of particles [113].The ring 

formation can be elucidated by the subsequent scenario: 

Some of the particles irreversibly stick to the periphery of the drop, the three-phase contact line, 

by capillary force. These particles pin the contact line, thus continuing the process with a fixed 

contact radius. As the liquid evaporates from the edges, the suspension from the interior is dragged 
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to the drop periphery to compensate the evaporated liquid (Figure 4-4). Consequently, most of the 

particles accumulate at the edge of the drop and are compressed by the liquid meniscus at the last 

stage of evaporation. The initial size of the contact line determines the self-assembled ring size 

[112, 116]. As a result, the self-assembled films acquired by drop-casting have depleted areas of 

QDs on the ZnO NW film, as shown in Figure 4-3 (c). 

  

Figure 4-4 Schematic illustration of particles self-assembly into ring shape by EDSA method. The 

hydrodynamic drag force, Fd, moves the particles toward the contact line at the edge of the drop  

 

The EDS map of the QDs incorporated into ZnO NWs by drop-casting was acquired as well. The 

EDS map shows the elemental distribution of each element present in the area of interest. As can 

be seen in Figure 4-5, cadmium and selenium elements cover NWs and the spacing between them. 

The silicon atoms correspond to the SiN phase in which the samples were embedded for the 

preparation of TEM samples.  
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Figure 4-5 (a) TEM image and (b, c, d, e, f) elemental EDS map of CdSe QDs deployed into ZnO NWs 

by drop-casting method 

 

4.1.3. ZnO NWs Sensitization with ODA-Capped QDs by Spin-Coating 

Spin-coating is a widespread technique used to deposit uniform organic films/ colloidal particles 

with thicknesses from micrometers to the nanometer scale. Various industries have employed this 

technique in the manufacture of products such as integrated circuits, magnetic disks for data 

storage, optical mirrors, and color television screens. 

The CQD suspension was also embedded into the NW structure by spin-coating. CdSe/ZnS capped 

with ODA ligand was used for this study. The concentration of colloidal QDs was set to 0.2 mg/ml 

for optimum wetting of the ZnO NWs surface, as demonstrated previously.  

The QD film was applied on the ZnO NW surface using two steps of speed acceleration. In the 

first step, the spin speed was set to 1000 rpm with a 5 rpm/s acceleration rate for 10 s. Then, the 

speed was ramped to 3000 rpm with an acceleration rate of 10 rpm/s for 30 s. Different spinning 



82 
 

speeds in step two was tried and it was concluded that 3000 rpm is the best for ODA capped 

CdSe/ZnS QDs.  

Using this method, the film of QDs is more uniformly coated over the whole area of the substrate 

However, the QDs are less ordered in the spacing between the NWs than the samples prepared by 

the drop-cast method. The TEM, HRTEM, and HRSEM images are displayed in Figures 4-6 to 4-

8. 

  

  

  

Figure 4-6 TEM images of QDs embedded into ZnO NW arrays by spin-coating method 
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Figure 4-7 HRTEM images of QDs deposited on the surface of ZnO NWs (some of the QDs are marked 

with white circles) 

 

  

Figure 4-8 HRSEM images of QDs spin-coated (3000 rpm) on the ZnO NWs film showing the distribution 

of QDs among NWs (a) cross-section (b) top view 

 

These microstructural analyses show that spin-coating is a suitable technique for depositing CQDs 

with appropriate wetting properties to the substrate surface. Furthermore, the coating was achieved 

without any surface treatment of the substrate.  

4.1.4. ZnO NWs Sensitization with OA-Capped QDs by Spin-Coating 

The effect of ligand types on the self-assemble structure of QDs anchored to the ZnO NW structure 

was investigated as well. Oleic acid (OA)-ligated-CdSe/ZnS QDs, dispersed in toluene with a 

concentration of 0.2 mg/ml, were spin-coated on the ZnO NWs. The spin-coating conditions were 

similar to those used for ODA-capped QDs. The spinning speed in the second step was set to 3000 

rpm. 
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The microstructure of spin-coated OA-ligated CdSe/ZnS QDs is demonstrated in Figure 4-9. The 

microstructural studies suggest that the wettability of OA-capped QDs with ZnO NWs is not as 

successful as ODA-capped QDs. The QD loading into NW spacing is much lower than that of 

ODA-capped QDs. Oleic acid is a fatty acid with a π bond in its alkyl chain. Poor loading of OA-

capped QDs can be due to steric hindrance. Oleic acid has a less flexible carbon chain than ODA 

(with no π bond in its alkyl chain) due to its cis configuration that leads to lower coverage of QDs. 

Moreover, surface energy of methylene group is higher than that of methyl group that results in 

poor coverage of the ZnO NW surface by OA-capped QDs [117].  

The carboxyl function group has a week binding with CdSe QDs and it might react with ZnO and 

form zinc carboxylate groups. The surface structure of ZnO may be destroyed when in contact 

with acidic ligands [118-120].  

 

  

Figure 4-9 HRSEM images of OA-capped CdSe/ZnS QDs spin-coated on ZnO NWs surface 

4.1.5. ZnO NWs Sensitization with ODA-Capped QDs by Soaking 

Another widely used technique for filling mesoporous structures with CQD is soaking the 

mesoporous structure in the colloidal solution. ODA-ligated CdSe/ZnS CQDs with a concentration 

of 0.2 mgl/ml were also incorporated into the ZnO NW structure by soaking, so as to investigate 

the microstructural properties of the embedded QDs. The ZnO NW film was soaked into the 

suspension of the ODA-capped CdSe/ZnS QDs (0.2 mg/ml) in toluene for 24 hours. The 

microstructure of the embedded QDs was studied using TEM and HRSEM microscopy. The cross-

section view, of the sensitized NWs, displays that the facets are covered with arrays of QDs and 
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in some cases the tips of the NWs are even coated. The QDs had enough time to penetrate into the 

spacing between the NWs and arrange in self-assembly. The HRSEM images, of QDs deployed 

into NWs by soaking, are depicted in Figure 4-10. 

 

  

Figure 4-10 HRSEM images of ODA-capped QDs deployed into ZnO NWs by soaking (a) cross-section 

(b) top view 

4.2. Photostability of QDs Sensitized onto ZnO NW Structure 

One important potential application of quantum-dot-sensitized ZnO is in the architecture of a solar 

cell. The long term stability of the incorporated QDs is the main concern in the field of QDSSCs. 

To study the photostability of the structure QDs, anchored to glass substrate and ZnO NW film, 

were subjected to light irradiation using a solar simulator at an air mass of 1.5 G spectrum in an 

atmospheric condition. Then, the variation in the samples’ absorbance was monitored.  

Figure 4-11 illustrates the absorbance/PL spectra of CdSe/ZnS QDs incorporated into ZnO NWs 

with the PL emission band edge at 530 nm. The sharp absorbance peak at ~515 nm is the 

characteristic absorbance peak of the QDs.  
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Figure 4-11 Absorbance/PL spectrum of CdSe/ZnS QDs anchored to ZnO NWs film 

 

To study degradation of the QDs, they were anchored to a glass wafer and ZnO NW film by drop-

casting. Then, the samples were illuminated for various time intervals, followed by absorbance 

collection using a Perkin-Elmer UV-VIS spectrometer. The samples were irradiated up to 6 hours. 

The corresponding absorbance spectra, which were collected from irradiated QDs anchored to 

glass substrate and ZnO NW film, are depicted in Figure 4-12. A continuous blue shift in the 

absorption edge of the QDs, along with peak broadening, is observed in both samples. However, 

QDs anchored to NWs show more profound degradation than those attached to glass. The light 

induced changes observed in QD/glass can be attributed to photo-degradation and photo-corrosion. 

Photo-degradation of QDs causes absorption peak broadening (quenching); while the blue shift is 

the result of photo-corrosion. In the case of QD/NWs the profound photo-degradation and photo-

corrosion is attributed to the electron- accepting nature of ZnO NWs. When the QDs are irradiated 

in atmospheric conditions, oxygen molecules can be adsorbed on the QD surface. The injected 

electron, formed through photo-excitation, can be scavenged by the adsorbed oxygen. The excess 

hole left on the QD’s valence band induces anodic corrosion [121, 122]: 

CdSe/ZnS(h+) + ZnO(e-) + O2 → CdSe/ZnS(h+) + ZnO + O2
- (4.1) 

CdSe/ZnS(h+) → (Cd2 + Se-/ZnS) → Oxide Products (4.2) 

On the other hand, glass substrate does not accept electrons from the QDs; thus a great majority 

of the charge carriers, formed by photoexcitation, recombine without contributing to charge 

transfer. Corrosion of the QDs leads to size reduction and consequently a blue shift of the 
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absorption edge. Metal oxide increases the QD corrosion rate, since it facilitates the accumulation 

of holes within the QDs. Studies have elucidated that hydrophobic ligand capping of QDs hinders 

oxidation [122]. The QDs utilized in our study are capped with hydrophobic ligands, which is 

another reason for delayed corrosion of QDs anchored to glass. Although the CdSe QDs were 

coated with a thin ZnS layer, they were photo-corroded. It has been suggested that the oxidation 

occurs at the internal interface of the CdSe/ZnS and the lattice-trapped Cd or Se ions act as 

nonradiative centers [123]. This photostability study shows that the QD degradation process is 

medium dependent and an electron-accepting substrate will increase the degradation rate. 

 

  

Figure 4-12 Absorption spectra of QDs anchored to (a) glass (b) ZnO NWs after various illumination 

time intervals  

4.3. Conclusion 

The interface of ZnO NW and CdSe/ZnS QDs was investigated using microscopic and optical 

techniques. The proper conditions, for the self-assembly arrangement of QDs in NW spacing, were 

established. The ODA-capped CdSe/ZnS QDs were incorporated successfully into the ZnO NW 

structure via two classes of EDSA and soaking techniques. The QDs that were embedded by drop-

casting showed the best self-assembly order within the NW spacing. However, the spin-coating 

and soaking methods yielded a larger coverage area of the substrates. These physical and structural 

studies, along with charge carrier transfer studies that will be discussed in Chapter 5, demonstrate 

the physical and chemical bonding of QDs to ZnO NWs. 
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Anchoring OA-capped CdSe/ZnS QDs to ZnO NWs resulted in poor loading into NW spacing. 

This was speculated to be due to steric hindrance and high surface energy of alkyl chain of OA 

ligand. 

The photostability study, of QDs anchored to glass and ZnO NWs, elucidated that the QDs 

passivated with a ZnS shell layer undergo degradation and photocorrosion. The photocorrosion 

rate depends on the QD media. It will be slower in insulating surroundings. 

In the following chapter, implementation of these sensitized ZnO NWs in the architecture of a 

quantum-dot-sensitized solar cell and its I-V behavior will be investigated. The effect of various 

parameters on the cell performance will also be investigated. 
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Chapter 5:  ZnO NW/QD Interfaces: Experimental Study on 

Charge Transfer Mechanisms 

Heterojunctions of colloidal QDs with wide-bandgap metal oxide semiconductors have been 

utilized in a number of electronic devices like solar cells, solar fuels, LEDs, and CO2 reduction. 

The crucial role of metal oxide/QD heterojunction is effective electron and hole separation at the 

junction. Ideally, the charge carrier separation should outcompete the loss mechanisms such as 

surface trapping or Auger recombination, in order to have an efficient working device. ZnO NWs 

are wide-bandgap metal oxide with high surface-to-volume ratio and electron mobility higher than 

TiO2. In this chapter, interfacial electron transfer in photoanodes composed of CdSe/ZnS QD-

sensitized ZnO NW/thin film, which is used in QDSSC’s architectures, will be investigated. 

Time resolved photoluminescence (TRPL) is an effective tool for carrier dynamics investigation 

at the QD/metal oxide heterojunctions. Electron transfer from photoexcited QDs to metal oxides 

has been characterized by TRPL through probing dynamics of the QD band edge bleach recovery. 

In this study, QD photoexcitation promotes an electron to the conduction band, which then relaxes 

to the states with the lowest energy at the band edge. This photoexcited electron can go through 

various pathways: radiative recombination, trapped in a midgap state, or transfer to the wide-

bandgap metal oxide. The radiative emission as a function of time is collected by TRPL or transient 

absorption (TA) spectroscopy and used for charge carrier studies by data fitting and extracting 

electron transfer kinetics.  

This chapter deals with ultrafast phenomena occurring during photon excitation of ZnO NWs/QDs 

and ZnO NWs/QDs/electrolyte. ZnO NWs used for the study were synthesized by the 

hydrothermal method.To study charge carrier transfer and dynamics, time-resolved 

photoluminescence (TRPL) spectroscopy was employed. The emission decay lifetime was 

measured using the time correlated single-photon counting (TCSPC) method with LED lighting as 

the excitation source at room temperature.  
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5.1. Time-Resolved Optical Spectroscopy 

 

Time-resolved optical spectroscopy provides investigation of very fast optical phenomena 

occurring in a picosecond to millisecond time scale. Development of ultra-short lasers has been 

employed to study transient phenomena induced on a sample by the excitation light pulse. For 

instance, laser pulse excitation induces formation of excited charges that can diffuse, thermalize 

or recombine (radiative or non-radiative recombination). A light pulse can also cause a transient 

modification in the optical, magnetic and electronic properties of a semiconductor. Temporal 

evolution of these mechanisms provides insight into the underlying physics. One can precisely 

quantify the amount and duration of these phenomena [124].  

The temporal processes can be analyzed through two approaches: the spectral and temporal 

approach. In the spectral approach, the width of the measured spectral line contains the temporal 

evolutions, if the spectral resolution is high enough. Two limitations are associated with this 

approach: (1) Existence of a micro-system in the investigated system leads to masking of the 

homogeneous line broadening due to intrinsic processes; (2) Interpretation of linewidth of 

nonlinear evolutions is difficult. On the other hand, if the time resolution of the system is high 

enough, time-resolved spectroscopy supplies direct access to evolution of a given system (through 

radiative recombination or changes of the complex index of refraction). The time resolution is 

limited by the convolution of the excitation temporal width with the temporal response function 

of the detection. For example, the excitation laser pulse duration τp and the time resolution of the 

detection τd, in TRPL spectroscopy, yield an overall time resolution equal to∆t ≈ √τp
2 + τd

2. Thus, 

excitation sources need to be fast and the detection technique should be designed with respect to 

the characteristic evolution time of the processes under investigation. The excitation pulse is 

composed of the coherent superposition of many Fourier components expanding on a range of the 

order ofΔ𝜔𝑝 ≥ 1/𝜏𝑝. As a result, selective excitation, of two optical transitions lying closer than 

Δ𝜔𝑝 in the spectral domain, is prevented. In this case, the quantum states can superimpose 

coherently, and additional information can be obtained by temporal observation of subsequent 

beats between the two states if the beating period takes place within the temporal window of 

observation [124].  
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Various methods for time-resolved measurements have been developed. These methods include: 

- Time-correlated single photon spectroscopy (TCSPC) 

- Transient recording 

- Streak cameras 

- Up-conversion methods 

- Microsecond luminescence decay 

In this study, TCSPS technique was employed to explore the charge carrier dynamics at the 

interface of ZnO NWs/CdSe/ZnS QDs.  

5.1.1. Carrier Decay Study Using TCSPC 

Time-correlated single-photon counting (TCSPC) is a well-established technique to measure 

luminescence dynamics. It is suitable for the time-resolved spectroscopy investigations from the 

picosecond to millisecond regime. TCSPC is a statistical measurement based on the counting of a 

single photon. A high frequency mode-locked laser as the excitation source is coupled to TCSPC 

to statistically obtain a large number of events in a short period. The working principle is depicted 

schematically in Figure 5-1. For each single pulse, a photodiode detects some fraction of the 

excitation pulse that triggers the START signal. The STOP signal is triggered by the arrival of the 

first luminescence photon. The elapsed time between the reference signal and the detected photon 

arrival instant is measured for the detected photon. The histogram of the number of counts is 

formed. Each count is added to the histogram memory relative to the time slot (the channel) 

determined by elapsed time. These steps are repeated a huge number of times (millions per second 

in the case of mode-locked lasers). Since the spontaneous emission is random, the acquired 

histogram is a reconstruction of the luminescence dynamics. The technique is very sensitive due 

to its reliance on single photon measurements. The signal intensity should however be low enough 

to otherwise prevent multiple photon events; pulse pile-up leads to a saturation of the number of 

counts per channel resulting in a distorted dynamics measurement. Practically, the photon 

detection is maintained to a few percent of the reference signal rate. Photodetectors like 

photomultipliers, avalanche photodiodes, and micro-channel plates that have high gain and fast 
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response time are required to supply a detectable electrical signal to the START-STOP electronics 

and to gain high temporal resolution.  

 

The schematic of a TCSPC setup is displayed Figure 5-2. The excitation source sends a signal 

which is split into two beams by a beam splitter (BS). The first beam is detected by a fast 

photodiode as the reference signal and the second one excites the sample for photoluminescence. 

Then, a light pulse with a certain delay relative to the reference signal will reach the detector. 

These signals will be converted to their electrical counterparts and sent to START-STOP 

electronics. At this point, the intensity of the signals with respect to set noise and multiple event 

levels are evaluated by a constant fraction discriminator (CFD). This signal is sent to the Time 

Amplitude Convertor (TAC). TAC generates a voltage ramp which elevates linearly with time on 

the nanosecond timescale. The single photon is detected by a second channel using a CFD that 

sends a signal to stop the voltage ramp. Therefore, the time delay between the START and STOP 

is proportionally converted to an analog voltage. The voltage is converted to a digital value and 

recorded as a single event with the corresponding time delay. By repeating this process a very 

large number of times using a pulsed-light source a histogram is constructed.  

 

 

Figure 5-1 Schematic of principle of TCSPC technique [124] 
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Figure 5-2 Schematic diagram of a TCSPC setup [124] 

5.1.2. Lifetime or Decay Time 

When a sample is excited with an infinitely sharp pulse of time, an initial number (n0) of 

fluorophores will go to an excited state. The decay rate of the excited population is Γ + knr 

according to the following equation: 

𝑑𝑛(𝑡)

𝑑𝑡
= (Γ + 𝑘𝑛𝑟)𝑛(𝑡) 

(5.1) 

Where the number of excited molecules at time t, subsequent to the excitation, is displayed by n(t), 

and Γ and knr are the radiative and non-radiative decay rates, respectively. Since emitting is a 

random event, the excited state population will decay exponentially, 𝑛(𝑡) = 𝑛0𝑒𝑥𝑝 (−
𝑡

𝜏
). 

In time-resolved experiments the intensity of the fluorescence is measured instead of the number 

of excited molecules which is proportional to n(t). Thus, equation 4.1 can also be written in terms 

of time-dependent intensity, I(t). Integration of equation 4.1 that is stated in terms of intensity 

gives the equation for a single exponential decay: 

𝐼(𝑡) = 𝐼0exp (−
𝑡

𝜏
) 

(5.2) 

Here, I0 is the intensity at initial time. The inverse of the total decay rate is equal to lifetime:  

𝜏 = (Γ + 𝑘𝑛𝑟)−1. The slope of the plot of log I(t) versus time gives lifetime value; however, it is 

determined by fitting the data in the case of multi-exponential decays [124, 125]. 
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5.2. Properties of QDs Used for Decay Lifetime Studies 

Cadmium selenide is a II-VI direct bandgap semiconductor with a bulk bandgap of 1.74 eV. Its 

nanocrystalline structures display quantum confinement effects. Thus, they have been synthesized 

by different methods for various applications. CdSe QDs have been employed in optoelectronic 

devices including QDLEDs and quantum dot-sensitized solar cells. Direct bandgap 

semiconductors have a higher absorption coefficient than indirect band semiconductors. 

Consequently, application of these highly light absorbing semiconductors in the structure of a solar 

cell, as the light absorber, leads to reduced material consumption and realization of an effective 

device based on a material with reasonable transport length. 

Colloidal CdSe QDs passivated with a zinc sulfide (ZnS) shell, purchased from a commercial 

supplier, were utilized to study the charge carrier dynamics at the interface of ZnO NWs and QDs. 

Coating of QDs with inorganic semiconductors having a higher bandgap than theirs, results in 

improved luminescence quantum yield (QY) by passivation of surface nonradiative recombination 

sites. In addition, inorganic passivation of QDs makes them more robust than organically 

passivated QDs, and thus more useful for fabrication of stable devices. ZnS is a wide-bandgap 

semiconductor that can be found in two different crystal structures: cubic zinc blend and hexagonal 

wurtzite. The bulk zinc blend and wurtzite structures have bandgaps of 3.6 eV and 3.9 eV, 

respectively. Coating of CdSe QDs with large bandgap ZnS leads to enhanced coordination of 

surface and dangling bonds as well as increased electron/hole confinement to the QD’s core and 

accordingly improved luminescence QY. The colloidal QDs were also capped with 

octadecylamine (ODA) (CH3(CH2)17NH2) or oleic acid (OA) (CH3(CH2)7CH=CH(CH2)7COOH) 

organic ligands. The core/shell CdSe/ZnS QDs were dispersed in toluene solvent. The schematic 

structure of core/shell CdSe QDs capped with ODA and its energy band diagram is depicted in 

Figure 5-3.  
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PL emission of CdSe/ZnS coated on a glass wafer along with its absorbance spectrum is exhibited 

in Figure 5-3. The PL measurement shows an emission peak at ~ 660 nm. The absorption edge of 

the QDs is at ~ 640 nm however, the absorption peak is very weak. The broad absorption edge of 

these QDs can be a result of broad particle size distribution. The absorption behavior can also be 

attributed to large thickness of the shell over the QD’s core. If a giant shell is coated on QDs, the 

absorption spectrum would be similar to what is shown in Figure 5-4. Giant shells can alter 

photoluminescence and blinking behavior of QDs. A sufficiently thick shell is capable of 

suppressing the blinking effect in colloidal QDs. 

 

  

Figure 5-3 Schematic structure of a core/shell CdSe/ZnS QD ligated with ODA and its energy band 

diagram 
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5.3.  Experimental Procedure on Decay Lifetime  

Charge carrier dynamic studies were carried out on an EPLED-pulsed laser using the Time 

Correlated Single Photon Counting (TCSPC) method. The samples were excited at 380 nm 

wavelength. FAST (Fluorescence Analysis Software Technology) was used to perform fitting on 

the collected data from TRPL measurements.  

The experiments were carried out using core/shell CdSe/ZnS quantum dots (QD) with two 

different ligands and sizes. QDs of CdSe/ZnS (absorption edge wavelength at 640 nm) ligated with 

octadecylamine (ODA) and CdSe/ZnS (absorption edge wavelength at 520 nm) ligated with oleic 

acid (OA) were selected. The charge carrier dynamics were investigated on ZnO NW/QD and ZnO 

film/QD junctions. Glass wafers coated with QDs were used as control samples. All the ZnO NWs 

used for charge carrier transfer studies were synthesized by the hydrothermal method. 

Because the ZnO NW/QD architecture was applied in the structure of quantum-dot-sensitized solar 

cells (QDSSC), the effects of electrolyte and cathode on the charge carrier dynamics were also 

studied. Thus, two sets of experiments, in which QDs were sandwiched between anode and an 

insulator (glass wafer), and anode and cathode, were carried out. Copper sulfide film formed on 

brass plates was used as the cathode in the designed samples. To prepare the copper sulfide film, 

the etched brass plates were immersed in polysulfide solution, causing a black film formation on 

 

Figure 5-4 PL emission and absorption spectra of core/shell CdSe/ZnS QD capped with ODA ligand. 

The QDs are coated on a glass wafer 
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the brass plates. The space between the QDs/glass or /cathode was filled with electrolyte solution. 

Figure 5-5 displays the schematic architecture of the samples made for TRPL study. The 

experimental procedures are summarized in Table 5-1. The electrolyte was polysulfide composed 

of 1M Na2S and 1M S dissolved in water/methanol (1:1). 

 

Table 5-1 experimental samples prepared for TRPL with CdSe/ZnS QDs ligated with ODA and OA 

Set (1) Set (2) Set (3) 

Glass/QDs Glass/QDs/electrolyte/glass Glass/QDs/electrolyte/cathode 

ZnO NWs/QDs ZnO NWs/QDs/electrolyte/glass ZnO NWs/QDs/electrolyte/cathode 

ZnO film/QDs ZnO film/QDs/electrolyte/glass ZnO film/QDs/electrolyte/cathode 

 

 

Figure 5-5 Schematic illustration of the samples prepared for TRPL measurements 
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The QDs were anchored to the substrates (glass, ZnO NWs and films) by drop-casting. The drop-

casting process was carried out in a nitrogen-purged glovebox. 

The collected data from TRPL measurements and curve fitting results are addressed in the 

following Sections. 

5.4. Time Resolved Emission Behavior of CdSe/ZnS in Various Environments 

Charge carrier transfer dynamics from QDs to anodes (ZnO NWs or Film) and cathode (CuxS 

coated brass) were elucidated using the TCSPC method. All the samples of decay lifetimes were 

measured upon 3×104 counts accumulation. The first set of samples was measured in air 

atmosphere without vacuum sealing. The decay lifetime recorded for the Set (1) shown in Table 

5-1 is depicted in Figure 5-6. The decay curves were fitted to a four exponential function using 

FAST software and the corresponding best fit parameters are summarized in Table 5-2. Bi is the 

pre-exponential factor and τi is the lifetime. χ2 is called reduced chi square which  gives a measure 

for the quality of the fit. It is independent of the number of data points and number of fitting 

parameters, which is a distinct advantage over the sum of least squares. For Poissonian distributed 

data, the limit of chi square is 1.0. Values above unity denote bad fit results although values up to 

1.3 can be accepted. Chi square values below unity means an inappropriate fitting range. 

The average lifetime <τ> in Table 5-2 is calculated from the following equation: 

< τ >=
B1τ1

2 + B2τ2
2 + B3τ3

2 + B4τ4
2

B1τ1 + B2τ2 + B3τ3 + B4τ4
 

(5.3) 
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Figure 5-6 Lifetime decay of CdSe QDs anchored to glass, ZnO NWs, and ZnO film 

 

Table 5-2 Lifetime best fit values for QDs attached to glass, ZnO NWs, and ZnO film 

Samples B1 τ1 (ns) B2 τ2 (ns) B3 τ3 (ns) B4 τ4 (ns) <τ> (ns) χ2 

Glass/QD 418.6 1.2 9252.6 10.6 19429.6 21.7 1000.4 80.4 27.7 1.017 

NW/QD 1083.9 0.8 11593.2 11.1 16629.7 22.4 591.7 159.1 41.5 1.124 

ZnO film/QD 821.2 1.0 9453.9 10.5 18900.6 21.8 796.8 102.0 30.9 1.051 

 

In contrast to previous reports, a significant PL quenching is not seen in NW/QD and ZnO film/QD 

relative to the reference (Glass/QD) sample [126, 127]. Charge transfer from photoexcited QDs to 

ZnO NWs/film was expected to lead PL quenching as compared to the reference sample 

(glass/QD). This behavior can be attributed to the environment of the QDs under measurement. 

Since, the measurements were conducted in air atmosphere, oxygen molecules could be adsorbed 

on the surface of QDs although they were coated with a layer of ZnS shell. Fluorescence 

spectroscopic studies of core/shell CdSe/ZnS QDs revealed that presence of oxygen in the 

measurement environment causes luminescence quenching via oxygen induced traps. This 

fluorescence reduction is reversible [128]. 

In addition, the observed decay lifetime behavior in Figure 5-6 can be attributed to QD size effect 

on electron transport. The CdSe QDs with an absorption band edge at 640 nm have a size about 7 
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nm that indicate a small driving force for electron transfer to ZnO NW/film. QDs with a large size 

have a smaller bandgap than the smaller QDs and consequently smaller band offset between their 

minimum conduction bands with ZnO’s conduction edge [127].  

The same experiment was carried out using OA-capped CdSe/ZnS QDs with band emission at 520 

nm. The corresponding decay lifetimes are depicted in Figure 5-7. QDs, embedded into ZnO NWs, 

display PL quench relative to the reference sample; while, QDs anchored to ZnO film exhibit a 

similar decay lifetime to the reference sample. The PL quenching in the ZnO NW/QD sample is 

an indication of charge transfer from QDs to NWs. It is speculated that the QDs are attached to the 

ZnO film surface more weakly than to ZnO NWs. In the case of ZnO film, which is grown in 

[0001] direction, the (0002) polar planes are in contact with the incorporated QDs. These surfaces 

have a higher surface tension than the non-polar surfaces in the ZnO structure, causing poor 

wettability to QDs. As was shown in Chapter 4, QDs were mainly attached to the side non-polar 

surfaces of ZnO NWs, indicating favorable and better attachment of QDs to ZnO NWs than to the 

ZnO film surface [114, 115, 129]. 

 

 

Figure 5-7 Decay lifetime curves for QDs with band emission at 520 nm (smaller size) anchored to glass, 

ZnO NWS, and ZnO film 
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5.5.  Decay Lifetime Behavior of QDs Anchored to ZnO NWs 

Figure 5-8 depicts the decay lifetime for QDs anchored to ZnO NWs as compared to QDs 

incorporated into glass. Two different samples of QDs anchored to NWs are presented here. First: 

NW/QD/electrolyte/glass; and second: NW/QD/electrolyte/cathode (brass). The corresponding 

best fit values are displayed in Table 5-3. A substantial PL decay lifetime reduction is observed in 

the NW/QD/electrolyte/glass sample as compared to the glass/QD sample. This quench might be 

attributed to electron transfer from QDs to ZnO NWs. However, it cannot be the only reason of 

quenching since the sample prepared with the cathode displays a longer lifetime, contrary to what 

was expected. A faster decay was expected in the sample prepared with the cathode in contact with 

the electrolyte. This is because holes are expected to diffuse into the cathode and result in better 

charge carrier transfers.  

Time constants that have been reported for electron transfer, τeT, cover a wide range from 2 ps to 

20 ns despite similar conditions used in the measurements [130, 131]. The electron time constant 

for CdSe has been measured from 83 ps to 100 ns [127]. Although parameters like QD size, 

QD/metal oxide coupling, and energetic driving force vary the electron transfer rate, measurement 

artifacts can also cause these inconsistencies. Klimov et al. proposed a model to explain the 

discrepancies in the measured rate constants in the context of various QD surroundings [132]. The 

acquired results from the experiments conducted during this study are also consistent with the 

proposed model.  

 



102 
 

 

Figure 5-8 Decay lifetimes of CdSe QDs deposited on a glass wafer, on ZnO NWs in contact with 

electrolyte/insulator, on ZnO NWs in contact with electrolyte/cathode 

 

Table 5-3 pre-exponential factors and lifetimes acquired from data fitting using FAST software 

Samples B1 

τ1 

(ns) 

B2 
τ2 

(ns) 
B3 

τ3 

(ns) 
B4 

τ4 

(ns) 

<τ> 

(ns) 
χ2 

Glass/QD 418.6 1.2 9252.6 10.6 19429.6 21.7 1000.4 80.4 27.7 1.017 

NW/QD/elec/glass 14731.0 1.6 13217.6 5.4 4021.3 14.3 99.2 179.6 26.2 1.114 

NW/QD/elec/cathode 921.0 1.1 12711.1 10.7 15718.5 20.8 574.1 124.7 32.1 124.7 

 

According to the model, there are two pathways for a photoexcited QD, resulting in dependence 

of the electron transfer rate on relative values of recombination and photon absorption rates. When 

a photon is absorbed by a QD, an exciton is formed, which can undergo charge separation, if there 

is a driving force (having a junction with a metal oxide with appropriate band alignment). 

Subsequently, the electron is transferred to the metal oxide and leaves a hole behind. Provided that 

the recombination of separated charges (electron in the metal oxide and hole in the QD) is 

relatively slow, then the QD is positively charged when the next photon is absorbed. The positively 

charged exciton (or positive trion) has a very short lifetime in the range of tens to hundreds of 

picoseconds. The trion lifetime is determined by the nonradiative Auger recombination rate [133-
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136]. Time-resolved dynamics is dominated by the fast relaxation of trion that can be confused 

with electron transfer. 

If the QD is in contact with a hole scavenging component, like redox electrolyte in QDSSCs, the 

hole extraction can be faster than photon absorption, which leads to a different scenario. In this 

case, the QD will be discharged before the next photon absorption and subsequently, the time-

resolved dynamics will be dominated by electron transfer. A schematic illustration of the trion 

generation and exciton dissociation in the presence of an electrolyte is shown in Figure 5-9. 

In the measured samples, when the electrolyte is contact with QDs, it is expected to neutralize the 

QDs that are charged due to photoexcitation following electron transfer to the metal oxide. In the 

absence of a cathode, charge build-up might occur in the electrolyte itself and it would not 

efficiently remove the holes from the QDs. As a result, the photocharged QDs decay through non-

radiative paths like Auger recombination. However, when both electron and hole acceptors are 

present in the structure of the sample (ZnO NW and cathode), the observed emission quench is a 

contribution of electron and hole transfer rate. The sum of charge carrier transfer rates can be 

calculated as follows: 

𝑘𝑐𝑐 =
1

𝜏𝑍𝑛𝑂 𝑁𝑊/𝑒𝑙𝑒𝑐/𝑐𝑎𝑡ℎ𝑜𝑑𝑒
−

1

𝜏𝑔𝑙𝑎𝑠𝑠/𝑄𝐷
 

(5.4) 

The charge carrier transfer rate, kcc, acquired from the above equation using the second and third 

lifetime components of the decay, the most dominant ones from Table 5-3, is in the order of 

108𝑠−1. 

Reduction of emission efficiency in charged QDs is due to nonradiative Auger decay which 

dominates carrier dynamics. This emission reduction is proportional to the degree of 

photocharging [132].  

 



104 
 

 

 

 

Figure 5-9 Schematic illustration of the trion generation and exciton dissociation in the presence 

of electrolyte (a)photon absorption and exciton generation (b)positive trion generation (c)QD 

neutralization process by redox electrolyte species 

 

Comparing TRPL dynamics of samples with/without an electrolyte provides insight into Auger 

lifetime decay of a negatively charged exciton. Previous investigations on CdSe QDs have 
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revealed that photocharging under similar conditions is dominated by Auger-assisted 

photoionization [137, 138]. In this process, the energy released from electron-hole pair 

recombination is transferred to the third charge, instead of photon generation, following the charge 

removal from the QD [138-140]. Although the probability of the process is low, a significant 

fraction of QDs can be photoionized due to very long lifetime of charged species.  

Negatively charged QDs are produced by auger-assisted ionization in CdSe QDs because Auger 

recombination is dominated by re-excitation of a hole. In II-VI semiconductors, valence band 

states have high density, facilitating hole re-excitation in an Auger recombination process. The 

produced hot hole has a high reducing power and can accept an electron from the QD surrounding 

that is considered the equivalent of a hole ejection. Accordingly, photoionization leads to mostly 

negatively charged QDs. Klimov et al. extracted the Auger lifetime of negative trions by 

comparing the QD population decay in stirred versus static CISeS QD solutions [132]. In order to 

study and measure the negative trion lifetime, TRPL was utilized, since it provides longer time 

scales than those obtained using transient absorption (TA) [132]. 

A four-term exponential PL decay was observed for QDs anchored to a glass substrate. The two 

most dominant lifetimes are in the range of ~ 10 ns and 21 ns. These measurements indicate that 

extremely fast nonradiative recombinations take place in the absence of a cathode, because of 

charge build up in the QDs. The TRPL studies show a slow decay component of the order of 10-

20 ns in the samples made with an electrolyte and cathode.  

The sample that is insulated from one side exhibits an emission quench compared to the QDs 

anchored to glass (Figure 5-8). However, the sample that is fabricated with the cathode in contact 

with electrolyte shows much less PL quench than the ZnO NW/QDs/electrolyte/insulator sample. 

This proves that the photocharging effect occurs in samples prepared without a cathode. In this 

sample, although an electrolyte exists to scavenge the holes, charge build up occurs because there 

is not adequate electrolyte to keep the QDs neutral (the space between the ZnO NWs and cathode 

is about 50 µm). 
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5.6. Decay Lifetime of QDs Anchored to ZnO Film 

In order to compare ZnO NWs with ZnO film, a set of samples were prepared similar to previous 

ones, but with ZnO film instead of ZnO NWs. The PL decay lifetimes acquired from the samples 

are shown in Figure 5-10. The same trend as ZnO NWs can be seen in the corresponding decay 

lifetimes of the three samples. The fitting parameters obtained from data fitting using FAST 

software for these three samples are shown in Table 5-4. The four lifetime components calculated 

by fitting are very close to the corresponding values for the samples prepared using ZnO NWs.  

 

 

Figure 5-10 Decay lifetime of CdSe QDs anchored to glass, ZnO film in contact with 

electrolyte/insulator, and ZnO film in contact with electrolyte/cathode 

 

Table 5-4 Best fit values of a four-exponential decay lifetimes of QDs anchored to glass, ZnO film with 

electrolyte/insulator or/cathode 

Samples B1 

τ1 

(ns) 

B2 
τ2 

(ns) 
B3 

τ3 

(ns) 
B4 τ4 (ns) 

<τ> 

(ns) 
χ2 

Glass/QD 418.6 1.2 9252.6 10.6 19429.6 21.7 1000.4 80.4 27.7 1.017 

ZnO film/QD/elec/glass 14645.2 1.3 13263.1 4.3 3002.8 12.0 67.7 312.0 55.0 1.095 

ZnO film/QD/elec/cathode 1301.8 0.9 11361.5 10.2 16695.3 21.2 575.3 173.3 45.5 1.052 
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5.7. Electron vs. Hole Transfer  

In order to calculate the hole transfer rate of QDs by the electrolyte, a set of samples was prepared. 

The first sample, architecture, was QDs incorporated into ZnO NWs, as the electron acceptor, 

filled with electrolyte and insulated by a glass slide at the other side. The second sample was made 

with a hole acceptor (CuxS coated brass plate) in contact with an electrolyte solution and QDs 

anchored to a glass substrate. Therefore, each structure was insulated from one side and had a 

charge carrier acceptor (anode for electrons and cathodes for holes) on the other side. The decay 

lifetime curves of the samples thus give insight into the hole transfer rate relative to the electron’s. 

Since each sample has one type of charge carrier acceptor, the decay curves are a result of a partly 

charged transfer and partly other non-radiative recombination paths like Auger recombination. 

Assuming the rate of non-radiative processes in both samples are almost equal, comparison of the 

two curves elucidates qualitative information on electron and hole transfer rates. The decay curves 

are depicted in Figure 5-11 along with the corresponding best fit values of the four exponential 

decays in Table 5-5. The Figure shows that the sample fabricated on ZnO NWs goes through a 

faster decay than the one fabricated using a cathode in the structure. This indicates a faster electron 

rate than the hole’s, as reported in the literature [66, 69]. The first lifetime component in Table 5-

5 is close for the two structures. However, a reduction in the other three components are seen for 

the NW structure relative to the structure made with a cathode. Comparing the decay lifetime 

components of the two samples presented in Table 5-5 shows that the first lifetime components of 

both samples have very close values whereas, the second and third ones (the most dominant ones) 

are different. As a result, it can be concluded that the first lifetime component gives an indication 

of the non-radiative processes like Auger recombination, which can be assumed to be the same for 

both samples; while, the second and third components, the most dominant ones, correspond to 

charge carrier transfer.  

The slow hole transfer relative to electrons in the device structure results in higher concentration 

of holes within the QDs under steady state photon illumination, which can promote QD anodic 

corrosion and a higher recombination rate with photogenerated electrons. However, the photo-

corrosion is considered negligible in CdSe and CdS QDs in a QDSSC structure because, the excess 

S2- in the redox electrolyte can repair the corroded surface of CdS QDs and form a CdSeS layer on 

CdSe ones [69]. In the case of the presented experiments, the QDs utilized in the samples had a 
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thin shell coating of ZnS that can protect the QDs from anodic corrosion and charge recombination 

between photogenerated electrons and oxidized redox couple species.  

Hole accumulation can reduce effective electron transfer to the electron acceptor and consequently 

decrease the device efficiency.  

 

Figure 5-11 PL decay lifetime curves of samples prepared for hole versus electron transfer rate 

evaluation 

 

Table 5-5 Fitting parameters value of four exponential lifetime decay obtained for hole transfer rate 

study 

Samples B1 

τ1 

(ns) 

B2 
τ2 

(ns) 
B3 τ3 (ns) B4 τ4 (ns) <τ> (ns) χ2 

NW/QD/elec/glass 14731.0 1.6 13217.6 5.4 4021 14.3 99.2 179.6 26.2 1.114 

Glass/QD/elec/cathode 10813.8 1.0 7624.9 6.8 11967.0 18.3 495.6 74.7 22.4 1.016 

 

The poor conductivity of QD films is one key issue that limits the corresponding devices. The 

issue is caused by charge trapping on imperfectly passivated atoms and energy disorder. Trap states 

below the conduction band minimum are created by cationic dangling bonds, while traps above 

the valence band maximum are formed by unpassivated anionic bonds [141]. Since the surface-to-

volume ratio is high in nanocrystalline semiconductors, the trap density is much larger than bulk 
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semiconductors. Consequently, charge transfer is hindered by nonradiative recombination at trap 

states.  

One disadvantage of ligated QDs is that even a trivial imbalance between the number of ligand 

molecules and the surface atoms leads to a significant number of states within the QDs bandgap, 

resulting in charge carrier scattering. The trap state below the conduction band minimum, for an 

organically or inorganically cross-linked nanocrystal film, is estimated in the order of 1017 cm-

3/eV [142]. Blinking of colloidal QDs can be affected by the surrounding gas environment. Thus, 

the structural variations in the environment of the QDs cause fluorescence fluctuations [143]. 

5.8. Effect of QD Size on Charge Transfer Dynamics 

The effect of QD size on charge transfer dynamics was investigated as well. QDs with two various 

sizes: 1) ODA ligated with absorption emission at 640 nm and, 2) OA ligated with absorption edge 

at 520 nm, were incorporated into the structure of ZnO NWs. Subsequently, the emission decay 

lifetimes were collected. The results are displayed in Figure 5-12 with the best fit curves which 

are four exponential functions. The best fit parameters of these samples are summarized in Table 

5-6. The small QDs decay faster than ODA ligated ones. The reason can be the quantum 

confinement effect and larger bandgap of small QDs. When the bandgap is increased, the band 

offset between the conduction band of the QDs and ZnO NWs is increased which means a larger 

driving force for electron transfer and consequently faster decay [127]. In addition, the ligands are 

different which also has an effect of charge carrier transfer rate. Part of the higher charge transfer 

rate can be attributed to different ligand type.  
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Figure 5-12 Decay lifetime of QDS with different sizes embedded into ZnO NWs structure 

 

Table 5-6 Best fit component values of QDs with different sizes anchored to ZnO NWs 

Samples B1 τ1 (ns) B2 τ2 (ns) B3 τ3 (ns) B4 τ4 (ns) <τ> (ns) χ2 

NW/QD-ODA 1083.9 0.8 11593.2 11.1 16629.7 22.4 591.7 159.1 41.5 1.124 

NW/QD-OA 5247.0 1.8 13754.6 7.1 11516.3 16.6 385.7 86.3 20.3 1.104 

 

5.9. Conclusion 

In this chapter, charge carrier dynamics at the interface of ZnO NWs/CdSe/ZnS QDs were studied. 

A suitable experiment was designed to elucidate a charge transfer mechanism from QDs to its 

surroundings, which is essential in understanding optoelectronic devices and their optimization. 

The studies on charge carrier dynamics were carried out using the TCSPC technique. The effect 

of QD surroundings including the presence of a charge carrier accepting media on the decay 

lifetime of CdSe/ZnS QDs was explored. Moreover, the effect of the structure of an anode (ZnO 

NW vs ZnO film) and size of QDs on the charge carrier dynamics was investigated. 

Decay lifetimes acquired from QDs with an absorption edge of 640 nm anchored ZnO NWs and 

ZnO film did not show significant quenching of luminescence emission as compared to the ones 

anchored to a glass wafer. This observation was attributed to the large size of the QDs and small 

bandgap offset between the QDs and ZnO NW or film, which is the driving force for electron 
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transfer. Samples prepared using smaller sizes of QDs anchored to ZnO NWs displayed quenching 

in their decay lifetime as compared to glass/QD. However, the sample fabricated on ZnO film did 

not show significant emission quench, which can be as a result of poor QD attachment to polar 

surfaces of ZnO film.  

The effect of the hole scavenging agent (electrolyte) and cathode on the charge carrier dynamics 

was also studied. The TRPL measurements were carried out on ZnO NWs/QD/electrolyte/ glass 

and ZnO NW/QD/electrolyte/cathode structures and the results of decay lifetimes were compared 

to that of QD/glass. The four exponential function decays of samples revealed that the QD 

photocharging effect is the mechanism behind profound emission quenching of the structure that 

had an insulator (glass) at the electrolyte interface. Charge build-up in the electrolyte in contact 

with an insulator promotes photocharging probability and consequently, excited charge carriers 

relax through the fast nonradiative Auger mechanism. As a result, the presence of both electron 

and hole-accepting materials are required for elucidation of the charge carrier transfer rate. Similar 

studies on the ZnO film/CdSe QD interface provided the same trend in decay lifetime behavior of 

the samples. Therefore, fast reneutralization of QDs following electron transfer is essential for 

accurate calculation of the charge transfer rate, which can be achieved in the presence of electrolyte 

and cathode in the structure. 

In order to elucidate the electron transfer rate versus hole transfer rate, the decay lifetime behavior 

of ZnO NWs/QD/electrolyte/glass versus glass/QD/electrolyte/cathode were investigated. The 

faster decay lifetime of the former indicates that the electron transfer rate is faster than that of the 

hole. The comparison of the best fit lifetime component of their four exponential decay showed 

that the first lifetime component can be attributed to Auger or other nonradiative recombination 

processes, whereas, the second and third components can be attributed to the electron and hole 

transfer rate. This slow hole transfer rate should be considered to improve the performance of 

devices based on this structure. Passivation of nonradiative recombination sites is crucial in 

improving the device efficiency. 

Finally, the effect of QD size on charge carrier dynamics was studied. CdSe/ZnS QDs were 

incorporated into ZnO NW structures with two different sizes. The sample with a smaller size of 

QD had a faster decay lifetime as compared to the larger one. The result is a proof quantum 

confinement effect with size reduction which leads to larger bandgap and subsequently enhanced 
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driving force (larger conduction band offset between ZnO and QD) for electron transfer from QDs 

to NWs. 

In the next chapter, microstructural properties of QDs anchored to ZnO NWs, as well as their 

photostability properties, will be explored.  

 

  



113 
 

Chapter 6:  ZnO NW/QD Interface: Device Level Application 

Quantum-dot-sensitized solar cells (QDSSC) are considered to be one of the promising advanced 

photovoltaic structures likely to overcome the Shockley-Queisser efficiency barrier. The cell 

architecture is composed of a wide bandgap semiconductor acting as the photoelectrode in contact 

with quantum dots (QD). Under illumination, an electron-hole pair (exciton) is generated in the 

QDs. The electrons are expected to transfer to the wide-bandgap semiconductor due to the energy 

band alignment. Holes are scavenged from the QDs through a liquid electrolyte to a counter 

electrode. In these devices the junction is at the interface of the liquid (electrolyte) and the 

NW/QDs. The carriers transport in this type of cell is not field driven (like crystalline 

semiconductors), but kinetically driven. Electron accumulation within the wide bandgap 

nanostructure is facilitated by quick scavenging of holes by the redox couples. These cells can 

result in good power conversion efficiency if the recombination losses are minimized [144, 145] . 

The QD bandgap can be tuned, which might be beneficial for absorption of a wide range of the 

solar spectrum. The QD’s tunability, large intrinsic dipole moment and multiple exciton generation 

can result in enhanced efficiency [146].  

However, the reported efficiencies of the corresponding devices are far below the conventional or 

even dye-sensitized solar cells. The lower efficiency originates from a slow hole-transfer rate, 

charge carrier recombination with redox couple at the interface of the semiconductor, and poor 

counter electrode performance.  

Various wide bandgap semiconductors, including titanium oxide (TiO2) mesoporous film and zinc 

oxide (ZnO) nanowires (NW), have been utilized in the structure of QDSSCs along with different 

types of QDs such as cadmium sulfide (CdS), cadmium selenide (CdSe), lead sulfide (PbS), and 

antimony sulfide (Sb2S3) behaving as photon absorbers [4, 67]. Figure 6-1 depicts the schematic 

structure of a QDSSC. 
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Figure 6-1 Schematic illustration of QDSSC structure based on NWs proposed for device fabrication 

 

Colloidal quantum dots (CQD) are particles of semiconductors, in the nanometer size range, 

dispersed in solvent utilizing stabilizing ligands. The optical and electrical properties of CQDs are 

dictated by their shape and physical dimensions. This size-effect tunability makes them different 

from non-quantum-confined nanocrystals, providing a broad framework on which to build various 

optoelectronic devices. Recent improvement in the properties and performance of solution-

processed solar cells, light emitting diodes, and photodetectors has been achieved by controlling 

CQD size, ligand chemistry, and annealing conditions [147]. 

Carrier extraction length, in quantum-dot-sensitized solar cells (QDSSC), organic photovoltaics 

and dye-sensitized solar cells (DSSC), is often defined as the width of the depletion region (WDEP) 

plus the minority carrier diffusion length (LDIFF) in the active material [147].  

The absorption length (1/α), of the most weakly absorbed above-bandgap optical wavelength of 

materials, is much more than the extraction length defined above. Therefore, there is a compromise 

between the absorption of light and the extraction of photocharges [147].  

High-surface-area electrodes, like those used in dye-sensitized [148] and bulk heterojunctions 

[149], can overcome the compromise. If CQDs are used as sensitizers, a monolayer of CQDs is 

adsorbed on a high-surface-area electrode [150-153]. Nonetheless, photovoltaic devices, based on 

multilayer CQDs in which photocharges must move a greater distance, have been improved 
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recently. In order to explain phenomena in these devices, the CQD film is considered a bulk 

semiconductor whose bandgap is defined by the quantum-tuned nanoparticles. The successful 

treatment of the CQD films as classical semiconductor means the Shockley-Queisser power 

conversion can be valid for CQD solar cells as well [147].  

The charge transport model that has been proposed for a solid layer of CQDs is excitonic transport 

in which tightly bound electron-hole pairs diffuse together from one QD to another QD until 

reaching a charge separating mechanism. However, excitons will dissociate in the CQD in the 

presence of an electric field (and even in the absence of an electric field) [154, 155]. This provides 

a guide for improving light harvesting in solar cells. If doping in an n-type electrode is increased, 

the depletion region in the p-type light absorbing CQD will be deeper. This will result in a better 

EQE and current density [147].  

The charge transport in CQDs is complicated because it is size-dependent and ligand-dependent. 

The shape of the nanoparticles even affects their electronic behavior. Furthermore, the shape and 

size of the QDs might change under light illumination due to photoxidation. This will lead to 

smaller QDs with larger bandgaps, as was seen in Chapter 4. The QDs larger than 4 nm are more 

prone to photoxidation than the smaller ones. This can be the reason for more stable Voc of various 

CQD solar cells employing smaller size QDs [147]. 

In this Chapter, fabrication of QDSSCs, applying ZnO NWs as the photoanode and cadmium 

selenide/zinc sulfide (CdSe/ZnS) core/shell QDs as the sensitizer, is demonstrated. Various 

conditions employed to study the performance of the fabricated devices will be illustrated in the 

following sections.  

6.1. Experimental Design of Solar Cells Based on ZnO NWs 

The device structure is composed of a conducting substrate (AZO film), arrays of ZnO nanowires 

(photoelectrode), CdSe/ZnS quantum dots (light absorber), electrolyte, and counter electrode. ZnO 

NW arrays were grown using a hydrothermal method as described in Chapter 3. The NWs were 

synthesized on a pre-sputter deposited aluminum-doped ZnO (AZO) film on glass wafers with an 

average 85% optical transparency and ~5-10 Ω/□ sheet resistance. Afterwards, hydrophobically 

ligated CdSe/ZnS core/shell QDs, stabilized in octadecylamine (ODA) or oleic acid (OA) 
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dispersed in toluene, were incorporated into the NWs by the drop-casting method. The schematic 

illustration of working principle of a QDSSC based on NWs along with the energy band alignment 

of the cell components is depicted in Figure 6-2. 

 

 

 

Figure 6-2 Schematic illustration of (a) working principle of QDSSC based on ZnO NWs (b) energy band 

alignment of AZO/ZnO/CdSe/electrolyte Structure 

6.1.1. Counter Electrode Fabrication 

Copper sulfide was used as the counter electrode (cathode). In order to prepare copper sulfide, 

brass sheets were sonicated in acetone, rinsed with DI water and subsequently etched in 37% 

hydrochloric acid for 15 minutes, then soaked in electrolyte solution. A black layer of copper 

sulfide is formed on the brass following soaking in electrolyte solution. The SEM image of the 

copper sulfide film shows a porous flaky structure, Figure 6-3.  

6.1.2. Electrolyte Solution Preparation 

A poly sulfide solution composed of 1 M sulfur, 1 M sodium sulfide, and 0.2 M sodium hydroxide 

dissolved in Water/methanol (1:1) and stirred at 60 ̊C for 30 minutes, was used as the redox 

electrolyte. 
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Figure 6-3 Microstructure of the copper sulfide formed on a brass sheet as the cathode 

6.1.3. Sealant Preparation 

An epoxy film (50 µm) was applied as a spacer between the two electrodes. A very thin square 

ring shape of the epoxy was applied on one electrode and the second electrode was attached on top 

of it. The space between the two electrodes was then filled with the polysulfide electrolyte through 

pre-drilled holes on brass sheets.  The device area was ~ 0.25 mm2.The procedure steps to make 

the device are depicted in Figure 6-4. 
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Figure 6-4 Schematic illustration of the device fabrication steps 

6.2. Challenges of Cell Fabrication 

Fabrication of the cells was very challenging in terms of device sealing. Since a liquid electrolyte 

was used in the structure of the cell, leakage prevention was critical for device performance. A 

couple of different approaches were tried to seal the small device area.  

At the start, a metal box was designed to hold the two electrodes. The two electrode were separated 

with a Teflon round-shaped spacer in the middle of the box. The Teflon spacer thickness was 2 

mm. the liquid electrolyte was injected through a pre-drilled hole in the Teflon spacer. The parts 

of the disassembled box along with the assembled structure of the cell are exhibited in Figure 6-5. 

The thickness of the spacer was large for this application which resulted in poor performance of 

the device. 
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Figure 6-5 Metal box designed assembling the device structure. Top: disassembled parts of the box, Left: 

anode and cathode placed in the designed structure, Right: assembled structure of the cell 

 

Ethylene-vinyl acetate (EVA), a thermoplastic polymer which is used in photovoltaic panel 

manufacturing as an encapsulation material for crystalline silicon solar cells were tried as the 

sealing material. Square rings of EVA sheets, placed on one electrode, were heated up ~100 ̊C 

until the electrode softened. Then, the other electrode was placed on top of it. A small metallic 

cube was put on top to apply constant pressure on the structure, which allows better attachment of 

the electrodes to the sealant. However, the thickness of the EVA sheets was large (~ 500 µm), 

resulting in large Warburg resistance of the cell and dropping the efficiency.  

Thickness reduction of the EVA sheets was carried out by dissolving a known amount of the 

polymer in toluene. Subsequently, the EVA solution was spin-coated on the electrode. The 

drawback of this method was the lack of control on the shape of the spin-coated ring of EVA on 

the electrode. Therefore, the cells had irregular shapes and besides, the thin EVA film did not 

provide sufficient sealing to the cells.  
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Surlyn sealant resin is a common sealant for DSSCs however, application of this resin requires 

heating of the device above 100 ̊C, which may damage and burn the QD ligands. The next approach 

to seal the devices was through photoresist lithography. 

SU-8 is an epoxy-based negative photoresist is mainly used in the fabrication of microfluidics. 

SU-8 grade KMPR-1000 was employed to pattern the cathode and make a hole with controllable 

thickness. The photolithography of SU-8 could provide films of 1-20 µm thickness. Square rings 

using SU-8 photoresist were patterned on brass plates (cathode). The other electrode, sensitized 

ZnO NWs on transparent AZO film, was placed on the patterned cathode and attached together 

using two paper clips. Then, the electrolyte was injected into the hole prepared by SU-8 patterning. 

The image of the fabricated structure is shown in figure 6-6. Although this method provided a 

decent control on sealant thickness and device area and shape, it had liquid leakage which was not 

desirable for characterizing the cell.  

 

Figure 6-6 Solar cell structure fabricated using SU-8 photoresist as the spacer 

 

The next approach to solve the sealing problem of the cell was employing epoxy glue film. A very 

thin layer of the epoxy was applied on the edges of one electrode and the other one was attached 

to it and left to harden for 10 minutes. Then, the electrolyte was injected into the cell through a 

pre-drilled hole on the brass plate. The hole on the plate was also covered with epoxy. This 

approach provided a reasonable amount of sealing required for device characterization. 
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6.3. Characterization of Fabricated Device Structures 

The dark I-V characteristics of the fabricated cells were investigated using an Agilent 4155C 

parameter analyzer. A very thin copper wire was attached to the transparent conducting oxide 

(AZO film) by silver paste to make a better contact to TCO film. The probes were attached to the 

copper wire on one side and to the brass plate at the other side. The same method was employed 

for probing the device under solar simulator. The solar simulator employed for cell 

characterization was Abet Technologies 2000. The sun spectrum is simulated by a Tungsten 

halogen and xenon lamp. Voltage is swept by varying the load resistance. Figure 6-7 displays the 

setup for collecting dark I-V data. 

 

Figure 6-7 Image and the schematic of the dark I-V measurement setup for the fabricated cells showing 

probe connections 

 

6.3.1. Current-Voltage Characteristics of the Fabricated Cells in the Dark 

The current-voltage (I-V) characteristics of a diode at forward bias in the dark is given by: 

I = I0[exp (
eV

nkT
) − 1] 

(6.1) 

Where, I0, e, V, n, k, and T are diode reverse saturation current, elementary charge, voltage, ideality 

factor of the diode, Boltzmann’s constant, and the temperature of the diode, respectively. If the 

voltage is large enough that exp(eV/nkT) >> 1 is satisfied, the above equation can be simplified 

to: 
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I ≈ I0 exp (
eV

nkT
) 

(6.2) 

Equation (6.2) shows that the diode current is a natural exponential function of forward voltage. 

Therefore, the ideality factor can be determined by a fit to the exponential regime of the I-V curve 

of the device collected in the dark. The ideality factor larger than unity shows non-ideal behavior 

in the I-V characteristics of the diode at low voltages. 

The non-idealities of the diode are caused by electrolyte diffusion into the NWs structure, potential 

drop at the interfacial layer, presence of excess current and the recombination current through the 

interfacial states between the metal/insulator layers. Factors like series resistance, tunneling, 

generation-recombination, interface impurities, and interfacial oxide layer affect the ideality factor 

value.  

ZnO NW Annealing 

Prior to I-V characterization of the devices, effect of NWs annealing on device performance was 

investigated. To improve surface quality of ZnO NWs, one sample was annealed in hydrogen 

plasma at 350 ºC and chamber pressure of 200 mT in a PECVD system. The plasma power and H2 

gas flow rate was set to 150 W and 100 sccm, respectively. Figure 6-8 depicts the I-V 

characteristics of the NWs/AZO junction before and after annealing. The I-V curves indicate that 

the ZnO NW/AZO film junction is not behaving completely like an ohmic junction. After the NWs 

are annealed, the ohmic characteristic is improved. Then, two cells were fabricated using annealed 

and non-annealed ZnO NWs. CdSe/ZnS QDs, stabilized in ODA with an absorption band edge at 

570 nm, and were used to sensitize the NWs. The measured open circuit voltage is increased in 

the case of annealed NWs.  

ZnO-based QDSSCs and DSSCs have demonstrated less efficiency than the TiO2-based cells, first, 

because of high surface defects and second, due to low structure stability. The ZnO surface has a 

high volume of defects that generates recombination centers for transferred electrons [156, 157]. 

Annealing in hydrogen plasma can passivate ZnO defects like Vzn thus, reducing recombination 

centers on the metal oxide, which in turn leads to improved open circuit and fill factor of the 

device. The short circuit current is also slightly improved. 
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Figure 6-8 Dark I-V behavior of ZnO NWs/AZO film junction before and after annealing  

 

Dark I-V of the Fabricated Cells 

A cell was fabricated using CdSe/ZnS QDs with an absorption band edge at 570 nm stabilized in 

ODA (Cell 1). The current-voltage characteristics ( I-V) of the fabricated cell was studied in the 

dark. A bias voltage from -1 to +1 V was applied to the device right after the fabrication process. 

The corresponding I-V behavior is depicted in Figure 6-9. The fabricated device showed rectifying 

behavior however, the reverse saturation current was high. It was realized that these types of cells 

require some time to be stabilized in the dark otherwise the measurements are not reliable. 

Therefore, the cells were left in the dark for 15 minutes to stabilize, then subjected to a bias voltage. 

The result of I-V behavior of the cell is displayed in Figure 6-10, which shows a decrease of reverse 

current and an improved rectifying behavior. The ideality factor of the devices were extracted by 

fitting Equation (6.2) into the measured I-V curves of the devices in the low voltage region ( < 0.4 

V). The ideality factor of the cell fabricated with ODA-capped QDs (Cell 1) was reduced from 4.6 

to 2.8, which indicates an improvement in the diode behavior. However, ideality factors larger 

than unity show non-ideal diode behavior due to recombination current, surface states at the 

interfaces, etc. as mentioned above. 
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Figure 6-9 (a) Dark I-V behavior of Cell 1 (b) exponential fit to I-V curve of Cell 1 in low voltage region  

 

  

Figure 6-10 (a) Dark I-V behavior of Cell 1 after stabilization in the dark (b) exponential fit to I-V curve 

of Cell 1 after stabilization in the dark 

 

Effect of QD Ligand  

I-V characteristics of a cell fabricated using ZnO NWs and OA-capped QDs was studied as well. 

The I-V curve of the device in the dark along with exponential fit in low voltage region is depicted 

in Figure 6-11. The dark I-V behavior of this cell (cell 2) is similar to previous sample (cell 1). 

The ideality factor of the diode extracted from exponential curve fitting is equal to 2.7. However, 

the illuminated I-V characteristics of cell 2 exhibited a 2-fold higher short circuit current than that 

of cell 1 (fabricated using QDs capped with ODA ligands). 
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Figure 6-11 (a) Dark I-V characteristics of a cell based on OA-capped QDs (b) exponential fit 

to the I-V curve 

 

NWs Sensitization by Soaking Method 

A third device was fabricated using ZnO NWs sensitized with OA-ligated QDs (absorption band 

edge at 600 nm) through soaking method. The dark I-V behavior of the fabricated cell (Cell 3) is 

shown in Figure 6-12. As can be seen, the reverse saturation current is increased although the 

device was stabilized in the dark prior the device was subjected to a voltage sweep. The ideality 

factor of the diode extracted from exponential fitting to the I-V curve is equal to 3.5. From these 

results, it can be concluded that soaking of NWs in the CQD solution damages the NW surface, 

due to acidic ligands, which leads to higher rate of back reaction in the cell. Therefore, sensitization 

of ZnO NWs with these types of CQDs by soaking method is not suggested.  

  

Figure 6-12 (a) Dark I-V behavior of a cell fabricated using OA-ligated QDs, QDs deployed into the NW 

structure by soaking method (b) exponential fitting of the I-V curve 
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The dark I-V behavior of all 4 cells discussed above are shown in a semi-logarithmic plot in Figure 

6-13. As can be seen, the dark reverse current for the unstabilized cell (Cell 1) is the highest. These 

curves provide insight into poor performance of the cells under illumination. The dark reverse 

current is an indication of back electron reaction with the oxidized components in the cell structure. 

There are three routes for electron back reaction in QDSSCs and DSSCs. A schematic of these 

back reaction routes are displayed in Figure 6-14. The photoinjected electrons can transfer to 

oxidized redox species via the conduction band of the metal oxide (ZnO NWs), surface states of 

the metal oxide, or from the highly conducting TCO layer (AZO).  Poor coverage of ZnO NWs by 

the QDs is one reason that leads to increased back reaction in these cells as the electrolyte can be 

in contact with NW’s surface.  

 

 

Figure 6-13 Semi logarithmic I-V plot of Cell 1, Cell 2, and Cell 3  
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Figure 6-14 Schematic illustration of various routs of electron back reactions in the structure of a 

QDSSC 

 

The I-V characteristics of the devices were also investigated in the light. However, the measured 

current of the device was very low due to high series resistance of various components. As a result, 

the illuminated I-V measurements were not reliable. Under illumination, an open circuit voltage 

as high as 0.8 V was measured for some devices, which is a good news for these types of cells. 

Open circuit voltage of the device is not affected by the series resistances and the measured values 

are thus reliable.   

The high open circuit voltage (Voc) is due to the large energy band offset between the ZnO NW 

conduction band edge and the redox potential. The low Isc can also be attributed to the poor 

coverage and attachment of QDs to ZnO NWs, which result in shunting, non-optimal band offset 

for electron injection from QDs to ZnO NWs, and the low quantum yield of QDs (~ 35%). 

Because the absorber layer in QDSSCs is very thin, there is no extended space charge region, 

unlike p-n junction solar cells. Studies on dye sensitized solar cells (DSSCs), made of mesoporous 

TiO2 film and an organic electrolyte consisting of 𝐼−/𝐼3− redox couple, indicate that band edge 

movement under light illumination can be neglected. The electron quasi Fermi level EFn shifts 

towards the conduction band edge (CB) under light injection as the concentration of electrons in 

the TiO2 film raises. However, the redox potential Eredox can be considered constant because of a 

high concentration of redox species in the cell. The energy difference, between the quasi Fermi 

level and redox potential (EFn- Eredox), is equal to open circuit voltage Voc under open circuit 

conditions when electron injection and recombination are in balance. If the sunlight is not 
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concentrated, then the EFn shift into the CB is not probable. Thus, the maximum Voc is equal to the 

difference of CB edge, ECB, and Eredox, of the electrolyte. The estimated upper limit for a TiO2 

based DSSC with an electrolyte consisting of 𝐼−/𝐼3− redox species is 1.1 eV; which is higher than 

reported experimental measurements. Since recombination kinetics at the wide-bandgap 

semiconductor/electrolyte and counter electrode/electrolyte are different, a gradient of EFn within 

the mesoporous film does exist at open circuit voltage. As a result, an attempt was made to cover 

the counter electrode surface with a wide-bandgap blocking layer. In a ZnO nanorod-based DSSC, 

high doping density was applied to form substantial band bending in larger rods. Therefore, 

photovoltage was produced by an accumulation of electrons in the space-charge layer at the surface 

of the nanorods.  

The pH of aqueous electrolytes can affect the energy level alignment of oxide semiconductors and 

change their band edges. In addition, the density of surface traps can vary based on electrolyte pH. 

Electron accumulation in those states causes a photoinduced band edge shift; while, organic 

electrolytes consisting of 𝐼−/𝐼3− do not show such an effect on band edges. The recombination 

kinetics and the cell performance can also be affected by the QD coverage of the nanostructured 

electron conductor. Therefore, high Voc can be expected from QDSSCs depending on the quality 

and characteristics of the constituent material [149]. 

Low coverage of the porous electrode in this architecture leads to low shunt resistance. When the 

surface of the photoelectrode is not completely covered with the QDs, it will be in direct contact 

with the hole-transporting electrolyte. The shunt resistance will drop because of spatially 

infrequent contact between the electron and hole-transporting media. In DSSCs, a high degree of 

dye loading insures very high shunt resistance. QD loading can be improved through ligand 

exchange. The bulky ligands that are required for stabilizing the QDs in the solution are exchanged 

with shorter ligands which lead to improved loading of QDs.  

Since the absorption per unit length of QDs is smaller than dyes, a thicker porous electrode is 

required to absorb the entire incident light. However, a thicker electrode results in higher series 

resistance, as electrons must travel a longer distance in the photoelectrode. Loading the thicker 

electrodes will also be difficult through the soaking procedure [147]. 
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Because the QD loading into ZnO NW is not sufficient to cover all NW surfaces, the NWs can be 

exposed to the electrolyte and donate collected electrons to the redox solution. On the other hand, 

it was realized that the AZO layer has porosity in some areas that result in current shunting from 

the TCO layer. In addition, series resistance of the cell components results in the device’s poor 

performance. 

Effect of Blocking Layer on Photoanode 

Two cells were fabricated using CdSe/ZnS colloidal QDs stabilized in oleic acid with absorption 

band edge at 600 nm. In the first sample, ZnO NWs are grown directly on AZO film and QDs were 

incorporated into the NWs by drop-casting. For the second sample, a thin compact film of 

semiconductor ZnO (40 nm) was sputtered on the AZO layer and the NWs were synthesized on 

top of the ZnO layer. Figure 6-15 depicts the I-V characteristics of the two junctions. The 

illuminated I-V characterization of the fabricated cells showed that the sample prepared directly 

on AZO film shows a higher short circuit current (Isc), as there is no compact ZnO blocking layer 

which adds a barrier to electron transfer into TCO. On the other hand this sample has lower open 

circuit voltage (Voc) than the former due to the different nature or density of surface states of AZO 

and ZnO films that leads to different junction properties. It seems that the ZnO layer prevents 

electrolyte contact with the AZO layer, resulting in better open circuit voltage and fill factor. 

Defects at the interface, like dangling bonds and lattice strain, provide recombination centers that 

pin quasi-Fermi levels and collect current-carrying charge carriers. Furthermore, defects can tune 

the conduction and valence band offsets between the layers and consequently change the amount 

of forward injection from the CQDs to the electrode [147]. 
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Figure 6-15 I-V behavior of the ZnO NW/AZO film and ZnO NW/ZnO film junctions 

 

Effect of ZnO Doping 

Two cells, one with 0.5% Al doped NWs and one as a reference sample without doping, were 

fabricated to investigate the doping effect on the device’s illuminated I-V characteristics. A small 

improvement was seen in the Isc of the doped sample. However, the Voc is almost unaffected and 

the FF is slightly decreased as compared to the reference sample. The result indicates that 0.5% Al 

doping of ZnO NWs has not improved the electrical conductivity of the NWs although the 

corresponding PL visible emission due to the defects was decreased, as was shown in Chapter 3. 

As was expressed earlier, reduction in the visible emission of ZnO does not necessarily mean better 

electrical behavior.  

6.4. Discussion 

The fabricated QDSSCs demonstrated in previous sections had poor performance and power 

conversion efficiency. The issue can be addressed due to multiple reasons expressed in the 

following. 

 One major issue in achieving high efficiency QDSSCs is lack of a proper electrolyte. Iodine/iodide 

redox electrolyte, that is the common electrolyte used in DSSCs, is corrosive to chalcogenide QDs. 

These QDs have shown stability in the presence of the polysulfide (1 M Na2S, 1 M S) electrolyte, 

although the corresponding cells still have low power conversion efficiencies. The major obstacle 

in achieving high FF and power conversion efficiency in the devices is poor electron transfer from 

the counter electrode to the oxidized redox polysulfide species. This causes high overpotential for 
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the reduction reaction and consequently hinders the flow of electrons and promotes a back electron 

transfer reaction at the metal oxide (photoanode) [158].  

In Chapter 4, the decay lifetimes illustrated for electron and hole transfer rate evidenced that the 

hole transfer rate is slower than the electrons. Therefore, the low FF and power conversion 

efficiencies can be due partly to this issue. Furthermore, QDSSCs show lower FF compared to 

their dye-sensitized counterparts due to the presence of aqueous electrolyte. Chemical species of 

water provide recombination centers in these architectures [159]. Therefore, replacing the aqueous 

electrolyte with an organic one might solve this issue. 

Electrical traps influence the semiconductors’ electronic behavior either be classical or excitonic. 

Deep traps are known as recombination centers. They capture an electron or a hole and lead to 

their recombination. Shallow traps impede charge carrier movement and capture them into a low 

mobility state as they move along their path. As a result, mobility of CQDs has been improved by 

passivation techniques. In semiconductors with a high defect density, simply raising the mobility 

would not improve the charge carrier transport since the carriers will find a trap faster. Thus, the 

recombination rate at defects is proportional to mobility. Reduction of recombination centers and 

improvement of monodispersity instead, will result in improved current collection [147]. 

Passivation of QDs with a thin dielectric layer like ZnS can partially reduce recombination losses 

observed in these cells. However, ligand-assisted adsorbed QDs have not displayed much 

improvement due to lower QD loading into the metal oxide than methods like Chemical bath 

deposition (CBD) or direct adsorption of QDs.  

The FF can be improved in a polysulfide electrolyte if an adequate working electrode is selected. 

Utilizing Au and Cu2S resulted in the FF to rise to about 40% [150].Crystal defects also act as 

electronic traps causing reduction in current and voltage of the working device. Reducing trap 

density results in enhanced mobility, diffusion length, carrier lifetime, and diffusivity [147].  

The other main reason of the acquired low efficiency is the slow charge carrier transfer rate from 

the absorbers to metal oxide. In Chapter 5, decay lifetime measurements revealed that charge 

carrier transfer rate is slower than Auger or trap-assisted recombination phenomena. As a result, a 

large number of dissociated charge carriers are wasted through these unfavorable processes and 

do not contribute in the power conversion of the device. 
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Further improvement of the device performance requires more detailed and complementary studies 

and other characterization techniques like impedance spectroscopy to find the main reasons that 

are impeding the device performance. 

6.5. Conclusion  

The sensitized ZnO NW structure was applied into the fabrication of quantum-dot-sensitized solar 

cells. The performance of the fabricated solar cells was studied by dark and illuminated I-V 

characterizations. The ZnO NWs were utilized as photoanodes for electron collection; QDs 

anchored to NWs acted as light absorbers; a polysulfide redox electrolyte was employed as hole 

scavenger; and copper sulfide film on brass was used as the counter electrode.  

The fabricated architecture yielded a working solar cell however, the efficiency was low. High 

open circuit voltage, Voc, was obtained for a fabricated device which is the characteristic of 

QDSSCs. The open circuit voltage in these architectures is the difference between conduction band 

edges of the wide bandgap semiconductor (ZnO NW) with the redox electrolyte. The low short 

circuit current, Isc, was attributed to high series resistance of the device components, poor QDs 

loading into the NW structure, and back electron recombination with redox species. 

The effect of various parameters including NW annealing, NW doping, types of QD ligands, and 

blocking layer on the cell performance was investigated. The device fabricated using annealed 

NWs in H2 plasma displayed larger Voc due to passivation of surface defects. Doping of NWs did 

not show significant changes in the device performance which indicates the doping process did 

not enhance the NWs electrical properties. Doping activation and annealing might be required to 

achieve higher efficiency. Devices fabricated by OA-capped QDs exhibited larger Isc as compared 

to ODA-capped QDs which can be attributed to their smaller length. Deploying a ZnO 

semiconductor film, at the interface of AZO and ZnO NWs, lead to better Voc however, the Isc was 

smaller.  

Althoug the fabricated devices showed poor power conversion efficiency, the factors for better 

performance were identified. The reasons behind the poor performance of the cells were discussed. 

Briefly, low QD loading into the NW structure and high series resistance along with the lower hole 

transfer rate than electrons, are assumed to be the main reasons for the cell characteristics observed. 
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However, more detailed studies using other characterization methods like impedance spectroscopy 

is very elucidating for improvement of the results that can be carried out in the future. 
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Chapter 7:  Other Optoelectronic Devices Based on Grown 

NWs: LED 

LEDs based on nanostructures are proposed to have better performance than thin film-based 

devices. Since NWs can act as a waveguide, NW-based LEDs are expected to show higher 

efficiency than thin film LEDs due to the possibility of increased light extraction. Furthermore, 

improved injection through a nanosize junction can lead to enhanced efficiency. However, the best 

ZnO NW based devices fabricated and reported in literature have not shown superior performance 

when compared to thin film-based devices, which is possibly because of defect dependent 

properties of ZnO nanostructures. Varied growth conditions can cause different types of defects 

and subsequently different performance and poor efficiency. Various visible emission lines have 

been observed for heterojunctions of p-GaN/n-ZnO LEDs, which are strongly affected by the 

quality of the heterojunction interface and defects. This demonstrates the importance of native 

defects and interface quality on the device performance. Hence, study of ZnO nanostructure 

properties and development of higher quality nanostructures for device applications is still required 

[78].  

ZnO heterojunction LEDs with different materials like p-type Si, p-type GaN, p-type SiC, (3,4-

ethylene-dioxythiophene) (PEDOT), and (3,4-ethylene-dioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) as the p-type material have been reported [160-164]. Of all the materials used for 

fabrication of a heterojunction with ZnO, GaN is the most common one due to its similar crystal 

structure and properties. They both have wurtzite crystal structures with a small lattice mismatch. 

As a result, ZnO can be grown on GaN without a seed layer at low temperatures. Different devices 

based on n-ZnO/p-GaN heterojunction employing a variety of methods have been fabricated. 

Various emission colors have been obtained due to the interface quality and native defects 

developed with different growth mechanisms. 

In this chapter, the fabrication process of intrinsic n-type ZnO NWs and p-type GaN will be 

illustrated. The fabricated devices were characterized using PL and EL spectroscopy. 
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7.1. Experimental Approach to LED Fabrication 

In Chapter 3, ZnO NWs growth on Mg doped GaN film on a sapphire substrate was illustrated. 

The commercially purchased GaN has the following specifications: 

Table 7-1  Specifications of purchased GaN film 

p-GaN thickness 1-2 µm 

Undoped GaN thickness 2 µm 

Buffer layer thickness 20 nm 

Sapphire thickness 430 µm 

Mg concentration (1-3)×1019 1/cm3 

Carrier concentration 1017 1/cm3 

 

The successfully synthesized ZnO NWs were applied in the structure of an LED, since ZnO 

naturally grows n-type due to its native defects. The schematic structure of the device is exhibited 

in Figure 7-1. 

The microstructural SEM images of the ZnO NWs grown via hydrothermal method are depicted 

in Figur 7-2. The images show the NWs from top and 30̊ tilted view.  

 

Figure 7-1 Schematic structure of n-ZnO NW/ p-GaN film LED under forward bias 
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Figure 7-2 SEM images of ZnO NWs grown on p-type GaN (a) top and (b) tilted view 

 

7.1.1. Substrate Preparation for NW Growth 

To remove surface contamination from the GaN films, they were cleaned first. The purchased p-

type GaN films were cleaned with isopropanol alcohol and then etched in 50% hydrochloric acid 

for 30 seconds.  

7.1.2. Dopant Activation in GaN Film 

The Sheet resistance of GaN film was measured before ZnO NW processing. The measurements 

showed high sheet resistance which indicated that dopant activation is required. To activate Mg 

dopant in GaN film, the film was annealed in a furnace under nitrogen gas flow. The annealing 

condition is as follows: 

- The film temperature was raised to 200 ̊C. 

- The temperature was raised from 200 ̊C to 800 ̊C with a rate of 10 ̊C /min. 

- The film was kept at 800 ̊C for 30 min. 

- The furnace was cooled down to 200 ̊C  

- Nitrogen flow was set to 1000 sccm. 
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Afterwards, the film sheet resistance was measured using a four point probe resistivity 

measurement system. The sheet resistance was decreased to 40-60 Ω/□.  

7.1.3. NWs Embedment in SOG Film 

In order to deposit the metal electrode on top of ZnO NWs, they should be buried in an insulator 

to prevent a short circuit. Therefore, the GaN was covered with photoresist and the NW side was 

spin-coated with spin-on-glass (SOG). SOG was spin-coated at 1000 rpm for 30 seconds. Then it 

was annealed on a hot plate. The temperature was incremented from 20 °C to 240 °C with a rate 

of 10 deg/s. Figures 7-3(a) and (b) show the SEM image of the NWs before and after SOG 

embedment, respectively. As can be seen, most of the NWs are buried in the SOG while the tip of 

some wires are still observable (Figure 7-3(b)). To expose the tip of the NWs to the metal electrode, 

the SOG film needs to be partially etched. The SOG film was etched in a reactive ion etching (RIE) 

system at a pressure of 30 mTorr. Sulfur hexafluoride (SF6) gas was used for etching SOG. The 

gas flow during the plasma etching was kept at 10 sccm with an application of 160V bias voltage. 

The plasma etching lasted 80 seconds. The SEM image of the sample after plasma etching is 

displayed in Figure 7-3(c). The tip of the NWs are completely exposed while there is enough 

thickness of SOG to prevent metal electrode penetration into the interface of ZnO/GaN.  

 

   
Figure 7-3 SEM images of (a) ZnO NWs grown on GaN (b) after embedment in SOG (c) after plasma 

etching of SOG film 

7.1.4. Metal Electrode Deposition 

Following SOG etching, the metal electrodes were deposited. To make ohmic contact on ZnO, 

layers of Ti/Al with a thickness of 30/100 nm were deposited on the NWs using an electron-beam 

evaporator. A metal electrode composed of Ni/Au (50/50 nm) was deposited afterward on the GaN.  
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7.2. Characterization of Fabricated LEDs 

The I-V characteristics of the fabricated devices at 25 ̊C were made using an Agilent 4155C 

parameter analyzer. The setup for the I-V characterization of the fabricated device is shown in 

Figure 7-4. The I-V curve is almost symmetric with a non-linear rectifying behavior. The forward 

bias switch-on voltage is about 3.2 V and a reverse breakdown voltage of about -6 V (Figure 7-5).  

 

Figure 7-4 Current-voltage characterization setup for fabricated LED 
 

 
 
Figure 7-5 I-V characteristic of n-ZnO/p-GaN heterojunction 

 

The optical characteristics of the fabricated devices based on ZnO NWs were characterized 

employing EL spectroscopy. The data was collected under 4 mA forward/reverse bias injection 

current. The EL spectrum of one device under forward bias injection current is depicted in Figure 

7-6(a), where two individual peaks appear on the spectrum. One is at 398 nm and the other one is 

a broad peak located at 585 nm wavelength. On the other hand, the spectrum collected under 
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reverse bias shows only one emission peak at a 400 nm wavelength. Emission under both forward 

and reverse bias has been reported for n-ZnO/p-GaN [165-168].  

In order to understand the origin of emission under forward bias the EL spectrum is compared with 

PL spectra of pure ZnO NWs and GaN (Figure 3-21). The violet emission from the device is a 

good match with the PL defect emission from GaN film depicted in Figure 3-21, indicating that 

this emission band originates from a recombination that occurs on the GaN side. Since ZnO has 

higher carrier mobility than GaN, electrons will be injected to GaN and recombine with holes. The 

electron and hole barriers will be lower under forward bias. Electrons in the conduction band of 

ZnO move to GaN and holes from the valence band of GaN move to ZnO. However, the emission 

origin is not fully understood and it is proposed that it is due to electron transition from the 

conduction band of ZnO to Mg acceptor levels in GaN [169-171]. The violet emission can also be 

attributed to electron transition from the conduction band of GaN to the deep Mg acceptor levels 

[172]. The broad emission peak in the green/yellow region is likely originating from deep level 

defects in the ZnO NW structure, which was discussed in Chapter 3. Although this hypothesis is 

challenged by Chen, they suggested that it can also originate from the surface states that are formed 

at the junction of GaN with other semiconductors or metals [173]. An increase of forward bias 

leads to a rise in carrier density and since ZnO has higher carrier mobility than GaN, more electrons 

will move to GaN and most recombination will take place on GaN side. Therefore, by increasing 

forward bias, violet emission is more dominant. However, in the case of ZnAgO/GaN, the lower 

bandgap of ZnAgO leads to a lower band offset at the heterojunction of ZnAgO/GaN as compared 

to ZnO/GaN and consequently more hole injection from GaN to ZnO; and an increase of electron-

hole recombination in ZnO. As a result, the green/yellow emission intensity increases with a 

forward bias increase [174].  

Two mechanisms have been suggested to explain emission under reverse bias: reverse breakdown 

and tunneling across the interface. Avalanche emission is expected to be seen at high bias voltages 

in contrary to tunneling. Since the violet emission under reverse bias is observed at a low bias 

voltage, it can be concluded that this emission band is due to tunneling of carriers across the 

junction [173]. Comparing the PL spectra of GaN film and ZnO NWs, that is displayed in Figure 

3-21, the violet emission in the EL spectrum under reverse bias is originating from GaN due to 

donor-acceptor pair emission. 
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Figure 7-6 EL Spectra from ZnO/GaN heterojunction (a) under forward and (b) reverse bias injection 

current. The insets are the LED emission lights under forward and reverse bias captured with a camera 

 

The large band offset of the n-ZnO/p-GaN interface is the reason for tunneling. In addition, 

because the lattice mismatch of the two semiconductors is above 1%, the interface states 

significantly affect the current flow across the junction and the injection of the minority carriers 

will be limited. As a result, tunneling and recombination at the interface are the significant current 

transport mechanisms in the corresponding devices. Involvement of defect states in the tunneling 

mechanism is very likely. The involvement of interfacial states is also consistent with the obtained 

current-voltage curves. The maximum occupied valence band of GaN would be higher than the 

minimum unoccupied conduction band of ZnO due to the large barrier formed at the junction at 

reverse bias. Consequently, electrons move from p-GaN to n-ZnO leaving holes in the GaN. 

Electron injection into p-GaN will also occur more efficiently than hole injection into ZnO; and 

leads to recombination on the p-GaN side of the junction. Therefore, the violet emission 

originating from GaN can be attributed to defect states [173]. GaN has a deep quasi-continuous 

density-of-state distribution and can be the cause of violet emission in GaN, which is different 

from the usual blue emission of GaN [175]. Both shallow and deep Mg acceptor levels can be 

involved in this emission [176]. The small differences in peak positions of various device 

architectures are because of the abundance of defect levels in GaN. Involvement of different defect 

states in the emission, and consequently peak shift, originates from small differences in the energy 

level alignment across the interface [173].  
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7.3. Conclusion 

Hydrothermally grown ZnO NWs on GaN film were applied in the structure of an LED device and 

the device application was proved. The NWs were grown directly on GaN film without using a 

seed layer. The I-V characteristics of the ZnO NWs/GaN film showed a rectifying behavior. The 

fabricated device was characterized using PL and EL spectroscopies. The device emitted different 

colors under forward and reverse bias injection current.  

Under forward bias a yellowish white color is emitted from the device. The white emission is a 

combination of two peaks observed in the EL spectrum. One emission peak is in violet region at 

398 nm and the other one is a broad peak at 585 nm. The violet peak is attributed to transition of 

electrons from conduction band of ZnO to Mg acceptor levels in GaN. The origin of the second 

emission at 585 is not clearly understood. It has been attributed to either deep level defects in ZnO 

structure or the surface states that are formed at the junction of GaN film with a semiconductor or 

metal. 

Under reverse bias, only one peak was observed in the EL spectrum of the device. Tunneling of 

electrons across the interface is the mechanism underlying emission under reverse bias injection 

current. The large band offset of ZnO NWs/GaN film interface is the main reason of tunneling of 

electrons from GaN to ZnO. Consequently, holes left in GaN recombine with the injected electrons 

and lead to emission on the GaN side. Defect states at the interface are also assumed to be involved 

in tunneling mechanism. Improvement of the device performance requires in depth study of the 

ZnO NW/GaN film interface as well as reduction of interface defects. 
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Chapter 8:  Conclusion 

8.1. Summary 

In this work, ZnO NWs were synthesized using the CVD and hydrothermal methods for further 

application in photovoltaic and light emitting devices. The microstructures and optical properties 

of the 1D-nanostructures were studied.  

QDs of CdSe/ZnS were incorporated into the structure of ZnO NWs for interface studies like 

microstructural assembly, photodegradation, and charge carrier dynamics. The obtained results 

provided insight into factors hindering the QDSSCs performance. 

Incorporation of QDs into ZnO NWs by drop-casting, spin-coating, and soaking showed that the 

QDs are sitting in the NWs’ spacing in a self-assembled arrangement. The microstructural studies 

demonstrate that the capillary and hydrodynamic drag forces are in charge of the QD self-

assembled structure in the NW spacing. QDs that were incorporated by drop-casting displayed the 

best ordered structures among the three methods. However, the substrate surface coverage was not 

uniform over all of the sample’s area. 

To study the photostability of the self-assembled structure of QD/ZnO NWs, the samples were 

subjected to light illumination. The absorption spectra of the samples were collected after different 

time intervals of illumination. The obtained data elucidated that the QDs’ photodegradation and 

photocorrosion are media dependent. QDs anchored to an electron acceptor material (ZnO NWs) 

had a higher rate of degradation than those anchored to an insulating material like a glass wafer. 

The photodegradation effect appeared as peak broadening and peak quenching in the absorption 

spectra.  

TRPL spectroscopy was carried out to elucidate charge carrier dynamics in ZnO NW/QD, ZnO 

NW/QD/electrolyte/insulator, and NW/QD/electrolyte/cathode structures. The acquired emission 

decay lifetimes from various structures showed that photoionization plays an important role in 

lifetime quenching, and it should be considered in data interpretation. Comparing the fitting values 

of decay lifetime for ZnO NW/QD/electrolyte/insulator and Glass/QD/electrolyte/cathode 
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provided insight to the relative electron and hole transfer rate. The hole transfer rate was slower 

than the electron transfer rate. Besides, the electron transfer rate was slower than the nonradiative 

Auger process which resulted in an efficiency drop in the corresponding QDSSCs. Therefore, the 

charge carrier transfer at ZnO NW/QD is also dependent on the surroundings. In addition, the 

effect of QD size on charge carrier dynamics was studied revealing that smaller QDs have a higher 

rate of electron transfer to metal oxide than the larger ones. Efficient surface passivation of QDs 

should be considered to reduce the unfavorable competing carrier losses via nonradiative 

recombination in the device structure.  

The QDs incorporated into ZnO NWs were deployed in the architecture of a QDSSC. The device 

I-V characteristics were presented. Then, the effect of various parameters on device performance 

was studied. Hydrogen annealing of ZnO NWs resulted in an overall improvement of the device 

due to passivation of some ZnO structure’s defects by hydrogen atoms. Using QDs capped with 

OA ligand versus QDA ligand lead to a larger short circuit current. Application of a thin layer of 

ZnO film on top of the AZO layer improved the cell’s fill factor and open circuit voltage. It was 

suggested that the ZnO layer adds a barrier to electron transport to the AZO layer, resulting in 

small current collection.  

Finally, the synthesized NWs were applied in the structure of a heterojunction LED device using 

a hydrothermal method. A yellow-white light was emitted from the device under forward bias 

injection current and a violet light under reverse bias injection current. The underlying mechanism 

behind reverse bias emission is the large energy band offset between ZnO and GaN. Under reverse 

bias, electrons tunnel from the ZnO conduction band into GaN side.  

8.2. Future Work 

This research provided the underlying reasons behind the poor performance of QDSSCs and ZnO 

NW/GaN heterojunction LEDs. The following are suggested for future consideration: 

 A comprehensive study on various QD ligands interaction with ZnO NW surfaces. Since 

poor QD loading was one of the reasons that impede the QDSSC’s efficiency, strategies to 

improve the QD loading should be considered. Besides, a thicker film of ZnO NWs will 

lead to larger current collection. 
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 Investigations on electrolyte properties and improvement of the hole transfer rate to 

cathode is essential to boost the device efficiency.  

 Efficient QD passivation is essential to increase the charge carrier transfer rate. 

 Impedance spectroscopy measurements for better understanding of the QDSSC 

performance 

 In depth interfacial investigations of the ZnO NW/GaN film to improve interface quality 

and consequently device efficiency 
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