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Abstract 

This thesis is unified around the theme of disc height loss.  Current knowledge in the area 

of spine research identifies mechanical overload as the culprit for the initiation of injury to the 

spine.  While genetic predispositions may play a factor in the severity of spine degeneration or 

in the resiliency to applied load, ultimately, injury occurs when a load exceeds a tissue’s 

tolerance.  

 Disc height loss has the potential to be a primary factor in the progression of spinal 

degeneration.  For example, disc height has been touted as a major component for the initiation 

of pathological and degenerative changes to the spine.  Pathologic, non-recoverable disc height 

loss can occur through herniation or endplate fracture and could result in a degenerative 

cascade of injury that eventually involves the facet joints, narrows nerve root space, and 

increases stress at adjacent segments.  What is not known is the degree to which disc height 

affects the degenerative cascade; that is, there is no quantitative data outlining the progression 

of mechanical consequences at adjacent segments or at the injured segment itself during disc 

height loss.  Further, the degree to which restoring disc height, if even possible, will reverse the 

process of degeneration is not entirely clear.  There is data which suggests that nucleus 

replacement can restore stress distributions within an injured disc, but the extent of repair 

material survivability is unknown.  Finally, clinical categories of measuring spinal degeneration 

are based on visual cues and features from medical imaging.  Understanding the links between 

joint visual cues and aberrant movement may help to guide clinical practice; researchers will 

gain greater insight into the mechanical consequences of anatomical features associated with 

degeneration. 

 This thesis was comprised of three studies.  Study 1 examined the effect of disc height 

loss and subsequent restoration using an injectable hydrogel on the relative kinematics of a 

segment with height loss and an adjacent segment.  It was found that disc height loss produced 
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an immediate effect, where relative angular displacement was reduced in the segment with 

height loss and increased in the adjacent segment.  Restoring disc height with an injectable 

hydrogel brought the relative angular displacement of both segments back to their initial values.  

This study is the first of its kind to examine the immediate effects of disc height loss via loss of 

nucleus pulposus and restoration.  Whether these effects are as clear in-vivo remains to be 

seen. 

 Study 2 evaluated the efficacy of a novel repair strategy to restore the mechanical profile 

of a spine segment with disc height loss initiated via compressive fracture.  The strategy 

employed the use of PMMA injected into the vertebral body to attempt to seal a fracture from 

above the disc, and an injectable hydrogel to restore disc height.  The use of PMMA was found 

to restore the compressive stiffness of the injured segment to within approximately 20% of its 

initial value, while the use of the injectable hydrogel restored the sagittal plane rotational 

stiffness to within approximately 50-80% of its initial value.  After further repetitive compression 

had been applied to the spine segment however, the restorative influence of both interventions 

was lost in terms of rotational and compressive stiffness.  It was found that large cracks in the 

endplate prevented the hydrogel from being contained and quickly returned the segment back to 

its injured profile.  Future efforts at restoring the disc while maintaining its anatomical structures 

need better methods of creating a sufficient seal inside the disc to allow it to re-pressurize and 

sustain the stresses encountered on a daily basis. 

 Study 3 employed the use of a novel spine tracking algorithm developed as part of this 

thesis to evaluate sagittal plane cervical spine motion of a series of patient image sequences 

who had experienced trauma and had a chief complaint related to their neck, head, or 

shoulders.  Some patients had evidence of disc height loss while others did not.  Clinical 

subgroups were created that classified disc height loss as either moderate/severe (3 cases), 

mild (8 cases), or non-existent (9 cases).  When normalized angular displacement of the C5/C6 

segment in a group with moderate to severe height loss was compared to the same level in a 
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group with no height loss, there was a statistically significant difference in angular displacement 

between the two groups (p = 0.004).  Angular displacement at C5/C6 was 20.2% ± 2.3% of total 

measured neck angular displacement in the moderate/severe height loss group compared to 

30.6% ± 4.0% of total measured neck angular displacement in the group without height loss.  

Based on the limited sample size of this study it would appear that disc height loss creates a 

loss in range of motion.  This work has further revealed the heterogeneous nature of individual 

segmental movement patterns.  However, in the group without height loss, there was a 

systematic trend seen of an increasing angular displacement with descending segmental level.  

This was not observed in those with moderate to severe disc height loss. 

 The broad implications of this work are that disc height loss influences spine kinematics, 

which has implications with respect to further injury propagation through the spinal linkage.  

Angular displacement of a spine segment appears to be governed by its local stiffness.  

Restoration of disc height under real injury scenarios is a difficult proposition and any attempts 

at repair need to sufficiently seal the disc space and prevent extrusion of nucleus pulposus or 

hydrogel-based implants.  We now appreciate the difficulty in this objective.  Further, repeating 

the mechanism of injury will reduce the mechanical effects of the restorative intervention, 

preventing this is highly important. 
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1 Chapter 1: Description of Thesis 

 

 This document first provides an introduction to the issues (Chapter 2) where the role of 

disc height loss is placed into context with respect to changes in spine kinematics and 

subsequent impact on injury mechanisms.  Further, the specific projects and global objectives of 

this thesis are also presented.  A review of the literature is presented in Chapter 3, while 

Chapter 4 outlines Study 1, which examined the effect of disc height loss on the kinematics of 

an adjacent segment using an in-vitro porcine model.  Study 2 is presented in Chapter 5 which 

examined the efficacy of a novel surgical approach in restoring the mechanics of a 

compressively injured porcine spine segment.  Chapter 6 contains Study 3 which involved 

characterizing the effect of disc height loss on the segmental kinematics of the cervical spine in-

vivo.  Chapter 7 discusses and integrates the results of the four studies and summarizes their 

scientific contribution. 

 Eight appendices are contained in this thesis work.  Appendix A outlines the 

development of the novel tracking method used to track segmental spine motion in-vivo. 

Appendix B outlines the specific methodology utilized to obtain relative joint angles.  Appendix C 

outlines the calculations for obtaining relative joint angles for Study 3.  Appendix D contains the 

consent forms signed by patients whose data was used for Study 3, additional information on 

the patients used in Study 3, and a detailed outline of the calculation of disc height index.  

Appendix E highlights the work I performed at the University of Bristol under Dr. Michael Adams 

and Dr. Patricia Dolan, and contains a brief comparison of human lumbar spines and porcine 

cervical spines.  Appendix F discusses the mechanical implications of using multi-segmented 

porcine cervical spine specimens in the servohydraulic tissue testing system.  Appendix G 

contains a comprehensive set of time-history graphs used for the patient validation tracking 
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stage of Appendix A.  Appendix H contains a comprehensive set of neutral posture radiographs 

and relative spine joint motion time-histories for the patient cases examined in Study 3. 
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2 Chapter 2: General Introduction of Issues Linked to Disc 

Height Loss 

 

 The intervertebral disc is a complex mechanical structure with hydraulic and deformable 

solid properties.   All components contribute to the overall structural integrity necessary for 

proper function.  When mechanical overload occurs in a disc, such as an endplate fracture or 

herniation for example, structural integrity of one component can be compromised, thereby 

affecting the functioning of all other components.  Loss of disc height is the variable of interest in 

this work that has potential consequences with respect to altering the mechanics of other 

segments.  Through this mechanism, the annulus bulges (Brinckmann and Horst, 1985) and 

other structures such as the facets assume an increased role in weight-bearing (Arbit and 

Pannullo, 2001, Gotfried et al., 1986).  This cascade of events influences mechanical behaviour 

at adjacent levels, given that they react as members of a linkage.  Mechanical damage as been 

posited as the primary factor that results in degeneration and dysfunction of a disc (Adams et 

al., 2015).  Regardless of the primary driver of degeneration (endplate-driven or annulus-driven) 

(Adams et al., 2015), the common factor is disc height loss.  This could be a cause or 

consequence in terms of both mechanism and clinical implications. 

 Further biological consequences may result through loss of disc height.  There is a 

delicate cellular environment within the intervertebral disc that prevents dysfunctional growth of 

neural (Johnson et al., 2002) and vascular (Johnson et al., 2005) structures.  Loss in 

intervertebral disc pressure (which occurs during height loss) has been shown to result in the 

infiltration of blood vessels and nerves (Stefanakis et al., 2012), a potential pathway to pain and 

sensitization.  This may be due to nerves and blood vessels not being able to survive in the 

extreme pressure of the intact disc, but when pressure is lost in some regions, they are able to 

infiltrate.   
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 While there are observed diurnal variations in disc height (Healey et al., 2011), this 

thesis addresses pathological disc height, or disc height that is unrecoverable.  Height lost 

through structural failure at some point in the disc is what leads to degenerative change (Adams 

and Roughley, 2006), and the work here attempts to describe the biomechanical consequences 

of this. 

 There are many ways in which the disc can become injured, but the most succinct 

explanation is that injury to the spine occurs when a load exceeds a tissue’s tolerance (McGill, 

2007).  Injury to the endplate, annulus, or nucleus itself can result in dysfunction of the spine 

and place further risk in the progression of injury.  The spine functions as a linkage, and so 

aberrant loading or a change in how load is distributed at one segment through disc height loss 

may affect how it is distributed at another segment.  Prevention of disc height loss, or 

restoration of disc height would then reduce the risk to adjacent segments and possibly interrupt 

the cascade that eventually causes disruption to other structures. 

 Invasive approaches to disc restoration involve disc replacement, nucleus augmentation, 

annular repair, and vertebroplasty.  When surgery has been deemed to be the most appropriate 

route to repairing the defects caused by disc injury, total disc replacement has become a 

mainstream option.  A developing technique is the use of injectable hydrogels which are 

designed to mimic the nucleus pulposus and maintain the majority of the disc’s original anatomy 

as opposed to total disc replacement.  Evaluation of the mechanical outcomes to disc height 

restoration through novel injectable hydrogels has been rare, but preliminary research does 

support its benefits (Dahl et al., 2010, Balkovec et al., 2013).   

 Further work is needed to fully quantify the processes that occur due to disc height loss.  

Observation of the timeline and an attempt to characterize a ‘typical’ process of degenerative 

change with disc height loss has not been done.  An observation of how the spine functions 

under both normal and perturbed situations could begin to parse out exactly what role disc 

height has in the kinematics of the spine.  Part of this task would then be to observe how disc 
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height restoration affects the mechanics of an injured disc and the degree to which such an 

intervention could prevent further cascade of injury.  Finally, this all must be distilled in a manner 

that frontline healthcare practitioners can put into use to deliver better levels of care to their 

patients.  

 This thesis is comprised of three data collections: 

1.  Characterizing the kinematic outcomes on injured and adjacent segments during disc 

height loss. 

2.  Investigating the efficacy of a combined surgical approach to restoring disc height 

and joint mechanics of the intervertebral disc. 

3.  Quantifying the impact in-vivo of pathologic disc height loss through examination of 

the kinematic response in those with flattened cervical spine discs. 

This document is organized to review the literature relevant to the mechanical 

consequences of disc height damage.  Then, the literature is summarized to create a statement 

of what is known and what is not.  Finally, the experiments are described. 

 

 The following flow chart is intended as a general overview of how all three studies 

integrate to form the overall theme of the thesis: 
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2.1 Rationale and Justification for This Thesis: 

 

 The influence of disc height loss and restoration of this loss on normal function remains 

unknown.  What is known is that it appears to be an important element in exacerbating further 

progression of injury, and therefore warrants further investigation.  Disc height is a simple and 

easily identifiable feature to examine on medical imaging for clinicians with expertise in treating 

the spine.  Identifying the link between disc height loss and mechanical function will begin to 

further understanding in methods of repair and help to influence clinical practice.  Thus, the 

following three studies were performed: 

1.  Characterizing the kinematic outcomes on injured and adjacent segments during disc 

height loss. 

2.  Investigating the efficacy of a combined surgical approach to restoring disc height 

and joint mechanics of the intervertebral disc. 

3.  Measuring the effect of disc height loss on injured spines in-vivo.  

 

 Study 1 identified the effect of disc height loss at one segment on an adjacent segment.  

It quantified adjacent segment perturbation through kinematic measurements.  This study tested 

the following hypotheses:  

 1.  Disc height loss will result in a lower relative angular displacement by the injured disc. 

 2.  Disc height restoration via hydrogel injection will return injured discs to their initial 

 relative levels of angular displacement. 

 3.  Disc height loss in the upper and lower discs will produce the same kinematic effect. 

 

 Study 2 identified how disc height restoration restored the stiffness characteristics of a 

compressively damaged spinal segment.  It determined the efficacy of combining two surgical 
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modalities (nucleus restoration via hydrogel injection and vertebroplasty) on restoring 

mechanical integrity to an injured spine.  Study 2 addressed the following hypotheses: 

 1.  Hydrogel injection will alter rotational stiffness levels from the compressively fatigued 

 state. 

 2.  PMMA injection will alter compressive stiffness levels from the compressively 

 fatigued state. 

 

 Study 3 examined cervical spine motion in-vivo under fluoroscopic imaging in cases with 

and without disc height loss.  This study identified the variety of movement strategies that can 

occur with disc height loss and discerned a common response that occurs with disc height loss 

in-vivo.  This study tested the following hypotheses: 

 1. Disc height loss will cause diminished segmental mobility at the affected segment. 

 2. Some individuals without disc height loss will also exhibit diminished mobility at one 

 segment as well as segments that exhibit enhanced mobility.  
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3 Chapter 3: Literature Review 

 

3.1  Functional Anatomy of the Intervertebral Disc 

  

The elements of the intervertebral disc function together to provide mobility to the spine, 

load transferring properties that span the spinal column, and cellular nutrition.  For convenience, 

the disc can be thought of as three separate elements; a nucleus pulposus which is located in 

the center of the disc, an annulus fibrosus surrounding the nucleus pulposus, and two vertebral 

endplates consisting of cartilage located superiorly and inferiorly to the nucleus pulposus and 

the annulus fibrosus (Bogduk, 2005).  A human lumbar intervertebral disc is approximately 9-

17mm in height, thoracic discs are approximately 5mm, and cervical discs approximately 3mm 

(Shapiro and Risbud, 2014) which gradually decreases with daily activity as water migrates 

outwards due to elevated hydrostatic pressure from joint loading (Adams et al., 2006a).   

Together, all the components of the intervertebral disc comprise a structure that is able 

to facilitate bending in any direction, gliding and twisting movements, and allow weight-bearing 

(Bogduk, 2005).   

 

3.1.1 Nucleus Pulposus 

The nucleus pulposus (nucleus) is a gelatinous structure that is located in the center of 

the disc and surrounded by the annulus fibrosus (Coventry et al., 1945).  It is composed 

primarily of water, proteoglycans, and type II collagen (Adams et al., 2006a).  Proteoglycans, 

which comprise 50% of the dry weight of the nucleus pulposus have the ability to hold large 

amounts of water, allowing it to maintain mechanical integrity while transferring compressive 

load between vertebral bodies and acting to brace the annulus (Adams et al., 2006a).   
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A proteoglycan is a unit that consists of a protein core with glycosaminoglycan 

(polysaccharide) side chains (Esko et al., 2009); due to their high polarity, these side chains are 

very hydrophilic and readily attract water.  Aggrecan, the primary constituent proteoglycan of the 

nucleus (Roughley, 2004) has side chains of chondroitin sulfate and keratin sulfate (Kiani et al., 

2002).  It forms large aggregates with hyaluronan (Watanabe et al., 1997), where many 

molecules of aggrecan are covalently bound and stabilized via link protein (Neame and Barry, 

1993).  With age, the levels of these aggregate molecules decrease (Johnstone and Bayliss, 

1995), thereby increasing proportions of non-aggregate proteoglycans (Oegema et al., 1979).  

The consequences of this degradation are not entirely clear given that the non-aggregated 

proteoglycans can still contribute to the water retaining properties of the nucleus, as they cannot 

escape from the central disc space under non-injured conditions (Roughley, 2004).  The 

nucleus also contains small amounts of lumican, fibromodulin (Sztrolovics et al., 1999), versican 

(Sztrolovics et al., 2002), perlecan (Smith et al., 2009), lubricin (Shine et al., 2009), 

chondroadherin (Haglund et al., 2009), decorin, and biglycan (Singh et al., 2009).  Water 

content is highest in the nucleus and decreases in the annulus (Antoniou et al., 1996) with 

regions of lower proteoglycan content (and by extension-water content) within the nucleus itself 

being associated with aging (Urban and McMullin, 1988) and higher levels of degeneration 

(Iatridis et al., 2007, Antoniou et al., 1996).   

The nucleus, despite being viscous during the juvenile stages of development is not 

without significant structural composition.  Its behavior is unique in that its material properties 

are load-rate dependent, behaving more like a viscoelastic solid under dynamic conditions, and 

more like a fluid under transient stress (Iatridis et al., 1996).  Type II collagen in the nucleus is 

arranged in a random fashion (Inoue, 1981) along with the short-chain highly branched collagen 

VI (Roberts et al., 1991a), fibrillar collagen V, and fibril-associated collagen IX (Nerlich et al., 

1998, Nerlich et al., 1997).  Type IX collagen is found cross-linked in articular cartilage 

perpendicularly to the long-chain fibrillar type II collagen (van der Rest and Mayne, 1988).  
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Conflicting evidence exists however, with respect to how common type IX collagen is in the 

human disc (Roberts et al., 1991b).  Both studies find agreement in that it seems to be 

associated with sites of damage.  A network of elastin within the extracellular matrix has also 

been demonstrated in a bovine tail model, suggesting a possible role in structural connections 

and cellular function (Yu et al., 2007).  In light of the evidence for its profound structural 

elements, the nucleus is clearly unique and exhibits properties beyond that of a simple fluid. 

The nucleus is a remnant of the notochord in human infants (Walmsley, 1953) and as 

development occurs, notochord cells are lost and the nucleus becomes much more viscous and 

firm, still producing proteoglycans, but also higher levels of collagen (Urban et al., 2000).  As 

aging continues, water, proteoglycans, and type II collagen levels all continue to decrease 

(Murakami et al., 2010).  While some research maintains that the nucleus is simply an isolated 

entity (Inoue, 1981, Inoue and Takeda, 1975), other studies suggest a disorganized attachment 

between nucleus fibers and the endplate (Roberts et al., 1989), with more recent research 

describing this interface as being much more highly organized, at least in sheep (Wade et al., 

2011).  Additionally, integration of the nucleus with the annulus fibrosus has also been identified 

with this same animal model (Wade et al., 2012).  

The hydrophilic nature of the nucleus via its proteoglycan constituents dictates that it has 

an inherent osmotic pressure (Urban et al., 1979).  The negatively charged glycosaminoglycan 

side chains create a fixed charge density within the nucleus that causes the disc to swell as a 

result of fluid absorption (Urban and Maroudas, 1981).  Positively charged sodium ions are 

initially drawn into the negatively charged disc matrix via simple diffusion, with a preference for 

entry into regions of the disc with a higher concentration of glycosaminoglycan side chains 

(Urban et al., 2000).  With a higher concentration of these positive cations inside of the disc 

compared to outside, water is drawn in via osmosis (Cortes and Elliott, 2014).  As a disc swells 

it induces tensile stress and stiffness in the disc (Cortes and Elliott, 2014).  Swelling will stop 

when the stress created by the osmotic pressure is in balance with the external stresses 
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resisting its expansion (Broom and Marra, 1985), which in the case of the disc would be the 

stress created by tension in the annulus.  Stress causes fluid to be expelled from the disc and 

increases the effective concentration of proteoglycans, enabling the disc to re-imbibe fluid when 

unloaded (Urban and McMullin, 1988).  This osmotic pressure is dependent on the 

concentration of disc proteoglycans, and a loss decreases the ability of the disc to remain 

hydrated (Urban and McMullin, 1988). 

Movement of the spine tends to cause the nucleus to migrate; with flexion being 

associated with posterior movement and extension causing anterior movement (Fennell et al., 

1996).  Mobility of the nucleus has been described as tethered, with organized nodes and 

streaming fibers of the nucleus into the cartilaginous endplate providing some element of 

support (Wade et al., 2011).  Similar sites of attachment are also evident at the innermost fibers 

of the annulus fibrosus (Wade et al., 2012).  The pressure generated by the nucleus allows it to 

withstand compressive loading (Hukins and Meakin, 2000), with different body orientations 

being associated with different levels of compressive load (Nachemson, 1981, Wilke et al., 

1999).   

 

3.1.2 Annulus Fibrosus  

Surrounding the nucleus is the annulus fibrosus (annulus).  It is made up of individual 

collagenous lamellae that layer concentrically around the disc (Adams et al., 2006a) with outer 

lamellae having the greatest thickness and subsequent layers decreasing inwards (Inoue and 

Takeda, 1975, Inoue, 1981).  The number of lamellar layers varies throughout regions of the 

disc with a general range of 15-25 distinct layers and a higher number in the anterior region 

compared to the posterior (Marchand and Ahmed, 1990).  Further, the posterior layers have a 

tendency to be thinner than the anterior layers (Inoue and Takeda, 1975).  Each additional 

lamella orients itself in an oblique fashion compared to the last layer (Bogduk, 2005), with a 

trend for the angle of insertion of each lamella to decrease moving towards the center of the 
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disc with respect to the vertical axis (Cassidy et al., 1989).  The annulus is made up of type I 

and type II collagen (Eyre and Muir, 1977), with the periphery of the annulus consisting 

exclusively of type I collagen, and the levels of type II collagen increasing closer to the center of 

the disc (Schollmeier et al., 2000).  This distribution is not uniform, but rather, there is a higher 

level of type I collagen at the anterior of the disc and a thinning towards the posterior 

(Schollmeier et al., 2000).  Additional types of collagen in the annulus include types III, V, VI 

(Nerlich et al., 1998, Roberts et al., 1991b), IX (Nerlich et al., 1998, Nerlich et al., 1997), and X 

(Nerlich et al., 1997).  With age, type I collagen infiltrates further into the inner lamellar layers 

(Schollmeier et al., 2000).  The annulus also contains a network of elastic fibers thought to aid in 

controlling deformation and re-orientation of the collagen fibers, preventing excessive damage 

(Smith and Fazzalari, 2009).  The nature of the annulus allows it to facilitate motion of the disc 

in any direction while at the same time resisting excessive sliding and twisting movements 

based on the tensile properties of the individual fibers (Adams et al., 2006a).  Lamellae of the 

outer annulus fibrosus attach themselves to the bony endplate and vertebral epiphysis via 

strong Sharpey’s fibers (Johnson et al., 1982, Green et al., 1993).  More centrally, collagen 

fibers of the inner annulus and nucleus coalesce to insert obliquely into the cartilaginous 

endplate (Bogduk, 2005).  Research using an animal model has also identified structural 

bridging elements that assist with cohesive attachments between lamellae (Pezowicz et al., 

2006). 

In addition to its collagenous components, the annulus also has proteoglycan 

constituents which like the nucleus, consists mainly of aggrecan (Johnstone and Bayliss, 1995).  

Additionally, versican and perlecan are present in the annulus of the fetal spine (Smith et al., 

2009).  Lubricin has also been shown to be part of the annulus with concentrations diminishing 

moving outwards towards the periphery (Shine et al., 2009).  Aosporin has been identified 

primarily in the outer annulus, with higher levels being associated with greater levels of 

degeneration (Gruber et al., 2009).  Decorin, lumican, fibromodulin, and biglycan are also small 
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proteoglycans present in the annulus, with their relative concentrations dependent on age 

(Singh et al., 2009).  

 Both the annulus and nucleus exist in a symbiosis of sorts; with the pressurized nucleus 

bracing the annulus and preventing it from buckling under compressive load, and the annulus 

containing the nucleus and preventing it from extruding out of the disc (Adams et al., 2006a).  In 

an ideal scenario, the nucleus is fully contained by the annulus, but repetitive stress such as 

flexion under a compressive load (Balkovec and McGill, 2012, Scannell and McGill, 2009), or 

repeated flexion and extension under compressive load (Callaghan and McGill, 2001, Balkovec 

and McGill, 2012) have all been shown to cause herniation of nuclear material.  Under these 

conditions nuclear material passes through breaches in delaminated annulus collagen which 

appear to develop as a consequence of repeated stress-strain reversals (Tampier et al., 2007).  

The annulus derives much of its strength from connections between collagen and the 

surrounding matrix of proteoglycans instead of connections from endplate to endplate (Adams 

and Green, 1993).  Detailed research on the micro-anatomy of collagen fibers in the disc has 

revealed that they form crosslinks with each other that decrease in number with aging 

(Pokharna and Phillips, 1998).  The annulus behaves more like a chopped fiber composite 

(Hukins et al., 1984) and remains strong provided the individual reinforcing fibers are of 

sufficient length. 

 Studies on the material properties of the annulus under uniaxial tensile stress-strain 

loading have shown that initially it exhibits a distinct toe region, followed by a heel region and 

linear region (Guerin and Elliott, 2007).  Upon closer examination of the microstructure of 

individual lamellae, this relationship is very clearly explained.  Un-stretched collagen fibers of 

the annulus exhibit a characteristic crimp - with the angle of crimp increasing moving from the 

disc periphery inwards (Cassidy et al., 1989) - and there is very little resistance to their initial 

straightening.  As more fibers straighten, the overall annular stiffness increases as it resists 

tensile load (Cortes and Elliott, 2014).  Annulus fibers also have a tendency to re-orient to the 
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direction of the loading axis when subject to tension in a single axis (Guerin and Elliott, 2006).  

Whether uniaxial material tests accurately mimic loading of the annulus in-vivo is debatable 

however; biaxial tensile testing may more closely relate to what is naturally seen (Gregory and 

Callaghan, 2011).   

 The annulus has been shown to have anisotropic properties, with permeability in the 

radial direction being greatest in non-degenerate discs (Gu et al., 1999).  Further, the 

anisotropic nature of the annulus extends to its mechanical properties, withstanding far greater 

stresses when loaded circumferentially in tension as opposed to axially (Guerin and Elliott, 

2007). 

  

3.1.3 Endplate 

 The endplate is a cartilaginous structure present at the upper and lower portions of the 

disc, encapsulating it at these ends (Bogduk, 2005).  The endplates are attached to the 

subchondral bone of the vertebral bodies (Adams et al., 2006a) and surrounded by the ring 

apophysis (Bogduk, 2005).  The cartilaginous endplate contains type II (Nosikova et al., 2012) 

and type X collagen (Aigner et al., 1998), with the latter being associated with cartilage 

calcification (Kirsch and von der Mark, 1991).  The endplate is also rich in proteoglycans with 

the central region having higher levels of proteoglycans and lower levels of collagen and the 

opposite being the case near the outer annulus (Roberts et al., 1989).  These proteoglycans 

appear to have a critical role in the containment of other proteoglycans in the nucleus and in 

nutrient transport (Roberts et al., 1996). 

 From the disc side, the hyaline cartilage of the endplate in an animal model has been 

shown to integrate with the annulus and nucleus (Wade et al., 2011).  The outer lamellae of the 

annulus insert into the bony endplate and vertebral epiphysis via strong Sharpey’s fibers 

(Johnson et al., 1982, Green et al., 1993).  Centrally, collagen fibers of the inner annulus and 

nucleus blend with the cartilaginous endplate via oblique insertions (Bogduk, 2005).  
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Microscopic perforations in the endplate (Benneker et al., 2005, Rodriguez et al., 2011) provide 

a pathway for nutrients to flow into the disc and waste products to flow outwards (Urban et al., 

1977).  Only 0.6-1mm thick (Roberts et al., 1989), the endplate is a delicate structure that 

experiences tensile strain (Fields et al., 2010) and is easily damaged (Adams et al., 2006a).  It 

is often the first structure to be injured under high compressive load (Brinckmann et al., 1989), 

although these characteristics can change under varying loading rates (Yingling et al., 1997).  

Endplates show a characteristic deflection behavior under compression with these sites of 

deflection being associated with structural weakness and likely regions for failure (Jackman et 

al., 2014).  Unsurprisingly, the endplate becomes weaker with age and degeneration (Hansson 

et al., 1987), further augmented by changes to the underlying trabecular bone from a more 

closed structure with horizontal struts to one with more open rod-like struts that lack horizontal 

connectivity (Ferguson and Steffen, 2003). 

 Interestingly, accounts of double endplates in some discs have been noted, where there 

is a second layer of bone present (Rodriguez et al., 2012, Zhao et al., 2009).  This distinct type 

of endplate has been associated with a thinner superficial layer, higher glycosaminoglycan 

content, higher permeability, and it has been suggested that they promote significant benefits in 

preventing degenerative changes of the disc (Fields et al., 2012). 

 

3.1.4 Nerve and Vascular Supply 

 The vascular components of the intervertebral disc are unlike other structures in the 

body; with the disc itself being completely free of arteries, veins, or capillaries (Hassler, 1969).  

Under non-pathologic conditions, aggrecan in the nucleus prevents growth of nerves (Johnson 

et al., 2002) and endothelial cells (Johnson et al., 2005).  Rather, there is a dense capillary 

network surrounding the disc (Hassler, 1969), allowing any nutrients to reach the disc through 

passive diffusion at the endplate (Rudert and Tillmann, 1993).  Changes to the structure or 
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properties of the endplate, subchondral bone, or blood supply can affect the nutrition of the disc 

and produce further degenerative changes (Urban et al., 2004). 

 Nerves are found on the outer-third of the annulus; The disc is innervated anteriorly, 

posteriorly, and laterally, with its nerve supply derived from nerve roots off the spinal cord 

(Adams et al., 2006a, Bogduk, 2005).  Anterior and lateral innervation to the disc is via a plexus 

of nerves derived from the sympathetic trunks and branches of the grey rami communicantes, 

while posteriorly the annulus receives its innervation from a plexus originating from the 

sinuvertebral nerves (Bogduk, 2005, Adams et al., 2006a).  The disc is also innervated above 

the endplate with entry through the basivertebral foramen (Bailey et al., 2011).  The origin of 

these nerves is most likely via the sinuvertebral nerve, where they are clustered primarily above 

the nucleus region (Fagan et al., 2003) in the center of the vertebral body and are thought to 

play a nociceptive role (Bailey et al., 2011).  Damage such as annular fissures provide an 

environment for the ingrowth of nerves and blood vessels (Stefanakis et al., 2012).  This may be 

due to nerves and vascular vessels not being able to survive in the extreme pressure of a 

healthy nucleus.  Loss of this pressure may allow the in-growth of these vessels (private 

communication with Professor Mike Adams, 2015).  Degenerated nucleus pulposus cells also 

have been shown to release neurotrophic growth factor and brain-derived neurotrophic factor, 

thought to further enhance neural growth within the disc (Richardson et al., 2012). 

 

3.1.5 Cellular Environment of the Intervertebral Disc 

 Cells of the intervertebral disc have yet to be fully characterized, rather, they are 

described as chondrocyte-like in the nucleus (Trout et al., 1982) and fibroblast-like in the 

annulus (Walmsley, 1953).  During the first few years of life there are notochord cells in the 

nucleus which are rapidly lost and replaced by mature cells (Peacock, 1952).  In numerous 

animal species, notochord cells are maintained throughout life, with the exception of cows (Alini 

et al., 2008), sheep, and chondrodystrophoid dogs (Hunter et al., 2004).  Cells of the 
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intervertebral disc produce the constituents required for its functioning.  Dysfunction of the cells 

can result in a loss of this production or changes that shift the balance of the disc environment 

to one that favors a net catabolic breakdown of tissues (Risbud and Shapiro, 2014).  A 

considerable effort has therefore been put into identifying ways to restore or replace 

dysfunctional cells and rebuild the non-pathologic environment of the intervertebral disc 

(Benneker et al., 2014). 

 The environment that the cells are required to exist in is harsh, with high pressure 

(Nachemson, 1981) and low levels of oxygen (Bartels et al., 1998).  As a result, the cells have 

developed adaptive capabilities to survive under these conditions.  Use of hypoxic inducible 

factors, which are transcription factors, helps cells of the nucleus to withstand and thrive within 

their natural environment (Chen et al., 2014); loss of these has been shown to result in a 

complete lack of development of the nucleus (Merceron et al., 2014), which would have 

profound mechanical consequences to spine function.  Cells in the disc utilize glycolytic 

pathways to produce energy (Holm et al., 1981), and efficiently reuse unnecessary constituents 

within their cytosol to produce critical proteins (Xu et al., 2014).  One drawback is that the 

environmental balance required for cellular survival is extremely delicate, with any factor that 

blocks the passively diffusing nutrients required being able to severely alter their viability (Urban 

et al., 2004).  Mechanically-induced structural damage to the intervertebral discs has the 

potential to alter the microenvironment and produce damage on a scale that the intervertebral 

disc cells simply cannot keep pace with (Adams and Dolan, 1997).  This augments any 

mechanically induced damage and could potentially lead to a spiral of latent dysfunction with 

further structural and neural consequences. 
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3.2 Architectural and Functional Differences between the Cervical and Lumbar 

Spine 

 

 Since some experimentation in this thesis involved both the cervical spine and the 

lumbar spine, they are contrasted here.  While part of the same structure, the cervical and 

lumbar spines possess anatomical and functional differences.  Vertebral bodies of the cervical 

spine are smaller and have long spinous processes with respect to the size of the vertebra itself 

(Adams et al., 2006a).  Compared to the lumbar spine, the nucleus of the cervical spine also 

contains a fibrocartilaginous core (Mercer and Bogduk, 1999), and the discs overall are 

relatively large in terms of height compared to the surrounding bony elements (Adams et al., 

2006a).  The cervical spine has a high range of motion (Lansade et al., 2009), which is 

desirable for the neck and is reflective of the large variety of head postures that can be adopted.  

A more fibrous nucleus could potentially reduce the propensity for herniation, although cervical 

disc herniations do occur (Wong et al., 2014).  Further, the posterior annulus is limited to only a 

few layers (Mercer and Bogduk, 1999), making a more fluid-like nucleus undesirable, given the 

presumably higher propensity for rupture through the posterior annular layers with a nucleus 

that is less tethered within the disc space.  The annulus also does not layer in a criss-cross 

fashion, but rather, orients mostly towards the anterior portion of the superior vertebra (Mercer 

and Bogduk, 1999). 

 Facet joints of the cervical spine also have an orientation approximately 40° to the 

vertical (Nowitzke et al., 1994) (biological average), whereas in the lumbar spine they are nearly 

parallel with the vertical axis (Bogduk, 2005).  While limiting rotation movements in the lumbar 

spine (Bogduk, 2005), the facets in the cervical spine facilitate rotation and gliding of one 

vertebra over another (Nowitzke et al., 1994).  In addition to the facets, the cervical spine also 

has Luschka joints, which are formed by uncinate processes on the vertebra above and the 
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uncus on the vertebra below (Bogduk and Mercer, 2000).  These joints modify axial rotation of 

one cervical vertebra over another and help to guide sagittal plane movements (Bogduk and 

Mercer, 2000). 

 Despite these differences, the discs of the cervical spine still act as a mechanical 

fulcrum for relative rotations of vertebral bodies, just as they do in the lumbar spine.  In this 

fashion, the cervical and lumbar spines are relatable in terms of overall trends and functional 

changes during disc height loss.  While the details of their functional differences do not allow for 

direct comparison, relating gross changes in disc height between the cervical and lumbar spine 

is appropriate when caution is used to not directly relate specific values, but rather overall 

approximate trends. 

 

3.3 Perturbed Mechanics and Injury to the Intervertebral Disc 

 

 There are numerous factors that can contribute to a disc failing to function in its intended 

manner.  Physical damage (Adams et al., 1993), alterations in fluid content (Andersson and 

Schultz, 1979), abnormal growths (Al-Rawahi et al., 2011), and repetitive loading (Callaghan 

and McGill, 2001) can all change the mechanical function of the intervertebral disc. 

 

3.3.1 Perturbations and Injury to the Nucleus Pulposus  

Primary constituents of the nucleus are proteoglycans and water (Iatridis et al., 2007).  

Given the role of the nucleus in reducing radial bulge of the annulus (Brinckmann and 

Grootenboer, 1991, Meakin et al., 2001), an injury to the nucleus pulposus could be classified 

as an event which does not permit it to perform this role.  Increased compressive loading has 

been shown to induce apoptosis within the nucleus cells (Lotz et al., 1998, Lotz and Chin, 

2000), preventing the production of proteoglycans, and therefore reducing the ability of the disc 

to retain water (Adams et al., 2006a).  Cells of the intervertebral disc, which produce its 
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constituents that dictate its mechanical properties respond to mechanical loading (Korecki et al., 

2008).  There exists an optimal loading region to the disc that could aptly be described as a U-

shaped function, too much or too little load and catabolic processes could take over (Walsh and 

Lotz, 2004).  Disc cells respond to sub-optimal conditions through the release of proteinases 

and cytokines.  Common proteinases include metalloproteinases (MMPs) and a disintegrin and 

metalloproteinase with thrombospondin motifs (ADAMTS) (Sztrolovics et al., 1997) while the 

inflammatory cytokine response is dominated by TNFα and interleukin-1β (Wang et al., 2011).  

Proteinases cleave proteoglycan aggregates which increases the chances for them to escape 

from the disc space (Melrose and Roughley, 2014).  Presumably, the presence of a 

mechanically induced injury such as an annular fissure or endplate fracture would facilitate this 

process.  Loss of proteoglycans results in a decreased fixed charge density in the nucleus, 

which reduces its osmotic swelling potential and affects its ability to retain water and transmit 

load evenly across the adjacent endplates (Melrose and Roughley, 2014).  

Removal of nucleus material such as during a discectomy procedure results in a loss of 

disc height and pressure, and an increase in the radial bulge of the disc (Brinckmann and 

Grootenboer, 1991).  This has the potential to affect other tissues as well, such as increasing 

the load on the posterior elements of the spine (Dunlop et al., 1984) or an increased disc bulge 

impinging posterior nerves (Brinckmann and Grootenboer, 1991).  Without a sufficient amount 

of nucleus located in the disc, compressive loads cause portions of the annulus to bulge 

inwards (Meakin et al., 2001). This is presumably because there is not enough pressure 

generated by the nucleus to act as a sufficient brace; intrinsic disc pressure has been shown to 

act as a barometer for degeneration grade (Panjabi et al., 1988).  Internal disc pressure drops 

when the nucleus is disrupted but the gradient of pressure across the disc increases which 

presumably increases the shear load sustained by lamellae of the annulus and contributes to 

their delamination (Stefanakis et al., 2014).  Under normal conditions, the pressure and 

proteoglycan content in the nucleus inhibits the growth of nerves (Johnson et al., 2002) and 



21 
 

blood vessels (Johnson et al., 2005).  When that proteoglycan content is lost and regions of 

altered pressure exist in the nucleus region, the potential for nociceptive nerve growth is 

enhanced (Stefanakis et al., 2012).  The nucleus is also seen as foreign to the body’s own 

immune system; as a result, breaching of the nucleus outside of the disc space has the potential 

to result in a response that can result in inflammation and neo-innervation (Repanti et al., 1998). 

 Under normal circumstances the nucleus braces the annulus and prevents it from 

buckling while its expansion in the radial direction is consequently resisted by the annulus 

(Adams et al., 2006a).  Together, this creates a structure with inherent stability, and when 

nuclear material is lost, so is that stability (Cannella et al., 2008). 

 

3.3.2 Perturbations and Injury to the Annulus Fibrosus  

The annulus is anisotropic, and its permeability is higher in the radial direction (Gu et al., 

1999), making herniation of nuclear material a likely injury under the correct conditions.  

Repetitive flexion coupled with extension (Callaghan and McGill, 2001, Balkovec and McGill, 

2012) in addition to pure repetitive flexion (Scannell and McGill, 2009) and fixed flexion with 

repeated compression (Adams and Hutton, 1985) has been shown to produce intervertebral 

disc herniations.  The site of herniation has been shown to be determined by the bending axis 

(Aultman et al., 2005), and the total area/pathway which nuclear material diffuses through has 

been shown to be dependent on disc shape (Yates et al., 2010).  As stress is repeatedly applied 

to the annular fibres, and the nuclear material is hydraulically pumped towards the posterior of 

the disc during flexion (Fennell et al., 1996), nucleus infiltrates the individual lamellar layers in 

addition to travelling through delaminated collagen fibers (Tampier et al., 2007).  Interestingly, 

there is some evidence to suggest that there is far more prolific diffusion of nucleus through the 

annulus when a cycle of flexion is coupled with extension (Balkovec and McGill, 2012).  

Presumably, the potential for increased stress on the posterior fibers of the annulus during 
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extension (Adams et al., 2000b) can induce higher levels of deterioration and therefore ease the 

tracking of nuclear material through the annulus. 

 Twisting or the generation of axial torque on its own has not been shown to produce any 

evidence of disc herniation, however, when coupled with flexion/extension motions, axial 

twisting as well as static torque (Drake et al., 2005) caused higher levels of radial delamination 

(Marshall and McGill, 2010, Drake et al., 2005).  Clinically, there are various classifications to 

describe annular disruption via the migration of nuclear material.  It is important to use 

appropriate terms to ensure that results and observations are communicated accurately and 

understandably.  A bulging disc is not considered a herniation and is classified as the presence 

of disc tissue beyond the periphery of the ring apophysis and covering more than 50% of the 

circumference (Morgan, 2013).  Herniations are classified as local displacements of disc 

material beyond the normal disc space; they are further sub-categorized as protrusions, 

extrusions, sequestrations, contained, and uncontained (Fardon et al., 2014).  Specific to the 

annulus, gross injuries to it are in the form of fissures, which are described as either concentric, 

radial, or transverse (Fardon et al., 2014). 

Perturbation of the annulus has also been shown to affect the mechanics of the 

intervertebral disc.  Fissures created in the annulus reduce the stiffness characteristics of the 

disc (Latham et al., 1994), and similarly, incisions made in the annulus during discectomy 

increase the motion of a disc under a given moment (Natarajan et al., 2002) and reduce its 

ability to resist motion (Thompson et al., 2004).  Increased motion or translation of a vertebral 

body or increased bulging of a disc could potentially lead to nerve root impingement (Reuber et 

al., 1982).  Failure of the annulus to contain the nucleus is evident during disc herniation as 

nucleus works its way through delaminated collagen fibers (Tampier et al., 2007).  The 

implication of this is also a loss in disc pressure and therefore greater annular bulging. 
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3.3.3 Perturbations and Injury to the Endplate  

High levels of compressive load are the primary culprit for endplate injuries (Brinckmann 

et al., 1989, Yingling et al., 1997).  Repeated flexion motions under compressive load have a 

higher likelihood of resulting in an endplate fracture if the compressive load exceeds 30% of the 

predicted tolerance (Parkinson and Callaghan, 2009).  Anterior-posterior shear loading also has 

the potential to produce endplate avulsions (Yingling and McGill, 1999).  Schmorl’s nodes, 

which is the infiltration of nucleus through small pits the endplate and into the vertebral body 

(McGill, 2007) are present in a large distribution of age groups and appear to be associated with 

high levels of repetitive or acute stress (Burke, 2012). 

As the weak-point of the intervertebral disc (Adams et al., 2006a), injury to the endplate 

and the subsequent alterations in mechanical function is a concern.  Fracture to the endplate 

can decrease nucleus pressure by 37% (Przybyla et al., 2006) and unfortunately, is often the 

first component of the intervertebral disc injured under compression (Brinckmann et al., 1989) 

with the cranial endplate usually injured before the caudal (Zhao et al., 2009).  By comparison, 

damage to the outer layers of the annulus have only been shown to decrease intradiscal 

pressure by 1% (Przybyla et al., 2006).   Evidence shows that the endplate experiences high 

tensile strain during compression, given that bone is most susceptible to tensile failure, the 

endplate is pointed out as the most likely site for failure to first occur (Fields et al., 2010).  As 

with dysfunction of the annulus or nucleus, loss in disc pressure, which accompanies endplate 

fracture can result in the characteristic bulging of the annulus, loss in the disc’s stiffness 

characteristics, and resistance to motion.   

The interface between the hyaline cartilage and the subchondral bone of the endplate 

has also been implicated as the weak point of the disc in tension (Lama et al., 2014, Balkovec et 

al., 2015).  This is most likely the origin of bone (Rajasekaran et al., 2013) and cartilage 

(Willburger et al., 2004) fragments found in herniated material in some instances.  Exposure of 

the disc to the external environment via a transverse fissure (or rim lesion) as described has 
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important implications first to the mechanical integrity of the disc, but also with respect to 

bacterial infection (Lama et al., 2014). 

 

3.4 The Degenerative Cascade 

 

 The degenerative process of spinal injury was first described by Kirkaldy-Willis and 

Farfan in 1982 where the spine goes through three distinct phases of temporary dysfunction, 

instability, and then stabilization (Kirkaldy-Willis and Farfan, 1982).  Prior to that, Kirkaldy-Willis 

and colleagues described how injury at one level in the spine led to degenerative changes at 

subsequent levels over time (Kirkaldy-Willis et al., 1978).  

 

3.4.1 Disc Degeneration 

 Since the pioneering work of Kirkaldy-Willis and colleagues, the term degeneration as it 

applies to intervertebral discs has been refined; a proposed definition of disc degeneration is 

that it is “an aberrant, cell-mediated response to progressive structural failure”, and that “a 

degenerate disc is one with structural failure combined with accelerated or advanced signs of 

ageing” (Adams and Roughley, 2006). 

 By altering the structural integrity at one portion of the disc, the load borne by adjacent 

tissues is increased (Adams et al., 2006a).  Disc degeneration has been initiated through 

mechanical means (Adams et al., 2000a) and it is thought that mechanical factors, more 

specifically tissue overload, are the primary culprit to disc degeneration (Stokes and Iatridis, 

2004).  While some epidemiological research points the primary cause of disc degeneration 

squarely in the favour of genetic predisposition (Battie et al., 2009), this could be a flawed 

manner of examining the issue.  While genetic inheritance may predispose an individual to have 

certain characteristics related to their spinal tissues, there still needs to be a mechanical event 

to initiate the injury process.  This also adds an element of defeatism towards prevention and 
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treatment of spine injury, potentially prompting individuals and health care practitioners to 

passively blame the issue on genetics with no recourse for improving an individual’s situation.  It 

also has dangerous implications for the medico-legal sector, neglecting a massive body of 

literature that shows how mechanical factors dictate injury and could prevent legitimately injured 

individuals from receiving appropriate compensation.   

 While it may be genetics that determine the tolerance of an individual to given stresses, 

it is most likely their environment and loading history that determine future degenerative 

changes.  This research also makes certain assumptions with respect to the relative disparity in 

the amount of physical loading between occupations.  It would be short-sighted to draw 

comparisons between an office worker and a truck driver and say that one involves 

fundamentally different physical loads and exposures.  Disparity with respect to load exposure 

with typical manual labour occupations versus occupations with prolonged seating such as 

office work may not be as great as they are made out to be.  With seated posture there is 

considerable flexion of the lumbar spine (De Carvalho et al., 2010).  Given that flexion has been 

shown to create mechanically-induced injury to the spine (Callaghan and McGill, 2001, Walter et 

al., 2011), it comes as no surprise that two occupations involving prolonged sitting would 

develop similar degenerative changes.  Genetics in this case would play a role through setting 

the relative threshold where injury would happen, but rather than spontaneously developing a 

degenerated disc, mechanical events would have initiated the process. 

 There are a series of methods which attempt to classify degrees of degeneration within 

the disc (Adams et al., 1986, Pfirrmann et al., 2001, Thompson et al., 1990) which have all been 

classified as reliable and reproducible in a clinical setting.  Some classification schemes have 

been based on discograms obtained from cadaveric specimens to classify the degree of a disc’s 

degeneration into one of four grades (Adams et al., 1986), others have used MRI (Pfirrmann et 

al., 2001), while others have taken a purely observational approach (Thompson et al., 1990).  Of 

particular note is the reproducibility in a clinical setting (Agorastides et al., 2002), allowing 
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reliable classifications of degeneration grade to take place between different observers.  This is 

an important objective to not only have clinicians agreeing on a given degeneration grade, but 

also to appropriately prescribe the correct intervention if it is determined to be necessary.  What 

seems to be lacking though, is a functional classification of degeneration grade.  While a disc 

may have a certain appearance, this may not necessarily correlate with its functional abilities 

and inherent stability characteristics.  By targeting degenerative classifications towards function, 

clinicians could have more success in targeting treatments towards patients and help return 

them to performing daily activities without perturbation of adjacent tissues through 

compensatory mechanisms.  Targeting a classification scheme towards function could help 

clinicians answer what a patient can do, what they can’t do, and what impairs their progress. 

 There is a level of ambiguity with respect to disc degeneration, as it is based off of 

visually observable features (Thompson et al., 1990, Pfirrmann et al., 2001) that would 

encompass the natural aging process as well as the consequences of injury and not necessarily 

have any bearing on function or pain.  This could help to explain why there exists a host of 

controversy within the literature on the association of disc degeneration with back pain, and 

emerging evidence of specific degenerative phenotypes (Adams and Dolan, 2012).  Further, 

disc degeneration or degenerative changes do not necessarily guarantee that an individual will 

develop painful symptoms or continue to have painful symptoms, so while the level of 

degeneration may worsen with time, the painful response may diminish.  Some research has 

attempted to debunk that a darkened disc under MRI presents with higher incidences of lower 

back pain (Bendix et al., 2008).  Ultimately however, this work does not show whether the black 

disc is the cause of pain, the pathology may have manifested in adjacent discs.  Recently, 

attempts have been made to create classification systems with more emphasis on disc height 

and structural changes that may impact mechanics (Riesenburger et al., 2015).  The impact of 

these structural changes on mechanics remains to be determined. 
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3.4.2 Sequence of Events in Disc Degeneration 

 Features evident in disc degeneration can all be induced through mechanical loading 

(Adams et al., 2010), and mechanical damage has been found in-vivo to be associated with 

degenerative changes (Sharma et al., 2014).  Any mechanical alteration to a spinal structure 

can cause a change in mechanics, but a common occurrence is a loss in nucleus pressure 

within the disc (Adams et al., 1996).  Damage to a vertebral body (Adams et al., 1993) or 

intervertebral disc herniation (Tampier et al., 2007, Callaghan and McGill, 2001) can result in a 

loss of nucleus from the center of the disc and alter the load bearing characteristics of the 

segment as a result of nucleus depressurization (Adams et al., 2000a). 

 Through alteration in the load bearing characteristics of the disc, the annulus begins to 

bulge (Brinckmann and Grootenboer, 1991, Meakin et al., 2001) and spinal segment stability is 

reduced (Zhao et al., 2005).  With the loss in disc height associated with this, there is the 

potential for increased load bearing by the neural arch (Pollintine et al., 2004b); this can 

potentially decrease bone mass in the anterior portion of the spine and place an individual at 

greater risk for developing an anterior fracture of the vertebral body (Pollintine et al., 2004a, 

Adams et al., 2006b). 

 What remains unknown is to what degree the initial disc height loss associated with an 

endplate fracture or herniation affects passive tissues at the pathologic segment and at adjacent 

segments.  There is no established “timeline” which outlines the degree of specific mechanical 

deterioration and loss in function of damaged or overloaded tissues.  By being able to determine 

a concrete mechanical characteristic in response to a visual degenerative characteristic, better 

understanding between degeneration and function can be established.  Quantifying the 

mechanical changes associated with a given degree of disc height loss will help to determine 

the given range or margin of safety a person has with respect to their daily mobility and 

continued exacerbation of spinal tissues through perturbed mechanical loading. 
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3.4.3 Degeneration versus Aging 

 It can be easy to confuse the effects of aging with degeneration, as aging is one of the 

primary risk factors for disc degeneration (Bogduk, 2012).  Rather, degeneration can be thought 

of as involving a structural failure (Adams et al., 2006a) while aging in the spine involves more 

minute changes to a cellular sub-structure that can manifest themselves as changes to the 

gross structure over time. 

 Some research suggests that the blood supply at the endplate decreases during the 

twenties which therefore reduces the nutrition of the intervertebral disc and directly affects the 

nucleus (Boos et al., 2002).  Nutrient supply to the intervertebral disc is one of the key 

components to maintaining viability of the disc cells which produce the disc matrix constituents 

and contribute to its mechanical integrity (Urban et al., 2004).  It has been suggested that 

changes to the endplate such as sclerosis prevents nutrients from diffusing through the endplate 

and reaching the cells (Benneker et al., 2005).  This view has been challenged, with the 

potential for cellular dysfunction or loss of vascularity within the vertebral body itself being 

implicated in the loss of nutrient supply (Rodriguez et al., 2011).  Interestingly, more mature 

cells of the intervertebral disc have been shown to produce fewer matrix constituents compared 

to their younger counterparts, further supporting the notion of cellular dysfunction (Korecki et al., 

2009).  With higher grades of degeneration, pores in the endplate reduce in overall number, but 

those that are left increase in overall size (Benneker et al., 2005); there could potentially be 

localized concentrations of nutrients to some cells, but none left for others.  Within the disc 

nucleus, there is also proteoglycan fragmentation that begins to occur with age (Buckwalter, 

1995); this affects the fluid content of the nucleus and its ability to hold water (Adams and 

Hutton, 1983).  The nucleus dries out (Adams et al., 1986) and loses its ability to maintain 

intradiscal pressure (Adams et al., 2006a).  The annulus also exhibits a small effect on its 

tensile properties with age (Acaroglu et al., 1995). 
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Because both aging and mechanical overload occur in tandem, it is difficult to parse out 

what is aging and what is the result of degeneration due to mechanical overload.  What is 

unique between aging and degeneration is that with aging there is generally no evidence of disc 

height loss (Koeller et al., 1986); disc height therefore, would be a hallmark characteristic of 

degeneration.  Indeed, disc height is used as one of the metrics for determining degeneration 

grade (Pfirrmann et al., 2001), and it has been shown via finite element modelling that in the 

higher grades of degeneration (where higher levels of disc height loss are included) the 

mechanics of the segment change significantly (Park et al., 2013).      

  

3.4.4 Adjacent Segment Degeneration Following Disc Height Loss 

 Loss of disc height has implications with respect to altering the mechanics of the injured 

disc which can initiate degeneration at adjacent levels (Bao et al., 1996).  As adjacent levels 

begin to face an increased demand to compensate for movement and load distribution, the 

pressure inside the nucleus increases (Holm et al., 2007).  Alteration of the load distribution or 

surgical intervention at one segment has consequences at adjacent segments with respect to 

further injury risk (Tzermiadianos et al., 2008), motion profile (Tang and Rebholz, 2012), and 

stress distribution (Tchako and Sadegh, 2009).  There has been no attempt however, to 

characterize any sort of timeline of adjacent segment perturbation and follow the progression of 

degenerative changes with disc height loss of varying degrees.  Current research has examined 

the global effects of degeneration on spine mechanics (Fujiwara et al., 2000), that is, how 

specific grade categories function.  This is important work as it enables observable features to 

be categorized into functional deficits.  Knowledge of how each visual feature independently 

impacts mechanics however, would allow for even more specific insight into the aberrant 

movement expected by the injured segment and consequences along the spinal linkage. 
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3.5 Modalities of Disc Height Restoration 

 

 Restoration of disc height through surgical means can be performed using two main 

methods; total disc replacement, and injection/implantation with a hydrogel.  Both methods seek 

to restore function to an injured segment and ultimately reduce pain in patients.   

 

3.5.1 Total Disc Replacement  

 Total disc replacement is achieved through use of a pre-fabricated implant such as the 

ProdiscTM, Charité®, or MaverickTM devices.  While studies suggest that the outcomes of using 

such devices are generally good (Park et al., 2012, Shim et al., 2007), these terms are loosely 

defined, and not constant between studies.  There is also evidence of facet degeneration at 

adjacent levels with total disc replacement (Shim et al., 2007) and it has been shown that a 

successful total disc replacement device must mimic the non-linear behaviour of the disc in its 

normal range of motion (van den Broek et al., 2012).  Given this criteria, it would behoove future 

surgical alternatives to maintain as much of a patient’s original anatomy as possible.  It would 

therefore be beneficial for clinicians to be able to view a medical image of a patient’s spine and 

ascertain the functionality of the components (annulus, nucleus, endplate) in order to determine 

the most appropriate pathway for surgery. 

 Normal functioning of a disc as it moves through its range of motion is for the center of 

rotation to constantly be changing within the region of the nucleus as vertebral bodies glide 

anteriorly and posteriorly relative to each other (Adams et al., 2006a).  During degeneration the 

center of rotation changes drastically compared to a healthy disc (Gertzbein et al., 1985) and 

has been shown to even shift to the facet joints when the disc is in extension (Zhao et al., 2005).  

This has implications for wearing out of the facet joints and producing higher levels of damage 

due to potentially higher stress concentrations in this area.  It would be beneficial therefore, for 

disc replacement surgeries to be able to mimic the natural center of rotation changes in a 
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healthy disc.  As the implants have fixed points of rotation though, this is not possible and 

therefore other options to restore disc height and normal disc function may prove to be more 

beneficial to patients in the long term. 

 

3.5.2 Nucleus Replacement via Hydrogel 

 Nucleus replacement involves maintaining the annular components of the disc and using 

either a self-contained implant that goes into the center of the disc where the nucleus would be 

(Bertagnoli and Schonmayr, 2002), or through injection of a free gel that conforms to the unique 

shape of the disc (Vernengo et al., 2008).  This method maintains the bulk of the anatomy of the 

disc instead of removing it altogether.  The nature of the procedure is also less invasive overall 

compared to total disc replacement; involving only a needle puncture to the disc in the case of 

using a freely injectable gel. 

 Some data suggests that the use of a hydrogel that conforms to the shape of the disc is 

optimal in re-establishing and maintaining a normal stress distribution within the disc (Dahl et 

al., 2010).  One issue though, is in containing the implanted gel and preventing implant 

migration (Klara and Ray, 2002).  While this may be an issue for when a pre-formed pillow 

implant is inserted through an incision, it may be less of a factor when a hydrogel liquid is 

inserted through a needle puncture and then changes state from a liquid to a gel (Vernengo et 

al., 2008). 

 There are many different formulations for hydrogels acting as artificial nucleus 

replacements.  From collagen-hyaluronan (Calderon et al., 2010) to gellan-gum (Silva-Correia et 

al., 2011) to poly(N-isopropylacrylamide) (PNIPAAm)/ poly(ethylene glycol) (PEG) (Vernengo et 

al., 2008), the essential goal of all these formulations is to restore disc height and mimic the 

natural mechanical properties of the nucleus. 
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3.5.3 Vertebroplasty 

 Vertebroplasty involves the injection of poly(methyl methacrylate) (PMMA) bone cement 

into a fractured vertebral body in the attempt to provide stabilization and structural support (Luo 

et al., 2010).  It has been shown to have a positive effect in restoring normal spine mechanics 

(Luo et al., 2010, Luo et al., 2007).  The effect of combining vertebroplasty along with nucleus 

replacement via hydrogel injection remains unknown.  In the case of severely damaged spinal 

segments disc height restoration may only restore segment kinematics and kinetics to a certain 

degree.  It would therefore be beneficial to assess the effect of restoring both disc height and 

vertebral body stress distributions to evaluate the worthiness and cost-benefit of attempting both 

these surgical procedures rather than only a single one. 

 Use of vertebroplasty, as with any surgical procedure should be approached with caution 

as there is evidence of it initiating degenerative changes to the disc (Kang et al., 2014, Zhao et 

al., 2014).  Once this procedure has been performed therefore, there is a bleak outlook with 

respect to ever restoring cellular function, creating a dependency on the efficacy of artificial 

means of restoration. 

 

3.6 Distinguishing Between Normal and Pathologic Disc Height Loss 

 

 Over the course of a day, intervertebral discs exhibit creep, and slowly lose height 

compared to where they started at the beginning of the day just prior to getting out of bed 

(McGill, 2007).  This is due to the fixed charge density of the disc which gives it an osmotic 

pressure; weight bearing activities, muscle activation, and anything that applies compressive 

load to the disc can overcome this pressure and cause water to diffuse outwards (Urban et al., 

2000).  This is normally not an issue, as the disc is able to re-imbibe water during sleep, restore 

height, and begin the cycle again the following morning (Boos et al., 1993).  Obviously, this is a 

component of normal spine function and any disc height loss through this mechanism should 
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not be considered pathologic.  With proteoglycan fragmentation and escape from the disc via 

various mechanisms, the disc loses some of its fixed charge density and some of its osmotic 

pressure (Urban et al., 2000).  This would hinder its ability to take in water and regain height, it 

would also alter the material properties of the nucleus and change the load distribution pattern 

in the disc (Adams et al., 1990).  Whether the slow change in nucleus properties over the 

course of decades is clinically significant in terms of producing severe pain and dysfunction is 

questionable.  Sudden change however, over the course of months or even several years via 

mechanical mechanisms such as compressive fracture or herniation could produce more 

insidious injuries that result in clinical pathology (Adams et al., 2015).  

 It is important then, to distinguish between pathologic and normal disc height loss.  In the 

case of pathologic disc height loss, there is most likely significant height loss only at a single 

segment rather than at multiple segments.  Pathologic disc height loss would be unrecoverable 

through unloading of the disc, contrary to what is seen with diurnal variations in disc height.  

Pathologic disc height loss may also accompany other degenerative features such as radial 

tears of the annulus (Adams et al., 2000a) or the presence of osteophytes (Al-Rawahi et al., 

2011).  In the case of aT2-weighted MRI, a pathologic disc may appear dark, signifying that it 

has lost most of its hydration, appearing different from other discs at different levels (Haughton, 

2011).  Essentially, the pathologic disc typically appears in the spine as an anomaly from other 

discs.  Often, clues on whether the disc is pathologic can be derived from the loading history of 

a patient or any complaints regarding pain.  Using these cues along with information gleaned 

through studies regarding functional consequences of degenerative features, an accurate profile 

of how a pathologic segment will function can be gained.  This information can be used to 

assess what impact on spinal function a pathologic level will have and whether surgery or 

conservative treatment should be utilized. 
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3.7 Fluoroscopy 

 

 Fluoroscopy involves using x-rays against a fluorescent screen with an object placed in 

between.  Modern fluoroscopy involves the use of an image intensifier and video camera to 

record the images digitally and play them on a monitor (Pallan et al., 2011).  Fluoroscopy is 

essentially a moving x-ray allowing internal observation of an individual during dynamic tasks.  

Fluoroscopy has been used in the past to observe lumbar spine segmental motion (Cholewicki 

and McGill, 1992), with this particular modality estimated to present a radiation exposure 

equivalent to a single traditional x-ray over an 18 second trial.  Fluoroscopy therefore provides a 

readily available technique to observing intervertebral disc motion with a low radiation exposure 

to individuals.  

 There are several groups worldwide involved actively in research using quantitative 

fluoroscopy techniques, that is, techniques that use advanced tracking algorithms to obtain 

vertebral body rotations through time via fluoroscopy (Breen et al., 2012).  Various approaches 

have been taken in order to achieve further accuracy with tracking measurements, but there is 

difficulty in truly validating an algorithm across all possible contingencies that it may be used for.  

It would be counterproductive to the field of quantitative fluoroscopy to cease attempting to 

identify ways in which accuracy can be improved.  One method may be better in some 

circumstances of tracking vertebral body motion than others and vice-versa.  It is important 

therefore, to continue to explore novel avenues and approaches in quantitative fluoroscopy 

techniques. 

 Typical x-ray approaches involve examining the spine in a single static pose, or neutral 

to full flexion and extension.  With fluoroscopy, a sequence of images can be obtained that 

show the spine as it moves through the midranges.  It can be an important diagnostic tool that 

identifies aberrant spine motion that conventional static x-rays do not have the capability to 
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identify.  Continued use of fluoroscopy along with techniques that quantify motion of vertebrae 

will help to elucidate aberrant movement strategies and propagation of injury. 

  

3.8 Use of Multi-Segment Specimens 

 

 A potential limiting factor for testing of multi-segment spine specimens is the possibility 

for the unsupported vertebral body to experience buckling, instability, and non-physiologic 

movement and loading.  This would obviously be undesirable when attempting to mimic 

movement of the spine in-vivo.   

Entire lumbar spines have been shown to buckle under 88N of load when a specimen is 

restrained from moving in an anterior-posterior direction (Crisco et al., 1992).  In contrast to this, 

Lysack and colleagues (Lysack et al., 2000) developed a device used for testing multiple 

segment lumbar spine specimens and determined that while potential for what they 

characterized as “off-axis moments” can occur to multiple segment specimens, this instability is 

greatly reduced as long as the specimen is provided with a low-friction interface with which to 

float on (Lysack et al., 2000).  Multi-segment testing of the entire lumbar spine has also been 

successfully performed provided the specimens were again, given an interface on which to 

translate (Ilharreborde et al., 2010).  In cases where both ends of the vertebral segments are 

fixed and not able to translate properly, the use of a follower load, where the compressive axis 

travels with the specimen through flexion and extension motions has facilitated the ability to 

provide physiological levels of load to a multi-level spine specimen (Patwardhan et al., 2000, 

DiAngelo and Foley, 2004). 

 In the case of study 1 proposed for this thesis work, any evidence of segmental buckling 

in the non-fixed vertebral body due to deficits in the testing apparatus will be evident in the initial 

tests.  Instability resulting from acute disc height loss in the experimental group could be 
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evidence of the “unstable phase” characterized by Kirkaldy-Willis and Farfan (Kirkaldy-Willis and 

Farfan, 1982) and thus not a confounding factor.   

 

3.9 Summary: What is known and what is not 

 

 Mechanical overload produces injury and structural defects within the intervertebral disc 

(Adams et al., 2000a, Callaghan and McGill, 2001, Tampier et al., 2007, Yingling et al., 1997).  

Loss of disc height has the potential to set off a cascade of degenerative changes affecting the 

structure and mechanical function of a segment and segments adjacent to it (Arbit and 

Pannullo, 2001).  Ultimately it is unknown to what degree disc height affects the kinetics and 

kinematics of adjacent tissues and the time-history of degeneration and perturbed mechanics 

that accompanies disc height loss.  It is also unknown how novel surgical repair modalities fare 

with regard to restoring disc height and restoring mechanical function to a disc and its 

neighbours.  Further, in the case of severely damaged segments, the degree to which disc 

height restoration is enough to return function or if further repair to the vertebral body should 

take place is unknown.  It remains to be seen what role pathologic disc height loss plays in the 

normal rhythm of spine movement and how it affects the response of adjacent segments. 

Finally, there is a need to bring current thinking of disc degeneration to functional impairment.  

Ultimately, medical images of spinal segments with height loss should be able to yield an 

immediate determination of the functional capabilities of an individual’s spine.  Disc height loss 

is an important factor in the mechanical and biological consequences of disc degeneration 

(Jarman et al., 2015).  It is thus important to examine disc height loss outside of other 

degenerative factors across a variety of pathologies to determine the mechanical 

consequences. 
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4 Chapter 4: Study 1 

A Characterization of the Kinematic Outcomes on Spinal Tissues at an Injured and 

Adjacent Segment during Disc Height Loss 

 

4.1 Background 

 

 Identifying the mechanical consequences of disc height loss on adjacent tissues is an 

important first step in examining the impact of disc height loss on the degenerative cascade.  

This work will help to identify the role disc height plays in modulating the kinematics of the spine 

and whether disc height restoration can return spine kinematics to their original conditions.  

When disc height is lost, there is a change in the manner in which it functions; facet joints 

become involved, nerve roots are impinged, and the annulus bulges (Arbit and Pannullo, 2001).  

This can have an impact on how other tissues are loaded and influence a pathway for 

cascading injury to adjacent segments.  It is unknown how the course of mechanical 

perturbation transpires within a spine when disc height has been lost at one segment.  The 

consequences of losing disc height may transfer higher stress concentrations to adjacent discs 

and passive tissues (Adams et al., 2000a).  The fact that perturbation can occur at segments 

other than the one that is injured elicits concern over what exactly those consequences are and 

how the tolerance of tissues is altered.  To date, there is no research that has examined the 

result of disc height loss directly on the mechanics of the intervertebral disc and an adjacent 

segment.  Previous work has examined degenerative changes on mechanics of the spine 

(Tanaka et al., 2001, Lee et al., 2015, Lao et al., 2015a), but degenerative changes include 

confounding factors other than disc height loss.  Examining disc height loss in the absence of 

other pathological changes will help to establish its influence on aberrant movement. 
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 Disc height loss can be initiated through injury such as herniation or endplate fracture.  

Under these injuries, nucleus volume would be at least partially lost, and thus mechanical tests 

involving a decrease in nuclear volume to produce disc height loss would be most applicable.  

Degenerative grading also includes disc height loss (Pfirrmann et al., 2001), suggesting that it 

has a progressive component.  Degeneration is difficult to reconcile with mechanical injury 

especially since lower grades include components of disc “degeneration” that are seen with 

normal aging (Adams et al., 2015).  Adams and Roughley (2006) describe a degenerate disc as 

having structural failure combined with accelerated or advanced signs of aging (Adams and 

Roughley, 2006).  Elements of structural failure include annular tears, disc prolapse, and 

endplate damage (Adams and Roughley, 2006); all of these drivers of degeneration would 

include loss of nucleus volume and progressive disc height loss over time. 

 The use of hydrogels to alter disc mechanics under injury conditions has been evaluated 

in previous work where its efficacy in reversing the mechanical consequences of injury was 

examined and identified that sagittal plane rotational stiffness could be returned to pre-injury 

values (Balkovec et al., 2013).  With all the various formulations of hydrogels for this purpose 

(Calderon et al., 2010, Silva-Correia et al., 2011, Vernengo et al., 2008), the ability to restore 

the mechanical properties of an injured disc under minimally invasive conditions would prove 

very valuable indeed. 

 Motion of a spine specimen in-vitro is driven by applied moments, loads, and the 

stiffness of the passive tissues being tested.  Ultimately, stiffness controls motion in this 

scenario.  Under fatigue, single functional spinal units have been shown to stiffen, requiring a 

higher applied moment to reach the same target angle, or undergoing a smaller angular 

displacement under the same applied moment (Callaghan and McGill, 2001).  With disc height 

loss, the stiffness of the affected level is anticipated to increase.  The presence of an additional 

segment that does not have a change in disc height may affect the kinematics at several joints – 

this is not well understood.  With increased stiffness at one level and a loss in height, the forces 



39 
 

and moments applied through the specimen will change, and alter the degree to which 

segments rotate. 

 

4.2 Significance 

 

 Understanding the mechanical consequences of disc height loss and identifying trends 

in the pathomechanics of the spine allows for greater understanding with respect to viewing an 

anatomical feature and understanding its functional implications.  The purpose of this 

investigation is to determine the kinematic outcomes of disc height loss on both the injured and 

adjacent disc in an in-vitro spine model.  This study will also determine the viability of an 

injectable hydrogel in restoring disc height and segmental mechanics.  The challenges were 

several.  First, given that the hydrogel was designed to be a free liquid for injection at cool 

temperatures, but formed a gel at in-vivo body temperatures, this environment had to be 

created.  A chamber was designed and custom-fabricated to control humidity and temperature. 

 

4.3 Hypotheses 

 

1.  Disc height loss will result in a lower relative angular displacement by the injured disc. 

2.  Disc height restoration via hydrogel injection will return injured discs to their initial relative 

levels of angular displacement. 

3.  Disc height loss in the upper and lower discs will produce the same kinematic effect. 
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4.4 Methods 

 

4.4.1 Specimens & Preparation 

 Twenty porcine cervical spines (age: 6 months, weight: 80kg) were used for this study.  

Specimens were dissected into a multi-segmented unit consisting of the C3/C4 and C4/C5 discs 

and the C3, C4, and C5 vertebral bodies; consisting therefore, of two functional spinal units.  

During dissection, as much muscle tissue was removed as possible while leaving the disc and 

ligamentous structures intact.  Specimens were mounted in stainless steel cups using two 

screws drilled through the exposed endplates on the superior and inferior ends of the specimen, 

non-exothermic dental stone (Denstone®, Miles, South Bend, IN, USA), and wire looped 

bilaterally around the lamina and anterior processes.  Wood screws were also partially drilled 

into the superior and inferior vertebral bodies (the ends placed into the mounting cups) in order 

to further secure specimens and prevent movement anywhere but the two vertebral joints. 

 

4.4.2 Equipment & Testing 

 All specimens were tested in a servohydraulic dynamic testing machine (Instron, model: 

8511, Instron Canada, Burlington, Ontario, Canada).  Free translation of the bottom cup was 

facilitated by a platform of ball bearings while flexion-extension motions were applied by an 

electric brushless servo-motor (model BNR3018D, Cleveland Machine Controls, Billerica, MA, 

USA) and planetary gear head (model 34PL040, Applied Motion Products, Watsonville, CA, 

USA) controlled using a customized software interface.    Specimens were required to be 

heated to body temperature during the testing protocol, and as a result, a customized 

temperature chamber was built surrounding the testing apparatus (Figure 4.1).  The apparatus 

allowed for steam to be delivered from a heated water bath through a PVC pipe and injected 

into the chamber.  The flow of steam was directed upwards in the chamber away from the 

specimen, preventing overheating.  Temperature was monitored using a digital thermistor in the 
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chamber mounted at the bearing tray where the specimen was placed which provided 

instantaneous feedback to any changes.  A vent was placed at the rear, and could be made 

larger or smaller, facilitating adjustments in temperature.  At the front of the chamber was an 

access door, allowing for the specimen to be taken in and out, and to facilitate recording of data 

trials. 

 

 

Figure 4.1 Temperature chamber and experimental setup.  A specimen was able to be inserted into the 
chamber while steam was brought in through a PVC pipe, heating the enclosure.  A digital thermistor 
monitored the temperature of the chamber, and venting in the rear of the enclosure allowed for internal 
temperature adjustments.  A door at the front of the chamber was able to be lifted in order for an 
orthogonally placed digital camera to capture video of sagittal flexion-extension movements.  

 

 Sagittal movement of each vertebral joint was recorded using a digital video camera 

(GoPro, model: Hero3, GoPro, San Mateo, CA, USA) placed orthogonally to the specimen.  

Video was captured using the narrow field of view, at 60 frames per second, and a resolution of 

1920 by 1080 pixels.  Three small rigid bodies with four circular reflective markers on each were 
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placed on the specimens: two were placed on the superior and inferior mounting cups, and one 

was rigidly fixed using screws onto the C4 vertebra (Figure 4.2).  These three placements 

captured movement of the three vertebral bodies, their relative orientation could then be 

determined to calculate relative vertebral joint angles.  A non-moving rigid body was fixed to the 

Instron itself and used to calibrate the initial position of all three rigid bodies, and base any 

relative motion off of this initial starting position. 

 Disc height was restored using a thermally responsive hydrogel.  This hydrogel could be 

injected into the disc through a small needle puncture at room temperature, and then once at a 

temperature above 33°C, formed into a gel which would not flow back through the needle 

puncture, effectively creating a customized nucleus implant. 

 

Figure 4.2 Rigid body marker setup on spine specimens.  Two rigid bodies were fixed to the superior and 
inferior mounting cups (these did not move relative to the superior and inferior vertebral bodies) while 
another rigid body was fixed via small wood screws to the middle vertebral body.  
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 A flow chart outlining the experimental procedure is located in Figure 4.3.  Specimens 

were placed in the servohydraulic testing apparatus and brought to body temperature prior to 

any testing taking place.  Pilot testing revealed that the temperature at the disc periphery, taken 

with a digital probe thermometer, was a suitable surrogate for the temperature inside of the disc.  

Additionally, this temperature measurement technique has been used previously with success 

(Balkovec et al., 2013).  After heating, specimens were preloaded under 300N of compressive 

load for 15 minutes in order to reduce any post-mortem swelling (Callaghan and McGill, 2001, 

Adams et al., 1996).  This test also established the designated neutral posture for the specimen 

which was the position of the motor arm that corresponded to zero torque for the whole 

specimen overall.  Following the preload process, a passive flexion/extension test was 

performed under 1000N of compressive load.  Due to the specimens having multiple segments, 

and given the limitations of the testing apparatus for testing multi-segmented specimens, there 

were two distinct linear regions of torque vs. angular displacement.  Angular movement was 

initiated at the upper segment first, and then after the moment applied to the lower segment was 

high enough to overcome the resistance of the passive tissues, movement of the lower segment 

commenced.  The flexion/extension angular displacement limits were based on where the 

beginning and end of both linear regions were for each specimen (Figure 4.4).  Since the 

specimens tested were composed of two motion segments, the loading profile of each specimen 

was different from the traditional functional spinal unit that the apparatus was originally designed 

to test.  Initially, a pure moment was applied to the superior vertebra; a bending moment was 

also created about the segments from the applied compressive load and varied in magnitude 

and direction depending on the posture the specimen was in and the segmental level being 

considered.  Thus, the cumulative moment was the result of the pure moment applied to the 

superior vertebra and the bending moment applied by the compressive force.  Passive tissues 

in the specimen (facet joint capsule, annulus, ligaments, etc.) resisted bending and created a 

counter-moment opposing the applied force and moment.  The lower segment was not 
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observed to rotate initially, as stiffness of the upper segment was presumed to be lower.  As the 

specimen rotated further, the stiffness in the upper segment increased, and the bending 

moment at the lower segment increased, causing rotation to occur about the lower segment 

(Figure 4.5, Figure 4.6).  Rotation about the lower segment was the point where translation in 

the specimen occurred (Figure 4.7).  The posterior translation of the floating bottom cup 

increased the bending moment.  Schematic and free-body diagrams of the testing apparatus 

with multi-segmented specimens are located in Appendix F.  Testing was performed with the 

hydraulic ram of the Instron under load control, while the motor arm which applied 

flexion/extension moments was operated in position control, bringing specimens to the same 

target angle for each trial.  Angular displacement cycles were performed at a rate of 1Hz.  

 Prior to any angular displacement tests, a video calibration trial was taken with the 

specimen in its starting position.  Calculated vertebral joint motion was based off of this zero-

displacement position.  Specimens were first tested under 1000N of compression and angular 

displacement range determined by an operator from the passive test.  Each specimen 

underwent 10 cycles of repeated full flexion to extension motions while the positions of the rigid 

bodies were recorded.  Following this initial angular displacement test, the upper or lower disc 

(randomly selected) was punctured anteriorly using a 12-gauge needle (Figure 4.8).  This was 

the smallest gauge needle that would still allow for the flow of nucleus from the disc, 

immediately, it initiated disc height loss in the punctured disc without any other damage 

occurring.   

 After puncturing, each specimen underwent 50 cycles of repeated flexion to extension 

motions to ensure that no more nucleus pulposus could be forcibly extruded from the disc.  After 

nuclear extrusion, a second angular displacement trial was performed.  The specimen 

underwent 10 cycles of repeated flexion to extension; each segment’s angular displacement 

was measured with one segment’s disc height reduced.  Disc height was then restored through 

use of the hydrogel injected into the damaged disc.  The disc was injected until it would not 
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passively contain any more hydrogel and the plunger on the syringe would no longer depress.  

The specimen was then left unloaded for 15 minutes in order to fully ensure that the hydrogel 

changed state from a liquid to a gel form.  The needle was left in the disc during this 15-minute 

period and acted as a stopper to prevent any outflow of fluid hydrogel.  Once testing 

recommenced, the needle was removed. 

 Following disc height restoration, a final angular displacement trial was taken, with the 

specimen taken through a further 10 cycles of repeated flexion to extension.  This trial 

measured the segmental kinematics of the specimen with disc height restored.  
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Figure 4.3 Flow chart of experimental protocol for Study 1.  
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Figure 4.4 Typical passive test angle-torque relationship for an uninjured, intact multi-segment specimen.  
Two distinct linear regions were observed.  The observed behaviour is discussed in detail in Appendix F. 

 

1st region 

2nd region 
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Figure 4.5 Sequence of events during moment application to the multi-segmented specimen, rigid bodies are 
fixed to each of the three vertebrae.  A. A moment is applied to the superior vertebra, the specimen is stiff 
and resists rotation due to the applied compressive load, which is the reason for the high rate of torque 
application initially. B. Torque is applied by the motor arm, but the specimen has a lower resistance than in 
(A).  This is presumably due to the compressive force from the hydraulic ram being positioned directly above 
the center of rotation of the upper disc and thus not creating a bending moment that counters the direction 
of rotation as in (A). C. A coupling occurs about the superior segment and no more rotation occurs about it.  
Motion continues about the inferior segment.  The same stiffness and resistance to rotation (as in A) is 
evident as the applied compressive load creates a bending moment counter to the direction of rotation. D. 
Translation of the specimen occurs (shown with arrow) and the bending moment increases as translation 
continues, increasing the moment arm and reducing the rate of moment application by the motor arm. 
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Figure 4.6 Relationship between the moment resisted by the specimen and horizontal translation of the base.  
Moment is scaled to the left y-axis while translation is scaled to the right y-axis.  Translation begins to occur 
at the ‘C’ region defined in Figure 4.5 (shown with vertical dashed line) when rotation about the upper 
segment is nearly exhausted. A. Translation is normalized to the maximum reached by the specimen. B. 
Translation is expressed in units of millimeters. 
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Figure 4.7 A. Relationship between rotation of the upper and lower segments and the translation of the 
bottom cup on the platform of ball bearings.  Rotations are scaled to the left y-axis while translation is scaled 
to the right y-axis.  Translation of the bottom cup begins to occur when rotation about the upper segment 
has nearly ceased (shown with vertical dashed line).  B. Relationship between rotation of the upper and lower 
segments and the moment resisted by the specimen.  Rotations are scaled to the left y-axis while moment is 
scaled to the right y-axis.  Rotation about the lower segment begins to occur in the ‘C’ region defined in 
Figure 4.5. 
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Figure 4.8 Needle puncture at the anterior of the disc caused nucleus to extrude and disc height to be lost.  

 

4.4.3 Data Analysis 

 Disc height was measured using the relative position of the hydraulic ram on the Instron.  

This method was found to be superior to measurement using plain-film x-rays, since the loss of 

nucleus did not prevent passive recovery of disc height after the specimen was unloaded in the 

x-ray chamber.  Under prolonged loading, Gooyers and Callaghan (2015) found that total 

specimen height is not an accurate measure of disc height (Gooyers and Callaghan, 2015).  

These conclusions however, were found in cyclic loading of 5000 repetitions.  Under repeated 

cyclic loading, height is progressively lost in both the vertebrae and the disc.  Specimens in the 

present study underwent 80 cycles of loading total, and were loaded at 1000N, a small load 

relative to the compressive tolerance of functional spinal units (Yingling et al., 1997).  In this 

study, specimen height was measured, the disc punctured, and then measured again, with 50 

cycles transpiring between these two measures.  For this reason, it was assumed that height 
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loss in the vertebral bodies was very minor compared to the disc.  Thus, given the sub-failure 

loads the specimens were placed under, the relatively low amount of cyclic loading they went 

through, and the inaccuracy of x-ray measurements, it was assumed that changes in the Instron 

hydraulic ram position were due primarily to disc height loss.  Total torque applied by the motor 

arm during repetitive sagittal plane motion trials was also recorded and normalized to the first 

repetitive trial to facilitate comparison between specimens.  Reflective markers were digitized 

semi-automatically using commercially available digitizing software (Maxtraq: Innovision 

Systems, Columbiaville, MI, USA).  Following digitization, the relative angular displacements of 

each vertebral joint in the sagittal plane were computed using customized Matlab software 

(Mathworks, Natick, MA, USA).  Magnitudes of angular displacement for each joint (C3/C4 and 

C5/C6) were taken from the 10th repetition of flexion/extension in each of the data trials 

(Bisschop et al., 2013).  Joint angular displacement magnitudes were normalized to the total 

magnitudes (sum of both joints) for each trial to facilitate comparisons across specimens and 

trials.  Detailed outlines of the procedure for computing relative angular displacement for each 

segment as well as an error analysis for the video measurement system used are in Appendix 

B. 

 

4.4.4 Statistical Analysis 

 Independent variables for this investigation are intervention (pre-disc height loss, disc 

height loss, repaired condition) and level of disc height loss (superior or inferior level).  The 

dependent variable for this investigation is the normalized magnitude of segmental angular 

displacement within each specimen (Table 4.1). 

 Hypotheses 1 and 2 were tested by a mixed ANOVA, which was used to test for 

differences within specimens in normalized segmental angular displacement data across the 

three trials (pre-disc height loss, disc height loss, repaired condition), and across the two 

groups.  Pairwise comparisons between the initial angular displacement of the disc and the 
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injured angular displacement of the disc were made to test hypothesis 1, while pairwise 

comparisons between the initial angular displacement of the disc and the height restored 

angular displacement of the disc were made to test hypothesis 2.  A Bonferroni post-hoc was 

used to correct for multiple comparisons.  Significance was defined at a level of p<0.05.  

Hypothesis 3 was tested via the test for within-subjects effects for the independent variable of 

“intervention”.  The Greenhouse-Geisser correction factor was used to ensure that sphericity of 

data was not violated.  All statistical tests were performed using SPSS software (IBM, Somers, 

NY, USA). 

 

Table 4.1. Independent and Dependent Variables for Study 1 

Independent Variables Dependent Variables 

 Disc Height Loss 

 Segmental Level Damaged (group) 
 

 Normalized Segmental Angular 
Displacement  

 

 

4.5 Results 

 

 A systematic effect was seen across specimens for the relative contribution to total 

angular displacement for the three movement trials.  When disc height loss was induced, less 

angular displacement occurred about the level with height loss while more angular displacement 

occurred about the adjacent level compared to the initial trial pre-disc height loss (Figure 4.9, 

Figure 4.10).  Average relative angular displacement for the upper disc damage group 

decreased 13.8% ± 5.3% at the level with height loss, while the lower disc group decreased 

4.5% ± 2.1% at the level with height loss, relative to the initial motion measured in the pre-disc 

height loss trial.  This was found to be statistically significant across groups for pairwise 

comparisons of the intervention variable (p = 2.6x10-8).  Following disc height restoration, 
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relative angular displacement about upper and lower segments was found to return to pre disc 

height loss levels (Figure 4.9, Figure 4.10).  A sample set of time-history graphs showing a 

single specimen going through each of the three trials is located in Figure 4.11.  This figure 

shows normalized angular displacement for the upper and lower levels initially (pre-disc height 

loss), after disc height is lost at the upper level, and after disc height is restored.  On average, 

the upper disc group increased angular displacement by 12.7% ± 5.5% at the level with height 

loss compared to the motion of the same level in the height loss trial while the lower disc group 

increased angular displacement 6.4% ± 4.2% at the level with height loss.  This was found to be 

statistically non-significant when compared with pre-disc height loss angular magnitude across 

groups for pairwise comparisons of the intervention variable (p = 1.00).  The test of within-

subjects effects across groups for the intervention variable was found to be statistically 

significant (p = 1.5x10-11).  A significant interaction was also found between the group and 

intervention variables (p = 0.00015), this is not surprising, as the magnitude of relative angular 

displacement change between upper and lower disc groups was visibly different (Figure 4.9, 

Figure 4.10). 

 Average specimen height lost was 0.97mm ± 0.41mm while after hydrogel injection 

specimen height increased an average of 0.09mm ± 0.44mm relative to the initial height (height 

was increased beyond pre-disc height loss levels).  There was a systematic effect observed 

across specimens where height was increased after hydrogel injection relative to the disc height 

loss condition.  Some specimens did not fully regain height to pre-disc height loss levels, this is 

suspected to be due to hydrogel extrusion in some of the cases occurring before height was 

measured.  Normalized torque values resisted by specimens after disc height loss were found to 

increase by 20.9% ± 14.6% relative to the pre-disc height loss trials.  After hydrogel injection, 

normalized torque values decreased by 7.8% ± 9.5% relative to the pre-disc height loss trials. 

 Following disc height restoration and injection of the hydrogel into the disc space, partial 

ejection of hydrogel material was seen in some cases once the specimen was put under load.  
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This was due to the relatively large diameter needle used to initiate the extrusion of nucleus 

from the disc, creating a large cavity that material could flow out of with ease.  Previous work 

found no issues with hydrogel containment when a smaller gauge needle was used (Balkovec et 

al., 2013).  Translations of the bottom cup were measured and averaged 7.3mm ± 1.2mm, 

7.6mm ± 1.7mm, and 7.6mm ± 1.4mm for the pre-disc height loss trials, disc height loss trials, 

and disc height restored trials respectively.  

 

 

Figure 4.9 Summary angular displacement data for the upper disc damage group.  Disc height loss of the 
upper disc resulted in a lower contribution of angular displacement from the upper disc and a higher 
contribution from the lower disc relative to the initial trial.  After disc height restoration via hydrogel 
injection, both segments returned to pre-injury levels of angular displacement.  Asterisks denote 
significance between respective time-points.  
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Figure 4.10 Summary angular displacement data for the lower disc damage group.  Disc height loss of the 
lower disc resulted in a lower contribution of angular displacement from the lower disc and a higher 
contribution from the upper disc relative to the initial trial.  After disc height restoration via hydrogel 
injection, both segments returned to pre-injury levels of angular displacement. Asterisks denote significance 
between respective time-points.  
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Figure 4.11 Sample time-history data for an upper disc damage specimen. (A) Displacement about the upper 
and lower segments occur at a fixed distribution between the two. (B) The upper disc is punctured and disc 
height is lost, causing less angular displacement to occur about that level while more angular displacement 
occurs about the adjacent level. (C) Hydrogel is injected into the upper disc and disc height is restored, 
Angular displacement about both upper and lower segments returns to the same distribution as in (A).  
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4.6 Discussion 

 

 The hypothesis (hypothesis 1) that disc height loss would result in a lower level of 

angular displacement by the injured disc was supported.  This indicates that disc height has a 

significant effect on the mechanics of a segment and an adjacent level, as rotation increased 

about the non-injured segment.  The hypothesis (hypothesis 2) that disc height restoration via 

hydrogel injection would return injured discs to their initial relative levels of angular displacement 

was also supported.  The tests for within-subjects effect across the two groups indicated that 

there was a significant difference between the three intervention conditions (p = 1.5x10-11), 

confirming hypothesis 3. 

 This study has shown that loss of disc height via loss of nucleus pulposus can affect the 

kinematics of both the injured and the adjacent segment.  When disc height is lost, there is 

lower angular displacement about the injured segment and compensation, via increased angular 

displacement, is seen about the adjacent segment.  One explanation for why this occurs could 

be due to local rotational stiffness at each disc.  Previous work has shown that when a disc 

undergoes cyclic flexion to extension motions in order to produce a herniation, stiffness of the 

segment increases (Callaghan and McGill, 2001, Balkovec et al., 2013).  Disc height during this 

process has also been shown to decrease (Scannell and McGill, 2009, Balkovec et al., 2013).  

In the present study, the torque resisted by specimens was observed to increase by 20.9% ± 

14.6% when disc height loss was induced, indicating an increase in the specimen stiffness 

presumably at the level that was damaged.  When being taken to a target flexion-extension 

angle and there are two possible segments in the current experimental setup that motion can be 

elicited from, motion occurs about the segment that is most compliant.  When disc height loss is 

induced however, the stiffness in the affected segment will be greater and thus, the moment 

required to initiate rotation will need to be greater.  Given that there is a more compliant 

segment for rotation to occur about however, the observed quantity of rotation that occurs about 
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the segment with disc height loss will decrease.  This investigation used position control to bring 

specimens to the same target angle as opposed to torque control which would use the same 

applied moment.  Under torque control, less motion would have occurred given the increased 

overall stiffness of the specimens.  Thus, the results from this investigation apply to scenarios 

where movement is position controlled.   

 Previous research on cadaveric specimens (Tanaka et al., 2001) and finite element 

models (Kim et al., 1991, Ruberte et al., 2009), has mostly focused on grouping based on 

degenerative grade, which makes direct comparison with the present research difficult.  

Interestingly however, higher grades of degeneration include disc height loss or disc thinning 

(amongst other visual features) in their criteria (Pfirrmann et al., 2001, Thompson et al., 1990, 

Adams et al., 1986).  In work that examines cadaveric tissue at higher grades of degeneration, 

there is an associated decrease in range of motion, presumably due to the fibrotic nature of the 

tissue that leads to a higher disc stiffness (Tanaka et al., 2001, Lao et al., 2015a).  In vivo work 

has found similar results, with higher grades of degeneration (and thus disc height loss) being 

associated with less angular displacement at that particular level and a compensation by other 

segments (Lee et al., 2015).  Recent work has also examined the effects of Schmorl’s nodes on 

spine kinematics in vivo, resulting in observations that movement is reduced at the level of 

damage (Hayashi et al., 2014, Yin et al., 2015).  A Schmorl’s node would result in disc height 

loss due to the migration of nucleus into the vertebral body space.  Certainly there are other 

factors that may have affected segmental mechanics in those studies, however, the results from 

this research indicate that disc height loss is a large contributing factor. 

 While the results of this work may seem to disagree with the findings of Kirkaldy-Willis 

and Farfan (Kirkaldy-Willis and Farfan, 1982), the findings are not necessarily incompatible.  

Disc height loss is proposed here to increase the rotational stiffness of a disc and will result in a 

lower angular displacement about that segment.  The general findings of Kirkaldy-Willis and 

Farfan where they characterize degenerative changes to the spine as undergoing temporary 
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dysfunction, an unstable phase, and stabilization do not explicitly look at disc height loss, but 

rather spinal injury in general (Kirkaldy-Willis and Farfan, 1982).  Further, their findings were 

related to joint micro-movements and not the larger rotations that were described here.  To 

reconcile their findings with mechanics of a spine specimen, the initial stage would involve the 

point of structural failure, the second stage would involve a decrease in segment stiffness, and 

the third would involve an increase in segment stiffness.  It is also plausible that specimens in 

this study were unstable with respect to joint micro-movements of one vertebra over another 

when disc height loss was induced.  Disc height loss was observed during the testing protocol to 

cause a qualitative bulging of the annulus.  This bulging would presumably create slack in the 

ligamentous structure of a segment and make the occurrence of micro-movements more 

common.  These results therefore, stand alongside Kirkaldy-Willis and Farfan and serve to 

guide more specific conclusions with respect to the mechanical capabilities of a segment with 

disc height loss. 

 The results from this study highlight that disc height loss results in increased angular 

displacement about an adjacent segment under sagittal-plane motions.  While in a full spinal 

column, the roughly 15% loss in angular displacement could be distributed throughout multiple 

segments, the data presented in this study are merely the acute results.  The consequences 

could become even more drastic as further degeneration and stabilization of the injured joint 

take place.  Further, the cumulative effects of even a relatively small amount of extra range of 

motion applied to an adjacent segment could potentially result in a faster rate of tissue failure.  

This is all dependent on the individual and their tendencies to replicate the mechanism of injury.  

For example, an individual who herniates a disc through repeated bending will lose disc height 

at the herniated level, stiffening the segment.  Continuing to bend (replicating the mechanism of 

their injury) will cause compensation along the intervertebral joint linkage and potentially 

increase the bending, stress, and risk of tissue failure at adjacent segments. 
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 Disc height loss represents a very drastic change to the environment of the disc; acute 

disc height loss could be seen as “the beginning of the end” or the start of increased 

pathological changes (Jarman et al., 2015).  With height loss, the annulus is placed under a 

higher magnitude of axial compressive stress and could more readily increase the rate at which 

concentric rings of collagen are delaminated (Tampier et al., 2007), promoting further 

degradation of tissue.  Disc height loss also has the potential to alter the stress distribution 

within the disc (Adams et al., 1996), which has implications for transferring load to the neural 

arch and posterior elements in the spine (Adams and Hutton, 1980, Pollintine et al., 2004b).  

Pressure between facet joints during disc height loss has also been found to increase (Dunlop 

et al., 1984), potentially creating arthritic problems in the future and a potential avenue for 

causing pain from the facet joint capsule (Crosby et al., 2014).  Further consequences of altered 

disc height include the cellular environment, which has implications for the longer term 

degenerative consequences of the disc.  With disc height loss inducing a lower nucleus volume, 

the fixed charge density of the disc would change due to the lower proteoglycan content (Urban 

and Maroudas, 1981).  This would have implications with respect to the swelling pressure of the 

disc and the microenvironment that sustains the chondrocyte-like cells of the nucleus (Trout et 

al., 1982, Xu et al., 2014).  They are uniquely suited to surviving in high-pressure hypoxic 

environments (Jiang et al., 2014, Chen et al., 2014), and a loss of these conditions could result 

in their dysfunction.  Further, altered stress distributions in the disc along with loss of 

proteoglycans, promotes the ingrowth of blood vessels and nerves (Stefanakis et al., 2012). 

 The use of the hydrogel in this study provides mechanical evidence that disc height 

restoration could potentially restore the kinematics of a disc with height loss.  It is important to 

note that the discs tested in this investigation were acutely injured and then repaired, it is 

unclear how kinematics would be restored in a spine that is further degenerated.  For example, 

the presence of osteophytes would increase the stiffness of the segment alongside disc height 

loss, potentially inhibiting a return of pre-injury kinematics.  Regardless, it provides a viable 
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alternative to more invasive surgical procedures when warranted; future work should begin to 

look at its viability in live-animal models. 

 Limitations of this study include its use of a juvenile porcine spine model.  Disc height 

loss was induced in specimens with uninjured tissues, it is unclear how other confounding 

factors such as osteophytes or endplate defects would influence the mechanics of a segment.  

Nevertheless, this is the first study that has examined the effects of disc height loss via loss of 

nucleus pulposus on a disc and its adjacent segment.  This research provides an important 

starting point to begin to examine the effects of other factors in altering the mechanics of the 

spine.  Further the porcine cervical spine has been shown to be a suitable analog for the human 

lumbar spine with respect to anatomy, geometry (Yingling et al., 1999), and function (Tampier et 

al., 2007) for the purpose of discerning injury mechanisms.    

Further considerations for the experimental setup used and its influence on the observed 

spine kinematics need to be taken into account.  A limitation of the apparatus used was that 

each segment was subject to different applied moments.  This caused the observed effect of the 

upper segment rotating almost fully to its observed end-range reached in the protocol before 

rotation was initiated in the lower segment.  Despite this limitation, rotation of each segment was 

limited by the resistance of its passive tissues and its inherent stiffness.  When disc height was 

lost, stiffness increased and motion occurred to a greater extent about the non-affected (and 

more compliant) segment.  It is presumed that the local stiffness at that segment was lower than 

the local stiffness at the segment with height loss.  Thus, more motion occurred about the joint 

with lower stiffness.  This local stiffness of the segment would be the same property driving 

motion in-vivo.  The translations of the specimen are similar to the translations that occur in-

vivo, and are designed to mimic a person bending forward.  Translation of the whole spine 

would occur about the pelvis, and thus, the bending moment generated at lower levels as the 

result of the gravitational loading of the torso would vary depending on the segmental level, the 

same as was observed in this study.  From this, the findings of this study are limited and 
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comparable to only specific loading scenarios in-vivo, and do not necessarily reflect the 

influence of disc height loss under other loading paradigms.   

This study has shown that disc height loss through loss of nucleus pulposus induces 

kinematic changes which have consequences beyond the injured disc under the tested loading 

conditions.  When disc height is lost, the sagittal plane range of motion of the injured disc is 

reduced and the angular displacement from an adjacent segment is increased.  This research 

provides novel data on how disc height loss via loss of nucleus pulposus influences spinal 

mechanics.  Future work will be able to use this data as a starting point to determine the effect 

of further features of injury and damage in inducing kinematic changes to the spine. 
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5 Chapter 5: Study 2 

The Efficacy of a Combination of PMMA and Injectable Hydrogels on Mitigating Bony 

Damage and Restoring Joint Mechanics to a Vertebral Body Motion Segment 

 

5.1 Background 

 

 Compressive fracture of a vertebral body can produce profound changes in a spinal 

motion segment.  Axial injury to the spine has been shown to produce a variety of fracture 

patterns (Yingling et al., 1997) with the potential to damage the vertebral body, intervertebral 

disc, or both structures.  Damage to the disc via fracturing of the underlying cartilaginous 

endplate could result in migration of nucleus into the vertebral body itself, causing 

depressurization of the disc space (Adams et al., 1993) and height loss.  Fracturing of the 

vertebral body results in a loss of compressive stiffness which could affect additional segments 

and their mechanical properties.  Clinically, vertebral body fractures can result in a kyphotic 

deformity in the case of anterior wedge fractures (Landham et al., 2015b, Liu et al., 2015).  The 

vertebral body also has a rich vascular and nerve supply (Bailey et al., 2011), and damage 

could result in sensitization and nociception (Bailey et al., 2011, Fields et al., 2014).  Attempts to 

surgically repair a compressive fracture need to address both the loss in disc height and nuclear 

material, as well as the damage to the underlying trabecular bone in the vertebral body.  

Restoring the mechanical profile of a compressively injured spine segment could help to 

mitigate further degenerative changes and restore function.  Two techniques which present the 

potential ability to restore the mechanical profile of a compressively damaged spine motion 

segment are hydrogel injection and vertebroplasty.  While both have been tested individually 

(Balkovec et al., 2013, Luo et al., 2009), they have never been combined before.  They provide 
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a plausible solution to restoring both the compressive and rotational mechanical properties of 

axial compressive injuries.  

 The use of injectable hydrogels is an emerging technique to restoring height and 

function to a pathologic disc.  It preserves the original anatomy of the disc rather than replacing 

it entirely.  In addition, vertebroplasty has been used to repair fractured vertebral bodies and 

restore stiffness characteristics to vertebrae.  Vertebroplasty has been shown to restore stress 

distributions and stiffness to the vertebral body (Luo et al., 2009) and hydrogel implants have 

also been shown to do this for the disc (Bertagnoli et al., 2005).  The impact of both these repair 

modalities together has never been tested before but could offer a viable alternative to some 

instances of spinal fusion surgery, maintaining function in the patient as well as restoring the 

structural integrity of the injured segment.  

 The purpose of the following investigation was to determine if the combined use of 

hydrogel injection and vertebroplasty could restore the mechanical profile of an axially injured 

spinal motion segment. 

 

5.2 Significance 

 

 Findings from this study will improve understanding in how disc height restoration plays 

a role in restoring mechanics to severely damaged spines.  It will also begin to parse out the 

different roles of the components of a spinal segment in the normal mechanical functioning of 

the disc.  This research will help to unify two separate clinical procedures and lay the 

groundwork for producing a novel surgical technique that provides both repair and restoration of 

function in injured spinal segments.  
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5.3 Hypotheses 

 

1.  Hydrogel injection will alter rotational stiffness levels from the compressively fatigued state. 

2.  PMMA injection will alter compressive stiffness levels from the compressively fatigued state. 

 

5.4 Methods 

5.4.1 Specimens and Preparation  

 Two groups of seven porcine cervical spines (age: 6 months, weight: 80kg) were used 

for this investigation.  For each cervical spine, two functional spinal units were obtained, 

consisting of the C3/C4 vertebral bodies and C5/C6 vertebral bodies along with the intervening 

disc.  Each specimen therefore, consisted of two vertebral bodies and their intervening disc.  

Specimens were randomly divided into two groups that dictated the order in which they would 

receive each intervention.  Group 1 used three C3/C4 motion segments and four C5/C6 motion 

segments and received hydrogel injection first.  Group 2 used four C3/C4 motion segments and 

three C5/C6 motion segments and received PMMA injection first.  The porcine cervical spine 

has been shown to be a suitable analog for the human lumbar spine with respect to anatomy, 

geometry (Yingling et al., 1999), and function (Tampier et al., 2007) for the purpose of 

discerning injury mechanisms.   

 Specimens were dissected by removing as much muscular tissue as possible while 

leaving ligamentous structures intact.  Following dissection, specimens were mounted in 

customized stainless steel cups and secured using screws drilled through the superior and 

inferior endplates and wire looped bilaterally through the lamina and anterior processes.  Non-

exothermic dental stone (Denstone®, Miles, South Bend, IN, USA), further secured the 

specimens in their mounting cups.   
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5.4.2 Equipment 

 All specimens were tested in a servohydraulic dynamic testing machine (Instron, model: 

8511, Instron Canada, Burlington, Ontario, Canada) as described in Section 4.4.2.  Due to the 

nature of the hydrogel being used in this investigation, specimens also had to be heated to body 

temperature for testing.  This was performed using the same temperature chamber described in 

Section 4.4.2, which brought the specimens up to body temperature and maintained it 

throughout the testing protocol.  Omnipaque was injected into the disc space using a 21-gauge 

needle; this served to monitor the location of the nucleus under x-ray and assist in determining 

whether the administered endplate fracture was created in the superior or inferior endplate. 

 

5.4.3 Vertebroplasty 

 The technique used to inject the PMMA cement was similar to that used by Landham 

and colleagues (Landham et al., 2015a).  PMMA cement (Spineplex, Stryker Instruments, 

Howmedica International, Limerick, Ireland) was prepared by mixing 20g of powder with the 

provided ampoule of liquid. Two 10-gauge needles were inserted through the pedicles of the 

fractured vertebra (Figure 5.1).  Sagittal and frontal plane x-rays were used to ensure that the 

needles were placed near the fracture site.  2 cm3 of cement was injected through each needle, 

and the stylet of each cannula was re-inserted to ensure that there was no backflow of cement.  

After 10 minutes, the needles were removed, and the cement was allowed to set over a one-

hour period.  X-rays were taken to confirm that the cement had been placed properly.  After this, 

specimens were loaded under 300N of axial compression for 30 minutes to allow the cement to 

consolidate (Landham et al., 2015a). 
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Figure 5.1 Insertion of 10 gauge needles through the pedicles of the vertebral body, sagittal view.  

 

 

Figure 5.2 Insertion of 10 gauge needles into the vertebral body, frontal view. 

 

 

Figure 5.3 Needles present in vertebral body following injection of bone cement. 
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Figure 5.4 Sagittal view of bone cement injected into superior vertebra. 

 

5.4.4 Hydrogel 

 The hydrogel used was a composition of thermally-responsive branched copolymers of 

poly(N-isopropylacrylamide) (PNIPAAm) and poly(ethylene glycol) (PEG) (Vernengo et al., 

2008).  The copolymer was prepared by free radical polymerization of PNIPAAm monomer in 

the presence of PEG (4600 g/mol) dimethylacrylate in a molar ratio of 700 to 1.  The advantage 

of this hydrogel is that the solidification process occurs inside the disc without the use of any 

toxic monomers or crosslinkers.  This property allowed it to be injected and conform to the 

unique shape of the disc, something that has been found with model data to be ideal in restoring 

normal stress distribution to the disc (Dahl et al., 2010).   

 Hydrogel was injected into the specimens using an 18-gauge needle and syringe.  

Following injection, specimens were left unloaded for 15 minutes to ensure that it had fully 

changed to its gel state. 
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5.4.5 Specimen Testing Protocol 

Specimens were preloaded for 15 minutes at 300N in order to counter any post-mortem 

swelling which may have occurred.  Specimens were then loaded to 1000N of axial 

compression and brought through a passive range of flexion and extension to establish the 

range of motion where there is a linear relationship between angular displacement and torque 

(Panjabi et al., 1989).  A flow chart of the experimental procedure is located in Figure 5.5. 

Following the passive test, specimens were brought to a reference load of 300N in the 

neutral position, defined as the point where there was zero moment applied to the specimen by 

the motor arm. This load was used for the measurement of specimen height via the hydraulic 

ram position of the Instron.  After the reference load trial, specimens were subject to a 

compressive stiffness test and a repeated rotational stiffness test.  Values used for compressive 

stiffness and cyclic compression were based off of the predictive equation for estimating 

compressive strength by Parkinson and colleagues (Parkinson et al., 2005).  Dimensions of the 

intact disc were estimated using the average of the medial-lateral width and anterior-posterior 

length of the two exposed endplates on a specimen.  Those two values were then used to 

estimate the cross sectional area of the disc by using the equation for the surface area of an 

ellipse (π/4 * Anterior-Posterior Length * Medial-Lateral Width) in the same manner as 

Callaghan and McGill (Callaghan and McGill, 1995). 

The order in which the two tests were performed was randomized.  During the 

compressive stiffness test, specimens were loaded in axial compression to 50% of their 

estimated compressive strength at a loading rate of 1000N/s, this was performed twice to 

ensure that there was no aberrant stiffness value produced by unloading the specimen.  The 

rotational stiffness test brought specimens through 10 cycles of flexion and extension angles 

pre-defined in the passive test under 1000N of axial compressive load.  These tests established 

the baseline compressive and rotational stiffness of a specimen under non-injury conditions. All 
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angular displacement tests were performed with the motor arm of the Instron in position control, 

bringing specimens to a target angular displacement for each cycle at a rate of 1Hz. 

After initial stiffness measurements were made, specimens were loaded in axial 

compression to failure.  Failure was defined as a deflection in the force-displacement curve of 

3.125% over a period of 25ms (Figure 5.6).  Specimens were then subject to cyclic compressive 

loading to 30% of their estimated compressive strength for 1000 cycles at a loading rate of 

0.5Hz (Hansson et al., 1987, Holmes and Hukins, 1994, Parkinson and Callaghan, 2007).    

After failure loading, the reference load, compressive stiffness test, and rotational 

stiffness test were repeated to establish the change in the specimen’s mechanical properties 

after injury.  Following this, specimen group 1 was injected with hydrogel while group 2 was 

treated using PMMA.  The reference load, compressive, and rotational stiffness tests were 

repeated followed by group 1 receiving PMMA injection, and group 2 receiving a hydrogel 

injection.  The second intervention for each group was followed by another round of reference 

loading, compressive stiffness, and rotational stiffness tests.   

After both groups had received both interventions of hydrogel and PMMA injection, 

specimens were subject to a final 1000 cycles of repeated compressive loading at 30% of their 

estimated compressive strength.  Radiographs of testing stages are shown in (Figure 5.7, 

Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13).   
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Figure 5.5 Flow chart of experimental protocol for Study 2. 
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Figure 5.6 Sample specimen failure point showing the deflection in the load applied by the hydraulic ram. 

 

 

Figure 5.7 Initial specimen condition.  A radio-opaque dye was injected into the nucleus. 
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Figure 5.8 Specimen post-fracture, the dye can be seen in the superior vertebral body indicating a superior 
endplate fracture. 

 

 

 

 

 

Figure 5.9 Specimen post cyclic compressive cycles. 
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Figure 5.10 Specimen post-hydrogel injection, increased disc height as a result of injection can be seen. 

 

 

 

 

 

Figure 5.11 Specimen post PMMA injection.  The cement was radio-opaque and its injection site can be 
visualized. 
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Figure 5.12 Specimen post cement consolidation. 

 

 

 

 

 

 

Figure 5.13 Specimen following another round of cyclic compressive loading.  The disc height can be 
visually seen as diminished compared to the hydrogel injection stage. 
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5.4.6 Data Analysis  

 Rotational stiffness was calculated by taking the average rotational stiffness value for 

each time point over the course of a trial of 10 cycles of repeated flexion to extension.  

Rotational stiffness values were expressed in units of Nm/°.  Compressive stiffness was 

calculated by dividing the peak compressive load that specimens were exposed to by the 

relative vertical displacement of the hydraulic ram on the Instron to yield compressive stiffness 

expressed in units of kN/mm.  After calculation, and to facilitate comparison between 

specimens, values were normalized as a percentage of the initial values for rotational and 

compressive stiffness.  Each of the values obtained: compressive stiffness, and rotational 

stiffness were compared within subjects for the initial values, values post-injury, and values after 

each intervention (hydrogel and PMMA injection).  Specimen height was also tracked through 

the testing protocol as a function of the position of the hydraulic ram.  Values obtained after 

fatigue testing once both interventions had been administered were used to characterize the 

degradation of the mechanical profile of each of these interventions and examine when 

specimens could be expected to return to their post-injury state. 

 

5.4.7 Statistical Analysis 

 This experiment incorporated a crossover design where both groups were treated to the 

same conditions but at different time points.  Currently, both of these interventions could be 

performed independent of each other in an in-vivo surgical scenario.  Vertebroplasty is a 

common procedure performed on its own already, and there are some instances of nucleus 

replacement in-vivo (Bertagnoli and Schonmayr, 2002, Ahrens et al., 2009).  Thus, the study 

design allows for the role of each intervention to be examined independently and combined with 

another intervention.  For the purposes of statistical analysis, a 2x5 repeated measures ANOVA 

was performed with independent variables consisting of order of treatment (between subjects) 

and time (within subjects).  Dependent variables were the response of specimens after the initial 
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fatigue trial, after hydrogel injection, after PMMA injection, and after the fatigue trial once both 

interventions had been performed, all compared to the initial value.  These variables are listed in 

Table 5.1.  A test was performed for both rotational stiffness values and for compressive 

stiffness values.  A Bonferroni post-hoc adjusted for multiple comparisons.  All statistical tests 

were performed using SPSS software (IBM, Somers, NY, USA).  

 

Table 5.1. Independent and Dependent Variables for Study 2 

Independent Variables Dependent Variables 

 Order of intervention (hydrogel first vs. 
PMMA first) 

 Time 
 
 

 Response after initial fatigue trial 

 Response after hydrogel injection 

 Response after PMMA injection 

 Response after final fatigue trial 
 

 

 

5.5 Results 

 

 Rotational stiffness values were significantly influenced within subjects over time (p = 

0.00004) while there was no interaction between group and time (p = 0.36).  Pairwise 

comparisons revealed that while the hydrogel was able to restore the rotational stiffness values 

and change them compared to the fatigue conditions (p = 0.003, p = 0.005), it could not 

maintain this effect after repeated cyclic compression as rotational stiffness returned back to 

initial fatigue values following the second compressive fatigue protocol (p = 0.96).  Overall, 

rotational stiffness was found to be influenced over time (Figure 5.14).  Normalized rotational 

stiffness values for all specimens throughout the testing stages are presented in Table 5.3 and 

Table 5.4. 

 As with rotational stiffness, there was a significant influence of time for compressive 

stiffness values within subjects (p = 0.001) while there was no interaction between group and 
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time (p = 0.63).  Pairwise comparisons revealed that PMMA injection could significantly alter the 

compressive stiffness value of a specimen compared to the fatigue conditions (p = 0.02, p = 

0.0003).  As with rotational stiffness values however, this effect could not be maintained with 

repeated cyclic compression as compressive stiffness returned back to initial fatigue values (p = 

0.344).  Overall, the compressive stiffness was found to be influenced over time (Figure 5.15).  

Normalized compressive stiffness values for all specimens throughout the testing stages are 

presented in Table 5.5 and Table 5.6. 

 Over testing, there was no observed containment issue between the hydrogel and the 

initial injection site at the anterior of the disc.  Endplate fractures featuring a more open crack 

however, were not able to facilitate hydrogel containment (Figure 5.16).  Given that no hydrogel 

extruded through the injection site, it was presumed to be ejected from the disc through cracks 

in the endplate.  Upon dissection, no evidence of hydrogel was present in these discs with open 

cracks while those without breaches in the endplate contained evidence of hydrogel (Figure 

5.17).  Specimen height values were tracked throughout testing and expressed relative to their 

initial height, these values are contained in Table 5.7 and Table 5.8. 
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Figure 5.14 Normalized rotational stiffness values for both specimen groups.  Asterisks denote significance 
between matching pairs.  The hydrogel injection significantly restored rotational stiffness values to near 
initial values (100%). 
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Figure 5.15 Normalized compressive stiffness values for both specimen groups.  Asterisks denote 
significance between matching pairs.  PMMA injection significantly reduced compressive stiffness values 
compared to fatigue trials. 
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Figure 5.16 A large breach in the endplate is evident here, exposing the internal disc space to the vertebral 
body. 

 

 

Figure 5.17 A fracture that did not breach the cancellous bone of the endplate, there was still evidence of 
hydrogel within the discs of these specimens. 
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Table 5.2. Specimen Failure and Fracture Data 

 Failure Load (kN) Fracture Type 
(Endplate Breach vs. 
No Breach) 

Endplate Cross-
Sectional Area (mm2) 

Specimen 1 7.5 No Breach 526 
Specimen 2 11.3 No Breach 495 
Specimen 3 10.0 No Breach 618 
Specimen 4 9.9 No Breach 646 
Specimen 5 9.4 Breach 499 
Specimen 6 10.5 Breach 594 
Specimen 7 12.1 No Breach 592 
Specimen 8 10.5 Breach 614 
Specimen 9 12.2 No Breach 609 
Specimen 10 11.8 Breach 614 
Specimen 11 10.3 Breach 668 
Specimen 12 9.7 Breach 614 
Specimen 13 14.2 Breach 605 
Specimen 14 12.5 Breach 479 

Average (SD) 10.8 (1.6)  584 (60) 

 

 

 

Table 5.3. Specimen group 1 normalized rotational stiffness values throughout testing trials. 

 Initial (%) Fracture 
(%) 

Fatigue 
loading (%) 

Hydrogel 
injection 
(%) 

PMMA 
injection 
(%) 

Fatigue 
loading (%) 

Specimen 1 100 205.8 289.2 107.6 231.3 270.1 
Specimen 2 100 102.8 212.8 67.4 201.2 262.3 
Specimen 3 100 501.5 555.5 118.2 373.4 583.4 
Specimen 4 100 456.6 485.7 266.8 427.6 487.6 
Specimen 5 100 172.5 271.2 252.1 312.4 282.6 
Specimen 6 100 81.4 103.8 77.5 98.3 132.4 
Specimen 7 100 161.2 190.1 170.8 154.5 166.3 

Average 
(SD) 

100 240.3 
(168.9) 

301.2 
(162.7) 

151.5 
(81.0) 

257.0 
(119.1) 

312.1 
(164.9) 
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Table 5.4. Specimen group 2 normalized rotational stiffness values throughout testing trials. 

 Initial (%) Fracture 
(%) 

Fatigue 
loading (%) 

PMMA 
injection 
(%) 

Hydrogel 
injection 
(%) 

Fatigue 
loading (%) 

Specimen 8 100 166.7 277.2 246.7 100.4 294.5 
Specimen 9 100 170.9 244.3 231.1 189.6 236.5 
Specimen 10 100 227.4 216.9 210.6 216.3 230.6 
Specimen 11 100 156.9 193.3 160.4 133.3 248.6 
Specimen 12 100 233.3 368.7 279.6 261.1 227.1 
Specimen 13 100 244.0 318.2 277.7 143.3 274.9 
Specimen 14 100 176.0 194.2 177.3 196.6 214.4 

Average 
(SD) 

100 196.5 
(36.8) 

259.0 
(66.3) 

226.2 
(46.4) 

177.2 
(54.9) 

246.7 
(28.5) 

 

 

 

 

 

Table 5.5. Specimen group 1 normalized compressive stiffness values throughout testing trials. 

 Initial (%) Fracture 
(%) 

Fatigue 
loading (%) 

Hydrogel 
injection 
(%) 

PMMA 
injection 
(%) 

Fatigue 
loading (%) 

Specimen 1 100 124.0 113.6 83.8 124.0 134.5 
Specimen 2 100 110.1 143.9 71.3 112.4 144.6 
Specimen 3 100 80.0 103.6 89.8 109.3 139.5 
Specimen 4 100 74.8 113.9 94.5 99.7 118.3 
Specimen 5 100 58.3 81.9 69.4 57.3 81.5 
Specimen 6 100 68.4 76.1 75.0 49.3 75.2 
Specimen 7 100 42.7 74.2 85.1 73.1 80.3 

Average 
(SD) 

100 79.8  
(25.2) 

101.0 
(25.4) 

81.3  
(9.6) 

89.3  
(29.3) 

110.6 
(30.7) 
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Table 5.6. Specimen group 2 normalized compressive stiffness values throughout testing trials. 

 Initial (%) Fracture 
(%) 

Fatigue 
loading (%) 

PMMA 
injection 
(%) 

Hydrogel 
injection 
(%) 

Fatigue 
loading (%) 

Specimen 8 100 88.5 132.7 96.4 70.3 116.4 
Specimen 9 100 84.1 150.8 127.4 46.8 112.1 
Specimen 10 100 43.6 61.1 40.5 47.9 84.4 
Specimen 11 100 39.8 67.4 63.4 47.8 121.0 
Specimen 12 100 102.3 136.7 93.3 84.4 125.3 
Specimen 13 100 53.9 65.4 77.5 89.6 95.9 
Specimen 14 100 47.9 104.1 68.4 74.0 89.1 

Average 
(SD) 

100 65.7 
(25.2) 

102.6 
(38.2) 

81.0 
(27.9) 

89.3 
(29.3) 

106.3 
(16.3) 

 

 

 

 

 

Table 5.7. Specimen group 1 height values throughout testing as given by the position of the hydraulic ram 
(negative indicates height loss).  All values were relative the initial height. 

 Initial 
(mm) 

Fracture 
(mm) 

Fatigue 
loading 
(mm) 

Hydrogel 
Injection 
(mm) 

PMMA 
Injection 
(mm) 

Fatigue 
loading 
(mm) 

Specimen 1 0.0 -2.1 -3.2 -0.6 -2.4 -3.2 
Specimen 2 0.0 -1.8 -3.0 -0.3 -2.7 -3.9 
Specimen 3 0.0 -3.2 -4.0 -2.0 -3.3 -4.7 
Specimen 4 0.0 -4.2 -6.0 -3.6 -5.3 -6.2 
Specimen 5 0.0 -5.0 -7.5 -5.1 -6.9 -8.3 
Specimen 6 0.0 -5.2 -8.1 -5.3 -3.7 -7.9 
Specimen 7 0.0 -10.1 -12.7 -11.6 -11.1 -12.9 

Average 
(SD) 

0.0 -4.5 (2.8) -6.4 (3.4) -4.1 (3.9) -5.1 (3.1) -6.8 (3.4) 
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Table 5.8. Specimen group 2 height values throughout testing as given by the position of the hydraulic ram 
(negative indicates height loss).  All values were relative the initial height. 

 Initial 
(mm) 

Fracture 
(mm) 

Fatigue 
loading 
(mm) 

PMMA 
Injection 
(mm) 

Hydrogel 
Injection 
(mm) 

Fatigue 
loading 
(mm) 

Specimen 8 0.0 -1.2 -2.3 -1.9 0.5 -2.5 
Specimen 9 0.0 -3.1 -4.4 -4.4 -1.9 -4.5 
Specimen 10 0.0 -3.5 -5.2 -3.7 -2.8 -5.8 
Specimen 11 0.0 -4.7 -6.3 -6.3 -4.0 -7.6 
Specimen 12 0.0 -4.2 -6.2 -5.6 -3.2 -6.2 
Specimen 13 0.0 -3.3 -4.0 -4.7 -2.3 -6.0 
Specimen 14 0.0 -5.5 -7.4 -5.1 -4.8 -7.3 

Average 
(SD) 

0.0 -3.6 (1.4) -5.1 (1.7) -4.5 (1.4) -2.7 (1.7) -5.7 (1.7) 

 

 

5.6 Discussion 

 

 The hypothesis (hypothesis 1) that hydrogel injection would alter rotational stiffness from 

the compressively fatigued state was supported.  Hydrogel injection lowered the normalized 

rotational stiffness levels relative to the fatigue state in group 1 and group 2 to 151.5% ± 81% 

and 177.2% ± 54.9% of initial values (100%) respectively.  This indicates that disc height has a 

significant effect on the rotational stiffness of a motion segment, but the integrity of the vertebral 

body also plays a role.  The hypothesis (hypothesis 2) that PMMA injection would alter 

compressive stiffness levels from the compressively fatigued state was also supported.  In some 

specimens, compressive fatigue increased the normalized stiffness relative to the initial value 

while in other specimens it was decreased.  In general, PMMA injection reduced the 

compressive stiffness which meant that some specimens became more compliant compared to 

their initial values while others returned closer to baseline.  This could be caused by the PMMA 

restoring some spacing to crushed trabecular bone, or simply through unloaded recovery of the 

specimens.  Further, injection of PMMA would displace blood and bone marrow contained within 

the vertebral body.  The redistribution of these constituents, similar to increasing the plunger 
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height on a hydraulic ram, could have created a damping effect via the viscous drag of the 

fluids, reducing stiffness. 

 While the influences on the rotational stiffness measurements were clear in all cases, 

the hydrogel caused some confounding effects for the compressive stiffness measurements.  

With hydrogel injection, disc height was restored and compressive stiffness decreased for all 

specimens in addition to the expected decrease in rotational stiffness.  This indicates that while 

disc height could be restored, the disc could not regain the same hydrostatic pressure and 

resulted in greater deformation of the specimen under a compressive load.  It was also thought 

that PMMA would help to contain the hydrogel within the disc, however, this was not the case; 

containment of the hydrogel in some instances of endplate fracture appears to be more 

challenging.  Further, a trade-off must be made in terms of PMMA injection in order to prevent 

cement leakage into the disc.  PMMA was injected above the fracture site at a level that would 

prevent cement leakage into the disc through the large cracks present in some specimens.  If 

this had not been a concern, the cement could have been injected much closer to the fracture 

and containment of the hydrogel may have been enhanced.  Further, the presence of blood and 

bone marrow within the vertebral body itself could have contributed to the difficulty of sealing the 

endplate, as the displacement of these substances occurs unpredictably and could have left 

regions where the cement did not penetrate. 

 There were more instances of endplate breach in group 2 (PMMA injection first) 

compared to group 1 (hydrogel injection first).  It is not entirely clear why this is the case given 

that the breaches occurred before any of the interventions had been performed.  Small 

differences between the specimens could have been a factor in terms of why some breached 

while others did not.  More brittle endplates in some specimens could have led to the breaching 

observed in addition to differences within the microarchitecture of the trabecular bone directly 

underlying the endplate.  With less trabecular volume or less trabecular connectivity, there 
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would have been less support behind the endplates of these specimens, potentially resulting in 

the observed endplate breaches. 

 The results of this study agree with findings by Landham and colleagues (Landham et 

al., 2015a) who found that vertebroplasty made a compressively injured spine specimen more 

compliant.  They also found increased specimen compliance after repetitive loading injury which 

is in contrast to the results from this study.  There were differences however, in the nature of the 

injuries produced between the two studies which could explain the apparent difference.  In 

terms of compressive stiffness, this study also agrees with work by Luo and colleagues (Luo et 

al., 2007, Luo et al., 2009) with regard to the pattern of compressive stiffness changes seen.  

One potential explanation for these results is the phenomenon of unloaded recovery on the part 

of the specimens.  During PMMA injection, specimens are unloaded while undergoing needle 

placement and allowing the cement to properly set.  While they are re-loaded during cement 

consolidation, it is possible that specimens are able to recover during this unloaded phase.  

What the cement provides, is protection from further creep deformity (Luo et al., 2015).  

 Vertebroplasty has been put forward as a preferred procedure to kyphoplasty, which 

involves the use of an inflatable balloon to restore wedge and compressive deformities in the 

affected vertebrae.  Greater wedge deformity correction is associated with higher adjacent level 

fracture risk in patients (Liu et al., 2015).  Vertebroplasty is also lower cost, and has similar long-

term patient outcomes (Liu et al., 2015). 

 Previous work on herniated discs has shown that the hydrogel is able to restore 

rotational stiffness characteristics and last through further cyclic flexion-extension motions 

(Balkovec et al., 2013).  This work reveals that endplate fractures make the situation much more 

complicated, with containment issues and the variety of injuries that can occur.  The hydrogel 

was able to restore the rotational stiffness characteristics of the injured segment to a degree, 

however, with the added complexity of a fractured vertebral body, full restoration was prevented. 
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 Disc repair is a difficult endeavour, and there are currently many strategies in practice 

and research that attempt to accomplish it.  Options include trying to promote cellular repair 

through stem cell injection (Benneker et al., 2014), total disc replacement (van den Broek et al., 

2012), use of hydrogels (Silva-Correia et al., 2012), and preformed nuclear implants (Ray, 

2002).  Ideally, disc repair would fully maintain the anatomical structures and restore their 

mechanical characteristics and cellular microenvironments.  Current strategies seem to only 

accomplish some of these criteria, but continued work will bring full disc repair closer to reality.  

The strategy employed in this study attempted to maintain the disc’s anatomical structures and 

restore the mechanical environment of the disc.  Hydrogel injection and vertebroplasty could 

potentially inhibit some cellular functioning by blocking the endplate and inhibiting the pathway 

for nutrition to the disc.  There is work which suggests that vertebroplasty can initiate further 

degenerative changes in younger subjects (Kang et al., 2014, Zhao et al., 2014), so caution 

should be exercised.  Further work is also required to develop a more robust containment 

strategy for the hydrogel regardless of the injury.  This study is the first to attempt such a repair 

of a motion segment by using an injectable hydrogel combined with vertebroplasty and offers 

valuable information for future attempts at mechanical repair of the injured disc. 

 Further cyclic compressive loading returned specimens to their injured mechanical 

profile via increased relative compressive and rotational stiffness.  No repair strategy can 

sustain continued repetition of the conditions which caused the injury as every material is prone 

to failure at some point.  It is therefore imperative that the mechanism of injury is not repeated in 

order to prevent injury re-occurrence. 

 The present study has found that PMMA and hydrogel injection can improve the 

mechanical profile of a compressively injured spine segment.  This is the first study to evaluate 

a combination of these procedures and assess the mechanical outcomes.  The data from this 

work reveals that compressive injury produces a variety of fracture types that are not always 

simple to repair using a single strategy.  In discs with large cracks in the endplate, containment 
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for the hydrogel becomes an issue that needs to be addressed.  Future work needs to develop 

more robust containment strategies for the hydrogel in the disc to facilitate its re-pressurization 

and enhance outcomes. 
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6 Chapter 6: Study 3 

The Effects of Disc Height Loss on Cervical Spine Motion In-Vivo 

 

6.1 Background 

   

 Pain has the ability to influence movement behavior (de Vries et al., 2015).  While tissue 

studies offer high control in isolating a single factor and its influence on how a tissue functions, 

the response in-vivo may not be the same.  Research that quantifies movement of the cervical 

spine in individuals presenting with pathology is lacking.  Fluoroscopic imaging allows for the 

observation of a spine under motion and provides insight into midrange movements in addition 

to end-range movements.  Being able to observe how a spine moves as opposed to static 

postures at end ranges of motion could provide more information with respect to subtle changes 

in movement patterns or strategies that could be potentially seen as aberrant.  Being able to 

track and quantify segmental spine motion could help to reveal patterns and trends that assist in 

explaining why individuals move the way they do.  This could help to provide a backbone for 

further investigation that identifies key anatomical features and how they contribute to aberrant 

movement, along with any mechanical consequences.     

 While generalized movement of the cervical spine has been described in previous work 

(Bogduk and Mercer, 2000, van Mameren, 1988), there has been no numerical quantification or 

analysis on individuals with pain/pathology.  Having the tools to quantify segmental spine motion 

in-vivo could help to identify movement differences and commonalities in individuals with pain.  

Being able to link certain painful pathologies with the aberrant movement patterns that 

accompany them could be a powerful means to understand why individuals move the way they 

do and identify some strategies that remove mechanisms of injury. 
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 Disc height loss has been identified as one of the key contributors to dysfunction in the 

spine (Jarman et al., 2015).  In the lumbar spine, loss in height at a segment introduces 

changes to facet joint interactions (Dunlop et al., 1984, Gotfried et al., 1986), and shifts the 

areas of the disc that bear load (Adams et al., 1996).  There is also the potential to affect 

nutrient transport and the long-term degenerative response (Lotz and Chin, 2000).  

Understanding the kinematic response of disc height loss across individuals with pain could be 

a helpful tool in identifying injury mechanisms and characterizing aberrant movement. 

 Previous research has also examined the possibility of adjacent segment degeneration 

that occurs as a result of degenerative changes to a spinal segment that propagate further from 

the site of injury.  Fusion (Dekutoski et al., 1994), herniation (Lao et al., 2015b), and 

degenerative grade (Lee et al., 2015) have all been examined, but no study has explicitly 

examined disc height.  So while there may be a weak association with some of the factors 

mentioned above, disc height could present a clearer relationship between pathology and 

aberrant motion of adjacent segments. 

  

6.2 Significance 

  

 Quantifying cervical spine movement in-vivo on pained individuals with and without disc 

height loss will help to identify if there is a common behavior across individuals for an easily 

observable feature on medical imaging.  Pain could potentially introduce many heterogeneous 

kinematic responses in individuals that are dependent on individual intrinsic factors as well as 

the injury itself.  Identifying a common kinematic response to disc height loss in the cervical 

spine could help to identify an important subgroup of patients with respect to kinematic function.  

Future work could then investigate whether there are deleterious consequences as a result of a 

given movement pattern.  Typically, judgements on medical imaging are based on what is seen 

by the eye.  This study sought to evaluate and compare clearly visible disc height loss cases to 
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non-disc height loss cases and determine whether disc height loss produced a unique 

mechanical characteristic in the quantified angular displacement. 

 

6.3 Hypotheses 

 

1. Disc height loss will cause diminished segmental mobility at the affected segment. 

2. Some individuals without disc height loss will also exhibit diminished mobility at one 

segment as well as segments that exhibit enhanced mobility. 

 

6.4 Methods 

6.4.1 Data Collection  

 Sagittal-plane image sequences of cervical spine flexion-extension motions were 

obtained from a local specialist.  Fluoroscopic exams were taken with a Digital Motion X-Ray 

that provided continuous x-ray at 70-90 kVp at 2-3.5 mA at a 40-inch flange focal distance.  A 9-

inch image intensifier (Precise Optics, Bay Shore, NY, USA) transferred the signal to a digital 

CCD camera outputting a 150dpi stream to a DICOM recorder (NAI Tech Products, Auburn, CA, 

USA).  

Each sequence was from a patient who had experienced trauma and had a chief 

complaint related to their neck, head, or shoulders.    All image sequences were made 

anonymous and patients filled out an informed consent form which released their image 

sequences for research purposes (Appendix D).  Further information related to the patients 

including age, gender, complaint, and traumatic event is also contained in Appendix D.  A total 

of 20 image sequences were used, these were assessed by a third-party clinician qualified to 

perform radiological assessments; they had no prior experience with the patients and had not 

assessed the images previously.  The clinician was highly trained in diagnostic imaging 
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interpretation, with formal training spanning four years, from foundational studies to advanced 

clinical topics.  They continue to read radiographs for their practice in addition to radiographs for 

two other full-time clinicians in active practice.  They also write all clinical imaging reports when 

referrals based on imaging findings are required.  Disc height loss was classified as either mild, 

moderate, or severe.  Grading of disc height loss was based on clinical impression given that 

there were no pre-post image sequences of the patient cases.  Disc height loss is a subtle 

feature to quantify without pre-post images, and there are no formal clinical evaluation criteria 

for quantifying disc height loss.  In order to provide the most clinical relevance to the subgroup 

classifications, the impression of a clinician with a special practice in treating and evaluating the 

spine was deemed the most appropriate measure.  Of the 20 cases, eight had mild disc height 

loss in at least one level, three had moderate or severe height loss in at least one level, and 

nine had no height loss at any of the levels visible in the radiographs.   

In addition to the clinical appraisal of disc height loss, disc height index was also 

calculated similar to the method of Frobin and colleagues (Frobin et al., 2002).  Detailed 

discussion of the calculation of this value is contained in Appendix D.  Disc height at each level 

was also normalized to and expressed as a percentage of total disc height across all levels 

measured for each case.  For this, the average height was taken between the anterior and 

posterior margins of each vertebral level.  The sum of these averages was taken and then each 

measured height was normalized to the sum of the averages and expressed as a percentage.  

Disc height loss cases considered moderate or severe were included in the “disc height loss” 

group of cases while those with only mild height loss were examined separately.  Including 

those who did not have disc height loss allowed for the observation of whether other factors 

(such as pain and different movement patterns) could produce similar results to those seen in 

disc height loss patients.  Analysis of these data required a separate assay for each case, as 

the data for all patients was viewed separately and analyzed on an individual basis. 

 



95 
 

6.4.2 Tracking Procedure 

 From each image sequence, a full repetition of cervical spine neutral to full flexion and 

then to full extension was chosen.  From this, the images were imported into a customized 

software interface that utilized the vertebral body tracking algorithm described in Appendix A.  

An operator selected 4 corners of each vertebral body that exhibited high contrast and a defined 

edge relative to surrounding structures.  This would ensure that the coordinate would track 

accurately.  From this, the vertebral body motion was tracked through the entire image 

sequence to obtain raw coordinates of all four corners of each vertebral body.  

 Due to patient anatomical and movement differences, a variable number of vertebral 

bodies were tracked for each individual image sequence.  In some cases, vertebral bodies 

disappeared from the field of view as the patient moved, and in others they had more mass 

surrounding the shoulders that obscured the underlying vertebrae from view under fluoroscopy. 

 Following tracking, each set of image sequences was visually assessed to determine if 

the tracking points sufficiently tracked the corner of each vertebral body.  This ensured that the 

angular displacement outputs were accurate to the segmental motion actually occurring. 

 

6.4.3 Data Analysis 

 Relative joint angles and relative joint shear was obtained for each set of image 

sequences using the techniques described in Appendix B and Appendix C.  Kinematic data was 

filtered using a dual pass 2nd order butterworth filter with a cut-off frequency at 1Hz as 

determined by residual analysis.  Given the heterogeneous nature of the patient data and the 

small sample size of disc height loss cases, image sequences were assessed on a case by 

case basis to determine if a common pattern could be obtained from disc height loss cases 

compared to the non-disc height loss cases.  Patient time-histories were examined to evaluate 

the stepwise onset of relative segmental motion and any visual disparities in flexion or extension 

in a particular segment.  Total angular displacement was also examined and compared to data 
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collected by van Mameren (1988) on healthy individuals.  Their general findings were an 

increase in relative angular displacement moving from C2/C3 to C5/C6 (van Mameren, 1988).   

 In order to provide some comparison between groups, angular displacement was 

normalized as a percentage of total range of motion for each joint in every patient case.  

Average angular displacement was calculated for each group.  Cases that did not have angular 

displacement values for four joints were excluded from the calculations given the difference in 

relative proportion that arose with fewer joints quantified.  In the moderate/severe height loss 

group, there was evidence of height loss at the C5/C6 level in all cases.  Due to this, the 

proportional angular displacement of the C5/C6 level was compared via an independent 

samples t-test between the moderate/severe height loss group and the group with no height 

loss.  Statistical significance was accepted at the p < 0.05 level, with statistical testing 

performed using SPSS software (IBM, Somers, NY, USA). 

 

6.5 Results 

 

 Select patient images and time-histories have been included in this chapter.  

Radiographs and angular displacement time-histories for all patient image sequences have 

been included in Appendix H.  In the disc height loss group (moderate or severe height loss), 

there was evidence of diminished mobility at levels with height loss when compared to the trend 

of increasing angular contribution found by van Mameren (1988) (Table 6.1, Table 6.2, Table 

6.3).  In the mild disc height loss set of cases the relationship was not as clear, with some cases 

presenting in the same manner as those in the disc height loss group and others exhibiting 

angular displacement profiles that matched the findings of van Mameren (1988).  In the non-disc 

height loss case group, all cases exhibited a trend towards increasing segmental angular 

displacement moving down from the level of C2/C3. 
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 Group averages (Table 6.4) revealed that in the moderate/severe height loss group, 

there was a lower average proportional angular displacement at lower levels (20.2% ± 2.3%) 

where height loss was present compared to the group with no height loss (30.6% ± 4.0%).  The 

independent samples t-test revealed a statistically significant difference between these two 

groups (p=0.004).  Averages from the mild height loss group were not as clear given that the 

levels with height loss were distributed throughout the segments.  There was similarity to the 

averages from Van Mameren (1988) and the group with no disc height loss (Table 6.4). 

 Disc height index values revealed a slightly lower index (0.30 ± 0.09) for C5/C6 in the 

moderate/severe group compared to the non height loss group (0.34 ± 0.02).  Disc height index 

values for each case are located in Table 6.5 while average values for each group are located in 

Table 6.6.  Average proportional disc height values revealed a lower proportion of C5/C6 disc 

height (21% ± 5.6%) in the moderate/severe height loss group compared to the same level in 

the no height loss group (26% ± 1.4%).  Proportional disc height values for all patient cases are 

located in Table 6.7 while average values for the clinical subgroups are located in Table 6.8. 

 In all of the cases of disc height loss, there was a non-stepwise initiation of segmental 

angular motion (Figure 6.2, Figure 6.4, Figure 6.8), meaning that rotation occurred about lower 

levels before upper levels.  In the mild disc height loss group, there was again a disparity, with 

some cases exhibiting the same non-stepwise trend as the disc height loss group and others 

exhibiting stepwise angular motion.   
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Table 6.1.Total range of motion of each segmental level for each case.  Listed in order of moderate/severe 
disc height (DH) cases, mild height loss (MH) cases, and no height loss (NH) cases.  Levels exhibiting disc 
height loss are shaded, with light shading indicating mild height loss, medium shading indicating moderate 
height loss, and dark shading indicating severe height loss.  Values from healthy individuals found by van 
Mameren (1988) are also listed at the bottom and show the general trend of increasing angular displacement 
with descending segmental level.  Disc height loss cases exhibited the opposite of this. 

Case C2/C3 Total 
Displacement 
(°) 

C3/C4 Total 
Displacement 
(°) 

C4/C5 Total 
Displacement 
(°) 

C5/C6 Total 
Displacement 
(°) 

DH 1 11.8 10.6 13.1 8.1  

DH 2 15.1 12.5 12.9  9.6  

DH 3 2.0 13.6 10.1  7.6  

MH 1 12.0 16.9 16.2 14.3 

MH 2 14.9 10.9 13.9 14.5 

MH 3 7.5 13.7 16.2 7.3 

MH 4 10.0 14.0 23.2 12.4 

MH 5 13.1  11.9 14.2  

MH 6 17.1 16.9 12.1 15.5  

MH 7 7.8 12.6  10.4 9.1 

MH 8 10.1 15.1 22.4 18.7 

NH 1 13.9 15.3 17.2  

NH 2 10.0 13.1 17.5 19.4 

NH 3 9.5 14.9 14.0 14.4 

NH 4 9.5 16.8 16.3 16.2 

NH 5 16.5 18.1 22.9 23.0 

NH 6 8.2 6.3 9.4  

NH 7 10.3 13.9 18.4 25.8 

NH 8 5.3 8.7   

NH 9 10.0 13.0 18.3 18.0 

van Mameren 
(1988) 
(Averages) 

13.4 17.6 20.4 22.6 
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Table 6.2. Range of motion of each segmental level for each case in flexion and extension.  Listed in order of 
moderate/severe disc height (DH) cases, mild height loss (MH) cases, and no height loss (NH) cases.  Levels 
exhibiting disc height loss are shaded, with light shading indicating mild height loss, medium shading 
indicating moderate height loss, and dark shading indicating severe height loss.  Cells that are shaded fully 
black indicate levels that could not be quantified due to not being within the fluoroscope field of view. 

Case C2/C3 
Flexion 
(°) 

C2/C3 
Extension 
(°) 

C3/C4 
Flexion 
(°) 

C3/C4 
Extension 
(°) 

C4/C5 
Flexion 
(°) 

C4/C5 
Extension 
(°) 

C5/C6 
Flexion 
(°) 

C5/C6 
Extension 
(°) 

DH 1 3.2 -8.6 3.2 -7.5 2.8 -10.3 2.0 -6.1 

DH 2 12.5 -2.5 7.8 -4.7 7.2 -5.7 7.2 -2.4  

DH 3 1.2 -0.8 5.1 -8.4 0 -10.1 4.6 -3.0 

MH 1 9.0 -3.0 11.4 -5.5 9.6 -6.6 8.9 -5.4 

MH 2 8.7 -6.2 8.4 -2.5 8.0 -6.0 11.7 -2.9 

MH 3 2.2 -5.3 1.1 -12.6 3.3 -12.9 2.0 -5.3 

MH 4 5.3 -4.7 10.4 -3.6 13.8 -9.4 12.4 0 

MH 5 5.9 -7.2 11.4 -0.5 11.9 -2.3   

MH 6 8.5 -8.6 5.1 -11.8 6.9 -5.2 10.5 -5.0 

MH 7 5.9 -1.9 12.6 0 9.7 -0.7 8.7 -0.4 

MH 8 6.0 -4.0 6.3 -8.8 5.8 -16.6 7.1 -11.6 

NH 1 5.4 -8.5 8.6 -6.7 10.5 -6.7   

NH 2 8.1 -1.9 10.3 -2.8 6.6 -10.9 8.9 -10.5 

NH 3 2.9 -6.7 3.6 -11.4 5.0 -9.0 10.7 -3.6 

NH 4 2.4 -7.0 4.6 -12.1 5.1 -11.1 10.8 -5.4 

NH 5 9.5 -7.0 12.8 -5.3 15.5 -7.5 13.8 -9.3 

NH 6 3.1 -5.2 2.9 -3.3 3.7 -5.7   

NH 7 6.4 -3.9 8.2 -5.7 8.7 -9.7 14.5 -11.3 

NH 8 1.5 -3.8 6.4 -2.3     

NH 9 9.0 -0.9 9.1 -3.9 10.4 -7.8 10.9 -7.0 
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Table 6.3. Proportional range of motion (%) of each segmental level for each case.  Listed in order of disc 
height (DH) cases, mild height loss (MH) cases, and no height loss (NH) cases.  Levels exhibiting disc height 
loss are shaded, with light shading indicating mild height loss, medium shading indicating moderate height 
loss, and dark shading indicating severe height loss.  Cells that are shaded fully black indicate levels that 
could not be quantified due to not being within the fluoroscope field of view. 

Case C2/C3 Relative 
Displacement 
(%) 

C3/C4 Relative 
Displacement 
(%) 

C4/C5 Relative 
Displacement 
(%) 

C5/C6 Relative 
Displacement 
(%) 

DH 1 27.1 24.4 30.0 18.6  

DH 2 30.1 25.0 25.7  19.2  

DH 3 5.9 40.8 30.5  22.8  

MH 1 20.2 28.4 27.3 24.1 

MH 2 27.4 20.1 25.7 26.8 

MH 3 16.7 30.7 36.3 16.3 

MH 4 16.8 23.4 38.9 20.9 

MH 5 33.4  30.4 36.4  

MH 6 27.8 27.4 19.6 25.2  

MH 7 19.5 31.6  26.1 22.7 

MH 8 15.2 22.8 33.8 28.2 

NH 1 29.9 33.0 37.1  

NH 2 16.7 21.9 29.1 32.3 

NH 3 18.1 28.2 26.5 27.2 

NH 4 16.1 28.6 27.7 27.6 

NH 5 20.4 22.5 28.4 28.6 

NH 6 34.5 26.3 39.2  

NH 7 15.0 20.3 27.0 37.7 

NH 8 37.9 62.1   

NH 9 16.8 21.9 30.9 30.4 

van Mameren 
(1988) 
(Averages) 

18.1 23.8 27.6 30.5 

 

Table 6.4. Proportional range of motion (%) averages and standard deviations for each group.  Cases without 
angular displacement values for all four levels were excluded from calculations given the altered 
proportional displacement with fewer levels accounted for. 

Group C2/C3 
Proportional 
Displacement 
Average (%) 
(SD) 

C4/C4 
Proportional 
Displacement 
Average (%) 
(SD) 

C4/C5 
Proportional 
Displacement 
Average (%) 
(SD) 

C5/C6 
Proportional 
Displacement 
Average (%) 
(SD) 

Moderate/Severe 
Height Loss 

21.0 (13.2) 30.1 (9.3) 28.7 (2.6) 20.2 (2.3) 

Mild Height Loss 20.5 (5.1) 26.4 (4.3) 29.7 (6.9) 23.4 (4.0) 

No Height Loss 17.2 (1.9) 23.9 (3.6) 28.3 (1.6) 30.6 (4.0) 

Van Mameren 
(1988) 
(Averages) 

18.1 23.8 27.6 30.5 
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Table 6.5. Disc height index values for all patient cases.  Expressed as a ratio of disc height to vertebra 
height.  A principle issue with this technique is that disc height loss is hidden if a vertebra is fractured and 
has also lost height.  Cells that are shaded fully black indicate levels that could not be quantified due to not 
being within the fluoroscope field of view. 

Case C2/C3 Disc 
Height Index 

C3/C4 Disc 
Height Index 

C4/C5 Disc 
Height Index 

C5/C6 Disc 
Height Index 

DH 1 0.29 0.39 0.38 0.34  

DH 2 0.18 0.34 0.41  0.36  

DH 3 0.32 0.38 0.31  0.20  

MH 1 0.28 0.30 0.28 0.21 

MH 2 0.28 0.31 0.30 0.34 

MH 3 0.24 0.38 0.36 0.28 

MH 4 0.29 0.32 0.38 0.35 

MH 5 0.22  0.41 0.39  

MH 6 0.24 0.33 0.32 0.32  

MH 7 0.22 0.25  0.33 0.53 

MH 8 0.30 0.24 0.31 0.29 

NH 1 0.23 0.28 0.35  

NH 2 0.31 0.37 0.31 0.36 

NH 3 0.24 0.36 0.30 0.33 

NH 4 0.25 0.33 0.33 0.32 

NH 5 0.31 0.29 0.33 0.35 

NH 6 0.33 0.33 0.35  

NH 7 0.27 0.31 0.28 0.37 

NH 8 0.24 0.31   

NH 9 0.30 0.29 0.30 0.32 

 

 

 

Table 6.6. Average disc height index values for the three groups of patient cases. 

Group C2/C3 Disc 
Height Index 
Average (SD) 

C4/C4 Disc 
Height Index 
Average (SD) 

C4/C5 Disc 
Height Index 
Average (SD) 

C5/C6 Disc 
Height Index 
Average (SD) 

Moderate/Severe 
Height Loss 

0.26 (0.07) 0.37 (0.03) 0.37 (0.05) 0.30 (0.09) 

Mild Height Loss 0.26 (0.03) 0.32 (0.06) 0.33 (0.04) 0.33 (0.10) 

No Height Loss 0.27 (0.04) 0.32 (0.03) 0.32 (0.03) 0.34 (0.02) 
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Table 6.7. Proportional disc height values for all cases.  Values are expressed as a percentage of the total 
disc height across all levels measured.  Cells that are shaded fully black indicate levels that could not be 
quantified due to not being within the fluoroscope field of view. 

Case C2/C3 
Proportional 
Disc Height (%) 

C3/C4 
Proportional 
Disc Height (%) 

C4/C5 
Proportional 
Disc Height (%) 

C5/C6 
Proportional 
Disc Height (%) 

DH 1 25.3 27.2 25.4 22.1  

DH 2 18.6 25.3 30.2  25.9  

DH 3 31.4 29.4 24.3  14.9  

MH 1 30.0 27.2 24.8 18.0 

MH 2 27.1 24.6 23.2 25.1 

MH 3 22.5 28.9 26.6 22.0 

MH 4 25.5 22.8 26.3 25.4 

MH 5 26.1  39.4 34.5  

MH 6 24.3 27.4 24.7 23.7  

MH 7 21.3 20.0  24.1 34.6 

MH 8 30.2 20.2 25.6 24.0 

NH 1 30.8 30.9 38.3  

NH 2 25.8 27.2 21.7 25.2 

NH 3 22.9 27.9 22.9 26.3 

NH 4 24.1 25.5 25.2 25.1 

NH 5 28.3 21.4 24.6 25.7 

NH 6 36.7 31.4 31.9  

NH 7 23.8 24.7 22.9 28.6 

NH 8 48.9 51.1   

NH 9 27.6 23.2 24.2 25.1 

 

 

 

Table 6.8. Average proportional disc height values for clinical subgroups.  Cases without disc height values 
for all four levels were excluded from calculations given the altered proportional disc height with fewer levels 
accounted for. 

Group C2/C3 
Proportional 
Disc Height 
Average (%) 
(SD) 

C4/C4 
Proportional 
Disc Height 
Average (%) 
(SD) 

C4/C5 
Proportional 
Disc Height 
Average (%) 
(SD) 

C5/C6 
Proportional 
Disc Height 
Average (%) 
(SD) 

Moderate/Severe 
Height Loss 

25.1 (6.4) 27.3 (2.0) 26.6 (3.1) 21.0 (5.6) 

Mild Height Loss 25.8 (3.5) 24.4 (3.6) 25.0 (1.2) 24.7 (5.0) 

No Height Loss 25.4 (2.2) 25.0 (2.4) 23.6 (1.3) 26.0 (1.4) 
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6.5.1 Disc Height Loss (DH1) 

 DH1 presented with moderate disc height loss at the level of C5/C6 and severe height 

loss at C6/C7 (angular displacement could not be quantified), along with moderate anterior 

osteophytes at C5/C6 and severe at C6/C7 (Figure 6.1).  Upon analysis of the joint angle time-

history graph it could be seen that in extension, while the C5/C6 joint did not continue 

extending, the extension continued about the adjacent joint (Figure 6.2).  Even in flexion, very 

little of the total angular displacement of the neck was about this level, and only began to 

displace after displacement commenced about other joints.  These data suggest that while the 

joint motion does occur about this level with height loss, it is inherently stiff.  Total angular 

displacement for the C2/C3, C3/C4, C4/C5 and C5/C6 joints were 11.8°, 10.6°, 13.1°, and 8.1° 

respectively; this goes against the general trend of angular displacement increasing with 

descending segmental level. 

 Motion onset occurred about the C2/C3 joint and to some extent the C4/C5 joint, angular 

displacement occurred about the C3/C4 and C5/C6 joints at a later point in an apparently 

synchronized manner (Figure 6.2).  

 

6.5.2 Disc Height Loss (DH2) 

 DH2 presented with moderate disc height loss at the level of C4/C5 and C6/C7 and 

severe height loss at C5/C6 (Figure 6.3).  Osteophytes were evident anteriorly and classified as 

mild at C4/C5, moderate at C6/C7 and severe at C5/C6.  Due to C7 moving out of frame during 

sagittal plane motions, the angular displacement at C6/C7 could not be quantified.  There was a 

non-stepwise initiation of movement with rotation occurring first about C3/C4, followed by C4/C5 

(Figure 6.4).  As with Case 1, total angular displacement decreased with descending segmental 

level.  The disc with severe height loss rotated the least while the level with moderate height 

loss had a similar total displacement with its superior adjacent level.  Total angular displacement 

for the C2/C3, C3/C4, C4/C5, and C5/C6 joints were 15.1°, 12.5°, 12.9°, and 9.6° respectively.   
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6.5.3 Disc Height Loss (DH3) 

 DH3 presented with moderate height loss at C4/C5 and severe height loss at C5/C6.  

There was also severe height loss at C6/C7 but due to the positioning of C7, it could not be 

tracked as the vertebral body did not stay within the field of view.  Osteophytic lipping was 

evident as well, with moderate levels at C4/C5 and severe levels at C5/C6 and C6/C7.  There 

was also a kyphotic deformity of the neck in the individual’s neutral posture (Figure 6.5).  The 

overall range of motion of the neck was severely limited, with most of the motion being 

qualitatively observed at the craniocervical junction.  During flexion, there was observed gliding 

of the facets at C5/C6 as a small amount of flexion was observed to occur about that level 

(Figure 6.6), osteophytes at the anterior margins of both vertebral bodies appeared to make 

contact and prevented further motion.  As the spine extended, the facets of the C5/C6 joint 

appeared to limit extension range of motion of the segment (Figure 6.7).  Total angular 

displacement magnitude at C5/C6 was 7.6°.  Nearly all displacement in extension occurred 

about the adjacent joint (C4/C5) with less severe height loss, as well as the C3/C4 joint without 

height loss (Figure 6.8).  Interestingly, the majority of angular displacement occurred about the 

joint without height loss (C3/C4) with a total angular displacement magnitude of 13.6°.  

 What is also interesting in this case is the near complete lack of motion at the C2/C3 

joint, a joint with no observable height loss.  It is clear that there are other factors such as pain, 

individual motor patterns, and possibly muscle guarding that have the potential to dictate the 

motion at a spinal joint. 

 Also of note in DH3 are the relative joint translations or shear measurements.  The 

C2/C3 joint, with the least angular displacement, had the highest shear displacement (0.44mm 

in flexion and 0.27mm in extension).  Joints C3/C4 and C4/C5 were seen to go into a slight 

amount of anterior shear displacement (0.21mm) and then posterior shear displacement 
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(0.35mm) as the neck went into flexion and then extension, but there was almost no shear 

displacement at the C5/C6 joint which had the most severe height loss (Figure 6.9).   

 

6.5.4 General Height Loss Case Observations 

 Two general observations were found from all three disc height loss cases: a tendency 

for the disc with the most severe height loss to contribute the least to total angular 

displacement, and a non-stepwise onset of joint angular displacement.  It is unclear however, if 

this non-stepwise onset of joint angular displacement was a result of the disc height loss. 

 

6.5.5 Mild Height Loss Cases 

 The mild height loss cases did not appear to exhibit the same systematic effect as the 

disc height loss cases.  There were instances where there was a high level of angular 

displacement at segments with mild height loss and in general, most cases followed a pattern 

where the angular displacement increased at the lower segments.   

 Cases MH3 and MH4 exhibited a lower segmental angular displacement about the 

C5/C6 joints compared to the C4/C5 joints of 8.9° and 10.8° respectively.  These two cases 

appeared to be the exceptions, with other cases exhibiting smaller differences (<4°) in angular 

displacement between C4/C5 and C5/C6 segments.  In the case of MH3, the C6 vertebral body 

appeared to have a posterior lip that when viewed under fluoroscopy limited movement of the 

C5/C6 joint in extension (Figure 6.10, Figure 6.13).  The lack of mobility for MH4 appeared to 

also be in extension (Figure 6.11, Figure 6.15). 

 

6.5.6 Cases without Height Loss 

 In all of the non-height loss cases, there was a general trend for relative segmental 

angular displacement to increase with a descending segmental level.  This followed the overall 

trend found by van Mameren (1988) despite these cases still presenting with pathology.  Some 
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of these cases did not have a stepwise initiation of movement, and the presence of this non-

stepwise initiation of segmental motion appeared to be present in all of the case sub-categories, 

with the disc height loss cases all exhibiting this pattern.  At this point it is unclear what physical 

factors (if any) cause this and whether it is an important finding clinically. 

 

 

 

Figure 6.1 DH1 disc height loss.  Height loss was found at the C5/C6 level and the C6/C7 level (indicated by 
arrows).  Given that the C7 vertebral body was not in the field of view, only the C5/C6 joint and those above 
could be tracked.  Osteophytes can be seen anteriorly at C5/C6 and C6/C7. 
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Figure 6.2 Time history angular displacement graph for DH1.  There is a large disparity in the extension 
angular displacement for the C5/C6 joint (with height loss) relative to the C4/C5 joint (without height loss).  
There is also a non-stepwise behaviour in terms of movement initiation about joints, with movement 
initiating about C4/C5 followed by C2/C3 and then C3/C4 and C5/C6. 

 

 

Figure 6.3 DH2 disc height loss.  Height loss was found at the C4/C5, C5/C6, and C6/C7 levels (indicated by 
arrows).  Anterior osteophyte growth is evident at C4/C5, C5/C6, and C6/C7.  C6/C7 was not able to be 
quantified due to the C7 vertebra moving out of frame. 
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Figure 6.4 Time history graph of the relative joint angular displacement for DH2.  There was a large disparity 
in relative angular displacement in extension between C5/C6 and C4/C5 (indicated by arrows), with the 
majority of extension displacement occurring about C4/C5 and C3/C4.  There is also an observable non-
stepwise behaviour in onset of motion between joints with motion initiating about C2/C3 and C4/C5.  
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Figure 6.5 DH3 disc height loss.  There was height loss at multiple levels from C4/C5 to C6/C7 (indicated by 
arrows).  C6/C7 was not able to be tracked as some features of the vertebral body moved out of the field of 
view.  Also note the kyphotic posture of the entire neck in its neutral position. 
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Figure 6.6 DH3 disc height loss in flexion.  Note the increased facet spacing (circle) as the C5/C6 joint moves 
into a slight amount of flexion but is restricted by the osteophytes present at the anterior margins of both 
vertebrae.   
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Figure 6.7 DH3 disc height loss in extension.  There is very little extension of the entire neck overall.  The 
C5/C6 joint also appeared to be restricted in its movement into extension as the facets would not allow any 
further angular displacement (circle). 
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Figure 6.8 DH3 relative joint angular displacement time history graph.  As with the other cases there is a non-
stepwise behaviour in terms of the onset of joints into flexion.  Flexion occurs about C5/C6 before it 
isrestricted in extension.  The C3/C4 joint which did not exhibit any height loss is able to move in both 
flexion and extension. 

 

 

 

Figure 6.9 DH3 shear displacement time history graph.  The C2/C3 joint displaced the most in shear without 
rotating.  The C5/C6 joint is seen here to barely translate at all indicating a stiff joint that can be predicted 
from the osteophytes evident on the radiograph. 
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Figure 6.10 Time history of angular displacement for case MH3.  There was mild height loss at C4/C5 and 
C5/C6 with an associated with a loss in cervical lordosis.  A posterior lip at the C6 vertebra appeared to limit 
movement of the C5/C6 joint in extension. 

 

 

 

 

Figure 6.11 Time history of angular displacement for case MH4.  There was mild disc height loss at C4/C5 
and C5/C6.  Lack of mobility at C5/C6 appeared to be in extension (indicated by arrow).  This could be due to 
facet joint stiffness. 
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Figure 6.12 Neutral posture for case MH3.  Mild height loss was evident at C4/C5 and C5/C6.  Note the 
posterior lip that was evident on the C6 vertebra along with associated loss of cervical lordosis. 
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Figure 6.13 Case MH3 in the extended posture.  Note that the posterior lip on the C6 vertebral body appears 
to be limiting movement of the C5/C6 joint in extension. 
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Figure 6.14 Neutral posture for case MH4.  Mild height loss was evident at C4/C5 and C5/C6 (indicated by 
arrows). 
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Figure 6.15 Case MH4 in the extended posture.  Note how the C5/C6 joint is still in a neutral configuration 
relative to the other joint levels that all appear to be in extension (indicated with arrow). 
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6.6 Discussion 

 

 Lower relative angular displacement occurred about C5/C6 in patient cases with height 

loss compared to those without height loss (p=0.004).  This finding is supportive of hypothesis 

1.  In the group without height loss, there was a very uniform trend for increasing angular 

displacement with descending segmental level along with very small standard deviations for 

each level.  This finding does not support hypothesis 2. 

 The cases outlined here highlight a common theme in terms of disc height loss.    

Moderate to severe height loss cases did not follow the trend observed with non-height loss 

cases for increasing angular displacement with descending segmental level.  The cause for the 

loss in relative angular displacement at the affected joint is most likely an anatomical one.  

Osteophytes and closer proximity between facet joints present physical barriers that would 

prevent motion and increase local stiffness of the segment.  What the data also reveals 

however, is that this can occur, but is not as common in cases with mild disc height loss.  In 

some of the mild height loss cases presented, there was evidence for a disparity in relative joint 

motion between adjacent segments.  This is not surprising as the other cases still presented 

with pain and dysfunction.  The cervical facet joints are one of the most common areas in the 

neck to be the origin of pain (Cavanaugh et al., 2006, Chen et al., 2006).  It would therefore be 

plausible that a painful facet joint would limit voluntary movement into extension, preventing 

coupled stepwise motion with other joints through the linkage.  Further, the anatomical features 

that were evident in one of the cases (MH3) showed a physical barrier to motion with 

displacement in extension at the C5/C6 joint. 

 In addition to the disc height loss, osteophytes would also cause a vertebral joint to 

become highly stiffened.  This appears to be nature’s way of stabilizing a joint with micro-

movements from height loss.  In the present study osteophytes were present in all of the 
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individuals with severe height loss, there is no doubt that these features contributed to the 

observed diminished mobility.  Under height loss, the annulus begins to bulge radially 

(Brinckmann and Grootenboer, 1991) and loading is transferred to the neural arch and margins 

of the vertebrae (Pollintine et al., 2004b).  It is therefore no surprise that disc height loss is 

associated with osteophytes and arthritic facets (Videman et al., 1995).  While a causal 

relationship cannot be established based on this work, the cascade appears to follow the course 

of a structural failure that initiates the progression of height loss, altered loading as a result of 

height loss and its continued progression, and then growth of osteophytes in response to the 

altered loading along with potential development of facet joint arthritis causing a further 

stiffening of the affected joint.  

One challenge with the disc height index metric is that the height of the disc is expressed 

as a ratio of the height of the superior and inferior vertebrae.  If there are fractured vertebrae 

accompanying the disc height loss (highly likely in instances of severe disc height loss), the 

measure may not be entirely reflective of disc height loss.  Without pre-post measures of disc 

height for each patient at each level, it is difficult to capture a metric for disc height that is truly 

representative.  Disc height loss is a subtle measure when attempting to represent it 

numerically.  Since disc height is a small value to begin with, changes tend to be small as well. 

While the disc height averages reveal slight differences between groups, it is difficult to capture 

differences in tenths of millimeters in some cases with percentage measures.   

 This work highlights the necessity of the case study.  Injury, pain, and anatomy is a 

highly individual phenomenon that is difficult to generalize.  In the cases presented here, while 

all had disc height loss, there were numerous differences in anatomy alone.  Without a detailed 

individualized analysis, many factors that could help to explain the phenomena seen, could be 

washed out.  The small details are what help to influence movement and presumably guide 

treatment.  This is an important message clinically; one single approach to treatment cannot 
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encompass the plethora of mitigating factors that could be present.  Not considering the 

individual could lead to poor outcomes in treatment.   

 In the mild height loss group, there was no clear effect of disc height loss reducing 

mobility at one segment, and in-fact, some cases (MH3 and MH4) had very high mobility at 

segments exhibiting mild height loss.  The results from this study agree with the work of 

Kirkaldy-Willis and Farfan (1982) when disc height loss is considered to be progressive.  In the 

mild height loss group there were fewer instances of osteophyte growth at the anterior and 

posterior margins of the vertebral bodies, indicating that there had not been enough time for 

osteophyte growth, if there was structural injury present, it could be presumed to be relatively 

new.  In contrast, the disc height loss cases all presented with osteophytes indicating an older 

injury, or response to the increased loading that occurs at the margins of the disc with height 

loss.  In the case of the mild height loss group, aside from cases where anatomical anomalies 

reduced mobility at a segment, rotation still occurred about the segment and could very likely be 

classified in the unstable phase (Kirkaldy-Willis and Farfan, 1982).  In contrast, the stiffer discs 

of the disc height loss group could be considered to be in the stable phase (Kirkaldy-Willis and 

Farfan, 1982).  While the work of Kirkaldy-Willis and Farfan (1982) was referring to micro-

movements with the designated classifications, the observations from this study are simply the 

by-product of that classification, with injury influencing joint stiffness, and micro-movements 

promoting the growth of osteophytes. 

 In healthy individuals, the work of van Mameren found that the C4/C5 and C5/C6 joints 

had the greatest range of motion in the cervical spine (Van Mameren et al., 1990).  Interestingly, 

from the grouped averages in cervical joint range of motion, they did not find a greater than 3° 

difference from C0-C6 in relative joint displacement between adjacent joints (Van Mameren et 

al., 1990).  Examination of the individual patient cases however, finds that there were cases with 

differences in range of motion between adjacent segments greater than 3° and that non-

stepwise motion of the cervical spine joints is common within a normal population (van 
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Mameren, 1988).  In the non-disc height loss cases, there was no evidence of one single joint 

lacking motion, all cases followed the general trend of increasing range of motion as segmental 

level descended.  One question that arises from this work is whether patients who exhibit large 

differences in relative segmental joint displacement are more likely to develop pain in the future.  

Further, intra-individual motion was found to be highly variable (van Mameren, 1988), while the 

present work cannot speak to the presence of this in the patient population, perhaps individuals 

with lower movement variability are more prone to injury.  Regardless, motion of the cervical 

spine is highly complex (Bogduk and Mercer, 2000) and as evidenced by this work, highly 

variable.  Further work characterizing spine motion in individuals with and without disc height 

loss is required before any concrete conclusions can be made.  What is important to consider is 

the difference in range of motion between adjacent segments found in disc height loss cases 

compared to what is seen in a pain-free population. 

 The majority of relative angular motion occurring about a single segment could 

potentially initiate damage in the facet joints of the more mobile segments.  This could 

presumably produce pain and dysfunction (Dunlop et al., 1984, Jaumard et al., 2014) under 

consistent repetitive use.  Alternatively, assuming that the joint with height loss has a reduced 

mobility, the individual may simply alter their movement patterns to compensate for this 

(Malakoutian et al., 2015).  Non-stepwise initiation of movement in the joint segments, while 

observed in pain-free populations (van Mameren, 1988), could also increase strain placed on 

the bending disc.  A stepwise movement pattern could reduce the moment on adjacent 

segments through reduction of the moment arm during flexion (Figure 6.16, Figure 6.17).  When 

the mass of the head moves forward into flexion, articulated stepwise motion would presumably 

create the smallest moment arm possible.  While the effect may not be large, repeated motion in 

this fashion could produce fatigue in the extensor muscles countering the moment produced by 

the head.  Higher extensor fatigue could result in load bearing duties being applied to the 

passive tissues and potentially develop injury over time. 
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 With reduced overall mobility at one segment, there are two possible outcomes: either 

an individual simply reduces their overall mobility, or adjacent segments are forced to 

compensate for the lack of mobility at one (or more) of the segments.  Both outcomes are likely 

to occur in the daily movement behaviours of individuals with disc height loss.  An individual 

could compensate for a reduced segmental mobility by simply moving less, but this is 

considerably more difficult to do when the task is target-based.  Looking down at a mobile 

device or looking up at a highly placed monitor for example, forces an individual to adopt a 

posture that caters to the position of an object, in these cases there must be compensation at 

some point in the linkage. 

 This study is not without its limitations.  A highly heterogeneous group of cases has been 

presented here with only three moderate to severe disc height loss cases.  Further analysis with 

more cases of disc height loss is required before more concrete conclusions can be made in 

terms of common functional deficits.  This work however, provides a starting point for further 

investigation and the first set of data to quantitatively examine the effects of disc height loss on 

spine kinematics.  The general population is not homogeneous, and thus common trends that 

can be taken from a heterogeneous group can help to enhance our knowledge in terms of spine 

function, detecting aberrant movement, and guiding treatment.  This study also does not present 

data on individuals without pathology, and most of the cases in this study presented with neck 

pain.  Pain-free individuals may also present with some of the aberrant movement patterns seen 

in this investigation.  The detection of these patterns in a pain-free population however, does not 

necessarily discount the results seen here, as the question would become whether these 

individuals will develop pain in the future as a result of their movement patterns and loading 

history.  More research and prospective studies are required to help clarify and answer these 

questions.  Lack of pain is also a confounding factor with respect to comparison to disc height 

loss.  It was necessary in this case to use individuals in pain without disc height loss to serve as 

comparison since those with disc height loss are also in pain and have pathology.  To compare 
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disc height loss cases to those cases without pain or pathology would be to neglect a 

confounding factor that has been shown in this investigation to impact movement patterns.  

Regardless, despite the heterogeneous phenomenon of pain in all the cases, disc height loss 

was a sufficient predictor of segmental angular displacement patterns. 

 This study has identified three cases of moderate to severe disc height loss that showed 

lower angular displacement compared to adjacent segments.  These patterns were also visible 

in other cases that presented with pain but not disc height loss.  Further, height loss at C5/C6 

was shown to decrease relative angular displacement compared to those without height loss.  

This work has identified that factors influencing movement are complex, and a case-study 

approach is beneficial for identifying those influencing details.  Prospective studies that identify if 

aberrant movement patterns result in pain or disc height loss will also help to further determine 

the impact of disc height loss within subjects.  Further, assessment of the intra-individual 

variability of movement is an important avenue to explore and identify if it has a role in 

dysfunction.   

 This study presents a starting point for further research in examining the effects of disc 

height loss.  It remains to be seen whether disc height loss across a larger group of individuals, 

or within subjects as disc height loss progresses in the same individual shows the same 

patterns observed here. 
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Figure 6.16 Non-stepwise motion generates a larger moment arm from the lowermost bending disc.  The 
extensor muscles would be required to create a higher force to counter the resultant moment which could 
produce fatigue and pass the bearing of load onto the passive tissues.  The farther the motion is from the 
head mass during neck flexion, the greater the compressive load.  More compressive load results from the 
extensor tissues needed to balance this moment. 

 

Figure 6.17 Stepwise motion creates a smaller moment arm about the lowermost disc that is bending.  This 
would lower the force output required by the extensors to counter the resultant moment compared to the 
non-stepwise movement scenario.  Presumably, this would result in a higher margin of safety when 
considering fatigue of extensor muscles and load bearing by the passive tissues.   
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7 Chapter 7: General Discussion 

 

 Non-recoverable, pathologic disc height loss is one of the most important indicators for 

further severe degenerative changes to manifest (Jarman et al., 2015).  Height loss can cause 

the annulus to bulge (Brinckmann and Horst, 1985) and the facets assume an increased role in 

weight-bearing (Arbit and Pannullo, 2001, Gotfried et al., 1986) and develop increased levels of 

pressure (Dunlop et al., 1984).  Disc height loss represents the threshold between more mild 

and higher levels of degeneration under current grading schemes (Pfirrmann et al., 2001).  

Clearly, further study specifically evaluating disc height loss and its mechanical effects on the 

spine is warranted. 

 In this thesis work, three studies were performed that focused on the kinematic effects of 

disc height loss or the mechanical outcomes of its restoration.  Study 1 examined the effects of 

disc height loss and subsequent restoration on a single adjacent segment in-vitro.  Study 2 

examined the efficacy of a novel procedure aimed at restoring disc height while maintaining the 

anatomical structures of the affected segment.  Study 3 quantified sagittal-plane cervical spine 

motion on a series of fluoroscopy image sequences of patients with pathology; some of these 

patients had disc height loss while others did not. 

 Study 1 identified that disc height loss causes an immediate change in the kinematics of 

a porcine cervical spine with a single adjacent segment.  Losing disc height caused less angular 

displacement to occur about the level with height loss and more displacement to occur about 

the adjacent segment.  Following disc height restoration using an injectable hydrogel, the 

kinematics of both segments returned to the initial state.  

 This study showed the immediate effects of disc height loss in isolation from other 

confounding factors such as degeneration.  Losing disc height causes a spine segment to 

become stiffer when tested in-vitro.  As a result, a larger applied moment is required to bring it 
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to a given target angle.  If an adjacent segment is present, it will rotate more, compared to the 

stiffer segment.  The results from this study also outlined the effectiveness of a hydrogel in 

restoring the initial stiffness characteristics to an affected segment. 

 Some criticisms of this study include the use of only two segments.  In an in-vivo 

scenario there are many segments present for angular displacement to occur about.  Lee and 

colleagues showed that in the lumbar spine, upper levels will compensate for motion loss at 

lower levels (Lee et al., 2014).  The most likely reconciliation of this would be to examine 

exposure on a case by case basis.  Even small changes in angular displacement spread across 

multiple segments could result in pathological change if repeated enough, some individuals may 

become injured while others who limit their exposure to this will not.   

 A further issue from this study was the lack of hydrogel containment in some specimens.  

The size of needle used for nucleus extrusion created a bore hole in the annulus that caused 

hydrogel containment to be an issue.  Unfortunately, a large gauge needle had to be used in 

order to facilitate ejection of the nucleus pulposus to create disc height loss.  Doing so resulted 

in a large hole in the anterior annulus that could not entirely contain the hydrogel in some 

circumstances.  Containment of this hydrogel with the use of a smaller gauge needle in porcine 

cervical spine segments has been achieved in the past however, under repeated cyclic loading 

(Balkovec et al., 2013). 

 Study 1 showed that disc height loss via loss of nucleus pulposus produced immediate 

kinematic changes in the affected and adjacent segments.  It also showed that restoration of 

disc height caused an immediate restoration to the kinematic profile of an injured spine 

specimen. 

 Study 2 evaluated the efficacy of a novel surgical protocol at restoring the mechanical 

profile of a spine segment after disc height loss induced by compressive fracture and repeated 

compressive loading.  Results agreed with previous work (Landham et al., 2015a, Luo et al., 

2007) examining the effects of PMMA on reducing the compressive stiffness of an injured spine 
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segment.  Additionally, the data agreed with previous work examining the effects of hydrogel 

injection on the rotational stiffness of an injured spine segment (Balkovec et al., 2013).  

Ultimately however, the difficulties associated with containment of hydrogel in the disc space 

with some complex fractures proved difficult and the restored mechanical profile of the spine in 

terms of compressive and rotational stiffness could not be maintained after continued repetitive 

loading. 

 This study brought important issues to the forefront with respect to disc height 

restoration.  There are many ways in which a disc can become injured and many factors that 

can affect whether a particular intervention is successful or not.  In the case of this work, large 

cracks in the endplate, despite the use of PMMA in the vertebral body to attempt to create a 

seal from above, proved unsuccessful in terms of the containment of the hydrogel.  Further 

progress in disc restoration cannot be made however, without these issues being addressed.  It 

would therefore be a worthy task to develop a strategy to fill in large cracks in the endplate from 

the disc-side as well as from the vertebral body.  Creating an environment that contains nucleus 

pulposus/hydrogel and can withstand the stresses that the disc encounters on a daily basis is 

an absolutely necessary next step in the development of a conservative disc restoration 

procedure. 

 Not to detract from current efforts aimed at cellular restoration of the intervertebral disc 

(Benneker et al., 2014), a procedure like the one described in Study 2 would be employed on 

spine segments where structural healing requires intervention beyond what the cells are 

capable of.  Mechanical function would be restored by completely artificial means and 

potentially reduce cell viability in the hopes that it would be maintained at other non-injured 

segments in the spine.  This procedure could also be an important stop-gap in the process of 

disc height restoration, where complete healing through cellular means is most likely reserved 

for use further in the future.  
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 Study 2 identified two processes that can be used to restore the mechanical profile of a 

compressively injured spine segment while maintaining the majority of its anatomical structures.  

There is difficulty however, in using this procedure on more severely injured segments and its 

long-term viability is brought into question if the mechanism of injury is repeated.  It is important 

to state that regardless of the efficacy of a restoration procedure, if the mechanism of injury is 

repeated, re-injury will occur.   

 In Studies 1 and 2, disc height was instantaneously lost, which provided direct insight 

into its role on mechanics.  In-vivo, the relationship may be confounded with other factors that 

could alter movement.  Disc height loss could occur over a prolonged period of time, or it could 

be accompanied by osteophyte growth.  Pain could also act as a behavioural modulator and 

result in aberrant movement.  In cases where disc height loss occurs over a long period of time, 

tissues could potentially have more time to adapt, allowing for their tolerance to acclimate to 

their new mechanical conditions.  Despite the limitations of studies 1 and 2, they provide 

important insight into the direct role of disc height and its importance in segmental spine 

mechanics.  Future work should involve and incorporate human data that adds further validity. 

 Using the novel algorithm created in Appendix A, Study 3 quantified the kinematics of a 

series of patient cervical spine image sequences.  In each case, patients had a history of 

pathology, with the majority experiencing neck pain.  Some of the patients presented with disc 

height loss while others did not.  In the disc height loss cases less proportional angular 

displacement occurred about the C5/C6 level (20.2% ± 2.3%) compared to those without height 

loss (30.6% ± 4.0%).    Despite pain and various injury histories, disc height loss was enough to 

identify aberrant movement with respect to segmental angular displacement.  Previous work on 

pain-free individuals indicates that initiation of motion is not necessarily step-wise, and in some 

cases there is a large difference between ranges of motion in adjacent segments (van 

Mameren, 1988).  When taken together however, the data on pain-free individuals showed that 

there was never a greater than 3° difference in the range of motion between adjacent segments 
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(Van Mameren et al., 1990) indicating that this could be used as an indicator of dysfunction.  

There is also the question of whether a pain-free individual who presents with such a disparity in 

adjacent segment ranges of motion will be more likely to develop pain. 

Appendix A involved the development of a novel tracking algorithm for the purposes of 

tracking vertebral body motion under fluoroscopy.  The algorithm uses an established 

normalized cross-correlation function (Velduis and Brodland, 1999) and incorporates unique 

template features, iterative refinement passes, and image processing.  Evaluation of the 

algorithm was twofold and involved the use of a porcine cervical spine rotating within a 

fluoroscope field of view to compare the algorithm to ground-truth measurements in addition to 

evaluating the repeatability of measurements made on three patient spine image sequences.  

Overall measures of error were less than half a degree in angular displacement and a tenth of a 

millimeter in shear in terms of the RMS error over a trial.  This represents a highly accurate 

method of systematically measuring vertebral body motion from a source that contains a high 

level of noise and distortion.  The prospect of measuring segmental motion in-vivo with high 

accuracy is attractive in terms of future work that attempts to examine motion patterns in various 

groups of individuals.  Creating this algorithm provides another tool to track segmental spine 

motion with and will help to enhance the research output of studies that attempt to use 

fluoroscopy to analyze spine motion in-vivo. 

 From the data analyzed in Study 3, disc height loss resulted in significantly lower angular 

displacement about C5/C6 compared to cases without height loss (p = 0.004).  These findings 

would agree with those from Study 1 in terms of diminished segmental mobility at the level with 

height loss, however, caution must be emphasized in generalizing these conclusions. 

 Study 3 presents a series of findings that warrant further research.  Further analysis of 

more disc height loss cases should be performed before any generalized conclusions can be 

made.  Additionally, prospective studies that examine disc height loss within individuals over 
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time could facilitate a more concrete understanding of how disc height loss influences 

kinematics and more importantly, progression of injury. 

 The work performed in this thesis has found that disc height loss influences kinematics 

of an affected and adjacent segment (Study 1), presents a challenge to repair when induced 

through compressive failure (Study 2), and creates a decreased range of motion in-vivo (Study 

3).  The tools developed in this work (Appendix A) will assist in the continued measurement of 

spine motion in-vivo to follow-up on the work presented here.  Further research into the 

mechanisms of disc height loss will help to solidify the findings of this work and enhance 

knowledge of the influence of disc height loss to the course of injury in the spine. 

 Disc height loss in-vivo is a complex phenomenon to describe.  Kinematic changes to 

segmental movement can be attributed to a number of behavioural and anatomical factors.  In 

short, when trying to determine the consequences of disc height loss on kinematic outcomes, 

the answer is, “it depends”.  Disc height loss needs to be taken into account with various 

anatomical features and the tendencies of the individual themselves.  The complexity of this is 

explored in the flow diagram in Figure 7.1 where injury and disc height loss is placed in context 

with behavioural, structural, and chemical responses.  Structural failure of a tissue could result 

in disc height loss; from here structural remodelling via cellular activity can take place, but there 

will be immediate changes in the loading and stresses placed on surrounding tissues.  These 

changes could result in altered movement strategies in order to compensate.  If the altered 

movement strategies begin to load additional tissues and exceed their tolerance, further injury 

will occur. 

 Rotations observed in-vitro in Study 1 had differences with respect to the rotations 

observed in-vivo in Study 3.  To broadly characterize this, the rotations in Study 1 were 

consistent between specimens while there was higher variability observed between patient 

cases in-vivo.  In Study 1, specimens were loaded externally in an identical manner, with a pure 

moment/compressive load paradigm.  In Study 3, there was variability in the anatomy and 
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structural injury between patients.  Features such as osteophytes add increased stiffness to a 

segment, and would alter the movement characteristics at that level (and were shown to).  

Figure 7.2 outlines a sample time-history sequence of a patient performing sagittal plane motion 

of the neck.  Movement is quickly initiated about all segments, but there is a stepwise pattern 

evident from the C3/C4 level downwards.  C2/C3 is the only segment that does not exhibit this 

behaviour.  All segments contribute to angular displacement, but at different time-points, and the 

disc height loss at C4/C5 and C5/C6 along with osteophytes at those levels seem to stiffen the 

joint and prevent any displacement greater than the displacement of the C2/C3 or C3/C4 levels.   

 Figure 7.3 outlines angular displacement in a porcine spine specimen with two functional 

segments.  Height loss has been induced via nucleus extrusion in the superior disc.  Similar to 

what is shown in Figure 7.2, motion is initiated in a stepwise fashion, but due to the apparatus, 

peak angular displacement measured during the trial is nearly achieved in the superior disc 

before motion occurs about the inferior disc.  Despite the difference in rotation sequence 

between the in-vitro and some in-vivo scenarios, the rotations are driven by the applied 

moments and localized stiffness of the segments.  When disc height is lost, localized stiffness is 

presumed to increase at that segment.  Under the higher applied moment, the segment without 

height loss displaces further given the lower localized stiffness.  From this, to reconcile the 

results seen between in-vitro and in-vivo motion, angular motion about a segment is governed 

by its local stiffness.  Disc height loss increases the localized stiffness of a segment and 

reduces its displacement under a given applied moment.  In the in-vivo cases, the presence of 

osteophytes further adds to the local stiffness of a segment.  To summarize, Studies 1 and 2 

represented an acute height loss condition, which is closest to a fresh injury.  The in-vivo study 

represents height loss with a healing process or a response that has resulted in a cascade 

involving facet changes and osteophyte growth. 

 This work puts into context how disc height can influence movement behaviour (Study 

1), but must ultimately be put into the broader scope of the individual and their personal 
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tendencies and anatomy.  Future work needs to further identify how movement is influenced 

under the complex network of anatomical, physiological, and behavioural factors.  Specifically, 

further studies should examine if aberrant movement patterns are repeatable and how 

additional factors such as facet size and osteophytes influence movement and injury 

progression alongside disc height loss.  Ultimately, future work must follow individuals over time 

and identify how aberrant movement influences disc height loss and vice-versa, along with 

identifying how disc height loss influences injury progression.  With the groundwork in this thesis 

and the tools developed to perform precision measurement of in-vivo segmental spine motion, 

future research will be able to identify further specific influences to spine function and pathology 

and potentially help guide clinical practice. 
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Figure 7.1Flow diagram of mechanical injury to the intervertebral disc and resultant effect.  Applied loading 
exceeds a tissue’s tolerance and the tissue fails resulting in injury.  Disc height loss has the potential to 
occur at this step (denoted by asterisk). From here, there is the potential for the alteration of the cellular 
environment within the disc depending on the type and scale of tissue failure that occurred.  Nociception can 
also occur depending on the type and scale of injury.  These influences are outside the scope of the curent 
discussion of mechanical compensation as a result of disc height loss, but are included for completeness 
and to illustrate that pain could alter behaviour and movement strategies. With tissue injury, there is an 
alteration in the structural environment and therefore a change in how tissues are loaded.  This altered 
loading could result in exceeding the tolerance of additional tissues/structures and result in further injury.  
Disc height loss would result in changes to the mechanical environment in terms of increasing the local 
stiffness of the disc.  This would result in a lower range of motion (as seen in Studies 1 and 3) at that 
segment, and potentially result in compensation at adjacent segments (as seen in Study 1).  Loading 
adjacent segments beyond the tolerance (acute or chronic) of their structures could result in further injury. 

 

 

 

 

* 
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Figure 7.2 Angular displacement of neck flexion for a patient case with disc height loss.  Motion is initiated in 
a stepwise fashion (except for the C2/C3 segment), and while angular displacement occurs at all segments, 
the displacement at C4/C5 and C5/C6 with height loss would be expected to be higher.  Localized stiffness of 
those segments created by disc height loss and osteophytes prevents further rotation. 

 

 

Figure 7.3 Angular displacement time-history for a multi-segmented spine specimen, height loss has been 
induced via nucleus extraction in the superior disc.  Motion is initiated in a stepwise fashion, but due to the 
testing apparatus, is a more drastic case compared to in-vivo.  Peak angular displacement is nearly achieved 
in the superior segment before motion occurs about the inferior segment.  Regardless, the motion is driven 
by the localized stiffness in the segment.  With a greater applied moment, the inferior segment (without 
height loss) displaces more since the local stiffness in that segment is lower.  
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9 Appendix A 

Development of a novel tracking algorithm for measuring spine segmental motion under 

fluoroscopic imaging 

 

9.1 Background 

 

  

 Measurement of vertebral body motion for the purpose of obtaining spine segmental 

angles is a difficult endeavor in that the spine is not easily accessible via conventional 

instrumentation.  Gross displacements of the spine can be obtained through various strategies 

using skin surface techniques, but offer no information with respect to movements at a single 

vertebral level.  X-ray techniques offer a method to examine individual vertebrae, but expose an 

individual to a high amount of ionizing radiation and only offer insight into static postures, 

neglecting any movement.  Fluoroscopic imaging offers real-time monitoring of vertebral motion 

and the potential to identify aberrant movement.  Biomechanically, the ability to monitor and 

quantify spine motion during active dynamic tasks represents a powerful tool with respect to 

understanding individual movement strategies.  This can offer insight into why some individuals 

become injured while others do not, and how pathology changes the way people move.  

Quantifying vertebral motion with high precision represents an attractive means to establish 

dysfunction when a particular pathology presents with aberrant movement. 

 There are a number of manual (Cholewicki et al., 1991, Breen et al., 1989) and semi-

automated (Bifulco et al., 2001, Wong et al., 2009, Wong et al., 2006, Breen et al., 2012, Zheng 

et al., 2004) methods to tracking the spine under fluoroscopy.  Tracking methods which utilize 

rigid templates are excellent at identifying the shape of the vertebral body and tracking it 

through time.  Any inherent noise in a rigid template however, will affect all of the tracked points 
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and result in a larger magnitude of error compared to random noise from the movement of free 

points that can be removed using digital filtering techniques.  Feature-point tracking (Wong et 

al., 2009) has also been employed with the benefit of using independently moving points, and 

currently represents one of the most accurate ways to track a spine under fluoroscopy.  Finally, 

manual methods (Cholewicki et al., 1991, Breen et al., 1989) have been used but are not 

practical for processing large sets of data.   

 Initial tracking of the fluoroscopic images presents the most difficult hurdle in extracting 

angular displacement data of segmental sagittal plane movement of the spine.  Building upon 

previously developed techniques has the potential to further improve the fidelity of spine 

segment motion tracking.   

 

9.2 Significance 

 

 Developing a novel technique for quantifying spine motion under fluoroscopic imaging 

will help to add further advancement to an area that has been largely under-researched.  

Continually striving to identify new methods of tracking vertebral motion will only serve to add 

impetus in bringing more research interest to this area.  The development of this technique will 

allow segmental spine motion to be quantified in order to gain meaningful insight into how disc 

height loss affects spine kinematics in-vivo.  A major challenge lay in the need to quantify 

individual segmental motion.      

  

9.3 Methods 

9.3.1 Tracking Algorithm 

 The tracking algorithm used for the purposes of tracking vertebral bodies under 

fluoroscopic imaging was based on an established image registration technique  (Velduis and 
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Brodland, 1999).  The underlying principles of the technique use a traditional normalized cross-

correlation with the added feature of being able to account for deformation of an image 

template.  In its simplest terms, a block of pixels is selected manually; a normalized cross-

correlation function will then take a second image, and starting at the location in the previous 

region, begin to compare blocks of pixels within a pre-defined search region.  Each iteration 

creates a correlation value, the region with the highest correlation is selected as the best match, 

and the location of the original block of pixels will be applied to this region.  The following set of 

figures are based off of the original figures from (Velduis and Brodland, 1999) and are used to 

explain the functionality of the normalized cross-correlation function. 

 

Figure 9.1 Source template.  A 2m+1 by 2n+1 block of pixels within an image. 
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Figure 9.2 Deformed target in subsequent image. 

 

 

 Figure 9.1 shows a block of pixels defined by an arbitrary length and width; this block 

can be defined with the vectors A and B.  These vectors have the ability to undergo any type of 

rotation, translation, skewing, widening, or narrowing.  A tensor F can be applied to A and B that 

describes this: 

𝐹𝐴 = 𝑎 

𝐹𝐵 = 𝑏 

This can also be written as follows: 

[
𝐹11 𝐹12

𝐹21 𝐹22
] = [

𝑎1 𝑏1

𝑎2 𝑏2
] [

𝐴1 𝐵1

𝐴2 𝐵2
]
−1
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This deformation tensor can be used to map any pixel (i, j) in a reference image to a new 

location: 

[
𝐹11 𝐹12

𝐹21 𝐹22
] (

𝑖
𝑗
) = [

𝐹11𝑖 𝐹12𝑗
𝐹21𝑖 𝐹22𝑗

] 

 

Thus, a cross-correlation function can be created that starts at location (s, t), is deformed by F, 

and is translated by (q, r) in another image.  By entering in values for q, r, and F, a region can 

be scanned and defined to identify the location in the new image with the best match based on 

the entered parameters. 

 

𝐶(𝑞, 𝑟, 𝑓) =  
∑ ∑ 𝑆(𝑠 + 𝑖, 𝑡 + 𝑗)𝑇(𝑠 + 𝑞 + 𝐹11𝑖 + 𝐹12𝑗, 𝑡 + 𝑟 + 𝐹21𝑖 + 𝐹22𝑗)

𝑛
𝑗=−𝑛

𝑚
𝑖=−𝑚

√∑ ∑ 𝑆2(𝑠 + 𝑖, 𝑡 + 𝑗)∑ ∑ 𝑇2(𝑠 + 𝑞 + 𝐹11𝑖
𝑛
𝑗=−𝑛 + 𝐹12𝑗, 𝑡 + 𝑟 + 𝐹21𝑖 + 𝐹22𝑗)

𝑚
𝑖=−𝑚

𝑛
𝑗=−𝑛

𝑚
𝑖=−𝑚

 

 

Where:  S(a, b) is the intensity of the pixel at coordinates (a, b) in the source image. 

  T(c, d) is the intensity of the pixel at coordinates (c, d) in the target image.  

 

9.3.2 Tracking Parameters 

 Development and adaptation of the algorithm to track vertebral body motion required a 

series of adjustments based on the underlying principles outlined in Section 9.3.1.  Fluoroscopy 

produces an image with a lower radiation dose per frame (compared to traditional static x-ray) 

enhanced by an image intensifier.  Due to this, there is a low signal to noise ratio in the frames 

that are taken.  In addition, soft tissue artifact can distort bony elements and the contraction and 

relaxation of muscles coupled with soft tissues changing position during movement can alter the 

visual characteristics of the structures that are being tracked.  All of these factors create a 

unique challenge for image registration techniques in accurately tracking vertebral body motion 

under fluoroscopy. 
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 The overall tracking scheme relied on performing iterative “passes” of an image set.  A 

first pass established a rough location of each vertebral body, while subsequent passes further 

refined the position of individual coordinates established previously. 

 The first tracking pass focused on obtaining a rough position of each vertebral body that 

was inside of the fluoroscope field of view.  An operator manually selected four points for each 

vertebra placed at points with distinct features for the first image in a sequence.  Following this, 

pixel templates were created around the vertebral bodies and all points were tracked as a group 

within a specified search region for each of the remaining images using the normalized cross-

correlation function described in Section 9.3.1 (Figure 9.3).  For this step, in addition to regular 

translation of the template within the search region, the cross-correlation function also iteratively 

compared rotations of the template up to a specified degree to find the best match. 

 Following the first tracking pass, the results could be visually inspected to ensure that 

the templates matched the general motion of the vertebral bodies.  A second pass was then 

performed that allowed the individual points to be tracked without influence of the other points.  

This refined the location of the individual points and was able to achieve a level of accuracy that 

the bulk tracking of all four coordinates together could not achieve (Figure 9.4).  At the same 

time, a smaller search region, and the general location of each coordinate already established, 

prevented the individual coordinates from being “lost” due to localized noise and changes in the 

image relative to the template.  This refinement tracking was repeated three times in total; 

including the initial rough tracking, a total a four passes was performed on an image set to 

obtain a finalized set of coordinate data (Figure 9.5). 

 All image tracking was performed on a computer with a 1.9GHz dual core processor 

(Intel Core i5-4300U).  Total tracking time for all passes together was 0.486s per coordinate 

tracked.  For a typical patient image sequence consisting of 6 vertebral bodies tracked (24 

coordinates) this amounted to a total tracking time of 11.7s/frame. 
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Figure 9.3 A. Pixel templates created around porcine vertebral bodies. B. Pixel templates on patient images 

 

Figure 9.4 Pixel templates for single points after the initial rough tracking pass. 
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Figure 9.5 Flow chart of the procedure for tracking vertebral body motion. 

 



177 
 

 

9.3.3 Image Processing 

 In order to enhance the efficacy of the tracking software in identifying the specific 

location of the template vertebral bodies, images were processed to reduce the pincushion 

distortion inherent in fluoroscopic image sequences (Wallace and Johnson, 1981), and 

emphasize the edges on the vertebral bodies. 

 Rather than performing a correction on the final coordinates to account for the 

pincushion distortion present in the images (Cholewicki et al., 1991), a correction was applied to 

the images themselves.  The following formula was applied to each image resulting in a re-

mapping of the pixels: 

𝑠 = 𝑟(1 + 𝑘(𝑟2)) 

Where: s is the modified coordinate 

 r is the radial distance from the center of the image 

 k is a radial distortion coefficient 

 

 In order to find the optimal radial distortion coefficient, a wire grid consisting of equally 

spaced 12.7mm squares was placed in the field of view of the fluoroscope under the same focal 

parameters that were used to image patients.  From this sequence of images, radial distortion 

coefficients could be applied heuristically until all squares on the grid appeared to be 

approximately the same size (Figure 9.6).  This radial distortion coefficient was then used on all 

of the images to correct the inherent pincushion distortion prior to tracking. 

 Following pincushion distortion correction, the images were enhanced using a smart 

sharpen filter (amount: 500%, radius: 20 pixels) in Adobe Photoshop (Adobe, San Jose, CA, 

USA) followed by a Gaussian Blur (radius: 1 pixel) which added some smoothing to the images 

(Figure 9.7).  Performing both image processing steps (distortion removal and edge 
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enhancement) helped produce an image that had much more clearly defined edges and 

enhanced the precision of the tracking software. 

 

 

Figure 9.6 A. Uncorrected frame with a wire grid consisting of equally sized squares. B. Corrected frame 
where all squares in the frame were brought to approximately equal size. 
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Figure 9.7 A. Porcine specimen prior to edge enhancement. B. Porcine spine after edge enhancement. C. 
Patient spine before edge enhancement. D. Patient spine after edge enhancement. 

 

9.3.4 Experimental Setup 

 The accuracy of the tracking algorithm was tested via a rotating arm with a porcine spine 

specimen consisting of three vertebral bodies and two intervening discs mounted to the top 

(Figure 9.8).  A potentiometer (Bourns, model: 6637, Riverside, CA, USA) was mounted to the 
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rotation point of the arm and was considered to be the a priori gold-standard.  On each vertebra, 

lead markers were rigidly mounted to the anterior portion of the vertebral body and the posterior 

aspect of the spinous process using cyanoacrylate adhesive.  Given the high contrast that they 

created when under fluoroscopic imaging, the tracking technique could capture these points and 

track them with high accuracy.  These served as a further method to obtain angular 

displacements of the specimen. 

 All tissue was left on the spine specimen in an effort to mimic the soft tissue artifact 

produced when recording motions in-vivo.  This created a highly challenging phantom to track 

since the tissue produced a gradient of intensity around the vertebrae rather than a distinct edge 

which would have been easier for the algorithm to handle (Figure 9.9). 

 The entire apparatus was placed in such a way that the spine specimen was located in 

the fluoroscope field of view.  The specimen was rotated on the arm throughout the field to 

simulate flexion-extension motions.  A foot pedal synchronized the recording between the 

fluoroscope and the potentiometer.  Three trials of full flexion-extension (one edge of the field of 

view to the other) were taken (Figure 9.10).  Fluoroscopic image sequences were taken with a 

Digital Motion X-Ray that provided continuous x-ray at 70-90 kVp at 2-3.5 mA at a 40-inch 

flange focal distance.  A 9-inch image intensifier (Precise Optics, Bay Shore, NY, USA) 

transferred the signal to a digital CCD camera outputting a 150dpi stream to a DICOM recorder 

(NAI Tech Products, Auburn, CA, USA). 

 Each vertebra for each trial was tracked ten times using the tracking algorithm.  For each 

case, an operator manually selected points for the first frame, while the tracking algorithm 

tracked those points for the remaining images.  Points were chosen on each of the four corners 

of the vertebral bodies, a distinct feature with high contrast that could be identified and 

distinguished by the tracking algorithm (Figure 9.11).  With 30 total points of tracking for three 

trials, this produced 90 sets of tracking results. 
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 For each trial, the lead markers were tracked individually to create a secondary set of 

gold standard angular displacement data.  Specific information on the methods and calculations 

used to extract angles from the tracked vertebrae, lead markers, and potentiometer is located in 

Appendix B.  Further, computations of relative joint shear between vertebral bodies are located 

in Appendix B. 

 Angular displacements from the tracked vertebrae were compared to the synchronized 

potentiometer data as well as the data obtained from tracking the lead markers.  For each of the 

10 trials, the RMS error in degrees was calculated for each vertebra compared to the gold 

standard measurement.  This yielded 10 RMS values for each vertebra, for each of the three 

trials (90 values total).  The average RMS value was taken for each vertebra, for each trial to 

yield nine RMS values that could be compared to the gold-standard measurements.  Finally, 

average RMS error for each vertebra over the three trials was taken to yield three error values. 

 Further, the RMS error in degrees was calculated between vertebrae.  For each trial, the 

RMS error was calculated between vertebra 1 and vertebra 2, vertebra 1 and vertebra 3, and 

vertebra 2 and vertebra 3.  This served to determine the relative error between tracked 

vertebrae, an important measure for the purposes of calculating relative (joint) angles.  RMS 

error was computed and averaged in the same manner as the gold-standard data. 

 Relative joint shear was calculated for the two intervertebral joints as a function of one 

vertebral body over another.  For each trial, two time-series sequences of shear calculations 

were generated.  Since the vertebral bodies did not move relative to one another, the theoretical 

shear was 0mm.  Thus, RMS error between the calculated shear values for each joint in each 

trial was computed against a theoretical time-series of 0mm of shear displacement. 

 

9.3.5 Patient Data Testing 

 Despite not having ground-truth measurements for actual patient data, tracking of real 

patient image sequences was performed to assess the repeatability of the algorithm.  Three 
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patient image sequences were selected and tracked using the algorithm.  An operator created 

ten separate tracking runs for each image sequence.  From this, the coordinates for each 

tracked image sequence were averaged together and acted as the standard for the ten trials to 

be compared against.  Angular displacement of the vertebral bodies and relative shear for 

vertebral bodies was computed for all ten trials for each image sequence.  The RMS error 

between each tracking instance and the average of all of the tracking instances was calculated.  

This gave insight with respect to how dependable and consistent the angular and shear 

measures could be. 

 

9.3.6 Secondary Gold-Standard Measurements 

 After careful analysis of the potentiometer data as the reference gold standard, it was 

determined that the output angular displacement was not entirely accurate to ground-truth.  

Using the lead markers, two separate individuals made hand measurements of the maximum 

flexion and maximum extension postures compared to the neutral posture for the three porcine 

spine image sequences.  The findings of these measurements did not correspond to the 

maximum output angle of the potentiometer; from this, more investigation was warranted.  All 

six lead markers were tracked using the same normalized cross-correlation function (Figure 

9.12), but under the same method used previously (Velduis and Brodland, 1999, Wiebe and 

Brodland, 2005, Eilaghi et al., 2009, Bootsma and Brodland, 2005, Kitamura et al., 2012), and 

not the algorithm developed for tracking vertebral bodies.  From this tracking, all six markers 

could be incorporated into the least-squares algorithm described in Appendix B.  This yielded a 

highly accurate calculation of angular displacement using six vectors based on the positions of 

six markers.  Further, since the deformation tensor is decomposed into a rotation and stretch 

tensor, the efficacy of correcting for the pincushion distortion could be assessed.  If there was 

significant pincushion distortion still left in the corrected images, the marker coordinates would 

deform from their true positions as the specimen moved through the field of view.  There would 
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be evidence of this in the calculated stretch tensor.  Conversely, no pincushion distortion in the 

corrected image (and perfectly tracked coordinates) would yield the identity matrix (or in reality, 

values very close to the identity matrix). 

 Analysis of the potentiometer data yielded values that deviated from the tracked 

vertebrae (Figure 9.13).  From the time-history graph, there appeared to be a gain error in the 

potentiometer itself.  For collection, the circuit used a precision potentiometer (Model: 6637, 

Bourns, Riverside, CA, USA) to divide a regulated voltage from an LM7805 chip. A voltage 

supply with a fixed gain was used to condition the signal and before being sent to a 16-bit 

analog to digital signal converter (Model: AI-1608AY-USB, Contec, Osaka, Japan).  The digital 

signal was offset to make its zero correspond with the reference geometry of the specimen, and 

so the discrepancy between the potentiometer measurement and the digital tracking appears to 

be due primarily to gain error. 

 

Figure 9.8 Testing apparatus used to evaluate the tracking algorithm. 
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Figure 9.9 There was not always a clear edge between the surrounding tissue and the vertebral body, 
creating a challenging image sequence for the algorithm to track. 

 

 

 

 

Figure 9.10 The test specimen was rotated throughout the field of view to simulate flexion (A) to extension 
(B). 
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Figure 9.11 Coordinates were chosen at each of the four corners of the vertebral bodies.  These regions 
offered the highest contrast and most likely sites to track successfully. 

 

 

Figure 9.12 Tracking the lead markers placed on the specimen.  These markers could be tracked using the 
normalized cross-correlation function without the tracking points losing the markers. 
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Figure 9.13 Sample time-series data of the potentiometer compared to tracking results.  There appeared to be 
a gain error in the potentiometer, and the marker data was used instead. 

 

9.4 Results 

 

 Time history sequences for each tracked vertebra relative to the gold standard data for 

all trials is presented in Figure 9.14, Figure 9.15, and Figure 9.16.  Average RMS error across 

the three trials was 0.230° ± 0.038°, 0.400° ± 0.005°, and 0.225° ± 0.080° for the superior, 

middle, and inferior vertebral bodies respectively (Table 9.1).  RMS error between the angular 

displacements calculated for each vertebral body was also very low over the three trials, with 

values of 0.376° ± 0.069°, 0.291° ± 0.101°, and 0.355° ± 0.113° for vertebral body 1 versus. 2, 

vertebral body 1 versus 3, and vertebral body 2 versus 3 respectively (Table 9.2). 

 Relative joint shear error was very low, with average error levels over a trial of 0.030mm 

± 0.003mm and 0.055mm ± 0.025mm for joint 1 and joint 2 respectively (Table 9.3). 

 Analysis of the patient tracking trials revealed RMS error lower than the highest error in 

the porcine spine tracking results.  Average RMS for the 10 trials compared to the mean of the 

trials for each patient image sequence is presented in Table 9.4.  Further, the shear RMS 

values were found to be lower than the error in the porcine spine tracking results Table 9.5.  

Sample time-histories for angular displacement and shear measurements for the patient data is 
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presented in Figure 9.17 and Figure 9.18 respectively.  A complete series of images for the 

patient image sequence results is located in Appendix G.  

 

Table 9.1. RMS Error in Degrees between the Tracked Vertebral Body Data and the Gold-Standard 
Measurements 

 Vertebra 1 vs. Gold-
Standard (RMS°) 

Vertebra 2 vs. Gold-
Standard (RMS°) 

Vertebra 3 vs. Gold-
Standard (RMS°) 

Trial 1 Average (SD) 0.204 (0.081) 0.400 (0.089) 0.295 (0.047) 

Trial 2 Average (SD) 0.213 (0.050) 0.395 (0.050) 0.139 (0.037) 

Trial 3 Average (SD) 0.273 (0.092) 0.405 (0.075) 0.242 (0.086) 

Average (SD) 0.230 (0.038) 0.400 (0.005) 0.225 (0.080) 

 

 

Table 9.2. RMS Error in Degrees between the Tracked Vertebrae (Relative Error). 

 Vertebra 1 vs. 
Vertebra 2 (RMS°) 

Vertebra 1 vs. 
Vertebra 3 (RMS°) 

Vertebra 2 vs. 
Vertebra 3 (RMS°) 

Trial 1 Average (SD) 0.346 (0.095) 0.271 (0.095) 0.255 (0.092) 

Trial 2 Average (SD) 0.328 (0.073) 0.202 (0.065) 0.333 (0.075) 

Trial 3 Average (SD) 0.455 (0.154) 0.401 (0.108) 0.478 (0.113) 

Average (SD) 0.376 (0.069) 0.291 (0.101) 0.355 (0.113) 

 

 

Table 9.3. Relative Joint Shear RMS Error Values in mm 

 Vertebra 1 Shear Relative to 
Vertebra 2 (RMS mm) 

Vertebra 2 Shear Relative to 
Vertebra 3 (RMS mm) 

Trial 1 Average (SD) 0.030 (0.019) 0.035 (0.016) 

Trial 2 Average (SD) 0.032 (0.016) 0.083 (0.033) 

Trial 3 Average (SD) 0.026 (0.023) 0.047 (0.024) 

Average (SD) 0.030 (0.003) 0.055 (0.025) 
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Table 9.4. Average RMS Error in Angular Displacement between Ten Iterations of Tracked Patient Image 
Sequences and the Average Coordinate Positions of the Ten Trials. 

 Vertebra 1 
(RMS°) 

Vertebra 2 
(RMS°) 

Vertebra 3 
(RMS°) 

Vertebra 4 
(RMS°) 

Vertebra 5 
(RMS°) 

Patient 1 
(SD) 

0.284 (0.169)
  

0.169 (0.080) 0.228 (0.091) 0.203 (0.131) 0.203 (0.093) 

Patient 2 
(SD) 

0.285 (0.144) 0.338 (0.167) 0.395 (0.151) 0.385 (0.236) 0.351 (0.203) 

Patient 3 
(SD) 

0.153 (0.086) 0.251 (0.099) 0.209 (0.101) 0.118 (0.055) 0.243 (0.123) 

 

 

 

Table 9.5. Average RMS Error in Shear between Ten Iterations of Tracked Patient Image Sequences and the 
Average Coordinate Positions of the Ten Trials. 

 Joint 1 Shear 
(RMS, mm) 

Joint 2 Shear 
(RMS, mm) 

Joint 3 Shear 
(RMS, mm) 

Joint 4 Shear 
(RMS, mm) 

Patient 1 (SD) 0.040 (0.028) 0.032 (0.021) 0.050 (0.024) 0.040 (0.021) 
Patient 2 (SD) 0.047 (0.021) 0.052 (0.027) 0.043 (0.022) 0.038 (0.026) 
Patient 3 (SD) 0.047 (0.022) 0.029 (0.020) 0.025 (0.014) 0.031 (0.011) 
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Figure 9.14 Time-history data of tracked vertebral bodies and gold-standard angular data for trial 1. 
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Figure 9.15 Time-history data of tracked vertebral bodies and gold-standard angular data for trial 2. 
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Figure 9.16 Time-history data of tracked vertebral bodies and gold-standard angular data for trial 3. 



192 
 

 

Figure 9.17 Sample time-history data of angular displacement for a tracked vertebral body from a patient 
image sequence.  Ten tracking sequences were performed and then each was compared to the average of all 
the trials. 

 

 

 

 

Figure 9.18 Sample time-history data of shear displacement for two adjacent vertebral bodies from a patient 
image sequence.  Ten tracking sequences were performed and then each was compared to the average of all 
the trials. 
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9.5 Discussion 

 

 The novel tracking algorithm tested in this investigation was able to track the porcine 

spine specimen with an accuracy that was deemed appropriate for use in measuring sagittal 

plane spine motions.  Vertebral body rotations were observed to rotate nearly 60° through a 

flexion/extension sequence (Figure 9.17), even tracking errors up to 1° would represent 

approximately 2% error for this amount of displacement.  The highest error over the course of a 

trial measured was 0.4°, and in all of the other trials, the error levels were below this.  

Calculations of relative shear displacement were also highly accurate with average errors of 

0.03mm and 0.055mm.  Further, the patient data that was tested highlights the ability of the 

tracking algorithm to reliably track vertebral bodies through sagittal plane motions. 

 The novel algorithm presented here is highly accurate at tracking vertebral body motion 

under fluoroscopy.  Indirect comparisons can be made between other tracking algorithms, 

however, different validation methods have been used.  Bifulco and colleagues (Bifulco et al., 

2001), who used a similar cross-correlation method calculated errors as high as 0.8 degrees in 

their static validation model.  Wong and colleagues (Wong et al., 2006) used a robotic arm 

moving at a constant pace and measured the error in tracking angular speed of a cadaveric 

vertebra, which was 0.32° ± 0.24° per second.  Ahmadi and colleagues (Ahmadi et al., 2009) 

used a calibrated board and computed the RMS error in degrees of 30 randomly selected 

frames which was 0.41°.  Muggleton and Allen (Muggleton and Allen, 1997), again using a 

cross-correlation approach found errors in a static model of up to 0.6°.  Wong and colleagues 

(Wong et al., 2009) evaluated their method against the RMS error in the distance the algorithm 

was off from feature points made by hand measurements and found errors below 0.4mm.   

 The apparatus and specimen used for this investigation was chosen for the challenge 

that it would provide the novel algorithm presented in tracking vertebral body motion.  The use 

of a porcine spine with all tissue left intact created a close comparison to its intended use.  The 
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gold-standard measure was highly precise and utilized a form of the current algorithm already 

validated in previous work (Velduis and Brodland, 1999) and widely used for tracking points 

(Wiebe and Brodland, 2005, Bootsma and Brodland, 2005, Eilaghi et al., 2009, Kitamura et al., 

2012).  The use of the lead markers created a high contrast that could be tracked with ease and 

far higher precision than any hand measurements.  Static measurements under fluoroscopy are 

inherently easier to track as there is no movement through a distorted image field and no 

potential for tissue structures to alter the template being tracked.  Further, use of a validation 

specimen with no tissue present or one that is crafted out of a material that will produce a high 

contrast such as metal is insufficient in its accuracy to what will be tracked in-vivo.  These are 

also easier to track as they produce a highly distinct edge (similar to the lead markers tracked 

by the present algorithm with high precision).  Hand measurements for the purpose of validation 

are inherently inaccurate and their use as a gold-standard eliminates the underlying reason to 

develop an automated registration technique. 

 The use of an animal model moving throughout the field of view in this investigation is 

highly robust and a sufficient “challenge” for the tracking algorithm to be considered adequate to 

track human spine motion under fluoroscopy.  Human spines create a much more distinct edge 

on the vertebral body compared to the porcine spine used in this investigation; a more easily 

tracked feature.  The presence of tissue on the porcine spine also mimicked an in-vivo scenario 

more closely, and masked the edge on some portions of the vertebral bodies.  Despite these 

challenges, the algorithm was able to track the vertebrae with error that represents a very small 

(< 1%) proportion of observed angular displacement. 

 Use of this algorithm for measuring human vertebral motion will help to add further 

confidence and accuracy in measurements.  Coupling this algorithm with already existing ones 

could also help to add further confidence and redundancy in measurements.  The ability to track 

vertebral motion will help to further spine research, as the quantification and characterization of 

human spine motion will serve as a tool for identifying pain generators and clinical subgroups. 
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 Future work and improvement involves the enhancement of the algorithm’s recognition 

abilities and its use in additional planes of view such as the frontal plane.  Removing the manual 

marker registration stage prior to tracking and allowing the algorithm to “recognize” a vertebral 

body and track that through time represents the next stage in the evolution of tracking spine 

segmental motion, further enhancing accuracy and broadening the scope of cases which are 

able to be accurately tracked. 
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10 Appendix B: Relative Angle Calculations for Multiple 

Segment Spine Specimens and Measurement System 

Sensitivity Testing 

 

10.1 Relative Angle Calculation 

 The method for calculating relative angles was based on the method outlined by 

Veldhuis and colleagues (Veldhuis et al., 2005).  The specific procedure used for the analysis of 

multiple segment spine specimens in this thesis is outlined in detail below. 

 The first step was to describe the position of the three rigid body marker clusters on the 

specimens with the non-moving (global) reference cluster fixed to the Instron.  Centroids of each 

cluster (including the global cluster) were calculated by averaging the coordinates of each of the 

four markers on each cluster: 

 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥, 𝑦) =
(𝑚𝑎𝑟𝑘𝑒𝑟1 + 𝑚𝑎𝑟𝑘𝑒𝑟2 + 𝑚𝑎𝑟𝑘𝑒𝑟3 + 𝑚𝑎𝑟𝑘𝑒𝑟4)

4
 

  

 Following the calculation of centroids, eight vectors were defined using the coordinates 

of the markers themselves, as well as the newly calculated centroid (Figure 10.1).  Calculated 

vectors were then used to describe a deformation tensor ‘F’ which could be used to describe the 

rotation and stretch between two sets of vectors.  In the case of this work, the deformation 

tensor was used to describe each set of vectors from the three rigid bodies to the global marker 

cluster: 

 



197 
 

[
𝐹11 𝐹12

𝐹21 𝐹22
] =

[
 
 
 
 
 ∑𝐺𝑖𝑥

𝑛

𝑖=1

𝑅𝑖𝑥 ∑𝐺𝑖𝑥𝑅𝑖𝑦

𝑛

𝑖=1

∑𝐺𝑖𝑦𝑅𝑖𝑥

𝑛

𝑖=1

∑𝐺𝑖𝑦𝑅𝑖𝑦

𝑛

𝑖=1 ]
 
 
 
 
 

[
 
 
 
 
 ∑𝐺𝑖𝑥𝐺𝑖𝑥

𝑛

𝑖=1

∑𝐺𝑖𝑥𝐺𝑖𝑦

𝑛

𝑖=1

∑𝐺𝑖𝑦𝐺𝑖𝑥

𝑛

𝑖=1

∑𝐺𝑖𝑦𝐺𝑖𝑦

𝑛

𝑖=1 ]
 
 
 
 
 
−1

 

 

Where: 𝐺𝑖𝑥 is the x-component vector of the global marker cluster. 

  𝑅𝑖𝑥 is the x-component vector of one of the rigid body clusters on the specimen (a 

 deformation tensor was calculated for each of the three rigid body clusters on the 

 specimen). 

 The y-component vectors are defined the same as described above for the x-component 

 vectors, but with the ‘y’ subscript. 

 

 After calculation of the deformation tensor, it is decomposed into the rotation and stretch 

tensors: 

𝐹 = 𝑅𝑈 

Where: 𝑅 is the rotation tensor. 

 𝑈 is the stretch tensor. 

 

 The rotation and stretch tensor are calculated as follows: 

𝑅 =  
𝑠𝑖𝑔𝑛(𝐹11 + 𝐹22)

√1 + (
𝐹11 + 𝐹22
𝐹21 − 𝐹12

)
2
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𝑈 =
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Where: 𝑠𝑖𝑔𝑛(𝐹11 + 𝐹22) is the calculation of 𝐹11 + 𝐹22. If this sum is positive, then 

 𝑠𝑖𝑔𝑛(𝐹11 + 𝐹22) = 1. Whereas if the sum is negative, then 𝑠𝑖𝑔𝑛(𝐹11 + 𝐹22) = −1. 

 

These steps are used to calculate the reference orientation of each rigid body marker cluster 

relative to the global marker cluster.  Following this calculation, the orientations of the rigid body 

marker clusters can be calculated for the trials that were taken during the experiment; this is 

performed identically to the procedure outlined above.  The trial orientations can then be 

expressed relative to the reference orientation as follows: 

𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = [𝑅𝑇𝑟𝑖𝑎𝑙][𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒]
−1

 

Where: 𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the rotation tensor relative to the reference orientation. 

 𝑅𝑇𝑟𝑖𝑎𝑙 is the rotation tensor computed for a rigid body cluster relative to the global marker 

 cluster. 

 𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the rotation tensor computed for the calibration trial for a rigid body cluster 

 relative to the global marker cluster. 

 

 With the corrected rotation tensor calculated, the vertebral joint angles are calculated 

next.  These angles are defined as the relative orientation of one rigid body marker cluster 

relative to another.  If the three rigid bodies on the specimen from superior to inferior are 

labelled 1 to 3 then: 

𝑅𝑈𝑝𝑝𝑒𝑟𝐽𝑜𝑖𝑛𝑡 = [𝑅2][𝑅1]
−1 

𝑅𝐿𝑜𝑤𝑒𝑟𝐽𝑜𝑖𝑛𝑡 = [𝑅3][𝑅2]
−1 

Where: 𝑅𝑈𝑝𝑝𝑒𝑟𝐽𝑜𝑖𝑛𝑡 is the rotation tensor of the upper vertebral joint (C3/C4). 

 𝑅𝐿𝑜𝑤𝑒𝑟𝐽𝑜𝑖𝑛𝑡 is the rotation tensor of the lower vertebral joint (C4/C5). 

 𝑅𝑖 is the corrected rotation tensor of rigid bodies 1-3. 
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 With the rotation tensors of both vertebral joints calculated, angles can be extracted from 

the tensors based on a 2-dimensional rotation matrix where: 

𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

 For the purposes of the discussed experiment, the vertebral joint angle (α) was extracted 

as follows: 

𝛼 =  − sin−1(𝑅12) 

 

 

Figure 10.1 Schematic of vectors created using digitized marker locations.  A centroid was calculated based 
on the points of all four markers, from here, eight vectors (denoted in red arrows) were created. 

 

 

10.2 Assessment of Video Measurement System Accuracy 

10.2.1 Experimental Setup  

 In order to assess the accuracy of using the outlined video measurement and marker 

digitization paradigm, the entire system was tested without a specimen under both static and 

dynamic conditions.  Under these conditions, the motor arm of the Instron was assumed to 
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travel to the same target angles each time, so any deviation between trials of calculated angles 

via the video measurement system was presumed to be inherent error in this system. 

 Two sets of three trials were collected where the motor arm of the Instron was brought to 

target flexion and extension angles.  The angular magnitude between both tracking sets was 

changed.  Rigid bodies that were used for mounting on specimens were mounted on the 

superior and inferior steel mounting cups (same configuration as the specimen) while the central 

rigid body was mounted to a block of rubber (Figure 10.2).  The superior rigid body moved with 

the motor arm while the remaining two rigid bodies remained stationary.  Markers were digitized 

using commercial software (Maxtraq: Innovision Systems, Columbiaville, MI, USA) and angles 

computed using the procedure outlined in section 9.1. 

 A further three trials were collected with the same rigid body configuration, but in a 

purely static configuration.  These trials were also digitized and angles computed using the 

procedure outlined in section 9.1. 

 

 

Figure 10.2 Rigid body placements for video measurement system evaluation.  The lower two rigid bodies 
remained stationary while the uppermost rigid body was rotated by the Instron motor arm. 
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10.2.2 Results of Accuracy Tests 

 The maximum error was calculated as the discrepancy in the total angular magnitude 

between trials that were taken to identical flexion/extension angles.  From this calculation the 

maximum error was found to be 0.35°.  For the static trial and for the second series of 

flexion/extension trials, the maximum error calculated was lower (0.10° and 0.18° respectively). 

 

Table 10.1. Maximum error calculated using video measurement system 

 Flexion/Extension 1 

(°) 

Flexion/Extension 2 

(°) 

Flexion/Extension 3 

(°) 

Trial 1 21.02 26.52 0.08 

Trial 2 21.20 26.17 0.10 

Trial 3 21.08 26.49 0.07 

Maximum error 0.18 0.35 0.10 
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11 Appendix C: Relative Angle Calculations for Coordinates 

and Instrumentation in Appendix A 

 

 Relative angles for the tracked vertebral bodies were calculated in a similar manner as in 

Appendix B.  The equations used were identical to Appendix B, but the overall procedure had 

some slight differences which are outlined here.  Further, the methods used to calculate the 

angles for the potentiometer and tracked lead markers are outlined in detail. 

 

11.1 Tracked Vertebral Bodies 

  A rotation matrix and stretch tensor were calculated for each vertebra in each trial as 

outlined in Appendix B.  In this case, the reference frame was defined simply as the first frame 

of coordinates for each vertebral body rather than being normalized to an arbitrary set of 

coordinates since relative angles between vertebral bodies were not calculated. 

 

11.2 Potentiometer 

 Potentiometer data was synchronized with the video frames via a foot pedal that 

triggered collection of both systems.  The potentiometer was collected and sampled at 300Hz.  

A linear calibration was performed to convert the raw voltage output into degrees.  A static trial 

in a “flexed” position was taken at a known angle followed by a second static trial in an 

“extended” position.  Another static trial at a neutral (zero) position was also taken.  These 

values were used to generate a slope and y-intercept to create a linear equation in the form 

y=mx+b. 

 

 



203 
 

11.3 Tracked Lead Sphere Markers 

 Each vertebra had two lead markers rigidly fixed to the anterior portion of the vertebral 

body and the posterior aspect of the spinous process.  The first frame in the image sequence 

was defined as the reference frame.  For each frame, a midpoint was calculated from an 

average of all six marker positions and then six vectors were defined from the position of the 

midpoint to each lead marker on the spine specimen (Figure 11.1).  The relative angle of the 

porcine specimen was then calculated using the least-squares calculation described in 

Appendix B creating a highly accurate angular displacement output.  Using this method, the 

efficacy of the image distortion correction technique could also be tested.  Since the 

decomposition of the deformation tensor yielded both a rotation and a stretch tensor, if there 

was still distortion present in the image, the stretch tensor would deviate from the identity matrix.  

In all frames, each cell of the stretch tensor was within 0.1 of the identity matrix.  

 

11.4 Relative Joint Shear Calculations 

 Relative joint shear was calculated as the projection of two vectors on a shear axis 

oriented between the inferior aspect of the superior vertebral body and the superior aspect of 

the inferior vertebral body (mid-disc range).  This followed the same method as Frobin and 

colleagues (Frobin et al., 1996). 

 Midpoints were calculated using the coordinates at the anterior and posterior aspects of 

the two vertebral bodies.  Using the two midpoints, a vector was calculated that was defined as 

the shear axis, bisecting the two vertebral bodies.  From here, center points were calculated for 

each of the vertebral bodies and the intervertebral disc space.  Vectors were defined between 

the center points in the disc spaces and vertebral bodies Figure 11.2. 

 The projection of the vectors onto the shear axis was then calculated using the following 

formula (Figure 11.3): 
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𝑎1 = 𝐴 ⃗⃗  ⃗ ∙ �̂� 

Where: 𝐴  is the vector between the disc space center point and the vertebral body center point. 

 �̂� is the unit vector of the shear axis. 

 𝑎1 is the scalar projection of 𝐴  onto �̂�. 

 

From this, the vector 𝑎 1 can be calculated by multiplying it by its scalar projection.  The vector 

perpendicular to the shear axis can then be found by: 

 

𝑎 2 = 𝐴 ⃗⃗  ⃗ −  𝑎 1 

 

Following this, the distance between the two perpendicular vectors (one from the vertebra 

above, one from below) is calculated via: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 

 

The relative joint shear throughout the trial will then be the distance for each frame subtracted 

from the initial distance in the first frame. 
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Figure 11.1 Six vectors were defined to act as inputs into the least-squares calculation for angular 
displacement 

 

 

Figure 11.2 Setup of vectors and coordinates for the purposes of calculating relative joint shear.  Shear was 
calculated by taking the difference between the projections of vector 1 and 2 onto a shear axis. 
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Figure 11.3 Setup of vectors for the purposes of calculating relative joint shear. 
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12 Appendix D: Patient Consent Form for Fluoroscopy Data 

Processing, Additional Patient Information, and 

Calculation of Disc Height Index 

 

 The following page contains a copy of the consent form signed by patients at the 

Markham Chiropractic Centre.  This form allows for the use of patient data for research 

purposes.  Additionally, a table is included below that provides more detailed background 

information for each patient.  Detailed information on the calculation of disc height index is also 

included. 

 

12.1 Additional Patient Information 

 

Table 12.1. Summary of patient cases for Study 3. 

Case Age (Gender) Complaint Event Causing 
Complaint 

Additional 
Information 

DH1 50 (F) Neck pain, headaches, 
seizure 

Motor-vehicle 
accident (head on) 
causing loss of 
consciousness 

History of low 
back pain 

DH2 57 (F) Left shoulder pain, 
headaches 

Slip and fall No history 

DH3 68 (F) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) 

No history 

MH1 51 (F) Neck pain Hit by 10lb object, 
left sided head injury 
causing concussion 

No history 

MH2 58 (M) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) 

No history 

MH3 58 (F) Neck pain, headaches Motor-vehicle 
accident (left-front 
impact) causing loss 
of consciousness 

No history 
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MH4 54 (F) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) causing loss 
of consciousness 

Previous history 
of plane crash 
with facial 
surgery 

MH5 29 (F) Neck pain, rib fracture, 
headaches 

Motor-vehicle 
accident (head-on) 

No history 

MH6 39 (M) Fracture of C0, C1, C4, 
Loss of consciousness 

Motor-vehicle 
accident (rollover) 
causing loss of 
consciousness 

No history 

MH7 45 (M) Neck pain, headaches, 
shoulder pain 

Motor-vehicle 
accident (rear-
ended) 

No history 

MH8 35 (F) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) 

No history 

NH1 53 (M) Neck pain, headaches Train crash causing 
loss of 
consciousness 

No history 

NH2 41 (F) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) 

No history 

NH3 42 (M) Neck pain, headaches Motor-vehicle 
accident (rollover) 
causing loss of 
consciousness 

No history 

NH4 39 (M) Neck pain, headaches Motor-vehicle 
accident (rear-
ended) 

No history 

NH5 40 (F) Neck pain, headaches Motor-vehicle 
accident (right-front 
impact) 

No history 

NH6 42 (M) Neck pain, low-back 
pain, headaches 

Motor-vehicle 
accident (rear-
ended) 

No history 

NH7 25 (M) Neck pain, headaches Assault with head 
strikes 

No history 

NH8 57 (F) Neck pain, headaches Motor-vehicle 
accident (head-on) 
causing loss of 
consciousness 

No history 

NH9 45 (F) Headaches Motor-vehicle 
accident (head-on) 
causing loss of 
consciousness 

No history 
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12.2 Calculation of Disc Height Index 

 

 Disc height index was calculated using the method of Frobin and colleagues (2002).  

The anterior and posterior margins of each vertebra were digitized for a single frame where the 

patient was in a neutral posture.  From this, the distance between anterior points on adjacent 

vertebrae was used to calculate anterior disc height using the following formula: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 

 

The same formula was used to calculate the posterior disc height.  From this, the average of the 

anterior and posterior disc heights was calculated to generate a single value of height for each 

disc.  Vertebra height was calculated in the same manner as disc height (anterior and posterior 

portions) using the distance formula above.  From the anterior and posterior vertebra heights, a 

single average value was calculated for each vertebra.  Another average was calculated for the 

purposes of disc height index calculation.  For a given disc, the average vertebra height 

between its superior and inferior disc was calculated.  From here, disc height index was 

calculated by dividing the disc height by the average height of its superior and inferior vertebrae. 
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Figure 12.1 Relevant measures for disc height index calculation.  Vertebral body heights (VH) were averaged 
to create a single value and then disc heights (DH) values were averaged to calculate a single value.  Disc 
height was divided by vertebral body height to yield disc height index. 

VH2 

VH1 

VH3 

VH4 
DH1 DH2 
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Figure 12.2 Patient consent form for fluoroscopic imaging 
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13 Appendix E: Research Experiences at the University of 

Bristol 

13.1 Research 

 

 During the course of my PhD training, I was afforded the opportunity to spend six 

months working with Dr. Michael Adams and Dr. Patricia Dolan at the University of Bristol.  

During this time, I was able to work with cadaveric spine specimens on a research project that 

involved identifying the weak point of the intervertebral disc in tension.  Two papers were 

published as a result of this work: (Lama et al., 2014, Balkovec et al., 2015).  To summarize the 

findings, when the intervertebral disc is placed in tension, the failure point is nearly always at the 

interface between the hyaline cartilage and subchondral bone (Figure 13.1).  Cartilage 

fragments were also found in nearly half of the samples taken from herniated disc material.  

Removing hyaline cartilage from bone has implications with respect to the internal 

pressurization of the intervertebral disc as well as modic change and infection, this is also a 

likely mechanism for cartilage fragments ending up in herniated disc material in some cases of 

disc herniation.  Cartilage fragments in herniated disc material have implications with respect to 

the spontaneous resorption of disc herniations.  As these fragments do not swell or readily lose 

proteoglycans, they may persist for much longer compared to nucleus pulposus, resulting in a 

prolonging of symptoms. 
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Figure 13.1 Typical failure location of the disc in tension.  Hyaline cartilage is peeled off of the subchondral 
bone. 

 

13.2 Observations and Comparisons between Cadaveric and Porcine Spines 

 

 Firsthand work using cadaveric spines allows for some interesting comparisons to be 

drawn between elderly cadaveric lumbar spines and juvenile porcine cervical spines.  There are 

several notable differences between the two, but overall, both appear relatively similar.  Porcine 

cervical spines have large anterior processes that articulate with processes on adjacent 

vertebral bodies and serve as attachment points for muscle (Figure 13.2).  Human lumbar 

spines are also larger in size overall compared to porcine cervical spines; while there are 

individual differences, generally, porcine cervical spines are approximately two-thirds the size of 

human lumbar spines.  Trabecular bone structure within the vertebral bodies of both porcine 

and human spines vary markedly from each other.  Young porcine cervical spines are densely 

packed with trabecular bone to the point where it is almost difficult to see spacing between 

individual trabeculae with the naked eye (Figure 13.3).  Elderly cadaver spines on the other 

hand, have significantly lower density trabecular bone structure (Figure 13.4).   
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Figure 13.2 Vertebral body structure of porcine cervical spine.  Porcine cervical spines have large anterior 
processes, contrary to human lumbar spines. 

 

 

 

Figure 13.3 Dense trabecular bone structure on a porcine cervical spine. 
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Figure 13.4 Elderly cadaver trabecular bone structure.  The trabeculae are less densely packed compared to 
porcine cervical spines. 

 

 Examining the discs of porcine and cadaver spines reveals large differences.  

Adolescent porcine cervical spines contain a pristine annulus with no visible fissures or defects, 

it is white in appearance and clearly separate from the central nucleus pulposus.  The nucleus 

pulposus itself is gelatinous and highly hydrated, it is in optimal condition to distribute load 

evenly between neighboring vertebral bodies.  Elderly cadaver discs are less hydrated and 

more fibrotic compared to porcine cervical spines.  They have an annulus that is usually yellow 

or brown in appearance, and forms less of a distinct border with the nucleus pulposus; this is a 

result of the aging process.  Differences between juvenile porcine and elderly cadaver discs are 

outlined in (Figure 13.5). 
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Figure 13.5 A. Porcine cervical disc highlighting the hydrated, gelatinous nucleus and clear distinction 
between nucleus and annulus. B. Elderly cadaver disc outlining the much more fibrotic nucleus and less 
clear distinction between nuclear and annular regions. 

 

 Differences between porcine cervical spines and elderly cadaveric lumbar spines are 

important factors to consider when deciding which is most appropriate for use in a given study.  

Use of cadaver spines provides the validity of a human model as opposed to approximating the 

anatomical and biological structures with an animal model.  It is important to consider however, 

that a cadaver spine is an approximation as well, and the properties of an elderly spine may not 

match those of someone who is younger or even middle-aged.  Porcine cervical spines can be 

thought of as the other end of the spectrum, and more closely resemble the spine of an 

adolescent human with respect to the mechanical properties of the intervertebral disc.   

 An advantage of porcine cervical spines over cadaveric lumbar spines is the greater 

level of control due to specimen homogeneity.  Factors such as age, weight, diet, and genetics 

can all be accounted for with porcine spines, whereas cadaver spines are much more 

heterogeneous.  Porcine spines are also much easier to obtain in larger quantities; cadaver 

spines are simply not as readily available.  The porcine spine is thus a good model to use in lieu 
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of a readily available source of homogeneous cadaveric spines.  Porcine spines are an 

excellent model for basic science research in the mechanical properties of the spine.  Their 

homogeneity ensures high levels of control that eliminate confounding factors when attempting 

to determine the effect or mechanism of an intervention.  Cadaver spines provide researchers 

with the ability to continue on where an animal model leaves off and begins to add further 

validity of a human model for a research study. 

 The advantages, disadvantages, and differences of porcine and cadaver spines in 

research must be clearly thought out by the researcher prior to determining the best option for a 

particular study.  When used together, both porcine and cadaver spines present the ability to 

gain more insightful conclusions regarding the functioning and properties of the spine.  

Performing research with human spines at the University of Bristol has provided the insight 

necessary to know when using a porcine model is a good approximation of how a human spine 

will function and when it would be best to revisit the research study with a cadaver specimen.  It 

has also facilitated in developing the expertise to dissect and properly mount these specimens 

for mechanical testing.  Comfort and knowledge of both human and animal models for tissue 

testing will help to facilitate future projects and ultimately lead to higher quality research and 

collaborations.     
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14 Appendix F: Use of the Servohydraulic Testing Apparatus 

with Multi-Segmented Spine Specimens 

 

 Use of the Instron servohydraulic testing apparatus with multiple segment specimens 

results in changes to the loading applied to each segment specifically.  The following discussion 

attempts to explain and account for the forces and moments occurring at each of the segments 

during testing.  First, the observed motions are presented in images of an actual test specimen 

and an accompanying schematic diagram.  Following this, the free body diagrams for the 

schematics are presented.  After the diagrams have been described, a sensitivity analysis is 

performed that attempts to provide estimated moment values for each of the segments in each 

of the postures as well as upper and lower bounds of applied moments to the specimens. 
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Figure 14.1 Starting neutral configuration of the multi-segmented specimen. The lordotic posture was 
reflective of the same posture in-vivo.  
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Figure 14.2 Schematic of the starting neutral posture for the multi-segmented specimen.  Due to the force 
application at the center of the superior mounting cup, bending moments were applied at the upper and 
lower segment.  The moment at the base is a function of the moment applied by the motor arm and the 
bending moment created by the applied compressive force.  The initial stiffness of the specimen required a 
high rate of torque application from the motor to overcome the bending moment being applied, following 
this, the rate of torque application decreased.  Motion was observed to occur only about the upper segment 
initially.  
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Terms for Figure 14.2 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MBase’ is the moment applied at the base. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

at the top of the specimen and the center of the lower mounting cup. 

 ‘e1’ is the distance from the vertically applied force from the hydraulic ram and the center 

of rotation of the upper disc (also assumed to be the fulcrum of the segment). 

 ‘e2’ is the distance from the vertically applied force from the hydraulic ram and the center 

of rotation of the lower disc (also assumed to be the fulcrum of the segment). 

 Centers of rotation of each joint (also assumed to be the fulcrum of each segment) are 

defined by the circular black dots. 

 

The neutral posture as determined using the point where there was zero moment 

applied to the specimen put the specimens in a lordotic position (Figure 14.1).  The vertically 

applied force from the hydraulic ram was assumed to be applied at the center of the superior 

mounting cup.  The opposing force from the lower specimen mounting cup was assumed to be 

applied at the center of the inferior mounting cup.  Under the 1000N compressive load, and the 

lordotic posture adopted by the specimen, it was assumed that the center of rotation for the 

superior segment was positioned closer to the applied force compared to the lower segment.  

Under this, the bending moment generated about the lower segment will be greater than the 

bending moment generated about the upper segment since e2 > e1 (Figure 14.2).   Thus, 

rotation will occur about the upper segment initially (and was observed to be the case).  The 

point where rotation stopped about the upper segment and commenced about the lower 
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segment is the point where the superior mounting cup was perpendicular to the applied force 

from the ram. 

 

 

Figure 14.3 Free-body diagram of the superior vertebral body in the starting neutral configuration.  A small 
bending moment is applied to this vertebra along with the moment from the motor arm and resisted by a 
support-moment (MS1).  

 

Terms for Figure 14.3 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MS1’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.4 Free-body diagram of the middle vertebral body in the starting neutral configuration.  The 
bending moment applied to this vertebra is assumed to be larger than the one applied to the vertebra above 
given the observed motion of the whole specimen.  
 
 
 

Terms for Figure 14.4 are defined as follows: 

 ‘MS1’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS2’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.5 Free-body diagram of the lower vertebral body in the starting neutral configuration.  The bending 
moment applied to this vertebra is the largest and is resisted by the bearing tray.  

 

Terms for Figure 14.5 are defined as follows: 

 ‘MS2’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS3’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.6 Changing point between rotation of the upper segment and lower segment.  At this point, where 
the applied compressive force is perpendicular to the specimen mounting cups, rotation stopped about the 
upper segment and commenced about the lower segment.  Up until this point, no translation had occurred at 
the base. 
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Figure 14.7 Schematic of the changing point for rotation at the upper and lower segments.  At this point, the 
transmissible vector of the applied force is assumed to go through the centers of rotation between the upper 
and lower discs.  From this configuration, no bending moments are applied to the segments.  Given that the 
upper segment has been rotating up until this point while the lower segment has not, stiffness would be 
greater at this segment compared to the lower segment, thus, rotation commences about the lower segment.  
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Terms for Figure 14.7 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MBase’ is the moment applied at the base. 

 Centers of rotation of each joint (also assumed to be the fulcrum of each segment) are 

defined by the circular black dots. 

 

 Rotation occurred about the upper segment without any translation at the base.  In the 

configuration depicted in Figure 14.6 and Figure 14.7, the centers of rotation of both the upper 

and lower segments were assumed to be aligned and both mounting cups were perpendicular 

to the applied force from the hydraulic ram.  In this configuration, no bending moments were 

assumed to be applied at either level.  From this position onwards, rotation occurred about the 

lower segment. 
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Figure 14.8 Free-body diagram of the superior vertebral body in the changing point for segmental rotation.  
The support-moment is a result of the moment applied by the motor arm as no bending moment is applied by 
the hydraulic ram in this configuration.  

 

Terms for Figure 14.8 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MS1’ is the support moment from the resistance to rotation of the passive tissues. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.9 Free-body diagram of the middle vertebral body in the changing point for segmental rotation.  
There is no applied bending moment.  

 

Terms for Figure 14.9 are defined as follows: 

 ‘MS1’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS2’ is the support moment from the resistance to rotation of the passive tissues. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.10 Free-body diagram of the lower vertebral body in the changing point for segmental rotation.  
There is no applied bending moment.  

 

Terms for Figure 14.10 are defined as follows: 

 ‘MS2’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS3’ is the support moment from the resistance to rotation of the passive tissues. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.11 Fully flexed position of the specimen.  Between the previous configuration (applied force 
perpendicular to mounting cups) and this position, translation of the specimen had occurred, resulting in the 
application of bending moments to each of the segments from the applied compressive force.  
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Figure 14.12 Schematic of the fully flexed position of the specimen.  Bending moments were applied to each 
of the segments with the greater bending moment being applied at the lower segment.  The cumulative 
moment applied at any given point varied, with the lower-bound being the moment applied by the motor arm 
at the superior segment and the upper-bound being moment at the base of the specimen.  Thus, the applied 
moment increased further down the specimen towards the bearing tray.   
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Terms for Figure 14.12 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MBase’ is the moment applied at the base. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

at the top of the specimen and the center of the lower mounting cup. 

 ‘e1’ is the distance from the vertically applied force from the hydraulic ram and the center 

of rotation of the upper disc (also assumed to be the fulcrum of the segment). 

 ‘e2’ is the distance from the vertically applied force from the hydraulic ram and the center 

of rotation of the lower disc (also assumed to be the fulcrum of the segment). 

 Centers of rotation of each joint (also assumed to be the fulcrum of each segment) are 

defined by the circular black dots. 

 

 At the point of full-flexion, the specimen had translated a total distance (d) which resulted 

in bending moments being applied at the upper and lower segments.  From the position 

described in Figure 14.6 and Figure 14.7, rotation occurred about the lower segment since the 

bending moment applied to the lower segment was greater given that e2 > e1.  
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Figure 14.13Free-body diagram of the superior vertebral body in the fully-flexed configuration.  A small 
bending moment is applied to this vertebra along with the moment from the motor arm and resisted by a 
support-moment (MS1).  

 

Terms for Figure 14.13 are defined as follows: 

 ‘M’ is the moment applied by the motor arm. 

 ‘F’ is the vertically applied force of the hydraulic ram. 

 ‘MS1’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.14Free-body diagram of the middle vertebral body in the fully-flexed configuration.  The bending 
moment applied to this vertebra is larger than the bending moment applied to the vertebra above. 
 
 
 

Terms for Figure 14.14 are defined as follows: 

 ‘MS1’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS2’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 
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Figure 14.15 Free-body diagram of the lower vertebral body in the fully-flexed configuration.  The bending 
moment applied to this vertebra is the largest and is resisted by the bearing tray.  

 

Terms for Figure 14.15 are defined as follows: 

 ‘MS2’ is the moment applied by the superior vertebra. 

 ‘F’ is the vertically applied force from the superior vertebra. 

 ‘MS3’ is the support moment from the resistance to rotation of the passive tissues. 

 ‘d’ is the horizontal distance between the vertically applied force from the hydraulic ram 

and the fulcrum about which the vertebra rotates. 

 The center of rotation of the vertebra (also assumed to be the fulcrum) is defined by the 

circular black dot. 

  

The total moment applied at each segment will be somewhere between the moment 

applied by the motor arm at the top of the segment and the moment at the base of the lower 

mounting cup.  For Figure 14.2, the moment at the base can be described with the following 

equation: 

𝑀𝐵𝑎𝑠𝑒 − 𝐹𝑑 + 𝑀 = 0 

𝑀𝐵𝑎𝑠𝑒 = 𝐹𝑑 − 𝑀 
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To get a sense of the moment at the base during full flexion, values have been 

substituted into the above equation: 

𝑀𝐵𝑎𝑠𝑒 = (1000𝑁)(0.0035𝑚) − (−1.5𝑁𝑚) 

𝑀𝐵𝑎𝑠𝑒 =  5𝑁𝑚 

Thus, the applied moments at each of the segments during full-flexion are assumed to 

be between the lower-bound of -1.5Nm and the upper-bound of -5Nm.  The moment at any 

arbitrary point (MPoint) on the specimen can be described with the above equation as well and 

used to estimate moments at each of the vertebral joints as follows: 

𝑀𝑃𝑜𝑖𝑛𝑡 = 𝐹𝑒 − 𝑀 

 Estimated values for ‘e’ for the upper segment and lower segment are 1mm and 3mm, 

respectively.  Thus, the estimated support moments at the upper and lower segments are 

calculated by: 

𝑀𝑈𝑝𝑝𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = (1000𝑁)(0.001𝑚) − (−1.5𝑁𝑚) 

𝑀𝑈𝑝𝑝𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 2.5𝑁𝑚 

 

𝑀𝐿𝑜𝑤𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = (1000𝑁)(0.003𝑚) − (−1.5𝑁𝑚) 

𝑀𝐿𝑜𝑤𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 4.5𝑁𝑚 

 Therefore, the estimated support moments at the upper and lower segments in the 

starting configuration are 2.5Nm and 4.5Nm respectively. 

 

For Figure 14.7, the moment at the base can be described with the following equation: 

𝑀𝐵𝑎𝑠𝑒 + 𝑀 = 0 

𝑀𝐵𝑎𝑠𝑒 = −𝑀 

To get a sense of the moment at the base during full flexion, values have been 

substituted into the above equation: 
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𝑀𝐵𝑎𝑠𝑒 = −9𝑁𝑚 

Thus, the applied moments at each of the segments during full-flexion are assumed to 

be equal, at approximately 9Nm.  This configuration is unique, in that the moment at each of the 

segments is assumed to be equivalent to the moment applied by the motor arm, as there is 

assumed to be no applied bending moment. 

 

For Figure 14.12, the moment at the base can be described using the following equation: 

 

𝑀𝐵𝑎𝑠𝑒 + 𝐹𝑑 + 𝑀 = 0 

𝑀𝐵𝑎𝑠𝑒 = −𝐹𝑑 − 𝑀 

 To get a sense of the moment at the base during full flexion, values have been 

substituted into the above equation: 

 

𝑀𝐵𝑎𝑠𝑒 = −(1000𝑁)(0.0075𝑚) − 15𝑁𝑚 

𝑀𝐵𝑎𝑠𝑒 = −22.5𝑁𝑚 

 

 Thus, the applied moments at each of the segments during full-flexion are 

assumed to be between the lower-bound of 15Nm and the upper-bound of 22.5Nm.  As in 

Figure 14.2, the moment at any arbitrary point (MPoint) on the specimen can be described with 

the above equation as well and used to estimate moments at each of the vertebral joints as 

follows: 

𝑀𝑃𝑜𝑖𝑛𝑡 = −𝐹𝑒 − 𝑀 

 Estimated values for ‘e’ for the upper segment and lower segment are 2mm and 5mm, 

respectively.  Thus, the estimated support moments at the upper and lower segments are 

calculated by: 
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𝑀𝑈𝑝𝑝𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = −(1000𝑁)(0.002𝑚) − (15𝑁𝑚) 

𝑀𝑈𝑝𝑝𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = −17𝑁𝑚 

 

𝑀𝐿𝑜𝑤𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = −(1000𝑁)(0.005𝑚) − (15𝑁𝑚) 

𝑀𝐿𝑜𝑤𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = −20𝑁𝑚 

 Therefore, the estimated support moments at the upper and lower segments in the 

starting configuration are -17Nm and -20Nm respectively. 

 

While the different moments at each level is a limitation of the test setup, this is not 

necessarily contrary to what occurs in-vivo.  Unequal moments at each segment would occur as 

an individual flexes forward and there is a gravitational loading of the torso.  The translating 

base is representative of the free-floating body in-vivo and this horizontal movement in the test 

apparatus is what creates a moment arm for the applied compressive force.  The applied 

compressive force is representative of the gravitational loading that would occur from body parts 

above the spine-segment together with muscle and passive-tissue tensions required to hold the 

quasi-static body posture.  This vector follows the principle of transmissibility such that it moves 

anterior to the lower segments when flexed creating a larger flexion bending moment. 

 A further complicating factor neglected by the above diagrams is that the intervertebral 

discs positioned between the rigid vertebral bodies are deformable.  It is plausible that there is 

an applied moment initially to the upper vertebra but no applied moment to the next lower 

vertebra until rotation occurs.  The bending disc then applies the moment onto the next 

vertebra.  If buckling had occurred at lower segments, and especially the floating middle 

vertebra, there would be rotation at that level prior to rotation at the superior segment.  This was 

not found to be the case during the experimental protocol as motion was observed to be 
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stepwise, where rotation occurred first about the upper segment, and then about the lower 

segment.    

 In Study 1, the observed kinematics were a function of the applied forces and moment to 

each of the segments as well as the changing stiffness of discs being bent, compressed, and 

injured.  When stiffness increases at a local level, more rotation will occur about a more 

compliant level.  In the case of Study 1, loss of disc height increased the local stiffness of the 

injured disc, and so more motion occurred about the level that had not been injured (and was 

more compliant).  Position control was used in Study 1, under this, a higher moment is applied 

to achieve the same position.  Were torque control used, the overall moment applied would be 

the same, but less motion would have occurred.  Thus, the results from Study 1 are only 

applicable when going to the same target angle. 

 The observed results from Study 1 are applicable only during certain loading paradigms.  

Given the use of position control, an equivalent in-vivo scenario would occur when an individual 

flexes their spine to the same target angle.  A further limitation is the infinite stiffness created at 

the interface between the bearing tray and the bottom cup (no rotation can occur about this 

point).  There are many more segmental levels in-vivo in addition to joints outside the spine 

where compensation can occur during a position controlled movement.  It is uncertain if the 

movement behaviour that occurred in Study 1 would be identical to that seen in-vivo.  
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15 Appendix G: Patient Image Sequence Vertebral Body 

Tracking for Appendix A 

 

 This section contains all time history images for the patient image sequence tracking 

from Appendix A.  In this study, three patient image sequences were selected.  Each of these 

sequences was tracked ten times using the vertebral body tracking algorithm.  The average of 

all ten sets of coordinates was taken and the angular displacement and shear outputs for each 

trial was compared with the average.  Each patient image sequence tracked 5 vertebral bodies, 

yielding 5 sets of angular displacement data and 4 sets of relative joint shear data for each 

image sequence.  In many of the shear displacement time-histories there is what appears to be 

non-physiologic rapid shearing within the first several frames.  This was due to some of the 

templates rapidly moving as they initially began to track vertebral body motion.  Following this 

initial movement, the algorithm easily steadied its tracking of the respective templates and the 

non-physiologic representation of segment movement was removed.  As a result of this, the first 

several frames of shear displacement are not considered part of the physiologic analysis but are 

presented here for completeness. 
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Figure 15.1 Vertebral body naming system for the first image sequence. 
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Figure 15.2 Vertebral body naming system for the second image sequence. 

 

 

Figure 15.3 Vertebral body naming system for the third image sequence. 
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Figure 15.4 Image sequence 1 vertebral body 1. 

 

 

 

Figure 15.5 Image sequence 1 vertebral body 2. 

 

Figure 15.6 Image sequence 1 vertebral body 3. 
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Figure 15.7 Image sequence 1 vertebral body 4. 

 

Figure 15.8 Image sequence 1 vertebral body 5. 

 

 

Figure 15.9 Image sequence 2 vertebral body 1. 
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Figure 15.10 Image sequence 2 vertebral body 2. 

 

Figure 15.11 Image sequence 2 vertebral body 3. 

 

Figure 15.12 Image sequence 2 vertebral body 4. 
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Figure 15.13 Image sequence 2 vertebral body 5. 

 

 

Figure 15.14 Image sequence 3 vertebral body 1. 

 

Figure 15.15 Image sequence 3 vertebral body 2. 
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Figure 15.16 Image sequence 3 vertebral body 3. 

 

 

Figure 15.17 Image sequence 3 vertebral body 4. 

 

Figure 15.18 Image sequence 3 vertebral body 5. 
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Figure 15.19 Image sequence 1 relative joint shear 1. 

 

 

Figure 15.20 Image sequence 1 relative joint shear 2. 

 

Figure 15.21 Image sequence 1 relative joint shear 3. 
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Figure 15.22 Image sequence 1 relative joint shear 4. 

 

 

Figure 15.23 Image sequence 2 relative joint shear 1. 

 

 

Figure 15.24 Image sequence 2 relative joint shear 2. 
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Figure 15.25 Image sequence 2 relative joint shear 3. 

 

Figure 15.26 Image sequence 2 relative joint shear 4. 

 

Figure 15.27 Image sequence 3 relative joint shear 1. 
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Figure 15.28 Image sequence 3 relative joint shear 2. 

 

 

Figure 15.29 Image sequence 3 relative joint shear 3. 

 

 

Figure 15.30 Image sequence 3 relative joint shear 4. 
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16 Appendix H: Radiographs and Time-History Sequences of 

All Cases from Study 3. 

 

 In this appendix all neutral posture radiographs and sagittal plane time-history graphs of 

relative joint motion are presented.  The disc height loss cases are presented first, followed by 

the mild height loss cases, and finally the non-height loss cases.  Radiographs are presented in 

their processed format, that is, with the pincushion distortion corrected along with sharpen and 

blur filters applied. 
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16.1 Disc Height Loss Cases 

 

 

Figure 16.1 Disc height loss Case 1 (DH1). 

 

Figure 16.2 Time-history graph of relative angular displacement for disc height loss Case 1. 
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Figure 16.3 Disc height loss Case 2 (DH2). 

 

 

 

Figure 16.4 Time-history graph of relative angular displacement for disc height loss Case 2. 
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Figure 16.5 Disc height loss Case 3 (DH3). 

 

 

 

Figure 16.6 Time-history graph of relative angular displacement for disc height loss Case 3. 
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16.2 Mild Disc Height Loss Cases 

 

 

Figure 16.7 Mild disc height loss Case 1 (MH1). 

 

 

Figure 16.8 Time-history graph of relative angular displacement for mild disc height loss Case 1.  
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Figure 16.9 Mild disc height loss Case 2 (MH2). 

 

 

Figure 16.10 Time-history graph of relative angular displacement for mild disc height loss Case 2.  
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Figure 16.11 Mild disc height loss Case 3 (MH3). 

 

 

Figure 16.12 Time history graph of relative angular displacement for mild disc height loss Case 3. 
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Figure 16.13 Mild disc height loss Case 4 (MH4). 

 

 

 

Figure 16.14 Time history graph of relative angular displacement for mild disc height loss Case 4.  
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Figure 16.15 Mild disc height loss Case 5 (MH5). 

 

 

 

Figure 16.16 Time history graph of relative angular displacement for mild disc height loss Case 5. 
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Figure 16.17 Mild disc height loss Case 6 (MH6). 

 

 

 

Figure 16.18 Time history graph of relative angular displacement for mild disc height loss Case 6.  
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Figure 16.19 Mild disc height loss Case 7 (MH7). 

 

 

 

Figure 16.20 Time history graph of relative angular displacement for mild disc height loss Case 7.  
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Figure 16.21 Mild disc height loss Case 8 (MH8). 

 

 

 

Figure 16.22 Time history graph of relative angular displacement for mild disc height loss Case 8. 
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16.3 Non-Disc Height Loss Cases 

 

Figure 16.23 Non-disc height loss Case 1 (NH1). 

 

 

 

Figure 16.24 Time history graph of relative angular displacement for non-disc height loss Case 1.   
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Figure 16.25 Non-disc height loss Case 2 (NH2). 

 

 

 

Figure 16.26 Time history graph of relative angular displacement for non-disc height loss Case 2.  
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Figure 16.27 Non-disc height loss Case 3 (NH3). 

 

 

 

Figure 16.28 Time history graph of relative angular displacement for non-disc height loss Case 3. 
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Figure 16.29 Non-disc height loss Case 4 (NH4). 

 

 

 

Figure 16.30 Time history graph of relative angular displacement for non-disc height loss Case 4.  
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Figure 16.31 Non-disc height loss Case 5 (NH5). 

 

 

Figure 16.32 Time history graph of relative angular displacement for non-disc height loss Case 5.   
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Figure 16.33 Non-disc height loss Case 6 (NH6). 

 

 

 

 

Figure 16.34 Time history graph of relative angular displacement for non-disc height loss Case 6.  
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Figure 16.35 Non-disc height loss Case 7 (NH7). 

 

 

 

 

Figure 16.36 Time history graph of relative angular displacement for non-disc height loss Case 7.   
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Figure 16.37 Non-disc height loss Case 8 (NH8). 

 

 

 

 

Figure 16.38 Time history graph of relative angular displacement for non-disc height loss Case 8. 
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Figure 16.39 Non-disc height loss Case 9 (NH9). 

 

 

 

 

Figure 16.40 Time history graph of relative angular displacement for non-disc height loss Case 9.   

 


