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Abstract

Medicine has met a revolution in the expansion of possibilities for therapy based upon
synthetic gene delivery. Imagine the ability to correct problems of a genetic origin with a
simple drug � such science �ction fantasies are becoming future's reality. Still in relative
infancy, synthetic gene therapy has such potential for so many medical issues that it is a
very high priority area of research on a global level. Equally revolutionary is the growth
in the use of nanotechnology, now that instruments have been developed to probe most
any physical system on the nanometre scale. The relatively new appearance of these
technologies leaves research rife with fruit for the picking, and forming new interdisciplinary
connections only multiplies the possibilities.

Nature has developed excellent nanoscale machines � viruses � for gene delivery. Un-
fortunately for human beings, the end result is often detrimental rather than bene�cial.
Despite this, in typical human fashion we seek to adapt nature's solutions for our own pur-
poses. Such endeavours are extremely di�cult undertakings, but we persist for the bene�t
of all. So far, researchers have �gured out how we can pack DNA with nanoscale carriers
rather well using surfactants and lipids of various structures, and that these systems do
an `okay' job of transfecting genes. However, we do not really know at all, let alone for
certain, why some lipid or surfactant structures are better transfecting agents than others,
or really how these carriers enter living cells and become expressed. The answers to these
questions can never, ever be solved by observing these systems from the perspective of a
single �eld of study, for in order to understand why, and thus to predict a better how, we
must use the entire spectrum of science from the most fundamental to the most clinical.

Over the decades of fairly clinical and in vitro studies that have characterised gene
delivery research, precious little literature exists at the extreme end of fundamental physics.
And yet, so much depends on the physical interactions of the gene delivery systems and
their targets that an understanding of the physics of gene delivery could lead to more
focussed and e�cient clinical research. For this reason, the present work aims to bring
together clinical research into gene delivery with state-of-the-art nanotechnology, observed
through the lens of physics. Our primary instrument in this work is the atomic force
microscope, which is a type of scanning probe microscope capable of imaging surfaces on
nanometre scales using a micromachined cantilever tip. Our particular instrument is one of
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the most advanced that is presently available to implement recent developments in Kelvin
Probe Force Microscopy (KPFM), a variant of atomic force microscopy (AFM) that is
designed to image electrical surface potentials on the nanoscale. In the present work, we
utilise an advanced method of frequency modulation KPFM, which allows surface potential
imaging with nanometre resolution.

This thesis begins with some of the most promising building blocks of surfactant gene
delivery, gemini surfactants, and explores their nanoscale behaviour and interactions with
other critical ingredients: lipids and DNA. Gemini surfactants have shown to achieve
superior transfection e�ciency, while maintaining a high level of versatility and �exibility
yet requiring less material. These surfactants are also fairly inexpensive to manufacture.
Such bene�ts make gemini surfactants an attractive candidate for synthetic gene therapy
solutions. Further enhancements to transfection e�ciency are made with the addition of
`helper' lipids, an issue which we also explore.

A fundamental aspect of the physics of gene delivery is how the systems interact with
their targets: a living cell. By constructing a model monolayer of a cell using lipids
commonly found in most cell membranes, we compared the structure of a `plain' model
cell monolayer with one which has been infused with gemini surfactant. We found that
the gemini surfactant exhibited strong interactions with the gel-phase lipid present in the
model monolayer, and that the resulting domains had a more positive surface potential.
Using the unique capabilities of KPFM, we were able to show the presence of cationic
surfactant in the monolayer from its electrical signal.

As an extension of the above, we added DNA into our monolayers to explore the e�ects
of DNA binding. This binding behaviour is important to understand for the purposes
of gene therapy. Our mixture of two cell membrane phospholipids (DOPC and DPPC),
with gemini surfactant, showed three distinct domains, which we deduce to be DOPC,
DPPC+gemini surfactant, and gemini surfactant+DNA. The latter region was the highest,
exhibiting a network of thread-like domains. Most intriguingly, only the `middle' region
exhibited a positive surface potential signal, a fact which can only be determined with
KPFM imaging.

We studied mixtures of gemini surfactants, helper lipid and DNA in monolayer form
so that we could explore the nanoscale structures that these molecules create. In this
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way, we were able to create controlled environments in which to study the interactions of
components of gene tranfection complexes. In addition, we used a Langmuir trough to
gather pressure-area curves for our monolayers to draw further conclusions on the roles
of the various components. We found that gemini surfactants play a signi�cant role in
compacting DNA, and that this compaction is enhanced by the presence of the helper lipid
DOPE. Furthermore, the nanoscale structure of these monolayers was a�ected by factors
such as acidity and the ratio of helper lipid to gemini surfactant. Finally, we used AFM and
KPFM to probe gemini surfactant gene transfection complexes (nanoparticles), which were
directly deposited onto an atomically �at substrate. We found that their size distributions
are broad, ranging from a few tens of nanometres to a few hundred nanometres.

This research demonstrates the unique capabilities of AFM and KPFM to probe systems
of relevance to gene therapy, and that the nanoscale structure of transfection components
is a�ected by a number of key factors such as the particular surfactant, amount of helper
lipid, the presence of DNA, and environmental factors such as acidity. Given that the
nature of these interactions is typically electrostatic in origin, it is clear that KPFM has
a signi�cant role to play. This thesis provides an introduction to novel methodologies for
this purpose, illustrated by applications to gemini surfactant systems.
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If we knew what it was we were doing, it would not be called

research, would it?

Albert Einstein

Chapter 1

Introduction

1.1 An Overview

At the end of the day, the primary result that this research is driving towards is an improve-
ment in healthcare. Speci�cally, we would like to have better ways of delivering medicines.
By better, we mean of course that medicines (drugs and the like) should be given with
maximum bene�t and minimal side-e�ects. Getting there from the fundamental research
to which this work contributes is a very large task, but it is important to keep in mind why
we are bothering. Delivery of simpler drugs - the ones which are ready to be metabolised
immediately upon administration - has been done for centuries (or millennia, depending
on what one classi�es as a drug). Such therapeutics have been largely �gured out. Things
get considerably more complicated (and interesting) when we move to the realm of gene
therapy. In this case, it is possible to manufacture and deliver a piece of DNA coding for
a particular protein that is meant to be helpful to the individual receiving such treatment.
This DNA fragment must somehow be integrated into the patient's genome or otherwise
expressed by their cells, without being damaged or degraded along the complicated and
dangerous pathway into the cell nucleus.

Primary methods by which genes may be delivered to cells include the use of viruses
(which are very good vehicles for delivering genetic material) and synthetic gene carriers
such as lipid-based vesicle systems or surfactants, the latter of which we will discuss in
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detail. What we are trying to do here is learn more about how synthetic gene delivery
methods work, since they are the most promising for future therapies. The breadth of
materials that are available is staggering � there are seemingly endless combinations of
functional groups that all yield surfactants capable, at least in some way, of packaging
up genes. However, one class of these molecules in particular has risen above the others:
gemini surfactants. Superior in terms of aggregation ability � it takes less material to
achieve similar results � and transfection e�ciency � they do a great job delivering genes
� gemini surfactants are the focus of active research.

Studying gene delivery systems such as gemini surfactants combined with genetic ma-
terial is a di�cult task. The spectrum of research stretches broadly, from the most fun-
damental of physics all the way to clinical application. In between these are in vitro

transfection and cell viability studies, in which the success of these systems is tested in a
laboratory without any human risk. The results of this surfactant with those genes in such

and such environments are fairly well understood (or can be made to be understood) by
a multitude of studies, but what is not at all understood are the underlying mechanisms
and physical interactions and e�ects which give rise to those results. It would seem that
a deeper understanding of the physics, far at the fundamental end of the spectrum, would
help drive future research to pinpoint the ultimate gene delivery systems.

It is this last point, the physics of gene delivery, that is the focus of this thesis. DNA
molecules (the genes) are tiny, and in therapeutic form in fact exist complexed with a
carrier system as nanoparticles so that they can �nd, enter, and move about individual
cells. Genes, as DNA fragments, are not e�ectively therapeutic on their own. However,
when they are complexed and condensed with other molecules (like lipids and surfactants),
their e�ciency as transfection agents is boosted signi�cantly. This is why appropriate and
e�cient gene carrier and delivery systems are so essential for therapy. In order to drill
down into the inner workings of these nanoparticles, it is necessary to invoke the use of a
few very powerful nanotechnologies. The primary method by which we study physics on
the nanoscale in the present work is atomic force microscopy and some of its specialised
advanced modes. With this technology, we are able to create images with nanometre
resolution to not only visualise gene delivery nanoparticles, but to see how they or their
constituent parts interact with their targets (cells). We do this by creating model cellular
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1.1. An Overview

environments or gene delivery particles themselves. In addition, the most state-of-the-art
techniques allow us to probe the electrical properties of these models, and relate them to
the topography and other parameters that we have included, such as the relationship of
the size or structure of the surfactants to the strength of the interaction with the genes.
It turns out, not surprisingly, that imaging in the electrostatic domain is very challenging,
and obtaining resolution on the nanometre scale has only become possible in recent years.

Just because we're talking about nanotechnology does not mean that we are absolutely
restricted to cutting-edge, modern equipment. For some aspects of the research in this
thesis we certainly are, as we have just discussed, but the basic method by which we create
the gene delivery environments has been in use for nearly a hundred years. The Langmuir-
Blodgett technique is a fairly simple, albeit meticulous and unforgiving, method to create
monolayers and deposit them onto substrates for imaging. In addition, the creation of the
gene delivery nanoparticles is more straightforward, and has been done on a routine basis
in many gene transfection studies. What has never been done, however, is an analysis of
their electrostatic properties.

Of course, it is impossible to explore all of the issues in one thesis, but I o�er here
a few studies which hopefully will open doors and present ideas for more research into
the fundamental physics and theory of gene delivery, perhaps leading to more focussed
e�orts in future clinical research. The basic ideas behind the present work are to show i)
the electrostatic properties of simple cell membranes and how the gene carrier molecules
interact with them and change these electrostatic properties; ii) how DNA interacts with
the systems explored in (i), which would give us some insight into the binding behaviour
of DNA; and iii) the details of gene transfection complexes themselves as explored via
monolayer techniques and direct imaging of their nanoparticles. These issues are presented
within the four `research' chapters within this thesis. In what follows in the remainder of
this introduction are detailed explanations of what gemini surfactants are, the techniques
we use to study them, and how this all relates to the gene delivery problem. Examples from
the literature are presented for the techniques, to provide the reader with some context on
the present state of research and the capabilities of these methods.
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Figure 1.1: Schematic representation of a surfactant molecule (left) with hydrophilic head
group and hydrophobic tail, and a group of surfactant molecules (right) in micelle form.

1.2 Gemini Surfactants

Amphiphilic surface active agents (surfactants) are some of the most important structural
molecules in biology. One end of the molecule, usually called the head, is hydrophilic
(from Ancient Greek, `water-loving'), while the other end, the tail, is hydrophobic (`water-
fearing'). In water, surfactants pack their tails toward each other and form spherical
micelle containers (e.g. Israelachvili et al., 1977). By keeping the non-polar hydrophobic
parts of the molecules together and away from polar water molecules, the system adopts a
conformation that is lower in energy (Israelachvili, 2011). This is illustrated in Fig. 1.1.

This conformation is the principle mechanism by which biological membranes assemble
and maintain their structure (to be discussed in greater detail later on in this thesis).
Surfactants also have the ability to interact with other molecules and take advantage of
their special properties to do other useful things. One very close-to-home example is soap:
grease and oil are insoluble in water because they are largely hydrophobic, but they dissolve
readily in non-polar substances like the long carbon chains of soap molecule tails. Water
dissolves the polar head groups of the soap and carries away the soap, along with the
o�ending dirt.

Another use - and a topic which will come up again as a central issue of this thesis -
is to have surfactants carry not dirt, but drug molecules and therapeutic DNA (for gene
therapy). In this case, the micelles or other structures could serve as cargo containers that
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1.2. Gemini Surfactants

Figure 1.2: General structure of m-s-m gemini surfactants.

package and protect molecules that are to be delivered somewhere in the body. To package
DNA, this is especially facilitated if the surfactant happens to have a positive charge to
attract itself to the negatively charged backbone of the DNA. We will discuss gene delivery
in detail later in � 1.5, but for now it is su�cient to say that surfactants can serve as the
containers by which DNA may be delivered to cells for therapeutic purposes, and there are
many advantages over other methods (and disadvantages, which serve as some motivation
for the present work).

One particular disadvantage which is necessary to point out now is that surfactant
delivery of drugs and genes su�ers from low cellular uptake compared to other methods
like vectors of viral origin (Wettig et al., 2007). However, it has been found that altering the
structure of surfactant molecules themselves can have a dramatic impact on the success
rate of drug or gene delivery (the so-called `transfection' rate). This is where `gemini'
surfactants come in.

This special class of surfactants, gemini surfactants (GSs), have two tails and heads,
bound by a spacer group (Menger & Littau, 1991, 1993; Bell et al., 2003; Wettig & Verrall,
2001; Kirby et al., 2003; Wettig et al., 2008). The transfection e�ciency of these gemini
surfactants has been found to be far greater than their single-chain counterparts (e.g.
Kirby et al., 2003; Wettig et al., 2007; Wang et al., 2013). Importantly, gemini surfactants
carry a 2+ charge, which allows them to strongly interact with DNA electrostatically.
With a judicious choice of spacers, heads and tails, these systems can be very versatile
with virtually no limit to carrying capacity(Wettig et al., 2008). Gemini surfactants have
further advantages of low toxicity, and are relatively inexpensive to manufacture (Menger &
Littau, 1991; Wettig et al., 2008). However, their transfection e�ciency still does not match
that of viral vectors, and it is the subject of current research to �nd ways of maximising
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Figure 1.3: Chemical structure of the gemini surfactants 16-3-16 and 16-7NH-16. Note
the protonatable amine group in the latter.

their potency to take advantage of their many bene�ts.

Although they come in many shapes and sizes, in the present work we will be focussing
on gemini surfactants which are of the so-called m-s-m type, shown in Fig. 1.2, an example
of which is shown in full in Fig. 1.3. In the latter, it is also shown how functional groups can
be inserted into, for instance, the spacer chain. Here, for example, we have a protonatable
amine group, which carries a positive charge at low pH. Therefore, the surfactants of type
m-sNH-m carry di�erent charges depending on the acidity of the surrounding environment.
This could be useful, for example, for capture and release of molecules of interest.

1.3 Atomic and Kelvin Probe Force Microscopy

In the last few decades, tools and capabilities for microscopic observations have bene�t-
ted from signi�cant advances. Scientists are no longer met with the physical limitations
in resolution that are imposed by the use of electromagnetic waves as the medium that
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carries information about systems of interest.1 We have now moved on to the world of
the nanometre, and can observe the treasure trove of science that exists at those scales.
Instead of using light waves (which cannot probe even tens of nanometres), scientists use
nanoengineered cantilever probes to measure minute changes in force while the probe is
moved across a surface of interest. By carefully measuring the de�ection of this cantilever,
surface topography can be determined which leads to a 3D image. Resolutions as high
as the atomic scale are achievable with this form of scanning microscopy technique. Of
course, this is known as Atomic Force Microscopy (AFM), or more broadly, Scanning Probe
Microscopy (SPM) (Allison et al., 2010). In the present work we will be focussing on the
basic AFM and the specialised setup of Kelvin probe force microscopy, which images the
electrical contact potential di�erence in sample.

More recent years have led to the development of many di�erent forms of scanning
microscopy (Berger et al., 2009). We will discuss a few of them in this review, but our
highlight is a technique that can be used to measure the contact potential (or work func-
tion) of a sample2 known as Kelvin Probe Force Microscopy (KPFM). In this case the
Kelvin Method that was developed by Lord Kelvin in the 1800s to measure the work
function of metals is utilised. When astronomers �rst peered into new wavelengths, such
as radio and X-ray imaging, exciting new discoveries were made; many phenomena are
simply not detectable with `traditional' methods using visible light. By analogy, KPFM
allows fundamentally new observations to be made of systems by not only mapping their
electrostatic properties, but doing so at nanometre resolution. Under extreme conditions
(e.g., low temperature, pressure, isolation), imaging of the surface potential is possible on
the sub-molecular level, revealing the charge distribution of single molecules (Mohn et al.,
2012).

This review will discuss the history, development and applications of KPFM by building
on the fundamental principles of the more general AFM and SPM methods. Specialised

1Although the resolution limit from the wavelength of visible light is excellent, it still does not allow
us into the world that exists below about 200 nm in scale. However, that didn't really become important
until the advent of nanoscience.

2More precisely, this technique measures the contact potential di�erence between the sample and the
cantilever probe.

7



and advanced techniques will also be presented. A survey of applications in both biological
and non-biological systems will follow. Finally, there will be some concluding remarks on
the future directions and possibilities for research utilising KPFM techniques.

1.3.1 Atomic Force Microscopy

Before we can dive into a discussion on the technicalities of KPFM, we must �rst understand
how a traditional AFM setup works to generate a nanoscale 3D map of a surface of interest.
An optical microscope generates an image by using re�ected rays of light that are refracted
through a series of lenses to magnify an object. However, light has a fundamental limitation
that is directly related to its wavelike nature. A resolution limit is imposed simply because
it becomes physically impossible to resolve objects that are smaller than the wavelength of
the light used to image them (∼200 nm). An electron microscope gets around this by using
the wave nature of particles.3 Electrons have a shorter `wavelength' than photons, which
allows for higher resolution imaging, and can reach nanometre scales.4 However, electron
microscopes su�er from serious limitations despite their excellent resolution. The cost is
that the samples must be �xated, dehydrated, stained or coated for imaging via electron
scattering or transmission processes (e.g. De Jonge et al., 2009; Hayat, 2012).

Instead of using electrons or electromagnetic waves to image a sample of interest, topog-
raphy can be measured by `feeling' (rather than looking), in much the same way as blind
individuals can read with the Braille system. AFM instruments generally have the basic
setup shown in Fig. 1.4. The probe is a micromachined tip placed at the end of a cantilever.
A laser beam shines on the end of the probe and records its de�ection as it moves across a
surface. The de�ection that results is due to the forces of interaction between the tip and
the sample. These forces include the primary contact and van der Waals forces, as well
as intermolecular bonds, capillary forces (due to liquids and hydrogen bonding), magnetic
and electrostatic forces (Kalinin & Gruverman, 2007; Kedrov et al., 2007). As we will see,

3This is the so-called `wave-particle' duality of de Broglie, where all particles can be said to have an
associated wavelength that is inversely proportional to their momentum.

4Advanced electron microscopes, such as High Resolution Transmission Electron Microscopes
(HRTEM), are said to achieve resolutions of up to 0.08 nm!
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Figure 1.4: The basic AFM setup. Figure reprinted from Allison et al. (2010).

the electrostatic force is of fundamental importance in KPFM. The contact and van der
Waals forces can be described in simple terms by the Lennard-Jones potential, which has
a very steep wall at close range (r−12) and a long-range tail that decreases as r−6,

V = ε

[(re
r

)12

− 2
(re
r

)6
]

(1.1)

Here, re is the equilibrium distance where the potential is at a minimum, −ε. Relative to
other forces like electrostatics, the van der Waals force is a short-range interaction.
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Imaging Modes of AFM

There are multiple modes available for AFM, each having their applications. In the most
basic mode, contact mode, the cantilever is dragged along the sample surface, without
oscillation, while the re�ected laser beam is tracked to indicate the height. This is a
very simple mode that does not require any cantilever oscillation, but it su�ers from some
drawbacks: the dragging forces can damage the sample and the tip, or contaminate the
tip, and the resolution is relatively poor.

Non-contact mode o�ers increased resolution and fewer issues with tip contamination
or sample damage. In this mode, the cantilever is oscillated mechanically at close to
its fundamental resonance frequency. The tip does not drag along the surface (although
in some setups it can brie�y touch), but rather the oscillation amplitude itself is kept
in a feedback loop with the tip height. As the tip-sample distance (and thus the force
of interaction) changes, the cantilever is raised or lowered to maintain the amplitude of
oscillation. In this way, the sample topography may be traced. In many studies this is
all done in air, but imaging might also be done in liquid (e.g. Putman et al., 1994). For
further details and a detailed overview, see Morris et al. (1999).

1.3.2 KPFM Theory

Now that we have introduced the basics of AFM, we will discuss the development and
usage of Kelvin probe force microscopy. It is possible to measure the work function of
a metallic substance using a simple circuit containing a capacitor. The work function is
de�ned, in simple terms, as the amount of energy that is required to eject a single electron
from a metallic surface. Quantum mechanics tells us that electrons are only able to be
in states of very speci�c energies (`energy levels'), and this is of course true for metals as
well as individual atoms and molecules. Metallic substances are characterised by heavily
overlapping electron distributions, which results in a `sea' of conduction band electrons
free to move around a lattice of atoms. The electrons stay within the vicinity of the nuclei
because they are trapped in the internuclear potential energy wells generated by the atoms.
It takes energy to free them. Practically speaking, this can be observed as the Photoelectric
E�ect: one can shine a laser beam of very speci�c energy at a metallic substance and tune
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Figure 1.5: An illustration of the original Kelvin probe setup.

the laser to higher energies until electrons are emitted from the surface (and subsequently
detected). Below some threshold energy, no electrons are observed. This threshold energy
corresponds to the work function. Energy in excess of the work function then goes into the
kinetic energy of the electrons as they are emitted from the metallic surface. See Ashcroft
& Mermin (1976) for further background on this topic.

Suppose we have a piece of metal and we want to know its work function. Consider the
setup of Fig. 1.5, where we have a parallel plate capacitor formed from two di�erent metal
plates (with di�erent work functions), connected by a conducting wire. If we do nothing
else, as soon as the circuit is completed a current will �ow in the wire, driven from an
established electric �eld (which corresponds to an electric potential) between the plates.
Essentially, electrons �ow to deposit themselves on one of the plates, creating a potential
di�erence between them. This process is driven by the di�erence in the work functions of
the metals, since the electrons they contain are sitting at di�erent energy levels.5

5More precisely, we speak of the highest energy level electrons. When we talk about work functions, we
really mean the energy it takes to liberate the electron in the highest occupied energy level (like a valence
electron in an atom).
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Next, if we mechanically vibrate one of the capacitor plates, the distance between the
plates becomes time-varying. This makes the electric �eld between the plates vary with
time, and therefore we get an alternating current (AC) in our wire. Suppose we now apply a
compensating voltage to the circuit, which happens to exactly correspond to the di�erence
in the metals' work functions. Then there would be no need for a current to �ow, since
there is nothing left to balance between the metals. Our AC signal vanishes.

As one can see, the compensating voltage we apply is a direct measure of the di�erence
in the work functions of the metals. Knowledge of the work function of one of the metals
allows an absolute determination of the work function of the other. This is known as the
Kelvin Method for determining the work functions of metals, and is a key concept in the
development of KPFM theory (Nonnenmacher et al., 1991) which we will discuss next.

1.3.3 Historical Overview

KPFM as a microscopy tool was �rst introduced by Nonnenmacher et al. (1991), which
described the �rst application of Kelvin's method combined with an AFM to produce
images of the contact potential di�erence (CPD) between the tip and a sample surface. In
terms of the work functions, the CPD is written

vCPD = (φsample − φtip) /e (1.2)

in which φ is the work function and e is the electron charge.

The way in which this is accomplished is by replacing the use of currents in the Kelvin
Method with forces, something that AFMs are particularly good at measuring. However,
the Kelvin method yields a measurement of the CPD for the entire sample, with no spatial
resolution at all. KPFM combines the principles of the Kelvin Method to yield a high
resolution CPD measurement system. The basic setup is shown in Fig. 1.6, where we have
a conducting cantilever tip that can form a capacitor system with the sample surface. First,
as in the Kelvin Method, a capacitor is formed by lifting the tip to a set distance6 above

6Actually, this is set in mV, rather than nm, so really it's a potential setpoint.
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Figure 1.6: Electronics for the basic KPFM setup. Reprinted from Nonnenmacher et al.
(1991).

the surface. This is done with the `trace' step discussed above for AFM. On the retrace,
this topographical information is used to maintain a constant height above the sample.
This forms the capacitor we discussed previously. Next, as in the Kelvin Method setup,
the cantilever is set into oscillation with an AC voltage. As the cantilever probe is sent
along the retrace path, a compensating potential di�erence is applied to minimise the AC-
induced oscillations. As before, the oscillations will stop when the compensating voltage
cancels out the potential di�erence, or work function. The results are recorded at each
location and used to calculate and map out the contact potential di�erence. This KPFM
operation setup is known also as `lift mode'. In their �rst paper, Nonnenmacher et al. (1991)
demonstrated this procedure using samples of two di�erent metals and imaged them with
KPFM. An example from their work is shown in Fig. 1.7, where surfaces of platinum and
gold are imaged together.

A year later, Nonnenmacher et al. (1992) reported a study showing that KPFM could
also provide information on the condition of the surfaces that are studied, including crystal
structures, contamination and conductivity. The latter was measured by illuminating
silicon surfaces and then imaging their surface potentials; electrons would be liberated from
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Figure 1.7: One of the �rst KPFM images of platinum and gold. Reprinted from Non-
nenmacher et al. (1991).

the photoelectric e�ect and then left to conduct along the surface, producing a measurable
voltage change. In 1996, Yasutake et al. introduced some improvements to the previous
KPFM setup using a frequency modulation technique (see below) with an improved servo
mechanism to control the tip separation so that the cantilever never comes into contact with
the surface (increasing the potential measurement resolution) and a method to nullify the
electrostatic force at the topographical modulation voltage to increase the lateral resolution
to 10 nm.

1.3.4 Mathematical Development

It is instructive to put into mathematical form the discussion above, so that we can facilitate
a clearer connection with the electronic realisation of KPFM. We can begin by writing down
an expression for the force that is experienced by the cantilever tip and the sample, which
is dependent upon the electrical potential di�erence between them and the nature of the
capacitor that is formed (see Melitz et al., 2011):

Fts(z) = −1

2
∆V 2dC(z)

dz
(1.3)
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Here, the force is dependent on the gradient of the capacitance, C (with respect to the
height, z, which is the direction perpendicular to the sample surface), and the di�erence
between the CPD and the voltage that is applied to the tip, ∆V . This voltage di�erence
is simply the CPD plus whatever voltage we apply to the tip. In the case of KPFM,
we apply an AC voltage (to oscillate the tip and create the `vibrating' capacitor) plus a
compensating DC voltage. The result can be expressed as (Melitz et al., 2011)

∆V = Vtip ± VCPD = (VDC ± VCPD) + VAC sin(ωt) (1.4)

Notice that the VAC component is sinusoidal in time, as alternating currents behave.
Putting this expression into our equation for the force detected by the AFM tip, we have

Fts(z, t) = −1

2
[(VDC ± VCPD) + VAC sin(ωt)]2

dC(z)

dz
(1.5)

which can be separated into three interesting parts:

FDC = −dC(z)

dz

[
1

2
(VDC ± VCPD)2

]
(1.6)

Fω = −dC(z)

dz
(VDC ± VCPD)VAC sin(ωt) (1.7)

F2ω =
dC(z)

dz

1

4
V 2

AC [cos(2ωt)− 1] (1.8)

Notice that the �rst, FDC, does not vary with time; it contributes, therefore, to a constant
de�ection of the tip from the sample surface (that is, a measure of height). The second
equation, Fω, vanishes when VDC = VCPD.7 Thus, oscillations induced at frequency ω can
be monitored and nulli�ed with a judicious choice of VDC, which gives a direct measure
of VCPD. Lastly, the third equation, causes oscillations at a di�erent frequency (which
typically is not monitored in KPFM) and can be used for capacitance microscopy, which
we will not discuss here.

7This is a miraculous result. Also, note that the compensating voltage is either equal, or equal and
opposite, to the CPD, depending on how the system is set up.
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A Note on Electronics

It is useful to present a brief discussion on how the electronics are set up to implement the
KPFM system. In the basic form, Nonnenmacher et al. (1991) presented it as follows, with
reference to Fig. 1.6. The force-sensing AFM tip is driven at or close to the fundamental
resonance frequency, and simultaneously at another frequency that is higher by a small
amount. The reason for this will become clearer later on, but the basic idea is to separate
the height-measuring signal from the CPD signal. A lock-in ampli�er is used to detect
changes in the response of the AFM tip oscillation, which will be due to changes in the
sample height (for one frequency) or in the CPD (for the other frequency).8 The signal is
then �ltered, and an interferometer is used to monitor the tip height. If the signal coming
from the lock-in ampli�er is non-zero, a feedback loop adjusts the compensating voltage
until the lock-in ampli�er signal vanishes. The resulting CPD is measured, and the tip
moves along the sample.

1.3.5 Advanced Modes: Amplitude and Frequency Modulation

KPFM

In recent years, the basic KPFM procedure has been re�ned with additional techniques
and electronics to improve upon the sensitivity, speed and resolution (e.g. Jacobs et al.,
1998, 1999; Zerweck et al., 2005; Moores et al., 2010). Here we will discuss two interest-
ing advances in KPFM implementation that have signi�cant advantages over conventional
methods. The �rst is amplitude modulation (AM), and the second is frequency modula-
tion (FM). By analogy with radio frequency transmissions, changes in the amplitude or
frequency of the sinusoidal signal coming from the tip are used to carry the information,
which in this case is the contact potential di�erence (or how it is changing) as the tip
moves along the surface. The amplitude and frequency changes that are monitored for the
KPFM signal are generated by the variation in the forces exerted on the cantilever tip; a

8Lock-in ampli�ers work by mixing the input signal with a reference frequency, and output a positive
signal only of the input signal contains oscillations at the reference frequency. Essentially, a signal is sent
from the lock-in ampli�er only if the tip is oscillating at or near the reference frequency.
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1.3. Atomic and Kelvin Probe Force Microscopy

Figure 1.8: A schematic of the KPFM setup with AM and FM modes. Reprinted from
Sadewasser & Glatzel (2012, Chap. 2).

change in the force results in a change in the tip oscillation (more on this later). In this
way, the feedback signal (essentially the signal that indicates a change in the compensating
voltage is necessary) is modulated by the amplitude or frequency of the tip oscillation. As
we will see, this modulation scheme creates additional advantages (Zerweck et al., 2005).

One important advantage is the use of frequencies that are not necessarily at the fun-
damental resonance. Cantilever tips (and other oscillating objects) have more than one
resonance frequency, so it is possible to encode multiple signals carried at di�erent reso-
nances. Resonance frequencies above the fundamental mode are called overtones, the �rst
of which is roughly at six times the fundamental frequency. This point is important for
the advanced modes discussed below (Zerweck et al., 2005). Fig. 1.8 shows how the setup
is expanded for advanced modes, which will be useful as we discuss them.

Amplitude Modulation

In AM mode, changes in the amplitude of the oscillation of the cantilever tip are monitored
and the compensating voltage is applied to minimise these changes. Notice from the
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equations above that the amplitude of oscillations at frequency ω is non-zero if the CPD
is not matched by the compensating voltage. By electrically exciting the AFM tip at, for
example, the second resonance frequency (�rst overtone), the lock-in ampli�er can be tuned
to that frequency and used in the feedback loop to minimise changes in the amplitude of
oscillation at that frequency. Here, the �rst overtone is used for two reasons. First, the
amplitudes of oscillation at harmonic9 frequencies have very high responses when compared
to any random o�-resonant frequency, and this helps to achieve an acceptable signal-to-
noise ratio. Second, even the softer cantilevers have fundamental frequencies in the range of
∼ 70 kHz, which brings their �rst overtone to ∼ 440 kHz; anything much higher than that
is beyond the capabilities of standard instruments.10 The fundamental frequency is then
left available to mechanically11 excite the tip so that height measurements can be made
simultaneously. Separating the signals in this way mitigates cross-talk between the signals
from the CPD and topography (Melitz et al., 2011). Not only does this con�guration allow
simultaneous measurement of topography and CPD, it allows the tip to scan closer to the
sample surface, which increases the spatial resolution. Reducing cross-talk has the e�ect
of increasing the resolution of the CPD measurement (Moores et al., 2010).

Frequency Modulation

An electric �eld actually changes the fundamental resonance frequency of cantilever tips.
Looking at Hooke's law12, we see that for small oscillations the force between the tip and
the sample de�ects the cantilever by an amount z, with the spring constant k acting as a

9The term `harmonic' simply means that the frequency is one that sets up resonance in the cantilever,
be it the fundamental frequency, �rst overtone, etc. This need not be limited to the fundamental frequency,
since there is an entire spectrum of harmonics.

10This means, in e�ect, that the second overtone is o� limits.

11As in the traditional AFM, this is done with a piezoelectric crystal rather than an oscillating current.

12While this is called a 'law', it actually isn't. This result is only valid for relatively small oscillations.
Under such conditions, the frequency of the oscillations is independent of the amplitude (much like all
pendulum clocks keep time because their oscillation frequencies are identical). However, as the amplitude
increases, the frequency becomes increasingly dependent on it.
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constant of proportionality:
F = −kz (1.9)

Therefore, one can conclude that a force gradient gives us

dF

dz
= −k (1.10)

Furthermore, the fundamental frequency of oscillations for a force-spring system is given
by

f0 =
1

2π

√
k

meff

(1.11)

in which meff is the e�ective mass of the system of interest. Therefore, the presence of
a force gradient causes a shift in the `e�ective' spring constant, leading to a shift in the
fundamental resonance frequency (Giessibl, 1997; Zerweck et al., 2005), which for relatively
small force gradients is given by f ′0,

f0 ' f0

(
1− 1

2k

dF

dz

)
. (1.12)

This suggests that a shift in the resonant frequency could lead us to a di�erent method of
detecting a CPD. In FM mode, the cantilever is oscillated as in AM mode, mechanically
at the fundamental resonance frequency and electrically at some other frequency that we
call fmod.13 A feedback loop minimises the electrical oscillations when the compensating
voltage nulli�es the CPD. However, FM mode takes advantage of the shift in resonance
frequency that is experienced in the presence of electrical forces. The system tracks a signal
that arises from the oscillation of the electric force gradient that is due to the modulation
voltage. Since the fundamental resonance frequency of a cantilever is shifted due to a force
gradient, oscillations in the force gradient generate side-band signals. These side-bands are
due to frequency mixing arising from the two waveforms (the other being fmod). When two
sinusoidal waves are mixed (with frequencies f0 and fmod), which implies multiplying them

13In FM mode, this isn't necessarily the �rst overtone, since, as we will see, we do not encounter the
same di�culties with signal-to-noise as in AM mode. In fact, for reasons that will become clear later, fmod

is typically a few kHz.
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Figure 1.9: A representation of the spectrum of frequencies giving rise to the tip oscillation
in FM-KPFM mode. Reprinted from Zerweck et al. (2005).

together, we can see from a standard trigonometric identity that the result is a contribution
from two other sinusoids,

cos(2πf0t) cos(2πfmodt) =
1

2
{cos[2π(f0 − fmod)t] + cos[2π(f0 + fmod)t]} (1.13)

which have frequencies (f0 +fmod) and (f0−fmod). These additional frequencies are known
as `mixing side-bands' and are sensitive to the force gradient (since the force gradient
changes the fundamental frequency), instead of just the force, as is the case with the
non-mixed frequencies (Zerweck et al., 2005). See Fig. 1.9 for an illustration. Here, the
modulation frequency is chosen to be only a few kHz. A KPFM system can track signals at
these side-bands in a feedback loop which nulli�es them. A null signal at these side-bands
indicates a compensated, and thus recorded, CPD. It is important to note that these signals
can be nulli�ed only because their presence depends upon the quantity (VDC−VCPD) being
nonzero; see Eqns. 1.7 and 1.8.

Since we are not limited to the frequency of the �rst overtone, soft cantilevers are
not required. By using a sti� cantilever, smaller tip-sample separations are possible, which
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increase the lateral resolution signi�cantly. Not only is this a nice advantage, it is somewhat
of a requirement for this mode to succeed: as we discussed, the FM mode is sensitive to
the electrostatic force gradient, a property which is larger nearer to the sample. Very little
signal is generated far from the sample. Since the force gradient is large near the sample
surface, and not subject to any parasitic in�uence from the topography, FM-KPFM can
achieve the greatest spatial resolution in air (in some cases, on the order of 1 nm). Electric
potential resolution down to only a few mV can also be achieved. In contrast, AM-KPFM
has much lower spatial resolution, up to a factor of 10 worse than FM-KPFM, which is
somewhat dependent on the tip size (Zerweck et al., 2005). Although it has been shown
that AM-KPFM can produce greater potential resolution, it gives an inferior signal-to-noise
ratio (Zerweck et al., 2005; Moores, 2010).

1.3.6 Applications of KPFM

Potential Di�erences

In the case of metal samples, as we discussed previously, KPFM measures the di�erence in
the work functions of the tip and sample. Knowledge of the tip's work function allows an
absolute measure of the sample's work function. For an insulating material, where there
is little or no electrical conduction, we measure simply the electric potential di�erence
between the tip and sample. On a surface, there exists a potential energy surface which
we might wish to measure. For membranes, this surface might also be generated from a
series of dipoles created from the molecules making up the surface. The dipole �elds would
be picked up as contributions to the potential di�erence signal. However, one must take
caution in realising that a KPFM signal is most useful when we see contrast in the image.
Essentially, we need to see di�erences between di�erent areas of the sample. If we have a
membrane that is composed of two layers and wish to probe its electrostatic properties, for
example, we might not be able to detect any signi�cant KPFM signal since the dual layers
provide symmetry and result in the same dipole �elds, giving rise to no variation in the
KPFM image. Therefore, it is often important to look at monolayers in KPFM studies.
More on this will be discussed later.
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Physics and Materials Science

In most non-biological applications, KPFM is useful in the study of metallic nanostructures
and other small-scale processes that might involve charge distributions, work functions or
current behaviour. Here we will describe a few brief examples.

Metallic nanostructures are important to understand if we wish to construct techno-
logically useful devices on the nanometre scale. A particularly useful metal is gold, as it
has low chemical reactivity and is relatively large. In a study of the deposition of gold
nanoparticles onto an InSb surface, Goryl et al. (2005) showed both topographical and
KPFM images of the deposition, which is shown in Fig. 1.10. As we can see, the KPFM
image reveals interesting features in between the 'usual' rectangular shapes formed by the
gold. The researchers suggest that this is due to Indium alloying with the gold atoms, leav-
ing the surfaces between the nanostructures enriched with antimony. Such a conclusion
cannot be reached looking at the AFM topography alone.

Given the ability of KPFM to detect surface charges (and thus currents), it seems
natural that solar cells would be an interesting application. Indeed, much work has been
done on solar cells with KPFM (e.g. Glatzel et al., 2005; Loppacher et al., 2005), and
Glatzel et al. (2005) presents an interesting study in which an organic solar cell �lm was
imaged both in the dark and under illumination. The KPFM signal di�ers markedly for
the two conditions, which translates into a di�erence in the `photovoltage' of the surfaces
before and after illumination.

In addition to metallic nanostructures and solar cells, there are numerous other non-
biological applications as well, such as how charges move when metals are used as catalysts
in chemical reactions, charge transfer in semiconductors, quantum dots and transistors (see
Melitz et al. (2011) for a review).

Biological Applications

Despite the tremendous potential of KPFM to reveal new science in biological systems,
only recently has this been practical due to the di�culties that such applications present.
For example, there must be su�cient contrast in the CPD signal that can be resolved on
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Figure 1.10: Gold deposited onto an InSb surface. (a) AFM image, (b) KPFM image.
Features between the gold structures are visible in the KPFM image. Reprinted from
Goryl et al. (2005).
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the scales at which KPFM functions. If, say, the charge distribution is fairly uniform on
the scale of a few tens of nanometres, then the CPD signal will be washed out. Higher
resolution KPFM helps to work around this, but development of FM-KPFM is still ongoing.

Nevertheless, there have been a number of promising studies to-date that show the
basic capabilities of AFM and KPFM to study biological systems (Kalinin et al., 2007).
A large amount of research has been done on cell membranes by imaging lipid monolayers
and bilayers, which are relatively straightforward to implement in the lab (see below).
Surfactant �lms are also an important system that can be studied with KPFM, which we
will discuss in this section. In a biological context, surfactants are well known to play an
important role in lung function; a surfactant essentially reduces surface tension, and allows
lungs to expand more freely than if they were coated in water, which has a relatively high
surface tension and would resist expansion (e.g. Leonenko et al., 2006). Another interesting
application of KPFM is in the study of DNA and proteins. Their structure and functions
under various conditions can be studied, this time alongside their electrostatic properties.
We will discuss these topics in more detail below.

Lipid Monolayers and Cell Membranes

Thin �lms, and in particular lipid molecules play a critical role in the function of biological
processes. First we will discuss lipids and their role in cell structure and function before
discussing recent studies in some detail. A lipid is a type of amphiphilic molecule, which
contains a hydrophilic component at one end and two hydrophobic tails at the other. The
result is that one end of the molecule is attracted to water, the other end avoiding it.
The structures of some common lipids are shown in Fig. 1.11. Cell membranes consist of
lipids aligned in two sheets, with the hydrophobic tail ends facing each other, as depicted
in Fig. 1.12 below. In this double-sheet format, the structure is known as a lipid bilayer.
A single layer of lipid is known as a monolayer. We will talk about the speci�cs of how
monolayers are studied later on. In biological cells, lipid bilayers form the protective
barrier that allows them to control what goes in and what doesn't. Proteins present in the
membrane form channels which allow the regulation of ion concentrations both within and
outside the cell, nutrient intake, expulsion of waste products, and so on (Alberts et al.,
2002). Studying membrane structure and composition, and the e�ects of di�erent building
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blocks (lipids) is therefore extremely important.

Also of importance in the study of lipids is their phase, as di�erent lipids can have
di�erent structural characteristics at di�erent temperatures. Shown in Fig. 1.12, lipid bi-
layers of di�erent phases are depicted. The double bond in an unsaturated lipid creates a
`kink' in the chain which disrupts the ordered stacking of the molecules, creating spaces in
the bilayer which allows the lipids to move more freely. This is known as a `liquid' phase,
while a fully saturated lipid is generally in a gel-like phase at room temperature.

In the cell membrane, the lipids present are primarily glycerophospholipids (like phos-
phatidylcholine), sphingolipids, and steroids (like cholesterol) (Alberts et al., 2002). Vary-
ing the relative concentration of di�erent lipids in membrane studies helps us to determine
their functional role in the cell. For example, a lipid monolayer containing two lipids, one
saturated and one unsaturated, would form structures known as lipid `rafts', where regions
of the monolayer are higher than at other places since the two lipids are slightly di�erent
in length.

Biological membranes are very di�cult to study since their thickness is only on the
order of a few to 10nm. In addition, they are delicate structures that are easily ruptured
in a laboratory setting. Ideally, we would like to simply study them directly in their native
state, but this is not possible with conventional microscopy. Due to their size, electron
microscopy or AFM is required to resolve the nanometre-sized structures present in the
membranes. The huge advantage of AFM is that the membrane need not be arti�cially
treated before imaging.

Furthermore, lipids are in general charged structures, and therefore they form an electric
potential surface in membrane form. We can use KPFM to study the electrostatic prop-
erties of lipid membranes in a biological context. Below, we will discuss a few examples of
recent studies.

Examples

Our �rst example is a study by Leung et al. (2010), where individual DNA molecules were
imaged with AFM and KPFM on a mica substrate. The authors experimented with lift-
mode KPFM and what they call `dual frequency mode', which resembles AM-KPFM. They
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Figure 1.11: Some common membrane lipid structures. The head groups are represented
by `R', and give rise to the di�erent classes; for example: phosphatidylcholine (PC) or
phosphatidylethanolamine (PE) in the case of the glycerolipids. Reprinted from Holthuis
& Levine (2005); see that paper for further de�nitions.
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Figure 1.12: An overview of common lipid phases in bilayer structures. Top: liquid
crystalline. Middle: solid gel. Bottom: liquid ordered. Reprinted from Van Meer et al.
(2008).
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found, not surprisingly, that the latter mode resulted in superior resolution. Their image
of DNA (both height and CPD relative to mica) is shown in Fig. 1.13. The DNA shows up
with a negative CPD when compared to mica, as the DNA is negatively charged. White
regions also appear in the image which the authors claim is due to Ni2+ ions accumulating
on some of the DNA molecules. These Ni2+ ions were deposited onto the mica before
the DNA in order to provide a `sticky' surface on which to bind. In an earlier study,
the same group imaged DNA and individual biomolecules on a silicon surface (Leung
et al., 2009); see Fig. 1.14. In that study, individual avidin (egg protein) molecules were
imaged and determined to have a potential di�erence of about +10mV each relative to the
background. However, the authors point out that silicon is not an ideal substrate to use
in biological studies; mica is much more suitable as it is an insulating, polar surface that
accepts hydrated samples.

A study on protein binding was done by Sinensky & Belcher (2007), where avidin and
neutravidin (a modi�ed avidin) glycoproteins were added to biotin (a B-vitamin) to observe
the change in charge distribution with KPFM. They observed that after avidin exposure
the surface potential changes dramatically, whereas with neutravidin it does not. Studies
such as this pave the way for future experiments to detect charge distributions in protein
complexes. It is also important to point out that these studies are done without any dyes,
labels or intercalating agents as is necessary in most applications of other methods, like
�uorescence microscopy. Such labelling techniques have the potential to alter the sample,
which could bias results. KPFM requires no such labelling, which is another signi�cant
advantage in biological studies (Thompson et al., 2005).

Another interesting application is imaging actin �laments. Actin �laments play an
extremely important role in muscle contraction. When they contract, changes in the dis-
tribution of charges can tell us something about their electrostatic functions. Zhang &
Cantiello (2009) performed such a study, and imaged actin with both AFM and KPFM.
The result is shown in Fig. 1.15 below. Earlier in this review, we discussed three di�erent
imaging modes: lift, AM and FM KPFM. In a study on pulmonary surfactant, Moores
et al. (2010) demonstrated the practical di�erences in imaging the surfactant assembly
using all three KPFM modes. In this particular study, pulmonary surfactant Bovine Lipid
Extract Surfactant (BLES) was combined with 20% cholesterol (by weight) and deposited
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Figure 1.13: KPFM image of DNA molecules on mica. The plots are cross sections
showing the presence of the DNA strands as areas of negative surface potential. Reprinted
from Leung et al. (2010).
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Figure 1.14: Analogous to Fig. 1.13 from the same group, this is an image of DNA on
a silicon surface. Images (a) and (b) are AFM and KPFM scans. The white boxes
show where the inset images were taken, resolving an individual DNA strand (c,d) and
intertwined strands (e,f). The plots (g,h) are cross sections from their respective images
above, along the white arrows, showing the presence of the DNA strands as areas of
negative surface potential, with some positively charged bu�er salts surrounding them.
Figure reprinted from Leung et al. (2009).
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Figure 1.15: AFM (left, a) and surface potential (right, b) images of actin �laments. The
surface potential images were taken from two di�erent lift heights in image (b), as shown.
Reprinted from Zhang & Cantiello (2009).

onto mica using a Langmuir Blodgett (L-B) trough.

Before we describe the results, it is useful to brie�y describe this L-B trough method
to deposit a lipid monolayer onto the mica slides for KPFM (and AFM, for that matter)
imaging. The trough is a hydrophobic basin into which a liquid (usually water) is poured
and puri�ed. A lipid mixture dissolved in an organic solvent is then spread over the top
surface of the liquid so that it is only one molecule thick. The hydrophilic head groups will
all naturally align themselves with the water, so that the hydrophobic tails point directly
upwards out of the tray. Two arms at the end of the basin compress the total surface area,
raising the pressure to some desired level and keeping the lipid molecules tightly aligned.
A mica slide is usually inserted prior to the lipid deposition, and later raised up out of
the solution while the arms keep the pressure constant. As the slide is raised upwards, the
lipid monolayer is deposited onto the surface in one thin �lm. This topic will be discussed
in detail later in � 1.4.1.

In Moores et al. (2010), the BLES+cholesterol mixture was imaged in all three KPFM
modes, as shown in Fig. 1.16. Clearly, the FM mode achieves superior sensitivity and reso-
lution compared to the other modes, where the signal-to-noise ratio is comparatively low.
They observe that cholesterol appears to disrupt the electrostatic potential of pulmonary
surfactant, which is a phenomenon that cannot be detected with AFM alone.

In a di�erent study, Hane et al. (2009) studied model surfactant �lms composed of
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Figure 1.16: Lift mode KPFM (A), AM-KPFM (B) and FM-KPFM (C) images of pul-
monary surfactant mixed with 20% cholesterol. In the bottom panel we see cross sections
of the surface potentials for each mode. All images are 2 microns on a side. Reprinted
from Moores et al. (2010).

32



1.3. Atomic and Kelvin Probe Force Microscopy

DPPC (a large component of the natural BLES surfactant) and eggPC, with and without
surfactant protein `C' (SP-C). Model surfactants are important in that they provide an
opportunity to discern the roles of individual components of natural surfactants so that we
can determine how they achieve their functions. It turns out that pulmonary surfactant
BLES forms multiple layers as part of its function of reducing the surface tension in the
lungs. In Hane et al. (2009), AFM and KPFM images are shown (see Fig. 1.17) for the
model �lms, and they showed that the presence of SP-C results in increased KPFM con-
trast, which is similar to BLES. They conclude that the presence of SP-C in the surfactant
�lm is therefore important. Such contrast is not visible in AFM. To illustrate this point
further, Drolle et al. (2012) presented a study in which DPPC monolayers were imaged
with AFM and FM-KPFM, with and without cholesterol. The FM-KPFM images revealed
nanoscale electrostatic domains which cannot be seen with AFM alone.

KPFM is also useful in detecting binding events of biomolecules (e.g. Gao & Cai,
2009), biomolecules immobilised on surfaces in biocompatibility studies (Cheran et al.,
2000), other organic thin �lms (e.g. Palermo et al., 2006), and the detection of dispersed
proteins (Laoudj et al., 2005). In this latter paper, it is pointed out that KPFM could be
used to detect proteins that have been dispersed by some method (e.g., electrophoresis),
and do so with much higher sensitivity than traditional staining methods. Clearly, the
biological applications of KPFM are very promising, with much room for development and
new discoveries.

1.3.7 Limitations of KPFM

While KPFM has many excellent features and applications, there are a number of short-
comings to keep in mind. Some of these are resolved in specialised imaging modes, but not
all. For example, recall that in lift mode we measure the topography �rst, then retrace at
a constant height above the sample surface to make the KPFM measurement. This has to
be done several, if not tens, of nanometres above the surface. The higher the tip is lifted,
the more surface the tip `sees' and thus the result is a blurrier average of nearby space
resulting in lower lateral resolution. FM-KPFM does a good job of solving this resolution
issue, since it can be performed at closer tip-sample separations.

33



Figure 1.17: AFM (left) and lift-mode KPFM (right) images of a model �lm of
DPPC/eggPG (A-B), and DPPC/eggPG/SP-C (C-D). For each image, cross sections
were taken along the white lines shown. Compare the resolution and detail present in the
KPFM image here with that of Fig. 1.18. Reprinted from Hane et al. (2009).
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1.3. Atomic and Kelvin Probe Force Microscopy

Figure 1.18: Topography (a and b) and FM-KPFM (c and d) of lipid monolayers without
cholesterol (left images) and with cholesterol (right images). These images were obtained
with the same AIST-NT Smart-SPM that is used in the present work. Reprinted from
Drolle et al. (2012).
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Oscillating the tip can bring additional problems. It is not the intention to bring the
tip into contact with the sample, but sometimes this happens by accident, and charges
might �ow between them. This either contaminates the tip or alters the surface potential;
either way it introduces an undesirable e�ect.

One of the most signi�cant shortcomings at present is the inability to use KPFM in
liquid. To-date, no method has been developed to send a current to the tip without also
electrifying the sample, something that is relatively straightforward to implement in air.

Finally, it is worth noting the resolution limits of KPFM. Sub-nanometre resolutions are
only achievable with FM-KPFM, which has been a fairly recent development. Resolutions
on the order of tens of nanometres are common in lift mode, and so it is useful primarily
for systems in which there are signi�cant charges present within large domains that are
signi�cantly larger than 10 nm (Zerweck et al., 2005).

1.3.8 Summary and Future Prospects of KPFM

We have discussed the history, theory, development and capabilities of KPFM in this short
review. Following an overview of traditional AFM, we discussed the Kelvin Method and
how it leads naturally to KPFM via a merger with AFM. We then touched brie�y on some
historical development and early results, and more recent advanced imaging modes that
assisted in solving resolution and sensitivity issues with `conventional' KPFM in lift mode.
Applications of KPFM were discussed, �rst in a non-biological context and then recent
studies of biological systems.

At present, there has been precious little research done using KPFM in biology. This
is mainly due to the resolution limits that have only recently been addressed, limits that
prevent the CPD imaging of most biological systems. The possibilities are therefore stag-
gering. Virtually any biological system that is charged or possesses an electric �eld has
been relatively unexplored. The next step is to improve upon KPFM methodology and
instrumentation to achieve high resolution (< 1 nm) and high sensitivity, and ideally with
the capability of implementing this in a liquid environment.
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1.4. Monolayers of Amphiphilic Molecules

1.4 Monolayers of Amphiphilic Molecules

. . .But recollecting what I had formerly read in Pliny, I resolved to make some

experiment of the e�ect of oil on water, when I should have opportunity . . .

At length being at Clapham where there is, on the common, a large pond, which

I observed to be one day very rough with the wind, I fetched out a cruet of oil, and

dropt a little of it on the water. I saw it spread itself with surprising swiftness upon

the surface; but the e�ect of smoothing the waves was not produced; for I had applied

it �rst on the leeward side of the pond, where the waves were largest, and the wind

drove my oil back upon the shore. I then went to the windward side, where they began

to form; and there the oil, though not more than a teaspoonful, produced an instant

calm over a space several yards square, which spread amazingly, and extending itself

gradually till it reached the leeside, making all that quarter of the pond, perhaps half

an acre, as smooth as a looking-glass.

After this, I contrived to take with me, whenever I went into the country, a little oil

in the upper hollow joint of my bamboo cane, with which I might repeat the experiment

as opportunity should o�er; and I found it constantly to succeed. In these experiments,

one circumstance struck me with particular surprise. This was the sudden, wide, and

forcible spreading of a drop of oil on the face of the water, which I do not know that

anybody has hitherto considered. If a drop of oil is put on a polished marble table,

or on a looking-glass that lies horizontally; the drop remains in its place spreading

very little. But when put on water it spreads instantly many feet round, becoming so

thin as to produce the prismatic colours, for a considerable space and beyond them

so much thinner as to be invisible, except in its e�ect of smoothing waves at a much

greater distance. . .

�

Benjamin Franklin, 1774

from �Of the stilling of waves by means of oil�

The implications of what Franklin saw go far beyond calming seas. Take his teaspoonful
of oil appearing to spread over that half acre. The thickness of such a �lm, if one does the
calculation roughly, must be on the order of 10−9 m. A nanometre. Franklin, though he
did not know it at the time, observed amphiphilic molecules (oil) spread into a monolayer
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over the surface of water. That is, the oil spread into a layer only one molecule thick.
Furthermore, water has a very high surface tension, meaning that it forms a kind of `skin'
at its air-water interface due to its unusually strong polarity. Calming the waves was the
result of the surfactant behaviour of oil molecules reducing the surface tension of the water
(disrupting the `skin'). It would not be for over another 150 years that this concept was
put to scienti�c practice by Irving Langmuir and others (e.g. Langmuir, 1934; Blodgett,
1935). For the interested reader, Israelachvili & Ruths (2013) is a nice historical review of
this �eld.

The phenomenon of surface tension arises because there is an interface, in this case an
interface of air and water. Water has two polar O-H bonds, which, if in an aqueous envi-
ronment, attract other water molecules so that they all essentially stick together. However,
at the interface, there is necessarily an absence of water molecules beyond it. The water
molecules are left to interact in a sheet, strongly, which resists breakage (see Fig. 1.19).

If they are introduced to a system like a container of water, amphiphilic molecules don't
like to stay in the water; it is energetically more favourable for them to come to the surface
(at the interface), so that their hydrophobic tails may be removed from the water. The
net e�ect is a lowering of the surface tension, because the forces between the hydrophobic
chains of a surfactant are much less than the attractive forces between water molecules
which are able to form hydrogen bonds with each other. As a result, surfactants are, in
general, only slightly soluble in water, and beyond a certain concentration form micelles in
solution. Gemini surfactants are even less soluble in water than their monomeric analogues.
For a detailed reference on this topic the reader is referred to Israelachvili (2011).

In this section, we will discuss in some detail the concepts of monolayer formation,
why they are useful, and how they are studied. In this thesis, monolayers are utilised
heavily. Combined with nanoscale imaging techniques like AFM and KPFM, we can glean
very detailed information about how these molecules behave. It is fortunate that the same
properties which give rise to the ability of surfactants to be used as therapeutic agents also
facilitates their study.
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1.4. Monolayers of Amphiphilic Molecules

Figure 1.19: Illustration of the two-dimensional arrangement and interactions of molecules
in a liquid, particularly at the air-water interface. Reprinted from KSV Nima.
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1.4.1 Langmuir Monolayer Techniques

To study monolayers in a controlled environment, Irving Langmuir (Langmuir, 1934) �rst
came up with the instrument design featured in Fig. 1.20. Constructed in this setup, such
monolayers are now referred to as `Langmuir' �lms. The apparatus, in its most basic form,
has a basin to hold a subphase (usually ultra-pure water or bu�er), upon which amphiphilic
molecules are deposited. In the same way that Franklin's oil experiment worked, the am-
phiphilic molecules rapidly spread out onto the surface. In general, the molecules are �rst
dissolved in a volatile organic solvent, such as chloroform, which facilitates their deposition
and then evaporates away. The trough itself con�nes the monolayer with movable barriers,
which when used to lower the available surface area of the air-water interface serves to
increase the surface pressure14 by lowering the surface tension:15

Π = γ0 − γ (1.14)

in which γ0 is the surface tension of the pure subphase, and γ is the surface tension of
the subphase with surfactant. In this way, monolayers may be constructed to have various
surface pressures depending on the needs of the experimenter.

At approximately the same time as Langmuir's �rst study, Katherine Blodgett devised
a way to construct monolayers on solid surfaces (like glass or mica slides), which also
allows multiple layers to be supported (Blodgett, 1935). Thus, monolayers may be created
in a Langmuir trough and then �xed on a solid substrate for further study - a method
which is called Langmuir-Blodgett deposition, shown in Fig. 1.21. Since those early days
of Langmuir and Blodgett, a whole �eld of research developed which used monolayers to
study the behaviour and interactions of amphiphilic molecules (e.g. Goddard & Ackilli,
1963; Swalen et al., 1987; Binks, 1991; McConnell, 1991; Kaganer et al., 1999). In the
remainder of this section, we will discuss some of the physics behind these monolayers, and

14Note that in this de�nition, pressure is a one-dimensional quantity, usually expressed in units of
mNm−1, unlike its two-dimensional counterpart expressed in Nm−2.

15The surface tension is lowered because there are more surfactant molecules per unit area. Recall that
surfactant molecules disrupt water molecules from forming a tight `skin' on the interface; more surfactant
molecules means less surface tension.
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1.4. Monolayers of Amphiphilic Molecules

Figure 1.20: A modern Langmuir-Blodgett trough made by KSV Nima. Adapted from a
KSV Nima LB Product Brochure.
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Figure 1.21: Illustration of a monolayer deposition onto a solid substrate. Reprinted from
KSV Nima.

how that leads to useful information from the various ways in which these structures are
examined.

1.4.2 Physics of Langmuir Films

Surface Pressure Measurement

A critical aspect of the Langmuir technique is to measure the surface pressure accurately.
Changes in the surface pressure as a function of the area available per molecule (pressure-
area curves, discussed later in � 1.4.3), provide insights into molecular interactions and
packing behaviour of the molecules. In order to measure this surface pressure, most Lang-
muir troughs use a so-called `Wilhelmy plate', a plate made of either absorbent paper or
platinum, partially submerged in the subphase (Fig. 1.22). The plate experiences a number
of forces, the sum of which is given by (Gaines Jr, 1966)

F = ρpgVp + γ2(t+ w) cos(θ)− ρlgwtd (1.15)
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1.4. Monolayers of Amphiphilic Molecules

Figure 1.22: Diagram of a wetted plate submerged in a subphase for measuring surface
pressure. Reprinted from KSV Nima.

(see Fig. 1.22 for variable de�nitions, in which Vp is the total volume of the plate). In
practice, only changes to the force are monitored as the measurement is zeroed before
surfactants are deposited. In the usual setup, the plate is held up by a wire which measures
the net downward force. At the start of the experiment, when the plate it initially but
barely wetted, the �rst term of Eqn. 1.15 is negligible, and the change in force is therefore
just the surface tension term; this provides (or should provide) a measure of the surface
tension of the pure subphase. When the plate is completely wetted, θ = 0, and changes in
the surface tension of the interface after surfactant molecules are deposited give the surface
pressure:

∆γ =
∆F

2w
(1.16)

assuming that the thickness, t, is much smaller than the plate width, w.
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Phase Behaviour of Amphiphiles

As a monolayer is compressed, the area available per molecule decreases. Depending on the
properties of the molecules themselves, this may result in phase changes. Just as pressure
changes can force a phase transition of a gas to a liquid, as monolayer pressures increase,
the molecules may behave �rst as a gas, then a �uid, and then a solid (e.g. McConnell, 1991;
Kaganer et al., 1999). The degree of saturation of the hydrocarbon tail of the amphiphiles
plays a key role in this phase behaviour. This concept has been introduced already in
� 1.3.6, and here we link this to our more detailed discussion on monolayers. For example,
observe in Fig. 1.23 the structures of three lipids that are used in the present work, which
are commonly found in cell membranes. One of these lipids has tails that are completely
saturated (DPPC), while the other two (DOPC and DOPE) have unsaturated tails. In a
similar way that unsaturated tails of cooking oil cause it to be liquid at room temperature,
while largely saturated fat molecules of butter make it a solid, these lipids have di�erent
phase behaviour at room temperature. This will be observed in the studies presented in
this thesis, and can also be seen in plots of surface pressure as a function of area available
per molecule (see Fig. 1.24 and refer to � 1.4.3).

1.4.3 Studying Lipid Monolayers

While the present work focusses on the use of AFM and KPFM to study monolayers, there
are other methods that are useful for our purposes, which do not require depositing the
monolayer onto a substrate. As mentioned previously, pressure-area curves are helpful
in deducing structural information and molecular interactions. Another method that can
be used directly on the Langmuir trough is an imaging technique called Brewster angle
microscopy (BAM), which can image monolayers on micrometre scales while it is still at
the air-water interface. We discuss some details of these techniques below.

Isothermal Pressure-Area Curves

Pressure-area curves (also known as isotherms, because they are taken at a constant tem-
perature) are widely employed in monolayer research. A standard isotherm is shown
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1.4. Monolayers of Amphiphilic Molecules

Figure 1.23: Chemical structure of three common phospholipids. These lipids are used
throughout this thesis.
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Figure 1.24: Illustration of the behaviour of a Langmuir monolayer in the trough as a
function of area, thus producing a pressure-area curve. Reprinted from KSV Nima.

schematically in Fig. 1.24, which also relates the various parts of the curve to what is
going on in the trough. At low pressures, the barrier arms are more widely separated, and
the amphiphiles are in a gas-like phase. As the pressure is increased, the molecules start
packing more closely, some transitioning to a liquid phase, then to all-liquid, a gel-like
phase, and �nally a solid at very high pressures. The various phase transitions can be
identi�ed by the standard features in the graph (McConnell, 1991; Kaganer et al., 1999).

An excellent work by Phillips & Chapman (1968) presents a series of monolayers of
DPPC and DPPE, and demonstrates how increasing the tail length of these lipids af-
fects their pressure-area curves: longer carbon chains produce, interestingly, more compact
monolayers. This is evidenced by very steep isotherms at low molecular areas. Further,
the group's work showed that the ethanolamine counterparts (PE) exhibited more compact
monolayers than the phosphocholines (PC), owing to the di�erences in head group size.
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1.5. The Gene Delivery Problem

Brewster Angle Microscopy

The Brewster angle microscopy is a useful technique to perform microscopy directly on a
Langmuir monolayer (Hénon & Meunier, 1991). While it su�ers from the disadvantage of
relatively low resolution compared to AFM (on the order of microns), the ability to image
without depositing the monolayer onto a solid substrate is helpful for a number of reasons.
For example, images may be taken in quick succession to create a `movie' of the behaviour
of monolayers over time, or the very same monolayer may be subjected to changes in the
subphase (like the introduction of new material) and the results observed in real time.

The BAM works on the principle of re�ectivity at interfaces, where the refractive index
changes suddenly. A beam of light normally re�ects or refracts at an interface, and the
changeover occurs at a special angle (the details are not shown here), called the Brewster
angle. Changes in the re�ectivity are observed and used to create an image. Areas of
the monolayer which have a di�erent refractive index than the others (e.g., denser phases,
di�erent materials) show up with contrast (e.g. Hénon & Meunier, 1991). This technique
is used in some aspects of the present work to augment the other techniques, for large-
scale structure information. Combining BAM with pressure-area isotherms to characterize
monolayers is a generally accepted practice (e.g. Kubo et al., 2001; Miñones Jr et al., 2002;
Lancelot & Grauby-Heywang, 2007; Prenner et al., 2007).

1.5 The Gene Delivery Problem

Delivering drugs and related therapeutic agents is one of the primary methods of treating
almost all unfavourable health conditions. Be it a cream to mitigate a skin condition
(topical therapy) or an intravenous chemical solution that is selectively disruptive for cancer
therapy, the success of these methods all rely on e�cient delivery methods. In principle,
an optimal drug delivery system would be: highly versatile - able to carry a variety of
therapeutics; e�cient - successfully deliver the materials to the body with minimal loss;
speci�c - able to target cell types and areas of the body, as necessary; inert - does not
trigger an adverse immune response; and cost-e�ective - can be manufactured with minimal
resources in time, e�ort and costs. Each of these criteria presents di�cult problems that
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are the subject of active research.

Of course, nature has already found a highly e�ective solution for gene delivery: viruses.
A virus, in general, contains a DNA or RNA fragment which codes for enough proteins to
manufacture new viral particles. The protein coat which surrounds the genetic material
protects it from degradation, and is typically constructed with machinery to directly inject
the genes into a prospective host cell. This method of gene delivery is highly e�cient,
having evolved over the entire history of life on Earth. By contrast, synthetic methods of
gene delivery have had only a few decades of research and development.

Despite the high e�ciency of viral gene delivery, such methods are not optimal for
therapies due to their susceptibility to immune responses (Douglas, 2008). In addition,
viruses have evolved to carry very speci�c complements of genetic material, and are not
easily modi�ed to deliver synthetic fragments. Fully synthetic methods for gene delivery
are thus highly desirable for their customisability and safety, but the cost is decreased
e�ciency due to their non-viral origin.

1.5.1 The Transfection Pathway

Assuming that we start with, say, a gene that is nicely packaged in a delivery system that
manages to arrive at a cell's outer membrane, it must make it into the nucleus where the
genome is kept, and then be expressed. This is where real barriers present themselves. It
has long been established that the two most likely methods by which entry into the cell
may be accomplished are i) endocytosis or ii) membrane fusion (Pedroso de Lima et al.,
2001). In the former, the cell membrane inverts and engulfs the gene therapy complex,
pinches in on itself, and is carried into the cell with its own membrane coating it. In the
membrane fusion scenario, the complex simply fuses directly into the cell membrane and
crosses the bilayer into the cell. It appears that endocytosis is likely the dominant e�ect
(Pedroso de Lima et al., 2001; Nakanishi & Noguchi, 2001; Tros de Ilarduya et al., 2010).

Once inside the cell, the complex must then fuse with the endosome's membrane or
otherwise disrupt it in order to be released into the cytoplasm (Nakanishi & Noguchi,
2001). Once there, it must travel through the cell to the nuclear envelope, pass into
the nucleus, and then be expressed by the cell's transcription machinery. The nuclear
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1.5. The Gene Delivery Problem

envelope is porous, but ordinarily does not allow the passage of particles large enough to
be genetic material (for obvious reasons). All of these passages must be made without
any degradation, and each point is an opportunity for enzymes or other cell contents to
interact with the therapeutic gene and its delivery system.

1.5.2 Surfactant Gene Delivery

As we introduced in � 1.2, surfactant micelles can serve as rather clever systems for the
delivery of genes. The method of action is basically this: the self-assembly of surfactants
into micelle `containers' can package up DNA, which is almost always aided by having the
DNA compacted by neutralising its charged backbone, which allows it to condense.16 This
charge neutralisation is important, since the charged nature of DNA can inhibit the strands
from associating with themselves simply due to electrostatic repulsion. The most logical
way to do this would be to have the positive charges simply located on the surfactant
molecules themselves (Pedroso de Lima et al., 2001), although it has also been shown that
the presence of metal ions may allow DNA and surfactants to associate (Gromelski &
Brezesinski, 2004; Dabkowska et al., 2014). Surfactants with positive charges are simply
referred to as cationic surfactants, and all of the gemini surfactants used in the present
work are cationic. In fact, gemini surfactants are doubly charged (2+), and it has been
shown that multivalent cationic surfactants are in general more e�cient at gene transfection
(Ahmad et al., 2005). Transfecting agents may also take the form of polymers, peptides,
or derivatives of cholesterol (Zhang et al., 2004; Zhou et al., 2013).

One of the landmark papers on the use of cationic surfactants for gene delivery and
transfection is Felgner et al. (1987). Even then, the issues surrounding the use of either
less synthetic (viral) or more brute force (microinjection) were top of mind. In the decades
since, these systems have been studied extensively and many reviews of gene delivery have
been published (e.g. Zabner et al., 1995; Noguchi et al., 1998; Pedroso de Lima et al.,
2001; Chesnoy & Huang, 2000; Bell et al., 2003; Tros de Ilarduya et al., 2010; Williford
et al., 2014), and in more speci�c studies on cationic surfactants used for this purpose (e.g.

16The so-called hydrophobic interaction e�ects, discussed earlier, are important here.
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Lawrence, 1994; Sternberg et al., 1994; Koltover et al., 1998; Zhang et al., 2004; Ahmad
et al., 2005; Lv et al., 2006; Ma et al., 2007; He et al., 2011).

The morphology of the complexes formed by cationic surfactants and DNA is a key fac-
tor in their transfection behaviour. In a sense, such complexes can be considered nanoparti-
cles, which act as nanopharmaceuticals. Their shapes play a direct role in their interaction
with cells. It has been suggested that the surfactants pack the DNA into particles, but
that the end result resembles `beads on a string' (Sternberg et al., 1994), with particles
a few hundred nanometres in diameter separated by tubular structures of DNA. Also im-
portant is the packing structure of the surfactant molecules. It turns out that lamellar
structures are not very e�cient at gene transfection, but that a nonlamellar, columnar
or, more speci�cally, a two-dimensional hexagonal structure is more favourable (Koltover
et al., 1998; Koynova et al., 2006). Such a structure can actually be induced by the addition
of a `helper lipid' having the appropriate structural characteristics (Wasungu & Hoekstra,
2006).

Helper lipids, as it turns out, are a critical component of successful surfactant (including
gemini surfactant) gene delivery systems (e.g. Hui et al., 1996; Camilleri et al., 2000; McGre-
gor et al., 2001; Hirsch-Lerner et al., 2005; Wasungu & Hoekstra, 2006; Dabkowska et al.,
2012). A neutral lipid, such as the phosphoethanolamine DOPE, has been found to greatly
enhance transfection e�ciency (e.g. Hirsch-Lerner et al., 2005). Phosphoethanolamines
have tail groups which take up a proportionatey larger volume compared to the head
group than, say, the phosphocholines (the latter have extra methyl groups on their heads,
attached to the nitrogen atom, which increases the head group volume). Therefore, DOPE
tends to pack into structures with negative curvature (such as, say, the interior half of
cell membranes).17 Such inverted structure facilitates the disruption of membranes and
may therefore promote cell entry (Wasungu & Hoekstra, 2006). In addition, dilution of
the cationic surfactant with a neutral lipid allows the mixture to coat and compact DNA
with an optimal charge density that is close to the spacing of negative charges on the DNA
backbone, particularly as compaction occurs (Dabkowska et al., 2012).

17See Israelachvili (2011) for a more detailed quantitative discussion of this topic and the associated
`packing parameter' of surfactant molecules.
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1.6. Overview of the Thesis

1.6 Overview of the Thesis

1.6.1 Research Questions

In subsequent chapters, several research projects are presented which together share a
theme of deducing, at least partially, the nanoscale behaviour of molecules that are of
interest to drug delivery research. Broadly speaking, the aim of this thesis is to seek
answers to the following big questions:

I

How do gemini surfactants interact with lipids commonly found in cell mem-
branes?

II

What does the nanoscale topography look like for monolayers of drug carrying
systems, and how does it correlate with its electrical surface potential?

III

What does the electrical surface potential tell us about how gemini surfactants
bind to DNA?

IV

How can we use monolayers to determine properties of gene transfection com-
plexes?

V

What are the electrical properties of gene transfection complexes?

VI

Finally, how can we use this research to improve the e�ciency of non-viral gene
delivery?

1.6.2 Organisation

After the Introduction, this thesis is organised into 5 other chapters. Chapter 2 presents a
novel study of KPFM of mixed lipid monolayers that are combined with gemini surfactant.
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In Chapter 3, this study is extended to explore the interactions of these monolayers with
DNA. With applications to gene therapy, Chapter 4 looks at monolayers of mixtures which
are used for gene transfection complexes, and how their topography and KPFM signal
compares to the previous chapters' results. The gene transfection complexes themselves
are explored in Chapter 5, and comparisons are made with their monolayer analogues.
Finally, the entire set of research is summarised in Chapter 6, where broad conclusions are
drawn and prospects for future research are indicated. Appendices are included, which
present detailed experimental protocols and supplementary data.
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Observe the light and consider its beauty. Blink your eye and

look at it. That which you see was not there at �rst, and that

which was there is there no more.

Leonardo da Vinci

Chapter 2

Characterising Mixed Lipid-Gemini

Surfactant Monolayers with

Kelvin Probe Force Microscopy

2.1 Introduction

Thus far, in � 1.4, we have discussed what a monolayer is, how it can be constructed in a
controlled environment, and how it can be studied (e.g., AFM, pressure-area curves, BAM).
Things are relatively straightforward when working with a monolayer composed of a single
amphiphilic species. The situation becomes rather more complex as we move into mixtures
of two or more amphiphiles. Interpretation of the isothermal pressure-area curves are more
di�cult, so it becomes necessary to explore a great deal of parameter space (e.g., fraction
of each amphiphile present in the monolayer). Attributing certain topographical features
in AFM images is similarly di�cult. Despite these di�culties, studying such mixtures can
yield valuable information on physical interactions at the molecular level.

Mixed monolayers are also extremely important to study from a biological point of
view. As we discussed in � 1.3.6, cellular membranes are composed of a bilayer of lipid
molecules. One half of this bilayer is simply a monolayer of amphiphilic lipid molecules.
Not so simply, the composition of a cell membrane is highly complex, comprised of many
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di�erent lipids and embedded protein structures (e.g. Welti & Glaser, 1994). Therefore,
an analysis of mixed lipid monolayers can give us information about how cell membranes
function.

In one example, cholesterol present in lipid monolayers has been found to induce a
`condensing e�ect' (e.g. Dynarowicz-�atka & Hac-Wydro, 2004) which could o�er added
stability to cell membranes. In the same study, an analysis of the pressure-area curves of
mixed monolayers found that the collapse pressure was actually higher for mixtures than
either of the pure components, implying that mixed monolayers are more stable than their
mono-constituent counterparts (Dynarowicz-�atka & Hac-Wydro, 2004). This could help
to explain the complex nature of cell membranes.

The two common cell membrane lipids DOPC and DPPC have been studied together in
monolayer form, along with other members of the phospholipid family, for a long time (e.g.
Vie et al., 1998; Kubo et al., 2001; Sanchez & Badia, 2003; Guzmán et al., 2012; Qiao et al.,
2013). While domain formation can be seen with a mono-lipid monolayer as the surface
pressure is increased (McConlogue & Vanderlick, 1997), interesting structures form with
mixtures. Instead of circular patches as in DOPC and DPPC mixtures, DOPC mixed with
palmitic acid (a long-chain carboxylic acid) produces domains shaped like winding chains
(Hao et al., 2013). Even small di�erences in amphiphile structure can cause separation in
the monolayer, as is seen when similar phospholipids are mixed, di�ering only in their tail
lengths (Kubo et al., 2001). Other factors, such as the degree of saturation and the nature
of the head group may be important, as we will see later on.

Domains that contain a condensed phase lipid, such as DPPC at high pressure, tend to
cover the monolayer surface more and more as their molar fraction within the monolayer
increases, as one might expect (Sanchez & Badia, 2003). However, the fraction of surface
coverage is not equal to the molar fraction of the monolayer because the area per molecule
of the condensed lipid is smaller, as these lipids are able to pack more closely. Therefore,
the relative composition is an important factor to consider when studying these systems.

Monolayers may also be highly sensitive to their environment. For example, in an AFM
study, Coban et al. (2007) found that mere exposure to air altered the sizes of domains in
monolayers of DOPC and DPPC. In another work, Qiao et al. (2013) showed that exposure
to low levels of ozone drastically changed the topography of lipid monolayers. Thus, the
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2.1. Introduction

environment plays a signi�cant role in the domain structures of lipid monolayers, which
has implications for cellular membranes.

Mixed monolayers can therefore serve as models to study features and interactions of
structures that might be present on the complex surfaces of cell membranes. These models
can further be useful to obtain information on how other molecules and substances might
behave when they encounter a cell, such as in drug delivery. As we discussed in � 1.2,
gemini surfactants have been found to be potentially very useful as a novel drug or gene
delivery system, and so an understanding of their interactions with cell membranes will
be critical. Therefore, the present work aims to characterize model monolayer topography,
and how this is a�ected by the presence of gemini surfactant.

Gemini surfactants in monolayer form have been examined alone (e.g. Qibin et al.,
2007), and also in the presence of stearic acid (e.g. Li et al., 2008, 2010). Pure gemini
surfactant monolayers do show the formation of tiny domains, suggesting some self assem-
bly (Qibin et al., 2007). In this chapter, we will examine the topography of monolayers
containing DOPC and DPPC with gemini surfactant. The mixture of DOPC and DPPC
serves as a model for a standard living cell.1

In addition to topography, we will be examining the electrical surface potentials of these
monolayers with KPFM. The use of KPFM on monolayers in a biological context is very
limited to-date, but has been done on, for example, monolayers of pulmonary surfactant
(Hane et al., 2009; Moores et al., 2010) and DPPC mixed with phosphatidylglycerol (Hane
et al., 2009). The introduction of cholesterol was actually found to induce electrostatic
domains in monolayers of DOPC from an analysis of KPFM images (Drolle et al., 2012).
As far as we are aware, this is the extent of this kind of KPFM use (although there have
been some studies of KPFM on self-assembled monolayers in a non-biological context, such
as Sugimura et al. (2002) and Ichii et al. (2004)), and the present work is the �rst of its
kind to combine the KPFM technique with gemini surfactants. Most of the interactions
that have been observed with gemini surfactants have been attributed, at least in part,
to electrostatics; therefore, it is the aim of this work to unravel some of the electrostatic

1While this is a highly simpli�ed and somewhat idealistic model, it allows us to study speci�c interac-
tions more carefully without the `trouble' of unknown proteins or other lipids getting in the way.
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properties of such interactions.

Monolayers inherently possess a surface potential that arises from the dipole moments
of its constituent molecules and any charges that are present (Vogel & Möbius, 1988a,b;
Smaby & Brockman, 1990; Moza�ary, 1991; Brockman, 1994). The potential that may be
measured by KPFM will also be a�ected by the properties of the substrate supporting the
monolayer, as well as the relative potential of the scanning tip. Despite best e�orts, the
measurement from KPFM will always be a relative one (Charrier et al., 2008), and so we
will primarily be focussing on di�erences between features.

2.2 Methodology

2.2.1 Lipids and Gemini Surfactants

For the purposes of this study, we require a lipid monolayer composition that provides
both topographical contrast (for imaging) and a semblance to cellular membranes. We
therefore chose a combination of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and
1,2-dipalmitoyl-sn-3-phosphocholine (DPPC). While the DOPC is longer in terms of hy-
drophobic chain length than DPPC, the unsaturated acyl chains of the DOPC make it
somewhat shorter. This di�erence in height, along with a phase separation upon compres-
sion (see below), yields topographical contrast in AFM (Coban et al., 2007). These lipids
(phosphatidylcholines) are large constituents of eukaryotic cellular membranes. Lipids
were purchased from Avanti Polar Lipids Inc.2, and dissolved in stock 1mg/mL solutions
of chloroform that were kept in a freezer until needed.

We used gemini surfactants of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium
dibromide, designated for simplicity as m − s −m, in which m is the length of the alkyl
tails and s is the length of the spacer group, in carbon atoms. These were synthesized by
re�ux in acetone of the corresponding α,ω-dibromoalkane and N,N-dimethylalkylamine.
After �ltering and purifying by recrystallization, the chemical structures and purities were

2www.avantilipids.com
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2.2. Methodology

con�rmed with NMR spectroscopy and surface tensiometry. For full details, see Wettig
et al. (2007). The GS in powder form was stored in a desiccator and then dissolved in
chloroform (at stock 1mg/mL) before use.

2.2.2 Langmuir-Blodgett Monolayer Deposition

In preparation for AFM/KPFM imaging, monolayers were created on a Langmuir-Blodgett
(LB) trough and deposited onto mica slides as follows. Chloroform solutions of lipid-
surfactant mixtures were prepared from stock in appropriate amounts (converted for molar
ratios as reported in � 2.3). The LB trough was thoroughly cleaned with chloroform and
�lled with nanopure water from a Milli-Q system before each experiment. Surface clean-
liness was achieved by vacuuming small amounts of water from the basin and con�rmed
by a pressure test so that compression yielded an increase in pressure of no more than
0.2mN/m. Freshly-cleaved mica slides were suspended in the dipping well to rest just be-
low the surface. Then, a chosen lipid-surfactant solution was deposited quickly in several
drops around the surface to form a monolayer. The monolayer was left to equilibrate (and
the chloroform was allowed to evaporate) for 10 minutes before compressing at 12mm/min
to a target pressure of 35mN/m. This pressure was chosen to roughly correspond to cell
membrane speci�cations (Demel et al., 1975; Seelig, 1987) and to allow phase contrast
between the DOPC/DPPC lipids. The monolayer was deposited on the mica by raising
the dipping arm slowly at a rate of 2mm/min while keeping the surface compressed at a
constant pressure.

2.2.3 Imaging

Technical Setup for KPFM with Mica Substrates

For KPFM imaging of samples deposited onto mica, it is necessary to prepare the substrate
in a manner that allows a bias voltage to be e�ectively applied. In our experiments, we
have determined an optimal setup to be as follows. For square mica slides, we cut a square
of aluminum foil several mm larger than the substrate, and adhere this to the bottom of
the mica with conductive mesh double-sided tape. The edges are wrapped over onto the
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top surface to form a frame. Small pieces of conductive tape are applied to the corners
to ensure the foil adheres to the surface. The KPFM electrode (where the bias voltage is
applied) is placed onto one of the pieces of conductive tape on the top surface. See Fig. 2.2,
and AppendixA for more detail.

AFM and KPFM

Our imaging was performed on two instruments. For contact-mode AFM we used a JPK
Nanowizard II3 and NCH-PPP cantilever tips with a resonant frequency near 150 kHz.
High-resolution AM- and FM-KPFM imaging (and associated non-contact mode topogra-
phy imaging) was performed on an AIST-NT Smart SPM4, using MikroMasch NSC-14-
Cr/Au cantilever tips, which have a resonant frequency near 130 kHz. While the AIST-NT
instrument provides superb topography as well as KPFM imaging, its �le format is not
currently supported by the SPIP software (see below) that we used for surface coverage
analysis; therefore, the JPK was used for that component of this study.

In theory, our KPFM setup can produce the topography and surface potential di�erence
images simultaneously, but in practise this does not yield optimal quality for topography.
A superior method is to perform, line-by-line, a topography scan followed by a KPFM
scan, and this is implemented automatically from the AIST-NT software. Occasionally,
edge-e�ects were found at the point where the scans switched from AFM to KPFM, but
this was usually resolved by allowing for a delay of 15ms between scans. Lateral KPFM
resolution was further enhanced by choosing a closer scan height of several nm, and slightly
reducing the amplitude of the second scan (for FM mode only).

One can relate the monolayers that are deposited onto mica to their self-assembled form
in solution by imagining a section of a micelle being taken away and �attened into a sheet
(see Fig. 2.1). Di�erences in height or phase between the monolayer components can then
be measured with an AFM, and their di�erences in electrical surface potential measured.
A schematic of our KPFM setup for imaging of monolayers is shown in Fig. 2.2.

3JPK Instruments: www.jpk.com.

4Advanced Integrated Scanning Tools for Nanotechnology: www.aist-nt.com.
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2.2. Methodology

Figure 2.1: Schematic representation relating a monolayer to the lipid-surfactant mixture
when in micelle form.

Figure 2.2: Schematic representation of our AFM/KPFM setup for imaging a monolayer.
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2.3 Results

2.3.1 Monolayer Composition

A number of previous studies have shown that, when mixed, di�erent phosphatidylcholine
lipids (especially those with widely di�ering phase transition temperatures) form a mono-
layer composed of domains which exhibit topographical contrast that is clearly shown in
AFM images (e.g. Stottrup et al., 2004; Coban et al., 2007). Characterising the e�ects
of gemini surfactant on those monolayers involves two approaches here. First, we con-
sider morphological changes in the domains that form with AFM topographical imaging.
Second, we look for changes in the electrostatic properties or the formation of di�erent
electrostatic domains.

To identify domains of DOPC and DPPC in our AFM images, we prepare control (no
gemini surfactant) monolayers composed of di�erent ratios of DOPC to DPPC. It has been
shown that the lipids, in monolayer form, di�er in height by approximately 1 nm (Coban
et al., 2007), so as the ratio of one lipid increases, we should see a larger amount of area
occupied by it. For e�ects of the gemini surfactant, we add two di�erent GSs to our lipid
mixtures: m-s-m = 12-3-12 and 16-3-16, in a DPPC:GS molar ratio of 3:2, which has been
found to be an appropriate ratio for e�ective gene transfection studies when helper lipids
are used (Wang et al., 2007).

2.3.2 General Topography

In Fig. 2.3 we show the AFM images of our control samples (no gemini surfactant) con-
taining di�erent ratios of DOPC to DPPC, all performed in contact mode. These lipid
mixtures show a characteristic set of domains, where one lipid has formed in a series of cir-
cular or polygonal shapes in a matrix of background lipid. We do note that the monolayer
topography frequently shows streaks and striations aligned along a particular reference
axis. This phenomenon has been reported previously (e.g. Moraille & Badia, 2002; Coban
et al., 2007), and is an artefact of the deposition and does not a�ect our results.

As our goal here is to identify each lipid, we performed a surface analysis on a series of
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2.3. Results

Figure 2.3: AFM images of control monolayers of pure DOPC and DPPC in molar ratios
of DOPC:DPPC 3:7 (left) and 1:1 (right), taken with the JPK instrument for analysis in
SPIP.

these images from random locations of each of the samples using the program Scanning

Probe Image Processing (SPIP). We calculated the fraction of the surface that is
covered by the domains (higher, lighter in the images) with two separate methods, and
show the results in Table 2.1. The �rst method uses a histogram of pixel values which
takes advantage of the fact that our images are largely composed of pure DOPC and
DPPC domains separated by an approximately constant height. This shows up in practise
as two peaks in the histogram; the minimum between the two peaks roughly separates the
domains and we can then calculate the fraction of the image occupied by the higher-height
pixels (which thus calculates the surface covering fraction of the domains). The second
method employs an algorithm to identify particles (shapes) in the image, which are then
added up to determine their surface coverage.

The results show that the higher domains are DPPC. From the nature of the structure
of DPPC, at our deposition pressures it will be in a gel-like phase, while the DOPC will
be �uid-like (Schmidt et al., 2009; Giocondi et al., 2010). We can further characterize
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Table 2.1: Surface coverage analysis for control samples at two ratios of DOPC:DPPC.
The results are shown for both the histogram and particle detection surface coverage
analysis, averaged over four experiments, that is described in the text.

DOPC:DPPC Domain Coverage (%) Model Average (%)
(mol) (Histogram) (Particle)

1:1 29± 3 25± 3 27± 4

3:7 55.6± 0.6 53± 4 54± 4

these control samples by a cross-section analysis of both the minimally-processed images
of Fig. 2.3, and those same images with a small amount of smoothing applied. We �nd
that indeed there is a strong correlation between lipid ratio and the fraction of the surface
occupied by the domains. Speci�cally, at a 1:1 ratio of the lipids (by mol), 27( 4) % of the
surface is covered by DPPC, while 57( 4) % is covered at a ratio of 3:7 DOPC:DPPC.

It is also interesting to comment on the e�ects of adding GSs to the DOPC-DPPC
monolayers. We see in Figs. 2.4 and 2.5 (and see below) that the addition of 12-3-12 GS has
little or no e�ect on the DPPC domain structures. However, for 16-3-16 there is increased
interaction between the lipid and surfactant leading to intricate domain formation. This
is supported by other studies which indicate an antagonistic mixing behaviour of 16-3-16
GS and phospholipid (Akbar et al., 2012). In the case of 12-3-12, possible contributing
factors are its higher solubility in water compared to the longer-chain 16-3-16 GS. In the
next section, we discuss possible origins and comparisons of the surface potentials for these
monolayers, for both the control and the sample containing 16-3-16.

2.3.3 Surface Potential and the E�ects of Gemini Surfactant

We present in Figs. 2.4 and 2.5 results of AFM and FM-KPFM imaging, from the AIST-NT
instrument, on samples containing the GSs 12-3-12 and 16-3-16, with a control (no GS)
sample. In our control sample, we measure a preliminary contact potential di�erence of
323 32mV between DOPC and DPPC. This value is an average calculated from multiple
scans of separate experiments, with the `error' as the standard deviation reported from
the collection of measurements. Incorporating 12-3-12 GS into the sample gives a surface
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2.3. Results

potential di�erence of 338 55mV, which is consistent with the control. A similar analysis of
16-3-16 images yields a surface potential di�erence of ∼ 707 79mV between the domains.
(See below for a more rigorous determination of these quantities.) As it is con�rmed
in the topography, 16-3-16 GS interacts very strongly with the DPPC and the increased
positive surface potential di�erence between the domains is consistent with adding cationic
molecules to the domains. Therefore, we proceed with consideration only of the 16-3-16
surfactant as compared to the control.

2.3.4 Image Analysis and Domain Properties

Calculating a reliable value for the height and surface potential of the domains in our
images requires some careful analysis. The AIST instrument has no software support
within SPIP, so more `hands on' methods are required. In this section, we describe three
possible methods by which to analyse these images, but conclude that a direct cross-section
analysis provides the most plausible result.

The �rst method is to use histograms of the pixel values, in much the same way that
was done for the surface coverage analysis. In this case, however, instead of using the
histograms to calculate a fraction of the total number of pixels, we can use it to determine
the di�erence in the height or surface potential between the domains. Suppose we have,
in an ideal situation, a fairly clean background of some height hb, with Gaussian noise of
relatively small standard deviation. Now add domains of height hd, again with Gaussian-
distributed noise with a standard deviation much smaller than hd−hb. A histogram of these
pixel values will show two Gaussian peaks, separated by hd−hb. We employ this procedure
on two high-quality images of each experiment. To mitigate intra-image variation (e.g.,
�attening e�ects, artefacts), we draw 5 histograms from each image that were taken from
di�erent sub-regions representing good quality domains with background. The result is
then averaged for each image (each trial).

A second method is to use the freely available program Gwyddion
5 to extract image

statistics. While the algorithms are not as advanced as SPIP, it is straightforward to

5gwyddion.net
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`paint' a mask onto each image to cover the region of interest, and compute statistical
quantities of the masked pixels. An alternative method is to simply threshold an image;
that is, to select all pixels above or below a threshold value. In most cases this will su�ce
to pick out a reasonable amount of background or domains. In most cases, to avoid edge
e�ects, it is necessary to `shrink' the masks to focus on the central regions of the domains
or background. This was done for the same two images as the histogram method above,
and the mean and standard deviation of the pixel values were obtained to compute the
di�erence in height and FM-KPFM signal.

Another method is more direct: one may take a series of cross sections within the image
and manually select background and domain regions from which to compute height and
surface potential di�erences. While this is more labour intensive and can be subjective if
one is not careful, on the whole it is a very reliable method as it allows direct con�rmation
of the measurements. The AIST-NT image analysis software allows semi-automatic com-
putation of di�erences within the cross sections by selection of peaks and valleys. For each
of our images, 50 measurements were taken in this manner, and their means and standard
deviations were obtained. In most cases, a small amount of Gaussian smoothing applied
to the images greatly enhanced the quality.

An analysis of the data con�rmed that the two trials for each of the histogram and cross
section methods, for each experiment, yielded results that were statistically consistent.
However, the masking method gave inconsistent values for the means from each trial in all
cases. Therefore, we reject the masking method for its unreliability. Summaries of these
data are given in Table 2.2. We note that the histogram method produces values that
are consistently below those obtained from the direct cross section measurements. This
can be explained as follows: the histogram peaks from which we measure the di�erence
gives us the di�erence between the two most frequent pixel values, assuming a roughly
Gaussian distribution for each. The locations of these peaks are sensitive to edge e�ects
of the interfaces between the domains and the background, and to any variation in the
calibration (�attening) across the image. It is also true that in our ideal case described
above that the histogram method would yield acceptable results, in reality these two issues
create problems. The most frequent pixel values are not necessarily those of the top
surface of the domains, and this problem is in�ated when the domains are not very large
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compared to the size of the pixels. For these reasons, the histogram method consistently
underestimates the height and FM-KPFM di�erences. Therefore, we turn to the cross
section method from here on.

The use of cross sections to measure di�erences between the domains and the back-
ground is sound for a few reasons. Firstly, the method shows itself to be statistically
consistent from image to image. Second, each line is not subject to global variations in
the image calibration, since the measurements are taken from a single scan line. And
third, many measurements can be obtained on a single image, and the quality of the data
con�rmed by the experimenter.

Our �nal result for the height di�erence between the domains and background (DPPC
and DOPC) is 0.331 nm 0.009nm, and a contact potential di�erence of 336mV 7mV.
This is somewhat lower than other studies near our deposition pressure (Coban et al.,
2007). We should point out that the �uid nature of DOPC at our experimental temper-
atures likely makes our result somewhat dependent on the surface pressure at deposition
(Coban et al., 2007), but this is not critical to our analysis since we use a consistent de-
position methodology. With the addition of GS 16-3-16, the height di�erence increases to
0.574 nm 0.001nm, with a contact potential di�erence of 658mV 17mV.

2.4 Discussion

The maps of electrical surface potential in our samples can be explained by considering
the dipole nature of the lipids. A simple uniform monolayer has an electric potential given
by Brockman (1994),

V = 12π
µ⊥
A

(2.1)

in which µ⊥ is the normal component of the dipole moment of each molecule, in MDebye,
A is the area per molecule, in Å2, and V is measured in mV. This is independent of the
height of a conductive scanning tip by virtue of the assumption that the sheet of dipoles
is in�nite in area. However, real monolayers have a �nite total area and are possibly
made up of domains of di�erent molecules or similar molecules at di�erent orientations
or densities, and thus this equation would only be a reasonable approximation for either
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Table 2.2: Examples of image analysis results for three methods to compute height
and surface potential di�erences between domains in lipid monolayers: control
(DOPC+DPPC 1:1) and with gemini surfactant 16-3-16 (DOPC+DPPC+16-3-16 3:3:2).
Values for the histogram method were derived from 5 sectors from each image. For
masking, one mask was created for each image of both the domains and background to
calculate the di�erence. Fifty individual measurements were used for each of the cross
section values. The cross section method was used to calculate �nal result for the height
and surface potential of the domains relative to the background. See the text for further
details.

Method Height / (nm) FM-KPFM / (mV)

Trial 1 Trial 2 Trial 1 Trial 2
x̄1,H

a s1,H
b x̄2,H s2,H x̄1,K s1,K x̄2,K s2,K

DOPC:DPPC 1:1 (Control) Monolayer
Histogram 0.274 0.018 0.262 0.017 286.2 31.3 314.0 45.2
Masking 0.276 0.089 0.309 0.085 261.6 64.4 318.8 46.7

Cross Sections 0.328 0.045 0.335 0.043 339.7 40.4 332.6 33.1
DOPC+DPPC With Gemini Surfactant 16-3-16

Histogram 0.567 0.026 0.559 0.043 597.8 69.8 567.4 47.1
Masking 0.621 0.104 0.587 0.099 705.0 144.8 632.0 116.5

Cross Sections 0.582 0.047 0.566 0.073 654.3 91.5 660.7 75.0

Combined Cross Section Datac

Control 0.331 0.009nm 336 7mV
With 16-3-16 0.574 0.001nm 658 17mV

a Sample mean, x̄i, of trial i, with H (height) or K (FM-KPFM).
b Standard deviation of trial.
c Margins of error calculated at a 95% con�dence level.
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2.4. Discussion

Figure 2.4: AFM and KPFM images of monolayers of DOPC/DPPC with and without
GS.
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Figure 2.5: AFM (black) and KPFM (blue) image example cross sections of the mono-
layers in Fig. 2.4.
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small scanning heights and/or large domains. Many factors contribute to the resulting
dipole moments of the DOPC and DPPC monolayers. For example, how large is the
dipole of a single lipid molecule? How densely packed are the lipids in each region? Are
they oriented perpendicularly, or at some other angle, to the substrate? What about
tip or sample contamination? KPFM analysis can in general only lead to knowledge of
relative electrostatic potentials, and a determination of absolute potential can only be done
under extreme conditions (Elias et al., 2011) that are beyond the scope of our experiments.
Therefore, we must approach the above issues on a relative basis.

There is no straightforward way to address these questions, but it is not necessary to
address them all and here we provide a simpli�ed prescription to illustrate the relation-
ship between experiment and theory, guided by Vogel & Möbius (1988a,b); Benvegnu &
McConnell (1993); Brockman (1994); Dynarowicz-�atka et al. (2001); Finot et al. (2010).
Given that the hydrophilic mica slides are pulled out of the aqueous sub-phase during the
deposition process, the lipid and surfactant molecules will have their head groups oriented
toward the substrate, with the hydrophobic tails on the visible surface of the samples.
Previous studies have shown that the total dipole moments of phospholipids are positive
toward the air (Beitinger et al., 1989; Smaby & Brockman, 1990; Moza�ary, 1991; Brock-
man, 1994). A review of the literature on this topic shows the dependence of properties
such as the dipole moment or surface potential on conditions such as surface pressure,
molecular area, and subphase composition for DOPC and DPPC. Table 2.3 presents the
results of this review. While the picture is by no means complete, we can glean useful
quantities from these data and relate them to our present measurements.

Given our surface analysis results, and the values for the molecular areas Table 2.3, we
can say that the molecular density of DPPC is higher than DOPC, and thus DPPC will
have a boost to higher values for the surface potential relative to DOPC. This is because
the area per molecule is smaller for DPPC. This is in fact what we see for our monolayers
in Figs. 2.4 and 2.5. In addition, noting that we measure DPPC to be higher than DOPC,
despite DPPC having a shorter carbon chain length, we must conclude that the �uid-
like nature of DOPC causes it to be oriented non-perpendicularly to the substrate surface.
Therefore, the component of the dipoles of DOPC that is normal to the mica substrate will
be smaller than DPPC (at similar density). A combination of these two factors (density and
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Table 2.3: Values for dipole moments and surface potential of pure DOPC and DPPC
monolayers from the literature.

π A ∆V µ⊥ Subphase Reference
(mN/m) (Å2) (mV) (mD)

DOPC

20 78 306 632 H2O Beitinger et al. (1989)
30 70 329 610 H2O Beitinger et al. (1989)
35 70 � 850 NaCla, pH 6 Moza�ary (1991)
45 59 311e 486 H2O Smaby & Brockman (1990)
45 58 � 463 PBSb, pH 6.6 Smaby & Brockman (1990)
�c � 384 � KCld Luzardo et al. (1998)

DPPC

10 69 � 469 PBSb, pH 6.6 Smaby & Brockman (1990)
20 46 400 488e H2O Vogel & Möbius (1988b)
30 44 600 700e H2O Vogel & Möbius (1988b)
35 42 700 780e H2O Vogel & Möbius (1988b)
35 45 � 700 NaCla, pH 6 Moza�ary (1991)
�c � 460 � KCld Luzardo et al. (1998)
23 � 640 � Simulation Lucas et al. (2012)

Di�erences in Electrical Surface Potential: ∆V = VDPPC − VDOPC

20 � 94 � H2O (above)
30 � 271 � H2O (above)
35 � 336 � H2Of This work

a Subphase 0.1M NaCl.
b Subphase 0.01M phosphate bu�er with 0.1M NaCl.
c Lipids added until ∆V unchanged. See Luzardo et al. (1998) for details.
d Subphase 1mM KCl.
e Computed from Eqn. 2.1.
f Supported monolayer on mica prepared with LB deposition using a pure water subphase.
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orientation) must therefore contribute to the di�erence in the contact potential between
the two lipids. Ultimately, the di�erence we obtain for the contact potential di�erence
between DOPC and DPPC is in line with the values presented in the studies shown in
Table 2.3, in which, for example, at a pressure of 30mN/m the di�erence is given to be
271mV. The trend that we see for the pressure dependence of the potential suggests that
the result would be slightly higher for larger pressure (say ours), which is consistent with
our results.

Now let us turn to the monolayer containing gemini surfactant 16-3-16. An increase
in height is observed upon the addition of this gemini surfactant, which may be due to
a more compact and vertical packing of the molecules. The additional contact potential
di�erence that is obtained, compared to the control monolayer, is 328mV. Given the lack
of analogous potential and dipole data for these gemini surfactants compared with the
common lipids, for the present purpose, if we make the simplifying assumption that the
only new contribution to the surface potential is due to the 2+ charges on the surfactant
molecules (that is, we assume that the dipole moments of DPPC are the same as the dipole
moments of 16-3-16 without the 2+ charge), we can compute a molecular density of gemini
surfactant that has integrated into the DPPC domains. Assuming also that the sizes of the
domains are much larger than the tip-sample separation during the scan so that we may
take the distribution of surfactant molecules to be an in�nite sheet of charge, see have

Ve− sheet =
zσ

2ε0
(2.2)

in which z is the height of the tip during the measurement and σ is the surface charge
density. The density of gemini surfactant molecules is then

σgemini =
ε0Ve− sheet

z
(2.3)

since there is a charge of 2+ on each molecule. Making the further assumption that the
area per molecule is the same within the DPPC domains infused with gemini surfactant
as the DPPC alone (45Å2), this calculates to about one gemini surfactant molecule per
4 molecules of DPPC. This is a plausible result (consistent by order of magnitude), given
the assumptions and our starting relative concentrations of 3:2 for DPPC:gemini.
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2.5 Conclusions

We have explored the e�ects of GS on lipid-surfactant monolayers using both AFM and
KPFM imaging. First, monolayers of pure lipid mixtures containing DOPC and DPPC
were used to distinguish between the lipids and visualize the gel-phase domains of DPPC.
With an infusion of 12-3-12 GS, little change in the domain morphology was observed, and
the electrical surface potential di�erence is consistent with the control. With the use of
16-3-16, we observe a strong interaction between the gemini surfactant and DPPC, with
more intricate domain formation, and a much more positive electrical surface potential
di�erence.

While the morphology of these monolayer mixtures can be determined via AFM, the
unique capabilities of KPFM provide valuable information on electrostatic properties. In
the present case, this proves to be very useful in con�rming the presence of cationic GS.
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Nature uses only the longest threads to weave her patterns, so

each small piece of her fabric reveals the organization of the

entire tapestry.

Richard Feynman

Chapter 3

The Unique Surface Potentials of

DNA-Lipid-Gemini Surfactant

Monolayers

3.1 Introduction

In the previous chapter, we investigated the structure and electrical properties of simple
mixed monolayer systems that also happen to be biologically relevant. Of course, the
ultimate goal is to relate all this to e�cient construction of drug and gene delivery vehicles.
For gene delivery in particular, the interaction of DNA with these vehicles is crucial. DNA
(deoxyribonucleic acid) is the essential blueprint molecule of life, encoding all the necessary
information to construct a complete living organism. As we have discussed in � 1.5, the
delivery of DNA into cells can be therapeutic, for example to give the cell a necessary set
of instructions to construct an otherwise missing or defective protein. Crossing the cell
membrane is no trivial task, and therefore an understanding of the interaction of DNA
with important membrane lipids and its carrier molecules is necessary.

DNA is a helical, often double-stranded polymer comprised of sub-units called nu-
cleotides, which in turn contain a nitrogenous base, a sugar (deoxyribose) and a negatively-
charged phosphate group. The negative charge is critical, because it allows DNA to strongly
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interact with other charged molecules. In our case, these other charged molecules are
cationic gemini surfactants. The positive charge on the gemini surfactants acts to neu-
tralise negative charge on the DNA, forming a `complex'.

While it is clear that the nature of the interaction between DNA and cationic surfactants
is electrostatic, the details are lacking. Exactly how much surfactant is required to bind
with DNA to form a complex? What is its e�ect on the structure of the DNA molecules
in solution, and how do they interact with membrane lipids?

Lipids play an important role in improving the transfection e�ciency of these systems
(Hui et al., 1996; Chesnoy & Huang, 2000; Hirsch-Lerner et al., 2005). The monolayers
that mixtures of these compounds form may be probed by a variety of observational tech-
niques such as �uorescence (e.g. Michanek et al., 2012) and Brewster angle microscopy
(e.g. Cárdenas et al., 2005; McLoughlin et al., 2005; Eftaiha & Paige, 2012), and of course
a variety of scanning probe microscopy methods (e.g. Hane et al., 2009; Finot et al., 2010).

Investigations of monolayers containing DNA is not altogether a new concept (e.g. Hui
et al., 1996; Chesnoy & Huang, 2000; Hirsch-Lerner et al., 2005), although no studies to-
date have used KPFM. Pressure-area isotherms (e.g. MacDonald et al., 2006; Erokhina
et al., 2007; Pal et al., 2012), BAM (e.g. Cárdenas et al., 2005; McLoughlin et al., 2005;
Eftaiha & Paige, 2012; Dabkowska et al., 2014), �uorescence microscopy (e.g. Symietz
et al., 2004; Michanek et al., 2012), AFM (e.g. Hansda et al., 2013; Paiva et al., 2013),
infrared re�ection-absorption spectroscopy (e.g Gromelski & Brezesinski, 2004; Castano
et al., 2008) and neutron re�ectivity (e.g. Wu et al., 2006) are the methods of choice at
present, although overall surface potentials of monolayers have been measured with the
Kelvin method (e.g. MacDonald et al., 2006; Paiva et al., 2013). In the latter case, the
Kelvin method is applied to the monolayer on a macro scale, giving a surface potential that
is averaged over sizes far larger than any domains or structures. Therefore, KPFM has
huge promise to investigate the nanoscale electrical properties of these monolayers, and in
fact is done so for the �rst time in the present work. Results from monolayer studies can
then be related to their vesicle/liposome form for use in gene therapy applications (Lee &
Chang, 2014).

An early example of DNA-lipid interactions was reported in Leonenko et al. (2002), in
which AFM was used to investigate DNA binding with lipid bilayers. They found that the
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3.1. Introduction

lipid phase was an important factor, as was the type of lipid contained within the bilayer.
Speci�cally, DNA was found to be able to disrupt the bilayer structure more readily if the
membrane contained DOPE versus DOPC, and the authors conclude that this is likely due
to the smaller head group area of DOPE, which supports a negatively curved structure
(like on the interior of cell membranes).

Neutral (or, rather, zwitterionic) lipids, like DPPC, DOPC and DOPE do not readily
interact with DNA on their own. Many monolayer studies have shown this (e.g. Gromelski
& Brezesinski, 2004; McLoughlin et al., 2005; Cristofolini et al., 2007; Kundu et al., 2008;
Mengistu et al., 2009; Campen et al., 2010; Dabkowska et al., 2014; Luque-Caballero et al.,
2014), and in order to induce an interaction it is necessary to include divalent cations such as
Ca2+, Mg2+ or Ba2+. The cations are thought to bind to the negatively-charged phosphate
groups on the zwitterionic lipids. This gives the lipid molecules an overall positive charge
on the head groups which can then interact with and bind to DNA, forming a monolayer of
the complex (Mengistu et al., 2009; Campen et al., 2010). Although neutral lipids require
these ions to be present in order to bind DNA, it has curiously been found that DNA will,
on its own, form an insoluble monolayer at the air-water interface if it is left for many
hours or days to incubate in a Langmuir trough (Dai et al., 2005, 2013). We note that
requiring the use of ions to mediate DNA-lipid interactions becomes redundant if one were
to employ the use of cationic surfactants in these systems, which is indeed the subject of
the present work.

While we are focussed here on the use of DNA, it is noteworthy that the situation
becomes rather interesting for RNA. In a study on the interactions of DNA and RNA
with DPPC monolayers, Michanek et al. (2012) con�rmed the �ndings of other studies
with DNA, that it is unable to associate itself with the zwitterionic lipids, but that single-
stranded RNA could. The authors surmise that the hydrophobic nature of single-stranded
RNA was enough to allow it to be surface active and associate with the monolayer. When
mixed with dioctadecyldimethylammonium bromide (DODAB), the RNA was found to
associate with the monolayer far more than electrostatic considerations would lead us to
expect, implying that hydrophobic interactions with the lipid and surfactant chains are
signi�cant.

In any case, the association of DNA with monolayers causes an overall expansion of
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the monolayer. This is clearly seen as higher concentrations of DNA yield larger molecular
areas for a given surface pressure (Chen et al., 2002). An interesting study by Rullaud
et al. (2014) compared pressure-area isotherms of a cationic calixarene-based surfactant
with DNA of di�erent sequences, namely poly-(AT) vs poly-(GC). The additional hydro-
gen bond of GC makes those strands more tightly bound, and their isotherms are shifted
to smaller molecular areas compared with the poly-(AT) DNA. But mere association with
DNA is only the beginning. How exactly does the DNA associate, and what is the mor-
phology of such formations? Perhaps the most relevant set of studies to discuss are those
from Chen et al. and co-workers (Chen et al., 2002, 2005, 2012). In this series of papers,
the interaction of gemini surfactants and DNA was studied by means of pressure-area
isotherms complemented by AFM topographical imaging. The 12-s-12 series of gemini
surfactants were studied in Chen et al. (2002), while tail length variations were explored in
Chen et al. (2005). In the former case, gemini surfactants with spacers of mid-range length
(6-10 carbon atoms) had isotherms that were shifted to larger molecular areas compared to
very short or very long spacers, suggesting that there is a `sweet spot' for optimal associa-
tion. The asymmetric tail lengths (n-s-m surfactants where n+m = 24) showed increased
molecular areas in isotherms of more symmetric surfactants (e.g., n = m). Greater associ-
ation and higher molecular areas could also simply mean less compaction, so we must turn
to the morphology on the nanoscale to for more insight into this issue.

Time is also a factor in the extent of association between DNA and cationic surfac-
tants. In a study using octadecylamine, Hansda et al. (2013) showed that DNA gradually
associates with the monolayer over the course of several hours, evidenced by increasing
surface pressure from the time at which DNA was injected into an aqueous subphase of
high pH (11). As the pH was decreased to neutral, the pressure-time curves became less
steep, suggesting that DNA interacts more readily with the monolayer at higher pH. In
addition, from AFM imaging of these monolayers deposited onto silicon substrates exhib-
ited increased roughness and larger average height values than the monolayers at lower
pH. However, it should be noted that this behaviour can very much depend on the type of
surfactant that is used. For instance, Dittrich et al. (2011) reported higher molecular areas
for lower pH in pressure-area isotherms of cationic diamide lipids with DNA. (As an aside,
in the same study, two lipids were used which had identical head groups but di�erent tails,
and showed remarkably di�erent transfection e�ciency; therefore, the hydrophobic tails
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3.2. Methods

may be a key consideration.) We will explore the in�uence of pH on DNA monolayers in
a later chapter.

While there are many transfection studies which show the promise of DNA-gemini
surfactant combinations (e.g. Wettig et al., 2008; Wang et al., 2013), few have focussed
directly on the nature of the molecular interactions between the DNA and surfactant
(Akbar et al., 2012). While use of AFM and KPFM is widespread on individual systems
to map charge distributions in biologically interesting molecules like DNA (Leung et al.,
2010), proteins (Lee et al., 2012), or DNA mixed with proteins (Sinensky & Belcher, 2007),
no studies to date, of which we are aware, have used the unique capabilities of KPFM to
probe the interactions in mixed systems between DNA and drug delivery molecules (i.e.,
transfection complexes). It is therefore the purpose of this chapter to use a combination of
AFM and KPFM imaging to study the interactions of DNA with mixed lipid monolayers
containing gemini surfactant. This builds on the previous chapter, in that DNA is added
to explore the morphology of the complexes that are formed from its association with the
gemini surfactant that has been integrated into the monolayer.

3.2 Methods

3.2.1 DNA-Lipid-Surfactant Monolayer Construction

Sample preparation for AFM and KPFM imaging was performed in a similar method to
that which was described in Chapter 2, but brie�y: gemini surfactants of the 16-3-16 type
were mixed with two lipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-
dipalmitoyl-sn-3-phosphocholine (DPPC), both of which were obtained from Avanti Polar
Lipids.

Lipids and surfactant were dissolved in chloroform at a concentration of 1mg/mL and
mixed at a molar ratio of 3:3:2 (DOPC:DPPC:GS). Our monolayers were constructed on a
clean Nima Langmuir trough (small) �lled with approximately 50mL of nanopure Milli-Q
water in which we dissolved single-stranded salmon DNA which was sheared into random
lengths by sonication. The �nal DNA concentration we used was 10µM in base pairs,
comparable to other studies (Chen et al., 2002). Lipid-surfactant mixtures were deposited
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on the trough and compressed to a surface pressure of 35mN/m. Clean mica slides were
drawn up through the monolayer at constant pressure to deposit the �lm, which was dried
afterwards with a gentle stream of nitrogen gas and then in a desiccator.

3.2.2 Imaging

Imaging was performed on an AIST-NT Smart SPM using MikroMasch NSC-14-Cr/Au
cantilevers of resonant frequency approximately 130 kHz. Details of the methodology are
largely described in � 2.2.3, but here we highlight the key parameters of the setup. Topog-
raphy and surface potential data were obtained in two sweeps per scan line to optimize
image quality. For the surface potential scan, we used both AM-KPFM and FM-KPFM
(as indicated where appropriate), the latter resulting in higher spacial resolution. For de-
tails see Moores et al. (2010). Several scans of each of several samples were obtained to
con�rm results. Analysis of the images was performed with proprietary AIST-NT image
processing software, and Gwyddion for surface roughness measurements. Masks were
created manually on the topography images to calculate surface roughness. Cross sections
and pixel data were used for other calculations, as described in the text below.

3.3 Results

As a test of the e�ect of DNA in the subphase, we show in Fig. 3.1 a comparison of
topography and AM-KPFM images for the lipid-GS monolayers formed on both pure water
and pure water containing DNA. The signi�cance of the structures formed over the pure
water subphase was discussed in the previous chapter; in any case, there is clearly strong
interaction of the DNA with the monolayer.

Concentrating on the monolayer formed with DNA, we show topography, phase, can-
tilever oscillation amplitude (Mag), and FM-KPFM images in Fig. 3.2. We note that the
FM-KPFM image shows higher resolution than the AM-KPFM image shown earlier in
Fig. 3.1. The phase image tracks the phase shift of the cantilever oscillation, in which
contrast typically indicates a change that is chemical in nature. We see that there is an
intricate web-like network shown in the topography, with three distinct `levels' of features
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3.3. Results

Figure 3.1: AFM topography (top left and bottom left) and AM-KPFM images (top right
and bottom right) of DOPC-DPPC-GS monolayers without DNA (top) and with DNA
(bottom) present in the subphase at the time of formation and deposition.
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in terms of height. The phase and FM-KPFM images correlate with each other and show
interesting contrast. Cross-sections of the topography and FM-KPFM images, showing
this correlation as well, are presented in Fig. 3.3. Perhaps a more striking demonstration
of this result is shown in Fig. 3.4, which shows an overlay of the FM-KPFM signal on top
of the topography image of Fig. 3.2, clearly indicating that the FM-KPFM signal arises
in the areas directly adjacent to those of the highest height. It is thus clear that there is
a positive surface potential di�erence in the mid-range height regime that surrounds the
`web'. Both the lower and higher height regions appear to have similar and less positive
surface potential.

Values for the di�erences in height between the three regions, and the magnitude of the
FM-KPFM signal, were calculated in a manner analogous to that which was used in the
previous chapter. While all three image analysis methods were applied to the monolayer
images with DNA, the cross-section method was deemed to be superior. Table 3.1 shows
the results of these calculations, with uncertainties at computed at a 95% con�dence level.
The middle domains were found to be 0.446 0.014 nm higher than the background, where
the FM-KPFM signal was positive at 561 16mV. This is a lower height than the control
monolayer, and also a slightly lower potential (for possible reasons, see the discussion
below). The highest region is 1.197 0.026 nm higher than the middle region (or roughly
1.64 nm higher than the background). We show in Fig. 3.6 a 3D rendering of an illustrative
region within the topography image which helps to visualise these three regions of interest.

3.4 Discussion and Conclusions

In an attempt to theorise as to the origin of these structures, we should consider the mecha-
nism of DNA complexing with the gemini surfactant and lipid. Pure DNA in water deposits
nothing onto mica; there is simply nothing to drive adhesion. Similarly - and veri�ed by
experiment - monolayers composed of pure lipid mixtures (in our case DOPC and DPPC)
showed identical topography and KPFM signal with and without DNA present in the water
subphase. However, the addition of gemini surfactant results in a strong interaction. This
is not a surprise, since the positive charges on the cationic gemini surfactants are attracted
electrostatically to negatively charged DNA. It was shown also in Chen et al. (2002) that
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3.4. Discussion and Conclusions

Figure 3.2: Images of size 1µm x 1µm of the DOPC-DPPC-GS monolayer formed in
the presence of DNA: topography (top left), phase (top right), FM-KPFM (bottom left),
and cantilever oscillation magnitude (bottom right). The white arrow points to a region
of intermediate height, as described in the text, which corresponds to a region of higher
surface potential and contrasting phase.
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Figure 3.3: Horizontal cross-sections of the topography and FM-KPFM images in Fig. 3.2
at the 0.5µm mark on the vertical axis. The areas of higher FM-KPFM signal correlate
with topographical regions of height a few tenths of a nm above the baseline (e.g, at the
0.2µm mark).

86



3.4. Discussion and Conclusions

Figure 3.4: Overlay of the topography image in Fig. 3.2 with the FM-KPFM image. Only
the bright (relatively high mV) regions of the FM-KPFM image were included here, with
a small amount of Gaussian �ltering applied, for clarity. The result shows the areas of
higher surface potential correlating well with the areas surrounding those of the greater
height.
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Table 3.1: Image analysis results for height and surface potential di�erences between
domains in lipid-gemini surfactant monolayers containing DNA (DOPC+DPPC+16-3-16
3:3:2). The control monolayer is identical to that which was presented in the previous
chapter (but with surfactant), but is used here for comparison. The cross section method
was used to calculate �nal result for the height and surface potential of the domains
relative to the background. See the text for further details. Margins of error calculated
at a 95% con�dence level.

Region Height / (nm) FM-KPFM / (mV)

Control Monolayer (no DNA)
Domainsa∆h 0.574±0.001nm 658±17mV

With DNA
Lowerb∆hl 0.446 0.014nm 561 16mV
Higherc∆hu 1.197 0.026nm �d

a Di�erences between the domains and background.
b Di�erences between the mid-region and background. See Fig. 3.6.
c Di�erences between the highest region and the mid-region. See Fig. 3.6.
d Only the mid-region showed a positive KPFM signal, so there is only one

value to report relative to a `background'.
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3.4. Discussion and Conclusions

gemini surfactants with su�ciently short tail lengths (generally below 16 carbon atoms)
to reduce surface activity to zero suddenly become surface active when DNA is present in
the subphase. This is due to charge neutralisation increasing the hydrophobicity of the
gemini surfactant. Therefore, there is no doubt that DNA and gemini surfactant interact
very strongly. Here, the gemini surfactant is already surface active, and the DNA must
bind up to the gemini surfactant from the subphase. Chen et al. (2002) proposes an ar-
rangement where the negatively charged phosphate groups of the DNA bind to the cationic
ammonium head groups of the gemini surfactant in chains, with the spacer group lying �at
against the water surface for smaller spacers. This would assist in explaining the web-like
connections of the features we identify in the topography, especially considering the height
di�erence between the lowest and highest regions being on the order of 2 nm.1

However, what is most interesting about this result is the KPFM signal failing to
correlate directly with the topography. Here, we have a positive KPFM signal that envelops
the web-like features. We propose that the majority of net positive charge likely resides
in those regions of positive relative surface potential. Comparing these regions with the
background, and considering that DPPC forms a thicker monolayer than DOPC (Coban
et al., 2007), we infer that the lower background may be composed primarily of DOPC,
with the positive regions the DPPC-GS mixture. While the height alone (∼ 2 nm) of the
web-like higher features would lead us to expect them to contain the DNA, it is not until we
consider that these regions are of lower surface potential than the lipid-GS region that we
can propose that they are DNA-GS complexes of nearly unit charge ratio. A schematic of
what this might look like is presented in Fig. 3.5. In this �gure we show what the monolayer
might look like in a simplistic way at the air-water interface with DNA dissolved in the
subphase, and how the topography would change upon deposition onto a solid substrate
for imaging.

In addition, it is noteworthy that the surface roughness of the lower and middle height
regions are similar, at around 0.11−0.12nm, while the higher, web-like regions have a much
higher roughness at about 0.22nm in this image. One can also visualise the roughness
qualitatively by observing the 3D rendering provided in Fig. 3.6; despite smoothing, it is

1This value, about 2 nm, is accordant with the rough diameter of a DNA molecule.
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Figure 3.5: Schematic representation of proposed structure for DNA-lipid-GS monolayers.
See also Fig. 3.6.
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3.4. Discussion and Conclusions

Figure 3.6: This 3D rendering from an inset of the topography image from Fig. 3.2 shows
the three regions corresponding to values of ∆hl and ∆hu on a detail schematic from
Fig. 3.5. To the right is a 3D rendering of the FM-KPFM signal of the same region,
showing the signal ∆V that is generated by the mid-height region.
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clear that the highest region is also the least uniform. This provides further evidence that
the DNA is concentrated in these higher regions as the strands would naturally have more
variation than a uniform monolayer component.

We have thus shown how KPFM can be used to qualitatively trace charges in com-
plexes formed by DNA and GS, and provide key hints into the electrostatic interaction
behaviour of these molecules. An understanding of the distribution of charges in these
complexes cannot be revealed by topographical scanning alone, and in a biological context
it is necessary to utilize KPFM imaging.
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Have more than you show,

And speak less than you know.

William Shakespeare

Chapter 4

Monolayers of Gemini Surfactant-DOPE

Transfection Complexes

4.1 Introduction

We have established in the previous chapter that DNA and gemini surfactants interact very
strongly, as one naturally would expect, and visualised this via a monolayer study with
AFM. Now we will turn to a similar study, but with direct application to gene delivery. By
extending the experiments from the previous chapter to the construction of monolayers of
materials that compose gene transfection complexes, we can visualise the nanoscale struc-
ture of such particles as if we were able to construct a macro version of one nanoparticle.
By analogy, this is like peeling a basket of oranges and �attening out the rinds on a large
surface. One would still be able to determine the structure of orange peel in this way,
despite, say, an inability to do AFM on a single orange. In fact, monolayers have already
been used to explore the properties of vesicle-forming surfactants (e.g. Barlow et al., 1997).

In the present case, the major shift from what we have shown in the previous chapter is
replacing DOPC+DPPC with the helper lipid DOPE. As we have already discussed, DOPE
has been found to greatly enhance transfection e�ciency (Hirsch-Lerner et al., 2005). This
is thought to arise from a conformational change induced by the DOPE molecules in
which a normally lamellar phase is transformed to hexagonal (Wasungu & Hoekstra, 2006).
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In such a system, the DNA would be coated by the cationic lipid-surfactant monolayers
and arranged in a lattice (which we observed in the previous chapter). In addition, it is
hypothesized that the addition of a neutral lipid like DOPE serves to add �exibility to the
charge density introduced by the cationic surfactant, so that the lipid-surfactant mixture
can have its charges diluted. The end result would then be that the charge density of the
gene carrier vesicles may match that of the DNA it is carrying (Dabkowska et al., 2012).
In any case, the positively charged surfactant molecules serve to compact the DNA (García
et al., 2014).

Mixing behaviour of gemini surfactants with DOPE is therefore of considerable interest.
Surfactants, when mixed, may cooperate and cause a decrease in their critical micelle
concentrations (so-called synergistic behaviour) or they may do the opposite (antagonistic
behaviour) and disrupt micelle formation, requiring a larger amount of surfactant to be
present for micelles to form (Bergström & Eriksson, 2000). Interestingly, it turns out that
DOPE and gemini surfactants of the 16-s-16 type mix antagonistically (Akbar et al., 2012).
In contrast, mixing with phosphocholines is synergistic (Bakshi et al., 2006). The di�erence
appears to lie in DOPE's structure, in that it tends toward negative curvatures owing to its
smaller headgroup size compared to the phosphocholines (like DOPC). Akbar et al. (2012)
found that shorter spacer groups (e.g., 16-3-16) mix more antagonistically with DOPE than
with a gemini surfactant possessing a longer spacer (e.g., 16-7-16), while the introduction of
a protonatable amine group in the longer spacer (16-7NH-16) put the surfactant somewhere
in between. In all cases with DOPE, the mixing remained antagonistic.

Amine-substituted gemini surfactants are especially noteworthy. Recall our discussion
in � 1.2, where we introduced these surfactants as structures that are responsive to the
acidity of their environment. At moderately low pH, they become protonated and thus
wield a 3+ charge, instead of the usual 2+. Such surfactants have been found to yield
enhanced transfection e�ciency compared to their non-substituted counterparts (Wettig
et al., 2007; Yang et al., 2010; Donkuru et al., 2012).

To explore this phenomenon, we present in this chapter a study analogous to Chapter 3,
but with monolayers of gemini surfactant and DOPE. We also examine the e�ects of
lowering the pH of the subphase on the monolayer structure. With DNA present in the
subphase at the time of monolayer formation, we can explore the structures induced when
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DNA binds to the surfactant molecules. Such monolayers are directly analogous to the
transfection complexes themselves, which we will explore in the following chapter.

4.2 Methods

4.2.1 DNA-Lipid-Surfactant Monolayer Construction

Sample preparation for AFM and KPFM imaging was performed using a similar method
to that which was described in Chapter 2, but brie�y: gemini surfactants of the 16-3-16,
16-7-16, and 16-7NH-16 type (the latter, for reference, being of type 1,1,9,9-tetramethyl-5-
imino-1,9-alkanediammonium dibromide) were mixed with the lipid 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine (DOPE), obtained from Avanti Polar Lipids. The three gemini
surfactants used here were chosen to evaluate the e�ects of the spacer group (spacers of 3
and 7 carbon atoms), and also for the e�ect of an amine-substitution in the spacer group
(7NH). In the latter case, a protonatable amine group is placed at the centre of the spacer
group, which allows the charge on the surfactant to be modulated based on environmental
pH. As discussed in � 1.5, the variation of pH is an important factor to be explored. For
further details of these surfactants and their synthesis, see Wettig & Verrall (2001); Wettig
et al. (2007) and references therein.

Lipids and surfactants were dissolved in chloroform at a concentration of 1mg/mL and
mixed at the appropriate molar ratio. Our monolayers were constructed on a clean Nima
Langmuir trough (small) �lled with approximately 50mL of nanopure Milli-Q water. For
cases in which DNA was present, we dissolved single-stranded salmon DNA, which was
sheared into random lengths by sonication, into this subphase during its preparation. For
the preparation of samples in an acidic environment, the trough was �lled with acetate
bu�er (pH 4) prepared with nanopure Milli-Q water in cases as reported. The �nal DNA
concentration we used was 10µM in base pairs, comparable to other studies (Chen et al.,
2002). Lipid-surfactant mixtures were deposited on the trough and compressed to a surface
pressure of 35mN/m. Clean mica slides were drawn up through the monolayer at constant
pressure to deposit the �lm, which was dried afterwards with a gentle stream of nitrogen
gas and then in a desiccator overnight.
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4.2.2 Isothermal Pressure-Area Curves

Our isotherms were captured on a large Nima Langmuir �lm balance (having a surface area
of 841 cm2). With the trough clean and wide open, 20µL of each mixture of amphiphile-
chloroform solution was added, where the total concentration of solutes was kept at a
constant 2.5mM to ensure consistent depositions. After allowing the solvent to evaporate
for 10 minutes, the barrier arms were compressed slowly at a rate of 15mm/min until a
maximum pressure was reached (75mN/m, well beyond the collapse pressure of any of our
mixtures). Each experiment was repeated to ensure reliability, and the data averaged. For
our �nal pressure-area curves, the area was converted into area available per molecule, in
Å2.

4.2.3 Imaging

Imaging was performed on an AIST-NT Smart SPM using MikroMasch NSC-15-Pt can-
tilevers of resonant frequency approximately 325 kHz. Details of the methodology are
largely described in � 1.3, and identical to � 3.2.2.

4.3 Results and Discussion

We begin by looking at the e�ects of adding DOPE and DNA to the gemini surfactant
monolayers. In Figs. 4.1, 4.2 and 4.3 we show pressure-area isotherm curves for each of
the surfactants in turn, and observe changes upon the addition of DOPE and DNA. In the
case of 16-3-16, we present additional isotherms in which a gradual addition of DOPE has
been added (a factor that we will explore in further detail in � 4.3.1).

As expected, the addition of DNA in all cases (surfactant only, or surfactant with
DOPE) causes the isotherm curves to shift to the right, toward larger molecular areas. In
other words, the pressure of monolayers with DNA bound is higher than it would be at
a given molecular area had there been no DNA added. This suggests, not surprisingly,
that DNA is incorporated into the monolayer, which is consistent with our earlier results.
Interestingly, adding DNA has the largest e�ect on the monolayer containing only 16-3-16,
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4.3. Results and Discussion

Figure 4.1: Isotherms of the surfactant 16-3-16, with lipids DOPC or DOPE (ratios
given are molar), with or without DNA, as indicated. DNA in the subphase was at a
concentration of 10µM; these isotherms are indicated by dashed lines. The bottom panel
shows the e�ects of varying the ratio of DOPE:GS.
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Figure 4.2: Isotherms of the surfactant 16-7-16, with DOPE and DNA as indicated. DNA
in the subphase was at a concentration of 10µM; these isotherms are indicated by dashed
lines. The grey and black curves indicate isotherms over a pure water solvent subphase,
while the dark red curves indicate isotherms over acetate bu�er (pH= 4).

further suggesting that this gemini surfactant has a very large a�nity for DNA binding.
An expansion of the monolayer upon the addition of DNA is consistent with the work of
Chen et al. (2002), which explored the e�ects of DNA on monolayers of gemini surfactant.

One of the other important considerations is the condensing e�ect of the helper lipid
DOPE. As we have discussed previously, it has been shown that DOPE as a helper lipid
yields greater transfection e�ciency than the phosphocholines, like DOPC (Hirsch-Lerner
et al., 2005; Wasungu & Hoekstra, 2006). For comparison, therefore, we show in Fig. 4.1
isotherms for 16-3-16 with DOPC (green curves). We see that the monolayers containing
DOPC lie in between those of the gemini surfactant alone and those with DOPE. It is
possible that DOPE induces a larger condensing e�ect on the DNA, and in fact, as will
see later in the AFM results, these monolayers show some aggregate formation which was
not observed in our DOPC+DPPC monolayers or those without helper lipid. Monolayers
containing 16-7-16 and 16-7NH-16 show similar trends with the addition of DOPE and
DNA as we observed with 16-3-16.
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4.3. Results and Discussion

Figure 4.3: Isotherms of the surfactant 16-7NH-16, with DOPE and DNA as indicated.
DNA in the subphase was at a concentration of 10µM; these isotherms are indicated by
dashed lines. The grey and black curves indicate isotherms over a pure water solvent
subphase, while the dark red curves indicate isotherms over acetate bu�er (pH= 4).

4.3.1 The Importance of the Spacer Group

Naturally, it is an important question to ask what e�ect the structure of the gemini surfac-
tant has on the binding behaviour of DNA, and what sorts of properties these complexes
have. In the present work, we are exploring three di�erent gemini surfactants, each with
di�erent spacer groups but identical tails. In this section, we present AFM images of the
monolayers formed by these three surfactants with DOPE and DNA, and compare their
pressure-area curves in detail.

In Fig. 4.4 we show AFM and KPFM results for these three surfactants, with cross
sections. The KPFM images are relatively unremarkable compared with our previous
results in Chapter 3, but we do note some interesting signals. While the KPFM signal
from the monolayer containing 16-3-16 is strong, we note that there are small aggregates
present in this particular image, and that the remaining features are consistent with the
other surfactants in that such aggregates exhibit a relatively negative KPFM signal. The
web-like network of DNA-bound threads do show a slight negative signal as well, although
it is quite weak. Interestingly, we do observe some spherical aggregates in some regions
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which exhibit a positive KPFM signal (see Figs. C.7, C.8 and C.9 in the Supplementary
Data of AppendixC).

A more quantitative comparison can be seen in the pressure-area curves we present in
Fig. 4.5, in which we compile isotherms from each of the gemini surfactants with DOPE,
with and without DNA. As we discussed previously, the addition of DNA causes an ex-
pansion of the monolayers in each case. However, the largest e�ect appears to be on the
surfactant with the protonatable amine spacer, 16-7NH-16. This surfactant has the same
number of atoms in its spacer group as 16-7-16, and yet gives rise to a more condensed
monolayer (smaller molecular areas). We will explore the properties of this spacer group
in more detail in � 4.3.2. In the present case, we observe the most condensed monolayer to
be 16-3-16. While this is an interesting trend, we note that caution is in order; the e�ects
of aggregation and multilayer formation are di�cult to quantify, and much of the conden-
sation may be due to nanoparticle formation. In addition, it is di�cult to know exactly
how much of the DNA has come up form the subphase and bound to the monolayer, so we
must keep this in mind and make observations on a relative basis for the present work. We
observe that the monolayers become more expanded in the order of 16-3-16, 16-7NH-16,
16-7-16; this is the same sequence as the order of decreasing antagonistic mixing behaviour
observed by Akbar et al. (2012). It could be, therefore, that antagonistic mixing of gemini
surfactants and DOPE leads to more condensed monolayers.

The Ratio of Gemini Surfactant to Helper Lipid

Yet another factor in the construction of surfactant delivery systems are the proportions of
each component. In particular, the ratio of DOPE to gemini surfactant is important (Wang
et al., 2007; Dabkowska et al., 2014), and so in this section we show the morphological
di�erences in the monolayers formed using varying ratios of DOPE:GS. Recall that in
Fig. 4.1 we compare pressure-area curves of the gemini surfactant 16-3-16 with DOPE at
various ratios. The most expanded monolayer is the one containing only gemini surfactant
(DOPE:GS ratio 0:1). Adding a little DOPE (1:5) causes the monolayer to condense to
smaller molecular areas. However, further addition of DOPE results in an expansion of
the monolayer, albeit to molecular areas that are still smaller than with gemini surfactant
alone. It is interesting to note that the curve is relatively stable for the ratio 3:2 and above,

102



4.3. Results and Discussion

Figure 4.4: Small-scale AFM and KPFM images of DNA-DOPE-gemini surfactant mono-
layers, with cross sections. The thin blue line shows the AM-KPFM signal, and the thick
black line shows the height in the plots; all scales are identical. In all cases, the deposition
pressure was π = 35mN/m, the ratio of DOPE:GS was 3:2, and the DNA concentration
of the subphase was 10µM.
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Figure 4.5: Isotherms of the surfactants 16-3-16, 16-7-16 and 16-7NH-16 with DOPE
(molar ratio 3:2 DOPE:GS), with DNA in the subphase at a concentration of 10µM as
indicated. The solid lines indicate isotherms over a pure water subphase, while the dotted
lines indicate isotherms over a subphase with DNA present.

suggesting that there is strong binding and incorporation of the DOPE into the monolayer
as tightly bound complexes at small DOPE fractions, while at larger fractions the DOPE
simply begins to incorporate into the monolayer as another natural component. Our pure
DOPE monolayer is remarkably consistent with the others at larger DOPE fractions, and
also consistent with prior studies (Rathman & Sun, 2005). The `sweet spot' ratio of 3:2 (or
slightly greater) also happens to be optimal for gene transfection (e.g. Wang et al., 2007,
2013), so perhaps there is a link between this observation and transfection e�ciency.

Now we compare the observations in the pressure-area curves to the nanoscale mor-
phologies shown in the AFM images of Fig. 4.6. While we see a tightly bound network
of threads in the 16-3-16-only monolayer, we note the presence of aggregates in the 1:5
monolayer upon the addition of a small amount of DOPE. These aggregates could help to
explain the observed condensation of the monolayer in the pressure-area curves. Further
addition of DOPE produces larger threads of DNA-bound complexes. In addition, the
larger DOPE fraction appears to induce more prominent electrostatic domains within the
monolayer, as we can see from the cross sections. With the largest fraction of DOPE, 5:1,
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4.3. Results and Discussion

we note that the threads become very thick, on the order of ∼ 500nm in some cases, which
suggests that with a smaller fraction of cationic molecules with which to bind the DNA,
these components form very tight complexes. However, these tight complexes appear to
have little e�ect on the macro-properties of the monolayer (that is, the overall pressure-area
relationship) compared to the other extreme (the 1:5 ratio).

4.3.2 Implications of Solution pH

Acidity is an environmental factor that varies with biological conditions, and thus presents
an opportunity to be used as a trigger for the release of genes from their delivery systems
(Wettig et al., 2007; Donkuru et al., 2012). Amine functional groups act as Lewis bases,
and can be protonated under acidic conditions to attain an additional positive charge.
Hence, the gemini surfactant 16-7NH-16 (or any other surfactant with an -NH group) will
have a 3+ charge at low pH, versus the usual 2+ under neutral or basic conditions. To
this end, in this section we present monolayers of the gemini surfactant 16-7NH-16 formed
over acetate bu�er (pH= 4), and compare them to those formed over nanopure water.

In Fig. 4.7 we show three monolayers of this pH-sensitive gemini surfactant, over nanop-
ure water and over acetate bu�er. In the latter case, we show two di�erent pressures,
π = 15mN/m and π = 35mN/m for comparison with a lower π. Once again, the KPFM
signals from these monolayers are weak, although they do indicate a slight negative signal
generated from the DNA-bound threads and aggregates. At higher pressure, we note the
appearance of some aggregates which show up in the cross section a few nm higher than
the threads. Perhaps the greater compression induces this formation of nanoparticles.

An examination of the pressure-area curves in Fig. 4.8 shows the dramatic e�ect of
lowering the solution pH. These curves are all in the presence of DNA, and compare the
surfactants 16-7-16 and 16-7NH-16 over pure water or over acetate bu�er. Remarkably,
the surfactant without the protonatable amine group shows the largest di�erence when the
pH is lowered. This counterintuitive result can perhaps be explained by the larger charge
density of the 16-7NH-16 molecules which might limit the space available for DNA binding.
However, it should be noted that the bu�er salts present in solution may have large e�ects
on the monolayer properties that have yet to be fully explored (McLoughlin et al., 2005;
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Figure 4.6: AFM and KPFM images of DNA-DOPE-16-3-16 monolayers, with cross sec-
tions. The thin blue line shows the AM-KPFM signal, and the thick black line shows the
height in the plots; all scales are identical. The deposition pressure was π = 35mN/m
for all but 0 : 1, where π = 15mN/m. This smaller pressure was required for the pure
gemini monolayer due to the low collapse pressure in the absence of helper lipid. Ratios
of DOPE:GS are indicated, and in all cases the DNA concentration of the subphase was
10µM using a pure water solvent for the subphase.
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4.3. Results and Discussion

Figure 4.7: AFM and KPFM images of DNA-DOPE-16-7NH-16 monolayers, with cross
sections. The thin blue line shows the AM-KPFM signal, and the thick black line shows
the height in the plots; all scales are identical. The deposition pressure was as indicated
above each height image, π = 15 or 35mN/m, the ratio of DOPE:GS was 3:2, and the
DNA concentration of the subphase was 10µM. Where we indicate H2O or pH= 4, the
latter was over acetate bu�er, while the former used a pure water solvent for the subphase.
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Figure 4.8: Isotherms of the surfactants 16-7-16 and 16-7NH-16 with DOPE (molar ratio
3:2 DOPE:GS), with DNA in the subphase at a concentration of 10µM. The solid lines
indicate isotherms over a pure water solvent subphase, while the dotted lines indicate
isotherms over acetate bu�er (pH= 4).

Cristofolini et al., 2007; Dabkowska et al., 2014).

4.3.3 Heights and Surface Potentials

As a comparison to our results from the previous chapter, we show in Table 4.1 a summary
of height and surface potential di�erences between the DNA-laden domains and the back-
ground for a few of our monolayers. We note the higher heights (statistically signi�cant
given our con�dence intervals) of the domains in the 16-3-16 monolayer containing DOPE
(2.10 nm), compared with a mixture of DOPC+DPPC (total height 1.643 nm). Con�rm-
ing our qualitative observations, the surface potential di�erences of the DNA domains are
weakly negative, although the 16-3-16 monolayer is signi�cantly more positive than the
other two. While the monolayers of 16-7-16 and 16-7NH-16 are statistically the same in
terms of surface potential and height, the domains within the monolayer formed over pH= 4

bu�er are not only signi�cantly higher, but are also lower in surface potential compared
to a subphase of pure water. Interestingly, this is consistent with zeta potential measure-
ments reported by Wettig et al. (2007), who observed a drop in the potential of analogous
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4.4. Conclusions

Table 4.1: Image analysis results for height and surface potential di�erences between
domains in lipid-gemini surfactant monolayers containing DOPE and DNA with gemini
surfactants as indicated, corresponding to the results shown in Figs. 4.4 and 4.7, all at a
surface pressure of π = 35mN/m. The cross section method was used to calculate these
results for the height and surface potential of the domains relative to the background. See
the text for further details. Margins of error were calculated at a 95% con�dence level.

Gemini Surfactant Subphase ∆h / (nm) ∆V / (mV)

16-3-16 H2O 2.10 0.06 -20.8 1.0

16-7-16 H2O 1.60 0.11 -14.5 1.0

16-7NH-16 H2O 1.70 0.08 -13.1 0.8

16-7NH-16 pH= 4 2.20 0.13 -10.3 0.9

12-7NH-12-DOPE-DNA complexes at lower pH.

4.4 Conclusions

We have presented in this chapter a series of monolayer experiments exploring the e�ects
of gemini surfactant spacer groups, the addition of DOPE helper lipid, pH, and monolayer
pressure. Our results are broadly consistent with previous studies on gemini surfactant
binding to DNA (e.g. Chen et al., 2002, 2005, 2012), although this is the �rst study of
its kind to explore at the nanoscale the properties of such monolayers with DOPE for the
purposes of connecting observations with gene therapy. Other studies, like those referenced
above and for instance Dai et al. (2013) and Luque-Caballero et al. (2014) have also shown
very clearly the a�nity of DNA for monolayer binding (particularly cationic monolayers).

Clearly, the addition of DOPE moderates the morphology of the complexes formed
from DNA binding, as we demonstrated in � 4.3.1. This signi�es the importance of the
fraction of each transfection component, particularly given the observation that the ratio
of helper lipid to gemini surfactant a�ects transfection e�ciency (e.g. Wang et al., 2007).
Further, it is evident that acidity plays a large role in the binding behaviour of DNA to
these monolayers, and therefore such aspects must be considered in the interpretation of
any gene therapy experiments. For example, one must be mindful of preparing transfection
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complexes in one solution environment for morphological study, and then testing the trans-
fection e�ciency of such complexes in another solution (e.g., see Radwan Almofti et al.,
2003).

A noteworthy result is the appearance of nanoparticles in our monolayers, which may
contribute to the condensing e�ect observed in the pressure-area isotherms. Nano-sized
particles of the gene transfection complexes may spontaneously form at certain pressures
without pre-forming structures such as DOPE vesicles. It appears, therefore, that DOPE
(unlike, say, DOPC) facilitates the formation of spherical aggregates with gemini surfactant
and DNA. These results lend further credence to the assertion that studying monolayers in
this fashion can yield meaningful conclusions for comparison to purely nanoparticle studies,
such as that which is presented in the next chapter.

While the parameter space we have explored in this chapter is relatively small, it does
shed considerable light on the aspects which have great impact on the nanoscale properties
of the components important for gemini surfactant gene therapy. Certainly, it would be
desirable in future to expand upon this study to include a broader spectrum of parameters
such as various concentrations of DNA, a broader range of spacer and tail lengths for gemini
surfactants, additional bu�er solutions at a number of pH values, monolayers deposited at
pressures spanning the length of the pressure-area curves, and many ratios of DOPE:gemini
surfactant. We cannot hope to explore all of these in one study, but we have attempted
here to pick out some of the parameters of top importance so that we may point to aspects
which may yield greater insight into, and plans for, future research.
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And as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes and gives to airy nothing

A local habitation and a name.

William Shakespeare

Chapter 5

`Direct' Imaging of Gemini Surfactant

Transfection Complexes

5.1 Introduction

In view of the monolayer studies presented in the preceding chapters, it is now time to
explore the gene transfection complexes themselves. As we will see, analyses of the trans-
fection nanoparticles by direct imaging is challenging for a number of reasons, but, in
the end, it is these systems which are actually the therapeutic agents of interest. The
nanoparticles are what the cells take up, and we would like to understand more fully the
mechanism of this process. Characterisation of these nanoparticles is often done in terms
of size or zeta potential, for example (e.g. Donkuru et al., 2010), and analyses by AFM
vary from study to study. In an attempt to bring some consistency to this area of research,
the present chapter aims to demonstrate how we can relate our previous monolayer studies
to nanoparticles, and presents a methodical approach to AFM and KPFM characterisation
of these complexes. As we have seen, monolayer methods can be applied in a very consis-
tent and controlled manner, and allow a more detailed study of the interactions of each of
the components of the complexes. Our goal is to understand how these e�ects manifest
themselves when these systems are in nanoparticle form.

Characterisation of surfactant gene delivery systems has been done by way of some
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direct imaging, most commonly by electron microscopy (e.g. Bajaj et al., 2007) and AFM
(e.g. Kawaura et al., 1998; Sakurai et al., 2000; Nakanishi & Noguchi, 2001; Radwan Almofti
et al., 2003; Wang et al., 2013). These studies have shown that complexes can, for instance,
be prepared in solution and then deposited onto some �at substrate to be imaged by AFM
(which is further explored here). Information can be gleaned from comparisons of the
physical properties of the complexes on the nanoscale and their transfection e�ciency. For
example, Kawaura et al. (1998) found that complexes prepared with cholesterol as a helper
lipid were most e�cient at a size of 400 nm - 1400 nm; this size can be controlled to some
extent with the ratio of the various components in the complex or by the speci�cations of
the derivatives, for instance by using di�erent kinds of helper lipds or surfactants (Bajaj
et al., 2007). A higher proportion of cationic surfactant can lead to tighter compaction of
the DNA, which may make it more di�cult for release within the cell (Sakurai et al., 2000).
Therefore, it is important to �nd an optimal ratio of DNA to surfactant, and any helper
lipid. The existence of an optimal ratio of surfactant:lipid might therefore explain the need
for a helper lipid to modulate the charge density of the monolayer which envelops and
compacts the genetic material. This is likely to be a precarious balance between protecting
the DNA and allowing it to be released at the right moment.

Gemini surfactants have been gathering interest as potential gene delivery vehicles for a
few important reasons. Their ability to interact, compact and complex with DNA has been
demonstrated in several studies (e.g. Wang et al., 2007; Wettig et al., 2008; Zhao et al.,
2007; Wettig et al., 2008; Zhao et al., 2008; Donkuru et al., 2010; He et al., 2011; Wang
et al., 2013). More signi�cantly, not only have gemini surfactants been found to promote
conformations that are favourable for transfection (e.g. Badea et al., 2007; Wettig et al.,
2008; Yang et al., 2010), but they do so at lower concentration. While toxicity remains a
concern for surfactant gene delivery, gemini surfactants have critical micelle concentrations
that are one to two orders of magnitude lower than monomeric surfactants, and are thus
able to compact DNA with less material; this serves to help mitigate potential toxicity
e�ects and gives further motivation for their continued study (Pedroso de Lima et al.,
2001; Wettig et al., 2008).

We present in this chapter a study of gemini surfactant gene transfection complexes
with AFM and KPFM. Using the three gemini surfactants from our previous chapter, we
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5.2. Methods

construct nanoparticles and deposit them directly onto mica for imaging and character-
isation. These particles (complexes) can then be compared with other studies' results.
Furthermore, we can examine the electrical properties of the nanoparticles. To-date, no
applications of KPFM to these systems has been reported as far as we are aware, making
this study the �rst of its kind.

5.2 Methods

5.2.1 Preparation of Transfection Complexes

Transfection complexes were prepared in solution and deposited onto freshly cleaved mica
slides following closely the methodology presented in Wettig et al. (2007) and Wang et al.
(2013). The transfection complexes are comprised of three parts: the gemini surfactant,
a helper lipid, and DNA. These three components were prepared separately and then
combined as follows.

To prepare the gemini surfactant solution, an appropriate amount of stock chloroform
solution (1mg/mL) of each gemini surfactant was placed in a small vial and the solvent
allowed to evaporate over a gentle stream of nitrogen gas. The (precisely measured) dried
surfactant was resuspended in nanopure (Milli-Q) water. The solution was then �ltered
through a 0.2µm disc �lter with a syringe.

Lipid vesicles of DOPE were prepared by �rst drying a �lm of the lipid in a glass vial
by dissolving an appropriate amount of stock (25mg/mL) chloroform-DOPE solution into
1mL of HPLC grade ethanol, and evaporating over nitrogen gas. The �lm was resuspended
in nanopure water and allowed to `swell' for about one hour in a fridge. The solution was
then subjected to sequential stirring (with a magnetic stir bar) and sonication until the
solution was rendered clear. Often, this was achieved over a timescale of approximately 2
hours, with 15-minute intervals of stirring and sonication. As a �nal step, the vesicles were
�ltered through 0.45µm disc �lters.

Our DNA solution was prepared in the usual way, by �rst dissolving an appropriate
amount of the sodium salt of salmon sperm DNA into nanopure water. All three solutions
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were combined in the appropriate proportions to obtain a 3:2 molar ratio of DOPE:GS
and a 5:1 charge ratio of GS:DNA. After 30 minutes of incubation at room temperature,
small quantities (∼20-40µL) of the transfection complex solution was placed onto freshly
cleaved mica slides and allowed to adhere for 15 minutes. The solvent was then wicked
away with a Kimwipe and the sample dried overnight in a desiccator. For more detail on
this procedure, refer to �A.2.

5.2.2 Imaging

Imaging was performed on an AIST-NT Smart SPM using MikroMasch NSC-15-Pt can-
tilevers of resonant frequency approximately 325 kHz. Details of the methodology are
largely described in � 1.3, and identical to � 3.2.2.

5.3 Results

In contrast to the previous chapter, where we studied monolayers of the components of
transfection complexes, in this study we are directly observing the complexes themselves.
While there may be implications of examining these structures after they have dried, and
further imaging them in air, we would expect to �rst order that these e�ects would be
fairly constant for each type of complex we observe, and therefore we may still make
relative comparisons. We begin by showing an AFM image of DNA alone (without any
gemini surfactant or lipid present) in Fig. 5.1. In a similar way as that which was observed
in the DNA-GS-lipid monolayers, we see a web-like network of �brils approximately 2 nm
high. However, with DNA alone and deposited in this fashion, the network is much more
complex, tangled and interwoven. As we will see in the following data, the addition of
gemini surfactant and DOPE leads to a condensation e�ect which compacts the DNA into
spherical aggregates.

As a summary of detail images of the transfection complexes, we show close-up AFM
and KPFM results in Fig. 5.2, followed by individual survey images including magnitude
and phase in Figs. 5.3, 5.4 and 5.5, which are of a 10x10µm �eld of view. The complexes
appear to be dispersed on the mica, in some cases in patches (16-3-16). There is a general
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5.3. Results

Figure 5.1: DNA deposited directly onto mica and imaged with our AFM. The cross
section is taken from the white line at y = 0.2µm.

trend of small particles for 16-3-16, then larger ones for 16-7-16, with the largest being
16-7NH-16. This is also evident from the cross section data. KPFM results indicate that,
with the exception of 16-3-16, the gemini surfactants exhibit a net positive surface potential
relative to the background, but that the particles are surrounded by a layer of negative
surface potential material. The 16-7-16 results are more di�cult to interpret, as there
appears to be a network of negatively charged DNA permeating the deposits with a few
nanoparticles present which have a positive surface potential. Complexes of 16-7NH-16 are
most remarkable, with many nanoparticles peppered throughout the deposits, all showing
a relatively positive KPFM signal. We will discuss these features, and their potential
implications, in the next section.
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Figure 5.2: Small-scale (1µm x 1µm) AFM and KPFM images of gene transfection
complexes, with cross sections. The thin blue line shows the AM-KPFM signal, and the
thick black line shows the height in the plots; all scales are identical.
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5.3. Results

Figure 5.3: Large-scale (10µm x 10µm) AFM and KPFM images of gene transfection
complexes of DNA, DOPE and gemini surfactant 16-3-16. The cross section was taken
at y = 5µm.
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Figure 5.4: Large-scale (10µm x 10µm) AFM and KPFM images of gene transfection
complexes of DNA, DOPE and gemini surfactant 16-7-16. The cross section was taken
at y = 5µm.
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5.3. Results

Figure 5.5: Large-scale (10µm x 10µm) AFM and KPFM images of gene transfection
complexes of DNA, DOPE and gemini surfactant 16-7NH-16. The cross section was taken
at y = 2µm.
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5.4 Discussion

5.4.1 Quantitative Analysis of Nanoparticle Size Distributions

Analyses of the sizes of transfection complexes by AFM has largely been semi-quantitative
to date (e.g. Donkuru et al., 2010), with descriptions limited to general observations which
lead to `classi�cations' of particle sizes. Indeed, the distribution of sizes of transfection
complexes appears to be rather broad (e.g. Kawaura et al., 1998; Sakurai et al., 2000;
Donkuru et al., 2010; Wang et al., 2013). A simple method by which particle sizes may
be determined is from the use of dynamic light scattering (Berne & Pecora, 2000; Brar &
Verma, 2011). Particles in solution are examined, giving rise to a distribution of sizes as-
suming they are spherical and fairly uniform in diameter. This technique is straightforward
to implement and has been used to characterize the size of transfection particles(e.g. Wang
& Wettig, 2011). However, this technique does have some disadvantages; for example, it is
susceptible to uncertainties and bias introduced by contaminants that are di�cult to detect
and quantify, and is unreliable if there are multiple sizes of particles present in the solution
(Bootz et al., 2004). The latter issue is of particular importance in the present case, since
the transfection complexes are prepared by mixing three di�erent components. Concerns
arise, therefore, if these components are not completely condensed into nanoparticles.

In view of the above, we propose to use AFM image analysis in a more detailed quan-
titative manner to characterize transfection complexes, which also allows for meaningful
comparisons between experiments. This method is direct, in that we can directly mea-
sure the sizes and morphologies of the nanoparticles and determine their distributions,
and compare these distributions with other experiments (e.g., di�erent gemini surfactant
complexes). Although there is the notable issue of the e�ects of drying the complexes and
convolution with the scanning probe tip, this method is not sensitive to the underlying
particle distribution or any assumptions of conversion from light di�usion to particle size.
In addition, it has the advantage over electron microscopy techniques in that it avoids
artefacts or uncertainties introduced by sample preparation and �xation techniques (for
instance, see Bootz et al., 2004). Fortunately, our nanoparticles are fairly widely dispersed,
so such image analysis is more straightforward than for highly complex samples (Klapetek
et al., 2011).
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5.4. Discussion

The technique begins with a calibrated AFM height image of the nanoparticles of in-
terest. Using the program Gwyddion, one may select the individual nanoparticles by
creating a mask via a thresholding approach. Since the nanoparticles are almost always
much higher than any background materials, this typically gives excellent results. Proper-
ties of the individual nanoparticles can be extracted, such as their surface area, maximum,
mean or median height within the particle boundaries, or their e�ective radii (the radius
of a disc containing the same area as the particle). Any particles that are either extremely
small (e.g., a pixel) or touching the edge of the image are �ltered out.

Distributions of nanoparticle areas are shown, for each of our gemini surfactant com-
plexes, in Fig. 5.6, plotted against their maximum height. One would expect, to �rst order,
that particles with a larger area would be higher, and we do see this trend. We also see,
from a quantitative view, that the 16-3-16 surfactant complexes have smaller areas than
the others, and that the 16-7-16 surfactants are also small, but have somewhat larger
maximum heights than 16-7NH-16. By far, the 16-7NH-16 surfactant complexes are more
broadly distributed in size, and go up to areas of 0.1µm2. In the top panel of this same
�gure we show normalised histograms of the area distributions for the complexes, which
indicate that the 16-7NH-16 surfactant complexes have a higher fraction of their particles
at larger areas than the other surfactants. The complexes from 16-3-16 are restricted to
very small areas.

Next, we show in Fig. 5.7 the distributions of particle e�ective radii, plotted again
against the particle maximum height, with histograms in the top panel. Once again we
see that the 16-7NH-16 surfactant complexes are the largest, followed by 16-7-16, with
16-3-16 the smallest. We do note the presence of two pools of particles for the 16-3-16
surfactant complexes in terms of their maximum heights, where there are some which are
clustered around 3.8 nm and others around 8 nm. No such separation is observed for the
other surfactants. It's possible that these are simply the result of some particles `sitting'
on top of a layer of other uncomplexed molecules. In any case, our bottom-line analysis
suggests that these transfection complexes are distributed over a range of diameters of
a few tens to 200 nm for the 16-3-16 (peak near 50 nm) and 16-7-16 (peak near 100 nm)
gemini surfactants, and over a larger range of diameters for 16-7NH-16 (a few tens to about
400 nm, peaking around 200 nm).
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Figure 5.6: Distributions of areas for the gene transfection complexes as determined from
an analysis of the AFM height images. Top panel: normalised histograms binning the
number of nanoparticles found in the distributions in the bottom panel. Error bars were
computed following Gehrels (1986). Bottom panel: plot of the maximum height of each
nanoparticle versus particle area.

124



5.4. Discussion

Figure 5.7: Distributions of equivalent radii for the gene transfection complexes as de-
termined from an analysis of the AFM height images. Top panel: normalised histograms
binning the number of nanoparticles found in the distributions in the bottom panel. Error
bars were computed following Gehrels (1986). Bottom panel: plot of the average height
of each nanoparticle versus particle equivalent radii. See the text for de�nitions.
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5.4.2 Surface Potentials

An analysis of the surface potentials of our nanoparticles requires an analogous approach to
what was done previously; namely, cross section measurements. We present these results in
Table 5.1, where we show the surface potentials of the three types of nanoparticles computed
from an averaging of results from many separate images. The con�dence intervals on these
results are somewhat larger than our monolayer calculations, owing to the larger variability
in the properties of the particles. We �nd no di�erence between the 16-7-16 and 16-7NH-16
surface potentials. However, we do observe the curious result of a negative surface potential
for the 16-3-16 particles. It is possible that these systems are achieving a conformation
which is similar to a monolayer form (which has shown to give rise to a negative potential
in the DNA-laden domains), or that the complexes are mixing such that the charge ratio
(+/-) has become less than one, a situation which has been shown to produce a negative
zeta potential (Wang et al., 2007). In any case, more extensive research on this system
is needed to explore these issues. In addition, we note that while we do observe strong
KPFM signals for these nanoparticles, direct comparisons with values obtained from our
monolayers should not be made given the di�erences in the deposition procedures.

Table 5.1: Image analysis results for surface potential di�erences between gemini
surfactant-DOPE-DNA nanoparticles and their background, using the cross section
method. Margins of error were calculated at a 95% con�dence level.

Gemini Surfactant ∆V / (mV)

16-3-16 -35.2 4.2

16-7-16 49.9 2.1

16-7NH-16 51.5 2.6

5.4.3 Implications of Nanoparticle Structure

The size range of our nanoparticles is broadly consistent with the general range of nanopar-
ticle sizes on the order of a hundred nm (Donkuru et al., 2010), although our results for
16-3-16, suggesting they are of size less than 100 nm is somewhat inconsistent with the
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5.5. Conclusions

light scattering results of Wang et al. (2013), which measured those complexes to be in the
realm of 460 nm. However, that study did use a DOPE:GS ratio slightly larger than the
present work. In any case, it is not surprising that we see a large range of nanoparticle
sizes since we are using randomly sized fragments of DNA, and not strands of �xed size
(plasmids). However, we can expect our results to be reliable on a relative basis so that
we may compare gemini surfactants with each other.

All three of our gemini surfactants exhibit the characteristic `beads on a string' mor-
phology described in Sternberg et al. (1994), with diameters consistent with that study
(a few hundred nm). The `string' components in our images do suggest, as Pedroso de
Lima et al. (2001) does, that the nanoparticles could be `bathed' in sheets or tubules of
lipid-gemini surfactant mixtures that lie in between the nanoparticles themselves. Such a
model would not be inconsistent with our results.

5.5 Conclusions

We have demonstrated in this chapter how nanoparticle analyses might be done with AFM
for gene transfection complexes using simple and freely-available software. Nanoparticles
that were observed in our monolayer studies at higher surface pressure appear to manifest
similarly to those we see in the direct depositions of the present chapter. Given the size
distributions we found, studies in which gene transfection complexes are constructed with
randomly sheared DNA fragments should take into account this variability. It has been
suggested that transfection e�ciency depends very much on the nanoparticle size, rather
than the type of lipid or surfactant (Pedroso de Lima et al., 2001), and so perhaps an
analysis such as that which we have presented in this chapter may be used in future
research to draw correlations between the size distributions and transfection e�ciency.
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I have approximate answers and possible beliefs in di�erent

degrees of certainty about di�erent things, but I'm not

absolutely sure of anything, and of many things I don't know

anything about, but I don't have to know an answer. I don't feel

frightened by not knowing things, by being lost in the mysterious

universe without having any purpose which is the way it really

is as far as I can tell.

Richard Feynman

Chapter 6

Conclusions and Future Prospects

Recent advances in scanning probe microscopy technology have made the research pre-
sented in this thesis possible. We have presented a novel study of monolayers and gemini
surfactant systems using state-of-the-art atomic force microscopy techniques which have
led to new approaches for studies in gene therapy from a fundamental physics point of
view. In particular, this thesis has discussed the following broad issues:

• Common cell membrane lipids have been studied for decades on the macro-scale both
in terms of their dynamics (e.g., surface pressure) and electrostatics (overall surface
potential). More recently, with the advent of AFM technology such monolayers have
been studied topographically on the nanoscale, but not electrostatically before the
present work.

• In their use as gene delivery vehicles, gemini surfactants must interact with cell
membrane lipids. The nature of this interaction is not well understood, and this thesis
presents some insight to their behaviour on the nanoscale when mixed with some
common cell membrane lipids. In addition, the nanoscale electrostatic properties of
such monolayers were explored.

• The binding behaviour of DNA to gemini surfactant is of considerable interest, given
that this is the key interaction within gene delivery systems. Studies of this bind-
ing have been limited to macro-scale properties of monolayer dynamics and simple
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AFM studies of the complexation process. In the present work we examined the
electrostatic nature of these interactions but observing with KPFM these systems in
monolayer and nanoparticle form.

• Physical characterisations of gene transfection complexes can bene�t from the use of
detailed quantitative measurements of the distributions of the sizes of such transfec-
tion complexes.

6.1 Nanoscale Electrical Properties of Lipid Monolayers

We have presented in Chapter 2 a study of lipid monolayers at the nanoscale using AFM and
KPFM to probe not only topography, but also electrostatics. By constructing monolayers
of di�erent lipids we were able to show how morphological changes result from changes to
the composition not only by varying the ratio of the lipids, but by adding gemini surfactant.
The gemini surfactant was found to interact very strongly with the gel-phase lipid DPPC
present in the monolayer, and also appeared to increase the height of the domain struc-
tures. In terms of electrostatics, the gemini surfactant, being positively charged, induced
a stronger positive surface potential which we detected with KPFM. Thus, we were able
to show how AFM can be used to observe molecular interactions (e.g., that the surfactant
`preferred' one lipid over another), and to trace these interactions by following the electro-
static signal. By combining our data with that which has been published from macro-scale
observations of mono-lipid monolayers' surface potentials, we were able to compare our
calculated di�erence in surface potential between the DOPC and DPPC domains with
literature values to con�rm a trend of greater di�erences of surface potential between the
domains when the monolayer pressure is increased.

6.2 Morphology and Electrostatics of DNA-Surfactant

Binding

Electrostatics has been implicated as the primary driver of the formation of gene trans-
fection complexes, and yet most of the research reported to date has been on macro-scale
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6.3. Gene Transfection Nanoparticles Analysed by AFM and KPFM

electric potentials, with the only features probed on the nanoscale being topographical. In
this work, we have not only shown the e�ects of DNA binding on monolayer morphologies
at the nanoscale, but have demonstrated the importance of probing the electrostatic po-
tential at the same resolution. We revealed that maps of the electrical surface potential of
monolayers containing cationic surfactant do not correlate entirely with their topographies,
and thus KPFM imaging can give us information inaccessible by AFM alone. DNA bind-
ing to the gemini surfactant takes place within the gel-phase domains of lipid monolayers
where the surfactant is present, and likely remains coated in residual surfactant molecules
that are revealed in our KPFM images by a strongly positive signal. Given that the DNA
is present in solution and may freely bind to the monolayer, it appears to prefer to bind
in such a way that there is excess surfactant (giving rise to the positive KPFM signal);
therefore, this may help to explain the greater transfection e�ciency at relatively large
(+/−) charge ratios of ∼ 5− 10.

Extending this to monolayers containing gemini surfactant and the commonly used
helper lipid DOPE, we showed that DNA strongly binds with these monolayers as well. The
KPFM signal surrounding the DNA in this case is only weakly positive, but this is likely due
to the fact that there is only one lipid present along with the gemini surfactant. Pressure-
area isotherms of these monolayers analogous to gene transfection complexes showed the
importance of DOPE in facilitating the condensation of DNA along with the surfactant.
Without DOPE, these monolayers of DNA with gemini surfactant were much expanded,
and with the addition of DOPE showed far smaller areas per molecule. Helper lipids give
rise to far greater transfection e�ciencies than surfactant and DNA alone, and the results
in this thesis may help to explain why this is so.

6.3 Gene Transfection Nanoparticles Analysed by AFM

and KPFM

Following from our monolayer studies on the materials composing gene transfection com-
plexes, we investigated the morphologies and electrical properties of the complexes them-
selves with AFM and KPFM. We found that the nanoparticles that form have sizes dis-
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tributed broadly from a few tens of nm to several hundred, and that it is di�cult to pinpoint
any narrow range of sizes at least for the form of DNA we use here. However, we were
able to distinguish the particles based upon the spacer group of the gemini surfactants,
and found that larger spacer groups form larger nanoparticles in the region of ∼ 200nm,
whereas the shorter spacers formed nanoparticles of a few tens of nm in diameter. This was
consistent with the pressure-area isotherms, which showed that the shorter spacer group
produced more condensed monolayers.

Importantly, we demonstrated the use of a simple particle analysis broadly employed
in AFM but applied to these gene transfection systems. With this technique, many mea-
surements can be made to produce quantitatively signi�cant results that could then be
compared with transfection e�ciency data to drive future research.

6.4 Future Work

While this thesis is a compilation of years of research into the nanoscale structure and
physical properties of monolayers and gene transfection nanoparticles, there is a great deal
of parameter space that has been left relatively unexplored. Such a comprehensive study
of all the possible experimental conditions that could lead to signi�cant di�erences in the
properties of the systems we have explored would take far too much time for even a several
PhD theses, but here is an attempt to lay out some commentary on where future research
in this respect might go.

In terms of the parameters themselves, which were explored to some degree in the
present work, we have the following.

• Gemini surfactant type: spacer length, tail length.

• Gemini surfactant spacer or tail functional groups.

• Lipid type: e.g., DOPE, DOPC, DPPC and others.

• Ratio of lipid:GS.
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6.4. Future Work

• Ratio of GS:DNA, or concentration of DNA.

• DNA size or type: e.g., base pair length of strands, or plasmids (linear or circular).

• Solution pH: e.g., bu�ers at pH 4, 7, 9, or nanopure water.

• Monolayer pressure.

Clearly, we have had to narrow down considerably the choices presented in the above
list. Each one of these parameters can answer di�erent research questions, depending on the
individual experiment or variable of interest. For example, the protonatable spacer group
of 16-7NH-16 lends itself to an examination of the e�ects of pH. Data on transfection
e�ciencies of a series of gemini surfactants of progressively larger spacer groups or tail
lengths could be correlated with nanoparticle size or monolayer pressure trends. It appears
from our present work that the largest e�ects on our systems are the type of surfactant,
the amount of lipid, and solution pH, and these may be useful to observe trends. While
we have been using randomly sized DNA fragments in this thesis, a study using plasmids
or single length DNA would be informative to determine which of the gemini surfactants
may be appropriate or e�cient for gene transfection, perhaps using their ability to compact
DNA as a metric for this purpose. However, manufacturing DNA strands of a narrow range
of sizes in the quantities required for these kinds of studies is extremely di�cult. Plasmids
are another option, but those which are therapeutically important are also expensive to
replicate.

In addition to a broadening of parameter space, other types of instruments could be
employed to examine di�erent properties of the monolayers or particles we have studied.
For example, individual bonds within the molecules of the monolayer may be probed us-
ing polarisation-modulated infrared re�ection-absorption spectroscopy (PM-IRRAS); this
technique has already been widely employed in general monolayer and interfacial studies
(Blaudez et al., 1993; Dicko et al., 1998; Estrela-Lopis et al., 2001; Goto & Caseli, 2013),
and there is huge potential for research on gemini surfactants and their interaction with
DNA. In this case, bond stretching can be observed in real time as DNA binds with the
monolayers on a Langmuir �lm balance.

135



While we have taken advantage of serious improvements in KPFM technology in order
to conduct this research, one limitation that prevents us from examining the electrostatic
properties of these biological samples is that our samples must be set in air, and not liquid.
Liquid imaging for AFM has been around for quite some time, although it is a trickier
technique. However, the unique requirements of KPFM prevent its operation in liquid due
to spurious electromagnetic �elds if any electrolytes are present in solution. While recent
developments have employed KPFM in nonpolar solvents (Domanski et al., 2012), true
KPFM in a liquid environment is still a long way away, although there is progress being
made in this endeavour along with other advances in KPFM (Collins et al., 2015a,b).

In view of the above, it is clear that there are serious advantages to be had with multi-
and interdisciplinary studies such as that which we have presented in this thesis. The
combination of physics and nanotechnology with biology and pharmaceutics in the study
of fundamental aspects of gene therapy can have real impact on clinical research, and signals
the importance of continued work in these areas for the bene�t of future healthcare.
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APPENDICES





It doesn't matter how beautiful your theory is, it doesn't matter

how smart you are. If it doesn't agree with experiment, it's

wrong.

Richard Feynman

Appendix A

Detailed Experimental Procedures

A.1 Langmuir-Blodgett Deposition

Following from our discussion in � 1.4.1, we provide here some detailed information on the
experimental procedure for constructing Langmuir monolayers and then depositing them
onto mica slides in preparation for imaging. It is assumed that the reader will be familiar
with the general operating procedures for their trough apparatus, which can be learnt from
the instrument operating manual and will not be repeated here.

The basic sequence of Langmuir-Blodgett deposition is solution and material prepa-
ration, cleaning, monolayer formation, monolayer compression, and �nally deposition and
drying.

Preparation

Lipids and surfactants should be prepared into solutions using chloroform as the solvent.
In the present work, we used a �nal solute concentration of 1mg/mL. This concentration
has been found to be convenient for small troughs (requiring a minimal volume). To make
solutions of multiple species, simply combine the appropriate volume of each stock solution
to give the desired molar ratio. The �nal solution will then still have a concentration of
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1mg/mL. Solutions and stock solutions should be kept in the freezer until needed. When
storing, it is desirable to top up the vials with nitrogen gas to avoid any possible oxidation.

An appropriate substrate onto which to deposit the monolayers is mica. Mica can be
cleaved to atomci �atness, which is a critical advantage for AFM. The slides used in the
present work were purchased as small cut squares 18mm on a side, which �t nicely into
the deposition well of the trough. It is necessary to clean and cleave the slides right before
use, which can be accomplished using simple single-sided scotch tape, as follows: Take a
section of tape and place it �rmly over one side of the mica (with gloves). Carefully peel
the tape back while applying pressure to the back of the slide, and take a layer of mica
with the tape. This takes practise to get e�cient, so it's best if someone can show you
how this works. Ensure that an entire layer is removed, to leave a clean surface with no
broken layers. Cleave two layers from each side, and secure it to the dipping arm. Lower
the dipping arm to its lowest setting and manoeuvre the slide into the dipping well. The
height will be adjusted later when the subphase is added.

Cleaning

Firstly, the trough must be cleaned, and �lled with nanopure water. One may use chloro-
form or ethanol to clean the trough surface, although ethanol is considerably safer particu-
larly in the absence of a fume hood. A Milli-Q system is a prime choice for nanopure water.
In our trough, approximately 50-60mL is used to �ll the trough. If the experiment calls
for bu�er and not pure water, simply use nanopure water during the bu�er preparation.

The pressure plate must also be cleaned. For �lter paper plates, simply rinse with
some ethanol and dry, twice, then submerge it into the subphase by its hook. It is only
necessary to do this once before a series of experiments with the same monolayer and
subphase composition.

It is also important to ensure that the aqueous surface is as clean as possible. Dust
and other particles can land on the surface or escape initial cleaning. To clean it, vacuum
small quantities of water from the surface, concentrating near the barrier arms. Close the
arms to concentrate any contaminants, and vacuum again. Now open the arms, zero the
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A.1. Langmuir-Blodgett Deposition

surface pressure, and close again. If the pressure increase is below 0.2mN/m, then the
surface may be considered clean.

Adding DNA Into the Subphase

If the experiment requires DNA or some other solute to be in the subphase, this can be
prepared with the nanopure water. DNA can be di�cult to dissolve, so it is advised to
do the following: break up the solid DNA stock (scissors is �ne) and swirl in a round
bottom �ask with some nanopure water. Gradually add the required volume of water to
make a semi-concentrated stock solution (higher concentration that what is needed in the
trough), and leave it in a fridge overnight. The next day, swirl again, and sonicate brie�y
to dissolve the rest and randomly cleave the fragments slightly. Use this stock to make the
appropriate concentration and volume of subphase.

Monolayer Formation and Compression

With a clean and �lled trough, adjust the mica slide so that the top of the slide is barely
submerged into the subphase. Again ensure that the surface is clean with a pressure
test, and vacuum slightly if necessary. Open the barrier arms completely. With a pipette,
quickly deposit about 15µL of lipid-surfactant chloroform solution onto the surface, placing
drops in several widely separated regions of the surface. Ensure that the surface pressure
does not climb above your desired deposition pressure. Allow the monolayer to rest and
come to equilibrium for 10 minutes; this time period also ensures that all of the solvent
has evaporated.

After these 10 minutes, set the instrument to pressure control, and compress to target
pressure. In our case, we used 12-30mm/min and in most cases a target pressure of
35mN/m. The results do not vary with compression speed unless it is extremely high.

Isotherms

If deposition onto a solid substrate is not the goal, and instead a pressure-area isotherm is
desired, simply omit the mica slide and use a speed control setting to compress the isotherm
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at a constant speed until the barrier arms close to their minimum separation. In this case,
a slower compression speed is desired so that the monolayer is minimally disturbed during
the data collection.

Deposition

Once the monolayer has reached its target pressure, the mica slide can be slowly drawn up
through the monolayer and into the air. With the constant pressure applied via a feedback
loop by the instrument, as the monolayer is deposited the barrier arms will close just
enough to maintain the target pressure. We use a slow deposition speed of 2-10 mm/min.
Once the slide is out of the subphase, allow it to dry for a few minutes before removing it
from the dipping arm. It should be placed in a desiccator immediately; drying gently with
nitrogen gas is also an option, if desired, before storage. It is advisable to wait overnight
before imaging, to draw out as much water as possible.

A.2 Preparation of Gemini Surfactant-DNA Nanopar-

ticles

Transfection complexes were imaged in the present work by �rst preparing them in so-
lution and then depositing them onto freshly cleaved mica (see previous section for the
latter). The preparation followed closely the methodology in Wettig et al. (2007) and
Wang et al. (2013) as examples of standard procedures. Here we provide details on our
adapted procedure.

The �nal transfection complex solution requires three components: i) an aqueous so-
lution of gemini surfactant, ii) an aqueous solution of DOPE vesicles, and iii) an aqueous
solution of DNA fragments of random size. All of these are added in appropriate con-
centration ratios as determined by the individual experiment. The preparation of a DNA
solution was described in the previous section and is not repeated here. The only di�erence
being that, as a �nal step, the DNA solution should be �ltered through a 0.2µm disc �lter
to remove any large aggregates.
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A.2. Preparation of Gemini Surfactant-DNA Nanoparticles

Gemini surfactants should be initially dissolved in chloroform at a concentration of
1mg/mL (standard stock). To make an aqueous solution, an appropriate amount of the
chloroform solution is placed in a small vial and the solvent allowed to evaporate o� over
a gentle stream of nitrogen gas. This allows a small and precise amount to be placed into
the vial with a pipette, and the �lm left over is resuspended in nanopure (Milli-Q) water.
Brief sonication helps to dissolve the surfactant at this point. Typically, we aim for a
concentration near the CMC in the �nal product, and this serves as the benchmark for the
calculations of volume of DNA and DOPE vesicle solutions to be added. The surfactant
solutions are then �ltered through 0.2µm disc �lters with a syringe.

Vesicles of DOPE can be prepared by repeated sonication and stirring of aqueous solu-
tions of the lipid. The lipid typically comes in a concentrated stock solution of chloroform
(e.g., 25mg/mL). A desired amount of this stock solution is placed in a vial or round-
bottom �ask containing a small amount (∼1mL) of HPLC-grade ethanol. The solvent is
then allowed to evaporate over a gentle stream of nitrogen gas to form a thin �lm. An
appropriate amount of nanopure water is then added to re-suspend the DOPE, and the �lm
allowed to rest (`swell') for about an hour. At this point the solution will appear cloudy
with some visible particulate matter. Add a small magnetic stir bar and seal the vial/�ask
to prevent any contamination. Cycle with 15 minutes of sonication and 15 minutes of
stirring until the solution appears clear. As a �nal step, the vesicles should be �ltered
through 0.45µm disc �lters.

To make the �nal transfection complexes, all three solutions are combined in appropriate
ratios and allowed to stand for 30 minutes. Small quantities (∼20-40µL) are placed onto
freshly cleaved mica slides and allowed to adhere for 15 minutes. The solvent is then
wicked away by tilting the slide onto a Kimwipe, and the whole sample allowed to dry in
a desiccator overnight before imaging.
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A.3 AFM and KPFM Imaging with the AIST-NT Smart-

SPM

Cantilevers

With this instrument, because the laser alignment is done by an infrared beam automat-
ically, it is necessary to use cantilevers which have an appropriately re�ective coating.
The best cantilevers we have found to use with the AIST are from a company called
MikroMasch, and for KPFM we have used the NSC-14-Cr/Au cantilever tips, which have
a resonant frequency near 130 kHz, or NSC-15-Pt which have a resonant frequency near
325 kHz. Both work well.

Standard AFM

The AIST-NT Smart-SPM instrument is state-of-the-art for precise topographical and
KPFM imaging. Setup is more straightforward than most instruments which allows more
time to be spent on imaging. The operating manual presents clear directions and �gures
for the mechanics of the setup, but here we provide a few additional tips and a general
overview of how to get started with AFM imaging on this instrument. In the next section
we provide detail on imaging with the specialised KPFM modes that are available.

Installing the cantilever tip is straightforward, but requires a steady hand. For those
who have not done this before, it is best to be shown. With practise, tip replacement
takes under a minute. The next step is aligning the instrument's laser with the tip, which
the engineers have made exceedingly simple. With the tip in the `default' position, the
instrument will automatically search for the cantilever and align the laser appropriately.
This can even be visualised for con�rmation within the software. Sometimes the software
will search and fail to �nd the tip - this can often be diagnosed when the algorithm drags
the location downward and/or if the visualisation fails to produce an obvious tip shape.
In this case, it is often remedied by manually selecting a location higher up on the map
and repeating the algorithm (thus starting at a location other than default). If this still
fails, have a look at the tip under a standard microscope and see if it is broken (and if so,
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replace it with a new tip). Tips are extremely sensitive, and will almost always break if
they are dropped or struck.

Once the tip is aligned, the next step is to check the resonant frequency. For this,
you should have already selected `AC mode'. Again the frequency calibration is done
automatically, and the user should con�rm that the resonant peak is strong, clean, and
where it should be. If all this checks out, imaging can begin once the sample is installed.

For standard topographical imaging, the mica slide can be placed on top of the sample
stage without any adhesive. Simply place the circular stage into the instrument (see the
manual for details) and place the mica slide on top (watch out to be wel clear of the tip;
or better yet, install the sample before the tip).

Engaging the sample with the tip can also be done automatically by the software,
or manually, depending on the user's preference or how much tweaking is necessary. A
standard approach is often su�cient. Follow the process within the manual for this. Once
the tip has approached and the landing is clean, switch to `Q scan', and ensure that
adaptive scanning is enabled. Adaptive scanning is useful for samples with a lot of irregular
features, because it is more responsive and slows down the imaging for awkward structures
to enhance image quality. A typical scan rate is 1Hz for standard AFM topography imaging
only. Ensure that height, mag, and phase signals are collected. As far as parameters go,
the amplitude setting is the most in�uential. It is typically set to about 15 nm, but it can
be used with reasonable success in the range of 10-20 nm. If image quality is suppressed
on �rst try, a di�erent amplitude setting can be attempted. Standard parameters for all
other settings are generally su�cient for the purposes of the present work.

KPFM

Repeating what was described in � 2.2.3, for KPFM imaging of samples deposited onto
mica, it is necessary to prepare the substrate in a manner that allows a bias voltage to
be e�ectively applied. In our experiments, we have determined an optimal setup to be as
follows. For square mica slides, we cut a square of aluminum foil several mm larger than the
substrate, and adhere this to the bottom of the mica with conductive mesh double-sided
tape. The edges are wrapped over onto the top surface to form a frame. Small pieces of
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conductive tape are applied to the corners to ensure the foil adheres to the surface. The
KPFM electrode (where the bias voltage is applied) is placed onto one of the pieces of
conductive tape on the top surface. See Fig. 2.2.

In theory, our KPFM setup can produce the topography and surface potential di�erence
images simultaneously, but in practise this does not yield optimal quality for topography.
A superior method is to perform, line-by-line, a topography scan followed by a KPFM scan,
and this is implemented automatically from the AIST-NT software. Occasionally, edge-
e�ects were found at the point where the scans switched from AFM to KPFM, but this was
usually resolved by allowing for a delay of 15ms between scans. Lateral KPFM resolution
was further enhanced by choosing a closer scan height of several nm, and slightly reducing
the amplitude of the second scan (to, say, 85%, but for FM mode only). A cantilever lift
height of 8 nm su�ces for most purposes. Lower lift heights can be used for fairly �at
samples; samples with large variations in structure heights typically require 10 nm.

Practical Aspects of AM and FM-KPFM

There is a substantial di�erence between AM and FM modes within KPFM which should
be mentioned. While this is discussed from a theoretical point of view in � 1.3.5, here we
provide some commentary on the practical implications of this. It's true that FM-KPFM
mode yields higher resolution that AM mode; this due to the origin of the signals used
to compute the contact potential di�erence. In AM mode, as we have discussed, it is the
electrostatic force which gives rise to the KPFM measurement. In FM mode, it is the
electrostatic force gradient. In the latter, this is only large very near the surface, and thus
the resolution is much higher due to less `blurring' from nearby signals. In AM mode,
the tip is also kept slightly higher, so it `sees' more of the surface. These e�ects not only
reduce spacial resolution, but they also reduce the KPFM signal resolution. In practical
terms, this means that the typical signals from AM mode in our experiments are in the
region of 10's of mV (< 100mV), while in FM mode they are often in the 100's of mV. The
di�erences between domains are less pronounced because of this blurring (Glatzel et al.,
2003). Therefore, FM-KPFM images yield quantitative measurements that are closer to
actual surface potential measurements. However, AM-KPFM is still perfectly acceptable
for observing trends between samples. In any case, we can only measure di�erences at the
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end of the day, because we are not operating at ultracold temperatures in an ultra high
vacuum environment.

In view of the above, it would be desirable to use FM-KPFM in most cases, but the
reality of its implementation is that it is tougher to get a high quality signal. This method
appears to be far more sensitive to environmental conditions. Therefore, FM-KPFM is
typically reserved for focussed studies, while AM-KPFM is preferred for higher output
(i.e., in cases where a larger number of experiments are compared with each other). Since
we typically only observe di�erences, AM-KPFM is su�cient for comparing sample-sample.
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While the individual man is an insoluble puzzle, in the aggregate

he becomes a mathematical certainty. You can, for example,

never foretell what any one man will be up to, but you can say

with precision what an average number will be up to. Individuals

vary, but percentages remain constant. So says the statistician.

Arthur Conan Doyle

Appendix B

Image Processing and Statistical

Methods for AFM and KPFM Analysis

B.1 Image Processing

When it comes to processing AFM images, it is certainly true that less is more. Minimal
processing is critical to preserving the features from the original observations. However, it
is necessary to apply a few critical calibrations in order to obtain reliable measurements.
The raw data from the instrument is often completely uncalibrated. All AFM instruments
will have accompanying image processing software which can perform basic calibration and
analysis.

In almost all cases, a simple two-dimensional plane polynomial function �tted to the
surface will su�ce to calibrate (`�atten') the image, and produce a workable result. Simi-
larly, a line-by-line �tting with a linear function will help to bring all of the scan lines into
the same baseline. These two calibrations should be all that is necessary in a good quality
image. In some cases, it may be desirable to interpolate over problem areas or artefacts,
or to employ more sophisticated polynomial �ts. However, if the �nal data are of su�cient
quality, this should not be necessary (and thankfully it was not necessary in almost all of
the �nal data presented in this thesis). For KPFM measurements, it is even more desirable
to limit the use of �tting and calibrations to avoid biasing the measurements.
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In preparation for cross section measurements, or to clean up the appearance of a rough
image for publication when resolution is no longer a serious concern, a small amount of
Gaussian smoothing works very well. Using a σ value of a pixel or less (in some cases
up to 2) is normally su�cient, and does an excellent job of smoothing out the noise for
presentations and calculations.

B.2 Statistical Analysis of Image Data

One of the most important calculations from AFM data is the di�erence in height (or
contact potential di�erence, in the case of KPFM) between two domains within an image.
This requires some careful analysis. While there are software packages out there which do a
fairly good job of processing and extracting raw measurements, some more direct methods
are occasionally necessary to obtain reliable results. Especially in the case of the AIST-NT
data, which is fairly new, rather manual methods of measurement are necessary. However,
the methodology presented in this section will of course work for any data, so long as one
can extract the raw pixel values or cross sections of the images.

In � 2.3.4 we described three di�erent methods for calculating the value of the di�erence
of height or CPD within an image, and concluded that the cross section method was the
most reliable. Therefore, we focus on that method alone from here on.

In this method, cross sections of the image are taken which show very clearly the two
domains of interest. Often, the image processing software will automatically calculate
the di�erence between two points, in both the x and y axes, for a user-selected set of
points. Most of the e�ort in this method then goes into manually pinpointing locations
and extracting values of the di�erences, say by selecting one point to be on the background
and another to be at the top of the domain. It is recommended that as many as 50 cross
section measurements be taken for each experiment in order to give reliable results, as
there will be variability.

With the data in hand, one then calculates an average (mean) value for the di�erence,
pooling all of the data. If, for example, there are two separate trials, the pooled mean can
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be calculated from
µG =

N1µ1 +N2µ2

N1 +N2

(B.1)

The pooled standard deviation for the two trials is

σG =

√
(N1 − 1)σ2

1 + (N2 − 1)σ2
2

N1 +N2 − 2
(B.2)

Now, one may calculate the mean and associate uncertainty with the following formula:

µ̂G zα/2
σG√
n

(B.3)

in which zα/2 = z0.025 = 1.96 is the value of the 97.5th percentile of the standard normal
distribution. This gives a calculation of the mean di�erence, plus or minus an uncertainty
holding true at a con�dence level of 95%. This means, theoretically, that 95% of the time,
the mean di�erence we obtain from any subsequent experiment will fall within this interval.
See Moore & Craig (2014) for details.
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Appendix C

Supplementary Data

Details that could throw doubt on your interpretation must be given, if you know

them. You must do the best you can â�� if you know anything at all wrong, or

possibly wrong � to explain it. If you make a theory, for example, and advertise it,

or put it out, then you must also put down all the facts that disagree with it, as well

as those that agree with it. There is also a more subtle problem. When you have

put a lot of ideas together to make an elaborate theory, you want to make sure, when

explaining what it �ts, that those things it �ts are not just the things that gave you the

idea for the theory; but that the �nished theory makes something else come out right,

in addition.

�

Richard Feynman

Reprinted from xkcd.com.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.1: Survey of AFM and KPFM results for monolayers (π = 35mN/m) of 16-3-
16:DOPC:DPPC in molar ratios of 2:3:3, with DNA present in the subphase at a concen-
tration of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections
are shown for the height and KPFM signals taken horizontally at y = 4.0µm, overlayed
and scaled for ease of view.
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Figure C.2: Survey of AFM and KPFM results for monolayers (π = 35mN/m) of 16-7-
16:DOPC:DPPC in molar ratios of 2:3:3, with DNA present in the subphase at a concen-
tration of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections
are shown for the height and KPFM signals taken horizontally at y = 5.0µm, overlayed
and scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.3: Survey of AFM and KPFM results for monolayers (π = 35mN/m) of 16-
7NH-16:DOPC:DPPC in molar ratios of 2:3:3, with DNA present in the subphase at a
concentration of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross
sections are shown for the height and KPFM signals taken horizontally at y = 5.0µm,
overlayed and scaled for ease of view.
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Figure C.4: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
3-16:DOPE in a molar ratio of 2:3, with a pure water subphase. The �eld of view is 10
microns on one side. Cross sections are shown for the height and KPFM signals taken
horizontally at y = 5.0µm, overlayed and scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.5: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
7-16:DOPE in a molar ratio of 2:3, with a pure water subphase. The �eld of view is 10
microns on one side. Cross sections are shown for the height and KPFM signals taken
horizontally at y = 5.0µm, overlayed and scaled for ease of view.
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Figure C.6: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
7NH-16:DOPE in a molar ratio of 2:3, with a pure water subphase. The �eld of view is
10 microns on one side. Cross sections are shown for the height and KPFM signals taken
horizontally at y = 1.0µm, overlayed and scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.7: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-3-
16:DOPE in a molar ratio of 2:3, with DNA present in the subphase at a concentration
of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections are
shown for the height and KPFM signals taken horizontally at y = 9.0µm, overlayed and
scaled for ease of view.
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Figure C.8: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-7-
16:DOPE in a molar ratio of 2:3, with DNA present in the subphase at a concentration
of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections are
shown for the height and KPFM signals taken horizontally at y = 8.0µm, overlayed and
scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.9: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of
16-7NH-16:DOPE in a molar ratio of 2:3, with DNA present in the subphase at a concen-
tration of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections
are shown for the height and KPFM signals taken horizontally at y = 5.0µm, overlayed
and scaled for ease of view.
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Figure C.10: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
3-16:DOPE in a molar ratio of 5:1, with DNA present in the subphase at a concentration
of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections are
shown for the height and KPFM signals taken horizontally at y = 5.0µm, overlayed and
scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.11: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
3-16:DOPE in a molar ratio of 1:5, with DNA present in the subphase at a concentration
of 10µM in base pairs. The �eld of view is 10 microns on one side. Cross sections are
shown for the height and KPFM signals taken horizontally at y = 5.0µm, overlayed and
scaled for ease of view.
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Figure C.12: Survey of AFM and KPFM results for a lower-pressure monolayer (π =
15mN/m) of 16-7-16:DOPE in a molar ratio of 2:3, with DNA present in the subphase
(acetate bu�er, pH 4) at a concentration of 10µM in base pairs. The �eld of view is 5
microns on one side. Cross sections are shown for the height and KPFM signals taken
horizontally at y = 2.0µm, overlayed and scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.13: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of 16-
7NH-16:DOPE in a molar ratio of 2:3, with DNA present in the subphase (acetate bu�er,
pH 4) at a concentration of 10µM in base pairs. The �eld of view is 10 microns on one
side. Cross sections are shown for the height and KPFM signals taken horizontally at
y = 5.0µm, overlayed and scaled for ease of view.
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Figure C.14: Survey of AFM and KPFM results for a lower-pressure monolayer (π =
15mN/m) of 16-7NH-16:DOPE in a molar ratio of 2:3, with DNA present in the subphase
(acetate bu�er, pH 4) at a concentration of 10µM in base pairs. The �eld of view is 10
microns on one side. Cross sections are shown for the height and KPFM signals taken
horizontally at y = 5.0µm, overlayed and scaled for ease of view.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.15: Survey of AFM and KPFM results for a monolayer (π = 35mN/m) of
16-7NH-16:DOPE in a molar ratio of 2:3, with a pure bu�er (no DNA present) subphase
(acetate bu�er, pH 4). The �eld of view is 10 microns on one side. Cross sections are
shown for the height and KPFM signals taken horizontally at y = 9.5µm, overlayed and
scaled for ease of view.
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Figure C.16: Small-scale AFM and KPFM images of gene transfection complexes of DNA,
DOPE and gemini surfactant 16-3-16. The cross section was taken at y = 0.5µm.
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Supplementary Figures of Monolayers and Nanoparticles

Figure C.17: Small-scale AFM and KPFM images of gene transfection complexes of DNA,
DOPE and gemini surfactant 16-7-16. The cross section was taken at y = 0.5µm.
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Figure C.18: Small-scale AFM and KPFM images of gene transfection complexes of DNA,
DOPE and gemini surfactant 16-7NH-16. The cross section was taken at y = 0.8µm.
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A Note to Student Readers

L
ong after this thesis is accepted, I realise that graduate students and senior
undergraduates will probably be the only group of people to read this through.
Or at least I hope they will; I hope that this thesis is useful both as a reference

and as a review of this rather interesting interdisciplinary �eld of study. It would be a
shame if I put in all this work writing a dissertation, and after it served its noble purpose
of admitting me to a doctoral degree, it were only used to take up space on a library shelf.

While I am a physicist by training, I somehow ended up in a mix that also included
biology, chemistry, pharmacology, engineering, and of course nanotechnology (everybody
wants to have nano- attached to their research these days). If you're like that - an in-
terdisciplinary student of science - and want to learn about how you can mix physics and
pharmacology on the nanoscale, you've opened the right book. Or maybe you want to
know how to apply nanoscale imaging to biology. That's here, too, more or less. For those
who would like to replicate or expand upon the research I have presented in this document,
I've tried to make the appendices fairly comprehensive to walk you through the protocols
and analyses.

However, this document is written (as it ought to be) as my dissertation, �rst and
foremost, and therefore some assumptions of knowledge have been made. (If I had not, it
could easily go on for thousands of pages, and I would still be a graduate student!) I assume
that those who read this will have a basic grasp of physics, chemistry and biology equivalent
to �rst or second year of university (at least by 2015 standards, which are considerably
more lax than some few decades ago). Organic chemistry and thermodynamics would be
helpful, too. Fundamental calculus and algebra would be nice, if not necessary, for without
that, one cannot truly understand physics. Basic scienti�c research methods are a must.

If you have made it this far, thanks for reading, and I commend you; I have a few more
tips. Along the road of graduate school, I have had to learn and re-learn almost everything
to solidify my basic knowledge, and I'd like to recommend some great textbooks that have
helped me along the way. I hope they will help you, too. Most of these are speci�c to the
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research �elds covered by this dissertation topic, but a few exceptional books I will mention
for the basic sciences, for these I recommend for any Padawan interdisciplinary scientist.
I've seen so many di�erent textbooks, many of them downright awful, so hopefully this
spares you some unnecessary e�ort. The list can be found immediately following this
preface.

Feel free to e-mail me if you have any questions or comments. The address I provide
below ought to be valid for as long as the uwaterloo server exits, which I expect will be a
very long time.

Robert D. E. Henderson
Waterloo, June 2015

k rdehende@uwaterloo.ca

Reprinted from xkcd.com.
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Recommended Books

Physics:

Feynman, R. P. 1965, The Feynman Lectures on Physics

This is perhaps the greatest reference for basic physics that has ever been writ-
ten. Like most of Feynman's writing, a pleasure to read.

Biology:

Alberts, B., Johnson, A., Lewis, J., Ra�, M., Roberts, K., & Walter, P. 2002,

Molecular Biology of the Cell, 4th edition (New York: Garland Science)

For upper-year biology majors, this book covers most of cell biology and serves
as a good overall resource for whatever you'd like to know on this topic.

Chemistry:

Petrucci, R. H., Herring, G. F., Madura, J. D., & Bissonnette, C. 2010, Gen-

eral chemistry: principles and modern applications (Pearson Education Interna-

tional)

Co-authored by one of Waterloo's best lecturers, this textbook is a great intro-
duction to basic chemistry (although, if you're reading this, you probably don't
need it, but that's no reason why it can't be on your shelf!).

Organic Chemistry:

Klein, D. R. 2013, Organic Chemistry, 2nd Edition (Wiley)

Organic chemistry books have come a long way in the past decade, and now
o�er a lot of creative presentation methods to teach the subject. This book, I
have found, is rather clever and easy to learn from. But watch out - there are
some typos, and some of the rigid faculty would disagree with some of Klein's
de�nitions.
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For technical background on some of the more specialised �elds in this thesis, I recommend:

Electromagnetics:

Gri�ths, D. J. 2013, Introduction to electrodynamics (Pearson)

It's extraordinarily rare to �nd textbooks that read like a novel. Every book that
Gri�ths writes is the best in the subject, and he has other texts for Quantum
Mechanics and Particle Physics. Do yourself a favour and read them; he really
teaches you how to do physics, and his writing is eloquent and smooth.

Surfactants and Interfacial Science:

Gaines Jr, G. 1966, Insoluble monolayers at gas-liquid interfaces (Interscience,

New York)

This is a rather old book, but as old books generally do, it goes into a lot more
detail on some of the physics and mathematics behind some of the derivations
(particularly for the stu� on potentials). Don't be put o� by its publication
date. There's a lot of really good text in here which covers a lot of the historical
research on lipids and their monolayers, and in useful detail.

Barnes, G. & Gentle, I. 2011, Interfacial science: an introduction (Oxford Uni-

versity Press)

For a more modern take on interfaces, without getting bogged down in deriva-
tions and too many technical details, this is a great book.

Israelachvili, J. N. 2011, Intermolecular and surface forces: revised third edition

(Academic press)

Not for the faint at heart, Israelachvili presents a densely-packed compilation of
just about everything you would need for a theoretical understanding of surface
and interface science. But good luck - they call this a graduate level textbook,
but really it's more of a resource for advanced researchers in the �eld. Think of
it as the Jackson (1962) for interfaces.
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Atomic and Kelvin Probe Force Microscopy

Morris, V. J., Kirby, A. R., & Gunning, A. P. 1999, Atomic force microscopy

for biologists, Vol. 57 (World Scienti�c)

If you're new to AFM, particularly for biological applications, this is the �rst
book you should read (as if you couldn't tell that from its title!). The basics
of AFM are discussed here, along with many illustrative applications. Also see
Allison et al. (2010).

Sadewasser, S. & Glatzel, T. 2012, Kelvin probe force microscopy (Springer)

Once you've got a solid understanding of the basics of AFM, and want to learn
all about KPFM, this is a great general resource for it. However, take caution
that KPFM is a relatively new technology (compared to a lot of others), and so
you'll want to explore some of the key papers as well. Watch for these in this
thesis. They include Nonnenmacher et al. (1991); Glatzel et al. (2003); Zerweck
et al. (2005).

Of course, there are many more sub-topics presented in this thesis, and I've tried to point
out some of the authoritative review articles and other key papers that will be of interest
for background reading.
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