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Abstract 

 
Detection of positive selection in proteins is both a common and powerful approach for 

investigating the molecular basis of adaptation. In this thesis, I explore the use of protein three-

dimensional (3D) structure to assist in prediction of historical adaptations in proteins. Building 

on a method first introduced by Wagner (Genetics, 2007, 176: 2451–2463), I present a novel 

framework called Adaptation3D for detecting positive selection by integrating sequence, 

structural, and phylogenetic information for protein families. Adaptation3D identifies possible 

instances of positive selection by reconstructing historical substitutions along a phylogenetic tree 

and detecting branch-specific cases of spatially clustered substitution. The Adaptation3D method 

was capable of identifying previously characterized cases of positive selection in proteins, as 

demonstrated through an analysis of the pathogenesis-related protein 5 (PR-5) phylogeny. It was 

then applied on a phylogenomic scale in an analysis of thousands of vertebrate protein 

phylogenetic trees from the Selectome database. Adaptation3D’s reconstruction of historical 

mutations in vertebrate protein families revealed several evolutionary phenomena. First, 

clustered mutation is widespread and occurs significantly more often than that expected by 

chance. Second, numerous top-scoring cases of predicted positive selection are consistent with 

existing literature on vertebrate protein adaptation. Third, in the vertebrate lineage, clustered 

mutation has occurred disproportionately in proteins from certain families and functional 

categories such as zinc-finger transcription factors (TFs). Finally, by separating paralogous and 

orthologous lineages, it was found that TF paralogs display significantly elevated levels of 

clustered mutation in their DNA-binding sites compared to orthologs, consistent with historical 

DNA-binding specificity divergence in newly duplicated TFs. Ultimately, Adaptation3D is a 

powerful framework for reconstructing structural patterns of historical mutation, and provides 

important insights into the nature of protein adaptation. 
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Chapter 1 

Introduction 

All life on this planet owes its existence to a long and fascinating history of evolutionary 

adaptation. The genomes of living species can act as a historical record for these ancestral 

adaptations, which ultimately act on the genes and functional elements encoded at the genomic 

level. In this thesis, I aim to develop a method capable of reconstructing historical, molecular 

adaptations from existing bioinformatics datasets, and apply it specifically to particular gene 

families of interest as well as broadly to screen a large catalog of gene families and organisms. 

The development of methods to infer historical adaptations is essential in order to understand 

both the history of life as well as functionally interpret and annotate the vast and growing 

collection of incompletely characterized, genomic sequence data. 

 

1.1 Protein adaptation and selection 

An evolutionary adaptation can be described as an “adapted trait” that has evolved 

through natural selection, or alternatively the evolutionary process that generates such traits. 

According to Darwinian natural selection, traits that confer a fitness advantage in the context of 

environment to individuals in a population are favoured and become overrepresented compared 

to traits that impede an organism’s ability to survive, grow, and reproduce (Demetrius & Ziehe, 

2007). Whether a particular trait is beneficial to species fitness is dependent on the environment 

that the species finds itself in; and a trait that enhances fitness in one setting can hinder fitness in 

another. Because different organisms have adapted to inhabit virtually all environments on earth, 

each species has evolved traits that uniquely enable them to perform optimally in their respective 

climates and habitats. 
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 Traits that are strongly favoured in an environment have a tendency to become fixed in a 

population, because individuals possessing the trait have a greater chance of passing on their 

characteristics to successive generations over others that do not carry the beneficial trait 

(Mitchell-Olds, Willis, & Goldstein, 2007; Rieseberg, Widmer, Arntz, & Burke, 2002). The 

process by which a trait increases to high frequency or fixation within a population is known as 

positive selection. In a genetic context, alleles that encode for the beneficial trait become more 

prevalent in the population over a period of generations, ensuring that progeny are more and 

more likely to carry the specific allele. Conversely, alleles that are detrimental to an individual’s 

survival and reproductive ability tend to be removed from the population (Charlesworth, B., 

Morgan, Charlesworth, D., 1993; Hudson & Kaplan, 1995). This process is called negative 

selection or purifying selection and underlies observed patterns of evolutionary conservation. 

 Mutations that occur within key sites of genes and genomes can generate new traits and 

alleles that did not previously exist. Since biological traits can be modulated with respect to the 

environment, it is necessary to study the molecular basis of these traits to see how modification 

of molecular information can translate to whole organism physiological and morphological 

differences. For example, mutations in non-coding cis-regulatory sites can alter transcription 

factor binding preferences, altering gene expression patterns and changing organism 

development and morphology (Prud’homme et al., 2006; Wray, 2007). While mutations in non-

coding regions certainly affect phenotype, it can be argued that mutations in protein-coding 

regions can potentially have even more drastic effects on an organism’s overall phenotype 

(Halligan et al., 2013). For instance, the regulation of hundreds or thousands of genes may 

potentially be affected by just a few substitutions that alter the binding specificity of a single 

transcription factor. 
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 Proteins are the most functionally diverse type of biological macromolecule and the basic 

building blocks of cellular systems, and include enzymes, structural proteins, signaling 

molecules, and transcription factors (Gutteridge & Thornton, 2005). Collectively, proteins, 

through interactions with other biological molecules (DNA, RNA, lipids, carbohydrates), 

perform the fundamental cellular processes of life. While many proteins are shared across the 

tree of life and perform consistent functions, lineage-specific adaptations occur through several 

mechanisms. First, orthologous proteins may diverge in function between species through 

modifications; this happens without gene duplication but rather through lineage-specific 

substitutions. Second, duplicated genes can generate new gene copies that are free to diverge in 

function and adopt entirely new roles, a process called neofunctionalization (Falciatore et al., 

2005; Fitch, 1970; Zhang, 2003). According to the gene duplication model of Ohno (1970), one 

gene duplicate becomes free to mutate, potentially takes on a new function without any detriment 

to the host organism because the original copy remains the same and performs the canonical 

function (Taylor & Raes, 2004). In this way, paralogous genes can evolve to perform similar, yet 

unique functions, such as catalyzing different substrates or binding to different partners (Grove, 

Willcox, Griffith, & Bryant, 2005; Yang et al., 2013). However, it is important to note that 

extensive changes to a protein do not always result in a modification of the protein’s canonical 

function, but may still play an adaptive role by maintaining optimal protein function in changing 

cellular conditions. Indeed, proteins tend to be optimized for narrow temperature, pH, and 

salinity ranges (Arfi et al., 2013; Dubnovitsky, Kapetaniou, & Papageorgiou, 2005; Siddiqui & 

Cavicchioli, 2006; Siddiqui et al., 2006). Various changes in the amino acid sequence can result 

in the protein being optimized for new environments that affect the organism’s internal state. 

Poikilotherms, temperature non-regulators that can live at a wide range of temperatures have a 
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very high degree of gene duplication and paralogy (Genge, Davidson, & Tibbits, 2013; Moon & 

Hochachk, 1971). A high number of gene paralogs allows for the same function to be 

accomplished at different temperatures by expression of a range of temperature-adapted protein 

variants (e.g., cold-adapted enzyme variants produced by the winter rye plant, Secale cereale) 

(Griffith & Yaish, 2004; Yaish et al., 2006). 

 Observed rates of amino acid mutations, when evaluated in a structural context, have 

demonstrated that protein surfaces evolve considerably faster than the internal sites (Toth-

Petroczy & Tawfik, 2011). This is thought to partially reflect ongoing re-wiring of protein-

protein and protein-ligand interactions and divergence of interaction networks between species. 

Even slight surface mutations may affect function by modifying a variety of interactions 

including post-translational modifications [e.g., acetylation, phosphorylation, and methylation 

(Beltrao et al., 2009; Ghanta, Grossman, & Brenner, 2013; Grewal & Rice, 2004; Nakayam et 

al., 2001)], as well as protein-protein interactions and pathways (Jin et al., 2013, Mintseris & 

Weng, 2005).  

 Since many selected biological traits are encoded at the molecular level, biological 

molecules themselves may be considered as under selection. Furthermore, because the functions 

of biomolecules like proteins are ultimately encoded by sequence, individual sites within these 

sequences are also subject to selective forces. This provides a powerful means for 

computationally detecting selective pressures on genes and proteins through comparative 

sequence analysis. 

 There are several classes of computational methods that have been designed to detect 

positive selection on genes and other regions of the genome. Detecting positive selection is of 

tremendous biological and evolutionary importance since it opens up the possibility of 
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identifying where, when and possibility how proteins have likely altered function within the tree 

of life. We are no longer limited by the availability of genomic information for many organisms; 

however, our interpretation of the genomic differences between species and the adaptive forces 

that underlie these differences is still poor. Computational detection of selection from sequence 

information is therefore an important tool for making informed predictions about protein 

neofunctionalization and generating hypotheses for future lab experimentation.  

 

1.2 Computational methods for detecting positive selection in proteins 

There are two commonly used classes of methods for sequence-based detection of 

positive selection: population-genetics based methods, and Ka/Ks ratio based methods. Each of 

these is summarized below and thoroughly reviewed elsewhere (Vitti, Grossman, & Sabeti, 

2013). 

 

1.2.1 Population genetics based methods 

A major class of computational methods for detecting positive selection involves the 

sequencing and analysis of a genomic locus from multiple individuals in a population. These 

methods operate on a microevolutionary scale (within population), compared to a 

macroevolutionary scale, which examines evolutionary phenomena between species (Vitti, 

Grossman, & Sabeti, 2013). Through analysis of the prevalence and genomic position of alleles, 

it is possible to predict whether a genomic region has likely undergone recent positive or 

purifying (negative) selection. Traditional analyses were focused on subsets of genomes and 

genomic regions (e.g., information derived from SNP arrays), whereas recent high-throughput 
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sequencing methods have made it possible to expand these analyses to entire genomes (Begun et 

al., 2007; Davey & Blaxter, 2010). 

 Positive selection acts to rapidly increase the prevalence of certain alleles within a 

population to high frequency or fixation (100% prevalence). It has been observed that positive 

selection on alleles also has an effect on loci adjacent to that allele since neighboring alleles may 

be co-inherited, a pattern known as linkage disequilibium (Harpur et al., 2014; Slatkin, 2008; 

Akey, 2009; Bamshad & Wooding, 2003). Therefore, once a beneficial variant sweeps to high 

frequency, a set of nearby linked alleles, which collectively define a haplotype, also exhibit 

much of the same pattern (Palaisa, Morgante, Tingey, & Rafalski, 2004). There are several 

methods to determine the strength of a selective sweep at a genomic region within in a 

population by scanning genomic regions for evidence of selective sweeps.  

In frequency-based methods such as Tajima’s D (Tajima, 1989), selective sweeps from a 

positively selected allele lead to a high number of low frequency, derived alleles in the region of 

interest when compared to a site that is under neutral selection. 

 Another class of positive selection detection methods are based on analyzing patterns of 

linkage disequilibrium (LD) (Slatkin, 2008). Genomic regions under neutral selection are 

expected to have a high number of relatively equal frequency haplotypes due to historical 

recombination that has broken linkage patterns throughout the region. However, loci that are 

undergoing or have recently undergone a selective sweep have had less chance to undergo 

genetic recombination. This is because the beneficial allele rapidly increases in the population, 

leaving little time for recombination. One strategy for inferring selective sweeps in a genomic 

region is therefore to evaluate the sequence homogeneity and length of detected haplotypes 

across a region by measuring LD patterns. The extended haplotype homozygosity (EHH) test 
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estimates the age of haplotypes by assessing the extent to which LD patterns have been broken 

down by recombination (Sabeti et al., 2002). EHH measures this by evaluating LD patterns as a 

function of distance to the center of each haplotype block.  

 Lastly, population differentiation methods are a class of tests that infer positive selection 

by identifying alleles that have unusually high frequency in one portion of a population versus 

another (i.e., two geographically separated subpopulations) . A common measure of population 

differentiation for a genomic locus is the fixation index (FST), which compares allele frequency 

variance (e.g., as determined by comparing SNPs) between populations (Holsinger & Weir, 

2009). If a particular genomic region has a large FST value compared to that seen elsewhere for 

neutral regions, then it may have been under selection. FST and related methods are useful for 

finding instances of geographically restricted selection: cases in which regional differences can 

lead to an existing allele being selected for. In all classes of tests, statistical methods are used to 

determine if the polymorphism observed significantly deviates from polymorphic models that are 

expected in regions that undergo neutral selection. Population genomics based methods have 

yielded important insights into the selective forces acting on the genomes from a variety of 

species. Positive selection studies in humans collectively give us the largest map of selected sites 

in any species. A previous study identified 722 human genomic regions containing 2465 genes 

under positive selection (Akey, 2009; Vallender & Lahn, 2004). Many of these genes have been 

found to be involved in olfaction, cell cycle regulation, and synaptic transmission, among many 

other functions according to assessment of gene ontology (GO) terms. One well known example 

of positive selection detected in the human population by genome-wide screening is the detected 

selection on variants within the LCT gene (Bersaglieri et al., 2004) which encodes the lactase 

enzyme. Positive selection on the LCT gene is thought to coincide with the spread of dairy 



8 
 

farming after the colonization of Europe. Another interesting recent example includes detection 

of strong selection on East Asian variants of the EDAR gene, which play a role in ectodermal 

tissue development (Grossman et al., 2010; Kamberov et al., 2013). These methods are not 

restricted to human population studies. For instance, a recent population genomics study on 

honeybees uncovered positive selection on genes related to worker traits and sociality (Harpur et 

al., 2014). 

Population genomic methods are very useful in making predictions about candidate 

regions that have had an advantageous and significant effect on a species’ physiology. Such 

analyses can help bridge the gap between genotype and phenotype by finding likely genomic loci 

that are responsible for functional differences between species. Population genomics methods are 

exceptionally useful because they can be used to find selection across all regions of a genome 

including non-protein coding, cis-regulatory sites. However, they operate over relatively short 

(microevolutionary) time scales, require information on population genome variation and often 

can identify general regions but cannot pinpoint precisely which sites within an apparently 

selected region represent causal, selected variants. 

 

1.2.2 Detection of selection using the Ka/Ks ratio 

 The Ka/Ks ratio is a method template for determining whether purifying or positive 

selection has taken place on a protein-coding gene, and operates more on the macroevolutionary 

(between species) than microevolutionary (within population) scale. In its most basic form, the 

method compares the aligned DNA sequences from two homologous genes (Yang & Bielawski, 

2000). Ka refers to the number of nonsynonymous substitutions per nonsynonymous site that 

have occurred between the sequence pair. Ks refers to the number of synonymous mutations per 
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synonymous site that have occurred between the sequences. Using the genetic code (codon 

translation table), and a pairwise sequence alignment, it is possible to calculate these two ratios 

quite simply. The final ratio of Ka/Ks, also called ω, is the measure of how much selection has 

occurred between the sequences. A sequence pair that is under neutral selection is expected to 

have a relatively equal rate of nonsynonymous and synonymous substitutions, which is therefore 

equivalent to a Ka/Ks ratio close to 1 (Hurst, 2002). A sequence pair under purifying selection is 

expected to have a much lower rate of nonsynonymous substitution compared to synonymous 

substitution. This is because non-synonymous substitutions likely lead to changes that cause 

protein dysfunction, and are thereby purged from the gene pool. Therefore, a Ka/Ks score of less 

than 1 signifies purifying or negative selection. Lastly, a sequence pair that is under positive 

selection is expected to have a much higher rate of nonsynonymous mutation compared to 

synonymous mutation (Hurst, 2002; Nei & Gojobori, 1986). This is because the non-

synonymous substitutions cause adaptive changes in the protein’s biochemical function, and so 

an overrepresentation of amino acid changes means that there has been positive selection to 

change amino acid properties and ultimately, protein function. Therefore, a Ka/Ks score of 

greater than 1 signifies positive selection. 

 Although this is the most fundamental use of the Ka/Ks ratio, there are some inherent 

drawbacks with this method. First, genes do not necessarily need to have many amino acid 

changes throughout its sequence to cause a significant change to the encoded protein’s function. 

Functional changes can occur in proteins by very few amino acid substitutions in key binding or 

catalytic sites (Hughes, 2008; Yokoyama, Tada, Zhang, & Britt, 2008; Doxey et al., 2006; 2010). 

For example, single amino acid mutations in opsin genes are sufficient to cause changes in light 

spectra absorbance (Hughes, 2008; Yokoyama, Tada, Zhang, & Britt, 2008). Since general Ka/Ks 
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statistically requires many non-synonymous mutations throughout the sequence to infer positive 

selection, they are inherently tailored to finding positive selection that has occurred broadly and 

repeatedly throughout a protein (Hughes, 2007). 

 In response to some of these drawbacks, there have been several enhancements to the 

Ka/Ks ratio model, including site-specific Ka/Ks models (Nielsen & Yang, 1998), branch-specific 

Ka/Ks models (Yang, 1998), and branch-site Ka/Ks models (Yang & Bielawski, 2000).While the 

simple Ka/Ks model determines a general level of selection between two sequences, site-specific 

Ka/Ks models (Nielsen & Yang, 1998) finds specific sites along gene segment where selection 

has occurred (Creevey & McInerney, 2002; Yang & Bielawski, 2000). Using the multiple 

sequence alignment, a Ka/Ks score is determined for each individual codon in the alignment, with 

the expectation that each codon will have its own unique rate of nonsynonymous substitution 

depending on how critical that amino acid is to protein function. If the Ka/Ks score of a single 

codon significantly deviates from the average observed Ka/Ks ratio, positive selection is said to 

have occurred at that point in the sequence (Yang & Bielawski, 2000). Statistical methods are 

employed to make claims about positive or purifying selection based on the divergence between 

the sequences involved (Fu, 1996; Tajima, 1989). 

 Although the site-specific Ka/Ks model is used to assert where in the multiple sequence 

alignment selection has occurred, there is no directionality to the selection. That is, the site-

specific model determines whether the average Ka/Ks for a site over all species/lineages is greater 

than that observed for other sites. Based on this averaging, it is impossible to identify which 

lineages or combinations of lineages selection has occur (McClellan, 2013; Wong, Yang, 

Goldman, & Nielsen, 2004). Also, it cannot be inferred which states or characteristics are more 

derived, and which are ancestral. 
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 Branch-specific models are a third class of Ka/Ks methods that take as input a 

phylogenetic tree and a multiple sequence alignment. An evolutionary model, as represented by 

the phylogeny, takes into account Ka/Ks ratios and branch lengths, and determines in which 

branches positive or purifying selection has occurred (Nickel, Tefft, Goglin, & Adams, 2008). 

Here, the average Ka/Ks ratio for all sites is computed and compared between branches. The 

branch Ka/Ks model therefore overcomes the lack of directionality of site-specific models, but 

loses information on which specific sites are under selection. Also, these algorithms are 

optimized to deal with closely related sequences and recent evolutionary divergence, which is 

not the case with site-specific models. 

 Site-specific and branch-specific Ka/Ks methods are used to make more specific claims 

about where and when positive selection has taken place in the evolution of a gene or protein 

family. The natural progression of these models is thus to combine the two into a model of tests 

that both determine where in a phylogenetic tree and where specifically in a gene sequence that 

selection has occurred (Yang & Bielawski, 2000; Zhang, Nielsen, & Yang, 2005). This method 

is called the branch-site model and uses a likelihood ratio test (LRT) for identifying both lineage- 

and site-specific positive selection given a tree and multiple alignment, allowing Ka/Ks to vary 

both across sites and across lineages. 

 All types of Ka/Ks methods have been used extensively to make claims about positive 

selection. The traditional Ka/Ks ratio was first used to find positive selection in human MHC1 

compared to chimpanzee (Hughes, & Nei, 1988; Hughes, & Nei, 1989; Hughes, Ota, & Nei, 

1990). An entire database of positive selection called Selectome (Moretti et al., 2014; Proux et 

al., 2009) has been compiled to detect positive selection across a wide array of protein families 

in many different vertebrate species. Many studies are published each year claiming detection of 



12 
 

positively selected genes from diverse taxonomic groups including mammals, fish, and insects 

(Areal, Abrantes, & Esteves, 2011; Dunning et al, 2013; Tong et al., 2015). 

 Although the above methods have been used to detect positive selection in many different 

protein families and in many different clades, they have been critiqued for a variety of reasons. 

Some have stated that the Ka/Ks tests have little grounding in real biology, and as such, a 

significant Ka/Ks ratio may predict instances where there is a large degree of mutation, but not 

necessarily mutation that is likely to significantly affect the protein’s function or biochemical 

properties (Hughes, 2007; Hughes, 2008). Another critique is that some of the early Ka/Ks 

models do not distinguish between positive selection and the relaxation or absence of purifying 

selection (Arbiza, Dopazo, J., & Dopazo, H., 2006). More complicated algorithms have been 

developed to correct for this (Zhang, Nielsen, & Yang, 2005). 

 Critiques of the branch-site models are based on evidence of high rates of false positive 

predictions produced when there are low numbers of nucleotide substitutions in foreground 

branches (Nozawa, Suzuki, & Nei, 2009). Schmid and Yang (2008) found that site-specific 

models of positive selection are likely to produce false results because they fail to correct for 

multiple hypothesis testing. A study found that several factors led to an inflation of false-positive 

positive selection results, including small numbers of nonsynonymous mutations in foreground 

branches, and when incorrect assumptions were made regarding certain parameters (Suzuki, 

2008). With these critiques, it is evident that there is a lot of room for improvement in the field 

of selection detection algorithms. 
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1.2.3 Wagner’s method for detection of clustered mutation 

 A third and less commonly used approach for detecting positive selection is based on the 

idea of identifying linearly or spatially clustered substitutions in a protein (Wagner, 2007), which 

is in part motivated by the notion that selection often acts only on small regions of proteins. 

The basis of Wagner’s method is that positive selection may drive the accumulation of 

beneficial variants within particular regions of proteins at a faster rate than other regions, and 

thus lead to “clustering” of observed substitutions. Wagner’s method therefore detects what he 

calls “variation clusters”, which are groups of aggregated substitutions that are too close to one 

another to have arisen by chance alone. Conceptually, this idea is not too different from genome-

wide methods that seek to identify particular regions or genes (which can be considered genomic 

“clusters”) containing an excess of derived mutations. 

 Wagner (2007) developed two statistical approaches for determining variation clusters. 

First, Wagner examined the positions of all observed substitutions in a linear sequence 

alignment, and compare the distances between substitutions to that expect by a null (Poisson) 

distribution. Second, 3D clustering of mutations was evaluated by measuring the Euclidean 

distances between all k substitutions when mapped onto a protein 3D structure, computing the 

average pairwise distance dk, comparing dk to a distribution obtained by a random sampling, and 

computing the statistical significance as a permutation-based P-value (P3D). In other words, this 

test evaluates whether the observed substitutions are closer to one another than that expected by 

chance assuming a null model in which mutations occur uniformly throughout a sequence.  

To account for several alternative explanations for clustered mutation, Wagner (2007) 

demonstrated that observed variation clusters were not caused by high mutability of CpG-rich 

regions, low complexity regions, or simply relaxed selection (high mutation rates) as determined 
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by four-fold degenerate sites. Finally, Wagner showed that among the highest-scoring 

predictions of clustered mutation were previously known examples such as BRCA1 and VN1R1. 

Wagner’s P3D method has since been expanded, refined, and applied in several other 

studies (Zhou, Enyeart, & Wilke, 2008) including analysis of cancer mutations (Ye et al., 2010). 

  Wagner’s P3D method, though potentially powerful, has not yet been integrated with 

phylogenetic analysis in order to identify historical and lineage-specific clustered substitution. If 

clustered mutation could be evaluated at all stages of protein evolution given a phylogenetic tree, 

this would represent a potentially new approach to identify lineage-specific positive selection. 

One possible approach for integrating phylogenetics with spatial clustering, would be to infer all 

ancestral sequences within a phylogenetic tree and compute Wagner’s P3D statistic across all 

branches. This will be the core approach used in my proposed Adaptation3D pipeline. First, I 

will review methods for ancestral sequence reconstruction below. 

 

1.3 Ancestral Sequence Reconstruction 

 Closely linked to the idea of detecting positive selection in gene and protein family 

evolution is the idea of ancestral sequence reconstruction. That is, if it is possible to accurately 

infer ancestral sequences, then the sequences at ancestral versus derived nodes in a tree may be 

directly compared using methods described above. 

 Most evolutionary analyses compare present-day (extant) sequences in a horizontal 

manner. Only through the incorporation of phylogenetic trees does the analysis take on a vertical, 

or time-dependent perspective. Ancestral reconstruction involves using extant sequences to infer 

ancestral sequences that existed before speciation or gene duplication events (Cai, Pei, & 

Grishin, 2004; Williams, Pollock, Blackburne, & Goldstein, 2006). Thus, ancestral 

reconstruction methods will use current sequences and their evolutionary history to “reconstruct” 
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or hypothesize the most likely sequence that existed at each ancestor node in a phylogenetic tree. 

Ancestral reconstruction is important in understanding protein function, and how evolutionary 

events produce protein functional shifts (Chang, Ugalde, & Matz, 2005). 

 Similar to phylogenetic tree construction algorithms, there are three main groups of 

ancestral reconstruction algorithms. There are maximum parsimony based methods, maximum 

likelihood based methods, and Bayesian inference methods. 

 Maximum parsimony ancestral reconstruction methods are the oldest and simplest model 

for recreating ancient sequences (Fitch, 1971). The principle of parsimony is predicated on the 

idea that an evolutionary history hypothesis with the least number of transition or mutation 

events must be the correct hypothesis (Minaka et al., 2008; Omland, 1999; Williams, Pollock, 

Blackburne, & Goldstein, 2006). In the Fitch (1971) algorithm for parsimony reconstruction, 

each type of nucleotide or amino acid mutation is weighted equally, and ancestral states are 

inferred that minimize the total number of mutations in the tree. This hypothesis of sequence 

reconstruction can be faulty in some of its assumptions. For example, it is not true that evolution 

works quickly towards some goal in the future, so designing a method in which the fewest 

changes is the best answer will not necessarily be true (Mooers, & Schluter, 1999). Also, the 

parsimony method assumes that the rate of evolution is constant in all branches of the tree, which 

is not accurate either. To overcome many of the drawbacks of maximum parsimony based 

sequence reconstruction, the maximum likelihood methods were developed. 

 Maximum likelihood methods allow for more complex scenarios than parsimony 

reconstruction because they are likelihood frameworks that incorporated sophisticated models of 

character evolution and even variable rates of change at different sites and branches within the 

tree. Transition and transversion substitutions are not considered equally likely to happen, and so 
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the weighting inherent to maximum likelihood reflects different probabilities of events occurring 

(Pagel, 1999). Some of the drawbacks of maximum likelihood reconstruction include an 

overestimation of protein stability because it assumes that the proteins provided are always very 

optimized and stable (Williams, Pollock, Blackburne, & Goldstein, 2006). Some have critiqued 

maximum likelihood for being too computationally intensive for not enough of a benefit over 

maximum parsimony methods (Doornik, & Ooms, 2003). In general, maximum likelihood is 

considered to provide more accurate reconstructions compared to maximum parsimony methods 

overall (Guindon & Gascuel, 2003). 

 Bayesian inference methods are considered the most versatile and robust of the three 

paradigms of ancestral sequence reconstruction. Hypotheses about ancestral amino acid states are 

tested by combining the likelihood of observed data with the likelihood that a certain order of 

events have occurred (Cunningham, Omland, & Oakley, 1998). Bayesian methods are 

considered advantageous over maximum parsimony and maximum likelihood methods primarily 

because Bayesian methods provide a distribution of likely possible trees, as opposed to a single 

estimate (Huelsenbeck, & Ronquist, 2001).  

 To date, the Phylogenetic Analysis by Maximum Likelihood (PAML) software suite is 

the most used tool for analyses for ancestral sequence reconstruction (Yang, 1997; Yang, 2007). 

Many studies on ancestral protein function are published each year that use PAML to 

hypothesize the amino acid sequences of ancient proteins (Assis & Bachtrong, 2015; Wallis, 

2015). One critique of PAML is its inability to handle gaps in a multiple sequence alignment 

(McGuire, Denham, & Balding, 2001). Codeml, the amino acid reconstruction program of 

PAML, has a tendency to overestimate amino acids as ancestral states for gap-containing 

positions, because it treats ambiguous residues and likely gaps the same: that is, as a site to be 
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filled in with some character. This results in a tendency for ancestral sequences to be longer than 

the extant sequences, with gaps not appearing in the phylogeny until more recent, derived 

lineages (Yang, 2007). A second issue related to this is that divergent alignments lead towards 

very large ancestral amino acid sequences. This is also unrealistic biologically, and hence 

codeml is generally applicable to cases where there is strong conservation in an alignment. For 

these reasons, the codeml maximum-likelihood framework has not been used to infer ancestral 

protein sequences in the pipeline developed in this thesis. Instead, a program called FastML has 

been used because of its proper treatment of gap characters (Ashkenazy et al., 2012; Pupko, 

Pe’er, Shamir, & Graur, 2000). 

 

1.4 Overview of Adaptation3D: A novel method to predict protein adaptation 

 As described above, it is evident that there is great room for improvement of methods for 

positive selection and/or protein adaptation detection. The basic Ka/Ks method is underpowered 

to find important adaptation events because it requires a high rate of nonsynonymous mutation 

over the whole length of the protein (Hughes, 2007; Hughes, & Nei, 1988; Tajima, 1989). On the 

other hand, the site-specific and branch-specific Ka/Ks models are often too sensitive and 

incorrectly detect natural variations and misalignments in MSAs as sites of selection (Nozawa, 

Suzuki, & Nei, 2009; Schmid, & Yang, 2008; Suzuki, 2008). Wagner’s method for detecting 

spatial clustering of mutation is potentially powerful and overcomes some of these limitations, 

however it has only been developed and applied to pairwise sequence comparison. 

This thesis therefore entails the design and development of a novel software pipeline called 

Adaptation3D for detecting positive selection and functional adaptation in proteins. 

Adaptation3D integrates several of the methods described earlier, specifically combining 
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phylogenetic ancestral sequence reconstruction and Wagner’s method for detecting spatially 

clustered mutation. Adaptation3D therefore detects positive selection in specific proteins and 

evolutionary lineages by identifying lineage-specific clustered mutation. Furthermore, 

Adaptation3D has been implemented as a high-throughput screening tool and thus is capable 

of searching large databases of protein phylogenies for adaptations by automatically retrieving 

and analyzing structural data from the Protein Data Bank (PDB).  

 In the following thesis, I will explain the methodology behind this novel pipeline, as well 

as how this tool has been applied in various ways to address different question in protein 

adaptation. In chapter 2, I will explain, in detail, how the pipeline works, and the reasoning 

behind some of the models and assumptions inherent in the method. In chapter 3, I will outline 

and discuss the results of running the pipeline on four different biological datasets. First, I will 

discuss how the novel pipeline predicted the correct sites and lineage of adaptation in the 

pathogenesis related protein PR-5D. Second, I will discuss the predictions about functional 

adaptation made by the novel pipeline when analyzing the Selectome database of positive 

selection (Moretti et al., 2014; Proux et al., 2009). Third, I will apply Adaptation3D to analyze 

the structural evolution of vertebrate transcription factors, and uncover significant differences in 

the evolutionary dynamics of paralogs versus orthologs in the vertebrate lineage. 
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Chapter 2 

The Adaptation3D framework for protein adaptation detection: 

method design 

 

2.1 Methodology overview and input 

 Adaptation3D detects positive selection in proteins by identifying lineage-specific, 

spatially clustered mutation. Given a phylogeny, multiple sequence alignment, and protein 

structure, Adaptation3D infers ancestral sequences, and for each branch it computes the set of 

substitutions that have occurred and their degree of spatial clustering. Adaptation3D therefore 

addresses the question of protein adaptation in two dimensions: in which lineage/taxonomic 

group has the change occurred, and where on the protein tertiary structure has the change 

occurred. 

 To start off, Adaptation3D requires as input an amino acid multiple sequence alignment 

file in FASTA format, and a phylogenetic tree file in Newick format (Cardona, Rossello, & 

Valiente, 2008; Lipman, & Pearson, 1985). In order for the program to execute, there must be 

perfect correspondence between the FASTA sequence headers and the names of the terminal 

nodes in the tree file. For example, if there is an unequal number of sequences and node termini, 

an error will be raised. Similarly, an error will be raised if one or more sequence header(s) in the 

FASTA file do not have a terminus with the exact same name in the Newick file. Adaptation3D 

will use the sequences for ancestral state reconstruction which is why there must be a real 

sequence for each end position in the tree. 
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2.2 Precomputation of PDB structural features 

 Adaptation3D uses protein structures in the PDB as template 3D models for query 

proteins of interest (Berman et al., 2000; Drew et al., 2011). It is these template structures that 

are used to assign key structural information (pairwise residue distances and solvent 

accessibility) to the query protein family being analyzed, which is in turn used to detect spatial 

clustering. 

An inefficient strategy is to BLAST a query family against the PDB and compute 

structural information on-the-fly, whereas an efficient strategy is to pre-compute structural 

features for all entries in the PDB database and store these features as a database for later fast 

retrieval. This avoids unnecessary re-computation, and only the PDB-BLAST step is required to 

determine a query/template residue mapping and transfer of pre-computed structural information. 

Pre-computation of structural features was performed as follows. Solvent accessible 

surface area (ASA) was calculated for all PDB entries using the POPS algorithm (Cavallo, 

Kleinjung, & Fraternali, 2003) and stored in a database. Positions of residue α-carbons were also 

retrieved to calculate inter-residue distances, which were also stored as a database for later use. 

Finally, a BLAST database representing a snapshot of the PDB (May 30, 2015) was constructed 

out of the sequences to facilitate later BLAST searches (Altschul et al., 1990; Camacho et al., 

2008). 

 

2.3 Protein family ancestral sequence reconstruction and comparison 

 Adaptation3D takes as input a multiple sequence alignment (MSA) file and a 

phylogenetic tree file. The PDB-BLAST step is performed on-the-fly by the software. Every 

terminal node in the tree must have a corresponding sequence in the MSA file. Often a tree and 



21 
 

MSA will depict a gene tree of multiple orthologs/paralogs across several species. The method 

infers and reconstructs ancestral sequences at all nodes in the phylogenetic tree unaware of the 

orthologous versus paralogous relationships between proteins. Ancestral sequence reconstruction 

is done using the FastML program (Ashkenazy et al., 2012; Pupko et al., 2000). The user 

supplies a protein phylogenetic tree and amino acid sequence alignment. Joint reconstruction is 

used to reconstruct ancestral sequences (Pupko, et al., 2000). Aligned extant sequences are not 

directly compared to each other, but instead ancestral sequences are compared and checked for 

substitutions to their immediate descendants. This structure of the analysis makes it possible to 

determine what mutations have occurred in what specific lineage. Ultimately, the program 

determines not only whether clustered mutation (and thus positive selection) has occurred or not, 

but also determines at what evolutionary time and what clade(s) have been affected by this 

ancestral event. An example of how the program checks for substitutions between ancestral and 

derived sequences is displayed in Figure 1. 
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Figure 1: A hypothetical input phylogenetic tree for Adaptation3D, subdivided into 

ancestral and extant sequences. A multiple sequence alignment of 5 extant sequences (black 

circles) and a tree is supplied to the Adaptation3D program. An ancestral sequence is 

ascribed to each internal node of the tree (red circles). Substitutions are mapped along 

branch segments from ancestral sequences to immediately derived child nodes. Unique 

branch segments are numbered and coloured individually. 

 

2.4 Alignment of sequences to PDB structural representative(s) 

 Protein structural information is required for Adaptation3D’s assessment of lineage-

specific spatial clustering and other structural features to be analyzed later. A single extant 

sequence that is the most similar to the remaining extant sequences (i.e., the most representative 

sequence of the family) is determined and used as the query for a protein BLAST (BLASTP) 

search against the pre-computed snapshot of the PDB (Camacho et al., 2008; Berman et al., 

2000). The structure of the query protein can be assumed to be closely related to that of its PDB 

template over the region for which significant homology is detected by BLAST, a principle that 

is also the basis of all homology-based modeling methods. By the alignment of the query protein 
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sequence to the PDB structure, it is possible to assign spatial positions to substituted sites, using 

the PDB target as the template structure. Substitutions are mapped from ancestral to derived 

sequences at every stage in the phylogenetic tree, and these mutated sites are given 3D positions 

and geometrical characteristics. Figure 2 depicts how substitutions between ancestral and derived 

sequences are mapped to structure. 

 

 

Figure 2: Substitutions between ancestral and derived sequences mapped to protein 

structure. The ancestral-derived sequence pair represented is highlighted in the red box. 

Sequence mismatches between the ancestral sequence (anc) and derived sequence (der) are 

given a sequence position to the PDB sequence through the alignment. Substitutions are 

placed on the PDB structure through the correspondence between PDB sequence residue 

positions and 3D coordinates. 

 

2.5 Structural features used in detection of protein adaptation 

The structural features evaluated by Adaptation3D are derived from the template PDB structures 

detected via BLAST. The two basic properties evaluated are listed below and one value for each 

of these criteria is computed for each group of branch-specific substitutions: 
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1. Mean Euclidean inter-α-carbon distance between substituted sites 

2. Mean relative residue side chain solvent-accessible surface area (RASA) 

 

RASA is a measure of the degree of residue side chain burial or solvent exposure. 

Residues in the core of the protein have a low RASA, while residues on the surface with side 

chains oriented facing the external face of the protein have a high RASA. A residue’s RASA is a 

ratio of the observed accessible surface area (ASA) of the side chain of a specific residue in the 

PDB relative to the “ideal” ASA of that side chain, that is, the ASA given if the amino acid 

existed independently of a protein. Each amino acid type has its own ideal ASA. Ideal ASA 

calculations for each amino acid type were determined by running the POPS algorithm on a PDB 

file containing a single amino acid (1 file per amino acid type) (Cavallo, Kleinjung, & Fraternali, 

2003). This algorithm was also used to pre-compute ASA information for all residues in all 

structures for a snapshot of the PDB. Ideal side chain ASA values for each amino acid type are 

listed in Table 1. 

Although RASA was not specifically used as a criterion or structural feature by Wagner 

(2007), it was included here for later analyses of clustered mutation occurring in surface versus 

interior regions. Exposed substituted sites are likely to be under different selective pressures and 

functional constraints compared to buried residues, and though potentially over-simplistic, it 

makes sense to attempt to classify residues into these two categories. 

 

 

 

 



25 
 

Table 1: Ideal side chain ASA values for isolated amino acids computed using the POPS 

algorithm. 

 

Residue ASA (Å2) Residue ASA (Å2) 

Alanine 102.77 Leucine 205.91 

Arginine 279.20 Lysine 246.36 

Asparagine 174.75 Methionine 213.64 

Aspartic Acid 172.69 Phenylalanine 224.78 

Cysteine 143.36 Proline 170.15 

Glutamic Acid 214.78 Serine 126.89 

Glutamine 220.26 Threonine 182.33 

Glycine 47.92 (α-carbon) Tryptophan 243.47 

Histidine 221.38 Tyrosine 261.73 

Isoleucine 241.44 Valine 204.59 

 

The decision to compute RASA versus actual ASA values for each sidechain becomes 

important when considering how to infer the solvent-accessibility of new substitutions. For 

instance, if an exposed alanine (small sidechain) in the template substitutes for an arginine (large 

sidechain) in the query, it is not appropriate simply to transfer alanine’s actual computed ASA 

from the template to the query. Thus, Adaptation3D instead transfers the RASA from the 

ancestral to derived amino acid. For example, if a mutation at position 25 in the MSA aligns to a 

proline residue with an ASA of 85.075 in a PDB structure, then the RASA at position 25 is 0.5 

(85.075 / 170.15). The RASA value for a substituted site group is the mean RASA for each site 

in the group. 



26 
 

An analysis was performed to determine the accuracy of comparing relative ratios of side 

chain solvent accessibility between substituted sites on a PDB structure. The Mutaprot database 

of homologous PDB structures was used to identify amino acid substitutions on protein 

structures (Eyal, Najmanovich, Sobolev, & Edelman, 2001). Two correlation coefficients were 

computed from this dataset: the correlation of raw side chain solvent accessibilities between 

substituted sites, and the correlation of side chain solvent accessibilities relative to their ideal 

accessibility between substituted sites. Plots of these distributions are displayed in Figure 3. 

 

Figure 3: Correlation between sidechain solvent-accessible surface areas for observed pairs 

of amino acid substitutions. A: Raw solvent accessible surface area; B: Solvent accessible 

surface area normalized to ideal solvent accessibility for each unique residue. 

 

 Pearson correlation coefficients were calculated for both distributions. The correlation 

coefficient (r) for raw solvent accessibility values was 0.520, whereas the coefficient for solvent 

accessibility values normalized to ideal solvent accessibility was 0.650. This indicates that 

normalizing solvent accessibilities to a unique maximum value for each amino acid improves the 

accuracy of assessing solvent accessibility between substituted sites on protein structures. 
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Euclidean inter-α carbon distance is a measure of the degree to which a set of mutations 

are spatially clustered (localized together) in 3D space. A group of substituted sites that are 

aggregated more closely together than that expected by chance is indicative of adaptive or 

function-altering change compared to substituted sites that occur throughout the protein in an 

uncoordinated manner (Wagner, 2007; Zhou et al., 2008). Residue α-carbon positions are pre-

computed for all PDB entries, and the α-carbon position of a site that has undergone a mutation 

from the ancestral to derived sequence is directly transferred from that of the of the PDB residue 

that it aligns to.  

 In the event that a query protein BLASTs to multiple PDB structures, the information 

from each structural alignment may be integrated. That is, if structure A provides solvent 

accessibility or distance information for an N-terminal portion of the protein and structure B 

provides this information for the C-terminal portion, both data can be combined. This is depicted 

in Figure 4, which illustrates how a residue-to-residue distance matrix may combine information 

across multiple PDB templates. In these cases, if there is more than one structure contributing 

information on a particular site, values are simply taken from the best aligned structure. This is a 

beneficial methodological feature of Adaptation3D as it captures as much information as 

possible from multiple PDB templates. 
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Figure 4: A graphical illustration of Adaptation3D’s use of distance information from 

multiple PDB templates. In this example, substitutions between ancestral and derived 

sequences (red lines) are mapped to three different structures (represented by the yellow, 

orange, and green squares). Distances between substituted sites can only be compared 

when they fall on the same PDB structure. 

 

Scoring values (i.e., average pairwise distance or solvent accessibility) for a group of 

substitutions is determined by the methods described above. However, measures must be taken 

to assess the statistical significance of these observed values (Wagner, 2007). For reference, a 

collection of an aligned ancestral, derived, and template (PDB) sequences that are analyzed as a 

unit will be referred to as an “ancestral, derived, PDB sequence alignment triad” (ADPST). For a 

given ADPST, two resampling distributions are generated: one for each criterion. This is done by 

randomly sampling amino acid groups and calculating their properties for many (10^4) 

iterations.  
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The RASA random distribution for an ADPST is built by randomly selecting 10,000 sets 

of non-overlapping residues on the part of PDB structure aligned to the ancestral and derived 

sequences, and getting the mean RASA for each set. The distance random distribution for an 

ADPST is built by randomly selecting 10,000 sets of non-overlapping residues on the part of the 

PDB structure aligned to the ADSP, and calculating the mean distance between all pairs of 

residue combinations for each set. For all cases, the number of values selected before averaging 

is equivalent to the number of observed mutations for that ADPST. While this ensures statistical 

consistency, it is also important to note that having a greater number of substitutions does 

increase statistical power. The null distributions are built using randomized data pulled from 

sampled residues from the PDB structural alignment.  

 

Determination of P-values 

 With the observed scoring values for the ADPST, and the random distribution 

background, it is possible to determine the significance of the group of substitutions, reflecting 

the degree to which the average distance or accessibility deviates from the expected, null 

distribution. With the observed scoring value, the cumulative density function (CDF) is used on 

the distribution to see what percentile of records are less than the observed value. The result of 

the CDF shows the extremity of the observed value on the background distribution, and hence is 

a P-value. If the observed value falls at one tail end of the distribution (P < 0.05), then the 

observed statistic deviates from the random beyond what can be expected due to chance and is a 

candidate for positive selection (Wagner, 2007). The process of randomly selecting groups of 

sites to build a distribution of mean distances, and subsequent determination of distance P-values 

(P3D) is represented in Figure 5.  This process is also used to determine if the observed group of 
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substitutions is statistically significant in terms of how buried or exposed the residues are (Pasa). 

The Pasa statistic can be seen as a two-tailed distribution to find groups of mutations that are 

either significantly buried, or significantly exposed. An overall flowchart of the entire method 

for a single MSA file and Newick file is displayed in Figure 6.  

 

Figure 5: Calculation of  P3D values based on resampling. Amino acid sites that fall within 

the alignment bounds of the ADPST are randomly selected, and the mean Euclidean 

distance for all pairwise distances is calculated (left). This process is repeated 10,000 times 

to build a random distribution for the ADPST (right). The CDF function on the random 

distribution at the observed mean Euclidean distance determines the distance P-value 

(P3D). 



31 
 

Figure 6: Flowchart of the Adaptation3D method for a single multiple sequence alignment 

file and phylogenetic tree file. 

 

 

2.6 Novelty and distinguishing features of the Adaptation3D method 

There are several important considerations and features of Adaptation3D that distinguish 

it from previous methods that warrant further explanation. 

1) Focus on proteins: Adaptation3D does not rely on any DNA sequence information 

whatsoever, and instead uses amino acid sequence information to infer function modification. By 

examining and interpreting directly the changes in amino acid sequence, it is possible to obtain 

direct insight into the molecular determinants of functional modification; whereas analyzing 

protein function modification through DNA substitution rates can be seen as more indirect or 

roundabout. 
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2) Focus on structure: Adaptation3D uses protein tertiary (3D) structural information to make 

claims about functional modification and adaptation. Since proteins perform their function as 

folded structures, then a structural perspective on adaptation should theoretically have more 

power to accurately detect functionally relevant changes. For example, suppose there is a small 

group of residues within an enzyme that are directly involved in ligand binding or catalysis. Even 

if that enzyme is shown to possess a high number of substitutions, these substitutions may have 

occurred in a functionally irrelevant area of the protein. Structure information can therefore be 

used to inform algorithms about regions that are likely to result in functional change when 

mutated. Such knowledge may include physicochemical characteristics, pockets and clefts, 

surface versus interior regions, secondary structural information, and other spatial features. 

3) Phylogenetic perspective: Adaptation3D uses both a phylogenetic perspective and ancestral 

sequence reconstruction to infer specifically the specific evolutionary lineage in which protein 

adaptation has occurred. In the case of pairwise or site-specific Ka/Ks, it is impossible to 

determine the direction of adaptation (Hughes, 2007; Hughes & Nei, 1988; Tajima, 1989), and 

hence which characteristics are derived and which are ancestral. This phylogenetic information is 

critical for understanding where and when selection has occurred because this may provide clues 

about why selection has occurred biologically.  

With ancestral sequence reconstruction, it is theoretically possible to go back up the 

evolutionary tree and retrace the mutation events that have happened in a phylogeny to lead to 

the modification of function (Cai, Pei, & Grishin, 2004; Chang, Ugalde, & Matz, 2005). With a 

given phylogenetic tree and a set of extant sequences, we can hypothesize protein sequences at 

each point in the tree and find significant patterns of mutation going from more ancestral 

sequences to more derived sequences. This leads to the pinpointing of lineage-specific 
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functionally significant mutation. This process also makes it more natural to bridge the gap 

between protein evolution and phenotypic shifts, because specific groups of mutations can be 

attributed to taxonomic clades and/or gene duplication and divergence events. 
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Chapter 3 

Applications of Adaptation3D to specific protein families and entire 

proteomes 

 

 Adaptation3D detects branch-specific clustered mutation by incorporating sequence, 

structural, and phylogenetic data. It uses statistical random sampling of mutations mapped to 

protein tertiary structures in order to detect significant mutational clustering and does so for all 

branches within a phylogenetic tree. This metric is used as a means to infer functional 

modification in a protein lineage, because spatially concentrated changes within a particular 

region may be indicative of positive selection on specific functional sites compared to situations 

involving spatially scattered patterns of mutation (Wagner, 2007; Zhou, et al., 2008). As a proof 

of concept, Adaptation3D was applied to a previously studied model of protein family adaptation 

– that being the PR-5 pathogenesis-related protein family in plants (Doxey et al., 2010), in which 

key carbohydrate-binding motif adaptations in the Solanaceae-specific (PR-5d) subfamily have 

been detected and experimentally validated. 

 

3.1 Detecting lineage-specific clustered mutation: Application to the PR-5 protein family 

  

3.1.1 Background on the PR-5 protein family 

The Solanaceae are a commercially important family of flowering plants (Olmstead & 

Bohs, 2007). Members of this family include potato, tomato, peppers, eggplant, and tobacco. 

Many species within this family are targets of a variety of pathogens, particularly oomycete 

species (Latijnhouwers, de Wit, & Govers, 2003; Woloshuk et al., 1991; Zevenhuizen, & 

Bartnicki-Garcia, 1969; Zhang, McCarthy, & Smart, 2008). It has been observed that there has 
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been a large radiation of novel genes in these plant species as a result of duplication of 

osmoregulatory genes including osmotin. These genes are hypothesized to play a large role in 

pathogen defense processes (Campos et al., 2002; Kuboyama, 1998; Ruiz, Herrera, Ghislain, & 

Gebhardt, 2005). 

 One such osmotin-like protein found within the Solanaceae is called pathogenesis-related 

protein, PR-5d (Koiwa et al., 1997). Expressed in root cells and vascular tissues, PR-5D has been 

proposed to bind to oomycete cell walls, thereby preventing them from spreading through the 

plant (Kitajima, Koyama, Yamada, & Sato, 1998; Koyama, Kitajima, & Sato, 2001). However, 

how PR-5d interacts with the pathogen cell wall was initially unclear. 

A previous study demonstrated that tobacco PR-5D contains a unique pattern of three 

coplanar surface tryptophan residues that are present in other Solanaceae PR-5d proteins but are 

lacking in other members of the PR-5 superfamily (Doxey et al, 2010). In Solanum 

lycopersicum, these surface tryptophans are found at residue positions 34, 36, and 196. The triple 

tryptophan motif was computationally predicted as a cellulose-binding motif based on its 

geometric similarity to binding sites in other cellulose-binding proteins, and this prediction was 

validated experimentally through a tobacco cellulose pulldown assay which identified PR-5d as a 

major cellulose-binding protein of tobacco (Doxey et al., 2010).  

Interestingly, oomycete cell walls are rich in many different carbohydrate molecules such 

as cellulose (Latijnhouwers, de Wit & Govers, 2003; Zevenhuizen, & Batnicki-Garcia, 1969), 

and cellulose is lacking from the cell walls of fungi. Therefore, PR-5d’s unique acquisition of a 

cellulose-binding site was described as a possible evolutionary adaptation for targeting oomycete 

pathogens such as Phytopthora infestans (Doxey et al., 2010). 
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 Here, I have re-examined the PR-5 pathogenesis-related protein family using 

Adaptation3D in order to determine whether significant, lineage-specific examples of clustered 

mutation can be detected within the PR-5 phylogeny. I hypothesize that the triple tryptophan 

mutation that occurs within the PR-5d subfamily is one such example of positive selection, that it 

may score significantly using the P3D statistic, and may have an elevated score compared to other 

PR-5 lineages. 

  

3.1.2 Structural phylogenetic prediction of protein adaptation in the PR-5 family 

PR-5 related sequences from Solanaceae and non-Solanaceae plants were retrieved from 

the NCBI non-redundant database using blastp with Solanum lycopersicum PR-5D as the query 

sequence (RefSeq Accession NP_001234351.1). Twenty-one sequences were retrieved from 

various source organisms and databases (Fernandez-Pozo et al., 2015; Goodstein et al., 2012; 

Kersey et al., 2014; Lamesch et al., 2012; Pruitt et al., 2014; Szklarczyk et al., 2011; Yu et al., 

2015). The sequences used to construct the multiple sequence alignment are listed in Table 2. A 

multiple sequence alignment was produced using MUSCLE in Seaview (Edgar, 2004; Gouy, 

Guindon, & Gascuel, 2010) (Figure 7). To reconstruct the phylogeny tree for this protein family, 

the PhyML maximum likelihood algorithm was used as implemented in Seaview (Guindon et al., 

2010). This process produced two files: a multiple sequence alignment file and a corresponding 

phylogenetic tree file in Newick format, which served as input for the Adaptation3D algorithm. 
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Table 2: Sequences used in phylogenetic reconstruction of PR-5 protein family. 

 

Number Accession Species Source Description 

1 PGSC0003DMP400005490 Solanum tuberosum PTGBase Thaumatin-like 

2 Solyc08g080660 Solanum 

lycopersicum 

Ensembl Plants pathogenesis 

related protein 5 

3 PGSC0003DMP400005491 Solanum tuberosum PTGBase Thaumatin-like 

4 Solyc08g080670 Solanum 

lycopersicum 

Ensembl Plants PR protein 5-like 

5 Solyc08g080620 Solanum 

lycopersicum 

Sol Genomics 

Network 

osmotin-like, 

pathogenesis 

related 

6 PGSC0003DMP400005465 Solanum tuberosum PTGBase Thaumatin-like 

7 PGSC0003DMP400005466 Solanum tuberosum PTGBase Thaumatin-like 

8 Solyc08g080640 Solanum 

lycopersicum 

Sol Genomics 

Network 

osmotin-like, 

pathogenesis 

related 

9 PGSC0003DMP400005467 Solanum tuberosum PTGBase Thaumatin-like 

10 Solyc08g080650 Solanum 

lycopersicum 

Sol Genomics 

Network 

pathogenesis 

related protein 23 

11 PGSC0003DMP400005463 Solanum tuberosum PTGBase Thaumatin-like 

12 Solyc08g080610 Solanum 

lycopersicum 

Sol Genomics 

Network 

osmotin-like, 

pathogenesis 

related 

13 GSVIVT01019849001 Vitis vinifera Phytozome thaumatin-like 

14 Thhalv10028920m Eutrema salsugineum Phytozome thaumatin-like 

15 Bra033138 Brassica rapa String DB osmotin 34 

16 Thhalv10028948m Eutrema salsugineum Phytozome thaumatin-like 

17 scaffold_603571 Arabidopsis lyrata Ensembl Plants thaumatin-like 

18 scaffold_603568 Arabidopsis lyrata Ensembl Plants thaumatin-like 

19 Carubv_10001823m Capsella rubella Phytozome thaumatin-like 

20 fgenesh2_kg Arabidopsis lyrata Ensembl Plants thaumatin-like 

21 AT4G11650 Arabidopsis thaliana TAIR osmotin 34 
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Figure 7: Multiple sequence alignment of thaumatin-like proteins from several species. The 

putative triple tryptophan (WWW) carbohydrate-binding motif in PR-5d are highlighted 

in red boxes. The displayed alignment begins at position 121 due to a long gap region 

present at the beginning of most sequences in the alignment. 

 

 With these two files as input, Adaptation3D identified two PDB structures as templates 

for the PR-5 family: 1AUN chain A, and 2I0W chain A (Ghosh & Chakrabarti, 2008; Koiwa et 

al., 1999). By mapping the sequence mismatches between ancestral hypothetical reconstructed 

sequences and their derived neighbours to the PDB structures, Adaptation3D produced a set of 

distance P-values (P3D) for each branch segment in the protein phylogeny as displayed in Figure 

8. The PR-5 representative BLASTed to two template structures: 1AUN chain A and 2I0W chain 

A. The subsequent P-values were retrieved from Adaptation3D when 1AUN chain A was used 

as the template structure.  
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Figure 8: Phylogenetic tree with associated distance P-values. Residue states corresponding 

to the putative carbohydrate-binding motif in pr-5d are displayed to the right of its 

respective sequence header. P-values for each branch segment are based on the sequence 

alignment to PDB structure 1AUN chain A. Significant P-values (< 0.05) are displayed in 

red. 

 

 Not only is there only one P3D value from the Adaptation3D analysis found to be 

significant (P3D = 0.004, highlighted red) (Figure 8), but this branch segment corresponds exactly 

to the ancestral lineage containing the Solanaceae PR-5D subfamily. However, this P3D value 

after false discovery rate (FDR) correction is only 0.108 (Benjamini & Hochberg, 1995). The 
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sequence alignment between the ancestral, derived, and PDB 1AUN chain A sequences for this 

lineage is also displayed in Figure 9B.  

As Figure 8 contains the residue states at positions 34, 36, and 196, it is possible to see 

how the P3D of 0.004 is biologically relevant with respect to the putative origin of the cellulose-

binding motif. The residues at positions 34, 36, and 196 are not conserved when viewing the 

sequences outside of this clade, and in the ancestral reconstructed sequence were V, N, and G, 

respectively (Figure 9B). However, these residues all mutated to conserved tryptophans for the 

sequences beneath the derived node. As such, the derived reconstructed sequence had residue 

states of W, W, and W at positions 34, 36, and 196 respectively (Figure 9B). Thus, this branch 

segment represents the possible gain of a specialized PR-5 function, which can be detected 

through branch-specific non-random spatial clustering involving substitutions concentrated to a 

surface patch on the tertiary structure. These substitutions occurred so close in 3D space that 

Adaptation3D found them to be significantly clustered together. Therefore, we can reject the null 

hypothesis that this spatial cluster of substitutions happened by random chance. 

 The positions of substituted sites in the lineage with the significant distance P-value are 

highlighted in Figure 9A. Figure 9A displays where these mutations mapped to the PDB 

structure 1AUN. Figures 9Ai and 9Aii display the osmotin binding cleft. Since PR-5D is a 

paralog of osmotin, PR-5D retains the osmotin binding cleft. The residues of the binding cleft are 

largely conserved. Figures 9Aiii and 9Aiv display the putative carbohydrate-binding surface, 

which was achieved by a 90 degree rotation along the X-axis compared to images i and ii. 
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Figure 9: Structure and alignment highlighting substitutions at the branch segment with 

significant P3D. A: Cartoon and surface structures of pr-5d highlighting mutations from the 

phylogenetic branch with a significant P3D  value. i: space-fill structure of pr-5d; ii: cartoon 

structure of pr-5d; iii: space-fill structure of pr-5d, carbohydrate-binding patch view; iv: 

cartoon structure of pr-5d, carbohydrate-binding patch view. Non-mutated residues are 

labelled blue, mutated residues are labelled orange; mutated residues corresponding to 

residues 34, 36, and 196 are labelled red. B: Ancestral, derived, PDB sequence alignment 

between sequences where distance P3D = 0.004. Mismatches between the ancestral and 

derived sequences are in red boxes. 
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 From Figure 9A, it is evident that very few substitutions mapped close to the osmotin 

binding cleft of PDB structure 1AUN in the PR-5d branch. On the other hand, most of the 

occurred in a very small space relative to the overall structure. In addition to the mutation of 

positions 34, 36, and 196 to tryptophan, many other amino acids underwent mutation in this 

lineage. However, these mutations were still clustered around the three residues of interest. It is 

possible that these residue changes also play a role in mediating carbohydrate binding. Thus, by 

visualizing where the amino acid mutations fall on the tertiary structure, it is evident that the low 

distance p-value of 0.004 does correspond to highly spatially clustered groups of mutations. 

 To further inspect if the P3D value is accurately representing the degree of clustering of a 

group of mutations, we can compare the mutation cluster from the lineage with a significant P3D 

value to the mutation cluster in a lineage with a non-significant P3D value. We can visually 

inspect the alignment for the ADPST where the derived sequence is a thaumatin-like paralog 

from Vitis vinifera (accession GSVIVT01019849001), and the lineage-specific P3D value is 

0.695. The alignment between ancestral, derived, and PDB sequences for this branch segment is 

displayed in Figure 10B. The positions of substituted sites in the lineage with the P3D value of 

0.695 are highlighted in Figure 10A. Figure 10A displays where these mutations mapped to the 

PDB structure 1AUN. Figures 10Ai and 10Aii display the osmotin binding cleft. Few mutations 

occurred in the osmotin binding cleft in this lineage as well. The residues of the binding cleft are 

largely conserved. Figures 10Aiii and 10Aiv display a 90 degree rotation along the Y-axis 

compared to images 10Ai and 10Aii. No mutations occurred on the carbohydrate-binding motif 

surface of PR-5D. Instead, they appear randomly distributed throughout the protein structure as 

predicted by Adaptation3D. 
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Figure 10: Structure and alignment highlighting substitutions at the branch segment with 

non-significant P3D. A: Cartoon and surface structures of pr-5d highlighting mutations 

from the phylogenetic branch with a P3D value of 0.695. i: space-fill structure of pr-5d; ii: 

cartoon structure of pr-5d; iii: space-fill structure of pr-5d, carbohydrate-binding patch 

view; iv: cartoon structure of pr-5d, carbohydrate-binding patch view. Non-mutated 

residues are labelled blue, mutated residues are labelled orange. B: Ancestral, derived, 

PDB sequence alignment between sequences where the derived sequence is thaumatin-like 

from V. vinifera, and the P3D value = 0.695. Mismatches between the ancestral and derived 

sequences are in red boxes. 
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 The results from the initial Adaptation3D screen on this case of PR-5D motif evolution 

provide an initial affirmation of the effectiveness of using a general distance P-value (P3D) for 

the detection of functional innovation in the context of protein structure. The previous study 

identified the evolution of the coplanar surface tryptophans through a specific screen for that 

structural motif (Doxey et al., 2010). However, Adaptation3D discovered a likely adaptation 

event through a much more general structural algorithm, and independently arrives at the same 

site. This provides even stronger evidence that the triple tryptophan mutation in the PR-5d 

branch represents a historical adaptation. Furthermore, if the Adaptation3D algorithm is 

generalized to work with any protein family and alignment, it may be potentially useful as a 

screening tool to identify lineage-specific positive selection and structural adaptation on a large 

scale.  

 Through visual inspection and comparison of Figures 9B and 10B, we can see that 

mutations in both lineages occur all along the alignment length, and not necessarily in any 

particular pattern. When we compare the structural mapping of mutations between lineages in 

Figure 9A and 10A, we can see significant differences in the way the mutations fall onto tertiary 

structure. The significant lineage (P3D=0.004) contains many substitutions that occur in one 

region of the protein, and very few mutations occur outside of this region. On the other hand, the 

non-significant lineage (P3D=0.695) has substitutions that are quite separated from each other 

spatially. Thus, the P3D distance statistic appears to capture the intended structural phenomenon 

of clustered mutation. These results also illustrate how mutation and adaptation detection 

through sequence analysis alone does not provide the full picture. While the substitutions in both 

lineages occur over the whole length of the primary sequence, this does not accurately reflect 
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what is happening on the tertiary structure. This is further indication for the usefulness of 

visualizing mutations on folded proteins. 

 Although these are interesting computational results, these predictions should be 

followed up with in vitro assays to experimentally validate in silico results. A potential wet-lab 

analysis could test for differential carbohydrate molecule binding preferences between paralogs 

containing the surface tryptophan motif (PR-5D), and paralogs lacking this motif (osmotin). It is 

possible that the surface tryptophans coordinate with the canonical osmotin binding cleft to bind 

different carbohydrates. 

 

3.2 Extending Adaptation 3D to phylogenomic scale analysis 

 

3.2.1 High-throughput adaptation screening of the Selectome Database 

 The results from the previous section demonstrate that Adaptation3D may be used to 

reconstruct branch-specific adaptations in selected protein families of interest. The next goal is 

generalizing and extending Adaptation3D to screen databases of protein phylogenies and 

corresponding multiple alignments. In this way, Adaptation3D could be applied as a high-

throughput screening tool to identify specific proteins families, evolutionarily lineages, and sites 

under positive selection. In addition, this could uncover macro-evolutionary patterns involving 

recurring proteome-wide adaptation in certain biological processes or functions (i.e., enriched 

functions). In the following study, I have automated Adaptation3D as a screening tool, have 

applied it to analyze a large database of vertebrate protein families from the Selectome database 

(Proux et al., 2009), and have analyzed the results in the context of broader protein structural and 

functional trends. 
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 The Adaptation3D algorithm was used to detect clustered adaptation on a large scale 

using pre-computed phylogenetic trees and multiple sequence alignments from the Selectome 

database (Proux et al., 2009.). Specifically, all branch-specific substitutions from 13,709 protein 

phylogenies from the Eutelestomi taxonomic cluster of Selectome were mapped to 3D structures, 

and their significance of spatial clustering (P3D) was measured. All branches (in all trees) were 

then ranked according to their P3D, followed by solvent accessibility P-value (Pasa), and lastly by 

the number of mutations that occurred in the lineage that could be mapped to a specific PDB 

structure.  

 In total, 13709 phylogenies from the Selectome database were analyzed. This included a 

total of 423691 individual lineages (branch segments) that were analyzed. Of the total branch 

segments that the Adaptation3D method was performed on, 14677 branch segments had a 

significant Pasa < 0.05, 46923 branch segments had a significant Pasa > 0.95, and 50985 branch 

segments had a significant P3D < 0.05. 

The solvent accessibility P-value (Pasa) facilitates identification of branch-specific 

substitutions that are significantly exposed or significantly buried compared to that expected 

from random sampling. It is important to define these two sets of behavior, since surface-

exposed sites are known to inherently undergo a greater rate of mutation and so sets of buried 

substitutions may be interpreted as more statistically valid and less likely to occur by chance. 

Therefore, an additional ranking was performed specifically for cases of lineage-specific 

clustered adaptation occurring in core regions of the protein (lineages with a P3D < 0.05 and Pasa 

< 0.05). Multiple hypothesis testing correction using false discovery rate (FDR) was also 

performed for all P-value results (Benjamini, & Hochberg, 1995).  
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3.2.2 Overview of P-value distributions following Adaptation3D analysis of Selectome 

The distribution of P-values (P3D and Pasa) from Adaptation3D’s analysis of all protein 

families and branches in Selectome are displayed in Figure 11. In an analysis of purely random 

data, these distributions are expected to be flat with an even frequency spread across all P-value 

bins.  

 

Figure 11: Histograms of P-values for large-scale analysis of branches from phylogenies in 

the Selectome database. A: Pasa; B: P3D. 

 

However, this is not the case since both P-value frequency distributions are clearly non-

random and deviate from a flat distribution (Figure 11). First, there is a clear trend of increasing 

frequency of high Pasa values, which corresponds to highly exposed sets of branch-specific 

mutations (Figure 11A). On the other hand, Figure 11B, which displays the P3D distribution, has 

a largely uniform spread of P-values with a strong spike of P3D values that approach 0. This 

signifies an overrepresentation of tightly clustered mutation groups in the Selectome dataset, on 

top of a background rate of false discovery that can be visualized as the even spread across other 

P-value bins. 
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This analysis is important since it demonstrates that the test statistics and overall 

phenomenon of clustered mutation display a non-random distribution. It is therefore reasonable 

to focus on individual examples, functional summaries and other trends for these predictions in 

following sections. 

 

3.2.3 Significant cases of detected adaptation in Selectome families 

Ranked first by P3D value, Table 3 lists the top 20 most significant cases of detected 

clustered mutation in Adaptation3D’s screen of the Selectome database. The table describes the 

protein families, specific branches defined by the ancestral and derived lineage taxonomic name, 

number of mutations detected along that branch, and the raw and FDR-corrected P-values for 

non-random spatial clustering and non-random solvent-accessibility (Pasa). The solvent-

accessibility related Pasa value is a two-tailed P-value and thus captures either significantly 

internal or significantly buried sets of residue substitutions. Regarding branch definitions, it is 

also important to note that in some cases where there has been a gene duplication event in the 

tree, the ancestral and derived branch may be equivalent. In the following tables, instances where 

the ancestral clade name and derived clade name are the same represent gene duplication events, 

as opposed to speciation events represented by different clade names. 

The three protein families containing the most significant degree of spatial mutation 

anywhere in their tree include: Zinc finger protein 526 (a putative DNA-binding transcription 

factor), Interleukin 20 receptor beta (a cytokine-mediated signaling receptor), and thioredoxin 

domain containing 11 (a possible redox regulator involved in thyroid H202 generation). 

Functional descriptions are based on their UniProt annotations (Bateman et al., 2015). The role 

of any of these specific proteins in vertebrate evolution is unknown, however the prediction of 
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numerous zinc-finger adaptations (including the top ranked prediction) is intriguing given the 

considerable literature on zinc-finger expansions and adaptive evolution in vertebrates (Emerson 

& Thomas, 2009; Schmidt, & Durrett, 2004; Siggers, Reddy, Barron, & Bulyk, 2014). 

Divergence of zinc-finger binding specificity for instance may play a role in vertebrate 

developmental evolution. 

Predictions further down the list are also of potential evolutionary and functional interest, 

such as a predicted adaptation within SLC7A2, a mammalian-specific paralog that functions as a 

pregnancy-associated amino acid transporter (Gao et al., 2009) and thus may have played a role 

in the numerous evolutionary innovations associated with mammalian female reproduction. 
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Table 3: Top 20 Selectome hits for proteins with mutations that clustered together (P3D < 

0.05). 

 

Protein Ancestral Clade Derived Clade PDB 

ID 

# of 

mutations 

Pasa FDR 

Pasa 

P3D FDR P3D 

Znf526 Euteleostomi Clupeocephala 2JP9 56 4.24E-2 1.0 1.24E-280 3.75E-276 

Il20rb Euteleostomi Clupeocephala 4DOH 50 7.71E-2 1.0 3.49E-246 8.21E-242 

Txndc11 Euteleostomi Percomorpha 2B5E 31 6.03E-1 1.0 7.55E-255 1.45E-220 

Dhx29 Eukaryota Eukaryota 3KX2 42 6.38E-1 1.0 4.28E-189 6.97E-185 

Abcd1 Clupeocephala Percomorpha 4F4C 19 7.93E-1 1.0 1.08E-182 1.58E-178 

Ttc6 Euteleostomi Sarcopterygii 1W3B 34 2.83E-1 1.0 1.78E-163 2.22E-159 

Kirrel2 Euteleostomi Tetrapoda 3DMK 39 8.49E-1 1.0 9.8E-161 1.16E-156 

Asph Euteleostomi Euteleostomi 2NR7 43 2.2E-5 6.8E-1 3.70E-158 4.24E-154 

Scrib Eukaryota Eukaryota 4MN8 23 6.73E-1 1.0 2.85E-146 2.68E-142 

Prdm14 Percomorpha Tetraodontidae 1MEY 15 2.67E-1 1.0 7.36E-130 5.47E-126 

Anapc11 Boreoeutheria Catarrhini 2MT5 40 3.38E-2 1.0 7.69E-129 5.52E-125 

Unknown Amniota Testudines 1MU2 40 9.41E-1 1.0 5.36E-121 3.39E-117 

Ttc6 Sauria Phasianidae 1W3B 30 5.71E-2 1.0 3.49E-120 2.17E-116 

Lmln Eukaryota Eukaryota 1LML 52 2.35E-2 1.0 3.21E-91 1.44E-87 

Abcd1 Euteleostomi Clupeocephala 4F4C 18 9.49E-1 1.0 1.66E-89 7.40E-86 

Slc7a2 Mammalia Mammalia 3GI9 19 1.37E-2 1.0 1.68E-88 7.34E-85 

Znf585a Euteleostomi Danio 2EE8 61 1.53E-1 1.0 1.45E-86 6.08E-83 

Znf526 Clupeocephala Percomorpha 2JP9 38 6.97E-2 1.0 1.85E-85 7.54E-82 

Znf576 Clupeocephala Holacanthopterygii 2I13 22 9.66E-1 1.0 8.60E-85 3.47E-81 

Abcb1 Murinae Murinae 4KSB 114 1.67E-1 1.0 2.32E-81 8.78E-78 

 

 Surface and cartoon structure diagrams highlighting lineage-specific substitutions 

mapped to structure for statistically significant clustered mutation are displayed in Figure 12. 

The highlighting of substitutions on these structures show that the sites of substitution do cluster 
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relatively close together given the overall size of the protein structure. Therefore, through visual 

inspection the P3D statistic can be said to be an accurate metric of capturing clustered mutation on 

protein tertiary structure. 
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Figure 12: Structural illustrations of proteins displaying clustered mutation (P3D < 0.05) in 

lineages from the Selectome dataset. A: Surface representation of mutations on the ZNF526 

protein in the Clupeocephala lineage, (PDB key 2JP9); B: Cartoon representation of the 

structure from A; C: Surface representation of mutations on the Il20rb protein in the 

Clupeocephala lineage, (PDB key 4DOH); D: Cartoon representation of the structure from 

C; E: Surface representation of mutations on the Txndc11 protein in the Percomorpha 

lineage, (PDB key 2B5E); F: Cartoon representation of the structure from E. Substituted 

sites in the lineage of interest are highlighted in orange. 
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3.2.4 Clustered mutation in exposed versus internal regions of protein structures 

 

Visual structural examination of the predictions revealed cases of clustered mutation 

occurring predominantly in exposed, surface regions, as well as a second class of predictions 

involving internal, buried mutation clusters. It can be hypothesized that these may represent 

different evolutionary and functional phenomena. 

Lineage-specific clustered adaptation that occurred in exposed regions of the protein 

(lineages with a P3D < 0.05 and Pasa < 0.05) were tabulated. The top 20 results of clustered 

mutation in exposed residues are listed in Table 4. Top scoring phylogenies include: anaphase 

promoting complex subunit 11, RAS oncogene family member 20, scribbled planar cell polarity 

protein, and intraflagellar transport protein 80. 
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Table 4: Top 20 Selectome hits for proteins with mutations that clustered together (P3D < 

0.05) and were significantly buried (Pasa < 0.05). 

 

Protein Ancestral 

Clade 

Derived Clade PDB ID # of 

mutations 

Pasa FDR 

Pasa 

P3D FDR P3D 

Znf526 Euteleostomi Clupeocephala 2JP9 56 4.24E-2 1.0 1.24E-280 3.75E-276 

Asph Euteleostomi Euteleostomi 2NR7 43 2.2E-5 6.8E-1 3.70E-158 4.24E-154 

Anapc11 Boreoeutheria Catarrhini 2MT5 40 3.38E-2 1.0 7.69E-129 5.52E-125 

Ttc6 Sauria Phasianidae 1W3B 30 5.71E-2 1.0 3.49E-120 2.17E-116 

Lmln Eukaryota Eukaryota 1LML 52 2.35E-2 1.0 3.21E-91 1.44E-87 

Slc7a2 Mammalia Mammalia 3GI9 19 1.37E-2 1.0 1.68E-88 7.34E-85 

Mdga2 Euteleostomi Tetrapoda 3JXA 26 3.63E-2 1.0 7.12E-63 1.95E-59 

Rab20 Euteleostomi Sarcopterygii 2FG5 27 3.65E-2 1.0 1.67E-59 4.26E-56 

Asph Eukaryota Euteleostomi 2NR7 47 6.78E-5 1.0 9.90E-55 2.26E-51 

Ankrd28 Euteleostomi Tetrapoda 4OAU 14 1.31E-4 1.0 9.71E-52 2.08E-48 

Scrib Eukaryota Eukaryota 4LI2 24 1.42E-3 1.0 3.89E-41 6.02E-38 

Ift80 Percomorpha Smegmamorpha 2YMU 23 3.67E-2 1.0 1.07E-40 1.64E-37 

Gpsm2 Clupeocephala Percomorpha 4JHR 78 4.54E-2 1.0 4.06E-29 4.29E-26 

Pus3 Amniota Theria 4NZ6 16 3.76E-3 1.0 1.43E-15 8.24E-13 

Psmd4 Euteleostomi Clupeocephala 1YX4 19 4.53E-3 1.0 1.09E-15 6.33E-13 

F1nm06 Testudines Neognathae 3SQW 41 1.78E-3 1.0 3.45E-16 2.06E-13 

Ddx60 Boreoeutheria Hominoidea 2XGJ 13 1.86E-3 1.0 4.13E-16 2.47E-13 

Herc4 Theria Eutheria 1A12 9 3.35E-2 1.0 2.21E-16 1.33E-13 

Amz2 Eukaryota Eukaryota 2X7M 8 1.48E-3 1.0 7.44E-14 3.92E-11 

F6rwe9 Silurana Silurana 4DJH 7 4.78E-2 1.0 1.44E-13 7.38E-11 

 

Lineage-specific clustered adaptation that occurred in exposed regions of the protein 

(lineages with a P3D < 0.05 and Pasa > 0.95) were tabulated. The top 20 results of clustered 

mutation in exposed residues are listed in Table 5. Top scoring phylogenies include: ubiquitin-
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conjugating enzyme E2Z, retinoblastoma binding protein 7, enoyl-CoA Delta isomerase 1, and 

Rho Guanine Nucleotide Exchange Factor 1. 

Table 5: Top 20 Selectome hits for proteins with mutations that clustered together (P3D < 

0.05) and were significantly exposed (Pasa > 0.95). 

 

Protein Ancestral Clade Derived Clade PDB ID # of 

mutations 

Pasa FDR 

Pasa 

P3D FDR P3D 

Abcd1 Euteleostomi Clupeocephala 4F4C 18 9.50E-1 1.0 1.66E-89 7.40E-86 

Znf576 Clupeocephala Holacanthopterygii 2I13 22 9.66E-1 1.0 8.60E-85 3.47E-81 

Ube2z Percomorpha Tetraodontidae 2GRN 22 9.99E-1 1.0 4.70E-76 1.61E-72 

Opn4xb Percomorpha Tetraodontidae 2KS9 31 9.85E-1 1.0 5.38E-38 7.57E-35 

Rbbp7 Haplorrhini Simiiformes 3CFS 8 9.99E-1 1.0 1.00E-33 1.26E-30 

Eci1 Laurasiatheria Laurasiatheria 1SG4 6 9.67E-1 1.0 2.96E-20 2.15E-17 

Ptar1 Clupeocephala Percomorpha 4EHM 17 9.57E-1 1.0 3.07E-20 2.23E-17 

Klf14 Euarchontoglires Murinae 2JP9 15 9.99E-1 1.0 5.96E-19 4.11E-16 

Ptar1 Theria Metatheria 4EHM 8 9.88E-1 1.0 1.03E-18 6.98E-16 

Arhgef1 Euteleostomi Clupeocephala 2OMJ 8 9.99E-1 1.0 5.98E-14 3.16E-11 

Ube2z Euteleostomi Sarcopterygii 2GRN 20 9.82E-1 1.0 8.32E-12 3.84E-9 

Zmat3 Euteleostomi Clupeocephala 1ZU1 16 9.94E-1 1.0 3.39E-10 1.37E-7 

Atp11b Sciurognathi Murinae 3TLM 28 9.53E-1 1.0 3.64E-9 1.33E-6 

Phlpp2 Euteleostomi Tetrapoda 4MN8 60 9.65E-1 1.0 1.07E-8 3.75E-6 

Nu4m Rodentia Murinae 3RKO 57 9.66E-1 1.0 1.26E-8 4.38E-6 

Flot2 Sciurognathi Murinae 1WIN 12 1.0 1.0 3.01E-8 1.00E-5 

Gm16603 Eukaryota Eukaryota 1YPZ 14 9.80E-1 1.0 4.59E-8 1.50E-5 

Kcnq3 Amniota Amniota 3LUT 4 9.96E-1 1.0 4.87E-7 1.36E-4 

Gstp1 Eukaryota Eukaryota 1GLP 9 9.66E-1 1.0 6.53E-7 1.77E-4 

Sall2 Theria Metatheria 3W5K 5 9.72E-1 1.0 8.33E-7 2.23E-4 
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Sample structures with highlighted mutations in lineages with significant P-values are 

displayed in Figures 13 and 14. Figure 13 shows surface and cartoon renderings of clustered 

adaptation in buried protein regions (P3D <0.05 and Pasa < 0.05). Figure 14 shows surface and 

cartoon renderings of clustered adaptation in exposed protein regions (P3D < 0.05 and Pasa > 

0.95). 
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Figure 13: Structural illustrations of proteins displaying clustered mutation in buried 

regions (P3D < 0.05 and Pasa < 0.05) in lineages from the Selectome dataset. A: Surface 

representation of mutations on the TTC6 protein in the Phasianidae lineage, (PDB key 

1W3B); B: Cartoon representation of the structure from A; C: Surface representation of 

mutations on the SLC7A2 protein in the Mammlia lineage, (PDB key 3GI9); D: Cartoon 

representation of the structure from C; E: Surface representation of mutations on the 

MDGA2 protein in the Tetrapoda lineage, (PDB key 3JXA); F: Cartoon representation of 

the structure from E. Substituted sites in the lineage of interest are highlighted in orange. 
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Figure 14: Structural illustrations of proteins displaying clustered mutation in exposed 

regions (P3D < 0.05 and Pasa > 0.95) in lineages from the Selectome dataset. A: Surface 

representation of mutations on the ABCD1 protein in the Clupeocephala lineage, (PDB key 

4F4C); B: Cartoon representation of the structure from A; C: Surface representation of 

mutations on the OPN4XB protein in the Tetraodontidae lineage, (PDB key 2KS9); D: 

Cartoon representation of the structure from C; E: Surface representation of mutations on 

the FLOT2 protein in the Murinae lineage, (PDB key 1WIN); F: Cartoon representation of 

the structure from E. Substituted sites in the lineage of interest are highlighted in orange. 
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 Figure 13 and 14 display for sample high scoring (i.e., low P3D) hits from the Selectome 

dataset. Figure 13 shows Selectome hits with significantly clustered adaptation (P3D < 0.05) that 

occurred in buried protein regions (Pasa < 0.05). In all sample structures, the mutations are 

relatively close together in comparison with the overall size of the protein chain. Also, the 

substituted sites are relatively buried and occur at non-exposed sites. Figure 14 shows Selectome 

hits with significantly clustered adaptation (P3D < 0.05) that occurred in exposed protein regions 

(Pasa > 0.95). In these structures, the substituted sites are also clustered closely together relative 

to the overall protein chain. The mutated sites are at highly surface accessible and exposed sites. 

Thus, both the P3D and Pasa metrics can be said to be an accurate representation of the mutational 

patterns they are attempting to capture. 

 

3.2.5 Function-enrichment analysis of top-scoring Selectome candidates 

Lists containing Ensembl gene ids were used to perform functional enrichment analysis 

using the David functional annotation web tool (Cunningham et al., 2015; Huang, Sherman, & 

Lempecki, 2009). Different gene id lists were prepared according to significant hits according 

the various criteria the Adaptation3D assesses (i.e., clustered mutation, clustered mutation in 

buried residues, clustered mutation in exposed residues, and exposed/surface mutations). The 

background list used with all four of these foreground lists contained the gene ids from all 

protein phylogenies in the Selectome Euteleostomi taxonomic cluster. Table 6 displays 

significant (Benjamini P-value < 0.05) enriched functions for lineages with clustered adaptation 

(FDR corrected P3D < 0.05). Enriched functions include various nucleotide binding related 

keywords, ATP-binding, and Zinc finger type DNA-binding. 
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Table 6: Enriched functions for proteins with mutations that clustered together (FDR 

corrected P3D < 0.05). 

 

Category Term Count P-Value Benjamini P-

Value 

Swiss-Prot Nucleotide-binding 287 7.9E-27 4.8E-24 

Swiss-Prot atp-binding 235 1.1E-21 3.3E-19 

GO Terms purine ribonucleotide binding 312 3.1E-19 3.6E-16 

GO Terms purine nucleotide binding 321 2.9E-18 1.6E-15 

INTERPRO Serine/threonine protein kinase-

related 

92 6.9E-16 1.2E-12 

GO Terms adenyl ribonucleotide binding 260 2.5E-15 7.3E-13 

GO Terms ATP binding 258 5.2E-15 1.2E-12 

GO Terms adenyl nucleotide binding 269 1.8E-14 3.0E-12 

INTERPRO Protein kinase, core 104 8.0E-14 5.0E-11 

GO Terms Protein kinase, ATP binding site 99 9.7E-14 4.5E-11 

INTERPRO Zinc finger, C2H2-

type/integrase, DNA binding 

63 2.6E-10 9.5E-8 

 

Table 7 displays significant enriched functions for lineages with clustered adaptation (FDR 

corrected P3D < 0.05) in buried regions of the protein (Pasa < 0.05). Enriched functions include 

protein kinase related keywords and nucleotide binding keywords. 
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Table 7: Enriched functions for proteins with mutations that clustered together (FDR 

corrected P3D < 0.05) and were significantly buried (Pasa < 0.05). 

 

Category Term Count P-Value Benjamini P-

Value 

Swiss-Prot nucleotide-binding 59 9.2E-8 2.7E-5 

Swiss-Prot atp-binding 48 2.7E-6 4.0E-4 

GO Terms purine nucleotide binding 63 1.8E-5 3.9E-3 

GO Terms purine ribonucleotide binding 61 1.6E-5 7.0E-3 

GO Terms ribonucleotide binding 61 1.6E-5 7.0E-3 

GO Terms adenyl nucleotide binding 52 2.4E-4 1.3E-2 

Swiss-Prot Serine/threonine-protein kinase 20 1.4E-4 1.4E-2 

GO Terms ATP binding 50 2.0E-4 1.4E-2 

GO Terms adenyl ribonucleotide binding 50 2.3E-4 1.4E-2 

GO Terms nucleoside binding 53 1.9E-4 1.6E-2 

GO Terms purine nucleoside binding 53 1.6E-4 1.7E-2 

 

Table 8 displays significant enriched functions for lineages with clustered adaptation in exposed 

regions of the protein (FDR corrected P3D < 0.05 and Pasa > 0.95). Enriched functions include 

nucleotide-binding, and metal-binding. 
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Table 8: Enriched functions for proteins with mutations that clustered together (FDR 

corrected P3D < 0.05) and were significantly exposed (Pasa > 0.95). 

 

Category Term Count P-Value Benjamini P-

Value 

Swiss-Prot Nucleotide-binding 52 3.7E-8 1.1E-5 

Swiss-Prot atp-binding 40 1.1E-5 1.6E-3 

Swiss-Prot metal-binding 57 9.4E-5 9.0E-3 

GO Terms ribonucleotide binding 56 2.4E-5 9.8E-3 

GO Terms Purine nucleotide binding 57 4.7E-5 9.8E-3 

GO Terms purine ribonucleotide binding 56 2.4E-5 9.8E-3 

GO Terms nucleotide binding 62 1.4E-4 2.0E-2 

GO Terms purine nucleoside binding 48 3.2E-4 2.2E-2 

GO Terms adenyl ribonucleotide binding 46 2.8E-4 2.3E-2 

GO Terms ATP binding 46 2.5E-4 2.6E-2 

GO Terms adenyl nucleotide binding 47 5.1E-4 2.6E-2 

Uniprot zinc finger region:C2H2-type 1 15 1.3E-4 4.9E-2 

  

Tables 6, 7, and 8 display statistically enriched biological processes and functions for significant 

mutation clusters compared to a background of all the Selectome hits. These function enrichment 

tables were produced using the DAVID analysis tool (Huang, Sherman, & Lempecki, 2009). 

Table 7 records enriched functions for mutation clusters that occurred in buried regions of the 

protein, while Table 8 records enriched functions for mutation clusters that occurred in exposed 

regions of the protein. Many of the individual keywords are similar to one another, but keywords 

pertaining to nucleotide binding and serine/threonine protein kinases come up as being 

statistically enriched in the foreground dataset. It is possible that nucleotide binding proteins 

have had to radiate and diversify in function more than most other classes of proteins. Studies 

have shown that the landscape of transcription factor binding specificity is extremely complex, 
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with each factor typically displaying their own unique binding preferences (Badis et al., 2009; 

Luscombe, & Thornton, 2002). Rapid diversification has led to a high degree of regulatory 

complexity through high specificity in DNA subsequence binding preference.  

 The serine/threonine kinases are another class of proteins that have likely undergone 

statistically significant clustered adaptation over evolutionary time compared to other protein 

classes. For example, the Mitogen-activated protein (MAP) kinases JNK and p38 have been 

shown to have duplicated from an ancient hyperosmolarity pathway protein and developed their 

own substrate specificity (Caffrey, O’Neill, & Shields, 1999). In another comparative genetics 

study, kinases of similar function between human and fly, which are lacking in worms, suggests 

that these kinase families duplicated and acquired their own specific functions following the 

divergence between nematodes and other metazoans (Manning, Plowman, Hunter, & 

Sudarsanam, 2002). Thus, kinases have duplicated and diversified to allow for more varied and 

more complex types and cell signaling. Therefore, the enrichment of DNA-binding related and 

kinase related keywords in the Selectome clustered mutation dataset as determined by DAVID 

does have precedent in the data and metadata of the literature. Diversification of function of 

nucleotide binding and kinase protein classes through historical duplication and 

neofunctionalization have led to more complex phenotypes through highly specific gene 

regulation and cell signaling. 

 Table 9 displays significant enriched functions for lineages with mutations in buried 

regions of the protein (Pasa < 0.05). Benjamini p-values are also included for keywords pertaining 

to highly polymorphic proteins (i.e., polymorphism, sequence variant). Enriched functions 

include nucleotide binding, ATP binding, and immunoglobulin function. 
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Table 9: Enriched functions for proteins with mutations that were significantly buried (Pasa 

< 0.05). 

 

Category Term Count P-Value Benjamini P-

Value 

GO Terms purine nucleotide binding 519 2.9E-9 5.0E-6 

GO Terms ribonucleotide binding 495 6.9E-6 6.1E-6 

GO Terms Purine nucleoside binding 444 1.6E-8 7.1E-6 

GO Terms ATP binding 416 2.5E-8 8.6E-6 

SMART IGc2 54 5.5E-7 2.3E-4 

Swiss-Prot disulfide bond 448 1.4E-6 2.7E-4 

Swiss-Prot nucleotide-binding 447 3.7E-7 2.8E-4 

Swiss-Prot polymorphism 2425 1.2E-6 3.0E-4 

INTERPRO Leucine-rich repeat 58 2.1E-7 6.4E-4 

Uniprot sequence variant 2506 2.8E-6 3.9E-3 

Swiss-Prot signal 616 2.3E-4 1.7E-2 

Swiss-Prot mitochondrion 233 3.3E-4 2.3E-2 

 

 Table 10 displays significant enriched functions for lineages with mutations in exposed 

regions of the protein (Pasa > 0.95). Benjamini p-values are also included for keywords pertaining 

to highly polymorphic proteins (i.e., polymorphism, sequence variant). Enriched functions 

include nucleotide binding and immunoglobulin function. 
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Table 10: Enriched functions for proteins with mutations that were significantly exposed 

(Pasa > 0.95). 

 

Category Term Count P-Value Benjamini P-

Value 

Swiss-Prot nucleotide-binding 596 1.7E-13 1.5E-10 

Uniprot sequence variant 3400 3.3E-13 2.9E-9 

Swiss-Prot polymorphism 3273 2.3E-11 6.6E-9 

GO Terms ribonucleotide binding 656 5.1E-9 2.1E-6 

GO Terms ATP binding 548 3.2E-8 1.1E-5 

Swiss-Prot disease mutation 486 5.5E-7 6.7E-5 

Swiss-Prot receptor 307 3.6E-6 3.9E-4 

Swiss-Prot oxidoreductase 191 1.2E-5 1.0E-3 

Swiss-Prot ank repeat 96 2.3E-5 1.7E-3 

Swiss-Prot cell membrane 459 4.7E-5 3.1E-3 

Swiss-Prot Immunoglobulin domain 110 9.2E-5 5.6E-3 

GO Terms plasma membrane 883 1.1E-5 8.9E-3 

 

Tables 9 and 10 display statistically enriched biological keywords for mutation groups that were 

either significantly buried or significantly exposed, respectively. These tables show keywords for 

mutation results that did not necessarily cluster tightly together (i.e., significant or non-

significant P3D). Overall, the biological process keywords are similar to those found in Tables 6, 

7, and 8. However, two keywords that appear in Tables 9 and 10 that are absent in Tables 6, 7, 

and 8 are “polymorphism” (Swiss-Prot keyword), and “sequence variant” (Uniprot keyword). 

These terms refer to proteins that are hypervariable and tend to mutate rapidly with little to no 

deleterious effects on function or fitness, and tend to play a role in antibody evasion in antigenic 

proteins (Johnsson et al., 1998; Lannergard et al., 2011). 
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3.2.6 Analysis of selected lineages: inferred historical protein adaptations in Eutheria and 

Amniota 

 The Adaptation3D algorithm captures mutation events that occur across specific 

historical lineages. This made it possible to determine the specific taxonomic cluster that the 

ancestral mutations occurred in according to the Selectome trees and the NCBI taxonomy 

database (Sayers et al., 2009). This facet of the method opens up another type of analysis that we 

can perform on the data. It is possible to look at a specific historical lineage and assess the 

significant protein modifications that have occurred in that lineage. Taxonomic clusters can be 

categorized by notable phenotypic qualities of the species belonging to that clade. This analysis 

can be performed to see if there are any significant protein modifications that could correlate 

with a phenotypic shift we see at that point in the evolutionary tree. 

 Two sample lineages were selected to see if we can find correlation between protein 

modification and phenotype in the data. These two lineages selected are represented by the 

taxonomic keywords Amniota and Eutheria. 

 Species belonging to the Amniota are characterized by their behavior and ability to lay 

eggs on land or retain the fertilized egg inside the mother (Benton, 1997; Benton, & Donoghue, 

2006). Adaptations that allow for eggs to be laid on land include several additional membranes 

surrounding the egg. Specifically, reptiles, birds, and mammals comprise the Amniota clade, 

whereas fish and amphibians are non-amniotes (anamniotes) who lay their eggs in water 

(Colbert, & Morales, 2001). Another large phenotypic shift in amniotes compared to anamniotes 

is the change in environment from aquatic to terrestrial. 
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The Selectome data was also used to find clustered adaptation that occurred in specific 

taxonomic lineages. Table 11 lists the top 20 ranked clustered mutation hits that occurred in the 

Amniota lineage. 
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Table 11: Top 20 Selectome hits for proteins with mutations that clustered together (FDR corrected P3D < 0.05) and occurred 

in the Amniota lineage. 

 

Protein Ancestral 

Clade 

Derived 

Clade 

PDB ID # of 

mutations 

Pasa FDR 

Pasa 

P3D FDR P3D 

GALNT13 Amniota Amniota 2D7I 8 7.57E-1 1.0 2.57E-51 5.34E-48 

C1orf216 Tetrapoda Amniota 4QPL 9 8.98E-1 1.0 8.07E-30 8.81E-27 

NWD1 Sarcopterygii Amniota 2YMU 85 6.27E-1 1.0 8.63E-19 5.89E-16 

PDIA5 Euteleostomi Amniota 3APO 42 2.94E-1 1.0 4.58E-19 3.19E-16 

UNC5C Euteleostomi Amniota 4V2A 21 6.47E-1 1.0 3.07E-17 1.94E-14 

BRIP1 Tetrapoda Amniota 2VSF 18 7.27E-1 1.0 6.08E-10 2.39E-7 

WFIKKN1 Sarcopterygii Amniota 1BIK 18 6.37E-2 1.0 2.12E-9 7.89E-7 

ZNF507 Sarcopterygii Amniota 2I13 10 4.05E-1 1.0 5.10E-8 1.65E-5 

NAP1L4 Sarcopterygii Amniota 3HFD 21 9.29E-1 1.0 3.33E-7 9.51E-5 

KCNQ3 Amniota Amniota 3LUT 4 9.96E-1 1.0 4.87E-7 1.34E-4 

CACNA1C Tetrapoda Amniota 4DXW 8 8.52E-1 1.0 8.38E-7 2.24E-4 

PPP1R37 Euteleostomi Amniota 2BNH 17 8.40E-1 1.0 1.22E-6 3.15E-4 

MRPS10 Tetrapoda Amniota 3J6V 20 9.47E-1 1.0 2.44E-6 5.88E-4 

RHOU Euteleostomi Amniota 2J0V 22 6.31E-1 1.0 3.30E-6 7.74E-4 

NFKB1 Sarcopterygii Amniota 1NFI 24 8.70E-1 1.0 4.13E-6 9.43E-4 

UBE2Z Tetrapoda Amniota 2GRN 4 3.62E-1 1.0 9.98E-6 2.10E-3 

LRRC30 Euteleostomi Amniota 4MN8 19 5.58E-1 1.0 2.18E-5 4.18E-3 

GALNT13 Amniota Amniota 2FFU 8 5.60E-1 1.0 2.80E-5 5.23E-3 

FAM110A Sarcopterygii Amniota 4UQW 5 7.78E-1 1.0 3.79E-5 6.74E-3 

ADAMTSL1 Tetrapoda Amniota 3B43 44 4.36E-1 1.0 4.28E-5 7.54E-3 
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 The Adaptation3D results of the Amniota subset of the Selectome data can be parsed 

through to see if any of these adaptation predictions line up with the changes in phenotype 

between amniotes and anamniotes. In Table 11, mutation in the UNC5C protein phylogeny has 

come up as significantly clustered in the Amniota lineage. UNC5C is a member of a family of 

secreted proteins (netrins) that guide axon extension and migration during development 

(Leonardo et al., 1997). Studies have found that the development of the diaphragm during 

embryonic development differentiates between the amniote (specifically mammals and reptiles) 

and anamniote split (Hirasawa & Kuratani, 2013). The phrenic nerve, which innervates the 

diaphragm, is guided in part by the UNC5C gene (Burgess, Jucius, & Ackerman, 2006). This 

phenotypic transition could have been brought about in part by the historical modification of a 

protein in the UNC5C family.  

 Species belonging to the Eutheria include placental mammals with several skeletal 

morphological features (including the absence of epipubic bones) that differentiate them from 

noneutherians (Reilly & White, 2003; Rook & Hunter, 2014). Eutheria has also often been used 

to refer to all placental mammals, differentiating them from the metatheria (marsupials) and 

prototheria (monotremes) (Luo, Yuan, Meng, & Ji, 2011).  

Table 12 lists the top 20 ranked clustered mutation hits that occurred in the Eutheria 

lineage. 
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Table 12: Top 20 Selectome hits for proteins with mutations that clustered together (FDR corrected P3D < 0.05) and occurred 

in the Eutheria lineage. 

 

Protein Ancestral 

Clade 

Derived Clade PDB ID # of 

mutations 

Pasa FDR Pasa P3d FDR P3d 

SLITRK1 Theria Eutheria 4LXR 28 8.32E-2 1.0 5.07E-48 9.76E-45 

BLVRB Eutheria Eutheria 1HDO 14 3.62E-1 1.0 4.31E-45 7.64E-42 

MZF1 Theria Eutheria 2I13 35 5.75E-1 1.0 2.97E-33 3.71E-30 

NAV3 Theria Eutheria 2YRN 7 2.09E-1 1.0 3.54E-33 4.39E-30 

UBE2Z Theria Eutheria 2GRN 17 8.76E-1 1.0 7.34E-31 8.34E-28 

RHOU Theria Eutheria 1KZ7 15 2.47E-1 1.0 2.29E-29 2.46E-26 

ZNF507 Theria Eutheria 2I13 9 7.82E-1 1.0 1.66E-28 1.70E-25 

CSNK1G3 Amniota Eutheria 2IZR 6 4.55E-1 1.0 6.11E-17 3.81E-14 

AP4S1 Eutheria Eutheria 2VGL 8 1.29E-1 1.0 8.30E-17 5.13E-14 

HERC4 Theria Eutheria 1A12 9 3.35E-2 1.0 2.21E-16 1.33E-13 

ZNF770 Theria Eutheria 2I13 26 8.74E-1 1.0 2.53E-16 1.52E-13 

MCHR1 Theria Eutheria 4EIY 20 2.35E-1 1.0 3.26E-16 1.96E-13 

UBE2Z Eutheria Eutheria 2GRN 5 3.39E-1 1.0 2.53E-15 1.44E-12 

ZNF689 Eutheria Eutheria 2I13 23 4.55E-1 1.0 2.02E-14 1.10E-11 

RHOU Theria Eutheria 2J0V 15 1.77E-1 1.0 2.37E-13 1.20E-10 

ABCC8 Theria Eutheria 3QF4 33 9.31E-1 1.0 6.08E-11 2.63E-8 

EFTUD1 Theria Eutheria 1U2R 17 8.18E-1 1.0 2.27E-9 8.41E-7 

CSNK1G3 Amniota Eutheria 4HGL 5 3.28E-1 1.0 6.51E-9 2.34E-6 

ASMTL Theria Eutheria 2P5X 16 4.05E-1 1.0 8.89E-9 3.15E-6 

BRSK1 Amniota Eutheria 1ZMU 19 9.11E-1 1.0 2.82E-8 9.42E-6 
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 Functional annotation enrichment analysis was also performed to determine if there are 

characteristic phenotype or functional shifts that have occurred at specific points in evolutionary 

history. Table 13 lists enriched functions from clustered adaptation that occurred in the Amniota 

lineage. Enriched functions include immunoglobulin related keywords. Table 14 lists biological 

phenotypes that are represented by clustered adaptation that occurred in the Amniota lineage, 

even though they may not be statistically enriched in the results. Biological processes that are 

represented by clustered adaptation in proteins in the Amniota lineage include terms pertaining 

to keratinocyte differentiation, brain development, and body axis determination.  

Table 13: Enriched functions for proteins with mutations that were significantly clustered 

together (P3D < 0.05) and occurred in the Amniota lineage. 

 

Category Term Count P-Value Benjamini P-

Value 

INTERPRO Immunoglobulin I-set 17 9.9E-6 8.1E-3 

KEGG ErbB signaling pathway 9 1.1E-4 1.6E-2 

INTERPRO Immunoglobulin subtype 2 19 6.1E-5 1.7E-2 

KEGG Pathways in cancer 19 4.2E-4 3.1E-2 

INTERPRO Immunoglobulin-like 23 2.7E-4 4.3E-2 

Swiss-Prot leucine-rich repeat 24 1.2E-4 4.8E-2 
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Table 14: Biological processes/phenotypes that are represented by clustered mutation (P3D 

< 0.05) and occurred specifically in the Amniota lineage. Biological processes are not 

necessarily statistically enriched.  

 

Category Term Count P-Value Benjamini P-

Value 

BIOCARTA Keratinocyte differentiation 6 6.3E-3 5.6E-1 

GO Terms cell cortex part 5 7.3E-2 9.2E-1 

BIOCARTA TNF/Stress Related Signaling 4 8.3E-2 9.8E-1 

GO Terms regulation of protein polymerization 4 5.1E-2 1.0E0 

GO Terms forebrain development 8 6.4E-2 1.0E0 

GO Terms anterior/posterior pattern formation 6 3.8E-2 1.0E0 

GO Terms positive regulation of cell 

differentiation 

10 6.7E-2 1.0E0 

GO Terms ectoderm development 9 3.7E-2 1.0E0 

GO Terms cell morphgenesis involved in neuron 

differentiation 

12 3.5E-2 1.0E0 

GO Terms axonogenesis 12 1.6E-2 1.0E0 

 

 If we look at the results in Table 14, we can see that there are several terms that have 

come up pertaining to ectoderm differentiation, neuron formation, and body patterning and 

morphogenesis. Specific genes that contribute to these keywords include secreted frizzled related 

protein 1 (SFRP1). SFRP1 has been found to be present in mesenchymal stem cells from human 

amniotic fluid and is part of the pathway to contribute to neurogenic cell lineages (Savickiene et 

al., 2015). Again, this function may have been acquired in part through the clustered 

modification that occurred in the historical Amniota lineage.  

Another interesting term that appears in Table 14 is keratinocyte differentiation. One of 

the proteins that was found to have clustered adaptation is the epidermal growth factor (beta-
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urogastrone). Epidermal growth factor has been found to be necessary for the promotion of the 

extraembryonic membranes in amniote embryonic development (Albergotti, Hamlin, McCoy, & 

Guillette, 2009; Cross et al., 2003; Jojovic, Wolf, & Mangold, 1998). It is possible that the role 

of epidermal growth factor for extraembryonic tissue development came about through a 

historical adaptation in the protein phylogeny. 

 Table 15 lists enriched functions from clustered adaptation that occurred in the Eutheria 

lineage. Enriched functions include immunoglobulin related keywords. Table 16 lists biological 

phenotypes that are represented by clustered adaptation that occurred in the Eutheria lineage, 

even though they may not be statistically enriched in the results. Biological processes that are 

represented by clustered adaptation in proteins in the Eutheria lineage include terms largely 

pertaining to organ development. 

Table 15: Enriched functions for proteins with mutations that were significantly clustered 

together (P3D < 0.05) and occurred in the Eutheria lineage. 

 

Category Term Count P-Value Benjamini P-

Value 

INTERPRO Immunoglobulin subtype 2 26 1.1E-6 1.1E-3 

SMART IGc2 26 1.4E-5 3.1E-3 

INTERPRO Immunoglobulin 19 3.1E-5 1.6E-2 

GO Terms plasma membrane 169 8.4E-5 3.3E-2 

INTERPRO Leucine-rich repeat 24 1.6E-4 3.4E-2 

INTERPRO Immunoglobulin I-set 18 1.3E-4 3.4E-2 

INTERPRO Leucine-rich repeat, typical subtype 15 1.3E-4 4.4E-2 
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Table 16: Biological processes/phenotypes that are represented by clustered mutation (P3D 

< 0.05) and occurred specifically in the Eutheria lineage. Biological processes are not 

necessarily statistically enriched.  

 

Category Term Count P-Value Benjamini P-

Value 

GO Terms urogenital system development 10 1.1E-2 6.6E-1 

GO Terms activation of immune response 9 3.4E-2 8.6E-1 

GO Terms kidney development 8 4.0E-2 8.8E-1 

GO Terms positive regulation of muscle cell 

differentiation 

4 6.0E-2 9.3E-1 

GO Terms hindbrain development 5 5.8E-2 9.4E-1 

GO Terms tube development 13 6.6E-2 9.4E-1 

GO Terms feeding behaviour 7 6.4E-2 9.4E-1 

GO Terms heart development 12 7.9E-2 9.5E-1 

 

 Table 16 displays several keywords that pertain to biological processes or phenotypic 

characteristics. Although none of these terms are statistically overrepresented, some of the 

individual genes that contribute to these keywords may be of relevance to the development of 

key phenotypes in the Eutheria lineage. Some of the proteins that contribute to “urogenital 

system development” and “kidney development” include integrin-linked kinase, inversin, and the 

potassium inwardly-rectifying channel protein. Mutations in these genes leads to 

nephronophthisis, left-right axis determination abnormalities of renal and urinary system 

development, renal agenesis, and uterine dysfunction (Lange, et al., 2009; McCloskey et al., 

2014; Otto et al., 2003). This demonstrates their importance in the development of the 

mammalian urogenital system. It is possible that gene duplication and diversification through 

clustered adaptation of these developmentally important genes has led to differential 

development of the urogenital system between placentals (which possess different sinuses for 
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urinary and reproductive functions), and monotremes (which possess only one sinus for both 

functions) (Kobayashi & Behringer, 2003). 

3.2.7 Analysis of clustered mutation in the Selectome database: A Summary 

Applying the Adaptation3D algorithm to a large dataset like Selectome can provide 

insights into the nature of how clustered mutation can lead to changes in organismal phenotype 

and biological processes. The Adaptation3D algorithm can tell us not only where in the protein 

clustered mutation has occurred, but, with information from the NCBI taxonomy database, it is 

also possible to dissect what taxonomic lineage and time period the adaptation event has 

occurred (Sayers et al., 2009). Since the algorithm has been used to make many predictions 

about adaptation, it is interesting to see if any of these predictions can be found to correlate with 

the scientific literature on protein functional modification.  

It is important for the Adaptation3D algorithm to not highlight hypervariable regions of 

proteins, because that would indicate that the algorithm highlights mutations arising from relaxed 

purifying selection as opposed to adaptive mutation. Predictions from Adaptation3D on 

hypervariable proteins could thus be considered false positive predictions. The use of spatially 

clustered mutation to determine adaptation on its own is enough to weed out hypervariable 

proteins (as indicated by the lack of “polymorphism” and “sequence variant” as enriched 

identifiers in Table 6). However, combining multiple statistics (such as distance and solvent 

accessibility) may prove even more useful to eliminate false positives arising from protein region 

hyper variability. 

 From the analysis of the Selectome dataset, we can see that the Adaptation3D algorithm 

makes interesting predictions about protein adaptation that have a precedent in the scientific 

literature. As such, the algorithm may eventually be a useful tool in data-driven exploration of 
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historical protein evolutionary events. The overall results, and the lack of significant biological 

process keywords from the DAVID enrichment analysis, seem to indicate that only few genes 

involved in a biological process need to change to cause great effects in phenotype. Thus, it does 

not appear that statistical overrepresentation of mutations pertaining to a certain biological 

process is a necessity for phenotypic change, but rather that marked changes in one or a few key 

proteins can be enough to cause large phenotypic shifts. 

 

3.3 Targeted identification of clustered mutation of transcription factors 

 

3.3.1 General structural and function-enrichment analysis 

 Both the individual families showing the strongest extent of mutational clustering and the 

functions most enriched among all predicted adaptations, pointed to adaptation of DNA-binding 

and transcription factor families (Tables 3, 6, 7, and 8). This is interesting from the perspective 

of detecting phenotypic adaptation, because even slight changes in the DNA-binding specificity 

of a transcription factor could have drastic phenotypic effects by altering its downstream 

regulatory landscape (Lynch, & Wagner, 2008; Mukherjee & Burglin, 2007; Wang, & Zhang, 

2007). In this section, Adaptation3D has therefore been focused toward protein families 

classified as DNA-binding transcription factors from the Selectome database. Transcription 

factor phylogenies were selected out from Selectome by finding all the phylogenies that 

BLASTed to a PDB structure entries within the “Biological Interaction database for Protein-

nucleic Acid” (BIPA) database (Lee & Blundell, 2009; Worth et al., 2007). 

Predicted cases of branch-specific clustered adaptation (lineages with a FDR corrected 

P3D < 0.05) for DNA-binding transcription factor families were tabulated. The top 20 results of 
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clustered mutation in transcription factor phylogenies are listed in Table 17. Also reported is the 

degree of mutation enrichment within the DNA-binding site (R, see Equation 1), which is 

described in detail later. Interestingly, the overwhelming majority of sequences, including the 

pluripotency regulator Prdm14 and the Hic1 (Hypermethylated in Cancer 1), are zinc-finger 

DNA-binding transcription factors. 
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Table 17: Top 20 hits of clustered adaptation (FDR corrected P3D < 0.05) in DNA-binding domains of transcription factors. 

 

Protein Ancestral Clade Derived Clade PDB 

ID 

# of 

mutations 

Pasa FDR 

Pasa 

P3d FDR P3d R 

Prdm14 Percomorpha Tetraodontidae 1MEY 15 2.67E-1 1.0 7.36E-130 5.48E-126 7.04E-1 

Znf576 Clupeocephala Holacanthoptherygii 2I13 22 9.66E-1 1.0 8.60E-85 3.47E-81 2.64E-1 

CU 655961.6 Danio Danio 2I13 38 3.92E-1 1.0 1.16E-56 2.81E-53 2.49 

Znf507 Theria Metatheria 2I13 16 7.37E-1 1.0 6.84E-45 1.21E-41 2.34E-1 

Hic1 Euteleostomi Clupeocephala 2I13 13 9.37E-1 1.0 7.19E-42 1.14E-38 2.49E-1 

Znf770 Amniota Neognathae 2I13 13 4.50E-1 1.0 2.24E-40 3.38E-37 8.23E-1 

Znf507 Amniota Mammalia 2I13 8 9.10E-1 1.0 4.41E-38 6.25E-35 2.25E-1 

Znf775 Boreoeutheria Laurasiatheria 2I13 8 8.07E-1 1.0 1.49E-34 1.94E-31 7.77E-1 

Znf507 Clupeocephala Tetraodontidae 2I13 19 7.34E-1 1.0 6.60E-34 8.45E-31 3.25E-1 

Mzf1 Theria Eutheria 2I13 35 5.75E-1 1.0 2.97E-33 3.72E-30 5.65 

Znf576 Holacanthopterygii Holacanthopterygii 2I13 14 9.12E-1 1.0 4.42E-29 4.66E-26 7.60E-2 

Znf507 Theria Eutheria 2I13 9 7.82E-1 1.0 1.66E-28 1.70E-25 1.95E-1 

Znf507 Euteleostomi Clupeocephala 2I13 26 4.84E-1 1.0 3.10E-26 2.94E-23 2.62E-1 

Klf14 Euarchontoglires Murinae 2I13 16 8.03E-1 1.0 5.37E-25 4.92E-22 2.92E-1 

ENSMOD 

P00000029716 

Didelphimorphia Didelphimorphia 2I13 14 6.45E-1 1.0 5.87E-24 5.13E-21 6.72 

Znf576 Holacanthopterygii Percomorpha 2I13 88 6.94E-1 1.0 9.21E-24 7.96E-21 3.28E-1 

Znf251 Danio Danio 2I13 15 6.86E-1 1.0 1.06E-23 9.13E-21 6.07 

Znf775 Euarchontoglires Murinae 2I13 31 1.18E-1 1.0 1.77E-19 1.27E-16 1.36 

Klf14 Euarchontoglires Murinae 1TF6 12 8.61E-1 1.0 4.52E-18 2.96E-15 2.24E-1 

Znf770 Theria Eutheria 2I13 26 8.74E-1 1.0 2.53E-16 1.52E-13 1.48 
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The overrepresentation of zinc fingers and even particular zinc finger proteins in Table 

17 is interesting. The protein encoded by ZNF507 for instance, a gene implicated in 

neurodevelopmental disorders (Talkowski et al., 2012), is listed five times in this table alone, 

which indicates significant spatial clustering of branch-specific mutations in five different 

lineages. Interestingly, this detected phenomenon is highly consistent with previous literature, 

which has identified the ZNF507 protein (Zfp507) as having undergone a complex history of 

divergence in some evolutionary lineages and strong conservation in others due to frequent 

deletions and missense mutations involving a selective set of positions (Liu et al., 2014). Liu et 

al. (2014) also noted that most of the differences in ZNF507 between species involve in-phase 

insertion or deletions of ZNF motifs, which may in this case be the underlying mechanism for 

generating the apparent clustered mutation. Figure 15 includes a visual depiction of clustered 

mutation detected in a ZNF507 lineage as well as two other zinc-finger proteins from Table 17. 

Each example illustrates highly localized patches of mutation, indicating positive selection on 

distinct structural regions. 
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Figure 15: Structural visualization of identified clustered mutation (P3D < 0.05) in DNA-

binding proteins. A: Surface and cartoon representation of mutations on a protein of 

unknown function in the Danio lineage, (PDB key 2I13); B: Surface and cartoon 

representation of mutations on the ZNF507 protein in the Tetraodontidae lineage, (PDB 

key 2I13); C: Surface and cartoon representation of mutations on the ZNF251 protein in 

the Danio lineage, (PDB key 2I13). Substituted sites in the lineage of interest are 

highlighted in orange. 

 

Table 18 lists the top 20 results of clustered adaptation occurring in buried regions of the 

protein (lineages with a P3D < 0.05 and Pasa < 0.05) for DNA-binding phylogenies. These 
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predictions represent possible positive selection on core regions of protein structures that may 

affect protein motion, stability, and folding patterns. 
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Table 18: Top 20 hits of clustered, structurally internal adaptations (P3D < 0.05 and Pasa < 0.05) in DNA-binding transcription 

factors. 

 

Protein Ancestral Clade Derived Clade PDB 

ID 

# of 

mutations 

Pasa FDR Pasa P3D FDR 

P3d 

R 

GM10323 Mus Mus 2I13 16 2.05E-2 1.0 4.10E-6 9.37E-4 1.03 

NFKB2 Amniota Theria 1SVC 33 4.37E-2 1.0 3.25E-5 5.96E-3 0.00 

ENSACAP 

00000010745 

Danio Danio 1TF6 5 3.38E-2 1.0 7.04E-4 5.61E-2 2.35E-1 

zgc@173816 Danio Danio 2I13 36 3.69E-2 1.0 7.41E-4 5.80E-2 2.82 

ENSMODP 

00000028376 

Didelphimorphia Didelphimorphia 2I13 4 2.50E-2 1.0 1.00E-3 5.98E-2 4.13E2 

ZFP64 Euteleostomi Eutheria 1TF6 66 3.42E-2 1.0 1.32E-3 7.30E-2 4.83E-1 

ENSACAP 

00000019475 

Polychrontinae Polychrotinae 2I13 12 4.32E-2 1.0 1.73E-3 8.88E-2 1.25E1 

Q5ZHS5 Theria Metatheria 2C6Y 2 1.3E-2 1.0 2.00E-3 8.94E-2 0.00 

NFKB2 Eutheria Afrotheria 1SVC 5 1.51E-3 1.0 4.83E-3 1.50E-1 0.00 

ZFP760 Mus Mus 2I13 18 8.07E-3 1.0 9.36E-3 2.06E-1 5.70 

ENSTNIP 

00000005721 

Taeniopygia Taeniopygia 2I13 5 1.50E-2 1.0 1.30E-2 2.37E-1 3.64 

FOXP1 Euteleostomi Sarcopterygii 2C6Y 3 2.90E-2 1.0 1.60E-2 2.60E-1 7.64E-1 

FOXN1 Euteleostomi Amniota 2C6Y 12 1.61E-2 1.0 2.29E-2 3.03E-1 1.53E-1 

ZFP275 Eutheria Euarchontoglires 1TF6 3 6.23E-3 1.0 2.30E-2 3.03E-1 0.00 

FOXJ2 Euteleostomi Amniota 2C6Y 17 4.04E-2 1.0 2.38E-2 3.09E-1 4.28E-1 

HMGB4 Eutheria Eutheria 2GZK 7 3.06E-2 1.0 2.59E-2 3.19E-1 9.94E-1 

ENSGACP 

00000022515 

Clupeocephala Holacanthopterygii 2C6Y 10 2.80E-2 1.0 2.80E-2 3.29E-1 6.58E-1 

NFKB2 Clupeocephala Percomorpha 1SVC 25 2.58E-3 1.0 3.55E-2 3.65E-1 0.00 

GM3604 Murinae Rattus 2I13 14 4.88E-2 1.0 3.98E-2 3.84E-1 6.43 

ZNF789 Theria Theria 2I13 13 4.38E-2 1.0 4.76E-2 4.14E-1 4.35 
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Interesting predictions in Table 18 include ancestral clustered mutation in the Foxp1 

transcription factor, which along with Foxp2 are widely implicated in vertebrate- or mammalian-

specific neuronal development, cognitive and language development. Another forkhead 

transcription factor, FoxN1 (also known as WHN) was predicted to have accumulated a set of 12 

highly clustered mutations along the branch from Euteleostomi to Amniota. FoxN1 is implicated 

in the development of the thymus and differentiation of keratinocytes and hair follicles (RefSeq 

Annotation, Apr 2013) (Mecklenburg, Tychsen, & Paus, 2005; Nakamura et al., 2008). 

Table 19 lists the top 20 results of clustered adaptation occurring in exposed regions of 

the protein (lineages with a P3D < 0.05 and Pasa > 0.95) for DNA-binding phylogenies. These 

predictions include potential positive selection on particular surface regions in transcription 

factors, which may affect transcription factor interactions with other protein cofactors or DNA 

targets. Again ZNF576 is detected as a top-scoring candidate. In addition, top scoring hits 

include ancestral lineages of homeobox A7 and homeobox containing 1 transcription factors. 

Interestingly, a clustered surface patch of mutations was detected for HOXA7, a transcription 

factor involved in keratinocyte differentiation. 
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Table 19: Top 20 hits of clustered adaptation the associated to exposed residues (P3D < 0.05 and Pasa > 0.95) in sequences that 

BLASTed to DNA-binding domain PDB structures. 

 

Protein Ancestral Clade Derived Clade PDB 

ID 

# of 

mutations 

Pasa FDR 

Pasa 

P3D FDR P3D R 

ZNF576 Clupeocephala Holacanthopterygii 2I13 22 9.66E-1 1.0 8.60E-85 3.47E-81 2.64E-1 

HOXA7 Amniota Testudines 1AHD 6 9.61E-1 1.0 1.73E-5 3.42E-3 0.00 

Q5ZJP8 Euteleostomi Sarcopterygii 2BGW 17 9.58E-1 1.0 8.34E-5 1.29E-2 2.46E-1 

HIC1 Tetrapoda Amniota 2I13 11 9.74E-1 1.0 3.14E-4 3.24E-2 3.01E-1 

ZNF576 Euarchontoglires Euarchontoglires 2I13 10 9.92E-1 1.0 4.33E-4 4.06E-2 5.00E-2 

ANKRD60 Amniota Sauria 1AWC 3 9.92E-1 1.0 8.65E-4 5.98E-2 0.00 

ZBTB2 Sarcopterygii Tetrapoda 1MEY 4 9.67E-1 1.0 8.83E-4 5.98E-2 0.00 

HOXA7 Euteleostomi Euteleostomi 1AHD 4 9.96E-1 1.0 1.54E-3 8.16E-2 0.00 

KLF14 Boreoeutheria Euarchontoglires 2I13 4 9.60E-1 1.0 1.98E-3 8.94E-2 2.60E-1 

PAX6 Amniota Testudines 6PAX 2 9.78E-1 1.0 2.00E-2 8.94E-2 1.22 

HOXA7 Glires Sciurognathi 1AHD 3 9.89E-1 1.0 1.87E-3 8.94E-2 0.00 

HMBOX1 Percomorpha Percomorpha 1IC8 3 9.75E-1 1.0 6.59E-3 1.77E-1 0.00 

OVOL3 Tetrapoda Amniota 2I13 15 9.83E-1 1.0 1.10E-2 2.20E-1 4.43E-1 

ANKRD60 Theria Eutheria 1AWC 3 9.95E-1 1.0 1.60E-2 2.60E-1 0.00 

MGMT Eukaryota Eukaryota 1YFH 5 9.92E-1 1.0 1.70E-2 2.67E-1 0.00 

MEF2B Theria Eutheria 1N6J 2 9.98E-1 1.0 3.00E-2 3.38E-1 0.00 

A4PET4 Simiiformes Catarrhini 2I13 3 9.97E-1 1.0 3.20E-2 3.49E-1 0.00 

URB1 Laurasiatheria Caniforma 2G8F 3 9.78E-1 1.0 3.33E-2 3.53E-1 0.00 

ARID4B Euteleostomi Percomorpha 1KQQ 4 9.66E-1 1.0 5.00E-2 4.21E-1 0.00 

ZNF687 Tetrapoda Amniota 2I13 3 9.84E-1 1.0 4.9E-2 4.18E-1 4.68E-1 
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Function enrichment analysis 

 

Lists containing Ensembl gene ids for the DNA-binding proteins were again used to 

perform functional enrichment analysis using the David functional annotation web tool 

(Cunningham et al., 2015). Different gene id lists were prepared according to significant hits 

according to the various Adaptation3D metrics (i.e., clustered mutation, clustered mutation in 

buried residues, clustered mutation in exposed residues, and exposed/surface mutations). The 

background list used with all four of these foreground lists contained the gene ids from all 

protein phylogenies in the Selectome Euteleostomi taxonomic cluster that BLASTed to DNA-

binding transcription factor PDB structures from the BIPA database (Camacho et al., 2008; Lee, 

& Blundell, 2009). Table 20 displays significant (Benjamini P-value < 0.05) enriched functions 

for DNA-binding protein phylogeny lineages with clustered adaptation (FDR corrected P3D < 

0.05). Enriched functions include keywords pertaining to zinc finger transcription factors. This 

suggests a non-random, recurring pattern of clustered mutation in the evolutionary history of 

zinc-fingers. 
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Table 20: Enriched functions for proteins with mutations that clustered together (FDR 

corrected P3D < 0.05) from DNA-binding phylogenies. 

 

Category Term Count P-Value Benjamini P-

Value 

INTERPRO Zinc finger, C2H2-type/integrase, 

DNA-binding 

50 2.8E-7 1.8E-5 

INTERPRO Zinc finger, C2H2-type 54 7.2E-7 2.3E-5 

INTERPRO Zinc finger, C2H2-like 54 7.2E-7 2.3E-5 

SMART ZnF C2H2 54 8.5E-6 1.7E-4 

GO Terms zinc ion binding 55 1.5E-5 4.9E-4 

GO Terms transition metal ion binding 55 2.2E-5 4.6E-4 

GO Terms cation binding 56 8.0E-6 5.1E-4 

GO Terms ion binding 56 8.0E-6 5.1E-4 

GO Terms metal ion binding 56 8.0E-6 5.1E-4 

 

 

No statistically significant functional enrichments were found for lineages with clustered 

mutations in buried regions of DNA-binding proteins (P3D < 0.05 and Pasa < 0.05) for DNA-

binding protein phylogenies.  

Table 21 displays enriched functions for lineages with clustered mutations in exposed regions of 

the protein (P3D < 0.05 and Pasa > 0.95) for DNA-binding protein phylogenies. Statistically 

enriched functions include keywords pertaining to zinc finger transcription factors. This indicates 

that zinc-fingers show a significant tendency for clustered mutation on exposed, surface regions. 
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Table 21: Enriched functions for proteins with mutations that clustered together (P3D < 

0.05) and were significantly exposed (Pasa > 0.95) from DNA-binding phylogenies. 

 

Category Term Count P-Value Benjamini P-

Value 

Uniprot zinc finger region: C2H2-type 2 32 5.5 E-5 8.0 E-3 

GO Terms transition metal ion binding 35 1.4 E-3 2.9 E-2 

GO Terms cation binding 36 5.1 E-4 3.1 E-2 

GO Terms ion binding 36 5.1 E-4 3.1 E-2 

GO Terms zinc ion binding 35 1.2 E-3 3.5 E-2 

Swiss-Prot metal-binding 35 2.3 E-3 5.5 E-2 

SMART ZnF C2H2 32 4.0 E-3 5.9 E-2 

Swiss-Prot zinc 35 1.9 E-3 8.9 E-2 

Swiss-Prot zinc-finger 33 8.1 E-3 1.3 E-1 

INTERPRO Zinc finger, C2H2-like 32 3.7 E-3 1.5 E-1 

 

 

3.3.2 Identification of clustered mutation in protein-DNA interfaces: candidates for positive 

selection on divergence of DNA-binding specificity 

In Section 3.3.1, the Adaptation3D algorithm was used to make predictions about 

spatially clustered adaptation on the trees and alignments pertaining to transcription factor 

phylogenies in the Selectome database. A subsequent analysis was performed to determine the 

specificity of substitution in known DNA-binding sites over the course of transcription factor 

molecular evolution.  

The BIPA database contains not only PDB structures that are involved in DNA-binding, 

but also tabulates the amino acid sites that participate within the protein-DNA binding interface 

(Lee, & Blundell, 2009; Worth et al., 2007). For a given lineage with mutations, a simple metric 

was therefore used to calculate the relative enrichment of mutations within DNA-binding site 
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compared to those outside the DNA-binding site as defined using the pre-computed information 

from the BIPA database. This was done ultimately to determine if it was possible to observe 

instances of highly specific mutation in DNA-binding interfaces. If so, this would indicate a 

tendency for diversification of protein-DNA specificity in transcription factors and thus a set of 

predicted historical adaptations with functional consequences. 

 Equation 1 demonstrates the calculation for mutation enrichment in DNA-binding 

interfaces. Again, this calculation is performed for the set of mutations calculated along all 

branches (lineages). Suppose a protein is of length N residues and has a binding site composed of 

NB residues, and has M total branch-specific mutations and MBS mutations that occur in binding 

site residues. We can calculate the binding site mutation enrichment R as: the proportion of 

binding site mutations divided by the proportion of non-binding site mutations (Equation 1):  

 

𝑅 =

𝑀BS

𝑁Bs

(𝑀 − 𝑀BS) + 𝑐
(𝑁 − 𝑁Bs)

 

Equation 1: Equation to calculate a ratio representing the degree of mutation specificity in 

the transcription factor binding site. MBs = number of substitutions occurring in the 

binding site, NBs = total number of residues in the binding site, M = total number of 

substitutions, N = total number of residues, C = pseudo-count of 0.5 (to avoid division by 0 

errors). 

Here, high values of R correspond to a high enrichment of mutations in the binding site. 

Figure 16 displays an X-Y plot of substitution specificity outside the DNA-binding site versus 

substitution specificity within the DNA-binding site for all transcription factor lineages. The 

results from Figure 16 appears to show a greater proportion of lineages have a higher degree of 

non-binding site substitution than binding site substitution. However, a subset of results exhibit 

binding-site substitution specificity. 
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Figure 16: Observed mutation enrichment within versus outside the DNA-binding site for 

all transcription factor lineages. The fraction of mutations outside of the DNA-binding site 

(y-axis) versus the fraction of mutations inside the DNA-binding site (x-axis) is depicted. 

Points are coloured according to representative PDB ID. Colors are shown for the top 

seven most abundant PDB families, while all others are grey. 

 

 

 Figure 17 displays a histogram of the log10 of the overall binding site specificity ratio R 

for all transcription factor lineages analyzed. Interestingly, the distribution of binding site 

specificity ratios appears to be somewhat bimodal, indicating a tendency toward biased 

substitution either within (log10 (R) > 0) or outside of DNA binding sites (log10 (R) < 0). 
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Figure 17: Distribution of observed mutation enrichment within DNA-binding sites. The 

plot is a histogram of the log10 of the overall binding site specificity ratio R for all 

transcription factor lineages from Selectome. 

 

Table 22 lists the top Adaptation3D predictions for transcription factors ranked by the 

ratio R value defined in Equation 1. Interestingly, the list is dominated by cases in which a 

transcription factor has accumulated only a few mutations within its DNA-binding site along a 

relatively short evolutionary branch. Many of these predictions also correspond to branches in 

which the ancestral and derived clades are identical, implying examples of lineage-specific gene 

duplication. This is a very interesting result since it suggests that the most extreme examples of 

positive selection for changes in DNA-binding sites occur in newly duplicated transcription 



91 
 

factor paralogs. Top scoring predictions include include a range of DNA-binding domain 

families including zinc-fingers, SMAD family, and forkhead box transcription factors. 
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Table 22: Top 20 hits of mutations that specifically occurred in known binding site residues in sequences that BLASTed to 

DNA-binding domain PDB structures. 

 

Protein Ancestral Clade Derived Clade PDB ID # of 

mutations 

Pasa FDR 

Pasa 

P3D FDR 

P3D 

R 

ZNF121 Euarchontoglires Euarchontoglires 2I13 10 1.19E-1 1.0 2.52E-1 7.61E-1 128.74 

ZFP60 Mus Mus 2I13 5 3.00E-1 1.0 7.13E-1 9.93E-1 74.82 

ENSECAP00000005030 Murinae Murinae 2I13 5 8.14E-1 1.0 1.18E-1 5.89E-1 68.42 

ZNF596 Xenartha Xenartha 2I13 5 3.46E-1 1.0 3.53E-1 8.43E-1 67.81 

ENSACAP00000019712 Metatheria Didelphimorphia 2I13 3 5.41E-1 1.0 7.65E-1 1.00 57.84 

ENSACAP00000021182 Polychrotinae Polychrotinae 2I13 3 6.83E-1 1.0 8.46E-1 1.00 52.77 

ZNF121 Boreoeutheria Boreoeutheria 2I13 4 1.02E-1 1.0 1.34E-1 6.16E-1 51.61 

ENSSHAP00000004029 Sarcophilus Sarcophilus 2I13 3 4.23E-1 1.0 3.52E-1 8.43E-1 48.97 

ZNF236 Laurasiatheria Cetartiodactyla 2I13 2 1.82E-1 1.0 5.61E-1 9.49E-1 46.79 

ZNF234 Xenopodinae Xenopodinae 2I13 5 2.53E-1 1.0 1.71E-2 2.68E-1 41.92 

ENSMODP00000028376 Didelphimorphia Didelphimorphia 2I13 4 2.50E-2 1.0 1.00E-3 5.98E-2 41.26 

ZNF596 Cingulata Cingulata 2I13 3 2.20E-1 1.0 1.24E-1 5.99E-1 40.72 

ENSVPAP00000006282 Boreoeutheria Hominidae 2I13 3 2.24E-1 1.0 2.65E-1 7.74E-1 40.50 

ZNF208 Pelodiscus Pelodiscus 2I13 8 5.03E-1 1.0 3.13E-1 8.14E-1 38.49 

ENSSHAP00000004029 Sarcophilus Sarcophilus 2I13 8 4.66E-1 1.0 6.00E-2 4.54E-1 38.04 

ENSSHAP00000021844 Metatheria Metatheria 2I13 8 9.03E-1 1.0 4.87E-1 9.18E-1 37.27 

ENSXETP00000044932 Tetrapoda Tetrapoda 2I13 2 2.90E-1 1.0 2.50E-2 3.14E-1 36.33 

ENSMODP00000013553 Didelphimorphia Didelphimorphia 2I13 2 3.02E-1 1.0 2.35E-1 7.45E-1 35.34 

ENSACAP00000019712 Polychrotinae Polychrotinae 2I13 11 1.35E-1 1.0 2.16E-1 7.25E-1 34.70 

ENSPSIP00000009740 Pelodiscus Pelodiscus 2I13 3 5.15E-1 1.0 5.58E-1 9.48E-1 33.78 
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 An analysis was performed to determine if binding-site specific change occurs more often 

in gene duplication lineages compared to speciation lineages. This was done by comparing the 

number of lineages that exhibited binding-site specific modification between two sets of 

lineages: paralogs and orthologs. Overall, 2494 lineages were used to make this assessment, 883 

of which occurred in gene duplication lineages and 1611 of which occurred in speciation 

lineages. 566 gene duplication lineages had more specific substitution inside the binding site 

versus outside (i.e., a binding site ratio > 1). 317 gene duplication lineages had more specific 

substitution outside the binding site than inside (i.e. binding site ratio < 1). 

463 speciation lineages exhibited binding site specific substitution, and 1148 speciation 

lineages exhibited non-binding site specific substitution.  

 A Fisher’s exact test was performed to determine if the difference between these ratios 

was statistically significant (Fisher, 1922). A matrix representing the inputs to the Fisher’s exact 

test is represented in Table 23. 

Table 23. Matrix representation of values used for Fisher’s exact test to assess statistical 

significance of differences in prevalence of binding-site specific modification between 

paralog and ortholog lineages. 

 

 Modification in binding site 

(R > 1.0) 

Modification outside of 

binding site (R < 1.0) 

Paralogs 566 317 

Orthologs 463 1148 

 

The P-value for this test was 6.75E-66, rejecting the null hypothesis that the odds ratio 

between the sets of counts is equal to 1. This suggests that most instances of functionally-

relevant transcription factor binding-specific changes have occurred during instances of gene 
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duplication (i.e., between paralogs), rather than during instances of speciation (i.e., between 

orthologs). 

 

3.3.3 Summary and Discussion  

Applying the Adaptation3D algorithm to DNA-binding transcription factors from the 

Selectome dataset can provide insights into the nature of how clustered mutation can lead to 

changes in organism phenotype. Clustered mutation in DNA-binding sites can potentially lead to 

alterations in transcription factor DNA subsequence binding preferences, thereby altering 

sequence-specific transcription factor binding preferences (Jarvela et al., 2014; Nitta et al., 

2015). This can lead large-scale modifications of downstream gene regulatory networks (Erwin 

& Davidson, 2009; Peter & Davidson, 2011). It is interesting to see if there are any 

classifications of transcription factors that have undergone extensive clustered modification in 

the evolutionary timeline compared to other types. 

Table 21 displays statistically enriched biological processes and functions for significant 

mutation clusters in DNA-binding protein phylogenies compared to a background of all the 

DNA-binding phylogenies from the Selectome dataset. These function enrichment tables were 

produced using the DAVID analysis tool (Huang, Sherman, & Lempecki, 2009). Table 21 

indicates that there is a statistically significant enrichment of clustered adaptation in Zinc-finger 

transcription factors compared to other classifications of transcription factors. One study found 

that there has been diversification of transcription factor paralog DNA-binding specificity 

through modulation of residues that outside of the common-core binding sites (Siggers, Reddy, 

Barron, & Bulyk, 2014). The poly-zinc-finger gene family of transcriptional repressors have 

displayed a great degree of duplication and divergence in primate lineages, including human 

(Emerson & Thomas, 2009). dN/dS analyses of these genes have revealed that many of these 
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lineages have undergone positive selection, most likely to affect DNA-binding specificity. The 

enrichment of zinc-finger related keywords in the DNA-binding Selectome data subset correlates 

with some of the observations about historical adaptation that have been made in the literature. 

 Figure 16 displays the ratio of substitution inside the DNA-binding site compared to the 

ratio of substitution specificity outside of the DNA-binding site for transcription factor lineages. 

By looking at the number of points above and below the y=x line, it is evident that most lineages 

exhibit a higher degree of substitution outside the binding site. However, there is still a large 

number of lineages with substitution specificity in the binding site. The points on the plot are 

coloured according to the PDB ID of the structure that the lineage BLASTed to. The plot shows 

that the majority of transcription factor lineages with binding site specific substitution (i.e., 

below the y=x line) are coloured red. These lineages aligned to PDB structure 2I13, which is a 

six-finger zinc finger transcription factor (Segal, et al., 2006). Therefore, this may be an initial 

indication that zinc-finger transcription factors have undergone more DNA-binding site specific 

mutation over the course of evolutionary history compared to other TF classes.  

 Figure 17 displays a histogram of the R ratio value for all transcription factor lineages. 

From the data, it can be seen that the distribution of binding site specificity ratios is bimodal, 

displaying one mode of lineages with a greater degree of non-binding site specific substitution 

(log10(R) < 0), and one mode of lineages with a greater degree of binding site specific 

substitution (log10(R) > 0). This suggests that there are possible multiple ways in which DNA-

binding proteins can undergo adaptation with relation to structure. 

 The results from the Fisher Exact Test displayed in Table 23 indicates that there is a 

statistically significant increase in the prevalence of binding-site specific substitution in gene 

duplication (paralog) lineages versus speciation (ortholog) lineages. This suggests that gene 
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duplication events enable modification to DNA-binding preference in the newly duplicated gene, 

and that these events lead to greater regulatory complexity compared to speciation events 

(Pougach et al., 2014). 
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Chapter 4 

Discussion and future directions 

 

 In the previous chapters, I have demonstrated that the Adaptation3D algorithm can be 

useful for finding statistically significant, spatially clustered sets of substitutions that have 

occurred in the history of a protein family, thereby inferring functional shifts at certain points in 

protein phylogenies. This structure-aware approach for detecting positive selection can be used 

in conjunction with more traditional methods to make more educated predictions about the 

evolution of novel protein functions.  

 

4.1 Summary of Main Findings 

 Overall, applying Adaptation3D to a wide range of phylogenies and lineages has 

demonstrated that clustered mutation is a widespread evolutionary phenomenon. This can be 

seen in Figure 11, where there is a spike in P-values that are indicative of spatially clustered 

groups of substitutions. Thus, although identifying mutation clusters has traditionally only been 

applied to select protein classes or phylogenies (Wagner, 2007; Zhou et al., 2008), there is 

ultimately value in performing large-scale analyses to detect clustered adaptation in many 

different protein phylogenies throughout the tree of life. 

 Adaptation3D has been demonstrated to predict functionally relevant mutation clusters 

that correlate with the scientific literature in a number of cases. The foremost of this is in the 

case of PR-5d. Adaptation3D detected one significant lineage with clustered adaptation within 

the osmotin/pathogensis-related protein phylogeny. This lineage corresponds to the emergence of 

a derived WWW structural motif, which is potentially indicative of a novel carbohydrate-binding 
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surface patch (Doxey et al., 2010; Koyama et al., 2001). The epidermal growth factor beta-

urogastrone was found to have undergone clustered adaptation in the Amniota lineage. This 

change could correspond with the development of extraembryonic membranes that is 

characteristic of Amniote development (Albergotti et al., 2009; Cross et al., 2003; Jojovic et al., 

1998). 

 Adaptation3D has also been used to detect certain functional classes of proteins that are 

statistically overrepresented as having undergone clustered adaptation. Some of these functional 

classifications include DNA-binding protiens, protein kinases and immunoglobulins. In the case 

of transcription factors, Zinc-finger DNA-binding proteins have a greater incidence of clustered 

adaptation compared to other TF classifications. 

 Lastly, an analysis of transcription factor phylogenies and lineages shows that there is a 

significant difference in the likelihood of DNA-binding site specific substitution between paralog 

and ortholog lineages. Proteins resulting from gene duplication were found to be more likely to 

have binding site specific adaptation compared to proteins resulting from speciation. These 

results support the Ohno (1970) model that functional divergence is likely to occur in one copy 

of a duplicate gene following a gene duplication event. In effect, this result also supports the 

ortholog conjecture, that is, gene orthologs are more likely to retain the same function following 

speciation than paralogs are following duplication (Altenhoff, Studer, Robinson-Rechavi, & 

Dessimoz, 2012). 

 

4.2 Potential future improvements to the Adaptation3D method 

This section will discuss some potential advancements to the Adaptation3D algorithm 

that were explored in a preliminary fashion but were not pursued as core components. These 
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features could be expanded upon and implemented in future versions of the Adaptation3D 

method to provide more detailed predictions with a greater focus on types of protein functional 

modification. 

 Adaptation3D uses statistical random sampling and P-values based on observed 

distributions of pairwise Euclidean distances and solvent accessible surface area values. It was 

earlier hypothesized that this process and resampling statistic could be applied to other properties 

as well. If a group of amino acid substitutions led to a statistically significant change in 

quantitative amino acid property values, for instance, this could signify some kind of protein 

adaptation. Thus, one of the additional properties analyzed in this way was amino acid 

hydropathy index. Hydropathy index is a measure of the hydrophobicity versus hydrophilicity of 

an amino acid (Biro, 2006; Kyte & Doolittle, 1983). Strongly hydrophobic residues score high 

on the hydropathy scale, while strongly hydrophilic residues score low. One may hypothesize 

that mutations that significantly alter amino acid hydropathy index would be much more likely to 

alter aspects of the protein’s function than mutations the only slightly affect hydropathy index. In 

some cases, large hydropathy index changes could affect conformational and stability properties, 

and alteration of interactions with small ligands and other proteins. 

A second amino acid property change that can be explored in greater detailed is side 

chain mass change. Groups of amino acid substitutions that led to large changes in the side chain 

mass may be more likely to lead to functional changes compared to groups of amino acid 

substitutions that only slightly changed reside mass. 

To obtain P-values for both hydropathy index change and mass change, substitutions 

from the entire phylogeny were randomly sampled, and RMSD values were calculated (repeated 

10,000 times to build random distribution). The CDF of the RMSD of hydropathy index change 
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or mass change for the observed group of substitutions on its respective random distribution 

represented the P-value for that property. Appendix A Supplementary Figure S1 displays 

matrices that can be used to calculate root mean squared deviation (RMSD) for hydropathy index 

changes (S1A) and side chain mass change (S1B) for a given set of amino acid substitutions.  

Some amino acid residues are more frequently involved in functional sites than others. 

An algorithm that is aware of this phenomenon would potentially have more power to detect 

function-altering substitutions. To determine which residues are most likely to be involved in 

protein functional sites, frequencies of amino acids can be measured in key functional databases 

such as the Catalytic Site Atlas (CSA), the extended Catalytic Site Identification database (CSI), 

and the Protein Family Interaction database (iPFam) (Finn, Miller, Clements, & Bateman, 2014; 

Kirshner, Nilmeier, & Lightstone, 2013; Porter, Bartlett, & Thornton, 2004). To compute 

background frequencies for comparison, a random sampling of the PDB database can be 

performed. A bar chart displaying the proportions of different amino acid types in different types 

of functional sites is displayed in Figure 18. 

From Figure 18, we can see that certain residues are more prevalent in functional 

databases compared to a random sampling of residue frequencies from the PDB. Alanine, 

phenylalanine, isoleucine, leucine, methionine, proline, glutamine, threonine, and valine are 

generally overrepresented in the PDB background and underrepresented in functional sites. On 

the other hand, cysteine, aspartic acid, glutamine, histidine, lysine, asparagine, arginine, 

tryptophan, and tyrosine are overrepresented in one or more of the functional site databases. 

Therefore, mutations toward these residues could be considered more likely as candidates for 

causing functional modifications in proteins, with specific attention made to the type of mutation 

in question. For example, mutations to asparagine would be most likely to contribute to catalytic 
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site changes (highly prevalent in the CSA), whereas mutations to arginine would be more likely 

to lead to ligand binding site changes (highly prevalent in iPFam). 

 

 

 

Figure 18: Bar chart displaying the prevalence of each amino acid type in various 

databases. red: PDB, green: CSA, blue: CSI, yellow: iPFam. 

 

Another way of advancing the Adaptation3D algorithm is to incorporate solvent 

accessibility and distance information extracted from functional databases. Supplementary 

Figure S2 (Appendix A) illustrates how different residues are overrepresented in certain 

functional categories. It is reasonable to assume that certain residue types may have preferred 

ranges of solvent accessibility at which they perform binding or catalytic functions. These 

solvent accessibility ranges may deviate from that seen in randomly sampled positions. Solvent 

accessibilities were measured for all residue types in the CSA, CSI, and iPFam databases, and 

these distributions were compared to those from randomly sampled residues from the PDB. 
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Kernel density functions were used to generate density curves for all lists used to generate 

Supplementary Figure S2. It is evident that certain residue types do indeed exhibit very different 

solvent accessibility profiles when they are involved in functional sites versus when they are 

randomly sampled. Alanine, histidine, isoleucine, leucine, methionine, glutamine, and tyrosine 

have similar solvent accessibility density curves between functional and randomly sampled 

categories. On the other hand, aspartic acid, glutamic acid, phenylalanine, lysine, serine, 

tryptophan show distinct solvent accessibility distributions for functional sites. Therefore, 

mutations to any of these residues that exhibit the statistically preferred range of solvent 

accessibility for functional sites could be used as evidence supporting functional adaptation. 

 

 

4.3 Conclusion 

 

In conclusion, Adaptation3D shows promise as a new, integrative approach for detecting 

positive selection in protein phylogenies. It is the first method to my knowledge that integrates 

sequence, structural and phylogenetic information into a single framework for detecting positive 

selection. The Adaptation3D method has been applied both on the protein family scale as 

demonstrated using the PR-5 protein family, and as a screening tool for phylogenomic-scale 

protein adaptation detection. When applied on a large scale to the Selectome Database, the 

Adaptation3D approach has revealed a widespread evolutionary phenomenon of clustered 

substitution. This clustered substitution has occurred disproportionately in key lineages and 

protein families and may signify historical episodes of positive selection. Clustered mutation was 

widespread in some DNA-binding domain transcription factor families, notably including 

vertebrate zinc-fingers. Further analysis of transcription factors in general show that clustered 

mutation in many cases coincides with the DNA-binding site which likely represents functional 
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alterations of DNA-binding specificity. Furthermore, a significantly greater degree of DNA-

binding site divergence has occurred in new TF duplicates (paralogs) versus TFs evolving by 

speciation (orthologs). This not only provides some validation for the Adaptation3D method to 

predict functional divergence, but it is consistent with other studies on the functional divergence 

of paralogs versus orthologs (Altenhoff et al., 2012; Conant & Wolfe, 2008), and confirms 

Ohno’s (1970) classic model of functional divergence following gene duplication. 
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Appendix A  

Supplementary Figures 

 

Supplementary Figure S1: Matrices displaying squared quantitative property changes for 

amino acid substitutions. A: squared hydropathy index changes; B: square residue side 

chain mass changes. 
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Supplementary Figure S2: Density curves for side chain solvent accessible surface area for 

all residue types from different databases. Observed solvent accessible surface values in 

squared angstroms are on the x-axis. Frequency is displayed on the y-axis. Databases. red: 

PDB; green; CSA; blue: CSI; yellow: iPFam. Plots are labelled according to amino acid 

one-letter codes. 
 


