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Abstract

This dissertation introduces novel approaches to develop a comprehensive model to address
situation awareness in the Internet of Cars, called Attention Assist Framework (AAF).
The proposed framework utilizes both Low-Level Data Fusion (LLDF), and High-Level
Information Fusion (HLIF) to implement traffic entity, situation, and impact assessment,
as well as decision making.

The Internet of Cars is the convergence of the Internet of Things and Vehicular Ad-hoc
Networks (VANETs). In fact, VANETs are the communication platforms that make pos-
sible the implementation of the Internet of Cars, and has become an integral part of this
research field due to its major role to improve vehicle and road safety, traffic efficiency,
and convenience as well as comfort to both drivers and passengers. Significant amount of
VANETs research work has been focused on specific areas such as safety, routing, broad-
casting, Quality of Service (QoS), and security. Among them, road safety issues are deemed
one of the most challenging problems of VANETs. Specifically, lack of proper situational
awareness of drivers has been shown to be the main cause of road accidents which makes
it a major factor in road safety.

The traffic entity assessment relies on a LLDF framework that is able to incorporate var-
ious multi-sensor data fusion approaches with means of communication links in VANETs.
This is used to implement a cooperative localization approach through fusing common data
fusion methods, such as Extended Kalman Filter (EKF) and Unscented Transform (UT),
and vehicle-to-vehicle communication in VANETs. Furthermore, traffic situation assess-
ment is based on a fuzzy extension to the Multi-Entity Bayesian Networks (MEBNs), which
exploit the expressiveness of first-order logic for semantic relations, and the strength of the
Fuzzy Bayesian Networks in handling uncertainty, while tackling the inherent vagueness
in the soft data created by human entities. Finally, the impact assessment and decision
making is realized through incorporating notions of game theory into Fuzzy-MEBNs, and
introducing Active Fuzzy-MEBN (ATFY-MEBN), which is capable in hypothesizing fu-
ture situations by assessing the impact of the current situation upon taking the actions
indicated by an optimal strategy. In fact, such strategies are achieved through solving the
games that are generated through a novel situation-specific normal form games generation
algorithm that aims to create games based on the given context. In general, ATFY-MEBN
presents the concepts of players and actions, and includes new game components, along
with a 2-tier architecture, to efficiently model impact assessment and decision making.

To demonstrate the capabilities of the proposed framework, a collision warning system
simulator is developed, which evaluates the likelihood of a vehicle being in a near-collision

iii



situation using a wide variety of both local and global information sources available in
the VANETs environment, and suggests an optimal action by assessing the impact of the
current situation through generating and solving situation-specific games.

Accordingly, first, the entities that highly influence the safety aspect, as well as both
their casual and semantic relationships are identified. Next, an ATFY-MEBN-based model
is presented, which allows for modeling these entities along with their relationships in
specific contexts, assessing the current states of the situations of interest, predicting their
future states, and finally suggesting optimal decision.

Therefore, if the likelihood of being in a near-collision situation is determined to be
high, and if the relevant situation-specific game is generated, then the impact of deciding
on different combinations of actions that the game players take are calculated through a
pre-fixed payoff function. Finally, the completed game is solved by finding its dominant
strategy, that subsequently, results in proposing the optimal action to the driver.

Our experimental results are divided into three main sections, through which we eval-
uate the capabilities of the traffic entity, situation, and impact assessment methods. Ac-
cordingly, the performance of the proposed cooperative localization approach is assessed by
comparing its results with the ground truth solution and that of the other localization meth-
ods in various driving test cases. Moreover, two distinct single-vehicle and multi-vehicles
categories of driving scenarios, as well as a novel hybrid MEBN inference, demonstrate the
capabilities of the proposed traffic assessment model to efficiently achieve situation and
threat assessment on the road. Finally, the impact assessment and decision making models
are evaluated through two different scenarios of driving in highway and intersection that
are formed with various number of player vehicles, and their actions.
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Chapter 1

Introduction

Nowadays, our cities face new challenges such as spectacular population growth, massive
pressure on city infrastructure (power, water, health care, transportation) and pollution.
The advent of the smart city concept came in response to some of these modern era
challenges. Intelligent infrastructure, innovative data process, smart grids and electric
vehicles provide synergistic benefits for smart cities. One of the fundamental premises of
smart cities is to improve quality of life by developing “smart mobility” [4].

Intelligent infrastructure is a main component of a smart city, and a key enabler for
the development of intelligent infrastructure is the Internet of Things (IoT), as it depicts
the pervasive integration of sensors within physical infrastructures [4]. As of now, billions
of smart sensors are embedded in our cars, bridges, streets, buildings, and within the
environment of our living space. These devices are expected to autonomously discover
their own environment, connect and interact with their surrounding space, and be able to
send out streams of data for various objectives [16]. Recent statistics from Cisco [3] and
Ericsson [2] predict that at least 50 billion of “things” will be connected to the Internet by
2020.

Furthermore, the development of Intelligent Transportation Systems (ITS) has been a
crucial element in the design of future smart/connected cities, with the objective of super-
efficient navigation and safer travel journey. With more than a billion cars on the roads
today and growing, road safety has quickly become a major challenging factor to deal
with within the transportation industry. Alarming statistics indicate that traffic accidents
produce on their own 1.3 millions of fatalities per year [1]. In light of these facts, it
is becoming clear that novel alternatives within the transportation industry are deemed
necessary. Subsequently, connected cars are quickly becoming a major milestone of the
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next generation design of ITS. In fact, smart cars within the context of ITS represent a
substantial portion of the bigger IoT, whose convergence to Vehicular Ad-hoc NETworks
(VANETs) has given birth to a new paradigm called the Internet of Cars (IoC).

Vehicular Ad-hoc NETworks (VANETs), which represent the communication platform
for the IoC, have witnessed a strong rise in research activities in the last decades. The
purpose is to ensure transportation efficiency, improve safety, and mitigate the impacts of
traffic congestion [80]. In VANETs, vehicles are deemed mobile sensor platforms [77] that
are able to collect data from their surrounding, infer them, and then, transmit relevant
information to the interested entities [140]. To model such connectivity, VANETs rely
on wireless communication channels that connects the car to other nearby entities. In the
transportation domain, these entities can be cars, Road-side Units (RSUs), public networks,
humans, and/or physical sensors. The communication links for each of them are respec-
tively called Vehicle-to-Vehicle (V2V), Vehicle-to-RSU (V2R), Vehicle-to-Infrastructure
(V2I), Vehicle-to-Human (V2H), and Vehicle-to-Sensor (V2S). Figure 1.1 illustrates the
different types of communication in VANETs. These various communication channels are

Figure 1.1: Different types of communication in VANETs

used for safety and traffic information flow and ensure an enlarged situational awareness
of the environment beyond the limitation of the driver’s view. Thus, an early perception of
potential risks could be attained, and in return, anticipated maneuvers could be taken by
the car or the driver. The potentiality of VANETs has been acknowledged with the estab-
lishment of ambitious research programs such as WAVE, C2C-CC, CVIS, NoW, VSC [111].
Moreover, radio spectrum has been allocated in North America, Europe, and Japan for
the Dedicated Short Range Communications (DSRC) to facilitate the widespread of ITS.
Clearly, VANETs pave the way for the cars to become connected devices, and to operate
in a data-rich environment. However, such mobility and connectivity come at a cost.
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1.1 Motivation

As the number of sensors installed on cars increase, and their connectivity improves, they
become a swarm of mobile sensors and information sources that consistently generate and
receive huge amounts of data and information. Besides, the external driver’s environment
presents a variety of data such as weather, road conditions, traffic and social networks
streams. Therefore, the levels of abstraction of this information range from lower-level
physical sensors data to higher-level human-generated soft information. Connected cars
should take advantage of this big data to provide drivers with proper situation awareness.

In most of the IoC applications, cars need to be aware of the current situation (depend-
ing on the type of application) to consequently achieve their goals. Therefore, it is crucial to
develop a comprehensive and well-organized framework to extract, manage, and interpret
the available data and information to consequently achieve proper Situation AWareness
(SAW). In other words, the interested entities should be provided with appropriate and
convenient knowledge regarding their current (and possibly future) driving situations, that
is hidden within enormous amounts of data and information generated from various sources
in the IoC environment. As a result, data and information gathering and fusion are es-
sential to provide the required selectivity in the VANETs as it defines a dynamic process
to adaptively gather and process information of interest from the IoC environment, and
facilitate achieving its objectives.

The importance of SAW on the road is also highlighted by Salmon et al. [189]:

“SAW has received far less attention in a road transport context. This is despite the fact
that failures related to poor SAW, such as inattention, have been identified as key casual

factors in road traffic crashes.”

Finally, a well-designed framework should be able to answer these questions: How can
different sources of data and information help to enhance the requirements of vehicles
in different situations? Which sources of data and information, made available by the
connectivity feature of VANETs, are useful, or perhaps necessary, to achieve the required
goals? Is there a way to predict the future situations and let the interested entities know
about them in time? What is the best method for combining the data and information
that come with different levels of abstraction?
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1.2 Scope

This thesis is mainly focused on data and information fusion in the IoC, and aims to es-
tablish the path, with necessary theoretical background, that leads to SAW. Initially, it
is necessary to clarify the distinction between the definitions of the terms data and infor-
mation that are frequently used throughout this thesis. Data is deemed any low-level fact
that specifies the features of a certain entity, whereas information encloses the facts about
an already recognized entity and/or its relationships with other entities. Moreover, data
and information fusion community differentiates the definition of Low-level Data Fusion
(LLDF) 1 and High-level Information Fusion (HLIF). By definition, LLDF is the fusion of
low-level data produced by physical sensors, and recognition of context-related entities in
a specific environment to form a unified picture [116]. Alternatively, and as outlined by
B. Dasarathy in [56], HLIF is the stepping stone that combines theories, algorithms, and
tools to explore the knowledge that lies within the information generated from multiple
sources and exists among the relationships of various entities to draw a generic awareness
of the situation to improve the accuracy and robustness of the final decision and action.
Therefore, SAW is the result of an HLIF process.

LLDF is deemed a well-studied discipline, as it has been under thorough investigation
for many years [116]. In contrast, the HLIF research has just recently attracted much
attention in the information fusion community as reflected by the review articles pub-
lished in that community within the last few years [31, 34, 216]. Accordingly, this thesis
concentrates on the HLIF side of the IoC more than on its LLDF one.

Among the applications envisioned for the IoC, which are safety, convenience, and
comfort [193], the safety applications are tackled in this thesis. Safety applications allow
vehicles to consistently perceive the surrounding environment (specifically the state of other
cars or road conditions), and if necessary, avoid incidents by taking proper actions on time.
Based on their level of interference, safety applications are either passive or active [106].
Passive applications automatically take physical actions (often at critical moments), and
are mainly used in the autonomous driver-less vehicles. However, active applications only
provide driving assistance to drivers using proper Human-Computer Interaction (HCI)
units, and are generally implemented by the Advanced Driver Assistance Systems (ADAS).
This thesis focuses on the later types of safety applications.

Collision (Avoidance) Warning Systems [79, 153, 103, 176], Intersection Safety Manage-
ment [148, 200, 211], Object Detection [237, 10, 54, 203], Lane Departure Warning Systems,
and Blind Spot Mitigation [53, 102, 74] are deemed the major safety applications of the

1Low-level Data Fusion is also sometimes called Multi-sensor Data Fusion in the literature
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Internet of Cars [238], among which Collision Warning Systems are actually implemented
and tested as a part of our simulations.

1.3 Contributions

Although VANETs environment benefits from a variety of sources generating data and
information, there has not been any well-defined and concrete approach to take advan-
tage of this diversity in a way to assist the entities of interest better. The main reason
for this scarcity is most likely related to the fundamental challenges of HLIF that need
thorough consideration. Among these, the issues of uncertainty/ambiguity analysis and
semantics/ontologies are indicated as the most important areas of study that have not
received enough attention in the past [34].

Following this observation, a novel generic data/information fusion model, termed as
Attention Assist Framework (AAF), is proposed in this thesis to achieve enhanced safety
in the IoC, which aims at improving the road safety by enhancing the driver’s attentive-
ness. The proposed model is capable of handling various types of low-level data that are
available in the VANETs environment (i.e., the data generated by the physical sensors, or
those received through different means of communication). Furthermore, the AAF is able
to perform a complete high-level information fusion process, i.e., Situation and Threat
Assessment (SA/TA), Impact Assessment (IA), and Decision Making (DM), that results
in proper SAW for the entities of interest. Our contributions are intrinsic in the methods
proposed to model the core of the AAF.

Accordingly, a novel approach based on the idea of cooperative localization is intro-
duced. Our proposed scheme incorporates different techniques of localization along with
low-level data fusion as well as vehicle-to-vehicle communication in VANETs, to integrate
the available data and cooperatively improve the accuracy of the localization information
of the vehicles. The model is further improved by estimating the vehicle location using
Unscented Transform (UT) [222] along with Sequential Decentralized Extended Kalman
(SDEK) [95] filtering.

Situation and Threat Assessment (SA/TA) using our novel Fuzzy extension to Multi-
Entity Bayesian Networks (MEBN) [125], constitute the second contribution of this thesis.
MEBNs encompass the expressiveness power of first-order logic, and the uncertainty man-
agement of Bayesian networks to model both the semantic and casual relationships, and
perform inference while accounting for the potential uncertainties. However, MEBN lack
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the capability of modeling some imperfect aspects of data such as ambiguity 2 that is an
inherent characteristic of human language, and the observations gained from the environ-
ment. To overcome this issue, a novel Fuzzy extension to MEBN, called Fuzzy-MEBN,
is proposed [84, 87, 85] that is based on First-order Fuzzy Logic [167], and a new way of
representing Fuzzy Bayesian Networks (FBN). Moreover, the fuzzy logic is used to match
the soft data with the correct entity and states defined in Fuzzy-MEBN.

Impact Assessment (IA) and cooperative Decision Making (DM) using game theory
is the third major contribution of this thesis. This is done by adding a game-theoretic
component to Fuzzy-MEBN that enables the involvement of active entities (i.e., players)
in the situations of interest, whose actions cause relative changes in the states of the
situations. Accordingly, various combinations of actions are generated, future situations
are hypothesized, and the best action that gives the maximum payoff is reported. It is
notable that the payoffs are calculated based on the fuzzy states of the situations of interest
that are involved in defining them. This version of Fuzzy-MEBN is called ATFY-MEBN,
which is short for AcTive FuzzY-MEBN.

1.4 Organization

The thesis is organized in 6 distinct chapters. In chapter 2 a comprehensive review on
situation awareness in the context of connected cars is presented, and our proposed contri-
butions as a part of the most recent research work in this area are highlighted. Chapter 3
introduces the specifications of the low-level data fusion paradigm and presents our novel
localization approach. Moreover, Fuzzy-MEBNs and their details are thoroughly discussed
in chapter 4. Subsequently, chapter 5 presents an in-depth study on the game-theoretic
technique used in ATFY-MEBN. Our novel Attention Assist Framework (AAF) along with
the relevant case studies, and the experimental results are introduced in chapter 6. Fi-
nally, chapter 7 concludes the thesis through providing a general discussion on the proposed
models, and highlighting the future research trends.

2The terms “ambiguity” and ”vagueness” are used interchangeably throughout this paper.
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Chapter 2

Situation Awareness Within the
Context of the Internet of Cars:
Review and Recent Trends

The challenges of the Internet of Cars area is highly concentrated on topics such as: routing
and communication protocols [186, 199, 65, 15], security and privacy [184, 159], data dis-
semination [78, 52, 173], simulation [186, 94, 145], information management [109, 225], and
information fusion [159, 72, 238, 144]. The last two were motivated by the fact that con-
nected cars operate in a data-rich environment that facilitates achieving Situation Aware-
ness (SAW).

In this chapter, we propose a series of taxonomies that are designed in such a way as
to illustrate the path towards proposing a SAW model from both technology-centric and
methodology-centric standpoints. It highlights as well the features of different methods
and techniques used in the context of the IoC. To appropriately position our contributions,
various SAW models are also compared according to different criteria related to their
features and applicability.

2.1 Introduction

Application of SAW on the road is theoretically and methodologically studied by Salmon et
al. in [189]. The authors analyze SAW from three different perspectives: individual (psy-
chological), computational, and socio-technical. In the individual perspective the driver is
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considered as the center of the model, and the goal of situation assessment is to measure
his/her behavior, reactions, and interactions in different situations. Through the second
perspective, Salmon et al. study the computing (engineering) perspective of SAW that
provides the entities of interest with appropriate information by using technological facili-
ties. The computing perspective serves as a bridge that links the individual mental model
to in-vehicle technologies and road infrastructure. Different methods and algorithms that
aim to propose a solution for an on-the-road SAW task are categorized in this medium.
Finally, the third perspective of SA is introduced as the socio-technical systems that are
mainly based on the idea of distributed SAW. In these systems, all entities in an environ-
ment are assumed to have partial knowledge (awareness of the current situation) about
their surrounding, and thus, make communication links to share their knowledge and im-
prove their understanding about the environment. Furthermore, other entities (i.e., the
driver or the passengers) make use of this knowledge to address their desired goal, such as
avoiding collisions. Some issues such as compatibility, and knowledge scaling are some of
the challenges that rise in distributed socio-technical SA systems.

While the individual perspective is well-studied in the literature [117, 234, 221], just a
few attempts that exploit computational and socio-technical side of SAW in the Internet
of Cars, can be found in the literature. For instance, Markis et al. [144] propose a survey
on context-aware mobile and wireless networking by mainly discussing context uncertainty
handling, acquisition, modeling, exchange, and evaluation. Specifically, Markis et al. [144]
introduce an abstract classification that while clarifies the main aspects of a context aware
mobile network, avoids giving sufficient knowledge about the available methods that aim
to model those aspects. In fact, the analysis given in this paper is more abstract and
technology-centric (rather than being specific and methodology-centric).

As another example, Kakkasageri and Manvi [109] propose a general taxonomy for
information management protocols in safety applications. The presented taxonomy struc-
tures information management protocols into four main branches: information gathering,
aggregation, validation, and dissemination. Furthermore, the authors introduce different
classes of approaches per branch, and introduce the major protocols assigned to them,
accordingly. While the proposed classification is very useful in information dissemination
problems in VANET, it does not provide any information about how to achieve situation
awareness.
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2.2 Taxonomy

As defined by Mica R. Endsley [66], SAW is “the perception of the elements in the envi-
ronment within a volume of time and space, the comprehension of their meaning, and the
projection of their status in the near future”. Alternatively, SAW is deemed the result of
the High-Level Information Fusion (HLIF) that takes place in the levels 2 and 3 of the
well-known JDL Model [208] (See Figure 2.1). The inputs of HLIF are the levels 0 and 1,
which are mostly related to Low-Level Data Fusion.
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Figure 2.1: The Revised Joint Directors of Laboratories (JDL) Model [208]

2.2.1 Major Entities in the Internet of Cars

Establishing the relationship between SAW, and driver inattentiveness is one of the most
crucial, yet mostly unexplored problems in the IoC. As one of the major attempts made in
this regard, the impact of driver inattention on road accidents has been extensively studied
by Klauer et al. [117], who have analyzed the driver inattentiveness using the driving data
collected in the 100-Car Naturalistic Driving Study [61]. The authors take advantage of
the rich data and information provided from different sources, such as a variety of sensors
and driver’s personal information and driving records, and explore a number of factors
involved in the near-crash/crash incidents. Furthermore, they categorize these factors
into four groups of, namely, Vehicle, Environmental, Driver, and Demographic factors.
Furthermore, they present a variety of conditions under which the inattentive driving
behaviors are expected to increase.
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As an alternative approach to what Klauer et al. [117] proposed as major factors of road
incidents, we merge demographics with driver, as they share similar characteristics, and add
VANET as another important factor that impacts various driving situations on the road.
Figure 2.2 demonstrates a semantic network that encompasses major road safety-related
factors in the Internet of Cars. Nevertheless, SAW on the road is deemed an important
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Figure 2.2: Semantic network of main factors involved in road incidents in the Internet of
Cars

challenging task, and requires the development of comprehensive computing models to
assist the drivers/passengers during driving task [189]. In the following, we study SAW in
the Internet of Cars by exploring it through different perspectives.

2.2.2 Components of SAW

To organize the approaches that tackle different aspects of SAW, a structure is proposed
that encompasses different components of SAW (see Figure 2.3). Our proposed taxonomy
is inspired by the research work of [36] and [69]. The following sections present an in-depth
review on different methodologies employed in SAW components.
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Perception Comprehension Projection Management

Figure 2.3: The Building Blocks of SAW

2.3 Perception

Perception is the first step of SAW as depicted in Figure 2.3. Devlin [58] defines a situation
as a “structured part of reality that is discriminated by some agent”. We characterize such
a structure as an aggregation of entities and the relationships between them, and build the
first stage of SAW as Perception. Figure 2.4 shows the different blocks of the perception
stage.

Perception

Entity Relationship

Figure 2.4: The Building Blocks of the Perception Component

2.3.1 Entity

Entities are the result of LLDF that is covered in levels 0 and 1 of JDL Model [208].
Therefore, they inherit all of its issues, such as unavailability and undetectability of data,
failure in observing, and misinterpretation of the data [70, 67]. These issues are caused
by data imperfection, correlation, inconsistency, and disparateness [116]. The algorithms
tackling these problems are based on probability, fuzzy, and possibility theories. Since
most of entity perception overlaps with LLDF, which is not in the scope of this paper, the
interested reader is referred to [116] for a thorough review on multi-sensor data fusion.

2.3.2 Relationship

Relationships can be interpreted through knowledge representation and reasoning. The
reasoning process is the task of structuring elements of knowledge in a way to cover all
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of its fundamental dimensions, while easing the reasoning process. In fact, the basis of
knowledge is composed of entities that are connected to each other through various types of
relationships. John F. Sowa in [205] relates the entities through different types of networks
that are useful to semantically represent the knowledge, and to reason about it. These
networks are composed of, Definitional, Assertional, Implicational, Executable, Learning
and Hybrid relationships. Different types of relationships in the context of connected cars
are summarized in Figure 2.5.
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Figure 2.5: The categorization of perception stage

Definitional Relationships

Definitonal relationships represent a hierarchy of entities located on a spectrum with two
ends of abstraction (generalization), and specification. The Description Logics [17] and
KL-ONE language [42] are able to model definitional relationships. Some relationships is
assumed to be true by definition. The Description Logics and its implementation in KL-
ONE language are able to model definitional relationships. For instance, derivation of the
Car and the Truck class from the Vehicle class is an instance of definitional relationships
that is shown in Figure 2.5.
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Assertional Relationships

The propositions and statements about a certain fact in knowledge are modeled through as-
sertional relationships. FOL [204] is a powerful language for modeling this type of relation-
ship among entities. First-order Probabilistic Logic (FOPL) [93, 156] and First-order Fuzzy
Logic (FOFL) [167] are two important derivations of FOL that handle uncertainty and am-
biguity in FOL statements, respectively. Moreover, Markov Logic Networks (MLN) [182]
are also deemed useful tools for constructing assertional relationships. Figure 2.5 illustrates
the assertional relationships between Car and Driver class, and their attributes.

Implicational Relationships

Implicational relationships are commonly modeled using Probabilistic Graphical Models
(PGMs) [121]. PGMs well-known derivations are Bayesian Networks (BNs), Dynamic
Bayesian Networks (DBNs) [121], and Fuzzy Bayesian Networks (FBNs) [172]. BNs are
defined as a Directed Acyclic Graph G = 〈V,E〉 wherein nodes represent either discrete or
continuous random variables, and edges model conditional dependency between random
variables. This dependency is expressed in terms of Conditional Probability Tables (CPTs)
and Probability Density Functions (PDFs) on discrete and continuous random variables,
respectively. A simple implicational structure between the speed of the Car and the Driver’s
drowsiness is depicted in Figure 2.5.

Executable Relationships

The structures that model an interaction between a set of entities, collaborating to reach a
certain goal, implement means of executable relationships. In such graphs, related entities
are able to send messages to one another, to participate in a computation through a
pre-defined program, and to break apart or get combined in sub-structures. Data-Flow
Graphs [151] and Petri Nets (PNs) [175] are two most well-known formalisms incorporating
executable relationships. Two different variations of PNs are object and plan PNs, which
are useful for objects and events recognition [127], respectively. An executional relationship
between the Driving Mode and the Distance nodes is depicted in Figure 2.5.

Learning Relationships

These types of relationships take advantage of their built-in memory to intelligently respond
to new information, and modify their internal state accordingly. Besides, relationships as
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well as entities are valued based on a weight that indicates how much they influence the
outcome. Moreover, some learning networks change their structure to adapt to new context
and perform more efficiently. ANN [233] and all of its variations reside in this category.

Hybrid Relationships

A combination of various types of relationships introduced so far, is called a hybrid re-
lationship. One of the most common tools is Unified Modeling Language (UML) [187]
that is widely used in software engineering. A combination of definitional, assertional,
and executable networks can be simply defined using UML. Multi-Entity Bayesian Net-
works (MEBN) [125] are also deemed another framework that models hybrid relationships.
MEBN aim to improve the conventional implicational relationships in BN by incorporat-
ing means of introducing definitional, assertional, and executable relationships powered
by Ontologies and FOL. The basis of MEBN are MEBN Theories (MTheories), which
are powerful tools for modeling domain-specific knowledge for situation assessment. The
MEBN theories are composed of several fragments defined on a set of related random
variables representing a certain entity, called the MEBN Fragments (MFrags). This con-
stitutes the main characteristic of the MEBN language which is its modularity, i.e., MFrags
can be readily added/removed to/from the modeled system, without losing the structural
consistency.
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MLN

PRM
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DFG

ANN
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Figure 2.6: Main SAW methods and their capability in handling different types of rela-
tionship

Different methods capable of modeling one or more relationships are shown in Fig-
ure 2.6. As seen in this figure, MEBN, as well as their Fuzzy Extension (Fuzzy-MEBN),
are able to model 4 out of 5 types of relationships and is ranked among the best methods.
This is due to the fact that MEBN borrow OWL [219], FOL and BN (enhanced with util-
ity nodes) to handle definitional, assertional, implicational, and executable relationships.
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Figure 2.7: The Building Blocks of the Comprehension Component

Another insight observed in Figure 2.6 is that most of these methods can be categorized
into either PGMs, or semantic models. In the next section, we show that the two main
concepts in comprehension are uncertainty and semantics, which are respectively managed
by PGMs and semantic models (i.e., ontologies).

2.4 Comprehension

The assessment of a situation, as well as its possible threat, takes place after the perception
of the entities and their relationships. This constitutes the two main blocks of the com-
prehension component: Situation and Threat Assessment. Situation Assessment (SA) is
the most important module in SAW, whose imprecision leads to incorrect judgements [67],
which in driving scenarios, will result in mortal accidents. Figure 2.7 shows the details of
comprehension component of SAW and its underlying building blocks.

2.4.1 Situation Assessment (SA)

SA is the main process that leads to situation awareness. Steinberg [135] defines SA as:
“the estimation and prediction of structures of parts of reality, i.e., the aggregation of
relationships among entities and their implications for the states of the related entities.”
Moreover, Blasch et al. [36] highlight main tasks of SA as information aggregation coming
from multiple sources, the creation of a bridge between user and automation, and the
data management. We separate the main components of SA as: Association, Assessment,
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and Inference that are respectively corresponding to the aggregation of situations, the
measurement of situations properties, and the estimation of the situations states.

Association

Association is the task of selecting a particular set of entities, and structurally arranging
them into a situation based on a specific context. In other words, it is the context that dic-
tates which entities should be chosen, and how they need to be related to create situations.
These types of situations are called context-aware situations. Contextual information is
usually provided by either domain experts or relevant datasets, and is often used as an
extra setting to improve the performance of an assessment procedure. For instance, Wang
and Ji [223] augment a regular DBN with contextual information, namely, kinematic and
appearance features to detect a specific set of events in video surveillance.

One of the most common methods for providing contextual information is through
defining ontologies [120]. Ontologies are useful formal way of representing entities and
modeling different types of relationships, namely, definitional and assertional. There have
been significant contributions in utilizing ontologies for SA in the literature [119, 18, 22,
63]. Most of these methods define an ontology for a specific context, and semantically
put together the contextuall related information to make it machine-readable. Figure 2.2
shows a sample ontology for road safety, which appeared in [84]. Context-aware situations
can be related based on their shared characteristics and similarity degrees. Moreover,
situation evolution and hierarchical situation arrangement are also deemed among effective
approaches for associating situations.

Situation evolution, which is sometimes referred to as “situation tracking” in the liter-
ature, has been studied and deemed a challenging issue in HLIF [135, 37]. A situation can
evolve towards two main dimensions: temporal and lateral [87]. The situations with tem-
poral nature evolve along with time. These situations contain one or more dynamic entities
whose current state depends on their previous states, and therefore, impose their tempo-
ral feature on their residing situations. Moreover, the situations whose topology changes
upon addition or removal of new entities (observations) are deemed to demonstrate lateral
evolution. One of the immediate outcomes of situation evolution is the concept of event
that is theoretically defined in [87].

In addition to evolution, situations can also be related through hierarchical situation
association, as presented in our previous research work [87]. In that paper, we define
the super -situation concept as the combination of sub-situations, which are also known as
component situations [135]. For example, in road safety problems, a situation can be con-
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figured to monitor a driver’s attention, while another one is set to reflect the environmental
condition.

Assessment

Evaluation of the similarity and the salience of situations, which gives proper insight about
the situations and their closeness, are done at this stage. Employing the hierarchical situa-
tion arrangement method introduced before, one can identify similar and salient situations
by simply applying set theory operators on super-situations, say Si and Sj, to measure
their closeness. For instance, Si ∩ Sj and Si − Sj can be a good measurement to show
how much two situations Si and Sj are similar, and how salient Si is with respect to Sj,
respectively. Besides, semantics similarity can also provide a good metric to compare the
commonness of two situations [164, 9]. According to [8] the semantic similarity between
two situations depends on the types of entities, and type of relationships along with their
semantic weights. Measuring similarity between situations ontologies can also give us an
insight on how much two situations are close to each other. Besides, salient situations can
also be found easily when their corresponding ontologies are compared against the other
ontologies in the same context. Maedche and Staab [142] tackle ontologies similarity mea-
surement by considering a two-layer view: Lexical and Conceptual levels. In lexical level,
the similarity is defined based on the edit distance that is originally proposed by [132].
Besides, the structure of ontologies are compared at conceptual level through defining
concepts (assertional relationships) and their hierarchy (definitional relationships) [142].

Inference

Inference is the task through which the state of a situation is estimated, and is the final
component in situation assessment process. Depending on the underlying structure of
entities and relationships, different algorithms may be used for inference. An efficient
inference algorithm must be capable of handling the challenges of relationship types to
subsequently achieve reasonable results. The majority of the literature focus on handling
uncertainty and semantics while performing inference.

• Semantics inference is commonly tackled through semantics analysis by using on-
tologies [22, 23, 147, 24]. In particular, Wache et al. [220] introduce structural and
semantic heterogeneity groups for various sources of information. They take also
advantage of common vocabulary and ontology mapping to measure how close is an
ontology to a desired one. Besides, Kokar et al. [119] introduce Situation Theory
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Ontology (STO) which is an ontology-based situation awareness framework devel-
oped based on the Situation Theory [21, 20, 19] and OWL [219]. Moreover, Little
and Rogova [137] create the in-between connections between a higher-level ontology
(with more abstract structure) and a pre-determined domain-specific ontology.

• Uncertainty inference handling deemed a crucial part of an inference engine. Indeed,
entities are created through a LLDF system, and accordingly, reflect all the imper-
fectness of physical sensors, trustworthiness of information sources and limitations of
data fusion methods [139]. Therefore, an inference engine must be able to promisingly
handle such inherent uncertainty. Karlsson [112] categorizes the Uncertainty Man-
agement Methods (UMMs), into three groups of Bayesian, Dempster-Shafer (DS),
and Imprecise probability approaches. Besides, Sowa [205] characterizes uncertainty
through his three orthogonal schema. The first aspect of this schema studies the spa-
tial uncertainty in the physical nature of entities. The second aspect defines the time
effect on entities, and studies the temporal uncertainty. Standard Hidden Markov
Models (HMMs) [230, 236] and its variations [218, 170, 228, 170, 169, 141] are Prob-
abilistic Graphical Models (PGMs) that are capable of performing inference when
temporal information exists. Finally, uncertainty in ontological arrangement of enti-
ties (i.e., independent, relative, and mediating relations) comprises the third aspect
of Sowa’s schema. As an example, Probabilistic Ontology (PR-OWL), proposed by
Laskey et al. [126] is a remarkable representation of uncertainty among ontological
arrangements. Furthermore, Laskey in [125] introduces the MEBN model that is a
Bayesian logic language for PR-OWL. MEBN use Situation-Specific Bayesian Net-
works (SSBNs) as its inference engine. The algorithm is based on works of Mahoney
and Laskey [143], in which a minimal SSBN is approximated using the combination of
particular types of random variables extracted from a given query. Last but not least,
Stochastic Petri Nets (SPN) [25], Markov Logic Networks (MLNs) [30, 217], Proba-
bilistic Relational Model (OPRM) [101], Blog [155], BUGS [214], and OOBN [122] are
also among the useful models that handle uncertainty and semantics simultaneously.

2.4.2 Threat Assessment (TA)

TA is the task of measuring the Capability, Opportunity, and Intent of an assessed situa-
tion [135]. Therefore, TA is very close to SA and is built up on it to create a bridge from
SA to Impact Assessment (IA). The output of a TA model is a set of situations hypotheses
which are deemed threatening and can be used to assess the impact of a specific situa-
tion. Alan N. Steinberg [207] proposes a threat assessment model that produces situation
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hypotheses based on a set of actions performable on the input situation. These actions
are firstly determined based on the capability model of the input situation. Furthermore,
some of them are filtered out according to their constraints and the situation opportunity
model. Finally, the intent model probabilistically implies the potential action outcomes.
The importance of each of these models differs from domain to domain. Analyzing the
intent model is the most crucial one in Internet of Cars.

Capability

Capability model is used to generate feasible actions that are related to the current context,
and the specific world model in which TA is being done. In a connected cars context, all the
actions that a driver may take, as well as those of surrounding vehicles, can be considered
as the set of actions generating situation hypotheses. For instance, in a highway driving
scenario, changing lane, acceleration, deceleration, taking the exit ramp, etc. can be
counted as the set of actions that a driving car is capable of taking, according to its design
and the use of the actions (i.e., a regular car is obviously not capable of changing altitude
as its design does not let it to do so). Action selection in transportation context can be
seen in research work of [13, 123, 90].

Opportunity

The opportunity that an entity gains to threat another entities is another important fac-
tor in TA. Steinberg [207] relates this factor mainly to the target being threatened. In
other words, if the target is accessible and easily vulnerable to threats, then the actions
opportunities of the threatening entity are boosted. The implication of how much a target
is accessible and vulnerable can be done using the information gained through ontological
inference, observation, and communication.

Intent

The decomposed goals of a threatening entity are reflected through its intent. In other
words, an intent model is concerned with detecting the objectives of an active entity and
consequently measuring the likelihood of the hypothesized actions. According to Stein-
berg [207], an agent’s high level objectives and outcome assessment are the two most
important factors in an intent model. Moreover, an intent model can be analyzed from
both cognitive and computational perspectives.
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On the computational side, Expert Systems and Machine Learning based approaches
are the most common tools for intent recognition. In the presence of datasets, different
machine learning approaches can also be used to classify intentions. For instance, SVM
and its derivatives are used by Aoude and How [12], and Aoude et al. [13, 14] for drivers’
intention detection at intersections. Furthermore, Hou et al. [100] propose a model that
uses Continuous Hidden Markov Models (CHMM) for intention detection. Moreover, as
an expert system based approach, Benavoli et al. [26] propose a TA model that uses evi-
dential networks to assess the capability and intent of the threatening entities. In a similar
approach, Liebner et al. [134] first propose an intelligent driver model, and then, design
a Bayesian Network to recognize driver intent at urban intersections. Similarly, Lefevre
et al. [131] introduce a framework that aims for recognizing driver intent at intersections
based on the intersection context.

Finally, as a cognitive model, Salvucci [190] proposes a framework to detect driver lane
changes based on the cognitive model of driver behavior and a mind-tracking architecture.
Similar approaches can be seen in [191, 150, 64]. Based on the presented discussion on SA
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Figure 2.8: Major SAW methods and their capability in handling main concepts in the
comprehension component

and IA, we extract Ambiguity, Time, Machine Learning (ML), Uncertainty, and Semantics
as the most important building blocks of the comprehension component. Moreover, we
relate an important subset of SAW approaches to these blocks to show their capability in
modeling each of them. The result is illustrated in Figure 2.8. While all of the PGMs
are able to handle uncertainty, some of them are also able to handle temporal dimension,
and they also can employ Machine Learning (ML) techniques as shown in Figure 2.8.
However, almost none of the basic PGMs can neither model semantics nor ambiguity. In
the comprehension component, Fuzzy-MEBN are the top ranked method as they model all
of its building blocks except for the ML. In fact, although at its early stages, learning is
still a challenge in MEBN (and their Fuzzy extension), as mentioned by [174].

20



2.5 Projection

Impact Assessment (IA) and Decision Making (DM) reside in the projection component of
SAW. Future situations are predicted through IA, and proper actions to be taken are ad-
vised through DM. In a connected cars scenario, impact of a threatening situation can be an
incident situation which may be avoidable by effectively choosing a proper action through
decision making. Figure 2.9 depicts the building blocks of the projection component.

Projection

Impact 

Assessment

Decision 

Making

Prediction
Risk 

Analysis
Learning Optimization

Figure 2.9: The building blocks of the projection component

2.5.1 Impact Assessment (IA)

IA is composed of prediction and risk analysis steps. An IA model obtains the previously
assessed situations and their threats (the situations capabilities and intents) to calculate the
likelihood of future hypothesized situations. Therefore any approach capable of generating
a set of hypothesized situations, given the current situations and their threats, can be
potentially used as an IA model. Among different approaches in the literature, Probabilistic
Graphical Models (PGMs) and Game Theory (GT) seem to be more promising methods for
IA. In the following, we will detail prediction and risk analysis, the two main components
of IA.

Prediction

Estimating of the future of situations requires an understanding of the current world model
(current situations of interest), involved active entities that may change the state of situ-
ations accordingly, a set of actions to be taken by the active entities, and a transition rule
that determines the outcome of an action on a specific situation. Such an arrangement can
be theoretically modelled using GT, as it is seen in [11, 180, 50, 44].

21



A conventional game setup in GT is shown by a tuple 〈P ,S,D, T , f〉, wherein P =
{1, 2, · · · , N} is the set of players, S is the set of states, D = D1 × D2 × · · · × DN is
called the decision space and is created from the actions of each individual player Di =
{a1, a2, · · · , am}, T : S×D → ∆(S) is the transition function that calculates the likelihood
of residing in each state after taking decision instance di ∈ D when observing world state
si ∈ S, and finally { : S×D → RN is the pay-off function that awards/punishes the players
upon perceiving world state si ∈ S and taking decision instance di ∈ D.

To efficiently implement IA using GT, we first need to identify the active entities
(players) of a SAW scenario, i.e. vehicles, drivers, pedestrians and VANET in our case.
Then, we need to formulate all the ingredients of a game model. Furthermore, world
model is represented by a set of situations of interest (i.e., Vehicle, Driver, Environment
and VANET situation in our case) on which the actions are performed. The players take an
action based on their inner state that is influenced by their capability and intent (threat
assessment output). The outcome of the action selection can be a new situation, or a
change in current situations states. The birth or change of a situation reflect the impact
of current situations subject to the actions taken.

As some examples in transportation domain, a prediction and planning framework
based on sequential game playing for collision avoidance is introduced in a technical report
by Broadhurst et al. [43]. Besides, Aoude et al. propose an TA/IA model that is a
combination of game theory and Rapidly-exploring Random Trees (RRT). Chen et al. [51]
also look at using GT in VANET from another point of view, and take advantage of
mechanism design to persuade the vehicles to send message via communication gateways
to each other.

Risk Analysis

This step comes immediately after prediction is the task of weighting the hypothesized
situations and analyzing the risk of reaching them based on a certain criteria. It is an
application dependent step and is performed based on a risk metric that is pre-defined
by a domain expert. The output of a risk analysis task is prior knowledge for a decision
making system.

2.5.2 Decision Making (DM)

Decision Making (DM) is an important part of a SAW model as seen in famous informa-
tion fusion decision making models such as Data Fusion Information Group (DFIG) [35],
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Observe-Orient-Decide-Act (OODA) Loop [33], and Multi-player OODA [32]. A well-
designed DM model should efficiently take actions given a set of hypothesized future sit-
uations. The effectiveness of an action is measured based on a utility function that is
normally defined either based on a domain expert interpretation, or statistically compiled
relevant datasets. We group DM models in SAW based on the underlying approaches tack-
ling SA, TA, and IA. Therefore, PGM and GT as well as Machine Learning based methods
(mainly Decision Trees) are deemed the main categories of DM models. A common fact
between all of these categories is that the set of actions to be taken should be known a
priori. According to Isermann et al. [106], these actions can be: 1. Steering, 2. Braking,
and 3. A combination of both.

Probabilistic Graphical Models

PGMs simply tackle the DM problem by having the capability to include decision nodes
as a part of graph [121]. The decision node is usually dependent on the states of one or
more parents. Therefore, it probabilistically determines the likelihood of an action given
the states of parents.

Game Theory

Internally provided with a decision making, a conventional game model contains a decision
space D = D1 ×D2 × · · · × DN that is formed from the actions of each individual player.
Therefore, for a specific situation wherein two or more active entities are involved, the
decision space of the game model is all of combinations of their actions. Furthermore, the
best action to be taken would be the combination that satisfies both the consensus and
the individual utilities which is measured by pay-off function f . See [110, 212] for some
examples.

Machine Learning

The techniques and methods in machine learning are theoretically rich and often easy-to-
implement to create a DM framework. Common classifiers can be trained, assuming that,
the relevant driving datasets that show the driving conditions, the action(s) taken, and
the outcome, are available. However, the main problem in a connected cars context is that
such datasets are neither not easily achievable, nor contain such complete data/information.
Therefore, other techniques such as Decision Tree (DT) can be employed to account for
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the outcome of performing a set of pre-defined actions. The reader is referred to [188] for a
complete survey of different DT techniques. The most important groups of approaches in
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Figure 2.10: Main SAW methods and their connections to the main groups of approaches,
along with Time, in the projection component

the projection component are PGMs, GT, and ML, as they are used to predict the outcome
of a particular situation. Besides, time is by meaning an inevitable notion in projection.
Therefore, it is added to specify the capability of the main SAW methods in handling it.
Figure 2.10 depicts these methods and their connections to the groups, and also the time.
As demonstrated in the figure, basic PGMs are also linked to GT methods, since it is
assumed that they are able to include utility nodes, and incorporate set of actions, which
is subsequently led to the definition of action profiles. All the temporal PGMs as well as
Fuzzy-MEBN are able to include time, and therefore, are linked to it accordingly.

2.6 Management

Management is the last component of SAW, whose main duty is to ease the collaboration
between a SAW model and the human operator, while refining the model’s performance.
As it is depicted in Figure 2.11, this component is composed of planning, acquisition,
monitoring, refinement, and evaluation components.

Planning

Planning is an essential part of a SAW framework to accomplish a specific task. Based on
input parameters (current situation, feasible actions and goal), a planning algorithm should
efficiently handle the available resources [239]. Subsequently, it guides the whole system
to reach its goal by taking appropriate actions at the right time. In general, the planning
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Figure 2.11: The Building Blocks of the Management Component

algorithm is in the form of a constrained optimization problem. For example, the goal of
the planning algorithm in a Collision Warning System (CWS) [84] is to ensure safety of
the vehicle in unsafe situations. This is done by either providing safe driving hints for the
driver, or by physically taking actions, such as steering, braking, etc., to avoid a collision.
Meanwhile, the vehicle should also deal with communication bandwidth and other possible
constraints that are deemed shared resources.

Acquisition

Obtaining the most relevant data/information sources for perception phase is another
crucial task that lies in Management component. This is mainly due to the complexity
of some environments, such as connected cars, where the number of data/information
resources is high. Heintz and Dragisic [96] tackle this problem by annotating the sensors
based on their semantic structure. Therefore, if the ontologies defined for both sensors
and the services match, then it means that the sensors are gathering relevant data for that
specific service.

Monitoring

It is through the monitoring process that the human operator of a SAW framework (the
driver in VANET environment) gets to analyze the current situation, its threat, and its
impact to the future. Human-Computer Interaction units are among the most useful tools
for monitoring the SAW output for the human operator [162]. Besides, the impact of the
SAW framework on the human operator is also diagnosed in this work.
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Evaluation

Perhaps the most important role in the management component of a SAW system is
played by the evaluation step. Imprecise evaluation may lead to operational errors. Time,
performance, source, and goal are the main criteria for evaluating a SAW framework that
are both domain-specific and application dependent (See [113]).

• Time is one of the main evaluation metrics in a VANET that is usually defined
situation-specific. Some of the most common time metrics are: Time To Predict
Collision (TTPC) [210], Time To React (TTR), TTE (Time To Enter), TTD (Time
To Disappear), TTB (Time To Brake), TTK (Time To Kickdown), TTS (Time To
Steer), [97], TTC (Time To Collision) [157], Post-Encroachment Time (PET) [194],
and Deceleration to Safety Time (DST) [197].

• Goal metrics represent the enhancement/degradation of certain factors in a domain-
specific application. In the Internet of Cars, steering and braking behavior, con-
flicts and driving errors, driver workload, physiological response, and glance frequen-
cies [128] can be chosen as goal evaluation criteria.

• Performance criteria are mainly related to the efficiency of a SAW model in different
aspects. Uncertainty is one of those aspects whose evaluation plays an important
role in improving the performance of a SAW model. Uncertainty Representation
and Reasoning Evaluation Framework (URREF), proposed by Costa et al. [55], is a
complete framework for uncertainty evaluation that aims to improve metrics such as
timeliness, accuracy, and confidence.

• Source evaluation becomes important when dealing with shared and access-time-
limited resources for data/information acquisition. In such environments, a well-
designed SAW model should be able to provide its components, the richest input
data/information, while keeping the shared sources as free as possible for others’ use.
Moreover, other relative issues such as low bandwidth, low storage, etc., may also
appear in a VANET. Therefore, resource allocation metrics [75] are deemed useful in
this category.

Refinement

Refinement of a SAW model is basically focused on the human operator, and it deals with
refining the whole process to alleviate the pressure on the driver beyond the wheel [38, 165].
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2.7 Discussion

Our observations on the different SAW methods and their capabilities in covering different
SAW components are presented in Table 2.1. As seen in Table 2.1, MEBN, along with

Table 2.1: Comparison of different SAW methods
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BN × × X × × × × X X × × X X ×
DL X × × × × × × × × X × × × ×

UML X × × × × × × × × X × × × ×
DBN × × X × × × X X X × X X X X
HMM × × X × × × X X X × X X X ×
FBN × × X × × X × X X × × X X X
DFG × × × X × × × × × × × × × ×
PN × × × X × × × × × × × × × ×
SPN × × × X × × × × X × × × × ×

FOPL × X × × × × × × X X × × × ×
FOFL × X × × × X × × × X × × × ×
MLN × X × × × × × × X X × × × ×
FOL × X × × × × × × × X × × × ×
PRM X × X × × × × × X X × × × ×
BUGS X × X × × × × × X X × × × ×
OOBN X × X × × × × × X X × × × ×
ANN × × × × X × × × × × × X × ×
SVM × × × × × × × X × × × X × ×

FMEBN X X X X × X X × X X X × X ×

their Fuzzy extension, are the top model in covering various aspects of perception, com-
prehension, and projection components. Other models that handle semantic and causal
relationships simultaneously, are also considered powerful tools for perception and com-
prehension. Besides, temporal PGMs, such as DBN and HMM, have also shown good
performance in comprehension and projection. As we also discussed in section 2.5, GT
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is a promising approach for projection. Moreover, some PGM tools, such as BN, DBN,
and FBN, are capable to model actions and action selection through incorporating utility
nodes. Therefore, they can be modified and employed in a game-theoretic IA algorithm.
This is why most of the PGMs are deemed potential methods in modeling GT. Obviously,
MEBN are the best SAW framework that incorporate all almost all the SAW components.
However, MEBN lack learning capability and incorporation of ML techniques, which ad-
dressing them can a future direction for this powerful model.

2.8 Summary

In this chapter, we highlighted the role of Situation Awareness (SAW) in the Internet of
Cars concept, by proposing an in-depth review on the different SAW components, and
explaining how different relevant methods can model the main aspects of each component.

In the proposed SAW taxonomy, the perception component entitle entity and rela-
tionship as its main aspects. Subsequently, different models/methods that are capable of
perceiving different types of relationships are introduced. The comprehension component
is consisted of Situation Assessment (SA) and Threat Assessment (TA) components. We
show in that uncertainty and semantics analysis are the two most important aspects of the
comprehension component. Besides, ambiguity handling, timeliness, and Machine Learn-
ing (ML) are also identified as important concepts in comprehension. Impact Assessment
(IA) and Decision Making (DM) are the modules that aim to predict the future of a certain
situation, and decide on the proper action, respectively. Notion of time, along with ML,
Probabilistic Graphical Models (PGMs), and Game Theory (GT) are distinguished as the
main concepts and approaches that facilitate projection in SAW. The final SAW compo-
nent is management that mainly deals with interacting with human operators, refining the
processes, and evaluating the whole model.

The paradigm of Internet of Cars is fast becoming reality, and it is crucial to know the
ups and downs of different methods in SAW. Therefore, we discussed different approaches
that show various capabilities in handling major aspects of SAW components. The com-
parison made in this chapter can help in recognizing the solid directions of SAW research,
and their applicability in the Internet of Cars.
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Chapter 3

Low-Level Data Fusion for
Cooperative Localization

One of the challenging tasks in Vehicular Ad-hoc Networks (VANETs) is to find an accurate
localization information. In this chapter, we have addressed this problem by introducing
a novel approach based on the idea of cooperative localization. Our proposed scheme is
based on a generic Low-Level Data Fusion (LLDF) model for VANETs, which is able to
incorporate different LLDF techniques as well as VANETs capabilities, such as vehicle-to-
vehicle (V2V) communication, to integrate the available data and provide information for
the interested entities. Accordingly, our LLDF model is used to fuse the low-level data
generated from the physical sensors installed on the vehicles, and take advantage of the
V2V communication, to cooperatively improve the accuracy of the localization information
of the vehicles. Moreover, further improvement has been achieved by estimating the vehi-
cle prior mean and covariance using Unscented Transform (UT) together with Sequential
Decentralized Extended Kalman Filtering.

3.1 Introduction

The most important features of VANETs that differentiate it from conventional Intel-
ligent Transportation Systems (ITS) are their network-based structure, and their capa-
bility in communicating with other vehicles, Road-Side Units (RSUs), and the infrastruc-
ture through vehicle-to-vehicle (V2V), vehicle-to-RSU (V2R), and vehicle-to-infrastructure
(V2I) communications [83]. This provides the vehicles and their drivers with the informa-
tion needed by the applications (sometimes called “services”). In other words, vehicles
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communicate with each other (V2V) to share any kind of information that might be help-
ful for serving a running application. For example, vehicles moving on the same lane can
send their velocity information to each other to provide information on safe speed under
safety service.

The information flowing between vehicles, RSUs, and the infrastructure are usually
composed of various context-based attributes. For example, the information related to
a safe driving service can be attributed with the real-time location and speed of vehicle,
as well as its distance to the neighboring vehicles, and the road condition. Vehicular
communication systems allow cars in the same zone to instantly communicate with one
another over a wireless network, to exchange these attributes [209]. One of the important
attributes of information in VANETs is location, whose accurate calculation is a challenging
issue [41]. Location of a vehicle is often determined by using commonly used sensors such
as odometer and Global Positioning System (GPS). Although using GPS is fairly easy
and has low-cost, it sometimes results in inaccurate measurements which is mainly due
to satellite blockage, especially in urban areas; therefore, the problem of localization in
VANETs remains an open issue.

This chapter proposes a new localization approach for finding the location of a vehicle
using vehicle motion model (for modeling the dynamic motion model of a vehicle) along
with V2V communication, and a novel low-level data fusion framework in VANETs [80].
We measure the belief of each vehicle about its current location using Extended Kalman
Filter (EKF) [215], and then improve it by communicating with the neighboring vehicles
and incorporating their beliefs about the location of that vehicle. This approach allows us
the simultaneous and efficient use of all the available resources of data unlike inability of
the existing systems. This would leads us to achieve a real-time autonomous framework in
VANET due to its recursive online location estimation and ability to recover from failure.

3.2 Background and Related Work

The first two levels of the JDL model constitute the Low-Level Data Fusion (LLDF). This
section briefly introduces the main challenges that LLDF faces, and presents a generic
taxonomy [116] for that. Besides, we describe the method we have adopted to our new
localization approach for VANETs, and introduce major state estimation filtering algo-
rithms.
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Figure 3.1: Taxonomy of data-related fusion aspects [116]

3.2.1 Low-Level Data Fusion

The basis of VANETs is established on the underlying data that is made available through
various sources. VANETs can help the driver to have a safer, more secure and convenient
driving experience by exploring these data, and providing useful mobile information, such
as safe distance from the leading vehicle, or real-time routing service, while also satisfying
the green environment requirements implicitly. However, The main challenge is that such
information is hidden among a huge amount of low-level data gathered from various on-
board sensors, as well as communication links. This is clearly requires a Low-Level Data
Fusion (LLDF) process that provides us with the proper information upon necessity.

Various aspects of LLDF, which is also known as Multi-Sensor Data Fusion (MSDF),
is thoroughly reviewed by Khaleghi et al. [116]. In this paper, the authors propose a
data-centric taxonomy of MSDF methodologies, which can be efficiently used to select the
appropriate methods in resolving different challenges in MSDF. Khalgehi et al. [116] sum-
marize these challenges to: data imperfection, outliers and spurious data, conflicting data,
data modality, data correlation, data alignment/registration, data association, processing
framework, operational timing, static vs. dynamic phenomena, and data dimensionality.
These issues are structurally arranged in a taxonomy that is illustrated in Figure 3.1

3.2.2 Localization in VANET

A categorization of different approaches of localization in VANETs is introduced in [41],
in which the methods classified are based on: Global Positioning Systems, Map Matching,
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Dead Reckoning, Cellular Localization, Image/Video Processing, Localization Services,
and Relative Distributed Ad-Hoc Localization. Although each of the methods in each of
the groups, deals with the problem of localization in VANETs by taking advantages of the
basic methods under this category, only a few methods are based on combined approaches.
We introduce here some interesting relevant contributions that are either classified under
one of the categories mentioned above, or is an integration of some of them.

In [7], the vehicle localization is performed based on the directional information using
dual radios. The localization is based on measuring the inter-radio distances between
each node (vehicle) to other nodes (vehicles) within their proximity. This directional/dual
wireless radio localization (DWRL) scheme does not require the GPS and the algorithm
consists of semi-localization and rigid-localization. One of the nodes is designated/located
as sing node to initiate the localization process. The sink node then selects within its
wireless range a node to be semi-localized. Next, in the rigid localization other unknown
nodes are located with respect to the known locations of the sink node and semi-localized
node.

The idea of using radio-range techniques for measuring the distance (radio-location)
between a sender and a receiver is mainly discussed in [45]. In this paper, different radio-
ranging distance measurement methods are categorized based on the way the distance is
estimated. Accordingly, the distance between the sender and the receiver is estimated based
on theoretic modeling of path loss attenuation of the radio-location signal. Moreover, the
distance can be estimated from Angle of Arrival (AOA) as well as Time of Arrival (TOA)
information as they measure the angle of incoming signal at the receiver and one-way
propagation time between transmitter and receiver, respectively. Further the distance can
be estimated by measuring the Time Difference Of Arrival (TDOA) between the pair of
receivers.

Yao et al. in [231] propose a cooperative positioning (CP) method that fuses kinematics
information as obtained from GPS or other kinematic sensors, with distance measurements
calculated based on radio-ranging techniques such as Time Of Arrival (TOA) and Time
Difference Of Arrival (TDOA). Moreover, they improve the accuracy of vehicles positions
within each vehicle cluster by employing a routing algorithm presented in [39]. Similarly,
Ou [171] presents a localization method for VANETs that relies on Road-Side Units (RSUs).
In the proposed scheme, the author assumes that there is a pair of RSUs deployed on either
side of the road, communicating with the passing vehicles constantly. Further studies on
the effect of RSU deployment, beacon collision and failure are discussed, and enhancements
are done to deal with such issues. In this proposed method, each vehicle communicates
with each of RSUs through broadcasting beacon messages, and estimates its position by
measuring the distance to each RSU using radio-ranging techniques such as TOA or TDOA.
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Cooperative vehicle localization using car-to-car communication is addressed in [168]
and [149] which are involved with a European project called Cooperative Vehicle Local-
ization (CoVel). In these papers, the authors propose a comprehensive framework that
incorporates a variety of localization methods in different classes, as discussed in [41],
which are able to tackle different levels of available information. In their framework, the
final position estimation is achieved by combining the output of Absolute Positioning,
Relative Positioning, and Group Map Matching components. These components also use
various sources of data/information obtained from a data access system called EDAS (EG-
NOS Data Access System), odometer, GNSS (Global Navigation Satellite System) receiver,
car-to-car communication, and a digital map.

The idea of using distance measurements for improving the accuracy of location es-
timation based on GPS is introduced in [6]. In their proposed framework (VLOCI), the
authors assume that all vehicles are equipped with GPS, and therefore have an estima-
tion of their current location. Besides, the vehicles are deemed to move on a single lane,
and do not communicate with other vehicles on different lanes. Continuously, and after
measuring the distance to their neighbors, each vehicle collects estimated location of its
neighbors (found by GPS) and computes its own location in their coordinate frames, using
the measured distance. Finally, the improved estimated location is obtained by calculating
a weighted sum over the obtained estimated locations, where the weights are proportional
to the distance of neighbors. In [6], the two techniques used to measure the distance are
based on time-of-arrival (TOA) and the received signal strength. The accuracy of these
techniques can be modeled such that when the distance to be measured increases, the
accuracy of the measurements taken also decreases. Therefore, measuring the distance to
vehicles within close range is more accurate than measuring the distance to those further
away. Further the vehicles are assumed to be traveled in one lane and in the same direc-
tion. In order to estimate the position, each vehicle receives messages from its neighbors
containing their estimated positions. Also, each vehicle can measure the distance between
itself and its neighbors. To tackle the variance in erroneous distance measurements, mul-
tiple measurements can be taken for which the average can be used as the final distance
measurement.

Our contribution is relevant to [6], and improves the proposed framework in [6] by
eliminating the restriction of all vehicles having GPS, and employing data fusion techniques
such as EKF to estimate the location of vehicles by predicting it using predefined dynamic
motion model, and refining it using sensor model and the information received from other
vehicles. Besides, we use both TOA and AOA for measuring the location of the neighboring
vehicles in the polar coordinate frame, which further helps to communicate with the vehicles
on other lanes. Finally, we improve the location accuracy by computing a weighted sum
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over all of the estimated locations for each vehicle, where the weights are proportional to
the belief of each vehicle regarding its current position, which can be easily estimated using
the above mentioned data fusion filtering method.

3.2.3 State Estimation

In this section, we briefly describe the methods we have adopted for our new localization
approach in VANETs.

Bayesian Filtering

The most commonly used algorithm for the state estimation is the Bayesian filtering ap-
proach [215], which calculates the probabilities of multiple beliefs to allow a robot (which
is vehicle here) to infer its position and orientation. Bayesian filtering provides a general
framework to estimate the state of the system (the current location of all vehicles in our
case) based on probabilistic theory [181]. The general formulation of Bayesian filtering is
as follows:

bel(xt) =

∫
p(xt|ut,xt−1)bel(xt−1)dxt−1 (3.1)

bel(xt) =
p(zt|xt, z1:t−1, u1:t)bel(xt)

p(zt|z1:t−1, u1:t)
(3.2)

where xt, ut, and zt are the robot’s state vector, input control vector, and sensor measure-
ment at time t, respectively. Moreover, p(xt|ut,xt−1) and p(zt|xt) are “state transition”
and “measurement” probability density functions.

Using Markov assumption and the fact that the denominator does not depend on x (as
it will be the same for all values of x), we can express Equation 3.2 as follows:

bel(xt) = ηp(zt|xt)bel(xt) (3.3)

where η is a normalizing factor. Therefore, the belief of a vehicle about its current location
as denoted by bel(xt) in Equation 3.3, is normalized between 0 and 1 with constant η.

Extended Kalman Filter

Extended Kalman filter is an extended version of Kalman filter, which is a recursive state
estimator that constitutes the earliest tractable implementations of the Bayesian Filter. If
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the initial uncertainty is assumed to be Gaussian and the observation model and system
dynamics are linear functions of the state, then Kalman filters are the optimal estima-
tors. However, since most of the systems are not strictly linear we need to apply EKF,
which linearize the system using first-order Taylor series expansions. Although the main
advantage of Kalman filter is its computational efficiency, it can represent only unimodal
distributions which limits them to local localization. Moreover, Kalman filters cannot sat-
isfactorily solve ambiguities such as symmetries, and therefore, for instance, it is unable to
track an object (e.g. robot/vehicle) in case of failure. Another shortcoming of Kalman fil-
ters is that, they cannot incorporate negative information. Finally, Kalman filters provide
no sound solution to the data association problem and false data associations often lead
to disastrous failures [62].

Unscented Transform

Unscented Transform (UT) is incorporated, for further refinement of the EKF estimation.
In fact, EKF produces inaccurate estimations when the predict and update phases of the
state estimation include highly non-linear functions. This is where using UT helps to
overcome such deficiency. The UT is based on choosing a set of S consists of sigma points
Xi and weights Wi so that the resulting estimate on the state xt and covariance Pt become:

x̂t =
2n∑
i=0

Wmean
i Xi (3.4)

P̂t =
2n∑
i=0

W cov
i [Xi − x̂t][Xi − x̂t]

T +Qt (3.5)

where n, T and Qt represent the number of states, transpose and process noise, respectively
and the weights of Wmean

i and W cov
i are calculated accordingly:

Wmean
0 =

λ

n+ λ
(3.6)

W cov
0 =

λ

n+ λ
+ (1− α2 + β) (3.7)

Wmean
i = W cov

i =
1

2(n+ λ)
, i = 1, 2, · · · , 2n (3.8)

where the constant α which determines the spread of the sigma points, is usually set to a
small positive value (e.g. 10−4 ≤ α ≤ 1) with a default value of 10−3 and the parameter β
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is used to incorporate the prior knowledge of the distribution with a default value of 2 [49].
The scaling parameter λ is given by λ = α2(n + κ) − n with κ = 3 − n [108]. Note that
generation of sigma points Xi(0 ≤ i ≤ 2n) require cholesky factorization of the covariance
matrix Pt and can be calculated by:

σt ← 2n columns from ±c
√
Pt +Qt

Xt(0) = xt

Xt(i) = σt(i) + xt

where Qt matrix is related to the process noise covariance, the coefficient c =
√
n+ λ and

σt represents 2n eigenvectors generated by Cholesky decomposition of the positive and
negative square roots of the covariance matrix [88].

3.3 Cooperative Localization Using V2V Communi-

cation and Data Fusion

Our general VANET framework for information gathering and dissemination consists of
Context-Aware Information Processing (CAIP) unit, Low-Level Data Fusion (LLDF) unit
and Cognitive Gateway [80]. These units are deployed hierarchically, and interact with
each other to provide necessary information for a service (e.g., congestion detection). In
this context, a service with an abstract definition, such as congestion detection, first enters
into the framework through CAIP unit. Then, after determining different information
attributes necessary to define a service (parameters), their values are computed using
various sources of data, such as physical sensors in LLDF unit. Among various attributes,
one of the very important attributes in VANETs is the location of the vehicles which is
often measured using typical GPS sensors. Considering the fact that the required accuracy
of location is service-based [41], it is necessary (in critical services such as safe driving)
to get more accurate location estimation. We tackle this problem by incorporating data
fusion methods along with V2V communication. In the following, we explain the LLDF
unit followed by our new localization approach.

3.3.1 Localization Improvement Using V2V Communication

To represent the vehicle motion model, we have used the well-known Ackermann steering
model [5, 91] coupled with a simple vehicle driving model that uses gas and brake pedal,
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and the steering wheel sensors to find the wheels angle and vehicle’s velocity. In this model,
the current normalized amount of gas and brake are calculated as

C(t) =
αC(t)

αCmax
D(t) =

αD(t)

αDmax
(3.9)

where αC and αD are the current gas and brake pedal angles, respectively, αCmax and
αDmax are their maximums. Considering that the wheel’s radius is Rw and its maximum
velocity is Vmax, current velocity of vehicle is attained using the expressions below.

V (t) =
(C(t)−D(t))× Vmax

Rw

(3.10)

Therefore, the current input of the system can be defined by a vector ut = [C(t) D(t) φ(t)],
where C(t) and D(t) are current gas and brake amount respectively, and φ(t) is the current
steering wheel angle. Consequently, nonlinear state transition of the vehicle becomes

xt = f(ut,xt−1) =

 V (t) cos(β(t− 1))∆t+ x(t− 1)
V (t) sin(β(t− 1))∆t+ y(t− 1)
V (t)
l

tan(φ(t))∆t+ β(t− 1)

 (3.11)

where xt = [x(t) y(t) β(t)]′ is the state of the vehicle at time t, ∆t is the discretization
size, and β(t) is the vehicle’s yaw (heading) angle with respect to the x-axis. With this
dynamic motion model, we can then implement an EKF as follows:

xt = f(ut,xt−1) + εt
zt = h(xt) + δt

(3.12)

in which εt and δt are process and measurement Gaussian errors, respectively, and h(xt)
is the sensor model, and its output is the sensor measurement on state xt. Therefore, zt
is the sensor measurement that is perturbed with Gaussian error. Finally, the beliefs of
each vehicle about their current state xt, which is their current location, is calculated using
Equation 3.1. By calculating the corresponding beliefs, the vehicles estimate the location of
their one-hop neighbors using TOA and AOA measurements and share this measurements
with them. One-hop neighbors of a vehicle, are those neighboring vehicles which are ac-
cessible using one of the communication protocols such as DSRC (Dedicated Short Range
Communications) [161]. Note that DSRC is a medium range wireless communication sys-
tem currently developed and designed for automotive applications and the spectrum that
can be used, in the range of 5GHz, is allocated by local government telecommunications
authorities. The spectrum is partitioned into a number of 10 MHz channels following the
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802.11p specifications. Also, its physical characteristics makes it suitable for the vehicle on
road-side applications, securing reliable communications within the reasonable distances.
The range and the data rate of this fully distributed standard protocol are 300m and 10-50
Mb/sec, respectively [201]. The detailed discussion about the implementation of the DSRC
protocol for the V2V communication can be found in [186]. In Algorithm 1, Qt is the

Algorithm 1 Extended Kalman Filter (EKF) Algorithm

1: procedure EKF(xt−1,Pt−1,ut,zt)
2: x̄t ← f(ut,xt−1)
3: P̄t ← GtPt−1G

′
t + Qt

4: Kt ← P̄tH
′
t(HtP̄tH

′
t + Rt)

−1

5: xt ← x̄t + Kt(zt − h(x̄t))
6: Pt ← (I−KtHt)P̄t;
7:

8: return xt,Pt

control error matrix, Rt denotes the measurement error matrix, and Kt, Gt, and I are the
Kalman gain, Jacobian, and Identity matrices, respectively.

Let a vehicle and its neighbors set at time t are represented by ith vehicle (vi) and
Nt(vi). Furthermore, the distance and the angle between the two vehicles at time t using
TOA and AOA are calculated as:

d̂
(ij)
t = d

(ij)
t +N (0, g2)

γ̂
(ij)
t = γ

(ij)
t +N (0, ω2)

(3.13)

where d
(ij)
t and γ

(ij)
t are error-free distance and angle between vi and vj at time t, which

are then perturbed with Gaussian error with standard deviation g and ω, respectively. Let
vj ∈ N

(i)
t , then its estimation about the location of vi is expressed as:

x
(ij)
t = d̂

(ij)
t cos(γ̂

(ij)
t )

y
(ij)
t = d̂

(ij)
t sin(γ̂

(ij)
t )

(3.14)

where x
(ij)
t and y

(ij)
t are the estimation of vi’s location in terms of the coordinate frame of

vj. Consequently, vi improves its belief ρ about its location by calculating a weighted sum
over estimated locations by its neighbors.

x
(i)
t = η(x

(i)
t × ρ

(i)
t (x

(i)
t ) +

∑
j∈N(i)

t
x

(ij)
t ρ

(j)
t (x

(j)
t )) (3.15)
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where x
(i)
t is the location of vi at time t, and ρ

(i)
t (x

(i)
t ) is its own belief about its location,

which is calculated using Equation 3.16, for µ and σ2 as the outputs of the EKF model.

ρ
(i)
t (x

(i)
t ) = N (x

(i)
t ;µ, σ2) (3.16)

Furthermore, x
(ij)
t is the estimated location of vi in the coordinate frame of vj, and ρ

(j)
t (x

(j)
t )

is vj’s belief about its own location. Here, η is the normalization factor and is equal to:

η =
1

ρ
(i)
t +

∑
j∈N(i)

t
ρ

(j)
t

(3.17)

Note that the covariance of [x
(ij)
t y

(ij)
t ]′ is [183]:

Pt
(ij) =

[
P

(ij)
xx P

(ij)
xy

P
(ij)
yx P

(ij)
yy

]
(3.18)

where

P (ij)
xx = r̂

(ij)
t g2 cos2(γ̂

(ij)
t ) + ω2 sin2(γ̂

(ij)
t ) (3.19a)

P (ij)
yy = r̂

(ij)
t g2 sin2(γ̂

(ij)
t ) + ω2 cos2(γ̂

(ij)
t ) (3.19b)

P (ij)
xy = P (ij)

yx = (g2 − r̂(ij)
t ω2) sin(γ̂

(ij)
t ) cos(γ̂

(ij)
t ) (3.19c)

in which r̂t denotes d̂2
t .

3.4 Traffic Entity Assessment

The Low-Level Data Fusion (LLDF) framework, is located in the middle part of our pro-
posed VANETs framework in [80]. This unit collaborates with the Context-Aware Infor-
mation Processing (CAIP) unit, which is responsible for context-aware information dis-
semination after receiving list of the information attributes (parameters) to send out the
estimated values. So, LLDF interacts with the low-level/physical sensors and the data pool
from which it can select the relevant information, fuse them, and find the values for the
required attributes by the CAIP unit. We use the proposed LLDF framework to implement
a Traffic Entity Assessment (TEA) unit in our general Attention Assist Framework (see
Chapter 6). As shown in Figure 3.2, the inputs of the TEA unit are selected according
to the submitted service by the CAIP unit. In fact, the attributes of the information pro-
duced by the CAIP unit are the entities that the TEA unit needs to determine. Knowing
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Figure 3.2: The block diagram of our proposed Traffic Entity Assessment unit incorporating
Low-Level Data Fusion (LLDF) framework

the attributes, a specific data source (general definition of a sensor) or a bundle of data
sources is selected from a set of data sources containing sensors on the ego vehicle, sensors
on neighboring vehicles (V2V), and information provided by RSUs or infrastructures. Then
the selected data is post-processed, and fed into the data fusion unit that employs various
LLDF methods such as Extended Kalman Filter (EKF), to fuse the data and estimate a
value for the given attributes. Finally, the completed information is sent back to the CAIP
unit for dissemination.

3.5 Cooperative Localization Experiments

We realize the framework proposed in the last section by tackling the localization problem
which is an important issue in many VANETs services such as safe driving and congestion
detection. For the data source, we use the GPS data of each vehicle and collaborate with
other vehicles to find the estimation of the ego vehicle’s location using TOA and AOA
radio-ranging techniques. EKF is used to predict the next location of the vehicle using its
dynamic motion model, and update this prediction using GPS sensor measurements. The
estimation of the ego vehicle location is further improved by taking a weighted average
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over the estimations of all the neighboring vehicles.

3.5.1 Simulations Setup

In our simulations, we define two test cases (Test Case 1 and Test Case 2), for which
the results of the proposed approach is evaluated with and without V2V communication.
In both cases, we evaluate the efficiency of the method by assuming that all vehicles are
equipped with erroneous GPS sensors that may provide inaccurate location information
due to blockage problem [41]. The GPS accuracies of all 5 vehicles considered here are
varied at different time slots as illustrated in Table 3.1, where each column represents a
Time Window (TW) for which the GPS standard deviation is set to a specific value. For
example, the standard deviation (STD) of GPS for vehicle 1 is 17 from time slot 1 to 5,
18.9 from time slot 6 to 13, etc. as shown in Figure 3.3. In Table 3.1, although the length

Table 3.1: Time-varying GPS STD of all vehicles

V.I. TW1 TW2 TW3 TW4 TW5 TW6
v1 [1:5],17.0 [6:13],18.9 [14:19],12.9 [20:24],13.6 [25:28],9.3 [29:40],7.4
v2 [1:9],7.1 [10:13],8.9 [14:20],7.6 [21:24],6.3 [25:29],6.2 [30:40],5.4
v3 [1:10],4.1 [11:13],4.3 [14:19],5.7 [20:23],6.3 [24:34],5.2 [35:40],4.4
v4 [1:9],3.0 [10:16],2.3 [17:20],1.7 [21:23],1.3 [24:33],2.2 [34:40],3.4
v5 [1:8],1.1 [9:13],2.3 [14:19],3.7 [20:23],2.3 [24:31],1.2 [32:40],5.4

of the TW is different for each vehicle, the total number of time windows are the same
which is equal to 6. Note that the motion model error of each vehicle and its initial location
are set randomly at the beginning of iteration, where the iteration refers to simulation.
Also, in the following simulation analysis, the motion model parameters of C(t), D(t) and
φ(t) are varied in the same way for all vehicles in the scenario assuming that all gas, brake
and wheel angles have the same value for all vehicles time slot by time slot for sake of
simplicity. Moreover, all vehicles are assumed to have communication links between them
and could calculate TOA and AOA accordingly. The neighborhood adjacency matrix at
time t, Nt, as defined in Equation 3.20, is considered to be static,

Nt =


0 1 1 1 1
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
1 0 0 1 0

 t = 1, · · · , T (3.20)
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Figure 3.3: Time-varying GPS STD of vehicle 1

where the rows and columns of Nt matrix are indexed from 1 to 5 representing vehicle’s
number as 1 to 5, and T refers to total number of time slots. In practice, the duration
of each time slot t can be few seconds before the vehicles can change their speeds and
directions, whereas the time to compute TOA, DOA and EKF can be less than a second
which results in real-time implications. The configuration of the vehicles at their initial
states is displayed in Figure 3.4, where x and y-axes are in meters and there are 5 different
lanes with lane-width of around 5m (16ft).

Simulation results show how different approaches, namely, GPS, EKF, V2V without
UT, and V2V with UT perform, given the test cases and scenarios introduced above. In
addition, we have run the same test cases on the VLOCI model proposed in [6] to show the
advantage of our proposed method among similar works in the literature. VLOCI assumes
that all vehicles are in the same lane, thus, have equal y coordinates on an x−y coordinate
system. To model this framework, we simply remove the error-free angle measurement
γ

(ij)
t from Equation 3.13, and leave it with just the uncertainty about AOA. Therefore,

Equation 3.13 becomes:

d̂
(ij)
t = d

(ij)
t +N (0, g2)

γ̂
(ij)
t = N (0, ω2)

(3.21)

whereN (0, ω2) is normal distribution with a mean of 0 and standard deviation of ω radians.

The results of the following test cases are evaluated by comparing them with the ground
truth and calculating the corresponding Mean Squared Error (MSE). The traversed path
of the ego vehicle for each test case is also displayed.
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Figure 3.4: Initial configuration of the vehicles

3.5.2 Experimental Results: Straight Path Test Case

Here, we consider the vehicles are moving along a straight-line path with equal velocity.
As mentioned earlier, we further consider that the GPS sensor of each vehicle provides
data with varying accuracies at different time slots due to the blockage (see Figure 3.3),
and the vehicles can communicate with their neighboring vehicles. For our data fusion
method, we have used EKF to estimate the state of each vehicle, and run the simulation
for 200 times. Motion model error of each vehicle and its initial location are set randomly
at the beginning of each iteration, and the observation error is obtained at the specific time
slots based on given GPS accuracy. From Figs. 3.3 and 3.5, it is obvious that using sensor
data fusion and state estimation by EKF, the corresponding belief of each vehicle varies
with the GPS accuracy. Figure 3.5 shows belief about the location of vehicle 1 with and
without UT. After all the above experimental setup, we have used our proposed method
based on V2V communication to improve the localization. The corresponding result of the
estimated traversed path for the ego vehicle is presented in Figure 3.6, which shows the
improvement of the location estimation using V2V communication (X and Y are expressed
in meter(m) where each X-unit and Y -unit are 15m and 1m, respectively). It is noted
that we have the same X- and Y -axis representations for Figs. 3.7 and 3.8 as well.

Table 3.2 shows the results of mean squared error (MSE) calculated over 200 iterations.
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For each iteration, the MSE is calculated over a certain period of time tb and te, to eliminate
the effect of random setting for initial locations. In our simulation, we set tb = 2 and
te = T , where 2 refers the second time slot and T is the last time slot. Based on the results
in Table 3.2, the estimation of traversed path for each vehicle is improved using V2V
communication (without and with UT) (in compare to the trivial EKF and GPS sensor
only localization). We have also included the results after running an implementation
of VLOCI [6] on the same scenario. Noticeably, since VLOCI does not consider lateral
displacement between vehicles, its uncertainty about a neighboring vehicle on a direction
with a particular angle increases which consequently, leads to very high MSE.
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Figure 3.5: Belief of vehicle 1 at different time slots.

Table 3.2: MSE of different methods in Test Case 1

V.I. GPS EKF VLOCI [6] V2V (w UT) V2V (w/o UT)
v1 24.16 22.66 124.5 5.58 5.33
v2 18.54 17.01 71.76 7.15 6.78
v3 15.09 8.14 113.5 6.35 5.34
v4 10.71 11.86 127.3 7.15 5.94
v5 11.49 8.46 121.6 7.18 5.98
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Figure 3.6: Estimation of traversed path by vehicle 1 using different methods.

3.5.3 Experimental Results: Curved Path Test Case

In this test case, the ego vehicle travels in a curved path. The corresponding estimation
results using only GPS and using our EKF filter-based fusion technique as used to integrate
GPS information with other sensors as well as combining the belief of other neighboring
vehicles, are presented. There are two scenarios, i.e. Scenario I and Scenario II, for this set
of experiments. In Scenario I, we consider that GPS is continuously turned on. In Scenario
II, we consider that GPS fails for a certain period of time (e.g. between time slots 21 to
30 in our simulations) to show the effect of this failure and the result of its improvement
using the belief integration of other vehicles. All the experiments are conducted for 200
iterations and the MSE values are calculated by averaging over all runs.

Discussions of the results for Scenario I

Figure 3.7 shows the path traveled by vehicle 1 in Scenario I. The path estimated by V2V
(shown in red) is consistently much closer to the ground truth (shown in green) as displayed
in Figure 3.7. This can be further illustrated in terms of calculated Mean Squared Error
(MSE). As it can be seen in Table 3.3, the MSE obtained using V2V communication is
much smaller than that of EKF and GPS alone.
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Figure 3.7: Traversed path by vehicle 1, and its estimations using different methods (with
GPS is continually turned on)

Table 3.3: MSE of different methods in Test Case 2 (Scenario I)

V.I. GPS EKF VLOCI [6] V2V (w UT) V2V (w/o UT)
v1 23.96 22.23 73.69 5.64 5.56
v2 18.51 17.02 61.52 7.96 6.99
v3 14.97 8.09 88.99 6.42 5.47
v4 10.64 11.65 90.24 7.31 5.66
v5 11.64 9.27 75.9 7.00 5.85

Discussion of the results for Scenario II

In the second set of experiments, GPS data is lost for a certain period of time and the
estimation is not accurate for that period (i.e. between the time slots 21 and 30 in our sim-
ulation). As shown in Figure 3.8, the corresponding path cannot be estimated accurately
using only the GPS (shown in light blue); however, the path estimated using V2V and
EKF are much closer to the ground truth. In Figure 3.8, the EKF results without using
V2V communication is also depicted (shown in blue). The MSE of each method calculated
for each vehicle is listed in Table 3.4. From the experimental results performed for both
scenarios in test case 2, it can be inferred that the MSE achieved using V2V and EKF

46



−10 0 10 20 30 40 50
−10

0

10

20

30

40

X

Y

Traversed path by vehicle 1

 

 

Ground Truth
GPS
EKF
V2V
V2V with UT

Figure 3.8: Traversed path by vehicle 1, and its estimations using different methods (with
GPS is turned off during the time slots 21 to 30)

Table 3.4: MSE of different methods in Test Case 2 (Scenario II)

V.I. GPS EKF VLOCI [6] V2V (w UT) V2V (w/o UT)
v1 24.22 22.64 72.53 8.53 7.63
v2 18.28 16.24 60.36 7.21 7.04
v3 15.20 7.96 93.12 6.02 4.60
v4 10.81 11.36 84.64 7.02 5.63
v5 11.53 8.44 77.74 6.72 5.80

is much lower than using the other methods as shown in Tables 3.3 and 3.4. Moreover,
similar to test case 1, VLOCI still performs weakly due to poor direction detection upon
receiving a V2V signal. The proposed method thus provides an accurate estimation of the
current state over time for the entire path traveled (see Figs. 3.7 and 3.8).

3.5.4 Performance Evaluation

In this section, we evaluate the performance of the proposed framework from various as-
pects, namely, number of vehicles, Gaussian vs. Non-Gaussian error, and impact of Se-
quential Decentralized EKF (SDEKF).
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Various Number of Vehicles

We have shown here the performance of the proposed method by varying the number
of vehicles, or traffic density. As shown in Table 3.5, the performance improves with the
number of vehicles increases in normal situation when there is no outage of GPS (Test Case
1 and Scenario I) showing the significance of the proposed method. However, as expected
the performance drops slightly with increasing number of vehicles (higher traffic) due to
temporary GPS blockage in urban scenario (Scenario II) indicating the robustness of the
presented method in urban environments. Here, the neighborhood adjacency matrices Nt

Table 3.5: MSE of the proposed method (with UT) for Vehicle 1 with varying number of
vehicles

Num of Vehicles Test Case 1 Test Case 2 (Scenario I) Test Case 2 (Scenario II)
5 5.33 5.56 7.63
7 4.57 4.44 8.29
9 3.81 3.82 8.49

for number of vehicles of 7 and 9, are defined in Equations 3.22 and 3.23.

Nt =



0 1 1 1 1 1 1
1 0 1 0 0 1 0
1 1 0 0 0 1 0
1 0 0 0 1 0 1
1 0 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 1 1 0 0


t = 1, · · · , T (3.22)

Nt =



0 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0 1
1 0 0 1 0 0 1 0 1
1 1 1 0 0 0 0 1 0
1 0 0 1 1 0 0 0 1
1 1 1 0 0 1 0 0 0
1 0 0 1 1 0 1 0 0


t = 1, · · · , T (3.23)

Also, the lists of time-varying GPS STD for all 7 vehicles and 9 vehicles are depicted in
Tables 3.6 and 3.7.
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Table 3.6: Time-varying GPS STD of all 7 vehicles

V.I. TW1 TW2 TW3 TW4 TW5 TW6
v1 [1:5],17.0 [6:13],18.9 [14:19],12.9 [20:24],13.6 [25:28],9.3 [29:40],7.4
v2 [1:9],7.1 [10:13],8.9 [14:20],7.6 [21:24],6.3 [25:29],6.2 [30:40],5.4
v3 [1:10],4.1 [11:13],4.3 [14:19],5.7 [20:23],6.3 [24:34],5.2 [35:40],4.4
v4 [1:9],3.0 [10:16],2.3 [17:20],1.7 [21:23],1.3 [24:33],2.2 [34:40],3.4
v5 [1:8],1.1 [9:13],2.3 [14:19],3.7 [20:23],2.3 [24:31],1.2 [32:40],5.4
v6 [1:5],2.3 [6:12],1.1 [13:18],3.7 [19:22],2.3 [23:31],1.2 [32:40],5.4
v7 [1:9],5.4 [10:15],3.7 [16:23],1.1 [24:28],2.3 [29:32],2.3 [33:40],1.2

Table 3.7: Time-varying GPS STD of all 9 vehicles

V.I. TW1 TW2 TW3 TW4 TW5 TW6
v1 [1:5],17.0 [6:13],18.9 [14:19],12.9 [20:24],13.6 [25:28],9.3 [29:40],7.4
v2 [1:9],7.1 [10:13],8.9 [14:20],7.6 [21:24],6.3 [25:29],6.2 [30:40],5.4
v3 [1:10],4.1 [11:13],4.3 [14:19],5.7 [20:23],6.3 [24:34],5.2 [35:40],4.4
v4 [1:9],3.0 [10:16],2.3 [17:20],1.7 [21:23],1.3 [24:33],2.2 [34:40],3.4
v5 [1:8],1.1 [9:13],2.3 [14:19],3.7 [20:23],2.3 [24:31],1.2 [32:40],5.4
v6 [1:5],2.3 [6:13],1.1 [14:19],3.7 [20:23],2.3 [24:31],1.2 [32:40],5.4
v7 [1:9],5.4 [10:15],3.7 [16:23],1.1 [24:27],2.3 [28:31],2.3 [32:40],1.2
v8 [1:5],2.3 [6:13],1.2 [14:22],5.4 [23:28],3.7 [29:36],1.1 [37:40],2.3
v9 [1:4],2.3 [5:10],3.7 [11:19],5.4 [20:27],1.1 [28:31],2.3 [32:40],1.2

Correlated Gaussian and Non-Gaussian Error

In the above, we have considered uncorrelated Gaussian error. Here we show how the
performance varies with respect to correlated Gaussian error, which is generated by the
measurement error covariance matrix R defined as:

R =

[
σx ρσx
ρσy σy

]
(3.24)

where ρ is the correlation factor varied as ρ = 0, .1, · · · , .9 and σx, σy are the error variances
along x- and y-coordinates, respectively.

For illustration, Table 3.8 lists the average localization accuracy (MSE) of vehicle 1 with
respect to ρ by using GPS alone as well as EKF and V2V based methods. The illustrative
results are presented for test case 2 and scenario I when the number of vehicles is five and
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UT is considered. As we can see in Table 3.8, the results achieved by the proposed V2V
based method seem less sensitive to the correlated error due to less variation of the MSE
against ρ compared to the results obtained by GPS and EKF. In Table 3.9, the results of

Table 3.8: MSE of the proposed method (with UT) for Vehicle 1 for varying correlation
factor ρ

ρ GPS EKF V2V
0.1 24.45 23.08 5.52
0.3 25.51 25.17 5.61
0.5 26.99 25.96 5.72
0.7 28.70 26.47 5.67
0.9 29.78 26.40 5.90

performances for the above situation with non-Gaussian error are illustrated based on the
following measurement error covariance [154]:

R =

[
R11 R12

R21 R22

]
(3.25)

where R11 = (1/Ω)[(ν/%(2/ν, 2/ν)) − 1]σ2
x, R22 = (1/Ω)[(ν/%(2/ν, 2/ν)) − 1]σ2

y , R12 =
(1/Ω)[(ν/(2%(2/ν, 2/ν)))(1 + ρ)− 1]σ2

x, R21 = (1/Ω)[(ν/(2%(2/ν, 2/ν)))(1 + ρ)− 1]σ2
y with

Ω = 50, ν = 0.1, and %(m, `) = Γ(m)Γ(`)/Γ(m + `) [154]. As we can see in Table 3.9,

Table 3.9: MSE of the proposed method (with UT) for Vehicle 1 for non-Gaussian error

ν GPS EKF V2V
0.1 481.6 136.8 11.20
0.3 502.8 126.9 10.81
0.5 516.8 145.7 12.07
0.7 521.9 135.8 11.89
0.9 536.0 187.7 16.95

the degradation of performance for non-Gaussian error from that for Gaussian error, is
minimum for the proposed method.

Sequential Decentralized EKF

Here, we have shown the improvement of our vehicular localization performance by con-
sidering Sequential Decentralized EKF (SDEKF) [224], which improves the location esti-
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mation of the ith vehicle based on sequential filtering by its neighboring vehicles. Suppose
a vehicle and the set of its neighboring vehicles at time t are represented by vi and Nt(vi)
where the neighboring vehicles vj ∈ Nt(vi) and S is the size of Nt(vi). Let the initial
location estimation of the vehicle vi at time t is given by

x̂i(t|t) = x̂i(t|t− 1) +Ki(t)[zi(t)− hi(t)x̂i(t|t− 1)] (3.26)

where, Kalman gain

Ki(t) = P (t|t− 1)hi(t)[hi(t)P (t|t− 1)h′i(t) +Ri(t)]
−1

, and error covariance
Pi(t|t) = [I −Ki(t)hi(t)]P (t|t− 1)

. Then the subsequent jth estimates by the corresponding neighboring vehicles vj ∈ Nt(vi)
are as follows.

x̂j(t|t) =


x̂i(t|t) +Kj(t)[zi(t)− hi(t)x̂i(t|t)], j = 1
x̂j−1(t|t) +Kj(t)[zi(t)− hj(t)x̂j−1(t|t)],

j ∈ [2,S]
(3.27)

where
Kj(t) = Pj−1(t|t)hj(t)[hj(t)Pj−1(t|t)h′j(t) +Rj(t)]

−1

and
Pj(t|t) = [I −Kj(t)hj(t)]Pj−1(t|t)

Finally, the improved location estimate and the error covariance of vehicle vi at time t
become:

¯̂xi(t|t) = x̂S(t|t)
P̄i(t|t) = PS(t|t) (3.28)

The simulation results for Test Case 2 (Scenario I) with Gaussian measurement error and
the same experimental setup are presented in Table 3.10. Similarly, the simulation perfor-
mance for more neighboring vehicles are presented in Table 3.11. Comparing Tables 3.10
and 3.11, it can be found that the larger the number of neighboring vehicles the better the
performance of the SEKF scheme. As we see from the results in Tables 3.10-3.12, im-
proved performance has been achieved by SEKF for Gaussian error (for both uncorrelated
and correlated error cases). It can be mentioned that the results (not shown here) in case of
non-Gaussian error, the SEKF provides much better performance over the EKF, however
lower than the V2V based method. Moreover, the performance of the SEKF scheme is
evaluated for varying the number of vehicles and shown improved results in all test cases
(compare Tables 3.5 and 3.13).
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Table 3.10: MSE of the SEKF scheme in Test Case 2 (Scenario I)

V.I. GPS SEKF (w UT) SEKF (w/o UT)
v1 23.86 6.53 4.93
v2 18.53 7.65 5.52
v3 15.14 1.47 1.05
v4 10.78 2.29 1.79
v5 11.51 1.27 0.83

Table 3.11: MSE of the SEKF scheme in Test Case 2 (Scenario I)

V.I. GPS SEKF (w UT) SEKF (w/o UT)
v1 24.36 3.70 3.06
v2 18.45 4.52 3.53
v3 15.17 0.75 0.56
v4 10.79 1.43 0.95
v5 11.60 0.55 0.30
v6 11.53 0.41 0.36
v7 11.15 2.86 2.02
v8 11.40 1.07 0.77
v9 11.49 1.86 1.49

Table 3.12: MSE of the SEKF filtering scheme (with UT) for Vehicle 1 for varying ρ in
Test Case 2 (Scenario I) with correlated Gaussian error

ρ GPS SEKF
0.1 24.19 4.97
0.3 25.13 4.91
0.5 26.65 4.58
0.7 28.31 4.32
0.9 30.37 4.57

Computational Complexity

The computational requirement of the EKF is dominated by the need to store and update
the filtering-error covariance matrix. At each time step t, the computational complexity
of the EKF is O(n2), where n (n=3) represents the size of the state [40]. On the other
hand, TOA-ranging calculation is based on MLE (Maximum Likelihood Estimation) algo-
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Table 3.13: MSE of the SEKF filtering scheme (with UT) for Vehicle 1 with varying number
of vehicles

Num of Vehicles Test Case 1 Test Case 2 (Scenario I) Test Case 2 (Scenario II)
5 4.80 4.90 5.49
7 3.43 3.47 3.75
9 2.63 2.72 3.23

rithm [192], where the linear complexity of the MLE algorithm is O(L) with L represents
the size of the signal which varies as the total number of nodes. The order of the complex-
ity for the conventional MUSIC (Multiple Signal Classification) algorithm used for AOA
estimation is O(N3) where N is the length of the received signal (which is N=2) [158].

The computational time (in elapsed CPU seconds) for the proposed scheme including
the execution time of EKF, TOA, DOA are obtained using the PC with Pentium B940
Processor (2.0 GHz) and MATLAB implementation, which are listed as follows: EKF(
0.138 sec), TOA (0.029 sec), AOA (0.020 sec). Moreover, the time to change the speed and
the direction of a vehicle is compatible with the EKF computation (< 1 sec). Moreover, the
computational costs (i.e. CPU time) are 1.310 sec, 1.388 sec, 1.513 sec when the number
of vehicles are 5, 7, and 9, respectively. The computational time of the proposed approach
in highway scenario (e.g. Test Case 1) is 1.185 sec, where urban scenario (e.g. Test case
2), it is 1.388 sec. Also, the computational time of the proposed method due to UT can
be increased by 1%.

3.6 Summary

This chapter presented a LLDF framework for the Internet of Cars, called Traffic Entity
Assessment unit, along with a new cooperative approach dealing with the localization prob-
lem in VANETs is proposed. In our approach, we combined data fusion and radio-ranging
distance measurement techniques along with V2V communication in order to improve the
location information of the vehicles. We further extend our ideas of cooperative approach
by considering sequential EKF filtering within the neighboring vehicles to further improve
the performance. We evaluated the methods by comparing the estimated locations of the
vehicles with their ground truth, and demonstrated that using V2V communication for
measuring the distance and sharing belief about the estimation of the current location,
the neighboring vehicles can cooperatively improve the knowledge of the current location.
Moreover, we have tested the robustness of the methods by taking out the GPS sensor
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for a period of time to show how the ego vehicle can maintain its belief about its current
location by communicating with other vehicles. The performances of the methods are also
evaluated by using different types of noise as well as varying the number of vehicles. Com-
paring to another cooperative method of localization based on distance measurements for
improving the GPS information, such as reported in [6], the proposed method eliminates
the restriction of all vehicles having GPS, and employs data fusion techniques such as EKF
to estimate the location of the vehicles by predicting it using predefined dynamic motion
model, and refining it using GPS sensor and the information received from other vehicles.
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Chapter 4

Situation Assessment Using a Fuzzy
Extension to MEBN

This chapter presents a novel comprehensive Fuzzy extension to Multi-Entity Bayesian Net-
works (MEBN) model, which is deemed a well-studied and theoretically rich language that
expressively handles semantics analysis, and effectively model uncertainty management.
MEBN lack the capability of modeling the inherent conceptual and structural ambiguity
that is delivered with the knowledge gained through human language. In fact, Fuzzy-
MEBN is a new version of MEBN that is based on First-order Fuzzy Logic (FOFL), and
Fuzzy Bayesian Networks (FBN), and aims to overcome MEBN issues using Fuzzy theory.

The applicability of the proposed model in the Internet of Cars domain is examined
in two aspects. Firstly, a traffic situation assessment unit is implemented, in which the
entities, situations, and their relationships in specific contexts are modeled using Fuzzy-
MEBN fragments. Furthermore, Fuzzy-MEBN inference is used to assess the situations
of interest by estimating their states. To demonstrate the capabilities of the proposed
framework, a collision warning system simulator has been developed, which evaluates the
likelihood of a vehicle being in a near-collision situation using a wide variety of local and
global information sources available in the IoC environment. If the threat of being in a
near-collision situation is determined to be high, then the driver is warned accordingly.

As the second aspect of our evaluation, a Soft-Hard Data Fusion (SHDF) model in
the IoC is proposed that is capable of combining the data generated from human-based
sources with those generated by physical sensors. In this model, the unstructured soft data
is presented by undergoing a novel soft data matching process, through which the data is
semantically analyzed, and accurately structured in a fuzzy random variable. Moreover, the
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clique tree inference algorithm for Bayesian Networks is modified to handle fuzzy evidence
in Fuzzy-MEBN.

Our experimental results for two distinct single-vehicle and multi-vehicles categories of
driving scenarios, as well as a novel hybrid Fuzzy-MEBN inference, show the capability
of the proposed framework to efficiently achieve situation and threat assessment on the
road, while handling both soft and hard data. Besides, the results demonstrate that
Fuzzy MEBN is able to efficiently deal with ambiguous semantic and uncertain causal
relationships between the knowledge entities

4.1 Introduction

Situation Awareness (SAW) is the main result of High-Level Information Fusion (HLIF),
which is followed by knowledge insight extraction. This is made more achievable nowa-
days as connectivity and mobility have been improved. However, storing, processing, and
handling the vast amounts of data and information that come from various sources with
different levels of abstraction have become challenging issues. Moreover, these data and
information can be any kind of hard data that are generated from physical sensors, or dif-
ferent types of unstructured soft data, which are embedded in a higher level (with respect
to hard data), and are generally generated by humans. The human-generated data are
usually based on the inherently ambiguous and unconstrained natural language. In other
words, the human-based data is deemed qualitative, and open to interpretation. This is
opposite to hard data which is quantitative with fixed interpretation.

Three main sources of human-generated information are: the reporter, the communica-
tion links, and the Internet [92]. The reporter is usually deemed a person who contributes
to an information fusion model by providing his/her observations about a specific fact. For
example, in the IoC context, such a person can be the driver, or a passenger of a certain
vehicle, who is reporting his/her observations about a certain traffic status. The generated
data are commonly captured through a Human Computer Interaction (HCI) unit first, and
then following some pre-processing stages, such as Natural Language Processing (NLP) are
made ready for the fusion task. Moreover. the text-based soft data on the Internet is in
a different form than those provided by a human source. Two main categories of Internet
data are raw text, and semantically interpreted text with the help of meta-data. The
later category can be perfectly related to the research on semantic web [28]. Knowledge
representation in semantic web is done by using a meta-data-enabled framework such as
Resource Description Framework (RDF) [118] that makes it machine-readable.
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Clearly, such a diversity increases the need for attaining reasonable automated knowl-
edge discovery methodologies that are able to conveniently handle most of these issues.
Multi-Entity Bayesian Networks (MEBN) model, introduced by Laskey [125] is a well-
defined and theoretically rich language for HLIF that tackles uncertainty management
and semantics analysis simultaneously. A MEBN model is a combination of First-order
Logic (FOL) and Bayesian Networks (BN), and is considered as a powerful tool for model-
ing knowledge for situation assessment. However, despite being a strong bridge connecting
structured knowledge (that is often expressed by domain experts) to computational models,
MEBN lack the capability of modeling some imperfect aspects of data such as ambiguity,
which is an inherent characteristic of human language, and the observations gained from the
vague environment. For instance, when referring to an entity in an environment, various
sources may use different identifiers that although all can be semantically positioned in one
category, they may not be completely the same as identifiers used for defining the semantic
relationships. This is basically referred to as semantic similarity in the literature [8], as
widely happens specially when dealing with soft data.

To overcome these issues, a novel Fuzzy extension to MEBN is proposed, which enables
them to efficiently representing ambiguous semantics relations, and to smoothly recog-
nize soft data. Accordingly, we first redefine the semantics specifications of conventional
MEBN by incorporating notions of First-order Fuzzy Logic that is mainly inspired by
works of [167]. As a result, contextual constraints of MEBN are generalized in a way to
represent the ambiguity that is usually delivered with the imperfect semantic information.
Furthermore, a new way of representing Fuzzy Bayesian Networks (FBN) is also presented,
and the well-known Junction Tree (JT) inference algorithm in regular BN is updated to
include fuzzy states with a certain likelihood.

4.2 Background and Related Work

In this section, an overview of the literature work related to HLIF and SHDF is presented,
and theoretical background of MEBN is thoroughly introduced. It begins with exploring
the role of HLIF methodologies and situation assessment in realizing safe and efficient
transportation systems, and proceeds with highlighting the prominent research work in
Soft-Hard Data Fusion (SHDF) area. Moreover, the subjects of ontology-based information
fusion and relevant semantic technologies are briefly discussed.
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4.2.1 High-Level Information Fusion

Major topics of current research in HLIF are presented by Blasch et al. in [34]. In their
survey paper, the authors extract the top ten trends of HLIF from the conference pa-
pers and panel discussions published within years 2000 to 2011, and categorize them into
five main groups of Data and knowledge representation, Situation, threat, and impact
assessment, Systems design, Evaluation, and Information management. Furthermore, Un-
certainty Analysis and Semantics and Ontologies trends are featured as the most important
areas of study that come before other crucial trends such as Reference Model Definition,
Social Behavioral Model, and Resource Planning. Therefore, the literature review in this
section is narrowed to the analysis of some well-defined HLIF frameworks, and to the sub-
stantial research work addressing uncertainty management, and semantics and ontology
representation in HLIF.

General HLIF Frameworks

A comprehensive schema with seven building blocks for designing an HLIF system is in-
troduced by D.A. Lambert in [124]. In this schema, the first building block discloses a
three level assessment paradigm, and presents a de-constructed JDL model [226] in which
the 4th level of its revised version [208] is implicitly embedded as an assessment unit into
levels 1 to 3. The resulting model consists of three major levels aiming to render object,
recognize relationships, and assess the impact of those relationships, respectively. In the
second building block, the fundamental steps in adding the machine-readability capability
to situation and impact assessment is discussed and major steps through which syntactic
tokens acquire meanings using a sequential schema, are presented. Moreover, the third
building block aims to represent the human mental status in machines by defining beliefs,
expectations, and anticipations, which are generally called awareness. The State Tran-
sition Data Fusion (STDF) model, is the content of the fourth building block that goes
through the DF processes from the lower level of object assessment to higher levels of
situation and impact assessment. Fifth building block demonstrates the applicability of
social behavior models, wherein the distributed methods such as Distributed Data Fusion
(DDF) techniques, and ubiquitous fusion are among the main topics. In DDF, each level
of JDL model will perform its own task in a distributed approach, and then the local
information is merged to form global information about the current state. Furthermore,
ubiquitous fusion allows the objective of a particular agent to enter a society (i.e., VANET
environment), for further examination upon acquiring the acceptance of all other agents,
or at least a significant portion of them. Therefore, the agents participate in a society, and
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increase the robustness of their DF paradigm. Finally, sixth and seventh building blocks
evaluate different methods in demonstrating the results to a user-level endpoint, and in
studying the human condition in different aspects of this demonstration, respectively.

In order to have a generic HLIF model, active role of human, and a bi-directional inter-
action between human and technology should be taken into account. Nilsson et al. in [166]
propose this idea by first arguing the limitations of traditional fusion models, specifically
JDL model [208] and OODA loop [135], in incorporating human decision making models,
and using humans inherent cognitive capability to enrich the fusion processes. Therefore,
Nilsson et al. propose their human-technology driven environment in which users are the
active parts of the fusion process and while receive useful knowledge from the provided
technology through artefacts, help to improve the awareness of the current situation by
utilizing their decision making capability, and removing technologically related flaws such
as untrustworthy results. The first steps towards a human-technology interactive fusion
environment is taken by employing the distributed cognition concept that is originally
introduced by Hutchins in [104]. Distributed cognition studies the understanding of the
dynamic flow of information (i.e., a process) through a systematic organization of compo-
nents (i.e., either humans or technological artefacts). Technically speaking, these processes
are deemed distributed in three ways: across the components, between internal and exter-
nal aspects of components, and over time.

Semantics and Ontology Representation

Based on the concept of Situation Theory [21, 20, 19], Kokar et al. [119] define a situation
awareness framework based on an ontology described using the OWL, which they refer to as
the Situation Theory Ontology (STO). The STO creates different ontology-based concepts
of the situation theory by defining OWL classes and connections for objects, types, and
their relationships. Furthermore, a situation can be easily represented using a set of classes
related to that situation, with appropriate relationship definitions among them. Lastly, new
situations are inferred by creating a knowledge base containing horn clauses. Although it is
a well-organized framework for situation semantics representation, STO lacks uncertainty
management, which is deemed an important aspect of a HLIF model.

Mapping ontologies is another important application of using ontologies in HLIF sys-
tems which is also discussed by Wache et al. in [220] in two cases. In the first case, an
ontology can be mapped to an information source, with the major steps of Structure Re-
semblance, Term Definition, Structure Enrichment, and Meta Annotation. In the second
case, two different ontologies can be mapped to each other, i.e., inter-ontology mapping,
through employing pre-defined mappings, lexical and semantic relations correspondence,
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and top-level grounding. At the end, Wache et al. propose three steps for creating an
ontology and having an engineering vision on its development process. The first step iden-
tifies the underlying scope being processed. Moreover, building the ontology by capturing
and coding it, and integrating different ontologies, are the contents of the second step, and
finally, the third step evaluates the constructed ontology accordingly.

Abstract semantics and ontology representation is discussed by Little and Rogova
in [137] who address the problem of defining formal structures for different entities, their
attributes and properties, and relationships between objects, etc.. This is done by using
hybrid approaches and formal ontologies. In their proposed method, Little and Rogova aim
to make the in-between connections between a higher-level ontology with more abstract
structure, and a pre-determined domain-specific ontology.

Heintz and Dragisic in [96] tackle semantics representation by using the idea of anno-
tating sensors based on their semantic structure, and reasoning by semantic information
integration. Therefore, a source is generating relevant data for a service if their pre-defined
ontologies match. Furthermore, they propose an application independent framework which
can be customized to find a set of information sources satisfying the given demand for a
specific service.

In fact, lacking uncertainty management capability is a common drawback in most of
the frameworks that only care for representing the ontological and semantic relationships
between the entities existing in a specific environment. Therefore, it is necessary to develop
situation awareness frameworks which are also capable of modeling uncertainty.

Uncertainty Management

The fundamentals of a dependable and generic HLIF method for handling uncertainty is
proposed by Karlsson in [112]. In his technical report, Karlsson categorizes the meth-
ods dealing with uncertainty, so-called Uncertainty Management Methods (UMMs), into
three groups of Bayesian, Dempster-Shafer, and Imprecise probability approaches. This
technical report raises some interesting open questions such as the possibility of fusing
temporal attributes, i.e., information in present, past and future, as well as the definition
of evaluation metrics for measuring the performance of different HLIF systems.

Costa et al. in [55] propose the Uncertainty Representation and Reasoning Evaluation
Framework (URREF) to improve the system-level metrics such as timeliness, accuracy,
and confidence. In other words, their main goal is to study the effect of uncertainty on
IF systems. Therefore, they present an abstract model in which different uncertainty
handling tools such as probabilistic methods, Dempster-Shafer theory, and Fuzzy Sets, can
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be used in a plug-and-play fashion. Furthermore, they define an ontology for the proposed
framework to make sure that all the evaluations are semantically sound. Different types of
entities, and relationships between different objects in the domain of uncertainty handling
are determined through this ontology.

An Object-oriented Probabilistic Relational Model (OPRM) is introduced by Howard
and Stumptner in [101]. This model, which is a new language for First-order Probabilistic
Logic (FOPL), aims to handle situation assessment by formalizing object and relationship
recognition, IF at different abstract levels, and handling uncertainty and temporal nature.
The main structure of OPRM consists of a set of classes featured with a set of descriptive
and reference attributes. OPRM is also equipped with a probabilistic component which
defines probability distributions on attributes to model uncertainty on them. One of the
most strong capabilities of OPRM, is its uncertainty handling power which is imposed on
existence, attribute, and structural uncertainties.

Uncertainty handling is tackled in a situation awareness framework for transportation,
proposed by Röeckl in [185], which uses dynamic probabilistic causal decision networks
to help making decisions with maximum utility. Both forward and backward propagation
are studied to demonstrate the capability of the framework in making decisions based on
the observed evidence, and in optimizing evidence selection for a given decision. However,
this method cannot be used in a wide range of applications due to the lack of semantics
representation capability. Besides, when the complexity of the environment increases, it is
unlikely to demonstrate efficient inference time, which is inevitably inherited from BN.

4.2.2 Soft-Hard Data Fusion

SHDF is a new research trend in the area of sensor/data fusion that has attracted attention
of researchers in the field [116]. Since its early ages, there has been many attempts to
construct a general framework based on a well-defined mathematical foundation, and to
establish test-cases and evaluation metrics [138]. It was highlighted by Llinas and Nagi [138]
that the first major steps towards making such a comprehensive framework include source
categorization, soft and hard data alignment and association, state estimation, and test-
case development.

A SHDF model based on Dempster-Shafer (DS) theory is presented in [178]. In this
model, called DS-TEC, DS theory is employed to develop an evidence updating method,
and to handle both probabilistic and possibilistic aspects of SHDF. In a case study pre-
sented in the paper, soft evidence is considered the relative databases that contains infor-
mative sentences. These sentences are first analyzed through Natural Language Processing
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(NLP) techniques, and are then extracted into logical machine-readable form.

Using ontologies for knowledge representation is another important method for mod-
elling a system capable of fusing both soft and hard data. In fact, ontologies help to give
structure to soft data, and construct the machine-readable knowledge. As an example,
Gómez-Romero et al. [89] propose an context-aware information fusion system based on
ontologies. Their model consists of two processing levels. In the first level, they use logical
reasoning for object recognition (level 1 data fusion). Moreover, they perform situation and
threat assessment based on Belief-Argumentation System (BAS), and Transferable Belief
Model (TBM).

The theoretically rich foundation of Random Set (RS) theory is another research di-
rection aimed at reaching to reach a well-defined SHDF. In fact, RS is capable of handling
both uncertain and ambiguous data, and is deemed a powerful tool for SHDF. For in-
stance, Khaleghi and Karray [115] propose an SHDF framework based on Random RS and
a domain-specific ontology for a target tracking application. Moreover, they propose a
model that measures the trustworthiness of human agents, and helps to avoid the mislead-
ing and adversary observations.

As it was mentioned before, soft data is inherently unstructured and vague. Therefore,
importing such data to a pre-deployed information fusion model will cause the model to
return imprecise assessments. One common method that aims at associating two different
entities, and at determining how much they are semantically related, is the semantic sim-
ilarity measurement. AlemZadeh [8] discusses various semantic similarity metrics in his
Ph.D. dissertation, and utilizes them to analyze Wikipedia’s linked data graph. Analogous
techniques can also be seen in research work of [142, 164].

What makes our approach different from those in the SHDF literature is that here,
we take advantage of the ontological structure of MEBN along with the semantic analysis
of soft data to efficiently associate it with the most relevant entity. In most of the other
approaches, such as [198], it is naively assumed that a set of pre-defined words are chosen
by a reporter to produce soft data.

4.2.3 Multi-Entity Bayesian Networks

Multi-Entity Bayesian Networks aim to improve the conventional Bayesian Networks (BN)
by incorporating means of introducing semantic relations among entities, and also further
expanding the classic first-order logic using the uncertainty handling power of the prob-
ability theory [125]. The foundations of MEBN are the MEBN Theories (MTheories),
which are powerful tools for modelling domain-specific knowledge for situation assessment.
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The MEBN theories are composed of several fragments defined on a set of related random
variables representing a certain entity, called the MEBN Fragments (MFrags). This consti-
tutes the main characteristic of the MEBN language which is its modularity, i.e., MFrags
can be readily added/removed to/from the modeled system, without losing the structural
consistency. The global probability distributions are defined over a set of small groups
of hypotheses with specific local probability distributions. In a broader view, the joint
probability distribution over truth-values of sets of semantically connected entities is the
output of an MTheory. The following provides more backgrounds on MEBN, as discussed
in [125].

MEBN Fragments

An MFrag F is defined by a tuple F = (C, I,R,G,D), in which it hosts three different
types of nodes, namely context nodes C for semantics representation, input nodes I for
MFrags inter-connection, and resident nodes R as random variables. The context nodes
represent the semantic relations among the entities constituting a fragment of the domain
knowledge, and specialize the general definition of the related FOL sentences in an MFrag.
Furthermore, the input nodes act as ports acquiring external links from the entities lying
in other MFrags, and finally, the resident nodes represent the random variables in BN,
and are conditioned on the values provided by the context, and the input nodes, or other
resident nodes. In an MFrag F , G represents an MFrag graph, and D is a set of local
distributions. Moreover, the sets C, R, and I are pairwise disjoint, and G is a Directed
Acyclic Graph (DAG), whose nodes belong to I ∪ R, with root nodes being members of
the set I only.

MEBN Theories

A collection of MFrags which satisfy the consistency constraints that lead to the existence
of a unique joint probability distribution over all the random variables in the collection
is called the MTheory. The MTheory consists of two types of MFrags, namely, the built-
in MFrags that represent basic logical content, and the domain-specific MFrags that are
determined by an external knowledge. Observations are included in MTheories in forms
of the findings that encompass certain facts about the current state of the environment.
Therefore, any query on an MTheory is processed by first including the observed evidence
(findings) into the MFrags to represent task-specific information, and then performing
the Bayesian inference to compute the response, and to refine the local distributions. It
is proved by Laskey in [125] that for an MTheory T = {F1,F2, ...,Fn}, a joint unique
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probability distribution PT gen exists on the set of random variable instances of its MFrags
that are consistent with the local distribution assigned by the MFrags in T .

MEBN Inference

The MEBN utilizes Situation-Specific Bayesian Networks (SSBN) as its inference engine.
The algorithm is based on works of [143] in which a minimal SSBN is approximated using
the combination of particular types of random variables extracted from a given query. A
detailed discussion of this algorithm is provided in [125], and is not included here for sake
of brevity. Once the minimal SSBN is constructed, a standard Bayesian network inference
algorithm can be deployed to compute the marginal distribution of the target random
variables (entities of interest) given the evidence data.

Hybrid MEBN Inference

The result of the MEBN inference is a minimal SSBN that is formed based on the given
query, current evidences, and the semantic relations present in the knowledge base. Among
all these factors that are directly bonded to the structure of the SSBN, only the current
evidences may vary over time. Based on this observation, we propose a hybrid version of
MEBN inference algorithm that recreates the SSBN structure only if the there is a lateral
shift in situation evolution (see our definition of situation evolution in [87]). As a result,
in hybrid version of MEBN inference, SSBN will be created whenever a new evidence has
arrived or removed, to help with the reduction of the required time for MEBN inference.

4.3 Fuzzy Multi-Entity Bayesian Networks

In this section, the MEBN are improved by replacing the FOL representation with First-
order Fuzzy Logic (FOFL) [167] when defining contextual and semantic constraints. There-
fore, the original MEBN language is updated, and accordingly, some of its definitions are
refined.

4.3.1 Fuzzy Entities and Random Variables

A specific domain in MEBN language is modeled using a predefined set of attributed
entities, and determining semantic and causal relationships between them. These entities
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are identified by constants that are included in an infinite collection of domain-specific
constants (with meanings fixed by the language), and are referred to by variables that are
included in an infinite collection of variable symbols. Besides, features of entities and the
relationships between them are modeled using random variables that are drawn from an
infinite collection of both logical and domain specific random variables. Following shows
how the entities and random variables are refined in Fuzzy MEBN language.

• Ordinary variable symbols: The ordinary1 variables are deemed containers that refer
to non-specific entities. Ordinary variables names are alphanumeric strings that begin
with a lower case letter, e.g., veh13, env.

• Phenomenal constant symbols: Constants are represented by fuzzy sets with just
a single member, i.e., fuzzy singletons. Constant names may contain both let-
ters and number, but must start with an uppercase letter, and should be followed
by a real-valued membership degree subscript within range [0, 1] e.g., V ehicle0.85,
Environment1.0.

• Unique identifier symbols: The entities are assigned a unique identifier symbol that
are annotated with a fuzzy membership degree, and are arranged in one of the groups
below:

– Truth value symbols and undefined symbol: Truth values can either be a real
number within range [0, 1], or a member of a finite chain of truth values L =<
l1, l2, ..., ln > predefined by the language.

– Entity identifier symbols: Shown by E , the set of entity identifier symbols are
used by an interpretation of the theory to label the specific entities. Entity
identifier symbols can be either numbers of alphanumeric symbols starting with
an exclamation point and are subscripted with a real-valued membership degree
ranging from 0 to 1, e.g., !V 4280.75.

• Logical connectives (random variables): All the logical connective symbols, ¬,∨,∧,⇒,
⇔, and = are deemed reserved logical random variables whose fuzzy interpretations
are predefined by the language. Therefore, expressions such as (ψ ∨ φ) will be inter-
preted by the fuzzy interpretation D as: D(ψ ∨ φ) =I D(ψ) ∨ D(φ), in which =I is
read “is interpreted as”, and operators such as ∨ or ∧ can be substituted with the
corresponding fuzzy logic s-norm or t-norm operators, respectively. Finally, logical

1As mentioned by Laskey in [125], the adjective “ordinary” is used to differentiate between ordinary
variables and random variables.
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connectives look more like random variables with truth-valued outputs, if written in
prefix notation. For example, ⇒ (ψ, φ) is an implication random variable with two
random variables ψ and φ.

• Quantifiers: Universal ∀ and existential ∃ quantifiers are interpreted by the fuzzy
interpretation D predefined by the language as D(∀xϕ) = inf∆D(ϕx(∆)) and

D(∃xϕ) = sup∆D(ϕx(∆)), respectively, wherein ∆ = 〈ε(α1)
1 , ε

(α2)
2 , · · · , ε(αn)

n 〉 is a

vector of unique entity identifier symbols (s.t. ε
(αi)
i ∈ E) with a length equal to

the number of arguments that the logical (or domain specific) random variable (see
below) ϕ takes, and x is an exemplar symbol.

• Findings: observed evidence is called finding in MEBN, and are stored in the set Ω.
Logical findings are assigned a truth value within the range [0, 1] or from the finite
chain of truth values L = 〈l1, l2, ..., ln〉.

• Domain-specific random variable symbols: random variable names in Fuzzy MEBN
are alphanumeric strings beginning with a capital letter. Each random variable is
assigned a positive integer that corresponds to the number of argument it takes.
Moreover, random variables can have a set of finite or infinite possible values.
Accordingly, possible values of logical random variables can be either within the
continuous range of [0, 1], or the finite chain of truth values L = 〈l1, l2, ..., ln〉
predefined by the language. Furthermore, possible values of phenomenal random
variables are defined as a subset of E ∪ {⊥}. In addition, the degree of membership
of phenomenal random variables are predefined by their fuzzy interpretation, so that
a phenomenal random variable R maps a vector of unique entity identifier symbols
∆ = 〈ε(α1)

1 , ε
(α2)
2 , · · · , ε(αn)

n 〉, called input arguments, to another vector of unique

identifier symbols Γ = 〈γ(β1)
1 , γ

(β2)
2 , · · · , γ(βm)

m 〉, called fuzzy state or fuzzy value
assignment, with a certain degree. 2 In other words, R : ∆→µ Γ, in which the value
of µ for various arrangements of arguments and possible values are predefined in the
language by the fuzzy interpretation of R. This can also be represented using fuzzy
relations [114] in which the truth values of a relation of set of inputs are resulted.
Therefore, using fuzzy relations: R : 〈∆,Γ〉 → µ ∈ {l1, l2, ..., ln}, in which 〈∆,Γ〉 is
the concatenation of two vectors ∆ and Γ. Finally, it is notable to mention that
logical and phenomenal random variables in Fuzzy MEBN are analogous to fuzzy
predicate and functions, respectively.

2For simplicity, vector representations such as ∆ = 〈ε(α1)
1 , ε

(α2)
2 , · · · , ε(αn)

n 〉 will be denoted by ∆ =

〈ε(αi)
i | i = 1 · · ·n〉 from now on, and throughout the paper.
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Random variable terms in Fuzzy MEBN are created exactly the same way as those of
regular MEBN. In general, ordinary random variables (say u and v) are deemed atomic
random variable terms that may be used as input arguments for both logical and phenom-
enal random variables (e.g., AreInCommunication(u, v) and Driver(v) respectively) to
make more complex random variable terms. Furthermore, random variable terms can be
logically related to each other using logical connectives random variables. The resulting
interpretation of a complex random variable term is determined by applying individual
interpretations, which are predefined by the language on all symbols of the language, and
merging them using the logical connectives interpretations.

4.3.2 Fuzzy MEBN Fragments (MFrags)

The building blocks of a MEBN Theory (MTheory) are MEBN Fragments (MFrags) that
semantically and causally represent a specific notion of the knowledge.

Definition 1. A Fuzzy MFrag (Fuzzy-MFrag) is defined as F = (C, I,R,G,D,S) which
hosts three different types of nodes, namely context nodes C, input nodes I and resident
nodes R. Context nodes represent the semantic structures of knowledge by using First-
order Fuzzy Logic sentences. Moreover, input nodes act as bridges to resident nodes in
other Fuzzy-MFrags, and faciliate feeding any relevant information to the current Fuzzy-
MFrag. Finally, resident nodes are random variables that are conditioned on the values of
the context and input nodes. Additionally, in an Fuzzy-MFrag F , G represents a Fuzzy-
MFrag graph, set, D contains local distributions per each resident node, and S encompasses
a set of fuzzy if-then rules to be used by the Fuzzy Inference System (FIS). It should be
noted that the sets C, R, and I are pairwise disjoint, and G is a Directed Acyclic Graph
(DAG) whose nodes belong to I ∪ R, and the root nodes are members of I only. Finally,
context value assignment terms in C are used for enforcing constraints under which the
local distributions apply.

In Fuzzy-MFrags, contextual constraints will be assigned a truth value that implies
how much a constraint is satisfied. The consistency constraint degree of Fuzzy-MFrags
are then determined by referring to the fuzzy interpretations of the terms defined in the
Fuzzy-MFrag and built-in Fuzzy-MFrags, and calculating the degree of satisfiability of the
constraints as a whole. In addition to the consistency constraints, the local probability
distribution in Fuzzy-MFrags are defined as a conditional probability distribution of the
resident nodes given input/parent, and context nodes. Calculating this conditional proba-
bility is easy when the ordinary random variables used in the parents of the resident random
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variable, and the resident random variable itself are exactly the same. The problem arises
when there exist ordinary variables in the parents that do not exist in the child. Such
problems are usually tackled by applying aggregation functions and combining rules [163].
Laskey in [125] uses the notion of influence counts to combine the influence of multiple
parents. Here, the same approach is adopted, with some refinements for the new Fuzzy
MEBN.

Definition 2. Let us assume that F is an Fuzzy-MFrag within which there exists a resident
random variable ψ(Θ) parametrized by a vector of ordinary variables Θ = 〈θi| i = 1 . . . n〉:

1. B = {(θ1, ε1
(α1)), (θ2, ε2

(α1)), . . . , (θ1, εn
(αn))} is a binding set of ordered pairs wherein

θis are ordinary variables, and εi
(αi)s demonstrate unique entity identifier symbols

that are represented by fuzzy singletons whose membership degrees are shown by αis.
Additionally, ∆ = 〈ε(αi)

i | i = 1 · · ·n〉 is a vector of size n with elements arranged in
the same order of θis in ψ(Θ).

2. With B being a binding set, and ψ(∆) as the instance of ψ after substituting respec-
tive εi

(αi) for each θi, the value assignment {(Γ = φ(∆)} is achieved that is called a
potential influencing fuzzy configuration for ψ(∆) in which φ(∆) is either an instance
of one of its parents, or a context random variable residing in its Fuzzy-MFrag. Ac-
cordingly, Γ is a truth value (membership degree) for context random variables, and
denotes a possible fuzzy state of φ(∆) for parent random variables. The fuzzy states
are gained using the local distribution D and the fuzzy rule-sets S defined in the
Fuzzy-MFrag F .

3. With B as the binding set, and upon substituting each unique entity identifier εi
(αi)

with ordinary random variables θi, context constraints, which are reflected by context
random variables, are satisfied to some degree based on their predefined fuzzy inter-
pretation. Thus, the truth value of context random variable φj is calculated using Eq.
4.1:

L∗B = sup
∆B

(φj(∆B)) (4.1)

where the size of ∆B is equal to the number of inputs that φj takes, and its elements
are borrowed from the binding set B. L∗B is also considered to be a set that contains
all the equal supremum values. 3. Accordingly, an influencing fuzzy configuration is

3Supremum is used here for the sake of generality. In real experiments with finite sets, it can be
substituted with maximum.
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a potential fuzzy configuration whose unique identifier assignments are found using
Eq. 4.2.

∆∗B = arg sup
∆B

(φj(∆B)) (4.2)

in which ∆∗B is a set of all the potential fuzzy configurations that yield the supremum
value in Eq. 4.1. Using Eq. 4.2, equivalent influential fuzzy configurations are those
in which φ(∆i

B) = φ(∆j
B) for ∆i

B,∆
j
B ∈ ∆∗B and i 6= j, and equivalence classes are

distinct fuzzy configurations of parents of ψ(θ).

4. Assuming that E = {ε1
(α1), ε2

(α1), ..., εn
(αn)} is a set of unique identifier symbols, a

partial fuzzy world Wf for ψ(Θ) is constructed by instantiating its parents as well
as context random variables with each member of E. Moreover, a partial fuzzy world
state SWf

will be the fuzzy value assignments of the generated partial world.

5. Finally, the influence counts |SWψ
| for ψ(∆) is defined as the number of influencing

fuzzy configurations that SWf
has for each equivalence class.

It is obvious that finding influence counts in Fuzzy MEBN is exactly the same as in
regular MEBN when all the context random variables are assigned the same truth value in
different potential configurations. Otherwise, the number of cases in which the consistency
constrained are satisfied are reduced by applying Eq. 4.1 and Eq. 4.2.

Upon having their consistency constrained analyzed, and after determining the config-
uration parent nodes, Fuzzy-MFrags will have the probability distribution of their resident
nodes calculated as a conditional probability on the possible values of the resident node
given the values of its parents (input nodes or findings), and context nodes. Next definitions
show how regular Bayesian Networks are replaced with Fuzzy Bayesian Networks.

Definition 3. Let us assume that E is the set of unique entity identifiers, and in an
Fuzzy-MFrag F , Nψ is the set of all possible values of an instance of the resident node
ψ(Θ) residing in F (showed by ψ(∆)). Then:

1. The fuzzy state of ψ(∆) is defined as the vector Γψ = 〈γj(βj)| j = 1 . . . |Nψ|〉 in which
γj

(βj) ∈ Nψ for γj ∈ E and βj as the degree of being in the individual state γj.

2. The local probability distribution πψ(Γψ|SW) is a conditional probability density func-
tion that shows the likelihood of resident random variable ψ being in fuzzy state Γψ
given partial fuzzy world state SWf

that contains the fuzzy states of both parent and
context nodes.
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3. Since πψ(Γψ|SW) is a probability density function, then η
∑

k πψ(Γk,ψ|SW) = 1
wherein Γk,ψs are various fuzzy states that can be generated by exchanging the mem-
bership degree βj of each individual state γj, and η is the normalization factor.

Regular Bayesian Networks (BN), are Directed Acyclic Graphs (DAG) in which nodes
represent random variables with finite states, and edges specify conditional dependencies
between random variables. For each random variable R, a Conditional Probability Table
(CPT) is defined that determines the likelihood of R being in one of its states conditioned
on the configuration of its parents.

Inference on BN is performed by first adding the observations to the network and
then finding the likelihood of the desired random variable by running one of the common
inference algorithms in BN such as Variable Elimination, or Belief Propagation [121].

4.3.3 Fuzzy-MEBN Inference

In our proposed Fuzzy Bayesian Network (FBN) [81], Fuzzy Random Variables (FRVs) are
defined to be composed of both uncertainty and ambiguity factors, which are respectively
represented by a discrete Probability Density Function (PDF), and the fuzzy sets defined
on their universe of discourse. This model is able to cover both discrete and continuous
PDFs.

The fuzzy state of an FRV, called A, is represented by

ΓA(x) = 〈aµ1(x)
1 , a

µ2(x)
2 , · · · , aµN (x)

N 〉 (4.3)

in which N is the number of fuzzy sets defined on the universe of discourse of A, γis
are the linguistic terms, and µi(x)s are their corresponding membership functions, s.t.∑N

i=1 µi(x) = 1. Moreover, the a priori probability distribution of an FRV is represented
through applying Ordered Weights Aggregation (OWA) operator [229] on the fuzzy sets
defined on the universe of discourse of A. Therefore, the probability of being at the fuzzy
state ΓA(x) will be

P (ΓA(x)) = P̃A(x) =
1

Z

N∑
i=1

wiµσ(i)(x) (4.4)

wherein σ : N → N is a permutation function, 1/Z is the normalization factor, and wis
are the OWA weights that are calculated based on the PDF of the corresponding random
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variable. Thus, for discrete random variables wi = pi, where pi is simply the probability of
being at ith state. If the random variable is continuous, then

wi =
1

Z ′

∫
µi(x).P (x)dx (4.5)

for Z ′ =
∑N

j=1wj as the normalization factor.

The rest of the approach is based on the configuration of specific random variable and
its parents. Accordingly, if an FRV, called A, has only one parent, say π(A), then the fuzzy
joint probability distribution is calculated as P̃(A,π(A))(x, y) = P̃A(x)P̃(A|π(A))(x|y), wherein

P (Γ(A|π(A))(x|y)) = P̃(A|π(A))(x|y) =
N∑
i=1

M∑
j=1

µi(x|bj)µj(y)P(A|π(A))(ai|bj) (4.6)

In Equation 4.6, µj(y)s are the fuzzy sets defined on the universe of discourse of π(A),
and µi(x|bj)s are the resulting membership degrees after setting the antecedent of if-then
rules in A’s Fuzzy-Rule Set (FRS) to y = bj, and performing the fuzzy the inference.
Moreover, P(A|π(A))(ai, bj) is the Conditional Probability Table (CPT) entry when A = ai
and π(A) = bj.

Finally, if the FRV A has more than one parent, shown by πk(A), then the fuzzy joint
probability distribution P̃(A,π1(A),··· ,πK(A))(x, y1, · · · , yK) can be simply calculated using a
combination of the chain rule [121], Equation 4.6, and Equation 4.9. For example, if A
has three parents π1(A) to π3(A), then applying chain rule on the fuzzy joint probability
distribution yields: 4

P̃ (x, y1, y2, y3) = P̃ (x|y1, y2, y3)P̃ (y1|y2, y3)P̃ (y2|y3)P̃ (y3) (4.7)

Equation 4.7 can be further simplified knowing the conditional dependency between par-
ents. For instance if all the parents are mutually conditionally independent, then Equa-
tion 4.7 can be rewritten as:

P̃ (x, y1, y2, y3) = P̃ (x|y1, y2, y3)P̃ (y1)P̃ (y2)P̃ (y3) (4.8)

In general, the fuzzy conditional probability distribution P̃(A|π1(A),··· ,πK(A))(x|y1, · · · , yK) is

4Subscripts are dropped for sake of notational simplicity.
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calculated as:

P (Γ(A|π1(A),··· ,πK(A))(x|y1, · · · , yK))

= P̃(A|π1(A),··· ,πK(A))(x|y1, · · · , yK)

=
N∑
i=1

R∑
j=1

µ̂i(x|r̄j)P(A|π1(A),··· ,πK(A))(ai|r̄j) (4.9)

in which r̄j is chosen from the cross product of possible values of parents: r̄j ∈ {Γπ1(A) ×
Γπ2(A) × · · · × ΓπK(A)}, R is the total number of combinations that the parents can make:
R = |Γπ1(A)||Γπ2(A)| · · · |ΓπK(A)|, and µ̂i(x|r̄j)s are the resulting membership degrees after
setting the antecedents of if-then rules in A’s Fuzzy-Rule Set (FRS) to 〈y1, · · · , yK〉 = r̄j,
and performing the fuzzy the inference. Finally, P(A|π1(A),··· ,πK(A))(ai|r̄j) is the Conditional
Probability Table (CPT) entry when A = ai and 〈π1(A) · · · πK(A)〉 = r̄j.

Evidence in FBNs are in the form of fuzzy observations that may include inherent
ambiguity 5. However, an FBN behaves similar to a regular BN, when dealing with non-
ambiguous evidence. Ambiguous evidences in SHDF originate from either hard or soft
data. In the case of hard data, the fuzzification process is applied on the evidence data
first, and then after having its vagueness factor [84, 81] determined, an ambiguous hard
evidence enters the FBN. On the other side, two main sources of soft data are human and
the internet (also called H-Space and I-Space by [92]), which are inherently ambiguous.
In the next sub-section, we propose a novel algorithm for importing soft evidence to an
FBN through measuring semantic similarity between the given evidence and the context
of network. As a result of this procedure, both hard and soft evidences are in the form of
fuzzy states shown in Equation 4.3 that can be consequently used in an inference algorithm.

Inference is the probabilistic answer to the query PQ|E(·|ē), in which Q is the set of
query nodes, and E = ē is the set of evidence nodes with the corresponding assignments.
Variable Elimination and Clique Tree [121] (a.k.a., Junction Tree) are two most common
inference algorithms in regular BNs. Here, we modify the Junction Tree (JT) algorithm
to tackle inference in FBNs. For detailed information about the JT algorithm, interested
reader is referred to [121].

In Fuzzy-MEBN, the JT algorithm is applied on the resulting Situation-Specific Fuzzy
Bayesian Network (SSFBN) that is created once all the consistency constraints of an
FMTheory, reflected by the context nodes, are satisfied. It is notable that solving satisfia-
bility in Fuzzy-MEBN is different from regular MEBN as mentioned in [81]. Nevertheless,

5The terms ambiguity and vagueness may be used interchangeably throughout the paper.
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the required steps to construct a situation-specific belief network are defined by Mahoney
and Laskey in [143], which are used in Fuzzy-MEBN as well. The output of this algorithm
in Fuzzy-MEBN is an FBN that is contextually related to a specific situation.

Based on the same idea proposed by Koller and Friedman [121], the factors φi ∈ Φ for
a regular BN without evidence are the Conditional Probability Densities (CPDs), whose
production is the joint probability distribution of the whole network. Therefore, in our
proposed FBN, the fuzzy factors φ̃is are set to the Conditional Fuzzy Probability Densities
(CFPDs) that are constructed using Equation 4.4, 4.6, and 4.9. In case of an FBN with
fuzzy evidences ẽ, the CFPDs are first recalculated given ẽ, and then they are assigned to
the corresponding factors. The fuzzy joint probability distribution of the network will be:

P̃Φ(X) =
∏
φi∈Φ

φ̃i (4.10)

The JT algorithm starts with moralizing the FBN (since it is a directed graph) by simply
connecting parents that have a common child, and then undirecting all the edges in the
network. Once the network is moralized, maximal cliques are determined, and the clique
potentials are initialized as:

ψ̃[0]
c (Xc) =

∏
i:xi∈Xc

φ̃i (4.11)

wherein Xc is the set of all FRVs in clique c. After this step, the graph goes through
a message passing process that propagates the probabilities across the network, wherein
each clique sends a message to its neighboring cliques that are computed as:

δ̃
[t]
i,j(Si,j) =

∑
Ci−Si,j

ψ̃
[t−1]
i

∏
k∈Ni−j

δ̃
[t−1]
k,i (4.12)

in which δ̃
[t]
i,j(Si,j) is the message clique i sends to clique j at step t, Si,j = Ci ∪ Cj is

called the separator set, and Ni is the neighbors set of clique i. This process is iteratively
performed until convergence occurs: δ̃

[t]
i,j(Si,j) = δ̃

[t−1]
i,j (Si,j). At the end, assuming that for

each clique Ci, and separator set Si,j, fuzzy beliefs are shown by B̃i(Ci) = ψ̃
[t]
i

∏
k∈Ni δ̃k,i,

and M̃i,j(Si,j) = δ̃j,iδ̃i,j, respectively, the fuzzy joint probability distribution can be found
using Equation 4.13 [121].

P̃Φ(X) =

∏
i B̃i(Ci)∏

i,j M̃i,j(Si,j)
=
∏
i

ψ̃
[t]
i (4.13)

Among all the factors that are directly bonded to the structure of the SSFBN, such as
the given query, current evidences, and the semantic relations, only the current evidences
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may vary over time. Based on this observation, we propose a hybrid version of Fuzzy-
MEBN inference algorithm that recreates the SSFBN structure only if the added evidence
causes any changes to the structure of the previously built SSFBN. As a result, in hybrid
version of Fuzzy-MEBN inference, SSFBN will be created whenever a new evidence has
arrived or removed, to help with the reduction of the required time for Fuzzy-MEBN
inference.

4.4 Traffic Situation Assessment

This section introduces our proposed Traffic Situation Assessment (TSA) model, which
will complete the Attention Assist Framework (see Chapter 6). The overall block diagram
is demonstrated in Figure 4.1. TSA operates on the data and information that come from
various sources with different levels of abstraction. Accordingly, LLDF is performed at
the TEA that outputs entities and/or information attributes that are previously deter-
mined by the context (see Figure 3.2 in Chapter 3 for implementation details of the TEA).
Upon being settled in the same level of abstraction, various information streams enter a
fuzzification process through which continuous variables are discretized first, and along
with the ambiguous discrete variables, are assigned an ambiguity factor. Also, the soft
data is processed in the SDEA unit and based on semantics similarity measurements, are
assigned a vagueness factor. All these sets of variables are then fed to the Fuzzy-MEBN
model for further higher-level fusion, wherein domain expert knowledge is used to define
semantic and causal structures, and to construct an FRS for each node. At the end, a
Situation-Specific Fuzzy Bayesian Network (SFSBN) [143] is created on the FBN that is
resulted from the fusion of the information uncertainty and ambiguity. The rest of this
section describes different parts of this abstract model in more details.

4.4.1 Data and Information Sources

There are diverse sources of data and information sources in the IoC environment, which
can be ubiquitously utilized by interested entities. Accordingly, some sets of the lower-level
data sources need to get fused first to create higher-level information (see [86]). For exam-
ple, in VANET context, the lower-level data that mainly come from physical sensors on a
vehicle (i.e., GPS, range finders, and speedometer), or its surrounding vehicles (through
V2V communication) can be fused to create higher-level information attributes/entities
(i.e., distance). Discretization of such data using fuzzy logic is causes ambiguity. For
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Figure 4.1: The Block diagram of the overall paradigm of the proposed TSA unit

instance, when discretizing the speed of a vehicle, a 70km/h speed might be ambiguously
interpreted both normal and fast.

Examples of the soft data can be the information generated by the driver or any of
the on-board passengers that can be categorized as the H-Space [92]. Moreover, there
also exist flows of information in higher-level that can directly import a deployed HLIF
framework. For instance, the information made by the available infrastructure (i.e., cloudy
weather or busy road) through V2V, V2R, or V2I communication is of this type. Both the
higher-level information and the soft data contain inherent ambiguity as they are usually
made by human entities through ambiguous linguistic terms. For instance, when reporting
the weather condition, a driver might say: “the weather is cloudy” whereas it can be both
partly cloudy, and cloudy. Consecutively, ambiguity can be easily propagated throughout
the fusion process when the constituting entities of a certain situation are formed with
inherently ambiguous attributes. To tackle such imperfectness, a fuzzy-based technique is
proposed whose implementation details are discussed as follows.
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4.4.2 Fuzzy Logic Unit

Fuzzy Logic Unit is represented with the tuple F 〈Γ,∆, S〉 in which Γ and ∆ represent the
sets of continuous and discrete variables respectively, and the set S contains the specifica-
tions of fuzzy rule sets pre-defined by a domain expert. Both continuous and discrete inputs
are fuzzified and annotated with membership degrees with respect to their corresponding
fuzzy set to deal with the underlying ambiguity. Therefore, the resulting nominal state
of a specific variable C ∈ Γ or C ∈ ∆ will be denoted by a vector C ′ = [cµ11 , c

µ2
2 , ..., c

µN
N ],

called Fuzzy State, in which cµii s are corresponding fuzzy set labels (’components’ as they
are named Fogelberg et al. in [73]), annotated with their membership degrees µi such that∑

i µi = 1.

Fuzzification of a continuous variable, is straight forward and follows exactly the same
conventional common procedure presented by L.A. Zadeh in [235], that maps a contin-
uous value to fuzzy set labels with their relative membership degrees. For instance, us-
ing Gaussian fuzzy sets of Slow, Normal, Fast, and VeryFast defined on the universe of
discourse of vehicle speed, a speed entity with the value of S = s1km/h will be fuzzi-
fied and lies in the fuzzy state S ′ = [Slowµ1 , Normalµ2 , Fastµ3 , V eryFastµ4 ], wherein
the membership degrees are normalized. Furthermore, and for discrete variables, linguis-
tic modifiers that increase/decrease the observation ambiguity are used to dynamically
increase/decrease the fuzziness of the sets defined on a particular discrete universe of
discourse. In the proposed model, the fuzziness is altered using an ambiguity factor im-
posed by function f(µA, α) = (µA)α, for µA as the membership function defined over
set A, and α as the ambiguity factor. Function f is the general form of the conven-
tional dilation and contradiction concepts in fuzzy set theory [114]. For instance, if in
regular case, the state of weather is rather confidently determined by the fuzzy state
vector W ′ = [Sunnyµ1 , Cloudyµ2 , Rainyµ3 , Snowyµ4 ], then after applying an ambiguous
interpretation on the observation, using function f , the resulting fuzzy state will become
W ′′ = [Sunnyµ

′
1 , Cloudyµ

′
2 , Rainyµ

′
3 , Snowyµ

′
4 ], in which membership portions are more

smoothly distributed around the crisp value of the observed state. Numerical representa-
tion of ambiguous linguistic terms are assumed to be specified by a domain expert who also
helps in structuring the causal and semantic relations among the entities in the current
context, as well as defining a FRS (as a complementary feature to causal relationships)
between them. Such domain-specific consultation, along with the resulting fuzzy states
determined by the Fuzzy Logic Unit, are then fed to a HLIF framework, which is the
Fuzzy-MEBN.

76



4.4.3 Soft-Hard Data Fusion Unit

As it was previously mentioned, the ambiguity of soft data comes from the inherent vague-
ness of its sources. Commonly, the first step towards reducing such ambiguity is to pre-
process the soft data is and reformat them to the machine-readable subject-predicate-object
RDF triplets [118]. Furthermore, each soft evidence needs to be associated to its cor-
responding FRV in the underlying Fuzzy-MTheory. We tackle this soft data matching
problem, by utilizing the semantic similarity metrics, and the capabilities of Fuzzy-MEBN
to find the best match for the given subject, predicate, and the object.

In the SDEA unit, subjects, predicates, and objects in RDF triplets are respectively
associated to the fuzzy entities, resident nodes, and resident node states in Fuzzy-MEBN.
This is done by first measuring the semantic similarity between the given subject subi
and each of the defined entities in the FMTheory, and then, assigning the entity with
maximum similarity subi’s class. We call this process entity matching that further helps
to narrow down the search to only those Fuzzy-MFrags whose consistency constraints are
satisfied given the entity class of subi. After pin pointing these Fuzzy-MFrags, the semantic
similarity metric is once again used to find the resident nodes that are semantically closest
to the given predi. This process is called context matching. Finally, the given obji is
treated as a fuzzy state whose degrees of membership are calculated by measuring the
semantic similarity between obji and all the states defined in the resident node. This
process, called states matching, generates an entity, called soft entity, that can be directly
exported to a situation assessment model (i.e., TSA unit in our case). Algorithm 2
summarizes our novel soft data matching problem in Fuzzy-MEBN. In this algorithm, N
is the input Fuzzy-MTheory, and (subi,predi,obji) is the extracted RDF triplet from an
input soft data. Furthermore, entity, context, and states matching processes are executed
in lines 3 to 6, 8 to 20, and 21 to 23, respectively. In particular, this algorithm returns an
entity (or a set of entities with different ambiguities) that can be used as input evidences
to the underlying Fuzzy-MEBN. In fact, the convergence of the algorithm is dependent
on the context matching process (lines 8 to 20), wherein a set of potential Fuzzy-MFrags
are selected based on the truth values of the context nodes residing in them. If no Fuzzy-
MFrags meet the threshold, then it means that the input soft data is not contextually
related to the current application domain, and it should discarded. In such case, F ′ in
Algorithm 2 will remain null, and consequently, R′ = ∅ will be returned as the output.
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Algorithm 2 Soft-Data Matching Algorithm

1: function Soft-Data-Assoc(N ,subi,predi,obji)
2: DE ← DR ← ∅
3: for all e in N.E do
4: DE ← DE ∪ distTT (e, subi)

5: subi.α← argmax(DE)
6: F ′ ← ∅
7: for all f in N.F do
8: for all c in f.C do
9: if µ(c|subi) ≥ σ then

10: F ′ ← F ′ ∪ f
11: for all f in F ′ do
12: for all r in f.R do
13: DR ← DR ∪ distET (r, predi)

14: R′ ← argmax(DR ≥ ε)
15: for all r in R′ do
16: r.Γ← distEE(r.S, obji)

return R′

4.5 Situation and Threat Assessment Experiments

In order to evaluate the applicability of the proposed TSA framework for a real world safety
application, we have conducted experiments on a simulated Collision Warning (Avoidance)
System (CWS). The CWS operates on a constant basis using the various sources of data
and information as inputs and aims at assessing accident situations involving the vehicle
running the framework. Accordingly, the situation of interest is considered to be the
near-collision situation, which is defined as the likelihood of a set of contextually related
entities in a specific environment. At the end, the performance of both regular and hybrid
Fuzzy-MEBN inference algorithms along with a BN-based implementation of the CWS are
assessed for different number of neighboring vehicles.

4.5.1 Expert Knowledge Extraction

Involving entities and their structures in a near-collision situation can be achieved with
the help of a domain expert’s analysis and interpretation. Based on a recent study by [47],
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such knowledge extraction and modelling procedure can be accomplished using a set of
iterations through which the extracted knowledge can be formed into semantic and causal
structures/rules. Inspired by the work of [117] and their analysis results for near-collision
incidents with respect to driver inattentiveness, a list of four major hypotheses have been
compiled along with their corresponding specifications that may be involved in attributing
a vehicle to a near-collision situation. As shown in Table 4.1, several entities are identified
that are involved in evaluating the near-collision situation related hypotheses and their
specifications; namely, driving behavior, driver attention, and environment and surround-
ing conditions.

Table 4.1: The questions and their specifications that model a vehicle in a near-collision
situation

1. Is the vehicle moving on an erratic path?

• Does the vehicle have an inattentive driver?
• Is the environment unsuitable for the vehicle?
• Does the driver have a bad driving history?
• Is the vehicle in danger by its surrounding vehicles?

2. Is the vehicle moving with an unsafe speed?

• Is the driver distracted or drowsy?
• Does the driver have a bad driving history?
• Is the environment tempting the driver to drive fast?
• Is the current speed safe when considering that of surrounding vehicles?

3. Is the vehicle moving with an irregular driving pattern?

• Is the driver an amateur one?
• Is the driver distracted by environmental factors?

4. Is the surrounding environment making danger for the vehicle?

• Are there any surrounding vehicles being driven dangerously?
• Are the drivers of surrounding vehicles attentive?

4.5.2 Modeling

In order to model the role of inattention in a near-collision situation, a semantic rela-
tions diagram is illustrated in Figure 2.2, wherein all the entities corresponding to the
inattention factors, and the main entities involved in a near-collision situation along with
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their attributes and semantic relationships are presented. In Figure 2.2, four major en-
tities (shown in green squares) give rise to the second level of entities, after taking the
situation-specific knowledge (Table 4.1) into account. The second level of entities (shown
in orange squares with curved corners) include driving behavior, driver distraction, drowsi-
ness and history, environment, and VANET. These entities have semantic relations within
themselves and the first-level entities. Furthermore, the information provided by the ex-
pert knowledge can help with distinguishing the attributes of each entity as well. These
attributes (see [117]) are shown by blue ovals in Figure 2.2.

To continue with the knowledge extraction process, it is required to aim for the
situation-specific knowledge that incorporates all the entities and shows their causal rela-
tions in modelling the near-collision situation. The required knowledge for this part can be
either gained through consulting a domain expert, or analyzing the available datasets for
that specific situation. For our case study, we rely on the insights provided in the technical
report of [117], and incorporating all the entities introduced so far, since there is limited
access to datasets that contain information regarding factors related to road incidents.
Besides, we employ our latest analysis on structures of situations, and situation evolution,
in order to organize entities efficiently and relative to their contextual nature [87].

The causal relationships involved in a near-collision situation are modelled according
to a large set of rules. A small subset of them are presented in Table 4.2. Consequently,
one can determine the causal relationship between different entities and propose the corre-
sponding structure to address uncertainty by using the rules presented in this table. The
resultant structure is shown in Figure 4.2.

4.5.3 Implementation

The last step in modeling the near-collision situation is defining the MEBN Fragments
(MFrags) through which the corresponding fragments of the desired situations are mod-
eled. For this part of our experimental setup, an open-source Java platform software, called
UnBBayes [46] is used to model and simulate the situations of interest. In this environment,
our MEBN Theory (MTheory) represents a collision threat and its constituting MFrags en-
capsulate the component situations which include the entities that share common semantic
and causal relations. Therefore, from our structural situation analysis standpoint [87], the
super situation in CWS will be Collision Threat Level (CTL) that reflects the current level
of collision threat imposed on the vehicle v. CTL is composed of four component situations,
namely, VehicleMovementSituation(v), EnvironmentSituation(e), DriverSituation(d), and
VANETThreatLevel(n,v), whose contexts perfectly match with those of factors presented
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Table 4.2: A Sample of the rules related to the near-collision situation

1. If VEH has aggressive VMS, then CTL is certainly high for VEH.
2. If SDL shows high, then VEH probably has aggressive VMS.
3. If SPD is normal and ROT is highway, then SDL is usually low.
4. If SPD is high and ROT is not highway, then SDL is definitely high.
5. If SPD is high and ROC is icy, then SDL is often high.
6. If SPD is high and DIS is close, then DDL is definitely high.
7. If DDL is high, then VMS is aggressive.
8. If DRS is inattentive, then CTL is likely high for VEH.
9. If DRD is high, then DRS is likely to be inattentive.
10. If DRV eye closure is long, then DRD is usually high.
11. If DRV uses hand-held device, then DSD is certainly high.
12. If DRS and ENV are inconsistent, then VEH has high CTL.
13. If DRF is many, then DEL is somehow low.
14. If DEL is low, then DRS is usually inconsistent.
15. If DRS is inconsistent and SDL is low, then VEH has high VMS.
16. If WEA is snowy and ROC is icy, then ENV is almost inconsistent.
17. If WEA is foggy, then ENV is definitely inconsistent.
18. If ROC is wet and WEA is rainy, then ENV is less consistent.
19. If V2M is aggressive, then VTL is definitely high.
20. If VTL is high, then CTL is usually high.

in Figure 2.2. Figure 4.3 shows how these component situations are semantically related
(green pentagons), and construct the body of CollisionThreatLevel(v) super situation. In
Figure 4.3, VehicleMovementSituation(v1,t) encapsulate the entities/events that are related
to the movement of the vehicle v1 at time t. These entities/events are ManeuveringLevel(v1,
t), SpeedDangerLevel(v1), and DistanceDangerLevel(v1) that model the maneuvering be-
havior of vehicle v1 at time t, its speeding pattern, and the distance to its surroundings.
Moreover, the entities/events related to DriverSituation(d) are DriverDistractionLevel(d),
DriverDrowsiness(d), and DriverExperienceLevel(d), which are estimated by data fusion
of the sensors installed inside the vehicle, and extracting driver’s background information
through V2I communication, respectively. In addition, environmental situation is also
modelled through EnvironmentSituation(e) component situation whose entities/events are
mainly assessed by communicating with the infrastructures that provide the information
regarding current environmental conditions. Finally, the current threat imposed by the
surrounding vehicles in VANET is assessed in VANETThreatLevel(n,v) component situa-
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tion whose entities/events are inbound data coming through V2V communication. In our
case, this data is the current VehicleMovementSituation(v2) of all the surrounding vehicles
v2, which are registered in the same VANET as the vehicle v1. Note the context nodes
n = RegisteredV ANET (v2) and ¬(v1 = v2) in the VANETThreatLevel(n,v) component
situation.

4.5.4 Simulations Setup

The CWS is an implementation of the proposed TSA that is constructed using the Fuzzy-
MEBN Theory introduced before. The evidences are imported to CWS through either
physical sensors, and V2V or V2I communications. Moreover, the driver is able to com-
municate with the TSA through an HCI unit that is equipped with a microphone. The
voice signal is processed by the Sphinx speech recognition engine [130], and then, the RDF
triplets are extracted from the recognized voice using Natural Language Processing (NLP)
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Figure 4.3: Fuzzy-MTheory that models the collision threat for vehicle v at time t. Green
pentagons are context nodes, gray trapezoids are input nodes and yellow ovals are resident
nodes.

techniques. Finally, the subject, predicate, and object, along with the designed Fuzzy-
MTheory for road safety in VANET are set as the inputs of Algorithm 2. Simultaneously,
CWS will be constantly running as long as the vehicle is turned on, and updates the status
of its situation at pre-defined intervals. In other words, the Fuzzy-MEBN inference is per-
formed on the CWS Fuzzy-MTheory based on a given query, and calculates the marginal

83



probability distribution of the resident nodes of interest. In our simulations, the query will
be CollisionThreatLevel(!VEHEGO1.0, !T1 1.0) that shows the collision threat level imposed
on the ego vehicle, denoted by the fuzzy unique entity identifier !VEHEGO1.0, at current
time step !T1 1.0.

To show the functionality and adaptability of the CWS, we have separated our sim-
ulations to two main categories of single-vehicle and multi-vehicle. For the single-vehicle
case, five scenarios are tested on a vehicle that is moving on a straight path. For the
multi-vehicle case, a scenario is tested on an environment involving the ego vehicle and
a number of neighboring vehicles all running the CWS continuously. In each scenario,
all the situations of interest are assessed, and are used accordingly as the inputs for the
corresponding super-situation.

Lastly, a fully customized version of an open-source driving simulator, OpenDS [146],
is used as our simulations platform. We improved OpenDS by implementing some sensors
such as range finders, lane camera, GPS, emitter and receiver, map and so on. The data
of all these sensors go through a low-level data fusion process (see Figure 3.2) that outputs
the required entities. In particular, we have chosen low-pass filter for range finders and
Hough Transform [105] for lane detection.

4.5.5 Soft Entity Matching Results

The accuracy of our proposed soft data matching algorithm is tested by providing it with
different soft data reporting the condition of either a traffic vehicle, a traffic vehicle driver,
or an environment. The resulting structured observation is then compared with the ground
truth and the accuracy is found by simply calculating the ratio of correct matching. A
subset of RDF triplets extracted from the user’s voice signal, and their associated fuzzy
states are shown in Tables 4.3 and 4.4. The results of soft data matching shows that
for each three main factor in road accidents (see Figure 2.2) more than 72% of the times,
the soft data was correctly associated to its relative entity. It is notable that this result is
dependant on the words used by the driver to report a the condition of a traffic vehicle,
a driver, or an environment. These data are used along with the hard data to export a
better understanding for the current situation. Sample data of the speedometer and the
front distance sensor are depicted in Fig.4.4a and Fig.4.4b, respectively. Here, the situ-
ation of interest is CollisionThreat, which is composed of the following component situa-
tions: VehicleMotionSituation, DriverSituation, EnvironmentSituation(!VEHEGO1.0), and
VANETThreatLevel, wherein the later is assessed through the soft data provided by the
driver (see Table 4.5). The estimated states of all situations are then fused to measure
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Table 4.3: A subset of soft data sentences and their RDF triplets

# Soft Data Subject Predicate Object
1 VEH02 is going fast VEH02 Go Fast
2 Truck is moving slowly Truck Move Slow
3 Bus’s speed is high Bus Speed High
4 Driver blinks rapidly Driver Blink Rapid
5 Driver is distracted Driver Distraction Yes
6 VEH02 advances slowly VEH02 Advance Slow
7 Weather is partly cloudy Waterloo Weather Partly Cloudy

Table 4.4: A subset of soft data sentences and their RDF triplets

# Fuzzy State Vagueness Factor
1 SPD = 〈SLW0.0,REG0.0,FST1.0〉 0.0
2 SPD = 〈SLW1.0,REG0.0,FST0.0〉 0.0
3 SPD = 〈SLW0.0,REG0.29,FST0.71〉 0.66
4 NOB = 〈FEW0.25,MNY0.75〉 0.75
5 DSD = 〈LOW0.0,MED0.25,HIG0.75〉 0.66
6 SPD = 〈SLW1.0,REG0.0,FST0.0〉 0.0
7 WEA = 〈SUN0.35,CLD0.65,RIN0.0, SNW0.0〉 0.4
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Figure 4.4: Physical sensor measurements of !VEHEGO1.0

the current threat level. Figures 4.5a, 4.5b, and 4.6 demonstrate the state estimation of
VehicleMotionSituation, VANETThreatLevel, and CollisionThreat, respectively. In these
figures, Low, Medium and High states are shown with solid green, single-lined blue, and
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Table 4.5: The soft data used for SHDF

Soft Data Time Range (Time Slots)
VEH02 goes fast [5, 10]
Truck moves slowly [10, 15]
VEH02’s speed is high [15, 20]
Truck goes fast [30, 35]
Bus goes slowly [35, 40]
VEH02 advances fast [40, 45]

cross-lined red hatching, respectively. Besides, Non-aggressive and Aggressive states are
also respectively shown with solid green and cross-lined red hatching. As demonstrated
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Figure 4.5: The state estimations of (a) VehicleMotionSituation(!VEHEGO1.0, !T1 1.0), and
(b) VANETThreatLevel component situations

in Figure 4.5b, the associated soft data that is reported by the driver influences the state
estimation of VANETThreatLevel situation correctly, i.e., its state is more towards high
in time slots within which the reported soft data reports high traffic vehicle speed. This is
further fused with the situations assessed through the physical sensors (Figure 4.5a, and
presented in the threat level in Figure 4.6.

4.5.6 Traffic Situation Assessment Results

In this part, first we assume !VEHEGO1.0 is not in communication with other vehicles in
the VANET environment. Our goal in this part is to evaluate the performance of the CWS
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Figure 4.6: The overall CollisionThreat assessment

when operated in a local-only fashion. Four main entities, namely, SpeedSafetyLevel,
ManeuveringLevel, and DistanceDangerLevel along with VehicleMotionSituation com-
ponent situations are assessed in separate scenarios. Besides, DriverDistraction and
DriverDrowsiness entities and the way they contribute to DriverSituation component sit-
uation are also analyzed.

Scenario 1: Speeding

In this scenario, !VEHEGO1.0 moves on a straight path on a highway with varying speed
for 100 seconds. The CWS samples from road type just once (see Figure 4.3) and at the
beginning of the simulation, and samples from the speedometer data every 1 second. The
measured speed along with its impact on SpeedSafetyLevel are depicted in Figures 4.7a
and 4.7b. The varying speed of !VEHEGO1.0 during 100 seconds of simulation, seen in
Figure 4.7a, causes the uncertainty changes in the states of SpeedSafetyLevel entity, as
illustrated in Figure 4.7b. In the first 20 seconds, !VEHEGO1.0 increases its speed from
0km/h to almost 50km/h. Consequently, SpeedSafetyLevel outputs with high certainty
that it is not in Low state (i.e., the solid green shaded area that shows the probability of
being in Low state is small in the first 20 seconds of the simulation). This is due to the
fact that very low speed is dangerous in highways. As the speed of !VEHEGO1.0 exceeds
120km/h SpeedSafetyLevel entity recognizes dangerous speed, and therefore, gives high
certainty to High state (i.e., larger portion of state estimation is dedicated to High state
that is shaded with cross-lined red color).
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Figure 4.7: (a) Output of the Speed entity in scenario 1, and (b) Measurement of the
SpeedSafetyLevel entity in scenario 1. Low, Medium and High states are shown with solid
green, single-lined blue, and cross-lined red hatching, respectively.

Scenario 2: Maneuvering

Maneuvering driving behavior is studied in this scenario in which !VEHEGO1.0 changes
lanes irregularly. !VEHEGO1.0 uses lane camera and Hough transform to detect lane-
based location, and utilizes the Markov model presented in Maneuvering Fuzzy-MFrag (see
Figure 4.3) to assess the maneuvering event. Figure 4.8a and 4.8b show the lane detection
and maneuvering level outputs, respectively. Current lane on which the vehicle is moving is
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Figure 4.8: (a) Output of the LanePosition entity, and (b) Measurement of the
ManeuveringLevel entity in scenario 2. Low, Medium and High states are shown with
solid green, single-lined blue, and cross-lined red hatching, respectively.

shown in Figure 4.8a. As it is clearly illustrated, !VEHEGO1.0 goes on the second lane for
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the first 20 seconds of the simulation, and hence, its maneuvering level converges to Low
state gradually (see Figure 4.8b). From second 20 to 40, !VEHEGO1.0 changes between
lanes 1 and 2 for 10 times, and consequently causes the altering manuvering level during
that period. More adverse lane changing behavior is observed within time slots 60 to 80,
which is correctly assessed by ManeuveringLevel event and is depicted in Figure 4.8b.

Scenario 3: Keeping Distance

In this scenario, !VEHEGO1.0 goes on a straight line with varying speed and sometimes
gets close to the moving traffic. Front, rear, left and right distances are measured by range
finders, and the speed of the vehicle is sampled by the CWS every 500 milliseconds. The
measured distances on all four directions, speed of the vehicle, and DistanceDangerLevel
entity are presented in Figures 4.9a to 4.9f. Figure 4.9f shows how DistanceDangerLevel
entity is estimated given the distance sensors and the speedometer data. All the peri-
ods during which the DistanceDangerLevel entity is in Low state with high certainty (i.e.,
bigger solid green shaded area), !VEHEGO1.0 is in safe distance with its surrounding. Con-
versely, whenever the vehicle’s distance to the moving traffic gets to a level that is unsafe
regarding its speed, the certainty of being in High state in DistanceDangerLevel entity
grows accordingly. For instance, during time slots 78 to 98, !VEHEGO1.0 is running with
an average speed of 125km/h, while keeping a short distance (around 2 meters) to the lead-
ing traffic. Such an unsafe speed and distance is correctly assessed by DistanceDangerLevel
entity during the same period.

Scenario 4: Vehicle Movement Situation

It is presented in Figure 4.3 that vehicle movement situation at a specific point of time
is dependent on its speed, maneuvering, and distance danger levels. Here in this sce-
nario, !VEHEGO1.0 is moving freely on a highway with light traffic, while CWS continu-
ously assesses DistanceDangerLevel, ManeuveringLevel, and DistanceDangerLevel entities
along with VehicleMotionSituation component situation. The output of entity and situ-
ation assessments are shown in Figure 4.10d. The CWS determines with high certainty
that !VEHEGO1.0 has aggressive movement pattern whenever it adopts either a dangerous
speed, an irregular maneuvering pattern, an unsafe distancem, or a combination of them.
For instance, !VEHEGO1.0’s movement is 90% Aggressive (10% Non-aggressive) at time
slots 58, 60, and 70 since SpeedDangerLevel, ManeuveringLevel, and DistanceDangerLevel
entities are all assessed to be in High state with high certainty.
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Figure 4.9: Output of the (a) front (b) rear (c) left, and (d) right Distance entity. (e)
output of the Speed entity, and (f) Measurement of the DistanceDangerLevel entity of
!VEHEGO1.0 in scenario 3. Low, Medium and High states are shown with solid green,
single-lined blue, and cross-lined red hatching, respectively.
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Figure 4.10: Measurement of the (a) SpeedDangerLevel, (b) ManeuveringLevel, and (c)
DistanceDangerLevel entities. (d) Assessment of the VehicleMotionSituation component
situation in scenario 4. Non-aggressive and Aggressive states are shown with solid green
and cross-lined red hatching, respectively.

Scenario 5: Driver Situation

For assessing the driver situation, we assumed that the driver’s distraction and drowsiness
changes during the simulation based on some random actions such as having a drink or
more frequent blinking. However, driver distraction and drowsiness can be detected using
the sensors installed inside the vehicle, as it is also shown in [179]. Figures 4.11c, 4.12c,
and 4.13 respectively show the results of drowsiness, distraction, and situation assessment
of driver !DRVVEH02 1.0 who drives !VEH02 1.0. As it is seen in Figures 4.11a to 4.11c,
different number of blinks per time unit, and the period during which eye closure is de-
tected have high impact on drowsiness detection. For instance, during time slot 80 to
92, the driver is blinking about 5 times per time unit and keeps his/her eyes closed for 7
seconds. This causes the CWS to determine with high certainty that the driver drowsiness
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Figure 4.11: Output of the (a) NumOfBlinks and (b) TimeEyesClosed entities. (e) Mea-
surement of the DriverDrowsinessLevel entity in scenario 5. Low, Medium and High states
are shown with solid green, single-lined blue, and cross-lined red hatching, respectively.

is in High state. Moreover, driver distraction is assessed based on knowing whether the
driver is drinking or using any devices (such as cell phone, GPS, etc.). The result of the
assessment, presented in Figure 4.12c, shows high inattentiveness whenever the driver is
getting either distracted, drowsy, or both (as seen within seconds 55 to 95). Finally, the
attentiveness of the driver is represented in DriverSituation component situation that is
influenced by its parents, namely, DriverDrowsinessLevel and DriverDistractionLevel en-
tities (see Figure 4.13). When the number of vehicles increases, it is assumed that they
are operated in VANET environment, and therefore, are able to transmit data through
V2V communication. We take advantage of this capability and use V2V communication
to transmit the current movement behavior of the vehicle to its surrounding. In other
words, each vehicle broadcasts its VehicleMotionSituation at specific intervals. The vehi-
cles residing in the coverage area of the transmitter, receive the data, and provide it to
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Figure 4.12: Output of the (a) Drinking and (b) UsingDevice entities. (c) Measurement of
the DriverDistractionLevel entity in scenario 5. Low, Medium and High states are shown
with solid green, single-lined blue, and cross-lined red hatching, respectively.
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Figure 4.13: The DriverSituation component situation in scenario 5 whose parents are
DriverDrowsinessLevel and DriverDistractionLevel entities. Attentive and Inattentive
states are shown with solid green and cross-lined red hatching, respectively.
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their own CWS as new evidence. This strategy makes the drivers aware of the threat that
might be imposed within their own surroundings. Additionally, this information can be
used to improve the collision threat assessment.

Scenario 6: VANET Threat Assessment

All the traffic vehicles and the ego vehicle, shown by ordinary variable v, perform hybrid
version of the MEBN inference algorithm on the query VANETThreatLevel. Therefore,
depending on whether a new evidence is available or not, the CWS of each vehicle recreates
the SSBN, and then outputs the threat level of VANET n by adding the evidences and
calculating the marginal of the resident node of interest. Figures 4.14a to 4.14d demonstrate
the state estimation of the VehicleMotionSituation situation for 4 different traffic vehicles.
In these figures, Low, Medium and High states are shown with solid green, single-lined blue,
and cross-lined red hatching, respectively. Figure 4.14f summarizes the state estimation
of VANETThreatLevel component situation. The default probability distribution of this
situation is 〈0.3, 0.6, 0.1〉 for Low, Medium, and High, respectively, which is clearly seen in
the periods during which !VEHEGO1.0 is not in communication with any traffic vehicle (64
to 79 and 107 to 120 time slots). However, aggressive moving situation of V5 within 36 to 45,
and 50 to 55 time slots has correctly influenced the state estimation of VANETThreatLevel
during the same periods. Similar cases can be observed for V3 at 93th time slot. Moreover,
VANETThreatLevel is in High state with high certainty within time slots 3 to 26, since
there are more than two vehicles in the same VANET which are demonstrating aggressive
movement (see Figure 4.14e).

Scenario 7: Collision Threat Assessment

Collision threat assessment is the main purpose of the CWS. Four different component
situations, one of which modelling a key factor in car incidents (i.e., driver, vehicle, envi-
ronment, and the surrounding traffic) constitute the body of Collision threat super situa-
tion (see Figure 4.3). To demonstrate the efficiency of the CWS in assessing the collision
threat, a 120 seconds driving scenario is set up that includes a highway with the ego ve-
hicle !VEHEGO1.0, driven by a user, and 8 traffic vehicles V2 to V9 moving with random
behavior. All the vehicles continuously assess all the relevant situations at 500 millisec-
onds time steps, and also transmit and receive VehicleMotionSituation messages through
V2V communication whenever residing in the coverage zone. The same scenario is run
for 20 iterations and the state estimation of the CollisionThreat is stored at each time
slot. Table 4.6 shows the average of state estimation for time slots at which a collision
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Figure 4.14: The VehicleMotionSituation messages of the traffic vehicles (a) !VEH02 1.0, (b)
!VEH03 1.0, (c) !VEH04 1.0, and (d) !VEH05 1.0. (e) Number of traffic vehicles in commu-
nication with !VEHEGO1.0. (f) VANETThreatLevel component situation. Non-aggressive
and Aggressive states are shown with solid green and cross-lined red hatching, respectively.
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has occurred. If at i-th iteration, C+ = {si,j|si,j → “Collision”} shows the set of collision
threat states si,j at which a collision has occurred, then the average of their certainty will
be:

si =
∑
j

p(si,j) (4.14)

Furthermore, let C− = {si,j|si,j ≥ si ∧ si,j → ¬“Collision”} be the set of non-collision
threat states whose estimations are above the calculated average si. Hence, the false alarm
rate for window size of 0 time slots is defined as:

f = |C−|/|C+| (4.15)

Lastly, to investigate the collision threat state estimation just before the collision oc-
currence, the window size is increased up to 5 time slots to include the time slots prior to
the one at which a collision is occurred.

As shown in Table 4.6, in 80% of the simulations, the average of collision threat state
in the case of accident shows with at least 80% of certainty that CollisionThreat is in High
state. The performance of CWS is further evaluated by measuring the false alarms during
the 120 seconds simulation run-time for each iteration. The results for different window
sizes show that zero-sized window performs the best as the average of false alarms over all
the iteration is 15% for that. However, this metric is increased to 15.3%, 16.45%, 18.43%,
19.59%, and 21.95% for window sizes of 1 to 5 time slots, respectively. This means that
if the time step is set to 500 milliseconds no previous time slots is needed for efficiently
assessing the collision threat.

The performance of our proposed model is compared against a similar approach [185] in
which the authors employ regular Bayesian Networks (BN) with simple structures to tackle
situation assessment in Intelligent Transportation Systems. However, BN-based method
is limited, and not empirical in our case, since the overall structure of BN grows due to
the nature of VANET, and this yields to an exponential growth in the required inference
time. Here, we compare our method, using both regular and hybrid inference algorithm,
with that of [185], by increasing the number of traffic vehicles in VANET and measuring
the inference time accordingly. The result is demonstrated in Figure 4.15. 6

Figure 4.15 clearly shows that both regular and hybrid MEBN inference algorithms
outperform the BN one. The main reason is related to the size of network as the number

6All the simulations were run on a platform with a Core i7 3.4 GHz processing power and 16GBs of
RAM.
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Table 4.6: Average of state estimation, in different scenarios, when a collision occurs, and
the corresponding false alarms rates for different window sizes. The average of all scenarios
is also shown in the last row.

CTL State Estimation False Alarms per Window Size
Scenario Low Medium High W:0 W:1 W:2 W:3 W:4 W:5

1 0.08 0.1 0.82 0.15 0.2 0.26 0.38 0.4 0.41
2 0.07 0.09 0.84 0.18 0.18 0.18 0.2 0.23 0.3
3 0.09 0.1 0.8 0.27 0.27 0.21 0.27 0.25 0.27
4 0.07 0.08 0.85 0.06 0.06 0.06 0.06 0.06 0.06
5 0.09 0.1 0.81 0.22 0.22 0.24 0.25 0.25 0.26
6 0.08 0.1 0.82 0.17 0.17 0.19 0.31 0.31 0.32
7 0.06 0.08 0.86 0.03 0.11 0.19 0.22 0.23 0.23
8 0.11 0.1 0.79 0.31 0.26 0.3 0.31 0.35 0.35
9 0.09 0.1 0.81 0.16 0.15 0.15 0.15 0.16 0.17
10 0.07 0.08 0.85 0.13 0.14 0.13 0.13 0.13 0.13
11 0.09 0.1 0.81 0.11 0.1 0.12 0.11 0.13 0.13
12 0.11 0.1 0.79 0.14 0.14 0.13 0.12 0.13 0.13
13 0.08 0.09 0.83 0.15 0.16 0.23 0.27 0.28 0.3
14 0.08 0.09 0.83 0.13 0.13 0.13 0.12 0.12 0.13
15 0.07 0.09 0.85 0.06 0.06 0.06 0.11 0.12 0.12
16 0.09 0.1 0.81 0.08 0.08 0.08 0.08 0.09 0.1
17 0.08 0.1 0.82 0.09 0.09 0.09 0.09 0.14 0.15
18 0.09 0.1 0.81 0.18 0.18 0.18 0.2 0.22 0.45
19 0.1 0.11 0.79 0.16 0.16 0.16 0.17 0.18 0.19
20 0.1 0.11 0.79 0.2 0.2 0.18 0.13 0.13 0.2

Average 0.08 0.1 0.82 0.15 0.15 0.16 0.18 0.2 0.22

of vehicles in VANET increases. Since there is no extra information about the semantic
relations between the entities constituting the body of the network in BN, all of the nodes
should be added to the network at its initialization step. This results in a BN wherein the
number of traffic vehicles becomes very large, and consequently yields inefficient inference
time. Such behavior is not observed in the regular MEBN, as it recreates the structure of
network at each time step with the help of semantic relations’ extra information. Therefore,
the nodes representing the movement of traffic vehicles are restricted only to those residing
in V2V communication coverage zone of the ego vehicle. Inference time is even better in
the hybrid MEBN inference algorithm, because instead of recreating the network at each
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Figure 4.15: The inference time of collision threat assessment for regular and hybrid MEBN,
and regular BN.

time slot, it utilizes the same structure for the same set of evidences, and only recreates
the network upon addition of a new evidence, or removal of an old one.

Another important performance difference between MEBN and BN is their network
construction time. In MEBN, random variables are contextually grouped together using
the FOL ordinary variables. Therefore, the network is re-constructed (random variables
are instantiated) at run-time, and based on the available entities. However, the topology
of the network is constant in BN as the number of random variables and their types are
fixed throughout the whole process. Although this may be deemed a drawback for MEBN,
we observed the network construction time to be as small as 200 milliseconds in the worst
case scenario, which can be simply ignored.

4.6 Summary

In this chapter, the theoretical foundation of Fuzzy Multi-Entity Bayesian Networks
(MEBN) was comprehensively discussed. Fuzzy-MEBN handles the semantics analysis
by making use of First-order Fuzzy Logic (FOFL), and manages uncertainty by employing
Fuzzy Bayesian Networks (FBN) as its causal reasoning core. In other words, Fuzzy-MEBN
adds the imprecise knowledge representation and reasoning capability to the conventional
MEBN by incorporating Fuzzy logic into both its semantics and causal sides.

The second novelty of this chapter was an algorithm for soft data matching using
Fuzzy-MEBN and semantic analysis concepts. To provide Fuzzy-MEBN with soft data
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handling capability, we first defined the basis of its underlying Fuzzy Bayesian Networks,
and accordingly, modified the Junction Tree inference algorithm. Moreover, the soft data
was analyzed through topic-to-topic, entity-to-topic, and entity-to-entity semantic analysis
algorithms to find its corresponding entity class, context, and state, respectively.

To evaluate the applicability of our model, we proposed a Traffic Situation Assessment
(TSA) framework for the Internet of Cars, which applies high-level information fusion
techniques to perform situation and threat assessment by utilizing Fuzzy-MEBN. In the
modelling procedure, the inattention-related entities along with their causal and semantic
relationships were identified first, and then were modelled in specific contexts using the
proposed framework. In order to show the capabilities of the framework, we also imple-
mented a collision warning system based on the TSA to measure the likelihood of a vehicle
being in a near-collision situation while using a wide range of information sources made
available through VANET platform.

Two distinct groups of driving scenarios were designed and tested on the proposed
system, and our simulation results helped to demonstrate the capability of TSA in achieving
situation assessment on the road. Results showed that proper implementation of Fuzzy
MEBN enables imprecise knowledge representation and reasoning, which can be used to
tackle many real world applications such as collision warning in Vehicular Ad-hoc Networks
area. Besides, the proposed model showed that it is able to tackle the inherent ambiguity in
the natural language of soft data by efficiently performing soft data matching, and casting
a positive impact in more accurate situation/threat assessment.

The future of this research work will be the incorporation of imprecise context-based
ontologies, and analysis of OSINT data. Furthermore, automatic learning of the Fuzzy-
MTheory structure and the formation of Fuzzy-MFrags can be seen as future activities.
Besides, considering the construction of more complex situations in which the likelihood
of both entities and their relationships are taken into account, and addressing the idea
situation distance definition, as introduced in [22], can also be considered as the seed for
pertinent research work.
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Chapter 5

Game Theoretic Impact Assessment
and Decision Making

The best protection against road accidents is to prevent them. However, preventing crashes
is a challenging issue as the traffic density is increasing spectacularly. A remarkable number
of crashes could be prevented if the driver is warned at least one-half second prior to an
accident. Therefore, future active safety systems are urged to assess the danger involved
in some situations and to take the convenient maneuvers, appropriately.

This chapter tackles the Impact Assessment (IA) and Decision Making (DM) prob-
lems in the Internet of Cars context. A novel game-theoretic version of Fuzzy Multi-Entity
Bayesian Network, called Active Fuzzy-MEBN (for short ATFY-MEBN), is proposed. Our
approach inherits most of the advantages of game theory in enumerating different possi-
bilities of action profiles, and finding an equilibrium.

To demonstrate the capabilities of ATFY-MEBN, a Traffic Impact Assessment (TIA)
and Decision Making (DM) model is implemented. In fact, TIA accept the the situation
assessment results, generated by the Traffic Situation Assessment (TSA) framework, as its
inputs, and adaptively aims to find the best action by hypothesizing the possible future
situations and choosing the one with maximum profit. Our experiments on a collision
warning system exhibit promising results in IA and DM in the IoC.
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5.1 Introduction

Driving is a complex behavior that is composed of various fast-evolving situations. These
situations are generally bound to a set of actions that directly impact their future state.
Therefore, it is a difficult and crucial task to predict the future of the situations, asses their
impacts, and take the optimal action based on that. Therefore, Impact Assessment (IA)
and Decision Making (DM) in the context of connected cars are challenging problems that
needs proper solutions.

As we already mentioned in Chapter 2, prediction and risk analysis are the main steps
of IA. An IA model obtains the previously assessed situations and their threats (the situa-
tions capabilities and intents) to calculate the likelihood of future hypothesized situations.
Therefore, any approach capable of generating a set of hypothesized situations, given the
current situations and their threats, can be potentially used as an IA model. Among several
approaches proposed to tackle IA in the context of connected cars, Probabilistic Graphical
Models (PGMs) are the most promising methods (see Chapter 2).

Along with IA, Decision Making (DM) is also an important part of the projection
phase of a SAW model [32, 35, 33]. An efficient DM model should evaluate the hypothesized
situations by measuring the benefit of the actions that can be taken on them. Generally, the
evaluation metric is defined either based on a domain expert interpretation, or statistically
compiled relevant datasets. Furthermore, involvement of the other intelligent decision
makers, i.e., agents, is another important factor that can influence the resulting actions of
a DM system. Indeed, the actions of the other agents can be either in favor, or against our
utility value. Such agents are commonly referred to as cooperative and adversarial agents.

Game Theory is internally a decision making scheme, which is provided with a set of
players, states, transition function, and a payoff function. A conventional game model
contains a decision space that is formed from the actions of individual players. Therefore,
for a specific situation wherein two or more active entities are involved, the decision space
of the game model is all of combinations of their actions. Furthermore, the best action to
be taken would be the combination that satisfies both the consensus and the individual
utilities which is measured by a payoff function [110, 212].

According to our review in Chapter 2, Fuzzy Multi-Entity Bayesian Network (MEBN)
have the maximum number of SAW-based features. However, it cannot handle major
prediction aspects. In this chapter, we propose a new tier for Fuzzy-MEBN that is laid to
monitor the underlying assessed situations of interest, evaluate their impact, and finally,
suggest optimal actions. The new Fuzzy-MEBN model introduces the concepts of player
entity classes and situation specific games, as well as some new game-theoretic components
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such as game and action nodes. Therefore, we name it Active Fuzzy-MEBN, or for short
ATFY-MEBN.

5.2 Background and Related Work

This section introduces relevant research work on IA, and incorporation of game theory
to solve IA problems. Moreover, the required theoretical background of game theory on
different forms of games, and game solution techniques are briefly explained.

5.2.1 Related Work on Game Theoretic Impact Assessment

Higher layers of JDL model call for situation prediction. Since situations, in the context
of VANETs, are developed by actions performed by drivers, vehicles, pedestrians, etc.,
game-theoretic techniques can provide an improved degree of prediction. Therefore, many
efforts in this direction have been proposed in the literature.

The authors in [50] introduce a game-theoretic information fusion approach to tackle
threat and impact assessment in military domain applications. The core of the proposed
framework is based on Markov (stochastic) game theory. Furthermore, Hierarchical Entity
Aggregation (HEA), and Hierarchical Task Networks (HTN) are also used in different
levels of the framework. Crucial segments of the Markov game, namely, Players, State
Space, Decision, Transition Rule, and Payoff Functions, along with different Strategies
(Pure Nash, Mixed Nash, and Correlated Equilibria) are studied.

Tang et al. in [212] propose a model for threat and situation assessment in cyber
insider scenarios. They use dynamic Bayesian Networks (BN) as their information fusion
module, and then couple it with a game module that uses Quantal Response Equilibrium
(QRE) as its strategy method. The main intuition behind choosing QRE is its capability
in modeling rationality of players. Their proposed algorithm performs efficiently in terms
of convergence and precision. However, it suffers from additional computational cost.

A Threat Assessment (TA) model is proposed by Aoude et al. that is based on a
combination of game theory and Rapidly-exploring Random Trees (RRT). The authors
tackle the problem of collision avoidance at intersections containing a host vehicle, and
an erratic traffic vehicle, which is similar to an adversary unit in a game model. The
algorithm is split into two modes: exploration and pursuit. In exploration mode, regular
RRT is employed and the state-space is explored to find reachable states for the erratic
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car. Moreover, in the pursuit mode, the sampling of RRT is biased towards where the
host vehicle is going. Threat assessment is then calculated based on the Time To Collision
(TTC) [113] metric for each expanded node in RRT.

A prediction and planning framework for collision avoidance is introduced in a technical
report by Broadhurst et al. [43]. The authors determine the main entities involved in
prediction, and the most important elements of planning. Furthermore, the main aspects
of a game such as states, actions, strategies and payoff functions are formulated. In the
experiments, sequential game playing is employed and it is assumed that the states are
updated in turn-based manner.

An information fusion game component based on dynamic Bayesian Networks and
Bayesian Game Theory is proposed by [44]. Goals, utilities, and decisions are represented
by a graphical model that is further used by a game component. Moreover, the agents are
deemed to interact with partial knowledge about the other agents’ strategies. Henceforth, a
Bayesian game is used to model high-level agent interaction to improve situation awareness.

Although game theory is widely used for the analysis of impact and threat assessment,
few studies focus on road safety. Pioneering works discuss strategy interactions between
one errant driver and one victim car. Unlike earlier studies, our proposed technique for
IA will profit from different types of communication in VANETs, and adopt an adaptive
process asses a situation and its impact, where there might be multiple road users.

5.2.2 Game Theory: Theoretical Background

A conventional game G in general is shown by a 5-tuple G = 〈P ,S,D,R, f〉, wherein
P = {1, 2, · · · , N} is the set of players, S is the set of states, D = D1 × D2 × · · · × DN
is called the decision space and is created from the actions of each individual player Di =
{a1, a2, · · · , am}, R : S×D → ∆(S) is the transition function that calculates the likelihood
of residing in each state after taking decision instance di ∈ D when observing world state
si ∈ S, and finally { : S ×D → RN is the payoff function that awards/punishes the players
upon perceiving world state si ∈ S and taking decision instance di ∈ D.

A strategy sp for a player p ∈ P is defined as a probability distribution π over the actions
ai that p takes, when dealing with different instances of games. Therefore,

∑
i π(ai) = 1.

A strategy sp is called pure strategy if π(ak) = 1 and ∀j 6=kπ(aj) = 0. Otherwise, sp is called
a mixed strategy.

Two main forms of games are: 1. strategic games, and 2. extensive games with
perfect/imperfect information[160].
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Strategic (Normal Form) Games

In strategic games, it is assumed that the players know which actions their opponents
can take and what the outcomes will be, but they are not informed about which action
their opponents are willing to take. Alternatively, one ca assumed that actions are taken
simultaneously. A strategic game GN is a 3-tuple in abstract form, wherein GN = 〈P ,D, f〉.
The definition of the consisting components are the same as above. Normal Form Games
(NFGs) are the most well-known strategic type games. It is important to know that in
NFGs, a players utility is not only dependant on his own utility, but also on the strategies
played by its opponents. A player pi is rational if and only if it tries to maximize the
expected value of its payoffs. NFGs are usually represented by a hyper-matrix.

Extensive Form Games

Knowing the complete information about the game is the main difference between the
strategic games and Extensive Form Games (EFGs). In EFGs, each player knows when
to play (and when other players play), what actions are available to them (and what
actions are available to their opponents), and where their actions lead them to (and where
those of the other players do). An extensive form game GE is a 5-tuple such that GE =
〈P ,mathcalT,S,R, f〉, wherein P ,S, R, and f are defined same as above, and T is the
tree representation of GE. Having complete or partial information regarding the transition
rules in R, divides the EFGs into two sub-groups of EFGs with perfect, and imperfect
information, respectively.

Solving Games

Common game solution algorithms are Dominant Strategy Equilibrium (DSE), and Nash
Equilibrium (NE). An equilibrium, which is also known as a strategy profile, is a combi-
nation of each player’s strategies, from which they will not deviate. Such strategies are
called dominant (best response) strategies, and are defined as follows.

A strategy s∗p strictly dominates sp if and only if fp(s
∗
p, s−p) > fp(sp, s−p), wherein

s−p ∈ S−p are the strategies played by all the players except for p, and fp is the payoff
function of p. s∗p weakly dominates sp if and only if fp(s

∗
p, s−p) ≥ fp(sp, s−p).

Similarly, for any player p, a strategy sBRp is a best response to s−p if and only if
fp(s

BR
p , s−p) > fp(sp, s−p),∀sp ∈ Sp. Note that this is different from the dominant strategy

definition, in which s−p is not fixed.
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Finally, a strategy profile (sNE1 , sNE2 , · · · , sNEP ) is a Nash equilibrium if and only if sNEi
is a best response to sNE−i .

5.3 Active Fuzzy Multi-Entity Bayesian Networks

ATFY-MEBN is a novel 2-tier model that is designed on top of Fuzzy-MEBN to en-
able IA and DM. While ATFY-MEBN model shares most of the Fuzzy-MEBN language
and components, it introduces some modifications in the language, and a number of new
game-theoretic components. Besides, two separate algorithms for generating Situation-
Specific Normal Form Games, and Situation-Specific Active Fuzzy Bayesian Networks are
presented.

5.3.1 ATFY-MEBN Language Specifications

The language of ATFY-MEBN is very similar to what we introduced in Chapter 4, and
is mainly based on the original MEBN language proposed by Laskey [125]. The following
explains just the differences between ATFY-MEBN and Fuzzy-MEBN.

• Phenomenal constant symbols: Constants are represented by fuzzy sets with just
a single member, i.e., fuzzy singletons. Constant names may contain both let-
ters and number, but must start with an uppercase letter, and should be followed
by a real-valued membership degree subscript within range [0, 1] e.g., Vehicle0.85,
Environment1.0. The constant symbol Action1.0 is pre-defined and fixed by the lan-
guage to specify actions.

• Unique identifier symbols: The entities are assigned a unique identifier symbol that
are annotated with a fuzzy membership degree, and are arranged in one of the groups
below:

– Action identifier symbols: Action identifier symbols are shown by the set Λ,
and are used to label the domain-specific actions taken by the entities defined
in the. Action identifier symbols are alphanumeric symbols starting with an
at-sign, e.g., @A1, @A2.

• Action binders: The action binders B are simply mapping functions that bind phe-
nomenal constant symbols to a subset of action identifier symbols. If such a binding
exists, then the corresponding specific phenomenal constant symbol is called a player.
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• Domain-specific game variable symbols: Analogous to random variable names, game
variable symbols are also alphanumeric strings beginning with a capital letter char-
acter. It is necessary for the arguments in game variables to have an action binder,
i.e., the arguments should be players. Moreover, the number of arguments for each
game variable is fixed to two, showing the fact that at least two players are required
for the game to be played. In this setting, the first variable vi is automatically asso-
ciated with the main player, and the second variable v−i, which is actually a vector
of variables, is assigned to the other players. All the possible values of game variables
are found by finding the cross product of the actions in each binding. In other words,
G : {vi, v−i} →

∏
i B(vi), wherein G is the game variable, and B(vi) is the set of

actions bound to vi.

• Domain-specific action variable symbols: Action variable names are also alphanu-
meric strings with a capitalized first letter. These variables have only one argument
that needs to have an action binder. The possible values of action variables are defined
as a subset of actions bound to its underlying argument, i.e., A : {vi} → Λ′ ⊆ Λ.

5.3.2 ATFY-MEBN Components and Structure

In the following, we propose our novel 2-tier architecture for ATFY-MEBN that ensures
separating game components from those of conventional Fuzzy MEBN. In this architec-
ture, the ATFY-MFrags that contain at least one game component belongs to tier 1, and
the rest lay in tier 0. In other words, ATFY-MFrags determine to which tier different
components belong. For all the definitions below, assume that T0 and T1 refer to tiers 0
and 1, respectively.

Definition 4. The fuzzy context nodes Ci(Ω) ∈ C are the graphical representations of
FOFL expressions that include the ordinary variables in the set Ω. The output of Ci(Ω)
ranges from 0 to 1, and reflects the truth value of its underlying FOFL expression. Context
nodes are usable on both T0 and T1.

Definition 5. The input nodes Ii(Φ) ∈ I are defined as placeholders for the fuzzy resident
nodes R(Φ), wherein Φ is the set of the ordinary variables in the original fuzzy resident
node. Input nodes can be created on both T0 and T1. An input node is an inter-tier portal
if it is created on T1, and its fuzzy resident node is on T0.

Definition 6. The output nodes Oi(ψ) ∈ O are defined as placeholders for the action nodes
A(ψ), wherein ψ is the ordinary variables residing in the original action node. Output nodes
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can be created on both T0 and T1. However, they play the role of a portal between two tiers,
if they are in an ATFY-MFrag on T0 (they point to an action node, which is on T1).

Definition 7. Let us assume that Ψ = {ψj, ψ−j} is the set of ordinary variables, wherein
ψj is the main player and ψ−j are all its opponents. It is necessary that all the ordinary
variables in Ψ have non-empty action binders. Moreover, let Ii and Ci be subsets of input
nodes and fuzzy context nodes, respectively. Therefore, the game nodes Mi(Ψ|Ii, Ci) ∈
M are defined as the graphical representations of the games whose players existence is
conditioned on Ci. The payoff function of Mi is conditioned on the subset of input nodes
Ii, and is defined through aggregating the results of the input nodes in Ii. All the game
nodes are on T1.

Definition 8. An action node is the graphical representation of a the random variable
Ai(ψ|Ri, Ii,Mi) that is the probability distribution over the actions that ψ can take, given
a subset of fuzzy resident nodes Ri, and a subset of input nodes Ii. Moreover, the game
nodes playing the actions of Ai are included in Mi. All the action nodes are on T1.

Definition 9. Let us assume that α ∈ Λ is an action identifier. Then, an influence set
L(α), is the set of fuzzy resident nodes whose states are affected if action α is taken.

Definition 10. A fuzzy resident node is a graphical representation of the random variable
Ri(Θ|Ri, Ii, Ci,Oi) that is expressed through a set of ordinary variables Θ, and is condi-
tioned on the values of a subset of other fuzzy resident nodes Ri ⊂ R where Ri /∈ Ri, a
subset of input nodes Ii ⊂ I, and a subset of fuzzy context nodes Ci ⊂ C. The output
of Ri is a probability distribution over its states. It is notable that 0 ≤ |Ii| ≤ |I| and
0 ≤ |Ri| ≤ |R| − 1. Besides, for any 0 ≤ i, j ≤ |R| − 1, where i 6= j, Ri and Rj are
not necessarily disjoint, i.e., fuzzy resident nodes can have multiple children. Furthermore,
|Θ| ≤ |Ci| ≤ |C|+ |Θ|, showing that Ci needs to contain the at least |Θ| number of fuzzy con-
text nodes that demonstrate the entity assignments of ordinary variables in Θ. Depending
on their underlying ATFY-MFrag, fuzzy resident nodes can be on both T0 and T1.

The MFrags in ATFY-MEBN are called ATFY-MFrags and are defined as below.

Definition 11. An ATFY-MFrag F = (R, C, I,A,M,G0,1,D0,1,S) is a 2-tier 8-tuple
wherein R, C, and I, are respectively the conventional sets of resident, context, and input
nodes that reside on tier 0. Furthermore, A and M are action nodes and game nodes
sets, which are new in ATFY-MFrag and are laid on tier 1. Moreover, G0,1 and D0,1 are
respectively the graph representation of F and the probability distributions defined for R
and A. 1 The fuzzy rules are also defined in the fuzzy rule-set S.

1The sub-scripts in G0,1 and D0,1 show the tier index
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A number of important characteristics of F are as follows:

• C, R, and I are pairwise disjoint sets

• G0,1 = 〈V0∪V1, E0∪E1∪Ec〉 wherein V0 = I∪R and V1 = A∪M are the sets of graph
vertices on each tier with corresponding edges specified in E0 and E1, respectively.
Moreover Ec contains the cross edges that originate from one tier and rest on the
other.

• Context value assignment terms in C are used for enforcing constraints under which
the local distributions apply

5.3.3 Situation-Specific Active Fuzzy Bayesian Networks

The Situation Specific Fuzzy Bayesian Networks (SSFBNs) which are enhanced with action
and game nodes are called Situation Specific Active Fuzzy Bayesian Networks (Active
SSFBNs). An Active SSFBN is constructed when finding the probability of the query Q
happening given a set of evidences E, i.e., p(Q|E). Therefore, the whole process starts
by submitting the query Q that is an instantiated resident node, say R1(Θ1), with a set
of bound ordinary variables (see [125] for the definition of binding sets). In addition,
all the present observations, say E = /e1, e2, · · · , eM/, are also added to the network.
Furthermore, the parents of these nodes are recursively analyzed and then imported to the
network. In fact, parents are created following exactly the same instructions in constructing
an SSBN [143]. As long as the parent nodes expanded are resident nodes, they are laid on
T0. However, as it is also mentioned in the definition of resident nodes in ATFY-MEBN,
there might be cases wherein an output node, say Op, is the parent of a resident node,
i.e., Rq. Such configurations happens when Rq is in the influence set of at least on of the
actions defined in the action node host of Op. This results to an inter-portal link between Rq

(residing on T0) and the action node Ap (laid on T1), to which Op points. Subsequently, the
algorithm continues by creating the parents of the currently unexpanded nodes including
Ap. When expanding the network from Ap, all of its parents that are either resident or
input nodes are created as before, but, those which are game nodes are treated differently.

To create the parent game node Mp, all of the context nodes on which Mp is conditioned
should be satisfied initially. The satisfiability check is done given the bindings of the
ordinary variables present in the ATFY-MFrag in which Mp resides. This normally should
results in instantiating the game with its main player ψi and all the other opponents ψ−i
using the outputs of context nodes. However, if the total number of players is less than 2,
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then the game cannot be created. Game nodes are also conditioned on a given subset of
input node parents that serve as defining the payoff function. Similarly, the resident nodes
which are pointed by these input nodes are expanded following the same instructions as
before. The result of this stage is a situation specific game whose players along with their
actions are determined based on the current situation.

The whole process produces a 2-tier Active SSFBN that is capable of assessing the
impact of situations by playing games. The Active SSFBN construction algorithm is pre-
sented in Algorithm 3. This algorithm is very similar to SSFBN construction algorithm
except for lines 12 and 7 where a node and its parents are created. Conclusively, the

Algorithm 3 Situation-Specific Active Bayesian Network Construction Algorithm

1: procedure Generate-SSATFYBN(Q(Θ),E)
2: V ← Q ∪ E
3: Vc ← ∅
4: G← ∅
5: while V 6= ∅ do
6: v ← V − {v}
7: Π← Create-Parents(v)
8: for all π ∈ Π do
9: if pi /∈ Vc then

10: V ← V ∪ π
11: Vc ← Vc ∪ v
12: G← Create-Node(v)

13: return G

output of Algorithm 3 is a 2-tier graph that contains the conventional situation specific
fuzzy Bayesian network on tier 0, and a set of game components on tier 1. These outputs
are used to predict the future states of the situation modelled on tier 0.

In the next section, we explain how actual games are instantiated from the game nodes,
and how they are used to assess the impact of the current situation.

5.3.4 Situation-Specific Normal Form Games

The games are played in a distributed manner and as a separate step after all the nodes
are created, and the network is initialized. The result of the game, which is a strategy,
will then be utilized to predict the impact of the current situation. Depending on what
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type of game being created, different approaches may be chosen. Here, we propose a novel
distributed approach to generate a Situation Specific Normal Form Game.

In a nutshell, we first fix the main player entity, and then determine all the other
opponents by exploring the knowledge base and checking satisfiability of the constraints
imposed by the context nodes. The next steps would be generating all the possible action
profiles, and calculating the payoffs of each player. The later needs to be done in a dis-
tributed manner, since the main player entity has partial knowledge about its opponents
situations. Upon setting all the payoffs for all the action profiles, a game solution algorithm
such as Nash equilibrium is performed to extract the best strategies. It is notable that all
the players are assumed to be rational agents, which means that they take the actions that
ultimately maximize their payoff. The body of SSNFG generation algorithm is presented
in Algorithm 4.

Algorithm 4 Situation-Specific Normal Form Game (SSNFG) Generation Algorithm

1: procedure Generate-SSNFG(Mi(ψ−i|ψi = εi, Ii, Ci),A′′,f)
2: B′ ← ∅
3: B′ ← B′ ∪ (ψi, εi)
4: B′ ← B′ ∪ Extract-Valid-Players(ψ−i,Ci))
5: A′ ← Generate-Action-Profiles(B′,A′′)
6: Σ← Calculate-Payoffs(B′,ψ−i,A

′,Ii,f)
7: (A′k,LA′k)←Calculate-Equilibrium(Σ)
8: return (A′k,LA′k)

In Algorithm 4, it is assumed that the main player is already known. The unique entity
identifier symbol assigned to ψi usually comes from a child action node that is an ancestor
of a query resident node. Figure 5.1 shows an example. Another input of the algorithm is
the actions binding set A′′, or (partial) action profile, that is a subset of all player-action
pairs. In other words, A′′ can be defined as below:

A′′ ⊆ {(ψ, α)|ψ ∈ P and α ∈ A(ψ)} (5.1)

wherein P is the set of all players participating in the current game, and A(ψ) is the set of
all possible actions that the player ψ can take. If A′′ contains the player-action pairs of all
the players, then it is an action profile. Otherwise, we refer to A′′ as partial action profile.

Having the main player entity fixed, other valid opponents are extracted at line 4, and
are stored in the players binding set B′. Afterwards and at line 5 of Algorithm 4, all the
possible action profiles are generated based on the players binding set B′, and the partial
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Figure 5.1: The instantiation of ordinary variables based on the given query and the
knowledge base

action profile A′′. Furthermore, the game table is constructed at line 6, and finally the
optimal strategy is calculated by finding the Nash equilibrium at line 7. The following
describes the last four steps in mode details.

Player Entity Extraction

The opponent players entities ψ−i of an SSNFG node are determined using a series of steps
that are presented in Algorithm 5. The entities associated to these players are the unique
entity identifier symbols that belong to a player class (line 4), and all their consistency
constraints defined by the context nodes are satisfied (lines 5 to 8). It is notable that the
binding set B′ is generated using the set of observed unique entity identifiers as well as
those stored in the knowledge base (see line 2).

Action Profile Generation

All the possible action profiles are generated based on the given player binding set B′,
created on the previous step, and an actions binding set A′′, a.k.a. partial action profile

111



Algorithm 5 Opponent player extraction for the current context

1: procedure Extract-Valid-Players(ψ−i,Ci))
2: B′ ← Extract-Bindings(ψ−i)
3: for all (ψj−i, εj) ∈ B′ do
4: if Is-Player(εj) then
5: for all c ∈ Ci do
6: if Not-Satisfied(c(Ω|εj)) then
7: B′ ← B′ − {(ψj−i, εj)}
8: go to 3

9: return B′

(see Equation 5.1) that determines which players know which actions they should take.
For sake of simplicity, let us assume that all the players belong to the same type, meaning
that all the available actions to them are the same. The actions set of the players are
determined by the corresponding action nodes Ai(ψi) and A−i(ψ−i) linked to the game
node Mi.

Depending on the size of A′′, two cases might happen. If A′′ = ∅, then the maximum
total number of action profiles is:

|A(ψi)|
∏
j∈ψ−i

|A(ψj)| (5.2)

wherein A(ψj)s are the actions set of the players ψj that are in the opponents set ψ−i.
However, if the actions binding set A′′ 6= ∅ (A′′ contains the pre-fixed actions that some
of the players take), then the total number of action profiles will be:

H1
A′′(ψi)

∏
j∈ψ−i

H1
A′′(ψj) (5.3)

wherein H is an indicator function, and is defined as:

H1
A′′(ψj) =

{
1 if ∃(x,y)∈A′′ s.t. x = ψj
|A(ψj)| o.w.

(5.4)

Briefly speaking, fixing the actions of a subset of players by the partial action profile A′′

helps to reduce size of the action profiles set that consequently leads to the reduction in
the size of the game table.
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Theorem 1. If A′′ = {(ψ1, α1), (ψ2, α2), · · · , (ψK , αK)}, then the total number of action
profiles for a game with N players, where K ≤ N , is reduced by a factor of at least 2K,
assuming that each player can take the minimum of two actions.

Proof. The proof is very straight-forward. Let us assume that A′′ = ∅. Therefore, assum-
ing that each player can take at least two actions, we will have: ∀ψ 2 ≤ |A(ψ)|. Plugging-in
this equation into Equation (5.2) yields:

2N ≤ |A(ψi)|
∏
j∈ψ−i

|A(ψj)| (5.5)

in which N is the total number of players. Furthermore, for an arbitrary A′′ =
{(ψ1, α1), (ψ2, α2), · · · , (ψK , αK)}, using Equation 5.3 results in:

N∏
j=1

H1
A′′(ψj) = 1× 1× · · · × 1︸ ︷︷ ︸

K

×

N-K products︷ ︸︸ ︷∏
ψj /∈A′′(·,α)

|A(ψj)| (5.6)

wherein ψj /∈ A′′(·, α) determines the players not included in the partial action profile A′′.
Since each player takes minimum of two actions, Equation 5.6 is bounded below by 2N−K ,
and can be rewritten as:

2N

2K
≤

N∏
j=1

H1
A′′(ψj) (5.7)

Dividing Equation 5.5 by 5.7 yields:

2K ≤
|A(ψi)|

∏
j∈ψ−i |A(ψj)|∏N

j=1H
1
A′′(ψj)

(5.8)

showing that the total number of action profiles is reduced by a factor of at least 2K .

Payoff Calculation

The entries of a game table are created for each action profile, based on the input nodes
Ii and an arbitrary aggregation function f . Therefore, the size of the game table Σ
is proportional to the number of players and action profiles, which is precisely |Σ| =
|A′| × |B′|, wherein A′ is the set of all action profiles, and B′ is the players binding set.
As it is also shown in Algorithm 6, each cell of Σ is associated with an action profile
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Algorithm 6 Payoff calculation for each action profile

1: procedure Calculate-Payoffs(B′,A′,Ii,f)
2: Σ[ ]← ∅
3: for all A′j ∈ Action-Profiles(A′) do
4: Σ[A′j]← f(Predict-Situation(Ii,A′j))
5: return Σ

A′j = 〈αj1, αj2 · · ·αj|B′|〉, and is set with a vector containing the payoff of each player (see
line 4). This is where we introduce two different types of situation prediction algorithm,
namely, Type-0 (centralized approach) and Type-1 (distributed approach).

In the Type-0 situation prediction algorithm, it is naively assumed that the main player
knows how the payoff of its opponents change when the actions in an arbitrary action profile
A′j are taken. This can be pictured as a centralized approach in which the main player
has complete knowledge about its opponents dynamic model, state-space, worlds, etc., and
therefore, can estimate their future states. Accordingly, the payoff values are calculated
by measuring the impact of the situations in Ii upon virtually taking the actions in A′j.
Algorithm 7 shows the situation prediction instructions for Type-0 in more details.

Algorithm 7 Centralized situation prediction based on the given action profile A′j

1: procedure Predict-Situation-Type-0(Ii,A′j)
2: LA′j ← ∅
3: for all αji ∈ A′j do
4: LA′j ←Update-Findings(L(aj),αji)

5: p[ ]← ∅
6: for all ψj ∈ A′j(·, α) do
7: p[ψj]← pψj(Ii|LA′j)
8: return p

In Algorithm 7, the states of the entities in the influence set L of each action αji are
estimated first, by calling the Update-Findings function at line 4. These entities, Lα, are
then used as new evidences when assessing (predicting) the new states of the situations of
interest given in Ii for each player ψj. This method performs well in the centralize architec-
tures, where all the information regarding the participating agents is accessible. However,
this is definitely a naive assumption in multi-agent systems. Therefore, we propose Type-1
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situation prediction algorithm that is based on a distributed architecture and the message
exchanging schemes.

In the distributed version of the situation prediction algorithm, it is assumed that
the agents have limited local information, but are able to communicate through message
passing protocols. Therefore, the main player does not need to predict the impact of the
situations of interest for each opponent anymore. Instead, it communicates with each
opponent by sending a message that contains an action profile, and receiving their cor-
responding payoff. VANETs are a relevant context of distributed approach. vehicles are
equipped with communications technologies that allow them to exchange messages with
each other . VANETs has the flexibility in seamlessly supporting both single-hop and
multi-hop communications.

Once an opponent ψj receives an action profile A′j from the main player ψi, it will use
A′j as an actions binding set when generating action profiles for its own game Mj. In other
words, if Pj denotes the set of players included in the game that ψj plays, then two cases
may happen:

1. Pj−{ψi, ψj} = ∅, which means that ψj’s only opponent is ψi who is the one sending
the partial action profile. In this case, the size of action profiles set for ψj’s game
will be reduced to 1 (see Theorem 1), and ψj can simply return its payoff without
playing any game.

2. Pj − {ψi, ψj} 6= ∅, is the case in which ψj has some other opponents along with
ψi. Depending on the number of opponents that ψi and ψj inclusively share, say K
opponents, the size of the action profiles set will be reduced by a factor of at least
2K (see Theorem 1). However, ψj still needs to play its own game Mj by calling
Algorithm 4 wherein A′′ is equal to the partial action profile sent by ψi. Finally, the
calculated payoff after solving the game will be returned to the sending player.

The above steps can be repeated up to a specific number of hops or until a threshold is
met (exceeding the active area of the game). The Type-1 situation prediction algorithm is
presented in Algorithm 8. It is very similar to Algorithm 7, except for line 8 at which the
payoff of the opponent ψj upon taking actions in A′j is found by sending messages using
the Ask-Payoff function. After finding the payoffs of each player for every action profile,
the game is ready to be solved.
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Algorithm 8 Distributed situation prediction based on the given action profile A′j

1: procedure Predict-Situation-Type-1(Ii,A′j)
2: LA′j ← ∅
3: for all αji ∈ A′j do
4: LA′j ←Update-Findings(L(aj),αji)

5: p[ ]← ∅
6: p[ψi]← pψi(Ii|LA′j)
7: for all ψj ∈ A′j(·, α) ∧ ψj 6= ψi do
8: p[ψj]← Ask-Payoff(ψi, A

′
j)

9: return p

Equilibrium Calculation

An SSNFG is ready be solved when the game table is generated, and all of the players
payoffs for each action profile are calculated. Different game solution algorithms such as
Nash equilibrium can be used to output the optimal strategy for the main player as well as
the estimated payoff. A common solution to calculate the best optimal strategy is linear
programming that is widely used for normal form games equilibrium calculation. As also
depicted in Algorithm 4, this is the last stage of the main SSNFG generation algorithm
whose results can be used to decide on the next action to be taken.

Performance Analysis

The complexity of the SSNFG generation algorithm highly depends on the number of
players. Accordingly, its performance can be studied in three different phases: 1. players
detection, 2. game table generation, and 3. equilibrium calculation.

Theorem 2. The complexity of the player entity extraction algorithm (see Algorithm 5)
is linear in the number of players, i.e., O(ϕ|B′|), wherein B′ is the set of player bindings,
and ϕ > 0 is a constant.

Proof. The algorithm can be analyzed in two different parts. The first one is the Extract-
Bindings method where we literally examine every observed entity identifier symbol εj ∈ E ′,
which is valid in the current ATFY-MFrag, and assign them to opponents ordinary variables
set ψ−i. Therefore, this method performs in O(|E ′|), with E ′ as the set of valid entity
identifier symbols in the current ATFY-MFrag.
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The second part involves deleting the player bindings whose consistency constraints are
not satisfied by the subset of context nodes Ci. Therefore, its time complexity will be:

O(|B′| × |Ci| × (|E ′||Ω|)) (5.9)

in which the terms |B′| and |Ci| are caused by the outer and inner loops, respectively.
Moreover, |E ′||Ω| is the maximum number of combinations that entity identifier symbols E ′
can be matched with the variables Ω of the context nodes. If we assume that Ω∗ is the
largest set of context node variables, then:

O(|B′| × |Ci| × (|E ′||Ω|)) � O(|B′| × |Ci| × (|E ′||Ω∗|)) (5.10)

Merging Equation 5.10 with O(|E ′|), which is the performance of the first part, yields:

O(|E ′|) +O(|B′| × |Ci| × (|E ′||Ω∗|)) (5.11)

It is obvious that the first term is dominated by the second term. Besides, |Ci|×(|E ′||Ω∗|)
can be treated as a constant, say ϕ, because the number of context nodes and the number
of entity identifier symbols assigned to the current ATFY-MFrag are fixed. Therefore,
Equation 5.11 reduces to O(ϕ|B′|), which is linear in the number of player bindings B′.

In the worst case scenario, the action profile generation algorithm performs in
O(|A∗||B′|), where |A∗| is the largest action set among the action sets of all players, and
B′ is the players binding set. As it is thoroughly discussed previously, if the partial ac-
tion profile A′′ is non-empty, then the total number of possible action profiles is reduced.
Therefore, for A′′ 6= ∅, the action profile generation algorithm performs in O(|A∗||B′|−|A′′|).
See Theorem 1 for more details.

The bottleneck of the payoff calculation algorithm is revoking the inference algorithm
that performs inO(ew) for w as the width of the largest clique in the junction tree algorithm.
In the centralized case, this should be done for all the players individually that makes the
total complexity worse, and increases it to O(ew|B′|). However, the complexity remains at
O(ew) for Type-1 payoff calculation algorithm. The inference algorithm should be called
for every cell of the game table that is at most |A′| = |A∗||B′|. Altogether, the performance
of Type-0 and Type-1 payoff calculation algorithms are O(ew|B′||A∗||B′| and O(ew|A∗||B′|,
respectively.

Finally, the last stage of generating a situation-specific normal form game is actually
solving that game. It is shown in [57] that computing a (mixed) Nash equilibrium is of
class PPAD-complete (Polynomial Parity Arguments on Directed graphs complete).
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To summarize, the performance of Algorithm 4 heavily relies on the payoff calculation
algorithm as it dominates the time complexities of other subroutines. In the next section,
we statistically analyze the performance of our SSNFG-generation algorithm and discuss
its tractability, Specifically in the context of VANETs.

5.4 Traffic Impact Assessment And Decision Making

In this section, we propose a novel Traffic Impact Assessment (TIA) and Decision Making
(DM) unit that makes use of ATFY-MEBN to perform impact assessment and decision
making in Vehicular Ad-hoc Networks (VANETs). This model comes after the Traffic
Situation Assessment (TSA) unit introduced in the Chapter 4, and aims to complete the
Attention Assist Framework (see Chapter 6).

Tier-0 of ATFY-MEBN is sufficient to implement such a situation assessment paradigm.
Accordingly, an individual fuzzy resident node is assigned to each traffic entity. Depending
on the type of the data/information to be captured, the state of the resident nodes are
estimated from the relevant input i.e., raw sensors data, human operator soft data [85],
and so on. Finally, the situations of interest are assessed by running an inference query on
the constructed SSFBN.

Tier-1 is linked to the TIA and DM units to assess the impact of the resulted situations
of interest, and to consequently make the best decision based on that, the TIA and DM
units implement and use the game components residing on tier-1 of the constructed domain-
specific ATFY-MEBN. The games created at this stage are non-cooperative games, in which
the players intend to optimize their own payoff function, without considering those of their
opponents. In other words, the payoff function of each player is only composed of the
situation states that directly impact the safety of that specific player.

The input situations of interest to TIA are used as the current state of the game nodes
whose main player is the vehicle running the TIA instance, and the contextually relevant
opponents are determined using VANETs communication links. The TIA and DM units
operate interactively to generate different possibilities of the players actions, i.e., action
profiles, and measure their impact on the current situation. After the game nodes are
played, and the best strategy for the main player is found, the respective action is either
directly taken, or is advised to the driver. Figure 5.2 shows how tier-0 of ATFY-MEBN
is implemented by the TIA and the DM units. In the following, different essential aspects
of a game model are explained thoroughly, and are defined as generic as possible, so that
they can be used to implement various services applicable in the VANETs area such as
safety and convenience services.
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Figure 5.2: The details of the TIA and the DM units in AAF

5.4.1 Players

The players of the games generated in VANETs mainly depend on the scenar-
ios/applications that they are involved, and also on the problems they intend to solve.
For example, in the intersection safety applications, the ego vehicle along with other traffic
vehicles, and the pedestrians can all be assumed to be the players of the safety games.
In such scenarios, the players (no matter of which type they are) intend to avoid vehicle-
to-vehicle and vehicle-to-pedestrian collisions. As another example, vehicles are the only
players in highway scenarios which similarly try to minimize their risk of accident by track-
ing some crucial factors including safe speed and distance. Here, we assume that the players
are only the vehicles. However, drivers can be easily taken into account without loss of
generality.

For each vehicle ve(t), there are vi(t) ∈ Ne(t) game opponents (e 6= i), which together
create a game with |Ne(t)| + 1 players. We denote the main vehicle player (ego vehicle)
with ve, and all the other vehicle players (opponents) with vi. The neighboring vehicles set
of ve is also shown as Ne(t). Since, the neighboring vehicles of ve may change over time, Ne

is annotated with the time variable t. Using the notations introduced in the section 5.3.4,
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ψi = ve is the main player, and ψ−i is the set of opponents (all the players except for ψi).

5.4.2 States Space

As we mentioned before, the output of the TSA unit is a set of situations of interest along
with their estimated states. Depending on which situations need to have games played for,
one or more situations constitute the state of each player in our game setting. Therefore
the state space can be defined as Ŝ = {S1(Θ1), S2(Θ2), · · · , SK(ΘK)} wherein Sis are
the situations and Θis are their ordinary variables that are bound with unique identifier
symbols.

5.4.3 Decisions (Actions)

All the possible actions that each player entity is able to take is related to the class of that
player. As it is thoroughly investigated by Klauer [117], and also based on our slightly
different compilation on major factors involved in road incidents, the main entity classes
in the VANETs domain include: Vehicle, Driver, Environment, and VANET. Correspond-
ingly, the Vehicle and Driver classes are among those factors which can actively alter the
states of the situations by taking actions. Therefore, the actions sets in the AAF are
categorized into two abstract groups of Vehicle Actions, and Driver Actions.

The Vehicle Actions group includes all the operating-level actions that a vehicle takes.
For instance, steering left, steering right, accelerating, decelerating, braking, etc., are
deemed the operating-level actions of a vehicle. An ordered subset of these actions leads
to a higher-level action that help the vehicle to reach a goal. Higher-level actions are
situation-specific, and may differ in different scenarios. High-level actions can also be or-
ganized based on the environment in which they are taken. For example, the high-level
actions that a vehicle takes in a highway, differ from those it takes in urban areas, or in a
parking lot.

5.4.4 Transition Rule

Since we model the states of the players based on the situations of interest set, the transition
rules will be simply the changes in their states estimations that are cause by taking actions.
This results in situation evolution on lateral dimension, temporal dimension, or both [87].
Therefore, the state space will be a network of situations that are connected with lateral
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or temporal links. Two situations S1 and S2 are temporally connected if taking the action
a1 at S1 leads to S2, where S2 has the same topology as S1. Furthermore, if taking the
action a1 causes S1 to change topologically and create S2, then the two situations are
connected with a lateral link. Figure 5.3 depicts a sample network of situations connected
via transition rule links.

a0

a1

aj

a0

a1

a0

a1

aj

a0

a0

a2

Sti(Θ) St+1i(Θ)

St+1i+1(Θ)

St+1i+k(Θ)Sti+k(Θ)

St+2i(Θ)

St+2i+1(Θ)

St+2i+k(Θ)

Time

Figure 5.3: A sample network of interconnected situations

5.4.5 Payoff Function

A payoff function is a tool through which a player determines whether an action is beneficial
to take or not. In normal form games, payoff functions should be defined in a way to
represent the outcome of the strategy of the opponents as well. In other words, the payoff
functions need to be designed in a way to express how the actions of the opponents influence
the payoff of the main player.

We define a payoff function g as a mapping from a situation, with an estimated state,
to a real number that shows how much the current situation is desired. Therefore, g can
be defined as: g : Si(Θi) → IR, in which Si(Θi) is an arbitrary state-space situation of
interest with Θi as its ordinary variables vector, and IR is the set of real numbers.

In ATFY-MEBN, a situation Si is accessed through its representing fuzzy resident node
Ri, which has a set of possible values defined using fuzzy sets [84, 81]. When a situation is
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assessed, its corresponding random variable node s in the generated probabilistic network
is assigned an uncertain state such that

∑
v∈V (S) p(s = v) = 1, wherein V (s) is the set of

possible values of s. We use the estimated state probabilities as the weights vector, and
calculate the weighted sum of the fuzzy sets defined on the possible values, such that:∑

v∈V (s)

µv(x)p(s = v) (5.12)

in which µv(x) is the fuzzy membership function defined for the possible value v. Finally,
the payoff function g is defined as the center of gravity of the calculated weighted sum.
Therefore:

g =
1

A

∫
x

x
∑
v∈V (s)

µv(x)p(s = v)dx (5.13)

wherein A is the total area, and x ranges over the universe of discourse.

5.4.6 Equilibrium Calculation

As we mentioned before, the best strategy is commonly found using linear programming
techniques. Here we use the same technique in [177], to find the Nash equilibrium for
n-player games. In this algorithm, all the possible pairs of supports (pure strategies played
with non-zero probabilities) are enumerated, and for each pair a feasibility program is
solved to verify the existence of a Nash equilibrium. For more details, the reader is referred
to [177, 152, 59].

5.5 Impact Assessment and Decision Making Experi-

ments

In this section, we propose a framework that makes use of ATFY-MEBN to perform im-
pact assessment and decision making in the IoC. Most parts of the underlying situation
assessment task is similar to what we have previously presented in Chapter 4. In fact,
major situations and their building blocks still reside on tier-0, and can be used directly
for situation assessment.

What is extra in our new setting is the involvement of relevant game components that
are used to predict the future situations. Accordingly, we use our novel ATFY-MEBN
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model and its underlying components to re-design the Collision Warning System (CWS)
introduced in Chapter 4, and to enable impact assessment and decision making.

The following explains the main components of the new CWS model. First of all, game
ingredients such as Players, State Space, Decisions, Transition Rules, and Payoff Functions
are specified. Moreover, respective ATFY-MEBN game components, i.e., actions, action
nodes, game nodes, etc., are defined and used to build the second tier of the new 2-tier
ATFY-MTheory of the CWS.

The performance of the newly introduced game components are evaluated in various
VANETs configurations for both centralized and distributed games. Moreover, two differ-
ent scenarios of driving in a highway, and at an intersection are outlined to demonstrate
the IA and DM capabilities of CWS in situations of different types.

5.5.1 Game Components

A number of components need to be defined for every game to be complete and solvable.
These components along with their specifications are introduced below.

Players

The players classes vary in the two separate scenarios we will investigate. In the intersection
safety scenario, the ego vehicle along with other traffic vehicles, and the pedestrians can all
be assumed to be the game players. In such scenarios, the players (no matter of which type
they are) intend to avoid vehicle-to-vehicle and vehicle-to-pedestrian collisions. Moreover,
vehicles are the only type of players participating in the highway safety scenario. To make
our simulations simpler, we assume that the only type of players in our scenarios are
vehicles. As we mentioned before, the main player is shown with ve, and its opponents vi,
where e 6= i, at time t are in the neighboring set Ne(t).

States Space

The states are selected based on the underlying ATFY-MTheory constructed for our do-
main. The main situation that can be uses to measure the threat of the current driving
situation is CollisionThreatLevel(ve, t), which reflect the degree of how much a vehicle is
close to an accident. Another possible situations of interest can be ManeuveringLevel(ve, t),
DistanceDangerLevel(ve, t), and so on.
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Table 5.1: List of operating-level actions of the Vehicle and Driver classes

Vehicle
Accelerate, Decelerate,
Steer Right, Steer Left,
Shift Gear Up, Shift Gear Down,
Stop, Toggle Reverse Gear
Driver
Look Forward, Look Back,
Shoulder Check Right, Shoulder Check Left,
Turn on/off Lights, Turn on/off Wiper,
Signal Right, Signal Left,
Take the Cell Phone, Put Down the Cell Phone,
Keep Driving, Take a Rest,

Decisions (Actions)

The list of the operating-level actions that vehicles usually take are presented in Table 5.1.
Moreover, the high-level actions, based on the environment, of a vehicle in a highway are
depicted in Figure 5.4, which also illustrates how operating-level actions are put together
to create high-level ones. For instance, a vehicle should accelerate (upto a safe speed) and
steer left at the same time to merge onto the passing vehicles in the highway. Moreover,
acceleration, and steering wheel requires changing throttle pedal angle (and possibly gears),
and the wheels angle, respectively. The actions presented for each class in Table 5.1 are in
direct relation with how the situation of the entities defined in each class evolves as those
action are taken. In other words, most of these actions (in both the Vehicle and the Driver
classes) are literally taken by the driver, but those that may cause alteration in driver’s
attentiveness are categorized in a separate group. For instance, the operating-level driver
actions can be easily related to driver’s distraction or drowsiness. Since the actions in the
new CWS model are grouped based on the environment factor, the environment determines
which actions are available to a specific vehicle. In ATFY-MEBN language, the actions
are collected in relevant action nodes that are further connected to corresponding game
nodes. See Figure 5.1 for an example.
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Figure 5.4: The high-level, operating level, and low-level actions taken by the drivers on a
highway

Transition Rule

The situations of interest set in our case study contains only the CollisionThreatLevel(ve)
situation that is composed of four main sub-level situations on Vehicle, Driver, Environ-
ment, and VANET, and therefore, reflects a comprehensive look of all the crucial situations.
A fragment of state space along with the transition links is illustrated in Figure 5.5. In
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Figure 5.5: The state space of the CollisionThreatLevel(ve) situation

the simple example shown in Figure 5.5, the vehicle Ve is estimated to be in unstable situ-
ation with 80% certainty. The movement situation of the vehicle changes at the next time
step upon taking the “steer left”, or the “accelerate” actions. Accordingly, if the “steer
left” action is taken (considering the actions that the neighboring vehicles will take), and
assuming that this action gets the maximum payoff to Ve, then the collision threat level is
estimated to be at Stable state with 70% of certainty. If we assume that Ve is a rational
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agent and is gonna take the “accelerate” action, then future situations can be predicted
based on the same strategy.

Payoff Function

The payoff function is declared based on its definition in AAF and the assigned state
space. Therefore, the possible values of the CollisionThreatLevel(ve) situation along with
their fuzzy sets are used to calculate the payoff. As seen in Figure 5.6, the fuzzy sets are
defined using triangular membership functions on a universe of discourse in the range of
[0..100]. Moreover, the likelihood of each state is estimated, and consequently, the fuzzy

Figure 5.6: The fuzzy sets definitions of the possible values of CollisionThreatLevel(ve)
situation

state is calculated using Equation 5.12. The center of gravity of the resulting function,
which is presented in Figure 5.7, is used to find the payoff value. Centroid and Bisector
methods for calculating the center of gravity are employed in this paper.

5.5.2 Modeling

The completed version of CWS contains additional entities that make it ready for impact
assessment and decision making. These entities and the way they are structured can be
achieved by exploiting a domain expert’s knowledge. We follow the same process used
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Figure 5.7: The aggregation of the fuzzy sets definitions of the possible values of
CollisionThreatLevel(ve) situation

in [47] to schematically extract the knowledge and form it into semantic and causal struc-
tures/rules. The questionnaire is similar to what is presented in 4.1. This results in a
semantics network, and a causality structure that are previously presented in Figures 2.2
and 4.2, respectively.

Finally, we utilize ATFY-MEBN to implement the semantics and causal relationships,
and to build the game components. Figure 5.8 presents the ATFY-MFrags involved in
the new ATFY-MTheory of CWS. As shown in Figure 5.8, the SafetyMFrag contains the
game components, and therefore, resides on tier 1. The inter-tier links are provided by the
output nodes in SpeedSafetyMFrag, DistanceSafetyMFrag, and ManeuveringSafetyMFrag,
whose action node is MovementActions(v1), and resides in the SafetyMFrag.

5.5.3 Simulations Setup

Two scenarios are defined to present the capabilities of our proposed framework in different
applications. The first scenario represent the ego vehicle !VEHEGO1.0 in a highway with
various number of traffic vehicles !VEH0X1.0s with random movement patterns, and the
second one models an intersection at which two (or more) vehicles arrive. In both scenarios,
it is assumed that all of the vehicles are geared with the CWS that is able to assess the
current collision threat, i.e., CollisionThreat(!VEHEGO1.0) , as well as to send/receive
messages to/from the neighboring vehicles through communication links. It is also notable
that for sake of simplicity, we temporarily assumed that the vagueness of each entity

127



SpeedSafetyMFrag (T-0)

isA(v, Vehicle) isA(e, Environment) (e = Location(v))

MovementActions(v)RoadType(e)

Speed(v)SpeedDangerLevel(v)

SafetyGameMFrag (T-1)

isA(v1, Vehicle) isA(v2, Vehicle)

(¬(v1 = v2)) AreInRange(v1,v2)

DistanceDangerLevel(v1)

SafetyGame(v1, v2)

MovementActions(v1)

ManeuveringSafetyMFrag (T-0)

isA(t0, TimeStep) isA(t1, TimeStep) isA(v, Vehicle)

MovementActions(v)ManeuveringLevel(v, t0)

LanePosition(v)ManeuveringLevel(v, t1)

LanePositionPrev(v)

DistanceSafetyMFrag (T-0)

isA(v1, Vehicle) isA(v2, Vehicle)

(¬(v1 = v2)) AreInRange(v1,v2)

Speed(v1) MovementActions(v)

Distance(v1, v2)

DistanceDanger Level(v1, v2)

VehicleMotionMFrag (T-0)

isA(v, Vehicle) isA(t, TimeStep)

SpeedDangerLevel(v)VehicleMotionSituation(v)

DistanceDangerLevel(v)

ManeuveringLevel(v, t)

EnvironmentSituationMFrag (T-0)

isA(e, Environment)

EnvironmentSituation(e)

RoadType(e)

Weather(e)

DriverExperienceMFrag (T-0)

isA(d, Driver)

DriverExperienceMFrag(d)

YearsOfExperience(d)

NumOfFaults(d)

DriverDistractionMFrag (T-0)

isA(d, Driver)

DriverDistractionLevel(d)

Drinking(d)

UsingDevice(d)

SpeedSafetyMFrag (T-0) DriverDrowsinessMFrag (T-0)

isA(d, Driver)

DriverDrowsinessLevel(d)

NumOfBlinks(d)

TimeEyesClosed(d)

isA(v1, Vehicle) isA(v2, Vehicle) (¬(v1 = v2))

AreInRange(v1,v2) isA(n, VANET) (n = RegVANET(v2))

V2VVehicleMovement(v2)VANETThreatLevel(n, v1)

ReferenceMFrag (T-0)

isA(v1, Vehicle) isA(v2, Vehicle)

isA(n, VANET) isA(e, Environment)

Drives(d, v1)

isA(d, driver)(¬(v1 = v2))

Location(v)

AreInRange(v1,v2) RegVANET(v2)

CollisionThreatMFrag (T-0)

isA(v, Vehicle)

CollisionThreat(v, t)

isA(d, Driver)

isA(n, VANET)Drives(d, v)

isA(t, TimeStep)

(e = Location(v))isA(e, Environment)

(n = RegVANET(v))

DriverSituation(d) VehicleMotionSituation(v)VANETThreatLevel(d)

EnvironmentSituation(e)

Figure 5.8: The ATFY-MTheory designed for the new CWS

identifier symbol is 0.0, and therefore, all of them are sub-scripted with the membership
degree of 1.0. The details of the scenarios are presented next.
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Scenario 1: Highway

In the highway scenario, we assume that !VEHEGO1.0 is in a highway and is occasion-
ally surrounded by the traffic vehicles !VEH0X1.0s along the path. The observations are
added to the knowledge base according to a prefixed configuration, and in different in-
tervals. For instance, some of them such as driver’s years of experience (or number of
faults) are read just once, converted into relative entities, and are permanently kept in
the knowledge base. Additionally, other observations are added in entities form through
sensor reading and LLDF. The fixed details of the scenario are presented in Table 5.2. In
the information provided below, the vehicle and its driver, and the environment are ob-
served to be !VEHEGO1.0, !DRVEGO1.0, and !H401 1.0, respectively. In other words, i.e.,
(v = !VEHEGO1.0), (d = !DRVEGO1.0), and (e = !H401 1.0) are already in the knowledge
base. Other observations along with their assessed entities are presented in the next sec-
tion, where the simulations are actually run, and the sensors readings are recorded. All

Table 5.2: The details of the highway scenario

Entity Fuzzy State

ROT(e = !H401 1.0) 〈!Street0.1
1.0, !Highway0.9

1.0〉
WEA(e = !H401 1.0) 〈!Sunny0.7

1.0, !Cloudy0.3
1.0, !Rainy0.0

1.0, !Snowy0.0
1.0〉

YOE(d = !DRVEGO1.0) 〈!Few 0.2
1.0, !Many0.8

1.0〉
NOF(d = !DRVEGO1.0) 〈!Few 0.9

1.0, !Many0.1
1.0〉

the vehicles in this scenario have an actions set that are presented in Table 5.3. As it is

Table 5.3: List of the highway actions and their influence set

Action Influence Set
@Stay ∅
@Accelerate {SPD(v),DIS(v, vi),AIR(v, vi)}
@Decelerate {SPD(v),DIS(v, vi),AIR(v, vi)}
@SteerRight {DIS(v, vi),AIR(v, vi),LN(v, t)}
@SteerLeft {DIS(v, vi),AIR(v, vi),LN(v, t)}

shown in Table 5.3, each action ai is assigned to an influence set that determines which
entities need to be refined when ai is taken.
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Scenario 2: Intersection

In this scenario, it is assumed that !VEHEGO1.0 along with the traffic vehicles,
!VEH0X1.0s, approach an intersection. The new CWS running on each vehicle performs in
a way to avoid any accident, or minimize its cost. Similar to the first scenario, the following
observations: (v = !VEHEGO1.0), (d = !DRVEGO1.0), and (e = !H401 1.0) are already in
the knowledge base, and the rest are measured in real-time. The scenario specifications
are presented in Table 5.4. The action set of the vehicles and their influence set are also

Table 5.4: The details of the intersection scenario

Entity Fuzzy State

ROT(e = !KingSt1.0) 〈!Street0.9
1.0, !Highway0.1

1.0〉
WEA(e = !KingSt1.0) 〈!Sunny0.1

1.0, !Cloudy0.1
1.0, !Rainy0.8

1.0, !Snowy0.0
1.0〉

YOE(d = !DRVEGO1.0) 〈!Few 0.2
1.0, !Many0.8

1.0〉
NOF(d = !DRVEGO1.0) 〈!Few 0.9

1.0, !Many0.1
1.0〉

introduced in Table 5.5.

Table 5.5: List of the highway actions and their influence set

Action Influence Set
@Stay ∅
@Stop {SPD(v),DIS(v, vi),AIR(v, vi)}
@Accelerate {SPD(v),DIS(v, vi),AIR(v, vi)}
@Decelerate {SPD(v),DIS(v, vi),AIR(v, vi)}
@SteerRight {DIS(v, vi),AIR(v, vi),LN(v, t)}
@SteerLeft {DIS(v, vi),AIR(v, vi),LN(v, t)}

5.5.4 Situation-Specific Normal Form Games Results

In this section, the performance of the Situation-Specific Normal Form Games (SSNFG)
generation algorithm is studied from different aspects, when deployed in an Internet of
Cars environment. In fact, we mainly emphasize on the time performance of both game
generation and solution algorithms utilized in centralized and distributed configurations
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(see section 5.3.4).2

Centralized Configuration

In the centralized configuration, it is assumed that the players participating in the situa-
tion specific games, generated by the ego vehicle, are its K nearest neighbors (opponents),
whose consistency constraints are satisfied. We assume that the number of opponents is
bounded by 8 in the safety scenarios of the IoC. This is a sound assumption, as there
can be at most 8 other close threatening vehicles surrounding the ego vehicle. Figure 5.9
illustrates the arrangement of vehicle players in the centralized configuration. The time

V6VE

V4

V21

V5

V3

V8 V2 V9 V22

V3 V20

V30V29 V31 V32

Figure 5.9: The centralized configuration of the vehicles in safety scenarios of the Internet
of Cars

performance of the safety game node (see Figure 5.8) is measured when deployed in the cen-
tralized configuration with various number of opponents. Besides, we also study the effect
of splitting the single game node, linked to an action node with many number of actions,
into multiple game nodes connected to the corresponding actions nodes with fewer number
of actions. As it is shown in Figure 5.10, the time performance of the game generation al-
gorithm increases exponentially (log-linearly) as the number of players increases. However,

2All the simulations were run on a Microsoft Windows PC with a Core i7 3.4 GHz processing power
and 16 Gigabytes of memory.
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Figure 5.10: The time performance of a single game node linked to an action node with 5
actions.

the game solution algorithm performs almost constantly, when called with various number
of players. Figure 5.10 shows that for 8 number of opponent vehicles (9 players in total)
the required time to generate a game is almost 268 seconds, which is way over the proper
time period required to plan safe driving. Based on these results, such a configuration is
only practical in the configurations where the total number of players is not more than 5,
since the generation time will be less than or equal to 1 second in such cases.

To increase the applicability of the game generation algorithm for the configu-
rations with more than 5 players, we split the SafetGame(v1, v2) to two separate
nodes of SafeDistanceGame(v1, v2) and SafeSpeedGame(v1, v2), which are connected to
DistanceActions(v1) and SpeedActions(v1) action nodes, respectively. In this new set-
ting, the DistanceActions(v1) action node consists of @SteerRight , @SteerLeft , and @Stay
actions, and the SpeedActions(v1) action node contains @Accelerate, @Decelerate, and
@Stay actions. Figure 5.11 shows the time performance of the generation and solution
algorithms for 2 game nodes each connected to action nodes with 3 actions. Similar to
the previous case, the time increases exponentially (log-linearly) as the number of players
increases. However, generating the 9-players game needs around 60 seconds this time, and
the algorithm is practically useful when the number of players are less than or equal to 6.

To further optimize the time performance of our proposed algorithm in the IoC en-
vironment, we drop the @Stay from both the DistanceActions(v1) and SpeedActions(v1)
action nodes in the multiple game nodes case. Instead, we only play the game if only the
payoff of the resulting optimal strategy is better than not taking any actions. As a result,
we will have two game nodes linked to two action nodes each consists of only 2 actions.
The time performance of this setting is demonstrated in Figure 5.12. As it is shown in
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Figure 5.11: The time performance of the generation and solution algorithms for 2 game
nodes each connected to action nodes with 3 actions.

2 4 6 8 10 12
2

4

6

8

10

12

Number of Cars

L
o

g
 o

f 
T

im
e

 (
m

s
)

SS Game Genereration/Solution Time [NG=2, NA=2]

 

 

Generation

Solution

Figure 5.12: The performance of the generation and solution algorithms for 2 game nodes
each connected to action nodes with 2 actions.

Figure 5.12, the algorithm requires around 8 seconds to generate the 9-players game, and
it will need only the maximum of around 3 seconds for less number of players. Figure 5.13
puts together the time performance of all the mentioned cases for sake of comparison.

Distributed Configuration

The opponent players in the distributed configuration are able to locally play their own
games and provide the main players with their optimal strategy in a recursive manner.
In the IoC environment, the ego vehicle contacts its K nearest neighbors, and asks for
their payoffs for each of the action profiles in the generated game. Similarly, each of the
neighbors start a new game with its own set of K nearest neighbors, and so on. When

133



2 4 6 8 10 12
0

5

10

15

20

Number of Cars

L
o

g
 o

f 
T

im
e 

(m
s)

SS Game Genereration Time Comparison

 

 

NG=1, NA=5
NG=2, NA=3
NG=2, NA=2

Figure 5.13: The time performance of the generation and solution algorithms for various
number of game nodes and actions.

a certain threshold is met, such as the maximum number of hops, or elapsed time, the
resulting optimal strategies are calculated by solving the games, and furthermore, are
back propagated to the ego vehicle. We have analyzed the time performance of the game
generation and solution algorithms by running it in 50 different driving scenarios, with 1 to
25 vehicles randomly positioned and linked to one another, and averaging over the needed
time to generate and solve the game.

In the first set of experiments, we bound the maximum number of neighbors of each
vehicle to 4, and define a hopping threshold of 1. This means that all the games generated
in this setting have no more than 5 players, and the games are played with only the
ego vehicle, and its level 1 neighbors (number of hops is 1). Figure 5.14 shows the time
performance of the game generation algorithm in this case. Figure 5.14 demonstrates that
the game generation algorithm performs well for all number of cars. The maximum time
record is 66.1 milliseconds for a scenario with 17 randomly positioned and linked vehicles.
Moreover, the game solution algorithm performs constantly, and requires an average of
around 27.1 milliseconds to solve the generated games.

We increase the hopping threshold up to 4 to study the effect local game genera-
tion/solution, and distributed impact assessment. Figures 5.15 to 5.17 show the time
performance of the game generation/solution algorithms for hopping thresholds of 2, 3,
and 4. As it is demonstrated in these figures, the maximum needed time to generate the
complete game on the ego vehicle is around 403.4, 601.8, and 3600 milliseconds for hopping
threshold of 2, 3, and 4, respectively. In all of these cases, the required game generation
time increases exponentially up to a certain point, but it is then kept constant. This is due
to the bounded maximum number of neighbors of each vehicle, which prevents exponential
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Figure 5.14: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 4, and the hopping thresh-
old is 1.
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Figure 5.15: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 4, and the hopping thresh-
old is 2.

growth in the size of communication links between the vehicles.

In the second set of experiments, we bound the maximum number of neighbors of
each vehicle to 8, and study the time performance of the game generation and solution
algorithms for the hopping thresholds of 2 and 4. As it is demonstrated in Figures 5.18
and 5.19, the required time to generate a game increases exponentially (log-linearly) as the
number of present vehicles in the region grows. This growth is up to 12 and 19 vehicles for
when the hopping threshold is equal to 2 and 4, respectively. Moreover, the maximum time
record for 2 and 4 number of hops are around 60 and 162 seconds, respectively. Besides,
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Figure 5.16: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 4, and the hopping thresh-
old is 3.
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Figure 5.17: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 4, and the hopping thresh-
old is 4.

for the maximum of 8 neighbors, the game generation algorithm is practical only when the
number of vehicles is less than or equal to 10. However, this is not really an impractical
assumption as in many driving scenarios the number of vehicles in a specific region are not
more than 10.
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Figure 5.18: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 8, and the hopping thresh-
old is 2.
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Figure 5.19: The time performance of the game generation algorithm in the distributed
configuration. Maximum number of neighbors of each vehicle is 8, and the hopping thresh-
old is 4.

5.5.5 Impact Assessment Results

The applicability of the proposed model and algorithms are evaluated in two real world
driving scenarios of highway and intersection. In both scenarios, Situation-Specific
games are generated and solved at each 500 milliseconds and according to the cur-
rent set of neighbors. Moreover, the available actions are either @SteerRight and
@SteerLeft for the SafeDistanceGame(v1, v2) game, and @Accelerate and @Decelerate for
the SafeSpeedGame(v1, v2) game. The resulting optimal strategy is processed and the
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appropriate action is automatically applied on the vehicle.

Scenario 1: Highway

In the highway scenario, it is assumed that the ego vehicle is driven in a highway with
randomly positioned and controlled normal traffic, which are able to communicate with
each other through V2V communication. The games are generated for the maximum of
5 players (maximum 4 neighbors), and the hopping threshold is set to 2. We repeat the
scenario for 33 iterations and calculate the ratio of collisions occurred with and without
the game nodes deployed. See Figure 5.20 for more details. As it is depicted in Figure 5.20,
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Figure 5.20: The ratio of collisions for turned on and off impact assessment unit

the ratio of collisions is decreased when the impact assessment is done and its resulting
actions are performed by the vehicle. The averages of the ratio of collisions for turned off
and on impact assessment unit are 61.95% and 38.84%, respectively. Another interesting
aspect about this experiment is that in about 12% of iterations the ratio of collision is
zero (iterations 9, 20, 30, and 32), when the impact assessment unit is turned on. This is
a significant improvement when compared to 0% collision rate with the turned off impact
assessment unit. Finally, non-zero collision rates, when games are played, are attributed
to the situation-invariant method that actions are taken. In other words, the optimal
actions proposed by the impact assessment unit are high-level (see Figure 5.4), and lack
the detailed information about how it should be taken. For example, when the optimal
action is to steer left, it does not deliver how much the vehicle needs to go to its left. This
may result in translating to an unforeseen situation that leads to a collision. However, this
can be improved by providing lower-level information about the actions as well, and let
the driver know how an action need to be take.
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The VehicleMotionSituation(!VEHEGO1.0, !T1 1.0) for both cases of turned on and off
impact assessment unit shows that the game components are successful in keeping the
vehicle motion situation in stable state. Figures 5.21 and 5.22 demonstrate the state
estimation of the VehicleMotionSituation(!VEHEGO1.0, !T1 1.0) for these two cases at the
iteration with highest collision ratio. Clearly, with the impact assessment unit turned on,
the vehicle motion situation of !VEHEGO1.0 is more stable during the simulation. Finally,
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Figure 5.21: The VehicleMotionSituation(!VEHEGO1.0, !T1 1.0) for the highest ratio itera-
tion when the impact assessment unit is turned on.
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Figure 5.22: The VehicleMotionSituation(!VEHEGO1.0, !T1 1.0) for the highest ratio itera-
tion when the impact assessment unit is turned off.

the evolution of the calculated payoffs for the lowest and highest collision ratios when the
impact assessment unit is turned on are shown in Figures 5.23 and 5.24. It is obvious
that in both best and worst cases, the impact assessment unit is able to keep the payoff of
the vehicle at high values in longer periods of time.
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Figure 5.23: The payoff of !VEHEGO1.0 for the lowest collision ratio with the impact
assessment unit is turned on.
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Figure 5.24: The payoff of !VEHEGO1.0 for the highest collision ratio with the impact
assessment unit is turned on.

Scenario 2: Intersection

The intersection scenario is studied in 7 separate sub-scenarios created with 2 to 8 cars.
In each sub-scenario, the vehicles are initialized with on random roads and with random
speeds, and have their Collision Warning System (CWS) deployed and running. We study
the effect of impact assessment and decision making by turning on and off the impact
assessment units, running the simulation for 22 iterations, and finally, counting the number
of times the vehicles collide at the intersection. Table 5.6 briefly presents the ratio of
collisions in each sub-scenario. As it is shown in Table 5.6 shows, the impact assessment
unit remarkably decrease the collision ratio by projecting the status of the current driving
situation into the future, assessing its impact, and taking an appropriate action accordingly.
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Table 5.6: The ratio of collision in the 2 to 8 cars intersection scenarios with the impact
assessment unit on and off

Game Off Game On
2-Cars 85.2% 11.4%
3-Cars 91.7% 29.8%
4-Cars 83.1% 23.5%
5-Cars 93.6% 26.5%
6-Cars 94.5% 29.6%
7-Cars 88% 33.2%
8-Cars 89.8% 49.1%

Besides, the applicability and the performance of generating situation specific games in
clear when facing various situations with different number of players and topologies at an
intersection.

5.6 Summary

Highways are now high-risk areas, where drivers select high speed to reach their destina-
tion. Drivers must monitor the traffic constantly and carefully for sudden events, such as
errant vehicles changing lanes, slowing vehicles, entering and exiting high speed roads, etc.
Assessing such hazardous situations, evaluating their impacts, and taking proper actions
accordingly, is a challenging task. Therefore, road safety is tightly related to the drivers,
whose improved awareness and efficient interaction to their environment lead to prevent
accidents.

In this chapter, we proposed a game-theoretic approach based on Fuzzy Multi-Entity
Bayesian Networks (Fuzzy-MEBN) to simulate the strategic interactions between different
entities involved in the IoC environment. The novelty of our approach is explicit in extend-
ing the classical Fuzzy-MEBN by introducing active entities and arranging them in a new
2-tier architecture. Moreover, new game components such as game nodes and action nodes
are added to MEBN to prepare this model for impact assessment and decision making.
Games are generated based on a specific situation whose contexts are determined through
context nodes in the original MEBN. Accordingly, two novel algorithms for constructing
situation-specific normal form games and 2-tier situation-specific active fuzzy bayesian net-
works are presented. Furthermore, the game and action nodes participate in hypothesizing
a set of future situations that are created upon taking actions.
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Another novelty of ATFY-MEBN is its decentralized technique in calculating the pay-
offs of opponents, which can be utilized in the environments where communication links
between different player entities are available. Subsequently, the players of game nodes can
overcome their lack of knowledge about their opponents’ states by cooperatively calculate
their payoffs through inter-player communication.

We tested ATFY-MEBN by first examining the performance of its game components
when used in different cases. Besides, an impact assessment and decision making unit based
on ATFY-MEBN was created that aimed to demonstrate the applicability of the proposed
model in real world problems. Our results showed that ATFY-MEBN can be conveniently
used in various applications composed of different types and numbers of players and actions.
This is due to the fact that the computational complexity of the new algorithms defined
for ATFY-MEBN does not act as a bottleneck through the inference process. Moreover,
correctly assessing the impact of hazardous situations and advising proper optimal actions
based on that, is another improvement that is clearly shown in the results.

Future trends include the involvement of another types of games that are optimized
to excel in a particular aspect, such as space complexity that is tackled by Action Graph
Games [29, 107]. Moreover, parametrized decisions that allow the actions to be taken
differently, and specific to different situations, can be another important topic of future
research.
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Chapter 6

Attention Assist Framework: A
Comprehensive Tool for High-Level
Information Fusion in VANETs

The High-Level Information Fusion research has recently attracted considerable interest in
the data fusion community as reflected by the review articles published in the data fusion
community within the last few years [34, 31, 216]. In particular, Blasch et al. [34] identify
the top ten trends of research in HLIF among which the issues of uncertainty analysis and
semantics/ontologies are described as the most important areas of study that have not
received enough attention in the past.

Motivated by this background, we introduce here a high-level information fusion frame-
work to achieve enhanced safety in VANETs, titled Attention Assist Framework (AAF),
which aims specifically at improving the road safety by enhancing the driver’s attentive-
ness. This framework is consisted of three major units: a Low-Level Data Fusion model
for Traffic Entity Assessment (TEA), and two High-Level Information Fusion models for
Traffic Situation Assessment (TSA), and Traffic Impact Assessment (TIA) and Decision
Making (DM). The AAF enables autonomous assessment of the current driving situation,
prediction of potential impacts, and assist with making decisions or taking actions accord-
ingly.

The AAF is composed of three major data/information fusion units, namely, the Traffic
Entity Assessment (TEA) unit, the Traffic Situation Assessment (TSA) unit, and the
Traffic Impact Assessment (TIA) and Decision Making (DM) units, whose details and
theoretical foundations are specifically presented in the previous chapters.
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6.1 Introduction

As discussed previously, safety is one of the main applications of Situation Awareness
(SAW) in the Internet of Cars (IoC). Frameworks that aim to bring the machine-interpreted
e-safety to the passengers are called the Advanced Driver Assistance Systems (ADAS) in
the literature. ADAS are designed to actively/passively automate vehicles’ functionality
for safer journeys. The main purpose of ADAS is to alert drivers from potential threats,
or mitigate collisions and fully control the vehicle. Based on their level of interference,
ADAS are categorized into active and passive systems. Active ADAS act preemptively to
avoid an accident by taking control of the car [71], and passive ADAS refer to the safety
embedded technologies in the car that target occupant protection and injuries reduction
during a crash.

Dangerous driving situations in the Internet of Cars are limited to a number of cases
where an incident is threatening the vehicle and its driver. Such situations are analyzed by
sensing the surrounding relevant entities, and then assessing whether a particular situation
is being observed or not. For instance, Isermann et al. [106] define a set of driving situations
such as blocked lanes and overtaking, and attribute them as unsafe ones. Moreover, they
create the relevant entities using the information produced from a lower level data fusion
system, and use situation assessment to estimate the states of the situations of interest. A
framework in the ADAS family needs to identify major hazardous driving situations need
to perform efficiently. Statistics show that road departure and collision with oncoming
vehicles are the top two causes of fatal accidents [106], which are mainly due to improper
SAW.

6.2 Background and Related Work

In integrated ADAS, the cooperation between the driver, the vehicles, and infrastructure
aims to mitigate accidents, and maintain a full awareness of dangerous situations [71, 202].
In driver centric techniques, ADAS ensure situational awareness and include the driver
in the decision process. Moreover, vehicle centric techniques use more sensors to provide
decision support, and finally, network centric techniques employs wireless communications
(V2X) to share useful information and provide the driver with larger telematic vision.
In the following, the main safety applications of the IoC are introduced first, and then
prominent research work in designing ADAS are highlighted.
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6.2.1 Safety Applications in VANETs

The main safety-related situations in the IoC are: lane changing, frontal collision, turning,
the post-accident, and the case of emergency vehicles.

Lane Changing Situation

Lane changing situation is the aggregation of a set of entities, along with their relationships
that is estimated as lane changing intention. In this situation, the target car keeps receiving
periodic updates of the positions and the speed of the surrounding vehicles, through V2V
communication. Upon detecting the lane changing intention, the presence or absence of a
sufficient gap between vehicles in adjacent lanes are assessed to ensure a safe lane changing.
Figure 6.1 depicts a sample scenario.

Figure 6.1: A sample situation of the Lane changing situation

Frontal Collision Situation

Similar to the previous situation, a frontal collision situation is a set of relative entities and
their relationships that demonstrate a scenario where cars, travelling on opposite directions,
may collide. This use case is linked to a situation where a vehicle tries to overcome another
vehicle, which consequently causes a potential risk of collision for the vehicle that is getting
closer from the opposite direction (see Figure 6.2).

Figure 6.2: A sample scenario of the frontal collision situation
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Turning Situation

Turning situations can also be handled by having RSUs to inform the approaching car
about the next turn curvature sharpness and the proper speed to switch to, so the driver
can make anticipated actions. Figure 6.3 illustrates such a scenario in which all vehicles,
along with the RSUs, broadcast messages about the road curvature. As a result, another
car approaching a sharp curve may continue its travel safely without any map or other
navigational support system on board.

Figure 6.3: A sample scenario of the turning situation

Post Accident Situation

Post-accident situations are important safety situations that connected cars concept may
assist in dealing with. In such cases, the cars approaching an accident are notified about
an accident in their neighboring zone. This is actually more applicable in low visibility
conditions as it can drastically reduce the danger of serial accidents. Figure 6.4 depicts
a sample scenario in which the damaged car transmits its position, identity, and status
to the closest RSU using V2I communications. The RSU will issue a warning to vehicles
approaching the scene of the accident until the accident scene is cleared. Moreover, warning
messages can be transmitted directly to approaching vehicles using V2V communication.
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Figure 6.4: Accident ahead scenario

Emergency Vehicle Situation

Lastly, the situations including an emergency vehicle are deemed very important in the
IoC context. In such situations, an emergency vehicle is allowed to ask other cars for a
reserved corridor relief (see Figure 6.5). Potentially, it can also ask RSUs located at traffic
lights to facilitate its mobility. The broadcast message by the emergency vehicle includes
information about its position, route, speed, and destination. The embedded application
in the surrounding cars use this information to alert the drivers and accordingly give way
to the emergency vehicle.

Figure 6.5: A sample scenario of a situation that includes an emergency vehicle

6.2.2 Active Driver Assistance Systems

The European HAVEit project [98] aims the development of ADAS designed for automated
vehicles. HAVEit is composed of three main layers: driver interface, command layer,
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and execution layer, which are in touch with the driver, computing processes, and the
physical sensors/actuators, respectively. The different layers of this project are depicted
in Figure 6.6. Holzmann et al. [99] introduces SPARC model that is a data fusion-based
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Figure 6.6: The four HAVEit Layers [98]

approach for driver assistance. SPARC architecture is a layered design that starts from
environment sensing and goes up to driving command.

PRORETA 1 and 2 are two versions of a collision avoidance system developed by Iser-
mann et at. [106]. PRORETA 1 is basically used in highway in which sudden appearance of
stationary obstacles on the road, i.e. end of a traffic jam, or cutting-in vehicles, are deemed
common causes of accident. This system is able to handle such situations by either evading
the stationary obstacle, or decelerating enough before colliding with it. An overview of
PRORETA1 is highlighted in Figure 6.7. PRORETA 2 is designed to tackle unsafe driving
situations; particularly, overtaking in rural areas. The modeled system assumes that the
oncoming traffic is viewable by the sensors, which can be a potential source of inaccurate
assessment. This is the case in which capabilities of the Internet of Cars may come to play
and tackle such problems. Overtaking is detected using the Enhanced Time To Collision
(ETTC) measure fused with the accelerator pedal position in a fuzzy-logic system.

Situation-Aware Driver Assistance System (SADAS), developed by Röeckl et al. [185], is
composed of four main components: 1. Utility-based Knowledge Exchange, 2. Knowledge
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Figure 6.7: Collision-avoidance system overview for the development of PRORETA 1 (The
figure is taken from [106] with permission.)

Broker, 3. Reasoner, 4. Human-Machine and Machine-Machine Interface as illustrated in
Figure 6.8. Utility-based Knowledge Exchange component is designed for V2V communica-
tion. Besides, Knowledge Broker resembles a data set that stores all the relevant knowledge
for later use. Reasoner is the main component of the architecture that deals with different
aspects of situational information such as uncertainty or semantics. In SADAS, reasoning
is used for learning, hazard detection, prediction, assessment of partner’s knowledge, and
consistency check. Finally, HMI/MMI component warns the driver about any dangerous
situation by accepting inputs from the Reasoner component.

Schubert et al. in [197] propose an automatic lane-change maneuvers for intelligent
transportation. They deploy some sensors including two radars and two cameras (front and
rear) and a CAN for vehicle motion data. Signal processing methods are used for vehicle
and lane detection and the authors use Unscented Kalman Filter (UKF) for low level data
fusion and estimating the trajectory of the ego and surrounding vehicles. Furthermore,
Bayesian Networks (BN) are used for situation assessment and relationships recognition.
State estimation between different nodes in BN is constructed based on some evaluation
criteria, namely, Deceleration to Safety Time (DST), and likelihood functions defined based
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on that.

In [195], authors propose a Cooperative ADAS that tackles blind spot assistance. It
uses information received by V2X communication to enhance the perception in case of
limited perception range. Attention monitoring systems [133, 213, 27, 227] are also among
methods that mainly employ SAW to assess driver situation accordingly.

To evaluate SAW in a connected cars context, two basic estimates for assessing safety
impact, namely, analytical approach, expert knowledge approaches [136], can be used.
As another evaluation paradigm, Ledoux and Archer [128] introduce the SINDI project
that utilizes a bottom-up approach to measure the changes in driving patterns based on a
human-behavior model.

To include V2X communication, [196] introduces a language for representing relevant
parameters in V2V and V2I information transmission. The language is equipped with
grammars, runtime processes, and a build system that make it useful for defining relation-
ships between entities and rule creation.

In [48], authors investigate how V2X communication could be used for sharing decision
making between a group of cooperative cars such as a platoon. The cooperative driving
mainly deals with collision avoidance and optimal path planning scenarios.
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6.3 Attention Assist Framework

The AAF encompasses the major aspects of a transportation system and models them
using the HLIF techniques [82]. Moreover, it takes advantage of the wide range of different
information sources provided by the VANET platform, and tackles major issues regarding
the HLIF systems, namely, semantic relationships, uncertainty management, and ambiguity
handling. A block diagram of the proposed framework is depicted in Figure 6.9. As
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Figure 6.9: The Block Diagram of the Attention Assist Framework (AAF)

shown in Figure 6.9, three basic modules, namely I/O Module (IOM), Traffic Assessment
Module (TAM), and Communication Module (CM), are in collaboration with each other
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to implement the whole process. The TAM is the main module, which is being fed by
the local and global data originated from the IOM and the CM, respectively. The local
data, such as that of the vehicle itself or the one generated by its driver, are supplied by
the IOM, whereas the global data/information is obtained through V2V, V2R and V2I
communication. Consequently, various local and global entities are refined and used as
the inputs of the Traffic Situation Assessment (TSA) unit. Upon assessing a situation,
the outcome is provided to the Traffic Impact Assessment (TIA) unit, and after having
its impact assessed, the situation/impact pair is sent to the Decision Making (DM) unit,
which determines the final action(s) to be taken. These actions are then submitted to the
IOM to be applied to the HCI (targeted at the driver), or to be exerted onto the vehicle.
In the following, the entire process is described by detailing the involved units.

The traffic-related entities created in the TEA unit through Low-Level Data Fusion
(LLDF), along with the entities received through communication links are used for assessing
various situations of interest and their threats. These situations mainly include those that
represent the status of the vehicle, its driver, and their surrounding environment.

6.3.1 I/O Module (IOM)

The IOM is responsible for acquiring local data. The local sources of data are mainly
the vehicle and its driver. Moreover, in order to obtain the vehicle and/or driver specific
preferences, a Configuration Unit (CU) is also envisioned, which is in direct contact with
an interface, and keeps track of both the vehicle and its driver behaviors and stores user-
specific and vehicle-dependent preferences in order to enable feeding the system with the
relevant data.

6.3.2 Traffic Assessment Module (TAM)

As mentioned earlier, the inputs to this module could be either local and/or global and
supplied through the IOM and CM, respectively. The raw measurement input data from
local sources is first processed in the Pre-processing (PP) unit, and then the clean (e.g., de-
noised) data goes to the Traffic Entity Assessment (TEA) unit. The inbound global data,
gained from the CM through V2V and V2I communication, is also fed to the TEA unit.
Inversely, the TEA unit sends its outcome to the CM, where it is broadcast to the other
vehicles (in the VANET), as well as the other relevant parts of the road infrastructure.
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Traffic Situation Assessment Unit

The TSA unit plays a major role in the TAM. The TSA unit accepts inputs as refined
entities from the TEA unit, and inbound situation entities along with aggregated entities
from the CM, evaluates the current traffic situation, and finally sends it out to the TIA
unit to perform the impact assessment phase.

The TSA unit consists of a modelling phase in which different entities are organized
using the domain-specific knowledge. With an expert’s help, the situation-related entities
are grouped based on their domain of origin, i.e., vehicle, environment, driver, or VANETs
(see Figure 2.2), as well as their relationship types, i.e., causal or semantic relations.

Tier-0 of the proposed ATFY-MEBN is the underlying modelling approach (see Chap-
ter 4) for the TSA unit. From ATFY-MEBN standpoint, the entities contributing to a
particular domain-specific context, are included within a specific ATFY-MFrag. These en-
tities can act as either the fuzzy resident nodes or the input nodes of an ATFY-MFrag. The
resident nodes can be fed along with the evidence gathered from the environment, which
in the TSA unit structure are either the local refined entities, global inbound entities, or
aggregated entities. The semantic relations between entities in the same Fuzzy-MFrag,
or those in two separate ones, are also modelled through defining context nodes. Finally,
the ATFY-MEBN inference constructs a minimal SSFBN and then a standard Bayesian
inference algorithm is applied to compute the marginal distribution for the entities of in-
terest given the evidence. The outcome of this process, which shows the likelihood of the
situation, is then provided to the TIA unit. Upon measuring the impact of the assessed
situation in the TIA unit, the best action can be chosen by the Decision Making (DM)
unit, and finally presented to the IOM to be displayed on the driver’s HCI (e.g. visual
notifications), or exerted through the vehicle’s physical interface (e.g. reducing speed by
applying brakes).

Traffic Impact Assessment Unit

The TIA unit is located next on the traffic assessment path as it accepts the assessed
situations from the TSA unit. A well-designed TIA unit should be able to generate a set
of hypothesized situations, and send them to the DM unit. One applicable approach can
be the idea of situation evolution towards temporal or lateral dimensions (see Figure 6.10
and [87] for more information). Accordingly, an internal method needs to be defined to
make the situation evolution happen. Tier-1 of the ATFY-MEBN presented in Chapter 5 is
responsible of modeling the basis of the TIA unit. The core of the TIA unit is implemented
through an arrangement of action nodes and game nodes, and a pre-defined set of actions,
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whose collaborations results in the generation of a set of hypothesized situations that are
evolved towards both lateral and temporal dimensions. These situations are subsequently
fed to the DM unit.

Decision Making Unit

The DM unit analyzes the set of situations hypothesized by the TIA unit, and chooses the
one that returns the maximum payoff (according to a utility function). Subsequently, a
proper decision needs to be made upon determining the most profitable future situation.

It is very important for a DM method to also consider other active agents, if any, as
their favorable (or opposing) actions may result in a whole different approach for making
the best action. For example, if a vehicle changes its lane to left, without considering an
approaching neighboring vehicle on its left (which is probably trying to take it over), it
will possibly be in a more dangerous situation that what it is currently in. Therefore, it
is critical for a DM method to consider other active entities, in such situations. The DM
unit implemented in Chapter 5 is fundamentally based on the concepts of game theory
that inherently handle multi-players decision making.
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6.3.3 Communication Module (CM)

The Communication Module (CM) is composed of a set of components that enables the
whole framework to be in contact with other information sources in the environment.
Since the deployment platform is a VANET, two ports for communication with other
vehicles (V2V) and infrastructure (V2I) are designed to collect inbound data and situa-
tion entities from these sources. Besides, the Distributed Entity Aggregation (DEA) unit
relies on distributed signal processing methodologies, e.g. consensus protocols [60], to
compute an aggregation of the available global data/information if desired, and send the
results to the TSA unit for traffic assessment. Lastly, the configuration data provided by
the CU is deployed as a filtering mechanism to screen both the incoming and outgoing
data/information.

6.4 Discussion

An Active Driver Assistance System needs to be verified from different aspects. We mainly
evaluated the major units of AAF in a safety application in the IoC by having a Collision
Warning System (CWS) instantiated from its abstract model. The CWS can be utilized
in various driving scenarios through which its different capabilities can be measured.

Moreover, The HLIF-related evaluation criteria groups introduced by Costa et al. in [55]
can be interpreted by using the results presented in the previous sections. The first group of
this categorization, called the Input criteria, contains the measures that influence the way
observations are provided to the deployed system. The criteria in this group are: Relevance,
Weight of Evidence, and Credibility. Representation criteria is the second group that
encompass the measures which target the Knowledge and Evidence Handling capability
of an HLIF system. Finally, the third group, named Reasoning criteria, contains the
subclasses of Correctness, Consistency, Scalability, and Computational Cost.

The proposed AAF is specially deployed in VANET-related tasks, which by nature,
benefit from a broad range of data and information sources. The semantically relevant
data and information sources are grouped into MEBN Fragments to construct a particular
entity. Furthermore, a subset of them are put together to model a specific situation.
Such capability of AAF assures that only the relevant inputs enter the system and other
(irrelevant) ones are kept away from the reasoning system. Besides, it is also clear in
the assessments that these evidences correctly influence the certainty of a situation. As
an important criteria of the second group, knowledge and evidence handling of AAF is
also perfectly managed by expressiveness, and uncertainty management capabilities of
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MEBN. Finally, the results presented in Table 4.6 show that AAF performs efficiently in
assessing the collision threat when run in different scenarios. Additionally, AAF is able
to consistently work in different scenarios with varying number of available evidence and
still assess the desired situation. Lastly, the hybrid version of MEBN inference algorithm
helps improve the scalability of the framework in such a way that it bounds the exponential
order of complexity of the inference algorithm, and handles large VANETs in an efficient
way. In other words, assuming that the inference time is O(cn) for common algorithms
such as variable elimination and belief propagation, where n is the total number of nodes
throughout the network, and c is a constant, hybrid MEBN inference bounds this time
complexity by assuring that n does not go over a certain threshold, which is the total
number of neighboring vehicles in our case.

6.5 Summary

This chapter proposed a comprehensive framework, called Attention Assist Framework
(AAF) that applies high-level information fusion techniques on VANETs platform to per-
form situation, threat, and impact assessment, as well as decision making. The pro-
posed framework takes advantage of Active Fuzzy Multi-Entity Bayesian Networks (ATFY-
MEBN), which is introduced in detail in the following chapters.

In the modelling procedure, the inattention-related entities along with their causal and
semantic relationships were identified first, and then were modelled in specific contexts
using the proposed ATFY-MEBN-based framework.

In order to show the capabilities of the framework, we also implemented a collision
warning system based on the AAF to measure the likelihood of a vehicle being in a near-
collision situation while using a wide range of information sources made available through
VANET platform. The information sources supplied to the system come from the vehicle
itself (local information), and also the communication infrastructure of VANET (global
information). This framework was capable of assessing a collision threat, and furthermore,
alarming the driver if the likelihood of being in a near-collision situation was measured
to be high. Accordingly, it could be used to improve the attentiveness of the driver, and
consequently enable avoiding potentially fatal accidents. Two distinct groups of driving
scenarios were designed and tested on the proposed system, and our simulation results
helped to demonstrate the capability of AAF in achieving situation assessment on the
road.

At the end, specifying the details of the traffic impact assessment, and decision making
units, can be considered as two major potential future works. Furthermore, automatic
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learning of the MTheory structure and the formation of MFrags can also be seen as future
activities. Besides, considering the construction of more complex situations in which the
likelihood of both entities and their relationships are taken into account, and addressing
the idea situation distance definition, as introduced in [22], can also be considered as the
seed for pertinent research work.
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Chapter 7

Concluding Remarks and Future
Directions

The Internet of Cars is born where the Internet of Things and Vehicular Ad-hoc Networks
(VANETs) meet. This results in connectivity and mobility features, which are utilized
by various sources to generate data/information with different levels of abstraction, and
furthermore, transmit them to the interested entities. As a result, significant amount
of research work in this field has been focused on specific areas where data/information
plays and important role, i.e., safety, routing, broadcasting, Quality of Service (QoS),
and security. Among these research areas, road safety issues are deemed one of the most
challenging problems of the Internet of Cars, which is often related to lack of situational
awareness, which has been identified as one of the main reasons that lead a driving scenario
to an accident.

In this thesis, we tackled situation awareness in the Internet of Cars by proposing a com-
prehensive active driver assistance system, called Attention Assist Framework, which was
able to fully utilize connectivity feature of VANETs through vehicle-to-vehicle, vehicle-to-
RSU, and vehicle-to-infrastructure communication links. The introduced framework was
composed of four main levels that complete a full information fusion procedure by perform-
ing low-level data fusion, situation assessment, impact assessment, and decision making.
Each of these parts were modeled with novel methods that solve important challenges in
the corresponding information fusion step. The performance of these methods, along with
their applicability, were evaluated through running them on various specifically-designed
driving scenarios. Our results showed that while each level of the proposed Attention As-
sist Framework performs well to achieve its goal, it could successfully alleviate a major
information fusion-related issue.
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The rest of this chapter highlights the contributions made in this thesis, discusses the
conclusive remarks, and determines the future directions.

7.1 Contributions Highlights

The main contribution of this thesis was the introduction of the Attention Assist Frame-
work (AAF), which was a novel generic data/information fusion model to achieve enhanced
safety in the IoC aiming at improving the road safety by enhancing the drivers’ attentive-
ness. The proposed model could handle various types of low-level data that were available
in the VANETs environment (i.e., the data generated by the physical sensors, or those
received through different means of communication). Besides, four main levels were imple-
mented in AAF that complete a full information fusion procedure that ultimately resulted
in proper situation awareness for the entities of interest. In summary, these levels along
with the corresponding contribution at each level were:

• Entity Assessment: low-level data fusion framework and cooperative localization
using vehicle-to-vehicle communication and data fusion to integrate the available
data, and to cooperatively improve the accuracy of the localization information of
the vehicles. The model was further improved by estimating the vehicle location using
Unscented Transform (UT) along with Sequential Decentralized Extended Kalman
(SDEK) filtering.

• Situation and Threat Assessment (SA/TA): high-level information fusion using
a novel fuzzy extension to multi-entity Bayesian networks that model some imper-
fect aspects of data such as ambiguity that is an inherent characteristic of human
language, and the observations gained from the environment. It was showed that
Fuzzy-MEBN incorporated First-order Fuzzy Logic and Fuzzy Bayesian networks to
handle ambiguity.

• Impact Assessment (IA): situation evolution towards lateral and temporal dimen-
sions, and structural situation analysis. Hierarchical structure of situations helped to
manage how entities form component situations, and how they cooperated to make
the situations of interest. Besides, situation evolution caused by temporal and lateral
alterations were studied and the idea of event was presented.

• Decision Making (DM): game-theoretic impact assessment and decision mak-
ing through situation-specific games generation and solution using the novel active
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fuzzy multi-entity Bayesian networks. Accordingly, various combinations of actions
were generated, future situations were hypothesized, and the best action that gives
the maximum payoff was reported. We called this version of Fuzzy-MEBN, AcTive
FuzzY-MEBN (ATFY-MEBN).

7.2 Conclusion

In the Low-Level Data Fusion (LLDF) part of the AAF, data fusion and radio-ranging
distance measurement techniques were combined with V2V communication in order to im-
prove the location information of the vehicles. This idea was further extended by adding
sequential EKF filtering within the neighboring vehicles to improve the localization per-
formance. The methods were then evaluated by comparing vehicle’s estimated locations
with their ground truth. The results demonstrated that using V2V communication for
measuring the distance and sharing belief about the estimation of the current location, the
neighboring vehicles could cooperatively improve the knowledge of the current location.

In chapter 2, we conducted a comprehensive study on different methods used for achiev-
ing complete situation awareness in the Internet of Cars through passing the three main
steps of perception, comprehension, and projection. As it is discussed in chapter 2, the
Multi-Entity Bayesian Networks (MEBN) model is among the most efficient approaches
to perform situation awareness in the Internet of Cars (see Table 2.1). This is the main
reason we opted MEBN as the core of our information fusion framework. However, as we
also discussed in chapters 4 and 5, MEBN lack the capability of handling the ambiguity
inherent in human language, as well as predicting the future of the situations of interest.
We overcame these issues by importing fuzzy logic and game theory into MEBN and in-
troduce ATFY-MEBN that was capable of accepting a wider range of data/information,
including soft data, as well as, predicting the future situations, and proposing a proper
action through generating and solving situation-specific games.

Referring to the discussion made in chapter 2, the ATFY-MEBN can now be placed
below Fuzzy-MEBN in Table 2.1, and while inheriting all the features of Fuzzy-MEBN,
have its Game Theory (GT) one check-marked. This is a considerably major step towards
having a comprehensive model for high-level information fusion, as the new model is now
able to perform prediction.
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7.3 Future Work

The future of Situation Awareness (SAW) in the Internet of Cars can be simply attributed
to the future of SAW in general. Here, we outline major future trends in SAW, which have
recently attracted researchers.

7.3.1 Cloud-Enabled SAW

In cloud-enabled SAW, or Vehicular Cloud, the data/information resources of a certain
vehicle with those of other cars can be pooled and drivers can process data on demand at
anytime from anywhere [129]. This new paradigm was first introduced by M. Gerla [76].
The cloud is constructed by collaborations among cloud, cars, and RSUs which enables the
fusion and sharing of databases. When the driver is not behind the wheels, the processing
will not be in the car but in the cloud and between neighboring smart cars to offer traf-
fic map, appropriate paths without obstacles. The main purpose is to provide drivers and
passengers in roads with advanced vehicular services that individual cars cannot offer. Nev-
ertheless, vehicular cloud poses many issues to SAW, which impact the following axes [232]:
context discovery, acquisition and dissemination, situation analysis and recognition, and
situation-triggered response.

7.3.2 Cognitive SAW

According to M. R. Endsley [68], common setting of a SAW model mainly concentrates on
the physical and perceptual attributes of its human part, and does not take his cognitive
abilities into account. In Cognitive SAW (CSAW), a system is designed in a way to take
advantage of human’s information processing power. Thus, CSAW handles important cog-
nitive aspects such as perception and attention, working memory, mental models, scripts,
and schema, and finally goals. In fact, a CSAW imitates how cognition is performed in
humans’ mental model, and aims to facilitate it. Crucially, cognitive SAW is important
when the complexity of the situations increases in a way that is difficult for humans to
become aware of it appropriately.

7.3.3 Distributed SAW

In a nutshell, Distributed SAW (DSAW) is the third perspective in SAW proposed by [189],
and is defined as a set of interacting entities wherein each entity has its own situation
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awareness, which may be different from (or even in conflict with) that of others [206].
Therefore, DSAW is a dynamic and collaborative process that leads to shared awareness.
In a well-designed DSAW system, the situational awareness is defined as the combina-
tion of individual entities’ SAW. Besides, entities abilities to perform their assigned tasks
should not be dependant on others’ SAW. Moreover, sharing SAW needs to be performed
intelligently and upon request, to avoid the propagation of misleading and confusing SAW.
One interesting architecture for a DSAW can be a set of agents that each are assigned to
a specific SAW component introduced earlier in this paper.
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