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Abstract 

Peatlands (i.e., wetlands with organic soil) cover approximately 12% of Canada’s 

total land area, 18% of Alberta’s land base and nearly half of the landscape in Canada’s 

Western Boreal Plain. Some of these peatlands overlay vast fossil fuel resources. 

Mounting pressure from resource extraction industries is impacting an increasing 

proportion of peatland ecosystems in Canada. In Alberta, approximately 4800 km2 of the 

Athabasca Oil Sands Region near Fort McMurray has been deemed suitable for surface 

mining, which involves the removal of large expanses of undisturbed peatlands to access 

the oil sands beneath. The concept of peatland creation has been adapted into the 

Canadian regulatory framework and fen peatlands have now been constructed in post-

mined oil sands landscapes. However, there is little information with respect to the nature 

of the hydrological processes that operate within constructed fen ecosystems and their 

associated watersheds and this concept is only now being tested in the field.  

Oil sands reclamation requires the reconstruction of entire landforms and drainage 

systems. The hydrological regime of reclaimed landscapes will be a manifestation of the 

processes operating within the individual landforms that comprise it. Hydrology is the 

most important process regulating wetland function and development, as it exhibits a 

strong control on the chemical and biotic processes operating in peatlands. Accordingly, 

this research aims to tackle the growing and immediate need to understand the 

hydrological processes that operate within reconstructed landscapes. The approach is to 

couple the controls on water distribution, storage and release within several reclaimed 

landforms (reclaimed slopes, tailings sand upland aquifer and fen peatland) to the 

function of a constructed fen watershed (the Nikanotee Fen watershed). 

A comparison of two constructed fen ecosystems with fundamentally different 

conceptual approaches provides the framework for examination of the key challenges and 

opportunities associated with fen creation in an oil sands reclamation setting. Although 

the focus of this work is on the hydrological processes, issues related to both water 

quantity and quality are identified as major challenges for fen creation. An adaptive 

approach to fen creation is recommended, in which the knowledge developed in 
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concurrent research should be assimilated with the available longer-term information. 

The multi-faceted complexities associated with the ability to deem fen creation projects a 

success within the context of oil sands reclamation are also explored. The suggestion 

from this discourse was that success should be measured by the ability to design and 

construct systems that exhibit predictable and desirable characteristics.  

The distribution, ablation and fate of snowmelt waters were quantified for the 

constructed watershed, which addresses a lack of understanding of snowmelt dynamics 

within reclaimed landscapes. Results indicated that the snowmelt period hydrology 

within recently constructed landscapes is fundamentally different from that reported for 

natural settings. Reclaimed slopes represented large stores of over-winter precipitation 

and generated substantial surface runoff during the snowmelt period. This research 

demonstrates that snow dynamics must be incorporated into the design of landscape-scale 

constructed ecosystems.  

The dominant controls on the soil water regimes and runoff generation 

mechanisms on two reclaimed slopes (reclaimed five years apart) within the Nikanotee 

Fen watershed were also investigated during the snow-free period. The contrasting 

hydrological regime exhibited by these slopes suggests that changes in the hydrophysical 

properties of reclamation materials following construction could result in a shift in the 

hydrological role of reclaimed slopes at the watershed scale. It appears that, over time, 

recently reclaimed slopes should produce less overland flow and shift from water 

conveyors to water storage features in constructed watershed systems.   

Finally, the water fluxes within the Nikanotee Fen – upland system were 

evaluated for the first two years following construction (2013 - 2014). The hydrological 

performance of the constructed system was assessed and discussed within the context of 

the construction-level design. It was determined that the system design was capable of 

sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 

and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the 

water fluxes from the system. These losses were partially offset by groundwater 

discharge from the upland aquifer, which demonstrated strong hydrologic connectivity 
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with the fen in spite of most construction materials having lower than targeted saturated 

hydraulic conductivities. However, the variable surface infiltration rates and thick 

placement of a soil-capping layer constrained recharge to the upland aquifer, which 

remained below designed water contents in much of the upland.  

These studies comprise one of the most comprehensive hydrological evaluations 

of a constructed fen peatland watershed to date. The findings of this research indicate that 

it is possible to engineer the post-mining landscape to accommodate the hydrological 

functions of a fen peatland. Several recommendations are made to help guide the 

construction of future fen peatlands, which should be done at the commercial-scale. 

Research priorities include understanding the storage and release of water within coarse-

grained reclaimed landforms as well as evaluating the relative importance of external 

water sources and internal water conservation mechanisms for the viability of fen 

ecosystems over the longer-term. The novel, catchment-scale approach to reclamation 

research presented within this thesis provides an integrated understanding of the 

hydrological functioning of constructed watersheds, and a similar approach is 

recommended for future research in reclaimed landscapes. 
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1 INTRODUCTION 

Peatland development occurs naturally over long periods of time in response to 

climate, geology, hydrology and vegetation. Approximately 4800 km2 of the Athabasca 

Oil Sands Region (AOSR) in Northern Alberta, Canada, has been deemed suitable for 

surface mining (Government of Alberta, 2015). These mining activities involve the large-

scale removal of the surficial landscape. For example, by the start of 2014, open-pit oil 

sands mining activities in the AOSR had disturbed an area in excess of 800 km2 

(Government of Alberta, 2015). Wetlands comprise approximately half of the pre-

disturbance landscape in the AOSR, the majority of which (~90%) are fen peatlands (Vitt 

et al., 1996). Consequently, oil sands extraction activities are removing large quantities of 

peatlands from the landscape (Daly et al., 2012; Rooney et al., 2012).  

Mine closure and reclamation designs aim to return landscapes 

to functioning ecosystems following surface mining of oil sands deposits. In 2007, the 

concept of peatland creation was adapted into the regulatory framework (AEPEA 

approval 94-02-00). Oil sands companies were required to undertake, or participate in, a 

study on reclamation techniques that examined the feasibility of incorporating 

constructed bog and/or fen peatlands into a portion of the final reclaimed landscape. Prior 

to this, the concept of peatland creation was largely untested. Due to the lack of prior 

experience, the development and refinement of the conceptual approaches suitable for 

peatland creation relied upon application of the current understanding of peatland and 

hydrological processes within natural and disturbed ecosystems into a mine reclamation 

context.  

Natural fen peatlands typically receive a portion of their water inputs from ground 

and surface water inflows (Ingram, 1983). Thus, fens were considered to be an attractive 

option for peatland creation, since groundwater fluxes could be relied upon to supplement 

periods of limited atmospheric water availability (Price et al., 2010), which are common 

in the Western Boreal Plain (WBP; Bothe and Abraham, 1993; Marshall et al., 1999). 

Thus, the creation of a fen peatland was considered possible in highly engineered 

reclaimed landscapes by constructing a suitable hydrogeologic setting capable of 
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providing a sufficient water supply under regional climatic conditions to sustain fen 

peatland functions (Price et al., 2010; Devito et al., 2012). Accordingly, a conceptual 

model was developed (Price et al., 2010) which, combined with revegetation strategies, 

formed the basis for a fen construction plan (Daly et al., 2012) that was initiated by 

Suncor Energy in August 2010 and was completed in the winter of 2013.  

The design consisted of a constructed upland-fen system, which formed part of a 

larger catchment that includes additional reclaimed and natural slopes. This watershed, 

named the Nikanotee Fen watershed, was constructed on an overburden dump within the 

Millennium mine lease at the Suncor Energy Inc. oil sands mining operations ~40 km 

north of Fort McMurray, Alberta. In an attempt to artificially accelerate peatland 

succession, which can take thousands of years (Clymo, 1983), the fen portion of the 

watershed (named the Nikanotee Fen) was constructed using peat substrate extracted 

from newly developed lease areas. The peat was placed at the toe of an upland aquifer 

constructed using tailings sand materials and contoured to slope towards the fen. The 

tailings sand materials were placed over a basal geosynthetic clay liner to minimize water 

losses via deep drainage and direct water flow towards the low-lying fen peatland. The 

upland aquifer was capped with a thin (30 – 50 cm thick) reclamation material to provide 

a suitable substrate for revegetation and to promote percolation of precipitation water. 

Ultimately, the goal was to create a self-sustaining ecosystem that is carbon-

accumulating, capable of supporting a representative assemblage of vegetation species 

and resilient to normal periodic stresses.  

The creation and development of fen peatlands in a post-mined oil sands setting in 

the AOSR faces several challenges. For example, the regional climate is sub-humid 

(Bothe and Abraham, 1993; Marshall et al., 1999) and, thus, water availability to satisfy 

soil water storage and recharge to constructed aquifers is limited. In this setting, climate 

controls the relative importance of the components of regional water budgets (Devito et 

al., 2005a), which are typically dominated by soil water storage and evapotranspiration 

(Smerdon et al., 2005). On average, ~25% of annual precipitation falls as snow 

(Environment Canada, 2011). Although the spring freshet can represent an important 

recharge event on some natural landforms in the WBP (Smerdon et al., 2008), little is 
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known about the distribution of snow and the availability of snowmelt water for recharge 

in reclaimed oil sands landscapes. Since water availability is of profound importance for 

the design and development of constructed fen peatland ecosystems, an understanding of 

snow dynamics should be a requisite for their design. However, this aspect of reclamation 

has yet to be characterized.  

Another challenge exists with respect to reinstating interconnectivity between 

individual landforms within the reclaimed landscape. On a landscape-scale, establishing 

hydrological connectivity, and understanding how this connectivity evolves over time, is 

critical for the development of effective water management strategies after oil sands 

extraction. The reclaimed slopes within the Nikanotee Fen watershed could provide a 

source of water for the designed upland-fen system that they encompass, although this 

was not an explicit aspect of the original design. Further, the hydrophysical properties of 

reclamation materials can change following placement (Guebert and Gardner, 2001; 

Kelln et al., 2007; Meiers et al., 2011), which means that the hydrologic role of reclaimed 

slopes could change over time. Accordingly, understanding the hydrological significance 

and evolution of these reclaimed slopes is critical for the evaluation of the hydrology of 

the designed upland-fen system as well as for understanding the hydrological regime of 

the entire watershed, and how this evolves in the first few years following construction. 

Furthermore, issues related to water quality also represent a substantial challenge for the 

creation of viable fen peatlands in post-mined settings. Although not quantified 

empirically in this thesis, some of the major challenges associated with water quality are 

discussed to provide a balanced assessment of the feasibility of fen creation in the AOSR.  

The concept of fen creation in a post-mined oil sands landscape is largely 

untested. A fundamental requirement of the design of constructed fen ecosystems is the 

ability to provide a sufficient water supply under local climate conditions to sustain a 

carbon-accumulating ecosystem. As such, characterization of the hydrological parameters 

within both the upland watershed and fen ecosystem, and the quantification of water 

fluxes between these systems, is essential for understanding the hydrological 

performance of the constructed system as well as the vegetation establishment and carbon 

exchanges within the constructed peatland. 
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1.1 Objectives 

The overall goal of this research is to provide a watershed-scale evaluation of the 

dominant hydrological processes operating within the constructed Nikanotee Fen 

watershed. The specific objectives, outlined below, each address a separate component of 

the constructed system that is essential for the comprehensive assessment of the system 

design and hydrological performance of the Nikanotee Fen watershed. Thus, the main 

objectives of this research are to: 

1) Synthesize the pertinent literature regarding the fundamental issues, 

challenges and opportunities associated with the construction of fen 

peatland ecosystems in a post-mining oil sands landscape, from a 

predominantly hydrological perspective; 

2) Quantify the distribution, ablation and fate of snowmelt waters within the 

landforms that comprise the constructed watershed to assess the 

importance and role of spring snowmelt on the hydrology of reclaimed 

watersheds; 

3) Examine the dominant controls on the soil water regimes of the reclaimed 

slopes in the Nikanotee Fen watershed to evaluate the hydrological role of 

reclaimed slopes on watershed-scale landscape reclamation; and 

4) Characterize the distribution, storage and movement of water within the 

designed upland-fen system over the range of conditions encountered in 

the field. 

1.2 Organization of thesis 

This thesis consists of six chapters that have been structured in accordance with 

the manuscript option at the University of Waterloo. The introduction presented in the 

first chapter contextualizes the thesis topic and outlines the overall goal and specific 

objectives of the research. The subsequent four chapters each address one of the specific 

objectives and research themes outlined in chapter one.  
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 Chapter two is a literature review-style chapter that provides an overview of the 

conceptual approach, underlying principles and numerical modelling used to guide the 

construction of the upland-fen portion of the Nikanotee Fen watershed. In doing so, this 

chapter also addresses the first objective of the thesis. While the focus of this thesis is on 

evaluating the hydrological processes operating within the Nikanotee Fen watershed, this 

chapter includes an evaluation of the conceptual design of a second fen watershed that 

was also constructed in the AOSR. Since the underlying conceptual models used to guide 

the design of these two fen ecosystems are quite different, the concurrent comparison 

presented in chapter two provides a valuable and balanced perspective of the contrasting 

approaches to fen creation that have been undertaken in the AOSR. This chapter also 

includes a review of the relevant literature necessary to fully introduce this thesis and 

provides the context for the subsequent chapters, which are research articles.  

Chapters three to five are based on empirical data collected for this thesis. Chapter 

three addresses a deficient knowledge of snow hydrological processes in recently 

constructed systems and, thus, addresses the second objective of this thesis. Chapter four 

addresses the third objective of this thesis by comparing the hydrological role of two of 

the reclaimed slopes within the Nikanotee Fen watershed. Chapter five provides an 

evaluation of the hydrological performance of both the designed upland-fen system as 

well as the Nikanotee Fen itself, which addresses thesis objective four.  

A summary of the conclusions from each of the four manuscripts is presented in 

chapter six. This chapter highlights the main contributions of the thesis and provides a 

synthesis of the recommendations for future fen creation and wetland reclamation 

projects.  

Two appendices are located at the end of the thesis: A.1 contains a comparison of 

the water table dynamics at the Nikanotee Fen to three relatively undisturbed natural fen 

ecosystems that were selected as regional reference systems for the Nikanotee Fen; and 

A.2 presents the particle size distribution and organic matter content of many of the soils 

used to construct the various landforms within the Nikanotee Fen watershed.   
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2 CONSTRUCTING FEN PEATLANDS IN POST-MINED OIL SANDS 

LANDSCAPES: CHALLENGES AND OPPORTUNITIES FROM A 

HYDROLOGICAL PERSPECTIVE 

2.1 Introduction 

Peatland creation is a new concept, not attempted prior to the construction of the 

two fundamentally different fens, and their associated watersheds, on post-mined oil 

sands leases that are discussed in this paper. These systems were guided by different 

conceptual approaches. The Nikanotee Fen and watershed was based on landscape 

optimization through numerical modelling of an isolated upland-fen system. It 

was constructed within the Millennium mine lease at Suncor Energy Inc. oil sands mining 

operations site. The Sandhill Fen and watershed was designed to mimic the landscape 

position of regional, connected natural fen systems with the design being tested with 

numerical modelling of interactions of groundwater from adjacent landscapes. It was 

constructed on Syncrude Canada Limited’s Mildred Lake lease. Both systems are located 

approximately 40 km north of Fort McMurray, Alberta. The Nikanotee Fen was 

constructed on an overburden dump (Daly et al., 2012), whereas the Sandhill Fen was 

constructed on a sand-capped composite tailings deposit (Pollard et al., 2012). Both 

system designs attempt to accelerate succession by adding peat substrate and 

revegetating, with the belief that the system will stabilize within decades as opposed to 

millennia. The unique features of each system and the implications for ecosystem 

function are described within this paper.  

Although natural peatlands form over thousands of years (Clymo, 1983), creation 

of a fen peatland was considered possible if the landscape was configured to provide a 

hydrogeological setting that can deliver a supply of water necessary to sustain fen 

peatland functions (Price et al., 2010; Devito et al., 2012). Because it exhibits a strong 

control on the chemical and biotic processes operating in peatlands, hydrology is the most 

important process regulating wetland function and development (Mitsch and Gosselink, 

2000). Generally, a basic understanding of the hydrogeological setting is required prior to 

developing a conceptual model and applying it to a system (Reeve et al., 2000), since 
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both the local landscape and regional topographic position can influence system function. 

Similarly, an understanding of the hydrologic function, both within individual systems as 

well as their connectivity within the surrounding constructed system, is required for 

constructed landscapes. However, within these landscapes, the hydrogeological setting 

can be designed, modified and constructed to meet the requirements of a conceptual 

model. The most important aspect to consider during the development of watershed 

designs with fen peatlands is the influence of climate (Devito et al., 2005a; Devito et al., 

2012) and water availability to satisfy soil water storage and recharge groundwater, 

which is driven by the difference between precipitation (P) and actual evapotranspiration 

(AET) (Smerdon et al., 2008). Indeed AET rates can be controlled to an extent through 

soil texture, water availability, vegetation cover and microclimatic manipulations (e.g., 

mulch surface cover) in constructed landscapes. However, manipulation of precipitation 

dynamics is unrealistic. Accordingly, fen creation must be guided by the ability to design 

and contour the reconstructed landscape to provide a suitable hydrogeological setting for 

a fen peatland under regional climatic conditions at the time of construction.  

One of the major challenges facing fen creation and development in this setting is 

that of limited water availability in the sub-humid climate of the Canadian Western 

Boreal Plain (WBP), where P is often less than potential evapotranspiration (PET), and 

wet periods occur with a 10 to 15 year frequency. Additional challenges exist with 

regards to water quality in a post-mining landscape comprising a substantial proportion of 

oil sands tailings and saline-sodic overburden materials. In an effort to surmount these 

challenges, multidisciplinary teams of research scientists and engineers have developed 

strategies to create fen peatlands and integrate them into constructed watershed designs 

(Pollard et al., 2012). Despite the incorporation of water and solute management 

strategies designed to mitigate anticipated challenges, the performance of these 

constructed systems is difficult to predict due to the lack of precedent.  

Analysis of the initial field-based measurements of constructed fen systems is 

now underway. The purpose of this commentary is to present and discuss the main issues 

that are central to the subject of fen creation, from a hydrological perspective, in open pit 

post-mined oil sands environments. A brief overview of the challenges associated with 
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water quality is included in this paper, since it is an important aspect to consider when 

discussing the feasibility of integrating constructed fen ecosystems into reclaimed 

landscapes. Further, peatland creation requires consideration of external climatic forcings 

and coupled internal hydrological, ecological and biogeochemical processes. However, 

the focus here will be on the hydrological processes and their controlling factors. The 

general approach is to: 1) assess the feasibility of peatland creation in a regional (WBP) 

context; 2) identify the underlying principles that are incorporated into the fen creation 

conceptual approaches; 3) discuss the suitability of the conceptual models for 

implementation in an oil sands environment; and 4) address the complexity of 

determining if these fen creation projects can be classified as a success or failure.   

2.2 Suitability of regional climate 

The oil sands region of Northern Alberta is within Canada’s Boreal Plain ecozone 

(Soil Classification Working Group, 1998) where deep (20-200 m) heterogeneous glacial 

deposits result in a complex subsurface hydrology (Devito et al., 2005a; Smerdon et al., 

2005; Devito et al., 2012) that underlies a surficial landscape mosaic of forestlands and 

wetlands (predominately fen peatlands; Vitt et al., 1996). In most years, PET exceeds P 

in the sub-humid climate of the WBP region (Bothe and Abraham, 1993; Marshall et al., 

1999). Regional water budgets are generally dominated by soil water storage and AET 

(Smerdon et al., 2005), with runoff being strongly controlled by the combination of P 

volume and timing, in relation to available storage capacity (Devito et al., 2005b; 

Redding and Devito, 2008). A large proportion (>70%) of annual precipitation occurs in 

the summer, usually as short-duration, convective-cell storms that rarely exceed 10 mm 

(Smerdon et al., 2005). The synchronization of summer rainfall and peak 

evapotranspiration demand greatly reduces the potential for runoff generation (Devito et 

al., 2005b), and often the available soil water storage capacity is sufficient to hold most 

of the mid-summer precipitation inputs (Redding and Devito, 2008). However, soil water 

storage deficits are reduced or eliminated during wet periods that occur approximately 

every 10 to 15 years (Devito et al., 2005b; Mwale et al., 2009).  
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Consequently, one of the major challenges of creating and establishing fens in this 

setting is that of limited water availability. Many fen peatlands in the WBP are isolated 

from hillslope and groundwater inputs in topographically high positions (Riddell, 2008). 

These hydrologically isolated fens function mostly with internal control of soil moisture 

and water conservation mechanisms, such as decreased AET rates and seasonally 

persistent ground frost, that limit water lost from storage (Devito and Mendoza, 2007; 

Petrone et al., 2007; Kettridge and Waddington, 2014; Waddington et al., 2015). In 

addition to these internal mechanisms, fen peatlands at lower topographic positions may 

rely upon a combination of ground and surface water inflows to sustain water levels 

necessary for peatland function (Ingram, 1983). This characteristic makes fens an 

attractive candidate for peatland creation since the construction of a suitable local 

geomorphic setting can help mitigate regional climatic factors (i.e., dry conditions) by 

providing the requisite topographic setting, surface and groundwater flow to sustain 

hydrological, biogeochemical and ecological processes and functions within the 

constructed fen peatland. However, water requirements of natural fen ecosystems vary 

across a broad range that depend upon a combination of fen type (e.g., poor versus rich 

fen), prevalent climatic conditions (e.g., cool/moist versus warm/dry), dominant 

vegetation cover (e.g., vascular versus non-vascular) and internal water storage and 

retention dynamics (including ground frost). As such, the requisite natural (i.e., not 

artificially supplemented) water input for constructed fen ecosystems has yet to be 

determined (Price et al., 2010). Furthermore, the timing of construction in relation to the 

10 to 15 year climatic cycle may impact the critical successional period in the first few 

years post-construction. For instance, a system constructed within a dry period would 

face greater challenges in sustaining a sufficient level of moisture to support peatland 

processes than a system constructed at the start of a wet period.  

Accordingly, a suitable water balance within the numerical modelling-based 

Nikanotee Fen design was based on vegetation-related threshold moisture conditions 

established within peatland restoration research literature (Price and Whitehead, 2001). In 

contrast, the conceptual design of the Sandhill Fen was initially more strongly guided by 

an empirically based understanding that attempted to mimic the conditions observed in 
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natural ecosystems.  The rationale was that this natural landscape design had proven 

suitable for long-term fen existence in the sub-humid WBP in a range of hydrogeologic 

conditions representative of the AOSR (Devito et al., 2012). After the initial design for 

the Sandhill Fen watershed had been characterized, numerical modelling was performed 

to (a) confirm that adequate water from precipitation would be available for the fen over 

future years and (b) analyze the movement of salts from neighboring tailings deposits 

(Wytrykush et al., 2012). Nevertheless, the climatic conditions (i.e., surplus or deficit) 

during the first few years after construction will have a substantial impact on the 

performance of each of the fen systems. 

2.3 General approach to fen creation 

The Sandhill Fen conceptual design is based on research on the function and 

maintenance of WBP fen peatlands (e.g., Ferone and Devito, 2004; Devito et al., 2005b; 

Smerdon et al., 2005; Petrone et al., 2007; Petrone et al., 2008; Redding and Devito, 

2008; Smerdon et al., 2008; Brown et al., 2010; Petrone et al., 2011; Devito et al., 2012; 

Brown et al., 2014; Petrone et al., 2015) where local wetland systems and adjacent 

forestlands exchange water symbiotically in accordance with the prevailing moisture 

conditions (i.e., wetlands supply the forestlands with water under dry conditions, and vice 

versa during wet cycles), both in the absence and presence of large scale groundwater 

flows. As such, the construction design of the Sandhill Fen incorporates a series of local 

topographic upland areas (referred to as hummocks), ephemeral draws and perched fens 

that border a low-lying fen system (Figure 2-1). This design was guided by evidence that 

local to regional groundwater flows represent important contributions to the water budget 

in natural wetlands situated in topographically low portions of flow systems within 

coarse-grained deposits (Smerdon et al., 2005). 
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Figure 2-1 - Aerial view of the Sandhill Fen. Image provided by Syncrude Canada 
Ltd. 

An adjustable weir was installed at the outflow of the constructed system to 

accommodate surface discharge from the fen. The hummocks and ephemeral draws are 

designed to provide storage and periodic local groundwater recharge and surface flow, 

respectively, to the adjacent fen system. However, two hummocks were removed from 

the original design of the Sandhill Fen during the construction phase due to limited 

availability of suitable materials for construction. Similarly, the hummocks that remained 

in the system were smaller (lower material volume) than originally intended and 

designed. Nevertheless, a water storage pond located at the headwater portion of the 

watershed was included to provide an initial experimental control on the surficial inflows. 

Underdrains were also included in the design as an experimental water (and solute) 

management strategy. Both the water storage pond and underdrains were designed for 

experimental manipulation and were never intended to be a part of a true reclamation 

scenario (Pollard et al., 2012). The Sandhill Fen is described in greater detail in 

Wytrykush et al. (2012) and Pollard et al. (2012).  

The conceptual approach adapted in the Sandhill Fen attempts to mitigate the 

water deficit of the sub-humid climate through the application of natural landscape design 
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analogues (Devito et al., 2012) with basic water balance and regional groundwater 

modelling. In the absence of reliable runoff from adjacent uplands in natural systems 

(Devito et al., 2005b), larger scale groundwater flows are the likely mechanism that 

supplies water for the maintenance of natural wetlands on coarse permeable deposits 

during periods of drought (Smerdon et al., 2005; Devito and Mendoza, 2007; Devito et 

al., 2012). In the constructed system, hummocks were designed to recharge local aquifers 

and supply groundwater to the low-lying fen system, as well as to support forests that 

obtain water from these low lying wetlands. Local groundwater systems fluctuate on 

timescales much longer than surficial systems, which rapidly respond to climatic 

conditions (Smerdon et al., 2008). Thus, incorporating localized groundwater flow 

systems into the conceptual design (via hummocks) reduces the susceptibility of the 

forestlands and wetlands to drought. Furthermore, the hummocks represent water storage 

mechanisms analogous to the enhanced water storage of geological materials observed in 

natural settings (Redding and Devito, 2010). Additionally, natural peatland systems 

within the WBP possess storage mechanisms that contribute to their ability to survive 

during periods of water deficit (Devito and Mendoza, 2007; Devito et al., 2012) and 

three-dimensional structures that limit evapotranspiration losses (i.e., canopy architecture 

and sheltering by adjacent forests; Petrone et al., 2007; Brown et al., 2010). The presence 

of thick and seasonally persistent ground frost into late summer contributes to constrained 

water losses from the natural peatland systems by restricting AET rates (Petrone et al., 

2008; Brown et al., 2010). However, ground frost dynamics will likely differ in 

constructed fen systems, owing to the increased bulk density of peat soils following 

transportation and placement (Nwaishi et al., 2015b) as well as the thermodynamic 

interaction with the underlying tailings materials. Regardless, the water conservation 

mechanisms caused by persistent ground frost, although not necessarily by design, will 

increase the ability of the constructed system to constrain water losses.  

Unlike the approach of the Sandhill Fen system that was initially based on natural 

analogues and later supported by modelling, the design of the Nikanotee Fen was guided 

largely by numerical modelling and supported by experience in natural WBP systems. 

The design approach (described in greater detail by Daly et al., 2012) was to provide an 
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upland aquifer system constructed from materials with suitable hydraulic properties to 

conduct groundwater flow under an imposed hydraulic gradient (via sloping topography) 

to a fen peatland located at the base of the upland slope (Figures 2-2 and 2-3). Price et al. 

(2010) applied a numerical model to the conceptual design to examine the hydrological 

conditions and system geometries required to sustain hydrologic conditions in the fen 

system within a range deemed suitable for survival of fen vegetation, specifically non-

vascular mosses (Price and Whitehead, 2001). This modelling work was based on the 

regional historical climate record (1940 to 2004) and incorporated several drought cycles 

of differing degrees of severity (Price et al., 2010).  The optimized system from the 

modelling formed the specifications of the Nikanotee Fen construction plan (Daly et al., 

2012), which has been implemented in a field setting. The Nikanotee Fen design is also 

described in Pollard et al. (2012). The designed fen-upland system is situated within a 

larger watershed that includes additional reclaimed and natural slopes (Daly et al., 2012). 

Although these previously reclaimed slopes are not explicitly relied upon for the 

contribution of water to the designed fen-upland system, downslope movement of water 

from similar reclaimed slopes has been observed (Kelln et al., 2006; Meiers et al., 2006; 

Kelln et al., 2007). This could provide a supplementary contribution of water to the 

constructed fen system, at least in early stages of forest succession. During the spring 

freshet, most snowmelt water typically flows off reclaimed slopes as surface runoff 

(Kelln et al., 2009). There is potential for this to represent an important source of water 

for constructed wetlands, provided that it is properly managed (i.e., excess water stored 

appropriately within the landscape). However, snowmelt dynamics remain poorly 

understood in these landscapes. 
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Figure 2-2 - Map and view of the Nikanotee Fen. The photographs were taken 
facing west from the “X” on the map. 
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Figure 2-3 - Cross-section of the Nikanotee Fen watershed. The thickness of each 

layer is indicated in parentheses. Note that the thickness of the liner in the diagram is not 
to scale (shown thicker than the ~0.05 m actual thickness) 
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partitioning (e.g., between surface runoff and groundwater recharge) of water stored 

within the over-winter snowpack in constructed landscapes. 

2.4 Issues related to water quality 

In addition to the issues regarding water quantity in a sub-humid climate, another 

major challenge facing fen creation is that of water quality. Oil sands process-affected 

tailings materials contain chemicals including naphthenic acids (NAs), hydrocarbons, 

salts (specifically, the cation sodium (Na+)), heavy metals and organic acids (Scott et al., 

2005; Rezanezhad et al., 2012a). Of particular concern are elevated salinity levels (Purdy 

et al., 2005) because of the toxic effect on non-halophilic wetland vegetation (Renault et 

al., 1998; Renault et al., 1999; Trites and Bayley, 2005). Preliminary modelling in the 

Nikanotee Fen (unpublished) indicates that solute transport from the uplands (comprising 

tailings sand) into the fen peat is expected to increase the salinity of near-surface 

porewater in the fen. Conversely, the Sandhill Fen watershed was constructed from both 

tailings and clean-fill sand; however, the entire system is situated atop saline composite 

tailings. The concern in the Sandhill Fen system is the upwards transport of high salinity 

waters from the underlying tailings materials into the fen system, similar to the upward 

flux of saline sodic waters observed on reclaimed soil covers capping overburden 

materials (Kelln et al., 2006; Kelln et al., 2009; Kessler et al., 2010). Daly et al. (2012) 

outline several important modifications that were made to the original Nikanotee Fen 

watershed design to meet site-specific conditions. Several of these were added to mitigate 

the susceptibility of the system to salinization. For example, the thickness of the upland 

sand aquifer was altered to limit ET to the atmosphere. Also, a new layer was added 

under the fen that extends partway upslope to preclude groundwater (and salts) from 

discharging at the upland-fen interface (constructed using petroleum coke and referred to 

as the ‘underdrain’ layer). 

Na+ and NAs are readily transported through sand/gravel aquifers, with only 

slight attenuation beyond dispersive dilution (Gervais and Barker, 2005). Within peat 

soils, solute transport processes are largely governed by the influence of groundwater 

flow on the rate of solute dispersion and removal by chemical, physical and microbial 
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processes (Hill and Siegel, 1991; Hoag and Price, 1995; Todorova et al., 2005). Recently, 

Rezanezhad et al. (2012b) documented substantial delays in the transport of Na+ and NAs 

through peat columns due to sorption and diffusion into immobile water within dead-end 

pores (i.e., pores that do not contribute to water flow) within the peat matrix. 

Nonetheless, the negative effect that elevated salinity levels have on the survival of fen 

vegetation (Trites and Bayley, 2009) remains a concern. However, vegetation present in 

salt marshes is able to tolerate both saline and waterlogged conditions (National Wetlands 

Working Group, 1997) and typical fen gramminoid (vascular) vegetation can tolerate 

concentrations of ~385 mg l-1 of Na+ and ~40 mg l-1 of NAs when exposed to oil sands 

process affected water (Rezanezhad et al., 2012a). Mosses, however, are more 

susceptible to the presence of solutes, especially when they acquire water via capillarity 

from the underlying peat soil (Rezanezhad et al., 2012a). The vegetation strategy for the 

Nikanotee Fen included targeting more salt-tolerant species (see Daly et al., 2012), which 

should help to further mitigate the negative impact of potentially elevated salinity on 

vegetation survival.  

Vegetation cover can also influence the distribution of Na+ and NAs in 

constructed peat profiles via controls on ET. For example, increased ET rates and root 

water uptake from peat soils dominated by vascular vegetation cover resulted in an 

increased upward migration of both Na+ and NAs in comparison to a moss-dominated 

vegetation cover in a recent greenhouse mesocosm experiment (Rezanezhad et al., 

2012a).  The lower evaporation rate from the moss vegetation and lack of root water 

uptake resulted in a sequentially delayed increase in solute concentration at higher 

elevations in the peat profile. Sphagnum moss has been shown to reduce evaporative 

water losses from the surface of an underlying (cutover) peat soil (Price and Whitehead, 

2004), as Sphagnum that is not saturated is an inefficient evaporating surface (Price, 

1991).  Similarly, reduced evapotranspiration rates from moss-covered surfaces could 

decrease vertical solute transport rates in the constructed fen. However, mosses showed a 

considerable decline in health with increasing surface solute concentrations (Rezanezhad 

et al., 2012a), indicating a lowered probability of moss survival in the constructed fen 

systems.   
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2.5 Connectivity in natural and constructed landscapes 

The topography of the WBP region is relatively flat but can be locally variable 

(Fenton et al., 1994). On the regional scale, the surface of the underlying sedimentary 

bedrock (the pre-Quaternary unconformity) is complex, as it is an erosional setting that 

consists of relicts of paleo-river systems and isolated upland remnants that have been 

modified by glacial and fluvial processes (Andriashek, 2003) that produced deep (20-200 

m) surficial deposits (Devito et al., 2005a). The majority of the dominant hydrological 

processes occurring within the WBP on a relevant time scale are constrained to these 

highly heterogeneous glacial deposits and landforms with differing water storage and 

transmission properties. Different conceptual and numerical modelling approaches may 

be required on different landforms.  Thus, the traditional concept of topographic control 

on watershed hydrology does not necessarily apply across the landscape (Devito et al., 

2005a; Smerdon et al., 2005). The design of the Sandhill Fen was based on replicating 

the hydrology typical of coarse textured glacial-fluvial landscapes. Thus, it appears to be 

well-suited for the hummock and swale topography that is designed for most tailings-

sand storage areas within the post-mining landscape (BGC Engineering Inc., 2010), since 

changes in slope or heterogeneities in the subsurface geology (tailings materials) should 

favour the formation of localized discharge areas (cf. Ferone and Devito, 2004). Further, 

the texture of materials used to reconstruct these landscapes will be of similar texture to 

those found in natural WBP systems (Devito et al., 2012; CEMA, 2014). Nonetheless, the 

efficacy in which these materials are manipulated and placed will improve with an 

increased understanding of these systems.  

The Nikanotee Fen watershed was constructed on, and is hydrologically isolated 

from, a fine textured overburden dump (Daly et al., 2012; Pollard et al., 2012). However, 

many constructed wetlands will be located on seepage discharge zones on tailings sand 

beaches (BGC Engineering Inc., 2012) with stronger landscape connectivity than the 

current (pilot-scale) Nikanotee Fen. Nonetheless, since future wetlands could receive 

water discharging from tailings sand materials, the upland aquifer within the Nikanotee 

Fen watershed design was constructed from tailings sand materials. Since the current 

Nikanotee Fen design relies heavily upon sufficient recharge from the upland aquifer, it is 
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intended to be less reliant on the broader landscape connectivity that was an integral part 

of the Sandhill Fen design. Given the larger scale of future reclamation, integration and 

connectivity of landscape units should be incorporated into designs.  

Johnson and Miyanishi (2008) and Devito et al. (2012) suggest an integrated 

landscape scale reconstruction of the post-mining oil sands landscape is essential, since  

recompiling isolated and fragmented systems is not likely to restore ecosystem function 

(Choi et al., 2008). Although the simple concept of catchment area as a first-order control 

on discharge does not always apply in the WBP region (Devito et al., 2005a; 2005b), the 

reconstructed watersheds will have more distinct catchment areas than most natural WBP 

settings. Nevertheless, some similarities will exist between the reconstructed geological 

substrata and the thick glacial deposits of the undisturbed WBP landscape, with respect to 

soil textures and the presence of layered materials with distinct hydrophysical properties.  

In constructed systems, connectivity of individual landscape components would 

complement the incorporation of fen systems into closure plans. This should create areas 

more prone to consistently saturated conditions by increasing the cumulative upslope area 

contributing to depressional areas situated in the lower portion of the larger (i.e., 

regional) watershed. If properly integrated into the catchment design, wetlands and 

ephemeral draws could play an important landscape connectivity role whereby they could 

serve as important storage mechanisms during large, convective storms common to the 

WBP, while representing sources of water for the adjacent landscapes during dry periods. 

From this perspective, peatlands could be used to conserve water within the landscape 

through their inherent water storage mechanisms rather than solely be the recipient of 

water. Research in natural WBP landscapes has demonstrated that fen peatlands can 

function as a source of water to adjacent forestlands, even if these fen systems are 

isolated from groundwater inputs (Riddell, 2008; Thompson et al., 2015). Accordingly, 

future landscape construction design plans would benefit from integrating fen peatlands 

within the catchment as mechanisms of landscape connectivity and potential water 

sources instead of designing catchments solely to supply water for the fens (see Devito et 

al., 2012). The formation of several ‘opportunistic’ (i.e., unplanned) marsh and shallow 

open water wetlands in both low-lying and topographic high, flat fine textured areas 
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within reclaimed landscapes (CEMA, 2014) demonstrates that incorporating fen 

peatlands into closure plans is possible. Gross drainage area may act as a reasonable 

metric to predict the probability of wet conditions within reconstructed landscapes at an 

ecosystem scale, although the establishment of more mature upland forest trees will 

reduce water availability. Nonetheless, this metric (gross drainage area) could assist 

planners and engineers in identifying portions of a landscape that are well-suited for the 

maintenance of targeted constructed wetland forms, including fen peatlands. 

2.6 Fen proportions  

Another challenge facing fen peatland construction are constraints imposed by the 

post-mining landscape (Rooney et al., 2012). The inclusion of end-pit lakes in many 

closure plans results in a materials surplus, where the volume of tailings sand and 

overburden materials exceeds the size of mine pits. Consequently, the closure landscape 

will have a complex hilly topography instead of the relatively flat pre-mining landscape, 

which could restrict wetland habitats to the low-lying areas. Rooney et al. (2012) also 

contend that, if the suggested minimum ~2:1 (3:1 is optimal) upslope to fen peatland ratio 

determined in the numerical modelling simulations for the Nikanotee Fen design (Price et 

al., 2010) proves to be accurate, then recreating a landscape with the same pre-

disturbance proportion of wetland ecosystems (~50%; Vitt et al., 1996) is not possible. 

However, the actual upslope: fen ratio is influenced by the hydraulic conductivity of the 

basal liner and upland aquifer materials, not solely the proportion of upland and fen 

(Price et al., 2010). In addition, the presence of healthy fen peatlands in the sub-humid 

climate of the WBP, often in the absence of water contributions from groundwater and 

adjacent hillsopes (Riddell, 2008; Smerdon et al., 2008), suggests that upland water 

contribution is not the sole determinant responsible for the maintenance of fen peatlands 

in this setting (Devito and Mendoza, 2007). Enhanced water storage mechanisms and 

constrained AET rates outlined earlier also contribute to the maintenance of fen peatlands 

during periodic water deficits (Petrone et al., 2007; Brown et al., 2010). These factors 

contribute to the dominance of wetland ecosystems in natural WBP landscapes where 

wetlands can cover more than 50% of the landscape (Vitt et al., 1996; Devito, 
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unpublished data). Integrating fen peatlands throughout the catchment should increase 

landscape connectivity and alleviate the constraint of the post-mining landscape. Thus, it 

stands to reason that the minimum upland: fen ratio requirement for fen creation in the 

WBP setting is much less than 2:1 and ratios of less than 1:1 should be sustainable. 

Targeted placement of fens in areas prone to wet conditions (indicated by gross drainage 

area) should help to alleviate concerns associated with upland: fen ratios in closure 

landscape designs.  

2.7 Success or failure? 

Often times, defining success requires that criteria be established a priori, 

preferably as quantifiable values; however, the Nikanotee and Sandhill fen systems 

represent the first attempts to create fen peatlands in a post-mining oil sands setting, 

which eliminates the possibility of using information from past projects to establish 

goals. The development of the conceptual models was based in part on an understanding 

of the function of regional fen peatlands as well as the influence of the landscape setting 

on groundwater interactions under regional climatic controls. As such, functional 

equivalence may be determined by comparison with regional reference systems, and 

success defined by this comparison (Lewis, 1990). In the constructed fen system, 

components integral to the function of the system (i.e., hydrology, water quality, 

micrometeorology, carbon cycling, microbial processes and ecology) will be 

characterized using independent metrics that must ultimately be combined into an 

integrated functional framework to facilitate this comparison (Carey and Petrone, 2014). 

Nwaishi et al. (2015a) have proposed use of a functional-based approach to guide the 

evaluation of constructed peatlands that includes an evaluation of quantifiable variables 

(e.g., peat hydraulic properties, vegetation diversity, microbial activity, greenhouse gas 

fluxes) as functional indicators of ecosystem condition. This type of approach should be 

adapted into a standard framework for evaluating these constructed ecosystems.  

Mitsch and Wilson (1996) identify three fundamental requirements for achieving 

success of wetland creation: understanding wetland function; giving the system time; and 

allowing for the self-designing capacity of nature. To properly determine the success of 



 

 
 

22 

ecosystem creation, an understanding of the fundamental processes responsible for the 

desired ecosystem characteristics is required. In peatlands, the hydrology and water use 

efficiency largely determines the type of vegetation present and controls the rates of 

photosynthesis and decomposition, which consequently modifies the system hydrology as 

the accumulation of plant materials forms the matrix within which water flows 

(Waddington et al., 2009). Accordingly, ecological, biogeochemical and hydrological 

processes are inextricably linked in peatland ecosystems. As such, a holistic, integrated 

ecosystem approach is a requisite for the ability to declare “success” or “failure” of the 

constructed fen peatlands and to understand their potential resilience in a larger 

framework (Waddington et al., 2015).  

There are, however, several additional facets of success to consider within the 

context of oil sands reclamation. For example, government approval and certification of 

reclaimed land could be viewed as a success. From an industry perspective, in addition to 

certification of the constructed landscape, success could broadly include logistical and 

financial feasibility of constructing fen systems at an operational scale, satisfying mine 

closure planning goals and regulatory commitments and effective transfer of technology 

for future fen creation (BGC Engineering Inc., 2012). Clearly, the perception of 

“successful” peatland creation varies greatly across the range of involved parties. 

Accordingly, it is necessary to maintain realistic goals and consider probable outcomes as 

well as the logic for deeming them successes or failures.  

The intention of the fen watershed designs was to reduce the length of time 

required to establish wetland process and function by providing the suitable 

hydrogeological setting and the fen peat substrate upon which a vegetation community 

could be established (Price et al., 2010). Based on experience from peatland restoration in 

Eastern Canada, an optimistic estimate to achieve a vegetation cover that possess natural 

functions (i.e., acrotelm) is nearly two decades (Lucchese et al., 2010); however, these 

restored peatland sites are able to return to a net carbon sink within 6 to 10 years post-

restoration (Waddington et al., 2010). At this point, there is much uncertainty associated 

with predicting the amount of time it will take to develop an understanding of the 

function and trajectory of constructed ecosystems. Since peatland restoration and 
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creation/reclamation are different (Daly et al., 2012), and wet periods occur 

approximately every 10 to 15 years in the WBP, it is difficult to provide an accurate 

assessment of the system trajectory on time periods of less than 10 to 20 years. The 

system design attempts to accelerate succession by adding the peat substrate and 

revegetating, with the belief that the system will stabilize within decades as opposed to 

millennia. The short timeframes that often constrain research projects (e.g., five years) is 

sufficient to characterize a range of processes operating on the system. However, 

relatively rapid changes in the soil properties (Meiers et al., 2011), biogeochemical 

conditions and vegetation development and succession (CEMA, 2014) on a timescale less 

than regional climate cycles, leaves considerable uncertainty as to the system's trajectory. 

Monitoring on a longer timescale is needed to indicate if the system is on the 

right successional pathway. Nevertheless, the detailed understanding of our ability to 

recreate fundamental conditions and control processes, in a relatively short time-frame, 

can provide insights that are immediately transferable to ongoing reclamation designs. 

The declaration of success, from an ecosystem creation perspective, should be 

shifted away from an attempt to replicate natural systems identically and towards 

assessing our ability to design a system that exhibits a hydrologic regime (i.e., maintain 

water levels/wetness) within a range of expected values that are deemed as suitable for 

the survival of a select community of vegetation while operating at a sufficient efficiency 

to leave enough water for other landscape types at the catchment scale. This is because 

peatlands may take millennia to form and, as such, the hydrology of the constructed 

system is the key to understanding if the system will be viable over the longer term. 

Furthermore, design modifications are possible as projects progress from concept to 

design to operational construction (Daly et al., 2012). For example, availability and 

proximity of suitable construction materials (volume and properties) could result in 

alterations to the original design. Under these circumstances, expectations for system 

function may need to be adjusted relative to the original goals based on the operational 

design modifications.  

Natural analogues appear as a compelling choice to provide a standard range in 

ecohydrological conditions upon which the fen construction success and trajectory can be 
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assessed. Although natural analogues are required to guide fen creation design, realism is 

required for their use in evaluating newly created systems. The post-mining landscape 

provides a clean slate for scientists and engineers to apply our cumulative fundamental 

knowledge of ecosystem behaviour through combining engineering and ecosystem design 

approaches into practice, in an effort to create an ecosystem that otherwise would take 

decades to millennia to develop under the self-design of nature alone (Gorham, 1957; 

Clymo, 1983; Beven et al., 1988). The design of the two fen systems was inherently and 

intentionally experimental (Pollard et al., 2012) to maximize the advancement of fen 

creation proficiencies by constructing systems that were conducive to characterization of 

the dominant processes within these ecosystems. The science produced from these 

projects will be invaluable in informing future fen creation efforts. In practice, success 

should include a quantitative assessment of our ability to replicate what we developed 

conceptually. The consequences of deviations from design must be quantified to facilitate 

the integration of this new knowledge into future designs.  

2.8 Conclusions 

Fen peatlands have now been constructed in post-mined oil sands landscapes. 

Although their long-term viability remains unknown, the experience and knowledge 

gained will provide the solid foundation required to guide and improve the design and 

construction of future fen peatlands. For both the Nikanotee and Sandhill fens, lack of 

prior experience required that conceptual design development be based on the 

culmination of peatland and hydrologic science.  Issues related to water quality and 

quantity represent major challenges, and will be defined by the interactions between the 

components of the water budget, the storage properties of the watershed and the 

hydrogeological setting within which the fen is situated. Mitigation structures have been 

incorporated into the constructed systems in an effort to alleviate some of these 

challenges; however we are only now learning the efficacy of these measures. Climate is 

a strong control on the health and trajectory of the constructed system, as it governs the 

availability of water and broadly defines limits on the relative roles of frost, water storage 

and vegetation water demand, the culmination of which will determine water relations in 
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the constructed system.  Hence, the design and construction of a fen watershed must 

provide conditions suitable for the maintenance of a fen ecosystem within variable 

climactic conditions. Ongoing, long-term monitoring and research within these 

constructed systems is necessary to understand how the systems evolve over time and to 

guide any necessary interventions in the future. An adaptive approach should be 

employed when designing future constructed fen peatlands that assimilates the 

knowledge developed in the current research and the information attained over the 

longer-term to guide the design of future fen systems. From an ecosystem creation 

perspective, discernment of successes should focus on our ability to design and construct 

systems that exhibit predictable and desirable characteristics of a healthy fen ecosystem. 

Then, we wait.  
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3 SNOW HYDROLOGY OF A CONSTRUCTED WATERSHED IN THE 

ATHABASCA OIL SANDS REGION, ALBERTA, CANADA 

3.1 Introduction 

Oil sands extraction in the Athabasca Oil Sands Region (AOSR) requires 

landscape reclamation on an unprecedented scale. The amount of water available to 

recharge constructed aquifers within the post-mined landscape is largely controlled by the 

regional climate (Devito et al., 2005a; Devito et al., 2012). The AOSR is located within 

the Western Boreal Plain (WBP) region of Canada, where the climate is sub-humid 

(Bothe and Abraham, 1993; Marshall et al., 1999) and, thus, groundwater recharge is 

often constrained by limited water availability. Based on the 30-year climate normal 

(1981 - 2010), approximately 25% of the average annual precipitation (P; ~419 mm) falls 

as snow (Environment Canada, 2011). Snowmelt and early spring rainfall are important 

contributions to annual groundwater recharge on some WBP landforms (Smerdon et al., 

2008); though, the probability of rainfall in the late summer and fall is low, which results 

in low soil water content (i.e., high soil water storage capacity) prior to freezing and 

limited spring snowmelt runoff response in natural settings (Devito et al., 2005b). 

However, reclaimed landscapes have a distinctly different hydrological regime than the 

former natural landscape (Elshorbagy et al., 2005). Hence, the development of effective 

water management strategies within reclaimed landscapes must explicitly address the 

influence of the regional climate and the impact of the timing and magnitude of water 

fluxes on an annual basis. Yet few studies have characterized the distribution of snow 

and, thus, the storage of winter precipitation in reclaimed oil sands landscapes and 

constructed ecosystems.  

In addition to the regional climate, the storage properties of the reclamation soil 

materials also influence the availability of water for aquifer recharge. Many reclamation 

soil covers are designed to maximize available water holding capacity for vegetation 

growth and to minimize seepage into deeper soil layers (Meier and Barbour, 2002; 

Shurniak and Barbour, 2002; Meiers et al., 2006; Carrera-Hernández et al., 2012). 

Consequently, downslope interflow from surface mine waste deposits reclaimed using 
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typical soil cover prescriptions occurs infrequently during the summer months (Kelln et 

al., 2006) and reclaimed slope landforms are largely considered water storage features in 

the reconstructed landscape. Furthermore, the importance and magnitude of snowmelt 

period recharge to constructed aquifers remains unclear. Kelln et al. (2009) observed a 

time-lag of approximately one month between the completion of snowmelt and the onset 

of interflow on a reclaimed slope. However, a rapid response in reclamation soil cover 

volumetric water content (VWC) to snowmelt water has also been documented (Meier 

and Barbour, 2002) and snowmelt recharge can be considered an important source of 

water for sustained plant growth throughout the summer period (Carey, 2008). In natural 

settings in the WBP, the partitioning of snowmelt water between infiltration and runoff is 

a complex process owing to several dynamic controls, such as the timing of snow cover 

and rate of snowmelt (Ireson et al., 2015). However, during the snowmelt period in 

constructed landscapes, the majority of water stored within the snowpack on reclaimed 

slopes is conveyed downslope as surface runoff (Kelln et al., 2009). Thus, low-lying 

landforms within constructed landscapes could receive large influxes of water from 

adjacent reclaimed slopes during the spring freshet. Despite these observations, there has 

yet to be a comprehensive assessment of the snow distribution and snowmelt period 

hydrology in constructed systems and, thus, little is known about snowmelt dynamics in 

reclaimed landscapes. 

In reclaimed landscapes, soil characteristics and vegetation cover evolve with 

time since the completion of reclamation. The accumulation and ablation of the 

snowpack could be influenced by the presence (or absence) and structure of a vegetation 

cover (Pomeroy et al., 1998a; Storck et al., 2002; Pomeroy et al., 2006; Boon, 2009; 

2011; Ketcheson et al., 2012), as well as surface topography within the reclaimed 

landscape (Carey and Woo, 1999; Redding and Devito, 2011). Considering the 

importance of water availability in the planning and design of reclaimed mine closure 

landscapes in the sub-humid climate of the WBP, it is critical to quantify the partitioning 

of snowmelt water between surface runoff, soil water storage and groundwater recharge 

in constructed landscapes during the snowmelt period. The current deficiency of 

information on these processes in reclaimed landscapes must be addressed. As such, the 
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goal of this study is to quantify the distribution, ablation and fate of snowmelt waters 

within constructed ecosystems to assess the importance and role of spring snowmelt on 

the hydrology of constructed watersheds. Specifically, this research aims to identify the 

controls on snow distribution and ablation and to quantify the partitioning of snowmelt 

water (to surface runoff, soil storage and/or groundwater recharge) within a constructed 

watershed comprising a valley-bottom wetland and a variety of upland reclamation slopes 

of different age and character. 

3.2 Study site 

This study was conducted in a constructed watershed (the Nikanotee Fen 

watershed) within the Millennium mine lease at Suncor Energy Inc. oil sands mining 

operations approximately 40 km north of Fort McMurray, Alberta (56°55.944'N 

111°25.035'W; average watershed elevation ~288 masl; Figure 3-1). In the constructed 

system, fen peat from newly developed lease areas was placed at the toe of an upland 

aquifer (~3% grade towards the fen) designed to supply the requisite groundwater flow to 

sustain fen processes and functions. The numerical modelling and final watershed design 

are described in detail by Price et al. (2010) and Daly et al. (2012). The designed fen (2.9 

ha) and upland (7.7 ha) system is situated within a larger watershed (total watershed area 

= 32.1 ha) that includes three previously reclaimed (hence also constructed) slopes of 

varying age and a natural remnant slope (Figure 3-1). Thus, the upland-fen system is 

positioned within a gently sloping valley bottom surrounded by the relatively steep 

reclaimed slopes. The east slope (8.1 ha) was reclaimed in 2007 (soils placed) and has a 

well-established vegetation cover (vegetated in 2008) relative to the southeast (8.2 ha) 

and west (2.4 ha) slopes, which were both reclaimed in 2011 (soils placed) and vegetated 

in 2012. Planting on the slopes was guided by the Cumulative Environmental 

Management Association (CEMA) Revegetation Manual (Alberta Environment, 2010). 

Dominant tree species included white spruce (Picea glauca), aspen (Populus 

tremuloides), white birch (Betula papyrifera), green alder (Alnus viridis), and planting 

schemes also included an assortment of shrubs (e.g., Saskatoon berry (Amelanchier 

alnifolia), pincherry (Prunus pensylvanica) and chokecherry (Prunus virginiana)). The 
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average height of the vegetation canopy on the east slope was ~1.5 m (range = 0.3 to > 

4.0 m height), while it was only 0.8 (range = 0.2 to 1.4 m height) on the west and 

southeast slopes. The fen and upland landforms had no vegetation at the time of this 

study. The stratigraphy of the reclaimed slopes comprises a ~40 - 50 cm thick 

‘peat/mineral mix’ cover soil underlain by a ~100 cm secondary capping layer (low sodic 

soil) above reclaimed Clearwater overburden substrate. The south slope (2.8 ha) is a 

natural remnant of the pre-mining landscape and, hence is composed of natural soils 

characteristic of the WBP. The snow dynamics on this slope are not explicitly addressed 

in this study; however, no water contributions from this slope were observed.  

 
Figure 3-1 - Map of the Nikanotee Fen watershed, design of snow survey 

transects and location of slope flumes and respective sub-watersheds. 
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3.3 Methods 

3.3.1 Field methods 

Field measurements made during March/April 2013 included snow surveys 

(conducted approximately every second day) along transects through three previously 

reclaimed slopes (the east, south-east and west slopes) and the constructed upland-fen 

system (Figure 3-1). Depth measurements were made approximately every 10 m and 

multiplied by density measurements (collected every 30 m using a standard 

Meteorological Service of Canada snow tube sampler) to calculate snow water equivalent 

(SWE). Frost table (i.e., depth to frozen ground) measurements were recorded using an 

incremented metal rod every 30 m along the same snow survey transects once the 

snowpack thinned enough to facilitate this measurement. Daily ablation was estimated by 

measuring the lowering of the snow surface across several ablation lines (each ~10 m 

long; measurements made every 50 cm) and multiplying the surface lowering rate by the 

average snowpack density (measured with the snow tube sampler) within each reclaimed 

slope and the upland-fen system (c.f. Woo and Heron, 1987). Snow pits were completed 

near each ablation line (where possible) to quantify snowpack structure and density using 

standard methods (Adams and Barr, 1974) and to characterize within-pack variability and 

verify measurements made with the snow tube sampler. Over-winter dust accumulation 

rates were estimated from 65 full-depth snow samples taken at locations throughout the 

watershed. These snow samples were transported back to the laboratory where they were 

melted, filtered and the sediments dried in an oven (80°C). Over-winter accumulation 

rates were estimated by expressing the total mass of dust (g) in each sample normalized 

for the sample surface area.  

A meteorological station was deployed on both the west and east slopes in the 

summer of 2012 for measurement of net radiation (NR-LITE2 net radiometer; 2.5 m 

height), ground heat flux (REBS HFT-3; 0.01 m depth) wind speed and direction (R.M. 

Young Wind Monitor; 2.75 m height), relative humidity and air temperature (Hobo U23 

Pro v2 dataloggers; 1.0 and 2.3 m heights) and continuous soil moisture (VWC) and 

ground temperature measurements (Campbell Scientific CS 650 probe arrays). VWC 

probes were installed into the peat/mineral reclamation surface soil layer (~50 cm thick) 
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at depths of 2.5, 10 and 32.5 cm, as well as within the underlying secondary capping 

material at depths of 75 and 60 cm on the east and west slopes, respectively. Two discrete 

probe arrays were installed on each slope, with ~20 m downslope separation (2 m 

elevation difference) between arrays. However, due to equipment malfunction of the 

downslope probe array on the east slope, there are only data for both probe array 

locations on the west slope. An additional meteorological station, installed on the east 

slope in the fall of 2013 as a part of Suncor’s reclamation weather monitoring program, 

included a logging snow depth sensor (Campbell Scientific SR50A Sonic Ranging 

Sensor; 2.7 m height). Snow depth data from this station during the 2014 snowmelt 

period are included in this study to demonstrate the timing of the snowmelt period in 

2014 when field-based measurements were not available.  

Soil samples were extracted carefully to minimize disturbance and transported 

back to the laboratory where independent VWC calibration curve functions were derived 

for each the east and west slope soils following standard procedures (e.g., Jacobsen and 

Schjønning, 1993). Seven wells and three piezometers were installed in the latter portion 

of the melt period in the upland-fen system to facilitate water sampling from the 

constructed aquifers for water chemistry analyses as outlined below. Wells in the upland 

were installed to a targeted depth of ~2.75 m below ground surface (bgs) using a Stihl 

BT121 power auger. Stainless steel drive-point piezometers (Solinst Canada Ltd. model 

615) were installed in the upland and the transition (near-fen) zone of the upland using a 

Pionjar 120 percussion rock hammer (screen centered at either 2.25 or 2.75 m bgs). The 

steel drive pipe that extended the piezometer screen to the surface was lined with low-

density polyethylene (LDPE) tubing (1.2 cm I.D.) attached directly to the piezometer 

screen. All measurements were made within, and water samples extracted from, the 

LDPE tube. Installation of wells and piezometers did not begin until most of the snow in 

the watershed had melted (hence melt had nearly finished), and installation progressed 

very slowly thereafter due to the presence of ground frost. Accordingly, the use of these 

wells and piezometers is limited to collecting samples for water chemistry and not melt-

period water table dynamics, since the first measurement was made long after snowmelt 

was initiated.  
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Surface runoff collectors and bucket weirs were installed near the toe of the east, 

southeast and west slopes to characterize surface runoff from each landform (positioned 

at the outlet of each of the sub-watersheds in Figure 3-1). These flow collectors, herein 

referred to as ‘flumes’ were constructed from plastic resin landscape edging set and 

sealed (with hydraulic cement) approximately 5-10 cm into the ground that directed flow 

through a trough and into a bucket containing a v-notch and a logging pressure transducer 

(Schlumberger Mini-Diver). Manual measurements of discharge (made once or twice 

daily when flow was present) were used to develop independent rating curves for each 

flume. A YSI Model 63 handheld probe was used to periodically measure the electrical 

conductivity (EC) of the water flowing through the slope flumes. Water was also sampled 

from the flumes for laboratory analysis of major ions and oxygen (δ18O) and hydrogen 

(δD) isotopes (see laboratory analyses details below). Rainwater samples were also 

collected at least monthly from May to September 2013 and 2014 (as a part of an ongoing 

research program) using a rain gauge specially designed for isotopic sampling of 

precipitation (constructed following the design developed by the International Atomic 

Energy Agency - Global Network of Isotopes in Precipitation; IAEA/GNIP). This 

information, along with the snow samples from this study, allowed for determination of a 

local meteoric water line (LMWL). A heated flume and spillbox were installed at the 

discharge point of the fen to quantify runoff from the entire catchment. Detailed 

topographic surveys on the reclaimed slopes using a Topcon (Tokyo, Japan) HiPER GL 

RTK GPS system permitted delineation of the sub-catchment gross drainage area for each 

of the slope flumes.  

3.3.2 Data and laboratory analysis 

Vegetation and topographical controls on snow accumulation were assessed 

graphically with notched boxplots of peak snow depth for each of the reclaimed slopes as 

well as for lower, mid and upper slope positions. Common slope positions for each slope 

were grouped together for the topographic analyses. Notched boxplots provide an 

approximate 95% test of the null hypothesis that the two medians are equal, where 

notches between boxes that overlap suggest that the medians are not statistically different 

at p = 0.05 (Chambers et al., 1983). Digital elevation models were derived from the 
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topographic survey data using SAGA (System for Automated Geoscientific Analysis) 

GIS (Olaya and Conrad, 2009) and an inverse distance weighted interpolation module for 

contour generation. Catchment boundaries were manually delineated based on the 

topographic contours within the SAGA environment. 

Water samples from the field were filtered within 24 hours using 0.45 µm 

nitrocellulose membrane filters and stored in tightly sealed 10 mL scintillation vials with 

no head space at 4°C for isotope analyses or frozen in 60 mL high density polyethylene 

bottles for major ion analyses. All laboratory analyses were completed at the Biotron 

Experimental Climate Change Research Centre at Western University. Isotopic analyses 

for δ18O and δD were performed using a Picarro L2120-i Cavity Ring-Down 

Spectroscopy analyzer. This technique yields an analytical precision of ±0.5‰ for δD 

and ±0.1‰ for δ18O. Major ion analyses (fluoride, chloride, nitrite, bromide, nitrate, 

phosphate, sulfate, lithium, sodium, ammonium, potassium, magnesium, calcium) were 

completed using a Dionex ICS-1600 Ion Chromatograph.  

3.4 Results 

3.4.1 Regional snow accumulation trends 

Canadian climate normals (1981 – 2010) for Fort McMurray indicate that the 

snow depth at the start of March is typically close to 29 cm. Based on an assumed snow 

density the same as measured in the current study (0.23 g cm-3; n = 125), this represents 

an early-March SWE of approximately 67 mm. Basin-averaged SWE in the current study 

(fen excluded due to the over-winter construction of the system; see explanation below) 

was 106 mm, which indicates that 2013 was a high snowpack year (161% of the climate 

normal). However, the Environment Canada snow data become sparse in 1999 (2003 is 

the only year with snowpack data between 2000 – 2013), and thus may not be 

representative of more recent regional snow accumulation patterns. Information on over-

winter snow accumulation at different locations (n = 16-33 locations, depending on the 

year) throughout the AOSR collected as a part of the Regional Aquatics Monitoring 

Program (RAMP) between 1997 - 2013 indicates mid-March SWE between 39 and 122 
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mm, with an average of 76 mm (RAMP, 2014). Similarly, the average SWE of the annual 

snowpack at the nearby Syncrude Canada Ltd. Mildred Lake mine site has been reported 

as about 80 mm (Kelln et al., 2008). Furthermore, the Utikuma Region Study Area 

(URSA) is located approximately 250 km southwest of Fort McMurray and has a climate 

with similar precipitation patterns and magnitudes to those in Fort McMurray (Devito et 

al., 2012). The average annual maximum SWE measured at URSA (2000 – 2011) is 91 

mm, with a maximum of 174 mm (Devito, unpublished data). Since 2005 there have been 

five years with a peak SWE within the RAMP and URSA datasets that exceeds the SWE 

reported in the current study of 106 mm (Figure 3-2). Accordingly, 2013 can be 

considered a high snow year, but does not represent an outlier year with an atypically 

high snow accumulation.    

A second year of field-based data collection in 2014 was not possible due to a 

large mid-winter melt period (early January 2014; snowpack depth reduced from 37 to 27 

cm) followed by an atypically early and rapid spring snowmelt period (early March 

2014). Automated snow depth measurements revealed a reduction in snowpack depth 

from ~25 cm to ~1 cm over a one week period starting 10-March-2014 (Figure 3-3). 

During this period, the average daily air temperature was greater than 0°C, with daily 

maximum temperatures in excess of 10°C on three separate days during the same time 

period. In contrast, snowmelt was initiated more than two weeks later in 2013 (~26-

March) when daily average air temperature exceeded 0°C. 
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Figure 3-2 - Regional historic SWE data. Environment Canada (ENV CAN) data 

based on snowpack depth at the start of March (converted to SWE based on the snow 
density measured in the current study). RAMP data is an average of snow surveys 
conducted at 16 – 33 regional locations in mid-March each year. URSA data represents 
the maximum SWE observed during mid-winter snow surveys (Devito, personal 
communication). 

 

 
Figure 3-3 - Average daily air temperature and catchment snow depth during the 

snowmelt periods in 2013 and 2014. 2013 snow depths are daily median values based on 
manual snow surveys, while 2014 snow depths are daily average values based on the 
automated snow depth sensor measurements. Horizontal axis represents 0°C. 
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3.4.2 Snow distribution and ablation 

The watershed average peak snow depth (23-March-13) was 43 cm and ranged 

from 10 – 86 cm (standard deviation = 15 cm; n = 246). A fairly uniform snow cover was 

observed throughout the different landscape components that comprise the constructed 

watershed, regardless of the stage of vegetation development; established (east slope; 

average vegetation height = ~1.5 m), sparse (west and southeast slopes; average 

vegetation height = ~0.8 m) or nonexistent (upland; not vegetated) (Figure 3-4). The 

constructed upland, situated within the gently sloping valley bottom and surrounded by 

reclaimed slopes (Figure 3-1), had the deepest average snow pack, whereas the snowpack 

was shallowest on the fen. The shallow snowpack on the fen was an artifact of the 

construction of the system, as peat was being placed in the fen (i.e., fen construction was 

ongoing) throughout the first half of the winter of 2013. Accordingly, the snow depth 

observed in March only represents snow accumulation during approximately half of the 

winter season. The shallowest snowpack (fen excluded) was observed on the west slope, 

which was the smallest and steepest slope. The trend for peak SWE was similar to snow 

depth (Figure 3-4) and differences in SWE between landscape components of comparable 

snow depths were attributed to slight differences in snowpack density (Table 3-1). Due to 

differing number of measurement points in each landform, it is most representative to 

derive an aerially weighted estimate of the watershed SWE based on the summation of the 

SWE in each individual landform multiplied by the proportional area of the watershed 

that each landform comprises. This approach yielded an estimated watershed peak SWE 

of 106 mm (fen excluded).  

Landscape components were grouped together to investigate the influence of 

topography (slope position) on snow accumulation patterns using the measurements of 

peak snow depth. Snow depth was greatest at the lowest slope position (i.e., near the toe 

of the slope) and became progressively shallower towards the upper (i.e., crest) slope 

positions (Figure 3-5). The notches of the lower and upper slope positions do not overlap, 

which suggests that their medians are statistically different at p = 0.05 (Chambers et al., 

1983). Consequently, slope position was the strongest control on snow distribution within 

the constructed watershed. Greater spread across the median of the notched boxplots at 
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lower slope positions indicates more variability in snowpack depth compared to farther 

upslope.  

 
Figure 3-4 – Notched boxplots of peak snow depth (top) and SWE (bottom) in the 

individual landforms within the constructed watershed (23-March-13). In this plot, the 
lower and upper limits of the box represent the first and third quartiles (25th and 75th 
percentiles), respectively, with the maximum and minimum values denoted by the ends of 
the vertical lines. The line inside the box is the median and outliers, defined as data points 
exceeding 1.5 times the interquartile range, appear as points. The notches approximate a 
95% confidence interval for the median (Krzywinski and Altman, 2014). 
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Figure 3-5 - Notched boxplots of peak snow depth with slope position for the 

reclaimed slopes. 

 

Initiation of snowmelt throughout the watershed between 26-March and 27-March 

coincided with an isothermal 0°C snowpack, as indicated by snow pit measurements (not 

shown) and reflected in the SWE depletion curves (Figure 3-6). The highest average daily 

ablation rates were observed on the vegetated east slope (14 mm SWE d-1), which resulted 

in a melt period that was several days shorter as compared to the other landscape types 

(Table 3-1) and contributed to the steeper SWE depletion curve slope early in the 

snowmelt period. During this early snowmelt period, peak net radiation was consistently 

higher on the east slope than the west slope, with a cumulative net radiation flux 20 MJ 

m-2 higher on the vegetated east slope than on the sparsely vegetated west slope by the 

end of the melt period (8-April; Figure 3-7). Consequently, the ablation rates on the west 

slope were lowest (average = 8 mm SWE d-1) and were the last to peak on 4-April. 

Substantial dust layering was present within the snowpack, often corresponding with 

layers of ice. Over-winter total dust accumulation rates of 6 – 230 g dust m-2 (average 48 

g m-2; n = 65) were observed.   
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Table 3-1 - Landscape properties and melt period characteristics. Snow depth, 
density and SWE represent average values measured at peak snow depth (23-March-13), 
unless otherwise indicated. n represents the number of snow depth measurement 
locations. Note that density and SWE measurements were conducted at every other 
measurement of snow depth. Thus, n for snow density and SWE is approximately half of 
the number of snow depth measurement locations. 

 

 

 

 
Figure 3-6 -	 SWE depletion curves for each landscape type in the constructed 

watershed during the melt period in 2013. 

Landscape Size 
(ha) Aspect Grade 

(%) 
Snow Depth (cm) Snow 

Density    
(g cm-3) 

SWE 
(mm) 

Average 
melt rate 
(mm SWE 

day-1) 

>75% 
snow-
free 

Duration 
of melt 
period 
(days) Average Max n 

East Slope 
(vegetated) 8.1 West 13% 48 68 50 0.23 109 14 4-April 10 

Southeast 
Slope 8.2 West-

northwest 13% 48 86 33 0.25 120 11 9-April 15 

West 
Slope 2.4 East 19% 40 75 42 0.21 85 8 8-April 14 

Upland 7.7 NA 3% 50 81 82 0.22 114 10 12-April 18 

Fen 2.7 NA 0% 20 40 39 0.24 49 NA 31-March 6 
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Figure 3-7 - Daily (top graph) and cumulative (bottom graph) net radiation fluxes 

on the east and west slopes. 

 

3.4.3 Soil moisture and runoff from reclaimed slopes 

A time lag of one and two days between the onset of snowmelt on ~27-March and 

the response in near-surface (2.5 cm depth) soil moisture was observed on the east and 

west slopes, respectively (Figure 3-8). Following this lag, the shallow VWC on the east 

slope responded strongly to diurnal fluctuations in snow ablation during the early melt 
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period, followed by a notable, albeit muted, diurnal response in VWC deeper in the soil 

profile. Some melt water percolated downwards and recharged deeper soil layers on the 

east slope as snowmelt progressed, with VWC increasing by approximately 10% at 32.5 

cm depth over the melt period (Figure 3-8). On the west slope, following an initial gentle 

increase in near-surface (2.5 cm) VWC from 15 to 20% in the early melt period, a strong 

diurnal response in the shallow VWC was observed later in the melt period. However, this 

response to snow melt did not propagate as strongly into the deeper soil layers on the 

west slope as it did on the east slope, with an increase in VWC at 32.5 cm depth of only 

~2% (Figure 3-8). Peak soil moisture occurred two and five days prior to the 

disappearance of the snowpack (considered to be true when the landscape is > 75% snow-

free) on the east and west slopes, respectively. Only very subtle responses of < 2% VWC 

were observed in the top of the secondary capping material at depth on both slopes.  

Soils on the reclaimed slopes remained frozen during the early melt period when 

they were covered by snow. Accordingly, a shallow ground frost layer was observed 

within the upper ~0-5 cm of the soil surface (average = 1.5 cm). The near-surface soil 

temperatures became more strongly influenced by air temperature on both the east and 

west slopes as the snowpack thinned during the melt period (Figure 3-9). This thermal 

phenomenon propagated downwards into the deeper soil layers towards the end of the 

melt period. Nonetheless, the presence of ground frost in the near-surface soil constrained 

percolation of snowmelt water into the ice-rich mineral soils during most of the melt 

period (until after the slopes were effectively snow-free). Consequently, substantial 

surface runoff was observed from all reclaimed slopes (Figure 3-10). The surface runoff 

flumes were installed after snowmelt had begun and surface runoff had been observed. 

Thus, the runoff measurements only represent a portion of the melt period (Table 3-2). 

However, snow surveys were conducted within the catchment of each flume to facilitate 

estimation of runoff ratios (the ratio of runoff to SWE) for each slope. High runoff ratios 

suggest limited storage of meltwater in reclaimed slopes (Table 3-2). Snowmelt runoff 

peaked in early April, with strong diurnal trends in flow caused by overnight re-freezing 

of the snowpack and cessation of runoff. Rills and diffuse sheetflow were the dominant 

modes of surface flow on the reclaimed slopes. Surface erosion was constrained on the 
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east slope by a well-established vegetation community relative to the recently placed 

southeast and west slopes. Thus, sheetflow dominated water fluxes on the east slope 

while soils on the southeast and west slope were rapidly eroded and the majority of 

meltwater was conveyed downslope through rills and gullies. Consequently, the high 

flow rates observed (up to ~2000 ml s-1) transported large amounts of sediment 

downslope, much of which was eventually deposited on the surface of the fen (field 

observation). Although not directly measured, it is likely that the natural slope at the 

south end of the system yielded little, if any, lateral flow during the study period (none 

observed). In the upland, measurements taken after the watershed was snow-free (mid-

April) indicated that the water table remained approximately 1 to 2 m below the ground 

surface, with the highest water table levels (i.e., nearest to the surface) in the near-fen 

(transition) zone of the upland (data not shown).  

 
Figure 3-8 - Volumetric water content profiles during the snowmelt period for the 

east (top) and west (bottom) slopes. 
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Figure 3-9 - Half hourly measurements of ground temperature (2.5 cm depth) 

versus air temperature with varying snow cover depths during the melt period. The snow 
depth range that each different symbol represents is expressed in the legend, with the 
coefficient of determination of the relationship between ground and air temperature for 
each depth range expressed in parentheses. 

 
Figure 3-10 - Discharge hydrographs for the reclaimed slopes (upper three 

graphs) and average electrical conductivity (EC) of the slope runoff water (each point 
represents an average of the EC measured in the flumes that had flow at the time of 
measurement). 
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Table 3-2 - Slope flume details and runoff measurement. SWE represents the 
average slope SWE on date of flume installation. 

 

In addition to conveying large amounts of sediment and water to low-lying 

landforms within the constructed watershed, the reclaimed slopes also transported 

substantial amounts of dissolved constituents downslope during the snowmelt period, as 

indicated by elevated EC values in flume runoff water (Figure 3-10) relative to the EC of 

snow (average snow EC = 87 µS cm-1; n = 83). Surface runoff from the east slope 

demonstrated the maximum measured EC during the melt period of 3970 µS cm-1 (4-

April), with an average EC of all reclaimed slope runoff during the snowmelt period of 

1529 µS cm-1 (n = 32). EC from the west slope (average of 478 µS cm-1; n = 8) was 

consistently lower than the east and southeast (average of 1879 µS cm-1; n = 24) slopes. 

Laboratory analyses of water samples from reclaimed slope runoff for ion composition (n 

= 7) revealed a predominance of several major ions: sulfate (average = 604.3 mg l-1), 

potassium (average = 10.9 mg l-1), chloride (average = 3.8 mg l-1), sodium (average = 

61.9 mg l-1) and nitrate (0.62 mg l-1). All ions were comparably low in snow samples (n = 

7), with only detectable concentrations of chloride (0.6 mg l-1), nitrate (0.4 mg l-1) and 

sulfate (1.3 mg l-1). 

Isotopic analysis of water sampled during the snowmelt period indicated that 

snow had a distinctly depleted signature (Figure 3-11). Conversely, water sampled from 

wells installed within the upland tailing sand aquifer immediately following the snowmelt 

period (sampled between 13-April to 17-April) had an enriched signature. The reclaimed 

slope runoff flumes and standing water ponded on the surface of the fen had an isotopic 

signature that was slightly enriched relative to the snow. The LMWL determined in this 

Slope 
(date of install) 

Catchment size 
(ha) Runoff (mm) SWE (mm) Runoff Ratio 

East 
(31-March) 1.1 19 27 0.7 

Southeast 
(2-April) 1.2 35 39 0.9 

West  
(3-April) 0.2 17 23 0.7 

 1 



 

 
 

45 

study was similar to that of Baer (2014), which was determined for a study site ~20 km 

northwest of the Nikanotee Fen.  

3.5 Discussion 

Vegetation canopies typically play a significant role in snow hydrology due to 

their impact on snow accumulation patterns (Pomeroy et al., 1998a; Storck et al., 2002; 

Buttle et al., 2005; Pomeroy et al., 2006; Boon, 2011) and snow ablation rates (Pomeroy 

and Granger, 1997; Boon, 2009; Ketcheson et al., 2012).  Accordingly, it is important to 

understand the effect of the presence and development of vegetation covers on snow 

dynamics in constructed ecosystems, where vegetation could be selected to optimize 

different functions on a landform. In the current study, similar snow depths were 

observed throughout landscape components with contrasting vegetation covers. This 

indicates that vegetation was not a dominant control on snow distribution, likely due to 

the immature vegetation stands relative to those in a natural ecosystem. Instead, surface 

topography was the dominant control. Although fairly uniform snow distributions have 

been observed across reclaimed slopes (Kelln et al., 2008), substantial differences in 

snowpack depth were observed between upper/crest (deepest, greatest variability) and 

lower/toe (thinner snow pack) slope positions in this study. A graphical assessment of the 

notched boxplots of snow depth with slope position (Figure 3-5) suggests statistical 

differences (p = 0.05; Chambers et al., 1983) between the median snowpack depth at 

lower and upper slope positions. These differences were likely driven by enhanced wind 

erosion of the snowpack near the crest of the slopes where wind speeds are accelerated 

due to the vertical constriction of air flow paths over moderate topographical features 

(Oke, 1987). Higher wind speeds can also cause sublimation of wind-blown snow 

particles, which contributes to reduced snowpack depths (Pomeroy and Essery, 1999; 

Liston and Sturm, 2002). 
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Figure 3-11 - Isotopic signatures of various water samples from the snowmelt 

period. Groundwater (GW) samples extracted from the fen during the summer of 2013 
are also included to supplement the small sample size (n = 2) of groundwater samples 
from the fen during the snowmelt period (constraints due to well installation during the 
snowmelt period). The solid line represents the local meteoric water line. 

 

Although vegetation was not observed to influence snow accumulation, it did 

exhibit an appreciable effect on the snow ablation rate, whereby the earliest and most 

rapid progression of snowmelt occurred on the vegetated slope. During snowmelt, shrub 

branches can decrease the reflectance of shortwave radiation and enhance snowmelt rates 

relative to more sparsely vegetated areas (Pomeroy et al., 2006). This effect was evident 

in the net radiation data, which were consistently higher on the east slope than on the 

west slope in the early snowmelt period (Figure 3-7) as a consequence of the increased 

absorption of shortwave radiation by vegetation emerging from the snowpack. The effect 

of the increased shortwave radiation has been shown to overwhelm the increased 

outgoing longwave radiation from the relatively warm vegetation, generally resulting in 

higher melt rates in the presence of shrubs (Pomeroy et al., 2006). Accordingly, the steep 
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slope of the SWE depletion curve in the early melt period observed on the vegetated east 

slope can be attributed to the presence of vegetation branches and stems during the 

snowmelt period. The similar slopes of the SWE depletion curves for vegetated and non-

vegetated landscapes from ~31-March onwards (Figure 3-6) indicate that this vegetative 

influence on ablation was minimized in the latter portions of the melt period when 

atmospheric conditions began to dominate. This is also supported by the similar net 

radiation measured on the east and west slopes during the late melt period (Figure 3-7).  

Slope aspect is not explicitly considered in this study; hence, it cannot be 

completely ruled out as a contributing factor in the rates and timing of snow ablation 

observed on the reclaimed slopes. Although sharp contrasts exist on north and south-

facing slopes (e.g., Carey and Woo, 1998; Carey and Woo, 1999; Redding and Devito, 

2011), similar snowmelt timing has been observed on slopes with eastern and western 

aspects (Carey and Woo, 2001). The aspect of the reclaimed slopes in the current study 

are west, west-northwest and east, which are unlikely to result in discernable differences 

in snowmelt dynamics between slopes as a consequence of aspect. Further, the vegetated 

east slope demonstrated a higher ablation rate and an earlier melt than the portion of the 

southeast slope that is directly adjacent to, and has a similar aspect (west-facing) as, the 

east slope. Thus, the influence of slope aspect on snowmelt was likely minimal between 

the reclaimed slopes in this study.  

The emergence of dust layers within the snowpack also appeared to influence 

snow ablation rates. The presence of dust in layers within the snowpack is a reflection of 

the dust deposition between snowfall events over the winter. This dust likely originated 

from a road associated with mining operations located within close proximity to the 

watershed. However, the presence and extent of these dust layers during the melt period 

were not anticipated and confounded the planned approach for quantification of the snow 

surface energy budget. Nonetheless, visual field observations indicated a two-stage effect 

of the presence of dust on the observed ablation rate: 1) increased ablation rate initially 

upon emergence of some dust at the surface of the snow, which transitioned eventually 

to; 2) decreased ablation caused by insulation of a thick dust and ice layer. More research 

is required to suitably address and quantify the impact of dust layer development on the 
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snow surface energy budget in environments where over-winter accumulation of dust is 

substantial. 

Although deposition of aerial particulates within the snowpack has been observed 

in the AOSR (e.g., Kelly et al., 2009; Kelly et al., 2010), the concentration of ions 

measured within the snowpack in the Nikanotee Fen watershed were much lower than 

those measured in the water discharging through the slope runoff flumes. Salts can 

migrate into, and accumulate within, reclamation soil covers by diffusion from the 

underlying overburden material (Kessler et al., 2010). Kessler et al. (2010) found that 

sulfate and sodium were the dominant anion and cation, respectively, within a 

reclamation soil cover layer. Similarly, sulfate and sodium represented the highest two 

ion concentrations measured in the snowmelt runoff through the flumes in the current 

study, with average concentrations of 604.3 and 61.9 mg l-1, respectively. Comparatively, 

snow samples had concentrations of only 1.3 and 0.6 mg l-1 for sulfate and sodium, 

respectively. The higher concentrations measured in the water flowing through the flumes 

suggests that snowmelt water accumulated dissolved constituents along the flowpath near 

the surface of the reclaimed slopes. Thus, the spring freshet could represent both a 

flushing mechanism for reclaimed soil covers as well as an important time to monitor the 

water quality of downstream landforms and ecosystems, considering the large quantity of 

water that these slopes can produce. However, the concentrations reported here are much 

lower than sulfate and sodium concentrations measured in interflow from reclaimed 

slopes during the summer months, which can exceed 3000 mg l-1 (Kelln et al., 2007) and 

1000 mg l-1 (Kelln et al., 2008), respectively. 

Many reclaimed ecosystems in the AOSR have been constructed within the past 

decade and comprise individual vegetation stands of varying maturity, as well as bare 

(unvegetated) landforms. Accordingly, the manner in which vegetation influences snow 

accumulation and ablation is expected to evolve over time as vegetation communities 

mature into forestlands. For example, as a consequence of the high ablation rate caused 

by the presence of vegetation, the east slope became effectively snow-free four days 

before any other slope (Table 3-1). Thus, over the first several years following 

reclamation, the snowmelt period could tend to occur earlier in the season than it 
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otherwise would, based on the control of weather patterns, as the vegetation cover 

becomes better established and contributes to enhanced ablation rates during the early 

snowmelt period. This process is comparable to the evolution of snow dynamics observed 

during the hydrologic recovery of harvested forest sites (the return of the hydrologic 

characteristics to preharvest conditions), where snow ablation rates were the highest in 

stands undergoing initial regeneration after harvest (Buttle et al., 2005). The snow 

surface energy budget and ablation rates will continue to evolve as vegetation stands 

mature, since incoming radiation will be reduced as the vegetation canopy develops. For 

example, peak solar irradiance measured above a tree canopy can be more than twice that 

received below the canopy (Hardy et al., 1997). Furthermore, branches in the canopy 

absorb shortwave radiation and contribute to decreased net radiation at the snow surface 

in spite of the irradiance of long wave radiation from the branches (Pomeroy and Dion, 

1996). This increased attenuation of shortwave and enhanced long wave emission as tree 

canopies develop have offsetting effects (Sicart et al., 2004), although the effect of the 

reduction in shortwave radiation at the snow surface generally dominates and results in 

decreased snowmelt rates under canopies (Link and Marks, 1999). While no differences 

in snow accumulation were observed between vegetated and unvegetated landforms in 

the current study, snow accumulation can be greater in the presence of shrubs than in 

sparsely vegetated areas in a shrub tundra setting (Pomeroy et al., 2006). In contrast, 

snow accumulation in areas beneath tree canopies in forests is typically much less than 

forest clearings (Hardy et al., 1997; Storck et al., 2002; Buttle et al., 2005) and 

sublimation of snow intercepted by the canopy of mature tree stands can represent a 

significant loss of water from forests (Pomeroy et al., 1998b; Gelfan et al., 2004).  

The findings of the current study represent a point in time along an evolving 

vegetation system. Reclaimed landscapes are, however, composed of a mosaic of 

landforms with differing construction and revegetation timeframes. The current study 

presents findings from reclaimed landforms that range from five years following 

revegetation to landforms that had yet to be revegetated. Thus, the vegetation cover 

maturity ranges from well-established to nonexistent. This only represents a portion of 

the wide range of vegetation covers present in reclaimed landscapes. So, although the 
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findings of the current study will be applicable somewhere in the post-mining landscape 

for the foreseeable future, additional research is required in more mature reclaimed 

vegetation stands to better understand the long-term snow dynamics within these 

constructed landscapes. Based on research in natural ecosystems with contrasting 

vegetation covers outlined above, large shifts in snow dynamics can be expected as 

reclaimed vegetation stands mature in these constructed ecosystems. This represents an 

emerging and important aspect of oil sands reclamation research that requires 

consideration in the development of mine closure design plans. While the findings of this 

study are directly relevant to, and applicable in, recently reclaimed landscapes in the 

AOSR, they could also have applicability in other reclaimed / post-mining landscapes 

that have similar characteristics to the reclaimed watershed presented in this study (e.g., 

immature vegetation communities, highly disturbed sloping soil covers) that are located 

within a regional climate that receives snow. 

Since reclamation soil covers are designed to promote water storage, they are 

generally a combination of organic peat and mineral soils (termed ‘peat/mineral mix’) 

obtained by over-stripping of natural peat deposits on glacial soils (Meiers et al., 2006). 

These soil covers typically exhibit strong soil-water retention characteristics (Shurniak 

and Barbour, 2002) that are influenced by the proportion of clay, sand and organic matter 

(Leatherdale et al., 2012). Greater water retention at freeze-up results in more ground ice 

that can cause delayed ground thaw in the spring (Carey and Woo, 1998), although 

natural landscapes in the WBP often have low soil water content prior to freezing (Devito 

et al., 2005b). In the current study, the insulating nature of the overlying snowpack 

delayed the ground frost thaw until after the majority of the snowpack had melted (Figure 

3-9). It is noteworthy, however, that the fall of 2012 was very wet. The total precipitation 

received during September and October 2012 at the constructed system was 164 mm, 

which is 98 mm more than the long-term climate normal of 66 mm for the same months 

(Environment Canada, 2011). This could have contributed to the extent of the ground 

frost and the minimal infiltration into the reclaimed slopes, since the wet conditions in the 

fall of 2012 would have resulted in ice-rich soils that have lower infiltration rates than 

drier frozen soils (Kane and Stein, 1983). Although VWC measurements indicated that a 
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portion of snowmelt water did percolate into the soils on the reclaimed slopes, this was 

largely constrained by the presence of shallow ground frost during the time when most of 

the snowpack melted and likely only comprised a small amount of the total snowpack 

SWE. Thus, most of the snowpack SWE was conveyed downslope as surface runoff. 

Similarly, Kelln et al. (2009) reported that the majority of SWE on reclaimed slopes 

ended up as surface runoff during the snowmelt period. Snowmelt infiltration water has 

been shown to bypass the near-surface soil matrix on reclaimed slopes (Kelln et al., 

2008), with snowmelt water rapidly percolating to the base of reclamation cover capping 

soil layers via preferential flow paths (Kelln et al., 2007). This mechanism of snowmelt 

infiltration would not be sufficiently represented by the VWC measurements in the 

current study. However, preferential flow paths were likely unimportant on the recently 

reclaimed west and southeast slopes (soils placed in 2011), since macropore development 

can take several years (Guebert and Gardner, 2001; Kelln et al., 2006) and these slopes 

are only sparsely vegetated. Infiltration of snowmelt water via preferential flow paths was 

likely more predominant on the older vegetated east slope (soils placed in 2007). 

Regardless, runoff ratios of < 1 (Table 3-2) indicate that some percolation of snowmelt 

water occurred on all reclaimed slopes in this study, in addition to water losses via 

sublimation.  

Topographic position on the reclaimed slope also demonstrated a dynamic control 

on soil water distribution; although, due to equipment failure, this could only be 

evaluated on the west slope. Responses in near-surface VWC observed at the two discrete 

probe arrays at slightly different slope positions (i.e., with ~20 m downslope separation 

(2 m elevation difference) between measurement locations) illustrated similar trends but 

distinct magnitudes in the mid-melt period. For example, measurements recorded in the 

lower slope location on the west slope responded strongly to daily melt patterns, with the 

upper few centimeters of soil nearly reaching saturation (Figure 3-8). In contrast, soils 

directly upslope of this position (~20 m towards the crest at ~2 m higher elevation) 

demonstrated subdued responses (data not shown). Similarly, Kelln et al. (2008) 

suggested that lower antecedent moisture conditions in upper/crest slope positions reduce 

the occurrence of saturated conditions during the snowmelt period. Although increased 
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soil moisture conditions have been observed in lower relative to upper slope positions 

(Kelln et al., 2008), this effect is often inconsistent (Leatherdale et al., 2012). The strong 

response observed in the downslope VWC coincided with the maximum melt rate 

measured on the west slope, which suggests that topography represents a stronger control 

on soil water dynamics at peak melt than later on in the melt period when similar patterns 

were observed at both slope positions.  

3.5.1 Fate of snowmelt water 

Frozen soils on the reclaimed slopes restricted the amount of snowmelt water that 

went into soil water storage. Estimates of recharge to soil water storage on the reclaimed 

slopes from VWC measurements are complicated by the freezing and thawing of the soils, 

since the CS-650 probes are only able to detect liquid water content. Thus, the melting of 

ice within pores caused an apparent increase in VWC, although this is in part an artifact of 

the increase in the proportion of the VWC that was unfrozen, not necessarily a change in 

the total VWC within the soil. This increase would also reflect water recharging the soils. 

However, the estimated runoff ratios of 0.7 for the east and west slopes and 0.9 for the 

southeast slope suggests that the slopes were each able to store between ~10 to 30% of 

the SWE (sublimation excluded). Although VWC measurements were not made on the 

constructed upland aquifer due to the timing of the construction of the system, the 

presence of shallow ground frost likely also constrained infiltration and recharge into this 

landform. Soon after the onset of melt, surface runoff from the reclaimed slopes and 

upland began to pond on the surface of the fen peatland, since this is the lowest lying 

landform within the constructed watershed. The crest-height for the discharge point for 

the watershed was initially set (i.e., during the construction phase) at a higher elevation 

than that of the surface of the fen, which prevented the fen from draining and resulted in 

ponded water ~30 cm deep on over 80% of the fen by 6-April (Figure 3-12). When the 

fen surface was flooded in early April, a localized recharge pipe developed through the 

frozen peat (likely by thermal erosion) that resulted in rapid percolation of ponded melt 

water into the unsaturated underlying peat (the peat was unsaturated when placed). This 

recharge mechanism substantially contributed to the initial saturation of the deep peat 
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layer, as well as 0.5 m thick petroleum coke and tailings sand layers beneath the fen that 

were included in the modified construction design (see Daly et al., 2012).  

The enriched isotopic signature of groundwater from the upland tailing sand 

aquifer relative to the depleted signature of snow samples implies that the upland aquifer 

received little (if any) recharge from the snowmelt water during the 2013 melt period 

(Figure 3-11). Approximately 5000 m3 (~65 mm) of water was applied to the upland 

aquifer during the construction phase to facilitate compaction (summer of 2012), which 

simultaneously supplemented the groundwater storage. This probably contributed to the 

enriched signature of the upland groundwater and would help to explain the slight offset 

from the LMWL. Isotopic signatures of the reclaimed slope runoff flumes plotted along 

the local meteoric water line and demonstrated a slightly enriched signature relative to 

the snow. This can be attributed in part to the continuous enrichment that occurs as snow 

melts (Stichler et al., 1981; Taylor et al., 2001; Lee et al., 2010), sublimation (which can 

also enrich the isotopic signature of a snowpack (Stichler et al., 2001)), and the potential 

enrichment caused by mixing of snowmelt water with antecedent rainwater stored within 

the upper soil layer from the previous year. However, frozen soils and high runoff ratios 

imply that this mixing was minimal. Standing water ponded on the surface of the fen 

demonstrated an isotopic signature similar to that measured from the runoff flumes. 

Groundwater samples from the fen (sampled 6-April) plotted between the enriched 

upland aquifer water and the relatively depleted water flowing off of the reclaimed slopes 

(flume samples). This implies that the fen received groundwater recharge from snowmelt 

water, predominantly via the observed recharge pipe, in addition to overwinter 

groundwater input from the upland aquifer (which received water inputs from both 

summer precipitation and the artificial irrigation during construction in 2012). Fen 

groundwater samples from throughout the summer of 2013 are included in Figure 3-11 to 

bolster the small sample size from the snowmelt period (n = 2) and demonstrate that there 

was little variation in the signature of fen groundwater over the season. Groundwater 

samples collected from wells installed at the transition zone (near-fen zone of upland) 

showed a signature more similar to snow than in the fen, which suggests the movement of 
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some snowmelt water from the ponded water in the fen into the transition zone aquifer at 

the toe of the upland.  

 
Figure 3-12 – Boxplots of snow depths within the watershed (top graph) and the 

proportion of the fen peatland covered by snow, standing water and exposed peat/bare 
ground surface (bottom graph) during the snowmelt period. 

 

3.5.2 Water management in reclaimed landscapes during melt 

Surface runoff is rarely observed in the majority of natural landscapes in the WBP 

(Devito et al., 2005b), even during the snowmelt period (Redding and Devito, 2011). The 

south (natural) slope within the constructed watershed represents the most similar 

landform to the pre-disturbance landscape, since this small area is a relatively 

undisturbed remnant of the pre-mining landscape that was not artificially constructed. No 

surface runoff was observed from this landform, which is a sharp contrast to the large 

volumes of water and sediment yielded by the reclaimed slopes within the watershed.  

These observations are supported by literature on runoff from natural landscapes in the 

AOSR (Western Boreal Plain). For example, Redding and Devito (2011) found that 

infiltration was far greater than near-surface runoff, representing 87% and 7% of snow 

0%!

20%!

40%!

60%!

80%!

100%!

23-March! 27-March! 29-March! 31-March! 2-April! 4-April! 6-April! 9-April! 13-April!

Su
rfa

ce
 C

ov
er

 (F
en

)!

exposed peat!

snow!

standing water!

Ba
si

n 
Sn

ow
 D

ep
th

 [c
m

]!

0!

20!

40!

60!

80!



 

 
 

55 

water equivalent, respectively (median drainage and runoff coefficients stated, 

respectively). Further, runoff due to snowmelt from undisturbed catchments in the AOSR 

is typically small due to the high soil storage in hillslopes (Devito et al., 2005b). 

Devito et al. (2005b) also observed that runoff in the WBP has a wide range of 

interyear variability, with variations in runoff exceeding 250 mm year-1. Since this 

variability was not determined to be related to precipitation on an annual basis, regional 

runoff ratios varied from 20 to 60%, with subcatchment runoff ratios as low as < 1% in 

some years (Devito et al., 2005b). This was explained by a combination of the moisture 

conditions during the autumn of the previous year and the accumulation of snow over the 

winter, where the highest runoff (hence highest runoff ratio) was observed in the year that 

followed a wet autumn and atypically high snowpack. These conditions are similar to 

those of the current study, since ~2.5 times the long-term normal precipitation was 

received during the autumn preceding the year of the study (September and October 

2012) and the 2013 snowpack represented 161% of the long-term climate normal. Thus, 

the snowmelt period hydrology within reclaimed landscapes is fundamentally different 

than that reported for natural WBP settings where the primary role of snowmelt is to 

satisfy soil storage (Devito et al., 2005b). In constructed ecosystems, surface runoff 

supersedes soil water storage during the spring freshet. The large slopes that dominate 

post-mining landscapes could result in increased flashiness of downstream watercourses, 

as well as increased sedimentation caused by high rates of surface erosion of newly 

placed reclaimed soils via rill and gully development, especially during the spring freshet. 

Consequently, water management during the snowmelt period is very important in 

constructed landscapes.  

The topographic control on snow distribution observed in the current study 

suggests that including more complex surface topography into closure landscape designs 

might help to distribute snow more evenly throughout the landscape during the winter 

months. For example, integrating more breaks in slope would lessen the disparity 

between toe and crest snow depths. Due to the insulating nature of the overlying 

snowpack on the soil thermal regime (Goodrich, 1982), the soil temperature profile is 

more strongly coupled to air temperature under thin snow packs (Figure 3-9). Thus a 
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more evenly distributed snow cover could help to reduce the depth of ground frost in 

upper slope positions where the snow pack was thin (Figure 3-5), which should result in 

increased infiltration during the snowmelt period due to the reduction in the amount of 

ice present in the soil (Kane, 1980) and an earlier ground thaw. Since the delivery of 

interflow can lag behind the completion of snowmelt by up to a month (Kelln et al., 

2009), greater infiltration during the snowmelt period would help to prolong the delivery 

of melt water and slightly alleviate the high surface runoff rates observed from reclaimed 

slopes.  Likewise, the use of snow fencing could be a simple option to help address non-

uniform snow distribution. Also, integrating macrotopographic features such as swales 

and hummocks could serve to help detain water during the rapid melt period. Several 

hummocks were included on the upland of the constructed watershed of the current study 

to intercept and enhance recharge from the reclaimed slopes (Daly et al., 2012). Field 

observations of water ponded behind (i.e., upslope of) these structures support their 

function as water detention structures. Site-specific design modifications should serve to 

optimize this function. Similarly, microtopographic management of the surface of 

reclaimed soils, such as surface tilling perpendicular to the topographic slope, could also 

contribute to increased detention of snowmelt water as well as assist in promoting 

infiltration and recharge to constructed aquifers. 

Effective water management strategies need to utilize the new surface runoff-

dominated hydrological processes operating within post-mining landscapes during the 

snowmelt period. The original design and modelling of the constructed watershed (Price 

et al., 2010) was done to test a concept and optimize an upland-fen configuration. 

Consequently, the reclaimed slopes that surround the upland-fen system were not 

considered. In the model, the annual input to the system from snowfall was represented as 

precipitation that occurred when the daily average temperature was less than or equal to 

0°C (Price et al., 2010). Based on the climate normals, this is ~25% of annual P 

(Environment Canada, 2011). However, due to the large volume of water produced by the 

adjacent reclaimed slopes, the upland-fen system received far more water input during 

the spring freshet than indicated solely based on measurements of over-winter snow 

accumulation or landscape SWE. For example, the total volume of water stored in the 
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snowpack on the reclaimed slopes represented an area-normalized (i.e., the total volume 

of water on the reclaimed slopes expressed relative to the area of the upland-fen system) 

flux of nearly 200 mm of water in addition to the SWE solely on the upland and fen. 

Therefore, if efficient water management strategies are implemented, snow can represent 

a more important contribution to the annual water budget of constructed watersheds than 

suggested when considering its generalized input of ~25% of annual precipitation alone. 

Although integrated landscape design incorporates the water fluxes from all of the 

individual landforms, these findings have identified an opportunity to design landscapes 

in an advantageous manner to maximize the detention and redistribution of water during 

the spring freshet.   

3.6 Conclusions 

Snowmelt in reclaimed landscapes is a process of fairly high intensity and short 

duration, with high runoff ratios and small storage of snowmelt water on reclaimed 

slopes. The establishment of a vegetation cover, which appears to cause an earlier and 

more rapid snowmelt, further exacerbates this. Patterns of snow accumulation in the 

constructed Nikanotee Fen watershed indicated that surface topography was the dominant 

control on snow distribution in this reclaimed landscape. Surface runoff was rapidly 

conveyed down reclaimed slopes via sheetflow on the older, vegetated east slope 

(reclaimed six years prior to study) while rills and gullies quickly developed on the 

recently reclaimed southeast and west slopes (reclaimed two years prior to study). The 

runoff from these slopes was likely enhanced by the wet conditions during freeze-up in 

the previous fall. The development and implementation of effective water management 

strategies designed to handle the large volume of water produced in constructed 

landscapes during the spring freshet will help to offset the challenges associated with 

limited water availability imposed by the regional sub-humid climate. Snowmelt can 

contribute a substantial amount of water to the annual water budget of low-lying 

landforms within constructed watersheds if fluxes from adjacent (upland) landforms are 

also considered. Using excess water availability during the spring freshet is especially 

relevant when designing wetland ecosystems into reclamation closure design plans. Over 
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time, the role of vegetation on snow hydrology will likely evolve as the vegetation cover 

becomes well established and a denser canopy develops. The vegetation covers in the 

landforms of the current study are immature compared to those in natural systems and, 

thus, the results should be interpreted with this in mind. Increased interception and 

subsequent sublimation of intercepted snow will reduce the amount of SWE on reclaimed 

slopes. However, research in older reclaimed areas, conducted in parallel with longer-

term monitoring of recently reclaimed landscapes, is required to validate these processes 

and incorporate interannual climatic variations. Reduced ablation rates can also be 

expected as vegetation covers develop and constrain incident shortwave radiation at the 

surface of the snow. These changes could eventually help to alleviate the challenge of 

managing large volumes of water within constructed landscapes during the spring freshet. 
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4 A COMPARISON OF THE HYDROLOGICAL ROLE OF TWO 

RECLAIMED SLOPES OF DIFFERENT AGE IN THE ATHABASCA OIL 

SANDS REGION, ALBERTA, CANADA 

4.1 Introduction 

Large-scale disturbances caused by oil sands extraction activities in the Athabasca 

Oil Sands Region (AOSR) in Canada require the reconstruction of individual ecosystems 

and landforms at the scale of whole landscapes (Johnson and Miyanishi, 2008). 

Understanding the connectivity between individual landforms within the reclaimed 

landscape is fundamental in re-establishing ecosystem functioning. Soil covers used 

during land reclamation and mine decommissioning at oil sands mining operations are 

often designed to mitigate percolation into stockpiled overburden or waste (Elshorbagy et 

al., 2005; Kelln et al., 2007; Meiers et al., 2011) and to provide an adequate water supply 

for vegetation over dry summer periods (Carey, 2008; Meiers et al., 2011). Accordingly, 

the majority of reclamation soil cover research has focused on assessing the performance 

of these soil covers at the hillslope (i.e., individual landform) scale and do not explicitly 

consider their hydrologic function within the context of a larger-scale landscape (i.e., 

watershed-scale). Although some studies (e.g., Shurniak and Barbour, 2002; Kelln et al., 

2007) quantify downslope movement of water (interflow) and other studies have 

documented soil water distribution and temporal variability within reclaimed upland 

slopes (e.g., Kelln et al., 2008; Leatherdale et al., 2012), there is a need to couple the 

controls on soil water distribution to the storage and transmission of water through 

reclaimed slopes to their hydrologic role (i.e., storage or conveyor) within the larger-scale 

watershed.  

In natural landscapes within the AOSR, deep glaciated substrates result in 

extremely complex surface and groundwater interactions and topography does not always 

control watershed hydrology (Devito et al., 2005a; Smerdon et al., 2005). However, the 

hydrologic regime of the reclaimed landscape has been highly altered relative to natural 

areas (Elshorbagy et al., 2005). Consequently, the hydrologic response of reclaimed 

landscapes is quite different than the responses of undisturbed areas (Negley and 
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Eshleman, 2006); though the dominant controls on soil water distribution within 

reclamation soil covers are not fully understood. For example, the influence of 

topography (i.e., slope position) on soil water distribution in reclaimed slopes is unclear. 

Kelln et al. (2008) found that soil moisture conditions were wetter at lower slope 

positions on a reclaimed slope landform in the AOSR during the wet spring season as 

well as throughout the comparably dry summer and fall seasons. Conversely, Leatherdale 

et al. (2012) determined that lower slope positions did not have higher soil moisture 

contents than upper slope positions and concluded that soil water distribution was not 

consistently influenced by slope position on any of four reclaimed slopes (also in the 

AOSR). Understanding the controls on water distribution within reclaimed slopes is a 

necessary step in evaluating the hydrological importance of these slopes on the 

performance and behaviour of the larger watershed-scale reconstructed landscape. 

Accordingly, there is an ongoing need to discern the dominant controls on water storage 

and distribution within reclaimed slopes.  

Since the hydrophysical properties of reclaimed slopes can undergo substantial 

changes in the first few years following their construction (e.g., Guebert and Gardner, 

2001; Kelln et al., 2007; Meiers et al., 2011), the soil water regime and, thus, the 

hydrologic role of reclaimed slopes will change over time. The development of a 

secondary soil structure (i.e., macropores) contributes to the evolution of the hydraulic 

properties of reclaimed soils. For example, preferential flowpaths can develop around 

large rock fragments in reconstructed soils (Guebert and Gardner, 2001). Also, 

freeze/thaw cycling can contribute to the observed changes in the properties of reclaimed 

soils. Meiers et al. (2011) observed an increase in the saturated hydraulic conductivity of 

reclamation cover soils of one to two orders of magnitude over the first two years 

following soil placement and attributed these changes to the occurrence of an annual 

freeze/thaw cycle in the AOSR. Further, reclaimed slopes are typically vegetated with 

pioneer plant communities that transition through several successive vegetation 

communities in the years following reclamation (Carey, 2008). The growth of vegetation 

and the establishment of root infrastructure in the shallow subsurface can contribute to 

the evolution of the hydrophysical properties of reclaimed soils as well (Loch and 
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Orange, 1997); although this effect is constrained to within the rooting zone and, thus, is 

not considered to be a primary control on the evolution of soil properties (Meiers et al., 

2011). Nonetheless, insufficient consideration has been given to evaluating the 

importance of these changes and how they relate to hydrological regime shifts on 

reclaimed slopes over time. Accordingly, an understanding of how the evolution of the 

hydrophysical properties of reclamation soil materials relates to the hydrological role of 

reclaimed slopes in the reconstructed landscape is required. In addition, soil materials 

used in the construction of these landscapes (e.g., peat/mineral mix soils) have 

demonstrated some hydrophobic tendencies. For example, Leatherdale et al. (2012) noted 

difficulty saturating samples of oil sands reclamation soils (peat/mineral mix and tailing 

sands) in the laboratory and suggested that this was caused by the hydrophobic properties 

of the materials. Hydrophobic soils tend to have lower surface infiltration rates and are 

often associated with enhanced overland flow (Doerr et al., 2000). Consequently, the soil 

water regime of reclaimed slopes could be influenced by the presence and extent of soil 

hydrophobicity. However, quantification of the extent of the hydrophobicity and its 

impact on the hydrologic function of reclamation soil covers has not been documented. 

This research examines the dominant controls on the soil water regimes of two 

reclaimed slopes in the AOSR. The approach is to compare the soil hydrophysical 

properties, soil water dynamics and runoff generation mechanisms on two reclaimed 

slopes that were reclaimed five years apart using the same prescribed soil-placement and 

revegetation approach. The discussion includes an evaluation of the role that existing 

slopes can play in watershed-scale landscape reclamation. Accordingly, the specific 

objectives of this research are to: 1) validate existing and identify new controls on soil 

water dynamics within two reclaimed slopes with differing reclamation timelines; 2) 

quantify the downslope movement of water; and 3) examine the function of reclaimed 

slopes in the context of landscape-scale design.  
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4.2 Site Description 

4.2.1 Constructed watershed 

This study was conducted in a constructed watershed (the Nikanotee Fen 

watershed) within the Millennium mine lease at Suncor Energy Inc. oil sands mining 

operations approximately 40 km north of Fort McMurray, Alberta (56°55.944'N 

111°25.035'W; average watershed elevation ~288 masl; Figure 4-1). The individual 

landforms within the constructed watershed (total watershed area = 32.1 ha) include: an 

upland aquifer (7.7 ha) constructed from tailings sand materials; a fen peatland (2.9 ha) 

built using fen peat from newly developed lease areas; a sloping natural remnant of the 

pre-mining landscape (2.8 ha; the “natural slope”); and three reclaimed slopes of varying 

age and character (combined area = 18.7 ha). The upland aquifer and fen peatland are 

situated in a gently sloping valley bottom (constructed upland grade is ~3% towards the 

0% grade fen peatland) surrounded by the other relatively steep landforms. The natural 

slope is composed of natural soils characteristic of the AOSR and is not included in this 

study. The two reclaimed slopes that are adjacent and run parallel to the upland-fen 

valley (i.e., sloping to the west and east; see Figure 4-1) are the focus of this study. 

However, the third reclaimed slope (located in the south east portion of the watershed) is 

occasionally discussed in this study as well. The final watershed design is described in 

detail by Daly et al. (2012) and Pollard et al. (2012). 

4.2.2 Reclaimed slopes  

The east slope (8.1 ha) was reclaimed in 2007 (soils placed) and revegetated in 

2008 (herein referred to as the 2007 slope). In contrast, the west (2.4 ha) slope was 

reclaimed in 2011 and revegetated in 2012 (herein referred to as the 2011 slope). Planting 

on the slopes was guided by the Cumulative Environmental Management Association 

(CEMA) Revegetation Manual (Alberta Environment, 2010) and consisted primarily of 

white spruce (Picea glauca), aspen (Populus tremuloides), white birch (Betula 

papyrifera), green alder (Alnus viridis), as well as an assortment of shrubs (e.g., 

Saskatoon berry (Amelanchier alnifolia), pincherry (Prunus pensylvanica) and 

chokecherry (Prunus virginiana)). Both slopes are composed of overburden substrate 
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from the Cretaceous Clearwater formation, which is dominated by shale and siltstone 

(Hackbarth and Nastasa, 1979). The Clearwater overburden material is overlain by a 

~100 cm secondary capping layer of suitable overburden material and capped with a ~40 

- 50 cm thick ‘peat/mineral mix’ cover soil. Overburden material is typically salvaged 

from deeper within the soil profile (below the solum) and is considered to be suitable for 

use as a secondary capping layer by Suncor Energy Inc. if the pH is less than 8, the 

electrical conductivity is less than 5 dS m-1 and the sodium adsorption ratio, which is a 

measure of the sodicity of the soil, is below 8 (J. Martin, personal communication). The 

‘peat/mineral mix’ reclamation soil type is typically an amalgamation of organic peat and 

mineral soils obtained by over-stripping natural peat deposits underlain by glacial mineral 

soils (Meiers et al., 2006). This soil layer was directly placed (i.e., not from stockpile) on 

the slopes in this study. Particle size distribution and organic matter content of the 

secondary capping and peat-mineral mix layers are included in Appendix 2. The 2011 

slope was reclaimed using a similar reclamation prescription as the 2007 slope. However, 

these slopes demonstrated considerable contrast, which likely arose due to variability in 

the source and properties of the reclamation materials coupled with the immature 

vegetation stand and anticipated changes in soil structure following placement (Meiers et 

al., 2006; Kelln et al., 2007; Meiers et al., 2011). The current study focuses on comparing 

and contrasting the 2007 slope primarily with the west 2011 slope.  The southeast 2011 

slope in the constructed watershed (8.2 ha; see Figure 4-1) was reclaimed at the same 

time and using the same material and technique as the west 2011 slope. The southeast 

2011 slope is not explicitly addressed (although included in one dataset, as expressed 

below) in this study, however, it is expected that the processes operating on this slope are 

similar to those of the west 2011 slope, given their nearly identical construction 

timeframe, source material and reclamation prescription.  
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Figure 4-1 – LEFT: Location and general landform arrangement of the 

constructed Nikanotee Fen watershed including the shallow soil moisture survey 
transects. RIGHT: Detailed topographic maps of the 2007 (East) and 2011 (West) slopes. 
Minor contours (grey) are 2 m elevation increments. Subsurface flow trenches were 
located directly to the south of the surface runoff flume (2007 slope only). 

4.3 Methods 

4.3.1 Field methods 

Meteorological stations were deployed on each the 2007 and 2011 (west) slopes 

in June 2012. Measurements of net radiation (NR-LITE2 net radiometer; 2.5 m height), 

ground heat flux (REBS HFT-3; 0.01 m depth) wind speed and direction (R.M. Young 

Wind Monitor; 2.75 m height), relative humidity and air temperature (Hobo U23 Pro v2 

dataloggers; 1.0 and 2.3 m heights) were taken every minute and average values were 

recorded every 30 minutes using Campbell Scientific CR5000 dataloggers and Hobo 

dataloggers (relative humidity and air temperature data only). Soil moisture probes (CS-

650) were installed into the peat/mineral mix reclamation surface soil layer at 2.5, 10 and 

32.5 cm depths, as well as within the underlying secondary capping material at depths of 

75 and 60 cm on the 2007 and 2011 slopes, respectively. Independent volumetric water 

content (VWC) calibration curve functions were derived for soils from each of the 2007 

and 2011 slopes in the laboratory using soil samples extracted in the field, following 
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standard procedures (e.g., Jacobsen and Schjønning, 1993). Transects of soil moisture 

profile access tubes were installed across the mid and lower portions of each slope 

(Figure 4-1). A Troxler Sentry 200CP moisture probe was used to measure soil moisture 

at depths of 7.5, 15, 25, 35, 50 and 75 cm within the access tubes (5.08 cm I.D. PVC 

pipe; n = 9 and 14 locations on the 2007 and 2011 slopes, respectively) on a weekly basis 

(2012 – 2014). Calibration curves were developed for both the 2007 and 2011 slope soils. 

Due to equipment failure, a Delta-T Devices PR2 Soil Moisture Profile Probe replaced 

the Troxler moisture probe in June 2014. New access tubes (2.8 cm I.D.) appropriate for 

the PR2 probe were installed within ~1 m of the Troxler access tubes. The depth intervals 

of the VWC measurements made using the PR2 probe (10, 20, 30, 40, 60, 100) are 

slightly different than those made previously with the Troxler probe. However, for 

illustrative and consistency purposes, they are shown and grouped as being made at the 

same depth for some of the analyses in this study. It is clearly stated that this has been 

done wherever relevant. Since this change applied to all measurements in the 2007 and 

2011 slopes concurrently, they remain comparable. Shallow soil moisture surveys were 

conducted along transects through the 2007, 2011 (southeast) and 2011 (west) slopes 

approximately every ten days (2013 only; Figure 4-1).  Measurements of the average 

VWC in the upper 7 cm (i.e., 0 - 7 cm) of the soil were made every 20 m using a Delta-T 

Devices WET Sensor (type WET-2) portable water content probe. Slope-specific 

calibration curves were developed in the laboratory and applied to these measurements 

using intact soil samples extracted from the field.  

Soil pits coupled with the access tube measurements at three locations on each 

slope permitted measurement of the in-situ infiltration rate (f) using a single-ring 

infiltrometer at the surface, 10 and 30 cm depths as well as at the top of the secondary 

capping soil layer on each slope. Soil cores were also extracted at the same depth 

intervals for laboratory estimation of standard soil parameters and hydrophobicity (see 

details on laboratory methods below). In-situ f measurements were completed in both 

2012 and 2013 while soil cores were only extracted in 2012. In 2014, two shallow 

trenches (each ~7 m long) were dug near the toe (lower slope) of the 2007 slope to 

estimate water movement via subsurface interflow. Trenches were dug to just below the 
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top of the secondary capping material (~50 cm depth), lined with polyethylene and 

perforated PVC pipes that drained into 80 L buckets for collection of water and covered 

at the surface with plywood boards. Following rain events that produced interflow, the 

total volume of water in the buckets was measured and the buckets were emptied. A 

logging pressure transducer (Schlumberger Mini-Diver) was installed in one of the trench 

buckets to provide information on the timing of interflow generation. A surface runoff 

flume was installed near the toe of the 2007 and 2011 slopes, which consisted of plastic 

resin landscape edging set and sealed (with hydraulic cement) approximately 5-10 cm 

into the ground. This edging directed water flowing along the surface through a trough 

and into a bucket containing a v-notch and a logging pressure transducer (Schlumberger 

Mini-Diver). Manual measurements of discharge made during the spring freshet in 2013 

provided independent rating curves for each flume. The surface runoff flume on the 2011 

slope was only monitored during the 2014 season (in addition to the spring freshet period 

in 2013, when the rating curve was developed), while the 2007 slope flume was 

monitored throughout 2013 and 2014.  

Detailed topographic surveys were completed for delineation of the sub-

catchment gross drainage area for each of the runoff flumes. However, accurate 

delineation of the gross drainage area for the 2011 slope runoff flume was not possible 

due to dynamic erosional rill development and evolution during rainfall events and 

throughout the study period, which spontaneously directed water flows out of the 

topographically derived flume ‘catchment’ (this was not an issue on the 2007 slope due to 

the absence of rill erosion). Although this is unsuitable for expressing runoff depths 

quantitatively, due to the uncertainties associated with deriving a gross drainage area on 

the 2011 slope, these observations were instead used to validate precipitation-derived 

runoff generation thresholds. For example, data analyses identified the timing and 

occurrence of runoff at (i.e., water flowing through) the 2011 slope flume and compared 

this response at the flume to the precipitation intensity of each event. This provided 

information on the minimum precipitation intensity required to produce a surface runoff 

response from the 2011 slope (i.e., precipitation intensity threshold). The depth flux of 

runoff generated from the 2011 slopes was derived empirically using this precipitation 
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intensity threshold and the storage capacity of the near-surface (0 – 2.5 cm) soil layer. 

This storage capacity, or fillable porosity, was calculated by subtracting the average pre-

event VWC from the total soil porosity (see Laboratory methods section). Accordingly, 

surface runoff generation from the 2011 slope was presumed to occur once the storage 

capacity of the near-surface layer was satisfied and the precipitation intensity exceeded 

the observed threshold from the runoff flume observations. The location and elevation of 

all instrumentation was surveyed annually (± 0.005 m vertical accuracy) using a Topcon 

HiPER GL RTK GPS system (2012 and 2013) and a Leica Geosystems Viva GS14 

GNSS RTK GPS system (2014). 

4.3.2 Laboratory methods 

Intact soil samples were extracted in the field using hollow steel (Shelby-type) 

soil tubes (5.5 cm I.D. x 5 cm height) driven into the ground at the specified depth 

intervals, wrapped in polyethylene film and carefully transported back to the laboratory. 

The bottoms of soil samples were protected with screening to minimize loss of sediments 

during analyses. Soil samples were analysed for total porosity (φ), specific yield (Sy) and 

bulk density (ρb) following standard methods (e.g., Freeze and Cherry, 1979; Klute, 

1986), with the exception that samples were oven-dried at 80ºC. Saturated hydraulic 

conductivity (Ksat), soil water characteristic (retention) curves and hydrophobicity (see 

below) were determined for a sub-set of samples prior to oven drying. Ksat was 

determined on each sample using a constant head test (Freeze and Cherry, 1979). 

Samples with very low Ksat that required measurements over several days were carefully 

covered with polyethylene film to limit evaporation of ponded water. Soil water 

characteristic curves were determined using a 5 bar ceramic pressure plate extractor (Soil 

Moisture Equipment Corp. model #1600) and an air compressor controlled by a throttle 

valve and measured with a manometer tube. The pressure inside the chamber was raised 

above atmospheric pressure in incremental steps, which forced water out of the soil 

samples via a porous ceramic plate on which the soil samples were placed. VWC of the 

soil samples was determined gravimetrically at each pressure step once a stable mass was 

reached. A ceramic plate with a 1 bar air-entry pressure was used for the lowest pressure 

ranges (0 - 1 bar) and a 5 bar ceramic plate was used thereafter.  
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Hydrophobicity (soil water repellency) was estimated at the stabilized VWC at 

several pressure steps using the water drop penetration time (WDPT) method (Letey, 

1969). This test involves recording the time taken for the complete penetration of a water 

drop placed on the surface of a soil (Letey, 1969). The standardized WDPT test 

procedure followed that outlined in (Doerr, 1998) and involved application of five drops 

of distilled water (at ~20ºC) to the soil surface using a syringe and hypodermic needle. 

The median penetration time was considered to be representative of the WDPT of each 

sample (cf. Doerr, 1998). Samples were categorized in terms of level of hydrophobicity 

severity according to Bisdom et al. (1993); < 5 s WDPT (hydrophilic), 5 - 60 s (slightly 

hydrophobic), 60 - 600 s (strongly hydrophobic), 600 - 3600 s (severely hydrophobic) 

and > 3600 s (extremely hydrophobic). Although somewhat arbitrary, the categorization 

of soil samples by level of hydrophobicity provides a useful summary and comparison 

between different soils (Doerr, 1998) and demonstrates the effect of moisture content on 

soil hydrophobicity.  

4.3.3 Statistical methods 

A Shapiro-Wilk normality test was performed on the data (φ, ρb, Troxler/PR2 

access tube VWC measurements and shallow soil VWC survey data) and the results were 

verified by graphical assessment of quantile-quantile plots. For data with non-normal 

distributions (φ, ρb, Troxler/PR2 access tube VWC measurements), Wilcoxon rank sum 

tests were conducted to determine if there was a statistical difference between VWC 

measurements on the 2007 and 2011 slopes (Ho: the differences between distributions of 

both populations is zero). The significance of linear regression models (shallow soil VWC 

survey data; normally distributed) was assessed using t-tests (Ho: the slope of the VWC 

and surface elevation relationship is zero, thus, they are independent). All statistical 

analyses was completed in R Statistical Software (Version 0.98.1056; R Core Team, 

2013). 
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4.4 Results 

4.4.1 Hydrophysical properties and hydrophobicity 

Peat/mineral mix soils on the more recently reclaimed 2011 slope had a higher 

median ρb and lower median φ than soils on the older 2007 slope (Figure 4-2). The results 

of the Wilcoxon rank sum tests indicate statistical differences in φ (W = 115.5; p = 0.04) 

but not ρb (W = 55; p = 0.23) between the 2011 and 2007 slope soils. However, 

differences in ρb between slopes were significant (W = 6; p = 0.03) in the upper 20 cm of 

the soil profile (i.e., when depths greater than 20 cm were excluded from the statistical 

analyses). The secondary capping material, which exhibited similar hydrophysical 

properties on both slopes, had a much higher ρb (average = 1.7 g cm-3; n = 6) and lower φ 

(average = 0.36; n = 6) than the overlying peat/mineral mix soils on both slopes. The 

infiltration rate, f (geometric mean values stated), at the surface of the 2007 slope was 

195 mm hr-1. This was more than five times greater than f at the surface of the 2011 slope 

(35 mm hr-1), which declined sharply to 1 mm hr-1 in the upper 10 cm (Figure 4-2). 

Similarly, the near-surface Ksat (9 x 10-5 m s-1) of the 2007 slope was nearly two orders of 

magnitude greater than that of the 2011 slope (1 x 10-6 m s-1). Ksat and f declined with 

depth in the upper 30 cm of both slopes, with Ksat on the 2011 slope increasing deeper in 

the profile. The lowest Ksat and f on the 2007 slope was within the secondary capping soil 

layer (~60 cm depth), whereas these minima occurred closer to the surface within the 

peat/mineral mix soil layer (~20 – 30 cm depth) on the 2011 slope (Figure 4-2).  
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Figure 4-2 – A & B: Boxplots of soil bulk density, ρb, (A) and porosity (B) for the 

peat/mineral mix soils on the 2007 and 2011 slopes (n = 12 for each slope). Note the 
boxplots do not include data from the secondary capping soil layer. C, D & E: infiltration 
rate, f (C), saturated hydraulic conductivity, Ksat (D) and ρb (E) with depth for the 2007 
and 2011 soils (n = 4 to 12 per depth for f and n = 3 per depth for Ksat and ρb). Horizontal 
bars on C, D & E indicate the range in data (i.e., maximum and minimum values) and the 
solid points represent the geometric (C & D) and arithmetic (E) mean. Note that the 60 
cm depth on C, D & E is within the secondary capping soil layer and all other depths are 
within the peat/mineral mix reclamation soil layer. 

 

For the lowest pressure tested (-4000 mb), soil water retention followed the trend 

of 2011 slope > 2007 slope (for the same depth) and deeper soils > surficial soils (for the 

same slope; Figure 4-3). Thus, soils from the 2011 slope retained water more strongly 

than soils of the same depth from the 2007 slope. Surface soil samples (i.e., 0 – 5 cm) 

from both slopes had a higher saturated VWC but lower water retention than soils from 

deeper within the soil profile (i.e., 20 – 25 cm). For example, surface soil samples from 

the 2007 and 2011 slopes declined from saturated VWC by 0.45 and 0.24, respectively, 

while the VWC of deeper soil samples was only reduced by 0.22 and 0.09 for the 2007 

and 2011 slopes, respectively. The secondary capping material displayed a similar trend 
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to that of the 2011 slope deep peat/mineral mix soil (i.e., WS 22.5 cm), however, at a 

consistently lower VWC than the peat/mineral mix soils.  

Soil hydrophobicity decreased rapidly with increasing VWC for all soils (Figure 

4-4). Soils from both the 2007 and 2011 slopes were classified as strongly hydrophobic at 

the lowest soil water pressure tested (~25 – 40% VWC, depending upon the soil water 

characteristic curve). At the same moisture content, the surface soils (0 – 5 cm) on the 

2011 slope were more hydrophobic than the surface soils on the 2007 slope. Surface soils 

on both slopes exhibited less hydrophobicity than soils deeper in the soil profile. The 

most hydrophobic soil was the secondary capping soil layer, which was classified as 

extremely or strongly hydrophobic across the range of moisture contents tested, with the 

exception of the highest VWC where it was classified as only slightly hydrophobic. 

 
Figure 4-3 – Soil water characteristic (retention) curves. 0 cm and 22.5 cm 

represent soil samples extracted from 0 – 5 cm and 20 – 25 cm depth intervals. The 
secondary capping soil material is denoted as “Secondary Cap”. Each curve represents 
the average of triplicate soil samples. Soil samples from both the 2007 (n = 2) and 2011 
(n = 2) slopes comprise the secondary capping soil layer curve.  
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Figure 4-4 – The extent of soil hydrophobicity and the influence of soil water 

pressure (left) and soil water content (right). Hydrophobicity severity was categorized 
according to Bisdom et al. (1993).  

 

4.4.2 Soil water regimes 

During 2013 and 2014, the near-surface VWC responded strongly to P events on 

the 2007 slope, with increasingly dampened responses deeper in the soil profile (Figure 

4-5). The soil water regime of the 2007 slope also demonstrated seasonality, with wetter 

conditions apparent in the early to mid summer period and a drying trend during the later 

summer and autumn months of both years. In contrast, VWC remained relatively stable at 

all depths throughout the soil profile on the 2011 slope during both 2013 and 2014. VWC 

on the 2011 slope generally increased with depth, with the exception of a period in early 

May when the majority of water at the top of the secondary capping layer (60 cm depth) 

was still frozen, as indicated by soil temperatures below 0°C (data not shown). Since 

measurements of the VWC of frozen soils using time domain reflectometry does not 

include ice content (Patterson and Smith, 1981), the VWC measurements during this 

period of time only include the unfrozen water content and, thus, appear low. Upon 

thawing, the secondary capping soil layer VWC was fairly stable and remained slightly 

below saturation on both slopes during both years. The only notable exception to this was 

when this layer briefly reached saturation during a very wet period in early June 2013.  

Similar to the time-series VWC measurements, the spatially distributed VWC 

access tube measurements made across the slopes (n = 9 and 14 locations on the 2007 and 

2011 slopes, respectively; Figure 4-1) indicated that the 2011 slope VWC generally 
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increased with depth in the soil profile (Figure 4-6). However, the greater measurement 

resolution with depth revealed that the 2011 slope exhibited a fairly uniform soil moisture 

distribution at depths greater than ~25 cm. In contrast, VWC on the 2007 slope tended to 

increase with depth throughout the soil profile. The VWC within the secondary capping 

soil layer on both slopes (75 cm depth in Figure 4-6) was typically more spatially 

variable than the peat/mineral mix soil layers. These distinct trends were consistent at the 

upper and lower slope positions on both slopes. However, the VWC at lower slope 

positions on the 2007 slope was consistently higher than the VWC at upper slope 

positions at the same depth (p < 0.02; Table 4-1), except for at 75 cm (Figure 4-6). A 

similar trend was not observed on the 2011 slopes where there was no discernable 

difference in VWC at upper and lower slope positions. Furthermore, the near-surface (0 – 

7 cm depth) VWC survey measurements made along transects that spanned the entire 

topographic range of the slopes (see Figure 4-1) indicated that VWC within the upper 7 

cm of the soil was typically highest at topographically low slope positions on the 2007 

slope (i.e., lower VWC towards the slope crest, Figure 4-7). Conversely, the near-surface 

VWC tended to increase with increasing surface elevation (i.e., higher VWC towards the 

slope crest) on the 2011 slopes (note that the southeast 2011 slope is included in this 

analyses to increase the topographic range of the data from the 2011 slope). t-tests 

indicated that the slope of this relationship was significant (p < 0.01) on both slopes.  
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Figure 4-5 – In-situ VWC measurements on the 2007 (middle) and 2011 (bottom) 

slopes for the periods of May to October in 2013 and 2014. The black and gray bars (top) 
represent precipitation and surface runoff (2011 slope only), respectively.  

 
Figure 4-6 – Soil water distribution profiles from VWC measurements made 

within access tubes located throughout both slopes (n = 9 and 14 locations on the 2007 
and 2011 slopes, respectively; outliers removed from plot to increase clarity of trends). 
See Figure 4-1 for measurement locations. Data from 2012 – 2014; 85 measurements per 
location over this time. Note that the actual measurement depths of data collected 
between June – August 2014 are slightly, but consistently at all locations, different than 
the depths that appear on the y-axis (see Field methods section).  
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Figure 4-7 – Average VWC measurements in the upper 7 cm of the soil versus 

surface elevation of the 2007 and 2011 slopes during 2013 (2011 slopes includes data 
from both the southeast and west 2011 slopes to increase the elevation range). Error bars 
represent the range (max, min) observed at each elevation. Dashed lines are the trendlines 
for the max and min data series.  
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Table 4-1 – Wilcoxon rank sum tests of difference of VWC between upper and 
lower slope position for the 2007 and 2011 slopes; absolute difference in median VWC 
(fraction) and p-value results are shown (significant test results at p < 0.02 shown in 
bold).  

 

 

The influence of topography on slope response to precipitation events also varied 

between the 2007 and 2011 slopes. For example, the 2007 slope demonstrated differing 

responses at upper and lower slope positions following a 60 mm precipitation event (8/9-

June-2013) whereas the 2011 slope responded in a similar (and more muted) manner 

irrespective of slope position (Figure 4-8). The VWC at the lower slope position on the 

2007 slope responded strongly to the water input, as VWC increased by 0.15 to 0.2 at all 

but the shallowest depth. The VWC profile at the upper slope position of the 2007 slope 

increased slightly following the P event, but to a much lesser extent than the lower slope 

position. The exception was the response in the secondary capping material (i.e., 75 cm 

depth in Figure 4-8), which increased by 0.15 – 0.2 at both the upper and lower slope 

positions on the 2007 slope. Note that some of the VWC measurements made within the 

secondary capping material exceeded the measured φ of this layer, which indicates that 

some preferential percolation might have occurred between the access tube and the soil 

that could cause temporary ponding of water at depth (i.e., around the bottom of the 

access tube) and cause a slight overestimation of VWC. Nevertheless, the 2011 slope 

VWC did not increase to the same extent as the 2007 slope, and the upper and lower slope 

 

Depth 

2007 Slope 2011 Slope 

VWC 
Difference 

p-value W VWC 
Difference p-value W 

7.5 0.02 0.017 4432 < 0.01 0.19 20261 

15 0.02 < 0.001 4767 < 0.01 0.21 20084 

25 0.02 < 0.001 5108 < 0.01 0.47 17918 

35 0.03 < 0.001 5076 < 0.01 0.28 19896 

50 0.02 0.002 4627 < 0.01 0.17 20123 

75 0.01 0.53 3639 < 0.01 0.71 17936 
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positions responded in a similar manner. On this slope, the VWC responded by only 0.04 

– 0.08 in the upper 15 cm and only very slightly (i.e., ~0.01) at greater depths. As with 

the 2007 slope, the secondary capping soil layer increased by 0.15; however, this 

response was only observed at the upper slope position on the 2011 slope.  

4.4.3 Runoff generation and interflow 

Monitoring of surface runoff flumes indicated that overland flow occurred 

infrequently on the 2007 slope and typically generated only small amounts of runoff 

(usually << 1 mm; Table 4-2). One anomalous exception to this occurred in the early 

summer period of 2014 under conditions of high antecedent soil VWC (30/31-May-2014; 

Figure 4-5) during a large (41 mm) rainfall event, which was preceded by an additional 

20 mm of precipitation over the previous nine-days. This event generated 6 mm of runoff 

and was the only substantial runoff observed from the 2007 slope in either 2013 or 2014 

(excluding the spring freshet). Conversely, overland flow from the 2011 slopes occurred 

more frequently. For example, during the period of 1-May to 1-October 2014, 14 separate 

surface runoff events were observed at the runoff flume on the 2011 slope, whereas only 

two surface runoff events were observed at the 2007 slope flume during the same time 

period (Table 4-2). These field measurements indicated that surface runoff was produced 

on the 2011 slopes during most precipitation events that exhibited a precipitation 

intensity (i) greater than ~3 mm hr-1 (Figure 4-9).  This field-based runoff threshold (3 

mm hr-1) is lower than the f measured at the surface of the 2011 slope (35 mm hr-1) but 

higher than the f measured at 10 cm depth (1 mm hr-1; Figure 4-2). Thus, it can be 

considered as within the range of near-surface f measured on the 2011 slopes. Due to the 

uncertainties associated with deriving a gross drainage area for the 2011 slope flume 

discussed previously (see Field methods section), and a lack of data at the 2011 slope 

flume during the 2013 field season, the depth flux of runoff generated from the 2011 

slope was determined empirically for 2013 and 2014 using the i threshold derived from 

the flume observations (3 mm hr-1) and the antecedent storage capacity of the near-

surface (0 – 2.5 cm) soil layer. In order for runoff to be generated in this analyses, both 

the near-surface soil storage capacity and i threshold must be exceeded. This empirical 

runoff generation analyses showed good agreement with the field-based runoff observed 
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in the flume (Table 4-2) and revealed that infiltration-excess (Hortonian) overland flow 

generation events were short in duration (<1.5 hrs) but capable of producing substantial 

surface runoff (Figure 4-5). These surface runoff events occurred more frequently and 

generated considerably more runoff on the 2011 slope (19 occurrences, 125 mm total in 

2013 and 2014 combined) than the 2007 slope (five occurrences, 7 mm total in 2013 and 

2014 combined (Table 4-2). Interflow also occurred infrequently on the 2007 slope, with 

a total of 140 L of water measured in the two subsurface interflow collection pipes 

between 20-June and 18-August 2014, which represented a flux of < 1 mm.  

Table 4-2 – Surface runoff and subsurface (interflow) event characteristics on the 
2007 and 2011 slopes. Data includes the empirically derived infiltration excess runoff 
analyses (based on i and antecedent soil storage capacity; 2011 slopes only), field 
measurements of runoff through the surface flumes (2007 and 2011 slopes) and the 
interflow trenches (2007 slope only). 

 

Slope Method of runoff 
estimation 

2013 

17-June to 20-August 

2014 

1-May to 1-October 

Number 
of events 

Runoff 
total 
(mm) 

Average 
duration 

(hr) 

Number 
of events 

Runoff 
total 
(mm) 

Average 
duration 

(hr) 

2011 Slope Empirical 8 52 1.0 11 73 1.1 

2011 Slope Flume NA NA NA 14 NA 1.25 

2007 Slope Flume 3 < 1 6.5 2 6 29.5 

2007 Slope Subsurface interflow NA NA NA 6 < 1 40 
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Figure 4-8 – VWC profiles before (t = 0) and following (t = 1 through 39 days) a 

60 mm precipitation event at upper and lower slope positions on the 2007 and 2011 
slopes (8/9-June-2013).  

 
Figure 4-9 – Maximum discharge measured in the runoff flume versus 

precipitation intensity (i) during each event on the 2011 slope. 
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4.5 Discussion 

4.5.1 Controls on the distribution of water within reclaimed slopes 

This study demonstrates that water distribution, storage and release from 

reclamation soil covers are strongly controlled by the soil hydrophysical properties. For 

example, the differences in φ and ρb exhibited by the slopes (Figure 4-2) contributed to 

the contrasting storage properties of the soils, as evidenced by differing soil characteristic 

curves. These demonstrated that water was released from the 2007 slope soils more easily 

than soils from the same depths on the 2011 slope (Figure 4-3). Thus, it is probable that 

the higher φ on the 2007 slope soils is due to the presence of large pores. Additionally, 

the higher f on the 2007 slope contributed to greater percolation and storage of 

precipitation inputs than the more recently constructed 2011 slope, which had a surface f 

that was 20% that of the 2007 slope (Figure 4-2). These differences in f are also a 

reflection of the contrasting hydrophysical properties of the two slopes, since the f of a 

soil is directly related to the saturated hydraulic conductivity of the soil profile (Dingman, 

2002) and, in turn, soil parameters such as φ and ρb. Peat/mineral mix soils on the 2007 

slope had a consistently higher Ksat with depth than the 2011 slope (except for the 

underlying secondary capping soil layer, which had similar properties on both slopes), in 

spite of similar ρb at depths greater than ~20 cm. Furthermore, soils from the 2011 slope 

were more hydrophobic than soils from the older 2007 slope, which can further constrain 

infiltration (Doerr et al., 2000). According to the classification of Bisdom et al. (1993), 

surface soils on the 2011 slope were classified as strongly hydrophobic at the lowest 

VWC tested (~31%), whereas surface soils on the 2007 slope at the same VWC were only 

classified as slightly hydrophobic (Figure 4-4). Since soil hydrophobicity is generally 

higher under dry soil moisture conditions (Doerr et al., 2000), and near-surface VWC 

measurements from both slopes were typically lower in the field than the moisture 

conditions under which hydrophobicity was assessed in the laboratory, soils in the field 

were likely more strongly hydrophobic than the estimates reported in the current study 

(i.e., drier soils in the field would produce more severe hydrophobicity). Nevertheless, 

reclamation soils from both slopes were classified as strongly hydrophobic at the lowest 

VWC tested and, thus, hydrophobicity likely influenced infiltration dynamics on both 
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slopes. Reclamation soils with hydrophobic tendencies can contribute to decreased 

infiltration and increased runoff from reclaimed slopes in the AOSR (Leatherdale et al., 

2012). The severe hydrophobicity of the 2011 slope soils likely contributed to the 

observed low near-surface f, and the higher frequency and larger amount of surface 

runoff generated from this slope (Table 4-2).  

The contrasting hydrophysical properties of the 2007 and 2011 slopes are also 

reflected in the observed VWC regimes. For example, the greater near-surface Ksat and f 

of the 2007 slope resulted in a moisture regime that was more variable than that of the 

2011 slope (Figure 4-5). Consequently, the 2007 slope was more closely coupled to 

atmospheric processes (e.g., precipitation). In contrast, the 2011 slope moisture regime 

was relatively stable and only responded to precipitation events under extreme 

conditions. Further, the high Ksat on the 2007 slope enabled more efficient water 

redistribution, as evidenced by the stronger topographic control on moisture distribution 

on the 2007 slope relative to the 2011 slope. For example, VWC was consistently greater 

(often with statistical significance; Table 4-1) at lower slope positions on the 2007 slope 

relative to the VWC at upper slope positions (Figure 4-6). This concurs with the results of 

Kelln et al. (2007), who observed higher VWC at lower slope positions on reclaimed 

slopes that had been reclaimed for ~seven years. However, VWC was similar at upper and 

lower slope positions on the more recently reclaimed 2011 slope because the lower Ksat 

(Figure 4-2) restricts water redistribution downslope. In the near-surface soil (i.e., upper 7 

cm), topography also had a statistically significant and contrasting influence on the VWC 

of each slope. For example, VWC was higher at topographically high slope positions on 

the 2011 slope (i.e., increasing VWC towards the slope crest, Figure 4-7; slope of linear 

regression model significant at p < 0.01). Conversely, VWC was higher at topographically 

low slope positions on the 2007 slope (i.e., decreasing VWC towards the slope crest; 

significant at p < 0.01). These trends were strongest under dry conditions on the 2011 

slopes, as indicated by the relatively steep slope of the lower dashed line in Figure 4-7. 

The 2007 slope demonstrated little variation in VWC with elevation under dry conditions 

(near-zero slope of lower dashed line). The opposite was true under wet conditions, when 

topography more strongly controlled the distribution of water on the 2007 slope (steep 
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slope on upper dashed line) and had little influence on the 2011 slopes (near-zero slope of 

the upper dashed line). Similar to the significant yet contrasting influence of topography 

on the soil water distribution demonstrated by the two slopes in the current study, 

Leatherdale et al. (2012) found that slope position did not have a consistent effect on 

moisture distribution on reclaimed slopes that ranged in age from ~two to 13 years. The 

differences observed in the near-surface soil of the current study are likely a function of 

the differences in the soil-water characteristic curves of each soil, since the 2007 slope 

has low water retention and, thus, minimal topographic influence on near-surface VWC 

during dry periods when water was limited. Since water was retained more strongly on 

the 2011 slope, near-surface VWC values remained fairly high under dry conditions. 

However, the trend on the 2011 slope (higher VWC with higher topography) is not 

intuitive and reflects the constrained water redistribution on this slope caused by the low 

Ksat. Thus, the distribution of soil water more closely followed topographic position in the 

older 2007 slope (five to seven years since reclamation) with a substantially higher Ksat, 

but did not on the newer 2011 slope (one to three years since reclamation) with a Ksat 

~two orders of magnitude lower. Since the Ksat of reclamation materials can increase 

substantially in the first few years following reclamation (Meiers et al., 2011), it can be 

expected that topography will have an increasing influence on soil water distribution on 

the 2011 slope as the Ksat increases over the following few years.  

Similar topographic patterns are also apparent in the response and subsequent 

drainage of precipitation inputs from the 2007 and 2011 slopes. For example, the VWC at 

the lower slope position on the 2007 slope increased substantially following a large (60 

mm) precipitation event in early June 2013 (Figure 4-8). The 2011 slope responded more 

weakly to the same event and exhibited a similar response at both upper and lower slope 

positions. An exception to this was the deepest measurement point (i.e., 75 cm) in the 

secondary capping material at the upper slope position on the 2011 slope. The magnitude 

of the response in the secondary capping layer relative to the limited response in the peat 

mineral mix soil layer indicates that some precipitation water percolated into the slope 

via preferential flow paths, similar to that observed by Kelln et al. (2007). This is 

supported by the comparable responses observed in the secondary capping layer at the 
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upper and lower slope positions on the 2007 slope. Since secondary porosity develops 

over time following soil placement (Guebert and Gardner, 2001; Kelln et al., 2007), 

infiltration via preferential flowpaths was likely greater on the 2007 slope relative to the 

2011 slope due to the greater time since reclamation. Further, the secondary capping 

layer VWC responded at both slope positions on the 2007 slope, while this layer only 

responded at the upper slope position on the 2011 slope, since the secondary porosity is 

likely not as extensively developed. The VWC profile on the 2007 slope slowly returned 

to the pre-event conditions over the following several weeks (during which several 

smaller P events occurred) at the lower slope position, as the water stored in the slope 

was lost to the atmosphere or seeped further downslope.  

4.5.2 The role of reclaimed slopes in constructed watershed hydrology 

The results of the current study suggest that surface infiltration capacity and 

rainfall intensity and quantity are the strongest controls on runoff generation from 

recently reclaimed slopes (i.e., the 2011 slope). For example, surface runoff generation 

from the 2011 slope occurred much more frequently and produced substantially more 

runoff than the 2007 slope. In contrast, surface runoff generation on the 2007 slope, 

which had a surface f (195 mm hr-1) that far exceeded the highest i, occurred infrequently 

and was usually an unsubstantial flux of water. Runoff from the 2011 slope typically 

occurred during rainfall events that were large enough to satisfy the (limited) soil water 

storage of the upper 2.5 cm of soil, as well as of sufficient intensity (>3 mm hr-1; Figure 

4-9) to exceed the f of the near-surface soil layer after soil storage was satisfied. 

Similarly, Nicolau (2002) found that rainfall volume was the major parameter responsible 

for runoff response from low permeability overburden slopes where most rainfall was 

converted into runoff (Nicolau, 2002). Although the measured f at the surface of the 2011 

slope (35 mm hr-1) was higher than the i threshold, f rapidly declined to 1 mm hr-1 in the 

upper 10 cm. This decline in f likely occurred within the upper few centimeters, as 

indicated by the weak response to precipitation events in the near-surface soil (-2.5 cm; 

Figure 4-5). Thus, it was assumed that surface runoff generation on the 2011 slope 

occurred once the storage capacity of the near-surface (0 – 2.5 cm) layer was satisfied 

and i exceeded the observed threshold of 3 mm hr-1 (Figure 4-9). Comparisons of the 



 

 
 

84 

empirically derived estimate of surface runoff from 1-May to 1-October 2014 VWC (11 

runoff events) and field observations of runoff measured in the flume over the same time 

period (14 events) showed good agreement (Table 4-2). The current study does not 

account for the influence of different interception rates on surface runoff generation. 

General conclusions about interception losses from vegetation communities are difficult 

to make since interception typically depends on several climatic factors (e.g., 

amount/intensity/duration of rainfall, wind speed) in addition to characteristics of the 

vegetation canopy (e.g., canopy storage capacity, leaf area index; Crockford and 

Richardson, 2000). The vegetation community on the 2007 slope is more mature and has 

a higher leaf area index than the 2011 slope (data not shown), which likely results in a 

higher canopy storage capacity that could contribute to higher rates of interception on the 

2007 slope relative to the 2011 slope. However, the near-surface VWC on the 2007 slope 

responded strongly to P events (Figure 4-5), which suggests that a substantial amount of 

P was still reaching the soil surface on this slope. In addition, rainfall in the AOSR is 

often delivered as convective storms of high intensity and short duration (Carey, 2008). 

Since rainfall events of high intensity and short duration result in lower interception 

values than low intensity long duration events (Crockford and Richardson, 2000), 

interception differences between slopes would be minimized during intense rainfall 

events. Surface runoff was typically only generated from the 2011 slopes during rainfall 

events of high precipitation intensity (e.g., > 3 mm hr-1; Figure 4-9). Thus, interception 

rates likely had a negligible impact on the surface runoff generation observed in the 

current study.  

Visual field observations of occasional near-saturated conditions at several 

locations along the toe of the 2007 slope suggested that some downslope interflow 

occurred when the storage capacity of the 2007 slope was exceeded during precipitation 

events. Infiltration measurements made at depth within the 2007 slope suggest that this 

interflow likely occurred as perched shallow subsurface stormflow development over 

underlying layers with low f (e.g., secondary capping material). Measurements of 

cumulative interflow made between June and August 2014 equated to less than 1 mm, 

which indicated that interflow from the 2007 slope was not a hydrologically substantial 
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flux of water. Similarly, Kelln et al. (2006)  found that interflow on reclaimed slopes 

during the snow-free period occurred infrequently; however, interflow can continue 

intermittently throughout the summer and fall of an exceptionally cool and wet year 

(Kelln et al., 2007). Interflow on the 2011 slope (not measured) was likely less than the 

2007 slope, since the Ksat was typically two to three orders of magnitude lower than that 

of the 2007 slope (Figure 4-2). Further, the soil profile on the 2011 slope responded 

weakly to precipitation events (e.g., low variability in VWC profile in Figure 4-5), thus 

indicating that percolation was sufficiently constrained to inhibit the occurrence of 

interflow.  

The hydrophysical properties of materials used in mine reclamation can change 

substantially over the first several years following placement (e.g., Guebert and Gardner, 

2001; Kelln et al., 2007; Meiers et al., 2011). The observed differences in water 

distribution and runoff generation, between the older 2007 and more recently reclaimed 

2011 slopes, could be considered a surrogate for the changes that can be anticipated in the 

years following reclamation. For example, Meiers et al. (2011) found that Ksat increased 

by one to two orders of magnitude over the first two years following reclamation of an 

overburden dump in the AOSR. In the current study, soils on the 2011 slope exhibited a 

Ksat two orders of magnitude lower than the soils on the 2007 slope. However, changes to 

the Ksat on the 2011 slope, similar to those observed by Meiers et al. (2011), are probable 

over the subsequent several years following reclamation. Furthermore, the surface f of the 

2011 slope could also increase as preferential flow paths and secondary porosity develop, 

which can occur in as little as three to four years (Guebert and Gardner, 2001). Hence, it 

is reasonable to anticipate a shift in the properties of the soils on the 2011 slope towards 

those exhibited by the 2007 slope over time. In this hypothesized scenario, which is not 

directly supported by the findings of the current study but rather supported by 

observations from studies in similar reclaimed landscapes (Guebert and Gardner, 2001; 

Kelln et al., 2007; Meiers et al., 2011), the 2011 slope could begin to behave in a similar 

manner as the 2007 slope within a few years. However, it is prudent to note that the 

hydrological processes and trends identified herein represent those measured on two 

reclaimed slopes within the AOSR, as replication at additional reclaimed slopes was not 
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possible. Data were collected at various locations throughout each slope, as specified in 

the Methods section and throughout the paper. This provided the requisite information on 

the variability of the hydrological processes operating on each slope so inferential 

statistics could be validly applied to test the null hypothesis that the parameter in question 

was the same on both slopes (Hurlbert, 1984). Thus, the sample sizes reported throughout 

this paper represent the sampling locations within each of the two reclaimed slopes, while 

the overall comparison of the hydrological processes presented in this paper is limited to 

those operating on the two slopes (i.e., n = 2). Similar industry-wide requirements with 

respect to reclamation procedures and soil specifications (as contained within provincial 

operational approvals) should minimize differences between slopes of comparable nature 

(e.g., reclaimed overburden material) and timeframe in the AOSR. Nonetheless, 

considering the magnitude of reclamation operations and the number of variables that 

could influence the hydrophysical properties of reclamation materials, differences 

between reclaimed slopes are inevitable and likely contributed in part to the differences 

observed between the 2007 and 2011 slopes in the current study.  

The contrasting hydrophysical properties of the materials on the 2011 and 2007 

slopes produced differing hydrological roles of recently reclaimed slopes on a watershed 

scale. The importance of near-surface f and i as controls on runoff generation from 

reclaimed slopes appears to diminish with time since reclamation. For example, the near-

surface f of the older 2007 slope, which produced limited surface runoff, was more than 

five times greater than that of the 2011 slope, which produced a substantial amount of 

surface runoff. Consequently, if the hydrophysical properties of the 2011 slope change 

over time and the near-surface f and Ksat of the soil profile increase, as discussed above, 

surface runoff generation would occur less frequently. The likely exception to this is 

during the snowmelt period, when large amounts of runoff were observed from both the 

2007 and 2011 slopes (as demonstrated in Chapter three). Nevertheless, the 2011 slope 

will likely become a more efficient water storage landform (during the snow-free period) 

and could begin to exhibit a hydrological regime more similar to that observed on the 

2007 slope. This evolution of the hydrological regime is similar to other research in 

recently reclaimed landscapes, where substantial increases in the surface f of recently 
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reclaimed hillslopes has been observed (Guebert and Gardner, 2001). Although these 

potential changes would ultimately result in less water being conveyed from these 

landforms (due to reduced surface runoff generation) to adjacent low-lying systems in the 

constructed landscape, increased percolation and subsequent storage of precipitation 

water would result in greater available water for vegetation establishment and maturation 

on the reclaimed slope itself. From an ecosystem creation perspective, integrated 

landscape reconstruction is important (Johnson and Miyanishi, 2008; Devito et al., 2012), 

hence interconnectivity of landforms is desired. However, the likely evolution of 

reclaimed slopes appears to favour water storage within landforms over hydrologic 

landscape connectivity. Nevertheless, recently reclaimed slopes can provide substantial 

amounts of water to adjacent, low-lying/downstream ecosystems in the first few years 

following construction. This additional water from reclaimed slopes could serve to 

alleviate water availability issues (i.e., supplement limited precipitation inputs) associated 

with reclamation projects that occur at the beginning of a dry climate cycle. 

4.6 Summary and conclusions 

Soil water storage characteristics and hydrophysical parameters controlled the soil 

water regime of reclaimed slopes and, thereby, influenced the transmission of water 

within the reconstructed landscape. Soils on the recently reclaimed 2011 slope had a 

higher bulk density, lower saturated hydraulic conductivity and a low near-surface 

infiltration capacity. Consequently, the soil water regime was less variable with time (less 

water infiltrated) and topography did not influence water distribution. Accordingly, more 

frequent and substantial surface runoff was generated from the 2011 slope relative to the 

older 2007 slope, which exhibited a lower bulk density, higher saturated hydraulic 

conductivity and increased near-surface infiltration capacity relative to the 2011 slope. 

Hence, the 2007 slope was more closely coupled to atmospheric processes (more variable 

soil water regime) and stored most of the precipitation inputs received during the snow-

free period. Both slopes exhibited hydrophobicity at low moisture contents. Soils on the 

2011 slope tended to be more hydrophobic and, thus, contributed to the low surface 

infiltration rates.  
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If the anticipated changes in hydrophysical properties of soils on recently 

reclaimed slopes are realized, these landforms could start to produce less overland flow 

and shift from water conveyors to water storage features in constructed watershed 

systems.  
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5 AN INITIAL ASSESSMENT OF THE HYDROLOGICAL FUNCTIONING 

OF A CONSTRUCTED FEN WETLAND WATERSHED IN THE 

ATHABASCA OIL SANDS REGION, ALBERTA, CANADA 

5.1 Introduction 

Wetlands, most of which are fen peatlands, cover up to half of the landscape in 

Canada’s Western Boreal Plain (WBP; Vitt et al., 1996) within Northern Alberta. 

Approximately 2500 km2 of the Athabasca Oil Sands Region (AOSR) in the WBP has 

been deemed suitable for surface mining (Woynillowicz et al., 2005), which involves the 

removal of large expanses of undisturbed peatlands to access the oil sands beneath (Daly 

et al., 2012; Rooney et al., 2012). Accordingly, oil companies are obligated by law to 

return the mined landscape to equivalent land capability, as defined by the conservation 

and reclamation regulation (Government of Alberta, 2014). Peatlands are now included in 

reclamation designs, however the feasibility of successfully constructing peatlands in 

mine reclamation landscapes remains unknown. Although hydrologically isolated fen 

peatlands are common in the WBP (Riddell, 2008), fen peatlands situated in low-lying 

topographic positions in the reconstructed landscape may receive a combination of 

atmospheric, groundwater and surface water inputs. The surface and groundwater inputs 

will help to supplement limited atmospheric water availability during the summer months 

when potential evapotranspiration (PET) can exceed precipitation (P) in the WBP region 

(Bothe and Abraham, 1993; Marshall et al., 1999). Nonetheless, the design and 

modelling (Price et al., 2010; Daly et al., 2012) of an upland-fen watershed ecosystem 

constructed in a post-mining landscape in the AOSR indicates that the system should be 

sufficient to withstand periods of climatic stress (Price et al., 2010). However, this 

concept has not yet been supported by field-based research. Thus, the goal of this study is 

to characterize the dominant hydrological processes operating in a constructed fen 

peatland watershed. 

The first step in most reclamation processes is the restoration/creation of 

functioning hydrologic systems (Elshorbagy and Barbour, 2007), which relies heavily 

upon water storage properties that are suitable for supplying water to meet the demands 
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of revegetation schemes (Qualizza et al., 2004). Accordingly, the hydrophysical 

properties of the reclamation materials will determine the release and provision of water 

throughout the constructed watershed. For example, the near-surface soils must have a 

sufficiently high infiltration capacity to facilitate percolation of precipitation waters. 

Most soil covers placed during upland reclamation are designed to maximize water 

storage and minimize deep percolation into stockpiled overburden or waste materials 

(Elshorbagy et al., 2005; Kelln et al., 2007; Meiers et al., 2011). However, successful 

establishment of integrated hydrological connectivity between different landforms within 

the reconstructed landscape is essential in oil sands reclamation (Johnson and Miyanishi, 

2008; Devito et al., 2012). Infiltrating precipitation water inputs must be partitioned 

between local soil water storage and recharge to larger-scale groundwater aquifers within 

certain locations in the reconstructed landscape, both to meet the requirements of local 

vegetation as well as to provide groundwater fluxes to adjacent landforms. The hydraulic 

conductivity (Ksat) of the aquifer materials will ultimately control this water partitioning 

and the magnitude of groundwater exchanges, as influenced by the distribution of 

hydraulic heads throughout the different landscapes. However, the Ksat of reclamation 

materials is not constant, and has been shown to increase over time following placement 

in constructed landscapes due to freeze/thaw cycling (Meiers et al., 2011) and the 

development of macropores (Guebert and Gardner, 2001). The implications of these 

changes on the hydrological functioning of constructed reclaimed landscapes must be 

addressed as the system evolves. Previous research efforts have focused primarily on the 

hydrological performance of shallow (< 100 cm) near-surface soil-capping layers; thus, 

little information exists on the evolution of the hydrophysical properties of reclamation 

materials used to construct deeper groundwater aquifers. Furthermore, this research 

represents one of the first attempts to construct a fen peatland in a post-mining landscape 

and, as such, little is known about the hydrological properties of placed peat as a 

reclamation substrate. The reclamation process, which includes soil salvage/extraction, 

transportation and placement, can change the structure of reclaimed peat soils thereby 

altering the soil hydraulic properties (Nwaishi et al., 2015b). However, there has yet to be 

a comprehensive assessment of the hydrophysical properties of reclaimed, placed peat 
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soils and little is known about the nature and magnitude of the potential changes in these 

peat materials following placement.  

Constructed catchments present new opportunities as field-scale research facilities 

to characterize ecohydrological processes in a relatively controlled setting (Gerwin et al., 

2009; Hopp et al., 2009). Since integrating fen peatlands into reclamation and closure 

landscape designs is a relatively new concept, the current understanding of important 

hydrological processes in constructed fen peatlands and their associated watersheds is 

inadequate due to insufficient experimental and field data. Thus, the goal of this study is 

to characterize the distribution, storage and movement of water within a constructed 

upland aquifer – fen peatland system over the range of conditions encountered in the 

field. The specific study objectives are to:  

 Characterize the spatial and temporal variability in the hydrophysical 1)

properties of reclamation materials during the first three years following 

placement 

 Identify the dominant water fluxes within the designed upland – fen system 2)

 Quantify the connectivity between the upland aquifer and lowland fen 3)

 Evaluate the hydrological performance of the designed constructed fen 4)

watershed  

5.2 Study Site 

The Nikanotee Fen watershed is a reclaimed catchment that was constructed in a 

post-mining landscape within the Millennium mine lease at the Suncor Energy Inc. oil 

sands mining operations approximately 40 km north of Fort McMurray, Alberta 

(56°55.944'N 111°25.035'W; average watershed elevation ~288 masl). The site selection 

process for the location of the Nikanotee Fen watershed is outlined in detail in Daly et al. 

(2012). An area within the mine termed the “tailings line corridor” (TLC) was selected 

for the construction of the watershed, which was a pit previously mined for bitumen and 

later filled in with overburden materials (Daly et al., 2012). The stratigraphic profile 

underlying the watershed includes Middle and Lower McMurray formations that overlay 
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a thin layer (~5 m) of fluvial sands situated atop Devonian limestone. This profile was 

capped with a mixture of lean oil sand, glacial material, clay, shale and loamy sand (Daly 

et al., 2012). The first phase of the construction included placing a geosynthetic 

reinforcement material (geogrid) and a 1 m thick engineered compacted clay underlay 

beneath the base of the constructed watershed in response to anticipated settling of the 

backfilled overburden materials. 

In the constructed system, fen peat from newly developed lease areas was placed 

at the toe of an upland aquifer (~3% basal grade towards the fen) designed to supply the 

requisite groundwater flow to sustain fen processes and functions. The upland aquifer 

was constructed using tailings sand placed over a basal geosynthetic clay liner and 

capped with a thin (30 – 50 cm thick) LFH reclamation soil-capping layer (Figure 5-1). 

This LFH soil-capping reclamation material is different than the typical LFH soils as 

defined by the Canadian System of Soil Classification in natural ecosystems, which are 

composed of organic soil horizons L, F, and H (Soil Classification Working Group, 

1998). Instead, due to operational feasibility, the LFH material used in reclamation is 

salvaged with varying amounts of upper horizon mineral soil (Naeth et al., 2013). 

Accordingly, the term ‘LFH soil-capping layer’ used throughout this paper refers to the 

overstripped LFH / mineral soil reclamation material. Approximately 5000 m3 (~65 mm) 

of water was applied to the tailings sand material in the upland during the construction 

phase (summer 2012) to aid in material compaction. This water consequently contributed 

to the water stored in the upland aquifer (in addition to precipitation inputs). 

The fen peat (2 m thick) is underlain by a 50 cm layer of petroleum coke (termed 

the ‘underdrain’ layer) and a 50 cm layer of tailings sand over the basal liner, with the 

intention to more evenly distribute hydraulic head beneath the fen. This underdrain layer 

was also extended part way up the slope (beneath the zone of the upland termed the 

‘transition zone’; Figure 5-1) to reduce the potential for groundwater (and salt) discharge 

at the surface of the upland-fen interface. The designed fen (2.9 ha) and upland (7.7 ha) 

system is situated within a larger watershed (total watershed area = 32.1 ha) that includes 

three previously reclaimed (hence also constructed) slopes of varying age and a natural 

remnant slope (Figure 5-1). The geosynthetic liner was beveled to the surface of the 
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natural slope in a way that precluded potential groundwater input. Further, surface 

infiltration capacity measurements made on the natural slope (data not shown) suggest 

that it did not contribute water to the system via surface flow either. The east slope (8.1 

ha; herein referred to as the 2007 slope) was reclaimed in 2007 and has a well-established 

vegetation cover relative to the south-east (8.2 ha) and west (2.4 ha) slopes, which were 

both reclaimed in 2011 (referred to collectively as the 2011 slopes). Several landform 

features were incorporated into the design of the upland area. This included four 

hummocks, which are small (~400 to ~1500 m2) landforms raised ~1 m above the 

surrounding area, as well as an experimental basin lined with a thin (0.5 m) layer of peat / 

mineral mix reclamation material (herein referred to as the ‘peat-lined basin’). The peat-

lined basin is a 0.2 ha depression situated ~0.5 m below the surrounding upland surface 

and directly adjacent to an upland hummock (Figure 5-1). The stratigraphy in this basin is 

a 50 cm layer of peat / mineral mix soil situated atop the tailings sand aquifer material. A 

berm was constructed around the perimeter of the Nikanotee Fen watershed to isolate the 

watershed from any surface water interactions from the adjacent landscapes and mine 

operations. Accordingly, the focus of this thesis is on the processes that operate within 

the boundary of the Nikanotee Fen watershed. A map that places the Nikanotee Fen 

watershed into the context of the surrounding landscape within Suncor’s Millennium 

mine lease is included in Daly et al. (2012). 

The surface of the LFH soil-capping layer in the upland was tilled in autumn 2013 

in an effort to increase the recharge to the upland aquifer by increasing the detention of 

surface water and the surface infiltration capacity. A total of 297 tilled furrows were 

created in the upland, oriented perpendicular to the slope of the surface topography, using 

a single dozer ripper shank (average dimension: 24 cm wide, 10 cm deep, 83 cm spacing 

between furrows). At the same time, the LFH soil-capping layer was removed from a 

small area directly behind each of the upland hummock landforms (except for the 

hummock adjacent to the peat-lined basin), with the objective of creating enhanced 

recharge zones. The intention was to remove the soil water storage capacity associated 

with this soil layer and to expose the tailings sand aquifer materials directly to 

atmospheric water inputs and surface runoff from the adjacent reclaimed slopes. These 
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areas were targeted due to field observations of ponded water behind hummocks 

following rain events. The excess LFH material was used to slightly extend the shape of 

the hummocks to the base of the adjacent slope (where possible).   

The focus of the current study is on the evaluation of the hydrological processes 

operating within the designed upland aquifer - fen system (e.g., the 'Suncor Pilot Fen', as 

outlined in Price et al., 2010; Daly et al., 2012; Pollard et al., 2012). This upland-fen 

system, along with several additional reclaimed and natural remnant landforms, 

comprises the greater Nikanotee Fen watershed. While fluxes from other components 

within the constructed watershed are also considered here (e.g., the 2007 and 2011 

reclaimed overburden slopes), they are evaluated in greater detail in Chapter four.  
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Figure 5-1 – Map of the Nikanotee Fen watershed in plan view (top) and cross-

section (bottom). Enlarged symbols with labels are referred to specifically in-text. Grey 
dashed and grey solid lines are 1 m and 5 m topographic contours, respectively. 

5.3 Methods  

5.3.1 Hydrophysical properties 

The hydrophysical properties of the reclamation materials were characterized 

using a combination of in-situ measurements conducted in the field, as well as laboratory 
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analyses of intact soil samples extracted from the field using hollow steel Shelby tubes 

(5.5 cm I.D. x 5 cm height). Soil samples from the field (2013 only; sample sizes 

specified in the results section) were wrapped in polyethylene film and carefully 

transported back to the laboratory for analyses. Once in the laboratory, soil samples were 

protected with screening on the bottom to minimize sediment loss during analyses. 

Standard soil analysis methods (e.g., Freeze and Cherry, 1979; Klute, 1986) were 

followed for measurement of soil parameters (e.g., total porosity, φ; specific yield, Sy; and 

bulk density, ρb). Saturated hydraulic conductivity (Ksat) was measured on a sub-set of 

samples in the laboratory prior to oven drying using a constant head test (Freeze and 

Cherry, 1979). Following oven drying (to a constant mass at 80ºC), soil samples were 

homogenized and clumps were broken using a mortar and pestle. Particle size distribution 

was analyzed using a Horiba Partica LA-950V2 laser scattering particle size distribution 

analyzer. Soil samples were subjected to a 20 second ultrasonic treatment and dispersed 

using a 0.1% sodium hexametaphosphate solution.  

A hydrological monitoring network that consisted of a combination of wells and 

piezometers was installed throughout the fen, transition zone and upland aquifer (Figure 

5-1). Wells and piezometers within the fen were constructed using slotted 2.54 cm I.D. 

polyvinylchloride (PVC) pipes (piezometers were only slotted at the bottom 20 cm) and 

wrapped with well screening to limit clogging. Screens were typically centered at 50, 75, 

90 and 150 cm below ground surface (cm bgs) within the peat, as well as in the petroleum 

coke layer at 225 cm bgs and in the underlying tailings sand layer at 275 cm bgs. In the 

transition zone and upland aquifer, stainless steel drive-point piezometers (Solinst 

Canada Ltd. model 615) were installed to 225 cm bgs (transition zone only) and 275 cm 

bgs using a Pionjar 120 percussion rock hammer and extended to the surface with steel 

drive pipe. Low-density polyethylene (LDPE) tubing (1.2 cm I.D.) was attached to the 

screened stainless steel drive-point and all measurements were made within, and water 

samples extracted from, the LDPE tube. Wells within the transition and upland zones 

were constructed in the same manner as previously described for the fen. Initial well 

installation in 2013 was done cautiously to avoid puncturing the thin geosynthetic clay 

liner that was deemed critical in maintaining a saturated zone within the upland (Price et 
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al., 2010). An assumed thickness of the reclamation materials in the upland was 

approximately 320 cm (300 cm tailings sand and 20 cm LFH reclamation soil-capping 

layer). Accordingly, wells were installed to a maximum targeted depth of ~275 cm bgs 

(maximum actual depth of installation was 294 cm bgs). This was a sufficient depth for 

the far southern portion of the upland, where the tailings sand layer was designed to be 

placed at a reduced thickness (Daly et al., 2012); however, the water table remained 

deeper than 275 cm bgs across a large swath of the middle of the upland aquifer 

throughout 2013. Accordingly, wells were extended and new (deeper) wells were 

installed throughout the 2014 field season to rectify this. Consequently, there was no 

information on the water table within the middle section of the upland during 2013, 

except that it was deeper than 275 cm below ground surface. 

Measurements of the surface infiltration capacity (f) of the LFH reclamation 

material in the upland were conducted in the field using a single-ring infiltrometer in both 

2013 (26 locations) and 2014 (37 locations). Measurements made in 2014 facilitated an 

estimate of the efficacy of remediation efforts undertaken in the autumn of 2013 (surface 

soil tilling), with f measured within tilled furrows (ffurrow, 17 locations) and between tilled 

furrows (fbetween, 20 locations). Field measurements of Ksat were made using bail tests 

within all wells and piezometers in the fen, transition and upland zones following the 

hydrostatic time-lag method (Hvorslev, 1951) in 2013, 2014 and 2015. The estimate of 

Ksat was considered as the arithmetic mean of triplicate measurements at each location 

and depth. Spatial heterogeneity of Ksat was also assessed in the shallow (50 cm bgs) peat 

by conducting triplicate bail tests on piezometers at 63 different locations across the fen 

(part of a different study conducted at the Nikanotee Fen). Note that Ksat data from 2015 

is included in this study to provide a third year of data to support the evaluation of the 

evolution of the hydrophysical properties of the reclamation materials used in the 

construction of the aquifers within the Nikanotee Fen watershed. All other hydrometric 

data and analyses pertain only to 2013 and 2014.  

5.3.2 Meteorological variables 

The components of the water budget were estimated for the constructed upland-

fen system from 17-May to 29-August in 2013 and 2014. Meteorological stations located 
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in the upland and fen consisted of Campbell Scientific CR1000 dataloggers that recorded 

30-minute average values of measurements taken every minute. These measurements 

included net radiation (Q*; Kipp and Zonen NR-LITE2 net radiometer in 2013, Kipp and 

Zonen CNR4 net radiometer in 2014; 2.5 m height), ground heat flux (Qg; REBS HFT-3; 

0.01 m depth), wind speed and direction (R.M. Young 05103 Wind Monitor; 2.75 m 

height), relative humidity and air temperature (Rotronic HC2S3; 2.5 m height) and 

precipitation (P; Texas Instruments TR-525M tipping bucket). Precipitation was only 

recorded at the upland meteorological station, but a secondary tipping bucket rain gauge 

(Hobo RG3) was located at a meteorological station on the reclaimed slope to the east of 

the upland-fen system for verification and gap-filling. Both rain gauges were located 

within the 32.1 ha watershed.  

An eddy covariance (EC) system was also deployed at both the upland and fen 

meteorological stations for estimation of actual evapotranspiration (AET). Each EC 

system included a 3-dimensional sonic anemometer (Windmaster Pro, Gill Instruments, 

Lymington, United Kingdom) and closed-path infrared gas analyzer (IRGA; LI7200, LI-

COR Inc., Lincoln, Nebraska, USA) placed 2.5 m above the ground surface in the Upland 

and 2.5 m above the vegetation surface in the Fen. Both EC systems sampled at a 

frequency of 20 Hz and measurements were averaged every 30 minutes. IRGAs were 

calibrated at the beginning and end of each study period using a zero gas and two-point 

span calibration to account for any drift in sensor sensitivity, which remained less than 

5% over the duration of each study period. Raw EC data were processed using EddyPro 

software (version 5.2.1; LI-COR Inc., Lincoln, Nebraska, USA) where corrections were 

applied for coordinate rotation (double rotation; Kaimal and Finnigan, 1994), time lag 

and sensor separation (Fan et al., 1990), density effects (Burba et al., 2012) and periods 

of low turbulence based on the inflection point of frictional velocity (u*) and energy 

balance closure (Foken, 2008; Brown et al., 2014; Petrone et al., 2015). Approximately 

30% of data were lost and gap filled using the mean over 14-day periods (Falge et al., 

2001). A footprint analysis (Kljun et al., 2004) was used to ensure water fluxes from 

outside the boundaries of the constructed Fen and Upland were not included in flux 

calculations for each distinct landscape. These estimates of AET were compared to 
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potential evapotranspiration (PET) estimated using the radiation-based Priestley-Taylor 

equation and an alpha coefficient equal to one (Priestley and Taylor, 1972). 

5.3.3 Soil moisture and groundwater dynamics  

Volumetric water content (VWC) was measured at least hourly during the study 

period, with reduced measurement frequency during the autumn (every two hours) and 

winter (twice daily) months using soil moisture probes (Stevens Hydra II Probe) 

connected to Campbell Scientific CR1000 dataloggers.  Probes were installed at four 

locations within the fen in arrays of 5, 10, 15, 30 cm bgs (two locations) and 0, 5, 10, 30 

cm bgs (two locations). Four probe arrays were also installed at soil moisture stations 

throughout the upland, including one array in the transition zone portion of the upland 

and one in the peat-lined basin (Figure 5-1). These probes were installed according to the 

actual thicknesses of the capping soil layer, with the general arrangement at 5, 10, 15 cm 

bgs, base of capping soil layer, top of tailings sand layer, 60, 100, 150 cm bgs. The 

calibration function developed for the Hydra II probe by Seyfried et al. (2005) was used 

for mineral soils, while independent calibration curve functions were derived for organic 

soils (peat within the fen and the peat / mineral mix in the peat-lined basin) following 

standard methods (e.g., Jacobsen and Schjønning, 1993) in the laboratory using intact soil 

samples extracted from the field.  

Water levels in all piezometers and wells were manually measured every 5 – 7 

days (with minimal exception) from May to August each year. Concurrent measurements 

of the depth to ground frost were made at each piezometer nest (fen only) using an 

incremented steel rod inserted into the ground until an ice layer was encountered. The 

average value of five measurements taken randomly within an (undisturbed) area of ~4 

m2 around each nest was considered to be representative. Water levels in a sub-set of 

wells and piezometers were recorded every 30 – 60 minutes using a combination of 

logging pressure transducers (Schlumberger Mini-Diver) and capacitance water level 

recorders (Odyssey Dataflow Systems Ltd.). Water table contour maps were generated 

using Surfer® 12 (Golden Software, LLC) and a point kriging gridding technique. 

Annual surveys were conducted to determine the location and elevation (± 0.005 m 
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vertical accuracy) of all instrumentation using a Topcon HiPER GL RTK GPS system 

(2013) and a Leica Geosystems Viva GS14 GNSS RTK GPS system (2014).  

Change in storage of the unsaturated zone at each soil moisture station was 

estimated as the summation of the seasonal change in VWC multiplied by the thickness of 

the soil layer within which the VWC measurement was centered. The seasonal change in 

water table level was used to provide an estimate of storage changes in the saturated zone 

within the upper, mid and transition zones of the upland, as well as for the fen peatland. 

These estimates were aerially weighted to provide separate change in storage values for 

each the upland and fen, which were subsequently combined and aerially weighted again 

to provide an estimated total change in storage (unsaturated and saturated zones) for the 

combined upland-fen system each year. 

5.3.4 Groundwater fluxes  

Groundwater fluxes from the upland aquifer to the fen were calculated using 

Darcy’s law,  

𝑞 =
𝑄
𝐴 = −𝐾!"#

𝑑ℎ
𝑑𝑙  (5-1) 

where q is the specific discharge (m s-1), Q is the volumetric discharge (m3 s-1), A 

is the cross-sectional area of the flow face (m2) and dh/dl is the hydraulic gradient (i.e., 

the change in head, dh, divided by the change in length, dl, between the measurement 

points; unitless).  

Specific discharge fluxes to the Nikanotee Fen through the petroleum coke 

underdrain and underlying tailings sand layers were estimated using the vertical hydraulic 

gradient between the piezometer installed in the underdrain layer (extends beneath entire 

fen) and the elevation of the water table in the peat for each nest in the fen and each date 

of measurement individually, using Equation (5-1). Since the Ksat of the peat within the 

Nikanotee Fen is isotropic (Nwaishi et al., 2015b) but displayed layered heterogeneity 

with depth (i.e., Ksat varied with depth), the equivalent vertical hydraulic conductivity 
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through the system of layers within the peat deposit (Kz) was estimated at each nest 

according to Freeze and Cherry (1979),  

𝐾! =
𝑑
𝑑! 𝐾!!

!!!!!
 (5-2) 

where d is the total thickness of the peat deposit (2.0 m), and di and Ki are the 

thickness and saturated hydraulic conductivity of each peat layer, respectively. Most 

nests had measurements of Ksat at 50, 90 and 150 cm depths, which were used as the 

center of each of the (three) peat layers used to estimate Kz. The geometric mean of all of 

the peat Ksat measurements in the fen was used for the flux estimates at one of the 13 

nests (due to unreliable Ksat measurements there). If the vertical gradient was not 

available for a nest on a particular date, the average vertical gradient from all of the nests 

within the fen for that date was used. Fluxes at all nests were then averaged for each 

measurement date to provide an estimate of the site-scale vertical groundwater fluxes 

(qvert) within the fen. Vertical fluxes were considered to be zero at nests where ground 

frost was present. Once the ground frost became patchy at an individual nest (indicated 

by depth-to-frost measurements in excess of ~60 cm, or where frost was not 

encountered), fluxes from this nest were included in the estimate and scaled 

proportionally to the number of nests that had frost remaining.  

Horizontal groundwater fluxes from the upland aquifer to the fen through the 

petroleum coke underdrain and underlying tailings sand layer at the toe of the upland 

aquifer are accounted for in the estimate of qvert. Driven by the large variation in the Ksat 

of the reclamation materials, the horizontal fluxes across the fen peat / tailings sand 

interface (i.e., above the underdrain layer) at the toe of the upland aquifer could not be 

estimated using the Dupuit-Forchheimer approximation, since vertical hydraulic 

gradients were present (Freeze and Cherry, 1979). Thus, it was assumed that flow was 

primarily refracted downwards and that the primary flux was through the petroleum coke 

underdrain layer. For the seasonal groundwater flux estimate, the daily site-scale flux 

estimates were multiplied by the number of days between measurements. This introduced 

some additional uncertainty to the estimates of groundwater flow, since an implicit 
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assumption is that the hydraulic gradients are constant between measurements, which is 

not the case. The average time between measurements was six days, with the exception of 

two measurement intervals that were longer (~2 weeks) due to site access and personnel 

issues. Estimating the seasonal fluxes in this manner, as opposed to computing a daily 

average for the study period and multiplying this by the number of days in the study 

period, should minimize the impact of this assumption. Note that these groundwater 

fluxes were only estimated for the 2014 study period because the presence and 

persistence of ground ice during the first half of the 2013 season delayed the installation 

of many of the wells and piezometers necessary for this analysis until later in the study 

period.  

5.3.5 Runoff 

Runoff (R) from the catchment in 2013 was measured at a Palmer-Bowlus type 

flume equipped with a logging pressure transducer (Schlumberger Mini-Diver) and 

located directly downstream of a spillbox installed at the discharge point of the fen 

(Figure 5-1). The majority of discharge flow rates measured within the flume in 2013 

were less than the lower limit of the flow rates appropriate for use of the engineering 

equation developed specifically for the flume. Accordingly, an independent rating curve 

was developed for conditions of low flow using periodic (~weekly) manual 

measurements of discharge made within the flume (using a current velocity meter) and at 

the outlet of the discharge pipe using a bucket and stopwatch. In 2014, runoff was 

measured at a v-notch weir that was installed in a distinct channel that developed directly 

upstream of the flume and spillbox. Stage was recorded every 30 minutes using a logging 

pressure transducer (Schlumberger Mini-Diver) and manual discharge measurements 

were made every other day to develop a rating curve.  

5.3.6 Isotopes 

Water samples were collected from selected wells, piezometers, the fen outlet and 

ponded water within the fen on an approximately monthly basis during 2013 and 2014. 

Samples of rainwater were also obtained at least monthly using a rain gauge specially 

designed for isotopic sampling of precipitation (constructed following the design 
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developed by the International Atomic Energy Agency - Global Network of Isotopes in 

Precipitation; IAEA/GNIP). Water samples from the field were filtered within 24 hours 

using 0.45 µm nitrocellulose membrane filters and stored in tightly sealed 10 mL 

scintillation vials with no head space at 4°C for isotope analyses. Isotopic analyses for 

δ18O and δD were completed at the Biotron Experimental Climate Change Research 

Centre at Western University using a Picarro L2120-i Cavity Ring-Down Spectroscopy 

analyzer. This technique yields an analytical precision of ±0.5‰ for δD and ±0.1‰ for 

δ18O. 

5.4 Results 

5.4.1 Hydrophysical properties of reclamation materials 

Standard soil hydrophysical properties for all materials used in the construction of 

the Nikanotee Fen watershed are reported in Table 5-1. All materials exhibited a 

considerable range of variability in Ksat, as demonstrated by frequency distribution 

analyses (Figure 5-2). This variability was greatest in the fen peat, in which Ksat varied by 

approximately three orders of magnitude. The fen peat tended to have the lowest Ksat, 

followed by the tailings sand material used to construct the upland aquifer and the 

petroleum coke underdrain layer, while the LFH soil-capping layer had the highest Ksat. 

Each of these reclamation materials is discussed in greater detail below. 

5.4.1.1 LFH soil-capping layer  

Particle size distributions of the LFH reclamation materials used as a soil-capping 

layer in the upland were variable, with a mean soil classification of sandy loam (52% 

sand, 42% silt and 6% clay; n = 26). The soil classification of individual LFH soil 

samples included clay loam, sandy clay loam, loam and sandy loam. In-situ 

measurements of f resulted in geometric mean f values of 41 and 91 mm hr-1 in 2013 and 

2014, respectively (Figure 5-3). The 2013 f value is in good agreement with the 

laboratory-based estimates of Ksat (47 mm hr-1) measured on cores that were extracted 

from the field in 2013 (Table 5-1). Infiltration measurements from 2014 that were 

conducted within tilled furrows (ffurrow = 128 mm hr-1) were nearly two times greater than 
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measurements made between tilled furrows (fbetween = 68 mm hr-1; Figure 5-3), although 

the overlapping notches on the boxplots in Figure 5-3 indicates that their medians are not 

statistically different at p = 0.05 (Chambers et al., 1983). Similarly, the notches of the 

2013 and 2014 f data also overlap, which indicates that the measured inter-year increase 

in f is not statistically significant.  

Table 5-1 – Hydrophysical properties of the materials used in the construction of 
the Nikanotee Fen watershed. Ksat values for the tailings sand, peat (50 – 200 cm) and 
petroleum coke represent the geometric mean of all field Ksat tests conducted at all 
depths in 2013 – 2015.  Ksat of the LFH, peat / mineral mix and shallow peat (0 – 50 cm) 
are lab-based estimates. 

 
Average = arithmetic mean; Average* = geometric mean; SD = standard 

deviation. 

5.4.1.2 Fen peat 

In the constructed fen, Ksat generally decreased with depth (Figure 5-4), with the 

geometric average Ksat in the upper (0 – 50 cm) peat layers nearly two orders of 

magnitude higher than that of the deeper (50 – 200 cm) peat layers (Table 5-1).  At all 

depths within the fen, Ksat increased substantially from 2013 to 2014 (Figure 5-5), with 

the greatest increase at 90 cm depth. In 2015, Ksat only continued to increase at 150 cm 

depth in the peat; however, 2015 values remained above the initial Ksat measured in 2013 

throughout the peat profile (Figure 5-5). In addition to the values of Ksat measured at the 

locations that comprised the routine monitoring points (e.g., well/piezometer nests in 

Figure 5-1), Ksat was estimated at 63 supplementary locations in 2014 to quantify the 

extent of spatial heterogeneity within the placed peat deposit. These data indicated that 

 ρb (g cm-3) φ (fraction) Ksat (m s-1) 

Material Average ± SD n Average ± SD n Average* Max Min n 

LFH 1.33 0.19 21 0.50 0.07 21 1 x 10-5 2 x 10-4 5 x 10-7 21 

Tailings sand 1.45 0.14 19 0.45 0.05 19 4 x 10-6 3 x 10-5 1 x 10-7 58 

Peat 
0 – 50 cm 0.18 0.04 36 0.92 0.02 36 8 x 10-5 2 x 10-4 5 x 10-5 12 

50 – 200 cm 0.22 0.03 28 0.87 0.02 28 2 x 10-6 4 x 10-5 3 x 10-8 127 

Petroleum coke - - - - - - 6 x 10-6 5 x 10-5 9 x 10-8 44 

Peat / mineral mix 1.02 0.12 13 0.64 0.05 13 6 x 10-7 2 x 10-6 1 x 10-7 6 

 1 
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Ksat at 50 cm depth spanned nearly two orders of magnitude (3 x 10-5 to 2 x 10-7 m s-1) 

throughout the fen (data not shown), and were, on average, lower (geometric mean = 4 x 

10-6 m s-1) than at the same depths at the routine monitoring points (1 x 10-5 m s-1).  

5.4.1.3 Tailings sand and petroleum coke underdrain 

The tailings sand from the upland aquifer was classified as either sand (68% of 

samples) or loamy sand (32% of samples), with the mean classification of sand (88% 

sand, 11% silt, < 1% clay; n = 26). Saturated hydraulic conductivity varied by 

approximately two orders of magnitude in the upland tailings sand aquifer (Figure 5-2 

and Table 5-1) and tended to be relatively stable over time, with a slight increase in Ksat 

measured in 2015 (Figure 5-5). In contrast, the Ksat of the petroleum coke underdrain 

layer varied by three orders of magnitude and demonstrated a larger inter-year increase 

than the tailings sand material. The layer of tailings sand material located beneath the fen 

(250 – 300 cm bgs; see Figure 5-1) had a lower and more variable Ksat than the same 

material used to construct the upland aquifer (Figure 5-4). 

 
Figure 5-2 - Cumulative frequency distribution of Ksat for the reclamation 

materials used in the construction of the Nikanotee Fen watershed. Note that the fen peat 
curve represents Ksat from 50 – 200 cm depth. All materials represent field-based 
estimates of Ksat except for LFH, which is based on measurements made in the laboratory 
(see methods section). All data from all years are included. 
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Figure 5-3 - Notched boxplots of the surface infiltration capacity of the LFH soil-

capping layer in 2013 and 2014 (left side) as well as within tilled furrows (ffurrow) and 
between tilled furrows (fbetween) (2014 only, right side). n = 26 and 37 locations for 2013 
and 2014 , respectively (n= 17 and 20 for tilled furrow and between, respectively). 
Significant differences (at p = 0.05) occur if adjacent notches do not overlap.  

  
Figure 5-4 - Ksat with depth in the fen and upland (2013 data shown). Material 

type noted on the secondary y-axis. Original design specifications targeted Ksat of 10-5, 
10-2 and 10-4 m s-1 for peat, petroleum coke and tailings sands materials, respectively 
(Daly et al., 2012). 
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Figure 5-5 - Ksat of the different reclamation materials over the first three years 

following placement (in 2012). Note: the data displayed here only represent locations 
where repeated measurements were possible each year.  

 

5.4.2 Water fluxes in the upland – fen system 

5.4.2.1 Precipitation  

The Nikanotee Fen watershed received 257 and 201 mm of P during the 2013 and 

2014 study periods (17-May to 29-August), respectively, which represented 

approximately 114% and 89% of the long-term average precipitation for the same time 

period (Environment Canada, 2011). Both 2013 and 2014 were dominated by small 

(median < 3 mm), short-duration P events (Figure 5-6), with over 60% of the total P in 

the first half of both study periods. However, the start of the 2013 study period was dry, 

with less than 1 mm of P received during the first two and a half weeks. This dry period 

was followed by an atypically wet June, when the monthly total P received at the study 

site (139 mm) was 190% the monthly climatic P normals (Environment Canada, 2011). 

Precipitation was more evenly distributed throughout the study season in 2014, which 
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started with a wet period (relative to monthly climate normals; Figure 5-6D) in May and 

monthly P totals that remained below or comparable to the climatic normals for the 

remainder of the study period. Large P events occurred infrequently in both years, with 

24% (2013) and 18% (2014) of P events greater than 10 mm. In 2013, large P events 

were typically low intensity (only one event exceeded 10 mm h-1) relative to the smaller, 

high intensity events observed in 2014 (six > 10 mm h-1). The largest storm in 2013 

delivered 61 mm of P over a 48-hour period (maximum intensity of 3.2 mm h-1), whereas 

the largest storm in 2014 was 41 mm over 19 hours and more intense (maximum intensity 

of 5.4 mm h-1).  

 
Figure 5-6 - Frequency distribution of A) depth, B) intensity and C) duration for 

precipitation events during 2013 (34 events) and 2014 (39 events). D) Total monthly 
precipitation during the 2013 and 2014 study periods (17-May to 29-August) and the 
long-term average (1981 – 2010) total monthly precipitation for Fort McMurray 
(Environment Canada, 2011).  
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5.4.2.2 Evapotranspiration 

Cumulative PET exceeded AET in the fen in 2013 and in the upland in both 2013 

and 2014. Average daily AET rates were much higher in the fen than in the upland, which 

resulted in the total AET from the fen exceeding the upland by 80 and 219 mm in 2013 

and 2014, respectively (Table 5-2). This is a consequence of the substantial variation in 

the partitioning of available energy between the upland and the fen systems. Although the 

average fluxes of Q*, Qg, sensible (Qh) and latent (Qe) heat exhibited the typical diurnal 

parabolic rise and fall in both the upland and fen, daily average midday (11:00 to 17:00) 

Qe exceeded Qh in the fen, while they remained comparable in the upland (Figure 5-7). 

This resulted in average midday β of 1.05 and 0.44 for the upland and fen, respectively 

(2014 values), which reflects the influence of the wet conditions within the fen on the 

energy partitioning in constructed systems. The seasonal total AET from the fen was 

similar to the P inputs in 2013 (P-AET = 6 mm); however, AET greatly exceeded P in 

2014, which resulted in a water deficit (i.e., P-AET < 0) of 181 mm within the fen. 

Conversely, lower AET fluxes from the upland generated a water surplus of 86 and 38 

mm in 2013 and 2014. AET rates from the fen and upland were weighted proportional to 

their respective areas (2.9 and 7.7 ha) to evaluate the losses from the combined upland – 

fen system (10.6 ha). This yielded daily average AET rates of 1.8 and 2.1 mm d-1 and 

seasonal AET losses of 193 and 223 for the 2013 and 2014 study periods, respectively.  

Table 5-2 – Evapotranspiration fluxes within the fen and the upland. 

 

 

 FEN UPLAND 
 2013 2014 2013 2014 

Total AET (mm) 251 382 171 163 

Daily average AET (mm d-1) 2.4 3.6 1.6 1.6 

AET/PET 0.87 1.07 0.83 0.72 

 1 
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Figure 5-7 - Seasonal average diurnal variability in net radiation (Q*), latent (Qe), 

sensible (Qh) and ground (Qg) heat flux in the upland and fen in 2014. 

 

5.4.2.3 Soil water dynamics 

Near-surface VWC responded to daily cycles of P and AET within the soil capping 

layers (i.e., the peat / mineral mix in the peat-lined basin and the LFH throughout the rest 

of the upland), with a generally dampened response towards the base of this layer where 

VWC was typically highest (Figure 5-8). The VWC regime at the top of the underlying 

tailings sand layer was distinct from that of the overlying soil capping layers, as it did not 

demonstrate the same extent of diurnal variability. In spite of being more consistently 

decoupled from atmospheric processes, P inputs did percolate through the soil-capping 

layer and into the tailings sand layer during and following P events. The magnitude of the 
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moisture conditions) and magnitude of each P event. For example, negligible P was 

received at the start of the 2013 study period in mid-May, which was followed by a wet 

period in early-June and several large P events that occurred with some regularity 

throughout the study period (approximately every two weeks; Figure 5-8). Much of the P 

water inputs received during these events drained through the profile of the soil-capping 

layer and into the tailings sand layer, as evidenced by the strong response in the VWC at 

the top of the tailings sand throughout the 2013 study period as well as by the response in 

the water table (Figure 5-9). In contrast, the predominance of small P events in the 

relatively dry mid-summer period of 2014 were, for the most part, insufficient to exceed 

the soil-water storage of the overlying soil-capping layer and, thus, the VWC response to 

P events within the top of the tailings sand layer occurred less frequently in 2014. Hence, 

substantial VWC responses within the tailings sand only occurred during the largest two P 

events in 2014 (late May and late July). Further, the tailings sand beneath the peat-lined 

basin exhibited a prolonged return to pre-event moisture conditions following P events 

relative to areas that were overlain by the LFH soil-capping layer. This occurred due to 

the presence of a transient perched water table that developed within the peat / mineral 

mix soil-capping layer of the depressional peat-lined basin during large P events (only 

measured in 2013; Figure 5-8). The perched water table within the peat-lined basin 

persisted for an average period of over two days following a single P event (i.e., 

excluding perched water table levels that were sustained by more than one P event), with 

a perched water table present for over 28 days in 2013 (27% of study period). Note that 

this perched water table was observed above the persistent underlying water table within 

the upland aquifer at the same location.  
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Figure 5-8 - Precipitation (A) and volumetric water content (VWC) within the 

peat-lined basin (B) and the upland (C) during the 2013 and 2014 study periods. The bold 
line in B indicates the perched water table (WT) within the peat-lined basin (only 
measured in 2013). All measurement depths (indicated on the figure) are expressed as cm 
below ground surface. Note that the discrepancy in the depth of the top of the tailings 
sand layer is the result of variations in the thickness of the soil-capping layer. Data in (B) 
and (C) are from the soil moisture stations labeled as 1 and 2 on Figure 5-1, respectively.  

 

5.4.2.4 Water table dynamics 

The water table was relatively deep in the upland, transition and fen portions of 

the Nikanotee Fen watershed at the start of the 2013 study period (Figure 5-9). This was 

an artifact of the placement of the reclamation materials at a relatively low water content 

(in spite of the water applied to the upland and precipitation recharge during the 

construction phase). Following this initially dry phase, water table levels throughout the 

watershed responded strongly to several large rainfall events in early June 2013. For 

example, water table elevation increased by 22, 60 and 46 cm in wells in the upland, 
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transition (near-fen zone of the upland) and fen, respectively, over a 12-day period in 

early June 2013. Variations in the water table elevation in the fen and the transition zone 

of the upland were smaller in 2014 than 2013. Annual patterns of early-season 

groundwater recharge (i.e., water table rise) were apparent in the upland aquifer in early 

to mid-June in both 2013 and 2014 (Figure 5-9), which was well after the spring 

snowmelt period ended. However, many of the wells that were installed in the upland 

during the first half of the 2013 season remained dry until they were extended to greater 

depths in May 2014 (see Methods section).  Nonetheless, the routine monitoring of these 

(dry) wells indicated that the water table remained deeper than 275 cm bgs within much 

of the upland throughout 2013. Upon extending the depth of the wells (and installing 

new, deeper wells) in the middle section of the upland in 2014, the average water table 

level was 290 cm bgs, which increased to 273 cm bgs by August 2014.   

In the fen, water table levels stabilized by mid-June 2013 and remained high for 

the remainder of 2013 and throughout 2014 (Figure 5-9). Persistent ponded water was 

present in localized depressions in the surface of the placed peat and near-saturated 

conditions were sustained elsewhere across the fen. For example, frequency distributions 

of water table position during the 2014 study period indicated that the water table in the 

fen was at or above the peat surface nearly 50% of the time (Figure 5-10A). In addition, 

the water table position was within ±10 cm of the surface of the fen for approximately 

60% of the water table measurements. Monthly water table data from 2014 indicated a 

slight drying of the fen and deeper water table levels during June and July following a 

wet period in May, with a slightly higher median water table in August than the 

preceding two months (Figure 5-10B). The water table sloped gently from the southwest 

towards the discharge point of the fen in the northeast, with small horizontal hydraulic 

gradients across the fen (average = 0.001 ± 0.0005 standard deviation; Figure 5-11). The 

horizontal gradients, or slope of the water table within the fen, showed little difference 

between wet and dry conditions, with an overall range of 0.002 to 0.0007.  
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Figure 5-9 - Precipitation (black bars; top panel), water table elevation (middle 

three panels) and discharge (bottom panel) for the Nikanotee Fen watershed in 2013 and 
2014. Water table elevations expressed as absolute elevation (meters above sea level, 
masl;	 z = ground surface elevation). Circles represent δ18O signatures of groundwater 
sampled from each well / surface water sampled at the fen outlet. Data for the upland, 
transition and fen wells are from the wells labeled A, B and C on Figure 5-1, 
respectively. 
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Figure 5-10 – A) Frequency histogram (bars; upper horizontal axis) and frequency 

distribution (line; lower horizontal axis) for the water table position within the Nikanotee 
Fen during the 2014 study period. B) Boxplots of monthly water table position within the 
Nikanotee Fen. All water table positions expressed as cm relative to ground surface; 
positive = depth of ponded water; negative = distance below ground surface.  
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Figure 5-11 - Water table elevation contours in the Nikanotee Fen during wet (19-

June-2014), dry (22-July-2014) and typical (2-July-2014) conditions (meters above sea 
level; 2 cm contours). Circles are measurement points (nest locations) with the symbol 
size scaled relative to the magnitude of the average vertical hydraulic gradient at each 
nest on the date measured (upwards gradients). 
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5.4.2.5 Storage changes 

The lack of reliable observation points in much of the upland (due to wells that 

remained dry all study season) introduces considerable uncertainty in the estimates of 

groundwater recharge to the upland aquifer. Nevertheless, an aerially weighted change in 

water table position at the known measurement points, coupled with the assumption that 

this water table change was the same in areas where measurements were not possible 

(saturated zone below deepest measurement point at start of 2014 season), provided an 

estimated change in storage of the saturated zone of 90 and 52 mm within the upland 

aquifer over the 2013 and 2014 study periods, respectively. The large water table rise in 

the fen in early 2013 resulted in large saturated zone storage gains (103 mm). However, 

the small size of the fen relative to the upland reduces the influence of these large storage 

changes on the overall storage term for the combined upland – fen system. Higher VWC 

within the unsaturated zone throughout the upland aquifer and fen at the beginning of the 

2014 study period resulted in a slight loss of water from storage (9 mm) during the course 

of the season, which partially offset water storage gains due to water table rise. The 

storage term for the 2014 study period was less than that of the 2013 period, mostly due 

to the large water table rise observed throughout the watershed in early 2013 (Figure 

5-9). 

5.4.2.6 Groundwater fluxes from the upland aquifer to the Nikanotee Fen 

The seasonal average vertical hydraulic gradient within the Nikanotee Fen was 

0.015, with a site-averaged range of 0 to 0.035 for all of the 2014 measurement dates. 

The vertical hydraulic gradient varied considerably between nests within the fen on any 

given measurement date, often by as much as two or three orders of magnitude. However, 

gradients measured near the toe of the upland (median = 0.02) were consistently greater 

than the gradients measured towards the discharge point of the fen (0.01; Figure 5-12). 

Both upwards (positive) and downwards (negative) gradients, hence groundwater fluxes, 

were occasionally measured within the fen on the same measurement date, with 

downward gradients comprising less than 15% of all measurements. Negative gradients 

were typically small and, thus, were masked in the calculation of the site-averaged 

groundwater fluxes and hydraulic gradients. Vertical hydraulic gradients were highest 
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when ground frost was present, with an average of 0.02 and 0.009 with and without 

ground frost, respectively, and exhibited a general decreasing trend as the summer 

progressed. However, vertical fluxes were strongly reduced by the presence of ground 

frost within the fen in the early portion of the season, which persisted at some locations 

until early July (Figure 5-13). The estimated average daily vertical groundwater flux from 

the upland aquifer to the fen during the 2014 study period was ~1.8 mm d-1. The total 

vertical groundwater flux from the upland aquifer to the fen was approximately 177 mm 

over the 2014 study period, although this could change depending on the manner in 

which Ksat is averaged at each nest (i.e., according to Equation 5-2 or using the geometric 

mean – see Discussion section). Horizontal hydraulic gradients based on the water table 

elevation between the upland aquifer and fen were typically small, with a seasonal 

average gradient of ~0.007 between the peat and upland tailings sand aquifer in the near-

upland (transition) zone of the upland. However, since the Ksat of the petroleum coke 

undrain layer exceeded that of the fen peat and the tailings sand aquifer (2014 data; 

Figure 5-5), groundwater from the tailings aquifer would be refracted downward to the 

higher hydraulic conductivity petroleum coke underdrain layer (Freeze and Witherspoon, 

1968), and then become part of upward flux of water from the petroleum coke underlying 

the fen, towards the surface. Had we used the Dupuit assumption to calculate flow 

through the 440 m2 flow face between the sand and the peat, the flux (148 m3) represents 

only 5 mm of water to the fen over the course of the 2014 study period. Since this 

represents < 3% of the net vertical groundwater flux to the fen, the uncertainty caused by 

the complex groundwater flowpaths is considered negligible and ignored. It is also 

possible that the overall slope of the underlying GCL basal liner (3%) controlled 

horizontal groundwater fluxes from the upland to the fen. Although this conceptual 

model is not tested in this thesis, it warrants consideration in future interpretations of 

groundwater fluxes.  
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Figure 5-12 - Vertical hydraulic gradients at different transect positions across the 

Nikanotee Fen (2014 data only). The ‘margin’ transect is the closest to the upland 
aquifer, while the ‘lower’ transect is the closest to the discharge point of the fen. See 
Figure 5-1 for transect positions.  
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Figure 5-13 – Vertical groundwater fluxes from the upland aquifer to the 

Nikanotee Fen (A), vertical hydraulic gradients between the petroleum coke underdrain 
layer and the fen water table (B) and depth to ground frost (and proportion of nests where 
continuous ground frost was encountered) measured within the Nikanotee Fen (C). All 
data are from the 2014 study period. 
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5.4.2.7 Runoff 

Runoff at the outlet of the fen responded rapidly to intense P events in both years 

(Figure 5-9). Similar average daily runoff rates (~0.4 mm d-1) and total seasonal runoff 

(41 mm) were observed in 2013 and 2014 for the upland – fen system.  However, runoff 

tended to be flashier (i.e., higher peak runoff and steep hydrograph recession limbs) in 

2013 than 2014, with a greater tendency for sustained low daily runoff rates in 2013 

(85% of daily runoff rates < 0.5 mm d-1). Conversely, although the maximum observed 

daily runoff rate was lower in 2014, there was a greater tendency for mid-range (i.e., 0.5 

– 1.0 mm d-1) runoff rates compared to 2013. For example, 30% of daily runoff rates 

exceeded 0.5 mm d-1 in 2014 compared to 15% of those observed in 2013. During 2013, 

water was occasionally manually pumped out of the fen to facilitate planting of 

vegetation in the fen. This pumping was directed through the spill box / flume and 

accounted for; however, the short pumping duration (~12 hours combined over a total of 

six days) contributed minimally to the daily and seasonal runoff rates (total water 

pumped from fen was ~4 mm).  

5.4.3 Isotopes 

The local meteoric water line (LMWL) determined using the δ18O and δD of 

individual summer rainfall samples (collected between May to September 2013 and 

2014) and snow samples collected during March and April 2013, has the form, 

𝛿!𝐻 = 7.9𝛿!"𝑂 + 7.2 . (5-3) 

This is similar to that defined for Syncrude Canada’s Mildred Lake mine (δ2H = 

7.0 δ18O -18.6) located ~20 km northwest of the Nikanotee Fen watershed (Baer, 2014). 

The isotopic composition of summer rainfall events demonstrated minimal variability, 

with δ18O values between -11.8 and -16.8‰ and δD values between -78.6 and -133‰ 

(Figure 5-14). The volume-weighted mean δ18O and δD was -15.0‰ and -112.7‰, 

respectively, for all rain samples collected in 2013 and 2014. The isotopic composition of 

rainwater was considerably heavier than that of snow samples, which clustered between 

δ18O values of -24.7 to -28.2‰ and δD values between -190.8 and -211.4‰. Fen 
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discharge water had enriched δ18O values, especially later in the 2014 season (see Figure 

5-9), which indicates evaporative effects. Groundwater samples from the upland 

generally plotted along the LMWL, which implies minimal isotopic enrichment via 

evaporation at the surface. However, upland groundwater samples from 2013 are slightly 

offset to the right of the LMWL, which is a partial reflection of the source of the water 

(surface water) that was applied to the upland during construction. Accordingly, 

groundwater from the upland aquifer had lower δ18O values (-18.4) than the volume-

weighted mean rainfall value (-15.0), trending towards the depleted signature of snow 

during the course of the 2013 and 2014 seasons (Figure 5-14 inset and Figure 5-9). This 

suggests that snowmelt might be an important component of the annual groundwater 

recharge.  

 

 
Figure 5-14 - Isotopic signatures of water sampled throughout the Nikanotee Fen 

watershed during 2013 (open symbols) and 2014 (shaded symbols). Groundwater 
samples from the upland in 2013 and 2014 are shown in the inset figure. All groundwater 
samples are from wells, except for the FEN samples, which were from shallow 
piezometers (50 cm depth). 
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5.5 Discussion 

5.5.1 Summary of water budget components in the upland – fen system  

Based on the results presented above, the water budget identifies the magnitude 

and distribution of water fluxes within a watershed, such that  

𝑃 + 𝑅!"#$% + 𝐺𝑊!" = 𝐴𝐸𝑇 + 𝑅 + 𝐺𝑊!"# + ∆𝑆 ± 𝜀 (5-4) 

where Rslope is surface runoff from the reclaimed slopes (includes shallow 

subsurface flow, when present); GWin and GWout are the groundwater exchanges between 

the upland – fen system and the underlying substrates (both considered negligible owing 

to the isolating effect of the basal liner); R is the runoff measured at the outflow of the 

fen; ΔS is the total change in storage of the unsaturated and saturated zones; and ε is the 

residual term (other terms as previously defined).  

The largest hydrologic flux from the constructed upland – fen system was AET, 

which represented 75% and 111% of P inputs during the 2013 and 2014 study periods, 

respectively (Table 5-3). Daily AET rates in the fen were much greater than in the upland 

(Table 5-2), as driven by persistent near-saturated conditions within the fen (Figure 5-10) 

and the dominant partitioning of available energy to Qe (Figure 5-7). Precipitation 

dynamics exhibited a strong control on Rslope, which represented an occasional but 

important contribution of water for the upland-fen system. The majority of this water 

influx occurred via infiltration-excess overland flow generated on the recently reclaimed 

2011 slopes to the south-east and west of the upland-fen system during P events that 

exceeded an intensity of 3 mm h-1 (as discussed in Chapter four). This occurred on the 

2011 slopes during 25% (total = 60 mm) and 17% (total = 61 mm) of P events during 

2013 and 2014, respectively. In contrast, the reclaimed 2007 slope to the east stored most 

of the precipitation inputs and provided only infrequent water fluxes to the designed 

upland-fen system (< 1 mm and 6 mm in 2013 and 2014, respectively). The total water 

inputs from all reclaimed slopes in the watershed to the upland-fen system were 60 and 

67 mm in 2013 and 2014, respectively, with water fluxes from the 2007 slope comprising 

less than 10% of all water inputs to the designed system.  
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Total runoff over the 2013 and 2014 study periods was similar (41 mm) but with 

different runoff ratios of 16% and 20% for 2013 and 2014, respectively (expressed 

relative to the upland and fen only). The lower runoff ratio in 2013 is a reflection of 

differing P characteristics and soil storage dynamics in each year. For example, over 50% 

of the P input during the 2013 study season was received during June (Figure 5-6). 

However, much of this water went into groundwater recharge and soil water storage, as 

reflected in the large water table rise observed throughout the watershed in June 2013 

(Figure 5-9) and the prominent response in VWC in the unsaturated zone (Figure 5-8). 

Hence, the runoff response at the outlet of the fen was low during the first half of this wet 

period in 2013 (Figure 5-9) and the seasonal change in storage was large (Table 5-3). In 

contrast, water table levels were already high at the start of the 2014 study period in the 

transition zone of the upland and the fen (Figure 5-9), owing to the 109 mm of water 

stored during the 2013 study period (Table 5-3), which was partitioned between soil 

water storage (16 mm) and groundwater recharge (93 mm). Consequently, in 2014 runoff 

was favoured over water storage in the transition zone and fen, as reflected by their high 

and stable water table levels. Groundwater recharge was prominent in the upper reaches 

of the upland aquifer early in the 2014 study period (Figure 5-9).  

Groundwater recharge to the uplands aquifer was constrained somewhat by the 

high soil water storage capacity of the LFH reclamation soil-capping layer, which was 50 

to 125% thicker than the 20 cm targeted thickness. The f of the LFH materials was highly 

spatially variable, with a range of ~4 to 400 mm hr-1 (Figure 5-3), which was sufficient to 

facilitate percolation of P water through this soil-capping layer and into the tailings sand 

layer under wet conditions (Figure 5-8). Consequently, groundwater recharge to the 

upland aquifer was controlled by P dynamics and tended to occur during P events that 

exceeded ~10 – 15 mm, as well as during events that occurred within the few days 

following a larger event. Thus, in spite of the increased f of the LFH soil-capping layer in 

2014 (Figure 5-3), recharge to the upland aquifer was greater in 2013 due to the more 

even distribution of larger P events compared to the relatively dry mid-summer period of 

2014 when recharge was minimal (Figure 5-8). Accordingly, total storage change in the 

upland – fen system was 109 and 29 mm in 2013 and 2014, respectively (Table 5-3).  
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Table 5-3 - The components of the water budget for the constructed upland-fen 
system in 2013 and 2014, and for the Nikanotee Fen (‘FEN ONLY’) in 2014 (all values 
in mm). P is precipitation; Rslope is surface runoff from the reclaimed slopes; R is the 
runoff measured at the outflow of the fen; ΔS is the change in storage of the saturated 
zone; ε is the residual term; % Error is calculated by dividing ε by the amount of P each 
year and multiplying by 100. 

 
* assumes that all of Rslope is received in the fen. Implications of this assumption 

are discussed in-text. 

 

5.5.2 Hydrological processes within the Nikanotee Fen 

Quantification of the hydrologic fluxes into and out of the Nikanotee Fen permits 

an assessment of the hydrological performance of the fen itself. Thus, computing a water 

budget where the fen is the area of interest can identify the relative importance of these 

hydrologic fluxes on sustaining wet conditions in constructed fen systems. The water 

budget of the Nikanotee Fen can be estimated by 

𝑃 + 𝑅!"#$% + 𝐺𝑊!"  = 𝐴𝐸𝑇 + 𝑅 + 𝐺𝑊!"# + ∆𝑆 ± 𝜀 (5-5) 

where GWin is the total groundwater flux from the upland aquifer to the fen, and 

GWout is the groundwater flow out of the fen. Note that all fluxes are expressed relative to 

the area of the fen (2.9 ha) instead of the area of the combined upland – fen system (10.6 

ha). This results in differences in some depth-normalized water budget components 

common to both the fen and the combined upland-fen systems (Table 5-3). However, 

these apparent discrepancies are an artifact of the difference in the area of interest to 

which the hydrologic fluxes are computed (e.g., R within Equation (5-5) was normalized 

to the area of the fen, whereas it was normalized to the area of the combined upland – fen 

 P Rslope GWin AET R GWout ΔS ε % Error 

2013 257 60 - 193 41 - 109 -26 10 

2014 201 67 - 223 41 - 29 -25 12 

FEN 
ONLY 
(2014) 

201 67* 177 382 148 0 1 -86 43 

 1 
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system in Equation (5-4)). Since the water contributions from the reclaimed slopes 

surrounding the upland-fen system (Rslope) were computed as a depth-flux estimated from 

precipitation data, it was assumed that the same flux as for the combined upland-fen 

system (67 mm) was also representative for the fen only. This likely underestimated 

Rslope, since some of the water flowing off of the reclaimed slopes was also delivered to 

the fen via overland flow from the upland. However, evaporation, surface detention, soil 

water storage and groundwater recharge within the upland likely minimized the 

magnitude of this underestimation. 

Evapotranspiration was the largest component of the water budget for the 

Nikanotee Fen (Table 5-3). AET was highest in the fen in 2014 (3.6 mm d-1), as sustained 

by higher and more stable water table levels (Figure 5-9), coupled with the persistence of 

flooded areas (Figure 5-10B) and extensive vascular vegetation cover. The partitioning of 

available energy within the fen favoured Qe over Qh in 2014 (Figure 5-7). Cumulative 

AET within the fen exceeded PET in 2014 (AET/PET = 1.07; Table 5-2). Substantial 

groundwater fluxes into the fen system from the upland aquifer helped to partially offset 

the large atmospheric losses from the fen via AET. Over the course of the 2014 study 

period, the fen received approximately 177 mm of groundwater input from the upland 

tailings sand aquifer. These groundwater fluxes were delivered to the fen almost entirely 

through the petroleum coke underdrain layer. This predominance is due to the design of 

the underdrain layer that was located beneath nearly the entire area of the fen (i.e., over 

an area of ~29 000 m2) and was also extended ~100 m into the upland aquifer (in the 

zone termed the transition zone of the upland, Figure 5-1). Thus, this layer facilitated 

widespread distribution and delivery of groundwater fluxes from the upland aquifer, 

while the horizontal groundwater fluxes were constrained by the small flow face of the 

upland tailings sand aquifer – fen peat interface (~440 m2). Additionally, the strength of 

the vertical hydraulic gradients within the fen (i.e., between the underdrain and fen peat 

layers; average of ~0.015) was greater than the horizontal gradients (average of ~0.007 in 

the near-fen zone). While undisturbed peat soils typically exhibit horizontal / vertical Ksat 

anisotropy ratios greater than 1 (Beckwith et al., 2003), which would tend to favour 

horizontal over vertical groundwater flow, the highly disturbed peat within the Nikanotee 
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Fen has an anisotropy ratio of 1 (Nwaishi et al., 2015b). Thus, neither vertical nor 

horizontal flow was favoured based on the hydrophysical properties of the placed peat.  

Ground frost controlled the vertical groundwater fluxes within the fen by both 

influencing the magnitude of the vertical hydraulic gradients (highest while ground frost 

present; Figure 5-13) as well as by physically impeding water fluxes across the layer of 

frozen soil, since frozen saturated peat soils have very low permeability (Roulet and 

Woo, 1986). This consequently constrained groundwater recharge to the fen until the 

majority of the ground frost had melted by the mid-summer (Figure 5-13). Although the 

water table was higher in the early portion of the 2014 study period (Figure 5-10), which 

was likely an artifact of the high P received in May (Figure 5-6), groundwater influxes to 

the fen were important to help sustain high water table levels in the mid-summer when 

daily AET rates peaked. Regardless, wet conditions were sustained in the Nikanotee Fen 

(water table within 10 cm of the fen surface) for the majority of the 2014 study period  

(Figure 5-10), which also resulted in a minimal change in storage. Similarly, variations in 

the water table elevation in the fen were smaller in 2014 than 2013 (Figure 5-9). 

Estimates of groundwater flows are prone to a large degree of uncertainty and are 

especially sensitive to Ksat in Equation (5-1). Although reasonable assumptions were 

employed (e.g., use of Kz for vertical fluxes), groundwater estimates can vary by up to 

±70% (Ferone and Devito, 2004). The method used to compute a representative value of 

Ksat (i.e., Equation (5-2)) yielded a seasonal total groundwater flux of 177 mm. Under 

identical field conditions, the estimated seasonal groundwater flux increased to 282 and 

499 mm when the Ksat at each nest was computed using the geometric and arithmetic 

mean values, respectively, of the Ksat values measured at each piezometer in the nest. 

Thus the groundwater flux estimated using Kz and that using the arithmetic mean Ksat 

varied nearly by a factor of 3 (> 300 mm), owing to the several orders of magnitude 

variability exhibited by the individual measurements of Ksat within the peat deposit 

(Figure 5-2). Further, the discrepancies between the vertical and horizontal groundwater 

flux estimations can be partially attributed to the sensitivity of these calculations to the 

Ksat of the petroleum coke underdrain layer, which might be underestimated in the current 

study based on the trend of increasing Ksat in Figure 5-5. Also, this study only considered 
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estimates of Ksat made using piezometers fully slotted within the material / layer of 

interest and those that could be measured manually. Additional Ksat measurements made 

using fully slotted wells (i.e., wells that were screened across the tailings sand and 

petroleum coke layers) within the transition zone of the upland, and a few piezometers 

within the petroleum coke layer beneath the fen, recovered too quickly to be accurately 

measured and, thus, were not included in this analyses. Accordingly, horizontal 

groundwater fluxes could have occurred predominantly through portions of the 

underdrain layer where the petroleum coke exhibited the highest Ksat and would be 

insufficiently accounted for in the current study.  

The errors associated with estimating atmospheric fluxes are substantially smaller 

than the groundwater estimates. For example, estimates of annual P can be accurate to 

±10% (Ferone and Devito, 2004), which would equate to ±20 mm in the current study (in 

2014) and is an order of magnitude smaller than the groundwater flux estimation error. 

Likewise, AET uncertainty was calculated according to Kroon et al. (2010) and Wang et 

al. (2015) and found to average only ±13% over the two study seasons. Consequently, the 

error associated with estimating the magnitude of the groundwater fluxes to the fen as the 

residual term of the water budget (excluding the groundwater component) could be 

substantially smaller than those associated with attempting to compute the groundwater 

fluxes to the fen using field-based hydrometric measurements. If the groundwater 

components of the fen water budget are excluded from Equation (5-5) and Table 5-3 in 

the current study, the residual term is 263 mm. This value is most closely represented by 

the groundwater flux estimated using the geometric mean Ksat (282 mm). However, 

representing Ksat at an individual location using Equation (5-2) is more physically 

representative than using a geometric mean, since Kz accounts for the character of the 

layered heterogeneity through incorporating the thicknesses of each of the layers with a 

known Ksat. However, this technique (i.e., using Kz) results in a groundwater flux of 177 

mm and may be an underestimation of the actual groundwater fluxes to the fen. It was 

anticipated that the combination of a relatively small fen (2.9 ha), dense measurement 

network (> 4 locations per hectare within the fen) and high frequency of measurement 

(usually every 6 days) in the current study would minimize errors in the groundwater 
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fluxes. It is possible that ‘windows’ of high Ksat might have contributed substantially to 

the groundwater fluxes to the fen, since the estimate of vertical groundwater flux is 

highly sensitive to Ksat. However, this phenomenon was not accounted for in the 

groundwater flux estimation.  

5.5.3 Hydrologic performance and hydrophysical evolution of the reclamation 

materials  

Original design specifications derived from numerical modelling simulations 

(Price et al., 2010), as well as modifications thereafter (Daly et al., 2012), resulted in the 

development of targeted Ksat values for each of the reclamation materials used to 

construct the Nikanotee Fen watershed. These targeted Ksat values were 10-5, 10-4 and 10-2 

m s-1 for the fen peat, tailings sand and underdrain material, respectively. Measurements 

of Ksat from 2013 indicated that all of the construction materials had a lower initial Ksat 

than targeted in the original design (e.g., as in Price et al., 2010; and Daly et al., 2012). 

Specifically, the initial Ksat (i.e., 2013 data) of the peat and upland tailings sand were 

approximately one order of magnitude lower than targeted (3 x 10-6 and 8 x 10-6 m s-1, 

respectively) and Ksat of the petroleum coke underdrain layer (4 x 10-6 m s-1) was over 

three orders of magnitude lower than expected. However, inter-year comparisons of 

materials placed in 2013 revealed that Ksat within the peat increased at all depths in 2014 

compared to 2013 (Figure 5-5). This trend of increasing Ksat within the peat profile 

continued through 2015 only at 150 cm depth, while slight reductions in Ksat between 

2014 and 2015 were observed at 50 and 90 cm depths. However, 2015 values remained 

above the initial Ksat measurements from 2013 at all depths in the peat profile. A similar 

trend was observed within the petroleum coke underdrain layer, where an increase in Ksat 

from 2013 to 2014 was followed by a slight decrease in 2015, which remained above the 

initial Ksat measured in 2013. Conversely, the placed tailings sand material showed 

negligible change (very slight reduction) from 2013 to 2014, but increased marginally in 

2015 (Figure 5-5). The placed peat material also exhibited a decreasing trend of Ksat with 

depth (Figure 5-4), which could be a reflection of both the technique used for the 

placement of the peat (in lifts, with more compaction of deeper layers likely) as well as 



 

 
 

130 

due to the increased total stress deeper within the peat profile caused by the weight of the 

overlying peat. 

Several mechanisms could have contributed to the inter-year increase in Ksat 

observed for some of the reclamation materials in the current study. For example, since 

oil sands tailings materials can contain high concentrations of salts (Rezanezhad et al., 

2012a), it is possible that the observed inter-year increase in Ksat within the peat profile 

could have been caused by chemical dilation of pores, as driven by the interaction of salts 

flushed from the tailings sand materials with organic-acid functional groups within the 

fen peat (Ours et al., 1997). In a laboratory column experiment, Ksat within peat soils 

increased by up to five times due to chemical dilation of pores exposed to chloride (Cl-) 

concentrations of 250 ppm (Ours et al., 1997). Although maximum Cl- concentrations of 

up to 250 ppm have been measured in the upland tailings sand aquifer, the average Cl- 

concentration is much lower (40 ppm; n = 157). The maximum and average observed Cl- 

concentrations within the fen peat profile during 2013 and 2014 were 104 and 22 ppm, 

respectively (n = 204; unpublished data). Thus, although chemical pore dilation might 

have contributed to the inter-year increase in Ksat in the fen peat, the Cl- concentrations 

measured within the fen are well below those observed in Ours et al. (1997), which 

makes it unlikely that changes of a similar magnitude have been realized in the peat 

within the Nikanotee Fen. Another variable that could influence the Ksat within the peat is 

the growth of vascular vegetation, which was much better established throughout the fen 

in 2014 and 2015 compared to 2013. However, the growth of vascular plants does not 

necessarily increase the Ksat in constructed wetlands (Brix, 1997) and it is unlikely that 

the rooting zone extended to the deeper measurement points within the peat profile that 

also demonstrated an increased Ksat (Figure 5-5). Also, a persistently high water table in 

2014 could result in peat volume change via surface level rebound due to reduced 

effective stress within the peat deposit, which could increase the Ksat (Price, 2003; 

Ketcheson and Price, 2011). However, the only substantial rebound in the surface level of 

the peat corresponded with the large initial rise in water table in early 2013 (Figure 5-9) 

and this phenomenon was not ubiquitous. Lastly, differences in the water temperature 

between Ksat measured at different times during the field season could influence the 



 

 
 

131 

hydraulic conductivity values through the viscosity term, however, this effect is usually 

small, even between measurements made under field and laboratory (i.e., room 

temperature) conditions (Freeze and Cherry, 1979).  

In the petroleum coke underdrain layer and, to a lesser extent, the upland tailings 

sand and fen peat, the increase in Ksat could be an artifact of some flushing of finer-

grained sediment from the reclamation materials with repeated measurements of Ksat (i.e., 

pumping of wells during bail tests), both during successive tests within one year, as well 

as from tests conducted in previous years. Standard field protocols for conducting bail 

tests to determine Ksat typically include ‘developing’ the wells and piezometers prior to 

starting the measurements by pumping water out of the pipe to allow interstitial water to 

flow in and flush out fine debris (Butler, 1998). Accordingly, wells and piezometers were 

developed extensively in the days and weeks following installation and prior to the 

measurements of Ksat. Nonetheless, measurements of Ksat conducted in sequence on each 

individual pipe during a single season (conducted either over the course of weeks 

throughout the season or in as little as within a single day) demonstrated a trend of 

increasing Ksat across the measurement repetitions (typically triplicate). Thus, the inter-

year increase in Ksat is partially an artifact of the mobilization and movement of soil (or 

peat) particles within the near-well zone of influence of the bail test in a manner that 

induced an increase in Ksat between successive tests. The magnitude of these changes in 

Ksat during sequential tests was greatest in 2013, with an average increase in the estimate 

of Ksat by a factor of 2.3, 3.3 and 1.5 for the peat, petroleum coke and tailings sand, 

respectively, over the triplicate measurements. These factors were reduced to 1.5, 1.3 and 

1.3 for the peat, petroleum coke and sand, respectively, for tests conducted in 2014 

(similar factors were observed in 2015). This type of systematic increase in Ksat between 

successive tests could be attributed to insufficient well development (Butler, 1998). This 

hypothesis is supported by the reduced magnitude of inter-test Ksat changes from 2013 to 

2014. Accordingly, the values of Ksat in the current study are likely slight 

underestimations. 

It is difficult to confidently state which of the several confounding factors is 

responsible for the observed variability in Ksat measured in the recently placed and highly 
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disturbed reclamation materials. For example, most of these materials were unsaturated 

when placed during the construction of the watershed in 2012. Since that time, material 

settling and the initial saturation of the watershed likely contributed to the transient 

nature of the hydrophysical properties observed, in addition to the other mechanisms 

(pore dilation, fines flushing) previously discussed. Thus, it remains unclear at this point 

if the systematic increase in Ksat is solely due to the bail tests being conducted 

sequentially over time at a location, or if the increase is a reflection of the temporal 

changes to the material properties caused by their recent placement and largely disturbed 

soil structure. Continued monitoring over the following few years is necessary to evaluate 

these changes and determine the stabilized Ksat for the materials. However, quantifying 

the representativeness of point measurements of Ksat beyond the extent of the near-well 

zone of influence in characterizing the hydrophysical properties of highly disturbed, 

transient reclamation materials will remain a challenge. Moreover, characterization of the 

extent of spatial variability in constructed ecosystems presents an additional challenge. 

For example, measurements of Ksat conducted at 63 locations throughout the fen in 2014 

indicated that the shallow (50 cm) placed peat Ksat varied by over an order of magnitude 

spatially within the fen (data not shown). These spatially intensive measurements resulted 

in an average Ksat that was three times less than the 50 cm Ksat measured within the nests 

of piezometers that comprised the routine monitoring points (i.e., nests in Figure 5-1). As 

was hypothesized earlier, perhaps this could be an artifact of inadequate development of 

the piezometers used for the spatially intensive measurements compared to the 2014 Ksat 

data at the routine monitoring points, which had been developed more extensively.  

Indeed, the magnitude of spatial heterogeneity of highly disturbed reclamation materials 

is less than encountered in natural, undisturbed landscapes; however it appears to be 

substantial nonetheless. 

5.5.4 Groundwater recharge to the upland aquifer 

The isotopic signature in the upland became more depleted over the study period 

(Figure 5-9), which represented a shift towards the isotopic signature of snow rather than 

rainfall (Figure 5-14). However, recharge of snowmelt water to the constructed aquifer 

was presumed to be largely constrained due to frozen soils with a low infiltration capacity 
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(discussed in Chapter three) and the timing of substantial increases in the upland water 

table level coincided with early-season precipitation events instead of the spring freshet 

(e.g., late May / early June in both 2013 and 2014; Figure 5-9). Thus, these early summer 

precipitation events appear to comprise the majority of annual recharge to the constructed 

aquifer instead of recharge during the snowmelt period. Consequently, the water table 

and isotope data provide conflicting information with respect to the source of the water 

that recharged the upland aquifer. One possible explanation for this phenomenon is that 

the movement of water from the unsaturated zone to the saturated zone takes place, at 

least in part, in layered form (i.e., 'piston flow' recharge; Zimmermann et al., 1967). 

Thus, it is possible that some snowmelt water percolated and re-froze in the soils in the 

unsaturated zone. Upon thawing of the soils, the water of snowmelt origin moved 

downwards during the subsequent early-season precipitation events and contributed to 

groundwater recharge within the upland. This trend towards an isotopically depleted 

signature of upland groundwater was the most apparent nearest to the peat-lined basin, 

which is a prominent recharge feature in the upland (discussed below) and is an area 

where snowmelt runoff water accumulates during the spring freshet.  Subsurface 

measurement of soil water content was not available during the 2013 snowmelt period for 

verification; however, measurements from 2014 indicated a strong response in the soil 

water content throughout the upland during the snowmelt period but only a slight 

response in the water table (~10 cm rise; data not shown). Hence, it appears that 

snowmelt waters recharged soil water storage in the unsaturated zone during this time.  

5.5.5 LFH soil-capping layer 

Since Ksat can increase within near-surface reclamation soil covers following 

freeze thaw cycling (Meiers et al., 2011), with vegetation establishment (Loch and 

Orange, 1997) and the development of secondary porosity (i.e., macropores; Guebert and 

Gardner, 2001), the slight increase in f in the LFH soil-capping layer between 2013 (41 

mm hr-1) and fbetween in 2014 (68 mm hr-1) can likely be attributed to this type of soil 

evolution following placement. Based on the observed increase, albeit over a short period 

of only two years, it is likely that the LFH soil capping layer will continue to evolve in a 

favourable manner (i.e., increasing f and Ksat) over the next few years, as was observed 
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within the mine reclamation materials in the aforementioned studies. In addition, the 

process of surface tilling resulted in a nearly two-fold increase in the surface infiltration 

rate of the LFH reclamation material within the created furrows. The magnitude of this 

increase is apparent when comparing ffurrow (128 mm hr-1) to fbetween (68 mm hr-1; Figure 

5-3). This is especially relevant because the furrows detained surface water, which 

provided more time for this water to infiltrate. The difference between ffurrow and fbetween is 

solely an artifact of changes caused by the tilling of the near-surface soil, since inter-year 

variations in soil hydrophysical properties are avoided in this comparison. Thus, the inter-

year increase observed in the grouped f data that from 2013 to 2014 (Figure 5-3) was both 

an outcome of the remediation efforts as well as the natural evolution of soil 

hydrophysical properties over time.  

5.5.6 Depressional features as aquifer recharge windows 

The peat-lined basin feature in the upland appeared to promote recharge to the 

tailings sand aquifer, as the recession limb of the VWC drainage curve within the top of 

the tailings sand material had a gentler slope and, thus, took longer to return to pre-event 

VWC conditions following P events than measurements made beneath the LFH soil-

capping layer (Figure 5-8). It should be noted that the VWC at 5 cm depth appears to 

exceed the VWC at 10 cm depth. This is likely an artifact of the heterogeneity associated 

with the peat / mineral mix reclamation material, which included pieces of fine-grained 

mineral sediment distributed randomly throughout the soil-capping layer. Based on the 

VWC response demonstrated at 5 cm in the peat-lined basin, it appears as though this 

probe was installed into a mineral sediment inclusion, which helps to explain the higher 

VWC relative to soil deeper within the soil profile.  

The peat-lined basin feature was composed of a ~50 cm thick layer of peat / 

mineral mix soil situated within a local topographic low near the base of a hummock 

feature (Figure 5-1). The remainder of the upland was constructed with a topographic 

slope of ~2 – 3% and a variable LFH soil thickness (~30 – 45 cm). Thus, in addition to 

rainfall directly on the surface of the peat-lined basin, rain and snowmelt water inputs 

were also directed towards this depressional feature by the adjacent hummock. This 

resulted in the development of a transient perched water table within the peat-lined basin 
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that persisted for approximately two days following P events and contributed to the 

prolonged recharge to the tailings sand aquifer (Figure 5-8). This indicates that 

depressional features represent encouraging enhanced groundwater recharge zones in 

constructed ecosystems and should be incorporated into the design of future surficial 

landforms in portions of the landscape where recharge into constructed aquifers is 

desired. However, these features should be designed to maximize deep percolation 

(recharge) and minimize soil water storage. Thus, the practice of placing ~50 cm thick 

peat / mineral mix soil-capping layers into depressional recharge features is not 

recommended. The recharge basins constructed in the upland of the Nikanotee Fen 

watershed have become silted over due to deposition of sediments eroded from the 

recently reclaimed 2011 slopes during intense P events. While the rate of sediment 

erosion from these slopes should be reduced over time as the soils stabilize and the 

vegetation community becomes established, the use of erosion control infrastructure (e.g., 

silt fencing) is recommended during the first several years following soil placement. 

Nonetheless, the efficacy of the constructed enhanced recharge basins still needs to be 

addressed.  

5.6 Conclusions and recommendations 

Evaluation of the water fluxes within the Nikanotee Fen / upland system during 

the first two years following construction indicated that the system design was capable of 

sustaining wet conditions within the fen, where the water table was typically within ±10 

cm of the fen surface. Early season precipitation events appear to be important sources of 

annual groundwater recharge for the constructed upland aquifer, although isotopic data 

suggest that snowmelt water stored in the unsaturated zone could also contribute to this 

recharge. The infiltration capacity of the LFH reclamation soil-capping layer in the 

upland was variable but generally high enough to facilitate recharge to the upland aquifer. 

The addition of furrows (soil tilling) of the surface of the upland resulted in a doubling of 

the average surface infiltration capacity. Thus, it is recommended that soil tilling be 

incorporated into standard operating procedures to promote infiltration through near-

surface reclamation soil-capping layers where ground and soil water recharge is desired. 
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Additionally, the soil-capping layer should be placed to the minimum thickness required 

for vegetation growth (erosion protection) in areas where groundwater recharge to 

constructed aquifers is desired, since the high storage capacity of the LFH layer 

constrained the recharge to the upland aquifer in the current study. Although the efficacy 

of the enhanced recharge zones added to the uplands has yet to be assessed, the peat-lined 

basin appeared to promote groundwater recharge in the upland, in part due to the 

development of an occasional transient perched water table. Thus, these findings suggest 

that surface depressional features could help to enhance groundwater recharge to upland 

landforms.  

In spite of the lower than targeted Ksat of the reclamation materials used to 

construct both the upland aquifer (tailings sand) and underdrain layer (petroleum coke), 

the designed upland aquifer provided sufficient groundwater fluxes to the Nikanotee Fen 

to partially offset the high rates of evapotranspiration and supplement periods of 

atmospheric water deficit. However, the lower than targeted Ksat of the petroleum coke 

layer resulted in slight reductions in the strength of the vertical hydraulic gradient, thus 

magnitude of groundwater discharge, across the fen from the toe of the upland towards 

the discharge point. The presence of ground frost in the fen constrained early-season 

groundwater recharge from the upland aquifer in spite of relatively large early-season 

vertical hydraulic gradients. The persistence of these large gradients following the melt of 

the ground frost throughout the majority of the fen resulted in peak average daily 

groundwater recharge in the fen occurring in the mid-summer. Since water availability in 

the mid-summer period is often limited in the AOSR due to the synchronous peak of 

evapotranspiration rates and precipitation inputs, this shift in the timing of the delivery of 

groundwater recharge towards the mid-summer period due to the presence and 

persistence of ground frost is hydrologically important, since this is the time when limited 

atmospheric water availability can be partially offset by groundwater recharge.  

The groundwater fluxes from the upland aquifer to the fen occurred almost 

entirely through the petroleum coke underdrain layer. Thus, designing fen systems to 

receive groundwater contributions vertically via subsurface layering of reclamation 

materials is a desirable approach. Furthermore, this relieves the challenge of 
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incorporating a sufficiently large upland area immediately adjacent to constructed fen 

systems, since subsurface layering of materials with suitable hydraulic properties could 

facilitate the delivery of groundwater flow from throughout the reclaimed landscape. 

Hence, it is recommended that future reclamation efforts focus on the feasibility of 

designing integrated sub-surface hydrological connectivity between landforms to promote 

landscape-scale groundwater flow regimes. This ambitious task could be accomplished 

by incorporating high permeability layers that can function as groundwater conduits and 

convey water from areas within the landscape where less water is required and/or desired 

to targeted areas where wetland ecosystems or aquatic features (e.g., end-pit lakes) can be 

located. The findings of this study also suggest that including depressional features on the 

surface of constructed aquifers could help to enhance groundwater recharge in desired 

zones. This would contribute to increased water availability at the discharge point of 

groundwater conduits located elsewhere in the reclaimed landscape that can be targeted 

for future fen placement.  

The importance of regional climatic trends will decrease in the years following 

construction, as the system saturates and develops the inherent resiliency of the design 

(i.e., large water reservoir to supplement low precipitation inputs). However, the system 

design has not yet been tested by a period of significant drought and it remains uncertain 

if it is sufficiently robust to withstand periods of climatic stress. Integrating hydrological 

connectivity between landforms within the reconstructed landscape, both through 

subsurface layering of materials with a high Ksat as well as aligning watersheds along a 

watercourse continuum, will serve to increase the overall groundwater storage water 

volume and residence time, thereby reducing the susceptibility of individual landforms to 

climatic fluctuations.  
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6 Summary  

This thesis presented a comprehensive hydrological assessment of the constructed 

Nikanotee Fen watershed. It represents a pioneering contribution to peatland creation 

literature. The overall goal of this research was to provide a watershed-scale evaluation of 

the dominant hydrological processes operating within the constructed Nikanotee Fen 

watershed. The main challenges concerning the topic of fen peatland creation, from a 

hydrological perspective, were introduced and discussed in the synthesis presented in 

chapter two.  

The snow hydrology study presented in chapter three identified that snow depth 

was greatest and more variable near the toe of reclaimed slopes and became progressively 

shallower towards the crest. Enhanced snowmelt (i.e., earlier and more rapid) was 

observed on slopes with established vegetation cover, which had no discernable effect on 

snow distribution. Recharge to reclaimed slopes and the constructed aquifer during the 

snowmelt period appeared to be minimal, as the presence of ground frost constrained 

infiltration. Accordingly, substantial surface runoff was observed from all reclaimed 

slopes, despite being designed to reduce runoff and increase water storage. Thus, it was 

concluded that snow dynamics must be included in the design of landscape-scale 

constructed ecosystems. This chapter also demonstrated that the snowmelt period 

hydrology within reclaimed landscapes is fundamentally different from that reported for 

natural settings, and represents one of the first studies on snow dynamics in constructed 

watershed systems in the post-mined oil sands landscape. The controls on snow 

distribution and ablation identified in this chapter, along with the determination of the 

fate of snowmelt water, is a meaningful contribution and advances our understanding of 

how these systems store and shed water during the melt period. 

Chapter four evaluated the hydrological regime of the reclaimed slopes during the 

snow-free period. This research identified that infiltration-excess surface runoff from 

slopes reclaimed within the previous two to three years supplemented precipitation inputs 

to low-lying landforms (i.e., the designed upland – fen system) during intense rainfall 

events. Older reclaimed slopes (~five years old), on the other hand, exhibited higher 
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surface infiltration rates and stored most summer precipitation events. From this, it was 

concluded that the hydrological role of reclaimed slopes might shift from water 

conveyors to water storage features in constructed watershed systems. This represents the 

first study to compare the controls on soil water distribution and runoff generation on two 

reclaimed slopes of different age in the AOSR.  

The initial assessment of the hydrological functioning of the designed upland - fen 

system presented in chapter five revealed that the system design was capable of 

sustaining wet conditions within the Nikanotee Fen, where the water table was typically 

within ±10 cm of the surface. Comparisons between the Nikanotee Fen and regional 

reference fen systems (presented in Appendix 1) can provide a useful indication of the 

functional equivalence of the constructed fen. This demonstrated that high water tables 

were sustained within the Nikanotee Fen, even during periods of time when regional fens 

were drying. Thus, the constructed upland aquifer can provide sufficient groundwater 

discharge to sustain wet conditions under a moderate regional drying trend. This 

comparison also identified that the water table regime within the Nikanotee Fen was 

similar to a moderate-rich reference fen that appears to have a strong groundwater inflow 

component. However, natural fen peatlands in the AOSR exhibit a large range of 

hydrobiogeochemical characteristics, which makes the selection of regional reference 

systems difficult. 

The hydrophysical properties of the reclamation materials demonstrated 

considerable heterogeneity, although likely less than what is typically encountered in 

natural systems. However, this was complicated by the evolution of these materials over 

time following placement, which demonstrated increased saturated hydraulic 

conductivities in the second year of study.  

Near-surface tilling of reclamation soil-capping layers was found to increase 

percolation of precipitation water. Depressional features were also identified as potential 

enhanced groundwater recharge zones in constructed ecosystems. Their incorporation 

into the design of future surficial landforms in portions of the landscape where recharge 

into constructed aquifers is desired is recommended. Lastly, the predominance of water 
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fluxes to the Nikanotee Fen through a permeable underdrain layer demonstrates the 

potential for integrating sub-surface hydrological connectivity between landforms to 

promote landscape-scale groundwater flow regimes in reconstructed landscapes. As is 

typically the case with large-scale reclamation projects, significant challenges remain in 

the transition from principle to operational practice.  

Based on these experiences, it appears that future landscape design plans could 

benefit from a change of perception in the role of peatlands in the landscape. Wetland 

areas can function as both a sink and source of water to the remainder of the catchment. 

For example, wetlands could function as a source of water to adjacent areas within the 

constructed watershed, even if the wetland systems are isolated from groundwater inputs. 

Wetland interconnectivity within the reconstructed landscape could increase water 

detention and storage during wet periods, which would benefit both the wetlands and the 

adjacent forestlands during dry periods. Hence, this connectivity appears crucial for the 

reestablishment of processes similar to those operating within natural Western Boreal 

Plain landscapes.  

  



 

 
 

141 

7 Conclusions and recommendations 

Since oil sands mining operations results in different landform types, the 

associated reclamation approaches and performance objectives vary. These landform 

types have different groundwater design aspects; including those that are composed of 

low-permeability materials designed to have low net percolation (e.g., reclaimed 

overburden slopes) and those constructed from high-permeability materials that will have 

high net percolation (e.g., tailings sand ‘beaches’). Based on the findings of this research, 

it is possible to engineer the post-mining landscape in a manner that is suitable to sustain 

wet conditions within a constructed fen system. The two years of this study represent 

periods with slightly lower (11% lower, 2014) and slightly higher (14% higher, 2013) 

precipitation than the long-term climatic average for the AOSR. Thus, although not yet 

tested by a period of significant drought, it appears that fen ecosystems can be integrated 

into the reclaimed landscape. Surface and groundwater contributions from adjacent 

landforms can provide water inputs that will help to offset periodic climatic water 

deficits. However, internal control of soil moisture and water conservation mechanisms, 

as observed in natural peatlands in the WBP, could also help limit water lost from storage 

during dry periods. Future research efforts should focus on addressing the relative 

importance of external water inputs and internal water conservation mechanisms in 

constructed fen peatlands, especially during periods of drought.  

Moving forward, fen construction in post-mined landscapes still faces substantial 

hydrological and operational challenges. For example, issues related to water quality and 

quantity, as outlined in chapter two, will continue to represent important factors that need 

to be explicitly addressed in the design of future fen creation projects. Furthermore, since 

the current research was conducted at the ‘pilot-scale’ (<0.5 km2), applying these findings 

at the scale required by commercial reclamation operations (~1 to 100’s of km2) presents 

a considerable challenge. The constructed aquifer in the current study was capable of 

providing sufficient water fluxes to the fen peatland to maintain wet conditions within the 

fen during the snow-free period. However, at the commercial-scale, constructed fen 

systems will be supported, in part, by groundwater discharge from coarse-grained 

landforms that aren’t necessarily designed for this purpose.  
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Recommendations made on the basis of this research, however, can help to guide 

the design of commercial-scale constructed fen systems. For example, this study has 

identified the spring freshet as an especially important time to address issues regarding 

water availability, since large quantities of water (i.e., approximately 25% of annual 

precipitation, at minimum) are released to the landscape over a relatively short period of 

time. Reclaimed overburden slopes, which will be prolific in mine closure landscapes, 

produced much surface flow during the snowmelt period. Thus, landforms that are 

situated near the toe of reclaimed slopes should be designed to increase the detention of 

surface runoff to maximize groundwater recharge during and immediately following the 

snowmelt period. Since water tended to aggregate in the peat-lined basin feature in the 

Nikanotee Fen watershed, greater detention of snowmelt water could be accomplished by 

including depressional features on the surface of coarse-grained landscapes where deep 

net percolation is desired. Also, since snow depth was greatest at changes in slope, snow 

would also tend to accumulate along the edges of depressional features, which would 

constrain the development of ground frost. Because ground frost restricted recharge 

during the snowmelt period, the combination of increased snow accumulation and surface 

detention of melt water, as well as reduced ground frost development, would maximize 

recharge to constructed aquifers. This would help to build groundwater reservoirs 

available to supplement periods of low precipitation input for constructed fen peatlands.  

An improved understanding of the storage and movement of water through 

coarse-grained landforms in the closure landscape is an important aspect of assessing the 

feasibility of constructing fens on a commercial scale. It is therefore recommended that 

future fen construction projects, and the associated research, be undertaken at the 

commercial scale with a focus on operational feasibility. 

The contrasting hydrological role of the reclaimed slopes at the watershed-scale 

also represents an important finding of this study. The surface runoff generated on the 

more recently reclaimed slopes provided an additional source of water for the upland-fen 

system and contributed to the sustained wet conditions observed in the Nikanotee Fen. 

Thus, these slopes could accelerate the initial recharge of constructed aquifers and fen 

peatlands positioned downstream in the reconstructed landscape. However, surface runoff 
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and interflow from the older reclaimed slope was minimal during the snow-free period, 

which supports previous findings that these landforms typically represent efficient water 

storage features. Thus, their efficacy as runoff generation features could decrease 

substantially within several years following their construction. Accordingly, more 

research is required to evaluate the timing of this shift in the hydrological regime of 

reclaimed slopes and to evaluate if these findings are universally applicable for reclaimed 

slopes throughout the AOSR. Quantification of the range of variation between 

overburden slopes reclaimed following common industry-wide guidelines would provide 

a better understanding of their long-term hydrological role in the mine closure landscape.  

Finally, the assessment of the success of constructed fen systems should be a 

reflection of the ability to correctly and accurately predict the influence of external 

forcings (e.g., climate) on the processes operating within a newly constructed system. 

Over the first two years after construction, the Nikanotee Fen exhibited a hydrologic 

regime (i.e., high water table position) that was similar to what was predicted in the 

original design. This indicates that the designed watershed is capable of sustaining a fen 

ecosystem. However, longer time periods will reduce uncertainty in the assessment of the 

system’s successional pathway.  
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A.1  Appendix 1: Comparison to regional systems 

Although the development of the conceptual model for the Nikanotee Fen was 

guided largely by numerical modelling, it was also supported by experience in natural 

WBP fen ecosystems. However, research on natural fens in this setting has demonstrated 

that these ecosystems vary over a considerable range, with respect to both their 

hydrological interactions with the surrounding landscape (Ferone and Devito, 2004; 

Smerdon et al., 2005; Smerdon et al., 2008) and biogeochemical character (Chee and 

Vitt, 1989; Vitt and Chee, 1990) under regional climatic controls. Thus, selection of a 

particular fen, or series of fens, to be used as regional reference systems against which 

the hydrological performance of the Nikanotee Fen can be compared, is fraught with 

uncertainty.  

However, the goal of selecting reference fens for the current study was to target 

natural fens of contrasting hydrological and biogeochemical character and landscape 

position, with the intention of encompassing, as best as possible, a broad range of 

regional fen ecosystems. This approach will help to minimize the uncertainty associated 

with selecting only a few reference systems in a regional landscape composed of a 

mosaic of fen peatland types with a broad range of hydrobiogeochemical conditions and 

diverse vegetation community compositions.    

The reference fens selected included a poor fen (Pauciflora Fen, ~60 km south of 

the Nikanotee Fen; referred to as the ‘poor fen’), a moderate-rich fen (Poplar Fen, ~10 

km west of the Nikanotee Fen; referred to as ‘moderate-rich fen’) and a saline-spring fen 

(~30 km south of the Nikanotee Fen; referred to as ‘saline fen’). The poor fen is situated 

within an elongated local topographic depression bordered on both sides by relatively 

steep hillslopes (topographic slope is towards the peatland). Vertical groundwater fluxes 

are predominately downwards (recharge) and constrained by the low saturated hydraulic 

conductivity (Ksat) of the underlying mineral substrate, which is fine-grained glacial till. 

The poor fen does, however, receive occasional lateral groundwater input from the 

surrounding slopes in the form of shallow subsurface flow or snow melt, although these 

hydrological connections are dynamic and flow reversals have been observed 
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(unpublished data). The landscape setting surrounding the moderate-rich fen is more 

subdued, with gentle topographic slopes at the upland-fen boundaries and several 

undulating upland-fen sequences that divide the fen into distinct elongated sections in the 

headwaters of the system. The moderate-rich fen is typically underlain and surrounded by 

sandy silt mineral soils, and, accordingly, appears to function as a regional groundwater 

discharge feature (Elmes, unpublished data). Lastly, the topography surrounding the 

saline fen is comparatively flat, and the system is bordered by non-saline forested bog 

and/or fen peatlands (Wells and Price, 2015). Vertical groundwater discharge to the 

saline fen is largely constrained by the low Ksat of the underlying mineral substrate; 

however, the actual input of deep groundwater to the saline fen could be higher, owing to 

the potential contribution from discharge windows that were not accounted for in the 

groundwater flux analyses (Wells and Price, 2015). Lateral exchanges between the saline 

fen and the adjacent wetlands are inconsistent but typically small (Wells and Price, 

2015). Thus, the reference fens can be organized in order of the relative importance and 

magnitude of groundwater discharge into the fen, from greatest to least, as: moderate-rich 

fen > saline fen > poor fen. 

Seasonal patterns of water table dynamics within wetland ecosystems (i.e., the 

hydroperiod) convey an integration of the influence of the hydrogeological setting, 

watershed storage properties and water budget components. Accordingly, a comparison 

of water table dynamics between the Nikanotee Fen and the reference fens can provide 

valuable insight into the hydrological functioning of the constructed fen system relative 

to that of the relatively undisturbed reference fen ecosystems under a similar range of 

regional climatic variations.  

This comparison revealed that the Nikanotee Fen typically exhibited a larger 

range in water table fluctuation than the reference fen systems, especially during the first 

half of the summer in 2014 (Figure A-1). This is likely a reflection of the extent of the 

spatial variability of the topography of the surface of the fen, since the absolute water 

table elevation was comparatively flat. The poor and saline fens demonstrated a clear 

drying trend and a substantial decline in water table position from June to August. 

Groundwater discharge is likely small in these reference fens, as it is mostly constrained 
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to vertical discharge windows or occasional horizontal inputs. This drying trend was most 

extreme at the saline fen, which received the least amount of precipitation over the course 

of the study period (Figure A-1). Interestingly, the water table dynamics of the Nikanotee 

Fen were most similar to those demonstrated by the moderate-rich fen, which is the 

reference fen that appears to have the strongest groundwater discharge component 

(Elmes, unpublished data). In both the Nikanotee Fen and the moderate-rich fen, the 

median water table position remained at the surface of the fen in August. These trends in 

water table dynamics generally support the previous qualification of the relative 

importance of groundwater discharge at each of the reference fens. However, higher 

precipitation inputs at the poor fen (253 mm) relative to the saline fen (164 mm) likely 

helped to offset the seasonal decline of the water table. Frequency analyses revealed that 

the water table position was within ±10 cm of the surface of the Nikanotee Fen for 62% 

of the measurements made in 2014. This compares to 82, 79 and 50% of measurements 

made within the moderate-rich, poor and saline fens, respectively (Figure A-2).  

Thus, although the water table position within the Nikanotee Fen tended to 

demonstrate a wider range (relative to the fen surface) in a given month than the 

reference fens, it did not undergo the same seasonal drying trend that was observed at the 

poor and saline fens. This indicates that the groundwater discharge received in the 

Nikanotee Fen was sufficient to offset regional climatic drying, at least on a seasonal 

basis. The water table dynamics exhibited by the Nikanotee Fen are most similar to the 

moderate-rich reference fen where groundwater discharge is likely important.  Further, 

the similar water table positions within the moderate-rich and Nikanotee Fens in August, 

combined with the water table decline in the poor and saline fens, suggests that the 

constructed upland aquifer is able to provide sufficient groundwater discharge to sustain 

similar hydrological conditions within the Nikanotee Fen to those within the rich 

reference fen ecosystem.  
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Figure A-1 – Boxplots of monthly water table position (expressed as cm relative 

to the ground surface; positive values = ponded water) for the Nikanotee Fen and the 
reference fens in 2014. The total precipitation received at each of the sites during the 
study period (17-May to 29-August) is shown in parentheses (mm).  
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Figure A-2 – Frequency histogram for the water table position within the 

Nikanotee and reference fens for May - August 2014.  
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A.2  Appendix 2: Particle size distribution and organic matter content 

Prior to particle size analyses, soil samples were oven dried to a constant mass at 

80ºC. Soil samples were then homogenized and clumps were broken using a mortar and 

pestle. Particle size distribution was analyzed using a Horiba Partica LA-950V2 laser 

scattering particle size distribution analyzer. Soil samples were subjected to a 20 second 

ultrasonic treatment and dispersed using a 0.1% sodium hexametaphosphate solution. 

Particle size fractions were assigned according to the Canadian System of Soil 

Classification (Soil Classification Working Group, 1998). 

Determination of organic matter content was completed (following oven drying at 

80ºC) using the loss on ignition procedure outlined in (Dean Jr, 1974). This appears as 

“LOI (%)” in the tables below. Soil samples were placed in a muffle furnace at 550ºC for 

a period of at least one hour. LOI (%) is expressed as the percentage of the total soil mass 

lost. 
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Table A-1 – Particle size distribution and organic matter content of soils on the 
2007 slope. Depths within the upper 50 cm are peat-mineral mix soil samples and 
“Secondary Cap” represents soil samples from the secondary capping layer. 

 

  

Slope Site # Depth (cm bgs) % SAND % SILT % CLAY LOI (%) 
2007 Slope 1 2.5 42.3 53.3 4.5 8.9 
2007 Slope 1 2.5 61.1 38.3 0.6 13.5 
2007 Slope 1 10 36.0 54.7 9.3 9.4 
2007 Slope 1 22.5 15.3 82.9 1.8 6.7 
2007 Slope 1 45 25.9 61.9 12.2 5.8 
2007 Slope 1 Secondary Cap 54.1 42.3 3.6 3.0 
2007 Slope 2 2.5 51.4 47.1 1.4 9.5 
2007 Slope 2 10 43.7 46.7 9.6 10.3 
2007 Slope 2 10 48.1 43.1 8.9  
2007 Slope 2 22.5 48.7 49.1 2.1 6.6 
2007 Slope 2 45 53.0 33.7 13.0 14.5 
2007 Slope 2 45 49.1 49.9 1.0  
2007 Slope 2 Secondary Cap 39.4 50.5 10.1 2.9 
2007 Slope 2 Secondary Cap 48.8 41.6 9.6  
2007 Slope 3 2.5 45.5 43.4 11.0 10.2 
2007 Slope 3 2.5 53.5 41.4 5.1  
2007 Slope 3 10 55.6 41.7 2.7 11.0 
2007 Slope 3 22.5 41.4 41.7 16.9 4.9 
2007 Slope 3 22.5 47.5 45.0 7.5  
2007 Slope 3 45 52.8 41.3 5.9 3.2 
2007 Slope 3 Secondary Cap 52.2 40.9 6.9  
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Table A-2 – Particle size distribution and organic matter content of soils on the 
2011 slope. Depths within the upper 50 cm are peat-mineral mix soil samples and 
“Secondary Cap” represents soil samples from the secondary capping layer. 

 

  

Slope Site # Depth (cm bgs) % SAND % SILT % CLAY LOI (%) 
2011 Slope 1 2.5 27.7 71.6 0.7 7.9 
2011 Slope 1 10 48.1 51.4 0.5 6.8 
2011 Slope 1 10 34.5 64.8 0.7  
2011 Slope 1 22.5 70.3 27.8 2.0 3.3 
2011 Slope 1 45 48.9 49.9 1.2 10.1 
2011 Slope 1 Secondary Cap 53.1 45.7 1.2 2.7 
2011 Slope 2 2.5 41.5 54.8 3.7 10.7 
2011 Slope 2 10 33.0 52.3 14.7 14.2 
2011 Slope 2 10 14.8 67.3 18.0  
2011 Slope 2 45 42.7 52.5 4.8 9.2 
2011 Slope 2 Secondary Cap 40.3 53.8 6.0 10.6 
2011 Slope 3 2.5 48.3 50.9 0.9 10.9 
2011 Slope 3 10 39.2 60.1 0.6 12.2 
2011 Slope 3 22.5 33.1 62.0 4.9 12.1 
2011 Slope 3 45 25.1 59.2 15.7 11.6 
2011 Slope 3 45 17.9 62.0 20.1  
2011 Slope 3 Secondary Cap 52.9 44.6 2.5 3.3 
	



 

 
 

165 

 

Table A-3 – Particle size distribution and organic matter content of the LFH soil 
capping layer (surface soil layer) in the constructed upland. 

 

  

Material Site Name Site # Depth % SAND % SILT % CLAY LOI (%) 
LFH 350 1 2.5 34.5 48.3 17.2 4.7 
LFH 350 1 15 59.1 38.8 2.1  
LFH 350 2 2.5 51.2 44.8 4.0 4.6 
LFH 350 2 15 50.8 41.3 7.9 3.6 
LFH 350 2 2.5 59.2 38.2 2.2  
LFH 350 3 2.5 51.7 46.4 1.9 4.3 
LFH 350 3 15 52.7 44.1 3.2 4.2 
LFH 350 3 15 60.1 38.0 1.9  
LFH 220 1 2.5 49.4 44.2 6.4 4.2 
LFH 220 1 15 51.5 41.6 6.9 2.9 
LFH 220 1 15 55.8 39.5 4.7  
LFH 220 2 2.5 37.2 51.6 11.1 4.4 
LFH 220 2 2.5 53.2 43.4 3.0  
LFH 220 2 15 52.7 45.4 1.9 4.6 
LFH 220 3 2.5 56.7 40.3 2.6 4.6 
LFH 220 3 15 63.8 28.3 7.4 4.2 
LFH 220 3 15 44.7 44.5 10.8  
LFH 130 1 2.5 49.5 43.2 7.4 4.9 
LFH 130 1 15 41.8 46.6 11.6 4.6 
LFH 130 1 15 59.1 37.4 3.5 4.0 
LFH 130 2 2.5 60.6 36.2 3.2 4.7 
LFH 130 2 15 39.7 53.9 6.3 7.6 
LFH 130 2 15 55.1 39.2 3.6 4.2 
LFH 130 3 2.5 56.7 40.6 2.7 4.1 
LFH 130 3 2.5 49.3 44.3 6.4 4.5 
LFH 130 3 15 52.0 40.4 7.7 4.0 
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Table A-4 – Particle size distribution and organic matter content of the tailings 
sand aquifer material used to construct the constructed upland. Note all samples were 
extracted from ~10 cm below the top of the tailings sand layer (i.e., ~10 cm below the 
interface of the bottom of the LFH capping soil layer and the top of the tailings sand 
layer). Samples with a site name of “2012” were extracted from the field during the 
construction phase. All other sampling was completed as outlined in the thesis. 

 

Material Site Name Site # % SAND % SILT % CLAY LOI (%) 
SAND 370 1 93.3 6.7 0.0 0.7 
SAND 370 2 94.7 5.3 0.0 0.4 
SAND 370 3 81.1 5.7 0.0 0.5 
SAND 350 1 84.0 16.1 0.0 1.0 
SAND 350 2 80.8 17.9 0.0 1.1 
SAND 350 3 84.3 14.2 0.0  
SAND 220 1 74.0 24.6 1.4 1.4 
SAND 220 1 80.0 18.5 1.5 1.4 
SAND 220 1 85.7 14.2 0.1  
SAND 220 1 81.7 18.2 0.1  
SAND 220 2 88.5 5.9 0.0  
SAND 220 3 90.2 9.8 0.0 0.6 
SAND 130 1 90.1 8.8 0.0 0.7 
SAND 130 1 90.5 7.3 0.0 0.7 
SAND 130 2 92.7 7.3 0.0  
SAND 130 2 90.8 9.2 0.0 0.8 
SAND 130 2 80.8 16.2 0.5 0.6 
SAND 130 3 92.3 7.7 0.0  
SAND 130 3 92.3 7.7 0.0 0.8 
SAND 2012 A 93.3 6.7 0.0 0.5 
SAND 2012 B 89.9 9.8 0.3 0.5 
SAND 2012 C 93.1 6.9 0.0 0.6 
SAND 2012 C 93.0 7.0 0.0 0.6 
SAND 2012 D 94.7 5.3 0.0 0.8 
SAND 2012 F 94.7 5.3 0.0 1.2 
	


