
Optimizations and Hardware
Implementations for Composited
de Bruijn Sequence Generators

by

Bo Yang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Bo Yang 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A binary de Bruijn sequence with period 2n is a sequence in which every length-n sub-
sequence occurs exactly once. de Bruijn sequences have randomness properties that make
them attractive for pseudorandom number generators. Unfortunately, it is very difficult to
find de Bruijn sequence generators with large periods (e.g., 264) and most known de Bruijn
sequence construction techniques are computationally quite expensive. In this thesis we
present a set of optimizations that reduces the computational complexity of the de Bruijn
sequence generators constructed by the composited construction technique, which is the
most effective one we know. We call optimized composited de Bruijn sequence generators
“OcDeb”. An original (k, n)-composited de Bruijn sequence generator generates a sequence
with period 2n+k and uses O(k2 + nk) bit operations. Our optimizations reduce this to
O(klog (k) + log (n)) operations, allow retiming, and enable parallel implementations that
produce multiple bits per clock cycle while reusing some combinational hardware. Our opti-
mizations are formulated in lemmas and theorems with proofs. The benefits of OcDeb-k-n
over (k, n)-composited de Bruijn sequence generators are demonstrate by comprehensive
results in a 65nm CMOS ASIC library. For example, before place-and-route, an instance
of OcDeb-32-32 has a period of 264, an area of 656 GE and a maximum performance of
1.67 Gbps, representing 1.7× and 29.4× improvement on area and performance respec-
tively over the previous implementation method presented by Mandal and Gong; with
parallelization, this instance can achieve 8.30 Gbps with an area of 1229 GE. An instance
of OcDeb-512-32 has a period of 2544, an area of 7949 GE, and a maximum performance
of 1.43 Gbps.

iii

Acknowledgements

I would like to thank my supervisor Mark Aagaard for all the help and support. He
is a great supervisor. I would also like to thank Prof. Guang Gong for the meaningful
discussions we had about this work and Kalikinkar Mandal for the patient explainations
on composited de Bruijn sequence generators. Many thanks to Yin Tan for answering my
questions about cryptography and math and Nusa Zidaric for the careful proof reading
and help with Inkscape. Finally, I want to thank my parents for the endless love.

v

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Background 3

2.1 Preliminaries . 3

2.2 Algorithms to Construct de Bruijn Sequence Generators 4

2.3 Composited Construction of de Bruijn Sequences 7

2.3.1 Composition Operation . 9

2.3.2 Composited de Bruijn Sequence Generators 13

2.3.3 Three Baseline Implementations of (k, n)-composited de Bruijn Se-
quence Generators . 16

2.3.4 Cryptographic Applications . 17

2.4 Summary . 18

3 Optimizations 19

3.1 Mathematical Optimizations . 20

3.1.1 Only One Row Can Satisfy X . 21

3.1.2 Diagonal Optimization for a Specific Row 22

vii

3.1.3 Diagonal Optimization for the Complete Mesh 25

3.1.4 All-Zeroes State Machine . 27

3.1.5 Parallelization and Retiming . 27

3.2 The New Complexity . 36

3.3 Notes . 39

4 Hardware Implementations 41

4.1 Tricks . 41

4.1.1 Trade-off Between Storage and Computation 42

4.1.2 Common Sub-expression Elimination 44

4.1.3 Using the Two Techniques Together 44

4.1.4 Our Goal . 45

4.1.5 Discussion . 45

4.1.6 Computing the Nodes on the Diagonal 46

4.1.7 Computing the Inputs to the G . 50

4.2 Modules . 51

4.2.1 Module All0/1 . 51

4.2.2 Module G . 53

4.2.3 Module Diag . 54

4.2.4 Module SomePat . 58

4.3 Summary . 61

5 Hardware Implementation Results 63

5.1 Effectiveness of Optimizations in Hardware 63

5.2 The Impact of Parameters k and n On OcDeb’s Area and Performance . . 66

5.3 Comparisons of the Complexity of de Bruijn Sequences Generators 68

5.4 Comparisons with Other Lightweight CSPRNGs 69

5.5 Results of Parallel Implementations . 69

5.6 Highlighted Instances . 70

viii

6 Conclusion and Future Work 73

6.1 Conclusion . 73

6.2 Future Work . 75

References 77

ix

List of Tables

2.1 Comparison of different de Bruijn sequence construction techniques in stor-
age, throughput and computation complexity 6

4.1 Implementation area results for modules of OcDeb-32-32 51

4.2 Two examples of the original feedback function G 53

4.3 Gate Count of SomePat module implementations based on Algorithm 5 and
Algorithm 6 respectively . 61

5.1 Detailed comparison of OcDeb-32-32 with baseline implementations in area
and performance . 64

5.2 Comparison of OcDeb-k-n with other techniques in storage and computation
complexity . 68

5.3 Comparison of OcDeb with PRNGs used in RFID tags in terms of area and
peformance . 69

5.4 Implementation results for parallel OcDeb-32-32 70

5.5 Highlighted instances: OcDeb-32-32-xx, OcDeb-512-32-xx 70

xi

List of Figures

2.1 Generic feedback shift register . 5

2.2 Overview of Composited Construction . 7

2.3 An Example of Composited Construction 8

2.4 Computation of +◦ 4
0(x) . 10

2.5 A span-n sequence generator . 13

2.6 A de Bruijn sequence generator . 13

2.7 A (6, 4)-composited de Bruijn sequence generator 16

3.1 The mesh of (6, 4)-composited de Bruijn sequence generator 20

3.2 An example of Lemma 2 . 21

3.3 Examples of Diag0: (a) Diag03,4
5 and (b) Diag02,4

5 22

3.4 Examples of Pat: (a) Pat1,45 and (b) Pat0,45 23

3.5 An example of Lemma 7 . 24

3.6 Examples of Lemma 7 . 26

3.7 The architecture of (6, 4)-composited de Bruijn generator after all-zeroes
state machine optimization . 27

3.8 An example of parallelizing feedback shift register 32

3.9 Preparation for retiming: shift diagonal to right 35

3.10 After retiming: an architecture of OcDeb-6-4 35

4.1 Computing (a) +◦ 40
5 and +◦ 40

4 directly and (b) +◦ 40
4 with a flip-flop . . . 43

xiii

4.2 Computing the diagonal nodes of OcDeb-32-32 based on Algorithm 1 . . . 56

4.3 Computing the diagonal nodes of OcDeb-32-32 based on Algorithm 2 . . . 57

5.1 Comparison of OcDeb with baseline implementations in (a) area and (b)
performance across a series of k . 65

5.2 Parameter k’s impact on OcDeb’s (a) area and (b) performance 67

xiv

Chapter 1

Introduction

Random number generators (RNGs) are a critical building block for security. They are
used to generate secret keys, initialization vectors, padding values, and random masks
for applications in mutual authentication, digital signatures, symmetric key cryptography
public key cryptography, and side-channel-attack countermeasures.

Low quality random numbers can be the weak link that compromises the overall security
of a system. For example, due to the poor quality of the RNG in Sony’s PlayStation 3,
an attacker found two digital signatures that used the same random number, which then
allowed the attacker to find the master key of the PS3, and thereby allowed pirated software
to be run on the PS3 [5]. Due to a misconfiguration of the random number generator in
South Korea’s Citizen Digital Certificate smart card, researchers were able to recover the
private keys of 184 cards [1].

Random number generators can be characterized as either non-deterministic (true ran-
dom number generators, TRNGs) or deterministic (pseudo random, PRNG). TRNGs rely
on variability effects in manufacturing, environmental conditions, and aging. PRNGs are
algorithms designed to satisfy statistical properties of randomness.

Two characteristics of the quality of a random number generator are the period of
the sequence it generates and the “randomness” of the numbers in the sequence. A key
design characteristic of a PRNG is the number of bits of internal state, because an n-
bit deterministic system can have a maximum period of 2n. The ultimate mathematical
definition of randomness, Kolmogorov complexity [26], defines the randomness of a string
to be the size of the smallest program that can generate the string. Kolmogorov complexity
is uncomputable. Practical assesments of randomness include properties that can either be
proved mathematically or evaluated empirically by analyzing long sequences of numbers.

1

Common empirical tests include Marsaglia’s DIEHARD from 1995 [32, 33], L’Ecuyer and
Simard’s TESTUO1 [23] from 2007, and NIST’s SP800-22 from 2010 [44]. The NIST tests
are aimed specifically at cryptographically secure PRNGs.

For anything other than small PRNGs, statistical tests can give only approximate
answers. The long debate about a possible trapdoor in Dual EC DRBG before it was
finally discredited [40, 22, 3]; and the weaknesses in the Sony PS3 and South Korean
identity cards all demonstrate that analyzing PRNGs is very difficult.

PRNGs are often built from feedback shift registers. Linear feedback shift registers
(LFSRs) have guaranteed periods, but poor randomness. The behaviour of nonlinear
feedback shift registers (NLFSRs) is much more complicated and there are relatively few
theoretical results. For most NLFSRs, both the period and the randomness must be
estimated empirically.

De Bruijn sequences have guaranteed mathematical attributes of randomness: bal-
ance, tuple-distribution, and high linear complexity. These randomness properties make
de Bruijn sequence generators attractive for PRNGs. Unfortunately, finding a de Bruijn
sequence generator with a long period is computationally infeasible: the largest genera-
tor found so far has period of 232 − 1 [14]. Algorithmic techniques to construct de Bruijn
sequence generators result in PRNGs that are unreasonably large and slow. The best
known technique is Mandal and Gong’s composited construction [28], which also has the
advantage of having security analysis.

In this thesis, we focus on optimizing and implementing composited de Bruijn se-
quence generators. Our optimized composited de Bruijn sequence generators, hereafter
called OcDeb, are functionally equivalent to Mandal and Gong’s composited construction,
thereby inheiriting their randomness properties and security analysis, but are significantly
more efficient: achieving a 51× improvement in performance/area for a generator with
period 264. Asymptotically, the complexity (number of bit operations) is reduced from
O(k2 + nk) to O(k log (k) + log (n)).

The thesis begins with an overview of de Bruijn sequences construction techniques and
focuses on the composited construction technique in Chapter 2. The main body of the
thesis consists of the optimizations that reduce the number of bit operations, the retiming
optimization and the optimization for efficient parallelization in Chapter 3. Details on
implementation including discusion on two tricks of implementation are in Chapter 4.
Comprehensive hardware implementation results of OcDeb family are in Chapter 5. For
future work, please go to Chapter 6.

2

Chapter 2

Background

We gather background knowledge necessary to understand this thesis. Section 2.1 intro-
duces de Bruijn sequences and especially our notations that we will use consistently across
the whole thesis. Section 2.2 is a literature review for algorithms to generate de Bruijn se-
quences. Composited construction stands out for its superior complexity in bit operations.
Section 2.3 details it.

2.1 Preliminaries

Our notation and definitions for Galois fields and vectors are shown below. Sequences in
this thesis all have a binary alphabet.

F2 The Galois field with two elements {0, 1}.
F2m The Galois field with 2m elements.
+ Addition over F2 (xor).
[j, i] The set of natural numbers from j downto i, inclusive.
xi The ith element in vector x.
x[j : i] The vector consisting of elements j down to i of vector x.
x[:i] The vector consisting of elements from the end of x down to i.
iff A shorthand for if and only if.
Z The integer set.
Zno A set of odd integers from 1 to n.
Zne A set of even integers from 1 to n.
v(i) v’s value after i clock cycles. v can be either a function or a variable.
log () The logarithm’s base is 2 unless otherwise stated.

3

To make our math more consistent with our figures, we write vectors and ranges of
natural numbers in decreasing order. To minimize notational clutter, we overload oper-
ations on elements of F2, Booleans (truth values), and predicates (functions that return
truth values).

Definition 1. A binary sequence (x) with period 2n is a de Bruijn sequence iff every
length-n subsequence (x[i+n−1 : i]) occurs exactly once in one period.

Definition 2. [15] A binary sequence (x) with period 2n−1 is a span-n sequence iff every
non-zero length-n subsequence (x[i+n−1 : i]) occurs exactly once in one period. It is also called
a modified de Bruijn sequence iff it is obtained from a de Bruijn sequence with period of 2n

by deleting one of the 0s in the subsequence of n 0s.

For example, 0001110100011101 . . . is a de Bruijn sequence with period 8 because ev-
ery subsequence of length 3, which are 000, 001, 010, 011, 100, 101, 110, 111, occurs exactly
once in one period. By removing one of the 0s in the subsequence of 3 0s, we have
00111010011101 It is called modified de Bruijn sequence, which is also a span-n se-
quence.

2.2 Algorithms to Construct de Bruijn Sequence Gen-

erators

Generating de Bruijn sequences has been a mathematical problem studied mainly in two
directions, generating all or as many as possible de Bruijn sequences and efficiently gener-
ating de Bruijn sequences. A graphical approach was used by de Bruijn to prove that the
total number of different de Bruijn sequences with a period 2n is 22n−1−n in [4]. Approaches
that are able to generate all de Bruijn sequences can be found in [18, 36, 37, 27]. In this
thesis, we are more interested in feedback shift register(FSR) based algorithms because of
their efficiency. FSR (shown in Figure 2.1) consists of a series of flip-flops connected in
serial and a feedback function f generating new values for the shift register. The feedback
function f may take any subset of the flip-flops as inputs. If f is linear, the FSR is
also called linear feedback shift register (LFSR). Otherwise, it is called non-linear feedback
shift register (NLFSR).

A simple such algorithm to generate a de Bruijn sequence is appending 0 after n − 1
consective 0s in a span-n sequence of a period 2n − 1. This can be achieved by adding a
product of negation of n−1 stages of the n-stage shift register to the feedback function. This
approach is not suitable for cryptographic applications, and the reasons are twofold. If the
span-n sequence is generated by an LFSR, a string of (2n+ 1) consecutive bits is sufficient

4

x0x1xn-1xn

 f
x[n-1:0]

Figure 2.1: Generic feedback shift register

for an adversary to generate the complete sequence of 2n bits. If the span-n sequence is
generated by an NLFSR, the period of de Bruijn sequence is not large enough for most of
the cryptographic applications. It is because NLFSRs are acquired by exhaustive search
and the maximum period found so far is 232 − 1 [14].

Fredricksen and Kessler in [11] presented an algorithm based on lexicographic composi-
tions which requires a storage unit linear in n. Later, Fredricksen and Maiorana proposed
a more general technique to generate k-ary de Bruijn sequences of period kn [12]. A similar
algorithm is in [42] with modest computational advantage.

Cycle joining is one of the well-known tools for generating de Bruijn sequences in which
a de Bruijn sequence is constructed by joining a number of cycles produced by a feedback
shift register [21, 19, 25]. In [21], Jansen et al. presented a cycle joining algorithm for
generating de Bruijn sequences whose feedback function is the sum of the original feedback
function and a feedback function for joining the cycles of the original feedback function.
The storage requirement for this method is 3n bits, and each bit of the de Bruijn sequences
is generated within 4n cycles.

Another technique used for generating de Bruijn sequences is using D-morphism [24]
by Lempel, which constructs a de Bruijn sequence of period 2n+1 as follows. First, two
D-morphic preimages of the de Bruijn sequence of period 2n are computed and then,
the de Bruijn sequence of period 2n+1 is obtained by concatenating these two preimages
at a conjugate pair. It will be explained more in Section 2.3. Annexstein presented a
software implementation and it requires O(2n) bit operations [2]. In [6], Chang et al.
presented a method for implementing D-homomorphism for producing de Bruijn sequences
of long period. Games’ generalized construction [13] is also based on Lempel’s method.
Mykkeltveit et al. [38] studied the composition of recurrence relations and represented the
Lempel construction in terms of compositions of recurrence relations.

5

In [28], Mandal and Gong refined Mykkeltveit et al.’s construction and studied the
composited construction for generating cryptographically strong de Bruijn sequences of
order (n+k) from span n sequences. For the composited construction, the feedback function
of a de Bruijn sequence is composed of k-th order composition of the feedback function
of span-n sequences and the sum of the product-of-sum terms which is the expensive
part. According to their studies, in order to generate a cryptographically strong de Bruijn
sequence of order (n+k), the underlying span-n sequence needs to be long and have optimal
or near optimal linear complexity. Mandal and Gong [29] further analyzed the security of
the composited de Bruijn sequences from D-morphic point of view and also proposed an
iterative technique for the implementation. The amount of storage required to implement
the feedback function is (n + k − 1) and their implementation outputs one bit in every k
clock cycles, where k is the composition degree and 2n+k is the period of the constructed
de Bruijn sequence.

Table 2.1 summarizes storage and bit operation complexity information of many of
these de Bruijn sequence generation techniques. The storage corresponds to the feedback
function, instead of the whole sequence generator which would need n+k extra storage for
the shift register. Among them, composited construction [28] has the best computational
complexity per output bit, which makes it especially suitable for generating de Bruijn se-
quences with long periods. We will show that our work significantly improves the complex-
ity, resulting the first practical hardware implementation of de Bruijn sequence generators.

Table 2.1: Comparison of different de Bruijn sequence construction techniques in storage,
throughput and computation complexity

Bit ops Total bit ops

Storage per cycle Throughput per output bit

Fredricksen [10] 3(n+ k) O(n+ k) † 1

n+ k
O((n+ k)2) †

Jansen et al. [21] 3(n+ k) O(n+ k) † 1

4(n+ k)
O((n+ k)2) †

Annexstein [2] − O(2n+k) 1

5 O(2n+k)

Chang et al. [6] − 1 1

3k(n+ k)
3k(n+ k)

Mandal and Gong [29] n+ k − 1 O(n+ k) 1

k
O(k2 + nk)

Results are given in terms of n and k where the period of the de Bruijn sequence is 2n+k to enable
comparison between the composited construction and other techniques. To translate the descriptions
of the non-composited constructions in the paragraphs above to the table, replace n with n + k.

† The number of bit operations is an estimate based upon the cited paper.

6

2.3 Composited Construction of de Bruijn Sequences

We restate composited construction method from [28], including changing notations and
creating new notations. New notations are informative in suggesting their meanings from
our perspective. In this section, they are created to represent a complex formula for easy
reference. Besides, some notations from [28] are changed to fit our taste. As it will become
more clear, the combination of the superscript and subscript of a notation forms a pair of
coordinates in figures. We also refer the subscript as index.

Moreover, we show visualizations of composited operations and the overall structure of
composited de Bruijn sequence generators.

D-morphism
 preimage

cycle
joining

D-morphism
 preimage

Figure 2.2: Overview of Composited Construction

Composited construction is based on Lempel’s D-Homomorphism [24]. It is used to
construct long de Bruijn sequences from a short de Bruijn sequence. Figure 2.2 shows the
overview of this technique. Let D be the function, mapping F2n to F2n−1 , defined by

D(x[n−1 : 0]) = (xn−1 + xn−2, xn−2 + xn−3, . . . , x1 + x0).

The function D is 2-to-1 mapping. From a de Bruijn sequence of period 2n, we first compute
the two preimages of length n+1 for each subsequence of n under the function D. The two
preimages are two distinct 2n-cycles. Then we join these two cycles at a conjugate pair to
make a 2n+1-cycle. A conjugate pair is formed by two subsequences of the same length, that
differ in their leftmost element, namely (xn−1, xn−2, . . . , x0) and (xn−1, xn−2, . . . , x0+1), e.g.
(1, 0, 1, 0, 1, 0) and (1, 0, 1, 0, 1, 1). We can repeat this process to create longer de Bruijn
sequences.

7

For example, given a de Bruijn sequence . . . 00110011, we compute every subsequence’s
two preimages. For example, the subsequence 11 has two preimages 101 and 010, shown
in Figure 2.3. In the end, we end up with two seperate cycles consisting of the preimages
we compute with no overlapping in subsequences. The cycles shown in Figure 2.3 are
annotated with their corresponding sequences, respectively . . . 11011101 and . . . 00100010.
We pick a conjugate pair (0, 1, 0) and (0, 1, 1), where we join two cycles to get the de Bruijn
sequence with period 23. We can do this over and over to construct de Bruijn sequence
with period 24, 25 and so on.

11 01

0010

101 110

111011

010 001

000100

preimages of D join

101 110

111011

010 001

000100

sequence: ... 00110011

sequence: ... 11011101

sequence: ... 00100010

sequence: ... 1101000111010001

001 000

100011

010111

110 101

Figure 2.3: An Example of Composited Construction

In summary, starting with a de Bruijn sequence of period 2n, by applying composited
construction k times, we will end up with a de Bruijn sequence of period 2n+k.

8

We now proceed to discuss how composited construction changes the boolean func-
tion/relation that defines the feedback value of the shift register that generates the starting
de Bruijn sequence.

2.3.1 Composition Operation

Note that our definition of composition operation, shown belown, is different from function
composition.

Definition 3. Let g be a function of n inputs, i.e. x[n−1 : 0] and f be a function of a boolean
vector, i.e. x[:0]. Then

(g ◦ f)(x[n−1 : 0]) = g(f(x[:n−1]), . . . , f(x[:0]))

Composition operation consists of an operator, denoted by ◦ and two functions as
operands. g ◦ f (Definition 3) applies f to each argument of g. If g is a function of n
arguments, g ◦ f will consist of n copies of f , each producing one argument for g. The
argument to each instance of f is offset by 1.

Let us now formalize a summation operation that will be used throughout this thesis.

Definition 4. +◦ 1
0(x) = x0 + x1

+◦ k0(x) = +◦ 1
0 ◦+◦ k−10 (x)

= +◦ 1
0((...,+◦ k−12 (x),+◦ k−11 (x),+◦ k−10 (x)))

= +◦ k−11 (x) + +◦ k−10 (x)

+◦ kn(x) = +◦ k0(x[:n]), where k ∈ Z and k ≥ 2

Remark 1 (The connection between function D and +◦ 1
0).

Let I be an identity function, mapping F2n to F2n. Then,

D(x[n−1 : 0]) = I ◦+◦ 1
0(x[n−1 : 0])

Let k be 2 in Definition 4, we have +◦ 2
0(x) = +◦ 1

0 ◦+◦ 1
0(x) = +◦ 1

0(. . . , x2 + x1, x1 + x0) =
x0+x2, which can be derived from Definition 3 by replacing f and g with +◦ 1

0(x). Its higher
order extension +◦ k0(x), where k > 2, can be derived by applying Definition 3 multiple times
and replacing f with the new intermediate result each time and g with +◦ 1

0(x). In +◦ kn(x),
the subscript n slices the input vector and picks the higher half as the input to the function

+◦ k0, i.e. +◦ kn(x) = +◦ k0(x[:n]). k−1 is how many times we apply the composition operation ,
that is +◦ kn(x) = +◦ 1

n ◦+◦ 1
0... ◦+◦ 1

0︸ ︷︷ ︸
of ◦: k−1

. Plus, n and k are the coordinates when we draw +◦ kn(x)

in a picture.

9

4 3 2 1 0

0

1

2

3

4

(a) Recursive

4 3 2 1 0

0

1

2

3

4

(b) Direct

Figure 2.4: Computation of +◦ 4
0(x)

There are two manners of computing +◦ kn(x), which are recursive way and direct way,
as shown in Figure 2.4a and Figure 2.4b respectively. We call the Figure 2.4a a mesh
structure of xor, which is derived from the recursive definition of +◦ kn(x) in Definition 4.
It is worthwhile to notice that intermediate results remain in the structure. As a result, we
do not need another mesh structure to compute +◦ 3

0(x) while we have the mesh for +◦ 4
0(x).

This reflects mesh’s characteristic of being able to naturally utilize reusing to some extend.
This is one advantage over the direct manner. For the direct manner, we just directly
expand +◦ k0(x) to elements from vector x according to Definition 4, and cancel elements
when the rule, v + v = 0, where v is in F2, is applicable. For example,

+◦ 4
0(x) = +◦ 3

1(x) ++◦ 3
0(x)

= +◦ 2
2(x) ++◦ 2

1(x) ++◦ 2
1(x) ++◦ 2

0(x)

= +◦ 1
3(x) ++◦ 1

2(x) ++◦ 1
1(x) ++◦ 1

0(x)

= (x3 + x4) + (x2 + x3) + (x1 + x2) + (x0 + x1)

= x0 + x4

Figure 2.4b shows the computation of +◦ 4
0(x) in such way. For the direct manner, one

interesting question would be how many elements are left after expansion and all applicable
cancellations? To answer it, we first observe one special case when k is a power of 2.

Lemma 1. If k is a power of 2, then +◦ kn(x) = xn + xn+k.

Proof. It can be proved by induction. Assume when k = 2j where j is a non-negative

10

integer, we have +◦ kn(x) = xn + xn+2j . Then, when k = 2j+1,

+◦ kn(x) = +◦ 2j

n ◦+◦ 2j

0 (x)

= +◦ 2j

n (y),where y is a vector and yi = +◦ 2j

i (x)).

= yn + yn+2j

= +◦ 2j

n (x) ++◦ 2j

n+2j(x)

= xn + xn+2j + xn+2j + xn+2×2j

= xn + xn+2j+1

= xn + xn+k

Theorem 1. The number of bit elements from x for +◦ kn(x) is 2H(k), where H(k) is the
Hamming weight of the binary representation of k and n is an arbitrary natural number.

Proof. Theorem 1 can be proved in the following way. First, the integer k is written as a
sum of H(k) powers of 2, k = 2i1 + 2i2 + . . .+ 2iH(k) , where i1 < i2 < . . . < H(k).

+◦ kn(x) = +◦ 2
iH(k)

n (y), where yi = +◦ 2
iH(k)−1

i ◦ · · · ◦+◦ 2i1
0 ◦+◦ 2i1

0 (x)

= yn + y
n+2

iH(k) , according to Lemma 1

= +◦ 2
iH(k)−1

n (z) ++◦ 2
iH(k)−1

n+2
iH(k)

(z), where zi = +◦ 2
iH(k)−2

i ◦ · · · ◦+◦ 2i1
0 ◦+◦ 2i1

0 (x)

= zn + z
n+2

iH(k)−1 + z
n+2

iH(k) + z
n+2

iH(k)+2
iH(k)−1 , according to Lemma 1

= . . .

We can continue until all left on the right side of the equation are elements from vector
x. Because of the fact that a sum of different powers of 2 is not a power of 2, no terms
in each step above have the same index. Therefore no cancellation v + v = 0 is possible.
We can see how in each line the number terms to add together doubles. Finally, after
eliminating every function +◦ on the right side, the total number of elements from x is
2H(k). Accordingly, the number of xor operations is 2H(k) − 1.

Useful corollaries of Theorem 1 are:

Corollary 1. The number of xor operations for +◦ kn(x) is 2H(k) − 1, where k and n can
be arbitrary natural numbers.

11

Corollary 2. In computing +◦ ki and +◦ ki+δ, δ ∈ Z and δ ≥ 1, direct computation requires
fewer xor operations than recursive computation.

Proof. The recursive computation of +◦ ki+δ requires mesh in a shape of right triangle. To
further compute+◦ ki , we need to extend this triangular mesh on the right with a rectangular
mesh whose width is δ, height is the same as the triangular mesh. The total number of
xor operations needed for each way are as follows.

Direct Computation: 2(2H(k) − 1) = 2× 2H(k) − 2 ≤ 2(k − 1)− 2

Recursive Computation: (k− 1 +k− 2 + . . .+ 1) +kδ = k2

2
− k

2
+kδ, where kδ accounts for

the rectangular mesh that extends the triangular mesh which has k2

2
− k

2
xor operations.

Because the cost of direct computation in terms of xor operations is independent of δ,
while for recursive computation, the cost increases as δ increases, if Corollary 2 is true for
δ = 1, then it is true for any δ ≥ 1. So we check if the direct computation is better than
the recursive computation when δ = 1.

k2

2
− k

2
+ k − 2(2H(k) − 1) ≥ k2

2
+
k

2
− (2(k − 1)− 2)

≥ k2

2
− 3k

2
+ 4

> 0, for any k ≥ 1

Corollary 3 (Indexes of the elements from x in +◦ kn(x)). Let k = 2i1 + 2i2 + . . .+ 2iH(k) and
i1 < i2 < . . . < iH(k). The indexes of the x’s elements that appear in +◦ kn(x) are in one-
to-one correspondence to the objects/elements of the power set of {2i1 , 2i2 , . . . , 2iH(k)}. The
mapping that maps a set to an index is defined as follows. The index corresponding to the
set {idx1, idx2, idx3, . . .} is n+ idx1 + idx2 + idx3 + If a set is empty, the corresponding
index is n.

For example, to compute the indexes of x elements in +◦ 5
3(x). We start by writing

5 = 1 + 4. The power set of {1, 4} is {{}, {1}, {4}, {1, 4}}. The corresponding indexes are
3, 3 + 1, 3 + 4, 3 + 1 + 4, that is 3, 4, 7, 8. Therefore,

+◦ 5
3(x) = x3 + x4 + x7 + x8.

The hints to prove Corollary 3 can be found in the proof of Theorem 1.

12

2.3.2 Composited de Bruijn Sequence Generators

Now we continue constructing composited de Bruijn sequence generators. We begin by
defining a function used to identify the all 0 subsequence.

Definition 5. All0n(x) = 1 iff all elements of x[n : 1] are 0:

∀ i ∈ [n, 1] . xi = 0.

Assuming Figure 2.5 is a span-n sequence generator, the composited construction begins
by creating a de Bruijn-sequence generator with period 2n (Figure 2.6) by adding All0n−1,
which tests if bits x[n−1 : 1] are 0 (Definition 5).

x0x1xn-1xn

G
x[n-1:1]

x0x1xn-1xn

G
x[n-1:1]

xn +G(x[n−1 : 1]) + x0
xn +G(x[n−1 : 1]) + x0

+All0n−1(x[n−1 : 1])

Figure 2.5: A span-n sequence generator Figure 2.6: A de Bruijn sequence generator

We describe the feedback structure of shift registers with feedback expressions. Given a
feedback expression g(x) for an n-stage NLFSR, the term xn represents the output of the
feedback and the input to the shift register. Factoring xn out of g(x) to create an equation
of the form xn = . . . results in a feedback function. In the figures, the function G is drawn
with all n − 1 bits of x[n−1 : 1] as inputs. In reality, G almost always is a function of a
relatively few bits (e.g., 10 for the (k = 40, n = 24) example in this thesis). We use gray
regions in figures to identify sets of nodes that are inputs to a function such as All0 . Next
we define a function to detect the subsequence of alternating 1 and 0 with 1 appearing at
odd indexes.

Definition 6. Xn(x) = 1 iff all of the elements with even indexes from x[n : 1] are 0 and all
of the elements with odd indexes are 1.

13

Remark 2. With Xn(x) = 1, we specify the position to join two preimages (i.e. two
sequences). More specifically, if we can find a subsequence x[n+i−1 : i] that has alternating
1,0 pattern with 1 appearing at the odd indexes in either of the two preimages, then we
insert the other preimage into the first one after the subsequence.

In [28], Mandal and Gong restate the theorem from [38] as follows.

Theorem 2. Let g(x[n : 0]) = x0 +xn+f(x[n−1 : 1]), such that g(x) = 0 generates a de Bruijn
sequence. Then

h(x[n+1 : 0]) = (g ◦ +◦ (x)) + Xn(x[n−1 : 1]) = 0 generates de Bruijn sequences with period
2n+1.

Remark 3. We relate Theorem 2 to the composited construction process (Figure 2.2) by
pointing out that the preimages of the sequence generated by feedback relation g(x[n : 0]) = 0
satisfy g ◦+◦ (x[n : 0]) = 0. In other words, g ◦+◦ (x[n : 0]) = 0 generates two different cycles
depending on the initial state. Xn joins two different cycles into a full and complete cycle
that is a de Bruijn sequence.

All0kn and Xk
n are extensions of All0n and Xn, which were previously defined in Defini-

tion 5 and Definition 6 respectively, to support composited de Bruijn sequence generators.
All0kn and Xk

n check nodes from row k instead of the bottom row as All0n and Xn do.

Definition 7. All0kn(x) = 1 iff all of the elements from the input vector to All0kn after k
times of composition with +◦ 1

0 are 0:

All0kn(x) = All0n ◦+◦ k0(x) =
n∑
i=i

(+◦ ki (x) + 1)

Definition 8. Xk
n(x) = 1 iff all of the elements with even indexes from the input vector to

Xk
n after an order-k composition are 0 and all elements with odd indexes are 1:

Xk
n(x) = Xn ◦+◦ k0(x) =

∑
i∈Zn

o

+◦ ki (x)
∑
i∈Zn

e

(+◦ ki (x) + 1)

By applying this fundamental Theorem 2 repeatedly on a relation that will generate
a de Bruijn sequence of shorter period, we will construct an NLFSR that will generate a
de Bruijn sequence with long period. More concretely, suppose xn + G(x[n−1 : 1]) + x0 = 0
generates a span-n sequence with period 2n−1, then we know g(x[n : 0]) = xn+G(x[n−1 : 1])+
All0n−1(x[n−1 : 1]) +x0 = 0 generates a de Bruijn sequence with period 2n. After repeatedly
applying Theorem 2 k times, and based on Definition 3, Definition 7, Definition 8 we have:

14

g ◦+◦ k0(x) = g(+◦ kn(x), ...,+◦ k0(x))

= +◦ kn(x) +G(+◦ kn−1(x), ...,+◦ k1(x))

+ All0kn−1(x) +
k−1∑
i=0

X i
n+k−1−i(x) ++◦ k0(x)

= 0

It is called an (k, n)-composited construction. Its feedback relation is:

+◦ kn(x) +G(+◦ kn−1(x), ...,+◦ k1(x)) + All0kn−1(x[n−1 : 1]) +
k−1∑
i=0

X i
n+k−1−i(x) ++◦ k0(x) = 0

For simplicity, we define:

Definition 9. ccdBnk(x) is the feedback expression for a (k, n)-composited de Bruijn se-
quence generator. Its original feedback expression is G+ x0 + xn:

meshnk(x) = All0kn−1(x) +
k−1∑
i=0

Xn+k−1−i
i (x)

ccdBnk(x) =+◦ kn(x) +G
(
+◦ kn−1(x), ...,+◦ k1(x)

)
+

+◦ k0(x) + meshnk(x)

Figure 2.7 shows an (k = 6, n = 4) composited construction. In an order-k composition,
each xi in the feedback expression is replaced by +◦ ki (x). The All0n term becomes All0kn
(Definition 7), to include +◦ k0. Also, a new term is added, which examines each instance of

+◦ ji (x) for j ∈ [k − 1, 0] and i ∈ [n + k − 1, 1]. This new term checks if an odd number of
vectors of +◦ ji (x) terms at the same level of recursion (same value for j) have an alternating
1,0 pattern with 1 appearing at odd indexes (Definition 8).

15

2.3.3 Three Baseline Implementations of (k, n)-composited de Bruijn
Sequence Generators

For evaluating the benefits of our optimizations, we present three baseline implementations
of composited de Bruijn sequence generators. The first two baseline implementations are
different in the way of computing nodes, +◦ ji (x) for j ∈ [k − 1, 0] and i + j ≤ n + k − 1,
which are needed in the computation of meshkn.

If we compute each of these nodes recursively (Figure 2.4a), we will end up having a
mesh of xor gates as shown in Figure 2.7. Then we explictly compute X , All0 and G
terms. Figure 2.7 illustrates this mesh-based implementation. The signal x10, which carries
the feedback value, appears implicitly in the term +◦ 6

4(x). We factor it out by adding x10
on both sides of the equation so that we can create an equation of the form x10 =

123456789
nn+k

010

G

1

2

3

4

5

6

0

k

x0 (output)

Figure 2.7: A (6, 4)-composited de Bruijn sequence generator

This mesh-based implementation of an (k, n)-composited de Bruijn sequence generator
requires a mesh with n+k−1 nodes at the bottom, k+1 rows, and n−1 nodes at the top,

16

for a total of (2n + k − 2)(k + 1)/2 xor gates in the xor mesh structure. So the overall
complexity of computing the mesh nodes in terms of bit-level operations is O(k2 + nk).

An alternative approach would be to compute each node separately and directly as
in Figure 2.4b. With the simplification v + v = 0, where v is a variable over F2, the
minimum number of xor gates to compute +◦ ji (x) is reduced to 2H(j) − 1, where H(j)
denotes the Hamming weight of j and 0 ≤ j ≤ k, i + j ≤ n + k − 1 . Therefore, each
node now requires minimum computation resources to be calculated. It is called direct
implementation. The rest of the computation of the feedback function is the same as the
mesh-based implementation. From now on, for our convenience, we call +◦ ji (x) (where
0 ≤ j ≤ k, i + j ≤ n + k − 1) nodes from the mesh withouth the implication that
they are computed recursively, i.e. using the mesh. In such way, nodes with the same
superscript(subscript) are from the same row(column) of the mesh and nodes with the
highest(lowest) possible superscript are from the top(bottom) row. The diagonal of a
mesh are made of the head node of each row, which are the nodes whose superscript plus
subscript is equal to n+ k − 1.

Another baseline implementation is presented in [29]. It is essentially a serialized version
of the mesh-based implementation. In each cycle, this serialized implementation computes
one level of the mesh as well as the funtions (X or All0) applied on the nodes of this
level. This serialization is possible because the computation of each level of the mesh
only requires the nodes from the level right below it and neither of X and All0 needs
nodes accross multiple levels of the mesh as inputs. As far as computational complexity
is concerned, it uses O(n+ k) bit operations but requires around k (i.e. the height of the
mesh) clock cycles to generate one bit as output. Therefore, the number of bit operations
per output bit is still O(k2 + nk) [29].

2.3.4 Cryptographic Applications

Though it is out of scope of this thesis, security is in the center of cryptographically strong
pseudorandom number generators(CSPRNG). Refer to [7] for introductions to randomness,
security analysis on PRNG, [35] for a brief survey of CSPRNGs. In [29] Mandal and
Gong proved that composited de Bruijn sequence generators are cryptographically strong.
Particularly, as far as linear complexity is concerned, they showed that if the starting
span-n sequence (Figure 2.5) has the optimal linear complexity, which is 2n − 2, then the
de Bruijn sequence will have a near-optimal linear complexity of 2n+k − C, where C is
a relatively small constant that is dependent upon the starting span-n sequence. They
also showed empirically that the span-(n + k) subsequence of the de Bruijn sequence has

17

optimal or near-optimal linear complexity for values of n+k ranging from 11 to 20. If this
guideline is not followed, in the worst case G would be linear, the starting span-n sequence
would be an m sequence, and then the resulting span-(n+ k) subsequence of the de Bruijn
sequence would have a linear complexity of just n+ k.

Due to the fact that composited de Bruijn sequence generators generate random number
directly from its internal states, they are not directly suitable for applications that expose
the random numbers in plaintext, such as EPC protocol for RFID tags [20]. In such appli-
cations, an adversary can extract the internal state from the sequence of random numbers
OcDeb-k-n generates and then run the OcDeb algorithm to compute future (and possibly
even previous) random numbers. The countermeasure is adding filtering functions. But the
security of the filtering function needs to be analyzed just as with other such PRNGs. For
applications that keep random numbers as secrets (e.g. in public-key cryptography [43],
the randomly generated private key is kept secret and then used to generate the public key
that is exposed), composited de Bruijn sequence generators can be used directly.

2.4 Summary

We introduced de Bruijn sequences and various construction techniques in Section 2.1 and
Section 2.2. Among them, composited construction is the most efficient one. A (k, n)-
composited de Bruijn sequence generator has a period 2n+k and is built by applying com-
posited construction to a span-n sequence generator with period 2n− 1. (k, n)-composited
de Bruijn sequence generators need n+ k − 1 bits storage space and O(k2 + nk) bit oper-
ations. We also presented composited de Bruijn sequence generators’ architecture, which
inspired our optimizations that will be shown in the next chapter. Two different ways to
compute nodes in the mesh of the architecture were discussed and the corresponding cost in
xor gates for each way was shown. We presented three different baseline implementations
of composited de Bruijn sequence generators, which are direct implementation, mesh-based
implementation, as well as Mandal and Gong’s implementation. The first two differ in the
way of computing nodes in the mesh. Mandal and Gong’s implementation is essentially a
serialized version of the mesh-based implementation. In Section 2.3.4, we briefly discussed
the security aspect of composited de Bruijn sequence generators. Particularly, we pointed
out that composited de Bruijn sequence generators need to be added filter functions in
order to be used in applications where random numbers are exposed.

18

Chapter 3

Optimizations

Our optimizations are focused on the summation of the functions applied on each row
of the mesh, (i.e. meshkn(x), the mesh and functions are shown in Figure 3.1), because
this summation includes all of the overhead from composited construction. These are
mathematical/algorithmic optimizations that are applicable to both hardware and software

implementations. Computation of meshkn(x) = All0kn−1(x) +
k−1∑
i=0

Xn+k−1−i
i (x) examines

every nodes in the mesh. In Theorem 3 (Section 3.1.3), we show that we can find a
much simpler expression that is functionaly equivalent to it but only examines the top row
nodes and the diagonal nodes instead of the whole mesh. The intermediate steps towards
Theorem 3 can be found in Section 3.1.1 and Section 3.1.2. Theorem 4 (Section 3.1.5)
states that for any function over the bottom row nodes, we can always find an equivalent
function over other nodes in the mesh. Its corollary Corollary 4 shows that we can also
examine nodes of an interior diagonal instead of examining the diagonal nodes. An interior
diagonal is made of nodes that have same distance to the diagonal. Corollary 4 opens
opportunities for hardware retiming. Besides, we show that these two functions (one
examining the diagonal nodes, one examining nodes of an interior diagonal) are either the
same or related to each other by a simple relation. Combined with this fact, Corollary 4
also enables efficient parallelization. These two applications of Corollary 4 are shown in
Section 3.1.5. In Section 3.2, we compute the new complexity in bit operations after
our optimizations. Inevitably we will introduce new definitions and notations. Symbols’
superscript and subscript serve as coordinates in figures and a subscript is also referred to
as an index.

We name optimized composited de Bruijn sequence generators “OcDeb”, and call op-
timzed (k, n)-composited de Bruijn sequence generators “OcDeb-k-n”. Efficient hardware
implementations of OcDeb-k-n will be detailed in the next chapter.

19

3.1 Mathematical Optimizations

In this section, we present mathematical optimizations that reduce the absolute number
of bit operations as well as the complexity so that the optimized composited construction
technique will scale better in terms of increasing k and n. We express our optimizations
in theorems and prove their correctness by proving the theorems. We depend on the mesh
to illustrate our optimizations.

There are three key insights behind our mathematical optimizations.

• At most one row can satisfy X (have an alternating 1s and 0s pattern and 1 appears
at odd indexes). This later becomes Lemma 2 in Section 3.1.1.

• We can detect if there is a row that satisfies X by looking at just the top row and
the leftmost node of every row. This becomes Lemma 7 in Section 3.1.2.

• We can use a counter to detect if the top row of nodes are all 0 and all 1. This can
be found in Section 3.1.4.

Together these optimizations allow us to look at only the leftmost node of each row, that
is the diagonal nodes. Figure 3.7 shows the optimized version of Figure 2.7.

1234567

1

2

3

4

89

5

6

0

1

2

3

4

5

6

0

k

k-1

nn+k-1

Figure 3.1: The mesh of (6, 4)-composited de Bruijn sequence generator

20

3.1.1 Only One Row Can Satisfy X

Now we present our first observation on the mesh structure. Recall that the function X
checks whether the nodes are alternating 1s and 0s with 1 appearing at odd indexes.

Lemma 2. At most one row satisfies X.

Here we sketch out the reasoning behind Lemma 2 by introducing the following helper
lemmas.

Lemma 3. For any k1 ∈ {x ∈ Z | x ≥ 0 }, if the row k1 satisfies X (alternating 1s and
0s pattern with 1 appearing at odd indexes), then the row k1 + 1 is all 1s.

Lemma 4. For any k1 ∈ {x ∈ Z | x ≥ 0 }, if row k1 is all 1s, then row k1 + 1 is all 0s.

Lemma 5. For any k1 ∈ {x ∈ Z | x ≥ 0 }, if row k1 is all 0s, then row k1 + 1 is all 0s.

Lemma 6. For any k1 ∈ {x ∈ Z | x > 0 }, if all of the nodes row k1 are 0, then row k1−1
does not satisfy X.

Lemmas 3–6 are easily proved using the behaviour of an xor gate, including the fact
that with an xor gate we can deduce the value of an input from the values of the output
and the other input.

123456789101112

1 0 1 0 1 0 1 0 1

11 1 1 1 1 1 1

00 0 0 0 0 0

00 0 0 0 0

00 0 0 0

Figure 3.2: An example of Lemma 2

21

In Figure 3.2, without losing generlity, let us say row k1 satisfies X. Also for clarity,
we do not draw the associated functions on each row. Therefore, the xor nodes from left
to right are 101010101. We can then deduce the other nodes above it and their values are
labled in grey colors in the picture. It is not hard to see Lemmas 3–5 are correct.

We apply these lemmas inductively to prove Lemma 2, which says that at most one
row satisfies X. Intuitively, if a row k satisfies X, that is row k consists of alternating 1s
and 0s with 1 at odd indexes, then the row above it is all 1s and all higher rows are all
0s, which prevents another row from satisfying X. With Lemma 2, we have reduced the
problem of determining if an odd number of rows satisfy X to determining if there is any
row that satisfies X.

3.1.2 Diagonal Optimization for a Specific Row

We now show that we can determine if a row k1 satisfies X by checking if the top row is
all 0s and if the leftmost nodes on the diagonal from row k and above satisfy a particular
pattern (Lemma 7). Nodes on the diagonal are +◦ k1n1

(x), where k1 + n1 = n+ k − 1 and k1
ranges from 0 to k.

We use Diag0 (Definition 10) to examine the nodes on a diagonal. On top of them,
we define Pat (Definition 11). They are all functions of a sequence x, which is left out
intentionally for simplicity when there is no ambiguity. Examples of Diag0 are shown in
Figure 3.3a and Figure 3.3b.

Definition 10. Diag0k1,k2n2
(x) =

k2∏
i=k1

(+◦ in2+k2−i(x) + 1), meaning the diagonal (head nodes)

on rows k1, k1 + 1, . . . , k2 are all 0.

3456789

1

2

3

4

5

6

0

0

0

(a) Function Diag03,45

3456789

1

2

3

4

5

6

0

0

0

0

(b) Function Diag02,45

Figure 3.3: Examples of Diag0: (a) Diag03,4
5 and (b) Diag02,4

5

22

Definition 11.

Patk1,k2n2
(x) =

Diag0k1+2,k2
n2

· (+◦ k1+1
n1−1(x) + 1) ·+◦ k1n1

, when n1 is odd

Diag0k1+2,k2
n2

·+◦ k1+1
n1−1(x) · (+◦ k1n1

(x) + 1), otherwise

where n1 = k2 + n2 − k1.

Patk1,k2n2
= 1 iff the head nodes on rows k1 . . . k2 satisfy:

• the head nodes of rows k1 + 2 . . . k2 are all 0.

• the head node of row k1 + 1 is 1.

• the head node of row k1 is 1(0) if the head node of row k1 is in an odd(even) column.

In other words, Patk1,k2n2
is 1 iff the head nodes on row k1, k1+1 . . . , k2 match the regular

expression 11[0]{k2−k1−2} when k2+n2−k1 is odd or 01[0]{k2−k1−2} when k2+n2−k1
is even.

For example, shown in Figure 3.4a and Figure 3.4b, Pat1,45 = 1 iff the heads nodes on
row 1, 2, 3, 4 are 0100; Pat0,45 = 1 iff the heads nodes on row 0, 1, 2, 3, 4 are 11000.

3456789

1

2

3

4

5

6

0

0

1

0

0

(a) Function Pat1,45

3456789

1

2

3

4

5

6

0
1

1

0

0

0

(b) Function Pat0,45

Figure 3.4: Examples of Pat: (a) Pat1,45 and (b) Pat0,45

Lemma 7. Xk1
n1

is 1 iff there exists a row k2 so that k2 ≥ k1+2, All0k2n2
= 1 and Patk1,k2n2

= 1,
where n2 = n1 + k1 − k2.

Proof. Figure 3.2 and Figure 3.5 provide intuitive impression on the forward direction and
the reverse direction of the lemma respectively. Figure 3.5 is an instantiation of the reverse
direction of Lemma 7 with k2 = k1 + 4, n1 = 9 and n2 = 5. With the precondition that

23

All0k2n2
= 1 and Patk1,k2n2

= 1, we know the values of the nodes on row k2 and the diagonal
nodes from k1 to k2. They are labeled with their values in black color. We can now proceed
interatively from left to right and top to bottom to compute the other nodes between row
k1 and k2. Their values are labeled in the picture with grey color instead. We can see row
k1 indeed satisfies X.

To prove the forward direction of Lemma 7, we begin with Xk1
n1

, then use Lemma 3 to
show that row k1 + 1 is all 1s, use Lemma 4 to show that row k1 + 2 is all 0s, then use
Lemma 5 inductively to conclude that all rows above k2 + 2 are all 0s. At this point we
know that any row k2 ≥ k1 + 2 is all 0s and the diagonals from k1 to k2 satisfy Patk1,k2n2

.

To prove the reverse direction of Lemma 7, we use the fact that the value of an input
to an xor gate can be determined from the values of the output and the other input.
We know that row k2 is all 0s and we know the values of all the diagonal nodes on rows
k2 . . . k1. Proceeding iteratively from left to right and top to bottom, we can compute the
value of each node down to row k1 and show that row k1 must satisfy X. All of the nodes
are 0 until we encounter the first diagonal node that is 1, which then forces that entire row
to be 1s. We then apply Lemma 8 to show that the next row down satisfies X.

123456789101112

1 0 1 0 1 0 1 0 1

11 1 1 1 1 1 1

00 0 0 0 0 0

00 0 0 0 0

00 0 0 0

Figure 3.5: An example of Lemma 7

Lemma 8 strengthens Lemma 3, which was just an implication.

24

Lemma 8. A row satisfies X iff

1. the row above is all 1s, and

2. the head element of the row is 1(0) if the index of the head element is odd(even).

3.1.3 Diagonal Optimization for the Complete Mesh

We now combine Lemma 2 and Lemma 7 to prove important Theorem 3, which reduces
the problem of determining if the mesh satisfies meshkn to just examining the top row and
the diagonal. To present Theorem 3, we first define another function SomePatk2n2

.

Definition 12. SomePatk2n2
= 1 iff there is a diagonal segment starting at a row k1, 0 ≤

k1 ≤ k2 − 2 such that Patk1,k2n2
= 1.

With the help of regular expression language, we can rephrase Definition 12. SomePatk2n2
=

1 iff the diagonal nodes from bottom to the top match ([01][01])∗110∗ or [01]([01][01])∗010∗

when n2 +k2 is odd. Similary, for n2 +k2 is even, SomePatk2n2
= 1 iff the regular expression

([01][01])∗010∗ or [01]([01][01])∗110∗ are matched.

Theorem 3. meshkn(x) = 1 iff one of two conditions is true:

1. The top row (row k) is all 0s and none of the rows is the starting point for a diagonal
segment that satisfies Pat.

2. The top row (row k) is all 1s and the head node on row k − 1 is 1 if n is odd.

meshnk =

SomePatkn−1 + 1, when All0kn−1 = 1

+◦ k−1n = 1 (resp. 0), when All1kn−1 = 1 and

n is odd (resp. even)

0, otherwise

Proof. We now sketch the proof of Theorem 3. Using Lemma 2, which says
that at most one row satisfies X, we know that there are only two cases such
that meshkn(x) is satisfied:

1. All0kn−1 is 1 and no lower row satisfies X.

25

2. All0kn−1 is 0 and exactly one lower row satisfies X.

For the first case, from Lemma 7, we know that no row between 0 and
k − 2 satisfies X iff SomePatkn−1 = 0 or All0kn−1 = 0. Because we admit that
All0kn−1 = 1, SomePatkn−1 = 0 , which matches the top line of the right-side of
Theorem 3.

For the second case, where All1kn−1 = 1, the only possible row that can
satisfy X without causing the top row to be all 0s is the row just below the top
row. It is not hard to see that the second row from the top satisfies X iff the
top row is all 1s (All1kn−1) and the head element of the second row from the
top, which is +◦ k−1n , has the correct value (is 1 if the index of the head element
is odd).

We draw Figure 3.6a and Figure 3.6b to help understand the forward direc-
tion of Theorem 3. Both figures show the mesh structure of (6, 4)-composited
de Bruijn sequence generator. In Figure 3.6a, we assign values to the diagonal
nodes so that,

SomePat45 = Pat0,49 or Pat1,48 or Pat2,47 or Pat3,46 = 0.

1234567

1

2

3

4

89

5

6

0

1

2

3

4

5

6

0

k

k-1

nn+k-1

0 1 0 1 0 1

1 1 1 1 1

0 0 0 0

0 0 0

0 0

0

1

0

0

0

1 0 0 1 1 0 0

1 1 1 0 1 1 1

1

01

(a) An example of the 1.case in Theorem 3

1234567

1

2

3

4

89

5

6

0

1

2

3

4

5

6

0

k

k-1

nn+k-1

0 1 0

1 1

1

1

(b) An example of the 2.case in Theorem 3

Figure 3.6: Examples of Lemma 7

We assign 0s to the top row nodes so that All06
3 = 1. These values are

labeled in black colors labeled on the figure. Similarly, we do the same in
Figure 3.6b with the known precondition that All16

3 = 1 and +◦ 5
4 = 0. In each

figure, with known values of the nodes, we calculate the rest nodes and it is
easy to verify that no rows in Figure 3.6a satisfies X and in Figure 3.6b only
row 5 satisfies X but the top row(row 6 doesn’t satisfy All06

3). Therefore, in
both pictures, mesh6

3 = 1.

26

3.1.4 All-Zeroes State Machine

Up to this point, we have eliminated the need to examine any of the interior nodes in the
xor mesh. Because the input to the xor mesh is a shift register, each node in a row of
the mesh is simply a shifted version of its neighbor to the left. We replace the explicit
test that the n nodes in the top row are all 0 (all 1) with a simple counter that counts the
number of consecutive clock cycles that the head node in the top row is 0 (or 1) and is
compared with n. More details of this state machine can be found in Section 4.2.1.

Figure 3.7 illustrates the diagonal optimization (the optimization based on Theorem 3)
and the optimization using counters for OcDeb-6-4. Because our optimizations avoid the
need to compute the interior nodes of the composited construction, it now becomes cheaper
to compute each node separately, hence Figures 3.7–3.10 do not show the mesh.

123456789
nn+k

010

G

Inputs
to G

1

2

3

4

5

6

0

k

x0 (output)

SomePat 3
6

All0/1 3
6

Figure 3.7: The architecture of (6, 4)-composited de Bruijn generator after all-zeroes state
machine optimization

3.1.5 Parallelization and Retiming

A set of nodes is independent iff we can not determine one node’s value from other nodes
in the same set. Lemma 9 presents an easy way to test independency if the nodes come
from a mesh.

27

Lemma 9. Any set consisting of n distinct nodes from the mesh, which are referred to by
integers n, . . . , 2, 1 and their values are denoted with variables vn, . . . , v2, v1, is independent
iff for all subsets with at least 2 nodes, the following holds: let ik, . . . , i2, i1 be the nodes of
the subset, where k ∈ Z, 2 ≤ k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n, then the inequality,
vik + vik−1

+ . . .+ vi2 + vi1 6= 0, is satisfied.

For example, by Definition 4, we know that +◦ 4
3 = +◦ 3

3 ++◦ 3
4, thus

+◦ 4
3 ++◦ 3

3 ++◦ 3
4 = 0.

Therefore, any set consisting of +◦ 4
3, +◦ 3

3 and +◦ 3
4 is not independent.

Theorem 4. In (k, n)-mesh, for any n+k−1 independent nodes, denoted with vn+k−1, . . . , v2, v1,
and for any function Q(x[n+k−1 : 1]), we can always find a function F such that Q(x[n+k−1 : 1]) =
1 iff F (v[n+k−1 : 1]) = 1.

Proof. The proof of Theorem 4 begins by realizing that each node in the mesh
can be also written as +◦ ji (x), i ≥ 1, which is a sum of elements from x.
Therefore, we have n+ k − 1 linear equations as follows.

vn+k−1 = +◦ jn+k−1

in+k−1
(x)

vn+k−2 = +◦ jn+k−2

in+k−2
(x)

. . . = . . .

v2 = +◦ j2i2 (x)

v1 = +◦ j1i1 (x), where i1, i2, . . . , in+k−1 ≥ 1.

Because vn+k−1, . . . , v2, v1 are independent, the equations are linearly indepen-
dent. With n + k − 1 independent linear equations, we can solve exactly
n + k − 1 unkown variables. The unknown variables are elements from vec-
tor x of size n + k and x0 is not in the mesh, so the unkown variables have to
be xn+k−1, . . . , x2, x1, that is, the bottom row nodes. We solve the equations
and get answers for xn+k−1, . . . , x2, x1 which are represented as functions of the
vector v[v+k−1 : 1] made of the known variables, vn+k−1, . . . , v2, v1.

xn+k−1 = fn+k−1(v[n+k−1 : 1])

xn+k−2 = fn+k−2(v[n+k−1 : 1])

. . . = . . .

28

x2 = f2(v[n+k−1 : 1])

x1 = f1(v[n+k−1 : 1])

fn+k−1, . . . , f2, f1 are just a summation of some of its arguments. We use them
to construct the function F such that SomePatkn−1(x) = 1 iff F (v[n+k−2 : 0]) = 1:

F (v[n+k−1 : 1]) = Q((fn+k−1(v[n+k−1 : 1]), . . . , f2(v[n+k−1 : 1]), f1(v[n+k−1 : 1]))

The core of the proof is showing that there are exactly n+ k− 1 independent nodes in
(k, n)-mesh. It is intuitively true by the fact that the bottom row of the mesh has n+k−1
nodes and we can build up the mesh from the bottom row.

Though in the proof of Theorem 4, we treated a selected set of n+ k − 1 independent
nodes as known nodes, as a matter of fact, x[n+k−1 : 0] are the only known nodes for the
(n + k)-stage shift register. This is why the functions defined are in terms of the vector
x. Particularly, let us take a look up SomePatkn−1(x). Note that x0 is never used in the
function, so we can also write it as SomePatkn−1(x[n+k−1 : 1]). We described this function
as checking patterns on the diagonal nodes (Definition 12), but it is actually a function
over the vector x. To understand this, we view the computation of SomePatkn−1(x[n+k−1 : 1])
as two steps. The first step is to compute the diagonal nodes from the vector x. The
second step is to check patterns on the diagonal nodes. Based on Theorem 4, we find
an equivlent function that takes n + k − 1 independent nodes from the mesh as inputs.
But we still have to compute these n + k − 1 nodes from x. In such way, we essentially
make the function we found have x as inputs, thus become a tranformation of the original
SomePatkn−1(x[n+k−1 : 1]). This transformation can be benefitial and entail simplifications.
Our experience shows that it can increase clockspeed and save area in hardware imple-
mentations (Algorithm 2, Algorithm 6). Moreover, noticing that SomePatkn−1 is only used
in conjuction with All0kn−1, by utilizing this fact and the temporal relation between nodes
in the mesh, we are able to find some functions that are equivalent to SomePatkn−1 and
more importantly they are not transformations of SomePatkn−1. It will be show in the
following corollary. We will also show how to apply the corollary in parallelizing OcDeb
and increasing OcDeb performance in hardware.

Corollary 4. If All0kn−1 = 1, for all 1 + i < n, SomePatkn−1 = 1 iff SomePatkn−1−i = 1.

Proof. In Corollary 4, the n + k − 1 independent nodes we pick are the n − 1
nodes from the top row(nodes that are examined by All0kn−1) and k nodes from

29

any interior diagonal(nodes that are examined by SomePatkn−1−i). However, we
still need to prove these n+k−1 nodes are independent from each other. As in
the proof of Theorem 4, we can write down n+ k− 1 linear equations and each
equation’s left hand is just one of the selected nodes. It is not hard to see that
given values of the top row nodes and nodes from an interior diagonal, we can
compute the values of the remaining nodes in the mesh including n+k−1 nodes
on the bottom row. In other words, the n+k−1 equations must have solutions
for the n + k − 1 elements from x which are xn+k−1, . . . , x2, x1. Therefore,
the equations are independent, and accordingly the selected nodes which are
the equations’ left hand sides, are independent. Moreover, because the top
row nodes are all 0, the bottom row nodes xn+k−1, . . . , x2, x1 are sums of only
interior digonal nodes in the solution of the equations. Let the interior digonal
nodes be vk, . . . , v2, v1, then

xn+k−1 = fn+k−1(v[k : 1])

xn+k−2 = fn+k−2(v[k : 1])

. . . = . . .

x2 = f2(v[k : 1])

x1 = f1(v[k : 1])

There is a temporal relation between the interior diagonal nodes and the diag-
onal nodes. Specifically, vk

(i), . . . , v2
(i), v1

(i), that is v[k : 1]
(i), corresponds to the

diagonal nodes. If we pick the diagonal nodes and the top row nodes as the
n+ k − 1 independent nodes, the corresponding F is

F (v[k : 1]) = SomePatkn−1−i((fn+k−1(v[k : 1]
(i)), . . . , f2(v[k : 1]

(i)), f1(v[k : 1]
(i)))

= SomePatkn−1((fn+k−1(v[k : 1]), . . . , f2(v[k : 1]), f1(v[k : 1]))

To summarize, SomePatkn−1−i(x) = 1 iff F (v[k : 1]) = 1, which is also

SomePatkn−1−i(x) = 1 iff SomePatkn−1((fn+k−1(v[k : 1]), . . . , f2(v[k : 1]), f1(v[k : 1])) = 1.

By replacing (fn+k−1(v[k : 1]), . . . , f2(v[k : 1]), f1(v[k : 1]) with (xn+k−1, . . . , x2, x1),
we finally get

SomePatkn−1−i(x) = 1 iff SomePatkn−1(x) = 1.

30

Recall that SomePatkn−1 checks if the diagonal nodes satisfy a pattern. On the other
hand, SomePatkn−1−i checks if nodes of an interior diagonal that is made of the i-th(counting
from the left) node on each row satisfy a pattern. Figure 3.9 shows SomePat examining
an interior diagonal and Figure 3.10 shows SomePat examining the diagonal of OcDeb-6-
4. The exact pattern depends on the parity of the sum of the superscript and subscript
of SomePat (Definition 12). Therefore, SomePatkn−1 and SomePatkn−1−i may check nodes
against different patterns.

We will illustrate two applications of Corollary 4.

Enabling Efficiently Parallelizing OcDeb

We use xn−1 |→ xn−2 |→ . . . |→ x1 |→ x0 |→ to denote an n-stage shift register, v to denote
the feedback value and 7→ to denote feeding the value to the shift register. For example,
v 7→ xn−1 |→ xn−2 |→ . . . |→ x1 |→ x0 |→ denotes that xn−1, xn−2, . . . , x1, x0 is a shift register
with v as the feedback value to the stage xn−1. Another concrete example is that the shift
register on the left side of Figure 3.8 can be represented with this notation:

v 7→ x3 |→ x2 |→ x1 |→ x0 |→

Shift register is the bottom row of a mesh. Refer to Figure 3.7 and others for how we draw
shift register. Also recall that v(i) represents v’s value after i clock cycles. To achieve a
parallelism of degree d, we decompose the original shift registers to an array of (n/d)-stage
shift registers. The array has a length of d and for simplicity, we assume d divides n 1.

The (n/d)-stage shift registers in the array run in parallel and the adjacent registers in
them were d positions apart in the original shift register. Mathematically,

the original shift register: v 7→ xn−1 |→ xn−2 |→ . . . |→ x1 |→ x0 |→
the array of shift registers after parallezation:

v 7→ xn−d |→ xn−d−d |→ . . . |→ x0 |→
v(1) 7→ xn−d+1 |→ xn−d−d+1 |→ . . . |→ x1 |→
. . . 7→ . . .

v(d−2) 7→ xn−2 |→ xn−2−d |→ . . . |→ xd−2 |→
v(d−1) 7→ xn−1 |→ xn−1−d |→ . . . |→ xd−1 |→ .

1If d does not divide n, shift register from the array will not have the same length and the array looks
different from the one below. However, our techniques introduced here for efficient parallelization still
work.

31

For example, let us double the throughput of the 4-stage shift register with the feedback
function v = x1 +x2 +x3, shown in Figure 3.8. Mathematically, the array of shift registers
will be,

v 7→ x2 |→ x0 |→
v(1) 7→ x3 |→ x1 |→ .

v’s value in the next clock cycle, v(1) = v(x[:1]) = x2 + x3 + v.

x3 x2 x1 x0

x3 x1

x0x2

Figure 3.8: An example of parallelizing feedback shift register

Also shown in Figure 3.8, achieving a parallelism of 2 does not necessarily mean we have
another complete copy of the feedback function as they may share common sub-expressions,
for example x2 + x3 is shared by two feedback functions in the picture. Identifying and
utilizing the common sub-expressions among the feedback functions to save computations
is important for an efficient parallelization.

Parallelization increases delay when the stage that has the feedback value as input is one
of the inputs to the feedback function. In Figure 3.8, originaly, the longest combinational
path only has 2 xor gates connected in serial. But after parallelization, the number
becomes 3 which happens on the path from x3 to its input port.

32

And of course, simplifications may exist. For our simple example,

v(1) = v(x[:1])

= x2 + x3 + v

= x2 + x3 + x1 + x2 + x3

= x1

Let us look at meshkn now. Again, we assume the feedback value is v in the compos-
ited de Bruijn sequence generator. By v &x, we concatenate v with vector x. For (k, n)-
composited de Bruijn sequence generators,

meshkn(x) = All0kn−1(x) +
k−1∑
j=0

Xj
n+k−1−j(x)

meshkn
(1)

(x) = meshkn(v &x[:1])

= All0kn−1(v &x[:1]) +
k−1∑
j=0

Xj
n+k−1−j(v &x[:1])

v &x[:1] is offset by 1 from x. As a result, same index i into v &x[:1] and x will have different
indexes when they are put into the same coordinate system. To be exact, the indexes
are i + 1 and i respectively, having the opposite parity. If we assume n + k is an even
number, then X0

n+k−1(x) = xn+k−1(xn+k−2 + 1) . . . (x2 + 1)x1, while X0
n+k−1(v &x[:1]) =

v(xn+k−1 +1)xn+k−2 . . . x2(x1 +1). We do not find common sub-expressions between them.
For higher value X , for example,

Xj
n+k−j−1(x) = X0

n+k−j−1 ◦+◦
j
0(x)

= X0
n+k−j−1(+◦

j
n+k−j−1(x) . . . ,+◦ j1(x),+◦ j0(x)),

Xj
n+k−j−1(v &x[:1]) = X0

n+k−j−1 ◦+◦
j
0(v &x[:1])

= X0
n+k−j−1(+◦

j
n+k−j(v &x),+◦ jn+k−1−j(x) . . . ,+◦ j2(x),+◦ j1(x)).

+◦ j1(x),+◦ j2(x), . . . ,+◦ jn+k−j−1(x) are part of the inputs to the function X0
n+k−j−1 and they

are shared.

All0 function is very amenable to parallelization as will be seen below.

All0kn−1(x) = (+◦ k1(x) + 1)(+◦ k2(x) + 1) . . . (+◦ kn−1(x) + 1)

All0kn−1(v &x[:1]) = (+◦ k2(x) + 1)(+◦ k3(x) + 1) . . . (+◦ kn−1(x) + 1)+◦ kn(v &x)

33

More shared terms can be found between meshkn
(2)

and meshkn, but we will not go into
details. For OcDeb-k-n, with the help of our optimizations, most of the terms are shared

even between meshkn
(1)

and meshkn.

meshkn(x) =
((

SomePatk−2n+1(x) + 1
)
All0kn−1(x)

)
or
(
+◦ k−1n (x)All1kn−1(x)

)
,

meshkn(x)
(1)

= meshkn(v &x[:1])

=
((

SomePatk−2n+1(v &x[:1]) + 1
)
All0kn−1(v &x[:1])

)
or(

+◦ k−1n (v &x[:1])All1
k
n−1(v &x[:1])

)
=
((

SomePatk−2n (v &x[:1]) + 1
)
All0kn−1(v &x[:1])

)
or(

+◦ k−1n+1(v &x)All1kn−1(v &x[:1])
)

, according to Corollary 4.

We already know that All0kn−1 is very amenable to parallelization. So is All1kn−1. SomePatk−2n+1(x)
checks nodes of the diagonal, while SomePatk−2n (x) checks the interior diagonal that is ad-
jacent to the diagonal. And according to Corollary 4, we have the relation,

SomePatk−2n+1(x) = SomePatk−2n (x).

SomePatk−2n (v &x[:1]) and SomePatk−2n+1(x) check patterns on the same diagonal because the
input of SomePatk−2n (v &x[:1]) have the shift register’s values in the next clock cycle. When
they check the same diagonal, their relation becomes

SomePatk−2n (v &x[:1]) = (SomePatk−2n (x) + 1)(1 +
k∏
j=0

(+◦ jn+k−1−j(x) + 1))

1 +
k∏
j=0

(+◦ jn+k−1−j(x) + 1) is equal to 1 when not all diagonal nodes are 0s. It may seem

to be not shared and thus seem to be a big overhead. However, our implementation of

SomePatk−2n+1(x) already has the computation of
k∏
j=2

(+◦ jn+k−1−j(x) + 1).

To conclude, our optimizations enable efficient parallelization of OcDeb by promoting
sharing of computations among feedback functions.

34

Enabling Retiming

In this section, we illustrate Corollary 4’s positive impact on applying retiming in hardware
implementation. Retiming is a technique that helps improve clockspeed.

In hardware implementations, All0 and All1 can be computed by a state machine while
SomePat and G are purely combinational. The critical path in the design from Figure 3.7
goes through SomePat. In this section we prove Corollary 4, which says that SomePat
may be applied to any diagonal of the mesh: either the leftmost diagonal as shown in
Figure 3.7, or an interior diagonal as shown in Figure 3.9.

We use Corollary 4 to increase the clockspeed and reduce the area of parallel imple-
mentations.

We increase the clockspeed by using Corollary 4 to allow SomePat to use the first
interior diagonal (Figure 3.9), then use conventional retiming to shift the inputs back to
the left and add a register on the output of SomePat (Figure 3.10). Figure 3.10 is the final
diagram for our optimized composited de Bruijn sequence generator of throughput 1. For
our OcDeb-24-40 generator, retiming increased our clockspeed from 1.02 GHz to 1.35 GHz
because the critical path is cut into two paths with shorter delay by putting the register
after SomePat.

123456789
nn+k

010

1

2

3

4

5

6

0

k

x0

SomePat 2
6

All0/1 3
6

Figure 3.9: Preparation for retiming:
shift diagonal to right

123456789
nn+k

010
x0

SomePat 3
6

All0/1 3
6

Figure 3.10: After retiming: an architec-
ture of OcDeb-6-4

35

Retiming is a common technique used in hardware implementations to increase clock-
speed. The role of our optimizations, especially Corollary 4, is to empower this technique
to be applied in a way that would not be correct without Corollary 4’s support.

3.2 The New Complexity

Let us calculate how many bit operations are needed for the computation of meshkn =

All0kn−1(x) +
k−1∑
j=0

Xj
n+k−1−i(x) for OcDeb-k-n. We will calculate the complexity based on

the calculation of meshkn described by Theorem 3 as well as the way to compute All0/1
suggested in Section 3.1.4.

For OcDeb-k-n, recall that we need to only examine the leftmost node in k+1 rows and
the technique we use to implement a set of nodes is to compute the simplified expression
for each node. We know that the simplified expression for +◦ ki (x) includes 2H(k) − 1 xor
gates (Corollary 1). We use len(k) to denote the length of the vector for k (number of bits
needed to represent k). Recall that log ()’s base is 2.

len(k) =

{
log (k) + 1, when k is a power of 2

dlog (k)e, otherwise

The Hamming weight of an integer is the number of 1s in the integer’s binary representation.
There are

(
l
i

)
possible integers of length l and having i 1s. This is a counting problem that

is analogous to counting how many ways there are to give out i cans to l people with the
rule that each person can have at most 1 can.

We compute the diagonal nodes from bottom to top implying that before we compute
another diagonal node, all diagonal nodes below it have already been computed. We take
common sub-expression elimination into consideration when computing the complexity of
bit operations. Common sub-expression elimination is a technique that identifies shared
sub-expressions among formula or expressions so that the shared sub-expressions are cal-
culated only once instead of being calculated repeatedly in every formula that has them.

For example, +◦ 7
4(x) is the diagonal node we want to compute now and we have already

computed +◦ 6
5(x),+◦ 5

6(x), . . . ,+◦ 1
10(x). We find out that there are sub-expressions (common

subexpressions are underlined) in +◦ 6
5(x) and +◦ 6

5(x) that also appear in +◦ 7
4(x).

36

+◦ 7
4(x) = x5 + x7 + x9 + x11 + x6 + x10 + x8 + x4

+◦ 6
5(x) = x5 + x7 + x9 + x11

+◦ 5
6(x) = x6 + x10 + x7 + x11

We generalize the above example. Let’s say we want to compute the diagonal node on the
k1’s row, +◦ k1n1

.
k1 = 2i1 + 2i2 + . . .+ 2iH(k1) , i1 < i2 < . . . < iH(k1).

It shares common sub-expressions with some diagonal nodes below it. They are:

+◦ k1−2
i1

n1+2i1
,+◦ k1−2

i2

n1+2i2
, . . . ,+◦ k1−2

iH(k1)

n1+2
iH(k1)

.

Recall that based on Corollary 3, there is one-to-one correspondence between x elements’
indexes and the objects from the power set of {2i1 , 2i2 , . . . , 2iH(k)}. Same x elements have
the same index.

Between +◦ k1n1
and +◦ k1−2

i1

n1+2i1
, to compensate the difference in the subscript, we want to

pick the objects from the power set of {2i1 , 2i2 , . . . , 2iH(k)} that contain 2i1 . There are
2H(k)−1 such objects of the power set, corresponding to 2H(k)−1 x elements that are shared
by these two nodes, resulting 2H(k)−1 − 1 shared xor operations. We proceed to consider
the shared computations between+◦ k1n1

and+◦ k1−2
i2

n1+2i2
. Similarly, to make up for the difference

in the subscript, we look for objects from the power set that have 2i2 in them. Besides, we
do not want 2i1 in these objects becaues we just considered this case. There are 2H(k)−2

such objects of the power set, corresponding to 2H(k)−2 x elements that are shared by +◦ k1n1

and +◦ k1−2
i2

n1+2i2
excluding the x elements that are shared between +◦ k1n1

and +◦ k1−2
i1

n1+2i1
. Then we

know there are 2H(k)−2 − 1 more shared xor operations. We can continue and in the end,
the total number of shared xor operations is,

2H(k)−1 − 1 + 2H(k)−2 − 1 + . . .+ 2H(k)−H(k) − 1 = 2H(k) − H(k)− 1.

According to Corollary 1, to directly compute +◦ k1n1
, we need 2H(k) − 1 xor operations.

Taking the common sub-expression into consideration, we realize the actual number of
xor operations is

2H(k) − 1− (2H(k) − H(k)− 1) = H(k).

Recall that for 0 ≤ i ≤ len(k), we have
(
len(k)
i

)
rows with Hamming weight i, which

means
(
len(k)
i

)
(2i − 1) xor gates. Hence, we have

len(k)∑
i=0

(
len(k)

i

)
i xor gates all together.

37

When k is a power of 2, the exact total number of xor gates is:

1 +

log (k)∑
i=0

(
log (k)

i

)
i = 2log (k)−1 log (k)

= k log (k)
2

When k 6= 2len(k), the upper bound on the number of xor gates is
dlog (k)e∑
i=0

(
dlog (k)e

i

)
i which can be simplified to 2dlog (k)e−1dlog (k)e in the same way. Because

dlog (k)e is no smaller than log (k) and f(x) = 2x−1x monotonically increases after x is
bigger than 0, the upper bound of both cases is 2dlog (k)e−1dlog (k)e.

To acquire total xor gates’ O() notation in terms of variable k, we eliminate ceilings
in the upper bound expression based on the fact that dlog (k)e < log (k) + 1. After
we replace dlog (k)e with log (k) + 1 in the recently computed upper bound, which is
2dlog (k)e−1dlog (k)e, we get O(k log (k)). Therefore, the complexity to compute the diagonal
nodes is O(k log (k)).

As described in Section 2.3.1, an alternative to computing each node individually and
directly is to compute them recursively, or alternatively speaking, with a mesh. To compute
the k+ 1 nodes on the diagonal with a mesh, we need to construct a triangular mesh with
base of k+1 nodes. Each row has 1 fewer node than the row right below it and the quantity
of xor needed to derive a row from the row below it is the length of it. The base row is
made of shift register, so no xor is needed to compute its nodes’ values. Therefore, the total
number of xor in the mesh is k+k−1+. . .+2 = (k+2)(k−1)/2 = k2/2+k/2−1, which is
asymptotically larger than the the complexity O(k log (k)). For real world instances where
typical values of k are relatively large, e.g. 32, 40, the number of xor in the mesh is larger
than the xor needed to compute nodes of the diagonal one by one independently.

The state machine that produces values for All0kn−1 and All1kn−1 includes a counter and
comparators. All of the components of the state machine have a number of bit operations
that is linear in terms of the length of the counter, which is log (n). The number of bit
operations in computing SomePat after the diagonal nodes being computed is linear in k.
This will become clear in Section 4.2.4.

In summary, the upper bound on the number of xor gates required in the computation
of meshkn is O(k log (k)). For the state machine that produces values for All0nk−1 and
All1nk−1, the complexity of bit operations is O(log (n)). Thus, with our optimizations,
we have reduced the asymptotic number of bit-operations for the composited construction
technique fromO(k2+nk) toO(k log (k)+log (n)), with small overhead in storage, O(log n),

38

for the counter that is used to compute All0 and All1 .

Theorem 5. For OcDeb-k-n, the number of bit operations used to compute meshkn has an
upper bound of O(k log (k) + log (n)).

3.3 Notes

The above complexity analysis is based on computing the diagonal nodes directly and
seperately. Our way to find common sub-expressions for diagonal nodes yields the minimal
number of xor gates required to calculate them. Later in Section 4.1.6, we exploit the
trade-offs between space and computation in order to compute the diagonal nodes even
more efficiently in area and performance. The main challenge in doing this is identifying
places where it is beneficial. It is complicated because of the fact that common sub-
expression elimination and trading space for computation often compete with each other
in the sense that one may disallow the other. We will simplify this complication in Sec-
tion 4.1.6 by taking only a subset of all common sub-expressions into consideration so that
identifying places where trading space for computation is beneficial becomes manageable.

Now we conclude the optimization chapter. In short, our optimizations exploit the
characteristics of the mesh structure to simplify the fairly complex boolean formula of
meshkn. Especially Corollary 4 which states that SomePat may be applied to interior
diagonals as well extends Theorem 3 and makes our optimizations even more powerful.
We show its usage in hardware retiming and parallization as examples. The optimizations
are stated in theorems and their key proof steps are provided. We intentionaly try to leave
out implementation details when possible. In the next chapter, we show how to efficiently
implement it in hardware.

39

Chapter 4

Hardware Implementations

Up to now, we have presented the backbone of efficient and fast de Bruijn sequence gen-
erator design. In this section, we provide tricks (Section 4.1), details on hardware imple-
mentations and rationale for some decisions we made to achieve even smaller and faster
hardware (Section 4.2).

4.1 Tricks

Recall that we use v(i) to denote v’s value after i clock cycles and v can be either a function
or a variable.

Also recall that xn−1 |→ xn−2 |→ . . . |→ x1 |→ x0 |→ denotes a shift register of n stages, and
xn−1 is connected to data input. Then for any non-negative integer n1, k1, i and δ such
that i+ δ ≤ n− 1 and k1 + n1 + δ ≤ n− 1, we have:

x
(δ)
i = xi+δ, and

+◦ k1n1

(δ)
= +◦ k1n1+δ

.

The second equation holds because as defined in Definition 4 +◦ k1n1+δ
= +◦ k1n1

(x[:δ]), where the
right hand side has a shift register x shifted to the right δ positions as the input. Examples
can be found in the following sections.

41

4.1.1 Trade-off Between Storage and Computation

Replacing computation (i.e. combinational logic gates) with storage (i.e. flip-flops)and
vice versa is possible when the computation has some temporal properties.

Example1. To compute +◦ 40
5 and +◦ 40

4 , having analyzed in Corollary 2, it is cheaper to
compute each one’s value directly in its most simplified form,

+◦ 40
5 = x5 + x13 + x37 + x45,

+◦ 40
4 = x4 + x12 + x36 + x44.

In CMOS 65nm technology, a two-input xor gate is approximately 2 GE while a simple
flip-flop is about 4 GE. +◦ 40

4 and +◦ 40
5 have adjacent indexes and as seen in Figure 4.1a,

they are adjacent nodes. As it is more efficient to compute each node directly, we delete the
mesh structure in Figure 4.1a. However, the coordinate system is still preserved. +◦ 40

4 is
equal to registered +◦ 40

5 and it can save area if +◦ 40
4 is computed in such a way (Figure 4.1b)

because 1 flip-flop is smaller than 3 xor gates. We may think of this technique as
replacing combinational logic with sequential logic or trading space for computations. We
rewrite the above as follows.

+◦ 40
5 = x5 + x13 + x37 + x45,

+◦ 40
4

(1)
= +◦ 40

5 .

42

x0x1x12x13x36x37 x5 x4

44 37 36 13 12 5 4 1 0

x44x45

45

0

1

2

39

40

0

1

2

39

40

(a) The direct way to compute +◦ 40
5 and +◦ 40

4

x0x1x12x13x36x37 x5 x4

44 37 36 13 12 5 4 1 0

x44x45

45

0

1

2

39

40

0

1

2

39

40

(b) Computing +◦ 40
4 with a flip-flop from +◦ 40

4

Figure 4.1: Computing (a) +◦ 40
5 and +◦ 40

4 directly and (b) +◦ 40
4 with a flip-flop

43

4.1.2 Common Sub-expression Elimination

Common sub-expression elimination identifies shared terms among formula so that the
shared sub-expressions are only calculated once instead of being calculated repeatedly in
every formula that has them. In Section 3.2, we use our knowledge of the common sub-
expressions among diagonal nodes to compute a tight upper bound of bit operations for
OcDeb-k-n. Here we focus on how it will affect our decisions on where to apply the trick
which we call “replacing combinational logic with sequential logic”. Besides that, we also
look at common sub-expressions among nodes on the same row.

Example 2. We are about to compute +◦ 38
5 and +◦ 38

3 .

+◦ 38
5 = x5 + x7 + x9 + x11 + x37 + x39 + x41 + x43,

+◦ 38
3 = x3 + x5 + x7 + x9 + x35 + x37 + x39 + x41.

If put into a figure, we will see +◦ 38
3 and +◦ 38

5 are two nodes apart on the same row. It is
tempting to utilize this fact, which also can be translated to +◦ 38

3 ’s current value is equal to

+◦ 38
5 ’s value two clock cycles ago. In such way, we need 7 xor gates to compute +◦ 38

5 and 2
flip-flops to compute +◦ 38

5 , which requires 22 GE altogether. However, there is a better
way. Observing there are shared expression between +◦ 38

5 and +◦ 38
3 above, we introduce a

fresh variable to represent the shared expression, v = x5 + x7 + x9 + x37 + x39 + x41. Then
we rewrite the original formula as follows:

v = x5 + x7 + x9 + x37 + x39 + x41,

+◦ 38
5 = x11 + x43 + v,

+◦ 38
3 = x3 + x35 + v.

In this way, we need 9 xor gates and 0 flip-flop, resulting in 18 GE area.

4.1.3 Using the Two Techniques Together

The following example will show that it is possible and could be beneficial if we apply the
two aforementioned techniques together.

Example 3. We are about to compute +◦ 7
4 and +◦ 6

5.

+◦ 7
4 = x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11,

+◦ 6
5 = x5 + x7 + x9 + x11.

As in Example 2, but without the need to introduce fresh variables, we rewrite the above:

+◦ 7
4 = x4 + x6 + x8 + x10 ++◦ 6

5,

+◦ 6
5 = x5 + x7 + x9 + x11.

44

As in Example 1, we realize that x4 +x6 +x8 +x10 has +◦ 6
5’s value from the previous clock

cycle and it is the same as +◦ 6
4. Thus, we are able to further rewrite them.

+◦ 7
4 = +◦ 6

4 ++◦ 6
5,

+◦ 6
5 = x5 + x7 + x9 + x11,

+◦ 6
4
(1)

= +◦ 6
5.

+◦ 7
4 = +◦ 6

4 ++◦ 6
5 can also be derived based on the definition of +◦ kn (in Definition 4). In this

way, we get the minimum area which is 4 xor gates and 1 flip-flop, resulting in 12 GE
altogether.

4.1.4 Our Goal

These tricks can be used to efficiently (in terms of area) compute nodes on the diagonal and
inputs to function G (a subset of top row nodes). For OcDeb-k-n, we state computation
tasks:

Computing the inputs to G: +◦ ki1 ,+◦ ki2 , . . . ,+◦ kin ,where i1 > i2 > . . . > in

Computing the nodes on the diagonal: +◦ 0
n+k−1,+◦ 1

n+k−2, . . . ,+◦ kn−1.

Our goal is to find a way to do the computations so that it will lead to the smallest possible
area. The techniques at hand, namely common sub-expression elimination and replacing
combinational logic with sequential logic, are already described in the Example 1 to 3. We
will consider each computation task seperately in Section 4.1.6 and Section 4.1.7.

4.1.5 Discussion

In real world, the actual area of hardware library components(such as xor gate, flip-
flop) depends on versatile factors, for example, fan-in and fan-out. Besides, there are
variants of basic libarary components, such as 3-input xor gate which is smaller than 2
2-input xor gates. Synthesis tools also have the ability to do common sub-expression
elimination as well as the ability to restructure the cricuit to meet user-specified area
and clockspeed goals. However, the tools are not able to apply our other optimization,
which we phrased as “replacing combinational logic with sequential logic”. Essentially,
we use simplified area estimation xor gate and flip-flop and knowledge of where com-
mon sub-expression elimination could happen to find the places where substituting the

45

combinational logic with sequential logic can lead to area saving. Most of the time, we
entrust the synthesis tools with optimizing combinational logic including applying common
sub-expression elimination, as it usually turns out to work better based on our experience.

4.1.6 Computing the Nodes on the Diagonal

We propose Algorithm 1, which takes in integer k, that is the degree of composition and
print out messages that will instruct how to compute the nodes on the diagnal. Note that
we do not compute the leftmost node on the top row though it is on the diagonal. This is
because the diagonal nodes computed here are the inputs to SomePat and SomePat is only
used in conjuction with All0 which implies that the top row nodes including the leftmost
one are all 0s.

Algorithm 1 is a greedy algorithm. For each i, we compare four options of computing

+◦ in+k−1−i, and then pick the one leading to the smallest area.

Option 1. +◦ in+k−1−i = +◦ in+k−1−i.
It represents that we unfold it according to Definition 4 to its most simplified form
which is a summation of elements from x.

Option 2. +◦ in+k−1−i = +◦ i−2
j

0 ◦+◦ 2j

n+k−1−i, where i > 2j and i < 2j+1.
It represents that we treat a function of degree i as two functions of lower degrees,
i− 2j and 2j, composited together. We unfold the function of degree i− 2j, which
results in a summation of terms from +◦ 2j

n+k−1−i,+◦ 2j

n+k−i,+◦ 2j

n+k+1−i . . . ,+◦ 2j

n+k−1−2j .

Option 3. +◦ in+k−2−i
(1)

= +◦ in+k−1−i.
+◦ in+k−2−i’s value in the next clock cycle is the current value of +◦ in+k−i−1. Thus, in
hardware, +◦ in+k−2−i is the output of a register whose input is +◦ in+k−1−i.

Option 4. +◦ in+k−1−i
(1)

= +◦ i−1n+k−i ++◦ i−1n+k−i−1.
It is usually chosen when +◦ i−1n+k−i’s value is known.

46

Algorithm 1 Computing the Diagonal Nodes

1: function eff-diag-v1(k)
2: i← 0
3: j ← 0
4: while i < k do
5: if i < 2j+1 then
6: if i mod 2 = 0 then
7: if i = 0 then
8: print “+◦ in+k−1−i = +◦ in+k−1−i”
9: else

10: print “+◦ in+k−1−i = +◦ i−2
j

0 ◦+◦ 2j

n+k−1−i”
11: end if
12: else
13: print “+◦ in+k−1−i = +◦ i−1n+k−i ++◦ i−1n+k−i−1”
14: if ff-cost(+◦ i−1n+k−i−1) ≤ xor-cost(+◦ i−1n+k−i−1) then

15: print “+◦ i−1n+k−1−i
(1)

= +◦ i−1n+k−i”
16: else
17: print “+◦ i−1n+k−1−i = +◦ i−1−2

j

0 ◦+◦ 2j

n+k−1−i”
18: end if
19: end if
20: else
21: print “+◦ in+k−1−i = +◦ in+k−1−i”
22: j ← j + 1
23: end if
24: i← i+ 1
25: end while
26: end function

Let us explain key steps in the Algorithm 1.

Line 5: Tests whether i = 2j+1. If this condition is true, Option 1 is better than Option
2 based on Lemma 10.

Line 6: Tests whether i is even. When i is odd, Option 4 is chosen where we exercise
common sub-expression elimination (Line 13). For example, +◦ 5

3 = +◦ 4
4 ++◦ 4

3, so +◦ 5
3

share +◦ 4
4 with +◦ 4

4. Note that +◦ 4
4 is computed prior to +◦ 5

3 and there are no more
shared expressions between +◦ 4

4 and +◦ 4
3.

47

Line 14: Option 3 is explicitly compared to Option 2 for the computation of +◦ i−1n+k−i−1
when i is odd. Because i − 1 is even at Line 14, xor-cost computes the area of
computing +◦ i−1n+k−i−1 by Option 2. Based on Corollary 5, the total number of xor

gates is 2H(i−1)−1, where 2j < i < 2j+1. ff-cost of +◦ i−1n+k−i−1 is 1 flip-flop because
it is next to +◦ i−1n+k−i, which has already been computed. With the information of the
area corresponding to xor gate and flip-flop, we can unify the metrics of the area
of xor gate and flip-flop and then compare these two options. We model the area
of xor and flip-flop as constants, though this deviates from the reality.

Lemma 10. For the computation of +◦ in+k−1−i, Option 1 is preferred over Option 2 iff i
is a power of 2.

Proof. We prove Lemma 10 by induction.

Base Step: When i = 2j + 1, according to Corollary 1, Option 1 requires
2H(2j+1)−1 = 3 xor gates. According to Option 2, +◦ in+k−1−i is computed
by

+◦ 1
0((. . . ,+◦ 2j

n+k−i,+◦ 2j

n+k−1−i)) = +◦ 2j

n+k−i ++◦ 2j

n+k−1−i.

Note that +◦ 2j

n+k−i can also be rewritten as +◦ i−1n+k−i, which has already
been computed because it is a node on the diagonal and it is below the
node we are currently considering. Therefore, we only need to compute

+◦ 2j

n+k−i−1, which requires 2H(2j) − 1 = 1 xor gates. In total, we need

1 + 2H(i−2j) − 1 = 2 xor gates. This is one xor gate fewer than Option
1, therefore prefered.

Induction Step: Assume that we have found i1 such that for all 2j + 1 ≤
i1 < 2j+1 − 1, Option 2 is preferred. It implies that we have computed

+◦ 2j

n+k−1−2j ,+◦ 2j

n+k−2−2j , . . . ,+◦ 2j

n+k−i1−1.

To compute +◦ i1+1
n+k−i1−2 by Option 2, two steps are needed. The first step

is to compute +◦ 2j

n+k−(i1−1)−1, which requires 2H(2j)−1 = 1 xor gates. The

second step is to compute +◦ i1+1
n+k−i1−2 from

+◦ 2j

n+k−1−2j ,+◦ 2j

n+k−2−2j , . . . ,+◦ 2j

n+k−i1−1,+◦
2j

n+k−i1−2.

2H(i1+1−2j) − 1 xor gates are needed for that. Therefore, in total, Option
2 requires

2H(i1+1−2j) − 1 + 1 = 2H(i1+1−2j) xor gates.

48

Because 2j < i1 + 1 < 2j+1, 2H(i1+1−2j) is simplified to 2H(i1+1)−1. The
number of xor gates required by Option 1 is 2H(i1+1) − 1, which is larger
than 2H(i1+1)−1 for 2j < i1 + 1 < 2j+1 with arbitrary positive j.

Corollary 5. Option 2 requires 2H(i)−1 xor gates to compute +◦ in1
, where j is a positve

integer and 2j < i < 2j+1. It holds for arbitrary non-negtive integer n1.

Corollary 5 is extracted from an intermediate result in the proof of Lemma 10.

Having said in Section 4.1.5 synthesis tools are more likely to do a better job than
us in optimizing combinational logics, we propose Algorithm 2, which is a variation of
Algorithm 1 and relieves most of our burden of extracting and considering common sub-
expressions. In other words, Algorithm 2 does not take Option 2 into account. If the
composition degree i is an even number, we compute it directly. Otherwise, we treat i as
(i − 1) + 1 so that it can be computed by a summation of two composiiton operations of
degree i−1. The one with a smaller index can be computed either directly or by registering
the one with larger index, depending on the comparison of the area costs, ff-cost and xor-
cost. ff-cost is still 1 flip-flop and xor-cost now becomes 2H(i−1) − 1 xor gates. Our
experience shows that Algorithm 2 almost always returns a better way (in terms of both
hardware area and performance) to compute the diagonal nodes than Algorithm 1. Besides,
Algorithm 2 is simpler to implement. Therefore, it is chosen to instruct us how to compute
the diagonal nodes.

Algorithm 2 Computing the Diagonal Nodes

1: function eff-diag-v2(k)
2: i← 0
3: while i < k do
4: if i mod 2 = 0 then
5: print “+◦ in+k−1−i = +◦ in+k−1−i”
6: else
7: print “+◦ in+k−1−i = +◦ i−1n+k−i ++◦ i−1n+k−i−1”
8: if ff-cost(+◦ i−1n+k−i−1) ≤ xor-cost(+◦ i−1n+k−i−1) then

9: print “+◦ i−1n+k−1−i
(1)

= +◦ i−1n+k−i”
10: else
11: print “+◦ i−1n+k−1−i = +◦ i−1n+k−1−i”
12: end if
13: end if
14: end while
15: end function

49

Moreover, we present a snippet of code (Algorithm 3) that can be used to extend
Algorithm 2 or Algorithm 1 to improve their effectiveness for larger k. It provides another
place where replacing combinational logic with flip-flops is applicable. Thres (on Line 1)
is a constant whose value depends on the hardware library (the technology) used. For
CMOS 65nm, Thres = 3 works well. It helps to bring OcDeb-128-24’s area down to 1987
GE from 2079 GE, with clockspeed increasing from 518 MHz to 571 MHz. The results
are from Synopsys DC Shell logic synthesis with low optimization efforts and a clockspeed
target of 250 MHz.

Algorithm 3 A Patch for Efficiently Computing the Diagonal

1: if (i− 2) mod 4 = 0 and H(i) ≥ Thres then
2: print “+◦ in+k−1−i = +◦ i−2n+k+1−i ++◦ i−2n+k−1−i”

3: print “+◦ i−2n+k−1−i
(1)

= +◦ i−2n+k−i”
4: end if

As final remarks for efficiently computing the diagonal nodes, we would like to point out
that the simplicity of both algorithms, Algorithm 1 and Algorithm 2 comes from sacrificing
the completeness of common sub-expressions considered. In Algorithm 1, we only recognize
the common sub-expressions that match the nodes from i-th row, where i can be any powers
of 2, and the common sub-expressions that match one of the first two nodes on even rows.
In Algorithm 2, we only recognize the common sub-expressions that match one of the first
two nodes on even rows. In comparison, we are more considerate about recognizing common
sub-expressions when computing the new complexity in Section 3.2. In fact, following the
approach in Section 3.2, for each node on the diagonal, we can find the maximum number
of xor gates that can be shared by lower nodes. Though we have a very simplified view
of where common sub-expressions exist, Algorithm 1 and Algorithm 2 both work well in
decreasing hardware area and increasing the clockspeed.

Please refer to Section 4.2.3 for concrete examples of Algorithm 1, Algorithm 2.

4.1.7 Computing the Inputs to the G

Because different G could have different subset of the top row nodes as inputs, proposing
an algorithm to find efficient ways to compute the inputs to G is more complex than doing
the same with the nodes of the diagonal. However, this issue can be mitigated in practice.
On one hand, for an instance of OcDeb with known G, we have more insights in how to
efficiently compute the inputs to G. On the other hand, we usually have the freedom to

50

choose a prefered k to make sure H(k) is small in order to achieve a smaller area for each
input to G. Especially, when k is a power of 2, for aribitrary i, +◦ ki = xi + xi+k according
to Lemma 1. This extremely simple expression for +◦ ki disallows our two optimization
techniques because for arbitrary i1 6= i2, +◦ ki1 and +◦ ki2 do not share more than 1 elements
from vector x, and 1 xor gate is almost always smaller than 1 flip-flop. 1

4.2 Modules

We will present All0/1, G, Diag, and SomePat modules in details. Table 4.1 lists each
module’s area for OcDeb-32-32. We can see that the most expensive module of the mesh
computation is Diag, followed by SomePat. More results are available in the dedicated
results chapter.

Table 4.1: Implementation area results for modules of OcDeb-32-32

Mesh Shift Register G

All0/1 Diag SomePat In-G Total

OcDeb-32-32 GE 62.5 108.8 87.2 28 295.5 381 22.5

% 8.0% 14.0% 11.2% 3.6% 38.0% 49.0% 2.9%

In-G: inputs to G G: the original feedback functions that generates the starting span-n
sequence

4.2.1 Module All0/1

As stated in Theorem 3, we need to determine whether the nodes on the top row are all
0s and whether they are all 1s. All0/1 module serves this purpose by having two signals
as outputs. The left output will be high when the nodes on the top row are all 0 while the
right one will be high when the nodes on the top row are all 1s.

We propose Algorithm 4 as an alternative to directly calculating whether the nodes are
all 0s and whether they are all 1s with and gates not gates. Algorithm 4 has better area

1An exception: for FPGA, flip-flops may be free when the combinational logics need more logic
blocks than flip-flops.

51

Algorithm 4 Using Finite State Machine to Compute All0 and All1

1: procedure All0-1-FSM(in) . for OcDeb-k-n
2: state(1) ← in . in is the leftmost node on the top row
3: if in 6= state then
4: cnt(1) ← 1
5: else if cnt < n− 1 then . if the input is the same as the previous input
6: cnt(1) ← cnt+ 1 . increase the counter by 1
7: else
8: cnt(1) ← cnt
9: end if

10: if cnt = n− 2 and in = 1 and state = 1 then
11: All0← 0
12: All1← 1
13: else if cnt = n− 2 and in = 0 and state = 0 then
14: All0← 1
15: All1← 0
16: else
17: All0← 0
18: All1← 0
19: end if
20: end procedure

and shorter delay. It works best for large n and inferior k, because this algorithm only
needs to compute the first node and uses a counter of length log (n) to count consective
1s and consective 0s. It may not be as good as the direct computation when n is small,
k’s Hamming weight is small or the number of inputs to G is large. For example, for a
parallel OcDeb-32-32 with a throughput of 2, it is better to simply directly compute All0/1
because 32’s Hamming weight is 1, and the number of inputs to G is doubled because of
the parallelism. Logic synthesis results obtained by Design Compiler show area decreases
from 785 GE to 747 GE with a slight decrease in clockspeed from 961.5 GHz to 934.6 GHz.

In Algorithm 4, when state = 0(1), cnt is the number of consective 0(1)s starting from
the second node on the top row towards right.

52

4.2.2 Module G

Function G is the original feedback function of a shift register that generates the starting
span-n sequence. To build efficient OcDeb-k-n with long period, the following attributes
of G are desired:

• The computation of G is simple.

• The number of inputs to G is small.

• The span-n sequence generated by G is long, in other words, n is large.

Fewer inputs to G makes the area that is used to compute them smaller. OcDeb-k-n has
a period of 2n+k. Consider that our goal is to build a de Bruijn sequence generator with
period longer than 2C , where C is an abitrary positive integer. When we have a larger
n, we are able to choose a smaller k, which is the parameter that contributes most to the
complexity, O(k log (k) + log (n)), and has the most affect on the area.

Table 4.2: Two examples of the original feedback function G

Feedback Expression Source Note

It is composed of a summation

n=24 x0 + x24 +WG51 +WG52 [30] of two WG5 transformations [16, 17].

It has sub-optimal linear complexity.

x0 + x2 + x6 + x7 + x12+ This forms an NLFSR that

n=32 x17 + x20 + x27 + x30+ [14] generates the span-n sequence with

x3x9 + x12x15 + x4x5x16 + x32 the maximum period found so far.

WG51 =x1 + x2 + x3 + x4 + x6 + x2x3 + x2x4 + x3x6

WG52 =x10 + x10x17 + x13x15 + x15x21 + x10x13x15 + x10x13x21 + x10x15x21+

x10x17x21 + x13x15x21 + x13x17x21 + x15x17x21

Table 4.2 shows two examples of original feedback function G, both used in our im-
plementations. We implemented WG51 and WG52 with two arrays of size 25, filled with
pre-computed values. Each entry corresponds to a possible input. The area of G for n = 24
is 27.7 GE and the area of G for n = 32 is 22.5 GE. Both results exclude the area used for

53

computing the inputs. The results were obtained from logic synthesis using CMOS 65nm
process. Other possible G candidates can be found in [8, 9, 30, 41].

4.2.3 Module Diag

Refer to Section 4.1.6 for an efficient way to compute the diagonal nodes, Section 3.1.5 for
how to increase clock speed by applying retiming technique, which is enabled by Corollary 4.
Recall we show in Section 3.2 that the computation of the diagonal nodes is upper bounded
by O(k log (k)) and is the dominating part of the overall computation of meshkn. Although
both Algorithm 1 and Algorithm 2 are more efficient than the way of computing diagonal
nodes we use to derive the complexity in Section 3.2, they are not better asymptotically. In
this section, we present a concrete application of Algorithm 1 and Algorithm 2 to OcDeb-32-
32 with CMOS 65nm as the target technology. Recall that for CMOS 65nm, one flip-flop
is around 4 GE while one xor is around 2 GE. The results of the algorithms are shown in
Figure 4.2 and Figure 4.3. Note that in the figures, we do not show the mesh of xor gates
because computing the diagonal nodes according to Algorithm 1 or Algorithm 2 is way more
efficient than mesh. We only keep the nodes from the mesh that we are going to compute.
The bottom nodes are from the shift register and we only draw the stages that are needed
for the computation of diagonal nodes. We tilt the Y-axis so that it is easier to tell which
row each node belongs to. Every node, except the nodes directly from the shift register,
has a background denoting how it is calculated based on the corresponding algorithm.
We always compute the diagonal nodes on odd rows by Option 4, which is summing the
diagonal node below it and that node’s right neighbour. Figure 4.2 and Figure 4.3 differ
in computation of diagonal ndoes on even rows. In Figure 4.2 (Algorithm 1), they are
computed based on Option 2 except for the rows whose height is a power of 2, where
they are computed by Option 1. In Figure 4.3 (Algorithm 2), the diagonal nodes on all
even rows are computed directly, i.e. by Option 1 (recall that Option 2 is removed in
Algorithm 2). Note that on the rows whose height is a power of two, we also need to
compute internal nodes that are required by the computation of higher diagonal nodes by
Option 2. For example, in Figure 4.2, we need to compute the internal diagonal node at
(43, 16) because it is needed by the computation of the diagonal node at (43, 20). As for
the second leftmost node on each even row, it is calculated based on Option 3 with the
exception on rows whose height is a power of 2, where it is computed by Option 1.

Recall that to compute a node, let us say +◦ ji , Option 1 and Option 2 require 2H(j) − 1
and 2H(j−1) xor gates respectively, while Option 3 and Option 4 require 1 flip-flop and 1
xor gate respectively. For Algorithm 1 in Figure 4.2, 71 xor gates and 11 flip-flops are
required in total, while for Algorithm 2 in Figure 4.3, 85 xor gates and 11 flip-flops are

54

required in total. As discussed in Section 4.1.5, hardware synthesis tools have the ability
to apply common sub-expression elimination and most of the time do a better job than us.
Option 2 which recognizes a type of common sub-expressions is lacking in Algorithm 2.
Despite the theoretical count, which favours the computation shown in Figure 4.2, practical
results show that the way to compute diagonal nodes shown in Figure 4.3 will actually lead
to a smaller area than the one shown in Figure 4.2, due to much more aggressive common
sub-expression elimination by synthesis tools.

55

A
p
p
li
ca

ti
on

of
A

lg
or

it
h
m

1
on

O
cD

eb
-3
2-
32

is
sh

ow
n

h
er

e.

5
9

6
0

6
1

6
2

6
3

n
+

k
6
4

1
2

3
4

5
6

0

8
9
1

0

1
4

1
5
1

6

7

1
8

1
9

2
0

2
1

2
2
2

3

1
7

2
5

2
6

2
7

2
8
2

9
3

0

2
4

3
2

3
1

1
1

1
2

1
3

k

5
4

5
5

5
6

5
7

5
8

4
9

5
0

5
1

5
2

5
3

4
4

4
5

4
6

4
7

4
8

3
9

4
0

4
1

4
2

3
4

3
5

3
6

3
7

3
8

3
3

4
3

O
p
ti

o
n
 1

O
p
ti

o
n
 2

O
p
ti

o
n
 3

O
p
ti

o
n
 4

F
ig

u
re

4.
2:

C
om

p
u
ti

n
g

th
e

d
ia

go
n
al

n
o
d
es

of
O

cD
eb

-3
2-
32

b
as

ed
on

A
lg

or
it

h
m

1

56

A
p
p
li
ca

ti
on

of
A

lg
or

it
h
m

2
on

O
cD

eb
-3
2-
32

is
sh

ow
n

h
er

e.

5
9

6
0

6
1

6
2

6
3

n
+

k
6
4

1
2

3
4

5
6

0

8
9
1

0

1
4

1
5
1

6

7

1
8

1
9

2
0

2
1

2
2
2

3

1
7

2
5

2
6

2
7

2
8
2

9
3

0

2
4

3
2

3
1

1
1

1
2

1
3

k

5
4

5
5

5
6

5
7

5
8

4
9

5
0

5
1

5
2

5
3

4
4

4
5

4
6

4
7

4
8

3
9

4
0

4
1

4
2

3
4

3
5

3
6

3
7

3
8

3
3

4
3

O
p
ti

o
n
 1

O
p
ti

o
n
 3

O
p
ti

o
n
 4

F
ig

u
re

4.
3:

C
om

p
u
ti

n
g

th
e

d
ia

go
n
al

n
o
d
es

of
O

cD
eb

-3
2-
32

b
as

ed
on

A
lg

or
it

h
m

2

57

4.2.4 Module SomePat

For OcDeb-k-n where n+k is even, SomePat (Definition 12) is 1 iff the diagonal nodes from
bottom to the top row match the regular expression ([01][01])∗110∗ or [01]([01][01])∗010∗.
Similary, for OcDeb-k-n where n + k is odd, SomePat is 1 iff the diagonal nodes from
bottom to the top row match the regular expression ([01][01])∗010∗ or [01]([01][01])∗110∗.

For example, for OcDeb-4-4, we can group possible pattern-matches into four cate-
gories: ([01][01]){3}01, ([01][01]){2}110, ([01][01]){1}0100 and 11000. Consective 0s are
underlined. We use diag(0),. . . ,diag(4) to represent OcDeb-4-3’s diagonal from the lowest
to the highest row, then SomePat becomes:

SomePat43 =
(
diag(4) and not diag(3)

)
or(

not diag(4) and
(
diag(3) and diag(2)

))
or(

not diag(4) and not diag(3) and
(
diag(2) and not diag(1)

))
or(

not diag(4) and not diag(3) and not diag(2) and
(
diag(1) and diag(0)

))
Recall that to compute the feedback value (Theorem 3), SomePat is in conjuction

with All0 , which implies the leftmost node on the top row(which is diag(4) in the above
example) is 0. With this knowledge, we can simplify the above example to:

SomePat43 =
(
diag(3) and diag(2)

)
or(

not diag(3) and
(
diag(2) and not diag(1)

))
or(

not diag(3) and not diag(2) and
(
diag(1) and diag(0)

))
Algorithm 5 generalizes the above computation of SomePat. It creates a vector of length

k − 2, named “nand diag”, to store the computation results of checking for consective 0s.
It takes in diagonal nodes from bottom to the second highest row as inputs, which are
denoted as diag(0), . . . , diag(k-1). The vector nand diag is obtained as:

nand diag(0) = not diag(k-1)

nand diag(i) = nand diag(i-1) and not diag(k-i-1), 0 < i ≤ k − 3

SomePatnk updates itself in every interation of the loop that starts from Line 7 to Line 15 by
considering one category of regular expression matches. When Algorithm 5 exits the loop,

58

Algorithm 5 Calculating SomePat with the Diagonal Nodes as Inputs

1: procedure Calc-SomePat-v1(in) . for OcDeb-k-n and n+k is even
2: nand diag(0)← not diag(k − 1)
3: for i← 1, k − 3 do
4: nand diag(i) = nand diag(i− 1) and not diag(k − i− 1)
5: end for
6: SomePatnk ← 0
7: for i← 0, k − 3 do
8: if k − i− 3 mod 2 = 0 then
9: SomePatnk ← SomePatnk or

10:
(
nand diag(i) and diag(k − i− 2) and diag(k − i− 3)

)
11: else
12: SomePatnk ← SomePatnk or
13:

(
nand diag(i) and diag(k − i− 2) and not diag(k − i− 3)

)
14: end if
15: end for
16: end procedure

the diagonal nodes have been checked for all possible matches of the regular expression.
Though we make an assumption that n+ k is even for Algorithm 5, we can easily make it
work for odd n+ k by exchanging Line 10 and Line 13.

From Algorithm 1 and Algorithm 2, we know that diagonal ndoes with odd degrees are
calculated by a summation of two neighbouring nodes right below them. More specifically,
for even i, +◦ i+1

j−1 = +◦ ij + +◦ ij−1, or after renaming, diag(i + 1) = diag(i) + diag(i)(−1).

diag(i)(−1) holds the value of diag(i) in the previous clock cycle which is the value of
the node on the right of diag(i). For simplicity, we refer to the adjacent nodes on the
right to the diagonal ndoes as i diag(0), i diag(2), i diag(4), These nodes compose

an internal diagonal. Now diag(i + 1) = diag(i) + diag(i)(−1) can be also written as
diag(i+ 1) = diag(i) + i diag(i). Note that this was done for even i only.

59

Inspired by this way of computing the diagonal, we present Algorithm 6 to calculate
SomePat. In comparison with Algorithm 5, it checks two categories of possible pattern-
matches with a single slightly more complicated expression. For example, in Algorithm 5,
checking whether the diagonal nodes match ([01][01]){2}110 or ([01][01]){1}0100 is done
by evaluating(

not diag(4) and
(
diag(3) and diag(2)

))
or(

not diag(4) and not diag(3) and
(
diag(2) and not diag(1)

))
,

while in Algorithm 6, it is achieved by evaluating a simpler expression:

not diag(4) and diag(2) and
(
not i diag(2) or not

(
diag(0) xor i diag(0)

))

Algorithm 6 Calculating SomePat with the Diagonal Nodes as Inputs

1: procedure Calc-SomePat-v2(in) . for OcDeb-k-n and n and k are even
2: nand diag(0)← not diag(k − 2) and not i diag(k − 2)
3: for i← 2; i← i+ 2; k − 4 do
4: nand diag(i)← nand diag(i−2) and not diag(k−2− i) and not i diag((k−

2− i)
5: end for
6: SomePatnk ← diag(k − 2) and not i diag(k − 2)
7: for i← 4; i← i+ 2; k − 4 do
8: tmp← nand diag(k-i) and diag(i− 2) and

9:

(
not i diag(i− 2) or not

(
diag(i− 4) xor i diag(i− 4)

))
10: SomePatnk ← SomePatnk or tmp
11: end for
12: SomePatnk ← SomePatnk or

(
nand diag(k − 4) and diag(0) and not i diag(0)

)
13: end procedure

Keeping diag(2) + i diag(2) = diag(3) and diag(0) + i diag(0) = diag(1) in mind, it
is not hard to prove that the two expressions are equivalent. Algorithm 6 is essentially
simplified Algorithm 5. In the algorithm, we assume n and k are both even. But it is easy
to modify it for other parity combinations of n and k.

60

Assume n and k are both even. Algorithm 5 uses up k−3+2(k−2) = 3k−7 and gates,
k−2 or gates and k xor gates. Among them, k−2

2
xor gates are used to compute diagonal

nodes with odd degrees which are elements from the set { diag(2i + 1) | 0 ≤ i ≤ k−2
2
}.

On the contrary, Algorithm 6 uses up 1 + 2× k−4
2

+ 1 + 2× k−6
2

+ 2 = 2k − 6 and gates,
2× k−6

2
+ 1 = k− 5 or gates and k−6

2
xor gates. Table 4.3 summerizes the above results.

As seen in the table, the number of bit operations is linear in k. So SomePat is not the
dominating part of the computation of meshkn, which has been shown to have complexity
O(k log (k) + log (n)) in Section 3.2.

Table 4.3: Gate Count of SomePat module implementations based on Algorithm 5 and
Algorithm 6 respectively

and or xor

Algorithm 5 3k − 7 k − 2 k−2
2

Algorithm 6 2k − 6 k − 5 k−6
2

4.3 Summary

This section described hardware implementations of OcDeb. Firstly, we introduced two
tricks, namely the common sub-expression elimination and replacing combinational logic
with sequential logic. We realized that synthesis tools have the ability to apply common
sub-expression elimination to some extent but are not capable to use the other trick. We
also found out that most of the times, doing common sub-expression elimination ourselves
and then feeding the synthesis tool with processed formula does not work better than
simply providing the synthesis tool with the raw/original form of formula. Therefore,
we only apply the necessary sub-expression elimination on our end and focus on finding
the places where replacing combinational logic with sequential logic is beneficial. It is a
complex task which requires the knowledge of all locations of the common sub-expressions
to make the best decision on where to apply the other trick, that is replacing combinational
logic with sequential logic. We presented our solutions to a refined problem, which only
involves the diagonal nodes. Algorithm 1 and Algorithm 2 are not optimal solutions but
work very well in practice. We also presented implementations details for other modules
including All0/1, G and SomePat. In the next chapter, we will present the implementation
results.

61

Chapter 5

Hardware Implementation Results

To demonstrate the effectiveness of our optimizations, we compare OcDeb with three other
implementations of composited construction de Bruijn sequence generators (already intro-
duced in Section 2.3.3): the direct implementation of the mesh, the recursive implemen-
tation of the mesh(Figure 2.7) and a serialized implementation that computes one row of
the mesh in each clock cycle [29]. We perform a detailed analysis of n and k’s impact
on area and performance for OcDeb-k-n with periods up to 232 (Section 5.2). We com-
pare the asymptotic complexity of OcDeb against other algorithms to generate de Bruijn
sequences (Section 5.3), and compare OcDeb instances to other CSPRNGs (Section 5.4).
Results of parallel implementations are presented in Section 5.5. Last but not least, in
Section 5.6 we highlight several extra carefully optimized instances of OcDeb that fulfill
various demanding requirements/needs.

All results are obtained from logic synthesis with either low or ultra high optimization
effort level with clock gating enabled for an STMicroelectronics 65 nm cell library using
nominal delay values. We use Synopsys Design Compiler for logic synthesis. Because
our main goal is to evaluate effects of optimizations and correlate implementation results
with complexity results, not to benchmark the actual implementation against competing
PRNGs, we consider logic synthesis sufficient for us and did not do place and route.

5.1 Effectiveness of Optimizations in Hardware

We conduct comparison between OcDeb with three other implementations in area and
performance accross a variety of k ranging up to 512. Recall that the sequence gener-
ated by OcDeb-k-n is 2k+n has period 2k+n. Results are in Figure 5.1a and Figure 5.1b.

63

They are obatined from logic synthesis by Synopsys Design Compiler with the opti-
mization effor level set to low. Logic synthesis on the direct implementations runs out
of memory when k ≥ 40 and we kill logic synthesis on the mesh based implementa-
tions when k ≥ 208 because they do not terminate within 1 hour. The sampled ks
are 1, 2, 3, . . . , 30, 31, 32, 40, 48, 56, . . . , 120, 128, 144, 160, . . . , 496, 512. From Figure 5.1a,
we observe that our implementation of OcDeb is dramatically smaller than the direct and
mesh-based implementation, and that it scales much better with k, which aligns with our
complexity analysis. Mandal and Gong (MG) implementations also scale well with k and
have area that is usually around 1.5X OcDeb’s area. However, recall that MG’s throughput
is 1

k
, implying very low performance, as show in Figure 5.1b

Refer to Section 5.2 for detailed interpretation of OcDeb’s figure. Table 5.1 provides
more details on (k = 32, n = 32). Results of each module’s area are not available from
logical synthesis at ultra high optimization level because at this optimization level, modules
are unfold for better optimization.

Table 5.1: Detailed comparison of OcDeb-32-32 with baseline implementations in area and
performance

Direct Mesh-based MG OcDeb-32-32

simple ultra simple ultra simple ultra simple ultra

% of area

SR 6.4 − 7.8 − 28.3 − 49.0 −
G 0.4 − 0.5 − 1.7 − 2.9 −

mesh 92.4 − 90.5 − 64.3 − 38.0 −
Area (GE) 6049 5077 4876 4255 1347 1121 777 656

ClkSpd (GHz) 0.72 0.64 0.46 0.95 1.45 1.82 1.69 1.67

Tput 1 1 1 1 1
32

1
32 1 1

Optimality 0.12 0.13 0.09 0.22 0.03 0.05 2.17 2.54

Rel Optimality 1.0 1.0 0.75 1.7 0.25 0.38 18.1 19.5

SR: shift-register G: original feedback Tput: throughput Perf = ClkSpd×Tput

simple: logic synthesis with low optimization effort level

ultra: logic synthesis with ultra optimization effort level plus clock gating

Optimality: Perf/Area Rel optimality: relative optimality

64

0 100 200 300 400 500 600

k

0

10000

20000

30000

40000

50000

60000

70000

80000

A
re

a
 (

G
E
)

MG
Mesh
Direct
OcDeb-k-32

(a) Comparison in area

0 100 200 300 400 500 600

k

0

500

1000

1500

2000

P
e
rf

o
rm

a
n
ce

 (
M

b
p
s)

MG
Mesh
Direct
OcDeb-k-32

(b) Comparison in performance

Figure 5.1: Comparison of OcDeb with baseline implementations in (a) area and (b) per-
formance across a series of k

65

5.2 The Impact of Parameters k and n On OcDeb’s

Area and Performance

We pay extra attention to 3 ≤ k ≤ 32 in Figure 5.1a and Figure 5.1b as it will become
clear that the pattern of figures repeats between consective powers of 2. Figure 5.2a and
Figure 5.2b enlarge the details of OcDeb figures with k ranging from 3 to 32. We can
see that OcDeb’s area and performance are inversely correlated in the sense that when
the area becomes larger the performance gets worse. For OcDeb, the fluctuations seen in
Figure 5.2a and Figure 5.2b are results of the variations of the cost to compute inputs to G
after k-degree composition. The function G of OcDeb-k-32 has 14 inputs. After k-degree
composition, each input to G will become a term that has 2H(k)− 1 xor gates. When k is
between 2i and 2i+1− 1 inclusive, where i is an integer, 2H(k) is the largest at k = 2i+1− 1
and smallest at k = 2i. This explains the local peaks in Figure 5.2a at k = 3, 7, 15, 31,
in Figure 5.2b at k = 4, 8, 16, 32. When k is an even number, 2H(k+1) = 2H(k)+1, which
explains some rises at odd k and falls at even k. One of the exceptions is at k = 22,
where the hardware cost does not decrease comparing with k = 21. This happens because
the area saved by computing G’s inputs is not as much as the overhead area incurred by
increasing k by 1.

Now, we extend the discussion to the parameter n. In Figure 5.2, we show performance
and area results of two categories of instances:

• OcDeb-k1-18 with k1 ranging from 9 to 35 and its G has 5 inputs.

• OcDeb-k2-24 with k2 ranging from 3 to 29 and its G has 10 inputs.

We connect two instances from different categories with concrete lines when they have
the same period and label the line with the size of the internal state. The higher an
instance is in Figure 5.2, the better its performance, while the closer to the left, the
smaller the area. An instance has a better optimality, measured by Performance/Area,
proportional to the angle between x-axis and the imaginary line connecting the instance
with the origin. We observe that for most of the cases, OcDeb-k1-24 is posited higher
and closer to the left than the OcDeb-k2-18 with the same period. Exceptions appear at
k1 + 18 = k2 + 24 = 34, k1 + 18 = k2 + 24 = 51 and so on, where the corresponding k2
are 10, 27 and the corresponding k1 are 16, 33. Either of these k1 has a smaller Hamming
weight than the respective k2.

66

0 5 10 15 20 25 30 35

k

0

1000

2000

3000

4000

5000

6000

7000

A
re

a
 (

G
E
)

MG
Mesh
Direct
OcDeb-k-32

(a) Parameter k’s impact on OcDeb’s area

0 5 10 15 20 25 30 35

k

0

500

1000

1500

2000

P
e
rf

o
rm

a
n
ce

 (
M

b
p
s)

MG
Mesh
Direct
OcDeb-k-32

(b) Parameter k’s impact on OcDeb’s performance

Figure 5.2: Parameter k’s impact on OcDeb’s (a) area and (b) performance

67

In conclusion, parameter k dominates the area and peformance of OcDeb. Almost at all
times, a larger n is prefered as it either leads to a OcDeb with longer period with the same
k or a smaller k while keeping the same period. Also we prefer parameter k with small
Hamming weight. However, we would like to mention that NLFSRs with long periods are
hard to find. Besides, optimal or close to optimal linear complexity of the starting span-n
sequence is required to construct a more secure OcDeb [29].

5.3 Comparisons of the Complexity of de Bruijn Se-

quences Generators

Table 5.2 summarizes the storage and time complexity of different methods to construct
de Bruijn sequences, showing how we improve upon the previously best results of Mandal
and Gong. It is almost same as Table 5.2 with one more table row for OcDeb.

Table 5.2: Comparison of OcDeb-k-n with other techniques in storage and computation
complexity

Storage Complexity

Fredricksen [10] 3(n+ k) O((n+ k)2) †

Jansen et al. [21] 3(n+ k) O((n+ k)2) †

Annexstein [2] — O(2n+k)

Chang et al. [6] — 3k(n+ k)

Mandal,Gong [29] n+ k − 1 O(k2 + nk)

∗ this thesis n+ k − 1 + log (n) O(k log (k) + log (n))

† The complexity is an estimate based upon the cited paper.

Results are given in terms of n and k where the period of the de Bruijn sequence
is 2n+k to enable comparison between the composited construction and other
techniques.

68

Table 5.3: Comparison of OcDeb with PRNGs used in RFID tags in terms of area and
peformance

State Area

(bits) (GE)

LAMED [39] 64 1585

OcDeb-40-24 64 869

Warbler [45] 65 464

Melia-Segui [34] 16 761

OcDeb-32-32 64 656

5.4 Comparisons with Other Lightweight CSPRNGs

An active area of research today is developing PRNGs for lightweight cryptography: char-
acterized by applications such as RFID tags, wireless sensor network devices, and small
embedded systems with limited computational resources. The goal is to reduce the area
of PRNGs while maintaining reasonable levels of performance and security. Examples of
lightweight PRNGs include LAMED [39], Warbler [31], and Melia-Segui [34]. Table 5.3 list
their area and one instance of OcDeb that has comparable security level, which is measured
by the number of state bits. From the table, we can tell that OcDeb-32-32 is smaller than
all of them except Warbler. However, Warbler’s maximum clockspeed is 1.43 GHz and its
throughput is 1/5. Hence, the performance is 0.286 Gbps, which is much slower compared
with 1.67 Gbps of OcDeb-32-32.

5.5 Results of Parallel Implementations

Table 5.4 shows the area and performance data for OcDeb-32-32 with parallelization of 1,
2, and 10. We run Design Compiler with ultra high optimization effort and clock gating
turned on. For each parallelism, we report two extremes of the tradeoff between area and
clockspeed. They are acquired by manipulating the clock period target for logic synthesis.

To increase the throughput, we compute future feedback values which requires moving
NLFSR’s tap positions to the left. As parallelism increases, the clock speed decreases,

69

Table 5.4: Implementation results for parallel OcDeb-32-32

Parallelism Area ClkSpd Performance Optimality

GE GHz Gbps Perf/Area

1 724 2.50 2.50 3.45

1 656 1.67 1.67 2.54

2 798 2.00 4.00 5.01

2 697 1.15 2.30 3.30

10 1229 0.83 8.30 6.75

10 990 0.52 5.20 5.25

because the first stage of the shift register is in the feedback logic. Thus, the delay through
the combinational logic inevitably increases as the parallelism increases.

5.6 Highlighted Instances

In this section, we provide results for four instances of OcDeb. The results were obtained
by setting Design Compiler’s optimization effort level to ultra high and enabling clock
gating.

Table 5.5: Highlighted instances: OcDeb-32-32-xx, OcDeb-512-32-xx

Instance Sequence Period Area Clockspeed Performance

GE GHz Gbps

OcDeb-32-32-la 264 656 1.67 1.67

OcDeb-32-32-hp 264 1229 0.83 8.30

OcDeb-512-32-hpnp 2544 7949 1.43 1.43

OcDeb-32-32-la. Low area. It uses Algorithm 2 to compute the diagonal nodes, a state
machine to compute All0/1 (Algorithm 4), and Algorithm 6 to compute SomePat.
It is not paralleled.

70

OcDeb-32-32-hp. High performance. It has a parallelism of 10. The Hamming Weight
of integer 32 is just 1. Parallelizing Algorithm 4 to a degree of 10 is fairly complex
and leads to a slow and large circuite. So we simply compute All0/1 explicitly.

OcDeb-512-32-hpnp 1. We use Algorithm 2 and Algorithm 3 to save area. We apply
retiming aggressively to improve clockspeed and depend on Theorem 4 to guarantee
its correctness. It is not paralleled but the result we show is obtained by setting
constraints for the clock period in a way to achieve high clockspeed at the cost of
area.

1It is a different implementation from the one that can be found in Figure 5.1a and Figure 5.1b. For
OcDeb-512-32-hpnp, we take extra measures to ensure the performance is comparable to OcDeb instances
with smaller k. The measures include inserting register in the comptuation of SomePat, puting register
after the diagonal nodes whose computation is expensive.

71

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Psuedorandom number generators are critical building blocks but also often the overlooked
ones in cryptographic systems. de Bruijn sequences have good randomness properties mak-
ing them attractive for pseudorandom number generators. Existing techniques to generate
de Bruijn sequences with realistic periods (e.g., 264) are too expensive and mostly imple-
mented in software. The most effective technique so far would be Mandal and Gong’s
composited construction. However, our hardware implementation results show that it still
does not have competitive area and performance with respect to other PRNGs, such as
LAMED, Warbler, Melia-Segui. So optimizations are needed.

We approached the optimization problem by drawing the architecture of composited
de Bruijn sequence generators directly based on its feedback expression. This revealed a
regular structure consisting of xor gates, and we called this structure a mesh. Each row
of the mesh has one xor gate fewer than the row below. Nodes on each row (except the
top row) are inputs to a function Xj

i (function X checks alternating 0 and 1), where j and
i are determined by the coordinates of the leftmost node on the row. Nodes on the top row
are inputs to the function All0 , which checks whether all of the top row nodes are 0. The
summation of all functions associated with each row (i.e. meshkn) is the most expensive part
of the composited construction, and because of that it is the target of our optimizations.
Later, we found some interesting relations among the functions, for example, there is at
most one row that can satisfy X . Another important realization is that when all top row
nodes are 0, we only need the nodes on a segment of the diagonal (that is composed of the
leftmost nodes on each row) to determine whether a row satisfies X or not. With this, we

73

eliminate the need to compute the internal nodes of the mesh. In the end, we concluded
that we can compute the summation of the functions associated with rows of the mesh
(i.e. meshkn) using only the diagonal nodes and the top row nodes. We called this diagonal
optimization. In the diagonal optimization, we created a function called SomePat to check
certain patterns on the diagonal nodes. A presence of those patterns means meshkn = 0.
For the top row, we only check whether the nodes are all 0 or all 1, and for that we can use
a counter that counts the consective 0s and consective 1s, hence we only need the leftmost
node on the top row instead of all nodes on the top row. The diagonal optimization
reduces the number of bit operations and also improves it asymptotically, from O(k2 +nk)
to O(k log (k) + log (n)). Because the savings in bit operations are dramatic, we called
optimized de Bruijn sequence generators “OcDeb” to distinguish it from the original ones.
The other important optimization of OcDeb we presented states that for any function of
the base row nodes, we can find an equivalent function on any n+k−1 independent nodes
from the mesh. A concrete application of this optimization is its corollary, which states
that SomePat can be applied to any interior diagonal instead of the diagonal. SomePat
on an interior diagonal is either the same as it is on the diagonal or can be related to it
in a simple manner. This is very useful in applying retiming and efficient parallelization.
Retiming is a hardware optimization technique involving inserting flip-flop into the
longest combinational path to improve performance. Both retiming and parallelization
requires computing future values which implies moving the inputs of the functions to the
left direction of the mesh. Because of the corollary we just mentioned, we can offset it by
firstly moving the inputs of SomePat to the right. Our optimizations are formulated in
lemmas and theorems with proofs.

In the hardware implementation, we found that it is inefficient to compute the diagonal
nodes with the xor gates in the mesh. Instead, it is more efficient to compute each of
them individually and directly based on the definition. Later we presented two algorithms
that improve this approach by utilizing two tricks, the common sub-expression elimination
and replacing combinational logic with sequential logic (or trading space for computation).
The two tricks are useful throughout the implementation, but they sometimes compete
with each other.

OcDeb family of pseudorandom number generators shows dramatic improvement over
other composited construction implementations that we considered. An instance of OcDeb-
32-32 shows 72× improvement in optimality (performance/area) over Mandal and Gong’s
implementation that focuses on low area. Besides, we show our lightweight instances
have very competitive area results compared with other lightweight pseudorandom number
genarators. For example, an instance of OcDeb-32-32 has area of 656 GE and performance
of 1.67 Gbps, which makes it smaller than LAMED and Melia-Segui all of which are de-

74

signed for lightweight applications. Moreover, OcDeb offers a wide specture in security
(sequence period), performance and area and our optimizations ensure we do not have pay
too much overhead in others while pursuing one or two extremes among security, perfor-
mance and area. Our parallel instance of OcDeb-32-32 can offer 8.30 Gbps performance
at the cost of area 1229 GE. Our instance of a period of 2544 has an area of 7949 GE and
performance of 1.43 Gbps.

6.2 Future Work

One way to widen OcDeb’s application areas in cryptography is by adding a filter function
to the output. This would allow us to use OcDeb without exposing its internal state. In
the thesis, we adopt an approach that only involves increasing the parameter k in order
to get an instance of OcDeb with long period, alternatively, we can increase n or n and
k at the same time. It means we use a small instance of OcDeb as the starting feedback
shift register. It will be interesting to see whether this approach will yield better results.
Besides, analysis on the relation between clockspeed and the degree of parallelism and
especially the realation between performance (clockspeed× throughput) and the degree of
parallelism will be very helpful in further pushing OcDeb on the performance side. Last but
not the least, efficient software implementation of OcDeb is valuable. Our optimizations
are also applicable in software implementations and new software oriented optimizations
are expected.

75

References

[1] Factoring RSA keys from certified smart cards: Coppersmith in the wild. Springer,
2013.

[2] F.S. Annexstein. Generating de Bruijn sequences: An efficient implementation. IEEE
Transactions on Computers, 46(2):198–200, February 1997.

[3] James Ball, Julian Borger, and Glenn Greenwald. Revealed: how us and uk spy
agencies defeat internet privacy and security. The Guardian, 6, 2013.

[4] de NG Bruijn. A combinatorial problem. Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen. Series A, 49(7):758, 1946.

[5] Segher Bushing, H. M. Cantero, and S. Peter. PS3 epic fail, December 2010. Chaos
Communication Congress.

[6] T. Chang, B. Park, Y. H. Kim, and I. Song. An efficient implementation of the
D-homomorphism for generation of de Bruijn sequences. 45(4):1280–1283, May 1999.

[7] Lidong Chen and Guang Gong. Communication System Security. 2012.

[8] Elena Dubrova. A list of maximum period nlfsrs. IACR Cryptology ePrint Archive,
2012:166, 2012.

[9] Elena Dubrova. A list of maximum period NLFSRs. Technical Report 166, Cryptology
ePrint Archive, 2012.

[10] H. Fredricksen. A class of nonlinear de Bruijn cycles. 19(2):192–199, September 1975.

[11] Harold Fredricksen and Irving Kessler. Lexicographic compositions and debruijn se-
quences. Journal of Combinatorial Theory, Series A, 22(1):17–30, 1977.

77

[12] Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de
bruijn sequences. Discrete Mathematics, 23(3):207–210, 1978.

[13] R. A. Games. A generalized recursive construction for de Bruijn sequences. 29(6):843–
850, September 1983.

[14] B.M. Gammel, R. Gottfert, and O. Kniffler. An NLFSR-based stream cipher. pages
1–4, 2006.

[15] Solomon W. Golomb. On the classification of balanced binary sequences of period
2n−1. 26(6):730–732, 1980.

[16] Solomon W. Golomb and Guang Gong. Signal Design for Good Correlation. 2005.

[17] Guang Gong and Youssef A.M. Cryptographic properties of the welch-gong transfor-
mation sequence generators. 48(11):2837–2846, November 2002.

[18] Irwin John Good. Normal recurring decimals. Journal of the London Mathematical
Society, 1(3):167–169, 1946.

[19] E. R. Hauge and T. Helleseth. De Bruijn sequences, irreducible codes and cyclotomy.
Discrete Mathematics, 159(1–3):143–154, November 1996.

[20] GS1 EPCglobal Inc. EPC radio-frequency identity protocols, generation-2 uhf rfid,
ver2.0.0.

[21] C.J.A. Jansen, W.G. Franx, and D.E. Boekee. An efficient algorithm for the generation
of de Bruijn cycles. 37(5):1475–1478, September 1991.

[22] Jeff Larson, Nicole Perlroth, and Scott Shane. Revealed: The nsas secret campaign
to crack, undermine internet security. Pro-Publica, September, 2013.

[23] Pierre L’Ecuyer and Richard Simard. Testu01: Ac library for empirical testing of
random number generators. ACM Transactions on Mathematical Software (TOMS),
33(4):22, 2007.

[24] A. Lempel. On a homomorphism of the de Bruijn graph and its applications to the
design of feedback shift registers. IEEE Transactions on Computers, C-19(12):1204–
1209, 1970.

[25] C. Li, X. Zeng, C. Li, and T. Helleseth. A class of de Bruijn sequences. 60(12):7955–
7969, 2014.

78

[26] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its appli-
cations. Springer Science & Business Media, 2013.

[27] Jacobus Hendricus Lint. Combinatorial Theory Seminar, Eindhoven University of
Technology. Springer-Verlag, 1974.

[28] K. Mandal and G. Gong. Cryptographically strong de Bruijn sequences with large
periods. volume 7707, pages 104–118, 2012.

[29] Kalikinkar Mandal and Guang Gong. Cryptographic D-morphic analysis and fast
implementations of composited de Bruijn sequences. Technical Report 27, University
of Waterloo, CACR, 2012.

[30] Kalikinkar Mandal and Guang Gong. Probabilistic generation of good span-n se-
quences from nonlinear feedback shift registers. Technical Report 06, University of
Waterloo, CACR, 2012.

[31] Kalikinkar Mandal and Guang Gong. Warbler: A lightweight pseudorandom num-
ber generator for EPC C1 Gen2 passive RFID tags. Int’l Jour. RFID Security and
Cryptography, 2(1-4):82–91, March 2013.

[32] George Marsaglia. A current view of random number generators. In Computer Science
and Statistics, Sixteenth Symposium on the Interface. Elsevier Science Publishers,
North-Holland, Amsterdam, pages 3–10, 1985.

[33] George Marsaglia, Wai Wan Tsang, et al. Some difficult-to-pass tests of randomness.
Journal of Statistical Software, 7(3):1–9, 2002.

[34] Joan Melia-Segui, Joaquin Garcia-Alfaro, and Jordi Herrera-Joancomarti. Analysis
and improvement of a pseudorandom number generator for EPC Gen2 tags. In Fi-
nancial Cryptography and Data Security, pages 34–46. Springer, 2010.

[35] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 1996.

[36] Frederic J Mowle. Relations between p n cycles and stable feedback shift registers.
Electronic Computers, IEEE Transactions on, (3):375–378, 1966.

[37] Frederic J Mowle. An algorithm for generating stable feedback shift registers of order
n. Journal of the ACM (JACM), 14(3):529–542, 1967.

79

[38] J. Mykkeltveit, Siu M-K., and Tong P. On the cycle structure of some nonlinear shift
register sequences. 43:202–215, 1979.

[39] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M Estevez-Tapiador, and
Arturo Ribagorda. LAMED — a PRNG for EPC Class-1 Generation-2 RFID specifi-
cation. Computer Standards and Interfaces, 31(1):88–97, 2009.

[40] Nicole Perlroth, Jeff Larson, and Scott Shane. Nsa able to foil basic safeguards of
privacy on web. The New York Times, 5, 2013.

[41] Tomasz Rachwalik, Janusz Szmidt, Robert Wicik, and Janusz Zab locki. Generation of
nonlinear feedback shift registers with special-purpose hardware. In Communications
and Information Systems Conference (MCC), 2012 Military, pages 1–4. IEEE, 2012.

[42] Anthony Ralston. A new memoryless algorithm for de bruijn sequences. Journal of
Algorithms, 2(1):50–62, 1981.

[43] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[44] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D. Banks, A. Heck-
ert, J. Dray, S. Vo, M. Smid, M. Vangel, A. Heckert, and L.E. Iii. A statistical test
suite for random and pseudorandom number generators for cryptographic applications.
Technical Report Special Publication 800-22 Rev. 1a, April 2010.

[45] Gangqiang Yang, Mark D Aagaard, and Guang Gong. Efficient hardware implemen-
tations of the warbler pseudorandom number generator. 2015.

80

	List of Tables
	List of Figures
	Introduction
	Background
	Preliminaries
	Algorithms to Construct deBruijn Sequence Generators
	Composited Construction of deBruijn Sequences
	Composition Operation
	Composited deBruijn Sequence Generators
	Three Baseline Implementations of (k, n)-composited deBruijn Sequence Generators
	Cryptographic Applications

	Summary

	Optimizations
	Mathematical Optimizations
	Only One Row Can Satisfy X
	Diagonal Optimization for a Specific Row
	Diagonal Optimization for the Complete Mesh
	All-Zeroes State Machine
	Parallelization and Retiming

	The New Complexity
	Notes

	Hardware Implementations
	Tricks
	Trade-off Between Storage and Computation
	Common Sub-expression Elimination
	Using the Two Techniques Together
	Our Goal
	Discussion
	Computing the Nodes on the Diagonal
	Computing the Inputs to the G

	Modules
	Module All0/1
	Module G
	Module Diag
	Module SomePat

	Summary

	Hardware Implementation Results
	Effectiveness of Optimizations in Hardware
	The Impact of Parameters k and n On OcDeb's Area and Performance
	Comparisons of the Complexity of deBruijn Sequences Generators
	Comparisons with Other Lightweight CSPRNGs
	Results of Parallel Implementations
	Highlighted Instances

	Conclusion and Future Work
	Conclusion
	Future Work

	References

