
Interactive Visualization and Exploration of
High-Dimensional Data

by

Adrian Waddell

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Statistics

Waterloo, Ontario, Canada, 2016

© Adrian Waddell 2016

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Visualizing data is an essential part of good statistical practice. Plots are useful for re-
vealing structure in the data, checking model assumptions, detecting outliers and finding
unanticipated patterns. Post-analysis visualization is commonly used to communicate the
results of statistical analyses. The availability of good statistical visualization software
is key in effectively performing data analysis and in exploring and developing new meth-
ods for data visualization. Compared to static visualization, interactive visualization adds
natural and powerful ways to explore the data. With interactive visualization an analyst
can dive into the data and quickly react to visual clues by, for example, re-focusing and cre-
ating interactive queries of the data. Further, linking visual attributes of the data points
such as color and size allows the analyst to compare different visual representations of the
data such as histograms and scatterplots.

In this thesis, we explore and develop new interactive data visualization and explo-
ration tools for high-dimensional data. The original focus of our research was a software
implementation of navigation graphs. Navigation graphs are navigational infrastructures
for controlled exploration of high-dimensional data. As part of this thesis, we developed
the first interactive implementation of these navigation graphs called RnavGraph. With
RnavGraph we explored various features for enhancing the usability of navigation graphs.
We concluded that a powerful interactive scatterplot display and methods to deal with
large graphs were two areas that would add great value to the navigation graph frame-
work.

RnavGraph’s scatterplot display proved to be particularly useful for data analysis and
we continued our research with the design and implementation of a general-purpose in-
teractive visualization toolkit called loon. The core contributions of loon are as follows.
loon implements a general design for interactive statistical graphic displays that sup-
ports layering of visual information such as point objects, lines and polygons. These dis-
plays further support zooming, panning and selection, and modification and deactivation
of plot elements and layers. Interactions with plots are provided with mouse and key-
board gestures as well as via command line control and with inspectors. These inspectors
provide graphical user interfaces for modifying and overseeing the plots. loon also im-

iii

plements a novel dynamic linking mechanism that can be used to assign the plots that
are to be linked and the linking rules at run time. Additionally, loon’s design provides
several different types of event bindings to add and customize functionality of loon’s dis-
plays. In this thesis, we discuss loon’s design and framework by giving concrete examples
that show how these design choices can be used to efficiently explore and visualize data
interactively. These examples revolve around loon’s statistical interactive displays such
as histograms, scatterplots and graph displays. We also illustrate how loon’s design can
be used to layer on plots relevant statistical information and model fits such as density
estimates, contours, regression lines and geographical maps for spatial data analysis.

loon is implemented in Tcl and Tk and we explore the integration of loon’s frame-
work into a complete statistical computing environment such as R. We show examples of
statistical analyses performed in R that are enhanced with interactivity using loon.

loon also implements a number of new tools for high-dimensional data exploration.
The serialaxes display represents the data using parallel or radial coordinates. The scat-
terplot display supports high-dimensional point glyphs such as serialaxes glyphs, polygons
and images. loon’s navigation graphs allow for multiple navigators and for direct manip-
ulation of a graph which includes deactivating nodes and their adjoining edges.

To deal with large graphs, we propose and implement environments for creating nav-
igation graphs interactively by filtering the nodes with respect to some node-associated
relevant measures. Such measures include the correlation of variable pairs and the graph-
based scagnostics measures. We use sliders, histograms and scatterplot matrices to inter-
actively filter the nodes based on the value of their associated measure. Measures are
kept generic and can be recalculated for the subset of selected data points. As another
tool for exploring high-dimensional data, we introduce a setup that allows the analyst to
select points and have their k-nearest neighboring points highlighted automatically. The
space to calculate the inter-point distances that determine the k-nearest neighbors can be
chosen dynamically. Finally, we propose a new high-dimensional point glyph called the
spiro glyph.

While some of loon’s interaction features have appeared in part or in whole in statis-
tical systems in the past 40 years (e.g. brushing, panning, zooming, linking plots, etc.),

iv

no other equally rich system has provided (or continues to provide) an interactive data vi-
sualization system integrated with a widely available and stable statistical system like R.
Both Tcl and R are well suited for rapid prototyping of software and statistical methods;
with loon rapid prototyping of interactive data visualization tools and methods become
possible as well.

v

Acknowledgements

I would like to thank my advisor Wayne Oldford for his guidance, support and generosity.
His deep insight and knowledge have been most influential on my research work and
academic development.

I am also grateful to those who contributed to making R and Tcl the excellent tech-
nologies that they are today.

Above all, I wish to thank my parents for their constant encouragement and support.
Also, many thanks to my siblings and friends. I am particularly thankful to my friends
Max and Tobias for their company and for all the ideas we exchanged over the years.
Finally, my very special thanks go to Oana for being a wonderful and supportive partner.

vi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements vi

List of Figures xii

List of Tables xvii

1 Background 1
1.1 On High-Dimensional Data . 1
1.2 On Low-Dimensional Views . 2
1.3 Navigation Graphs . 5

1.3.1 The Canonical Graph Semantic . 6
1.3.2 Automatic Graph Construction and Exploration 8

1.3.2.1 Saturated 3d and 4d transition graph 8
1.3.2.2 Graph Products . 11
1.3.2.3 Automatic Graph Traversal 12

1.4 On the Problem of Large Graphs . 13
1.4.1 Finding an Interesting Subgraph . 14
1.4.2 Dimensionality Reduction/Constructing Dimensions 16

1.5 Other Graphs of Possible Interest . 21
1.6 Interactive Data Visualization Software . 22

vii

2 RnavGraph 26
2.1 A Default RnavGraph Session . 27
2.2 The Navigation Graph Display . 27
2.3 The tk2d Scatterplot Display . 32
2.4 Software Architecture . 35

2.4.1 navGraph . 36
2.4.2 scagGraph . 40
2.4.3 Extending RnavGraph . 41

2.5 Lessons Learned . 43

3 Loon By Example 46
3.1 An Exploratory Data Analysis . 47
3.2 Performing the Exploratory Analysis with the loon R package 54

3.2.1 Plot States . 54
3.2.2 Graphical User Interface . 55
3.2.3 Linking . 57
3.2.4 Layers . 57
3.2.5 Star Glyphs . 58

3.3 Conclusions . 59

4 Loon Framework 60
4.1 Introduction to the Displays . 62

4.1.1 Scatterplot . 62
4.1.2 Histogram . 62
4.1.3 Serialaxes Display . 64
4.1.4 Graph Display . 64
4.1.5 Inspectors . 67

4.2 Main Graphics Model . 69
4.2.1 Plot Layout . 69
4.2.2 Mapping Data Onto the Plot Region . 71

4.3 Plot States . 73
4.3.1 Abstract Dimensions . 76

viii

4.3.2 Configuration Pipeline . 78
4.3.3 State Normalization . 80

4.4 Graphical User Interface . 81
4.4.1 Zoom & Pan . 81
4.4.2 Visual Query . 82

4.4.2.1 Item Labels . 82
4.4.2.2 Interactive Selection . 84

4.4.3 Temporarily Relocating Points . 86
4.4.4 Inspectors . 88

4.4.4.1 loon Inspector . 89
4.4.4.2 Worldview . 89
4.4.4.3 Analysis Inspectors . 90
4.4.4.4 Layers Inspector . 90

4.5 Standard Linking Model . 91
4.6 Layers . 95

4.6.1 Functions and Methods for Layering Data in R 98
4.7 Display Design Decisions . 103

4.7.1 Histogram . 103
4.7.2 Point and Node Glyphs . 103
4.7.3 Serialaxes Display and Serialaxes Glyphs 107
4.7.4 Graph Display . 109

4.7.4.1 Graphswitch . 109
4.7.4.2 Navigators . 110
4.7.4.3 Navigator Contexts . 113

5 Advanced Loon Framework 121
5.1 Implementation . 121
5.2 Event Bindings . 124

5.2.1 R function callbacks . 125
5.2.2 State Change Bindings . 126
5.2.3 Item Bindings . 128
5.2.4 Canvas Bindings . 131

ix

5.2.5 Content Bindings . 132
5.3 Custom Linking . 134

5.3.1 One Directional And One-To-Many Linking 134
5.3.2 Linking States with Different Names 136
5.3.3 Linking Items Within a Plot . 137
5.3.4 Avoiding Circularity . 138
5.3.5 Linking Model with Non-Model Layers 139

5.4 Geometry Management . 140
5.5 Writing an Inspector . 144
5.6 Other Topics . 145

5.6.1 Export as an Image . 145
5.6.2 Animations . 146
5.6.3 Color Mapping . 146

6 General Statistical Interaction Examples 150
6.1 Power Transformations . 151
6.2 Interactively Adding Regression Lines . 153
6.3 Sensitivity Analysis of a Simple Linear Regression 155
6.4 Interactive K Nearest Neighbor highlighting 158

6.4.1 A Quick Solution . 158
6.4.2 A Solution With Control Panel . 160

7 Exploring High-Dimensional Data 163
7.1 Navigation Graphs . 164

7.1.1 Canonical Navigation Graph Setup . 164
7.1.2 Dynamic Navigation Graphs Based on Measure Ranges 168
7.1.3 Dynamic Navigation Graph based on Plots 172
7.1.4 Closures of Measures . 173
7.1.5 Exploring New Graph Semantics . 180

7.2 Spiro Glyphs . 184

8 Conclusions and Future Work 190

x

8.1 Conclusions for loon . 190
8.2 Future Work . 194

8.2.1 loon in General . 194
8.2.2 Current Displays . 197
8.2.3 New Displays . 198
8.2.4 Navigation Graphs . 199

References 201

APPENDICES 208

A R Code for Chapter 6 Examples 209
A.1 Power Transformations . 209
A.2 Interactively Adding Regression Lines . 210
A.3 Sensitivity Analysis Simple Linear Regression 211
A.4 Interactive K nearest neighbour highlighting 216

xi

List of Figures

1.1 The Italian olive oil data – recorded fatty acids and sampled areas. 7
1.2 Saturated 3d and 4d transition graphs for the olive data. 8
1.3 3d rigid rotation and linked scatterplot display. 9
1.4 4d transition along a geodesic. 9
1.5 Complete variable graph G for a 4 dimensional data set with variates labelled

A, B, C, and D. Line graph L(G). Complement graph L(G). 10
1.6 Automatic saturated 3d and 4d transition graph construction with a non-complete

variable graph. 10
1.7 Two variable graphs G and H capturing a certain structure. 12
1.8 Three graph products of G and H from Figure 1.7 12
1.9 Scatterplot matrix example from Hurley and Oldford [44] Section 4.1. 13
1.10 a) Scatterplot of the scagnostic measures – convex vs. monotonic. b) Particular

scatterplots with high monotonic and convex measure, and high convex and low
monotonic measure. 16

1.11 Scatterplot of the scagnostic measures – convex vs. monotonic – overlaid on
the scagnostic measures along two 4d transitions from the olive data. The blue
path shows the scagnostic measures when linolenic transitions into oleic and
arachidic transitions into palmitoleic. The green path shows the scagnostic
measures when linolenic transitions into palmitoleic and arachidic transitions
into oleic. 17

1.12 Comparing seven dimensional reduction methods using navigation graphs with
the canonical semantic. 25

xii

2.1 Default RnavGraph session with the default group colors. 28
2.2 Path tool . 32
2.3 Different plot types supported by the tk2d scatterplot display. 34
2.4 Rectangular brush tool. 35
2.5 Saturated 3d transition graph for olive data. 38
2.6 RnavGraph session. 39
2.7 scagNav session . 41
2.8 User-defined plot for an RnavGraph session. 44

3.1 Visible minority population versus total population for each of the 33 Canadian
metropolitan census areas. Here t = total population count, m = total visible
minority count. 48

3.2 Visible minority population versus total population for each of the 33 Canadian
metropolitan census areas – range from 0.0015 for Trois-Rivier̀es to 0.18 for
Vancouver. Here t = total population count, m = total visible minority count
and c = total Chinese minority count. 49

3.3 Radial axis plots for the two largest Canadian census areas. 50
3.4 Radial axis plots, or star glyphs, for all 33 metropolitan census areas. Colors

are assigned based on a red-yellow-green gradient from west to east. The radial
axis order is shown at the right. 51

3.5 Zooming in on a region. (a) A worldview plot. (b) The area of focus – South-
western Canada and the Prairies. The region shown in (b) is highlighted with
a white rectangle in (a). 52

3.6 The default loon inspector is context specific for the active loon plot. For a
scatterplot display it shows a worldview, an analysis, layers and glyphs inspector. 53

4.1 loon’s scatterplot display. 63
4.2 loon’s histogram display. 65
4.3 loon’s serialaxes display plots the data either as a stacked star glyphs plot (a)

or as a parallel coordinates plot (b). 66
4.4 loon’s graph display. 67
4.5 loon’s inspectors. 68

xiii

4.6 Main graphics model. 69
4.7 Plot layout . 71
4.8 The configuration pipeline for state modifications. 78
4.9 Zoom and pan gestures for the histogram, scatterplot and graph display. Zoom-

ing requires a mouse scroll gesture. Panning requires a right mouse button
drag. Two superimposed mice with an arrow indicate a drag gesture. 82

4.10 loon’s item labels that are displayed with a “tool-tip” pop-up. 83
4.11 Interactive mouse/keyboard selection techniques. 84
4.12 Selection gestures for the histogram, scatterplot and graph display. Two super-

imposed mice with an arrow indicate a drag gesture. 85
4.13 Temporary relocating points on a scatterplot. 87
4.14 Worldview inspector and its composition in perspective. 90
4.15 Layers inspector. 91
4.16 Scatterplot with a layered regression line, a 95% confidence interval and a 95%

prediction interval of a simple linear fit. 96
4.17 Naturalearth data displayed with loon’s scatterplot display. 99
4.18 Two layers: a heat image and contour lines of a 2d density estimation. 102
4.19 Point glyph examples. 105
4.20 Point glyph size mapping. 106
4.21 Glyphs inspector. 108
4.22 Graphswitch and graph display. 110
4.23 Navigator example. 112
4.24 Context2d mapping scheme to xvars and yvars. 114
4.25 Context2d example session. 115
4.26 loon’s slicing2d context setting for 3d transitions. 119
4.27 loon’s slicing2d context setting for 4d transitions. 120

5.1 Life expectancy (in years) vs. fertility (number of children per women) for dif-
ferent countries in 2002. The data is from the Gapminder data project [35]. The
choropleth plot (right panel) encodes life expectancy as color. 141

5.2 Geometry management. 142
5.3 Scatterplot matrix using grid geometry manager. 143

xiv

5.4 Custom inspector for aspect ratio. 145
5.5 Hcl colors: luminance is 70, chroma on circle is 66. The numbers indicate loon’s

default color mapping order. 148
5.6 Examples of mapping data values to colors. 149

6.1 Power transformation example. 152
6.2 Interactively adding regressions lines. 154
6.3 Influential points in regression analysis. 156
6.4 Influential points in regression: recolor points to remove outliers. 156
6.5 Influential points in regression: sensitivity analysis. 157
6.6 3 nearest neighbors highlighted. 159
6.7 K nearest neighbors highlighting for subspaces. 162

7.1 l_navgraph setup. 166
7.2 Star glyphs. 167
7.3 l_ng_ranges setup with 2d measures. 169
7.4 l_ng_ranges setup with 1d measures. 171
7.5 l_ng_ranges using scganostics measures and the olive data. 172
7.6 l_ng_plots setup. 176
7.7 Frey faces image glyphs. 177
7.8 Scatterplot of “clupmy” olive data. 178
7.9 l_ng_ranges setup with measures1d. 178
7.10 l_ng_plots for scagnostics2d and high sparse and low outlying points selected.179
7.11 Implementing a custom graph semantic. 183
7.12 Spiro glyphs from 3d transitions arranged on a grid. 186
7.13 Spiro glyphs from 4d transitions arranged on a grid. 187
7.14 Spiro glyphs from 4d transitions on a scatterplot. 188
7.15 Zoomed in on spiro glyphs from Figure 7.14. 188
7.16 Temporarily arranged spiro glyphs in Figure 7.15 on a grid with loon. 189

xv

8.1 Example of a color cross table of the plot states group vs. color. Note that the
first row represents the selected state and not the color state. The data used
here is the olive data and its Area variable is assigned to the group state. Also,
the color state has a different color for each area in Area. Here, the color of a
cell (i, j) is according to the fraction of points that have the color from row i out
of the points that are from the group in column j. For the first row the color of
a cell represents the fraction of points that are selected for a given group. . . . 199

xvi

List of Tables

1.1 Elementary codes for quantitative information, ranked by the accuracy with
which people can extract them from graphs based on experiments from Cleve-
land and McGill [18]. The slope judgement spans over a range of ranks as the
accuracy of judging two slopes relative to each other largely depends on the
magnitude of those slopes. Also, the ranking for density, saturation, and hue
are not based on experiments, but are conjectural. 2

2.1 Possible arguments for the user-specified function used in combination with
ng_2d_myplot. 43

4.1 Important Display States. Dominant States do not have a default value. For
states of type factor the default value column shows all possible factor levels
and highlights the default factor level in bold. 74

4.2 Dominant states for each Display. 77
4.3 Functions for temporarily moving points on scatterplot 87
4.4 loon’s inspectors . 88
4.5 loon’s default “used linkable” states. 92
4.6 linked states for example . 93
4.7 loon’s layer types . 95
4.8 Functions that work on layers . 100
4.9 loon provides l_layer methods for the geospatial data classes in this table. . . 101
4.10 Primitive point/node glyphs. 104
4.11 Non-primitive point/node glyphs and their creator function. 104

xvii

4.12 Functions for working with glyphs . 105
4.13 The mapping of size to point glyph area. 107
4.14 loon’s graphswitch widget. 109
4.15 Working with navigators. 111
4.16 Navigator context-related functions. 113
4.17 Scaling methods for context2d. 117

5.1 State change binding substitutions. 127
5.2 Item binding substitutions. 129
5.3 Item tags for visuals for plots based on the main graphics model. 130
5.4 Canvas binding substitutions. 131
5.5 Content binding substitutions. 132
5.6 Overview binding events. 133

xviii

Chapter 1

Background

1.1 On High-Dimensional Data

Understanding high-dimensional spaces is intrinsically difficult for humans. Our visual
system is limited to perceiving up to three dimensions; therefore, 4+ dimensional spaces
are abstract to us. There are many examples that show that high-dimensional spaces
can have counter-intuitive properties (Lee and Verleysen [48] and Friedman and Stuetzle
[31]). For example, imagine a p dimensional sphere with a thin shell whose thickness is
much smaller than the radius of the sphere. The ratio of the volume of the thin shell to
the volume of the interior of the sphere is very small when p = 3. However, as p grows the
ratio approaches 1. Hence, in high-dimensional spaces, most of the hypersphere volume
is located close to its edge. This and many other examples related to “unusual” properties
of high-dimensional spaces build upon the fact that, as the dimensionality increases, the
space volume grows exponentially. One consequence of the rapid space growth is that
the available data can become sparse which, in turn, could limit statistical model fitting
(Friedman and Stuetzle [31]). Oftentimes, such problems are collectively referred to as
the “curse of dimensionality”, a term coined by Bellman [9].

1

1.2 On Low-Dimensional Views

High-dimensional data are omnipresent and data visualization is widely considered part
of good statistical practice for any data analysis. However, finding revealing visualizations
for high-dimensional data is oftentimes not a straightforward task. To create a good visu-
alization that helps answer a research question two main decisions have to be made: what
is the information to be visualized and how should this information be visually encoded
onto a graphic. In other words, what is relevant and how can we see it?

The latter decision can be guided by considering how the information will be decoded
by the viewer. Cleveland and McGill [18, 19, 20, 21] rank ten “fundamental geometric,
colour, and textural aspects that encode quantitative information” on a graphic based on
the accuracy with which people can extract this information. Their ranking, shown in Ta-
ble 1.1, is based on a number of experiments, but also on some theoretical considerations.

Rank Code
1 Positions along a common scale
2 Positions along identical, nonaligned scales
3 Lengths
4 Angles
4-10 Slopes
6 Areas
7 Volumes
8 Densities
9 Colour saturation
10 Colour hues

Table 1.1: Elementary codes for quantitative information, ranked by the accuracy with
which people can extract them from graphs based on experiments from Cleveland and
McGill [18]. The slope judgement spans over a range of ranks as the accuracy of judg-
ing two slopes relative to each other largely depends on the magnitude of those slopes.
Also, the ranking for density, saturation, and hue are not based on experiments, but are
conjectural.

2

For continuous data, a two-dimensional scatterplot performs well in the ranking in
Table 1.1. That is, the values of each variate are encoded as positions along a common
scale. Also, the pattern of the point glyphs (i.e. the geometrical representation of a data
point on the plot) can expose a possible relationship between the two variates. Additional
information could be encoded onto a scatterplot by modifying the point glyph style which
is usually a filled circle by using color, size or special glyphs such as star glyphs. However,
according to Table 1.1, such additional information will be poorly encoded compared to
information that is decoded as the scatterplot coordinates.

For three-dimensional data, a three-dimensional scatterplot or point cloud would per-
form well according to Table 1.1. To visualize a 3d scatterplot one either needs a three-
dimensional display or has to project the point cloud onto a 2d plane. However, a per-
spective projection will encode depth with shape or size of the glyphs, whereas with an
orthogonal projection the depth information gets lost.

In conclusion, it is desirable to visualize some low-dimensional representation of the
data that captures relevant information.

Many visualization techniques take the approach of laying out multiple low-dimensional
plots either spatially or temporally so that the data analyst can visually link them. Scat-
terplot matrices are the best known of these multivariate visualization techniques. A
scatterplot matrix for p-variate data lays out the p(p− 1) scatterplots of every ordered
variable pair onto a p× p grid such that the scatterplots within a column or row share
their x-axis or y-axis, respectively.

Elmqvist et al. [25] propose the use of scatterplot matrices as navigational infrastruc-
tures to guide a 3d rigid rotation. The resulting projections of the 3d space onto a 2d
subspace will then be shown on a 2d scatterplot display and appears as a smooth movie,
i.e. the viewer can track the points. This way, the visual linkage between plots is done
spatially and temporally.

The idea of looking at linear projections rather than just plotting the original variates
has been used for a long time. For example, Friedman [30, p. 249] writes that “Any
structure seen in a projection is a shadow of an actual (usually sharper) structure in the
full dimensionality”.

3

Friedman and Tukey [32] introduced the term projection pursuit as an algorithm that
seeks highly revealing low-dimensional linear projections of multivariate data. This al-
gorithm requires the definition of a projection index which is a measure corresponding to
some feature of interest in the subspace defined by the projection (e.g. spread of points).
Projections that optimize this index are then visually inspected by the analyst. Local op-
tima for a projection index are also of interest as they may reveal relevant information
that cannot be seen in the globally optimal projection.

Another approach to finding interesting projections involves looking at all possible pro-
jections or at least at a dense subset of them. If the projections from the dense set are
ordered such that the changes in projections are small then the resulting visualization
will be a smooth movie. Asimov [5] proposed this approach and called the sequence of
such projections a “grand tour”. However, even for a small number of dimensions, such
a grand tour can take a very long time to watch. Huber [38, p. 438] argues that if some
“interesting” features can only be seen within a “squint angle” of about 10◦ then a grand
tour in four dimensions would take about 3 hours.

With projection pursuit one can hope to find an interesting projection in a more timely
fashion. But the value of watching a smooth movie of moving points in a scatterplot is
compelling. Buja and Asimov [12] argue that

the speed vectors of data points in a grand tour provide two additional dimen-
sions of information in addition to the two dimensions of location, thus letting
us perceive a full 4-dimensional space at any given point in time.

Cook et al. [23] discuss some of the shortcomings of projection pursuit and grand tours

Unfortunately static plots suffer from a lack of context because they have
been removed from their neighborhood in the projection space, and although
a grand tour provides the neighborhood context it has a tendency to spend too
much time away from, or indeed never visit, the interesting projections.

As an alternative, Cook et al. [23] propose projection pursuit guided tours in an effort
to combine the benefits of projection pursuit and grand tours into a dynamic graphical

4

tool. Projection pursuit guided tours display a grand tour movie until the data analyst
decides to use a particular projection as the starting point of a projection pursuit. The
movie continues for the projection index optimization, showing the projection for each
optimization iteration.

In summary, high-dimensional data can be difficult to comprehend, but good visual
exploration can help overcome this issue by revealing relevant information in the data.
One approach for visualizing high-dimensional data is to lay out different low-dimensional
views either spatially or temporally so that the analyst can visually link them. Well known
examples of this approach include scatterplot matrices, projection pursuit and grand tours.

1.3 Navigation Graphs

Hurley and Oldford [44] propose using graphs that are sets of vertices (nodes) and edges
to navigate a view of the data. The nodes of such navigation graphs represent low-
dimensional spaces whereas the edges represent some transition between those spaces.
That is, every location on the graph defines a view of the data. In a graphical user inter-
face, these graphs become navigable when a “bullet” is placed onto the graph. The location
of the bullet can be then linked to some display showing a particular view of the data. In
this thesis, we call the relationship between a location on the navigation graph and the
corresponding view the “graph semantic”.

For example, in Hurley and Oldford [44] the graph semantic of their main example
associates every location on the graph with an orthogonal projection of the data onto a
two-dimensional subspace. The nodes then represent the subspace spanned by a pair
of variates and the edges either a 3d- or 4d-transition of one scatterplot into another,
depending on how many variates the two adjoining nodes share. Hereafter, we refer to
this particular graph semantic as the canonical graph semantic.

Hurley and Oldford [44] use the analogy between a navigation graph and a city map.
One can explore a new city by either randomly driving around (grand tour), by always
choosing the most interesting looking path at each intersection (projection pursuit) or by
using a city map with marked routes that show regions of interest (navigation graphs).

5

In the light of this analogy, when exploring a new high-dimensional data set, we first
need to create an accurate map that highlights the most interesting regions of the data.
For the canonical graph semantic applied to the original data variates, the most exhaus-
tive navigation graph that can be created is a complete graph with

(p
2

)
nodes represent-

ing the unordered variate pairs of a p-dimensional data set. Using an exhaustive graph
does not guarantee showing an interesting view of the data as interesting 2d projections
could be lying on arbitrary 2d subspaces. However, we believe that exploring the original
variates before transforming the data is important. In general, a model that explains a
phenomenon based on few original (and easily interpretable) variates is preferred over a
model that includes arbitrary linear combinations of the variates.

Using navigation graphs encourages the analyst to spend time on visually exploring
the data similarly to playing a captivating game. Dragging a bullet along a navigation
graph is an easy task and the immediate result is a smooth movie that can provide valu-
able insight into the data.

In the remainder of this chapter, we give a detailed overview of the theory and appli-
cation of navigation graphs as proposed by Hurley and Oldford [44]. Later on we review
some tools that can be used to find small and relevant navigation graphs.

1.3.1 The Canonical Graph Semantic

The navigation graph framework was introduced by Hurley and Oldford [44] as a general
concept; nodes represent views and edges represent a smooth morphing from one view
into another. However, most of the theory and examples in [44] were built around the
canonical graph semantic linking every location on a navigation graph to a 2d subspace.
Graphs whose nodes represent 2d subspaces are called 2d space graphs. A 2d space graph
that has only edges connecting two nodes whose union span a 3d space is called a 3d
transition graph. Similarly, if the graph edges only connect two nodes whose union span a
4d space then the graph is called a 4d transition graph. In addition, when an edge exists
for any possible 3d or 4d transition we call such a graph a saturated 3d or 4d transition
graph, respectively.

6

For illustrative purposes, we use the Italian olive oil data set from Forina et al. [29].
These data record the percentage composition of 8 fatty acids found in the lipid fraction of
572 Italian olive oils sampled from 9 different areas (see Figure 1.1).

Fatty Acids

palmitic (p1)
palmitoleic (p2)
stearic (s)
oleic (o)
linoleic (l1)
linolenic (l2)
arachidic (a)
eicosenoic (e)

Areas

North-Apulia
South-Apulia
Calabria
Sicily
East-Liguria
West-Liguria
Umbria
Coastal-Sardinia
Inland-Sardinia

Figure 1.1: The Italian olive oil data – recorded fatty acids and sampled areas.

For the olive data, there are
(8
2

) = 28 unique unordered variate pairs and hence 28
possible nodes in a navigation graph with the canonical semantic. Figure 1.2 shows the
saturated 3d and 4d transition graphs. We call the large yellow circle in each navigation
graph a “bullet”. The bullet location defines the projection to be visualized in a linked
scatterplot display and can be interactively dragged along the graph.

Regarding the particular implementation of a 3d and 4d transition, Hurley and Oldford
[44] propose to rotate the starting plane along a geodesic path into the target plane, as
described by Hurley and Buja [41].

For a 3d transition, this rotation results in a 3d rigid rotation. For example, the loca-
tion of the bullet in Figure 1.2(a) is 30% between the two 2d spaces (stearic, eicosenoic)
and (archidic, eicosenoic). Hence, the linked scatterplot display shows the orthogo-
nal projection of the 3d point cloud onto a plane through the eicosenoic axis that is 30
degrees rotated from the stearic axis towards the arachidic axis, as shown in Figure
1.3(a) and 1.3(b). Moving the bullet from the (stearic, eicosenoic) node towards the
(archidic, eicosenoic) node is equivalent to rotating the x− y plane from the (stearic,
eicosenoic) axis into the (archidic, eicosenoic) axis around the eicosenoic axis.

7

(a) saturated 3d transition graph (b) saturated 4d transition graph

Figure 1.2: Saturated 3d and 4d transition graphs for the olive data.

For a 4d transition, Hurley and Oldford [44] interpolate the plane along the geodesic
path which in this setting is equivalent to orthogonally rotating one variate into another,
for both x and y axes. This is illustrated in Figure 1.4 and in practice will result in a
smooth movie that is less intuitive than the one from a 3d rigid rotation.

1.3.2 Automatic Graph Construction and Exploration

1.3.2.1 Saturated 3d and 4d transition graph

Saturated 3d and 4d transition graphs, as shown in Figure 1.2 for p = 8, can be constructed
automatically for any p-dimensional data set by using graph theoretic algorithms.

A variable graph associates one variate to each of its nodes. An edge of such a variable
graph represents a pairing of the two variates; for example, an edge could represent the
correlation between the two variates. For any variable graph, G, the line graph of G,

8

y

x

(a) 3d point cloud and a plane con-
trolled by the bullet position.

y

x

(b) The linked scatterplot display
showing the orthogonal projection of
the 3d points onto the plane.

Figure 1.3: 3d rigid rotation and linked scatterplot display.

x y

y

x

Figure 1.4: 4d transition along a geodesic.

L(G), constructs a saturated 3d transition graph. L(G) turns every edge of G into a node
of L(G), and nodes in L(G) are adjacent if the corresponding edges in G share a node.
Hence, L(G) will show every variable pairing of interest (i.e. an edge in G) as a node
and every possible 3d transition for these nodes. Further, the complement of L(G), L(G),
constructs a saturated 4d transition graph.

Figure 1.5 shows a complete variable graph G, its line graph L(G) and the complement
of the line graph L(G) for four variates labelled A, B, C and D. In this example, the

9

variable graph G is saturated and hence the relationships between all paired variates are
of interest.

A B

D C

AB

BDAD

BC

CD

AC

AB

BDAD

BC

CD

AC

G L(G)

Figure 1.5: Complete variable graph G for a 4 dimensional data set with variates labelled
A, B, C, and D. Line graph L(G). Complement graph L(G).

If the variable graph is not complete such as in cases where certain relations are not of
interest then the corresponding line graph and its complement are still saturated 3d and
4d transition graphs, but with fewer nodes. For example, the variable graph G in Figure
1.6 does not have the edges (A,C) and (A,D) which indicates that these variable pairings
are not of interest here.

A B

D C

AB

BD

BC

CD

AB

BD

BC

CD

G L(G)

Figure 1.6: Automatic saturated 3d and 4d transition graph construction with a non-
complete variable graph.

10

1.3.2.2 Graph Products

Graph products of two graphs G and H are useful for constructing transition graphs that
preserve certain structures of the initial graphs G and H. Of particular interest here are
statistically meaningful examples where

1) the variates separate into two distinct sets and

2) there may be additional structure between the variates within each set that can be
captured by a graph.

Hurley and Oldford [44] give several such examples for

1) variates separating into two distinct sets

– response vs. explanatory

– endogenous vs. exogenous

– design variates vs. covariates

– original vs. derived

– causal vs. associated

2) structure between variates can be captured by a graph

– time ordering

– regression structure

– Markov property

– conditional independence

– path diagram

We now briefly review two concrete examples from Hurley and Oldford [44] that illus-
trate the use of graph products.

Figure 1.7 shows two variable graphs G and H that both capture some ordering of the
variates within the graph. All three graph products in Figure 1.8 preserve some of the
structure in G and H; in particular, these graph products have only edges that are per-
mitted by G and H. In addition, the Cartesian product G�H has only edges representing
3d transition, the Tensor product G ×H has only edges representing 4d transitions, and
the strong product (G�H) equals (G�H)+(G×H), as the notation suggests. Hence, G�H

11

Figure 1.7: Two variable graphs G and H capturing a certain structure.

Figure 1.8: Three graph products of G and H from Figure 1.7

is a restricted 3d transition graph, G×H a restricted 4d transition graph, and G�H and
G×H are complements in G�H.

Another example of using graph products given in Hurley and Oldford [44] is shown
in Figure 1.9, where the restricted transition graphs G�H, G ×H and G�H correspond
to moving within a rectangle in a scatterplot matrix. Note that the rectangular shape in
Figure 1.9 is due to G and H being complete graphs.

1.3.2.3 Automatic Graph Traversal

In addition to automatic graph construction, Hurley and Oldford [44] explore algorithms
that construct meaningful paths and cycles on a graph to automatically traverse the graph.
For example, a Hamiltonian path visits each node exactly once. A Hamiltonian cycle is a
Hamiltonian path concatenated with the start node of that path. An Eulerian path vis-
its each edge exactly once. When they exist, cycle decompositions, Hamiltonian decom-

12

A B

CD
(a) G

Y

X Z
(b) H

AXDZ AY

AZ

BX

BY

BZCXCY

CZ

DX

DY

(c) 3d transitions G�H

Z

A

B

C

D

X

Y

(d) Focus on shaded region of the
scatterplot matrix

Figure 1.9: Scatterplot matrix example from Hurley and Oldford [44] Section 4.1.

positions, 2-factorizations and Eulerian tours might also be of interest (see Hurley and
Oldford [44]). Greedy algorithms such as a greedy Eulerian might be of additional value
for traversing weighted transition graphs (e.g. visiting the “most interesting” edges first,
where what is interesting is expressed with the weights). We discuss possible weights in
more detail in the next section.

1.4 On the Problem of Large Graphs

The saturated 3d and 4d transition graphs for the 8-dimensional olive data, as shown in
Figure 1.2, have 28 nodes and 168 and 210 edges, respectively. Analyzing these 168+210=
378 transitions would require a long concentration span from an analyst. The problem
gets even harder with increased dimensionality; for example, for 15 dimensions the total

13

number of edges of a saturated 3d and 4d transition graph is
((15

2)
2

)= 5460 which for a fast
edge transition of 1 second would take over 1.5 hours to explore.

As mentioned in Section 1.3, navigation graphs should optimally be “road maps” with
only interesting routes regardless the dimensionality of the data. In addition, even for
data with thousands of dimensions, it would be great to be able to construct some small
navigation graphs that capture the essential patterns of the data.

Next, we discuss two ways to deal with large navigation graphs. First, we look at ways
to find interesting subgraphs that could reveal relevant information. Second, we discuss
methods for creating a reduced new set of variates that capture interesting patterns in the
data; these methods are commonly called dimensionality reduction algorithms.

1.4.1 Finding an Interesting Subgraph

An explorative data analysis using a complete 2d space graph and the canonical graph
semantic is equivalent to using an interactive scatterplot matrix as proposed by Elmqvist
et al. [25]. However, navigation graphs are a more powerful navigational infrastructure;
that is, aside from the fact that navigation graphs allow for a general kd space navigational
framework using any imaginable graph semantic, they also allow for the reduction of the
complete 2d space graph to any arbitrary subgraph.

Finding an interesting subgraph of a saturated 3d or 4d transition graph is preferable
to dimensionality reduction if the original variates are important to interpret and com-
municate the results. Although finding an interesting subgraph can be done manually, we
will focus here on automated methods based on kd space measures.

Any measure that can be associated with either the nodes or the edges of some 2d
space graph could be used to determine a subgraph. For example, regression coefficients,
projection pursuit indexes and scagnostic measures (Wilkinson et al. [83] and Wilkinson
and Wills [85]) are all useful 2d space measures that also have a statistical meaning. One
could use these 2d measures to determine edge weights on a complete variable graph and,
consecutively, construct a saturated 3d or 4d transition graph from a variable graph whose
edge weights are greater than some threshold w0, i.e. L(G(w > w0)) and L(G(w > w0)).

14

Scagnostic measures are particularly interesting for the canonical navigation graph
semantic as they are specifically designed to assess some characterizations of 2d scatter-
plots. The concept of scagnostic measures is similar to the one of projection pursuit indices;
John W. Tukey was involved in defining both concepts. However, scagnostic measures and
projection indices differ in their motivation; that is, finding interesting scatterplots vs.
interesting projections. John and Paul Tukey discussed the concept of scagnostics in [77]
but have never published details about their particular scagnostic indices. About 20 years
later Wilkinson et al. published nine graph-theoretic scagnostics measures [83, 85].

These scagnostic measures are named according to the properties of the scatterplots
patterns that they are measuring: outlying, skewed, clumpy, convex, skinny, striated,
stringy, straight and monotonic. For example, the monotonic measure is the squared
Spearman correlation coefficient and it is the only scagnostic measure that is not based on
geometric graphs. All the other measures are derived from the following 2d Euclidean geo-
metric graphs where nodes lie on a 2d space: the convex hull, alpha hull and the minimum
spanning tree. For example, the stringy measure is the ratio of the diameter to the length
of a minimal spanning tree. Prior to constructing these geometric graphs, identified out-
liers (see Wilkinson et al. [83]) are deleted in order to keep the scagnostic measures robust
and the scatterplot points are binned using adaptive hexagonal binning (Carr et al. [14])
in order to improve computational performance. All scagnostic measures are designed to
lie within the closed unit interval.

Figure 1.10(a) shows the scatterplot of the convex vs. the monotonic scagnostic mea-
sure for all 28 scatterplots of the original olive variates. That is, each point represents
one of the

(8
2

)
scatterplots of the olive data. Figure 1.10(b) shows the two scatterplots

corresponding to the two coloured dots in Figure 1.10(a).

A computationally more involved way of finding an interesting subgraph based on 2d
measures is to calculate those measures for a dense set of 2d projections along the 3d or 4d
transition. For example, Figure 1.11 shows how the convex and monotone scagnostic mea-
sures change during the two 4d transitions from (palmitoleic, oleic) into (linolenic,
arachidic) and from (palmitoleic, oleic) into (arachidic, linolenic). Given such a
transition trajectory of the scagnostic measures, one could then make up rules on whether
to include or not an edge as part of a smaller (sub)graph. Also, Fu and Oldford [33] propose

15

(a)

6500 7500

50
15

0
25

0

oleic

pa
lm

ito
le

ic

0 20 40 60

0
40

80

linolenic

ar
ac

hi
di

c

(b)

Figure 1.10: a) Scatterplot of the scagnostic measures – convex vs. monotonic. b) Par-
ticular scatterplots with high monotonic and convex measure, and high convex and low
monotonic measure.

3d scagnostic measures that could be used as edge weights of 3d transition graphs.

1.4.2 Dimensionality Reduction/Constructing Dimensions

Finding subgraphs for very high-dimensional data such as image data (i.e. n images)
might not be a computationally feasible option. Even a very small 32×32 pixel greyscale
image such as this one has 1024 dimensions with

(1024
2

)= 523,776 possible scatterplots.
An alternative to finding interesting subgraphs is to construct fewer new dimensions using
a dimensionality reduction technique.

Dimensionality reduction is a large research field and many techniques have been pro-
posed especially in the last two decades. One major motivation for dimensionality reduc-
tion has always been to visualize high-dimensional data. Hence, many such methods arose
from geometric intuition and the results are usually interesting to look at.

16

Figure 1.11: Scatterplot of the scagnostic measures – convex vs. monotonic – overlaid on
the scagnostic measures along two 4d transitions from the olive data. The blue path shows
the scagnostic measures when linolenic transitions into oleic and arachidic transitions into
palmitoleic. The green path shows the scagnostic measures when linolenic transitions into
palmitoleic and arachidic transitions into oleic.

We now review some popular dimensionality reduction techniques that originate from
interesting geometric motivations. That is, we provide the geometric intuition for prin-
cipal component analysis, Fisher discriminant analysis, multidimensional scaling, kernel
methods and two manifold learning methods, isomap and locally linear embedding.

Principal component analysis (PCA) goes back to Pearson in 1901. Today, PCA is prob-
ably the best known dimensionality reduction method. There are two ways of looking at
PCA that lead to the same algorithm. A geometric motivation defines the principal direc-
tions as a basis of a hyperplane for which the average squared distance between the points
and their projection onto this hyperplane is minimized. Alternatively, principal directions
are the orthogonal directions with maximum variance of the projected data points. Hence,
the orthogonal projections of the data onto the first principal direction has maximum vari-

17

ance among all possible orthogonal projections. Further, the original axes can be projected
onto the principal directions and visualized with the projected points. Plots that include
observations and variates in the context of PCA are called biplots and were proposed by
Gabriel [34].

For labelled data, such as the olive data with its area label, one can also use a super-
vised dimensionality reduction method. One such method is Fisher Discriminant Analysis
(FDA) (Fisher [26]) which was originally defined for two-class data and then generalized
by Rao [61, Sec. 9c] for multi-class data. FDA seeks a direction for which the orthogo-
nally projected data have a minimal within-group variance and a maximal between-group
variance. In general, it is possible to find j, where j ≤ p for p dimensional data, mutually
orthogonal directions that separate the groups best. Gnanadesikan [37] calls these direc-
tions the discriminant coordinates or CRIMCOORDS. Hence, dimensionality reduction is
achieved by projecting the data onto the first j discriminant coordinates.

Multidimensional scaling (MDS) refers to a set of dimensionality reduction techniques
that find a low-dimensional embedding or configuration of n objects in a geometric space
(usually Euclidean) so that their interpoint distances correspond to the observed dissimi-
larities (or proximities) between the objects. Examples of proximities include correlations,
similarity ratings, travel times and metric distances. Hence, MDS can be used with pair-
wise dissimilarity data in addition to multivariate data. There are linear and non-linear
MDS variants.

Kernel methods map some p-dimensional data into a m-dimensional feature space with
the goal of applying a linear method such as PCA, regression, or support vector machines,
in this feature space. Let ϕ : Rp → Rm denote the mapping into the feature space where
usually m > p (m can also be infinite). The “kernel trick” allows us to determine the
m optimal parameters w of the linear model Yw in the feature space without having to
explicitly evaluate the mappings yi = ϕ(xi), but rather through the inner product eval-
uations κ(xi,x j) = 〈ϕ (xi) ,ϕ

(
x j

)〉, called kernel evaluations. The kernelization of a linear
method involves first finding a dual representation of the optimal parameters w so that
the optimization is n- rather than m-dimensional. Next, the optimal solution has to be
expressed in terms of the data variates only in the form of pairwise inner products. For
example, Schölkopf et al. [64] first introduced the “kernelization” of PCA and Baudat and

18

Anouar [6] have shown how to kernelize the Fisher discriminant analysis for multi-class
data.

Isomap (Tenenbaum et al. [74]) and locally linear embedding (Roweis and Saul [62]) are
two prominent nonlinear dimensionality reduction algorithms in the manifold learning
domain. In manifold learning, it is assumed that the data at hand lie on a manifold
embedded in the variable space of the data. Optimally, the dimensionality of the manifold
is the same as the intrinsic dimensionality. For example, for a set of images portraying an
object from different perspectives, the intrinsic dimensionality is defined by the camera
position which is the only thing that changes during the image recording. If such images
have each p pixels then, even for small monochrome images of size 50× 50 pixels, the
dimensionality of the data will be 2500. However, the intrinsic dimensionality is maximum
3, assuming the camera always points towards the object and maintains the same distance
to the object.

Isomap has the goal to preserve the geodesic manifold distances between data points.
These distances are approximated by the length of the shortest path along points that are
in close proximity. To do so, a graph G is constructed with nodes representing the data
points. The nodes in G get connected if their associated points lie close together. Closeness
can be defined as either an absolute distance threshold (i.e. ε region) or as the K nearest
neighbours. The edge weights are defined as the distances between the points of their
corresponding nodes. The geodesic manifold distance is then approximated by the length
of the shortest path between each pair of nodes in G. This distance measure is then used
to create a low-dimensional embedding using classical multidimensional scaling.

Locally linear embedding (LLE) (Roweis and Saul [62]) tries to preserve the distances
between points in a small neighbourhood. That is, LLE assumes that, given enough points,
small neighbourhoods such as the K nearest neighbours are well approximated by linear
manifolds.

Some of these dimensionality reduction methods are interrelated, similar, or even
equivalent under certain parametrization, see Maaten et al. [49, sec. 5.1].

We find that dimensionality reduction and navigation graphs have a mutually bene-
ficial relationship. That is, oftentimes analysts conveniently choose to reduce the dimen-

19

sionality of the data to two or three dimensions in order to visualize them, whereas using
navigation graphs easily accommodates the exploration of 5 to 20 dimensions. In addition,
navigation graphs also facilitate the exploration of results from multiple dimensionality
reduction methods in parallel. For example, Figure 1.12 shows a 3d navigation graph
with 7 “bullets” that each drive a scatterplot display in Figure 1.12(a) using the canonical
graph semantic. The data for the projections displayed in these scatterplots come from
7 different dimensionality reduction methods that were used to reduce the olive data to
5 dimensions. The dimensionality reduction methods included in this example are: prin-
cipal components analysis (pca), linear discriminant analysis (lda), a variant of Fisher’s
discriminant analysis, (classical) linear multidimensional scaling (lmds), non-linear mul-
tidimensional scaling (nlmds), kernel principal components (kpca), isomap and locally lin-
ear embedding (lle). For lda we used the Area labels of the olive data as group classifiers,
for both lmds and nlmds we used the Euclidean inter-point distances as dissimilarity mea-
sures, for kpca we used a polynomial kernel of degree 3, for isomap we used the 6 nearest
neighbors for calculating the shortest paths, and for lle we used the 6 nearest neighbors
to define a small neighborhood. This setting was created with loon, a software we devel-
oped for interactive data visualization and introduced later in Chapter 3. The scatterplots
in Figure 1.12(b) are linked so that points representing the same olive oil share some vi-
sual attributes such as color and size. By working with different dimensionality reduction
methods, navigation graphs and an interactive setting, one can compare the results of dif-
ferent dimensionality reduction methods directly and in real time. The R code to recreate
this setting can be found in the l_ng_dimred demo of the loon R package. This demo can
be run as follows:

library(loon)
demo('l_ng_dimred ')

Generally, any method producing a lower dimensional embedding can be used to create
a smaller navigation graph. In turn, an even smaller sub-graph can be found using the
methods discussed in Subsection 1.4.1.

20

1.5 Other Graphs of Possible Interest

The navigation graph framework is more general than the canonical graph semantic; that
is, graphs provide a navigable infrastructure that track a real time morphing from one
display of a set of variates into another. Any display on the variates associated with each
node would work as long as the graph semantic of an edge transition is defined.

Hurley and Oldford [44] propose some alternate ideas for the semantic of edge tran-
sitions. For example, a 3d transition graph could also be used to control a conditioning
on the common variates. This conditioning is known as slicing; that is, a transition along
the edge (AB, AC) could show the scatterplot of C vs. B for the subset of the data for
which A is within a certain range determined by the bullet position. Slicing controlled by
a navigation graph can be extended in a straightforward manner to categorical data. The
scatterplot could then be replaced by a mosaic plot or eikosogram (Cherry and Oldford
[16]).

Navigation graphs can also represent more than two dimensions on each node. Navi-
gation graphs with nodes representing a set of k variates are called kd space graphs. Let
S(p,k) denote a complete kd space graph for p variates. S(p,k) can be decomposed into
graphs S(p,k, i) whose edges connect nodes that share exactly i variates, and

S(p,k)=
k−1∑
i=0

S(p,k, i).

For example, edges on a 3d space graph with 4d transitions (i.e. some subgraph of
S(p,3,2)) can define a rotation of two disjoint variate sets. This rotation can be visualized
with a 3d point cloud. Alternatively, the common variates can be used for conditioning in
slicing.

If the edges in a 3d space graph define 6d transitions (i.e. their connected nodes do
not share any variates) then a transition can represent a morphing of a scatterplot matrix
into another using 4d transitions as described in section 1.3.1. For example, a transition
from the scatterplot matrix of ABC into DEF can be visualized by transitioning AB into
DE, AC into DF, and BC into EF.

21

In a 4d space graph with only 6d transitions such as ABCD → CDEF, it is possible to
dynamically morph Cleveland’s conditional plot (Cleveland [17]) of (A,B)|(C,D) into that
of (E,F)|(C,D).

1.6 Interactive Data Visualization Software

We wrote the RnavGraph software (see Chapter 2) that implemented a user interface for
navigation graphs by providing a “bullet” on a graph to drive the transitions, as proposed
by Hurley and Oldford [44]. With RnavGraph our goal was to interactively analyze data in
the R statistical environment [60] using navigation graphs. While working on the interac-
tive graph we investigated various options for readily available interactive scatterplots in
R; it became obvious to us that interactivity for both the graph and the scatterplot display
– or any display for that matter – was important for effectively using navigation graphs.

There is a long history of the design and development of interactive visualization soft-
ware for exploratory data analysis dating back to at least PRIM [27] in 1973. Other exam-
ples include Quail [43], Lisp-stat [76], Plot Windows [67], DINDE [58], DataDesk [80],
Data Viewer [40], the gobi family [68, 13, 69, 47], iplots [79] and Mondrian [75]. Among
other features, these systems provide a scatterplot that supports the following features:
dynamic zooming and panning via mouse gestures and some form of brushing and linking
(we are not completely sure about PRIM and linking).

These systems take different approaches to providing interactive data visualizations
graphical user interfaces (GUI). PRIM, Data Desk, Data Viewer, the gobi family and
Mondrian provide in essence an encapsulated environment to visualize and explore data.
That is, they have limited or no connection to a complete statistical system with a major
user community such as R. Hence, creating new plots and control widgets dynamically
from a command line interface and incorporating various statistical analyses is not pos-
sible with these systems. On the other hand, Quail and Lisp-stat do support dynamic
creation and incorporation of statistical analyses, but they are not integrated into a com-
plete statistical system; adding new statistical tools to Quail or Lisp-stat involves their
respective authors having to write these tools first, see for example Anglin and Oldford [4].

22

Finally, iplots was designed to bring interactive graphics to the R environment. However,
iplots uses actions in menus that cannot be controlled via the command line.

For RnavGraph, we first used the interactive scatterplot display of Ggobi via the rggobi
R package [47]. However, we were missing some important features such as advanced
point glyphs for the scatterplot display including images, text and star glyphs. We also
found that installing rggobi was difficult on certain operating systems which would have
limited the potential users of RnavGraph package. We were frustrated with not having
interactive tools whose value in exploratory data analysis has long been known (at least
20 or more years ago [70, 51, 7, 42, 2]) that were integrated with commonly used and sta-
tistically rich set of more formal analysis tools (as provided for example by the open source
system, R). This frustration is shared by others. At a recent R users conference, Di Cook
[22] shared her frustration and listed the following “challenges to the young developers”:

• Interactivity on the plot

• Different types of brushes

• Different kinds of linking between plots

• Programmability

• Strong connection with model fitting

• Portability, easy install, web compatible

• Large quantities of data

• Incorporating inference

• Conceptual framework

We ended up writing our own interactive scatterplot display tk2d as part of the
RnavGraph R package, see Section 2.3. Motivated from the results of tk2d we took up de-
signing and implementing a new interactive general-purpose visualization system called
loon. We reflect in Chapter 8 on how loon meets the challenges set by Di Cook.

This thesis is structured as follows. In Chapter 2, we discuss RnavGraph, a software
environment for interactively exploring data using navigation graphs. In Chapter 3, we

23

present a visual exploratory analysis of the visible minority populations distributed across
major census metropolitan areas of Canada. We highlight visualization and interaction
methods that are used for this analysis. We end Chapter 3 with an introduction of loon
and discuss how loon is used to perform the visual analysis of the minority data. To that
means, we introduce the relevant conceptual aspects of the loon framework.

In Chapter 4 and Chapter 5, we present loon’s framework in detail. Chapter 6 presents
some relevant statistical applications that were enhanced with interactive visualization in
loon. In Chapter 7, we introduce some novel tools in loon for exploring high-dimensional
data with navigation graphs. We conclude this chapter by introducing a novel high-
dimensional point glyph called spiro glyph. Chapter 8 wraps up this thesis with con-
clusions and a discussion of future research work.

24

(a) Navigation graph with canonical graph semantic and
bullets representing different dimensionality reduction
methods.

(b) Scatterplots driven by the location of the bullet corresponding to a particular dimensionality
reduction method.

Figure 1.12: Comparing seven dimensional reduction methods using navigation graphs
with the canonical semantic.

25

Chapter 2

RnavGraph

As part of our research, we have developed a software package called RnavGraph that
provides an interactive environment to explore high-dimensional data using navigation
graphs. RnavGraph is an open source package for the R statistical environment and hosted
on the Comprehensive R Archive Network (CRAN).

RnavGraph is a major milestone in our research as it represents a first implementa-
tion of the concept of navigation graphs and it demonstrates that, in practice, navigation
graphs are useful to explore real data. We designed RnavGraph to be flexible so that novel
graph semantics can be applied and tested.

The design of RnavGraph is an important part of our research. This design includes the
selection of essential features for an useful interactive navigation graph environment, the
software architecture and the user experience design.

In this chapter, we discuss the functionality of the RnavGraph package. We first show
how to initialize an RnavGraph session for the canonical graph semantic. We then describe
the user interactions with the two main displays: the navigation graph display and the
2d scatterplot display. Next, we present part of the software architecture and show how
RnavGraph can be extended to accommodate a new graph semantic. We end this chapter
by listing some limitations of the RnavGraph package.

The functionality described here is implemented in version 0.1.6 of the RnavGraph
package.

26

Many examples included in this thesis use the olive data first introduced in Subsec-
tion 1.3.1. We therefore attach the olive data in R which allows us to refer to its variables
by their names (i.e. Area vs. olive$Area).
attach(olive)

We also create a second data set called oliveAcids that includes only the fatty acid vari-
ables, but not the Region and Area variables.
oliveAcids <- subset(olive , select=-c(Area , Region))

2.1 A Default RnavGraph Session

RnavGraph is started from within an R session. The canonical 2d scatterplot example, as
described in Subsection 1.3.1, is the default setting and requires the following code:
nav <- navGraph(ng_data(name="olive", data=oliveAcids , group=Area))

This code produces the navigation graph display as shown in Figure 2.1(a) and the scat-
terplot display called tk2d as shown in Figure 2.1(b). Note that the default group colors
assigned to the points in the tk2d scatterplot display in Figure 2.1(b) do not correspond to
the color key for the olive data defined in Figure 1.1.

The navigation graph display and the scatterplot display in Figure 2.1 form the core
components of the RnavGraph package. However, the navigation graph can control any
display accessible from R using any user defined graph semantic.

The most important user interactions with the navigation graph in Figure 2.1(a) are
simple; the yellow “you are here” bullet can be dragged along the graph, and controls
the 3d rotation or 4d transition shown in the scatterplot display in Figure 2.1(b). The 4d
transition graph is accessible via the Graph menu.

2.2 The Navigation Graph Display

We now describe the user interactions with the navigation graph display with the help
of stylized drawings. These drawings follow the color scheme of the default settings of

27

(a) interactive 3d transition navigation
graph

(b) interactive 2d scatterplot tk2d

Figure 2.1: Default RnavGraph session with the default group colors.

RnavGraph. However, the appearance of the navigation graph display can be customized
by the user.

A stylized version of the navigation graph display with a 3d/4d transition graph for the
four variates A, B, C, and D looks as follows:

A:B

A:D

B:C

C:D0

The two main elements in the navigation graph display are the navigation graph in
the center and a number between 0 to 99 in the upper right corner. This number shows
the percentage progression of the bullet from the start node to the target node.

28

We use visual clues to guide the user interactions with the graph. Graph nodes are
either orange or dark gray (i.e. or) depending on whether the node is adjacent to the
bullet or not. The graph edges are wide when they connect the bullet to an adjacent
node or thin otherwise. An edge that has been completely traversed by the bullet will
change its color from dark to light gray . Moving the mouse pointer over a node, edge
or label will highlight that element green (i.e. and), whereas moving the mouse over
the bullet will highlight it light red .

The default initial graph layout arranges the graph nodes on a circle. The user can
manually move the nodes and labels on the navigation graph display by dragging the
elements while pressing the CTRL key. The labels are restricted to lie within a certain
radius of the node.

A:B

A:D

B:C

C:D Ctrl & Drag

0

A:B

A:D

B:C

C:D Ctrl & Drag0

There are several ways to navigate the bullet on a graph. The most intuitive way is
to drag the bullet towards an adjacent node. If the bullet is located on a node (i.e. the
percentage number is 0) then dragging the bullet will select an edge once it is moved past
a small circular decision boundary around the start node. The bullet will then lock onto
the adjacent edge that is closest to the suggested dragging direction. The visual clues
(as described above and highlighted in the diagram below) will signal that the bullet has
locked on an edge and the percentage number will be greater than 0. Once the bullet locks
to an edge, it can be either dragged or moved with the mouse scroll wheel.

29

A:B

A:D

B:C

C:D40

A:B

A:D

B:C

C:D

Drag

0

A:B

A:D

B:C

C:D0

The success of selecting the intended edge for traversal depends on the user’s precision
in dragging the bullet, but also on the graph layout; that is, if multiple adjacent nodes are
located close together it might be hard to drag the bullet in the desired angle away from
the node. In this case, one can first select the desired adjacent node to lock the bullet on
the corresponding edge. If a non-adjacent node (i.e not orange) is selected at any time,
then the bullet will jump onto that node.

A:B

A:D

B:C

C:D

Drag

40

A:B

A:D

B:C

C:D0

A:B

A:D

B:C

C:D
Select adjacent node

0

A transition can also be automatically traversed or animated by double clicking on an
adjacent node. The number of steps (i.e. the rotation resolution) and the animation time
can be changed in the navigation graph display settings.

30

A:B

A:D

B:C

C:D0-99

A:B

A:D

B:C

C:D

Double Click

0

A:B

A:D

B:C

C:D0

A sequence of edge transitions (i.e. a path) can also be defined and animated (“walked”).
Paths can be defined manually or with the ng_walk function. A path is defined manually
by Shift selecting a node sequence. Note that this requires the bullet to lie on a node.

A:B

A:D

B:C

C:D0
Shift & Select

A:B

A:D

B:C

C:D0

A:B

A:D

B:C

C:D

Shift & Select

0

A:B

A:D

B:C

C:D

Shift & Double Click

0

A:B

A:D

B:C

C:D

A:B

A:D

B:C

C:D0

Paths can be saved, re-loaded, commented on, and re-walked with the path tool, as
seen in Figure 2.2. The path tool is accessible from the Tools > Paths menu.

31

Figure 2.2: Path tool

2.3 The tk2d Scatterplot Display

The tk2d scatterplot display, as seen in Figure 2.1(b), is a powerful interactive scatterplot
display that is native to RnavGraph.

We developed tk2d because there was no available interactive scatterplot display that
we found adequate for testing the navigation graph framework. We initially linked the
navigation graph to the scatterplot display of GGobi [69], but later on we decided to im-
plement our own scatterplot display as GGobi has not seen any major development in
recent years and we needed more features such as plotting images as point glyphs. We
kept GGobi support for versions of RnavGraph up to version 0.1.5, but eventually removed
it with the release of R 3.0.0 as at that time rggobi was not available on CRAN for all
operating systems.

32

The main graphic systems in R, that is, base, grid (Murrell [54]), lattice (Sarkar [63])
and ggplot2 (Wickham [81]), are designed for static graphics and they are not particularly
suitable for creating smooth animations in real time. These systems often produce a flicker
when they have to re-plot many times in a short time interval (depending on the operating
system).

The tk2d display is divided vertically into the main scatterplot view to the left and a
control panel to the right. All functionality is accessible from the control panel in combi-
nation with mouse gestures and the Ctrl and Shift keys.

tk2d can display points as dots, star glyphs, images and text (see Figure 2.3). Each
point has a color, size, active (i.e. visible) and selected state, and different plot types will
reflect these states except for the size state for text.

The main view supports zooming and panning. For zooming, the scroll wheel can be
used to zoom in and out at the location of the mouse pointer. When zoomed in, one can
pan the view by dragging the mouse pointer while the right mouse button is pressed. The
viewing area of the main view is highlighted by a white box with a black outline found
in the World View in the controls panel, as seen in Figure 2.3. The World View always
displays all active points, regardless of the zooming level. In addition, the World View
allows for zooming with the scroll wheel and panning by dragging the view area.

Points can be selected (i.e. highlighted) and then modified with any of the actions
found in the Modify section of the control panel. The user can select or de-select a par-
ticular point with a left-click on the point or they can select multiple points by using the
rectangular brush tool (see Figure 2.4). The brush tool selects points permanently when
the Shit key is pressed. The brush rectangle can be re-sized by dragging the gray square
in the lower right corner of the brush rectangle. A selection can be inverted, all points can
be de-selected and all points can be selected.

Modifying a selection will not change the selection state of the points. This way multi-
ple states (i.e. color, size, and active) can be changed for a particular selection.

The selected points can be deactivated, that is, their point glyphs will not be visible in
the main view and the World View. The reactivate button will reset the deactivation state
for all points.

33

(a) dots (b) images

(c) star glyphs (d) text

Figure 2.3: Different plot types supported by the tk2d scatterplot display.

A selection of points can be temporarily moved within the main view by dragging the
selection while holding down the Ctrl key. This is especially useful when points are
over-plotted, as in Figure 2.3(c). Moving points does not change the data and a change in
the bullet location will reset this temporary arrangement.

Finally, different tk2d displays that visualize the same data can be linked to each
other. That is, all changes in the states of the points (i.e. color, size, selected and active) in
one tk2d display will be propagated to the linked tk2d displays.

34

Figure 2.4: Rectangular brush tool.

2.4 Software Architecture

In Section 2.1, we show the default setting as produced by the navGraph function. A
RnavGraph session can also be initialized with much finer control over navigation graphs,
graph semantics and data visualizations as described in the following sub-sections.

We first discuss the re-creation of the default RnavGraph session as shown in Sec-
tion 2.1 in more detail. Next, we explain how to create navigation graphs based on scagnos-
tic weights. And finally, we discuss how RnavGraph can be extended to accommodate any
semantic or visualization.

35

2.4.1 navGraph

The navGraph function initializes a RnavGraph session and takes as its arguments data,
graph and visualization instruction objects. These objects are created as follows: the data
and graph objects are instantiated with the ng_data and ng_graph functions, whereas the
visualization instructions have different instantiation functions, depending on the navi-
gation graph semantic and visualization.

A visualization instruction connects a data object to a graph object and will result in
a visualization display. An RnavGraph session can link multiple navigation graphs with
multiple data sets using multiple views where a visualization instruction corresponds to
one view. For example, three navigation graphs could each be connected to five different
data sets with the same variable names (e.g. from simulations) as follows:

DataVisualization InstructionGraph

sim1
sim2
sim3
sim4
sim5

graph1

graph2

graph3

For the olive data and the default use setting, the above diagram would look as follows:

DataVisualization InstructionGraph

LG

LG

olive

tk2d, canonical

tk2d, canonical

The data object is created with the ng_data function

olive.ng <- ng_data(name = "olive",
data = oliveAcids ,
shortnames = c("p1","p2","s","oleic","l1","l2","a","e"),
group = Area ,
labels = Area)

36

Data objects are identified by their names as specified in the name argument. The data
argument requires a data.frame object with only numerical variates. If the shortnames
are defined then they can be used as identifiers for the node labels of the navigation graph.
The group argument is used to assign different colors to the points at initialization time.
The text argument specifies the text used with the text point glyph (plot type) in the tk2d
scatterplot display.

A navigation graph object is created in two steps. First, the graph must be created
using the graph R library (Gentleman et al. [36]). Second, this graph must be passed to the
ng_graph function. We wrote the functions completegraph, newgraph and linegraph to
simplify the graph creation process with the graph R package. Many other graph theoretic
algorithms such as the complement function and some graph layout and visualization
methods are implemented in the RBGL and Rgraphviz R packages.

We continue our discussion about re-creating the default setting start by creating a
complete variable graph G using the shortnames of the data object olive.ng for the node
labels:
G <- completegraph(shortnames(olive.ng))

where G is an object of class graphAM that is defined in the graph package. Next, the
linegraph L(G) is the saturated 3d transition graph:
LG <- linegraph(graph=G, sep="++")

and its complement L(G) is the saturated 4d transition graph:
LGnot <- complement(LG)

The sep argument separates the node labels of G in L(G) and hence must be a unique
character string among all node labels. Figure 2.5 shows the visualization of the LG graph
produced with the Rgraphviz package using plot(LG, "fdp").

The newgraph function can create a graph from a matrix that defines which graph
nodes are connected (i.e. an adjacency matrix) or a two-column matrix with rows defining
an edge (i.e. a from-to-edge matrix). Examples that show the use of the newgraph function
can be found in Section 4 of the RnavGraph package vignette. Note that RnavGraph only
supports undirected graphs.

37

p1++p2

p1++s

p1++oleic

p1++l1

p1++l2

p1++a

p1++e

p2++s

p2++oleic

p2++l1

p2++l2

p2++a

p2++e

s++oleic

s++l1

s++l2

s++a

s++e

oleic++l1

oleic++l2

oleic++a

oleic++e

l1++l2

l1++a

l1++e

l2++a

l2++e

a++e

Figure 2.5: Saturated 3d transition graph for olive data.

The transition graphs LG and LGnot are objects defined in the graph package and they
need to be passed to the ng_graph function in order to be used with the navGraph function:

LG.ng <- ng_graph(name = "3d Transition",
graph = LG, sep = "++", layout = "circle")

LGnot.ng <- ng_graph(name="4d Transition", graph=LGnot , sep="++")

As with data objects, the graph objects are uniquely identified by the name argument in a
RnavGraph session.

Once the graph and data objects are defined they can be linked by using visualiza-
tion instructions. The ng_2d function creates a visualization instruction for the canonical
graph semantic in combination with the tk2d scatterplot display:

vizLG <- ng_2d(data = olive.ng, graph=LG.ng,
glyphs = eulerian(as(G,"graphNEL")))

vizLGnot <- ng_2d(data=olive.ng, graph=LGnot.ng)

38

The glyph argument is used for tk2d to create star glyphs and must be a vector of the
ordered variable names that define the star glyphs. Using the node names of a Eulerian
path on the complete variable graph G ensures that every variable pair exists once in the
star glyph, as proposed by Hurley and Oldford [39].

At this stage, a RnavGraph session can be initialized as follows:

nav <- navGraph(data = olive.ng ,
graph = list(LG.ng,LGnot.ng),
viz = list(vizLG , vizLGnot))

where this session is shown in Figure 2.6. The navGraph function call returns a navgraph

(a) navigation graphs (b) tk2d displaying star glyphs

Figure 2.6: RnavGraph session.

handler. In the above example, we assigned this navgraph handler to the nav variable.
The navgraph handler can be used to query and modify point sizes and colors, or to restart
a RnavGraph session. The point colors can be set according to the color key defined in
Figure 1.1 as follows:

colScheme <- data.frame(
level = c("North -Apulia", "Calabria", "South -Apulia",

"Sicily", "Inland -Sardinia", "Coast -Sardinia",
"East -Liguria", "West -Liguria", "Umbria"),

cols = c("#A65628", "#FF7F00", "#E41A1C",
"#FFFF33", "#984 EA3", "#377 EB8",

39

"#999999", "#F781BF", "#4 DAF4A"),
stringsAsFactors=FALSE)

oliveCols <- sapply(olive$Area , function(x){
colScheme$cols[which(x== colScheme$level)]})

ng_set_color(nav) <- oliveCols

By default, every tk2d display that displays the data with the name 'olive' (as spec-
ified in ng_data) will have a linked selection, size, color and deactivation state for its
points. To disable linking in tk2d displays one has to start the navgraph session with the
following settings argument:
nav1 <- navGraph(data = olive.ng ,

graph = list(LG.ng ,LGnot.ng),
viz = list(vizLG , vizLGnot),
settings = list(tk2d=list(linked = FALSE)))

2.4.2 scagGraph

RnavGraph comes with functionality that assists in finding small subgraphs based on
scagnostics measures as discussed in Subsection 1.4.1. We use the scagnostics R package
by Wilkinson and Anand [84] for calculating the scagnostic indexes.

The scagNav function initializes a RnavGraph session with saturated navigation graphs
whose nodes satisfy the scagnostic properties specified in the scagNav function arguments.
A typical scagNav call is
navScag <- scagNav(data = olive.ng ,

scags = c("Skinny", "Sparse", "NotConvex"),
topFrac = 0.2,
combineFn = NULL ,
glyphs = shortnames(olive.ng)[1:8] ,
sep = ':')

The navigation graph display for this RnavGraph session is shown in Figure 2.7. The
scag argument takes a vector of names of scagnostic measures with an optional prefix
“Not”. A “Not” measure is defined as 1− the original measure. The topFrac argument
specifies the fraction of nodes with the highest scagnostic measures that should be kept in
a navigation graph. The combineFn argument specifies whether the scagnostic measures
specified in scag argument should be used individually for a separate graph construction

40

or combined through a function. If the combineFn is NULL then a saturated 3d and 4d
transition graph for every measure in scag will be created, as in Figure 2.7. Alternatively,
the combineFn argument can be a function such as sum, max or mean, and, in this case, the
scagNav session will initialize only one saturated 3d transition graph and one saturated
4d transition graph.

Figure 2.7: scagNav session

The scagNav function executes a lot of code before calling the navGraph function to ini-
tialize a RnavGraph session with the navigation graphs based on the scagnostic measures.
The scagEdgeWeights and scagGraph functions simplify this process, see the vignette
Section 7.2 for details.

2.4.3 Extending RnavGraph

RnavGraph can be extended by defining custom visualization instructions. This way, the
navigation graphs can drive any display accessible from R and use any user-defined graph
semantic.

We provide two ways to create a custom visualization instruction. The simpler method,
called “myplot”, requires the analyst to specify a function that is called with every bullet

41

location change. The second method, called “class”, is more involved and is the method
that we used for defining the ng_2d function for a canonical graph semantic with the tk2d
scatterplot display. Both methods are described in Section 5.3 of the RnavGraph package
vignette. Here, we cover only the “myplot” method. Using the “class” method has the
advantage of higher computational speed and of getting more information on bullet and
graph changes.

The ng_2d_myplot function returns a visualization instruction that calls a user-specified
function with every bullet location change. For example, one could run a 2d kernel density
estimation and plot the scatterplot with contours overlaid:

userPlot <<- function(x,y) {
den <- kde2d(x,y,h = c(width.SJ(x), width.SJ(y)))
plot(x, y, col = "steelblue", pch = 19,

axes=FALSE , xlab = "", ylab = "")
box()
contour(den , add = TRUE , col = 'orange ', lwd = 2)

}

This user-specified function can use any subset of the arguments listed in Table 2.1. The
visualization instructions are then defined as follows:

vizMyplot <- ng_2d_myplot(data=olive.ng ,
graph=LG.ng, fnName = "userPlot", device="base")

where the function name defined in the fnName argument is called with every bullet
change. The device argument specifies the plotting device so that RnavGraph can do the
necessary “house keeping” if multiple displays are used. One plot for this session is shown
in Figure 2.8.

The ng_2d_myplot function name contains “2d” as the x and y coordinates that are
supplied to the user-defined function are from the canonical semantic using 3d rigid rota-
tions and 4d smooth transitions along a geodesic. However, this relatively simple method
can be used for any navigation graph semantic as one can only work with the from, to and
percentage arguments.

42

argument description

x x-coordinate
y y-coordinate
group group field from the data object
labels labels field from the data object
order order of points. In 3d rigid rotation, the order increases

with the distance of a the point from the viewer.
from node name the bullet moves from
to node name the bullet moves to
percentage in between percentage of bullet
data data name of the data object

Table 2.1: Possible arguments for the user-specified function used in combination with
ng_2d_myplot.

2.5 Lessons Learned

RnavGraph works well for all the scenarios described in this chapter. However, RnavGraph
has some limitations and the most important ones stem from architectural decisions that
we made early in the design stage. As a consequence of these design decisions, it is now
difficult and labour intensive to add functionality to the navigation graph display and to
the tk2d scatterplot display.

For example, the navigation graphs cannot be changed in an active RnavGraph session.
This would be a useful feature in a scagNav session where the navigation graph could
update itself by re-calculating the scagnostic measures based on the active points in the
visualization display.

Also, tk2d was programmed with the sole intent of being an interactive 2d scatterplot
display used with RnavGraph. Consequently, we optimized tk2d for speed and not for
general use and extensibility.

Some minor limitations of RnavGraph are due to the programming languages that we
used to implement the program. The RnavGraph source is a mix of R, Tcl and C code. We

43

●●

● ●
●

●

●
●●

●

●

●
●

● ●

●●

●●
●

●

●
●

●
●

●●

●●●
● ●●

●●
●

●

●

● ●●

● ●
●

●

●●

●

●
●● ●

●

●

● ●

●
●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●
●

●

●
●

●●
●●

●

●

●
●

●●
●
●

●

●
●

●●

●
●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●
●

●
●

●● ●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●●

●
●

●
●

●

●●

● ●

● ●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●

●
●●

●●

●

●
●●

●
●

●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●●

●

●

●

●
●

● ●
●

●
●

●

●
●

● ●

●●

●

●

●●
●

●

●

●●
●

●●

●
●

●

●
●

●
●

●
●
●●

●

●
●●

●

●
●
●

●●
● ●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●
●

● ●

●

●●
●
●
●
●

●
●

●
●
●
●
●
●
●●●●●●●

●
●
●
●

●
●
●●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

● ●

●●

●
●

●
●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

● ●
●

●

●
●

●
●●

●
●●

● ●
●●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●● ●

●

●

●
●

●

●
●

●
● ●●●●●

●
●

●

●
●
● ●●

●

●
●●

●
●

●
●

●

●

●

Figure 2.8: User-defined plot for an RnavGraph session.

used Tk as the graphical toolkit. The Tk canvas widget is the essential drawing surface
for the navigation graph display and tk2d. The Tk canvas version available at the time
of implementing RnavGraph (i.e. Tk version 8.5) did not support alpha blending or anti-
aliasing. The alpha blending feature is important in dealing with over-plotting. The lack
of anti-aliasing makes RnavGraph appear “pixelated”.

Further, the graphical user interfaces of RnavGraph are not concurrent, that is, only
one action can be done at any time. For example, the tk2d display is blocked for further
user interactions during a path animation. However, concurrency is technically possible
with Tk.

The responsiveness of the tk2d display is good on our computers for up to n = 1000
observations per variate. However, the user interface becomes increasingly sluggish for
n between 1000 and 10000. For Microsoft Windows systems, the Tcl and Tk implemen-
tation makes the responsiveness of RnavGraph generally sluggish, even for small n. Also,
displaying images in the tk2d display is dependent on the Img tcl package which is by de-
fault available in OSX, but not in Windows. Therefore, on Windows, the user has to install
ActiveTcl and link it against R in order to display images with the tk2d display. The Img

44

tcl package can be easily installed on Linux by using some system package manager.

Another concern is related to the dependencies of the RnavGraph on other R packages.
These dependencies are segmented on the CRAN and Bioconductor repositories which
makes the installation process not as simple as with other R packages.

45

Chapter 3

Loon By Example

loon is a general-purpose interactive data visualization toolkit that we decided to develop
after assessing the benefits and shortcomings of the tk2d scatterplot display in RnavGraph.
That is, tk2d has a collection of features that we find essential in working with high-
dimensional data that were not all available in other interactive visualization software
integratable into a complete statistical computing environment such as R. These features
include interactive zooming, panning and selection, various point glyphs, linking, and the
control panel with the worldview. However, the usefulness of the tk2d scatterplot display
is limited to navigation graph sessions in RnavGraph as tk2d is tightly coupled with the
rest of RnavGraph. Hence, creating independent tk2d scatterplots is not possible.

As a consequence, we took up the development of loon. loon implements a general
design for various interactive statistical graphic displays that supports layering of visual
information such as point objects, lines and polygons. These displays further support
zooming, panning and selection, and modification and deactivation of plot elements and
layers. Interactions with plots are provided with mouse and keyboard gestures as well as
via command line control and with inspectors. These inspectors provide graphical user
interfaces for modifying and overseeing the plots. loon also implements a novel dynamic
linking mechanism that can be used to assign the plots that are to be linked and the
linking rules at run time. Additionally, loon’s design provides several different types of
event bindings to add and customize functionality of loon’s displays.

46

loon is written in Tcl and Tk. We created the R package loon to show how loon can be
embedded into the R environment for statistical computing. The functionality discussed
in this thesis works with loon version 1.0.0.

As a parallel to the diving behavior of the software’s namesake bird, “loon”, we struc-
ture this chapter and the two subsequent ones by first providing a “dip” into loon’s fea-
tures, then a more detailed “dive”, and finally a “deep dive” that discusses the advanced
framework and implementation of loon.

We start our discussion with a visual exploration of the Canadian visible minorities
data [66]. While discussing the visual analysis, we emphasize useful visualization features
and tools that can help discover interesting phenomena or “stories” in the data. Then,
we introduce loon by demonstrating how it implements the desired features and tools
identified during the visual analysis.

3.1 An Exploratory Data Analysis

We consider an exploratory visual analysis of visible minority populations distributed
across major census metropolitan areas of Canada. These data are from the 2006 Cana-
dian census, publicly available from Statistics Canada [66]. For each of the 33 Canadian
census metropolitan areas, we have the total population and the population of all its “vis-
ible minorities”. These self-declared visible minorities are: “Arab”, “Black”, “Chinese”,
“Filipino”, “Japanese”, “Korean”, “Latin American”, “Multiple visible minority”, “South
Asian”, “Southeast Asian”, “Visible minority (not included elsewhere)”, and “West Asian”.
For each metropolitan area, we also obtained the approximate latitude and longitude co-
ordinates using the Google Maps Geocoding API and added them to the data set.

Figure 3.1(a) shows the population of all visible minorities against the total population
for each metropolitan area, where both numbers are on a common logarithmic scale. For
example, Canada’s largest population centers, Vancouver, Montreal and Toronto, appear
on the top right of the plot in that particular order from left to right. Not surprisingly,
the visible minority population increases with the total population with an approximately
linear trend on this scale.

47

(a) Visible minority (y = log10(m)) versus total
population (x = log10(t))

(b) Visible minority proportion (y= m/t) versus to-
tal population (x = log10(t))

Figure 3.1: Visible minority population versus total population for each of the 33 Canadian
metropolitan census areas. Here t = total population count, m = total visible minority
count.

It is more interesting to notice the relationship between the proportion of visible mi-
norities and the total (log) population as shown in Figure 3.1(b). We can see that the
visible minority populations not only grow with the general population, but also that they
constitute a larger proportion when populations are larger. In Vancouver and Toronto
(the two top right points), the proportion of the population that is from a visible minority
is higher than 40%. Montreal, on the other hand, is different in that it has a relatively
low proportion of visible minorities for its population. All three of these large population
areas deviate from the roughly linear relationship suggested by the remaining points of
Figure 3.1(b).

Information on a particular visible minority can be encoded on these plots using the
area of the circle. In Figure 3.2(a), we show the same plot as in Figure 3.1(b), but this
time we use the proportion of the total population that is Chinese for each census area to
determine the area of each circle.

Figure 3.2(b) locates the points on a map of Canada. The relatively large Chinese
populations of Vancouver and Toronto areas are easily located on the map. The map also
draws attention to two geographically close areas in Alberta that have relatively large

48

(a) Visible minority proportion (y= m/t) versus to-
tal population (x = log10(t)); circle areas are pro-
portional to c/t

(b) Census area map locations; circle areas are
proportional to c/t

Figure 3.2: Visible minority population versus total population for each of the 33 Canadian
metropolitan census areas – range from 0.0015 for Trois-Rivier̀es to 0.18 for Vancouver.
Here t = total population count, m = total visible minority count and c = total Chinese
minority count.

Chinese populations as a proportion of visible minorities (i.e. Calgary and Edmonton).

A natural question is how the composition of visible minorities varies from one area to
another within Canada. In particular, it would be interesting to know whether any such
variation is correlated with the geographic region. To help answer these questions, one can
plot the relative proportion of each visible minority against the total minorities population
on radial axes, as shown in Figure 3.3(a) and Figure 3.3(b) for Toronto and Montreal.
The resulting shapes, also known as star glyphs, provide a visual representation of the
minority composition for each metropolitan area.

In particular, in Figure 3.3, the values on each axis are determined as the ratio of a
particular visible minority population to the total minorities population of that area. The
axes are ordered so that we alternate long and short axes values (over all areas).

We note that, in Figure 3.3, the two star glyphs are quite different. Toronto’s largest
self-declared visible minority is “South Asian” whereas Montreal’s is “Black”. Unlike
Toronto, a significant proportion of Montreal’s visible minority population is “Arab”, “Latin

49

(a) Largest English speaking city (b) Largest French speaking city

Figure 3.3: Radial axis plots for the two largest Canadian census areas.

American” and “Southeast Asian”. If visible minority populations in these major Canadian
cities are largely composed by recent immigration then the difference in visible minority
compositions between these two cities might be at least partially explained by linguistic
preferences and sources of immigrants.

Figure 3.4 shows the star glyphs for all 33 census areas. As we can see, there is a con-
siderable variation in the shape of the star glyphs. This indicates a variation of visible mi-
nority composition across Canadian metropolitan areas. There are also some similarities
between shapes suggesting that certain metropolitan areas have a similar composition.

The colors in Figure 3.4 represent different geographic regions as shown in Figure 3.5(a).
From west to east the colors are assigned using a red-yellow-green gradient as given by
the RColorBrewer R library [56].

In Figure 3.5, we focus on one geographical region that includes Southwestern Canada
and the Prairies. The coastal cities of Vancouver and Victoria have a very similar visi-
ble minority composition, as do the prairie cities of Edmonton, Calgary, Saskatoon and
Regina. In the coastal region, Abbotsford-Mission (the first element from the left on the
third row from the bottom in Figure 3.4(a)) is notably different as its visible minorities pop-

50

(a) (b)

Figure 3.4: Radial axis plots, or star glyphs, for all 33 metropolitan census areas. Colors
are assigned based on a red-yellow-green gradient from west to east. The radial axis order
is shown at the right.

ulation is dominated by “South Asians”. Similarly, a little east of Abbotsford-Mission, is
the metropolitan area of Kelowna (the first element from the left on the forth row from the
bottom in Figure 3.4(a)). There, an “unusually” high proportion of “Japanese” and “South-
east Asian” appears in comparison to Kelowna’s neighbours. Finally, at the east end of
the focus region (Figure 3.5(b)) lies Winnipeg which looks much like its prairie neighbours
with the exception of having “Filipino” as its largest visible minority (the second element
from the left on the third row from the bottom in Figure 3.4(a)).

Even this preliminary analysis indicates that there are similarities and interesting dif-
ferences in the composition of visible minority populations within and between geographic
regions in Canada. Like any good exploratory analysis, it reveals unanticipated patterns
and raises new questions for further analysis and explanation. For example, why are
the three major cities, Vancouver, Toronto and Montreal, so different in their composition
of visible minorities? Why is there a relatively large “Filipino” population in Winnipeg,
“South Asian” in Abbotsford-Mission, or “Japanese” in Kelowna?

51

(a) Worldview (b) Zooming in on southwestern Canada

Figure 3.5: Zooming in on a region. (a) A worldview plot. (b) The area of focus – South-
western Canada and the Prairies. The region shown in (b) is highlighted with a white
rectangle in (a).

To support such exploration, software needs to be carefully designed. It needs to be
a combination of interactive display-oriented methods that rely on direct manipulation
through natural gestures and control panels, and of open-ended command line or pro-
grammatic interfaces that allow precise and powerful manipulation of the display.

The above preliminary analysis was conducted with loon and made use of mouse ges-
tures such as selection, panning and zooming, along with powerful inspectors as shown in
Figure 3.6. Also, of key importance was the use of the command line in R to create and
modify plots using numerical, statistical and geospatial functionality available in R.

52

(a) analysis plot inspector (b) layer inspector (c) glyph inspector

Figure 3.6: The default loon inspector is context specific for the active loon plot. For a
scatterplot display it shows a worldview, an analysis, layers and glyphs inspector.

53

3.2 Performing the Exploratory Analysis with the
loon R package

In this section, we illustrate how the above exploratory data analysis of the minority data
was performed using loon in R. Each subsection shows a main analysis step and also
discusses the major loon design concept behind this step.

The geocoded minority data is part of the loon R package. The loon R package is loaded
as follows
library(loon)
names(minority)

[1] "Arab" "Black"

[3] "Chinese" "Filipino"

[5] "Japanese" "Korean"

[7] "Latin.American" "Multiple.visible.minority"

[9] "South.Asian" "Southeast.Asian"

[11] "Total.population"

[12] "Visible.minority.not.included.elsewhere"

[13] "Visible.minority.population" "West.Asian"

[15] "lat" "long"

[17] "googleLat" "googleLong"

3.2.1 Plot States

The R code used to create the scatterplot in Figure 3.1(a) with loon is
p <- l_plot(x = log10(minority$Total.population),

y = log10(minority$Visible.minority.population),
xlabel = 'total population (log10)',
ylabel = 'visible minority population (log10)',
showScales = TRUE ,
size = 20,
glyph = 'ccircle ')

The return value of l_plot, here assigned to p, is a plot handle to access and modify the
scatterplot via the command line. For example, p['color'] returns a vector with the

54

hexadecimal encoded color representation of each of the 33 points, and p['size'] <- 5
sets the size of every point to 5. The quantifiers size, color, x, y, xlabel are called plot
states and loon’s scatterplot has over 30 states. Note that the replacement function '[<-'
for the plot handle p modifies one plot state per evaluation, whereas multiple states can be
modified at once with the l_configure function. The l_cget function can be used instead
of the extractor function '['.

The number of points in a loon scatterplot is referred to as the abstract dimension n.
Some of the states of the scatterplot with dimension n are x, y, color and size. The actual
value of n is set when the plot is created and it can be changed by modifying the dimension
of the x and y states. Therefore, x and y are called the dominant n-dimensional states. All
the other n-dimensional states are called non-dominant and take on their default values
whenever n is changed. Also, when assigning a single value to an n-dimensional state,
e.g. p['size'] <- 5, the corresponding value gets repeated n times.

Two other important n-dimensional scatterplot states are the boolean states selected
and active. Active points are displayed on the scatterplot whereas inactive ones are
hidden (i.e. not rendered). Being able to deactivate points allows one to focus on a certain
subset of the data points. Selected points are highlighted magenta. For the selected points,
attributes such as color, size and active states can be easily modified with the analysis
inspector as shown in Figure 3.6(a).

3.2.2 Graphical User Interface

Once a scatterplot is created we can use a series of interaction gestures to further interact
and explore the plot. This includes zooming towards the mouse cursor using the mouse
wheel, panning by right-click dragging and various selection methods using the left mouse
button such as sweeping, brushing and individual point selection. Each of these gestures
modifies one or multiple plot states; panning modifies panX and panY, zooming towards
the mouse cursor modifies zoomX, zoomY, panX and panY, and selecting points modifies the
selected state. Hence, any view that can be attained by using mouse gestures can also
be created – or stored and recreated – using the command line interface.

55

A sweep selection selects all points below a rectangular area which is defined by a left-
click drag gesture. That is, the upper left corner of the sweep rectangle is at the location
of the left-button press, and the lower right corner is at the current cursor location while
the left button is pressed. A brush selection also selects all points below a rectangular
area. However, in contrast to the sweep selection, the rectangular brush area has a fixed
size and a left-button press moves the lower right corner to the current mouse location,
and a left-click dragging gesture moves the brush area along the mouse pointer. To change
between sweeping and brushing mode one can set the selectBy state to either 'sweeping'
or to 'brushing'.

By default, every loon plot is accompanied by a loon inspector as seen in Figure 3.6.
The loon inspector for scatterplots is a composite of worldview, analysis, layer and glyph
inspector. Each inspector provides a visual interface to overview and modify plot states
and elements such as glyphs and layers.

The scatterplot worldview inspector shows all visual elements and the view region of
the scatterplot while preserving the aspect ratio. It also supports zooming and panning
with mouse gestures while updating the scatterplot accordingly.

The analysis inspector is an arrangement of graphical user interface widgets such as
buttons, check boxes, radio buttons and pull-down menus that provide control over plot
states. Each of these widgets performs an action that modifies one or more plot states.
Additionally, some widgets display the current value of a plot state. For example, the pull-
down menu for changing the linking group also displays the current linking group which
can be modified either via the pull-down menu itself or in the text area of the pull-down
menu. The actions on the analysis inspector are grouped into Plot, Select and Modify
actions. The Plot actions modify various 1-dimensional plot states, whereas the Select ac-
tions control either the selected state or the interactive selection mode such as sweeping
and brushing. The Modify actions change the values of their corresponding n-dimensional
state for all selected points (except the “reactivate” button that sets all points to active).

The layout and presentation of the analysis inspectors are designed to be intuitive,
self-explanatory and to support a broad range of statistical analyses. We describe in detail
all loon inspectors in Subsection 4.4.4.

56

3.2.3 Linking

All of loon’s plots can be linked so that some of their n-dimensional states are synchro-
nized. For a linked scatterplot, the states that are synchronized by default (i.e. linked
states) are the color, size, selected and active states. Two or more plots are linked
if they share the same string in their linkingGroup state. The linkingGroup state can
be set via the analysis inspector, as seen in Figure 3.6(a), or by using the plot handle as
follows
l_configure(p, linkingGroup='minority ', sync='pull')

The sync argument is only necessary if there are some plots with the particular linking
group 'minority'. In that case, loon needs to know whether, for the initial synchroniza-
tion, the “newcomer” plot, here p, should adapt to the linked states of the other linked
plots (i.e. 'pull'), or whether it should overwrite the states of the other linked plot with
its own linked states (i.e. 'push'). If the linking group is set via the analysis inspector
a dialog will pop up asking whether to push or pull the linked states. Once the plots are
linked, every change of a linked state in one of the linked plots is pushed to the other plots.

3.2.4 Layers

The plot in Figure 3.2(b) is a scatterplot of the geographic coordinates of Canadian cities
with the map of Canada layered as polygons underneath the scatterplot points. loon’s
scatterplot supports layering of lines, points, text, rectangles, polygons, ovals and groups.
The layers are arranged in a tree structure, and a group layer can be the parent of other
layers. The code to create the plot in Figure 3.2(b) uses the maps in the R package maps
p_map <- with(minority ,

l_plot(x=long , y=lat ,
size =30*Chinese/Visible.minority.population ,
showScales=FALSE , showLabels=FALSE)

)
library(maps)
canada <- map("world", "Canada", plot=FALSE , fill=TRUE)
l_layer.map(p_map , canada)

When plotting maps it is important to have control over the aspect ratio to deal with
map distortions. In loon, the aspect ratio of the plot p_map can be queried with

57

l_aspect(p_map) and set with l_aspect(p_map) <- 1. However, the aspect ratio of a
loon plot changes with the ratio of the plot size, the ratio of the zoomX and zoomY or with
the ratio of deltaX and deltaY plot states.

3.2.5 Star Glyphs

The star glyphs in Figure 3.5(b) were added to the scatterplot in Figure 3.2(b), as point
glyphs using the code

gl <- l_glyph_add_serialaxes(p_map ,
data = minority[, c(12,9,5,3,10,4,8,2,1,6,7)],
axesLayout = 'radial ',
showArea = TRUE ,
scaling = 'observation ',
label = 'minority data')

p_map['glyph'] <- gl

The glyph state of the scatterplot p_map is n-dimensional, therefore it is possible to
display every point with a different glyph. The serialaxes glyphs have their own states to
control the glyph appearance. As with plot states, glyph states can be accessed and modi-
fied using the glyph handle gl. For example, gl['axesLayout'] returns the axesLayout
state and gl['axesLayout'] <- 'parallel' sets the axesLayout state to 'parallel'.
Alternatively, the l_cget and l_configure R functions can be used to query and modify
plot states. For example,

l_configure(target=gl, axesLayout='radial ')

The axesLayout state controls whether the point glyph gl gets displayed as a star glyph
('radial') or as a parallel coordinate glyph ('parallel').

To arrange the star glyphs in a scatterplot on a grid, as seen in Figure 3.3(a), one can
either use the function l_move_grid or select all points and press the button in the
analysis inspector. Either way will assign the scatterplot temporary coordinates in the
xTemp and yTemp plot states. To reset the temporary location to the initial location set
in the states x and y one can either use the reset button in the inspector or use the
l_move_reset function.

58

3.3 Conclusions

In this chapter, we conducted an exploratory visual analysis and described desirable func-
tionality of visualization software that would convey and expose the information in the
data in an efficient manner. Next, we introduced loon and discussed how loon’s design
concepts implement this desirable functionality. These concepts include plot states, in-
spectors, linking, layers and point glyphs. The next chapter will re-visit each of these
design concepts in depth and will also introduce the other plot displays available in loon
such as histogram and the graph display. The more advanced design concepts such as
event bindings and geometry management are discussed in Chapter 5.

59

Chapter 4

Loon Framework

Our main goal in developing loon was to create a useful interactive data visualization
framework that was flexible, powerful and yet simple (i.e. with a gentle learning curve)
and intuitive for a broad audience. It took us several iterations to arrive at a design
and syntax that balanced generality with simplicity, was extensible and integrable in R.
Many software systems have influenced the design of loon, most notable are Tk’s dynamic
application programming interface and approach for building graphical user interfaces,
R’s base graphics system, Adobe’s Creative Suite and Apple’s Keynote with its inspector.
Also, many of loon’s statistical interaction features have been seen in some form in other
interactive statistical visualization systems including PRIM [27], Quail [43], Lisp-stat
[76], Plot Windows [67], DINDE [58], DataDesk [80], Data Viewer [40], the gobi family
[68, 13, 69, 47], iplots [79] and Mondrian [75]. Among those interactive data visualization
systems we see loon as being the first one that has a comparatively rich set of interaction
features in addition to being integrated in a comprehensive and widely used and available
statistical computing environment such as R and, further, loon also provides an extensive
application programming interface that can be used to control and extend plots and to
build new visualization tools.

60

Some of the key design features of loon include:

• it uses inspectors (i.e. control panels) to interact with displays

• loon’s displays are widgets much like buttons and sliders that can be re-used and
customized to dynamically create a new graphical user interface; therefore, loon is
a toolkit for building graphical user interfaces

• loon’s standard linking model uses a three-phase logic that is simple and fairly gen-
eral, but other types of linking can also be implemented

• it supports layering information on displays such as polygons, model fits and maps

• loon’s scatterplot display has interchangeable point glyph types including images,
star glyphs, polygons and text

• it supports an extensive set of event bindings. Event bindings hook user-defined
code to specific event types such as state change, mouse and keyboard events

• loon’s software architecture is object-oriented and one can add new displays with
relatively little effort

• as loon is written in pure Tcl and Tk it can be embedded in other languages such as
R, Python, Perl and Ruby

We chose to use Tcl and Tk for implementing loon for several reasons. Tcl is an
excellent choice for rapid prototyping; while exploring possible features and their imple-
mentation we have refactored multiple parts of the software several times. Both Tcl and
Tk are mature technologies and future versions of Tcl and Tk will likely be backwards
compatible and substantive issues with the framework have long been addressed by the
Tcl and Tk community. These are the advantages of working with late wave technologies
as discussed in [50] (page 66). Another important reason for choosing Tcl and Tk is that
its binding with R (via the tcltk R package) is part of the base R distribution. This meant
that we did not have to spend time working on the R and Tcl interface and also that the
installation of loon in R is particularly simple (see our discussion “Portability, easy install,
web compatible” on page 192). Important to this binding are so called “callback functions”

61

that allow R functions to be called from Tcl (see Section 5.2.1) and also the automatic con-
version of many data structures and types between the two programming environments.

In this chapter, we discuss the full scope of loon’s features introduced in the previous
chapter. These features include plot states, graphical user interface interactions, linking,
layers and inspectors. Additionally, we introduce all of loon’s displays including the his-
togram, scatterplot, serialaxes plot and graph display. The graph display can be used to
navigate high-dimensional data as with RnavGraph.

The next section provides an R sample session that introduces each display. In Sec-
tion 4.2, we describe the plot layout and the mapping between data coordinates and screen
coordinates. Sections 4.3 to 4.6 re-visit the design concepts introduced in Section 3.2 (i.e.
plot states, graphical user interface, linking and layers). Section 4.7 ends this chapter
with a discussion of the particularities of each display.

4.1 Introduction to the Displays

4.1.1 Scatterplot

We first introduced loon’s scatterplot display in Section 3.2. Figure 4.1 shows another
example of loon’s scatterplot using the olive data that was created with the following code

p <- l_plot(x=stearic , y=oleic , color=Area , title='scatterplot ')

The return value of the l_plot function, here assigned to the variable p, is a plot handle
to access and modify the scatterplot states. As the elements of Area are not valid color
names, loon maps the Area values to colors as explained in detail in Subsection 5.6.3.

4.1.2 Histogram

Figure 4.2(a) shows a histogram of the oleic variable from the olive data and was created
as follows

h <- l_hist(x=oleic , color=Area , showScales=TRUE , title='histogram ')

62

Figure 4.1: loon’s scatterplot display.

Note that the histogram in Figure 4.2(a) is uni-colored although the color state was set
to represent the areas of origin of the olive oils. This is loon’s intended default behavior
for histograms: the selected state is visually encoded whereas the color state is not.
This way, the comparison between selected and overall distribution is based on common,
aligned scales. According to the Cleveland and McGill experiments, this choice leads to
good decoding of both distributions, see Table 1.1. For example, in Figure 4.2(b) the se-
lected points are the olive oils from the West-Liguria region.

h['selected '] <- Area == 'West -Liguria '

Setting the showStackedColors state to TRUE encodes the color state by creating stacked
histograms, see Figure 4.2(c).

h['showStackedColors '] <- TRUE

However, to compare one of the stacked histograms to the overall distribution requires
the analyst to compare positions along identical, nonaligned scales (except for the bottom
histogram), which is sub-optimal according to Table 1.1.

63

By default, the height of a histogram bar encodes the number of points represented by
the bin. Setting the yshows state to 'density' encodes the density instead of the counts,
see Figure 4.2(d).

h['yshows '] <- 'density '
l_scaleto_world(h)

Changing from counts to density changes the y values of the histogram bars. The
l_scaleto_world function adjusts the zoom and pan such that the histogram maximizes
its area in the display.

loon’s histogram only supports equal bin widths. This allows us to introduce the graph-
ical element to interactively change the binning origin and the bin width. That is,
the left side of the rectangle defines the binning origin, and the distance between the origin
and the arrow tip defines the bin width.

4.1.3 Serialaxes Display

The serialaxes display encodes multiple variables by arranging their axes either in paral-
lel (i.e. parallel axes) or as radii of a circle where the angles between the axes are equal
(i.e. radial axes). Displays with parallel axes are called parallel coordinates plots [46]. In
loon, we call the serialaxes display with radial axes a stacked star glyph plot. Figure 4.3(a)
shows the stacked star glyph plot of the olive data.

s <- l_serialaxes(data=oliveAcids ,
color=Area , title='serialaxes: star glyphs ')

Radial axes are the default display option in the serialaxes display. Switching from radial
to parallel axes requires the axesLayout state to be set to 'parallel', see Figure 4.3(b).

l_configure(s, axesLayout='parallel ',
title='serialaxes: parallel coordinates ')

4.1.4 Graph Display

The graph display is closely related to the scatterplot display; however, the n dimensional
states are now used as node attributes instead of points attributes. For example, the

64

(a) default histogram (b) selected points

(c) color stacked frequency (d) color stacked density

Figure 4.2: loon’s histogram display.

graph’s x and y states define the geometric graph layout (i.e. position of the nodes). The
abstract graph is defined by the states nodes, from, to and isDirected. The nodes state
specifies the node names, the from and to states require the node names to specify the
edges, and the Boolean isDirected state specifies whether these edges are directed or
not.

A graph display can be created by either specifying the nodes, from, to and isDirected
states, or with graph objects of class loongraph or graph. The graph class is defined in
the R package graph [36] and provides a more general data structure for graphs than the

65

(a) stacked star glyphs plot (b) parallel coordinates plot

Figure 4.3: loon’s serialaxes display plots the data either as a stacked star glyphs plot (a)
or as a parallel coordinates plot (b).

loongraph class. There are also a number of R packages that implement a variety of graph
algorithms for graphs of class graph. We provide the loongraph class as a simple alterna-
tive to the graph class to create common navigation graphs without having to learn a new
framework. For example, the three functions completegraph, linegraph and complement
create objects of class loongraph. The 3d transition graph for the olive data, as shown in
Figure 4.4(a), is created as follows:

G <- completegraph(nodes=names(oliveAcids))
LG <- linegraph(G)
g <- l_graph(LG)

The graph in Figure 4.4(a) is turned into a navigation graph by adding navigators (called
“bullets” in RnavGraph):

nav1 <- l_navigator_add(g,
from='palmitic:arachidic ',
to='palmitoleic:arachidic ',
proportion =0.28)

nav2 <- l_navigator_add(g,
from='linoleic:linolenic ',
to='palmitoleic:linolenic ',
proportion =0.25,
color='red')

66

Figure 4.4(b) shows the saturated 3d transition graph with two navigators. Note that loon
permits multiple navigators per graph whereas RnavGraph permits only one navigator per
graph. The two navigators in Figure 4.4(b) can be interactively dragged along the graph
with no effect other than changing their position on the graph. In order to have a navigator
driving another visualization, as we did with RnavGraph in Chapter 2, a context needs to
be added to the navigator. For example, the “geodesic2d” context implements the canonical
navigation graph semantic as described in Subsection 1.3.1.

l_context_add_geodesic2d(nav1 , data=oliveAcids)

This creates a new loon scatterplot in which the projections controlled by the navigator
nav1 are displayed.

(a) graph (b) navigation graph with two navigators

Figure 4.4: loon’s graph display.

4.1.5 Inspectors

Each loon display is accompanied by an inspector. These inspectors are useful to effi-
ciently interact with the displays; actions on the inspectors map to changes of the display
states. The scatterplot inspector is shown in Figure 3.6(a), the histogram inspector in
Figure 4.5(a), the serialaxes inspector in Figure 4.5(b), and the graph inspector in Fig-
ure 4.5(c). The histogram, scatterplot and graph inspectors are composed of multiple sub-

67

inspectors including the world view, the analysis inspector and the layers inspector. The
serialaxes inspector does not contain a world view as the serialaxes display does not per-
mit zooming and panning.

By default, these inspectors are displayed within an inspector called the loon inspector.
The loon inspector is context-specific and shows the histogram, scatterplot, serialaxes or
graph inspector for the display that the analyst is interacting with. The loon inspector is
also a singleton, meaning there can be only one loon inspector at any time.

(a) Histogram Inspector (b) Serialaxes Inspector (c) Graph Inspector

Figure 4.5: loon’s inspectors.

68

4.2 Main Graphics Model

The histogram, scatterplot and graph display plot the data in the Cartesian coordinate
system. These displays share the same graphics model that has been abstracted in loon’s
software design. That is, these displays reuse code for zooming, panning, controlling the
plot layout including scales and labels, and for layering visuals such as polygons and lines.
We subsequently call this graphics model the main graphics model. As the serialaxes
display is based on parallel or radial coordinates it does not use the main graphics model.

In this section, we discuss the plot layout and the mapping from data to display coor-
dinates for the displays that are based on the main graphics model.

4.2.1 Plot Layout

The main graphics model splits the display area into a plot region, scales region, labels
region and a minimum margins region as illustrated in Figure 4.6. The three states

margins region

labels region

scales region

plot region

Figure 4.6: Main graphics model.

minimumMargins, scalesMargins and labelMargins control the size of these regions; that
is, these states are 4-dimensional vectors that contain the bottom, left, top and right mar-
gins in pixel for the particular region, in the respective order. The labels and scales mar-
gins can be switched on and off by setting the boolean states showLabels and showScales

69

accordingly. The margins for the plot regions are not always additive, and the rules to de-
termine the space for each region is as follows. If the showScales and showLabels states
are both FALSE then only the plot region is shown; otherwise the margin between the plot
region and the plot boundary is at least according to the minimumMargins state. Finally,
a label or scale margin is only added if something is plotted in that region. For example,
if the title state contains an empty string then the top margin of the labels region will
not be taken into account; therefore, the top minimum margin will pad the plot region
from the plot boundary. Also, as illustrated in Figure 4.6, the left and top margins of the
scales region, and the left margin of the labels region have end-effectively zero-width as
currently there are no states for putting a label or scale on the right hand side of the plot
region.

The choice for this particular plot layout is guided by practicality; the permutations of
the two boolean states showScales and showLabels yield large plot regions. For example,
Figure 4.7 shows four scatterplots of oleic versus stearic. The R code to produce these
four scatterplots is

p <- l_plot(x=stearic , y=oleic , color=Area ,
showScales=TRUE , showLabels=TRUE)

p['showScales '] <- FALSE
l_configure(p, showScales=TRUE , showLabels=FALSE)
p['showScales '] <- FALSE

As we have not assigned a title to the title state of p, the space requested for the top
label margin is 0 pixels in each plot in Figure 4.7; therefore, the padding between the plot
region and the plot boundary is according to the minimum margin as long as one of the
states showLabels and showScales is set to TRUE. Hence, in Figures 4.7(a) to 4.7(c) the
minimum margin is applied to the north- and east borders. Figure 4.7(d) omits the mini-
mum margins altogether because neither the scales nor the labels are shown; this yields
the maximum possible plot area. To display the minimum margins only, the showLabels
state can be set to TRUE and the xlabel, ylabel and title states can be set to an empty
string.

70

(a) scales and labels (b) no scales

(c) no labels (d) no scales and no labels

Figure 4.7: Plot layout

4.2.2 Mapping Data Onto the Plot Region

Mapping from data coordinates to plot region coordinates is controlled by the plot states
panX, panY, zoomX, zoomY, deltaX and deltaY as follows. Assume the plot region is
spanned by the plane with plot region coordinates (0,0) for the lower-left corner and (1,1)
for the upper-right corner. Visuals such as point glyphs that fall outside the (0,0)− (1,1)
plot region plane are clipped. Let (xpr, ypr) be a point in plot region coordinates and (xd, yd)
a point in data coordinates. Then, assuming the plot axes are not swapped, the mapping
between data and plot region coordinates is

xpr = xd −panX

deltaX
·zoomX, and ypr = yd −panY

deltaY
·zoomY

71

With swapped axes, i.e. the state swapAxes is set to TRUE, the mapping is

ypr = xd −panX

deltaX
·zoomX, and xpr = yd −panY

deltaY
·zoomY

The pan, zoom and delta states define the region in the data coordinate system that is dis-
played in the plot region; if the axes are not swapped this region is defined by (panX,panY)
and

(
panX+ deltaX

zoomX ,panY+ deltaY
zoomY

)
for the lower-left and upper-right corner, respectively.

Hence, the data range shown in the plot region is deltaX
zoomX and deltaY

zoomY . For example, the fol-
lowing code sets the plot states so that all the data in the (250,7200) and (300,7600) data
coordinate region is displayed:

l_configure(p, panX =250, panY =7200 , zoomX=p['deltaX ']/50,
zoomY=p['deltaY ']/400)

When initializing a new plot, loon sets the states deltaX and deltaY based on the
ranges of the data states x and y if not specified explicitly. If at plot initialization no data
are supplied, e.g. by calling l_plot(), then deltaX and deltaY are set to 1. Further
changes in the data will not affect the deltaX and deltaY states, as the aspect ratio of
the plot depends on these two states. Choosing suitable delta values might be required to
minimize computational errors in xd

deltaX or yd
deltaY .

The aspect ratio α is defined by the ratio of the number of pixels for one data unit on
the y axis and the number of pixels for one data unit on the x axes. The aspect ratio for
loon’s plots that are based on the main graphics model can be queried and changed with
the l_aspect and l_aspect<- functions, respectively. Changing the aspect ratio with
l_aspect<- changes effectively the zoomY state to obtain the desired aspect ratio. Note
that the aspect ratio in loon depends on the plot width, plot height and the states zoomX,
zoomY, deltaX, deltaY and swapAxes. If the axes are not swapped then the aspect ratio is

α= plot height
deltaY/zoomY

· deltaX/zoomX
plot width

.

If the axes are swapped then the aspect ratio is

α= plot width
deltaY/zoomY

· deltaX/zoomX
plot height

.

72

The functions l_scaleto_world, l_scaleto_selected, l_scaleto_layer,
l_scaleto_active and l_scaleto_plot modify the zoomX, zoomY, panX and panY states
so that the particular region of the data (according to the function name) fills out the plot
region with some padding.

The tick positions on the scales are determined using the algorithm from Talbot et al.
[71]. Currently, neither the tick positions nor the tick labels can be set manually.

4.3 Plot States

All of loon’s displays have plot states. Plot states specify what is displayed, how it is dis-
played and if and how the plot is linked with other loon plots. Some important plot states
for loon’s histogram, scatterplot, serialaxes and graph display are listed in Table 4.1.

The dimension (column Dim in Table 4.1) of a state is either a numerical value, a letter
or the keyword any. A numerical value specifies a plot state to be of a particular length. If
the dimension is a letter such as n then the dimension is called an abstract dimension and
all states with that dimension share the same actual value. The actual value of abstract
dimensions can vary during the plot’s lifetime. The keyword any specifies that the plot
states can have any length (e.g. see the histogram state colorStackingOrder discussed
in Section 4.7.1).

Once a plot is created, an actual value is assigned to each abstract dimension. For
example, a scatterplot has n points. A scatterplot of the olive data will have n = 572 and
hence all of its plot states with dimension n will be vectors of length 572.

The dimension specifier 0||n indicates that the vector can be of length zero or of length
n. For example, for the scatterplot states xTemp and yTemp with dimension 0||n, when the
length of these states is according to n (as defined by x and y) then they define the x or y
location of the points; when their length is 0, then the states x and y specify the location
of the points.

For the histogram, scatterplot and serialaxes displays, the dimension n represents the
number of data points. For the graph display, the dimension n represents the number of
nodes whereas the dimension p represents the number of edges.

73

Histo-
gram

Scatter-
plot

Graph Serial-
axes

Dim Type Default Value

Data x x, y n double distributed on unit cir-
cle

xTemp, yTemp 0 || n double
data n data.frame

nodes n string
from, to p string
isDirected 1 boolean

Attributes selected n boolean FALSE
active n boolean TRUE
color n color steelblue
size n double 4

linewidth n pos. double 1
pointlabel, tag n string (point0,...,point<n-1>)

activeEdge p boolean TRUE
selectedEdge p boolean FALSE
colorEdge p color black

Linking linkingGroup 1 string none
linkingKey n string (0,1,...,n-1)

Selection selectBy 1 factor sweeping | brushing
selectionLogic 1 factor select | deselect | invert

Plot Region panX, panY 1 double 0
zoomX, zoomY 1 pos. double 1

deltaX, deltaY 1 pos. double 1
minimumMargins 4 nneg. integer (20, 20, 20, 20)
labelMargins 4 nneg. integer (30, 30, 60, 0)
scalesMargins 4 nneg. integer (30, 80, 0, 0)

swapAxes 1 boolean FALSE

Table 4.1: Important Display States. Dominant States do not have a default value. For
states of type factor the default value column shows all possible factor levels and high-
lights the default factor level in bold.

The type of a state (column Type in Table 4.1) defines the data type (and sometimes the
data structure) used by that state (as seen in R). All states in loon use a vector as their
data structure; exceptions are states with the type data.frame which require an R data
frame, and states with type nested_* which require a list of vectors. For example, a state
with type double and dimension 1 uses a vector of length 1 to store its data. Hence, to

74

modify this state one needs to supply a vector of length 1 and type double.

As mentioned earlier, plot states are accessible via the '[' extract operation on a plot
handle or with the l_cget function. For example, p['deltaX'] and l_cget(p, 'deltaX')
both return deltaX for the plot with handle p. The '[<-' setter operation on a plot han-
dle and the l_configure function modify plot states. For example, p['deltaX'] <-2
and l_configure(p, deltaX=2) both set the deltaX state of p to 2. While '[<-' can
only modify one state at a time, the l_configure function can modify multiple states in
one call. Changing multiple states with one expression is computationally more efficient
than changing them sequentially. This is especially important when zooming towards the
mouse pointer which usually changes zoomX, zoomY, panX and panY at the same time. If a
single value is assigned to a state that has a vector data structure of length greater than
one then that value is repeated accordingly.

Information about any state of a particular loon plot can be queried with the
l_info_states function.
p <- l_plot()
info <- l_info_states(p)

The return value of l_info_states, here assigned to info, is a named list where the
names are according to the plot state names
names(info)

[1] "glyph" "linkingGroup" "linkingKey"

[4] "zoomX" "zoomY" "panX"

[7] "panY" "deltaX" "deltaY"

[10] "xlabel" "ylabel" "title"

[13] "showLabels" "showScales" "swapAxes"

[16] "showGuides" "background" "foreground"

[19] "guidesBackground" "guidelines" "minimumMargins"

[22] "labelMargins" "scalesMargins" "x"

[25] "y" "xTemp" "yTemp"

[28] "color" "selected" "active"

[31] "size" "pointlabel" "tag"

[34] "showPointlabels" "useLoonInspector" "selectBy"

[37] "selectionLogic"

75

The elements of the info list are also named list with the elements type, dimension, de-
fault value and a description:
names(info$x)

[1] "type" "dimension" "defaultvalue" "description"

For example, the description for xTemp state is extracted from info as follows
info$xTemp$description

[1] "if specified, these are x coordinates used instead those from

the -x state"

4.3.1 Abstract Dimensions

An abstract dimension is a dimension defined by a letter, e.g. n. When creating a new plot
without any arguments, all abstract dimensions have the actual value 0. For example,
p2 <- l_plot()

creates a plot with no points, hence n = 0. To change the actual value, the dominant states
for that dimension have to be modified to have a common new length. The dominant states
for all displays and abstract dimensions are listed in Table 4.2. For example, to add points
to p2, one can configure the dominant states x and y to have the same length
l_configure(p2, x=c(1,2,3), y=c(5,1,2))

Now n = 3 and every non-dominant state with dimension n is reset to be a vector of
length 3 containing their default values (see Table 4.1 and the defaultvalue elements
from l_info_states).

To modify states that have an abstract dimension for a subset of the data points, one
can use the optional arguments which, which_n or which_p. The argument which and
which_n are equivalent. When specified in l_configure, the which_n argument applies
to all the other arguments that modify n-dimensional states.

loon supports three types of subsetting: logical subsetting, index subsetting and sub-
setting with a name of a boolean state that has the same dimension. For example, logical
subsetting with which_n requires a boolean vector of length n

76

Display Dim Dominant States

Histogram n x
Scatterplot n x, y
Serialaxes n data
Graph n nodes
Graph p from, to

Table 4.2: Dominant states for each Display.

p <- l_plot(oleic~stearic , color=Area)
l_configure(p, which_n=rep(c(FALSE ,TRUE), each =286), color='green')

The l_configure expression above sets the color for the second half of the points to green.
The color of the first half of the data points stays the same. Index subsetting requires a
vector with indices of the vector elements that should be changed. Vector indices in R start
with 1. The following code changes the color of the first, fifth and the last element of the
olive points to green, red and blue

l_configure(p, which_n=c(1,5,572), color=c('green', 'red', 'blue'))

It is also possible to use the name of a boolean state to specify a subset of points to be
modified. For example,

l_configure(p, which_n='selected ', color='green', size =5)

changes the color of the selected points to green and their sizes to 5. Note that if a state
name is used in which_n and modified in the same l_configure expression, as in

l_configure(p, which_n='selected ', selected=FALSE , size =10)

then the selected state of p for which_n is used before the configure call; the order of the
arguments is not important. Hence, the above call sets the size of all selected points to 10
and then deselects them.

Finally, the default value of which_n is the keyword 'all', meaning that all the ele-
ments of the configured n-dimensional states should be modified.

77

4.3.2 Configuration Pipeline

States are the heart of loon’s design. Every interaction with a plot revolves around states.
For example, interactive selection, zooming and panning gestures result in changing one
or multiple states. Also, (plot) linking is effectively a particular synchronization of certain
plot states between the linked plots. Further, inspectors provide actions that modify plot
states and, more importantly, the visualization (i.e. rendering) is based on the plot’s states
and state changes. Hence, it is important that the states of a plot are valid and consistent
at all times. We now present a top-level view of the stages of a state change request (e.g.
with l_configure); we call this the configuration pipeline.

The l_configure function and '[<-' setter method pass their argument list (exclud-
ing the plot handle) to the configuration pipeline as shown in Figure 4.8. If any of the
elements in the argument list is invalid then the configuration pipeline will throw an ap-
propriate error and leave the plot states unmodified.

Process non-
state arguments
such as which_*

Check type
& dimension

of states

Apply
State
Rules

Apply
State

Changes

Notify
State

Observers

Figure 4.8: The configuration pipeline for state modifications.

In the first stage of the configuration pipeline, all the non-state arguments such as the
which arguments are processed. If there is a which argument for a particular abstract
dimension, say n, then all elements in the argument list that modify a state of dimension
n are replaced by the appropriate n dimensional values. For example, if the argument
list has the elements which_n='selected' and size=10, then the first stage of the con-
figuration pipeline will replace the 10 in size=10 with the an n-dimensional vector that
is constructed by replacing the elements for the selected points in the current size state
with 10. The which_n='selected' element is then removed from the argument list.

At the Check type & dimension of states stage, the argument list contains only elements
that are state name and value pairs. These elements are then checked on whether they
specify valid state names and whether their values are of the correct type and dimension.

78

If a single value is assigned to an n-dimensional state then, at this stage, the single value
gets repeated n times and replaced in the argument list.

The state rules stage ensures that the plots states do not violate any state consistency
rules or short state rules. For the histogram, scatterplot and serialaxes displays there is
only one state rule: inactive points cannot be selected. One of the reasons for creating this
state rule is the fact that many of the plot modification actions on the inspectors evaluate a
configure call with which_n='selected'. Modifying only points that are visible is natural
and prevents unexpected side effects. The graph display has state rules to prevent inactive
nodes and edges from being selected, and to ensure that edges are only active if their
adjoining nodes are active.

The apply state changes stage sets the plot states to the new values in the argument
list. A new list that contains all the names of all states that were actually changed in the
apply state changes stage. This list is used to notify all observers of the plot states that
were effectively changed. Observers of plot states include loon’s (plot) linking mechanism,
the plots visualization (rendering), some of plot inspectors such as the “choose by color”
tool, and user state bindings discussed later in Subsection 5.2.2. It is possible for an
observer to call the configure method of that plot while the plot is still in the configuration
pipeline. In this case, a warning is thrown as unwanted side effects can happen if the next
observer in line gets an outdated notification. In this case, it is recommended to use the
l_after_idle function that evaluates some code once the processor is idle.

79

4.3.3 State Normalization

Different strings can represent the same concept in Tcl and Tk and the same is true
for loon. For example, the strings TRUE, 't' and '1' are all valid Boolean Tcl values.
Colors can also have different names in Tk. For example 'red', '#F00' and '#FF0000' all
represent the same color in Tk.

loon accepts all valid Tcl Booleans. For example, for a plot

p3 <- l_plot(x=1:3, y=1:3, color='red')

the R expression

p3['selected '] <- '1'

will result in selecting all points as Tcl is a string-based programming language and the
string '1' is a valid logical expression. Further, the boolean values for loon plot states are
internally normalized (in the configuration pipeline, see Section 4.3.2) to TRUE or FALSE as
in

p3['selected ']

[1] TRUE TRUE TRUE

Color names in loon will be mapped to colors according to the Tk color specifica-
tions and are normalized to a 12 digit hexadecimal color representation. For example,
for p3 we assigned to every point the color red but querying the color state will return
'#FFFF00000000' for each point

p3['color']

[1] "#FFFF00000000" "#FFFF00000000" "#FFFF00000000"

This normalization is important when a plot state is queried and compared to a value. For
example, to find out which points in p3 are currently active and red, one must use the 12
digit hexadeximal color representation for red

p3['active '] & (p3['color'] == '#FFFF00000000 ')

80

The convenience function l_hexcolor converts any valid Tk color string into its 12
digit hexadecimal color representation. For example, the above example is equivalent to

p3['active '] & (p3['color'] == l_hexcolor('red'))

Note that R also maintains a list of valid color names (see the colors function). All R
color names are also valid Tk color names but the actual color may differ (e.g. the color
strings 'gray', 'grey', 'green', 'maroon' and 'purple' refer to different colors in R
than in Tcl). In the case where it is important to obtain the exact color that a color
name represents in R one can convert an R color name to its hexadecimal representation
as follows

hexcolor <- function(color) {
apply(col2rgb(color), 2, FUN=function(col) {

rgb(col[1],col[2],col[3], maxColorValue =255)
})

}
hexcolor(c('gray', 'green', 'maroon '))

[1] "#BEBEBE" "#00FF00" "#B03060"

4.4 Graphical User Interface

In this section, we discuss the two methods for interacting with loon’s displays via mouse
and keyboard gestures: the direct manipulations on the displays and loon’s inspectors.

We decided to keep the keyboard gestures minimal; only the Ctrl and Shift modi-
fier keys in combination with mouse gestures are used so that the interactions are easy to
remember and the cross-platform compatibility is maximized.

4.4.1 Zoom & Pan

Figure 4.9 shows a chart of the keyboard-mouse gestures for zooming and panning within
the histogram, scatterplot and graph display. Holding down either the Ctrl or the
Shift key while zooming or panning restricts the direction of the respective action.

81

Zoom Pan
unconstrained

&
Ctrl

vertical

&
Shift

horizontal unconstrained

&
Ctrl

vertical

&
Shift

horizontal

Figure 4.9: Zoom and pan gestures for the histogram, scatterplot and graph display. Zoom-
ing requires a mouse scroll gesture. Panning requires a right mouse button drag. Two
superimposed mice with an arrow indicate a drag gesture.

4.4.2 Visual Query

There are two ways to query the data on loon’s displays. One way is to place the mouse
cursor over a visual corresponding to a data point which will result in a “tool-tip” with
a (point) item label being displayed. Another way to visually query the data is to select
visuals on the display using mouse gestures and highlight the corresponding data points.

4.4.2.1 Item Labels

The scatterplot, graph and serialaxes displays represent each data point with a visual.
With these displays, one can assign an item label to each data point and have these labels
displayed with a “tool-tip” pop-up when resting the mouse cursor on the corresponding
visuals, see Figure 4.10. The item labels are stored in the n-dimensional itemlabel state,
and the boolean showItemlabels state controls whether the labels are shown or not. The
code to create the setting shown in Figure 4.10 is

l_serialaxes(data=oliveAcids , color=Area ,
itemlabel=as.character(Region),
showItemlabels=TRUE)

Note that visuals with no fill (such as polygons and rectangles with color='') appear
transparent, but they still absorb mouse events. Hence, it is possible that a point glyph

82

Figure 4.10: loon’s item labels that are displayed with a “tool-tip” pop-up.

can be seen but querying the item label will not work as there is a visual with no fill above
that point glyph. The best way to avoid this situation is to keep the model layer on top of
the rendering hierarchy (i.e. rendered last), see Section 4.6.

83

4.4.2.2 Interactive Selection

Interactive selection of data points is a technique where the user selects visual objects
on a display. For scatterplot displays the visual objects are point glyphs, for histograms
they are bins, for graphs they are nodes and for serialaxes displays they are either star
glyphs (radial axes) or lines (parallel axes). Interactive selection in loon always modifies
the selected state. Selected items are highlighted magenta on the display. When it is
possible for the visual items to be overplotted (e.g. point glyphs in the scatterplot display)
the selected items are raised to be rendered on top of the other non-selected items. For
plots based on the main graphics model (see Section 4.2) we support three ways to select
visuals: individual item selection, selection by sweeping and selection by brushing with
a rectangle. The serialaxes plot supports sweep selection using a line. An illustration of
sweep and brush selection can be seen in Figure 4.11. The keyboard mouse gestures for
sweeping and brushing are outlined in Figure 4.12.

(a) Select or Toggle (Shift) (b) Rectangular sweep selection

(c) Line sweep selection (d) Rectangular brush selection

Figure 4.11: Interactive mouse/keyboard selection techniques.

In sweeping mode (i.e. selectby='sweeping'), pressing down the left button selects
the item below the mouse cursor and deselects all the other items, hence resetting the
previous selection. If there is no item below the mouse then all points are deselected.

84

SWEEPING MODE

Select or
toggle (shift) point

Sweep Select

Shift will not reset previous selection
BRUSHING MODE
Shift will make the selection permanent

Move brush to
mouse pointer

Move brush

Figure 4.12: Selection gestures for the histogram, scatterplot and graph display. Two
superimposed mice with an arrow indicate a drag gesture.

Holding down the Shift key while pressing the left button keeps the current selection
and toggles the selection state for the points below the cursor. After holding down the left
mouse button the first drag motion creates a sweep shape (a line or rectangle) and caches
the selected state. Then, while sweeping (i.e. dragging while holding down the left
mouse button), the plot’s selected state is updated as follows. Let p be the plot handle,
sel_cached be the cached selection and ind_sweep the indices of the points behind the
sweep shape (e.g. rectangle or line). For the three selectionLogic state levels 'select',
'deselect' and 'invert', the selected state of p is updated while sweeping as follows:

• with selectionLogic=select:

sel <- sel_cached
sel[ind_sweep] <- TRUE
p['selected '] <- sel

• with selectionLogic=deselect:

sel <- sel_cached
sel[ind_sweep] <- FALSE
p['selected '] <- sel

85

• with selectionLogic=invert:
sel <- sel_cached
sel[ind_sweep] <- !sel[ind_sweep]
p['selected '] <- sel

Ending the sweep gesture by releasing the left button will delete the sweep shape.

In brushing mode (i.e. selectby='brushing'), the algorithm to update the plot’s
selected state is the same as the sweeping algorithm with the exception of brushing the
points permanently by holding down the Shift key while selectionLogic=invert. That
is, when switching to brushing the selected state is cached. Then, except for permanent
invert brushing, when the brush is moved the selection logic is applied to the elements
of the cached selected state. With permanent brushing, the cached selected state gets
updated. With permanent invert brushing, a caching of the element indices of the points
below the brush that are already toggled is necessary to avoid a constant toggling of the
elements below the brush.

Finally, the brush size can be changed with the dark gray square on the lower left
corner of the brush, see Figure 4.11(d).

4.4.3 Temporarily Relocating Points

Scatterplot and graph displays support interactive temporary relocation of single points
(nodes for graphs) or of a group of selected points using the gestures illustrated in Fig-
ure 4.13. Moving the points temporarily saves the new point coordinates to the states
xTemp and yTemp. The dimension of xTemp and yTemp is either 0 or n. If xTemp or yTemp
are not of length 0 then they are required to be of length n, and the scatterplot will dis-
play those coordinates instead of the coordinates in x or y. Hence, xTemp and yTemp are
temporary as setting them to zero length (e.g. for a plot with handle p) with
l_configure(p, xTemp=c(), yTemp=c())

will cause the scatterplot to display the data stored in the x and y plot states.

In addition to using mouse motion gestures, one can also relocate data points with
the inspector buttons and the functions listed in Table 4.3. The which argument of these

86

Move Points

&
Ctrl

single point

& Ctrl
& Shift

selected points

Figure 4.13: Temporary relocating points on a scatterplot.

functions specifies the points that should be temporarily rearranged. The valid subset
specifications for which are the same as for the which argument of l_configure (explained
in Subsection 4.3.1). The temporary rearrangement buttons on the inspector will move the
selected points only.

Name Description Button on Inspector

l_move_halign horizontally align
l_move_valign vertically align
l_move_hdist horizontally distribute
l_move_vdist vertically distribute
l_move_grid arrange on a grid
l_move_jitter jitter points
l_move_reset reset to x and y coordinates

Table 4.3: Functions for temporarily moving points on scatterplot

When distributing points horizontally or vertically, their order remains the same. For
example, when you distribute the point both horizontally and vertically, then the resulting
scatterplot will be a plot of the y ranks versus the x ranks. The correlation on that plot
will be Spearman’s rho. When arranging points on a grid, some of the spatial ordering is

87

preserved by first determining a grid size (i.e. a× b where a and b are the same or close
numbers) and then by taking the a smallest values in the y direction and arrange them
by their x order in the first row, then repeat for the remaining points.

4.4.4 Inspectors

Table 4.4 lists all loon’s inspectors. In this section, we discuss the loon inspector, the
worldview inspector and the layers inspector in detail.

Name R creator function

loon inspector l_loon_inspector
Worldview Inspector l_worldview
Layers Inspector l_layers_inspector

Scatterplot Inspector l_plot_inspector
Scatterplot Analysis Inspector l_plot_inspector_analysis

Glyphs Inspector l_glyphs_inspector
Serialaxes Glyph Inspector l_glyphs_inspector_serialaxes
Pointrange Glyph Inspector l_glyphs_inspector_pointrange
Text Glyph Inspector l_glyphs_inspector_text
Image Glyph Inspector l_glyphs_inspector_image

Histogram Inspector l_hist_inspector
Histogram Analysis Inspector l_hist_inspector_analysis

Serialaxes (Analysis) Inspector l_serialaxes_inspector

Graph Inspector l_graph_inspector
Graph Analysis Inspector l_graph_inspector_analysis
Graph Navigators Inspector l_graph_inspector_navigators

Table 4.4: loon’s inspectors

88

4.4.4.1 loon Inspector

The loon inspector is the default inspector and shows a histogram, scatterplot, serialaxes
or graph inspector, depending on which display received the last mouse gesture input or
window focus event. To detach a display from the loon inspector one can set the display
state useLoonInspector to FALSE.

The loon inspector is a singleton, that is, there can be only one instance of it. Closing
the loon inspector will result in loon creating a new loon inspector as soon as a display
reporting to the loon inspector receives a mouse gesture input or window focus event.

All the other inspectors in Table 4.4 are not singletons and not context specific. That is,
they do not change their focus depending on which plot gets the last user input. Instead,
they require that their activewidget state is set manually to the plot widget path name
(i.e. plot handle).

4.4.4.2 Worldview

The worldview provides a view of all visual items on a display and adds visuals for the
ranges of the data and for the area seen in the plot region. The worldview accepts a
histogram, scatterplot or a graph display as its activewidget. Figure 4.14(a) shows the
worldview for a scatterplot of Canadian city coordinates with the map of Canada layered
and the focus on the British Columbia area. Figure 4.14(b) shows a perspective view of the
composition of the worldview from Figure 4.14(a). In Figure 4.14(b), the “world bounding”
outline shows the bounding box of all visual items (i.e. layers and plot data), and the “data
bounding” rectangle shows the bounding box of the plot data.

The aspect ratio of the activewidget display is maintained in the worldview. For the
scatterplot and graph displays, the point/node glyphs are always filled circles and the size
state is not mapped to the glyphs. In addition to panning with a left-mouse button drag,
the worldview supports the same panning and zooming gestures as the activewidget
display.

89

(a) Worldview (b) Perspective of worldview composition

Figure 4.14: Worldview inspector and its composition in perspective.

4.4.4.3 Analysis Inspectors

The histogram, scatterplot, serialaxes and graph displays have their own analysis inspec-
tor. In general, the analysis inspector is composed of three sections: a Plot section with
controls that can modify general plot options, a Select section with controls and actions
for selecting points, and a Modify section that provides actions to modify certain plot states
for the selected points.

4.4.4.4 Layers Inspector

Layers are visual items that can be added to displays. The layers inspector shows the label,
type and id for each added layer. Figure 4.15 show a layers inspector for a scatterplot
display with three added layers. The buttons below the treeview provide the following
actions for the selected layer (from left to right): move the layer down, move the layer up,
move the layer below its parent, move the layer into the group below the layer, show the
layer, hide the layer, add a new group layer, expunge the selected layer, and scale to the
layer. The last row provides a text entry and set button to change the label of the selected
layer.

90

Figure 4.15: Layers inspector.

4.5 Standard Linking Model

In Subsection 3.2.3, we discussed how to link displays with the linkingGroup state. This
linking mechanism is actually based on two states, linkingGroup and linkingKey, and is
called loon’s standard linking model.

The full capabilities of the standard linking model are described below. However, set-
ting the linkingGroup states for two or more displays to the same string is generally
all that is needed for linking displays that plot data from the same data frame. Chang-
ing the linking group of a display is also the only linking-related action available on the
analysis inspectors as seen in Figure 4.5; this combined pull-down menu with text-entry
user-interface element lists all the currently used linking groups (and how many displays
use that linking group) and allows the user to enter a new linking group or select one from
the list.

The standard linking model uses three “levels” to determine how the data points are
linked between displays. The first level identifies which displays are linked. The second

91

level defines the plot states of the displays that are linked (e.g. selected, active and
color). The third level defines how the elements between linked states are mapped. That
is, it is possible to define which plots, states and elements (points) are linked. Each of
these linking levels can be configured at run time.

The first linking level is as follows: loon’s displays are linked if they share the same
string in their linkingGroup state. The default linking group 'none' is a keyword and
leaves a display un-linked.

The second linking level is as follows: all n-dimensional states can be linked between
displays. We call these states linkable. Further, only linkable states with the same name
can be linked between displays. One consequence of this “shared state name” rule is that,
with the standard linking model, the linewidth state of a serialaxes display cannot be
linked with the size state of a scatterplot display. Also, each display maintains a list that
defines which of its linkable states should be used for linking; we call these states the
“used linkable” states. The default “used linkable” states are listed in Table 4.5 for each
type of display. If any two displays are set to be linked (i.e. they share the same linking
group) then the intersection of their “used linkable” states are actually linked.

Display Default “used linkable” states

scatterplot selected, color, active, size
histogram selected, color, active
serialaxes selected, color, active
graph selected, color, active, size

Table 4.5: loon’s default “used linkable” states.

For example, we create a scatterplot and a histogram for the olive data and link them
by setting both linking groups to 'olive'

p <- l_plot(stearic~oleic , linkingGroup='olive')
h <- l_hist(x=arachidic , linkingGroup='olive')

92

When creating the histogram h, the shared “used linkable” states of p and h are used for
linking. We can query the “used linkable” states for each display with the
l_getLinkedStates function as follows

l_getLinkedStates(p)
l_getLinkedStates(h)

[1] "color" "selected" "active" "size"

[1] "color" "selected" "active"

That means that the states that are actually used for linking are color, selected and
active.

It is possible to modify the “used linkable” states with the l_setLinkedStates func-
tion. For example, after the following expression, only the selected state is used for
linking p and h.

l_setLinkedStates(p, c('selected ', 'active ', 'size'))
l_setLinkedStates(h, c('selected ', 'color'))

Next, we create a serialaxes plot with the linking group olive

s <- l_serialaxes(data=oliveAcids , linkingGroup='olive')

For plot s, the “used linkable” states are the default ones as follows

l_getLinkedStates(s)

[1] "active" "color" "selected"

Now, the linking between the plots p, h and s is outlined in Table 4.6.

State linked among plots

selected p, h, s
active p , s
color h, s

Table 4.6: linked states for example

93

The third linking level is as follows. Every display has a n-dimensional linkingKey
state. Hence, every data point has an associated linking key. Data points between linked
plots are linked if they share the same linking key. For example, for the two linked plots
defined by

pA <- l_plot(x=1:5, y=1:5, linkingGroup='X',
linkingKey=c('A','B','C','D','E'))

pB <- l_plot(x=1:3, y=1:3, linkingGroup='X',
linkingKey=c('D','E','F'))

the forth element of pA is linked with the first element of pB, and the fifth element of pA
is linked with the second element of pB (for all linked states). Note that the linkingKey
mechanism makes linking between plots with different actual values of the dimension
n possible. The default linkingKey is the vector 0,1,2, ...,n− 1 and loon’s linking (i.e.
synchronization) speed is optimized for the default linking keys.

Linking keys must be unique within the linkingKey state of a display. Unique linking
keys ensure that elements in a plot are only linked with elements of another plot and not
within the same plot. This “unique linking key” constraint simplifies the default linking
model. This one-to-one, zero-to-one or one-to-zero linking also facilitates the linking of
seemingly many-to-one displays, such as histograms. With histograms, one bar represents
one or many data points in the x state, and it should be noted that it is not the bar visual
that is linked but the data points represented by that bar.

When changing the linking group of a display to one that is already used by other
displays, loon needs to know in which direction the initial synchronization of the linked
elements should go: from the linked displays already using that particular linking group
to the display whose linking group changes or vice versa. The former option is specified
with the argument sync='pull' in l_configure whereas the latter is specified with the
argument sync='push'. Changing the linking group with an inspector will create a dialog
asking whether to push or pull the linked states of the current plot. When changing the
linking keys in a display that is linked, loon also needs to know whether to push or pull
the linked states of the current display.

When loon’s standard linking model is too restrictive then it is possible to implement
custom linking rules with state change event bindings, as described in Section 5.3.

94

4.6 Layers

loon’s displays that use the main graphics model (i.e. histogram, scatterplot and graph
displays) support layering of visual information. Table 4.7 lists the layer types and func-
tions for layering on a display. Every layer within a display has a unique id. The visuals of

Type Description R creator function

group a group can be a parent of other layers l_layer_group

polygon one polygon l_layer_polygon
text one text string l_layer_text
line one line (i.e. connected line segments) l_layer_line
rectangle one rectangle l_layer_rectangle
oval one oval l_layer_oval

points n points (filled) circle l_layer_points
texts n text strings l_layer_text
polygons n polygons l_layer_polygons
rectangles n rectangles l_layer_rectangles
lines n sets of connected line segments l_layer_lines

Table 4.7: loon’s layer types

the data in a display present the default layer of that display and has the layer id 'model'.
For example, the 'model' layer of a scatterplot display visualizes the scatterplot glyphs.

Layers are arranged in a tree structure with the tree root having the layer id root.
The rendering order of the layers is according to a depth-first traversal of the layer tree.
This tree also maintains a label and a visibility flag for each layer. The layer tree, layer
ids, layer labels and the visibility of each layer are visualized in the layers inspector as
seen in Figure 4.15. If a layer is set to be invisible then it is not rendered on the display.
If a group layer is set to be invisible then all its children are not rendered; however, the
visibility flag of the children layers remain unchanged.

95

All layers have states that can be queried and modified using the same functions as the
ones used for displays (i.e. l_cget, l_configure, '[' and '[<-'). The last group of layer
types in Table 4.7 have n-dimensional states, where the actual value of n can be different
for every layer in a display.

The difference between the model layer and the other layers is that the model layer
has a selected state, responds to selection gestures and supports linking.

For example, Figure 4.16 shows a scatterplot with the fitted regression line, a 95%
confidence interval and a 95% prediction interval from a simple linear regression model
layered underneath the scatterplot points. The data for this example are generated as
follows

set.seed (500)
x <- rnorm (30)
y <- 4 + 3*x + rnorm (30)

Figure 4.16: Scatterplot with a layered regression line, a 95% confidence interval and a
95% prediction interval of a simple linear fit.

96

Next, we fit the simple linear regression and obtain the coordinates of the regression line
and the confidence and perdition intervals
fit <- lm(y~x)
xseq <- seq(min(x)-1, max(x)+1, length.out = 50)
fit_line <- predict(fit , data.frame(x=range(xseq)))
ci <- predict(fit , data.frame(x=xseq),

interval="confidence", level =0.95)
pi <- predict(fit , data.frame(x=xseq),

interval="prediction", level =0.95)

Finally, Figure 4.16 is created by plotting y vs. x, adding a group layer and also adding
the line and polygon layers that represent the regression line and confidence intervals,
respectively:
p <- l_plot(y~x, color='black', showScales=TRUE , showGuides=TRUE)
gLayer <- l_layer_group(p, label="simple linear regression",

parent="root", index="end")
fitLayer <- l_layer_line(p, x=range(xseq), y=fit_line , color="#04327F",

linewidth=4, label="fit", parent=gLayer)
ciLayer <- l_layer_polygon(p,

x = c(xseq , rev(xseq)),
y = c(ci[,'lwr'], rev(ci[,'upr'])),
color = "#96 BDFF", linecolor="",
label = "95 % confidence interval",
parent = gLayer , index='end')

piLayer <- l_layer_polygon(p,
x = c(xseq , rev(xseq)),
y = c(pi[,'lwr'], rev(pi[,'upr'])),
color = "#E2EDFF", linecolor="",
label = "95 % prediction interval",
parent = gLayer , index='end')

The index and parent arguments in the above code determine the location of the new
layers in the layer tree. The returned layer handles can be used to access and modify
layer states in the same way the plot handle p can be used to access and modify the plot
states. For example,
fitLayer['dash'] <- c(10, 3, 3)
l_configure(ciLayer , linewidth =1, linecolor='black')

makes the regression line dashed and adds a black outline to the prediction interval poly-
gon.

97

Table 4.8 lists the functions to query and modify the layer tree (used for the rendering
order). Note that a layer labels and tree positions (i.e. parent and index) are not layer
states but part of the display that supports layering.

4.6.1 Functions and Methods for Layering Data in R

With the loon R package we leverage some of R’s functionality to create meaningful inter-
active plots. That is, we provide the l_layer generic function that can be used to write
methods to layer information based on any R object.

We provide methods for layering geospatial data with objects from of the classes listed
in Table 4.9. In Subsection 3.2.4, we discussed an example of layering an object of class
map containing the Canadian country boundary coordinates, see Figure 3.2(b). Figure 4.17
shows a loon scatterplot display with multiple layers of 1 : 50m scale geospatial data from
the Natural Earth project [55]. The information layered in the plot is: country boundaries,
urban areas, rivers, lakes and international airports as scatterplot points. The methods
used to layer the data in Figure 4.17 are the ones for objects of classes that are defined in
the sp R package [10], see Table 4.9. The code to re-create Figure 4.17(b) can be found in
the 'world' demo of the naturalearth R package, a package we will release soon.

We further provide the functions l_layer_contourLines, l_layer_heatImage and
l_layer_rasterImage that are very similar and mostly compatible to the R functions
contourLines, image and rasterImage, respectively. For example, Figure 4.18 shows
the visual difference of an interactive loon plot and a base R plot when plotting a heat
map and contour lines on a scatterplot. The 2d density estimation is for the Sepal.Width
and Sepal.Length variables of the iris data from Anderson [3]:

kest <- with(iris , MASS::kde2d(Sepal.Width ,Sepal.Length))

The R code to create Figure 4.18(a) is

p <- with(iris , l_plot(Sepal.Width ,Sepal.Length , color='black', showScales=TRUE))
l_layer_contourLines(p, kest)
l_layer_heatImage(p, kest)

98

(a) inspector (b) map data

Figure 4.17: Naturalearth data displayed with loon’s scatterplot display.

and the R code to create Figure 4.18(b) is

image(kest , xlab='Sepal.Width', ylab='Sepal.Length ')
sapply(contourLines(kest), function(l) lines(lx, ly))
with(iris , points(Sepal.Width , Sepal.Length , pch =16))

99

Name Description

l_layer_ids List layer ids
l_layer_getType Get layer type

l_layer_getParent Get parent layer id of a layer
l_layer_getChildren Get children of a group layer
l_layer_index Get the order index of a layer among its siblings
l_layer_printTree Print out the layer tree

l_layer_move Move a layer
l_layer_lower Switch the layer place with its sibling to the right
l_layer_raise Switch the layer place with its sibling to the left
l_layer_demote Moves the layer up to be a left sibling of its parent
l_layer_promote Moves the layer to be a child of its right group layer

sibling

l_layer_hide Set the layers visibility flag to FALSE
l_layer_show Set the layers visibility flag to TRUE
l_layer_isVisible Return visibility flag of layer
l_layer_layerVisibility Returns logical value for whether layer is actually seen
l_layer_groupVisibility Returns all, part or none for expressing which part of

the layers children are visible.

l_layer_delete Delete a layer. If the layer is a group move all its chil-
dren layers to the layers parent.

l_layer_expunge Delete layer and all its children layer.

l_layer_getLabel Get layer label.
l_layer_relabel Change layer label.

l_layer_bbox Get the bounding box of a layer.

Table 4.8: Functions that work on layers

100

R package Class

maps [8] map

sp [10] SpatialPoints
SpatialPointsDataFrame
Line
Lines
SpatialLines
SpatialLinesDataFrame
Polygon
Polygons
SpatialPolygons
SpatialPolygonsDataFrame

Table 4.9: loon provides l_layer methods for the geospatial data classes in this table.

101

(a) loon version

(b) base R version

Figure 4.18: Two layers: a heat image and contour lines of a 2d density estimation.

102

4.7 Display Design Decisions

In this section, we re-visit some of loon’s displays and elaborate on some relevant design
decisions and functionality that have not been mentioned so far.

4.7.1 Histogram

The data in the n-dimensional state x of loon’s histogram are binned before they are
displayed. Every change in the selected, active or color states results in a re-binning
of x and a change in the display accordingly.

If the boolean showStackedColors state is set to TRUE then the x data are partitioned
into a “selected” group and then into a separate group for each color. Then, a histogram
for every partition is stacked on the display. The default order of the stacking is as follows:
first, the bins for the selected points are stacked (onto the line y= 0); then, the remaining
histograms for each color are stacked in the order of the appearance of their corresponding
color in the color state (for the active points). To change this default stacking order one
can specify it with the colorStackingOrder state; note that the keyword 'selected' is
used to refer to the histogram of the selected points. Colors in the color state that do
not appear in the colorStackingOrder are stacked last, also in the order of the appear-
ance of their corresponding colors in color. The default value for colorStackingOrder is
'selected'.

Interactively selecting a bar on the histogram sets the selected state of all points that
are represented by that bar to TRUE.

4.7.2 Point and Node Glyphs

The scatterplot and graph displays both have the n-dimensional state glyph that assigns
each data point or graph node a glyph (i.e. a visual representation). Henceforth we only
discuss point glyphs for scatterplot displays, but we keep in mind that all applies to graph
displays as well.

103

We distinguish between primitive and non-primitive glyphs: the primitive glyphs are
listed in Table 4.10 and are always available for use whereas the non-primitive glyphs,
listed in Table 4.11, need to be first specified and added to a plot before they can be used.

Type Name

circle, ocircle, ccircle
square, osquare, csquare
triangle, otriangle, ctriangle
diamond, odiamond, cdiamond

Table 4.10: Primitive point/node glyphs.

Type R creator function

Text l_glyph_add_text
Serialaxes l_glyph_add_serialaxes
Pointranges l_glyph_add_pointrange
Images l_glyph_add_image
Polygon l_glyph_add_polygon

Table 4.11: Non-primitive point/node glyphs and their creator function.

The following code creates a scatterplot with 15 points that are spread out horizontally.
Then, a text glyph is added assigning the first 15 lower-case letters to the data points.
Next, the glyph state is changed so that the first 12 points are displayed as primitive
glyphs whereas the remaining three points are displayed as the non-primitive text glyphs
added previously, see Figure 4.19.
p <- l_plot(x=1:15 , y=rep(0, 15), size=10, showLabels=FALSE)
text_glyph <- l_glyph_add_text(p, text=letters [1:15])
p['glyph'] <- c('circle ', 'ocircle ', 'ccircle ',

'square ', 'osquare ', 'csquare ',
'triangle ', 'otriangle ', 'ctriangle ',
'diamond ', 'odiamond ', 'cdiamond ',
rep(text_glyph , 3))

104

Figure 4.19: Point glyph examples.

All non-primitive glyphs have states that can be queried and modified using the same
functions as the ones used for displays and layers (i.e. l_cget, l_configure, '[' and
'[<-'). All non-primitive glyphs have n-dimensional states (e.g. text for the text glyph).
The dimension n of a point glyph is bound to the dimension n of a scatterplot display.
Hence, non-primitive glyphs need to be defined for each data point in order to be added
to a scatterplot display. If the actual value n of a scatterplot display changes then all its
non-primitive glyphs are automatically deleted.

Every non-primitive glyph gets a unique glyph id that is returned by the glyph creator
functions listed in Table 4.11. The functions listed in Table 4.12 can be used to list, delete,
re-label, query the label and the glyph type. The glyph labels are used for naming glyphs
in the glyph inspector and in the pull-down menu of the analysis inspector.

Function Description

l_glyph_ids List all glyph ids
l_glyph_delete Delete a Glyph
l_glyph_getLabel Get glyph label
l_glyph_relabel relabel glyph
l_glyph_getType get glyph type

Table 4.12: Functions for working with glyphs

The size state of the scatterplot display assigns a size attribute to the glyph corre-
sponding to each data point. The mapping from size to the area of the glyph (in pixel2)
is listed in Table 4.13 and shown in Figure 4.20. For the polygon glyph, it is the user’s

105

responsibility to center the polygons at (0,0) and to determine an appropriate size of the
polygons with the polygon coordinates.

We chose the size mappings in Table 4.12 such that the glyph area grows proportion-
ally with the size (except for polygon and text glyphs), with proportionality factors that
seemed satisfactory to us. The image, serialaxes and polygon glyphs grow faster with the
size of a data point than the primitive glyphs as they usually represent a lot of informa-
tion. This information should be accessible by only a few button clicks via the size change
actions on the analysis inspector.

Figure 4.20: Point glyph size mapping.

The glyphs inspector as seen in Figure 4.21 provides lists all non-primitive glyphs for
a scatterplot display and has a glyph specific control panel. The glyphs control panel
presently provides actions for modifying the serialaxes glyphs only.

106

Glyph Type Area in pixel2

Circle {
size< 1 : 8
size≥ 1 : 12 ·size

Square
Triangle
Diamond

Text (font size)

{
size< 1 : 2
size≥ 1 : 2+size

Images

{
size< 1 : 20
size≥ 1 : 600 ·size

Star Glyphs (for Enclosing)

{
size< 1 : 25
size≥ 1 : 400 ·size

Parallel Coordinate Glyphs (p is number of
axes)

{
size< 1 : 9 · (p−1)
size≥ 1 : 64 · (p−1) ·size

Polygon Glyphs size does not map to glyph area
directly but multiplies the poly-
gon coordinates by{

size< 1 : 4
size≥ 1 : 6 ·psize

Table 4.13: The mapping of size to point glyph area.

4.7.3 Serialaxes Display and Serialaxes Glyphs

The data state for the serialaxes display and serialaxes glyphs contains the data frame
that is mapped onto the axes. The data value to axis position mapping is from [0,1] to the
axes range. We provide a number of data scaling options with the scaling state:

• scaling='variable': every column of data gets scaled to the range [0,1].

• scaling='observation': every row of data gets scaled to the range [0,1].

107

Figure 4.21: Glyphs inspector.

• scaling='data': the data as a whole gets scaled to the range [0,1].

• scaling='none': the data is not scaled before it is mapped to the serial axes axes.
Values smaller than 0 or greater than one will lead to visual inconsistencies with the
axes visuals.

The sequence state defines the axes sequence of the variables. Any length for the
sequence is possible. The axesLayout state specifies whether to display the serial axes
glyphs as parallel coordinates (i.e. 'parallel'), or as star glyphs (i.e. 'radial').

108

4.7.4 Graph Display

We now discuss graph display related topics that are useful for working with navigation
graphs.

4.7.4.1 Graphswitch

The graphswitch provides a graphical user interface element that is used for changing
the graph in a graph display interactively. The functions to create and work with the
graphswitch are listed in Table 4.14. Selecting a graph on the graphswitch replaces the
graph in the display (defined in the activewidget state of the graphswitch) with the
selected graph on the graphswitch.

Function Description

l_graphswitch Widget creator function
l_graphswitch_add add a graph
l_graphswitch_delete delete a graph
l_graphswitch_get return a graph as a loongraph object
l_graphswitch_getLabel get a graph label
l_graphswitch_relabel change a graph label
l_graphswitch_ids list all graphs in the graph switch
l_graphswitch_move move a graph in the list
l_graphswitch_reorder set a new graph order
l_graphswitch_set change the graph of the activewidget to the

currently selected one

Table 4.14: loon’s graphswitch widget.

109

For example, the following code creates a graph display and a graphswitch as seen
in Figure 4.22, and adds three graphs to the graph widget. Selecting a graph on the
graphswitch will update the nodes, from, to and isDirected states of the graph display
correspondingly.

g <- l_graph ()
gs <- l_graphswitch(activewidget=g)

G <- completegraph(nodes=c('A','B','C','D'))
LG <- linegraph(G)
LGnot <- complement(LG)

l_graphswitch_add(gs, G, label='variable graph')
l_graphswitch_add(gs, LG , label='3d transition graph')
l_graphswitch_add(gs, LGnot , label='4d transition graph')

(a) Graphswitch (b) Graph display

Figure 4.22: Graphswitch and graph display.

4.7.4.2 Navigators

Navigators turn a graph into a navigation graph; they represent a “you are here” bullet
that can be dragged along the graph. Navigators are constrained to be positioned on the
graph and any number of navigators can be added to a graph display. Table 4.15 lists
all navigator-related functions. Navigators have states that can be queried and modified.
The navigator states from and to define a path on the graph using node names. The

110

Name Description

l_navigator_add add a navigator
l_navigator_ids list navigator ids
l_navigator_delete delete a navigator
l_navigator_getLabel query the label of a navigator
l_navigator_relabel modify the label of a navigator
l_navigator_walk_path have to navigator walk a path
l_navigator_walk_backward walk on the current path forward to a node
l_navigator_walk_forward backwards to a node

Table 4.15: Working with navigators.

navigator is located between the last node given by its from state and the first node given
by its the to state at a relative distance equal to its proportion state. If to is empty then
the navigator is located on the last node in from. For example, the navigation graph in
Figure 4.23 was created with the following code

1 G <- completegraph(LETTERS [1:4])
2 LG <- linegraph(G)
3 g <- l_graph(LG, showLabels=FALSE)
4 nav <- l_navigator_add(g)
5 l_configure(nav , from = c('A:B', 'B:C', 'A:C'),
6 to = c('C:D', 'B:D'),
7 proportion= 0.3)
8 g['activeNavigator '] <- nav

Lines 5−7 set the path and the navigator position. The path is highlighted with the color
of the navigator, and the from path is represented by a thicker line than the to part of the
path. The path end node has a small filled circle with the color of the path. Line 8 sets the
navigator nav as the active navigator of g. A graph display can have at most one active
navigator which is outlined magenta. When the activeNavigator graph state is set to
a navigator id instead of '' then the user interactions with the graph display change as
follows:

111

Figure 4.23: Navigator example.

• A scroll mouse event moves the navigator along its path rather than zooming.

• A left button press on a node will move the navigator to that node.

• A Shift key press will highlight all adjoining nodes to the path end highlighted
with a small circle in the color of the navigator, as seen in Figure 4.23.

• A Shift left button press on adjoining node to the path end will add that node to
the path end, i.e. append it to the to navigator state.

• A Ctrl left button double press on a node that lies on the path will cause the
navigator to “walk” towards that node (i.e. the navigator is animated).

• A left button press on a visual that is not a node will change the activeNavigator
state to either another navigator (if a navigator was selected) or to ''.

• If the navigator is on the path end (i.e. to='') then dragging the navigator towards
a new node will extend the path accordingly.

During interactions with the navigator the graph nodes and edges get temporarily high-
lighted for visual guidance.

112

It is also possible to “walk” a path with the last three functions listed in Table 4.15.
A path “walk” is an animation of the navigator along a path. The navigator’s “walking”
speed can be modified with the animationProportionIncrement and animationPause
navigator states.

4.7.4.3 Navigator Contexts

A navigator context sets up an environment that gives a meaning to the navigator’s posi-
tion on the graph; that is, a navigator context implements a graph semantic. Table 4.16
lists the context-related R functions. We currently provide three contexts: the context2d,
geodesic2d and slicing2d. Next, we discuss each of these contexts.

Name Description

l_context_add_context2d Add a context2d context
l_context_add_geodesic2d Add a geodesic2d context
l_context_add_slicing2d Add a slicing2d context
l_context_ids List all contexts of a navigator
l_context_delete Delete a navigator

Table 4.16: Navigator context-related functions.

Context2d

The context2d maps every location on a 2d space graph to a list of xvars and a list of
yvars such that, while moving the navigator along the graph, as few changes as possible
take place in xvars and yvars, see Figure 4.24. One of the cases where this functionality
is useful is with the canonical graph semantic; there, using the context2d helps avoid
an abrupt swapping of the axes in the scatterplot display when arriving at a node. The
context2d uses its separator state to split the graph node names into 2d spaces. The
interchange4d context state switches the combination of variables in xvars and yvars.
For example, when transitioning from node A:B to C:D and assuming that interchange4d
is FALSE, xvars is (A,C) and yvars is (B,D), then switching interchange4d to TRUE will

113

A:B C:D

A

B

A>C

B>D

C

D

A

B

A>C

B>D

C

D

A:B C:D

A

B

A>D

B>C

D

C

A

B

A>D

B>C

D

C

A:B B:C

A

B

C

B

A>C

B

B

CA

B

A>C

B

3d transition 4d transition

interchange4d = FALSE interchange4d = TRUE

Figure 4.24: Context2d mapping scheme to xvars and yvars.

result in xvars being (A,D) and yvars being (B,C). The interchange4d state can be toggled
with a double click on the navigator.

We now show how to print the xvars and yvars lists of a context2d to the R prompt
while moving the navigator. Note that every navigator change will evaluate the callback
code in the 'command' state of the context2d.

G <- completegraph(nodes=c('A','B','C','D'))
LG <- linegraph(G)
g <- l_graph(LG)
nav <- l_navigator_add(g)
l_context_add_context2d(nav , command=function(xvars , yvars) {

cat(paste0('xvars=', xvars , ', and yvars=', yvars ,'\n'))
})

We will further discuss the use of callback functions in Subsection 5.2.1.

Geodesic2d

The geodesic2d context implements the canonical navigation graph semantic as discussed
in Subsection 1.3.1. The geodesic2d context is an extension of context2d and uses its
xvars and yvars together with the proportion state of the navigator to determine the
corresponding projections (recall that every location on the graph corresponds to a 2d
projection).

114

Similarly to the context2d, the geodesic2d context has a command state that is evaluated
with every change of the navigator’s location. If the command state is not specified when
the geodesic2d context is created then the default behavior of the geodesic2d context is to
create a loon scatterplot whose coordinates are updated with the projection coordinates
as specified in the command state.

The following example demonstrates how the geodesic2d context works for a 3d tran-
sition graph.

1 G <- completegraph(names(oliveAcids))
2 LG <- linegraph(G)
3 g <- l_graph(LG)
4 nav <- l_navigator_add(g)
5 cg2d <- l_context_add_geodesic2d(nav , data=oliveAcids)
6 attr(cg2d , 'plot')['color'] <- Area

(a) Navigation graph (b) Scatterplot with projections

Figure 4.25: Context2d example session.

Figure 4.25 shows the setup created with the above code. Line 6 sets the color of the
scatterplot points according to the olive Area variable. As we did not specify a command
callback when creating the geodesic2d context on line 5, the geodesic2d function will create

115

a loon scatterplot for the corresponding projections with the plot handle attached as a
'plot' attribute to the context handle.

The default command contains the code to update the scatterplot with the projection
coordinates and is

cg2d['command ']

[1] ".l2.plot configure -x %x -y %y -xlabel %xlabel -ylabel %ylabel"

This is Tcl code and the %x and %y are substituted with the projection coordinates, and
the %xlabel and %ylabel are substituted with suitable axes labels, see Figure 4.25. These
are advanced topics that are further discussed in the next chapter. However, it should be
noted that this design allows one to use any R functionality and R graphic device to work
with and/or display the projections. For example, to display the projections with an base R
plot one could use:

cg2d['command '] <- function(x, y, xlabel , ylabel) {
plot(l_toR(x), l_toR(y), xlab=xlabel , ylab=ylabel)

}

The data state of a geodesic2d context contains the data used for projections. The
variable names of the data state need to match the node names of the graph. That is,
the geodesic2d context uses its separator state to split each graph node name into two
variable names. Then the geodesic2d looks up these variable names in the data contained
by its data state.

The context2d state scaling determines the scaling performed on the data before pro-
jecting them. The different scaling methods are listed in Table 4.17. By default the
geodesic2d context has variable as the default scaling state.

Slicing2d

A slice of a data set is a subset of its observations. The slicing2d context implements
slicing using navigation graphs and a scatterplot to condition on one or two variables as
detailed below. Slicing2d implements, modifies and extends a graph semantic proposed by
Hurley and Oldford [44]. They propose to use a 3d transition graph with the edge semantic

116

Name Description

none no scaling
observation every row of data gets scaled to mean 0 and variance 1
variable every column of data gets scaled to mean 0 and variance 1
observation01 every row of data gets scaled to the range [0,1]
variable01 every column of data gets scaled to the range [0,1]
data01 the data as a whole gets scaled to the range [0,1]

Table 4.17: Scaling methods for context2d.

as follows: an edge from (X ,Y) to (X , Z) is a conditioning on the common variable (i.e. X
here) and moving a navigator on that edge displays a scatterplot of Y vs. Z for the subset
of the data points that lie in some neighborhood of x, where x moves with the navigator
position from the minimum observed value of X to the maximum value. We modify and
generalize this semantic to include a conditioning for 4d transitions as well.

Our slicing semantic is a follows. Assume we are interested in displaying the data
with a scatterplot. If the navigator is on a 2d space node (i.e. representing two variables)
then the scatterplot shows these two variables. If the navigator is on a 3d transition
edge, for example, from (A,B) to (B,C), then the scatterplot shows B vs. A for a subset of
data points that are conditioned on C. Note that we condition on the variable that is not
shared between the two nodes whereas Hurley and Oldford [44] condition on the common
variable; this allows us to generalize our semantic to 4d transitions, as discussed below.
The conditioning on C is the same as the one discussed above for X . We now introduce
some notation to simplify the explanations that follow. For a variable C let C(p), where
p ∈ [0,1], represent the value that lies 100·p percent between the minimum and maximum
of C; that is, C(p) = min(C)+ p · (max(C)−min(C)) for p ∈ [0,1]. Then, the 3d transition
from (A,B) to (B,C) plots B vs. A for all points with C in a neighborhood of C(p), where
p = navp is the proportion of the navigator location along the edge to the total length of
the edge. One possible neighborhood could be defined as [C(p)−d,C(p)+d] for some d > 0.
Another possible neighborhood could be defined as the k nearest neighbors of C(p) in the

117

C variable. If the navigator is on a 4d edge, for example, from (A,B) to (C,D), then the
scatterplot shows B vs. A for a subset of data points that are conditioned on C and D. We
propose three different methods for conditioning with C, D and the navigator proportion
navp

• Union conditioning: we use data points for which C lies in a neighborhood of C(navp)
or D lies in a neighborhood of D(navp).

• Intersection conditioning: we use data points for which C lies in a neighborhood of
C(navp) and D lies in a neighborhood of D(navp).

• Sequential conditioning: if navp < 0.5 then we use data points for which C lies in
a neighborhood of C(navp ∗2). If navp ≥ 0.5 then we use data points for which D
lies in a neighborhood of C((navp −0.5)∗2). Note that the fact that the first interval
for navp is an open interval (i.e. [0,0.5)) and the second one is a closed interval
(i.e. [0.5,1]) is not an issue in practice as long as the neighborhood is chosen large
enough.

We implement this slicing semantic with the slicing2d context as follows. We use a
scatterplot of the conditioning variables to visualize how the points were sliced. That is, we
use the selected state of the scatterplot of the conditioning variables to select the subset
of data points displayed in the plot that visualizes the sliced data. If only one variable
is used for conditioning then we use random numbers generated from the uniform(0,1)
distribution for the second axis. With no conditioning variables (i.e. the navigator is
located on a node) we use random numbers for both axes. Moving the navigator on a graph
updates the conditioning and the “sliced” scatterplot accordingly. Then the conditioning
neighborhood is visualized with rectangles, see Figure 4.26 and Figure 4.27. The setting
shown in Figure 4.26 and Figure 4.27 was created with the following code
oa <- oliveAcids
names(oa) <- c('p','p1','s','o','l','l1','a','e')
nodes <- apply(combn(c('s','o','a','e'),2),2, function(x)paste(x, collapse=':'))

G <- ndtransitiongraph(nodes=nodes , n=c(3,4))
g <- l_graph(G)
nav <- l_navigator_add(g)

118

con <- l_context_add_slicing2d(nav , data=oa)
attr(con , 'plot_xy')['color'] <- Area
attr(con , 'plot_uv')['color'] <- Area

The conditioning variable plot is called 'plot_uv' and the plot with the sliced data is
called 'plot_xy'. Their respective handles are attached to the context handle as an at-
tribute. The slicing2d context has the proportion state that defines the neighborhood
of a conditioning as a proportion of the range of that variable. The conditioning4d
specifies the conditioning method with 4d edge transitions and has to be either 'union',
'intersection' or 'sequential'. If the analyst interactively selects points in the con-
ditioning variable plot 'plot_uv' (e.g. with sweeping or brushing) then the rectangles
showing the conditioning neighborhood are hidden until the navigator changes its loca-
tion and updates the conditioning scatterplot accordingly.

Figure 4.26: loon’s slicing2d context setting for 3d transitions.

119

(a) 4d transition with intersection conditioning

(b) 4d transition with union conditioning

(c) 4d transition with sequential conditioning: navp = 0.3

(d) 4d transition with sequential conditioning: navp = 0.7

Figure 4.27: loon’s slicing2d context setting for 4d transitions.

120

Chapter 5

Advanced Loon Framework

5.1 Implementation

loon is implemented with Tcl and Tk. Tcl is a dynamic scripting language and Tk is a
cross-platform widget toolkit for Tcl. loon can be used with any programming language
that has bindings with Tcl and Tk. There are a number of programming languages that
provide such bindings including R, Python, Perl and Ruby. In these languages, it is pos-
sible to access a Tcl interpreter that can also evaluate code in the host language with
callbacks. This is the functionality needed to use or to embed loon with a host program-
ming language.

We have embedded loon into R with the R package loon as a working example of adapt-
ing the Tcl’s loon to a new programming environment. The R binding with Tcl and Tk
is provided with the tcltk package originally developed by Dalgaard [24] which is now
part of the core R distribution [60]. In this thesis, we explain loon’s framework with the
R syntax only. A comparison of loon’s syntax in R and Tcl can be found in loon’s web
documentation (with l_help()). As a general rule, we chose the names for the R functions
based on loon’s Tcl application programming interface (API). For example, the following
code creates the same loon session once in R and once in Tcl:

121

in R

p <- l_plot(x=c(1,3), y=c(3 ,2))
l_configure(p, color='red')
l_scaleto_world(p)

in Tcl

set p [plot -x {1 3} -y {3 2}]
$p configure -color red
$p scaleto world

In Tcl, the plot handle p refers to an object and configure and scaleto are methods of
p. loon’s R function names usually have a l_ prefix to avoid masking other R functions
(e.g. plot and hist) and to unify loon’s R API. Functions without the l_ prefix are not
graphical user interface related (e.g. loongraph and completegraph).

Graphical user interface (GUI) elements in Tk are called widgets. loon’s displays and
inspectors are Tk megawidgets; that is, they are compositions of standard Tk widgets that
are packed into a Tk frame widget. When designing the loon (mega)widget library we
followed the Tk conventions as is suggested by Flynt [28, sec. 14.2]. Hence, people fa-
miliar with Tk should feel familiar with loon’s widgets – we took the liberty to call Tk’s
configurable options states in loon. loon is designed to be a toolkit; loon’s widgets can be
used, customized and integrated in new GUIs the same way the ordinary Tk widgets can
be used to create new GUIs. For example, it would be possible to use loon’s widgets and
the standard Tk widgets to re-create environments like Mondrian, GGobi or Conditional
Choropleth Maps without modifying loon’s source – something that is not possible the
other way around.

With the loon R package, we sometimes deviate from the tcltk R package conventions
to simplify certain tasks with loon. For example, we provide the l_configure and l_cget
functions that should be used instead of the tkconfigure and tkcget functions from the
tcltk package. One reason to do so is that the tcltk functions do not support the con-
version of R’s data.frame and list data structures to a data structure in Tcl. Another
reason is that l_configure and l_cget can be used with all of loon’s objects that have
states such as custom point glyphs, layers, navigators and contexts. Another deviation
from the conventions used in the tcltk R package is that widget handles for loon wid-
gets are of class loon and not of class tkwin as for the normal Tk widgets. We do this for
sake of simplicity: objects of class tkwin involve an environment whereas objects of class
loon do not. A loon widget path handle in R is a string with the widget path name that
has a 'loon' class attribute. In Tk every widget has a unique widget path name. For

122

the histogram, scatterplot, serialaxes and graph displays the widget path name can be
found in the window decoration as long as these widgets are created without specifying a
parent widget explicitly (as discussed in Section 5.4). For example, the scatterplot in Fig-
ure 4.17(b) shows “loon scatterplot .l0.plot” as its window title; here, '.l0.plot' is widget
path name of the display.

loon object handles are returned by the object creator functions such as l_plot,
l_glyph_add_text and l_layer_polygons. It is possible to re-create any loon object
handle in an R session. That is, handles for displays, layers, glyphs, navigators and context
handles can be created with the widget path name and the appropriate ids. The object
handle can then be used with the methods '[' and '[<-' to access and modify states. For
example, for a display with the widget path name '.l1.hist' one can create a loon plot
handle as follows

h <- '.l1.hist'
class(h) <- 'loon'

For a layer with the layer id 'layer23' of that display the layer handle can be created as
follows

l <- 'layer23 '
class(l) <- c('loon', 'l_layer')
attr(l, 'widget ') <- '.l1.hist'

For a context with the id 'context0' of a navigator with id 'navigator1' of a graph with
widget path name '.l4.graph', the context handle is created as follows:

con <- 'context0 '
class(con) <- c('loon', 'l_context ')
attr(con , 'widget ') <- '.l4.graph'
attr(con , 'navigator ') <- 'navigator1 '

and so on. The l_create_handle function can be used to create the loon object handles
from a vector of the widget path name and the object ids (in the order of the parent-child
relationships). For example, the above three object handles can also be created with

h <- l_create_handle('.l1.hist')
l <- l_create_handle(c('.l1.hist', 'layer23 '))
con <- l_create_handle(c('.l4.graph', 'navigator1 ', 'context0 '))

123

The l_cget and l_configure have target as their first argument which either accepts
a loon object handle or a vector with the widget path name and the object ids as used for
l_create_handle. For example

l_configure(h, color='red')

is equivalent to

l_configure('.l1.hist', color='red')

and

l_configure(con , command='')

is equivalent to

l_configure(c('.l4.graph', 'navigator1 ', 'context0 '), command='')

The re-creation of object handles is useful when, for example, an object handle is lost or
overwritten.

5.2 Event Bindings

Event bindings provide the functionality of binding code to specific event types. The bound
code is called a callback. In loon, we distinguish between four classes of events: state
change events, item events, canvas events and content events. Examples of each type of
event (in the same order as mentioned before) include: a selected state modification of a
plot, moving the mouse cursor over a point glyph, re-sizing the plot window and adding a
layer.

The callback code gets evaluated by the Tcl interpreter, hence R users of loon need
to be aware of R function callbacks in order to use loon’s binding functionality. Before
the callback gets evaluated loon substitutes certain expressions in the callback code with
relevant information. For example, %W is substituted with the widget path name of the
widget that causes the callback evaluation. The substitution expressions will be listed for
every binding type.

124

Bindings are the driving force of interactivity. We provide the user with every binding
type used for implementing loon’s interactivity. There are two classes of bindings: sys-
tem bindings and user bindings. System bindings are meant for developing new displays
whereas user bindings are meant to be used by the analyst. Only user bindings are acces-
sible through the R API. System bindings are always evaluated before user bindings and
errors in the system binding callbacks are not caught with exception handling whereas
errors in the callbacks of the user bindings are caught.

Every binding has a binding id that can be used to delete the binding or to reorder
the callback evaluation when multiple bindings are signed up to a particular event. To
query the binding ids for a particular binding type one should use the l_bind_<type>_ids
function, where <type> is substituted with either state, item, canvas, layer, glyph,
navigator or context. Except for item and canvas bindings, the order of the binding ids
returned by l_bind_<type>_ids is also the evaluation order of the callback functions. To
change the evaluation order one should use the l_bind_<type>_reorder function. For
item and canvas bindings, the evaluation order is according to the order they were added.
A particular binding can be deleted using the l_bind_<type>_delete function.

5.2.1 R function callbacks

The Tcl interpreter can call R functions via the Tcl command R_Call that takes as its first
argument the hex-encoded address of an R function. Further arguments to the R_call
command get passed to the R function as arguments of type character.

The R function .Tcl.callback, as defined in the tcltk R package, takes another R
function as an argument and returns a Tcl script (i.e. string) that calls that R function.
The formal arguments of the R function, except for the ellipsis (i.e. . . .), get a prefix % and
then are added to the Tcl callback script. For example,

foo <- function(x,y,z) {
print(paste(x,y,z, sep='|'))

}
.Tcl.callback(foo)

[1] "R_call 0x20cff20 %x %y %z"

125

The % arguments are meant to be substituted before the R_call evaluation. The Tcl
interpreter can then call the R function foo as follows
.Tcl('R_call 0x20cff20 Hello 2 World ')

[1] "Hello|2|World"

<Tcl>

Note that, in the above code, foo is a variable that points to the function with the hex-
encoded address 0x20cff20. Assigning a new function (with a different hex-encoded ad-
dress) to foo will garbage-collect the function previously assigned to foo (if no other vari-
able points to that function), and the above .Tcl call will cause an error. If the callback
should evaluate whatever function is assigned to foo one can wrap the foo function call
into another function as follows
.Tcl.callback(function(x,y,z){foo(x,y,z)})

Sometimes it is useful to pass arguments to the R function
.Tcl.callback(function(x,y){bar(x,y,add=TRUE)})

loon assigns a variable to every R callback function used in loon’s bindings in order to
prevent them from getting garbage-collected.

5.2.2 State Change Bindings

The callback of a state change binding is evaluated when certain states change, as speci-
fied at binding creation. loon’s plot widgets, inspector widgets, plot layers, point glyphs,
navigators and contexts support state change bindings. These objects implement the con-
figuration pipeline as described in Subsection 4.3.2 and illustrated in Figure 4.8. In the
following example we create a scatterplot with handle p, define a function foo that out-
puts the number of selected points in p on the prompt, and finally we add a state binding
for a selected state change to p:
p <- l_plot(stearic~oleic , color=Area)
foo <- function () {

cat(paste('Plot', p, 'has',
sum(p['selected ']), 'points selected .\n'))

}
bid <- l_bind_state(p, event='selected ', callback=foo)

126

The return value of l_bind_state is a binding id that can be used to change the callback
evaluation order or to delete the binding. The event argument of l_bind_state specifies
which state changes in p trigger the binding’s callback evaluation. If a vector of state
names is passed to the event argument then the binding’s callback is evaluated when any
of the specified states is changed in p. The keyword all specifies that any state change
in p should trigger the evaluation of the binding’s callback. Changing the selected state
in the example above will cause the binding bid to print a message on the R prompt as
follows
p['selected '] <- Area=="West -Liguria"

Plot .l2.plot has 50 points selected.

State binding evaluations are the last step in the configuration pipeline, see Figure 4.8.
The configure method checks which states have been changed and then loops through
its state change bindings and evaluates the callbacks that have at least one state in the
events list that has been modified. Hence, when all points are already selected, evaluating
p['selected']<-TRUE will not result in evaluating any callbacks of state change bindings
for the event selected.

Table 5.1 lists the callback substitutions of state change bindings. For R users, a %W
substitution is achieved by defining the R callback function with an argument named W.
The callback function evaluation then passes the substituted information as arguments
of type string to the R callback function. Some expressions such as %e are substituted
by (Tcl) lists. In the R callback function this list arrives as a single string with the list
elements separated by spaces. We provide the l_toR function to convert substituted lists
to R vectors.

String Description

%W widget path name
%e list of state changes of the configure call
%b binding id.

Table 5.1: State change binding substitutions.

127

The following example demonstrates callback substitutions.
1 h <- l_hist(x=palmitoleic , color=Area)
2 bar <- function(W, e) {
3 class(W) <- 'loon'
4 events <- l_toR(e)
5 cat(paste('The states ', paste0(events , collapse=', ') ,
6 'of the plot', W, '\nhave changed. Now',
7 sum(W['selected ']), 'points are selected .\n'))
8 }
9 bid <- l_bind_state(h, event='all', callback=bar)

10 l_configure(h, showScales=TRUE , swapAxes=TRUE , selected=TRUE)

The states showScales, swapAxes, selected of the plot .l3.hist

have changed. Now 572 points are selected.

In this example, we scoped for the plot handle p in the function foo. Here, we substitute
the widget path name and, on line 3, we assign the class loon to widget path in order to
query and modify the states with the '[' and '[<-' generics (see line 7). The events that
were responsible for the callback evaluation are stored as a single string in e and, on line
4, we split them into an R character vector of event names using l_toR.

Finally, aside from the events that are named according to their corresponding state
names, there is also the destroy event that occurs when the display gets destroyed, for
example, by closing the window.

5.2.3 Item Bindings

Item bindings are used for evaluating callbacks at certain mouse and/or keyboard ges-
tures events (i.e. X events) on visual items on the canvas. Items on the canvas can have
tags and item bindings are specified to be evaluated at certain X events for items with
specific tags. Item bindings are Tk canvas bindings with one level of indirection in order to
support loon’s context specific substitutions in Table 5.2 instead of the standard Tk substi-
tutions. Therefore, the X events specifiers and valid tag expressions for item bindings are
documented on the Tk canvas manual page [73]. loon’s histogram, scatterplot and graph
displays presently support item bindings. The latter three displays have an n-dimensional
state tag to give each visual a canvas tag. In addition, layers also have a tag state. Tags
have to be non-numerical.

128

String Description

%W widget path name
%b binding id.
%x x coordinate of mouse at event
%y y coordinate of mouse at event

Table 5.2: Item binding substitutions.

In the following example, we create an item binding that prints out the index of a point
when pressing with the left mouse button on a point glyph

1 p <- l_plot(stearic~oleic , color=Area)
2 foo <- function(W) {
3 i <- l_currentindex(W)
4 cat(paste('pressed on point', i , 'which is currently colored ',
5 l_cget(W, 'color')[i], '\n'))
6 }
7 l_bind_item(p, tags='layer&&model ',
8 event='<ButtonPress -1>', callback=foo)

For example, when pressing on point 298 on the scatterplot display the following message
is printed in R:

pressed on point 298 which is currently colored #EFEF8A8AC9C9

The l_currentindex function, as used on line 3, checks if there is a visual item below
the mouse cursor and if there is, it returns the index of the visual item’s position in the
corresponding variable dimension of its layer. That is, in the above example, i represents
the element index of the point in the n-dimensional states of p. The tags argument on line
7 accepts logical expressions of tags using the operators &&, ||, ^ and ! (i.e. logical and, or,
xor and negation), and also parenthesized subexpressions. Therefore, for the item binding
on line 7, the callback is evaluated at a left button press event on visual items that have
both 'model' and 'layer' tags. We also provide the l_currenttags function to retrieve
the tags of the visual item that at the time of the function evaluation is below the mouse
cursor. The tagging scheme of loon’s visual items is outlined in Table 5.3.

129

Visual Item Tags

Histogram model layer layer, model, bin<id>, <bin quantifier>
Scatterplot model layer layer, model, point, item<i-1>, <tag state>[i]
Graph model layer

nodes layer, model, point, item<i-1>, <tag state>[i]
edges layer, model, edge, item<i-1>, <from node>, <to node>
orbits layer, model, orbit, item<i-1>
navigators layer, model, navigator, <navigator id>
navigator path from layer, model, navigatorProgression, <navigator id>
navigator path to layer, model, navigatorEdge, <navigator id>
navigator path end layer, model, navigatorPathEnd, <navigator id>

Non-Model layers
polygon, text, line,
rectangle, oval

layer, <layer id>, <type>, item0, <tag state>

points, texts, poly-
gons, rectangles, lines

layer, <layer id>, <type>, item<i-1>, <tag state>[i]

x|y labels loon, label, <x|y>label
title loon, label, title
scales

x|y scale label loon, scale, <x|y>scale, label
x|y scale tick loon, scale, <x|y>scale, tick
x|y scale guidelines loon, scale, <x|y>scale, guideline

clipping borders loon, border

Table 5.3: Item tags for visuals for plots based on the main graphics model.

130

It is possible to query the tags of visual items on a display interactively as follows

p <- l_plot(oleic~stearic , color=Area)
l_bind_item(p, 'all', '<ButtonPress -1>',

function(W)print(l_currenttags(W)))

When working with the tag state of a plot or layer, it is important to omit any collision
with the tags that are used by loon. Therefore, we suggest adding an underscore as a
prefix for each user-defined tag.

Note that the interior of visuals with no fill (such as polygons and rectangles with the
fill color ''), although it appears transparent, it still absorbs X events. This is a Tk canvas
limitation and a possible solution to work around it is to draw those visuals with lines
instead of shapes that have no fill.

5.2.4 Canvas Bindings

Canvas bindings are used to evaluate callbacks at certain X events on the canvas widget.
Such X events include re-sizing of the canvas and entering the canvas with the mouse.
Canvas bindings are Tk bindings for the canvas widget with one level of indirection to
support loon’s context-specific substitutions seen in Table 5.4 instead of the default Tk
substitutions. Valid event specifiers can be looked up on the Tk bind manual [72]. The
canvas bindings are supported by the histogram, scatterplot, graph and serialaxes dis-
plays.

String Description

%W widget path name
%b binding id.
%x x coordinate of mouse at event
%y y coordinate of mouse at event
%w plot width in pixels
%h plot height in pixels

Table 5.4: Canvas binding substitutions.

131

The following example prints the size of the plot canvas (i.e. Tk canvas) to the R prompt

h <- l_hist(x=palmitoleic , color=Area)
foo <- function(W, w, h) {

cat(paste('The area of', W, 'is',
l_toR(w, as.numeric)*l_toR(h, as.numeric),

'pixel ^2\n'))
}
l_bind_canvas(h, event='<Configure >', callback=foo)
resize window using the mouse or
via the command line as follows
l_resize(h, 300, 500)

The area of .l0.hist is 150000 pixel^2

5.2.5 Content Bindings

The functions l_bind_layer, l_bind_glyph and l_bind_navigator create bindings that
evaluate callbacks whenever the collection of layers, glyphs or navigators, respectively,
change for a display. The l_bind_context function adds a context binding to a naviga-
tor to have the callback evaluated when a context gets added, deleted or relabeled for a
navigator. We collectively call these bindings content bindings. The basic substitutions of
content bindings are listed in Table 5.5. In addition to the basic substitutions, loon also
provides substitutions to obtain the id of the element that is responsible for the callback
evaluation. That is, layer bindings substitute %l with the layer id, the glyph bindings sub-
stitute %g with the glyph id, the navigator bindings substitute %nav with the navigator id,
and the context bindings substitute %con with the context id. Table 5.6 lists all possible
events of a particular binding type.

String Description

%W widget path name
%e event that cause callback evaluation
%b binding id

Table 5.5: Content binding substitutions.

132

Binding Type Events

layer add, delete, move, hide, show, relabel
glyph add, delete, relabel
navigator add, delete, relabel
context add, delete, relabel

Table 5.6: Overview binding events.

The following example adds a layer binding to a scatterplot and then layers the contour
lines of a density estimate on the display

p <- l_plot(stearic~oleic , color=Area)
foo <- function(W,e,l) {

cat(paste0('Plot ', W, ' had event "',
e, '" for layer ', l, '\n'))

}
b_id <- l_bind_layer(p, event='all', callback=foo)

library(MASS)
lc <- l_layer_contourLines(p, MASS::kde2d(oleic ,stearic))

Plot .l0.plot had event "add" for layer layer0

133

5.3 Custom Linking

In the case where the standard linking model described in Section 4.5 is not flexible
enough for a particular situation, one can use state change bindings to implement cus-
tom linking rules. For example, it is not possible to perform any of the following linking
setups with the standard linking model: one-to-many linking, one directional linking of
states, linking states with different names, linking points within a plot or linking model
layers with non-model layers. In this section, we give an example for each of these linking
setups and one that shows how to avoid circularities (i.e. infinite loops). To keep the code
for these examples short, we only link the selected state of two displays if not mentioned
otherwise. These examples illustrate the simplicity of adding a particular linking rule and
of defining new linking mechanisms that are more general.

5.3.1 One Directional And One-To-Many Linking

In the following example, we create two scatterplots pa and pb and we link the selected
state of pa with the selected state of pb using a state change binding. The first point of
pb is selected when any of the first three points in pa are selected; otherwise the first point
in pb is not selected. The second and the third point in pb take on the same selected
state as the fifth point in pa. The selected state of the forth point in pb is independent
of the selected state of pa. Changing the selected state in pa updates the selected
state in pb, but not the other way around; therefore, this example illustrates a case of one
directional, one-to-many, and many-to-one linking.

local({
pa <- l_plot(x=1:5, y=1:5, title="One to Many: plot A")
pb <- l_plot(x=1:4, y=1:4, title="One to Many: plot B")

pa2pb <- function () {
sa <- pa['selected ']
sb <- pb['selected ']
pb['selected '] <- c(any(sa[1:3]) ,sa[5],sa[5],sb[4])

}

l_bind_state(pa, 'selected ', pa2pb)
})

134

The callback function pa2pb scopes for the plot handles pa and pb in its parent environ-
ment. Therefore, one has to make sure that the variables pa and pb are not overwritten
or erased within the life-time of these plots. In the above example, this in not an issue as
we evaluated the code in a local environment. However, if the plot variables are stored
in the global environment where overwriting the variables pa and pb could easily happen,
then we recommend wrapping the callback function in another function such that the local
environment of the function call keeps a copy of the plot handles.

linkSelected <- function(pa, pb) {
force(pb)
pa2pb <- function () {

sa <- pa['selected ']
sb <- pb['selected ']
pb['selected '] <- c(any(sa[1:3]) ,sa[5],sa[5],sb[4])

}
l_bind_state(pa, 'selected ', pa2pb)

}

plotA <- l_plot(x=1:5, y=1:5, title="One to Many: plot A")
plotB <- l_plot(x=1:4, y=1:4, title="One to Many: plot B")
linkSelected(plotA , plotB)

Now, the variables plotA and plotB could be deleted in the global environment and the
linking would still work. Also, this allows the custom linking rule to be applied to different
plots. Note that the environment of the first function call is not garbage-collected as the
'l_bind_state' function keeps a variable link to the 'pa2pb' function.

A real world example of one-to-many linking can be found in the
l_us_and_them_choropleth demo that comes with the R loon package. There, we high-
light magenta the polygons of a country whenever the corresponding point (to that coun-
try) is selected in a different scatterplot. For example, selecting the point corresponding to
the USA highlights all polygons that represent the USA, see Figure 5.1. To run the demo
use

demo('l_us_and_them_choropleth ')

135

5.3.2 Linking States with Different Names

The following example creates two plots pa and pb and links the selected state of pa to
the active state of pb bidirectionally. That is, changing the selected state of pa updates
the active state of pb and the other way around.

linkSelectedActive <- function(plotA , plotB) {
select2active <- function(W) {

if (W == plotA) {
plotB['active '] <- plotA['selected ']

} else {
plotA['selected '] <- plotB['active ']

}
}
c(l_bind_state(plotA , 'selected ', select2active),

l_bind_state(plotB , 'active ', select2active))
}

pb <- l_plot(olive [,4:5], title="Different State Names: Selected")
pa <- l_plot(olive [,6:7], title="Different State Names: Active")
linkSelectedActive(pa, pb)

For the above example, we now change the selected state of pa

pa['selected '] <- sample(c(TRUE ,FALSE), size=pa['n'], replace=TRUE)

Then, the state change binding of pa evaluates the select2active function which in
turn modifies the active state of pb. Next, the state change binding of pb evaluates
the select2active which will evaluate the configure call to pa to change the selected
state. Since the selected state does not change with this configure call, the state change
binding of pa will not be evaluated and that will close the linking cycle. The last config-
ure call is unnecessary and might slow down the interactions with the plots. We show in
section 5.3.4 how this unnecessary last configure call can be avoided with an additional
variable (e.g. inLinking).

A more involved example of linking the selected state of a plot with the active state
of another plot can be found in the l_selectToActive demo that comes with the R loon
package.

136

5.3.3 Linking Items Within a Plot

The following example creates a scatterplot p and links the selected state for the first
three points such that if one of them is selected all three points are selected. One of the
cases where this linking mechanism is useful is when selecting a polygon of a country on
a map and have all the polygons associated to that country selected as in Figure 5.1(b).

linkPoints <- function(w) {
foo <- function () {

l_configure(w,
selected=rep(any(w['selected '][1:3]) ,3) , which =1:3)

}
l_bind_state(w, 'selected ', foo)

}

p <- l_plot (1:4, 1:4)
linkPoints(p)

137

5.3.4 Avoiding Circularity

Assume the following linking scenario: we have three plots pa, pb and pc and when we
interactively select points in one of them the other two plots show the inverted selected
state of that plot. That is, if a point is selected in the first plot it is not selected the other
two; on the other hand, if a point is not selected in the first plot then it is selected in the
other two. Without special care, implementing this linking scenario results in circularity
(i.e. infinite loop) when using state change bindings for the selected state of each plot.
In order to avoid circularity it is necessary to use a “busy“ variable (e.g. inLinking here).
The following code implements the linking scenario of the selected state given above.

linkNegate <- function(plotA , plotB , plotC) {
inLinking <- FALSE
foo <- function(W) {

if (!inLinking) {
inLinking <<- TRUE
if (W == plotA) {

plotB['selected '] <- !plotA['selected ']
plotC['selected '] <- !plotA['selected ']

} else if (W == plotB) {
plotA['selected '] <- !plotB['selected ']
plotC['selected '] <- !plotB['selected ']

} else {
plotA['selected '] <- !plotC['selected ']
plotB['selected '] <- !plotC['selected ']

}
inLinking <<- FALSE

}
}
c(l_bind_state(plotA , 'selected ', foo),

l_bind_state(plotB , 'selected ', foo),
l_bind_state(plotC , 'selected ', foo))

}

pa <- l_plot(olive [,4:5])
pb <- l_plot(olive [,5:6])
pc <- l_plot(olive [,6:7])

linkNegate(pa, pb, pc)

Note the use of the argument W in the callback function foo. W will be substituted with the
widget path name of the plot that evaluates the function foo in its state change binding.

138

5.3.5 Linking Model with Non-Model Layers

Layers do not have a selected state; hence, by default, it is not possible to “select” them
with the mouse cursor and have them highlighted magenta. However, it takes little effort
to interactively select a layer item and have it highlighted magenta. This example will
create an empty plot, layer a heat image and make the rectangles “selectable” with left-
click and Shift -left click for multiple or toggle selection. That is, Shift -clicking on
a rectangle that is already highlighted will toggle the color of the rectangle back to the
original one.
layerSelect <- function(layer , hcol='magenta ') {

col <- layer['color'] # cache color
widget <- attr(layer ,'widget ')
foo <- function(add=FALSE) {

i <- l_currentindex(widget)
if (i == -1) return ()
if (add) {

if (layer['color'][i] == l_hexcolor(hcol)) {
l_configure(layer , color=col[i], which=i)

} else {
l_configure(layer , color=hcol , which=i)

}
} else {

l_configure(layer , color=replace(col , i, hcol))
}

}
tag <- paste0('layer&&', layer)
c(l_bind_item(widget , tag , '<ButtonPress -1>',

function ()foo(FALSE)),
l_bind_item(widget , tag , '<Shift -ButtonPress -1>',

function ()foo(TRUE)))
}

p <- l_plot()
mat <- matrix(gray(seq(0,1, length.out = 24)), ncol =4)
l <- l_layer_rasterImage(p, mat , 0, 0, 1, 1)
layerSelect(l)

A more involved example of linking model with non-model layers is the
'l_us_and_them_choropleth' demo in the loon R package as, discussed in
Subsection 5.3.2 and shown in Figure 5.1. There, the polygons in Figure 5.1(b) can be
“selected” as described above.

139

5.4 Geometry Management

When a loon widget is created it is placed into a new window by default. However, it
is possible to use one of Tk’s geometry manager (i.e. place, grid and pack) to manually
position a loon widget as with a standard Tk widget. All of loon’s widget creator functions
in R (e.g. for plots and inspectors) have an argument named parent that accepts a valid
Tk widget as a parent object (e.g. a toplevel window or a Tk frame). The default parent
argument is NULL which creates a new toplevel window with the loon widget packed into
it.

For the following example, a histogram widget is packed next to a histogram inspector,
see Figure 5.2.

tt <- tktoplevel ()
tktitle(tt) <- 'Histogram Layout Example '
h <- l_hist(parent=tt , x=olive$oleic , useLoonInspector=FALSE)
hi <- l_hist_inspector(parent=tt , activewidget=h)
tkpack(hi, side='right', fill='y')
tkpack(h, side='right', fill='both', expand=TRUE)

With the grid geometry manager it is possible to create a scatterplot matrix using
loon’s scatterplot displays. We do this in the l_pairs function. For example, the following
code creates the scatterplot shown in Figure 5.3.

p <- l_pairs(oliveAcids , color=Area)

The l_pairs function also adds a state binding to every scatterplot such that, when we
zoom and pan in one scatterplot, the displayed x and y ranges in the plot areas of the
scatterplots on the same row and column of the scatterplot matrix will be the same.

140

(a) scatterplot of life expectancy vs. fertility

(b) Choropleth map

Figure 5.1: Life expectancy (in years) vs. fertility (number of children per women) for dif-
ferent countries in 2002. The data is from the Gapminder data project [35]. The choropleth
plot (right panel) encodes life expectancy as color.

141

Figure 5.2: Geometry management.

142

Figure 5.3: Scatterplot matrix using grid geometry manager.

143

5.5 Writing an Inspector

The inspectors provided with loon may not cover all the actions that are useful for a
particular analysis. In this section, we show how to create a custom inspector for a display.
That is, we create a new graphical user interface and have its widgets modify the states of
a display and also show information about that display.

In the following example, we define a function aspectRatioInspector which creates
a custom inspector for displaying and modifying the aspect ratio of a plot that is passed as
an argument to this function.

1 aspectRatioInspector <- function(p) {
2
3 curAspect <- tclVar('1')
4 entryVal <- tclVar('1')
5
6 tt <- tktoplevel ()
7 tktitle(tt) <- 'Aspect Ratio Inspector '
8 tkgrid(tklabel(tt , text=paste0('widget: ', p)),
9 sticky='w', padx=5, pady =5)

10 l <- tklabel(tt, textvariable=curAspect)
11 e <- tkentry(tt, textvariable=entryVal , width =5)
12 b <- tkbutton(tt, text='set', command=function () setAspect ())
13 tkgrid(tklabel(tt , text='Current Aspect Ratio:'), l,
14 sticky='sw', padx=5, pady =5)
15 tkgrid(tklabel(tt , text='New Aspect Ratio:'), e, b,
16 sticky='w', padx=5, pady =5)
17
18
19 setAspect <- function () {
20 `l_aspect <-`(p, as.numeric(tclvalue(entryVal)))
21 }
22 getAspect <- function () {
23 tclvalue(curAspect) <- round(l_aspect(p), 3)
24 }
25 getAspect ()
26
27 l_bind_canvas(p, '<Configure >', getAspect)
28 l_bind_state(p, 'all', getAspect)
29 tt
30 }

Lines 6 to 16 in the above code create the graphical user interface with standard Tk wid-

144

gets, see Figure 5.4. Lines 19 to 21 define the function setAspect that takes the value
from the entry box and updates the aspect ratio of the plot. Lines 22 to 24 define the
getAspect function that updates the label on the inspector with the current aspect ratio
of the plot. On line 27 to 29 we add the bindings necessary to keep the current aspect
ratio label updated; the aspect ratio can change when the plot is resized or with some plot
state changes (e.g. zoomX, showLabels and labelMargins). The aspect ratio inspector, as
seen in Figure 5.4, can be added to a histogram, scatterplot and graph widget as in the
following example.

p <- l_plot(oleic~stearic , color=Area)
aspectRatioInspector(p)

Figure 5.4: Custom inspector for aspect ratio.

5.6 Other Topics

5.6.1 Export as an Image

loon’s plots can be exported as images with the l_export function. The supported image
formats are dependent on the system environment. Plots can always be exported to the
Postscript format. Exporting displays as .pdfs is only possible when the command line
tool epstopdf is installed. Finally, exporting to either png, jpg, bmp, tiff or gif requires
the Img Tcl extension. When choosing one of the formats that depend on the Img extension,
it is possible to export any Tk widget as an image including inspectors.

When a plot is created with the default parent=NULL argument then the shortcut
CTRL-p opens a dialog to export the plot as an image.

145

5.6.2 Animations

The Tk canvas is double buffered and therefore loon’s plots are double buffered too. Cre-
ating an animation is possible by successively changing plot states or adding layers. For
example, projecting points in 3 dimensions onto a plane that rotates from two variables to
two other variable (i.e. a rigid rotation) can be done as follows.

X <- as.matrix(olive [,3:5])
p <- l_plot(X[,1], X[,2], color=Area , showLabels=FALSE)

for (alpha in seq(0, pi/2, length.out =60)) {
A <- matrix(c(0,0,1,cos(alpha),sin(alpha),0),

byrow=FALSE , ncol =2)
coords <- t(A) %*% t(X)
l_configure(p, x=coords[1,], y=coords [2,])
l_scaleto_world(p)
tcl('update ', 'idletasks ')
Sys.sleep (0.01)

}

The Tk canvas does not refresh while loon is busy (or the Tcl interpreter in general). A
tcl('update', 'idletasks') will force the canvas to refresh itself.

5.6.3 Color Mapping

There are two commonly used mapping schemes of data values to colors: one scheme maps
numeric values to colors on a color gradient and the other maps nominal data to colors that
can be well differentiated visually (e.g. to highlight the different groups). Presently, loon
always uses the latter approach for its color mappings.

When assigning values to a display state of type color loon checks if these values are
valid Tk color specifications. If one or more of the values are not valid then loon maps all
the data values to colors from an internal list; that is, with loon’s color mapping, every
unique data value is assigned a different color. loon’s default color list is composed of
the first 11 colors from the hcl color wheel in Figure 5.5. The letters in hcl stand for hue,
chroma and luminance, and the hcl wheel is useful for finding “balanced colors” with the
same chroma (radius) and luminance but with different hues (angles), see Ihaka [45].

146

The colors in loon’s internal color list are also the default ones listed as the “modify
color actions” in the analysis inspectors, see Figure 4.5. To query and modify loon’s color
list use l_getColorList and l_setColorList.

In the case where there are more unique data values than colors in loon’s color list
then the colors for the mapping are taken from different locations distributed on the hcl
color wheel as seen in Figure 5.5. One of the advantages of using the hcl color wheel is
that one can obtain any number of “balanced colors” with distinct hues. This is useful
in encoding data with colors for a large number of groups; however, it should be noted
that the more groups we have the closer the colors sampled from the wheel become and,
therefore, the more similar in appearance.

A common way to sample distinct “balanced colors” on the hcl wheel is to choose evenly
spaced hues distributed on the wheel [45] (i.e. angles on the wheel). However, this ap-
proach leads to color sets where most colors change when the sample size (i.e. the number
of sampled colors from the wheel) increases by one. For loon, it is desirable to have the
first m colors of a color sample of size m+1 to be the same as the colors in a color sample of
size m, for all positive natural numbers m. Hence, we prefer to have a sequence of colors.
This way, the colors on the inspectors stay relevant (i.e. they match with the colors of
the data points) when creating plots that encode with color a data variable with different
number of groups. If there are more unique colors in the data points than there are on
the inspectors then it is possible to add the next five colors in the sequence of the colors
with the “+5” button. Alternatively, the “+” button on the modify color part of the analysis
inspectors allows the user to pick any additional color with a color menu.

We implemented such a color sampling scheme (or color sequence generator) that also
makes sure that neighboring colors in the sequence have different hues. Figure 5.5 shows
the color generating sequence twice, once for 16 colors and once for 32 colors.

When other color mappings of data values are required (e.g. numerical data to a color
gradient) then the functions in the R package scales [82] provide various mappings in-
cluding mappings for qualitative, diverging and sequential values. For example, the fol-
lowing code creates two plots with different color encoding of the point glyphs: once with
loon’s default mapping for the olive Area variable and once by encoding the olive palmitic

147

(a) sampling 16 colors (b) sampling 32 colors

Figure 5.5: Hcl colors: luminance is 70, chroma on circle is 66. The numbers indicate
loon’s default color mapping order.

variable with a sequential color gradient of light green to dark green, see Figure 5.6.

p_loon <- l_plot(stearic~oleic , color=Area)
library(scales)
p_custom <- l_plot(stearic~oleic ,

color = col_numeric("Greens", domain = NULL)(palmitic))

148

(a) Area encoded with loon’s default color mapping

(b) palmitic encoded with shades of green

Figure 5.6: Examples of mapping data values to colors.

149

Chapter 6

General Statistical Interaction
Examples

In this chapter, we illustrate how we can enhance four common statistical methods by
using interactive visualization with loon. In all of these examples, a user interface action
(on a plot or control panel) evaluates R code which in turn updates the plot(s) to visualize
the desired results, hence providing a “real-time” exploration of the data and the applied
model. These examples are exploratory in terms of looking at the data and/or models.
Also, we use these examples to demonstrate that loon is a useful tool for exploratory
programming [65]; that is, loon is very efficient in implementing advanced interaction
settings and, hence, it can be used to quickly try and compare different interactive ways
to look at the data.

In Section 6.1, we use sliders to control the parameters of a Box-Cox transformation for
data on both x and y axes. This is our “Hello World” example of interactive statistical visu-
alization with loon as power transformations have been used previously to demonstrate
statistically meaningful interactivity with software such as DINDE [58] and Lisp-Stat [76]
pp. 60-62.

Section 6.2 presents a setting where a new control panel is created to fit regression
lines of a certain degree to points selected on a scatterplot. The example shows how control
panels and functionality can be dynamically created and added ad-hoc to a loon plot.

150

In Section 6.3, we introduce a setup where a simple linear regression is enhanced with
linked residual and leverage plots. Points on the plot can be interactively removed from
the OLS, or temporarily moved around to get an insight of the sensitivity of the OLS fit
to certain observations. This example serves as a teaching and exploration tool where the
user can get insight into the nature of an OLS by modifying the data interactively.

Finally, in Section 6.4, we show a tool to highlight the k nearest neighbors of the se-
lected points in a particular sub-space. This an example of an ad-hoc tool to explore high
dimensional data.

The code for these examples is distributed in the loon R package as package demos
and also attached in the Appendix A. The functionality of most examples discussed here
is encapsulated into a function and could be applied to other data or plots. However,
when writing the code for these examples, we chose simplicity over generality to give the
reader an idea of how much R code is required to implement the desired functionality for a
particular well-formatted data set. Hence, each example code could be further developed
to be more robust and with more generalized functionality.

6.1 Power Transformations

Figure 6.1 shows a scatterplot and two sliders (i.e. Tk scale widgets) that control the λ

parameter of a Box-Cox power transformation [11] for both x and y coordinates as shown
in Equation 6.1.

y(λ) =


yλ−1
λ

λ 6= 0

log y λ= 0
, y> 0 (6.1)

The data used for Figure 6.1 are those of brain vs. body weight for 62 mammals [1]. The
code for this example can be found in the 'l_power' demo of the loon R package and in
Section A.1. With this code, we create a function power with 31 non-empty lines of R code
that generates the scatterplot, scales and bindings for the desired functionality. Then,
Figure 6.1 was created as follows

151

library(MASS)
p <- with(mammals , power(body , brain ,

xlabel ="body weight in kg",
ylabel ="brain weight in g",
title=" Brain and Body Weights for 62 Species of Land Mammals",
itemlabel=rownames(mammals),
showItemlabels=TRUE))

Moving the two sliders will apply the power transformation in Equation 6.1 to the corre-
sponding data and updates the scatterplot accordingly. Every change will end with a scale
to world operation (i.e. using the l_scaleto_world function) in order to display all the
data.

Figure 6.1: Power transformation example.

152

6.2 Interactively Adding Regression Lines

In this example, we demonstrate a tool to fit linear regression models of user-defined de-
grees to the selected points in a scatterplot. The code for this tool can be found in the
'l_add_regressions' demo and in Section A.2. With this code, we first define the func-
tion addRegressionLinesGUI in 33 non-empty lines of code. This function takes the scat-
terplot handle as an argument and creates the GUI shown in Figure 6.2(a). This control
panel provides a slider to choose the degree of the regression, a button to choose the color
of the layered regression line, and an “add” button that layers the regression line for the
selected points onto the scatterplot. In addition to layering the line, the point glyphs of the
selected points are changed to have the glyph type ocircle (i.e. outline only) and to have
the color of the regression line. Figure 6.2(b) shows a scatterplot with simulated data and
three regression lines with degree 1, 3 and 5 from the left to the right. The code to create
the setup in Figure 6.2 is

x <- runif (500)*7
y <- sapply(x, function(x) {

if (0 <= x && x < 2) {
5*x + rnorm (1,0,1)

} else if (2 <= x && x < 5) {
8.6 + 2*x-.6*x^2 + rnorm (1,0,.5)

} else {
8.5 - log(x) + rnorm (1,0,.8)

}
})

p <- l_plot(x,y)
addRegressionLinesGUI(p)

The second last line creates the scatterplot whereas the last line creates the control panel
to fit and layer the regression lines onto the scatterplot.

The addRegressionLines tool can be used for every loon scatterplot as the plot handle
argument is sufficient to retrieve the x and y coordinates of the selected points and to layer
the regression lines.

153

(a) control panel

(b) scatterplot with regression lines

Figure 6.2: Interactively adding regressions lines.

154

6.3 Sensitivity Analysis of a Simple Linear Regression

In this example, we use the swiss data [53] and fit a simple linear regression on the
fertility measure against the infant mortality counts for 47 French-speaking provinces of
Switzerland at about 1888. The swiss data set is distributed with the datasets R package
and the code for this example can be found in the l_regression_influential demo of the
loon R package and also in Section A.3. Figure 6.3(a) shows the data, regression line and
the 95% and 99% confidence intervals (blue shades) and prediction intervals (pink shades).
Figure 6.3(b) shows the residuals vs. fitted plot, Figure 6.3(c) shows the leverage plot and
Figure 6.3(d) shows the associated spatial location for each province relative to the border
of Switzerland. All these plots are linked such that the analyst can interactively look for
patterns. For example, in Figure 6.3, we select the provinces with positive residuals and
from the map plot we note that these provinces tend to be located in the eastern region of
the provinces.

In the l_regression_influential demo, we also add two state bindings to the scat-
terplot with the least-squares fit, see Figure 6.3(a). One state binding is bound to color
state changes and re-calculates the OLS for the blue points only (the blue shown in the
first color modify box of the plot inspector) and updates the regression related plots ac-
cordingly, see Figure 6.4. In Figure 6.4, the points colored brown have been removed from
the OLS and, as a result the prediction and confidence intervals have become narrower.
The red line represents the new fit and the black line the original fit. This functionality is
very useful for interactively removing outliers.

The second state binding is bound to xTemp and yTemp state changes and updates the
OLS using the temporary coordinates. For example, in Figure 6.5, the outliers are still
removed as in previous example and, additionally, the data point with the highest leverage
value has been selected. Next, we moved this point around and eventually placed it as
shown in Figure 6.5. We note that the new regression line is not substantially affected by
removing some outliers and by moving the most influential point.

Adding functionality to a simple linear regression setting as demonstrated with this
example could have a big impact on teaching regression analysis and can also be helpful
for experienced statisticians.

155

(a) x vs y (b) residuals

(c) leverage (d) swiss map

Figure 6.3: Influential points in regression analysis.

Figure 6.4: Influential points in regression: recolor points to remove outliers.

156

Figure 6.5: Influential points in regression: sensitivity analysis.

157

6.4 Interactive K Nearest Neighbor highlighting

In this section, we provide R code to highlight the k nearest neighbors of the points selected
on a scatterplot. The section is divided into two parts to describe the approach we took to
solve this problem. That is, we first wrote code to quickly get to the desired functionality:
highlight the k nearest neighbors of the selected points. Next, we refined the k nearest
neighbor highlighting idea to a more involved setting and built a feature-rich new tool.

6.4.1 A Quick Solution

Executing the following code results in the k = 3 nearest neighbors of the selected points
being highlighted in the scatterplot with handle p. We highlight the neighbors by increas-
ing their point size and coloring them orange. For multiple selected points, the measure
of nearness is defined by the minimum distance to any of the selected points.

1 n <- 100
2 x <- runif(n)
3 y <- runif(n)
4
5 k <- 3
6 D <- as.matrix(dist(cbind(x,y), method="euclidian"))
7 I <- matrix(rep(1:n, n), ncol=n, byrow=TRUE)
8
9 hnn <- function(W) {

10 l_configure(W, color='steelblue ', size =5)
11 isel <- which(l_cget(W, 'selected '))
12 if(length(isel) != 0) {
13 ind_close <- unique(c(I[isel , -isel])[order(c(D[isel , -isel]))])
14 ind <- ind_close[seq(1, min(k, length(ind_close)))]
15 l_configure(W, color='orange ', size=15, which=na.omit(ind))
16 }
17 }
18 p <- l_plot(y~x, showScales=TRUE)
19 l_bind_state(p, 'selected ', function(W)hnn(W))
20 l_aspect(p) <- 1

Line 2 and 3 generate the data vectors x and y and line 5 generates the pairwise euclidean
distance matrix D for the elements in x and y. The matrix I has the same dimension
as D and its elements contain the corresponding column indices for D. The matrix I is
used to get the point indices of the nearest neighbors. The function hnn which is defined

158

on lines 9−17 first resets the size and color of all points and assigns the point indices
of the selected points to the variable isel. If any points are selected then the sub-matrix
D[isel, -isel] contains all the distances to the non-selected points and I[isel, -isel]
contains their point indices. Both sub-matrices are then vectorized and used to find the
closest points. Line 18 creates the scatterplot of x and y and line 19 adds a state binding
to this scatterplot that evaluates the hnn function at every selected state change. We
wrapped the function call to hnn in an anonymous function in order to be able to assign
new functions to the hnn variable for debugging purposes. On line 20, we set the aspect
ratio to 1 so that the inter-point distances on the screen are proportional to the data inter-
point distances. Figure 6.6 shows a plot produced with the above code and with 4 selected
points.

Figure 6.6: 3 nearest neighbors highlighted.

159

This example shows how loon and R can be used to quickly get to the desired function-
ality. In the above code, the hnn function scopes for D and I in the global environment and,
hence, it is not safe to reuse this function. To create a reusable version we could wrap the
functionality into a function as follows

highlight_knn_quick <- function(p, D, k=3) {
n <- dim(D)[1]
I <- matrix(rep(1:n, n), ncol=n, byrow=TRUE)
hnn <- function () {

l_configure(p, color='steelblue ', size =5)
isel <- which(l_cget(p, 'selected '))
if(length(isel) != 0) {

ind_close <- unique(c(I[isel , -isel])[order(c(D[isel , -isel]))])
ind <- ind_close[seq(1, min(k, length(ind_close)))]
l_configure(p, color='orange ', size=15, which=na.omit(ind))

}
}
l_bind_state(p, 'selected ', hnn)

}

The highlight_knn_quick function can then be used for any scatterplot without any scop-
ing issues. Also, the distance matrix argument D accepts any valid distance matrix includ-
ing inter-point distances in more than two dimensions. For example, the following code
creates a scatterplot using the olive data and then uses the knn_simple function to have
the 5 nearest neighbours highlighted in the complete oliveAcids data space.

p <- l_plot(oleic~stearic)
highlight_knn_quick(p, D=as.matrix(dist(scale(oliveAcids))), k=5)

In the next subsection we present a more capable k nearest neighbor highlighting tool.

6.4.2 A Solution With Control Panel

The code included in the l_knn demo and Section A.4 defines the highlight_knn func-
tion that provides more features than the highlight_knn_quick function defined in the
previous subsection. For example, the call

sOiveAcids <- data.frame(scale(oliveAcids))
p <- with(sOiveAcids , l_plot(oleic~stearic , color=Area))
highlight_knn(p, data=sOiveAcids , k=5)

160

creates the scatterplot with handle p and the control panel shown in Figure 6.7(a). This
control panel can be used to switch the nearest neighbor highlighting on and off, choose
the k, select between two nearest distance measures and choose a subspace for which the
point inter-distances are calculated. When selecting the “mean” option for the “nearest
to” radiobutton, the center of the selected points in the euclidean space is used to get
the distances of the non-selected points. The highlight_knn highlights the k nearest
neighbors by changing the glyph type to rectangles and rank their sizes according to their
distance measures; that is, the biggest square is closest to the selected points. Also, when
the selected state changes, the size and glyph states of the k nearest neighbors get
cached so that these states can be reset once the points are no longer highlighted.

Figure 6.7(b), Figure 6.7(c) and Figure 6.7(d) show the same plot region on a scatterplot
display once with no selected point, once with one selected point and once with a group of
selected points for the settings shown in the control panel in Figure 6.7(a).

161

(a) control panel (b) no points selected

(c) single point selected (d) group of points selected

Figure 6.7: K nearest neighbors highlighting for subspaces.

162

Chapter 7

Exploring High-Dimensional Data

In this chapter, we present new tools for exploring high-dimensional data. In Section 7.1,
these tools are centered around navigation graphs. The building blocks for working with
navigation graphs in loon were introduced in Subsection 4.7.4 and include the graph dis-
play, navigators and contexts. Now, we use these building blocks to construct data explo-
ration settings with navigation graphs that use the canonical graph semantic (i.e. with the
geodesic2d context). In Subsection 7.1.1 we present the l_navgraph function that sets up
a navigation graph setting based on a data set alone. In sections 7.1.2 to 7.1.4 we present
tools that create settings for dealing with large graphs by finding interesting sub-graphs
based on measures of interestingness for variables or variable pairs, as we discussed in
Subsection 1.4.1. Next, in Subsection 7.1.5, we discuss the implementation of a new navi-
gation graph semantic with loon. The novel graph semantic that we implement provides
another way to deal with large graphs by slicing navigation graphs.

Section 7.2 ends this chapter with the introduction of a novel point glyph called spiro
glyph. A spiro glyph is the trajectory of a point that is projected onto a moving plane on
that plane. That is, spiro glyphs capture the trajectories of the points in a smooth movie
of different projections, for example, from traversing a navigation graph or from a grand
tour.

163

7.1 Navigation Graphs

7.1.1 Canonical Navigation Graph Setup

The l_navgraph function provides a quick and convenient way to construct a navigation
graph setup using the canonical graph semantic (i.e. the geodesic2d context) for a data
set. For example, the following code creates the setup shown in Figure 7.1:

nav <- l_navgraph(data=oliveAcids , color=Area)

That is, for the above code, the l_navgraph function creates three transitions graphs, a
graph widget and a graphswitch widget, and it further adds a navigator to the graph wid-
get and a geodesic2d context to the navigator. The geodesic2d context creates, in turn,
the scatterplot widget that displays the projected data based on the navigator’s position.
The three automatically created transition graphs are the saturated 3d and 4d transition
graphs and a complete 2d space graph for all variable pairs of oliveAcids. The return
value of the l_navgraph function, here assigned to nav, is a list with the graph, graph-
switch, plot, navigator and context handles.

The l_navgraph function also allows for some customization of the default graph set-
ting with the optional named arguments separator and graph. The separator argument
specifies a string (without spaces) that is used to separate the variable names in the nodes
of the transition graphs. The optional graph argument allows the user to specify a custom
transition graph for the navigation graph setting.

The setting created by l_navgraph can be used as a starting point for a more in-
volved data exploration setting. This is possible due to loon’s modular framework; the
l_navgraph function returns all widget and object handles for the navigation graph set-
ting it created. Hence, with these handles one could, for example, add more transition
graphs to the graphswitch widget, add the k nearest neighbor highlighting from Sec-
tion 6.4 to the scatterplot or add new point glyphs to the scatterplot. Note that these kind
of additions and modifications are not possible for a running navigation graph session with
RnavGraph. For example, the following code adds serialaxes glyphs to the scatterplot in
Figure 7.1:

164

library(PairViz)

gl <- l_glyph_add_serialaxes(nav$plot ,
data=oliveAcids ,
sequence=c(t(hpaths(names(oliveAcids)))),
showArea=FALSE)

l_configure(nav$plot , glyph = gl, size =1)

The variable sequence for the serialaxes glyphs is chosen to have every variable pair
neighbouring at least once, as proposed in Hurley and Oldford [39]. That is, the vari-
able sequence is the concatenated Hamiltonian decompositions of the complete variable
graph for the oliveAcids data. The scatterplot showing these serialaxes glyphs is seen in
Figure 7.2.

165

(a) Navigation graph and Graphswitch

(b) Scatterplot display showing the projection according to the navigator position

Figure 7.1: l_navgraph setup.

166

Figure 7.2: Star glyphs.

167

7.1.2 Dynamic Navigation Graphs Based on Measure Ranges

In Subsection 1.4.1, we discussed the possibility of associating a measure of “interesting-
ness” to either the nodes or the edges of a transition graph to determine an interesting
sub-graph. The l_ng_ranges function creates such a setting (i.e. for finding a sub-graph
based on measures) by providing a min-max-slider to filter measures associated with the
nodes of some saturated transition graph.

We now explain the details of l_ng_ranges function based on an example setting for
the following manageable 5-dimensional randomly generated data:
n <- 100
dat <- data.frame(

A = rnorm(n), B = rnorm(n), C = rnorm(n),
D = rnorm(n), E = rnorm(n)

)

Assume that we are interested in a transition graph for these data that has at most the
following five 2d-spaces represented by its nodes: (A,B), (A,C), (B,D), (D,E) and (A,E).
Also, assume that, for these data, one measure of interest is the correlation of the variable
pairs and another measure is assigned by us based on some judgment-based criteria. The
l_ng_ranges function requires the measure values for the variable pairs to be arranged
in a data frame as follows:
m2d <- data.frame(

cor = with(dat , c(cor(A,B), cor(A,C), cor(B,D), cor(D,E), cor(A,E))),
my_measure = c(1, 3, 2, 1, 4),
row.names = c('A:B', 'A:C', 'B:D', 'D:E', 'A:E')

)

The m2d data set looks as follows:
m2d

cor my_measure

A:B 0.06452377 1

A:C 0.13580683 3

B:D 0.10066350 2

D:E -0.02725931 1

A:E 0.18043338 4

168

Note that the row names of m2d represent the 2d variable spaces with a string of the
variable names concatenated by the colon character. Hence, m2d defines a measure named
cor and one named my_measure for five 2d sub-spaces of the data dat. The following
l_ng_ranges call creates the setup shown in Figure 7.3:

nav <- l_ng_ranges(measures=m2d , data=dat , separator=':')

Figure 7.3: l_ng_ranges setup with 2d measures.

Figure 7.3 shows a graph widget with a custom control panel packed next to it and a sep-
arate scatterplot widget that is driven by the navigator in the graph widget. The control
panel has a list of all measure names and provides a min-max-slider to filter the variable
pairs based on their associated selected measure to create a transition graph. For exam-
ple, in Figure 7.3, the control panel is set to use the cor measure to create a 3d transition
graph with nodes whose corresponding cor measure lies in the interval [0.041741,0.1843].
Only one measure can be used to filter the variable pairs of the transition graph. The re-
turn value of l_ng_ranges is a list with graph, navigator, context and plot handles.

169

With l_ng_ranges it is also possible to dynamically build transition graphs that are
based on 1d measures for single variables. With 1d measures, the min-max slider filters
variables, and the transition graph will have nodes for all variable pairs in the subset of fil-
tered variables. For example, assume we are interested in the following robust measures:
median, inter-quartile range, kurtosis and skewness. We can create an l_ng_ranges ses-
sion for 1d measures that works as in the case of 2d measures with the exception that the
measures are now for variables in the data and not for variable pairs:

iqr <- function(x) { diff(quantile(x, probs=c(0.75 , 0.25))) }
kurtosis <- function(x) { mean((x-mean(x))^4)/mean((x-mean(x))^2)^2 - 3 }
skewness <- function(x) { mean((x-mean(x))^3)/sd(x)^3 }

m1d <- data.frame(
median = sapply(dat , median),
irq = sapply(dat , iqr),
kurtosis = sapply(dat , kurtosis),
skewness = sapply(dat , skewness),
row.names = names(dat)

)

The m1d data set looks as follows:

m1d

median irq kurtosis skewness

A -0.02178844 -1.152425 0.2259010 0.03878397

B -0.12519883 -1.354264 -0.3003271 -0.05734108

C 0.10453212 -1.332907 -0.1755559 -0.17443438

D -0.13740205 -1.428953 -0.1196611 0.11410720

E 0.09957466 -1.141733 0.3152615 -0.30971828

The l_ng_ranges function with the m1d measures is invoked as follows:

nav <- l_ng_ranges(measures=m1d , data=dat , separator=':')

Figure 7.4 shows the setup created by this code. The l_ng_ranges function knows whether
the data in the measures argument is for single variables or for variable pairs by checking
whether the row names of the measures data separate into one or two variables using the
separator string.

170

Figure 7.4: l_ng_ranges setup with 1d measures.

We now provide an example of l_ng_ranges for the olive data and 2d scagnostics mea-
sures [83]. We start by calculating the scagnostics measures for the variable pairs in
oliveAcids:
library(scagnostics)
scags <- scagnostics(oliveAcids)

To make the return value of the scagnostics function a valid measures argument for
l_ng_ranges, it is necessary to strip the class attribute from scags, transpose the matrix
and replace the spaces in the row names of the matrix:
m2d_scags <- t(unclass(scags))
row.names(m2d_scags) <- gsub(' ', '', row.names(m2d_scags), fixed=TRUE)

Finally, the l_ng_ranges session is created in the following code and shown in Figure 7.5.
nav <- l_ng_ranges(measures=m2d_scags , data=oliveAcids ,

separator='*', color=Area)

Note that the l_ng_ranges is a generic function with a method for objects of class scagnos-
tics. Hence, the following call creates the same setting as obtained with the above code.
nav <- l_ng_ranges(measures=scagnostics(oliveAcids), data=oliveAcids , color=Area)

171

Figure 7.5: l_ng_ranges using scganostics measures and the olive data.

7.1.3 Dynamic Navigation Graph based on Plots

The l_ng_plots function differs from the l_ng_ranges function in that it creates a scat-
terplot matrix of the measures instead of a control panel in order to filter measures. That
is, it uses the selected state of the scatterplots in the scatterplot matrix to choose which
sub-spaces should be included in the navigation graph. If a single measure is specified a
histogram is created instead of a scatterplot matrix.

The l_ng_plots function is used exactly the same as the l_ng_ranges function. In
fact, for the l_ng_ranges and l_ng_plots functions calls are interchangeable (though
resulting with different settings). For the following example we use the Frey faces data
that contains 1965 greyscale images of Brendan Frey’s face, taken from sequential frames
of a small video. The size of each image is 20×28 pixels and the data can be found as
the frey data frame in the RnavGraphImageData R package. We reduce the 20 ·28 = 560
dimensional data to 15 dimensions using locally linear embedding [62] with 12 nearest
neighbors. We then calculate the scagnostics measures on the variable pairs of the reduced
data and create a l_ng_plots setting with these data.

172

library('RnavGraphImageData ')
library(RDRToolbox)
library(scagnostics)
data(frey)

frey.lle <- as.data.frame(LLE(t(frey), dim=15, k=12))

nav <- l_ng_plots(scagnostics(frey.lle), frey.lle)

Figure 7.6 shows the setting created with the above code. We selected the nodes with
high striated and low skewed scagnostics measures. The return value of l_ng_plots is
a list with the graph, navigator and scatterplot handles. We continue the above example
by adding image glyphs with the Frey faces to the scatterplot. Figure 7.7(a) shows the
scatterplot with the face image glyphs scaled to the points in the lower “spike” in the
scatterplot in Figure 7.6. Figure 7.7(b) shows the same faces arranged on a grid.

frey.imgs <- l_image_import_array(frey , 28, 20, img_in_row=FALSE , rotate =90)
gl <- l_glyph_add_image(nav$plot , images=frey.imgs , label="frey faces")

7.1.4 Closures of Measures

When the functional form of the measures used for l_ng_ranges and l_ng_plots is known
then it is possible to focus on a subset of the data points and have the measures recalcu-
lated for that subset. To illustrate the usefulness of recalculating measures for a subset we
look at the olive data and the clumpy scagnostics measure. The scatterplots with a high
clumpy scagnostics measure (relative to the other scatterplots) for the olive data are those
that are separated into the two point clouds as seen in Figure 7.8(a). When the points
in the smaller point cloud on the left hand side in Figure 7.8(a) are deactivated and the
clumpy scagnostics measure is recalculated for all scatterplots of the active points then the
scatterplot in Figure 7.8(b) has a high clumpy measure relative to the other scatterplots.

The measures1d and measures2d functions can be used to specify the functional form of
1d or 2d measures for the l_ng_ranges and l_ng_plots functions. That is, the measures1d
and measures2d functions encapsulate the measure functions, data and separator, and re-
turn a closure of class measures. The l_ng_ranges and l_ng_plots are generic functions
and have a method for objects of class measures. This method creates the same setup as

173

described in the previous sections and adds and additional panel with buttons for recal-
culating the measures based on the active or selected points in the scatterplot that shows
the projections.

We start with an example of closures for 1d measures for the scaled olive data.

s_oliveAcids <- scale(oliveAcids)

m1dc <- measures1d(data=s_oliveAcids , separator='+',
median = median ,
irq = iqr ,
kurtosis = kurtosis ,
skewness = skewness)

The m1dc object is a closure (i.e. a function with access to the defined s_oliveAcids,
measures and spearator) and returns the measures for all data points if no argument is
used when evaluating the function

m1dc()

median irq kurtosis skewness

palmitic -0.18234086 -1.5718396 -0.1863765 0.3422686

palmitoleic -0.30659302 -1.5525476 -0.5786855 0.4540451

stearic -0.15962430 -1.1974439 1.5300760 0.9847540

oleic -0.02278960 -1.6756601 -0.8835291 0.0762623

linoleic 0.20375695 -1.6886380 -1.1970407 -0.2087071

linolenic 0.08573630 -1.0987996 0.4774809 -0.5485431

arachidic 0.13173241 -0.9078426 0.9716094 -0.9785804

eicosenoic 0.05102012 -1.8461589 -1.1503986 0.3402334

The m1dc closure also accepts a logical vector to define the subset of data points that should
be used to calculate the measures:

174

m1dc(Area == 'North -Apulia ')

median irq kurtosis skewness

palmitic -1.0720614 -0.7236394 0.7242277 0.5267205

palmitoleic -1.2590762 -0.3428939 0.2039190 0.5311321

stearic 0.1941660 -0.7620098 -0.2249252 -0.1174545

oleic 1.2524370 -0.5322685 1.7274993 -0.7850680

linoleic -1.1553907 -0.3336090 1.8787465 0.8522058

linolenic 1.0110413 -1.0795225 -0.6024142 -0.5472931

arachidic 0.7672223 -0.7262741 -1.0290224 -0.2372025

eicosenoic 1.1871179 -0.7810672 -0.5531112 0.6626874

The m1dc measures object can be used for the measures argument of l_ng_ranges. The
data argument is not necessary as the data is already accessible through the m1dc object
(with m1dc('data')). Hence, the following code creates the l_ng_ranges setup shown in
Figure 7.9.

nav <- l_ng_ranges(measures=m1dc , color=Area)

Note that the control panel in Figure 7.9 has the added “Recalculate Measures based on”
section with the two buttons labeled “active” and “selected”. These buttons recalculate the
measures for all active or selected points, respectively, in the scatterplot in Figure 7.9.

Finally, we also provide the scagnostics2d function that creates a measures object for
the scagnostic measures. For example, the following code shows the setups in Figure 7.10.

scags <- scagnostics2d(oliveAcids , separator=':')
nav <- l_ng_plots(scags , color=Area)

175

Figure 7.6: l_ng_plots setup.

176

(a) from a “spike” of the LLE data

(b) arranged on a grid

Figure 7.7: Frey faces image glyphs.

177

(a) High clumpy for all points (b) High clumpy for subset

Figure 7.8: Scatterplot of “clupmy” olive data.

Figure 7.9: l_ng_ranges setup with measures1d.

178

Figure 7.10: l_ng_plots for scagnostics2d and high sparse and low outlying points se-
lected.

179

7.1.5 Exploring New Graph Semantics

In this section, we discuss the implementation of a new graph semantic with loon. We first
give a high-level description for implementing a novel graph semantic and then provide a
concrete example.

In general, to implement a new graph semantic, a graph widget with a navigation
graph and navigator is needed to start. The following code creates a 3d transition graph
named G, a graph widget g3d that visualizes G and finally adds a navigator to the graph
widget.

G <- loongraph(nodes=c('A:B:C', 'A:B:E', 'A:C:D'), from = c('A:B:C', 'A:B:E'),
to = c('A:B:E', 'A:C:D'), isDirected = FALSE)

g3d <- l_graph(G, x = c(0, 4, 1), y = c(3, 2, 1))
nav <- l_navigator_add(g3d)

The setting created by the above code is shown in Figure 7.11(a). The new semantic needs
to be defined in terms of navigator changes or position on the transition graph. To do
so, a function, for example, mySemantic, needs to be defined which is evaluated with every
navigator state change (i.e. by using state change bindings, see Subsection 5.2.2). For now,
assume that our navigation graph semantic of interest only prints the navigator location
to the prompt:

mySemantic <- function () {
cat(paste0('navigator is at ', tail(nav['from'], 1),

' --(', round(nav['proportion '],2), ')-- ',
nav['to'], '\n'))

}
l_bind_state(nav , 'all', function () mySemantic ())

Note that the mySemantic function scopes for the navigator handle nav to print out the
current navigator location. For the navigator location in Figure 7.11(a), the last massage
on the R prompt is

navigator is at A:B:C --(0.2)-- A:B:E

The above example can be used as a starting point to implement a new graph semantic.
However, here are some further considerations. It should be possible to parse the spaces

180

from the graph nodes and, hence, also from the from and to navigator states. If the history
of the navigator positions is required for the graph semantic then the mySemantic function
(or whatever function is bound to the navigator state changes) needs to keep track of the
previous navigator positions.

We now change the above setup (by overwriting the mySemantic function) to provide
a more involved and novel graph semantic. The new graph semantic for the transition
graph g3d drives a 2d space graph in a new graph widget g2d as follows. The nodes of g3d
represent 3d spaces and the spaces are separated with the colon character. If the navigator
is on an edge then the space of the navigator is defined to be the union of the spaces of
the adjoining nodes. If the navigator is on a node then the space of the navigator is the
space of the node. Then, our novel graph semantic creates a complete 2d space graph in
g2d with nodes that representing all variable pairs of the navigator space. In addition, the
colors of the nodes of g2d are controlled during an edge transition as follows

• in blue: the spaces in g2d that are present before and after the edge transition

• in white-gray-black: the spaces that fade in and out in g2d during the navigator
transition on the edge from one node into another

• in yellow: the spaces that exist in g2d only when the navigator is on the edge

It is possible to extend this setup by adding a navigator and a context2d to the g2d
graph to create a setting that shows the projections using the canonical graph semantic
as in the other examples in this section.

g2d <- l_graph()
current_vars <- character ()

mySemantic <- function () {
space <- tail(nav['from'], 1)
if (as.numeric(nav['proportion ']) != 0)

space <- c(space , head(nav['to'], 1))
vars <- unique(unlist(strsplit(space , ':', fixed=TRUE)))

if (!identical(vars , current_vars)) {
create new graph for g2d
nodes <- apply(combn(vars , 2), 2, function(x)paste(x, collapse = ':'))
G <- ndtransitiongraph(nodes , 3, ':')

181

l_configure(g2d , nodes=G$nodes , from=G$from , to=G$to)
l_scaleto_world(g2d)
l_zoom(g2d , 0.8)
current_vars <<- vars

}

Recolor recolor nodes of g2d
if(length(space) == 2) {

node_spaces <- strsplit(g2d['nodes'], ':', fixed=TRUE)
from_spaces <- unlist(strsplit(space[1], ':', fixed=TRUE))
to_spaces <- unlist(strsplit(space[2], ':', fixed=TRUE))

g2d['color'] <- sapply(node_spaces , function(x) {
if(all(x %in% from_spaces) && all(x %in% to_spaces))

'steelblue '
else if(all(x %in% from_spaces))

gray(nav['proportion '])
else if(all(x %in% to_spaces))

gray(1-nav['proportion '])
else

'#FFEE40 ' # pale yellow
})

} else {
g2d['color'] <- 'steelblue '

}
}
mySemantic ()

182

(a) 3d space graph (b) 2d space graph

Figure 7.11: Implementing a custom graph semantic.

183

7.2 Spiro Glyphs

Many of the methods discussed in this thesis involve an analyst tracking moving points on
a scatterplot display. These methods include the grand tour [5], projection pursuit guided
tour [23] and navigation graphs with the canonical graph semantic [44]. We propose to
capture such point trajectories and to turn them into a point glyph called a spiro glyph.
We now introduce two examples of spiro glyphs for the olive data.

Figure 7.12 shows the spiro glyphs that are obtained by recording the point locations
on the projections when “walking” along a path on a 3d transition graph (using the canon-
ical semantic). The particular path in Figure 7.12 is (a:l, l:s, s:p1, p1:a, a:l1, a:s,
s:p, p:l1), where each element represents a 2d space defined by the concatenated vari-
able names separated by a colon; here, we use the abbreviated variable names listed in
Figure 1.1. We chose this path by randomly generating paths of length 8 on a saturated 3d
transition graph and visualizing the spiro glyphs until we arrived at a plot that we found
satisfying for visually differentiating the areas of origin (at least for some of the areas).
Note that these glyphs are composed of lines that are either perpendicular or parallel to
each other as, in a rigid 3d rotation, one variate stays the same.

Figure 7.13 shows the spiro glyphs that are obtained from “walking” along a path on
the saturated 4d transitions graph for the olive oils. The path is (p1:p, a:s, p1:l, l1:s,
a:e, p:l1, s:l, o:a) and was generated the same way as the path along the 3d transition
graph above.

Spiro glyphs make for an interesting alternative to star glyphs and Chernoff faces [15].
They seem to be a promising tool for interactive visual clustering of high-dimensional data
when combined with the navigation graph framework and with loon’s tools for interactive
visualization. For example, Figure 7.14 shows a scatterplot of linolenic vs. linoleic
with the spiro glyphs from Figure 7.13. With the two added dimension for x and y lo-
cations of the glyphs, it seems that the spiro glyphs shapes are able to help distinguish
between the area groups better than when located on a grid. Note here that, for illustra-
tion purposes, we encoded the Area region with colors. Now, we could further explore the
olive data space by controlling the scatterplot to show the projections according to a navi-
gator position on a graph. Whenever we are not sure whether a point belongs to one group

184

or another, we could use the spiro glyphs as a visual aid. For example, in Figure 7.15, we
zoom in on the area of Figure 7.14 where the gray glyphs are on a vertical line and inter-
sect the brown glyphs arranged on the fourth horizontal line from the bottom. Now, loon’s
temporary arrangement tools are handy to move the glyphs from the center of Figure 7.15
on a grid in order to compare them better, see Figure 7.16. Alternatively, one could also
stack the spiro glyphs onto the same x and y location for visual comparison.

Spiro glyphs deserve further investigation. For example, it would be interesting to
work out the following research questions:

• how long should a trajectory be in order to obtain interesting shapes?

• what are the automated methods to generate interesting glyphs?

• how do spiro glyphs look for dimensions obtained from dimensionality reduction
methods?

• how much visual information should be encoded in the spiro glyph visuals; for exam-
ple, where do the trajectories start, where do they end, what is the geometric origin
to distinguish the origin from the start?

• how do spiro glyphs change with different scalings, and why do some glyphs look
like a “shrunk” version of another glyph (what does this mean geometrically in the
high-dimensional space)?

185

spiro glyphs for 3d path: a:l l:s s:p1 p1:a a:l1 a:s s:p p:l1

North−Apulia Calabria South−Apulia Sicily Inland−Sardinia
Coast−Sardinia East−Liguria West−Liguria Umbria

Figure 7.12: Spiro glyphs from 3d transitions arranged on a grid.

186

spiro glyphs for 4d path: p1:p a:s p1:l l1:s a:e p:l1 s:l o:a

North−Apulia Calabria South−Apulia Sicily Inland−Sardinia
Coast−Sardinia East−Liguria West−Liguria Umbria

Figure 7.13: Spiro glyphs from 4d transitions arranged on a grid.

187

Figure 7.14: Spiro glyphs from 4d transitions on a scatterplot.

Figure 7.15: Zoomed in on spiro glyphs from Figure 7.14.

188

Figure 7.16: Temporarily arranged spiro glyphs in Figure 7.15 on a grid with loon.

189

Chapter 8

Conclusions and Future Work

This thesis focuses on tools, methods and applied examples for interactive data visualiza-
tion and exploration. With RnavGraph, we provide the first interactive environment to use
navigation graphs to explore high-dimensional data. With loon, we provide a general-
purpose interactive data visualization toolkit. We first introduce loon in Chapter 3 by
performing a visual exploratory analysis of Canadian census data. loon’s framework is
discussed in Chapter 4 and Chapter 5. In Chapter 6, we provide a number of examples
where we enhance statistical methods with interactivity using loon. In Chapter 7, we
present new tools for efficiently exploring high-dimensional data using navigation graphs
with loon in R. Chapter 7 also discusses an implementation of a new navigation graph
semantic with loon and proposes spiro glyphs as a novel high-dimensional point glyph.

In this chapter, we discuss loon’s place in the visualization landscape and propose
some future work for expanding loon.

8.1 Conclusions for loon

With loon, we have created a comprehensive interactive data visualization environment
that is useful for visualization novices as well as for visualization experts and researchers.
For novices, is it easy to create an interactive scatterplot, histogram, serialaxes and graph
display with little code and familiar syntax in both R and Tcl. Interactivity is made ac-

190

cessible with inspectors and common mouse gestures for zooming, panning and selection.
The standard linking model is simple and powerful. For visualization experts, the loon
framework, including layers and event bindings, can be used to customize and extend
loon’s functionality. This includes the creation of custom inspectors for particular visu-
alization problems (e.g. time series and clustering). For visualization researchers, loon
opens opportunities to test and implement new interactive displays and techniques with
relatively little work, as we have shown with numerous examples in this thesis. For some
problems it might be necessary to work with loon’s Tcl source instead of loon’s API. For
example, to create a new widget with states and custom interactions we advise researchers
to investigate loon’s object oriented design. loon is open source with a GPL license (see
http://waddella.github.io/loon), so everyone can contribute or make modifications to
the source. In R, we made some functions such as l_plot, l_graph and l_layer generic
function so that others can write specialized methods.

Although Di Cook’s “challenges to the young developers”, see Section 1.6, were an-
nounced three years after we started working on loon, it is valuable to discuss how loon
meets these challenges:

• Interactivity on the plot: All loon’s displays support interactive selection. The
displays based on the main graphic model (i.e. the scatterplot, histogram and graph
display) further allow for zooming and panning. Custom interactions can be defined
with canvas and item bindings.

• Different types of brushes: Depending on the display, loon provides rectangular
sweep, rectangular brush, line sweep and point selections. We have also demon-
strated how to implement a nearest neighbor highlighting.

• Different kinds of linking between plots: The standard linking model is simple
and works for many linking situations. Any linking rule can be defined by using
state change bindings.

• Programmability: loon is a toolkit, that is, its widgets can be arranged and mod-
ified as standard Tk widgets (e.g. buttons and sliders). loon’s framework provides
many ways to customize these widgets. If that is not sufficient then loon’s Tcl source
code can be studied and modified to add further features.

191

http://waddella.github.io/loon

• Strong connection with model fitting: We have embedded loon in R which is
a complete statistical computing environment. This makes the step from fitting a
model to visualizing the fit a small one. With event bindings and callbacks it is
further possible to connect a model with a visualization and the other way around.
If the model fitting algorithm is reasonably fast then it is possible to create a real-
time interaction with the model and visualization via mouse gestures, as we did with
the simple linear regression setup in Section 6.2.

• Portability, easy install, web compatible: loon is interpreted Tcl code that re-
lies on Tcl and Tk version 8.6 only. That is, loon requires no compiling and no
external libraries. This was a design decision that we made and that required ad-
ditional effort. The benefit of this design decision is that it avoids complications
when porting loon to other programming environments such as R and Python. We
do provide an optional Tcl C extension for fast image resizing. Also, importing and
exporting images of certain formats requires the Tcl Img extension.

As for portability, Tcl and Tk are platform independent and so is loon.

The loon R package is currently easy to install on OS X and Linux. Installing the
loon R package on Windows presently requires an extra installation step. That is, R
on Windows currently ships with Tcl and Tk version 8.5; hence, R needs to be linked
against Tcl interpreter of version 8.6. We are working on compiling Tcl and Tk
version 8.6 on Windows to ship it with future R Windows binaries. We plan to put the
loon R package on CRAN once R on Windows ships with Tcl and Tk version 8.6. This
will make loon easy to install for most R users. One reason that installing the loon
R package is so easy is that the tcltk package is part of the R core distribution and
the R binaries for Windows and OS X embed a Tcl and Tk binaries. Hence, creating
a graphical user interface with Tcl and Tk in R often requires no extra setup efforts.
This is not the case for other graphical user interface toolkits including RGtk2 and
rJava which require extra setup steps.

However, we have encountered issues with the default user interfaces for R in Win-
dows and OS X. We recommend using loon with RStudio or by starting R from the
Terminal. We hope that these issues are eventually resolved by the authors of the

192

Rgui app and the standard Windows R user interface.

loon’s web compatibility depends on whether there is a web browser plugin for Tcl
and Tk. There have been several approaches to do this, but to our knowledge there
is presently no browser plugin that enables the evaluation of Tcl and Tk version 8.6
scripts that works on a variety of browsers and operating systems.

Another approach to bring loon’s interactive displays to the web is to split loon into
server-side and client-side code. loon’s displays that are based on the main graphic
model are based on a Model-View-Controller design. Hence, the model part of these
displays could be run on the server-side and the view and controller part would have
to be re-implemented on the client-side, for example, using the HTML5 canvas.

• Large quantities of data: Unwin et al. [78] state that for visualizing large data
“the number 'a million' is a useful symbolic target”. In that respect, loon cannot
visualize large quantities of data. Although it is possible to create a scatterplot in
loon with one million points, the interaction speed is likely not satisfactory. While
designing loon, we often chose interaction features and user friendliness over speed.
For example, maintaining a worldview of a plot requires the plot to be rendered
twice. Also, the standard linking model is computationally expensive.

For us, working on a Linux computer with an Intel Core i5 4590 processor and 16
GB of RAM having two linked scatterplots each having 10,000 points was at the
boundary of having a satisfactory experience while interactively zooming, panning
and selecting. Working with two linked scatterplots each having 2,000 points results
in a fluid interaction.

Non-interactive layers are less expensive to work with. For example, the plot with
the world map, lakes, oceans, urban areas and international airports in Figure 4.17
visualizes elements with 181,378 coordinates in total, with a satisfactory speed.

• Incorporating inference: loon’s displays can be individually created, controlled
and arranged using geometry managers. Hence, settings that are useful for visual
inference can be easily created by the users (e.g. line up plots). Also, the scatterplot
display supports temporarily moving point glyphs. This can be used to arrange the

193

point glyphs (e.g. spiro glyphs and star glyphs) on a grid or to stack them in order to
compare them.

• Conceptual framework: loon has a conceptual framework that includes dimen-
sional states, layers and event bindings, see Chapter 4 and Chapter 5.

In the end, we are happy to provide loon as the first comprehensive interactive visual-
ization environment for R that makes interactive data visualization accessible and useful
to a large community of data analysts that use R.

8.2 Future Work

Open ended systems like loon provide the opportunity for growth and development well
into the future. With the completion of this thesis we make loon open source (i.e. public
domain, see http://waddella.github.io/loon) and encourage others to participate in
and contribute to the loon project. Others will have new ideas for interactive graphics
that can be prototyped in loon and possibly incorporated into loon. In this section, we first
focus on possible future directions of loon. We end this section by discussing interesting
research directions for the navigation graphs paradigm.

8.2.1 loon in General

• Tk desired improvements:

– Alpha blending: The Tk canvas widget, which is the foundation for all of
loon’s displays, as of Tk version 8.6, does not support transparency for most
canvas item types (the exception is image items). Transparency would be a
useful feature for dealing with overplotting and visualizing uncertainty [57].
Hopefully, a future Tk release will add transparency to all canvas item types.
Otherwise, there is a project called tkpath that provides a canvas alternative
that supports alpha blending. However, the original author of tkpath appar-
ently passed away. We have tried to use the tkpath canvas in its current state

194

http://waddella.github.io/loon

but we were not satisfied. Also, using tkpath would make loon dependent on
software other than Tcl and Tk.

– Anti Aliasing: The Tk canvas widget does not anti alias its items (e.g. visuals)
except for some Tcl and Tk distributions for OS X (not the one that ships with
R). This results in having the plots look pixelated. This is an aesthetic issue
only. As with alpha blending, anti aliasing could become a future feature of
the Tk canvas widget. Otherwise, the tkpath project uses anti aliasing for its
visuals.

– Clipping: Clipping is a method to render visuals in a certain region only. For
example, we are clipping the points and other layer visuals in a scatterplot
that would otherwise fall into the scales and labels region. We clip by drawing
filled rectangles at the borders. More sophisticated clipping such as clipping
a group of canvas items that fall outside an arbitrary shape (e.g. defined by
another canvas item) would be useful for a richer plot design. Clipping would
be also useful to cut “holes” into visuals. This would be useful, for example,
when plotting maps (e.g. when subtracting a lake from a polygon of a country).

• Make every layer type interactive: In loon, the model layer has a great deal
of interactivity including selection, moving points in the scatterplot and graph dis-
play, interacting with the bin handle in the histogram and moving the navigator
on a graph. It would be interesting to make every layer type as interactive as the
model layer. We have designed loon’s object model with interactivity for every layer
in mind. The widget could then get an activelayer state to indicate which layer
should receive mouse and keyboard gestures. This would also make it possible to
create a general 2d plot container without a model layer. The layers for a scatter-
plot, histogram and graph would then become ordinary layers and could be stacked
on the same display. This would also avoid mixing model layer states (e.g. x, y
and selected) with container states (e.g. zoomX, panX and showScales). Note that
making all layers interactive also requires an analysis inspector for every layer type.

• Linkable layers and linkable arbitrary dimensional states: Currently the
standard linking model applies to n-dimensional states of model layers only. Other

195

abstract dimensions such as p, see Subsection 4.3.1, are presently not supported in
the standard linking model. However, assuming that the p dimensional states share
the linking group (i.e. using the linkingGroup state) with the n dimensional states,
then for any other dimensional states, e.g. p dimensional states, an addition of link-
ing key state for that dimension, for example linkingKey_p, would fit into the loon
framework.

Adding linking to n dimensional states for layers is also a possible modification of
the loon framework. loon’s object design is such that layer objects could be made
to inherit from the Linkable class in order to add the states linkingGroup and
linkingKey to make the layer part of the standard linking model. However, it is
unclear to us whether the added functionality is worth the added complexity and
possible performance consequences.

It should be noted that any linking for layers and arbitrary abstract dimensions can
be implemented by the user with state change bindings, see Section 5.3.

• More sophisticated event patterns for state change bindings: The canvas and
item bindings support logic in their event patterns. This is due to the fact that we
delegate the event pattern to the Tk canvas which supports this logic. For the state
change bindings, we currently only support a vector with state names and, if any of
the states in that vector get modified in the configure pipeline, then the callback for
that binding will be evaluated. Supporting logic expressions for state change event
patterns would be a good further feature. For example,
l_bind_state(p, event='(selected &! active)|color ', callback=foo)

would evaluate the callback function foo if the color state in p is modified or the
selected state is modified but the active state is not modified in a configure call.
Note that is not supported in the current loon model but could be added. Again, the
functionality would have to be weighed against any performance consequences.

• Deal with missing values: One improvement would be to accommodate missing
values (e.g. NA in R) for plot states. The obvious way to deal with missing values is
to not plot them. Alternatively, an interesting research problem is to figure out how
missing values might actually be displayed.

196

• Embedding loon in Python: Python is an interesting environment for conducting
data analysis [52]. Embedding loon in Python would require similar work as we
demonstrated with the loon R package.

• Context specific menus: We chose to work with inspectors rather than context spe-
cific menus. However, having both might be better. One possible first step towards
implementing context specific menus would be to re-use loon’s modular inspectors
and have pieces of the inspectors pop up as context menus.

• Annotate Tab for Inspectors: Annotation is used to add information to a plot (e.g.
text, rectangle, drawings). In loon, annotation could be implemented by interac-
tively adding layers to a display. To that end, it would be useful to add an “Annotate”
tab to inspectors of displays that support layering.

8.2.2 Current Displays

• Histogram: The analysis inspector lacks a widget for interactively choosing the
color stacking order.

• Serialaxes Display: The serialaxes display would benefit from zoom and pan sup-
port.

• Scatterplot: Next to layers and glyphs, the scatterplot could also use segments to
connect an ordered sequence of points.

• Compound Glyphs: Providing layered glyphs would allow for more sophisticated
point glyphs such as Chernoff faces. However, it should be noted that since image
glyphs support transparency, any point glyph can be implemented in loon with im-
age glyphs.

• Graph Display: If linking support is added for p dimensional states then it would
be desirable to add interactive selection and modifications of graph edges. This
would also require an analysis inspector for graph edges.

197

• Graph Inspector: The graph inspector could use a navigator and context inspector.
The navigator inspector could benefit from a path tool such as in Figure 2.2.

8.2.3 New Displays

• Scatterplot Matrix: loon in R currently implements a scatterplot matrix with the
l_pairs function by laying out individual scatterplot widgets, see Section 5.4. A
special purpose scatterplot matrix widget addition to loon would be a worthwhile
effort. There are a number of drawbacks when using individual scatterplot widgets
for a scatterplot matrix. For example, a scatterplot matrix with p variables has
presently

(p
2

)
scatterplots widgets and every widget has its own color, selected,

active, etc. states which need to be synchronized among the scatterplots in the
scatterplot matrix. This is computationally expensive and also prone to inconsis-
tency; for example, in the case where the analyst changes the linking group of a plot
manually. A custom scatterplot matrix widget would have only one color, selected
, active, etc. state. It would also be interesting to design a custom scatterplot ma-
trix inspector. Finally, changing the data shown in the scatterplot matrix currently
requires one to change the individual scatterplots widgets manually. If the number
of variables changes then one has to use the geometry manager to add or remove
scatterplots.

• Cross tables: We have experimented with a color cross table widget that has the two
n dimensional states color and group. The widget then visualizes the cross table
of color vs. group as seen and explained in detail in Figure 8.1. Another possibility
would be to create a cross table widget for a cross table of two group states, for
example, group_x and group_y, and visualize the color state in the table cells.

• Other displays: There are popular and useful data displays that are presently not
implemented in loon. These include the boxplot, dotplot, bar chart, mosaic plot
and eikosogram display [16]. loon would benefit from these displays being carefully
designed and added to the toolkit.

198

Figure 8.1: Example of a color cross table of the plot states group vs. color. Note that
the first row represents the selected state and not the color state. The data used here
is the olive data and its Area variable is assigned to the group state. Also, the color state
has a different color for each area in Area. Here, the color of a cell (i, j) is according to the
fraction of points that have the color from row i out of the points that are from the group
in column j. For the first row the color of a cell represents the fraction of points that are
selected for a given group.

8.2.4 Navigation Graphs

• The two functions l_ng_ranges and l_ng_plots could be generalized to work with
contexts other than the geodesic2d context.

• The closures of measures in Subsection 7.1.4 update some measures for subsets

199

of the data. It would be interesting to create a closure for recalculating both the
measures and data. That is, if the data are derived from a dimensionality reduc-
tion method then one could re-calculate the embedding of the dimensionality re-
duction method for a subset of the points and embed the remaining out-of-sample
points if possible (e.g. for a projection based methods such as principal components).
Re-calculating the embedding would trigger a recalculation of the measures which
would update the graph based on the measures. For dimensionality reduction meth-
ods, where embedding of out-of-sample points is not possible (e.g. LLE and isomap),
one would have to continue working with the subset of the data only.

200

References

[1] Allison, T. and Cicchetti, D. V. (1976). “Sleep in mammals: ecological and constitu-
tional correlates”. Science 194.4266, pp. 732–734.

[2] American Statistical Association (2015). “Video Library Statistics Computing and
Graphics”.

[3] Anderson, E. (1935). “The irises of the Gaspe Peninsula”. Bulletin of the American
Iris society 59, pp. 2–5.

[4] Anglin, D. and Oldford, R. (1994). “Modelling response models in software”. Selecting
Models from Data. Springer, pp. 413–424.

[5] Asimov, D. (1985). “The Grand Tour: A Tool for Viewing Multidimensional Data”.
SIAM Journal of Scientific and Statistical Computing 6.4, pp. 128–143.

[6] Baudat, G. and Anouar, F. (2000). “Generalized discriminant analysis using a kernel
approach”. Neural computation 12.10, pp. 2385–2404.

[7] Becker, R. A., Cleveland, W. S., and Wilks, A. R. (1987). “Dynamic graphics for data
analysis”. Statistical Science, pp. 355–383.

[8] Becker, R. A., Wilks, A. R., Brownrigg, R., and Minka, T. P. (2015). maps: Draw
Geographical Maps. R package version 2.3-11.

[9] Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Rand Corporation
Research studies. Princeton University Press.

[10] Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., and Pebesma, E. J. (2008). Applied
spatial data analysis with R. Vol. 747248717. Springer.

[11] Box, G. E. and Cox, D. R. (1964). “An analysis of transformations”. Journal of the
Royal Statistical Society. Series B (Methodological), pp. 211–252.

201

http://dx.doi.org/10.1126/science.982039
http://dx.doi.org/10.1126/science.982039
http://stat-graphics.org/movies
http://stat-graphics.org/movies
http://dx.doi.org/10.1007/978-1-4612-2660-4
http://dx.doi.org/10.1137/0906011
http://dx.doi.org/10.1162/089976600300014980
http://dx.doi.org/10.1162/089976600300014980
http://www.jstor.org/stable/2245523
http://www.jstor.org/stable/2245523
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
https://books.google.ch/books?id=cXJEAAAAIAAJ
http://dx.doi.org/10.1007/978-1-4614-7618-4
http://dx.doi.org/10.1007/978-1-4614-7618-4
http://www.jstor.org/stable/2984418

[12] Buja, A. and Asimov, D. (1986). “Grand Tour Methods: An Outline”. Computing Sci-
ence and Statistics 17, pp. 63–67.

[13] Buja, A., Swayne, D. F., Littman, M. L., Dean, N., and Hofmann, H. (2001). “XGvis:
Interactive Data Visualization with Multidimensional Scaling”.

[14] Carr, D. B., Littlefield, R. J., Nicholson, W. L., and Littlefield, J. S. (1987). “Scatter-
plot Matrix Techniques for Large N”. Journal of the American Statistical Association
82.398, pp. 424–436.

[15] Chernoff, H. (1973). “The use of faces to represent points in k-dimensional space
graphically”. Journal of the American Statistical Association 68.342, pp. 361–368.

[16] Cherry, W. and Oldford, R. (2006). “Picturing Probability: the poverty of Venn dia-
grams, the richness of Eikosograms”.

[17] Cleveland, W. S. (1993). Visualizing data. Hobart Press.
[18] Cleveland, W. S. and McGill, R. (1984). “Graphical Perception: Theory, Experimen-

tation, and Application to the Development of Graphical Methods”. English. Journal
of the American Statistical Association 79.387, pp. 531–554.

[19] Cleveland, W. S. and McGill, R. (1985). “Graphical Perception and Graphical Meth-
ods for Analyzing Scientific Data”. English. Science. New Series 229.4716, pp. 828–
833.

[20] Cleveland, W. S. and McGill, R. (1986). “An experiment in graphical perception”.
International Journal of Man-Machine Studies 25.5, pp. 491 –500.

[21] Cleveland, W. S. and McGill, R. (1987). “Graphical Perception: The Visual Decoding
of Quantitative Information on Graphical Displays of Data”. English. Journal of the
Royal Statistical Society. Series A (General) 150.3, pp. 192–229.

[22] Cook, D. (2015). “Stories of Two Decades of Efforts to Build Interactive Graphics
Capacity into R.” The useR! Conference 2015.

[23] Cook, D., Buja, A., Cabrera, J., and Hurley, C. (1995). “Grand Tour and Projection
Pursuit”. Journal of Computational and Graphical Statistics 4.3, pp. 155–172.

[24] Dalgaard, P. (2001). “The R-Tcl/Tk interface”. Proceedings of DSC.
[25] Elmqvist, N., Dragicevic, P., and Fekete, J.-D. (2008). “Rolling the Dice: Multidimen-

sional Visual Exploration using Scatterplot Matrix Navigation”. Visualization and
Computer Graphics, IEEE Transactions on 14.6, pp. 1539 –1148.

202

http://books.google.com/books?vid=ISBN0-444-70018-8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5839
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5839
http://dx.doi.org/10.1080/01621459.1987.10478445
http://dx.doi.org/10.1080/01621459.1987.10478445
http://dx.doi.org/10.1080/01621459.1973.10482434
http://dx.doi.org/10.1080/01621459.1973.10482434
http://sas.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/paperpdf.pdf
http://sas.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/paperpdf.pdf
http://books.google.com/books?vid=ISBN0963488406
http://www.jstor.org/stable/2288400
http://www.jstor.org/stable/2288400
http://www.jstor.org/stable/1695272
http://www.jstor.org/stable/1695272
http://dx.doi.org/10.1016/S0020-7373(86)80019-0
http://www.jstor.org/stable/2981473
http://www.jstor.org/stable/2981473
http://user2015.math.aau.dk/presentations/invited_di_cook.pdf
http://user2015.math.aau.dk/presentations/invited_di_cook.pdf
http://dx.doi.org/10.1080/10618600.1995.10474674
http://dx.doi.org/10.1080/10618600.1995.10474674
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/Dalgaard.pdf
http://dx.doi.org/10.1109/TVCG.2008.153
http://dx.doi.org/10.1109/TVCG.2008.153

[26] Fisher, R. A. (1936). “The Use of Multiple Measurements in Taxonomic Problems”.
Annals of Eugenics 7.2, pp. 179–188.

[27] Fisherkeller, M., Friedman, J., and Tukey, J. (1974). “Prim-9: An Interactive Multidi-
mensional Data Display and Analysis System”. Stanford Linear Accelerator Center.

[28] Flynt, C. (2012). Tcl/Tk: A Developer’s Guide. Morgan Kaufmann.
[29] Forina, M., Armanino, C., Lanteri, S., and Tiscornia, E. (1983). “Classification of

olive oils from their fatty acid composition”. Food Research and Data Analysis, pp. 189–
214.

[30] Friedman, J. (1987). “Exploratory Projection Pursuit”. English. Journal of the Amer-
ican Statistical Association 82.397, pp. 249–266.

[31] Friedman, J. and Stuetzle, W. (1981). “Projection pursuit regression”. Journal of the
American statistical Association, pp. 817–823.

[32] Friedman, J. and Tukey, J. (1974). “A Projection Pursuit Algorithm for Exploratory
Data Analysis”. Computers, IEEE Transactions on C-23.9, pp. 881 –890.

[33] Fu, L. and Oldford, W. (2009). “Implementation of Three-dimensional Scagnostics”.
MA thesis. University of Waterloo.

[34] Gabriel, K. (1971). “The biplot graphic display of matrices with application to prin-
cipal component analysis”. Biometrika 58.3, pp. 453–467.

[35] Gapminder Foundation (2015). “Gapminder data”.
[36] Gentleman, R., Whalen, E., Huber, W., and Falcon, S. (2015). graph: A package to

handle graph data structures. R package version 1.46.0.
[37] Gnanadesikan, R. (2011). Methods for Statistical Data Analysis of Multivariate Ob-

servations. Wiley Series in Probability and Statistics. Wiley.
[38] Huber, P. J. (1985). “Projection Pursuit”. The Annals of Statistics 13.2, pp. 435–475.
[39] Hurley, C. B. and Oldford, R. W. (2010). “Pairwise Display of High-Dimensional In-

formation via Eulerian Tours and Hamiltonian Decompositions”. Journal of Com-
putational and Graphical Statistics 19.4, pp. 861–886.

[40] Hurley, C. (1987). The Data Viewer: A Program for Graphical Data Analysis. Tech.
rep. 115. Seattle, Washington 98195 USA: Department of Statistics, GN-22, Univer-
sity of Washington.

203

http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://books.google.ch/books?id=Ms8JGwAACAAJ
https://books.google.ch/books?id=Ms8JGwAACAAJ
http://books.google.com/books?vid=ISBN9780123847171
http://www.jstor.org/stable/2289161
http://dx.doi.org/10.1080/01621459.1981.10477729
http://dx.doi.org/10.1109/T-C.1974.224051
http://dx.doi.org/10.1109/T-C.1974.224051
http://dx.doi.org/10.1093/biomet/58.3.453
http://dx.doi.org/10.1093/biomet/58.3.453
http://www.gapminder.org/data/
https://www.bioconductor.org/packages/3.3/bioc/html/graph.html
https://www.bioconductor.org/packages/3.3/bioc/html/graph.html
http://books.google.com/books?vid=ISBN9781118030929
http://books.google.com/books?vid=ISBN9781118030929
http://www.jstor.org/stable/2241175
http://dx.doi.org/10.1198/jcgs.2010.09136
http://dx.doi.org/10.1198/jcgs.2010.09136
https://www.stat.washington.edu/research/reports/1987/tr115.pdf

[41] Hurley, C. and Buja, A. (1990). “Analyzing high-dimensional data with motion graph-
ics”. SIAM Journal on Scientific and Statistical Computing 11.6, pp. 1193–1211.

[42] Hurley, C. and Oldford, R. (1988). “Higher Hierarchical Views of Statistical Objects”.
Video.

[43] Hurley, C. and Oldford, R. (1999). “Statistical Graphics in QUAIL: An Overview”.
Vol. 58. ISI, pp. 113–116.

[44] Hurley, C. and Oldford, R. (2011). “Graphs as navigational infrastructure for high
dimensional data spaces”. English. Computational Statistics 26.4, pp. 585–612.

[45] Ihaka, R. (2003). “Colour for presentation graphics”. Proceedings of DSC, p. 2.
[46] Inselberg, A. and Dimsdale, B. (1991). “Parallel Coordinates”. Human-Machine In-

teractive Systems. Ed. by A. Klinger. Languages and Information Systems. Springer
US, pp. 199–233.

[47] Lang, D. T., Swayne, D., Wickham, H., and Lawrence, M. (2014). rggobi: Interface
between R and GGobi. R package version 2.1.20.

[48] Lee, J. and Verleysen, M. (2007). Nonlinear dimensionality reduction. Springer Ver-
lag.

[49] Maaten, L. Van der, Postma, E., and Herik, J. van den (2009). Dimensionality reduc-
tion: A comparative review. Tech. rep. 005. Tilburg center for Cognition and Com-
munication.

[50] McConnell, S. (2004). Code Complete. Microsoft Press.
[51] McDonald, J. A. and Pedersen, J. (1985). “Computing Environments for Data Anal-

ysis I. Introduction”. SIAM Journal on Scientific and Statistical Computing 6.4,
pp. 1004–1012.

[52] McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy,
and IPython. O’Reilly Media, Inc.

[53] Mosteller, F. and Tukey, J. W. (1977). “Data analysis and regression: a second course
in statistics.” Addison-Wesley Series in Behavioral Science: Quantitative Methods.

[54] Murrell, P. (2005). R graphics. Chapman and Hall/CRC.
[55] Natural Earth (2015). “Free vector and raster map data at 1:10m, 1:50m, and 1:110m

scales”.
[56] Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2.

204

http://dx.doi.org/10.1137/0911068
http://dx.doi.org/10.1137/0911068
http://stat-graphics.org/movies/hierarchical-views.html
http://eprints.maynoothuniversity.ie/5476/
http://dx.doi.org/10.1007/s00180-011-0228-6
http://dx.doi.org/10.1007/s00180-011-0228-6
https://www.stat.auckland.ac.nz/~ihaka/courses/787/color.pdf
http://dx.doi.org/10.1007/978-1-4684-5883-1_9
http://CRAN.R-project.org/package=rggobi
http://CRAN.R-project.org/package=rggobi
http://dx.doi.org/10.1007/978-0-387-39351-3
https://www.tilburguniversity.edu/upload/59afb3b8-21a5-4c78-8eb3-6510597382db_TR2009005.pdf
https://www.tilburguniversity.edu/upload/59afb3b8-21a5-4c78-8eb3-6510597382db_TR2009005.pdf
http://books.google.com/books?vid=ISBN0735619670
http://dx.doi.org/10.1137/0906068
http://dx.doi.org/10.1137/0906068
http://books.google.com/books?vid=ISBN1449323618
http://books.google.com/books?vid=ISBN1449323618
http://books.google.com/books?vid=ISBN158488486X
http://www.naturalearthdata.com
http://www.naturalearthdata.com
http://CRAN.R-project.org/package=RColorBrewer

[57] Oldford, R. (2015). “Visualizing uncertainty: problems and solutions”. Data Meets
Viz Workshop. Kloster Holzen, Augsburg.

[58] Oldford, R. and Peters, S. (1988). “DINDE: Towards more sophisticated software
environments for statistics”. SIAM Journal on Scientific and Statistical Computing
9.1, pp. 191–211.

[59] Pearson, K. (1901). “On lines and planes of closest fit to systems of points in space”.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2.11, pp. 559–572.

[60] R Core Team (2015). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria.

[61] Rao, C. (1952). Advanced statistical methods in biometric research. Wiley publica-
tions in statistics. Wiley.

[62] Roweis, S. T. and Saul, L. K. (2000). “Nonlinear Dimensionality Reduction by Locally
Linear Embedding”. Science 290.5500, pp. 2323–2326.

[63] Sarkar, D. (2008). Lattice: multivariate data visualization with R. Springer-Verlag
New York.

[64] Schölkopf, B., Smola, A., and Müller, K.-R. (1997). “Kernel principal component anal-
ysis”. Artificial Neural Networks - ICANN’97. Ed. by W. Gerstner, A. Germond, M.
Hasler, and J.-D. Nicoud. Vol. 1327. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 583–588.

[65] Sheil, B. (1983). Power Tools for Programmers. Palo Alto Research Center.
[66] Statistics Canada (2006). “Ethnic diversity and immigration: Visible minorities”.

Address.
[67] Stuetzle, W. (1987). “Plot Windows”. Journal of the American Statistical Association

82.398, pp. 466–475.
[68] Swayne, D. F., Cook, D., and Buja, A. (1991). “Xgobi: Interactive Dynamic Graphics

In The X Window System With A Link To S”.
[69] Swayne, D. F., Lang, D. T., Buja, A., and Cook, D. (2003). “GGobi: evolving from

XGobi into an extensible framework for interactive data visualization”. Computa-
tional Statistics & Data Analysis 43.4, pp. 423 –444.

205

http://rosuda.org/DMVslides-f/VisualizingUncertainty.pdf
http://dx.doi.org/10.1137/0909013
http://dx.doi.org/10.1137/0909013
https://www.R-project.org/
https://books.google.ch/books?id=HvFLAAAAMAAJ
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1007/978-0-387-75969-2
http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1007/BFb0020217
https://books.google.ch/books?id=5oL-SAAACAAJ
http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/ind01/l3_30000_30007-eng.htm
http://dx.doi.org/10.1080/01621459.1987.10478449
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(02)00286-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(02)00286-4

[70] Switz, D., Asimov, D., Donoho, D., Zelen, M., and Huber, P. (1982). “Evaluation of
large clinical datasets using an interactive graphics system (PRIM/H)”. Controlled
Clinical Trials 3.2, pp. 148 –149.

[71] Talbot, J., Lin, S., and Hanrahan, P. (2010). “An Extension of Wilkinson’s Algorithm
for Positioning Tick Labels on Axes”. Visualization and Computer Graphics, IEEE
Transactions on 16.6, pp. 1036–1043.

[72] Tcl/Tk core team (2015a). “Bind manual page”.
[73] Tcl/Tk core team (2015b). “Canvas manual page”.
[74] Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). “A Global Geometric

Framework for Nonlinear Dimensionality Reduction”. Science 290.5500, pp. 2319–
2323.

[75] Theus, M. (2002). “Interactive Data Visualization using Mondrian”. Journal of Sta-
tistical Software 7.11, pp. 1–9.

[76] Tierney, L. (2009). Lisp-stat: an object-oriented environment for statistical computing
and dynamic graphics. Vol. 353. John Wiley & Sons.

[77] Tukey, J. W. and Tukey, P. A. (1988). “Computer graphics and exploratory data anal-
ysis: An introduction”. The Collected Works of John W. Tukey: Graphics: 1965-1985
5, p. 419.

[78] Unwin, A., Theus, M., and Hofmann, H. (2006). Graphics of large datasets: visualiz-
ing a million. Springer Science & Business Media.

[79] Urbanek, S. and Theus, M. (2003). “iPlots: high interaction graphics for R”. Proceed-
ings of the 3rd International Workshop on Distributed Statistical Computing.

[80] Velleman, P. F. and Velleman, A. Y. (1988). “Data Desk”.
[81] Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag

New York.
[82] Wickham, H. (2015). scales: Scale Functions for Visualization. R package version

0.2.5.
[83] Wilkinson, L., Anand, A., and Grossman, R. (2005). “Graph-theoretic scagnostics”.

Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on, pp. 157 –
164.

206

http://dx.doi.org/10.1016/0197-2456(82)90088-5
http://dx.doi.org/10.1016/0197-2456(82)90088-5
http://dx.doi.org/10.1109/TVCG.2010.130
http://dx.doi.org/10.1109/TVCG.2010.130
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319
http://www.jstatsoft.org/v07/i11
http://books.google.com/books?vid=ISBN0470317566
http://books.google.com/books?vid=ISBN0470317566
http://books.google.com/books?vid=ISBN0412992612
http://books.google.com/books?vid=ISBN0412992612
http://dx.doi.org/10.1007/0-387-37977-0
http://dx.doi.org/10.1007/0-387-37977-0
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/UrbanekTheus.pdf
http://www.datadesk.com
http://dx.doi.org/10.1007/978-0-387-98141-3
http://CRAN.R-project.org/package=scales
http://dx.doi.org/10.1109/INFVIS.2005.1532142

[84] Wilkinson, L. and Anand, A. (2012). scagnostics: Compute scagnostics - scatterplot
diagnostics. R package version 0.2-4.

[85] Wilkinson, L. and Wills, G. (2008). “Scagnostics Distributions”. Journal of Compu-
tational and Graphical Statistics 17.2, pp. 473–491.

207

http://CRAN.R-project.org/package=scagnostics
http://CRAN.R-project.org/package=scagnostics
http://dx.doi.org/10.1198/106186008X320465

APPENDICES

208

Appendix A

R Code for Chapter 6 Examples

A.1 Power Transformations
1 power <- function(x, y, from=-5, to=5, ...) {
2
3 tt <- tktoplevel ()
4 tktitle(tt) <- "Box -Cox Power Transformation"
5 p <- l_plot(x=x, y=y, parent=tt, ...)
6 lambda_x <- tclVar('1')
7 lambda_y <- tclVar('1')
8 sx <- tkscale(tt , orient='horizontal ',
9 variable=lambda_x , from=from , to=to, resolution =0.1)

10 sy <- tkscale(tt , orient='vertical ',
11 variable=lambda_y , from=to , to=from , resolution =0.1)
12
13 tkgrid(sy, row=0, column=0, sticky ="ns")
14 tkgrid(p, row=0, column=1, sticky ="nswe")
15 tkgrid(sx, row=1, column=1, sticky ="we")
16 tkgrid.columnconfigure(tt, 1, weight =1)
17 tkgrid.rowconfigure(tt, 0, weight =1)
18
19 powerfun <- function(x, lambda) {
20 if (lambda == 0)
21 log(x)
22 else
23 (x^lambda -1)/ lambda
24 }
25
26 update <- function (...) {

209

27 l_configure(p,
28 x = powerfun(x, as.numeric(tclvalue(lambda_x))),
29 y = powerfun(y, as.numeric(tclvalue(lambda_y))))
30 l_scaleto_world(p)
31 }
32
33 tkconfigure(sx , command=update)
34 tkconfigure(sy , command=update)
35
36 invisible(p)
37 }

A.2 Interactively Adding Regression Lines
1 addRegressionLinesGUI <- function(p) {
2 force(p)
3 addRegressionLine <- function () {
4 sel <- p['selected ']
5 if (sum(sel)==0) return ()
6 xs <- p['x'][sel]; ys <- p['y'][sel]
7 fit <- lm(ys ~ poly(xs, as.numeric(tclvalue(degree))))
8 xrng <- seq(min(xs), max(xs), length.out = 20)
9 ypred <- predict(fit , newdata=data.frame(xs = xrng))

10 l_layer_line(p, x=xrng , y=ypred , color=as.character(color),
11 linewidth = 4, index=0,
12 label=paste(" degree", tclvalue(degree)))
13 l_configure(p, color=color , glyph='ocircle ', which=sel)
14 }
15
16 updateColor <- function () {
17 col <- as.character(tcl('tk_chooseColor ', initialcolor=color))
18 if (col!='') {
19 tkconfigure(b_col , bg=col , activebackground=col)
20 color <<- col
21 }
22 }
23
24 tt <- tktoplevel ()
25 tktitle(tt) <- 'Add Regression Line '
26 degree <- tclVar('1')
27 color <- 'red '
28 s <- tkscale(tt, orient='horizontal ', variable=degree ,
29 from=1, to=8, resolution =1)
30 b_col <- tkbutton(tt , bg=color , activebackground=color , command=updateColor)

210

31 b_add <- tkbutton(tt , text='add ', command=addRegressionLine)
32 tkgrid(tklabel(tt , text='degree:'), s, b_col , b_add , sticky='s', pady =5)
33 tkgrid.columnconfigure(tt, 1, weight =1)
34 tkgrid.configure(s, sticky='ew ')
35 }

A.3 Sensitivity Analysis Simple Linear Regression
1 ## Fit simple linear regresion
2 fit <- lm(Fertility~Infant.Mortality , data=swiss)
3
4 ## Data
5 p <- with(swiss , l_plot(Fertility~Infant.Mortality ,
6 title='swiss data (least -squares)',
7 linkingGroup='swiss ',
8 itemlabel=rownames(swiss)))
9

10 ## layer fit
11 xrng <- range(swiss$Infant.Mortality)
12 yhat <- predict(fit , data.frame(Infant.Mortality=xrng))
13 l_layer_line(p, x=xrng , y=yhat , linewidth =3, index="end")
14
15 ## Fitted vs. Residuals
16 pr <- l_plot(x=fit$fitted , y=fit$resid ,
17 xlabel =" Fitted values",
18 ylabel =" Residuals",
19 title=" Residuals vs. fitted values",
20 linkingGroup='swiss ',
21 itemlabel=rownames(swiss))
22
23 l_layer_line(pr , x=c(-25,100), y=c(0,0),
24 linewidth=3, color=" gray80",
25 index="end")
26
27 ## Influential Points
28 plev <- l_plot(x=hatvalues(fit), y=rstudent(fit),
29 title=" Leverage and outlier plot",
30 ylabel =" Externally studentized residuals",
31 xlabel ="hat values",
32 linkingGroup =" swiss",
33 itemlabel=rownames(swiss))
34
35 llev <- l_layer_line(plev , index='end ',
36 x=rep(4/ plev['n'],2), y=c(-5,5),

211

37 linewidth=3, color='gray80 ')
38
39
40 ## Layer Confidence Intervals
41 xpvals <- with(swiss , seq(from=min(Infant.Mortality),to=max(Infant.Mortality),
42 length.out =60))
43
44 conf95 <- predict(fit , data.frame(Infant.Mortality=xpvals),
45 interval =" confidence", level =0.95)
46
47 conf99 <- predict(fit , data.frame(Infant.Mortality=xpvals),
48 interval =" confidence", level =0.99)
49
50 pred95 <- predict(fit , data.frame(Infant.Mortality=xpvals),
51 interval =" prediction", level =0.95)
52
53 pred99 <- predict(fit , data.frame(Infant.Mortality=xpvals),
54 interval =" prediction", level =0.99)
55
56
57 ## Interactively remove points from OLS
58 use_color <- p['color '][1]
59
60 l.sel <- l_layer_line(p, x=xrng , y=yhat , color='red ', linewidth =3,
61 index="end")
62
63 confg <- l_layer_group(p, label =" Confidence intervals", index="end")
64 predg <- l_layer_group(p, label =" Prediction intervals", index="end")
65
66
67 polyc95 <- l_layer_polygon(p,
68 x=c(xpvals ,rev(xpvals)),
69 y=c(conf95[,2],rev(conf95 [,3])),
70 color=" lightblue2",
71 linecolor ="",
72 parent=confg ,
73 label ="95% confidence",
74 index="end")
75
76 polyc99 <- l_layer_polygon(p,
77 x=c(xpvals ,rev(xpvals)),
78 y=c(conf99[,2],rev(conf99 [,3])),
79 color=" lightblue1",
80 linecolor ="",
81 parent=confg ,

212

82 label ="99% confidence",
83 index="end")
84
85 polyp95 <- l_layer_polygon(p,
86 x=c(xpvals ,rev(xpvals)),
87 y=c(pred95[,2],rev(pred95 [,3])),
88 color=" lightpink2",
89 linecolor ="",
90 parent=predg ,
91 label ="95% prediction",
92 index="end")
93
94 polyp99 <- l_layer_polygon(p,
95 x=c(xpvals ,rev(xpvals)),
96 y=c(pred99[,2],rev(pred99 [,3])),
97 color=" lightpink1",
98 linecolor ="",
99 parent=predg ,

100 label ="99% prediction",
101 index="end")
102
103 l_scaleto_world(p)
104
105
106 updateRegression <- function () {
107 ## which points to use for regression
108 sel <- p['color '] == use_color
109 sel <- sel & p['active ']
110 ## which coordinates to use for regression
111 xnew <- p['xTemp ']
112 if (length(xnew) == 0) {
113 xnew <- p['x']
114 }
115
116 ynew <- p['yTemp ']
117 if (length(ynew) == 0) {
118 ynew <- p['y']
119 }
120
121 fit.temp <- lm(y~x, subset(data.frame(x=xnew , y=ynew), sel))
122
123 xrng <- range(xnew)
124
125 ## the fitted line
126 yhat <- predict(fit.temp , data.frame(x=xrng))

213

127 l_configure(l.sel , y=yhat , x=xrng)
128
129 ## the intervals
130 ##
131 xpvals.temp <- seq(from=min(xrng),to=max(xrng),
132 length.out =60)
133
134 conf95.temp <- predict(fit.temp , data.frame(x=xpvals.temp),
135 interval =" confidence", level =0.95)
136
137 conf99.temp <- predict(fit.temp , data.frame(x=xpvals.temp),
138 interval =" confidence", level =0.99)
139
140 pred95.temp <- predict(fit.temp , data.frame(x=xpvals.temp),
141 interval =" prediction", level =0.95)
142
143 pred99.temp <- predict(fit.temp , data.frame(x=xpvals.temp),
144 interval =" prediction", level =0.99)
145
146 ## update the prediction intervals
147 ##
148 l_configure(polyp99 ,
149 x=c(xpvals.temp ,rev(xpvals.temp)),
150 y=c(pred99.temp[,2],rev(pred99.temp [,3])))
151
152 l_configure(polyp95 ,
153 x=c(xpvals.temp ,rev(xpvals.temp)),
154 y=c(pred95.temp[,2],rev(pred95.temp [,3])))
155
156 ## update the confidence intervals
157 ##
158 l_configure(polyc99 ,
159 x=c(xpvals.temp ,rev(xpvals.temp)),
160 y=c(conf99.temp[,2],rev(conf99.temp [,3])))
161
162 l_configure(polyc95 ,
163 x=c(xpvals.temp ,rev(xpvals.temp)),
164 y=c(conf95.temp[,2],rev(conf95.temp [,3])))
165
166
167 ## resids versus fitted plot
168 fitted <- predict(fit.temp , data.frame(x=xnew))
169 l_configure(pr , x=fitted , y=ynew - fitted)
170
171 ## leverage plot

214

172 l_configure(plev , x=hatvalues(fit.temp), y=rstudent(fit.temp),
173 linkingKey=which(sel)-1, sync="pull")
174 l_scaleto_world(plev)
175 l_configure(llev , x=rep(4/sum(sel),2))
176 tcl('update ', 'idletasks ')
177 }
178
179 bnd <- l_bind_state(p, c("color","active","xTemp","yTemp"),
180 function () updateRegression ())
181
182 ## Map
183 library(maps)
184 m <- map("world", 'Switzerland ', fill=TRUE , plot=FALSE)
185
186 ## Coordinates Obtained With Google Maps
187 swissCoords <- structure(list(
188 latitude = c(47.1783274 , 47.365837 , 47.254872 ,
189 47.2782749 , 47.0632023 , 47.416647 , 46.5892626 ,
190 46.761285 , 46.6757485 , 46.7866673 , 46.5280339 ,
191 46.3190253 , 46.4953291 , 46.8806009 , 46.6140944 ,
192 46.6410996 , 46.8092091 , 46.5196535 , 46.4312213 ,
193 46.5, 46.5088127 , 46.6698891 , 46.3832683 , 46.7293301 ,
194 46.566667 , 46.8220266 , 46.4666667 , 46.4612971 ,
195 46.4628333 , 46.7784736 , 46.2244777 , 46.0163423 ,
196 46.0801475 , 46.1049798 , 46.2521873 , 46.214941 ,
197 46.2941311 , 46.2331221 , 46.9542921 , 47.1034892 ,
198 47.0577195 , 46.9899874 , 47.083333 , 46.9, 46.2043907 ,
199 46.2083126 , 46.2455233) ,
200 longitude = c(7.0729547 , 7.3451555 , 7.0028421 , 7.3716656 , 7.0912628 ,
201 7.0765657 , 6.9555376 , 7.0901001 , 7.095521 , 7.1621113 ,
202 6.9175828 , 6.970566 , 6.3918325 , 7.0427075 , 6.507171 ,
203 6.6344508 , 6.6457678 , 6.6322734 , 6.9106799 , 6.75, 6.4961301 ,
204 6.7975224 , 6.2347852 , 6.5323588 , 6.833333 , 6.9405663 , 7.0833333 ,
205 6.3397549 , 6.8419192 , 6.641183 , 7.303512 , 7.2706464 , 7.4698932 ,
206 7.0755334 , 6.9469598 , 7.0047948 , 7.5335362 , 7.360626 , 6.8478409 ,
207 6.8327838 , 6.7487354 , 6.9292732 , 6.966667 , 6.6, 6.1431577 ,
208 6.1458643 , 6.2090779)) ,
209 .Names = c(" latitude", "longitude "),
210 row.names = c(" Courtelary Switzerland",
211 "Delemont Switzerland", "Franches -Mnt Switzerland",
212 "Moutier Switzerland", "Neuveville Switzerland",
213 "Porrentruy Switzerland", "Broye Switzerland",
214 "Glane Switzerland", "Gruyere Switzerland",
215 "Sarine Switzerland", "Veveyse Switzerland",
216 "Aigle Switzerland", "Aubonne Switzerland",

215

217 "Avenches Switzerland", "Cossonay Switzerland",
218 "Echallens Switzerland", "Grandson Switzerland",
219 "Lausanne Switzerland", "La Vallee Switzerland",
220 "Lavaux Switzerland", "Morges Switzerland",
221 "Moudon Switzerland", "Nyone Switzerland",
222 "Orbe Switzerland", "Oron Switzerland",
223 "Payerne Switzerland", "Paysd 'enhaut Switzerland",
224 "Rolle Switzerland", "Vevey Switzerland",
225 "Yverdon Switzerland", "Conthey Switzerland",
226 "Entremont Switzerland", "Herens Switzerland",
227 "Martigwy Switzerland", "Monthey Switzerland",
228 "St Maurice Switzerland", "Sierre Switzerland",
229 "Sion Switzerland", "Boudry Switzerland",
230 "La Chauxdfnd Switzerland", "Le Locle Switzerland",
231 "Neuchatel Switzerland", "Val de Ruz Switzerland",
232 "ValdeTravers Switzerland", "V. De Geneve Switzerland",
233 "Rive Droite Switzerland", "Rive Gauche Switzerland "),
234 class = "data.frame")
235
236
237 p_map <- with(swissCoords , l_plot(longitude ,latitude ,
238 itemlabel=rownames(swissCoords),
239 showItemlabels=TRUE ,
240 linkingGroup='swiss '))
241
242 l <- l_layer(p_map , m, index =1)
243 l_layer_lower(p_map , l)
244 l_scaleto_world(p_map)

A.4 Interactive K nearest neighbour highlighting
1 highlight_knn <- function(p, data , k=5, method='euclidean ') {
2
3 if(!is(data , 'data.frame '))
4 data <- as.data.frame(data)
5
6 ## Create Custom Control Panel
7 tt <- tktoplevel ()
8
9 onOff <- tclVar('1')

10 tkgrid(tkcheckbutton(tt, text='on/off ', variable=onOff), sticky='w')
11
12 k <- tclVar(k)
13 f1 <- tkframe(tt)

216

14
15 e <- tkentry(f1, width=3, textvariable=k)
16 tkbind(e, '<Return >', function ()hNN())
17 tkgrid(f1, sticky='w')
18 tkpack(tklabel(f1 , text='k='), e, side='left ')
19
20 tkgrid(tklabel(tt , text='Nearest to:'), sticky='w')
21 distFrom <- tclVar('points ')
22 f2 <- tkframe(tt)
23 tkgrid(f2, sticky='w')
24 tkpack(tkradiobutton(f2, text='points ', variable=distFrom ,
25 value='points ', command=function ()hNN()),
26 tkradiobutton(f2, text='mean ', variable=distFrom ,
27 value='mean ', command=function ()hNN()),
28 side='left ')
29
30 tkgrid(tklabel(tt , text='Space:'), sticky='w')
31 chbtns <- lapply(names(data), function(name) {
32 bvar <- tclVar('1')
33 b <- tkcheckbutton(tt , text=name , variable=bvar ,
34 command=function ()hNN ())
35 tkgrid(b, sticky='w', padx =2)
36 return(bvar)
37 })
38
39
40 ## Create Nearest neighbour highlighting Functionality
41
42 if(!is(p, 'loon '))
43 class(p) <- "loon"
44
45 n <- nrow(data)
46 ## Which variables are used for D
47 cachedSpaceSelection <- rep(TRUE , ncol(data))
48 D <- as.matrix(dist(data , method = method))
49 I <- matrix(rep(1:n, n), ncol=n, byrow=TRUE)
50
51 inds <- 1:n # used for subsetting
52
53 ## Cache point gyph attributes that are used for highlighting
54 glyphCache <- character (0)
55 whichCache <- integer (0)
56 sizeCache <- integer (0)
57
58 ## Function that highlights nearest neighbours

217

59 hNN <- function () {
60
61 ## reset cached point glyphs attributes
62 if (length(whichCache) > 0) {
63 l_configure(p, glyph=glyphCache , size=sizeCache , which=whichCache)
64 whichCache <<- integer (0)
65 }
66
67 if (tclvalue(onOff) == '0') return ()
68
69 isel <- which(p['selected '])
70 if (length(isel) == 0 || length(isel) == n) return ()
71
72 spaceSelection <- vapply(chbtns ,
73 function(b)as.logical(as.numeric(tclvalue(b))),
74 logical (1))
75
76 if(tclvalue(distFrom)=='points ') {
77 if(! identical(cachedSpaceSelection , spaceSelection)) {
78 D <<- as.matrix(dist(data[, spaceSelection]))
79 cachedSpaceSelection <<- spaceSelection
80 }
81 chng_which <- unique(c(I[isel , -isel])[order(c(D[isel , -isel]))])
82 } else {
83 p_mean <- apply(data[isel , spaceSelection], 2, mean)
84 d <- apply(data[-isel , spaceSelection], 1,
85 function(row) dist(rbind(row , p_mean)))
86
87 chng_which <- (inds[-isel])[order(d)]
88 }
89
90 kval <- tclvalue(k)
91 if (grepl ('[[: digit :]]+', kval)) {
92 kval <- as.numeric(kval)
93 } else {
94 kval <- 5
95 }
96
97 ksel <- min(length(chng_which),kval)
98
99 whichCache <<- chng_which [1: ksel]

100 glyphCache <<- p['glyph '][whichCache]
101 sizeCache <<- p['size '][whichCache]
102 l_configure(p, glyph='csquare ', size=seq(25, 8, length.out = ksel),
103 which=whichCache)

218

104 }
105
106 l_bind_state(p, 'selected ', hNN)
107 }

219

	Author's Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Background
	On High-Dimensional Data
	On Low-Dimensional Views
	Navigation Graphs
	The Canonical Graph Semantic
	Automatic Graph Construction and Exploration
	Saturated 3d and 4d transition graph
	Graph Products
	Automatic Graph Traversal

	On the Problem of Large Graphs
	Finding an Interesting Subgraph
	Dimensionality Reduction/Constructing Dimensions

	Other Graphs of Possible Interest
	Interactive Data Visualization Software

	RnavGraph
	A Default RnavGraph Session
	The Navigation Graph Display
	The tk2d Scatterplot Display
	Software Architecture
	navGraph
	scagGraph
	Extending RnavGraph

	Lessons Learned

	Loon By Example
	An Exploratory Data Analysis
	Performing the Exploratory Analysis with the loon R package
	Plot States
	Graphical User Interface
	Linking
	Layers
	Star Glyphs

	Conclusions

	Loon Framework
	Introduction to the Displays
	Scatterplot
	Histogram
	Serialaxes Display
	Graph Display
	Inspectors

	Main Graphics Model
	Plot Layout
	Mapping Data Onto the Plot Region

	Plot States
	Abstract Dimensions
	Configuration Pipeline
	State Normalization

	Graphical User Interface
	Zoom & Pan
	Visual Query
	Item Labels
	Interactive Selection

	Temporarily Relocating Points
	Inspectors
	loon Inspector
	Worldview
	Analysis Inspectors
	Layers Inspector

	Standard Linking Model
	Layers
	Functions and Methods for Layering Data in R

	Display Design Decisions
	Histogram
	Point and Node Glyphs
	Serialaxes Display and Serialaxes Glyphs
	Graph Display
	Graphswitch
	Navigators
	Navigator Contexts

	Advanced Loon Framework
	Implementation
	Event Bindings
	R function callbacks
	State Change Bindings
	Item Bindings
	Canvas Bindings
	Content Bindings

	Custom Linking
	One Directional And One-To-Many Linking
	Linking States with Different Names
	Linking Items Within a Plot
	Avoiding Circularity
	Linking Model with Non-Model Layers

	Geometry Management
	Writing an Inspector
	Other Topics
	Export as an Image
	Animations
	Color Mapping

	General Statistical Interaction Examples
	Power Transformations
	Interactively Adding Regression Lines
	Sensitivity Analysis of a Simple Linear Regression
	Interactive K Nearest Neighbor highlighting
	A Quick Solution
	A Solution With Control Panel

	Exploring High-Dimensional Data
	Navigation Graphs
	Canonical Navigation Graph Setup
	Dynamic Navigation Graphs Based on Measure Ranges
	Dynamic Navigation Graph based on Plots
	Closures of Measures
	Exploring New Graph Semantics

	Spiro Glyphs

	Conclusions and Future Work
	Conclusions for loon
	Future Work
	loon in General
	Current Displays
	New Displays
	Navigation Graphs

	References
	APPENDICES
	R Code for Chapter 6 Examples
	Power Transformations
	Interactively Adding Regression Lines
	Sensitivity Analysis Simple Linear Regression
	Interactive K nearest neighbour highlighting

