
CACHE-OBLIVIOUS SEARCHING AND

SORTING IN MULTISETS

by

Arash Farzan

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c© Arash Farzan 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study three problems related to searching and sorting in multisets in the cache-

oblivious model: Finding the most frequent element (the mode), duplicate elimination

and finally multi-sorting. We are interested in minimizing the cache complexity (or

number of cache misses) of algorithms for these problems in the context under which

the cache size and block size are unknown.

We start by showing the lower bounds in the comparison model. Then we present

the lower bounds in the cache-aware model, which are also the lower bounds in the

cache-oblivious model. We consider the input multiset of size N with multiplicities

N1, . . . , Nk. The lower bound for the cache complexity of determining the mode is

Ω
(

N
B

logM
B

N
fB

)
where f is the frequency of the mode and M, B are the cache size

and block size respectively. Cache complexities of duplicate removal and multi-sorting

have lower bounds of Ω
(

N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B

Ni

B

)
.

We present two deterministic approaches to give algorithms: selection and dis-

tribution. The algorithms with these deterministic approaches differ from the lower

bounds by at most an additive term of N
B

log log M . However, since log log M is very

small in real applications, the gap is tiny. Nevertheless, the ideas of our deterministic

algorithms can be used to design cache-aware algorithms for these problems. The

algorithms turn out to be simpler than the previously-known cache-aware algorithms

for these problems.

Another approach to design algorithms for these problems is the probabilistic ap-

proach. In contrast to the deterministic algorithms, our randomized cache-oblivious

algorithms are all optimal and their cache complexities exactly match the lower

bounds.

All of our algorithms are within a constant factor of optimal in terms of the

number of comparisons they perform.

iii

Acknowledgments

I would like to thank J. I. Munro, my thesis supervisor, for helping me all the

way in the research towards this thesis. We spent a lot of time discussing different

ideas and problems. His guidance was absolutely essential and his suggestions were

invaluable in this work. I appreciate his willingness for discussions, even during his

busiest times, whenever I sought help from him. I also appreciate the amount of time

he put into turning my initial draft into a thesis.

I would like to also thank T.M. Chan and A. Lopez-Ortiz, my thesis readers,

for fixing the thesis and making it more readable. Finally I would like to thank N.

Nishimura, my former supervisor, for her guidance in choosing a research topic, and

connecting me to faculty members with the same research interests.

iv

Table of Contents

Table of Contents v

1 Introduction and Preliminaries 1

1.1 Hierarchical Memory Models . 2

1.2 The Multiset Searching and Sorting Problems 3

1.3 Background and Previous Results . 4

2 Lower Bounds in the Comparison Model 6

2.1 Lower Bound on Multisorting . 6

2.2 Lower Bound on Duplicate Elimination 7

2.3 Lower Bound on Determining the Mode 8

2.4 Summary . 10

3 Lower Bounds in the Cache-Aware Model 11

3.1 The I/O Model . 12

3.2 The Main Theorem . 13

3.3 Lower Bound on Determining the Mode 17

3.4 Lower Bound on Sorting . 18

3.5 Lower Bound on Duplicate Elimination 19

3.6 Extensions to the I/O-Model . 19

3.7 Summary . 21

4 Cache-Oblivious Upper Bounds 22

4.1 The Cache-Oblivious Model . 23

4.2 The Selection Approach . 23

4.2.1 Finding Frequent Elements 24

4.2.2 Determining the Mode . 28

4.2.3 Duplicate Elimination . 32

4.2.4 Multi-sorting . 36

v

4.2.5 Optimality of the Upper Bounds 39

4.2.5.1 Knowledge of the Multiset 40

4.2.5.2 Knowledge of the Memory Hierarchy 41

4.3 The Distribution Approach . 42

4.3.1 The Distribution Algorithm 43

4.3.2 Determining the Mode . 46

4.3.3 Duplicate Elimination . 48

4.3.4 Multi-sorting . 50

4.4 The Randomized Approach . 51

4.4.1 Randomized Lower Bounds 51

4.4.2 Randomized Upper Bounds 52

4.4.2.1 Determining the Mode 53

4.4.2.2 Duplicate Elimination and Sorting 57

4.5 Summary . 58

5 Conclusion 59

Bibliography 61

vi

List of Tables

2.1 The lower bounds in the comparison model 10

3.1 The lower bounds on the cache complexities in the cache-aware model 21

4.1 Optimality of the upper bound for determining the mode in Theorem

4.2.2 . 30

4.2 Upper bounds of the deterministic algorithms 58

4.3 Upper bounds of the randomized algorithms 58

vii

List of Figures

2.1 The tournament tree by which a multiset set is sorted after the mode

is determined. 9

3.1 A comparison node and the labels of its edges 13

3.2 Comparison subtree of an I/O-tree: All the leaves l1, . . . , lk and the

root r are I/O-nodes and internal nodes are of type comparison . . . 15

4.1 Frequent Finding Algorithm . 25

viii

Chapter 1

Introduction and Preliminaries

The memory in modern computers consists of multiple levels: registers, multiple levels

of cache memories, main memory, disk, etc. The cache-oblivious model is a simple

and elegant model that has proved to be successful in analyzing the algorithms in

hierarchical memory models [6].

Traditionally, algorithms were analyzed in a random access memory model (RAM)

in which the memory is assumed to be flat with a uniform access time. However, the

ever-growing difference between access times of different levels of a memory hier-

archy makes the RAM model ineffective (e.g., level-two cache is roughly 100 times

faster than main memory and main memory is roughly 1, 000, 000 times faster than

disk [3].) Hierarchical memory models have been introduced to tackle this problem.

These models usually suffer from the complexity of having too many parameters.

Consequently, the algorithms in these models are too complicated and are tailored

for a specific hardware configuration.

The cache-oblivious model is a simple hierarchical memory model that avoids any

hardware configuration parametrization. It is known that if an algorithm in this

model performs optimally on this two-level hierarchy, it will perform optimally on

any level of a multiple-level hierarchy.

In this thesis, we will study various problems regarding the searching and sorting

in multisets, and design cache-oblivious algorithms for them.

1

2

1.1 Hierarchical Memory Models

The cache-aware (DAM) model [1] is the simplest of hierarchical memory models.

We have only two levels of memory in the model. On the first level, there is a cache

memory of size M which is divided into M
B

blocks of size B; on the second level there

is an arbitrarily large memory with the same block size. A word must be present

in the cache to be accessed. If it is not in the cache, we say a cache miss/fault has

occurred, and in this case the block containing the requested word must be brought

in from the main memory. The block can be placed anywhere in the cache (i.e., it

is fully associative.) If all blocks in the cache are occupied, a block is thrown out

of the cache and replaced by the block containing the requested word. Algorithms

in this model, have full control over the block replacement policy. In other words,

algorithms choose where to place the blocks in the cache, and which block to evict

from the cache.1 Algorithms in this model are fully aware of the values of memory

parameters M, B. We denote these algorithms as cache-aware algorithms.

The cache-oblivious model is the same as the DAM model except that algorithms

have no knowledge of hardware configuration parameters and in particular they are

not aware of the values M, B. We denote these latter algorithms as cache-oblivious

algorithms. Cache-oblivious algorithms must work independently of the values M and

B, so they can be run on any hardware configuration without any modification to the

algorithm itself. The block replacement policy is assumed to be the off-line optimal

one; however, using a more realistic replacement policy such as the least recently used

policy (LRU) increases the number of cache misses by only a factor of two if the cache

size is also doubled [11].

Cache-oblivious algorithms nicely model a multi-level memory hierarchy. A cache

of size M and block size B at level i of the memory hierarchy behaves similarly to a

cache with the same size and block size in a two-level memory hierarchy that serves

1Cache is a misnomer, though standard terminology, as the word “cache” suggests it should be
hidden from the algorithm. Nevertheless as it makes the cache-aware and cache-oblivious model
similar to each other, we will use the word “cache” to call the first-level memory even in the cache-
aware model.

3

the same memory accesses [6]. This property of cache-oblivious algorithms makes

them extremely useful; algorithm designers think only about two levels of memory

and develop algorithms that perform efficiently in each level of the memory hierarchy

as well.

Cache complexity of an algorithm is the number of cache misses the algorithm

causes or equivalently the number of block transfers it incurs between these two

levels. In this thesis, the size of cache is always denoted by M and the size of a block

is always denoted by B. We are only interested in the asymptotic cache complexity

of algorithms, our lower and upper bounds are all asymptotic. That is our concern is

with the order of magnitude of the cache complexities and we ignore constant factors.

1.2 The Multiset Searching and Sorting Problems

In this thesis, we consider several problems related to multisets and design cache-

oblivious algorithms for them. A multiset is a generalization of a set in which repe-

tition is allowed, so we can have several items with the same key value. We denote

the items in the multiset as elements.

In this thesis, elements are assumed to be objects each of which contains a key

field showing the value of the element. Elements are considered to be atomic and

unbreakable; the integrity of an element is always maintained throughout handling.

Each element takes up one unit space for storage. The value of an element is the

value of its key field. For the sake of brevity, we will use the terms “elements” and

“values of elements” interchangeably, so the reader can think of elements as being

their values, unless explicitly stated otherwise. Two elements are called distinct if

their values are different. Similarly, an element is called a duplicate of (or equal to)

another element if they have the same value. Likewise, an element is defined to be

greater than (less than) another element, if the value of the former element is greater

than (less than) the value of the latter one.

The first problem we study is finding the most frequent element (the mode) in a

4

multiset. The other two problems are duplicate elimination and multi-sorting. Sup-

pose we are given a multiset of size N in which there are k pairwise distinct elements

i1, . . . , ik whose multiplicities are N1, . . . , Nk respectively. The problem of reducing

the original multiset to the set {i1, . . . , ik} is called duplicate elimination. Finally

multi-sorting is the problem of sorting the elements of the multiset and outputting

the list of elements in the sorted order.

1.3 Background and Previous Results

All three of these problems have been extensively studied in the comparison model

which relates to the random access memory model (RAM). In the comparison model,

we are only interested in the number of comparisons the algorithm performs. Munro

and Spira [10] proved tight lower and upper bounds for the problems of determining

the mode and multi-sorting in the comparison model. Deriving a lower and upper

bound for the problem of duplicate elimination is not hard once we have the bounds

for multi-sorting. Later, Arge et al. [4] proved tight lower and upper bounds for these

three problems in an I/O model that relates to the cache-aware model.

Sorting was among the first problems that were studied in the cache-oblivious

model. Frigo et al. [6] proved that a set of size N can be sorted in

O
(

N
B

max
{

1, logM
B

N
B

})
2. Aggarwal and Vitter [2] had shown that this is also a

lower bound even for a cache-aware algorithm. However, there is an assumption in

the algorithm of Frigo et al. that is a common assumption in cache-oblivious algo-

rithms: This assumption, known as the tall-cache assumption, is that M = Ω (B2).

Obviously their algorithm does not perform optimally in sorting the multiset, as they

do not take advantage of the fact that there might be repetitions in the input list. We

will use their results in our algorithms, so we will assume the tall-cache assumption

as well.

2Throughout this thesis, the base of a logarithm is given only when required. The use of log is
used to infer the base is an arbitrary constant greater than one. lg denotes the logarithm base 2. ln
denotes the natural logarithm.

5

Under the tall cache assumption logM
B

N
B

can be simplified as logM
B

N . Although

we assume the prsence of a tall cache throughout this thesis, we avoid using the

shorter form of such logarithms to maintain the generality of the results.

The rest of this thesis is organized as follows: We will present the lower bounds

for the problems in the comparison model in Chapter 2. We will then present the

lower bounds in the cache-aware model in Chapter 3. Finally in Chapter 4, which is

the contribution of the author, we will give cache-oblivious algorithms for each of the

problems.

Chapter 2

Lower Bounds in the Comparison

Model

In this chapter we will present the lower bounds for the three problems in the com-

parison model. Munro and Spira [10] first proved lower bounds for the two problems

of sorting a multiset and determining the mode. The problem of duplicate elimina-

tion is quite similar to multisorting and once we have a lower bound for multisorting,

proving a lower bound for duplicate elimination is not hard.

We are only interested in asymptotic lower bounds whereas Munro and Spira [10]

proved exact lower bounds; therefore, our proofs are simpler than theirs although the

ideas are the same.

The rest of this chapter is organized as the following: We will first show a lower

bound on multisorting in Section 2.1. Then we will prove a lower bound for the

duplicate elimination problem in Section 2.2. Finally we will present a lower bound

for determining the mode in Section 2.3.

2.1 Lower Bound on Multisorting

We are given a multiset of size N with k distinct elements i1, . . . , ik with multiplicities

N1, . . . , Nk respectively (
∑k

i=1 Ni = N.) We next give a lower bound for the number

6

7

of three-branch comparisons (i.e. {<, =, >}) required to sort the multiset. Theorems

2.1.1 and 2.2.1 are proven in [10] with the constant term in the Ω () being 1, the

logarithm base 2 and a negative lower order term. As we are concerned only with

order of magnitude, we can give simpler proofs.

Theorem 2.1.1 ([10]). The average number of comparisons required to sort a mul-

tiset of size N with multiplicities N1, . . . , Nk is:

Ω

(
N log N −

k∑
i=1

Ni log Ni

)
.

Proof. We will give an information theoretic lower bound. Consider a decision tree

that determines the total ordering of the multiset. There are
(

N
N1,N2,...,Nk

)
ways to

construct the list of the elements of a multiset that has multiplicities N1, . . . , Nk.

Since the decision tree must distinguish each of these configurations from any other,

the tree has at least
(

N
N1,N2,...,Nk

)
leaves.

It is well-known that a tree with fixed out-degree d and l leaves has an average

height of logd l. Hence, the decision tree must have an average height of:

average height = Ω

(
log3

(
N

N1, N2, . . . , Nk

))

= Ω

(
N log N −

k∑
i=1

Ni log Ni

)
.

Therefore, the average number of comparisons required to sort the multiset is:

Ω

(
N log N −

k∑
i=1

Ni log Ni

)

.

2.2 Lower Bound on Duplicate Elimination

We will present a lower bound for duplicate removal. Given a multiset of size N

consisting of distinct elements i1, . . . , ik with multiplicities N1, . . . , Nk, the goal is to

reduce the multiset to the set {i1, . . . , ik}.

8

The lower bound for duplicate elimination follows immediately from the lower

bound for multisorting in Theorem 2.1.1.

Theorem 2.2.1 ([10]). Duplicate elimination of a multiset of N with multiplicities

N1, . . . , Nk requires an average number of comparisons of

Ω

(
N log N −

k∑
i=1

Ni log Ni

)
.

Proof. We will show that after duplicate removal from a multiset, the total ordering

among all elements must be known. Hence, the lower bound of multisorting also lower

bounds the number of comparisons of duplicate removal.

Suppose, using some algorithm, we have removed all duplicates and obtained the

set {i1, . . . , ik}. First of all, the total ordering among i1, . . . , ik must be known, since

we are dealing with the comparison model and any two of them must be known not

to be equal. Secondly, any other element that is not present in the final set must be

equal to one of the elements of the set and we must know which one, since we have

removed it as a duplicate.

Thus, the total ordering must be known after the duplicate removal, and we

showed in Theorem 2.1.1 that, on average, we need at least

Ω

(
N log N −

k∑
i=1

Ni log Ni

)

comparisons to determine the total ordering.

2.3 Lower Bound on Determining the Mode

In this section, we consider the problem of determining the mode and give a lower

bound on the number of comparisons required to find the mode in a multiset. The

theorem and proof are from [10].

Theorem 2.3.1 ([10]). Determining the mode of a multiset of size N with multi-

plicities N1, . . . , Nk requires an average number of comparisons of Ω
(
N log N

f

)
where

f = maxk
i=1 Ni is the frequency of the mode.

9

m a c

m

m

a m b c a

m m c c

c

Figure 2.1: The tournament tree by which a multiset set is sorted after the mode is
determined.

Proof. We will show that once the mode has been determined we can sort the multiset

without too many comparisons. Since we proved a lower bound for sorting, it implies

a lower bound for determining the mode.

Suppose the mode, with frequency f , has been found in the multiset. Consider

those elements that have never lost in the comparisons so far (if x < y, we say x has

lost to y.) There are at most f of these elements; otherwise they could be all equal

and form a class of duplicates that has multiplicity greater than f .

We place these elements at the leaves of a balanced binary tree with f leaves

and run a tournament to determine the maximum. We then remove the maximum

elements and add any other elements that had lost only to the maxima. Again there

can be at most f elements in the tree; otherwise they could form a class of more than

f duplicates. We run the tournament again to select the next maxima and so on (see

Figure 2.1 for an example.) Since the tree is always a balanced binary tree with f

leaves, for each element we incur dlg fe comparisons, and therefore the total number

of comparisons until the whole multiset gets sorted is N dlg fe.
N lg f is an overestimate however. We can save some comparisons when equality

between elements happen (i.e., x = y). When we remove off a maximum from the

tree, we can remove all its duplicates along with it. To account for the number of

comparisons we save, consider a class of duplicates of an element m with size Nm.

Previously, we charged each of the elements for the height of the tree. Though, to

10

Table 2.1: The lower bounds in the comparison model

Lower bound

Multisorting Ω
(
N log N −∑k

i=1 Ni log Ni

)

Duplicate Elimination Ω
(
N log N −∑k

i=1 Ni log Ni

)

Determining the Mode Ω
(
N log N

f

)

draw them all off we require only Nm − 1 comparisons (more precisely equalities),

plus those between an m and other (unequal) elements. The saving is minimized if

all m’s encounter each other at the highest possible point on the tree. Clearly, this is

at depth lg Nm. So the saving is Ni lg Ni −Ni. Thus the number of comparisons we

save in the total is:
k∑

i=1

Ni lg Ni −O(N).

Hence the total number of comparisons required to figure out the total ordering of

the multiset when we have determined the mode is:

N lg f −
k∑

i=1

Ni lg Ni + O(N).

Hence, the lower bound on the average number of comparisons required to determine

the mode is:

Ω

(
(N log N −

k∑
i=1

Ni log Ni)− (N lg f −
k∑

i=1

Ni lg Ni + O(N))

)
= Ω

(
N log

N

f

)
.

2.4 Summary

We proved lower bounds for the average number of comparisons required to solve the

three problems. The lower bounds for the problems in the comparison model have

been presented in Table 2.1.

Chapter 3

Lower Bounds in the Cache-Aware

Model

In this chapter we will present lower bounds for the three problems in the cache-aware

model. It is essentially a review of the work of Arge et al. [4].

The only difference between cache-aware and cache-oblivious model is that in the

cache-aware model the sizes of cache and its pages (i.e., M, B) are known. Therefore,

any lower bound in the cache-aware model for a specific problem is certainly also a

lower bound in the cache-oblivious model for that problem.

On the other hand, any algorithm in the cache-oblivious model works in the cache-

aware model by ignoring the knowledge about values of M and B. Therefore, any

upper bound in the cache-oblivious model for a specific problem holds in the cache-

aware model for that problem.

Arge et al. [4] proved cache-aware lower bounds for the three problems (namely,

finding the mode, duplicate removal and multisorting). As mentioned, these lower

bounds also hold in the cache-oblivious model. In this chapter, we will outline the

proofs of the lower bounds. They also give algorithms that match the lower bounds.

As our algorithms in Chapter 4 are simpler than theirs and at the same time, match

the lower bounds, we will not mention their upper bounds.

The lower bounds can be duly translated from the lower bounds in the comparison

11

12

model. The notion of I/O-trees is defined as an adaptation of decision trees in the

comparison model; we present a “main theorem” that relates the size of an I/O-tree

and that of a decision tree. Since we have already proved lower bounds on the sizes of

decision trees in chapter 2, by applying the main theorem, we can prove lower bounds

on the sizes of I/O-trees.

The rest of this chapter is organized as follows: In Section 3.1, we will briefly

describe the I/O-model in which the lower bounds are proved. In Section 3.2, the

main theorem is presented. Then, each problem is studied in an individual section

and specific lower bounds are presented. Finally, some extensions to the I/O-model

is explained in the last section.

3.1 The I/O Model

First we need to specify the I/O model to prove lower bounds. We will assume the

input elements x1, . . . , xN are atomic, and we also assume that the only operations al-

lowed on the elements are comparisons. At any time two elements xi, xj are compared

the two elements must be present in the cache.

Both the cache and the memory are divided into blocks of size B. An element can

only be accessed if it is present in the cache. Each I/O operation swaps at most B

contiguous elements that constitute a block between the cache and the main memory.

The elements are removed from the main memory and are brought into the cache

or they are flushed back from the cache to the main memory. Full associativity in

the cache is assumed: Each block of the cache can be swapped with any block in

the main memory. Furthermore, the algorithm can choose which block should be

swapped with which (i.e., replacement policy is decided by the algorithm.) However

the simple “least recently used” heuristic is known to achieve performance within a

constant factor of the optimal (off-line) approach with half the number of pages of

cache [11].

Note that our set of assumptions means that only one copy of an element can

13

xi ≤? xj

No Yes

xi > xj xi ≤ xj

Figure 3.1: A comparison node and the labels of its edges

exist at any time. At the end of this chapter, we will show that this constraint as

well as some other constraints can be relaxed to make the I/O model more realistic.

3.2 The Main Theorem

In this section, we explain the notion of I/O-trees which are counterparts to decision

trees in the cache-aware model. We will also show, in the main theorem, how the size

of an I/O-tree relates to that of a decision tree.

An I/O-tree has two types of nodes: comparison nodes and I/O nodes. In com-

parison nodes, two elements (say xi, xj) are compared; it is checked whether xi ≤ xj.

Depending on whether the answer is yes or no, two cases are possible. These corre-

spond to the two children of the node, and we label the two edges to these children

xi ≤ xj or xi > xj accordingly (e.g., see Figure 3.1).

In an I/O-node a block of the cache is swapped by a block of the main memory.

In other words, at most B contiguous elements that constitute to a block in the cache

and a block in the main memory are swapped. An I/O-node can have many outgoing

edges depending on which two elements in the memory are compared after the I/O

operation. No label is attached to the outgoing edges of I/O-nodes.

The set of labels of edges on the path from the root of the tree to a node v of the

tree is all the knowledge obtained up to the time node v is being invoked.

Definition 3.2.1. For a node v of the I/O-tree, Path(v) is defined as the set of edges

14

of the path from the root of the tree down to the node v. The predicate of a node v,

P (v), is the logical “and” of all the labels on Path(v).

At any leaf l of the tree, the knowledge, the predicate P (l) provides, must be suf-

ficient to solve the problem, since no further operations will be invoked after reaching

a leaf.

Definition 3.2.2. An I/O-tree is called valid if for any leaf l, P (l) is enough to reach

a conclusion and solve the problem at hand.

If one changes internal nodes of a valid I/O-tree and their operations so that the

predicate of each leaf l remains the same or is changed to a new P (l) that implies the

old P (l), the new tree will be valid as well.

We are now ready to present the main theorem:

Theorem 3.2.1 ([4]). If there is a valid I/O-tree T that solves a particular problem,

there is a comparison tree Tc that solves the same problem and has the following

property:

height(Tc) ≤ n lg B + heightI/O(T) × Tmerge(M −B, B)

where height(Tc) is the height of Tc, heightI/O(T) is the maximum number of I/O-

nodes on any path from the root a leaf, and Tmerge(M −B, B) is the number of cache

misses that happens during merging two sorted lists of sizes M −B and B.

Proof. The idea is to construct a comparison tree Tc from the I/O-tree T by a series

of transformations; in each transformation a comparison subtree is considered and

replaced by an optimized one.

Definition 3.2.3. A comparison subtree of an I/O-tree is a subtree whose root and

leaves are all I/O-nodes and whose internal nodes are all comparison nodes (see Figure

3.2 for an illustration.)

At any time the uppermost comparison subtree is transformed; in other words,

the comparison subtree whose root has the smallest depth (breaking ties arbitrarily)

is considered and is replaced by another comparison subtree.

15

r

l1 l2 lk. . .
. . .

Figure 3.2: Comparison subtree of an I/O-tree: All the leaves l1, . . . , lk and the root
r are I/O-nodes and internal nodes are of type comparison

During the transformation, we always maintain the invariant that at each I/O-

node before the I/O-operations we know the total ordering of the M elements in the

cache and the present elements in the cache are sorted based on this ordering. The

invariant obviously holds at the beginning; at the root of the I/O-tree, there is no

element in the memory and thus the invariant holds.

We further assume that the B elements that are brought into the cache by any

I/O-operations are already in sorted order. The first time a block is read into the

cache, this assumption certainly does not hold; so we have to determine the ordering

of a block when it is first brought in and sort it. This takes B lg B comparisons per a

block, as there are N/B blocks, the total number of comparisons is N lg B. When we

are writing a block back into the main memory, we output it in sorted order, hence

the next time it is brought in the cache, it is already sorted. Thus, it incurs no more

comparisons.

Consider the uppermost comparison subtree T with root r and leaves l1, . . . , lk.

16

At the root a block is swapped into the cache from the main memory. All internal

nodes of T are comparison nodes. As we can only access the elements that are present

in the cache, the comparisons at the internal nodes are all among those elements that

are present in the cache.

We replace this subtree by a subtree that finds the total ordering among all the

elements present in the cache. It is obvious that the set of predicates P (li) at each

leaf li in the new subtree includes the predicate P (li) in the old subtree, since the

total ordering is the most one can know about the elements (We know the relation

between any two elements in the total ordering.)

The number of comparisons we incur to find the total ordering after reading a

block into the cache can be computed as follows: According to our assumptions we

know the ordering of the elements within the block, we have also maintained the

invariant that we know the ordering among the M − B elements that are present in

the cache. Therefore, we just have to merge the B elements in the block with the

M −B elements present in the cache which is Tmerge(M −B, B).

We consider comparison subtrees one by one from the root of the I/O-tree down to

the leaves, and replace each one with a subtree of height Tmerge(M−B, B). Therefore,

the height of the resulting comparison tree Tc will have the following property:

height(Tc) ≤ n lg B + heightI/O(T) × Tmerge(M −B, B).

Tmerge(M−B,B) is easy to compute; we are merging two sorted lists of size M−B

and B. It can be done by looking up each of the B elements in the list of size M −B

by a binary search. The Hwang-Lin algorithm [7] can be used to merge two lists of

sizes p and q (p ≤ q) using

p

⌈
lg

q

p

⌉
+ p +

⌊
p

2blg q
pc

⌋
− 1

comparisons which is less than p lg q
p

+ 3p. Therefore,

Tmerge(M −B,B) ≤ B lg

(
M −B

B

)
+ 3B.

17

Corollary 3.2.2 ([4]). If there is a valid I/O-tree T , there is a comparison tree Tc

for which the following inequality holds:

height(Tc) ≤ N lg B + heightI/O(T) . (B lg(
M −B

B
) + 3B)

where height(Tc) is the height of Tc and heightI/O(T) is the maximum number of

I/O-nodes on a path from the root to the leaves in T .

The inequality in Corollary 3.2.2 directly gives lower bounds for the number of I/O-

operations in any valid I/O-tree T ; the inequality combined with the lower bounds

for the height of any valid comparison tree Tc in Chapter 2 imply a lower bound on

heightI/O(T) which is the number of necessary I/O-operations in the worst case.

3.3 Lower Bound on Determining the Mode

In Section 2.3, we showed that to find the mode in a multiset of size N where the

frequency of the mode is f , any algorithm takes N lg(N/f) comparisons to within

lower order terms. Here we combine this lower bound with the Corollary 3.2.2 in

Section 3.2 to obtain a lower bound for the number of I/O operations involved.

Theorem 3.3.1 ([4]). The number of I/O-operations required to determine the mode

with frequency f in a multiset of size N is Ω
(
max

{
N
B

logM
B

N
fB

, N
B

})
.

Proof. According to Corollary 3.2.2, the following inequality holds:

height(Tc) ≤ N lg B + heightI/O(T) . (B lg(
M −B

B
) + 3B).

In Section 2.3 we showed that:

height(Tc) ∈ Ω(N log(N/f)).

18

By combining these two, we obtain:

heightI/O(T) ∈ Ω

(
N log(N/f)−N log B

B log M−B
B

+ 3B

)
⇒

heightI/O(T) ∈ Ω

(
N log N

fB

B log M
B

)
⇒

heightI/O(T) ∈ Ω

(
N

B
logM

B

N

fB

)
.

In case N
f

< M , the above bound is negative. In this case, since we should read all

the elements in there is an obvious lower bound of O
(

N
B

)
.

3.4 Lower Bound on Sorting

In Section 2.1, we presented a lower bound on the number of comparisons required

to sort a multiset. Here we combine the lower bound with Corollary 3.2.2 to obtain

a lower bound for the number of I/O-operations required.

Theorem 3.4.1 ([4]). To sort a multiset of size N with k distinct elements of mul-

tiplicities N1, N2, . . . , Nk, the number of I/O-operations required is:

Ω

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

N

B

})
.

Proof. As it was shown in Section 2.1, the lower bound for the number of comparisons

to sort a multiset is:

height(Tc) ∈ Ω

(
N log N −

k∑
i=1

Ni log Ni

)
.

According to Corollary 3.2.2:

height(Tc) ≤ N lg B + heightI/O(T) × (B lg(
M −B

B
) + 3B).

19

By combining these two together, we obtain:

heightI/O(T) ∈ Ω

(
N log N −∑k

i=1 Ni log Ni −N log B

B log M−B
B

+ 3B

)
⇒

heightI/O(T) ∈ Ω

(
N log N

B
−∑k

i=1 Ni log Ni

B log M
B

)
⇒

heightI/O(T) ∈ Ω

(
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni

)
.

Again when N
f

< M , the above bound is no use. In this case, since we should read

all the elements in there is an obvious lower bound of O
(

N
B

)
.

3.5 Lower Bound on Duplicate Elimination

In Section 2.2, it was proved that after duplicate removal, the total ordering among

all elements must be known; in other words removing the duplicates of a multiset

requires the same number of comparisons as sorting:

height(Tc) ∈ Ω

(
N log N −

k∑
i=1

Ni log Ni

)
.

One can follow the same steps as in Section 3.4 to obtain the same lower bound

as in Theorem 3.4.1:

Theorem 3.5.1 ([4]). To remove duplicates from a multiset of size N with k distinct

elements of multiplicities N1, . . . , Nk, the number of I/O-operations required is:

Ω

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

N

B

})
.

3.6 Extensions to the I/O-Model

The I/O-model defined in Section 3.1 is limited; consequently, the lower bounds hold

for algorithms that fit in the limited model. In this section, we will show some possible

20

extensions to the model. These extensions make the model more reasonable. We will

also show that the lower bounds still hold in the new model.

The I/O-model in Section 3.1 is limited in three aspects: First, only one copy of

any element can be present in the system at any time; we can relax this constraint

so that elements can be copied. In this new model, I/O-operations do not have to be

block swaps between the cache and the main memory; instead we have two kinds of

I/O-operations: I-operations and O-operations. In I-operations, a block of the main

memory is read into the cache, and in O-operations, a block of the cache is written

back into the main memory (without it being removed from the cache). The new

I/O-operations certainly allow copying of the elements.

It is not hard to see that the results of Section 3.2 still hold and consequently

lower bounds remain valid. I/O-trees in the new model, have two types of I/O-nodes:

I-nodes and O-nodes which correspond to I-operations and O-operations respectively.

The steps in Section 3.2 can be followed in the same way to yield Corollary 3.2.2: A

comparison subtree can be replaced by an optimized one in the same way. Once we

obtain Corollary 3.2.2, the lower bounds can be obtained directly.

Secondly, in the model of Section 3.1, we assumed that no helper variable is

used, and all branches are made by comparison between the elements. We can,

however, permit the use of helper variables as long as their values are implied by

the comparisons between the elements up to that point, and we can permit branching

based on values of these variables. Since these variables cannot save any comparisons,

our lower bounds remain intact.

Finally, we allowed only binary comparisons (i.e., ≤ and >). However, we can also

permit ternary comparisons (i.e., < or = or >). Ternary comparisons do not affect

the I/O-height of the I/O-tree and their effect on the comparison height is only a

constant factor; as we are only interested in asymptotic lower bounds in this chapter,

constant factors do not matter and the lower bounds remain valid.

21

3.7 Summary

In this chapter, we reported proofs of lower bounds for the cache complexity of our

three problems. The lower bounds in the cache-aware model have been presented in

Table 3.1.

Table 3.1: The lower bounds on the cache complexities in the cache-aware model

Lower bound

Determining the Mode Ω
(
max

{
N
B

logM
B

N
fB

, N
B

})

Multisorting Ω
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

N
B

})

Duplicate Elimination Ω
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

N
B

})

Chapter 4

Cache-Oblivious Upper Bounds

In this chapter, we will present cache-oblivious algorithms for each of the three prob-

lems. In Chapter 3, lower bounds were proved for the problems in the cache-aware

model. Obviously, these lower bounds duly hold in the cache-oblivious model, since

the cache-oblivious model is exactly the same as the cache-aware one except that

there is no knowledge of values of parameters M, B.

Arge et al. [4] presented cache-aware algorithms that match the lower bounds

proven in Chapter 3. We present cache-oblivious algorithms that are close to match

the lower bounds. The cache-aware versions of our algorithms, however, match the

lower bounds and are much simpler than the ones presented by Arge et al.

The rest of this chapter is organized as follows: We first explain the cache-oblivious

model in detail in Section 4.1. We take three different approaches to give cache-

oblivious algorithms for the three problems. Due to the similarity between our first

approach and the selection sort, we call it the selection approach. It is explained in

Section 4.2. Our second approach is called the distribution approach due to its simi-

larity with distribution sort. We will describe this approach in Section 4.3. Finally,

our last approach is randomized and will be discussed in Section 4.4.

22

23

4.1 The Cache-Oblivious Model

In this section the cache-oblivious model is described in detail. The memory hierarchy

has two levels: On the first level, there is a cache of size M . On the second level,

there is an infinite memory. The cache and the memory are divided into blocks of

B words. The processor can only reference a word that is present in the cache. If

the word has already been brought in the cache, a cache hit occurs. Otherwise, the

block that contains the requested word must be fetched from memory into the cache,

in this case a cache miss (or a cache fault) happens.

We suppose the block replacement policy is the off-line optimal one. At the time

of a cache miss, a block is automatically evicted and replaced by the newly requested

block. The choice of the block for eviction is automatic and is off-line optimal in

the sense that it causes the least number of cache misses in the whole run of the

algorithm. The assumption of an automatic off-line optimal is not unrealistic as a

least recently used (LRU) policy is only a constant factor away from it if the cache

size is doubled. We also assume that the cache is fully-associative; each block of the

cache can be replaced by any block of the main memory.

The size of the cache (M) and the size of a block (B) are unknown to a cache-

oblivious algorithm; in other words, the algorithm is oblivious of these values.

4.2 The Selection Approach

In this section we present our first approach to give upper bounds for solving the three

problems cache-obliviously. Due to the resemblance of this approach to selection sort,

this approach is called the selection approach.

We start by proving a key theorem in Section 4.2.1 which we will use as a building

block in solving the three problems in the three following sections. The theorem deals

with finding frequent elements in a multiset efficiently.

Although the upper bounds do not exactly match the lower bounds, they come

very close. In Section 4.2.5, optimality of the algorithms are explained: Situations are

24

described where the algorithms are proven optimal and also situations are mentioned

where the algorithms do not match the lower bounds.

4.2.1 Finding Frequent Elements

The main theorem for the selection approach is presented in this section. In the

theorem, we efficiently find a set of “frequent” elements in a given multiset. Let us

first define what exactly we mean by “frequent”.

Definition 4.2.1. We call an element C-frequent if and only if it occurs more than

N
C

times in a multiset of size N .

The main theorem is about “selecting” C-frequent elements quickly and is used

as a building block in the algorithms of the selection approach.

Theorem 4.2.1. In a multiset of size N , C-frequent elements (those with multi-

plicities greater than N
C
) and their actual multiplicities can be determined with cache

complexity O
(

N
B

max{1, logM
B

C
B
}
)
.

Proof. The algorithm works in two phases. In the first phase, we try to find a set

of at most C candidates that contains all the C-frequent elements. There may also

be some other arbitrarily infrequent elements in our list of candidates. Note that, by

definition, the number of C-frequent elements cannot exceed C. In the second phase,

we check the C candidates to determine their exact frequencies. The algorithm is

illustrated in Figure 4.1.

Phase 1 (Finding candidates). The key idea in this phase is essentially what

Misra [8] used. We find and remove a set of t (t ≥ C) distinct elements from the

multiset. The resulting multiset has the property that those elements that were C-

frequent in the original multiset are still C-frequent in the reduced multiset. This

is because after deleting the t distinct elements, the frequency of each element can

be reduced by at most one. Therefore those elements that had multiplicities greater

25

Procedure Frequent Element Finder(C)

Variables:
Candidates: Holds as many as C distinct elements along with a counter

for each element (Initially empty.)

G: Holds exactly C contiguous elements from the multiset (duplicates are
possible.)

T: Holds as many as 2C distinct elements along with a counter for each
element.

begin
// Phase 1: Finding Candidates.

while there are more elements in the multiset do
1 Read the next C elements from the multiset into G.
2 Sort G and Candidates.
3 Merge G and Candidates into T:
4 Reduce T by throwing out all but the C − 1 most frequent ele-

ments. This is done as follows:
4a Sort T according to the value of the counters.
4b Throw out all but the elements with C − 1 largest counters.
4c Decrease the counters of the remaining elements by the

counter value of the most frequent element discarded.
5 Candidates ← T.

// Phase 2: Confirmation.

while there are more elements in the multiset do
6 Read the next C elements from the multiset into G.
7 Sort G and Candidates.
8 Accumulatively increase the counters of Candidates by a merge

of G and Candidates.

9 Retain elements in Candidates with counters larger than N
C

.

end

Figure 4.1: Frequent Finding Algorithm

26

than N/C, now have now multiplicities greater than N/C − 1 = N−C
C

≥ N−t
C

. The

claim follows by considering the fact that the size of the new multiset is N − t.

Thus, we can keep removing sets of at least C distinct elements from the multiset

one at a time until the multiset has no longer more than C distinct elements; the

C-frequent elements in the original multiset must be also present in the final multiset.

The algorithm illustrated in Figure 4.1 works as follows. We scan the multiset

from the beginning to the end in groups of C elements (there are N/C such groups).

We maintain an array of “candidates” of size C which is initially empty and eventually

will hold as many as C distinct values; each element in this array also has a counter

associated with it which shows the number of occurrences of the element so far. As

soon as the number of elements in this array goes over C, it means there are C or

more distinct elements in the array and we can reduce the size of the multiset by

removing C distinct elements.

We read C elements into G (line 1). Then we sort the elements into G and also sort

the elements in the Candidates array (line 2.) This can be done by using any method

of cache-oblivious sorting for sets which causes O
(

C
B

max
{

1, logM
B

C
B

})
cache misses

(e.g. see Frigo et al. [6]).

Once arrays G and Candidates are sorted, we merge them into another array T

(line 3.) The merging is done as in the merge sort. All elements in T are required

to be distinct and hence there is a counter associated with each element to represent

the number of its duplicates. The merging takes a pass from each list and may cause

O(C
B

) cache misses, which is negligible compared to that of sorting the C elements.

If |T | ≥ C, we downsize T . Logically, we would like to repeatedly remove one copy

of each distinct element until fewer than C distinct elements remain. The counters of

these remaining elements are then adjusted to these new, lower, values. This logical

procedure, however, must be performed in a cache-efficient manner, so we actually

proceed as follows. We sort T according to the value of the counters (line 4a). We

then find the Cth largest counter mc. All elements with a counter value at most mc

are thrown away and the counter of the rest of the elements is decreased by mc (lines

27

4b and 4c.) One can easily see that this is equivalent to repeatedly throwing away

groups of at least C distinct elements from T one at a time.

Array Candidates is emptied and is set to T (line 5.) The next group of C

elements are read in from the multiset and the process continues so on.

After the last group of C elements is considered, the Candidates array contains

all possible C-frequent elements in the multiset; however, as mentioned, it may also

contain some more arbitrary elements.

The cache complexity of this phase is obviously:

N

C
×O

(
C

B
max

{
1, logM

B

C

B

})
= O

(
N

B
max

{
1, logM

B

C

B

})
.

Phase 2 (Confirmation). This phase is similar to the first phase, except that

array Candidates remains intact throughout this phase. Given the candidates array,

we first zero out all the counters of the elements. We then consider N/C groups

of C elements from the multiset one at a time. We read next group of C elements

into G (line 6.) We then sort the elements in G and Candidates using any cache-

oblivious sorting algorithm for sets (line 7.) Then we count how many times each of

the candidates occur in the group by a scan of G and Candidates as in the merge

sort (line 8.) We accumulate these counts so that after considering the final group of

C elements, we know exactly how many times each of the candidates has occurred in

the whole multiset. We finally keep all elements whose counters are more than N/C

and throw away the rest (line 9.) Cache complexity of this phase can be worked out

similarly as the first phase to be:

O

(
N

B
max

{
1, logM

B

C

B

})
.

The number of comparisons this algorithm makes or its time complexity can be

worked out in a manner similar to its cache complexity. Sorting each group of O (C)

elements requires O (C lg C) comparisons. As we sort the entire multiset of size N in

groups of C elements, and we sort array T which can hold as many as 2C elements,

28

it requires N/C ×O (C lg C) = O (N lg C) comparisons. The number of comparisons

during the merging is the same as the number of elements in the multiset which is

negligible compared to the number of comparisons during the sorting. Thus, the total

number of comparisons is N lg C.

The key point in using the frequent finder algorithm on specific data is the wise

choice of C. Indeed the method itself is not worded to take advantage of the data at

hand. We will show in the following sections how this wise choice of C can be made.

4.2.2 Determining the Mode

In this section, we present an algorithm that determines the mode of a multiset. We

apply Theorem 4.2.1 of the previous section repeatedly for a series of values for C.

The upper bound will turn out to be the maximum of two terms: N
B

logM
B

N
fB

and

N
B

log log N
f
. The first term is the lower bound we would like to match. However, the

second term is the extra term that does not let the algorithm always match the lower

bound. We will show that the excess from the lower bound is small and in fact less

than N
B

log log M 1.

Theorem 4.2.2. Given a multiset of size N , with f the frequency of the mode un-

known, The mode and f , can be found with cache complexity

O

(
max

{
N

B
logM

B

N

fB
,
N

B
log log

N

f

})
.

Proof. We repeatedly apply Theorem 4.2.1 for a series of increasing values of C to

determine whether there is any C-frequent element in the multiset. The first time

some C-frequent elements are found, we halt the algorithm and declare the most

frequent among them as the mode.

The algorithm in Theorem 4.2.1 is executed in rounds as C goes doubly exponen-

tially for the following values of C in order: C = 221
, 222

, . . . , 22i
, . . . , 22dlg lg N+1e

. At

the end of each round, we either end up empty-handed or we find some C-frequent

1For practical caches log log M is small. For example, for a cache of size M = 1000 terabytes,
log log M is less than 6.

29

elements. In the former case, the algorithm continues with the next value of C. In the

latter case, we declare the most frequent of the C-frequent elements to be the mode,

and the algorithm halts. Note that the algorithm of Theorem 4.2.1 also produces

the actual multiplicities of the C-frequent elements, thus finding the most frequent

element among the C-frequent ones requires only a pass of the at most C elements

to select the element with the maximum multiplicity.

The correctness of the algorithm is straightforward. First note that the algorithm

will eventually halt and report an element as the mode; for a value of C as large as N ,

the algorithm will halt, since all elements are N + 1-frequent. Secondly, the element

that the algorithm reports is truly the mode. For a value of C, the algorithm finds all

the C-frequent elements; the mode must be among these elements as it is the most

frequent element. Since we report the most frequent element among the C-frequent

elements, we output the mode.

We now analyze the cache complexity of the algorithm. We denote by f the

frequency of the mode, and set k =
⌊
lg lg N

f

⌋
; we have the following inequality:

N

22k+1 < f ≤ N

22k .

Then the algorithm runs for values 221
, 222

, . . . , 22k+1
of C. By summing up the cache

complexity of the algorithm in Theorem 4.2.1 for the mentioned values of C, we

obtain:

k+1∑
j=1

O

(
N

B
max

{
1, logM

B

22j

B

})
= O

(
N

B
max

{
(k + 1), logM

B

22k+2

B

})

= O

(
max

{
N

B
k,

N

B
logM

B

22k

B

})

= O

(
max

{
N

B
log log

N

f
,

N

B
logM

B

N

fB

})
.

Hence the cache complexity of the algorithms consists of two terms: N
B

logM
B

N
fB

and

N
B

log log N
f
. The former term is the lower bound proven. The latter term produces a

gap between the upper and the lower bound. It essentially arises from the first runs

30

Table 4.1: Optimality of the upper bound for determining the mode in Theorem 4.2.2

Upper Bound Lower Bound

N/f > M O
(
max

{
N
B

logM
B

N
fB

, N
B

log log M
})

Ω
(

N
B

logM
B

N
fB

)

N/f ≤ M O
(

N
B

log log N
f

)
Ω

(
N
B

)

of the frequent finder algorithm for small values of C where C < M . In each such

run of the algorithm we at least take a pass of the whole multiset which cost N
B

cache

misses each. The issue of the gap between the lower and upper bound is discussed in

detail later.

As mentioned earlier, the upper bound given in Theorem 4.2.2 does not match the

lower bound. To see how far it can be from the lower bound, two cases are considered

(these two cases are summarized in Table 4.1):

• N/f > M : The upper bound in Theorem 4.2.2 is:

U = O

(
max

{
N

B
logM

B

N

fB
,
N

B
log log

N

f

})
.

The first term is the lower bound; so we focus on the extra term N
B

log log N
f
:

N

B
log log

N

f
=

N

B
log

(
logM

B

N

f
× log

M

B

)

=
N

B

(
log logM

B

N

f
+ log log

M

B

)

=
N

B
log logM

B

N

f
+

N

B
log log

M

B

31

Thus, we can rewrite the upper bound U as:

U = O

(
max

{
N

B
logM

B

N

fB
,
N

B
log log

N

f

})

= O

(
max

{
N

B
logM

B

N

fB
,

(
N

B
log logM

B

N

f
+

N

B
log log

M

B

)})

= O

(
max

{
N

B
logM

B

N

fB
,
N

B
log log M

})
.

• N/f ≤ M : In this case the upper bound can be rewritten as:

U = O

(
max

{
N

B
logM

B

N

fB
,
N

B
log log

N

f

})

= O

(
N

B
log log

N

f

)
.

However the lower bound in this case is Ω(N/B), because the algorithm has

to look at each element at least once; otherwise it is easy to come up with an

adversary algorithm that makes the algorithm make a wrong decision. Suppose

there are exactly N/f different elements that each occur exactly f times. The

algorithm cannot make any decision whatsoever regarding to which element is

the mode until the last element is read, since by changing the value of the last

element one can get a different element as the mode.

The difference between the lower bounds and upper bounds in the two cases can be

clearly seen in Table 4.1. The cache complexity of the algorithm has an excess from

the lower bound that is O
(

N
B

log log M
)

and when N/f < M , this excess reduces to

O
(

N
B

log log N
f

)
. For practical values of cache size M , lg lg M can be considered as a

small constant.

The number of comparisons this algorithm requires is easy to compute: At each

round, for each value of C, the number of comparisons is O (N log C) as it was shown

32

in Section 4.2.1. Therefore, the total number of comparisons the algorithm for deter-

mining the mode is:

dlg lg N
f e∑

i=1

O
(
N log 22i

)
= O

(
N2dlog log N

f e
)

= O

(
N log

N

f

)
.

According to the lower bound in Section 2.3, the algorithm performs the asymptoti-

cally optimal number of comparisons to determine the mode.

4.2.3 Duplicate Elimination

We are given a multiset of size N which consists of k pairwise distinct elements

i1, . . . , ik whose multiplicities are N1, . . . , Nk respectively. Without loss of generality,

we can assume N1 ≥ N2 ≥ · · · ≥ Nk. The goal in this section is to reduce the multiset

to the set {i1, . . . , ik}.
Again, the cache complexity of our algorithm for duplicate removal does not quite

match the proven lower bound in Section 3.5. As in Section 4.2.3, the excess from

the lower bound is small and does not exceed from an additive term of N
B

lg lg M . As

lg lg M .

Theorem 4.2.3. Eliminating the duplicates of a multiset of size N whose multiplic-

ities are N1 ≥ N2 ≥ . . . ≥ Nk can be done with cache complexity:

O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

k∑
i=1

Ni

B
log log

N

Ni

})
.

Proof. The algorithm is similar to that in Theorem 4.2.2 where we find the mode in

a multiset.

We, again, repeatedly apply Theorem 4.2.1 in rounds for each value of C =

221
, 222

, . . . , 22dlg lg N+1e
to find C-frequent elements. At the end of each round, we

33

output the discovered C-frequent elements as they belong to the final set and remove

all occurrences of these elements from the multiset.

The deletion of the discovered elements from the multiset is done as in Theorem

4.2.1; the multiset is scanned in groups of C elements. Each group of C elements is

already sorted; we compare the sorted list with the frequent elements (which are also

already sorted in the “candidates array”). The comparison is done as in the merge

sort and we delete the intersection of these two from the multiset. The algorithm

continues in next rounds with the reduced multiset. The algorithm halts when the

multiset is reduced to an empty set.

The correctness of this algorithm is clear; all element i1, . . . , ik are eventually

discovered and reported in the output. Obviously the algorithm does not output

repeated elements as we delete copies of discovered elements after we output them.

It remains to analyze the cache complexity. The cache complexity is a summation

of the cache complexity of the algorithm in Theorem 4.2.1 that finds the frequent ele-

ments. In that algorithm to find C-frequent elements we had O
(

N
B

max
{

1, logM
B

C
B

})

cache misses. To get rid of the max term in our computations, we sum the two terms

separately and then take the maximum of the two sums.

We clearly discover the elements in their order of frequencies; element i1 with

frequency N1 is discovered first, then i2 with frequency N2 and so on.

Definition 4.2.2. Define C(r) as the contribution of the term O
(

N
B

logM
B

C
B

)
in the

number of cache misses during the period of time after it has just discovered element

ir−1 until it discovers ir. Similarly define D(r) as the contribution of O
(

N
B

)
term in

the number of cache misses during the same period of time.

We first focus on C(r) for different values of r. In Section 4.2.2 to determine the

mode, we implicitly computed C(1) to be O(N
B

logM
B

N
N1B

). For all values of r > 1,

since all elements i1, . . . , ir−1 are already removed from the multiset, the size of the

multiset the algorithm deals with is N ′ = N − (N1 + . . .+Nr−1). Set p =
⌊
lg lg N

Nr−1

⌋

34

and q =
⌊
lg lg N

Nr

⌋
, and we have:

N

22p+1 < Nr−1 ≤ N

22p

N

22q+1 < Nr ≤ N

22q .

Then the value of C(r) for all values of r > 1 can be computed as follows:

C(r) =

q+1∑
i=p+2

O

(
N ′

B
logM

B

22i

B

)

= O

(
N ′

B
logM

B
22q−2p

)

= O

(
N ′

B
logM

B

Nr−1

Nr

)

= O

(
N −∑r−1

i=1 Ni

B
logM

B

Nr−1

Nr

)

= O

(
N −∑r−1

i=1 Ni

B
(logM

B
Nr−1 − logM

B
Nr)

)
.

The summation of C(r) would yield the first part of the cache complexity of the

algorithm:

k∑
r=1

C(r) = O

(
N

B
logM

B

N

N1B

)
+

k∑
r=2

O

(
N −∑r−1

i=1 Ni

B
(logM

B
Nr−1 − logM

B
Nr)

)

= O

(
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni

)
. (4.2.1)

We now focus on D(r) for different values of r; the computation is similar to that of

C(r). We have implicitly computed D(1) in Section 4.2.2 to be N
B

log log N
N1

, where we

found the mode. For r > 1, the algorithm deals only with N ′ = N − (N1 + . . . , Nr−1)

elements. The number of passes during the time after ir−1 is discovered and before ir

35

is discovered is O
(
log log N

Nr
− log log N

Nr−1

)
. Thus,

D(r) = O

(
N ′

B
(log log

N

Nr

− log log
N

Nr−1

)

)

= O

(
(N −∑r−1

i=1 Ni)

B
(log log

N

Nr

− log log
N

Nr−1

)

)
.

The sum of D(r) for all values of r will yield the second part of the cache com-

plexity:

k∑
r=1

D(r) = O

(
N

B
log log

N

N1

)
+

k∑
r=2

O

(
(N −∑r−1

i=1 Ni)

B
(log log

N

Nr

− log log
N

Nr−1

)

)

= O

(
k∑

i=1

Ni

B
log log

N

Ni

)
. (4.2.2)

By taking the maximum of the two formulas in equations 4.2.1 and 4.2.2, the

theorem is obtained.

As in determining the mode, the cache complexity of the algorithm for duplicate

elimination does not match the lower bound. The upper bound can be rewritten as:

U = O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

k∑
i=1

Ni

B
log log

N

Ni

})

= O

(
max

{
k∑

i=1

Ni

B
logM

B

N

NiB
,

k∑
i=1

Ni

B
log log

N

Ni

})
.

The first term is the lower bound we should match. The same argument as in Theorem

4.2.3 will show that the excess from the lower bound is:

k∑
i=1

Ni

B
log log min

{
M,

N

Ni

}
.

The following excess cannot be more than N
B

log log M , and since log log M is small,

we are again not far from the optimal.

36

Analysis of the time complexity or the number of comparisons of the algorithm

is quite similar to the computation of C(r) in the proof of Theorem 4.2.3: Define

comp(r) as the number of comparisons the algorithm makes after discovering ir−1

until it discovers ir. Also set p =
⌊
lg lg N

Nr−1

⌋
, q =

⌊
lg lg N

Nr

⌋
, and N ′ = N −∑r−1

i=1 Ni.

We showed in Section 4.2.2 that Comp(1) = O
(
N log N

N1

)
. For r > 1 we have:

Comp(r) =

q+1∑
i=p+2

O
(
N ′ log 22i

)

= O
(
N ′ log 22q−2p)

= O

(
N ′ log

Nr−1

Nr

)

= O

(
(N −

r−1∑
i=1

Ni) log
Nr−1

Nr

)

= O

(
(N −

r−1∑
i=1

Ni)(log Nr−1 − log Nr)

)
.

By summing up the values of Comp(r), we obtain:

k∑
r=1

Comp(r) = O

(
N log

N

N1

)
+

k∑
r=2

O

(
(N −

r−1∑
i=1

Ni)(log Nr−1 − log Nr)

)

= O

(
N log N −

k∑
i=1

Ni log Ni

)
.

Thus, according to the lower bound in Section 2.2 the algorithm performs the optimal

number of comparisons asymptotically.

4.2.4 Multi-sorting

We are given a multiset of size N consisting of k distinct elements i1, i2, . . . , ik with

multiplicities N1, N2, . . . , Nk respectively. We are to sort the multiset and output the

N elements in the sorted order.

Sorting can be studied in two models: In the first model, elements are such that

one of the two equal elements can be removed and then later on, it can be copied

37

from the other one to be regenerated again. In this model, we can keep only one copy

of an element and throw away its duplicates at the time of first encounter.

However, in the second model, elements cannot be deleted and regenerated by

copying them back. In this model, there is more to an element than just its key. For

example, elements can be objects consisting of multiple fields; when two objects are

compared, a certain field, say their keys, are compared to each other. Obviously, an

entire object cannot be deleted just because it has a key equal to the key of another

object.

Sorting of multisets is basically the same as duplicate removal; however, some

modifications are required. Sorting in the first model mentioned above is straightfor-

ward. In the algorithm for duplicate elimination in Section 4.2.3, we output not only

the elements i1, . . . , ik but their multiplicities as well. We then sort the set i1, . . . , ik,

and then, since we know their multiplicities, we copy them in the final output as many

times as it had been before in the multiset. Sorting k elements has cache complexity

of O
(

k
B

logM
B

k
B

)
which is less than O

(
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni

)
.

Sorting in the second model needs more modifications though:

Theorem 4.2.4. Sorting a multiset of size N whose multiplicities are N1, N2, . . . , Nk

can be done with cache complexity of:

O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

k∑
i=1

Ni

B
log log

N

Ni

})
.

Proof. We again run the algorithm in Section 4.2.3 for duplicate elimination. In

this new algorithm, though, when we have found a frequent element, instead of just

removing its duplicates from the multiset, we move them in a separate list. Therefore,

when algorithm finishes, we have a list for each item in the output set. The lists are

maintained in an array in a back to back fashion; where the list of duplicates of an

elements ends in the array, the list of duplicates of another one begins. A head and

a tail pointer is kept for each distinct element that shows the beginning and the end

of its duplicates in the array. If multiple frequent elements are discovered in a round,

their lists are kept in the sorted order among themselves.

38

Definition 4.2.3. At each run of the frequent finder algorithm (Algorithm 4.1) for

a particular value of C, the C-frequent elements are discovered and are kept in lists

that are stored in sorted order in a back to back fashion. We denote the collection of

lists produced in a round of the frequent element finder algorithm by a super-list. We

also denote by L1, . . . , Lp, the super-lists produced in rounds 1, . . . , p respectively.

When all elements are discovered, we start from the last super-list Lp and merge

super-lists to the final list one by one in the reverse order (i.e., Lp, Lp−1, . . . , L1). The

merge is exactly the same as the merge in the merge sort.

The correctness of the algorithm is obvious and follows from the correctness of

the duplicate removal algorithm in Theorem 4.2.3. It remains to analyze the cache

complexity of the algorithm. We focus on the extra work to the duplicate elimina-

tion algorithm and show that the extra work does not change the asymptotic cache

complexity of the duplicate elimination algorithm.

The extra work can be categorized into two parts:

1. Moving duplicates of an element ij into bucket B[ij] where we keep all duplicates

of ij.

2. Merging the super-lists into a final output list.

First we show that moving duplicates into buckets does not change the cache com-

plexity. Remember that the algorithm works in rounds, and in each round, we look

for C-frequent elements for a value of C. If only one element (say ij) is found at

each round, the cost of moving duplicates into a list instead of removing them is⌈
Nij

B

⌉
. This cost is certainly less than

⌈
N
B

⌉
which is the cache complexity of scanning

the multiset once. Since in each round, we scan the multiset once, this cost cannot

increase the cache complexity of the whole algorithm by more than a factor of two.

However, multiple C-frequent elements might be discovered at a round. Bucketing

multiple elements is not as easy. Suppose, in a round, we have discovered r elements

39

that are C-frequent (and so r ≤ C), we want to distribute these elements into r asso-

ciated buckets as we scan the multiset. The technique is complicated and will be ex-

plained in detail in the distribution approach in Section 4.3.1. Though the general idea

is to sort each consecutive group of r elements in the multiset and then distribute each

group separately. According to Theorem 4.3.1, this takes O
(

N ′
B

max
{

1, logM
B

r
B

})

number of cache misses where N ′ is the size of the multiset at the round. Remem-

ber that we have already spent O
(

N ′
B

max
{

1, logM
B

C
B

})
at the round for duplicate

removal, and since r ≤ C, it means the cache complexity of this extra work does not

change the asymptotic complexity of the duplicate removal algorithm.

Secondly, we show that merging the super-lists one by one, does not change the

cache complexity. When it is time to merge Li, the merged list has |Li+1|+ . . . + |Lp|
elements; therefore, the number of cache misses required to merged these two lists is

O
(∑p

j=i |Lj |
B

)
but this is not more than the cost we spent at round i to discover Li:

The size of the multiset at round i is
∑p

j=i |Lj| and to find some frequent elements

in the multiset, we take a pass of the whole multiset once. The cache complexity of

a pass through all elements is O
(∑p

j=i |Lj |
B

)
. Therefore, the extra work of this part

lower bounds the cache complexity of the duplicate elimination algorithm. Hence,

this part cannot increase the cache complexity of the whole algorithm by more than

a factor of two.

It is clear to see that the asymptotic time complexity of the sorting algorithm in

Theorem 4.2.4 is the same as that of duplicate removal algorithm in Theorem 4.2.3

and the number of comparison required is

O

(
N log N −

k∑
i=1

Ni log Ni

)

which according to the lower bound in Section 2.1 is optimal.

4.2.5 Optimality of the Upper Bounds

In this section, we discuss the upper bounds for the three problems and explain the

situations where the upper bounds match the lower bounds and where they do not.

40

In all of our three algorithms (namely determining the mode, duplicate removal

and multisorting) we differ from the lower bound by an additive factor of at most

N
B

log log M . As previously mentioned, the size of a memory component M in present

memory hierarchies is such that log log M does not exceed from six2. Thus log log M

can be considered as a small constant and since N
B

is the cost of a scan of the multiset,

N
B

log log M costs no more than a small number of scans of the multiset. Hence, our

upper bounds are close to the lower bounds.

The algorithms can exactly match the lower bounds if some extra knowledge is

given to them. This knowledge can be of two kinds: Knowledge of the multiset and

knowledge of the memory hierarchy. Knowledge about the multiset can be in form

of knowing the multiplicities of some elements. Knowledge of the memory hierarchy

is information about the size of cache or block size. Note that the latter kind of

knowledge makes the algorithms cache-aware as opposed to cache-oblivious.

4.2.5.1 Knowledge of the Multiset

Here we suppose some extra information about the multiplicities of some elements

is provided to the algorithms. We make use of this extra knowledge and adapt the

algorithms so that they match the lower bounds.

Determining the mode: Suppose we are given the frequency of the mode f . We

can change the algorithm in Theorem 4.2.2 to match the lower bound. We run the

algorithm for determining the N/f -frequent elements in Theorem 4.2.1 for just one

round. The algorithm certainly finds the mode as it is N/f -frequent and by Theorem

4.2.1 causes N
B

logM
B

N
fB

cache misses. Thus, the whole algorithm has complexity of

N
B

logM
B

N
fB

which is the lower bound as it was proven in Theorem 3.5.1.

In fact, the value of lg lg N
f

with a constant additive error is all we need to de-

termine the mode optimally. We run the same algorithm of determining the mode

in Theorem 4.2.2, that is we again find C-frequent elements using Theorem 4.2.1 in

2log log M > 6 implies M > 1019.

41

rounds. However we do not start from C = 221
; the first value for C is 22

lg lg N
f

and as

before, we square the value of C each time. Since we have the value of lg lg N
f

but for

a constant additive error, we only run the algorithm for finding the frequent elements

for a constant number of runs and therefore, the cache complexity of the algorithm

will match the lower bound. On the other hand, if our estimate of lg lg N
f

is high, we

catch the mode in the first run of the algorithm. In this run of the algorithm, the

value we assign to C is the right value of N
f

raised to some constant power. Conse-

quently, the cache complexity of the algorithm is the lower bound times the constant

number. Therefore, asymptotic cache complexity matches the lower bound.

Duplicate removal and multisorting: If we are given the multiplicities N1, . . . , Nk

of the elements, we can again apply the frequent element finder algorithm in Theo-

rem 4.2.1 in rounds; this time, however, we run the algorithm in rounds for values

of C = N
N1

, . . . , N
Nk

. It is not hard to follow the changes in the cache complexity

computations in Theorems 4.2.3 and 4.2.4, the new cache complexity consists only of

term

O

(
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni

)
,

which is the lower bound.

Similar to finding the mode, knowing only the value of lg lg N
Ni

for i = 1, . . . , k with

a constant additive error is enough for the algorithm to match the lower bound. For

each element with multiplicity Ni, we will have to perform the C-frequent element

finder algorithm in a constant number of rounds for the neighborhood values of C =

22
lg lg N

Ni .

4.2.5.2 Knowledge of the Memory Hierarchy

Here we present the “partially cache-aware” versions of our algorithms. We will show

that knowing only the value of M can make our algorithms match the lower bounds.

Our algorithms are simpler than the cache-aware algorithm of Arge et al. [4].

42

In all three algorithms we run the C-frequent element finder in Theorem 4.2.1 for

a series of rounds for C = 221
, 222

, The new algorithms work as the old ones with

the only difference that since we now know the value of M , we start off with value

C = M = 22lg lg M
and continue similarly.

Correctness of the new algorithms is obvious: It follows from the correctness of the

old algorithms by noting that all P -frequent elements for P < M will be discovered

at round C = M .

The cache complexity of the new algorithms can be analyzed as follows: Since

C ≥ M , the C-frequent element finder algorithm in Theorem 4.2.1 will have cache

complexity:

O

(
N

B
max

{
1, logM

B

C

B

})
= O

(
N

B
logM

B

C

B

)
.

Consequently, the cache complexity of determining the mode in Theorem 4.2.2

will reduce to:

O

(
N

B
logM

B

N

fB

)
.

As well, the cache complexity of duplicate removal and multisorting will reduce

to:

O

(
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni

)
.

Thus, knowing only the value of M (without knowing the value of B), makes all

three algorithms match the lower bound. In fact, we only used the value of lg lg M , so

knowing the value of log log M with a constant additive error makes our algorithms

optimal; this shows how little information our algorithms need to work optimally.

4.3 The Distribution Approach

In this section, we will take a different approach to solve the three problems. Due to

the similarity between the new approach and the distribution sort, we will call this

approach as the distribution approach.

43

As in Section 4.2, we will start with an algorithm which we will call the distribution

algorithm and we will use the algorithm as a building block to give algorithms for the

three problems. The cache complexities of the algorithms are, interestingly, exactly

the same as those in the selection approach in Section 4.2.

The algorithm, that we will use as a building block, distributes elements of the

multiset into C buckets of approximately equal sizes such that elements in any bucket

are smaller than those in the following bucket.

The rest of this section is organized as follows: We will present the distribution

algorithm in Section 4.3.1. Then we will present algorithms for the three problems

(determining the mode, duplicate removal, and multi-sorting) in the three following

sections.

4.3.1 The Distribution Algorithm

Here we present the distribution algorithm on which the algorithms are based. The

algorithm is to distribute the elements into C buckets for a fixed C.

Definition 4.3.1. A distribution of elements of the multiset is called a C-distribution

if the elements are partitioned into at least C buckets B1, . . . , Bk (k ≥ C) such that

for any two buckets Bi, Bj (i < j), the elements in Bi are smaller than those in Bj.

Furthermore, we require the size of the buckets to be not much larger than N
C

, unless

a bucket consists entirely of duplicates of the same element. In such a case, we do

not impose any restriction on its size. More precisely, each bucket Bi satisfies at least

one of the following two conditions:

• The size of Bi is not greater than 2N
C

(i.e., |Bi| ≤ 2N
C

),

• Bi consists entirely of elements with the same value.

In the following theorem we present the algorithm and show how C-distribution

can be done cache-efficiently:

44

Theorem 4.3.1. In a multiset of size N , C-distribution (as defined in Definition

4.3.1) can be performed with cache complexity of O
(

N
B

max
{

1, logM
B

C
B

})
.

Proof. We first divide the elements of the multiset to N
C

groups of size C and then

sort each group internally using any optimal cache-oblivious sort. As cache-oblivious

sorting of C elements has cache complexity of O
(

C
B

logM
B

C
B

)
, the cache complexity

of this task is

N

C
×O

(
C

B
logM

B

C

B

)
= O

(
N

B
logM

B

C

B

)
.

Frigo et al. [6] proposed a cache-oblivious distribution sort in which there is a

step called the distribution step. In this step, they show how k contiguous sorted

subarrays, each of size k, can be k-distributed to k buckets with cache complexity of

O
(

k2

B

)
which is the cache complexity of a scan over the subarrays. Their algorithm

can also output the least element of each bucket. We call these representatives pivots.

Their distribution sort uses a procedure Distribute(i, j, m) which distributes

elements of m subarrays starting from subarray i into buckets starting from bucket

j. The procedure works recursively and it turns out that the cache complexity of

distributing all the subarrays to all buckets (i.e. Distribute(1, 1, k)) is O
(

k2

B

)
.

The goal is to distribute the N elements of the multiset among C buckets. In

order to fulfill this task, we apply the distribution step of Frigo et al. [6] repeatedly

for k = C: The multiset is already divided up into sorted subarrays of size C. we take

C of these subarrays at a time (i.e. C2 contiguous elements are considered at a time).

Using their algorithm, we distribute these C2 elements into C buckets. We then take

the next C2 elements (more precisely next C sorted subarrays each of size C) and

distribute them among the C partially filled buckets. We continue until all elements

of the multiset are distributed among the buckets. As we apply their algorithms N
C2

times, the cache complexity of this task is:

N

C2
×O

(
C2

B

)
= O

(
N

B

)
.

45

There is a subtle point in repeatedly applying the algorithm in [6]: When we apply

their algorithm for the second time on, the buckets are no longer empty, but in their

algorithm, they assume they start off with empty buffers. One can easily see that

their result still holds even if the buckets are initially non-empty. Their algorithm

always maintains a set of pivots for the buckets by which the elements are dispensed

to the right bucket. Before the first application, they are all initialized to +∞, and

during the run of the algorithm, these pivots are updated on an on-going basis. We

do not initialize the pivots to +∞ in the second and later runs of the algorithm;

we use the pivots from the last run of the algorithm as the pivots for the next run.

Finally the pivots of the last run of the algorithm is the final pivots of the buckets.

We are almost done; elements are evenly distributed among the buckets as in a

C-distribution. However, since we could have multiple copies of the same value in the

multiset, duplicates of an element can be spread among two or more adjacent buckets.

We will create a bucket for each of these elements and copy all copies of these elements

into these buckets. We will show how this can be done cache-efficiently.

If copies of a value are spread among several buckets, that value must show up

as the pivots of all those buckets (except possibly for the first.) We scan the buckets

twice in opposite orders and generate a bucket for any pivot that occurs more than

once and move all copies of the pivot into the corresponding bucket. The first scan is

from left to right (more precisely, from B1 to BC). We always remember the pivot of

the preceeding bucket during the scan and move copies of that pivot in the current

bucket to a new bucket. Then we scan the buckets from right to left (i.e. from BC to

B1) and again we remember the preceeding pivot during the scan and move copies of

the pivot in the current bucket to the associated bucket. This step takes two scans

of the buckets and causes O
(

N
B

)
cache misses.

Correctness of the algorithm is obvious and follows from the correctness of the

algorithm of Frigo et al. [6]. The cache complexity of the algorithm can be obtained

by summing the cache misses at each step and works out to be

O

(
N

B
max

{
1, logM

B

C

B

})
.

46

Time complexity of the algorithm or its number of comparisons can be computed

easily. To sort elements in groups of size C, we have N
C
× O (C log C) = O (N log C)

number of comparisons. The time complexity of each run of the distribution algorithm

by Frigo et al. [6] is O (C2); as we run their algorithm N/C2 times, the total time is

O (N). The final two scans have obviously O (N) time complexities. Thus, the total

time complexity of the algorithm in Theorem 4.3.1 is O (N log C).

4.3.2 Determining the Mode

In this section, we use the distribution algorithm in Theorem 4.3.1 to find the mode

in a multiset. The algorithm is essentially the same as that for determining the mode

under the selection approach (Section 4.2.2); the only difference is that instead of

applying the main theorem of the selection approach repeatedly, we apply the main

theorem of the distribution approach (i.e. Theorem 4.3.1.)

It turns out that the cache complexity of the algorithm is exactly the same as in

the selection approach:

Theorem 4.3.2. The mode, with frequency f , of a multiset of size N can be found

with cache complexity O
(
max

{
N
B

logM
B

N
fB

, N
B

log log N
f

})
.

Proof. We repeatedly run the distribution algorithm in Theorem 4.3.1 for the follow-

ing values of C in order: C = 221
, 222

, . . . , 22i
, . . . , 22dlg lg N+1e

. In the first step, the

multiset is 221
-distributed into subarrays to obtain level-one subarrays. In the next

step, each level-one subarray is 222
-distributed to get level-two subarrays, and so on;

at step i, each subarray of level i− 1 is 22i
-distributed to obtain subarrays of level i.

Definition 4.3.2. A subarray in which all elements have the same key value is called

a homogeneous subarray. Subarrays that have at least two elements with different

key values are called heterogeneous subarrays.

47

After all subarrays of level i − 1 have been 22i
-distributed to subarrays of level

i using the algorithm in Theorem 4.3.1, we check all subarrays to see if they are

homogeneous, and also count the number of elements in each subarray. Obviously, this

task can be done in a scan. We denote by sho, she the maximum size of homogenous

and heterogeneous individual subarrays respectively. If sho ≥ she, we have found the

mode: We declare sho to be the frequency of the mode, report the corresponding

element as the mode, and then the algorithm halts. If sho < she, the algorithm

continues to the next level.

We now prove the correctness of the algorithm. There must be a heterogenous

subarray in each level for the algorithm to continue running. Furthermore, a hetero-

geneous subarray is broken into at least two subarrays in the next level. Since this

process cannot continue forever, the algorithm must halt. Clearly the element that

is reported as the mode is indeed the mode, since the biggest homogeneous subarray

is reported and all the heterogeneous subarrays are smaller than that.

The analysis of the cache complexity of this algorithm is the same as the mode-

finding algorithm in the selection approach in Theorem 4.2.2. The cache complexity

of the main algorithms in the selection approach (Theorem 4.2.1) and the distribution

approach (Theorem 4.3.1) are exactly the same. If we prove that the algorithm will

finish in level
⌈
lg lg N

f

⌉
in the worst case as in the selection approach, since we run

the algorithms for the same set of values of C, the overall cache complexities of both

algorithms will be the same.

It remains only to show that in the worst case the algorithm will halt at level⌈
lg lg N

f

⌉
as in the corresponding theorem in the selection approach (i.e. Theorem

4.2.2.) One can show that the size of any heterogenous subarray in level i is not

greater than N

22i (i.e. she ≤ N

22i .): Each heterogenous subarray of level i is produced

by 22i
-distribution of a subarray in level i−1 and thus its size cannot be greater than

N

22i . Thus, in level
⌈
lg lg N

f

⌉
, the size of heterogenous subarrays are not greater than

f (i.e. she ≤ f .) Since the frequency of the mode is f , a homogeneous subarray must

contain all copies of the mode and since sho = f ≥ she, the algorithm halts in this

48

level. It is not hard to produce an example for each approach that the algorithms

finish in level/round Ω
(
log log N

f

)
.

The number of comparisons in the algorithm can be computed as follows: The

number of comparisons for C-distribution is O (N log C) as it was shown in Section

4.3.1. Therefore, the number of comparisons in the algorithm is:

dlg lg N
f e∑

i=1

O
(
N log 22i

)
= O

(
N log

N

f

)
.

According to Theorem 2.3.1 the number of comparisons is optimal.

4.3.3 Duplicate Elimination

In this section, we present an algorithm for duplicate elimination using the distribu-

tion approach.

We adopt the same terminology as in duplicate removal in the selection approach

in Section 4.2.3. We are given a multiset of size N consisting of k elements i1, . . . , ik

with multiplicities N1 ≥ . . . ≥ Nk respectively. We will reduce the multiset to set

{i1, . . . , ik}. The results are exactly the same as in the selection approach.

Theorem 4.3.3. Duplicate removal of a multiset of size N with multiplicities N1 ≥
N2 ≥ . . . ≥ Nk can be done with cache complexity of:

O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

k∑
i=1

Ni

B
log log

N

Ni

})
.

Proof. We again apply the C-distribution algorithm in Theorem 4.3.1 repeatedly for

the following values of C: C = 221
, 222

, . . . , 22i
, . . . , 22dlg lg N+1e

. After each level i, where

we apply the 22i
-distribution algorithm, we check all resulting subarrays. If a subarray

is homogeneous (i.e. consists totally of equal elements), we output the element as

an element of the final set and remove the subarray. The remaining heterogeneous

subarrays are compressed so that they are contiguous. The distribution algorithm is

again applied to obtain the next level and so on.

49

The correctness and the cache complexity of the algorithm follows from the cor-

rectness and the cache complexity of the duplicate removal algorithm under the selec-

tion approach in Theorem 4.2.3. In the duplicate removal algorithm of the selection

approach, the frequent finding algorithm in Theorem 4.2.1 is executed in different

rounds and in each round some frequent elements are “discovered” and removed from

the multiset. These elements are C-frequent elements (i.e. have multiplicities greater

than N
C

as in Definition 4.2.1) for a particular value of C of the round. We just need

to show that if an element is discovered and removed in round i of the duplicate

removal in the selection approach, it is also discovered and removed by level i under

the distribution approach (i.e. after i runs of the distribution algorithm).

We now prove the fact. We showed in the proof of Theorem 4.3.2 that after i

runs of the distribution algorithm there cannot be any heterogeneous subarray of

size greater than N

22i . Hence, all 22i
-frequent elements must have been discovered

and removed by level i. Note that in the duplicate elimination algorithm under the

selection approach, in run number i of the frequent finder algorithm, we discover and

remove 22i
-frequent elements. Therefore, those elements that are removed in round

i of the algorithm under the selection approach are also discovered and removed by

level i in the algorithm under the distribution approach.

The fact, we just showed, implies that the values of C for which we run the

distribution algorithm of Theorem 4.3.1 is a subset of the values of C for which we run

the frequent finder element in Theorem 4.2.1. By observing that the cache complexity

of the frequent finding algorithm and the distribution algorithm are exactly the same,

one can see that the cache complexity of the duplicate removal under the selection

approach upper bounds that of the distribution approach.

It is not hard to come up with an example where an element of multiplicity

N

22i is discovered at level Θ(i) in the distribution approach. This means the cache

complexities of the two algorithms are asymptotically the same.

Since the number of comparisons is also the same in the frequent finding algo-

rithm in selection approach and distribution algorithm in distribution approach, the

50

number of comparisons required by the duplicate removal algorithm in Theorem 4.3.3

is the same as that in the selection approach which is O
(
N log N −∑k

i=1 Ni log Ni

)
.

According to Section 2.2 this is the optimal number of comparisons.

4.3.4 Multi-sorting

In this section, we will show how a multiset can be sorted using the distribution

approach. Suppose we are given a multiset of size N consisting of k elements i1, . . . , ik

with multiplicities N1 ≥ . . . ≥ Nk respectively. We are to sort the multiset.

As was discussed in Section 4.2.4, sorting can be considered in two models. In

the first model, copies of an element can be deleted and then regenerated by copying

them back. In the second model, however, this is not possible; as there may be more

fields in an element than just the key field.

Sorting under the first model is essentially the same as duplicate elimination; we

just have to remember how many times an element happens and then copy it that

number of times in the final output. Thus, the duplicate removal algorithm in the

previous section will do this job.

Sorting in the second model is more challenging:

Theorem 4.3.4. Sorting a multiset of size N with multiplicities N1, N2, . . . , Nk can

be done with cache complexity of:

O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

k∑
i=1

Ni

B
log log

N

Ni

})
.

Proof. The algorithm is basically the same as duplicate removal algorithm in Theorem

4.3.3; we apply the C-distribution algorithm in Theorem 4.3.1 repeatedly for a set

of values for C. In the duplicate removal algorithm, after each level i, homogeneous

subarrays are deleted. In the sorting algorithm, instead of deleting these subarrays

we copy them in order to a separate list Li.

When all elements have been removed from the multiset, we have a collection of

lists L1, . . . , Lp, where p is the number of levels the algorithm runs. Note than each

51

list Li is sorted, since the homogeneous subarrays have been copied in order. These

lists are exactly the “super-lists” we formed in the sorting algorithm in the selection

approach in Theorem 4.2.4. These lists are merged together one at a time in the

reverse order as the super-lists were merged in Theorem 4.2.4.

Obviously the cache complexity of the algorithm is the same as that in the selection

approach.

Similarly, the time complexity or the number of comparisons of the algorithm is

the same as the sort in the selection approach which is O
(
N log N −∑k

i=1 Ni log Ni

)
.

Hence, according to Section 2.1, the number of comparisons is optimal.

4.4 The Randomized Approach

The two previous approaches were deterministic and do not quite match the lower

bounds. In this section, we will present a randomized approach that does match the

lower bounds.

In Section 4.4.1, we show that the same lower bounds as for deterministic algo-

rithms hold for randomized algorithms. Then we match these lower bounds using

randomized algorithms in Section 4.4.2.

4.4.1 Randomized Lower Bounds

We will use Yao’s minimax principle [9] to obtain randomized lower bounds for our

three problems. Yao’s minimax principle, in short, says that the average-case com-

plexity of an optimal deterministic algorithm lower bounds the expected running time

of any randomized algorithm. Thus we will first show average-case cache-oblivious

lower bounds.

We obtained our cache-oblivious lower bounds by first showing lower bounds in the

comparison model in Chapter 2. We then defined the notion of an I/O-tree and used

the main theorem by Arge et al. [4] that relates the size of an I/O-tree in the cache-

aware model and a decision-tree in the comparison model to obtain lower bounds in

52

the cache-aware model that also hold for the cache-oblivious models. We will follow

the same path to get average-case lower bounds in the cache-oblivious model.

The results in Chapter 2 are all average-case lower bounds in the comparison

model; therefore, the lower bounds hold for average height of the corresponding de-

cision trees. The main theorem in Section 3.2 works for average heights as well: The

theorem proves an inequality that relates the I/O-height of an I/O tree and height

of a decision tree. With the same proof as presented in Section 3.2, one can prove

the same inequality holds if we replace the I/O-height of an I/O-tree by average I/O-

height (i.e., average number of I/O-nodes on the paths from the root to the leaves)

of the tree and the height of the tree by the average height of the tree. Consequently,

the lower bounds will hold for average-case cache complexities of our three problems

as well. Thus, the average-case lower bounds are the same as the worst-case ones in

the cache-oblivious model.

By using the Yao’s minimax principle, since we know that the lower bounds remain

in tact for the average-case cache complexities of the three problems, the same lower

bounds will also hold for the expected running time of randomized algorithms.

4.4.2 Randomized Upper Bounds

In this section, we present our randomized algorithms. Thus far, we have used two

deterministic approaches to solve the problems: The selection approach and the dis-

tribution approach. Both can be randomized. We will only show how the selection

approach can be randomized; as the distribution approach can be randomized in a

similar manner.

In the selection approach we use the C-frequent finding algorithm of Section 4.2.1

for a series of values C. In the randomized approach, we will use randomization to

estimate the right value for C so that we do not have to try all values for C and

then confirm the value. We then use this method to address the problem of finding

the mode. Finally we give algorithms for the other two problems. The other two

problems are similar and so we can describe their algorithms together.

53

4.4.2.1 Determining the Mode

We still use the C-frequent finder algorithm in Section 4.2.1, although instead of

starting from small values of C and squaring it at each step, we will estimate a good

value for C using the randomized techniques and jump to that value of C.

Theorem 4.4.1. The mode, with frequency f , of a multiset of size N can be found

with expected cache complexity O
(
max

{
N
B

logM
B

N
fB

, N
B

})
.

Proof. We require a random sample of the elements to estimate the appropriate value

of C for our C-frequent finder algorithm. The sample must be large enough to produce

a good estimate, with high confidence. It must also be small enough so that working

with the sample does not dominate our cost.

We have a high degree of latitude in choosing the sample size. Something around√
N is a reasonable choice. Making it

√
N ln N simplifies some of the calculations in

the proof. The proof is also simplified if we sample with replacement (i.e. the same

element can be chosen more than once.)

We can afford to sort them as sorting
√

N ln N elements has cache complexity of

O

(√
N ln N

B
logM

B

√
N ln N

B

)
,

which is less than the N
B

required for a scan of the entire multiset. After sorting the

sample, we scan and find its mode. We denote the frequency of the sample mode by

p.

The estimate of the frequency of the mode in the multiset is f ′ = p
√

N
ln N

; thus we

start by finding C-frequent elements for C = N
f ′ . If there is no C-frequent element for

this value of C, we square C (i.e. C ← C2) and try to find the C-frequent elements

for the new value of C and so on.

The correctness of the algorithm is obvious: Sooner or later the right value is

assigned to C and the mode is discovered. It remains to show the expected cache

complexity of the algorithm. Depending whether the estimated value for the frequency

54

of the mode f ′ is less than the actual frequency of the mode or is greater than it, we

have two cases:

1. We have underestimated the value of f (i.e. f ′ < f): In this case, we find the

mode on the first run of the frequent element finder algorithm, but as the value

of C is greater than what it should be, the cache complexity of the algorithm

is O
(

N
B

logM
B

N
f ′B

)
.

2. We have overestimated the value of f (i.e. f ′ > f): In this case, we would first

run the frequent element finder algorithm for C = N
f ′ and the algorithm would

fail to find a value, then we would run the algorithm for C2 and so on. Since

we square the value of C each time, it is easy to see that the number of times

we have to repeat the algorithm to get to the mode is at most O
(
log log N

f ′
N
f

)
.

The cache complexity of finding the C-frequent elements, as we proved in Theo-

rem 4.2.1, is O
(

N
B

max{1, logM
B

C
B
}
)
: There are two terms N

B
and logM

B

C
B

. The

term that keeps us away from the lower bounds is the first. The logM
B

C
B

does

not cause overflow from the lower bound even when we try all values for C. In

this case, the contribution of the term N
B

is O
(

N
B

log log N
f ′

N
f

)
.

We now compute the probability of occurrence of each of these cases. We use the

Chernoff lower tail and upper tail bounds [9] to show that the probability of f ′ being

far from f is small. Let us first explain what we mean by f ′ being far from f , since if

all elements are distinct, f = 1, however one can see that our estimate f ′ = Θ
(√

N
ln N

)
.

In fact, we are interested in the values of lg lg N
f

and lg lg N
f ′ , and we implicitly prove

that the probability of these values being far from each other is tiny.

We first analyze the probability of occurrence of the first case. Without loss

of generality we can assume that f >
√

N , since otherwise the cache complexity

of O
(

N
B

logM
B

N
f ′B

)
is optimal. We took

√
N ln N elements s1, . . . , s√N ln N from the

multiset. For i = 1, . . . ,
√

N ln N , set xi = 1 if si is a copy of the mode, and set

xi = 0 otherwise. The probability of each element being a copy of the mode is f
N

(i.e. P [xi = 1] = f
N

.) Hence, the expected value µ of the sum S =
∑√

N ln N
i=1 xi is

55

µ = f
N
×√N ln N = f ln N√

N
.

The actual multiset mode occurs S times in the sample. The mode of the sample

occurs p times. Hence S ≤ p, and therefore, S ≤ f ′ ln N√
N

. We can now apply the

Chernoff bound to bound the lower tail of the sum S. According to the Chernoff

bound on the lower tail:

P [f ′ < (1− δ)f] ≤ P [S < (1− δ)f × ln N√
N

]

= P [S < (1− δ)µ]

< e
−µδ2

2

= e
−f ln Nδ2

2
√

N

≤ e
− ln Nδ2

2 . (as f >
√

N)

= N− δ2

2 .

The expected cache complexity of the algorithm in the first case can be computed

as follows:

E =

∫ 1

0

P [f ′ = (1− δ)f]× N

B
logM

B

N

f ′B
dδ

≤
∫ 1

0

N− δ2

2 × N

B
logM

B

N

(1− δ)fB
dδ

= O

(
N

B
logM

B

N

fB

)
.

Thus the expected cache complexity is the optimal cache complexity.

Now we analyze the probability of the occurrence of the second case where f ′ > f .

Without loss of generality, we can assume that f ′ >
√

N ; since otherwise f < f ′ <√
N and consequently N

f
>
√

N and N
f ′ >

√
N which means the mode is discovered

after at most two runs of the algorithm. We will again use the Chernoff bound to

bound the probability P [f ′ = (1 + δ)f].

f ′ = (1 + δ)f ⇒
√

Np

ln N
= (1 + δ)f ⇒ p =

f ln N√
N

(1 + δ)

We will now show that the probability of getting p copies of an element t is small.

Consider the sample set s1, . . . , s√N ln N . Define xi = 1 if si = t and xi = 0 otherwise.

56

Obviously P [xi = 1] = ft

N
where ft is the frequency of t in the multiset. The mean

value for the sum S =
∑√

N ln N
i=1 xi is µ = ft

√
N ln N
N

= ft ln N√
N

. Since f > ft, the

probability can be rewritten as:

P [S = (1 + δ)
f ln N√

N
] ≤ P [S > p = (1 + δ)

ftlN√
N

]

= P [S > (1 + δ)µ]

Using the Chernoff bound on the upper tail, we obtain:

P [S = (1 + δ)
f ln N√

N
] ≤ P [S > (1 + δ)µ]

< 2
−((1+δ) f

ft
)µ

(for δ > 2e− 1)

= 2
−(1+δ) f ln N√

N

≤ 2−p = 2
− f ′ ln N√

N = N
− f ′√

N .

Thus far, we have bounded the probability P [S = (1 + δ)f ln N√
N

] for a particular

element. The probability that P [S = (1 + δ)f ln N√
N

] is true for at least one element is

at most N times the probability for a particular element, thus:

P [f ′ = f(1 + δ)] ≤ NP [S = (1 + δ)
f ln N√

N
]

≤ N ×N
− f ′√

N

= N
−

(
f ′√
N
−1

)
.

Note that we assumed that f ′ >
√

N and hence f ′√
N
−1 > 0. We can now compute

the expected cache complexity of the algorithm in this case. As we mentioned earlier,

the overflow from the lower bound is N
B

log log N
f ′

N
f
, hence:

E =

∫ +∞

f

P [f ′ = (1 + δ)f]× N

B
log log N

f ′

N

f
df ′

≤
∫ +∞

f

N
−

(
f ′√
N
−1

)
× N

B
log log N

f ′

N

f
df ′

= O

(
N

B

)
.

57

We have shown that the overflow of the cache complexity of the lower bound is

of O
(

N
B

)
and thus negligible. Thus the expected cache complexity is asymptotically

optimal.

In case N
f

< M , since we scan the multiset at least once, the correct upper bound

is N
B

.

4.4.2.2 Duplicate Elimination and Sorting

Having explained how we determine the mode optimally, the algorithms for duplicate

elimination and sorting follows quickly. We run our sampling algorithm repeatedly

to help us find the appropriate values for C. For each value of C, we find C-frequent

elements as before.

Theorem 4.4.2. Sorting or eliminating the repeated values of a multiset of size N

whose multiplicities are N1 ≥ N2 ≥ . . . ≥ Nk can be done with expected cache com-

plexity of:

O

(
max

{
N

B
logM

B

N

B
−

k∑
i=1

Ni

B
logM

B
Ni,

N

B

})
.

Proof. The algorithms are the same as those of duplicate removal and sorting under

the selection approach in Sections 4.2.3 and 4.2.4; the only difference is that we

use our sampling algorithm to help us jump from a value of C where elements of

multiplicity Ni are discovered to the next appropriate value of C where elements of

Ni+1 are discovered. Thus we do not have to try other values of C in between the

two values.

The correctness of the algorithms follows from the correctness of the correspond-

ing algorithms in the selection approach. The expected cache complexity of the

algorithms can be computed as follows. The cache complexity of C-frequent element

finder in Section 4.2.1 consists of two terms O
(

N
B

logM
B

C
B

)
, and O

(
N
B

)
. The latter

term causes overflow from the lower bounds in all three algorithms of the selection

approach. We showed in the randomized mode finding that by using the sampling

58

algorithm and jumping over unnecessary steps we can save some scans and thus save

this extra cost.

The algorithms for duplicate removal and sorting consist of at most k runs of the

sampling algorithm and each step is similar to the mode-finding algorithm. As in

the case of the mode finding algorithm, one can show that the expected extra cost at

each step is negligible compared to the overall cache complexity of each step. Since

the expected cache complexity of the each algorithm is the sum of the expected cache

complexities of the steps, the total extra cost is negligible and the expected cache

complexity of each algorithm is O
(

N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni

)
.

4.5 Summary

In this section, we summarize the upper bounds we achieved by our algorithms. The

bounds of the deterministic algorithms are mentioned in Table 4.2. The bounds for

the randomized algorithms, which are optimal, are shown in Table 4.3.

Table 4.2: Upper bounds of the deterministic algorithms

Algorithm Upper Bound

Determining the mode O
(
max

{
N
B

logM
B

N
fB

, N
B

log log N
f

})

Duplicate Elimination O
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

∑k
i=1

Ni

B
log log N

Ni

})

Multisorting O
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

∑k
i=1

Ni

B
log log N

Ni

})

Table 4.3: Upper bounds of the randomized algorithms

Algorithm Upper Bound

Determining the mode O
(
max

{
N
B

logM
B

N
fB

, N
B

})

Duplicate Elimination O
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

N
B

})

Multisorting O
(
max

{
N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B
Ni,

N
B

})

Chapter 5

Conclusion

In this thesis, we have studied three problems related to multisets in the cache-

oblivious model: determining the mode, duplicate removal, and multi-sorting. Sup-

pose we are given a multiset of size N with k distinct elements i1, i2, . . . , ik with

multiplicities N1, N2, . . . , Nk. The problem of determining the mode is finding the

element with the greatest multiplicity. Duplicate elimination is reducing the original

multiset to the set {i1, . . . , ik}. Multi-sorting is the problem of sorting the input list

and outputting it in the sorted order. The last problem has the additional problem

that each element may have extra information associated with it , and that data must

be retained.

We have presented the known lower bounds for the cache complexity of each of

these problems. Determining the mode has the lower bound of Ω
(

N
B

logM
B

N
fB

)
where

f is the multiplicity of the most frequent element and M is the size of the cache and

B is size of a block in cache. The lower bound for the cache complexity of duplicate

removal and multi-sorting is Ω
(

N
B

logM
B

N
B
−∑k

i=1
Ni

B
logM

B

Ni

B

)
.

We have considered both deterministic and randomized algorithms for these prob-

lems. In terms of the deterministic algorithms, we have followed two approaches:

The selection and the distribution approach. In both of these approaches, the cache

complexity of algorithms can differ from the lower bounds by an additive term of

O
(

N
B

log log M
)

away from the lower bounds. Our randomized algorithms have costs

59

60

within a constant factor of the lower bounds.

Even our deterministic algorithms that may not be optimal in the cache-oblivious

model can easily be patched so they work optimally in the cache-aware model. These

algorithms are simpler than previously-existing cache-aware algorithms for the prob-

lems.

As for the future work, there is certainly room for improvement on the determin-

istic cache-oblivious upper bounds for the three problems. Since the deterministic

lower and upper bounds do no match. One other interesting related area of future

work is to design optimal cache-oblivious algorithms for adaptive sorting. Adaptive

sorting algorithms take advantage of the existing order in the input to improve their

time complexities (refer to [5] for a survey). Their performance is measured as a

function of both the input size and the amount of disorder in the input. Designing

cache-oblivious adaptive sorting algorithms is a new field to explore.

Bibliography

[1] A. Aggarwal and J. S. Vitter, The I/O complexity of sorting and related problems,

Proceedings of the 14th International Colloquium on Automata, Languages, and

Programming, LNCS, vol. 267, Springer-Verlag, July 1987, pp. 467–478.

[2] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related

problems, Communications of the ACM 31(9) (1988), 1116–1127.

[3] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro,

Cache-oblivious priority queue and graph algorithm applications, Proceedings of

the Thiry-Fourth Annual ACM Symposium on Theory of Computing, Montréal,

Québec, Canada, May 19–21, 2002 (New York, NY, USA) (ACM, ed.), ACM

Press, 2002, pp. 268–276.

[4] L. Arge, M. Knudsen, and K. Larsen, A general lower bound on the I/O-

complexity of comparison-based algorithms, In Proceedings of Workshop on Al-

gorithms and Data Structures (WADS’93), Springer-Verlag, 1993.

[5] V. Estivill-Castro and D. Wood, A survey of adaptive sorting algorithms, ACM

Computing Surveys 24 (1992), no. 4, 441–476.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious

algorithms, 40th Annual Symposium on Foundations of Computer Science, IEEE

Computer Society Press, 1999, pp. 285–297.

61

62

[7] F. K. Hwang and S. Lin, A simple algorithm for merging two disjoint linearly

ordered sets, SIAM Journal on Computing 1 (1972), no. 1, 31–39.

[8] J. Misra and D. Gries, Finding repeated elements, Science of Computer Program-

ming 2 (1982), 143–152.

[9] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University

Press, 1995.

[10] I. Munro and P. Spira, Sorting and searching in multisets, SIAM Journal on

Computing 5 (1976), 1–8.

[11] D. D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging

rules, Commun. ACM 28(2) (1985), 202–208.

