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Abstract 

This thesis introduces and demonstrates the application of a recently designed mobile streambed 

temperature measurement system. The apparatus, called the High Resolution Temperature Mapping 

Device (henceforth HI-RES TMD) was built to increase the resolution of established temperature 

sampling methods and instantaneously acquire 32 equally distributed temperature measurements within 

3 m2 (0.3 m grid spacing) at the streambed interface. Sampling is done under wadable flow conditions, 

and can be completed every 4-5 minutes. This allows sampling of any spatial extent such as full 

morphological units or the reach scale within hours or days respectively. The HI-RES TMD is able to 

overcome many of the short comings of previous sampling methods such as the range of investigation 

of a given study, or require the insertion of temperature probes into the substrate which considerably 

increased sampling time. The HI-RES TMD has been field tested in two mountain streams located 

along the western slope of the Rocky Mountains, in southeastern British Columbia, Canada to examine 

temporal repeatability of thermal streambed patterns.  

A dataset of more than 80,000 individual streambed temperature measurements was obtained using the 

HI-RES TMD. A series of analysis were then completed to determine whether the spatial variability of 

streambed temperature plays a role in the choice of spawning locations for fish. Both rivers are 

characterized by intense spawning of two salmonid species: cutthroat trout (oncorhynchus clarkia) and 

bull trout (salvelinus confluentus). This was confirmed during three consecutive seasons of spawning 

site surveys completed between 2012 and 2014 with the help of expert fisheries biologists at which time 

the precise locations of all the spawning locations (i.e., redds) within the study areas were surveyed. 

Analysis of streambed temperature patterns on the morphological features presented correlations 

between the average thermal distributions and spawning density and repeatability. Spatial 

autocorrelation analysis was completed to identify hot spots and cold spots within the study areas. It 

was found that bull trout redd density and repeatability were significantly correlated to the cold spots. 

As presence of colder areas on the streambed may be related to hyporheic flow or groundwater 

emergence, recommendations for improvements of the HI-RES TMD present an opportunity to 

determine if the bull trout redds are also correlated to groundwater emergence.  
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Chapter 1: Introduction 

Spawning location preferences of salmonids have been well documented over the past several decades 

(White 1930; Burner 1951; Hale and Hilden 1969; Witzel and Maccrimmon 1983; Rieman and McIntyre 

1993; Jonsson and Jonsson 2011; Eckmann 2014). Several abiotic metrics have been identified such as 

hydraulic properties  (Lounder 2011; Marchildon et al. 2011; Marchildon et al. 2012), water quality 

(Hansen 1975; Ringler and Hall 1975; Geist 2000; Bickel and Closs 2008), riparian cover (Knapp and 

Preisler 1999; Zimmer and Power 2006), groundwater upwelling (White 1930; Hale and Hilden 1969; 

Witzel and Maccrimmon 1983; Rieman and McIntyre 1993; Jonsson and Jonsson 2011; Eckmann 2014), 

bed material grain size distribution (Kondolf and Wolman 1993; Baxter and McPhail 1997; Muhlfeld 

2002; Mull and Wilzbach 2007), and thermal niches (White 1930; Hendricks and White 1988; Hannah et 

al. 2004; McMahon et al. 2007).  

Numerous studies have acknowledged point source thermal habitat niches at the streambed interface as a 

selection criteria by many species of fish in choosing spawning locations and their subsequent 

construction of redds (Kondolf and Wolman 1993; Baxter and McPhail 1997; Muhlfeld 2002; Mull and 

Wilzbach 2007). Thermal habitat niches may result from different factors affecting streambed 

temperature variations at smaller scales. These include groundwater and hyporheic flow (Vaux 1967; 

Bencala 2000; Conant 2001) shading (Johnson 1971; Beschta 1997), thermal capacity of streambed 

material (Usowicz et al. 2006; Barry-Macaulay et al. 2015), aquatic vegetation (Buss et al. 2009) and, 

river confluencing (Chanson 2004) resulting in thermal habitat niches. Methods characterizing the general 

thermal characteristics of river systems can be found in literature  (Stonestrom & Constantz 2003; Conant 

2004; Dale & Miller 2007; Vogt et al. 2010) nevertheless, these methods are often characterized by low 

spatial resolution or do not encompass the whole extension of a river reach, rather focusing on spawning 

sites or other specific locations thus causing This thesis introduces and demonstrates the application of a 

recently designed mobile streambed temperature measurement system. The apparatus, called the High 

Resolution Temperature Mapping Device (henceforth HI-RES TMD) was built to increase the resolution 

of established temperature sampling methods and instantaneously acquire 32 equally distributed 

temperature measurements within 3 m2 (0.3 m grid spacing) at the streambed interface. Sampling is done 

under wadable flow conditions, and can be completed every 4-5 minutes. This allows sampling of any 

spatial extent such as full morphological units or the reach scale within hours or days respectively. The 

HI-RES TMD is able to overcome many of the short comings of previous sampling methods such as the 

range of investigation of a given study, or require the insertion of temperature probes into the substrate 
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which considerably increased sampling time. The HI-RES TMD has been field tested in two mountain 

streams located along the western slope of the Rocky Mountains, in southeastern British Columbia, 

Canada to examine temporal repeatability of thermal streambed patterns.  

A dataset of more than 80,000 individual streambed temperature measurements was obtained using the 

HI-RES TMD. A series of analysis were then completed to determine whether the spatial variability of 

streambed temperature plays a role in the choice of spawning locations for fish. Both rivers are 

characterized by intense spawning of two salmonid species: cutthroat trout (oncorhynchus clarkia) and 

bull trout (salvelinus confluentus). This was confirmed during three consecutive seasons of spawning site 

surveys completed between 2012 and 2014 with the help of expert fisheries biologists at which time the 

precise locations of all the spawning locations (i.e., redds) within the study areas were surveyed. Analysis 

of streambed temperature patterns on the morphological features presented correlations between the 

average thermal distributions and spawning density and repeatability. Spatial autocorrelation analysis was 

completed to identify hot spots and cold spots within the study areas. It was found that bull trout redd 

density and repeatability were significantly correlated to the cold spots. As presence of colder areas on the 

streambed may be related to hyporheic flow or groundwater emergence, recommendations for 

improvements of the HI-RES TMD present an opportunity to determine if the bull trout redds are also 

correlated to groundwater emergence.  

spatial bias in the analysis (Hendricks and White 1988; Rieman and McIntyre 1996; Muhlfeld 2002). 

Furthermore, often these methods have been found to be highly time consuming and requiring extensive 

financial resources (Hendricks and White 1988; Conant 2004). Therefore, salmonid spawning location 

preferences assumptions are oftentimes based upon sparse thermal observations. 

Consequently, it is still largely unknown whether salmonids select micro-scale thermal refugia or they are 

more generally attracted to macro-scale (i.e., reach scale) temperature regimes. Differentiation between 

these scales becomes particularly relevant in river restoration practices as the evaluation of anthropogenic 

impacts (such as water taking, mining, urbanization, etc.) on spawning habitats and subsequent measures 

of mitigation may vary widely at the spatial scale.  

The development of a High Resolution Temperature Mapping Device (HI-RES TMD) allows a thorough 

and accurate characterization of streambed temperatures at small scales (0.09 m2). Streambed temperature 

mapping was performed on two reaches located on two watercourses in southeastern British Columbia, 

Canada. Measurements were undertaken over the summer low-flow period of 2014 and spatially 

correlated to both cutthroat trout (oncorhynchus clarkii) and bull trout (salvelinus confluentus) redds 

surveyed between 2012 and 2014. A number of different statistical analyses were completed to determine 
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spatial correlations and causality between redds and micro-scale thermal refugia within both study 

reaches. 

The main objectives of this work are the following: 

i) Develop and deploy a streambed temperature measurement apparatus that is able to collect 

high spatial resolution data over a reach containing several morphometric features, 

ii) Determine if a correlation exists between thermal spatial distribution of the streambed and the 

locations selected for spawning by salmonid species.  

1.1 Thesis Structure 

The format of this thesis follows a multi-part structure whereby Chapters 2 and 3 are organized into two 

distinct topics with respective introductions, methods, results, discussions, and conclusions, also known 

as manuscript format.  

Chapter 2 introduces and demonstrates the High Resolution Temperature Mapping Device (HI-RES 

TMD); a streambed temperature measurement apparatus developed for this researched and designed for 

high resolution data collection. This Chapter presents the development process of the equipment and 

deployment on two rivers in southeastern BC and provides insight to the extent and resolution of data able 

to be capture by the HI-RES TMD and the accuracy of the equipment.  

Chapter 3 examines the data collected during the deployment of the HI-RES TMD to analyze the 

correlation between the spatial thermal distribution of the streambed and salmonid spawning habitat also 

within the streambed. A series of statistical population comparison analysis and spatial autocorrelation 

analysis were completed to determine the correlation between morphological features and significantly 

warmer and colder locations within the study reach. This Chapter includes a discussion of hyporheic flow 

and groundwater emergence within the study areas, and presents comments on future use of the HI-RES 

TMD.  

Conclusion, recommendations, and bibliography for the entire document follow Chapter 3. Two 

Appendices are included (A and B) which present the calibration and validation curves of the HI-RES 

TMD and the details of the redd surveys completed. The compendium of works presented herein is 

considered appropriate for the awarding of the degree of Master of Applied Science (M.ASc.) from the 

University of Waterloo. 

  



4 
 

Chapter 2: High resolution streambed 

temperature data collection system  

2.1 Introduction 

Spawning site (i.e., redd) selection preferences of salmonids have been well documented over the past 

several decades (White 1930; Burner 1951; Hale and Hilden 1969; Witzel and Maccrimmon 1983; 

Rieman and McIntyre 1993; Jonsson and Jonsson 2011; Eckmann 2014). Abiotic metrics include (but are 

not limited to) hydraulic properties  (Lounder 2011; Marchildon et al. 2011; Marchildon et al. 2012), 

water quality  (Hansen 1975; Ringler and Hall 1975; Geist 2000; Bickel and Closs 2008), riparian cover  

(Knapp and Preisler 1999; Zimmer and Power 2006), groundwater emergence  (White 1930; Hansen 

1975; Baxter and Hauer 2000; Hannah et al. 2004), bed material grain size distribution  (Kondolf and 

Wolman 1993; Baxter and McPhail 1997; Muhlfeld 2002; Mull and Wilzbach 2007), and thermal niches  

(White 1930; Hendricks and White 1988; Hannah et al. 2004; McMahon et al. 2007). Each of these 

process are also known to occur at nested spatial scales from the reach, morphological feature (i.e., 

pools/riffles/runs), mixing zone, bed material sizes, and down to the limits of the boundary layer 

(Stallman 1965; Vaux 1967; White et al. 1987; Muhlfeld 2002; Brown and Hannah 2008). 

Several methods exist to characterize the general thermal characteristics of river systems such as spot 

measurements with thermometers or thermistors to continuous measurements using systematic data 

collectors coupled to thermistors to characterize storm, diurnal and seasonal variations in temperature 

(Stamp et al. 2013, Preud’homme and Stefan 1992). However, few methods exist to discretely measure 

streambed temperatures at the redd and smaller scales (Hendricks and White 1988; Conant 2004). These 

methods have also proven to be highly laborious thereby restricting the spatial extents of a given study. 

Of those investigating redds, spatial bias has been common place as most measurements are obtained 

within redds with few (if any) beyond their limits  (Hendricks and White 1988; Rieman and McIntyre 

1996; Muhlfeld 2002). 

This paper introduces and demonstrates the application of a recently designed streambed temperature 

measurement system which expands upon established methods at increased spatial resolution. The device 

is able to instantaneously acquire 32 temperature measurements within 3 m2 (0.3 m grid spacing) at the 

streambed interface, under wadable flow conditions, and can complete a sampling interval every 4-5 

minutes, which allows for sample of full morphological units to the reach scale within hours to days 

respectively. The system has been field tested in addition to being deployed in a mountain stream in 
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southeastern British Columbia, Canada (western slope of the Rocky Mountains), to examine temporal 

repeatability of thermal streambed patterns. The instantaneous measurement of streambed temperatures at 

multiple locations in close proximity is able to overcome previous sampling limitations of the range of 

investigation of a given study, or require the insertion of temperature probes into the substrate which 

considerably increased sampling time. 

  



6 
 

2.2 Background 

Over the past several decades, many temperature monitoring technologies have been developed and made 

publicly available for river temperature monitoring. While these technologies have been developed to 

reduce much of the labor and time associated with field data collection, handicaps remain which limit 

their ability to collect high resolution streambed temperatures at the morphologic unit or reach-scale. 

Stand-alone continuous sampling thermometers have become inexpensive which can be deployed 

individually or integrated into other monitoring equipment (e.g., pressure transducers, water quality 

samplers, etc.). By distributing multiple devices at the sub-reach scale, time series of spatial temperature 

data can be acquired. However, the number of sensors required to examine spatial distributions of 

streambed temperatures in high resolution renders the approach cost prohibitive and highly subject to 

destruction from floods or vandalism. 

Fibre optic cables are able to obtain both high frequency and resolution temperature measurements which 

have been deployed to monitor longitudinal changes in streambed temperature  (Selker et al. 2006; Collier 

2008; Vogt et al. 2010). However, deployment of these devices to investigate fine-scale longitudinal and 

transverse temperatures would require extensive lengths of cable and a secondary systems to georeference 

the sampling locations along each cable rendering the method cost prohibitive. Since the cables are also 

lain on or affixed to the bottom of the stream bed, they are also vulnerable to vandalism or being washed 

away during floods.  

Infrared thermal imaging is becoming more accessible to monitoring temperatures in a non-invasive and 

timely fashion where spatial extents can be further enhanced by aerial equipment - such as aerial drones. 

However, thermographic cameras can only measure the infrared radiation emitted at the atmospheric 

interface (Yilmaz et al. 2003; Duarte et al. 2006; Burkholder et al. 2008), therefore restricting the cameras 

ability to obtain submerged temperatures and rendering this method inapplicable for this application.  

The most common method used to acquire measurements at sub-meter resolution are georeferenced 

subsurface temperature measurements below the streambed interface. Temperatures are commonly 

measured at depths of approximately 10–20 cm (Hendricks and White 1988; Constantz 1998; Malcolm et 

al. 2003; Conant 2004; Kalbus et al. 2006). Submerged measurements reduced diurnal fluctuations and 

thermal mixing at the streambed interface (Kim et al. 2014) allowing for the spatial comparison of 

measurements with limited post–processing efforts  (Hendricks and White 1988; Malcolm et al. 2003; 

Conant 2004). This approach is labour intensive which limits the spatial extent of a given study  

(Hendricks and White 1988; Conant 2001) and is also subject to frequent destruction of equipment 
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resulting from their often awkward insertion through the substrate. The method also differs by obtaining 

measurements directly at the streambed interface where salmonids are selecting spawning locations.  

  



8 
 

2.3 HI-RES TMD System 

The High-Resolution Temperature Mapping Device (HI-RES TMD) was developed to measure high 

resolution streambed temperatures while overcoming several other common constraints of field 

investigations. The equipment is non-invasive (i.e., does not disturb the natural conditions being 

monitored), mobile, rugged and can work in most riverine settings under wadable flow conditions. A 

founding assumption of the sampling system outlined here is that measurements are obtained at the 

streambed interface where salmonids are scanning the river bed and choosing locations for spawning. 

Although submerged streambed measurements have successfully defined the spatial variability of the 

advective thermal energy caused from groundwater and hyporheic flow emergence  (Hendricks and White 

1988; Muhlfeld 2002; Malcolm et al. 2003; Conant 2004), other forms of thermal energy flux (i.e., 

sensible heat, latent heat, radiation, frictional energy and thermal conduction of the bed materials) affect 

the thermal distribution of the streambed temperatures  (Caissie 2006; Hannah et al. 2008) and this 

method present here is able to capture, without bias, all the parameters affecting thermal spatial variability 

of the streambed interface where spawning habitat is selected. By instantly acquiring 32 thermal 

measurements within 3 m2, which is a similar scale to a redd, subtle spatial differences in streambed 

temperature can be observed without temporal lag effecting the proximal measurements.  

The apparatus incorporates 32 temperature probes, spaced 0.3 m apart in a planometric grid pattern 

(Figure 2-1). Constructed from aluminum, the apparatus is approximately 1.2 m wide by 2.5 m in length. 

This resolution produced the densest configuration of the temperature probes (maintaining compatibility 

with the datalogging equipment) at a size that could be easily managed by two operators.  Total station 

prism mounts were designed into the four corners of the frame to geospatially locate the apparatus: in this 

case a Trimble Robotic S6 total station (±2 mm, Trimble Navigation Ltd. (2013)) was used. By 

georeferencing the four corners of the frame, the spatial coordinates of each probe can subsequently be 

determined. An additional temperature probe is located in the middle of the frame to acquire 

measurements at the midpoint flow depth. These data were obtained to assist with the comparisons 

between the 32 streambed point measurements and provide average characteristics of the surface water. A 

pyrometer was included on the top of the frame to measure incoming solar radiation which could be used 

to quantify thermal effects of shading from overhanging trees or cloud covered days. A staff gauge was 

located on one vertical leg so that bathymetry could be mapped from the associated total station prism 

mount location above. All sensors were connected to a single datalogger which could be downloaded via 

a wired computer connection. A custom computer code was developed to execute a thermistor calibration 

and data acquisition routine at each grid position. Additional MATLABTM post-processing scripts were 
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developed to concatenate all the data into a single database. Table 2-1 lists the specifications of the 

measurement equipment used to collect all the above mentioned parameters.  

 

Figure 2-1: Schematic of HI-RES TMD (a) profile and (b) planform, and (c) field photograph.  
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Table 2-1: Specification of HI-RES TMD sampling equipment  

Parameter 
Measurement 

Device 
Comments 

Datalogger 

Campbell 

Scientific CR1000 

with CR1000-KD 

(keyboard and 

display) 

 Powered by and external 12V battery 

 Transfer of data to computer was completed using Direct 

Read (Serial to USB) 

 Sample rate is determined by user (for all parameters) 

 

Parameter 
Measurement 

Device 

Method of 

Recording 

Sampling 

Range 
Accuracy Resolution 

Temperature 
Sensorex 

CS150TC-K 

Automatically 

recorded into 

the datalogger 

0-70°C 0.01°C 0.01°C 

Radiation 

Unknown 

(refurbished 

equipment) 

Automatically 

recorded into 

the datalogger 

0–2.0 kW/m2 0.01 kW/m2 0.01 kW/m2 

Flow Depth 
In-house made 

gauging rod 

User input to 

datalogger 
0-0.8 m 0.01 m 0.02 m 

UTM 

Coordinates 

Trimble S6 Total 

Station 

Trimble 

Datalogger 
150 m  0.001 m 0.001 m 

 

2.3.1 Temperature Calibration and Correction  

Temperature probes were calibrated using a thermal bath  (Steinhart and Hart 1968; Sabatino et al. 2000). 

All probes were placed in the bath at the same time and a three-point temperature calibration was 

performed. Temperatures of 8°C, 16°C, and 22°C were selected for the calibration as this captured a 

common range of streambed temperatures for southeastern BC  (Moore 2006; Moore et al. 2013). Each 

probe recorded 50 consecutive measurements and the average of the measurements for each probe 

calculated and used for calibration purposes. A linear relationship between each average measured probe 

temperature and actual temperature was calculated (Figure 2-2(a)). Figure 2-2(b) shows the corrected 

temperature comparison for one probe between the probe corrected and actual temperatures after the 

correction was applied. The remaining calibration curves are included in Appendix A. Validation tests 

were completed 2-3 times a year to ensure the accuracy of the calibration was maintained over time; 

however no temporal drift was identified during any of the tests.   
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Figure 2-2: Example of (a) temperature calibration (b) corrected temperature for one of the 33 

Sensorex CS150TC-K probes within the HI-RES TMD system. 

 

2.3.2 Field Verification 

The probes were confirmed to be measuring in the field with the same accuracy as during the laboratory 

calibration process. During field tests, an external digital thermometer (Fisher Scientific, model number 

T53, 0.1°C resolution) was used to measure the streambed temperature at the same location as one of the 

probes within the HI-RES TMD system. This external test was undertaken at the start of every second or 

third day to ensure temperature drift in sensor readings was not occurring. Tests identified that calibrated 

sensor readings were all within ±0.1°C of the external thermometer (Figure 2-3). While these 

observations are an order of magnitude lower in accuracy than in the laboratory calibration (±0.01°C), 

observed error is more than adequate for field applications given additional environmental variability.  
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Figure 2-3: Field validation of temperature accuracy 

 

2.3.3 HI-RES TMD Operations 

Sampling with the HI-RES TMD begins by carrying the assembled equipment to the river and lowering 

the apparatus to the streambed. The frame is then levelled to allow all the temperature probes to rest on 

the streambed and the four corners of the frame are geospatially referenced employing the total station (by 

moving the total station prism to each of the four prism mounts). The flow depth is noted from the one 

vertical leg furnished with a one centimeter accurate staff gage. The mid-depth probe (control probe) is 

adjusted to the appropriate level.  The operator then starts the recording of the HI-RES TMD by entering 

the flow depth into the datalogger and triggering the remaining measurements (channel bed temperature 

measurements, water column temperature and radiation), which are collected and recorded automatically 

into the data logger and the sampling sequence is completed. This sequence is subsequently referred to as 

a cage data acquisition.  

The HI-RES TMD frame is then moved to an adjacent position and the sampling procedure repeated 

throughout each day of field investigation. The sequence of movement is in a transverse-longitudinal 

fashion to obtain a grid-like distribution of measurements moving in an upstream direction (Figure 2-4). 

Recognizing that the spatial extents of each reach being investigated may require multiple days of HI-

RES TMD sampling, diurnal and other temporal changes in water temperature may be required. An 

independent monitoring station was established upstream of the study reach and left in place for entire 
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duration of the investigation. In this case, a YSI 600OMS V2 Optical Monitoring Sonde (equipped with 

temperature), a HOBO pyranometer (recording radiation) and two HOBO 13-Foot Freshwater Level Data 

Loggers (to measure fluctuations in water level and to correct for changes in barometric pressure) were 

deployed sampling at 10 minute intervals. Parameters measured were used to assist in normalizing 

temperature data for both daily and study duration periods.  

 

 

(a)  

 

(b)  

Figure 2-4: Schematic example of HI-RES TMD operations from a) first cage data acquisition to b) 

and series of cages illustrating the transverse and upstream sequence of sampling. 

 

2.3.4 Quality Control Measures 

Several quality control checks were implemented to ensure the accuracy of the equipment and data. 

Furthermore, additional complications and errors occurred during field campaigns, common to most field 

investigations, which resulted in the removal of additional data. 

To ensure that the recorded measurements were representative temperatures, an equilibrium check was 

conducted during each cage measurement. The equilibrium check rapidly sampled temperatures from 

each of the 32 probes, and would report to the operator when the last three consecutive measurements, for 

each of the probes differed by less than 1% relative to each probe measurement. This test was conducted 
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at every new position of the HI-RES TMD system where the operator was required to wait until the 

equilibration test was complete before initiating data logging.  

During each sampling sequence, every probe was inspected to ensure it was resting on the channel bed 

(i.e., not resting on obstructions such as tree branches or boulders that weren’t fully submerged). The 

principle concern was that probes would be recording air temperature (i.e., resting above the water 

surface) which could be several degrees warmer or colder than the water temperature. A secondary 

concern arises where probes are not recording at the streambed interface which may also differ from the 

temperatures that the fish experience during the spawning. If the location of a probe could not be adjusted 

to rest of the channel bed, the discrete probe measurement was recorded as an “ERROR” and not used in 

any subsequent analysis.  

It was possible that some probes were overlooked in the field, and might not have been touching the 

channel bed during the field operations. A secondary test was conducted during post-processing where a 

time series comparison to the independent temperature monitoring station (in this case the YSI 600OMS 

Sonde) was conducted. Any streambed temperature measurement that differed by more than 5°C above or 

below the daily recorded Sonde maximum or minimum water temperature respectively was parsed from 

the data set. 

Initial data processing identified electronic malfunctioning of probes 9, 13, 15, 24, and 25. Due to the 

randomness of the error, all data from these probe was subsequently removed. Figure 2-1(a) illustrates the 

numbering sequence of the temperature sensor probes onboard the HI-RES TMD system.  

2.3.5 Temperature Normalization 

Diurnal fluctuations within the streambed temperatures were observed at both study sites therefore spatial 

comparison of the temperatures was not possible until the temporal variability was removed from the 

data.  

As explained, previous spatial investigations of streambed thermal variability have avoided post 

processing and correction of diurnal fluctuations by collecting temperatures from the shallow subgrade of 

the streambed (Hendricks and White 1988; Malcolm et al. 2003; Conant 2004). Vertical temperature 

profile analysis has shown that the diurnal fluctuations of the streambed temperatures have a smaller 

range than that of the surface water, but a larger range than the temperatures within the shallow subgrade 

(Kim et al. 2014). However, this research focused on spawning selection preferences correlation to the 

thermal regimes that the fish are able to experience, therefore it was necessary to understand the thermal 

variability within the habitat zone. Therefore measurements were taken at the streambed, knowing that 

temperature normalization would be required for spatial comparison.  
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Several methods of normalization were attempted to create the most continuous and coherent dataset for 

comparison (Table 2-2). A series of finite-differencing techniques using autoregressive moving average 

models (ARMA), were derived calibrated and verified using the data collected from field investigations. 

Finite differencing is a common analytical technique used to remove underlying temporal trends within 

data (Hipel and McLeod 1994) and is a preferable solution as the units of measurement are maintained 

and the resulting metric is an easily conveyable parameter. Here, temporal-based ARMA models were 

employed  (Hipel and McLeod 1994), however, the finite-differencing techniques were not able to capture 

the diurnal variance within the multi-day field measurements.  

In order to employ standardized normalization techniques, moving window schemes were employed. This 

is a common analytical technique used to define diurnal variance within the measured range in field 

temperatures (Wójcik and Buishand 2003; Stisen et al. 2007; Zakšek and Oštir 2012). Through a series of 

trial-and-error attempts, it was found that the moving window needed to incorporate the full width of the 

river, as longitudinal transverse patterns of temperature were identified. A space for time substitution was 

employed, to define the limits of a moving window which was found to coincide with five cross sections 

of cages. Figure 2-5 illustrates cage locations and the limits of the moving window. Temporal thresholds 

were imposed on the size of the moving window to ensure that an appropriate amount of the diurnal trend 

was excluded within each moving window. Consequently, the number of cross sections included in the 

moving window was reduced if the elapsed time between cross sections was greater than 50 minutes.  
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Figure 2-5: Depiction of the spatial definition of cages and cross sections. 

 

Feature scaling (line 5, Table 2-2) was initially examined, producing a normalized temperature ranging 

between 0 and 1. Feature scaling is commonly used for data processing to reduce the range of values, and 

to allow for coherent comparison of parameters (Mohamad and Usman 2013); however, this process 

assumes that the range of the sample is representative of the variance, which was not a valid assumption 

for this dataset.  

 

 



17 
 

Table 2-2: Summary of tested normalization methods 

Definition of the normalized 

parameter 
General Equation Reasons for Exclusion From Analysis 

1 

Finite-differencing of the 

measured temperatures and an 

ARMA model of the Sonde 

temperatures 

 

∆𝑇𝑖𝑡 = 𝑇𝑖𝑡 − 𝑇𝑡
𝑆𝑜𝑛𝑑𝑒 

 

This method created larger normalized differences at the start of 

the day and smaller differences at the end of the day. It was 

expected that the Sonde was subject to different warming trends 

than the probes on the HI-RES TMD.  

2 

Finite-difference of the 

measured temperatures and an 

ARMA model of the spatial 

dependent surface water 

temperatures. 

∆𝑇𝑖𝑗 = 𝑇𝑖𝑗 − 𝑇𝑗
𝑆𝑊 

 

Similar to the Sonde differencing scheme, the diurnal trends of 

the surface water were not representative of the streambed. This 

was identified with significantly colder normalized differences at 

the start and end of each day.  

3 

Finite-difference of the 

measured temperatures and an 

ARMA model of cage average 

temperature 

∆𝑇𝑖𝑗 = 𝑇𝑖𝑗 −
1

𝑛
∑ 𝑇𝛼𝑗

𝑛

𝛼=1

 

 

This method was too site specific as the HI-RES TMD only 

covers an area of 3m2. This removed too much of the spatial 

variability as the range of measurements within a single use of the 

HI-RES TMD was very small.  

4 

Finite-difference of the 

measured temperatures and a 

moving window ARMA model 

of cage average temperature 

∆𝑇𝑖𝑗 = 𝑇𝑖𝑗 −
1

5
∑

1

𝑛

𝑗+2

𝛽=𝑗−2

∑ 𝑇𝛼𝛽

𝑛

𝛼=1

 

 

Time restrictions were incorporated into this averaging. Cages j-2, 

j-1, j+1 and j+2 had to be completed within 40 minutes (20 

minutes before and 20 minutes after) of cage j. If these time limits 

were exceeded the moving window was truncated to include only 

the measurements within the time frame. This method was also 

too site specific, which made temperatures outside of the standard 

deviation significant outliers.  

5 
Feature scaling using a five 

cross section moving window 
𝑇𝑖𝑗𝑘

′ =
𝑇𝑖𝑗𝑘 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 

The range of the moving window was not a consistent 

representation of the variance of the moving window, muting the 

volume of extreme values. 

Definitions: 

ΔTmeasurement,time/cage = Normalized temperature parameter  

𝑇𝑡
𝑆𝑜𝑛𝑑𝑒  = temperature of the YSI Sonde at time t 

𝑇𝑗
𝑆𝑊 = the surface water temperature recorded during cage j 

Tmin = the minimum temperature in the moving window 

Tmax = the maximum temperature in the moving window 
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In order to incorporate the irregularity of the variance, a standard score normalization was used for the 

previously defined moving window. A standard score represents the number of standard deviations of 

each value from the average of the sample which can also be presented as the probability of any 

temperature within the moving window being less than that of the sample (Mohamad and Usman 2013). 

As sample sizes (n) within the moving windows were greater than 30, a Gaussian distribution standard 

score was employed instead of a t-Distribution  (Walpole et al. 1993). This method was able to provide 

the necessary fluidity of the data, and identify values that varied from the mean of the moving window.  

The normalization values of standard score (Zijk) and probability (pijk) were defined as (Mohamad and 

Usman 2013): 

𝑍𝑖𝑗𝑘 =  
𝑇𝑖𝑗𝑘 − 𝜇𝑀𝑊

𝜎𝑀𝑊
 

where −∞ ≤  𝑍𝑖𝑗𝑘 ≤ ∞ 

𝑝𝑖𝑗𝑘 =  
1

𝜎𝑀𝑊√2𝜋
∙ 𝑒

−(𝑇𝑖𝑗𝑘−𝜇𝑀𝑊)
2

2𝜎2  
 

where 0 <  𝑝𝑖𝑗𝑘 < 1 

 

respectively, where: 

𝜇𝑀𝑊 =  
1

5
∑

1

𝑚

𝑘+2

𝛾=𝑘−2

∑
1

𝑛

𝑚

𝛽=1

∑ 𝑇𝛼𝛽𝛾

𝑛

𝛼=1

 (𝑔𝑒𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤) 

𝜎𝑀𝑊 =  √ ∑ ∑ ∑(𝑇𝛼𝛽𝛾 − 𝜇𝑀𝑊)
2

𝑛

𝛼=1

𝑚

𝛽=1

𝑘+2

𝛾=𝑘−2

 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤) 

and Tijk is the indexed temperature measurement for measurement i, of cage j and cross section k (which is 

comprised of m cages where each cage has n measurements). 

Additional constraints to the moving window excluded two separate days from being included within the 

same window as the temporal gap between these data points was too large. This issue arose because the 

last cross section of the day was spatially and temporally adjacent to the first cross section of the day. An 

additional anomaly was identified within the first cross section of measurements at the beginning of each 

day where the HI-RES TMD did not equilibrate to streambed temperatures prior to sampling. To account 

for this equipment bias, the first cross section of the day was normalized with an average of probe 

measurements exclusive to that section. 

A further constraint was placed upon the analyses if the sampling duration became extended (such as 

additional time expended to circumnavigate obstacles or deep pools, operator breaks etc.) resulting in too 
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much diurnal variation being captured in the moving window. Through the calibration process, 50 

minutes was determined to be the maximum acceptable time to complete a cross section and therefore 

specified as the sampling duration constraint. When exceeded, the sampled cross section was treated 

consistent with the method employed at the first cross section of the day using the average cross section 

measured temperature. Table 2-3 lists the final normalization constraints employed in the post processing 

of the temperature data. 

 

Table 2-3: Conditions of the normalization equation 

Condition Normalization Equation 

If k is equal to the first cross section of the day then 𝛾 ≡ 𝑘 

If k is equal to the second cross section of the day then  𝛾 ∈ [𝑘, 𝑘 + 2] 

If k is equal to the third cross section of the day then  𝛾 ∈ [𝑘 − 1, 𝑘 + 2] 

If k is equal to the second last cross section of the day then  𝛾 ∈ [𝑘 − 2, 𝑘 + 1] 

If k is equal to the last cross section of the day then 𝛾 ∈ [𝑘 − 2, 𝑘] 

If the time require to complete a cross section, or the 

duration of the time between cross sections is  t ≥ 50 min 

then 

Cross section treated as first cross 

section of the day; therefore 

𝛾 ≡ 𝑘 

 

Surrounding cross sections were also 

treated accordingly (i.e., previous cross 

section was treated as the last of the day, 

the following cross section was treated 

as the second of the day, etc.) 
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2.4 Reproducibility of Streambed Trends 

The HI-RES TMD system was deployed along the same 15 m sub-reach of Lizard Creek located 5 km 

south of Fernie, BC on July 21st and September 14th of 2014. Lizard Creek is a gravel-bed channel with an 

average bankfull width, banfkull depth, channel slope and sinuosity of: 9.3 m, 0.6 m, 0.9% and 1.2 

respectively. The alpine watershed is relatively undeveloped with some logging over the past 150 years 

and is known by several professional aquatic biologists to be a highly productive cutthroat trout spawning 

stream (Jon Bisset, Canadian Columbia River Inter-Tribal Fisheries Commission, per. Comm). There 

were several differences between the external environmental conditions during the two sampling periods 

(Table 2-4), with the most notable being the air temperature, which averaged 22 °C on July 21st and 10 °C 

on September 14th. The streambed temperatures only differed by approximately 3°C between the two 

sampling periods. Results of the spatial distribution in streambed temperature measurements and 

standardized temperature results for both study days are illustrated in Figure 2-6. 

Both the July and September isotherms produced similar standardized temperature patterns; the most 

easterly region being cooler with the temperature increasing in a westerly direction, and decreasing again 

at the most westerly (upstream) extent. Both investigations were able to capture the location and extent of 

the isolated cold area (C) along the central left bank and the isolated warm (H) location along the 

westerly left bank (Outlined with rectangles in Figure 2-6.). The cold location identified was noted as the 

only spot within the sub-reach with vegetation in the channel. It is possible that at this location, vegetation 

is providing sufficient shading to reduce the thermal capacity  (Johnson 2004) of the channel at this 

location or that the roots of the vegetation are creating preferential pathways for groundwater emergence 

within the channel at this location  (Buss et al. 2009; Stubbington et al. 2009). Further field investigations 

would be required to determine the specific cause of the isolated thermal variability.  

The similarity of the patterns indicates that the HI-RES TMD equipment was able to reproduce the results 

within the same low flow season and worked consistently throughout the duration of the field 

investigations. Furthermore as the magnitudes of the isotherms were of similar values, this indicates that 

the standard score normalization was able to effectively remove the diurnal trends. The July investigation 

was completed during a more variable, warmer temperature range, and was collected over a longer 

duration than the September data collection (Table 2-4). The standardized data was able to show 

approximately the same results despite the limited consistency between the July and September external 

boundary conditions. It is noted that the isotherm map from September has somewhat more detail than the 

July map: n = 1536 versus n = 1280 respectively. It is possible that the lower sampling resolution in the 

July campaign resulted in the more uniform distribution in temperatures (Figure 2-6 (c)) versus the 
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September sampling campaign (Figure 2-6(d)); particularly within the most downstream portion of the 

study sub-reach.   

Table 2-4: Summary of data collected on Lizard Creek during investigation on the same sub-reach 

from July 21, 2014 and September 14, 2014.   

Parameter July 21, 2014 September 14, 2014 

Total number of streambed temperature measurements 1280 1536 

Total number of measurements post error removal 

processing 
1184 1521 

Hours of sampling 12:50 PM–6:10 PM 1:50 PM–4:10 PM 

Range  in streambed temperatures (difference in 

brackets) 

10.49°C-13.26°C 

(2.77°C) 

7.99°C-9.93°C 

(1.94°C) 

Standard deviation in streambed temperatures  0.67°C 0.35°C 

Range in flow depths 0.03-0.57 0.01-0.52 

Range in atmospheric temperatures  20.6°C-23.2°C 7.68°C-12.11°C 

Range in radiation during investigation 0.13V–1.45V 0.04V–1.14V 

 

 

Figure 2-6: Post maps of measurement locations (a & b) with associated isotherm maps from (c & d) 

from July 2014 and September 2014 respectively, from a sub-reach of the Lizard Creek study site  
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2.5 Conclusion 

The HI-RES TMD system was developed to sample streambed interface temperatures in high resolution. 

The equipment was designed for, and employed during, low flow wadable stream conditions where 

multiple morphologic units can be sampled in a single day (depending on river scale) in unprecedented 

resolution  During its deployment, no negative impacts to aquatic habitat occurred as a result of the 

sampling method. 

While it was necessary to create a normalized metric for the data analysis, a standard score metric with 

associated probability allowed for seamless comparison of the entire datasets. The data was able to be 

spatially plotted arising from the georeferenced positing of each monitoring probe and compared using 

the standardized temperature score. The effectiveness of the normalization equations accommodated the 

reduced efforts associated with the HI-RES TMD data collection.  
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Chapter 3: Characteristics of Streambed 

Temperatures of Two Rocky Mountain 

Salmonid Spawning Streams. 

3.1 Introduction 

Stream temperature is considered by many aquatic ecologists and biologists to be a central metric for 

assessing and categorizing the aquatic health of lotic ecosystems (Meyer 1997; Bunn et al. 1999; Feio et 

al. 2010). Water temperature is primarily governed by the non-point source conditions of latitude and 

elevation where relatively systematic modulations occur at both seasonal and diurnal time scales. Reach 

scale and point-source scale temperature modulations can also occur as influenced by groundwater 

outflow, hyporheic flow, both atmospheric and terrestrial shading, thermal capacity of streambed 

material, aquatic vegetation and, river confluencing (Stallman 1965; Vaux 1967; Caissie 2006; Hannah et 

al. 2008; Vogt et al. 2010; Carrivick et al. 2012) resulting in thermal habitat niches.  

Several studies have further identified point source thermal habitat niches at the streambed interface as 

selection criterion by many species of fish in choosing spawning locations and their subsequent 

construction of redds (Hendricks and White 1988; Muhlfeld 2002; Baxter et al. 2003; Hannah et al. 

2004). However, much uncertainty remains on whether these animals select the micro-scale thermal 

refugia or are more generally attracted to temperature modulated reach scale conditions. Differentiation 

between these scales becomes particularly relevant when evaluating anthropogenic impacts (such as water 

taking, mining, urbanization, etc.) on spawning habitats as both the spatial and temporal river extents and 

subsequent measures of mitigation may vary widely.  

A contributing factor in defining thermal refugia and spawning site scales is in the dearth of studies 

measuring streambed temperatures at sufficient spatial resolution and precision, principally attributed to 

the logistics, time and resources required in undertaking such studies. Consequently, broad assumptions 

of spawning preferences based upon sparse thermal observations are common place (e.g., Hendricks and 

White 1988; Rieman and McIntyre 1996; Muhlfeld 2002). 

The recent development of a high-resolution thermal survey network (HI-RES TMD, presented in 

Chapter 2) provides an opportunity to better characterize streambed temperatures at the sub-redd scale 

and correlate the findings to redd locations. Two watercourses in southeastern British Columbia, Canada 

were thermally mapped using the system over the summer low-flow period of 2014 and spatially 

correlated to both cutthroat trout (oncorhynchus clarkii) and bull trout (salvelinus confluentus) redds 
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surveyed between 2012 and 2014. Several different analyses were completed to determine spatial 

correlations and causality between redds and micro-scale thermal refugia within the study reaches. 
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3.2 Background 

The total thermal energy flux (Qn) per unit volume of streambed can by expressed by (modified from 

Hannah et al. 2004):  

𝑄𝑛 = ±𝑄∗ ± 𝑄ℎ ± 𝑄𝑒 ± 𝑄𝑏 ± 𝑄𝑓 ± 𝑄𝑎 ± 𝑄𝑂 

where Q* is the net radiation, Qh is the sensible heat (i.e., annual radiation cycle, water column 

temperature gradients), Qe is the latent heat (evaporation and condensation), Qb is the bed conduction, Qf 

is friction generated between the bed and banks, Qa is the heat and advection from submerged flow and 

QO are other heat sources/sinks from such things as river confluencing. The relative contribution of each 

of these parameters to the magnitude of thermal energy varies at different special scales. 

Frictional energy flux (Qf) results from resistance to flow along the wetted perimeter of the channel which 

increases with increasing channel velocities. Therefore, Qf increases per unit volume of water in regions 

of increasing channel slope or temporally when experiencing floods. In the case of the current study, 

observations are made and correlated to spawning sites which occur at low flow conditions where energy 

grade line slopes are small  (Fraley and Shepard 1989).  Therefore, spatial velocity gradients magnitude 

and therefore Qf is assumed to be negligible and unlikely to vary at the sub-meter scale under low-flow 

conditions  (Webb and Zhang 1997). 

Sensible (Qh) and latent heat (Qe) have significant temporal variations, but are relatively spatially constant 

at the river reach scale (Hannah et al. 2008; Carrivick et al. 2012; Kim et al. 2014). Net radiation (Q*) can 

spatially vary along a reach depending upon the distribution of cloud cover which can be further modified 

by riparian cover shading along the stream banks (Beschta 1997; Johnson 2004) . Depending on the 

alignment of the watercourse and the positioning, density and extent of riparian cover, net radiation can 

have diurnal spatial variability resulting in transient spatial cold spots during spring and fall spawning 

seasons making the spatial variability of radiation energy flux difficult to quantify at both the reach and 

micro scale  (Hannah et al. 2008). Overhanging riparian cover also provides visual protection to fish from 

predators, and shaded areas have previously been identified as desirable locations for redd construction  

(Knapp and Preisler 1999; Zimmer and Power 2006).    

Spatial variability of bed conduction (Qb) is dependent upon the minerology and heterogeneity of the 

stream bed material. For uniform river bed material systems (i.e., bedrock channels) this variance is 

negligible, however for alluvial systems, variability in thermal capacity can increase with increasing 

heterogeneity of bed material minerology between particles (Côté and Konrad 2005). Bed material sorting 

can also influence streambed conduction as coarse grained materials (such as gravels and cobbles) will 
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have lower thermal capacity relative to finer-grained material of equal porosity (Barry-Macaulay et al. 

2015). The thermal capacity can also be modified at the grain-scale by the female spawning salmonids as 

they sweep fines from the inter-spatial voids of the nests during redd construction (Burner 1951), which 

could indicate that the desired areas for spawning have lower thermal capacity than the surrounding 

channel bed. The process of clearing fine-grained material has also been shown to decrease embryo 

mortality (Lisle and Lewis 1992) and increase hyporheic flow through around embryos (Vaux 1967; 

Marchildon 2009). 

Thermal capacity of granular material can further increase with increasing saturation of the material, 

consequently, areas of partially exposed streambed (i.e., low flow sections such as riffle crests, point bars, 

transverse bars or locations along the banks) would require more energy to increase their temperature  

(Barry-Macaulay et al. 2015). Conversely, as flow depth increases providing more insulation to the 

channel bed, thermal variations from atmospheric energy (i.e., convection) decrease.  

Annual fluctuations in groundwater temperatures are significantly smaller than those of surface water 

bodies exposed to atmospheric conditions (5-10°C versus 25-30°C respectively, Kim et al. (2014)). This 

results in particularly detectable thermal gradients (Qa) between upwelling groundwater and surface water 

bodies during summer and winter low-flow periods where groundwater is commonly colder or warmer 

respectively, relative to the surface water temperatures. Spatial variability in thermal conditions arising 

from groundwater upwelling and hyporheic flow into rivers has been well documented at the reach and 

morphometric scale  (Tonina and Buffington 2009). However, alluvial gravel- and cobble-bed rivers 

(such as those studied here), have complex depositional streambeds, which can result in large sub-metre 

variability of hydraulic conductivities in a three-dimensional framework  (Tonina and Buffington 2009; 

Käser et al. 2013; Trauth et al. 2015). Temperature measurements have often been made within redds 

supporting the conjecture that spawning site selection locations gravitate towards upwelling locations at 

the micro fluviatile-scale (Baxter et al. 2003; Cardenas 2015; Trauth et al. 2015). However, in many 

studies, temperatures were not measured at comparable resolution beyond the limits of redds to quantify 

the spatial correlations with redd selection locations and thermal gradients.   

Many other abiotic metrics have been attributed to the specific site selection preferences of salmonids 

such as: bed material grain size distribution (Kondolf and Wolman 1993; Baxter and McPhail 1997; 

Muhlfeld 2002; Mull and Wilzbach 2007), hydraulic properties such as Reynolds Number, flow depth, 

flow velocity and turbulence  (Lounder 2011; Marchildon et al. 2011; Marchildon et al. 2012) and, water 

quality (Hansen 1975; Ringler and Hall 1975; Geist 2000; Bickel and Closs 2008). However, no single 

metric is deterministic in characterizing the selection locations by salmonids although several metrics 
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suggest a selection bias towards areas with lower thermal capacities and therefore cooler streambed 

temperatures are preferable.   
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3.3 Methods 

3.3.1 Site Selection 

Ram Creek and Lizard Creek, located along the western slope of the Rocky Mountains in southeastern 

British Columbia (BC) were selected as study sites. Selection criteria were predominantly based upon 

watercourses where significant historical salmonid spawning (in this case bull trout and cutthroat trout) 

was known to occur, as identified by experienced fisheries biologist. Bull trout commonly spawn in late 

summer and early fall (Kitano et al. 1994; Rieman and McIntyre 1996) when thermal gradients between 

surface water and groundwater are commonly the highest (groundwater is colder relative to the surface 

water conditions at this time of the year). Bull trout have been previously observed to spatially correlate 

with colder spatial zoning  (White et al. 1987; Hendricks and White 1988; Muhlfeld 2002; Hannah et al. 

2004). Conversely, cutthroat trout spawn in the late spring/early summer, which, in southeastern BC, 

coincides with the spring freshet  (Rieman and McIntyre 1993; Muhlfeld 2002). During this period, 

surface waters temperatures decrease from the thermal flux of melt waters. As groundwater temperatures 

remain relatively constant throughout the year  (Kim et al. 2014), groundwater temperatures would be 

typified by warmer temperature zones, relative to the surface water, to the spawning animals and for 

thermal surveys conducted as soon as logistically possible the spring snow melt (i.e., freshet).  

Each creek drains predominantly forested catchments with minor anthropogenic impacts (i.e., logging 

roads). Geomorphic surveys were completed in July 2014 to characterize morphological features using a 

first order differential GPS (±1 cm accuracy). Furthermore, sediment sampling was completed in October 

2014 to characterise the representative grain size distribution of the streambed. Both surveys and 

sediment sampling were completed using the methods outlined by Annable (1996). Pools were classified 

using the methodology defined by Lisle (1987) and riffle crests and bottoms were field identified. Runs 

were later identified as areas not classified as pools or riffles (Montgomery and Buffington 1997). Table 

3-1 lists the fluvial characteristics of both study sites. 
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Table 3-1: General morphological conditions of Ram Creek and Lizard Creek 

Characteristic Units Ram Creek Lizard Creek 

Dominant spawning species  bull trout cutthroat trout 

Average bankfull width m 17.5 9.3 

Average bankfull depth m 1.0 0.6 

Average flow depth (during data collection) m 0.21 0.18 

Elevation (downsteam and upstream) m 1086.67–1091.24 1007.76–1011.06 

Main channel length  m 518 380.18 

Average slope % 0.9 0.9 

Sinuosity - 1.4 1.2 

Average D10, D50, D90 mm 10, 110, 160 - 

General bed material classification - Cobble Gravel 

Rosgen Classification (1994) - B3c B4c 

Montgomery and Buffington Classification 

(1997) 

- Plane-bed Plane-bed 

 

Redd surveys were completed with the assistance of experienced fisheries biologist during the fall of 

2012, 2013 and, 2014 and spring of 2013 and 2014. Redds were identified within the streambed as oval 

patterns of clean, well sorted bed material, with a depression at the upstream extent of the oval (Burner 

1951). Figure 3-1 illustrates the spawning technique which is used by both species and an example of the 

resulting bed material. The limits of every redd were delineated with an average of six survey points using 

a first-order differential GPS (±1 cm accuracy). Cutthroat redds averaged 1.7 m in length by 0.8 m in 

width whereas bull trout redds averaged 2 m and 1 m respectively. A total of 15 cutthroat trout and zero 

bull trout redds were identified on Lizard Creek and 101 bull trout and two cutthroat redds were identified 

on Ram Creek between 2012 and 2014. On Ram Creek, some of the bull trout redds had multiple pits 

identified, however, the limits of individual redds could not be determined as several females super 

positioned spawning on the same locations. At these locations, the limits of the multiple pits were 

delineated as single polygons. Therefore, a total of 120 individual bull trout redd pits were identified. 

Spawning densities were calculated using the number of pits identified as this was more representative of 

the localized spawning activities. Based upon these survey results, for the purposes of this study, Lizard 

Creek was classified as cutthroat trout dominated and Ram Creek as bull trout dominated watercourse. A 

summary of the redd surveys is included in Appendix B which stratifies observations by morphological 

features associated with redd spawning.  
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Figure 3-1: Illustration of the salmonid spawning technique within a river setting. a) Pre-spawning 

stage; b) cutting; c) displacement of streambed material; d) transport of fine-grained sediment 

downstream; e) oviposition; f) covering of fertilized ova and subsequent upstream pit excavation 

(Marchildon 2009). g) Resulting well sorted bed material within the redd (Burner 1951).  

 

For the species investigated in this study, previous studies have identified that the downstream limits of 

pools and glides are the morphological units where spawning has been preferentially observed whereas 

riffles were found to be less desirable locations (Geist and Dauble 1998; Hanrahan 2007). Here, Ram 

Creek observed 4% of the surveyed redds on riffles despite the riffles covering 29% of the reach and no 

redds were observed on the riffles of Lizard Creek, which cover 25% of the reach. The distribution of 

redds between pools and runs along both creeks were similar with 41% and 46% of the redds on pools for 

Ram and Lizard Creeks respectively and 55% and 53% on runs respectively. The location of redds within 

the pools was scattered and not concentrated to the downstream extents of each feature, as had been 

previously documented (Geist and Dauble 1998; Hanrahan 2007).    

Between the fall of 2013 and spring of 2014, Ram Creek experienced an average 20 m lateral shift along 

an approximate 100 m sub-reach as a result of a large magnitude low frequency flood event. These types 

of channel shifts are common during such events and can be further magnified by steep gradient systems 

g)
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and hydraulic interactions proximal to confluences  (Leopold et al. 2012), which are consistent with the 

study site conditions. Therefore, between the 2013 and 2014 spawning seasons, the river abandoned 12% 

of the bull trout redds within the wetted perimeter limits of the bankfull channel - which had been infilled 

with coarse alluvial material. No cutthroat trout redds were abandoned. As the thermal investigations 

were completed in 2014 (post flood), the analyses completed does not consider redds in the abandoned 

channel section. 

In order to characterize the abundance and overall repeatability of spawning sites at each site, redds were 

assigned three different classifications: annual density (ρA), cumulative density (ρ) and, repeatability in 

spawning location (ρR) which were determined as follows:  

 ρA of redd i is equal the total number of redds within a 10 m radius surveyed within the same 

sampling year as redd i,   

 ρ is the total number of redds within a 10 m radius of redd i, regardless of the year of observation.  

 ρR is number of years of observation of all the redds within a 10 m radius that differ from redd i,  

As an example, the maximum ρR possible for the Ram Creek study reach would be 2. This would 

occur if redds from 2012, 2013 and 2014 were within 10 m of each other.  

Resulting values of ρA, ρ, and ρR are presented in classed post maps in Figure 3-2. Annual and cumulative 

densities at Ram Creek are much higher than Lizard Creek, as there was significantly more spawning at 

Ram Creek. Within the Ram Creek study area, there are isolated regions that have high ρA, ρ, and ρR 

values.  
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Figure 3-2: Annual density, cumulative density and repeatability of redd surveys between 2012 and 2014 of a) Ram Creek and b) Lizard 

Creek study reaches.
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3.3.2 Thermal Data Collection 

Streambed temperature measurements were collected (n > 80,000) using the non-invasive High-

Resolution Conductivity and Temperature array (HI-RES TMD) system (Chapter 2) along the two study 

reaches. The system was developed to measure high resolution streambed temperatures while overcoming 

several other common constraints of field investigations (such as limited spatial extents and/or time 

consuming procedures). The array features 32 conductivity and temperature probes, spaced 0.3 m apart in 

a planometric grid pattern (3 m2). The entire apparatus is constructed from rugged aluminum and is 

approximately 1.2 m wide and 2.5 m long. Total station prism mounts are integrated into the four corners 

of the frame to geospatially locate the apparatus using a total station theodolite or a first-order differential 

GPS. In this case a Trimble Robotic S6 total station (±2 mm, Trimble Navigation Ltd. (2013)) was used. 

By georeferencing the four corners of the frame, georeferenced coordinates of each discrete sampling 

probe could subsequently be calculated. 

HI-RES TMD records one flow depth measurement for every 32 probe measurement positions 

(subsequently referred to as a cage). Flow depth (m) is recorded from a 2 cm graded staff gauge located 

on one of the upstream legs of the device. Water surface elevations are therefore assumed constant within 

each cage measurement (one depth measurement per 3 m2) which remains at a higher survey resolution 

relative to recommended methodologies for bathymetry surveys (Levec and Skinner 2004). Using the 

above assumption, flow depth for each probe was estimated by linearly interpolating between staff gauge 

measurements of adjacent cages. 

Due to the design of the HI-RES TMD system, the maximum flow depth able to be investigated was 0.75 

m. Deeper flow depths would have compromised the electronics of the equipment. Additional restrictions 

occurred where large protruding boulders, woody debris or overhanging vegetation prevented the 

placement of the sampling equipment. Obstacles were noted, circumvented and sampling was performed 

as close as logistically possible to each protrusion. Obstacles accounted for approximately 10% and 6% of 

the channel area of Ram Creek and Lizard Creek respectively. 

Streambed temperature data were collected at Ram Creek between late July and early September 2014, 

and at Lizard Creek during the month of September, 2014. It is expected that temperature gradients 

between upwelling groundwater and surface water (as influenced by atmospheric conditions) had the 

highest contrast during these periods. In both cases, data collection was performed during the day, 

between 8:00 hrs and 18:00 hrs. A tacit assumption in deploying the HI-RES TMD system is in the 

measurement position at the streambed interface. Other researchers have found that detecting 

groundwater emergence was achievable when temperature measurements were acquired at depths 
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between 10 cm–15 cm into the stream bed material to dissipate boundary layer mixing (Muhlfeld 2002; 

Conant 2004; Kim et al. 2014). Using subsurface temperature measurements removes the majority of the 

diurnal fluctuations associated with the streambed temperatures measurements, which also allows the lag 

time between measurements to be higher. Using the HI-RES TMD system, 32 measurements are 

instantaneously acquired over 3 m2 (which is similar in area to the redd scale) resulting in a method that 

can detect changes in stream bed temperatures, relative to each other, also removing any sampling lag 

time between adjacent measurements, with significantly reduced effort. Detectable thermal gradients are 

muted, relative to measured temperatures 10 cm–15cm within the subgrade, however, they are considered 

more representative to the temperatures experienced by the salmonids during the spawning selection 

process at the streambed interface. 

The measured streambed dataset averaged a spatial resolution of 0.09 m2 covering approximately 5200 m2 

on Ram Creek and 2300 m2 on Lizard Creek (Figure 3-3). Several other parameters such as flow depth, 

air temperature and solar radiation were collected during the sampling periods in conjunction with the on-

board measurements system. Table 3-2 summarizes the data collected along both study sites. 

Observations were removed for probes resting on bed material or other small obstructions above the water 

surface or in cases of inoperable probes as per the methods outlined in Chapter 2.  

 

Table 3-2: Summary of data collected on Ram Creek and Lizard Creek 

Data Parameter Ram Creek Lizard Creek 

Total number of cages within the study reach 1,841 939 

Total number of streambed temperature samples 58,912 30,048 

Total number of streambed temperature samples post 

error removal 
58,404 29,949 

Number of field days 20 12 

Average number of measurements per day  2,920 2,496 

Length of river over which temperature samples were 

collected (m) 
720 500 

Area of river over which temperature samples were 

collected (m2) 
5,200 2,300 

 



35 
 

 

 

Figure 3-3: Extents of thermal study reaches with surveyed redd locations for a) Ram Creek and b) Lizzard Creek. 



36 
 

3.3.3 Data Processing 

As the HI-RES TMD system can be used over a large area within a single day and amongst several days 

of field surveys, diurnal fluctuations within the sampling parameters must be removed to spatially 

compare the data. In order to incorporate the irregularity of the variance, a standard score normalization 

was employed in conjunction with a temporal moving window. A standard score represents the number of 

standard deviations of each value from the average of the sample which can also be presented as the 

probability of any temperature within the moving window to be less than that of the sample. As sample 

sizes (n) within the moving windows were greater than 30, a Gaussian distribution standard score was 

employed instead of a t-Distribution (Walpole et al. 1993). This method was able to provide the necessary 

fluidity of the data, and identify values that varied from the mean of the moving window.  

The normalization values of standard score (Zijk) and probability (pijk) were defined as  (Walpole et al. 

1993; Mohamad and Usman 2013): 

𝑍𝑖𝑗𝑘 =  
𝑇𝑖𝑗𝑘 − 𝜇𝑀𝑊

𝜎𝑀𝑊
 

where −∞ ≤  𝑍𝑖𝑗𝑘 ≤ ∞ 

𝑝𝑖𝑗𝑘 =  
1

𝜎𝑀𝑊√2𝜋
∙ 𝑒

−(𝑇𝑖𝑗𝑘−𝜇𝑀𝑊)
2

2𝜎2  
 

where 0 <  𝑝𝑖𝑗𝑘 < 1 

 

respectively, where 

𝜇𝑀𝑊 =  
1

5
∑

1

𝑚
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𝑛
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𝑛
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 (𝑔𝑒𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑜𝑣𝑖𝑛𝑔 𝑊𝑖𝑛𝑑𝑜𝑤 (𝑀𝑊)) 

𝜎𝑀𝑊 =  √ ∑ ∑ ∑(𝑇𝛼𝛽𝛾 − 𝜇𝑀𝑊)
2

𝑛

𝛼=1

𝑚

𝛽=1

𝑘+2

𝛾=𝑘−2

 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑊) 

and Tijk is the indexed temperature measurement for measurement i, of cage j and cross section k (which is 

comprised of m cages where each cage has n measurements). Details of the normalization of the data can 

be found in Chapter 2.  

Based on preliminary screening of the data a series of statistical and autocorrelation methods were 

selected to analyze the data. The analytical methods used are presented below. 



37 
 

3.3.4 Statistical and Spatial Analysis Methods 

3.3.4.1 Bonferroni t-Test 

The Bonferroni t-Test uses statistical hypothesis testing to determine the significance at which the means 

of two populations are the same. For this test, the null hypothesis (H0) assumes that the means of the two 

populations (e.g., all the temperature data from two reaches, two features, two redds, a feature and a redd, 

etc.) are equal, with the alternative hypothesis (H1) assuming that they are not equal (with an unknown 

value) as defined by (Walpole et al. 1993): 

𝐻𝑂: 𝜇1 − 𝜇2 = 0 

𝐻1: 𝜇1 ≠ 𝜇2 

An observed t-value (𝑡𝑜𝑏𝑠) is calculated for the two populations and is compared to the critical value (𝑡𝛼

2
) 

representing the maximum acceptable error in result. If the observed t-value is less than the critical value, 

the null hypothesis is accepted and the means are assumed equal to a predetermined significance (𝛼)  

(Walpole et al. 1993). The test assumes that the populations are normally distributed. The parameters are 

calculated as follows (Walpole et al., 1993): 

𝑡𝑜𝑏𝑠 =  
|𝑥1 − 𝑥2|

𝑣√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 

𝑣 =  
[
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
]

2

[(
𝑠1

2

𝑛1
)

2
1

𝑛1 − 1
] + [(

𝑠2
2

𝑛2
)

2
1

𝑛2 − 1
]

  

Where 𝑥𝑖 of the sample mean, 𝑠𝑖
2 is the sample variance, 𝑛𝑖 is the sample size. The variance coeifficent 

(v) is the Smith Sattherwaite Approximation, which was used because it was unknown if the population 

variance were equal (Walpole et al. 1993). Unless specified otherwise, a 5% significance level was used 

for the analysis. The t-Test analysis allows for broad scale comparison of the datasets where an exact 

spatial representation of the data would not further contribute to the analysis. This test was used to 

compare the thermal distributions between the study reaches, morphological features, and between the 

redds and morphological features. Specific uses of the t-Tests are identified within the Results.  

3.3.4.2 F-Test 

The F-Test uses statistical hypothesis testing to determine the significance at which the variance of two 

populations are the same. For this test, the null hypothesis (H0) assumes that the means of the two 
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populations have equal variance, while the alternative hypothesis (H1) assumes that they are not equal 

(with an unknown value) as defined by (Walpole et al. 1993): 

𝐻𝑂 : 
𝜎1

2

𝜎1
2 = 1 

𝐻1:
𝜎1

2

𝜎1
2 > 1 

 

An observed f-value (𝑓𝑜𝑏𝑠) is calculated for two populations, similar to the example described for the t-

Test analysis, and is compared to the critical value (𝑓(𝛼,𝑑𝑓1,𝑑𝑓2)) representing the maximum acceptable 

error in result. The null hypothesis is accepted if the observed f-value is less than the critical, and the 

variance are assumed equal at a significance of α  (Walpole et al. 1993). The parameters are calculated as 

follows (Walpole et al. 1993): 

𝑓𝑜𝑏𝑠 =
𝑠1

2

𝑠2
2 

The critical f-statistic (𝑓(𝛼,𝑑𝑓1,𝑑𝑓2)) is determined for a significance of α, where the degrees of freedom 

(𝑑𝑓1 and 𝑑𝑓2) are equal to the one less than the sample sizes (n1 and n2). Similarly to the Bonferroni t-

Test, a significance of 5% was used for the analysis, unless specified otherwise. The F-Test analysis 

allows for broad scale comparison of the datasets where an exact spatial representation of the data would 

not contribute further to the analysis. This test was used to compare the thermal distributions between the 

study reaches, morphological features, and between the redds and morphological features. Specific uses 

of the F-Tests are identified within Section 3.4.  

3.3.4.3 Least Significant Difference (LSD) Test 

The Least Significant Difference (LSD) is a modification of the Bonferroni t-Test which compares the 

means of multiple samples to determine which are significantly similar (at a significance of α). In this 

study it compares the thermal distributions of morphological features to those of the redds. The LSD is 

product of the standard error of all the sample and critical statistic as defined by (Walpole et al. 1993): 

𝐿𝑆𝐷 = (𝑠. 𝑒. ) (𝑡𝑎
2

,𝑛̅
) 

where 
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𝑠. 𝑒. =  √
2 𝑀𝑆(𝑅𝑒𝑠)

𝑛
 

The mean squared residual error of the samples (MS(Res)) is determined from a multiple parameter 

analysis of variance (ANOVA). If the difference between the means of two populations is greater than the 

LSD, the samples are considered to be significantly different, and if the difference is less than the LSD 

the inverse is assumed. As the probability of making a single incorrect rejection increases with the 

number of samples (i.e., Type II hypothesis testing error) included in the analysis, significance levels 

were tested specifically to reduce this error. 

3.3.4.4 Spatial Autocorrelation (SAC) Analysis 

Spatial autocorrelation analysis (commonly referred to as hotspot analysis) is used to quantify correlations 

between spatially dependent data  (Lee and Wong 2001). These methods are commonly used for viral 

outbreak monitoring  (Haining 2003; Getis and Ord 2010) contaminant fate delineation  (Albert et al. 

2000; de la Torre et al. 2012) and radial heat analysis  (Getis and Ord 2010; Golden et al. 2015).  

A local, Gi
* (referred to as the Getis-Ord, Gi

* analysis) analysis was used to quantify the correlation of the 

standardized temperature data (Zijk) to the surrounding measurements as defined by (Getis and Ord 2010):   

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖𝑗(𝑑) ∙ 𝑥𝑗𝑗

∑ 𝑥𝑗𝑗
 

Where 𝑤𝑖𝑗(𝑑) is binary matrix indicating true if xj within a distance of d from xi. A large positive value of 

Gi
* represents a strong correlation of hot temperature measurements within a radius of d of the 

measurement. Specifically, this would mean that the measurement at location i is hot (relative to the entire 

dataset) as well as the measurements within radius d. A large negative value of Gi
* would represent a 

strong correlation of cold temperature measurements. A Gi
* value can be calculated for every 

measurement obtained with HI-RES TMD grid limit (3 m2), quantifying each temperature measurement 

to its surrounding measurements. This analysis was completed using the standardized temperature (Zijk) 

data, which removes the temporal variations of the data creating a dataset that was only spatially 

dependant (not temporally).  

Gi
* can also be standardized to a Gaussian distribution score, which can then be used to identify 

measurements which have statistically significant correlations (Getis and Ord 2010) and are not within the 

normal distribution of the parameters being investigated as defined by:   
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𝑍𝐺𝑖 =
𝐺𝑖

∗(𝑑) − 𝐸[𝐺𝑖
∗(𝑑)]

√𝑉𝑎𝑟[𝐺𝑖
∗(𝑑)]

 

Where 

𝐸[𝐺𝑖
∗(𝑑)] =

∑ 𝑤𝑖𝑗(𝑑) ∙ 𝑥𝑗𝑗

𝑛
  

𝑉𝑎𝑟[𝐺𝑖
∗(𝑑)] =  √

∑ 𝑥𝑗
2

𝑗

𝑛
− 𝐸[𝐺𝑖

∗(𝑑)]  

The Gi
* method was preferable to other SAC analysis methods, such as the Geary, Moran I, or general G 

statistic methods (Lee and Wong 2001), as these other SAC methods provide a boarder scale correlation 

and the Gi
* provides a result that is relative to an exact location (Lee and Wong 2001; Getis and Ord 

2010). It was also desirable to maintain the data resolution for comparison purposes between temperature 

hotspots and redds, therefore it was necessary to use a SAC analysis that was able to accommodate this.   

Here the Gi
* method was used to define correlations of standardized temperature measurements and 

delineate the hottest and coldest regions within the both the Ram and Lizard Creek study reaches. This 

provided a foundation to spatially compare the locations of redds to the hot and cold spots. Due to the 

different species encountered at the two sites, it was expected that redds with the highest ρA, ρ, and ρR 

would also have the strongest correlation to the cold spots at Ram Creek as the temperature gradients 

were the highest. Redds at Lizard Creek were not expected to be correlated to cold spots or hot spots 

(henceforth referred to as significant spots) as all observed redds were associated with spring spawning 

cutthroat trout where surface water temperatures were similar to groundwater temperatures during the 

period of spawning.  

The Gi
* analysis was completed using the Spatial Analysis Toolset within ArcGIS 10.2 (ESRI 2011). A 

series of calibrations were performed to determine the most representative d value for the Gi
* calculation. 

Initially the average length (2 m) and width (1 m) of redds were used to represent d; however, both these 

values proved to be too large as resulting significant spots represented more than 60% of the study reach. 

A d value of 0.5 m was then used as this is the smallest size to ensure that every point has a single 

neighbour (Lee and Wong 2001; Getis and Ord 2010; ESRI 2011). The Gi
* value was standardized (ZGi*) 

to allow for relative comparison to the normal distribution of the data. 

Locations of each streambed temperature measurement were converted to representative areas using the 

Thiessen polygon transformation (ESRI 2011). The average area allocated to each measurement was 
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approximately 0.09 m2. Each polygon retained the standardized temperature of the measurement it 

encompassed, and the associated ZGi*. All adjacent areas with ZGi* ≥ 95% significance levels (1.96), or ≤ 

5% significance (-1.96), were amalgamated to form statistically significant spots.  

3.3.4.5 Redd Proximity Metric 

Redds positioned within significant spots were identified and quantified within ArcGIS. However, a 

super-positioning comparison disregards redds that were near significant spots, but not directly 

encompassed. Therefore, to quantify spatial correlations between significant spots and redds (super-

positioned and proximal), a redd proximity metric (Ri) was defined. Ri is a weighted cumulative score for 

each redd representing standardized temperature and the surrounding significant spots in relation to the 

squared distance between significant spots and a given red defined by:   

𝑅𝑖 = ∑
𝑍𝑖𝑗𝑘𝑛

∙ 𝐴𝑛

𝑙𝑛
2 ∙ 𝑤(50)𝑛𝑖

𝑘

𝑛=1

 

Where 𝑍𝑖𝑗𝑘 𝑛
 is the average, standardize temperature of significant spot n of a total of k significant spots, 

𝐴𝑛 is the area of significant spot n, 𝑙𝑛 is the separation distance between the centroids of the significant 

spot n and redd i, and 𝑤(50)𝑛𝑖 is a binary matrix;1 if the distance between redd i and significant spot n is 

less than 50 m.  

As ln is a Euclidean distance (as opposed to the river thalweg path) a maximum separation distance (ln) of 

50 m was established (approximately two channel widths) to ensure that the limits of the channel were 

respected. Ri was calculated as a cumulative score of all the surrounding significant spots to create an 

unbiased representation of the entire thermal environment surrounding each redd, as opposed to just 

considering the hot or cold locations. Figure 3-4 illustrates the calculation method of Ri for each redd. 
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Figure 3-4: Schematic illustrating how the redd proximity metric (Ri) is calculated for a 

representative redd 

 

To establish a relative significance, Ri values were calculated for every temperature measurement location 

for both study reaches, and a 95% confidence interval was determined for each reach. Therefore, if Ri for 

redd i was determined to exceed the upper limit of the confidence interval, the redd was statistically 

significantly correlated to hot spots and if Ri was less than the lower limit of the confidence interval, redd 

i was statistically significantly correlated to cold spots.  
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3.4 Results 

3.4.1 Visual Analysis 

For both study reaches, isotherms of the standardized temperatures were mapped using Surfer 13 (Golden 

Software, 2015) on a 0.5 m x 0.5 m (0.25 m2) planometric grid to identify general spatial thermal 

variations (Figures 3-5 and 3-6). Given the average thermal sampling resolution (0.09 m2), contours were 

generated using linear interpolation with triangulation.  

The majority of both study areas had standard temperatures (Zijk) between -1 and 1; indicating that the 

temperatures are within one standard deviation of the temporal median sample temperature and therefore 

exhibited very small spatial variance across both study sites. While the majority of the streambed 

temperatures were approximately equal, there were visually identifiable clusters and delineations of hotter 

areas (Zijk ≥ 2) and colder areas (Zijk ≤ -2). Greater than 20 and 15 hotter areas were identified within the 

Ram Creek and Lizard Creek sites respectively, whereas fewer than 10 colder areas were identified at 

each site. Colder areas were commonly smaller in spatial extents relative to hotter zones. Along Ram 

Creek, warmer areas were concentrated primarily along the channel banks whereas warmer areas were 

more evenly distributed along Lizard Creek. The streambed at streambank margins would commonly be 

expected to exhibit increased thermal capacity as the areas typically maintain the shallowest flow depths 

and the finest sediment grain sizes (Wang et al. 2014). These areas would also experience thermal 

warming from the surrounding floodplain regions above the water table (Ochsner et al. 2001; Carrivick et 

al. 2012).  

There were no visually obvious correlations (positive or negative) between hot and/or cold areas with the 

locations of redds at either study site. Redds were observed to super-position within the hot and cold areas 

on both study sites (Figures 3-5 and 3-6 (a), (b) and (c)) in addition to areas of average temperature. As 

the dataset presented here provides unprecedented resolution and extent of cover of streambed thermal 

measurements (inter- and intra-red), it is unlikely that spatial correlations at lesser scales and densities 

could be readily achieved and correlated based solely upon visual analysis techniques. Additional spatial 

analysis techniques need to be employed here to further investigate if redd placement correlates to either 

warmer and/or colder streambed temperatures and therefore potentially influence the discrete selection 

preferences of spawning salmonids.  

Due to the limited normalized thermal variance, data classification and binning with statistical population 

comparisons will aid in identify similarities and differences between grouped temperature distributions. 

Temperature classes based upon morphological features will also be conducted as per the methods 
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outlined as there many thermal streambed patterns linked to morphological features (Bencala 2000; 

Tonina and Buffington 2007). Given the high resolution data set, spatially dependant variance techniques 

(such as SAC) will also be employed to evaluate the limits of each hot/cold spot and determine any 

correlations with the sizes, positions and distance between redds and hot/colds spots. 
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Figure 3-5: Isotherms of Ram Creek with magnified windows of interest 
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Figure 3-6: Isotherms of Lizard Creek with magnified windows of interest  
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3.4.2 Parameter comparison 

The standardized temperatures (Zijk) were plotted against flow depth and solar radiation to determine if 

cross correlations existed as thermal energy flux of the streambed can be modulated by several additional 

parameters. Flow depth and exposure to solar radiation are two known parameters that contribute to the 

thermal energy flux, spatially vary and were measured during field investigations. Standardized 

temperatures were binned based on the corresponding flow depths and incoming radiation and geometric 

means and standard deviations of each class calculated and plotted (Figures 3-7 and 3-8). 

Standardized temperature was correlated at both sites to flow depth through a fourth order polynomial 

equation. Standardized temperatures at flow depths less than 0.2 m were warmer and had a variance of 1.5 

to 2 times greater than the rest of the observations. As the surface water insulates the streambed, flow 

depths less than 0.2 m, are likely more subject to atmospheric thermal variations and thusly dominated by 

the flux of the sensible and latent heat which is consistent with previous observations (Hannah et al. 2008; 

Buss et al. 2009). Therefore, thermal characteristics of the streambed within the low flow regions are 

dominated by non-spatially dependant parameters. Standardized temperatures at both study sites 

approached zero as flow depth increased to the maximum measurable limits (0.75 m).  

It was observed that for flow depths less than approximately 0.175 m, Ram Creek has a warmer average 

standardized streambed temperature than Lizard Creek, but for flow depths greater than 0.175 m Lizard 

Creek has a warmer average temperature. Based on the established correlation between flow depth and 

standardized temperature, this would indicate that sensible heat effects (i.e., magnitude of atmospheric 

temperature) or latent heat effects (i.e., evaporation and condensation) were more dominant at Ram Creek 

than Lizard Creek. During the field investigation, the average atmospheric temperature during working 

hours was approximately 9°C higher during Ram Creek investigation versus Lizard Creek thermal 

measurements. This comparison provides further evidence that streambed temperatures within the low 

flow regions of the channel bed (such as riffle crests, stream bank margins, convex slopes of point bars 

and other depositional features) are dominantly controlled by non-spatially dependant energy parameters.  
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Figure 3-7: Relationship between standardized temperature and flow depth for both study sites. 

Error bars show the standard deviation.  

 

 

Figure 3-8: Relationship between standardized temperature and radiation for both study sites. Error 

bars show the standard deviation.  
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Standardized temperatures were correlated to solar radiation with linear relationships, however, the 

coefficients of the fitted equations were determined to be statistically insignificant, and the coefficients of 

determination (R2) indicated that the fit represents less than half of the variance between the two 

parameters. It is possible that there was a time lag effect between incoming solar radiation and the 

streambed temperatures which was not able to be detectable or deconvoluted although it has been 

observed in several other studies (Edinger et al. 1968; Caissie 2006; Loheide and Gorelick 2006). 

Consequently, it is concluded here that the solar radiation (i.e., shading) observed at the time of 

measurement is not related to standardized streambed temperatures, however, the temporal lag effect of 

shading on streambed temperature may not have been correctly captured with the measurement apparatus.  

Standardized temperature measurements exclusively obtained within redds were also assessed as a 

function of flow depth (Figure 3-9). At Ram Creek, standardized temperature correlated to flow depth as 

expressed by a fourth-order polynomial (Figure 3-9(a)). The trend mirrored the full dataset of Ram Creek 

(Figure 3-7) but was offset by an average of -0.75 identifying that redds are constructed in areas, on 

average, 0.75 standard temperature units colder than surrounding areas of similar flow depth. At Lizard 

Creek, the data were best fit to a second-order polynomial, however, statistical significance testing of the 

coefficients indicated that fit did not adequately represent the dataset. It was noted that the percentage of 

the total measurements within redds at Lizard Creek (0.6%) might have been too small to produce a 

representative sample, causing the lack of representativeness of the fit. Without a larger dataset to further 

examine the relationship, it was concluded that standardized temperatures within redds at Lizard Creek 

are not correlated to flow depth.  
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Figure 3-9: Relationship between standardized temperature and flow depth for both (a) Ram Creek 

and (b) Lizard Creek 
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3.4.3 Morphological Feature Statistical Population 

Comparison 

Statistical population comparison analysis was completed to compare the thermal distributions of Ram 

Creek and Lizard Creek by morphological features. Establishing the similarities and differences between 

the reaches created a baseline for comparisons between the two study sites. This approach is also 

defendable based upon previous research where the animals were observed to commonly spawn on the lee 

end of pools and/or glides versus riffles (Geist and Dauble 1998; Hanrahan 2007). Morphologic feature 

stratification may deconvolute some of the spawning observations as there may be metrics external to this 

research that are playing a role in the site selection process that could be better stratified based upon 

morphological units (Imhol et al. 1996)   .  

Histograms of standardized temperature class were generated for each study reach (Figure 3-10). T-Test 

and F-Test analyses were completed for the two datasets identifying that the two reaches are considered to 

be statistically the same (mean and variance). Based on the similarities in the thermal parameter controls 

(i.e., average flow depth, extent of shading, and similarities in grain sizes), both creeks were expected to 

be similar at the reach scale.  

 

 

Figure 3-10: Histograms of all the standardized temperature data collected on (a) Ram Creek and (b) 

Lizard Creek 
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There is a distinct difference in skewness between the two creeks. Ram Creek has a positive skewness 

(2.73), indicating that the population is skewed towards the warmer standardized temperatures whereas 

Lizard Creek has a smaller positive skewness (1.18), representing a more symmetrical distribution as the 

skewness is closer to zero. Results from parameter cross correlation analysis with depth in Section 3.4.2 

indicated that low flow temperatures were warmer at Ram Creek than at Lizard Creek due to warmer 

atmospheric conditions during the field investigation. Approximately 54% of Ram Creek data was 

collected at flow depths less than or equal to 0.2 m, indicating that approximately half of the data could 

have been subject to atmospheric warming. Therefore, the positive skewness of Ram Creek data may be a 

result of the warm low flow season (July – September) in which data was collected. It was unexpected 

that Ram Creek would have a warm skewness in temperature distribution as the reach is dominated by 

bull trout spawning, which has been strongly correlated to cold temperature preferences and therefore, 

expected to have been a negatively skewed Zijk distribution (Baxter et al. 2003; Hannah et al. 2004; 

Warnock et al. 2013).  

Cumulative histograms (Figure 3-10) show that, for both study reaches, 90% of standardized temperature 

data falls between -1.5 and 1.5, and 50% of data falls between -1 and 0.5. Therefore, 50% of the data is 

within a single standard deviation of the mean temperature, or is between 16% and 69% probability of 

exceedance of the mean. This confirms the limited variance of the systems that was visually observed 

within the isotherms in Section 3.4.1. These results provides further support to the necessity of applying 

statistical analyses of the thermal distributions and equal sampling of both inter- and intra- redd regions, 

as statistically significant differences could have very similar values, which might be overlooked by a 

visual analysis.  

Zijk data was spatially binned by morphological feature, which allowed for statistical population 

comparisons analysis (i.e., t-Test and F-Test) amongst feature classes (pools, riffles and runs) to identify 

if thermal differences between feature classes were linked to spawning site selection. Means and 

variances of each feature class are presented in Table 3-3. Results of the population comparison tests and 

similarities between feature classes are presented in Table 3-4. 

Average standardized temperatures of pool and riffles at Ram and Lizard Creek were determined to be 

significantly different from the other morphological features, and unique within the study reach (i.e., 

differed from all the data as a whole). For both creeks, normalized temperature averages of pools were 

warmer than the other features, and averages of riffles were cooler than other features. Redd observations 

discussed above identified that riffles had limited spawning activity, therefore normalized temperatures 

within these morphological features were anticipated to be warmer if salmonids were attracted 

exclusively to colder temperature regions. This observation is also contrary to the fourth-order polynomial 
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relationships identified in Figures 3-7 and 3-9(a). Here, the current result is in contradiction with the 

previous results suggest that there are other factors (other than flow depth) that reduce the thermal 

capacity of the streambed at the riffles. Riffles commonly represent the coarsest fraction of the channel 

bed material, which would correspond to a lower thermal capacity within the study reach (Barry-

Macaulay et al. 2015). Additionally, hyporheic flow emergence has commonly identified within the 

downstream extents of riffles (Tonina and Buffington 2007). It is possible that groundwater and 

hyporheic advection energy might be reducing the streambed temperatures within the study reaches, 

however, groundwater and/or hyporheic exchange was not explicitly quantified during this investigation 

and therefore cannot be directly linked to the thermal controls.  

 

Table 3-3: Summary of averages and variances of standardized temperature for each feature class 

Feature Class 

Number of 

Measurements 

within Feature 

Class 

Mean 

Standardized 

Temperature 

and Probability 

of Exceedance   

Standardized 

Temperature 

Variance 

Ram Creek    

All Data 53,273 -0.018 (0.47) 0.89 

Pools 17,733 0.043 (0.48) 1.00 

Riffles 14,208 -0.076 (0.45) 0.81 

Runs 21,332 -0.029 (0.47) 0.85 

Within Redds 1,961 -0.171 (0.44) 0.40 

Lizard Creek    

All Data 29,949 -0.011 (0.49) 0.67 

Pools 9,034 0.027 (0.51) 0.80 

Riffles 5,867 -0.063 (0.46) 0.59 

Runs 15,066 -0.013 (0.49) 0.64 

Within Redds 190 -0.141 (0.46) 0.42 

 

For both study sites, the average and variance of the standardized temperature of the runs were 

statistically the same as the average of the study reach (Table 3-4). Therefore, average standardized 

temperature of runs would be an accurate representation of the reach average. 
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Table 3-4: Summary of statistical analysis completed on standardized temperature populations 

Population 

Comparison 
tobs tα/2,n fobs fα,dF1,dF2 

Ram Creek 
POOL vs. All Data 7.05 2.24 1.12 1.02 

POOLS vs. RIFFLES 11.14 2.24 1.24 1.03 

POOLS vs. RUNS 7.30 2.24 1.17 1.02 

POOL vs. REDDS 13.24 2.24 2.48 1.06 

RIFFLES vs. All Data 6.79 2.24 1.11 1.02 

RIFFLES vs. RUNS 4.76 2.24 1.06 1.03 

RIFFLES vs. REDDS 5.90 2.24 0.50 1.06 

RUNS vs. All Data 1.51 2.24 0.96 1.02 

RUNS vs. REDDS 9.09 2.24 2.13 1.06 

REDDS vs. All Data 10.32 2.24 2.22 1.06 

Lizard Creek 

POOL vs. All Data 3.63 2.24 1.16 1.03 

POOLS vs. RIFFLES 6.58 2.24 1.28 1.04 

POOLS vs. RUNS 3.47 2.24 1.23 1.03 

POOL vs. REDDS 3.48 2.26 1.85 1.20 

RIFFLES vs. All Data 4.70 2.24 1.10 1.03 

RIFFLES vs. RUNS 4.24 2.24 1.04 1.04 

RIFFLES vs. REDDS 1.60 2.26 0.69 1.18 

RUNS vs. All Data 0.17 2.24 0.94 1.02 

RUNS vs. REDDS 2.69 2.26 1.50 1.20 

REDDS vs. All Data 2.73 2.26 1.59 1.20 

Creek Comparison 

All Data vs. All Data 1.03 2.24 0.76 1.02 

POOL vs. POOL 1.31 2.24 0.78 1.03 

RIFFLE vs. RIFFLE 1.01 2.24 0.76 1.03 

RUN vs. RUN 1.81 2.24 0.74 1.03 

REDDS vs. REDDS 0.62 2.26 1.05 1.19 
NOTES:  

1. Feature comparison with statistically the same mean are BOLDED 

2. Feature comparisons with statistically the same variance are in Italics  

 

When comparing variance between feature classes, very few similarities were identified; as mentioned 

above, runs were identified to be statistically the same as the entire dataset, and at Lizard Creek riffles and 

runs also had statistically the same variance. This suggests that the parameters controlling variability of 

streambed temperatures are feature class dependent. Flow depth was previously identified as a controlling 

factor, which is also feature class dependent (i.e., riffles have the lowest flow depths and pools have the 

deepest flow depth). As suggested above, groundwater and hyporheic flow advection has commonly been 

linked to morphological features, and may also control the variance of streambed temperature but was not 

explicitly differentiated in this study.  
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Relationships between distributions of morphologic feature classes and thermal measurements explicitly 

within redds were also examined similar to above. Data from Ram Creek indicated that average 

standardized temperatures of redds were statically colder than all the feature classes and the entire dataset. 

This further confirms the results observed within the parameter comparison analysis, (i.e., that redds are 

constructed within in below average temperatures for a given flow depth). It was noted that variance of 

standardized temperatures of redds was statistically the same as for riffles. As only 4% of all the 

spawning occurred on riffles, it was unexpected to find statistically significant similarities between the 

riffles and redds. The variance of the standardized temperatures within the riffles (0.81) is approximately 

twice as large as the variance of the standardized temperatures within the redds (0.40). Therefore it is 

likely that this large difference in sample sizes (n = 14,208 and n = 1,961 for the measurements within the 

riffles and redds respectively) could affect the accuracy of the results. Data from Lizard Creek presented 

the same results as Ram Creek, with the exception that the redds dataset was determined to have 

statistically the same average and variance in standardized temperatures as the riffles. No spawning was 

observed on riffles at Lizard Creek, therefore similarities between riffles and redds was unexpected. 

Again, it is possible that these results are a product of significantly different sample sizes.  

Statistical population comparison of morphological features was also completed between the two study 

sites (e.g., pools from Ram Creek compared to the pools from Lizard Creek). It was observed that the 

average and variance of the standardized temperatures of the pools, riffles, runs and redds were 

statistically the same between both creeks. Therefore, this would suggest that observations made 

regarding each feature class are not unique to the system, but might be broader and could be potentially 

applicable to other cobble bed rivers having similar morphology.  

Thermal distribution of each morphological feature was compared to the other features within the same 

class (i.e., Pool 1 compared to Pool 2, etc.). Physical parameters and spawning characteristics (i.e., ρ, ρA, 

and ρR) of each feature were compared to determine potential physical thermal controls in attempts to 

narrow the focus of the preferable thermal spawning regimes on specific features. LSD testing was 

completed to determine which features had statistically the same average temperatures. Features with 

statistically the same average as the warmest and coldest features were identified.  

At Ram Creek, pools and runs with the hottest normalized temperatures (or with statistically the same 

average standardized temperature as the hottest pool or run) had the most repeatable and highest density 

of spawning activities (Table 3-5). It was predicted that colder temperatures would be encountered on 

features with significant spawning at Ram Creek, based on the previously discussed spawning 

preferences, therefore these results were unexpected. It is noted that spawning was not exclusive to the 

warmest features, and spawning with lower ρ, ρA, and ρR values were observed on several other features, 
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including the coldest. At Lizard Creek no dominant spawning pattern was found related to any specific 

feature (Table 3-6). This result can likely be attributable to the small number of redds observed at this 

site. Spawning dominated on the warmest features contradicts previous results (parameter comparison and 

feature class comparison) which indicated that spawning occurs within statistically colder sections of the 

study reach.  

Contrary to what was observed in Section 3.4.2, correlations between average flow depth of features and 

respective temperature is not correlated at Ram Creek based upon LSD testing (Table 3-5) as the warmest 

and coolest feature have similar flow depths. However, at Lizard Creek, deepest pools and runs are 

clearly the coldest features (Table 3-6). Again it is possible that other processes contributing to the 

thermal energy flux of the streambed (such as groundwater emergence or hyporheic exchange) are 

significantly contributing to thermal energy.  

Some pools and runs did not have any spawning during the three years of observations, therefore 

comparisons between length, slope and area of these specific features and riffles (where spawning 

essentially did not occur) were assessed. However, no similarities between any of these metrics were 

identified at either site, largely because riffles were much steeper than any other feature. 
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Table 3-5: Summary of average thermal measurements, physical characteristics and spawning 

patterns at Ram Creek, sorted by average Zijk value. Features statically the same as the coldest 

feature are highlighted in blue and feature statistically the same as the warmest feature are 

highlighted in red. 

Feature 

Number 
Average 

Zijk 

Standard 

Deviation 

of Zijk 

Physical Characteristics Spawning Characteristics 

Average 

Flow 

Depth 

(m) 

Length 

of 

Feature 

(m) 

Average 

Slope 

(%) 

Area 

(m2) 

Average 

𝜌𝐴 

Average 

𝜌 

Average

𝜌𝑅  

P
o

o
ls

 

4 -0.20 0.56 0.27 17 0.6% 59 2.5 5.0 1.0 

7 -0.12 0.73 0.28 14 0.6% 50 0.0 0.0 0.0 

6 0.02 0.98 0.16 43 0.2% 185 0.0 0.0 0.0 

3 0.02 1.24 0.29 18 0.2% 121 1.0 2.0 1.0 

5 0.04 1.02 0.27 74 0.3% 582 3.6 4.1 0.3 

2 0.05 1.02 0.19 46 0.4% 455 4.8 5.0 0.0 

1 0.16 0.91 0.26 20 0.2% 194 5.0 10.5 1.0 

R
if

fl
es

 

1 -0.18 0.77 0.16 18 2.3% 178 0.0 0.0 0.0 

4 -0.17 0.81 0.20 17 1.7% 262 2.0 3.0 0.8 

2 -0.13 0.55 0.17 18 2.7% 162 0.0 0.0 0.0 

3 -0.09 0.77 0.15 26 2.8% 344 0.0 0.0 0.0 

8 -0.03 0.91 0.21 27 2.0% 202 2.0 2.0 0.0 

7 0.06 0.92 0.15 15 2.5% 60 2.0 2.0 0.0 

6 0.14 1.06 0.20 13 2.5% 89 0.0 0.0 0.0 

5 0.17 0.69 0.16 12 2.3% 118 0.0 0.0 0.0 

R
u

n
s 

5 -0.18 0.86 0.23 11 0.4% 26 0.0 0.0 0.0 

1 -0.09 0.93 0.19 21 1.0% 244 2.7 4.4 1.0 

4 -0.08 0.77 0.22 26 0.8% 185 0.0 0.0 0.0 

3 -0.06 0.91 0.18 32 0.8% 321 3.9 6.9 0.9 

2 -0.01 0.75 0.22 45 0.6% 384 8.0 10.6 0.8 

8 0.01 0.88 0.22 79 0.5% 547 7.2 17.7 1.8 

6 0.02 0.91 0.14 26 0.8% 77 1.0 2.0 1.0 

7 0.03 0.78 0.36 20 0.6% 76 0.0 0.0 0.0 
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Table 3-6: Summary of average thermal measurements, physical characteristics and spawning 

patterns at Lizard Creek, sorted by average Zijk value. Features statically the same as the coldest 

feature are highlighted in blue and feature statistically the same as the warmest feature are 

highlighted in red. 

Feature 

Number 
Average 

Zijk 

Standard 

Deviation 

of Zijk 

Physical Characteristics Spawning Characteristics 

Average 

Flow 

Depth 

(m) 

Length 

of 

Feature 

(m) 

Average 

Slope 

(%) 

Area 

(m2) 

Average 

𝜌𝐴 

Average 

𝜌 

Average 

𝜌𝑅  

P
o

o
ls

 

6 -0.09 0.65 0.31 25 0.7% 65 0.0 0.0 0.0 

3 -0.08 0.67 0.31 20 0.6% 59 2.0 2.0 0.0 

4 -0.02 0.92 0.17 34 0.7% 249 2.0 2.0 0.0 

5 0.01 0.67 0.22 32 0.3% 207 1.7 3.0 1.0 

2 0.06 0.74 0.19 42 1.0% 178 0.0 0.0 0.0 

1 0.80 0.26 0.17 22 0.9% 41 0.0 0.0 0.0 

R
if

fl
es

 

10 -0.27 0.68 0.12 19 0.7% 96 0.0 0.0 0.0 

9 -0.23 0.17 0.12 9 2.1% 103 0.0 0.0 0.0 

6 -0.15 0.50 0.10 11 1.9% 68 0.0 0.0 0.0 

7 -0.14 0.34 0.14 16 3.0% 125 0.0 0.0 0.0 

1 0.00 0.44 0.16 4 5.7% 52 0.0 0.0 0.0 

3 0.10 0.86 0.19 15 2.5% 83 0.0 0.0 0.0 

4 0.10 0.90 0.15 10 4.2% 70 0.0 0.0 0.0 

2 0.17 0.88 0.08 6 1.8% 41 0.0 0.0 0.0 

8 0.49 1.47 0.17 8 3.7% 37 0.0 0.0 0.0 

R
u

n
s 

5 -0.28 0.59 0.29 12 0.6% 64 0.0 0.0 0.0 

4 -0.14 0.85 0.26 20 0.5% 61 0.0 0.0 0.0 

1 -0.11 0.81 0.24 16 0.9% 86 0.0 0.0 0.0 

3 -0.01 0.60 0.22 27 0.1% 126 0.0 0.0 0.0 

8 -0.01 0.72 0.19 68 0.8% 382 2.3 4.0 1.0 

2 0.01 0.68 0.14 43 0.4% 187 2.3 3.7 1.0 

6 0.07 0.65 0.22 15 0.1% 80 0.0 0.0 0.0 

7 0.08 0.22 0.13 22 0.9% 205 0.0 0.0 0.0 
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As the results presented in Section 3.4.2 and Table 3-4 contradicted the results in Tables 3-5 and 3-6, 

further comparisons were necessary to investigate potential correlations previously identified between 

redds and colder streambed locations (Evans and Petts 1997; Baxter and Hauer 2000; McMahon et al. 

2007). Statistical population comparisons (t-Tests and F-Tests) were completed for the features with 

spawning, to identify differences between standardized temperature distributions of areas selected for 

spawning versus the entire feature thereby undertaking an inter- and intra-redd comparison (Table 3-7). 

Locations of all redds, from each year of the surveys were included as they were assumed to represent the 

desired spawning locations by the animals. 

 

Table 3-7: Comparison of measurements within redds to the entire feature 

Population 

Comparison 

Feature 

Sample 

Size 

Redds3 

Sample 

Size 

Feature 

mean 
𝑍𝑖𝑗𝑘 

Redds3 

Mean 

𝑍𝑖𝑗𝑘 
tobs tα/2,n fobs fα,dF1,dF2 

Ram Creek         

POOL-1 1862 284 0.16 0.23 1.93 2.25 3.14 1.17 

POOL-2 5026 97 0.05 -0.10 3.42 2.27 5.57 1.29 

POOL-3 1039 19 0.02 -0.35 6.04 2.33 24.90 1.92 

POOL-4 541 96 -0.20 -0.54 7.03 2.25 4.81 1.31 

POOL-5 6822 142 0.04 -0.13 3.79 2.26 3.52 1.23 

RIFFLE-4 2768 78 -0.17 -0.27 1.33 2.28 2.16 1.34 

RIFFLE-7 537 11 0.06 0.02 0.27 2.59 3.20 2.55 

RIFFLE-8 2324 17 -0.03 0.31 3.02 2.46 4.31 2.01 

RUN-1 2923 77 -0.09 -0.18 1.22 2.28 2.18 1.34 

RUN-2 4528 195 -0.01 -0.20 5.14 2.26 3.07 1.20 

RUN-3 3362 113 -0.06 -0.10 0.44 2.27 1.40 1.27 

RUN-6 675 25 0.02 -0.84 17.80 2.27 37.32 1.74 

RUN-8 6926 801 0.01 -0.26 10.26 2.24 1.95 1.09 

Lizard Creek         

POOL-3 460 27 -0.08 -0.54 4.03 2.35 2.07 1.71 

POOL-4 3088 15 -0.02 0.01 0.24 2.49 4.01 2.13 

POOL-5 2294 78 0.01 -0.22 3.70 2.28 2.51 1.34 

RUN-2 2361 14 0.01 0.37 2.43 2.53 2.21 2.21 

RUN-8 5388 51 -0.01 0.03 0.37 2.31 1.09 1.44 

NOTES:  

1. Feature comparison with statistically the same mean are BOLDED 
2. Feature comparisons with statistically the same variance are in Italics 
3. “Redds” refers to the measurements taken within the limits of the previously surveyed redds 

 

Of the 13 morphologic features on Ram Creek that experienced spawning, five features with redds were 

determined to have statistically the same average standardized temperature as the entire feature in which 

redds were observed. None of the features with redds have the same variance as the feature in which they 
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were observed within. It is noted that there is a large difference in the sample sizes of the features and the 

redd datasets, which could affect the accuracy of t-Tests and F-Tests. With the exception of Pool-1 and 

Riffle-8, average standard temperature of the measurements within redds was lower than the average of 

the feature in which redds were observed.  

Of the five spawning features on Lizard Creek, three of the features with spawning had statistically the 

same mean, and of these, two had statically the same variance as the entire feature. It was noted that 

average redd temperatures were colder than the average feature temperature, for those features determined 

to be statistically different. Conversely, redds on the three remaining features demonstrated slightly 

warmer average temperatures (although considered statistically the same) than the features in which redds 

were observed. Again, it is noted that there are large differences in sample sizes which could affect the 

accuracy of the tests.  

The series of statistical population comparisons provided strong evidence that redds at Ram Creek were 

dominantly constructed within the coldest sections of features with the warmest average streambed 

temperature. However, this analysis may be prone to some errors as there is a large difference between 

the sample sizes of the data collected within a redd and within a feature, which is a result of the large 

difference in size between the two areas. To determine if redds are spatially correlated to the coldest 

locations a SAC analysis was completed to provide a quantitative representation of the spatial 

relationship.  
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3.4.4 SAC Analysis with Proximal Redd Spatial Correlations 

The Gi
* SAC analysis resulted in a series of identified hot and cold spots along both study reaches (Table 

3-8). At Ram Creek, 9 redds (9% of all redds observed) were within the limits (super-positioned) of the 

hot spots, and 27 redds (26%) were within the limits of cold spots. At Lizard Creek, 6 redds (40% of all 

redds observed) were within the limits of the hot spots, and 3 redds (20%) were within the limits of cold 

spots. There were, however no correlations between ρA, ρ, and ρR values of redds associated with 

significant spots, as the full range of all three metrics were observed for redds within the significant areas.  

Table 3-8: Summary of significant spot characteristics from both Ram and Lizard Creek 

Study Area Characteristic Hot Cold 

Ram Creek 

Number of spots (% of total) 93 (44%) 119 (56%) 

Average area (m2) 4.63 4.23 

Average standardized temperature  1.17 -0.86 

Number of redds within spot 9 (9%) 27 (26%) 

Number of redds with significant Ri 2 (2%) 16 (16%) 

Lizard Creek 

Number of spots 60 (51%) 57 (49%) 

Average area (m2) 4.09 4.21 

Average standardized temperature  0.85 -0.83 

Number of redds within spot 6 (40%) 3 (20%) 

Number of redds with significant Ri 2 (13%) 3 (20%) 

 

The redd proximity metric (Ri) was calculated to determine correlations between significant spots and 

redds; Ri evaluates the significance of all the cold and hot spots near or encompassing the redds in 

question and is summarized in Table 3-8. Ri analysis identified half as many redds as significantly 

correlated to cold spot, relative to the number of redds within significant spots. At Ram Creek, only 18 of 

the 103 individual spawning locations were determined to be correlated to significant spot, and only 16 

were correlated to cold spots. This suggests that the majority of redds (84%) are not correlated to cold 

spots. At Lizard Creek 80% of redds were not correlated to cold spots. 

When redds at Ram Creek were stratified by ρ, ρA, and ρR, results showed that redds with significant Ri 

were located in areas with the highest ρ, ρA, and ρR values within the entire study area. Of the 16 redds 

correlated to cold spots, 11 (69%) occurred where ρA ≥ 8 and 13 (81%) where ρ ≥ 10. Furthermore, all 

redds have a minimum ρR of 1, indicating that the area was used for spawning two years out of the three 

analyzed. Therefore, Ri analysis at Ram Creek, indicate that redds found in the proximity to cold spots, 
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are redds within the most desirable spawning areas. Figure 3-11 shows the distributions of the annual and 

cumulative densities of redds with significant Ri, redd located within cold spots, and all other redds.  

 

Figure 3-11: Comparison of the redd annual density and ρ identifying the type of correlation to cold 

spots at Ram Creek. 

 

Redds with significant Ri have higher p75, p50 (median), and p25 ρA values than redds found within cold 

spots, or over all other redds observed (Figure 3-11). Redds with significant Ri also have the highest 

median ρ. As previously observed in the Gi* analysis, redds superimposed within the cold spots have a 

large range in ρ and redds with significant Ri have higher median and p25 values. Furthermore, the median 

and p75 values of ρ for redds within cold spots are larger than the corresponding values found for the 

whole dataset. These results add further evidence that redds within close proximity of the most significant 

cold spots represent the densest and most frequented spawning areas within the study reach.  

Median values and overall data range of ρA within cold spots is approximately equal to all the other redds 

although p75 is larger for the former. Therefore the redds superimposed within the cold areas did not 

represent the most significant spawning areas (with the highest ρA, ρ and ρR). The results of the SAC 

analysis compliment the results found with the statistical population analysis that the redds are correlated 

to the colder areas within the study reach.   

median

p25 = 25th percentile

p75 = 75th percentile

low outlier limit = p25 -1.5(p75 - p25)

high outlier limit = p75 + 1.5(p75 - p25)

Box and Whisker Plot Definition
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3.5 Discussion 

Groundwater and hyporheic flow emergence may be a dominant process affecting the locations of 

isolated cold spots, however, this was not explicitly quantified during the current investigation. For both 

study reaches, normalized average streambed temperatures of riffles were determined to be statistically 

cooler than other features. Based on the relationship established within the parameter cross correlation, 

warmer temperatures would be expected to occur on the feature with the lowest flow depths (i.e., riffles 

and runs). Therefore, as this was not observed with the riffle, it is expected that there are other factors 

reducing the thermal capacity of the streambed at the riffles. Groundwater or hyporheic flow emergence 

has commonly identified within the downstream extents of riffles (Tonina and Buffington 2007; Tonina 

and Buffington 2009) and it is possible that groundwater and hyporheic advection energy might be 

reducing the streambed temperatures within the study reaches. Furthermore, streambed temperature 

variance was determined to be statistically different between most feature classes. This suggests that the 

parameters controlling variability of streambed temperatures are feature classes dependent. As the 

groundwater and hyporheic flow have a reduced range in temperature fluctuations (relative to the surface 

water temperature) it is plausible that the areas with the least variance (i.e., the riffles) have significant 

groundwater or hyporheic flow contributions to the streambed.  

It is possible that several of the cold spots identified with the SAC analysis could be the result of 

groundwater or hyporheic flow emergence. Approximately 100 significant cold spots were identified on 

each study reach using the SAC analysis. Unfortunately, traditional methods of quantifying groundwater 

emergence, such as piezometers (Conant 2001), seepage meters (Rosenberry 2008) or streambed thermal 

profiling (Stonestrom and Constantz 2003; Kim et al. 2014), required resources beyond the limits and of 

the current study. If the HI-RES TMD were modified to incorporate a secondary measurement to confirm 

the presence of groundwater or hyporheic flow emergence then secondary investigations would not be 

necessary.  

Several water quality parameters differ between groundwater and surface water (e.g., conductivity, 

dissolved oxygen, pH) and have been used as natural tracers to study submerged flow for several decades  

(Anderson 2005; Kalbus et al. 2006; Cardenas 2015). By incorporating one of these measurements into 

the HI-RES TMD, groundwater and hyporheic flow emergence could be identified by cross correlation of 

spatial variability of streambed temperatures and chemistry. As bull trout spawning site selection has been 

frequently linked to groundwater emergence, employing additional measurement techniques to 

differentiate surface waters from groundwater relative to the local geochemical conditions may add 

considerable insight into the spatial analysis observations as a future tool.   
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3.6 Conclusions and Recommendations 

A series of temperature measurements (n > 80,000) were collected using a recently developed high-

resolution thermal array (HI-RES TMD) in two cobble bed rivers of southeastern BC. Spawning surveys 

were completed with the assistance of experienced fisheries biologist during the falls of 2012, 2013, and 

2014 and springs of 2013 and 2014 to identify bull trout and cutthroat trout redds. Isotherm maps were 

created for both study sites to visually analyze the streambed temperature distributions at each site. The 

isotherms did not visually show any positive or negative correlation between the clustering of the 

streambed temperatures and the redd locations. As the dataset presented here provides unprecedented 

resolution and extent of cover of streambed thermal measurements, it is unlikely, based upon the current 

study, that significant spatial correlations between streambed thermal distribution and redds can be 

reliably identified solely with visual analysis. This analysis was also used to determine suitable methods 

of analysis based on the clustering and variance of the data.  

Parameter cross correlation and analysis of the skewness of the temperature distributions showed that 

areas with flow depth less than 0.2 m where affected by atmospheric warming, and streambed 

temperatures at these locations were dominantly controlled by sensible and latent thermal energy flux. A 

series of statistical population comparisons provided strong evidence that redds at Ram Creek were 

dominantly constructed within the coldest sections of the features with the warmest average streambed 

temperature. As much of the study area was determined to have limited localized temperature variance, 

the warmest average features would have the largest thermal contrasts, which would make colder 

locations easier to identify. Therefore, it is possible that spawning sites are not correlated to the warmer 

features, just features where colder areas are more readily experienced by the animals. This correlation 

between colder temperatures and redds was not as evident within the Lizard Creek data, however, this 

may be a product of the smaller number of redds observed and a different species in fish (cutthroat trout) 

which may be seeking out different streambed conditions.  

Morphological binning identified similarities between study sites. Thermal morphological observations 

included: 

1. Pools having slightly warmer average standardized streambed temperature than riffles, 

2. Runs representative of the average reach standardized streambed temperature, 

Similarities within the redd locations and the features were also observed: 

3. Bull trout and cutthroat trout seek the similar average standardized streambed temperatures, 
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It is possible that these trends are applicable to other plane-bed, cobble/gravel systems, however, further 

monitoring of more sites would be necessary to confirm the patterns.  

It was unexpected that riffles would have the coldest average temperatures amongst the features as 

parameter cross correlation indicated that shallower flows have warmer temperatures, and riffles are 

characteristic of having low flow. Therefore, this would indicate that there are other factors (besides flow 

depth), that reduce thermal capacity of the streambed at the riffles. Riffles commonly represent the 

coarsest fraction of the channel bed material, which would represent lower thermal capacity within the 

study reach. Additionally, hyporheic flow emergence has commonly identified within the downstream 

extents of riffles, therefore, it is plausible that groundwater and hyporheic advection energy might be 

reducing the streambed temperatures within the study reaches. Groundwater or hyporheic exchange was 

not quantified during this investigation and therefore cannot be explicitly linked to the thermal controls.  

SAC analysis coupled with the redd proximity metric determined that redds with the highest ρA, ρ or ρR 

were correlated to cold spots within Ram Creek study area. However, redds with significant correlation to 

cold spots represent only 16% of redds observed within the study reach, indicating that most redds were 

not correlated to cold spots. It is not possible to know whether site selection preference identified here is 

directly related to cold spots or to other parameters causing their occurrence (e.g., groundwater 

emergence). However, it is not expected that the remaining redds are randomly located within the 

channel, and secondary or tertiary spawning site selection characteristics might be correlated to a larger 

percentage of the surveyed redds. Correlations to other information collected during field investigations 

(e.g., grain size distributions, woody debris, and vegetation within the channel) might provide insight to 

secondary spawning site selection preferences. Further SAC analysis of this dataset might provide further 

insight into spawning habitat selection. 

The spatial analysis conducted to correlate cold spots and redds was only possible because of the extent 

and resolution of the field measured data. The sub-meter resolution of the data, covering several 

sequential morphological features, was able to convey the variance of streambed temperatures, define 

morphological thermal trends and isolate areas of significantly different temperatures. The HI-RES TMD 

system employed here was able to overcome the constraints of previously used streambed temperature 

measurement methods, and with the accompaniment of temperature normalization, provided an 

unprecedented dataset resolution. Implementation of the system on additional spawning rivers will 

provide a stronger foundation for comparison of thermal streambed patterns, which might add insight to 

the effects of morphology on the controls of thermal distribution of the streambed. 
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Conclusions 

A series of temperature measurements (n > 80,000) were collected using a recently developed high-

resolution thermal array (HI-RES TMD) in two cobble bed rivers of southeastern BC. Spawning surveys 

were completed with the assistance of experienced fisheries biologist during the falls of 2012, 2013, and 

2014 and springs of 2013 and 2014 to identify bull trout and cutthroat trout redds. The HI-RES TMD 

system was developed to sample streambed interface temperatures at high resolution. The equipment was 

employed during low flow conditions to sample multiple morphologic units at unprecedented resolution. 

Being that the equipment deployment non-invasive, no negative impacts to aquatic habitat occurred as a 

result of the sampling method. 

Isotherm maps were created for both study sites to visually analyze the streambed temperature 

distributions at each site. A visual analysis of the isotherms did not show any positive or negative 

correlation between the clustering of the streambed temperatures and the redd locations. However, this 

may be due to the unprecedented resolution and extent of cover of streambed thermal measurements.  

Most of the redds at Ram Creek were constructed within the coldest spots of features characterized by the 

warmest average streambed temperature. As much of the study area was determined to have limited 

localized temperature variance, the warmest average features would have the largest thermal contrasts, 

which would make colder spots located within them easier to identify by salmonids. This was not as 

evident with the Lizard Creek data, although this may be caused by the smaller number of redds observed 

(15 verses 103) or by the different species of fish encountered there (cutthroat trout vs bull trout). 

Furthermore bull trout and cutthroat trout seek similar average standardized streambed temperatures and 

seek spawning areas with temperature distributions. Nevertheless, they avoid spawning on riffles.  

SAC and redd proximity metric analysis determined that redds with the highest density, (annual and 

cumulative) and repeatability were correlated to cold spots within Ram Creek study area. Redds with 

significant correlation to cold spots represent only 16% of redds observed within the study reach. Thus, a 

larger percentage of the surveyed redds might be correlated to secondary or tertiary spawning site 

selection characteristics. Correlations to other information collected during field investigations (e.g., grain 

size distributions, woody debris, and vegetation within the channel) might provide insight to secondary 

spawning site selection preferences. 

Data collected by HI-RES TMD was also analyzed through morphological binning. It was found that 

pools are slightly warmer than riffles and that runs have similar streambed temperature than the average 
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of the whole reach. Shallow areas (less than 0.2 m depth) were found to be affected by atmospheric 

warming through a parameter cross correlation and analysis of the skewness of the temperature 

distributions. Therefore, as riffles have shallow depths, especially at low flow, it was unexpected that they 

would have the coldest average temperatures amongst the features. This would indicate that there are 

other factors, affecting streambed temperatures on riffles. Coarse material, found on riffles and not in 

pools has lower thermal capacity. Furthermore, it is possible that hyporheic flow emergence, commonly 

identified within the downstream extents of riffles, was occurring. Unfortunately, groundwater or 

hyporheic exchange was not quantified during this investigation and therefore cannot be explicitly linked 

to the thermal controls. It is possible that these trends are applicable to other plane-bed, cobble/gravel 

systems; however, further monitoring of more sites would be necessary to confirm the patterns.  

On a final note, all the spatial analyses and temperature mapping presented in this document were only 

possible because of the extent and resolution of the field measured data. The HI-RES TMD system was 

designed to overcome the constraints of previously used streambed temperature measurement methods. 

The sub-meter resolution of the data and the post-processing techniques adopted were able to portray the 

variance of streambed temperatures, define morphological thermal trends and isolate areas of significantly 

different temperatures. Implementation of the HI-RES TMD on other watercourses will provide a stronger 

foundation for comparison of thermal streambed patterns, based on morphological features, grain size 

distribution, flow depth or other factors.  
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Appendix A: Temperature Probe Calibration and Validation Curves 
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Figure A. 1: Calibration curves for all 32 temperature probe within the HI-RES TMD, and the 

surface water control probe (labelled Probe 33) 
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Figure A. 2: Validation curves for all 32 temperature probe within the HI-RES TMD, and the surface 

water control probe (labelled Probe 33) 
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Appendix B: Redd Survey Counts 
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Table B. 1: Summary of redds observed on Ram Creek 

Featurea 
Redd Counts 

2012 2013 2014 TOTAL 

Run 1 0 5 4 9 

Pool 1 0 2 8b 10 

Riffle 1 0 0 0 0 

Run 2 10 0 4 14 

Riffle 2 0 0 0 0 

Pool 2 0 1 6c 7 

Riffle 3 0 0 0 0 

Run 3 0 6 7 13 

Pool 3 0 2 3 5 

Riffle 8 0 2 0 2 

Pool 6  0 0 0 0 

Riffle 7 0 0 2d 2 

Run 5 0 0 0 0 

Pool 7 0 0 0 0 

Run 6  0 1 1 2 

Pool 4 0 3 2 5 

Riffle 6 0 0 0 0 

Run 4 0 0 0 0 

Riffle 5 0 0 0 0 

Pool 5e 11 3 5 19 

Run 7 0 1 0 1 

Riffle 4 0 5 0 5 

Run 8 10 15f 3 28 

TOTAL 31 46 45 122 
NOTES: 

a. Features listed from upstream extent of the reach to the downstream extent. Indented 

feature represent by-pass channels 

b. Area of spawning interest (AOI) represent a collection of redds that can’t be 

differentiated because too many redds on top of one another. This AOI had 

approximately 7 redds and one other redd was identified within the feature. 

c. One AOI with 4 redds and 2 separate redds within the feature 

d. Cutthroat trout redds 

e. Section of channel that migrated. In 2012, 9 redds are in the old channel, in 2013 3 redds 

in the old channel. 

f. One AOI with 11 redds and 4 separate redds within the feature 
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Table B. 2: Summary of redds observed on Lizard Creek 

Featurea 
Redd Counts 

2013 2014 TOTAL 

Pool 1 0 0 0 

Riffle 1 0 0 0 

Run 1 0 0 0 

Riffle 3  0 0 0 

Run 3 0 0 0 

Riffle 4 0 0 0 

Run 4  0 0 0 

Riffle 2 0 0 0 

Run 2 3 1 4 

Riffle 6 0 0 0 

Pool 2 0 0 0 

Riffle 7 0 0 0 

Run 5 0 0 0 

Pool 3 2 0 2 

Run 6 0 0 0 

Pool 4 0 2 2 

Run 7 0 0 0 

Riffle 8 0 0 0 

Pool 5 1 2 3 

Riffle 9 0 0 0 

Run 8 1 3 4 

TOTAL 7 8 15 

NOTES: 

a. Features listed from upstream extent of the reach to the downstream 

extent. Indented feature represent by-pass channels 
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Glossary 

Alluvial Systems River system in which the material constituting bed, banks and surroundings 

(valley side slopes, floodplain) is mobile sediment and soil 

Bankfull depth Distance from the lowest point in the cross-section and the top of the bank, 

measured vertically (perpendicularly from the channel bed) 

Bankfull width Width of the river measured from right to left bank, perpendicular to the flow 

direction 

Cage One single set of measurements completed with the HI-RES TMD, includes 32 

streambed temperature measurements, 1 surface water temperature measurement 

(“control probe”) and 1 pyranometer measurement 

Cold spot An area determined to be statistically significantly colder than its surroundings 

D10 10th percentile of the grain size distribution curve representing the grain size for 

which 10% of the sample is smaller (10% of the sample is retained by the sieve) 

D50 Median of the grain size distribution curve representing the grain size for which 

50% of the sample is smaller (50% of the sample is retained by the sieve). 

D90 90th percentile of the grain size distribution curve representing the grain size for 

which 90% of the sample is smaller (90% of the sample is retained by the sieve) 

Feature scaling Data normalization done to reduce the range of values in the dataset 

Glides Downstream part of a pool, usually joining with a riffle and characterized by a 

negative (adverse, uphill) slope. 

Grain size 

distribution 

curve 

Graphical representation of the mass distribution of the particles sizes of the bed 

material. 

Hot spot An area determined to be statistically significantly warmer than its surroundings 

Hyporheic flow Subsurface (beneath the channel bed) flow occurring between water surface flow 

and the water table. 

Isotherms Thermal spatial contour map. 

Left bank The bank on the left side of the channel, defined as facing the downstream flow 

direction. 

Longitudinal 

direction 

Direction of flow in the river 

Low-Flow The lowest discharges (in magnitude) of the year. For Ram and Lizard creek this 
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generally occurs in the winter and summer months 

Morphological 

feature 

A pool, a riffle or a run 

Non-invasive Any sampling technique not involving removal or movement of bed material from 

its original location. 

Normalization Process of removing underlying trends in the dataset 

Pool Deepest section of the river usually located between two riffles and characterized 

by flat water surface. Generally has finer sediment than riffles 

Reach Extended stretch along a river. Its boundaries can be arbitrarily defined although 

they usually coincide with specific morphological features. 

Redd Spawning site nest created by salmonids. It is created by the female salmonid 

laying on her side and digging a pit into the streambed.  

Riffle Shallow, fast water section of the river, characterized by larger sediments and 

steeper water surface and bed slope. 

Right bank The bank on the right side of the channel, defined as facing the downstream flow 

direction. 

Riparian cover Interface between land and a watercourse, often constituted by plants, it may cause 

localized shading on the channel bed 

Run Sections of the river slightly deeper and milder in depth than riffles but still 

characterized by fairly fast flow of water 

Salmonids Also known as salmonidae, family of ray finned fish of which trout, char and 

salmon are part of. 

Significant Spots General definition of a cold or hot spot 

Sinuosity Ratio of the river length divided by the valley length in which the latter is a 

straight distance from the upstream end to the downstream end of the reach. 

Standardized 

temperature 

Process creating a unitless temperature parameter 

Streambed The bottom of the river which creates the interface between the surface water and 

land. 

Sub-reach Subsection of a reach, in this document it generally regards a single pool-riffle 

sequence 

Thermal capacity Ratio of heat added to (or removed from) an object divided by the resulting 

temperature change. Generally measured in Joule per Kelvin. 

Thalweg Longitudinal path of the lowest points along the entire length of a streambed, 
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defining its deepest channel. 

Thiessen polygon  Partitioning of a plane surface in sub-areas based on the relative distance between 

points found on the surface itself. 

Transverse 

direction 

Direction perpendicular to the flow in the river (cross-sectional) 

 

 


