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Abstract

Many chemical compounds used by the energy and agricultural industries introduce large

amounts of arsenic into the environment. As this poses serious health and environmental risks,

designing safe and effective decontaminating agents remains an active research area. To do

this, it is crucial to understand the chemical kinetics between arsenic and certain geochemicals

at the molecular level; of particular interest are the reaction rate constants which describe

the behaviour and properties of arsenic in relation to different chemicals. These rates can be

inferred from a time series of individual concentration measures of all constituent chemicals in

a mixture. However, current laboratory technology cannot produce such measures but instead

produces time series of infrared spectra, from which individual chemical concentrations must

be deconvoluted. Existing techniques to analyze such data focus on minimizing modeling

assumptions and point estimation. In this thesis, we propose a fully specified parametric

statistical model directly relating the rate constants to the spectra. This model drastically

reduces the number of free parameters, offers statistically principled uncertainty estimates

for parameters of interest and provides the added flexibility of incorporating important prior

information, which current methodologies do not seem to account for. We further apply the

model to experimental data in order to compare two plausible models of arsenic neutralization.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Arsenic is an element naturally found in minerals and rocks all around the world. In addition

to its natural formations, strongly contributing to its presence are the biogeochemical pro-

cesses provoked by industry such as biological pretreatment of solid waste, coal combustion

and the use of herbicides and pesticides [1, 2]. As the increased presence of arsenic poses se-

rious health and environmental risks [39] and thus challenges for growing industry, designing

safe and effective decontaminating agents remains an active research area.

In order to design such decontaminating agents it is important to understand the chem-

ical kinetics between arsenic and different geochemicals. In this thesis, we focus on one

particular study conducted by a chemistry research group led by Dr. Hind A. Al-Abadleh

at Wilfrid Laurier University. This study seeks to understand the chemical reactions that

occur between Dimethylarsinic acid (DMA; otherwise denoted as species S1) and iron oxide.

The group has published a number of experimental studies using infrared spectroscopy com-

plemented with computational chemistry results [33, 34, 35, 36, 37]; this body of published
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work revealed that the surface chemistry of DMA proceeds by forming three types of surface

species with iron oxide (species S2, S3, S4; details in 2.2). A system of Ordinary Differential

Equations (ODEs) describes the concentrations Xt = (X1t, X2t, X3t, X4t) of each species at

time t as a function of unknown reaction rate constants, κ, and initial concentrations, X0

(details in 2.1). There is a considerable body of statistical literature on estimating ODE

parameters from fully or partially observed components of Xt at discrete time points [31, 32].

However, our data consists of a sequence of infrared spectra; the study of the interaction

between molecules and the infrared region of the electromagnetic spectrum.

In particular, our data represents the infrared photon absorption measures of a chemical

mixture (details in 3.2) over experimental wavenumbers i ∈ {1, 2, . . . , n} across experimental

time points t ∈ {1, 2, . . . , T}. By the Beer-Lambert Law [3], the absorption At(ωi) of a mix-

ture at time t for a particular infrared wavenumber ωi is At(ωi) =
∑4
j=2Ajt(ωi) where Ajt(ωi)

is the wavenumber-specific absorption of one mole of each individual species j = 2, 3, 4. The

challenge is to disentangle the ODE parameters (κ,X0) from the infrared spectra; in partic-

ular our parameters of interest are the reaction rate constants κ.

To currently do this, the Multivariate Curve Resolution (MCR) [6, 7] method is widely

used in chemometrics. MCR aims to reconstruct the absorption data reasonably well by an

additive bilinear function; a linear combination of spectral components and concentration

profiles of constituent species in the mixture [6, 8]. In particular, given an experimental

absorption data matrix, Ã ∈ RT×n, with rows corresponding to experimental time points

t ∈ {1, 2, . . . , T} and columns corresponding to experimental wavenumbers i ∈ {1, 2, . . . , n},

MCR decomposes the data matrix as the product of two unknown matrices plus error [9]

Ã = CS> + E

where C ∈ RT×k is a matrix of concentration profiles of the k constituent species in the

mixture, S> ∈ Rk×n is a matrix of pure spectral profiles, both of which are estimated from

the data, and E ∈ RT×n is the residual error matrix. The integer k is either known a priori or
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estimated using a suitable data reduction technique such as Principal Component Analysis

(PCA) or Independent Component Analysis (ICA) [6]. Further, the component matrices are

often estimated by an Alternating Least Squares (ALS) algorithm [10] subject to chemical

plausibility enforcing constraints such as non-negativity of concentrations.

argmin
C

∥∥∥ÂPCA −CŜ>
∥∥∥� argmin

S>

∥∥∥ÂPCA − ĈS>
∥∥∥

By and large, the literature and software on this topic has focused extensively on minimizing

assumptions and constraints on the theoretical spectra A and error distribution, and perhaps

consequently, on point estimation of reaction rate constants.

Although this method is widely used, it has some disadvantages. The first disadvantage

is the rotational ambiguity problem which leads to non uniqueness of solutions for C,S>

in the optimization problem [11, 12]. The second disadvantage is that due to minimal as-

sumptions, C,S> are often model free and as such the method optimizes over a parameter

space which scales to the size of the dataset, thus optimizing over a k × (T + n) - dimen-

sional parameter space may be problematic for large T, n, k. Moreover, the non-parametric

nature of MCR limits it to offering only point estimates of individual contributions but does

not offer parametric interpretations of the Infrared Spectroscopy process nor any statistical

information for related parameters of interest.

1.2 Contribution

Due to instrumental and methodological limitations, the challenge is to determine 1) the

set of reaction channels governing the chemical system of interest and 2) the corresponding

reaction rate constants. The primary contribution in this thesis is the proposal of a model

that relates the chemical reaction rate constants directly to the Infrared Spectroscopy process.

In particular, we embed the basic bilinear equation underpinning MCR into a fully specified,

parametric statistical model of the spectra of each species, thereby reducing the number

3



of free parameters in the model. Bayesian Inference is adopted for parameter estimations

which provide statistically principled uncertainty estimates for the parameters of interest

and allows for the incorporation of important prior information such as relative magnitudes

between rate constants and final concentrations. As a secondary contribution, we apply our

proposed model to the experimental data to determine a set of reaction channels that are

likely to be governing the chemical system of interest.

1.3 Outline

We first describe the chemical system (sometimes referred to as mixture) being studied and

define the candidate reaction systems (with corresponding ODE formulations) which are

strongly believed to govern the mixture. We then explain the challenges of inferring rate

constants from currently available concentration measures and discuss alternative data used

for inference which comprises of an experimental set and a theoretical set. We then discuss

the proposed parametric statistical model in detailed layers, followed by a discussion of the

Bayesian inference approach used for parameter estimations of the proposed model. After

illustrating a simulation study, we apply the model to real data. In particular, the model

is applied under two separate sets of reaction assumptions that are believed to govern the

system. After both models have been estimated from the experimental data, we compare

both model fits and discuss which reaction model is more plausible for the mixture, given the

data.

4



Chapter 2

Chemical Framework

2.1 Review of Chemical ODE Systems

Consider some chemical system composed of d chemical species (S1, S2, . . . , Sd) governed by

some set of m reaction channels between the constituent species, each occurring at a partic-

ular reaction rate constant (κ1, κ2, . . . , κm). Assuming that the mixture is well stirred (all

species are uniformly distributed within the mixture), a system of d ordinary differential

equations (ODEs) parameterized by m reaction rates can be obtained from these reaction

channels to describe the rate of change of the concentration of each species in the chemi-

cal system over time (X1t, X2t, . . . , Xdt). Moreover, given the initial concentrations of all d

species at t = 0, the time evolution of all d concentrations (hence chemical presence of each

species) is completely determined [13].

As an example, the arsenic system studied (discussed in more detail in Section 2.2) is com-

posed of four species, (S1, S2, S3, S4). Based on computational chemistry studies, it is strongly

believed that the system is governed by one of two candidate sets of reactions. One of them
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consists of four reaction channels with corresponding reaction rate constants:

R1 : S1
κ12−−→ S2

R2 : S1
κ13−−→ S3

R3 : S2
κ23−−→ S3

R4 : S3
κ34−−→ S4

Each reaction corresponds to a molecular mechanism by which the reactant species (LHS)

undergo a reaction to produce the resulting intermediates or products (RHS) [14]. As an

example, R1 corresponds to a depletion of 1 S1 molecule and addition of 1 S2 molecule at a

rate proportional (by κ12) to the concentration of S1.

To construct the ODE system, we sum the contribution of each species at each reaction

separately for any given time t.

i S1. By R1, S1 has a net loss of 1 unit at rate proportional (by κ12) to the concentration

(at time t) of the species that it requires to deplete S1; −κ12X1t. Similarly by R2, S1

has a net loss of 1 unit at rate proportional (by κ13) to the concentration (at time t) of

the species that it requires to deplete S1; −κ13X1t. Thus, the rate of change of total S1

concentration at any given time is described as

d

dt
X1t = −(κ12 + κ13)X1t

ii S2. By R1, S2 has a net gain of 1 unit at a rate proportional (by κ12) to the concentration

of the species that it requires to create S2; κ12X1t. By R3, S2 has a net loss of 1 unit at

a rate proportional to (by κ23) the concentration of the species it requires to deplete S2;

−κ23X2t. Thus, the rate of change of S2 concentration at any given time is described as

d

dt
X2t = κ12X1t − κ23X2t

iii S3. By R2, S3 has a net gain of 1 unit at a rate proportional (by κ13) to the concentration

of the species that it requires to create S3; κ13X1t. By R3, S3 has a net gain of 1 unit at
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a rate proportional (by κ23) to the concentration of the species that it requires to create

S3; κ23X2t. By R4, S3 has a net loss of 1 unit at a rate proportional (by κ34) to the

concentration of the species that it requires to deplete S3; −κ34X3t. Thus, the rate of

change of S3 concentration at any given time is described as

d

dt
X3t = κ13X1t + κ23X2t − κ34X3t

iv S4. By R4, S4 has a net gain of 1 unit at a rate proportional (by κ34) to the concentra-

tion of the species that it requires to create it; κ34X3t. Thus, the rate of change of S4

concentration at any given time is described as

d

dt
X4t = κ34X3t

Combining the rates of change in the concentrations of each species results in the following

ODE system:

d

dt
X1t = −(κ12 + κ13)X1t

d

dt
X2t = κ12X1t − κ23X2t

d

dt
X3t = κ13X1t + κ23X2t − κ34X3t

d

dt
X4t = κ34X3t

The solution (concentration quantities) to chemical ODE systems at any given time t > 0,

{X1t, X2t, . . . , Xdt}Tt=1, requires integrating the system. In the general case when the solution

is analytically unattainable, it can instead be solved numerically; the Runge-Kutta methods

are widely used for numerical integration of chemical ODEs [15].

2.2 Description of Chemical Experiment

An experiment is controlled under which the behaviour between DMA (species S1) and a

fixed iron-oxide surface is studied. At t = 0, the system is initiated with some quantity

7



of S1 and three resulting chemical bonds have been verified to occur between the arsenic

and the surface. At t = 0, the instance arsenic has been initialized, no arsenic molecule

has yet come into contact with the surface thus no bonds have yet been formed. As time

progresses, higher order bonds are formed: weak bonds, single bonds, double bonds. The

four aforementioned bond states are referred to as species S1, S2, S3, S4 respectively and we

have verified that the system dynamics are strongly believed to be governed by one of the

following two candidate reaction systems. Each system describes a set of reaction channels

with corresponding reaction rate constant vectors κ:

System : 4R

R1 : S1
κ12−−→ S2

R2 : S1
κ13−−→ S3

R3 : S2
κ23−−→ S3

R4 : S3
κ34−−→ S4

(2.1)

System : 3R

R1 : S1
κ12−−→ S2

R2 : S2
κ23−−→ S3

R3 : S3
κ34−−→ S4

(2.2)

As the 4 reaction system is more general than the 3 reaction system, we will refer to the

former system throughout the remainder of the paper unless stated otherwise.

Throughout the experiment, the interest lies in studying the rate constants at which the

molecule reacts with the fixed chemical surface. The nature of the reactions are described as

follows:

R1 : S1 (DMA molecule which has not bonded yet) forms a weak bond with the chemi-

8



cal surface. A weak bond results when the attraction between the molecule and the surface

is strong enough to hold but no chemical connection has been made. The formation of the

weak bond results in forming outersphere surface species at rate κ12, which is referred to as

S2.

R2 : S1 directly forms a single chemical bond with the chemical surface. A single bond results

when the attraction between the molecule and the surface is strong enough to form a connec-

tion between one of the molecule As−O bonds and the chemical surface. The formation of

the single bond results in forming a monodentate surface species at rate κ13, which is referred

to as S3.

R3 : The outersphere surface species already in a weak bond state transitions into a mon-

odentate surface species with a single bond at rate κ23.

R4 : The monodentate surface species already in a single bond state transitions into a biden-

tate surface species with double bonds with the surface through the second As−O group of

DMA. The formation of S4 proceeds at rate κ34.

The strength of each bond is significantly greater than any preceding bond (S1 ≺ S2 ≺

S3 ≺ S4). As such it is assumed that no backward reactions occur (Si 9 Si′ ;∀i′ < i). In

particular, the above reaction channels are chemically referred to as first-order forward reac-

tions; each reaction results in a loss of one Si′ bond and a gain of one Si bond for i > i′ [16].

Figure 2.1 illustrates the four reaction process.
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Figure 2.1: Sequence of 4 Reaction System

We assume that the mixture is well stirred. As discussed in Section 1.3, inspecting the above

reaction channels enables one to describe the rate of change in concentration per unit time

of each species in the system by the following set of first order linear Ordinary Differential

Equations:

System : 4R
d

dt
X1t =− (κ12 + κ13)X1t

d

dt
X2t =κ12X1t − κ23X2t

d

dt
X3t =κ13X1t + κ23X2t − κ34X3t

d

dt
X4t =κ34X3t

(2.3)

System : 3R
d

dt
X1t =− κ12X1t

d

dt
X2t =κ12X1t − κ23X2t

d

dt
X3t =κ23X2t − κ34X3t

d

dt
X4t =κ34X3t

(2.4)
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Given reaction rates κ = (κ12, κ13, κ23, κ34) and initial concentrationsX0 = (X1,0, X2,0, X3,0, X4,0),

the concentration solution of the ODE system, Xt = {X1,t, X2,t, X3,t, X4,t}, is completely

determined for any t > 0. Alternatively, Xt is interpreted to be the true model based

concentration levels of {S1, S2, S3, S4} at time t, given (κ,X0). Under the framework dis-

cussed at the beginning of the section, X1,0 > 0 is the true initial concentration of S1 and

X2,0 = X3,0 = X4,0 = 0 as no bonds have formed yet.
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Chapter 3

Data

3.1 Limitations of Aggregate Concentration Data

As chemical reaction rate constants directly imply relative changes in chemical quantities

with respect to time, they can be directly estimated from data which measures the time evo-

lution chemical concentrations of all individual species in the system; {Y1t, Y2t, Y3t, Y4t}Tt=1 (Yt
are the noisy concentrations observed at time t from experimentation). However, limitations

in laboratory technology enable only measurements of aggregate concentrations. Since the

Beer-Lambert law states that absorption is proportional to concentration, the aggregate con-

centration is approximated from experimental spectral absorption data (details discussed in

3.2) and only aggregated chemical concentration data is attainable {YAt = Y2t+Y3t+Y4t}Tt=1.

Figure 3.1 illustrates the observed aggregated concentrations obtained from experimentation

(with error bars) and Figure 3.2 illustrates the simulation of plausible concentration levels of

each species that the aggregate curve may be composed of.
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Figure 3.1: Experimental Aggregate Concentrations

Figure 3.2: Simulated Individual Concentrations
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It turns out that the aggregate data, {YAt}Tt=1, is insufficient to infer κ = (κ12, κ13, κ23, κ34)

[11]. To understand this, we define XAt = X2t +X3t +X4t which simplifies the ODE system

(3) to (See Appendix A for derivation):

d

dt
X1t =− (κ12 + κ13)X1t

d

dt
XAt =(κ12 + κ13)X1t

(3.1)

in turn reducing the corresponding reaction channels (1) to

S1
κ12+κ13−−−−−→ SA (3.2)

If we choose some κ′ = (κ′12, κ
′
13, κ

′
23, κ

′
34) such that κ′12 + κ′13 = η for some fixed aggregate

reaction rate constant η ∈ R+, we can see, by inspection of (5), that the values of κ′23, κ
′
34

are completely arbitrary and do not effect the evolution of XAt. We can further choose

κ′′ = (κ′′12, κ
′′
13, κ

′′
23, κ

′′
34) such that κ′′12 + κ′′13 = η and again the evolution of XAt remains

unchanged. This suggests that there exists an uncountably infinite set of feasible values for

κ that can govern the evolution of the system for some fixed aggregate reaction rate constant

η ∈ R+, and thus the individual reaction rate constants, κ, cannot be uniquely determined

given only the aggregated concentration measures. As such, we require additional data for

inference.

3.2 Infrared Spectroscopy

As direct aggregate concentration measures from experimental spectral data is insufficient to

infer the parameters of interest, chemists turn instead to theoretical and empirical evidence

to understand the kinetics. The theoretical component refers to computational chemistry

where surface reactions are simulated using model cluster chemicals that mimic the real

ones used in the lab. The empirical component refers to experimentation on a chemical

system and collecting Infrared (IR) Spectroscopy data. IR Spectroscopy is the study of

interactions between molecules and the Infrared region of the electromagnetic spectrum [18].
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In particular, the interactions are measured by analyzing the patterns in which a molecule

vibrates in response to the IR light [4, 5], which chemically implies the IR photon absorption

by that molecule.

3.2.1 Absorption Process

The intensity at which a chemical bond absorbs IR light partly depends on the vibrational

frequency of that bond. Two primary modes of vibrations at which IR absorption occurs and

are commonly analyzed for kinetic data are stretching and bending of the bond. Recalling

that S2, S3, S4 have weak, single, and double bonds, respectively, between the DMA molecule

and the iron oxide surface, each species has its own characteristic As−O vibrational pattern

in the surface DMA. The aggregate absorptions of SA = S2 + S3 + S4 is measured by the

IR spectrometer, where a beam of IR light of a range of wavenumbers (400 − 4000cm−1) is

applied to the sample and the IR spectrometer measures the intensities at which SA absorbs

photons across that entire range at predetermined time points after initiation.

In a typical experiment using ATR-FTIR (Attenuated Total Reflectance - Fourier Transform

Infrared Spectroscopy), the flow cell contains the iron oxide film and H2O as the background

solution. The IR intensity of this system, in the absence of DMA (S1), is recorded and

referred to as the "reference spectrum, IR". Then, a solution of known amount of (S1) is

introduced to the flow cell and the IR spectrometer collects spectra as a function of flow time

of S1. The concentration of S1 is chosen such that the intensity of IR absorptions is very

low and undetectable compared to S2, S3, S4. Hence, throughout the experiment while S1

is flowing across the iron oxide film, IR intensities of only SA = S2 + S3 + S4 are recorded

at given times and referred to as the "sample spectrum, IS". The final absorption quantity

for all wavenumbers ωi, i ∈ {1, 2, . . . , n} at times t ∈ {1, 2, . . . , T}, Ãit, is calculated as,

Ãit = log
(
IR
IS

)
.
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3.2.2 Theoretical and Absorbance Spectra

Computational chemistry methods are commonly used in geochemical research and are based

on theoretical understanding of the nature of chemical bonds. In general, every chemical

species has unique properties which distinguish it from other species. One distinguishing fac-

tor pertains to the absorption patterns a species has with respect to particular IR frequencies

(expressed in wavenumbers). The unique molecular structure of chemical species causes it

to absorb significant amounts of IR photons of particular wavenumbers and not so much of

others. The wavenumbers at which the species absorbs significantly are referred to as the

“theoretical wavenumbers” and the amounts absorbed at those wavenumbers are referred to

as “theoretical intensities”. MCR literature does not incorporate this theoretical information

but is reflected in our model (details in section 4).

For the system under study, computational chemistry simulations provide a total of 17 the-

oretical wavenumber/intensity [35] pairs which correspond to the system: 8 belong to S2, 5

belong to S3 and 4 belong to S4 (we note these as |S2| = 8, |S3| = 5, |S4| = 4). Figure 3.3

illustrates the locations of the 17 frequencies with heights indicating their relative absorption

intensities [35].
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Figure 3.3: Theoretical Data

Further, eight experiments are conducted which we assume are independent of one an-

other. For each experiment l ∈ {1, 2, . . . , 8}, a range of 86 equally spaced IR wavenum-

bers (671.12cm−1 − 998.96cm−1) are applied to the combined SA mixture over a very short

time interval, each at nine different time points t = {1, 2, 3, 4, 5, 10, 15, 20, 85} (mins); we

assume that at any given t these wavenumbers are applied instantaneously given the speed

at which they are applied. The resulting data is a sequence of experimental absorption mea-

sures {Ãilt}∀ilt. Figure 3.4 illustrates the eight experimental absorption measures for the full

wavenumber range across all nine time points, and Figure 3.5 illustrates the average at each

time.
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Figure 3.4: Experimental Data

18



Figure 3.5: Averaged Experimental Data

The experimental absorption curves can be thought of as a snapshot of the system at one

given point in time.
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Chapter 4

Model

Recall the current MCR methodology which decomposes the absorption data into the follow-

ing matrix-wise bilinear function

Ã = CS> + E

Alternatively, each absorption entry can be expressed as (k= number of species)

Ãit =
k∑
j=1

ctjsji + εit ∀i,∀t

where C,S> are estimated via alternating minimizations of some cost function, and error

distribution assumptions for E are relaxed almost entirely. Figure 4.1 illustrates how the

bilinear form establishes the link between the IR absorption process and the concentration

profiles which in turn imply ODE parameters. The green, blue, red areas underneath the

curves correspond to the absorption contributions of each species and the purple expressions

represent the pure spectral components of each species at time t across all n wavenumbers.
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Figure 4.1: Link between IR Absorption and individual concentrations

It is worth noting however, that when the integration of the chemical ODE system can be

expressed analytically, some MCR methods reduce the number of free parameters in the

bilinear function by expressing C in closed form. For example, if the solution to the ODE

can be expressed by some function f : R 7→ Rk, then the concentration of all j = 1, . . . , k

species is completely determined for all t > 0 and MCR formulates C ∈ RT×k as [38]

C =


f1(1;κ,X0) . . . fk(1;κ,X0)

... fj(t;κ,X0)
...

f1(T ;κ,X0) . . . fk(T ;κ,X0)


However as mentioned in 1.2, no parametric forms are given to the pure spectral components

S> ∈ Rk×n.

We discuss a model which directly related the concentration profiles to the rate constants, κ.

In addition, the model utilizes the theoretical data obtained from computational chemistry

simulations (discussed in 3.2.2) to parameterize the pure spectral components of each species.
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4.1 Infrared Absorption Model

Recall the set of 17 paired theoretical wavenumbers, µ, and relative absorptions, γ, cor-

responding to each species; {|S2| , |S3| , |S4|} = {8, 5, 4}. Each pair corresponds to an IR

wavenumber µ which, when applied to that bond, causes a significantly intense bond vi-

bration (hence photon absorption); the absorption at that wavenumber is quantified by its

respective theoretical absorption value γ.

Given this reaction structure between molecular bonds and the IR spectrum, for each theoret-

ical component k ∈ {1, . . . , |Sj |} corresponding to species j considered separately, we would

expect its true absorption to peak at that wavenumber µjk and diffuse at wavenumbers further

away. For each theoretical component, we consider modeling the true absorption characteris-

tic Ajk at any wavenumber ω, as a normalized Gaussian density function φ centered around

that theoretical wavenumber µjk, with some scale parameter σjk: (we say normalized because∫
φ(ω)dω = 1)

Ajk(ω) = φ(ω;µjk, σjk)

k ∈ {1, 2, . . . , |Sj | ; j = 2, 3, 4}

We generalize the absorption characteristic at wavenumber ω by species j from just one

of its theoretical components, to all of its components k = 1, 2, . . . , |Sj |. We take a linear

combination of its |Sj | density components; each component is weighted by its corresponding

theoretical absorption intensity γjk. The absorption characteristic of only species j is modeled

as a normalized mixture Gaussian density function of the form: (we say normalized because

γ is normalized such that
∑
k γjk = 1 =⇒

∫
Aj(ω)dω = 1)

Aj(ω) =
|Sj |∑
k=1

γjkφ(ω;µjk, σjk) ∀j

Note that so far (i) our absorption function has not been time dependent; we always assume

the theoretical data to be independent of time but rather dependent on the chemical char-

acteristics of the bond and (ii) we have modeled the absorption with a normalized density
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mixture function which does not yet reflect the area underneath the curve.

We generalize further to model the true aggregate absorption at wavenumber ω at time

t, specifying a linear combination of the three separate absorption characteristics of each

species obtained above. Like the MCR, we weight each species spectral component (the mix-

ture Gaussian density function Aj), by a time dependent absorption contribution of species

j at time t, αjt. We obtain a linear combination of three mixture Gaussian density functions

to describe the true aggregate absorption of the form:

At(ω) = βt +
4∑
j=2

αjt

|Sj |∑
k=1

γjkφ(ω;µjk, σjk) ∀t

Introducing (α2t, α3t, α4t) addresses (i) by making the function time dependent and also ad-

dresses (ii) by allowing the area underneath the absorption curve to be described by αjt, thus

obeying the Beer-Lambert Law. (Mathematically,
∫
At(ω)dω = α2t + α3t + α4t for βt = 0).

The unknown parameters defining the absorption function so far are related only to the

IR absorption process; (β, σ, α). βt is an intercept term that accounts for shifts along the

absorption axis that are unrelated to the real absorption process, such as experimental error

or recording error; such an intercept adds the flexibility of accounting for negative absorption

readings in the data. σjk is the scale parameter of theoretical component k corresponding to

bond j and αjt is the absorption contribution of bond j at time t.

To establish the direct link between the IR absorptions, At(ω), and concentration ODE

parameters (κ,X0), recall that αjt is the absorption contribution of species j at time t as

related to the IR absorption measurements. Alternatively, it can be interpreted as the rela-

tive concentration of species j at time t and hence an implied solution to the ODE system

as defined in (3) and (4) where Xjt ∝ αjt (for convenience we refer to α as X, see Appendix

C ii) for some given (κ,X0). As such, to define an absorption function parameterized by

Θ = (κ,X0, β, σ), we require αjt to be expressed in terms of (κ,X0).
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Both ODE systems defined in (3)-(4) are first order linear systems of differential equa-

tions; given reaction rate constants κ = (κ12, κ13, κ23, κ34) and initial concentrations X0 =

(X1,0, X2,0, X3,0, X4,0), the general solution {Xt = (X1t, X2t, X3t, X4t)}∀t to these systems

can be expressed analytically by a function f : R 7→ R4 parameterized only by (κ,X0) (see

Appendix C i for derivation)

Xt = f(t;κ,X0) = QeΛtQ−1X0

where Λ ∈ R4×4 is a diagonal matrix of eigenvalues of Ω (Λqq = λq,Λqp = 0, ∀q 6= p) and

Q ∈ R4×4 is a matrix of eigenvectors of Ω. Both Λ, Q are expressed just in terms of κ (see

Appendix B for analytic forms).

Finally, we can express the true IR absorption function as parameterized by both the IR

Spectroscopy parameters (β, σ) and concentration ODE parameters (κ,X0), obtaining a di-

rect link between the reaction rate constants and the IR absorption process which is of the

form

At(ω) = βt +
4∑
j=2

fj(t;κ,X0)
|Sj |∑
k=1

γjkφ(ω;µjk, σjk) ∀t

In particular, given data of only a finite set of experimental wavenumbers, our true absorption

model over the data becomes

At(ωi) = βt +
4∑
j=2

fj(t;κ,X0)
|Sj |∑
k=1

γjkφ(ωi;µjk, σjk) ∀i,∀t

Note that α is no longer an explicit parameter in the absorption function as it has been

redefined as αt = f(t;κ,X0) to establish the link.

4.2 Statistical Model of Measurement Error

As mentioned in section 2.2.1, the quantity reflecting the number of photons absorbed when

experimental wavenumber ωi is applied at time t is defined as a log-difference, Ãit = log
(
IR
IS

)
.
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We can interpret the transformed experimental absorptions, Ãit, as noisy observed quantities

being generated from some process with mean At(ωi) and variance τ2.

In particular, we consider the additive random measurement error model, Ãit = Ait + εit

(see Appendix F for justification), where

εit
iid∼ N ormal

(
0, τ2

)
∀i,∀t

Thus obtaining the Log-Likelihood function of the form

`(Θ|D) = −nT2 log(2πτ2)− 1
2τ2

n∑
i=1

T∑
t=1

(
Ãit −At(ωi;β, σ, κ,X0)

)2

τ is a nuisance parameter which accounts for experimental errors and uncertainties, machine

noise, as well as other sources of unexplained variances in the IR absorption process.
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Chapter 5

Bayesian Inference

Due to the high dimensionality of the model parameters combined with variabilities in the

data, both simulation studies and real data estimations would suggest not only a highly

multi-modal likelihood surface, but also model sensitivity to different inputs. To increase the

chances of our sampling algorithms exploring chemically plausible surface modes, the chemist

provides sound beliefs regarding certain characteristics of the chemical system a priori which

we incorporate into the model via carefully chosen prior density functions over Θ.

We consider a Bayesian model and specify a posterior distribution p(Θ|D) ∝ L(Θ|D)π(Θ) on

the parameters Θ = (κ,X0, β, σ, τ) given data D = {ωi, Ãit}∀it.
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5.1 Prior on κ

Plausible estimates for κ are provided based on repeated experimentation and other chemical

knowledge:

κ12 : 0.05± 0.01 (5.1)

κ13 : 0.01± 0.01 (5.2)

κ23 : 0.01± 0.01 (5.3)

κ34 : 0.001± 0.0005 (5.4)

Although these reaction rate constants are unattainable and therefore not actually known,

the chemist is nevertheless confident in their proportional relations to one another but less

confident with the scaling at which these estimates have been previously obtained. As such,

we scale the given rate constants (7)-(10) by ζ = 10 (see Appendix D for derivation) which

yields the following adjusted estimates a priori:

κ12 : 0.5± 0.1

κ13 : 0.1± 0.1

κ23 : 0.1± 0.1

κ34 : 0.01± 0.005

We take these as hyper parameters to model the uncertainty of κ under a joint Gaussian

density function

h(κ) =
(
2π |Σκ|

)− 1
2 exp

{
− 1

2
(
κ− µκ

)>
Σ−1
κ

(
κ− µκ

)}
where

µκ =



0.5

0.1

0.1

0.01


,Σκ =



0.12 0 0 0

0 0.12 0 0

0 0 0.12 0

0 0 0 0.0052


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5.2 Prior on α

Recall that αt = f(t;κ,X0) ∈ R4 is the implied concentration of {S1, S2, S3, S4} at time t;

the implied solution to the concentration ODE system. It can be deduced from reactions

(1) that in the long run, conditional on κ > 0, the chemical system will be dominated by

S4 with S1, S2, S3 having been diminished to 0. Although the individual concentrations are

experimentally unattainable at any time, it is strongly believed that there is still a presence

of S2 and S3 at t = 85min. In particular, it is believed that the system is still dominated by

S2 at t = 85min with α2,85 > α3,85 > α4,85 at approximately 70% > 20% > 10% respectively

(note that this assumption implies that S1 has been largely diminished).

As α is not an explicit parameter in the model, we are unable to directly impose a prior

density ρα(α). However, α is expressed as the ODE solution, αt = f(t;κ,X0). As such, we

can impose a prior density over the proportions of f2(85;κ,X0), f3(85;κ,X0), f4(85;κ,X0),

namely, ρα(κ). To reflect these proportions, we impose a joint Gaussian-like density over

these proportions at t = 85min of the form

ρα(κ) =
(
2π |Σα∗ |

)− 1
2 exp

{
− 1

2

(
f∗(κ,X0)
‖f∗(κ,X0)‖1

− µα∗
)>

Σ−1
α∗

(
f∗(κ,X0)
‖f∗(κ,X0)‖1

− µα∗
)}∣∣∣∣∂f∗(κ,X0)

∂κ

∣∣∣∣
= g(κ)

∣∣∣∣∂f∗(κ,X0)
∂κ

∣∣∣∣
where

f∗(κ,X0) =


f2(85;κ,X0)

f3(85;κ,X0)

f4(85;κ,X0)

 , α∗ =


α2,85

α3,85

α4,85

µα∗ =


0.7

0.2

0.1

 ,Σα∗ =


σ2
α2 0 0

0 σ2
α3 0

0 0 σ2
α4


Σα∗ is taken as a tuning hyper parameter and

∣∣∣∣∂f∗(κ,X0)
∂κ

∣∣∣∣ is the determinant of the Jacobian

matrix when applying the change of variables α∗ → κ.
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It is unclear, however, what the structure of such a Jacobian may be given α∗ → κ =⇒

R3 → R4. We instead consider a prior density on the κ parameterized concentrations at

t = 85min of the form

ρα(κ) ∼ g(κ)

In effect, this density decreases the likelihood over κ regions that predict concentrations at

t = 85min deviating far from the relative proportions of S2(70%) > S3(20%) > S4(10%) and

increases the likelihood over κ regions that predict otherwise.

Combining the density h(κ) defined in 5.1 with g(κ) above, we obtain a final prior density

over κ

π(κ) ∼ g(κ) · h(κ)

5.3 Prior on σ

Recall that the model is a mixture of three mixture Gaussian density functions, each centered

around a theoretical frequency µjk with a scale of σjk; a total of 17 scale parameters must be

estimated from the data. When estimating σ ∈ R17 to fit low dimensional data (ωi, Ãit) ∈ R2,

we might expect there to be many combinations of σ = (σ1, . . . , σ17) which are very far from

eachother in R17 (in the Euclidean sense) yet all provide very reasonable fits to the IR absorp-

tion curves; in turn we expect a multi-modal likelihood surface. Indeed, repeated simulations

would show vastly different combinations of σ to generate indistinguishable data. Moreover,

the chemically implausible outputs of σjk →∞ would frequently occur under estimation.

However, if the chemical simulations suggest that significant absorptions would be observed

at and around the neighborhood of each theoretical wavenumber µjk, we would intuitively

expect their corresponding densities to peak in these areas. In order to explore reasonable σ
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regions, we specify a light tailed prior density function, π(σjk)
ind∼ Weibull(δjk, ξjk), over σ

π(σjk) = δjk
ξjk

(σjk
ξjk

)δjk−1
exp

{
−
(σjk
ξjk

)δjk
}

∀j,∀k

where δjk, ξjk ∈ R+ are the shape and scale hyper parameters respectively which we take as

tuning parameters. Note that the Weibull distribution is light tailed for δjk > 1 which we

impose in order to decrease the likelihood at implausibly high values of σ a priori.

5.4 Other Priors

Referring to the aggregate process {YAt} in Figure 3.1, we see that the aggregate concentration

has begun to level off; in fact the chemist strongly believes the curve should be theoretically

flat after t = 20min. Defining XAt = X2t + X3t + X4t as the aggregate concentration, it

can be shown that lim
t→∞

XAt → X1,0 (see Appendix E). As such the initial concentration of

S1, X1,0, can be estimated non-parametrically as the total area underneath the absorption

curve at the greatest time point, t = 85min. Namely, we compute the Riemann sum of the

absorption curve at t = 85min

X̂1,0 =
n∑
i=1

(ωi+1 − ωi)Ãi,85

and model the uncertainty of the initial concentration under a Gaussian density

π(X1,0) = 1√
2πσX1,0

exp
{
− 1

2
(X1,0 − X̂1,0

σX1,0

)2}
where σX1,0 is taken as a tuning standard deviation hyper parameter.

The parameters (β, τ) account for experimental errors and shifts in the data which we assume

are unexplained, thus we assume a flat prior density π(β, τ) ∝ 1.

Considering a jointly independent parameter set Θ, we combine the Likelihood function
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with the joint prior distribution, obtaining a Posterior distribution of the following log form

log p(Θ|D) =− nT

2 log(τ2)− 1
2τ2

n∑
i=1

T∑
t=1

(
Ãit −At(ωi;β, σ, κ,X0)

)2

− 1
2

(
f∗(κ,X0)
‖f∗(κ,X0)‖1

− µα∗
)>

Σ−1
α∗

(
f∗(κ,X0)
‖f∗(κ,X0)‖1

− µα∗
)

− 1
2
(
κ− µκ

)>
Σ−1
κ

(
κ− µκ

)
+

4∑
j=2

|Sj |∑
k=1

(δjk − 1) log σjk −
4∑
j=2

|Sj |∑
k=1

(σjk
ξjk

)δjk

− 1
2
(X1,0 − X̂1,0

σX1,0

)2
+ c

where c is a constant term free of Θ.
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Chapter 6

Simulation

We simulate plausible concentration curves under the 3 reaction and 4 reaction systems such

that their trends are consistent with what the prior belief: X2,85 > X3,85 > X4,85. The

simulated process is shown in the first two figures, followed by histograms of the parameter

posterior samples which are estimated from the simulated IR Absorption curves under a flat

joint prior distribution π(κ,X0) ∝ 1.

6.1 4 Reaction System

We simulate IR Absorption curves under the following chemically plausible parameter values:

κ = (0.4, 0.2, 0.001, 0.005)

X0 = (0.4, 0, 0, 0)

σ = (24, 22, 25, 25, 11, 9, 25, 17, 23, 25, 13, 8, 13, 16, 15, 15, 16)

β = (0, 0, 0, 0, 0, 0, 0, 0, 0)

τ = 0.00005
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The Concentration curves and IR Absorption curves corresponding to the above parameters

are illustrated in Figure 6.1 and Figure 6.2 respectively.

Figure 6.1: Simulated Concentration Curves
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Figure 6.2: Simulated IR Absorption Curves

We re-estimate (κ,X1,0, σ) under fixed values of (β̂, τ̂), in particular, assuming the curves are

well positioned along the Absorption axis and assuming a known noise variance τ2:

β̂ = (0, 0, 0, 0, 0, 0, 0, 0, 0)

τ̂ = 0.00005

Further, we set [Σα∗ ]jj = [Σκ]jj = σX1,0 = 1, 000, 000 which implies flat priors over the ODE

parameters, π(κ,X0) ∝ 1. The flat prior is chosen in order to examine how well the model

can estimate the parameters of interest with heavier reliance on the data rather than specified

knowledge a priori.

However, given the high dimensionality of σ, we control for a chemically plausible range

by specifying a light tailed Weibull distribution such that Quantileσ(99.99%) ≈ 30

π(σjk)
ind∼ Weibull(δjk = 2, ξjk = 10) ∀j,∀k

We obtain the following posterior samples of (κ,X1,0, σ) from p(κ,X1,0, σ|β̂, τ̂ ,D) after 5,000

sampling iterations
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Figure 6.3: Posterior Estimates of κ,X0

Figure 6.4: Posterior Estimates of σ
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Inspecting the above posterior histograms, we can see that almost all parameters were re-

covered within the 95% Bayesian credible interval. Moreover, the estimates were obtained

using no prior information on κ,X0. Figure 6.5 shows the resulting curve estimate at one

time point, t = 85min.

Figure 6.5: Estimated Curve at t=85min

6.2 3 Reaction System

We simulate IR Absorption curves under the following chemically plausible parameter values:

κ = (0.5, 0.005, 0.015)

X0 = (0.4, 0, 0, 0)

σ = (28, 28, 20, 20, 15, 30, 30, 15, 25, 15, 10, 7, 19, 20, 22, 17, 26)

β = (0, 0, 0, 0, 0, 0, 0, 0, 0)

τ = 0.00005
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The Concentration curves and IR Absorption curves corresponding to the above parameters

are illustrated in Figure 6.6 and Figure 6.7 respectively.

Figure 6.6: Simulated Concentration Curves
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Figure 6.7: Simulated IR Absorption Curves

We re-estimate (κ,X1,0, σ) under fixed values of (β̂, τ̂), in particular, assuming the curves are

well positioned along the Absorption axis and assuming the correct noise variance τ2:

β̂ = (0, 0, 0, 0, 0, 0, 0, 0, 0)

τ̂ = 0.00005

Further, we set [Σα∗ ]jj = [Σκ]jj = σX1,0 = 1, 000, 000 which implies flat priors over the ODE

parameters, π(κ,X0) ∝ 1. The flat prior is chosen in order to examine how well the model

can estimate the parameters of interest with heavier reliance on the data rather than specified

knowledge a priori.

However, given the high dimensionality of σ, we control for a chemically plausible range

by specifying the following prior distribution:

π(σjk)
ind∼ Weibull(δjk = 2, ξjk = 10) ∀j,∀k

We obtain the following posterior samples of (κ,X1,0, σ) from p(κ,X1,0, σ|β̂, τ̂ ,D) after 5,000

sampling iterations
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Figure 6.8: Posterior Estimates of κ,X0

Figure 6.9: Posterior Estimates of σ
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Inspecting the above posterior histograms, we can see that all parameters were recovered

within the 95% Bayesian credible interval. Moreover, the estimates were obtained using no

prior information on κ,X0. Further, we are able to obtain very good fit to the IR Absorption

curves as seen in Figure 6.10.

Figure 6.10: Estimated Curve at t = 85min

6.3 Sensitivity Analysis

Here we show indistinguishable fits to the data under different parameters estimates. In

particular, we focus on the vastly different σ estimates that can be obtained under a less

informative prior and the consequence such a prior will have on the ODE parameters. The

parameters are re-estimated with the same inputs as for their respective simulations above,

but under a less informative prior on σ. We impose a prior density with Quantileσ(99.99%) ≈
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2250 of the form

π(σjk)
ind∼ Log −N ormal(µσjk

= 4, σσjk = 1) ∀j,∀k

6.3.1 4 Reaction System

Figure 6.11: Posterior Estimates of κ,X0
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Figure 6.12: Posterior Estimates of σ
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Figure 6.13: Estimated Curve at 85 min

45



Examining the marginalized posterior density histograms, it can be seen that most parame-

ters have been recovered within the 95% Bayesian credible intervals.

However, it is interesting to note that some of the histograms exhibit multi modality; namely

σ3, σ4, σ6, σ10, σ13. In particular, examining the histograms of σ4, σ6, σ13, we see their true

values from simulation to be centered at the less dense modes. This might indicate that the

simulated data is providing some evidence for plausibility of the regions around the true val-

ues, however the evidence seems to be very weak given the significantly lower density at those

regions. This may suggest that even under simulated data, the model can be very sensitive

with respect to σ as there may exist a large number of plausible combinations resulting in

good fits to the data.

6.3.2 3 Reaction System

Figure 6.14: Posterior Estimates of κ,X0

46



Figure 6.15: Posterior Estimates of σ
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Here we see that under a less informative prior on σ, we obtain vastly different estimates

of both κ and σ; the true values are too far from the posterior estimates to be seen on the

histograms. Moreover, many σ estimates are too large to be considered plausible. Figure 6.16

shows the corresponding estimated IR Absorption curve at one chosen time point, t = 85min.
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Figure 6.16: Estimated Curve at 85 min

We can see that under vastly different and implausible parameter values, we still obtain very

good fits to the data. Moreover, these fits are indistinguishable from the fits obtained under

the more informative Weibull prior density.
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Chapter 7

Application

7.1 Experimental Data Processing

As previously mentioned, IR Absorption is measured after reading photon intensity through

a sample and reference source. Due to the chemical properties of a given mixture, it will

absorb significant amounts of photons at certain wavenumber ranges (absorbing ranges) and

little to no photons at other wavenumber ranges (non-absorbing ranges). Naturally, a sig-

nificantly greater amount of photons is expected to be absorbed by the sample cell than

the reference cell within absorbing ranges, and an even amount by both cells within non-

absorbing ranges; thus expecting absorption readings of 0 within non-absorbing ranges. The

absorptions observed in these ranges are referred to as baseline absorptions; we have verified

that the non-absorbing ranges include all ω < 700 and ω > 950.

It is evident from Figure 3.4 that the locations of each experiment along the vertical axis

are noticeably away from 0 at non-absorbing ranges; it has been verified that these shifts

are attributed to experimental errors. To correct for this, we center the experimental curves

at each time by subtracting their mean experimental absorption readings for ω > 950, thus

50



approximately bringing the baseline to 0 as shown for t = 85min in Figure 7.1. Figure 7.2

shows the average of all eight experimental curves at each time point after correcting for

baseline misalignment.

Figure 7.1: Baseline Adjustment for t=85min

Figure 7.2: Baseline Adjustments Averaged at each Time
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7.2 Theoretical Data Processing

The theoretical data provides calculated wavenumbers at which a particular chemical bond

will vibrate, µ, along with its corresponding intensity, γ. In general, a simple quantum me-

chanical treatment of bond vibrations known as the harmonic oscillator model assumes the

chemical bond to be a spring with a certain force constant that oscillates at a given frequency,

and does not break regardless of how much the spring is stretched [21]. Realistically, the bond

breaks if it is stretched far enough from its equilibrium distance. The anharmonic model ac-

counts for this and predicts the resulting change in bond energy [21, 22, 23]. This deviation

from harmonicity is accounted for by scaling the theoretical frequencies by some common

percentage. We have verified the acceptable scaling range to be between 0% − 10%. The

scaling of these theoretical values, µ, for a given model cluster results in better comparisons

with experimental frequencies using the real molecule.

From a number of experimental studies using ATR-FTIR [33, 34, 37], evidence suggests

that S2 has the greatest presence throughout the entire experiment (namely, from t = 0min

to t = 85min) but that S4 will very gradually dominate the mixture in the long run. In

particular, we have verified that at t = 85min, the concentrations will hold the relationship

X2,85 > X3,85 > X4,85 (as discussed in section 5.2).

To reflect this, we scale the 17 theoretical wavenumbers by first focusing on S2 in isola-

tion. By examining the right most peak in Figure 7.3, we see the trend in its modes overtime

exhibit a sharp increase followed by a gradual decrease. This trend is strongly consistent with

the reaction system (1) in that that S2 gains majority presence at earlier times but naturally

starts to gradually diminish as stronger bonds begin to form at later times.

By also aligning its high intensity wavenumbers with the central peak, this would allow S2

to claim the greatest absorptions and thus further reflect the belief that S2 is dominant.

For illustration, we scale all theoretical wavenumbers by 5.5% (×1.055) in order to align the

52



locations of S2 theoretical wavenumbers with 1) the right most experimental peak and 2) the

central peak.

Figure 7.3: S2 Scaling Analysis

However, also noting the green boxed area in Figure 7.3, we see that scaling the wavenumbers

by a factor of 5.5% leaves very few theoretical wavenumbers accounting for the entire left

side of the main peak which may indicate that the scaling is too high. We finally choose a

scaling factor of 4.8% to have more wavenumbers account for the left side of the main peak
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and still have the two S2 wavenumbers close enough to the rightmost peak.

Lastly, we eliminate all experimental wavenumbers ω < 700 and ω > 950. As these are

understood to be non-absorbing ranges, we have verified that any fluctuations or patterns

in those ranges are purely machine noise. The final data includes 65 absorption readings for

wavenumbers 700 ≤ ω ≤ 950 and theoretical wavenumbers scaled at 4.8% (×1.048).

Figure 7.4: Final Processed Data
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7.3 Estimation

To estimate the model parameters Θ we might consider sampling from the joint posterior

density p(Θ|D) by sequentially sampling each conditional posterior density

Θ1 ∼ p(Θ1|D)

Θ2 ∼ p(Θ2|Θ1,D)
...

Θd ∼ p(Θd|Θd−1,Θd−2, . . . ,Θ1,D)

using a suitable MCMC algorithm such as the Gibbs sampler. However close examination

of the log joint posterior density in Section 4.4 suggests that the above conditional posterior

distributions would be very difficult to derive analytically. Moreover, even when reducing

the parameter space to estimate a much simpler model, the Gibbs sampler resulted in several

hours of runtime under simulated data. We instead sample from p(Θ|D) using Stan software;

a probabilistic programming language for Bayesian inference which uses an efficient imple-

mentation of Hamiltonian Monte Carlo (HMC) in C++ [24, 25, 26].

Here we provide estimates for both candidate reaction systems suggested by (1)-(2); the

3 reaction system and the 4 reaction system. As seen through the simulation study, the

model was very sensitive to σ inputs which would lead the sampling algorithm exploring re-

gions of implausibly high σ values and incorrect ODE parameters. Moreover, the model was

significantly more sensitive with respect to σ when estimating under real data even under

strongly informative prior densities. As such, we focus on sampling (κ,X1,0) under fixed

plausible values (σ̂, β̂, τ̂).

As mentioned in Section 7.1, the data is processed to correct for misalignment along the

absorption axis. As such, the processed data assumes a baseline of 0 across all experiments

at all time points. Further, we non-parametrically estimate a noise variance parameter from
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the experimental data. We set

β̂ = (0, 0, 0, 0, 0, 0, 0, 0, 0)

τ̂ = 0.0002

Using these values, estimating the parameters of interest is done in the following two steps.

i. Estimate σ. This step estimates plausible σ values that are likely to correspond to

plausible (κ,X1,0). This is done by choosing (κ,X1,0) = (κ̂, X̂1,0) which generate con-

centrations that are consistent with a priori beliefs as discussed in Section 5. Given such

ODE parameters, σ is estimated as the posterior mean after sampling

σ ∼ p(σ|κ̂, X̂0, β̂, τ̂ ,D)

π(σ) ∼ Weibull(δ = 2, ξ = 10)

ii. Estimate (κ,X1,0). Given σ̂ from the previous step, the ODE parameters are estimated

as the posterior mean after sampling

(κ,X1,0) ∼ p(κ,X1,0|σ̂, β̂, τ̂ ,D)

π(κ,X1,0) ∼ g(κ)h(κ)π(X1,0)

7.3.1 4 Reaction Model Fit

Sampling from p(σ|κ̂, X̂1,0, β̂, τ̂ ,D) in Step 1, we obtain the following posterior mean esti-

mates σ̂ = (24, 22, 61, 64, 11, 9, 90, 18, 23, 58, 11, 7, 12, 15, 16, 16, 17). In Step 2, we sample from

p(κ,X1,0|σ̂, β̂, τ̂ ,D) with the prior specification that [Σκ]jj = [Σα∗ ]jj = σX1,0 = 1, 000, 000;

π(κ,X1,0) ∝ 1.

We obtain the following estimates of (κ,X1,0) shown in Figure 7.5 with corresponding con-

centration process in Figure 7.6 and fitted absorption curves in Figure 7.7.
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Figure 7.5: Estimated ODE Parameters

Figure 7.6: Estimated Concentration Curves
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Figure 7.7: Estimated Absorption Curves
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7.3.2 3 Reaction Model Fit

Sampling from p(σ|κ̂, X̂1,0, β̂, τ̂ ,D) in Step 1, we obtain the following posterior mean estimates

σ̂ = (27, 31, 31, 50, 15, 78, 78, 97, 25, 17, 15, 7, 21, 20, 21, 16, 25). However when sampling from

p(κ,X1,0|σ̂, β̂, τ̂ ,D) in Step 2, we see that the data gives very little information about κ34. In

particular, Figure 7.8 shows the estimates obtained for (κ,X1,0) under a flat prior π(κ,X1,0) ∝

1.

Figure 7.8: Estimated ODE Parameters

To obtain more plausible estimates, we impose the prior information: α2,85(70%) > α3,85(20%) >

α4,85(10%). In order to obtain plausible estimates for κ, it turns out we require heavy reliance

on this prior information. In particular, we set π(κ) = g(κ) (defined in 5.2) where

µα∗ =


0.7

0.2

0.1

 ,Σα∗ =


0.052 0 0

0 0.052 0

0 0 0.052


We obtain the following estimates of (κ,X1,0) shown in Figure 7.9 with corresponding con-

59



centration process in Figure 7.10 and fitted absorption curves in Figure 7.11.

Figure 7.9: Estimated ODE Parameters
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Figure 7.10: Estimated Concentration Curves

Figure 7.11: Estimated Absorption Curves
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7.4 Model Comparison

Recall the measurement error model specified in Section 4.2:

εit ∼ N ormal(0, τ2) ∀i,∀t

We analyze the residual diagnostic plots obtained from both model fits and provide a quali-

tative review of each model.

7.4.1 4 Reaction Model Diagnostics

Figure 7.12 shows the Residuals plotted against both estimated absorption values and the

wavenumber range. These plots suggest that the residuals are not completely random as

specified by the measurement error model assumption. In particular, the residuals exhibit

consistent oscillation patterns indicating that the model tends to fluctuate between underes-

timating and overestimating the absorption measures.

Figure 7.12: Model Residual Plots

As seen in Figure 7.13, the residuals clearly violate the normality assumption as both the

histogram and Q-Q plot strongly suggest a rightly skewed residual distribution.
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Figure 7.13: Model Residual Diagnostics

7.4.2 3 Reaction Model Diagnostics

Figure 7.14 shows the Residuals plotted against both estimated absorption values and the

wavenumber range. These plots also suggest that the residuals are not completely random

as specified by the measurement error model assumption. As in the 4 reaction model, the

residuals exhibit consistent oscillation patterns however appear to be slightly more scattered.

Figure 7.14: Model Residual Plots
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As seen in Figure 7.15, the residuals clearly violate the normality assumption as both the

histogram and Q-Q plot strongly suggest rightly skewed residuals. In comparison to the 4

reaction model, however, the residuals show noticeably less severity in the violation as both

the center and tails of the empirical distribution show less deviation from normality.

Figure 7.15: Model Residual Diagnostics

7.4.3 Qualitative Comparison

As shown in the analysis of the residuals, both model residuals exhibit non randomness;

in particular we see consistent oscillation patterns which suggest that both models may

not be capturing certain peaks in the absorption curves. Whether certain peaks pertain to

legitimate absorption characteristics or just noise is difficult to distinguish, however some

detailed analysis of the experimental data enables us to find common peaks across different

curves which we assume are genuine. We illustrate some of these peaks in Figure 7.16 and

discuss the ability of each model to reflect these peaks.
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Figure 7.16: Key Features Observed in Data

Figure 7.17: Final Processed Data
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Region A emphasizes a slight bump in the absorption curve. This bump, though very subtle

and slightly variable in location over time, appears on virtually all time points. Referring

to Figure 7.17, we see that the scaling factor of 4.8% aligns this bump with the theoretical

locations of S3 and S4. As seen in the estimated concentration curves for the 4 reaction

model Figure 7.6, the model describes the chemical system as being significantly composed

of S3 at all times and thus is generally able to pick up these bumps at all time points. On the

other hand, the concentration curves produced by the 3 reaction model Figure 7.10 suggest

the model describes the system as having very little presence of both S3 and S4 at all times

and is thus unable to pick up this bump even under strong prior specifications.

Region B is the main peak which is assumed to be attributed mainly to the dominance

of S2; both models adequately account for this main peak.

Region C is another subtle but consistent detail in the data; this bump exhibits a slight

convexity and is attributed to S2 given the scaling factor of 4.8%. As seen by the model fits

for the 4 reaction model Figure 7.7, the model does in fact show an estimated convexity in

that region, suggesting that the model adequately identifies that peak as legitimate rather

than noise. The 3 reaction model fits Figure 7.11 however, does not identify this convexity

at all regardless of the model describing the system as being mainly composed of S2.

Region D is attributed to S2 given the scaling factor; this peak shows an obvious pres-

ence at all time points suggesting that S2 is present at all times throughout the experiment.

The peak is reasonably accounted for by the 4 reaction model Figure 7.7, but not accounted

for at all by the 3 reaction model Figure 7.11.

In addition to the comparisons outlined above, it is worth mentioning that the σ̂ estimates

obtained in the estimation process for the 3 reaction model are on average higher than the

estimates corresponding to the 4 reaction model. This suggests that the 3 reaction model
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estimates flatter (hence less plausible) absorption peaks from the data to account for the lack

of S3 and S4 estimated by the model which is undesirable. The 4 reaction model generally

outputs lower σ̂ estimates and attributes the aggregate absorption curve to a more plausible

balance of the three species.

Lastly, both models are able to estimate plausible parameters from the data that are consis-

tent with a priori beliefs. However, the 4 reaction model is able to estimate these parameters

given no prior specification of these beliefs, π(κ,X1,0) ∝ 1, suggesting that this model is

reflective of the true absorption process. On the other hand, the 3 reaction model requires

heavy reliance on prior information which might suggest that it is incorrectly specified.
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Chapter 8

Discussion

As there is generally no statistical model that gives forms to the spectra of each species by

directly relating reaction rate constants to Infrared Spectroscopy data, the model proposed in

this thesis provides a fresh statistical perspective to the problem of inferring rate constants.

Although this model serves as a starting point for future work, it already adds a parametric

interpretation of the IR Spectroscopy which the conventional model-free MCR methods do

not provide; moreover it provides this under a drastically reduced parameter set. Further,

this model can be formulated to reflect different reaction systems (first order and higher or-

der reactions) assess evidence a posteriori for or against a set of candidate governing reaction

systems to a particular chemical system of interest.

We propose the 4 reaction model is more suitable in describing the chemical mixture of

interest. In addition the reasons outlined in Section 7.4.3, the Bayesian Inference provides

us with credible intervals for κ which we interpret as evidence against the 3 reaction model

being suitable. Referring to their corresponding reaction channels (1)-(2) we see that the 3

reaction system is simply the 4 reaction system reduced by the channel

S1
κ13−−→ S3
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Figure 7.5 illustrates 95 % credible intervals which provide strong evidence a posteriori that

κ13 6= 0. As such, we believe this reaction is statistically significant in describing the under-

lying chemical process.

Future work may consider several extensions. The first extension would be to estimate a

reasonable σ simultaneously with the ODE parameters, however, this estimation is currently

limited by the data provided. As an illustration, revisit Figure 7.4 and carefully examine

the spacing between the experimental wavenumbers and the spacing between the ordered

theoretical wavenumbers. It can be seen that in some cases, (
∣∣ωi+1 − ωi

∣∣ > ∣∣µ(j+1) − µ(j)
∣∣)

making certain Gaussian components virtually indistinguishable from others.

A second extension may be to also account for the individual experimental trials, l, which

would significantly increase the amount of evidence for parameter estimates a posteriori at

the cost of only adding a few more parameters under the current model structure (intercepts

and initial concentrations).

At(ωi) = βlt +
4∑
j=2

fj(t;κ,X l
0)
|Sj |∑
k=1

γjkφ(ωi;µjk, σjk)

∀i,∀l,∀t

Thus reflecting the number of experiments in the statistical model of measurement error

εilt
iid∼ N ormal

(
0, τ2

)
∀i,∀l,∀t

So far, all inference has been done after averaging all experimental data at each time to

obtain smoother absorption curves. However, the efficacy of this extension would depend on

the quality of the experimental data; Figure 3.4 shows that certain experiments are far too

variable (with regards to noise and vertical shift) and thus may lead to very volatile model

outputs. Alternatively, the current model may show less sensitivity given smoother averaged

curves, however obtaining smoother average curves would require many more experimental
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runs which may be very costly for scientists.

A third extension may consider modeling the absorption data as a Poisson count of pho-

ton absorption, given data of photon absorption counts

Ãilt ∼ Poisson(Ailt) ≈ Ãilt ∼ N ormal(Ailt,Ailt)

71



References

[1] Julia Tofan-Lazar, Hind A. Al-Abadleh. ATR-FTIR Studies on the Adsorp-

tion/Desorption Kinetics of Dimethylarsinic Acid on Iron-(Oxyhydr)oxides. The Journal

of Physical Chemistry, 2012.

[2] William Mitchell, Sabine Goldberg, Hind A. Al-Abadleh. In situ ATR-FTIR and surface

complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic

acid on iron-(oxyhydr)oxides. Journal of Colloid and Interface Science, 2011.

[3] Jim Clark http://www.chemguide.co.uk/analysis/uvvisible/beerlambert.html.

2007.

[4] Materials Evaluation and Engineering Inc http://www.mee-inc.com/hamm/fourier-

transform-infrared-spectroscopy-ftir/. Fourier Transform Infrared spectroscopy

(FTIR).

[5] http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational_Sp

ectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretation. UC Davis

[6] C. Ruckebusch, L. Blanchet Multivariate curve resolution: A review of advanced and

tailored applications and challenges. Analytica Chimica Acta, 2013.

[7] Multivariate Curve Resolution Homepage http://www.mcrals.info/. Webpage of the

MCR-ALS method with programs, tutorials and datasets

72



[8] J. Saurina, S. Hernandez-Cassau, R. Tauler, A. Izquierdo-Ridorsa.

Multivariate Resolution of Rank-Deficient Spectrophotometric Data from First-Order Ki-

netic Decomposition Reactions. Journal of Chemometrics, 1998.

[9] MCR-ALS-Theory

http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/mcrals.html. Centre

d’Investigacio i Desenvolupament; Consell Superior d’Investigacions Cientifiques

[10] Roma Tauler http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/download/pdf/MCR_2005.pdf.

Centre d’Investigacio i Desenvolupament; Consell Superior d’Investigacions Cientifiques,

2005.

[11] Henning Schroder, Mathias Sawall, Christoph Kubis, Detlef Selent, Dieter Hess, Robert

Franke, Armin Borner, Klaus Neymeyr

On the ambiguity of the reaction rate constants in multivari ate curve resolution for first-

order reaction systems. Submitted 2015.

[12] J LS Lee, I S Gilmore: A Guide to the Practical Use of Multivariate Analysis in SIMS

http://www.simssociety.org/PPT/IanGilmore/Gilmore2_MVATutorial_a.pdf Na-

tional Physical Laboratory, Teddington, UK

[13] Luca Cardelli.

From Processes to ODEs by Chemistry. Microsoft Research.

[14] H Finotti.

Math 231:Introduction to Ordinary Differential Equations- Mini-Project: Modeling Chem-

ical Reaction Mechanisms Department of Mathematics, University of Tennessee. Fall 2012.

[15] Marcel Maeder, Yorck-Michael Neuhold.

Practical Data Analysis in Chemistry. Chapter 3, Pages 82-83.

[16] http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Reaction_Rates/

First-Order_Reactions UC Davis.

73



[17] http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational

_Spectroscopy/Infrared_Spectroscopy UC Davis.

[18] C.-P. Sherman Hsu.

Infrared Spectroscopy. Separation Sciences Research and Product Development. Mallinck-

rodt, Inc. Mallinckrodt Baker Division

[19] Praveen Kumar Mogili

Heterogeneous Chemistry and Extinction Measurements of Mineral Dust Components

PhD Thesis, University of Iowa, 2007.

[20] Algorithms used for Microspectroscopy.

https://www.microspectra.com/support/service-contracts/algorithms-used-for

-microspectroscopy. CRAIC Technologies Mobile.

[21] Brian Smith.

Infrared Spectral Interpretation: A Systematic Approach. CRC Press, 1998. P. 15-20.

[22] Mark E. Tuckerman.

Bond vibrations. Advanced Chemisttry, Lecture 18. New York University.

[23] Anharmonic Oscillator. http://chemwiki.ucdavis.edu/Physical_Chemistry/Quantum

_Mechanics/06._One_Dimensional_Harmonic_Oscillator/Harmonic_Oscillator/

Anharmonic_Oscillator. UC Davis.

[24] stan-software:2015.

Stan: A C++ Library for Probability and Sampling, Version 2.9.0.

http://mc-stan.org/. 2015.

[25] stan-manual:2015

Stan Modeling Language Users Guide and Reference Manual, Version 2.9.0.

http://mc-stan.org/ 2015.

74



[26] rstan-software:2015

RStan: the R interface to Stan, Version 2.8.0 http://mc-stan.org/rstan.html 2015.

[27] Brian E. Blank, Steven George Krantz.

Calculus: Single Variable, Volume 1. KeyCollege Publishing. Springer. 2006.

Section 3.3 P 177.

[28] Math 20 - Introduction to Linear Algebra and Multivariable Calculus

Chapter 5 Eigenvalues and Eigenvectors. http://www.math.harvard.edu/

archive/20_spring_05/handouts

/ch05_notes.pdf Harvard Mathematics Department. Spring 2005.

[29] Robert A. Beezer.

A First Course in Linear Algebra. Properties of Eigenvalues and Eigenvectors.

http://linear.ups.edu/html/section-PEE.html 2015.

[30] Diagonalizable matrices. http://s-mat-pcs.oulu.fi/∼mpa/matreng/ematr4_2.htm

Mathematics Division, University of Oulu, Finland.

[31] Andrew Gelman, Frederic Bois, Jiming Jiang.

Physiological Pharmacokinetic Analysis using Population Modeling and Informative Prior

Distributions. Journal of the American Statistical Association. 1996.

[32] J. O. Ramsay, G. Hooker, D. Campbell and J. Cao.

Parameter Estimation for Differential Equations: A Generalized Smoothing Approach J.

R. Statist. Soc. B 69, Part 5, pp. 741–796. 2007.

[33] Tofan-Lazar, J.; Al-Abadleh, H.A., Atr-ftir

studies on the adsorption/desorption kinetics of dimethylarsinic acid on iron-

(oxyhydr)oxides. J. Phys. Chem. A 2012, 116, 1596-1604.

[34] Tofan-Lazar, J.; Al-Abadleh, H.A.,

Kinetic atr-ftir studies on phosphate adsorption on iron-(oxyhydr)oxides in the absence

75



and presence of surface arsenic: Molecular-level insights into the ligand exchange mech-

anism. J. Phys. Chem. A 2012, 116, 10143-10149.

[35] Adamescu, A.; Hamilton, I.P.; Al-Abadleh, H.A.,

Thermodynamics of dimethylarsinic acid and arsenate interactions with hydrated iron-

(oxyhydr)oxide clusters: DFT calculations. Environ. Sci. Technol. 2011, 45, 10438-10444.

[36] Adamescu, A.; Mitchell, W.; Hamilton, I.P.; Al-Abadleh, H.A.,

Insights into the surface complexation of dimethylarsinic acid on iron (oxyhydr)oxides

from ATR-FTIR studies and quantum chemical calculations. Environ. Sci. Technol. 2010,

44, 7802-7807.

[37] Sabur, M.A.; Goldberg, S.; Gale, A.; Kabengi, N.J.; Al-Abadleh, H.A.,

Temperature-dependent ATR-FTIR and calorimetric studies on arsenicals adsorption

from solution to hematite nanoparticles. Langmuir 2015, 31, 2749-2760.

[38] Anna de Juan, Marcel Maeder, Manuel Martinez, Roma Tauler

Combining hard- and soft-modelling to solve kinetic problems Chemometrics and Intelli-

gent Laboratory Systems 54 2000 123–141

[39] Arsenic http://www.who.int/mediacentre/factsheets/fs372/en/ World Health Or-

ganization

Other References

[40] Sabine Bijlsma

Estimating rate constants of chemical reactions using spectroscopy. PhD Thesis. University

of Amsterdam, Amsterdam, The Netherlands, 2000.

[41] Wentzell, Peter D., et al.

Multivariate curve resolution of time course microarray data. BMC bioinformatics 7.1

(2006): 343.

76



[42] Esteban, M., et al.

Multivariate curve resolution with alternating least squares optimisation: a soft-modelling

approach to metal complexation studies by voltammetric techniques. TrAC Trends in An-

alytical Chemistry 19.1 (2000): 49-61.

[43] Jaumot, Joaquim, Anna de Juan, and Roma Tauler.

MCR-ALS GUI 2.0: New features and applications. Chemometrics and Intelligent Labo-

ratory Systems 140 (2015): 1-12.

77



Appendices

A. Aggregate Reaction

Theorem: Suppose f(x) =
∑
i fi(x). Provided that f ′i(x) exists ∀i, then by linearity of

differentiation [27]

d

dx
f(x) = d

dx

∑
i

fi(x) =
∑
i

d

dx
fi(x)

Recall the 4 reaction concentration ODE system (1)

d

dt
X1t = −(κ12 + κ13)X1t (8.1)

d

dt
X2t = κ12X1t − κ23X2t (8.2)

d

dt
X3t = κ13X1t + κ23X2t − κ34X3t (8.3)

d

dt
X4t = κ34X3t (8.4)

and consider the aggregate concentration XAt = X2t + X3t + X4t. By Theorem above, we

have

d

dt
XAt = d

dt

(
X2t +X3t +X4t

)
= d

dt
X2t + d

dt
X3t + d

dt
X4t
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Thus

d

dt
XAt = (12) + (13) + (14)

= κ12X1t − κ23X2t

+ κ13X1t + κ23X2t − κ34X3t

+ κ34X3t

= (κ12 + κ13)X1t

This leads to the reduced pairwise ODE system

d

dt
X1t = −(κ12 + κ13)X1t

d

dt
XAt = (κ12 + κ13)X1t

which implies only one reaction channel

S1
κ12+κ13−−−−−→ SA

79



B. Eigenvalues and Eigenvectors

Theorem 1: A scalar λ is an eigenvalue of an n × n matrix Ω if and only if λ satisfies the

characteristic equation [28]

det(Ω− λI) = 0

With respect to the 4 reaction system, it can be seen by inspection that its corresponding

ODE system (3) can be written in matrix form X ′t = ΩXt. In particular we have

X ′t =



d
dtX1t

d
dtX2t

d
dtX3t

d
dtX4t


=



−(κ12 + κ13) 0 0 0

κ12 −κ23 0 0

κ13 κ23 −κ34 0

0 0 κ34 0





X1t

X2t

X3t

X4t


= ΩXt

Note that due to Ω being lower triangular, det(Ω−λI) is simply the product of the diagonal

entries of Ω− λI, thus obtaining the characteristic polynomial

(λ+ κ12 + κ13)(λ+ κ23)(λ+ κ34)λ = 0

which implies the following unique real valued eigenvalues

λ1 = −(κ12 + κ13)

λ2 = −κ23

λ3 = −κ34

λ4 = 0

Further solving (Ω− λqI)~v = 0 ∀q = 1, 2, 3, 4 separately we obtain the following real valued

eigenvectors:

~v1|λ1 =



(κ12+κ13−κ23)(κ12+κ13−κ34)
(κ13−κ23)κ34

− (κ12+κ13−κ34)κ12
(κ13−κ23)κ34

−κ12+κ13
κ34

1


, ~v2|λ2 =



0

−κ34−κ23
κ34

−κ23
κ34

1


, ~v3|λ3 =



0

0

−1

1


, ~v4|λ4 =



0

0

0

1


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Similarly for the 3 reaction system, we can see that its ODE system (4) can be expressed

in matrix form as



d
dtX1t

d
dtX2t

d
dtX3t

d
dtX4t


=



−κ12 0 0 0

κ12 −κ23 0 0

0 κ23 −κ34 0

0 0 κ34 0





X1t

X2t

X3t

X4t



By Theorem 1 and applying similar Eigen decomposition as for the 4 reaction system above,

we have the following eigenvalues and eigenvectors for the 3 reaction system:

λ1 = −κ12

λ2 = −κ23

λ3 = −κ34

λ4 = 0

~v1|λ1 =



− (κ12−κ23)(κ12−κ34)
κ23κ34

κ12(κ12−κ34)
κ23κ34

−κ12
κ34

1


, ~v2|λ2 =



0

−κ34−κ23
κ34

−κ23
κ34

1


, ~v3|λ3 =



0

0

−1

1


, ~v4|λ4 =



0

0

0

1


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C. (i) ODE Solution

Theorem 2: Suppose that Ω is an n × n square matrix and S = {~v1, ~v2, . . . , ~vn} is a set of

eigenvectors with eigenvalues λ1, λ2, . . . , λn. If λi 6= λj , i 6= j then S is a linearly independent

set [29].

Theorem 3: An n × n matrix Ω is diagonalizable if and only if Ω has n linearly inde-

pendent eigenvectors [30].

Noting that λ1 6= λ2 6= λ3 6= λ4 in Appendix B, then by the above Theorem 2, ~v1, ~v2, ~v3, ~v4

is a linearly independent set. Further by Theorem 3, we know that Ω is diagonalizable such

that it can be decomposed into the product of three n× n matrices

Ω = QΛQ−1

whereQ = [~v1, ~v2, ~v3, ~v4] ∈ R4×4 is a matrix of eigenvectors of Ω and Λ = diag(λ1, λ2, λ3, λ4) ∈

R4×4.

We now find the general solution, Xt, to the ODE system

X ′t = ΩXt

By inspection, we see that the solution to this differential equation is the exponential function

Xt = eΩt~c

where ~c ∈ R4 is some vector independent of t. Rewriting the solution as the infinite Taylor

series expansion of the exponential function about t = 0 (namely, the Maclaurin series) and
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applying the diagonalization theorem we obtain

Xt = eΩt~c

=
[ ∞∑
i=0

(Ωt)i

i!

]
~c

=
[ ∞∑
i=0

(QΛQ−1)iti

i!

]
~c

Note that since Q−1Q = I, ∀i ∈ N we have

(QΛQ−1)i = QΛQ−1 ×QΛQ−1 ×Q . . .Q−1 ×QΛQ−1

= QΛIΛI . . . IΛQ−1

= QΛiQ−1

Thus,[ ∞∑
i=0

(QΛQ−1)iti

i!

]
~c =

[ ∞∑
i=0

Q
Λiti

i! Q−1
]
~c

= Q

[ ∞∑
i=0

Λiti

i!

]
Q−1~c

= Q

[ ∞∑
i=0

(Λt)i

i!

]
Q−1~c

= QeΛtQ−1~c

Therefore, Xt = QeΛtQ−1~c. To find ~c, we substitute the initial condition X0 when t = 0

X0 = QeΛ(0)Q−1~c = QIQ−1~c = ~c

Thus the solution Xt ∈ R4 to the system X ′t = ΩXt is

Xt = QeΛtQ−1X0

Note that eΛt ∈ R4×4 where
[
eΛt
]
qq

= eλqt and
[
eΛt
]
qp

= 0 ∀q 6= p. To see this, again consider

the Maclaurin series expansion of the exponential function
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eΛt =
∞∑
i=0

(Λt)i

i!

=
∞∑
i=0



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4



i

ti

i!

=
∞∑
i=0



λi1 0 0 0

0 λi2 0 0

0 0 λi3 0

0 0 0 λi4


ti

i!

=



∑∞
i=0

(λ1t)i

i! 0 0 0

0
∑∞
i=0

(λ2t)i

i! 0 0

0 0
∑∞
i=0

(λ3t)i

i! 0

0 0 0
∑∞
i=0

(λ4t)i

i!



=



eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t


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C. (ii) ODE Solution Proportionality

Here we explain why Xt 6= αt in general, but rather Xt ∝ αt. Recall the solution to the

system X ′t = ΩXt obtained in Appendix C (i), namely

Xt = QeΛtQ−1X0

Suppose that we scale Xt by some scalar c ∈ R such that X̃t = cXt. Mathematically we can

express this as

X̃t = c ·Xt = c ·QeΛtQ−1X0 = QeΛtQ−1X̃0

where X̃0 = c ·X0.

It is easy to see that regardless of how Xt is scaled, the only parameter that scales ac-

cordingly is X0 but κ remains unchanged. This is a very important result of the linear

ODEs because when we infer κ from the IR Absorption curves, we do not require their un-

derlying areas to correspond to the true concentrations {Xt} in the experimental mixture

because the scaled areas, {αt} = {cXt}, will theoretically correspond to the same κ values.

Thus by Beer-Lambert law, if Xt ∝ αt then by our model

{Xt} =⇒ (X0, κ)

{αt} =⇒ (cX0, κ)

Key idea: IR Absorption contributions of each species and concentrations of

each species both correspond to the same κ value. As such, since α0 is not the main

parameter of interest and κ is independent of initial conditions, we simply refer to α0 as X0

in order to avoid confusion with the notations introduced at the beginning of the paper.
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D. κ scaling factor

Recall Section 3.1 which showed the reduction of reaction channels (1) to the single reaction

channel (6) of the aggregated concentration system XAt. This reduction showed that the

aggregated concentration process, XAt, grows at rate constant κA = κ12 + κ13. This would

suggest that the sum of reaction rate constants (7)-(8) are proportional to some estimate of

the true aggregate rate up to some scalar; namely, κ̂A = ζ(κ̂12 + κ̂13).

Given the aggregate concentration process, {YAt} as shown in Figure 3.1, we estimate the

aggregate reaction rate constant to be κ̂A ≈ 0.6 as shown in Figure 8.1 with corresponding

estimated concentration curve illustrated in Figure 8.2.

Figure 8.1: Posterior samples of κA
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Figure 8.2: Estimated Aggregate Concentration Curve

κ̂A ≈ 0.6 =⇒ ζ = 0.6
0.05+0.01 = 10. Thus, scaling the given reaction rate constants (7)-(10)

by ζ = 10 yields the following adjusted a priori estimates:

κ12 : 0.5± 0.1

κ13 : 0.1± 0.1

κ23 : 0.1± 0.1

κ34 : 0.01± 0.005
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E. Estimating X1,0

Recall the chemical system reaction channels (1) dictate that at t = 0: X1,0 > 0 and X2,0 =

X3,0 = X4,0 = 0. As such, defining the aggregate concentration curve asXAt = X2t+X3t+X4t

we obtain initial conditions (X1,0, XA,0) = (X1,0, 0). Further, we obtain the following reaction

channel (by Appendix A)

S1
η−→ SA

with corresponding ODE system

 d
dtX1t

d
dtXAt

 =

−η 0

η 0


X1t

XAt


By Appendix C (i), the solution to this system is of the form

Xt = QeΛtQ−1X0

=

−1 0

1 1


e−ηt 0

0 1


−1 0

1 1


X1,0

0


=

 X1,0e
−ηt

X1,0(1− e−ηt)

 =

X1t

XAt



=⇒ lim
t→∞

XAt = lim
t→∞

X1,0(1− e−ηt) = X1,0
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F. Statistical Model of Measurement Error

Recall from 3.2.1 that the observed absorption is defined as Ãit = log ĨR
it

ĨS
it

(we drop the sub-

scripts). Two points should be noted here: 1) Since the reference cell is assumed to be a

fixed chemical surface, we can interpret ĨR as a constant photon intensity which stays fixed

at each {i, t} for all experiments. 2) The chemical surface is an iron-oxide which does not

have significant absorption characteristics at the experimental wavenumbers.

As such, since ĨS is the stochastic component of Ã which can vary by experiment, and

has significant absorption characteristics at the experimental wavenumbers, we define the

stochastic photon intensity variable as Ĩ = ĨR

ĨS
which is considered very large as ĨR � ĨS .

Further, since the infrared spectrometer measures the amounts of photons absorbed at a

given wavenumber, we can interpret the counts as a histogram where each bin represents the

count of photons in each wavenumber bin. In particular, we assume a distribution over the

counts at each {i, t} as

Ĩ ∼ Poisson(I)

which can we approximated by the Normal distribution for very large I as

Ĩ ∼ N ormal(I, I)

However it is more reasonable to assume a smaller variance at each wavenumber, thus ob-

taining the scaled variance

Ĩ ∼ N ormal(I, γ2I)

If we define Ĩ = IY , it is easy to see that

Y ∼ N ormal
(

1, γ
2

I

)
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Therefore,

log Ĩ = log IY

= log I + log Y

= A+ log Y

Define g(Y ) = log Y , by the Taylor Series expansion of g(Y ) about Y=1, we can obtain an

approximation of the first moment

E
[
g(Y )

]
≈ g(µY ) + g′′(µY )

2 σ2
Y

= log(µY )− 1
2µ2

Y

σ2
Y

= log(1)− 1
2 · 12

γ2

I

≈ 0 I � γ2

Further, the variance can be approximated by the delta method as

V
[
g(Y )

]
≈
(
g′(E[Y ])

)2
V[Y ]

=
( 1
E[Y ]

)2
V[Y ]

=
(1

1

)2γ2

I

= γ2

I

Since we assume I � γ2, we set V(log Y ) = τ2 where τ2 is some constant for all {i, t}. Thus,

Ãit = Ait + log Yit

Yit = εit ∼ N ormal(0, τ2)

∀i,∀t
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