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Abstract 

Classification is one of the most important tasks in process system engineering. Since most of the classification 

algorithms are generally based on mathematical models, they inseparably involve the quantification and 

propagation of model uncertainty onto the variables used for classification. Such uncertainty may originate from 

either a lack of knowledge of the underlying process or from the intrinsic time varying phenomena such as 

unmeasured disturbances and noise. Often, model uncertainty has been modeled in a probabilistic way and Monte 

Carlo (MC) type sampling methods have been the method of choice for quantifying the effects of uncertainty. 

However, MC methods may be computationally prohibitive especially for nonlinear complex systems and 

systems involving many variables. 

Alternatively, stochastic spectral methods such as the generalized polynomial chaos (gPC) expansion have 

emerged as a promising technique that can be used for uncertainty quantification and propagation. Such methods 

can approximate the stochastic variables by a truncated gPC series where the coefficients of these series can be 

calculated by Galerkin projection with the mathematical models describing the process. Following these steps, 

the gPC expansion based methods can converge much faster to a solution than MC type sampling based methods. 

Using the gPC based uncertainty quantification and propagation method, this current project focuses on the 

following three problems: (i) fault detection and diagnosis (FDD) in the presence of stochastic faults entering the 

system; (ii) simultaneous optimal tuning of a FDD algorithm and a feedback controller to enhance the detectability 

of faults while mitigating the closed loop process variability; (iii) classification of apoptotic cells versus normal 

cells using morphological features identified from a stochastic image segmentation algorithm in combination with 

machine learning techniques. The algorithms developed in this work are shown to be highly efficient in terms of 

computational time, improved fault diagnosis and accurate classification of apoptotic versus normal cells. 
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Chapter 1 

Introduction 

1.1 Background 

The quantitative analysis of phenomena occurring in many engineering applications is generally based on 

mathematical models. Such models can provide a representation of a real system by using a number of hypotheses, 

approximations and parameters. The system of interest cannot be exactly characterized in practice since models 

are never exact. Model uncertainties may originate from: (i) a lack of knowledge about the underlying process, 

(ii) the intrinsic time varying nature of model parameters; and (iii) the inaccurate measurements due to random 

noise. Thus uncertainties are generally related to both errors in the assumed model structures as well as 

inaccuracies in the estimated model parameters. Three main tasks are involved in the use of models with 

uncertainties, (a) the quantification of these uncertainties from data, (b) the propagation of the uncertainties 

through the mathematical model onto variables of interest, and (c) the characterization of the models’ outputs 

resulting from the propagation of the uncertainty. 

Probabilistic analysis such as Monte Carlo (MC) simulations is the most popular method for propagating 

uncertainties and characterizing models’ outputs for uncertain models. For this approach, uncertainty can be 

quantified by drawing a large number of samples and running the model with each of these samples. However, 

approaches such as MC simulations are computationally prohibitive especially for complex systems. Moreover, 

the uncertainty propagation results may be questionable when the available information does not provide a strong 

basis/support for a particular probability assumption. To improve the computational efficiency and the accuracy 

of the uncertainty propagation step, the generalized polynomial chaos (gPC) in this work which leads to 

significant reduction in computational time. Then, using a gPC approach, it was possible to treat in this thesis a 

variety of problems that would be otherwise computationally prohibitive when approached with MC methods. 

Abnormal events defined as faults such as sensor/actuator failures usually occur in chemical processes, which 

can affect the process reliability and lead to economic losses. Different fault detection and diagnosis (FDD) 

approaches can be used to diagnose and isolate faults, prevent them from propagating, and improve the reliability 

and efficiency of the supervisory control. The main restrictive factor of an efficient model-based FDD algorithm 

is the model uncertainty. The step of quantifying the effect of uncertainty onto the variables used for isolation or 

diagnosis is typically omitted, leading to a loss of the performance of the FDD algorithm. Moreover, faults often 

may occur intermittently, i.e., systems may switch between non-faulty to faulty operating conditions in a random 

fashion. Such intermittent occurrences are difficult to diagnose and further complicate the proper detection of 

faults. In terms of application, fault diagnosis that explicitly considers the dynamic transients has not been 

extensively addressed in the literature. FDD algorithms that are based on steady state analysis may result in high 

false alarm rate or mis-detection of faults, when they use data collected during dynamic transients. In the current 
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work, the gPC method is combined either with the Maximum Likelihood or with Bayesian Inference to recursively 

estimate faults of a stochastic nature, while taking the uncertainty and dynamic transients into account. 

In practice, most of the available FDD systems are implemented at a supervisory hierarchical level above the 

closed-loop control system and use measurements that are also used for feedback control. While there is a large 

body of methods for FDD, the problem of integrating process control and fault diagnosis algorithm has not been 

addressed as much in particular in the presence of stochastic faults. The key challenge for such integration is that 

these two activities have competing objectives. For example, if the measured quantities are perfectly controlled, 

they will not a sufficient amount of variability required for detection of faults. Thus, there is a trade-off between 

the closed loop control performance and the fault detectability. The optimal trade-off between these two activities 

has been addressed in the present project by a bi-level optimization problem that is accounting for the uncertainty 

and dynamic transients. 

Automated cell detection and characterization is important in many problems such as cancer research, stem 

cell research and wound healing. Studying in vitro cellular behavior via living-cell imaging and high throughput 

screening involves a great amount of imaging data. Accurate and fast quantitative analysis of these images is 

useful for the evaluations of experimental outcomes and cells’ culture protocols. However, these images usually 

have varying image qualities, and the manual quantification and analysis of these data is time consuming and 

prone to errors. Motivated by this, the current work proposed new image processing tools to segment cells from 

the background in a computationally efficient way. The main idea behind automated image segmentation is to 

detect the boundary of cells and separate the cells from the background. However, any measurement error due to 

the noise or uncertainty in the pixels’ intensities may result in significant variations in the results of segmentation. 

To address this problem, a stochastic image segmentation algorithm is developed to account for the uncertainty 

in a given image. 

1.2 Objectives 

In this current project, the following objectives were investigated: 

i- The development of new fault detection and diagnosis (FDD) algorithm to identify and diagnose 

stochastic intermittent fault/s and evaluate the detectability of faults with statistical analysis methods. 

ii- The development of recursive FDD algorithms to improve accuracy of fault diagnosis accounting for 

dynamic transients and uncertainties. 

iii- The investigation of the trade-off between fault detectability and closed loop control performance. 

iv- The development of efficient algorithms to distinguish apoptotic versus normal cells using identified 

morphological features of cells in combination with machine learning techniques. 
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1.3 Contributions 

To summarize, the contributions of this current work are (i) the use of generalized polynomial chaos (gPC) 

expansions for efficient uncertainty quantification and propagation, and (2) their application to a wide array of 

engineering problems including fault detection and diagnosis (FDD), integration of FDD and feedback control, 

and efficient image segmentation. The contributions in each of chapter of this work can be summarized as: 

i- Chapter 2 provides an up-to-date literature review that covers the main aspects of this work, i.e., gPC 

based uncertainty propagation, FDD, integration of fault detection and control, as well as image 

segmentation. 

ii- Chapter 3 presents a computationally efficient FDD algorithm and its application to a two-dimensional 

heat conduction problem. The proposed method is specifically targeted to detect the average of input faults 

consisting of stochastic perturbations around mean values that change intermittently. The detectability of 

faults is assessed by calculating Type I and Type II error. This method is shown to be significantly better in 

terms of computational efficiency and accuracy as compared to Monte Carlo simulations. 

iii- Chapter 4 develops FDD algorithms to identify fault/s of a stochastic nature with dynamic transients by 

combining gPC approximation with nonlinear models of the process and by using either the Maximum 

Likelihood or the Bayesian Inference based estimators. Optimal selection of sensors is addressed based on 

sensitivity analysis of the gPC model. This method is shown to be more computationally efficient than an 

equivalent Particle Filter and less sensitive to the user selected tuning parameters as compared to Particle 

Filter (PF). 

iv- Chapter 5 investigates the problem of the optimal simultaneous tuning of a FDD algorithm and a 

controller in the presence of stochastic time varying faults. This method is successful in achieving a trade-

off between fault detectability and closed loop control performance, and is advantageous in terms of 

computational efficiency as well as fast fault detection. 

v- Chapter 6 presents an efficient gPC model based image segmentation algorithm for fast segmentation of 

fluorescence microscopy images of Chinese Hamster Ovary (CHO) cells. An automated support vector 

machine (SVM) classifier is formulated to distinguish apoptotic versus cells based on morphological 

features identified with the segmentation algorithm. The combination of developed morphological feature 

extraction method and the trained SVM classifier is shown to be more efficient in terms of differentiation 

accuracy. 

vi- Chapter 7 concludes with detailed recommendations for future work on the following topic: (i) arbitrary 

uncertainty quantification and propagation; (ii) integration of plant design, control and fault diagnosis; (iii) 

Image Segmentation and Classification. 
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Chapter 2 

Theoretical Background and Literature Review 

Fault diagnosis in chemical processes and classification of cells’ states of bioengineering are two typical 

examples of classification problems in engineering. For fault diagnosis, the classification methods are used to 

predict whether the process is operated at faulty or non-faulty operating condition. In the context of classification 

of cells’ states, the goal is to assess the in-vitro status of cells, e.g., healthy cells versus cells undergoing 

programmed cell death or apoptosis. 

This chapter provides a brief literature review on the fault detection and diagnosis (FDD), and on cell imaging 

techniques. Section 2.1 discusses the general uncertainty quantification and propagation method used in this work. 

This is followed by reviews on fault detection and diagnosis methods, and on the interaction between process 

control and fault detection. Understanding this interaction is essential for achieving an optimal trade-off of fault 

detection and control, since in industrial practice both algorithms are operated simultaneously. The review on 

segmentation of images is given in Section 2.3 followed by a summary of the literature review in Section 2.4. 

2.1 Spectral Representation of Stochastic Process 

There has been a good amount of research on the numerical solution of large scale engineering problems in the 

presence of uncertainty (Stefanou G. , 2009). Such uncertainties may originate from either intrinsic time varying 

phenomena or may result from the use of stochastic noisy data for model calibration. Then, uncertainty model 

parameters can be used to describe the model uncertainty. Different techniques have been proposed to take the 

uncertainties into account from the very beginning of the problem definition and analysis (Xiu & Karniadakis, 

2003). Uncertainties may be associated with uncertain boundary or initial conditions and/or geometric 

discrepancies between model and process. A common approach to describe uncertainty is by assuming that the 

uncertain parameters are stochastic quantities. However, the treatment of these uncertainties as stochastic with a 

specific probability distribution is not simple due to lack of relevant experimental data to calibrate this 

distribution. Stochastic processes can be roughly categorized into two main groups based on their probability 

distribution, i.e., Gaussian and non-Gaussian. The simulations of Gaussian and non-Gaussian stochastic processes 

are different and a review of available methods for both representations is presented in the following two 

subsections. 

2.1.1 Quantification of Uncertainty 

Although most of the uncertainties in engineering problems may be represented as non-Gaussian, the Gaussian 

assumption is usually made to keep the analysis simple (Spanos & Zeldin, 1998). Current available methods for 

simulation of Gaussian processes are divided into two categories, i.e., the spectral representation method 

(Shinozuka & Deodatis, 1996) and the Karhunen-Loeve (K-L) expansion (Ghanem & Spanos, 1991). 
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Both approaches are based on the representation of a stochastic process 𝑓(𝑥) as a summation of particular 

predefined functions with respect to specific random variables as follows:  

                                        f(x)= ∑ Cn∅n(x)

N

n=0

     (2.1) 

The spectral representation approach is based on expanding f(x) as a sum of trigonometric functions with 

random phase angles (Φn(x) in Eq. 2.1) and amplitudes (Cn in Eq. 2.1). The simplest version of this type of 

representation which is widely adopted in most applications is given as a function of one random phase angle. 

The coefficients of the description given in Eq. 2.1 are deterministic and depend on the prescribed power spectrum 

of the stochastic field (Stefanou G. , 2009). Spectral representation algorithms have been employed in various 

kinds of Gaussian stochastic process, such as multivariate, multidimensional, and non-homogeneous problem 

(Liang, Chaudhuri, & Shinozuka, 2007; Spanosa, Tezcanb, & Tratskasc, 2005), and have been successfully 

implemented in the framework of Monte Carlo (MC) simulations for solving problems with the stochastic finite 

element method (Lagaros & Papadopoulos, 2006). 

The K-L expansion is a special case of an orthogonal series expansion, in which the orthogonal functions are 

chosen as the eigenfunctions of a Fredholm integral equation. In a K-L expansion, the first term in Eq. 2.1 (n = 

0) is the expectation of the random variable, and it is identical to 0 in most applications. In addition, Φn(x) is 

defined as the multiplication of eigenvalues by their corresponding eigenfunctions of a set of uncorrelated random 

variables, where the eigenvalues and eigenfunctions are calculated from the covariance function. This expansion 

is particularly suitable for the representation of strongly correlated random variables where only a few terms in 

Eq. 2.1 suffice to capture the majority of the information contained in the data used for calibration (Stefanou G. , 

2009). However, there are drawbacks for the K-L expansion, which limits its application (Xiu D. , 2010). The 

first challenge is solving the Fredholm integral equation, since the analytical solution for this kind of integral 

equation is only available for simple geometries and special forms of the autocovariance function. Furthermore, 

the covariance function of the stochastic system is generally unknown, and the computation of eigenvalues and 

corresponding eigenfunctions from the autocovariance function is strongly influenced by the K-L expansion 

(Phoon, Huang, & Quek, 2002; Schwab & Todor, 2006). In order to overcome those shortcomings, polynomial 

chaos expansion (PCE) and generalized polynomial chaos (gPC) expansion were proposed. 

2.1.2 Generalized Polynomial Chaos Expansion 

The problem of modeling non-Gaussian uncertainty has gained considerable attention since uncertain model 

components often exhibit non-Gaussian probabilistic characteristics. The polynomial chaos expansion (PCE) is 

an alternative method to generate sample functions of non-Gaussian, non-stationary stochastic process that 

employs the Hermite polynomial as an orthogonal basis function of random variables. However, the Hermite 

polynomial has difficulties in approximating probabilities for non-Gaussian uncertainties. Subsequently, the 
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generalized polynomial chaos (gPC) method was proposed (Xiu & Karniadakis, 2002). Different kinds of 

orthogonal polynomials can be selected as basis function depending on the probability distribution function (PDF) 

of the random variables to be described by the expansion so as to obtain optimal convergence and to maintain 

orthogonality. 

A random process X(θ), viewed as a function of a random event θ is expressed as: 

                                        𝑿(𝜃)

=  𝑎0𝐻0 + ∑ 𝑎𝑖1
𝐻1 (𝜉𝑖1

(𝜃))

∞

𝑖1=1

+ ∑ ∑ 𝑎𝑖1𝑖2
𝐻2 (𝜉𝑖1

(𝜃)𝜉𝑖2
(𝜃))

𝑖1

𝑖2

∞

𝑖1=1

 
 

                                        + ∑ ∑ ∑ 𝑎𝑖1𝑖2𝑖3
𝐻3 (𝜉𝑖1

(𝜃), 𝜉𝑖2
(𝜃), 𝜉𝑖3

(𝜃)) +

𝑖2

𝑖3

𝑖1

𝑖2

∞

𝑖1=1

⋯ (2.2) 

 

where 𝐻𝑛(𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) is the Hermite polynomial of order n in terms of the multidimensional independent standard 

Gaussian random variables 𝝃 = (𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) with zero mean and unit variance. This expression is the discrete 

version of the original Wiener polynomial chaos expansion, in which the continuous integrals are replaced by 

summations. The general equation of the Hermite polynomial is defined as: 

                                        𝐻𝑛(𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) = 𝑒1 2𝜉𝑟𝜉⁄ (−1)𝑛
𝜕𝑛

𝜕𝜉𝑖1
⋯ 𝜕𝜉𝑖𝑛

𝑒1 2𝜉𝑟𝜉⁄     (2.3) 

For example, one dimensional Hermite polynomials are: 

                                        𝐼0 = 1,  𝐼1 = 𝜉,  𝐼2 = 𝜉2 − 1,  𝐼3 = 𝜉3 − 3𝜉  ⋯   (2.4) 

For notational convenience, Eq. 2.2 can be rewritten as follows: 

                                       𝑿(𝜃) = ∑ 𝑎̂𝑗𝐼𝑗(𝝃)

∞

𝑗=0

  (2.5) 

There is one-to-one correspondence between the function 𝐻𝑛(𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) and 𝐼𝑗(𝝃), as well as the coefficients 

𝑎𝑖1⋯𝑖𝑟
 and 𝑎̂𝑗. In Eq. 2.2, the summation is carried out according to ascending order of the Hermite polynomials. 

The Hermite based chaos expansion sometimes converges very slowly or may diverge for non-Gaussian 

random inputs (Xiu D. , 2009). In order to deal with more general random inputs, t basis functions other than 

Hermite can be used. These basis functions are selected as per the Wiener-Askey scheme (Xiu & Karniadakis, 

2002), which is a generalization of the original Wiener’s Hermite-chaos expansion. Due to their ability to produce 

more compact representations, gPC’s are considered in the current work. Similar to the one-dimensional Hermite 

polynomial, a general two-dimensional expansion of random process 𝑿(𝜃) is defined as: 

                                       𝑿(𝜃) =  𝑐0ψ0 + ∑ 𝑐𝑖1
ψ1 (𝜉𝑖1

(𝜃))

∞

𝑖1=1

+ ∑ ∑ 𝑐𝑖1𝑖2
ψ2 (𝜉𝑖1

(𝜃)𝜉𝑖2
(𝜃))

𝑖1

𝑖2

∞

𝑖1=1

   



 

 8 

                                      + ∑ ∑ ∑ 𝑐𝑖1𝑖2𝑖3
𝜓3 (𝜉𝑖1

(𝜃), 𝜉𝑖2
(𝜃), 𝜉𝑖3

(𝜃)) +

𝑖2

𝑖3

𝑖1

𝑖2

∞

𝑖1=1

⋯    (2.6) 

 

where ψ𝑛(𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) is the gPC from the Askey-chaos scheme, and  𝑛 is the order of multi-dimensional random 

variables 𝛏 = (𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

). The polynomials in Eq. 2.6 are not restricted to Hermite polynomials and are selected 

according to the Askey scheme dependent on the PDF of the random variables to be used in a particular problem. 

For example, Jacobi polynomials can be used for when the random variables have a Beta distribution. For 

notational convenience, Eq. 2.6 can be also expressed as: 

                                      𝑿(𝜃) = ∑ 𝑐̂𝑗∅𝑗(𝝃)

∞

𝑗=0

 (2.7) 

There is one-to-one correspondence between the functions ψ𝑛(𝜉𝑖1
, ⋯ , 𝜉𝑖𝑛

) and ∅j(𝛏), as well as their 

coefficients 𝑐̂𝑗 and 𝑐𝑖1⋯𝑖𝑟
. Since each polynomial considered in the Askey scheme forms a complete basis in the 

Hilbert space determined by their corresponding support, it can be concluded that each type of Askey-chaos will 

converge to any  𝑳𝟐 functional in the 𝑳𝟐 sense in the corresponding Hilbert functional space, i.e., 

                                     〈∅𝑖∅𝑗〉 = 〈∅𝑖
2〉𝛿𝑖𝑗 (2.8) 

where δij is the Kronecker delta and 〈∙,∙〉 means the inner product in the Hilbert space of the variables.  

                                      〈𝑓(𝜉)𝑔(𝜉)〉 = ∫ 𝑓(𝜉)𝑔(𝜉) 𝑊(𝜉)𝑑𝜉 (2.9) 

where W(ξ) is the weighting function in Eq. 2.9, and is defined as: 

                                      𝑊(𝜉) =
1

√2𝜋𝑛
𝑒−1 2𝜉𝑇𝜉⁄  (2.10) 

where 𝑛 is the dimension of random variables 𝝃. The key difference between gPC and many other possible 

expansions is that the polynomials are orthogonal with respect to the weighting function 𝑊(𝜉). The 

correspondence between the type of Wiener-Askey polynomial chaos and the uncertain inputs of continuous chaos 

is given in Table 2.1 (Xiu D. , 2009). It is worthwhile mentioning that uniformly distributed random variables 

correspond to a special case of the Jacobi polynomial with parameter α=β=0*, and this case is separately shown 

in table 2.1. The support is defined as the set of points where the PDF of particular polynomial is not zero-valued. 

Specifically, the support is defined by two parameters for the Beta as well as the Uniform distribution, 𝑎 and 𝑏, 

which are their minimum and maximum values. 

                                                      
*
The weighting function of a uniform distribution in (-1, 1) is W(ξ) = ½, and the first few Legendre orthogonal polynomials are:  

u0(ξ) = 1, u1(ξ) = ξ, u2(ξ) = (3/2)*ξ2 - (1/2), … 

  The weighting function of a beta distribution in (-1, 1) is W(ξ) = (1-ξ)α(1+ξ)β, (α, β > 0), and the first few Jacobi orthogonal polynomials are: 

b0(ξ) = 1, b1(ξ) = (1/2)[α – β + (α + β + 2)*ξ], … 

  Note that the Legendre polynomial chaos becomes a special case of the Jacobi polynomial chaos with α = β = 0. 
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Table 2.1Correspondence of Wiener-Askey polynomial and random input 

Random Input Polynomial Support 

Gaussian Hermite-chaos (−∞, ∞) 

Gamma Laguerre-chaos [0, ∞) 

Beta Jacobi-chaos [a, b] 
Uniform Legendre-chaos [a, b] 

 

2.1.3 Uncertainty Propagation 

The second part in the analysis of a stochastic system consists of propagating the effect of uncertainties in the 

model parameters onto the system outputs. The stochastic finite difference or element method is an extension of 

the corresponding classical deterministic approach and has been gaining attention in the past decades to solve 

stochastic problems (Ghanem & Spanos, 1991). This method basically proceeds as per the following three steps: 

(1) the representation of the random inputs by the spectral approach; (2) the propagation of uncertainties into the 

stochastic system equation (first at the element and then at the global system level); and (3) the response variability 

calculation with respect to the stochastic inputs/parameters. 

In this work, a gPC approximation is used for the first step as per the discussion in the previous subsection. 

Then, for step 2, the gPC’s are substituted into the governing equations and subsequently, a Galerkin projection 

calculation is applied to compute the coefficients of the gPC expansions using their orthogonality properties. The 

general procedures for Galerkin projection are presented as below. 

Suppose the general stochastic elliptic partial differential equations with random inputs are given as†: 

                                      ∇ ∙ [𝜅(𝑥; 𝜔)∇𝑢(𝑥; 𝜔)] = 𝑓(𝑥; 𝜔)         on 𝒟 × Ω  

                                            𝑢(𝑥; 𝜔) = 𝑔(𝑥; 𝜔)                             on 𝜕𝒟 × Ω (2.11) 

where 𝒟 is the spatial domain and Ω is the probability space, 𝑓, 𝑔 and κ are functions on 𝒟 × Ω. 𝑢 is the solution, 

𝑓 is the source term, 𝑔 is the Dirichlet boundary condition, and κ is a model parameter. All of these operators are 

a function of the uncertainty 𝜔, which may be introduced into the system via stochastic boundary conditions, 

initial conditions, material properties, etc. 

In order to solve for solution 𝑢, which is a random variable, the gPC’s are employed to expand the variables 

as follows: 

                                      𝜅(𝑥; 𝜔) =  ∑ 𝜅𝑖(𝑥)𝜙𝑖(𝜉)

𝑃

𝑖=0

 (2.12) 

                                     𝑢(𝑥; 𝜔) =  ∑ 𝑢𝑖(𝑥)𝜙𝑖(𝜉)

𝑃

𝑖=0

 (2.13) 

                                                      
† The application of the gPC approximation to ordinary differential equations follows the similar procedures and will be further explained in 

each chapter individually. 
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                                     𝑓(𝑥; 𝜔) =  ∑ 𝑓𝑖(𝑥)𝜙𝑖(𝜉)

𝑃

𝑖=0

 (2.14) 

where the infinite summation of  𝝃 in Eq. 2.5 has been replaced by a truncated finite term summation of {𝝓} in 

the finite dimensions of 𝝃 = {𝜉1, ⋯ , 𝜉𝑛}. The dimensionality 𝑛 of 𝝃 is determined by the random inputs. According 

to the gPC expansion, the random parameter 𝜔 is embedded into the polynomial basis 𝜙(𝝃) while the coefficients 

in the above equations, i.e., 𝜅𝑖, 𝑢𝑖, 𝑓𝑖, are deterministic. 

The truncated finite summation parameter 𝑃 is determined by the dimensionality (𝑛) of random inputs and the 

highest order (𝑝) of the polynomials {𝜙𝑖}, which satisfies: 

                                      (𝑃 + 1) = (𝑛 + 𝑝)! 𝑛! 𝑝!⁄  (2.15) 

In order to achieve exponential convergence in the coefficients 𝑢𝑖, the optimum polynomial should be chosen 

from the Askey-chaos scheme (see Table 2.1) and the weighting function is calculated accordingly. By 

substituting the expansions into Eq. 2.11: 

                                      𝛻 ∙ [∑ 𝜅𝑖(𝑥)𝜙𝑖(𝜉)

𝑃

𝑖=0

𝛻 ∑ 𝑢𝑖(𝑥)𝜙𝑗(𝜉)

𝑃

𝑗=0

] = ∑ 𝑓𝑖(𝑥)𝜙𝑖(𝜉)

𝑃

𝑖=0

 (2.16) 

After some algebra: 

                                      ∑ ∑[𝜅𝑖(𝑥)𝛻2𝑢𝑗(𝑥) + 𝜅𝑖(𝑥)𝛻𝑢𝑗(𝑥)]𝜙𝑖

𝑃

𝑗=0

𝜙𝑗

𝑃

𝑖=0

= ∑ 𝑓𝑖(𝑥)𝜙𝑖

𝑃

𝑖=0

 (2.17) 

The choice of 𝝃 and 𝜙(𝝃)define the weighting function to be used. Using the concept of the inner product, a 

Galerkin projection of Eq. 2.17 onto each basis polynomial {𝜙𝑖} is then conducted. The projection ensures that 

the error is orthogonal to the functional space spanned by the finite dimensional basis {𝜙𝑖}. Based on the 

orthogonality of {𝜙𝑖}, the following expression can be obtained: 

                                      ∑ ∑[𝜅𝑖(𝑥)𝛻2𝑢𝑗(𝑥) + 𝜅𝑖(𝑥)𝛻𝑢𝑗(𝑥)]𝑒𝑖𝑗𝑘

𝑃

𝑗=0

𝑃

𝑖=0

= ∑ 𝑓𝑘(𝑥)〈𝜙𝑘
2〉

𝑃

𝑖=0

 (2.18) 

where 𝑒𝑖𝑗𝑘 =  〈𝜙𝑖𝜙𝑗𝜙𝑘〉. Based on the orthogonality of the basis function some of these products will be vanish, 

and then the original stochastic partial differential equation is reduced to a system of coupled deterministic 

differential equations with the coefficients obtained from the truncated gPC expansion. The central differencing 

method is used to solve the deterministic system. Once the coefficients of the expansion are obtained, it is possible 

to compute statistics for the solved output with the following formulae: 

                                      𝔼(𝑢) = 𝛦 [∑ 𝑢𝑖𝜙𝑖

𝑃

𝑖=0

] = 𝑢0𝛦[𝜙0] + ∑ 𝛦[𝜙𝑘]

𝑃

𝑖=1

= 𝑢0    (2.19) 

                                   𝑉𝑎𝑟(𝑢) = 𝛦 [(𝑢 − 𝛦(𝑢))
2

] = 𝛦 [(∑ 𝑢𝑖𝜙𝑖

𝑃

𝑖=0

− 𝑢0)

2

] 
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                                      =  𝛦 [(∑ 𝑢𝑖𝜙𝑖

𝑃

𝑖=1

)

2

] = ∑ 𝑢𝑖
2𝛦(𝜙𝑖

2)

𝑃

𝑖=1

 (2.20) 

Also, the PDF of u can be efficiently calculated by sampling from the distribution of ξ and substituting the 

corresponding sampled values into Eq. 2.13. It should be noted that Taylor approximations are needed for using 

Galerkin projection for nonlinear terms that are not of polynomial form. The polynomial chaos quadrature (PCQ) 

can be used to overcome this challenge when using a non-intrusive PCE method (Xiu D. , 2009). In appendix B, 

PCQ is used to replace the exact integration in Eq. 2.17 with respect to ξ and is applied to the estimation of 

reactivity ratios in copolymerization. 

2.2 Fault Detection and Diagnosis 

Distributed control systems have brought great benefits to the modern engineering systems, such as chemical 

and petrochemical industries. However, abnormal events usually occur in practice affecting their performance 

and resulting in economic losses (Isermann, 2005). To detect faults and improve the reliability and efficiency of 

supervision, fault detection and diagnosis (FDD) become essential activity. 

FDD activities involve the timely detection of abnormal events, correct diagnosis of their causal origins, 

efficient isolation of a fault and appropriate actions to bring the process back to its normal operating state. 

Generally, FDD methods can be categorized into three classes: model based analytical methods, data driven based 

empirical methods and hybrid approaches (Frank, 1990). All of the available methodologies involve a series of 

steps: (1) information transformation; (2) symptoms extraction and (3) classification, and (4) cause-effect 

mapping according to the obtainable measurements or constructible reference indicator (signal) 

(Venkatasubramanian, Rengaswamy, & Yin, 2003). A general schematic depiction of FDD is given in Figure 2.1 

(Gerlter, 1998). 

Information 

transformation

symptoms 

extraction

cause-effect 

mapping 

symptoms 

classfication

Measurement

space

Feature

space

Decision

space

Class 

space

 

Figure 2.1 General scheme of fault detection and diagnosis 
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2.2.1 Model based Analytical Methods 

Different mathematical models have been proposed for use in the framework of FDD. A straightforward 

approach to detect a potential fault in a process is to compare the process behavior with a mathematical model 

describing the nominal process performance, i.e., without the faults. The inconsistencies between the 

measurements and the ideal model predictions are employed as an indicator to describe the discrepancies between 

the actual behavior and the normal operation state predicted by the model (Isermann, 2005). When a fault occurs, 

a nonzero indicator should be obtained to reveal the relation between the observed variables and the model based 

predictions. 

The advantage of model based FDD method is that the effects of faults and other inputs, such as disturbances 

and noise, can be mathematically modeled as either additive or multiplicative contributions according to the 

physical understanding of the process (Frank, 1990; Isermann, 2005). Therefore, the discrepancy between the 

nominal model and the true system can be clearly illustrated by a mathematical expression, and then the fault can 

be further classified easily. According to the types of measured input signals and output signals, there are three 

kinds of model based FDD methods: parameter estimation, state/output observer and a parity space based 

approach (Frank, 1990). 

The parameter estimation method is based on the premise that the fault in the process can change a model 

parameter significantly. Thus changes in model parameters, as obtained from regression of the model with data, 

can be used to infer faults (Isermann, 2005). The presence of the fault can be inferred from the discrepancies 

between the nominal model parameter values and the estimated parameter where the nominal model parameters 

are associated with normal (fault free) operating conditions. Computing the differences (Eq. 2.21) between the 

nominal values and the estimated parameters is a straightforward way to identify the occurrence of a fault: 

                                      ∆𝑝 = 𝑝 − 𝑝̂ (2.21) 

where 𝑝 and 𝑝̂ are the nominal value and the estimation of the physical parameter respectively. Normally, due to 

the disturbance/noise as well as uncertainty of modeling, the difference ∆𝑝 is not identical to 0 even if there is no 

fault. Therefore, a threshold must be set up to indicate whether a fault has occurred or not. If the value of indicator 

∆𝑝 is greater than the threshold a fault is identified. 

An alternative method is to use either state observers or output observers. This kind of methodology is referred 

to as the observer based method (Isermann R. , 2005; Venkatasubramanian, Rengaswamy, & Yin, 2003). A state 

observer can be applied if the faults can be modeled as a state variable, and the output observer is used if the state 

observer is not feasible, e.g. because of lack of observability. The observer based method is especially appropriate 

if the fault occurs in sensors and actuators because the latter are not part of the state space model used for state 

estimation. Similar to the parameter estimation approach, a relatively precise mathematical model for the plant is 

required. An indicator is also necessary, which is defined as the residual between the estimated state and the 

measured state, or the nominal output and the measurement of output from the process when the state observer is 
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not available. Although generally linear observers have been used, nonlinear state estimators have been also 

reported. For nonlinear systems, the extended Kalman filter (EKF) has also been used (Chetouania, Mouhaba, 

Cosmaoa, & Estela, 2002). However, the EKF can result in a suboptimal solution, since it is based on linearization 

of the nonlinear equations at each time interval. A class of estimators that do not require explicit linearization has 

been investigated recently involving particle filtering (Rawlings & Bakshi, 2006). However, this kind of approach 

belongs to the Markov Chain Monte Carlo based methodology, and its computational cost is very large. 

In addition to the employment of observers for identifying potential faults, another promising approach is fault 

identification by input-output models (Isermann, 2005). Parity space based residual analysis belongs to this group. 

This method is based on comparing predictions from a fixed model 𝐺𝑚  to the measured outputs from process 𝐺𝑝, 

thereby forming a residual vector with respect to the selected input 𝑢 and output 𝑦: 

                                      𝑟(𝑠) = 𝐺𝑀𝑦(𝑠)𝑦(𝑠) − 𝐺𝑀𝑢(𝑠)𝑢(𝑠) (2.22) 

where 𝑟(𝑠) is the residual vector and 𝐺𝑀𝑦 and 𝐺𝑀𝑢 are transfer functions. Ideally, for a model structure error and 

noise free system, the residual is 0 in the absence of faults. If the fault, model structure error and noise can be 

mathematically modeled, the parity space based method is capable of decoupling fault from model structure error 

and noise. Therefore, the parity space based method exhibits certain robustness with respect to model structure 

error and noise. 

2.2.2 Data Driven based Empirical Methods 

Empirical methods are mainly based on univariate and multivariate statistical algorithms to identify the 

occurrence of fault (Negiz & Cinar, 1997). They are useful in real process operations since accurate mathematical 

mechanistic (first-principles based) models are difficult to obtain due to lack of knowledge about the process. 

Considering that the systems are influenced by random inputs (distance or noise), it is reasonable to represent the 

measurements as statistical time series that can be analyzed in a probabilistic framework (Venkatasubramanian 

& Kavuri, 2003). When the process is fault free, the observations can be represented by a probability distribution 

that is assigned to the normal operation. If the process works under faulty condition, the underlying distributions 

will deviate from the normal distribution thus revealing that the process is out of control. Accordingly, the fault 

is identified by detecting changes in the probability distribution of the collected data. 

For the data driven method, measurements are sampled sequentially and decisions are made based on the 

observations up to the current time. The easiest way to make a decision regarding the occurrence or absence of a 

fault is to compare the values of the observations with predefined control limits. If the value is beyond the limits 

(or ranges) this can be interpreted as the occurrence of a fault. Obviously, an effective algorithm should be 

sensitive to the faults and robust to the random noise and model structure error. However, the sensitivity to process 

noise usually increases along with the sensitivity to actual input changes, which means that often false alarm rates 

tend to increase while detection ability increases. 
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The Shewhart control chart and the cumulative sums chart were the earliest algorithms proposed for online 

monitoring and fault detection. They are based on the assumption that a process subject to its natural variability 

will remain in a relatively steady state of statistical control where certain process and monitored variables remain 

close to the desired values. Therefore, abnormal events or faults can be identified as soon as they occur by 

monitoring deviations from the steady state of statistical control. On the other hand, since most of the chemical 

and petrochemical processes are characterized by strong interaction, the monitored variables are generally not 

independent, which limits the effectiveness of univariate control charts. Instead, multivariate statistical techniques 

have been proposed as a way of providing a better solution (MacGregor & Kourti, 1995).  

Most of the available multivariate analysis based algorithms are based on the idea of Principal component 

analysis (PCA). PCA not only transforms a number of related process variables into a smaller set of uncorrelated 

variables, but it can also be used for control-detection in the presence of interactions among variables. Similar to 

PCA, partial least squares (PLS) conceptually is another kind of dimension reduction method, which is employed 

to reduce the dimensions of both process variables and product quality variable to make the analysis simpler. 

There are different versions of PCA/PLS algorithms reported in literature (Venkatasubramanian & Kavuri, 2003). 

PCA is based on an orthogonal decomposition of the covariance matrix for the underlying process variables 

along their directions that could explain the maximum variability in the obtained data. Therefore, the advantage 

of using PCA is its ability to represent the original variables in a relatively lower dimension where the information 

can be properly explained and the major trends in the original data set can be identified.  A major limitation of 

PCA based monitoring methods reported in the literature is that the time invariant PCA models have been used 

whereas most practical processes are time varying. To address this, some studies developed algorithms to update 

the PCA model recursively. A general scheme for recursive PCA update should include: mean, covariance, 

principal components including number of components to be retained, and the confidence limits for 𝑇2 (scaled 

squared scores) and 𝑄 (residual) statistics. An algorithm involving recursive PCA (Li, Yue, Valle-Cervantes, & 

Qin, 2000) has been used for adaptive monitoring of a rapid thermal annealing process. A similar recursive PLS 

algorithm was employed to monitor a complex industrial process (Wang, Kruger, & Lennox, 2003). 

Another variant of the PCA method is the multi-resolution or multi-scale PCA. In the latter approach wavelet 

analysis was combined with PCA method and has been proposed to deal with both cross-correlated and auto-

correlated variables (Bakshi, 1998) as well as with robustness problems (Chen, Bandoni, & Romagnoli, 1996; 

Wang & Romagnoli, 2005). The combination algorithm of PCA and wavelet analysis can provide multi-resolution 

and multi-scale capabilities for fault detection. In particular it can reveal frequency information about the fault. 

To overcome the nonlinear behavior that is typical in most chemical processes, different algorithms have been 

developed. A neural network based PCA model was proposed where an internal layer referred to as the bottleneck 

was used to reduce the model dimension (Kramer, 1991). A multi-scale nonlinear PCA was proposed using 

wavelet analysis (Maulud, Wang, & Romagnoli, 2006). Alternatively, a Kernel PCA method has also been 
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proposed as a relatively simple alternative to neural network based approaches since it requires straightforward 

solution of an eigenvalue problem (Lee, Yoo, Choi, Vanrolleghem, & Lee, 2004). 

Compared with FDD schemes that are based on mechanistic models, multivariate statistical methods do not 

require an explicit mechanistic model and can handle high dimensional and correlated processes. However, they 

fail in predicting faults for data that is significantly different from the ones used for model calibration. Thus, 

hybrid methods that combine mechanistic models and multivariate statistical models were proposed to overcome 

this shortcoming (Gertler & Cao, 2004; Mylaraswamy & Venkatasubramanian, 1997). 

2.2.3 Hybrid Algorithms 

To determine the effectiveness of the available fault detection algorithm, four issues have to be addressed: (1) 

whether the fault is observable; (2) can the fault be distinguished from another unknown fault; (3) can the fault 

be detected in the presence of process and measurement noise; and (4) can the fault be distinguished from other 

known faults. All these questions are related to the subject of observability of a fault from available measurements 

or mathematical model. Since no single method is accurate enough to deal with all the requirements for a fault 

diagnostic system, hybrid approaches that combine mechanistic models and data driven empirical models become 

more attractive (Gertler & Cao, 2004). A successful implementation of such a hybrid framework has been 

conducted for the Amoco model IV fluid catalytic cracking unit. It was adopted by Honeywell for the development 

of an intelligent control system (Mylaraswamy & Venkatasubramanian, 1997). 

2.2.4 Interaction between Control and Fault Diagnosis 

Most of the FDD systems are implemented at the supervisory level on top of the available control system. As 

mentioned above, fault detection methods are based on measurements and some of these measurements are used 

for feedback in control loops. Thus, variations in the tuning of control loops may affect the closed loop dynamics 

of the controlled variables and subsequently may affect the performance of the fault detection algorithms. For 

example, detuning of a controller may be required to increase the variability in a controlled variable so as to 

improve the observability of fault. However in such case the performance of the control unit would deteriorate. 

Hence, there is a tradeoff between fast fault detection and acceptable performance of the control unit. A control 

system that is tolerant to faults is referred to as a fault tolerant control system (FTC). More precisely, FTCs are 

closed loop control systems that can tolerate malfunctions of the system while maintaining desirable performance 

(Isermann, 2006). 

Although the fault tolerant control problem has been extensively studied, most of the work on FTC was carried 

out on either one of the two components of the systems, i.e. the FDD component and the control strategy. The 

issue of interaction between control and diagnostic together has not been addressed as much. Hence, most 

available FDD algorithms that are operated together with a controller have not been designed to achieve an 
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optimal trade-off between control and FDD performance. Thus, it is important to integrate FDD and control to 

develop flexible algorithms that satisfy both objectives (Blanke, Kinnaert, & Lunze, 2006). 

Generally, interactive FTC approaches can be categorized into two classes, i.e., passive FTC and active FTC 

(Zhang & Jiang, 2008). For the passive FTC strategy, the controllers are fixed and predesigned to be robust against 

a class of predefined faults (Eterno, et al., 1985). In contrast, active FTC system can react to the potential faults 

by reconfiguring the control strategy to preserve stability and system properties. Thus, in active FTC, the 

controller has to compensate for the impacts of the possible faults either by selecting a pre-assumed control 

algorithm or by synthesizing a new one online (Patton, 1997). These two approaches rely highly on the real time 

FDD algorithm to provide timely information about the status of the system. Thus, the goal of a FTC system is to 

design controllers with flexible structures while maintaining stability and improving the performance, not only 

when all control components are performing normally, but also when faults occur. 

The active FTC can be divided into four units: (1) a re-configurable controller; (2) a FDD algorithm; (3) a 

controller reconfiguration mechanism; and (4) a flexible reference governor (Zhang & Jiang, 2008). The issues 

are how to: (1) design controllers that can be reconfigured; (2) develop FDD schemes that are sensitive to faults 

while robust to model uncertainties, disturbances as well as noise; and (3) manipulate controllers in the event of 

faults to achieve desirable performance of monitored parameters. A four parameter controller setup that is a 

generalization of the two degrees of freedom controller was proposed to address the interaction between fault 

detection and control (Jacobson & Nett, 1991). The four degrees of freedom controller was reformulated into a 

general framework, where tools from optimal and robust control were applied (Tyler & Morari, 1994). Based on 

a standard fault diagnostic algorithm, simultaneous design of a controller and multivariate statistical model based 

fault diagnosis scheme was proposed and the economic impact of unobservable faults was discussed (Shams, 

Budman, & Duever, 2011). The influence of control on the fault detection problem was studied from the modeling 

point of view (Gertler & Cao, 2004), where the set point of the feedback control and/or the ratio coefficient to be 

used for ratio control was changed to improve the fault identification. 

2.2.5 Estimation based on Sequential Monte Carlo Methods 

Classification involves estimating unknown quantities from some given observations. When the prior 

knowledge about the phenomenon being modelled is available, Bayesian models can be formulated with this 

knowledge. The knowledge includes prior distributions for the unknown quantities and likelihood functions 

relating these quantities to the observations. Following this, all inference on the unknown quantities is based on 

the posterior distribution obtained from Bayes’ theorem. In terms of implementation, the observations (data) 

arrive sequentially in time and we are interested in performing inference online. Therefore, it is necessary to 

update the posterior distribution as new data become available. Computational efficiency is an additional 

motivation for real-time estimation with new data (Doucet, Freitas, & Gordon, 2001). 
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When the data can be modelled by a linear Gaussian state space model, it is possible to derive an exact analytical 

expression to compute the evolving sequence of posterior distributions. This procedure is the well-known Kalman 

filter (Ristic, Arulampalam, & Gordon, 2004). If the data are modelled as a partially observed finite state-space 

Markov chain, it is also possible to derive an analytical solution, which is known as the Hidden Markov Model 

(HMM) filter (Elliott, Aggoun, & Moore, 2008). These two popular filters rely on various assumptions to ensure 

mathematical tractability. However, observations (data) collected can be very complex. For example, these data 

typically involve elements of non-Gaussian and nonlinearity, which may preclude analytic solution. Many 

schemes, such as extended Kalman filter, Gaussian sum approximation and grid-based filter, have been proposed 

to overcome this challenge. The first two methods cannot take all the salient statistical features into account for 

the process of interest, which may lead to poor estimation results. The third method, grid-based filter (Ristic, 

Arulampalam, & Gordon, 2004), using deterministic numerical integration methods, can provide accurate results, 

but are difficult to implement and computational prohibitive for high dimensional nonlinear problem. 

Sequential Monte Carlo (SMC) methods are a set of simulation based methods that can provide a convenient 

and attractive approach to computing the posterior distributions. SMC methods are flexible and can be easily 

applied to complicated problem (Doucet, Freitas, & Gordon, 2001). Over the last decades, several related 

algorithms, such as particle filter and Monte Carlo filter, have been proposed in several research fields. Since 

their introduction, particle filters have been become a very popular method to solve the solution of optimal 

estimation problem in nonlinear and non-Gaussian scenarios. In the context of fault detection and diagnosis 

(FDD), the principle of particle filters is to approximate the conditional state probability distribution that can be 

used for fault detection by a number of particles. These particles contain samples from the state space and a set 

of weights that are associated with the particles. Particles can be easily generated and recursively updated using 

a given process model, which can be further used to describe the evolution in time of the system under analysis. 

Thus, particle filters algorithm can be used to estimate the probability density function of state, which can be 

further used to indicate the probability of the occurrence of fault. 

2.3 Classification of Cells States 

2.3.1 Microscopic Image Acquisition 

Microscopy images of cells can be used to discriminate normal, apoptotic and necrotic cells. The morphological 

difference between apoptosis and necrosis was first observed by electron microscopy (Huerta, Goulet, Huerta-

Yepez, & Livingston, 2007). Due to its high resolution, the electron microscopy has the capacity of detecting the 

specific morphological changes during early and late apoptotic cells. However, this method requires special 

technical training and it takes much time, which limit its application in practice. 

Fluorescence microscopy can improve the observation of apoptotic bodies and also discern necrosis by staining 

cells with fluorescent dyes. Different fluorescent dyes such as Hoechst stains and Annexin V can be used to label 
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the cells to visualize nuclear and morphological changes by fluorescence microscopy. This technique has been 

used to differentiate and quantify apoptotic versus normal cells as well as for determining cell viability (Mercille 

& Massie, 1994). This method involves two nuclear-fluorescent dyes, acridine orange (AO) in combination with 

ethidium bromide (EB). These dies are mixed in a fixed ratio with the cell suspension and can be analyzed by 

fluorescence microscopy. The microscope has a filter combination suited for detecting fluorescein. The nucleic 

acid selective cationic fluorescent dye AO can penetrate both viable and nonviable cells, interact with DNA and 

RNA by intercalation or electrostatic attraction and make the cells appear green. In contrast, EB can only diffuse 

into nonviable cells and as a predominant dye makes them appear red/orange. Both normal and apoptotic viable 

cells appear green, whereas non-viable cells appear red/orange. 

Flow cytometry is a useful technique that can provide simultaneous multi-parametric analysis of the 

heterogeneous cell population based on light scattering and emission fluorescence, which allows identifying a 

homogeneous subpopulation within the total cell population. Using this method, the cells pass through a beam of 

laser light individually and they are distinguished and quantified according to a set of specific characteristics and 

phenotype data such as size, granularity or fluorescent molecular binding to the cell. The fluorescent agent may 

be coupled with a dye or conjugated to a MAb specific for molecules either on the cell surface or within specific 

intracellular components. 

Gel electrophoresis is the other powerful tool to detect DNA laddering that is a hallmark of early event in 

apoptosis. Moreover, the enzyme-linked immunosorbent assay (ELISA) has also been applied for detection of 

DNA fragmentation using specific monoclonal antibody (Huerta, Goulet, Huerta-Yepez, & Livingston, 2007). 

Elastic Scattering spectroscopy is an optical technique which is based on changes in light scattering properties of 

cells that are related to morphological changes during the progress of apoptosis (Mulvey, Curtis, Singh, & Bigio, 

2007). For most methods, the detection of apoptosis in vitro involves fixing and staining the cells to explore 

morphological or biochemical characteristic of apoptotic cells. The challenge is to segment cells from these 

images and to develop fast and accurate algorithms to measure morphological features that are representative of 

apoptosis, which is the focus of this current research. 

2.3.2 Image Segmentation Algorithms 

A segmentation algorithm for microscopic images subdivides an image into its constituent regions or objects 

(cellular regions). In terms of application, these algorithms can be roughly classified into three groups, i.e., edge 

detection, region detection and pattern recognition. 

Edge detection is based on gradients between the contour of the cellular region and the background. Filtering 

techniques such as the Sobel filter can be used to detect the boundary of cells (Gonzalez & Woods, 2009), and 

have been applied to segment cells from the images of living-cells. The more advanced techniques to detect the 

boundary of cells are active contour (Kass, Witkin, & Terzopoulos, 1998) and level set method (Sethian, 2002), 
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for which an energy function is used. This function can be minimized iteratively and can be used to evolve the 

geometric boundary iteratively until it identifies cells in a given image. The main difference between the active 

contour and the level set method is in the implementation and the way that the boundary is calculated. The active 

contour keeps the same number of cells for two consecutive iterations; while the level set method can merge and 

create cellular regions. Both methods require an initial segmentation guess to start the numerical calculation. It 

will be shown in Chapter 6 that the level set algorithm can be formulated as a time-varying two dimensional 

partial differential equation where time refers to iteration time rather than physical time. 

The active contour and level set method have been applied to microscopy images. For example, these methods 

can be used to count and characterize myocytes (Acton, Yang, Hossack, & Wamhoff, 2009), cancer cells (Said, 

Karam, Berens, Lacroix, & Renaut, 2007) and neutrophils (Chen, Chen, & Guan, 2009). One of the main 

challenges when using the active contour and the level set method is to have an optimal estimation of the initial 

contour, which can ensure proper convergence to the true boundary. Another issue is the computational time 

required to evolve the boundary because of the low contrast between the cells and the background. Computational 

time is critical if the objective is to identify cells in high throughput experiments. 

The region detection method consists of splitting and merging regions in an image based on a homogeneity or 

similarity criterion. For example, the quad-tree method was used to segment histological plant cells, white blood 

cells and red blood cells in microscopic images (Ko, Seo, & Nam, 2007). For the region growing based 

segmentation, the first step is to highlight a region (seed region/pixels) manually or by automatic methods (a 

threshold or other techniques). The seed pixels then can be grown to their neighbor’s pixels and those neighbor 

pixels will be included when they satisfy specific conditions. Generally, potential pixels surrounding the regions 

are compared to the mean value of intensities (Adams & Bischof, 1994). Nested kernels are another special case 

of the region detection method, which are based on the computation of a local pixel pattern around the cells 

centroid. The objective is to provide an indication of where the cells are for tracking purposes. For example, this 

method was used to segment and track different kinds of cells from microscopy images (Debeir, Van Ham, Kiss, 

& Decaestecker, 2005). 

For the pattern recognition method, a feature described with a quantitative value can be used as a descriptor to 

classify pixels within an image for segmentation (Gonzalez & Woods, 2009). Both the intensities of pixels and 

the spatial arrangements of these values can be studied to generate numerical values or features that carry 

information of interest about the image. The features can be classified as intensity feature, textural/structural 

features and shape/morphological features (Rodenacker & Bengtsson, 2003). Then, features that are directly 

extracted from the raw image can be combined with machine learning algorithms to further classify the images. 
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2.4 Conclusion 

On the basis of the above literature review, new methodologies are developed for fault diagnosis and image 

segmentation using the generalized polynomial chaos (gPC) framework. The main idea of the gPC methodology 

is to quantify the model uncertainty involved in a stochastic system described by ordinary/partial differential 

equation with the gPC polynomial expansions. Then, the Galerkin projection is used to propagate the uncertainty 

into the system and to transform the stochastic system into a new system, which can be expressed by a set of 

coupled deterministic equations. Since the level set method based image segmentation can be formulated as a 

partial differential equations (PDEs), the methods developed for fault detection involving the solution of PDEs 

using gPC and Galerkin projection can be readily applied to the image segmentation problem treated in this work. 

Following these ideas, this work focuses on three topics: (1) the development of computationally efficient 

model-based fault detection and diagnosis (FDD) algorithms in the presence of uncertainties; (2) the formulation 

of an optimization problem to seek for the optimal trade-off between the detectability of fault and the control 

performance; (3) the development of accurate and fast quantitative analysis tools for living-cells from stochastic 

fluorescence microscopy images to evaluate the cells’ culture protocols and experimental outcomes. 
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Chapter 3 

Fault Detection and Diagnosis with Parametric Uncertainty 

(Adopted from Du et al., 2015, Computer and Chemical Engineering, vol. 76, p. 63~75, 2015) 

3.1 Overview 

In this chapter, we present a new methodology to identify and diagnose intermittent stochastic faults occurring in 

a nonlinear process. A Generalized Polynomial Chaos (gPC) expansion representing the stochastic inputs is 

employed in combination with the nonlinear mechanistic model of the process to calculate the resulting statistical 

distribution of measured variables that are used for fault detection and classification. A Galerkin projection based 

stochastic finite difference analysis is utilized to transform the stochastic mechanistic equation into a coupled 

deterministic system of equations which is solved numerically to obtain the gPC expansion coefficients. To detect 

and recognize faults, the probability density functions (PDFs) and joint confidence regions (JCRs) of the measured 

variables to be used for fault detection are obtained by substituting samples from a random space into the gPC 

expansions. The method is applied to a two dimensional heat transfer problem with faults consisting of stochastic 

changes combined with step change variations in the thermal diffusivity and in a boundary condition. The 

proposed methodology is compared with a Monte Carlo (MC) simulations based approach to illustrate its 

advantages in terms of computational efficiency as well as accuracy. 

3.2 Introduction 

Distributed control systems have brought great benefits to the chemical and petrochemical industries. However, 

abnormal events defined as faults usually occur affecting closed loop performance and resulting in economic 

losses (Isermann R. , 2005). Fault detection and diagnosis (FDD) techniques can be applied to detect the 

occurrence of faults and improve the reliability and efficiency of supervisory control (Gerlter, 1998; Patton, Frank, 

& Clark, 2010). 

Most of the available FDD algorithms involve comparing the observed behavior of the process to the 

corresponding model runs obtained by first-principles or empirical models (Venkatasubramanian, Rengaswamy, 

& Yin, 2003). If the fault is observable, the FDD system will provide fault symptom patterns, which in turn are 

referred back to the fault diagnosis scheme to identify the root cause of the observed abnormal behavior by a point 

estimate (Isermann R. , 2006). However, the main restrictive factor of a model-based FDD algorithm is the model 

uncertainty. The accuracy of FDD schemes can be affected by uncertainty in parameters of the model used for 

detection. Such uncertainty may originate from either intrinsic time varying phenomena or may result from the 

use of stochastic noisy data used to calibrate the model. The step of quantifying the uncertainty is typically omitted 

in reported FDD studies, leading to a loss of information about the influence of the uncertainties on the 

performance of the FDD by a point symptom pattern comparison. There are few studies that takes model 
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uncertainties into consideration while developing the FDD algorithm (Li & Yang, 2012; Eriksson, Frisk, & 

Krysander, 2013; Scott J. , Findeisen, Braatz, & Raimondo, 2013). However, these approaches are based on model 

linearization and tell nothing about what the probability is that a fault has occurred, due to model uncertainties. 

Also, since faults occurring in a process may be of a stochastic nature, the use of point estimates for FDD may 

not be effective. 

In terms of applications, FDD schemes based on mechanistic models have been generally applied for processes 

described by ordinary differential equations (ODEs) (Prashant, Charles, Adiwinata, Panagiotis, & James, 2008; 

Chilin, Liu, Pena, Christofides, & DavisJames, 2010). Many chemical processes such as heat conduction 

problems, however, are modeled by partial differential equations (PDEs). The application of FDD methodologies 

to distributed parameter systems described by PDEs is lacking (Ghantasala & El-Farra, 2009).  

The current paper addresses the limitations outlined above by proposing a FDD methodology for systems 

represented by a first-principles model where both parameters and faults are stochastic and by applying the 

methodology to a process characterized by PDEs. The faults considered in the present work are stochastic 

perturbations superimposed on step changes in specific input variables. The key goal of the proposed FDD 

algorithm is to identify the intermittent step changes in the presence of the random perturbations in the inputs, 

measurement noise and parametric uncertainty in the models used to detect the fault.  Thus, a main feature of the 

proposed algorithm is quantifying the effect of stochastic changes in inputs and uncertainty in parameters and 

propagating these variations to the outputs to be measured for use by the FDD algorithm. 

One possibility to propagate stochastic variations in inputs onto the outputs is to use Monte Carlo (MC) 

simulations (Spanos & Zeldin, 1998). However, MC based approaches are very computationally demanding since 

they require a large number of samples to get accurate results. It should be noticed that although the calculation 

for calibrating a FDD model are mostly done off-line, approaches such as MC are still computationally prohibitive 

especially for problems of large dimensions as shown later in the manuscript. Also, improving the computational 

efficiency of the FDD algorithm may facilitate their future application in the implementation of adaptive 

algorithms which may require online calculations. 

Recently, uncertainty analysis using Generalized Polynomial Chaos (gPC) expansion has been studied by a 

few authors in different modeling, control and optimization problems (Foo, Yosibash, & Karniadakis, 2007; Nagy 

& Braatz, 2007; Mandur & Budman, 2014), and has been shown to be more computationally efficient compared 

to MC. The advantages of gPC are that they can be used to propagate complex probability distributions of input 

variables onto measured variables (outputs) of interest and the statistical moments of the outputs can be calculated 

analytically (Ghanem & Spanos, 1991). 

The main objective of this paper is to investigate a novel computationally efficient FDD algorithm using 

probability distributions of measured variables obtained from the propagation of variability in inputs and model 

parameters by using the gPC expansions. To the best knowledge of the authors, while the gPC has been applied 
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before for modeling and control applications it has not been used before for FDD as in the current study. The 

proposed methodology is specifically targeted to detect the average of input faults consisting of stochastic 

perturbations around mean values that change intermittently. The method does not require any approximations of 

the model and it explicitly considers its nonlinear nature by directly substituting the gPC expansions of the 

dependent variables into the nonlinear equations describing the process. The use of the gPC permits the detection 

of faults of a stochastic nature which are common in the process industries whereas previous fault detection 

algorithms mostly dealt with deterministic faults, e.g., steps and ramps. It is shown in this work that the proposed 

gPC based algorithm can efficiently tackle the numerical difficulties involved in the treatment of stochastic faults. 

To test the efficiency of the proposed approach, it is illustrated for a two-dimensional heat conduction problem 

described by a second order partial differential equation (PDE), where stochastic faults related to the changes in 

the diffusivity and a boundary condition are considered. The stochastic model is calibrated by minimizing the 

deviation between the first-principle based model prediction and noisy measurements. Different measurement 

noise levels are studied to verify the effectiveness of the proposed algorithm as well as to provide information for 

sensor placements. 

This paper is organized as follows. Section 3.3 presents the background and the principal methodology. Section 

3.4 illustrates the proposed methodology for a two-dimensional steady state heat conduction problem followed 

by a summary of results in Section 3.5 and conclusions in Section 3.6. 

3.3 Background and Methodology 

3.3.1 Generalized Polynomial Chaos Expansion 

A polynomial chaos expansion represents an arbitrary random variable of interest as a function of another 

random variable with a prescribed distribution. Define a probability space (Ω, F, π), where Ω is the sample space, 

F is the σ-algebra on Ω and π is a probability measure. Let {ξi(θ)}
i=1

∞
 be a set of independent random variables 

from F with probability measure π, then a random process X, defined as a function of a random event θ is 

expressed as: 
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where ψ
n
(ξi1

,⋯,ξin
,⋯) is the polynomial chaos basis function from the Askey-chaos scheme  (Xiu, 2009), n is the 

nth random variable in a multi-dimensional random variable  ξ = (ξi1
,⋯,ξin

,⋯), and c(.) are deterministic gPC 

expansion coefficients. For notational convenience, Eq. 3.1 is often rewritten as: 
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                                      X(θ)= ∑ ĉjФj(ξ)

∞

j=0

 (3.2) 

where there is one-to-one correspondence between the functions and their coefficients for the above Eqs. 3.1 and 

3.2. For computational efficiency, the gPC expansion is considered in its truncated sum form as: 

                                      X(θ)= ∑ ĉjФj(ξ) = ∑ ĉjФj(ξi1
,⋯,ξin

) 

N

j=0

 

N

j=0

 (3.3) 

where in is the total number of independent random variables and N is the total number of terms in the expansion 

determined by the dimensionality of random variables (n) and the highest order (p) of the polynomials {Фj} such 

as: 

                                      (N+1)= (n+p)! n!p!⁄  (3.4) 

A key property of a gPC expansion is that all basis functions are orthogonal to each other with respect to the 

probability distribution of the independent random variable 𝜉, and accordingly the following applies: 

                                     〈Фi,Фj
〉 = ∫ Фi(ξ)Фj(ξ) W(ξ) dξ =〈Фi

2〉δij (3.5) 

where δij is the Kronecker delta, <·,·> denotes the inner product of two polynomial functions from the Askey 

chaos framework with respect to the random variables ξ, and W(ξ) is the weighting function for a particular 

polynomial. For example, the Hermite polynomials are the basis functions of choice for normally distributed 

variables and Laguerre polynomials for Gamma random variables (Xiu, 2009). The orthogonality of the basis 

functions is utilized to compute the jth coefficient in Eq. (3) by a projection calculation as follows: 

                                     ĉj=
〈X,Фj〉

〈Фj
2〉

=
∫ XФjW(ξ) dξ

∫ Фj
2W(ξ) dξ

 (3.6) 

where the integrals in Eq. 3.6 can be calculated by quadrature rules. 

3.3.2 Stochastic Finite Difference Method: Response Representation 

Assuming a general stochastic elliptic PDE with random inputs is given as: 

                                      ∇∙[κ(x; ω)∇u(x; ω)] = f(x; ω)            on Ɗ×Ω (3.7) 

                                            ub(x; ω) = g(x; ω)                            on ∂Ɗ×Ω  

where Ɗ is the spatial domain and Ω is the probability space, f, g and κ are functions on Ɗ×Ω, u is the solution. f 

is a source term, g is the Dirichlet boundary conditions and κ means a problem specific physical property. All of 

these operators are subjected to uncertainty ω, which may be introduced into the system via variability in 

boundary conditions, initial conditions or physical properties. The latter set of variables will be jointly referred 

heretofore as uncertain input variables. 

In order to solve for the random variable u, the gPC expansions are used to represent the uncertain input 

variables of interest by the following stochastic descriptions:   
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                                      κ(x; ω) = ∑ κi(x)Φi(ξ)

P

i=0

 (3.8) 

                                     ub(x; ω) = ∑ ubi(x)Φi(ξ)

P

i=0

 (3.9) 

                                     f(x; ω) = ∑ f
i
(x)Φi(ξ)

P

i=0

 (3.10) 

where a truncated finite summation of {Φi} with P terms in the finite dimensions of ξ={ξ1,…, ξn}is used. The 

dimensionality n of ξ is determined by the number of random events. The random parameter ω is embedded into 

the polynomial basis {Φi}, where ω is represented with a curve spanned by the set ξ, thus the expansions’ 

coefficients in Eqs. 3.8 ~ 3.10 are deterministic. The solution of {um} for every interior grid point m of the model 

in Eq. 3.7 is rewritten as: 

                                      um(x; ω) = ∑ um,i(x)Φi(ξ)

P

i=0

 (3.11) 

where m is a grid point in the spatial domain and i is the ith gPC coefficients for this particular grid point. In order 

to achieve exponential convergence in the coefficients of solution {um}, the optimum polynomial is chosen from 

the Askey-chaos scheme with respect to the PDF of the random input variables, which are assumed to be a priori 

known and for which the weighting function is selected accordingly (Xiu, 2009). Substituting the gPC expansions 

given in Eqs. 3.8 ~ 3.11 into Eq. 3.7 yields: 

                                      ∇∙ [∑ κi(x)Φi(ξ)

P

i=0

∇ ∑ um,i(x)Φj(ξ)

P

j=0

] = ∑ f
i
(x)Φi(ξ)

P

i=0

 (3.12) 

Upon re-arrangement of Eq. 3.12 as follows: 

                                      ∑ ∑ [κi(x)∇2u
m,j

(x) + κi(x)∇u
m,j

(x)] Φi

P

j=0

Φj

P

i=0

= ∑ f
i
(x)Φi

P

i=0

 (3.13) 

Employing the inner product, a Galerkin projection of Eq. 3.13 onto each basis polynomial {Фj} is then 

conducted. The projection ensures that the error is orthogonal to the functional space spanned by the finite 

dimensional basis {Фi}. Based on the orthogonality of {Фj}, the following expression can be obtained: 

                                      ∑ ∑ [κi(x)∇2u
m,j

(x) + κi(x)∇u
m,j

(x)] eijk

P

j=0

P

i=0

= ∑ f
k
(x)〈Фk

2〉

P

i=0

 (3.14) 

where eijk = <ФiФjФk >. Thus, the original stochastic PDE is transformed into a system of coupled deterministic 

equations where the unknowns are the coefficients obtained by a truncated gPC expansion. Once the coefficients 

of the expansion are calculated from the system of equations represented by Eq. 3.14, it is possible to compute 

statistical moments for the solution at each grid point with the following formulae: 
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                                      E(um) = Ε [∑ um,iФi

P

i=0

]  = um,0Ε[Ф0] + ∑ Ε[Фk]

P

i=1

 = um,0    (3.15) 

                                   V(um) = Ε [(um - Ε(um))
2
]  = Ε [(∑ um,iФi

P

i=0

 - um,0)

2

] 

 

                                      = Ε [(∑ um,iФi

P

i=1

)

2

]  = ∑ um,i
2 Ε(Фi

2)

P

i=1

 (3.16) 

Also, the PDFs of solution {um} can be rapidly calculated by sampling from the distribution of ξ and 

substituting the corresponding samples into Eq. 3.11. The ability of explicitly calculating statistical momenta by 

analytical equations is the basis for the computational efficiency of gPC based approaches. 

3.4 Case Study: Two-dimensional Heat Conduction Problem 

The proposed methodology is applied to a two-dimensional steady state heat conduction problem with 

stochastic input parameters, which is described as: 

                                          κ (
∂

2
T(x,y)

∂x2
+

∂
2
T(x,y)

∂y2
)  = Q(x,y) (3.17) 

over a rectangular domain Ɗ={(x,y)|x0 ≤ x ≤ xf, y0 ≤ y ≤ yf}with boundary conditions: 

T(x0, y) = gx0(y), T(xf, y) = gxf (y) 

T(x, y0) = gy0(x), T(x, yf) = gyf (x) 

Intermittent step changes on input parameters with superimposed random perturbations as shown in Fig.1 are 

assumed for both the internal thermal diffusivity κ and the boundary conditions g. The goal is to detect the changes 

in the mean values of the input variables in the presence of the random perturbations occurring around these 

changes. A practical application for this problem is the detection of changes in process operating conditions based 

on the analysis of a two dimensional temperature distribution as obtained with a thermal scanner or an array of 

thermocouples. For example, two dimensional scanners are extensively used in the process industries to detect 

hot spots or abnormal changes in heat sources, such as flames (Murat, 2012). 

The faults considered in the current work consist of intermittent step changes in the diffusivity and one of the 

boundary conditions with superimposed stochastic variations as shown in Fig.3.1 (a), while previous fault 

detection algorithm mostly dealt with faults mostly consisting of steps or ramps as shown in Fig.3.1 (b). To detect 

faults such as the ones described in Fig.3.1 (a), it is proposed to propagate the stochasticity of the inputs onto the 

measured output temperatures by the gPC based approach outlined in the previous section. Then, measurements 

of output variables are used to detect and diagnose the changes in parameter means from the calculated PDFs 

(JCRs) of the measured outputs. 
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Figure 3.1 Faults profiles 

(a) Fault profile representing intermittent changes in mean values of input with superimposed random 

perturbations around these means (b) Fault profile representing the step or ramp type faults 

In contrast with other reported model based FDD approaches, the proposed method does not rely on a single 

point estimate. Instead, to identify an abnormal event, probability distributions in the measured variables, i.e., a 

set of temperatures obtained at certain locations in this case study, are used to recognize the occurrence of a fault. 

Following the above, the fault detection and fault isolation steps can be performed as follows: 

i- A fault is detected by assessing the probability of a measured temperature to correspond to operation 

around a particular mean value of the inputs of the form shown in Fig.3.1 (a). This calculation is based 

on a priori calculated PDF around a specific input mean value. 

ii- To isolate a fault, PDFs (JCRs) are constructed for the measured temperatures corresponding to each of 

the mean values used for each of the input variables considered for the study. Isolation of a particular 

fault is conducted by assessing the relative probability of a measured temperature with respect to each 

one of the calculated PDFs (JCRs). 

The key challenge for accomplishing the detection and isolation steps arises from the measurements being 

corrupted by noise in addition to the stochasticity of the inputs. Therefore, it is necessary to take the input 

stochasticity and noise into account to develop a robust FDD algorithm. While in the absence of measurement 

noise the output PDFs can be calculated exactly from a priori knowledge of the stochastic distributions around 

the means in the inputs, in a real implementation the PDFs of measured variables have to be calibrated from actual 

noisy process data. By calibration it is meant that in the presence of noise the means and variances of the input 

PDFs that explain the measured output PDFs will be different from the ones that would lead to the output PDFs 

if noise would not be present. Thus, the means and variances of the input PDFs have to be changed with respect 

to their actual values to minimize the discrepancy between the predicted and measured outputs. 

Two steps are involved in the calibration of the FDD algorithm in the presence of measurement noise and 

stochasticity: (1) uncertainty propagation and model formulation using the Galerkin projection method described 

above; (2) model calibration and optimization by minimizing the sum of squared errors between model predictions 
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and noisy measurements. After the model is properly calibrated with noisy data, the resulting model can be tested 

for detection and isolation with data that were not used for model calibration. The calibration method will be 

further detailed in section 3.4.2 below. 

3.4.1 Uncertainty Propagation and Model Calibration 

3.4.1.1 Individual Fault Case (Case Study I) 

The first case study assumes that the diffusivity is defined as a stochastic variable whereas the boundary 

conditions and external source are assumed to be known constants. The resulting stochastic PDE is used to solve 

for the temperature distribution over a square plate. The measured temperatures to be used for isolation and 

detection are assumed to be corrupted by Gaussian noise. The problem is solved by assuming a gPC representation 

of the diffusivity and the solution as follows: 

                                          κ(x,y;ω) = ∑ κi(x,y)Фi(ξ)

P

i=0

 (3.18) 

                                          T(x,y;ω) = ∑ Ti(x,y)Фi(ξ)

P

i=0

 (3.19) 

where ω denotes a random event causing a random normally distributed change in diffusivity and the Hermite 

polynomials are chosen as the basis functions. For example, the diffusivity has a mean of κ̅ and unit variance, i.e., 

κ = κ̅+ξ. This is a one dimensional random space problem since only one random variable is considered, i.e., ξ = 

ξ1.  

To apply the finite differences method, the solution domain on both horizontal and vertical directions is divided 

into (Nxy+1) equal subsections resulting in (Nxy×Nxy) interior grid points over the square plate. Some of the interior 

grid points for Eq. 3.17 for finite difference analysis are shown in Fig.3.2. Assuming the lengths of each 

subsection along the horizontal and vertical directions are equal: 

∆x = ∆y = (xf – x0)/(Nxy + 1) = (yf – y0)/(Nxy + 1) (3.20) 

The second derivative is approximated by a five-point central difference approximation. For every interior 

point (xj, yi) with 1≤ m, n ≤ Nxy (as shown in Fig.3.2), the finite difference equation is described as: 

                                         (κ̅ + ξ1) (
Tm,n+1 - 2Tm,n + Tm,n-1

∆x2
 + 

Tm+1,n-2Tm,n+Tm-1,n

∆y2
)  = Q (3.21) 

where 

                                         Tm,n = T(xn, y
m

,ω) = ∑ Ti(xn, y
m

)Фi(ξ1)

P

i=0

 (3.22) 
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Figure 3.2 The grid points for two-dimensional heat conduction problem 

Using Galerkin projection, both sides of Eq. 3.21 are multiplied by polynomials {Φj(ξ1)} and taking inner 

product results in a set of equations: 

                                         ∑ ((Ti)xx+(Ti)yy)〈Φj(κ̅+ξ1)Φi〉 = Q〈Φj〉

P

i=0

 (3.23) 

Assume Ξ is the central differencing operator matrix and vector Ti is the gPC coefficient of the solution. 

Substituting Eqs. 3.18 and 3.19 into Eq. 3.23 gives: 

                                         ∑〈Φj(ξ1)(κ̅ + ξ1)Φi(ξ1)〉ΞTi = Q〈Φj〉

P

i=0

e (3.24) 

where e is a vector with all elements equal to 1. For the coupled deterministic Eq. 3.24, all the gPC expansion 

coefficients are solved by quadrature rules with Eq. 3.6. The PDFs of the temperature {T(m,n)} at a particular grid 

point can be approximated by substituting random samples of ξ1 into the solution expansion given by Eq. 3.22.  

3.4.1.2 Simultaneous Two Faults Case (Case Study II) 

Simultaneous random intermittent changes in the diffusivity and boundary condition are considered as 

described by Fig.3.1 (a). The external heat source is assumed to be a known constant. Random changes in 

temperature at only one boundary (T(xf, y) = gxf (y)) are studied for simplicity, while at the other boundaries the 

temperatures are assumed to be constant. It is also assumed that the stochastic perturbations around the different 

means of the diffusivity and the boundary condition temperature values are independent stochastic events. Thus, 

a two dimensional random space is considered, i.e., ξ = {ξ1, ξ2}, where ξ1 and ξ2 denote the random events in κ 

and gxf(y), respectively. It is assumed that κ follows the same distribution as in case study I, and the boundary is 

a random variable with a mean of ḡ and unit variance, i.e.,  κ = κ ̅+ ξ1 and g = g̅ + ξ2. For this case, the solution at 

particular grid can be described by a gPC expansion as: 

                                        Tm,n = T(xn,y
m

,ω) = ∑ ∑ Ti(xn,y
m

)Φi(ξ1,ξ2)

P

j=0

P

i=0

 (3.25) 
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where ω represents the random events resulting in intermittent changes in both diffusivity and boundary condition. 

Substituting these inputs’ gPCs into Eq. 3.17 results in: 

                                         (κ̅ + ξ1) ∑ ((Ti)xx+ (Ti)yy)Φi(ξ1,ξ2) = Q

P

i=0

 (3.26) 

                                         T(x0, y) = C,  T(xf,y) = g̅ + ξ2  

                                         T(x, y
0
) = C, T (x, y

f
)  = C  

where C denotes known deterministic constant boundary conditions. After approximating the second derivative 

by a five point central difference approximation and substituting this approximation into Eq. 3.25 into Eq. 3.26, 

and using Galerkin projection with respect to <·, Фk> on both sides of Eq. 3.26 yields: 

                                         ∑ ∑ ∑ (κ̅ + ξ1)((Ti)xx + (Ti)yy) 〈ФiФj
Фk〉

P

j=0

P

i=0

=

P

k=0

Q〈Фk
2〉         (3.27) 

Eq. 3.27 represents a system of coupled deterministic linear equations with respect to the gPC coefficients 

that can be solved numerically. 

3.4.2 Model Calibration and Optimization 

Model calibration is done by using noisy output measurements to adjust the expectation and variance of the 

input PDFs. It should be noticed that the resulting calibrated input PDFs may result in input PDFs that are different 

from their actual values due to the noise in the measurement used for calibration. It is assumed that a limited set 

of output measurements is available for model calibration. Then a cost function is defined as follows: 

                                        min
λ

J  = ∑ 𝜇1,i(γ1,i
 - υ1,i)

2

n

i=1

+ ∑ 𝜇2,i(γ2,i
 - υ2,i)

2

n

i=1

       (3.28) 

where γ1,i and γ2,i are the mean and variance of measured variables calculated from the gPC model by Eqs. 3.15 

and 3.16, υ1,i and υ2,i are the mean and variance approximated by the sampled measured outputs, λ is a vector of 

expectations and variances for the inputs, i.e., the mean and the variance of diffusivity in Case study I or the mean 

and the variance of diffusivity and boundary condition for two simultaneous faults in Case study II. The variable 

n is the number of sensors located within the discretized square domain. The weights μ1,i and μ2,i in the cost 

function Eq. 3.28 are used to penalize the mean relative to the variance. The effect of the choice of these weights 

is further discussed in the case study. A detailed flowchart summarizing the steps to solve Eq. 3.28 is given in 

Fig.3.3. To generate the training set of measurements, Gaussian noise is added to the simulated data obtained by 

the PDE based deterministic model. 
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Figure 3.3 Flowchart to formulate the adaptive optimization model 

3.4.3 FDD Algorithms 

Following model calibration as per the procedure explained above, the PDFs for the measured variables can 

be constructed for each one of the mean values considered in the diffusivity in Case study I by solving the problem 

in Eq. 3.17. The PDFs of the measured variables (temperature at different grid points) are obtained by sampling 

from the distribution of the random event and substituting the samples into Eq. 3.19. Then, the mean values of 

inputs, i.e., diffusivity, can be inferred by assessing the probability of a measured temperature with respect to 

each one of the calculated PDFs as shown in Fig.3.4, where each of the different mean values of the input defines 

a class. 
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Figure 3.4 FDD algorithm by using the PDF profiles of measured variables 

As seen in Fig.3.4, if one of the PDFs corresponding to a specific mean value is considered as the normal 

operating regime, this procedure allows to both detecting abnormal operation as well as isolating the particular 

input mean value for any given measured output. Since a particular value of temperature can be found within 

different PDFs with different probabilities due to the measurement noise and stochasticity on inputs, the value of 
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diffusivity is inferred as the class for which the largest probability of the measurement is obtained. For example, 

if three probability values are obtained for a given measurement as shown in Fig.3.4, the maximum probability 

value is used to determine that the system is operated around the mean value corresponding to ‘Class 2’. 

In the case of simultaneous faults entering the system, a joint confidence region (JCR) of more than one sensor 

is used to infer the input changes. The JCRs are generated as per the following steps: i- a range of maximum 

temperatures’ variations is estimated for each one of the two sensors used for inferring the faults. ii- a discrete 

grid made of combinations of temperature values at the two sensor locations is generated based on the temperature 

variations estimated in (i) as shown in Fig.3.5. iii-  the random variables ξ1 and ξ2 corresponding to the faults in 

diffusivity and boundary conditions, are sampled from their respective distributions and substituted into the 

temperature gPC expansion (Eq. 3.25) thus generating corresponding temperature values. iv- each calculated 

temperature value in item (iii) is assigned to the closest grid point in Fig.3.5, and after all the temperature values 

are assigned, the number of samples for each grid point is calculated. v- the probability at each grid point is 

calculated by dividing the number of samples at the grid point by the total number of samples (total number of 

combinations of ξ1 and ξ2 substituted into the gPC model), and vi- the JCR is formed by connecting the grid points 

corresponding to a particular probability value (e.g. 90%). 
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Figure 3.5 Joint Confidence Region (JCR) array 

Two approaches are developed for FDD in the case of simultaneous multiple faults: (i) a JCR profiles based 

method where the JCRs are approximated with the gPC approach and (ii) a gPC model based minimum distance 

method. In Fig.3.6, the projection of two JCR profiles onto a two dimensional plane are shown, where each axis 

represents a measured variable (temperature in our case) for a particular pair of sensors. 



 

 33 

JCR-1

JCR-2

Sensor 01 (T1)

S
e

n
s
o

r 
0

2
 (

T
2
)

Interval 02

Interval 01

   

JCR-1

JCR-2

Sensor 01 (T1)

S
e

n
s
o

r 
0

2
 (

T
2
)

Interval 01

Interval 02

d1
d2

 

Figure 3.6 Sketch of JCR based FDD algorithm 

A JCR only predicts that a set of measurements (indicated by a red star in Fig.3.6) has a particular probability 

of being within a particular class. If a set of measurement is found within a JCR or the overlapping regions 

between two JCRs (as shown in Fig.3.6 (a)), the maximum probability can be used to infer the class, i.e., means 

of diffusivity and boundary condition. However, due to noise, a particular set of measurements may lay outside 

of the JCRs for a given confidence interval (as shown in Fig.3.6 (b)) especially if there is small or no overlap 

between the JCRs. Therefore, a second gPC model based minimum distance approach is used for this latter case. 

By using a three-sigma confidence level, the bounds of random variables (ξ) corresponding to a particular 

confidence level are approximated first. The analytical gPC expression for each combination of diffusivity and 

boundary condition is used to calculate the distance between new points (measurements) and JCRs with a 

prescribed confidence region. The shortest distance between the measurements and the contour of a particular 

JCR indicates that operation within the corresponding class is the most probable.  For example, in Fig.3.6 (b) 

‘Class 1’ is indicated that corresponds to ‘JCR-1’ since the distance d1 is smaller than d2. The Euclidean distance 

is used to find the closest class as follows: 

             min
λξ

J = ∑ (M1 - gPC
1,i

)
2

n

i=1

+ ∑ (M2 - gPC
2,i

)
2

n

i=1

 (3.29) 

where M1 and M2 are the two measurement samples used for FDD, the gPC1,i and gPC2,i are the gPCs expressions 

given by Eq. 3.25 for two different sensor locations for a particular combination i (i ϵ (1,2,…, n)) of diffusivity 

and boundary condition mean values (classes), n is the number of classes, and λξ is the decision variables and is 

a vector of random samples (ξ) in the sample domain Ω1 that minimizes the distance with respect to each class 

represented by a corresponding JCR. 

(a) (b) 
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3.5 Results and Discussion 

3.5.1 Case Study I: Individual Fault Case 

Case Study I consists of detecting intermittent changes in the mean of diffusivity from a small set of 

temperature measurements located within the domain of the heat transfer problem. To illustrate the problem, six 

mean values of diffusivity κ are considered (10, 12, 14, 16, 18 and 20). Operation around each one of these mean 

values is referred to as a class. Thus, six classes described by the expectation of diffusivity are formulated. The 

random variations in diffusivity around these means are assumed to be normally distributed with zero mean and 

unit variance for simplicity. However, the gPC model can be easily extended to distributions other than normal. 

The solution domain is defined as Ɗ = {(x,y) | -1≤ x ≤ 1, -1≤ y ≤ 1}. 

The ability of the proposed method to detect changes in means is evaluated with respect to different locations 

of the temperature sensors within the domain. For design simplicity, it is desired to keep the required number of 

sensors small. Fig.3.7 shows the expectation and variance contour lines calculated by the gPCs’ coefficients 

described in Eqs. 3.15 and 3.16, where the highest order of one dimensional gPC polynomial is 3. Since the gPC 

coefficients over the domain are symmetrical, the domain is divided horizontally and vertically into four 

symmetrical regions. For simplicity, one quarter of the square domain (top-left) is studied with respect to the 

number and locations of the sensors to be used for FDD (as shown in Fig.3.8). 

 
Figure 3.7 Mean and variance distribution over two-dimensional domain 

 (a) Expected value and (b) variance of the solution (𝜅̅ = 10, Q = -100, Nxy =15) 

Additionally, an assumption is made that the location of each sensor coincides with the location of an interior 

grid point used for finite differences analysis. Accordingly, the total number of potential locations of the sensors 

is a function of the number of interior grid points. If the number of interior grid point is (Nxy×Nxy), for example, 

there are ¼Nxy
2 potential locations in one quarter of the domain. For simplicity, the sensors are only placed on the 

diagonal direction, from the top-left to the bottom-right. There are 8 potential sensors’ locations along the diagonal 
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direction for one quarter of the domain, if the Nxy is 15. As shown in Fig.3.8, the sensors along the diagonal 

direction are numbered from 1 to 8, starting from the top-left to the bottom-right. 
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Figure 3.8 Sensors placement for model optimization (top-left part of the square domain) 

To demonstrate the influence of the number and the placements of sensor on the model calibration as defined 

in Eq. 3.28, a criterion is defined as: 

                                       ce= (κ̅simu -  κ̅opt)
2
 (3.30) 

where κ̅simu is the known expected value of diffusivity, κ̅opt is the optimum estimate obtained for different sensors’ 

numbers and locations by solving the optimization problem given by Eq. 3.28, and ce is the discrepancy between 

the estimation and the known mean. If ce is bigger than a prescribed threshold value, the corresponding sensor 

location is ruled out. In addition, a percentage for the acceptable estimates defined in Eq. 3.31 is used to evaluate 

the model calibration results, where Ntrial is the total number of trials and ntrial is the number of desirable estimates 

satisfying Eq. 3.30. 

                            Arate = ntrial/Ntrial (3.31) 

Based on the 8 sensors shown in Fig.3.8, six different sensor placement structures are presented to assess the 

influence of sensors’ number as well as location on the model calibration. Table 1 shows the results of six sensor 

placement strategies for three different measurement noise levels.  

Table 3.1 Comparison of acceptance rate for six sensor placement structures 

Sensor structure Noise level (0.1) Noise Level (0.2) Noise Level (0.3) 

1 (grid point 1) 0.10 0.03 0.03 

2 (grid point 8) 0.9333 0.7667 0.6333 

3 (grid points 1~4) 0.9667 0.7333 0.5500 

4 (grid points 3~6) 0.9833 0.7833 0.7667 

5 (grid points 5~8) 1 0.8167 0.7833 

6 (grid points 1~8) 1 0.8667 0.8500 

 

In Table 3.1, the threshold used to evaluate Eq. 3.30 is chosen as 1 and 60 trials are studied for each combination 

of sensor placement strategy and different noise levels. The measurement noise is assumed to be normally 

distributed with zero mean and variances of 0.1, 0.2 and 0.3, respectively. As seen from Table 3.1, if only one 
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sensor (grid point 1 in Fig.3.8) is located close to the boundary of domain, Arate is lower than 10% for the first 

noise level. By contrast, Arate increases to 93.33% for one sensor situated at the center of the domain (grid point 

8 in Fig.3.8), compared with grid point 1. 

The effect of the weights {μ1,i} and {μ2,i} on the cost function Eq. 3.28 were investigated using sensor structure 

6 defined in Table 3.1. Two sets of weights were studied, i.e., (i) equal weights (μ1,i = μ2,i = 1) and (ii) based on 

the relative magnitudes of the mean and variance (mean~10 and variance~1) unequal weights (μ1,i = 0.1, μ2,i = 1) 

were used. For the latter case, Table 3.2 shows that the weights have negligible effects on the model calibration 

in terms of the predicted mean and variance. 

Table 3.2 Summary of model calibration results (noise variance 𝛔𝟐=0.1) 

κ̅simu 
Equal weights Unequal weights 

κ̅opt ξ
opt

 κ̅opt ξ
opt

 

10 10.1802 1.0220 9.9651 1.0132 

12 11.6243 1.0163 12.0095 1.0125 

14 13.6627 1.0115 14.0217 1.0174 

16 15.9600 1.0083 16.0846 1.0153 

18 18.0425 1.0064 18.0710 1.0326 

20 20.0542 1.0051 19.9315 1.0204 

 

Fig.3.9 shows the PDF profiles corresponding to the six different mean values in diffusivity inferred from 

temperature measurements acquired at grid point 8, where the horizontal axis is the solution of Eq. 3.17, and the 

vertical axis is the normalized probability. The rest of the aforementioned grid points in Fig.3.8 have similar PDF 

profiles except that the temperature ranges of the PDFs are different. In Fig.3.9, Classes are referred to by the 

mean value of diffusivity, i.e., ‘Class: 10’ means that the expectation of the diffusivity is 10. 

 

Figure 3.9 PDF profiles of six classes at grid point 8 by gPC model (Q = -100) 

After model calibration, FDD tests are first conducted by assuming that a single sensor is used to investigate 

the influence of each individual sensor location on the detectability of the fault, i.e., changes in diffusivity. To 

demonstrate the influence of measurement noise on the observability of faults, different measurement noise levels 

are tested. The efficiency of the FDD algorithm is judged based on the fault detection rate defined as follows: 
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drate = 
1

n
∑ di Di⁄

n

i=1

 (3.32) 

where n is the number of classes, i.e., the number of means on diffusivity in Case study I, i is the ith class, di is 

the number of samples that have been classified correctly and Di is the number of testing samples in ith class. 

Fig.3.10 (a) shows the fault detection rate when the variance of the noise is 0.1 and 0.2, respectively. For a 

particular sensor, 1000 testing samples (Di in Eq. 3.32)) are used for each class resulting in 6000 samples in total, 

since six classes are investigated in Case study I. As shown, the detection rate, drate, is higher if the sensor is 

located at the center of the domain, since the temperature at the center of domain is higher than at the other grid 

points thus the signal to noise ratio (SNR) is larger. When the variance of the noise is 0.1, the average of fault 

detection rate for sensor 8 (grid point 8) is ~80%, which is ~60% higher as compared with sensor 1 (grid point 

1). When the noise level is increased to 0.2, the fault detection rate at sensor 8 has been decreased to ~55%. As 

expected, the fault detection rate is higher with smaller measurement noise. To further assess the effect of SNR 

on the fault detection rate, two different values of heat duty, i.e., Q in Eq. 3.17, are considered: -100 and -1000. 

    

Figure 3.10 Fault detection rate for single fault with gPC model 

((a): Q = -100, (b): Q = -1000) 

Fig.3.10 (b) shows the fault detection rates (drate), when the heat duty Q is -1000. It can be seen by comparing 

(a) and (b) in Fig.3.10 that the SNR shows strong influence on the observability of the faults. For example, the 

average detection  rate with Q = -1000 at sensor 1 is ~73% for the first noise level, while it is ~20% as shown in 

Fig.3.10 (a) for Q = -100. It is also observed in Fig.3.10 (b) that the fault detection rate has been decreased as the 

noise level increases. For example, for sensor 1, the detection rate decreased by around 24 percent point when the 

noise level is changed from level 1 to level 2. 

To reduce the influence of the SNR on the detectability of the fault, the use of replicates of measurements was 

investigated. Fig.3.11 gives the results for both aforementioned heat duties where 10 replicates are used. 

Compared with Fig.3.10, the fault detection rate has been increased since the replicates reduce the influence of 

noise on the observability of the input fault. For example, the detection rate (drate) increased by 27 percent point 
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at sensor 8 for noise level 2 and for Q = -100, from 55% to 82%. Additional numerical experiments show that 

with 50 replicates, the fault detection rate (drate) at sensor 1 can be increased by as much as 65% for Q = -100. 

 

Figure 3.11 Fault detection rate for single fault by gPC model with 10 replicates 

((a): Q = -100, (b): Q = -1000) 

Additionally, the detection rate can be further improved by using the 8 sensors together. In this case, the 

detection is based on the average of the probabilities of a particular measurement calculated with respect to the 

PDFs calculated for each sensor. For example, for Q = -100, with no replicates and noise level 1 the detection 

rate (drate) increases to ~92% as compared to a maximum of ~80% when only sensor 8 is used (Fig.3.10 (a)). 

Finally, the detection rate (drate) was investigated with the aforementioned two sets of weights {μ1,i} and {μ2,i} 

in the cost function Eq. 3.28, i.e., equal weights and unequal weights cases. Fig.3.12 shows the detection rate drate 

when the heat duty Q is -1000 and the measurement noise is noise level 2. As seen from Fig.3.12, drate is almost 

identical for the two sets of weights. For simplicity, equal weights were adopted for the rest of case studies. In 

principle, for a different problem, the weights could have a more significant effect on the detection rate but this 

can be identified from the differences in mean and variance during the model calibration step. In the current case 

study the differences between the two sets of weights in the calibration step were negligible as shown in Table 

3.2. 

  

Figure 3.12 Fault detection rate for single fault with different weights 
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3.5.2 Case Study II: Simultaneous Two Faults Case 

This case considers the detection of two simultaneous faults related to stochastic changes superimposed on 

step changes in diffusivity and in one of the boundary conditions. The goal is to detect the step changes in the 

presence of the random perturbations around the changes in mean values of diffusivity and boundary condition. 

To illustrate variations in these two parameters, three different mean values are considered for each: 10, 20 and 

30 for the diffusivity and 5, 10 and 15 for the boundary condition. This results in a total of nine classes, i.e. a total 

of nine combinations of mean values of diffusivity and boundary condition. Each class is referred to by the 

expectation of the diffusivity and boundary condition corresponding to a particular combination of the 

aforementioned values. For example, ‘Class: k=10, g=5’ means that the expectation for the diffusivity and the 

boundary condition is 10 and 5, respectively. Also for simplicity, the random perturbations superimposed on the 

mean values of either input as shown in Fig.1 are assumed to be normally distributed with zero mean and unit 

variance. Fig.3.13 shows the expectation and variance contour lines for each grid point calculated by the gPC 

coefficients described in Eqs. 3.15 and 3.16, where the highest order of the two dimensional gPC polynomials 

used for the solution in the case study is 2. 

 

Figure 3.13 Mean and variance distribution over two-dimensional domain 

(a) Expected value and (b) variance (𝜿̅ = 𝟐𝟎, 𝑻̅ = 𝟓, Q = -100) 

Using the symmetry of the problem around a horizontal axis the analysis is conducted only for the top half of 

the square plate, as shown in Fig.3.14. In addition, as discussed in Section 3.5.1, the number and the placement 

of sensor have significant influence on both model calibration as well as fault detection. For simplicity, eight 

sensors shown in Fig.3.14 are used for model calibration. For simplicity, however, two different combinations of 

two sensor locations are investigated to study the influence of sensor placement on the observability of faults: (i) 

a sensor at the corner of the domain together with a sensor next to the boundary with changing condition (grid 

points 1 and 3 in Fig.3.14), and (ii) a sensor at the center of the domain together with a sensor next to the boundary 

with changing conditions (grid points 2 and 3 in Fig.3.14).  The rationale is that the sensors positioned at the 

corner and center of the domain can serve to investigate the effect of the SNR, which is expected to be at extreme 
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values for these two locations. The sensor placed beside the stochastic boundary is used to obtain information 

about changes in this boundary. 
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Figure 3.14 Sensor placements for Case II (one stochastic boundary) 

Following modeling calibration procedures for two simultaneous faults as described in Section 3.4.2, eight 

sensors situated in Fig.3.14 and equal weights are used for optimization in Eq. 3.28, where P is 2 and Nxy is 8. 

Table 3.3 shows one group of model calibration results for the nine combinations of diffusivity and boundary 

values considered in the study, for which the variance of the measurement noise is 0.1. κ̅opt and ξk are the optimum 

estimates for the stochastic diffusivity, g̅
opt

 and ξg are the optimum values for the boundary condition as obtained 

from the solution of Eq. 3.28. It should be emphasized that eight sensors are utilized for model training to obtain 

better results of acceptable estimate rate Arate as defined in Eq. 3.31 for both mean values in diffusivity and 

boundary condition. On the other hand, for simplicity, only two sensors at a time, i.e., either grid points 1 and 3 

or grid points 2 and 3 as shown in Fig.3.14, are used for detecting the changes in diffusivity and boundary 

condition. 

Using the calibrated results of diffusivity and boundary condition for all combinations of these two variables 

as summarized in Table 3.3, the gPC coefficients are calculated and the temperature distribution at a particular 

grid point (sensor) can be approximated. Using the gPC model, the JCR profiles are generated. For example, 

Fig.3.15 shows 99% confidence JCRs for the first sensor structure (grid points 1 and 3 depicted in Fig.3.14) for 

different combinations of diffusivity and boundary condition, respectively. 

Table 3.3 Summary of model calibration results (noise variance 𝝈𝟐=0.1) 

Optimization results Diffusivity Boundary Condition 

Class κ̅opt ξk g̅
opt

 ξg 

κ̅ = 10,g̅ = 5  10.0736 1.2553 4.9010 1.0348 

κ̅ = 10,g̅ = 10 10.0737 0.8706 9.9010 1.0348 

κ ̅= 10,g̅ = 15 10.3909 1.1910 15.0688 0.8455 

κ̅ = 20,g ̅= 5 19.9999 1.6065 5.0131 0.9082 

κ̅ = 20,g̅ = 10 20.1766 1.4162 9.9679 0.9002 

κ̅ = 20,g̅ = 15 20.3064 1.1593 15.0603 0.9390 

κ̅ = 30,g̅ = 5 30.0559 0.8277 4.8412 1.1195 

κ̅ = 30,g̅ = 10 30.3387 0.9031 9.9736 0.9436 

κ̅ = 30,g ̅= 15 30.4832 1.2802 15.0702 0.8430 
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As can be seen from Fig.3.15, there is no overlap between JCRs with a 99% confidence interval. Therefore, 

the gPC model based minimum distance approach, as defined in Eq. 3.29, can be used when the measurement is 

located between the calculated JCRs. By using a three-sigma confidence level, the solution domain of random 

variables (ξ) with a 99% confidence region is determined in Eq. 3.29. 

 

Figure 3.15 JCRs for two measurements at sensor 1 and 3 with a 99% confidence interval 

The influence of the sensors’ placement on the observability and distinguishability is studied for the two sensor 

structures under consideration. Table 3.4 shows the fault detection rate for Q = -100 by using either a JCR-profiles 

method or the gPC model based minimum distance method, where the measurement noise is assumed to be 

normally distributed with zero mean and variance of 0.1. There are 1000 pairs of testing samples (Di in Eq.3.32) 

for each sensor placement strategy and for a specific combination of diffusivity and boundary condition thus 

resulting in a total of 9000 testing samples corresponding to nine different combinations of three means of 

diffusivity and three means of boundary condition values. 

Table 3.4 Summary of results for fault detection rate for two simultaneous faults (noise variance 𝛔𝟐=0.1) 

Sensors 

Replicates 

1&3 2&3  

0 5 0 5 

JCR profiles 0.5852 0.8148 0.8741 0.9630 

Minimum distance  0.7481 0.9296 0.9741 0.9889 

 

For both approaches, as seen in Table 3.4, the use of sensors 2 and 3 gives better results with respect to the 

fault detection rate (drate) due to higher SNR, as compared to the combination using sensor 1 and 3, which 

experiences larger changes on SNR. As done for Case Study I, replicates can mitigate the influence of SNR on 

the observability of faults as shown in Table 3.4 with 5 replicates. It is also found that the minimum distance 

S
e
n

s
o

r 
3
 (

°C
)

Sensor 1 (°C)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2.75

5.5

8.25

11

13.75

Class 1: k=10,g=5

Class 2: k=10,g=10

Class 3: k=10,g=15

Class 4: k=20,g=5

Class 5: k=20,g=10

Class 6: k=20,g=15

Class 7: k=30,g=5

Class 8: k=30,g=10

Class 9: k=30,g=15



 

 42 

algorithm improves the ability to recognize and classify the faulty operations since many tested samples fall in 

between JCRs regions, as depicted in Fig.3.6 (b). 

3.5.3 Computational Efficiency 

The computational time of the proposed gPC methodology is compared with MC simulations. First, the 

expected value and variance for a particular grid point obtained with the gPC and MC methods are compared. 

The sensors are located along the diagonal direction from the top-left to the bottom-right corners, and the spatial 

discretization order Nxy is 15. Fig.3.16 shows the expectation and variance along the diagonal calculated by the 

gPC as well as MC with different number of samples. It is observed that there is no noticeable difference in the 

expectation between the gPC and MC. By contrast, the variances between the gPC and MC are slightly different 

when the number of samples used in MC is relatively small. The MC solution only approaches the gPC as the 

number of the samples increases, but at the cost of a significant increase in the computational time, which is 

further discussed later in this section. 

To evaluate the efficiency of the gPC based algorithm for detecting faults as compared to MC, the detection 

rate, drate, is studied by MC. The mean and variances for the inputs using an MC based model for fault detection 

are calibrated by solving the optimization problem stated in Eq. 3.28 as done for the gPC based model. Once 

again, following symmetry considerations, only a quarter (top-left) of the solution domain, i.e., square plate, is 

studied. It is worth mentioning that the samples used to calculate the mean and variance approximated by MC in 

Eq. 3.28 are different in each optimization step, which results in a stochastic optimization problem. Thus, the 

genetic algorithm (GA) (Fouskakis & Draper, 2002) is employed to solve Eq. 3.28 when the MC model is used. 

This is fundamentally different from the solution of Eq. 3.28 when using gPC that is deterministic in terms of the 

expansions’ coefficients. 

 

Figure 3.16 Comparisons of expected value (a) and variance (b) between gPC and MC 

For consistency with respect to the gPC based approach, the same eight sensors along the diagonal as shown 

in Fig.3.8 are used for model calibration to compare the results between gPC and MC with a single fault in 

diffusivity. The same assumptions, for stochastic diffusivity, external heat, boundary condition and measurement 
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noise used in the gPC study are made for the MC study. Following the same criterion defined in Eq. 3.30, Fig.3.17 

shows the estimation rate (Arate) which is defined as in Eq. 3.31 and is equivalent to the ones obtained with gPC, 

and the computational time required for both gPC as well as MC to obtain these results. The computational times 

are shown in different scales in Fig.3.17 (b), due to the resulting orders of magnitudes differences between gPC 

and MC computation times. 

  

Figure 3.17 Comparison of model calibration results between gPC and MC (single fault) 

For comparison purposes, the results of acceptable estimation rate Arate by using gPC model is also given (red 

circled line in Fig.3.17 (a)), where sensor structure 6, as prescribed in Table 3.1, is used for consistency for both 

the gPC based method and the MC based method. Compared with MC, gPC gives better results with respect to 

the acceptable estimation rate Arate. As seen from Fig.3.17 (a), Arate is a function of noise level and it is highly 

dependent on the number of samples for the MC based method.  For example, the acceptable estimation rate of 

the MC based method can be increased by ~18.5 percent point, from 54.83% to 73.33% for noise level 3, if 10,000 

samples are used instead of 1,000 but at the cost of a significant increase in computation time, as can be observed 

in Fig.3.17 (b). 

In general, the solution of the calibration step (Eq. 3.28) when using an MC model is highly sensitive to 

measurement noise. As shown in Fig.3.17 (b), it is observed that, to obtain an acceptable estimate rate level similar 

to gPC, 7 hours (black axes, black circled line) were needed for one single model calibration in MC, if the noise 

level is 3 as compared to the gPC based method that solves the problem in a matter of seconds. As compared with 

noise level 3, for example, only 1 hour was needed for the noise level 1 with the MC approach, which is still 

computationally demanding. By contrast, as shown in Fig.3.17 (b), the computational time for the gPC method is 

a function of the polynomial order, which is associated with the prior assumption of the probability distribution 

in random events. Even for a higher order polynomial, the computational load does not increase significantly, 

e.g., the average time for a fourth order polynomial is around 1200 seconds (red axes, red squared line), which is 

still significantly lower as compared with MC. All the methods are executed on a 2.66 GHz Intel(R) Core Duo 

processor. 

0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

Noise level

A
c
c
e
p

ta
b

le
 r

a
te

 (
%

)

 

 

gPC

MC:1000

MC:10000

62.50%

54.83%

83.33%

73.33%

96.70%

91.67%
86.67%

85.00%

100%

1 2 3
200

400

600

800

1000

1200

T
im

e
 (

s
e
c
o

n
d

)
Noise level

 

 
2 3 4

0

2

4

6

8

T
im

e
 (

h
o

u
r)

Polynomial order

 

 

gPC (order changes)

gPC (noise level changes)

MC (1000 samples)

MC (10000 samples)

(a) (b) 



 

 44 

The MC approach is also used to study the fault detection efficiency and the results are compared with the gPC 

method at each grid point as depicted in Fig.3.8. Using MC, the PDF profiles are approximated for different mean 

values on diffusivity. For example, Fig.3.18 shows the PDF profile at grid point 8 as example, where 10,000 

samples are used in MC. The horizontal axis in Fig.3.18 is the temperature, while the vertical axis is the 

normalized probability. Similar to the gPC approach, FDD tests are conducted for different measurement noise 

levels. As in the gPC study, each class is characterized by the expected value of diffusivity. 

 

Figure 3.18 PDF profiles of six classes at grid 8 by MC (Q = -100, 10,000 samples) 

Fig.3.19 shows the fault detection rate when the variance of the measurement noise is 0.1 and 0.2, and Q is -

100. The same number of testing samples is used as for the gPC model based FDD. For comparison, the results 

obtained by gPC are also displayed. Compared with the gPC approach, the fault detection rate for these 

aforementioned eight sensors is approximately 2% lower for MC. Thus, a further slight increase in the number of 

samples might be needed for training the MC model, which will increase the computational effort. As shown, the 

observability of the fault is the best at grid point 8, thus confirming the result observed in the gPC study that the 

best sensor location is at the center of the domain. As in the gPC study, 10 replicates are used to mitigate the 

influence of lower SNR on the observability of faults. For the same noise level, the results corroborated that 

replicates can also improve the observability of faults with the MC modeling approach. 

 

Figure 3.19 Comparison of result at each grid point between gPC and MC (Q = -100) 
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The gPC and the MC methodologies are further compared with respect to their abilities to detect a fault from 

measurements that lie in overlapping regions of the calculated PDFs with either one of the two methods. To test 

this point, the detection rate among different classes, i.e. different mean values of diffusivity, is categorized in 

terms of type I and type II, for both the gPC and the MC based approaches. A Type I error is the incorrect rejection 

of a true null hypothesis, while a type II error is the failure to reject a false null hypothesis (Montgomery & 

Runger, 1994). To quantify the distinguishability of adjacent classes with noisy measurement, the overlapping 

area as illustrated in Fig.3.20 for the training PDF profiles is approximated numerically by the following formulae: 

Class i Class j

Type II 

Error 

Type I 

Error 

 

Figure 20 Type I and Type II error regions 

EI = ni,I/Ns (3.33) 

EII = nj,II/Ns (3.34) 

where EI is Type I error and EII is Type II error, respectively. Ns is the total number of samples used to generate 

the PDFs for each class, ni,I is the number of samples in ‘Class i’ that have been misclassified in ‘Class j’, and ni,II 

is the number of samples in “Class j” that have been wrongly classified  into ‘Class i’. For a given measurement, 

Type I and II errors can provide the probability of misclassification. 

Table 3.5 shows the type I and II errors of the gPC study confirms that the fault misclassification rate is higher 

for two groups that are adjacent to each other as compared to classes that are not adjacent to each other, since the 

Type I and Type II errors are relatively higher. For example, 21.86% of samples in Class 20 may be misclassified 

as Class 18. 

Table 3.5 Type I and Type II analysis for training set (gPC) 

κ̅simu 
(Class) 

18 16 14 12 10 

EI EII EI EII EI EII EI EII EI EII 

20 0.2186 0.1390 0.0415 0.0381 0.0151 0.0118 0.0037 0.0028 0.0041 4.00E-04 

18 ∕ ∕ 0.0015 0.1476 0.0050 0.0462 0.0020 0.0096 1.00E-04 0.0013 

16 ∕ ∕ ∕ ∕ 0.0026 0.2763 0.0040 0.0668 3.00E-04 0.0083 

14 ∕ ∕ ∕ ∕ ∕ ∕ 0.0090 0.1915 3.00E-04 0.0348 

12 ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 0.0070 0.3037 

 

For comparison, Table 3.6 shows the results for the two errors with the MC model. As seen, most results exhibit 

relatively higher type I and type II errors as compared to gPC in Table 3.5. For instance, 40.94% of testing samples 

in Class 20 may be identified as belonging to Class 18; and 27.75% of samples in Class 18 may be misclassified 

into Class20. Compared with the gPC, the Type I and Type II errors have almost doubled.  An explanation for 
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the differences in types I and II errors between the gPC and MC model based detection approaches is the higher 

sensitivity to noise of the MC approach. A clear evidence for the higher sensitivity to noise is that the PDFs 

obtained by the MC approach are less smooth as shown in Fig.3.18, as compared to the PDF profiles calculated 

with the gPC expansions in Fig.3.9. Once again, a slight increase of the number of samples used for PDF profiles 

generation in MC may improve the accuracy but at the cost of a significant increase in computations as discussed 

in Fig.3.17 (b). 

Table 3.6 Type I and Type II analysis for training set (MC) 

κ̅simu 
(Class) 

18 16 14 12 10 

EI EII EI EII EI EII EI EII EI EII 

20 0.4094 
0.2775 

0.0698 
0.0369 

0.0131 
0.0021 5.00E-

04 

9.00E-

04 
0 

0 

18 
∕ 

∕ 0.1170 
0.0782 

0.0301 
0.0058 

0.0021 
0.0015 2.00E-

04 

2.00E-

04 

16 ∕ ∕ ∕ ∕ 0.2700 0.0416 0.0496 0.0127 0.0033 0.0011 

14 ∕ ∕ ∕ ∕ ∕ ∕ 0.4094 0.0859 0.1666 0.0058 

12 ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 0.2700 0.0511 

 

To further verify the higher sensitivity to noise of the MC versus the gPC method, the effect of type I and type 

II errors on the detectability of faults is studied for a particular case where the temperature values used for fault 

detection correspond to measurements located in the overlapping regions of adjacent PDFs, since most 

misclassification happens near the class boundaries. It is found that most of the detection rates obtained by gPC 

are approximately 5% higher than for the MC based approach. 

3.6 Conclusion 

A new approach based on the gPC expansion of uncertainties quantification and propagation is proposed for 

the fault detection and diagnosis (FDD) problem. The efficency has been demonstrated by a two-dimensional heat 

conduction problem, where the distributional uncertainties on diffusivity and boundary condition are considered. 

A key contribution is that the proposed methodologies are successful in detecting and diagnosing both individual 

as well as simultaneous occurrences of multiple stochastic faults. The proposed method was studied in terms of 

sensitivity to signal to noise ratio (SNR) and sensor location. The distinguishability of faults near the classes’ 

boundaries is assessed from the Type I and Type II errors that quantify the overlap between two PDFs of 

observations under different stochastic fault modes. The key advantage of the proposed gPC approach is that the 

computational times are orders of magnitude shorter than for the MC simulations based approaches thus showing 

the potential of gPC for addressing problems of large dimensions. 
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Chapter 4 

Fault Diagnosis for Nonlinear Dynamic Processes 

(Adopted from Du et al., 2015, Industrial & Engineering Chemistry Research, in press) 

4.1 Overview 

This paper deals with detection and classification of intermittent stochastic faults by combining a generalized 

polynomial chaos (gPC) representation with either Maximum Likelihood or Bayesian estimators. The gPC is used 

to propagate stochastic changes in an input variable to measured quantities from which the fault is to be inferred. 

The fault detection and classification problem is formulated as an inverse problem of identifying the unknown 

input based on the Maximum Likelihood of fit between predicted and measured output variables, or on a Bayesian 

inference based estimator which recursively updates the gPC coefficients. Simulation studies compare the 

proposed methods with a Particle Filter (PF) to estimate the value of an unknown feed mass fraction of a chemical 

process. The proposed method is shown to be significantly more efficient in terms of computational effort and 

less sensitive to user defined tuning parameters than a PF. 

Empirical fault detection methods have been often used for fault detection and classification. However such 

algorithms may be less accurate since they do not specifically address the stochasticity of the faults as discussed 

in the supplementary materials. To demonstrate this point, a comparison study has been conducted in Appendix 

A between the proposed gPC models based mechanistic algorithm and a Gaussian Process based statistical 

algorithm. 

4.2 Introduction 

An essential aspect of the economical and safe operation of chemical processes is rapid detection and removal 

of malfunctions or faults. A fault is defined as a deviation of one or more variables from an acceptable level  

(Isermann R. , 2006). If a fault is observable, the fault detection and diagnosis (FDD) system will provide 

symptomatic fingerprints, which in turn can be referred back to the fault diagnosis scheme to identify the root 

cause of the anomalous behaviour (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). However, since 

FDD schemes are invariably based on models, a main restrictive factor of an efficient FDD system is the model 

uncertainties (Chiang, Russell, & Braatz, 2008). Such uncertainty may originate from either intrinsic time varying 

phenomena of model parameters or may result from inaccurate model calibration due to stochastic noisy data. 

The step of quantifying and propagating the uncertainties onto the variables used for detection is typically omitted 

in reported FDD studies, leading to a loss of information arising from these uncertainties. 

In terms of applications of FDD algorithms, many industrial processes are intrinsically nonlinear systems 

(Gerlter, 1998) and they are operated at different operating conditions according to economic considerations 

(Haghani, Jeinsch, & Ding, 2014). Due to nonlinearity, the performance of linear FDD algorithms often reported 
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in literature may be inaccurate especially when the process transits from one operating condition to another (Li & 

Yang, 2012). For example, FDD algorithms that are based on the steady state information will result in false 

alarms or missed detection of faults when performing detection with measurements collected during dynamic 

transients. Fault diagnosis (classification) that explicitly considers dynamic transients among different operating 

conditions in the presence of model uncertainties has not been substantially addressed. Classification of the cause 

of faults is equally critical to the detection of faults, since rapid classification will lead to a reduced economic 

loss. Additionally, most of the fault classification methods focus on classification using pattern recognition 

techniques, but provide little information about what is the probability that a fault has occurred in the presence of 

model uncertainties and noise. 

Following the above, this paper presents two methods to improve fault detectability during transients in the 

presence of parametric uncertainties. Preliminary results of detecting and classifying stochastic faults with steady 

state measurements were outlined in the earlier work by the authors (Du, Duever, & Budman, 2015). A significant 

reduction in computational time was observed using the generalized polynomial chaos (gPC) expansion (Ghanem 

& Spanos, 1991; Xiu D. , 2010), as compared with Monte Carlo sampling based methods. As such our earlier 

work was not suitable to deal with dynamic fault scenarios. The current work expands upon our preliminary work 

by combining the gPC based model with either a Maximum Likelihood or a Bayesian based estimator to 

dynamically estimate the stochastic faults during transients. The proposed approaches are used to identify and 

classify the unmeasured stochastic intermittent faults for a nonlinear chemical plant. Specifically, the methods in 

this current work are developed to discriminate between specific fault classes and the normal process operation 

as well as between fault classes using dynamic transients. 

The use of a gPC expansion to approximate the uncertainty of interest can reduce the computational complexity 

to a reasonable level. While the benefit of using the gPC models in parameter estimation problems has been 

reported (Chen-Charpentier & Stanescu, 2014; Madankan, Singla, Singh, & Scott, 2013; Pence, Fathy, & Stein, 

2011; Emmanuel, Sandu, & Sandu, 2007), it has mainly been applied offline while this work proposes a gPC 

based estimators for real-time detection of intermittent faults. Unlike many traditional model-based methods such 

as the Kalman Filter (Daum, 2005), the proposed approach explicitly considers: (i) the nonlinear behaviour of the 

process, (ii) the stochastic nature of the parametric faults, and (iii) their effects on the measured quantities. A 

known alternative to solving this problem that specifically involved stochastic faults is to apply a particle filter 

(PF) (Arulampalam, Maskell, Gordon, & Clapp, 2002; Orchard & Vachtsevanos, 2009; Kadirkamanathan, Li, 

Jaward, & Fabri, 2002), but it will be shown that the proposed gPC approach is significantly more efficient than 

PF in terms of computational time, thus making it more suitable for the real-time implementation in problems of 

large dimensions. Also, the proposed algorithm is shown to be less sensitive than PF to user selected tuning 

parameters. It is also shown that the proposed algorithm is suitable for selecting sensors to improve detection. 
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To summarize, the contributions of this chapter are: (i) The use, in the context of fault detection and diagnosis, 

of a gPC model based approach for uncertainty propagation and quantification applied directly to the first 

principles nonlinear model of a complex system; (ii) The use of maximum likelihood or Bayesian inference based 

estimators in combination with the gPC model for improved fault diagnosis; and (iii) Optimal selection of sensors 

used for fault detection based on sensitivity analysis of the gPC model.  

This chapter is organized as follows. In Section 4.3, the theoretical background of gPC expansions is presented. 

The maximum likelihood and Bayesian inference based two-level fault detection algorithms, as well as a 

sensitivity analysis based approach for sensor selections are explained in Section 4.4. A nonlinear chemical plant 

with two continuously stirred tank reactors and a flash tank separator is introduced as a case study in Section 4.5. 

Analysis and discussion of the results are given in Section 4.6 followed by conclusions in Section 4.7. 

4.3 Generalized Polynomial Chaos 

A generalized polynomial chaos (gPC) expansion can be used to represent an arbitrary random variable of 

interest as a function of a polynomial series of another random variable of a given standard distribution (Ghanem 

& Spanos, 1991; Xiu D. , 2010). Let us assume a set of nonlinear ordinary differential equations (ODEs) 

describing the dynamic behaviour of a system: 

ẋ = f (t, x, u; g) (4.1) 

0 ≤ t ≤ tf , x(0) = x0  

where the vector x ϵ Rn contains the system states (measured variables) with initial conditions x0 ϵ Rn over time 

domain [0, tf], and u denotes the known inputs of the system. The vector g ϵ Rng is the unknown stochastic time 

varying input. It will be assumed heretofore that the input vector g is the stochastic fault/s that has to be detected 

by the FDD algorithm in this current work. The function f is assumed to be a fundamental model of the process 

that can be developed from first principles. To quantify the effect of stochastic inputs (faults) g on the different 

measured variables x, a gPC expansion can be employed. To that purpose each unknown input fault gi (i = 1, 2,…, 

ng) in g is represented as a function of a set of random variables ξ = {ξi}: 

gi = gi(ξi) (4.2) 

where ξi is the ith random variable and the elements in the set (ξ = {ξi}) are assumed to be independent and 

identically distributed. Using gPC expansions, the unknown stochastic faults (inputs) g(ξ) and system states x(t, 

ξ) are described in terms of orthogonal polynomial basis functions Φk(ξ): 

                               g(ξ)= ∑ g
k
𝛷k(ξ)

∞

k=0

 (4.3) 

                                 x(t, ξ)= ∑ xk(t)𝛷k(ξ)

∞

k=0

 (4.4) 
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where xk and gk are the gPC coefficients of measured variables (states) and faults at each time instant t, Φk(ξ) are 

multi-dimensional orthogonal basis functions of ξ. It is assumed that the input (g) can be measured or estimated 

and then the coefficients of the unknown input, gk, can be calculated such that Eq. 4.3 follows a statistical 

distribution determined from collected data. Then, after substituting the gPC representation of the input gk into 

the process model, it is possible to calculate gPC representations of the measured quantities (states) by applying 

a Galerkin projection procedure (Xiu D. , 2010). The latter permits to compute the expansion coefficients {xk(t)} 

by projecting Eq. 4.1 onto each one of the polynomial chaos basis functions{Φk(ξ)} as follows: 

                                〈ẋ(t,ξ), 𝛷k(ξ)〉 =  〈 f (t, x(t,ξ), u(t), g(ξ)),𝛷k(ξ)〉     (4.5) 

For practical application, Eqs. 4.3 and 4.4 are often truncated to a finite number of terms, i.e., P. Hence, the 

total number of terms in Eq. 4.5 is a function of an arbitrary order p in Eq. 4.3 that is deemed sufficient to represent 

a known priori distribution of g for ng different faults (inputs) in vector g as follows: 

                       P = ((ng + p)!/(ng!p!)) – 1 (4.6) 

From Eq. 4.6, the number of the gPC expansion terms for the measured variables in Eq. 4.4 increases as the 

polynomial order p in Eq. 4.3 and the number of unknown inputs ng in Eq. 4.2 increase. The inner product in Eq. 

4.5 between two vectors can be defined by: 

                                〈ψ(ξ),ψ'(ξ) 〉= ∫ ψ(ξ)ψ'(ξ)W(ξ)dξ  (4.7) 

where the integration is conducted over the entire event domain generated by the random variables ξ, and W(ξ)is 

a weighting normalizing function, which is chosen according to the polynomial basis function used to represent 

ξ so as the result of Eq. 4.7 is either one or zero. To enforce orthogonality of the basis functions, these have to be 

selected according to the choice of the statistical distribution of ξ. For example, Hermite polynomials are chosen 

as basis functions for normally distributed ξ and Laguerre polynomials can be used for Gamma distributed ξ (Xiu 

D. , 2010). Once the coefficients of the expansion in Eq. 4.4 are calculated, it is possible to compute statistical 

moments for the measured variables at any given time instant t as Eqs 4.8 and 4.9 as a function of the coefficients 

of the expansion xk in Eq. 4.4 as follows (Xiu D. , 2010): 

                                      E(x(t)) = Ε [∑ xi(t)𝛷i

P

i=0

] = x0(t)Ε[𝛷0] + ∑ Ε[𝛷k]

P

i=1

= x0(t)    (4.8) 

                                   Var(x(t)) = Ε [(x(t) - Ε(x(t)))
2
] = Ε [(∑ xi(t)𝛷i

P

i=0

- x(i= 0)(t))

2

] 

 

                              = Ε [(∑ xi(t)𝛷i

P

i=1

)

2

] = ∑ xi(t)
2
Ε(𝛷i

2)

P

i=1

 (4.9) 
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Also, the probability density functions (PDFs) for the measured variables, x(t), can be approximated by 

sampling the distribution of ξ and substituting the samples into Eq. 4 4. The availability of analytical formulae 

for calculating statistical moments as per Eq. 4.8 and 4.9 are the main rationale for using gPC, since it dramatically 

reduces the computational effort involved in repeated calculations of moments and the PDFs as required in this 

study. The fault detection procedure used in the current work consists of inferring the distribution of the stochastic 

parametric faults (inputs) g from measurements of the process measured variables x. Further details about this 

inference are given in Section 4.4. 

4.4 Fault Detection and Diagnosis Methodology 

4.4.1 Unknown Input Fault Detection and Classification Problem Formulation 

The unknown input faults g to be considered in this work consist of stochastic perturbations around a specific 

set of mean values as described in Fig.4.1 (a), and given mathematically as follows: 

g = ḡi + ∆gi  (i = 1, …,k) (4.10) 

where {ḡi} are a set of constant mean values (operating modes), {∆gi} are stochastic variations around each mean 

value. The statistical distribution of ∆gi is assumed to be known a priori and time invariant.  The changes in the 

mean values of ḡi follow a Multilevel Pseudo Random Signal (ML-PRS) (Ljung, 1999). The inputs described by 

Eq. 4.10 are typical in chemical processes that experience both changes in means of operating variables but also 

in additional continuous random perturbations in time. Then, the FDD problem is defined as detecting a change 

in the unknown input mean ḡi as well as diagnosing around which particular ḡi the system is being operated. Each 

particular mean ḡi will be referred heretofore as to an operating mode, and thus the goal in the current work is to 

classify the operating mode ḡi at any given time instant t. 

 

Figure 4.1 Fault profile representing an intermittent stochastic input fault and resulting measured variable 

The fault detection and classification method in this work is formulated as a two-level procedure composed of 

a Level-1 algorithm and a Level-2 algorithm. This method is developed to discriminate between specific fault 

classes and the normal process operation as well as between fault classes. 

Parametric faults time profile

A
m

p
li
tu

d
e
 o

f 
s
to

c
h

a
s
ti

c
 f

a
u

lt
s

 

 

ML-PRS

Mean

Mean # 2

Mean # 1

Mean # 3

Measured quantity time profile

A
m

p
li
tu

d
e
 o

f 
m

e
a
s
u

re
d

 q
u

a
n

ti
ty

 

 

Output for ML-PRS input

Mean
(b) (a) 

 

 

 

B 

 

A 

 

 
 



 

 52 

Level-1 algorithm – For each mean value of ḡi given in eq 10, the corresponding PDF profile of the measured 

output variables (x) can be calculated assuming that the mean value remains constant for a very long time, i.e., in 

the neighbourhood of a steady state. The PDF profiles of the measured variables are calibrated with simulated 

noisy measurements. The steady state at any given time can be initially inferred by testing the measured quantities 

with respect to the PDFs built around different steady states (operating modes). However, classification based on 

steady state information only, as done in this Level-1 algorithm, is not effective during transient changes among 

different steady states (multiple classes/operating modes). For that purpose the Level-1 algorithm is supplemented 

by the Level-2 algorithm explained next. 

Level-2 algorithm – This algorithm is based on inferring the input fault g from the application of a fitting criterion 

of the measured variables over a moving time window. To reduce computational effort, this step is only executed 

when large deviations from an input mean ḡi are detected with the Level-1 algorithm introduced above. In 

principle this second level algorithm (Level-2 algorithm) can be executed at each time interval but at the cost of 

increased computational time. 

Two fitting criteria of the measured variables are proposed based on either a maximum likelihood function or 

a Bayesian inference estimator for detecting the average of the unknown input. The likelihood function is based 

on the error in mean and variance between a set of measurements and predictions calculated with a gPC model in 

Eq. 4.4. Similarly, a Bayesian inference based estimator is applied to dynamically infer the posterior gPC 

coefficients of the stochastic fault over a moving time window, which can be further used for fault diagnosis. 

Compared with the maximum likelihood based estimator, the objective is to recursively estimate the stochastic 

parametric faults during transients. Additional details on the two-level algorithm of fault detection are given 

below. 

4.4.2 Level-1 Algorithm 

For the purpose of calculating the PDF profiles, it is assumed that measurements of the certain variables (x) 

around each mean value ḡi are available. It is also assumed in this step that the mean value of an input (fault) ḡi 

remains constant but its exact value is not known. The constancy of ḡi can be experimentally inferred from the 

constancy of measured and/or controlled variables through a steady state test (Seborg, Mellichamp, Edgar, & 

Doyle, 2010). In principle, in the absence of measurement noise and if the means and variances of the inputs 

(faults) g would be known, the PDF profiles of the output variables (x) that are measured and used for fault 

detection could be exactly calculated from a process model with the analytical expressions of a gPC as per the 

procedures shown in Section 4.3. Then, it could be possible to accurately infer the input from a measured output 

value by inverting the procedures outlined in Section 4.3.  

However, in practice, due to noise and model error (e.g., gPC truncation error), the exact mean and variance 

of the input (fault) during steady state operation are not known and are unmeasured in FDD problems. Thus, the 
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PDF profiles of x around each possible steady state (operating mode) have to be calibrated using actual process 

measurements. To this purpose, the mean and variance of the unknown input variable g are calibrated from an 

optimization problem around each steady state (operating mode) shown in Fig.4.1 (a) as: 
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where ϑ1,i and ϑ2,i are the predicted mean and variance of a particular measured variable (x) of the problem to be 

used for fault detection. These predicted means and variances are given explicitly by Eqs. 4.8 and 4 9 using the 

gPCs representations of x given in Section 4.2, and are functions of the stochastic input as shown in Fig.4.1 (a). 

The terms υ1,i and υ2,i are the measured mean and variance of x in Eq. 4.1. The last term σn,i  is utilized to represent 

the standard deviation of noise that is also expressed by a gPC expansion of the following form: 






P

k

kknn tt

1

, )()(),(   (4.12) 

where σn,k is the gPC coefficients of noise at time instant t, Φk(ξ) is the multi-dimensional polynomials in terms 

of ξ, and the variance of noise is assumed to be known a priori. 

The decision variable λlevel-1 in Eq. 4.11 is a vector consisting of the mean and variance of the unknown fault 

(g) and noise σn, and n is the number of the measured variables x used to calibrate the gPC model. Due to noise 

and truncation error introduced by the gPC approximation, the mean and variance of the input variable (g) defining 

λlevel-1 calculated from Eq. 4.11 deviate from the actual values entering the process. After obtaining λlevel-1, it is 

possible to calculate the actual gPC coefficients for the measured variables x. Using these coefficients, the PDF 

profiles for x’s around each constant mean value (operating mode) can be approximated by substituting samples 

(ξ) from a priori known distribution, e.g., normal or uniform, into the resulting gPC expansions given in Eq. 4.4. 

Following these substitutions the PDF profiles are calculated as a histogram composed of bins each corresponding 

to different ranges of values of x (Du, Duever, & Budman, 2015). 

Histograms are built for each of the mean values considered in Eq. 4.10. When the system is operated around 

a constant mean ḡi, the corresponding index i (i = 1,…, k) in Eq. 4.10 is detected from the PDF profiles for a given 

measurement as follows: 

Operating Mode (ḡi) = arg max {Pi} (4.13) 

where i is the ith operating mode as defined in Eq. 4.10. Pi means the probability that the process is operating 

about a particular mean ḡi for a given measurement. The solution of this problem is depicted in Fig.4.2 showing 

3 PDF profiles that correspond to 3 different operating modes (input mean values). For example, three 

probabilities (red dots) can be found for a given measured variable shown in Fig.4.2, where the maximum 

probability can be used to indicate that the system is operating around the second mean value corresponding to 

‘Operating mode 2’. In practical problems, one of these operating modes can be defined as the normal operating 
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condition, while the rest can be defined as faulty operating conditions. The PDF profiles based Level-1 algorithm 

can discriminate between specific fault classes and the normal process operation as well as all other fault classes. 
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Figure 4.2 Visual interpretation of FDD with the level-1 algorithm 

4.4.3 Level-2 Algorithm 

The Level-1 algorithm presented in Section 4.4.2 assumes that the system is operated about a specific mean 

value ḡi in Eq. 4.10, but it does not take into account transient responses resulting from the step changes occurring 

among different ḡi as shown in Fig.4.1 (a). For instance, the step change indicated in the figure by a blue circle 

represents the dynamic change between mean value 1 and mean value 3. Thus the Level-1 algorithm can only 

serve as a preliminary indicator that the system operates around a particular steady state but this diagnosis may 

be inaccurate during transients. This section explains the problem of estimating these step changes (faults) based 

on a fitting criterion between measured and predicted variables over a chosen moving time horizon. Two fitting 

criteria are tested: (i) a maximum likelihood and (ii) a Bayesian inference. 

4.4.3.1 Classification of transient changes using a maximum likelihood criterion 

The likelihood function between measured values and model predictions is maximized over a moving time 

window. Define fx
’ as the PDF of a measured output of interest, which can be estimated by a Gaussian kernel 

density function as (Wand & Jones, 1995): 
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where Gk denotes the Gaussian kernel, xʹ is the measured variable, ni is the number of samples drawn from a priori 

known distribution of ξ. The π operator is the gPC model and can be obtained as explained in Section 2. Then, a 

likelihood function of output variables x over a moving time window of m measurements can be calculated as: 
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Thus, for a moving time window of m measurements, an estimate of an average value of the fault (input) g can 

be obtained by maximizing the likelihood function as follows: 
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where the decision variable λlevel-2 in Eq. 4.16 is the average of the unmeasured time varying input g and the 

corresponding confidence level over the moving time window of m measurements. It is worth noting that the 

same set of ξ used in Eq. 4.15 is also used to maximize Eq. 4.16. For classification purposes, the average value 

of the input g resulting from Eq. 4.16 is compared to the mean values {ḡi} to identify which operating mode is 

active. Although this maximum likelihood based Level-2 algorithm can be executed at each time interval, it is 

only used after a large deviation is detected by the Level-1 algorithm to reduced computational burden. 

4.4.3.2 Level-2: Classification of transient changes using Bayesian inference 

To diagnose the intermittent changes in the mean values of stochastic faults, a Bayesian inference based 

estimator is applied to infer the posterior gPC coefficients of the stochastic fault over a moving time window. The 

gPC coefficients can be then used for calculating the mean value and the variance. Compared with the maximum 

likelihood based estimator, the objective is to recursively estimate the stochastic parametric faults during 

transients. 

The PDF of faults g can be formulated using Bayesian inference with a set of measurements collected over a 

moving time window as follows: 

p(g|xk) = (p(g|xk-1)p(xk|g)) p(xk)⁄  (4.17) 

where xk means the measurements collected over a moving time window up to time instant tk. The prior PDF of 

g at tk, i.e., p(g|xk-1), is based on all measurements available up to time interval tk-1, p(xk|g) is the likelihood that xk 

can be observed given g at time tk, and p(g|xk) denotes the posterior PDF (gPC coefficients) of g given all 

measurements up to tk. The marginal likelihood p(xk) is the total probability of measurements at time instant tk 

and can be estimated  from (Emmanuel, Sandu, & Sandu, 2007): 

p(xk) = ∫ p(g|xk-1)p(xk|g)dg  (4.18) 

Although the marginal likelihood can be evaluated by the integration in Eq. 4.18, in this work there is no need 

to calculate it since the probability of observing the measurements is assumed to be constant. To calculate the 

posterior PDF of xk, a differentiable scalar function defined as φ(g, x) is used that depends on the stochastic faults 

and measured variables. Multiplying both sides of Eq. 4.17 with φ(g, x) and integrating over g yield: 

∫ p(g|xk)φ(g, x)dg  = ∫
p(g|xk-1)p(xk|g)φ(g, x)

p(xk)
dg (4.19) 

It should be noted that both sides of Eq. 4.19 are only a function of xk, which can be represented as a function 

of gPC coefficients. To calculate the likelihood p(xk|g), the Gaussian kernel function can be used for simplicity 

and the calculation is similar to Eq. 4.14. 
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The main challenge is to evaluate the integrals in Eq. 4.19 in a computationally efficient way. It should be 

noted that all components in Eq. 4.19, i.e., g and x, are functions of their gPC coefficients and a set of polynomial 

basis functions Φ(ξ). The prior PDF given by the gPC expansions of the faults and of the measured variables can 

be calculated offline and stored in memory. Using these gPC expansions, Eq. 4.19 can then be re-written as 

follows: 

∫ p(g
k,gpc

Φ(ξ)|xk,gpcΦ(ξ))φ(g
k,gpc

Φ(ξ), xk,gpcΦ(ξ))dξ   = 

 G* ∫
p(g

k-1,gpc
Φ(ξ)|xk-1,gpcΦ(ξ))φ(g

k-1,gpc
Φ(ξ), xk-1,gpcΦ(ξ))

D
dξ 

(4.20) 

where gk,gpc and xk,gpc represent the posterior gPC coefficients at time instant tk, gk-1,gpc and xk-1,gpc denote the gPC 

coefficients of g and x at time interval tk-1, G is the prior density function calculated with a Gaussian kernel 

function, and D is a scaling denominator. The gPC coefficients gk,gpc and xk,gpc are continuously updated and 

optimized based on the available new measurements. For simplicity of the presentation, the left-hand side of Eq. 

4.20 is defined as γ1 and the right-hand side is defined as γ2. To update the gPC coefficients, the following 

likelihood function using a Gaussian kernel can be formulated: 

max
gk,gpc, xk,gpc

𝐽 =  exp(-(γ1 - γ2)
2
/2σ2) (4.21) 

where gk,gpc and xk,gpc are the decision variables representing the posterior gPC coefficients at time instant tk and 

σ is the estimate of the error. The likelihood is maximal when the error is minimal. A gradient descent algorithm 

is applied for finding a set of gPC coefficients that maximizes the likelihood function in Eq. 4.21.  

For the detection of stochastic faults about different mean values (as seen in Fig.4.1), a set of symbolic gPC 

models are generated for each of these means {ḡi}. Then different sets of gPC coefficients can be obtained from 

Eq. 4.21 corresponding to each one of the mean values ḡi. Finally, the set of gPC coefficients that results in the 

maximum value of the likelihood in Eq. 4.21 is used to estimate the average value of faults (inputs) over the 

moving time window by using Eq. 4.8. 

To obtain an explicit solution of the integral in Eq. 4.20, the scalar function is chosen as φ(g, x) = gs1xs2 which 

ensures matching of joint momenta for two sides of Eq. 4.20 up to order of s1+s2 (sum of the orders of g and x in 

φ(g, x)) (Madankan, Singla, Singh, & Scott, 2013). In this current work, s1 and s2 are selected as s1= 1 and s2= 1 

for simplicity. For computational efficiency, a bi-level optimization, involving a lower-level optimization and an 

upper-level optimization, is developed for solving Eq. 4.21. Only the first coefficients of the gPC expansions, 

from which the mean of g and x can be calculated, are optimized and updated in the lower-level optimization 

while the remaining higher order gPC coefficients retain their prior value. The upper-level optimization is only 

launched when the decision variables in the lower-level optimization reached a constant value. Using the results 

obtained in the lower-level optimization and the same measurements collected over a moving time window, the 

higher order gPC coefficients can be updated when information about the higher moments is required. In principle, 
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all the gPC coefficients can be simultaneously updated and optimized but at the cost of a slightly increased 

computational time. 

4.4.4 Summary of Level-1 and Level-2 Algorithm 

The two-level fault detection and diagnosis (FDD) algorithm proceeds as per the following steps: 

Step 1 - The PDF profiles of the measured variables x in Eq. 4.4 operating around each one of the mean 

values ḡi in Eq. 4.10 is approximated using the Level-1 algorithm in Section 4.4.1. 

Step 2 - When a sample of measurements is available, the probabilities Pi in Eq. 4.13 are assessed (i = 

1,…,k). The maximum probability can be used to infer a particular mean value ḡi (operating mode) 

as illustrated in Fig.4.2. 

Step 3 - A potential change in the operating mode (mean value ḡi) is detected by the Level-1 algorithm when 

the probability of a given measurement switches across a limit between two adjacent PDF profiles, 

as depicted in Fig.4.2 (red star), corresponding to, Pi = Pj . 

Step 4 - If a switch in operating mode has been detected in Step 3, the maximum likelihood or the Bayesian 

inference based fault estimation (Level-2 algorithm) in Section 4.4.3.1 or Section 4.4.3.2 are 

executed.  

To evaluate the performance of the proposed algorithm, the Fault Detection Rate (FDR) is defined as: 

FDR = nd/ntotal (4.22) 

where ntotal is the total number of tested samples and nd is the number of samples that have been correctly 

classified. The FCR is used to discriminate between specific fault classes and the normal process operation as 

well as between fault classes due to economic considerations. 

Multivariate statistical techniques have been often used for fault detection and classification (Chiang, Russell, 

& Braatz, 2008; Raich & Cinar, 1996). However such algorithms may be less accurate since they do not 

specifically address the stochastic distribution of the faults as the proposed algorithm. To demonstrate this point 

a comparison has been conducted between the proposed algorithm and a Principal Component Analysis (PCA) 

based fault detection method. The results of this comparison are shown in the supplementary materials indicating 

that for a similar number of data points used for model training the gPC offers considerably better detection 

performance. The reasons are: i- the gPC method correctly accounts for the nonlinearity by explicitly using the 

first principle model and ii-the gPC method directly models the stochastic distribution of the fault whereas a larger 

amount of data will be needed by the PCA method to correctly describe the statistical faults’ distributions. 

4.4.5 Sensitivity Analysis based Sensor Selection 

Appropriate selection of sensors (measured quantities) for enhanced fault detection is essential in the presence 

of uncertainty. Sensitivity analysis aims to quantify the effect of stochastic faults onto the variability of the 
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measured variables and provide reliable information about the stochastic faults. This section presents a sensitivity 

analysis algorithm based on differentiating the gPC model describing the measured variable in eq 4 with respect 

to the random variables ξ. 

For that purpose, the partial derivatives of each of the measured quantities x = {xj} (j = 1, 2, …., n) in eq 4 can 

be calculated with respect to the random variables ξ = {ξi} (i = 1, 2, …., ng). As each measured variable has 

different units and orders of magnitude, each variable is normalized by the first gPC coefficients, i.e., the mean 

values of the corresponding variables, and eq 4 can be accordingly re-written as follows: 

                                 
xj(t, ξ)

xj,1(t)
= 

xj,1(t)

xj,1(t)
𝛷0(ξ) + 

1

xj,1(t)
∑ xj,k(t)𝛷k(ξ)

P

k=1

 =  y
j
 (4.23) 

where xj,1(t) denotes the first gPC coefficients of the jth measured variable. The partial derivatives of each 

measured quantity can be calculated with respect to the ng random variables, and the sensitivity matrix S can be 

formulated as: 

S = (

∂y
1
/∂ξ1 ⋯ ∂y

1
/∂ξng

⋮ ⋱ ⋮
∂y

n
/∂ξ1 ⋯ ∂y

n
/∂ξng

) = (

s1,1 ⋯ s1,ng

⋮ ⋱ ⋮
sn,1 ⋯ sn,ng

) (4.24) 

where sj,i represents the sensitivity of the jth measured variable to the ith unknown fault. Although each element in 

S can be also formulated over a time horizon, in this work for simplicity it is only evaluated around each of the 

mean values (operating modes). 

4.5 Example: Reactor-Separator Process 

Simulation studies of a nonlinear chemical process consisting of two reactors and a separator with recycle unit 

(Stewart, Venkat, Rawlings, Wright, & Pannocchia, 2010) are used to demonstrate the efficacy of the proposed 

two-level fault detection and classification algorithm. The proposed algorithm is also compared to a Particle Filter 

(PF), which is has been proposed as the optimal choice for stochastic faults in dynamic nonlinear systems. Fig.4.3 

depicts a schematic of the system with three temperature control loops. A stream of reactant A is added to each 

reactor and converted to the product B by the first order reaction, C denotes the side-product of the process. The 

feed mass fraction of reactant A (xA0) is assumed as the unknown (unmeasured) stochastic fault (g) in this current 

work. xA0 is assumed to change as shown in Fig.4.1, i.e., normally distributed perturbations around three mean 

values (operating modes) as described in Eq. 4.10. The mathematical model of the process controlled with three 

PI controllers is described by the following set of equations: 
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Figure 4.3 Two reactors in series with separator and recycle unit 

H1
̇ = (1/ρA1)(Ff1 + FR - F1) (4.25) 

ẋA1= (1/ρA1H1)(Ff1xA0 + FRxAR - F1xA1) - kA1xA1 (4.26) 

ẋB1= (1/ρA1H1)(FRxBR - F1xB1) + kA1xA1 - kB1xB1 (4.27) 

Ṫ1= (1/ρA1H1)(Ff1T0 + FRTR - F1T1) - (1/Cp)(k
A1

xA1∆HA + kB1xB1∆HB) + (Q
1
/ρA1CpH1)  (4.28) 

H2
̇ = (1/ρA2)(Ff2 + F1 - F2) (4.29) 

ẋA2= (1/ρA2H2)(Ff2xA0 + F1xA1 - F2xA2) - kA2xA2 (4.30) 

ẋB2= (1/ρA2H2)(F1xB1 - F2xB2) + kA2xA2 - kB2xB2 (4.31) 

Ṫ2= (1/ρA2H2)(Ff2T0 + F1T1 - F2T2 ) - (1/Cp)(k
A2

xA2∆HA + kB2xB2∆HB) + (Q
2
/ρA2CpH2)  (4.32) 

H3
̇ = (1/ρA3)(F2 - FD- F

R
 - F3) (4.33) 

ẋA3= (1/ρA3H3)(F2xA2 - (F
R
+ FD)x

AR
 - F3xA3) (4.34) 

ẋB3= (1/ρA3H3)(F2xB2 - (F
R
+ FD)x

BR
 - F3xB3) (4.35) 

Ṫ3= (1/ρA3H3)(F2T2 - (F
R
+ FD)T

R
 - F3T3) + (Q

3
/ρA3CpH3)  (4.36) 

where the subscripts ‘i’ (i.e., 1, 2, 3) refers to the vessel, xi is the mass fraction of A or B, Ti is temperature, Hi is 

the level, Fi is the flow rate and the reaction terms are: 

Fi= kviHi (4.37) 

kAi = kAexp (-EA/RTi) (4.38) 

kBi = kBexp (-EB/RTi) (4.39) 

The recycle flow and the weight percent factors satisfy: 

FD= 0.01FR (4.40) 

xAR= αAxA3 / x̅3 (4.41) 

xBR= αBxB3 / x̅3 (4.42) 

x̅3= αAxA3+ αBxB3 + αCxC3 (4.43) 
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xC3= 1- xA3- xB3 (4.44) 

Each of the tanks in the process receives an external heat input that is determined by a PI controller: 

Q
i
(t) = Q

(ss),i
(t) + Kp,i(T(set),i -  Ti(t)) + Kp,i/τi ∫ (T

(set),i
 -  Ti(t

*)
t

0
)dt* (4.45) 

The parameters used for the simulation are given in Table 4.1. 

Table 4.1 Parameter declaration for the Reactor-Separator process 

Symbol Value Units Symbol Value Units Symbol Value Units 

Ff1 10 kg/s kv1 2.5 kg/m s ρ 0.15 kg/m3 

Ff2 1 kg/s kv2 2.5 kg/m s A1 3 m2 

FR 60 kg/s kv3 2.5 kg/m s A2 3 m2 

T(set),1 315 K kA 0.02 1/s A3 1 m2 

T(set),2 315 K KB 0.018 1/s αA 3.5 / 

T(set),3 400 K EA/R -1000 K αB 1.1 / 

T0 310 K EB/R -500 K αc 0.5 / 

TR 310 K ΔHA -40 kJ/kg Kp,i 0.25 / 

Cp 2.5 kJ/kg K ΔHB -50 kJ/kg τi 0.0025 / 

4.6 Results and Discussion 

4.6.1 Model Formulation for the Reactor-Separator Process 

The fault detection and classification (diagnosis) problem consists of diagnosing the mean value (operating 

mode) of the unknown feed mass fraction xA0 based on measurements such as {Qi}. For simplicity, 3 mean values 

of the feed mass fraction (xA0) are considered, i.e., 0.65, 0.75 and 0.85 (k = 3 in Eq 4.10). Thus, the objective in 

this work is to (i) rapidly identify the occurrence of any potential switches between different mean values 

(operating modes), and (ii) classify the operating mode that the process is being operated. Stochastic perturbations 

in xA0 occur around each of these mean values, and they follow a normal distribution with zero mean and a standard 

deviation of 0.1. Note that for general non-normal distribution, the Askey chaos polynomial basis rather than the 

original Hermite chaos polynomial basis can be used to improve the convergence rate for the model calibration. 

Since the solution of the gPC coefficients involved in the gPC expansions of each one of the states (x in eq 1) as 

given in Section 4.3 requires the application of Galerkin projections, the employment of gPC is limited to 

monomial or polynomial terms. Hence, non-polynomial terms such as the reaction term (Arrhenius energy 

function) kAi, are approximated by a 2nd order Taylor expansion around each mean value on the input fault xA0. 

Since the random variable ξ is normally distributed, the corresponding basis polynomial functions for gPC 

approximations are selected as Hermite as per the Askey scheme to maintain orthogonality (Xiu D. , 2010). 

To test the accuracy of the Taylor approximation preliminary simulations are done with the gPC model 

resulting from this approximation and these are compared to Monte Carlo simulations of the full nonlinear model 

without approximations. Fig.4.4 shows the simulation results of the controlled variable T1 in the first reactor, 

using the gPC method with a 2nd order Taylor expansion to approximate the reaction terms and the Monte Carlo 
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simulations with the nonlinear model described in Section 4.5, respectively. For the gPC method, the gPC 

coefficients of the measured quantities x are calculated as outlined in Section 4.3. Then samples generated for the 

random variable ξ are substituted into these gPC expressions to predict the measured quantities and to estimate 

their upper (maximum) and lower (minimum) values at each time instant. 

The MC simulations are conducted as follows: (i) A set of samples of the feed mass fraction xA0 following the 

same statistical properties as used for the gPC are generated; (ii) Each of these samples is substituted into the 

nonlinear model shown in Section 4.5; and (iii) The simulation results of the measured variables are stored for 

comparison. Several randomly chosen simulated trajectories with the MC simulations are shown in Fig. 4.4. The 

plot corroborates that the trajectories obtained with MC are bounded by the upper (Maximum) and lower 

(Minimum) bounds calculated with the gPC model. Thus, the gPC model with the Taylor approximation of the 

Arrhenius term provided correct bounds for the MC simulations. 

 

Figure 4.4 Comparisons of the gPC model and MC simulations using controlled variable T1 

4.6.2 Sensor Selection based on Sensitivity Analysis 

A sensitivity analysis is conducted as described in Section 4.4.5 for the purpose of sensor selection. For each 

of the mean values of the feed mass fraction xA0, the sensitivity matrix S (Table 4.2 ~ Table 4.4) can be calculated 

for all the states defined by the mechanistic model in Section 4 with respect to the random variable ξ = {ξ}. The 

dimension of the space of the random variables ξ is 1, since only one stochastic fault xA0 is considered in this 

current work. 

As seen in Table 4.2 ~ Table 4.4, variations in the feed mass fraction contributes significantly to changes in 

the mass fractions of A and B in the reactors and separator. Despite its sensitivity however, they are not used for 

fault detection in the current work, since the objective is to detect faults using measurements that can be easily 

measured and concentrations are generally expensive to measure on-line. The sensitivity of temperatures {Ti} to 

the variations in the feed are small as expected, since they are controlled variables.  Instead, the manipulated 
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variables {Qi} are more sensitive to the random changes in the feed and consequently they are chosen for inferring 

the faults. 

Table 4.2 Sensitivity analysis of reactor 1 

 Measured variables 

Mean H1 xA1 xB1 T1 Q1 

0.65 1.5e-64 0.1044 0.0157 1.6e-7 0.0177 

0.75 1.8e-64 0.1044 0.0156 6.3e-7 0.0177 

0.85 1.8e-64 0.0879 0.0032 8.9e-7 0.0165 

Table 4.3 Sensitivity analysis of reactor 2 

 Measured variables 

Mean H2 xA2 xB2 T2 Q2 

0.65 2.5e-62 0.1050 0.0247 5.1e-7 0.0156 

0.75 2.5e-62 0.1050 0.0246 1.4e-6 0.0157 

0.85 2.5e-62 0.0886 0.0125 1.3e-6 0.0143 

Table 4.4 Sensitivity analysis of separator 

 Measured variables 

Mean H3 xA3 xB3 T3 Q3 

0.65 2.5e-61 0.2150 0.1233 3.4e-7 0.0056 

0.75 2.5e-61 0.2150 0.1232 3.4e-7 0.0011 

0.85 2.5e-61 0.1930 0.1044 1.8e-7 0.0012 

4.6.3 Level-1 Algorithm with PDF Profiles 

In this case study, the model calibration of the PDF profiles of measured quantities for each operation around 

constant mean values of xA0 is studied. Following the above, 3 mean values of the feed mass fraction xA0 are 

studied, i.e., 0.65, 0.75 and 0.85. The stochastic perturbations, added around these mean values (operating modes), 

are assumed to be normally distributed with zero mean and a standard deviation of 0.1. The step changes follow 

a ML-PRS signal (Ljung, 1999) as shown in Fig.4.5 (a) and (b), respectively. 

 

Figure 4.5 Multi-level pseudo random sequence 

(a) Three-level-PRS and (b) application to the feed mass fraction superimposed with stochasticity 
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The number of step changes of the unknown input (xA0) among the 3 selected mean values (operating modes) 

in the ML-PRS is 242 and the maximum number of measurements between two consecutive step changes in faults 

(inputs) is limited to 1000. The time interval between two measurements is set to 0.01s, which means that the 

simulation time between two consecutive step changes is limited to 10 seconds. 

Table 4.5 shows the model calibration results with the Level-1 algorithm as described in Eq. 4.11 using the 

measurements of manipulated variables {Qi}. To simulate actual data, Gaussian noise is added to the 

measurements of {Qi}. Hermite polynomials are used and the highest order of polynomials used for the gPC 

models is 2 (p = 2 in Eq. 4.6). 

Table 4.5 Model calibration result for the level-1 algorithm 

xA0 x’A0 σA0 σn time(s) 

0.65 0.6370 0.0937 0.0188 992 

0.75 0.7364 0.0979 0.0199 788 

0.85 0.8319 0.0933 0.0201 871 

 

In Table 4.5, the first column gives the  mean values of xA0 used for simulations. x’A0 and σA0 are the mean and 

standard deviation calculated from Eq. 411, σn is the standard deviation of measurement noise. As explained 

before, the mean and standard deviation of the faults (inputs) resulting from Eq. 4.11, i.e., xʹA0, σA0, are not 

identical to the actual simulated values used for calibration (xA0, and 0.1), due to the measurement noise and the 

gPC series’ truncation errors. For each operating mode (mean value), the last column shows the required 

computational time for the model calibration with Eq 4.11. It should be noted that this calibration step can be 

performed off-line. 

Once the gPC model is constructed, the gPC models and the PDF profiles of the measured variable (Qi), 

estimated for each of the 3 mean values of the feed mass fraction (x’A0 in Table 4.5), can be obtained. Table 4.6 

shows the gPC representations for the measured variables {Qi}, where the statistical moment (mean values and 

standard deviation (s.d.)) are calculated with Eq 4.8 and Eq 4.9 as a function of the gPC coefficients in Eq 4.4. 

Figure 4.6 shows the PDF profiles for the external heat Q1 in the first reactor, in which the horizontal axis 

represents the range of Q1, and the vertical axis is the normalized probability. 

Table 4.6  The gPC model representations for the level-1 algorithm 

xA0 
Q1 Q2 Q3 

mean s.d. mean s.d. mean s.d. 

0.65 752.51 13.62 780.02 12.59 566.62 0.375 

0.75 733.66 13.19 768.14 12.20 564.66 0.321 

0.85 724.08 10.62 759.29 9.83 562.68 0.237 

 

It should be emphasized that the Level-1 algorithm that is calibrated for steady states only, has been proposed 

in this work solely as a preliminary step to assess the possible occurrence of a step change in the fault variable 
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(feed composition). However, for the purpose of justifying the need for using the additional Level-2 algorithm, 

the efficiency of the Level-1 algorithm in detecting an operating mode is tested first. 

 

Figure 4.6 The PDF profiles of the measured variable (Q1) at 3 operating modes 

Two cases are considered for these simulations: (i) samples are collected during periods where the system is 

operating at steady state, and (ii) samples are collected immediately after the occurrence of a step change in the 

feed mass fraction. 

Table 4.7 shows the result of Fault Detection Rate (FDR) with different noise levels using the PDF profiles 

each calculated based on the assumption of constant mean values of xʹA0. To comply with the assumption that the 

system is operated around a fixed mean value with perturbations, the detection efficiency is investigated using 

the measurements of {Qi} before a switch between means occurred (see inset Fig.4.1 (b)-A). The measurements 

denote that the system is operating at steady state with constant mean values. 

Table 4.7 FDR with the Level-1 algorithm (steady state measurements) 

xA0 
Noise level  

1% 2% 3% 

0.65 93% 90% 91% 

0.75 92% 90% 87% 

0.85 95% 93% 90% 

Average 93% 91% 89% 

 

Table 4.6 is based on 1000 test samples for each mean value on the feed mass fraction, and the averages of the 

fault detection rates decrease as expected when the noise level increases. It is worth noting that the model 

calibration as per the optimization in Eq. 4.11 would be time prohibitive if Monte Carlo (MC) simulations were 

to be used instead of a gPC approximation. For instance, the processor time required for one cost evaluation with 

MC (5000 samples) is ~15465 seconds. The search for the optimum in Eq. 4.11 for each mean value requires 

40~60 iterations and takes approximately 171 ~ 257 hours on average. However, the proposed method takes ~15 

minutes to calculate the optimum in Eq. 4.11 for all mean values, as can be seen in Table 4.5. Also, the use of 

5000 samples for calibrating the PDF profiles of measured variables from MC simulations resulted in lower fault 

detection rates, as compared to the gPC method. Thus, a larger number of samples than 5000 would be required 

to obtain comparable fault detection rate as with the gPC approach, which would further increase the 

computational burden. 
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As mentioned above, the Level-1 algorithm is only suitable when the system is operating for long periods 

around a fixed mean value. Thus, it is expected to be less accurate during periods where changes between mean 

values occur. To demonstrate this point, the fault detection rate is studied with the Level-1 algorithm using 

measurements collected during the transition periods, i.e., immediately after the occurrence of a step change in 

the mean values of xA0 (see inset Fig.4.1 (b)-B). 

A moving time window of 50 measurements of {Qi} is used for the tests and the fault detection rate is evaluated 

based on the average of the probabilities of these 50 measurements with respect to the PDF profiles generated in 

the Level-1 algorithm. For instance, each of these measurements inside the moving time window is separately 

referred to the PDF profiles of measured variables and the operating mode can be inferred from its maximum 

probability. The final fault detection result is based on the largest number of times a particular operating mode is 

detected within the moving time window. For each of the mean values of feed mass fraction xA0, there are 1000 

test samples in the ML-PRS and the fault detection rate between mean values on average is found to be as low as 

~61%. This result justifies the necessity for the use of the Level-2 algorithm that does not assume operation around 

a steady state as in the Level-1 algorithm.  In summary, the Level-1 algorithm is proposed only to evaluate the 

necessity for executing the Level-2 algorithm so as to avoid executing the Level-2 algorithm too frequently which 

would require excessive computational effort. 

4.6.4 FDD with Level-2 Algorithm using Maximum Likelihood 

The Level-2 algorithm is only executed after the Level-1 algorithm has indicated the occurrence of a change in 

the mean value of fault xA0. Table 4.8 shows the detection rates obtained with the likelihood function based Level-

2 algorithm for three case studies to evaluate the efficacy and computational time. In the first case study, a time 

moving window of 50 measurements of {Qi} (m = 50 in Eq. 4.16) is used to compare the results obtained by the 

Level-1 algorithm with the same time window. Only the average value of xA0 over the moving time windows is 

chosen as a decision variable for λlevel-2 in eq 4.16. For the other two case studies, 100 measurements of {Qi} are 

used (m = 100 in Eq. 4.16). The decision variable of the second case study in Eq. 4.16 is the average value of xA0, 

while in the third case study both the average value and confidence interval of xA0 are optimized. 

Table 4.8 FDR with the maximum likelihood based Level-2 algorithm 

Case studies  FDR Time(s) 

1   (m = 50) 71% 225 

2 (m = 100) 85% 498 

3 (m = 100) 80% 1133 

 

It can be seen that the Level-2 algorithm shows significantly better fault diagnosis performance, as compared 

to the Level-1 algorithm alone. For instance, the fault detection rate is ~71% for the first case study, which has 

been increased by ~10 percent point compared with the Level-1 algorithm (~61%) for the same number of 

measurements, thus confirming the necessity for the Level-2 algorithm to detect transitions among mean values 
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of xA0. The third column shows the required computational time for each moving time window with different 

measurements. As seen, there is a trade-off between the classification accuracy and computational time. 

4.6.5 FDD with Level-2 Algorithm using Bayesian Inference 

Figure 4.7 shows a segment of the ML-PRS used for fault detection involving five consecutive step changes 

on the feed mass fraction xA0, using the Bayesian inference based Level-2 algorithm. The bi-level optimization is 

conducted consecutively in the Bayesian inference based Level-2 algorithm to recursively and simultaneously 

estimate the mean and variance of a fault in xA0. Figure 4.7 (a) shows five consecutive step changes of the 

stochastic fault around each of the three mean values. 

 

Figure 4.7 Illustration of Bayesian inference estimation based fault detection 

Using measurements over a moving time window, the optimization of Eq. 4.21 is conducted for each of the 

gPC models generated with the three different mean values considered in this study for the feed mass fraction xA0. 

The maximum value of Eq. 4.21, representing the likelihood of operating around a particular mean value, is 

calculated at each time interval and used for detecting the operating mode. Fig.4.7 (b) displays the estimated mean 

value of the fault using the first posterior moment (gPC coefficients) of feed mass fraction xA0. For Fig.4.7 (b), 

the two insets, i.e., A and B, show the optimized posterior gPC coefficients (first posterior moment) of feed mass 

fraction at each time instant while optimizing Eq. 4.21 based on the measurements collected over a moving time 

window. The estimation of the higher order gPC coefficients can be updated using the first posterior moment and 

the same set of measurements collected over the moving time window. 

As seen, the Bayesian inference based Level-2 algorithm can provide correct estimation and identification 

results. However, there is one misclassification of the mean value, which is highlighted in Fig.4.7 (b). The value 

of fault after the step change is ~0.72 in Fig.4.7 (a), but it has been misclassified as 0.85. To further investigate 

the fault detection performance using the Bayesian inference based Level-2 algorithm, Table 8 shows the fault 

detection rates and the corresponding computational time required for optimizing Eq. 4.21 at each time instant. 
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Table 4.9 FDR with the Bayesian inference based Level-2 algorithm 

Case studies  FDR Time(s) 

1   (m = 50) 65.3% ~1 

2  (m = 100) 70.2% ~1 

4 (m = 1000) 81.4% ~3 

 

As seen in Table 4.9, three cases are studied where the fault detection is based on the gPC coefficients estimated 

with the newest (last) measurement inside the moving time window. For the first two case studies, only the first 

posterior coefficient is chosen as decision variable and updated at each time instant. In the first case, the fault 

detection rate is evaluated with a moving time window of 50 measurements of {Qi}, in order to compare the 

results with the Level-1 algorithm that used the same window length, while 100 measurements are used for the 

second case study. The decision variable of the third case study optimizes all the gPC coefficients at each time 

instant. 

For testing the fault detection efficiency, 242 consecutive steps changes have been considered that follow a 

ML-PRS between the 3 mean values (operating modes) and the maximum number of measurements between two 

consecutive step changes in fault (input) is limited to 1000. As seen, an average of ~3 seconds is required at each 

time instant if all the posterior moments (gPC coefficients) are optimized simultaneously, which is slightly slower 

than the estimation if only the first gPC coefficient is updated. It can be also observed that the Bayesian inference 

Level-2 algorithm shows better fault detection rate, as compared to the Level-1 algorithm alone. For instance, the 

fault detection rate is ~65.3% for the first case study, which is an increase of ~5 percent point, as compared with 

the Level-1 algorithm for the same number of measurements. As compared with the maximum likelihood based 

Level-2 algorithm, the Bayesian inference based estimator performs much faster, but it results in a less accurate 

fault detection rate. 

4.6.6 FDD Using Solely Level-2 Algorithm 

In previous case studies, the Level-2 algorithm is triggered by the Level-1 algorithm, only if a potential change 

in the operating mode has been detected. In this section, the Level-2 algorithm is continuously applied by itself 

and the detection performance is compared to the approach that combines the Level-1 and Level-2 algorithms. 

The maximum likelihood based Level-2 algorithm is implemented for two consecutive step changes on the 

feed mass fraction xA0 as shown in Fig.4.8 (a), in which the maximum number of measurements between these 

step changes is limited to 1000. Fig.4.8 (b) and (d) show the simulated noise free external heat Q1 of the first 

reactor, corresponding to the ML-PRS in Fig.4.8 (a). To simulate actual data, Gaussian noise is added to the 

measurements of {Qi}. Fig.4.8 (c) gives the point estimate with a moving time window of 100 measurements. 

In Fig.4.8 (c), the first 10 point estimates are the results obtained using measurements of {Qi} before a step 

change, i.e., these measurements inside the moving time window represent a case where the system is operating 

at steady state with fixed mean values. The estimate of the fault (feed mass fraction xA0) reaches ~0.62, which is 
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close to the simulated value ~0.64 as shown in Fig.4.8 (a). Using the maximum likelihood based Level-2 

algorithm, the estimate of the fault starts to rise after a step change on the feed mass fraction that has been 

introduced at time 5000 seconds. The optimization of Eq. 4.16 is conducted at each of the time instants and the 

point estimate eventually reaches a plateau. The point estimate, however, is overestimated as seen in Figure 4.8 

(c), stabilizing at ~0.99. It should be remembered that when the Level-2 algorithm is applied on its own, the 

estimation of the feed mass fraction becomes an unsupervised learning problem. In such a case, the upper and 

lower bounds approximated with the gPC model as shown in Fig.4.4 itself cannot accurately predict the step 

change. 

 

        

Figure 4.8 Illustration of Maximum likelihood based fault estimator 

Additional studies are conducted to investigate the processor time with the Level-2 algorithm alone. For 

instance, ~400 point estimates are required for the step change indicated by a circle in Fig.4.8 (a), in which the 

feed mass fraction xA0 has been changed from ~0.64 to ~0.80. By contrast, it takes ~200 point estimates to stabilize 

~0.78 for the second step change, due to the relatively smaller change on the feed mass fraction. As discussed 

above, ~500 seconds are required for each of these point estimates as shown in Table 4.7. Thus, it is clear that the 

two-level fault detection algorithm improves the computational time, if the Level-2 algorithm is only executed 

once the Level-1 algorithm has detected a possible step change. An additional advantage of the two-level 

0 2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

Time (s)

F
e
e
d

 m
a
s
s
 f

ra
c
ti

o
n

 

 

xA0 profile

0 2000 4000 6000 8000 10000
710

720

730

740

750

760

770

Time (s)

M
e
a
s
u

re
d

 q
u

a
n

ti
ty

 (
Q

1
)

 

 

Q1 profile

10 200 400 600 800 1,000 1,200

0.7

0.8

0.9

1

1.1

Number of point estimates

E
s

ti
m

a
te

d
 f

e
e

d
 m

a
s

s
 f

ra
c

ti
o

n

 

 

Point estimate

5000 6000 6500 7000 7500
725

750

Time (s)

(a) (b) 

(c) 

(d) 

 

Step change 

(0.64 -> 0.80) 

 

Step change 

(0.80 -> 0.79) 

Estimate ~ 0.62 

Estimate ~ 0.99 

Estimate ~ 0.78 

 



 

 69 

algorithm is that the estimation problem is of supervised learning type thus identifying the accurate values of the 

step changes. 

4.6.7 Application of the Two-level Algorithm to Detect An Incipient Fault 

This case study illustrates the application of the proposed two-level fault classification methodology to a slow 

developing (incipient) fault (Isermann R. , 2005). As seen in Figure 4.9 (a), a ramp-like fault is simulated, which 

is characterized by a slowing increase on the feed mass fraction xA0. Figure 4.9 (b) shows the simulated external 

heat Q1 at each time interval during this transition region, which can be used for the detection and classification 

of faults. The dotted red line in Figure 4.9 (b) represents the simulated noise-free measurements, while the dots 

denotes the measurements collected at each time instants that are corrupted with 1% measurement noise. For 

simplicity, Figure 4.9 (c) shows two PDFs profiles of the measured external heat Q1 operating around two mean 

values (operating modes), which are obtained using the Level-1 algorithm. 

  

 

Figure 4.9 Application of the two-level algorithm to an incipient fault 

To apply the two-level algorithm, each of the measurements collected during the transient is referred to the 

PDFs profile, and the maximum probability is used to infer a particular mean value that the system is being 

operated. When a switch in operating mode has been detected, i.e., the measurement value crosses the limit 

between two adjacent PDF profiles as shown by the star in Figure 4.9 (c) causing the Level-2 algorithm to be 
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launched. Figure 4.9 (d) shows the fault detection and classification results. Before the switch has been detected, 

the operating mode is determined by the Level-1 algorithm. When a switch was detected, the Level-2 algorithm 

is launched. The inference of operating mode can be classified using the estimation result based on a minimum 

distance criterion to the set of mean values that serve for calibration of the Level-1 algorithm. For this case study, 

a moving time window with 50 measurements is used for the Maximum Likelihood based Level-2 algorithm. As 

can be seen, the estimate of the fault starts to rise after the switch has been detected. It should be noted that when 

the Level-2 algorithm is applied alone, the estimation of the feed mass fraction becomes an unsupervised learning 

problem. Thus, there is a time delay associated with the correct classification of faults, which may be improved 

with an increase of measurements used within the moving time windows. An additional study is conducted where 

a step change occurs immediately after the incipient fault, for which the feed mass fraction has been changed back 

to 0.65. As seen, the Level-2 algorithm based estimation responds faster to this step change. 

4.6.8 Comparison Studies to Particle Filter based Fault Detection 

Finally, comparison studies are conducted between the proposed two-level algorithm and a particle filter (PF) 

(Arulampalam, Maskell, Gordon, & Clapp, 2002) for the transient measurements based fault detection. The PF 

based algorithm can be described as per the following steps. (1) Assume a set of prior particles at each time instant 

tk, run each of these particles through the reactor-separator model up to time tk and update the model to make a 

new set of transitioned particles. (2) Simulate and update the observations of measured quantities for each of new 

particles. (3) Calculate the weights for each particle, which are based on the likelihood function between the given 

observations for a particle and the measurements collected from the process. The Gaussian kernel function can 

be used to describe the probability distribution of errors. (4) Normalize these weights to formulate a probability 

distribution. (5) Generate new particles from the new distribution and simulate the observations using particles 

with larger weights on average. (6) Repeat Step 1~5 until the decision variable is stabilized. The noise for the PF 

algorithm is assumed to be equal to the one used for the gPC based Level-2 algorithm. All the methods are 

executed on a 2.66 GHz Intel(R) Core Duo processor. 

Fig.4.10 shows the dynamic value and posterior standard deviation (s.d.) calculated by the PF for one of the 

tested input values, i.e., xA0 ≈ 0.9130, where three different initial states (conditions) and 100 particles are used. 

The legend in Fig.4.9 represents the three conditions used for the PF simulations. The PF is executed for a duration 

of t = 50 seconds to perform a fair comparison with the gPC model based algorithm that uses a time moving 

window of 50 measurements. 

As seen in Fig.4.10, three sets of the initial state in PF provide very different posterior estimates on the average 

value of xA0.  For example, the PF method stabilizes at ~0.6358 with an initial state 0.65, which would indicate 

that the closest feed concentration, out of the 3 mean values considered in the case study, is 0.65 whereas the 

actual input value is 0.9130. 



 

 71 

 

Figure 4.10 Posterior estimation of xA0 with Particle Filter (PF) 

Additional studies are conducted to investigate the processor time with the PF. As done for the gPC method, 

50 and 100 measurements are tested, respectively. The PF requires ~6800 seconds to run for 50 time intervals and 

~13780 seconds for 100 time intervals. As shown in Table 4.7, the gPC based Level-2 algorithm requires 

significantly less computational effort, while it is not sensitive to the user choice of initial guesses as the PF. In 

order to reduce the sensitivity to initial guesses one can execute the PF algorithm for a larger set of initial guesses 

and then average the results. However based on the computation times discussed above, such approach will be 

prohibitive especially for real-time operation. 

4.7 Conclusion 

This chapter proposes a two-level fault detection and diagnosis approach for faults of a stochastic nature, by 

combining generalized Polynomial Chaos (gPC) theory with the maximum likelihood method and Bayesian 

inference, respectively. We propose an algorithm that comprises two levels: Level-1 based on steady state 

information and Level-2 based on dynamic information. The Level-2 algorithm is executed only when the Level-

1 algorithm indicates the possibility of a step change. This significantly reduces the computational time as 

compared to using the Level-2 algorithm on its own. The proposed method is demonstrated using a simulation of 

a nonlinear multimode chemical plant with two continuously stirred tank reactors and a flash tank separator. The 

results show that the proposed methodology is computationally more efficient as compared to simulation based 

approaches such as Monte Carlo (MC) simulations and Particle filter (PF) and it is not sensitive to the user selected 

tuning parameters such as the PF. 

4.8 Supplementary Material 

The objective of this case study is to compare the gPC model based fault detection and classification method 

with the empirical model based methods for process monitoring. The principal component analysis (PCA) is used 

for comparison. 
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One of the most standard methods consists of constructing a single PCA model and defines regions in the lower 

dimensional space which classify whether a particular fault has occurred. Let us assume the matrix X is used to 

store measurements for all operating modes (mean values), and then the sample covariance matrix S can be 

calculated as: 

S = 
1

n-1
XTX = VΛVT (S.1) 

where the diagonal matrix Λ contains the nonnegative real eigenvalues of decreasing magnitude. The matrix Λ 

can be used to optimally capture the variations of the data in X, and the loading vectors P corresponding to the 

first a largest singular values can be then calculated. 

Using the sample covariance matrix S and the loading vectors P, the maximum score discriminant [24] can be used 

to estimate the likelihood that an observation x is the operating mode i, which can be calculated as: 

fi(x) = 
1

2
(x - x̅i)

𝑇
P(PTSiP)

-1
PT(x - x̅i) + ln(p

i
) - 

1

2
ln[det(PTSiP)] (S.2) 

x̅i = 
1

ni

∑  xjxjϵχi
 (S.3) 

where x̅i is the mean vector for operating mode i, ni is the number of measurements in operating mode i, χi is the 

set of vectors xj which belong to the operating mode i, and Si is the sample covariance matrix for operating mode 

i. 

The score discriminant can also be used for multiple PCA models. Assuming the PCA models retain the 

important variations in discriminating between the faults (operating modes), and observations x is classified as 

being in the operating mode i with the maximum score discriminant: 

fi(x) = 
1

2
xTPi ∑ Pi

Tx-2
a,i  + ln(p

i
) - 

1

2
ln[det( ∑ )-2

a,i ] (S.4) 

where Pi is the loading matrix for the operating mode i, ∑a,i is the diagonal matrix for the operating mode i, and 

pi is the overall likelihood of the operating mode i. 

For comparison, the fault detection and classification algorithms defined in Eq S.3 and Eq S.4 are compared 

with the Level-1 algorithm when the system is operating at steady states. For the model calibration with eq S.3 

and eq S.4, 100 measurements for each operating mode are used, while ~81 measurements for each operating 

mode are used for the gPC model calibration with Eq 4.11. The number of step changes of the unknown input 

(xA0) among the 3 mean values in the ML-PRS is 300 for the model calibration with PCA. Thus a slightly larger 

number of measurements were selected for the calibration of the PCA algorithm as compared to our proposed 

gPC approach. 

Three scenarios are considered: (i) measurements collected in the absence of measurement noise and variation 

on the feed mass fraction xA0; (ii) measurements collected with measurement noise but no stochastics variation 

on xA0; and (iii) both measurement noise and uncertainty on xA0 are considered. Table S.1 shows the result of 

Fault Classification Rate (FCR) for these three scenarios. 
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Table S.1  FCR with PCA model (steady state measurements) 

xA0 
S.3 S.4 

Case i Case ii Case iii Case i Case ii Case iii 

0.65 0.99 0.98 0.83 0.99 0.99 0.88 

0.75 1 0.85 0.72 1 0.88 0.76 

0.85 1 0.93 0.85 0.99 0.90 0.84 

Average 0.997 0.92 0.80 0.993 0.923 0.827 

 

In Table S.1, the variation on xA0 follows the same assumption as done for the gPC model and 1% measurement 

noise is used for simulations. To comply with the assumption that the system is operated around a fixed mean 

value with perturbations, the classification efficiency is investigated using the measured quantities before a switch 

between means occurred (see inset Figure 1 (b)-A). The measurements denote that the system is operating at 

steady state with constant mean values. It can be seen that the variation on xA0 and the measurement noise show 

strong influence on the classification of faults. As compared to the results in Table 7, the FCR is ~10 percent 

points lower than the gPC model based Level-1 algorithm. An explanation for the difference is that the principal 

component analysis (PCA) is a linear dimensionality reduction method. When the data components have 

nonlinear dependencies, PCA may require a larger dimensional representation than would be found by a nonlinear 

technique. Additionally, comparing Case-ii to Case-iii, the classification rate decreased by ~10 percent points, 

when the uncertainty on feed mass fraction xA0 is considered. One may argue that extra data is required for the 

model calibration with the PCA method to increase accuracy. The use of more training measurements may 

improve the classification rate but would increase the computational burden. The proposed gPC based method 

both addresses the nonlinearity by explicitly using a nonlinear model and necessitates less data, since it directly 

predict PDF profiles of the variables used for detection. 
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Chapter 5 

Integration of Fault Diagnosis and Process Control 

(Adopted from Du et al., 2015, Journal of Process Control, vol. 38, p. 42~53, 2016) 

5.1 Overview 

This chapter presents a novel methodology for simultaneous optimal tuning of a fault detection and diagnosis 

(FDD) algorithm and a feedback controller for a chemical plant in the presence of stochastic parametric faults. 

The key idea is to propagate the effect of time invariant stochastic uncertainties onto the measured variables by 

using a Generalized Polynomial Chaos (gPC) expansion and the nonlinear first principles model of the process. 

A bi-level optimization is proposed for achieving a trade-off between the fault detectability and the closed loop 

process variability. The goal of the outer level optimization is to seek a trade-off between the efficiency of 

detecting a fault and the closed loop performance, while the inner level optimization is designed to optimally 

calibrate the FDD algorithm. The proposed method is illustrated by a continuous stirred tank reactor (CSTR) 

system with a fault consisting of stochastic and intermittent variations in the inlet concentration. Beyond achieving 

improved trade-offs between fault detectability and control, it is shown that the computational cost of the gPC 

model based method is significantly lower than the Monte Carlo type sampling based approaches, thus 

demonstrating the potential of the gPC method for dealing with large problems and real-time applications. 

5.2 Introduction 

Equipment failures and abnormalities defined as faults are a major source of economic loss and safety hazards 

in many industries thus creating a need for fault detection and diagnosis algorithms.  Most fault detection and 

diagnosis (FDD) systems are implemented at a supervisory hierarchical level above the control systems level and 

use measured variables that are also used for feedback control. While there is a large body of literature on FDD, 

the issue of integration between control and fault diagnosis algorithms has not been addressed as much in 

particular in the presence of stochastic faults. 

A key challenge for integrating control and FDD is that they often have competing objectives. For instance, if 

the controlled variables are to be used for detection, better control means that the controlled variable deviates 

little from the set point, while FDD requires sufficiently large deviations for effective detection purposes 

(Davoodi, Golabi, Talebi, & Momeni, 2013; Meng & Yang, 2014). Similar trade-offs occur also when the 

manipulated variables are used since good detection generally translate into large control actions as shown in this 

work. Moreover, process disturbances, nonlinearity and model error make the integration of FDD with control a 

challenging task (Paulson, Raimondo, Findeisen, Braatz, & Streif, 2014). Several methods have been proposed 

for optimal simultaneous tuning of a FDD algorithm and a controller based on robust norms. To synthesize the 

controller and diagnosis algorithms, a four parameter controller setup as a generalization of the two degrees of 
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freedom controllers was proposed (Jacobson & Nett, 1991; Tyler & Morari, 1994). This method, however, did 

not explicitly address the cost of unobservable faults and their stochastic nature. 

To improve the fault detectability in the presence of bounded uncertainties, set-based (separating inputs) FDD 

techniques have been used for active fault diagnosis (Scott J. , Findeisen, Braatz, & Raimondo, 2013; Raimondo, 

Marseglia, Braatz, & Scott, 2013). These methods inject auxiliary signals into the system to enhance the 

detectability of faults. Instead of introducing an auxiliary signal in the current study, the controller is synthesized 

together with the fault detection algorithm. 

Following the above, the current work addresses the problem of optimal simultaneous tuning of a FDD 

algorithm and the controller’s parameters in the presence of time varying stochastic intermittent parametric faults, 

where the FDD is based on a nonlinear first principle model. The proposed approach seeks a trade-off between 

the fault detectability and the closed loop performance. Since the stochastic parametric faults (inputs) are 

considered, it is necessary to quantify the effect of these inputs on both the variables used in feedback control and 

for fault detection. One option to do such propagation and quantification is by Monte Carlo (MC) type sampling 

based simulations, which are computationally demanding since they require a large number of simulations of the 

nonlinear process model to get accurate results.  Computational efficiency is critical in the current problem, since 

the propagation of the stochastic faults on other variables of interest has to be performed repetitively within the 

optimization algorithms used to achieve a trade-off between detection and control. Uncertainty analysis and 

propagation using the generalized Polynomial Chaos (gPC) expansion has been studied by a number of authors 

in different areas, and has been reported to be more efficient as compared to MC simulations (Du, Duever, & 

Budman, 2015; Nagy & Braatz, 2007; Patz & Preusser, 2012). The advantage of gPC is that it can propagate a 

complex probability distribution into a variable of interest and explicitly calculate the statistics of the resulting 

outputs by analytical formulae (Ghanem & Spanos, 1991; Xiu D. , 2010). 

The current work investigates the problem of optimal simultaneous tuning of a FDD algorithm and a controller 

in the presence of stochastic time varying disturbances by using the gPC expansions for stochastic parametric 

faults (inputs) and measured output variables. A bi-level optimization algorithm proposed in this work balances 

the fault detectability and the closed loop control performance. In both the works by Mesbah et al. (Mesbah, 

Streif, Rindeisen, & Braatz, 2014) and our previous work (Du, Budman, & Duever, 2014) presented at the same 

meeting, the PDF profiles generated with the gPC models were utilized to enhance the fault detectability by 

minimizing the overlap between the PDF profiles. Unlike the referenced work (Mesbah, Streif, Rindeisen, & 

Braatz, 2014), the previous study done by the authors (Du, Budman, & Duever, 2014) and the current work 

synthesize the fault detection algorithm together with the controller to seek an optimal trade-off between detection 

and control. Also, the current work differs from previous studies in the proposed fault detection algorithm that it 

is based on a maximum likelihood criterion to detect the fault using a gPC model. Preliminary results of seeking 

a trade-off between the fault detectability and the closed loop control performance were outlined in (Du, Budman, 
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& Duever, 2014). A significant reduction in computational effort was observed by using the gPC method, as 

compared with the MC sampling based approaches, which is further investigated in this work. Also, the earlier 

work by the authors (Du, Budman, & Duever, 2014) is extended by combining the gPC theory with the maximum 

likelihood based estimation to recursively estimate the stochastic parametric faults (inputs) during transients, 

while in our previous study only the steady state fault detection problem was considered. The application of the 

gPC model with maximum likelihood dynamically estimates the value of the stochastic fault over a time moving 

window. The estimation results can be used as a real-time process monitoring strategy for detection of stochastic 

faults in nonlinear systems. While previously reported parameter estimation approaches based on combinations 

of the gPC with Bayesian and maximum likelihood have been applied in an offline fashion, the current work 

proposes a gPC based methodology for online detection of faults. 

To summarize, the novel contributions in this current work are: (i) The use, in the context of integration 

between fault diagnosis and control, of an intrusive gPC approach for uncertainty propagation and quantification 

by substituting the gPC directly into the first principles nonlinear model of the system; (ii) The use of the 

maximum likelihood based estimation in combination with the gPC model for fault detection; and (iii) The 

formulation of a bi-level optimization for achieving an optimal tradeoff between control and improved fault 

detection. The methodology is specifically targeted to: (i) Balance the control performance and the fault 

detectability, by synthesizing a FDD algorithm that is operated together with a feedback controller; and (ii) 

Diagnose the stochastic faults consisting of uncertainties around mean values that change intermittently, using 

measurements collected immediately after the occurrence of a step change on the mean values of the faults. 

This paper is organized as follows. Section 5.3 presents the background and the principal methodologies used 

in this work. The optimization problems formulated for simultaneously tuning the FDD algorithm and the 

controller are given in Section 5.4. The presentation of the maximum likelihood based FDD algorithm is also 

presented in Section 5.4. An endothermic continuous stirred tank reactor (CSTR) is introduced as a case study in 

Section 5.5. Analysis and discussion of the results are presented in Section 5.6 followed by conclusions in Section 

5.7. 

5.3 Theoretical Background 

The generalized polynomial chaos (gPC) expansion (Xiu D. , 2010) represents an arbitrary continuous random 

variable of interest as a polynomial series of another random variable with a given standard distribution. Assume 

a set of nonlinear ordinary differential equations (ODEs) describe the dynamic behaviour of a system: 

ẋ = f (t, x, u; g) (5.1) 

0 ≤ t ≤ tf , x(0) = x0  

where the vector x ϵ Rn contains the system states (measured variables) with initial conditions x0 ϵ Rn over time 

domain [0, tf], and u denotes the known inputs of the system. The vector g ϵ Rng is the unknown stochastic time 
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varying input. Note that this work assumes that the input vector g contains the stochastic parametric faults of 

interest. The ‘.’ notation over x signifies the derivative with respect to time t. The function f is assumed to be the 

first principle model of the process. To quantify the effect of stochastic inputs (faults) g on the different measured 

variables, the gPC expansion can be employed. To that purpose each unknown input gi (i = 1,2,…, ng) in g is 

represented as a function of a set of random variables ξ = {ξi}: 

gi = gi(ξi) (5.2) 

where ξi is the ith random variable. The random variables (ξ = {ξi}) are assumed to be independent and identically 

distributed. Following the gPC expansion, the unknown stochastic faults (inputs) g(ξ) and system states x(t, ξ) are 

described in terms of orthogonal polynomial basis functions Φk(ξ): 

                               g(ξ)= ∑ g
k
𝛷k(ξ)

∞

k=0

 (5.3) 

                                 x(t, ξ)= ∑ xk(t)𝛷k(ξ)

∞

k=0

 (5.4) 

where xk and gk are the gPC coefficients of measured variables (states) and faults at each time instant t, Φk(ξ) are 

multi-dimensional orthogonal basis functions of ξ in the gPC theory. If the input (g) can be measured or estimated, 

the coefficients of the unknown input, gk, can be calculated such that Eq. 5.3 follows an a priori measured 

statistical distribution. Then, the gPCs representing the measured quantities (states) resulting from this random 

input can be calculated using a model of the process combined with a Galerkin projection procedure (Xiu D. , 

2010). By Galerkin projection it is possible to compute the expansion coefficients {xk(t)} by projecting Eq. 5.1 

onto each one of the polynomial chaos basis functions{Φk(ξ)} as described in Eq. 5.5: 

                                〈ẋ(t,ξ), 𝛷k(ξ)〉 =  〈 f (t, x(t,ξ), u(t), g(ξ)),𝛷k(ξ)〉     (5.5) 

For practical application, Eqs. 5.3and 5.4 are often truncated to a finite number of terms, i.e., P. Hence, the total 

number of terms in Eq. 5.5 is a function of an arbitrary order p in Eq. 5.3 that is necessary to represent an a priori 

known distribution of g and the number (ng) of different faults (inputs) in vector g as follows: 

                       P = ((ng + p)!/(ng!p!)) - 1 (5.6) 

From Eq. 5.6, the number of the gPC expansion terms for the measured variables in Eq. 5.4 increases as the 

polynomial order p in Eq. 5.3 and/or the number of unknown inputs ng in Eq. 5.2 increase. The inner product in 

Eq. 5.5 between two vectors is defined by: 

                                〈ψ(ξ),ψ'(ξ) 〉= ∫ ψ(ξ)ψ'(ξ)W(ξ)dξ  (5.7) 

where the integration is conducted over the entire event domain generated by the random variables ξ, and W(ξ)is 

the weighting function, which is the probability function of random variables  and has to be chosen with respect 

to the polynomial basis function used to represent ξ so as the result of Eq. 5.7 is one or zero. To obtain 
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orthogonality the basis functions have to be selected according to the choice of the distribution of ξ. For example, 

Hermite polynomials are chosen as basis functions for normally distributed ξ and Laguerre polynomials are used 

for Gamma distributed ξ. Once the coefficients of the expansion in Eq. 5.4 are calculated, it is possible to compute 

statistical moments for the measured variables at any given time instant t as Eq. 5.8 and Eq. 5.9 as a function of 

the coefficients of the expansion xk in Eq. 5.4 as follows: 

                                      E(x(t)) = Ε [∑ xi(t)𝛷i

P

i=0

] = x0(t)Ε[𝛷0] + ∑ Ε[𝛷k]

P

i=1

= x0(t)    (5.8) 

                                   Var(x(t)) = Ε [(x(t) - Ε(x(t)))
2
] = Ε [(∑ xi(t)𝛷i

P

i=0

- x(i= 0)(t))

2

] 

 

                              = Ε [(∑ xi(t)𝛷i

P

i=1

)

2

] = ∑ xi(t)
2
Ε(𝛷i

2)

P

i=1

 (5.9) 

Also, the probability density functions (PDFs) for measured variables, x(t),  can be approximated by sampling 

from the distribution of ξ and substituting the samples into Eq. 5.4. The ability of analytical formulae for 

calculating statistical moments as per Eq. 5.8 and Eq. 5.9 and to rapidly calculate the PDF profiles of the measured 

variables are the main rationale for using the gPC, since it dramatically reduces the computational effort involved 

in repeated calculations of moments and the PDF profiles as required in this study. 

The fault detection procedure used in the current work consists of the inverse of the procedures explained in 

this section, i.e., the distribution of the stochastic parametric faults (inputs) g is to be inferred from measurements 

of the process measured variables x. Further details about this inverse procedure are given below. 

5.4 Optimal Tuning of Controller Supervised by a FDD Algorithm 

Since the tuning of the controller affects both the fault detectability and measured variables, a simultaneous 

optimal tuning of a controller and a fault detection algorithm is formulated as a bi-level optimization problem.  It 

comprises an inner level optimization where the fault detection algorithm is calibrated with simulated noisy data 

and an outer level optimization where optimal tuning parameters of the controller and/or the set-point of the 

controlled variable are optimized.  The calibrated fault detection algorithm that involves the inverse of the 

procedure described in Section 5.3 is used to estimate the proportion of faults that will go undetected, i.e., the 

misdetection rate. Then, the estimated amount of undetected faults is given a cost that is a trade-off in the outer 

level optimization with the costs of control to lead to an optimal trade-off between control and detection. Details 

about the fault detection algorithm and the integration of this algorithm with the controller are given below. 
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5.4.1 Fault Detection and Diagnosis Algorithm 

The faults considered in the current work consist of intermittent step changes in an input variable with 

superimposed stochastic noise (as seen in Fig.5.1 (a)). The step changes follow a Multi-Level Pseudo Random 

Sequence (ML-PRS). Fig.5.1 (a) shows a segment of the typical faults signal used, where the step changes occur 

among five different mean values on stochastic parametric faults. The unknown faults (inputs g in Eq. 5.1) are 

then described as follows: 

                       gi = ḡi + ∆gi  (i = 1, …,k) (5.10) 

where ḡi is a set of possible mean values (operating modes), ∆gi are stochastic variations around each mean value, 

k is the number of mean values in total. Each particular mean value will be referred heretofore as an operating 

mode. The fault detection and diagnosis (FDD) problem is then defined as detecting a change in the mean values 

of the stochastic parametric faults (inputs) from noisy process measurements such as manipulated or controlled 

variables (Fig.5.1 (b)). The insets in Fig.5.1 (a) and (b) respectively show additional details of inputs considered 

as faults and the corresponding measured variables to be used for inferring these faults. For instance, the inset in 

Fig.5.1 (a) represents a few step changes around a particular mean value of stochastic fault. The insets in Fig.5.1 

(b) show the changes on the measured variable induced by the variations of faults (inputs). 

In Section 5.3 above, we explained how to propagate stochastic inputs, such as the ones shown in Fig.5.1 (a), onto 

measured quantities (outputs) and how to calculate the probability density functions (PDFs) of these outputs by 

using gPC expansions. The main idea of the fault detection algorithm proposed in this study is to solve the inverse 

of the problem given in Section 5.3. In particular, the goal is to dynamically infer the mean and variance of the 

stochastic parametric faults (inputs) from the gPC models of the measured variables, i.e., states x in Eq. 5.1. 

 

Figure 5.1 Fault profile representing an intermittent stochastic input fault and resulting measured variable 

The method consists of four steps: (1) the stochastic parametric fault is propagated onto the measured variables 

thus providing the gPC expressions of the measured quantities (outputs) x(t, ξ) around each possible mean value 

ḡi considered in the problem; (2) The PDF profiles of the outputs are calculated for each mean value ḡi by 

substituting samples from a priori known distribution of ξ into x(t, ξ). The PDF profiles are used to quantify the 
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unobservable faults, which builds the connection between the outer level optimization and the inner level 

optimization; (3) The maximum likelihood  based stochastic fault estimation combines the gPC model predictions 

with the measured data to maximize the likelihood with respect to the value of the random variable ξ; and (4) The 

optimized values of ξ  in Step (3) are substituted into a set of likelihood functions generated around each of the 

mean values ḡi, where the largest likelihood value is used to infer the corresponding operating mode (mean value 

of stochastic parametric faults) around which the system is operated. These 4 steps are further explained below. 

Step 1: 

The stochastic parametric faults (g in Eq.5.10) are propagated with the gPC model into the measured variables 

(x) to be used for fault detection following the method outlined in Section 2. 

Step 2: 

The PDF profiles of the measured quantities (variables) to be used for detection are calculated around each mean 

value of ḡi. The times for switching between different values of ḡi are simulated with a Multi-Level Pseudo 

Random Sequence (ML-PRS) in this step. The PDF profiles of the measured variables to be used for detection (x 

in Eq. 5.1), can be calculated by the method described in Section 5.3. In practice, due to noise, model error (e.g., 

gPC truncation error in Eq. 5.3) and/or Eq. 5.4) and lack of exact knowledge about the stochastic faults, the PDF 

profiles of the measured variables have to be calibrated using actual process measurements. To this purpose, the 

mean and variance of the unknown stochastic parametric faults are calibrated for each of the mean values ḡi in 

Fig.5.1 (a) as follows: 

                                        min
λinner

J = ∑ ω1,i(ϑ1,i(λinner) - υ1,i)
2

n

i=1

+ ∑ ω2,i(ϑ2,i(λinner) - υ2,i)
2

n

i=1

       (5.11) 

where  λinner is a decision variable vector consisting of the mean and variance of the stochastic unknown parametric 

faults (inputs). ϑ1,i and ϑ2,i are the mean and variance of the predictions of the particular variables (x) to be used 

for fault detection and control. It should be noted that ϑ1,i and ϑ2,i are functions of the decision variables λinner, and 

they can be calculated numerically with Eq. 5.8 and Eq. 5.9 by substituting the gPC approximation into the first 

principle model and by conducting Galerkin projection as per the procedure illustrated in Section 5.3. The terms 

υ1,i and υ2,i are the mean value and variance of the sampled noisy measurements of x, and n is the number of the 

manipulated and/or controlled variables used to calibrate the nonlinear first principles model.  The weights, {ω1,i} 

and {ω2,i}, determine the contribution of each term to the objective function Eq. 5.11.The measured values in Eq. 

5.11 are collected for all step changes around each ḡi in the ML-PRS.  Due to the presence of noise and truncation 

error introduced by the gPC approximation, the mean and variance of the input disturbance defining λinner and 

calculated from Eq. 5.11 will differ from the actual values entering the process. From the λinner resulting from Eq. 

5.11, it is possible to calculate the calibrated gPC coefficients for the measured variables x. 

Step 3: 
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Using the calibrated gPC coefficients from Step 2, the PDF profiles of measured quantities x’s are estimated by 

substituting random samples (ξ) from the random events’ space into the resulting gPC expansions Eq. 5.4. The 

PDF profiles for the measured variables are then approximated by using a binning algorithm where different 

ranges of probability values are assigned to each particular bin. Fig.5.2 shows a schematic of PDF profiles for 

one measured variable of interest, where each operating mode represents the mean value of the stochastic 

parameter faults ḡi. 

Each of the PDF profiles calculated in Step 2 and Step 3 assumes that the fault mean value ḡi remains constant. If 

the system is operated around a constant mean ḡi, the corresponding operating mode i (i = 1, …,k) in Eq. 5.10 is 

detected from the PDF profiles for a given measurement as follows: 

                       i = arg max{Pi} (5.12) 

where i is the operating mode as defined in Eq. 5.10, Pi represents the probability of being operated around a 

particular mean value ḡi for a given measurement at steady state. The steady state PDF profiles based fault 

detection was proposed in earlier work by the authors (Du, Budman, & Duever, 2014), while the process is 

operating around a particular mean value ḡi. As shown in Fig.2, for example, three probabilities (red dots) are 

found for a given measurement collected at steady state. The maximum probability is used to infer that the system 

is operating around the mean value corresponding to ‘Mode 2’. 
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Figure 5.2 The PDF profiles of measured variables 

Step 4: 

The actual fault involves dynamic changes around the particular mean values as shown in Fig.5.1 (a). To diagnose 

changes in the mean values of stochastic faults following the step changes in the ML-PRS with transient 

measurements, i.e., measurements collected immediately after the occurrence of a step change on the mean value 

of faults, a maximum likelihood based estimator is applied to infer the dynamic value of the stochastic fault over 

a time moving window [t1, ti]. Compared with our earlier work, a moving time window of measurements is utilized 

rather than an individual measurement to add a filtering capability to the algorithm proposed in the current work. 

The objective is to recursively estimate the stochastic parametric faults (inputs) during transients. 
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ℓτ (ξ, x1:i) is defined as the likelihood function of the measured variables x over time domain [t1, ti], conditioned 

on the random variable ξ and the gPC coefficients of x obtained in Section 2 and can be estimated by a suitable 

kernel density function at a particular time instant (tτ , τ = 1, …, i ) as: 

ℓτ(x|π(ξ), xτ) ∝ Gk[xτ - π(tτ, x(ξ), u; g(ξ))] (5.13) 

where Gk denotes the kernel function, xτ are the measurements collected over the moving time window [t1, ti], the 

π operator is defined as the gPC model conditioned on the gPC coefficients and ξ for a particular fault mean value 

ḡi as defined in Eq. 5.10. For the detection of stochastic fault changes, the likelihood of Eq. 5.13 is maximized at 

each time instant with respect to the random variable ξ. Then, a different value of the random variable ξ will be 

obtained corresponding to each gPC model generated around one of the mean values ḡi as follows: 

min
ξ

  J1:i =
1

2
∑ (xτ - xg(ξ))

𝑇
Rτ

i

τ=1

(xτ - xg(ξ)) (5.14) 

, where Rτ is the inverse covariance matrix used for kernel function, xg is calculated with the gPC model around a 

particular mean value of ḡi approximated in Step 2. For computational convenience, the gPC model of x at each 

time instant over time domain [t1, ti] is substituted into Eq. 5.14, and after some algebraic manipulations Eq. 5.14 

can be rewritten for each mean value ḡi and at each time interval tτ as: 

min
ξ

  Jtτ=1:i
=

1

2
( ∑ ∑ xτ

TRτ

i

τ=1

xτ - 2 ∑ ∑ xτ
TRτ

i

τ=1

xg, τΦj(ξ) + 

P

j=1

∑ ∑ xg, τΦj(ξ)Rτ

i

τ=1

xg, τΦj(ξ) + 

P

j=1

 

n

k=1

 (5.15) 

2 ∑ ∑ ∑ xg, τΦj(ξ)Rτ

i

τ=1

xg, τΦk(ξ)

P

k=1

)

P

j=1

 

   

where xg,τ are the gPC coefficients at time instant tτ,  n is the number of the manipulated and/or controlled variables 

used in Eq. 5.15, P and Φ(ξ) are the truncation order and polynomial basis functions of the gPC model 

respectively. The gPC coefficients xg,τ are a priori calculated for each particular operating mode ḡi as explained in 

Section 5.3 and are independent of ξ. A gradient descent algorithm is used to solve Eq. 5.15. In practice, the term 

in Eq. 5.15 can be calculated offline to speed up calculations for each of the mean values ḡi (operating modes), 

since they are independent of ξ. The optimization of Eq. 5.15 is conducted for each of the gPC models generated 

with the set of mean values in Step 2. Thus, a set of ξ values can be obtained, each corresponding to a different 

mean value on stochastic parametric faults. Finally, the value of ξ that results in the smallest cost in Eq. 5.15 is 

substituted into the gPC approximation of the stochastic input in Step 1 to estimate the average value of fault 

(input) over the moving time window. 

5.4.2 Integration of Control and FDD Algorithm 

An algorithm is proposed to simultaneously tune the fault detection algorithm presented above and a controller 

that involves measured variables to be used for fault detection. Since the tuning of the controller affects the 

detectability of the fault as well as the variability in the manipulated and controlled variables, the controller 
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parameters and/or the set-point at which the system should be operated can be optimized. A bi-level optimization 

problem, involving an outer level optimization where an optimal trade-off between control and detection is sought 

and an inner level optimization to optimally calibrate the fault detection algorithm with data (Problem Eq. 5.11)) 

is defined as follows: 

                                        min
λouter

J  = μ
1
γ

1
+ μ

2
γ

2
+ μ

3
γ

3
+ μ

4
γ

4
+ μ

5
γ

5
      (5.16) 

                             Subject to: Optimization problem in (5.11) 

                                Stability constraints 
 

where γ1 is the cost of product quality related variables, γ2 is the cost associated with variability in the controlled 

variables that are often associated with quality, γ3 are the operating costs of the process, e.g., cost of utilities, γ4 is 

the cost related to the variability in manipulated variables, i.e., deviation of control actions around nominal 

operating values, and γ5 is the cost of unobservable faults which will be further discussed. The decision variables 

λouter are the tuning parameters of the controller or a combination of these tuning parameters and the set point, and 

the subscript outer indicates that Eq. 5.16 is the cost of the upper level optimization whereas the lower level 

optimization is given by Eq. 5.11. Stability constraints in Eq. 5.16 are imposed to ensure stability of the linearized 

model based on its eigenvalues. The weight coefficients, {μi}, determine the contribution of each factor to the 

objective function Eq. 5.16. The effect of the choice of these weights is further discussed in the case study, since 

it is problem specific. The variabilities in objective function Eq. 5.16 account for the competing objectives 

between costs related to the tuning of controller and the cost incurred due to lack of detection of potential faults 

(γ5). 

A key simplifying assumption made in this work is that misidentification of faults occurs when the 

measurement values used for inferring the faults are located in the overlap regions of adjacent PDFs estimated as 

shown in Fig.5.2, since most misclassification will happen near the class boundaries. Accordingly the amount of 

fault misclassification is assumed to be correlated to the area of overlap between adjacent PDFs. For example, 

the shaded area in Fig.5.2 represents the overlap between operating modes 1 and 2. This assumption is directly 

justified by the fault detection algorithm presented in Eq. 5.15 where the objective is to calculate the maximum 

likelihood that a set of measurements within a moving time window correspond to operation around a particular 

mean ḡi and where this likelihood is assessed with respect to the PDF profiles generated around each mean. Thus, 

γ5 in Eq. 5.16 is calculated by numerical integration of the total area of the overlaps between the PDF profiles 

shown in Fig.5.2. Note that the overlaps can also be estimated with Bayes error (Cha & Srihari, 2002) or Kullback-

Leibler divergence (Press, Teukolsky, Vetterling, & Flannery, 2007), which quantifies the similarity of PDFs. 

The mean and variances of the product and control actions, as well as the estimate of the overlapping regions are 

all obtained from the PDF profiles calculated in the inner level optimization. This connects the outer level 

optimization to the inner level optimization, since all these values calculated from the PDF profiles participate in 

the cost of the outer level optimization. This is a two-way connection since the PDF profiles affect the cost of the 
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outer level optimization whereas the controller tuning parameters solved in the outer level optimization affect the 

PDF profiles. 

The proposed bi-level optimization methodology and fault detection algorithm can be applied to other 

processes as per the following steps. (i) Assume stochastic parametric faults of interest for the process and 

formulate a gPC model from the first principles’ model. (ii) Simulate the dynamic process with measurements 

noise, and identify the number of possible mean values for a ML-PRS (Multi-Level Pseudo Random Sequence) 

fault signal. (iii) Calibrate mean values and variances of the stochastic faults using the inner level optimization 

Eq. 5.11. (iv) Formulate stability constraints using the linearized closed loop gPC model to guarantee negative 

eigenvalues within the outer level optimization Eq. 5.16. (v) Calculate the unobservable fault from the numerical 

integration of the total area of the overlapping regions between the PDF profiles of the measured quantities. (vi) 

The trade-off between the control performance and the fault detectability is solved by the outer level optimization 

Eq. 5.16 with respect to the decision variable vector (controller parameters and/or set-point). (vii) Faults are 

detected by combining the gPC model with a maximum likelihood function using measurements obtained over a 

pre-specified moving time window. 

5.5 Case Study 

The fault detection algorithm proposed in Section 5.4.1 and the optimization problems in Section 5.4.2, defined 

by Eqs. 5.11, Eq. 5.15 and Eq. 5.16, respectively, are illustrated for a non-isothermal continuous stirred tank 

reactor (CSTR) system (Riggs, 1999). This process is considered sufficiently complicated to illustrate the 

methodology in terms of the presence of nonlinear behavior, uncertainty and disturbances (faults). Fig.5.3 depicts 

the CSTR with a concentration control loop as well as the variable (inlet concentration CA0) for which faults are 

considered. The mathematical model of the process controlled with a PI controller is described by the following 

nonlinear model: 

                                        Vr

dCA

dt
 = 

F

ρ
(CA0 - CA) - Vrk0CAe

-
E

RT (5.17) 

                                        VrρCv

dT

dt
 = FCp(T0-T) - Vr∆Hk0C

A
e

-
E

RT + Q (5.18) 

                                        
dQ

dt
 = Kp (

F

ρVr

(CA0 - CA) - k0CAe
-

E
RT)  - 

Kp

τi

(CA,set - CA) (5.19) 

where Kp and τi are the controller gain and integral time constant, respectively. The controller is used to control 

the outlet reactant concentration CA by manipulating the external heat Q. To illustrate the proposed algorithm, 

faults are assumed to be intermittent step changes superimposed with variations in the inlet concentration CA0 of 

the type shown in Fig.5.1 (a). The parameter settings used for the CSTR simulation are given in Table 5.1. 
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Figure 5.3 The CSTR with a concentration control loop and typical industrial stochastic faults 

Table 5.1 Parameter declaration and setting used for CSTR 

Symbol Description Symbol Description 

Vr Reactor volume (100 L) H 
Heat of reaction (160,000 

cal/gmoles) 

F Mass feed rate (10 kg/s) T0 Feed temperature (400 K) 

CA0 
Inlet concentration of component A (1.0 

gmoles/L) 
E/R 

Normalized activation energy (2.0e5 

K) 

 
Density of the reactor feed and product (1.0 

cal/g) 
Cv Assumed equal to Cp 

Cp 
Heat capacity, reactor feed and product (1.0 

cal/g/K) 
k0 Rate constant (1.97e24 s-1) 

Qs 
Initial steady state heat addition rate (7.0e5 

cal/s) 
T Reactor temperature (350 K) 

 

The objective is to solve the bi-level optimization Eq. 5.16 to seek the optimal tuning parameters for the PI 

controller and/or the optimal set-point for the reactant concentration CA, while minimizing unobservable faults. 

The estimation of unobservable fault is subject to the optimal calibration of the fault detection algorithm in the 

inner level optimization Eq. 5.11. The goal of the fault detection algorithm defined by the inner level optimization 

is to identify changes in the mean value of inlet concentration CA0 based on the external heat measurements, while 

the outer level optimization in Eq. 5.16 is seeking to balance the competing objectives between the fault 

detectability and the closed loop performance. For this case study, the measured variable (x) used for the outer 

level optimization is the outlet concentration CA (γ1 in Eq. 5.16) and the external heat duty Q represents the 

operating cost (γ3 in Eq. 5.16). Also, the cost related to the variability in product quality CA (γ2 in Eq. 5.16) and 

the cost related to the variability in the manipulated variable Q (γ4 in Eq. 5.16) are approximated by the variance 

calculated using the gPC model with Eq. 5.9 in Section 5.3. The PDF profiles of the external heat Q is used in the 

current work to estimate the unobservable fault (γ5) in Eq. 5.16, while the controlled variable (CA) was not used 

for detection, since its variability around the set-point is generally small and thus it is less effective than the 

manipulated variable (external heat) for inferring stochastic concentration changes on CA0. All the {γi} values in 

the cost are calculated from the PDF profiles, thus connecting between the two levels of the bi-level optimization 

in Eq. 5.11 and Eq. 5.16, i.e., the inner level optimization and the outer level optimization. The weights {μi} 
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determine the relative contribution of each cost to the total variability cost. Equal weights (μi =1) are assigned to 

guarantee each factor contributes evenly to the objective function Eq. 5.16. The effect of the choice of these 

weights is further discussed below in Section 5.6.7. 

5.6 Results and Discussion 

5.6.1 Formulation of gPC model 

The application of Galerkin projection requires integrating the differential equations with respect to an 

appropriate selection of a polynomial for a particular random variable. Using the orthogonality property of the 

basis functions, for example, these integrations are possible for monomial or polynomial terms. However, the 

integration of non-monomial terms, such as the Arrhenius expression in Eq. 5.17, requires the use of an 

approximation. This problem is addressed in the current work by approximating the Arrhenius term with a 2nd 

order Taylor series expansion. The accuracy of the approximation of the Arrhenius term by the Taylor expansion 

is verified by comparing the gPC model predictions to the Monte Carlo (MC) simulations with the same operating 

conditions as listed in Table 5.1.  Stochastic variations in the inlet concentration around a specific mean value 

and an additional inlet concentration perturbation at t =1000 seconds are simulated. 

For the gPC method, the coefficients of the gPCs describing measured quantities (outputs) are calculated. Then, 

samples from the random event ξ are substituted into these gPC expressions as outlined in Section 5.3 to 

approximate the range of the measurements for the measured quantities (x). Then, the maximum, minimum and 

mean of these measurements are obtainable at each time instant from the gPCs. For the MC simulations, (i) A set 

of samples of inlet concentration CA0 following the same statistical properties as used for the gPC are generated 

first; (ii) Each sample is substituted into the nonlinear CSTR model described as Eq. 5.17 ~ Eq. 5.19; and (iii) 

The resulting simulation of the measured variables are stored for comparison. The comparison results are depicted 

in Fig.5.4, where several randomly chosen simulated trajectories with the MC simulations are given. As expected, 

these trajectories are bounded by the upper (Maximum) and lower (Minimum) bounds calculated with the gPC 

approach. It is apparent from Fig.5.4 that the gPC model with the Taylor approximation of the Arrhenius term 

provided correct bounds for the MC simulations. 

 

Figure 5.4 Simulation results of the gPC model, MC simulations and deterministic nonlinear model 
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5.6.2 Stability Constraints for the gPC model 

The closed loop stability constraint in Eq. 5.16) is generated based on the linearization of the CSTR model of 

Eq. 5.17 ~ Eq. 5.19 with respect to all inputs and measured variables. The set point of reactant concentration CA,set 

and feed temperature T0 are assumed to be deterministic and fixed, while the stochastic parametric fault CA0  and 

measured variables CA, T  and Q change with time. Following linearization and using deviation variables C’
A0, 

C’
A, T’ and Q’, the following can be obtained: 

                                        
dCA

'

dt
=

F

ρVr

CA0
'  - (

F

ρVr

 + k0e
-

E
RT)

ss
CA

'  - (k0CA

E

RT2
e

-
E

RT

)
ss

T' (5.20) 

                               
dT'

dt
 = -(

∆Hk0

ρCV

e
-

E
RT)

ss
CA

'  - (
FCp

ρVrCV

+
∆Hk0

ρCV

CA

E

RT2
e

-
E

RT

)
ss

T' + (
1

ρVrCV

)
ss

Q
'
 (5.21) 

                                      
dQ'

dt
 = (

KpF

ρVr

)
ss

CA0
'  - (

KpF

ρVr

 + k0Kpe
-

E
RT - 

Kp

τi

)
ss

CA
'  - (k0CA

E

RT2
e

-
E

RT

)
ss

T' (5.22) 

where the deviations on C’
A0 in the linearized model are defined around each of the mean values ḡi in Eq. 5.10 

using a gPC expression, according to the variability chosen for inlet concentration CA0. After expanding all the 

variables of Eq. 5.20 ~ Eq. 5.22 with the gPC approximations and applying a Galerkin projection on both sides 

of Eq. 5.20 ~ Eq. 5.22, a coupled system of linearized ODEs is obtained in terms of the coefficients of the gPC 

expansions and the controller parameters. For stability, the eigenvalues of the linearized system of Eq. 5.20 ~ Eq. 

5.22 are required to be negative (Seborg, Edgar, Mellichamp, & Doyle, 2011), which is the stability constraint of 

the outer level optimization in Eq. 5.16. 

5.6.3 Calibration of the PDF Profiles for Inner Optimization 

The PDF profiles of the measured variables (outputs) described in Section 5.4.2 are calibrated from a set of 

external heat measurements. Five mean values on inlet concentration are studied, i.e., 1.0, 1.25, 1.5, 1.75 and 2.0 

(gmoles/L). The stochastic perturbations are added around these mean values which are assumed to be normally 

distributed with zero mean and a variance of 0.1 gmoles/L. The step changes follow a ML-PRS as shown in 

Fig.5.5 (a) and (b), respectively. 

The ML-PRS used for calibration of the PDF profiles is defined by two parameters: L is the maximum number 

of step changes for all mean values (operating modes) and m is the maximum number of measurements between 

two consecutive step changes in the fault. To simulate actual data, Gaussian noise is added to the measurements. 

Table 5.2 shows the model calibration results for the inner level optimization Eq. 5.11 with a 1% measurement 

noise as an example, where Hermite polynomial is used and the highest order of the polynomial is 2 for different 

combinations of L and m. 
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Figure 5.5 Multi-level pseudo random sequence 

 (a) Five-level PRS and (b) applied to the inlet concentration superimposed with stochasticity 

Table 5.2 Comparison of the inner level optimization strategies (noise 1%) 

C̅A0

Simu
 

ML-PRS 

L =124, m =2000 L =124, m =1000 L =124, m =500 L =624, m =500 

C̅A0

opt
 ξopt C̅A0

opt
 ξopt C̅A0

opt
 ξopt C̅A0

opt
 ξopt 

1.00 1.0534 0.1410 1.1064 0.1079 1.2713F 0.1170 1.2647F 0.1165 

1.25 1.2757 0.1207 1.3079 0.1043 1.3720 0.1086 1.3739 0.1088 

1.50 1.5039 0.1057 1.5030 0.1010 1.5111 0.1023 1.5170 0.1025 

1.75 1.7357 0.0955 1.7211 0.0991 1.6867 0.0983 1.6867 0.0982 

2.00 1.9695 0.0891 1.9391 0.0979 1.8667F 0.0953 1.8668F 0.0954 

 

In Table 5.2, the first column is the actual mean value of inlet concentration CA0 used for simulations and the 

variance for each mean value is 0.1 gmoles/L. C̅A0

opt
and ξopt are the estimated mean value and variance with Eq. 

5.11 for different values of L and m. As seen, the number of measurements in each sequence has a significant 

effect on the calibration results. For example, when using 500 measurements in each sequence some cases fail to 

converge to the correct mean values regardless of the values of L (denoted with superscript ‘F’ in Table 5.2). As 

shown in Table 5.2, the mean value and variance of the input resulting from Eq. 5.11 are not identical to the actual 

values used for simulation due to measurement noise and the gPC series truncation error. 

Once the gPC models of the closed loop system around each mean value of fault are constructed, the 

corresponding PDF profiles for the external heat duty Q can be easily approximated. Fig.5.6 shows the PDF 

profiles obtained with 10,000 samples of the random variable (ξ), where the horizontal axis is the range of the 

external heat duty and the vertical axis represents the normalized probability. Each PDF profile corresponds to a 

different mean value and associated variance on the inlet concentration CA0 inferred from Eq. 5.11 with L = 124 

and m = 2000 in Table 5.2. In Fig.5.6, “Modes” are referred to the mean values of inlet concentration CA0. For 

instance, “Mode: 1.00” denotes that the expectation of the inlet concentration (CA0) is 1.00 gmoles/L. 

5.6.4 Case Study 1: Tuning of a Gain-Scheduled Controller 

The cost described in the outer level optimization Eq. 5.16 is optimized with respect to the tuning parameters 

of a gain scheduled PI controller involving different tuning parameter values around the five different means 
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(operating modes) of inlet concentration. Table 5.3 shows the results of the optimum controller parameters, the 

cost (Jopt) of the objective function defined in the outer level optimization Eq. 5.16 and the normalized overlap 

(Oopt), for which the set point of the outlet concentration is fixed at 0.25 gmoles/L. 

 

Figure 5.6 The PDF profiles of five operating modes on inlet concentration 

Table 5.3 Summary of the results for the outer level optimization without tuning set point 

C̅A0

Simu
 Kp

opt [cal/s/gmol] τi

opt
[s] Jopt JISE Oopt OISE Time (h) 

1.00 81521.50 0.566 13.612 16.427 0.225 0.252 3.82 

1.25 20175.84 0.082 12.233 14.943 0.217 0.272 3.44 

1.50 19034.54 0.172 11.523 13.657 0.217 0.272 2.64 

1.75 99773.78 0.340 12.136 14.904 0.234 0.264 3.97 

2.00 14709.06 0.047 12.830 15.831 0.188 0.245 3.65 

 

For comparison in Table 5.3, the value of the cost function is calculated for the case where the controller 

parameters are optimized by the minimization of the integral squared error (ISE), i.e., Kp = 75508, τi = 0.505. 

The corresponding cost and amount of overlap are referred to as JISE and OISE, respectively. The controllers 

designed based on the ISE criteria or the ones obtained from the outer level optimization   in Eq. 5.16 is referred 

heretofore as the ISE and optimized controller (superscript opt), respectively. 

As seen in Table 5.3, the largest improvements in the costs of Jopt versus JISE are observed around the largest 

and smallest mean values on inlet concentrations CA0. An explanation is that the controller tuned according to the 

outer level optimization Eq. 5.16 seeks to minimize the overlaps of the PDF profiles corresponding to the different 

inlet concentrations CA0 shown in Fig.5.5. This is achieved at the cost of introducing larger variabilities in product 

quality and operating costs in objective function Eq. 5.16, since the controller attempts to shift the corresponding 

PDF profiles far apart from each other. The resulting overlap, as normalized by the total area of overlapping of 

the PDF profiles, is given in Table 5.3. It can be seen that the normalized total overlap is smaller with the tuning 

parameters optimized with the outer level optimization, as compared to the ISE controller. The decreased overlap 
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reflects the enhancement of the fault detectability, since the overlap is representative of the unobservable fault. 

The computational time required to solve the outer level optimization in Eq. 5.16 is given in the last column. 

5.6.5 Case Study 2: Tuning of a Gain-Scheduled Controller and Set-point 

A second study is investigated where the set-point of the outlet concentration CA is chosen as an additional 

decision variable along with the tuning parameters of the gain-scheduled PI controller to minimize the cost 

function in the outer level optimization Eq. 5.16.Table 5.4 shows the optimum results of decision variables, the 

related cost and the normalized overlaps area between the PDF profiles of the external heat Q. 

Table 5.4 Summary of the results for the outer level optimization with tuning set point 

C̅A0

Simu
 Kp

opt [cal/s/gmol] τi

opt
[s] Set point Jopt Oopt Time (h) 

1.00 41375.12 1.304 0.498 8.978 0.111 3.21 

1.25 83835.62 1.595 0.365 8.790 0.190 5.99 

1.50 82061.19 1.697 0.348 8.501 0.181 11.01 

1.75 69635.40 1.075 0.378 8.804 0.164 6.15 

2.00 130554.09 1.242 0.362 9.912 0.157 5.21 

 

It can be seen by comparing Table 5.3 and Table 5.4 that the cost of the objective function Eq. 5.16 is smaller 

when both the controller and set-point are simultaneously optimized. For example, the cost in Eq. 5.16 at an inlet 

concentration of 1.0 gmoles/L has been further decreased by ~34 percent point, from 13.612 to 8.978. 

Additionally, the overlap areas between the PDF profiles around each mean value of inlet concentration are 

smaller, as compared to the result where the set-point was not optimized. For instance, the overlap areas at an 

inlet concentration of 1.0 gmoles/L have been decreased by ~50 percent point, from 0.225 to 0.111. This confirms 

that the bi-level optimization can enhance the detectability of faults, since the overlap representing the 

unobservable fault has been decreased. 

5.6.6 Case Study 3: Tuning of a Global Controller 

In previous case studies, the controller parameters are tuned for each of the mean values (operating modes) of 

inlet concentration CA0 for the enhancement of fault detectability. In this study, one set of PI controller tuning 

parameters is optimized for all operating modes. The optimization results calculated from the outer level 

optimization Eq. 5.16 are Kp = 9986.36 and τi = 0.038, respectively. For comparison, the cost defined in objective 

function Eq. 5.16 for three different tuning methods are calculated: (i) minimization of ISE (Jcost = 69.894); (ii) 

optimization of controller parameters using Eq. 5.16 with the gain-scheduled controllers (Jcost = 12.467) in case 

study 2, for which the controller parameters are switched among the operating modes; and (iii) optimization of 

Eq. 5.16 with a global controller (Jcost = 33.387) in this case study. As expected, the global controller improves 

the cost over the ISE based controller, but is inferior to the case that uses the gain-scheduled controllers optimized 

with Eq. 5.16. For the gain-scheduled controller, the cost is calculated as the average of Jopt given in Table 5.3. 
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5.6.7 Case Study 4: Investigation of Tuning Weights 

The effect of the weights {μi} in the outer level optimization Eq. 5.16 is investigated to demonstrate a trade-

off between different objectives. The weights determine the relative contribution of each factor to the total cost. 

The definition of {μi} is motivated by the proportionality constant in the Taguchi’s quality loss function (Ross, 

1988). These weights {μi} are problem specific. For instance, the operation cost of utilities (third term in the outer 

level optimization Eq. 5.16) is obtained from the expected cost of utilities per unit of variability for the utility 

source under consideration, e.g., manipulated external heat duty Q. 

As each quality characteristic has different units and orders of magnitude, it is essential to normalize the quality 

cost. To assess the effect of the weights on the results, two sets of weights are investigated: (i) equal weights (μ1= 

μ2 = μ3 = μ4= μ5= 1) and (ii) unequal weights (μ1=μ2= μ3= μ5 = 1, μ4=5). In the first case, each factor gives an equal 

contribution to the total variability of the objective function Eq. 5.16. For the latter case, the variability of 

manipulated variable contributes more to the total cost, since the objective specifically is targeted to minimize 

the variability associated with the operating cost in this case study. Physically, the latter case is to avoid aggressive 

tuning of valves and minimize the cost of wear of the external heat actuator. 

The cost described in the outer level optimization Eq. 5.16 is optimized with respect to one set of PI controller 

tuning parameters for all operating modes (five mean values on inlet concentration CA0). For the case study with 

equal weights, the optimization results are given in Section 5.6.6. For the latter case with unequal weights, the 

optimization results obtained from (16) are Kp = 998308.22 and τi = 1.1640, respectively. For comparison, Fig.5.7 

shows several consecutive step changes on CA0 of the ML-PRS on the inlet concentration CA0, and the 

corresponding simulation results of the controlled variable CA and the manipulated variable Q, with equal weights 

and unequal weights. 

As expected, the variability on the manipulated variable Q is smaller with unequal weights, as compared with 

the simulations with equal weights shown in Fig.5.7 (b). However, the variability on the controlled variable CA 

has been increased, which is associated with the quality of product. These observations confirm that the weights 

are problem specific and can determine the relative contribution of each of the individual terms to the total cost 

function of Eq. 5.16. Additionally, the cost defined in the objective function Eq. 5.16 with unequal weights is 

calculated (Jcost = 63.086).  Compared with equal weights (Jcost = 33.387), the cost has been increased by ~46 

percent point. Finally, the normalized overlapping areas between the PDF profiles of the measured variable Q, 

representing the unobservable fault on CA0, are 1.079 and 1.101 with equal weights and unequal weights, 

respectively. The overlap has not changed much for both case studies, since the weight penalizing the overlap is 

the same value (μ5 = 1). 
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Figure 5.7 Illustration of the effect of weights on the control performance 
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5.6.8 Comparison of Fault Identification Results 

The efficiency of the fault detection algorithm presented in Section 3.1 is investigated in order to verify that 

the reduced overlaps between the PDF profiles obtained in the optimal integration of control and detection Eq. 

5.16 translate into better detection. The efficiency of the FDD algorithm is judged based on the fault detection 

rate (FIR) defined as follows: 

drate  =  
1

nm

∑ di Di⁄

nm

i=1

 (5.23) 

where nm is the number of mean values (operating modes) on the inlet concentration CA0, i is the ith operating 

mode, di is the number of samples that have been classified correctly and Di is the total number of samples tested 

for in the ith mode. 

Table 5.5 shows the FIR with the maximum likelihood based fault detection algorithm presented in Section 

5.4. The measurements used for detection are collected during the transition period, i.e., immediately after the 

occurrence of a step change in ML-PRS, where the misdetection of a particular mean value is expected to be the 

highest since the system undergoes a transient response. To improve the FIR during transitions, pre-defined time 

moving window [t1, tτ] in Eq. 5.13 are used. Specifically, windows of 20, 50 and 100 measurements (n in Eq. 

5.15) of the external heat Q are investigated, respectively. The FIR is compared for two cases: (i) a closed loop 

system that uses a controller tuned by the minimization of ISE (ISE system), i.e., without the outer level 

optimization Eq. 5.16, and (ii) a closed loop system that uses a controller based on the optimization of Eq. 5.16 

(optimized system). An ML-PRS simulation is used to generate testing samples on inlet concentration CA0, in 

which 100 consecutive step changes (L = 100), i.e., 100 testing samples are used for each of the measurement 

noise levels. 

Table 5.5 Summary of the FIR using transient measurements 

Case studies 

Fault Identification Rate (FIR) 

Optimized ISE 

Noise 1% Noise 10% Noise 1% Noise 10% 

n = 20 0.353 0.297 0.335 0.268 

n = 50 0.629 0.601 0.619 0.591 

n = 100 0.827 0.792 0.804 0.762 

 

From Table 5.5, it can be seen that the optimized system shows better FIR performance as compared to the ISE 

based system. For example, for a time window of n = 20 the differences in FIR are of the order of 10%, thus 

confirming that the results obtained with optimized system based on the outer level optimization Eq. 5.16 translate 

into better detection. Additionally, as seen in Table 5.5, the FIR improves as the window is larger. For the 

optimized system, the FIR with 1% measurement noise has been increased by ~30%, from 35.3% to 62.9%, if 50 

measurements of external heat Q are used instead of 20. It should be noticed that the differences in FIR obtained 

with the two closed loop systems considered in Table 5.5 are highly dependent on the weights used in the cost 



 

 94 

function in Eq. 5.16, since these determine the overlap between the calculated PDF profiles. For example, if μ5 in 

Eq. 5.16 is larger, the resulting overlap will be smaller resulting in larger differences in FIR values between the 

non-optimized (ISE) and the optimized systems but at the cost of higher values of the other terms in the cost of 

objective function Eq. 5.16, as discussed in Section 5.6.7. 

Since a key performance indicator of a fault detection algorithm is the time required for detection elapsed after 

the occurrence of the fault, further comparison studies are conducted to investigate the required estimation 

(detection) time for the ISE and optimized systems. Fig.5.8 shows a segment of the ML-PRS used for fault 

detection involving five consecutive step changes on inlet concentration CA0. 

For the two systems, Fig.5.8 (a) shows the decision variable ξ at each time instant while optimizing Eq. 5.15 

based on the measurements collected over a moving time window. The optimization of Eq. 5.15 is conducted for 

each of the gPC models generated with the five mean values on the inlet concentration CA0. The minimum value 

of Eq. 5.15 can be calculated at each time interval and used for detecting the corresponding operating mode 

(mean). Also, the value of the decision variable ξ can be substituted into a particular gPC approximation of the 

stochastic input to provide a dynamic estimate of the inlet concentration CA0 at a particular time instant, i.e., 

Fig.5.8 (b). 

Fig.5.8 (b) and (c) show the estimations of the inlet concentration and the corresponding normalized heat at each 

time interval, respectively. As can be seen, both systems, i.e. ISE system and optimal (optimized with Eq. 5.16), 

can provide correct estimation results. However, the optimal system can detect (estimate) the fault (inlet 

concentration) faster than the ISE system. The insets in Fig.5.8 (b) demonstrate the time difference for estimating 

the inlet concentration values between two consecutive step changes. For example, the system using the optimized 

controller is ~12 seconds faster than the ISE system for a step change from 1.2501gmoles/L to1.2058 gmoles/L 

(inset A). For the step changes between operating modes (inset B), the optimal system performs better in terms 

of fault detection speed. As seen, the system optimized with Eq. 5.16 needs ~75 seconds to estimate the inlet 

concentration value and stabilizes at ~0.9903 gmoles/L, while ~100 seconds are required for the system that uses 

the ISE based controller. For the simulated ML-PRS on inlet concentration CA0 with 100 consecutive step changes 

(L = 100), the average of fault detection time with the optimized system is ~15 seconds faster than with the ISE 

based system. These observations above confirm that the results obtained with the outer level optimization Eq. 

5.16 can translate into more robust and faster fault detection. It’s worth mentioning that the differences in fault 

detection times may be very critical in some applications such as chemical reactors where small changes in inlet 

concentration may cause, if undetected, runaway conditions. Also, faster detection may be beneficial for the 

timely implementation of a gain-scheduled controller discussed above, where different sets of controller tuning 

parameters are used for different mean values of the inlet concentration. 
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Figure 5.8 Illustration of maximum likelihood estimation based fault detection 
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5.6.9 Discussion of Computational Efficiency 

The computational time of the proposed gPC based methodology is compared with the most widely used 

sampling methods. All the methods are executed on a 2.66 GHz Intel(R) Core Duo processor. The processor time 

of the model calibration as per the inner level optimization in Eq. 5.11 is first evaluated by the Monte Carlo (MC) 

simulations. For instance, one set of evaluation takes ~ 3.89 hours for the MC based ML-PRS simulations, in 

which 10,000 samples (L = 10000) are used and the maximum number of measurements between two consecutive 

samples is chosen as 2000 (m). Additionally, 10,000 samples with MC simulations are found to be inaccurate as 

compared to the proposed gPC approach, thus an even larger number of samples are required to obtain better 

estimation of the mean and variance in Eq. 5.11, which would further increase the computational burden, since 

the search for the optimum in Eq. 5.11 for each mean value require many evaluations. If 60 iterations are required 

to optimize Eq. 5.11 for each mean value, for example, it takes approximately 233.4 hours on average. However, 

the proposed gPC method takes ~10 minutes to calculate the optimum in Eq. 5.11 for all mean values considered 

in the current work. 

Additionally studies are conducted by using the Latin hypercube sampling method that can speed up the 

convergence of the MC by adding constraints on the samples (Dalbey, Patra, Pitman, Bursik, Sheridan, & F., 

2008). Table 5.6 shows the optimization results for Eq. 5.11 with 50 sample points (L = 50) used to satisfy the 

Latin hypercube requirements. It should be noted that the samples used to calculate the mean and variance as per 

optimization in Eq. 5.11 are different for each search procedure, which results in a stochastic optimization 

problem. Thus, the genetic algorithm (Fouskakis & Draper, 2002) is used to solve Eq. 5.11, in which the maximum 

number of measurements between two consecutive samples is chosen as 2000 (m = 2000). 

Table 5.6 Summary of inner level optimization with Latin hypercube sampling 

C̅A0

Simu
 C̅A0

opt
  ξopt  Time (h) 

1.00 1.1288F 0.0143F 77.67 

1.25 1.2968 0.1333 77.12 

1.50 1.5591 0.1125 72.07 

1.75 1.8063 0.1420 76.49 

2.00 2.0889 0.1207 77.99 

Compared with the MC simulations method, the processor time with the Latin hypercube sampling for one 

mean value is ~76.26 hours on average, which is significantly lower than MC simulations. As compared with the 

gPC method, however, it is still very time demanding. Additionally, as seen in Table 5.6, 50 sample points in 

Latin hypercube sampling are still found to be less accurate. For example, there is an obvious discrepancy between 

the optimum and the values used for simulation, i.e., the mean and variance of inlet concentration used for 

simulation are 1.0 (gmoles/L) and 0.1, while the optimum obtained from Eq. 5.11 are 1.1288 and 0.0143, 

respectively. Increasing the number of samples used for model calibration may improve the efficacy, however, it 

still makes the evaluation of Eq. 5.11 time prohibitive, since this step has to be repeatedly optimized for solving 
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the simultaneous optimal tuning of controller and fault detection problem. This clearly illustrates that the use of 

gPC model is instrumental for solving the bi-level optimization problem in Eq. 5.16, since the problem has to be 

solved many times during the optimization search thus leading to a significant reduction in the computational 

time for the gPC based method as compared to the sampling based approaches. 

5.7 Conclusions 

In the present work, a methodology has been developed to simultaneously optimize closed loop performance 

and fault detection efficiency. The proposed approach is tested for an endothermic continuous stirred tank reactor 

(CSTR). The main novelty of the proposed approach is that it addresses the effect of stochastic inputs on the 

measured variables by using the gPC approximations and the first principle process model. The use of gPC is 

shown to be effective because the variabilities of the input and measured variables can be quickly calculated using 

analytical expressions. Since these variabilities have to be calculated repeatedly during the optimization search 

the dramatic reduction in computation time with gPC as compared to MC type sampling based methods makes 

this approach especially attractive for solving the simultaneous optimal tuning and fault detection problem for 

large systems. Also, a fault detection algorithm is formulated based on a maximal likelihood criteria and the gPC 

model. Since this algorithm is used in real time, the computational efficiency of gPC is instrumental for its 

implementation. 
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Chapter 6 

Classification of Apoptotic and Normal Cells 

(Adopted from Du et al., 2015, Microscopy and Microanalysis, under review) 

6.1 Overview 

Accurate automated quantitative analysis of living cells based on fluorescent microscopy images can be very 

useful for fast evaluation of experimental outcomes and cells culture protocols. In Chapter 3, first principles 

models described by Partial Differential Equations (PDEs) were used for fault detection. Image segmentation 

algorithms based on level set functions also involved the solution of PDEs of similar form to the ones solved in 

Chapter 3. Thus, in the current chapter, we capitalized on the methodology developed in Chapter 3 to introduce 

the effect of stochastic errors in edge detection problems by using gPC. The particular edge detection problem 

studied in this chapter is the fast differentiation of normal and apoptotic viable Chinese Hamster Ovary (CHO) 

cells. The stochastic image segmentation algorithm developed in this chapter can be described by a set of PDEs 

to dynamically evolve the boundary of cells. For the effective segmentation of cells’ images, the stochastic 

segmentation algorithm is developed by combining a generalized polynomial chaos (gPC) expansion with a level 

set function based segmentation algorithm. This approach provides a probabilistic description of the segmented 

cellular regions along the boundary, from which it is possible to calculate the morphological changes related to 

apoptosis, i.e., the curvature and the length of cell’s boundary. These features are then used as inputs to a support 

vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO 

cells’ images. The use of morphological features obtained from the stochastic level set segmentation of cells’ 

images in combination with the trained SVM classifier is shown to be more efficient in terms of differentiation 

accuracy as compared to the original deterministic level set method. 

6.2 Introduction 

Fluorescence microscopy is a well-developed tool for assessing characteristics of cells such as cells’ number 

and physiological states (Waters, 2009). Studies of in-vitro cells behavior typically require analyzing thousands 

of cells’ images for assessing the outcomes of experimental investigations. The interpretation and quantification 

of these data via manual analysis are either time consuming or prone to human errors. Also, the development of 

computationally efficient algorithms may facilitate future real-time implementation of these measurements. 

Due to this growing demand for automated image processing tools, software packages such as CellProfiler 

(Carpenter, et al., 2006) and ImageJ (Schneider, Rasband, & Eliceiri, 2012) have been developed. These toolkits 

typically consist of segmentation algorithms that can be used to classify each pixel within an image as either cell 

or background. Based on the segmented regions, the characteristics of the cellular object such as size or shape 

can be inferred. Accurate segmentation of cells’ images acquired using microscopy is generally challenging and 
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time consuming as reported in several studies on the subject (Veredas, Mesa, & Morente, 2010; Theriault, Walker, 

Wong, & Betke, 2012; Yin, Bise, Chen, & Kanade, 2010). 

An image can be stored as a multi-dimensional matrix, in which elements are pixels’ intensities (Chan & Shen, 

2005). For most of the work on image processing and analysis, the intensities are assumed to be deterministic 

quantities, i.e., pixels have fixed gray or color values. However, such assumption ignores that in practice 

intensities are contaminated by noise and other uncertainties (Kybic, 2010). These may originate from either 

intrinsic measurement’s limitations or as a result of inaccurate estimates of pixels’ intensities. In addition, down-

sampling of an image may be exploited, as done in the present work, to speed up the cell segmentation procedure 

but this operation will add uncertainty due to the lost information. 

The main idea behind image segmentation is to detect the boundary of cells and separate the cells from the 

background. Any small measurement errors due to noise or uncertainty in the pixels’ intensities may result in 

significant variations in the results of the segmentation procedures. To improve the robustness of image 

segmentation algorithms, uncertainty quantification has been proposed before for quantitative analysis of images 

(Chan & Shen, 2005). Accounting for uncertainties in images leads to the notion of stochastic images (Preusser, 

Scharr, Krajsek, & Kirby, 2008), where the pixels’ intensities follow probability density distributions (PDFs) that 

describe the information about the measurements’ uncertainties. 

The speed and accuracy in propagating the effect of uncertainty onto the main morphological features to be 

extracted from an image is critical for automatic segmentation of stochastic images. The generalized polynomial 

chaos (gPC) expansion (Xiu D. , 2010) has been introduced into image processing and analysis to deal with 

random shapes or pixels’ intensities in the presence of uncertainty (Stefanou, Nouy, & Clement, 2009). Following 

this idea, in the current work, the gPC theory is combined with the active contours without edges (Chan & Vese, 

2001) method to differentiate cells according to their physiological status, i.e., normal versus apoptotic where the 

latter refers to cells undergoing apoptosis or programmed cell death. Mammalian cells are prone to apoptosis that 

can be characterized by significant levels of plasma membrane blebbing and nuclear condensation. Fig.6.1 shows 

a fluorescence microscopy image of Chinese Hamster Ovary (CHO) cells. As can be seen, apoptotic cells exhibit 

blebbing resulting in irregular shapes and blurry boundaries, as compared to the normal cells that exhibit smooth 

boundaries. Blebbing is due to swelling of the cell membrane following detachment of the cytoskeleton from the 

membrane when apoptosis occurs, which may introduce significant variations in the pixels numbers and their 

intensities along the boundary of cells. 
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Figure 6.1 Fluorescent photomicrograph of CHO cells stained with AO and EB 

In this work, the active contours without edges method (Chan & Vese, 2001) is modified to account for the 

uncertainty in a given measured image. The key idea is to represent the evolving contours of the cells with a 

probabilistic description. The gPC approximations of the level set function are directly calculated from the partial 

differential equation (PDE) used by the active contour method. The zero level (mean value) of the resulting 

stochastic level set function is interpreted as the mean value of the probabilistic active contour (boundary), while 

the curvature of fluorescence intensity at the boundary can be analytically derived with the gPC expansions. Then, 

the curvature together with the length (number of pixels) of the boundary are used to distinguish apoptotic cells 

from normal cells based on a support vector machine (SVM) classification algorithm (Burgers, 1998). The 

methodology in this current work is applied to fluorescence microscopy images of apoptotic and normal CHO 

cells grown in batch experiments, and the performance of the proposed algorithm is compared to the original 

active contour without edge (deterministic level set) method. 

To summarize, the novel contributions in the current work are: (i) The development, in the context of image 

segmentation, of a gPC based approach for fast calculation of particular morphological features of CHO cells 

from fluorescence microscopy images; (ii) The formulation of an automated SVM differentiation algorithm based 

on two morphological features, i.e. curvature and length of cells’ boundary, to distinguish apoptotic cells from 

normal cells. 

This paper is organized as follows. Section 6.3 presents the background material and the main mathematical 

tools used in this work. The extraction of morphological features from the stochastic images and the classification 

algorithm based on these features are given in Section 6.4. Analysis and discussion of results are presented in 

Section 6.5 followed by conclusions in Section 6.6. 

6.3 Segmentation of Stochastic Images 

6.3.1 Fluorescence Imaging 

Fluorescence microscopy has been used to differentiate and quantify apoptotic versus normal cells as well as 

determine the viability of cells (Mercille & Massie, 1994). This approach involves two types of fluorescent dyes, 

i.e., acridine orange (AO) and ethidium bromide (EB), which are mixed in a fixed ratio within the cell suspension 

and then they are analyzed by fluorescence microscopy. The AO can penetrate viable and nonviable cells and 

Non-viable necrotic cell Viable apoptotic cell 

Viable normal cell 
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make cells to appear green while the EB can only diffuse into nonviable cells and make them to appear orange or 

red (see Fig.6.1). 

The objective of this work is to automatically differentiate apoptotic from normal viable cells while maintaining 

the processing time at a reasonable level. Since apoptotic cells exhibit irregular shapes and blurry boundaries (see 

Fig.6.1), a departure from smooth boundaries is a key morphological indicator for differentiating between normal 

and apoptotic cells. Also, due to the swelling of the boundary occurring with apoptosis longer boundaries are 

generally observed. Hence, this work builds on the hypothesis that the variability in curvature observed along the 

cells’ boundary together the length of the boundary measured by the number of pixels on it can be utilized for 

doing this differentiation, i.e., lower variability in curvature and shorter lengths are associated to normal cells and 

higher variability in curvature and larger lengths are associated to apoptotic cells. 

6.3.2 Active Contours without Edges 

The key idea behind the active contour method is to progressively calculate a boundary for a given grayscale 

image U0, that separates objects from their background. Let us define the curve as C, subjected to the constraints 

of the image in an open bounded domain Ω of R2, which approximates the boundary φ, i.e., C ≈ φ, C ⊂ Ω, and φ 

⊂ Ω. To solve the curve C, the active contours without edges algorithm (Chan & Vese, 2001) seeks a best 

approximation of a segmentation C for a given image U0 from the minimization of an energy function defined as 

follows: 

dxdyCmyxU

dxdyCmyxU

CinsideAreaCLength

Coutside

Cinside

Cmm

2

)(
202

2

)(
101

21
,,

)(),(

)(),(

))(()(minarg
21

















 (6.1) 

where μ1, μ2, λ1 and λ2 are non-negative fixed parameters, m1 and m2, depend on the evolving curve and are the 

mean values of U0 inside C and outside C, respectively. The coordinates, defining the domain Ω, are determined 

by the x-axis and y-axis. The first term in Eq. 6.1 controls the regularity of C by penalizing the length. The second 

term penalizes the enclosed area to control the size of the segmented objects. The third and fourth terms penalize 

the discrepancy between pixels’ intensities within and outside the active curve C in terms of their means. 

The optimization problem in Eq. 6.1 can be formulated and solved by the level set method (Osher & Sethian, 

1988), where the unknown curve C is replaced by the unknown level set function Ζ defined in the xy-plane. 

Instead of manipulating C, the minimization of Eq. 6.1 is represented as the evolution of a level set function Ζ. 

Then, the curve C corresponds to the geometric locus of the points with Z(x, y) = 0 in the xy-plane. 

Provided that the level set function Ζ is smooth, the active contours without edges optimization (Chan & Vese, 

2001) in Eq.6.1 can be equivalently rewritten in terms of the level set function Ζ as: 
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 (6.2) 

where Hε represents the Heaviside function with respect to Ζ, and δε is a regularized Dirac δ-function calculated 

by the derivative of the Heaviside function Hε. The mean values m1 and m2, depending on the evolution of the 

level set function, are calculated with the intensities of U0 within and outside the unknown level set function Z as 

following: 
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For simplicity, m1(Z) and m2(Z) will be used heretofore to represent these two values within and outside Z. For 

the purpose of the minimization with respect to Ζ, Hε can be defined as: 
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The minimization of Eq.6.2 can be solved by updating m1, m2 and Ζ alternatingly. For a fixed Ζ value, the 

values of m1 and m2 are the region averages approximated by: 
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For fixed m1 and m2 values, a gradient descent equation can be formulated for the level set function Ζ with 

respect to an artificial time t as follows: 
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where ē is the outward normal to the boundary ∂Ω. Then, the minimization of the discretized Eq.6.7 can be solved 

until convergence. A level regularization term r (Li, Kao, Gore, & Ding, 2008) is added to ensure the convergence 

of the level set function Ζ, which can be defined as: 

dxdyyxr tt   2)1),((
2

1
)(  (6.10) 

where the subscript t means that the regularization term r is evaluated and updated with respect to the level set 

function Z at each time instant t. 

6.3.3 Approximation of Intensity with gPC 

In this work, the pixels’ intensities are described as random variables to account for uncertainties in the cells’ 

image. The generalized polynomial chaos (gPC) expansion (Xiu D. , 2010) is used to approximate the pixel’ 

intensities U in a grayscale image U0 with finite second order moment as follows: 
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 (6.11) 

where U is the pixels’ intensities of a given image, ξ = {ξ1, ξ2, …} is a set of independent, identically distributed 

random variables with known probability density functions (PDFs), which is defined by a random event ω. The 

Φi(ξ) are multi-dimensional orthogonal basis functions of ξ, and ui is the gPC coefficient multiplying each 

corresponding basis function. For practical implementation, Eq.6.11 is truncated to a finite number of terms such 

that: 
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where p is the total number of terms used to represent a priori known distribution of pixels’ intensities U. 

For illustration, the segmentation result obtained with the active contour without edges (deterministic level set) 

method for an image containing three cells is schematically shown in Fig.6.2 (a); while Fig.6.2 (b) shows the 

pixels within a small inset in Fig.6.2 (a), displaying the cell boundary and the gPC approximations of pixels’ 

intensities. 

 

Figure 6.2 Visual interpretation of stochastic images 

(a) 

U ~ g(Φ(ξ)) 
pixel 

boundary 

(b) 
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The explicit gPC representation of pixels’ intensities U in Eq.6.12 is utilized to propagate the uncertainty onto 

the evolution of the level set function Ζ as follows. Assuming that the evolution of the level set function Ζ at each 

(artificial) time instant t is defined by Eq.6.7 as: 

),,( 00  tUft  (6.13) 

where f represents the image segmentation operator U0 denotes a grayscale image to be segmented, and Ζ0 defines 

an initially assumed level set function for a given image U0. 

To quantify the effect of stochastic changes in pixels’ intensities on the evolution of the level set function Ζ, a 

gPC approximation of Ζ at each time instant t is employed and defined as follows: 
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where ζi,t are the gPC coefficients used to describe the level set function at time t, P is the number of terms used 

to approximate the level set function Z and it is a function of a fixed polynomial degree p and a fixed number of 

random variables ξ = {ξ1, ξ2, …, ξn}. The total number of terms P in the gPC approximation in Eq. 6.14 is defined 

as: 

1))!!()!((  npnpP  (6.15) 

As seen in Eq. 6.15, P increases significantly with respect to the number of random variables n in ξ and the 

required polynomial degrees p in Eq. 6.12. 

6.3.4 Stochastic Level Set Function based Segmentation 

Assuming the pixels’ intensities are described by random variables as defined in Eq. 6.12, the stochastic level 

set function based segmentation can then be derived by replacing all quantities in Eq. 6.7 with their corresponding 

gPC expansions. Substituting the gPC expansions, i.e., Eqs. 6.12 and 6.14 into Eq. 6.13 results in the following 

expression: 
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 (6.16) 

where {ζi,0} are the gPC coefficients of the initially assumed level set function Ζ0 = {ζi,0} (t = 0 and i = 1, …, P). 

Using Galerkin projections, the gPC coefficients of level set function Ζ are calculated by projecting both sides 

of Eq. 6.16 onto each of the polynomial chaos basis function Φi(ξ) as follows (Xiu D. , 2010): 

)()),(,),(()(),( 0  iit tUf   (6.17) 

where ‘<ˑ,ˑ>’ denotes the inner product between two vectors defined as below: 
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 d)(, 2121   (6.18) 

where the integration is conducted over the entire domain of the random variables ξ. The weighting function ϖ(ξ) 

can be chosen with respect to the polynomial basis functions used to represent ξ so as the result of Eq. 6.18 is 

either 0 or 1. The type of polynomial is chosen for satisfying orthogonality according to the Wiener Askey scheme 

(Xiu D. , 2010). For example, Hermite polynomials are chosen as the optimal basis functions for normally 

distributed ξ and Laguerre polynomials are used for Gamma distributed ξ. 

Once the gPC coefficients of the representation in Eq. 6.12 are available, it is possible to compute the gPC 

coefficients of the level set function Ζ at any given time t with Eq. 6.16 - Eq. 6.18. Then, the expectation, variance 

and other higher order statistical moments of the level set function Ζ can be calculated analytically. For example: 
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The availability of analytical formulae that permits quick computations of the mean and variance of the level 

set function Z as described in Eq. 6.19 and Eq. 6.20 are the main rationale for using the gPC in this work, since 

the stochastic segmentation algorithm takes into account the variabilities of intensities while progressively 

updating the level set function Z. The first gPC coefficient ζ0,t in Eq. 6.14, representing the mean value of the 

stochastic level set function Z, is used to segment the objects from the background, while the higher order gPC 

coefficients are used for estimating a probabilistic distribution of the curvature along the boundaries of cells. 

From the substitution of Eq. 6.12 and Eq. 6.14 into Eq. 6.7, the stochastic level set segmentation model can be 

derived as follows: 

))((

])))((()))(((

)
)(

)(
())[((

)(

2
202

2
101

21




























r

mUmU

div
t

 
(6.21) 

where Z(ξ) is the unknown stochastic level set function approximated with Eq. 6.14, δε(Ζ(ξ)) is the derivative of 

the stochastic Heaviside function Hε(Ζ(ξ)) that is now defined as follows: 
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The mean values in Eq. 6.21, i.e., m1(Ζ(ξ)) and m2(Ζ(ξ)), can be calculated by averaging the pixels’ intensities 

inside and outside the level set function Ζ(ξ) as: 
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where U(ξ) is the gPC approximation of pixels intensities for a given image, ζ0,t represent the mean value of the 

unknown stochastic level set function Z that is iteratively updated at each artificial time t. 

The calculation of Z(ξ) consists of two steps: (i) the calibration of mean and variance of pixels’ intensities, and 

(ii) the evolution of Z(ξ) with Eq. 6.16 - Eq. 6.18. In the calibration step, the mean and variance of the pixels’ 

intensities have to be calibrated with part of the data, i.e., a subset of the available images. It is assumed for 

simplicity that the intensities of pixels inside the boundary (zero level set function ζ0,t) depend on one random 

variable and all the pixels’ intensities outside the boundary depend on another random variable. Then, the mean 

values and variances of pixels’ intensities in the segmented regions (within or outside the boundary) for a set of 

given stochastic images are calibrated from the following optimization problem: 
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where the decision variables (κ) of this optimization consist of the means and variances of pixels’ intensities 

inside (or outside) the boundary. For each iteration in Eq. 6.24, ϑ1,i and ϑ2,i are the mean and variance of pixels’ 

intensities measured inside (or outside) the boundary corresponding to the zero values of the stochastic level set 

function Ζ(ξ). The terms υ1,i and υ2,i are the measured mean and variance of the pixels’ intensities inside (or 

outside) the boundary that is numerically calculated with the original deterministic active contour algorithm as 

defined in Eq. 6.7. 

Following the calibration step, the gPC representations of the pixels intensities given by Eq. 6.12, where the 

mean and variance have been calibrated in the first step, are substituted into Eq. 6.21. Then, a Galerkin projection 

of each side of Eq. 6.21 onto each basis polynomial function {Φi(ξ)} can be conducted. The application of the 

Galerkin projection operation requires integrating Eq. 6.21 with respect to a set of appropriate selected polynomial 

basis functions. Using the orthogonality property of the basis functions Φi(ξ), these integrations are possible for 

monomial or polynomial terms. The integration of non-monomial terms, however, requires additional operations 

(Debusschere, Najm, Pebay, Knio, Ghanem, & Matre, 2004). For example, the term div(∇Ζ(ξ)/|∇Ζ(ξ)|) in Eq. 6.21, 

representing the geometric attributes along the boundary, is approximated by forward, backward and central 

difference (Getreuer, 2012) in both x and y dimensions as below: 
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where ∇x
+ denotes forward difference in the x direction, ∇x

− is backward difference, and ∇x
0 ꞉꞊ (∇x

++∇x
−)/2 means 

the central difference, and similarly in the y dimension. A small positive number η is introduced in the 

denominators in Eq. 6.25 to prevent division by zero. 

Following the Galerkin projection operation and using the orthogonality properties, Eq. 6.21 is then 

transformed into a system of coupled deterministic equations as: 
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(6.26) 

where eij = <Φi, Φj> and the results is either one or zero. The gPC coefficients of the stochastic level set function 

Ζ can be solved numerically from Eq. 6.26. 

The steps of the proposed stochastic level set function based image segmentation algorithm, involving 

initialization, calibration and segmentation sections, are summarized in Fig.6.3. 
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Figure 6.3 Stochastic segmentation algorithm 

It should be noted that the stochastic evolution of Eq. 6.21 may be solved using a Monte Carlo (MC) approach 

based on sampling from statistical distributions representing the pixel intensities in Eq. 6.21. However, such 

calculations will be prohibitively long while computational speed is essential for the current application, since the 

goal is to analyze a large number of images automatically for throughput studies. 

6.4 Automated Classification of Cells 

6.4.1 Feature Extraction 

The differentiation of cells into apoptotic or normal is based on two specific morphological features calculated 

from the images: (i) a measure of the length of cell’s boundary and (ii) the variability in curvature along the 

boundary. For comparison purposes, these features are calculated with both the original deterministic level set 

algorithm and the stochastic level set method proposed in this work. 

The length of boundary is given by the total number of pixels used to define the boundary. For the deterministic 

level set method, it is computed with the number of pixels corresponding to the zero level set function values. For 

Initialization 

(1) Initialize fixed parameters (μ1, μ2, λ1, λ2, γ1, γ2 and time-step Δt). 

(2) Choose polynomial basis function and the highest order of gPC 

approximation of random variables (pixel values). 

(3) Assign gPC coefficients to the initial let set function Ζ0. 

(4) Generate symbolic gPC model for the evolution of let set function Ζ 

with (26). 

(5) Determine the stop criterion (σtol) between Ζ(n+1) and Ζ (n), and n 

means the nth iteration in the segmentation algorithm (n = 0, 1, 2, …). 

Segmentation algorithm 

(a) Re-write each of the pixels inside (and/or outside) the initial let set 

function Ζ0 with the gPC approximation. 

(b) Execute for-loop using the symbolic gPC model: 

for  n = 0, 1, 2, … 

Conduct the following procedures repeatedly: 

Compute means m1, m2, v1 and v2using the gPC coefficients of Ζn. 

Update Ζn+1 with one time-step with the stochastic level set cost 

function (26); 

if ‖Ζn+1- Ζn‖ < σtol  

Terminate for-loop and display the final level set function, which 

is the first gPC coefficient representing the mean value of Ζn. The 

higher order gPC coefficients are utilized for classification 

algorithm as explained in next Section. 

      else 

n = n + 1; 

end 

Model calibration 
(i) Conduct segmentation for a given image with deterministic level set 

algorithm. 
(ii) Calculate the values of υ1,i and υ2,i in cost function (27) using the 

boundary obtained in (i). 

(iii) Assign initial values to the decision variable vector κ. 

(iv) Execute optimization (27). 
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the stochastic level set method, the number of pixels is computed with the zero mean value of the stochastic level 

set function, i.e., ζ0 ≈ 0 in Eq. 6.26. 

 

Figure 6.4 Sketch of the morphological feature along the boundary 

The curvature is given by div (∇Ζ(ξ)/|∇Ζ(ξ)|) which is one of the terms of the level set equation in Eq. 6.7 and 

Eq. 6.21. This quantity can be calculated both as a deterministic quantity and as a probabilistic quantity as given 

by its gPC representation. To assess the variance of the curvature with the deterministic level set, the difference 

between the largest value and the smallest value obtained along the boundary is calculated. When using the gPC 

representation of curvature, the largest curvature value was equal to the largest mean value plus one variance and 

the smallest curvature value was equal to the lowest mean value minus one variance. The variance can be 

computed with Eq. 6.20. 

6.4.2 SVM based Differentiation 

Using the values of contour length and variability in curvature, a support vector machine (SVM) (Burgers, 

1998) classification model was developed to differentiate the physiological states of cells, i.e., distinguish 

apoptotic cells from normal cells. A set of training images were first collected. Following consensus decision-

making ideas (Aurum & Wohlin, 2003), each image of cells is then characterized as either normal or apoptotic 

cells based on consensus among five different experimentalists in combination with measurements of percentage 

of apoptotic cells at the time the image was taken as determined by flow cytometry (Meshram, Naderi, McConkey, 

Budman, Scharer, & Ingalls, 2011). From the images used for training, the parameters of the SVM model were 

optimized with the Matlab® statistics and machine learning toolbox. Then, the trained SVM model was applied 

to new images that were not used for model training to classify new images according to their physiological state. 

6.5 Results and Discussion 

6.5.1 Model Calibration 

The accuracy of the gPC representations used to solve the stochastic level set function based image 

segmentation depends on the polynomial basis function and the number of random variables. An appropriate basis 

function should be selected based on the statistical distribution of the uncertainty while ensuring orthogonality of 

the gPC expansions (Xiu D. , 2010). 

(a) (b) 

Boundary 

Confidence 

interval 
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Fig.6.5 shows the segmentation results with the deterministic level set algorithm and the probability density 

function (PDF) of intensities of pixels along the boundary. As seen in Fig.6.5 (a), the black line describes the 

boundary that segments the cell from the image background. The boundary corresponds to the points where Ζ ≈ 

0 in Eq. 6.7. The PDF profile for pixels’ intensities defining this boundary can be obtained by using a binning 

algorithm, where each bin will include the number of pixels that exhibit intensities within a particular range of 

intensity values. Fig.6.5 (b) shows a PDF profile of pixels with 50 bins. It can be observed that the intensities of 

pixels follow approximately a normal distribution. Correspondingly, Hermite polynomials are chosen as basis 

function to capture the variability around the boundary since they are especially targeted to describe normal 

distributions (Xiu D. , 2010). 

 

Figure 6.5 Segmentation results and PDF of pixel intensities defining boundary 

6.5.2 Image Segmentation with One Random Variable 

Fig.6.6 (a) shows an original fluorescence microscopy image with the corresponding pixels’ dimensions 

indicated in the upper left corner. The segmentation result with 3 cells inside the grayscale image is schematically 

shown in Fig.6.6 (b). The green line denotes the results obtained with the stochastic level method, while the red 

line represents the boundaries computed with the deterministic method. Fig.6.6 (c) displays the pixels’ intensities 

in a small window of the two-dimensional matrix that is used to store the image, and Fig.6.6 (d) shows the PDF 

profile of the intensities within the background based on the segmentation results. 

As can be observed from Fig.6.6 (d), the intensities of pixels in the background vary very little and ~92.39% 

of them can be found in the first bin of the PDF profile. Therefore, for simplicity, it was assumed that the 

intensities in the background are constant. Accordingly only one random variable had to be used for describing 

the pixels’ intensities within the boundary of the cells while the pixels’ intensities in the background were 

represented by a constant value. Thus, the gPC representation in this case study is only applied to describe the 

intensities of pixels within cellular regions, while the intensities of pixels in the background are described by their 

original deterministic intensity values. 
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Figure 6.6 Visual illustration of pixels intensities in the background 

 

As seen in Fig.6.6 (b), the results obtained with the stochastic and deterministic methods are in a good 

agreement. To compute the boundaries as shown in Fig.6.6 (b), the parameters for the stochastic method in this 

experiment are chosen as: μ1 = μ2 = 1, λ1 = λ2 = 1, and time-step Δt is 0.1. 

To illustrate the efficiency of the proposed probabilistic segmentation approach, the stochastic level set 

function with one random variable is applied to a more complicated image. Fig.6.7 (a) displays an original image 

as obtained from the microscope with the corresponding pixels’ dimensions. Fig.6.7 (b) shows the corresponding 

grayscale image and the initial level set function chosen to start the segmentation algorithms. For the stochastic 

level set method in this work, the initial level set function in Fig.6.7 (b) represents the mean values of the zero 

order gPC coefficients while the gPC coefficients of the higher order terms are set to zero. In Fig.6.7 (c), 

segmentation results obtained with 20 iterations are shown for both methods, and Fig.6.7 (d) shows the 

segmentation results with 150 iterations. The green line denotes the results obtained with the stochastic level 

function, while the red line is the results obtained with the deterministic level set method. It is clear that in terms 

of segmentation both the deterministic and stochastic methods provide similar accuracy. Further studies were 

conducted to investigate the computational time for both methods. For 150 iterations, the processor time for the 

deterministic level set method is ~158s while ~220s are required for the stochastic level set method with one 

random variable representing the variabilities of the intensities within the cells. 
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Figure 6.7 Segmentation results with deterministic and stochastic level set algorithms 

6.5.3 Morphological Features 

For the model training of the SVM differentiation model, the deterministic level set algorithm and the stochastic 

level set method are applied to 100 images of cells, in which 50 images are normal cells and 50 images are 

apoptotic cells. The pixels’ dimensions of the original cells’ images are ~220˟220. In view that down-sampling 

is an effective way to speed up computations the deterministic method and the proposed stochastic method are 

compared for different down-sampling frequencies. 

In this case study, images of cells are down-sampled to pixels dimensions of 100˟100, 50˟50 and 30˟30, 

respectively. Following the application of the segmentation algorithms, a feature vector is calculated for each 

image composed of the two morphological features mentioned above, i.e., the curvature along the boundary and 

the length of the boundary. Fig.8 shows the histogram of the curvature calculated with the stochastic level set 

method for a few images with the original pixels dimensions, and Tables 6.1 and 6.2 provides some of the feature 

vectors calculated with the deterministic and stochastic level set methods for the same down-sampling frequency. 

Final contour with CV and CV-gPC Final contour with CV and CV-gPC

(a)  Fluorescent photomicrograph of CHO cells (b)  Grayscale image with initial level-set function 

(c)  Segmentation results with 20 iterations (d)  Segmentation results with 150 iterations 

(351×805) 
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Figure 6.8 Histograms of curvature for apoptotic and normal cells 

Table 6.1 Examples of feature vector (apoptosis) 

Samples Method Length Curvature 

 
Stochastic 373 3.9930 

Deterministic 403 3.3237 

⁞ ⁞ ⁞ ⁞ 

 

Stochastic 299 3.8689 

Deterministic 323 3.7849 

⁞ ⁞ ⁞ ⁞ 

 

Stochastic 405 4.3569 

Deterministic 437 4.3138 

 

Table 6.2 Examples of feature vector (normal) 

Samples Method Length Curvature 

 

Stochastic 149 1.5208 

Deterministic 155 1.1930 

⁞ ⁞ ⁞ ⁞ 

 

Stochastic 181 2.2618 

Deterministic 185 2.0592 

⁞ ⁞ ⁞ ⁞ 

 

Stochastic 207 1.4592 

Deterministic 215 1.1546 

 

Using cells’ images with the original pixels’ dimensions, the first column in Fig.6.8 shows the histogram of 

the curvature for three normal cells, while the second column displays the results for three apoptotic cells. As 

seen in Fig.6.8, the range of the curvature values for apoptotic cells is larger than for normal cells thus justifying 

the use of the maximal differences in curvature to differentiate cells. 
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6.5.4 Differentiation of Cells States 

To compare the efficiency of the deterministic versus the stochastic segmentation methods for different down-

sampling resolutions, a classification rate is defined as follow: 

Tirate Ddr /  (6.28) 

where di means the number of testing images that have been correctly identified and DT is the total number of 

samples used for experiments. 

After model training is completed, 100 cells image samples that have not been used in the model training step 

are utilized to test the SVM classification model, where 50 images are of normal cells and 50 images are of 

apoptotic cells. The testing images with original pixels dimensions of ~220˟220 are down-sampled to a size of 

100˟100, 50˟50 and 30˟30, respectively. 

For the purposes of illustration, Fig.6.9 shows the results of differentiation using 10 testing samples with the 

original pixels’ dimensions. These testing samples are randomly chosen from the 100 cells images, 5 of them are 

normal cells and the others are apoptotic cells. In Fig.6.9, “N” denotes the normal cells and “A” means the 

apoptotic cells. For example, the testing sample in the red circle in Fig.6.9 (a) represents a misclassification, i.e., 

the normal cell has been misclassified as an apoptotic cell. 

 

Figure 6.9 Visual illustration of normal and apoptotic testing cells 

 

To compare the efficiency, the differentiation rates rrate for four aforementioned different pixels dimensions are 

shown in Table 6.3 with the deterministic and the stochastic methods. The computational time and the 

differentiation rate are compared for different down-sampling resolutions and original sizes of images. The 

differentiation rate in Table 3 is calculated with respect to the total number of samples used for testing, i.e. 100. 

From Table 6.3, it can be seen that the stochastic level set method shows better differentiation performance, as 

compared with the deterministic level set method. For example, as can be seen in the second row of results, when 

the images with the original sizes of ~220˟220 are down-sampled to pixels dimensions of 100˟100, 4 normal cells 
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and 9 apoptotic cells are misclassified with the stochastic method, which give a classification rate of ~87%. For 

the deterministic method, 15 testing samples (5 normal cells and 10 apoptotic cells) are misclassified that gives a 

differentiation rate of ~85%, which is ~2% lower than the stochastic method. 

Table 6.3 Summary of differentiation rate 

    Method  Stochastic 

Level set 

Deterministic 

Level set  

   Size rrate Time (s) rrate Time (s) 

~220˟220 0.88 8.16 0.87 5.77 

100˟100 0.87 4.26 0.85 2.86 

50˟50 0.84 2.21 0.81 1.53 

30˟30 0.81 1.62 0.76 1.17 

 

As expected, the differentiation rates decreased, when the testing images are further down-sampled to pixel 

dimensions of 30˟30, due to the lost information. For example, as can be seen from the last row of results, the 

differentiation rate decreased by ~11%, from ~87% to ~76%, if the deterministic level set method is used to 

distinguish apoptotic versus normal cells where 9 normal cells and 15 apoptotic cells have been misclassified. On 

the other hand, the differentiation rate rrate only decreased by ~7%, from ~88% to ~81%, when the stochastic level 

set method is utilized, for which 5 normal cells and 14 apoptotic cells are misidentified. 

These observations confirm that the stochastic level set based algorithm provides a more robust differentiation 

of cells states. Studies are also conducted to investigate the computational time for each case study. When images 

of cells with original pixels dimensions of ~220˟220 are down-sampled to the size of 30˟30, it takes ~1.17s with 

the deterministic method for 50 iterations, while ~1.62s is required with the stochastic method for the same 

number of iterations. 

6.6 Conclusion 

In the present work, a methodology has been developed for throughput screening studies to distinguish 

apoptotic from normal viable Chinese Hamster Ovary (CHO) cells. The study addresses the identification of 

irregular boundaries as occurring for apoptotic cells by using a stochastic level set algorithm to calculate the 

evolution of a stochastic level set function. From the resulting gPC representations of the level set functions, it is 

possible to estimate the boundary of the cells, the length of the boundary and the variability in curvature along 

the boundary. Using the information, a support vector machine (SVM) classifier has been developed. The 

combination of the boundary length and curvature obtained from the stochastic level set segmentation of images 

and the SVM classifier is shown to be an efficient tool to classify cells into normal versus apoptotic. The proposed 

stochastic level set approach is shown to be more robust in terms of differentiation accuracy than the deterministic 

level set algorithm, when the images are down-sampled to reduce computation time. 
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Chapter 7 

Concluding Remarks and Future Work 

7.1 Overview 

Models must account for uncertainty in order to provide precise results. Systematic and computationally 

efficient uncertainty analysis is the key to evaluate the performance of underlying engineering problems of 

interest. The statistical methods such as Monte Carlo simulations are one of the most popular approaches to solve 

problems with stochastic descriptions of uncertainty but they are computationally challenging (Spanos & Zeldin, 

1998). Alternatively, stochastic spectral methods such as the generalized polynomial chaos (gPC) expansion have 

emerged as a promising computationally efficient technique that can be used for uncertainty quantification and 

propagation (Xiu D. , 2009). Using this technique, the probability distributions of the model outputs can be 

calculated analytically from the probability distributions associated with the input variables through mathematical 

models in combination with Galerkin projection operations. 

The increasing size and complexity of modern process plants has made automation essential for their successful 

operations. Automated fault detection and diagnosis (FDD) is one of the key areas of chemical processes due to 

their potential for providing safer and more profitable operations (Isermann R. , 2006). However, disturbance 

such as parametric uncertainty can affect the performance of FDD algorithms (Chiang, Russell, & Braatz, 2008). 

Additionally, most of the available FDD tools are implemented at a supervisory hierarchical level above the 

control system and use measurements that are also used for feedback control. These two activities have competing 

objectives. For example, variables that are perfectly controlled in a closed loop control system do not exhibit large 

variability, which may results in lower detection rate of faults. 

Fluorescence microscopy is a well-developed tool to study in vitro cells behavior. Accurate and automatic 

analysis of cells images such as Chinese Hamster Ovary (CHO) cells can be very useful. Mammalian cells are 

prone to apoptosis (programmed cell death), which is a key metabolic event that restricts the growth of cells and 

decrease the productivity in a bioreactor (Waters, 2009). However, apoptotic cells in images may exhibit highly 

variable values of the morphological features that characterize apoptosis due to the dynamic nature of this 

phenomenon (Taatjes, Sobel, & Budd, 2008). Thus, it is necessary to develop new image processing and 

quantitative analysis method that can automatically differentiate apoptotic from normal cells. 

Motivated by the aforementioned discussion, the current work addresses these challenging problems through 

the following approaches: 

i- Formulated generalized polynomial chaos (gPC) method to propagate stochastic uncertainty from input 

faults and model parameters onto the outputs of the system. Then, faults are estimated by comparing the 

predicted and measured statistical properties of the outputs. 
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ii- Formulated an optimization problem to find an optimal trade-off between a FDD algorithm and a 

feedback control, while taking into account model uncertainty and dynamic transients. 

iii- Developed of FDD algorithms based on the gPC approximate solution of nonlinear mathematical models 

with Maximum Likelihood and Bayesian Inference based estimators. 

iv- Developed an efficient algorithm to distinguish apoptotic versus normal cells using the identified 

morphological features of cells. The algorithm accounts for image uncertainty by propagating stochastic 

disturbances in the image through the level-set segmentation algorithm. 

7.2 Concluding Remarks 

One of the key limitations of model-based FDD algorithms is the presence of model uncertainty. The accuracy 

of fault detection can be affected by uncertainty in parameters of the model used for detection. Chapter 3 of this 

work addresses the topic by developing a FDD methodology for systems represented by first principles model 

where both parameters and faults are of a stochastic nature to account for uncertainty and for random disturbances. 

Using a generalized polynomial chaos (gPC) expansion, the proposed method allows for efficient quantification 

of stochastic changes and prompts propagation of these changes to the outputs that can be used for fault detection. 

To our knowledge, while the gPC has been applied before for modeling and control applications, it has not been 

used for FDD as in this current work. The key contribution of this work is that the proposed methods are successful 

in detecting and diagnosing both individual as well as simultaneous occurrences of multiple stochastic faults. 

Additionally, the detectability of fault/s near class boundaries is assessed with the Type I and Type II analysis. 

As compared with Monte Carlo simulations, the developed method is highly efficient in terms of computational 

time, thus showing the potential for addressing more complicated problems with large number of variables. 

When a fault occurs, the objective is to detect and isolate it as promptly as possible. However, FDD methods 

that explicitly consider the dynamic transients in the presence of model uncertainty have not been addressed 

extensively in the literature. The detection of faults with steady state information based FDD algorithms may 

result in lower detection rate and higher mis-detection, when the measurements used for detection are collected 

during dynamic transients. Chapter 4 in this current work presented a two-level fault detection algorithm, i.e., (i) 

Level-1 algorithm based on steady state information and (ii) Level-2 algorithm based on dynamic transients. For 

the Level-2 algorithm, the gPC based solution is combined with either a Maximum Likelihood or a Bayesian 

Inference estimator to estimate the dynamic fault. The key feature of this method is the real-time detection of 

faults entering a system intermittently. The developed methods are demonstrated using a simulation of a nonlinear 

chemical plant with two continuously stirred tank reactors and a flash tank separator. As compared to the 

simulation based approaches such as MC simulations and Particle filter, the developed method is highly 

computationally efficient. This is a significant development since a main reason for the low acceptability of 

Particle Filter in industry is its high computational demand. 
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In Chapter 5, we address the problem of optimal simultaneous tuning of a FDD algorithm and the controller’s 

parameters in the presence of time varying stochastic intermittent parametric faults. As compared with MC type 

sampling method such as Latin Hypercube sampling method, the main novelty of this chapter is that it addresses 

the effect of stochastic input on the measured variables explicitly by using the gPC approximations. This is shown 

to be very effective, since the variabilities of input and measured variables and the control laws have to be 

repeatedly computed within the optimization search. Thus, these computations will be prohibitive if they would 

be done with MC methods instead of gPC. In addition, the computational advantages open the possibility to 

perform this optimization online for re-configuring the controller according the occurring faults as in fault tolerant 

control (FTC) approaches. Additionally, for the purpose of fast fault detection, a set of dynamic gPC models can 

be generated based on a Maximum Likelihood criteria to recursively and dynamically diagnose the faults in a 

real-time fashion. 

Chapter 6 investigates the classification problem of apoptotic versus normal cells. Since the image 

segmentation algorithms can be described by partial differential equations (PDEs), we realized that gPC solutions 

of the PDEs solving the segmentation problems can be used to address the effect of stochastic image noise on the 

segmentation results. The, particular morphological features identified from image segmentation are used to 

discern apoptotic cells from normal cells. Since the image segmentation can affect the accuracy of classification, 

a stochastic segmentation algorithm is developed by combining the gPC method with the active contours without 

edges method. Two specific morphological features, i.e., length of cell’s boundary and curvature along cell’s 

boundary, are computed and used as inputs to a support vector machine (SVM) classifier. As compared to the 

deterministic active contours without edges method, the developed method is shown to be more accurate in terms 

of differentiation accuracy between apoptotic and normal cells. 

7.3 Future Work 

7.3.1 Arbitrary Uncertainty Quantification and Propagation 

The original homogeneous polynomial chaos expansion (Ghanem & Spanos, 1991) and the modified 

generalized polynomial chaos expansion (Xiu D. , 2010) can result in high computational efficiency and fast 

convergence. Both methods are based on an appropriate selection of orthogonal polynomials. For example, the 

gPC uses the Wiener-Askey polynomial chaos framework based on several orthogonal polynomials including the 

Hermite polynomial. For uncertain input distributions outside of the Wiener-Askey scheme, the Wiener-Askey 

polynomial chaos does converge, but the convergence rate might be slow for high dimensional complex system. 

Thus, the appropriate selection of polynomial basis function for efficient quantification of uncertainty may be 

one of the possible direction to improve computational efficiency. For example, a multi-element generalized 

polynomial chaos has been recently developed to deal with stochastic input with arbitrary probability measures 

(Wan & Karniadakis, 2006). Based on a decomposition of the random space, a set of optimal orthogonal 



 

 119 

polynomials using Stieltjes three-term recurrence procedure can be formulated. Another option is to combine 

Gram-Schmidt polynomial chaos with the polynomial chaos expansion (Witteveen & Bijl, 2006), in which the 

optimal set of orthogonal polynomials is computed for any type of input distribution. (The application of this 

method is illustrated as a case study in this work as can be seen in Appendix B). Moreover, uncertainty 

quantification of time varying uncertainty still poses a significant challenge, despite the success of the gPC 

methods (Gerritsma, Van der Steen, Vos, & Karniadakis, 2010). It is necessary to investigate the problem that the 

probability density function of uncertainty evolves as a function of time. 

7.3.2 Integration of Plant Design, Control and Fault Diagnosis 

The trade-off between control and fault detectability is investigated in this work to achieve a balance between 

these two activities, since they have competing objectives in particular in the presence of uncertainty. However, 

the objective is to seek the optimal controller’s parameters to improve the detectability of intermittent faults. 

Further work should be conducted in the area of fault tolerant control, i.e., the optimal reconfiguration of control 

law in the event of faults to ensure the system to continue operating at a suboptimal levels, rather than breaking 

down completely. 

Additionally, the consideration of the dynamic and control aspects during the early state of the plant design 

may lead to the improved controllability and operability. For example, appropriate design of chemical plants may 

reduce the effort in identifying and diagnosing the possible faults. Plant design criteria can be incorporated into 

the optimization to evaluate the effect of sensors’ selection and distribution. This may maximize the information 

that can be ultimately used for the detection and control. 

7.3.3 Image Segmentation and Classification 

As an extension of active contour without edges method, the gPC expansion is combined with the level set 

functions to evolve the cells’ boundaries. Such stochastic image segmentation can propagate the information 

about the gray value errors and uncertainty from the input image to the final segmentation results. With this tool, 

it is possible to provide information about the reliability and confidence intervals of the boundary. From the 

mathematical point of view, there are still areas for further improvement, since the gPC method tends to be 

computational demanding when the number of random variables increases. Another challenge is the visualization 

and segmentation of high dimensional stochastic color images. For example, the application of gPC in 

combination with image processing method in this work is a starting point and can be further improved. 

In terms of feature extraction and selection, the identification of the most important feature is critical to 

minimize the classification error. For example, features can be selected based on mutual information criteria of 

maximize dependency and relevance (Peng, Long, & Ding, 2005). 
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Appendix A 

Comparison of Stochastic Fault Diagnosis Algorithms 

(Adopted from Du et al., 2015, Chemometrics and Intelligent Laboratory Systems, ready to submit) 

A.1 Overview 

This appendix presents a comparison study to identify and diagnose intermittent stochastic faults occurring in 

a dynamic multimode nonlinear process. The main objective is to develop efficient fault diagnosis algorithms in 

the presence of parametric uncertainty and to show the capabilities of each method. For the first principles’ model 

based fault detection and diagnosis (FDD), a generalized polynomial chaos (gPC) expansion representing the 

stochastic input faults is employed to propagate the uncertainty onto the measured quantities. The resulting 

probability density functions (PDFs) of the measured variables can then be approximated and further used for 

fault diagnosis. For the statistical monitoring method, Gaussian process (GP) is used to map multivariate inputs 

into a univariate response, from which the fault can be inferred based on a minimum distance criterion. The 

performance of these methods is evaluated in terms of fault detection rate by applying them to a chemical plant 

of two continuously stirred tank reactors (CSTRs) and a flash tank separator. The proposed methods are successful 

in detecting and diagnosing intermittent faults in the presence of uncertainty. 

A.2 Introduction 

Early detection of abnormal events and malfunctions defined as faults is of great interest, since faults may 

affect the product quality and lead to economic losses (Gerlter, 1998). If a fault is detectable, the fault detection 

and diagnosis (FDD) system will provide symptomatic fingerprints, which in turn can be referred back to the 

FDD scheme to identify the root cause of the anomalous behaviour. Most of the available fault diagnosis 

algorithms can be broadly classified into three main classes (Isermann R. , 2005; Venkatasubramanian V. , 

Rengaswamy, Yin, & Kavuri, 2003): (i) Analytical methods that are solely based on first principles’ models of 

process; (ii) Empirical models that use the historical process data; and (iii) Semi-empirical algorithms that 

combine these aforementioned two classes. Each of these methods has its own advantages and disadvantages 

depending on the specific problem (Isermann R. , 2006). 

In terms of applications, many industrial processes are intrinsically nonlinear systems and they are operated at 

different operating conditions according to economic considerations (Haghani, Jeinsch, & Ding, 2014). Due to 

nonlinearity, the performance of linear FDD algorithms reported in literature (Li & Yang, 2012) may be inaccurate 

and lead to missed detection of faults, since the process model will change from one operating conditions to 

another. It is critical to develop new methodologies for the detection of faults in the context of nonlinear chemical 

processes with multiple operating conditions (Haghani, Jeinsch, & Ding, 2014). 
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Since most of the FDD schemes are invariably based on either first principle models or empirical models 

(Venkatasubramanian V. , Rengaswamy, Yin, & Kavuri, 2003), a main restrictive factor of an efficient FDD 

system is the model uncertainty. Such uncertainty may originate from either intrinsic time varying phenomena of 

model parameters or may result from inaccurate measurements due to noise. Models with large uncertainties make 

the detection and isolation of small faults very difficult. However, the step of quantifying and propagating the 

uncertainties onto the measured quantities that can be used for fault detection is typically omitted in reported FDD 

studies, leading to a loss of useful information arising from these uncertainties (Patton, Frank, & Clark, 2010). 

Moreover, the quantitative analysis of faults detectability in the presence of uncertainty provides more 

information to improve FDD algorithms. For example, engineering effort can be saved, if it is impossible to detect 

a fault due to uncertainties such as large measurement noise (Eriksson, Frisk, & Krysander, 2013). 

To evaluate the effect of uncertainty on FDD, one possibility is to propagate stochastic variations with Monte 

Carlo (MC) simulations (Harrison, 2010), which involve drawing a large number of samples and running the 

models with each of these samples. However, approaches such as MC simulations are computationally prohibitive 

especially for complex processes as shown later in the manuscript. To improve the computational efficiency, this 

paper presents and compares two FDD algorithms in the presence of uncertainties. The uncertainty includes the 

parametric uncertainty of a process and measurement noise. In addition, the faults in this current work are 

stochastic perturbations superimposed on intermittent step changes in specific input variables for a nonlinear 

chemical plant. For the first FDD method, generalized polynomial chaos (gPC) (Ghanem & Spanos, 1991; Xiu 

D. , 2010) in combination with first principles’ process models are used to quantify and propagate the uncertainty 

onto the measured quantities, which can be used for the detection of faults. For the second method, a surrogate 

metamodel is developed with Gaussian Process (GP) (Rasmussen & Williams, 2006), which is calibrated with a 

minimal model adjustment algorithm and can be used estimate the value of fault. 

The objective in this work is to address the capabilities of these methods and propose a possible strategy to 

overcome their limitation by combing their outcomes. For this purpose, the performance of each method is 

evaluated in terms of fault detection rate in the context of stochastic parametric input faults. These faults occur 

intermittently with stochastic perturbations, i.e., the mean value of faults switch between the non-faulty and faulty 

operating conditions in a random fashion. For simplicity, the stochastic perturbations are assumed to be time-

invariant uncertainties. Thus, the key is to identify and diagnose these step changes in the presence of the random 

perturbations in the parametric input faults, using available measurements corrupted with measurement noise. 

To summarize, the contributions in this work are: (i) the use, in the context of fault detection and diagnosis, of 

a gPC model and a GP model for uncertainty propagation and quantification for a complex nonlinear system; (ii) 

the comparison of analytical and empirical methods for the detection of faults of a stochastic nature; and (iii) an 

ensemble of these methods to overcome limitations instead of the standalone application of each method. 
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This appendix is organized as follows. In Section A.3, the formulation of a fault detection problem is presented 

followed by the theoretical background of the gPC and GP theories. The fault detection and diagnosis (FDD) 

algorithms are explained in Section A.4. A nonlinear chemical plant with two continuously stirred tank reactors 

and a flash tank separator is introduced as a case study in Section A.5. Analysis and discussion of the results are 

given in Section A.6 followed by conclusions in Section A.7. 

A.3 Problem Formulation and Theoretical Background 

A.3.1 Formulation of Unknown Stochastic Faults 

Assuming a system subject to stochastic parametric input faults can be described by a set of nonlinear ordinary 

differential equations (ODEs) as following: 

ẋ = f (t, x, u; g) (A.1) 

0 ≤ t ≤ tf , x(0) = x0  

where the vector x ϵ Rn represents the system states (measured quantities) with initial conditions x0 ϵ Rn over time 

domain [0, tf], and u denotes the known (measurable) inputs of the system. The vector g ϵ Rng is the unknown 

(unmeasured) stochastic time varying input faults of interest, which has to be detected by a FDD algorithm. The 

function f is assumed to be a fundamental model of the process that can be developed from first principles. The 

input faults g considered in this current work consist of stochastic perturbation around a specific set of mean 

values as described in Fig.A.1 (a). 

 

Figure A.1 Fault profile representing an intermittent stochastic input fault and resulting measured variable 

It can be mathematically described as: 

gi = ḡi + ∆gi  (i = 1, …, ng) (A.2) 

where {ḡi} are a set of constant mean values (operating modes), {∆gi} are stochastic variations around each mean 

value. The statistical distribution of ∆gi is assumed to be a priori and time invariant, which can be estimated from 

an offline model calibration algorithm. It is also assumed that the mean values {ḡi} of faults remain constant. The 
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constancy of {ḡi} can be experimentally inferred from the constancy of the measured quantities, such as the 

manipulated and/or controlled variables, through the steady state tests.As seen in Fig.A.1, the changes in the mean 

values of {ḡi} follow a Multilevel Pseudo Random Signal (ML-PRS) (Ljung, 1999). The inputs described by Eq. 

A.2 are typical in chemical processes that experience both changes in means of operating variables but also in 

additional continuous random perturbations in time t. Then, the FDD problem can be defined as detecting a change 

in the unknown input mean ḡi and diagnosing around which particular ḡi the system is being operated. Each 

particular mean ḡi will be referred heretofore as to an operating mode, thus the goal in the current work is to 

diagnose the operating mode ḡi at a given time instant t. 

A.3.2 Generalized Polynomial Chaos Expansion 

The generalized polynomial chaos (gPC) expansion approximates a random variable as a polynomial series of 

another random variable following a standard distribution (Xiu D. , 2010). For the nonlinear chemical process 

defined by Eq. A.1, the gPC expansion can be used to quantify and propagate the effect of stochastic parametric 

inputs faults g onto the measured quantities x. The first step is to re-write each of the unknown input gi (i = 1,2,…, 

ng) in g as a function of a set of random variables ξ = {ξi}: 

gi = gi(ξi) (A.3) 

where ξi is the ith random variable. The random variables (ξ = {ξi}) are further assumed to be independent and 

identically distributed for simplicity. Using the gPC expansion, the unknown stochastic faults g(ξ) and system 

states x(t, ξ) can be approximated in terms of orthogonal polynomial basis functions Φk(ξ): 

                               g(ξ)= ∑ g
k
𝛷k(ξ)

∞

k=0

 (A.4) 

                                 x(t, ξ)= ∑ xk(t)𝛷k(ξ)

∞

k=0

 (A.5) 

where xk and gk are the gPC coefficients of measured quantities and faults at each time instant t, Φk(ξ) are multi-

dimensional orthogonal basis functions of ξ. If the faults (g) can be measured or estimated, the coefficients, i.e., 

{gk} in Eq. A.4, can be computed such that Eq. A.3 follows a priori probability density function. Then, the gPCs 

coefficients, representing the responses of measured quantities (x) resulting from the stochastic faults (g), can be 

calculated using the first principle models of process in combination with a Galerkin projection (Ghanem & 

Spanos, 1991). 

Using Galerkin projection, it is possible to calculate the gPC coefficients of the measured quantities {xk(t)} by 

substituting Eq. A.4 and Eq. A.5 into Eq. A.1, and then projecting Eq. A.1 onto each one of the polynomial chaos 

basis functions {Φk(ξ)} as defined in Eq. A.6: 

                                〈ẋ(t,ξ), 𝛷k(ξ)〉 =  〈 f (t, x(t,ξ), u(t), g(ξ)),𝛷k(ξ)〉     (A.6) 
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For practical implementation, Eq. A.4 is often truncated to a finite number of terms such as p, which is defined 

as the polynomial order. Hence, the total number of terms of measured quantities P in Eq. A.5 can be calculated 

as following: 

                       P = ((ng + p)!/(ng!p!)) - 1 (A.7) 

where p is the necessary terms used to approximate an a priori known distribution of g, and ng is the number of 

faults of interest defined in Eq. A.2. From Eq. A.7, the number of the gPC expansion terms for the measured 

variables in Eq. A.5 increases as the polynomial order p and/or the number of unknown inputs ng increase. The 

inner product in Eq. A.6 between two vectors can be computed with: 

                                〈ψ(ξ),ψ'(ξ) 〉= ∫ ψ(ξ)ψ'(ξ)W(ξ)dξ  (A.8) 

where the integration is conducted over the entire event domain generated by the random variables ξ, and W(ξ)is 

the weighting function, which is the probability function of random variables and has to be chosen with respect 

to the polynomial basis function used to represent ξ so as the result of Eq. A.8 is one or zero (Xiu D. , 2010). To 

obtain orthogonality the basis functions {Φk(ξ)} have to be selected according to the choice of the distribution of 

ξ. For example, Hermite polynomials are chosen as basis functions for normally distributed ξ. Once the gPC 

coefficients of the measured quantities x in Eq. A.5 are available, it is possible to compute statistical moments for 

the measured variables at a given time instant t with Eq. A.9 and Eq. A.10 as following (Xiu D. , 2010): 

                                      E(x(t)) = Ε [∑ xi(t)𝛷i

P

i=0

] = x0(t)Ε[𝛷0] + ∑ Ε[𝛷k]

P

i=1

= x0(t)    (A.9) 

                                   Var(x(t)) = Ε [(x(t) - Ε(x(t)))
2
] = Ε [(∑ xi(t)𝛷i

P

i=0

- x(i= 0)(t))

2

] 

 

                              = Ε [(∑ xi(t)𝛷i

P

i=1

)

2

] = ∑ xi(t)
2
Ε(𝛷i

2)

P

i=1

 (A.10) 

In addition, the probability density functions (PDFs) for measured variables, x(t), can be approximated by 

sampling from the distribution of ξ and substituting the samples into Eq. A.5. The ability of analytical formulae 

for calculating statistical moments as per Eq. A.9 and Eq. A.10 and to rapidly calculate the PDF profiles of the 

measured variables are the main rationale for using the gPC. It can reduce the computational effort required to 

approximate the PDF profiles, which are further used for the detection of faults and for the evaluation of fault 

detectability. 

The first principle models based fault detection procedure used in this current work consists of the inverse of the 

procedures explained in this section, i.e., the distribution of the stochastic parametric faults (inputs) g is to be 

inferred from measurements of the process measured variables x. 
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A.3.3 Gaussian Process 

The Gaussian process (GP) extends multivariate Gaussian distributions to infinite dimensionality [12]. It can be 

used to generate a surrogate metamodel with the measurements x in Eq. A.1 to provide a prediction of how the 

process is behaving without knowing the true generative system, i.e., the value of g in this work. Assuming Ɗ = 

{(xi, gi)} (i = 1,…, N) is N pairs of observations, then the GP regression model can be formulated as follows: 

gi = Ϭ(xi) + εi (A.11) 

εi ~ N(0, σg
2) (A.12) 

where Ϭ denotes the GP metamodel and εi is a bias term. In other words, gi is related to xi nonlinearly through an 

unknown function Ϭ that can be approximated with a GP. Moreover, each observation inside X = {xi} is related 

to another with the covariance function k(xi, xj). A popular choice of the covariance function k is the squared 

exponential kernel function (Shi & Choi, 2011) that can be defined as: 

kij = k(xi, xj) = σG
2 exp(-

1

2l
2 (xi-xj)

2
) (A.13) 

where (σG, l) are unknown parameters and heretofore referred as hyper-parameters. For the given observations, 

the covariance function k among all possible combinations of these N points can be computed with Eq. A.13. Let 

K be the covariance matrix at all points of the N training observations, i.e., K = {kij} and 1 ≤ i, j ≤ N. It can be 

proved that the marginal distribution of G = {gi} follows a multivariate normal distribution (Rasmussen & 

Williams, 2006; Shi & Choi, 2011): 

{gi} ~ N(0, Kg) with Kg = K + σg
2I (A.14) 

where Kg is the N×N covariance matrix and each element (i, j)th inside Kg can be defined as: 

{Kg}ij = cov(gi, gj) = k(xi, xj) + σg
2δij (A.15) 

where δij is the Kronecker delta function. Training of the GP involves the determination of the values for the 

unknown parameters in Eq. A.13 and Eq. A.15, i.e., θ = {σG, l, σg}, based on the given observations Ɗ. This can 

be solved with Empirical Bayes estimation algorithm by maximizing log p(g|x, θ), which can be given as (Shi & 

Choi, 2011): 

arg max log p(g|x, θ) = -
1

2
Nlog(2π) -

1

2
log|Kg| -

1

2
gT(Kg)-1g (A.16) 

Based on the training results, the GP model can estimate the prediction g* for a new set of observations x*, which 

has the mean and variance as below: 

E(g*|Ɗ, θopt) = k*TKg
 -1G (A.17) 

var(g*|Ɗ, θopt) = k(x*, x*) - k*TKg
 -1k* (A.18) 

where k* = (k(x*, x1), …, k(x*, xN))T is the vector of covariance between the new measured quantities x* and the 

training observations X = {xi}, θopt is the model training results optimized with Eq. A.16. 
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A.4 Fault Detection and Diagnosis Algorithms 

A.4.1 FDD using First Principle Models 

A.4.1.1 FDD Algorithm 

In Section A.3.2 above, we explained how to propagate stochastic parametric faults g such as the ones shown in 

Fig.A.1 (a) onto measured quantities (x), and how to calculate the probability density functions (PDFs) of these 

measured quantities by using gPC expansions. The main idea of the FDD algorithm with the first principle models 

is to solve the inverse problem given in Section A.3.2. Specifically, the goal is to infer the mean value (operating 

mode) of the faults from the gPC models of the measured variables, i.e., measured states x in Eq.A.1. 

For the purpose of calculating the PDF profiles of the measured quantities, it is assumed that measurements of 

the certain variables (x) around each mean value ḡi are available. Note that in this step the mean value ḡi of a fault 

remains constant but its exact value is unknown. The constancy of {ḡi} can be experimentally inferred from the 

constancy of the measured and/or controlled variables through a steady state test (Seborg, Mellichamp, Edgar, & 

Doyle, 2010). In principle, in the absence of measurement noise and if the means and variances of the faults g 

would be known, the PDF profiles of the measured quantities (x) that are measured and used for fault detection 

can be calculated with the gPC approximation as per the procedures shown in Section A.3.2. Then, it could be 

possible to accurately infer the mean value of fault from a measured output value by inverting the procedures 

outlined in Section A.3.2. In implementation, due to noise and model error (e.g., gPC truncation error), the exact 

mean and variance of the faults are unknown or unmeasurable. Thus, the PDF profiles of x around each possible 

mean value (operating mode) have to be calibrated using actual process measurements. To this purpose, the mean 

and variance of the unknown faults g can be calibrated from an optimization problem around each operating mode 

ḡi shown in Fig.A.1 (a) as: 
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where ϑ1,i and ϑ2,i are the predicted mean and variance of a particular measured variable (x) that is used for fault 

detection. These predicted means and variances are explicitly calculated with Eq. A.9 and Eq. A.10 using the 

gPCs coefficients of x, which are functions of the stochastic faults as shown in Fig.1 (a). The terms υ1,i and υ2,i 

are the measured mean and variance of x in Eq. A.1. The last term σn,i  is utilized to represent the standard deviation 

of noise that is also approximated by a gPC expansion of the following form: 





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k
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, )()(),(   (A.20) 
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where σn,k is the gPC coefficients of noise at time instant t, Φk(ξ) is the multi-dimensional polynomials in terms 

of ξ, and the variance of noise is assumed to be known a priori. 

The decision variable λgPC in Eq. A.19 is a vector consisting of the mean and variance of the unknown fault (g) 

and noise σn, and n is the number of the measured variables x used to calibrate the gPC model. Due to noise and 

truncation error introduced by the gPC approximation, the mean and variance of the input variable (g) defining 

λgPC calculated from Eq. A.19 deviate from the actual values entering the system. After obtaining λgPC, it is 

possible to calculate the gPC coefficients for the measured variables x. Using these coefficients, the PDF profiles 

for x’s around each mean value can be approximated by substituting samples (ξ) from an priori known 

distribution, e.g., normal or uniform, into the resulting gPC expansions given in Eq. A.5. Following these 

substitutions the PDF profiles of the measured quantities are calculated as a histogram composed of bins each 

corresponding to different ranges of values of x. 

Histograms are built for each of the mean values considered in Eq. A.2. When the system is operated around a 

constant mean ḡi, the corresponding index i (i = 1,…, ng) in Eq. A.2 is detected from the PDF profiles for a given 

measurement as follows: 

Operating mode (ḡi) = arg max {Pi} (A.21) 

where i denotes the ith operating mode as defined in Eq. A.2. Pi means the probability that the process is operating 

around a particular mean ḡi for a given measurement. The solution of this problem is depicted in Fig.A.2 showing 

3 PDF profiles that correspond to 3 different operating modes (mean values of faults). For example, three 

probabilities (red dots) can be found for a given measured variable shown in Fig.A.2, where the maximum 

probability can be used to indicate that the system is operating around the second mean value corresponding to 

“Operating mode 2”. 

Operating 

mode 1

Range of measured variable

P
r
o

b
a

b
il

it
y

Operating 

mode 2
Operating 

mode 3

 

Figure A.2 Visual interpretation of FDD with the level-1 algorithm 

A.4.1.2 Sensitivity Analysis based Sensor Selection for FDD 

Appropriate selection of sensors (measured quantities) for enhanced fault detection is essential in the presence 

of uncertainty. Sensitivity analysis in this work aims to propagate the effect of stochastic faults onto the variability 

of the measured variables and to maximize the obtainable information about faults. This section presents an 
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efficient sensitivity analysis algorithm based on differentiating the gPC approximation of measured variable in 

Eq.A.5 with respect to the random variables ξ. 

For this purpose, the partial derivatives of the gPC models for the measured quantities x = {xj} (j = 1, 2, …., 

n) in Eq.A.5 is calculated with respect to the random variables ξ = {ξi} (i = 1, 2, …., ng). Since each measured 

variable has different units and orders of magnitude, each of the measured quantities is normalized by its first 

gPC coefficient, i.e., the mean values of the gPC approximation. Thus, Eq.A.5 can be accordingly re-written as 

follows: 

                                 
xj(t, ξ)

xj,1(t)
= 

xj,1(t)

xj,1(t)
𝛷0(ξ) + 

1

xj,1(t)
∑ xj,k(t)𝛷k(ξ)

P

k=1

 =  y
j
 (A.22) 

where xj,1(t) denotes the first gPC coefficient of the jth measured variable. The partial derivatives of each measured 

quantity can be calculated with respect to the ng random variables, and the sensitivity matrix S can be derived as: 

S = (

∂y
1
/∂ξ1 ⋯ ∂y

1
/∂ξng

⋮ ⋱ ⋮
∂y

n
/∂ξ1 ⋯ ∂y

n
/∂ξng

) = (

s1,1 ⋯ s1,ng

⋮ ⋱ ⋮
sn,1 ⋯ sn,ng

) (A.23) 

where sj,i represents the sensitivity of the jth measured variable to the ith unknown fault. Although each element in 

S can be also formulated over a time horizon, in this work for simplicity it is only evaluated around each of the 

mean values (operating modes). Based on S, the measured variable with the maximum sensitivity value can be 

chosen to infer the faults, using the calibrated PDF profiles of measured quantities. 

A.4.1.3 Quantitative Analysis of Fault Detectability 

To quantify the detectability and isolability of faults, the Kullback-Leibler (K-L) divergence (Ullah, 1996) is 

used to measure the difference between two PDF profiles. The selection of the measured quantity used for fault 

detection and for K-L divergence analysis is based on the sensitivity analysis results as discussed in previous 

section. Assume two PDF profiles, i.e., pm1 and pm2, describing the K-L divergence for two mean values (operating 

modes). The more the distribution of the two PDF profiles differs between two mean values, the easier it is to 

detect and isolate the operating mode. The K-L divergence Dkl of pm2 from pm1 can be defined as: 

                                 Dkl(pm1
||p

m2
) = ∑ p

m1
(i)log

p
m1

(i)

p
m2

(i)

nkl

i=1

  (A.24) 

where nkl denotes the number of bins used to approximate the PDF profiles. Generally, the right hand side of 

Eq.A.24 is the expected value of log(pm1/pm2) given pm1. 
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A.4.2 FDD using Empirical Models 

A.4.2.1 FDD Algorithm 

In Section A.3.3, we presented a brief outline of the GP regression model, which can be used to estimate the mean 

and variance of g for a set of given observations of x. However, the measured quantities x of a process depend on 

the joint behaviour of a set of measured variables and the formulation of GP model with many variables may not 

be efficient. For this purpose, the principal component analysis (PCA) (Srinivasan & Qian, 2007) is first used to 

remove the inessential variables and the calculation of the GP model is then applied to the principal components 

obtained with the PCA model. For the purpose of model calibration in this method, it is assumed that a few 

measurements of faults are available. Note that this step can be replaced by a GP classification model (Rasmussen 

& Williams, 2006), in which the same assumption as done for the gPC model can be used, i.e., the mean values 

of the faults remain constant but their exact values are unknown. 

The optimal selection of the principal components proceeds as per the following procedures: (i) The training set 

X = {xi} (i = 1,…, N) for all operating modes, consisting of N observations for n variables, are used to calculate 

the covariance matrix C of X; (ii) The eigenvalues and eigenvectors of the covariance matrix C are then calculated 

and sorted in a decreasing order; (iii) Compute the variances captured by each of the principal components and 

the corresponding eigenvectors matrix V; (iv) Determine the number of principal components nPC and build the 

transform matrix VPC with respect to a predefined cumulative variance percent; (v) Based on the transform matrix 

VPC, convert the training set X onto the domain generated with the principal components and calculate the score 

matrix {Xs,i} (i = 1,…, N) that can be used for the calibration of GP regression model. 

Using the score matrix {Xs,i}, a transformed observation set Ɗ = {(Xs,i, gi)} (i = 1,…, N) with N pairs of elements 

can be formulated, and then the GP regression model Ϭ can be constructed following the procedures as described 

in Section A.3.3. The main idea of the FDD algorithm with the GP model is to estimate the values of parametric 

faults g* for a new set of observations x*. For this purpose, the detection of fault involves the following steps: (a) 

Determine the number of possible mean values {ḡi} by checking the constancy of the manipulated or controlled 

variable, and calculate the mean values{ḡi} using collected measurements in Ɗ; (b) The new observations x* are 

scaled and projected onto the principal components domain; (c) Estimate the mean value and the variance of g* 

given x* using Eq. A.17 and Eq. A.18; (d) The mean value obtained from step-c is compared based on a minimum 

distance criterion to the set of the mean values {ḡi} estimated in step-a and the corresponding operating mode 

(mean values) can be diagnosed. 

A.4.2.2 Model Calibration through Minimal Adjustments 

The GP regression model represents the relationship between the faults g and the measured quantities x based 

on the optimized hyper-parameters θ. For each given observation of x*, the GP model predicts the faults g* by 

calculating its mean value and the variance around the mean value with Eq. A.17 and Eq. A.18. However, the 
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model calibration and the prediction of faults are based on the initial training set X = {xi}. The reliability of the 

training set X might be insufficient due to the limited measurements. Moreover, more simulations results can be 

obtained than experimental measurements. Thus, a minimal model adjustment algorithm is developed in this work 

using the collected measurements and computer simulations. This algorithm combines a normal cumulative 

distribution function based probability improvement method (Jones, 2001) with an adaptive selection of new 

training observations. 

For the purpose of calibrating the GP regression model, the model discrepancy between the GP prediction and 

the initial observations of {gi} inside Ɗ = {(xi, gi)} is defined as: 

ε = ∑[gi - Ϭ(ḡi|xi, θ)]2 for i = 1,…, N (A.25) 

where gi and xi are the ith set of observations, Ϭ(ḡi|xi, θ) denotes the estimated mean value of faults given xi and 

hyper-parameters θ. Based on the model discrepancy ε, the normal cumulative distribution function can identify 

new possible observations, with which the probability to minimize the model discrepancy beyond a target T can 

be maximized (Jones, 2001; Du, Yang, Ednie, & Bennett, 2015). 

The optimal selection of a new observation set involve as per the following steps. (i) Calibrate the GP model 

to solve the hyper-parameters θ0 with the initial observations set Ɗ0, and determine the model discrepancy 

criterion ε*. (ii) Generate a set of new observations Ɗ1 through simulations, consisting of N1 observations for n 

variables. (iii) Calculate the model predictions for each observations xj in Ɗ1 (j = 1,…, N1) with θ0, i.e., the mean 

value and variance of gj. (iv) Compute the probability improvement Pj for each of the observations xj in Ɗ1 with 

Eq. A.26: 

Pj = ψ[(T – E(ḡj|xj)/s(ḡj|xj)] (A.26) 

where ψ denotes the normal cumulative distribution function, T is a target value that can be used to adjust the 

model calibration. For any given observation xj in Ɗ1, E(ḡj|xj) represents the mean value of faults and s(ḡj|xj) is 

the corresponding standard deviation. These two values are calculated with the hyper-parameters θ0 calibrated in 

step-i. (v) The observation with the maximum probability improvement Pj can be added to the initial observations 

set Ɗ0, and results in a new initial observations set. This new initial observations set now consists of (N+1) 

observations for n variables. (vi) Calibrate the GP model with the new initial observations set consisting of (N+1) 

observations  to solve a new set of hyper-parameters θ0
’. (vii) Compute the model discrepancy ε with Eq. A.25 

and θ0
’, repeat step-ii ~ step-vi and keep adding new observations into the initial observations until ε < ε*. 

The normal cumulative distribution function minimizes the model discrepancy by adding the best observations 

into the training set. However, it cannot provide information about the probability distribution of the observations. 

Note that for two observations x and x’, if x is distant from x’, the covariance function calculated from Eq. A.13 

is tiny, e.g., k(xi, xj) ≈ 0. These distant observations will have negligible effect on the interpolation of new 

observations. Thus, a second model adjustment criterion η is developed to check the value of covariance function 
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in Eq. A.13. Each of the possible new-to-be-added observations set is further evaluated based on the covariance 

function to guarantee that each value inside the covariance matrix is larger than η. 

A.5 Case Study 

Simulation studies of a nonlinear chemical process consisting of two reactors and a separator with recycle unit 

are used to illustrate the efficacy of the proposed two-level fault diagnosis algorithm (Stewart, Venkat, Rawlings, 

Wright, & Pannocchia, 2010). Fig.A.3 shows a schematic of the system with three temperature control loops. A 

stream of reactant A is added to each reactor and converted to the product B by the first order reaction, C denotes 

the side-product of the process. The feed mass fraction of reactant A (xA0) is assumed as the unknown 

(unmeasured) stochastic fault (g) in this current work. xA0 is assumed to change as shown in Fig.A.1, i.e., normally 

distributed perturbations around three mean values (operating modes) as described in Eq. A.2. The first principles’ 

model of the process controlled with three PI controllers is described by a set of ordinary differential equations 

(ODEs) as following: 
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Figure A.3 Two reactors in series with a separator and a recycle unit 

H1
̇ = (1/ρA1)(Ff1 + FR - F1) (A.27) 

ẋA1= (1/ρA1H1)(Ff1xA0 + FRxAR - F1xA1) - kA1xA1 (A.28) 

ẋB1= (1/ρA1H1)(FRxBR - F1xB1) + kA1xA1 - kB1xB1 (A.29) 

Ṫ1= (1/ρA1H1)(Ff1T0 + FRTR - F1T1) - (1/Cp)(k
A1

xA1∆HA + kB1xB1∆HB) + (Q
1
/ρA1CpH1)  (A.30) 

H2
̇ = (1/ρA2)(Ff2 + F1 - F2) (A.31) 

ẋA2= (1/ρA2H2)(Ff2xA0 + F1xA1 - F2xA2) - kA2xA2 (A.32) 

ẋB2= (1/ρA2H2)(F1xB1 - F2xB2) + kA2xA2 - kB2xB2 (A.33) 

Ṫ2= (1/ρA2H2)(Ff2T0 + F1T1 - F2T2 ) - (1/Cp)(k
A2

xA2∆HA + kB2xB2∆HB) + (Q
2
/ρA2CpH2)  (A.34) 

H3
̇ = (1/ρA3)(F2 - FD- F

R
 - F3) (A.35) 

ẋA3= (1/ρA3H3)(F2xA2 - (F
R
+ FD)x

AR
 - F3xA3) (A.36) 
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ẋB3= (1/ρA3H3)(F2xB2 - (F
R
+ FD)x

BR
 - F3xB3) (A.37) 

Ṫ3= (1/ρA3H3)(F2T2 - (F
R
+ FD)T

R
 - F3T3) + (Q

3
/ρA3CpH3)  (A.38) 

where the subscripts ‘i’ (i.e., 1, 2, 3) refers to the vessel, xi is the mass fraction of reactant A or product B, Ti 

denotes temperature in each tank, Hi is the level, Fi is the flow rate and the reaction terms are: 

Fi= kviHi (A.39) 

kAi = kAexp (-EA/RTi) (A.40) 

kBi = kBexp (-EB/RTi) (A.41) 

The recycle flow and the weight percent factors satisfy: 

FD= 0.01FR (A.42) 

xAR= αAxA3 / x̅3 (A.43) 

xBR= αBxB3 / x̅3 (A.44) 

x̅3= αAxA3+ αBxB3 + αCxC3 (A.45) 

xC3= 1- xA3- xB3 (A.46) 

Each of the vessels in the process receives an external heat input Qi that is controlled by a PI controller: 

Q
i
(t) = Q

(ss),i
(t) + Kp,i(T(set),i -  Ti(t)) + Kp,i/τi ∫ (T

(set),i
 -  Ti(t

*)
t

0
)dt* (A.47) 

These parameters used for the simulation are given in Table 1. 

Table A.1 Parameter declaration for the Reactor-Separator process 

Symbol Value Units Symbol Value Units Symbol Value Units 

Ff1 10 kg/s kv1 2.5 kg/m s ρ 0.15 kg/m3 

Ff2 1 kg/s kv2 2.5 kg/m s A1 3 m2 

FR 60 kg/s kv3 2.5 kg/m s A2 3 m2 

T(set),1 315 K kA 0.02 1/s A3 1 m2 

T(set),2 315 K KB 0.018 1/s αA 3.5 / 

T(set),3 400 K EA/R -1000 K αB 1.1 / 

T0 310 K EB/R -500 K αc 0.5 / 

TR 310 K ΔHA -40 kJ/kg Kp,i 0.25 / 

Cp 2.5 kJ/kg K ΔHB -50 kJ/kg τi 0.0025 / 

 

A.6 Results and Discussion 

A.6.1 Model Formulation with gPC approximations 

The detection of faults in this work is to diagnose the mean value (operating mode) of the unknown feed mass 

fraction xA0 based on measurements that can be easily measured such as Qi. For simplicity, 3 mean values of the 

feed mass fraction (xA0) are considered, i.e., 0.65, 0.75 and 0.85 (ng = 3 in Eq. A.2). Stochastic perturbations in 
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xA0 occur around each of these mean values, and they follow a normal distribution with zero mean and a standard 

deviation of 0.1. Since the solution of the gPC coefficients involved in the gPC expansions of each one of the 

states (x in Eq. A.1) as given in Section A.3 requires the application of Galerkin projection, the employment of 

gPC is limited to monomial or polynomial terms. Hence, non-polynomial terms such as the reaction term 

(Arrhenius energy function) kAi, are approximated by a 2nd order Taylor expansion around each mean value on 

input fault xA0. Assuming that the random variable ξ is normally distributed, the corresponding basis polynomial 

functions for gPC approximations are chosen as Hermite as per the Askey scheme to maintain orthogonality (Xiu 

D. , 2010). 

To test the accuracy of the Taylor approximation, simulations are conducted with the gPC model resulting from 

this approximation. These simulations are compared to Monte Carlo (MC) simulations (Harrison, 2010; Fouskakis 

& Draper, 2002) using the nonlinear model without the Taylor approximations. For comparison, Fig.A.4 shows 

the simulation results of the controlled variable T1 in the first reactor, using the gPC method and the MC 

simulations, respectively. For the gPC method, a 2nd order Taylor expansion is used to approximate the reaction 

terms, while the nonlinear model described in Section A.5 is used for MC simulations. For the gPC method, the 

gPC coefficients of the measured quantities x are calculated as outlined in Section A.3. Then samples generated 

for the random variable ξ are substituted into these gPC expressions to predict the distributions of measured 

quantities. Using these estimated distributions, it is possible to estimate their upper (maximum) and lower 

(minimum) values at each time instant t. 

The MC simulations can be conducted as per the following steps: (i) A set of samples of the feed mass fraction 

xA0 following the same statistical distribution as used for the gPC are first generated; (ii) Each of these samples is 

then substituted into the nonlinear model as described in Section A.5; and (iii) The simulation results of the 

measured variables are stored for comparison. Several randomly chosen simulated trajectories with the MC 

simulations are shown in Fig.A.4. As seen, the trajectories obtained with MC simulations are bounded by the 

upper (Maximum) and lower (Minimum) bounds calculated with the gPC model. Thus, the gPC model with the 

Taylor approximation of the Arrhenius term can provide correct bounds for the MC simulations. To simplify the 

comparison of fault detection algorithm with different models, the diagnosis of fault in this work is performed to 

detect the mean value (operation mode) only when the system is operating for long periods around a fixed mean 

value. For example, the measurements can be collected at time instant ts as shown in Fig.A.4. 
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Figure A.4 Comparisons of the gPC model and MC simulations using controlled variable T1 

A.6.2 Sensitivity Analysis with gPC model 

The sensitivity analysis described in Section A.4.1.2 is studied for the purpose of optimal selection of sensor. 

For each of the mean values on the feed mass fraction xA0, the sensitivity matrix S (Table A.2) can be computed 

for all the states defined by the first principles’ model in Section 4 with respect to the random variable ξ = {ξ}. 

The dimension of the random variables ξ is 1 in this work, since only one stochastic fault xA0 is considered. 

In principle, variations in the feed mass fraction xA0 can contribute significantly to changes in the mass fractions 

of A and B in the reactors and separators. Despite its sensitivity however, they are not used for the detection of 

faults in this work, since the objective is to detect faults using measurements that can be easily measured and 

concentrations are generally expensive to measure online. Thus, the sensitivity analysis is only investigated for 

the controlled and manipulated variables. As seen in Table A.2, the sensitivity of temperatures {Ti} to the 

variations in the feed mass fraction xA0 is small as expected, since they are controlled variables. As compared 

with the temperatures {Ti}, the manipulated variables {Qi} are more sensitive to the random changes in the feed 

and consequently they can be chosen for inferring the faults. The measured variable Q1 is used in this work 

because it has the largest sensitivity analysis value as seen in Table A.2. 

Table A.2 Sensitivity analysis of Reactor-Separator process 

 Measured variables 

Mean T1 Q1 T2 Q2 T3 Q3 

0.65 1.6e-7 0.0177 5.1e-7 0.0156 3.4e-7 0.0056 

0.75 6.3e-7 0.0177 1.4e-6 0.0157 3.4e-7 0.0011 

0.85 8.9e-7 0.0165 1.3e-6 0.0143 1.8e-7 0.0012 

A.6.3 Model Calibration with the gPC model 

Following the above, 3 mean values of the feed mass fraction xA0 are studied, i.e., 0.65, 0.75 and 0.85. The 

stochastic perturbations, added around each of these mean values (operating modes), are assumed to be normally 

0 1000 2000 3000 4000
Parametric faults time profile (s)

A
m

p
li
tu

d
e
 o

f 
c
o

n
tr

o
ll
e
d

 v
a
ri

a
b

le
 (

T
1
)

 

 

Maximum (gPC)

Minimum (gPC)

MC samples

Mean value change 

(0.65→0.85) 

Start-up 

simulations 

  

          Simulation time (s) 

ts ts 



 

 135 

distributed with zero mean and a standard deviation of 0.1. The step changes of feed mass fraction xA0 follow a 

ML-PRS signal as shown in Fig.A.5 (a) and (b), respectively. The number of step changes of the unknown faults 

(xA0) among the 3 selected mean values (operating modes) in the ML-PRS is 242 and the maximum number of 

measurements between two consecutive step changes in faults (inputs) is limited to 1000. 

 

Figure A.5 (a) Three-level-PRS and (b) application to the feed mass fraction superimposed with stochasticity 

Table A.3 shows the model calibration results calculated from Eq. A.19 using the measurements of manipulated 

variables {Qi}, since they are more sensitive to the variation in the feed xA0. To simulate actual data, Gaussian 

noise is added to the measurements of {Qi}. Thus, Hermite polynomials are selected and the highest order of 

polynomials used for the gPC models is 2 (p = 2 in Eq. A.7), following the Askey scheme to maintain 

orthogonality (Xiu D. , 2010). 

Table 3 Model calibration results for gPC model 

xA0 x’A0 σA0 σn time(s) 

0.65 0.6370 0.0937 0.0188 992 

0.75 0.7364 0.0979 0.0199 788 

0.85 0.8319 0.0933 0.0201 871 

 

As seen in Table A.3, the first column gives the mean values of feed xA0 used for simulations. The second and 

third columns (x’A0 and σA0) are the mean and standard deviation calibrated from Eq. A.19, σn is the standard 

deviation of measurement noise. As explained before, the mean and standard deviation of the faults (inputs) 

resulting from Eq. A.19, i.e., xʹA0, σA0, are not identical to the actual simulated values used for model calibration 

(xA0, and 0.1), due to the measurement noise and the gPC series’ truncation errors. 

Based on the model calibration results, the PDF profiles of the measured variable {Qi}, estimated for each of 

the 3 mean values of the feed mass fraction (x’A0 in Table 3), can be approximated. As an example, Fig.6 shows 

the PDF profiles for the external heat Q1 in the first reactor, in which the horizontal axis represents the range of 

Q1, and the vertical axis is the normalized probability. Again the measurements of external heat Q1 is used for the 

detection of faults, since it is more sensitive to the random changes in the feed as seen in Table A.2 (the second 

column). 
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Figure A.6 The PDF profiles of the measured variable (Q1) at 3 operating modes 

A.6.4 Detectability Analysis with gPC model 

The PDF profiles of the measured quantities can be further used to evaluate the fault detectability using  the 

first principles’ model of the system. For simplicity, the detectability of faults is computed with the PDF profiles 

of the external heat Q1 of the first reactor and the results are summarized in Table A.4. The detectability is 

calculated with the K-L divergence Dkl as defined in Eq. A.24, which is based on the difference between two PDF 

profiles generated for different mean values (operating modes). 

In Table A.4, the higher detectability of faults is related to the higher values of the K-L divergence Dkl. As can 

be seen, the fault detectability is lower for two operating modes that are adjacent to each other, as compared to 

operating modes that are not adjacent to each other. As observed from the second column for example, it is easier 

to detect the mean value changes occurring between 0.65 and 0.85 than those changes occurring between 0.65 

and 0.75, since 0.03 > 0.01. Additionally, when the system is operating around the second mean value 0.75, the 

detectability of faults is lower as compared to the case where the system is operating around the other two mean 

values. For example, the sum of the K-L divergence Dkl in the third column is 0.02, which is smaller than for the 

other columns, i.e., 0.04 and 0.08, respectively. 

Table 4 Estimation of detectability with gPC model 

Dkl 0.65 0.75 0.85 

0.65 / 0.01 0.05 

0.75 0.01 / 0.03 

0.85 0.03 0.01 / 

A.6.5 Minimum Adjustment of GP model 

As discussed in Section A.4.2, the measured quantities of a process have a joint effect on the formulation of the 

GP model and the model calibration with many variables may not be efficient. For this purpose, the principal 

component analysis (PCA) (Srinivasan & Qian, 2007) is used to remove the inessential variables and the 

calculation of the GP model is applied to the principal components. For optimal selection of the principal 

component, a training set with 30 units of observations is used. For each observations’ unit, measurements of the 

measured quantities {Ti} and {Qi} are collected around each mean value (operating mode) of feed and each mean 

value has 10 samples. Following the procedure in Section A.4.2.1, it is found that one principal component can 
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capture ~80% of the cumulative variance. Thus, only the first principal component is used to build the transform 

matrix VPC. The matrix VPC transforms each observation unit onto the domain generated with the principal 

component and formulates a new score vector {Xs,i}, which can be further used for the training of the GP 

regression model. 

Using the score vector {Xs,i}, a new initial observation set Ɗ = {(Xs,i, gi)} (i = 1,…, 30) with 30 pairs of observation 

units can be formulated, and then the GP regression model Ϭ can be adjusted following the procedures described 

in Section A.4.3. As compared to the gPC model based method, in which it is assumed that the exact value of 

faults are unknown, the GP regression model needs a training set of the faults’ values and the estimates of mean 

values of the feed. The estimation of mean values on the feed xA0 is used for the minimal model adjustment, since 

we typically have many simulation results than experimental results. These simulations results are used to 

determine a new set of observations that has to be added to the initial observation set. To simulate actual data, 

Gaussian noise is added to the measurements of {Ti} and {Qi}. The minimal model adjustment proceeds as per 

the steps described in Section A.4.2.2 and Table A.5 shows the model parameters. 

As seen from Table 5, the model parameters computed with the minimal adjustment method are not identical 

to these without model adjustment. The efficiency of model adjustment will be further discussed in terms of fault 

detection rate as below. For comparison in this case study, the computational time required for the calibration of 

GP is also given. With the minimal model adjustment, 152 set of new observations are added to the initial training 

set and the computational time is significantly higher than the time needed without model adjustment, i.e., 3.61 

hours verse 83.67 seconds. However, the minimal model adjustment can improve the performance of fault 

detection as shown below. 

Table 5 Hyper-parameter of GP model 

GP model σG l σg Time  

No adjustment 0.9763 14.0979 0.1108 83.67 (s) 

Minimal adjustment 1.1597 24.1909 0.0979 3.61 (h) 

A.6.6 Summary of Fault Detection Rate 

To evaluate the efficacy and compare the fault detection algorithm, a fault detection rate rrate is defined as: 

rrate = di/DT (A.48) 

, where di denotes the number of testing samples that have been correctly identified and DT is the total number of 

testing samples used in this case study. 

For the gPC model, the PDF profiles of the measured quantity Q1 are used. The testing samples of 

measurements are collected at time instant ts as shown in Fig.A.4, where the system is operating around particular 

fixed mean values. For the detection of fault with the GP model, the detection rate is evaluated for two different 
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case studies: (i) model calibration without adjustment and (ii) model calibration in combination with the minimal 

adjustment algorithm. The detection rate rrate is summarized in Table A.6. 

Table 6 Summary of fault detection rate 

Method 
Noise level  

1% 2% 3% 

gPC 0.93 0.91 0.89 

GP 0.80 0.79 0.76 

GP-adjustment 0.88 0.86 0.85 

 

In Table A.6, 1000 testing samples for each mean value on the feed mass fraction xA0 are used to evaluate the 

detection rate, and the fault detection rates decrease as expected when the noise level increases. As seen, the gPC 

model based fault detection method can provide the best performance in terms of fault detection. The fault 

detection rate for the GP model with minimal model adjustment is ~88% for the first level of noise, which is ~5% 

lower than the gPC model. The possible explanation is that the PCA pre-screening step is used to remove the 

inessential variables and one principal component accounting for ~80% of the variance is used for the GP model 

calibration. Additionally, it is evident that the minimal model adjustment can improve the accuracy of fault 

detection. This confirms that the statistical model based fault detection method is sensitive to the training set, i.e., 

the available measurements. Thus, we must combine the GP model with the minimal model adjustment algorithm, 

since the limited observations used for the model training cannot provide accurate identification of the faults in 

the presence of uncertainties. 

A.6.7 Combination of the gPC model with GP model 

In previous case studies, either the gPC model or the GP are used to detect the faults. In this section, one GP 

model is generated based on the sensitivity analysis results obtained with the gPC model. Note that the sensitivity 

analysis of the GP model could be also studied using MC simulations, but it may make the evaluation of Eq. A.23 

computational prohibitive. 

In this case study the external heat Q1 is used for the calibration of GP model, since it is more sensitive to the 

variation in the feed xA0. The model calibration proceeds as per steps followed in the minimal adjustment 

algorithm. The calculated hyper-parameters are: σG =1.1774; l =194.7484, σg = 0.0987, respectively. Using an 

initial set with 30 measurement units, 89 measurements of Q1 are added to the initial training set. For comparison, 

the efficiency of this combination is evaluated in terms of fault detection rate. For 1000 testing samples, the fault 

detection rate is ~92% for the lowest noise level. As compared to the results obtained with the PCA pre-screening 

based GP model, this combination can improve the fault detection rate by ~4 percent points and provide similar 

results as obtained with the gPC model based method. 
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A.6.8 Discussion and Comparison 

The comparison of the two fault detection algorithms has shown their different capabilities. The gPC model 

based method can provide the most accurate results in terms of fault detection, and can be further used to evaluate 

the detectability of faults in a computationally efficient way, but the formulation of the gPC model is more 

complex as compared to the GP model. For example, as discussed in Section A.6.1, the computation of the gPC 

coefficients requires the application of Galerkin projection and this operation is limited to monomial or 

polynomial terms. The GP model has shown to be more flexible in terms of model generation, and it can provide 

a closed form expression of the mean and variance of the measured quantities. However, many compromises are 

required. For example, it is difficult to express the input of a model in an explicit and efficient way. Also, the 

calibration of the model generally depends on the training set. To overcome these limitations and improve fault 

detection performance, a hybrid method can be developed by combining these two approaches. As discussed 

above, the GP model generated based on the sensitivity analysis results from the gPC model may bring benefits 

to more complicated chemical processes, while providing equivalent accuracy in fault detection. 

Finally, studies are conducted to compare the proposed algorithms with Monte Carlo (MC) simulations for the 

gPC model based method. It is worth noting that the model calibration as per the optimization in Eq. A.19 would 

be time prohibitive if MC simulations were to be used instead of a gPC approximation. For instance, the processor 

time required for one cost evaluation with MC (5000 samples) is ~15465 seconds. The search for the optimum in 

Eq. A.19 for each mean value requires 40~60 iterations and takes approximately 171 ~ 257 hours on average. 

However, the proposed method takes ~15 minutes to calculate the optimum in Eq. A.19 for all mean values, as 

can be seen in Table A.3. Also, the use of 5000 samples for calibrating the PDF profiles of measured variables 

from MC simulations resulted in lower fault detection rates of ~83%, as compared to the gPC method. Thus, a 

larger number of samples than 5000 would be required to obtain comparable fault detection rate as with the gPC 

approach, which may further increase the computational burden. 

The computational time is also evaluated for the GP model calibration. According to the sensitivity analysis 

results obtained from the gPC method, the measurements of Q1 and Q2 are used for model calibration, since they 

are more sensitive to the random changes on the feed (see Table 2). For the minimal model adjustment, it takes ~ 

4.2 hours. In this step, 30 set of initial observation units are used and 188 set of additional units are added to the 

training set. Additional studies are conducted to compare the fault detection rate with the multivariate statistical 

analysis method in the presence of parametric model uncertainty. For example, the fault detection rate is ~78% 

by combining the PCA model with the score discriminant method (Chiang, Russell, & Braatz, 2008), for which 

six measured quantities {Ti} and {Qi} are used to generate the PCA model. This shows the potential of the 

proposed GP model based method for dealing with large problems and complicated applications. 
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A.7 Conclusion 

A comparison study of two stochastic fault detection and diagnosis (FDD) algorithms are presented in this 

work for a nonlinear chemical process. For the first FDD method, a generalized polynomial chaos (gPC) is used 

to quantify and propagate the uncertainty onto the measured quantities, which can be used for the detection of 

faults. For the second method, a surrogate (empirical) metamodel is developed with Gaussian Process (GP) to 

approximate the dynamic value of the fault and its confidence interval. These methods have been evaluated in 

terms of the resulting fault detection rates. The results show the different capabilities of each method. Specifically, 

the gPC model based method is the more accurate method, but it requires more efforts are required when the 

implicit intrusive method is used to approximate the gPC coefficients of measured quantities. On the other hand, 

the GP model is easier to implement, but it is less accurate and the model calibration step requires additional 

adjustment. To improve the overall efficiency and flexibility, the outcomes from both methods can be combined 

leading to equivalent results between the gPC approach and the hybrid approach. 
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Appendix B 

Reactivity Ratio Estimation in Copolymerization 

(Adopted from Du et al., 2015, Computers and Chemical Engineering, submitted) 

B.1 Overview 

In this appendix, a generalized polynomial chaos (gPC) based methodology is proposed for reactivity ratio 

estimation in copolymerization, where the reactivity ratio parameters are assumed to be stochastic unknowns and 

need to be determined by comparison model predictions with limited experimental data. The gPC representations 

of unknown parameters are propagated into the nonlinear copolymerization first principles’ models, which is 

followed by a maximum likelihood based approach fitting of the predictions from the gPC model and the 

experimental data. Thus, the reactivity ratio estimation is formulated as a stochastic inverse problem of finding 

the distributional stochastic reactivity ratio parameters with a maximum likelihood function. To apply the method 

to arbitrary uncertainty distribution, the Gram-Schmidt orthogonalization is employed to compute the orthogonal 

polynomials, which is an extension of the gPC method. The results show that the gPC model based reactivity ratio 

estimation is efficient and powerful, since it simultaneously provides both true values as well as the best estimates 

of the confidence interval around these true values. Beyond achieving estimation results, it is shown that the 

computational cost of the gPC model based method is significantly lower than Markov Chain Monte Carlo 

(MCMC) simulations, thus demonstrating the potential of the gPC method for dealing with other large nonlinear 

problems and real-time applications. 

B.2 Introduction 

Most mechanistic models involve nonlinear elements that make the parameter estimation a very challenging 

problem, since the nonlinear components affect the way where the model is being interpreted with the available 

data. For example, polymerization models are complex and nonlinear with respect to the reactivity ratio 

parameters and the propagation of data to model parameters is difficult. The majority of parameter estimation in 

such system is based on linearization of model and the results are poor and biased sometimes. For instance, most 

of the Kalman filters based methods usually exert a restrictive assumption about the distribution of the parameters 

to obtain desirable estimates.  In addition, the uncertainty (or model error) is often superimposed on the parameters 

and the stochasticity is not measureable in many situations. Thus, the nonlinear parameter estimation problems 

require propagating the uncertainty into the process and studying the effect of the relevant stochastic dynamic 

property. For such cases, estimates with basic nonlinear regression may yield imprecise and biased parameter 

estimations, which degrade the accuracy of computations as model parameters evolve. 

To alleviate these facts, assimilating the available measurements to calibrate the nonlinear model and refine 

the model forecast in order to reduce the associated uncertainties is a logical improvement over purely model 
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based estimation. The nonlinear least square method has been proposed to accommodate negligible error in the 

independent variables by assuming the error is independent and identically distributed (Bates & Watts, 1988). 

This method, however, leads to erroneous results in certain problems if the error in the independent variable is 

not negligible. The error in variable model (EVM) is therefore proposed for cases where the dependent and 

independent variables do not need to be distinguished (Keeler & Reilly, 1991). It treats each measurement as an 

unknown true value plus an error term and can handle implicit models, for which the dependent variable cannot 

be separated to one side of the equations. The disadvantage of EVM is that it is only tractable if all the distributions 

describing variation in the measurement are normal distributed and the assumptions on the error variances are 

known. Another issue with these aforementioned algorithms is that they often converge to a local optimum rather 

than a global optimum.  Markov Chain Monte Carlo (MCMC) provides an alternate approach for finding the 

parameter estimates and can overcome limitations of classical methods (Geyer, 1992). However, executing 

MCMC algorithms is computational demanding, especially when differential or implicit equations are involved, 

which is one of the possible reasons for the limited application of MCMC in chemical engineering problems. 

A useful alternative is to employ the spectral representations with the generalized polynomial chaos (gPC) 

(Xiu, 2009) expansion to approximate the uncertain parameters for nonlinear stochastic processes. The gPC 

method is an extension of the polynomial chaos of Wiener-Askey family, which has been reported to be an 

efficient way to propagate and quantify uncertainty in the stochastic dynamic systems. For instance, the gPC is 

combined with maximum likelihood method to estimate parameters. Point estimates of the process parameters 

are developed by substituting the gPC expressions into a likelihood function to solve the resulting maximum 

likelihood problem, and the estimates of parameter are transformed into a best-fit problem of random variables 

(Pence, et al., 2011; Chen-Charpentier & Stanescu, 2014). However, the accuracy of these methods is highly 

related to the number of data points used in the likelihood function, which maximizes the likelihood by fitting the 

predictions obtained from the gPC model and the experimental data. The gPC based Bayesian approach is 

proposed to provide point estimates of parameters, in which the numerical technique is used for non-polynomial 

nonlinearity since difficulties may arise during the computation of gPC model (Madankan, et al., 2013). 

However, these aforementioned methods only provide the point estimates of parameters rather than a complete 

description of the probability density function (PDF) for each parameter or joint confidence region (JCR) between 

point estimates. Most importantly, the parameter estimation for nonlinear system with limited measurements is 

lacking. Since the nonlinear uncertain propagation is difficult and the model parameters affect the way that the 

model is being interpreted by the data (Snieder, 1998), the available referenced approaches (Madankan, et al., 

2013; Andrieu, et al., 2003) may fail to provide accurate estimates with limited data. Moreover, the gPC expansion 

builds the connection between the stochastic processes and the Wiener-Askey scheme by approximating 

uncertainties with other random variables following the standard distributions. In terms of application, however, 

uncertain parameters can have distribution outside the Wiener-Askey framework. For instance, the lognormal 

distribution is a standard uncertainty distribution outside the Wiener-Askey scheme. Therefore, taking the 
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probability distribution of uncertain parameters into account in principle can produce more reliable parameter 

estimates, but little work has been carried out to the knowledge of the authors. 

The current work addresses the limitations outlined above by combing the maximum likelihood estimation and 

the gPC model, which has the potential to be applied as an online estimation approach with limited measurements. 

For the arbitrary uncertainty distribution, the gPC approximation of the parameter uncertainty is extended using 

the Gram-Schmidt polynomial chaos (Witteveen & Bijl, 2006). The main feature of the proposed method is that 

it can provide the parameter estimates (mean values) and its statistical confidence intervals (variances) associated 

with these estimates simultaneously using a few measurements. Additionally, the proposed methodology can 

quantify the stochasticity in the parameters and propagate the variability to the measured quantities in an explicit 

fashion. With the gPC expression of measured quantities, another possible application is to dynamically solve an 

inverse problem and recursively estimate state/parameter (Du, et al., 2015). 

This appendix is organized as follows: the mathematical tools used in the current work are given in Section 

B.3, i.e., description of stochastic inverse problem, introduction of the generalized polynomial chaos (gPC), 

Gram-Schmidt orthogonalization and the maximum likelihood method, followed by the formulation of two 

proposed estimation algorithms. In Section B.4, the proposed methodologies are illustrated by estimating the 

reactivity ratio parameters in the copolymerization, followed by results and discussion in Section B.5 and 

conclusion in Section B.6, respectively. 

B.3 Background and Methodology Formulation 

In this section, some brief descriptions of the mathematical tools used in the current work are summarized, 

which is followed by the proposed nonlinear stochastic parameter estimation methodologies. 

B.3.1 Stochastic Inverse Problem 

Assume a stochastic mathematical model with uncertain parameters can be described as Y = (X), where  is 

an nonlinear algebraic function or derivative with respective to time, Y = {yi|i =1,…,m}is the measured variables 

vector,  and X denotes a set of parameters in the model. Suppose the parameters vector X can be divided into two 

subgroups such as X = {x1, x2}, in which x1 signifies these known parameters and x2 is the unknown ones will be 

estimated by an inverse algorithm. 

In the framework of stochastic inverse problems, the known parameter means that the probability density 

functions (PDFs) of these parameters (x1) are given, while the unknown parameter (x2) means that the PDFs shall 

be estimated by using measurements and the nonlinear first principles’ model . For simplicity, it is assumed that 

both subgroups are independent and identically distributed (i.i.d.), thus the PDFs of parameters X can be rewritten 

as: 
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fX(X) = fX(x1, x2) = fx1(x1)fx2(x2) (B.1) 

where the sizes of x1 and x2 are defined as n1 and n2 respectively, and the number of parameters in total is n =n1+ 

n2. The unknown parameters x2 considered in current work affecting the system are further described as: 

x2 = {α1, α2, …, αn2} (B.2) 

αi = ᾱi + ∆αi (B.3) 

κ = {{ᾱi},{∆αi}} (B.4) 

where ᾱi is the mean values for a particular unknown parameter, ∆αi is the variation around the mean ᾱi, and i is 

the ith unknowns in x2. To estimate the unknown parameters, i.e., κ, a set of measurements (Ŷ = {ŷ1, …, ŷm}) 

should be available. The m represents the number of measured variables and each of them has nobs obtainable 

measurements. In reality, this means that nobs different trials of the process have been observed, and these trials 

are all modeled by the same operator . The unknown parameters in subgroup x2, however, are operating around 

specific mean values {ᾱi} with variation {∆αi}. It is worth mentioning that the measurements Ŷ may not exactly 

match with the model predictions due to model uncertainties and measurements noise. Using Equations B.1, B.2 

and B.3, the stochastic parameter estimation then has been transformed into a new estimation problem, in which 

the unknowns (κ) can be determined by finding a set of estimates (means and variances) that best fit the data Ŷ. 

B.3.2 Generalized Polynomial Chaos Expansion 

The generalized polynomial chaos (gPC) expansion (Xiu, 2009) is the essential methodology of this current 

work, which is built upon the polynomial chaos expansion (Ghanem & Spanos, 1991) and the conceptualization 

of homogenous chaos (Wiener, 1938). It represents an arbitrary random variable of interest as a function of 

another random variable ξ (i.e., basic variable) with a prior distribution, and that function can be represented as a 

polynomial expansion from the Wiener-Askey framework. When each of the components of x2 (unknown 

parameters {αi}) are independent, there is one to one correspondence between the unknown parameter (αi) and 

random basic variable (ξi) and it is efficient to associate each basic variable ξi (i = 1, …, n2) to each unknown 

parameter αi. It can be interpreted as that the variation on each parameter αi is introduced by the corresponding 

random basic variable ξi. Thus, each of the unknown parameters {αi} in Equation (2) can be approximated as: 

αi= ∑ αi,kΦk(ξ)

p

k=0

 (B.5) 

where i = 1, …, n2, and αi,k are the gPC expansion coefficients of the ith unknown parameter in subgroup x2. The 

p is the number of terms in B.5 that is necessary to represent the prior known distribution of αi. It should be noted 

that the gPC expansion in Equation B.5 just needs more approximation terms, if the distributions of unknown 

parameters x2 are unknown prior. The random basic variables, ξ = {ξi} = (ξ1, …, ξn2), defines a multi-dimensional 

random space. The Φk are appropriate polynomial basis function of the random basic variables ξ. It is worth 
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mentioning that the polynomial basis functions Φk and the random basic variables ξ are modeling choice. For 

instance, Hermite polynomials can be chosen for normally distributed random variables ξ, since they are 

orthogonal with respect to the normal distribution functions. By propagation the gPC expansions to the system, 

the measured variables (Y = {yj| j =1,…,m}) can also be approximated in terms of orthogonal polynomial basis 

functions {Φk} as: 

Yj= ∑ Yj,kΦk(ξ)

P

k=0

 (B.6) 

where j is the jth measured variables in Y and Yj,k is the gPC coefficients of the measured variables. For practical 

application, Equations B.5 and B.6 are often truncated to a finite number of terms for computational efficiency. 

Assume the number of terms to approximate a prior distribution of Equation B.5 is p, the total number of terms 

P used to approximate the measured variables in Equation B.6 can be calculated as: 

P= ((n2+p)!/(n2!p!)) - 1 (B.7) 

For all random variables such as x2 and Y, the first coefficients in Equations B.5 and B.6 represent the mean 

value and the rest terms are used to approximate the variability around the mean value. For example, normally 

distributed variables can be properly approximated by using only the first two terms of the Hermite polynomial, 

considering the properties of the polynomial basis and the definition of random variables. Obviously, the 

expansion dimensions in Equations B.5 and B.6 increases for arbitrary random variables (Xiu, 2009). 

To solve these coefficients, Galerkin projection can be employed to project the stochastic mathematical model 

Y = (X) into each polynomial chaos basis function {Φk(ξ)} and conduct the inner product as: 

〈Y(ξ),Φk(ξ)〉= 〈Ξ(x1,x2(ξ)),Φk(ξ)〉 (B.8) 

The inner product in Equation B.8, for instance, inner product between two vectors φ(ξ) and φ’(ξ), is defined by: 

〈φ(ξ),φ'(ξ)〉= ∫ φ(ξ)φ'(ξ)w(ξ) dξ (B.9) 

where the integration is calculated over the entire domain expanded by the random variables ξ, and w(ξ) is the 

weighting function chosen for normalization purposes with respect to the type of polynomial basis functions used 

in Equation B.5. For polynomial nonlinearity, the Galerkin projection as Equation B.8 transforms the original 

stochastic system into a nonlinear deterministic system described by a set of coupled equations, which can be 

solved by any numerical methods such as Runge-Kutta method. However, difficulties may arise during the 

calculation of Equation B.8 for non-polynomial nonlinearity. The polynomial chaos quadrature (PCQ) is 

employed to overcome this issue, which replaces the exact integration in Equation B.9 with respect to ξ by a 

numerical integration and yields: 

〈φ(ξ),φ'(ξ)〉= ∫ φ(ξ)φ'(ξ)w(ξ) dξ ≈ ∑ φ(ξ
i
)φ'(ξ

i
)wi(ξi

)

nQ

i=1

 (B.10) 
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where ξi is the quadrature points used for the approximation and nQ is the number of quadrature points in total. 

The PCQ method can be treated as Monte Carlo based evaluation of the stochastic system with samples generated 

with quadrature rules. 

With the aforementioned Galerkin projection or PCQ approach, the statistical moments of the measured 

variables Y and the unknown parameters x2 represented by the gPCs can be efficiently calculated. For instance, 

the mean value and the variance for the jth measured variable Yj can be calculated as: 

                                      E(Yj) = E [∑ Yj,kΦk

P

k = 0

]  = Yj,0Ε[Φ0] + ∑ Ε[Φk]

P

k =1

 = Yj,0  (B.11) 

                                   Var(Yj) = Ε[(Yj - Ε(Yj))
2] = Ε [(∑ Yj,kΦk

P

k = 0

- Yj(k = 0)
)

2

] 
 

                              = Ε [(∑ Yj,kΦk

P

k = 1

)

2

] = ∑ Yj,k
2Ε(Φk

2)

P

k =1

 (B.12) 

For stochastic inverse problems, most of the methods minimize the discrepancy (or error function) between the 

collected measurements and the model predictions with point estimates on parameters. The ability to calculate 

the mean and the variance is the main rationale of the gPC expansions in terms of stochastic parameter estimation, 

since these quantities have to be repeatedly estimated in an optimization algorithm. However, this method can be 

affected by the number of available measurements used to optimization. Generally, the error function in 

optimization will have multiple minima. For instance, it cannot find the global optimum sometimes if the available 

dataset is small. To overcome this issue, the concept of the gPC expansion is used on unknown input parameters 

x2 and the coefficients in Equation B.5 are optimized by a maximum likelihood optimization which is further 

explained below. 

B.3.3 Gram-Schmidt Orghogonalization 

The weighting function w(ξ) in Equation B.9 has to be specified with respect to the uncertainty distribution of 

the uncertain parameters. In application, however, the distribution of stochastic parameters is unknown or outside 

the Wiener-Askey framework. The Gram-Schmidt orthogonalization is used to compute a set of orthogonal 

polynomials with respect to w(ξ), according to the uncertainty distribution of stochastic parameters. 

Multidimensional orthogonal polynomials, i.e., {Φk(ξ)}, can be constructed using the tensor product of the one-

dimensional polynomials {Φk(ξ)} computed by the Gram-Schmidt algorithm (Witteveen & Bijl, 2006). A set of 

coupled one-dimensional monic orthogonal polynomials can be formulated as: 

Φk(ξ) = ek(ξ) - ∑ ck,jΦj(ξ)

k-1

j=0

 (B.13) 
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where Φ0 = 1, k = 1, 2, …, p and p is the number of terms used for approximation in Equation B.4. The definition 

of ck,j can be described as: 

ck,j = 
〈ek(ξ)Φj(ξ)〉

〈Φj(ξ)Φj(ξ)〉
 (B.14) 

where the {ek(ξ)} are polynomials of exact degree k. The inner product in Equation (14) is evaluated numerically 

in order to apply the gPC approximation to any arbitrary weighting functions. Thus, the gPC approximation has 

been generalized to any type of stochastic parametric uncertainty. 

B.3.4 Maximum Likelihood Estimation with gPC model 

As discussed in Section B.3.1, for the case that the joint PDF of x1 is fx1(x1) and the joint PDF of x2 is fx2(x2), 

let fY(Ŷ,κ) denote the joint PDF of the measurements. Once again, the κ is the counterpart of unknown parameters 

fx2(x2), i.e., the means and variances of x2, which can be calculated by Equations B.11) and B.12. Thus, the joint 

PDF of the measured variables fY(Ŷ,κ) is related to the unknown gPC coefficients of stochastic parameters, which 

is of course unknown analytically. 

To evaluate how well the estimates (κ) fit the data and what sort of uncertainty is associated with the estimates, 

the error between the measurements and the model predictions is assumed to be normal distributed.  Thus, a 

Gaussian kernel is employed and the kernel density approximation of the measured variable fY(Ŷ,κ) is defined as: 

f̂
Y
(Ŷ, κ) = 

1

n
∑ Kh(Ŷ -  (x1,κ))

n

k=1

 (B.15) 

where n is the number of known samples of x1used for approximation, Kh is a Gaussian kernel function that fits 

the normal distributed errors between measurements and model predictions, Ŷ is a set of measurements, and  

(x1, κ) is the gPC approximation of measured variables conditioned on samples of x1 as well as a set of unknown 

parameters κ of x2. 

By using Equation B.15, the likelihood function of the measured variables can be estimated as: 

ℓ(κ;Ŷ)  =  ∏ f̂
Y
(Ŷ

m
; κ)

nobs

j=1

 (B.16) 

where j is the jth set of measurements inside Ŷ, the estimates of the unknown κ can be obtained by maximizing 

the likelihood estimator ℓ with respect to κ as: 

𝐽 =  max
Ω1

∏ f̂
Y

(Ŷ
m

; κ)

nobs

j=1

 (B.17) 

where Ω1 is decision variables and is a vector consisting of the gPC coefficients for the unknown parameters x2. 

Once the optimization is done, the counterpart part κ in Equation B.5, i.e., estimation of unknown parameters and 
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their confidence intervals, can be calculated with Equations B.10 and B.11. Using the orthogonality property of 

the basis polynomial functions, the coefficients in Equations (5) and (6) are obtainable when dealing with 

polynomial terms by using Galerkin projection. However, the integration of non-polynomial terms is not 

straightforward. To manage the difficulties, two different gPC model based parameter estimation methodologies 

are proposed, and each algorithm is formulated with a series of procedures and further discussed as follows. 

B.3.5 Parameter Estimation Algorithms 

Two approaches are developed using the gPC methodology and the maximum likelihood function. The first 

method develops a gPC symbolic model to integrate multiple sources of known information and estimate the 

unknown parameters, i.e., means and variances of x2 in Equation B.1. 

Algorithm 1 – For this method, the uncertainty quantification step on the measured variables with Galerkin 

project is skipped in the optimization problem of Equation B.17. Instead the samples associated with each basic 

variable ξi in Equation B.5 are directly used to perform Monte Carlo simulations, while maximizing the likelihood 

Equation B.17. The benefit is that the samples are randomly chosen from a prior standard distribution and tend to 

perform better in capturing the global structure. The Algorithm 1 involves a series of steps as follows. 

Inputs initialization: 

(1) Input the samples of known parameters x1 and the available data of the measured variables Ŷ. 

(2) Choose the order of polynomials (p) used to approximate the unknown parameters x2 in gPC model, 

decide the polynomial basis function Φk, and then formulate the gPC symbolic approximations of 

x2. Once again, the counterpart of unknown parameters κ in Equation B.4 can be calculated with the 

gPC coefficients by using Equations B.10) and B.11. 

(3) Substitute the gPC approximation of the unknown parameters x2 into the nonlinear first principles’ 

model, and generate a new gPC symbolic model with respect to the unknown gPC coefficients. 

(4) Decide the number of samples (l) for each random variable ξi, and generate samples from the 

standard basis distributions (ξ). 

(5) Initialize the initial guesses for {αi,k

[0]
} in Equation B.5, i.e., the gPC coefficients for each unknown 

stochastic parameter. 

Optimization with Equation (B.17): 

i. Use each of the input samples of known parameters x1 and the initial values {αi,k

[0]
} to perform l 

Monte Carlo simulations with the nonlinear gPC symbolic model and the samples generated in (4), 

thus l model predictions are obtained for each input sample of x1. 

ii. Calculate the mean value of the model predictions simulated in (i) for each of the input samples. 
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iii. Calculate the Euclidean distance between the mean values in (ii) and the corresponding 

measurements of the measured variables Ŷ. 

iv. Solve the optimization problem B.17 to obtain the optimum of the unknown gPC coefficients {αi,k

[*]
}. 

Each optimization iteration entails the repeated evaluation of the gPC model and updates the 

prediction mean and the Euclidean distance in Steps (ii) and (iii). 

The use of the gPC expansions and the samples of random basic variables ξ in the Algorithm 1 significantly 

improve the efficiency while taking the probabilistic uncertainties into account, as compared with the standard 

Monte Carlo simulations. For nonlinear models, a major disadvantage of the Monte Carlo type sampling based 

method is the requirement for appropriate samples. To ensure samples prediction converges to the theoretical 

value, a large number of simulations are often required, which in turn may increases the computation burden, 

especially for high dimensional problems. In this method, however, the samples are generated from the random 

basic distribution of ξ, which can release the requirement on the number of samples and improve the 

computational efficiency. 

The Algortihm 1 cannot provide an explicit expression of the measured variables. To mathematically propagate 

and quantify the effect of parametric uncertainty onto the measured variables in a computational efficient fashion, 

the polynomial chaos quadrature (PCQ) is used in the current work. As discussed in Section B.3.2, all moments 

of random variables, i.e., x2 and Y, are just functions of their gPC expansion coefficients. Hence, the optimization 

problem Equation B.14 can be reformulated with the statistical moments calculated from the measurement data 

and the gPC coefficients of the measured variables. 

Algorithm 2 – For the purpose of estimating the unknown stochastic parameters and their confidence interval, as 

well as approximating the variation on measured variables introduced by unknown parameters and measurement 

noise, the PCQ is used to calculate the analytical gPC expression of the measured quantities. To this objective, 

the mean values and the variances of unknown parameters are obtained from optimizing a modified joint PDF 

fY(Ŷ,κ) of measured variables as: 

𝐽 =  max
Ω2

∏ ∑ Kh((ν1,k - γ1,k
)
2
 + (ν2,k - γ2,k

)
2
)

n

k=1

nobs

m=1

  (B.18) 

where n is the number of known samples of x1, Kh is a Gaussian kernel function, ν1 and ν2 are the predicted mean 

and variance of the measured variables that are calculated with the gPC models. Using Equations B.10 and B.11, 

these values can be explicitly computed. γ1,k and γ1,k are the mean and variance computed with the measurements, 

and Ω2 is the decision variables vector consisting of the gPC coefficients for the unknown stochastic parameters 

x2. To solve the optimization as Equation B.18, the following procedures are preceded. 

Inputs initialization: 
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(1) Input the samples of known parameters x1 and the available data of the measured variables Ŷ. 

(2) Choose the order of polynomials (p) used to approximate the unknown parameters x2 in Equation 

B.5, determine the polynomial basis function Φk, and then formulate the gPC approximations for 

both unknown parameters x2 and measured variables Y. 

(3) Substitute the gPC approximations in Step (2) into the nonlinear first principles’ model , and 

generate a new gPC symbolic model by using polynomial chaos quadrature (PCQ), which transform 

the original stochastic model into a set of coupled deterministic equations (gPC symbolic model). 

(4) Set initial values of {αi,k

[0]
} in Equation B.5, i.e., the gPC coefficients for each unknown parameter. 

Optimization with Equation (B.15): 

i. Substitute each input sample of parameters x1 and the initial values {αi,k

[0]
} into the gPC symbolic 

model generated in Initialization Step (3). 

ii. Solve the gPC coefficients for the measured variables from the gPC symbolic model. 

iii. Using Equations B.10) and B.11, calculate the mean and variance of the measured variables with 

the gPC coefficients in Step (ii). 

iv. Calculate the Euclidean distance between the mean value in (iii) and the mean value computed from 

the collected measurements of the measured variables Ŷ.  

v. Calculate the Euclidean distance between the variance in (iii) and the variance computed from the 

collected measurements of the measured variables Ŷ. 

vi. Solve the optimization Equation B.18 to obtain the optimum of the unknown gPC coefficients {αi,k

[*]
}. 

Each optimization iteration entails the repeated evaluation of the gPC expansion and the Euclidean 

distance as in Steps (iv) and (v). 

As compared with the Algorithm 1, this method provides an explicit gPC expression of the measured variables, 

while estimating the unknown uncertain parameters. It can be further employed to evaluate how uncertainties of 

a dynamical system’s parameters manifest the effect on the measured variables. 

Gram-Schmidt orthogonalization – The Gram-Schmidt polynomial chaos can be applied to both approaches 

above, if the probability distribution of stochastic unknown parameters is outside of the Wiener-Askey scheme. 

A few more procedures can be performed to replace the Step (2) in the Inputs initialization for both algorithms, 

which involve as per the following steps. (i) Determine the weighting function w(ξ) in Equation (9); (ii) Compute 

the polynomial basis function {Φk(ξ)} with respect to a pre-assigned weighting function w(ξ) in (i), using the 

Gram-Schmidt algorithm; (iii) Choose the order of polynomials (p) used to approximate the unknown parameters 

x2 in Equation B.5, (iv) Formulate the gPC approximations for unknown parameters x2 in the Algorithm 1 or 

formulate the gPC approximations for both unknown parameters x2 and measured variables Y in the Algorithm 2. 
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The rest parts of algorithm follow the same procedures as described in the proposed methods. The employment 

of Gram-Schmidt orghogonalization algorithm thus extends our algorithms to estimate an unknown parametric 

input for any type of probability distribution. 

B.4 Case Studies: Reactivity Ratio Estimations in Copolymerization 

To demonstrate the proposed gPC model based parameter estimation methodologies, the reactivity ratio 

estimation in copolymerization is revisited as an example, which is a very active research topic and has been 

gained popularity in the literature throughout several decades. This process is considered sufficiently complicate 

to illustrate the methodology in terms of the presence of nonlinear behavior, uncertainty and disturbance 

(measurement noise). Moreover, the number of experiments is usually limited for the reactivity ratio estimation, 

which cannot provide a reliable source of information. In this work, different aspects for the reactivity ratios 

estimation in copolymerization system are discussed in terms of application. 

To define reactivity ratio parameters, the reaction below is considered: 

 Rn,i
•+ Mj

kij
→  Rn+1,j

• (B.19) 

where Mj denotes the monomer j, Rn,i˙ represents a propagating copolymer radical with n monomer units and the 

last unit containing monomer i. For a copolymer system, i and j can take on values of 1 and 2. Using the four 

propagating rate constant, the reactivity ratio parameters can be defined as follows: 

  r1= 
k11

k12

 (B.20) 

  r2= 
k22

k21

 (B.21) 

The most popular copolymerization model is Mayo-Lewis model, which describes the instantaneous 

copolymer composition. As shown in Equation B.22, the Mayo-Lewis model provides a relationship between the 

true values of the instantaneous copolymer composition (F1), the unreacted monomer composition (f1 and f1) and 

the reactivity ratios (r1 and r2). However, the model assumes that the monomer composition does not change with 

conversion, which limits its validity to low conversion level, since compositional drift can occur as the 

polymerization reaction progresses. 

F1 =
r1(f

1
)
2
+ f

1
f
2

r1(f
1
)
2
 + 2f

1
f
2
 + r2(f

2
)
2

  (B.22) 

In order to use a larger conversion range in the polymerization reaction, the Mayo-Lewis equation was 

integrated by Meyer and Lowry. The analytical integration of the equation assumes that the reactivity ratios are 

constant during the polymerization reaction. The solution is referred to as the Meyer-Lowry model and is given 

as: 
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Xn = 1 - (
f
10

-  F̅1Xn

f
10

(1 - Xn )
)
α
(

1 -  Xn -  f
10

 -  F̅1Xn

(1-f
10

)(1 - Xn )
)
β
(

(1 - Xn)(δ - f
10

)

(δ - δXn+ F̅1Xn )
)
γ
  

(B.23) 

where the parameters α, β, γ, and δ satisfy the following equations: 

α =
r2

(1 - r2)
  (B.24) 

β =
r1

(1 - r1)
  (B.25) 

γ =
1 -  r1 r2

(1 - r1)(1 - r2)
  

(B.26) 

δ =
(1 - r1)

(2 - r1-  r2)
  

(B.27) 

Xn = Xw

Mw1f
10

 + Mw2(1 - f
10

)

Mw1F̅1 + Mw2(1 - F̅1)
  (B.28) 

In Equation B.23, the variables F̅1, Xn and f10 denote the cumulative copolymer composition, molar conversion 

and the initial monomer mole fraction respectively, the reactivity ratios are r1 and r2. Also, Xn in Equation B.23 

can be replaced by mass conversion with Equation B.28, where Mw1 and Mw2 are the molecular weights of 

monomer. The assumption of negligible compositional drift is no longer an issue, since the Meyer-Lowry model 

takes the conversion of the polymerization reaction into account. Thus, this model can be applied to measurement 

data obtained at low to moderate conversion levels. 

To estimate the reactivity ratio with the Mayo-Lewis model and the Meyer-Lowry model, the data are taken 

from (Madruga & Fernandez-Garcia, 1994; Madruga & Fernandez-Garcia, 1995) for both low conversion level 

and high conversion level. These data are given in Table B.1 and Table B.2, respectively, where the free radical 

copolymerization was carried out in benzene at 50oC. For the low conversion level, 16 experimental trials in total 

were conducted at various monomers feed composition f10, and the conversion levels Xw as well as the output 

copolymer compositions F̅1 were measured. For the high conversion levels, there are 33 experimental trials in 

Table B.2. 

Table B.1 Experimental data for DBI/MMA copolymerization at low conversion level 

No. f10 Xw (wt%) F̅1 No. f10 Xw (wt%) F̅1 

1 0.035 6.46 0.025 9 0.491 3.86 0.411 

2 0.064 6.04 0.043 10 0.547 4.18 0.459 

3 0.065 8.05 0.056 11 0.599 3.17 0.512 

4 0.199 5.34 0.165 12 0.698 4.47 0.623 

5 0.301 5.09 0.246 13 0.798 4.64 0.732 

6 0.301 5.97 0.259 14 0.301 4.82 0.272 

7 0.499 3.61 0.377 15 0.492 4.05 0.416 

8 0.453 8.77 0.382 16 0.700 4.75 0.638 
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Table B.2 Experimental data for DBI/MMA copolymerization at high conversion level 

No. f10 Xw (wt%) F̅1 No. f10 Xw (wt%) F̅1 No. f10 Xw (wt%) F̅1 

1 0.3 22.2 0.237 12 0.5 12.0 0.401 23 0.7 26.7 0.634 

2 0.3 43.8 0.273 13 0.5 37.0 0.439 24 0.7 31.0 0.631 

3 0.3 48.8 0.268 14 0.5 42.2 0.448 25 0.7 34.1 0.632 

4 0.3 47.4 0.272 15 0.5 47.3 0.448 26 0.7 40.9 0.661 

5 0.3 54.8 0.265 16 0.5 54.5 0.454 27 0.7 42.5 0.684 

6 0.3 58.9 0.270 17 0.5 56.8 0.466 28 0.7 44.0 0.645 

7 0.3 55.4 0.269 18 0.5 58.7 0.464 29 0.7 49.1 0.649 

8 0.3 65.3 0.286 19 0.5 65.8 0.487 30 0.7 52.7 0.675 

9 0.3 70.6 0.269 20 0.5 79.6 0.427 31 0.7 54.5 0.666 

10 0.3 86.6 0.324 21 0.7 16.3 0.645 32 0.7 64.3 0.675 

11 0.5 8.1 0.405 22 0.7 23.1 0.634 33 0.7 71.8 0.690 

 

B.5 Results and Discussion 

The implementation of methodologies described in Section B.3.5 can now be applied to the Mayo-Lewis model 

and the Meyer-Lowry model, respectively. By using the monomer reactivity ratio example, our goal in the current 

work is to offer comparisons and indicate some of the limitations of existing approaches, while presenting new 

approaches for estimating the unknown parameters superimposed with uncertainties. The main objectives are 

specifically to: (i) provide the best possible estimates of the parameters as well as their confidence intervals, (ii) 

take into account all uncertain information, such as the model error and the measurement noise, which cannot be 

measured due to lack of exact knowledge, (iii) develop user friendly algorithms with computational efficiency, 

(iv) quantify and evaluate how the stochasticity on unknown parameters affects the measured variables, and (v) 

demonstrate how the proposed method can be applied to other nonlinear parameter estimation problems. 

As a key point to achieve these objectives, the parameter estimation problem is first studied. It consists of 

estimating the mean values of the unknown reactivity ratio (r1 and r2) and their confidence interval based on the 

measurements. For simplicity, the mole fraction in the feed is assumed to be known parameter (x1 in Equation 

B.1), and the ratio parameters r1 and r2 are assumed to be unknown uncertain parameters (x2 in Equation B.1). 

B.5.1 Reactivity Ratio Estimation 

As discussed in Section B.3.2, the basic idea of the gPC is to approximate a random variable by another random 

event with the given prior information on probability density function (PDF). It is assumed that the uncertainty 

on ratio parameters (r1 and r2) is introduced by the normally distributed random events for simplicity. Thus, the 

Hermite polynomials are used. In addition, the dimension of random space is 2, since two random parameters are 

considered in this case study. Further assumption is made that the two random events are independently 

identically distributed (i.i.d.), i.e., ξ = (ξ1,ξ2) and f(ξ1,ξ2) = f(ξ1) f(ξ2), where f denotes the probability density 

function (PDF). Since the measurement noise in copolymerization is multiplicative, the natural logarithm is 

performed on both sides of Equations B.22 and B.23, to make a fair comparison with published results such as 
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previous studies by (Madruga & Fernandez-Garcia, 1994; Kazemi, et al., 2011). Compared with the referenced 

work (Kazemi, et al., 2011) where the error in variable model (EVM) was employed, the linearization of models 

is not a must in the current work. Also, the estimation results with proposed algorithms in this work are compared 

with the point estimates obtained by the Gauss-Newton method and the Markov Chain Monte Carlo (MCMC) 

simulations. The sampling procedure referred to as the Metropolis-Hastings (MH) algorithm is utilized for 

MCMC (Andrieu, et al., 2003). Using data in Table 1, Table B.3 shows the reactivity ratios estimation results for 

both low and high conversion levels. 

Table B.3 Parameters estimations for reactivity ratios (r1 and r2) 

 Model Conversion level Method r1 r2 

Madruga and Fernandez-Garcia Mayo-Lewis Low - 0.7170 1.329 

Kazemi, Duever and Penlidis Mayo-Lewis Low EVM 0.7098 1.313 

Kazemi, Duever and Penlidis Meyer-Lowry Low EVM 0.7129 1.310 

Kazemi, Duever and Penlidis Meyer-Lowry High EVM 0.6794 1.229 

Current work Mayo-Lewis Low Gauss-Newton 0.7127 1.286 

Current work Meyer-Lowry Low Gauss-Newton 0.6509 1.243 

Current work Meyer-Lowry High Gauss-Newton 0.6278 1.234 

Current work Mayo-Lewis Low MCMC 0.6949 1.311 

Current work Meyer-Lowry Low MCMC 0.6817 1.319 

Current work Meyer-Lowry High MCMC 0.6649 1.248 

Current work Mayo-Lewis Low Algorithm 1 0.6929 1.311 

Current work Meyer-Lowry Low Algorithm 1 0.6738 1.293 

Current work Mayo-Lewis Low Algorithm 2 0.6917 1.294 

Current work Meyer-Lowry Low Algorithm 2 0.6778 1.289 

Current work Meyer-Lowry High Algorithm 1 0.6738 1.317 

Current work Meyer-Lowry High Algorithm 2 0.6700 1.288 

 

For comparison, only the mean values of the unknown parameters are given in Table B.3, using the proposed 

methods. The mean values are the first terms in each of the gPC expansions of the stochastic unknown parameters. 

The other coefficients providing information about the variance will be further discussed. For the MCMC 

simulations, the convergence is diagnosed using the acceptance rates and the Markov Chain time series plots. 

Once the convergence is confirmed, the reactivity ratios estimates are calculated by averaging all the MCMC 

samples. 

In Table B.3, the reactivity ratios of the low conversion range data are first estimated using the Mayo-Lewis 

model and the Meyer-Lowry model, respectively. According to the results, the estimates of the reactivity ratios 

obtained with different models are very similar and our results are in a good agreement with the referenced results. 

For instance, the point estimates reported with EVM method are 0.7098 and 1.313 with the Mayo-Lewis model 

at low conversion levels. Using the proposed Algorithm 1 in the current work, the results are 0.6929 and 1.311 

with the same model and experimental conditions. 

Further verification is conducted by comparing the results in the current work with the Gauss-Newton 

algorithm and the MCMC simulations. According to this table, the values of the reactivity ratios obtained with 
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different methods are all in a good agreement, which confirms the efficiency of the proposed algorithms in terms 

of parameter estimations. Comparison of the gPC results with the Gauss-Newton as well as the MCMC shows 

that, the nonlinear regression method (Gauss-Newton) underestimates the unknown parameters, when the Meyer-

Lowry is used. This observation demonstrates the importance of accurately estimating the parameters in nonlinear 

models, and provides motivation for apply more advanced techniques instead of approximation methods. 

Compared with the other methods, the advantage of the gPC method is that it can provide the point estimates 

and the variance around these point estimates simultaneously. To verify this point, Table B.4 shows the results 

obtained from the optimization problems of Equations B.17 and B.18, respectively. In Table B.4, {r1i} and {r2i} 

represents the gPC coefficients of the unknown parameters calculated with the gPC models (i = 0, 1). The point 

estimates of parameters are r10 and r20, while r11 and r21 represents the variations around these point estimates. 

Using Equation B.12, the last two columns provide the variabilities (variances) around each of the mean values 

of the reactivity ratio parameters. 

Table B.4 Parameter estimation results (gPC coefficients) 

Copolymerization  

model 

Conversion  

level 
Method 

gPC coefficients Variance 

r10 r11 r20 r21 Vr1 Vr2 

Mayo-Lewis Low Algorithm 1 0.6929 0.0580 1.311 0.0452 0.0034 0.0020 

Meyer-Lowry Low Algorithm 1 0.6738 0.0325 1.293 0.0573 0.0011 0.0033 

Mayo-Lewis Low Algorithm 2 0.6917 0.0618 1.294 0.0467 0.0038 0.0022 

Meyer-Lowry Low Algorithm 2 0.6778 0.0401 1.289 0.0503 0.0016 0.0025 

Meyer-Lowry High Algorithm 1 0.6738 0.0368 1.317 0.0356 0.0014 0.0013 

Meyer-Lowry High Algorithm 2 0.6700 0.0392 1.288 0.0322 0.0015 0.0010 

B.5.1 Parameter Estimation with Gram-Schmidt Polynomial Chaos 

As discussed the gPC approximation employs the classical orthogonal polynomial basis function in the 

framework of Wiener-Askey, in which only a limited number of standard uncertainty distributions can be 

considered. In this section the Gram-Schmidt polynomial chaos is utilized to verify the efficiency by finding a set 

of polynomials basis functions orthogonal to a given weighting function. The uncertainty of parameters follows 

the same assumption as done in Section B.5.1. The weighting function used in the Gram-Schmidt 

orthogonalization is equal to the probability density function (PDF) that is used to transform the uncertain 

parameters to the standard normal distributed domain. For comparison, the Hermite and Legendre polynomial are 

used in the Wiener-Askey scheme respectively, since Hermite polynomials are the optimal polynomial for the 

normal distribution and Legendre is suitable for uniform distribution. Using the Mayo-Lewis model and the low 

conversion data in Table B.1, Table B.5 shows the point estimates of unknown reactivity ratio parameters and 

Fig.B.1 shows one set of the estimations of variances with the Gram-Schmidt polynomial chaos and Wiener-

Askey polynomial chaos, using the Algorithm 1in the current work. 

As seen in Table B.1, the point estimates of unknown parameters are in a good agreement with different 

polynomial basis functions, regardless of the total number of terms used in the gPC approximation.  However, 
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the estimation of variances is different as shown in Fig.B.1. Compared with the ones calculated with Hermite and 

Gram-Schmidt polynomials, it is observed that there is noticeable difference using the Legendre polynomial, 

since it is the optimal choice for uniform distribution. By contrast, the difference between Hermite and Gram-

Schmidt is relatively small, but the results are not identical. The possible explanation may be that samples of each 

random variables ξi generated from the basis distributions (ξ) are not the identical samples used in the Algorithm 

1. Also there is model error which is induced by the truncated terms used in the gPC approximation, and lack of 

exact knowledge about the unknown parameters since a limited number of measurements is used. Furthermore, 

the Legendre polynomial approaches to the results obtained with Hermite and Gram-Schmidt as the number of 

polynomial order increases, but this may increase the computational time. 

Table B.5 Point estimate results for normal distributed stochasticity 

Polynomial 

chaos 
p in Eq.B.5 

Point estimates 

r1 r2 

Askey-Hermite 2 0.6929 1.311 

Askey-Legendre 2 0.6978 1.284 

Gram-Schmidt 2 0.6905 1.293 

Askey-Hermite 3 0.6917 1.294 

Askey-Legendre 3 0.6955 1.284 

Gram-Schmidt 3 0.6877 1.335 

 

 

Figure B.1Verification of Gram-Schmidt by comparison with Wiener-Askey framework 

To evaluate the efficiency of the Gram-Schmidt polynomial chaos, a criterion is defined. The range of 

variability on unknown parameter is assigned with Hermite polynomial basis functions. If the estimates are 

outside the prescribed range, the corresponding estimations of variance are ruled out and defined as an 

inappropriate estimate. In addition, a percentage of the acceptable estimates defined as in Equation B.29 is utilized 

to evaluate the estimation results of variances on unknown stochastic parameters, where Ntrial is the total number 

of trials and ntrial is the number of desirable estimates satisfying the criterion explained above. 

                            Arate = ntrial/Ntrial (B.29) 
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Figure B.2 Comparison of Arate for three polynomials 

In Fig.B.2, 100 trials are studied for each polynomial chaos order with three types of polynomial basis 

functions, using the Algorithm 1 in the current work. As seen, the acceptable rate Arate increases as more terms 

are used in the gPC approximation with the Legendre polynomial in the Wiener-Askey scheme. However, Arate is 

~20 percent point lower as compared with others, i.e., Hermite and Gram-Schmidt polynomials. As expected, the 

acceptable rate Arate obtained with Hermite and Gram-Schmidt polynomials are similar. This verifies that the 

Gram-Schmidt is applicable to the other types of probability distribution. It is worth mentioning that a simplifying 

assumption in this work is that the uncertainty on unknown parameters is normal distributed, thus the Hermite 

polynomial is the optimal model choice. According the comparison above, the Gram-Schmidt can provide similar 

results in terms of the parameter estimations and the acceptable rate Arate. Therefore, it renders the possibility that 

the methodology in this work can be extended to other parameter estimation problems, where the distribution of 

uncertain parameters is unknown. 

B.5.3 Joint Confidence Regions for Parameter Estimation 

The evaluation of parameter estimation results with confidence intervals allows us to determine whether the 

results are reliable. A joint confidence region (JCR) is usually utilized to visualize the measure of the uncertainty 

involved in the estimates, for cases where more than single parameter is considered. Further studies are conduct 

to investigate the effect of parameter estimates on the JCR. To efficiently choose the model while taking the levels 

of conversion into account, the performance of the proposed approaches is compared and verified with the MCMC 

simulations based on their calculated JCRs area. Fig.B.3 shows the random sample points and the estimated JCRs 

at lower conversion levels by using the proposed algorithm and the MCMC simulations with the Mayo-Lewis 

model, in which the point estimates are also provided. For brevity, only the results obtained with the Algorithm 1 

are utilized for illustration. The distribution of sample points and the estimated JCRs with the Algorithm 2 have 

the similar shapes, since the mean values of unknown reactivity ratios do not change too much as seen in Table 

B.1. 
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Figure B.3 Point estimates, random sample points and estimated Joint Confidence Regions (JCRs) for reactivity 

ratios using the Mayo-Lewis model in copolymerization of DBI/MMA at lower conversion levels 

It can be seen in Fig.B.3, the point estimates obtained with the gPC method and the MCMC simulations are 

very similar. However, the area generated by the random sample points with the gPC model is larger than the 

MCMC method, which confirms that the gPC method can provide the upper and lower bounds of the point 

estimates. For parameter estimation, the smaller area of the sample points (JCR) is normally expected. However, 

it should be noted that the smaller JCR may not be able to provide enough information about the variation around 

the point estimates. For example, assumption is always made that the system is operated around a fixed parameter 

for most parameter estimation problems. However, the primary challenge is that all models are imperfect, either 

in their form, in the numerical values of parameters in equations or in the solution of these equations. The current 

study can provide both the magnitude of the variation in the parameter estimates and the impact of this variation 

on the estimation, while taking the worst case scenario simulations into account. Thus, the proposed approach of 

course introduces a relatively larger JCR, meanwhile provides desirable point estimates. Additionally, the current 

work can simply provide the probability at a particular estimation point. 

Additional studies were conducted to compare the parameter estimation performance with different models 

using the low conversion data in Table B.1. Fig.B.4 shows the point estimates, random samples and the JCRs 

with the gPC method and the MCMC simulations for the Meyer-Lowry model. 
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Figure B.4 Point estimates, random sample points and estimated Joint Confidence Regions (JCRs) for reactivity 

ratios using the Meyer-Lowry model in copolymerization of DBI/MMA at lower conversion levels 

As seen in Figure B.4, the point estimates of the low conversion level with the Meyer-Lowry model are in a 

relatively good agreement between two aforementioned methods. The difference between the estimates is 

relatively bigger, as compared with the results in Fig.B.3, where the Mayo-Lewis model is used. This may arise 

from the fact that the nonlinearity of Equation B.13 is stronger than Equation B.12 and samples generated in 

MCMC simulations are less enough. Increasing the numbers of samples may improve the efficacy, however, it 

will make the evaluations of optimization problem more time consuming, which will be further discussed later. 

As compared with the referenced results (Kazemi, et al., 2011), the estimates obtained with the gPC and the 

MCMC in current work are slightly different. As seen in Table 1, the point estimates are r1 = 0.7129 and r2 = 

1.310 with the error in variables model (EVM) method. The small difference arises from the fact that the gPC and 

the MCMC methods involve calculating the expected value while the EVM is based on finding the mode of a 

distribution of interest. Therefore if the posterior probability density function is not symmetric, then the two 

groups of method can produce different point estimates. 

Using the proposed methods and the MCMC simulations, the 99% JCRs and the 95% JCRs at the low 

conversion level are generated and given in Fig.B.5 and Fig.B.6 respectively, where 100,000 samples are used. 

For the MCMC simulations, the convergence is first diagnosed using the acceptance rates and the Markov Chain 

time series plots. Once the convergence is confirmed, the MCMC samples can be used to generate the JCRs. For 

the gPC methods, samples from the random basic variables ξ are substituted into the gPC expansions of unknown 

parameters, thus generating corresponding parameters values (samples). The first step in generating the JCRs is 

to use the samples to create a three-dimensional histogram. This histogram with two parameters represents the 

actual posterior distribution function of the parameters. Therefore a contouring algorithm can be applied to the 

histogram to construct a particular confidence region. 
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Figure B.5 99% Joint Confidence Regions (JCRs) for reactivity ratios using (a) the Mayo-Lewis model and (b) 

the Meyer-Lowry model in copolymerization of DBI/MMA at lower conversion levels  

 

Figure B.6 95% Joint Confidence Regions (JCRs) for reactivity ratios using (a) the Mayo-Lewis model and (b) 

the Meyer-Lowry model in copolymerization of DBI/MMA at lower conversion levels 

 

As can be seen in Fig.B.5 and Fig.B.6, the JCRs generated with the proposed methods have similar shape and 

can capture the uncertainty in the parameters. As expected, the area with the gPC models is bigger than the MCMC 

simulations. This is not surprising since, as discussed above, the gPC method takes into accounts most of the 

uncertainty information and can provide the bounds for parameter estimations. It should be noted that there are 

slightly difference between the JCRs generated with the gPC models and the MCMC techniques for the Meyer-

Lowry model. This may arise from the fact that the highly nonlinearity of the Meyer-Lowry model and the number 

of experimental data is not enough, which cannot provide a completely reliable source of information needed for 

the variance estimation.  Another possible explanation is that the normal distributed uncertainty on the stochastic 

parameters is assumed, thus the Hermite polynomial is used and only two terms are kept in the gPC 

approximation. Increasing the number of available measurements and approximation terms used in the gPC model 

may improve the performance. However, it is beyond the scope of the current work, since the objective is to 

introduce an alternative methodology for parameter estimation, especially for highly nonlinear problems with 
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limited measurements. Additionally, the small inset in Fig.B.6 (b) shows the JCRs at different confidence 

intervals. As seen, the gPC method basically covers the area generated by MCMC simulations with a 90% JCR. 

B.5.4 Uncertainty Quantification of Measured Variables 

Another advantage for the gPC based parameter estimation is that it can characterize the variability on the 

measured quantities, as introduced by the variation on the unknown parameters. For example, the mean and the 

variance of measured variables are the most common statistical properties. It is worth noting that these two 

moments of the measured variables can be exactly and simply calculated using the properties of the orthogonal 

polynomials, as shown in Equations B.10 and B.11. 

In this case study the variability on one of the measured variable, i.e., the instantaneous copolymer composition 

F̅1, is studied with the Meyer-Lowry model at high conversion levels. Different from the previous case studies, 

the data in Table B.2 are divided into three subgroups to further illustrate the efficiency of the proposed method 

with very limited measurements, since each experimental condition only 11 set of measurements are available. 

By using the Algorithm 2, three gPC models are generated with respect to three monomer mole fraction values 

f10. Thus, three sets of parameters estimation results are obtained. Table 6 shows the gPC coefficients of the 

unknown reactivity ratio parameters for each of the monomer mole fraction values. 

Table B.6 Optimization results from the gPC model with the high conversion data 

f10 
gPC coefficients Variance (1e-5) 

r10 r11 r20 r21 Vr1 Vr2 

0.3 0.6810 0.0019 1.2436 0.0025 0.361 0.625 

0.5 0.6586 0.0022 1.2778 0.0034 0.484 1.156 

0.7 0.7267 0.0016 1.2730 0.0019 0.256 0.361 

 

For comparison, the variance defined in Equation B.11 is calculated for three sets of estimates. It can be seen 

that the values of the reactivity ratios obtained based on different gPC models at different conversion values are 

very similar. However, the variation of the parameter is relatively smaller than the results provided in Table B.4. 

For example, the magnitude of variance is not on the same order. The results show that at high conversion level, 

the choice of the modeling method has effect on the result of the point estimates. Another simplest use of the 

symbolic gPC model is to analytically approximate the probability density functions (PDFs) of the measured 

quantities. The gPC model can provide the mean and the variance of measured variables in an explicit closed 

form. Also, the range of the measured quantities is a function of uncertainty introduced by unknown parameters. 

Once the gPC model is constructed, the PDF profiles of measured quantities can be easily calculated, as shown 

in Fig.B.7 for three different monomer mole fraction values. 
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Figure B.7 Probability density functions (PDFs) of the high conversion levels with the Meyer-Lowry model 

Each of the PDF profiles shown in Fig.B.7 assumes that the process is operating around one of the three 

monomer mole fraction values f10. Besides estimating the reactivity ratio parameters, another possible application 

is to infer the mole fraction value using the measured copolymer composition. For a given measurement of 

copolymer composition, for instance, it can be compared with each of the PDF profiles in Fig.B.7. The probability 

of being operated around a particular monomer mole fraction value can be inferred by choosing the maximum 

probability. It’s worth mentioning that the inverse inference provide opportunity for real-time monitoring, which 

may be very critical in other applications such as chemical reactors where small changes may cause, if undetected, 

runaway conditions. 

B.5.5 Computational Efficiency 

The computational time of the proposed gPC methodology is compared with the MCMC simulations, since the 

computational cost can be a limitation while applying techniques in the other chemical engineering problems. To 

better compare the time for parameter estimation, a summary of the simulation time for each model with the gPC 

method and the MCMC simulation is given in Table B.7. All the methods are executed on a 2.66 GHz Intel(R) 

Core Duo processor. 

Table B.7 The computational time required for the Mayo-Lewis model and the Meyer-Lowry Model 

Model Method Time (h) 

Mayo-Lewis MCMC (10000 samples) 0.2250 

Mayo-Lewis MCMC (100000 samples) 1.2759 

Mayo-Lewis gPC Algorithm 1 0.0026 

Mayo-Lewis gPC Algorithm 2 (3 quadrature points) 0.0375 

Mayo-Lewis gPC Algorithm 2 (5 quadrature points) 0.0383 

Mayo-Lewis gPC Algorithm 2 (5 quadrature points, Gram-Schmidt) 0.0390 

Meyer-Lowry MCMC (10000 samples) 0.3072 

Meyer-Lowry MCMC (100000 samples) 9.7222 

Meyer-Lowry gPC Algorithm 1 0.0731 

Meyer-Lowry gPC Algorithm 2 (3 quadrature points) 0.3171 

Meyer-Lowry gPC Algorithm 2 (5 quadrature points) 0.3208 

Meyer-Lowry gPC Algorithm 2 (5 quadrature points, Gram-Schmidt) 0.3307 

 

As can be seen in Table B.7, the computational time is not an issue when the MCMC simulations are applied 

to the weak nonlinear problems such as Mayo-Lewis model, with a careful selection of samples. However, there 
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is a significant increase on computational time, while the number of samples has been increased. For instance, ~ 

9.7 h is required with 100,000 samples for the Meyer-Lowry model. Therefore, the MCMC technique is more 

sensitive to the model structure. 

B.6 Conclusion 

The parameter estimation methodologies in this work propose a reliable and user friendly method of estimating 

the reactivity ratios as well as their confidence intervals in copolymerization. The results show that the method 

can accurately capture the uncertainty in the Mayo-Lewis model. For the Meyer-Lowry model, it can produce 

desirable point estimates, although the correct shape of JCR is slightly different, as compared with the MCMC 

simulations. This may arise from the highly nonlinearity of Meyer-Lowry model or the number of samples used 

for the MCMC simulations. Most importantly, the measurement noise and uncertainty are assumed to be 

multiplicative in current work to make fair comparison with published work. The logarithm may reduce the 

nonlinearity in practice, for example, if the EVM is adopted. This kind of nonlinear transformation will affect the 

parameter estimation results, especially when the model uncertainty or measurement noise are additive. However, 

this is not an issue for the proposed method and the MCMC simulations, since the nonlinear components can be 

explicitly consider in the model without using any transformation. As compared with the MCMC simulations, the 

proposed methods perform better in terms of computation time. It may help in applying the techniques to a broader 

area, especially in cases where online parameter estimation is a must. 
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Appendix C 

Quantitative Analysis of Normal and Apoptotic Cells 

(Adopted from Du et al., 2016, IFAC Symposium on Dynamics and Control of Process System, 

including Biosystems) 

C.1 Overview 

Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for 

evaluations of experimental outcomes and cells culture protocols. An algorithm is developed in this work to 

automatically segment and discern apoptotic cells from normal cells. A coarse segmentation algorithm is proposed 

as a pre-filtering step that combines a range filter with a marching square method. This step provides approximate 

coordinates of cells’ positions in a two-dimensional matrix used to store cells’ image. With this information, the 

active contours without edges method is applied to identify cells’ boundaries and subsequently it is possible to 

extract the mean value of intensity within the cellular regions, the variance of pixels’ intensities in the vicinity of 

cells’ boundaries and the lengths of the boundaries. These morphological features are then employed as inputs to 

a support vector machine (SVM) classifier that is trained to distinguish apoptotic from normal viable states of 

cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis and 

differentiation accuracy, as compared to the use of the active contours method without the proposed coarse 

segmentation step. 

C.2 Introduction 

Fluorescence microscopy is a well-developed tool to study in vitro cells’ behaviour. However, microscopy 

experiments can generate a great amount of cells’ images with varying image qualities (Waters, 2009). The 

manual quantification and analysis of these data is time consuming. Hence, accurate and automatic analysis of 

cells images such as Chinese Hamster Ovary (CHO) cells can be very useful. 

Mammalian cells are prone to apoptosis (programmed cell death), which is a key metabolic event that restricts 

the growth of cells and decreases the productivity in a bioreactor (Rulter, et al., 2014). The accurate detection of 

apoptotic cells can help identifying the critical factors that trigger apoptosis. This knowledge may be used for 

delaying apoptosis and potentially increase the productivity (Taatjes, et al., 2008). 

Morphological changes in cells are highly indicative of the occurrence of apoptosis (Henry, et al., 2013). For 

example, shrinkage and blebbing of the cytoplasmic membrane are found to be significant characteristics of 

apoptotic cells (see Fig.C.1), which cause cells to lose normal, smooth and circular shapes. Blebbing during 

apoptosis is generally associated to swell of the cell membrane into spherical bubbles. Hence, microscopic 

observation of morphological changes can be used to discern normal from apoptotic cells. However, cells may 

exhibit highly variable values of these morphological measures due to the dynamic nature of apoptosis. 
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This work presents a new image processing and quantitative analysis method that can automatically 

differentiate apoptotic from normal cells, while maintaining the computational time at a reasonable level. The 

proposed method involves three consecutive steps: (i) a coarse segmentation that can be used to identify the 

number of cells in a given image of cells; (ii) a fine segmentation step to detect the boundaries of cells and to 

identify particular morphological features related to these boundaries; and (iii) a support vector machine (SVM) 

based classification model that uses the morphological features identified in the fine segmentation step (step ii) 

to distinguish apoptotic cells from normal cells. 

Our contributions in this current work are summarized as follows: (i) a computationally efficient coarse 

segmentation algorithm that combines a range filter and a marching square method to approximate cells’ locations 

in an image; (ii) an automated differentiation algorithm to discern apoptotic from normal cells using three 

morphological features that can be extracted from the results of the fine segmentation algorithm. The method in 

this work can be easily extended to other studies for real-time monitoring of cells’ cultures and for high throughput 

screening experiments upon appropriate tuning. 

This appendix is organized as follows. Section C.3 reviews the background on fluorescence imaging and the 

challenges in analyzing cell morphology. The method developed is presented in Section C.4. Results and 

discussion are presented in Section C.5 followed by conclusions in Section C.6. 

C.3 Fluorescence Imaging 

Fluorescence microscopy has been used to differentiate and quantify apoptotic versus normal cells as well as 

to determine the viability of cells. This analysis involves two types of fluorescent dyes, i.e., acridine orange (AO) 

and ethidium bromide (EB), which are mixed in a fixed ratio within the cell suspension which is then analysed 

by fluorescence microscopy. The AO can penetrate viable and nonviable cells and make cells to appear green 

while the EB can only diffuse into nonviable cells and make them to appear orange (or red). Fig.C.1 shows a 

typical fluorescence photomicrograph of CHO cells stained with AO and EB. This image is stored as a multi-

dimensional matrix, which elements are the intensities of pixels. The first task is to detect the edges of the cells 

based on pixels’ intensities for a given image. Subsequently, it is desired to distinguish between apoptotic to 

normal cells. 

 

Figure C.1 Fluorescence photomicrograph of CHO cells 

Non-viable necrotic cell Viable apoptotic cell 

Viable normal cell 

(557˟463) 
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As observed in Fig.C.1, apoptotic cells usually exhibit irregular shapes and blurry boundaries, as compared to 

normal cells. Additionally, the appearance and size of cells belonging to the same class, i.e., normal versus 

apoptotic, can vary significantly (see Fig.C.2). This makes the automatic differentiation of cells status in an image 

very challenging. 

 

Figure C.2 Examples of cells in different states 

In Fig.C.2, the cells have different shapes and boundaries. As seen in the first row of cells’ images, normal 

cells can be characterized by rounded and smooth boundaries. However, the size of normal cells is very different 

from one another. Apoptotic cells, shown in the second row of images, have very irregular shapes and boundaries. 

Therefore, a departure from a smooth boundary (blebbing) is a key morphological indicator to discern apoptotic 

from normal cells. This work builds on the hypothesis that a combination of different indicators such as the 

average of pixels’ intensities within the cell boundary, a measure of the variability of the pixels’ intensities around 

the cells’ boundary and the length of this boundary can be used for differentiating normal cells from apoptotic 

cells. 

C.4 Image Processing Methodology 

C.4.1 Image Segmentation 

For images obtained with microscopy, the pixels’ intensities within the cells’ boundaries sometimes are very 

similar to the intensities measured within the background surrounding the cells. Thus, using strictly an intensity 

threshold to segment the cells from the background is not effective. Instead, edge-based methods such as the 

active contour algorithm ignore edges altogether and can handle segmentation more accurately. The central idea 

behind the active contour algorithms is to iteratively evolve a curve to segment objects from the background 

which upon convergence provides the boundary. A brief description is given for background. 

Assuming a curve C, subjects to the constraints of a given grayscale image U0 in an open bounded domain Ω 

of R2, which approximates the boundary φ, i.e., C ≈ φ, C ⊂ Ω, and φ ⊂ Ω. To evolve C, the active contours without 

edges method (Chan & Vese, 2001) seeks a best approximation of C by minimizing an energy function defined 

as: 

Normal 

Apoptotic 

(a) 

(e) 

(b) (c) (d) 

(f) (g) (h) 
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where μ1, μ2, λ1 and λ2 are non-negative tuning parameters, m1 and m2 depend on the evolving curve C and are the 

mean values of intensities inside C and outside C, respectively. The coordinates, defining the domain Ω, are 

defined by the x-axis and y-axis. Intensities are available at each point in x and y coordinates. In Eq. C.1, the first 

component controls the regularity of C by penalizing its length. The second term penalizes the enclosed area to 

control the size of the cellular areas. The last two terms penalize the discrepancy between the active curve C and 

the given image. 

The optimization problem Eq. C.1 can be formulated and solved by a level set method (Osher & Sethian, 1988), 

where the problem is rewritten in terms of an unknown level set function Ζ. Instead of manipulating C, the 

minimization of Eq. C.1 is formulated by an equation that progressively evolves the geometric locus of the zero 

value of the level set function Ζ. Assuming that the unknown level set function Ζ is smooth, the active contours 

without edges optimization Eq. C.1 is written in terms of the level set function Ζ as: 
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where Hε is the Heaviside function with respect to the level set function Ζ, and δε denotes a regularized Dirac δ-

function that for the purpose of minimization with respect to Ζ, Hε is defined as: 
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The minimization of (2) can be solved by updating m1, m2 and Ζ alternatingly as follows: 

i- For any fixed level set function Ζ, the values of m1 and m2 are the region averages approximated by: 
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ii- And for fixed m1 and m2 values, a gradient descent equation is formulated for Ζ with respect to an 

(artificial iteration) time t as: 
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where ē is the outward normal to the boundary φ. The function r (Li, et al., 2008) is used to ensure the stability 

of the algorithm and is defined as follows: 

dxdyyxr tt   2)1),((
2

1
)(   (C-9) 

where the subscript t denotes that the regularization term r is evaluated and updated at each (artificial) time instant 

t. 

C.4.2 Coarse Segmentation using a combination of a Range Filter and a Marching 

Square Algorithm 

The level set method shown in Section C.4.1 is iterative in nature and therefore is generally very slow for the 

purpose of high throughput screening. Computations are especially slow for microscopy images, since the cells 

are usually sparsely distributed in fluorescence microscopy images. To tackle this problem efficiently, a coarse 

segmentation procedure is developed by combining a range filter with a marching square method, which provides 

an initial approximation of the coordinates of cells’ positions in a xy-plane and the number of cells. This method 

will be referred heretofore as the range filter with marching square (RFMS) method. 

The idea is to apply initially the RFMS algorithm to each image to find the approximate position of each cell 

within an image containing many cells before applying the level set method reviewed in the previous section. 

Using RFMS, it is possible to define sub-images around each identified cells and then apply the level set algorithm 

to each of these sub-images. This “windowing” process around each cell is intended to lead to overall reduction 

in processing time and increased accuracy, as compared to the application of the level set method to the original 

large images containing a large number of cells without the RFMS step. 

Assume that a given image U0 with pixels’ dimensions of p1˟p2 is scanned by a range filter with pixels’ 

dimensions of q1˟q2. This gives a new range map matrix U with the same pixels’ dimension as U0, in which each 

pixel contains the range value of the q1˟q2 neighbourhood around the corresponding pixel in U0. The range value 

for each pixel inside U is calculated as the difference between the maximum and minimum values within the q1˟q2 

neighbourhood of each pixel in the image. A schematic description of the range filtering operation is shown in 

Fig.C.3. 
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Figure C.3 Schematic description of the range filter operation for generating U from U0 

As seen in Fig.C.3 (a), U0 is scanned by a range filter with pixels’ dimensions of 3˟3. The difference of 

intensities between the maximum and minimum values captured by the range filter around a particular pixel is 

given in Fig.C.3 (b). Once the range filtered image U is calculated, a first approximation of the coordinates of 

cells in U0 can be identified by comparing the intensities in the range filtered image U to a threshold value ζ. 

Using this threshold a matrix UB is generated which elements are binary intensities as follows: 
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where i and j represent the coordinates of pixels in the xy-plane, 1≤ i≤ p1 and 1 ≤ j ≤ p2.  

Subsequently a marching square algorithm is applied to UB with two objectives: (i) approximate the bounds of 

cellular regions, (ii) count the number of cells. In principle the main focus of the paper is to distinguish apoptotic 

from normal cells but it will be shown in the Results’ section that this algorithm is also useful for quickly count 

cells in the image. 

The steps used to approximate contours with the marching square algorithm are schematically shown in 

Fig.C.4. Each 2˟2 block of pixels in UB can be used to construct a contouring grid. The dash line in Fig.C.4 (a) 

denotes one contouring grid element generated with the first 2˟2 block of pixels. Fig.C.4 (b) shows a contouring 

grid in UB (dash lines) made of individual contouring grid pieces, which can be used to find a line that all its 

points have the same intensity value. In our case, since the application of the marching square method follows the 

thresholding step in (10), this value is 1 (stars in Fig.C.4 (b)). Since each contouring grid element has 4 corners, 

there are exactly 24 possible patterns describing portions of the cell contour crossing within each element as shown 

in Fig.C.4 (c). By finding a match between the observed lines within each grid element with one of the possible 

patterns in Fig.C.4 (c), the contour (dot line) in Fig.C.4 (b) can be formed. 

Once the contours corresponding to each cell in an image are obtained, the marching square method can provide 

an approximate location of the cell and the number of cells in a given image can be found by checking the number 

of contours. Note that the marching square method only provides a coarse approximation of cells’ boundaries, 

since the contour lines are assumed to be straight between edges of a grid element as seen in Fig.C.4 (c). It will 

be shown in the Results’ section that the contours resulting from this method are inaccurate for differentiating 

normal from apoptotic cells. Thus, the RFMS algorithm is only used as a pre-filtering tool to locate the 

approximate cells’ positions but it must be complemented by the fine segmentation method shown in Section 

(a) (b) 

U0 U 
range filter 

window 
 16=101-85 
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C.4.1 to do the final differentiation. It will also be shown in the Results’ section that the RFMS algorithm is very 

effective and more accurate for the counting of cells, as compared to the level set method applied alone without 

the RFMS pre-filtering step. 

 

Figure C.4 Visual interpretation for generating contours 

Based on the coordinates of contours (the pixels’ location in xy-axis) identified by the RFMS method, the image 

is divided into sub-images each containing one cell. Then, the segmentation method explained in Section C.4.1 

is applied to each of the sub-images to perform a finer identification of cells’ boundaries. 

C.4.3 Feature Extraction 

The differentiation of cells into apoptotic or normal is based on a set of morphological features calculated from 

the images. Three features are used: (i) the mean value of pixels’ intensities within the cellular regions; (ii) the 

variance of pixels’ intensities in the vicinity of the boundary and (iii) a measure of the size of the boundary. The 

choice of these features is justified by a priori knowledge of the phenomena. Apoptotic cells exhibit blebbing due 

to swell of the cell membrane. This swelling process results in variable fluorescence intensities in the 

neighbourhood of the cell contour and generally longer contours of apoptotic cells as compared to normal ones 

thus justifying the properties used here for differentiating cells. 

The mean value of pixels intensities of cellular regions is calculated with the level set function as defined in 

Eq. C.4, based on the segmentation results obtained in Section C.4.1. The calculation of the variance proceeds as 

per the following steps. (i) Perform the level set algorithm to segment cells from the background. The boundary 

shown as a solid line in Fig.C.5 (a) is obtained by connecting the points with a level set function value of Ζ ≈ 0 

in Eq. C.10. (ii) Set a value Ne that is the number of pixels in the immediate neighbourhood of each point on the 

boundary to be used for the calculation of the variance (see Fig.C.5 (b)). (iii) Connect the points neighbouring the 

boundary defined by Ne to build a fuzzy region around the boundary given by the dash lines in Fig.C.5 (b). (iv) 

Calculate the variance of all pixels intensities inside this fuzzy region. (v) Calculate the length of the boundary as 

the total number of pixels defining the boundary corresponding to pixels with level set function values of zero as 

calculated by the algorithm in Section C.4.1. 

(b) Contouring grid 
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Figure C.5 Sketch of the calculation of the second feature 

C.4.4 SVM based Classification 

Based on the three features proposed above, a support vector machine (SVM) (Burgers, 1998) classification 

model is developed to distinguish apoptotic cells from normal cells. SVM was arbitrarily chosen as one possible 

regression technique among many possible ones such as PLS, etc. A set of training images are selected, and each 

of the images used for model training is first processed with the RFMS method to approximate the number of 

cells and determine the sub-images, each containing a cell. Each observed cell is then characterized as either 

normal or apoptotic cells based on consensus among five different experimentalists and based on the percentage 

of apoptotic cells at the time the image was taken as determined by available independent flow cytometry data 

(Meshram, et al., 2011). The morphological features of cells are computed using the method described in Section 

C.4.3. 

From the images used for model training, the parameters of the SVM model can be optimized with the Matlab@ 

statistics and machine learning toolbox. The trained SVM model is applied to new images that were not used for 

model training to classify new images into apoptotic or normal. These testing images are also pre-processed with 

the RFMS method. 

The methodology in this work can be summarized as follows: (i) Calibrate the RFMS based coarse 

segmentation to estimate optimal parameters, i.e., pixels’ dimensions (q1˟q2) of the range filter and an intensity 

threshold ζ in Eq. C.10. (ii) Generate contouring grids for each training image with marching square method. (iii) 

Estimate the number of cells and the coordinates of cells. (iv) Construct sub-images with the information obtained 

in step iii. (v) Characterize manually each of the sub-images as either normal or apoptotic, using experimentalists’ 

consensus and cytometry. (vi) Perform image segmentation using the level set method and calculate the three 

morphological features for each image classified in step v. (vii) Use the features obtained in step vi as inputs to 

an SVM classifier that is trained to discern apoptotic from normal cells. 

(a) (b) 
boundary 

Ne 

curves used 

to generate a 

fuzzy region 



 

 172 

C.5 Results and Discussion 

C.5.1 Coarse Segmentation Results 

One way to assess the advantages of the RFMS algorithm as a pre-filtering tool is by testing its ability to detect 

the number of cells within an image. To that purpose, the RFMS is applied to a dataset containing 187 cells in 46 

images to study the accuracy of the algorithm in terms of cell counts. The range filter with pixels’ dimensions of 

3˟3 is used to calculate the range map matrix U. The intensity threshold ζ, used to generate the binary matrix UB, 

is chosen as 5. Based on UB, the marching square method is utilized to generate contours, which provide the 

coordinates and estimated boundaries of cells for a given image U0. Fig.C.6 shows the boundaries for two images 

with different sizes, shapes and physiological states of cells. 

 

Figure C.6 Summary of quantitative analysis 

For comparison purposes, the quantitative analysis of cells is also conducted with the level set method 

described in Section C.4.1 without applying the RFMS step. Following the finding in previous studies (Chan & 

Vese, 2001; Getreuer, 2012), the parameters for the level set algorithm are chosen as: μ1=μ2=λ1=λ2=1, and the 

time-step Δt is 0.1. Then, the accuracy in cell counting by the RFMS with the level set method without the RFMS 

step is compared. 

When the RFMS is used, 181 cells are counted correctly and 6 cells are missed. For example, the cell in the 

circle in Fig.C.6 (a) was counted as one cell instead of two due to overlapping between two boundaries of 

neighbouring cells. By contrast, when the level set method without RFMS is applied to the images only 175 cells 

are counted correctly and 12 cells are undetected. For example, the region of cells in the circle in Fig.C.6 (b) was 

detected as one cell using the RFMS algorithm. However, it is misclassified as background with the level set 

method (see Fig.C.7 (a)). The explanation is that for some cells the importance of the first two terms in Eq. C.6 

which penalize the enclosed area of cells and the regularity of boundaries may be compromised in the level set 

method as compared to the other two terms in the cost Eq. C.6. 

Further studies are conducted to investigate the cell counting accuracy when the RFMS is combined with the 

level set method. For the region in the circle in Fig.C.6 (b), the level set method is applied to the sub-image 

generated with the RFMS method. The sub-image is created by expanding it from both sides by 20 pixels on both 

x and y directions, based on the coordinates obtained with RFMS. The result is shown in Fig.7. As seen in Fig.C.7 

(a), the cells in the circle cannot be detected, if the level set method is applied without the RFMS to process the 

(768˟1024) 

(a) (b) 

(635˟1011) 
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original image. However, when the level set method is applied to the sub-image generated with the RFMS (see 

Fig.C.7 (b)), the level set method can successfully segment cells from the background. This confirms that the 

combination of the RFMS and level set method is very advantageous, as compared to the level set method applied 

on its own without the RFMS pre-filtering step. 

 

Figure C.7 Comparison of segmentation methods 

C.5.2 Comparison of Image Segmentation Results 

Studies are conducted to investigate the accuracy in terms of segmentation. Fig.C.8 shows the segmentation 

results for a few images with the level set method and the RFMS method. The analysed cells in Fig.C.8 have 

different sizes, shapes and blurry boundaries. The blue lines represent the boundary that is calculated with the 

level set function, while the red lines are the results approximated with the RFMS method in this work. As shown 

in the figure, both methods can successfully segment cells from the background. However, the boundary generated 

with the RFMS is less smooth, as compared to the level set method without the RFMS. For example, the first two 

images of cells (Fig.C.8 (a) and (b)) have regular shapes and smooth boundaries, but the boundaries calculated 

with the RFMS are fuzzy. The differentiation of cells in this work is built upon the hypothesis that low variability 

is associated with normal cells while higher variability is indicative of apoptotic cells. Thus, the RFMS must be 

combined with the level set method since the RFMS alone generally results in very fuzzy boundaries and provides 

inaccurate differentiation as shown in the Results’ section. 

 

Figure C.8 Summary of segmentation results 
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C.5.3 Comparison of Computational Time Required for Segmentation 

The computational time is studied for cells’ images that have different sizes with respect to pixels dimensions. 

Three cases are investigated: ~800˟1100, ~550˟450 and ~150˟150 pixels of cells images. Using the dataset 

containing a total of 187 cells in 46 images, the average computational times required to only count cells within 

the images by the level set on its own or the RFMS on its own are shown in Table C.1. 

Table C.1 Summary of computational time 

         Size Time (s) 

Method 800˟1100 550˟450 150˟150 

Level set 601.7 20.87 2.80 

RFMS 1.18 0.87 0.31 

 

As seen in Table C.1, if the sole objective is to count cells, the computational time of the RFMS algorithm is 

significantly lower than the level set based segmentation. Also, as shown in Table C.1 the computational times 

are highly related to the pixels’ dimensions of cells’ images. 

The computational time is further investigated by combining the RFMS with the level set method. Note that 

the solution of the level set algorithm requires initial conditions (in Eq. C.6). We found that an additional benefit 

of the RFMS pre-filtering algorithm is that it can provide a good initial guess for the solution of the level set 

algorithm. 

We compared the computational cost of using an initial guess from the RFMS algorithm versus using a random 

initial guess for an image containing 3 cells. The computational time is evaluated by the number of iterations that 

are required to progressively evolve the boundary of cells. It was found that approximately ~5 iterations are 

needed for the level set method to converge to the boundary when the results obtained with RFMS are chosen as 

the initial values whereas approximately ~10 iterations are required for the randomly chosen initial values. This 

observation confirms that the ability of the RFMS to provide an initial guess for the level set algorithm is an 

additional benefit of using the RFMS as a pre-filtering step before applying the level set method. 

C.5.4 Feature Extraction 

The proposed method combines the coarse segmentation step achieved with the RFMS with the fine 

segmentation achieved with the level set method for the images from dataset. For the training of SVM model, the 

level set based segmentation is applied to a training set with 100 samples of cells obtained with the RFMS based 

coarse segmentation. In this training set, 50 images are normal cells and 50 images are apoptotic cells. A feature 

vector is calculated for each of the training images composed of the 3 proposed morphological features, i.e., the 

mean value of pixels intensities of cells, the variance of pixels’ intensities in the vicinity of the boundary and the 

complexity of the boundary. A few training feature vectors are shown in Table C.2, where the variance is 

normalized with respect to the mean value of the cellular regions. 
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Table C.2. Examples of feature vectors 

States Variance Complexity Mean 

Apoptotic 9.84 87 74.87 

Apoptotic 9.60 91 81.45 

Apoptotic 6.71 115 64.09 

⁞ ⁞ ⁞ ⁞ 

Normal 5.94 79 74.23 

Normal 8.77 77 84.46 

Normal 3.61 103 91.24 

 

C.5.5 Differentiation Results using a SVM Classifier 

Using the trained SVM classifier model, 60 images of cells that were not used for the model training are used 

to test the classification rate, which contain 30 samples of normal cells and 30 samples of apoptotic cells. To 

evaluate the efficacy of the classification between normal cells and apoptotic cells, a differentiation rate is defined 

as: 

Tirate Ddr /  (C.11) 

where di denotes the number of testing images that have been correctly identified and DT is the total number of 

images used for the experiments. To test whether it is necessary to complement the RFMS method with the level 

set algorithm, two scenarios are studied to discern apoptotic from normal cells, i.e., the combination of the RFMS 

with level set and the RFMS without the level set method. Table C.3 shows the results of differentiation rate rrate. 

Table C.3. Differentiation rates rrate 

Methods Normal Apoptotic Average 

Combination 0.96 0.93 0.945 

RFMS 0.93 0.83 0.880 

 

From Table C.3, it can be seen that the combination of the coarse segmentation achieved with the RFMS with 

the fine segmentation provides high accuracy. The average of rrate is ~94.5%, and 1 normal cell’s image is 

misclassified and 2 testing images of apoptotic cells are misidentified. However, 7 of the testing samples of cells 

(2 normal and 5 apoptotic cells’ images) are misclassified with the RFMS alone that provides a differentiation 

rate of ~88%. 

Hence, it is evident that we must combine the RFMS with the level set algorithm, since the standalone 

application of the level set method without the RFMS cannot provide accurate counting of cells and is time 

demanding while the use of RFMS without complementation with the level set method results in a differentiation 

rate that is ~6% lower than the algorithm combining the RFMS and level set methods. 



 

 176 

C.6 Conclusion 

In this work, a methodology has been developed for high throughput screening studies to distinguish apoptotic 

from normal CHO cells. A simple coarse segmentation algorithm, which combines a range filter and a marching 

square method (RFMS), is used as a pre-filtering step to provide the approximate positions of cells within each 

image. Using the information obtained from the RFMS, the level set method is used to achieve the finer 

segmentation of cells from the background. Based on these segmentation results, three morphological features 

are computed and used as inputs to train a support vector machine (SVM) classifier, which can accurately classify 

cells into normal versus apoptotic. The developed algorithm that combines the RFMS with the level set method 

is shown to be more accurate and significantly faster than the standalone application of the level set method in 

terms of cell counting or the standalone use of the RFMS in terms of differentiation of apoptotic and normal cells. 
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