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Abstract

Geometric properties of statistical models and their influence on statistical inference

and asymptotic theory reveal the profound relationship between geometry and statistics.

This thesis studies applications of convex and differential geometry to statistical inference,

optimization and modeling. We, particularly, investigate how geometric understanding

assists statisticians in dealing with non-standard inferential problems by developing novel

theory and designing efficient computational algorithms. The thesis is organized in six

chapters as it follows.

Chapter 1 provides an abstract overview to a wide range of geometric tools, including

affine, convex and differential geometry. It also provides the reader with a short literature

review on the applications of geometry in statistical inference and exposes the geometric

structure of commonly used statistical models. The contributions of this thesis are orga-

nized in the following four chapters, each of which is the focus of a submitted paper which

is either accepted or under revision.

Chapter 2 introduces a new parametrization to general family of mixture models of

the exponential family. Despite the flexibility and popularity of mixture models, their

associated parameter spaces are often difficult to represent due to fundamental identifi-

cation problems. Other related problems include the difficulty of estimating the number

of components, possible unboundedness and non-concavity of the log-likelihood function,

non-finite Fisher information, and boundary problems giving rise to non-standard analy-

sis. For instance, the order of a finite mixture is not well defined and often can not be

estimated from a finite sample when components are not well separated, or some are not

observed in the sample. We introduce a novel family of models, called the discrete mix-

ture of local mixture models, which reparametrizes the space of general mixtures of the

exponential family, in a way that the parameters are identifiable, interpretable, and, due

to a tractable geometric structure, the space allows fast computational algorithms. This

family also gives a well-defined characterization to the number of components problem.

The component densities are flexible enough for fitting mixture models with unidentifiable

components, and our proposed algorithm only includes the components for which there is
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enough information in the sample.

This paper is under revision in Statistics and Computing Journal.

Chapter 3 uses geometric concepts to characterize the parameter space of local mixture

models (LMM), introduced in Marriott (2002) as a local approximation to continuous

mixture models. Although LMMs are shown to satisfy nice inferential properties, their

parameter space is restricted by two types of boundaries, called the hard boundary and

the soft boundary. The hard boundary guarantees that an LMM is a density function, while

the soft boundary ensures that it behaves locally in a similar way to a mixture model. The

boundaries are shown to have particular geometric structures that can be characterized

by geometry of polytopes, ruled surface and developable surfaces. As working examples

the LMM of a normal model and the LMM of a Poisson distribution are considered. The

boundaries described in this chapter have both discrete aspects, (i.e. the ability to be

approximated by polytopes), and smooth aspects (i.e. regions where the boundaries are

exactly or approximately smooth).

A version of this chapter has been published in Geometric Science of Information, Lecture

Notes in Computer Science, 9389. p 577-585.

Chapter 4 uses the model space introduced in Chapter 2 for extending a prior model

and defining a perturbation space in the Bayesian sensitivity analysis. This perturbation

space is well-defined, tractable, and consistent with the elicited prior knowledge, the three

properties that improve the methodology in Gustafson (1996). We study both local and

global sensitivity in conjugate Bayesian models. In the local analysis the worst direction

of sensitivity is obtained by maximizing the directional derivative of a functional between

the perturbation space and the space of posterior expectations. For finding the maximum

global sensitivity, however, two criteria are used; the divergence between posterior predic-

tive distributions and the difference between posterior expectations. Both local and global

analyses lead to optimization problems with a smooth boundary restriction.

Work from this chapter is in a paper under revision in Statistics and Computing Journal.

Chapter 5 studies Cox’s proportional hazard model with an unobserved frailty for which

no specific distribution is assumed. The likelihood function, which has a mixture structure

with an unknown mixing distribution, is approximated by the model introduced in Chapter

2, which is always identifiable and estimable. The nuisance parameters in the approximat-
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ing model, which represent the frailty distribution through its moments, lie in a convex

space with a smooth boundary, characterized as a smooth manifold. Using differential geo-

metric tools, a new algorithm is proposed for maximizing the likelihood function restricted

by the smooth yet non-trivial boundary. The regression coefficients, the parameters of

interest, are estimated in a two step optimization process, unlike the existed methodology

in Klein (1992) which assumes a gamma assumption and uses Expectation-Maximization

approach. Simulation studies and data examples are also included, illustrating that the

new methodology is promising as it returns small estimation bias; however, it produces

larger standard deviation compared to the EM method. The larger standard deviation

can be the result of using no information about the shape of the frailty model, while the

EM model assumes the gamma model in advance; however, there are still ways to improve

this methodology. Also, the simulation section and data analysis in this chapter is rather

incomplete and more work needs to be done.

Chapter 6 outlines a few topics as future directions and possible extensions to the

methodologies developed in this thesis.
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Chapter 1

Convex and Differential Geometry in

Statistics

1.1 Introduction

Geometric methods are frequently applied in statistics since various geometric concepts

such as vector spaces, affine spaces, manifolds, polyhedrons and convex hulls commonly

appear in statistical theory (Amari, 1985; Lindsay, 1995). The application of differential

geometry to statistics was inaugurated by Rao (1945), Jeffreys (1946) and Efron (1975),

then explicitly formulated by Amari (1985), Eguchi (1985), Barndorff-Nielsen (1987b) and

Critchley et al. (1993). Essentially, a family of parametric models is characterized as

a manifold on which a suitable geometry is imposed using tensors based on statistical

objects such as the Fisher information. More applications of these approaches to statistical

modeling and asymptotic theory can be found in Eguchi (1985, 1991), Barndorff-Nielsen

(1988), Murray and Rice (1993), Critchley et al. (1994), Marriott and Salmon (2000) and

Marriott (2002). In addition, convex geometry tools have been applied to the maximum

likelihood estimation in mixture models (Lindsay, 1995), extended exponential family and

log-linear models (Fienberg and Rinaldo, 2012; Eriksson et al., 2006), and graphical models

(Wainwright and Jordan, 2006; Peng et al., 2012).

1



This introductory chapter intends to give an abstract overview of applications of geom-

etry to statistics, and reviews the geometric tools necessary for developing the statistical

theories and computational algorithms presented throughout this thesis. The chapter is

organized as follows. Section 1.2 is an abstract review on the applications of differential

and convex geometry in statistics. Section 1.3, introduces affine spaces and studies two

important affine spaces in statistical theory. These spaces play an instrumental role in

developing latter sections where we define a statistical manifold as an embedded manifold

into an affine space, and define its geometry from the geometry of the affine spaces. Section

1.4 is a short overview on the theory of convex spaces, specifically cones and polyhedrons.

Section 1.5 studies two specific surfaces: ruled surfaces and developable surfaces which are

shown to be useful in characterizing the boundary of certain convex spaces in Chapter

3. Section 1.6 is devoted to differential geometry theory, where a statistical manifold is

defined by embedding a parametric model into an affine space, and the required geometric

concepts such as tangent spaces, metric tensors and affine connections, are explicitly de-

fined. Finally, the chapter closes with Section 1.7, covering a number of commonly used

statistical models and their essential geometric properties.

1.2 Geometry in Statistics

Differential and convex Geometry have been applied to statistical inference theory of com-

monly used statistical families, such as the exponential family, the mixture and local mix-

ture family, log-linear and graphical models (Section 1.7). Efron (1975) introduces the

statistical curvature of one-dimensional models, and studies its influence on statistical in-

ference and efficiency. For example, exponential families have nice inferential properties

due to zero statistical curvature inside the exponential affine space (Section 1.3), while

non-exponential models have non-zero statistical curvature, hence their asymptotic theory

is not as tractable. For higher-dimensional models Murray and Rice (1993, p.18) provide a

similar criterion, which is called the second fundamental form, obtained by the orthogonal

component of the derivative of score functions to the tangent space. Amari (1985, ch.4)

studies the asymptotic theory of inference in a curved exponential model when seen as a

submanifold embedded in the exponential family. The geometry of the embedded manifold
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is obtained from the larger manifold and used to derive the joint asymptotic probability

function of the maximum likelihood estimator (MLE) and associated ancillary statistics,

as well as the conditional probability function of MLE given the ancillary, in the form of

Edgeworth expansions. He also provides a geometric interpretation for consistency, first,

second and third order efficiency of an estimator and shows that the MLE is consistent,

first and second order efficient, and the bias corrected MLE is third order efficient (Amari,

1985, ch.5-8).

Further results of this type can be found in Eguchi (1983), using minimum contrast

geometry, in Barndorff-Nielsen (1986a), Barndorff-Nielsen et al. (1986), Barndorff-Nielsen

(1987a), Barndorff-Nielsen (1987b) and Barndorff-Nielsen (1988) using observed informa-

tion geometry, and in Marriott (1989) and Critchley et al. (1993) using preferred-point

geometry. In addition, Critchley and Marriott (2014) show how embedding statistical

models in a simplex generalizes the above geometries to statistical models that are not

manifolds because of boundary restrictions, and study the behavior of their likelihood

functions close to the boundaries.

Studying the geometric aspects of the mixture family and local mixture family, such

as convexity and flatness with respect to a suitable geometry, is also of great importance

in exploiting the flexibility of these families in statistical inference and modeling (Amari,

1985; Lindsay, 1995; Marriott, 2002). In Lindsay (1995, ch.5), nonparametric maximum

likelihood estimation (NPMLE) theorem estimates the mixing distribution by a unique

nonparametric discrete distribution with a number of support points not more than the

sample size. Essentially, a concave likelihood function is maximized over a convex feasible

space of distributions which is defined by the convex hull of the unicomponent likelihood

curve. Marriott (2002) and Anaya-Izquierdo and Marriott (2007a) study the local geometry

of mixture models and show that a family of continuous mixture models with relatively

small mixing variation can be approximated by a finite dimensional family to an arbitrary

order. The approximating family, called the local mixture family, is a union of convex

subspaces inside the mixture affine space (Section 1.3). These models are extended in

Marriott (2006) and applied to information recovery and sensitivity analysis in Marriott

and Vos (2004) and Critchley and Marriott (2004).

Understanding the geometry of convex polyhedrons is the key to maximum likelihood
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estimation in log-linear models. Eriksson et al. (2006) shows that in hierarchical log-linear

models, MLE exists, if and only if, the observed vector of margins lies in the interior of

the marginal cone. Fienberg and Rinaldo (2012) and Rinaldo et al. (2009) develop similar

results under the conditional Poisson sampling scheme. Using the theory of the extended

exponential family, they derive the necessary and sufficient conditions for the existence of

MLE, which depend on the sampling zeros in the observed table. They also provide an

algorithm to obtain the extended MLE, which requires characterization of the boundary

of the marginal cone using the geometry of faces, projection cones and normal cones.

Their algorithm has two major steps; first, a unique face of a possibly low-dimensional

polyhedron, on which the observed vector of margin lies, is obtained by repetitive linear

programing; second, the loglikelihood is restricted to the face and maximized.

Parameter estimation in undirected graphical models is also a problem of optimizing

an objective function on a marginal polytope. In some recent related works (Sontag and

Jaakkola, 2007; Wainwright and Jordan, 2006; Peng et al., 2012) graphical models with

cycles (i.e., not trees) are considered in which their marginal polytopes are not tractable.

They replace the marginal polytope with an outer polytope or a semi-definite bound, then

use a cutting plane algorithm for maximizing the objective function.

1.3 Affine Spaces

This section intends to give a brief overview of affine spaces and an introduction to two

important affine spaces in statistics. The affine property leads to a nice inference and

asymptotic theory of statistical models, for example in the exponential family (Murray

and Rice, 1993).

Definition 1.1 A geometrical space, (X, V,+), consists of a set X, a vector space V and

a translation operation + is called an affine space if ∀x ∈ X and v1, v2 ∈ V ,

x+ v1 ∈ X and (x+ v1) + v2 = x+ (v1 + v2)

and ∀x1, x2 ∈ X ∃v ∈ V such that x1 + v = x2.
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In the following examples we review the two important affine spaces in statistical theory;

the exponential affine space and mixture affine space. The earlier includes the exponen-

tial family as an affine subspace, while the later includes the mixture family with latent

parameterization (Section 1.7.3) and the local mixture family. Also, both spaces contain

the space of smooth densities as a subset and give a way of characterizing families of para-

metric models as embedded manifolds by embeddings θ → log f(x; θ) and θ → f(x; θ),

respectively (Murray and Rice, 1993, ch.4; Marriott, 2002).

Example 1.1 The exponential affine space is the triplet (M, Ve,⊕), whereM is the space

of all positive measures up to a positive finite scale, absolutely continuous with respect to

a measure, i.e, all have the same support S, Ve = {g(x)|g ∈ C∞(S,R)}, and ⊕ is the

transformation that for any p ∈M and g ∈ Ve returns p⊕ g = p eg.

Example 1.2 The triplet (Xm, Vm,+) is called mixture affine space in which

Xm =

{
g(x)|

∫
g(x) dτ = 1

}
, Vm =

{
g(x)|

∫
g(x) dτ = 0

}
,

for a measure τ on the support S, and + is the usual addition of functions.

In Murray and Rice, 1993 the exponential affine space is used as the embedding manifold

for a family of smooth density functions, and its simple geometry is exploited to define a

geometry on the embedded family by projection. Marriott (2002) embeds a smooth family

f(x; θ) in the mixture affine space and gives a local approximation to a family of continuous

mixture models of f(x; θ) by a convex subspace of the linear embedding space at each point

θ. This local approximation subspace is called the family of local mixture models, which

has nice inferential properties (Section 1.7.4).

1.4 Convex Geometry

Convex sets, in their general and specific forms, such as convex hulls, polytopes and poly-

hedral cones, arise in statistical inference theory frequently (Section 1.2). This section
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reviews the geometry of convex sets of different kinds and their related properties to sta-

tistical theory. Most of the definitions and theorems are taken from Berger (1987) and

Matousek (2002). For basic geometric concepts such as hyperplane, half-space, open and

close sets, distance, metric space refer to the aforementioned references and Bonnesen and

Fenchel (1987). Throughout this section, by cones, polyhedrons and polytopes we shall

mean the convex form of them.

Definition 1.2 A subset C of an affine space A is called convex if tx + (1 − t)y ∈ C for

any x, y ∈ C and t ∈ [0, 1]. A function f : C → R is called strictly convex if for any

x, y ∈ C and γ ∈ [0, 1] we have f(γx+ (1− γ)y) < γf(x) + (1− γ)f(y). Also, f is concave

if −f is convex.

A common example of a convex set is the convex hull of a set of points (or any subset

B ⊂ A) which is defined as the smallest convex set containing all the points (subset B).

Half-spaces and their intersections are also examples of convex sets. The dimension of a

non-empty convex set C, dimC, is defined by the dimension of the affine subspace 〈C〉, the

smallest linear subspace containing C, called the subspace spanned by C. Thus, C ⊂ A

is called full-dimensional if dim〈C〉 = dimA. Also, by imposing a suitable metric on A,

the distance between C and any point y ∈ A is defined by min{d(x, y);x ∈ C}, for which

following result holds.

Theorem 1.1 Suppose C is a convex set in an Euclidean affine space E, and x ∈ E, then

there exists at most one point y ∈ C such that d(x, y) = min{d(x, z)|z ∈ C}, where d(·, ·)
is the Euclidean distance.

An alternative way for characterizing convex closed sets is by supporting hyperplanes.

Recall first that, for a vector u ∈ A and a constant v the hyperplane H = {x ∈ A|x ·u = v}
divides A into two half-spaces {x ∈ A|x · u ≥ v} and {x ∈ A|x · u ≤ v}, and two subsets

B1, B2 ∈ A are said to be separated by the hyperplane H, if they lie in different half-spaces

created by H.

Definition 1.3 For a subset B of the affine space A, the supporting hyperplane of B at

x ∈ B is defined as any hyperplane containing x and separating {x} from B.
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A convex closed set C, with the boundary set shown by ∂C, has at least one supporting

hyperplane at any point of its boundary. Equivalently, a closed set with non-empty bound-

ary is convex if it has at least one supporting hyperplane at any point of its boundary.

The supporting hyperplanes can be used to classify the boundary points of convex sets.

For instance, x ∈ ∂C is a vertex if the intersection of all the supporting hyperplanes at

x is an affine space of dimension zero, while ∂C is said to be smooth at x if it has only

one supporting hyperplane at x. (Bonnesen and Fenchel, 1987, p.15) Note also that any

convex closed set can have only a countable number of vertices.

1.4.1 Polyhedrons

Polyhedrons commonly arise in statistical inference of the extended exponential family and

log-linear models in two specific forms; polytopes and polyhedral cones.

Definition 1.4 A polyhedron is an intersection of a finitely many closed half-spaces, and

a polytope is a bounded polyhedron.

Equivalently, a polytope can be defined by the convex hull of a finite set of points. An

important example of polytopes is a simplex which, for a given dimension, has the smallest

number of vertices. A simplex is obtained by the convex hull of an affinely independent set

of points. Recall that, a set of points are affinely independent if none of the points can be

written as an affine combination of the rest of the points. The boundary of a polyhedron

comprises vertices and higher-dimensional linear subspaces, which are all called faces of

different orders, as characterized in the following definition.

Definition 1.5 A face of a d-dimensional (2 ≤ d ≤ dimA) polytope P is defined as P ∩H,

where H is a hyperplane and P is contained in one of the closed half-spaces determined

by H. Specially, P is a face of itself called an improper face, vertices are 0-faces, and

(d− 1)-dim faces are called facets.

An alternative criterion for characterizing a boundary point x of a polyhedron, is by the

dimensionality of the polar cone at x. Specially, we can determine if x is vertex or a point

in the interior of a face with the known dimensionality.
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Definition 1.6 A cone C is a subset of a vector space such that for any two non-negative

real numbers a, b and vectors v1, v2 ∈ C, we have av1 + bv2 ∈ C. The cone of a finite vector

set V , cone(V ) –called a polyhedral cone– is defined by all the linear combinations with

non-negative coefficients of vectors in V .

Two important polyhedral cones, useful in describing the geometry of convex sets, are the

projection cone and polar cone. The projection cone at any x ∈ ∂C is cone(Vx), where

Vx is the set of all the rays emerging from x and containing another point of C. Polar

cone of the projection cone at x, which is also called normal cone at x, is defined by

cone(VNx) where VNx is the set of normal vectors to all the supporting hyper-planes at x.

The dimensionality of the cone(VNx) at x ∈ ∂C determines the type of x. Specifically, if

C is a d-dimensional closed convex set, then x is a vertex, a point on a p-face, or a point

on a facet if dimensionality of cone(VNx) is, respectively, d, (d− p) or (d− 1).

1.5 Ruled Surfaces and Developable Surfaces

In this section, two particular surfaces, ruled surfaces and developable surfaces, are briefly

introduced. In Chapter 3 we illustrate the role of these surfaces in approximating the

boundary of convex sets with some special geometric structures. The technical definitions

and results are taken from Do Carmo (1976) and Struik (1988). Preliminary concepts such

as regular curves and surfaces are available explicitly in Do Carmo (1976, ch.1,2).

Intuitively, ruled surfaces are generated by a curve and a set of vectors, thus have more

structure than a generic surface. A formal definition of ruled surfaces is as follows.

Definition 1.7 A one-parameter family of lines {α(x), β(x)} is a correspondence that

assigns to each x ∈ I ⊂ R a point α(x) ∈ R3 and a vector β(x) ∈ R3, β(x) 6= 0. For each

x ∈ I the line Lx, parallel to β(x) and passing through α(x), is called the line of the family

at x. Given {α(x), β(x)}, the parametrized surface

Γ(x, γ) = α(x) + γ · β(x), x ∈ I, γ ∈ R.
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is called the ruled surface generated by the family {α(x), β(x)}. Also, the lines Lx are called

rulings and the curve α(x) is called the directrix of Γ. If, in addition, β(x), β′(x) and α′(x)

are coplanar for all x ∈ I, Γ(x, γ) is called a developable surface.

Definition 1.7 can be generalized to higher dimensions by

Γ(x, γ) = α(x) + γ · β(x), x ∈ I, γ ∈ Rk (1.5.1)

where α(x) : R→ Rk, β(x) ∈ Rk, γ = (γ1, γ2, · · · , γk) and γ · β(x) =
∑k

i=1 γiβi(x). Clearly

the geometric object defined by equation in (1.5.1) is not a surface or hyper-surface unless

γ1 = · · · = γk; hence, we may call it a ruled space. Such spaces are simple examples of

fiber bundles (Marriott, 2006).

Example 1.3 Cylinders and Cones are the simplest ruled surfaces, and also developable

surfaces. For a cylinder, α(x) is in a plane, say P , and the β(x)’s are parallel to a fixed

direction. A cone however is obtained from an α(x) ∈ P with rulings passing through a

point p /∈ P , called the vertex of the cone (Figure 1.1).

Figure 1.1: A cone, a cylinder and a ruled surface (right), which is not a developable

surface, formed by α(x) and β(x) = α
′
(x) + e3, where e3 = (0, 0, 1)

As illustrated in the definition, ruled surfaces consist of a curve and a set of straight

lines attached to the curve, and developable surfaces are a specific form of ruled surfaces.

Intuitively, a surface with vanishing Gaussian curvature, defined by determinant of the

curvature matrix (Do Carmo, 1976, ch.3), at every point is a developable surface. Such

surfaces are easily constructed by bending a plane without tearing and stretching (Sun and

Fiume, 1996) and are widely used in many different areas of science and engineering.

9



1.5.1 Envelope of a Family of Planes

One way of constructing a developable surface is by finding the envelope of a one-parameter

family of planes. This idea can also be generalized to the envelope of a one-parameter

family of general surfaces (Struik, 1988, Sec.2-4 and 5-1). For convenience in writing, we

use λ = (λ2, λ3, λ4) and a(x) = (a1(x), a2(x), a3(x)).

Definition 1.8 The family of planes, A = {λ| a(x) · λ+ d(x) = 0, x ∈ R}, in which a(x)

and d(x) are differentiable, and each plane is determined by a value of the real parameter

x , is called an infinite single parameter family of planes.

Note that, Definition 1.8 can be generalized to a family of hyperplanes. Also, we exclude

the family of parallel planes and the family forming a pencil, a family of planes passing

through the same line.

To obtain the envelope of the family A and give a similar geometric structure as that of

ruled surfaces, we need to find the corresponding directrix and rulings. For any x1,x2 ∈ R
the corresponding planes in A, under our mild regularity, intersect in a line called the

characteristic line. If x2 ∈ (x1 − ε, x1 + ε) and ε → 0, the intersecting line is obtained by

the following equations,

a(x1) · λ+ d(x1) = 0 , a′(x1) · λ+ d′(x1) = 0 (1.5.2)

In a similar way for any x1,x2,x3 ∈ R the planes in A intersect in a point known as the

characteristic point. If also x3, x2 belong to an ε interval of x1, and ε→ 0, the characteristic

point is determined by following equations,

a(x1) · λ+ d(x1) = 0 , a′(x1) · λ+ d′(x1) = 0 , a′′(x1) · λ+ d′′(x1) = 0 (1.5.3)

where, in equations (1.5.2) and (1.5.3), prime and double prime represent first and second

derivatives with respect to x, respectively.

Putting together the infinite number of characteristic points corresponding to the planes

in the family A, we obtain a curve, called the edge of regression. Moreover, all the char-

acteristic lines together, side-by-side, construct a surface called the envelope of the family
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A, which is a developable surface (Figure 1.2). In addition, it can be shown that the char-

acteristic lines are tangent to the edge of regression at their characteristic points, Struik

(1988, p.67).

Example 1.4 Another developable surface is

tangential developable which is the envelope of

a set of tangent planes to a space curve, L. Any

plane P crossing L, intersects with the surface

in a curve with a cusp on L; hence, edge of re-

gression is also called cuspidal edge. The char-

acteristic lines (rulings of the surface) are also

tangent to L.

characteristic line

edge of regression

cusp

Figure 1.2: Tangential developable

1.6 Differential Geometry

Differential geometry methods are shown to be instrumental in statistical theory, as under

some regularity conditions a statistical model can form a Riemannian manifold equipped

with Fisher information metric or observed information metric (Amari, 1985; Barndorff-

Nielsen and Cox, 1989; Murray and Rice, 1993). This section provides an abstract overview

of differential geometry methods required for the statistical applications in the following

chapters. As in Murray and Rice (1993), a statistical manifold is defined by embedding a

family of smooth densities into the exponential affine space and its geometric components

are obtained with respect to the embedding affine space. We use these tools in the latter

chapters where the boundary of (the fiber at a point) a convex parameter subspace is char-

acterized as a smooth manifold immersed in an Euclidean space, and covariant derivatives

are exploited to design a gradient-based searching algorithm on the manifold.

1.6.1 Statistical Manifold

In differential geometry a manifold is defined in two different ways; as a space which is

locally diffeomorphic to an open subspace of an Euclidean space at any point, or as a

11



non-linear space embedded into an affine space. Here we follow the second definition for

two reasons. It is intuitive for statistical applications, as the set of density functions is a

subset of the affine spaces in Section 1.3. Also, it is sufficient for our purposes throughout

the thesis where we characterize the boundary of a convex parameter space as a manifold

immersed in an Euclidean space. For formal definitions we follow Murray and Rice (1993)

and Marriott and Salmon (2000) closely. Also, unless otherwise mentioned, for a family of

densities f(x; θ), where θ = (θ1, · · · , θr), x = (x1, · · · , xd), and `(θ;x) is the loglikelihood

function, we assume the following regularity conditions,

1- All members have common support.

2- The set of functions { ∂
∂θi
`(θ;x)|i = 1, · · · , r} are linearly independent and their moments

exists up to a sufficient order.

3- Integration and partial derivative for all relevant functions to f(x; θ) are commutative.

The inverse function theorem (Dodson and Poston, 1979, p.221) and the implicit function

theorem (Rudin, 1976, p.224) stated bellow, are also required for our definition of manifold

to be concrete.

Theorem 1.2 Suppose h : A→ A′, where A and A′ are affine spaces and h ∈ Ck, set of k

times differentiable function. Then the derivative mapping at x, Dxh, is an isomorphism,

if and only if, there are neighborhoods Nx and Nh(x) of x and h(x) such that h(Nx) = Nh(x)

and h has a local Ck inverse h−1 : Nh(x) → Nx.

Theorem 1.3 Suppose h is a continuously differentiable mapping from an open set U ∈
Rm+n into Rn such that, h(a, b) = 0 for some (a, b) ∈ U and Dxh is invertible. Then

there exist open sets U∗ ⊂ Rm+n and W ⊂ Rm, with (a, b) ∈ U∗ and b ∈ W such that, to

every y ∈ W corresponds a unique x where (x, y) ∈ U∗ and h(x, y) = 0. If x is defined

by g(y), then g is a continuously differentiable mapping from W into Rn, g(b) = a and

h(g(y), y) = 0.

Now we are at the position to define a manifold as the image of a smooth mapping into

an affine space (Marriott and Salmon, 2000, p.17) as follows.

Definition 1.9 For an open set Φ ∈ Rr and affine space A, consider the map Υ : Φ→ A.

Then the image Υ(Φ) is an embedded manifold if,
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(i) the derivative of Υ has full rank r for all points in Φ,

(ii) the inverse image of any compact set is itself compact.

Condition (i) guarantees that Υ is invertible by Theorem 1.2, hence any point θ ∈ Φ has a

unique image in A. Restriction (ii) is required so that the differential map of Υ is one-to-

one. Thus the image Υ(Φ) is locally diffeomorphic to a subset of Rr, so it has a structure

of a manifold on its own right, and also it is mapped into A by a closed inclusion. Recall

that an inclusion from M(⊂ A) into A maps any point p ∈M to the same point in A, and

under a closed map the image of any closed set is a closed set. Although Definition 1.9

does not retain a global structure, this may not be an issue for applications in statistics as

most of the statistical models only have one global coordinate; hence, they have one global

differentiable chart (Amari, 1985, p.15).

Definition 1.9 together with Example 1.1 give a way of expressing a family of smooth

densities as an embedded manifold inside the exponential affine space. Note first that

the exponential affine space can be presented via its logarithm representation by (Ml, Ve)

where Ml = {log(p) | p ∈M}, and the translation is

log(p)→ log(p) + f(x)

This representation is more intuitive to work with as it is common to represent statistical

manifolds by logarithm of density functions, and since a loglikelihood function is defined

only up to addition of a constant, the space of loglikelihood functions is a natural subspace

of Ml. Now consider a family of smooth density functions satisfying the above regularity

conditions embedded in the exponential affine space. The set of loglikelihoods of this family

lie in Ml, since by regularity condition 1 they have the same support. Condition (i) is

immediately implied by regularity condition (2). For (ii) to be satisfied it amounts for the

mapping to have a continuous inverse.

1.6.2 Tangent Spaces

To apply geometric methods on a manifold, M , embedded in an affine space, A, a suitable

geometric structure is required. The first step is to define the tangent space TMp at any
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point p ∈ M . Tangent spaces can be defined in two different ways; as the best first-

order linear approximation of M about p, or as the space of directional derivatives which

are smooth operators on M . The first definition is more intuitive since, based on our

definition of manifold, TMp is a linear subspace of A. Specifically, TMp ⊂ TAp where TAp

is isomorphic to the translation vector space attached to A at p. The later definition, is

useful for defining the rate of change of tangent vector fields which lie in tangent space

as directional derivative operators. Hence, we briefly mention both definitions. Einstein’s

summation rule is used throughout (Amari, 1985, p.18).

According to the first approach, TMp is defined as the space of tangent vectors to all the

curves through p. Specifically, if ρ(t) := `(θ(t);x) defines a curve for t ∈ (−ε, ε), where t = 0

represents p using θ parameterization, then by chain rule ρ′(0) = ∂`
∂θi

dθi

dt
which is a vector

in A with origin at p. Thus, TMp is a linear subspace of A spanned by {∂i, i = 1, · · · , r},
where ∂i := ∂`

∂θi
, and by regularity condition 2 it is r-dimensional. The dual of TMp,

called cotangent space TM∗
p , is defined as the linear subspace spanned by {dθ1, · · · , dθr},

where ∂i(dθ
j) = δij which is 1 if i = j and 0 otherwise. Also, TM = {TMp, p ∈ M} and

TM∗ = {TM∗
p , p ∈M} are called tangent bundle and cotangent bundle, respectively.

The explicit definition of TMp as above depends on the θ parametrization, however

tangent spaces are geometric objects and invariant with respect to parameterization. Spe-

cially, if η := η(θ) is a new parameterization with basis {∂a, a = 1, · · · , r}, using chain

rule we obtain the base change formula ∂i = (∂iη
a)∂a, and TMp under both parameteri-

zations is the same. For the dual space the base change formula is obtained similarly as

dθi = ∂aθ
idηa. This invariance property is critical in statistical theory where TMp corre-

sponds to the space of score vectors. For more about invariant methods in statistics, see

McCullagh (1987).

Alternatively, a tangent vector can be seen as a smooth differential operator on M ,

which assigns directional derivative to smooth functions defined on M in a given direction

(Amari, 1985, p.17). Then TMp is the space of directional derivatives at p.

Definition 1.10 A tangent vector at p ∈ M is a mapping Xp : C∞(M) → R, which for

all f, g ∈ C∞(M) and a, b ∈ R satisfies

Xp(af + bg) = aXp(f) + bXp(g), Xp(fg) = gXp(f) + fXp(g)
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1.6.3 Metric Tensors

Metric tensors are the next component of geometric structure on manifolds, which allow us

to calculate quantities such as length and angle on tangent spaces. Let χ(M) be the space

of all tangent fields X, the deferential operators as in Definition 1.10. A metric tensor is

defined as follows.

Definition 1.11 A metric tensor is a smooth function defined by

〈 , 〉 : χ(M)× χ(M) → C∞(M)

(X, Y ) 7→ 〈X, Y 〉

which is bilinear, symmetric and positive definite.

Since 〈 , 〉 is bilinear, for a parametrization θ, we have 〈 , 〉 = gijdθ
idθj where gij = 〈 ∂i, ∂j 〉

are called the components of the metric tensor. Under the new parameterization η, us-

ing the base change formula in the dual space the new metric components are obtained

as g̃ab = ∂aθ
i∂bθ

jgij. This transformation rule guarantees that a metric tensor is also

a geometric object, i.e, it is independent of coordinate systems, and consequently, en-

sures that the quantities such as lengths and angles defined by the metric are invariant

under reparametrization. The common metric tensors for a statistical manifold are the

Fisher information, observed information metrics and preferred-point metrics (Amari, 1985;

Barndorff-Nielsen, 1986b; Critchley et al., 1993).

1.6.4 Affine connections

Concepts such as flatness, straightness and curvature are commonly used in differential

geometry. For instance, affine spaces are flat and the minimum distance between any two

points in an affine space is the straight line joining them. These properties do not hold for

general manifolds, in which non-flatness raises the concept of curvature of different kinds,

and straight lines are called geodesics which do not retain shortest distances in general.

To formulate the above notions, one more geometric object is required, called an affine
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connection or covariant derivative. Affine connections enable us to calculate the rate of

change of tangent vector fields, which in turn gives a way of defining flatness, curvature

and straightness.

An explicit definition of an affine connection, connection for short, as the operator

O : χ(M) × χ(M) → χ(M) is given in (Amari, 1985, p.35). In this section however, we

use a more intuitive way of constructing connections which is consistent with Definition

1.2 of embedded manifold in an affine space, and it is sufficient for our uses throughout the

thesis. Similar to (Murray and Rice, 1993, ch.4) we define a connection in two steps; (i)

ordinary derivative in the embedding affine space, which is naturally defined, (ii) orthogonal

projection into the tangent space of the embedded manifold. See also (Dodson and Poston,

1979, ch.8) for more details.

For an affine space A with translation vector space V , any vector ν ∈ V determines a

tangent vector at each point p ∈ A, thus there is a linear isomorphism between V and TpA.

Then for a choice of basis ν1, · · · , νr, any tangent vector field X is written as X iνi and a

natural connection is defined as the vector field OX(ω) = dX i(ω)νi for any ω ∈ TAp. Since

TMp is a linear subspace of TAp, this connection can be projected into TMp by a linear

map πp : TAp → TMp at any point p ∈ M , where πp is the orthogonal projection defined

based on the imposed metric tensor (Murray and Rice, 1993, p.118). Hence, a connection

on M is defined by ŌX(ν) = πp(OX(ν)), which can be shown that it satisfies the axioms

of connections stated in Amari (1985, p.35). For a choice of coordinate θ a connection O

can be presented by its components Γkij, the kth component of covariate derivative of ∂
∂θi

at ∂
∂θj

,

O
∂

∂θi
(
∂

∂θj
) = Γkij

∂

∂θk
.

Example 1.5 uses this method to develop the two important connections, exponential (O+1)

and mixture (O−1) connections defined in Amari (1985). Also, in the following chapters,

we use this approach to obtain covariate derivative of a loglikelihood function restricted to

the boundary surface of a parameter space which is shown to be a manifold.

Example 1.5 Let M be the embedded manifold into the exponential affine space. The

regular derivative of a tangent vector base ∂i is given by ∂j∂i = ∂2`
∂θj∂θi

. Orthogonal projection
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with respect to the metric 〈 , 〉 = Covp( , ) returns O+1. Alternatively, if M is embedded

into the mixture affine space similar projection defines O−1 (Murray and Rice, 1993, p.119;

Marriott, 2002).

As indicated in Section 1.2, different geometries can be defined on a statistical manifold

by imposing different metrics and connections. For instance, Fisher information metric is

used by Amari (1985) and observed Fisher information metric is exploited by Barndorff-

Nielsen (1986a). A rather different and, in some sense more general, way to define a

geometry on a statistical manifold is given by Eguchi (1983), called the minimum contrast

geometry. In this method, the metric and connection are defined with respect to the choice

of a divergence function. For a suitable contrast function ρ, which is a divergence function

by definition, the minimum contrast geometry is defined by endowing a manifold with the

following metric and connection,

g
(ρ)
ij (θ) = − ∂

∂θi1

∂

∂θj2
ρ(θ1, θ2)|θ=θ1=θ2 , Γ

(ρ)
ijk(θ) = − ∂3

∂θi1∂θ
j
1∂θ

k
2

ρ(θ1, θ2)|θ=θ1=θ2 (1.6.4)

By exploiting this geometry, the minimum contrast estimators are introduced and efficiency

properties of this estimator for the curved exponential family are derived, see also Eguchi

(1985, 1991), for more on this geometry. The expected geometry in Amari (1985), is

obtained from this method by choosing KullbackLeibler divergence for the contrast function

ρ.

Having defined connections O and Ō on A and M , respectively, Riemann curvature

and embedding curvature can be introduced on M . Riemann curvature is defined using

the components of Ō for a choice of coordinate system and shows how M is curved as a

disembodied manifold. Embedding curvature, the second fundamental form in Murray and

Rice (1993), is defined as the orthogonal component of O into Ō, showing how M is curved

inside A. If Riemann curvature is zero at any p ∈ M then M is said to be flat and there

is a coordinate system for which the corresponding connection components are zero. Such

a coordinate is called affine coordinate system for M .

The notion of straightness on a manifold is defined by geodesic curves. A curve is called

geodesic with respect to a connection if the rate of change of its tangent vector field along
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the curve is zero. As we mentioned earlier, in general these curves do not give the shortest

path between two points on manifolds; however, for a special connection, called Levi-Civita,

the two notions of straightness and minimum distance coincide. This connection is also

known as metric connection and its components are called Christoffel symbols.

The two non-metric connections O+1 and O−1 are of great importance for theory of

statistical manifolds. In Amari (1985), α-family of connections (Oα) is defined by linear

combinations of O+1 and O−1, for any real value α. He also shows that there is a duality

link between Oα and O−α; hence, if a manifold is flat with respect to Oα then it is also

flat with respect to O−α. Essentially, two connections O and O? are said to be dual if they

satisfy

〈A,B〉θ = 〈ΠρA,Π
?
ρB〉θ′

where θ and θ′ are points on ρ corresponding to p, p′ ∈ M , and Πρ : TpM → Tp′M is

the parallel mapping based on connection O along ρ. According to this definition the

Levi-Civita connection is self-dual (Amari, 1985, p.70).

1.7 Statistical Examples

1.7.1 Exponential Family

The family of continuous or discrete probability densities

f(x; θ) = exp{θisi − ψ(θ)}m(x) (1.7.5)

with respect to some fixed measure ν, is called full exponential family, where θ ∈ Θ ⊂ Rr,

m(x) is a non-negative function independent of θ, and S(X) = (S1(X), · · · , Sr(X)), a

function of random variable X, is the vector of sufficient statistics for θ. Θ is called

natural parameter space, and the family is said to be regular when Θ is open. For more

details see Brown (1986).

This family, when parameterized by its natural parameter θ, satisfies the geometry of

affine spaces as in Example 1.1. That is, the components of O+1 are zero, hence it is flat
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with respect to O+1 and θ is its affine coordinate. Based on the duality theorem, this family

is also flat with respect to O−1, and the dual affine coordinate is the vector of expected

parameters Eθ(S(X)).

Inside the flat family of probability densities in 1.7.5, a d-dimensional (d < r) curved

family is defined by a one-to-one and smooth mapping B : Ξ → Θ which assigns θ(ξ) to

each ξ ∈ Ξ and satisfies the following conditions,

(a) derivative of B has full rank at all ξ ∈ Ξ,

(b) if a sequence of points {θj, j = 1, 2, · · · } ⊆ B(Ξ) converges to θ0 ∈ B(Ξ) then

{B−1(θj), j = 1, 2, · · · } converges to B−1(θ0) ∈ Ξ,

and its probability density has the following form

f(x; ξ) = exp{θi(ξ)si − ψ(θ(ξ))}m(x) (1.7.6)

Conditions (a) and (b) together ensure that the curved family is an embedded manifold

inside the affine space of the full exponential family, as in Definition 1.9. For more examples

of curved exponential models such as Poisson regression and AR(1) models see Marriott

and Salmon (2000) and Kass and Vos (1997).

This embedding structure is used in Amari (1985) for studying the asymptotic theory

of inference in curved exponential models. Essentially, the MLE, ξ̂, is defined as the point

in the embedded manifold M ⊂ A which is the −1-projection of x̄ ∈ A. Corresponding

to ξ̂ the ancillary space B(ξ) is defined for any ξ ∈ M and coordinatized by ω, then x̄ is

decomposed as x̄ = (ξ̂, ω̂) where ξ = (ξ1, · · · , ξr), ω = (ωr+1, · · · , ωN) and N = dimA.

Working with expected parameterization, it is shown that ξ̂ is consistent, if and only if,

any η(ξ) ∈ M ⊂ A belongs to B(ξ). For such a consistent estimator, considering the true

parameter value ξ, the asymptotic distribution of ξ̃ =
√
n(ξ̂−ξ) is shown to be normal with

mean 0 and inverse asymptotic variance g1ab = gab − gai gbj gij, in which a, b, · · · represent

quantities related to M and i, j, · · · represent those related to B(ξ). Then clearly when

gbj = 0; that is, B(ξ) is orthogonal to M , we have g1ab = gab and ξ̂ is (first-order) efficient.

Furthermore, the bias of this estimator is shown to be a combination of the components
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of O−1 and the corresponding embedding curvature, and the bias corrected estimator is

proved to be also second-order efficient. Finally, the third-order term in the expansion of

the mean square error is shown to vanish, if and only if, B(ξ) is −1-flat, giving third-order

efficiency of the bias corrected MLE.

1.7.2 Extended exponential Family

Often, in discrete exponential families depending on the observed sample, the MLE is not

attained, even though the likelihood function is bounded. Thus, the extended exponential

family and extended MLE are defined. For a full exponential family S with respect to

ν, let νcl(F ) be the restriction of ν to the closure of F , where F is a face of the convex

core of ν, cc(ν), defined as the intersection of all convex Borel subsets B ⊂ Rd for which

ν(B) = ν(Rd). Then the exponential family with respect to νcl(F ) is shown by SF with

natural parameter space ΘF , and the extended exponential family of S is defined by the

union of all the families SF over all faces of cc(ν), (Csiszar and Matus, 2005; Malago and

Pistone, 2010). An application of this extension is in maximum likelihood estimation in

the log-linear models (Section 1.7.4).

Example 1.6 (Logistic regression) Consider the logistic regression model for n binary

responses, Yi’s, and an n×d design matrix X. The joint model of the vector (Y1, Y2, · · · , Yn)

lies in a 2n − 1 simplex, (Critchley and Marriott, 2014; Anaya-Izquierdo et al., 2013a).

However, if Yi’s are independent and pi > 0, (i = 1, 2, · · · , n) then the joint distribution is

an n-dimensional full exponential family with natural parameters xTi β, where xTi is the ith

row of the design matrix. Now let

θi = log (pi/(1− pi)) = xTi β, β = (β1, β2, · · · , βd)T , (1.7.7)

defining a mapping Rd → Rn, then the resulted model is a d-dimensional curved exponential

family. Note however that, when pi ≥ 0 the family does not have manifold structure. In

this case the joint model of independent Yi’s lies in the extended exponential family.
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1.7.3 Mixture Family

Finite mixture model of k density functions fj(x), from the same family, is defined by

g(x; η) =
∑k

j=1
ηj fj(x), ηj ≥ 0,

∑k

j=1
ηj = 1 (1.7.8)

where η is called the latent parameter vector. Continuous mixture models are also defined

using a continuous latent distribution by integrating over the latent parameter (see Everitt

and Hand, 1981; Mclachlan and Kaye, 1988; Lindsay, 1995). This family is flat with respect

to O−1 connection, and consequently with respect to O+1 connection (Amari, 1985, p.41).

To see the affine structure of this family in η parameterization, without loss of generality,

let k = 2, so η2 = 1− η1, then we have

g(x, η) = f1(x) + η1 [f2(x)− f2(x)] (1.7.9)

This family satisfies the affine geometry as in Example 1.2 since
∫
f1(x) dx = 1 and∫

[f2(x)− f1(x)] dx = 0.

In general the geometry of mixture models is much more complicated than the geometry

of parametric models. The space of all mixture models of family F = {Fθ} is the smallest

convex set containing F , which is not a manifold because of the boundaries. Specifically,

when ηj > 0 the model lies in the interior of a (k−1)-simplex, otherwise the model belongs

to a lower dimensional simplex which would be a face of the (k− 1)-simplex. Also Anaya-

Izquierdo (2006, p.25-35) illustrates how the general mixture family can be defined as a

convex subspace of the mixture affine space, and curved mixture models as curves inside

the space of the general mixture models.

1.7.4 Local Mixture Models

Marriott (2002) introduced the family of local mixture models (LMM) by embedding a

family of models into the mixture affine space, Example 1.2. For a density function f(x;µ),

belonging to the exponential family, the LMM of order k is defined by

g(x;µ, λ) = f(x;µ) +
∑k

j=1
λj f

(j)(x;µ), λ ∈ Λµ ⊂ Rk (1.7.10)
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where λ = (λ1, · · · , λk), f (j)(x;µ) = ∂j

∂µj
f(x;µ), and for any fixed and known µ,

Λµ =
{

1 +
∑k

j=1
λj qj(x;µ) ≥ 0, for all x ∈ S

}
,

is a subspace obtained from intersection of half-spaces, with qj(x;µ) = f (j)(x;µ)
f(x;µ)

, and S is

the sample space of the density f(x;µ). Hence, Λµ is a non-empty convex set which has

at least one supporting hyperplane at each boundary point. The boundary of Λµ is called

the hard boundary and guarantees positivity.

The family can be seen as an example of the fiber bundle structure used by Amari

(1985), where f(x;µ) is a curve inside the space of the full exponential family and∑k
j=1 λj f

(j)(x;µ) is a −1-flat fiber attached to the curve at each µ. In fact, since λ

coordinates of each fiber are restricted to the convex subspace Λµ, the family of LMMs is

a union of convex subspaces inside the −1-affine space.

For identifiability purposes, Anaya-Izquierdo and Marriott (2007a) drop the first deriva-

tive from model (1.7.10) and study LMMs of the form

g(x;µ, λ) = f(x;µ) +
∑k

j=2
λj f

(j)(x;µ), λ ∈ Λµ ⊂ Rk−1 (1.7.11)

They show that this model is identifiable in all parameters, and (µ, λ) parameterizations

are Fisher orthogonal at λ = 0. Also, for any fixed and known µ the loglikelihood function

is concave.

LMMs can be applied to approximate continuous mixture models with small mixing

variation, to an arbitrary order; however, they are richer than the general family of mixture

models in some sense. That is, compared to parametric models with the same mean, LMMs

unlike mixture models can also produce smaller dispersion. Hence, for a LMM to behave

locally similar to a mixture model, it must be restricted to an additional boundary, called

the soft boundary. This boundary will be explicitly defined and computed in Chapter

3. LMM’s are also useful for modeling over-dispersion in binomial and Poisson regression

models, frailty analysis in lifetime data analysis Anaya-Izquierdo and Marriott (2007b),

measurement errors in covariates in regression models Marriott (2003), local influence

analysis Critchley and Marriott (2004) and the analysis of predictive distributions Marriott

(2002).
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In the later chapters of this thesis we use LMMs for developing various statistical theo-

ries, methodologies and computational tools. In each chapter we explicitly define the LMM

model which we will be using for the sake of completeness and preventing any confusion

between the two models in equations (1.7.10) and (1.7.11). In Chapter 2 we use model

(1.7.10) for extracting information from mixture data with unidentifiable components, and

define a novel family of discrete mixture models which gives a tractable parametrization

to the general space of mixture models. In Chapters 4 and 5 we exploit the same model

for studying robustness in Bayesian analysis and survival data with unknown frailty dis-

tribution, respectively. In Chapter 3, however, we use the model in equation (1.7.11) for

two reasons. First, it gives a suitable base for running profile likelihood estimation for the

parameter µ. Second, it gives lower dimensional parameter subspaces and boundaries at

each fiber which we can visualize.

1.7.5 Log-linear Models

For a set of discrete random variables {Y1, Y2, · · · , Yk}, the log-linear model with the set

of generators G = {Gj; j = 1, · · · , J ; J < k} is defined by

P (y) ∝
J∏
j=1

φGj(y),

where Gj ⊂ {Y1, Y2, · · · , Yk}, y is a realization of Y , and φGj is a function that depends on

y only through the variables in Gi (Geiger et al., 2006). Log-linear models are a member of

discrete exponential family and commonly used for studying association among categorical

variables in contingency tables when one makes no distinction between response and ex-

planatory variables (Agresti, 1990, ch.5). Natural parameter vector θ, or equivalently the

average of counts µ are the parameters of interest, where m = log(µ) lies in a linear space,

M say.

In more details, let Yj takes its value from [dj] = {1, 2, · · · , dj} and I =
⊗k

j=1[dj] be

an index set such that any i ∈ I represents a cell in the corresponding cross-classified

table of counts, and I = |I|. Then the arrays of cell counts and expected cell counts can

be represented by n = (n1, · · · , nI)T and µ = (µ1, · · · , µI)T ∈ RI . Corresponding to a
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log-linear model there is a 0/1-matrix AI×d, called the design matrix, such that t = ATn

returns the vector of margins, a sufficient statistic for the natural parameter vector θ, and

M is spanned by its column vectors. d is the dimension of t, and t is minimal if A is full

rank. Also, the natural parameters are related to the log-expected parameters via m = Aη.

The geometry of log-linear model, which is instrumental in characterizing existence of

MLE, is tied with geometry of the space of all observable vector of margins t, shown by

CA. This space is the convex hull of all observable t vectors, which is a polyhedral cone,

cone(A) under poisson sampling scheme, or a polytope under multinomial sampling. For

an observed table of counts the MLE exists if and only if t belongs to relative interior of

CA. Otherwise, the maximum point, called extended MLE, lies on the unique face CA

which contains t in its interior (Fienberg and Rinaldo, 2012; Eriksson et al., 2006).

Example 1.7 (Graphical models) A specific form of a hierarchical log-linear model is

an undirected graphical model defined by a graph with a set of vertexes, corresponding to

a random vector, and edges showing dependence between the connected vertexes. A hier-

archical log-linear model is a graphical model if its generators return the cliques, maximal

complete subgraphs, of the corresponding graph and viz (Edwards, 2000). Undirected graph-

ical models are widely used in statistics, network models and biology. Two major inferential

problems of interest related to them: finding marginal probabilities, and maximum a poste-

riori assignments, can be formulated as optimization of a nonlinear objective function in a

polytope called the marginal polytope (Sontag and Jaakkola, 2007). Also for more details on

existed estimating methods refer to Wainwright and Jordan (2006) and Peng et al. (2012).

Example 1.8 (Contingency tables) Consider a normalized two-by-two contingency ta-

ble with probability vector (p11, p12, p21, p22). When pij > 0 for all i, j, this model has a

multinomial distribution, lies in 3-dimensional full exponential family and can be embed-

ded in the 3-simplex of the probability vectors. However, for pij ≥ 0 the model is extended

multinomial distribution in the extended exponential family (Critchley and Marriott, 2014).

Fienberg and Gilbert (1970) showed that the subset C of the points inside the tetrahedron,

satisfying the row-column marginal independence, is a ruled surface called the surface of

independence with explicit parametrization.

(s, t)→ [st, s(1− t), (1− s)t, (1− s)(1− t)] , 0 ≤ s, t ≤ 1 (1.7.12)
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They also presented two different sets of rul-

ings constructing this surface; as a result it

is also called a doubly ruled surface. For a

general r×c table the independence subspace

is a manifold generated by non-intersecting

linear spaces, inside the simplex (Fienberg,

1968)

IndependenceP11

P21

P12

P22

Figure 1.3: Ruled surface of a two-by-two

contingency table inside 3D simplex

1.8 Summary and Contributions

This chapter covers the principal geometric tools, particularly in affine, convex and dif-

ferential geometry, commonly applied in statistics, and illuminates geometric properties

of a list of frequently used statistical models. Although the explicit proofs and technical

derivations are not provided, it should be sufficient to follow the latter chapters which

study new applications of these geometries in different areas of statistics, and describe the

main contributions of this thesis.

In Chapter 2 we target the issues such as identifiability and estimability of general

mixtures of the exponential family models. As a solution, we define the family of discrete

mixtures of LMMs, which has the flexibility of general mixtures, yet always identifiable and

estimable. It provides a novel parametrization to the family of mixture models and holds

useful geometric properties which are fruitful in designing efficient estimation algorithms.

We propose a type of Expectation-Maximization algorithm for estimating the parameters

and give a new characterization to the number of components of a finite mixture model.

These models are capable of approximating general mixture models, and give a way of

fitting general mixture data without prior information about the mixing process and the

number of components.

Chapter 3 exploits Sections 1.4 and 1.5 to characterize the parameter space of a LMM

which is restricted by hard and soft boundaries. The boundaries are shown to have par-

ticular geometric structures that can be computed by polytopes, ruled and developable

surfaces. In particular, we consider a normal and a Poisson model, revealing that the
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boundaries can have both continuous and discrete aspects. The Appendix section gives

some characterizations of the boundaries for LMMs of other distributions such as a bino-

mial and an exponential distribution. We also propose an orthogonal parametrization for

the computed boundary surfaces and show how the loglikelihood function can be restricted

to these boundaries and maximized.

Chapter 4, exploits the general mixture model introduced in Chapter 2 for extending

a base prior model and defining a perturbation space in Bayesian sensitive analysis. For

assessing maximum sensitivity of inference or prediction, a perturbation space is defined

which is natural, interpretable and flexible for incorporating modelers’ prior knowledge. We

aim at analyzing both local and global sensitivity to prior perturbation. The methodology

leads to the problems of finding maximum local direction and maximum global sensitivity,

both restricted to a convex space with a smooth boundary.

in Chapter 5 we target the identifiability issue in Cox’s proportional hazard model

with unobserved frailty for which no specific distribution is assumed. The likelihood has

a mixture structure; hence, to overcome the identifiability problem we approximate that

by the discrete mixture of LMMs introduced in Chapter 2, which is always identifiable

and estimable. In the approximated likelihood frailty model is represented by a finite

dimensional parameter vector lying inside a convex subspace of a linear space. We exploit

these properties to design an efficient optimization algorithm for estimation of all the

parameters.

Chapter 6 outlines few topics as future direction and possible extensions to the method-

ologies developed in this thesis.
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Chapter 2

Mixture Models: Building a

Parameter Space

2.1 Introduction

Mixtures of exponential family models have found application in almost all areas of statis-

tics, see Lindsay (1995), Everitt (1996), Mclachlan and Peel (2000) and Schlattmann

(2009). At their best they can achieve a balance between parsimony, flexibility and in-

terpretability – the ideal of parametric statistical modelling. Despite their ubiquity there

are fundamental open problems associated with inference on such models. Since the mix-

ing mechanism is unobserved, a very wide choice of possibilities is always available to the

modeller: discrete and finite with known or unknown support, discrete and infinite, con-

tinuous, or any plausible combination of these. This gives rise to the first open problem;

what is a good way to define a suitable parameter space in this class of models? Other,

related, problems include the difficulty of estimating the number of components, possible

unboundedness and non-concavity of the log-likelihood function, non-finite Fisher infor-

mation, and boundary problems giving rise to non-standard analysis. All these issues are

described in more detail below. This chapter defines a new solution to first of these prob-

lems. We show how to construct a parameter space for general mixtures of exponential

families,
∫
f(x;µ)dQ(µ), where the parameters are identifiable, interpretable, and, due
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to a tractable geometric structure, the space allows fast computational algorithms to be

constructed.

2.1.1 Background

Let f(x;µ) be a member of the exponential family. It will be convenient, but not essential

to any of the results of this chapter, to parameterize with the mean parameter µ. We

will further assume that the dimension of µ is small enough to allow underlying Laplace

expansions to be reasonable, Shun and Mccullagh (1995). A mixture over this family would

have the form
∫
f(x;µ)dQ(µ) where Q is the mixing distribution which, as stated above,

can be very general. Since Q may lie in the set of all distributions the ‘parameter space’

of this set of models is infinite dimensional and very complex. It is tempting to restrict Q

to be a finite discrete distribution indeed, as shown by Lindsay (1995), the non-parametric

maximum likelihood estimate of Q lies in such a family. Despite this, as the following

example clearly shows, this is too rich a class to be identified in a statistically meaningful

way.

Example 2.1 For this example let f(x;µ) = φ(x;µ, 1), be a normal distribution with unit

variance. The QQ plot in Figure 2.1 compares two data sets generated from two different

finite mixture models with five and ten components respectively. The plot shows that data

generated from each can have very similar empirical distributions – thus it would be very

hard to differentiate between these models and hence estimate the number of components.

In this example the components of the mixing distributions have been selected to be close

to one another and to have the same lower order moment structure.

Different methods have been proposed for determining the order of a finite mixture model,

including graphical, Bayesian, penalized likelihood maximization, and likelihood ratio hy-

pothesis testing (Mclachlan and Peel, 2000; Hall and Stewart, 2005; Li and Chen, 2010;

Maciejowska, 2013). We question though if the order is, fundamentally, an estimable quan-

tity:

(I) First, mixture components may be too close to one another to be resolved with a

given set of data, as in Example 2.1.
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Figure 2.1: Left, the QQ-plot for samples generated from each finite mixture model. Right:

the histogram of the sample with fitted local mixture density plots for each sample.

(II) Secondly, for any fixed sample size the mixing proportion for some components may

be so small that contributions from these components may not be observed.

For instance, Culter and Windham (1994) show, using an extensive simulation, that when

the sample size is small or the components are not well separated, likelihood based and

penalized likelihood-based methods tend to overestimate or underestimate this parameter.

Donoho (1988), studies the order as a functional of a mixture density and points out

that, “near any distribution of interest, there are empirically indistinguishable distributions

(indistinguishable at a given sample size) where the functional takes on arbitrarily large

values”. He adds, “untestable prior assumptions would be necessary”, additional to the

empirical data, for placing an upper bound. Celeux (2007) mentions that this problem is

weakly identifiable from data as two mixture models with distinct number of components

might not be distinguishable.

This fundamental identification issue has immediate consequences when we are trying

to define a tractable parameter space. In particular its dimension is problematic: the space

will have many dimensional singularities as component points merge or mixing distributions

become singular. Identifiability with mixtures has been well studied of course, see Tallis

(1969) and Lindsay (1993). The boundaries and singularities in the parameter space of a
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finite mixture have been looked at in Leorox (1992), Chen and Kalbfleisch (1996) and Li

et al. (2009) as have the corresponding effects on the shape of the log-likelihood function,

for example see Gan and Jiang (1999).

2.1.2 The Local Mixture Approach

Examples where there is a single set of closely grouped components – or the much more

general situation where Q is any small-variance distribution – motivated the design of the

local mixture model (LMM), Marriott (2002), Anaya-Izquierdo and Marriott (2007a). This

is constructed around parameters about which there is information in the data and can be

justified by a Laplace, or Taylor, expansion argument.

Definition 2.1 For a mean, µ, parametrized density f(x;µ) belonging to the regular ex-

ponential family, the local mixture of order k is defined as

gµ(x;λ) := f(x;µ) +
∑k

j=1
λjf

(j)(x;µ) λ ∈ Λµ ⊂ Rk (2.1.1)

where λ = (λ1, · · · , λk) and f (j)(x;µ) = ∂jf
∂µj

(x;µ). We denote qj(x;µ) := f (j)(x;µ)
f(x;µ)

, then for

common sample space S, and any fixed µ,

Λµ =
{
λ|1 +

∑k

j=1
λj qj(x;µ) ≥ 0,∀x ∈ S

}
,

is a convex subspace obtained by intersection of half-spaces. The boundary of Λµ corresponds

to a positivity condition on gµ(x;λ).

Example 2.2 (2.1 revisited) The right panel of Figure 2.1 shows the LMM fit to the

two datasets considered above. We see that the model can successfully capture the shape

of the data using only a small number of parameters about which the data is informative.

This observation is formalized by Lemma 2.2 in Section 2.4.

The local mixture approach is designed, using geometric principles, to generate an

excellent inferential frame in the situation which motivated it. The ‘cost’ associated with
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these properties is having to work explicitly with boundaries in the inference. We give

more details of these properties and the tools associated with working with the boundaries

in Section 2.2, and their explicit calculation in Chapter 3. Of course the major weakness of

this approach is that it says nothing when the mixing is not ‘local’. This chapter addresses

this issue by looking at finite mixtures of local mixture models. This combines the nice

properties of finite mixtures, for example the work of Lindsay (1995), while avoiding the

fundamental trap of overidentifying the models as described in Section 2.1.1. We use this

finite mixture of local mixtures to approximate the parameter space of all mixtures. In later

sections estimation methods in this very rich model class are discussed, as is the problem

of what a particular data set can tell us about the number of components examined in

important classes of mixture models.

2.2 Local and Global Mixture Models

Let us consider a general mixture model of the form
∫
µ∈M f(x;µ)dQ(µ) where we make

the assumption that the support of Q, M , is compact. We can therefore partition M as

M = ∪Li=1Mi where Mi ∩Mj = ∅ for i 6= j, and each Mi is connected. Let us also select a

set of ‘grid points’, µi ∈Mi, which will be fixed and known throughout.

The distribution Q can be written as a convex combination of distributions Q =∑L
i=1 ρiQi, where (i) Qi has support Mi, and (ii) for large enough L each Qi is a lo-

calizing mixture in the sense required by Anaya-Izquierdo and Marriott (2007a), allowing

each term
∫
µ∈Mi

f(x;µ)dQi(µ) to be well approximated by a LMM. In the form given in

Definition 2.1 the mean of the LMM is µ + λ1, so there is one degree of ambiguity about

the parametrization (µ, λ). In Anaya-Izquierdo and Marriott (2007a) this was resolved by

always setting λ1 = 0, see Section 1.7.4. In Definition 2.2 the mean ambiguity is resolved

by fixing µi and having λi1 free.

Definition 2.2 Let gµl(x;λl) be the LMM from Definition 2.1, and λl = (λl1, · · · , λlk). A

discrete mixture of LMMs is defined by

h(x, µ, ρ, λ) =
∑L

l=1
ρl gµl(x;λl) (2.2.2)
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where λ = (λ1, · · · , λL), µ = (µ1, · · · , µL) is a fixed grid of support points, ρ = (ρ1, · · · , ρL)

such that 0 ≤ ρl ≤ 1 and
∑L

l=1 ρl = 1.

There are some points to consider in this definition. First, the choice of how to select

the fixed grid points µi, in particular how far they should be separated, is clearly critical

and discussed in Section 2.2.1. Second, throughout this chapter we only consider LMMs

of order k = 4. Increasing this degree – while mathematically possible – only adds a

small marginal improvement to the local modeling performance, (Marriott, 2006). Third,

whenever f(x;µ) is a proper exponential family, the terms qj(x, µ)’s are polynomials of

degree j, and the interior of the parameter space Λµ0 can be characterized by analyzing

the roots of a quartic polynomial. Finally, we use throughout two illustrative examples:

the normal and binomial.

Example 2.3 (Normal) For the normal density function φ(x;µ, 1), with fixed variance

at σ2 = 1, the LMM at µ = µ0 has the following form,

gµ0(x;λ) = φ(x;µ0, 1){1 + λ1(x− µ0) + λ2[(x− µ0)2 − 1] + λ3[(x− µ0)3

−3(x− µ0)] + λ4[(x− µ0)4 − 6(x− µ0)2 + 3]} (2.2.3)

with, E(X) = µ0 + λ1, V arg(X) = 1 + 2λ2 − λ2
1, µ(3)

g = 6λ3 + 2λ3
1 − 6λ1λ2

in which µ
(3)
g is the third central moment. The expression for the first moment and an

argument based on Fisher orthogonality of density derivatives (Morris, 1982) illustrate

how identifiability is attained either by fixing µ = µ0 or λ1 = 0.

Example 2.4 (Binomial) The LMM for a binomial distribution, with mean µ = µ0 and

number of trials n, has a probability mass function of the form

gµ0(x;n, λ) =
n!µx0(n− µ0)n−x

x!(n− x)!nn
{1 + λ1p1(x, µ0) + λ2p2(x, µ0) + λ3p3(x, µ0)

+λ4p4(x, µ0)} (2.2.4)

where pj(x, µ0) is a polynomial with degree j. In this example there is extra boundary

structure as µ is limited to the compact set [0, n].
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Definition 2.3 For fixed µ0 the parameter space Λµ0 is a convex subset of R4 and its

boundary, ∂Λµ0 is defined by the envelope of hyperplanes

Πx :=
{
λ|1 +

∑4

j=1
λj qj(x;µ) = 0

}
,

parametrized by x ∈ S, Struik (1988). The boundaries of LMMs are computed explicitly in

Chapter 3.

2.2.1 Choosing the Support Points

In Definition 2.2 the set of support points, {µ1, · · · , µL}, is assumed fixed and the question

remains: how to select it? Recall that the LMM gives a good approximation when the

variance of the mixing distribution is small. This would imply that we want neighboring

support points to be close, on the other hand the more support points the larger the value

of L and hence the larger the dimension of the parameter space in Definition 2.2.

The following result follows from standard Taylor remainder results and formalizes the

above discussion.

Lemma 2.1 Suppose gµ0(x;λ) is the local mixture of the family of densities f(x;µ) and

Q is a distribution. For any δ > 0 there exist an interval I = [µ0 − ε1(δ), µ0 + ε2(δ)] such

that ∣∣∣∣∫
I

f(x;µ) dQ− gµ0(x;λ)

∣∣∣∣ < δ,

for all x.

Example 2.5 (2.3 revisited) By Taylor’s theorem we have f(x;µ)− gµ0(x;λ(µ)) =
(µ−µ0)5

5!
f (5)(x;m) where m is a value between µ and µ0. For the normal family with standard

deviation σ we have

f (5)(y,m) =

(
y5 − 10

y3

σ2
+ 15

y

σ4

)
e−

σ2 y2

2

√
2πσ

,
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where y = (x−m)
σ2 . This function is obviously bounded, by M say, for all y ∈ R, and the

bound, which only depends on σ, can be numerically obtained. Letting ε = max{ε1, ε2}
gives, ∣∣∣∣∫

I

f(x;µ) dQ−
∫
I

gµ0(x;λ(µ)) dQ

∣∣∣∣ ≤ ∫
I

|f(x;µ)− gµ0(x;λ)| dQ

≤ (ε1 + ε2)
ε5

5!
M (2.2.5)

The result follows since we can write
∫
I
gµ0(x;λ(µ)) dQ as a LMM with λi :=

∫
λi(µ)dQ(µ).

Example 2.6 (2.4 revisited) For the binomial family, with probability function p(x;n, µ),

again we want to bound the error by (µ−µ0)5

5!
M , say. We have

p(5)(x;n,m) = p(x;n,m) q5(x;n,m)

where q5(x;n,m) is a polynomial of degree 5 of both x and m, which can be written as

q5(x;n,m) =
1

(n−m)5

5∑
j=0

γ(j)

(
5

j

)
(
n

m
)j(−1)5−j

with γ(j) = j! (5 − j)!
(
x
j

)(
n−j
n−5

)
. It can be shown that uniformly for all x = 0, 1, · · · , n,

p(x;n,m) ≤ p(x?;n,m), where x? = bm(n+1)
n
c, and

L(n,m) < q5(x;n,m) < U(n,m)

where, for all m ∈ [0, n],

L(n,m) = − γ(0)

(n−m)5m4
(5n4 + 10n2m2 +m4)

U(n,m) =
γ(0)

(n−m)5m5
(n5 + 10n3m2 + 5nm4 −m5) (2.2.6)

Moreover, it can be shown that{
U(n,m) > |L(n,m)| if 0 ≤ m ≤ n

2
;

U(n,m) < |L(n,m)| if n
2
< m ≤ n.

Therefore,

M = max
m∈I

q5(x?;n,m)|L(n,m)| or M = max
m∈I

q5(x?;n,m)U(n,m)

which depends on µ0, ε1 and ε2.�
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2.2.2 Estimation Methods

Estimation with a LMM is, in general, straightforward. The parameter space has nice

convexity properties and the likelihood is log-concave, see Anaya-Izquierdo and Marriott

(2007a). In Marriott (2002) Markov Chain Monte Carlo (MCMC) methods are used since

boundaries in the parameter space can easily be accommodated by a simple rejection step

whenever a parameter value is proposed that lies outside the boundary. Alternatively direct

log-likelihood maximization can be done exploiting the convexity of the parameter space

and the concavity of the objective function. See Section 5.2.2 for the explicit description

of this algorithm.

Adopting these ideas to finite mixtures of LMMs, we can also easily use MCMC meth-

ods. However, here we define a new form of Expectation-Maximization (EM) algorithm,

described below, and applied in Example 2.7. In this example we look at mixtures of

normals, φ(x;µ, σ2
0), where grid-points for µ are selected as discussed in Section 2.2.1. To

understand the selection of σ2
0 by the modeler we return to point (II) of Section 2.1.1. This

makes the case that we can only estimate clusters, and indeed features of such clusters, if

there is the associated information in the data. One consequence of that is the well-known

phenomenon that infinite likelihoods are attainable in the case where only a single obser-

vation has been associated with a normal cluster and the estimated variance is zero. In

our approach we take issue (II) seriously and only put in a LMM component when there

is enough data to support its inference. In particular we note that the variance of such a

component is σ2
0 +2λ2−λ2

1, which will be bounded below, and vary from cluster to cluster.

Hence the data can estimate the variance of each cluster as long as it is above our, modeler

selected, threshold.

The Algorithm

Starting from initially selected grid points µ(0) = (µ
(0)
1 , · · · , µ(0)

L ), proportions ρ(0) =

(ρ
(0)
1 , · · · , ρ(0)

L ) and local mixture parameters λ(0) = (λ1,(0), · · · , λL,(0)). Suppose, at step r,

we have µ(r) and ρ(r) and λ(r) and the number of components Lr ≤ L. For obtaining the

estimates at step r + 1 run the following steps.
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1. Calculate ρ(r+1) = nl
n

, where nl =
∑n

i=1w
(r+1)
il and

w
(r+1)
il =

ρ
(r)
l gµl(xi, λ

l,(r))∑Lr
l=1 ρ

(r)
l gµl(xi, λ

l,(r))
, x = 1, · · · , n; l = 1, · · · , Lr

2. Choose a positive value 0 < γ < 1, and check if there is any l such that ρ
(r+1)
l < γ.

(a) If yes: exclude the components corresponding to ρ
(r+1)
l < γ, update Lr → Lr+1

and go back to step 1.

(b) If no: go to step 3.

3. Classify the data set into x1, · · · xLr+1 by assigning each xi to only one mixture com-

ponent. For each l = 1, · · · , Lr+1, update λl,(r) by

λl,(r+1) = arg max
λ∈Λµl

lµl(x
l, λ),

where lµl(x
l, ·) is the log-likelihood function for the component l. This optimization

step is implemented using our proposed algorithm in Section 5.2.2

Remark 2.1 Step 2 restricts the number of required components for fitting a data set in a

way that there is enough information necessary for running inference on each local mixture

component. Its value has an influence on the final result of the algorithm in a similar way

that an initial value affects the convergence of a general EM algorithm (Table 2.1).

Example 2.7 (Acidity data) The data includes acidity index measured in 155 lakes in

north-central Wisconsin which is analyzed in Mclachlan and Peel (2000) and the references

therein. Using likelihood ratio hypothesis testing, the bootstrap estimated p-value supports

two or three components at the 5% or 10% level of significance, respectively. However, based

on a Bayesian method all the values between two and six are equally supported, Richardson

and Green, 1997.

Here we select the grid-points µ(0) = (3.6, 4.2, 4.8, 5.4, 6, 6.6, 7), set σl = 0.5 and γ =

0.15, so that at least 20 observation is assigned to each cluster. The algorithm returns a
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two-component discrete mixture of LMMs with ρ̂ = (0.676, 0.324), µ = (4.2, 6.6), Figure

2.2 (left panel). The middle panel shows that if we give a set of slightly different initial grid

points, µ
(0)
6 = 6.4 instead of 6.6, the algorithm returns the same order for the mixture, with

m = (4.2, 6.4) and ρ̂ = (0.651, 0.349), (middle panel). In addition, if we let σl’s to take

different values, σ6 = 0.6, we get the same order with a slightly different fit (right panel).
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Figure 2.2: Discrete mixture of LMMs for Acidity data.

Further analysis of the data with different values of γ, shows how the final results of

the algorithm depend on γ, see Table 2.1.

γ µ ρ̂ Order

0.13, 0.14, 0.15, 0.16, 0.17 (4.2, 6.6) (0.67, 0.33) 2

0.1, 0.11, 0.12 (4.2, 4, 8, 6.6) (0.57, 0.13, 0.3) 3

0.07, 0.08, 0.09 (4.2, 6, 6.6) (0.63, 0.18, 0.19) 3

0.06 (4.2, 4.8, 6, 6.6) (0.57, 0.08, 0.16, 0.19) 4

Table 2.1: Further analysis for different values of γ
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Figure 2.3: Left to right: three and four components fit corresponding to the last three

rows in Table 2.1

2.3 Summary and Contributions

While finite mixtures of exponential families are very flexible they suffer from identification

problems when support points cluster. This means estimating the order is a very hard

problem with a fixed set of data. This chapter takes a new approach to this problem. We

use a local mixture model to directly model each cluster in a very flexible way. This results

in a finite mixture of LMMs. We propose counting these, now well-defined, components as

the ‘order’ – which will now be statistically meaningful. In each of the component LMMs

all the parameters are estimable with efficient algorithms where we have applied a principle

that we do not considered models which are unestimable from the data at hand.

2.4 Supplementary materials and proofs

Lemma 2.2 Let Q1 and Q2 be discrete distributions shrinking around a common mean µ,

Q1(m,µ) =
∑D1

d=1
πdI{m ≥ µd}, Q2(m,µ) =

∑D2

d=1
π′dI{m ≥ µ′d}

where I is the indicator function,
∑D2

d=1 π
′
dµd =

∑D2

d=1 πdµ
′
d = µ and

∑D2

d=1 π
′
d =

∑D2

d=1 πd =

1. Then, if Q1 and Q2 share the first k central moments, the finite mixtures

g(x;Q1) =
∑D1

d=1
πdf(x;µd) and g(x;Q2) =

∑D2

d=1
π′df(x;µ′d)
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have identical LMM approximation of order k.

Proof: Suppose f satisfies the conditions of Taylor’s theorem. Then we have,

g(x;Q1) = f(x;µ) +
∑k

j=1

f (j)(x;µ)

j!

[∑D1

d=1
πd (µd − µ)j

]
+ E1

= f(x;µ) +
∑k

j=1

f (j)(x;µ)

j!
µ

(j)
Q1

+ E1 (2.4.7)

and

g(x;Q2) = f(x;µ) +
∑k

j=1

f (j)(x;µ)

j!

[∑D2

d=1
π′d (µ′d − µ)j

]
+ E2

= f(x;µ) +
∑k

j=1

f (j)(x;µ)

j!
µ

(j)′
Q1

+ E1 (2.4.8)

where E1 and E2 are the error terms corresponded to dropping the higher order terms, and

µ
(j)
Q1

and µ
(j)′
Q1

are the central moments of order j for Q1 and Q2, respectively. Hence, the

two approximations coincide if µ
(j)
Q1

= µ
(j)′
Q1

for j = 2, . . . , k.

2.4.1 Orthogonal projection

To see how closely the LMM of density f(x, µ), at mean parameter value µ0, approximates

the discrete mixture fm(x) = (1−α)f(x, µ0) +αf(x, µ), we find the orthogonal projection

of fm onto the family of LMMs with respect to Fisher information metric. Note that we

can rewrite this mixture model as

fm(x) = f(x, µ0) + α[f(x, µ)− f(x, µ0)]

where [f(x, µ)− f(x, µ0)] is a straight line in −1-geometry, and is a vector, as it integrates

to zero for any fixed µ and µ0. Considering the LMM of order k = 4, the coordinate of the

projection at each direction (for j = 1, 2, 3, 4) is obtained by

λ∗j(µ, µ0) =

∫
1

gjj
(f(x;µ)− f(x;µ0)) qj(x, µ0) dx
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where qj(x, µ) = f (j)(x;µ)
f(x;µ)

, and gjj is the Fisher norm of qj. For instance, for normal family

of models we have

λ∗1(µ, µ0) = µ− µ0, λ∗2(µ, µ0) =
1

2
(µ− µ0)2, λ∗3(µ, µ0) =

1

6
(µ− µ0)3

λ∗4(µ, µ0) =
1

24
(µ− µ0)4 (2.4.9)

and the projected models is

gµ,µ0(x) := f(x;µ0) +
∑4

j=1
λ∗j(µ, µ0)f (j)(x;µ0) (2.4.10)

Example 2.8 This example shows that, any normal distribution on the line segment [µ0±
0.6] is well approximated by the LMM in equation (2.4.10). For µ0 = 0 the density,

probability distribution function (pdf), and the difference between the two pdfs φ(x, µ) and

gµ,µ0(x) are plotted in Figure 2.4.

Figure 2.4: The density (left) and distribution function (middle) plots of φ(x, µ, 1) (blue

dash line) and and gµ,µ0(x) (red solid line), for µ0 = 0 and µ = 0.6. Right panel; the

difference between the two distribution functions.
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Chapter 3

Computing Boundaries in Local

Mixture Models

3.1 Introduction

Often, in statistical inference, the parameter space of a model includes a boundary, which

can affect the maximum likelihood estimator (MLE) and its asymptotic properties. Im-

portant examples include the (extended) multinomial family, logistic regression models,

contingency tables, graphical models and log-linear models, all of which are commonly

used in statistical modelling, see Section 1.7 and Anaya-Izquierdo et al. (2013b). In Eriks-

son et al. (2006), Sontag and Jaakkola (2007) and Rinaldo et al. (2009), it is shown that

the MLE in a log-linear model exists, if and only if, the observed sufficient statistic lies in

the interior of the marginal polyhedron i.e. away from the boundary. The paper Geyer

(2009) studies the influence of the non-existence of the MLE on asymptotic theory, con-

fidence intervals and hypothesis testing for a binomial, a logistic regression model, and

a contingency table. Further, in Anaya-Izquierdo et al. (2013b) a diagnostic criterion is

provided for the MLE which defines how far it is required to be from the boundary so that

first order asymptotics are adequate.

Boundary computation is, in general, a hard problem, Fukuda (2004) and Geyer (2009).

41



Although it is insufficiently explored in statistics, there are numerous mathematical and

computational results in other literatures. Their focus are on (i) approximating a convex

closed subspace by a polytope, see Dieker and Vempala (2014), Lopez and Reisner (2008),

Boroczky and Fodor (2008) and Barvinok (2013) and (ii) approximating a polytope by a

smooth manifold, see Ghomi (2001), Ghomi (2004) and Batyrev (1992). See also Section

3.5.1 for some details.

While the general problem of computing boundaries is difficult, in this chapter we

show some new results about computing them for local mixture models (LMM), defined in

Section 1.7.4 and studied further in Anaya-Izquierdo and Marriott (2007a). The parameter

space of a LMM includes two forms of boundary: the hard and soft. Here we consider a

continuous and a discrete LMM: based on the normal and Poisson distributions respectively.

We show here that the boundary can have both discrete and smooth aspects, and provide

novel geometric methods for computing the boundaries.

Section 2 is a brief review of LMM’s and their geometry, while Section 3 introduces

some explicit, and new, results on the structure of the fibre of a local mixture in important

examples and uses the classical geometric notions of ruled surfaces in the computations.

Section 4 concludes with discussion and future directions.

3.2 Local Mixture Models

The theory of local mixture models is motivated by a number of different statistical model-

ing situations which share a common structure. Suppose that there is a baseline statistical

model which describes the majority of the observed variation, but there remains apprecia-

ble residual variation that is not consistent with the baseline model. These situations in-

clude over-dispersion in binomial and Poisson regression models, frailty analysis in lifetime

data analysis Anaya-Izquierdo and Marriott (2007b) and measurement errors in covariates

in regression models Marriott (2003). Other applications include local influence analysis

Critchley and Marriott (2004) and the analysis of predictive distributions Marriott (2002).

The geometric complexity of the space of general mixture models means that under-

taking inference in this class is a hard problem. It has issues of identification, singularity
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and multi-modality in the likelihood function, interpretability problems and non-standard

asymptotic expansions.

The key identification and multi-modality problem comes from the general observation

that if a set of densities f(x; θ) lies uniformly close to a low-dimensional −1-affine space –

as defined by Amari (1990)– then all mixtures of that model would also lie close to that

space. Hence the space of mixtures is much lower dimensional than might be expected. The

local mixture model is designed to have the ‘correct’ dimension by restricting the class of

mixing distributions to so-called localizing distributions. This allows a much more tractable

geometry and corresponding inference theory. The restriction often comes only at a small

cost in modeling terms. The local mixture model is, in geometric terms, closely related to a

fibre-bundle over the baseline model, and has the elegant information geometric properties,

described formally in Theorem 3.1, that (i) inference on the ‘interest parameters’ of the

baseline model only weakly depends on the values of the nuisance parameters of the fibres

because of orthogonality, (ii) the log-likelihood on the fibre has only a single mode due

to convexity (iii) the local mixture model is a higher order approximation to the actual

mixture.

As defined in Section 1.7.4 a LMM is a union of −1-convex subsets of −1-affine sub-

spaces of the set of densities, in the information geometry of Amari, Amari (1990). Here

−1 refers to the α = −1 or mixture connection.

Definition 3.1 Let S be a common sample space. The local mixture, of order k, of a

regular exponential family f(x;µ) in its mean parameterization, µ, is defined as

g(x;λ, µ) = f(x;µ) + λ2 f
(2)(x;µ) + · · ·+ λk f

(k)(x;µ), λ ∈ Λµ ⊂ Rk−1 (3.2.1)

where λ = (λ2, · · · , λk) and f (j)(x;µ) = ∂jf
∂µj

(x;µ). Also qj(x;µ) := f (j)(x;µ)
f(x;µ)

, then for any

fixed µ,

Λµ =
{
λ|1 +

∑k

j=2
λj qj(x;µ) ≥ 0,∀x ∈ S

}
,

is a convex subspace obtained by intersection of half-spaces. Its boundary is called the hard

boundary and corresponds to a positivity condition on g(x;λ, µ).

A local mixture model has a structure similar to that of a fibre bundle and for each fixed

µ0 the subfamily, g(x;λ, µ0), is called a fibre – although more strictly it is a convex subset
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of the full fibre. The paper Anaya-Izquierdo and Marriott (2007a) shows that LMMs have

the following excellent statistical properties.

Theorem 3.1 (i) The set {g(x;λ, µ0)− f(x;µ0)} is −1-flat and Fisher orthogonal to the

score of f(x;µ) at µ0. Thus µ and λ are orthogonal parameters.

(ii) On each fibre the log-likelihood function is concave - though not necessarily strictly

concave.

(iii) A continuous mixture model
∫
f(x;µ) dQ(µ) can be approximated by a LMM to an

arbitrary order if Q satisfies the properties of a localizing distribution defined in Marriott

(2002).

In such an approximation the parameter vector λ represents the mixing distribution Q

through its moments; however, for some values of λ a LMM can have moments not at-

tainable by a mixture model of the form
∫
f(x;µ) dQ(µ). A true LMM, defined in Anaya-

Izquierdo and Marriott (2007a), is a LMM which behaves similarly to a mixture model, in

terms of a finite set of moments. For a true LMM, additional to hard boundary, there is

another type of restricting boundary, called soft boundary, and characterized by following

definition.

Definition 3.2 For a density function f(x;µ) with k finite moments let,

Mk(f) := (Ef (X), Ef (X
2), · · · , Ef (Xk)).

Then g(x;µ, λ), defined in Definition 3.1, is called a true local mixture, if and only if, for

each µ in a compact subset I, Mk(g) lies inside the convex hull of {Mk(f)|µ ∈ I}. The

boundary of the convex hull is called the soft boundary.

Inferentially Model (3.2.1) might be used for marginal inference about µ where λ is

treated as a nuisance parameter in, for example, random effect or frailty models, see Mar-

riott (2002) and Chapter 5. The properties of Theorem 3.1 on the (µ, λ)-parameterization

guarantees asymptotic independence of µ̂ and λ̂ and simplifies determination of (µ̂, λ̂),

Cox and Reid (1987). Therefore, the profile likelihood method would be expected to be a

promising approach for marginal inference about µ when λ is away from boundaries. This
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intuition is confirmed by simulation exercises, see Section 3.5.2. To use such an approach in

general it is necessary that the analyst can compute the inferential effect of the boundary.

The rest of this chapter explores the geometric structure of the boundaries of LMMs and

the computational consequences of such a structure.

3.3 Computing the boundaries

In this section we compute the hard and soft boundaries for LMMs of order k = 4, as lower

order LMMs have trivial boundaries and typically LMMs with k > 4 do not add greatly

to modelling performance, see Marriott (2006).

3.3.1 Hard Boundary for the LMM of Poisson distribution

Consider the following LMM of the Poisson probability mass function p(x;µ),

g(x;µ, λ) = p(x;µ) +
∑4

j=2
λj p

(j)(x;µ), λ ∈ Λµ ⊂ R3. (3.3.2)

It is straightforward to show that

Eg(X) = Ep(X) = µ, V arg(X) = V arp(X) + 2λ2, (3.3.3)

illustrating that the λ parametrization of LMMs is tractable and intuitive as the model

in Equation (3.3.2) produces higher (lower) dispersion compared to p(x;µ). Furthermore,

as shown in Anaya-Izquierdo and Marriott (2007a), the other parameters also have inter-

pretable moment based meanings.

For model (3.3.2), the hard boundary is obtained by analyzing half spaces defined, for

fixed µ, by

Sx = {λ|A2(x)λ2 + A3(x)λ3 + A4(x)λ4 + 1 ≥ 0} , x ∈ Z+ (3.3.4)

where Aj(x)’s are polynomials of x defined by Definition 3.1. The space Λµ, for fixed

µ, will be the countable intersection of such half spaces over x ∈ {0, 1, . . . } i.e., we can

write Λµ =
⋂
x∈Z+ Sx. In fact, as we show in Proposition 3.1, the space can be arbitrarily

well approximated by a polytope.
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Proposition 3.1 For a LMM of a Poisson distribution, for each µ, the space Λµ can be

arbitrarily well approximated, as measured by volume for example, by a finite polytope.

Proof: See Section 3.5.3.

Figure 3.1 shows some issues related to this proposition. It shows two slices through

the space Λµ by fixing a value of λ2 (left panel) and λ3 (right panel). The shaded polytope

is a subset of Λµ in both cases. The lines are sets of the form

A2(x)λ2 + A3(x)λ3 + A4(x)λ4 + 1 = 0,

for different values of x ∈ {0, 1, 2, · · · }, with solid lines being support lines and dashed

lines representing redundant constraints. In R3 a finite number of such planes will define

a polytope which is arbitrarily close to Λµ. A second feature, which is clear from Fig. 3.1,

is that parts of the boundary look like they can be well approximated by a smooth curve

(Section 3.5.1), which has the potential to simplify computational aspects of the problem.

Figure 3.1: Left: slice through λ2 = −0.1; Right: slice through λ3 = 0.3. Solid lines rep-

resent active and dashed lines redundant constraints. For our model λ4 > 0 is a necessary

condition for positivity.
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3.3.2 Hard Boundary for the LMM of Normal

In the previous example the boundary was defined by a countable intersection of half-

spaces. Now we look at an example, the LMM of normal distributions, where we have

an uncountably infinite intersection of half spaces and we observe a smooth, manifold like

boundary. To compute this boundary we need the geometry of ruled and developable

surfaces in Section 1.5; specifically, the one of the envelope of a infinite family of one-

parameter planes, Definition 1.8.

Consider the LMM of a normal distribution N(µ, σ), where σ > 0 is fixed and known,

and for which, without loss of generality, we assume σ = 1. Let y = x− µ, then

Λµ = {λ |(y2 − 1)λ2 + (y3 − 3y)λ3 + (y4 − 6y2 + 3)λ4 + 1 ≥ 0,∀y ∈ R} (3.3.5)

is the intersection of infinite set of half-spaces in R3.

To understand the boundary of Λµ we first solve the equations in (1.5.2) to obtain the

characteristic lines and consequently the envelope of a one parameter set of planes in R3.

These planes, in λ-space, are parameterized by y ∈ R, and are the solutions of

(y2 − 1)λ2 + (y3 − 3y)λ3 + (y4 − 6y2 + 3)λ4 + 1 = 0.

The envelope of this family forms a ruled surface, and can be thought of as a self-intersecting

surface in R3. The surface partitions R3 into disconnected regions and one of these – the

one containing the origin (0, 0, 0) – is the set Λµ. Figure 3.2 shows the self-intersecting

surface and the shaded region is the subset which is the boundary of Λµ.

While the boundary of Λµ will have large regions which are smooth, it also has singular

lines and points. These are the self-intersection points of the envelope and it is at these

points where the boundary fails to be an embedded manifold, but is still locally smooth.

The general structure of the boundary is a non-smooth union of a finite number of smooth

components.

3.3.3 Soft Boundary calculations

The previous section looks at issues associated with the hard boundary calculations for

LMMs. In this section we look at similar issues connected with computing soft boundaries,
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λ2

λ3 λ4 λ4
λ3

λ2

Figure 3.2: Left: The hard boundary for the normal LMM (shaded) as a subset of a self

intersecting ruled surface (unshaded); Right: slice through λ4 = 0.2.

Definition 3.2, in moment spaces for true LMMs.

For visualization purposes, consider k = 3 and we use the normal example from the

previous section. The moment maps are given by

M3(f) = (µ, µ2 + σ2, µ3 + 3µσ2),

M3(g) = (µ, µ2 + σ2 + 2λ2, µ
3 + 3µσ2 + 6µλ2 + 6λ3).

Suppose I = [a, b], thenM3(f) defines a smooth space curve, ϕ : [a, b]→ R3. To construct

the convex hull, denoted by convh{M3(f), µ ∈ [a, b]}, all the lines between ϕ(a) and ϕ(µ)

and all the lines between ϕ(µ) and ϕ(b), for µ ∈ [a, b], are required. Each of the two

families of lines are attached to the curve and construct a surface in R3. Hence, we have

two surfaces each formed by a smooth curve and a set of straight lines (Figure 3.3, right).

Thus we have the following two ruled surfaces,{
γa(µ, u) = ϕ(µ) + uLa(µ), surface a,

γb(µ, u) = ϕ(µ) + uLb(µ), surface b,
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where u ∈ [0, 1], and for each µ ∈ [a, b], La(µ) is the line connecting ϕ(µ) to ϕ(a), and

similarly Lb(µ) is the line between ϕ(b) and ϕ(µ).

Figure 3.3: Left: the 3-D curve ϕ(µ); Middle: the bounding ruled surface γa(µ, u); Right:

the convex subspace restricted to soft boundary.

The soft boundary of the Poisson model can be characterized similarly.

3.4 Summary and Contributions

This chapter gives an introduction to some of the issues associated with computing the

boundaries of local mixture models. Understanding these boundaries is important if we

want to exploit the nice statistical properties of LMM, given by Theorem 3.1. The ‘cost’

associated with these properties is that boundaries will potentially play a role in inference

giving, typically, non-standard results. The boundaries described in this chapter have both

discrete aspects, (i.e. the ability to be approximated by polytopes), and smooth aspects

(i.e. regions where the boundaries are exactly or approximately smooth). We exploit the

geometric properties of the parameter space to compute them for two working examples,

normal and Poisson, by geometric objects such as polytopes, ruled and developable surfaces.

Section 3.5.4 presents parallel analyses revealing similar structure for LMM of Binomial

and exponential models to the working examples. It is an interesting and important open

research area to develop computational information geometric tools which can efficiently

deal with such geometric objects.
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3.5 Supplementary materials and proofs

3.5.1 Approximating general boundaries

Smooth Convex Body

Consider the full dimensional polytope

P =
{
p ∈ Rd

∣∣∣ 〈p, a(i)〉 ≤ bi, i = 1, · · · , n
}
. (3.5.6)

If 0 ∈ P , then bi 6= 0; hence we can normalize the inequalities and

P =
{
p ∈ Rd

∣∣∣ 〈p, α(i)〉 ≤ 1, i = 1, · · · , n
}

where α(i) = a(i)

bi
. Now let

F (p) =
1

2
log

(
n∑
i=1

e2〈p,α(i)〉

)
and for a positive real number t define

Qt = {p ∈ Rd
∣∣∣ F (tp) ≤ t}.

Finally, It can be shown that

1. Qt ⊂ P for all t > 0.

2. Qt is a convex body with a smooth boundary.

3. limt→∞Qt = P .

(See Bonnesen and Fenchel (1987), Batyrev (1992) and Ghomi (2004))

Example 3.1 Consider a full dimensional polygon with following vertices

α(1) = (1, 1) , α(2) = (−1, 1) , α(3) = (−1,−1) , α(4) = (1,−1).

Then the smooth approximation of the boundary is obtained by following the mapping,

Figure 3.4

F : R2 → R F (tp) =
1

2
log

(
4∑
i=1

e2〈tp,α(i)〉

)
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Figure 3.4: t = 10, 5, 2, 1, 0.9, 0.7 presented by red, blue, black, green, purple, gray.

Approximate by a Polytope

Another way of approximating boundaries is by convex polytopes constructed by the convex

hull of randomly selected boundary points. There are various algorithms for sampling

from a boundary. For instance, one way of taking a sample from a smooth surface, as

the boundary of a convex body K, according to its Gauss Curvature, is to take a uniform

sample form the surface of a sphere S ∈ K, then blow them off from the origin. For

different methods of uniform sampling from a d-dimensional sphere see Marsaglia (1972).

Alternatively, Narayanan and Niyogi (2008) provide and algorithm which generates an

“approximately” uniform sample form boundary of K ⊂ Rd (∂K for short) given a uniform

sample in K. Suppose, p = (p1, · · · , pn) is a uniform sample of K and choose ε > 0, then

1. Estimate, with confidence 1−ε, the smallest eigenvalue τ of A(K) = E[(p−p̄)(p−p̄)T ].

2. Set
√
t = ε

√
τ

32d
.

3. (a) Generate a p uniformly from K.

(b) Generate q ∼ Gaussian(p, 2tI).
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(c) Let l be the segment between p and q.

(d) If q /∈ K, output is l ∩ ∂K, else output ∅.

4. If the output is ∅, go to 3. Else accept it.

3.5.2 Profile Likelihood Simulation

Figure 3.5 reveals the behavior of the profile likelihood function of a LMM. In the interior of

the parameter space restricted by hard boundary, left panel, it seams to hold the normality

property, while close to the hard boundary this property breaks down (right panel). In

each example data are generated from a discrete mixture of normal densities.
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Figure 3.5: dashed (black) line presents N(µ, 1) and dash-dot (blue) the likelihood for

N(µ, σ̂). For the panel on left λ̂ is a interior point estimate, while in the panel on right it

is boundary point estimate.

3.5.3 Proofs

Proposition 3.1 For each µ, the space Λµ is obtained Λµ =
⋂
x∈Z+ Sx (equation 3.3.4),

where Aj(x) is a polynomial of x ∈ ℵ∪{0}, and A(x) = (A2(x), A3(x), A4(x)) is the normal

vector of the boundary plane of Sx, say Hx. Since the outward normal vector, −A(x), for

all x ∈ ℵ∪{0} do not point into a single half-space then the convex space Λµ is a bounded

polytope (Alexandrov (2005), p.20). Now suppose aj ≤ λj ≤ bj for real values aj < bj and

52



j = 1, 2, 3. Suppose we approximate Λµ by intersection of a finite number of half-spaces

Λµ ≈
x0⋂
x=0

Sx
⋂

S∞

where S∞ = {λ | λ4 ≥ 0}. That is, for some x0 large enough all Hx’s for x > x0 are

omitted form the intersection, eccept for the limiting suport plane. For a fixed value of

λ3 the difference between the area of the corresponding polygon (2-polytope) and the area

of the approximated polytope is bounded by (b2 − a2)h(λ3, x0, a2) which is the area of a

rectangle at the bottom of the polygon (Figure 3.6, left) and

h(λ3, x0, a2) = − 1

A4(x0)
{1 + A3(x0)λ3 + A2(x0)a2}.

To obtain the difference in the volume we need to integrate this area over all values of λ3;

that is,

Vd(x0) =

∫ b3

a3

(b2 − a2){h(λ3, x0, a2)} dλ3

=
(b2 − a2)

A4(x0)
{(b3 − a3)(1 + A2(x0)a2) + A3(x0)(b2

3 − a2
3)} (3.5.7)

Since all aj and bj’s are real values, A2(x0)
A4(x0)

→ 0 and A3(x0)
A4(x0)

→ 0 as x0 increases, then Vd(x0)

can get arbitrary small.

3.5.4 More on Hard Boundaries

Binomial Model

Consider a LMM of binomial distribution Bin(n, µ) with its mean parametrization. The

sample space is {0, 1 · · · , n}, hence Λµ is the intersection of n + 1 half-spaces determined

by non-negative integers not larger than n. Figure 3.7 presents the 2-dimensional slices

of Λµ through λ2 = −0.1 for LMMs of Bin(100, 3.5) (right) and Bin(10, 3.5) (left), where

each line represents a boundary plane projected onto λ2 = −0.1. Figure 3.7 illustrates

similar structure as of that for the LMM of a Poisson distribution.
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Figure 3.6: Left panel: gives a schematic graph for the proof. Middle and right panel

present actual lines representing the boundary planes for a fixed λ3 < 0 and a fixed λ3 > 0,

respectively.

Figure 3.7: 2-dimensional slices of Λµ through λ2 = −0.1. Left: LMM of Bin(100, 3.5),

the dashed lines represent the planes for x ≥ 50. Right: Bin(10, 3.5), and the planes for

x = 1, 2, 3, 4, 5 are redundant in this slice.

Normal with Unknown σ

Figure 3.8 presents the boundary, plotted by characteristic lines, from three different angles.

Black lines represent the characteristic lines and the active boundary, painted in red,

presents the hard boundary. Also, the 2-dimensional intersections of the boundary are

plotted in Figures 3.9 and 3.9.
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Figure 3.8: Different angles of Λµ

Figure 3.9: Different slices through λ2
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Figure 3.10: Different slices through λ4

Geometry of Λµ of LMM of a normal distribution with unknown σ is also of interest, as

the boundary planes clearly depend on the value of σ. Figure 3.11 illustrates that changing

value of σ does not alter the geometry of the Λµ, but just acts as a scaler and inflate the

subspace.

Figure 3.11: The hard boundary for σ = 1 (blue) vs σ = 1.2 (red)

Conjecture 3.1 Suppose Λσ
µ is the parameter subspace of the LMM of the normal model

N(µ, σ2). If σ1 < σ2, then Λσ1
µ ⊂ Λσ2

µ .
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Since normal distribution with unknown σ has two parameters, its LMM is an over-

parametrized model, which causes an identifiability problem. To see explicitly, consider a

LMM of a normal model with σ = 1 and an unmixed normal distribution with unknown

σ. For the LMM of N(µ, 1) we have

E
[
(X − µ)2

]
= 1 + 2λ2

E
[
(X − µ)3

]
= 6λ3

E
[
(X − µ)4

]
= 12λ2 + 24λ4 + 3 (3.5.8)

the same central moments for the unmixed model N(µ, σ2), unknown σ, are

E
[
(X − µ)2

]
= σ2, E

[
(X − µ)3

]
= 0, E

[
(X − µ)4

]
= 3σ4 (3.5.9)

equating these two sets of central moments we get a curve as a function of σ2 inside Λµ[
λ2(σ2) =

σ2 − 1

2
, λ3(σ2) = 0, λ4(σ2) = 3σ4 − 6σ2 + 3

]
That is up to forth moments we can represent the N(µ, σ2) by the LMM of N(µ, 1) with

characterized values of λj’s.

Exponential Model

Similar to the LMM of a normal distribution, the boundary of Λµ for an exponential distri-

bution is obtained by intersection of infinite number of half-spaces and can be constructed

by their envelope. Illustrated in Figure 3.12, the boundary of Λµ is a locally smooth self-

intersecting surface with singularity curves. The 2-dimensional slices of Λµ in Figure 3.13

illustrates the position of the singularities as points of the singularity curves. Inspection

shows that these points also correspond to quartics with two double roots, as in the normal

models.

3.5.5 Surface Parametrization and Optimization

Section 3.3.2 and 3.3.3 characterize the hard and soft boundaries of the LMM of a normal

distribution as ruled surfaces. Specifically, any point λ = (λ2, λ3, λ4) restricted to these
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Figure 3.12: Different angles of Λµ for f(x, µ) = µ e−µx

Figure 3.13: Different slices through λ4, for f(x, µ) = µ e−µx

surfaces is uniquely determined by a pair (x, u). In this section, we exploit this parameter-

ization for finding the maximum likelihood estimate of λ on these boundaries. Let D be

the envelope of the family of planes in Equation (3.3.5). For a fixed µ, the loglikelihood
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function restricted to D is a function of (x, u) as follows

lD(x, u) =
∑n

i=1
log
{
f(x;µ) +

∑4

j=2
λj(x, u) f (j)(xi;µ)

}
. (3.5.10)

However, a searching algorithm using the basis of coordinates (x, u) may not retain efficient

steps, since they are not orthogonal. Hence, we need to find an alternative parameterization

such that the corresponding basis are orthogonal. That is, instead of (x, u) parametrization,

any point on the D is characterized by (x1, x0) implying orthogonal directions.

Orthogonal Parametrization

For finding an orthogonal parameterization on a ruled surface, we directly use the geometry

of smooth space curves and their related geometric concepts such as, normal vectors,

binormal vectors, tangent planes and normal planes (Struik, 1988, ch.1).

At any regular point λ(x1) on C(x) the normal plane πx1 is orthogonal to C(x), and

t(x1) is the normal vector to πx1 . Also πx1 is spanned by the normal vector n(x1) and

binormal vectors b(x1) of C(x). In addition, for the normalized vectors t(x1), n(x1) and

b(x1), we have the following equations,

t(x1) · b(x1) = 0, n(x1) · b(x1) = 0, b(x1) · b(x1) = 1, (3.5.11)

where ”·” represents the regular inner product in Euclidean space. t(x1) and n(x1) are

obtained from the first and second derivatives of C(x) at x1, and , b(x1) can be calculated

from the equations in (3.5.11).

To obtain an orthogonal parametrization on D, we characterize each point on D using

the normal plane πx1 to C at a suitable point, say λ(x1). In other words, for a λ ∈ D,

represented by (x0, u0), we want to find (x1, v, w), where v and w are fully determined by x0

and x1 (see Figure 3.14). For any λ ∈ D, there is a normal plane πx1 which intersects C(x)

at λ(x1) and includes λ, and can be represented by both implicit and explicit equations as

follows,

πx1 =
{
λ ∈ R3

∣∣∣ λ = λ(x1) + v n(x1) + w b(x1), v, w ∈ R
}

πx1 =
{
λ ∈ R3

∣∣∣ (λ− λ(x1)) · t(x1) = 0
}
. (3.5.12)
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n(x1)

λx1
− λ(x1)

b(x1)

λ(x1)

λ(x0)

Lx0 Cx1

λx0

πx1

Figure 3.14: A schematic graph for visualizing the orthogonal reparametrization

The intersection of πx1 and D is a plane curve on πx1 , say Cx1 , such that it can be also

spanned by the orthonormal bases n(x1) and b(x1), considering λ(x1) as the origin of πx1 .

On the other hand, according to ruled surface parameterization, λ is represented by a pair

(x0, u0) as follows

λ = λ(x0) + u0 t(x0), (3.5.13)

which is a point on the line

Lx0 = λ(x0) + u t(x0). (3.5.14)

Therefore, λ can be determined as the intersecting point of πx1 and Lx0 ; that is, we need

to find u0 such that λ satisfies equation (3.5.13). For a fixed x1, if the equation in (3.5.13)

is substituted in the second equation in (3.5.12), after some algebra, u0 is obtained as a

function of x0 as follows,

u(x0) =
(λ(x1)− λ(x0)) · t(x1)

t(x0) · t(x1)
. (3.5.15)

Hence, λ can be written as

λx0 = λ(x0) + u(x0) t(x0), (3.5.16)

which is also spanned by n(x1) and b(x1), thus we can write

λx0 = λ(x1) + vx1(x0)n(x1) + wx1(x0) b(x1), (3.5.17)
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where

vx1(x0) = (λx0 − λ(x1)) · n(x1), wx1(x0) = (λx0 − λ(x1)) · b(x1).

Therefore, for any λ ∈ D there is a unique pair (x1, x0) where

λ(x1, x0) = λ(x1) + vx1(x0)n(x1) + wx1(x0) b(x1), x0, x1 ∈ R (3.5.18)

According to this new orthogonal parametrization the loglikelihood function in Equation

(3.5.10) can be written as follows,

lD(x1, x0) =
∑n

i=1
log
{
f(x;µ) +

∑4

j=2
λj(x1, x0) f (j)(xi;µ)

}
(3.5.19)

Figure 3.15 shows D with the new parameterization and the contours of lD(x1, x0) for a

sample of size n = 20. The surface is in three pieces as the result of the singularity points

in the edge of regression. However, each piece is quite well behaved on which any gradient

based searching algorithm can be employed for finding the maximum point.

Figure 3.15: Contour plat of the loglikelihood function on the boundary surface D. Left:

for −1 < x0 < 1 where x0 = 0, represents the cusp in the edge of regression. Middle: for

x0 > 1. Right: the whole surface where it splits as the result of the two asymptotes at

x0 = ±0.871.
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Chapter 4

Local and global robustness in

conjugate Bayesian analysis

4.1 Introduction

Statistical analyses are often performed under certain assumptions which are not directly

validated. Hence, there is always interest in investigating the degree to which a statistical

inference is sensitive to perturbations of the model and data. Specifically, in a Bayesian

analysis for which conjugate priors have been chosen, the sensitivity of the posterior to

prior choice is an important issue. A rich literature on sensitivity to perturbations of data,

prior and sampling distribution exists, see for example: Cook (1986), McCulloch (1989),

Lavine (1991), Ruggeri and Wasserman (1993), Blyth (1994), Gustafson (1996), Critchley

and Marriott (2004), Linde (2007), Copas and Eguchi (2001, 2010) and Zhu et al. (2011).

For instance, by maximizing a likelihood based divergence function, Cook (1986) intro-

duces a version of influence analysis that finds a direction to which a putative base model

is most sensitive; and, as an application, investigates the influence of case deletion in a

standard linear regression model. Critchley and Marriott (2004) suggest a complementary

method to Cook (1986) showing that data could be exploited for both selecting a suitable

base model, rather than assuming it, and learning about the most effective perturbation.
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In Gustafson (1996) local sensitivity of posterior expectations to a linear and nonlinear

prior perturbation is studied. By adopting a mapping from the space of perturbations to

the space of certain posterior expectation, the direction at which the posterior expectation

has the maximum sensitivity to prior perturbation is obtained. In Linde (2007) a multi-

plicative term is used to perturb the base prior or likelihood model, and Kullback-Leibler

divergence and χ2-divergence functions are utilized for assessing local sensitivity. In this

paper, local sensitivity is approximated by Fisher information of mixing parameter in an

additive and a geometric mixing. Copas and Eguchi (2001, 2010) study robustness of like-

lihood inference with respect to model perturbation and departure from ignorability and

randomness assumptions. They define the space of perturbation as a neighborhood around

the base model with a small radius measured by Kullback-Leibler divergence. They show

that inference under a misspecified model leads to a first order bias term.

In this chapter we consider both local and global sensitivity analyses with respect to

perturbations of a conjugate base prior. We aim for four important properties for our

method. Firstly, carefully selected perturbation spaces whose structure is such that it

allows the analyst to select the generality of the perturbation in a clear way. Secondly, we

want the space to be computationally tractable, hence we focus on convex sets inside linear

spaces which have a clear geometric structure. Thirdly, in order to allow for meaningful

comparisons, we want the spaces to be consistent with elicited prior knowledge. Thus if

a subject matter expert indicates that a prior moment or quantile has a known value –

or if a constraint such as symmetry is appropriate – then all perturbed priors should be

consistent with respect to this information. Finally, we are going to base our perturbation

spaces on mixtures over standard families. The motivation here is that the mixture allows

us to explore if the analyst has been over-precise in the specification of the prior by allowing

for unthought of heterogeneity. In general, spaces of mixture models are complex but we

build on the work of Chapter 2 which shows how discrete mixtures of local mixture models

can construct a very flexible but tractable space, see Section 4.2.1.

Sensitivity analysis with respect to a perturbation of the prior, which is the focus

of this chapter, is commonly called robustness analysis (Insua and Ruggeri, 2000). In

robustness analysis it is customary to choose a base prior model and a plausible class of

perturbations. The influence of a perturbation is assessed either locally, or globally, by
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measuring the divergence of certain features of the posterior distribution. For instance,

Gustafson (1996) studies linear and non-linear model perturbations, and Weiss (1996) uses

a multiplicative perturbation to the base prior and specifies the important perturbations

using the posterior density of the parameter of interest. Common global measures of

influence include divergence functions (Weiss, 1996) and relative sensitivity (Ruggeri and

Sivaganesan, 2000).

In local analysis, the rate at which a posterior quantity changes, relative to the prior,

quantifies sensitivity (Gustafson, 1996; Linde, 2007; Berger et al., 2000). Gustafson (1996),

which we follow closely, obtains the direction in which a certain posterior expectation has

the maximum sensitivity to prior perturbation by considering a mapping from the space

of perturbations to the space of posterior expectations. In Linde (2007), the Kullback-

Leibler and χ2 divergence functions are utilized for assessing local sensitivity with respect

to a multiplicative perturbation of the base prior or likelihood model. They approximate

the local sensitivity using the Fisher information of the mixing parameter in additive and

geometric mixing.

The approach of this chapter to defining the perturbation space extends the linear

perturbations studied in Gustafson (1996) in a number of ways. We do not require the

same positivity condition, rather using one which is more general and returns naturally

normalized distributions. Further, our space is highly tractable, due to intrinsic linearity

and convexity. Finally it is clear, with our formulation, how to remain consistent with

prior information which may have been elicited from an expert. The cost associated with

this generalization is the boundary defined by (4.2.1) in Section 4.2.1 and the methods

we have developed to work with it. We can also compare our method with the geometric

approach of Zhu et al. (2011) which uses a manifold based approach. Our, more linear, ap-

proach considerably improves interpretability and tractability while sharing an underlying

geometric foundation.

In the examples of this chapter we work with our perturbation space in three ways.

Similarly to Gustafson (1996) and Zhu et al. (2011) in Example 4.1 we look for the worst

possible perturbation, both locally and globally. In Example 4.2 and 4.3 we add constraints

to the perturbation space, representing prior knowledge, and again look for maximally bad

local and global perturbations. In Example 4.4, we marginalize over the perturbation space
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– rather than optimizing over it – as a way of dealing with the uncertainty of the prior.

Finally, Example 4.5 applies the methodology on linear regression model using real data.

In Section 4.2, the perturbation space is introduced and its properties are studied.

Sections 4.3 and 4.4 develop the theory of local and global sensitivity analysis. Section

4.5 describes the geometry of the perturbation parameter space and proposes possible

algorithms for quantifying local and global sensitivity. Section 4.6 presents a number of

simulated and real examples. The proofs are sketched in Section 4.8.2.

4.2 Perturbation Space

4.2.1 Theory and Geometry

We construct a perturbation space using the following definitions (Marriott, 2002; Marriott,

2006; Chapter 2). Also, see Chapter 1 for a review on convex and differential geometry.

Definition 4.1 For the family of mean parameterized models f(x; θ) the perturbation space

is defined by the family of models f(x; θ, λ) such that,

(i) f(x; θ, 0) = f(x; θ) for all θ.

(ii) For fixed θ the f(x; θ0, λ) space is closed under arbitrary mixing.

While other parameterizations can be used, we choose the mean parametrization because it

leads to a clear interpretation as we will be working with functions of posterior expectations.

A natural way to implement Definition 4.1 is to extend the family f(x; θ) by attaching to

it, at each θ0, the subfamily f(x; θ0, λ), which is finite dimensional and spanned by a set

of linearly independent functions vj(x; θ0), j = 1, · · · , k. Thus, the subfamily f(x; θ0, λ)

can be defined as the linear space f(x; θ0) +
∑
λjvj(x; θ0), where λj is a component of

the vector λ. For f(x; θ0, λ) to be a naturally normalized density, we need two further

restrictions: (i)
∫
vjdx = 0, and (ii) the λ parameters must be restricted such that each

subfamily is non-negative for all x. This defines the parameter space as

Λθ0 =
{
λ | f(x; θ0) +

∑k

j=1
λjvj(x; θ0) ≥ 0, for all x

}
. (4.2.1)
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Note the space Λθ0 ⊂ Rk, is an intersection of half-spaces and consequently is convex.

Clearly, to construct such a perturbation space, the functions νj must be selected. A

particular form of Definition 4.1 with naturally specified νj’s is the family of local mixture

models, Section 1.7.4.

Definition 4.2 For a mean, θ, parametrized density f(x; θ) belonging to the regular expo-

nential family, the local mixture of order k is defined as

h(x;λ, θ) = f(x; θ) +
∑k

j=1
λj f

(j)(x; θ), λ ∈ Λθ (4.2.2)

where λ = (λ1, · · · , λk) and f (j)(x; θ) = ∂j

∂θj
f(x; θ). Also, Λθ, for any fixed and known θ, is

a convex space defined by a set of supporting hyperplanes.

For regular exponential family
∫
f (j)(x; θ0) dx = 0, and as shown in Morris (1982), for

natural exponential family, the terms f (j)(x; θ0)’s are all Fisher orthogonal; hence, this

family is identifiable in all λj parameters when θ is fixed at some known θ0.

While local mixtures have very attractive inferential properties – unlike general mixture

models – they are restrictive in the sense that they are only ‘local’. This restriction can be

completely removed – while still keeping attractive inferential properties – by considering

finite mixtures of local mixtures, Chapter 2.

Definition 4.3 Let θi be a set of user selected, and suitably separated, grid-points as de-

fined in Chapter 2, then a finite mixture of local mixtures is defined as the convex combi-

nation
K∑
i=1

ρih(x;λi, θi),

where λi ∈ Λθi.

In this chapter, for simplicity, we mostly consider the single component case, but point out

that the generalisation of Definition 4.3 is always possible.
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4.2.2 Prior Perturbation

Suppose the base prior model is π0(µ; θ), the probability (density) function of a natural

exponential family with the hyper-parameter θ.

Definition 4.4 The perturbed prior model corresponding to π0(µ; θ) is defined by

π(µ, λ; θ) := π0(µ; θ) +
∑k

j=1
λj π

(j)
0 (µ; θ)

= π0(µ; θ)
{

1 +
∑k

j=1
λj qj(µ, θ)

}
, λ ∈ Λθ (4.2.3)

where λ = (λ1, · · · , λk) is the perturbation parameter vector, and qj(µ, θ) =
π
(j)
0 (µ;θ)

π0(µ;θ)
are

polynomials of degree j.

In Definition (4.4), π0 is perturbed linearly, similar to the linear perturbation

τ(·, π0, u
∗) = π0(·) + u∗(·), u∗(·) > 0 (4.2.4)

studied in Gustafson (1996), but with a different positivity condition, and is, as we shall

show, very interpretable for applications. Definition (4.4) can also be seen as the multi-

plicative perturbation model π(µ, λ; θ) = π0(µ, ; θ)h∗(µ;λ, θ) studied in Linde (2007).

4.3 Local Sensitivity

In this section we study the influence of local perturbations, defined inside the perturbation

space, on the posterior mean. Similar to Gustafson (1996) we obtain the direction of sensi-

tivity using the Fréchet derivative of a mapping between two normed spaces. Throughout

the rest of the chapter we denote the sampling density and base prior by f(x;µ) and

π0(µ; θ), respectively, and x = (x1, · · · , xn) represents the vector of observations.

Lemma 4.1 Under the prior perturbation (4.2.3), the perturbed posterior model is

πp(µ, λ|x; θ) =
π0
p(µ|x, θ)
ξ(λ, θ)

{
1 +

∑k

j=1
λj qj(µ, θ)

}
, (4.3.5)
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with λ ∈ Λθ, ξ(λ, θ) = 1 +
∑k

j=1 λj E
0
p [qj(µ, θ)] > 0, where π0

p(µ|x, θ) and E0
p(·|x) are the

posterior density and posterior mean of the base model.

The following lemma characterizes the lth moment of the perturbed posterior model. Note

that, throughout the rest of the chapter, for simplicity of exposition, we suppress the

explicit dependence of ξ, qj, π
0
p and πp on θ.

Lemma 4.2 The moments of the perturbed posterior distribution are given by

Ep(µ
l|x, λ) =

1

ξ(λ)

{
E0
p(µ

l) +
∑k

j=1
λj A

l
j(x)

}
(4.3.6)

where λ ∈ Λθ and Alj(x) = E0
p(µ

l qj(µ)|x).

To quantify the magnitude of perturbation we exploit the size function as defined in

Gustafson (1996), i.e., the Lp norm of the ratio u∗

π0
, for p < ∞, with respect to the in-

duced measure by π0. Accordingly, the size function for u(µ) =
∑k

j=1 λj π
(j)
0 (µ; θ) is

size(u) =

[
Eπ0

(∣∣∣∑k

j=1
λj qj(µ)

∣∣∣)p] 1
p

,

which, (i) is a finite norm and (ii) is invariant with respect to change of the dominat-

ing measure and also with respect to any one-to-one transformation on the sample space.

Clearly, size(u) is finite if the first k + p moments of π0(µ, θ) exist. In addition, prop-

erty (ii) holds by use of change of variable formula and the fact that for any one-to-one

transformation m = ν(µ) we have π̄
(j)
0 (m, θ)/π̄0(m, θ) = π

(j)
0 (µ, θ)/π0(µ, θ).

For a mapping T : U → V , where U and V are, respectively, the perturbations space

normed with size(·), and the space of posterior expectations normed with absolute value,

the Fréchet derivative at u0 ∈ U is defined by the linear functional Ṫ (u0) : U → V satisfying

||T (u0 + u)− T (u0)− Ṫ (u0)u||V = o(||u||U),

in which Ṫ (u0)u is the rate of change of T at u0 in direction u. Let Cov0
p(·, ·) be the

posterior covariance with respect to the base model, Theorem 4.1 expresses Ṫ (u0)u as a

linear function of λ, at u0 = 0 which corresponds to the base prior model.
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Theorem 4.1 Ṫ (0)u is a linear function of λ as

ϕ(λ) =
∑k

j=1
λj Cov

0
p (µ, qj(µ)), λ ∈ Λθ. (4.3.7)

4.4 Global sensitivity

Here we use two commonly applied measures of sensitivity – the posterior mean differ-

ence and Kullback-Leibler divergence function – for assessing the global influence of prior

perturbation on posterior mean and prediction, respectively. The following theorem char-

acterizes the difference between the posterior mean of the base and perturbed models as a

function of λ.

Theorem 4.2 Let Ψ(λ) = Ep(µ|x, λ)−E0
p(µ|x) represents the difference between the pos-

terior expectations, then

Ψ(λ) =
1

ξ(λ)
ϕ(λ), λ ∈ Λθ. (4.4.8)

The function in (4.4.8) behaves in an intuitively natural way, for as λ→ 0 we have ξ(λ)→ 1,

and consequently Ψ(λ) behaves locally in a similar way to ϕ(λ).

To assess the influence of the prior perturbation on prediction, we also quantify the

change in the divergence in the posterior predictive distribution. As an illustrative example,

suppose the sampling distribution and the base prior model are respectively N (µ, σ2) and

N (θ, σ2
0). The posterior predictive distribution for the base model is N (µπ, σ

2
π+σ2), where

µπ =
θσ2 + nσ2

0x̄

nσ2
0 + σ2

, σ2
π =

σ2σ2
0

nσ2
0 + σ2

.

Lemma 4.3 The posterior predictive distribution for the perturbed model is

gp(y) =
1

ξ(λ)

{
g0
p(y) + Γ

∑k

j=1
λj E

?[qj(µ)]
}

(4.4.9)

in which, g0
p(y) is the posterior predictive density for the base model, Γ is a function of

(y, x, n, θ0, σ
2
0, σ

2) and E?(·) is the expectation with respect to a normal distribution.
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For probability measures P0 and P1 with the same support space, S, and densities g0
p(·)

and gp(·), respectively, the Kullback-Leibler divergence functional is defined by,

DKL(P0, P1) =

∫
S

log
[
g0
p(y)/gp(y)

]
g0
p(y) dy (4.4.10)

which satisfies the following conditions (see Amari (1990)),

1. DKL(P0, P1) ≥ 0, with equality if and only if P0 ≡ P1.

2. DKL(P0, P1) is invariant under any transformation of the sample space.

Theorem 4.3 Kullback-Leibler divergence between g0
p(·) and gp(·) as a function of λ ∈ Λθ

is

DKL(λ) =

∫
S

log
[
g0
p(y)

]
g0
p(y) dy + log[ξ(λ)]

−
∫
S

log
(
g0
p(y) + Γ

∑k

j=1
λjE

?[qj(µ)]
)
g0
p(y)dy, (4.4.11)

4.5 Estimating λ

Similar to the earlier chapters we fix k = 4. To obtain the values of λ which find the

most sensitive local and global perturbations, as described in Section 4.1, we apply an

optimization approach to the functions (4.3.7), (4.4.8) and (4.4.11). ϕ(λ) is a linear function

of λ on the space Λθ which presents the directional derivative of the mapping T at λ = 0.

Thus, for obtaining the maximum direction of sensitivity, called the worst local sensitivity

direction in Gustafson (1996), we need to maximize ϕ(λ) over all the possible directions at

λ = 0 restricted by the boundary of Λθ. However, Ψ(λ) and DKL(λ) are smooth objective

functions on the convex space Λθ, for which we propose a suitable gradient based constraint

optimization method that exploits the geometry of the parameter space. By Definition 4.2,

for a fixed known θ, the space Λθ is a non-empty convex subspace in Rk with its boundary

obtained by the following infinite set of hyperplanes

H =
{
λ
∣∣∣ 1 +

∑k

j=1
λj qj(µ) = 0 ; µ ∈ R

}
.
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Specifically, for the normal example with order k = 4, H is the infinite set of planes of the

form

Pλ(z) = zλ1 +

(
z2 − 1

σ2
0

)
λ2 +

(
z3 − 3z

σ2
0

)
λ3 +

(
z4 − 6z2

σ2
0

+
3

σ4
0

)
λ4 + 1. (4.5.12)

where z = µ−θ
σ2
0

. Lemma 4.4 describes the boundary of Λθ as a smooth immersed manifold

which can have self intersections.

Lemma 4.4 The boundary of Λθ is a manifold immersed in R4 Euclidean space.

In addition, the interior of Λθ, which guarantees positivity of π(µ, λ; θ) for all µ ∈ R, can be

characterized by the necessary and sufficient positivity conditions on general polynomials

of degree four. Comprehensive necessary and sufficient conditions are given in Barnard

and Child (1936) and Bandy (1966), see Section 4.8.1.

Lemma 4.5 The function ϕ(λ) attains its maximum value at the gradient direction ∇ϕ if

it is feasible; otherwise, the maximum direction is the direction of the orthogonal projection

of ∇ϕ onto the boundary plane corresponding to λ4 = 0.

DKL(λ) and Ψ(λ) are smooth functions which can achieve their maximum either in the

interior or on the smooth boundary of Λθ. Therefore, optimization shall be implemented

in two steps: searching the interior using regular Newton-Raphson algorithm, and then

searching the boundary using a generalized form of Newton-Raphson algorithm on smooth

manifolds, see Section 5.2.2.

4.6 Examples

We consider five examples, where the first three study local and global sensitivity in the

normal conjugate model using the optimization approaches developed earlier. In Example

4.4, we address sensitivity analysis in finite mixture models with independent conjugate

prior models for all parameters of interest. Rather than using an optimization approach,
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for this example, a Markov Chain Monte Carlo method is used and sensitivity of the

posterior distribution of each parameter is assessed. The last example studies the effect

of prior perturbation in a hierarchical linear regression model based on real data. For

demonstrating the effect of the perturbation we compare the posterior distributions before

and after perturbation and also use the relative difference between the Bayes estimates

defined by

d =
|E0

p(µ)− Eλ̂
p (µ)|

std0
p(µ)

in which E0
p(µ) and Eλ̂

p (µ) are the Bayes estimates with respect to the base and perturbed

models, respectively, and std0
p(µ) is the posterior standard deviation under the base model.

Example 4.1 A sample of size n = 15 is taken from N (1, 1), and the base prior is N (2, 1).

The estimate λ̂Ψ = (−0.323, 1.44,−0.218, 0.441) is obtained from minimizing Ψ(λ), and the

corresponding relative discrepancy in Bayes estimate is d = 1.19; that is, the resulted change

in posterior expectation is 119% of the posterior standard deviation of the base model. The

corresponding density plots of both models are given in Figure 4.1. For a local analysis,

we obtained the unit vector λ̂ϕ which maximizes the directional derivative ϕ(λ). Figure

4.2 shows the posterior density displacement corresponding to the perturbation parameter

λα = αλ̂ϕ for different values of α > 0, as well as the boundary point λb in direction of λ̂ϕ.

The corresponding relative differences in posterior expectation are d = 0.09, 0.15, 0.3, 0.55.

Hence, additionally to obtaining the worst direction, these values suggest that how far one

can perturb the base prior along the worst direction so that relative discrepancy in posterior

mean estimation is less than, say 50%. These results imply that although conjugate priors

are convenient in applications, they might cause significant bias relative to other plausible

priors.

Example 4.2 The central moments of the perturbed prior model, in Definition (4.4), are

linearly related to the perturbation parameter λ. Specifically, for the normal model the

mean, second and third central moments are

µ̄π = θ + λ1, µ̄(2)
π = σ2 + 2λ2 − λ2

1 ,

µ̄(3)
π = 6λ3 + 2λ3

1 − 6λ1λ2 (4.6.13)
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Figure 4.1: respectively, plots for sample, and posterior densities of the based (solid) and

perturbed (dashed) model corresponding to λ̂Ψ.

Figure 4.2: Posterior density displacement corresponding to λ = αλ̂ϕ for α = 0.1, 0.15, 0.25

and the boundary point at the maximum direction.

Clearly, λ1 modifies the mean value, (λ1, λ2) adjust variance, and (λ1, λ2, λ3) add skewness

to the normal base model. Assuming λ1 = 0, guarantees the perturbed model with its mean

unchanged, and restricting λ1 = λ3 = 0 returns a symmetric perturbed model with same

mean as the base prior model.

In this example we fix λ1 = 0 and find the most effective local and global perturba-

tions for the similar data in Example 4.1. The estimate λ̂D = (1.821,−0.011, 0.482) and

λ̂Ψ = (1.836, 0.016, 0.481) are obtained from maximizing DKL(λ) and minimizing Ψ(λ), re-

spectively. The corresponding relative discrepancies in the Bayes estimate are respectively

d = 1.19, 1.2; that is, the resultant changes in posterior expectation are respectively 119%

and 120% of the posterior standard deviation of the base model. Also, the corresponding

posterior distributions are plotted in Figure 4.3. Considering the fact that we constructed

the perturbation space as a subfamily of a local mixture model which are ‘close’ to the base
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prior model, these maximum global perturbations are obtained by searching over a reason-

ably small space of prior distributions which are only different from the base prior by their

tail behaviour.

Figure 4.3: (a),(b) correspond to λ̂Ψ and λ̂D, under λ1 = 0, respectively, including the base

(solid) and perturbed posterior (dashed). (c) presents posterior densities of based model

(Base), and perturbed models for λ̂Ψ (Rst psi) and λ̂D (Rst KL) under λ1 = 0, and the

full perturbed posterior model (Full pert) from Example 4.1.

For local analysis, we obtained the unit vector λ̂ϕ which maximizes the directional

derivative ϕ(λ). Figure 4.4 shows the posterior density displacement by perturbation pa-

rameter λα = αλ̂ϕ for different values of α > 0, as well as the boundary point λb in

direction of λ̂ϕ. The corresponding relative differences in posterior expectation are d = 0.1,

0.16, 0.25, 0.38, 0.49, 0.56.

Example 4.3 Suppose that elicited prior knowledge requires a symmetric prior after per-

turbation, then the perturbation space must be modified by the extra restriction λ3 = 0,

which gives zero skewness. Consequently, we should be exploring the restricted space,

say Λ0
θ, instead of Λθ, for the worst direction and maximum global perturbation. Λ0

θ is

a 2-dimensional cross section obtained from intersection of Λθ with the plane defined by

λ1 = λ3 = 0. Hence the boundary properties are preserved. For the same data in Example

4.2, sensitivity in the worst direction returns d = 0.1, 0.16, 0.26, 0.42, 0.57, 0.64 (Figure

4.5). Also, minimizing Ψ(λ)|λ1=λ3=0 returns λ̂0
Ψ = (1.837, 0.494).
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Figure 4.4: (a)-(e) posterior densities of based models and perturbed model (dashed)

corresponding to λ = αλ̂ϕ where α = 0.05, 0.07, 0.1, 0.13, 0.15 and (f) for boundary point

in direction of λ̂ϕ.

Two observations can be made from these results. First, as in Example 4.2, although

we have restricted the perturbation space further, there are still noticeable discrepancies in

posterior densities caused by perturbation along the worst direction. Second, the results in

Example 4.3 agree with that in Example 4.2, where the estimate of λ3 does not seem to be

significantly different from zero, and the rest of two parameter estimates are quite close in

both examples.

Figure 4.6 presents the behavior of the base prior and perturbed prior models corre-

sponding to Examples 4.1-4.3, demonstrating smaller maximal perturbation in the prior in

Examples 4.2 and 4.3, where the perturbation parameter is restricted, compared to Example

4.1.

Example 4.4 (Finite Mixture) Using a missing value formulation, the likelihood func-

tion of the mixture model ρN (x;µ1, σ1) + (1− ρ)N (x;µ2, σ2) can be written as follows

L =
∏2

j=1
ρnj
∏

i∈Aj
φ(xi;µj, σj),

where Aj = {i|wi = j}, and wi is the latent missing variable for xi such that p(wi = 1) = ρ,

and p(wi = 2) = 1 − ρ. The marginal conjugate base prior models are µj ∼ N (θj, σ0j),

σ−2
j ∼ Γ(kj, τj), and ρ ∼ Beta(α, β), (j = 1, 2).
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Figure 4.5: (a)-(e) posterior densities of based models and perturbed model (dashed)

corresponding to λ = αλ̂ϕ where α = 0.05, 0.07, 0.1, 0.13, 0.15 and (f) for boundary point

in direction of λ̂ϕ.

Figure 4.6: Presents all the perturbed prior models in Example 4.1 (Prior4), Example 4.2

(Prior3 and PriorKL for λ̂Ψ and λ̂D) and Example 4.3 (Prior2)

In this example the base prior model can be split into five independent components and,

correspondingly, five independent perturbation spaces are naturally defined. Unlike previous

examples, where we find the maximum local and global perturbations, here we explore each

marginalized perturbation space by generating perturbation parameters and observing their

influence on the posterior of parameters of interest. We keep λ1 = 0 for all perturbed

priors, because of the identifiability issue discussed above.
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Specifically, we use Markov Chain Monte Carlo sampling for estimating the marginal

posterior distribution of all parameters of interest corresponding to the base and perturbed

models. Each perturbation parameter is generated, independently from the rest, through

a Metropolis algorithm with a uniform proposal distribution. Figure 4.7 shows the his-

tograms of generated sample for an observed data set of size n = 15 from 0.4N (x;−1, 1) +

0.6N (x; 1, 1), and the hyper-parameters are set to be θ1 = −1.5, θ2 = 0.5, τ1 = τ2 = 1,

k1 = k2 = 2 and α = β = 1. Comparing the two histograms for each parameter, the pos-

terior models for ρ, µ1 and µ2 show significant differences between the base and perturbed

models, as they are extremely skewed for µ1 and µ2. The marginal relative differences are

d = 0.87, 0.44, 0.60, 0.48, 0.45, respectively for (ρ, µ1, µ2, σ1, σ2). These differences, how-

ever, are not as significant as those in the previous examples since they do not correspond

to maximum perturbations; instead, they return the average influences over all generated

perturbation parameter values.
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Figure 4.7: First row: estimates from the base model; second row: estimates form the

perturbed model

Previous examples have explored the perturbation space in three ways using simulated

data. In Example 4.1 we looked for the worst possible perturbation, both locally and glob-

ally. In Examples 4.2 and 4.3 we added constraints to the perturbation space, representing
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prior knowledge, and again looked for maximally bad local and global perturbations. Fi-

nally, in Example 4.4, we marginalize over the perturbation space – rather than optimizing

over it – as a way of dealing with the uncertainty of the prior.

The following example studies influence of prior perturbation in hierarchical linear

regression model.

Example 4.5 (linear regression) The full data looks at 919 households in Minnesota.

For each, log-radon (y), the logarithm of the amount of radioactive radon in the house,

and floor, an 0-1 indicator variable showing whether the house has a basement or not, are

recorded (Gelman et al., 2007). Since with a large sample size the data dominates the role

of any prior information we take a sample of size 15 from households, for which a simple

linear regression with model y = α+βx returns α̂ = 1.4, (sd = 0.15) and β̂ = −1.27, (sd =

0.34). We want to investigate the influence of perturbation of the base prior β ∼ N(−1, 1)

on the Bayes estimate of the linear model. Simple posterior likelihood maximization for

the base model gives α̂b = 1.06 and β̂b = −0.92. Maximum perturbation of the prior is

obtained via maximizing the Ψ function, and the estimates based on maximization of the

perturbed posterior loglikelihood are α̂p = 0.66 and β̂p = −0.39. The absolute differences

|α̂p− α̂b| = 0.4 and |β̂p− β̂b| = 0.53, which are bigger than the reported standard deviation

for the ordinary regression model, may imply that the perturbation has significant effect on

the estimation of the parameters.

4.7 Summary and Contributions

This chapter uses the model space introduced in Chapter 2 for extending a prior model

and defining a perturbation space in the Bayesian sensitivity analysis. This perturba-

tion space is well-defined, tractable, and consistent with the elicited prior knowledge, the

three properties that improve the methodology in Gustafson (1996). The perturbation

neighborhood defined in this chapter can be considered as the −1 counterpart of the +1

perturbation neighborhood in Copas and Eguchi (2001, 2010). Here, however, the “radius”

for the neighborhood is defined naturally by the hard boundary, and the discrete mixture

of the LMM components takes one step further to defining a much bigger perturbation
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space. We study both local and global sensitivity in conjugate Bayesian models. In the

local analysis the worst direction of sensitivity is obtained by maximizing the directional

derivative of a functional between the perturbation space and the space of posterior ex-

pectations. For finding the maximum global sensitivity, however, two criteria are used; the

divergence between posterior predictive distributions and the difference between posterior

expectations. Both local and global analyses lead to optimization problems with a smooth

boundary restriction

4.8 Supplementary materials and proofs

4.8.1 Positivity Conditions

Consider the following quartic

p(x) = a x4 + 4b x3 + 6c x2 + 4d x+ e

Barnard and Child (1936) show that the necessary and sufficient positivity conditions

for p(x) with x ∈ R are {
∆ > 0, e > 0, a > 0

H ≥ 0, or 12H2 < I2

where

∆ = I3 − 27J2, H = ac− b2, I = ae− 4bd+ 3c2, J = ace+ 2bcd− ad2 − c3 − eb2.

Bandy (1966) modified these conditions as
I > 0, e > 0, a > 0

I
√
I + 3

√
3J > 0

H + a
√

I
12
> 0.

(4.8.14)
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4.8.2 Proofs

Lemma 4.1

πp(µ|x, λ) =
π(µ, λ)f(x;µ)

g(x, λ)
(4.8.15)

where

g(x, λ) =

∫
π(µ, λ; θ)f(x;µ) dµ

=

∫
f(x;µ) π0(µ; θ)

{
1 +

∑k

j=1
λj qj(µ, θ)

}
dµ (4.8.16)

=

∫
f(x;µ)π0(µ; θ) dµ

+
∑k

j=1
λj

∫
qj(µ, θ)f(x;µ)π0(µ; θ) dµ

= g(x) + g(x)
∑k

j=1
λj

∫
qj(µ, θ)π

0
p(µ|x, θ) dµ (4.8.17)

= g(x)
{

1 +
∑k

j=1
λj E

0
p [qj(µ, θ)]

}
(4.8.18)

Since f(x;µ)π0(µ; θ) = g(x)π0
p(µ|x, θ) and g(x) =

∫
f(x;µ)π0 (µ; θ) dµ

f(x;µ)π0(µ; θ) = g(x)π0
p(µ|x, θ) , g(x) =

∫
f(x;µ)π0(µ; θ) dµ.

where, g(x) is the marginal density of sample in the base model. Hence,

πp(µ, λ|x; θ) =
f(x;µ)π0(µ; θ)

{
1 +

∑k
j=1 λj qj(µ, θ)

}
g(x)

{
1 +

∑k
j=1 λj E

0
p [qj(µ, θ)]

}
=

g(x) π0
p(µ|x, θ)

{
1 +

∑k
j=1 λj qj(µ, θ)

}
g(x)

{
1 +

∑k
j=2 λj E

0
p [qj(µ, θ)]

}
=

π0
p(µ|x, θ)
ξ(λ, θ)

{
1 +

∑k

j=1
λj qj(µ, θ)

}
, λ ∈ Λθ

with ξ(λ, θ) = 1 +
∑k

j=1 λj E
0
p [qj(µ, θ)].

ξ(λ, θ) = 1 +
∑k

j=1
λj E

0
p [qj(µ, θ)]
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Also ξ(λ, θ) > 0, since 1 +
∑k

j=1 λj qj(µ, θ) > 0, for all µ ∈ R and λ ∈ Λθ, and ξ(λ, θ) =

E0
p [1 +

∑k
j=1 λj qj(µ, θ)].

Lemma 4.2 Result follows by direct calculation and using the fact that,

Alj(x) :=

∫
µlqj(µ) π0

post(µ|x) dµ = E0
p [µ

lqj(µ)] (4.8.19)

then for the normal model and l = 1, 2 we have

A1
2(x) =

1

σ4
0

[
µ(3)
π − 2θµ(2)

π + (θ2 − σ2
0)µπ

]
A2

2(x) =
1

σ4
0

[
µ(4)
π − 2θµ(3)

π + (θ2 − σ2
0)µ(2)

π

]
A1

3(x) =
1

σ6
0

[
−µ(4)

π + 3θµ(3)
π + 3(σ2

0 − θ2)µ(2)
π + (−3θσ2

0 + θ3)µπ
]

A2
3(x) =

1

σ6
0

[
−µ(5)

π + 3θµ(4)
π + 3(σ2

0 − θ2)µ(3)
π + (−3θσ2

0 + θ3)µ(2)
π

]
A1

4(x) =
1

σ8
0

[
µ(5)
π − 4θµ(4)

π + 6(θ2 − σ2
0)µ(3)

π + (12θσ2
0 − 4θ3)µ(2)

π + (3σ4
0 − 6σ2

0θ
2 + θ4)µπ

]
A2

4(x) =
1

σ8
0

[
µ(6)
π − 4θµ(5)

π + 6(θ2 − σ2
0)µ(4)

π + (12θσ2
0 − 4θ3)µ(3)

π + (3σ4
0 − 6σ2

0θ
2 + θ4)µ(2)

π

]
since for j = 2, 3, 4 we have

q2(µ) =
(µ− θ)2

σ4
0

− 1

σ2
0

q3(µ) = −(µ− θ)3

σ6
0

+
3(µ− θ)

σ4
0

q3(µ, θ) = −(µ− θ)3

σ6
0

+
3(µ− θ)

σ4
0

q4(µ) =
(µ− θ)4

σ8
0

− 6(µ− θ)2

σ6
0

+
3

σ4
0

(4.8.20)

where

µ(2)
π = µ2

π + σ2
π, µ(3)

π = µ3
π + 3σ2

πµπ, µ(4)
π = µ4

π + 6σ2
πµ

2
π + 3σ4

π

µ(5)
π = µ5

π + 10σ2
πµ

3
π + 15σ4

πµπ, µ(6)
π = µ6

π + 15σ2
πµ

4
π + 45σ4

πµ
2
π + 15σ6

π
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Theorem 4.1 (Gustafson, 1996, Result 8)

For any bounded h(·) let

Ihu =

∫
h(µ)w(·, π, u) dµ

then, for a function r(µ), bounded likelihood model l and perturbed prior w(·, π, u) =

π(·) + u(·) the posterior expectation mapping is defined by

T rl u =

∫
r(µ) l w(·, π, u) dµ∫
l w(·, π, u) dµ

=
Irlu

Ilu
.

According to the definition of Gateaux derivative at u0 in the direction of u we have

İh(u0)u = lim
ε→0

=

∫
h(µ)w(µ, π, u0 + εu) dµ−

∫
h(µ)w(µ, π, u0) dµ

ε

= lim
ε→0

=

∫
h(µ) [π + u0 + εu] dµ−

∫
h(µ) [π + u0] dµ

ε

= lim
ε→0

ε
∫
h(µ)u dµ

ε
=

∫
h(µ)u dµ (4.8.21)

Now the derivative of the mapping T at u0 = 0 is obtained as follows,

Ṫ rl (0)u =
İrl(0)u

Il0
− Irl0

Il0
· İl(0)u

Il0

=

∫
r l u dµ∫
l π dµ

−
∫
r l π dµ∫
l π dµ

·
∫
l u dµ∫
l π dµ

=

∫
r u
π
l π dµ∫
l π dµ

−
∫
r l π dµ∫
l π dµ

·
∫

u
π
l π dµ∫
l π dµ

= E0
p(r

u

π
)− E0

p(r) · E0
p(
u

π
)

= Cov0
p(r,

u

π
) (4.8.22)

Theorem 4.2 By direct calculation and use of equation (4.8.19)

Lemma 4.3

gp(y) =

∫
f(y;µ)πp(µ, λ|x) dµ (4.8.23)
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is the convolution of N (µ, σ2) and N (µπ, σ
2
π). Since,

(y − µ)2

σ2
+

(µ− µπ)2

σ2
π

=

(
µ− σ2

πy+σ2µπ
σ2+σ2

π

)2

σ2σ2
π

σ2+σ2
π

+
(y − µπ)2

σ2 + σ2
π

hence, the posterior predictive distribution for base model is N (µπ, σ
2
π + σ2) and (4.4.9) is

obtained by direct calculation, where,

Γ =
1√

2π(σ2
π + σ2)

exp

{
− (y − µπ)2

2(σ2
π + σ2)

}
and E?(·) is expectation with respect to µ according to the following normal distribution

N
(
σ2
πy + σ2µπ
σ2
π + σ2

,
σ2
πσ

2

σ2
π + σ2

)
Theorem 4.3 Use of Lemma 4.3 and direct calculation finishes the proof.

Lemma 4.4 Implied by direct application of the implicit function theorem, Rudin, 1976,

p.225. Let σ0 = 1 in equation (4.5.12) for convenience. From solving Pλ(z) = 0 and

P ′λ(z) = 0, simultaneously for λ2 and λ3, we get a smooth parametrization for the boundary

as follows

λ2(z, λ1, λ4) =
(z6 − 3z4 + 9z2 + 9)λ4 − 2z3λ1 − 3z2 + 3

z4 + 3

λ3(z, λ1, λ4) = −(−z2 − 1)λ1 + (2z5 − 4z3 + 6z)λ4 − 2z

z4 + 3
(4.8.24)

Hence, by implicit function theorem (Rudin, 1976, p.225) the boundary of Λθ0 is a smooth

surface (Manifold) embedded in R4 by

S1 : R× U× → R4

S1(z, λ1, λ4) = [λ1, λ2(z, λ1, λ4), λ3(z, λ1, λ4), λ4] (4.8.25)

Lemma 4.5 ∇ϕ = (a1, a2, a3, a4), is a vector originated at λ = 0, where aj = Cov0
p (µ, qj(µ)).

If it is feasible then it clearly gives the maximum direction. However, if it is not feasible

then a4 ≤ 0 since the condition a4 > 0 is necessary for feasibility. Thus, the direction of

the orthogonal projection of ∇ϕ onto the boundary plane corresponding to λ4 = 0 is the

closest we get to a maximum and feasible direction.
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Chapter 5

Generalizing the Frailty Assumptions

in Survival Analysis

5.1 Introduction

Frailty models are important for analyzing survival time data and have been studied by

many researchers; for example, Klein (1992), Hougaard (1986), Clayton (1978) and Gorfine

et al. (2006). One way of deriving frailty survival models, which we do not follow here, is

to formulate the frailty factor as a single parameter, θ, presenting the association between

time-to-event data of two correlated events, in which θ = 1 is interpreted as being no cor-

relation while θ > 1 and θ < 1 demonstrate positive and negative association, respectively

(Hu et al., 2011; Nan et al., 2006; Clayton and Cuzick, 1985;Clayton, 1978; Oakes, 1982).

An alternative approach for modeling heterogeneity as unobserved covariate, is to add

the frailty variable as a multiplicative factor to the baseline hazard function. In Hougaard

(1986) a positive stable family is assumed for the frailty variable and the marginal sur-

vival time is assumed to have an exponential or Weibull distribution or be unspecified.

Various hazard functions, including Cox’s regression model, have been generalized by as-

suming a gamma frailty variable with mean equal to 1 and variance η, see Nielsen et al.

(1992) and Klein (1992). They utilize the Expectation-Maximization algorithm for es-
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timation of parametric and nonparametric accumulated hazard function and regression

coefficients. Further, Gorfine et al. (2006) proposed a different approach for estimation in

non-parametric frailty survival models, which is applicable for any parametric model with

finite mean on the frailty variable.

Although, different models have been assumed for the multiplicative frailty variable,

(Gorfine et al., 2006; Hougaard, 1984; Hougaard, 1986), one of the most frequently used

distributions is the gamma distribution, because of its tractable properties (Klein, 1992;

Nielsen et al., 1992; Vaupel et al., 1979). For example Martinussen et al. (2011) used

gamma frailty in the Aalen additive model, and Zeng et al. (2009) studied transformation

models with gamma frailty for multivariate survival analysis, in which η = 0 (no frailty)

is also allowed. In addition, Abbring and Van Den Berg (2007) establish the fact that

conditional frailty among survivors is always gamma distributed if and only if the frailty

distribution is regularly varying at zero.

In this chapter, we consider Cox’s regression model (Cox, 1972) with a multiplicative

frailty factor on which no specific model is imposed, as biased estimators might be obtained

if the frailty model is misspecified (Abbring and Van Den Berg, 2007; Hougaard, 1984).

Similar to a general mixture model problem, the frailty survival models with unknown

frailty distribution, suffers from identification issues. Although, when all the covariates

variables are continuous with continuous distribution, Eleber and Ridder, 1982 shows that

given the distribution of the time duration variable, all the three multiplicative factors are

identified, his theoretical result does not solve the identifiability issue in the general sense.

For instance, when there is a discrete covariate then identifiability requires the correspond-

ing regression coefficient to be limited to a known compact set (Horowitz, 2010, ch.2).

Consequently, the estimation method developed using unknown transformation models in

Horowitz (1999), although useful for econometric models, has the same limitation.

In this chapter, however, we use the discrete mixture of local mixture models introduced

in Definition 2.2, as they are always identifiable and estimable, and their geometric and

inferential properties allow for fast and efficient estimation algorithms. They give the right

parametrization and the tool for learning the frailty model without any further information

about its structure.
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Notation, motivation and the main result of the chapter, including our proposed method,

the local mixture method, are presented in Section 5.2 for a fixed hazard frailty model.

We estimate the regression coefficients through a two step optimization process, the first

of which is implemented using our proposed algorithm. The algorithm comprises using a

gradient search method on smooth manifolds embedded in finite dimensional Euclidean

spaces. The methodology is generalized to non-parametric baseline hazard in Section 5.3.

Section 5.4 is devoted to simulation studies, illustrating that the local mixture method re-

turns similar bias, but larger standard deviation for the estimates compared to the to the

existed Expected-Maximization method in Klein (1992) when a gamma frailty is assumed.

In Section 5.5, rhDNAse data is analyzed and the results are compared, for both treatment

and placebo group, with the method in Klein (1992).

5.2 Methodology

Throughout this section, we follow the notation and definitions in Lawless (1981) and

Gorfine et al. (2006). Let (T 0
i , Ci), for i = 1, · · · , n, be the failure time and censoring time

of the ith individual, and also let X be the n × p design matrix of the covariate vectors.

Define Ti = min(T 0
i , Ci) and δi = I(T 0

i < Ci), where I(·) is an indicator function. In

addition, associated with the ith individual, an unobservable covariate θi, the frailty, is

assumed, where θi’s follow some distribution, Q.

Suppose, at least initially, that the marginal lifetime distribution given frailty is an

exponential model with rate λ0. Then the baseline hazard function is λ0(t) = λ0. Adapting

the regression model in Cox (1972), the hazard function for the ith individual conditional

on the frailty θi takes the following form,

λi = θi λ0 exp{Xiβ}, (5.2.1)

where Xi is the ith row of X and β = (β0, · · · , βp−1) is a p-vector parameter. For the ith

individual with the hazard function in Equation (5.2.1), the cumulative hazard function

and survival function are, respectively, defined as

Λi(t) =

∫ t

0

λi(u) du, Si(t) = exp{−Λi(t)}. (5.2.2)
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Following the arguments in Gorfine et al. (2006), we assume that the frailty θ is independent

of X, and further that, given X and θ, censoring is independent and noninformative for

θ and (λ0, β). Then, for the exponential failure time, the full likelihood function for the

parameter vector (λ0, β) is written as

L(λ0, β) =
n∏
i=1

∫ [(
θ λ0 e

Xiβ
)δi

exp
{
−θ Tiλ0 e

Xiβ
}]
dQ(θ), (5.2.3)

and the log likelihood function is

l(λ0, β) =
n∑
i=1

δi[log λ0 +Xiβ] +
n∑
i=1

log

∫
θδi exp{−θλ0 Ti e

Xiβ} dQ(θ) (5.2.4)

5.2.1 Local Mixture Method

As mentioned in Section 1, it is common in the literature to assume a gamma model, with

EQ(θ) = 1 and variance η, for θ and apply the Expectation-Maximization algorithm for

maximizing the loglikelihood function in Equation (5.2.4). However, since frailty model

misspecification causes biased coefficient estimation, we relax the gamma restriction and

assume a more general family of distributions for the frailty. Essentially, we use Definition

2.2 and substitute the integral term in equation (5.2.4) by a discrete mixture of LMMs on

a set of grid points ϑ1, · · ·ϑL. For consistency with the assumption EQ(θ) = 1 and also

for simplicity, in this chapter we only use one component at ϑ = 1; but generalization is

always possible. For instance the set of grid points can be selected in a ways that their

average is 1.

Let

f(Ti, β, θ) = θδi exp{−θλ0 Ti e
Xiβ},

then the integral term in Equation (5.2.4) can be written as∫
Θ

f(Ti, β, θ) dQ(θ) = f(Ti, β, ϑ) +
k∑
j=1

λj f
(j)(Ti, β, ϑ) +O

(
εb
k+1
2
c
)
, (5.2.5)

where f (j)(Ti, β, ϑ) = ∂
∂θj
|θ=ϑ f(Ti, β, θ), and λ = (λ1, · · · , λk) is a parameter vector, the

last term characterizes the error of approximation, and ε > 0 represents the variation of Q

(Marriott, 2002).
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The model in Equation (5.2.5) is similar to the local mixture models, equation (1.7.10)

in Section 1.7.4. For any fixed ϑ, the finite dimensional parameter vectors λ represent the

frailty distribution through its central moments. Local mixing extends a parametric model

to a larger and more flexible space of densities which holds nice geometric and inferential

properties. Identifiability is achieved by fixing ϑ = 1 and Fisher orthogonality of the higher

derivatives as discussed in Chapter 2.

Using only one component LMM for learning all the information in a general frailty

distribution seems to be a bit restrictive. However, as seen in Example 2.1 a single com-

ponent LMM is quite flexible for modeling contaminated data, where the latent variation

is obvious. In fact, our simulation studies show that LMMs can even produce multimodal

models. In addition, as mentioned earlier, generalization is always possible by adding more

LMM components if the results are not satisfactory for one data set.

Substituting Equation (5.2.5) in Equation (5.2.4) we obtain

l(λ0, β, λ) =
n∑
i=1

(δi[log λ0 +Xiβ] + log f(Ti, β, ϑ))

+
n∑
i=1

log
(

1 +
∑k

j=2
λj Aj(δi, yi)

)
, λ ∈ Λϑ (5.2.6)

in which Aj(δi, yi) = f (j)(Ti,β,ϑ)
f(Ti,β,ϑ)

, and yi = λ0Ti exp{Xiβ} is positive. Assuming ϑ = 1,

we maximize Equation (5.2.6) when estimating β, where λ0 and λ are considered as nui-

sance parameters which are required to be obtained in advance. Thus, a profile likelihood

optimization method is employed. That is, we first maximize for λ over Λϑ to obtain λ̂

and then maximize lp(β) = l(λ̂0, β, λ̂) to estimate β. λ̂0 is imputed into the loglikelihood

function at each iteration. A method for computing λ̂0 is described in Section 5.3, for a

more general situation.

5.2.2 Maximum Likelihood Estimator for λ

The λ parameter space, Λϑ, is characterized as the space of all λ’s such that, for all y > 0

1 +
∑k

j=1
λj Aj(δi, y) > 0, δi = 0, 1 (5.2.7)

88



where, Aj(δi, y), as a function of y > 0, is a polynomial of degree j. For k = 4, the

inequality in Equation (5.2.7) is equivalent to the simultaneous positivity conditions of the

following two quartics,

p(y) = λ4y
4 − λ3y

3 + λ2y
2 − λ1y + 1,

q(y) = λ4y
4 − (4λ4 + λ3)y3 + (3λ3 + λ2)y2 − (2λ2 + λ1)y + λ1 + 1. (5.2.8)

for which we can prove the following result.

Lemma 5.1 If Λ1 and Λ2 are the space of all λ = (λ1, λ2, λ3, λ4) such that p(y) and q(y)

are positive on y > 0, respectively, then Λ2 ⊂ Λ1.

Proof: First note that λ4 > 0 is a necessary condition hence P (y) has a minimum. Also

q(y) = p(y) − p′(y), p(0) = 1 and p′(0) = 0. For all y > 0, If q(y) > 0, then p(y) > p′(y).

Since p(y) attains its minimum value at some y1 for which p′(y1) = 0, therefore, p(y) ≥
p(y1) > p′(y1) = 0. If y1 = 0, we have p(y) > p(0) = 1.

Lemma 5.1 implies that Λϑ can be characterized just by investigating the positivity domain

of q(y), for which the following theorem is required (see Ulrich and Watson (1994)).

Theorem 5.1 For the quartic polynomial p(x) = ax4 + bx3 + cx2 + dx+ e, with a > 0 and

e > 0, define α = b a−3/4e−1/4, β = c a−1/2e−1/2, γ = d a−1/4e−3/4,

∆ = 4[β2 − 3αγ + 12]3 − [72β + 9αβγ − 2β3 − 27α2 − 27γ2]2

L1 = (α− γ)2 − 16(α + β + γ + 2)

L2 = (α− γ)2 − 4(β+2)√
β−2

(
α + γ + 4

√
β − 2

)
.

Then, p(x) ≥ 0 for all x > 0 if and only if

• β < −2 , ∆ ≤ 0 , α + γ > 0

• −2 ≤ β ≤ 6 , (∆ ≤ 0 , α + γ > 0) or (∆ ≥ 0 , L1 ≤ 0)
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• 6 < β , (∆ ≤ 0 , α + γ > 0) or (α > 0 , γ > 0) or (∆ ≥ 0 , L2 ≤ 0)

Due to the existence of hard boundaries, obtaining λ̂ is a nonstandard inference prob-

lem. A suitable maximization algorithm should be flexible enough to converge to a turning

point λ̂ in the interior if λ̂ ∈ Λϑ; otherwise, it must converge to the unique boundary point

with the highest likelihood, say λ̂b (Berger, 1987, p.337). In the rest of this section, we pro-

pose a gradient based optimization algorithm, utilizing the geometry of Λϑ and concavity

of the local mixture term in Equation (5.2.6) for finding the global maximum value λ̂ or λ̂b

in two major steps. The following lemma reveals the geometry of the boundary surface of

Λϑ, as a manifold immersed in Rk, where k is the order of the corresponding local mixture

model.

Lemma 5.2 The boundary of the parameter space Λϑ, shown by Λb
ϑ, is an immersed man-

ifold in R4.

Proof: see Section 5.7.2.

Algorithm

0: Start with an initial value λ(0) ∈ Λϑ.

1: Run Newton-Raphson algorithm, until either algorithm converges to λ̂ ∈ Λϑ (then

stop) or the first update λ(j) /∈ Λϑ is obtained (go to step 2).

2: Find the boundary point λ? on the line segment between λ(j−1) and λ(j), let λ(j−1) =

λ? and run the following steps.

2a: Find the gradient gj and the supporting plane tj at λ(j−1).

2b: Update λ(j) = λ(j−1) + (ΠjH
−1
j )(Πjgj), (Figure 5.1, middle panel).

2c: Update λ? by finding the boundary point on the line segment in the direction

of Nj, the normal vector of tj, passing through λ(j) (Figure 5.1, right panel).

2d: Let λ(j−1) = λ? and repeat (2a)-(2c), until convergence; that is ||Ptj (gj) || → 0.
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Step 1, obviously applies the well understood Newton-Raphson algorithm on the interior of

Λϑ as a subspace of Rk. In Step 2, however, a generalization of Newton’s method on smooth

manifolds is exploited. Applying Lemma 2 and using the technical details in Section 5.7.1

we can prove the following result.

Theorem 5.2 The algorithm either converges to λ̂ quadratically in step(1), or there is an

open neighborhood V ⊂ Λb
ϑ of λ̂b, that for any λ? ∈ V it converges to λ̂b in quadratic order,

in step(2).

Proof: see Section 5.7.2.

5.3 Non-parametric Hazard

Although our working example in Section 2 has a fixed hazard rate and exponential life-

time model, the methodology can be generalized to other parametric marginal lifetime

distributions with known hazard function up to a finite dimensional parameter vector.

Furthermore, identifiability property of local mixture models allows the methodology to be

generalized for nonparametric hazard function. When the baseline hazard function is an

unknown time-dependent function λ0(t), the hazard function for ith individual takes the

form

λi(t) = θi λ0(t) exp{Xiβ
T}. (5.3.9)

The log likelihood function in Equation (5.2.4) has the following form

l(β,Q) =
n∑
i=1

δi[log λ0(Ti) +Xiβ] +
n∑
i=1

log

∫
θδi exp{−θΛ0(Ti) e

Xiβ} dQ(θ)

and after approximating the integral using a local mixture we obtain

l(β, λ) =
∑n

i=1
(δi[log λ0(Ti) +Xiβ] + log f(Ti, β, ϑ))

+
∑n

i=1
log
(

1 +
∑k

j=1
λj Aj(δi, yi)

)
, λ ∈ Λϑ (5.3.10)
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where yi = Λ0(Ti) exp{Xiβ}. Therefore, the geometric and inferential properties of the

model stays the same and we can proceed as in previous section.

To impute λ0(t) and Λ0(t) we can use the same argument in Gorfine et al. (2006) to

provide a recursive estimate of the cumulative hazard function using the fact that for two

consecutive failure times T(i) and T(i+1) we have Λ0(T(i+1)) = Λ0(T(i)) + ∆Λi. Substituting

this recursive equation in the log likelihood function in (5.3.10), considering the conventions

in Breslow (1972) and taking partial derivative with respect to ∆Λi we obtain

∂l

∂∆Λi

=
1

∆Λi

−
n∑
`=i

eX`β +
P ′(eXiβ[Λ0(T(i)) + ∆Λi])

P (eXiβ[Λ0(T(i)) + ∆Λi])
(5.3.11)

which is a function of just ∆Λi when Λ̂0(T(i)) is given at time T(i+1), where P (·) is a

polynomial of degree four with its coefficients as linear functions of (λ1, λ2, λ3, λ4) and

P ′(·) is its derivative with respect to ∆Λi. When the denominator is not zero, equation

(5.3.11) is a polynomial of degree five which can be solved numerically for ∆Λi. Note

that when there is no frailty factor; that is, λ = (0, 0, 0, 0) then the last term in equation

(5.3.11) is zero, and the estimate of the cumulative hazard function reduces to the form in

Johansen (1983) which is the estimate in Klein (1992) with ω̂ = 1.

5.4 Simulation Study

In this section a simulation study is conducted to compare the local mixture method with

the method in Klein (1992), which assumes a gamma model with mean 1 and variance

η, for the frailty and applies the Expectation-Maximization algorithm. The Expectation-

Maximization method is a repetitive optimization method while in local mixture method

the optimization is performed in just two steps; hence, it is faster.

We let C = 0.01, τ = 4.6 and follow a similar set-up as found in Hsu et al. (2004).

For each individual the event time is T = [− log(1 − U){θ exp{βX}}−1]−1/τC−1, where

X ∼ N(0, 1), U ∼ uniform[0, 1]. The censoring distribution is N(100, 15), and frailty is

assumed to follow a gamma distribution with mean 1 and variance η. Table 5.1 shows

the bias and standard deviation for the estimates of the regression coefficient using both
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methods for three different values of η. It is illustrated that the LMM method which does

not use any information about the frailty model returns almost similar bias as the EM

method. However, the standard deviation for the estimates in LMM method are almost

twice as big as that for the EM method.

EM LMM

n η β bias std bias std

200 0.5 log 3 -0.057 0.18 -0.048 0.43

200 0.7 log 3 -0.056 0.21 -0.038 0.40

200 1 log 3 -0.117 0.22 -0.094 0.41

Table 5.1: Bias and standard deviation of coefficient estimates, when frailty is generated

from Γ( 1
η
, η).

Although the results produced by the LMM method are promising in terms of the bias

of estimator, the following two reasons may cause the bigger standard deviations compared

to the EM method. First, the LMM method clearly uses no information about the shape

of the frailty distributions, and it just exploits its flexibility to extract that form the data.

Second, we obtain λ and β only once in the LMM method, while the EM method iterates

between η and β until convergence.

Table 5.2 shows a similar result for η = 0.5, where we let the LMM method run more

than one iteration between λ and β, similar to the EM method, until convergence. The

results do not show any significant changes in the variance of estimation. This observation

may be explained by the Fisher orthogonality of parametrization in LMMs, meaning that

asymptotically the parameters do not affect each other.

The simulation study in this chapter is rather unfinished, and more works needs to be

done. Adding more components to the LMM approximation might be one way of returning

better estimates. In addition, we want to run similar simulation studies for misspecified

frailty models and compare the results between the two methodologies.
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EM LMM

n η β bias std bias std

200 0.5 log 3 -0.06 0.18 -0.02 0.38

Table 5.2: Bias and standard deviation of coefficient estimates, when frailty is generated

from Γ( 1
η
, η). λ and β are iterated until convergence.

5.5 Example

The data was reported based on a clinical trial for assessing the influence of rhDNase on the

occurrence of respiratory exacerbations among patients with cystic fibrosis (Fuchs et al.,

1994). Among the 645 patients, 324 were assigned to a placebo group using a double-

blind randomized design. For both treatment and placebo group, we study the time to

the first occurrence of respiratory exacerbation with two baseline measurements of forced

expository volume, FEV1 and FEV2 as covariates.

As illustrated in both Tables 5.3 and 5.4 the estimate of the coefficients do not show

significant differences between the two methods.

Method β̂1 β̂2

EM 0.114 -0.142

LMM 0.083 -0.104

Table 5.3: Coefficient estimates for placebo group of rhDNAse data using both methods

with unspecified hazard function are obtained.

Method β̂1 β̂2

EM 0.039 -0.061

LMM -0.003 -0.092

Table 5.4: Coefficient estimates for the treatment group of rhDNAse data.
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5.6 Summary and Contributions

This chapter studies Cox’s proportional hazard model with unobserved frailty for which

no specific distribution is assumed. The likelihood function, which has a mixture structure

with an unknown mixing distribution, is approximated by a local mixture model, which is

always identifiable and estimable. The nuisance parameters in the approximating model,

which represent the frailty distribution through its moments, lie in a convex space with a

smooth boundary characterized as a smooth manifold. Using differential geometric tools, a

new algorithm is proposed for maximizing the likelihood function restricted by the smooth

yet non-trivial boundary. The regression coefficients, the parameters of interest, are esti-

mated in a two step optimization process, unlike the existing methodology in Klein (1992)

which assumes a gamma assumption and uses the Expectation-Maximization approach.

An early stage simulation study shows that, the LMM method gives as good estimation

bias as that in EM method when frailty factor is generated form a gamma model; however,

it returns a bigger variance for the estimators. The Simulation study and data example in

this section is not complete and some extra works need to be done.

5.7 Supplementary materials and proofs

5.7.1 The Algorithm Description

To clarify the technical background and convergence proof of the algorithm, the following

paragraphs are in order. For convenience we present the local mixture term in (5.2.6) by

lϑ(λ).

In step (2a), tj is tangent to Λb
ϑ at λ(j−1) = λ? and can be obtained as follows. If we collect

the quartic q(y) in (5.2.8) with respect to λ?1, λ?2, λ?3 and λ?4, we obtain the supporting

plane with the normal vector (1 − y?, y?2 − 2y?, −y?3 + 3y?2, y?4 − 4y?3), where y? is the

real multiple root of q(y).

In step (2b), Πj = I − NjN
T
j presents the matrix of orthogonal projection onto tan-

gent plane tj, with respect to Euclidean inner product, in which I is the identity matrix.
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Therefore, for gj and Hj the gradient vector and hessian matrix of lϑ(λ) at λ(j−1), the first

and second covariant derivatives are Πjgj and ΠjHj, respectively.

Step (2c), describes the so called exponential -also called retraction- mapping R :

TΛb
ϑ → Λb

ϑ, where TΛb
ϑ represents the tangent bundle of Λb

ϑ, the disjoint union of tj’s

(See Shub 1986). Let Rj be the restriction of R to tj, then Rj is a one-to-one mapping

that maps the vector (ΠjH
−1
j )(Πjgj) ∈ tj to a curve between λ(j−1) and Rj(λ

(j)) on Λb
ϑ

and holds the following assumptions,

1. Rj is defined in an open interval Urj(0j) ∈ tj, about 0j of radius rj > 0, where 0j is

the representation of λ(j−1) in tj.

2. Rj(λ̇) = λ if and only if λ̇ = 0j.

3. R is smooth and DRj(0j) = idtj , since Rj(λ
(j−1)) = λ(j−1).

λ(j)

λ(0)

λ̂
λ̂

gj

tj

Πjgj

tj

λ(j)

Nj

λ̂b
λ̂b

λ?

λ(j−1)

Πjgj
λ?

Figure 5.1: Schematic visualization of the algorithm steps

5.7.2 Proofs

Proof: (Lemma 5.2) For k = 4 (without loss of generality), Λb(ϑ) can be parametrized

using the solution set of equations q(y) = 0, q′(y) = 0, as functions of λ1, λ2, λ3 and λ4 for

all y > 0, which retain the locus of the intersecting line for any two consecutive supporting

planes (Do Carmo 1976 ch.2). Direct calculation shows that Λb(ϑ) can be obtained by the

following smooth mapping,

C : (0,∞)× U × V → R4, (y, λ1, λ4) = [λ1, λ2(y, λ1, λ4), λ3(y, λ1, λ4), λ4]
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where, U, V ⊂ R is an open interval and

λ2(y, λ1, λ4) =
(y5 − 6y4 + 12y3)λ4 + (2y2 − 6y + 6)λ1 − 3y + 6

y(y2 − 4y + 6)
(5.7.12)

λ3(y, λ1, λ4) =
(2y5 − 10y4 + 16y3)λ4 + (y2 − 2y + 2)λ1 − 2y + 2

y2(y2 − 4y + 6)
(5.7.13)

Therefore, the implicit function theorem (Rudin, 1976, p.224) implies that Λb(ϑ) is a

smooth 3-manifold.

In general, the boundary of parameter space of local mixture models may not be smooth

manifolds; hence, in those situations either the possible singularity points must be charac-

terized or other optimization approaches must be applied for finding maximum on bound-

ary.

Proof: (Theorem 5.2) Consider the following two cases,

(I) λ̂ ∈ Λϑ

Since lϑ(λ), for any fixed ϑ, is concave and satisfy the second-order sufficient conditions,

then step (1) of the algorithm converges to the unique global maximum λ̂ in quadratic

order, for any initial point λ(0) inside the interior of Λϑ (see Nocedal & Wright 2006 p.45).

(II) λ̂ /∈ Λϑ

Since Λϑ is closed and convex in a finite dimensional vector space, there is a unique λ̂b ∈ Λϑ

with minimum distance from λ̂, and consequently lϑ(λ̂b) ≥ lϑ(λ) for all λ ∈ Λϑ, since lϑ(λ)

is concave. Moreover, the vector λ̂bλ̂ is orthogonal to the supporting plane tb, tangent to

Λϑ at λ̂b; hence, (Πbgb) is a zero vector in the tangent vector space tb.

In addition, according to Lemma 2, Λb(ϑ), is an Immersed manifold in Rk. According to

notations in Shub (1986), step 2 can be presented by the following mapping

S : Λb(ϑ)→ Λb(ϑ)

λ(j−1) → Rj

(
λ(j−1) , (ΠjH

−1
j )(Πjgj)

)
(5.7.14)

where, by condition (3), S is smooth. Also, if (ΠjH
−1
j ) exists then by conditions (1) and

(2), the fixed points of S (i.e, S(λ) = λ) are the zeros of the covariant gradient, and at

fixed points the derivative of S vanishes.
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Chapter 6

Discussion and Future Work

6.1 Discussion

The earlier chapters of this thesis exploit geometric tools along with the useful geometric

and inferential properties of LMMs to develop novel methodologies for dealing with non-

standard statistical problems. Flexibility, identifiability and interpretability of LMMs allow

for building large and flexible classes of models which are naturally defined for a wide range

of statistical models. Such flexible models are applied to build a perturbation space in

Chapter 4 which includes the base prior model as a member, and to model lifetime data

with an unobservable frailty variable in Chapter 5, where the the hidden information is

extracted by learning the parameters of a LMM. In addition, because of the geometric

properties, such as linearity and convexity, fast and efficient algorithms are designed for

estimating the parameters.

The major cost to all these incredible properties is the fact that the parameter space

includes two types of boundaries, which affect existence of MLE or its nice asymptotic

properties. We show in Chapter 3 how the geometric properties and underlying structure

assist in computing these types of boundaries by smooth or non-smooth objects.

Chapters 2-5 represent the four distinct papers as contributions of the thesis. However,

there are still possible generalizations and extensions to some of the papers. For instance,
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two possible computational problems, equally important for application purposes, are ex-

tending the computational methodology in Chapters 4 and 5 to the discrete mixture of

LMMs with more than one component. Essentially, such computational tools can be de-

veloped by combining the theories and computational algorithms in Chapter 2 with the

methodology developed in Chapters 4 and 5.

6.2 Future Work

6.2.1 Hypothesis Testing for Mixture of LMMs

The discrete mixture of local mixture models (DMLMM), introduced in Chapter 2, is shown

to be identifiable, estimable, flexible, and having well-defined number of components. We

also characterized their boundaries in Chapter 3 and proposed a fast numerical algorithm

for their parameter estimation in Chapter 2. One major difficulty in working with mixture

models is related to their lake of identifiability which influences any inference and hypoth-

esis testing on this family, particularly for determining the number of components of a

mixture model. One consequence is that the distribution of the test statistic usually has

a complicated form, if a closed form is attainable (Hall and Stewart, 2005; Li and Chen,

2010; Maciejowska, 2013).

The geometric and inferential properties of DMLMM, as well as their ability to approx-

imate the general family of mixture models, motivate alternative approaches for solving

these problems. The goal is to provide methodologies for hypothesis testing, inference, and

modeling mixture data which are significantly less complicated both mathematically and

computationally. We have seen in Chapter 2 that a fast and efficient version of EM algo-

rithm does the computational task. Regarding to the theory, the motivation lies within

the geometric properties similar to those of the exponential family, affine property and

convexity. The exponential family is flat with respect to +1-geometry and has a convex

natural parameter space; consequently it has a clean asymptotic theory. Similarly, a local

mixture model is a union of convex subspaces of a −1-affine space, flat with respect to

−1-geometry (Section 1.6).
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Another possible direction can be exploiting DMLMMs for clustering. Finite mixture

models are popular tools for clustering. Essentially, in this method a dataset, which is a

mixture of many subclasses of data, is fitted by a mixture model, which requires estimating

the mixing proportions and the component parameters.Then the individuals are assigned to

suitable clusters according to the estimated parameters. Finite mixture of normal models

and also finite mixture of t-student distributions are commonly used models, and the

parameters can be estimated via likelihood maximization or using a Bayesian methodology.

Since, each component of a DMLMM is a naturally defined flexible model, and because of

the identifiability and estimability of this model it can be a promising tool for this purpose.

Also, as it has clear geometry such as linearity and convexity, both likelihood maximization

and Bayesian methods, such as MCMC, are significantly straightforward and efficient.

6.2.2 Inference on Log-linear and Graphical Models

Log-linear models, 1.7, are the most popular statistical models for analyzing categorical

data. They have applications in a wide range of areas of science and engineering, including,

social and biological sciences, data mining, manufacturing, image and language precessing.

Specifically, they have been increasingly applied to analyzing sparse contingency tables in

the last two decades. Also, graphical models, as their special cases, are widely applied to

network analysis, machine learning, and latent analysis.

Despite their popularity, inference on these models is extremely challenging, except for

their special forms; for example, decomposable log-linear models. Their inference problems

are essentially constrained optimization problems where the difficulty is due to existence

of high-dimensional non-trivial boundaries. As a result, the maximum likelihood estimate

(MLE) for the natural parameters are not attainable. To work around this issue it is

common to estimate the expected parameters which are related to the natural parameter

by the design matrix. The space of these parameters, called marginal polytope (or cone),

is either a convex polytope, a convex cone, or a combination of both, depending on the

sampling scheme. Therefore, the inference problem is reduced to obtaining the MEL, which

exists when the observed sufficient statistics lie in the interior of the marginal polytope,

or obtaining the boundary point which maximizes the loglikelihood function. Because
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of existing possible sampling zeros in contingency tables, the boundaries are extremely

difficult to approximate, since they have redundant faces, and maximization algorithms

are computationally challenging.

In Chapter 3 we develop two methods of approximating boundaries, by smooth surfaces

or by simpler polytopes. We are aiming to extend our methods and use differential and

convex geometric tools for approximating the boundaries of marginal polytopes. The

initial difficulty is developing a methodology to eliminate the redundant faces which do

not contribute to the boundary, and then finding the full dimensional representation of

the polytope. The next step will be employing smoothing, or polytope approximation

methods. Finding a smooth approximation for a full dimensional polytope, which is a pure

geometrical problem, is not hard; however, since marginal polytopes are of high dimensions

we want to find the one on which we can apply efficient searching algorithms. We have

designed such an algorithm for finding MLE in models called local mixture models, in our

earlier works. Also, one possible approach for approximating a polytope with a simpler

one, is to sample form its boundary and construct the simpler polytope by convex hull of

the selected points. This approach is expected to simplify the computational difficulty of

inference in log-linear models to a great extent

6.2.3 Over-dispersion in Count data

The Poisson distribution is commonly used for modeling count data and analyzing contin-

gency tables. However, count data rarely have equal mean and variance; hence, the Poisson

assumption is doubtful. They often have larger variance (over-dispersed) due to unobserv-

able variations, and possibly – but less likely – have smaller variation (under-dispersed)

as a result of clustering, rounding or censoring. A common approach for dealing with this

problem is to use a mixture of Poisson distributions with a latent variable which is respon-

sible for the extra structure. However, there are two issues with this approach. First, it is

only capable of modeling over-dispersion; second, the latent distribution is unknown, and

is required be estimated or postulated.

We propose local mixture models (LMM) of Poisson distribution which are naturally

defined and have flexible moment structure. Under LMM, the problem of estimation of
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the latent distribution is reduced to inference about a finite set of parameters, which

represent the latent model via its moments. In earlier chapters we have shown that LMMs

are sufficiently flexible in modeling complex data and they are, in some sense, richer than

mixture models. The goal is to design a hypothesis test for assessing over(under)-dispersion

in count data. The advantages of this test are two folded. First, the null hypothesis

parameter subspace lies in the interior of the parameter space. Second, we conjecture

that, compared to the existing approaches, deriving the asymptotic distribution of the test

statistic is less complicated, since LMMs have similar geometric properties to those of the

exponential family.
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