Innovative Studies for the Construction of Carbon-Carbon Bonds to Access Synthetically Challenging Scaffolds and Novel Models for Halogen Bonding Studies
by
Siawash Ahmar

A thesis<br>presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy<br>in<br>Chemistry

Waterloo, Ontario, Canada, 2016
© Siawash Ahmar 2016

## Author's Declaration

I herby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.


#### Abstract

The formation of carbon-carbon bonds to access sterically challenging all-carbon quaternary centers still remains a synthetic challenge. Conjugate addition reactions have proven to be a very effective strategy for transferring alkyl and alkenyl groups to the electrophilic site of $a, \beta$ unsaturated compounds for the formation of quaternary centers; however, prior to the research described in Chapter one, no general strategies had been reported. The objective of my research was to address this void and develop a general and versatile conjugate alkynylation protocol that gives rise to propargylic quaternary centers. Chapter 1 disclosed two complementary protocols that were developed for the conjugate alkynylation of alkylidene Meldrum's acids. The scope of both the nucleophilic acetylide and electrophile were examined.

Chapter 2 focused on the $\operatorname{Ag}(\mathrm{I}$-catalysed lactonization of propargylic Meldrum's acid adducts, discussed in Chapter 1, that afforded complex $\gamma$-butyrolactones. Various other electrophilic reagents such as: halogens, PhSeBr , and transition metals were also screened for reactivity, but gave inferior results to $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. Lactonization was sensitive to reaction conditions, particularly for internal alkynes, where $E$ and $Z$ isomers can be formed.

In Chapter 3, an intramolecular Rh-catalyzed conjugate alkylation protocol was explored by preparing models that possessed a highly electrophilic site that was proximal to a carbon-metal bond which can undergo transmetallation. Tricarbastannatrane derivatives were the main focus as analogous tributylstannane substrates displayed regioselective transmetallation problems, and carbon-boron bonds showed no reactivity. Efforts to prepare models possessing the carabstannatrane group were thwarted by protodestannylation of the $\mathrm{C}-\mathrm{Sn}$ bond. Additionally, due to the cost of tricabastannatranes, an in situ procedure starting from inexpensive starting material was found, albeit in low yields.

Finally, in Chapter 4 solution and solid state studies of intramolecular halogen bonding interactions were investigated. A series of Meldrum's acid models were prepared that carefully placed halogen bond donors and acceptors to allow for interactions to take place based on the results obtained from previous models. Though none of the models prepared displayed any


intramolecular interactions, sufficient evidence for intermolecular interactions between halogen donor of one molecule and the acceptor on another molecule were observed.

## Acknowledgements

My decision to pursue a Ph.D. in organic chemistry was initially a naïve one. Having been removed from organic chemistry for close to 4 years, I had no idea of the journey I was about to embark on. The last 6 years have been the most rewarding challenge I have faced, and as a result I have identified some of my weakness and worked to improve myself to become a better chemist. For this growth I have many individuals to thank:

Professor Eric Fillion has played a vital role in my personal growth. Although his unique style of teaching was lost on me at times, I can now say that I appreciate the bigger vision he had. I am grateful for the opportunity he has given me to study and work in his laboratory, and the guidance he has provided over the years. I recall asking him for advice on how to go about writing my thesis and he responded, "You don't climb a mountain by looking at it." That piece of advice has stuck with me and reflects his attitude that problems are not solved by just observing but by engaging them.

The members of my Ph.D. committee, Profs. Mike Chong, Scott Taylor and William Tam, are thanked for their suggestions and time. Your patience and guidance during our numerous committee meetings helped guide me through my studies. A special thank you goes to Prof. Chong for his time in answering the wide range of questions that I have bombarded him with over the years.

I have been very fortunate to work with some talented graduate and undergraduate students. In my first year I met Dr. Aaron Dumas and over the short 4 months we spent together, he became a valuable resource in the lab, and a drinking buddy at the bar. His passion for chemistry was an inspiration to a young chemist in what felt like a foreign environment, and his love for comedy allowed us to connect on a more personal level. Through Aaron I met Dr. Jarrod Johnson who also played a very important role in my studies and I am truly thankful for the hours he spent reviewing organic chemistry concepts with me in preparation for my comprehensive exam. We became friends over many coffee breaks and beers. Eric Beaton who has become a good friend and colleague over the years is thanked for his enthusiasm for chemistry, politics and the Cleveland Browns which made him a fun character to work with. Azadeh Kavoosi is thanked for all her help
and warm presence over the years. She is a talented cook and her Persian meals will be missed. Dr. Eric Keske who was on loan to us is thanked for sharing his interest in literature and exposing me to worlds of transition metal chemistry and whisky. Apparently the two go hand in hand. Julie Goll for guidance in the undergraduate labs and fantasy basketball. Former lab mates: Jiaqi Xu, Ganna Bondarenko, Matt Wawrykow, Magda Karski, and Chan Lau are all thanked for their help and friendships that were developed in and outside the laboratory. You all made my time in the Fillion lab a positive and enjoyable experience.

The support staff at the University of Waterloo are thanked for their expertise. In particular, Dr. Jalil Assoud, Jan Venne and Dr. Richard Smith for their help in collecting structural data. Catherine Van Esch for her help with all the administrative work. The chemstore staff are thanked for their help in purchasing chemicals and ensuring we are well stocked with solvents.

I am also blessed with having a loving and encouraging support group consisting of family and friends. My parents, Nasroddin and Sima Ahmar, fled a war torn Afghanistan as refugees with their young children and gave us a shot at life. I am forever in debt to the sacrifices they have made, and inspired by their courage to never back down from any challenge. An extra special thank you to my mother for ensuring that I do not starve by sending me care packages from time to time. My brothers, Arash and Massey Ahmar, thank you for putting up with my "big brother" antics and always having my back. No one is more important to me than you four. The "boyz", in no particular order, Umesh Mistry, Jamie Hunte, Masoud Paikar, Dave Summers, Mike Koonar, Johnathan Lee, Isaac Ling, James Kim, Neil Daga, Dennis Kim and the rest of the Western crew. Thank you all for your friendship and loyalty over the years. I can finally answer "Yes" to the dreaded "are you done yet" question. A special thank you to Manjit Grewal for the great conversations and company during the late night lab sessions, and for the countless bubble tea adventures. Your kindness and smile always put me in a good mood. A heartfelt thank you goes to my wonderful girlfriend Nikki Khetani. Your love and encouragement over the past year has helped me persevere when I was not sure how I was going to get through this.

To My Family and Late Grandmother

## Table of Contents

Author's Declaration ..... ii
Abstract ..... iii
Acknowledgements ..... v
Dedication ..... vii
List of Figures ..... x
List of Tables ..... xii
List of Schemes ..... xiii
List of Abbreviations ..... xvi
Chapter 1. Conjugate Additions of Alkynyl Alanes and Grignards to Alkylidene
Meldrum's Acid Derivatives for the Formation of All-Carbon Propargylic Quaternary Stereocenter ..... 1
1.1. Introduction ..... 1
1.1.1. Conjugate Addition Reactions for the Formation of All-Carbon Quaternary
Stereocenters ..... 1
1.2. Proposal ..... 14
1.3. Results and Discussion ..... 15
1.4. Summary ..... 26
1.5. Future Work ..... 27
1.6. Experimental ..... 27
Chapter 2. Formation of Complex $\gamma$-Butyrolactones - Studies on Electrophilic
Cyclization of Propargylic Meldrum's Acid Derivatives ..... 48
2.1. Introduction ..... 48
2.1.1. $\gamma$-Butyrolactone: A Ubiquitous Scaffold in Nature ..... 48
2.1.2 Synthetic Routes to $\gamma$-Alkylidene Butyrolactones ..... 49
2.2 Proposal. ..... 54
2.3. Results and Discussion ..... 55
2.3.1 Development of Reaction and Exploration of Scope ..... 55
2.4. Summary ..... 62
2.5. Future Work ..... 63
2.6. Experimental ..... 64
Chapter 3: Intramolecular Conjugate Addition ..... 71
3.1. Introduction ..... 71
3.1.1. Indolines: Background and Preparation ..... 71
3.1.2. Intramolecular Cyclizations: Conjugate Addition Methodologies ..... 73
3.2. Proposal ..... 83
3.3. Results and Discussion ..... 84
3.3.1 Preparation of Iodomethyl Tricarbastannatrane and a Novel Approach to In Situ
Formation of Chlorostannatrane ..... 84
3.3.2. Preparation of Alkylidene Meldrum's Acid Derivatives $\mathbf{3 . 1 6}$ ..... 87
3.4. Summary ..... 96
3.5. Future Work ..... 96
3.6. Experimental ..... 97
Chapter 4. Halogen Bonding: $\sigma$-Hole Interactions Studies using Benzyl Meldrum's Acid Derivatives and Halogen Bond Directed Diels-Alder Reactions ..... 109
4.1. Introduction ..... 109
4.2. Proposal ..... 114
4.3. Results and Discussion ..... 116
4.3.1. In Solution ${ }^{13} \mathrm{C}$ NMR Studies Exploring Intramolecular Halogen Bonding Interactions Using Meldrum's Acid Derivatives ..... 116
4.3.2. Solid State Intramolecular Halogen Bonding Studies of Benzyl Meldrum`s Acid Derivatives Using X-Ray Crystallography ..... 119
4.3.3. Halogen Bond Directed Diels-Alder Cycloadditions ..... 137
4.4. Summary and Future Outlook ..... 143
4.5. Experimental ..... 144
Appendix A Crystallographic Data for 1.10aa ..... 160
Appendix B Crystallographic Data for 4.5a ..... 168
Appendix C Crystallographic Data for 4.6c ..... 175
Appendix D Crystallographic Data for 4.10a ..... 187
Appendix E Crystallographic Data for 4.14a ..... 194
Appendix F Crystallographic Data for 4.15a ..... 202
Appendix G Crystallographic Data for 4.22 ..... 209
Appendix H Crystallographic Data for 4.24 ..... 216
References ..... 224

## List of Figures

Chapter 1Figure 1.1 1,2-Addition versus 1,4-Conjugate Addition.1
Figure 1.2 Selected Examples of Naturally Occurring Molecules That Had Their Structural Cores Prepared Through a Conjugate Addition Step ..... 2
Figure 1.3. X-Ray Structure of Meldrum's Acid 1.10aa ..... 25
Figure 1.4. Comparison of C-C Bond Lengths of Meldrum`s Acid Derivatives ..... 25 Figure 1.5. Developed Conditions for Conjugate Alkynylation ..... 26 Chapter 2 Figure 2.1. Selected Examples of Naturally Occurring \(\boldsymbol{\gamma}\)-Butyrolactones ..... 48 Figure 2.2. Proposed Mechanism of Enol Lactones as Suicide Inhibitors ..... 49 Figure 2.3. Proposal for Lewis Acid Catalyzed Lactonization of Propargylic Meldrum's Acids 2.14 ..... 54 Figure 2.4. Comparison of \({ }^{1} \mathrm{H}\)-NMR Spectra of \(\mathbf{2 . 1 5 b}\), crude (above) and Isolated (below) ..... 58 Figure 2.5. Proposed \(\gamma\)-Alkylidene Butyrolactone Mechanism. ..... 62 Chapter 3 Figure 3.1. Selected Examples of Indolines Scaffolds ..... 71 Figure 3.2. Schematic Example of \(\beta\)-Hydride Elimination versus Reductive Elimination ..... 77 Figure 3.3. Proposed Model for Intramolecular Studies ..... 84 Figure 3.4. Proposed Mechanism for the Formation of \(\mathbf{3 . 3 3}\) ..... 93 Figure 3.5. Pd-Catalyzed 8-Aminoquinoline Directed Alkylation of sp \({ }^{3}\) C-H Bonds; b) Proposed Future Work - Auxiliary Assisted Tandem C(sp \(\left.{ }^{3}\right)\)-H Bond Activation IntramolecularAllylation Methodology97 Chapter 4Figure 4.1. Traditional View of Halogens Uniformly Negative Surface Interacting withElectrophiles (left); Halogen Interactions with Both Electrophiles and Nucleophiles Based onthe Anisotropic Distribution of Electrons at the Surface.110 Figure 4.2. Schematic Diagram Illustrating Computed MEP ..... 111 Figure 4.3. Schematic View of the Valence States of F versus Higher Halogens ..... 112 Figure 4.4. Meldrum's Acid Derivatives Show HB Interactions by Six-Membered Ring (left). Models Used for IRMPD Studies (right) ..... 113 Figure 4.5. Selected Examples of Naturally Occurring Organohalogened Compounds ..... 114 Figure 4.6. a) Proposed Models of Meldrum's Acid Derivatives Bearing XB Donor (X) and XBAcceptor (Y) Groups; b) Potential Modes of XB Interactions115 Figure 4.7. Close Proximity Between Methylene H and H at the 5-Position of Meldrum's Acid Shown By nOe in \(\mathrm{CDCl}_{3}\). ..... 117 Figure 4.8. X-ray structures of Meldrum's acids 4.5 a (top) and 4.10a (bottom) ..... 120 Figure 4.9. Potential \(\sigma *_{\mathrm{C}-\mathrm{Cl}} \rightarrow \pi *_{\mathrm{C}=\mathrm{O}}\) Destabilizing Interactions of 4.10a ..... 121 Figure 4.10. Intermolecular Interactions for 4.10a. ..... 122 Figure 4.11. X-ray structure of 4.14a (top) and 4.15a (bottom) ..... 123 Figure 4.12. X-ray structure of 4.6 c . ..... 126 Figure 4.13. C(2)-Derivatives of Meldrum`s Acid. ..... 127
Figure 4.14. X-ray structure of 4.22 ..... 128
Figure 4.15. X-ray Structure of 4.24 ..... 130
Figure 4.16. Proposed models with rigid spacers between XB donor and acceptor. ..... 132
Figure 4.17. Proposed Mechanism for the Condensation of Malonate SM and Aromatic Carbonyls ..... 135
Figure 4.18. Halogen Bond Directed Diels-Alder Cycloadditions ..... 137
Figure 4.19. Aryl alkyne templates for intramolecular XB studies ..... 144

## List of Tables

## Chapter 1

Table 1.1. Conjugate Addition of Arylalanes to Alkylidene Meldrum's Acid Derivatives ......... 17
Table 1.2. Screening Nucleophilic Aryl Reagents....................................................................... 18
Table 1.3. Conjugate Alkynylation ............................................................................................. 20
Table 1.4. Probing Effects of $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Rh}^{\mathrm{I}}$ Salts in the Conjugate Addition of Alkynylalanes to Alkylidene Meldrum's Acids ......................................................................................................... 22
Table 1.5. Optimized Conditions for Conjugate Alkynylation................................................... 23

## Chapter 2

Table 2.1. Tandem Pd-Catalyzed Lactonization-Cross Coupling Reactions ............................... 52
Table 2.2. Halolactonization of Propargylic Meldrum's Acid Derivatives 2.14 ......................... 56
Table 2.3. Pd-Catalyzed Tandem Lactonization Cross-Coupling Reactions .............................. 59
Table. 2.4. $\mathrm{Ag}^{\mathrm{I}}$ and $\mathrm{Au}^{\mathrm{I} / \mathrm{II}}$ Lactonization of Propargylic Meldrum's Acid Derivatives 2.14 ...... 61

## Chapter 3

Table 3.1. Cu-Mediated Intramolecular Conjugate Addition ..................................................... 76
Table 3.2. Results from Intramolecular Reactions of Meldrum's Acid Alkylidene 3.14............. 82
Table 3.3 In Situ Hydrozirconation of Triallylamine in the Formation of 3.10a....................... 86
Table 3.4. Results for N -Alkylation of 3.28 ................................................................................ 90
Table 3.5. Results for the Rh-Catalyzed Intramolecular Conjugate Addition of Meldrum's Acid Benzylidene 3.16a

## Chapter 4

Table 4.1. ${ }^{13} \mathrm{C}$ Chemical Shifts $\delta(\mathrm{ppm})$ of $\mathrm{C}(5)$ of Benzyl Meldrum`s Acid Derivatives in $\mathrm{CDCl}_{3}$
$\qquad$

Table 4.3. X-ray Data of Meldrum's Acid Derivatives ............................................................... 126
Table 4.4. Reaction Conditions of BTM and Aromatic Ketones and Aldehydes....................... 137
Table 4.5. XB directed Diels-Alder cycloadditions .................................................................... 141

## List of Schemes

Chapter 1
Scheme 1.1 Selected Examples of Conjugate Alkylation Methodologies for the Formation of Quaternary Centers ..... 3
Scheme 1.2 Preparation of a) Vinyl and b) Aryl Alanes ..... 4
Scheme 1.3. Selected Examples of Conjugate Arylation Methodologies ..... 5
Scheme 1.4. Cu-acetylides as Nontransferable Groups ..... 6
Scheme 1.5. Early Examples of Conjugate Alkynylation ..... 7
Scheme 1.6. 1,4-Conjugate Alkynylation of $s$-Trans $\alpha, \beta$-Enones ..... 8
Scheme 1.7. 1,4-Conjugate Additions with Alkynylboranes ..... 8
Scheme 1.8. Asymmetric Alkynylboration of Enones ..... 9
Scheme 1.9. Enantioselective Conjugate Alkynylation ..... 9
Scheme 1.20. Conjugate Alkynylation ..... 10
Scheme 1.21. Cu-catalyzed Conjugate Alkynylations ..... 12
Scheme 1.22. Enantioselective Conjugate Addition of Cu -acetylides ..... 12
Scheme 1.23. Enantioselective Rh(I)-catalyzed Conjugate Alkynylations ..... 13
Scheme 1.24. a) Cu-Catalyzed Conjugate Addition to Enynones; b) Cu-Catalyzed Allylic Substitutions Reactions to Allylic Phosphates with Alkynylalanes ..... 14
Scheme 1.25. General Scheme for the Conjugate Addition of Aryl and Alkynyl Nucleophiles toAlkylidene Meldrum's Acid Derivatives15
Scheme 1.26. Preparation of Alkynylalanes From Trialkylaminates ..... 19
Scheme 1.27. Conjugate Alkynlyation of Indenylidene Meldrum's Acid 1.12 ..... 24
Scheme 1.28. Hydrolysis of Meldrum's Acid 1.10 g to $\beta$-Tetrasubstituted Alkynoic Acid 1.14. ..... 26
Chapter 2
Scheme 2.1. Transformation of Five-membered Heterocycles ..... 50
Scheme 2.2. Condensation of 1,3-Dicarbonyls Onto Amide N,N'-Dimethoxy-N,N'- Dimethylethanediamide and Oxalyl Chloride ..... 50
Scheme 2.3. Pd-catalyzed Carbonylations ..... 51
Scheme 2.4. Electrophilic Lactonization ..... 52
Scheme 2.5. Early Examples of $\mathrm{Ag}^{1}$ Catalyzed Lactonization of Alkynoic Acids ..... 52
Scheme 2.6. a) Synthetic Step Comparison of $\gamma$-Butyrolactones Precursors; b) Transition Metal Catalyzed Lactonization of Meldrum's Acid Derivatives ..... 53
Scheme 2.7. One Pot Tandem Conjugate Alkynylation Pd-Catalyzed Lactonization Cross- Coupling ..... 58
Scheme 2.8. Halolactonization in the Presence of a Phase Transfer Catalyst ..... 63
Chapter 3
Scheme 3.1. Intramolecular Carbolithiation in the Formation of 3-Substituted Indolines ..... 72
Scheme 3.2. Enantioselective Approaches to 3-Substituted Indolines from Indole Precursors ..... 73
Scheme 3.3. Intramolecular Conjugate Addition of Tetraalkylstannanes to Cyclohexenone Derivatives ..... 75
Scheme 3.4. Rh(I)-Catalyzed Intramolecular Conjugate Addition of Vinylstannanes ..... 76
Scheme 3.5. Stille Coupling of Carbastannatranes $\mathbf{3 . 1 0}$ versus Tetramethylstannane ..... 78
Scheme 3.6. Pd-Catalyzed Allylic Substitution With Carbastannatranes ..... 78
Scheme 3.7. Carbastannatranes in Cine-Substitution Studies of Stille Coupling Reactions. ..... 79
Scheme 3.8. Selected Example of Pd-Catalyzed Stereoretentive Cross-Coupling of Secondary Alkylcarbastannatrane with 2-Bromopyridine. ..... 79
Scheme 3.9. Lewis Acid Catalyzed Conjugate Allylation of Alkylidene Meldrum's Acid ..... 80
Scheme 3.10. Rh-Catalyzed Asymmetric a) Inter- and b) Intramolecular Conjugate Addition of Alkenylstannanes to Meldrum's Acid Benzylidenes ..... 81
Scheme 3.11. First Report of Conjugate Addition Reactions Using Carbastannatranes ..... 82
Scheme 3.12. Intramolecular Conjugate Addition Attempts with Boron Derivatives $\mathbf{3 . 1 5}$ ..... 83
Scheme 3.13. Thermal Disproportionation Preparation of 3.10a ..... 85
Scheme 3.14. Addition-Elimination Approach to 3.16 ..... 87
Scheme 3.15. Results for N-Alkylation of $\mathbf{3 . 2 2}$. ..... 88
Scheme 3.16. Results for N-Alkylations of Carbamate $\mathbf{3 . 2 5}$ and Sulfonamide 3.27 ..... 89
Scheme 3.17. Preparation of Meldrum's Acid Alkylidene 3.16a ..... 91
Scheme 3.18. Results for the N-Alkylation of $\mathbf{3 . 3 0}$ With $\mathbf{3 . 1 0 j}$ and $\mathbf{3 . 2 4}$ ..... 94
Scheme 3.19. Results for the N-Alkylation of Carbamate $\mathbf{3 . 3 8}$ with $\mathbf{3 . 1 0 j}$ ..... 94
Scheme 3.20. Results for the N -Alkylation of Amide $\mathbf{3 . 4 0}$ with $\mathbf{3 . 1 0 j}$. ..... 95
Scheme 3.21. Synthesis of Aectal 3.42 ..... 95
Chapter 4
Scheme 4.1. Halogenation of Meldrum's Acid Derivatives ..... 116
Scheme 4.2. Chlorination of Benzyl Meldrum's Acid 4.12 ..... 117
Scheme 4.3. Alkylation of Meldrum's acid derivatives ..... 119
Scheme 4.4. Proposed Mechanism for the $\mathrm{C}-\mathrm{C}$ bond cleavage ..... 124
Scheme 4.5. Chlorination Reactions of Meldrum's acid derivatives a) 4.17, b) 4.19 and c) 4.20 ..... 125
Scheme 4.6. Acid Catalyzed Condensation of Malonic Acid and 2'-Chloroacetophenone ..... 127
Scheme 4.7. Halogenation Reactions of 4.21 with a) NCS , b) $\mathrm{PhICl}_{2}$ and c) $\mathrm{HOAc} / \mathrm{NaOCl}$. ..... 128
Scheme 4.8. a) Chlorination of Diazoacetate with Iodobenzene Dichloride; b) Chlorination ofPhenyliodonium Ylides with Iodobenzene Dichloride; c) Chlorination of 4.17 with IodobenzeneDichloride129
Scheme 4.9. Condensation of Dibromomalonic Acid ..... 131
Scheme 4.10. Synthesis of a) 4.25; b) 4.26; and c) 4.27; d) Condensation Conditions of 4.25- 4.27 with Malonic Acid. ..... 132
Scheme 4.11 Condesation Conditions for Malonates and Various Carbonyls ..... 133
Scheme 4.12. Thermolysis of Meldrum's acid ..... 134
Scheme 4.13. Synthesis of XB Acceptors and Donors ..... 138
Scheme 4.14. Application of Dioxolenium Mediated Diels-Alder Reaction in the Total Synthesis of Dysidiolide ..... 141
Scheme 4.15. Reactions of Bis(iodonium) Alkynes by a) Stang et. al. and b) Camps et. al. ..... 142

## List of Abbreviations

```
Ac acetyl
app apparent
aq aqueous
Ar aryl
BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bn benzyl
Boc tert-butyloxycarbonyl
br broad
Bpin boron pinacol ester (pinacolato boron)
Bu butyl
Bz benzoyl
calcd calculated
CAN ceric ammonium nitrate (diammonium cerium(IV) nitrate)
cat catalytic
cod cycloocta-1,5-diene
COSY correlated spectroscopy
Cp cyclopentadienyl
Cy cyclohexyl
d doublet
DART direct analysis in real time
dba dibenzylideneacetone
DCE dichloroethane
DCM dichloromethane
DDQ 2,3-dichloro-5,6-dicyanobenzoquinone
DEPT distortionless enhancement by polarization transfer
DMAP 4-dimethylaminopyridine
DME 1,2-dimethoxyethane
DMF dimethylformamide
DMSO dimethylsulfoxide
dppf 1,1`-bis(diphenylphosphino)ferrocene
dppp 1,3-bis(diphenylphosphino)propane Cp cyclopentadiene
Cy cyclohexyl
d doublet
DART direct analysis in real time
dba dibenzylideneacetone
DCE dichloroethane
DCM dichloromethane
DEPT distortionless enhancement by polarization transfer
DMAP 4-dimethylaminopyridine
DME 1,2-dimethoxyethane
DMF dimethylformamide
DMSO dimethylsulfoxide
dppf 1,1`-bis(diphenylphosphino)ferrocene
dppp 1,3-bis(diphenylphosphino)propane xii
```

dr diastereomeric ratio
EDG electron donating group
ee enantiomeric excess
EI electron impact
Et ethyl
EtOAc ethyl acetate
equiv equivalents
er enantiomeric ratio
ESI electrospray ionization
EWG electron withdrawing group
GC-MS tandem gas chromatography-mass spectrometry
$h$ hour
HB hydrogen bonding
HMBC heteronuclear multiple bond correlation
HMPA hexamethylphosphoramide
HMQC heteronuclear multiple quantum coherence
HPLC high performance liquid chromatography
HRMS high resolution mass spectrometry
Hz hertz
$i$-Pr isopropyl
IR infrared
$J$ spin coupling constant
L ligand
L* chiral ligand
L. A. Lewis acid

LDA lithium diisopropylamide
m multiplet
$m$ meta
M metal or molarity (moles/litre)
Me methyl
MeCN acetonitrile
NHC $N$-heterocyclic carbene
NMP $N$-methyl-2-pyrrolidone
NMR nuclear magnetic resonance
nOe nuclear Overhauser enhancement
NOESY nuclear Overhauser enhancement spectroscopy
Nu nucleophile
o ortho
OTf triflate (trifluoromethanesulfonate)
$p$ para

PCC pyridinium chlorochromate
Ph phenyl
Piv pivaloyl (trimethylacetyl)
$\mathrm{pK} a$ - log of acid dissociation constant
ppm parts per million
py pyridine
q quartet
quant quantitative
rac racemic
rt room temperature
s singlet
SM starting material
t triplet
$t$-Bu tert-butyl
temp temperature
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin layer chromatography
TMS trimethylsilyl
Ts tosyl ( $p$-toluenesulfonyl)
UV ultraviolet
XB halogen bonding
wt weight

# Chapter 1. Conjugate Additions of Alkynyl Alanes and Grignards to Alkylidene Meldrum's Acid Derivatives for the Formation of All-Carbon Propargylic Quaternary <br> <br> Stereocenters 

 <br> <br> Stereocenters}

### 1.1. Introduction

### 1.1.1. Conjugate Addition Reactions for the Formation of All-Carbon Quaternary Stereocenters

The focus of this section is to give a brief overview of conjugate addition reactions of $\mathrm{sp}^{3}, \mathrm{sp}^{2}$ and sp nucleophiles to $\alpha, \beta$-unsaturated electrophiles in the formation $\mathrm{C}-\mathrm{C}$ bonds focusing on all-carbon quaternary products. Conjugate addition reactions makeup a class of reactions that involve the nucleophilic attack at $\beta$-position of an $\alpha, \beta$-unsaturated carbonyl. The regioselectivity of the nucleophilic addition is governed by the "hardness" or "softness" of the nucleophile, and steric accessibility at the electrophilic positions (Figure 1.1).


Figure 1.1. 1,2-Nucleophilic Addition versus 1,4-Nucleophilic Conjugate Addition

All-carbon quaternary centers are omnipresent throughout nature and therefore a great deal of attention has been placed on strategies to access these stereocenters. ${ }^{1}$ Figure 1.2 illustrates selected examples of naturally occurring molecules that possess all-carbon quaternary centers; the highlighted centers have been formed through conjugate addition reactions in either the total synthesis of the molecule, ${ }^{2}$ or en route to the total synthesis. ${ }^{3}$




Figure 1.2. Selected Examples of Naturally Occurring Molecules That Have Had Their Structural Cores Prepared Through a Conjugate Addition Step

Significant progress has been made in the 1,4-addition of alkyl, aryl and alkenyl groups to tetra- or trisubstituted acceptors for the formation of quaternary stereocenters with recent examples of enantioselective methodologies. Despite these advances, one of the main challenges still facing synthetic chemists is the steric hindrance at the electrophilic $\beta$-carbon. To circumvent these obstacles, synthetic chemists have resorted to the use of strongly nucleophilic reagents such as Grignard reagents, ${ }^{4}$ or Lewis acidic reagents such alanes and boranes. Alternatively, activated electrophiles such as doubly activated enones,5 and/or the addition of catalysts that enhance the reactivity of the system while directing the regio- and/or stereoselectivity of the 1,4-addition have been successful. ${ }^{6}$ Typically, a combination of two or more of the mentioned strategies are required to obtain highest yields and enantioselectivities as illustrated in Scheme 1.1.

Analogous strategies have been exploited for the conjugate alkenylation to form allcarbon quaternary centers bearing at least one $\mathrm{sp}^{2}$ hybridized carbon atom. However, due to the availability of alkenyl nucleophiles, novel strategies were required to expand the nucleophilic scope of these reagents. Alkenylalanes can be accessed by the hydroalumination of desired alkyne, or Li halogen exchange using an alkyllithium followed by nucleophilic substitution with $\mathrm{ZnCl}_{2}$, or $\mathrm{AlR}_{2} \mathrm{Cl}$ (Scheme 1.2). A disadvantage to the latter approach involves a tedious isolation step to remove the $\mathrm{Li}^{+}$salts that further complicates their use.

Scheme 1.1. Selected Examples of Conjugate Alkylation Methodologies for the Formation of Quaternary Centers

Reactive Nucleophiles


Activated Electrophiles


As already mentioned, all-carbon benzylic quaternary centers can be formed by the 1,4-conjugate addition of alkyl nucleophiles to $\alpha, \beta$-unsaturated acceptors bearing an aryl moiety at the $\beta$-position; or in the reverse manner by the addition of aryl nucleophiles to electrophilc acceptors bearing an alkyl group at the $\beta$-position. Alexakis reported the first copper-catalyzed asymmetric conjugate addition of aryl and vinyl alanes to 3-methylcyclohex-2-enone (Scheme 1.3a).7 This methodology expanded the scope of aryl groups, where previous approaches were limited to the addition of Ph groups, and overcame the poor reactivity of electron deficient arylzinc reagents.

Scheme 1.2. Preparation of a) Vinyl- and b) Arylalanes


Rh-catalyzed conjugate addition of tetraarylborates, $\mathrm{Ar}_{4} \mathrm{BNa}$, to $\beta, \beta$-disubstituted $\alpha, \beta$ unsaturated ketones has been reported by Hayashi (Scheme 1.3b). ${ }^{8}$ Highest enantioselectivities were achieved using chiral diene L6, and various aryl groups were introduced to both cyclic and acyclic enones giving rise to benzylic all-carbon quaternary centers. Shortly after, a protocol using arylalanes in the Rh-catalyzed conjugate arylation of enones with commercially available BINAP was reported (Scheme 1.3c). ${ }^{9}$ In comparison to Hayashi's protocol which requires 2-4 equivalents of the nucleophile that already bears four aryl groups and higher temperatures, the latter methodology disclosed by Alexakis uses 1.2 equivalents of the arylalane and lower temperatures to achieve comparable enantioselectivities but lower yields (Scheme 1.3c). This example highlights the great potential of organo-alanes as attractive nucleophilic reagents for conjugate addition reactions.

As an alternate approach, Stoltz reported the first protocol for the enantioselective Pdcatalyzed conjugate arylation of $\beta$-substituted enones with commercially available arylboronic acids (Scheme 1.3 d ). ${ }^{10} \mathrm{~A}$ wide range aryl groups bearing electron-rich and -poor substituents were inserted to form enantioenriched benzylic all-carbon quaternary centers using pyridinooxazoline $\mathbf{L 8}$ for asymmetric induction. One notable advantage is the reactions did not require purification of solvents or careful handling of reagents showing tolerance to both air and water compared to previously reported strategies using air and moisture sensitive organometallic reagents.

Scheme 1.3. Selected Examples of Conjugate Arylation Methodologies
a)



b)


c)


d)



In spite of recent advances in the formation of all-carbon quaternary centers bearing alkyl and/or alkenyl groups, the number of analogous methods for the formation of propargylic all-carbon quaternary centers remains limited. Strategies employed to achieve 1,4regioselectivity in the conjugate addition of alkyl or alkenyl groups to $\alpha, \beta$-unsaturated carbonyl compounds, such as the use of $\mathrm{Cu}(\mathrm{I})$ salts, has been hindered by the inertness of the $\mathrm{Cu}-\mathrm{C}(\mathrm{sp})$ bond (Scheme 1.4a). ${ }^{11}$ In fact, mixed cuprates containing an acetylide and alkyl or alkenyl group were shown to selectively transfer the latter two groups to cyclohexenone, rendering the acetylides as nontransferable groups or "dummy ligands" (Scheme 1.4 b). ${ }^{12}$ Even the sterically demanding $t$-Bu group was preferentially delivered, illustrating how tightly bound alkynyl groups are to Cu complexes. As result, synthetic chemists have developed alternate approaches to introduce alkynyl groups.

Scheme 1.4. Cu-acetylides as Nontransferable Groups
a)

b)




Nagata and Yoshioka discovered that alkylaluminum cyanides were exceptional reagents for the 1,4-conjugate addition of cyano groups (Scheme 1.5a). ${ }^{13}$ This report illustrated that sp-hybridized carbons can undergo a 1,4-conjugate addition, and emphasized the impact of the reagent used where $\mathrm{Na}\left[\mathrm{Et}_{3} \mathrm{AlCN}\right]$, a non-Lewis acidic analogue of $\mathrm{Et}_{2} \mathrm{AlCN}$, resulted in trace amounts of the 1,4-adduct; whereas Lewis acidic $\mathrm{Et}_{2} \mathrm{AlCN}$ afforded adducts in excellent yields. Noteworthy was the quaternary center formed using this approach (Scheme 1.5a). Based on these results, Hooz and Layton shortly thereafter reported the first example of conjugate alkynylation to $\alpha, \beta$-unsaturated ketones using diethylalkynylalanes (Scheme 1.5 b ). ${ }^{14}$ The significance of the enone geometry was shown where only those that can adopt an $s$-cis conformation afforded the 1,4-adduct through a postulated intramolecular delivery of the alkynyl group; in contrast to those locked in a $s$-trans conformation afforded the 1,2-adducts (Scheme 1.5c).

Scheme 1.5. Early Examples of Conjugate Alkynylation
a)

b)

c)


Pappo and Collins disclosed that 1,4-conjugate alkynylations to enones locked in an $s$ trans conformation can be overcome by a directing group adjacent to the site of attack (Scheme 1.6a). ${ }^{15}$ Participation of the directing group was proven by the cis relationship between the hydroxyl group and alkyne, and moreover by the recovery of starting material when blocking the interaction with a tetrahydropyranyl group (Scheme 1.6a). As an alternate approach, Schwartz developed $\mathrm{Ni}(\mathrm{I})$ catalyzed conditions for the 1,4-conjugate alkynylation of $s$-trans enones. ${ }^{16}$ DIBAL-H was necessary to have efficient catalytic activity, which was apparent by the lack of reactivity observed in the absence of the reducing agent, and the isolation of equimolar amounts (based on Ni ) of coupled diacetylene. Furthermore, screening other metal actetylides, such as Li and Mg , did not afford the 1,4-adducts with their protocol.

Scheme 1.6. 1,4-Conjugate Alkynylation of $s$-Trans $\alpha, \beta$-Enones
a)

b)


Alkynylboranes have also been shown to be suitable nucleophiles in 1,4-conjugate additions. Brown reported the 1,4-addition of 9-alkynyl-9-borabicyclo[3.3.1]nonanes $\mathbf{1 . 1}$ to s cis enones, but they suffered the same limitation as alkynylalanes towards $s$-trans enones (Scheme 1.7). ${ }^{17}$ Of personal interest was their sole example of an all-carbon quaternary centered adduct 1.2 that required long reaction times; this example showed the potential for the formation propargylic quaternary centers through conjugate addition reactions.

Scheme 1.7. 1,4-Conjugate Additions with Alkynylboranes


Asymmetric protocols for the conjugate alkynylation to $\alpha, \beta$-unsaturated carbonyls have begun to appear. The Chong group here at the University of Waterloo reported the asymmetric conjugate alkynylation of enones using catalytic binaphthol ligands L9 (Scheme 1.8). ${ }^{18}$ What is conceptually impressive about this protocol is that the reactivity was dependent on the transesterification of the achiral boronate with $\mathbf{L} 9$ generating a more reactive nucleophile that is also responsible for the asymmetric induction and delivery of the acetylide to the enone. As was previously observed with racemic protocols, only $s$-cis enones underwent the conjugate addition, where high yields and enantioselectivities were obtained.

Scheme 1.8. Asymmetric Alkynylboration of Enones


Corey reported the $\mathrm{Ni}(\mathrm{II})$ catalyzed asymmetric conjugate addition of alkynylalanes to $\alpha, \beta$-enones using either chiral ligands L10 or L11 (Scheme 1.9). ${ }^{19}$ The overall success of the reaction was sensitive to solvents, counterions and temperature in order to attain optimum results. Modest to good yields and enantioselectivities were obtained, but ultimately inferior to other asymmetric protocols. In contrast to previously reported $\mathrm{Ni}(\mathrm{I})$ catalyzed additions of alkynylalanes by Schwartz requiring equimolar amounts of DIBAL-H, this approach uses strongly coordinating chiral ligands that prevent the reductive elimination of two acetylides, thereby allowing the use of $\mathrm{Ni}(\mathrm{II})$ salts.

Scheme 1.9. Enantioselective Conjugate Alkynylation


Alkynylzinc reagents do not react with $\alpha, \beta$-enones and require special conditions such as the addition of strong Lewis acids to activate the $\beta$-position, ${ }^{20}$ or activated acceptors such as nitroolefins ${ }^{21}$ and doubly activated Michael acceptors. ${ }^{22-22}$ Trialkylsilyl triflates ( $\mathrm{R}_{3} \mathrm{SiOTf}$ ) have been employed in the Lewis acid activation of $\alpha, \beta$-enones for the 1,4 -addition of alkynylzinc reagents at very low temperatures (Scheme 1.20a). Unlike alkynylaluminum and boron reagents, alkynylzincs add to both $s$-cis and $s$-trans $\alpha, \beta$-enones to form $\gamma, \delta$-acetylenic silyl enol ethers, but require excess of both TBSOTf and alkynylzinc reagents (1.3 equivalents of both) to obtain high yields. In the absence of Lewis acids, alkynylzincs have been added to nitrooelfins in presence of chiral amino alcohol L12, which was essential to obtain reactivity (Scheme 1.20b). As was required with the previous report, excess of the alkyne, alkylzinc and chiral ligand ( 3 equivalents of each) were necessary to obtain optimum results. Furthermore, the nucleophilic scope of alkyne was limited to aryl-substituted terminal alkynes.

Carreira reported the conjugate alkynylation of in situ generated alkynylzinc reagents to chiral oxazepanedione acceptors 1.3 (Scheme 1.20 c ). ${ }^{23}$ Mild reaction conditions and substoichiometric amounts of $\mathrm{Zn}(\mathrm{II})$ salts afforded 1,4-adducts that were readily hydrolyzed to $\beta$-alkynyl acids over two steps in good to excellent yields and enantioselectivities.

Scheme 1.20. Conjugate Alkynylation
a)

b)



Early reports claimed that Cu -acetylides do not partake in 1,4-conjugate addition reactions due the strength of the $\mathrm{Cu}-\mathrm{C}(\mathrm{sp})$ bond (vide supra). However, more recently it has been shown that the same strategy used for the alkynylzinc reagents could be applied to Cu acetylides, where either $\mathrm{TBSOTf}^{24}$ or TMSI ${ }^{25}$ act as strong activators of $\alpha, \beta$-unsaturated carbonyls (Scheme 1.21). Alkynyl copper(I)•LiI-TMSI complexes showed preference for $s$ trans enones, such as cyclic enones, and failed to give appreciable yields to acyclic enones (Scheme 1.21a). TMSI was superior to other trialkylsilyl halides and triflates; LiI was shown to be vital to obtain high yields. According to their proposed mechanism, ${ }^{25}$ coordination of the silyl group to the oxygen of the carbonyl not only activates the $\beta$-position, but also allows for an interaction between the I and Cu to form a tighter $\pi$-complex with the alkene (Scheme 1.21a). This $\mathrm{Si}-\mathrm{I}-\mathrm{Cu}$ interaction is important because the strength of the Cu -acetylide bond does not allow for a tight complexation to the olefin, and therefore TMSI functions as both a Lewis acid and coordinator to direct the conjugate addition. This also accounts for the poor reactivity observed with $s$-cis enones, where steric interactions that would result from the Si -I-Cu complexation would not allow for its formation; and, the superiority of the TMSI over other halides as I is the most nucleophilic in that group allowing for the greatest orbital overlap. Interestingly, TBSOTf mediated 1,4-addition of Cu -acetylides were reported to add to both $s$-cis and -trans enones in good yields (Scheme 1.21b). ${ }^{24}$ This is somewhat contradictory to the TMSI protocol which only differs in counter ion, $\mathrm{I}^{-}$for ${ }^{-} \mathrm{CN}$, and solvent, suggesting that an alternate silyl activated species may be formed prior to delivery of the acetylide. Both strategies afford silyl enol ethers that are hydrolyzed in the workup (Scheme 1.21a), or can be hydrolyzed in subsequent steps (Scheme 1.21b).

Scheme 1.21. Cu-catalyzed Conjugate Alkynylations
a)

b)


Catalytic enantioselective $\mathrm{Cu}(\mathrm{II})$ catalyzed conjugate alkynylations to Meldrum's acid alkylidene derivatives have been reported the Carreira group (Scheme 1.22). ${ }^{26}$ Alkynylcopper reagents were generated in situ under aqueous conditions using phenylacetylene, catalytic amounts of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and sodium ascorbate, which proceed to add to Meldrum's acid alkylidenes at low temperatures. Enantioenriched tertiary propargyl centers were formed using $\mathbf{L} 13$ in good to excellent yields and selectivities. Due the heterogeneous nature of the reaction, a large excess of phenylacetylene was required to form the organic phase where the conjugate addition is believed to take place. Although limited to phenylacetylenes, this procedure showcased mild enantioselective conditions for the addition of Cu -acetylides in the absence of strong activating agents.

Scheme 1.22. Enantioselective Conjugate Addition of Cu -acetylides


Hayashi has reported the $\mathrm{Rh}(\mathrm{I})$-catalyzed enantioselective conjugate alkynylation to $\alpha, \beta$-unsaturated enones (Scheme 1.23a). ${ }^{27}$ Sterically demanding (triisopropylsilyl)acetylene in combination with the bulky chiral ligand $\mathbf{L} 14$ were essential in order to suppress the favourable Rh-catalyzed alkyne dimerization and allow for the conjugate addition to take place in high yields and enantioselectivities. As an alternate approach to commissioning sterically bulky ligands interacting with sterically bulky alkynyl reagents, our group has reported the Rhcatalyzed conjugate addition of TMS-acetylene to Meldrum's acid alkylidenes (Scheme 1.23b). ${ }^{28}$ Enantioenriched propargyl centers were obtained using commercially available ligand L15 under mild reaction conditions that afforded adducts in good to excellent yields and selectivities. Unlike other acceptors, such as cyclic and acyclic carbonyls that typically do not allow for a wide range of transformations, propargylic Meldrum's acid derivatives can be readily transformed to a variety of different chiral compounds (Scheme 1.23b). Additionally, the removal of the TMS group gives rise to terminal alkynes that can undergo Sonogashira coupling reactions expanding the scope of the acetylide.

Scheme 1.23. Enantioselective $\operatorname{Rh}(\mathrm{I})$-catalyzed Conjugate Alkynylations
a)

b)


Although significant progress has been made in the conjugate addition of alkynyl groups to $\alpha, \beta$-unsaturated acceptors to access tertiary propargyl centers, no general strategy to
prepare propargylic all-carbon quaternary centers had been reported prior to the research described in the this chapter. It is should be noted that propargylic all-carbon quaternary centers have been prepared by Alexakis' group via the copper-catalyzed 1,4-addition of alkyl Grignards to cyclic enynones. ${ }^{29}$ As well, $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ addition of alkynylalanes to allylic phosphates resulting in enantiopure 1,4-enynes adducts has been reported by Hoveyda. ${ }^{30}$

Scheme 1.24. a) Cu-Catalyzed Conjugate Addition to Enynones; b) Cu-Catalyzed Allylic Substitutions Reactions to Allylic Phosphates with Alkynylalanes
a)

b)


### 1.2. Proposal

At the outset of our research, no general methodology for the addition of alkynyl groups in the formation propargyl quaternary centers had been reported. This was somewhat surprising given the synthetic potential of a carbon based handle at a synthetically challenging center that can be readily manipulated and allow for further transformations. To address this void, we sought the opportunity to develop conditions to access all-carbon quaternary propargyl centers, as well as expand on conjugate arylation methodologies to Meldrum's acid alkylidenes in the formation of benzylic all-carbon quaternary centers.

The convenience with which benzylidene Meldrum's acids can be prepared from inexpensive starting materials makes them an attractive acceptor for developing methodologies for conjugate arylation and alkynylation protocols. Moreover, given our
group's success in developing enantioselective protocols for the conjugate addition of alkyl groups affording quaternary centers, and alkenyl ${ }^{31}$ and alkynyl ${ }^{28}$ groups for the formation of tertiary centers, it was a logical extension to investigate the addition of aryl and alkynyl groups to access sterically crowded all-carbon centers that would otherwise be inaccessible. These Meldrum's acid derivatives can serve as building blocks for further transformations (Scheme 1.25).

Scheme 1.25. General Scheme for the Conjugate Addition of Aryl and Alkynyl Nucleophiles to Alkylidene Meldrum's Acid Derivatives



### 1.3. Results and Discussion

In determining suitable reagents for the conjugate addition of aryl and alkynyl groups to alkylidene Meldrum's acids 1.4, aluminum based reagents were an attractive starting point due to their Lewis acidic nature and ability to functionalize with the desired nucleophiles. $\mathrm{PhAlMe}_{2}$ was easily prepared by the addition of PhLi to $\mathrm{Me}_{2} \mathrm{AlCl}$ at low temperatures. LiCl salts can be separated by letting them settle and carefully cannulating the supernatant into another vessel. Alexakis reported that $\mathrm{Li}^{+}$salts did not affect the overall yield and enantioselectivity of their conjugate arylation protocol, ${ }^{7}$ but as a starting point reactions were run void of them. Briefly screening solvents quickly revealed preferential delivery of the sterically less demanding Me group over the Ph group, with an overall conversion of less than $50 \%$ and recovery of starting material in THF (Table 1.1 entries 1-3) ${ }^{32}$ Problems of alkyl transfer with $\mathrm{ArAlMe}_{2}$ onto $\beta$-substituted enones has been documented at elevated
temperatures. ${ }^{7}$ Transition metals have been shown to alter the regio- and chemoselectivity of conjugate addition reactions; ${ }^{33}$ with this in mind substoichiometric amounts of $\mathrm{Cu}(\mathrm{I} / \mathrm{II})$ salts were tested (Table 1.1 entries 1-2). Gratifyingly, a reversal in selectivity with preferential delivery of the Ph was observed, and an increase in the overall conversion ( $>75 \%$ ) after 48 hours was obtained. Although both $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ salts afforded all-carbon dibenzylic quaternary adducts 1.5 a , significant amounts of the Me transfer adduct $\mathbf{1 . 6 a}$ was still observed in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Phosphorus ligands are the most widely used ligands in Cu-catalyzed conjugate addition reactions and have been shown to improve the efficiency of the overall reaction. ${ }^{34}$ Encouraged by the improved transfer of the Ph moiety and overall reactivity with Cu -salts, phosphoramidite ligands were added to test for asymmetric induction and further chemoselectivity. In particular, phosphoramidite ligands L4-5 have been successfully employed in the enantioselective addition of alkyl and aryl alanes to less reactive cyclic enones. In our hands the addition of $\mathbf{L} 4$ resulted in the complete consumption of $\mathbf{1 . 4 a}$ (entry 6-7); however no 1,4 -adducts were isolated and a complex mixture was observed in the crude ${ }^{1}$ HNMR. It is worth mentioning that the only distinguishable compounds isolated after column chromatography were trace amounts of Meldrum's acid and L4. As an alternate transition metal catalyst, $\left[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}_{2}\right.$ salts have also been reported in conjugate addition of alkyl and aryl groups, and were therefore tested with our system. Unfortunately, reactions using $\operatorname{Rh}(\mathrm{I})$ salts proved to be ineffective showing poor reactivity and affording trace amounts of reduced 1.4a to 1.7.

In order to avoid competing conjugate alkylation, organometallic reagents that do not possess transferable groups such Grignards, organolithium and boron reagents were also examined (Table 1.2). Both strongly nucleophilic PhMgCl and PhLi resulted in the isolation of starting material after 12 h (entries 1 and 2 ). The strong basicity of these reagents may result in $\gamma$-deprotonation of alkyl moiety that gets reprotonated after aqueous workup. ${ }^{35}$ Further evidence for the deprotonation comes from the reactivity observed when catalytic amount of CuCl is added and $>75 \%$ conversion is observed. It is also worth mentioning that trace amounts of biphenyl and $4^{\prime}$-haloacetophenone are observed in the crude ${ }^{1} \mathrm{HNMR}$ spectrum. ${ }^{36}$

Table 1.1. Conjugate Addition of Arylalanes to Alkylidene Meldrum's Acid Derivatives


9-Aryl-9-borabicyclo[3.3.1]nonanes (B-Ar-9BBN) have been used as a nucleophilic source of aryl groups in the Rh-catalyzed conjugate arylation of cyclic enones. ${ }^{37}$ These borabicyclo reagents only possess one nucleophilic group, and therefore $B-\mathrm{Ph}-\mathrm{BBN}$ was prepared and its reactivity was tested with 1.4 (Table 1.2, entries 5-9). No addition adducts were observed when 2.1 equivalents of the reagent was used (entry 5), but in the presence of CuCl and excess reagent, resulted in complete degradation of the starting material where Meldrum's acid was the only distinguishable compound (entry 6). Similar reactivity was observed with catalytic amounts $\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}\right.$ (entry 7). The isolation of Meldrum's acid may be explained by the hydrolysis of the alkylidene during the reaction by trace amounts of water, or more likely upon
aqueous workup. Additionally, the quaternary adducts formed by the arylation would be doubly benzylic and unstable when a Lewis acid is present, where the Meldrum's acid moiety acts as a leaving group resulting in $\mathrm{C}-\mathrm{C}$ bond cleavage. ${ }^{38}$ At the outset of this project, we had not reported the conditions necessary for Meldrum's acid to act as a leaving group and therefore did not account for it when developing arylation conditions.

Table 1.2. Screening Nucleophilic Aryl Reagents

1.4

1.5

| Entry | X | $\mathbf{M}^{\text {b }}$ | catalyst | Solvent <br> /Temp / t (h) | \% conv ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | F | Li | - | $\mathrm{Et}_{2} \mathrm{O} / 0$ to rt / 12 h | 0 |
| 2 | F | MgCl | - | $\mathrm{Et}_{2} \mathrm{O} / 0$ to rt / 12 h | 0 |
| 3 | F | MgCl | $\mathrm{CuCl}(10 \mathrm{~mol} \%)$ | THF / 0 to rt / 6 h | 1.5a (77) ${ }^{\text {d }}$ |
| 4 | Cl | MgCl | $\mathrm{CuCl}(10 \mathrm{~mol} \%$ ) | THF / 0 to rt / 6 h | $\mathbf{1 . 5 b}(80)^{\text {d }}$ |
| 5 | F | 9-BBN | - | $\mathrm{Et}_{2} \mathrm{O} / 0$ to rt / 12 h | 0 |
| 6 | F | $9-\mathrm{BBN}^{\text {c }}$ | $\mathrm{CuCl}(10 \mathrm{~mol} \%)$ | DME / 0 to rt / 12 h | - d |
| 7 | F | $9-\mathrm{BBNc}$ | $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}\left(20 \mathrm{~mol}^{\circ} \% \mathrm{Rh}\right)$ | DME / 0 to rt / 48 h | - d |
| 8 | F | $9-\mathrm{BBNc}$ | $\begin{gathered} {[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(20 \mathrm{~mol} \% \mathrm{Rh})} \\ \mathrm{MeOH}(20 \mathrm{~mol} \%) \end{gathered}$ | DME / 0 to rt / 48 h | - |
| 9 | F | $9-\mathrm{BBN}^{\text {c }}$ | $\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}_{2}\left(20 \mathrm{~mol}^{2} \% \mathrm{Rh}\right)\right.} \\ t \text {-BuOK }(20 \mathrm{~mol} \%) \end{gathered}$ | DME / 0 to rt / 48 h | - |

${ }^{\text {a }}$ Based on analysis of crude ${ }^{1} \mathrm{HNMR}$; ${ }^{\mathrm{b}} 2.1$ equivalents used; c 4.0 equivalents used; ${ }^{\mathrm{d}}$ Trace amounts of Meldrum`s acid was isolated

In parallel to the conjugate arylation studies, conditions for the conjugate addition of alkynylalanes to alkylidene Meldrum's Acids were also being explored. A mild synthetic route to prepare alkynylalanes that eschews the deprotonation of terminal alkynes with strong organolithium or sodium reagents was sought after. To that end we turned to a report by Binger that demonstrated trialkylaminates 1.8 can react with terminal alkynes to lose $\mathrm{H}_{2}$ and form the corresponding dialkylalkynylaluminum compounds 1.9 (Scheme 1.26a). ${ }^{39} \mathrm{~A}$ catalytic
protocol appeared nearly 40 years later that showed alkynylalanes can be prepared with catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}$ at lower temperatures, and be subsequently added to various electrophiles (Sceheme 1.26b). ${ }^{40}$

Scheme 1.26. Preparation of Alkynylalanes From Trialkylaminates
a)


b)




Attempts to prepare alkynylalanes with the above protocol resulted in incomplete formation of the alkynylalane reagent giving inconsistent results. Longer reaction times and elevated temperatures gave more consistent results and complete consumption of DIBAL-H (Table 1.3). High conversions were obtained in less Lewis basic solvents such as DME, DCE and toluene, Table 1.3 entries $1-4$, where THF completely shut down reactivity (entry 2 ). Toluene proved to be the optimal solvent resulting in complete consumption of 1.4 after 24 $h$, and the isolation of product 1.10a in good yield (entry 3 ). With this promising lead the scope of the nucleophile was investigated by subjecting 1-hexyne and TMS-acteylene to the same conditions. Though 1-hexyne underwent a 1,4-conjugate addition to afford the propargyl adduct 1.10b, albeit in low yields, significant amounts of the vinyladduct 1.11 was also formed (entry 5-6). The isolation of $\mathbf{1 . 1 1}$ suggests that hydroalumination and conjugate alkenylation was favoured over deprotonation. Furthermore, varying amounts of 1.10 b and 1.11 are formed resulting in inconsistent results. More troublesome was TMS-acetylene which afforded complex mixtures with no propargyl adducts isolated (entry 7). These results suggested that a more predictable and widely applicable method was required to prepare alkynylalane reagents.

Efforts were also taken to probe the effects of transition metals on the conjugate addition of alkynylalanes to improve reactivity and induce enantioselectivity (Table 1.4). Cu(II) and $\mathrm{Rh}(\mathrm{I})$ salts with chiral ligands L6, L7 and L16 that offer different coordination modes,
were briefly examined. Using optimized conditions described above, a decrease or complete loss in reactivity was observed for both $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Rh}(\mathrm{I})$ salts with ligands $\mathbf{L} 7$ and $\mathbf{L 1 6}$ (entries $1-6)$. It should be noted that even low yielding reactions (entries $1-3,6$ ) afforded racemic mixtures of enantiomers suggesting a background reaction had taken place in the absence of the chiral-metal complex. Attempts to impede the background reaction to allow for

Table 1.3. Conjugate Alkynylation

transmetallation by running reactions at lower temperatures still resulted in racemic mixtures and slightly lower yields (entry 3). Reactions run with chiral diene $\mathbf{L 6}$ afforded the highest yield but no enantioenrichment of the chiral center was observed.

It was determined that the focus will be to improve the scope of alkynylations by preparing the reagents from the corresponding lithiated alkyne. Additionally, the conjugate addition of alkynyl Grignards to alkylidene Meldrum's acid derivatives had not been reported and therefore offered another alkyne source to be investigated. Gratifyingly, high yields were obtained for aryl, alkyl and TMS substituted acetylides using both Al and Grignard protocols (Table 1.5, entries 1-4). Ethyne was directly inserted using the corresponding commercially available Grignard affording propargylic all-carbon adduct 1.10 g in excellent yield $(86 \%$, entry 5); 1.10 g has the added advantage of having a terminal alkyne that can readily undergo further transformations. Propargyl and homopropargyl alcohols were also added in moderate to good yields without the need for protection and deprotection (entries 6-7). Adducts 1.10 h and 1.10 i have an alcohol moiety that gives access to further synthetic manipulations.

Due to the synthetic utility of TMS-acetylene over Ph -acetylene, where subsequent transformations are possible, the electronic nature of the aromatic moiety of benzylidene Meldrum's acid derivatives and the steric effects at the electrophilic $\beta$-position were examined using TMS-acetylene (Table 1.5, entries 8-24). The electronic character of the aromatic group did not have a significant effect on the overall reactivity where both electron donating and withdrawing substituents at either the ortho or para-positions resulted in high yields (entries 814). Detrimental effects were observed for ortho substituted derivatives (entries 15-18, 12). Poor reactivity had previously been observed for ortho-substituted 5-(1-arylalkylidene) Meldrum's acids in our enantioselective conjugate alkylation protocol. ${ }^{5,5, b}$ It is worth mentioning that ortho substitution with the smaller fluorine atom 1.4 k yielded the desired adduct 1.10s (entry 17), albeit in modest yields, suggesting that steric properties governed the overall efficiency of the reaction. Expanding to other aromatic and heteroaromatic groups, such as naphthyl and furyl respectively, were also well tolerated (entries 18-20); again steric effects directed reactivity where the sterically crowded 1 -naphthyl derivative 1.41 did not afford any 1,4 -adducts, whereas the 2 -naphthyl derivative 1.4 m afforded adducts in excellent yields for both protocols (entries 18 and 19 respectively).

Table 1.4. Probing Effects of $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Rh}^{\mathrm{I}}$ Salts in the Conjugate Addition of Alkynylalanes to Alkylidene Meldrum's Acids


| Entry | TM | L* | Solvent / Temp ( $\left.{ }^{\circ} \mathrm{C}\right) /$ Time (h) | \% Yield ${ }^{\text {a }}$, ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$ | L16 (20 mol\%) | Toluene / $0{ }^{\circ} \mathrm{C}$ to rt $/ 48 \mathrm{~h}$ | 34 |
| 2 | $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$ | L16 (20 mol\%) | DME / $0^{\circ} \mathrm{C}$ to rt/48 h | 30 |
| 3 | $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$ | L16 (20 mol\%) | DME / -60 to - $45{ }^{\circ} \mathrm{C} / 48 \mathrm{~h}$ | 28 |
| 4 | $\begin{gathered} {[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}} \\ (10 \mathrm{~mol} \% \mathrm{Rh}) \end{gathered}$ | L7 (11 mol\%) | Toluene / $0{ }^{\circ} \mathrm{C}$ to rt / 48 h | trace |
| 5 | $\begin{gathered} {[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}} \\ (10 \mathrm{~mol} \% \mathrm{Rh}) \end{gathered}$ | L7 (11 mol\%) | DME / $0{ }^{\circ} \mathrm{C}$ to rt / 48 h | trace |
| 6 | $\begin{gathered} {\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right]_{2}} \\ (10 \mathrm{~mol} \% \mathrm{Rh}) \\ \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%) \end{gathered}$ | L7 (11 mol\%) | Toluene / $0{ }^{\circ} \mathrm{C} / 48 \mathrm{~h}$ | 30 |
| 7 | $\begin{gathered} {\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right]_{2}} \\ \left(5 \mathrm{~mol}_{2} \% \mathrm{Rh}\right) \\ \mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%) \end{gathered}$ | L6 (7 mol \%) | Toluene / $0{ }^{\circ} \mathrm{C} / 48 \mathrm{~h}$ | 89 |

${ }^{a}$ Isolated yield. ${ }^{b}$ Racemic mixtures determined by HPLC using a chiral Chiralcel AD-H column (250 x 4.6 mm ) with iPrOH:hexane solvent mixtures as eluent.

Increasing the steric bulk of the alkyl moiety of the electrophilic acceptor from Me to the $i$ - $\operatorname{Pr}$ and $c$-Hex group resulted in lower yields for alkynylalanes than for alkynyl Grignards (Table 1.5, entries 21-23). The extra steric bulk around the Al from Me groups likely interacts by steric repulsion with the larger groups at the electrophilic site resulting in the decreased reactivity. Greatest yields were achieved with an aryl-ester group at the electrophilic center (Table 1.5, entry 24). It is noteworthy that with respect to alkynylalanes, the alkynyl moiety was exclusively delivered where no Me transfer was observed for all cases.

Table 1.5. Optimized Conditions for Conjugate Alkynylation


| Entry | Alkylidene $\left(\mathbf{R}^{1} / \mathbf{R}^{2}\right)$ | Product ( $\mathbf{R}^{3}$ ) | $\begin{gathered} \text { yield (\%) } \\ \left(\mathrm{M}=\mathrm{AlMe}_{2}\right) \end{gathered}$ | $\begin{gathered} \text { yield }(\%)^{a, b} \\ (\mathrm{M}=\mathrm{MgCl}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $\mathrm{Ph}(1.10 \mathrm{c})$ | 77 | 81 |
| 2 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $n-\mathrm{Bu}(1.10 \mathrm{~d})$ | 75 | 85 |
| 3 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | TMS (1.10e) | 83 | 85 |
| 4 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $c$ - $\mathrm{Hex}(1.10 \mathrm{f})$ | 87 | 85 |
| 5 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $\mathrm{H}(\mathbf{1 . 1 0 g})$ | N/A | 86 |
| 6 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $\mathrm{CH}_{2} \mathrm{OH}(\mathbf{1 . 1 0 h})$ | $72^{\text {c }}$ | $54^{\text {c }}$ |
| 7 | $\mathrm{Ph} / \mathrm{Me}(1.4 \mathrm{c})$ | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1 . 1 0 i})$ | $69{ }^{\text {c }}$ | $50^{\text {c }}$ |
| 8 | 4-MeC ${ }_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 d})$ | TMS (1.10j) | 77 | 82 |
| 9 | 4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 e})$ | TMS (1.10k) | 91 | 92 |
| 10 | 4-FC6 $\mathrm{H}_{4} / \mathrm{Me}$ (1.4a) | TMS (1.101) | 75 | 84 |
| 11 | 4-ClC66 $\mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 b})$ | TMS (1.10m) | 85 | 83 |
| 12 | 4-( $\mathrm{F}_{3} \mathrm{C}$ ) $\mathrm{C}_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 f})$ | TMS (1.10n) | 88 | 89 |
| 13 | $3-\mathrm{MeC}_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 i g})$ | TMS (1.10o) | 82 | 85 |
| 14 | $3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 h})$ | TMS (1.10p) | 84 | 76 |
| 15 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} / \mathrm{Me}(1.4 i)$ | TMS (1.10q) | NR | NR |
| 16 | 2 -(BnO) $\mathrm{C}_{6} \mathrm{H}_{4} / \mathrm{Me}(\mathbf{1 . 4 j})$ | TMS (1.10r) | NR | NR |
| 17 | $2-\mathrm{FC}_{6} \mathrm{H}_{4} / \mathrm{Me}(1.4 \mathbf{k})$ | TMS (1.10s) | 39 | 27 |
| 18 | 1-naphthyl / Me (1.41) | TMS (1.10t) | NR | NR |
| 19 | 2-naphthyl / Me (1.4m) | TMS (1.10u) | 76 | 84 |
| 20 | 2-furyl / Me (1.4n) | TMS (1.10v) | 72 | 74 |
| 21 | $\mathrm{Ph} / i-\operatorname{Pr}(1.40)$ | TMS (1.10w) | 66 | 83 |
| 22 | $\mathrm{Ph} / \mathrm{c}$ - $\mathrm{Hex}(\mathbf{1 . 4 p}$ ) | TMS (1.10x) | 64 | 77 |
| 23 | $\mathrm{Ph} /$ cyclopropyl (1.4q) | TMS (1.10y) | 69 | 81 |
| 24 | $\mathrm{Ph} / \mathrm{CO}_{2} \mathrm{Me}(1.4 \mathbf{r})$ | TMS (1.10z) | 94 | 92 |

${ }^{a}$ Isolated yield. ${ }^{\circ}$ THF as the solvent furnished comparable results. ${ }^{\circ} 4$ equiv were used.

Indenylidene Meldrum's acids 1.12 have been shown to be excellent electrophilic acceptors in conjugate alkylation reactions affording all-carbon quaternary centers. ${ }^{5 \text { a-d }}$ The
conjugate alkynylation protocols were applied to indenylidene Meldrum's acid 1.12 and adducts 1.13 were isolated good yields for both methods, Scheme 1.27.

Scheme 1.27. Conjugate Alkynylation of Indenylidene Meldrum's Acid 1.12



Single crystals of Meldrum's acid adduct 1.10aa were obtained and the X-ray structure is shown in Figure 1.3. The Meldrum's acid moiety adopts a chair-like conformation with the larger quaternary center at the pseudo-axial position. Pertinent bond lengths are also listed in Figure 3, where an elongated $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond length is observed between the Meldrum's acid moiety and the benzylic carbon (C5-C11, Figure 1.3); whereas typical $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ and $\mathrm{C}(\mathrm{sp})-\mathrm{C}(\mathrm{sp})$ bond lengths are observed throughout the rest of the molecule.

Interestingly, a comparison between Meldrum's acid derivatives possessing a secondary, tertiary and quaternary benzylic centers show an increase in bond length with increasing substitution between $\mathrm{C}-\mathrm{C}$ atoms of Meldrum's acid and the benzylic center (Figure 1.4). ${ }^{41}$ This trend coincides with the reactivity observed for the Lewis acid catalyzed nucleophilic substitution of Meldrum's acid derivatives methodology developed in our group. ${ }^{38}$ In order to initiate $\mathrm{C}-\mathrm{C}$ bond cleavage between the benzylic center and Meldrum's acid moiety, a quaternary benzylic center or dibenzylic tertiary center was required. ${ }^{38}$ An increase in bond length with an increase in substitution would allow for a more facile bond cleavage; since propargylic adduct 1.10 aa displays a longer bond length than the alkyl substituted quaternary
centered analogous, these compounds may be interesting substrates for unactivated $\mathrm{C}-\mathrm{C}$ bond cleavage investigations.

Bond Lenath (A)
C5-C11 (1.60)
C11-C19 (1.54)
C20-C21 (1.19)


Figure 1.3. X-Ray Structure of Meldrum's Acid 1.10aa





Figure 1.4. Comparison of Average C-C Bond Lengths of Meldrum's Acid Derivatives ${ }^{41}$

Propargylic Meldrum's acid adducts can serve as convenient building blocks. For example, $\mathbf{1 . 1 0 \mathrm { g } \text { can be hydrolyzed to the corresponding acid } 1 . 1 4 \text { that is not accessible through }}$ other methodologies. In combination with the described conjugate alkynylation protocols, up
to 5 different sites can undergo derivatization or subsequent transformations as shown in Scheme 1.28. Furthermore, in the following chapter the transformation of propargylic Meldrum's acid derivatives $\mathbf{1 . 1 0}$ to complex $\gamma$-butyrolactones will be discussed.

Scheme 1.28. Hydrolysis of Meldrum's Acid $\mathbf{1 . 1 0 g}$ to Acid 1.14


### 1.4. Summary



Figure 1.5. Developed Conditions for Conjugate Alkynylation

In summary, the first general strategy for the formation of propargylic all-carbon quaternary centers has been described. Alkynylalanes and Grignards were used as nucleophilic sources, and the versatility of alkylidene Meldrum's acid derivatives as Michael acceptors has been expanded to access quaternary centers under mild reaction condition. Benzylic centers with electron rich and poor substituents are well tolerated while a wide range of substituted terminal alkynes can be inserted to access these all-carbon quaternary centers. Enantioselective conditions using $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Rh}(\mathrm{I})$ catalyst were attempted but resulted in sluggish reactivity.

Although analogous strategies using arylalanes and Grignards did afford the desired 1,4-adducts, these protocols suffer from significant Me transfer and low yields. Further investigations into transition metal, ligands and reaction conditions are required to develop a practical protocol.

### 1.5. Future Work

Developing catalytic enantioselective conditions for the conjugate alkynylation of alkylidene Meldrum's acid derivatives will address the absence of methodologies available to access enantioenriched propargylic all-carbon centers. The utility of such a methodology would undoubtedly be of great value to synthetic chemists expanding on an already diverse synthetic tool box. A more rigorous screening of transition metals and ligands is necessary to obtain enantioenriched propargylic quaternary centers. Based on the success of preparing tertiary propargylic centers, $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{I} / \mathrm{II}), \mathrm{Rh}(\mathrm{I})$ or $\mathrm{Pd}(\mathrm{II})$ catalyst would be a practical starting point. Additionally, while the use of alkynylalanes and Grignards were an effective nucleophilic source, even at very low temperatures; alkynylzinc or boranes may offer less reactive and therefore more controllable delivery of the alkynyl group.

### 1.6. Experimental

## General Considerations

## Reactions

All reactions were performed in flame-dried glassware under an argon atmosphere unless otherwise stated. Commercial grade reagents were used without further purification except as indicated below. Toluene, DMF and pyridine were dried by distilling over $\mathrm{CaH}_{2}$ and stored in a Schlenk flask under argon. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF were obtained from a solvent purification system based on the published procedure. ${ }^{42} \mathrm{MeOH}$ was heated to reflux over Mg powder overnight and then distilled, and stored over $3 \AA$ molecular sieves in a Schlenk flask. Phenylacetylene, 1-hexyne, cyclohexylacetylene, and trimethylsilylacetylene were purchased
and distilled over $\mathrm{CaH}_{2}$ prior to use. CuCl was purified by reprecipitation from a conc. HCl aqueous solution and dried under vacuum, and stored in a nitrogen filled glovebox. Known alkylidene Meldrum's acids $\mathbf{1 . 4 a - j}, \mathbf{1}-\mathbf{o}$, and $\mathbf{1 . 4 r}$ were prepared by Knoevenagel condensation of the corresponding ketone with Meldrum's acid. ${ }^{5}$

Reactions were monitored by thin-layer chromatography and visualized by UV quenching and/or staining with cerium ammonium molybdate. Flash chromatography was performed using 230-400 mesh silica gel.

## Characterization:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds were obtained in $\mathrm{CDCl}_{3}$ at 300 MHz and 75 MHz , respectively. Chemical shifts are reported in parts per million ( $\mathrm{ppm}, \delta$ ). Proton spectra were calibrated to residual $\mathrm{CHCl}_{3}(7.24 \mathrm{ppm})$ and carbon spectra were calibrated to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$. Carbon multiplicities ( $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ ) were determined by combined DEPT 90/135 experiments. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with ${ }^{1} \mathrm{H}$ decoupling in $\mathrm{CDCl}_{3}$ referenced to TFA ( -76.5 ppm ). Chiral HPLC analyses were performed using a Chiralcel ADH column ( $250 \times 4.6 \mathrm{~mm}$ ) with iPrOH:hexane solvent mixtures as eluent. High resolution mass spectrometry was performed at the University of Waterloo and the University of Toronto Mass Spectrometry facilities. Melting points are uncorrected.

## General Procedure A: Preparation of Alkylidene Meldrum's Acids 1.4a-r

All alkylidene Meldrum's acids were prepared by the Knoevenagel condensation of Meldrum's acid with the corresponding ketones using the method reported by Brown and coworkers. ${ }^{43}$ In general, a solution of $\mathrm{TiCl}_{4}$ (2.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{M}$ relative to ketone) was added dropwise to dry THF at $0^{\circ} \mathrm{C}$ under nitrogen resulting in a yellow suspension. A solution containing both the ketone ( 1.1 equiv) and Meldrum's acid ( 1.0 equiv) in dry THF ( 0.7 M relative to ketone) was added slowly to the $\mathrm{TiCl}_{4} \bullet \mathrm{THF}$ complex. Subsequent rinses with THF $(2 \times)$ of the flask containing the solution of ketone and Meldrum's acid was added to the reaction mixture. Pyridine ( 5.0 equiv) was then slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction was then allowed to warm up slowly to room temperature and stirred for 18 h .

The reaction mixture was cooled back down to $0^{\circ} \mathrm{C}$ and quenched upon the addition of water, followed by dilution with ethyl acetate. The mixture was allowed to stir at room temperature until the solid had fully dissolved. The layers were partitioned, and the aqueous layer was extracted was ethyl acetate $(2 \times)$. Combined organic fractions were washed with $\mathrm{NaHCO}_{3}(2 \times)$, brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Recrystallization from a saturated solution in MeOH afforded the pure alkylidene Meldrum's acids.

Characterization data for known compounds not fully described in the literature are provided.

## 5-(1-(2-Fluorophenyl)-3-(trimethylsilyl)prop-2-ynylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione ( 1.4 k )



Prepared according to General Procedure A by the Knoevenagel condensation of 2-fluoroacetophenone ( $8.00 \mathrm{~mL}, 65.8 \mathrm{mmol}, 1.1$ equiv) and Meldrum's acid ( 10.8 g , $59.9 \mathrm{mmol}, 1.0$ equiv). Recrystallization from MeOH afforded $\mathbf{1 . 4 k}$ (10.9 g, $69 \%$ yield) as beige crystals. M.p. $113-115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.38-7.34 (m, 1H), 7.23-7.20 (m, 2H), 7.09-7.02 (m, 1H), $2.69(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (broad s, 6H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 165.3 (C), 160.8 (C), 160.2 (C), 156.8 (d, $\left.J=244.6 \mathrm{~Hz}, \mathrm{C}\right), 130.9$ (d, J $=8.4 \mathrm{~Hz}, \mathrm{CH}), 129.2(\mathrm{~d}, J=15.2 \mathrm{~Hz}, \mathrm{C}), 127.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}, \mathrm{CH}), 124.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{CH})$, $118.8(\mathrm{C}), 115.8(\mathrm{~d}, J=21.9 \mathrm{~Hz}, \mathrm{CH}), 104.2(\mathrm{C}), 27.3\left(\mathrm{~m}, \mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~F}(\mathrm{M}): 263.07251$ Found: 263.07255 .

## 5-(Cyclohexyl(phenyl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.4p)



Prepared according to General Procedure A by the Knoevenagel condensation of Meldrum's acid with benzoylcyclohexane ( $4.71 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.1$ equiv) and Meldrum's acid ( $3.27 \mathrm{~g}, 22.7 \mathrm{mmol}, 1.0$ equiv). Recrystallization from MeOH afforded 1.4 p ( $3.49 \mathrm{~g}, 49 \%$ yield) as needle-shaped colourless crystals. M.p. 152$154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.37-7.35 (m, 3H), 7.00-6.97 (m, 2H), 3.66 (app t, $J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (s, 6H), 1.74-1.64 (m, 5H), 1.44-1.31 (m, 2H), 1.18-0.97 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $179.2(\mathrm{C}), 160.8(\mathrm{C}), 160.2(\mathrm{C}), 137.6(\mathrm{C}), 127.9\left(\mathrm{CH}_{3}\right), 127.8\left(\mathrm{CH}_{3}\right), 125.4$
$\left(\mathrm{CH}_{3}\right), 118.0(\mathrm{C}), 103.8(\mathrm{C}), 43.6(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 332.18563$ Found: 332.18560.

## 5-(Cyclopropyl(phenyl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.4q)



Prepared according to General Procedure A by the Knoevenagel condensation of Meldrum's acid with benzoylcyclopropane ( $3.38 \mathrm{~mL}, 24.5 \mathrm{mmol}, 1.1$ equiv) and Meldrum's acid ( $3.21 \mathrm{~g}, 22.3 \mathrm{mmol}, 1.0$ equiv). Recrystallization from MeOH afforded 1.4 ( $4.79 \mathrm{~g}, 79 \%$ yield) as needle-shaped colourless crystals. M.p. 166$168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.35-7.33 (m, 3H), 6.95-6.92 (m, 2H), 3.45-3.40 (m, $1 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.14-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 179.5 (C), 162.0 (C), 159.9 (C), 134.6 (C), 128.2 (CH), $127.8(\mathrm{CH}), 126.5(\mathrm{CH}), 116.8$ (C), 103.6 (C), $27.2\left(\mathrm{CH}_{3}\right), 17.8(\mathrm{CH}), 10.2\left(\mathrm{CH}_{2}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$, calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}:$ 290.13868 Found: 290.13854.

## Preparation of Arylalanes: ( $\mathrm{PhAlMe}_{2}$ )

To a solution of $\mathrm{PhLi}\left(1.0 \mathrm{mmol}, 1.9 \mathrm{M}\right.$ in $\left.n-\mathrm{Bu}_{2} \mathrm{O}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Me}_{2} \mathrm{AlCl}$ ( $1.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) dropwise and stirred for 30 min at this temperature. When supernatant was used, salts were allowed to precipitate over a 30 min period at $0^{\circ} \mathrm{C}$, after which time the supernatant can be cannulated/syringed as needed.

Note: PhMgCl can be used in the same manner as PhLi and identical results were obtained.

## Conjugate Arylation of Alkylidene Meldrum's Acids with PhAlMe ${ }_{2}$

A flame-dried flask flushed with argon, equipped with a magnetic stirrer and a septum, was charged with the copper salt ( 0.2 equiv) and DME ( 1.0 mL ) and the resulting mixture was stirred at rt for 30 min . The mixture was then cooled to $-40^{\circ} \mathrm{C}$ and a solution of $\mathrm{PhAlMe} 2_{2}(2.1$ equiv) was added and stirred at this temperature for 10 min . A premixed solution of alkylidene Meldrum's acid ( $0.50 \mathrm{mmol}, 1.0$ equiv) in DME ( 5.0 mL ) was then added dropwise to the copper-alane solution. The mixture was gradually warmed to rt. After the indicated time, the reaction was cooled back down in an ice-bath and quenched with $5 \% \mathrm{HCl}(5 \mathrm{~mL})$. The solution
was then transferred into a separatory funnel, and the flask was rinsed with EtOAc ( $2 \times 5 \mathrm{~mL}$ ) and $5 \% \mathrm{HCl}(5 \mathrm{~mL})$. The layers were partitioned and the aqueous layer was extracted with EtOAc $(3 \times)$ and combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR the overall conversion was determined based on the ratio of 1.4:1.5:acetophenone.

## General Procedure B - Copper Catalyzed Conjugate Addition of Aryl Grignards to Alkylidene Meldrum`s Acid Derivatives

Procedure is based on a method reported by Hung et al.;44 A flame-dried flask flushed with argon, equipped with a magnetic stirrer and a septum, was charged with a solution of PhMgCl ( 2.1 equiv, 2.0 M in THF) at $-5^{\circ} \mathrm{C}$, followed by the addition CuCl ( 0.1 equiv). A solution of the alkylidene Meldrum's acid 1.4 ( $1.0 \mathrm{mmol}, 1.0$ equiv) in THF ( 10 mL ) was subsequently added dropwise. The resulting mixture was allowed to gradually warm to rt and stirred for 6 h . The reaction was quenched by cooling back down over an ice-salt bath, and slowly adding $5 \% \mathrm{HCl}$ and EtOAc. The layers were partitioned and the aqueous layer was extracted with EtOAc ( $3 \times$ ). Combined organic fractions were washed with brine, dried over $\mathrm{MgSO}_{4}$ and concentrated. The crude residue was purified by flash chromatography on silica gel using a gradient of hexanes and EtOAc to isolated the desired product.

## 5-(1-(4-Fluorophenyl)-1-phenylethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.5a)



Prepared according to General Procedure B. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 5 a}$ ( $61 \mathrm{mg}, 18 \%$ yield) as a waxy beige solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.32-7.15(\mathrm{~m}, 9 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.64$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.7 (C), 162.4 (C), 159.9 (d, $J=243.9 \mathrm{~Hz}$, C), 140.0 (C), 137.1 (C), 129.1 (CH), 128.6 (CH), 128.4 (CH), 127.1(CH), 115.3 (d, $J=20.7$ $\mathrm{Hz}, \mathrm{CH}), 105.1(\mathrm{C}), 55.1(\mathrm{CH}), 49.6(\mathrm{C}), 31.3\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right)$. MS data could not be collected on these samples.

## 5-(1-(4-Chlorophenyl)-1-phenylethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.5b)



Prepared according to General Procedure B. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 5 b}$ ( $54 \mathrm{mg}, 15 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl} 3$ ) 7.32-7.15 (m, 9H), 4.54 (s, 1H), 2.03 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.64 ( s , $3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $\left.75 \mathrm{MHz}, ~ C D C l 3\right)$ ). 164.2 (C), 164.0 (C), 140.3 (C), 138.4 (C), 132.7 (C), $130.6(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 105.2(\mathrm{C}), 53.4(\mathrm{CH}), 49.7$ (C), $29.3\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right)$. MS data could not be collected on these samples.

## General Procedure C - Conjugate Alkynylation of Alkylidene Meldrum's Acids 1.4b with Alkynylalane: $(i-\mathrm{Bu})_{2} \mathrm{Al}-\mathrm{CCR}$

To a flame-dried round bottom flask equipped with a stir bar and septum, was added $i$-Bu ${ }_{2}$ AlH ( 3.0 equiv, 1.0 M in hexanes) and triethylamine ( 0.15 equiv), and the resulting mixture was cooled to $0^{\circ} \mathrm{C}$. To this solution was added the alkyne (4.5 equiv) dropwise and stirred at this temperature for 3 h before letting it warm up to rt over 9 h . The resulting alkynylalane reagent was used without further purification.

A solution of the alkynylalane was cooled to $0^{\circ} \mathrm{C}$ and a solution of $1.4 \mathrm{~b}(0.40 \mathrm{mmol}$, 1.0 equiv) in toluene ( 4.0 mL ) was added dropwise over $\sim 30 \mathrm{~min}$, and the mixture was allowed to gradually warm to rt. Reaction progress was monitored by working up aliquots every 6 h , where reaction was typically complete within 24 h . The reaction was quenched upon the slow addition of a saturated solution of sodium potassium tartrate $(5.0 \mathrm{~mL})$ and stirred for 10 min . The solution was poured into a separatory funnel, and the flask was rinsed with EtOAc ( $2 \times$ $5 \mathrm{~mL})$ and $5 \% \mathrm{HCl}(5 \mathrm{~mL})$. The layers were partitioned and the aqueous layer was extracted with EtOAc $(3 \times)$ and combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated onto a small amount of silica gel. The silica gel dried with the crude product was then loaded to the top of a packed silica gel column, and the products were isolated by flash column chromatography using the indicated solvent gradient.

## General Procedure D - Preparation of Alkynylalane Reagents: $\mathbf{M e}_{2} \mathbf{A l}$-CCR

A procedure reported by Corey and coworkers was adapted: ${ }^{19}$ A flame-dried round bottom flask flushed with argon and equipped with a magnetic stirrer was charged with the alkyne ( $1.4 \mathrm{mmol}, 1$ equiv) and THF ( 1.0 M relative to alkyne), and cooled to $-60^{\circ} \mathrm{C}$. To this solution, $2.5 \mathrm{M} n$-BuLi in hexanes ( $1.4 \mathrm{mmol}, 1$ equiv) was added dropwise and stirred for 30 min followed by the dropwise addition of $1.0 \mathrm{M} \mathrm{Me}_{2} \mathrm{AlCl}$ in hexanes ( $1.4 \mathrm{mmol}, 1$ equiv). The reaction mixture was gradually allowed to warm to $0^{\circ} \mathrm{C}$ and then stirred for 4 h at this temperature. The solvent was then removed in vacuo and the residue was redissolved in a toluene $-\mathrm{Et}_{2} \mathrm{O}$ mixture ( $6: 1,1.3 \mathrm{M}$ relative to alkyne) resulting in a suspension. The supernatant was carefully cannulated leaving the precipitate behind and used in further reactions below. It should be noted that identical results are obtained in the presence and absence of the LiCl salts generated. Thus, an alternate approach preparing the alkynylaluminum reagents directly in $\mathrm{Et}_{2} \mathrm{O}$ and then diluting with toluene (6X relative to $\mathrm{Et}_{2} \mathrm{O}$ ) gave identical results to the method given above.

## General Procedure E - Preparation of Alkynyl Grignard Reagents:

A flame-dried round bottom flask flushed with argon, equipped with a magnetic stirrer and a septum, was charged with the alkyne ( $1.4 \mathrm{mmol}, 1$ equiv) and THF ( 0.5 M relative to alkyne). This solution was cooled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of $2.0 \mathrm{M} i-\mathrm{PrMgCl}$ in THF ( $1.4 \mathrm{mmol}, 1$ equiv) and stirred at this temperature for 15 min . The reaction mixture was then removed from the ice bath and stirred for an additional 2 h to form the alkynyl Grignard that was used in further reactions.

## General Procedure F - Alkynylation of Alkylidene Meldrum's Acids with AlkynylAlMe 2 :



A flame-dried round bottom flask flushed with argon, equipped with a magnetic stirrer and a septum, was charged with alkylidene Meldrum's acid ( $0.40 \mathrm{mmol}, 1.0$ equiv) and toluene $(2.0 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 10 min . The solution was then cooled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of the alkynylalane solution ( $1.4 \mathrm{mmol}, 3.5$ equiv, prepared by General Procedure D). The reaction was gradually warmed to room temperature and stirred for 16 h . The reaction was quenched upon the slow addition of a saturated solution of sodium potassium tartrate $(5.0 \mathrm{~mL})$ and stirred for 10 min . The solution was poured into a separatory funnel, and the flask was rinsed with EtOAc ( $2 \times 5 \mathrm{~mL}$ ) and $5 \%$ $\mathrm{HCl}(5 \mathrm{~mL})$. The layers were partitioned and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times)$ and combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated onto a small amount of silica gel. The silica gel dried with the crude product was then loaded to the top of a packed silica gel column, and the products were isolated by flash column chromatography using the indicated solvent gradient.

## General Procedure G - Alkynylation of Alkylidene Meldrum's Acids with Alkynyl

 Grignards

A flame-dried flask, purged with argon and equipped with a magnetic stirrer and septum, charged with alkylidene Meldrum's acid ( 0.40 mmol , 1.0 equiv) and THF ( 0.4 M ) was cooled using an ice bath followed by the dropwise addition of the alkynyl Grignard. The reaction mixture was gradually warmed to room temperature and stirred for 10 h . The reaction was quenched upon the addition of deionized water and stirred for 10 min . The contents were poured into a separatory funnel, and the flask was rinsed with EtOAc ( $2 \times 5 \mathrm{~mL}$ ) and $5 \% \mathrm{HCl}$ $(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times)$, and combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated onto a small amount of silica gel. The silica gel dried with the crude product was
then loaded to the top of a packed silica gel column and the products were isolated by flash column chromatography using the indicated solvent gradient.

## 5-(2-(4-Chlorophenyl)-4-phenylbut-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione

 (1.10a)

Prepared according General Procedure C. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10 a ( $114 \mathrm{mg}, 75 \%$ ) as a waxy white solid. ${ }^{1} \mathrm{H}$
NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.49-7.46 (dd, $J=7.6$, $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 5 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.7 (C), 162.5 (C), 140.8 (C), 133.3 (C), 131.7 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), $128.0(\mathrm{CH}), 122.3$ (C), 105.2 (C), 89.9 (C), $87.8(\mathrm{C}), 56.8(\mathrm{CH}), 42.9(\mathrm{C})$, $29.0\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClNO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 400.13156. Found: 400.13167.

## 5-(2-(4-Chlorophenyl)oct-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.10b)



Prepared according General Procedure C. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 b}(31 \mathrm{mg}, 22 \%)$ as a waxy beige solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.38(\mathrm{~m}$, $7 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.1 (C), $162.8(\mathrm{C}), 141.0(\mathrm{C})$, 132.8 (C), 128.3 (CH), 127.9 (CH), 105.1 (C), 86.9 (C), 80.9 (C), 56.9 (CH), 43.1 (C), 30.1 $\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{20} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 380.16286$. Found: 380.16297.

## 5-(2,4-Diphenylbut-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.10c)



Prepared according to general procedure F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10c (107 mg, 77\% yield by procedure F; 113 mg , $81 \%$ yield by procedure G) as an off white solid. M.p. $61-63^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 2.04$ (s, 3H), 1.68 (s, 3H), 1.49 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.1 (C), 162.8 (C), 141.9 (C), $131.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 126.5(\mathrm{CH}), 122.6(\mathrm{C}), 105.3(\mathrm{C}), 90.4(\mathrm{C})$, $86.8(\mathrm{C}), 57.1(\mathrm{CH}), 43.7(\mathrm{C}), 29.1\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{4}(\mathrm{M}): 347.12888$. Found: 347.12890.

## 2,2-Dimethyl-5-(2-phenyloct-3-yn-2-yl)-1,3-dioxane-4,6-dione (1.10d)



Prepared according to General Procedure F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 d}(99 \mathrm{mg}, 75 \%$ yield by procedure F; $111 \mathrm{mg}, 85 \%$ by procedure G) as a white solid. M.p. $77-79{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.4(\mathrm{C}), 162.9(\mathrm{C}), 142.7(\mathrm{C}), 128.3(\mathrm{CH}), 127.3(\mathrm{CH}), 126.4(\mathrm{CH}), 105.1(\mathrm{C})$, $87.5(\mathrm{C}), 80.9(\mathrm{C}), 57.2(\mathrm{CH}), 43.4(\mathrm{C}), 30.7\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 21.9$ $\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 346.20183. Found: 346.20249.

## 2,2-Dimethyl-5-(2-phenyl-4-(trimethylsilyl)but-3-yn-2-yl)-1,3-dioxane-4,6-dione

 (1.10e)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.10 \mathrm{e}(114 \mathrm{mg}, 83 \%$ yield by procedure $\mathrm{D} ; 117 \mathrm{mg}$, $85 \%$ yield by procedure E) as an off white solid. M.p. $87-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.37-7.24 (m, 3H), $3.82(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.66$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.54(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $163.0(\mathrm{C}), 162.7(\mathrm{C}), 141.8(\mathrm{C})$, 128.3 (CH), 127.4 (CH), 126.4 (CH), 106.6 (C), 105.1 (C), 91.5 (C), 56.9 (CH), 43.8 (C), 29.4 $\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right),-0.14\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M})$ : 343.13711 Found: 343.13734.


Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 f}$ ( $123 \mathrm{mg}, 87 \%$ yield by procedure $\mathrm{D} ; 120$ $\mathrm{mg}, 85 \%$ yield by procedure E) as a white solid. M.p. $69-72{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}$, $1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.78$ (broad m, 2H), 1.72-1.70 (broad m, 2H), 1.65 (s, 3H), 1.51-1.49 ( $\mathrm{m}, 6 \mathrm{H}$ ), 1.36-1.28(m,3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.4 (C), $163.0(\mathrm{C}), 142.7(\mathrm{C}), 128.2$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 126.5(\mathrm{CH}), 105.1(\mathrm{C}), 91.6(\mathrm{C}), 81.0(\mathrm{C}), 57.3(\mathrm{CH}), 43.4(\mathrm{CH}), 32.5\left(\mathrm{CH}_{2}\right)$, $30.0\left(\mathrm{CH}_{3}\right)$, $29.1(\mathrm{CH}), 29.0\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{M}): 353.17583$. Found: 353.17606 .

## 2,2-Dimethyl-5-(2-phenylbut-3-yn-2-yl)-1,3-dioxane-4,6-dione (1.10g)



A flame-dried round-bottom flask flushed with argon and equipped with a stirbar was loaded with $\mathbf{1 . 4 c}$ ( $98 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv) and THF ( 2.0 mL ) and cooled to $0^{\circ} \mathrm{C}$. Then, a solution of 0.5 M ethynylmagnesium bromide ( 2.4 $\mathrm{mL}, 1.2 \mathrm{mmol}, 3.0$ equiv) in THF was added dropwise, and the solution was gradually warmed to rt . The reaction mixture was allowed to stir for 10 h at ambient temperature, and was quenched upon the addition of deionized water and stirred for 10 min . The solution was poured into a separatory funnel, and the flask was rinsed with EtOAc ( $2 \times$ $5 \mathrm{~mL})$ and $5 \% \mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times)$, and combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated onto a small amount of silica gel. The silica gel dried with the crude product was loaded to the top of a packed silica gel column and the products were isolated by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 g}$ as an off white solid ( $91 \mathrm{mg}, 86 \%$ yield).

Alternatively, 1.10 g was also prepared by the following procedure: A flame-dried round-bottom flask equipped with a magnetic stirbar was loaded with $\mathbf{1 . 1 0 e}(0.6 \mathrm{mmol}, 1.0$
equiv) and THF ( $100 \mathrm{~mL}, 0.006 \mathrm{M}$ ) and cooled in an ice bath. A 1.0 M tetra- $n$-butylammonium fluoride solution ( $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 5$ equiv) was subsequently added to the solution of $1.10 \mathbf{e}$. The mixture was allowed to warm to room temperature and continued to stir for 2 h . The crude mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic phase was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, followed by water ( 3 X 20 mL ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated in vacuo resulting in yellow oil. Purification by flash chromatography on silica gel eluting with a gradient from 1:3 EtOAc:hexanes afforded 1.10g ( $132 \mathrm{mg}, 81 \%$ yield ) as an off white solid. M.p. $66-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, 3H), 1.53 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.5 (C), 162.2 (C), 141.6 (C), 128.4 (CH), $127.4(\mathrm{CH}), 126.2(\mathrm{CH}), 105.1(\mathrm{C}), 85.2(\mathrm{C}), 74.3(\mathrm{CH}), 56.6(\mathrm{CH}), 42.2(\mathrm{C}), 28.9\left(\mathrm{CH}_{3}\right), 28.1$ $\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right) ;$ HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{1} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 290.13923$. Found: 290.13979.

## 5-(5-Hydroxy-2-phenylpent-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.10h)



Prepared according to modified General Procedure F: A flame-dried round bottom flask flushed with argon and equipped with a magnetic stirrer was charged with propargyl alcohol ( $0.10 \mathrm{~mL}, 1.72 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(1.7 \mathrm{~mL}, 1.0 \mathrm{M})$ and cooled to $-60^{\circ} \mathrm{C}$. To this solution, $2.5 \mathrm{M} n \mathrm{BuLi}$ in hexanes ( $1.37 \mathrm{~mL}, 3.44 \mathrm{mmol}, 8.0$ equiv) was added dropwise and stirred for 30 min followed by the dropwise addition of $1.0 \mathrm{M} \mathrm{Me}_{2} \mathrm{AlCl}$ in hexanes ( $3.44 \mathrm{~mL}, 3.44 \mathrm{mmol}, 8.0$ equiv). The reaction mixture was gradually allowed to warm to $0^{\circ} \mathrm{C}$ over 30 min and then stirred for 4 h at this temperature. The solution was diluted with toluene ( 10 mL ) and subsequently added dropwise to a solution of $\mathbf{1 . 4 c}\left(106 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0\right.$ equiv) in toluene $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to rt and allowed to stir for 16 h . The reaction was quenched upon the addition of a saturated solution of sodium potassium tartrate $(5.0 \mathrm{~mL})$ and stirred for 10 min . The mixture was poured into a separatory funnel, and the flask was rinsed with $\mathrm{EtOAc}(2 \times 5 \mathrm{~mL})$ and $5 \% \mathrm{HCl}$. The layers were partitioned and the aqueous layer was extracted with EtOAc $(3 \times)$. The combined organic layers were washed with brine $(2 \times)$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated. After analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated onto a small amount of
silica gel. The silica gel dried with the crude product was then loaded to the top of a packed silica gel column and the products were isolated by flash column chromatography eluting with 1:2 EtOAc:hexanes that afforded $\mathbf{1 . 1 0 h}(93 \mathrm{mg}, 72 \%$ yield) as an off white solid.

Similarly, a modified General Procedure of G: A flame-dried round-bottom flask flushed with argon, equipped with a magnetic stirrer and a septum, was charged with propargyl alcohol ( $0.10 \mathrm{~mL}, 1.72 \mathrm{mmol}, 4.0$ equiv) and THF ( $3.4 \mathrm{~mL}, 0.5 \mathrm{M}$ ) and cooled to $0^{\circ} \mathrm{C}$. Then, $2.0 \mathrm{M} i-\mathrm{PrMgCl}$ in THF ( $1.72 \mathrm{~mL}, 3.44 \mathrm{mmol}, 2.0$ equiv) was added dropwise and the reaction mixture was stirred and gradually warmed up to rt over 2 h . The addition of the Grignard alkynylide was done according to General Procedure G. Purification by flash column chromatography on silica gel eluting with 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 h}(70 \mathrm{mg}, 54 \%$ yield) as an off white solid. M.p. $89-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 1.98$ (broad s, 1H), $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $162.8(\mathrm{C})$, 162.5 (C), 141.6 (C), 128.4 (CH), 127.6 (CH), 126.4 (CH), 105.2 (C), 87.2 (C), 84.5 (C), 56.8 $(\mathrm{CH}), 51.2\left(\mathrm{CH}_{2}\right), 42.6(\mathrm{C}), 28.6\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{1} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 320.14980$. Found: 320.15064 .

## 5-(6-Hydroxy-2-phenylhex-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.10i)



Prepared according to same procedure used for the preparation of 1.10 h using 3-butyn-1-ol. Purification by flash column chromatography on silica gel eluting with 1:2 EtOAc:hexanes afforded $1.10 \mathbf{i}$ ( $79 \mathrm{mg}, 69 \%$ yield by procedure $\mathrm{D} ; 57 \mathrm{mg}, 50 \%$ by procedure E) as a white solid. M.p. 91$95^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51($ broad $\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $163.5(\mathrm{C}), 162.9(\mathrm{C}), 141.1(\mathrm{C}), 128.5(\mathrm{CH}), 127.7(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 105.5(\mathrm{C}), 84.2(\mathrm{C}), 83.9(\mathrm{C}), 61.1\left(\mathrm{CH}_{2}\right) 57.3(\mathrm{CH}), 43.3(\mathrm{C}), 29.0\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right)$, $27.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right)$; HRMS (DART) $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{1} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 334.16545 . Found: 334.16585.

## 2,2-Dimethyl-5-(2-(p-tolyl)-4-(trimethylsilyl)but-3-yn-2-yl)-1,3-dioxane-4,6-dione (1.10j)



Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 j}(110 \mathrm{mg}, \mathbf{7 7 \%}$ yield by procedure D ; $117 \mathrm{mg}, 82^{\%}$ yield by procedure E) as an off white solid. M.p. $96-97^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.42 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.1 (C), 162.8 (C), 138.8 (C), 137.1 (C), 129.0 (CH), 126.4 (CH), 106.8 (C), 105.2 (C), 91.3 (C), $57.0(\mathrm{CH}), 43.6(\mathrm{C}), 29.4\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right),-0.1\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 376.19441$. Found: 376.19427.

5-(2-(4-Methoxyphenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6dione (1.10k)


Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to $1: 2$ EtOAc:hexanes afforded 1.10k ( $136 \mathrm{mg}, 91 \%$ yield by procedure $\mathrm{D} ; 138 \mathrm{mg}, 92 \%$ yield by procedure E ) as a pale yellow solid. M.p. $80-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.45(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.1$ (C), 162.9 (C), 158.8 (C), 133.5 (C), 127.8 (CH), 113.5 (CH), 107.0 (C), 105.2 (C), $91.2(\mathrm{C}), 57.1(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 43.4(\mathrm{C}), 29.4\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right),-0.13$ $\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 392.18932. Found: 392.18948.

## 5-(2-(4-Fluorophenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6dione (1.101)



Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.101(108 \mathrm{mg}, 75 \%$ yield by procedure D ; $122 \mathrm{mg}, 84 \%$ yield by procedure E) as a white solid. M.p. $77-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~s}$,
$3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.9 (C), 162.7 (C), 161.9 (d, $J=245.2 \mathrm{~Hz}, \mathrm{C}), 137.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C}), 128.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{CH}), 115.0(\mathrm{~d}, J=$ $21.4 \mathrm{~Hz}, \mathrm{CH}), 106.4(\mathrm{C}), 105.2(\mathrm{C}), 91.7(\mathrm{C}), 56.9(\mathrm{CH}), 43.2(\mathrm{C}), 29.5\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{3}\right), 28.0$ $\left(\mathrm{CH}_{3}\right),-0.15\left(\mathrm{CH}_{3}\right) ;$ HRMS (DART) $m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{FNO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 380.16934$. Found: 380.17003.

## 5-(2-(4-Chlorophenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6dione ( 1.10 m )

 Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.10 \mathrm{~m}(131 \mathrm{mg}, 85 \%$ yield by procedure D; $125 \mathrm{mg}, 83 \%$ yield by procedure E) as a waxy white solid. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.68$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.62(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.7 (C), 162.5 (C), 140.6 (C), 133.2 (C), 128.4 (CH), 128.0 (CH), 106.1 (C), 105.1 (C), 91.8 (C), 56.6 (CH), 43.2 (C), 29.4 $\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right),-0.15\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{ClNO}_{4} \mathrm{Si}(\mathrm{M}$ $\left.+\mathrm{NH}_{4}\right)^{+}: 396.13979$. Found: 396.13989.

## 2,2-Dimethyl-5-(2-(4-(trifluoromethyl)phenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-1,3-

 dioxane-4,6-dione (1.10n)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10n ( $146 \mathrm{mg}, 88 \%$ yield by procedure D; $147 \mathrm{mg}, 89 \%$ yield by procedure E) as white solid. M.p. $71-73{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.6 (C), 162.4 (C), 146.4 (C), 129.4 (q, $J=32.4 \mathrm{~Hz}, \mathrm{C}$ ), 126.8 (CH), 125.3 (q, $J=3.6 \mathrm{~Hz}, \mathrm{CH}$ ), $124.0\left(\mathrm{q}, J=270.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 105.7(\mathrm{C}), 105.0(\mathrm{C}), 92.0(\mathrm{C}), 56.3(\mathrm{CH}), 43.2(\mathrm{C}), 29.4\left(\mathrm{CH}_{3}\right)$, $28.3\left(\mathrm{CH}_{3}\right)$, $28.1\left(\mathrm{CH}_{3}\right),-0.27\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}: 430.16614$. Found: 430.16574.


Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to $1: 2$ EtOAc:hexanes afforded 1.10 o. ( $117 \mathrm{mg}, 82 \%$ yield by procedure $\mathrm{D} ; 122 \mathrm{mg}, 85 \%$ yield by procedure E ) as a white solid. M.p. $97-99^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.34-7.32(m, 2H), $7.22(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 0.20$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.1 (C), 162.8 (C), 141.7 (C), 137.9 (C), 128.2 (CH), $127.2(\mathrm{CH}), 123.5(\mathrm{CH}) 106.8$ (C), 105.2 (C), 91.5 (C), $56.8(\mathrm{CH}), 43.9(\mathrm{C}), 29.5\left(\mathrm{CH}_{3}\right), 29.1$ $\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right),-0.12\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}: 376.19441$. Found: 376.19411.

## 5-(2-(3-Methoxyphenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6dione (1.10p)



Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10p ( $126 \mathrm{mg}, 84 \%$ yield by procedure $\mathrm{D} ; 114 \mathrm{mg}, 76 \%$ yield by procedure E ) as a white solid. M.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.14(\mathrm{dd}, J=2.1 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.0 (C), 162.6 (C), 159.4 (C), 143.6 (C), 129.2 (CH), 118.4 (CH), 112.8 (CH), 112.6 (CH), 106.5 (C), $105.1(\mathrm{C}), 91.5(\mathrm{C}), 56.7(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 43.8(\mathrm{C}), 29.6\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right),-0.14$ $\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 392.18932. Found: 392.18972.

## 5-(2-(2-Fluorophenyl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6dione (1.10s)



Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10s ( $56 \mathrm{mg}, 39 \%$ yield by procedure D; 39 mg , $27 \%$ yield by procedure E) as a clear oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.82
(dt, $J=8.1 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.9 (C), 162.5 (C), 159.9 (d, $J=242.2 \mathrm{~Hz}, \mathrm{C}), 129.9(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{C}), 129.7$ (d, $J=4.0 \mathrm{~Hz}$, $\mathrm{CH}), 129.1(\mathrm{~d}, J=8.9 \mathrm{~Hz}, \mathrm{CH}), 124.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{CH}), 115.9(\mathrm{~d}, J=23.5 \mathrm{~Hz}, \mathrm{CH}), 105.3$ (C), 104.6 (C), 91.9 (C), 53.8 (d, $J=7.1 \mathrm{~Hz}, \mathrm{CH}), 42.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}, \mathrm{C}), 28.5\left(\mathrm{CH}_{3}\right), 28.2$ (d, $\left.J=2.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right),-0.10\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{FNO}_{4} \mathrm{Si}(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}: 380.16934$. Found: 380.17018.

## 2,2-Dimethyl-5-(2-(naphthalen-2-yl)-4-(trimethylsilyl)but-3-yn-2-yl)-1,3-dioxane-4,6dione (1.10u)



Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 u}(120 \mathrm{mg}, 76 \%$ yield by procedure D ; $132 \mathrm{mg}, 84 \%$ yield by procedure E) as beige solid. M.p. $107-110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8.04(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 163.2 (C), 162.7 (C), 139.2 (C), 133.0 (C), 132.5 (C) 128.3 (CH), 128.0 (CH), 127.5 (CH), 126.2 (CH), 125.8 (CH), 124.1 (CH), 106.7 (C), 105.2 (C), 92.0 (C), 56.6 (CH), $44.0(\mathrm{C})$, $29.5\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right),-0.069\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 412.19441. Found: 412.19541.

## 5-(2-(Furan-2-yl)-4-(trimethylsilyl)but-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione

 (1.10v)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 v}$ ( $96 \mathrm{mg}, 72 \%$ yield by procedure $\mathrm{D} ; 99 \mathrm{mg}$, $74 \%$ yield by procedure E) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.33 $(\mathrm{s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $162.6(\mathrm{C}), 162.1$ (C), $154.5(\mathrm{C}), 141.8(\mathrm{CH}), 110.7(\mathrm{CH}), 106.7(\mathrm{CH}), 105.1$ (C), $104.4(\mathrm{C}), 89.7(\mathrm{C}), 54.1(\mathrm{CH}), 39.2(\mathrm{C}), 28.4\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$, $-0.18\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 352.15802$. Found: 352.15846 . dione (1.10w)


Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 0 w}$ ( $98 \mathrm{mg}, 66 \%$ yield by procedure $\mathrm{D} ; 124 \mathrm{mg}$, $84 \%$ yield by procedure E) as a waxy white solid. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.10$ (app septet, $J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.3 (C), 162.8 (C), 138.1 (C), $128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 105.0(\mathrm{C}), 103.7(\mathrm{C}), 93.6(\mathrm{C}), 54.8(\mathrm{C}), 53.7(\mathrm{CH}), 33.1(\mathrm{CH}), 29.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right)$, $18.7\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right),-0.11\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 390.21006. Found: 390.21013.

## 5-(1-Cyclohexyl-1-phenyl-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-

 dione (1.10x)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.10 \times(114 \mathrm{mg}, 69 \%$ yield by procedure $\mathrm{D} ; 161 \mathrm{mg}$, $98 \%$ yield by procedure E) as a white solid. M.p. $125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 2.69$ (broad s, 1H), 2.03 (broad s, 1H), 1.84-1.83 (broad m, 1H), 1.68-1.63 (broad m, 2H), 1.57 (s, 3H), 1.47-1.41 (m, 2H), 1.23-1.16 (m, 4H), 1.07 (s, 3H), 0.23 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) 163.2$ (C), 162.9 (C), 138.1 (C), 128.2 (CH), $128.0(\mathrm{CH}), 127.6$ (CH), 104.9 (C), 104.7 $(\mathrm{C}), 93.5(\mathrm{C}), 54.2(\mathrm{C}), 53.1(\mathrm{CH}), 43.1(\mathrm{CH}), 29.2\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right)$, $26.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right),-0.1\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 430.24136. Found: 430.24158.

## 5-(1-Cyclopropyl-1-phenyl-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-

 4,6-dione (1.10y)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.10 y(102 \mathrm{mg}, 69 \%$ yield by procedure D; 119 mg , $81 \%$ yield by procedure E) as an off white solid. M.p. $90-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.58 (appt d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.67-0.64(\mathrm{~m}, 1 \mathrm{H}), 0.44-0.39(\mathrm{~m}, 2 \mathrm{H})$, 0.19 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.2 (C), 163.2 (C), 141.1 (C), 128.2 (CH), 127.6 $(\mathrm{CH}), 127.1(\mathrm{CH}), 105.5(\mathrm{C}), 101.1(\mathrm{C}), 94.1(\mathrm{C}), 57.5(\mathrm{CH}), 51.5(\mathrm{C}), 29.7\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right)$, $17.9(\mathrm{CH}), 4.8\left(\mathrm{CH}_{2}\right), 2.9\left(\mathrm{CH}_{2}\right),-0.2\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M})$ : 369.15276. Found: 369.15292.

## Methyl 2-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-2-phenyl-4-(trimethylsilyl)but-3-

 ynoate (1.10z)

Prepared according to General Procedures F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.10 \mathrm{z}(146 \mathrm{mg}, 94 \%$ yield by procedure D; 142 mg , $92 \%$ yield by procedure E) as an off white solid. M.p. $141-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.37-7.29 (m, 3H), $4.92(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.85$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.73(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $170.4(\mathrm{C}), 162.7(\mathrm{C}), 160.5(\mathrm{C})$, 135.5 (C), 128.5 (CH), 128.1 (CH), 126.7 (CH), 104.8 (C), 100.2 (C), 93.4 (C), 55.5 (CH), 53.9 $\left(\mathrm{CH}_{3}\right)$, $52.6(\mathrm{C}), 28.6\left(\mathrm{CH}_{3}\right)$, $26.6\left(\mathrm{CH}_{3}\right),-0.27\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 406.16859$. Found: 406.16927.

## 5-(2-(4-Fluorophenyl)-4-phenylbut-3-yn-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione

 (1.10aa)

Prepared according to General Procedures C. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.10aa ( $146 \mathrm{mg}, 68 \%$ yield) as an off white solid. M.p. 81-84 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.62-7.57 (m, 2H), 7.50-7.46 (m, 2H), 7.32-7.30 (m, 3H), $7.04(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$,
$1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $162.4(\mathrm{C}), 162.2(\mathrm{C}), 161.6$ (d, $\left.J=244.8 \mathrm{~Hz}, \mathrm{C}\right)$, 141.1 (C), 139.1 (C), 137.1 (C), 131.8 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 115.2 (d, J = $21.4 \mathrm{~Hz}, \mathrm{CH}), 105.4(\mathrm{C}), 90.3(\mathrm{C}), 86.8(\mathrm{C}), 57.6(\mathrm{CH}), 43.5(\mathrm{C}), 29.3\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{3}\right), 27.9$ $\left(\mathrm{CH}_{3}\right)$.

## (E)-5-(2-(4-Chlorophenyl)oct-3-en-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.11)



Prepared according to General Procedures C. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $1.11(77 \mathrm{mg}, 53 \%$ yield) as a beige solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.28-7.20 (m, 4H), $5.94(\mathrm{~d}, \mathrm{~J}=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.52-5.47(\mathrm{dt}, \mathrm{J}=15.0 \mathrm{HZ}, 9.0 \mathrm{HZ}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 2.12-2.05(\mathrm{dt}, \mathrm{J}=9 \mathrm{~Hz}, 6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.0 (C), 162.8 (C), 139.6 (C), 132.7 (CH), 131.8 (C), 128.7 (CH), $128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 105.4(\mathrm{C}), 56.1(\mathrm{CH}), 44.4(\mathrm{C}), 32.5\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right)$.

## 5-(6-Chloro-1-((trimethylsilyl)ethynyl)-2,3-dihydro-1H-inden-1-yl)-2,2-dimethyl-1,3-

 dioxane-4,6-dione (1.13a)

Prepared according to General Procedure F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded 1.13 a ( $120 \mathrm{mg}, 77 \%$ yield by procedure F ; $116 \mathrm{mg}, 74 \%$ by procedure G) as an off white solid. M.p. $125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.74$ $(\mathrm{s}, 1 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.7 (C), 162.5 (C), 145.8 (C), 141.4 (C), 132.2 (C), 128.4 (CH), 125.7 (CH), $125.4(\mathrm{CH}), 106.3$ (C), 105.4 (C), 89.7 (C), $53.5(\mathrm{CH}), 49.0(\mathrm{C}), 39.8\left(\mathrm{CH}_{2}\right) 29.6$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right),-0.10\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{O}_{5}(\mathrm{M}$ $\left.+\mathrm{NH}_{4}\right)^{+}: 408.13979$. Found: 408.14031.

## 5-(5-Chloro-1-((trimethylsilyl)ethynyl)-2,3-dihydro-1H-inden-1-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (1.13b)



Prepared according to General Procedure F and G. Purification by flash column chromatography on silica gel eluting with a gradient from 1:4 to 1:2 EtOAc:hexanes afforded $\mathbf{1 . 1 3 b}(122 \mathrm{mg}, 78 \%$ yield by procedure F; $109 \mathrm{mg}, 70 \%$ by procedure G) as an off white solid. M.p. $112-114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.58-$ $2.51(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $163.0(\mathrm{C})$, 162.7 (C), 144.8 (C), 142.5 (C), 134.1 (C), 126.8 (CH), 126.6 (CH), 124.8 (CH), 106.4 (C), 105.5 (C), $89.5(\mathrm{C}), 53.3(\mathrm{CH}), 48.9(\mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right) 29.9\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right),-0.14\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 408.13979. Found: 408.14154.

## Preparation of 3-Methyl-3-phenylpent-4-ynoic acid (1.14)



Procedure based on a procedure reported by DeWolf.45 Meldrum's acid derivative 1.10 g was stirred in $3: 1$ pyridine:water $(0.25 \mathrm{M})$ at $95^{\circ} \mathrm{C}$ for 3 h . The solution was removed from heat and cooled to $0^{\circ} \mathrm{C}$ followed by the acidification with 12 N HCl to pH 2 and extracted with ethyl acetate. The organic extracts were washed with sat $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO 4 and concentrated to afford 1.14 ( $90 \%$ yield) as a white solid. M.p. $83-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.78$ (broad s, 1H), $7.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{AB}, \mathrm{d}, J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{AB}, \mathrm{d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 175.5 (C), $143.5(\mathrm{C}), 128.4(\mathrm{CH}), 127.0(\mathrm{CH}), 125.7(\mathrm{CH}), 87.5(\mathrm{C}), 72.2(\mathrm{CH}), 47.5\left(\mathrm{CH}_{2}\right), 37.9$ (C), $29.6\left(\mathrm{CH}_{3}\right)$.

## Chapter 2. Formation of Complex $\gamma$-Butyrolactones - Studies on Electrophilic Cyclization of Propargylic Meldrum's Acid Derivatives

### 2.1. Introduction

### 2.1.1. $\gamma$-Butyrolactone: A Ubiquitous Scaffold in Nature

Virtually all-living organisms produce lactones, ${ }^{46}$ but their function varies greatly from organism to organism. For example, several species of marine organisms produce metabolites that have antimicrobial and antifungal activity such as $2.1{ }^{47}$ and $2.2{ }^{48}$ (Figure 2.1). Cyanobacteria (Syytonema hofmanni) eliminate competition and ensure their survival by excreting cyanobacterin 2.3, which is toxic to other marine organisms and higher plants. ${ }^{49}$ The African sugar-cane borer (Eldana saccharina) also secrets 2.4, a male sex pheromone from its wing glands and abdomen. ${ }^{50} \gamma$-Butyrolactones have potential as pharmaceutical agents where 2.5 and its isomers have shown promising results in the treatment of HIV. ${ }^{51}$




Figure 2.1. Selected Examples of Biologically Active $\gamma$-Butyrolactones
$\gamma$-Alkylidene butyrolactones are unique compared to other $\gamma$-butyrolactones in that they possess an enol lactone group which can function as a suicide substrate inhibiting
enzymes with specific nucleophilic groups at their active site. ${ }^{52}$ According to the postulated mechanism, ${ }^{53}$ acylation catalyzed by the target enzyme results in a stable acyl-enzyme complex, or can undergo further irreversible reactions at proximal sites to the reactive site, thereby inhibiting enzyme activity (Figure 2.2). The potential for generating reactive species exclusively within the active site allows for a higher degree of selectivity of these inactivators than that exhibited by conventional affinity reagents.


Figure 2.2. Proposed Mechanism of Enol Lactones as Suicide Inhibitors

Due to their biological and pharmacological importance, several synthetic approaches have been developed to access $\gamma$-alkylidene butyrolactones. ${ }^{54}$ In the following section, an overview of methodologies that give rise $\gamma$-alkylidene butyrolactones will be discussed.

### 2.1.2 Synthetic Routes to $\boldsymbol{\gamma}$-Alkylidene Butyrolactones

Several general strategies have been reported, their merits and shortcomings will be discussed in the following sections.

Transformation of five-membered heterocycles such 2 -oxyfurans, ${ }^{55}$ preformed $\gamma$ lactones ${ }^{56}$ and maleic anhydrides ${ }^{57}$ have all been used to prepare to $\gamma$-alkylidene butyrolactones (Scheme 2.1). 2-Trimethylsiloxyfurans and $\gamma$-ylidene butyrolactone have been used as nucleophilic synthons, whereas maleic anhydrides serve as electrophilic synthons. Although these transformations have been employed in the synthesis of natural products such as nostoclide 1 (Scheme 2.1), ${ }^{58}$ the intrinsic nonstereoselective nature of these reactions result in mixtures of $E$ and $Z$ isomers in the absence of any overriding factors. These mixtures considerably reduce the overall yield of a desired product, and result in tedious and difficult separations.

Scheme 2.1. Transformation of Five-membered Heterocycles


Langer initially reported the condensation of dianionic 1,3-dicarbonyls onto the Weinreb amide $\mathrm{N}, \mathrm{N}^{\prime}$-dimethoxy- $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylethanediamide, ${ }^{59}$ followed by a complementary methodology using 1,3-bis(trimethylsiloxy)-1,3-dienes onto oxalyl chloride (Scheme 2.2). ${ }^{60}$ The latter approach proved to be superior to access $\gamma$-alkylidene butyrolactone 2.6 where improved yields and stereoselectivities were achieved (up to $88 \%$ isolated yields and $E: Z$ ratios $>98: 2$ ). A drawback to this approach is that 1,3-bis(trimethylsiloxy)-1,3-dienes are not stable and can be difficult to handle at temperatures above $0^{\circ} \mathrm{C}$ because of decomposition, and thus required storage at temperatures below $-20^{\circ} \mathrm{C}$ under an inert atmosphere.

Scheme 2.2. Condensation of 1,3-Dicarbonyls Onto N,N'-Dimethoxy-N, $\mathrm{N}^{\prime}$ -
Dimethylethanediamide and Oxalyl Chloride


Negishi and coworkers reported a conceptually different strategy by utilizing Pd salts to catalyze the carbonylation of $(Z)-\beta$-halo- $\alpha, \beta$-unsaturated ketones that can be trapped by intramolecular enols to form $\gamma$-alkylidene butyrolactone (Scheme 2.3). ${ }^{61}$ Alternatively, acylpalladation ${ }^{62}$ of internal alkynes followed by carbonylation results in the same intermediate
as the above strategy, which can undergo cyclization to the $\gamma$-alkylidene butyrolactone. The latter approach, although very attractive, suffers from poor regioselectivity and stereoselectivity problems with unsymmetrically substituted alkynes. With respect to the former intramolecular strategy, $(Z)-\beta$-halo- $\alpha, \beta$-unsaturated ketones may be tedious to prepare and require several low yielding steps.

Scheme 2.3. Pd-catalyzed Carbonylations


Finally, the electrophilic lactonization of alkynoic acids offers the most propitious route. Acid-catalyzed lactonization of 4-alkynoic acids generally offer excellent stereoselectivity, ${ }^{63}$ but strategies that employ $N$-halosuccinimides (NXS) ${ }^{64}$ or transition metals ( $\mathrm{Hg},{ }^{65} \mathrm{Pd},{ }^{66} \mathrm{Rh},{ }^{67} \mathrm{Ag}$, ${ }^{68} \mathrm{Au}{ }^{69}$ ) to catalyze the cyclization are more attractive due to mild reaction conditions and shorter reaction times (Scheme 2.4). Halolactonization of alkynoic acids can be achieved with NXS ( $\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}$ ), $\mathrm{KHCO}_{3}$ as the base and $\mathrm{Bu}_{4} \mathrm{NOH}$ as a phase-transfer catalyst to exclusively form the E-olefin (Scheme 2.4). Halo enol lactones are versatile building blocks that can undergo subsequent transformations, and are themselves potential candidates for suicide inhibitors.

Mercury-mediated lactonization have also been reported, but are only synthetically useful for terminal alkynoic acids, where substitution at the terminus significantly reduces the yield of the desired $\gamma$-alkylidene butyrolactone. Furthermore, isomerization can be an issue with $\mathrm{Hg}^{2+}$ salts, presumably due to the readdition of $\mathrm{Hg}^{2+}$ to the olefin, and poor regioselectivity can result in the corresponding pyranone.

Scheme 2.4. Electrophilic Lactonization
1)

2)



Pd and Rh catalyzed lactonizations have also been reported. These transition metals suffer from the same limitations as $\mathrm{Hg}^{2+}$ catalyzed reactions mentioned above, but with better stereo- and regioselectivities where optimum results are obtained for bulky terminal alkynes. Noteworthy is a tandem Pd-catalyzed lactonization -cross coupling reaction of alkenyl halides and triflates (Table 2.1), ${ }^{70}$ which offers an attractive one pot approach to $\gamma$-alkylidene butyrolactones that would be inaccessible with other electrophiles.

Table 2.1. Tandem Pd-Catalyzed Lactonization-Cross Coupling Reactions


| $\mathbf{R}^{1} / \mathbf{R}^{2}$ | $\mathbf{R}^{3} \mathbf{X}(\% \text { yield })^{\mathbf{a}}$ |
| :---: | :---: |
| $\mathrm{H} / \mathrm{H}$ | $\mathrm{H} / \mathrm{H}$ |
| $\mathrm{CO}_{2} \mathrm{Me} / \mathrm{Me}$ | (64) |

[^0]The potential of Ag salts for lactonization reactions was first shown by Castañer and Pascual ${ }^{71}$ back in 1958, where malonic acid 2.7 was converted to $\gamma$-alkylidene butyrolactone 2.8a by either thermal isomerization, or more smoothly in an alcoholic solution of $\mathrm{AgNO}_{3}$ at rt (Scheme 2.5). Shortly thereafter, catalytic protocols followed and revealed the importance of substitution at the terminal end of the alkyne, where alkyl groups result in mixtures of 5-exo dig and 6 -endo dig cycloadducts, $\mathbf{2 . 8 b}$ and $\mathbf{2 . 9 b}$ respectively. ${ }^{72}$

Scheme 2.5. Early Examples of $\mathrm{Ag}^{1}$ Catalyzed Lactonization of Alkynoic Acids


With respect to transition metal catalyzed lactonization methodologies, they all start from an alkynoic acid precursor that typically require several synthetic steps (Scheme 2.6a).73 As an alternative precursor, Meldrum's acid derivatives 2.10a-d have been efficiently transformed to the corresponding $\gamma$ - butyrolactones 2.11-2.13; ${ }^{74}$ adducts 2.10 are easily prepared in 2 steps from inexpensive starting materials and allow for a wide range of derivatization at the benzylic position (Scheme 2.6b)..$^{75}$ These compounds also possess an enolizable Meldrum's acid moiety that can trap either a $\pi$-allylpalladium complex or a Ag activated alkyne complex, affording $\gamma$-butyrolactones 2.11 and $2.12-2.13$ respectively. Both $\operatorname{Ag}(\mathrm{I})$ and Pd catalyzed reactions showed excellent regioselectivity affording $\gamma$-butyrolactones in moderate to excellent yields. Moreover, precursors 2.10a-d allow for functionalization at both $\alpha$ and $\beta$ positions of the $\gamma$-butyrolactone. It is worth mentioning that reports using Meldrum's acid derivatives as precursors to $\gamma$-alkylidene butyrolactone 2.12 and 2.13 were limited to terminal and aryl substituted alkynes and therefore require further investigation into substitution effects for internal alkynes.

Scheme 2.6. a) Synthetic Step Comparison of $\boldsymbol{\gamma}$-Butyrolactones Precursors; b) Transition Metal Catalyzed Lactonization of Meldrum's Acid Derivatives
a)

b)


### 2.2 Proposal



Figure 2.3. Proposal for Lewis Acid Catalyzed Lactonization of Propargylic Meldrum's Acids 2.14

The motivation was to investigate transition metal catalyzed lactonization of propargylic Meldrum's acid derivatives 2.14, discussed in the previous chapter, as outlined in Figure 2.3. Various Lewis acids from transition metals to halogens were screened to test the reactivity of $\mathbf{2 . 1 4}$ towards electrophilic activation. Furthermore, previous studies using tertiary propargylic Meldrum's acid derivatives investigated terminal alkynes and aryl substituted alkynes; the following investigations will include substituted alkynes with the aim to develop methodologies that utilize 2.14 as precursor to afford regioisomers 2.15 and/or 2.16. This strategy would allow for the functionalization of both $\alpha$ and $\beta$ positions that would otherwise be inaccessible or require multiple steps, particularly the quaternary stereocenter at the $\beta$ position.

### 2.3. Results and Discussion

### 2.3.1 Development of Reaction and Exploration of Scope

Initial efforts to promote halolactonization of propargylic Meldrum's acid derivatives 2.14 with either $\mathrm{Br}_{2}$ or $\mathrm{I}_{2}$ resulted in formation of complex mixtures. Precautions to minimize side reactions such as running reactions in the dark, lower temperatures and high dilutions did not favour the formation of a sole product. $N$-halosuccinimides proved to be a more promising source of the electrophilic halide (Table 2.2). Halolactonization of alkynoic acids are sensitive to reaction conditions and therefore investigations were done with that in mind. The importance for a nucleophilic co-solvent was previously shown by our group, and was again vital to Ag-catalyzed lactonizations, which will be discussed in more detail in the following section. Greater than one equivalent of the halosuccinimide was required to observe any reactivity, entries 1 and 2 , where only $\mathrm{K}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaHCO}_{3}$ showed depletion of 2.14 based on the crude ${ }^{1} \mathrm{H}$-NMR spectrum. No combination of halosuccinimide, base and reaction conditions screened afforded a single product, but rather complicated mixtures containing either 2.14a or 2.14b. Entries 3-5 show that halo- and seleno-mediated lactonization is possible, albeit in poor selectivity, and the structures are solely based on impure compounds isolated after chromatography. Furthermore, difficulties with the reproducibility of halolactonization of alkynoic products have been reported, and analogous reproducibility
problems with 2.15a-b were also observed. This may be due to instability of products formed. For example, neither $\mathbf{2 . 1 5 b}$ nor $\mathbf{2 . 1 5 c}$ were observed in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, which suggests that either further reactivity, such as decarboxylation for $\mathbf{2 . 1 5 b}$, takes place upon isolation of crude products on silica gel (Figure 2.4).

Table 2.2. Halolactonization of Propargylic Meldrum's Acid Derivatives 2.14

|  |  | 2.14 <br> 2.14b |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | $\mathbf{R}^{1}$ | Lewis Acid | Base | Solvent | Temp $\left({ }^{\circ} \mathrm{C}\right) / \mathrm{T}$ <br> (h) | Product (\% yield) |
| 1 | H | $\begin{gathered} \text { NBS or } \\ \text { NIS } \\ \text { (1.1 } \\ \text { equiv) } \end{gathered}$ | $\begin{gathered} \mathrm{K}_{3} \mathrm{PO}_{4} \text { or } \mathrm{K}_{2} \mathrm{CO}_{3} \\ \text { or } \mathrm{NaHCO}_{3} \\ (3 \text { equiv) } \end{gathered}$ | DCM: $\mathrm{H}_{2} \mathrm{O}$ or DCM:MeOH <br> (10:1) | rt / 24 | no reaction |
| 2 | H | $\begin{gathered} \text { NBS } \\ (2.5 \\ \text { equiv }) \end{gathered}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ or <br> $\mathrm{NaHCO}_{3}$ | DCM: $\mathrm{H}_{2} \mathrm{O}$ or DCM:MeOH (10:1) | rt / 24 | mixture |
| 3 | H | $\begin{gathered} \text { NIS } \\ (2.5 \\ \text { equiv }) \end{gathered}$ | $\begin{gathered} \mathrm{NaHCO}_{3}(3 \\ \text { equiv) } \end{gathered}$ | DCE:MeOH <br> (4:1) | $65 / 4$ |  |
| 4 | $n \mathrm{Bu}$ | $\begin{gathered} \text { NBS } \\ (2.5 \\ \text { equiv) } \end{gathered}$ | $\begin{gathered} \mathrm{K}_{3} \mathrm{PO}_{4} \text { or } \\ \mathrm{NaHCO}_{3}(3 \\ \text { equiv) } \end{gathered}$ | $\begin{gathered} \text { DCM }: \mathrm{H}_{2} \mathrm{O} \\ (4: 1) \end{gathered}$ | rt / 16 |  <br> 2.15b <br> mixture |
| 5 | $n \mathrm{Bu}$ | $\begin{gathered} \text { PhSeBr } \\ (1.1 \\ \text { equiv) } \end{gathered}$ | $E t_{3} \mathrm{~N}$ (2 equiv) | $\begin{gathered} \text { THF: } \mathrm{MeOH} \\ (10: 1) \end{gathered}$ | 0 to rt / 4 |  |

A tandem Pd-catalyzed lactonization cross-coupling reaction was explored (Table 2.3). Screening Pd catalyst, it was determined that $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ resulted in the desired adduct, but was dependent on reaction conditions. In the absence of base and at elevated temperatures, decomposition of 2.14 a takes place, where ring opening products such as 2.17 were observed, entry 2. Compound 2.15d was isolated in modest yields and under mild conditions by the sequential addition of the Pd catalyst to the preformed enolate and trapping the Pd-complex with allyl bromide, entry 4 . Attempts to prepare $\mathbf{2 . 1 8 b}$ in a one-step protocol by generating the enolate with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the presence of the Pd catalyst and allyl bromide, entry 7 , furnishes a 1:1 mixture of uncoupled adduct $\mathbf{2 . 1 5 d}$ and coupled adduct 2.18b. Moreover, it was apparent that the scope of coupling partners was limited to allyl bromide where aryl halides resulted in the isolation of starting material 2.14a, entry 9 .



Figure 2.4. Comparison of ${ }^{1} \mathrm{H}$-NMR Spectra of 2.15b, crude (above) and Isolated (below)

After establishing that a tandem lactonization cross-coupling reaction is viable, a onepot sequential conjugate alkynylation procedure was envisaged, scheme 2.7. The conjugate alkynylation protocol developed in the previous chapter presumably produces a magnesium halide enolate that can be trapped by a Pd salt and promote the tandem process discussed above. Encouragingly, a 1:1 mixture of $\gamma$-alkylidene butyrolactone $\mathbf{2 . 1 5 f}$ was isolated. The mixture of both $E$ and $Z$ isomers suggests that two different modes of lactonization are taking place: an oxypalladation across the triple bond that would afford the $Z$ isomer; and anti nucleophililc attack of the enolate to the Pd coordinated alkyne would afford the $E$ isomer. Efforts to improve the selectivity by running the reaction in toluene, acetonitrile or quenching with water were unsuccessful.

Scheme 2.7. One Pot Tandem Conjugate Alkynylation Pd-Catalyzed Lactonization CrossCoupling


Table 2.3. Pd-Catalyzed Tandem Lactonization Cross-Coupling Reactions
Entry

As already alluded to, $\operatorname{Ag}(\mathrm{I})$ salts were shown to catalyze the lactonization of propargyl Meldrum's acid derivatives. Expanding to quaternary propargylic derivatives 2.14, various $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I} / \mathrm{III})$ salts were screened to study the regio- and stereoselectivities. The formation of product was dependent on both transition metal and reaction conditions. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ was superior to other $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I} / \mathrm{III})$ salts, Table 2.4 entries $1-5$. Near quantitative yield of 2.15 e was obtained in $10: 1$ mixture of $\mathrm{PhH}: \mathrm{H}_{2} \mathrm{O}$. In contrast, AuCl requires the addition of base to avoid competing side reactions to form 2.15 e , entries 4 and 5 .

Interestingly, by repeating AuCl catalyzed reactions at rt , mixtures of 2.15f, 2.16a and 2.16b were observed (entry 6). This result shows that in the absence of a nucleophilic enolate and at lower temperatures, AuCl catalyzes the formation of both the 5 -exo-dig and 6 -endo-dig products over an extended period of time. Efforts to selectively form one regioisomer over the other, preferably 2.16, by modifying reaction conditions including using $\mathrm{AuCl}_{3}$ salts, were not successful. At best, a 3:2 ratio of 2.16a to 2.15e was obtained (entry 7). It should be noted that all reactions ran with $\mathrm{AuCl}_{3}$ resulted in complete consumption of Meldrum's acid derivatives 2.14 without affording a single distinct compound, and thus was abandoned from further screening.

In contrast to Au-catalyzed reactions, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ inherently possesses a basic counterion which can account for the higher yields observed. Altering temperature or nucleophilic cosolvent results in $\gamma$-alkylidene butyrolactones containing a carboxylic acid or ester moiety adjacent to the stereogenic center, $\mathbf{2 . 1 5 f}$ and $\mathbf{2 . 1 5 g}$ respectively (entries 8 and 9). Alkyl- and aryl-substituted propargyl Medrum's acids were more sensitive to cyclization conditions (entries 10-15). Regio- and stereoselective E-2.15h and E-2.15i isomers were isolated in a more polar and Lewis basic solvent such as THF (entries 10 and 12). In a less polar solvent such as benzene, mixtures of $E / Z$ isomers were isolated (entries 11 and 13). Lactone $Z-\mathbf{2 . 1 5 j}$ was exclusively formed in a mixture of benzene and water (entry 14).

Transition-metal-catalyzed cyclization of terminally substituted alkynoic acids have been reported to give mixtures of $E / Z$ isomers, ${ }^{68,24}$ and was rationalized by the authors to be a result of isomerization of the $Z$ isomer. To test this hypothesis, efforts to isomerize either E-2.15h or Z-2.15j by subjecting these products to Ag -salts in their respective reaction conditions over 24 h did not show any isomerization. Similarly, subjecting a mixture of $\mathrm{E} / \mathrm{Z}$ isomers to the same reaction conditions did not change the relative ratio of the isomers formed. ${ }^{76}$ These results suggest the possibility of competing paths of cyclization as illustrated in Figure 2.5. Path $\mathbf{I}$ gives rise to the $Z$ isomer, where anti- attack of the carbonyl-O onto the alkyne-coordinated $\operatorname{Ag}(\mathrm{I})$ complex gives rise to the 5 -exo-dig intermediate Ia. The E-isomer can be accounted for by a syn-oxymetalation of the carbonyl- O and $\mathrm{Ag}(\mathrm{I})$ ion across the triple bond giving rise to the 5-exo-dig intermediate IIa. Thermally induced cycloreversion of Ia and IIa resulted in the formation of acylketene intermediates Ib and IIb respectively, ${ }^{77}$

Table. 2.4. $\mathrm{Ag}^{\mathrm{I}}$ and $\mathrm{Au}^{1 / I I I}$ Lactonization of Propargylic Meldrum's Acid Derivatives 2.14


| Entry | R | TM | Solvent | Temp ( ${ }^{\circ} \mathrm{C}$ ) / time (h) | Product (\% yield) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | H | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $\mathrm{PhH}: \mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ |  <br> 2.15e, (98) |
| 2 | H | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ | 2.15e (88) |
| 3 | H | $\mathrm{AgNO}_{3}$ | $\mathrm{PhH:} \mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ | 2.15e (74) |
| 4 | H | $\mathrm{AuCl}+\mathrm{K}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{H}_{2} \mathrm{O}^{c}$ | $85 / 2$ | 2.15e (77) |
| 5 | H | AuCl | THF: $\mathrm{H}_{2} \mathrm{O}^{c}$ | $85 / 2$ | complex mixtures |
| 6 | H | AuCl | THF: $\mathrm{H}_{2} \mathrm{O}{ }^{\text {c }}$ | rt / 20 |  |
| 7 | H | $\mathrm{AuCl}+\mathrm{K}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{H}_{2} \mathrm{O}^{c}$ | rt / 20 | 2.16a + 2.15e (3:2) |
| 8 | H | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $\mathrm{PhH}: \mathrm{H}_{2} \mathrm{O}^{d}$ | rt / 18 |  |
| 9 | H | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $\mathrm{PhH}: \mathrm{MeOH}^{d}$ | $85 / 2$ |  |
| 10 | $n \mathrm{Bu}$ | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ |   2.15h <br> (86), 29:1 $\mathrm{E} / Z$ mixture |
| 11 | $n \mathrm{Bu}$ | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $\mathrm{PhH}: \mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ | 2.15h (89), 2:3 E/ $Z$ mixture |
| 12 | $n \mathrm{Bu}$ | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{MeOH}^{\text {d }}$ | $85 / 2$ |   <br> 2.15i (81), 3:1 dr |
| 13 | $n \mathrm{Bu}$ | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | PhH:MeOH ${ }^{\text {b }}$ | $85 / 2$ | 2.15i (79), 2:1 E/Z mixture |
| 14 | Ph | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $\mathrm{PhH}: \mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ |  <br> 2.15j (92) |
| 15 | $n \mathrm{Bu}$ | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | THF: $\mathrm{H}_{2} \mathrm{O}^{b}$ | $85 / 2$ | 2.15j (88), 2:5 E/ Z mixture |

${ }^{a}$ Isolated yields. ${ }^{b} 10: 1$ ratio. ${ }^{c} 30: 1$ ratio. ${ }^{d} 4: 1$ ratio.
followed by nucleophilic attack of the corresponding solvent affording the $\gamma$-alkylidene butyrolactone.


Figure 2.5. Proposed $\boldsymbol{\gamma}$-Alkylidene Butyrolactone Mechanism

Alkyl- and aryl-substituted derivatives of $\mathbf{2 . 1 4}\left(\mathrm{R}^{1}=n \mathrm{Bu}\right.$ or Ph$)$ subjected to identical reaction conditions for 2.15 f, gave mixtures of carboxylated and decarboxylated butyrolactones. However, upon gentle heating to $85{ }^{\circ} \mathrm{C}$ decarboxylated $\gamma$-alkylidene butyrolactones were exclusively formed (Table 2.5, entries 10, and 14). Further evidence for the acylketene intermediate was observed when cyclization reactions were run in the absence of a nucleophilic solvent. No cyclized products were observed as a result of rapid decomposition of the unstable acylketene intermediate. ${ }^{74_{a}}$

### 2.4. Summary

Propargyl Meldrum's acid derivatives have been shown to be attractive precursors to prepare functionalized $\gamma$-alkylidene butyrolactones. $N$-halosuccinimides were shown to transform these Meldrum's acid derivatives to halo enol lactones. The vinylic halogen moiety offers a synthetic handle for further manipulations. Pd-catalyst opened the possibility of a tandem lactonization coupling methodology, but is currently limited to allyl bromide as a coupling partner. Optimum results were obtained using group 11 transition metals, where $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ offered the highest yields and stereoselectivities. The $\gamma$-alkylidene butyrolactones
prepared using these Lewis acids display a stereogenic all-carbon quaternary center at the $\beta$ or C-4 position and the potential for additional functionalization at the $\alpha$ or $\mathrm{C}-3$ position. Ultimately, the developed methodology gives access to highly functionalized $\gamma$-alkylidene butyrolactones after three steps. Furthermore, NMR studies gave insight into the effects of alkyl substitution where $E$ and $Z$ isomer can be selectively formed by careful selection of reaction conditions.

### 2.5. Future Work

Silver (I) salts were shown to be reliable catalyst for the lactonization of propargyl Meldrum's acid derivatives but there is significant room for improvement for both halo- and Pd-catalyzed lactonization. Halo enol lactones are attractive scaffolds and conditions used to access these frameworks such as phase transfer catalyst may improve the selectivity of the lactonization as was the case for alkynoic acids. Applying this strategy directly to propargyl Meldrum's acid derivatives or converting propargyl Meldrum's acid derivatives to alkynoic acids, which proceeds in near quantitative yields, may offer access to halo enol lactones (Scheme 2.8).

Scheme 2.8. Halolactonization in the Presence of a Phase Transfer Catalyst


Optimization of the tandem Pd-catalyzed lactonization cross-coupling protocol developed will offer an efficient approach to accessing highly diverse $\gamma$-alkylidene butyrolactones. Alkenyl triflates may offer an extension to allyl bromides as coupling partners. Also, $\mathrm{Rh}^{1}$ salts were neglected in transition metal catalyzed lactonization of propargyl

Meldrum`s acid derivatives, and have the potential for novel reactivity than previously observed.

### 2.6. Experimental

## General Considerations

## Reactions

All reactions were performed in flame-dried glassware under an argon atmosphere unless otherwise stated. THF and benzene were distilled over sodium/benzophenone ketyl before use. $\mathrm{Et}_{3} \mathrm{~N}$ was dried by distilling over $\mathrm{CaH}_{2}$ and used immediately. Dichloromethane, 1,2-dichloroethane and MeCN were obtained from a solvent purification system based on the published procedure. ${ }^{42} \mathrm{MeOH}$ was heated to reflux over Mg powder overnight and then distilled, and stored over $3 \AA$ molecular sieves in a Schlenk flask. Ethynylmagnesium bromide ( 0.5 M in THF) was purchased from Sigma-Aldrich and used without further purification. $\mathrm{NaH}(60 \%$ dispersion in mineral oil) was purchased from Sigma-Aldrich. All other reagents were purchased from commercial sources and used without further purification. Proparygl Meldrum's acid derivatives 2.14 were prepared according to procedures reported in Chapter 1. Reactions were monitored by thin-layer chromatography and visualized by UV quenching and/or staining with cerium ammonium molybdate. Flash chromatography was performed using 230-400 mesh silica gel.

## Characterization

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds were obtained in $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 MHz and 75 MHz , respectively unless otherwise noted. Chemical shifts are reported in parts per million (ppm, $\delta$ ). Proton spectra were calibrated to residual $\mathrm{CHCl}_{3}(7.24 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ ( 7.15 ppm ), and carbon spectra were calibrated to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$. Carbon multiplicities ( C , $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ ) were determined by combined DEPT 90/135 experiments. Melting points are uncorrected. High resolution mass spectra were run at either the University of Waterloo Mass Spectrometry facility and the AIMS facility at the University of Toronto. Melting points are uncorrected.

## General Procedure A - Lewis Acid Activated Cyclization of Propargyl Meldrum's Acid

 Derivatives 2.14

A flame dried resealable Schlenk tube equipped with magnetic stir bar and back filled with $\mathrm{N}_{2}$, was loaded with propargylic Meldrum`s Acid adduct 2.14, electrophile (NIS, NBS, $\mathrm{PhSeBr}, \mathrm{Ag}(\mathrm{I})$ salts, AuCl$)$ and base $\left(\mathrm{NaHCO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}, \mathrm{Et}_{3} \mathrm{~N}\right)$ in the corresponding solvent $/ \mathrm{s}$. The tube was sealed and stirred at the indicated temperature and time. The reaction was monitored using TLC and was brought to ambient temperature on complete consumption of the starting material. Reactions using NIS and NBS were halted by cooling reaction mixture in an ice bath and adding $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$, followed by $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$. Layers were partitioned and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic fractions were then washed with brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$ and concentrated. Purification by flash column chromatography on silica gel eluting with 1:2 EtOAc:hexanes afford the $\gamma$-alkylidene butyrolactones $2.15 \mathrm{a}-\mathrm{c}$; reactions using $\mathrm{Ag}(\mathrm{I})$ salts and AuCl were halted by diluting with $\mathrm{Et}_{2} \mathrm{O}$, and then passing over a pad of silica to remove the transition metal salts. The homogeneous solution was concentrated onto a small amount silca gel that was loaded to the top of a silica gel column for purification by flash column chromatography. Eluting with 1:2 EtOAc:hexanes affords $2.15 \mathrm{e}-\mathrm{j}$ and 2.16a-b.

## ( $E$ )-Methyl 5-(iodomethylene)-4-methyl-2-oxo-4-phenyltetrahydrofuran-3-

 carboxylate (2.15a)Prepared according to General Procedure A using: 2.14a (100 mg, 0.367 mmol$)$,
NIS $(210 \mathrm{mg}, 0.917 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(78 \mathrm{mg}, 0.917 \mathrm{mmol})$ in a $4: 1$
DCE: $\mathrm{MeOH}(0.1 \mathrm{M})$ mixture at $65^{\circ} \mathrm{C}$ for 3 h .2 .15 a was isolated as an impure yellow film ( $59 \mathrm{mg}, 43 \%$ )..$^{78}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.42$ (s, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 168.7 (C), 167.7 (C), 167.6 (C), $136.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 127.3(\mathrm{CH}), 58.4(\mathrm{CH}), 52.7\left(\mathrm{CH}_{3}\right), 52.1(\mathrm{C}), 17.9\left(\mathrm{CH}_{3}\right)$.

## (E)-5-(1-Bromopentylidene)-4-methyl-4-phenyldihydrofuran-2(3H)-one (2.15 b)



Prepared according to General Procedure A using: 2.14b ( $120 \mathrm{mg}, 0.367 \mathrm{mmol}$ ), NBS ( $330 \mathrm{mg}, 1.85 \mathrm{mmol}$ ) and $\mathrm{K}_{3} \mathrm{PO}_{4}(390 \mathrm{mg}, 1.85 \mathrm{mmol})$ in a 30:1 DCM: $\mathrm{H}_{2} \mathrm{O}$ ( 0.1 M ) mixture at rt for $10 \mathrm{~h} . \mathbf{2 . 1 5 b}$ was isolated as an impure yellow film ( 31 $\mathrm{mg}, 26 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.44-7.42 (m, 2H), 7.34-7.32 (m, 3H), 3.08 (d, J = $20.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~J}=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $169.0(\mathrm{C}), 155.1(\mathrm{C}), 141.5(\mathrm{C}), 128.8(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 125.3(\mathrm{CH}), 88.2(\mathrm{C}), 44.1\left(\mathrm{CH}_{2}\right), 38.6(\mathrm{C}), 32.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 22.0$ $\left(\mathrm{CH}_{2}\right), 15.0\left(\mathrm{CH}_{3}\right)$. MS (EI) $322\left(\mathrm{M}^{+}\right)$.

## 4-Methyl-5-methylene-4-phenyldihydrofuran-2(3H)-one (2.15e)



Prepared according to General Procedure A using: 2.14a ( $100 \mathrm{mg}, 0.367 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.0367 \mathrm{mmol})$ and $\mathrm{PhH} / \mathrm{H}_{2} \mathrm{O}(10: 1)$ as the solvent. The mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 2 h affording 2.15e as a colorless oil $(60 \mathrm{mg}, 88 \%$ in THF $/ \mathrm{H}_{2} \mathrm{O} ; 68 \mathrm{mg}, 98 \%$ in $\mathrm{PhH} / \mathrm{H}_{2} \mathrm{O}$ ) after purification. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41$7.26(\mathrm{~m}, 5 \mathrm{H}), 4.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (d, J = $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 172.4 (C), 164.0 (C), 143.7 (C), $128.8(\mathrm{CH}), 127.3(\mathrm{CH}), 125.7(\mathrm{CH}), 89.8\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{C}), 45.0\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}:$189.09101. Found: 189.09100 .
$\left(3 S^{*}, 4 S^{*}\right)$ - and $\left(3 S^{*}, 4 R^{*}\right)$-4-Methyl-5-methylene-2-oxo-4-phenyltetrahydrofuran-3carboxylic acid (2.15f)


Prepared according to General Procedures A using: 2.14a (100 $\mathrm{mg}, 0.367 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.0367 \mathrm{mmol})$ and $\mathrm{PhH} / \mathrm{H}_{2} \mathrm{O}$ (4:1) as the solvent. The mixture was stirred at rt for 18 h affording 2.15 f as a colorless oil ( $75 \mathrm{mg}, 88 \%$ ) after purification. A mixture of diastereoisomers was obtained in a $3: 1$ ratio of major ( $3 S, 4 S$ and $3 R, 4 R$ ) and minor ( $3 S, 4 R$ and $3 \mathrm{R}, 4 \mathrm{~S}$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.34(\mathrm{~m}, 5 \mathrm{H}$, mixture), $5.07(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.01 ( $\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.47-4.45 ( $\mathrm{m}, 1 \mathrm{H}$, mixture), 3.89 ( $\mathrm{s}, 1 \mathrm{H}$, major), 3.71 ( $\mathrm{s}, 1 \mathrm{H}$, minor), 1.95 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.70 ( $\mathrm{s}, 3 \mathrm{H}$, major); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 170.1 (C),
168.0 (C), 162.1 (C, minor), 161.2 (C, major), 142.4 (C), 129.1 (CH, major), 128.7 (CH, minor), 128.3 (CH, major), 128.0 ( CH, minor), 126.49 ( CH, minor), 125.99 ( CH, major), 91.8 ( $\mathrm{CH}_{2}$, major), 90.8 ( $\mathrm{CH}_{2}$, minor), 59.5 ( CH , major), 58.4 ( CH , minor), 51.2 ( C , major), 50.1 ( C , minor), $26.5\left(\mathrm{CH}_{3}\right.$, minor), $23.0\left(\mathrm{CH}_{3}\right.$, major). HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{4}(\mathrm{M})$ : 231.06628. Found: 231.06594.
$\left(3 S^{*}, 4 S^{*}\right)$ - and $\left(3 S^{*}, 4 R^{*}\right)$-Methyl 4-methyl-5-methylene-2-oxo-4-phenyltetrahydrofuran-3-carboxylate $(2.15 \mathrm{~g})$

purification. NOE experiments showed a mixture of diastereoisomers was obtained, a 3:1 ratio of major ( $3 S, 4 S$ and $3 R, 4 R$ ) and minor ( $3 S, 4 \mathrm{R}$ and $3 R, 4 S$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.427.27 ( $\mathrm{m}, 5 \mathrm{H}$, mixture), $5.07(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.98(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.46 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.39 ( $\mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 3.85 ( $\mathrm{s}, 1 \mathrm{H}$, major), 3.78 ( $\mathrm{s}, 3 \mathrm{H}$, major), 3.67 ( $\mathrm{s}, 1 \mathrm{H}$, minor), 3.26 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.89 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.61 ( $\mathrm{s}, 3 \mathrm{H}$, major); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 168.2 (C, major), 167.9 (C, minor), 166.2 (C, major), 165.7 (C, minor), 162.4 (C, minor), 161.2 (C, major), 143.0 (C, major), 139.4 (C, minor), 129.0 (CH, major), 128.3 ( CH , minor), 127.9 ( CH, minor), 127.8 ( CH , major), 126.6 ( CH , minor), 125.7 ( CH , major), $91.3\left(\mathrm{CH}_{2}\right.$, major), $90.3\left(\mathrm{CH}_{2}\right.$, minor), $60.0\left(\mathrm{CH}\right.$, major), $59.7\left(\mathrm{CH}\right.$, minor), $52.8\left(\mathrm{CH}_{3}\right.$, major), $52.2\left(\mathrm{CH}_{3}\right.$, minor), 51.2 ( C , major), 50.9 ( C , minor), $27.3\left(\mathrm{CH}_{3}\right.$, minor), $23.0\left(\mathrm{CH}_{3}\right.$, major); HRMS (DART) $m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}): 245.08193$. Found: 245.08181.

## (E)-4-Methyl-5-pentylidene-4-phenyldihydrofuran-2(3H)-one ( $E$-2.15h)



Prepared according to General Procedure A using: 2.14b ( $100 \mathrm{mg}, 0.367 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.0367 \mathrm{mmol})$ and $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10: 1)$ as the solvent. The mixture was stirred at $85^{\circ} \mathrm{C}$ for 2 h affording $\boldsymbol{E}-\mathbf{2 . 1 5 h}$ as a colorless oil ( $77 \mathrm{mg}, 86 \%$ ) after purification. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H})$, $2.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\operatorname{appt}, J=7.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-$
$1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (sextet, $J=7.2,7.5,7.7,7.1,2 \mathrm{H}), 0.91(\mathrm{t}, 7.3,7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 168.4 (C), 152.1 (C), 145.4 (C), 128.7 (CH), 126.9 (CH), 125.3 (CH), $109.8(\mathrm{CH}), 43.8\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{C}), 32.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 262.18016$. Found: 262.18008.
$\left(3 S^{*}, 4 R^{*}, E\right)$ - and $\quad\left(3 S^{*}, 4 S^{*}, E\right)$-Methyl $\quad$ 4-methyl-2-oxo-5-pentylidene-4-phenyltetrahydrofuran-3-carboxylate (E-2.15i)
 purification. NOE experiments showed a mixture of diastereoisomers was obtained, a 3:1 ratio of major ( $3 \mathrm{~S}, 4 \mathrm{R}$ and $3 R, 4 \mathrm{~S}$ ) and minor ( $3 \mathrm{~S}, 4 \mathrm{~S}$ and $3 \mathrm{R}, 4 \mathrm{R}$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.33$7.26(\mathrm{~m}, 5 \mathrm{H}$, mixture), $5.26(\mathrm{~s}, 1 \mathrm{H}$, minor), 5.14 ( $\mathrm{s}, 1 \mathrm{H}$, major), 3.81 ( $\mathrm{s}, 1 \mathrm{H}$, major), 3.66 ( $\mathrm{s}, 1 \mathrm{H}$, minor), 3.61 ( $\mathrm{s}, 3 \mathrm{H}$, major), 3.30 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 2.28-2.23 (m, 2H, mixture), 1.60-1.52 (m, 5 H , mixture), 1.42-1.34 (m, 2H, mixture), $0.93\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, mixture); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 166.9 (C, major), 166.4 (C, minor), 164.8 (C, major), 164.4 (C, minor), 152.6 (C, major), 152.3 (C, minor), 143.8 (C, major), 141.7 (C, minor), 128.8 (CH, major), 128.4 (CH, minor), 127.4 (CH, minor), 127.4 (CH, major), 126.2 ( CH, minor), 125.7 ( CH, major), 109.7 ( CH , major), 107.6 ( CH , minor), 58.8 ( CH , minor), 58.0 ( CH , major), $52.3\left(\mathrm{CH}_{3}\right.$, major), $52.0\left(\mathrm{CH}_{3}\right.$, minor), 41.9 (C, minor), 41.5 (C, major), $32.3\left(\mathrm{CH}_{2}\right.$, minor), $32.0\left(\mathrm{CH}_{2}\right.$, major), $28.3\left(\mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{CH}_{3}\right.$, minor), $23.0\left(\mathrm{CH}_{3}\right.$, major), $22.0\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 320.18563$. Found: 320.18555.

## (Z)-5-Benzylidene-4-methyl-4-phenyldihydrofuran-2(3H)-one (Z-2.15j)



Prepared according to General Procedure A using: 2.14c ( $100 \mathrm{mg}, 0.367 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.0367 \mathrm{mmol})$ and $\mathrm{PhH} / \mathrm{H}_{2} \mathrm{O}(10: 1)$ as the solvent. The mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 2 h affording $\mathbf{Z - 2 . 1 5 j}$ as a colorless oil ( $89 \mathrm{mg}, 92 \%$ ) after purification. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.21(\mathrm{~m}, 8 \mathrm{H})$, $5.47(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.4$ (C), 156.7 (C), 144.1 (C), 133.6 (C), 128.8 (CH), 128.6 (CH), 128.4 (CH), $127.4(\mathrm{CH}), 127.0(\mathrm{CH}), 125.9(\mathrm{CH}), 105.5(\mathrm{CH}), 47.9(\mathrm{C}), 44.5\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}:$265.12231. Found: 265.12156 .

## 4-Methyl-4-phenyl-3,4-dihydro-2H-pyran-2-one (2.16a)



Prepared according to General Procedures A using: 2.14a ( $100 \mathrm{mg}, 0.367 \mathrm{mmol}$ ), $\mathrm{AuCl}(9 \mathrm{mg}, 0.0367 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(51 \mathrm{mg}, 0.367 \mathrm{mmol})$ and THF (wet) as the solvent. The mixture was refluxed for 2 h affording 2.16a as an impure yellow film (23 mg, 33\%) after flash chromatography. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.38-7.32(\mathrm{~m}, 5 \mathrm{H})$, $6.60(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.51$ ( $\mathrm{s}, 3 \mathrm{H}$ ), ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 168.7 (C), 146.4 (C), 129.0 (CH), 128.8 $(\mathrm{CH}), 127.8(\mathrm{CH}), 126.0(\mathrm{CH}), 116.0(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 33.0(\mathrm{C}), 26.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}) 188\left(\mathrm{M}^{+}\right)$.

## Pd-Catalyzed Tandem Lactonization Cross-Coupling Reactions



This modified procedure is based on Pd-catalyzed cyclized coupling of alkynoic acids with alkyl halides reported by Utimoto. ${ }^{79}$ A flame-dried round bottom flask charged with argon and $\mathrm{NaH}(0.016 \mathrm{~g}, 0.646 \mathrm{mmol})$ in THF $(0.74 \mathrm{~mL})$ was cooled in an ice bath. A solution of $2.14 \mathbf{a}(0.16 \mathrm{~g}, 0.518 \mathrm{mmol})$ in THF $(0.74 \mathrm{~mL})$ was then added dropwise and mixture was stirred for $30 \mathrm{~min} . \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(20 \mathrm{mg}, 0.0518 \mathrm{mmol})$ was then added followed by allyl bromide $(0.90 \mathrm{~mL}, 10.36 \mathrm{mmol})$. The resulting mixture was stirred for 14 h at rt . The reaction was ceased by concentrating down on the reaction mixture onto a small amount of silica gel, and purified by loading it to the top of a column packed with silica gel and eluting with 1:6 EtOAc:hexanes. 2.15d was isolated as a pale yellow oil ( $48 \mathrm{mg}, 38 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.58-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.87-4.76 (m, 2H), $2.94(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H})$, 1.75 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 172.7 (C), 157.3 (C), 144.1 (C), 135.4 (CH), 128.9
$(\mathrm{CH}), 127.2(\mathrm{CH}), 125.8(\mathrm{CH}), 115.2\left(\mathrm{CH}_{2}\right), 103.6(\mathrm{CH}), 48.0\left(\mathrm{CH}_{2}\right), 45.6(\mathrm{C}), 29.2\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $m /$ z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 246.14940$. Found: 246.14662.

## Chapter 3: Intramolecular Conjugate Addition

### 3.1. Introduction

### 3.1.1. Indolines: Background and Preparation

Indolines are common structural motifs with a broad range of applicability, from natural products that possess therapeutic activity, ${ }^{80}$ to organocatalysts in stereoselective reactions (Figure 1). ${ }^{81}$ For example, the antitumor antibiotic $(+$ )-duocarmycin A was prepared by the key indoline synthon 3.1 (Figure 1). Therefore synthetic strategies that furnish substituted indolines, particularly consisting of enantioenriched centers, would be of great utility. Several approaches have been developed where those forming racemic compounds involving the reduction of indoles and radical cyclizations will not be discussed. ${ }^{82}$ Rather, the focus of this section will be on enantioselective protocols for the formation of 3-substituted indolines.


Figure 3.1. Selected Examples of Indolines Scaffolds

Independently, both Bailey and Groth reported ( - )-sparteine-mediated carbolithiation of N -allyl- N -benzyl-2-bromoaniline in the synthesis of 3 -substituted indolines (Scheme 3.1). ${ }^{83,84}$ Lithium-halogen exchange in the presence of $\mathbf{L} 1$ affords a chiral carbanion that can undergo intramolecular carbocylization in good to excellent yields and enantioselectivities. However, this approach has limited substrate scope due to the harsh reaction conditions.

Scheme 3.1. Intramolecular Carbolithiation in the Formation of 3-Substituted Indolines


Another common strategy takes advantage of preexisting indoline backbones by using 3-substituted indoles as precursors. The Reisman group recently reported the formal [3+2] cycloaddition between 3 -substituted indoles and 2-amidoacrylates to prepare various pyrroloindolines in high enantioselectivities (Scheme 3.2a). ${ }^{85}$ It was postulated that the reaction proceeds through a stepwise mechanism in which $(\mathrm{R})$ - $\mathrm{BINOL} \cdot \mathrm{SnCl}_{4}$ complex activates the 2amidoacrylate, promoting the conjugate addition by the indole resulting in an iminium ion that subsequently undergoes an intramolecular attack. Most notable derivative was 3.2 that possess an all-carbon quaternary center at 3-position of the indoline (Scheme 3.2a).

Alternatively, the asymmetric hydrogenation of indoles has been accomplished with Rh-L2 complex, but only 2-substituted indoles afforded indoline adducts in high yields and selectivities; 3-substituted indoles resulted in predominately the hydrolysis of the amide (Scheme 3.2b). ${ }^{86}$ The protecting group on the nitrogen atom of the indole was important, as it was believed to act as a secondary coordinating group. The poor reactivity of 3-substituted indoles was remedied by preparing the $N$-tosylated indole, affording the corresponding indolines in high yields and selectivities. ${ }^{87}$ More recently, conditions for the asymmetric hydrogentation of unprotected indoles using $\operatorname{Pd}(\mathrm{II}) / \mathbf{L} 3$ catalyst and a Brønsted acid as an activator have been described (Scheme 3.2c). ${ }^{88}$ This strategy relies on the activation of unprotected indoles by protonation at the $\mathrm{C}-3$ position forming an iminium ion that is prone to hydrogenation. Interestingly, for 2-substituted indoles the enatioselective-controlled step is the hydrogenation step, whereas for 2,3-disubstituted indoles it is the protonation step. Due to the significantly faster rate of protonation versus hydrogenation $\left(k_{1} \gg k_{2}\right)$ a dynamic kinetic resolution is responsible for the high enantioselectivities observed.

Scheme 3.2. Enantioselective Approaches to 3-Substituted Indolines from Indole Precursors

c)


$82 \%$ yield, $92 \%$ ee




Dynamic Kinetic Resolution
$k_{1} \gg k_{2}$

### 3.1.2. Intramolecular Cyclizations: Conjugate Addition Methodologies

A more practical and general approach that does not require the pre-existing indole to prepare 3-substituted indolines is required. One approach may be to use a latent $\mathrm{C}-\mathrm{M}$ bond that can react at the designated time. Macdonald has reported a method for the intramolecular conjugate addition to 2 -cyclohexenones that proceeded by the Lewis acid activation of the enone, followed by the nucleophilic attack of a weakly polarized $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{Sn}$ bond that resulted
in mixture of cis- and trans-2-decalones 3.3 in high yields (Scheme 3.3a).s9 For 3-methyl-2cyclohexenone derivatives, where the alkylstannyl side chain is in the pseudoaxial position, the reaction does not undergo a conjugate addition but rather a hydride transfer from the $\beta$ position to the $\mathrm{Me}_{3} \mathrm{Sn}$ group to the electrophilic position of the enone generating a single isomer ( $\pm$ )-3.4 (Scheme 3.3b). It was postulated that the steric effects between the Me group at the disubstituted $\beta$-enone and the $\mathrm{Me}_{3} \mathrm{Sn}$ bound to the nucleophilic carbon does not allow for the 6 -membered transition state for the conjugate addition to take place. Interestingly, all carbon quaternary centers were accessible using shorter alkyl tether ( $\mathrm{n}=3$ ) which preferentially undergoes the conjugate addition affording 3.5 in good yield. This example highlights the preference for conjugate addition over a hydride shift even for sterically demanding centers. Additionally, spiro-cycloadduct 3.6 were prepared using $\beta$-substituted cyclohexenones (Scheme 3.3d). Feldman employed this strategy in the preparation of the tricyclic core of $( \pm)$-halichlorine by refluxing intermediate $\mathbf{3 . 7}$ in toluene and $\mathrm{MgBr}_{2}$ as the Lewis acid activator to access 3.8 (Scheme 3.3e). ${ }^{00}$ In their hands, $\mathrm{MgBr}_{2}$ proved to be a superior Lewis acid catalyst giving better yields and cleaner reactions than the $\mathrm{TiCl}_{4}$ or $\mathrm{SnCl}_{4}$ reported by Macdonald.

Scheme 3.3. Intramolecular Conjugate Addition of Tetraalkylstannanes to Cyclohexenone Derivatives

d)

e)


In order to achieve enantioselectivity, transmetallation with a chiral transition metal complex offers an attractive approach. Particularly, intramolecular methodologies as they do not suffer from the same limitations and are generally entropically more favoured than intermolecular reactions. Moreover, intramolecular conjugate addition of stabilized carbanionic centers to Michael acceptors is a well established process that has exhibited a great deal of synthetic utility. ${ }^{91}$ In contrast, reports of methods that entail intramolecular Michael additions of nonstabilized carbanionic centers (e.g., organometallic species) to activated $\mathrm{C}-\mathrm{C}$ double bonds are relatively rare. Focusing on the latter protocols, Piers has prepared various bicyclo-compounds by the copper mediated intramolecular conjugate addition of alkenyltrimethylstannes to $\alpha, \beta$-enones (Table 3.1). ${ }^{92}$ Cis-fused bicyclo[4.3.0]nonanes possessing quaternary centers were prepared (Table 3.1, entries $1-3$ ), which would be challenging substrates to prepare using alternate approaches. These examples illustrate one of
the points made earlier, where the poor reactivity of monoalkenylcopper(I) species in intermolecular conjugate additions to enones is overcome by intramolecular nature of this protocol. ${ }^{93}$ However, a drawback to this strategy is the need for excess (2.5 equiv) of $\mathrm{Cu}(\mathrm{I})$ salts.

Table 3.1. Cu-Mediated Intramolecular Conjugate Addition

|  |  | $\frac{\mathrm{CuCN}}{\mathrm{DMF}_{60}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | $\mathbf{R}^{1}$ | $\mathbf{R}^{2}$ | n | Yield (\%) ${ }^{\text {a }}$ |
| 1 | H | Me | 2 | 92 |
| 2 | H | $i-\operatorname{Pr}$ | 2 | 73 |
| 3 | Me | Me | 2 | $85^{\text {b }}$ |
| 4 | H | H | 1 | $76^{\text {b }}$ |
| 5 | Me | H | 1 | $77^{\text {b }}$ |

In contrast to copper-mediated conjugate additions, a catalytic protocol reported by Furman describes the intramolecular conjugate addition of vinylstannanes to 2,3-dihydro-4pyridones catalyzed by $[\mathrm{RhCl}(\operatorname{cod})]_{2}$ under mild conditions (Scheme 3.4). ${ }^{.4}$ Excellent yields of cycloadducts ( $\pm$ )-3.9 were obtained as single diastereomers.

Scheme 3.4. Rh(I)-Catalyzed Intramolecular Conjugate Addition of Vinylstannanes


It is worth noting that majority of inter- and intramolecular procedures for the formation of $\mathrm{C}-\mathrm{C}$ bonds utilize sp and $\mathrm{sp}^{2}$ hybridized organometallic precursors, which can be ascribed to the relative stability of these $\mathrm{C}-\mathrm{M}$ bonds ( $\mathrm{M}=\mathrm{B}, \mathrm{Si}, \mathrm{Zn}, \mathrm{Sn}$, ) versus the strongly polar $\mathrm{C}-\mathrm{M}$ bonds ( $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{MgX}$ ). Thus, notably absent are metal catalyzed intramolecular
conjugate additions that transfer $\mathrm{sp}^{3}$-hybridized carbons, particularly in the formation of quaternary centers. With respect to the former, difficulty of transferring $\mathrm{sp}^{3}$-hybridized carbons is likely due to poor reactivity and selectivity of the organometallic bond, alkyltin reagents for example, and competing side reactions such $\beta$-hydride eliminations for reagents bearing a $\beta$-hydrogen (Figure 3.2). ${ }^{95}$ As a result, reagents that selectively transmetallate and are


Figure 3.2. Schematic Example of $\beta$-Hydride Elimination versus Reductive Elimination
tolerant to majority of transformations offer an attractive solution. To this end, a report by Vedejs showed a convenient protocol to prepare 5-chloro-1-aza-5stannabicyclo[3.3.3]undecane $\mathbf{3 . 1 0}$ that showed a significant advantage over other alkylstannanes in Stille coupling reactions (Scheme 3.5). ${ }^{96}$ The atrane framework results in unique bonding and intramolecular interactions that are not observed for other stannanes.97 For example, the apical $\mathrm{Sn}-\mathrm{C}$ bond ( $2.21 \AA$ ) in 3.10b, to the best of the authors' knowledge, is the longest bond length known for a tetraorganotin compound and is approximately $0.06 \AA$ longer than the internal methylene $\mathrm{Sn}-\mathrm{C}$ bonds (2.15-2.17 $\AA$ ). ${ }^{98}$ This abnormally long $\mathrm{Sn}-\mathrm{C}$ bond is credited for the increased reactivity observed for these reagents where metal-alkyl exchange occurs exclusively at the exocyclic $\mathrm{Sn}-\mathrm{C}$ bond circumventing unwanted alkyl transfers that have been reported for other alkylstannanes. Tricarbastannatranes 3.10 are crystalline in nature and less toxic than volatile trimethylstannanes, 99 and avoid tedious workups typically accompanied with greasy alkylstannanes. Furthermore, they are not air or moisture sensitive and can even be recycled.

Scheme 3.5. Stille Coupling of Carbastannatranes $\mathbf{3 . 1 0}$ versus Tetramethylstannane


Tricarbastannatranes $\mathbf{3 . 1 0}$ have been mainly utilized in Stille coupling reactions. Their advantage over other nucleophilic coupling partners, particularly other stannanes, is exemplified by challenging reactions that afforded products which could not be accessed by other means. As an illustrative example, Hegedus reported that alkylation, via transmetalation, of $\mathbf{3 . 1 1}$ was only observed with carbastannatranes 3.10d and 3.10e (Scheme 3.0);100 where any other combination of metal catalysts $(\mathrm{Ni}, \mathrm{W}, \mathrm{Ir}, \mathrm{Mo}, \mathrm{Rh})$ and organometallic reagents $\left(\mathrm{NaBPh}_{4}\right.$, $\mathrm{PhZnBr}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHSnBu}_{3}, \mathrm{PhSnMe}_{3}$ ) failed to afford any substituted products.

Scheme 3.6. Pd-Catalyzed Allylic Substitution With Carbastannatranes


Furthermore, Fillion reported the enhanced reactivity of carbastannatrane 3.10f compared to $\mathrm{Me}_{3} \mathrm{SnCH}_{2} \mathrm{I}$ and $\mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{I}$ in the formation of $\mathrm{sp}^{3}$-gem-dimetallic species and evidence for a carbenoid intermediate in cine-substitution studies of Stille coupling reactions (Scheme 3.7). ${ }^{101}$ NMR studies revealed carbenoid reactivity in the decomposition of $\mathbf{3 . 1 0 f}$ with Pd-catalyst resulting in: cyclopropanation with excess norbornene, dimerization to ethene, $\mathrm{O}_{2}$ trapping to form formaldehyde and iodostannatrane 3.10 g byproduct (Scheme 3.7). Observation of these adducts supported the Busacca-Farina cine-substitution mechanism in the Stille Coupling of sterically demanding vinyl stannanes.

Scheme 3.7. Carbastannatranes in Cine-Substitution Studies of Stille Coupling Reactions


More recently, a stereoretentive protocol using secondary alkylcarbastannatranes 3.10h as nucleophilic coupling partners in Stille coupling reactions has been reported by Biscoe (Scheme 3.8). ${ }^{102}$ Chiral secondary alkyl groups were transferred with minimal erosion of enantiomeric excess or the formation of $\beta$-hydride elimination side products, further emphasizing the selective nature of alkylcarbastannatranes as nucleophilic sources of $\mathrm{sp}^{3}$ hybridized carbons.

Scheme 3.8. Selected Example of Pd-Catalyzed Stereoretentive Cross-Coupling of Secondary Alkylcarbastannatrane with 2-Bromopyridine


In order to address the challenges of accessing all-carbon stereogenic centers by an intramolecular protocol, highly electrophilic acceptors may be necessary. Our group's success in employing Meldrum's acid alkylidenes as activated acceptors for the preparation of adducts bearing enantioenriched all-carbon tertiary and quaternary centers offers an attractive strategy to develop an intramolecular protocol. The ease as to which unactivated nucleophiles can be inserted in a 1,4-fashion was shown by the $\mathrm{Sc}(\mathrm{OTf})_{3}$-catalyzed conjugate addition of allylstannanes to alkylidene Meldrum's acid derivatives under mild reaction conditions developed in our group (Scheme 3.9). ${ }^{103}$ High yields of tertiary and quaternary benzylic adducts were obtained.

Scheme 3.9. Lewis Acid Catalyzed Conjugate Allylation of Alkylidene Meldrum's Acid


Furthermore, Rh-catalyzed inter- and intramolecular conjugate addition of vinylstannanes has also been developed in our laboratory (Scheme 3.10). ${ }^{104}$ Optimal yields and enantiomeric ratios (er) were obtained using a cationic chiral $\mathrm{Rh}(\mathrm{I})$-complex that was prepared by the addition of $\mathrm{AgSbF}_{6}$ and chiral diene L5. Mild reaction conditions showed great functional group tolerance where aryl halides and boronic esters were unaffected, offering synthetic handles for further transformations (Scheme 3.10a). The allyl acetate or carbonate group was essential to obtain any reactivity, where vinyl stannanes did not add in appreciable amounts. Noteworthy was the intramolecular conjugate addition of $\mathbf{3 . 1 2}$ which afforded the cyclized Meldrum's acid 3.13 in modest yield and er (Scheme 3.10b). The superiority of the intramolecular addition of $\mathbf{3 . 1 2}$ was shown when the intermolecular conjugate addition with the analogous geminal stannane failed to show any reactivity under identical conditions used for 3.12 (Scheme 3.10a).

Scheme 3.10. Rh-Catalyzed Asymmetric a) Inter- and b) Intramolecular Conjugate Addition of Alkenylstannanes to Meldrum's Acid Benzylidenes
a)



Prior to the outset of this project and to the best of our knowledge, no reports of conjugate addition reactions using alkyl carbastannatranes $\mathbf{3 . 1 0}$ had been reported until earlier this year when the Fillion group published such a procedure. ${ }^{105}$ The 1,4-conjugate alkylation of benzylidene Meldrum's acid was achieved using 2 equivalents of alkyl carbastannatranes 3.10 and 1 equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as strong bulky Lewis acid that dealkylates 1 equivalent of 3.10, generating a cationic carbastannatranes that is responsible for activation of the alkylidene, while the second equivalent subsequently alkylates the $\beta$-position (Scheme 3.10). ${ }^{119} \mathrm{Sn}$ NMR in conjunction with HRMS studies showed evidence for tin-enolate intermediates, and adroit ${ }^{13} \mathrm{C}$-NMR studies using $\mathrm{CD}_{3}$-carbastannatranes helped establish that it was indeed the second equivalent of $\mathbf{3 . 1 0}$ that was responsible for the alkylation.

Scheme 3.11. First Report of Conjugate Addition Reactions Using Carbastannatranes


Previous attempts have been made in our group to study intramolecular conjugate additions using 3.14 as potential models (Table 3.2). ${ }^{106}$ However, these compounds do not transmetallate with Rh-catalysts; intramolecular conjugate addition did take place upon formation of the more nucleophilic stannate complex by the addition of TBAB (entries 3 and 4).

Table 3.2. Results from Intramolecular Reactions of Meldrum's Acid Alkylidene 3.14


| Entry | TM (mol\%) | Additive | Solvent | Temp $\left({ }^{\circ} \mathbf{C}\right)$ | \% Yield |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}(0.1)\right.$ | - | THF | rt | 0 |
| 2 | $\left[\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}(0.05)$ | - | THF | rt | 0 |
| 3 | $\left[\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}(0.05)$ | $\mathrm{H}_{2} \mathrm{O}: \mathrm{TBAB}$ | THF | 50 | 23 |
| 4 | - | $\mathrm{H}_{2} \mathrm{O}: \mathrm{TBAB}$ | THF | 50 | 29 |

Efforts to examine alternative organometallic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{M}$ sources, such as boron derivatives 3.15, were prepared but did not show any reactivity towards Rh-catalysts and decomposition of starting material was observed at elevated temperatures (Scheme 3.12). Additionally, these compounds failed to condense with Meldrum's acid and therefore lacked an activated electrophilic site. Interestingly, these two examples show the potential for transferring $\mathrm{sp}^{3}$-hybridized carbon atoms intramolecularly via conjugate addition, and draws attention to the need for a model system that possesses both an organometallic group that can transmetallate and an activated site for conjugate addition.

Scheme 3.12. Intramolecular Conjugate Addition Attempts with Boron Derivatives $\mathbf{3 . 1 5}$

3.15, $B R_{n}=B$ (pin), $B F_{3} K$

### 3.2. Proposal

The aim of this project was to develop a methodology for the enantioselective intramolecular formation of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds (Figure 3.3). A model that possesses elements of previously successful conjugate addition reactions was envisaged, where an organometallic appendage proven to transmetallate can subsequently undergo a 1,4-conjugate addition at an activated site to afford enantioenriched 3-substituted indolines (Figure 3.3). Two potential routes will be explored where either an $\alpha$-aminoorganometallic synthon will undergo a Knoevenagel condensation resulting in the model substrate 3.16 (Figure 3.3a); or N alkylation of the Meldrum's acid derivative to access 3.16. Models bearing the carbastannatrane group will be focused on as they have been shown to be ideal reagents for the selective transfer of $\mathrm{sp}^{3}$-hybridized carbons.



Figure 3.3. Proposed Model for Intramolecular Studies

### 3.3. Results and Discussion

### 3.3.1 Preparation of Iodomethyl Tricarbastannatrane and a Novel Approach to In Situ Formation of Chlorostannatrane

The selective insertion of transition metals into a $\mathrm{C}-\mathrm{M}$ bond is essential for developing conditions for the intramolecular conjugate additions and in this regard carbastannatranes fulfill that requirement.

A procedure reported by Merck claimed to be "simple and scalable" method to access chlorostannatrane 3.10a, ${ }^{107}$ and therefore offered an ideal starting point. Hydrostannylation of triallylamine catalyzed by $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ gave 3.17 in comparable yield to that reported. However, disproportionation with $\mathrm{SnCl}_{4}$ resulted in varying amounts of 3.10a with a maximum yield of $31 \%$ being obtained (Scheme 3.13). The authors did note the amount of alcohol or water was critical to obtaining high yields, and therefore required a Karl Fischer titration to determine the exact amount of water present. Due to inconsistency of results, and in order to avoid a tedious aqueous workup, an alternate approach to prepare 3.10a was sought after.

Scheme 3.13. Thermal Disproportionation Preparation of 3.10a


Although several approaches to prepare 3.10a have been reported, ${ }^{108}$ Vedejs' method proved to be efficient and reproducible, but requires the use of relatively expensive Schwartz' reagent, and as a result warranted a search for alternative approaches. It is worth noting that Buchwald has reported a very efficient procedure for the large scale preparation of Schwartz's reagent from the inexpensive zirconocene dichloride. ${ }^{109}$ This procedure remedies the over reduction of previous strategies by the introduction of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ wash that converts the zirconocene dihydride back to the monohydride. The overall success of this procedure is highly dependent on the removal of the insoluble Al contaminates by filtration using a modified cannula fitted with a piece of glass fiber filter paper, and the amount of time $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is in contact with the Schwartz' reagent; where a sufficient amount of time is required to convert dihydride to monohydride but prolonged exposure leads to complete decomposition to zirconocene dichloride ( $>10 \mathrm{~min}$ ). As an alternate approach an in situ method was envisaged that would allow for the direct hydrozirconation of the olefin without the need to isolate the moisture, air and light sensitive Schwartz reagent from inexpensive starting reagents.

Previously reported in situ procedures for the generation of Schwartz' reagent for the reduction of olefins have used various hydride sources such as $\mathrm{LiAlH},{ }^{110 c}$ Red- $\mathrm{Al}, t-\mathrm{BuMgCl}$, and $\mathrm{LiEt}_{3} \mathrm{BH}$. However, they result in the formation of a heterogeneous reagent that is typically contaminated with varying amounts of reductant and other salts which can interact with substrates and intermediates. Therefore, the success of the hydrozirconation was dependent on the substrate (where rate of hydrozirconation appears to decrease in the order of: terminal alkyne $>$ terminal monosubstituted alkene $\approx$ internal alkyne $>1,2$-disubstituted alkene $>2,2$ disubstituted alkene $>$ trisustituted alkene), ${ }^{111}$ solvent and source of the hydride.

Table 3.3 In Situ Hydrozirconation of Triallylamine in the Formation of 3.10a


| Entry | MH | Solvent | Yield (\%) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{LiAlH}\left(\mathrm{O}^{\dagger} \mathrm{Bu}\right)_{3}(4.0 \text { equiv })^{b}$ | THF | 11 |
| 2 | $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}(3.5 \text { equiv })^{b}$ | THF | 24 |
| 3 | $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}(3.0 \text { equiv })^{b}$ | THF | 17 |
| 4 | $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}(3.2 \text { equiv })^{b}$ | DCM | - |
| 5 | $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}(3.2 \text { equiv })^{b}$ | Toluene | trace |
| 6 | $\mathrm{LiAlH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}(3.2 \text { equiv })^{b}$ | DME | - |
| 7 | $\mathrm{LiAlH}_{\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}(3.2 \text { equiv })^{c}}$ | THF | 37 |
| 8 | $\mathrm{LiEt}_{3} \mathrm{BH}\left(3.2\right.$ equiv) ${ }^{\text {b }}$ | THF | - |
| 9 | $\mathrm{LiEt}_{3} \mathrm{BH}\left(3.2\right.$ equiv) ${ }^{\text {c }}$ | THF | - |

${ }^{a}$ Isolated yield. ${ }^{b}$ Order of addition: MH to a mixture of triallylamine and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} .{ }^{c} \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and MH were premixed for 1 h then triallylamine was added

The problematic transfer of multiple hydrides with $\mathrm{LiAlH}_{4}$ to zirconocene dichloride was not screened. Rather, $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ showed immediate promising results, albeit in low yields, where 3.10a was obtained in THF (Table 3.3, entry 1). Reducing the number of equivalents from 4.0 to 3.5 improved the yield; moreover, it was determined that a slight excess of 3 equivalents gave best results, where a minimum of 3 equivalents of hydride are required for each molecule of triallylamine. Screening solvents that have been used in either the preparation of Schwartz' reagent or in the hydrozirconation of an olefin did not improve the formation of $\mathbf{3 . 1 0 a}$ (entry 4-6). Further improvements were made by changing the order of addition, where slow addition of triallylamine to a premixed solution of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ afforded $\mathbf{3 . 1 0 a}$ in modest yields (entry 7). Using alternate hydride sources such as "Super hydride" $\left(\mathrm{LiEt}_{3} \mathrm{BH}\right)$ proved to be inferior and did not afford any 3.10a. It is important to note that the quality of $\operatorname{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ is essential to the overall success of the reaction, where aged $\mathrm{LiAlH}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ showed poor to no reactivity. On the other hand, freshly prepared $\mathrm{LiAlH}\left(\mathrm{O}^{\mathrm{B}} \mathrm{Bu}\right)_{3}$ restored reactivity and gave optimum results.

In order to keep the project progressing, Schwartz' reagent was purchased in larger quantities and 3.10a was prepared using Vedejs' protocol, while the in situ protocol was being developed.

### 3.3.2. Preparation of Alkylidene Meldrum's Acid Derivatives 3.16

Scheme 3.14. Addition-Elimination Approach to 3.16


Based on a procedure by Ziegler ${ }^{112}$ that showed various alkyl and aryl Grignards can be added to 3.18 via an addition-elimination reaction to access the corresponding alkylidene Meldrum's acid derivatives (Scheme 3.14a); an analogous strategy was envisaged using carbamate $\mathbf{3 . 1 9}$ as a pronucleophile that can undergo a halogen magnesium exchange and then participate in the nucleophilic attack of 3.18 (Scheme 3.14b). Protection of commercially available 2-bromoanaline with di-t-butyl dicarbonate gave the carbamate in good yields. However, treatment with $i-\mathrm{PrMgCl}$ failed to result in the desired alkylidene Meldrum's acid derivative, but rather gave varying amounts of starting material $\mathbf{3 . 1 9}$ as the major component and protonated $\mathbf{3 . 2 0}$ as the minor component in the reaction as determined by analysis of the crude ${ }^{1} \mathrm{H}$ NMR. The fact that $\mathbf{3 . 2 0}$ is seen as the major component suggests that the halogen magnesium exchange did take place, and efforts to achieve reactivity with $\mathbf{3 . 1 8}$ such as longer reaction times or higher temperatures did not result in the desired conjugate addition. ${ }^{113}$ Attempts to generate the lithiated carbamate through lithium-halogen exchange with $n \mathrm{BuLi}$ and then trap the nucleophile with DMF to install the carbonyl at the 2-position also failed.

Though the above approach would have given rise to the model substrate in the fewest steps, commercially available 2 -aminobenzyl alcohol proved to be a better starting point where carbamate 3.21 was prepared in $\sim 80 \%$ yield after 2 steps (Scheme 3.15). Reported strategies for the Knoevenagel condensation of Meldrum's acid with aldehydes were not successful with 3.21. ${ }^{114}$ However, using stronger Lewis acidic conditions that have been successful for acetophenones afforded 3.22 in approximately $50 \%$ yield (Scheme 3.15). Disappointingly, efforts to alkylate $\mathbf{3 . 2 2}$ with $\mathbf{3 . 1 0} \mathbf{j}$, 3.23, or $\mathbf{3 . 3 4}$ did not result in the model compound after extensive screening of bases, solvents and additives. ${ }^{115}$ Most reactions gave either starting material 3.22, or the hydrolyzed product of 3.21. Based on these results it was determined that the $\mathrm{ICH}_{2} \mathrm{M}$ moiety should be installed prior to the Knoevenagel condensation.

Scheme 3.15. Results for N-Alkylation of $\mathbf{3 . 2 2}$


In addition to carbamate 3.21, sulfonamide 3.27 was also prepared and reported conditions for $N$-alkylations were tested (Scheme 3.16).116,117 Due the cost and number of synthetic steps to prepare the organometallic reagents $\mathbf{3 . 1 0 j}$, 3.23 and 3.24 , screening for optimal conditions for $N$-alkylation of 3.21 was done using benzyl bromide (Scheme 3.16a). It was found that $N$-alkylation can be achieved affording 3.26 in good yields using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at rt , but these conditions failed to give alkylated products when $\mathbf{3 . 1 0} \mathrm{j}, 3.23$, and $\mathbf{3 . 2 4}$ were used as electrophiles and resulted quantitative recovery of $\mathbf{3 . 2 1}$ and $\mathbf{3 . 2 7}$ (Schemes 3.16a and b respectively). Under more forcing condition, temperatures above $80^{\circ} \mathrm{C}$, decomposition of both reagents was observed. It is plausible the lack of reactivity observed with the organometallic electrophiles could be due to a stable "ate" complex formed between the Lewis acidic metal ( $\mathrm{B}, \mathrm{Sn}$ ) and the enolate formed upon deprotonation (Scheme 3.16c). These
intermediates would impede N -alkylation and afford the corresponding starting material upon aqueous workup. The successful alkylation with benzyl bromide can be attributed to the absence of a Lewis acidic site.

Scheme 3.16. Results for N-Alkylations of Carbamate $\mathbf{3 . 2 1}$ and Sulfonamide 3.27
a)

b)

3.27
c)


In order to avoid the postulated enolate interference for $N$-alkylation, amino alcohol 3.28 and 3.23 were chosen, based on cost and ease of preparation, to test for reactivity (Table 3.4). It was believed that based on the difference in pKa between the carbamate ( $\sim 21$ in DMSO) ${ }^{118}$ and alcohol ( $\sim 29$ in DMSO), ${ }^{119}$ alkylation could be achieved under the same conditions used to prepare 3.26. However, complex mixtures and incomplete reactivity was observed (entry 1). Stronger bases such NaH or $n \mathrm{BuLi}$ did not improve selectivity and gave mixtures of products, where $\mathbf{3 . 2 9}$ was the only compound that could be isolated and characterized from the mixtures, entry 3 . Noteworthy is that $\mathbf{3 . 2 9}$ does possess the desired N alkylated moiety.

Table 3.4. Results for $N$-Alkylation of $\mathbf{3 . 2 8}$

|  |  |  |
| :---: | :---: | :---: |
| Entry | Reaction Conditions | Product (\%yield) ${ }^{\text {a }}$ |
| 1 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv), DMF, rt, 10 h | mixture |
| 2 | 1) NaH (1.1 equiv), DMF, rt, 4 h 2) 3.23 ( 1.5 equiv) | mixture |
| 3 | 1) $n$-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ <br> 2) 3.23 ( 1.5 equiv) |  $3.29 \text { (22) }$ |

${ }^{2}$ Isolated yields.

To mitigate competing $O$-alkylation, THP-protected $\mathbf{3 . 3 0}$ was prepared. $N$-alkylation of $\mathbf{3 . 3 0}$ to $\mathbf{3 . 3 1}$ was achieved smoothly in modest yields by complete deprotonation with KH followed by the addition of $\mathbf{3 . 2 3}$ (Scheme 3.17). Deprotection followed by Swern oxidation gave 3.32 in excellent yield over 2 steps. Finally, Knoevenagel condensation under strongly Lewis acidic conditions afforded model substrate 3.16a. Though 3.16a possesses a more stable $\mathrm{C}-\mathrm{Sn}$ bond compared to the tricarbastannatrane $\mathrm{C}-\mathrm{Sn}$, the potential for intramolecular conjugate addition was still examined using $\mathrm{Rh}(\mathrm{I})$-catalysts (Table 3.5).

Scheme 3.17. Preparation of Meldrum's Acid Alkylidene 3.16a


In the absence of any Rh-catalysts and using TBAF as an activator to form a hypervalent organotin complex, ${ }^{120}$ no 1,4-conjugate addition adducts were observed and a 1:1 mixture of starting material 3.16a and 3.32 was observed in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Table 3.5, entry 1). Repeating the reactions at higher temperatures resulted in decomposition of starting material (entry 2). Rh-salts were then screened and displayed varying levels of reactivity. Reactions using $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ did not show any reactivity after 72 h at rt and decomposition after 16 h at elevated temperatures, entries 3-4. The addition of phosphine ligands (entry 5) or using a cationic Rh-catalyst that was very effective in conjugate addition reactions (vide supra) ${ }^{1044_{a}}$ (entry 6) both failed to give any isolatable adducts. Interestingly both $\left[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}_{2}\right.$ and $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}$ afforded spiro compound 3.33. The structure of 3.33 was proposed based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT 135/90, COSY, HMQC and HMBC data collected which match the structure of $\mathbf{3 . 3 3}$. The formation of $\mathbf{3 . 3 3}$ can be explained by transmetallation taking place between the sterically less challenging $\mathrm{Sn}-\mathrm{C}$ bond giving rise to intermediate $\mathbf{3 . 3 4}$ (Figure 3.4). The intramolecular participation of nitrogen lone-pairs has been shown to enhance reactivity in Stille reactions; ${ }^{121}$ in $\mathbf{3 . 1 6 a}$ the lone pair of electrons on the oxygen of the carbonyl group may have directed the transmetallation of the $n \mathrm{Bu}$ groups, as well as stabilize the formation of 3.34. Successive $\beta$-hydride elimination of the corresponding $\mathrm{Rh}-n \mathrm{Bu}$ followed by the reduction of alkylidene moiety gives rise to the $\mathrm{Rh}-\eta_{3}$-intermediate 3.35. Nucleophilic attack of enolate onto the Sn liberates the Rh-catalyst and gives rise to 3.33. Alternatively,

Table 3.5. Results for the Rh-Catalyzed Intramolecular Conjugate Addition of Meldrum's Acid Benzylidene 3.16a


| Entry | Catalyst ${ }^{\text {a }}$ | Solvent | Temp ( $\left.{ }^{\circ} \mathrm{C}\right) /$ Time (h) | Pdt |
| :---: | :---: | :---: | :---: | :---: |
| 1 | TBAF (1.3 equiv) | THF | rt / 72 | 3.16a:3.32 (1:1) |
| 2 | TBAF (1.3 equiv) | THF | $55 / 24$ | decomp |
| 3 | $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ | THF | rt / 72 | 3.16a |
| 4 | $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ | THF | $55 / 16$ | complex mixtures ${ }^{b}$ |
| 5 | $\begin{gathered} {\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}} \\ \mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{1} \%\right) \end{gathered}$ | THF | rt / 72 | 3.16a |
| 6 | $\begin{gathered} {\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}} \\ \mathrm{AgSbF}_{6}\left(20 \mathrm{~mol}^{2} \%\right) \\ \mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{2} \%\right) \end{gathered}$ | THF | rt / 72 | 3.16 a (major) |
| 7 | $\begin{gathered} {\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}} \\ \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%) \\ \mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{\mathrm{l} \%}\right) \end{gathered}$ | THF | $55 / 8$ | decomp |
| 8 | $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ | THF | rt / 72 |  |
| 9 | $\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod}){\mathrm{Cl}]_{2}}^{2}\right.} \\ \mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{2} \%\right) \end{gathered}$ | THF | rt / 72 | 3.16a |
| 10 | $\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod}){\mathrm{Cl}]_{2}}\right.} \\ \mathrm{AgSbF}_{6}\left(20 \mathrm{~mol}^{2} \mathrm{o}\right) \\ \mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{2} \mathrm{\%}\right) \end{gathered}$ | THF | rt / 72 | 3.16a (major) |
| 11 | $\left[\mathrm{Rh}(\mathrm{cod})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$ | THF | rt / 72 | 3.16 a (major) |
| 12 | $\left[\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$ $\mathrm{PPh}_{3}\left(20 \mathrm{~mol}^{\%} \%\right)$ | THF | rt / 72 | 3.16a |
| 13 | $\left[\mathrm{Rh}(\mathrm{cod})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$ | THF | $55 / 22$ | inseparable mixture |
| 14 | $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}$ | THF | rt / 120 | $3.33{ }^{\text {b }}$ |
| 15 | $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}$ | THF | 55 / 18 | complex mixture ${ }^{b}$ |

${ }^{a} 10 \mathrm{~mol} \%$ Rh was used. ${ }^{b}$ Complete consumption of starting material.
oxidative insertion of the $\mathrm{Rh}(\mathrm{I})$ catalyst affording intermediate 3.36, can then undergo a $\beta$ hydride elimination resulting in intermediate 3.37 and 1-butene (Figure 3.4). Intramolecular coordination by the oxygen of the carbamate can direct hydrorhodiation of the olefin resulting in intermediate 3.35 , which can proceed through the same sequence to 3.33 . Efforts to obtain single crystals of 3.33 failed to give a solid and a yellow waxy oil was isolated. The undesired
regioselectivity of transmetallation further underscores the need for an organometallic moiety that will selectively transmetallate.


Figure 3.4. Proposed Mechanism for the Formation of $\mathbf{3 . 3 3}$

Efforts to prepare the analogous models of 3.16 with organometallic electrophiles 3.10j or $\mathbf{3 . 2 4}$ proved to be more problematic than with 3.23. Using the same conditions for the preparation of $\mathbf{3 . 1 6 a}, N$-alkylation with $\mathbf{3 . 1 0 j}$ smoothly formed the desired adduct $\mathbf{3 . 3 6}$; however, alkylation with 3.24 was not as clean (Scheme 3.18). Moreover, efforts to purify crude material of either reaction with $\mathbf{3 . 1 0 j}$ or $\mathbf{3 . 2 4}$ were unsuccessful and resulted in decomposition on silica gel. As result, crude material of both reactions were subjected to deprotection with catalytic amounts of PPTS that resulted in complete decomposition of crude material drawing attention to the limitation of this approach. For crude 3.36, evidence for
protodestannylation of the C-Sn bond was obtained by the isolation of carbamate 3.37, and the isolation of 3.10a by treating the aqueous layer with excess HCl and extraction with DCM.

Scheme 3.18. Results for the $N$-Alkylation of $\mathbf{3 . 3 0}$ With $\mathbf{3 . 1 0 j}$ and $\mathbf{3 . 2 4}$


As an alternate approach, a TMS-protected derivative 3.38 possessing a labile $\mathrm{C}-\mathrm{Si}$ compared to other silyl based protecting groups was prepared in good yield (Scheme 3.19). Subjecting 3.38 to previously successful $N$-alkylation conditions with $\mathbf{3 . 1 0 j}$ afforded the alkylated cyclic carbamate 3.39. Intramolecular ring-closure reactions of carbamate esters to form 1,3-benzoxazin-2-ones have been studied by Fife and believed to proceed through a isocyanate intermediate. ${ }^{122}$ The formation of $\mathbf{3 . 3 9}$ may also proceed through an isocyanate intermediate that is trapped by the migration of labile TMS group followed by intramolecular nucleophilic attack.

Scheme 3.19. Results for the $N$-Alkylation of Carbamate 3.38 with $\mathbf{3 . 1 0}$ j


In order to avoid cyclization via the proposed isocyanate intermediate in the formation of $\mathbf{3 . 3 9}$, amide $\mathbf{3 . 4 0}$ was prepared (Scheme 3.20). Subjecting $\mathbf{3 . 4 0}$ to $N$-alkylation conditions with $\mathbf{3 . 1 0} \mathbf{j}$ resulted in consumption of starting material as indicated by TLC and analysis of the
crude ${ }^{1} \mathrm{H}$ NMR spectrum (Scheme 3.20); however, due to the lack of the TMS group it was determined that the desired adduct was not formed. Efforts to isolate the product were fruitless as novel peaks and spots were observed after flash column chromatography suggesting decomposition by the silica gel.

Scheme 3.20. Results for the $N$-Alkylation of Amide $\mathbf{3 . 4 0}$ with $\mathbf{3 . 1 0 j}$


The final strategy that was explored was starting from commercially available 2nitrobenzaldehyde where acetalization followed by nitro reduction with $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ cleanly afforded the aniline derivative that was directly protected with Boc anhydride to give 3.41 (Scheme 3.21). N-Alkylation with $\mathbf{3 . 2 3}$ was successful affording the $\mathbf{3 . 4 2}$ in modest yield of $43 \%$, but alkylation with carbastannatrane $\mathbf{3 . 1 0 j}$ failed to afford the desired adduct. Efforts to purify under neutral or basic conditions by deactivating silica gel with the addition of $1 \% \mathrm{Et}_{3} \mathrm{~N}$, or using alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ based columns were unsuccessful.

Scheme 3.21. Synthesis of Acetal 3.42


### 3.4. Summary

Due to the synthetic utility of tricarbastannatranes, particularly in enhanced and selective transfer of alkyl groups, a novel in situ procedure for the preparation of chloro carbastannatranes 3.10a starting from inexpensive starting reagents has shown some promise. This lead requires optimization but may offer the most inexpensive and direct approach to 3.10a.

Meldrum's acid benzylidene 3.16a was successfully prepared but failed to transmetallate at the $\alpha$-amino C-Sn bond; instead transmetallation took place at one of the $n \mathrm{Bu}$ groups. Efforts to install an organometallic appendage that does not suffer from selectivity issues was problematic. The desired enhanced reactivity of alkyl tricarabastannatranes proved to also be responsible for the inability to prepare and isolate carbastannatrane derivatives of $\mathbf{3 . 1 6}$. It was decided that due to inherent instability and ease of protodestannylation of the C-Sn bond, novel models or strategies must be explored.

### 3.5. Future Work

Improving the in situ hydrozirconation of triallylamine protocol may be achieved by the addition of Lewis acids. Negishi reported the hydrozirconation of monosubstituted alkenes, which are typically sluggish, can be accelerated with improved yields by the catalytic addition of various Lewis acids $\left(\mathrm{AlCl}_{3}, \mathrm{AgBF}_{4}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)$, where an increase of up to $70 \%$ yield was obtained. ${ }^{123}$ Additionally, alternate zirconocene hydride sources, such as $i$ BuZrCp 2 Cl , will need to be tested to determine the optimum conditions.

With respect to the development of an intramolecular asymmetric conjugate addition protocol, rather than utilizing an organometallic group for transmetallation, direct $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation would avoid the instability or selectivity of the $\mathrm{C}-\mathrm{M}$ bond. Daugulis has used pyridine and 8 -aminoquinoline groups as auxiliary groups in the direct alkylation of unactivated $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds, where careful substrate design allows complete control of which $\mathrm{C}-\mathrm{H}$ bond is activated (Figure 3.5a). ${ }^{124} \mathrm{~A}$ similar strategy can be employed where $\mathbf{3 . 4 3}$
(Figure 3.5b) possess a strategically placed directing group which activates the desired $\mathrm{C}-\mathrm{H}$ bond that can undergo an intramolecular cyclization with an electrophilic site resulting in a 3substituted indoline. It should be noted that efforts towards the preparation of $\mathbf{3 . 4 3}$ and analogous with different directing groups have already begun but insufficient results were obtained to be included.
a)

b)


Figure 3.5. Pd-Catalyzed 8-Aminoquinoline Directed Alkylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ Bonds; b) Proposed Future Work - Auxiliary Assisted Tandem $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Bond Activation Intramolecular Allylation Methodology

### 3.6. Experimental

## General Considerations

## Reactions

All reactions were carried out in oven or flame-dried glassware under dry nitrogen or argon atmosphere. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DCE and $\mathrm{Et}_{2} \mathrm{O}$ were obtained from a solvent purification system based on the published procedure; ${ }^{42}$ THF was distilled from sodium-benzophenone ketyl under nitrogen. DMF, DMSO and $\mathrm{Et}_{3} \mathrm{~N}$ were dried by distilling over $\mathrm{CaH}_{2}$ and stored in a

Schlenk flask under argon. EtOH was distilled over Mg powder under argon and stored over $3 \AA$ molecular sieves. Reactions were monitored by thin-layer chromatography and visualized by UV quenching and/or staining with cerium ammonium molybdate. Flash chromatography was performed using 230-400 mesh silica gel.

## Characterization

Unless otherwise stated, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds were obtained in $\mathrm{CDCl}_{3}$ at 300 MHz and 75 MHz , respectively. Chemical shifts are reported in parts per million ( $\mathrm{ppm}, \delta$ ). Proton spectra were calibrated to residual $\mathrm{CHCl}_{3}(7.24 \mathrm{ppm})$ and carbon spectra were calibrated to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$. Carbon multiplicities ( $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ ) were determined by combined DEPT 90/135 experiments. High resolution mass spectrometry was performed at the University of Waterloo and the University of Toronto Mass Spectrometry facilities. Melting points are uncorrected.

## Hydrostannylation-Thermal Disproportionation Approach to Chloro Tricarbastannatrane 3.10a



The procedure is based on a report by Yang et al. at Merck research laboratories. Freshly prepared $\mathrm{Bu}_{3} \mathrm{SnH}^{125}$ ( 221 mmol , 5.5 equiv) in THF ( 138 mL ) was deoxygenated by bubbling argon and was slowly added by syringe pump ( $10 \mathrm{~mL} / \mathrm{h}$ ) to a deoxygenated mixture of triallylamine ( $40.3 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(4.03 \mathrm{mmol}, 0.10$ equiv) in THF ( 40 mL ) at rt . After complete addition, the reaction mixture was filtered over a pad of Celite to remove the heterogenous catalyst and concentrated. Purification by flash chromatography on silica gel was achieved by initially eluting with hexanes to remove $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}$ byproduct, and then a 9:1 mixture of hexanes/EtOAc. Compound 3.17 was isolated as clear colourless oil ( 22.7 g , $57 \%)$. NMR data matched that of reported procedures. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 2.36(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.61(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 18 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 18 \mathrm{H}), 0.89-0.77(\mathrm{~m}, 45 \mathrm{H})$,
$0.69(\mathrm{t}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 28.7\left(J_{\mathrm{sn-C}}=19.5 \mathrm{~Hz}\right), 27.1\left(J_{\mathrm{sn}-\mathrm{C}}=52.0\right.$
$\mathrm{Hz}), 24.4\left(J_{\mathrm{sn}-\mathrm{C}}=17.1 \mathrm{~Hz}\right), 14.2\left(\mathrm{CH}_{2}\right), 8.8\left(J_{\mathrm{sn}-\mathrm{C}}=308.0 \mathrm{~Hz}\right), 6.3\left(J_{\mathrm{sn}-\mathrm{C}}=299.1 \mathrm{~Hz}\right)$.

Water ( $36 \mu \mathrm{~L}$ ) was added to a pure ${ }^{126} \mathbf{3 . 1 7}(7.35 \mathrm{mmol})$ and heated to $80^{\circ} \mathrm{C}$, followed by the slow addition of $\mathrm{SnCl}_{4}(11.7 \mathrm{mmol})$. The resulting mixture was then stirred at $95^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled back down to rt and stirred at this temperature for 30 min . The temperature was then raised to $50^{\circ} \mathrm{C}$ and aqueous $\mathrm{NaOH}(30 \mathrm{~mL}, 10 \mathrm{M})$ was slowly added dropwise and continued to stir for an additional 40 min . The reaction was cooled back down to rt , the layers were partitioned and the aqueous layer was washed with MTBE. The aqueous layer was cooled in an ice bath and acidified with conc. $\mathrm{HCl}(\mathrm{pH} 2.5)$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and organic fractions were dried over $\mathrm{MgSO}_{4}$ and filtered. Removal of solvent afforded 3.10a as beige solid that can be recrystallized from MeOH ( 0.67 $\mathrm{g}, 31 \%)$. The NMR data matched that of reported procedures. ${ }^{127}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $2.47(\mathrm{t}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.83\left(\mathrm{~m}, J_{\mathrm{sn}-\mathrm{H}}=107 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.21\left(\mathrm{~m}, J_{\mathrm{sn}-\mathrm{H}}=69 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 53.6\left(\mathrm{CH}_{2}, J_{\mathrm{sn}-\mathrm{C}}=38.5 \mathrm{~Hz}\right), 23.1\left(\mathrm{CH}_{2}, J_{\mathrm{sn}-\mathrm{C}}=28.9 \mathrm{~Hz}\right), 14.2\left(\mathrm{CH}_{2}, J_{\mathrm{sn}-\mathrm{C}}=\right.$ 476.6 Hz).

## In Situ Preparation of Chloro Tricarbastannatrane 3.10a



To a premixed solution of the metal hydride ( $5.53 \mathrm{mmol}, 3.2$ equiv) in THF ( 17 mL ) was added a solution of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ ( $5.53 \mathrm{mmol}, 3.2$ equiv) in THF ( 5.5 mL ) at rt resulting in a light grey mixture. The flask was wrapped in aluminum foil and stirred for 30 min , followed by the addition of triallylamine ( $1.73 \mathrm{mmol}, 1.0$ equiv) which was then allowed to stir for an additional 5 h . The turbid greenish brown solution was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{SnCl}_{4}$ was added dropwise and allowed to gradually warmup to rt overnight. The reaction was quenched upon the addition of ice and $10 \% \mathrm{HCl}$ to help dissolve aluminum oxide byproducts. The layers were partitioned and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The organic layer was
washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Compound 3.10a can be further purified by recrystallization from MeOH as a beige solid ( $0.18 \mathrm{~g}, 37 \%$ ).

## Preparation of tert-butyl (2-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-

 ylidene)methyl)phenyl)carbamate (3.22)

Boc-protection of 2-aminobenzyl alcohol was achieved using reported procedure: ${ }^{128}$ to a solution of 2-aminobenzyl alcohol ( 41.0 mmol ) in THF ( 21 mL ) was added Boc anhydride $(43.0 \mathrm{mmol})$ in one portion and the solution was stirred at rt overnight. The resulting bright orange solution was stirred at $50^{\circ} \mathrm{C}$ and the progress of the reaction was monitored by TLC. The solvent was removed in vacuo and crude mixture was purified by flash column chromatography on silica gel eluting with a gradient from 9:1 to 1:1 hexanes:EtOAc. Carbamate 3.28 was isolated as an yellow-orange oil ( $7.68 \mathrm{~g}, 84 \%$ ) and characterization matched that reported.

To a solution of oxalyl chloride ( 40.8 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DMSO ( 121.1 mmol ) dropwise and stirred for 45 min . A solution of $3.28(40.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was then slowly added at $-78^{\circ} \mathrm{C}$ and stirred for 30 min , followed by the slow addition of $\mathrm{Et}_{3} \mathrm{~N}(242.3 \mathrm{mmol})$ and additional stirring at $-78{ }^{\circ} \mathrm{C}$ for 45 min and at $-20^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by the addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The organic layer was then washed with $5 \% \mathrm{HCl}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Analyses of the crude ${ }^{1} \mathrm{H}$ NMR matched that reported for 3.21 and was sufficiently pure to proceed to the next step.

Alkylidene Meldrum's acid 3.22 was prepared by the Knoevenagel condensation of Meldrum's acid with 3.21 using the method reported by Brown and coworkers. ${ }^{122}$ A solution
of $\mathrm{TiCl}_{4}\left(52.4 \mathrm{mmol}\right.$, 2.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added dropwise to dry THF $(91 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen resulting in a yellow suspension. A premixed solution of $3.22(27.4 \mathrm{mmol}$, 1.1 equiv) and Meldrum's acid ( $24.9 \mathrm{mmol}, 1.0$ equiv) in dry THF ( 39 mL ) was added slowly to the $\mathrm{TiCl}_{4} \cdot$ THF complex. Subsequent rinses with THF $(2 \times)$ of the flask containing the solution of 3.21 and Meldrum's acid was added to the reaction mixture. Pyridine ( 125 mmol , 5.0 equiv) was then slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction was then allowed to warm up slowly to room temperature and stirred for 18 h . The reaction mixture was cooled back down to $0{ }^{\circ} \mathrm{C}$ and quenched upon the addition of water, followed by dilution with ethyl acetate. The mixture was allowed to stir at room temperature until the solid had fully dissolved. The layers were partitioned, and the aqueous layer was extracted was EtOAc ( $2 \times$ ). Combined organic fractions were washed with $\mathrm{NaHCO}_{3}(2 \times)$, brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Recrystallization from a saturated solution of MeOH afforded the pure alkylidene Meldrum's acids 3.22 ( $4.24 \mathrm{~g}, 49 \%$ ) as a beige crystals. Mp $166-168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8.45(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J$ $=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 159.5(\mathrm{C}), 154.5(\mathrm{C}), 152.9(\mathrm{CH}), 138.2(\mathrm{C}), 133.3(\mathrm{CH}), 131.1(\mathrm{CH}), 125.3$ (C), $124.3(\mathrm{CH}), 123.0(\mathrm{CH}), 116.0(\mathrm{C}), 104.8(\mathrm{C}), 81.6(\mathrm{C}), 28.2\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right)$. MS (EI) $452\left(\mathrm{M}^{+}\right)$.

## Synthesis of 1-((tributylstannyl)methyl)-1H-benzo[d][1,3]oxazin-2(4H)-one (3.29)


3.28


To a solution of $\mathbf{3 . 2 8}\left(1.05 \mathrm{mmol}, 1.0\right.$ equiv) in THF ( 10 mL ) at $-78^{\circ} \mathrm{C}$ was slowly added $n \mathrm{BuLi}(2.10 \mathrm{mmol}$, 2.0 equiv, 2.5 M in hexanes) and the resulting mixture was stirred for 1 h . A solution of $\mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{I}$ (3.23, $1.50 \mathrm{mmol}, 1.0$ equiv) ${ }^{101}$ in 1 mL of THF:DMF (20:1) was then slowly added and the mixture was gradually warmed to rt . Monitoring the consumption of $\mathbf{3 . 2 8}$ by TLC, the reaction was quenched upon the addition of water. The aqueous layer was extracted with EtOAc $(3 \times)$; combined organic fractions were washed with brine $(1 \times)$ and dried over $\mathrm{MgSO}_{4}$. The filtrate was concentrated onto a small amount of silica gel and loaded
to the top of a silica gel column. Flash column chromatography eluting with 9:1 EtOAc:hexanes afforded 3.29 ( $104 \mathrm{mg}, 22 \%$ ) as a pale yellow film. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~d}, 12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ $(\mathrm{d}, 12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) 153.5$ (C), $139.0(\mathrm{C}), 128.9(\mathrm{CH}), 124.0(\mathrm{CH}), 122.5(\mathrm{CH}), 120.8(\mathrm{C}), 113.2(\mathrm{CH}), 67.0$ $\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}, J_{s_{n} \cdot \mathrm{C}}=10.5 \mathrm{~Hz}\right), 27.3\left(\mathrm{CH}_{2}, J_{s n-C}=40.0 \mathrm{~Hz}\right), 13.6\left(\mathrm{CH}_{3}\right), 10.4$ $\left(\mathrm{CH}_{2}, J_{s_{n-C}}=166.7 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 396\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$.

## Preparation of tert-butyl (2-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5ylidene)methyl)phenyl)((tributylstannyl)methyl)carbamate 3.16a



Carbamate 3.30 was prepared based on a procedure reported by Yoshikoshi: ${ }^{130}$ To a solution of 3.28 ( 8.53 g , 38.20 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(255 \mathrm{~mL}$ ) was added dihydropyran ( $4.82 \mathrm{~g}, 57.31 \mathrm{mmol}, 1.5$ equiv) and PPTS ( $0.96 \mathrm{~g}, 3.82 \mathrm{mmol}, 0.1$ equiv) at rt and was stirred for 5 h . The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. Removal of solvent in vacuo afforded $3.30(11.02 \mathrm{~g}, 94 \%)$ as colourless oil and was sufficiently pure to proceed to the next step. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 8.00 (br s, 1 H ), 7.97 ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.56(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 153.1$ (C), 138.3 (C), 129.7 (CH), 129.1 $(\mathrm{CH}), 125.5(\mathrm{C}), 122.5(\mathrm{CH}), 120.2(\mathrm{CH}), 98.1(\mathrm{CH}), 79.9(\mathrm{C}), 67.9\left(\mathrm{CH}_{2}\right), 63.0\left(\mathrm{CH}_{2}\right), 30.5$ $\left(\mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{CH}_{3}\right)$, $25.2\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{2}\right)$. MS (EI) $\mathrm{m} /$ ₹ $308(\mathrm{M}+\mathrm{H})$.

Carbamate $\mathbf{3 . 3 1}$ was prepared according to the following procedure: Compound $\mathbf{3 . 3 0}$ ( $3.68 \mathrm{~g}, 12.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF ( 40 mL ) and cooled in an ice bath, followed by the addition of $\mathrm{KH}(30 \% \text { by wt, } 14.15 \mathrm{mmol} \text {, } 1.2 \text { equiv })^{131}$ in two equal portions and stirred for 2.5 h . 18-Crown-6 ( $0.80 \mathrm{~g}, 3.02 \mathrm{mmol}, 0.25$ equiv) was added to the mixture, followed by the dropwise addition of 3.23 ( $10.20 \mathrm{mmol}, 0.85$ equiv). The solution was gradually warmed to rt and continuously stirred for 16 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$. The layers were partitioned and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$. Combined organic fractions were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude compound was purified by flash column chromatography on silica gel eluting with 5:1 hexanes:EtOAc. Compound $3.31(2.55 \mathrm{~g}, 41 \%)$ was isolated as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.21-3.17 (m, 1H), 2.94-2.84 (m, 1H), 1.80-1.32 (m, 30H), $0.89(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $75 \mathrm{MHz}) 155.0$ (C), 143.0 (C), 135.3 (C), 128.1 (CH), 127.8 (CH), 126.9 (CH), 126.6 (CH), $98.0(\mathrm{CH}), 79.3(\mathrm{C}), 64.7\left(\mathrm{CH}_{2}\right), 61.9\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $27.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right), 10.8\left(\mathrm{CH}_{2}\right)$.

Compound 3.32 was prepared according to following procedure: Compound 3.31 ( $8.46 \mathrm{~g}, 13.86 \mathrm{mmol}$ ) and PPTS ( $0.35 \mathrm{~g}, 1.38 \mathrm{mmol}$ ) were weighed into a flask and diluted with $\mathrm{EtOH}(140 \mathrm{~mL})$. The mixture was stirred at $55^{\circ} \mathrm{C}$ while monitoring the progress of the reaction by TLC. The reaction was cooled back to rt and solvent was removed in vacuo. Purification by flash column chromatography on silica gel eluting with a gradient from 1:12 to 1:9 EtOAc:hexanes afforded $\mathbf{A}(6.72 \mathrm{~g}, 92 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.25 (br s, 2H), 7.03 (br s, 1H), 4.57 (br s, 2H), 3.12-2.90 (br m, 2H), 1.51 (br s, 9H), 1.46 (br s, 12 H ), 1.28 (br s, 21 H ), 0.85 (br m, 25H). ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 155.1$ (C), 142.9 (C), $137.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 79.9(\mathrm{C}), 61.3\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{2}\right), 12.9\left(\mathrm{CH}_{3}\right)$.

Subjecting compound $\mathbf{A}(6.70 \mathrm{~g}, 12.75 \mathrm{mmol})$ to Swern conditions (see procedure used to prepare aldehyde 3.21 vide supra for details) afforded compound 3.32 ( $5.75 \mathrm{~g}, 86 \%$ ) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $10.06(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J$ $=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 3.20-3.14(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 1.47-$
$1.39(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{~m}, 16 \mathrm{H}), 0.83(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 189.9(\mathrm{CHO}), 154.8$ (C), 147.8 (C), $134.5(\mathrm{CH}), 131.8(\mathrm{C}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 80.7(\mathrm{C}), 38.1\left(\mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{2}, J_{s n-\mathrm{C}}=10.5 \mathrm{~Hz}\right), 27.9\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2}, J_{s n \cdot \mathrm{C}}=28.3 \mathrm{~Hz}\right), 13.6\left(\mathrm{CH}_{3}\right), 10.7\left(\mathrm{CH}_{2}\right)$.

Compound 3.16a was prepared by the Knoevenagel condensation of 3.32 with Meldrum's acid according to the same procedure used to prepare 3.22 (vide supra). Purification by flash column chromatography on silica gel eluting with 1:5 EtOAc:hexanes afforded 3.16a ( $2.92 \mathrm{~g}, 33 \%$ ) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8.41(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$ ), 7.48 (t, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19$ (m, 2H), 3.11 (br s, 2H), 1.80 (s, 6H), 1.48-1.40 (m, 6H), 1.33-1.23 (m, 20H), 0.92-0.83 (m, 17H). ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 159.3(\mathrm{C}), 155.4$ (C), $154.5(\mathrm{CH}), 137.2(\mathrm{C}), 133.1(\mathrm{CH}), 130.8(\mathrm{CH}), 129.3(\mathrm{C}), 126.5(\mathrm{CH}), 125.8(\mathrm{CH}), 115.6$ $(\mathrm{C}), 104.5(\mathrm{C}), 80.7(\mathrm{C}), 38.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}, J_{s n-\mathrm{C}}=10.5 \mathrm{~Hz}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 17.5\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right), 10.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m /$ ₹ calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{Sn}\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9}$ ) 593.17993. Found 593.17979.

## Preparation of tert-butyl 3,3-dibutyl-2',2'-dimethyl-4',6'-dioxo-2,3-

 dihydrospiro[benzo[f][1,3]azastannepine-4,5'-[1,3]dioxane]-1(5H)-carboxylate 3.33.

A flame-dried Schlenk tube purged with argon and equipped with a magnetic stirrer was charged with $\mathbf{3 . 1 6 a}(110 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $[\mathrm{RhCl}(\mathrm{cod})]_{2}(0.085 \mathrm{mmol})$. The walls of the Schlenk tube were washed with THF $(1.7 \mathrm{~mL})$ to ensure complete transfer of reagents. The Schlenk tube was sealed and the resulting bright yellow solution was stirred for 48 h at rt . The mixture was then passed over a pad of silica and concentrated onto a small amount of silica gel. The silica gel dried with the crude product was loaded to the top of a packed silica gel column eluting with a gradient from 1:11 to 1:1 EtOAc/hexanes affording 3.16a ( $28 \mathrm{mg}, 27 \%$ not completely pure) as a thin film. ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$
(m, 1H), $7.06(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, 1H), 2.96 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68$ (s, 3H), 1.36-1.28 (m, 17H), $1.25(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 7 \mathrm{H}), 0.81(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) 167.5$ (C), 167.0 (C), 161.3 (C), 140.0 (C), 139.4 (C), 129.1 (CH), 127.9 (CH) 126.1 (CH), $125.2(\mathrm{CH})$, $103.0(\mathrm{C}), 83.8(\mathrm{C}), 77.2(\mathrm{C}), 38.1\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$.


| HMQC NMR DATA ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) |  |
| :---: | :---: |
| Proton(s) ( $\delta \mathrm{ppm}$ ) | Exhibited Coupling With ( $\delta \mathrm{ppm}$ ) |
| $6.75\left(\mathrm{H}_{1}\right)$ | 125.2 ( $\mathrm{C}_{\mathrm{a}}$ ) |
| $7.15\left(\mathrm{H}_{2}\right)$ | 128.0 ( $\mathrm{C}_{\mathrm{b}}$ ) |
| $7.06\left(\mathrm{H}_{3}\right)$ | 126.0 (C) |
| 7.26 ( $\mathrm{H}_{4}$ ) | 129.1 (C) |
| 3.49, $2.96\left(\mathrm{H}_{5 / 5}{ }^{\text {P }}\right.$ | $23.2\left(\mathrm{C}_{\mathrm{g}}\right)$ |
| 1.72, $1.68\left(\mathrm{H}_{6 / 6}\right)$ | 28.1, 26.0 ( $\left.\mathrm{C}_{\mathrm{k} / \mathrm{k}}\right)$ |
| 3.21, 2.41 ( $\mathrm{H}_{7 / 7}$ ) | 38.1 ( $\mathrm{C}_{1}$ ) |
| $1.25\left(\mathrm{H}_{8}\right)$ | 24.5 ( $\mathrm{C}_{5}$ ) |

Note: HMQC data for stannyl butyl groups were omitted because they could not be unambiguously assigned.

HMBC NMR DATA ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ )

| HMBC NMR DATA ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) |  |
| :---: | :---: |
| Proton(s) ( $\delta \mathrm{ppm}$ ) | Exhibited Coupling With ( $\delta \mathrm{ppm}$ ) |
| $6.75\left(\mathrm{H}_{1}\right)$ | 128.0 ( $\left.\mathrm{C}_{\mathrm{b}}\right), 139.4$ ( $\mathrm{C}_{\mathrm{f}}$ ) |
| $7.15\left(\mathrm{H}_{2}\right)$ | 125.2 (Ca), 139.4 (Cf) |
| $7.06\left(\mathrm{H}_{3}\right)$ | $129.1\left(\mathrm{C}_{\mathrm{d}}\right), 140.0\left(\mathrm{C}_{\mathrm{e}}\right)$ |
| 7.26 ( $\mathrm{H}_{4}$ ) | $140.0\left(\mathrm{C}_{\mathrm{e}}\right)$ |
| 3.49, $2.96\left(\mathrm{H}_{5 / 5}{ }^{\text {}}\right.$ ) | $125.2\left(\mathrm{C}_{\mathrm{a}}\right), 139.4\left(\mathrm{C}_{\mathrm{f}}\right), 77.2\left(\mathrm{C}_{\mathrm{h}}\right), 167.5\left(\mathrm{C}_{\mathrm{i}}\right)$ |
| 1.72, $1.68\left(\mathrm{H}_{6 / 6}\right)$ | 103.0 ( $\mathrm{C}_{\mathrm{i}}$ ) |
| 3.21, $2.41\left(\mathrm{H}_{7 / 7}{ }^{\text {r }}\right.$ ) | 161.3 ( $\mathrm{C}_{\mathrm{n}}$ ) |
| $1.25\left(\mathrm{H}_{8}\right)$ | 83.8 ( $\mathrm{Cr}_{\mathrm{r}}$ ) |

Preparation of tert-butyl (1-aza-5-stannabicyclo[3.3.3]undecan-5-ylmethyl)(2-(((tetrahydro-2H-pyran-2-yl)oxy)methyl)phenyl)carbamate 3.36.


Carbamate 3.36 was prepared according to the same procedure as 3.31 (vide supra) using $3.30(0.40 \mathrm{~g}, 1.30 \mathrm{mmol})$ and $\mathbf{3 . 1 0 j}(0.47 \mathrm{~g}, 1.17 \mathrm{mmol})$ as the alkylating group. Purification by flash column chromatography on silica gel eluting with 1:10 EtOAc:hexanes afforded $3.36(0.39 \mathrm{~g}, 52 \%)$ as waxy solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.48 (br m, 1H), 7.19 (br m, 2H), 7.00 (br s, 1H), 4.74-4.56 (m, 2H), 4.49-4.42 (m, 1H), 3.89 (br m, 1H), 3.52 (br $\mathrm{m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 13 \mathrm{H})$, 1.27 (br s, 7 H ), $0.68(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 154.8(\mathrm{C}), 143.6(\mathrm{C}), 127.6(\mathrm{CH})$, $127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.2(\mathrm{CH}), 98.1(\mathrm{CH}), 78.7(\mathrm{C}), 64.9\left(\mathrm{CH}_{2}\right), 63.0\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{2}\right)$, $54.9\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right), 8.0\left(\mathrm{CH}_{2}\right)$.

## Synthesis of 1-(1-aza-5-stannabicyclo[3.3.3]undecan-5-ylmethyl)-1H-

 benzo[d][1,3]oxazin-2(4H)-one 3.39

Compound 3.38 was prepared based on a reported procedure: ${ }^{132}$ To a mixture of $\mathbf{3 . 2 8}$ ( $0.46 \mathrm{~g}, 2.05 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(4.10 \mathrm{mmol}, 2.0\right.$ equiv) in THF $(2.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added TMSCl ( $4.10 \mathrm{mmol}, 2.0$ equiv) dropwise. While stirring, the reaction was gradually warmed to rt and the progress of the reaction was monitored by TLC. Excess reagents and solvent were removed under highvac, and crude was redissolved in $\mathrm{Et}_{2} \mathrm{O}$. Filtering through a pad of silica gel eluting with EtOAC afforded 3.38 ( $0.48 \mathrm{~g}, 80 \%$ ) as yellow oil that was
sufficiently pure to proceed to the next step. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98-7.93$ (br m, $2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 153.0(\mathrm{C}), 138.4(\mathrm{C}), 128.7(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.8(\mathrm{C}), 122.4(\mathrm{CH}), 120.1(\mathrm{CH}), 79.9(\mathrm{C}), 64.6\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right), 0.51\left(\mathrm{CH}_{3}\right)$.

Compound $\mathbf{3 . 3 9}$ was isolated as the major product in the $N$-alkylation of $\mathbf{3 . 3 8}(64 \mathrm{mg}$, 0.22 mmol ) using the same conditions outlined for the preparation $\mathbf{3 . 3 1}$ with $\mathbf{3 . 1 0 j}$ ( 78 mg , 0.19 mmol ) as the alkylating group. Purification by flash column chromatography on silica gel eluting with 1:4 EtOAc:hexanes afforded 3.39 ( $44 \mathrm{mg}, 48 \%$ ) as a thin film. ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{t}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.61 (quint, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.70(\mathrm{t}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 153.0$ (C), 139.3 (C), 128.7 (CH), 123.8 (CH), 121.9 (CH), 120.9 (C), 113.4 $(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2}\right), 54.5\left(\mathrm{CH}_{2}, J_{s n-C}=14.2 \mathrm{~Hz}\right), 37.4\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}, J_{s_{n-C}}=12.4 \mathrm{~Hz}\right), 7.51$ $\left(\mathrm{CH}_{2}, J_{s n-\mathrm{C}}=207.1 \mathrm{~Hz}\right)$. HRMS (ESI) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{116} \mathrm{Sn}(\mathrm{M}+\mathrm{H})$ 418.10117. Found 418.10103.

## Preparation of tert-butyl (2-

(dimethoxymethyl)phenyl)((tributylstannyl)methyl)carbamate 3.42.


Acetal B was prepared according to literature procedure: ${ }^{133}$ To a solution of 2nitrobenzaldehyde ( $9.50 \mathrm{~g}, 62.86 \mathrm{mmol}$ ) in $\mathrm{MeOH}: \mathrm{CHCl}_{3}(2: 1,150 \mathrm{~mL}$ ) was added methanesulfonic acid ( 1.88 mmol ). The mixture was refluxed in a flask fitted with a soxhlet apparatus containing $3 \AA \mathrm{MS}(15 \mathrm{~g})$ for 24 h . The reaction was cooled back to $\mathrm{rt}, \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$
was added and the solvent was evaporated in vacuo. Crude sample was purified by flash column chromatography over silica gel eluting with 1:5 EtOAc:hexanes affording B (11.64 g, $94 \%$ ) as yellow solid. Characterization data matched that reported. ${ }^{133}$

Compound 3.41 was prepared by the following procedure: ${ }^{133}$ To a solution of $\mathbf{B}(2.72$ g, 13.80 mmol$)$ in $\mathrm{EtOH}(27 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(8.29 \mathrm{~g}, 34.50 \mathrm{mmol})$ and the mixture was refluxed for 1.5 h . After cooling to $\mathrm{rt}, \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ was added and solvent was removed in vacuo. The crude oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The layers were partitioned and the aqueous layer was extracted with EtOAc $(3 \times)$. Combined organic fractions were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Characterization data for $3.41(2.43 \mathrm{~g}, 66 \%)$ matched that reported, and was isolated as a yellow oil sufficiently pure to proceed to the next step.

Compound $\mathbf{3 . 4 2}$ was prepared by the same procedure described for $\mathbf{3 . 3 1}$ (vide supra) using 3.41 ( $337 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) and $3.23(488 \mathrm{mg}, 1.13 \mathrm{mmol})$. Purification by flash column chromatography on silica gel eluting with 1:19 EtOAc:hexanes afforded $3.42(310 \mathrm{mg}, 43 \%)$ as a thin film. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.98$ $(\mathrm{s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.27(\mathrm{~m}, 15 \mathrm{H}), 0.86(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 155.1(\mathrm{C})$, $143.5(\mathrm{C}), 134.9(\mathrm{C}), 129.2(\mathrm{CH}), 127.6(\mathrm{CH}), 127.1(\mathrm{CH}), 126.8(\mathrm{CH}), 100.5(\mathrm{CH}), 79.2(\mathrm{C})$, $53.8\left(\mathrm{CH}_{3}\right), 53.5\left(\mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right), 10.8\left(\mathrm{CH}_{2}\right)$.

# Chapter 4. Halogen Bonding: $\sigma$-Hole Interactions Studies using Benzyl Meldrum's Acid Derivatives and Halogen Bond Directed Diels-Alder Reactions 

### 4.1. Introduction

Schneider recently stated, "with courageous simplification, one might assert that the chemistry of the last century was largely the chemistry of covalent bonding, whereas that of the present century is more likely to be the chemistry of noncovalent binding". ${ }^{134}$ This statement draws attention to the relatively understudied area of noncovalent interactions. Particularly halogen bonding (XB), which can be regarded as the poorly recognized counterpart of hydrogen bonding (HB). XB is not a new phenomenon, in fact, "iodide of iodammonium" complexes, $\mathrm{NH}_{3} \cdot \mathrm{I}_{2}$, were described two centuries ago. ${ }^{135}$ More recently, complexes of dihalogens with different oxygen/nitrogen Lewis bases as interaction partners have been characterized crystallographically. ${ }^{1361137}$ However, these complexes were frequently referred to as charge-transfer complexes. ${ }^{137}$

The concept of XB has been broadened further than strictly for complexes of dihalogens with various Lewis bases, and now follows closely to that of HB. The IUPAC definition for XB is, "a halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity". ${ }^{138}$ Halogen bonds are represented by three dots, $R-X \cdots Y$, where $R-X$ is the halogen bond donor and $X$ is any halogen atom with an electrophilic (electron-poor) region, and R is an electron-withdrawing group ranging from another halogen atom to organic or inorganic atom (e.g., haloalkanes, haloarenes, dihalogens, halonium ions). Y is the halogen bond acceptor possessing at least one nucleophilic (electron-rich) region (e.g., atom with lone pair of electrons, $\pi$ system, anions). Evidence for the presence of a halogen bond may be experimental and or theoretical. A nonexhaustive list of some of the key features for a halogen-bonded complex, $\mathrm{R}-\mathrm{X} \cdots \mathrm{Y}$, are: (1) the interatomic distance between X and Y is less than the sum of the van der Waals radii; (2) elongation of the $\mathrm{R}-\mathrm{X}$ bond length compared to free $\mathrm{R}-\mathrm{X}$; (3) The $\mathrm{R}-\mathrm{X} \cdots \mathrm{Y}$ bond angle tends to be close to $180^{\circ}$; (4) forces involved are primarily electrostatic, but polarization, charge transfer, and dispersion contributions all play an important role; (5) observable differences
with respect to the NMR chemical shifts for both the R-X and Y nuclei. ${ }^{138}$ These features and the extent to which they are observed may vary based on the system, but the greater the number of features present, the more reliable the characterization of an interaction as a halogen bond is.


Figure 4.1. Traditional View of Halogens Uniformly Negative Surface Interacting with Electrophiles (left); Halogen Interactions with Both Electrophiles and Nucleophiles Based on the Anisotropic Distribution of Electrons at the Surface.

XB appears to contradict the traditional view of unfavourable repulsive interactions between species with similar electronic character, where halogens are viewed as being negative in character, Figure 4.1. The question then arises why and how do these inherently negative entities interact favourably with other negative sites? The contradiction lies in the idea that an atom in a given molecule can be treated as entirely negative or positive. Surveys of crystallographic database have revealed characteristic patterns of $\mathrm{R}-\mathrm{X} \cdots \mathrm{Y}$ systems that were interpreted as attractive noncovalent interactions. ${ }^{139}{ }^{140}$ These noncovalent interactions are mainly electrostatically driven, ${ }^{141}$ and therefore suggest that these atoms possess positively and negatively charged regions that can interact favorably with both nucleophilic and electrophilic sites respectively (Figure 4.1. right). This has been comprehensively confirmed computationally in terms of the atoms' electrostatic potentials, and will be discussed in more detail in the next section.

The occurrence of a region with positive electrostatic potential on the halogen's surface that extends along the $\mathrm{R}-\mathrm{X}$ bond axis is the basis of XB . This region has been referred to as the " $\sigma$-hole", ${ }^{142}$ or the $\sigma^{*}$ orbital, and is attributed to the anisotropic charge distribution of a covalently-bonded halogen atom. ${ }^{142143}$ Both hydrogen and halogen bonding are directional and strong, and these noncovalent interactions originate from the $\sigma$-hole that arises at the
surface of the atom from which electrons are being pulled away by an electron withdrawing substituent. The $\sigma$-hole concept has been extended to also describe noncovalent interactions between a covalently-bonded atom of Groups IV-VII and a Lewis basic site. ${ }^{143}$ For example, sulfur atoms have been observed to interact with both nucleophilic and electrophilic sites within the crystal lattice of a XB complex. ${ }^{139,144}$ If noncovalent interactions are considered to be mainly electrostatically driven, ${ }^{141}$ then atoms that are traditionally viewed solely as electron rich, such as sulfur and halogens, are still able interact favorably with both nucleophilic and electrophilic sites strongly would indicate that these atoms must comprise of both positively and negatively charged regions. These observations have been studied and confirmed computationally in terms of the atoms' electrostatic potentials. ${ }^{145}$ An important feature of the electrostatic potential is that it is not just computationally determined but is a physical property that can be determined experimentally by diffraction techniques. ${ }^{146}$ Computed molecular electrostatic potentials (MEP) show a maximal positive region along the extension of the RX bond, the $\sigma$-hole, which can interact attractively with nucleophilic sites (Figure 4.2.). The main factors that affect the magnitude of the $\sigma$-hole making it more positive are the electronwithdrawing power of R , and the polarizability of X , where $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F} .{ }^{143}$ Compounds with multiple $(\mathrm{R}-\mathrm{X})_{n}$ bonds are able to have $n$ number of XB interactions. Additionally, MEP calculations show negative regions found along the lateral sides of the molecule that can interact favorably with electrophilic sites (Figure 4.2.). ${ }^{143}$


Figure 4.2. Schematic Diagram Illustrating Computed MEP.

Another way to view XB is to consider the atomic orbitals (AOs) involved. Kutzelnigg pointed out that qualitative descriptions of chemical bonding, such as hybridization, only apply to first row elements and should not be generalized to higher main group elements. ${ }^{147}$ It should be noted that the calculations used to draw the following conclusions are beyond the level of understanding of this author and therefore will be omitted from discussion; however, the conclusions drawn from them allow for a greater understanding of the $\sigma$-hole concept and will
be discussed. The main difference between the atoms of the first row versus that of the higher rows are their cores. The s and p valence AOs of the first row atoms are localized in approximately the same region of space, whereas the $p$ valence AOs of higher row atoms are extended further in space. ${ }^{147}$ As a result, for first row atoms both lone-pair repulsion and isovalent hybridization play a more significant role than for the heavy main group elements. For example, the lone pair of electrons on N in a $\mathrm{NR}_{3}$ molecule are essentially sp ${ }^{3}$-hybridized, whereas the corresponding electrons for P and heavier atoms within the same group are found in s-orbitals. ${ }^{145}$ With respect to halogen bonding, for halogens other than F, 4 out of the 7 valence electrons are assigned to 2 p-orbitals that are perpendicular to each other and can explain the negative belt along the lateral side of the halogen. The remaining 3 electrons are then allocated to 2 orbitals, the s-orbital and the remaining p-orbital that will be in the orientation of the bond (Figure 4.3.). Compared to the 2 filled p-orbitals, the singly occupied p-orbital participates in the $\mathrm{R}-\mathrm{X}$ bond and is depleted in electronic density in the outer lobe of the orbital. ${ }^{143}$ This outer portion of the half-filled bonding orbital is along the extension of $\mathrm{R}-\mathrm{X}$ bond and is referred to as the $\sigma$-hole.


Figure 4.3. Schematic View of the Valence States of F versus Higher Halogens.

HB has been extensively studied in gas phase, solution and solid states. Our group has recently extended studies on non-classical persistent intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ (where $\mathrm{X}=\mathrm{O}$, $\mathrm{S}, \mathrm{Br}, \mathrm{Cl}$, and F ) bonding in solution, using ${ }^{1} \mathrm{H}$ NMR spectroscopy for various benzyl Meldrum's acids. ${ }^{148}$ Further evidence for the noncovalent interactions was gained by solid-state X-ray analysis that revealed hydrogen bonding occurred through a six-membered ring (Figure 4.4). ${ }^{148}$ The ease of preparation of 5-benzyl Meldrum's acid derivatives permitted structural modifications of both the aromatic moiety and the benzylic tether that were shown to affect
the $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ interaction. ${ }^{148}$ Three derivatives in particular were further studied in gas phase using infrared multiple dissociation (IRMPD) spectroscopy (Figure 4.4.), and in conjunction with combined NMR and computational studies, to quantify the $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ interactions. ${ }^{149}$ It was computed that the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{X}$ hydrogen bonding interaction, where X is an oxygen atom, was comparable in magnitude to that of the $\mathrm{HF} \cdots \mathrm{HCl}$ dimer, and when X is a sulfur atom, $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interaction was found to be approximately $50 \%$ stronger than that observed for water dimer. ${ }^{149}$ Furthermore, the removal of the acidic hydrogen results in a geometric conformational change where the phenyl ring is orientated away from the $\alpha$-carbon. The absence of the acidic hydrogen does not allow for hydrogen bonding that would occur in the neutral molecule, illustrating the importance that hydrogen bonding plays in the stabilization of the overall molecule. ${ }^{149}$ Based on these experimental and computational results, it is evident that benzyl Meldrum's acids derivatives served as valuable models to study noncovalent interactions in solution, solid and gas phase.




Figure 4.4. Meldrum's Acid Derivatives Show HB Interactions by Six-Membered Ring (left). Models Used for IRMPD Studies (right).

As already discussed, XB occurs at the surface of the molecule and is believed to be involved in molecular recognition processes throughout nature. ${ }^{150}$ Almost all living organisms from simple organisms such as fungi to more advanced species such as humans, have been shown to either produce or use organohalogen compounds. Figure 4.5. illustrates an example of some naturally occurring compounds; where compound 4.1 is a insecticide produced by the Thai plant Arundo donax; 4.2 is produced by the marine organism Lissoclinum voeltrkowi and has been shown to have anticancer activity at the nanograms per milliliter level; 4.3 is a sex hormone in several species of ticks and is also produced by grasshoppers as an ant repellent; 4.4 was isolated from the cerebrospinal fluid of humans, cats and rodents and plays an important role in inducing sleep. ${ }^{151}$

4.1

4.2

4.3

4.4

Figure 4.5. Selected Examples of Naturally Occurring Organohalogened Compounds

In contrast to $\mathrm{HB}, \mathrm{XB}$ interactions outside gas phase and computational studies are not as well understood. Although some very fundamental studies of XB in solution have recently appeared, ${ }^{152}$ they are typically limited to perfluorinated species and therefore are limited in scope. Novel models that would allow for a wider range of interactions would be of great value, particularly since XB is expected to play an essential role in biological processes which ultimately take place in solution.

### 4.2. Proposal

Based on our group's experience with Meldrum's acid derivatives and their use in intramolecular HB , an obvious extension, that being the parallelism of hydrogen and halogen bonding, would be to prepare Meldrum's acid derivatives with both XB donating and accepting groups to study $\mathrm{R}-\mathrm{X} \cdots \mathrm{Y}$ type interactions. As a starting point it was believed that having as many of the structural features that promoted HB would be advantageous. With respect to these studies, it was found that gem-dimethyl substituents at the benzylic position, and $\mathrm{SMe}>\mathrm{Br}>\mathrm{Cl}$, OMe groups at the ortho-position of aromatic group had the maximum interaction based on the difference in chemical shift in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for HB models compared to analogous blank models that did not possess an electronegative atom. ${ }^{148}$ It was envisaged that models bearing a halogen at the 5-position of Meldrum's acid can act as the XB donor, and a Lewis basic group at the ortho-position of the benzyl moiety can act as the XB acceptor (Figure 4.6a). Two potential modes of interaction were also predicted; where the lone pair of electrons
of Y can donate into the $\sigma$-hole generated by the X group (Figure 4.6 b anti conformation). In this scenario, X would be at the pseudo axial position of the Meldrum's acid ring and acting as the electron withdrawing group resulting a $\sigma$-hole along the extension of the $\mathrm{C}_{5}-\mathrm{X}$ bond. Alternatively, a less ideal conformation would allow for a "direct" RX $\cdots \mathrm{Y}$ interaction, where the Meldrum's acid moiety acts as the electron withdrawing substituent in the same manner as it did in HB interactions (Figure 4.6b direct). Molecular orbital calculations by Ohwada revealed that the electron-accepting ability of the acidic CH group was related to the magnitude of overlap of the $\sigma^{*}$ CH orbital and the adjacent carbonyl $\pi^{*}$ orbital. ${ }^{153}$ Ohwada rationalized that when Meldrum's acid is being deprotonated, the base such as an amine attacks with its lone pair of electrons at the unoccupied orbital of the hydrogen atom, $\sigma^{*}{ }_{\mathrm{CH}}$ orbital, which leads to CH bond cleavage. Based on the same rationale, there is potential for XB interactions since the same antibonding orbitals are involved. Figure 4.6c illustrates an adaptation of the models proposed by Ohwada in HB, and shows the orbitals available for the "direct" XB interaction. It is worth noting that this second mode, the direct mode, of interaction does not allow for the ideal $180^{\circ}$ overlap thereby making it the less favorable mode of interaction. ${ }^{13} \mathrm{C}$ NMR spectroscopy will be employed to conduct solution based studies and X-ray crystallography will be used to observe solid state interactions.
a)

b)

anti

direct


Figure 4.6. a) Proposed Models of Meldrum's Acid Derivatives Bearing XB Donor (X) and XB Acceptor (Y) Groups; b) Potential Modes of XB Interactions (Note: Oxygen Atoms for the Carbonyl Groups were Omitted for Clarity); c) Atomic Orbitals Representation for "Direct" XB Interaction

### 4.3. Results and Discussion

### 4.3.1. In Solution ${ }^{13}$ C NMR Studies Exploring Intramolecular Halogen Bonding Interactions Using Meldrum's Acid Derivatives

Meldrum's acid derivatives were readily prepared by the protocols described in chapter 1 starting with corresponding ortho- substituted aldehyde or ketone. Halogenation at the 5position of Meldrum's acid can be achieved using either N -chlorosuccinimide or $\mathrm{PhICl}_{2}$ for chlorination, and $\mathrm{Br}_{2}$ for bromination (Scheme 4.1). Several different models were prepared with XB acceptors ranging from $\mathrm{Cl}, \mathrm{Br}, \mathrm{OMe}$, and S ; and Cl or Br as the XB donor. The limitation for XB donors was quickly apparent where substitution at the ortho position of the aromatic moiety hindered the bromination at the 5-position of Meldrum's acid and resulted in the recovery of starting material. Running the reaction at higher temperatures, up to $60^{\circ} \mathrm{C}$, afforded inseparable mixture of compounds. Given the ability to prepare 4.7 a, which has a Br

Scheme 4.1. Halogenation of Meldrum's Acid Derivatives.
a)


atom on the aromatic group and a Cl atom at the 5 -position of Meldrum's acid, and the inability to prepare the reverse, where the Cl atom is on the aromatic group and Br atom is at the 5-position of Meldrum's acid, implies halogenation at thr 5-position of Meldrum's acid is blocked by the steric effects of the ortho-substituent. The close proximity of the ortho-
substituent on the benzyl group position to the acidic hydrogen on Meldrum's acids has been shown by nOe between an ethyl group and the acidic hydrogen (Figure 4.7). ${ }^{148}$


Figure 4.7. Close Proximity Between Methylene H and H at the 5-Position of Meldrum's Acid Shown By nOe in $\mathrm{CDCl}_{3}$.

Models possessing sterically demanding groups at the benzylic position, such as 4.12, may force XB interactions by taking advantage of the 1,3-allylic strain between the ortho substitute on the aromatic group and the largest group at the benzylic position. Noteworthy were chlorination reactions of 4.12 with $\mathrm{PhICl}_{2}$, where halogenation took place at the desired 5-position of Meldrum's acid as well as the electron rich aromatic affording isomers 4.12a and 4.12b (Scheme 4.2).

Scheme 4.2. Chlorination of Benzyl Meldrum's Acid 4.12


Solution based studies of intramolecular XB interactions began by investigating substitution effects of Y ( XB acceptor) on $\mathrm{X}\left(\mathrm{XB}\right.$ donor) in $\mathrm{CDCl}_{3}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$. The results are summarized for compounds $4.5 \mathrm{a}-4.11 \mathrm{a}$ in $\mathrm{CDCl}_{3}$ in Table 4.1. ${ }^{154}$ Model substrates with electronegative XB acceptors $(\mathrm{Y}=\mathrm{OMe}, \mathrm{Cl})$, entries 2 and 4 , showed downfield shifts of 2.34 and 0.24 ppm , respectively, at the $\mathrm{C}(5)-\mathrm{Cl}$ position compared to the blank model $\mathrm{C}(5)-\mathrm{H}$. In contrast, for the larger and less electronegative XB acceptors $(\mathrm{Y}=\mathrm{Br}, \mathrm{S})$, entries 3 and 5, upfield shifts of 0.04 and 1.74 ppm , respectively, were observed. Increasing the substitution at
the benzylic position, compounds 4.9 a and 4.10 a , show a downfield shift of 0.38 ppm for 4.10a compared to control model 4.9a (entry 7). However, a considerable difference of 8.36 ppm (entry 7) was observed when comparing the tertiary benzylic 4.6a to quaternary benzylic 4.10a. This difference can be attributed to the closer proximity of the Cl atom to that carbon as result of the gem-dimethyl substitution at the benzylic position. Based on these results, no correlation between the electronegativity or size of Y was observed on the $\mathrm{C}-\mathrm{X}$ in the ${ }^{13} \mathrm{C}$ NMR.

Table 4.1. ${ }^{13} \mathrm{C}$ Chemical Shifts $\delta(\mathrm{ppm})$ of $\mathrm{C}(5)$ of Benzyl Meldrum`s Acid Derivatives in $\mathrm{CDCl}_{3}$.


| Entry | Compound (R / R') | $\mathbf{X}$ | $\mathbf{Y}$ | ${ }^{13} \mathbf{C}(5)(\mathrm{ppm})$ | $\boldsymbol{\Delta} \mathbf{~ p p m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $4.5 \mathrm{a}(\mathrm{Me} / \mathrm{H})$ | Cl | H | 62.97 | - |
| 2 | $4.6 \mathrm{a}(\mathrm{Me} / \mathrm{H})$ | Cl | Cl | 63.21 | 0.24 (entry 2-1) |
| 3 | $4.7 \mathbf{a}(\mathrm{Me} / \mathrm{H})$ | Cl | Br | 62.93 | -0.04 (entry 3-1) |
| 4 | $4.8 \mathrm{a}(\mathrm{Me} / \mathrm{H})$ | Cl | OMe | 65.31 | 2.34 (entry 4-1) |
| 5 | $4.11 \mathrm{a}(\mathrm{Me} / \mathrm{H})$ | Cl | 2-thiophene | 61.23 | -1.74 (entry 5-1) |
| 6 | $4.9 \mathrm{a}(\mathrm{Me} / \mathrm{Me})$ | Cl | H | 71.19 | - |
| 7 | $4.10 \mathrm{a}(\mathrm{Me} / \mathrm{Me})$ | Cl | Cl | 71.57 | 0.38 (entry 7-6) <br> 8.36 (entry 7-2) |

In addition to the 5-chloro derivatives, analogous 5-acetonitrile Meldrum's acid derivatives were also prepared (Scheme 4.3). Computational and gas phase studies have shown that the electron withdrawing power of cyano groups result in larger $\sigma$-holes and in turn form some of the strongest RX $\cdots$ Y interactions. ${ }^{155}$ Alkylation at the 5-position of Meldrum's acid derivatives was achieved using $\mathrm{K}_{2} \mathrm{CO}_{3}$ and bromoacetonitrile in DMF (Scheme 4.3). Based on their proximity to the electron withdrawing group, two potential sites for $\sigma$-holes labeled $\mathrm{C}_{a}$ and $C_{b}$ (Scheme 4.3) were probed and their chemical shifts $\delta$ in ppm are listed in Table 4.2. In these models ( $4.6 \mathbf{c}, 4.8 \mathrm{c}, 4.13 \mathrm{c}$ ) a difference of $\pm 0.15 \mathrm{ppm}$ at $\mathrm{C}_{\mathrm{a}}$ was observed with respect to the control model 4.5c. More interestingly, for all the models with a XB acceptor $(\mathrm{Y} \neq \mathrm{H})$
an upfield shift was observed for $\mathrm{C}_{\mathrm{b}}$, where $\mathrm{OMe}>\mathrm{Cl}>\mathrm{SMe}$. A similar shielding effect was also observed in the ${ }^{19} \mathrm{~F}$ NMR of XB bonding aryldiynes reported by Bowling. ${ }^{156}$ Although it would be premature to insinuate that XB interactions are responsible for the trend, these results have more promise than the 5 -chloroderivatives.

Scheme 4.3. Alkylation of Meldrum's acid derivatives.


Table 4.2. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ chemical shifts $\delta(\mathrm{ppm})$ in $\mathrm{CDCl}_{3}$.


| Entry | $\mathbf{Y}$ | ${ }^{13} \mathbf{C}(\mathbf{a}) \mathbf{p p m}$ | $\mathbf{\Delta}^{13} \mathbf{C}(\mathbf{a}) \mathbf{p p m}$ | ${ }^{13} \mathbf{C}(\mathbf{b}) \mathbf{p p m}$ | $\boldsymbol{\Delta}^{\mathbf{1 3}} \mathbf{C}(\mathbf{b}) \mathbf{p p m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{4 . 5 c}(\mathrm{H})$ | 56.95 | - | 22.88 | - |
| 2 | $\mathbf{4 . 8 c}(\mathrm{OMe})$ | 57.02 | -0.07 | 21.32 | 1.56 (entry 2-1) |
| 3 | $\mathbf{4 . 1 3 \mathrm { c } ( \mathrm { SMe } )}$ | 57.10 | -0.15 | 21.79 | 1.09 (entry 3-1) |
| 4 | $\mathbf{4 . 6 c}(\mathrm{Cl})$ | 56.83 | 0.12 | 21.69 | 1.19 (entry 4-1) |

### 4.3.2. Solid State Intramolecular Halogen Bonding Studies of Benzyl Meldrum`s Acid Derivatives Using X-Ray Crystallography

Benzyl Meldrum's acid models used for solution based studies were also investigated in solid state for XB interactions. However, only some substrates furnished single crystals that were of sufficient quality for x -ray analysis.


4.5a


Figure 4.8. X-ray structures of Meldrum`s acids 4.5 a (top) and 4.10 a (bottom).

The x-ray structures of 4.5 a and 4.10 a are shown in Figure 4.8, where both structures have a Cl atom at the 5 -position of Meldrum's acid and the aromatic group adopting an antiperiplanar conformation about the $\mathrm{C}(5)-\mathrm{C}(11)$ bond. This conformation allows for the predicted "anti" XB interaction (Figure 4.6b); however, the x-ray structure of 4.10a shows the XB acceptor, $\mathrm{Cl}(17)$, on the aromatic ring faces away from the potential $\sigma$-hole site. This orientation minimizes the allylic 1,3 -strian ${ }^{157}$ between $\mathrm{Cl}(17)$ and the Meldrum's acid ring, but also has the unfortunate consequence of impeding any intramolecular XB interactions. It is
also worth highlighting the half-chair and chair conformations of the Meldrum's acid ring in 4.5a and 4.10a respectively. Neither of these conformations were observed in Meldrum's acid derivatives prepared for the HB studies ${ }^{148}$ or for Meldrum's acid, ${ }^{158}$ where both adopt a boat conformation. One possible explanation for both the half-chair and chair conformations being favored in 4.5a and 4.10a may be due to the increased size of the substituents at the 5-position of Meldrum's acid, forcing the ring to adopt the conformations that minimize the 1,4-diaxial interactions of the boat conformation. In addition to reducing steric effects, destabilizing factors, such as $\sigma^{*}{ }_{\mathrm{C}-\mathrm{Cl}} \rightarrow \pi^{*}{ }_{\mathrm{C}=\mathrm{O}}$ overlap is also minimized by having the Cl atom at the pseudoequatorial position in the Meldrum's acid ring (Figure 4.9).


Figure 4.9. Potential $\sigma^{*}{ }_{\mathrm{C} \mathrm{Cl}} \rightarrow \pi^{*}{ }_{\mathrm{C}=\mathrm{O}}$ Destabilizing Interactions of 4.10a

Although intramolecular XB interactions were not observed in solid state for 4.10a, intermolecular interactions between the XB donor of one molecule and the acceptor of another molecule were observed, Figure 4.10. Close contacts between the $\mathrm{Cl}(5)$ atom of one molecule and the $\mathrm{Cl}(17)$ atom of another were observed, with a bond length of $3.49 \AA$ that is shorter than the sum of the van der Waals radii of $3.50 \AA$. Based on the bond angle of $167.3^{\circ}$ for $\mathrm{C}(5)-\mathrm{Cl}(5) \cdots \mathrm{Cl}(17), \mathrm{Cl}(5)$ can be considered the XB donor which only deviates $13^{\circ}$ from the ideal $180^{\circ}$ for maximal overlap; and $28.4^{\circ}$ for $\mathrm{C}(17)-\mathrm{Cl}(17) \cdots \mathrm{Cl}(5)$ would suggest that $\mathrm{Cl}(17)$ is the XB acceptor. Further evidence for intermolecular XB was $0.01 \AA$ shortening of the $\mathrm{C}(5)-\mathrm{Cl}(5)$ bond for 4.10 a compared to 4.5 a (Table 4.3). XB interactions with Cl atoms have been shown to be weak compared to the more polarizable Br and I atoms both in solid state ${ }^{140}$ and computationally. ${ }^{143}$ However, these results are encouraging as no intermolecular interactions were observed for models that lacked a XB acceptor (4.5a).


Figure 4.10. Intermolecular Interactions for 4.10a.

More rigid Meldrum's acid derivatives 4.14 a were also prepared, where a cyclohexyl group is present at the benzylic position. X-ray crystallographic data collected for 4.14a is illustrated in Figure 4.11 (top), and reveals that the Meldrum's acid moiety is again in the chair conformation with the Cl atom at the pseudo equatorial position, and the benzylic group at the pseudo axial position. Efforts to prepare related models with a XB acceptor, $\mathrm{Y}=\mathrm{OMe}$, lead to C-C bond cleavage between the benzylic carbon and Meldrum's acid carbon as evidenced by the isolation of 4.15 a and the olefin 4.16 (Scheme 4.3). The x-ray structure of 4.15a shows that Meldrum's acid ring is in the boat conformation with the Cl group at the pseudo equatorial position (Figure 4.11 bottom). It should be noted that the $\mathrm{C}-\mathrm{Cl}$ in 4.15 a bond is at least $0.03 \AA$ shorter than those models that were in a chair conformation (4.5a, 4.10a and 4.14a) with Cl atom at the equatorial position.




Figure 4.11. X-ray Structure of 4.14 a (top) and 4.15a (bottom)

The difficulty of isolating halogenated derivatives of 4.15, although structurally similar to 4.6 a, may be attributed to two factors, both of which promote the $\mathrm{C}-\mathrm{C}$ bond cleavage (Scheme 4.4). Firstly, the donating ability of the methoxy group at the ortho position of the aromatic ring can help stabilize the formation of a tertiary benzylic carbocation through conjugation. Secondly, chlorination of the 5 -position of Meldrum's acid ring renders it a better leaving group. Scheme 4.4 shows the proposed mechanism for the chlorination of 4.15 with NCS based on the two factors mentioned above, where chlorination of 4.15 presumably precedes bond cleavage. As alluded to in the previous chapter, our group has reported that Meldrum's acid can act as a carbon-based leaving group, where both electron rich aromatic
groups, as well as methylation of the 5-position of Meldrum's acid promote the cleavage of the $\mathrm{C}-\mathrm{C}$ bond at the benzylic position.

Scheme 4.4. Proposed Mechanism for the C-C Bond Cleavage


Meldrum's acid derivatives with multiple XB acceptor sites could increase the potential for XB interactions and were also pursued. Scheme 4.5 illustrates the strategy employed to access Meldrum's acid derivatives 4.17, 4.19 and 4.20 that had either an ester or carbonyl moiety at the benzylic position. Chlorination of 4.17 was followed by an elimination of the benzylic proton resulting in olefin 4.18 as the only product (Scheme 4.5a). In order to avoid unwanted elimination reactions, compound 4.19 was prepared which has a quaternary center at the benzylic position, but the increase in steric bulk appears to also impede the chlorination and resulted in the complete recovery of starting material (Scheme 4.5b). As an alternative model for multiple XB sites, compound 4.20 which has a benzoyl group at the 5 -position of Meldrum's acid was prepared. Compound 4.20 does not suffer from potential elimination reactions observed for 4.17 , and has the added advantage of introducing another electron withdrawing substituent next to the XB donor. However, chlorination reactions proved to be futile and starting material was isolated (Scheme 4.5c).

Table 4.3. X-ray Data of Meldrum's Acid Derivatives

| Meldrum Acid | Bond Length ( $\AA$ ) | $\Delta$ (sum of van der Waals raddi - observed X-ray distance) ( $\AA$ ) |
| :---: | :---: | :---: |
| 4.5a | $\begin{aligned} & \mathrm{C}(5)-\mathrm{Cl}(5): 1.80 \\ & \mathrm{C}(4)-\mathrm{O}(9): 1.19 \\ & \mathrm{C}(6)-\mathrm{O}(10): 1.19 \\ & \hline \end{aligned}$ | - - |
| 4.10a | $\begin{gathered} \mathrm{C}(5)-\mathrm{Cl}(5): 1.79 \\ \mathrm{C}(17)-\mathrm{Cl}(17): 1.75 \\ \mathrm{C}(4)-\mathrm{O}(9): 1.19 \\ \mathrm{C}(6)-\mathrm{O}(10): 1.18 \\ \hline \end{gathered}$ | $0.01(\mathrm{Cl} \cdots \mathrm{Cl})$ |
| 4.14a | $\begin{aligned} & \mathrm{C}(5)-\mathrm{Cl}(5): 1.79 \\ & \mathrm{C}(4)-\mathrm{O}(9): 1.19 \\ & \mathrm{C}(6)-\mathrm{O}(10): 1.19 \\ & \hline \end{aligned}$ | - |
| 4.15a | $\begin{aligned} & \mathrm{C}(5)-\mathrm{Cl}(5): 1.76 \\ & \mathrm{C}(4)-\mathrm{O}(9): 1.19 \\ & \mathrm{C}(6)-\mathrm{O}(10): 1.19 \end{aligned}$ | - |
| 4.6c | $\begin{gathered} \hline \mathrm{C}(4 \mathrm{~A})-\mathrm{O}(9 \mathrm{~A}): 1.19 \\ \mathrm{C}(6 \mathrm{~A})-\mathrm{O}(10 \mathrm{~A}): 1.15 \\ \mathrm{C}(17)-\mathrm{Cl}(1): 1.75 \\ \mathrm{C}(21 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A}): 1.15 \\ \hline \end{gathered}$ | - |
| 4.18 | $\begin{gathered} \hline \mathrm{C}(13)-\mathrm{Cl}(13): 1.74 \\ \mathrm{C}(4)-\mathrm{O}(9): 1.20 \\ \mathrm{C}(6)-\mathrm{O}(10): 1.20 \\ \mathrm{C}(5)-\mathrm{C}(14): 1.34 \\ \hline \end{gathered}$ | - |
| 4.22 | $\mathrm{C}(13 \mathrm{~A})-\mathrm{Cl}(13 \mathrm{~A}) 1.74$ $\mathrm{C}(13 \mathrm{~B})-\mathrm{Cl}(13 \mathrm{~B}) 1.74$ $\mathrm{C}(5 \mathrm{~A})-\mathrm{Cl}(5 \mathrm{~A}) 1.78$ $\mathrm{C}(5 \mathrm{~B})-\mathrm{Cl}(5 \mathrm{~B}) 1.78$ $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(5 \mathrm{~B}) 1.56 \mathrm{C}(4 \mathrm{~A})-$ $\mathrm{O}(9 \mathrm{~A}) 1.18 \mathrm{C}(4 \mathrm{~B})-\mathrm{O}(9 \mathrm{~B})$ $1.20 \mathrm{C}(6 \mathrm{~A})-\mathrm{O}(10 \mathrm{~A}) 1.20$ $\mathrm{C}(6 \mathrm{~B})-\mathrm{O}(10 \mathrm{~B}) 1.18$ | - |

Scheme 4.5. Chlorination Reactions of Meldrum's acid derivatives a) 4.17, b) 4.19 and c) 4.20
a)

b)

4.19
c)


4.20

The solid state structure of 4.6 c was also determined using X-ray crystallography and shown in Figure 4.12. Compound 4.6c has the potential for multiple sites of XB and did show an upfield shift at the methylene carbon $\left(\mathrm{C}_{\mathrm{b}}\right)$ in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ compared to the control model (vide supra). However, X-ray analysis of $\mathbf{4 . 6 c}$ does not show any intra- or intermolecular interactions (Figure 4.12). The Meldrum's acid ring is in a chair conformation with the acetonitrile group at the pseudo equatorial position and the benzyl group in the pseudo axial position. A survey of the pertinent bonds in $4.6 \mathbf{c}$ revealed a shorten bond length $0.04 \AA$ for one of the carbonyl groups in the Meldrum's acid ring, $\mathrm{C}(6 \mathrm{~A})-\mathrm{O}(10 \mathrm{~A})$ (Table 4.3), compared to any of the other derivatives and Meldrum's acid itself. ${ }^{158}$


Figure 4.12. X-ray structure of 4.6 c .

Due to the absence of intramolecular XB interactions for Meldrum's acid derivatives halogenated at the 5-position, novel models were envisioned that would allow for the incorporation of the larger halogens (Figure 4.13). These models place the XB acceptor at the $\mathrm{C}(2)$ position of Meldrum's acid and the XB donor at the 5 -position. We have already observed that the Meldrum's acid group can adopt a boat, chair and half-chair conformation that could
allow for the flexibility needed to incorporate larger halogens at the 5-position, and a broader angle necessary for the directionality of XB. Moreover, it has been reported that the 5-position of Meldrum's acid can be fluorinated ${ }^{159}$, chlorinated ${ }^{160}$ and brominated ${ }^{161}$ which should give a more comprehensive range of studies. These derivatives can be accessed by the acid catalyzed condensation of malonic acid and corresponding carbonyl. ${ }^{162}$


Figure 4.13. C(2)-Derivatives of Meldrum's Acid.

With these new models in mind, compound 4.21 was prepared in a modest yield of $31 \%$ after 60 h (Scheme 4.6). Efforts were made to improve the yield by diluting reactions in various solvents and using dehydrative conditions such using a Dean-Stark trap and the addition of molecular sieves to shift the equilibrium towards right; however, those modifications did not improve the efficiency of the reaction. On the contrary, molecular sieves completely halted the reaction and afforded the ketone in quantitative yields. Furthermore, attempts to prepare the 2 '-bromo- and 2 '-methoxy analogous of 4.21 failed to give any condensed products. It was apparent that new conditions needed to be developed to promote the condensation, but model 4.21 was a good starting point to probe for $\mathrm{RX} \cdots \mathrm{Cl}$ interactions.

Scheme 4.6. Acid Catalyzed Condensation of Malonic Acid and 2`-Chloroacetophenone


With these new potential models in hand, only the halogenation step of 4.21 remained to prepare the desired model. Surprisingly, chlorination at the 5 -position of 4.21 was inaccessible using previous strategies that were successful for earlier models, and resulted in hydrolysis of 4.21 to 2 '-chloroacetophenone with NCS (Scheme 4.7 a), or the formation of complex mixtures for reactions with $\mathrm{PhICl}_{2}$ (Scheme 4.7b). Alternate halogenation strategies were sought after and to this end a report by Weinreb et al. for the halogenation of $\beta$-dicarbonyl compounds using sodium hypochlorite and acetic acid in acetone offered an attractive mild approach. ${ }^{163}$ However, under those conditions the Knovenagel condensation between 4.21 and acetone was favoured, and 4.22 was isolated (Scheme 4.7c). The X-ray structure of 4.22 was obtained, Figure 4.14, and shows the Meldrum's acid ring is in a boat conformation with the aryl group at the axial position. Bond lengths for $\mathbf{4 . 2 2}$ are summarized in Table 4.3.

Scheme 4.7. Halogenation Reactions of 4.21 with a) NCS , b) $\mathrm{PhICl}_{2}$ and c) $\mathrm{HOAc} / \mathrm{NaOCl}$
a)

c)

4.22



Figure 4.14. X-ray structure of $\mathbf{4 . 2 2}$.

Instead of halogenating 4.21 directly, a different precursor was targeted after coming across a report by the Murphy group here at the University of Waterloo. They recently expanded on their chlorination methodology of diazoacetates ${ }^{164}$ to phenyliodonium ylides with hypervalent iodine reagents, Scheme 4.8 a and b respectively. Utilizing the same strategy, 4.21 was treated with $\mathrm{PhI}(\mathrm{OAc})_{2}$ in the presence of catalytic base affording ylide 4.23 in excellent yield of $93 \%$ (Scheme 4.8 c ). Ylide 4.23 has an electron deficient I atom at the 5-position of Meldrum's acid, which would be the best XB donor, but efforts to obtain single crystals for X-ray analysis failed and an amorphous white solid was isolated. Treating 4.23 with a slight excess of $\mathrm{PhICl}_{2}$ unexpectedly gave 4.24 (Scheme 4.8 c ). Initially, it was believed that the desired 5,5-dichlorinated product was formed based on the disappearance of the phenyl peaks corresponding to the iodobenzene in 4.23 . However, upon running HRMS analyses of 4.24 , no Cl atoms were present based on the absence of the characteristic $\mathrm{M}+2$ peak, and ${ }^{13} \mathrm{C}$ NMR analyses was not informative. Fortunately single crystals were obtained for X-ray analysis and the structure of 4.24 was unambiguously determined (Figure 4.15).

Scheme 4.8. a) Chlorination of Diazoacetate with Iodobenzene Dichloride; b) Chlorination of Phenyliodonium Ylides with Iodobenzene Dichloride; c) Chlorination of 4.17 with Iodobenzene Dichloride
a)


b)

c)

4.21

4.23 93\%



Figure 4.15. X-ray Structure of 4.24

Compound 4.24 has two Meldrum's acid rings coupled at the 5-position with vicinal Cl atoms (Figure 4.15). Both Meldrum's acid rings are in a boat conformation with their $\mathrm{Cl}(5 \mathrm{~A} / \mathrm{B})$ atoms at the pseudo axial position. The two $\mathrm{Cl}(5 \mathrm{~A} / \mathrm{B})$ atoms are eclipsing about the $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(5 \mathrm{~B})$ bond, while the 2 -aryl groups are gauche relative to each other. Though both XB partners have the correct orientation for intramolecular interactions, the aromatic ring is again rotated away from XB donor. Pertinent bond lengths are summarized in Table 4.3, where
each half of the molecule has nearly identical bond lengths. A closer examination of the space filling diagram of 4.24 , Figure 4.14 bottom, revealed that the 1,4-interactions do not allow for XB interaction to occur. This oversight suggests that although there is flexibility in the ring, the angle for correct overlap between the XB donor and acceptor is not attainable by these models.

Another inherent problem with these models may be their stability where dihalogenated Meldrum's acid derivatives can function as excellent halogenating agents themselves, ${ }^{165}$ and therefore can be more challenging to isolate. This could also explain the numerous side products that are formed in these reactions. As a result, instead of halogenating as the last step, dibromomalonic acid was first prepared using a procedure reported by Snyder and Kruse, ${ }^{161 b}$ followed by condensation conditions with the vinyl acetate (Scheme 4.9). Unfortunately, after monitoring the reaction for several days, ${ }^{166}$ the only compound identified was the unprotected ketone.

Scheme 4.9. Condensation of Dibromomalonic Acid


Based on these results, novel models M1 and M2 were proposed (Figure 4.16), which place the XB acceptor further away to avoid steric interactions while still allowing for the optimal bond angle of $180^{\circ}$ for RX $\cdots$ Y. As a starting point, three aldehydes (4.25-4.27) were prepared with either an aromatic or alkynyl group acting as a spacer for the XB acceptor (Scheme 4.10). The synthetic approach to these aldehydes are shown in Scheme 4.10 where 4.25 was prepared in $68 \%$ yield after three steps by a Corey-Fuchs homologation of 2methoxybenzaldehyde (Scheme 4.10a); compounds 4.26 and 4.27 were both prepared by the Suzuki coupling of 4-formylphenylboronic acid and the corresponding aryl halide (Scheme $4.10 \mathrm{~b}-\mathrm{c}$.


M1


M2

Figure 4.16. Proposed models with rigid spacers between XB donor and acceptor.

Scheme 4.10. Synthesis of a) 4.25; b) 4.26; and c) 4.27; d) Condensation Conditions of
4.25-4.27 with Malonic Acid
a)

b)

c)


Condensation conditions used to prepare 4.21 were applied to aldehydes 4.25-4.27, but proved to be ineffective and did not produce the desired Meldrum's acid adducts (Scheme 4.11a). Rather, complex mixtures of products as well as starting material was observed in the crude ${ }^{1} \mathrm{H}$ NMR. Particularly for condensations with 4.26 , which possess a basic amino group, resulted in recovery of quantitative amounts of starting material. Modifications to the procedure were made to account for the presence a basic amine functional group, and poor solubility of aldehydes $4.25-4.27$. For example, a viscous medium is formed in the first step of the condensation when malonic acid is acylated with acetic anhydride complicating the addition of the aldehydes which are solids. To ensure the formation of a homogeneous mixture, different solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}\right.$, toluene) were screened; however, no condensed products were observed and significant amounts of unreacted aldehydes remained. For
aldehyde 4.26, the basic/ nucleophilic quinoline group may interfere with catalytic acid present; therefore 1.1 equivalents of sulfuric acid was added to allow for the acid to catalyze the reaction, conversely, no condensation was obtained. Finally, several Brønsted acids were screened based on a report by Xu et al, ${ }^{167}$ who claimed that $\mathrm{H}_{3} \mathrm{BO}_{4}$ and acetic anhydride were superior condensing reagents compared to other Bronsted and Lewis acids in the condensation of malonates and various ketones for synthesis of 1,3-dioxane-4,6-diones, including 4.28 (Scheme 4.11b). Brønsted acids including $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ were screened but did not afford any adducts.

Scheme 4.11 Condesation Conditions for Malonates and Various Carbonyls
a)



Non-acidic conditions for the synthesis of the new XB models were explored. The thermolysis of Meldrum's acid in the presence of cyclic ketones to afford the spiro adduct 4.29 is known (Scheme 4.12). ${ }^{168}$ These reactions proceed through a retro-hetero-Diels-Alder cycloaddition with the loss of acetone to give an acyl ketene intermediate that rapidly undergoes a successive Diels-Alder cycloaddition with the ketone resulting in 4.29. ${ }^{169}$ This reaction has only been reported for cyclic ketones, cyclohexanone and cyclopentanone, in modest $40-50 \%$ yields. In order to develop conditions for aldehydes 4.25-4.27, benzaldehyde and acetophenone were used as carbonyl sources. Under thermal decomposition conditions, both neat mixtures and 1 M solutions of benzaldehyde or acetophenone did not result in the condensed adducts. Based on the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, the Meldrum`s acid had been consumed and significant amounts of the carbonyl were present, but no other compounds were isolated or identified.

Scheme 4.12. Thermolysis of Meldrum`s acid.



It was determined that in order to prepare the desired M1 and M2 models, new conditions were required. Since the acid catalyzed condensation of malonic acid was the only strategy that afforded the condensed product 4.21, similar strategies may offer the most potential. As a starting point, a mechanism for the condensation was proposed, Figure 4.17, to determine modifications for the procedure. In this mechanism: protonation of the malonate SM activates the carbonyl for nucleophilic attack by the oxygen of the aryl ketone or aldehyde. An intramolecular nucleophilic attack closes the ring and give rise to intermediate I1. Proton transfer and loss of acetic acid results in I2, which can undergo another series of proton transfers and the loss of another molecule of acetic acid or acetic anhydride affording the desired Meldrum's acid derivative. One possible reason the condensation stalls may be due to the poor reactivity between electrophile generated by the protonation of $\mathbf{S M}$, and the poor nucleophilicity of the carbonyl oxygen. In order shift the equilibrium towards the products, bis(trimethylsilyl) malonate (BTM) can function as an irreversible electrophile by forming hexamethyldisiloxane (HMDSO) as a byproduct.


Figure 4.17. Proposed Mechanism for the Condensation of Malonate SM and Aromatic Carbonyls

The viability of BTM in condensation reactions for the synthesis of 1,3-dioxane-4,6diones was screened and the preliminary results are summarized in Table 4.4. For economical reasons and ease of identification of products by investigating aromatic region of the ${ }^{1} \mathrm{H}$ NMR, 4'-chloroacetophenone and 4-chlorobenzaldehyde were used as carbonyl sources for developing and optimizing condensation conditions. Additionally, Lewis acids have been used to prepare silyl ketene acetals from enolizable esters in the presence of a base, ${ }^{170}$ but in the absence of a base, it is plausible that BTM can be activated by a Lewis acid and become susceptible to nucleophilic attack. Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was used as the Lewis acid to activate the BTM for nucleophilic attack because not only is it an excellent Lewis acid but hexamethyldisiloxane (HMDSO) is volatile and can be easily removed.

Table 4.4. Reaction Conditions of BTM and Aromatic Ketones and Aldehydes.


4.30, $R=M e$

4.31

| Entry | Carbonyl | Method | \% Conv. ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 1 | a | a ( 0.7 mmol ) was added to BTM ( 0.7 mmol ) + | 20: $10: 70$ |
|  |  | TMSOTf ( 0.7 mmol ) | a $4.30: 4.31$ |
| 2 | a | TMSOTf ( 0.7 mmol ) was added to $\mathbf{B T M}(0.7 \mathrm{mmol})+$ | 10:10:80 |
|  |  | c ( 0.7 mmol ) | $\mathrm{a}: 4.30: 4.31$ |
| 3 | a | a ( 0.7 mmol ) was added to BTM ( 0.7 mmol ) + | 65:0:35 |
|  |  | TMSOTf ( 0.2 mmol ) | a $: 4.30: 4.31$ |
| 4 | a | $\mathbf{a}(0.7 \mathrm{mmol})$ was added to BTM ( 1.4 mmol ) + | 90:0:10 |
|  |  | TMSOTf ( 0.7 mmol ) | a $: 4.30: 4.31$ |
| 5 | b | b ( 0.7 mmol ) was added to $\mathbf{B T M}(1.4 \mathrm{mmol})+$ | complex |
|  |  | TMSOTf ( 0.7 mmol ) | mixture |

a Based on the relative ratios in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Reactions where the acetophenone was added to a mixture of BTM and TMSOTf did result in the formation of the desired adduct 4.30 but as minor product compared to the aldol adduct 4.31 (Table 4.5 , entry 1). ${ }^{171}$ Changing the order of addition where the TMSOTf was added to a mixture of BTM and the ketone, did not show any improvements (entry 2). Moreover, evidence for the favorable formation of 4.31 was observed when catalytic amounts of TMSOTf was used, where only the starting material a and 4.31 were seen in the crude ${ }^{1} \mathrm{H}$ NMR. In the presence of excess BTM, entry 4, a reduction in the formation of 4.31 was observed but no condensed product was formed. To prevent the aldol reaction, 4chlorobenzaldehyde was used as the nucleophile, entry 5, which resulted in complete consumption of the aldehyde but complex mixtures were obtained that lacked the characteristic diastereotopic protons, suggesting the desired product was formed.

### 4.3.3. Halogen Bond Directed Diels-Alder Cycloadditions

In addition to investigating intramolecular XB interactions, we were also interested in applications of XB, and began studies on XB directed Diels-Alder cycloadditions. We propose that a diene and dienophile can coordinate through XB interactions and undergo regioselective Diels- Alder cycloaddition as illustrated in Figure 4.18.


Figure 4.18. Halogen Bond Directed Diels-Alder Cycloadditions

Iodoacetylenes have been studied in both solid state and in solution and have shown to participate in XB interactions with various Lewis bases. ${ }^{172}$ The strongest association constants in solution for O bearing XB acceptors were found to be $\mathrm{PO}>\mathrm{SO}>\mathrm{CO}$, and quinuclidine $>\mathrm{Et}_{3} \mathrm{~N}>$ pyridine for N bearing acceptors. ${ }^{172}$ Furthermore, Laurence found that the association of 1-iodoacetylenes derivatives with various Lewis bases followed the trend $\mathrm{ICN}>\mathrm{IC} \equiv \mathrm{CCN}>\mathrm{IC} \equiv \mathrm{CCOOEt}>\mathrm{IC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}>\mathrm{IC} \equiv \mathrm{CPh}>\mathrm{IC} \equiv \mathrm{CPr} .{ }^{173}$ With these studies in mind, alkynyl groups bearing a halogen could act as a XB donating dienophile, and a substituted furan can act as the XB accepting diene. Scheme 4.13 outlines the synthesis of both the diene and dienophiles that were tested for XB directed Diels-Alder cycloadditions.

Scheme 4.13. Synthesis of XB Acceptors and Donors.


The $[4+2]$ cycloaddition of furans and bromopropiolate is known and results in 7oxabicyclo[2.2.1]heptadiene frameworks in moderate to low yields, and have then been used in subsequent transformations to access natural products. ${ }^{174}$ Table 4.5 summarizes the substrates that were tested and conditions screened. Initially conditions reported for the cycloaddition of bromopropiolate and furan were employed (Table 4.5, entry1), ${ }^{17 \mathrm{a}_{\mathrm{a}}}$ where a 10:1 mixture of furan 4.32 to iodopropiolate 4.37 was heated at $80^{\circ} \mathrm{C}$ for 24 h to obtain $18 \%$ of the adduct 4.41 . The isolation of 4.41 was promising showing that a Diels-Alder reaction was possible between the simplest diene, no XB acceptor, and dienophile. However, mild
reaction conditions would be preferable to allow XB to direct the regioselectivity of the reaction and minimize the formation of regioisomers. Screening dienes $4.33-4.36$ showed no reactivity for in all cases at room temperature after 96 h , but more concerning was that no products could be detected at $100^{\circ} \mathrm{C}$ after 96 h , entries 2 , 7 , and 9 . Diluting reagents in different solvents and repeating reactions at $100^{\circ} \mathrm{C}$ still showed significant amounts of starting material as well as signs of decomposition in the crude ${ }^{1} \mathrm{H}$ NMR, entries 3, 8, 10-11.

In order to improve reactivity, the attention was shifted to Lewis acid catalyzed Dielsalder reactions that not only increase the rate of reaction, but can also increase the regioselectivity at lower temperatures. ${ }^{175}$ The addition of two different Lewis acids, $\mathrm{Me}_{2} \mathrm{AlCl}$ or $\mathrm{TiCl}_{4}$, both resulted in the consumption of the diene but recovery of the dienophile, entries 4 and 5. This result was somewhat puzzling because the dienophile bears a more nucleophilic ester moiety compared the benzyl furan, and was therefore expected to be activated by forming a coordination complex with the Lewis acid. Inline with the same strategy, a report by Hall recently disclosed a protocol for the boronic acid-catalyzed Diels-alder cycloadditions to propiolic acids under mild reaction conditions. ${ }^{176}$ Using the same conditions with iodopropiolic acid 4.38 and furan resulted in the cycloadduct 4.42. Running the same reaction at elevated temperatures, entry 13, gave a mixture of 4.42 as the major product and trace amounts of an aromatic compound believed to be 4.43. ${ }^{177}$ Repeating reactions with substituted dienes 4.33 and 4.35 , entries 14 and 15 , showed no reactivity after 96 h at elevated temperatures. It is possible that boronic acid complexes to the phosphonate for reactions with 4.35, no longer activating the propiolate for the cycloaddition to take place; but the same rationale cannot be used for reactions with benzyl furan 4.33 , which lacks the nucleophilic site to interact with the Lewis acid.

More reactive dienophiles could circumvent the lack of reactivity observed with 4.37 and 4.38. Gassman used allyl cation intermediates in Diels-Alder reactions with 1,3-dienes, ${ }^{1789}$ and later expanded to cycloaddition of acetals of acrolein to various dienes at low temperatures. ${ }^{1785}$ The importance of the catalyst was shown where in its absence no or poor reactivity was observed, but upon addition of the catalyst a dramatic increase in reactivity at significantly lower temperatures was observed by the formation of the product. Furthermore, nearly twice the yields were obtained by utilizing the dioxolane derivatives of acrolein than for

Table 4.5. XB directed Diels-Alder cycloadditions.


| Entry | XB Donor (Diene) | XB Acceptor (Dienophile) | ) Conditions | Additives | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.32 | 4.37 | $80^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | - |  <br> 4.41, 18\% |
| 2 | 4.33 | 4.37 | $\mathrm{rt}-100^{\circ} \mathrm{C}, 96 \mathrm{~h}$ | - | no reaction |
| 3 | 4.33 | 4.37 Benz | nzene (1.0 M ), $100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | - | decomp. |
| 4 | 4.33 | 4.37 DC | CM ( 0.1 M ), $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ | $\mathrm{Me}_{2} \mathrm{AlCl}$ | 4.30 recovered |
| 6 | 4.33 | 4.37 DC | CM ( 0.1 M ), $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ | $\mathrm{TiCl}_{4}$ | 4.30 recovered |
| 7 | 4.34 | 4.37 | rt - $100{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$ | - | no reaction |
| 8 | 4.34 | 4.37 Ben | enzene (1.0M), $100{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$ | - | decomp. |
| 9 | 4.35 | 4.37 | $\mathrm{rt}-100^{\circ} \mathrm{C}, 96 \mathrm{~h}$ | - | no reaction |
| 10 | 4.35 | 4.37 Benz | enzene (1.0M), $100{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$ | - | decomp. |
| 11 | 4.36 | 4.37 Ben | enzene (1.0M), $100{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$ | - | decomp. |
| 12 | 4.32 | 4.38 D | DCE (1.0 M), rt, 24 h | $\begin{gathered} 0-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~B}(\mathrm{OH})_{2} \\ \left(30 \mathrm{~mol}^{2} \%\right) \end{gathered}$ |  |
| 13 | 4.32 | 4.38 D | $\mathrm{EE}(1.0 \mathrm{M}), 5{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | $\begin{gathered} o-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~B}(\mathrm{OH})_{2} \\ (30 \mathrm{~mol} \%) \end{gathered}$ | 4.42 (major) <br> 4.43 <br> (minor) |
| 14 | 4.33 | 4.38 DCE | $\mathrm{E}(1.0 \mathrm{M}), \mathrm{rt}-50^{\circ} \mathrm{C}, 96 \mathrm{~h}$ | ${ }_{0}$ - $\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~B}(\mathrm{OH})_{2}$ | no reaction |
| 15 | 4.35 | 4.38 DCE | $\mathrm{E}(1.0 \mathrm{M}), \mathrm{rt}-50^{\circ} \mathrm{C}, 96 \mathrm{~h}$ | ${ }^{0}-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~B}(\mathrm{OH})_{2}$ | no reaction |
| 16 | 4.32 | 4.39 DCM | CM (0.1M), $-78{ }^{\circ} \mathrm{C}$ to rt, 24 h | TMSOTf <br> (1.4 equiv.) | Insoluble black solid |
| 17 | 4.33 | 4.39 DCM | $\mathrm{M}(0.1 \mathrm{M}),-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | TMSOTf <br> (1.0 equiv.) | decomp. |
| 18 | 4.33 | 4.39 DCM | $\mathrm{M}(0.1 \mathrm{M}),-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 48 \mathrm{~h}$ | $\begin{aligned} & \text { TMSOTf } \\ & \left(15 \mathrm{~mol}^{\circ} \mathrm{o}\right) \end{aligned}$ | no reaction |
| 19 | 4.35 | 4.39 DCM | CM (0.1M), $-78{ }^{\circ} \mathrm{C}$ to rt, 48 h | TMSOTf <br> ( $15 \mathrm{~mol} \%$ ) | no reaction |
| 20 | 4.35 | 4.39 DCM | $\mathrm{M}(0.1 \mathrm{M}),-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 48 \mathrm{~h}$ | TMSOTf (1.0 equiv.) | no reaction |
| 21 | 4.32 | 4.40 CD | $\mathrm{CD}_{3} \mathrm{CN},-30^{\circ} \mathrm{C}$ to rt, 24 h | - | Shiny black plastic |

the diethyl acetals. ${ }^{178 b}$ Danishefsky later utilized this strategy in the total synthesis of dysidiolide 1, where a key step was the Diels-Alder reaction between dioxolane 4.44 and diene 4.45 catalyzed by TMSOTf at very low temperatures affording the adduct 4.46 in a $67 \%$ yield (Scheme 4.14). ${ }^{179}$ The true utility of the Gassman dioxolenium dienophile strategy was highlighted by the fact that the analogues dienophile of 4.44 bearing an ester moiety instead of the acetal was ineffective in the Diels-Alder reactions. ${ }^{179}$ Employing this strategy to our system, dienophile 4.39 was prepared (Scheme 4.13) bearing a terminal iodine atom at one end and the dioxolane group at the other end of an alkyne. Repeating reactions with 4.32, 4.39 and TMSOTf as the catalyst, entry 16 , resulted in the formation of an insoluble black precipitate. Efforts to run the reaction at temperatures below $0^{\circ} \mathrm{C}$ resulted in consumption of starting material after 24 h , however, no isolatable product could be obtained, entry 17. Using catalytic amounts of TMSOTf did not show any reactivity after 48 h , entry 18 , suggesting that TMSOTf does not act as a catalyst. Reactions with other dienes such as 4.35 did not fare any better and resulted in the isolation of starting material after 48 h , entries 19-20. Substituted furans 4.334.36 appear to hinder any reactivity that was previously observed with furan.

Scheme 4.14. Application of Dioxolenium Mediated Diels-Alder Reaction in the Total Synthesis of Dysidiolide.


The final substrates tested were highly activated bis(iodonium) acetylene dienophiles prepared by Stang, and reported to undergo various reactions with nucleophiles including Diels-Alder reactions under mild reaction conditions in the absence of Lewis acids (Scheme 4.15a). ${ }^{180}$ Cycloadducts were crystalline solids and characterized by single-crystal X-ray analysis as well as NMR spectroscopy. Although these bis(iodonium) alkynes are excellent dienophiles, their symmetry does not allow for the ability to differentiate between XB directed Diels-Alder adducts and a non-directed Diels-Alder adducts. Fortunately Camps has reported the synthesis
of 4.40 and its reactivity towards the Diels-Alder reaction with 1,3-diphenylisobenzofuran (Scheme 4.15b). ${ }^{181}$ Using the same conditions reported by Stang and Camps, 4.32 and 4.40 were mixed in a solution of MeCN at $-30^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 24 hours which resulted in the formation of a shiny black plastic (Table 4.5, entry 21). Evidently 4.40 is more reactive than the other dienophiles tested, and the instability of cycloadducts using these iodonium salts has been noted by both Stang and Camps. ${ }^{180,181}$

Scheme 4.15. Reactions of Bis(iodonium) Alkynes by a) Stang et al. and b) Camps et al.

b) Camps et. al.


### 4.4. Summary and Future Outlook

In summary, several different Meldrum's acid derivatives were prepared for intramolecular XB studies in solution and solid states. ${ }^{13} \mathrm{C}$ NMR and X-ray data did not show any intramolecular XB interactions for the models prepared. Compound 4.10a gave the most promising lead where intermolecular XB interactions between the XB acceptor of one molecule and the XB donor of another were observed. Further evidence for XB was seen by the shortening of the RX bond and the directionality of the RX $\cdots$ Y interaction. Also, no RX $\cdots \mathrm{XR}$ or $\mathrm{Y} \cdots \mathrm{Y}$ contacts were observed minimizing the chance of random interactions based on proximity of halogen atoms. Efforts to extend the XB interactions to larger and more polarizable Br atoms were unsuccessful due to the steric interactions between the 5position of Meldrum's acid and the ortho position on the aromatic moiety, only allowing for chlorination.

Novel models that placed the XB acceptor at the 2-position of Meldrum's acid to reduce the steric hindrance did not result in either intra- or intermolecular interactions as evidenced by X-ray analyses of 4.24. This model highlighted the need to redesign models with the capacity for halogens to interact with the correct orientation with minimal steric influences. Preparation of models M1 and M2, Figure 4.16, were then focused on but progress towards their synthesis was thwarted by the inability to condense the malonic ester with the corresponding carbonyl. To overcome this challenge, a methodology using bis(trimethylsilyl) malonate was developed and gave some promising initial results, however, further screening of various Lewis acids and reaction conditions is required for optimization. Although this would be a project on its own, the condensation of malonates would give access to new Meldrum's acid derivatives such as $\mathbf{M 1}$ and $\mathbf{M} 2$. The importance of a rigid framework for M1 and M2 models was recently shown by Bowling where substituted 1,2-aryldiynes were used as templates to study intramolecular XB interactions in both solution and solid state, figure 4.19. ${ }^{182}$ Cavity size, distance between $\mathrm{R}-\mathrm{X}$ and Y , and bond angle were crucial to observing XB interactions.
Bowling et. al.




Proposed Models


Figure 4.19. Aryl alkyne templates for intramolecular XB studies.

XB-directed Diels-Alder cycloadditions requires different diene and dienophiles than those tested. Other than furan, poor to no reactivity was observed with all substituted dienes. Computational studies and modeling would be invaluable to gain further insight into designing models with the greatest potential for XB interactions. It is worth mentioning that collaborative efforts with professor Scott Hopkins here at the University of Waterloo have already begun, and the results of their computational studies searching for XB interactions in Meldrum's acid derivatives can help guide synthetic efforts down the road.

### 4.5. Experimental

## General Considerations

## Reactions

All reactions were performed in flame-dried glassware under a nitrogen atmosphere. Benzene, 1,4-dioxane and THF were distilled over sodium/benzophenone ketyl before use. Toluene, dichloromethane and DMF were distilled over $\mathrm{CaH}_{2}$ and stored in Schlenk flasks.

1,2-Dichloroethane, MeCN and $\mathrm{Et}_{2} \mathrm{O}$ were obtained from a solvent purification system based on the published procedure. ${ }^{42}$ All other reagents were purchased from commercial sources and used without further purification. Reactions were monitored by TLC on commercially prepared plates. Developed plates were viewed under a UV lamp ( 254 nm ) and with ceric ammonium molybdate stain. Flash chromatography was performed using 230-400 mesh silica gel.

The following compounds were prepared according to literature procedures and spectral data obtained were in agreement to those reported and data will not be repeated here: 2,2-dimethyl-5-(1-phenylethyl)-1,3-dioxane-4,6-dione (4.5), ${ }^{148}$ 5-(1-(2-chlorophenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.6), 5-(1-(2-bromophenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.7), 5-(1-(2-methoxyphenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.8), 2,2-dimethyl-5-(2-phenylpropan-2-yl)-1,3-dioxane-4,6-dione (4.9), 5-(2-(2-chlorophenyl)propan2 -yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.10), 2,2-dimethyl-5-(1-(thiophen-2-yl)ethyl)-1,3-dioxane-4,6-dione (4.11), 2,2-dimethyl-5-(1-(2-(methylthio)phenyl)ethyl)-1,3-dioxane-4,6dione (4.13), 5-(1-(2-methoxyphenyl)cyclohexyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.15), ${ }^{148}$ 3-(2-methoxyphenyl)propiolaldehyde (4.25), ${ }^{183}$ 2'-methoxy-[1,1'-biphenyl]-4-carbaldehyde (4.27), ${ }^{184}$ 2-benzylfuran (4.33), ${ }^{185} \mathrm{~N}$-(diphenylmethylene)-1-(furan-2-yl)methanamine (4.36), ${ }^{186}$ and (iodoethynyl)(phenyl)iodonium triflate (4.40). ${ }^{180,181}$

## Characterization

${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 75 MHz ) spectra for all compounds were obtained in $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ unless otherwise noted. Chemical shifts are reported in parts per million (ppm, 8). Proton spectra were calibrated to residual $\mathrm{CHCl}_{3}(7.24 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.15 \mathrm{ppm})$, and carbon spectra were calibrated to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$. Multiplicities in ${ }^{13} \mathrm{C}$ spectra ( $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}$, $\mathrm{CH}_{3}$ ) were determined by combined DEPT 90/135 experiments. Melting points are uncorrected. High resolution mass spectra were run at the University of Waterloo Mass Spectrometry facility. X-ray structure data was collected and determined at the University of Waterloo X-ray facility b Dr. Jalil Assound.

## Preparation of 5-(1-(2-Methoxyphenyl)-2-methylpropyl)-2,2-dimethyl-1,3-dioxane-4,6dione (4.12)



5-(2-Methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione was prepared according a reported procedure: ${ }^{114 a_{a}}$ A round bottom flask charged with 2methoxybenzaldehyde ( $2.66 \mathrm{~mL}, 22.03 \mathrm{mmol}$ ), Meldrum's acid ( $3.49 \mathrm{~g}, 24.23 \mathrm{mmol}$ ), freshly distilled benzene ( 110 mL ), and 4.4 mL of a 0.5 mM solution of pyrrolidinium acetate in benzene. The resulting solution was stirred at room temperature for 18 h . The reaction mixture was then diluted with EtOAc and washed with saturated $\mathrm{NaHCO}_{3}$ solution ( $3 \times$ ), dried over $\mathrm{MgSO}_{4}$ and concentrated. The product was purified by recrystallizing crude solid from MeOH affording 3.35 g ( $58 \%$ yield) of yellow solid. Characterization data matched that reported.

5-(1-(2-methoxyphenyl)-2-methylpropyl)-2,2-dimethyl-1,3-dioxane-4,6-dione
was prepared according to a reported procedure: ${ }^{187} \mathrm{~A}$ round bottom flask charged with 5-(2-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione ( $3.35 \mathrm{~g}, 12.78 \mathrm{mmol}$ ) was dissolved in 65 mL of freshly distilled THF and cooled in an ice bath. A 2.0 M solution of PrMgCl in THF ( $16.0 \mathrm{~mL}, 31.95 \mathrm{mmol}$ ) was slowly added dropwise and gradually warmed to room temperature, and stirred for 16 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$. The layers were partitioned and aqueous was extracted with EtOAc ( $3 \times$ ). Combined organic fractions were washed with brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude solid was purified by recrystallizing from MeOH affording 4.12 (2.54 g, $65 \%$ yield) as a yellow solid. M.p. $109-111{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.37(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}$, $J=11.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 168.5 (C), 168.1 (C), 158.1 (C), 129.5 (CH), 128.6 (C), 127.7 (CH), 120.1 (CH), 115.5 (CH),
$105.1(\mathrm{C}), 56.1\left(\mathrm{CH}_{3}\right), 54.4(\mathrm{CH}), 33.2(\mathrm{CH}), 30.3(\mathrm{CH}), 28.8\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$, $15.5\left(\mathrm{CH}_{3}\right)$.

## Preparation of Iodobenzene Dichloride ( $\mathrm{PhICl}_{2}$ )

$\mathrm{PhICl}_{2}$ was prepared according to reported procedure: ${ }^{164}$ To a mixture of $\mathrm{PhI}(1.64$ $\mathrm{mL}, 14.70 \mathrm{mmol}$ ) in $5 \% \mathrm{NaOCl}$ (Chlorox® bleach, 90 mL ) was added conc. $\mathrm{HCl}(30 \mathrm{~mL})$ dropwise at rt . The mixture was stirred vigorously for 10 min , then filtered and washed with $\mathrm{H}_{2} \mathrm{O}$ and petroleum ether. The yellow solid was dried in a desiccator overnight in the dark. $\mathrm{PhICl}_{2}(3.39 \mathrm{~g}, 84 \%)$ was isolated as a yellow solid and characterization data matched that reported.

## General Procedure A-Chlorination of Benzyl Meldrum's Acid Derivatives with $\mathrm{PhICl}_{2}$ or N -Chlorosuccinimide

A conical vial charged with benzyl Meldrum's acid ( $0.55 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PhICl}_{2}$ or $\mathrm{NCS}\left(0.60 \mathrm{mmol}, 1.1\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.10 \mathrm{mmol}, 2.0$ equiv) were dissolved in 1.10 mL of DMF $(0.5 \mathrm{M})$. The vial was capped and the reaction mixture was stirred at rt . The progress of the reaction was monitored by TLC and the workup consisted of diluting the reaction with $\mathrm{H}_{2} \mathrm{O}(16.5 \mathrm{~mL})$ and extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. Combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography using silica gel with the indicated solvent gradient.

## General Procedure B - Alkylation of Benzyl Meldrum's Acid Derivatives with Bromoacetonitrile

A conical vial charged with benzyl Meldrum's acid ( $0.55 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCH}_{2} \mathrm{CN}$ ( $0.82 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.10 \mathrm{mmol}, 2.0$ equiv) were dissolved in 1.10 mL of DMF $(0.5 \mathrm{M})$. The vial was capped and the reaction mixture was stirred at rt. The progress of the reaction was monitored by TLC and the workup consisted of diluting the reaction with $\mathrm{H}_{2} \mathrm{O}$ $(16.5 \mathrm{~mL})$ and extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. Combined organic layers were dried over $\mathrm{MgSO}_{4}$,
filtered and concentrated. The crude product was purified by flash column chromatography using silica gel with the indicated solvent gradient.

## 5-Chloro-2,2-dimethyl-5-(1-phenylethyl)-1,3-dioxane-4,6-dione (4.5a)



Prepared according to General Procedure A from Meldrum's derivative 4.5 ( $136 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) as the chlorinating agent and MeCN as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded 4.5 a ( $93 \mathrm{mg}, 60 \%$ yield) as a beige solid. M.p. 137-140 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.29-7.27 (m, 3H), 7.19-7.17 (m, 2H), 3.88 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.9$ (C), 163.1 (C), $136.7(\mathrm{C}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 106.1(\mathrm{C}), 63.0(\mathrm{CCl}), 48.9(\mathrm{CH})$, $29.2\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $m /$ ₹ calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 300.10026. Found: 300.10041.

## 2-(2,2-Dimethyl-4,6-dioxo-5-(1-phenylethyl)-1,3-dioxan-5-yl)acetonitrile (4.5c)



Prepared according to General Procedure B from Meldrum's derivative 4.5 ( $136 \mathrm{mg}, 0.55 \mathrm{mmol}$ ). Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded 4.5 c ( $105 \mathrm{mg}, 67 \%$ yield) as a beige solid. M.p. 122-125 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.31-7.29 (m, 3H), 7.12-7.10 (m, 2H), $3.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.50$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ HMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 166.9 (C), 165.4 (C), 137.9 (C), $128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 124.5(\mathrm{CH}), 116.2(\mathrm{C}), 107.0(\mathrm{C}), 56.9(\mathrm{C}), 49.1(\mathrm{CH}), 31.2\left(\mathrm{CH}_{3}\right), 26.9$ $\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 15.3\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 305.15013. Found: 305.15025.

## 5-Chloro-5-(1-(2-chlorophenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.6a)

Prepared according to General Procedure A from Meldrum's derivative 4.6 ( $155 \mathrm{mg}, 0.55$ $\mathrm{mmol})$ and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded

$4.6 \mathrm{a}\left(71 \mathrm{mg}, 43 \%\right.$ yield) as a beige solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.7(\mathrm{C}), 163.5(\mathrm{C})$, $135.5(\mathrm{C}), 134.8(\mathrm{C}), 130.3(\mathrm{CH}), 129.4(\mathrm{CH}), 128.8(\mathrm{CH}), 127.0(\mathrm{CH}), 106.2(\mathrm{C}), 63.2(\mathrm{CCl})$, $44.6(\mathrm{CH}), 29.3\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right)$.

## 2-(5-(1-(2-Chlorophenyl)ethyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)acetonitrile (4.6c)



Prepared according to General Procedure B from Meldrum's derivative 4.6 $(155 \mathrm{mg}, 0.55 \mathrm{mmol})$. Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded $\mathbf{4 . 6 c}(113 \mathrm{mg}, 64 \%$ yield) as a beige solid. M.p. 136-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.39-7.36 (m, 1H), 7.27-7.20 (m, 2H), 7.16-7.13 (m, 1H), $4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ HMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 166.4 (C), $165.5(\mathrm{C}), 135.3(\mathrm{C}), 134.5(\mathrm{C}), 129.9(\mathrm{CH}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 127.1(\mathrm{CH}), 116.3(\mathrm{C})$, $107.0(\mathrm{C}), 56.8(\mathrm{C}), 43.4(\mathrm{CH}), 31.4\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 17.0\left(\mathrm{CH}_{3}\right)$.

## 5-Chloro-5-(1-(2-bromophenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.7a)



Prepared according to General Procedure A from Meldrum's derivative 4.7 ( $180 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded 4.7 ( $89 \mathrm{mg}, 45 \%$ yield) as a waxy solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H})$, $7.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 163.6(\mathrm{C}), 163.5(\mathrm{C}), 134.1(\mathrm{C}), 133.8(\mathrm{C}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 106.2(\mathrm{C}), 62.9(\mathrm{CCl}), 47.5(\mathrm{CH}), 28.9\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right)$.

## 5-Chloro-5-(1-(2-methoxyphenyl)ethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.8a)



Prepared according to General Procedure A from Meldrum's derivative 4.8 ( $153 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and MeCN as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded 4.8 ( $51 \mathrm{mg}, 30 \%$ yield) as a yellow solid. M.p. $151-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.68$ $(\mathrm{s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 164.6 (C), $163.2(\mathrm{C})$, 157.2 (C), 129.7 (CH), 129.5 (CH), 125.7 (C), 120.8 (CH), 110.8 (CH), 105.7 (C), 65.3 (CCl), $55.0\left(\mathrm{CH}_{3}\right), 43.4(\mathrm{CH}), 29.7\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 330.11083$. Found: 330.11095 .

## 2-(5-(1-(2-Methoxyphenyl)ethyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)acetonitrile (4.8c)



Prepared according to General Procedure B from Meldrum's derivative 4.8 ( $153 \mathrm{mg}, 0.55 \mathrm{mmol}$ ). Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded 4.8 c ( $92 \mathrm{mg}, 53 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ HMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) 166.3$ (C), 157.0 (C), 129.4 (CH), 128.7 (CH), 126.0 (C), 120.7 (CH), 116.8 (C), 110.6 $(\mathrm{CH}), 106.6(\mathrm{C}), 57.0(\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right), 39.3(\mathrm{CH}), 31.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{2}\right), 15.8$ $\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$335.16070. Found: 335.16084.

## 5-Chloro-2,2-dimethyl-5-(2-phenylpropan-2-yl)-1,3-dioxane-4,6-dione (4.9a)

Prepared according to General Procedure A from Meldrum's derivative 4.9 ( $144 \mathrm{mg}, 0.55$ $\mathrm{mmol})$ and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded

4.9a ( $97 \mathrm{mg}, 60 \%$ yield) as a beige waxy solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.35-7.27 (m, 5H), $1.73(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ HNMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.8(\mathrm{C}), 139.8(\mathrm{C}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH})$, $105.2(\mathrm{C}), 71.2(\mathrm{CCl}), 48.1(\mathrm{C}), 30.4\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} /$ ₹ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$296.08154. Found 296.08169.

## 5-Chloro-5-(2-(2-chlorophenyl)propan-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.10a)



Prepared according to General Procedure A from Meldrum's derivative 4.10 ( $144 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and $\mathrm{PhICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to 1:4) afforded 4.10a ( $97 \mathrm{mg}, 60 \%$ yield) as a white solid. M.p. 166-169 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.46-7.43 (m, 1H), 7.32-7.31 (m, 1H), 7.21-7.18 ( $\mathrm{m}, 2 \mathrm{H}$ ), $1.90(\mathrm{~s}, 6 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.6(\mathrm{C}), 137.0(\mathrm{C})$, $135.0(\mathrm{C}), 132.6(\mathrm{CH}), 132.2(\mathrm{CH}), 129.4(\mathrm{CH}), 126.6(\mathrm{CH}), 105.4(\mathrm{C}), 71.6(\mathrm{CCl}), 50.1(\mathrm{C})$, $30.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right)$.

## 5-Chloro-2,2-dimethyl-5-(1-(thiophen-2-yl)ethyl)-1,3-dioxane-4,6-dione (4.11a)



Prepared according to General Procedure A from Meldrum's derivative 4.11 ( $140 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and NCS $(80 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded 4.11a ( $82 \mathrm{mg}, 52 \%$ yield) as a yellow film. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $164.8(\mathrm{C}), 162.8$ (C), 139.2 (C), 128.2 (CH), 127.0 (CH), 126.1 (CH), 106.4 (C), 61.3 (CCI), 43.7 (CH), 28.8 $\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; HRMS (DART) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClNO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 306.05668. Found 306.05682.

5-Chloro-5-(1-(5-chloro-2-methoxyphenyl)-2-methylpropyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.12a) and 5-Chloro-5-(1-(3-chloro-2-methoxyphenyl)-2-methylpropyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.12b)


Prepared according to General Procedure A from Meldrum's derivative 4.12 ( $168 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and $\mathrm{PHICl}_{2}(165 \mathrm{mg}, 0.60 \mathrm{mmol})$ as the chlorinating agent and MeCN as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes (1:14 to 1:4) afforded 4.12a (37 $\mathrm{mg}, 18 \%$ yield) as a yellow film. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.46 (br s, 1 H ), 7.19 (dd, $J=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Compound 4.12b ( $45 \mathrm{mg}, 22 \%$ yield) was also isolated from above reaction as a yellow film. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

## 2-(2,2-Dimethyl-5-(1-(2-(methylthio)phenyl)ethyl)-4,6-dioxo-1,3-dioxan-5yl )acetonitrile (4.13c)



Prepared according to General Procedure B from Meldrum's derivative 4.13 ( $162 \mathrm{mg}, 0.55 \mathrm{mmol}$ ). Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded $4.13 \mathrm{c}(69 \mathrm{mg}, 38 \%$ yield) as a yellow film. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.27-7.23 (m, 2H), 7.18-7.13(m, 1H), 7.09-7.06 (m, 1H), $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.76$ $(\mathrm{s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ HMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 166.8 (C), $166.0(\mathrm{C})$, 138.6 (C), 136.4 (C), 128.9 (CH), 128.3 (CH), 127.6 (CH), 125.6 (CH), 116.6 (C), 107.0 (C), $57.1(\mathrm{C}), 43.9(\mathrm{CH}), 31.4\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{2}\right), 17.5\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right)$. HRMS (DART) $m / \approx$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$351.13785. Found: 351.13793.

## 5-Chloro-2,2-dimethyl-5-(1-phenylcyclohexyl)-1,3-dioxane-4,6-dione (4.14a)



Prepared according to General Procedure A from Meldrum's derivative 4.14 ( $166 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and NCS ( $80 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) as the chlorinating agent and DMF as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded 4.14 ( $82 \mathrm{mg}, 52 \%$ yield) as a white solid. M.p. $119-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $737-7.27(\mathrm{~m}, 5 \mathrm{H}), 2.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.06(\mathrm{t}, \mathrm{J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.06(\mathrm{~m}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.4(\mathrm{C}), 135.5(\mathrm{C}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 127.9(\mathrm{CH})$, $105.1(\mathrm{C}), 72.5(\mathrm{CCl}), 52.4(\mathrm{C}), 30.4\left(\mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right)$.

## 5-Chloro-2,2-dimethyl-1,3-dioxane-4,6-dione (4.15a)



Prepared according to General Procedure A from Meldrum's derivative 4.15 ( $183 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) and NCS ( $80 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) as the chlorinating agent and DMF as the solvent. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ :hexanes afforded 4.15 a ( 18 mg , $18 \%$ yield) as colourless crystals. M.p. $117-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 5.32 (s, 1H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.0 (C), 105.2 (C), $68.2(\mathrm{CH}), 33.5$ $\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)$.

## Preparation of 2-(2-Chlorophenyl)-2-methyl-1,3-dioxane-4,6-dione (4.21)



The preparation of 4.21 was based on report by Shi-Zheng: ${ }^{162 a}$ Malonic acid ( 3.00 g , $28.83 \mathrm{mmol})$, acetic anhydride ( $2.73 \mathrm{~mL}, 28.83 \mathrm{mmol}$ ) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (2-3 drops) were mixed and stirred at $60^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled back down to room temperature and 2-chloroacetophenone ( $3.74 \mathrm{~mL}, 28.83 \mathrm{mmol}$ ) was added dropwise by syringe pump over

60 min . The progress of the reaction was monitored by TLC and afer stirring for 60 h at room temperature, the reaction was stopped and excess AcOH and ketone were removed under high vacuum resulting in dark orange paste. Flash column chromatography on silica gel eluting with EtOAc:hexanes (1:6) afforded $4.21\left(2.15 \mathrm{~g}, 31 \%\right.$ yield) as a white solid. M.p. $97-9{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.51-7.47 (m, 2H), 7.40-7.30 (m, 2H), $3.46(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.07(\mathrm{~d}, \mathrm{~J}=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.8(\mathrm{C}), 135.7(\mathrm{C}), 132.8(\mathrm{CH})$, $131.5(\mathrm{CH}), 127.6(\mathrm{CH}), 126.8(\mathrm{CH}), 105.4(\mathrm{C}), 38.1\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right)$.

Preparation of 2-(2-Chlorophenyl)-2-methyl-5-(propan-2-ylidene)-1,3-dioxane-4,6dione (4.22)


The synthesis of 4.22 was based on a modified procedure by Weinreb: ${ }^{163}$ To a solution of 4.21 ( $131 \mathrm{mg}, 0.54 \mathrm{mmol})$ in acetone $(2.3 \mathrm{~mL})$ and glacial acetic acid ( $0.91 \mathrm{~mL}, 15.70 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaOCl}\left(0.40 \mathrm{~mL}, 0.82 \mathrm{mmol}, 5 \% \mathrm{v} / \mathrm{v}\right.$ Chlorox $\left.{ }^{\circledR}\right)$ dropwise. The mixture was gradually warmed to room temperature and stirred for 15 h . The reaction was cooled back down and saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added. The mixture was transferred to a separatory funnel and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel eluting with EtOAc:hexanes (1:5) and afforded 4.22 ( $50 \mathrm{mg}, 33 \%$ yield) as a white solid. M.p. $140-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.46-7.39 (m, 2H), 7.30-7.25 (m, 2H), $2.17(\mathrm{~s}, 6 \mathrm{H})$, $2.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.3(\mathrm{C}), 161.2(\mathrm{C}), 137.7(\mathrm{C}), 132.4(\mathrm{CH}), 131.3(\mathrm{C}), 130.8$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 117.3(\mathrm{C}), 103.4(\mathrm{C}), 26.6\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right)$.

Preparation of 5,5'-Dichloro-2,2'-bis(2-chlorophenyl)-2,2'-dimethyl-[5,5'-bi(1,3-dioxane)]-4,4',6,6'-tetraone (4.24)


The synthesis of 4.24 was achieved in two steps procedure starting from 4.21, where the first step was based on a procedure reported by Müller: ${ }^{188}$ To a round flask charged with $4.21(403 \mathrm{mg}, 1.67 \mathrm{mmol})$ and 5 mL of $10 \% \mathrm{aq} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ was added a 4.2 mL mixture of $\mathrm{PhI}(\mathrm{OAc})_{2}(538 \mathrm{mg}, 1.67 \mathrm{mmol})$ in EtOH . The resulting mixture was stirred for 15 h at room temperature. The reaction was poured into a separatory funnel with ice water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Compound 4.23 ( $686 \mathrm{mg}, 93 \%$ yield) was isolated as a white solid and sufficiently pure for the next step. 1H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.64-7.61 ( $\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.40(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.1(\mathrm{C}), 134.5(\mathrm{C}), 132.7$ (CH), 132.6 (C), $131.5(\mathrm{CH}), 131.4(\mathrm{CH}), 130.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.1(\mathrm{CH}), 115.1(\mathrm{C}), 105.7$ (C), $28.1\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \imath$ calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClIO}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 442.95470. Found 442.95466.

Compound 4.24 was prepared according to General procedure A from Meldrum's derivative 4.23 ( $313 \mathrm{mg}, 0.71 \mathrm{mmol}$ ) and $\mathrm{PHICl}_{2}(408 \mathrm{mg}, 1.48 \mathrm{mmol})$ as the chlorinating agent and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent. Flash column chromatography eluting with a gradient of EtOAc:hexanes ( $1: 14$ to $1: 4$ ) afforded 4.24 ( 128 mg , $33 \%$ yield) as a beige solid. M.p. 155-157 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.57(\mathrm{dd}, J=7.58,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.29$ (m, 2H), 2.15 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 135.7 (C), 132.2 (CH), 131.3 (CH), 130.8 (C), $127.4(\mathrm{CH}), 127.1(\mathrm{CH}), 106.9(\mathrm{C}), 57.6(\mathrm{CCl}), 29.0$.

## Preparation of 4-(Quinolin-8-yl)benzaldehyde (4.26)



The procedure is based on the Suzuki-Miyaura Reaction reported by Langer: ${ }^{189} \mathrm{~A}$ round bottom flask equipped with a reflux condenser was charged with 8 -bromoquinoline $(1.25 \mathrm{~g}, 6.0 \mathrm{mmol})$, 4-formylphenylboronic acid ( $1.35 \mathrm{~g}, 9.0 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.62 \mathrm{~g}, 0.54$ mmol ) and 30 mL of freshly distilled 1,4-dioxane. A solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}, 9.0 \mathrm{mmol})$ in 4.5 mL of 1,4-dioxane was then added and the reaction was placed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ stirring for 6 h . The reaction mixture was cooled back down to room temperature and quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$. The layers were partitioned and the aqueous was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were washed with a saturated solution of brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Purification by flash chromatography on silica gel eluting with EtOAc:hexanes (1:4) afforded 4.26 ( $917 \mathrm{mg}, 89 \%$ yield) as a beige solid. M.p. 69-72 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $10.09(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{dd}, J=4.05,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $192.1(\mathrm{CHO}), 150.4$ (CH), 145.9 (C), 145.6 (C), 139.3 (C), 136.3 (CH), 135.1 (C), 131.3 (CH), 130.3 (CH), 129.2 (CH), 128.6 (C), $128.5(\mathrm{CH}), 126.2(\mathrm{CH}), 121.2(\mathrm{CH})$; MS (ESI) $m / z$ for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 234.1.

## Preparation of Diethyl (furan-2-ylmethyl)phosphonate (4.35)



Phosphonate 4.35 was prepared according to modified Arbuzov reaction reported by Mohanakrishnan: ${ }^{190}$ To a round bottom flask charged with furfuryl alcohol $(0.49 \mathrm{~mL}, 5.0$
$\mathrm{mmol})$, triethyl phosphite ( $4.29 \mathrm{~mL}, 25.0 \mathrm{mmol}$ ) in 16 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added freshly dried $\mathrm{ZnBr}_{2}(1.35 \mathrm{~g}, 6.0 \mathrm{mmol})$ in one portion at room temperature. After consumption of starting material (monitored by TLC), the reaction was quenched by the addition of crushed ice conc. HCl mixture. The layers were partitioned and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $(3 \times)$. Combined organic layers were washed with a saturated solution of brine $(1 \times)$, dried over $\mathrm{MgSO}_{4}$ and concentrated. Distillation of crude oil afforded 4.35 ( $654 \mathrm{mg}, 60 \%$ yield) as a yellow oil at $90-102{ }^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.30(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H})$, $6.19(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.18(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 152.7(\mathrm{C}), 141.9(\mathrm{CH}), 110.8(\mathrm{CH}), 108.1(\mathrm{CH}), 62.3\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 16.1\left(\mathrm{CH}_{3}\right)$; MS (ESI) $m / z$ for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{P}(\mathrm{M}+\mathrm{H})^{+}$219.1.

## Preparation of Methyl 3-iodopropiolate (4.37)

$$
\mathrm{MeO}_{2} \mathrm{C} \rightleftharpoons \frac{\mathrm{NIS}, \mathrm{AgNO}_{3}(10 \mathrm{~mol} \%)}{\text { acetone, } 1 \mathrm{~h}, \mathrm{rt}} \mathrm{MeO}_{2} \mathrm{C} \underset{\overline{\overline{=}} \mathrm{I}}{ }
$$

Propiolate 4.37 was prepared according to a procedure reported by Leroy: ${ }^{191}$ To a solution of methyl propiolate ( $3.17 \mathrm{~mL}, 35.68 \mathrm{mmol}$ ) in 112 mL of acetone at room temperature was added $\mathrm{AgNO}_{3}(606 \mathrm{mg}, 3.57 \mathrm{mmol})$, followed by N -iodosuccinimide ( 9.27 $\mathrm{g}, 41.22 \mathrm{mmol}$ ). The reaction was stirred for 1 h at room temperature. The reaction was stopped by filtering over a pad of celite and concentrating down under vacuum ( 0.5 mmHg ), affording 4.37 ( $6.41 \mathrm{~g}, 86 \%$ yield) as a beige solid that did not require further purification. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 3.75 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 152.7 (C), 86.7 (C), 53.0 $\left(\mathrm{CH}_{3}\right), 13.8(\mathrm{CI})$. MS (ESI) $m /$ ₹ for $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{IO}_{2}(\mathrm{M})^{+}$209.1.

## Preparation of 3-Iodopropiolic acid (4.38)



Propiolic acid 4.38 was prepared by the saponification of 4.37 : ${ }^{192} \mathrm{~A}$ round bottom charged with $4.37(4.00 \mathrm{~g}, 19.06 \mathrm{mmol}), \mathrm{LiOH}(1.36 \mathrm{~g}, 57.16 \mathrm{mmol})$ and 27 mL of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$
(5:1) were stirred at rt for 3 h . The reaction was quenched by cooling the mixture in an ice bath and adding conc. HCl to adjust the $\mathrm{pH} \sim 1-2$. The layers were separated and the organic layer was concentrated onto a small amount of silica gel that was loaded onto a column and purified by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ (10:1 to 5:1). Propiolic acid 4.38 ( $3.16 \mathrm{~g}, 85 \%$ yield) was isolated as a beige solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{MeOD}$ ) $7.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{MeOD}) 158.1$ (C), 90.4 (C), 22.1 (C).

## Preparation of 2-(Iodoethynyl)-1,3-dioxolane (4.39)



Alkyne 4.39 was prepared in 2 steps starting from commercially available propiolaldehyde diethyl acetal: ${ }^{193}$ A mixture of propiolaldehyde diethyl acetal $(2.0 \mathrm{~mL}, 13.95$ $\mathrm{mmol})$ and ethylene glycol ( $1.6 \mathrm{~mL}, 27.90 \mathrm{mmol}$ ) was treated with camphorsulfornic acid (10 $\mathrm{mg}, 0.042 \mathrm{mmol})$. The reaction was gradually heated, first to $85^{\circ} \mathrm{C}$ to distill off the ethanol, then to $140{ }^{\circ} \mathrm{C}$ to afford alkyne $\mathbf{I}-4.39$ ( $957 \mathrm{mg}, 70 \%$ yield) as clear oil that matched characterization data reported. ${ }^{193}$ Alkyne 4.39 ( $1.51 \mathrm{~g}, 94 \%$ yield) was prepared using the same procedure for 4.37 (vide supra) from I-4.39 ( $706 \mathrm{mg}, 7.20 \mathrm{mmol}$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $5.70(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 93.4(\mathrm{CH}), 90.8(\mathrm{C})$, $64.5\left(\mathrm{CH}_{2}\right), 5.11(\mathrm{CI})$. MS (ESI) $\mathrm{m} / ₹$ for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{IO}_{2}(\mathrm{M})^{+} 223.9$.

## Preparation of Methyl 3-iodo-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylate (4.41)



Compound 4.41 was prepared according to a procedure reported by Rainier: ${ }^{174 a} \mathrm{~A}$ Schlenk flask charged with furan ( $1.73 \mathrm{~mL}, 23.81 \mathrm{mmol}$ ) and $4.37(500 \mathrm{mg}, 2.38 \mathrm{mmol})$ was capped and placed in a preheated oil bath at $85^{\circ} \mathrm{C}$ and stirred for 24 h . The mixture was cooled back down and excess furan was removed under vacuum. Purification by flash column
chromatography on silica gel afforded $4.41\left(119 \mathrm{mg}, 18 \%\right.$ yield) as a yellow film. ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.16(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.1$ (C), $149.6(\mathrm{C}), 143.6(\mathrm{CH}), 141.2(\mathrm{CH}), 120.8(\mathrm{C}), 92.8(\mathrm{CH}), 84.3(\mathrm{CH}), 51.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) $m /$ ₹ calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{IO}_{3}(\mathrm{M}+\mathrm{H})^{+}$280.96746. Found 280.96733 .

## Appendix A

Crystallographic Data for 1.10aa



Table S1-Crystal Data and Details of the Structure Determination for: 1.10aa $\quad \mathbf{R}=0.04$
Crystal Data


Data Collection
Temperature (K) 296
Radiation [ $\AA$ ]
MoKa 0.71073
Theta Min-Max [ ${ }^{\circ}$ ]
1.7, 26.0

Dataset $\quad-9: 9 ;-12: 12 ;-15: 15$
Tot., Uniq. Data, R(int) 16167, 3642, 0.021
Observed data $[I>2.0 \operatorname{sigma}(\mathrm{I})]$
2919
Refinement
Nref, Npar
3642, 245
R, wR2, S $0.0368,0.1057,1.71$
$\left.\mathrm{w}={ }^{\wedge} 2^{\wedge}\left(\mathrm{FO}^{\wedge} 2^{\wedge}\right)+(0.0237 \mathrm{P})^{\wedge} 2^{\wedge}+0.1312 \mathrm{P}\right]$ WHERE $\mathrm{P}=\left(\mathrm{FO}^{\wedge} 2^{\wedge}+2 \mathrm{FC}^{\wedge} 2^{\wedge}\right) / 3^{\prime}$
Max. and Av. Shift/Error
0.00, 0.00

Min. and Max. Resd. Dens. [e/Ang^3]
$-0.25,0.28$

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 1.10aa

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U ( e q )}\left[\AA^{2}\right]$ |  |
| :--- | :---: | :--- | :--- | :--- | :--- |
| F18 | $-0.10130(17)$ | $0.15756(12)$ | $0.87581(9)$ | $0.0564(4)$ |  |
| O1 | $-0.23472(17)$ | $0.30075(12)$ | $0.23038(9)$ | $0.0395(4)$ |  |
| O3 | $0.00893(15)$ | $0.25514(12)$ | $0.34003(9)$ | $0.0337(4)$ |  |
| O9 | $0.03257(15)$ | $0.35556(12)$ | $0.52443(9)$ | $0.0362(4)$ |  |
| O10 | $-0.45966(18)$ | $0.41364(13)$ | $0.31251(11)$ | $0.0477(5)$ |  |
| C2 | $-0.0477(2)$ | $0.27769(17)$ | $0.23484(13)$ | $0.0334(5)$ |  |
| C4 | $-0.0601(2)$ | $0.32440(15)$ | $0.43939(13)$ | $0.0259(5)$ |  |
| C5 | $-0.2564(2)$ | $0.34506(15)$ | $0.43544(13)$ | $0.0253(5)$ |  |
| C6 | $-0.3249(2)$ | $0.35986(15)$ | $0.32349(14)$ | $0.0317(5)$ |  |
| C7 | $-0.0168(3)$ | $0.15192(19)$ | $0.14201(15)$ | $0.0479(7)$ |  |
| C8 | $0.0526(3)$ | $0.39930(19)$ | $0.22399(17)$ | $0.0497(7)$ |  |
| C11 | $-0.3632(2)$ | $0.22449(15)$ | $0.46265(13)$ | $0.0260(4)$ |  |
| C12 | $-0.2872(2)$ | $0.20625(15)$ | $0.57369(13)$ | $0.0248(4)$ |  |
| C13 | $-0.1973(2)$ | $0.09345(16)$ | $0.57572(14)$ | $0.0324(5)$ |  |
| C14 | $-0.1343(3)$ | $0.07597(18)$ | $0.67690(15)$ | $0.0401(6)$ |  |
| C15 | $-0.1612(2)$ | $0.17371(18)$ | $0.77556(14)$ | $0.0361(6)$ |  |
| C16 | $-0.2467(2)$ | $0.28744(17)$ | $0.77777(14)$ | $0.0354(6)$ |  |
| C17 | $-0.3102(2)$ | $0.30317(16)$ | $0.67641(13)$ | $0.0308(5)$ |  |
| C19 | $-0.5614(2)$ | $0.25675(18)$ | $0.47509(15)$ | $0.0376(6)$ |  |
| C20 | $-0.3502(2)$ | $0.10161(15)$ | $0.36741(13)$ | $0.0287(5)$ |  |
| C21 | $-0.3531(2)$ | $0.00068(16)$ | $0.29057(14)$ | $0.0316(5)$ |  |
| C22 | $-0.3593(2)$ | $-0.11824(16)$ | $0.19522(14)$ | $0.0334(5)$ |  |
| C23 | $-0.4385(3)$ | $-0.1157(2)$ | $0.09290(16)$ | $0.0488(7)$ |  |
| C24 | $-0.4489(3)$ | $-0.2288(2)$ | $0.00048(17)$ | $0.0632(8)$ |  |
| C25 | $-0.3819(3)$ | $-0.3446(2)$ | $0.0096(2)$ | $0.0643(8)$ |  |
| C26 | $-0.3038(3)$ | $-0.3493(2)$ | $0.1100(2)$ | $0.0615(8)$ |  |
| C27 | $-0.2913(3)$ | $-0.23640(18)$ | $0.20406(17)$ | $0.0446(6)$ |  |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3-Hydrogen Atom Positions and Isotropic Displacement Parameters for: 1.10aa

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}(\mathbf{i s o})\left[\AA^{2}\right]$ |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
| H5A | -0.28000 | 0.42730 | 0.49510 | 0.0300 |  |
| H7A | -0.05300 | 0.16280 | 0.06990 | 0.0720 |  |
| H7B | 0.10730 | 0.13340 | 0.14190 | 0.0720 |  |
| H7C | -0.08470 | 0.07910 | 0.15480 | 0.0720 |  |
| H8A | 0.01630 | 0.41570 | 0.15410 | 0.0750 |  |
| H8B | 0.02780 | 0.47510 | 0.28680 | 0.0750 |  |
| H8C | 0.17780 | 0.38460 | 0.22420 | 0.0750 |  |
| H13A | -0.17890 | 0.02820 | 0.50770 | 0.0390 |  |
| H14A | -0.07510 | -0.00040 | 0.67770 | 0.0480 |  |
| H16A | -0.26180 | 0.35290 | 0.84620 | 0.0420 |  |
| H17A | -0.36940 | 0.37990 | 0.67680 | 0.0370 |  |
| H19A | -0.57340 | 0.33660 | 0.53680 | 0.0560 |  |
| H19B | -0.60820 | 0.26970 | 0.40590 | 0.0560 |  |
| H19C | -0.62590 | 0.18400 | 0.49040 | 0.0560 |  |
| H23A | -0.48510 | -0.03700 | 0.08640 | 0.0590 |  |
| H24A | -0.50160 | -0.22590 | -0.06800 | 0.0760 |  |


| H25A | -0.38930 | -0.42070 | -0.05280 | 0.0770 |
| :--- | ---: | ---: | ---: | ---: |
| H26A | -0.25860 | -0.42890 | 0.11540 | 0.0740 |
| H27A | -0.23790 | -0.24010 | 0.27210 | 0.0540 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right){ }^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda) })^{* *} 2$ for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 1.10aa

| Atom | $\mathbf{U ( 1 , 1 )}$ or $\mathbf{U} \mathbf{U ( 2 , 2 )}$ | $\mathbf{U ( 3 , 3 )}$ | $\mathbf{U ( 2 , 3 )}$ | $\mathbf{U ( 1 , 3 )}$ | $\mathbf{U ( 1 , 2 )}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| F18 | $0.0697(9)$ | $0.0712(8)$ | $0.0360(6)$ | $0.0270(6)$ | $-0.0018(5)$ | $0.0144(6)$ |
| O1 | $0.0424(8)$ | $0.0498(7)$ | $0.0274(6)$ | $0.0137(6)$ | $-0.0065(5)$ | $0.0037(6)$ |
| O3 | $0.0317(7)$ | $0.0441(7)$ | $0.0258(6)$ | $0.0103(5)$ | $0.0022(5)$ | $0.0074(5)$ |
| O9 | $0.0268(7)$ | $0.0520(8)$ | $0.0288(6)$ | $0.0115(5)$ | $-0.0053(5)$ | $-0.0034(5)$ |
| O10 | $0.0457(8)$ | $0.0452(8)$ | $0.0547(8)$ | $0.0190(6)$ | $-0.0123(6)$ | $0.0145(6)$ |
| C2 | $0.0391(10)$ | $0.0371(9)$ | $0.0253(8)$ | $0.0113(7)$ | $0.0010(7)$ | $0.0023(8)$ |
| C4 | $0.0271(9)$ | $0.0255(8)$ | $0.0265(8)$ | $0.0104(6)$ | $-0.0006(7)$ | $-0.0014(6)$ |
| C5 | $0.0266(9)$ | $0.0213(7)$ | $0.0265(8)$ | $0.0051(6)$ | $-0.0027(6)$ | $0.0011(6)$ |
| C6 | $0.0347(10)$ | $0.0256(8)$ | $0.0347(9)$ | $0.0097(7)$ | $-0.0070(7)$ | $0.0010(7)$ |
| C7 | $0.0710(15)$ | $0.0401(11)$ | $0.0306(10)$ | $0.0066(8)$ | $0.0042(9)$ | $0.0064(10)$ |
| C8 | $0.0612(14)$ | $0.0419(11)$ | $0.0473(11)$ | $0.0146(9)$ | $0.0125(10)$ | $-0.0034(9)$ |
| C11 | $0.0233(8)$ | $0.0228(7)$ | $0.0302(8)$ | $0.0053(6)$ | $-0.0010(6)$ | $-0.0002(6)$ |
| C12 | $0.0212(8)$ | $0.0235(7)$ | $0.0296(8)$ | $0.0080(6)$ | $0.0024(6)$ | $-0.0015(6)$ |
| C13 | $0.0358(10)$ | $0.0278(8)$ | $0.0322(9)$ | $0.0061(7)$ | $0.0023(7)$ | $0.0064(7)$ |
| C14 | $0.0449(11)$ | $0.0357(10)$ | $0.0436(10)$ | $0.0167(8)$ | $0.0019(8)$ | $0.0124(8)$ |
| C15 | $0.0381(10)$ | $0.0453(10)$ | $0.0300(9)$ | $0.0190(8)$ | $0.0003(7)$ | $0.0019(8)$ |
| C16 | $0.0406(11)$ | $0.0358(9)$ | $0.0276(9)$ | $0.0056(7)$ | $0.0063(7)$ | $0.0024(8)$ |
| C17 | $0.0332(10)$ | $0.0269(8)$ | $0.0326(9)$ | $0.0087(7)$ | $0.0047(7)$ | $0.0047(7)$ |
| C19 | $0.0251(9)$ | $0.0412(10)$ | $0.0443(10)$ | $0.0095(8)$ | $-0.0020(7)$ | $0.0007(7)$ |
| C20 | $0.0276(9)$ | $0.0265(8)$ | $0.0316(8)$ | $0.0085(7)-0.0029(7)$ | $-0.0023(6)$ |  |
| C21 | $0.0331(10)$ | $0.0287(9)$ | $0.0318(9)$ | $0.0078(7)$ | $-0.0019(7)$ | $-0.0051(7)$ |
| C22 | $0.0342(10)$ | $0.0271(8)$ | $0.0338(9)$ | $0.0018(7)$ | $0.0039(7)$ | $-0.0081(7)$ |
| C23 | $0.0655(14)$ | $0.0408(11)$ | $0.0357(10)$ | $0.0064(8)$ | $-0.0051(9)$ | $-0.0113(9)$ |
| C24 | $0.0804(17)$ | $0.0630(15)$ | $0.0337(11)-0.0023(10)$ | $0.0002(11)-0.0259(13)$ |  |  |
| C25 | $0.0670(16)$ | $0.0471(13)$ | $0.0564(14)-0.0192(11)$ | $0.0226(12)-0.0212(11)$ |  |  |
| C26 | $0.0512(14)$ | $0.0320(11)$ | $0.0893(18)-0.0022(11)$ | $0.0189(13)$ | $0.0005(9)$ |  |
| C27 | $0.0395(11)$ | $0.0348(10)$ | $0.0551(12)$ | $0.0063(9)$ | $0.0035(9)$ | $-0.0011(8)$ |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms
$\left.\mathrm{T}=2^{*}\left(\mathrm{Pi}^{* *} 2\right)^{*} \operatorname{Sumij}\left(\mathrm{~h}(\mathrm{i})^{*} \mathrm{~h}(\mathrm{j})\right)^{*} \mathrm{U}(\mathrm{i}, \mathrm{j}) * \operatorname{Astar}(\mathrm{i})^{*} \operatorname{Astar}(\mathrm{j})\right)$, for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances (Å) for: 1.10aa

| F18 | -C15 | 1.360(2) | C22 | -C27 | 1.387(3) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | -C2 | $1.439(2)$ | C23 | -C24 | 1.380(3) |
| O1 | -C6 | 1.347 (2) | C24 | -C25 | 1.362(3) |
| O3 | -C2 | 1.4378(19) | C25 | -C26 | 1.368(3) |
| O3 | -C4 | $1.3539(19)$ | C26 | -C27 | 1.391 (3) |
| O9 | -C4 | 1.1967(19) | C5 | -H5A | 0.9800 |
| O10 | -C6 | $1.199(2)$ | C7 | -H7A | 0.9600 |
| C2 | -C7 | 1.500(3) | C7 | -H7B | 0.9600 |
| C2 | -C8 | 1.505(3) | C7 | -H7C | 0.9600 |
| C4 | -C5 | 1.502(2) | C8 | -H8A | 0.9600 |
| C5 | -C6 | $1.509(2)$ | C8 | -H8B | 0.9600 |
| C5 | -C11 | $1.601(2)$ | C8 | -H8C | 0.9600 |
| C11 | -C12 | 1.532(2) | C13 | -H13A | 0.9300 |
| C11 | -C19 | 1.543(2) | C14 | -H14A | 0.9300 |
| C11 | -C20 | 1.474(2) | C16 | -H16A | 0.9300 |
| C12 | -C13 | 1.387(2) | C17 | -H17A | 0.9300 |
| C12 | -C17 | 1.390(2) | C19 | -H19A | 0.9600 |
| C13 | -C14 | 1.383(2) | C19 | -H19B | 0.9600 |
| C14 | -C15 | 1.365(3) | C19 | -H19C | 0.9600 |
| C15 | -C16 | $1.366(3)$ | C23 | -H23A | 0.9300 |
| C16 | -C17 | 1.379 (2) | C24 | -H24A | 0.9300 |
| C20 | -C21 | 1.194(2) | C25 | -H25A | 0.9300 |
| C21 | -C22 | $1.439(2)$ | C26 | -H26A | 0.9300 |
| C22 | -C23 | 1.385(3) | C27 | -H27A | 0.9300 |

Table S6 - Bond Angles ( ${ }^{\circ}$ ) for: 1.10aa

| C2 | -O1 | -C6 | 122.83(12) | F18 | -C15 | -C14 | 118.98(17) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | -O3 | -C4 | 120.60(13) | F18 | -C15 | -C16 | 118.47(15) |
| O1 | -C2 | -O3 | 112.23(12) | C14 | -C15 | -C16 | 122.55(16) |
| O1 | -C2 | -C7 | 106.94(14) | C15 | -C16 | -C17 | 118.62(16) |
| O1 | -C2 | -C8 | 108.18(15) | C12 | -C17 | -C16 | 121.08(16) |
| O3 | -C2 | -C7 | 106.79(14) | C11 | -C20 | -C21 | 175.10(16) |
| O3 | -C2 | -C8 | 108.44(14) | C20 | -C21 | -C22 | 177.85(18) |
| C7 | -C2 | -C8 | 114.35(15) | C21 | -C22 | -C23 | 119.35(16) |
| O3 | -C4 | -O9 | 119.40 (14) | C21 | -C22 | -C27 | 121.49(16) |
| O3 | -C4 | -C5 | 115.88(13) | C23 | -C22 | -C27 | 119.14(17) |
| O9 | -C4 | -C5 | 124.46(14) | C22 | -C23 | -C24 | 120.65(19) |
| C4 | -C5 | -C6 | 113.44(13) | C23 | -C24 | -C25 | 120.0(2) |
| C4 | -C5 | -C11 | 110.03(13) | C24 | -C25 | -C26 | 120.3(2) |
| C6 | -C5 | -C11 | 109.66(12) | C25 | -C26 | -C27 | 120.7(2) |
| O1 | -C6 | -O10 | 118.93(15) | C22 | -C27 | -C26 | 119.25(19) |
| O1 | -C6 | -C5 | 117.30(13) | C4 | -C5 | -H5A | 108.00 |
| O10 | -C6 | -C5 | 123.60(15) | C6 | -C5 | -H5A | 108.00 |
| C5 | -C11 | -C12 | 109.27(12) | C11 | -C5 | -H5A | 108.00 |
| C5 | -C11 | -C19 | 109.37(13) | C2 | -C7 | -H7A | 109.00 |
| C5 | -C11 | -C20 | 109.65(12) | C2 | -C7 | -H7B | 109.00 |
| C12 | -C11 | -C19 | 109.61(13) | C2 | -C7 | -H7C | 109.00 |
| C12 | -C11 | -C20 | 111.04(13) | H7A | -C7 | -H7B | 109.00 |
| C19 | -C11 | -C20 | 107.88(13) | H7A | -C7 | -H7C | 110.00 |
| C11 | -C12 | -C13 | 121.82(14) | H7B | -C7 | -H7C | 109.00 |
| C11 | -C12 | -C17 | 120.04(14) | C2 | -C8 | -H8A | 109.00 |
| C13 | -C12 | -C17 | 118.14(15) | C2 | -C8 | -H8B | 110.00 |


| C12 | -C13 | -C14 | 121.34(16) | C2 | -C8 | -H8C | 109.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C13 | -C14 | -C15 | 118.26(18) | H8A | -C8 | -H8B | 109.00 |
| H8A | -C8 | -H8C | 109.00 | H19A | -C19 | -H19B | 110.00 |
| H8B | -C8 | -H8C | 109.00 | H19A | -C19 | -H19C | 109.00 |
| C12 | -C13 | -H13A | 119.00 | H19B | -C19 | -H19C | 109.00 |
| C14 | -C13 | -H13A | 119.00 | C22 | -C23 | -H23A | 120.00 |
| C13 | -C14 | -H14A | 121.00 | C24 | -C23 | -H23A | 120.00 |
| C15 | -C14 | -H14A | 121.00 | C23 | -C24 | -H24A | 120.00 |
| C15 | -C16 | -H16A | 121.00 | C25 | -C24 | -H24A | 120.00 |
| C17 | -C16 | -H16A | 121.00 | C24 | -C25 | -H25A | 120.00 |
| C12 | -C17 | -H17A | 119.00 | C26 | -C25 | -H25A | 120.00 |
| C16 | -C17 | -H17A | 119.00 | C25 | -C26 | -H26A | 120.00 |
| C11 | -C19 | -H19A | 109.00 | C27 | -C26 | -H26A | 120.00 |
| C11 | -C19 | -H19B | 109.00 | C22 | -C27 | -H27A | 120.00 |
| C11 | -C19 | -H19C | 109.00 | C26 | -C27 | -H27A | 120.00 |

Table S7-Torsion Angles ( ${ }^{\circ}$ ) for: 1.10aa

| C6 | -O1 | -C2 | -O3 | 31.2(2) | C5 | -C11 | -C12 | -C13 | -112.80(16) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6 | -O1 | -C2 | -C7 | 148.00(15) | C5 | -C11 | -C12 | -C17 | 68.35(18) |
| C6 | -O1 | -C2 | -C8 | -88.38(18) | C19 | -C11 | -C12 | -C13 | 127.37(16) |
| C2 | -O1 | -C6 | -O10 | 156.56(16) | C19 | -C11 | -C12 | -C17 | -51.5(2) |
| C2 | -O1 | -C6 | -C5 | -28.0(2) | C20 | -C11 | -C12 | -C13 | 8.3(2) |
| C4 | -O3 | -C2 | -O1 | -37.8(2) | C20 | -C11 | -C12 | -C17 | -170.57(14) |
| C4 | -O3 | -C2 | -C7 | -154.71(15) | C11 | -C12 | -C13 | -C14 | -177.84(16) |
| C4 | -O3 | -C2 | -C8 | 81.61(17) | C17 | -C12 | -C13 | -C14 | 1.0(2) |
| C2 | -O3 | -C4 | -O9 | -144.85(16) | C11 | -C12 | -C17 | -C16 | 178.42(14) |
| C2 | -O3 | -C4 | -C5 | 40.8(2) | C13 | -C12 | -C17 | -C16 | -0.5(2) |
| O3 | -C4 | -C5 | -C6 | -33.3(2) | C12 | -C13 | -C14 | -C15 | -0.7(3) |
| O3 | -C4 | -C5 | -C11 | 90.01(16) | C13 | -C14 | -C15 | -F18 | 179.49(16) |
| O9 | -C4 | -C5 | -C6 | 152.75(16) | C13 | -C14 | -C15 | -C16 | -0.3(3) |
| O9 | -C4 | -C5 | -C11 | -84.0(2) | F18 | -C15 | -C16 | -C17 | -178.96(15) |
| C4 | -C5 | -C6 | -O1 | 27.0(2) | C14 | -C15 | -C16 | -C17 | 0.8(3) |
| C4 | -C5 | -C6 | -O10 | -157.74(16) | C15 | -C16 | -C17 | -C12 | -0.4(2) |
| C11 | -C5 | -C6 | -O1 | -96.42(16) | C21 | -C22 | -C23 | -C24 | -178.98(18) |
| C11 | -C5 | -C6 | -O10 | 78.8(2) | C27 | -C22 | -C23 | -C24 | -0.4(3) |
| C4 | -C5 | -C11 | -C12 | 52.06(16) | C21 | -C22 | -C27 | -C26 | 178.70(18) |
| C4 | -C5 | -C11 | -C19 | 172.04(13) | C23 | -C22 | -C27 | -C26 | 0.2(3) |
| C4 | -C5 | -C11 | -C20 | -69.86(16) | C22 | -C23 | -C24 | -C25 | 0.4(3) |
| C6 | -C5 | -C11 | -C12 | 177.50(12) | C23 | -C24 | -C25 | -C26 | -0.2(3) |
| C6 | -C5 | -C11 | -C19 | -62.52(16) | C24 | -C25 | -C26 | -C27 | -0.1(3) |
| C6 | -C5 | -C11 | -C20 | 55.58(16) | C25 | -C26 | -C27 | -C22 | 0.1(3) |

Table S8 - Contact Distances( $(\mathrm{A})$ for: 1.10aa

| F18 | .C7_a 3.337(2) | O3 | .H14A_b | 2.6800 | O1 | .C20 | 3.164(2) | O10 | .H19A_g | g 2.7300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F18 | .C7_b 3.338(2) | O3 | . H 8 C | 2.5800 | O3 | .C20 | 3.185(2) | C2 | .C5 | 2.888(2) |
| F18 | .C27_b 3.302(3) | O3 | .H7B | 2.5400 | O3 | .C6 | 2.7990 (19) | C4 | .O1 | 2.7956(19) |
| F18 | .H16A 2.5200 | O9 | .H5A | 2.5400 | O3 | .C11 | 3.2749(19) | C 4 | .C8 | 3.112(3) |
| F18 | .H7A_a 2.3900 | O9 | .H8B_e | 2.5400 | O9 | .C19_d | 3.2751(19) | C4 | .C12 | 2.906 (2) |
| F18 | .H14A 2.5300 | O10 | .H5A | 2.5500 | O9 | .C5_e | $3.417(2)$ | C4 | .C13 | 3.478(2) |
| F18 | .H7C_b 2.8200 | O10 | .H8C_f | 2.8800 | O9 | .C12 | 3.007(2) | C4 | .C17 | 3.577(2) |
| O1 | .C4 2.7956(19) | O10 | .H19B | 2.4200 | O9 | .C4_e | 3.253(2) | C4 | .C20 | 3.064(2) |
| O1 | .C11 3.3487(19) | O10 | .H17A_g | 2.5200 | O9 | .C17 | 3.3583(19) | C4 | .O9_e | 3.253(2) |


| O9 | .C11 | 3.2195(19) | C5 | .C13 | 3.583(2) | C5 | .H19A | 2.7400 | H5A | .O10 | 2.5500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O10 | .C19 | 3.041(2) | C5 | .C2 | 2.888(2) | C5 | . H 19 B | 2.7300 | H5A | .C12 | 2.7600 |
| O10 | .C11 | 3.168(2) | C5 | .O9_e | 3.417(2) | C6 | . H 19 B | 2.6600 | H5A | .C17 | 2.9100 |
| O1 | .H8A | 2.5600 | C5 | .C17 | $3.160(2)$ | C6 | . H 8 B | 2.9900 | H5A | .C19 | 2.6900 |
| O1 | . H 7 C | 2.5500 | C5 | .C21 | 3.570 (2) | C7 | .H8A | 2.7300 | H5A | H17A | 2.5400 |
| O1 | . H 8 B | 2.5900 | C6 | .C20 | 2.915(2) | C7 | . H 8 C | 2.7200 | H5A | H19A | 2.5100 |
| O1 | .H24A_ | _c 2.7000 | C6 | .O3 | 2.7990(19) | C8 | .H7B | 2.7200 | H7A | .F18_h | 2.3900 |
| O1 | .H7A | 2.5400 | C6 | .C7 | 3.589(3) | C8 | .H7A | 2.7200 | H7A | .O1 | 2.5400 |
| O3 | . H 8 B | 2.5800 | C6 | .C19 | 3.016(2) | C11 | .H13A | 2.7000 | H7A | .C8 | 2.7200 |
| O3 | . H 7 C | 2.5400 | C6 | .C8 | $3.193(3)$ | C11 | . H 17 A | 2.6600 | H7A | .H8A | 2.5800 |
| C7 | .F18_b | 3.338(2) | C17 | .C8_e | 3.502(3) | C12 | . H 19 C | 2.7000 | H7B | .O3 | 2.5400 |
| C7 | .F18_h | 3.337(2) | C17 | .C4 | $3.577(2)$ | C12 | .H19A | 2.6800 | H7B | .C8 | 2.7200 |
| C7 | .C6 | 3.589(3) | C17 | .C19 | 2.986 (2) | C12 | .H5A | 2.7600 | H7B | . H 8 C | 2.5600 |
| C8 | .C4 | 3.112(3) | C17 | .O9 | 3.3583(19) | C13 | .H19C_ | 3.0400 | 0 H7C | . O 1 | 2.5500 |
| C8 | .C6 | 3.193 (3) | C 17 | .C27_i | 3.523(3) | C17 | .H8B_e | 3.0300 | H7C | .O3 | 2.5400 |
| C8 | .C16_e | 3.563 (3) | C17 | .C14 | $2.762(3)$ | C17 | . H 19 A | 2.6800 | H7C | .C21 | 2.9100 |
| C8 | .C17_e | 3.502(3) | C17 | .C5 | 3.160(2) | C17 | .H5A | 2.9100 | H7C | . C 22 | 3.0400 |
| C11 | .O9 3. | 3.2195(19) | C19 | .C17 | 2.986 (2) | H7C | .F18_b | 2.8200 | H17A | .H16A | 2.3100 |
| C11 | .O3 | 3.2749(19) | C19 | .C6 | 3.016(2) | H8A | .O1 | 2.5600 H | H17A | H19A | 2.2100 |
| C11 | .O10 | 3.168(2) | C19 | .C21 | $3.423(2)$ | H8A | .C7 | 2.7300 H | H17A | O10_g | 2.5200 |
| C11 | .O1 3. | $3.3487(19)$ | C19 | .O10 | 3.041(2) | H8A | .H7A | 2.5800 | H19A | .C5 | 2.7400 |
| C12 | .C21 | 3.531(2) | C19 | .O9_f | 3.2751(19) | H8B | .O1 | 2.5900 | H19A | .C12 | 2.6800 |
| C12 | .O9 | 3.007(2) | C20 | .C6 | 2.915 (2) | H8B | .O3 | 2.5800 | H19A | .C17 | 2.6800 |
| C12 | .C4 | 2.906 (2) | C20 | .C13 | 2.805(2) | H8B | .C4 | 2.8700 | H19A | . H 5 A | 2.5100 |
| C12 | .C15 | 2.751(2) | C20 | .C27 | 3.574(3) | H8B | .C6 | 2.9900 H | H19A | H17A | 2.2100 |
| C13 | .C21 | 3.511(2) | C20 | .C4 | 3.064(2) | H8B | .O9_e | 2.5400 | H19A | .O10_g | 2.7300 |
| C13 | .C16 | $2.756(2)$ | C20 | .C23 | $3.509(2)$ | H8B | .C17_e | 3.0300 | H19B | .O10 | 2.4200 |
| C13 | .C4 | 3.478(2) | C20 | .O1 | 3.164(2) | H8C | .O3 | 2.5800 | H19B | .C5 | 2.7300 |
| C13 | .C20 | 2.805(2) | C20 | .O3 | $3.185(2)$ | H8C | .O10_d | 2.8800 | 0 H 19 | B .C6 | 2.6600 |
| C13 | .C5 | 3.583(2) | C21 | .C12 | 3.531 (2) | H8C | .C7 | 2.7200 | H19B | . C 20 | 2.6200 |
| C14 | .C17 | $2.762(3)$ | C21 | .C19 | 3.423 (2) | H8C | . H 7 B | 2.5600 | H19C | . C 12 | 2.7000 |
| C15 | .C12 | 2.751(2) | C21 | .C13 | $3.511(2)$ | H13A | A .C11 | 2.7000 | H19C | .C20 | 2.6200 |
| C15 | .C27_b | b 3.440(3) | C21 | .C5 | 3.570 (2) | H13A | . C 20 | 2.4400 | H19C | .C13_i | 3.0400 |
| C15 | .C23_i | 3.584(3) | C22 | .C25 | 2.767 (3) | H13A | A .C21 | 2.8700 | H23A | .C21 | 2.5900 |
| C16 | .C22_i | i 3.488(2) | C22 | .C16_i | 3.488(2) | H13A | A . H 14 A | 2.3200 | H23A | .H24A | 2.3100 |
| C16 | .C8_e | 3.563 (3) | C23 | .C20 | 3.509(2) | H14A | A .F18 | 2.5300 H | H23A . H | H23A_c | 2.4800 |
| C16 | .C13 | 2.756 (2) | C23 | .C26 | 2.741 (3) | H14A | A .H13A | 2.3200 | H24A | A .H23A | 2.3100 |
| C16 | .C27_i | 3.529(3) | C23 | .C15_i | 3.584(3) | H14A | A .O3_b | 2.6800 | H24A | .H25A | 2.2900 |
| C24 | .C27 | 2.764(3) | C19 | .H17A | 2.7800 | H16A | A .F18 | 2.5200 | H24A | .O1_c | 2.7000 |
| C25 | .C22 | 2.767 (3) | C19 | . H 5 A | 2.6900 | H16A | A .H17 | A 2.3100 | 00 H | H25A | H16A_k |
| C26 | .C23 | 2.741 (3) | C20 | .H19B | 2.6200 | 2.5700 |  |  |  |  |  |
| C27 | . C 20 | 3.574(3) | C20 | . H 19 C | 2.6200 | H16A | A .H25 | A_j 2.5 | . 5700 | H25A | .H24A |
| C27 | .C16_i | 3.529(3) | C20 | . H 13 A | 2.4400 | 2.2900 |  |  |  |  |  |
| C27 | .C15_b | b 3.440(3) | C21 | . H 7 C | 2.9100 | H17A | A .C5 | 3.0400 H | H25A . | H26A | 2.2900 |
| C27 | .C24 | 2.764(3) | C21 | . H 27 A | 2.6400 | H17A | A .C11 | 2.6600 | H26A | . H 25 A | 2.2900 |
| C27 | .C17_i | 3.523(3) | C21 | .H13A | 2.8700 | H17A | A .C19 | 2.7800 | H26A | . H 27 A | 2.3200 |
| C27 | .F18_b | 3.302(3) | C21 | . H 23 A | 2.5900 | H17A | A .H5A | 2.5400 | H27A | .C21 | 2.6400 |
| C4 | .H8B | 2.8700 | C22 | . H 7 C | 3.0400 | H27A | A .H26A | A 2.32 | 200 |  |  |
| C5 | H17A | 3.0400 | H5A | O9 | 2.5400 |  |  |  |  |  |  |

Translation of Symmetry Code to Equiv.Pos

$$
\begin{aligned}
& \mathrm{a}=[1556.00]=\left[1 \_556\right]=\mathrm{x}, \mathrm{y}, 1+\mathrm{z} \\
& \mathrm{~b}=[2556.00]=\left[2 \_556\right]=-\mathrm{x},-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{c}=\left[\begin{array}{ll}
2455.00
\end{array}\right]=\left[2 \_455\right]=-1-\mathrm{x},-\mathrm{y},-\mathrm{z} \\
& \mathrm{~d}=[1655.00]=\left[1 \_655\right]=1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& \mathrm{e}=[2566.00]=\left[2 \_566\right]=-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{f}=\left[\begin{array}{ll}
1455.00]
\end{array}\right]\left[1 \_455\right]=-1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& \mathrm{~g}=[2466.00]=\left[2 \_466\right]=-1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{~h}=[1554.00]=[1-554]=\mathrm{x}, \mathrm{y},-1+\mathrm{z} \\
& \mathrm{i}=[2456.00]=[2-456]=-1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{j}=[1566.00]=\left[1 \_566\right]=\mathrm{x}, 1+\mathrm{y}, 1+\mathrm{z} \\
& \mathrm{k}=[1544.00]=\left[1 \_544\right]=\mathrm{x},-1+\mathrm{y},-1+\mathrm{z}
\end{aligned}
$$

## Appendix B

## Crystallographic Data for 4.5a




Table S1 - Crystal Data and Details of the Structure Determination for: 4.5a $\quad \mathbf{R}=0.04$

## Crystal Data



Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.5a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ U(eq) $\left[\mathbf{A n g}^{\wedge} \mathbf{2 ]}\right.$ |
| :--- | :---: | :--- | :--- | :--- |
| Cl5 | $0.25994(7)$ | $0.39756(6)$ | $0.38847(5)$ | $0.0728(2)$ |
| O1 | $0.74676(16)$ | $0.36196(14)$ | $0.32246(11)$ | $0.0546(4)$ |
| O3 | $0.60322(16)$ | $0.37466(13)$ | $0.12936(10)$ | $0.0510(4)$ |
| O9 | $0.34463(19)$ | $0.32099(16)$ | $0.10814(12)$ | $0.0708(5)$ |
| O10 | $0.6536(2)$ | $0.26433(15)$ | $0.49072(11)$ | $0.0683(5)$ |
| C2 | $0.6980(2)$ | $0.44868(18)$ | $0.20804(14)$ | $0.0439(5)$ |
| C4 | $0.4612(2)$ | $0.33103(18)$ | $0.17561(15)$ | $0.0460(5)$ |
| C5 | $0.4695(2)$ | $0.28033(18)$ | $0.31252(14)$ | $0.0438(5)$ |
| C6 | $0.6279(2)$ | $0.30446(18)$ | $0.38416(15)$ | $0.0469(5)$ |
| C7 | $0.8762(3)$ | $0.4408(3)$ | $0.14046(19)$ | $0.0683(7)$ |
| C8 | $0.5772(3)$ | $0.6105(2)$ | $0.23515(19)$ | $0.0647(7)$ |
| C11 | $0.4849(2)$ | $0.10536(18)$ | $0.32649(15)$ | $0.0480(5)$ |
| C12 | $0.6690(2)$ | $0.00594(17)$ | $0.27110(15)$ | $0.0458(5)$ |
| C13 | $0.6990(3)$ | $-0.0164(2)$ | $0.14381(18)$ | $0.0612(7)$ |
| C14 | $0.8669(3)$ | $-0.1076(3)$ | $0.0955(2)$ | $0.0791(8)$ |
| C15 | $1.0082(3)$ | $-0.1797(3)$ | $0.1730(2)$ | $0.0792(9)$ |
| C16 | $0.9827(3)$ | $-0.1605(2)$ | $0.2990(2)$ | $0.0726(8)$ |
| C17 | $0.8147(3)$ | $-0.0683(2)$ | $0.34805(18)$ | $0.0585(7)$ |
| C19 | $0.3199(3)$ | $0.0636(2)$ | $0.2799(2)$ | $0.0663(7)$ |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3 - Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.5a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) $\left[\AA^{2}\right]$ |
| :--- | :---: | :---: | :--- | :---: |
| H7A | 0.94680 | 0.49000 | 0.19050 | 0.1020 |
| H7B | 0.94880 | 0.33220 | 0.12700 | 0.1020 |
| H7C | 0.84950 | 0.49490 | 0.05970 | 0.1020 |
| H8A | 0.64260 | 0.66040 | 0.28890 | 0.0970 |
| H8B | 0.54780 | 0.66950 | 0.15670 | 0.0970 |
| H8C | 0.46220 | 0.60730 | 0.27760 | 0.0970 |
| H11A | 0.48940 | 0.08180 | 0.41820 | 0.0580 |
| H13A | 0.60180 | 0.03220 | 0.08870 | 0.0730 |
| H14A | 0.88450 | -0.12040 | 0.00780 | 0.0950 |
| H15A | 1.12360 | -0.24300 | 0.13950 | 0.0950 |
| H16A | 1.08070 | -0.21050 | 0.35320 | 0.0870 |
| H17A | 0.79870 | -0.05560 | 0.43590 | 0.0700 |
| H19A | 0.20540 | 0.13120 | 0.31870 | 0.0990 |
| H19B | 0.31440 | 0.07710 | 0.18900 | 0.0990 |
| H19C | 0.33360 | -0.04450 | 0.30220 | 0.0990 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right){ }^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* * 2}$ for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 4.5a

| Atom | $\mathbf{U ( 1 , 1 )}$ or $\mathbf{U} \mathbf{U ( 2 , 2 )}$ | $\mathbf{U ( 3 , 3 )}$ | $\mathbf{U ( 2 , 3 )}$ | $\mathbf{U ( 1 , 3 )}$ | $\mathbf{U ( 1 , 2 )}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl5 | $0.0633(3)$ | $0.0723(3)$ | $0.0744(3)$ | $-0.0086(3)$ | $0.0106(2)-0.0101(2)$ |  |
| O1 | $0.0574(7)$ | $0.0646(7)$ | $0.0485(7)$ | $0.0119(6)$ | $-0.0180(5)-0.0281(6)$ |  |
| O3 | $0.0627(7)$ | $0.0595(7)$ | $0.0369(6)$ | $0.0030(5)$ | $-0.0065(5)-0.0278(6)$ |  |
| O9 | $0.0742(9)$ | $0.0912(10$ | $0.0591(8)$ | $0.0234(7)$ | $-0.0336(7)$ | $-0.0420(8)$ |
| O10 | $0.0981(10)$ | $0.0771(9)$ | $0.0386(7)$ | $0.0102(6)$ | $-0.0214(6)-0.0391(8)$ |  |
| C2 | $0.0491(9)$ | $0.0453(9)$ | $0.0398(9)$ | $0.0030(7)-0.0062(7)-0.0183(7)$ |  |  |
| C4 | $0.0509(10)$ | $0.0443(9)$ | $0.0444(9)$ | $0.0079(7)$ | $-0.0136(8)-0.0167(7)$ |  |
| C5 | $0.0462(9)$ | $0.0456(9)$ | $0.0397(9)$ | $0.0039(7)-0.0048(7)-0.0146(7)$ |  |  |
| C6 | $0.0622(11)$ | $0.0408(8)$ | $0.0385(9)$ | $0.0009(7)-0.0108(8)-0.0166(8)$ |  |  |
| C7 | $0.0523(11)$ | $0.0838(14)$ | $0.0685(13)$ | $0.0046(11)$ | $0.0042(9)-0.0220(10)$ |  |
| C8 | $0.0748(13)$ | $0.0473(10)$ | $0.0697(13)$ | $-0.0026(9)$ | $0.0055(10)-0.0167(9)$ |  |
| C11 | $0.0552(10)$ | $0.0479(9)$ | $0.0453(9)$ | $0.0103(7)-0.0087(8)-0.0228(8)$ |  |  |
| C12 | $0.0547(10)$ | $0.0375(8)$ | $0.0511(10)$ | $0.0045(7)-0.0126(8)-0.0221(7)$ |  |  |
| C13 | $0.0671(12)$ | $0.0550(11)$ | $0.0576(12)-0.0059(9)-0.0173(9)-0.0117(9)$ |  |  |  |
| C14 | $0.0830(16)$ | $0.0771(14)$ | $0.0689(14)-0.0199(11)-0.0050(12)-0.0114(12)$ |  |  |  |
| C15 | $0.0606(13)$ | $0.0714(14)$ | $0.1008(18)-0.0189(13)-0.0058(12)-0.0124(11)$ |  |  |  |
| C16 | $0.0584(12)$ | $0.0635(12)$ | $0.0956(17)$ | $0.0035(11)-0.0285(11)-0.0163(10)$ |  |  |
| C17 | $0.0631(12)$ | $0.0575(11)$ | $0.0593(11)$ | $0.0099(9)$ | $-0.0200(9)-0.0241(9)$ |  |
| C19 | $0.0627(12)$ | $0.0665(12)$ | $0.0801(14)$ | $0.0118(10)-0.0124(10)-0.0352(10)$ |  |  |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where
$\mathrm{T}=8^{*}\left(\mathrm{Pi}^{*} * 2\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms
$\mathrm{T}=2^{*}\left(\mathrm{Pi} i^{*} * 2\right) * \operatorname{Sumij}\left(\mathrm{~h}(\mathrm{i}) * \mathrm{~h}(\mathrm{j}) * \mathrm{U}(\mathrm{i}, \mathrm{j}) *\right.$ Astar(i)$\left.{ }^{*} \operatorname{Astar}(\mathrm{j})\right)$, for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and
$\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances (£) for: 4.5a

| Cl 5 | -C5 | 1.7960(17) | C15 | -C16 | 1.365(3) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | -C2 | 1.4360(19) | C16 | -C17 | $1.384(3)$ |
| O1 | -C6 | $1.330(2)$ | C7 | -H7A | 0.9800 |
| O3 | -C2 | 1.435(2) | C7 | -H7B | 0.9800 |
| O3 | -C4 | $1.339(2)$ | C7 | -H7C | 0.9800 |
| O9 | -C4 | 1.190 (2) | C8 | -H8A | 0.9800 |
| O10 | -C6 | 1.194(2) | C8 | -H8B | 0.9800 |
| C2 | -C7 | 1.497(3) | C8 | -H8C | 0.9800 |
| C2 | -C8 | 1.499 (2) | C11 | -H11A | 1.0000 |
| C4 | -C5 | 1.524(2) | C13 | -H13A | 0.9500 |
| C5 | -C6 | 1.525(2) | C14 | -H14A | 0.9500 |
| C5 | -C11 | 1.563(2) | C15 | -H15A | 0.9500 |
| C11 | -C12 | 1.518(2) | C16 | -H16A | 0.9500 |
| C11 | -C19 | $1.523(3)$ | C17 | -H17A | 0.9500 |
| C12 | -C13 | 1.385(3) | C19 | -H19A | 0.9800 |
| C12 | -C17 | 1.388(3) | C19 | -H19B | 0.9800 |
| C13 | -C14 | $1.377(3)$ | C19 | -H19C | 0.9800 |
| C14 | -C15 | $1.366(3)$ |  |  |  |

Table S6 - Bond Angles ( ${ }^{\circ}$ ) for: 4.5a

| C2 | -O1 | -C6 | 121.36(13) | C14 | -C15 | -C16 | 119.7(2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | -O3 | -C4 | 120.16(12) | C15 | -C16 | -C17 | 120.2(2) |
| O1 | -C2 | -O3 | 110.28(12) | C12 | -C17 | -C16 | 121.10(18) |
| O1 | -C2 | -C7 | 106.61(14) | C2 | -C7 | -H7A | 109.00 |
| O1 | -C2 | -C8 | 110.14(13) | C2 | -C7 | -H7B | 109.00 |
| O3 | -C2 | -C7 | 106.11(14) | C2 | -C7 | -H7C | 109.00 |
| O3 | -C2 | -C8 | 109.84(14) | H7A | -C7 | -H7B | 109.00 |
| C7 | -C2 | -C8 | 113.74(16) | H7A | -C7 | -H7C | 110.00 |
| O3 | -C4 | -O9 | 119.93(15) | H7B | -C7 | -H7C | 110.00 |
| O3 | -C4 | -C5 | 116.73(13) | C2 | -C8 | -H8A | 109.00 |
| O9 | -C4 | -C5 | 123.04(15) | C2 | -C8 | -H8B | 109.00 |
| Cl 5 | -C5 | -C4 | 107.13(11) | C2 | -C8 | -H8C | 109.00 |
| Cl 5 | -C5 | -C6 | 105.88(10) | H8A | -C8 | -H8B | 109.00 |
| Cl 5 | -C5 | -C11 | 109.97(11) | H8A | -C8 | -H8C | 109.00 |
| C4 | -C5 | -C6 | 115.25(13) | H8B | -C8 | -H8C | 109.00 |
| C4 | -C5 | -C11 | 111.13(13) | C5 | -C11 | -H11A | 106.00 |
| C6 | -C5 | -C11 | 107.31(12) | C12 | -C11 | -H11A | 106.00 |
| O1 | -C6 | -O10 | 119.83(16) | C19 | -C11 | -H11A | 106.00 |
| O1 | -C6 | -C5 | 118.24(14) | C12 | -C13 | -H13A | 119.00 |
| O10 | -C6 | -C5 | 121.75(15) | C14 | -C13 | -H13A | 119.00 |
| C5 | -C11 | -C12 | 109.85(13) | C13 | -C14 | -H14A | 120.00 |
| C5 | -C11 | -C19 | 115.05(13) | C15 | -C14 | -H14A | 120.00 |
| C12 | -C11 | -C19 | 113.13(14) | C14 | -C15 | -H15A | 120.00 |
| C11 | -C12 | -C13 | 122.29(15) | C16 | -C15 | -H15A | 120.00 |
| C11 | -C12 | -C17 | 120.45(15) | C15 | -C16 | -H16A | 120.00 |
| C13 | -C12 | -C17 | 117.25(16) | C17 | -C16 | -H16A | 120.00 |
| C12 | -C13 | -C14 | 121.37(19) | C12 | -C17 | -H17A | 119.00 |
| C13 | -C14 | -C15 | 120.4(2) | C16 | -C17 | -H17A | 119.00 |
| C11 | -C19 | -H19A | 109.00 | H19A | -C19 | -H19B | 109.00 |
| C11 | -C19 | -H19B | 110.00 | H19A | -C19 | -H19C | 109.00 |
| C11 | -C19 | -H19C | 109.00 | H19B | -C19 | -H19C | 109.00 |

Table S7-Torsion Angles ( ${ }^{\circ}$ ) for: 4.5a

| C 6 | -O 1 | -C 2 | -O 3 | $-43.42(18)$ | C 4 | -C 5 | -C 6 | -O 10 | $-177.21(15)$ |
| :---: | :---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :---: |
| C 6 | -O 1 | -C 2 | -C 7 | $-158.18(16)$ | C 11 | -C 5 | -C 6 | -O 1 | $122.41(15)$ |
| C 6 | -O 1 | -C 2 | -C 8 | $77.98(19)$ | C 11 | -C 5 | -C 6 | -O 10 | $-52.9(2)$ |
| C 2 | -O 1 | -C 6 | -O 10 | $-163.07(15)$ | C 15 | -C 5 | -C 11 | -C 12 | $-175.61(11)$ |
| C 2 | -O 1 | -C 6 | -C 5 | $21.6(2)$ | C 5 | -C 5 | -C 11 | -C 19 | $55.36(17)$ |
| C 4 | -O 3 | -C 2 | -O 1 | $49.32(18)$ | C 4 | -C 5 | -C 11 | -C 12 | $65.94(17)$ |
| C 4 | -O 3 | -C 2 | -C 7 | $164.40(15)$ | C 4 | -C 5 | -C 11 | -C 19 | $-63.09(18)$ |
| C 4 | -O 3 | -C 2 | -C 8 | $-72.25(18)$ | C 6 | -C 5 | -C 11 | -C 12 | $-60.89(16)$ |
| C 2 | -O 3 | -C 4 | -O 9 | $153.85(15)$ | C 6 | -C 5 | -C 11 | -C 19 | $170.08(14)$ |
| C 2 | -O 3 | -C 4 | -C 5 | $-32.30(19)$ | C 5 | -C 11 | -C 12 | -C 13 | $-79.32(19)$ |
| O 3 | -C 4 | -C 5 | -C 15 | $124.67(13)$ | C 5 | -C 11 | -C 12 | -C 17 | $101.44(17)$ |
| O 3 | -C 4 | -C 5 | -C 6 | $7.2(2)$ | C 19 | -C 11 | -C 12 | -C 13 | $50.8(2)$ |
| O 3 | -C 4 | -C 5 | -C 11 | $-115.19(15)$ | C 19 | -C 11 | -C 12 | -C 17 | $-128.50(17)$ |
| O 9 | -C 4 | -C 5 | -C 15 | $-61.69(19)$ | C 11 | -C 12 | -C 13 | -C 14 | $-179.73(19)$ |
| O 9 | -C 4 | -C 5 | -C 6 | $-179.21(15)$ | C 17 | -C 12 | -C 13 | -C 14 | $-0.5(3)$ |
| O 9 | -C 4 | -C 5 | -C 11 | $58.5(2)$ | C 11 | -C 12 | -C 17 | -C 16 | $179.36(17)$ |
| Cl 5 | -C 5 | -C 6 | -O 1 | $-120.17(13)$ | C 13 | -C 12 | -C 17 | -C 16 | $0.1(3)$ |
| Cl 5 | -C 5 | -C 6 | -O 10 | $64.58(18)$ | C 12 | -C 13 | -C 14 | -C 15 | $0.6(3)$ |
| C 4 | -C 5 | -C 6 | -O 1 | $-2.0(2)$ | C 13 | -C 14 | -C 15 | -C 16 | $-0.3(4)$ |

$$
\begin{array}{lllllllll}
\mathrm{C} 14 & -\mathrm{C} 15 & -\mathrm{C} 16 & -\mathrm{C} 17 & -0.1(3) & \mathrm{C} 15 & -\mathrm{C} 16 & -\mathrm{C} 17 & -\mathrm{C} 12
\end{array}
$$

Table S8-Contact Distances(i̊) for: 4.5a

| Cl 5 | . 09 | 3.1012(14) | O9 | . H 19 B | 2.4400 | C15 | .C12 | 2.788(3) | C19 | .H13A | 2.8700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl 5 | .O10 | 3.0830(16) | O9 | .H13A | 2.7500 | C16 | .C13 | 2.738(3) | H7A | .Cl5_e | 3.1400 |
| Cl 5 | .C19 3 | 3.1722(19) | O9 | .H7C_b | 2.5900 | C17 | .C14 | 2.738(3) | H7A | .O1 | 2.5600 |
| Cl 5 | .H7A_a | a 3.1400 | O10 | .H11A | 2.5200 | C17 | .C5 | 3.445(2) | H7A | .C8 | 2.7100 |
| Cl 5 | .H8C | 3.0000 | O10 | .H17A | 2.8400 | C17 | .O10 | 3.282(2) | H7A | .H8A | 2.5500 |
| Cl 5 | .H11A | 2.8700 | O10 | .H8C_c | 2.7700 | C17 | .C6 | 3.266(2) | H7B | .O1 | 2.5200 |
| Cl 5 | .H19A | 2.7100 | O10 | .H16A_d | d 2.5900 | C19 | .C4 | 3.123(3) | H7B | .O3 | 2.5300 |
| O1 | .C4 | 2.813(2) | C2 | .C5 | 2.842(2) | C19 | .C15 3. | .1722(19) | H7B | .H14A_f | 2.4300 |
| O3 | .C6 | 2.7879(19) | C4 | .O1 | 2.813(2) | C19 | .C13 | 3.069(3) | H7C | . O 3 | 2.5300 |
| O3 | .C13 | $3.401(2)$ | C4 | .C8 | 3.030(3) | C19 | . 09 | 2.991 (2) | H7C | .C8 | 2.7200 |
| O9 | .C19 | 2.991(2) | C4 | .C12 | 3.051(2) | C4 | . H 13 A | 2.7600 | H7C | .H8B | 2.5500 |
| O9 | .Cl5 | 3.1012(14) | C4 | .C13 | 3.129 (2) | C4 | .H8C | 2.7700 | H7C | .O9_b | 2.5900 |
| O9 | .C7_a | 3.390(3) | C4 | .C19 | 3.123(3) | C4 | . H 19 B | 2.8600 | H8A | .O1 | 2.6000 |
| O9 | .C13 | 3.411(2) | C5 | .C2 | 2.842(2) | C5 | .H19A | 2.7500 | H8A | .C7 | 2.7200 |
| O9 | .C11 | 3.014(2) | C5 | .C8 | 3.429(2) | C5 | . H 19 B | 2.8600 | H8A | .H7A | 2.5500 |
| O10 | . Cl 5 | $3.0830(16)$ | C5 | .C13 | $3.266(2)$ | H8B | . O 3 | 2.6000 | H14A | .H15A | 2.3200 |
| O10 | .C17 | 3.282(2) | C5 | .C17 | 3.445(2) | H8B | .C7 | 2.7000 | H14A | .H7B_f | 2.4300 |
| O10 | .C8_c | 3.401(2) | C6 | .O3 2.7 | 2.7879(19) | H8B | .H7C | 2.5500 | H14A | .H19B_h | 2.5900 |
| O10 | .C11 | 2.878(2) | C6 | .C7 | 3.592(3) | H8C | . Cl 5 | 3.0000 | H15A | . H 14 A | 2.3200 |
| O10 | .C12 | 3.341(2) | C6 | .C17 | $3.266(2)$ | H8C | .O1 | 2.6200 | H15A | .H16A | 2.3200 |
| O1 | .H8A | 2.6000 | C6 | .C12 | 2.924(2) | H8C | .O3 | 2.6000 | H16A | .H15A | 2.3200 |
| O1 | .H7B | 2.5200 | C6 | .C8 | 3.098(2) | H8C | .C4 | 2.7700 | H16A | .H17A | 2.3200 |
| O1 | .H8C | 2.6200 | C7 | .O9_e | 3.390 (3) | H8C | .C5 | 2.9700 | H16A | O10_d | 2.5900 |
| O1 | .H7A | 2.5600 | C7 | .C6 | 3.592(3) | H8C | .C6 | 2.8700 | H17A | . O 10 | 2.8400 |
| O3 | . H 8 B | 2.6000 | C8 | .C6 | 3.098(2) | H8C | .O10_c | c 2.7700 | H17 | A .C11 | 2.6700 |
| O3 | . H 7 C | 2.5300 | C8 | .C4 | 3.030(3) | H11A | . Cl 5 | 2.8700 | H17A | .H11A | 2.3000 |
| O3 | . H 7 B | 2.5300 | C8 | .C5 | 3.429 (2) | H11A | .O10 | 2.5200 | H17A | .H16A | 2.3200 |
| O3 | .H8C | 2.6000 | C8 | .O10_c | 3.401(2) | H11A | .C6 | 2.5700 | H19A | . Cl 5 | 2.7100 |
| C11 | .O9 | 3.014(2) | C5 | . H 8 C | 2.9700 | H11A | .C17 | 2.5200 | H19A | .C5 | 2.7500 |
| C11 | .O10 | 2.878(2) | C6 | .H11A | 2.5700 | H11A | . H 17 A | A 2.3000 | H19A | .H11A | 2.3500 |
| C12 | .C4 | $3.051(2)$ | C6 | . H 8 C | 2.8700 | H11A | .H19A | A 2.3500 | H19B | B .O9 | 2.4400 |
| C12 | .O10 | 3.341 (2) | C7 | . H 8 B | 2.7000 | H11A | . H 19 C | C 2.3000 | H19B | . C 4 | 2.8600 |
| C12 | .C6 | 2.924(2) | C7 | .H8A | 2.7200 | H11A | .H11A | A_g 2.250 | 00 H 1 | 9B .C5 | 2.8600 |
| C12 | .C15 | 2.788(3) | C8 | .H7C | 2.7200 | H13A | .O9 | 2.7500 | H19B | .C12 | 2.7400 |
| C13 | .C5 | 3.266(2) | C8 | . H 7 A | 2.7100 | H13A | .C4 | 2.7600 | H19B | .C13 | 2.8100 |
| C13 | .O9 | 3.411(2) | C11 | .H13A | 2.7000 | H13A | .C11 | 2.7000 | H19B | .H13A | 2.3200 |
| C13 | .C4 | 3.129(2) | C11 | . H 17 A | 2.6700 | H13A | .C19 | 2.8700 | H19B | .H14A_h | 2.5900 |
| C13 | .C16 | 2.738(3) | C12 | . H 19 C | 2.7400 | H13A | . H 14 A | A 2.3100 | H19C | C . C 12 | 2.7400 |
| C13 | .O3 | 3.401(2) | C12 | . H 19 B | 2.7400 | H13A | .H19B | B 2.3200 | H19C | C .H11A | 2.3000 |
| C13 | .C19 | 3.069 (3) | C13 | . H 19 B | 2.8100 | H14A | .H13 |  | 100 |  |  |
| C14 | .C17 | 2.738(3) | C17 | .H11A | 2.5200 |  |  |  |  |  |  |

Translation of Symmetry Code to Equiv.Pos
$\mathrm{a}=[1455.00]=\left[1 \_455\right]=-1+x, y, z$
$\mathrm{b}=[2665.00]=\left[2 \_665\right]=1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$
$\mathrm{c}=[2666.00]=\left[2 \_666\right]=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$
$\mathrm{d}=[2756.00]=\left[2 \_756\right]=2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$
$e=[1655.00]=\left[1 \_655\right]=1+x, y, z$

$$
\begin{aligned}
& \mathrm{f}=[2755.00]=\left[2 \_755\right]=2-\mathrm{x},-\mathrm{y},-\mathrm{z} \\
& \mathrm{~g}=[2656.00]=\left[2 \_656\right]=1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{~h}=[2655.00]=\left[2 \_655\right]=1-\mathrm{x},-\mathrm{y},-\mathrm{z}
\end{aligned}
$$

## Appendix C

## Crystallographic Data for 4.6c




Table S1 - Crystal Data and Details of the Structure Determination for: 4.6c $\quad \mathbf{R}=0.11$
Crystal Data


Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.6c $\quad R=0.11$

| Atom | x | y z | U(eq) [An | ng $\left.{ }^{\wedge} 2\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| C11A | 0.2798(3) | 1.15581(12) | -0.52269(14) | 0.1127(12) |
| O1A | 0.1857(6) | 1.4101(3) | $-0.4056(3)$ | 0.066(2) |
| O3A | 0.1253(6) | 1.2613(3) | $-0.3770(3)$ | 0.081(2) |
| O9A | 0.2664(6) | 1.1604(3) | $-0.3161(3)$ | 0.084(2) |
| O10A | 0.3879(5) | 1.4484(3) | -0.3856(3) | $0.0723(15)$ |
| N1A | 0.3259(9) | $1.2783(5)$ | -0.1517(4) | 0.103(4) |
| C2A | 0.0719(9) | 1.3510(5) | $-0.3823(7)$ | 0.080(4) |
| C4A | 0.2543(8) | 1.2355(4) | $-0.3513(4)$ | 0.045(3) |
| C5A | 0.3655(7) | 1.2979(4) | $-0.3700(4)$ | 0.046 (3) |
| C6A | 0.3132(9) | 1.3934(4) | -0.3885(4) | 0.047(3) |
| C7A | -0.0231(8) | $1.3695(4)$ | $-0.4602(5)$ | 0.090(4) |
| C8A | 0.0094(10) | $1.3500(5)$ | -0.3024(6) | 0.112(4) |
| C11A | 0.4453(7) | $1.2900(4)$ | -0.4512(4) | 0.053(3) |
| C12A | 0.3632(8) | $1.3186(5)$ | -0.5325(4) | 0.063(3) |
| C13A | 0.3609(9) | 1.4071(4) | -0.5757(5) | 0.076(4) |
| C14A | 0.2877 (9) | $1.4397(5)$ | -0.6497(5) | 0.075(4) |
| C15A | $0.2196(10)$ | 1.3854(6) | -0.6835(5) | 0.099(5) |
| C16A | $0.2176(9)$ | $1.2969(5)$ | -0.6453(5) | 0.084(4) |
| C17A | 0.2862(9) | $1.2676(4)$ | -0.5688(5) | 0.070(3) |
| C19A | 0.5880(7) | $1.3265(5)$ | -0.4631(4) | 0.067(3) |
| C20A | 0.4734(8) | $1.2823(4)$ | -0.2943(4) | 0.064(3) |
| C21A | 0.3929(9) | 1.2750 (4) | -0.2100(6) | 0.065(4) |
| Cl1B | 0.1693(3) | 0.83049(11) | $0.13479(13)$ | 0.1284(15) |
| O1B | 0.3643(6) | $0.9210(3)$ | 0.2813(3) | 0.075(2) |
| O3B | 0.3171 (6) | $1.0736(3)$ | 0.2592(3) | $0.064(2)$ |
| O9B | 0.1155(6) | 1.1249 (3) | 0.2851(3) | $0.070(2)$ |
| O10B | 0.1997(5) | 0.8288(3) | 0.3350(3) | 0.0634(13) |
| N1B | 0.1712(8) | $0.9385(4)$ | 0.5082(4) | 0.091(4) |
| C2B | 0.4209(8) | 1.0065(5) | 0.2730(5) | 0.063(3) |
| C4B | 0.1859(9) | 1.0617(4) | 0.2821(4) | 0.049(3) |
| C5B | 0.1226(7) | 0.9751(3) | $0.2950(4)$ | 0.044(3) |
| C6B | $0.2374(10)$ | $0.9045(4)$ | 0.3090(4) | 0.060(3) |
| C7B | $0.5136(8)$ | $1.0206(5)$ | 0.1971(5) | $0.092(4)$ |
| C8B | 0.4974(9) | 1.0043(5) | 0.3553(5) | $0.097(4)$ |
| C11B | 0.0351(7) | 0.9733(4) | 0.2125(4) | 0.047(3) |
| C12B | 0.1240(8) | 0.9983(4) | 0.1311(4) | 0.054(3) |
| C13B | 0.1393(8) | 1.0855(4) | 0.0907(4) | 0.058(3) |
| C14B | 0.2195(9) | $1.1127(4)$ | 0.0181(5) | 0.075 (3) |
| C15B | 0.2841(10) | 1.0540(6) | -0.0173(5) | 0.099 (4) |
| C16B | 0.2708(10) | 0.9674(5) | 0.0188(5) | 0.099 (4) |
| C17B | 0.1875(9) | 0.9412(4) | 0.0911(5) | 0.069(3) |
| C19B | -0.1025(8) | 1.0256(4) | 0.2072(5) | 0.080(3) |
| C20B | 0.0249(7) | 0.9538(4) | 0.3728(4) | 0.058(3) |
| C21B | $0.1036(9)$ | 0.9450 (4) | 0.4495(5) | 0.062(3) |
| Cl1C | 0.3201(3) | 0.49331(11) | $0.80716(12)$ | $0.0997(12)$ |
| O1C | 0.1324(6) | $0.7311(3)$ | 0.9295(3) | 0.068(2) |
| O3C | 0.1326(6) | 0.5775(3) | 0.9559 (3) | 0.082(3) |
| O9C | 0.2999(5) | 0.4958(2) | 1.0130(3) | $0.0650(18)$ |
| O10C | 0.3276 (5) | 0.7955(3) | 0.9389(3) | 0.074(2) |
| N1C | 0.3035(8) | $0.6209(5)$ | $1.1776(5)$ | 0.107(4) |


| C2C | $0.0498(8)$ | $0.6560(5)$ | $0.9517(6)$ | $0.067(3)$ |
| :--- | :---: | :---: | :---: | :---: |
| C4C | $0.2652(8)$ | $0.5697(5)$ | $0.9785(4)$ | $0.046(3)$ |
| C5C | $0.3521(7)$ | $0.6465(4)$ | $0.9586(4)$ | $0.037(3)$ |
| C6C | $0.2681(9)$ | $0.7312(4)$ | $0.9401(4)$ | $0.042(3)$ |
| C7C | $-0.0479(8)$ | $0.6631(4)$ | $0.8759(5)$ | $0.079(3)$ |
| C8C | $-0.0179(9)$ | $0.6479(5)$ | $1.0353(5)$ | $0.096(4)$ |
| C11C | $0.4400(7)$ | $0.6458(4)$ | $0.8753(4)$ | $0.056(3)$ |
| C12C | $0.3507(8)$ | $0.6645(4)$ | $0.7951(4)$ | $0.065(3)$ |
| C13C | $0.3200(9)$ | $0.7528(4)$ | $0.7535(4)$ | $0.078(4)$ |
| C14C | $0.2303(9)$ | $0.7729(6)$ | $0.6816(4)$ | $0.083(4)$ |
| C15C | $0.1864(10)$ | $0.7100(6)$ | $0.6492(5)$ | $0.094(4)$ |
| C16C | $0.2172(10)$ | $0.6230(5)$ | $0.6897(5)$ | $0.088(4)$ |
| C17C | $0.2909(9)$ | $0.6046(4)$ | $0.7596(4)$ | $0.064(3)$ |
| C19C | $0.5651(7)$ | $0.7013(5)$ | $0.8622(4)$ | $0.072(3)$ |
| C20C | $0.4546(8)$ | $0.6411(5)$ | $1.0340(5)$ | $0.069(3)$ |
| C21C | $0.3718(10)$ | $0.6309(5)$ | $1.1142(6)$ | $0.071(4)$ |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3 - Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.6c

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) [Ang ${ }^{\text {® }}$ 2 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| H7A | 0.03250 | 1.36840 | -0.51120 | 0.1350 |  |
| H7B | -0.09550 | 1.32530 | -0.45090 | 0.1350 |  |
| H7C | -0.06690 | 1.42670 | -0.46820 | 0.1350 |  |
| H8A | -0.06730 | 1.30840 | -0.29030 | 0.1680 |  |
| H8B | 0.07910 | 1.33290 | -0.25750 | 0.1680 |  |
| H8C | -0.02700 | 1.40780 | -0.30400 | 0.1680 |  |
| H11A | 0.45980 | 1.22640 | -0.44260 | 0.0630 |  |
| H13A | 0.41210 | 1.44600 | -0.55300 | 0.0910 |  |
| H14A | 0.28590 | 1.50020 | -0.67620 | 0.0900 |  |
| H15A | 0.17090 | 1.40780 | -0.73530 | 0.1190 |  |
| H16A | 0.17120 | 1.25820 | -0.67070 | 0.1010 |  |
| H19A | 0.63880 | 1.30690 | -0.40950 | 0.1010 |  |
| H19B | 0.63740 | 1.30680 | -0.50800 | 0.1010 |  |
| H19C | 0.58190 | 1.38990 | -0.47970 | 0.1010 |  |
| H20A | 0.52750 | 1.22840 | -0.29090 | 0.0760 |  |
| H20B | 0.53940 | 1.33110 | -0.30500 | 0.0760 |  |
| H7D | 0.58470 | 0.97460 | 0.20650 | 0.1370 |  |
| H7E | 0.45860 | 1.01960 | 0.14710 | 0.1370 |  |
| H7F | 0.55890 | 1.07690 | 0.18730 | 0.1370 |  |
| H8D | 0.56880 | 0.95860 | 0.36550 | 0.1450 |  |
| H8E | 0.54170 | 1.06030 | 0.34980 | 0.1450 |  |
| H8F | 0.43060 | 0.99270 | 0.40330 | 0.1450 |  |
| H11B | 0.00790 | 0.91170 | 0.22010 | 0.0560 |  |
| H13B | 0.09330 | 1.12720 | 0.11380 | 0.0700 |  |
| H14B | 0.23020 | 1.17290 | -0.00780 | 0.0900 |  |
| H15B | 0.33930 | 1.07370 | -0.06780 | 0.1180 |  |
| H16B | 0.31750 | 0.92640 | -0.00500 | 0.1190 |  |
| H19D | -0.15430 | 1.00640 | 0.26140 | 0.1200 |  |
| H19E | -0.08150 | 1.08730 | 0.19620 | 0.1200 |  |
| H19F | -0.15880 | 1.01630 | 0.16080 | 0.1200 |  |
| H20C | -0.04580 | 1.00050 | 0.36750 | 0.0690 |  |


| H20D | -0.02440 | 0.89910 | 0.37590 | 0.0690 |
| :--- | :---: | :---: | :---: | :---: |
| H7G | -0.10830 | 0.61230 | 0.88790 | 0.1180 |
| H7H | -0.10550 | 0.71560 | 0.86760 | 0.1180 |
| H7I | 0.00780 | 0.66580 | 0.82400 | 0.1180 |
| H8G | -0.07510 | 0.59570 | 1.05040 | 0.1430 |
| H8H | 0.05350 | 0.64380 | 1.07870 | 0.1430 |
| H8I | -0.07720 | 0.69880 | 1.03270 | 0.1430 |
| H11C | 0.47560 | 0.58520 | 0.88420 | 0.0680 |
| H13C | 0.35890 | 0.79790 | 0.77350 | 0.0940 |
| H14C | 0.20200 | 0.83110 | 0.65690 | 0.1000 |
| H15C | 0.13370 | 0.72410 | 0.59830 | 0.1130 |
| H16C | 0.18510 | 0.57820 | 0.66680 | 0.1060 |
| H19G | 0.61950 | 0.68760 | 0.91470 | 0.1080 |
| H19H | 0.62230 | 0.69060 | 0.81540 | 0.1080 |
| H19I | 0.53610 | 0.76230 | 0.84800 | 0.1080 |
| H20E | 0.51910 | 0.59120 | 1.03950 | 0.0820 |
| H20F | 0.51060 | 0.69450 | 1.02240 | 0.0820 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where
$\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *}\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 4.6c

| Atom | $\mathbf{U}(1,1)$ or $\mathrm{U} \mathbf{U}(2,2)$ | U(3,3) | U $(2,3)$ | U(1,3) | $\mathrm{U}(1,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl1A | 0.221(3) 0.0397(12) 0.0764(17)-0.0125(11)-0.0153(16)-0.0094(14) |  |  |  |  |
| O1A | 0.060(4) 0.048(3) | 0.082(4) | $-0.002(3)$ | 0.012(3) | $-0.012(3)$ |
| O3A | 0.075(4) 0.050(3) | 0.114(5) | -0.014(3) | -0.017(3) | -0.011(3) |
| O9A | 0.135(5) 0.018(3) | 0.089(4) | 0.003(3) | -0.009(3) | -0.003(3) |
| N1A | 0.179(9) 0.082(5) | 0.040(5) | -0.003(4) | 0.023(5) | -0.042(5) |
| C2A | 0.052(6) 0.059(6) | 0.125(9) | -0.015(5) | 0.002(6) | $-0.017(5)$ |
| C4A | 0.055(6) 0.028(4) | 0.050(5) | -0.007(3) | -0.021(4) | -0.011(4) |
| C5A | 0.058(5) 0.046(4) | $0.029(4)$ | -0.002(3) | -0.008(4) | 0.012(4) |
| C6A | 0.066(6) 0.026(4) | 0.049(5) | -0.009(3) | -0.025(4) | -0.016(4) |
| C7A | $0.089(7) \quad 0.061(5)$ | $0.108(7)$ | 0.000(5) | -0.039(6) | $-0.010(5)$ |
| C8A | $0.136(9)$ 0.088(7) | 0.091 (7) | 0.008(5) | $0.075(7)$ | 0.026(6) |
| C11A | 0.045(5) 0.041(4) | 0.067(6) | -0.004(4) | -0.013(4) | 0.018(4) |
| C12A | 0.093(7) 0.054(5) | 0.040(5) | -0.008(4) | 0.000(4) | -0.016(4) |
| C13A | 0.129(8) 0.043(5) | 0.047(5) | 0.005(4) | -0.004(5) | -0.030(4) |
| C14A | $0.120(8) 0.050(5)$ | 0.043(5) | 0.010(4) | $-0.020(5)$ | -0.016(5) |
| C15A | 0.160(10) 0.088(7) | 0.040(6) | -0.002(5) | -0.020(5) | 0.001(6) |
| C16A | 0.149(9) 0.069(6) | 0.037(5) | -0.017(5) | -0.006(5) | -0.019(5) |
| C17A | 0.116(7) 0.038(4) | 0.060(6) | -0.021(4) | -0.001(5) | -0.017(4) |
| C19A | 0.063(6) 0.081(5) | 0.044(5) | 0.007(4) | 0.007(4) | 0.015(5) |
| C20A | 0.081(6) 0.051(4) | 0.052(5) | -0.002(4) | -0.018(5) | 0.018(4) |
| C21A | 0.080(7) 0.041(4) | $0.066(7)$ | 0.002(5) | -0.035(5) | -0.010(4) |
| Cl1B | 0.286(4) 0.0285(11) 0. | $0.0699(16)$ | -0.0143(11) | 1) $0.0430(1$ | 18)-0.0081(15) |
| O1B | 0.082(4) 0.029(3) | $0.106(5)$ | $-0.003(3)$ | 0.017(3) | $-0.015(3)$ |
| O3B | 0.058(4) 0.029(3) | $0.095(4)$ | 0.002(2) | -0.001(3) | -0.004(3) |
| O9B | 0.120(5) 0.024(3) | 0.063(3) | -0.008(2) | -0.007(3) | 0.017(3) |
| N1B | 0.146(8) 0.070(5) | 0.043(5) | 0.010(4) | -0.001(4) | 0.017(4) |
| C2B | $0.066(6) \quad 0.047(5)$ | 0.071(6) - | -0.007(4) | 0.015(5) | -0.015(5) |
| C4B | 0.071(6) 0.034(5) | 0.034(4) | 0.005(3) - | -0.015(4) | 0.004(5) |
| C5B | 0.066(5) 0.013(3) | 0.047 (5) | 0.001(3) - | -0.004(4) | 0.004(3) |


| C6B | $0.097(7)$ | $0.007(4)$ | $0.065(5)$ | $0.010(3)$ | $0.000(5)$ | $-0.004(4)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| C7B | $0.091(7)$ | $0.058(5)$ | $0.113(8)$ | $-0.002(5)$ | $0.031(6)$ | $-0.021(5)$ |
| C8B | $0.111(8)$ | $0.083(6)$ | $0.083(7)$ | $0.003(5)$ | $-0.014(6)$ | $-0.005(5)$ |
| C11B | $0.075(6)$ | $0.031(4)$ | $0.031(4)$ | $0.000(3)$ | $-0.006(4)$ | $-0.012(4)$ |
| C12B | $0.098(6)$ | $0.031(4)$ | $0.028(4)$ | $-0.001(3)$ | $-0.013(4)$ | $0.000(4)$ |
| C13B | $0.117(7)$ | $0.028(4)$ | $0.024(4)$ | $0.001(3)$ | $0.007(4)$ | $0.001(4)$ |
| C14B | $0.143(8)$ | $0.026(4)$ | $0.050(5)$ | $-0.001(4)$ | $0.018(5)$ | $-0.001(4)$ |
| C15B | $0.177(10)$ | $0.065(6)$ | $0.039(5)$ | $0.011(5)$ | $0.028(5)$ | $0.002(6)$ |
| C16B | $0.204(11)$ | $0.055(6)$ | $0.039(5)$ | $-0.017(5)$ | $0.027(6)$ | $0.008(6)$ |
| C17B | $0.137(8)$ | $0.031(4)$ | $0.029(5)$ | $0.006(4)$ | $0.014(5)$ | $-0.007(4)$ |
| C19B | $0.103(7)$ | $0.059(5)$ | $0.072(6)$ | $-0.005(4)$ | $-0.017(5)$ | $0.004(5)$ |
| C20B | $0.077(6)$ | $0.060(5)$ | $0.025(4)$ | $0.006(3)$ | $0.022(4)$ | $0.013(4)$ |
| C21B | $0.087(7)$ | $0.052(5)$ | $0.033(5)$ | $0.011(4)$ | $0.004(5)$ | $0.020(4)$ |
| C11C | $0.199(3)$ | $0.0354(11)$ | $0.0641(14)-0.0113(10)-0.0335(15)$ | $0.0214(13)$ |  |  |
| O1C | $0.063(4)$ | $0.042(3)$ | $0.087(4)$ | $0.003(3)$ | $-0.016(3)$ | $0.002(3)$ |
| O3C | $0.081(5)$ | $0.037(3)$ | $0.120(5)$ | $-0.006(3)$ | $-0.017(4)$ | $-0.002(3)$ |
| O9C | $0.097(4)$ | $0.021(2)$ | $0.063(3)$ | $0.013(2)$ | $-0.006(3)$ | $0.010(2)$ |
| O10C | $0.094(4)$ | $0.055(3)$ | $0.071(4)$ | $-0.015(3)$ | $-0.005(3)$ | $0.003(3)$ |
| N1C | $0.121(7)$ | $0.149(7)$ | $0.039(5)$ | $-0.004(5)$ | $-0.011(5)$ | $0.020(5)$ |
| C2C | $0.068(6)$ | $0.041(5)$ | $0.097(7)$ | $-0.027(5)$ | $0.001(5)$ | $-0.012(5)$ |
| C4C | $0.054(6)$ | $0.048(5)$ | $0.036(4)$ | $-0.010(4)$ | $-0.014(4)$ | $0.011(4)$ |
| C5C | $0.052(5)$ | $0.036(4)$ | $0.024(4)$ | $-0.008(3)$ | $-0.011(4)$ | $0.007(4)$ |
| C6C | $0.088(7)$ | $0.003(3)$ | $0.030(4)$ | $0.003(3)$ | $-0.015(4)$ | $-0.007(4)$ |
| C7C | $0.093(7)$ | $0.053(5)$ | $0.088(6)$ | $-0.013(4)$ | $-0.043(5)$ | $0.014(4)$ |
| C8C | $0.117(8)$ | $0.095(7)$ | $0.079(7)$ | $-0.031(5)$ | $0.014(6)$ | $-0.006(6)$ |
| C11C | $0.064(6)$ | $0.041(4)$ | $0.057(5)$ | $0.000(4)$ | $-0.015(4)$ | $0.006(4)$ |
| C12C | $0.120(7)$ | $0.031(4)$ | $0.035(5)$ | $0.004(4)$ | $0.008(4)$ | $0.013(4)$ |
| C13C | $0.119(8)$ | $0.048(5)$ | $0.056(6)$ | $0.004(4)$ | $0.009(5)$ | $0.022(5)$ |
| C14C | $0.122(8)$ | $0.083(6)$ | $0.028(5)$ | $0.015(4)$ | $-0.021(5)$ | $0.026(6)$ |
| C15C | $0.163(10)$ | $0.084(7)$ | $0.033(5)$ | $-0.013(5)$ | $-0.014(5)$ | $0.030(6)$ |
| C16C | $0.155(9)$ | $0.070(6)$ | $0.039(5)$ | $-0.013(5)$ | $-0.006(5)$ | $0.011(6)$ |
| C17C | $0.115(7)$ | $0.042(4)$ | $0.034(5)$ | $-0.011(4)$ | $-0.006(5)$ | $0.022(4)$ |
| C19C | $0.058(6)$ | $0.079(5)$ | $0.066(6)$ | $0.003(4)$ | $0.016(4)$ | $-0.013(5)$ |
| C20C | $0.078(6)$ | $0.067(5)$ | $0.057(6)$ | $-0.011(4)$ | $0.005(5)$ | $0.012(4)$ |
| C21C | $0.093(8)$ | $0.050(5)$ | $0.073(7)$ | $-0.017(5)$ | $-0.036(6)$ | $-0.003(5)$ |
|  |  |  |  |  |  |  |
| C | 0.0 | 0.0 |  |  |  |  |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *}\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms $\left.\mathrm{T}=2^{*}\left(\mathrm{Pi}^{*} * 2\right) * \operatorname{Sumij}\left(\mathrm{~h}(\mathrm{i})^{*} \mathrm{~h}(\mathrm{j})\right)^{*} \mathrm{U}(\mathrm{i}, \mathrm{j}) * \operatorname{Astar}(\mathrm{i})^{*} \operatorname{Astar}(\mathrm{j})\right)$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances ( $\AA$ ) for: 4.6c

| C11A | - C17A | $1.750(7)$ | C5A | -C6A | $1.557(10)$ |
| :--- | :--- | :---: | :--- | :--- | ---: |
| C11B | -C17B | $1.737(7)$ | C5A | -C11A | $1.545(9)$ |
| C11C | -C17C | $1.766(7)$ | C11A | -C12A | $1.510(9)$ |
| O1A | -C2A | $1.433(10)$ | C11A | -C19A | $1.485(10)$ |
| O1A | - C6A | $1.268(10)$ | C12A | -C13A | $1.405(10)$ |
| O3A | - C4A | $1.337(9)$ | C12A | -C17A | $1.360(11)$ |
| O3A | - C2A | $1.500(10)$ | C13A | -C14A | $1.377(11)$ |
| O9A | -C4A | $1.192(8)$ | C14A | -C15A | $1.330(13)$ |
| O10A | -C6A | $1.155(9)$ | C15A | -C16A | $1.389(13)$ |
| O1B | -C6B | $1.295(11)$ | C16A | -C17A | $1.381(11)$ |


| O1B | -C2B | 1.453(10) | C20A | -C21A | 1.536(11) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O3B | -C2B | 1.431(10) | C7A | -H7B | 0.9800 |
| O3B | -C4B | 1.307(10) | C7A | -H7C | 0.9800 |
| O9B | -C4B | 1.220 (9) | C7A | -H7A | 0.9800 |
| O10B | -C6B | 1.231(9) | C8A | -H8B | 0.9800 |
| O1C | -C6C | 1.316(10) | C8A | -H8C | 0.9800 |
| O1C | -C2C | 1.411(10) | C8A | -H8A | 0.9800 |
| O3C | -C2C | 1.465(10) | C11A | -H11A | 1.0000 |
| O3C | -C4C | 1.325(9) | C13A | -H13A | 0.9500 |
| O9C | -C4C | 1.212(9) | C14A | -H14A | 0.9500 |
| O10C | -C6C | 1.180(9) | C15A | -H15A | 0.9500 |
| N1A | -C21A | 1.146(12) | C16A | -H16A | 0.9500 |
| N1B | -C21B | 1.144(11) | C19A | -H19A | 0.9800 |
| N1C | -C21C | 1.185(12) | C19A | -H19B | 0.9800 |
| C2A | -C8A | $1.415(14)$ | C19A | -H19C | 0.9800 |
| C2A | -C7A | 1.534(13) | C20A | -H20A | 0.9900 |
| C4A | -C5A | 1.444(10) | C20A | -H20B | 0.9900 |
| C5A | -C20A | 1.588(9) | C2B | -C7B | 1.475(11) |
| C2B | -C8B | 1.528(11) | C20B | -H20C | 0.9900 |
| C4B | -C5B | 1.484 (9) | C20B | -H20D | 0.9900 |
| C5B | -C20B | 1.525(9) | C2C | -C7C | 1.540(12) |
| C5B | -C6B | 1.543(10) | C2C | -C8C | 1.468(12) |
| C5B | -C11B | $1.601(9)$ | C4C | -C5C | $1.456(10)$ |
| C11B | -C19B | 1.544(10) | C5C | -C6C | 1.530(10) |
| C11B | -C12B | 1.523(9) | C5C | -C11C | 1.582(9) |
| C12B | -C17B | 1.383(10) | C5C | -C20C | 1.568(10) |
| C12B | -C13B | $1.385(9)$ | C11C | -C12C | 1.532(9) |
| C13B | -C14B | 1.369(11) | C11C | -C19C | 1.482(10) |
| C14B | -C15B | 1.362(12) | C12C | -C13C | 1.426(9) |
| C15B | -C16B | 1.362(13) | C12C | -C17C | $1.380(10)$ |
| C16B | -C17B | 1.380(12) | C13C | -C14C | 1.427(10) |
| C20B | -C21B | 1.442(10) | C14C | -C15C | 1.331(13) |
| C7B | -H7D | 0.9800 | C15C | -C16C | 1.404(13) |
| C7B | -H7E | 0.9800 | C16C | -C17C | 1.312(11) |
| C7B | -H7F | 0.9800 | C20C | -C21C | 1.484(12) |
| C8B | -H8D | 0.9800 | C7C | -H7G | 0.9800 |
| C8B | -H8E | 0.9800 | C7C | -H7H | 0.9800 |
| C8B | -H8F | 0.9800 | C7C | -H7I | 0.9800 |
| C11B | -H11B | 1.0000 | C8C | -H8G | 0.9800 |
| C13B | -H13B | 0.9500 | C8C | -H8H | 0.9800 |
| C14B | -H14B | 0.9500 | C8C | -H8I | 0.9800 |
| C15B | -H15B | 0.9500 | C11C | -H11C | 1.0000 |
| C16B | -H16B | 0.9500 | C13C | -H13C | 0.9500 |
| C19B | -H19D | 0.9800 | C14C | -H14C | 0.9500 |
| C19B | -H19E | 0.9800 | C15C | -H15C | 0.9500 |
| C19B | -H19F | 0.9800 | C16C | -H16C | 0.9500 |
| C19C | -H19G | 0.9800 | C20C | -H20E | 0.9900 |
| C19C | -H19H | 0.9800 | C20C | -H20F | 0.9900 |
| C19C | -H19I | 0.9800 |  |  |  |

Table S6-Bond Angles ( ${ }^{\circ}$ ) for: 4.6c

| C2A | -O1A | -C6A | 126.5(6) | C11A | -C12A | -C13A | 118.3(7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2A | -O3A | -C4A | 122.3(6) | C11A | -C12A | -C17A | 126.8(7) |
| C2B | -O1B | -C6B | 119.6(6) | C12A | -C13A | -C14A | 122.7(7) |
| C2B | -O3B | -C4B | 124.6(6) | C13A | -C14A | -C15A | 119.1(8) |
| C2C | -O1C | -C6C | 124.1(6) | C14A | -C15A | -C16A | 121.9(8) |
| C2C | -O3C | -C4C | 122.8(6) | C15A | -C16A | -C17A | 117.1(7) |
| O1A | -C2A | -O3A | 108.6(6) | C12A | -C17A | -C16A | 124.3(7) |
| O1A | -C2A | -C7A | 106.1(7) | Cl1A | -C17A | -C16A | 115.4(6) |
| C7A | -C2A | -C8A | 117.5(7) | C11A | -C17A | -C12A | 120.2(6) |
| O3A | -C2A | -C8A | 107.7(8) | C5A | -C20A | -C21A | 109.0(6) |
| O1A | -C2A | -C8A | 113.5(8) | N1A | -C21A | -C20A | 172.3(8) |
| O3A | -C2A | -C7A | 102.7(6) | C2A | -C7A | -H7A | 109.00 |
| O9A | -C4A | -C5A | 125.9(7) | H7B | -C7A | -H7C | 109.00 |
| O3A | -C4A | -C5A | 119.0(6) | H7A | -C7A | -H7C | 110.00 |
| O3A | -C4A | -O9A | 115.1(7) | C2A | -C7A | -H7B | 109.00 |
| C6A | -C5A | -C20A | 107.5(5) | C2A | -C7A | -H7C | 109.00 |
| C4A | -C5A | -C20A | 111.9(5) | H7A | -C7A | -H7B | 109.00 |
| C6A | -C5A | -C11A | 106.5(5) | C2A | -C8A | -H8C | 110.00 |
| C4A | -C5A | -C11A | 109.0(5) | C2A | -C8A | -H8B | 109.00 |
| C4A | -C5A | -C6A | 113.5(6) | H8B | -C8A | -H8C | 109.00 |
| C11A | -C5A | -C20A | 108.1(5) | C2A | -C8A | -H8A | 109.00 |
| O1A | -C6A | -C5A | 118.9(6) | H8A | -C8A | -H8B | 109.00 |
| O10A | -C6A | -C5A | 121.1(7) | H8A | -C8A | -H8C | 109.00 |
| O1A | -C6A | -O10A | 120.0(7) | C19A | -C11A | -H11A | 105.00 |
| C5A | -C11A | -C12A | 114.6(6) | C12A | -C11A | -H11A | 105.00 |
| C12A | -C11A | -C19A | 111.2(6) | C5A | -C11A | -H11A | 105.00 |
| C5A | -C11A | -C19A | 115.8(6) | C12A | -C13A | -H13A | 119.00 |
| C13A | -C12A | -C17A | 114.9(7) | C14A | -C13A | -H13A | 119.00 |
| C15A | -C14A | -H14A | 120.00 | C6B | -C5B | -C20B | 108.0(5) |
| C13A | -C14A | -H14A | 120.00 | C4B | -C5B | -C20B | 111.4(5) |
| C16A | -C15A | -H15A | 119.00 | C6B | -C5B | -C11B | 109.2(5) |
| C14A | -C15A | -H15A | 119.00 | C11B | -C5B | -C20B | 108.5(5) |
| C17A | -C16A | -H16A | 121.00 | O1B | -C6B | -C5B | 122.4(6) |
| C15A | -C16A | -H16A | 121.00 | O10B | -C6B | -C5B | 117.1(7) |
| C11A | -C19A | -H19A | 109.00 | O1B | -C6B | -O10B | 119.5(7) |
| C11A | -C19A | -H19B | 109.00 | C12B | -C11B | -C19B | 113.7(6) |
| H19B | -C19A | -H19C | 109.00 | C5B | -C11B | -C12B | 111.8(5) |
| C11A | -C19A | -H19C | 109.00 | C5B | -C11B | -C19B | 112.0(5) |
| H19A | -C19A | -H19C | 110.00 | C13B | -C12B | -C17B | 116.1(6) |
| H19A | -C19A | -H19B | 109.00 | C11B | -C12B | -C17B | 125.7(6) |
| C5A | -C20A | -H20B | 110.00 | C11B | -C12B | -C13B | 118.1(6) |
| C21A | -C20A | -H20A | 110.00 | C12B | -C13B | -C14B | 121.3(6) |
| C5A | -C20A | -H20A | 110.00 | C13B | -C14B | -C15B | 120.4(7) |
| H20A | -C20A | -H20B | 108.00 | C14B | -C15B | -C16B | 120.9(8) |
| C21A | -C20A | -H20B | 110.00 | C15B | -C16B | -C17B | 117.9(8) |
| O1B | -C2B | -O3B | 113.6(6) | Cl1B | -C17B | -C12B | 119.6(6) |
| O3B | -C2B | -C7B | 109.4(6) | C12B | -C17B | -C16B | 123.3(7) |
| O1B | -C2B | -C7B | 103.7(6) | C11B | -C17B | -C16B | 117.1(6) |
| O1B | -C2B | -C8B | 107.9(6) | C5B | -C20B | -C21B | 109.9(6) |
| C7B | -C2B | -C8B | 113.6(7) | N1B | -C21B | -C20B | 177.0(9) |
| O3B | -C2B | -C8B | 108.7(6) | C2B | -C7B | -H7F | 109.00 |
| O9B | -C4B | -C5B | 121.5(7) | C2B | -C7B | -H7D | 109.00 |
| O3B | -C4B | -O9B | 118.0(6) | C2B | -C7B | -H7E | 109.00 |


| O3B | -C4B | -C5B | 120.2(6) | H7E | -C7B | -H7F | 109.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C4B | -C5B | -C11B | 109.4(5) | H7D | -C7B | -H7F | 110.00 |
| C4B | -C5B | -C6B | 110.2(6) | H7D | -C7B | -H7E | 109.00 |
| C2B | -C8B | -H8E | 109.00 | O1C | -C2C | -O3C | 111.9(6) |
| C2B | -C8B | -H8F | 109.00 | O1C | -C2C | -C7C | 105.8(7) |
| H8D | -C8B | -H8F | 109.00 | O1C | -C2C | -C8C | 109.8(7) |
| H8E | -C8B | -H8F | 109.00 | O3C | -C2C | -C7C | 104.4(6) |
| H8D | -C8B | -H8E | 109.00 | O3C | -C2C | -C8C | 108.6(7) |
| C2B | -C8B | -H8D | 110.00 | C7C | -C2C | -C8C | 116.3(7) |
| C19B | -C11B | -H11B | 106.00 | O3C | -C4C | -O9C | 113.3(7) |
| C5B | -C11B | -H11B | 106.00 | O3C | -C4C | -C5C | 119.0(6) |
| C12B | -C11B | -H11B | 106.00 | O9C | -C4C | -C5C | 127.6(7) |
| C12B | -C13B | -H13B | 119.00 | C4C | -C5C | -C6C | 113.4(6) |
| C14B | -C13B | -H13B | 119.00 | C4C | -C5C | -C11C | 107.0(5) |
| C15B | -C14B | -H14B | 120.00 | C4C | -C5C | -C20C | 109.3(6) |
| C13B | -C14B | -H14B | 120.00 | C6C | -C5C | -C11C | 107.8(5) |
| C16B | -C15B | -H15B | 120.00 | C6C | -C5C | -C20C | 110.3(6) |
| C14B | -C15B | -H15B | 120.00 | C11C | -C5C | -C20C | 108.9(5) |
| C17B | -C16B | -H16B | 121.00 | O1C | -C6C | -O10C | 121.4(7) |
| C15B | -C16B | -H16B | 121.00 | O1C | -C6C | -C5C | 120.5(6) |
| C11B | -C19B | -H19D | 109.00 | O10C | -C6C | -C5C | 118.1(7) |
| H19D | -C19B | -H19E | 109.00 | C5C | -C11C | -C12C | 112.7(5) |
| C11B | -C19B | -H19E | 109.00 | C5C | -C11C | -C19C | 113.8(5) |
| C11B | -C19B | -H19F | 109.00 | C12C | -C11C | -C19C | 111.7(5) |
| H19E | -C19B | -H19F | 110.00 | C11C | -C12C | -C13C | 117.6(6) |
| H19D | -C19B | -H19F | 110.00 | C11C | -C12C | -C17C | 127.0(6) |
| C5B | -C20B | -H20D | 110.00 | C13C | -C12C | -C17C | 115.3(6) |
| C5B | -C20B | -H20C | 110.00 | C12C | -C13C | -C14C | 119.4(7) |
| H20C | -C20B | -H20D | 108.00 | C13C | -C14C | -C15C | 119.9(8) |
| C21B | -C20B | -H20C | 110.00 | C14C | -C15C | -C16C | 120.5(8) |
| C21B | -C20B | -H20D | 110.00 | C15C | -C16C | -C17C | 119.0(8) |
| C11C | -C17C | -C12C | 119.0(5) | C12C | -C13C | -H13C | 120.00 |
| C11C | -C17C | -C16C | 115.6(6) | C14C | -C13C | -H13C | 120.00 |
| C12C | -C17C | -C16C | 125.4(7) | C13C | -C14C | -H14C | 120.00 |
| C5C | -C20C | -C21C | 108.8(6) | C15C | -C14C | -H14C | 120.00 |
| N1C | -C21C | -C20C | 178.1(10) | C14C | -C15C | -H15C | 120.00 |
| C2C | -C7C | -H7G | 109.00 | C16C | -C15C | -H15C | 120.00 |
| C2C | -C7C | -H7H | 109.00 | C15C | -C16C | -H16C | 120.00 |
| C2C | -C7C | -H7I | 110.00 | C17C | -C16C | -H16C | 121.00 |
| H7G | -C7C | -H7H | 109.00 | C11C | -C19C | -H19G | 109.00 |
| H7G | -C7C | -H7I | 109.00 | C11C | -C19C | -H19H | 109.00 |
| H7H | -C7C | -H7I | 110.00 | C11C | -C19C | -H19I | 109.00 |
| C2C | -C8C | -H8G | 109.00 | H19G | -C19C | $-\mathrm{H} 19 \mathrm{H}$ | 109.00 |
| C2C | -C8C | -H8H | 109.00 | H19G | -C19C | -H19I | 109.00 |
| C2C | -C8C | -H8I | 110.00 | H19H | -C19C | -H19I | 110.00 |
| H8G | -C8C | -H8H | 109.00 | C5C | -C20C | -H20E | 110.00 |
| H8G | -C8C | -H8I | 109.00 | C5C | -C20C | - H 20 F | 110.00 |
| H8H | -C8C | -H8I | 109.00 | C21C | -C20C | -H20E | 110.00 |
| C5C | -C11C | -H11C | 106.00 | C21C | -C20C | -H20F | 110.00 |
| C12C | -C11C | -H11C | 106.00 | H20E | -C20C | -H20F | 108.00 |
| C19C | -C11C | -H11C | 106.00 |  |  |  |  |

Table S7-Torsion Angles ( ${ }^{\circ}$ ) for: 4.6c

| C6A | -01A | -C2A | -O3A | -29.4(11) | C5A | -C11A | -C12A | -C17A | -93.7(9) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6A | -O1A | -C2A | -C7A | -139.2(7) | C19A | -C11A | -C12A | -C13A | -49.1(9) |
| C6A | -01A | -C2A | -C8A | 90.3(9) | C13A | -C12A | -C17A | -C16A | 4.4(12) |
| C2A | -01A | -C6A | -O10A | -155.6(7) | C11A | -C12A | -C17A | -C16A | -177.3(8) |
| C2A | -01A | -C6A | -C5A | 23.3(10) | C11A | -C12A | -C13A | -C14A | -179.2(7) |
| C4A | -O3A | -C2A | -01A | 33.2(10) | C13A | -C12A | -C17A | -C11A | 179.6(6) |
| C4A | -O3A | -C2A | -C7A | 145.3(6) | C11A | -C12A | -C17A | -Cl1A | -2.2(11) |
| C4A | -O3A | -C2A | -C8A | -90.1(8) | C17A | -C12A | -C13A | -C14A | -0.7(12) |
| C2A | -O3A | -C4A | -09A | 149.7(7) | C12A | -C13A | -C14A | -C15A | -2.1(13) |
| C2A | -O3A | -C4A | -C5A | -32.2(9) | C13A | -C14A | -C15A | -C16A | 1.5(14) |
| C6B | -O1B | -C2B | -C8B | 93.7(7) | C14A | -C15A | -C16A | -C17A | 1.9(13) |
| C2B | -O1B | -C6B | -O10B | -163.1(6) | C15A | -C16A | -C17A | -C11A | 179.6(7) |
| C2B | -O1B | -C6B | -C5B | 29.1(9) | C15A | -C16A | -C17A | -C12A | -5.1(13) |
| C6B | -O1B | -C2B | -C7B | -145.5(6) | O3B | -C4B | -C5B | -C11B | -100.4(7) |
| C6B | -O1B | -C2B | -O3B | -26.8(9) | O9B | -C4B | -C5B | -C11B | 73.2(7) |
| C4B | -O3B | -C2B | -C7B | 139.7(7) | O3B | -C4B | -C5B | -C20B | 139.6(6) |
| C4B | -O3B | -C2B | -O1B | 24.4(9) | O9B | -C4B | -C5B | -C6B | -166.7(6) |
| C2B | -O3B | -C4B | -C5B | -22.9(9) | O3B | -C4B | -C5B | -C6B | 19.8(8) |
| C4B | -O3B | -C2B | -C8B | -95.7(8) | O9B | -C4B | -C5B | -C20B | -46.8(8) |
| C2B | -O3B | -C4B | -O9B | 163.3(6) | C20B | -C5B | -C11B | -C12B | 177.2(5) |
| C2C | -O1C | -C6C | -O10C | -162.8(7) | C20B | -C5B | -C11B | -C19B | 48.4 (7) |
| C6C | -O1C | -C2C | -O3C | -22.2(10) | C6B | -C5B | -C11B | -C19B | 165.8(6) |
| C2C | -O1C | -C6C | -C5C | 14.3(10) | C6B | -C5B | -C20B | -C21B | 55.1(7) |
| C6C | -O1C | -C2C | -C8C | 98.4(8) | C11B | -C5B | -C20B | -C21B | 173.4(5) |
| C6C | -O1C | -C2C | -C7C | -135.3(6) | C4B | -C5B | -C20B | -C21B | -66.1(7) |
| C4C | -O3C | -C2C | -O1C | 31.1(10) | C4B | -C5B | -C6B | -O1B | -24.0(8) |
| C4C | -O3C | -C2C | -C7C | 145.1(6) | C4B | -C5B | -C6B | -O10B | 167.8(6) |
| C4C | -O3C | -C2C | -C8C | -90.2(8) | C11B | -C5B | -C6B | -O1B | 96.2(7) |
| C2C | -O3C | -C4C | -C5C | -31.1(9) | C11B | -C5B | -C6B | -O10B | -71.9(7) |
| C2C | -O3C | -C4C | -O9C | 150.4(7) | C20B | -C5B | -C6B | -O1B | -146.0(6) |
| O3A | -C4A | -C5A | -C20A | 143.0(6) | C20B | -C5B | -C6B | -O10B | 45.9(7) |
| O9A | -C4A | -C5A | -C6A | -161.1(6) | C4B | -C5B | -C11B | -C12B | 55.5(7) |
| O9A | -C4A | -C5A | -C20A | -39.1(9) | C4B | -C5B | -C11B | -C19B | -73.4(7) |
| O9A | -C4A | -C5A | -C11A | 80.4(8) | C6B | -C5B | -C11B | -C12B | -65.3(7) |
| O3A | -C4A | -C5A | -C11A | -97.5(7) | C19B | -C11B | -C12B | -C13B | 43.5(9) |
| O3A | -C4A | -C5A | -C6A | 21.0(8) | C19B | -C11B | -C12B | -C17B | -133.7(8) |
| C20A | -C5A | -C11A | -C12A | -169.7(6) | C5B | -C11B | -C12B | -C13B | -84.5(8) |
| C20A | -C5A | -C11A | -C19A | -38.2(8) | C5B | -C11B | -C12B | -C17B | 98.3(8) |
| C4A | -C5A | -C20A | -C21A | -50.7(7) | C11B | -C12B | -C17B | -C11B | -0.5(11) |
| C6A | -C5A | -C11A | -C19A | 77.1 (7) | C11B | -C12B | -С13B | -C14B | 178.9(7) |
| C6A | -C5A | -C11A | -C12A | -54.4(8) | C17B | -C12B | -C13B | -C14B | -3.6(11) |
| C4A | -C5A | -C6A | -O10A | 162.5(6) | C13B | -C12B | -C17B | -C16B | 4.9(12) |
| C11A | -C5A | -C6A | -O1A | 103.7(7) | C11B | -C12B | -С17B | -C16B | -177.8(8) |
| C11A | -C5A | -C6A | -O10A | -77.5(7) | C13B | -C12B | -C17B | -C11B | -177.8(6) |
| C20A | -C5A | -C6A | -O1A | -140.7(6) | C12B | -C13B | -C14B | -C15B | 1.4(12) |
| C20A | -C5A | -C6A | -O10A | 38.2(8) | C13B | -C14B | -C15B | -C16B | -0.3(13) |
| C4A | -C5A | -C11A | -C19A | -160.1(6) | C14B | -C15B | -C16B | -C17B | 1.4(13) |
| C4A | -C5A | -C6A | -01A | -16.3(8) | C15B | -C16B | -C17B | -Cl1B | 178.8(7) |
| C11A | -C5A | -C20A | -C21A | -170.8(5) | C15B | -C16B | -C17B | -C12B | -3.9(13) |
| C4A | -C5A | -C11A | -C12A | 68.4(7) | O3C | -C4C | -C5C | -C6C | 19.0(8) |
| C6A | -C5A | -C20A | -C21A | 74.6 (7) | O3C | -C4C | -C5C | -C11C | -99.7(7) |
| C5A | -C11A | -C12A | -C13A | 84.5(8) | O3C | -C4C | -C5C | -C20C | 142.5(6) |
| C19A | -C11A | -C12A | -C17A | 132.6(8) | O9C | -C4C | -C5C | -C6C | -162.7(7) |


| O9C | -C4C | -C5C | -C11C | 78.6(8) |
| :---: | :---: | :---: | :---: | :---: |
| O9C | -C4C | --5C | -C20C | -39.2(9) |
| C4C | -C5C | -C6C | -O1C | -10.9(8) |
| C4C | -C5C | -C6C | -O10C | 166.3(6) |
| C11C | --55 | -C6C | -O1C | 107.3(7) |
| C11C | --5C | -C6C | -O10C | -75.5(7) |
| C20C | --55 | -C6C | -O1C | -133.8(6) |
| C20C | --55 | -C6C | -O10C | 43.4(8) |
| C4C | -C5C | -C11C | -C12C | 70.6(7) |
| C4C | -C5C | -C11C | -C19C | -160.8(6) |
| C6C | -C5C | -C11C | -C12C | -51.7(7) |
| C6C | -C5C | -C11C | -C19C | 76.9(7) |
| C20C | -C5C | -C11C | -C12C | -171.4(6) |
| C20C | -C5C | -C11C | -C19C | -42.8(8) |
| C4C | -C5C | -C20C | -C21C | -56.6(8) |
| C6C | -C5C | -C20C | -C21C | 68.7(8) |


| C11C | -C 5 C | -C 20 C | -C 21 C | $-173.1(6)$ |
| :--- | :--- | :--- | :--- | ---: |
| C5C | -C 11 C | -C 12 C | -C 13 C | $82.3(8)$ |
| C5C | -C 11 C | -C 12 C | -C 17 C | $-95.0(9)$ |
| C19C | -C 11 C | -C 12 C | -C 13 C | $-47.4(9)$ |
| C19C | -C 11 C | -C 12 C | -C 17 C | $135.4(8)$ |
| C11C | -C 12 C | -C 13 C | -C 14 C | $-176.3(7)$ |
| C17C | -C 12 C | -C 13 C | -C 14 C | $1.3(11)$ |
| C11C | -C 12 C | -C 17 C | $-\mathrm{Cl1C}$ | $-1.8(11)$ |
| C11C | -C 12 C | -C 17 C | -C 16 C | $-178.5(8)$ |
| C13C | -C 12 C | -C 17 C | $-\mathrm{Cl1C}$ | $-179.1(6)$ |
| C13C | -C 12 C | -C 17 C | -C 16 C | $4.2(12)$ |
| C12C | -C 13 C | -C 14 C | -C 15 C | $-6.1(12)$ |
| C13C | -C 14 C | -C 15 C | -C 16 C | $5.8(13)$ |
| C14C | -C 15 C | -C 16 C | -C 17 C | $-0.6(14)$ |
| C15C | -C 16 C | -C 17 C | $-\mathrm{Cl1C}$ | $178.4(7)$ |
| C15C | -C 16 C | -C 17 C | -C 12 C | $-4.7(14)$ |

Translation of Symmetry Code to Equiv.Pos

$$
\begin{aligned}
& \mathrm{a}=[2675.00]=\left[2 \_675\right]=1-x, 2-y,-z \\
& \mathrm{~b}=[2575.00]=\left[2 \_575\right]=-\mathrm{x}, 2-\mathrm{y},-\mathrm{z} \\
& \mathrm{c}=[1564.00]=\left[1 \_564\right]=\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z} \\
& \mathrm{~d}=[2684.00]=\left[2 \_684\right]=1-\mathrm{x}, 3-\mathrm{y},-1-\mathrm{z} \\
& \mathrm{e}=[2676.00]=\left[2 \_676\right]=1-x, 2-y, 1-z \\
& \mathrm{~g}=[1554.00]=\left[1 \_554\right]=\mathrm{x}, \mathrm{y},-1+\mathrm{z} \\
& \mathrm{~h}=[1655.00]=\left[1 \_655\right]=1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& \mathrm{i}=[1455.00]=\left[1 \_455\right]=-1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& j=[1563.00]=\left[1 \_563\right]=x, 1+y,-2+z \\
& \mathrm{k}=[2575.00]=\left[2 \_575\right]=-\mathrm{x}, 2-\mathrm{y},-\mathrm{z} \\
& m=[2575.00]=\left[2 \_575\right]=-x, 2-y,-z \\
& \mathrm{o}=[1556.00]=\left[1 \_556\right]=\mathrm{x}, \mathrm{y}, 1+\mathrm{z} \\
& \mathrm{p}=[2576.00]=\left[2 \_576\right]=-x, 2-y, 1-z \\
& \mathrm{q}=[2576.00]=\left[2 \_576\right]=-x, 2-y, 1-z \\
& \mathrm{r}=[1546.00]=\left[1 \_546\right]=\mathrm{x},-1+\mathrm{y}, 1+\mathrm{z} \\
& \mathrm{~s}=[2667.00]=\left[2 \_667\right]=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z} \\
& \mathrm{t}=[2567.00]=\left[2 \_567\right]=-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z} \\
& \mathrm{u}=[1556.00]=\left[1 \_556\right]=\mathrm{x}, \mathrm{y}, 1+\mathrm{z} \\
& \mathrm{v}=[2676.00]=\left[2 \_676\right]=1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{w}=[1547.00]=\left[1 \_547\right]=\mathrm{x},-1+\mathrm{y}, 2+\mathrm{z} \\
& x=[2676.00]=\left[2 \_676\right]=1-x, 2-y, 1-z
\end{aligned}
$$

## Appendix D

## Crystallographic Data for 4.10a




Table S1 - Crystal Data and Details of the Structure Determination for: 4.10a $\quad \mathbf{R}=0.04$

| Formula | $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}$ |  |  |
| :---: | :---: | :---: | :---: |
| Formula Weight | 331.18 |  |  |
| Crystal System | monoclinic |  |  |
| Space group | P21/c (No.14) |  |  |
|  | a, b, c [ A$]$ 9.337 | (3) 12.8166(4) | 12.8361(4) |
|  | $\alpha, \beta, \gamma\left[{ }^{\circ}\right] \quad 90$ | 94.9459(19) | 90 |
| $\mathrm{V}\left[\AA^{3}\right]$ | 1530.46(8) |  |  |
| Z | 4 |  |  |
| D (calc) $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$ | 1.437 |  |  |
| $\mathrm{Mu}(\mathrm{MoKa})$ [/mm ] | 0.436 |  |  |
| $F(000)$ | 688 |  |  |
| Crystal Size [mm] | $0.02 \times 0.30 \times 0.42$ |  |  |
| Temperature (K) | 200 |  |  |
| Radiation [ $¢$ ] | MoKa 0.71073 |  |  |
| Theta Min-Max [ ${ }^{\circ}$ ] | 2.3, 28.0 |  |  |
| Dataset | -12: 12 ;-16: $16 ;-16: 16$ |  |  |
| Tot., Uniq. Data, R(int) | 14399, 3687, 0.018 |  |  |
| Observed data [ $I>2.0$ sigma $(\mathrm{I})$ ] | 2771 |  |  |
| Refinement |  |  |  |
| Nref, Npar | 3687, 190 |  |  |
| R, wR2, S | 0.0401, 0.0924, 1.13 |  |  |
| $\left.\mathrm{w}={ }^{\wedge} 2^{\wedge}\left(\mathrm{FO}^{\wedge} 2^{\wedge}\right)+(0.0245 \mathrm{P})^{\wedge} 2^{\wedge}+0.7519 \mathrm{P}\right]$ WHERE $\mathrm{P}=\left(\mathrm{FO}^{\wedge} 2^{\wedge}+2 \mathrm{FC}^{\wedge} 2^{\wedge}\right) / 3^{\prime}$ |  |  |  |
| Max. and Av. Shift/Error | 0.00, 0.00 |  |  |
| Min. and Max. Resd. Dens. [e/Ang 3 ] | $-0.35,0.37$ |  |  |

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.10a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}(\mathbf{e q})\left[\mathbf{A n g}^{\wedge}\right.$ 2] |
| :--- | :---: | :---: | :---: | :---: |
| Cl5 | $0.47883(6)$ | $0.71070(4)$ | $0.18603(5)$ | $0.0565(2)$ |
| Cl17 | $0.29229(6)$ | $0.39521(4)$ | $0.41168(5)$ | $0.0608(2)$ |
| O1 | $0.34213(15)$ | $0.43273(10)$ | $0.16419(12)$ | $0.0559(5)$ |
| O3 | $0.15182(14)$ | $0.54098(11)$ | $0.09850(11)$ | $0.0485(4)$ |
| O9 | $0.17494(18)$ | $0.71129(11)$ | $0.09835(11)$ | $0.0601(6)$ |
| O10 | $0.53681(14)$ | $0.49361(12)$ | $0.24809(13)$ | $0.0558(5)$ |
| C2 | $0.2298(2)$ | $0.44753(15)$ | $0.08285(15)$ | $0.0407(6)$ |
| C4 | $0.2204(2$ | $0.62936(15)$ | $0.12950(13)$ | $0.0381(6)$ |
| C5 | $0.34497(17)$ | $0.61700(13)$ | $0.21368(13)$ | $0.0310(5)$ |
| C6 | $0.41924(18)$ | $0.51077(14)$ | $0.20958(14)$ | $0.0361(5)$ |
| C7 | $0.1271(3)$ | $0.3592(2)$ | $0.0925(2)$ | $0.0788(10)$ |
| C8 | $0.2914(3)$ | $0.4550(2)$ | $-0.02001(19)$ | $0.0815(11)$ |
| C11 | $0.28785(17)$ | $0.64050(13)$ | $0.32595(12)$ | $0.0306(5)$ |
| C12 | $0.15040(17)$ | $0.57437(13)$ | $0.33709(12)$ | $0.0306(5)$ |
| C13 | $0.0154(2)$ | $0.61962(15)$ | $0.30679(15)$ | $0.0418(6)$ |
| C14 | $-0.1131(2)$ | $0.56980(18)$ | $0.31521(17)$ | $0.0507(7)$ |
| C15 | $-0.1152(2)$ | $0.47007(18)$ | $0.35496(16)$ | $0.0508(7)$ |
| C16 | $0.0124(2)$ | $0.42203(16)$ | $0.38409(15)$ | $0.0448(7)$ |
| C17 | $0.14235(19)$ | $0.47233(14)$ | $0.37462(13)$ | $0.0360(6)$ |
| C19 | $0.2506(2)$ | $0.75779(14)$ | $0.33241(15)$ | $0.0434(6)$ |
| C20 | $0.4080(2)$ | $0.62304(17)$ | $0.41379(15)$ | $0.0482(7)$ |
|  |  |  |  |  |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3 - Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.10a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) $\left[\right.$ Ang ${ }^{\wedge}$ 2] |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
| H7A | 0.17620 | 0.29290 | 0.08230 | 0.1180 |  |
| H7B | 0.09180 | 0.36030 | 0.16220 | 0.1180 |  |
| H7C | 0.04580 | 0.36660 | 0.03940 | 0.1180 |  |
| H8A | 0.34560 | 0.39140 | -0.03230 | 0.1220 |  |
| H8B | 0.21340 | 0.46320 | -0.07560 | 0.1220 |  |
| H8C | 0.35570 | 0.51550 | -0.01990 | 0.1220 |  |
| H13A | 0.01340 | 0.68840 | 0.27900 | 0.0500 |  |
| H14A | -0.20080 | 0.60420 | 0.29360 | 0.0610 |  |
| H15A | -0.20380 | 0.43540 | 0.36200 | 0.0610 |  |
| H16A | 0.01230 | 0.35310 | 0.41130 | 0.0540 |  |
| H19A | 0.17390 | 0.77490 | 0.27810 | 0.0650 |  |
| H19B | 0.21820 | 0.77330 | 0.40140 | 0.0650 |  |
| H19C | 0.33610 | 0.79950 | 0.32180 | 0.0650 |  |
| H20A | 0.43750 | 0.54960 | 0.41450 | 0.0720 |  |
| H20B | 0.49050 | 0.66730 | 0.40170 | 0.0720 |  |
| H20C | 0.37260 | 0.64100 | 0.48120 | 0.0720 |  |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right){ }^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 4.10a

| Atom | $\mathbf{U ( 1 , 1 )}$ or $\mathbf{U} \mathbf{U ( 2 , 2 )}$ | $\mathbf{U ( 3 , 3 )}$ | $\mathbf{U ( 2 , 3 )}$ | $\mathbf{U ( 1 , 3 )}$ | $\mathbf{U ( 1 , 2 )}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Cl 5 | $0.0595(3)$ | $0.0435(3)$ | $0.0707(4)$ | $-0.0041(3)$ | $0.0303(3)$ | $-0.0173(2)$ |
| $\mathrm{Cl17}$ | $0.0544(3)$ | $0.0511(3)$ | $0.0760(4)$ | $0.0226(3)$ | $0.0009(3)$ | $0.0101(2)$ |
| O1 | $0.0582(9)$ | $0.0331(7)$ | $0.0715(10)$ | $-0.0097(7)$ | $-0.0219(7)$ | $0.0073(6)$ |
| O3 | $0.0403(7)$ | $0.0525(8)$ | $0.0507(8)$ | $-0.0153(7)$ | $-0.0081(6)$ | $0.0096(6)$ |
| O9 | $0.0889(12)$ | $0.0482(9)$ | $0.0414(8)$ | $0.0028(7)$ | $-0.0055(8)$ | $0.0287(8)$ |
| O10 | $0.0310(7)$ | $0.0565(9)$ | $0.0784(10)$ | $-0.0055(8)$ | $-0.0035(7)$ | $0.0094(6)$ |
| C2 | $0.0440(11)$ | $0.0373(10)$ | $0.0400(10)$ | $-0.0070(8)$ | $-0.0009(8)$ | $0.0000(8)$ |
| C4 | $0.0473(11)$ | $0.0403(10)$ | $0.0273(9)$ | $-0.0021(8)$ | $0.0071(8)$ | $0.0121(8)$ |
| C5 | $0.0312(8)$ | $0.0281(8)$ | $0.0344(9)$ | $-0.0011(7)$ | $0.0063(7)$ | $-0.0028(7)$ |
| C6 | $0.0305(9)$ | $0.0366(9)$ | $0.0416(10)-0.0015(8)$ | $0.0055(8)$ | $0.0018(7)$ |  |
| C7 | $0.0798(18)$ | $0.0654(16)$ | $0.0876(19)$ | $0.0007(14)-0.0132(15)-0.0294(14)$ |  |  |
| C8 | $0.097(2)$ | $0.096(2)$ | $0.0557(15)-0.0136(14)$ | $0.0305(14)$ | $0.0145(17)$ |  |
| C11 | $0.0319(9)$ | $0.0323(9)$ | $0.0276(8)-0.0029(7)$ | $0.0024(7)$ | $-0.0026(7)$ |  |
| C12 | $0.0319(9)$ | $0.0343(9)$ | $0.0258(8)-0.0037(7)$ | $0.0038(7)$ | $-0.0015(7)$ |  |
| C13 | $0.0401(10)$ | $0.0422(10)$ | $0.0436(11)$ | $-0.0017(9)$ | $0.0061(8)$ | $0.0046(8)$ |
| C14 | $0.0312(10)$ | $0.0666(14)$ | $0.0540(12)-0.0141(11)$ | $0.0014(9)$ | $0.0058(9)$ |  |
| C15 | $0.0396(11)$ | $0.0639(14)$ | $0.0504(12)-0.0155(11)$ | $0.0126(9)-0.0170(10)$ |  |  |
| C16 | $0.0496(12)$ | $0.0444(11)$ | $0.0413(11)$ | $-0.0036(9)$ | $0.0091(9)$ | $-0.0136(9)$ |
| C17 | $0.0375(10)$ | $0.0394(10)$ | $0.0310(9)$ | $-0.0005(7)$ | $0.0032(7)$ | $0.0001(7)$ |
| C19 | $0.0541(12)$ | $0.0330(9)$ | $0.0445(11)$ | $-0.0114(8)$ | $0.0118(9)$ | $-0.0034(8)$ |
| C20 | $0.0425(11)$ | $0.0608(13)$ | $0.0392(10)$ | $-0.0040(9)$ | $-0.0080(8)$ | $-0.0074(9)$ |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *}\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms $\left.\mathrm{T}=2^{*}\left(\mathrm{Pi}^{* *} 2\right) * \operatorname{Sumij}\left(\mathrm{~h}(\mathrm{i})^{*} \mathrm{~h}(\mathrm{j})\right)^{*} \mathrm{U}(\mathrm{i}, \mathrm{j}) * \operatorname{Astar}(\mathrm{i})^{*} \operatorname{Astar}(\mathrm{j})\right)$, for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances ( $\AA$ ) for: 4.10a

| C15 | -C5 | 1.7908(17) | C14 | -C15 | 1.377(3) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl17 | -C17 | 1.7460(19) | C15 | -C16 | 1.364 (3) |
| O1 | -C2 | 1.427(2) | C16 | -C17 | 1.389 (3) |
| O1 | -C6 | $1.336(2)$ | C7 | -H7A | 0.9800 |
| O3 | -C2 | $1.425(2)$ | C7 | -H7B | 0.9800 |
| O3 | -C4 | $1.345(2)$ | C7 | -H7C | 0.9800 |
| O9 | -C4 | $1.189(2)$ | C8 | -H8A | 0.9800 |
| O10 | -C6 | 1.185(2) | C8 | -H8B | 0.9800 |
| C2 | -C7 | $1.496(3)$ | C8 | -H8C | 0.9800 |
| C2 | -C8 | 1.488(3) | C13 | -H13A | 0.9500 |
| C4 | -C5 | 1.526(2) | C14 | -H14A | 0.9500 |
| C5 | -C6 | $1.531(2)$ | C15 | -H15A | 0.9500 |
| C5 | -C11 | $1.608(2)$ | C16 | -H16A | 0.9500 |
| C11 | -C12 | 1.555(2) | C19 | -H19A | 0.9800 |
| C11 | -C19 | 1.547(2) | C19 | -H19B | 0.9800 |
| C11 | -C20 | 1.537(2) | C19 | -H19C | 0.9800 |
| C12 | -C13 | 1.411(2) | C20 | -H20A | 0.9800 |
| C12 | -C17 | 1.398(2) | C20 | -H20B | 0.9800 |
| C13 | -C14 | 1.372(3) | C20 | -H20C | 0.9800 |

Table S6 - Bond Angles $\quad\left(^{\circ}\right)$ 4.10a

| C2 | -O1 | -C6 | 123.63(14) | C13 | -C12 | -C17 | 113.96(15) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | -O3 | -C4 | 120.92(15) | C12 | -C13 | -C14 | 123.61(18) |
| O1 | -C2 | -O3 | 111.15(15) | C13 | -C14 | -C15 | 120.12(18) |
| O1 | -C2 | -C7 | 105.95(17) | C14 | -C15 | -C16 | 118.71(18) |
| O1 | -C2 | -C8 | 109.98(17) | C15 | -C16 | -C17 | 121.03(19) |
| O3 | -C2 | -C7 | 106.59(17) | C117 | -C17 | -C12 | 123.90(13) |
| O3 | -C2 | -C8 | 108.20(17) | C117 | -C17 | -C16 | 113.55(14) |
| C7 | -C2 | -C8 11 | 114.95(19) | C12 | -C17 | -C16 | 122.54(17) |
| O3 | -C4 | -O9 | 119.83(17) | C2 | -C7 | -H7A | 110.00 |
| O3 | -C4 | -C5 11 | 115.89(15) | C2 | -C7 | -H7B | 109.00 |
| O9 | -C4 | -C5 1 | 123.92(17) | C2 | -C7 | -H7C | 109.00 |
| Cl 5 | -C5 | -C4 1 | 107.01(12) | H7A | -C7 | -H7B | 109.00 |
| Cl 5 | -C5 | -C6 1 | 105.28(11) | H7A | -C7 | -H7C | 110.00 |
| Cl 5 | -C5 | -C11 | 110.07(11) | H7B | -C7 | -H7C | 109.00 |
| C4 | -C5 | -C6 112 | 112.82(14) | C2 | -C8 | -H8A | 110.00 |
| C4 | -C5 | -C11 | 108.89(13) | C2 | -C8 | -H8B | 109.00 |
| C6 | -C5 | -C11 | 112.56(13) | C2 | -C8 | -H8C | 109.00 |
| O1 | -C6 | -O10 | 119.20(17) | H8A | -C8 | -H8B | 109.00 |
| O1 | -C6 | -C5 | 116.87(14) | H8A | -C8 | -H8C | 109.00 |
| O10 | -C6 | -C5 | 123.84(17) | H8B | -C8 | -H8C | 109.00 |
| C5 | -C11 | -C12 | 108.70(12) | C12 | -C13 | -H13A | 118.00 |
| C5 | -C11 | -C19 | 108.88(13) | C14 | -C13 | -H13A | 118.00 |
| C5 | -C11 | -C20 | 110.66(13) | C13 | -C14 | -H14A | 120.00 |
| C12 | -C11 | -C19 | 109.49(13) | C15 | -C14 | -H14A | 120.00 |
| C12 | -C11 | -C20 | 114.16(14) | C14 | -C15 | -H15A | 121.00 |
| C19 | -C11 | -C20 | 104.80(14) | C16 | -C15 | -H15A | 121.00 |
| C11 | -C12 | -C13 | 118.38(15) | C15 | -C16 | -H16A | 119.00 |
| C11 | -C12 | -C17 | 127.66(15) | C17 | -C16 | -H16A | 120.00 |
| C11 | -C19 | -H19A | 109.00 | C11 | -C20 | -H20A | 109.00 |
| C11 | -C19 | -H19B | 109.00 | C11 | -C20 | -H20B | 109.00 |
| C11 | -C19 | -H19C | 109.00 | C11 | -C20 | -H20C | 109.00 |
| H19A | -C19 | -H19B | B 109.00 | H20A | -C20 | -H20B | 109.00 |
| H19A | -C19 | - H 19 C | C 109.00 | H20A | -C20 | -H20C | 109.00 |
| H19B | -C19 | -H19C | C 109.00 | H20B | -C20 | -H20C | 109.00 |

Table S7 - Torsion Angles ( ${ }^{\circ}$ ) 4.10a

| C6 | -O1 | -C2 | -O3 | -36.1(2) | O9 | -C4 | -C5 | -C6 | -157.60(18) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6 | -O1 | -C2 | -C7 | -151.47(18) | O9 | -C4 | -C5 | -C11 | 76.7(2) |
| C6 | -O1 | -C2 | -C8 | 83.7(2) | Cl 5 | -C5 | -C6 | -O1 | -139.61(14) |
| C2 | -O1 | -C6 | -O10 | -154.40(18) | Cl 5 | -C5 | -C6 | -O10 | 43.9(2) |
| C2 | -O1 | -C6 | -C5 | 29.0(2) | C4 | -C5 | -C6 | -O1 | -23.3(2) |
| C4 | -O3 | -C2 | -O1 | 42.4(2) | C4 | -C5 | -C6 | -O10 | 160.29(18) |
| C4 | -O3 | -C2 | -C7 | 157.38(17) | C11 | -C5 | -C6 | -O1 | 100.47(18) |
| C4 | -O3 | -C2 | -C8 | -78.5(2) | C11 | -C5 | -C6 | -O10 | -76.0(2) |
| C2 | -O3 | -C4 | -O9 | 145.24(18) | Cl 5 | -C5 | -C11 | -C12 | 167.77(11) |
| C2 | -O3 | -C4 | -C5 | -41.4(2) | Cl 5 | -C5 | -C11 | -C19 | 48.56(15) |
| O3 | -C4 | -C5 | --Cl5 | 144.62(13) | Cl 5 | -C5 | -C11 | -C20 | -66.12(16) |
| O3 | -C4 | -C5 | -C6 | 29.3(2) | C4 | -C5 | -C11 | -C12 | 50.76(17) |
| O3 | -C4 | -C5 | -C11 | -96.44(17) | C4 | -C5 | -C11 | -C19 | -68.45(17) |
| O9 | -C4 | -C5 | -Cl5 | -42.3(2) | C4 | -C5 | -C11 | -C20 | 176.88(15) |


| C6 | -C 5 | -C 11 | -C 12 | $-75.12(16)$ |
| :--- | :--- | :--- | :--- | :---: |
| C6 | -C 5 | -C 11 | -C 19 | $165.67(14)$ |
| C6 | -C 5 | -C 11 | -C 20 | $51.00(19)$ |
| C5 | -C 11 | -C 12 | -C 13 | $-92.41(17)$ |
| C5 | -C 11 | -C 12 | -C 17 | $87.68(19)$ |
| C19 | -C 11 | -C 12 | -C 13 | $26.4(2)$ |
| C19 | -C 11 | -C 12 | -C 17 | $-153.49(16)$ |
| C20 | -C 11 | -C 12 | -C 13 | $143.54(16)$ |
| C20 | -C 11 | -C 12 | -C 17 | $-36.4(2)$ |
| C11 | -C 12 | -C 13 | -C 14 | $-178.50(18)$ |


| C 17 | -C 12 | -C 13 | -C 14 | $1.4(3)$ |
| :---: | :---: | :---: | :---: | :---: |
| C 11 | -C 12 | -C 17 | -C 117 | $-3.3(2)$ |
| C 11 | -C 12 | -C 17 | -C 16 | $177.93(16)$ |
| C 13 | -C 12 | -C 17 | -C 17 | $176.83(13)$ |
| C 13 | -C 12 | -C 17 | -C 16 | $-2.0(2)$ |
| C 12 | -C 13 | -C 14 | -C 15 | $0.0(3)$ |
| C 13 | -C 14 | -C 15 | -C 16 | $-0.9(3)$ |
| C 14 | -C 15 | -C 16 | -C 17 | $0.3(3)$ |
| C 15 | -C 16 | -C 17 | -C 17 | $-177.73(16)$ |
| C 15 | -C 16 | -C 17 | -C 12 | $1.2(3)$ |

Table S8 - Contact Distances(Å) 4.10a

| Cl 5 | .O9 2, | 2.9611(17) | O9 | . $\mathrm{Cl} 5 \quad 2$ | $2.9611(17)$ | C7 | .C4 | 3.592(3) | C19 | .C4 | 3.074(3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl 5 | .O10 2 | $2.9317(16)$ | O10 | . $\mathrm{Cl17} 3$ | 3.4698(16) | C8 | .C4 | $3.056(3)$ | C19 | .C13 | 2.818(3) |
| Cl 5 | .C19 | 3.021(2) | O10 | .C11 | 3.217(2) | C8 | .C6 | $3.165(3)$ | C19 | . 09 | 3.085(2) |
| Cl 5 | .C20 | 3.253(2) | O 10 | . $\mathrm{Cl} 5 \quad 2$ | 2.9317(16) | C11 | .O10 | 3.217(2) | C20 . | .Cl17_d | 3.439(2) |
| Cl 5 | .Cl17_a | a 3.4921(8) | O10 | 0 . C 20 | 3.027(3) | C11 | .Cl17 | $3.3299(17)$ | C20 | .O10 | 3.027 (3) |
| Cl17 | .C11 | $3.3299(17)$ | O1 | .H8A | 2.5800 | C11 | . 09 | 3.153(2) | C20 | .C6 | 3.000(3) |
| Cl17 | . C 20 | 3.113(2) | O1 | . H 8 C | 2.6000 | C11 | .O3 | 3.335(2) | C20 | .C117 | 3.113(2) |
| Cl17 | .C6 3. | 3.2953(19) | O1 | .H7A | 2.5400 | C12 | .C15 | 2.844(3) | C20 | .C17 | 3.150 (3) |
| C117 | .O1 | $3.2856(17)$ | O1 | .H7B | 2.5100 | C12 | .O3 | 3.094(2) | C20 | . Cl 5 | 3.253(2) |
| Cl17 | .O10 | 3.4698(16) | O3 | . H 7 C | 2.5300 | C12 | .C6 | 3.218(2) | C4 | .H8C | 2.8000 |
| C117 | .C20_d | d 3.439(2) | O3 | .H8B | 2.5600 | C12 | .C4 | 2.885(2) | C4 . | . H 19 A | 2.7300 |
| C117 | .Cl5_c | 3.4921(8) | O3 | .H7C_e | e 2.7200 | C13 | .C16 | 2.721 (3) | C4 . | .H13A | 2.9400 |
| Cl 5 | .H19C | 2.5500 | O3 | . H 7 B | 2.5300 | C13 | .C4 | 3.100 (3) | C5 . | . H 19 C | 2.7200 |
| Cl 5 | .H8A_b | b 2.9800 | O3 | . H 8 C | 2.5600 | C13 | .C19 | 2.818(3) | C5 | .H19A | 2.7500 |
| Cl 5 | .H20B | 2.8200 | O9 | .H7C_e | 2.7800 | C13 | .O9 | 3.383(2) | C5 .H | . H 20 A | 2.7800 |
| Cl17 | .H20A | 2.4000 | O9 . | H19B_g | 2.6000 | C13 | . O 3 | 3.221 (2) | C5 . | . H 20 B | 2.7400 |
| Cl17 | .H16A | - 2.6700 | O9 | .H13A | A 2.8900 | C6 | . H 20 A | 2.6700 | H7B . | .H13A_i | 2.5500 |
| Cl17 | .H20B | B_d 3.1100 | 0 O 9 | .H19A | A 2.4500 | C6 | . H 8 C | 2.9500 | H7C | .O3 | 2.5300 |
| O1 | . $\mathrm{Cl17} 3$ | $3.2856(17)$ | O9 | .H16A | _f 2.5200 | C7 | .H8B | 2.7200 | H7C | .C8 | 2.7300 |
| O1 | .C4 | 2.785(2) | O10 | .H14A_h | h 2.8500 | C7 | .H8A | 2.7300 | H7C | .H8B | 2.5600 |
| O3 | .C13 | 3.221 (2) | O10 | .H15A_h | h 2.8200 | C7 | .H13A_i | i 3.1000 | H7C | . O 3 _e | 2.7200 |
| O3 | .C6 | $2.794(2)$ | O10 | .H20A | 2.5100 | C8 | .H7A | 2.7300 | H7C | .O9_e | 2.7800 |
| O3 | .C11 | 3.335(2) | C2 | .C5 | 2.895(3) | C8 | .H7C | 2.7300 | H8A | . O 1 | 2.5800 |
| O3 | .C12 | $3.094(2)$ | C4 | . O 1 | 2.785(2) | C11 | .H13A | 2.6500 | H8A | .C7 | 2.7300 |
| O9 | .C19 | 3.085(2) | C4 | .C7 | 3.592(3) | C12 | .H20A | 2.8000 | H8A | . H 7 A | 2.5800 |
| O9 | .C11 | 3.153(2) | C4 | .C8 | $3.056(3)$ | C12 | . H 19 B | 2.7400 | H8A | .Cl5_b | 2.9800 |
| O9 | .C16_f | f 3.236(2) | C4 | .C12 | 2.885(2) | C12 | .H19A | 2.6900 | H8B | . O 3 | 2.5600 |
| O9 | .C13 | 3.383(2) | C4 | .C13 | 3.100 (3) | C12 | . H 20 C | 2.7900 | H8B | .C7 | 2.7200 |
| C4 | .C19 | 3.074(3) | C13 | .C5 | 3.396 (2) | C13 | .H19B | 2.9200 | H8B | . H 7 C | 2.5600 |
| C5 | .C2 | 2.895(3) | C14 | .C17 | 2.742(3) | C13 | .H19A | 2.5300 | H8C | .O1 | 2.6000 |
| C5 | .C13 | 3.396 (2) | C15 | .C12 | 2.844(3) | C15 | .H19A | - 3.0500 | 0 H8C | C . O 3 | 2.5600 |
| C5 | .C17 | 3.458(2) | C15 | .C17_j | 3.579(3) | C17 | .H20A | 2.9300 | H8C | .C4 | 2.8000 |
| C6 | .C17 | 3.516(2) | C16 | .O9_i | 3.236 (3) | C17 | . H 7 B | 3.0800 | H8C | .C6 | 2.9500 |
| C6 | . C 20 | 3.000 (3) | C16 | .C13 | 2.721 (3) | C19 | .H20C | 2.6100 | H13A | .O9 | 2.8900 |
| C6 | . O 3 | 2.794(2) | C17 | .C15_j | 3.579(3) | C19 | .H20B | 2.6100 | H13A | A .C4 | 2.9400 |
| C6 | .C8 | 3.165(3) | C17 | .C6 | 3.516(2) | C19 | .H13A | 2.4300 | H13A | A .C11 | 2.6500 |
| C6 | .C12 | 3.218(2) | C17 | .C14 | 2.742(3) | C20 | .H19B | 2.6100 | H13A | A .C19 | 2.4300 |
| C6 | .C7 | 3.573(3) | C17 | .C5 | 3.458(2) | C20 | .H19C | 2.6100 | H13A | .H14A | 2.2900 |
| C6 | . Cl 17 | 3.2953(19) | C17 | .C20 | $3.150(3)$ | H7A | .O1 | 2.5400 | H13A | . H 19 A | 1.8700 |
| C7 | .C6 | 3.573(3) | C19 | . Cl 5 | 3.021 (2) | H7A | .C8 | 2.7300 | H13A | .C7_f | 3.1000 |


| H7A | .H8A | 2.5800 | H13A | .H7B_f | 2.5500 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H7B | .O1 | 2.5100 | H14A | .O10_k | 2.8500 |
| H7B | .O3 | 2.5300 | H14A | .H13A | 2.2900 |
| H7B | .C17 | 3.0800 | H14A | H15A | 2.3400 |
| H15A | .O10_k | 2.8200 | H19C | .Cl5 | 2.5500 |
| H15A | .H14A | 2.3400 | H19C | .C5 | 2.7200 |
| H15A | .H16A | 2.3200 | H19C | .C20 | 2.6100 |
| H16A | .Cl17 | 2.6700 | H19C .H20B | 2.4000 |  |
| H16A | H15A | 2.3200 | H20A | .Cl17 | 2.4000 |
| H16A | .O9_i | 2.5200 | H20A | .O10 | 2.5100 |
| H19A | .O9 | 2.4500 | H20A | .C5 | 2.7800 |


| H19A | .C4 | 2.7300 | H20A .C6 | 2.6700 |
| :---: | :---: | :---: | :---: | :---: |
| H19A | .C5 | 2.7500 | H20A .C12 | 2.8000 |
| H19A | .C12 | 2.6900 | H20A .C17 | 2.9300 |
| H19A | .C13 | 2.5300 | H20B . Cl 5 | 2.8200 |
| H19A | .H13A | 1.8700 | H20B .C5 | 2.7400 |
| H19A | .C15_f | 3.0500 | H20B .C19 | 2.6100 |
| H19B | .C12 | 2.7400 | H20B . H 19 C | 2.4000 |
| H19B | .C13 | 2.9200 | H20B .Cl17_d | 3.1100 |
| H19B | . C 20 | 2.6100 | H20C .C12 | 2.7900 |
| H19B | .H20C | 2.4000 | H20C . C 19 | 2.6100 |
| H19B | .O9_1 | 2.6000 | H20C .H19B | 2.4000 |

Translation of Symmetry Code to Equiv.Pos
$\mathrm{a}=[2655.00]=\left[2 \_655\right]=1-x, 1 / 2+y, 1 / 2-z$
$\mathrm{b}=[3665.00]=\left[3 \_665\right]=1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$
c $=[2645.00]=\left[2 \_645\right]=1-x,-1 / 2+y, 1 / 2-z$
$\mathrm{d}=[3666.00]=\left[3 \_666\right]=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$
$e=[3565.00]=[3-565]=-x, 1-y,-z$
$\mathrm{f}=[2555.00]=\left[2 \_555\right]=-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$
$\mathrm{g}=[4564.00]=\left[4 \_575\right]=x, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z}$
$\mathrm{h}=[1655.00]=\left[1 \_655\right]=1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
$\mathrm{i}=[2545.00]=\left[2 \_545\right]=-x,-1 / 2+y, 1 / 2-z$
$j=[3566.00]=\left[3 \_566\right]=-x, 1-y, 1-z$
$\mathrm{k}=[1455.00]=\left[1 \_455\right]=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
$1=[4565.00]=\left[4 \_576\right]=x, 3 / 2-y, 1 / 2+z$

## Appendix E

Crystallographic Data for 4.14a


Table S1-Crystal Data and Details of the Structure Determination for: 4.14a $\quad \mathbf{R}=\mathbf{0 . 0 3}$

## Crystal Data

| Formula | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Cl} \mathrm{O}_{4}$ |  |
| :---: | :---: | :---: |
| Formula Weight |  | 336.80 |
| Crystal System | orthorhombic |  |
| Space group | Pca21 | (No. 29) |
| a, b, c [Å] 12.7415(2) | 14.6484(3) | $9.1996(2)$ |
| $\mathrm{V}\left[\AA^{3}\right]$ | 1717.04(6) |  |
| Z | 4 |  |
| D (calc) $\left[\mathrm{g} / \mathrm{cm}^{* *} 3\right]$ |  | 1.303 |
| $\mathrm{Mu}(\mathrm{MoKa})$ [/mm ] |  | 0.240 |
| $\mathrm{F}(000)$ | 712 |  |
| Crystal Size [mm] | $0.04 \times 0.24 \times 0.42$ |  |

Data Collection


Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.14a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}(\mathrm{eq})\left[\AA^{\mathbf{2}}\right]$ |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C15 | $0.63703(6)$ | $0.30785(6)$ | $0.19944(8)$ | $0.0670(3)$ |
| O1 | $0.36915(13)$ | $0.34817(13)$ | $0.3658(2)$ | $0.0547(6)$ |
| O3 | $0.49643(15)$ | $0.41379(13)$ | $0.5200(2)$ | $0.0600(7)$ |
| O9 | $0.66409(16)$ | $0.38746(14)$ | $0.4944(3)$ | $0.0749(8)$ |
| O10 | $0.41263(17)$ | $0.26552(16)$ | $0.1780(2)$ | $0.0718(8)$ |
| C2 | $0.3971(2)$ | $0.42639(16)$ | $0.4506(3)$ | $0.0510(8)$ |
| C4 | $0.5767(2)$ | $0.37010(17)$ | $0.4587(3)$ | $0.0484(8)$ |
| C5 | $0.55012(18)$ | $0.29361(16)$ | $0.3504(2)$ | $0.0406(7)$ |
| C6 | $0.4393(2)$ | $0.30272(18)$ | $0.2867(3)$ | $0.0451(8)$ |
| C7 | $0.3175(3)$ | $0.4338(2)$ | $0.5703(4)$ | $0.0760(11)$ |
| C8 | $0.4030(3)$ | $0.5086(2)$ | $0.3535(4)$ | $0.0812(14)$ |
| C11 | $0.56448(19)$ | $0.19613(16)$ | $0.4286(2)$ | $0.0400(7)$ |
| C12 | $0.49906(19)$ | $0.20038(14)$ | $0.5690(3)$ | $0.0409(7)$ |
| C13 | $0.5412(2)$ | $0.23113(18)$ | $0.6997(3)$ | $0.0524(8)$ |
| C14 | $0.4807(3)$ | $0.23910(19)$ | $0.8238(3)$ | $0.0663(12)$ |
| C15 | $0.3757(3)$ | $0.2168(2)$ | $0.8198(3)$ | $0.0662(11)$ |
| C16 | $0.3332(2)$ | $0.18502(19)$ | $0.6950(4)$ | $0.0614(10)$ |
| C17 | $0.3935(2)$ | $0.17597(17)$ | $0.5698(3)$ | $0.0481(8)$ |
| C18 | $0.5296(2)$ | $0.11822(17)$ | $0.3273(3)$ | $0.0533(8)$ |
| C19 | $0.5491(3)$ | $0.0241(2)$ | $0.3952(4)$ | $0.0734(11)$ |
| C20 | $0.6632(3)$ | $0.0103(2)$ | $0.4347(4)$ | $0.0838(15)$ |
| C21 | $0.7015(3)$ | $0.0876(2)$ | $0.5305(4)$ | $0.0750(11)$ |
| C22 | $0.6822(2)$ | $0.17959(19)$ | $0.4606(4)$ | $0.0560(9)$ |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3-Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.14a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}($ iso $)\left[\AA^{2}\right]$ |
| :--- | ---: | ---: | :--- | :--- |
| H7A | 0.24900 | 0.44230 | 0.52900 | 0.1140 |
| H7B | 0.31820 | 0.37880 | 0.62710 | 0.1140 |
| H7C | 0.33440 | 0.48480 | 0.63130 | 0.1140 |
| H8A | 0.33650 | 0.51750 | 0.30650 | 0.1220 |
| H8B | 0.41980 | 0.56150 | 0.41050 | 0.1220 |
| H8C | 0.45640 | 0.49930 | 0.28140 | 0.1220 |
| H13A | 0.61190 | 0.24670 | 0.70370 | 0.0630 |
| H14A | 0.51080 | 0.25950 | 0.90990 | 0.0790 |
| H15A | 0.33440 | 0.22350 | 0.90240 | 0.0800 |
| H16A | 0.26260 | 0.16900 | 0.69280 | 0.0740 |
| H17A | 0.36280 | 0.15330 | 0.48550 | 0.0580 |
| H18A | 0.45540 | 0.12480 | 0.30620 | 0.0640 |
| H18B | 0.56770 | 0.12260 | 0.23630 | 0.0640 |
| H19A | 0.50640 | 0.01780 | 0.48200 | 0.0880 |
| H19B | 0.52780 | -0.02290 | 0.32710 | 0.0880 |
| H20A | 0.70520 | 0.00780 | 0.34680 | 0.1000 |
| H20B | 0.67130 | -0.04730 | 0.48550 | 0.1000 |
| H21A | 0.66560 | 0.08500 | 0.62330 | 0.0900 |
| H21B | 0.77610 | 0.08020 | 0.54840 | 0.0900 |


| H22A | 0.72140 | 0.18330 | 0.37050 | 0.0670 |
| :--- | :--- | :--- | :--- | :--- |
| H22B | 0.70770 | 0.22720 | 0.52480 | 0.0670 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms

## Table S4-(An)isotropic Displacement Parameters for: 4.14a

| Atom | $\mathbf{U}(1,1)$ or $\mathbf{U} \mathbf{U}(2,2)$ | $\mathrm{U}(3,3)$ | $\mathrm{U}(2,3)$ | $\mathbf{U}(1,3)$ | $\mathbf{U}(1,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl 5 | 0.0585(4) 0.0846(5) 0 | .0578(4) | 0.0065(4) | 0.0253(3) | 0.0050(3) |
| O1 | 0.0422(9) 0.0598(11) | 0.0620(12) | -0.0087(9) | -0.0012 | (8) 0.0077(8) |
| O3 | 0.0659(12) 0.0589(11) | $0.0552(1$ | ) -0.0180 | ) -0.007 | ) 0.0129(9) |
| O9 | 0.0571(12) 0.0640(12) | 0.1035(1) | -0.0157 | 3) -0.015 | 1)-0.0183(10) |
| O10 | 0.0652(13) 0.1033(1) | 0.0470 | )-0.0192 | 11) -0.01 | (9) 0.0066(11) |
| C2 | 0.0556(14) 0.0435(13) | 0.0539(1) | ) $0.0007($ | (2) 0.0025 | 2) $0.0104(12)$ |
| C4 | 0.0473(14) 0.0436(13) | $0.0542(1$ | 0.0037 | ) -0.0015 | 11)-0.0079(11) |
| C5 | $0.0356(11) 0.0502(13)$ | 0.0361(1) | -0.0057 | ) 0.0062 | )-0.0010(10) |
| C6 | 0.0440(13) 0.0529(15) | 0.0385(1) | 0.0011 | ) -0.0014 | 10) 0.0010(11) |
| C7 | 0.088(2) 0.0609(18) | 0.079(2) | .0032(16) | 0.0306(18) | 0.0200(17) |
| C8 | 0.108(3) 0.0625(19) | 0.073(2) | 0197(17) | .0052(1) | 0.0020(19) |
| C11 | 0.0380(11) 0.0429(12) | 0.0391(1 | 2) -0.0081 | 9) -0.0042 | (9) 0.0002(9) |
| C12 | 0.0472(13) 0.0375(11) | ) $0.0381(11$ | ) -0.0017 | ) -0.001 | (9)-0.0004(10) |
| C13 | 0.0649(16) 0.0498(14) | 0.0425 (1 | -0.0039 | ) -0.004 | 2)-0.0073(12) |
| C14 | $0.110(3) 0.0535(16) 0.0$ | $0.0353(13)$ | -0.0020(12) | 0.0030 | )-0.0027(17) |
| C15 | 0.088(2) 0.0564(17) 0.0 | 0.0541 (18) | 0.0116(1 | ) 0.0265 | 0.0102(16) |
| C16 | 0.0569(15) 0.0578(16) | 0.0695(1) | 0.0178 | 4) 0.0160 | 7) $0.0042(12)$ |
| C17 | 0.0459(13) 0.0487(14) | 0.0498(1 | ) 0.0055(1) | )-0.0005 | 1)-0.0011(11) |
| C18 | 0.0579(15) 0.0529(15) | 0.0492(14) | ) $-0.0164(1$ | 2)-0.0060(1 | 11) 0.0011(12) |
| C19 | 0.094(2) 0.0463(15) | 0.080(2)-0.0000000 | 0.0188(15) | -0.0132(18) | ) 0.0026(15) |
| C20 | 0.102(3) 0.0583(19) | 0.091(3)-0.0 | -0.0140(17) | $-0.017(2)$ | 0.0280(18) |
| C21 | 0.0690(19) 0.072(2) | 0.084(2)-0.0 | 0.0110(17) | -0.0222(17) | ) 0.0261(16) |
| C22 | 0.0398(13) 0.0638(17) | 0.0643(16) | ) $-0.0120(1$ | 4)-0.0053( | 12) 0.0081(12) |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *}\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms
$\mathrm{T}=2^{*}\left(\mathrm{Pi}^{*} * 2\right) * \operatorname{Sumij}(\mathrm{~h}(\mathrm{i}) * \mathrm{~h}(\mathrm{j}) * \mathrm{U}(\mathrm{i}, \mathrm{j}) *$ Astar(i)$* \operatorname{Astar}(\mathrm{j}))$, for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances ( $\AA$ ) for: 4.14a

| C15 | -C5 | 1.788(2) | C20 | -C21 | 1.516(5) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | -C2 | 1.431(3) | C21 | -C22 | 1.513(4) |
| O1 | -C6 | 1.331(3) | C7 | -H7A | 0.9600 |
| O3 | -C2 | 1.430(3) | C7 | -H7B | 0.9600 |
| O3 | -C4 | 1.332(3) | C7 | -H7C | 0.9600 |
| O9 | -C4 | 1.188(3) | C8 | -H8A | 0.9600 |
| O10 | -C6 | 1.188(3) | C8 | -H8B | 0.9600 |
| C2 | -C7 | 1.501(5) | C8 | -H8C | 0.9600 |
| C2 | -C8 | 1.501(4) | C13 | -H13A | 0.9300 |
| C4 | -C5 | 1.537(3) | C14 | -H14A | 0.9300 |
| C5 | -C6 | 1.535(3) | C15 | -H15A | 0.9300 |
| C5 | -C11 | $1.609(3)$ | C16 | -H16A | 0.9300 |


| C11 | -C12 | $1.539(3)$ | C17 | -H17A | 0.9300 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C11 | -C18 | $1.539(3)$ | C18 | -H18A | 0.9700 |
| C11 | -C22 | $1.548(4)$ | C18 | -H18B | 0.9700 |
| C12 | -C13 | $1.392(4)$ | C19 | -H19A | 0.9700 |
| C12 | -C17 | $1.392(3)$ | C19 | -H19B | 0.9700 |
| C13 | -C14 | $1.383(4)$ | C20 | - H20A | 0.9700 |
| C14 | -C15 | $1.378(5)$ | C20 | -H20B | 0.9700 |
| C15 | -C16 | $1.352(5)$ | C21 | -H21A | 0.9700 |
| C16 | -C17 | $1.391(4)$ | C21 | -H21B | 0.9700 |
| C18 | -C19 | $1.534(4)$ | C22 | -H22A | 0.9700 |
| C19 | -C20 | $1.512(5)$ | C22 | -H22B | 0.9700 |

Table S6 - Bond Angles ( ${ }^{\circ}$ ) for: 4.14a

| C2 | -O1 | -C6 | 122.1(2) | C13 | -C12 | -C17 | 116.8(2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | -O3 | -C4 | 123.6(2) | C12 | -C13 | -C14 | 121.7(3) |
| O1 | -C2 | -O3 | 111.12(19) | C13 | -C14 | -C15 | 120.0(3) |
| O1 | -C2 | -C7 | 106.8(2) | C14 | -C15 | -C16 | 119.6(3) |
| O1 | -C2 | -C8 | 109.3(2) | C15 | -C16 | -C17 | 121.0(3) |
| O3 | -C2 | -C7 | 106.3(2) | C12 | -C17 | -C16 | 120.9(3) |
| O3 | -C2 | -C8 | 109.0(2) | C11 | -C18 | -C19 | 111.9(2) |
| C7 | -C2 | -C8 | 114.4(2) | C18 | -C19 | -C20 | 112.0(3) |
| O3 | -C4 | -O9 | 120.0(3) | C19 | -C20 | -C21 | 110.5(3) |
| O3 | -C4 | -C5 | 117.1(2) | C20 | -C21 | -C22 | 111.5(3) |
| O9 | -C4 | -C5 | 122.8(2) | C11 | -C22 | -C21 | 112.2(2) |
| Cl 5 | -C5 | -C4 1 | 106.37(16) | C2 | -C7 | -H7A | 109.00 |
| Cl 5 | -C5 | -C6 105 | 105.25(15) | C2 | -C7 | -H7B | 109.00 |
| Cl 5 | -C5 | -C11 | 112.35(15) | C2 | -C7 | -H7C | 110.00 |
| C4 | -C5 | -C6 | 112.8(2) | H7A | -C7 | -H7B | 109.00 |
| C4 | -C5 | -C11 | 109.39(17) | H7A | -C7 | -H7C | 110.00 |
| C6 | -C5 | -C11 | 110.64(19) | H7B | -C7 | -H7C | 109.00 |
| O1 | -C6 | -O10 | 119.8(2) | C2 | -C8 | -H8A | 109.00 |
| O1 | -C6 | -C5 | 116.9(2) | C2 | -C8 | -H8B | 109.00 |
| O10 | -C6 | -C5 | 123.0(2) | C2 | -C8 | -H8C | 109.00 |
| C5 | -C11 | -C12 | 106.13(17) | H8A | -C8 | -H8B | 109.00 |
| C5 | -C11 | -C18 | 110.76(17) | H8A | -C8 | -H8C | 109.00 |
| C5 | -C11 | -C22 | 109.5(2) | H8B | -C8 | -H8C | 110.00 |
| C12 | -C11 | -C18 | 112.5(2) | C12 | -C13 | -H13A | 119.00 |
| C12 | -C11 | -C22 | 111.8(2) | C14 | -C13 | -H13A | 119.00 |
| C18 | -C11 | -C22 | 106.2(2) | C13 | -C14 | -H14A | 120.00 |
| C11 | -C12 | -C13 | 122.0(2) | C15 | -C14 | -H14A | 120.00 |
| C11 | -C12 | -C17 | 121.2(2) | C14 | -C15 | -H15A | 120.00 |
| C16 | -C15 | -H15A | 120.00 | C19 | -C20 | -H20A | 110.00 |
| C15 | -C16 | -H16A | 120.00 | C19 | -C20 | -H20B | 110.00 |
| C17 | -C16 | -H16A | 119.00 | C21 | -C20 | -H20A | 110.00 |
| C12 | -C17 | -H17A | 120.00 | C21 | -C20 | -H20B | 110.00 |
| C16 | -C17 | -H17A | 119.00 | H20A | -C20 | -H20B | 108.00 |
| C11 | -C18 | -H18A | 109.00 | C20 | -C21 | -H21A | 109.00 |
| C11 | -C18 | -H18B | 109.00 | C20 | -C21 | -H21B | 109.00 |
| C19 | -C18 | -H18A | 109.00 | C22 | -C21 | -H21A | 109.00 |
| C19 | -C18 | -H18B | 109.00 | C22 | -C21 | -H21B | 109.00 |
| H18A | -C18 | -H18B | B 108.00 | H21A | -C21 | -H21B | 108.00 |
| C18 | -C19 | -H19A | 109.00 | C11 | -C22 | -H22A | 109.00 |
| C18 | -C19 | -H19B | 109.00 | C11 | -C22 | -H22B | 109.00 |


| C20 | -C19 | -H19A | 109.00 | C21 | -C22 | -H22A | 109.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C20 | -C19 | -H19B | 109.00 | C21 | -C22 | -H22B | 109.00 |
| H19A | -C19 | -H19B | 108.00 | H22A | -C22 | -H22B | 108.00 |

Table S7-Torsion Angles ( ${ }^{\circ}$ ) for: 4.14a

| C6 | -O1 | -C2 | -O3 | -39.9(3) | C6 | -C5 | -C11 | -C12 | -71.9(2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6 | -O1 | -C2 | -C7 | -155.4(2) | C6 | -C5 | -C11 | -C18 | 50.4(2) |
| C6 | -O1 | -C2 | -C8 | 80.4(3) | C6 | -C5 | -C11 | -C22 | 167.2(2) |
| C2 | -O1 | -C6 | -O10 | -149.4(3) | C5 | -C11 | -C12 | -C13 | -89.7(3) |
| C2 | -O1 | -C6 | -C5 | 36.4(3) | C5 | -C11 | -C12 | -C17 | 88.4(2) |
| C4 | -O3 | -C2 | -O1 | 36.6(3) | C18 | -C11 | -C12 | -C13 | 149.1(2) |
| C4 | -O3 | -C2 | -C7 | 152.5(2) | C18 | -C11 | -C12 | -C17 | -32.9(3) |
| C4 | -O3 | -C2 | -C8 | -83.8(3) | C22 | -C11 | -C12 | -C13 | 29.7(3) |
| C2 | -O3 | -C4 | -O9 | 154.1(3) | C22 | -C11 | -C12 | -C17 | -152.3(2) |
| C2 | -O3 | -C4 | -C5 | -30.0(3) | C5 | -C11 | -C18 | -C19 | 176.3(2) |
| O3 | -C4 | -C5 | --C15 | 136.5(2) | C12 | -C11 | -C18 | -C19 | -65.2(3) |
| O3 | -C4 | -C5 | -C6 | 21.7(3) | C22 | -C11 | -C18 | -C19 | 57.5(3) |
| O3 | -C4 | -C5 | -C11 | -101.9(2) | C5 | -C11 | -C22 | -C21 | -178.4(2) |
| O9 | -C4 | -C5 | -Cl5 | -47.7(3) | C12 | -C11 | -C22 | -C21 | 64.3(3) |
| O9 | -C4 | -C5 | -C6 | -162.5(3) | C18 | -C11 | -C22 | -C21 | -58.7(3) |
| O9 | -C4 | -C5 | -C11 | 73.9(3) | C11 | -C12 | -C13 | -C14 | 176.7(2) |
| C15 | -C5 | -C6 | -O1 | -140.4(2) | C17 | -C12 | -C13 | -C14 | -1.4(4) |
| Cl 5 | -C5 | -C6 | -O10 | 45.6(3) | C11 | -C12 | -C17 | -C16 | -176.2(2) |
| C4 | -C5 | -C6 | -O1 | -24.9(3) | C13 | -C12 | -C17 | -C16 | 2.0(4) |
| C4 | -C5 | -C6 | -O10 | 161.2(3) | C12 | -C13 | -C14 | -C15 | -0.4(4) |
| C11 | -C5 | -C6 | -O1 | 98.0(2) | C13 | -C14 | -C15 | -C16 | 1.7(4) |
| C11 | -C5 | -C6 | -O10 | -76.0(3) | C14 | -C15 | -C16 | -C17 | -1.1(4) |
| Cl 5 | -C5 | -C11 | -C12 | 170.80(15) | C15 | -C16 | -C17 | -C12 | -0.8(4) |
| Cl 5 | -C5 | -C11 | -C18 | -66.9(2) | C11 | -C18 | -C19 | -C20 | -57.4(3) |
| Cl 5 | -C5 | -C11 | -C22 | 49.9(2) | C18 | -C19 | -C20 | -C21 | 53.8(4) |
| C4 | -C5 | -C11 | -C12 | 52.9(2) | C19 | -C20 | -C21 | -C22 | -54.6(4) |
| C4 | -C5 | -C11 | -C18 | 175.24(19) | C20 | -C21 | -C22 | -C11 | 59.0(4) |

Table S8 - Contact Distances $(\AA$ Aㅇ $)$ for: 4.14a

| C15 | .O9 | 2.974(3) | O10 | .C18 | 2.960 (3) | O3 | .C12 | 3.159(3) | O10 | .H16A_g | 2.6500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C15 | .O10 | 2.932(2) | O1 | .H8A | 2.5700 | O9 | .C22 | 3.070(3) | C2 | .C5 | 2.904(3) |
| C15 | .C18 | 3.313(3) | O1 | . H 8 C | 2.6000 | O9 | .C11 | $3.136(3)$ | C4 | .O1 | 2.798 (3) |
| Cl 5 | .C22 | 3.104(3) | O1 | . H 7 B | 2.5300 | O9 | .Cl5_d | 3.367 (2) | C4 | .C7 | 3.582(5) |
| C15 | .O9_b | $3.367(2)$ | O1 | .H7A | 2.5500 | O9 | .C13 | $3.356(4)$ | C4 | .C8 | 3.155(4) |
| C15 | .H22A | 2.6400 | O3 | . H 8 B | 2.5800 | O9 | .C7_e | 3.341 (4) | C4 | .C12 | 2.862(3) |
| C15 | .H7C_a | 3.1200 | O3 | . H 7 B | 2.5300 | O9 | .Cl5 | 2.974 (3) | C4 | .C13 | 3.044(4) |
| C15 | . H 18 B | 2.8700 | O3 | .H8C_c | 2.7900 | O10 | .C15_f | 3.404(3) | C4 | .C22 | 3.098(4) |
| C15 | .H22B_b | b 2.8100 | O3 | . H 7 C | 2.5300 | O10 | .C14_f | 3.394(3) | C5 | .C2 | 2.904(3) |
| O1 | .C4 | 2.798(3) | O3 | . H 8 C | 2.5800 | O10 | .C16_g | 3.351(3) | C5 | .C13 | 3.343(3) |
| O1 | .C11 3 | 3.389(3) | O9 | .H7A_e | 2.7400 | O10 | . Cl 5 | 2.932(2) | C5 | .C17 | 3.321 (3) |
| O1 | .C12 | 3.305(3) | O9 | . H 22 B | 2.4300 | O10 | .C11 | 3.177 (3) | C6 | .C18 | 2.961(4) |
| O1 | .C17 | 3.159(3) | O9 | .H13A | 2.9000 | C6 | .C17 | 3.251(4) | C13 | .C4 | 3.044(4) |
| O3 | .C13 3 | $3.197(3)$ | O10 | .H15A_f | 2.7900 | C6 | .C7 | 3.592(4) | C14 | .C17 | 2.748 (4) |
| O3 | .C6 2.7 | 2.790 (3) | O10 | .H18A | 2.4400 | C6 | .C12 | 3.094(4) | C14 | .O10_i | 3.394(3) |
| O3 | .C11 3 | 3.410(3) | O10 | .H14A_f | 2.7700 | C6 | .O3 | 2.790 (3) | C15 | .C12 | 2.802(4) |


| C6 | .C8 | 3.112(4) | C15 .C20_j | 3.526(4) |
| :---: | :---: | :---: | :---: | :---: |
| C7 | .O9_h | 3.341 (4) | C15 .O10_i | 3.404(3) |
| C7 | .C6 | 3.592(4) | C16 .O10_k | 3.351(3) |
| C7 | .C4 | 3.582(5) | C16 .C13 | 2.735(4) |
| C8 | .C4 | $3.155(4)$ | C17 .C18 | 2.950 (4) |
| C8 | .C6 | 3.112(4) | C17 .C6 | 3.251(4) |
| C11 | .C20 | 2.999 (4) | C17 .O1 | 3.159(3) |
| C11 | .O1 | $3.389(3)$ | C17 .C14 | 2.748(4) |
| C11 | .O9 | $3.136(3)$ | C17 .C5 | 3.321(3) |
| C11 | .O10 | 3.177(3) | C17 .C19 | 3.385(4) |
| C11 | . O 3 | 3.410(3) | C18 .C21 | 2.914(5) |
| C12 | .C6 | $3.094(4)$ | C18 .O10 | 2.960 (3) |
| C12 | . O 1 | 3.305(3) | C18 .C17 | 2.950(4) |
| C12 | .O3 | 3.159 (3) | C18 .C6 | 2.961(4) |
| C12 | .C4 | 2.862(3) | C18 . Cl 5 | 3.313(3) |
| C12 | .C15 | 2.802(4) | C19 .C22 | 2.903(4) |
| C12 | .C19 | 3.103(4) | C19 .C12 | 3.103(4) |
| C12 | .C21 | 3.084(4) | C19 .C17 | 3.385(4) |
| C13 | .O9 | $3.356(4)$ | C20 .C11 | 2.999 (4) |
| C13 | .C21 | 3.319 (4) | C20 .C15_1 | 3.526(4) |
| C13 | .C16 | 2.735 (4) | C21 .C18 | 2.914(5) |
| C13 | .O3 | 3.197(3) | C21 .C13 | 3.319(4) |
| C13 | .C5 | 3.343 (3) | C21 .C12 | 3.084(4) |
| C13 | .C22 | $2.939(4)$ | C22 . Cl 5 | 3.104(3) |
| C22 | .O9 | 3.070(3) | C15 .H7B | 3.0500 |
| C22 | .C19 | 2.903(4) | C15 .H19B_j | 3.1000 |
| C22 | .C13 | $2.939(4)$ | C15 . H 20 B _ | 2.9700 |
| C22 | .C4 | 3.098(4) | C16 .H7B | 2.9100 |
| C4 | .H8C | 2.9300 | C17 .H18A | 2.6600 |
| C4 | . H 22 B | 2.7500 | C17 .H19A | 2.8400 |
| C4 | .H13A | 2.9200 | C18 .H22A | 2.6500 |
| C5 | .H22A | 2.7200 | C18 .H20A | 2.7700 |
| C5 | .H18A | 2.7800 | C18 .H17A | 2.6300 |
| C5 | .H22B | 2.7500 | C19 .H21A | 2.7200 |
| C5 | .H18B | 2.7300 | C20 .H18B | 2.7400 |
| C6 | .H17A | 3.0100 | C20 .H22A | 2.7100 |
| C6 | .H8C | 2.8900 | C21 .H19A | 2.7200 |
| C6 | .H18A | 2.6200 | C21 .H13A | 3.0500 |
| C7 | .H8A | 2.7300 | C22 . H 13 A | 2.6000 |
| C7 | .H8B | 2.7100 | C22 . H 18 B | 2.6600 |
| C8 | .H7C | 2.7200 | C22 . H 20 A | 2.7400 |
| C8 | .H7A | 2.7200 | H7A .O1 | 2.5500 |
| C11 | .H17A | 2.7000 | H7A .C8 | 2.7200 |
| C11 | .H19A | 2.7600 | H7A .H8A | 2.5800 |
| C11 | .H13A | 2.7100 | H7A .O9_h | 2.7400 |
| C11 | . H 21 A | 2.7400 | H7B .O1 | 2.5300 |
| C12 | . H 21 A | 2.7600 | H7B .O3 | 2.5300 |
| C12 | .H19A | 2.7900 | H7B .C15 | 3.0500 |
| C12 | .H18A | 2.7200 | H7B .C16 | 2.9100 |
| C12 | . H 22 B | 2.7200 | H7C .O3 | 2.5300 |


| C13 | . H 21 A | 2.7500 | H7C .C8 | 2.7200 |
| :---: | :---: | :---: | :---: | :---: |
| C13 | .H22B | 2.6600 | H7C .H8B | 2.5600 |
| H7C | .Cl5_c | 3.1200 | H16A .O10_k | 2.6500 |
| H8A | .O1 | 2.5700 | H17A .C6 | 3.0100 |
| H8A | .C7 | 2.7300 | H17A .C11 | 2.7000 |
| H8A | . H 7 A | 2.5800 | H17A .C18 | 2.6300 |
| H8B | .O3 | 2.5800 | H17A .H16A | 2.3100 |
| H8B | .C7 | 2.7100 H | H17A .H18A | 2.0700 |
| H8B | .H7C | 2.5600 | H18A .O10 | 2.4400 |
| H8C | . O 1 | 2.6000 | H18A .C5 | 2.7800 |
| H8C | . O 3 | 2.5800 | H18A .C6 | 2.6200 |
| H8C | .C4 | 2.9300 | H18A .C12 | 2.7200 |
| H8C | .C6 | 2.8900 | H18A .C17 | 2.6600 |
| H8C | .O3_a | 2.7900 | H18A . H 17 A | 2.0700 |
| H13A | .O9 | 2.9000 | H18A .H19A | 2.3400 |
| H13A | .C4 | 2.9200 | H18A .H19B | 2.3600 |
| H13A | .C11 | 2.7100 | H18B .Cl5 | 2.8700 |
| H13A | .C21 | 3.0500 | H18B .C5 | 2.7300 |
| H13A | .C22 | 2.6000 | H18B .C20 | 2.7400 |
| H13A | .H14A | 2.3000 | H18B .C22 | 2.6600 |
| H13A | . H 21 A | 2.5700 | H18B .H19B | 2.3400 |
| H13A | . H 22 B | 2.0700 | H18B .H22A | 2.4800 |
| H14A | .O10_i | 2.7700 | H19A .C11 | 2.7600 |
| H14A | .H13A | 2.3000 | H19A .C12 | 2.7900 |
| H14A | .H15A | 2.3100 | H19A .C17 | 2.8400 |
| H15A | .O10_i | 2.7900 | H19A .C21 | 2.7200 |
| H15A | .H14A | 2.3100 | H19A .H18A | 2.3400 |
| H15A | .H16A | 2.2800 | H19A .H20B | 2.3100 |
| H16A | .H15A | 2.2800 | H19B .H18A | 2.3600 |
| H16A | .H17A | 2.3100 | H19B .H18B | 2.3400 |
| H19B | .H20A | 2.3100 | H21B .H20A | 2.3200 |
| H19B | .H20B | 2.3700 | H21B .H20B | 2.3700 |
| H19B | .C15_1 | 3.1000 | H21B .H22A | 2.3300 |
| H20A | .C18 | 2.7700 | H21B .H22B | 2.3300 |
| H20A | . C 22 | 2.7400 | H22A. Cl 5 | 2.6400 |
| H20A | . H 19 B | 2.3100 | H22A .C5 | 2.7200 |
| H20A | . H 21 B | 2.3200 | H22A .C18 | 2.6500 |
| H20A | . H 22 A | 2.5900 | H22A .C20 | 2.7100 |
| H20B | .H19A | 2.3100 | H22A .H18B | 2.4800 |
| H20B | .H19B | 2.3700 | H22A .H20A | 2.5900 |
| H20B | .H21A | 2.3200 | H22A .H21B | 2.3300 |
| H20B | . H 21 B | 2.3700 | H22B .O9 | 2.4300 |
| H20B | .C15_1 | 2.9700 | - H22B .C4 | 2.7500 |
| H21A | .C11 | 2.7400 | H22B .C5 | 2.7500 |
| H21A | .C12 | 2.7600 | H22B .C12 | 2.7200 |
| H21A | .C13 | 2.7500 | H22B .C13 | 2.6600 |
| H21A | .C19 | 2.7200 | H22B .H13A | 2.0700 |
| H21A | .H13A | 2.5700 | H22B .H21A | 2.3300 |
| H21A | .H20B | 2.3200 | H22B .H21B | 2.3300 |
| H21A | . H 22 B | 2.3300 | H22B .Cl5_d | 2.8100 |

Translation of Symmetry Code to Equiv.Pos
$\mathrm{a}=[2664.00]=\left[2 \_664\right]=1-x, 1-y,-1 / 2+z$

```
b}=[3654.00]=[ 4_654]=3/2-x,y,-1/2+
c}=[ 2665.00] = [ 2_665] =1-x,1-y,1/2+z
d}=[3655.00]=[4_655]=3/2-x,y,1/2+
e}=[4565.00]=[3_565]=1/2+x,1-y,
f}=[ 1554.00] = [ 1_554] =x,y,-1+z
g=[ 3554.00] = [ 4_554]=1/2-x,y,-1/2+z
h =[ 4465.00] = [ 3_465] =-1/2+x,1-y,z
i}=[1556.00]=[ 1_556] =x,y,1+
j =[ 2655.00] = [ 2_655] =1-x,-y,1/2+z
k}=[3555.00]=[4_555]=1/2-x,y,1/2+
l=[ 2654.00] = [ 2_654] =1-x,-y,-1/2+z
```


## Appendix F

Crystallographic Data for 4.15a



Table S1 - Crystal Data and Details of the Structure Determination for 4.15a


Min. and Max. Resd. Dens. [e/Ang $\left.{ }^{\wedge} 3\right] \quad-0.24,0.22$

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.15a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}(\mathrm{eq})\left[\AA^{\mathbf{2}}\right]$ |
| :---: | :---: | :--- | :--- | :--- | :--- |
| C11A | $0.19731(8)$ | $0.50219(8)$ | $0.89086(4)$ | $0.0618(3)$ |
| O1A | $0.14713(16)$ | $0.76992(16)$ | $0.69616(9)$ | $0.0438(6)$ |
| O2A | $-0.00543(15)$ | $0.59025(17)$ | $0.64564(10)$ | $0.0462(6)$ |
| O3A | $0.2542(2)$ | $0.7814(2)$ | $0.83805(12)$ | $0.0692(8)$ |
| O4A | $-0.0376(2)$ | $0.4422(2)$ | $0.74338(13)$ | $0.0698(8)$ |
| C1A | $0.1693(2)$ | $0.5593(2)$ | $0.78005(13)$ | $0.0368(8)$ |
| C2A | $0.1964(2)$ | $0.7117(3)$ | $0.77684(15)$ | $0.0433(9)$ |
| C3A | $0.0776(2)$ | $0.6909(2)$ | $0.61950(14)$ | $0.0386(8)$ |
| C4A | $0.0342(2)$ | $0.5223(3)$ | $0.72340(16)$ | $0.0440(9)$ |
| C5A | $0.1697(3)$ | $0.6192(3)$ | $0.57683(15)$ | $0.0480(9)$ |
| C6A | $-0.0132(3)$ | $0.7908(3)$ | $0.55902(17)$ | $0.0578(10)$ |
| C11B | $0.70507(9)$ | $0.61759(9)$ | $0.89337(4)$ | $0.0754(3)$ |
| O1B | $0.71582(16)$ | $0.76341(16)$ | $0.66379(10)$ | $0.0426(5)$ |
| O2B | $0.51465(15)$ | $0.64602(18)$ | $0.63961(10)$ | $0.0461(6)$ |
| O3B | $0.84954(19)$ | $0.7860(2)$ | $0.79751(11)$ | $0.0645(7)$ |
| O4B | $0.45521(19)$ | $0.5817(2)$ | $0.75684(13)$ | $0.0735(8)$ |
| C1B | $0.6831(2)$ | $0.6128(2)$ | $0.77758(13)$ | $0.0384(8)$ |
| C2B | $0.7587(2)$ | $0.7274(2)$ | $0.74954(14)$ | $0.0392(8)$ |
| C3B | $0.6152(2)$ | $0.6864(3)$ | $0.60024(14)$ | $0.0398(8)$ |
| C4B | $0.5413(2)$ | $0.6116(3)$ | $0.72642(15)$ | $0.0434(8)$ |
| C5B | $0.5528(3)$ | $0.7868(3)$ | $0.52788(17)$ | $0.0689(11)$ |
| C6B | $0.6740(3)$ | $0.5623(3)$ | $0.56862(17)$ | $0.0566(10)$ |

$U(e q)=1 / 3$ of the trace of the orthogonalized $U$ Tensor

Table S3-Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.15a

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) $\left[\AA^{2}\right]$ |
| :--- | :--- | :--- | :--- | :--- |
| H1AA | 0.23080 | 0.51060 | 0.75520 | 0.0440 |
| H5AA | 0.12070 | 0.56740 | 0.52600 | 0.0720 |
| H5AB | 0.22170 | 0.68700 | 0.55830 | 0.0720 |
| H5AC | 0.22520 | 0.55770 | 0.61920 | 0.0720 |
| H6AA | -0.06250 | 0.74330 | 0.50630 | 0.0870 |
| H6AB | -0.07110 | 0.82910 | 0.58930 | 0.0870 |
| H6AC | 0.03600 | 0.86380 | 0.54280 | 0.0870 |
| H1BA | 0.71980 | 0.52510 | 0.76480 | 0.0460 |
| H5BA | 0.61550 | 0.81740 | 0.49910 | 0.1030 |
| H5BB | 0.48180 | 0.74250 | 0.48500 | 0.1030 |
| H5BC | 0.52100 | 0.86480 | 0.55310 | 0.1030 |
| H6BA | 0.74030 | 0.59210 | 0.54290 | 0.0850 |
| H6BB | 0.71140 | 0.50220 | 0.61820 | 0.0850 |
| H6BC | 0.60780 | 0.51340 | 0.52470 | 0.0850 |
|  |  |  |  |  |
| The Temperature Factor has the Form of Exp(-T) Where |  |  |  |  |
| T = 8*(Pi**2)* ${ }^{*}$ (Sin(Theta)/Lambda)**2 for Isotropic Atoms |  |  |  |  |

Table S4 - (An)isotropic Displacement Parameters for 4.15a

| Atom | $\mathbf{U}(1,1)$ or $\mathbf{U} \mathbf{U}(2,2)$ | U(3,3) | $\mathbf{U}(2,3)$ | U(1,3) | $\mathbf{U}(1,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C11A | 0.0860(6) 0.0628(5) | 0.0415(3) | 0.0126(3) | 0.0262(3) | 0.0211(4) |
| O1A | $0.0541(11) 0.0314(10)$ | $0.0429(8)$ | 0.0000 | ) 0.009 | -0.0045(8) |
| O2A | 0.0355(10) 0.0494(11) | 0.0508 ( | 0.0071 | 0.007 | -0.0082(8) |
| O3A | 0.0910(16) 0.0511(13) | 0.0521 | ) -0.014 | 9)-0.000 | 10)-0.0088(11) |
| O4A | 0.0618(13) 0.0664(1) | 0.0840 (13) | ) 0.0196 | 1) 0.025 | 11)-0.0178(11) |
| C1A | 0.0430(14) 0.0347(14) | 0.0349 | ) 0.0033 | ) 0.014 | (10) 0.0076(11) |
| C2A | 0.0499(16) 0.0384(16) | $0.0411(1$ | -0.0040 | 1) 0.0126 | 11) 0.0027(12) |
| C3A | 0.0382(14) 0.0366(15) | 0.0397(1) | ) 0.0017 | ) 0.009 | (10)-0.0052(11) |
| C4A | 0.0443(16) 0.0404(16) | 0.0523(1 | 0.0042(1) | 1) 0.021 | 12) 0.0004(12) |
| C5A | 0.0507(16) 0.0539(17) | 0.0409 (1 | -0.0001 | 1) 0.015 | 1) $0.0021(12)$ |
| C6A | 0.0517(17) 0.0588(19) | $0.0587(1$ | 0.0181 | 3) 0.009 | 0.0078(14) |
| Cl1B | 0.0980(6) 0.0863(6) | 0.0378(3) | 0.0037(3) | 0.0133 | 0.0184(5) |
| O1B | 0.0442(10) 0.0397(10) | 0.0446(8) | 0.0001 | 0.0138 | -0.0112(8) |
| O2B | 0.0311(10) 0.0622(12) | 0.0451(8) | 0.0042 | 0.011 | -0.0054(8) |
| O3B | 0.0585(13) 0.0593(13) | 0.0629 | -0.0071 | 0) -0.002 | ) -0.0249 (10) |
| O4B | $0.0547(13) 0.1050(17)$ | 0.0705(11) | 0.0098 | 2) 0.033 | 0)-0.0190(12) |
| C1B | 0.0437(15) 0.0335(14 | 0.0360(1 | )-0.0004 | ) 0.008 | (10)-0.0017(11) |
| C2B | 0.0382(14) 0.0330(14) | 0.0450(1 | -0.0043 | 0) 0.0097 | 1)-0.0024(11) |
| C3B | 0.0321(13) 0.0498(16) | $0.0371(11)$ | 0.0002(10) | ) 0.0096 | 0)-0.0072(11) |
| C4B | 0.0425(15) 0.0443(16) | 0.0465(13) | 0.0003(11) | 1) 0.0178 | 1)-0.0063(12) |
| C5B | 0.071(2) 0.077(2) 0. | 0534(15) 0 | 0.0203(15) | 0.0097(1 | 0.0037(17) |
| C6B | 0.0434(16) 0.068(2) 0 | $0.0574(14)-$ | 0.0218(14) | 0.0129(1 | )-0.0033(14) |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right){ }^{*} \mathrm{U}^{*}(\mathrm{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms $\mathrm{T}=2 *\left(\mathrm{Pi}^{*} * 2\right) * \operatorname{Sumij}(\mathrm{~h}(\mathrm{i}) * \mathrm{~h}(\mathrm{j}) * \mathrm{U}(\mathrm{i}, \mathrm{j}) * \operatorname{Astar}(\mathrm{i}) * \operatorname{Astar}(\mathrm{j}))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5 - Bond Distances ( $\AA$ ) for 4.15a

| Cl1A | -C1A | 1.764(2) | C1A | -H1AA | 0.9800 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl1B | -C1B | 1.762(2) | C5A | -H5AA | 0.9600 |
| O1A | -C2A | 1.345 (3) | C5A | -H5AB | 0.9600 |
| O1A | -C3A | 1.438 (3) | C5A | -H5AC | 0.9600 |
| O2A | -C4A | 1.341 (3) | C6A | -H6AA | 0.9600 |
| O2A | -C3A | 1.458(3) | C6A | -H6AB | 0.9600 |
| O3A | -C2A | 1.190 (3) | C6A | -H6AC | 0.9600 |
| O4A | -C4A | $1.198(3)$ | C1B | -C2B | 1.513(3) |
| O1B | -C3B | 1.447(3) | C1B | -C4B | 1.504 (3) |
| O1B | -C2B | 1.335(3) | C3B | -C5B | $1.496(4)$ |
| O2B | -C4B | 1.349(3) | C3B | -C6B | $1.506(4)$ |
| O2B | -C3B | 1.446(3) | C1B | -H1BA | 0.9800 |
| O3B | -C2B | 1.190(3) | C5B | -H5BA | 0.9600 |
| O4B | -C4B | 1.193(3) | C5B | -H5BB | 0.9600 |
| C1A | -C4A | 1.511(3) | C5B | -H5BC | 0.9600 |
| C1A | -C2A | $1.506(4)$ | C6B | -H6BA | 0.9600 |
| C3A | -C6A | 1.500(4) | C6B | -H6BB | 0.9600 |
| C3A | -C5A | 1.514(4) | C6B | -H6BC | 0.9600 |

Table S6-Bond Angles ( ${ }^{\circ}$ ) for 4.15a

| C2A | -O1A | -C3A | 122.11(18) | C3A | -C6A | -H6AB | 109.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C3A | -O2A | -C4A | 121.54(18) | C3A | -C6A | -H6AC | 109.00 |
| C2B | -O1B | -C3B | 122.04(18) | H6AA | -C6A | -H6AC | 109.00 |
| C3B | -O2B | -C4B | 122.04(17) | H6AB | -C6A | -H6AC | 109.00 |
| C2A | -C1A | -C4A | 112.01(19) | H6AA | -C6A | -H6AB | 110.00 |
| Cl1A | -C1A | -C2A | 111.09(14) | C3A | -C6A | -H6AA | 109.00 |
| Cl1A | -C1A | -C4A | 111.47(16) | C11B | -C1B | -C2B | 110.91(14) |
| O1A | -C2A | -C1A | 114.43(19) | Cl1B | -C1B | -C4B | 111.25(16) |
| O1A | -C2A | -O3A | 119.5(3) | C2B | -C1B | -C4B | 113.47(18) |
| O3A | -C2A | -C1A | 126.0(2) | O1B | -C2B | -O3B | 119.6(2) |
| O1A | -C3A | -C5A | 111.34(19) | O1B | -C2B | -C1B | 115.17(18) |
| O1A | -C3A | -O2A | 109.44(16) | O3B | -C2B | -C1B | 125.3(2) |
| O2A | -C3A | -C6A | 105.5(2) | O1B | -C3B | -O2B | 110.38(17) |
| C5A | -C3A | -C6A | 113.9(2) | O1B | -C3B | -C5B | 105.7(2) |
| O1A | -C3A | -C6A | 105.79(17) | O1B | -C3B | -C6B | 109.6(2) |
| O2A | -C3A | -C5A | 110.54(18) | O2B | -C3B | -C5B | 105.8(2) |
| O4A | -C4A | -C1A | 125.7(2) | O2B | -C3B | -C6B | 111.3(2) |
| O2A | -C4A | -O4A | 119.7(2) | C5B | -C3B | -C6B | 114.0(2) |
| O2A | -C4A | -C1A | 114.6(2) | O2B | -C4B | -O4B | 120.0(2) |
| C4A | -C1A | -H1AA | 107.00 | O2B | -C4B | -C1B | 115.01(19) |
| C2A | -C1A | -H1AA | 107.00 | O4B | -C4B | -C1B | 125.0(2) |
| C11A | -C1A | -H1AA | 107.00 | Cl1B | -C1B | -H1BA | 107.00 |
| C3A | -C5A | -H5AB | 110.00 | C2B | -C1B | -H1BA | 107.00 |
| C3A | -C5A | -H5AA | 109.00 | C4B | -C1B | -H1BA | 107.00 |
| H5AA | -C5A | -H5AC | 109.00 | C3B | -C5B | -H5BA | 110.00 |
| C3A | -C5A | -H5AC | 109.00 | C3B | -C5B | -H5BB | 109.00 |
| H5AA | -C5A | -H5AB | 109.00 | C3B | -C5B | -H5BC | 109.00 |
| H5AB | -C5A | -H5AC | 109.00 | H5BA | -C5B | -H5BB | 109.00 |
| H5BA | -C5B | -H5BC | 110.00 | C3B | -C6B | - H 6 BC | 109.00 |
| H5BB | -C5B | -H5BC | 109.00 | H6BA | -C6B | -H6BB | 109.00 |
| C3B | -C6B | -H6BA | 109.00 | H6BA | -C6B | -H6BC | 110.00 |
| C3B | -C6B | -H6BB | 109.00 | H6BB | -C6B | -H6BC | 109.00 |

Table S7-Torsion Angles ( ${ }^{\circ}$ ) for 4.15a

| C3A | -O1A | -C2A | -O3A | 179.3(2) | C3B | -O2B | -C4B | -O4B | 178.4(2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C3A | -O1A | -C2A | -C1A | -1.6(3) | C3B | -O2B | -C4B | -C1B | -2.4(3) |
| C2A | -O1A | -C3A | -O2A | 39.8(3) | C4A | -C1A | -C2A | -O3A | 140.3(3) |
| C2A | -O1A | -C3A | -C5A | -82.7(2) | Cl1A | -C1A | -C4A | -O2A | 164.43(17) |
| C2A | -O1A | -C3A | -C6A | 153.0(2) | Cl1A | -C1A | -C4A | -O4A | -13.9(3) |
| C4A | -O2A | -C3A | -O1A | -39.0(3) | C2A | -C1A | -C4A | -O2A | 39.3(3) |
| C4A | -O2A | -C3A | -C5A | 84.0(2) | C2A | -C1A | -C4A | -O4A | -139.0(3) |
| C4A | -O2A | -C3A | -C6A | -152.4(2) | Cl1A | -C1A | -C2A | -O1A | -164.06(16) |
| C3A | -O2A | -C4A | -O4A | 178.6(2) | Cl1A | -C1A | -C2A | -O3A | 14.9(3) |
| C3A | -O2A | -C4A | -C1A | 0.2(3) | C4A | -C1A | -C2A | -O1A | -38.7(3) |
| C2B | -O1B | -C3B | -O2B | 40.8(3) | Cl1B | -C1B | -C2B | -O1B | -157.83(16) |
| C3B | -O1B | -C2B | -O3B | 173.2(2) | Cl1B | -C1B | -C2B | -O3B | 21.4(3) |
| C3B | -O1B | -C2B | -C1B | -7.6(3) | C4B | -C1B | -C2B | -O1B | -31.8(3) |
| C2B | -O1B | -C3B | -C5B | 154.7(2) | C4B | -C1B | -C2B | -O3B | 147.5(2) |
| C2B | -O1B | -C3B | -C6B | -82.1(2) | Cl1B | -C1B | -C4B | -O2B | 162.54(18) |
| C4B | -O2B | -C3B | -C6B | 86.8(3) | Cl1B | -C1B | -C4B | -O4B | -18.3(3) |
| C4B | -O2B | -C3B | -O1B | -35.1(3) | C2B | -C1B | -C4B | -O2B | 36.7(3) |
| C4B | -O2B | -C3B | -C5B | -148.9(2) | C2B | -C1B | -C4B | -O4B | -144.2(3) |

Table S8 - Contact Distances ( $\AA$ ) for 4.15a


| H5AA | .H6BA_h | 2.5900 | H1BA | A .C6B | H5BB | .O2B | 2.5200 | H6BB | . C 4 B | 3.0200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.9900 |  |  |  |  | H5BB | . C 6 B | 2.7300 | H6BB | . H 1 BA | 2.2800 |
| H1BA | .H6BB 2.2800 | 00 H6BA | A .C5B | 2.7200 | H5BB | .H6BC | C 2.5800 | 00 | H6BB | .O3B_m |
| H1BA | .O1B_m 2.7 | 2.7700 | H6BA | .H5BA | 2.6500 |  |  |  |  |  |
| 2.5500 |  |  |  |  | H5BB | .O3B_p | 2.8800 | H6B | BC .O2B | B 2.6300 |
| H1BA | .O3B_m 2.5 | 2.5400 H | H6BA .H | H5AA_q | H5BC | .O1B | 2.5000 | H6BC | C . C 5 B | 2.7100 |
| 2.5900 |  |  |  |  | H5BC | .O2B | 2.5200 | H6BC | C .H5BB | B 2.5800 |
| H1BA | .C2B_m | 2.9000 | H6BB | .O1B | H5BC | . $\mathrm{Cl1}$ A | _e 3.0400 | 00 | H6BC | .C6B_h |
| 2.6200 |  |  |  |  | 3.0500 |  |  |  |  |  |
| H5BA | .O1B 2.5500 | 0 H6BB | .O2B | 2.6300 | H6BA | . 01 B | 2.590 |  | H6BC | .H6BC_h |
| H5BA | .C6B 2.7000 | 0 H6BB | .O4A_o | 2.9000 | 2.2400 |  |  |  |  |  |
| H5BA | .H6BA 2.550 | 500 H6BB | BB .C1B | 2.8100 | H6BA | .O2A_O |  | 400 |  |  |
| H5BA | .Cl1A_n 2.750 | 7500 H6B | BB .C2B | 2.9400 |  |  |  |  |  |  |

Translation of Symmetry Code to Equiv.Pos

$$
\begin{aligned}
& \mathrm{a}=[2546.00]=\left[2 \_546\right]=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z} \\
& \mathrm{~b}=[2546.00]=\left[2 \_546\right]=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z} \\
& \mathrm{c}=\left[\begin{array}{ll}
3667.00]
\end{array}\right][3-667]=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z} \\
& \mathrm{~d}=[4465.00]=\left[4 \_576\right]=-1 / 2+\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z} \\
& \mathrm{e}=[2556.00]=\left[2 \_556\right]=1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 3 / 2-\mathrm{z} \\
& \mathrm{f}=[1455.00]=\left[1 \_455\right]=-1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& \mathrm{~g}=[4565.00]=[4-676]=1 / 2+\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z} \\
& \mathrm{~h}=[3666.00]=\left[3 \_666\right]=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} \\
& \mathrm{i}=[4464.00]=\left[4 \_575\right]=-1 / 2+\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z} \\
& \mathrm{j}=[3667.00]=\left[3 \_667\right]=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z} \\
& \mathrm{k}=[2656.00]=\left[2 \_656\right]=3 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 3 / 2-\mathrm{z} \\
& \mathrm{l}=[4565.00]=[4-676]=1 / 2+\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z} \\
& \mathrm{~m}=[2646.00]=\left[2 \_646\right]=3 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z} \\
& \mathrm{n}=[4564.00]=[4-675]=1 / 2+\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z} \\
& \mathrm{o}=[1655.00]=\left[1 \_655\right]=1+\mathrm{x}, \mathrm{y}, \mathrm{z} \\
& \mathrm{p}=[4464.00]=\left[4 \_575\right]=-1 / 2+\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z} \\
& \mathrm{q}=[3666.00]=\left[3 \_666\right]=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}
\end{aligned}
$$

## Appendix G

Crystallographic Data for 4.22


Table S1 - Crystal Data and Details of the Structure Determination $4.22 \quad \mathbf{R}=0.05$
Crystal Data

| Formula | C 14 H 13 Cl O 4 |  |
| :---: | :---: | :---: |
| Formula Weight |  | 280.69 |
| Crystal System |  | monoclinic |
| Space group | C2/c | (No. 15) |
| a, b, c [ A$]$ | 8.6786(16) 13.491(3) | 22.967(5) |
| $\alpha, \beta, \gamma\left[{ }^{\circ}\right]$ | $90 \quad 93.677(13)$ | 90 |
| $\mathrm{V}\left[\mathrm{A}^{3}\right]$ | 268 | .5(10) |
| Z |  | 8 |

D (calc) $\left[\mathrm{g} / \mathrm{cm}^{3}\right] \quad 1.390$
$\mathrm{Mu}(\mathrm{MoKa})[/ \mathrm{mm}] \quad 0.291$
$F(000)$
1168
Crystal Size [mm] $0.04 \times 0.13 \times 0.20$

Data Collection
Temperature (K) 200
Radiation $[\AA]$
MoKa 0.71073
Theta Min-Max [ ${ }^{\circ}$ ]
1.8, 28.0

Dataset $\quad-11: 11 ;-17: 17 ;-30: 28$
Tot., Uniq. Data, R(int) 9160, 3244, 0.024
Observed data $[I>2.0 \operatorname{sigma}(\mathrm{I})]$
2011
Refinement
Nref, Npar
3244, 172
R, wR2, S
$0.0492,0.1155,1.15$
$\left.\mathrm{w}={ }^{\wedge} 2^{\wedge}\left(\mathrm{FO}^{\wedge} 2^{\wedge}\right)+(0.0259 \mathrm{P})^{\wedge} 2^{\wedge}+2.7416 \mathrm{P}\right]$ WHERE $\mathrm{P}=\left(\mathrm{FO}^{\wedge} 2^{\wedge}+2 \mathrm{FC}^{\wedge} 2^{\wedge}\right) / 3^{\prime}$

Max. and Av. Shift/Error
Min. and Max. Resd. Dens. [e/Ang^3]
0.00, 0.00
$-0.27,0.26$

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms 4.22

| Atom | x | y z | U(eq) [Ang | $\left.\mathrm{ng}^{\wedge} 2\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| Cl13 | 0.20261 (9) | 0.60380(7) | 0.51120(3) | 0.0770(3) |
| O1 | 0.04323 (17) | $0.57566(12)$ | $0.39443(7)$ | 0.0463(5) |
| O3 | $0.17569(18)$ | 0.49925(12) | $0.32212(6)$ | 0.0455(5) |
| O9 | 0.1849(2) | $0.56909(13)$ | $0.23633(7)$ | 0.0571(6) |
| O10 | -0.05752(19) | ) $0.72413(13)$ | (3) 0.38325(7) | 0.0547(6) |
| C2 | 0.1746(3) 0 | $0.51546(17)$ | 0.38373(10) | 0.0428(8) |
| C4 | 0.1668(2) 0.5 | 0.58072(18) | 0.28714(10) | 0.0413(8) |
| C5 | $0.1291(2)$ | 0.67452(17) | 0.31614(9) | $0.0369(7)$ |
| C6 | 0.0319 (2) 0 | 0.66428(19) 0 | $0.36662(10)$ | 0.0411(7) |
| C7 | $0.1475(3) 0$ | 0.41500(19) | 0.40975(12) | 0.0608(10) |
| C8 | $0.3256(2) 0$. | $0.56380(17)$ | 0.40674(9) | $0.0382(7)$ |
| C9 | $0.4527(3) 0$ | 0.56533(18) | 0.37234(10) | 0.0455(8) |
| C10 | 0.5924(3) | 0.6058(2) 0 | $0.39142(11)$ | 0.0548(9) |
| C11 | 0.6097(3) | 0.6469 (2) 0 | 0.44588(12) 0 | 0.0598(10) |
| C12 | 0.4888(3) | $0.6459(2) 0$ | 0.48155(11) 0 | 0.0592(10) |
| C13 | 0.3483(3) | $0.60427(19)$ | 0.46230(10) | 0.0479(8) |
| C14 | 0.1812(3) | 0.76183(19) | 0.29790(10) | 0.0464(8) |
| C15 | $0.1466(4)$ | 0.8586(2) 0 | 0.32642(13) 0 | $0.0721(11)$ |
| C16 | 0.2850(3) | 0.7721 (2) 0 | 0.24835(13) 0 | $0.0681(11)$ |

Table S3-Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.22

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) [Ang ${ }^{\text {® }}$ ] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H7A | 0.14550 | 0.42100 | 0.45220 | 0.0910 |  |
| H7B | 0.04850 | 0.38860 | 0.39370 | 0.0910 |  |
| H7C | 0.23090 | 0.37000 | 0.40030 | 0.0910 |  |
| H9A | 0.44220 | 0.53740 | 0.33430 | 0.0550 |  |
| H10A | 0.67650 | 0.60520 | 0.36690 | 0.0660 |  |
| H11A | 0.70540 | 0.67600 | 0.45900 | 0.0720 |  |
| H12A | 0.50110 | 0.67390 | 0.51950 | 0.0710 |  |


| H15A | 0.19610 | 0.91260 | 0.30610 | 0.1080 |
| :---: | :---: | :---: | :---: | :---: |
| H15B | 0.03470 | 0.86920 | 0.32450 | 0.1080 |
| H15C | 0.18650 | 0.85710 | 0.36730 | 0.1080 |
| H16A | 0.30860 | 0.84230 | 0.24250 | 0.1020 |
| H16B | 0.38110 | 0.73560 | 0.25760 | 0.1020 |
| H16C | 0.23300 | 0.74520 | 0.21260 | 0.1020 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *}\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms

## Table S4 - (An)isotropic Displacement Parameters for: 4.22

```
Atom \(\mathrm{U}(1,1)\) or \(\mathrm{U} \mathbf{U}(2,2) \quad \mathrm{U}(3,3) \quad \mathrm{U}(2,3) \quad \mathrm{U}(1,3) \quad \mathrm{U}(1,2)\)
Cl13 0.0726(5) 0.1180(7) 0.0423(4) -0.0042(4) 0.0179(3) 0.0113(5)
O1 0.0399(8) 0.0516(11) 0.0485(9) 0.0081(8) 0.0109(7) 0.0051(8)
O3 0.0578(10) 0.0366(9) 0.0418(9) -0.0026(8) 0.0007(7) 0.0033(8)
O9 \(0.0745(12) 0.0597(12) 0.0378(9)-0.0064(8) 0.0084(8) 0.0134(9)\)
O10 0.0492(9) 0.0608(12) 0.0550(10) -0.0091(9) 0.0101(8) 0.0164(9)
C2 0.0471(13) 0.0408(14) 0.0409(13) 0.0044(11) 0.0056(10) 0.0047(11)
C4 0.0400(12) 0.0433(14) 0.0403(13)-0.0007(11) 0.0010(10) 0.0045(10)
C5 0.0361(11) 0.0384(13) 0.0359(11)-0.0013(10) 0.0005(9) 0.0046(10)
C6 \(0.0369(11) 0.0473(15) 0.0387(12)-0.0045(11) 0.0001(9) 0.0040(11)\)
C7 \(0.0680(17) 0.0478(17) 0.0665(17) 0.0156(14) 0.0041(14)-0.0045(13)\)
C8 \(0.0427(12) 0.0354(13) 0.0367(11) 0.0052(10) 0.0038(9) 0.0082(10)\)
C9 0.0461(13) 0.0490(15) 0.0416(13)-0.0013(11) 0.0047(10) 0.0101 (11)
C10 0.0428(14) 0.0634(18) 0.0587(16) 0.0068(14) 0.0066(12) 0.0046(12)
C11 0.0509(15) 0.0581(18) 0.0690(19) 0.0033(15)-0.0070(14)-0.0026(13)
C12 0.0675(18) 0.0617(18) 0.0467(15)-0.0072(13)-0.0088(13) 0.0054(14)
C13 0.0532(14) 0.0527(16) 0.0382(12) 0.0029(12) 0.0060(10) 0.0110(12)
C14 0.0484(13) 0.0440(15) 0.0462(13) 0.0028(12)-0.0011(11) 0.0033(11)
C15 0.099(2) 0.0419(16) 0.076(2)-0.0053(15) 0.0106(17) 0.0000(16)
C16 0.0706(18) 0.066(2) 0.0694(18) 0.0103(16) 0.0188(15)-0.0091(16)
```

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms $\mathrm{T}=2^{*}\left(\mathrm{Pi}^{*}{ }^{*} 2\right) * \operatorname{Sumij}\left(\mathrm{~h}(\mathrm{i})^{*} \mathrm{~h}(\mathrm{j}){ }^{*} \mathrm{U}(\mathrm{i}, \mathrm{j}) * \operatorname{Astar}(\mathrm{i})^{*} \operatorname{Astar}(\mathrm{j})\right)$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $h(i)$ are the Reflection Indices.

Table S5 - Bond Distances ( $\AA$ ) for: 4.22

| C113 | -C 13 | $1.744(3)$ | C 12 | -C 13 | $1.389(4)$ | C 4 | -C 5 | $1.477(3)$ | C 12 | -H 12 A | 0.9500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O 1 | -C 2 | $1.434(3)$ | C 14 | -C 15 | $1.500(4)$ | C 5 | -C 6 | $1.483(3)$ | C 15 | -H 15 A | 0.9800 |
| O 1 | -C 6 | $1.356(3)$ | C 14 | -C 16 | $1.502(4)$ | C 5 | -C 14 | $1.339(3)$ | C 15 | -H 15 B | 0.9800 |
| O 3 | -C 2 | $1.432(3)$ | C 7 | -H 7 A | 0.9800 | C 8 | -C 9 | $1.398(3)$ | C 15 | -H 15 C | 0.9800 |
| O 3 | -C 4 | $1.361(3)$ | C 7 | -H 7 B | 0.9800 | C 8 | -C 13 | $1.390(3)$ | C 16 | -H 16 A | 0.9800 |
| O 9 | -C 4 | $1.198(3)$ | C 7 | -H 7 C | 0.9800 | C 9 | -C 10 | $1.376(4)$ | C 16 | -H 16 B | 0.9800 |
| O 10 | -C 6 | $1.199(3)$ | C 9 | -H 9 A | 0.9500 |  | C 10 | -C 11 | $1.368(4)$ | C 16 | -H 16 C |
| C2 | -C 7 | $1.506(3)$ | C 10 | -H 10 A | 0.9500 |  | C 11 | -C 12 | $1.372(4)$ |  |  |
| C 2 | -C 8 | $1.527(3)$ | C 11 | -H 11 A | 0.9500 |  |  |  |  |  |  |


| Table S6-Bond Angles ( ${ }^{\circ}$ ) 4.22 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | -O1 | -C6 | 116.94(16) | C5 | -C14 | -C16 | 123.3(2) |
| C2 | -O3 | -C4 | 117.14(17) | C15 | -C14 | -C16 | 113.4(2) |
| O1 | -C2 | -O3 | 108.15(18) | C2 | -C7 | -H7A | 110.00 |
| O1 | -C2 | -C7 | 107.2(2) | C2 | -C7 | -H7B | 109.00 |
| O1 | -C2 | -C8 | 111.89(18) | C2 | -C7 | -H7C | 109.00 |
| O3 | -C2 | -C7 | 105.41(19) | H7A | -C7 | -H7B | 109.00 |
| O3 | -C2 | -C8 | 110.31(19) | H7A | -C7 | -H7C | 109.00 |
| C7 | -C2 | -C8 | 113.5(2) | H7B | -C7 | -H7C | 110.00 |
| O3 | -C4 | -O9 | 117.6(2) | C8 | -C9 | -H9A | 119.00 |
| O3 | -C4 | -C5 | 115.58(19) | C10 | -C9 | -H9A | 119.00 |
| O9 | -C4 | -C5 | 126.8(2) | C9 | -C10 | -H10A | 120.00 |
| C4 | -C5 | -C6 | 115.24(19) | C11 | -C10 | -H10A | 120.00 |
| C4 | -C5 | -C14 | 121.60(19) | C10 | -C11 | -H11A | 120.00 |
| C6 | -C5 | -C14 | 123.2(2) | C12 | -C11 | -H11A | 120.00 |
| O1 | -C6 | -O10 | 118.19(19) | C11 | -C12 | -H12A | 120.00 |
| O1 | -C6 | -C5 | 115.00(19) | C13 | -C12 | -H12A | 120.00 |
| O10 | -C6 | -C5 | 126.8(2) | C14 | -C15 | -H15A | 109.00 |
| C2 | -C8 | -C9 | 120.1(2) | C14 | -C15 | -H15B | 109.00 |
| C2 | -C8 | -C13 | 123.58(19) | C14 | -C15 | -H15C | 109.00 |
| C9 | -C8 | -C13 | 116.3(2) | H15A | -C15 | -H15B | 110.00 |
| C8 | -C9 | -C10 | 122.5(2) | H15A | -C15 | -H15C | 109.00 |
| C9 | -C10 | -C11 | 119.7(2) | H15B | -C15 | -H15C | 110.00 |
| C10 | -C11 | -C12 | 119.9(2) | C14 | -C16 | -H16A | 109.00 |
| C11 | -C12 | -C13 | 120.2(2) | C14 | -C16 | -H16B | 109.00 |
| Cl13 | -C13 | -C8 | 121.58(19) | C14 | -C16 | -H16C | 110.00 |
| C113 | -C13 | -C12 | 117.03(18) | H16A | -C16 | -H16B | 109.00 |
| C8 | -C13 | -C12 | 121.4(2) | H16A | -C16 | -H16C | 109.00 |
| C5 | -C14 | -C15 | 123.3(2) | H16B | -C16 | -H16C | 110.00 |

Table S7 - Torsion Angles ( ${ }^{\circ}$ ) for: 4.22

| C 6 | -O 1 | -C 2 | -O 3 | $-56.6(2)$ | C 4 | -C 5 | -C 6 | -O 1 | $26.3(2)$ |
| :---: | :---: | :---: | :--- | :---: | :---: | :--- | :--- | :--- | :---: |
| C 6 | -O 1 | -C 2 | -C 7 | $-169.77(19)$ | C 4 | -C 5 | -C 6 | -O 10 | $-150.7(2)$ |
| C 6 | -O 1 | -C 2 | -C 8 | $65.1(2)$ | C 14 | -C 5 | -C 6 | -O 1 | $-153.1(2)$ |
| C 2 | -O 1 | -C 6 | -O 10 | $-165.26(19)$ | C 14 | -C 5 | -C 6 | -O 10 | $29.9(3)$ |
| C 2 | -O 1 | -C 6 | -C 5 | $17.4(3)$ | C 4 | -C 5 | -C 14 | -C 15 | $-179.5(2)$ |
| C 4 | -O 3 | -C 2 | -O 1 | $52.6(2)$ | C 4 | -C 5 | -C 14 | -C 16 | $-1.9(3)$ |
| C 4 | -O 3 | -C 2 | -C 7 | $166.96(18)$ | C 6 | -C 5 | -C 14 | -C 15 | $-0.2(4)$ |
| C 4 | -O 3 | -C 2 | -C 8 | $-70.1(2)$ | C 6 | -C 5 | -C 14 | -C 16 | $177.4(2)$ |
| C 2 | -O 3 | -C 4 | -O 9 | $171.86(19)$ | C 2 | -C 8 | -C 9 | -C 10 | $-178.5(2)$ |
| C 2 | -O 3 | -C 4 | -C 5 | $-10.5(2)$ | C 13 | -C 8 | -C 9 | -C 10 | $-1.0(4)$ |
| O 1 | -C 2 | -C 8 | -C 9 | $-134.9(2)$ | C 2 | -C 8 | -C 13 | $-\mathrm{Cl13}$ | $-0.4(3)$ |
| O 1 | -C 2 | -C 8 | -C 13 | $47.9(3)$ | C 2 | -C 8 | -C 13 | -C 12 | $178.9(2)$ |
| O 3 | -C 2 | -C 8 | -C 9 | $-14.5(3)$ | C 9 | -C 8 | -C 13 | -C 113 | $-177.73(18)$ |
| O 3 | -C 2 | -C 8 | -C 13 | $168.3(2)$ | C 9 | -C 8 | -C 13 | -C 12 | $1.5(4)$ |
| C7 | -C 2 | -C 8 | -C 9 | $103.6(3)$ | C 8 | -C 9 | -C 10 | -C 11 | $-0.3(4)$ |
| C7 | -C 2 | -C 8 | -C 13 | $-73.6(3)$ | C 9 | -C 10 | -C 11 | -C 12 | $1.2(4)$ |
| O 3 | -C 4 | -C 5 | -C 6 | $-29.9(2)$ | C 10 | -C 11 | -C 12 | -C 13 | $-0.7(4)$ |
| O 3 | -C 4 | -C 5 | -C 14 | $149.5(2)$ | C 11 | -C 12 | -C 13 | $-\mathrm{Cl13}$ | $178.6(2)$ |
| O 9 | -C 4 | -C 5 | -C 6 | $147.5(2)$ | C 11 | -C 12 | -C 13 | -C 8 | $-0.7(4)$ |

Table S8 - Contact Distances( $(\AA)$ for: 4.22

| Cl13 | .O1 2. | 2.9621(19) | O9 | .H16B | 2.8400 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl13 | .C2 | 3.156(3) | O9 | . H 16 C | 00 |
| Cl13 | .C6 3 | 3.641(2) | O10 | .H10A_f | 200 |
| Cl13 | .C7 3. | 3.465(3) | O10 | .H11A_f | 00 |
| 13 | .C7_a | 3.647(3) | O10 | .H15B | 00 |
| 13 | . H 7 A | 2.8400 | O10 | .H | 2.8200 |
| 3 | .H12A | 2.75 | 1 | .H16C_d | 2.6100 |
| Cl13 | . | -b 2.940 |  | . H | 2.7400 |
|  | . $\mathrm{Cl13} 2.9$ | 2.9621(19) | O10 | .H12A_b | 2.6400 |
|  | 4 | 2.751(3) | C2 | .C113 | 3.156(3) |
|  | .C13 | 3.010(3) | C2 | .C5 | 2.663(3) |
|  | .C9 | 2.748(3) | C4 | .C9 | 3.067(3) |
|  | .C6 | 2.779(3) | C4 | . O 1 | 2.751(3) |
|  | .C14 | 2.961(3) | C4 | .C8 | 3.002(3) |
|  | .C6_d | 3.195(3) | C4 | .C4_d | 3.265(3) |
|  | .C4_d | 3.069 (3) | C4 | .C16 | 2.938(4) |
|  | .C5_d | 3.237(3) | C4 | .O9_d | 3.069(3) |
|  | .C16 | 2.881(3) | C5 | .C2 | 2.663 (3) |
| 0 | 15 | 2.903 (4) | C5 | C9 | 3.355(3) |
| 0 | .C14 | 2.986 (3) | C5 | .C8 | 3.002(3) |
|  | .H7B | 2.5200 | C5 | .O9_d | 3.237 (3) |
|  | .H7A | 2.6000 | C6 | .C15 | 2.972(4) |
|  | .H7B | 2.5300 | C6 | C13 | 3.500 (3) |
|  | . H 7 C | 2.5300 | C6 | .O3 | 2.779 (3) |
|  | .H9A | 2.3700 | C6 | .C8 | 2.980 (3) |
| O3 | .H16A_c | c 2.5900 | C6 | .O9_d | 3.195(3) |
| O9 | .H10A_e | _e 2.7700 | C6 | .Cl13 | 3.641(2) |
| O9 | .H15A_c | _c 2.5700 | C7 | .Cl13_a | 3.647 (3) |


| C7 | .C13 | $3.278(4)$ | C4 | .H16C | 2.8800 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| C7 | .C9 | $3.487(4)$ | C4 | .H9A | 2.6300 |
| C7 | .C113 | $3.465(3)$ | C4 | .H16B | 2.9100 |
| C8 | .C4 | $3.002(3)$ | C5 | .H16C | 2.7700 |
| C8 | .C11 | $2.804(3)$ | C5 | .H15C | 2.7600 |
| C8 | .C6 | $2.980(3)$ | C5 | .H16B | 2.7700 |
| C8 | .C5 | $3.002(3)$ | C5 | .H15B | 2.7600 |
| C9 | .C4 | $3.067(3)$ | C6 | .H16C_d | 3.0400 |
| C9 | .O3 | $2.748(3)$ | C6 | .H15C | 2.9300 |
| C9 | C15_h | $3.457(4)$ | C6 | .H15B | 2.9300 |
| C9 | .C5 | $3.355(3)$ | C8 | .H7C | 2.7400 |
| C9 | .C7 | $3.487(4)$ | C8 | .H7A | 2.7300 |
| C9 | .C12 | $2.733(3)$ | C9 | .H15B_h | 2.9700 |
| C10 | .C13 | $2.753(4)$ | C13 | .H7A | 3.0400 |
| C11 | .C8 | $2.804(3)$ | C15 | .H9A_g | 3.0100 |
| C12 | .C9 | $2.733(3)$ | C15 | .H16A | 2.4700 |
| C13 | .C7 | $3.278(4)$ | C16 | .H15A | 2.4700 |
| C13 | .C10 | $2.753(4)$ | C16 | .H16B_e | 2.9500 |
| C13 | .O1 | $3.010(3)$ | H7A | .C113 | 2.8400 |
| C13 | .C6 | $3.500(3)$ | H7A | .O1 | 2.6000 |
| C14 | .O10 | $2.986(3)$ | H7A | .C8 | 2.7300 |
| C14 | .O9 | $2.961(3)$ | H7A | .C13 | 3.0400 |
| C15 | .C6 | $2.972(4)$ | H7B | .O1 | 2.5200 |
| C15 | .O10 | $2.903(4)$ | H7B | .O3 | 2.5300 |
| C15 | .C9_g | $3.457(4)$ | H7C | .O3 | 2.5300 |
| C16 | .C4 | $2.938(4)$ | H7C | .C8 | 2.7400 |
| C16 | .O9 | $2.881(3)$ | H7C | .O10_h | 2.7400 |
| C2 | .H9A | 2.6700 | H9A | .O3 | 2.3700 |


| H9A | .C2 | 2.6700 | H15B .C6 | 2.9300 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H9A | .C4 | 2.6300 | H15B .C9_g | 2.9700 |
| H9A | .H10A | 2.3100 | H15B .H9A_g | 2.4200 |
| H9A | .C15_h | 3.0100 | H15C .O10 | 2.8200 |
| H9A .H15B_h | 2.4200 | H15C .C5 | 2.7600 |  |
| H10A .O10_i | 2.8200 | H15C .C6 | 2.9300 |  |
| H10A .H9A | 2.3100 | H15C .Cl13_b | 2.9400 |  |
| H10A .H11A | 2.3200 | H16A .C15 | 2.4700 |  |
| H10A .O9_e | 2.7700 | H16A .H15A | 2.0400 |  |
| H11AA .O10_i | 2.8500 | H16A .O3_j | 2.5900 |  |


| H11A | .H10A | 2.3200 | H16B .O9 | 2.8400 |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| H11A | .H12A | 2.3200 | H16B | .C4 | 2.9100 |
| H12A | .C113 | 2.7500 | H16B .C5 | 2.7700 |  |
| H12A | .H11A | 2.3200 | H16B | .C16_e | 2.9500 |
| H12A | .O10_b | 2.6400 | H16B | .H16B_e | 2.1200 |
| H15A | .C16 | 2.4700 | H16C .O9 | 2.4800 |  |
| H15A | H16A | 2.0400 | H16C .C4 | 2.8800 |  |
| H15A | .O9_j | 2.5700 | H16C .C5 | 2.7700 |  |
| H15B .O10 | 2.5400 | H16C .O10_d | 2.6100 |  |  |
| H15B | .C5 | 2.7600 | H16C | .C6_d | 3.0400 |

## Appendix H

Crystallographic Data for 4.24


Table S1 - Crystal Data and Details of the Structure Determination for: 4.24

## Crystal Data



Nref, Npar 0,0
$\mathrm{R}, \mathrm{wR} 2, \mathrm{~S} \quad 0.0000,0.0000,0.00$
$\mathrm{w}=$
Max. and Av. Shift/Error
0.00, 0.00

Min. and Max. Resd. Dens. [e/Ang^3]
$0.00,0.00$

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the nonHydrogen atoms for: 4.24

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{U}(\mathbf{e q})$ [Ang^2] |  |  |  |  |
| CL13A | 0.59039 | 0.34431 | 0.34645 | 0.0705 |
| CL13B | 0.27710 | 0.91377 | -0.08332 | 0.0664 |
| C15A | 0.60521 | 0.80247 | 0.46595 | 0.0518 |
| C15B | 0.54005 | 0.99378 | 0.31749 | 0.0468 |
| O1A | 0.55946 | 0.53497 | 0.24200 | 0.0438 |
| O1B | 0.15087 | 0.73279 | 0.18135 | 0.0488 |
| O3A | 0.80306 | 0.72291 | 0.27308 | 0.0407 |
| O3B | 0.29867 | 0.74838 | 0.05117 | 0.0490 |
| O9A | 0.82547 | 0.92724 | 0.32308 | 0.0624 |
| O9B | 0.53773 | 0.74042 | 0.09550 | 0.0536 |
| O10A | 0.32408 | 0.55139 | 0.21426 | 0.0579 |
| O10B | 0.26240 | 0.76840 | 0.36449 | 0.0624 |
| C2A | 0.73968 | 0.59437 | 0.28035 | 0.0381 |
| C2B | 0.16441 | 0.76968 | 0.08450 | 0.0414 |
| C4A | 0.74318 | 0.81345 | 0.30374 | 0.0374 |
| C4B | 0.43453 | 0.76676 | 0.12817 | 0.0380 |
| C5A | 0.56726 | 0.75917 | 0.31378 | 0.0328 |
| C5B | 0.45325 | 0.81492 | 0.25751 | 0.0333 |
| C6A | 0.47354 | 0.60674 | 0.25374 | 0.0384 |
| C6B | 0.28248 | 0.77036 | 0.27592 | 0.0411 |
| C7A | 0.78253 | 0.50719 | 0.19084 | 0.0542 |
| C7B | 0.00655 | 0.67005 | -0.01573 | 0.0655 |
| C8A | 0.81169 | 0.60443 | 0.40347 | 0.0334 |
| C8B | 0.18829 | 0.91294 | 0.11087 | 0.0351 |
| C9A | 0.95090 | 0.72034 | 0.48260 | 0.0405 |
| C9B | 0.14703 | 0.97477 | 0.20315 | 0.0488 |
| C10A | 1.02414 | 0.73142 | 0.59295 | 0.0486 |
| C10B | 0.15978 | 1.10247 | 0.22812 | 0.0617 |
| C11A | 0.96149 | 0.62723 | 0.62742 | 0.0519 |
| C11B | 0.21347 | 1.17174 | 0.16134 | 0.0630 |
| C12 | 0.82670 | 0.51029 | 0.55066 | 0.0513 |
| C12B | 0.24985 | 1.11215 | 0.06747 | 0.0571 |
| C13A | 0.75357 | 0.49889 | 0.43929 | 0.0414 |
| C13B | 0.23576 | 0.98280 | 0.04149 | 0.0416 |
|  |  |  |  |  |

$\mathrm{U}(\mathrm{eq})=1 / 3$ of the trace of the orthogonalized U Tensor

Table S3 - Hydrogen Atom Positions and Isotropic Displacement Parameters for: 4.24

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}$ (iso) $\left[\right.$ Ang $^{\wedge}$ 2] |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| H7AA | 0.74277 | 0.41848 | 0.19148 | 0.0813 |  |
| H7AB | 0.73093 | 0.50273 | 0.11500 | 0.0813 |  |
| H7AC | 0.90118 | 0.54481 | 0.20901 | 0.0813 |  |
| H7BA | 0.00921 | 0.69049 | -0.08382 | 0.0983 |  |
| H7BB | -0.00220 | 0.58101 | -0.03122 | 0.0983 |  |
| H7BC | -0.08778 | 0.67528 | 0.00409 | 0.0983 |  |
| H9A | 0.99523 | 0.79178 | 0.46023 | 0.0486 |  |
| H9B | 0.10988 | 0.92872 | 0.24917 | 0.0585 |  |
| H10A | 1.11672 | 0.81006 | 0.64452 | 0.0583 |  |


| H10B | 0.13179 | 1.14198 | 0.29070 | 0.0740 |
| :--- | :--- | :--- | :--- | :--- |
| H11A | 1.01014 | 0.63563 | 0.70272 | 0.0622 |
| H11B | 0.22518 | 1.25922 | 0.17979 | 0.0756 |
| H12A | 0.78465 | 0.43889 | 0.57351 | 0.0615 |
| H12B | 0.28412 | 1.15839 | 0.02091 | 0.0685 |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{*} * 2\right){ }^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* * 2}$ for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 4.24

| Atom | $\mathbf{U ( 1 , 1 )}$ or $\mathbf{U}$ | $\mathbf{U ( 2 , 2 )}$ | $\mathbf{U ( 3 , 3 )}$ | $\mathbf{U ( 2 , 3 )}$ | $\mathbf{U ( 1 , 3 )}$ | $\mathbf{U ( 1 , 2 )}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| CL13A | 0.0575 | 0.0471 | 0.0846 | 0.0329 | 0.0069 | 0.0023 |
| CL13B | 0.0698 | 0.0921 | 0.0473 | 0.0336 | 0.0282 | 0.0358 |
| C15A | 0.0489 | 0.0782 | 0.0382 | 0.0251 | 0.0164 | 0.0355 |
| C15B | 0.0405 | 0.0377 | 0.0627 | 0.0158 | 0.0183 | 0.0199 |
| O1A | 0.0317 | 0.0353 | 0.0596 | 0.0172 | 0.0069 | 0.0148 |
| O1B | 0.0291 | 0.0600 | 0.0659 | 0.0400 | 0.0140 | 0.0175 |
| O3A | 0.0378 | 0.0451 | 0.0577 | 0.0296 | 0.0267 | 0.0244 |
| O3B | 0.0538 | 0.0615 | 0.0385 | 0.0149 | 0.0111 | 0.0384 |
| O9A | 0.0371 | 0.0424 | 0.1142 | 0.0340 | 0.0348 | 0.0162 |
| O9B | 0.0590 | 0.0816 | 0.0506 | 0.0353 | 0.0325 | 0.0482 |
| O10A | 0.0276 | 0.0448 | 0.0907 | 0.0286 | 0.0066 | 0.0098 |
| O10B | 0.0474 | 0.1061 | 0.0672 | 0.0559 | 0.0361 | 0.0430 |
| C2A | 0.0322 | 0.0364 | 0.0496 | 0.0182 | 0.0164 | 0.0166 |
| C2B | 0.0339 | 0.0479 | 0.0449 | 0.0207 | 0.0091 | 0.0204 |
| C4A | 0.0309 | 0.0414 | 0.0460 | 0.0201 | 0.0160 | 0.0181 |
| C4B | 0.0410 | 0.0383 | 0.0408 | 0.0201 | 0.0147 | 0.0196 |
| C5A | 0.0276 | 0.0389 | 0.0354 | 0.0170 | 0.0131 | 0.0148 |
| C5B | 0.0285 | 0.0354 | 0.0390 | 0.0182 | 0.0141 | 0.0127 |
| C6A | 0.0340 | 0.0416 | 0.0430 | 0.0234 | 0.0109 | 0.0159 |
| C6B | 0.0334 | 0.0499 | 0.0536 | 0.0316 | 0.0189 | 0.0215 |
| C7A | 0.0676 | 0.0587 | 0.0510 | 0.0213 | 0.0278 | 0.0388 |
| C7B | 0.0520 | 0.0488 | 0.0717 | 0.0212 | -0.0082 | 0.0135 |
| C8A | 0.0291 | 0.0380 | 0.0408 | 0.0170 | 0.0166 | 0.0188 |
| C8B | 0.0269 | 0.0433 | 0.0389 | 0.0175 | 0.0105 | 0.0183 |
| C9A | 0.0343 | 0.0387 | 0.0540 | 0.0192 | 0.0183 | 0.0190 |
| C9B | 0.0432 | 0.0683 | 0.0511 | 0.0291 | 0.0214 | 0.0340 |
| C10A | 0.0380 | 0.0494 | 0.0507 | 0.0094 | 0.0084 | 0.0220 |
| C10B | 0.0581 | 0.0747 | 0.0579 | 0.0132 | 0.0130 | 0.0481 |
| C11A | 0.0596 | 0.0675 | 0.0417 | 0.0216 | 0.0170 | 0.0414 |
| C11B | 0.0582 | 0.0512 | 0.0730 | 0.0183 | 0.0025 | 0.0317 |
| C12 | 0.0575 | 0.0574 | 0.0583 | 0.0353 | 0.0288 | 0.0307 |
| C12B | 0.0465 | 0.0558 | 0.0697 | 0.0384 | 0.0113 | 0.0164 |
| C13A | 0.0343 | 0.0403 | 0.0525 | 0.0202 | 0.0171 | 0.0161 |
| C13B | 0.0320 | 0.0524 | 0.0409 | 0.0212 | 0.0095 | 0.0179 |
|  |  |  |  |  |  |  |

The Temperature Factor has the Form of $\operatorname{Exp}(-T)$ Where $\mathrm{T}=8^{*}\left(\mathrm{Pi}^{* *} 2\right)^{*} \mathrm{U}^{*}(\operatorname{Sin}(\text { Theta }) / \text { Lambda })^{* *} 2$ for Isotropic Atoms $\mathrm{T}=2^{*}\left(\mathrm{Pi}^{*} * 2\right) *$ Sumij $(\mathrm{h}(\mathrm{i}) * \mathrm{~h}(\mathrm{j}) * \mathrm{U}(\mathrm{i}, \mathrm{j}) *$ Astar(i)$* \operatorname{Astar}(\mathrm{j}))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and $\mathrm{h}(\mathrm{i})$ are the Reflection Indices.

Table S5-Bond Distances (£) for: 4.24

| CL13A | -C13A | 1.7365 | C8A | -C13A | 1.3860 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CL13B | -C13B | 1.7413 | C8B | -C9B | 1.3861 |
| Cl5A | -C5A | 1.7791 | C8B | -C13B | 1.3848 |
| Cl5B | -C5B | 1.7837 | C9A | -C10A | 1.3723 |
| O1A | -C2A | 1.4479 | C9B | -C10B | 1.3728 |
| O1A | -C6A | 1.3251 | C10A | -C11A | 1.3683 |
| O1B | -C2B | 1.4230 | C10B | -C11B | 1.3666 |
| O1B | -C6B | 1.3504 | C11A | -C12 | 1.3724 |
| O3A | -C2A | 1.4256 | C11B | -C12B | 1.3652 |
| O3A | -C4A | 1.3415 | C12 | -C13A | 1.3822 |
| O3B | -C2B | 1.4491 | C12B | -C13B | 1.3861 |
| O3B | -C4B | 1.3189 | C7A | -H7AA | 0.9600 |
| O9A | -C4A | 1.1805 | C7A | $-\mathrm{H} 7 \mathrm{AB}$ | 0.9600 |
| O9B | -C4B | 1.1991 | C7A | -H7AC | 0.9600 |
| O10A | -C6A | 1.2011 | C7B | -H7BA | 0.9600 |
| O10B | -C6B | 1.1800 | C7B | -H7BB | 0.9600 |
| C2A | -C7A | 1.5068 | C7B | -H7BC | 0.9600 |
| C2A | -C8A | 1.5212 | C9A | -H9A | 0.9300 |
| C2B | -C7B | 1.5091 | C9B | -H9B | 0.9300 |
| C2B | -C8B | 1.5147 | C10A | -H10A | 0.9300 |
| C4A | -C5A | 1.5480 | C10B | -H10B | 0.9300 |
| C4B | -C5B | 1.5299 | C11A | -H11A | 0.9300 |
| C5A | -C5B | 1.5588 | C11B | -H11B | 0.9300 |
| C5A | -C6A | 1.5244 | C12 | -H12A | 0.9300 |
| C5B | -C6B | 1.5460 | C12B | -H12B | 0.9300 |

Table S6 - Bond Angles ( ${ }^{\circ}$ ) for: 4.24

| C2A | -O1A | -C6A | 123.20 | Cl5B | -C5B | -C4B | 109.10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C2B | -O1B | -C6B | 123.72 | Cl5B | -C5B | -C5A | 113.04 |
| C2A | -O3A | -C4A | 124.32 | Cl5B | -C5B | -C6B | 103.81 |
| C2B | -O3B | -C4B | 122.27 | C4B | -C5B | -C5A | 105.61 |
| O1A | -C2A | -O3A | 110.08 | C4B | -C5B | -C6B | 111.83 |
| O1A | -C2A | -C7A | 105.52 | C5A | -C5B | -C6B | 113.54 |
| O1A | -C2A | -C8A | 111.01 | O1A | -C6A | -O10A | 119.73 |
| O3A | -C2A | -C7A | 105.45 | O1A | -C6A | -C5A | 119.05 |
| O3A | -C2A | -C8A | 111.01 | O10A | -C6A | -C5A | 121.18 |
| C7A | -C2A | -C8A | 113.50 | O1B | -C6B | -O10B | 120.12 |
| O1B | -C2B | -O3B | 109.12 | O1B | -C6B | -C5B | 115.10 |
| O1B | -C2B | -C7B | 106.01 | O10B | -C6B | -C5B | 124.78 |
| O1B | -C2B | -C8B | 111.46 | C2A | -C8A | -C9A | 119.45 |
| O3B | -C2B | -C7B | 105.90 | C2A | -C8A | -C13A | 123.09 |
| O3B | -C2B | -C8B | 111.97 | C9A | -C8A | -C13A | 117.26 |
| C7B | -C2B | -C8B | 112.05 | C2B | -C8B | -C9B | 118.97 |
| O3A | -C4A | -O9A | 119.73 | C2B | -C8B | -C13B | 123.49 |
| O3A | -C4A | -C5A | 116.07 | C9B | -C8B | -C13B | 117.30 |
| O9A | -C4A | -C5A | 124.18 | C8A | -C9A | -C10A | 121.37 |
| O3B | -C4B | -O9B | 119.64 | C8B | -C9B | -C10B | 121.46 |
| O3B | -C4B | -C5B | 119.11 | C9A | -C10A | -C11A | 120.26 |
| O9B | -C4B | -C5B | 121.18 | C9B | -C10B | -C11B | 120.23 |


| Cl5A | -C5A | -C4A | 104.28 | C10A | -C11A | -C12 | 119.87 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C15A | -C5A | -C5B | 113.45 | C10B | -C11B | -C12B | 119.80 |
| C15A | -C5A | -C6A | 107.88 | C11A | -C12 | -C13A | 119.84 |
| C4A | -C5A | -C5B | 113.24 | C11B | -C12B | -C13B | 120.06 |
| C4A | -C5A | -C6A | 112.19 | CL13A | -C13A | A -C8A | 122.25 |
| C5B | -C5A | -C6A | 105.83 | CL13A | -C13A | A -C12 | 116.38 |
| C8A | -C13A | -C12 | 121.35 | C8A | -C9A | -H9A | 119.00 |
| CL13B | -C13B | -C8B | 122.60 | C10A | -C9A | -H9A | 119.00 |
| CL13B | -C13B | -C12B | 116.35 | C8B | -C9B | -H9B | 119.00 |
| C8B | -C13B | -C12B | 121.05 | C10B | -C9B | -H9B | 119.00 |
| C2A | -C7A | -H7AA | 109.00 | C9A | -C10A | -H10A | 120.00 |
| C2A | -C7A | -H7AB | 109.00 | C11A | -C10A | -H10A | 120.00 |
| C2A | -C7A | -H7AC | 109.00 | C9B | -C10B | -H10B | 120.00 |
| H7AA | -C7A | -H7AB | 109.00 | C11B | -C10B | -H10B | 120.00 |
| H7AA | -C7A | -H7AC | 109.00 | C10A | -C11A | -H11A | 120.00 |
| H7AB | -C7A | -H7AC | 109.00 | C12 | -C11A | -H11A | 120.00 |
| C2B | -C7B | -H7BA | 109.00 | C10B | -C11B | -H11B | 120.00 |
| C2B | -C7B | -H7BB | 109.00 | C12B | -C11B | -H11B | 120.00 |
| C2B | -C7B | $-\mathrm{H} 7 \mathrm{BC}$ | 109.00 | C11A | -C12 | -H12A | 120.00 |
| H7BA | -C7B | -H7BB | 109.00 | C13A | -C12 | -H12A | 120.00 |
| H7BA | -C7B | -H7BC | 109.00 | C11B | -C12B | -H12B | 120.00 |
| H7BB | -C7B | -H7BC | 109.00 | C13B | -C12B | -H12B | 120.00 |

Table S7 - Torsion Angles ( ${ }^{\circ}$ ) for: 4.24

| C6A | -O1A | -C2A | -O3A | -30.13 | C7B | -C2B | -C8B | -C9B | 100.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6A | -O1A | -C2A | -C7A | -143.44 | O3B | -C2B | -C8B | -C9B | -140.92 |
| C6A | -O1A | -C2A | -C8A | 93.19 | C7B | -C2B | -C8B | -C13B | -73.88 |
| C2A | -O1A | -C6A | -C5A | -1.99 | O1B | -C2B | -C8B | -C9B | -18.38 |
| C2A | -O1A | -C6A | -O10A | 175.92 | O9A | -C4A | -C5A | -C15A | -78.66 |
| C6B | -O1B | -C2B | -C8B | -77.98 | O3A | -C4A | -C5A | -C15A | 100.01 |
| C2B | -O1B | -C6B | -C5B | -19.79 | O3A | -C4A | -C5A | -C6A | -16.47 |
| C2B | -O1B | -C6B | -O10B | 159.75 | O3A | -C4A | -C5A | -C5B | -136.20 |
| C6B | -O1B | -C2B | -O3B | 46.19 | O9A | -C4A | -C5A | -C5B | 45.12 |
| C6B | -O1B | -C2B | -C7B | 159.85 | O9A | -C4A | -C5A | -C6A | 164.85 |
| C4A | -O3A | -C2A | -C7A | 154.55 | O3B | -C4B | -C5B | -C5A | 152.16 |
| C4A | -O3A | -C2A | -O1A | 41.19 | O3B | -C4B | -C5B | -C6B | 28.20 |
| C4A | -O3A | -C2A | -C8A | -82.12 | O9B | -C4B | -C5B | -C15B | 96.98 |
| C2A | -O3A | -C4A | -O9A | 161.03 | O9B | -C4B | -C5B | -C5A | -24.80 |
| C2A | -O3A | -C4A | -C5A | -17.71 | O3B | -C4B | -C5B | -Cl5B | -86.05 |
| C4B | -O3B | -C2B | -C8B | 89.72 | O9B | -C4B | -C5B | -C6B | -148.76 |
| C2B | -O3B | -C4B | -C5B | -1.25 | C4A | -C5A | -C5B | -C4B | 61.83 |
| C4B | -O3B | -C2B | -O1B | -34.15 | C4A | -C5A | -C5B | -C6B | -175.30 |
| C4B | -O3B | -C2B | -C7B | -147.87 | C4A | -C5A | -C5B | -Cl5B | -57.38 |
| C2B | -O3B | -C4B | -O9B | 175.76 | C15A | -C5A | -C5B | -Cl5B | 61.22 |
| O1A | -C2A | -C8A | -C9A | -137.87 | C15A | -C5A | -C5B | -C4B | -179.57 |
| O3A | -C2A | -C8A | -C9A | -15.09 | C15A | -C5A | -C5B | -C6B | -56.69 |
| C7A | -C2A | -C8A | -C13A | -71.21 | C15A | -C5A | -C6A | -O10A | 93.78 |
| O1A | -C2A | -C8A | -C13A | 47.44 | C4A | -C5A | -C6A | -O1A | 25.95 |
| O3A | -C2A | -C8A | -C13A | 170.22 | C4A | -C5A | -C6A | -O10A | -151.93 |
| C7A | -C2A | -C8A | -C9A | 103.48 | C5B | -C5A | -C6A | -O1A | 149.91 |
| O3B | -C2B | -C8B | -C13B | 44.95 | C5B | -C5A | -C6A | -O10A | -27.97 |
| O1B | -C2B | -C8B | -C13B | 167.50 | C6A | -C5A | -C5B | -C4B | -61.48 |


| C6A | -C5A | -C5B | -C6B | 61.40 |
| :---: | :---: | :---: | :---: | :---: |
| Cl5A | -C5A | -C6A | -O1A | -88.34 |
| C6A | -C5A | -C5B | -C15B | 179.31 |
| C5A | -C5B | -C6B | -O1B | -137.27 |
| C5A | -C5B | -C6B | -O10B | 43.21 |
| C4B | -C5B | -C6B | -O10B | 162.59 |
| Cl5B | -C5B | -C6B | -O1B | 99.59 |
| Cl5B | -C5B | -C6B | -O10B | -79.93 |
| C4B | -C5B | -C6B | -O1B | -17.89 |
| C2A | -C8A | -C9A | -C10A | -177.20 |
| C13A | -C8A | -C9A | -C10A | -2.20 |
| C2A | -C8A | -C13A | -CL13A | -0.58 |
| C2A | -C8A | -C13A | -C12 | 177.39 |
| C9A | -C8A | -C13A | -CL13A | -175.38 |
| C9A | -C8A | -C13A | -C12 | 2.59 |
| C2B | -C8B | -C9B | -C10B | -177.35 |


| C13B | -C8B | -C9B | -C10B | -2.86 |
| :---: | :---: | :---: | :---: | :---: |
| C2B | -C8B | -C13B | -CL13B | -1.20 |
| C2B | -C8B | -C13B | -C12B | 177.61 |
| C9B | -C8B | -C13B | -CL13B | -175.41 |
| C9B | -C8B | -C13B | -C12B | 3.39 |
| C8A | -C9A | -C10A | -C11A | 0.37 |
| C8B | -C9B | -C10B | -C11B | 0.26 |
| C9A | -C10A | -C11A | -C12 | 1.17 |
| C9B | -C10B | -C11B | -C12B | 1.91 |
| C10A | -C11A | -C12 | -C13A | -0.78 |
| C10B | -C11B | -C12B | -C13B | -1.37 |
| C11A | -C12 | -C13A | -CL13A | 176.93 |
| C11A | -C12 | -C13A | -C8A | -1.15 |
| C11B | -C12B | -C13B | -CL13B | 177.53 |
| C11B | -C12B | -C13B | -C8B | -1.34 |

Table S8 - Contact Distances( $\AA$ ) for: 4.24

| CL13A | . O 1 A | 2.9307 | $307 \mathrm{Cl5B}$ | . O 10 B | 3.2168 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CL13A | A .C2A | 3.1491 | $1 \mathrm{Cl5B}$ | .O9A | 2.9532 |
| CL13A | A .C7A | 3.4139 | 39 Cl5B | . C 2 B | 3.5349 |
| CL13A | A .C10 | B_a 3.5 | 3.5996 | CL13A | .H12A |
| 2.7300 |  |  |  |  |  |
| CL13A | A .C11 | B_a 3. | 3.2480 | CL13A | .H7AA |
| 2.7800 |  |  |  |  |  |
| CL13A | A .Cl5 | A_b 3.6 | 3.6827 | CL13B | .H7BA |
| 2.8500 |  |  |  |  |  |
| CL13B | .O3B |  | 2.9226 | CL13B | .H10A_c |
| 3.1500 |  |  |  |  |  |
| CL13B | .C2B |  | 3.1652 | CL13B | .H12B |
| 2.7300 |  |  |  |  |  |
| CL13B | .CL13 | 3 B -d 3 | 3.6572 | Cl5B | .H10A_e |
| 2.9800 |  |  |  |  |  |
| CL13B | .C7B |  | 3.4681 | O1A | .CL13A |
| 2.9307 |  |  |  |  |  |
| Cl5A . | .C2A | 3.5898 | 8 O1A | . Cl 5 A | 3.3854 |
| Cl5A . | . O10B | 2.9639 | 39 O1A | A .C4A | 2.8261 |
| Cl5A . | .O10A | 3.3766 | 66 O1A | . C 13 A | 2.9792 |
| Cl5A . | .O1A | 3.3854 | O54 O1B | .O10A | 3.0972 |
| Cl5A . | .O9A | 3.2073 | 73 O1B | .C4B | 2.7260 |
| Cl5A . | . Cl 5 B | 3.4014 | 4 O1B | . Cl 5 B | 3.4170 |
| Cl5A . | .C6B | 3.2327 | 27 O1B | . C 9 B | 2.7389 |
| Cl5A . | .O3A | 3.4329 | 29 O3A | .C9A | 2.7394 |
| Cl5A | .CL13 | A_b 3 | 3.6827 | O3A | .C15A |
| 3.4329 |  |  |  |  |  |
| Cl5A . | .C8A | 3.4650 | 50 O3A | .C6A | 2.7468 |
| Cl5A . | .C9A | 3.5791 | 1 O3A | .O9B | 3.0581 |
| Cl5B . | .O3B | 3.3900 | 00 O3B | .C7A_g | 3.3358 |
| Cl5B . | .O1B | 3.4170 | 70 O3B | . Cl 5 B | 3.3900 |
| Cl5B . | .C9B | 3.4833 | 3 O3B | .C13B | 2.9833 |
| Cl5B . | . C 8 B | 3.3352 | 2 O3B | .CL13B | 2.9226 |
| Cl5B . | .Cl5A | 3.4014 | 14 O3B | .C6B | 2.8311 |


| Cl5B | 4A | 3.2286 | O9A | .C5B | 3.0032 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5B | .O9B | 3.4337 | O9A | .C4B | 3.3812 |
| 9A | .Cl5A | 3.2073 | O3A | . | 2.5200 |
| O9A | .Cl5B | 2.9532 | O3A | .H9A | 2.3700 |
| O9A | .O9B | 3.0504 | O3A | . H | 2.5200 |
| O9B | . Cl 5 B | 3.4337 O | O3B | .H | 2.5100 |
| O9B | .O3A | 3.0581 | O3B | .H7 | 2.5700 |
| O9B | .O9A | 3.0504 | O9A | .H10A_e | 0 |
| O9B | .C5A | 2.6674 | O9B | .H12B_d | 2.6000 |
| O9B | .C6A | 2.8858 O | O10A | .H7BB_h | 2.9000 |
| O9B | .C4A 2 | 2.6132 O | O10B | .H12A_b | 2.6400 |
| O10A | . O10B | 2.9942 | C2A | .CL13A | 3.1491 |
| O10A | .C7B_h | 3.1340 | C2A | .C15A | 3.5898 |
| O10A | .C5B | 2.6824 | C2A | .C5A | 2.8610 |
| O10A | .O1B | 3.0972 | C2B | . C 5 B | 2.8393 |
| O10A | .C6B | 2.6112 | C2B | .CL13B | 3.1652 |
| O10A | .C4B | 2.9285 | C2B | . Cl 5 B | 3.5349 |
| O10A | . Cl 5 A | 3.3766 | C4A | .O9B | 2.6132 |
| O10B | .O10A | 2.9942 | C4A | .C9A | 3.3082 |
| O10B | .C9A_f | 3.4195 | C4A | .C15B | 3.2286 |
| O10B | . Cl 5 B | 3.2168 | C4A | .O1A | 2.8261 |
| O10B | . Cl 5 A | 2.9639 | C4A | .C8A | 3.2018 |
| O10B | .C6A | 3.3633 | C4A | . C 4 B | 2.9795 |
| O10B | .C5A | 3.0062 | C4A | .C7A | 3.5940 |
| O1A | .H7AA | 2.5600 | C4B | .O10A | 2.9285 |
| O1A | . H 7 AB | 2.5000 | C4B | . C 8 B | 3.2557 |
| O1B | .H9B | 2.3700 | C4B | .C7B | 3.5609 |
| O1B | . H 7 BB | 2.5300 | C4B | .O1B | 2.7260 |
| O1B | .H7AC_f | f 2.7000 | 0 C4B | B .O9A | 3.3812 |
| O1B | . H 7 BC | 2.5300 | C4B | .C4A | 2.9795 |
| C4B | .C6A | 2.8200 | C7B | .C4B | 3.5609 |
| C5A | .C2A | 2.8610 | C7B | .C9B | 3.4070 |
| C5A | . O10B | 3.0062 | C7B | .O10A_h | 3.1340 |
| C5A | .O9B | 2.6674 | C7B | .CL13B | 3.4681 |


| C5A | .C8A | 3.5148 | C7B | .C13B | 3.2387 | C13A | C10A | 2.7418 | H7BA .C8B | 2.6800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C5B | . C 2 B | 2.8393 | C8A | .C11A | 2.7863 | C13A | .C11A_1 | 13.5271 | H7BA .C13B | 2.9800 |
| C5B | . C 8 B | 3.4424 | C8A | .C6A | 3.2883 | C13B | .C10B | 2.7389 H 7 | 7BA .H11B_m | m 2.5700 |
| C5B | .O10A | 2.6824 | C8A | . Cl 5 A | 3.4650 | C13B | .C7B 3 | 3.2387 H | 47BB .O1B | 2.5300 |
| C5B | .O9A | 3.0032 | C8A | .C4A | 3.2018 | C13B | .O3B | 2.9833 H | H7BB .O3B | 2.5100 |
| C6A | . C 4 B | 2.8200 | C8A | . C A | 3.5148 | C2A | .H9A 2.6 | 2.6500 H | H7BB .O10A_h | h 2.9000 |
| C6A | .C8A | 3.2883 | C8B | . C 11 B | 2.7843 | C2B | .H9B 2.63 | 2.6300 H7B | BB .H7BB_h | 2.2300 |
| C6A | . 010 B | 3.3633 | C8B | .C6B | 3.1661 | C4A | .H9A | 2.8500 H | H7BC .O1B | 2.5300 |
| C6A | .O3A | 2.7468 | C8B | . C 5 B | 3.4424 | C6B | . H 9 B | 2.8400 H | H7BC .C8B | 2.7100 |
| C6A | . 098 | 2.8858 | C8B | . Cl 5 B | 3.3352 | C8A | .H7AA | 2.7100 | H9A .O3A | 2.3700 |
| C6A | .C7A | 3.5443 | C8B | .C4B | 3.2557 | C8A | .H7AC | 2.7400 | H9A .C2A | 2.6500 |
| C6A | .C6B | 2.9813 | C9A | .C12 | 2.7435 | C8B | H7BC | 2.7100 | H9A .C4A | 2.8500 |
| C6B | .C6A | 2.9813 | C9A | . Cl 5 A | 3.5791 | C8B | . H 7 BA | 2.6800 | H9A .H10A | 2.2900 |
| C6B | . Cl 5 A | 3.2327 | C9A | . C7A | 3.4690 | C10A | .H10B_j | 2.7300 | H9B .O1B | 2.3700 |
| C6B | . O 10 A | 2.6112 | C9A | . O 3 A | 2.7394 | C11A | .H10B_j | 3.0500 | H9B .C2B | 2.6300 |
| C6B | . O 3 B | 2.8311 | C9A | . C 4 A | 3.3082 | C13A | .H7AA | 2.9900 | H9B .C6B | 2.8400 |
| C6B | .C9B | 3.2775 | C9A. | .O10B_i | 3.4195 | C13B | .H7BA | 2.9800 | H9B .H10B | 2.2900 |
| C6B | . C 8 B | 3.1661 | C9B | . Cl 5 B | 3.4833 | H7AA | .CL13A | A 2.7800 | 00 H 10 A .C | CL13B_n |
| C7A | .CL13A | 3.4139 | C9B | . O 1 B | 2.7389 | 3.1500 |  |  |  |  |
| C7A | .C13A | 3.2422 | C9B | .C12B | 2.7366 | H7AA | . 01 A | 2.5600 | H10A .H9A | 2.2900 |
| C7A | .C4A | 3.5940 | C9B | . C 6 B | 3.2775 | H10A | .H11A | 2.3000 | H11B .H10B | 2.3000 |
| C7A | .C6A | 3.5443 | C9B | . $\mathrm{C7B}$ | 3.4070 | H10A | .Cl5B_e | e 2.9800 H | H11B .H12B | 2.3000 |
| C7A | .C9A | 3.4690 | C10A | .C13A | 2.7418 | H10A | .O9A_e | e 2.7800 | 0 H11B .H | H7BA_m |
| C7A | .O3B_g | 3.3358 | C10B | .C13B | 2.7389 | 2.5700 |  |  |  |  |
| C10B | .CL13A | _k 3.599 | 96 H 7 A | AA .C8A | 2.7100 | H10B | .H9B | 2.2900 H | H12A .CL13A | 2.7300 |
| C11A | . C 8 A | 2.7863 | H7AA | A .C13A | 2.9900 | H10B | .H11B | 2.3000 | H12A .H11A | 2.3000 |
| C11A | .C13A_ | 1 3.5271 | H7A | B . 01 A | 2.5000 | H10B | .C10A | _j 2.730 | 00 H12A | .O10B_b |
| C11B | .C8B | 2.7843 | H7AB | .O3A | 2.5200 | 2.6400 |  |  |  |  |
| C11B | .CL13A | A_k 3.248 | 80 H 7 A | AC.O1B | i 2.7000 | H10B | C11A | _j 3.0500 | 500 H12B | CL13B |
| C12 | .C9A | 2.7435 | H7AC | .O3A | 2.5200 | 2.7300 |  |  |  |  |
| C12B | .C9B | 2.7366 | H7AC | . C 8 A | 2.7400 | H11A | .H10A | 2.3000 | H12B .H11B | 2.3000 |
| C13A | .01A | 2.9792 | H7BA | .CL13B | 2.8500 | H11A | .H12A | A 2.300 | 00 H12B | O9B_d |
| C13A | . $\mathrm{C7}$ A | 3.2422 | H7BA | .O3B | 2.5700 | 2. |  |  |  |  |

Translation of Symmetry Code to Equiv.Pos

C13A .C10A 2.7418 H7BA .C8B 2.6800 C13A .C11A_1 3.5271 H7BA .C13B 2.9800
C13B .C10B 2.7389 H7BA .H11B_m 2.5700
C13B .C7B $\quad 3.2387$ H7BB .O1B $\quad 2.5300$
C13B .O3B 2.9833 H7BB .O3B 2.5100
C2A .H9A 2.6500 H7BB .O10A_h 2.9000
C2B .H9B 2.6300 H7BB .H7BB_h 2.2300
C4A .H9A 2.8500 H7BC .O1B 2.5300
C8A .H7AA 2.7100 H9A .O3A 2.3700
C8A .H7AC 2.7400 H9A .C2A 2.6500
C8B .H7BC 2.7100 H9A .C4A 2.8500
C10A .H10B_j 2.7300 H9B .O1B 2.3700
C11A .H10B_j 3.0500 H9B .C2B 2.6300
C13A .H7AA 2.9900 H9B .C6B 2.8400
C13B .H7BA 2.9800 H9B .H10B 2.2900 3.1500

H7AA .O1A 2.5600 H10A .H9A 2.2900
H10A .H11A 2.3000 H11B .H10B 2.3000
H10A .C15B_e 2.9800 H11B .H12B 2.3000
H10A .O9A_e 2.7800 H11B .H7BA_m 2.5700

H10B .H9B 2.2900 H12A .CL13A 2.7300
H10B .H11B 2.3000 H12A .H11A 2.3000
H10B .C10A_j 2.7300 H12A .O10B_b
H10B .C11A_j 3.0500 H12B .CL13B 2.7300

H11A .H10A 2.3000 H12B .H11B 2.3000 2.6000

```
a =[ 1545.00] = x,-1+y,z
b}=[2666.00]= 1-x,1-y,1-
c =[1454.00]= -1+x,y,-1+z
d =[ 2675.00] = 1-x,2-y,-z
e=[2776.00] = 2-x,2-y,1-z
f =[ 1455.00] = -1+x,y,z
g=[ 2665.00]= 1-x,1-y,-z
h =[ 2565.00] = -x,1-y,-z
i}=[1655.00]= 1+x,y,
j =[2676.00] = 1-x,2-y,1-z
k=[ 1565.00] = x,1+y,z
l=[2766.00]= 2-x,1-y,1-z
m=[2575.00]= -x,2-y,-z
n}=[1656.00]= 1+x,y,1+
```


## References

${ }^{1}$ Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105.
${ }^{2}$ Ishida, T.; Ikota, H.; Kurahashi, K.; Tsukano, C.; Takemoto, Y. Angew. Chem. Int. Ed. 2013, 52, 10204; Dabrowski, J. A.; Villaume, M. T.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2013, 52, 8156.
${ }^{3}$ Moon, N. G.; Harned, A. M. Org. Lett. 2015, 17, 2218.
${ }^{4}$ Matsumoto, Y.; Yamada, K.-I.; Tomioka, K. J. Org. Chem. 2008, 73, 4578.
${ }^{5}$ (a) Wilsily, A.; Fillion, E. J. Org. Chem. 2009, 74, 8583; (b) Wilsily, A.; Lou, T.; Fillion, E. Synthesis 2009, 2066; (c) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801; (d) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774; (e) Hird, A. W.; Hoveyda, A. M. J. Am. Chem. Soc. 2005, 127, 14988.
${ }^{6}$ Lee, K.-S.; Brow, K. M.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182.
${ }^{7}$ Hawner, C.; Li, K.; Cirriez, V.; Alexakis, A. Angew. Chem. Int. Ed. 2008, 47, 8211.
${ }^{8}$ Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2009, 131, 13588.
${ }^{9}$ Hawner, C.; Müller, D.; Gremaud, L.; Felouat, A.; Woodward, S.; Alexakis, A. Angew. Chem. Int. Ed. 2010, 49, 7769.
${ }^{10}$ Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902.
${ }^{11}$ House, H. O.; Fischer, W. F., Jr. J. Org. Chem. 1969, 34, 3615.
${ }^{12}$ Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210.
${ }^{13}$ Nagata, W.; Yoshioka, M. Tetrahedron Lett. 1966, 1913.
${ }^{14}$ Hooz, J.; Layton, R. B. J. Am. Chem. Soc. 1971, 93, 7320.
${ }^{15}$ Pappo, R.; Colins, P. W. Tetrahedron Lett. 1972, 2627.
${ }^{16}$ Hansen, R. T.; Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1978, 100, 2244.
${ }^{17}$ Sinclair, J. A.; Molander, G. A.; Brown, H. C. J. Am. Chem. Soc. 1977, 99, 954.
${ }^{18}$ Wu, R. T.; Chong, M. J. J. Am. Chem. Soc. 2005, 127, 3244.
${ }^{19}$ Larionov, O. V.; Corey, E. J. Org. Lett. 2010, 12, 300; Kwak, Y.-S.; Corey, E. J. Org. Lett. 2004, 6, 3385.
${ }^{20} \mathrm{Kim}$, S.; Lee. J. M. Tetrahedron Lett. 1990, 31, 7627.
${ }^{21}$ Yamashita, M.; Yamada, K.; Tomioka, K. Org. Lett. 2005, 7, 2369.
${ }^{22}$ Blay, G.; Cardona, L.; Pedro, J. R.; Sanz-Marco, A. Chem. Eur. J. 2012, 18, 12966.
${ }^{23}$ Knöpfel, T. F.; Boyall, D.; Carreira, E. M. Org. Lett. 2004, 6, 2281.
${ }^{24}$ Kim, S.; Park, J. H.; Jon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 783.
${ }^{25}$ Eriksson, M.; Iliefski, T.; Nilsson, M.; Olsson, T. J. Org. Chem. 1997, 62, 182.
${ }^{26}$ Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682;
Knöpfel, T. F.; Carreira, E. M. J. Am. Chem. Soc. 2003, 125, 6054.
${ }^{27}$ Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 1576.
${ }^{28}$ Fillion, E.; Zorzitto, A. K. J. Am. Chem. Soc. 2009, 131, 14608.
${ }^{29}$ Tissot, M.; Hernandez, A. P.; Muiller, D.; Mauduit, M.; Alexakis, A. Org. Lett. 2011, 13, 1524; Kehrli, S.; Martin, D.; Rix, D.; Mauduit, M.; Alexakis, A. Chem. -Eur. J. 2010, 16, 9890;
${ }^{30}$ Dabrowski, J. A.; Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 4778
${ }^{31}$ Fillion, E.; Carret, S.; Mercier, L. G.; Trépanier, V. É Org. Lett. 2008, 10, 437.
${ }^{32}$ Conversion $\%$ was determined by taking the integration of the Me groups at the benzylic position of $1.4 \mathrm{a}, 1.5 \mathrm{a}$ and 1.6 a and determining their relative ratios. Only crude spectra that cleanly showed the production of these compounds were determined.
${ }^{33}$ Kharasch, M. S.; Tawney, P. O. J. Am. Chem. Soc. 1941, 63, 2308.
${ }^{34}$ Alexakis, A.; Benhaim, C. Eur. J. Ory. Chem. 2002, 3221; Alexakis, A.; Vastra, J.; Mangeney, P. Tetrabedron Lett. 1997, 38, 7745.
${ }^{35}$ Brown, R. F. C.; Coulston, K. J.; Eastwood, F. W.; Gatehouse, B. M.; Guddatt, L. W.; Pfenninger, M.; Rainbow, I. Aust. J. Chem. 1984, 37, 2509.
${ }^{36}$ Conversion $\%$ is determined in the same manner as reference 31 , accounting for hydrolization of 1.4 by integration of the Me group of the formed 4'-haloacetophenone.
${ }^{37}$ Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2003, 68. 1901.
${ }^{38}$ Mahoney, S. J.; Lou, T.; Bondarenko, G.; Fillion, E. Org. Lett. 2012, 14, 3474.
${ }^{39}$ Binger, P. Angew. Chem. Int. Ed. 1963, 2, 686.
${ }^{40}$ Feuvrie, C.; Blanchet, J.; Bonin, M.; Micouin, L. Org. Lett. 2004, 6, 2333.
${ }^{41}$ Bond lengths were obtained from the PhD thesis of Wilsily, A. Enantioselective Conjugate Additions to Meldrum's Acid Acceptors for the Synthesis of Quaternary Centres and Studies on Persistent Intramolecular $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{Br}, \mathrm{Cl}$, and F$)$ Hydrogen Bonds Involving Benzyl Meldrum's Acids, 2009, University of Waterloo.
${ }^{42}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518.
${ }^{43}$ Baxter, G. J.; Brown, R. F. C. Aust. J. Chem. 1975, 28, 1551
${ }^{44}$ Huang, X.; Chan, C.; Wu, Q. Tetrahedron Lett. 1982, 23, 75.
${ }^{45}$ DeWolf, W. E.; Chambers, P. A.; Southan, C.; Saunders, D.; Kruse, L. I. Biochemistry 1989, 28, 3833
${ }^{46}$ Konaklieva, M. I.; Plotkin, B. J. Mini-Rev. Med. Chem. 2005, 5, 73.
${ }^{47}$ Beechan, C. M.; Sims, J. J. Tetrahedron Lett. 1979, 1649; Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J. Tetrahedron Lett. 1977, 37.
${ }^{48}$ Miao, S.; Anderson, R. J. J. Org. Chem. 1991, 56, 6275.
${ }^{49}$ Lee, E.-S. J.; Gleason, F. K. Plant Sci. 1994, 103, 155.
${ }^{50}$ Ortuño, R. M.; Mercé, R.; Font, J. Tetrabedron Lett. 1986, 27, 2519; Kunesch, G.; Zagatti, P.;
Lallemand, J. Y.; Debal, A.; Vigneron, J. P. Tetrabedron Lett. 1981, 22, 5271
${ }^{51}$ Hamer, D. H.; Bocklandt, S.; McHugh, L.; Chun, T.-W.; Blumberg, P. M.; Sigano, D. M.;
Marquez, V. E. J. Virol. 2003, 10227.
${ }^{52}$ Chakravarty, P. K.; Krafft, G. A.; Katzenellenbogen, J. A. J. Biological Chem. 1982, 257, 610.
${ }^{53}$ Rando, R. R. Science 1974, 185, 320.
${ }^{54}$ Negishi, E.; Kotora, M. Tetrabedron 1997, 53, 6707 and references therein.
${ }^{55}$ Asaoka, M.; Yanagida, N.; Ishibashi, K.; Takei, H. Tetrahedron Lett. 1981, 22, 4269.
${ }^{56}$ Knight, D. W.; Pattenden, G. Chem. Soc., Perkin Trans. 1, 1975, 641; Howe, R. K. J. Org. Chem. 1973, 38, 4164.
${ }^{57}$ Kayser, M. M.; Hatt, K. L.; Hooper, D. L. Can. J. Chem. 1992, 70, 1985; Knight, D. W.; Pattenden, G. Chem. Soc., Perkin Trans. 1, 1979, 62.
${ }^{58}$ Boukouvalas, J.; Maltais, F.; Lachance, N. Tetrabedron Lett. 1994, 35, 7897.
${ }^{59}$ Langer, P.; Stoll, M. Angew. Chem. Int. Ed. 1999, 38, 1919.
${ }^{60}$ Langer, P.; Schneider, T.; Stoll, M. Chem.-Eur. J. 2000, 6, 3204.
${ }^{61}$ (a) Copéret, C.; Sugihara, T.; Wu, G.; Shimoyama, I.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 3422; (b) Sugihara, T.; Copéret, C.; Owczarczyk, Z.; Harring, L. S.; Negishi, E. J. Am. Chem. Soc. 1994, 116, 7923; (c) Wu, G.; Shimoyama, I.; Negishi, E. J. Ory. Chem. 1991, 56, 6506.
${ }^{62}$ Acylpalladation was defined by Negishi as the addition of acylpalladium bonds to alkenes and alkynes, see reference 16(a).
${ }^{63}$ Rao, Y. S.; Filler, R. Tetrahedron Lett. 1975, 1457.
${ }^{64}$ Kraftt, G. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1981, 103, 5459.
${ }^{65}$ Amos, R. A.; Katzenellenbogen, J. A. J. Org. Chem. 1978, 43, 560.
${ }^{66}$ Lambert, C.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1984, 25, 5323.
${ }^{67}$ Chan, D. M. T.; Marder, T. B.; Milstein, D.; Taylor, N. J. J. Am. Chem. Soc. 1987, 109, 6385.
${ }^{68}$ Pale, P.; Chuche, J. Tetrabedron Lett. 1987, 28, 6447.
${ }^{69}$ Harkat, H.; Dembelé, A. Y.; Weibel, J.-M.; Blanc, A.; Pale, P. Tetrahedron 2009, 65, 1871;
Harkat, H.; Weibel, J.-M.; Pale, P. Tetrahedron Lett. 2006, 47, 6273.
${ }^{70}$ Arcadi, A.; Burini, A.; Cacchi, S.; Delmastro, M.; Marinelli, F.; Pietroni, B. R. J. Org. Chem. 1992, 57, 976.
${ }^{71}$ Castañer, J.; Pascual, J. J. Chem. Soc. 1958, 3962.
${ }^{72}$ Belil, C.; Pascual, J.; Serratosa, F. Tetrahedron 1964, 20, 2701.
${ }^{73}$ Schötz, K.; Clark, T.; Schaller, H.; Schleyer, P. J. Org. Chem. 1984, 49, 735; Rossi, R.; Bellina, F.; Biagetti, M.; Mannina, L. Tetrabedron Lett. 1998, 39, 7799; Kruse, L. I.; Kaiser, C.; DeWolf, W. E.; Chambers, P. A.; Goodhart, P. J.; Ezekiel, M.; Ohlstein, E. H. J. Med. Chem. 1988, 31, 704.
${ }^{74}$ (a) Fillion, E.; Carret, S.; Mercier, L. G.; Trépanier, V. É. Org. Lett. 2008, 10, 437; (b) Fillion, E.; Zorzitto, A. K. J. Am. Chem. Soc. 2009, 131, 14608; (c) Jia, W.; Li, S.; Yu, M.; Chen, W.; Jiao, N. Tetrahedron Lett. 2009, 50, 5406.
${ }^{75}$ Dumas, A. M.; Fillion, E. Acc. Chem. Res. 2010, 43, 440 and references therein.
${ }^{76}$ Determined by comparing the chemical shift of vinylic protons of $\gamma$-alkylidene butyrolactones. No change was observed in their crude.
${ }^{77}$ Sato, M.; Ban, H.; Kaneko, C. Tetraberon Lett. 1997, 38, 6689.
${ }^{78}$ Spectra were too messy to discern between diasteromers, as a result NMR data given for only one of the diastereomers. HMBC and HMQC data were also obtained to identify characteristic peaks and couplings.
${ }^{79}$ Yanagihara, N.; Lambert, C.; Iritani, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 2753.
${ }^{80}$ a) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630; b) Yasuzawa, T.; Saitoh, Y.; Ichimura, M.; Takahashi, I.; Sano, H. J. Antibiot. 1991, 44, 445
${ }^{81}$ Pietruszka, J.; Simon, R. C. ChemCatChem 2010, 2, 505.
${ }^{82}$ Selected examples of racemic formation of indolines: a) Molander, G. A.; Harring, L. S. J. Org. Chem. 1990, 55, 6171; b) Bailey, W. F.; Carson, M. W. J. Org. Chem. 1998, 63, 9960.
${ }^{83}$ Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122, 6787.
${ }^{84}$ Gil, G. S.; Groth, U. M. J. Am. Chem. Soc. 2000, 122, 6789.
${ }^{85}$ Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132, 14418.
${ }^{86}$ Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614.
${ }^{87}$ Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.; Ito, Y. Org. Lett. 2004, 6, 2213.
${ }^{88}$ Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909.
${ }^{89}$ Macdonald, T. L.; Mahalingam, S. J. Am. Chem. Soc. 1980, 102, 2113.
${ }^{90}$ Feldman, K. S.; Perkins, A. L.; Masters, K. M. J. Org. Chem. 2004, 69, 7928.
${ }^{91}$ Selected examples of asymmetric intramolecular Michael reactions of stabilized carbanions:
a) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 3107; b) Fustero, S.; Rodríguez, E.; Herrera, L.; Asensio, A.; Maestro, M. A.; Barrio, P. Org. Lett. 2011, 13, 6564.
${ }^{92}$ a) Piers, E.; McEachern, E. J.; Burns, P. A. J. Org. Chem. 1995, 60, 2322; b) Piers, E.; McEachern, E. J.; Burns, P. A. Tetrahedron 2000, 56, 2753.
${ }^{93}$ Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135.
${ }^{94}$ Dziedzic, M.; Malecka, M.; Furman, B. Ory. Lett. 2005, 7, 1725.
${ }^{95}$ Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340.
${ }^{96}$ Vedejs, E.; Haight, A. R.; Moss, W. O. J. Am. Chem. Soc. 1992, 114, 6556.
${ }^{97}$ Verkade, J. G. Coordin. Chem. Rev. 1994, 137, 233.
${ }^{98}$ a) Jurkschat, K.; Tzschach, A.; Meunier-Piret, J.; Van Meerssche, M. J. Organomet. Chem. 1985, 290, 285; b) Jurkschat, K.; Tzschach, A.; Meunier-Piret, J J. Organomet. Chem. 1986, 315, 45.
${ }^{99}$ Rey, C.; Reinecke, H. J.; Besser, R. Vet. Hum. Toxicol. 1984, 26, 121 and references therein.
${ }^{100}$ Sebahar, H. L.; Yoshida, K.; Hegedus, L. S. J. Org. Chem. 2002, 67, 3788.
${ }^{101}$ Fillion, E.; Taylor, N. J. J. Am. Chem. Soc. 2003, 125, 12700.
${ }^{102}$ Li, L.; Wang, C.-Y.; Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5, 607.
${ }^{103}$ Racemic catalytic conjugate allylation: Dumas, A. M.; Fillion, E. Org. Lett. 2009, 11, 1919.
${ }^{104}$ (a) Mahoney, S. J.; Dumas, A. M.; Fillion, E. Org. Lett. 2009, 11, 5346; (b) For racemic addition: Fillion, E.; Carret, S.; Mercier, L. G.; Trépanier, V. É. Ory. Lett. 2008, 10, 437.
${ }^{105}$ Kavoosi, A.; Fillion, E. Angew. Chem. Int. Ed. 2015, 54, 5488.
${ }^{106}$ Moon, D. T. The Conjugate Addition of Novel Nucleophiles and Catalytic Intramolecular Tandem [1,5]-Hydride Shift / Cyclization and Friedel-Crafts Acylation with Alkylidene Meldrum's Acid Derivatives. MSc Thesis, University of Waterloo, Waterloo, ON, 2008.
${ }^{107}$ Yang, C.; Jensen, M. S.; Conlon, D. A.; Yasuda, N.; Hughes, D. L. Tetrahedron Lett. 2000, 41, 8677.
${ }^{108}$ Mahoney, S. J.; Fillion, E. e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley \& Sons, Inc., New York, 2013. DOI: 10.1002/047084289X.rn01600 and references there in.
${ }^{109}$ a) Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Ory. Synth. 1993, 71, 77; b) Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 26, 3895.
${ }^{110}$ (a) Lipshutz, B. H.; Kell, R.; Ellsworth, E. L. Tetrabedron Lett. 1990, 31, 7257; (b) Negishi, E.; Miller, J. A.; Yoshida, T. Tetrabedron Lett. 1984, 25, 3407; (c) Wailes, P. C.; Weigold, H. J. Organometal. Chem. 1970, 24, 405.
${ }^{111}$ Wipf, P.; Jahn, H. Tetrahedron, 1996, 52, 12853.
${ }^{112}$ Ziegler, F. E.; Guenther, T.; Nelson, R. V. Synthetic Commun. 1980, 10, 661.
${ }^{113}$ Reaction times of up to 6 h and temperature up to $0^{\circ} \mathrm{C}$ were tested.
${ }^{114}$ a) Dumas, A. M.; Seed, A.; Zorzitto, A. K.; Fillion, E. Tetrabedron Lett. 2007, 48, 7072; b) Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R. Mazzacani, A.; Sartori, G. Tetrabedron Lett. 2001, 42, 5203.
${ }^{115}$ Solvents screened: THF, DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$; Bases screened: $n \mathrm{BuLi}, \mathrm{LDA}, \mathrm{NaH}, \mathrm{KH}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CsCO}_{3}$; Additives: HMPA, 18-Crown-6
${ }^{116}$ Alkylation of carbamates: a) Yokoyama, A.; Maruyama, T.; Tagami, K.; Masu, H.; Katagiri, K.; Azumaya, I.; Yokozawa, T. Ory. Lett. 2008, 10, 3207; b) Kubo, K.; Kohara, Y.; Imamiya, E.; Sugiura, Y.; Inada, Y.; Furukawa, Y.; Nishikawa, K.; Naka, T. J. Med. Chem. 1993, 36, 2182.
${ }^{117}$ Alkylation of sulfonamides: Klein, M.; König, B. Tetrabedron 2004, 60, 1087.
${ }^{118}$ Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1991, 56, 4218.
${ }^{119}$ Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295.
${ }^{120}$ Fugami, K.; Ohnuma, S.; Kameyama, M.; Saotome, T.; Kosugi, M. Synlett 1999, 63.
${ }^{121}$ Brown, J. M.; Pearson, M.; Jastrzebski, J. T. B. H.; van Koten, G. J. Chem. Soc., Chem. Commun. 1992, 1440.
${ }^{122}$ Hutchins, J. E. C.; Fife, T. H. J. Am. Chem. Soc. 1973, 95, 3786.
${ }^{123}$ Makabe, H.; Negishi, E. Eur. J. Org. Chem. 1999, 969.
${ }^{124}$ Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78, 9689.
${ }^{125}$ Trépanier, V. É.; Fillion, E. Organometallics 2007, 26, 30.
${ }^{126}$ Azeotropic distillation of $\mathbf{3 . 1 7}$ with benzene was done to reduce residual amounts of water.
${ }^{127}$ Mügge, C.; Pepermans, H.; Gielen, M.; Willem, R.; Tzschach, A.; Jurkschat, K. Z. Anorg. Allg. Chem. 1988, 567,
122.
${ }^{128}$ Opatz, T.; Ferenc, D. Synthesis 2008, 24, 3941.
${ }^{129}$ Baxter, G. J.; Brown, R. F. C. Aust. J. Chem. 1975, 28, 1551
${ }^{130}$ Miyashita, N.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772.
${ }^{131} \mathrm{KH}$ was triturated with pentane $(2 \times)$ to remove mineral oil.
${ }^{132}$ Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2011, 13, 2762.
${ }^{133}$ Nagarapua, L.; Gaikwad, H. K.; Manikonda, S. R.; Bantu, R.; Manda, K. M.; Kalivendi, S. V. Med. Chem. Res. 2013, 22, 165.
${ }^{134}$ Schneider, H.-J. Angew. Chem. Int. Ed., 2009, 48, 3924.
${ }^{135}$ Guthrie, F. J. Chem. Soc., 1863, 16, 239.
${ }^{136}$ Hassel, O.; Hvoslef, J. Acta Chem. Scand., 1954, 8, 873.
${ }^{137}$ Hassel, O.; Rømming, C. Q. Rev. Chem. Soc., 1962, 16, 1.
${ }^{138}$ Desiraju, G. R.; Ho, S. P.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem., 2013, 85, 1711.
${ }^{139}$ Rosenfield, R. E.; Parthasarathy, R.; Dunitz, J. D. J. Am. Chem. Soc., 1977, 99, 4860
${ }^{140}$ Murray-Rust, P.; Sam Motherwell, W. D. J. Am. Chem. Soc., 1979, 101, 4374.
${ }^{141}$ Feynman, R. P. Phy. Rev., 1939, 56, 340.
${ }^{142}$ Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model, 2007, 13, 291.
${ }^{143}$ Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys., 2010, 12, 7748.
${ }^{144}$ Guru Row, T. N.; Parthasarathy, R. J. Am. Chem. Soc., 1981, 103, 477.
${ }^{145}$ Murray, J. S.; Riley, K. E.; Politzer, P.; Clark, T. Aust. J. Chem., 2010, 63, 1598.
${ }^{146}$ Stewart, R. F. Chem. Phys. Lett., 1979, 65, 335.
${ }^{147}$ Kutzelnigg, W. Angew. Chem. Int. Ed. Engl., 1984, 23, 272.
${ }^{148}$ Fillion, E.; Wilsily, A.; Fishlock, D. J.Org. Chem., 2009, 74, 1259.
${ }^{149}$ Hopkins, S. W.; Hasan, M.; Burt, M.; Marta, R. A.; Fillion, E.; McMahon, T. B. J. Phys. Chem. A, 2014, 118, 3795.
${ }^{150}$ Gribble, G. W. J. Chem. Educ., 2004, 81, 1441.
${ }^{151}$ See references therein: Gribble, G. W. Acc. Chem. Res., 1998, 31, 141.
${ }^{152}$ (a) Erdélyi, M. Chem. Soc. Rev., 2012, 41, 3547; (b) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev., 2013, 42, 1667.
${ }^{153}$ Nakamura, S.; Hirao, H.; Ohwada, T. J. Org. Chem., 2004, 69, 4309.
${ }^{154}$ Similar results were obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$ where no trends were observed.
${ }^{155}$ Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2013, 15, 11178.
${ }^{156}$ Thorson, R. A.; Woller, G. R.; Driscoll, Z. L.; Geiger, B. E.; Moss, C. A.; Schlapper, A. L.;
Speetzen, E. D.; Bosch, E.; Erdélyi, M.; Bowling, N. P. Eur. J. Org. Chem. 2015, 1685.
${ }^{157}$ Hoffmann, R. W. Chem. Rev., 1999, 89, 1841.
${ }^{158}$ Pfluger, C. E.; Boyle, P. D. J. Chem. Soc. Perkin Trans 2 1985, 1547.
${ }^{159}$ Kamaya, H.; Sato, M.; Kaneko, C. Tetrabedron Lett. 1997, 38, 587.
${ }^{160}$ Eliad, L.; Hoz, S. J. Phy. Org. Chem. 2002, 15, 540.
${ }^{161}$ (a) Perreault, S.; Spino, C. Org. Lett., 2006, 8, 4385; (b) Snyder, H. R.; Kruse, C. W. J. Am. Chem. Soc. 1958, 80, 1942.
${ }^{162}$ (a) Jiang, H.; Zhang, J. M.; Du, W. Q.; Zhu, S. Z. Chinese J. Chem. 2007, 25, 86; (b) Michael, A.; Weiner, N. J. Am. Chem. Soc. 1936, 58, 680.
${ }^{163}$ Meketa, M. L.; Mahajan, Y. R.; Weinreb, S. M. Tetrabedron Lett., 2005, 46, 4749.
${ }^{164}$ Tao, J.; Tran, R.; Murphy, G. K. J. Am. Chem. Soc. 2013, 135, 16312.
${ }^{165}$ Bloch, R. Synthesis 1978, 2, 140.
${ }^{166}$ Reactions were monitored by TLC and taking aliquots every 24 h for 7 days.
${ }^{167}$ Xu, Z. H.; Lin, C. H.; Xia, J. H. Heterocyclic Lett., 2013, 3, 319.
${ }^{168}$ Ziegler, E.; Junek, H.; Kroboth, H. Monatsh. Chem. 1976, 107, 317.
${ }^{169}$ Sato, M.; Ban, H.; Kaneko, C. Tetrahedron Lett. 1997, 38, 6689.
${ }^{170}$ Mahrwald, R. Chem. Rev. 1999, 99, 1095.
${ }^{171}$ Li, H.-J.; Deng, K.; Luo, D.-H.; Liu, D.-H.; Wang, J.-L.; Lin, C.-H.; Wu, Y.-C. RSC. Adv. 2014, 4, 26316.
${ }^{172}$ (a) Dumele, O.; Wu, D.; Trapp, N.; Goroff, N.; Diederich, F. Org. Lett., 2014, 16, 4722; (b) Rege, P. D.; Malkina, O. L.; Goroff, N. S. J. Am. Chem. Soc. 2002, 124, 370.
${ }^{173}$ Laurence, C.; Queignec-Cabanetos, M.; Wojtkowiak, B. J. Chem. Soc., Perkin Trans 2, 1982, 1605.
${ }^{174}$ (a) Rainer, J. D.; Xu, Q. Org. Lett. 1999, 1, 27; (b) Yadav, J. S.; Satyanarayana, K.; Sreedhar, P.; Srihari, P.; Shaik, T. B.; Kalivendi, S. V. Bioorg. Med. Chem. Lett. 2010, $20,3814$.
${ }^{175}$ (a) Roush, W. R.; Barada, D. A.; Limberakis, C.; Kunz, R. K. Tetrahedron 2002, 58, 6433; (b) Park, D. H.; Kim, H.; Kim, S. M.; Kim, J. D.; Kim, Y. H. Chem. Commun, 1999, 963; (c) Houk, K. N. J. Am. Chem. Soc. 1973, 95, 4094.
${ }^{176}$ Zheng, H.; Hall, D. G. Tetrahedron Lett. 2010, 51, 3561.
${ }^{177}$ Structure of 4.43 was assigned based on a mixture of compounds isolated after flash column chromatography and combining ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR and GC/MS data.
${ }^{178}$ (a) Gassman, P. G.; Singleton, D. A. J. Am. Chem. Soc. 1984, 106, 6085; (b) Gassman, P. G.; Singleton, D. A.; Wilwerding, J. J.; Chavan, S. P. J. Am. Chem. Soc. 1987, 109, 2182.
${ }^{179}$ Magnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 1615.
${ }^{180}$ Stang, P. J.; Zhdankin, V. V. J. Am. Chem. Soc., 1991, 113, 4571.
${ }^{181}$ Camps, P.; Gómez, T. Arkivoc, 2011, 128; Camps, P.; Gómez, T.; Lozano, D.; Calvet, T.; Bardia-Font, M. Molecules 2012, 17, 8795.
${ }^{182}$ Widner, D. L.; Knauf, Q. R.; Merucci, M. T.; Fritz, T. R.; Sauer, J. S.; Speetzen, E. D.; Bosch, E.; Bowling, N. P. J. Org. Chem. 2014, 79, 6269.
${ }^{183}$ a) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J Tetrahedron 2006, 62, 3882; b) RomanovMichailidis, F.; Besnard, C.; Alexakis, A. Org. Lett. 2012, 14, 4906.
${ }^{184}$ Beeby, A.; Bettington, S.; Fairlamb, I. J. S.; Goeta, A. E.; Kapdi, A. R.; Niemelä, E.H.; Thompson, A. L. New J. Chem. 2004, 28, 600.
${ }^{185}$ Kalaitzakis, D.; Montagnon, T.; Antonatou, E.; Bardaji, N.; Vassilikogiannakis, G. Chem. Eur. J. 2013, 19, 10119.
${ }^{186}$ Harris, J. M.; Padwa, A. J. Org. Chem. 2003, 68, 4371.
${ }^{187}$ Huang, X.; Chan, C.-C.; Wu, Q.-L. Synth. React. Inorg. Met. Org. Chem. 1982, 12, 549.
${ }^{188}$ Müller, P.; Allenbach, Y.; Robert. E. Tetrabedron Asymmetry 2003, 14, 779.
${ }^{189}$ Akrawi, O. A.; Mohammed, H. H.; Langer, P. Synlett 2013, 9, 1121.
${ }^{190}$ Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270.
${ }^{191}$ Leroy, J. Syn. Commun. 1992, 22, 567.
${ }^{192}$ Chen, Z.; Effenberger, K. A.; Jurica, M. S. J. Org. Chem. 2014, 79, 5697.
${ }^{193}$ Chemler, S. R.; Roush, W. R. J. Org. Chem. 2003, 68, 1319.


[^0]:    ${ }^{\text {a }}$ Isolated yield.

