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Summary

Times of disease progression are interval-censored when progression status is only known at a
series of assessment times. This situation arises routinely in clinical trials and cohort studies
when events of interest are only detectable upon imaging, based on blood tests, or upon care-
ful clinical examination. We consider the problem of selecting important prognostic biomarkers
from a large set of candidates when disease progression status is only known at irregularly spaced
and individual-specific assessment times. Penalized regression techniques (e.g. LASSO, adap-
tive LASSO and SCAD) are adapted to handle interval-censored time of disease progression. An
expectation-maximization algorithm is described which is empirically shown to perform well. Ap-
plication to the motivating study of the development of arthritis mutilans in patients with psoriatic
arthritis is given and several important human leukocyte antigen (HLA) variables are identified
for further investigation.
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1 INTRODUCTION

1.1 VARIABLE SELECTION AND PENALIZED REGRESSION

Breiman (1996) noted that the traditional method of best subset selection was unstable and that this
instability could lead to poor predictive performance. Ridge regression (Hoerl and Kennard, 1970)
imposes some shrinkage which leads to more stable models, but does not set any coefficients to zero
and therefore does not “select” key variables. The LASSO (Tibshirani, 1996) attempts to maintain
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the advantages of both subset selection and ridge regression by shrinking some coefficients and set-
ting other coefficients to zero through use of a log-likelihood with an L1 penalty function. Other
penalty functions which have recently been proposed include the smoothly-clipped absolute devia-
tion (SCAD) (Fan and Li, 2001, Zou and Li, 2008), the adaptive LASSO (Zou, 2006), the elastic net
(Zou and Hastie, 2005), the grouped LASSO (Yuan and Lin, 2005), and the minimax concave penalty
(MCP) (Zhang, 2010).

While much of the work on variable selection techniques was initially carried out in the context
of continuous responses, advances have been made to deal with binary responses and time to event
responses. For the latter, the penalty term is typically applied to the partial likelihood arising from a
semiparametric Cox regression model (Cox, 1972) when data are right-censored.

Witten and Tibshirani (2009) give an excellent overview of the challenges arising with particu-
larly high dimensional covariate data in settings with censored outcomes and provide an extensive
discussion of the specific objectives one might have in particular scientific contexts; another useful
account can be found in Li and Ma (2013). The inherent difficulty in obtaining robust and generaliz-
able findings from samples with censored responses and high dimensional covariates is evident from
the inconsistency of findings across seemingly similar patient populations (McShane et al., 2005a).
The limitations due to inadequate sample size (Polley et al., 2013) and the inconsistency of findings
across studies has led to an increased interest in synthesizing findings over multiple studies. Assim-
ilating information from several sources can be helpful, but it is important to clearly understand the
differences between the frameworks and goals of the studies contributing to this synthesis. Guidelines
have been developed for reporting findings from biomarker studies with this in mind, which advocate
clear statements of study objectives, study design, methods of processing samples, and the approach
to statistical analysis (McShane et al., 2005b, Altman et al., 2012).

Many prospective studies, however, involve event times subject to interval censoring (Sun, 2006).
In cancer clinical trials, for example, new metastatic lesions are often only detectable by imaging
(Hortobagyi et al., 1996), so the time from randomization to the development of a new lesion is
unknown. In patients infected with cytomegalovirus, the time from infection to viral shedding in
the blood is only known to lie between the last negative and first positive serum sample (Betensky
and Finkelstein, 1999). The occurrence of an asymptomatic fracture in osteoporosis patients is only
detected by radiographic examination (Riggs et al., 1990).

We consider the problem of variable selection in the context of interval-censored time to event
data. We adopt a flexible piecewise exponential model (Friedman, 1982) for the event of interest
and penalize the complete data likelihood constructed by treating the interval-censored failure times
as known. An expectation-maximization (EM) algorithm (Dempster et al., 1977) is then used for
variable selection through optimization of the observed data likelihood incorporating the LASSO,
adaptive LASSO or SCAD penalty function.

The remainder of the article is organized as follows. In Section 1.2 we describe the motivating
study with the goal of identifying key human leukocyte antigens associated with the development of
arthritis mutilans in a cohort of individuals with psoriatic arthritis. In Section 2 we describe a penal-
ized EM algorithm based on a piecewise exponential response model, for which existing techniques
for variable selection can be exploited to handle interval-censored event times. Simulation studies
involving multivariate normal and correlated binary covariates reported on in Section 3 demonstrate
superior performance of the proposed method over analyses based on mid-point imputation. Addi-
tional simulation studies are described in Supplementary Material: Web Appendix A and studies of
different criteria for selection of tuning parameters (Bradic et al., 2011) are given in Supplementary
Material: Web Appendix B. The data from the psoriatic arthritis clinic are analyzed in Section 4 using
a variety of penalty functions, and concluding remarks are given in Section 5.
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Figure 1: Plots of the estimated cumulative distribution functions for the time from psoriatic arthritis
diagnosis and clinic entry (Kaplan-Meier estimate) and the times between radiological assessments
based on a semi-Markov model with a gamma frailty (panel (a)) and the Turnbull estimate with a
pointwise 95% confidence band for the marginal cumulative distribution function of the time from
disease onset to arthritis mutilans (panel (b))

1.2 PROGNOSTIC HLA MARKERS IN PSORIATIC ARTHRITIS

The University of Toronto Psoriatic Arthritis Clinic is a tertiary referral center for individuals with
psoriatic arthritis (PsA), an immunological condition which features both skin and joint involvement
(Chandran et al., 2010). A registry was created in 1976, which has been recruiting and following
patients continuously since its inception, making it one of the largest cohorts of patients with PsA in
the world.

Patients undergo a detailed clinical and radiological examination upon entry to the clinic, and pro-
vide serum samples for genetic testing. Follow-up clinical and radiological assessments are scheduled
annually and every two years respectively in order to track changes in joint damage. At each radio-
logical assessment the degree of damage is recorded in sixty-four joints on a five point scale (Rahman
et al., 1998). Arthritis mutilans is a particularly aggressive form of arthritis characterized here by five
or more joints with the highest grade of damage. Identification of genetic features associated with this
condition is important to help identify patients warranting prophylactic treatment with more effective
but costly anti-TNF therapy (Kyle et al., 2005) and to help guide the selection of high risk patients for
inclusion in clinical trials of experimental treatments. The aim of the current analysis is to identify
key human leukocyte antigens which are associated with increased risk of arthritis mutilans in this
cohort of patients.

To date, 1191 patients have been recruited to the University of Toronto Psoriatic Arthritis Clinic,
and 604 of these have undergone genetic testing to determine their human leukocyte antigen profile.
A total of 96 human leukocyte antigen covariates were available for study but 20 of these markers had
a frequency in the sample of less than 1% and so were excluded from further consideration. Among
the 604 patients the median time from clinic entry to last radiological assessment is 6.3 years and
there is a median of 3 radiological assessments per patient. The estimated cumulative distribution
functions of the times between the first 10 radiological assessments are displayed in Figure 1 (a),
which were obtained by fitting a semi-Markov model with an individual-specific gamma distributed
frailty term (Klein, 1992) and stratified on the cumulative number of radiological assessments. The
median inter-assessment times range from 2.7 years for the first two or three assessments after clinic
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entry, to over 6 years for later assessments. Also plotted is a marginal Kaplan-Meier estimate of the
time from psoriatic arthritis diagnosis to clinic entry.

Five hundred and seven (83.9%) of the 604 individuals in this dataset were not observed to de-
velop arthritis mutilans and hence provided right-censored times, whereas 97 (16.1%) individuals
yielded interval-censored times. Figure 1 (b) contains a nonparametric estimate (Turnbull, 1976) and
pointwise 95% confidence bands for the cumulative distribution function of the time from onset of
psoriatic arthritis to arthritis mutilans. The estimate reflects a steadily increasing risk with roughly
23% of psoriatic arthritis patients developing the condition within 20 years of disease onset.

2 VARIABLE SELECTION WITH INTERVAL-CENSORED DATA

2.1 NOTATION AND THE PENALIZED COMPLETE DATA LIKELIHOOD

We let Ti denote the time from disease onset to the event of interest for individual i in a sample of
m independent individuals, i = 1, . . . ,m. We assume individuals are examined at assessment times
governed by a conditionally independent inspection process (Grüger et al., 1991) and let Ci = [Li, Ri)
denote the interval known to contain the event for subject i, i = 1, . . . ,m. For left-censored data
Li = 0, for right censored data Ri = ∞, and for interval censored data 0 < Li < Ri < ∞. We let
Xi = (Xi1, . . . , Xip)

′ denote a p× 1 covariate vector.
Interest lies in the relation between the covariates and the time of interest based on a proportional

hazards model with h(t|Xi; θ) = h0(t;α) exp(X ′iβ) where α parameterizes the baseline hazard, β =
(β1, . . . , βp)

′, and θ = (α′, β′)′. We adopt a weakly parametric piecewise constant baseline hazard
function which requires specification of the number and location of break-points, the times that the
baseline hazard changes value. If b0 = 0 and 0 < b1 < · · · < bK−1 < bK = ∞ denote K
break-points, the baseline hazard function is h0(s;α) = ρk = exp(αk), for s ∈ Bk = [bk−1, bk),
k = 1, . . . , K. The survivor function is then F(t|Xi; θ) = exp{−H(t|Xi; θ)} where H(t|Xi; θ) =∫ t
0
h(s|Xi; θ)ds. Given the covariate vector Xi and a conditionally independent inspection process,

the observed (partial) likelihood is

L(θ) ∝
m∏
i=1

{F(Li|Xi; θ)−F(Ri|Xi; θ)}

and the corresponding observed data log-likelihood is

logL(θ) ∝
m∑
i=1

log {F(Li|Xi; θ)−F(Ri|Xi; θ)} . (1)

When viewing this as a variable selection problem, we are specifically interested in identifying
the covariates for which the regression coefficients are non-zero. Many common methods of variable
selection are based on a penalized likelihood of the form

logLPEN(θ) =
1

m
logL(θ)− pγ,λ(β) , (2)

where the function pγ,λ(β) determines the extent of the penalty for each value of β, modulated by
the tuning parameters (γ, λ). Ridge regression (Hoerl and Kennard, 1970) is implemented with the
L2 penalty pγ,λ(β) = λ

∑p
j=1 β

2
j and the LASSO (Tibshirani, 1996) uses the L1 penalty pγ,λ(β) =

λ
∑p

j=1 |βj|; there is no tuning parameter γ in these penalty functions. The value of the scalar λ is
typically found by cross-validation (Shao, 1993) or generalized cross-validation (Golub et al., 1979).
The adaptive LASSO uses adaptively weighted L1 penalties of the form

pγ,λ(β) =

p∑
j=1

λj|βj| , (3)
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with small penalties λj chosen for large coefficients to reduce their shrinkage, and large penalties for
small coefficients to address the selection objective (Zou, 2006). One option is to set λj = λ/|β̃j|,
where β̃ = (β̃1, β̃2, . . . , β̃p)

′ is the maximum likelihood estimate (Zou, 2006, Zhang and Lu, 2007).
Alternatively, the penalties can be updated iteratively. In this case, at the (`+ 1)st implementation, λj
is set to λ(`)j = λ/|β̃(`)

j | where β̃(`) is obtained on the `th iteration; when ` = 0, we set λ(0)j = λ/|β̃j|
as in the first implementation (Fan and Lv, 2010). We investigate the iterative implementation of the
adaptive LASSO in the next section.

The smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001) is de-
fined by

p′γ,λ(β) = λ

p∑
j=1

{
I(|βj| ≤ λ) +

(γλ− |βj|)+
(γ − 1)λ

I(|βj| > λ)

}
,

where γ > 2 and y+ = I(y ≥ 0) × y. This penalty function is continuously differentiable on
(−∞, 0) ∪ (0,∞), but singular at 0 with its derivatives zero outside the range [−γλ, γλ]. Therefore,
the SCAD penalty results in “small” coefficients being set to zero, “moderate” coefficients being
shrunk towards zero, and “large” coefficients retained as they are. In principle, the optimal pair
(γ, λ) could be obtained using a two dimensional grid search by cross validation or generalized cross
validation. Empirical studies by Fan and Li (2001) suggest γ = 3.7 is a reasonable choice for a variety
of problems so we use this in what follows and select λ by (generalized) cross validation.

2.2 AN EXPECTATION-MAXIMIZATION ALGORITHM

LetDk(u) = I(u ∈ Bk) denote whether or not the time u is in the intervalBk andWk(u) =
∫ u
0
Ik(s)ds

denote the duration at risk in interval k over [0, u). If the event time ti is known, then under the
piecewise constant model of Section 2.1 and given a covariate vector Xi, the complete data log-
likelihood logLCOMP(θ) is

m∑
i=1

K∑
k=1

{Dk(ti)(αk +X ′iβ)−Wk(ti) exp(αk +X ′iβ)} . (4)

Let Zik` = I(k = `) indicate k = `, ` = 1, . . . , K and Zik = (Zik1, . . . , ZikK)′ denote the corre-
sponding vector of indicator functions, k = 1, . . . , K; thus Zi1 = (1, 0, . . . , 0)′, Zi2 = (0, 1, . . . , 0)′,
. . ., Zik = (0, 0, . . . , 1)′. If α = (α1, . . . , αK)′ we can write

logLCOMP(θ) =
m∑
i=1

K∑
k=1

{
Dk(ti)V

′
ikθ −Wk(ti) exp(V ′

ikθ)
}
. (5)

where Vik = (Z ′ik, X
′
i)
′ and θ = (α′, β′)′. Since the penalty in (2) is simply a function of the regres-

sion parameters, maximization of the penalized likelihood (2) can be achieved by applying the EM
algorithm to the penalized complete data likelihood

1

m
logLCOMP(θ)− pγ,λ(β) . (6)

THE E-STEP

We let Di = (Li, Ri, Xi) represent the observed data from individual i and D = {Di, i = 1, . . . ,m}
denote the observed data for the full sample. The conditional expectation of (6) at the (r + 1)st
iteration is evaluated as

QPEN(θ; θ(r)) = E
{
logLCOMP(θ)|D; θ(r)

}
− pγ,λ(β) , (7)
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where θ(r) is the estimate obtained from the rth iteration. The required conditional expectations are
therefore ∆̂

(r)
ik = E[Dk(Ti)|Di; θ

(r)] and ω̂(r)
ik = E[Wk(Ti)|Di; θ

(r)].
Let Cik = Ci∩Bk = [Lik, Rik) denote the sub-interval of the censoring interval Ci contained within

Bk. When Cik = ∅, the required expectations are relatively easy to compute since, for instance, it is
clear that Dk(ti) = 0 and ∆̂

(r)
ik = 0. Moreover, if bk < Li, then it is known that individual i was at

risk for the entire interval Bk so Wk(ti) = ω̂
(r)
ik = bk− bk−1, and if Ri < bk−1, then Wk(ti) = ω̂

(r)
ik = 0

since they are known to have failed prior to the start of interval Bk. If Cik 6= ∅,

∆̂
(r)
ik =

F(Lik|Xi; θ
(r))−F(Rik|Xi; θ

(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
(8)

ω̂
(r)
ik = max(Li − bk−1, 0) (9)

+

∫ min(Ri,bk)

max(Li,bk−1)

F(s|Xi; θ
(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
ds .

Given these results, (7) can be written more explicitly as

m∑
i=1

K∑
k=1

{
∆̂

(r)
ik V

′
ikθ − ω̂

(r)
ik exp(V ′

ikθ)
}
− pγ,λ(β) . (10)

THE M-STEP

The objective function (10) has the form of a penalized Poisson likelihood.The value θ(r+1) that
maximizes (10) can therefore be obtained using software for penalized Poisson regression by creating
a dataset comprised of pseudo-individuals indexed by (i, k). If Ri ≥ bk−1, then at the (r + 1)st
iteration this dataset should include a contribution from pseudo-individual (i, k) with pseudo-count
∆̂

(r)
ik and offset log ω̂

(r)
ik ; ifRi < bk−1 then no such contribution is required. The functionQPEN(θ; θ(r))

is then maximized with respect to θ using standard software for penalized Poisson regression (e.g. the
glmnet(.) function (R Core Team, 2013, Friedman et al., 2010) or SIS(.) (Fan et al., 2010)).

This optimization procedure is repeated iteratively with updated values of (8) and (9) in (10)
until the difference between successive estimates becomes small enough to satisfy the convergence
criterion. In our implementation the iterations were terminated when max

j
(|θ(r+1)

j − θ(r)j |/|θ
(r)
j |) < ε,

where ε = 10−6.
SELECTION OF THE OPTIMAL TUNING PARAMETER λOPT

The criterion for selecting the optimal λ is similar to traditional cross validation. Here we use G-fold
cross validation and so partition the dataset into G subsamples S1, . . . ,SG; we refer to Sg and S −Sg
as the gth test and training sets, g = 1, . . . , G. For the SCAD penalty we fixed γ = 3.7. For a given
λ, the cross-validation statistic is

ĈV (λ) =
G∑
g=1

{
logL(θ̂−g(λ))− logL−g(θ̂−g(λ))

}
. (11)

where L−g is the observed data likelihood (1) for the gth training dataset and θ̂−g(λ) is the estimate
for the gth training data, obtained through the penalized EM algorithm. The optimal λ maximizes
ĈV (λ).

Simulation studies reported in Supplementary Material: Web Appendix B assess the relative per-
formance of cross-validation, use of the Bayesian information criterion, and the sparse generalized
cross-validation (Bradic et al., 2011). While it is difficult to make general statements, the different
penalty functions yielded good performance under cross-validation (i.e. good sensitivity for pick-
ing up important factors) and small mean squared error (MSE) of the β parameter estimates, with a
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slightly higher tendency to claim association when there is none. Since there is often strong interest
in identifying important variables for further study, it is reasonable to place high importance on the
sensitivity and MSE criteria and so we adopt the standard cross-validation approach to selection of
the tuning parameter in the following empirical studies; this statistic is also used in the R package
glmnet.

3 DESIGN AND INTERPRETATION OF SIMULATION STUDIES

In this section, we report on the results of simulation studies designed to assess the performance
of the penalized EM algorithm for variable selection with interval-censored data. We consider a
sample size of m = 500 to correspond roughly to the size of the sample in the psoriatic arthri-
tis study. In the first setting, p = 100 and Xi ∼ MVNp(0,Σ) are i.i.d. where the (j, k) ele-
ment of Σ is Σjk = ρ|j−k|, with ρ = 0.5 to represent a strong autoregressive dependence, i =
1, 2, . . . ,m. The conditional hazard for Ti is based on a Weibull regression model where h(t|Xi; θ) =
κη(ηt)κ−1 exp(X ′iβ). We set βj = 0.5 for j = 1, . . . , 5 and j = 96, . . . , 100, so that high val-
ues of Xi,1, . . . , Xi,5, Xi,96, . . . , Xi,100 are associated with shorter times to the event, and βj = 0,
j = 6, . . . , 95 so that Ti ⊥ (Xi,6, . . . , Xi,95)|Xi,1, . . . , Xi,5, Xi,96, . . . , Xi,100. The elements of Xi

with non-zero coefficients were chosen to give both weak and strong dependence within the set of
important covariates.

We consider a study with follow-up planned over [0, 1], where for each of κ = 1.0 and 1.25, we
solve for η so that P (Ti < 1|Xi = 0; θ) = 0.95. We let Ni denote the number of assessments for
individual i, generated according to a Poisson distribution with mean µ, truncated to ensure at least
one follow-up assessment, given by

P (Ni = n|Ni ≥ 1;µ) =
µn exp(−µ)

n! {1− exp(−µ)}
, n = 1, . . . .

The ni inspection times 0 < ai1 < · · · < aini
< 1 were then generated uniformly over [0, 1]. The left

and right endpoints of the censoring interval for individual i are then Li = max(aij · I(aij < ti)) and
Ri = min(aij · I(aij > ti)) respectively. One hundred datasets were then simulated (nsim = 100)
for µ = 10 and 20 respectively.

For each dataset, variable selection was carried out based on the penalized EM (P-EM) algorithm
of Section 2.2 with the LASSO, adaptive LASSO (ALASSO) and SCAD penalty (γ = 3.7). For each
analysis, 5-fold cross validation was carried out to select the unknown tuning parameter. Analyses
were conducted based on proportional hazards models with a piecewise constant baseline hazards;
hazard functions with four pieces (PWC-4) where the break-points were located at the quartiles of the
baseline survival function. For comparison with a simple alternative approach, datasets were created
by an ad hoc mid-point imputation approach (Lindsey and Ryan, 1998) in which event times for
individuals with Ri < ∞ were take to be t∗i = (Li + Ri)/2. The resulting datasets were analysed
based on the proportional hazards assumption with piecewise constant baseline hazards with the same
break-points as used in the P-EM analyses; the corresponding results are labeled MID. The more
traditional methods of variable selection based on forward selection and backward elimination were
also considered under the true parametric Weibull regression model where we used p = 0.10 for
inclusion or removal of terms; the R function survreg (R Core Team, 2013, Therneau, 2013) was
used in this case as it handles parametric modeling with interval-censored data.

The number of variables selected was recorded. Among those that were truly associated with the
response, the average number selected across all simulated datasets is reported as the mean number
of true positive (TP) selections; the correct number of non-zero coefficients is given in parentheses in
the column headings as TP(10). Among the covariates having no (conditional) association with the
event time, the number selected for each dataset was averaged and reported as the mean number of
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Table 1: Empirical results for interval-censored data with normally distributed covariates (p = 100,
E(Xij) = 0, var(Xij) = 1 and corr(Xij, Xik) = ρ|j−k|, where ρ = 0.5) summarizing the number
of correctly (TP) and incorrectly (FP) selected variables along with the median and the standard
deviation (SD) of the mean squared error (MSE); P-EM denotes the analyses based on the proposed
penalized EM method and MID denotes an analysis based on a pseudo-dataset obtained by mid-point
imputation; the tuning parameter is selected by five-fold cross-validation.

µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 14.80 0.312 (0.126) 10.00 14.83 0.261 (0.105)
MID 10.00 13.05 1.346 (0.286) 10.00 12.05 0.912 (0.251)

ALASSO P-EM 10.00 0.12 0.057 (0.047) 10.00 0.07 0.047 (0.040)
MID 9.69 0.30 0.953 (0.328) 10.00 1.57 0.499 (0.201)

SCAD P-EM 9.98 0.36 0.059 (0.073) 9.99 0.24 0.050 (0.048)
MID 9.39 0.96 0.946 (0.354) 9.91 1.01 0.521 (0.213)

FORWARD 10.00 9.17 0.218 (0.088) 10.00 9.50 0.201 (0.082)
BACKWARD 10.00 15.35 0.322 (0.130) 10.00 14.80 0.289 (0.099)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 14.88 0.291 (0.118) 10.00 14.13 0.245 (0.109)
MID 10.00 15.28 1.037 (0.271) 10.00 12.94 0.685 (0.216)

ALASSO P-EM 9.99 0.23 0.055 (0.050) 10.00 0.08 0.045 (0.031)
MID 9.75 0.29 0.724 (0.327) 10.00 1.25 0.314 (0.160)

SCAD P-EM 9.98 0.29 0.055 (0.052) 9.99 0.13 0.044 (0.036)
MID 9.53 0.76 0.741 (0.336) 9.97 0.91 0.317 (0.167)

FORWARD 10.00 8.66 0.324 (0.089) 10.00 8.81 0.313 (0.089)
BACKWARD 10.00 14.35 0.383 (0.092) 10.00 14.17 0.363 (0.092)
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false positive (FP) selections; the number of truly independent covariates is given in parentheses as
FP(90). These statistics, along with the mean squared error (MSE = (β̂ − β)′Σ(β̂ − β)), and the
empirical standard errors of the mean square error, are reported in Table 1 based on 100 simulations.

All three penalty functions generally led to selection of the ten covariates associated with the re-
sponse for the P-EM and mid-point implementations, with slightly worse performance of the ALASSO
and SCAD penalty functions following mid-point imputation. The ALASSO and SCAD penalty
functions had the lowest FP values which were lower in the P-EM implementation than following
mid-point imputation. For any particular penalty function the MSE and the respective standard devia-
tion were always lower when the penalized EM algorithm was used rather than mid-point imputation.
These findings point to the advantages of the proposed method which include slightly lower FP values
and substantially lower MSE. The forward and backward selection algorithms also featured high FP
values. There were little differences between the findings with the exponential (κ = 1) and Weibull
(κ = 1.25) regression models.

In a second simulation study, we considered correlated binary covariates with p = 100 to more
closely represent the dimension of the HLA variables in the psoriatic arthritis study. We set P (Xij =
1) = 0.20, j = 1, . . . , 100. For the dependence structure we considered the covariates as arising in ten
independent blocks such that the correlation between covariates Xij and Xik within the same block
is corr(Xij, Xik) = ρ|j−k| with ρ = 0.2. Ten covariates were specified to have coefficients equal to
one such that the pairwise dependencies among them ranged from weak to strong; all others covariate
effects were set to zero. The results displayed in Table 2 again demonstrate that all methods tend to
select the covariates with the non-zero coefficients on average, although the methods based on the
adaptive LASSO and SCAD penalties have negligibly lower TP values. As in the previous simula-
tions, the false positive selection rate is lower with the adaptive LASSO and SCAD penalty functions
compared to the LASSO as well as the forward and backward selection algorithms. The respective
mean squared errors are always substantially lower in the penalized EM algorithms compared to the
respective implementation following mid-point imputation.

Figure 2 displays box plots of the errors in estimates (i.e. β̂k − βk) for four of the hundred
coefficients in the setting with binary covariates, κ = 1.25, and µ = 20; β5 and β95 (both zero) and
β22 and β96 (both 1.0). For each penalty function the estimates for the P-EM and mid-point imputation
methods are displayed, along with estimates from an analysis using the true failure time subject only
to administrative right censoring (RC) at C = 1; the latter analysis is only possible in a simulation
study, but is presented for comparison purposes since it provides a natural benchmark for assessing
the performance of the proposed algorithm for interval-censored data. It is important to note that
different datasets are used for the P-EM, mid-point imputation and RC analyses, with only the former
corresponding to the observed data.

In Supplementary Material: Web Appendix A, we present the results of further simulation studies
with multivariate normal and correlated binary covariates when p = 10. Here we consider analyses
with an exponential (time homogeneous) regression model and a piecewise constant baseline hazard
(4 pieces) model. The former is included to examine the effect of having a more elaborate (four
piece) baseline hazard when a single piece is sufficient as is the case when κ = 1.0, as well as the
effect of gross misspecification of the baseline hazard when κ = 1.25. When κ = 1.0 and the P-
EM algorithm is used, the PWC-4 model yields a very slightly higher MSE than was seen for the
exponential model, but the results suggest there is little price to pay when the piecewise constant
model is used unnecessarily.

When κ = 1.25, the piecewise constant model (PWC-4) had a slightly lower rate of false positive
selections and a lower MSE than the exponential model. A similar study was conducted with binary
covariates (p = 10) with findings that suggest that the adaptive LASSO and SCAD penalties again are
again preferable to the LASSO since they generally lead to smaller MSE; among these two methods
the relative performance tends to depend on the criteria used (TP, FP or MSE) but they appear broadly



Penalized Regression for Interval-Censored Times of Disease Progression 10

Table 2: Empirical results for interval-censored data with correlated binary covariates (p = 100,
E(Xij) = 0.2 and corr(Xij, Xik) = ρ|j−k| if Xij, Xik are in the same block as discussed in Section 3
and ρ = 0.2) summarizing the number of correctly (TP) and incorrectly (FP) selected variables along
with the median and the standard deviation (SD) of the mean squared error (MSE); P-EM denotes
the analyses based on the proposed penalized EM method and MID denotes an analysis based on a
pseudo-dataset obtained by mid-point imputation; the tuning parameter is selected by five-fold cross-
validation.

µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 12.49 0.304 (0.068) 10.00 15.30 0.201 (0.052)
MID 10.00 17.64 0.690 (0.117) 10.00 19.01 0.436 (0.086)

ALASSO P-EM 9.88 0.82 0.071 (0.067) 9.98 0.26 0.039 (0.033)
MID 9.18 0.78 0.491 (0.149) 9.83 0.49 0.255 (0.097)

SCAD P-EM 9.94 0.54 0.063 (0.063) 10.00 0.10 0.038 (0.031)
MID 9.02 0.96 0.505 (0.166) 9.79 0.40 0.254 (0.102)

FORWARD 10.00 11.14 0.244 (0.078) 10.00 11.09 0.183 (0.057)
BACKWARD 10.00 15.18 0.299 (0.083) 10.00 14.64 0.231 (0.064)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 12.04 0.277 (0.064) 10.00 15.65 0.186 (0.053)
MID 9.99 18.15 0.609 (0.100) 10.00 17.91 0.374 (0.074)

ALASSO P-EM 9.98 0.59 0.051 (0.042) 10.00 0.22 0.034 (0.023)
MID 9.59 0.60 0.404 (0.116) 9.97 0.26 0.186 (0.064)

SCAD P-EM 10.00 0.48 0.053 (0.038) 10.00 0.16 0.033 (0.021)
MID 9.54 0.93 0.414 (0.118) 9.95 0.42 0.186 (0.064)

FORWARD 10.00 10.86 0.198 (0.060) 10.00 10.81 0.180 (0.045)
BACKWARD 10.00 14.49 0.233 (0.064) 10.00 13.76 0.195 (0.052)
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Figure 2: Box plots of the error for the estimated regression coefficients β̂k−βk, k = 5, 22, 95, 96, for
each penalty function for datasets with correlated binary covariates (p = 100) with κ = 1.25, µ = 20.
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comparable overall.

4 HLA MARKERS AND RISK OF ARTHRITIS MUTILANS

Interest lies in identifying which among the 76 human leukocyte antigen markers are associated with
increased risk of developing arthritis mutilans from the time of diagnosis with psoriatic arthritis. The
first, second and third quartiles for the length of the closed censoring intervals for the 97 individuals
known to have developed arthritis mutilans were 2.50, 8.06 and 15.00 years respectively. These quan-
tiles are much wider than one might expect from a protocol in which radiological assessments are to
be scheduled every two years because of the variation between individuals in the propensity to attend
the clinic, as well as the potentially long delay from the onset of psoriatic arthritis to clinic entry; see
Figure 1 (a). We also remark that the proportion of individuals generating interval-censored times to
arthritis mutilans is smaller than that represented in the simulation study, and that the variability in the
width of the censoring intervals is considerable; the P-EM algorithm can accommodate this setting.

All models considered control for gender, age at onset of PsA, family history of psoriasis (yes/no),
and family history of psoriatic arthritis (yes/no). We report here on the results of applying the penal-
ized EM algorithm using the LASSO, adaptive LASSO and SCAD penalty functions. For comparison
purposes, results are also reported for a right-censored dataset obtained by using mid-point imputation
(MID) as examined in the simulation studies. Given the findings from the simulation studies, how-
ever, we restrict our attention primarily to the results form the penalized EM procedure. The standard
errors of the estimates are calculated using the bootstrap (Efron and Tibshirani, 1994); details are
given in Supplementary Material: Web Appendix C.

The break-points for the piecewise constant hazard functions were chosen based on the nonpara-
metric estimate of the marginal cumulative probability distribution function for the time from disease
onset to arthritis mutilans; see Figure 1 (b). The cumulative probability is about 35% over 28 years so
the break-points chosen were 6.5, 10.5, 18, and 22 years corresponding to the cumulative probabilities
of 7%, 14%, 21% and 28%.

The union of all HLA variables selected by any method are listed in Table 3, where it can be seen
that the SCAD penalty function with the P-EM procedure selected the fewest HLA markers including
HLA-A11, HLA-A29, HLA-B27 and HLA-DQB1-02; HLA-B27 and HLA-DQB1-02 are two factors
well known to incur increased risk of joint damage and we found that the presence of HLA-A11
and HLA-A29 has a protective effect. Under the P-EM algorithm the LASSO penalty function also
selected HLA-C04, and the corresponding implementation of the ALASSO further selected HLA-
A25, HLA-A30 and HLA-DRB1-10. With the ALASSO penalty the same variables were selected
whether the P-EM or mid-point imputation was used. For the other penalty functions more variables
were selected under mid-point imputation than with the P-EM procedure, as found in the empirical
investigations. The findings are in broad agreement with those from recent analyses (Chandran et al.,
2012) and a validation exercise is currently underway involving three independent cohorts from Spain,
Ireland and Newfoundland, Canada. The empirical correlations among the union set of all variables
selected by any method range from -0.105 to 0.198.

The top row of Figure 3 contain plots of the cross-validation statistic to reveal how the optimal
values of the tuning parameters are found for the LASSO, adaptive ALASSO and SCAD functions;
The plots in the bottom row of Figure 3 give the profile plots of the coefficients, showing the degree
of shrinkage and selection of covariates as a function of the tuning parameter. The stage at which
each variable is selected conveys the relative importance of the covariates; the optimal value of the
tuning parameter is designated by the vertical dotted lines.
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Table 3: HLA markers selected following variable selection with LASSO, ALASSO or SCAD penalty
in analysis of interval-censored progression data in psoriatic arthritis.

LASSO ALASSO SCAD

P-EM MID P-EM MID P-EM MID

HLA Marker β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β)

HLA-A11 -0.135 0.199 -0.280 0.263 -0.516 0.629 -0.556 0.836 -1.021 0.746 -0.922 0.947

HLA-A25 -0.232 0.288 -3.265 0.707 -3.229 1.529

HLA-A29 -0.216 0.254 -0.502 0.353 -1.388 1.284 -1.385 1.440 -1.605 2.376 -1.658 2.482

HLA-A30 0.101 0.260 0.494 0.417 0.494 0.525

HLA-B27 0.249 0.232 0.397 0.272 0.588 0.356 0.595 0.547 0.763 0.312 0.725 0.425

HLA-C04 -0.012 0.134 -0.170 0.233 -0.578 0.492 -0.569 1.086 -0.637 0.611

HLA-DQB1-02 0.134 0.164 0.270 0.205 0.514 0.307 0.503 0.540 0.609 0.276 0.623 0.415

HLA-DRB1-10 -2.713 1.007 -2.714 1.725
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Figure 3: Plots of the cross-validation statistics (top row) and shrinkage estimates of coefficients
(bottom row) from penalized regression of the PsA dataset based on a piecewise constant hazard
model (PWC-5) fitted via an EM algorithm with the LASSO, ALASSO or SCAD penalty.
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5 DISCUSSION

In this paper we have proposed a simple adaptation of existing algorithms for variable selection to
deal with interval-censored failure time data. A complete data log-likelihood formed based on a
proportional hazards model with a piecewise constant baseline hazard is augmented by including
one of several possible penalty terms. The simulation studies showed that the proposed algorithm
led to better performance for each penalty function compared to ad hoc methods using mid-point
imputation. We experienced no convergence problems with the penalized expectation-maximization
algorithm; Wu (1983) should help assess whether this can be relied upon generally. The adaptive
LASSO, as implemented here with iteratively updated weights, had the best performance. The relative
performance of the different penalty functions depended heavily on the method for selecting the
optimal tuning parameter in the penalty functions. It can be seen in Table B.2 of the Supplementary
Material: Web Appendix B, for example, that the performance of the LASSO in terms of FP was much
better when tuning parameter λwas chosen by BIC or SGCV. The purpose of this article is not to carry
out an exhaustive study of variable selection techniques based on the different penalty functions, but
further study of the various options for choosing the tuning parameters seems worthwhile.

An application to the PsA data was conducted, and the results of these analyses agree quite well
with previous analysis. Lockhart et al. (2014) point out the properties of coefficients obtained fol-
lowing variable selection are not well understood. In Supplementary Material: Web Appendix C
we explore techniques for variance estimation following variable selection, but we rely on bootstrap
standard errors in the application.

The piecewise exponential model is a simple, flexible and weakly parametric approach to dealing
with interval-censored data. We set K = 4, following the observation of Lawless and Zhan (1998)
that a modest number of pieces is usually sufficient, particularly when inferences about covariate
effects are of greatest interest. More flexible semiparametric methods could be considered in this
setting, including methods based on local likelihood (Betensky et al. 2002) or penalized splines (Cai
and Betensky, 2003). These, and other semiparametric methods, may offer a more suitable framework
for studying the limiting behaviour of these algorithms and the resultant estimators.

6 SUPPLEMENTARY MATERIAL

Web Appendices referenced in Sections 2 (Web Appendix B), 3 (Web Appendix A) and 4 (Web
Appendix C) are available with this paper at the Biometrics website on Wiley Online Library. The
R code implementing the proposed penalized expectation-maximization (P-EM) algorithm and an
example dataset discussed in Section 3 are available with this paper at the Biometrics website on
Wiley Online Library.
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WEB APPENDIX A: SUPPLEMENTARY SIMULATION STUDIES

Here we conduct simulation studies with a relatively small number of covariates (p = 10). The
generating procedure for the normally distributed covariates is the same as described in Section 3 with
p = 100 multivariate normal covariates. We set βj = 0.5, j = 1, 2, 9, 10 and βj = 0, j = 3, . . . , 6.
In Table A.1, we report the results of applying the penalized expectation-maximization algorithm (P-
EM) to proportional hazards models with exponential (EXP) and piecewise constant baseline hazards
with four pieces (PWC-4). We also report corresponding results following mid-point imputation when
the resulting data are treated as right-censored (MID). Traditional methods of variable selection based
on forward selection and backward elimination are also considered based on the correct parametric
Weibull regression model.

For the case of correlated binary covariates, the data are generated using a series of conditional
binary probability mass functions as described by Preisser et al. [3]. We set the marginal probabilities
such that E(Xij) = 0.05, j = 1, . . . , 5 and E(Xij) = 0.20, j = 6, . . . , 10, using a 10× 10 correlation
matrix with entry corr(Xij, Xik) = ρ|j−k|, where ρ = 0.3 or 0.6. The coefficients in the proportional
hazards model are set to βj = 1 for j = 1, 2, 9, 10 and βj = 0, j = 3, . . . , 6. The analyses are the
same as those used for the multivariate normal covariates; and Table A.2 shows the results which is
analogous to Table A.1.

When comparing the results between the midpoint imputed and interval-censored datasets with
the PWC-4 model in Table A.1 and Table A.2, there is generally a comparable ability to detecting
important covariates (TP) and number of false positive (FP) selections, but the proposed P-EM algo-
rithm leads to lower MSE. The results from traditional variable selection methods also feature high
mean squared errors and slightly higher FP values.

Figure A.1 contains box plots of the empirical estimation errors (β̂j − βj) for four of the ten coef-
ficients (β1 and β2 (both equal to 1) and β3 and β5 (both equal to zero)) when data are simulated with
κ = 1.25, µ = 10 and ρ = 0.3. We report on results for an exponential and piecewise constant base-
line hazard, for datasets featuring by mid-point imputation (MID), interval-censoring (P-EM), and for
the case where the actual event time is used, subject only to right-censoring (RC). The performance
of the piecewise constant model is generally better than the exponential model since κ 6= 1, and for
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this hazard function, the P-EM algorithm leads to performance which is more like the analysis using
the right-censored (RC) failure time; the latter analysis is only possible in a simulation study such as
this where the interval-censored time is actually known.

ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Model Penalty Method TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD)

Shape parameter: κ = 1

EXP LASSO P-EM 4.00 3.08 0.021 (0.012) 4.00 2.51 0.019 (0.013) 4.00 2.15 0.020 (0.014) 4.00 2.48 0.020 (0.012)
MID 4.00 2.73 0.077 (0.029) 4.00 2.38 0.033 (0.018) 4.00 2.09 0.117 (0.037) 4.00 2.59 0.044 (0.029)

ALASSO P-EM 4.00 0.52 0.012 (0.013) 4.00 0.30 0.012 (0.011) 4.00 0.45 0.014 (0.012) 4.00 0.68 0.012 (0.013)
MID 4.00 0.45 0.048 (0.023) 4.00 0.31 0.018 (0.013) 4.00 0.53 0.084 (0.029) 4.00 0.66 0.029 (0.018)

SCAD P-EM 4.00 0.51 0.010 (0.013) 4.00 0.40 0.012 (0.012) 4.00 0.33 0.013 (0.011) 4.00 0.61 0.011 (0.012)
MID 4.00 0.38 0.048 (0.023) 4.00 0.35 0.018 (0.012) 4.00 0.44 0.082 (0.029) 4.00 0.55 0.028 (0.019)

PWC-4 LASSO P-EM 4.00 3.05 0.026 (0.017) 4.00 2.54 0.020 (0.015) 4.00 2.10 0.027 (0.018) 4.00 2.38 0.022 (0.015)
MID 4.00 2.84 0.057 (0.030) 4.00 2.50 0.029 (0.019) 4.00 2.19 0.085 (0.038) 4.00 2.55 0.037 (0.024)

ALASSO P-EM 4.00 0.45 0.012 (0.012) 4.00 0.21 0.013 (0.014) 4.00 0.45 0.015 (0.013) 4.00 0.59 0.013 (0.014)
MID 4.00 0.29 0.029 (0.021) 4.00 0.34 0.015 (0.013) 4.00 0.38 0.052 (0.029) 4.00 0.56 0.019 (0.017)

SCAD P-EM 4.00 0.45 0.012 (0.013) 4.00 0.31 0.014 (0.014) 4.00 0.34 0.015 (0.013) 4.00 0.56 0.012 (0.013)
MID 4.00 0.34 0.029 (0.021) 4.00 0.46 0.015 (0.012) 4.00 0.38 0.052 (0.029) 4.00 0.59 0.020 (0.017)

FORWARD 4.00 0.57 0.014 (0.012) 4.00 0.46 0.017 (0.011) 4.00 0.45 0.017 (0.012) 4.00 0.47 0.014 (0.011)
BACKWARD 4.00 0.65 0.014 (0.012) 4.00 0.48 0.017 (0.011) 4.00 0.60 0.018 (0.012) 4.00 0.65 0.016 (0.011)

Shape parameter: κ = 1.25

EXP LASSO P-EM 4.00 2.80 0.057 (0.022) 4.00 2.53 0.057 (0.023) 4.00 2.26 0.063 (0.026) 4.00 2.50 0.064 (0.022)
MID 4.00 2.68 0.113 (0.034) 4.00 2.47 0.076 (0.025) 4.00 2.10 0.157 (0.039) 4.00 2.39 0.094 (0.029)

ALASSO P-EM 4.00 0.47 0.030 (0.017) 4.00 0.33 0.032 (0.017) 4.00 0.48 0.038 (0.021) 4.00 0.72 0.041 (0.018)
MID 4.00 0.38 0.082 (0.028) 4.00 0.35 0.047 (0.020) 4.00 0.57 0.123 (0.034) 4.00 0.55 0.068 (0.023)

SCAD P-EM 4.00 0.59 0.030 (0.018) 4.00 0.32 0.032 (0.017) 4.00 0.35 0.039 (0.021) 4.00 0.52 0.040 (0.018)
MID 4.00 0.60 0.082 (0.028) 4.00 0.42 0.049 (0.020) 4.00 0.47 0.123 (0.033) 4.00 0.53 0.067 (0.023)

PWC-4 LASSO P-EM 4.00 2.94 0.025 (0.015) 4.00 2.52 0.021 (0.016) 4.00 2.26 0.023 (0.017) 4.00 2.45 0.022 (0.014)
MID 4.00 3.04 0.043 (0.027) 4.00 2.78 0.028 (0.017) 4.00 2.27 0.066 (0.033) 4.00 2.54 0.031 (0.022)

ALASSO P-EM 4.00 0.42 0.010 (0.012) 4.00 0.27 0.012 (0.012) 4.00 0.44 0.015 (0.014) 4.00 0.58 0.011 (0.013)
MID 4.00 0.46 0.022 (0.020) 4.00 0.30 0.014 (0.011) 4.00 0.29 0.038 (0.023) 4.00 0.53 0.017 (0.014)

SCAD P-EM 4.00 0.48 0.010 (0.012) 4.00 0.28 0.013 (0.012) 4.00 0.41 0.016 (0.013) 4.00 0.55 0.011 (0.013)
MID 4.00 0.41 0.022 (0.020) 4.00 0.41 0.015 (0.011) 4.00 0.32 0.038 (0.023) 4.00 0.52 0.017 (0.015)

FORWARD 4.00 0.53 0.060 (0.022) 4.00 0.51 0.060 (0.022) 4.00 0.47 0.076 (0.028) 4.00 0.61 0.073 (0.024)
BACKWARD 4.00 0.69 0.061 (0.023) 4.00 0.51 0.060 (0.022) 4.00 0.62 0.078 (0.028) 4.00 0.72 0.072 (0.024)

Table A.1: Empirical results for interval-censored data with normally distributed covariates (p = 10,
E(Xij) = 0, V ar(Xij) = 1 and corr(Xij, Xik) = ρ|j−k|) summarizing the number of correctly (TP)
and incorrectly (FP) selected variables along with the median and the standard deviation (SD) of the
mean squared error (MSE); P-EM denotes the analyses based on the proposed penalized EM method
and MID denotes an analysis based on a pseudo-data set obtained by mid-point imputation; the tuning
parameter is selected by five-fold cross validation.
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ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Model Penalty Method TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD)

Shape parameter: κ = 1

EXP LASSO P-EM 4.00 2.48 0.293 (0.230) 3.99 2.77 0.263 (0.225) 3.99 2.43 0.292 (0.227) 4.00 2.12 0.256 (0.176)
MID 3.99 2.53 0.826 (0.353) 3.99 2.56 0.451 (0.217) 3.96 2.35 1.102 (0.481) 4.00 2.02 0.506 (0.276)

ALASSO P-EM 3.82 0.77 0.250 (0.486) 3.93 0.90 0.208 (0.313) 3.84 1.44 0.287 (0.300) 3.93 0.79 0.162 (0.409)
MID 3.79 0.73 0.611 (0.451) 3.92 0.88 0.263 (0.300) 3.64 0.83 0.968 (0.573) 3.88 0.63 0.317 (0.276)

SCAD P-EM 3.84 0.62 0.200 (0.465) 3.91 0.79 0.217 (0.402) 3.71 1.16 0.337 (0.339) 3.89 0.58 0.217 (0.300)
MID 3.78 0.45 0.573 (0.459) 3.94 0.77 0.261 (0.280) 3.61 0.79 0.961 (0.578) 3.84 0.58 0.331 (0.283)

PWC-4 LASSO P-EM 4.00 2.34 0.314 (0.239) 4.00 2.47 0.262 (0.217) 3.99 2.21 0.305 (0.238) 4.00 1.91 0.265 (0.193)
MID 4.00 2.43 0.602 (0.320) 3.99 2.48 0.363 (0.208) 3.97 2.35 0.844 (0.440) 4.00 1.97 0.381 (0.254)

ALASSO P-EM 3.79 0.65 0.276 (0.567) 3.92 0.82 0.223 (0.328) 3.80 1.13 0.309 (0.428) 3.88 0.73 0.215 (0.426)
MID 3.72 0.48 0.343 (0.635) 3.92 0.61 0.218 (0.297) 3.60 0.84 0.729 (0.735) 3.88 0.49 0.220 (0.397)

SCAD P-EM 3.85 0.69 0.210 (0.481) 3.95 0.89 0.213 (0.301) 3.75 1.18 0.314 (0.444) 3.89 0.69 0.236 (0.310)
MID 3.74 0.52 0.351 (0.599) 3.92 0.73 0.229 (0.295) 3.63 0.87 0.720 (0.638) 3.88 0.43 0.221 (0.275)

FORWARD 3.99 0.63 0.216 (0.318) 3.97 0.67 0.227 (0.272) 3.79 0.59 0.269 (0.335) 3.91 0.56 0.202 (0.339)
BACKWARD 3.99 0.64 0.216 (0.315) 3.97 0.69 0.227 (0.275) 3.79 0.78 0.275 (0.332) 3.91 0.81 0.223 (0.334)

Shape parameter: κ = 1.25

EXP LASSO P-EM 4.00 2.36 0.544 (0.254) 4.00 2.70 0.443 (0.222) 3.98 2.34 0.536 (0.275) 3.99 2.04 0.508 (0.217)
MID 4.00 2.32 0.994 (0.303) 4.00 2.56 0.613 (0.221) 3.96 2.17 1.303 (0.412) 3.99 2.19 0.771 (0.244)

ALASSO P-EM 3.89 0.77 0.296 (0.468) 3.93 0.77 0.252 (0.275) 3.82 1.19 0.383 (0.281) 3.90 0.74 0.312 (0.219)
MID 3.91 0.73 0.721 (0.343) 3.97 0.93 0.423 (0.238) 3.76 0.82 1.036 (0.443) 3.92 0.72 0.553 (0.238)

SCAD P-EM 3.88 0.54 0.270 (0.426) 3.94 0.64 0.247 (0.265) 3.75 0.97 0.428 (0.299) 3.88 0.70 0.314 (0.244)
MID 3.87 0.47 0.718 (0.317) 3.96 0.75 0.425 (0.243) 3.68 0.68 1.049 (0.385) 3.83 0.39 0.550 (0.291)

PWC-4 LASSO P-EM 3.99 2.15 0.284 (0.240) 3.99 2.32 0.249 (0.197) 3.98 2.18 0.308 (0.222) 3.99 1.86 0.245 (0.184)
MID 4.00 2.51 0.489 (0.251) 4.00 2.70 0.304 (0.181) 3.95 2.28 0.617 (0.383) 3.99 2.00 0.332 (0.217)

ALASSO P-EM 3.83 0.56 0.173 (0.561) 3.94 0.62 0.153 (0.307) 3.83 1.17 0.271 (0.293) 3.91 0.76 0.182 (0.267)
MID 3.88 0.57 0.279 (0.317) 3.95 0.64 0.159 (0.267) 3.69 0.70 0.480 (0.568) 3.88 0.72 0.210 (0.247)

SCAD P-EM 3.84 0.55 0.165 (0.514) 3.95 0.74 0.156 (0.299) 3.81 1.19 0.282 (0.292) 3.88 0.69 0.148 (0.280)
MID 3.85 0.62 0.288 (0.336) 3.94 0.57 0.159 (0.271) 3.70 0.66 0.480 (0.437) 3.88 0.63 0.189 (0.255)

FORWARD 3.96 0.61 0.326 (0.234) 3.98 0.70 0.303 (0.197) 3.80 0.61 0.372 (0.297) 3.92 0.59 0.345 (0.213)
BACKWARD 3.96 0.65 0.326 (0.233) 3.98 0.73 0.303 (0.198) 3.80 0.76 0.395 (0.289) 3.91 0.82 0.383 (0.233)

Table A.2: Empirical results for interval-censored data with correlated binary covariates (p = 10,
E(Xij) = 0.2 and corr(Xij, Xik) = ρ|j−k|) summarizing the number of correctly (TP) and incor-
rectly (FP) selected variables along with the median and the standard deviation (SD) of the mean
squared error (MSE); P-EM denotes the analyses based on the proposed penalized EM method and
MID denotes an analysis based on a pseudo-data set obtained by mid-point imputation; the tuning
parameter is selected by five-fold cross validation.
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Figure A.1: Box plots of the error for the estimated regression coefficients β̂k − βk, k = 1, 2, 3, 5, for
each penalty function for datasets with correlated binary covariates (p = 10) with κ = 1.25, µ = 10,
ρ = 0.3.
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WEB APPENDIX B: COMPARISON OF METHODS FOR CHOOSING THE OPTI-
MAL TUNING PARAMETER

The selection of the tuning parameter λ is an important step in analyses based on penalized likelihood;
when λ = ∞, none of the variables will be selected and when λ = 0, all of the variables will
be selected in the usual fashion. Classical model selection methods are often based on the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) and more recent strategies
have been based on cross-validation (CV) and generalized cross-validation (GCV). The traditional
G-fold CV statistic is defined as

ĈV (λ) =
G∑
g=1

[
logL(θ̂̂θ̂θ−g(λ))− logL−g(θ̂̂θ̂θ−g(λ))

]
where L−g is the likelihood for the gth training dataset and θ̂̂θ̂θ−g(λ) is the estimate for the gth training
data, obtained through the EM algorithm; the optimal λ maximizes ĈV (λ).

Bradic et al. [1] mentioned that the measure of information contained in the full Cox partial
likelihood is biased with respect to the number of nonzero elements and proper normalization is
required. They proposed a sparse approximation to the generalized cross-validation statistic (SGCV)
as

ŜGCV (λ) =
G∑
g=1

[
logL(θ̂̂θ̂θ−g(λ))

m (1− ŝ−g(λ)/m)2
− logL−g(θ̂̂θ̂θ−g(λ))

m−g (1− ŝ−g(λ)/m−g)2

]
where m−g is the sample size of the gth training dataset and ŝ−g(λ) is the number of non-zero coeffi-
cients. The optimal λ minimizes ŜGCV (λ).

Here we compare three methods of selecting tuning parameters: cross-validation (CV), Bayesian
information criterion (BIC) and sparse generalized cross-validation (SGCV). Table B.1 shows the
results of comparisons of three methods for proportional hazards models with a piecewise constant
baseline hazards with four pieces (PWC-4) for datasets with correlated binary covariates of dimension
p = 10 and Table B.2 shows the corresponding results for datasets with multivariate normal covariates
of dimension p = 100 .

From these two tables, we see that for the LASSO penalty, SGCV shows some improvements in
terms of a smaller number of incorrectly selected variables (FP), however, it also results in a smaller
number of correctly selected variables (TP) and a larger mean squared error (MSE).

Compared with SGCV, both BIC and CV show good performance in terms of selecting tuning
parameters for the ALASSO and SCAD penalties; BIC shows a smaller number of incorrectly selected
variables (FP) than CV for LASSO penalty. Since, the R package glmnet uses cross-validation,
we report the corresponding implementation of our algorithm using cross-validation to select tuning
parameter.
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ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Penalty Method TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD) TP(4) FP(6) MSE (SD)

Shape parameter: κ = 1

LASSO CV 4.00 2.34 0.314 (0.239) 4.00 2.47 0.262 (0.217) 3.99 2.21 0.305 (0.238) 4.00 1.91 0.265 (0.193)
BIC 3.99 0.86 0.447 (0.305) 3.98 0.99 0.329 (0.251) 3.94 0.96 0.406 (0.315) 3.99 0.92 0.287 (0.231)
SGCV 2.90 0.49 3.025 (1.411) 3.09 0.93 1.125 (1.463) 1.23 0.29 6.543 (2.290) 2.81 0.56 3.709 (1.982)

ALASSO CV 3.79 0.65 0.276 (0.567) 3.92 0.82 0.223 (0.328) 3.80 1.13 0.309 (0.428) 3.88 0.73 0.215 (0.426)
BIC 3.75 0.08 0.188 (0.502) 3.85 0.08 0.150 (0.373) 3.53 0.07 0.576 (0.355) 3.70 0.07 0.207 (0.377)
SGCV 1.74 0.03 2.659 (1.564) 1.39 0.06 3.511 (1.591) 1.86 0.06 3.272 (2.079) 1.96 0.10 3.223 (2.006)

SCAD CV 3.85 0.69 0.210 (0.481) 3.95 0.89 0.213 (0.301) 3.75 1.18 0.314 (0.444) 3.89 0.69 0.236 (0.310)
BIC 3.73 0.06 0.176 (0.505) 3.85 0.07 0.148 (0.373) 3.48 0.04 0.670 (0.358) 3.65 0.05 0.237 (0.366)
SGCV 1.50 0.00 3.516 (1.121) 1.60 0.02 3.511 (1.252) 1.44 0.02 3.914 (1.610) 1.38 0.03 3.908 (1.773)

Shape parameter: κ = 1.25

LASSO CV 3.99 2.15 0.284 (0.240) 3.99 2.32 0.249 (0.197) 3.98 2.18 0.308 (0.222) 3.99 1.86 0.245 (0.184)
BIC 3.99 0.82 0.364 (0.320) 3.98 0.91 0.303 (0.257) 3.94 0.68 0.371 (0.308) 3.98 0.83 0.269 (0.243)
SGCV 2.95 0.30 2.235 (1.409) 3.09 0.85 1.157 (1.475) 2.97 0.75 2.111 (1.905) 2.97 0.71 1.756 (1.952)

ALASSO CV 3.83 0.56 0.173 (0.561) 3.94 0.62 0.153 (0.307) 3.83 1.17 0.271 (0.293) 3.91 0.76 0.182 (0.267)
BIC 3.84 0.05 0.127 (0.361) 3.87 0.14 0.141 (0.341) 3.49 0.03 0.653 (0.349) 3.67 0.02 0.166 (0.306)
SGCV 1.83 0.02 2.624 (1.565) 1.44 0.02 3.511 (1.466) 1.33 0.08 3.846 (2.126) 2.29 0.07 3.203 (2.001)

SCAD CV 3.84 0.55 0.165 (0.514) 3.95 0.74 0.156 (0.299) 3.81 1.19 0.282 (0.292) 3.88 0.69 0.148 (0.280)
BIC 3.81 0.06 0.130 (0.380) 3.86 0.14 0.141 (0.356) 3.48 0.02 0.656 (0.402) 3.66 0.01 0.182 (0.308)
SGCV 1.53 0.02 3.518 (1.314) 1.58 0.02 3.511 (1.326) 1.41 0.00 3.914 (1.564) 1.42 0.02 3.903 (1.557)

Table B.1: Comparison of three methods of choosing tuning parameter: cross-validation (CV),
Bayesian information criterion (BIC) and sparse generalized cross-validation (SGCV). Analyses were
based on interval-censored responses with correlated binary covariates (p = 10) by using proportional
hazards models with a piecewise constant baseline hazards with four pieces (PWC-4) and results are
summarized in terms of the number of correctly (TP) and incorrectly (FP) selected variables and the
median and standard deviation of the mean squared error (MSE).
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µ = 10 µ = 20

Penalty Method TP (10) FP (90) MSE (SD) TP (10) FP (90) MSE (SD)

Shape parameter: κ = 1

LASSO CV 10.00 14.80 0.312 (0.126) 10.00 14.83 0.261 (0.105)
BIC 10.00 3.34 0.624 (0.199) 10.00 3.94 0.512 (0.184)
SGCV 9.72 5.36 1.405 (0.823) 9.79 5.12 1.246 (0.692)

ALASSO CV 10.00 0.12 0.057 (0.047) 10.00 0.07 0.047 (0.040)
BIC 10.00 0.72 0.084 (0.072) 10.00 0.84 0.076 (0.057)
SGCV 8.25 43.21 1.178 (1.329) 8.55 46.99 0.992 (1.011)

SCAD CV 9.98 0.36 0.059 (0.073) 9.99 0.24 0.050 (0.048)
BIC 10.00 0.84 0.082 (0.081) 10.00 0.79 0.068 (0.064)
SGCV 9.55 58.93 1.275 (0.690) 9.51 53.23 0.940 (0.784)

Shape parameter: κ = 1.25

LASSO CV 10.00 14.88 0.291 (0.118) 10.00 14.13 0.245 (0.109)
BIC 10.00 3.37 0.604 (0.184) 10.00 3.78 0.501 (0.164)
SGCV 9.81 0.96 1.277 (0.707) 9.64 2.70 1.227 (0.877)

ALASSO CV 9.99 0.23 0.055 (0.050) 10.00 0.08 0.045 (0.031)
BIC 10.00 0.59 0.068 (0.075) 10.00 0.90 0.071 (0.047)
SGCV 9.54 62.70 1.024 (0.766) 7.14 29.37 0.983 (1.501)

SCAD CV 9.98 0.29 0.055 (0.052) 9.99 0.13 0.044 (0.036)
BIC 10.00 0.62 0.070 (0.085) 10.00 0.90 0.069 (0.058)
SGCV 7.45 49.44 1.207 (1.987) 8.93 35.06 0.716 (0.735)

Table B.2: Comparison of three methods of choosing tuning parameter: cross-validation (CV),
Bayesian information criterion (BIC) and sparse generalized cross-validation (SGCV). Analyses were
based on interval-censored responses with multivariate normal covariates (p = 100) by using propor-
tional hazards models with a piecewise constant baseline hazards with four pieces (PWC-4) and re-
sults are summarized in terms of the number of correctly (TP) and incorrectly (FP) selected variables
and the median and standard deviation of the mean squared error (MSE).
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WEB APPENDIX C: VARIANCE ESTIMATION

It is difficult to obtain an accurate estimate of the standard errors of the penalized estimator since
the estimate is a non-linear and non-differentiable function of the responses, even for a fixed tuning
parameter. One can, however, estimate the variance by using approximations or the bootstrap.

For the LASSO penalty, Tibshirani [4, 5] suggested estimating standard errors using either the
bootstrap with either a fixed or an unfixed tuning parameter, or using an approximate form derived
from ridge regression. For the SCAD penalty, Fan and Li [2] suggested that for moderate sample
sizes, a sandwich-type variance formula derived from a local quadratic approximation (LQA) could
be used for the covariance matrix, with modifications for large sample sizes. For the adaptive LASSO
penalty, Zou [6] also used a LQA sandwich formula to approximate the variance of the estimators
from penalized likelihood.

In the main paper, we propose an approach to variable selection for interval-censored failure
times via a piecewise exponential model; it is not easy to derive an approximate approach to estimate
standard errors. Therefore, we have employed a bootstrap approach to calculate standard errors of
the penalized estimators. We draw a random sample DDD∗ of size m = 500 with replacement from
the original dataset DDD and we can obtain the penalized estimates βββ∗ = (β∗1 , . . . , β

∗
p) from DDD∗ by

using the proposed method with tuning parameter fixed at the optimal value that was determined
from the original dataset DDD. We repeat this process 500 times and get 500 bootstrap penalized esti-
mates βββ∗(1), . . . ,βββ∗(500), so the bootstrap standard errors of the penalized estimators will be given by
SE(β∗(1)1 , . . . , β

∗(500)
1 ), . . . ,SE(β∗(1)p , . . . , β

∗(500)
p ). Table C.1 shows the empirical biases, the average

of the bootstrap standard errors, the empirical standard errors for the simulated datasets with p = 10,
κ = 1.25, µ = 10, ρ = 0.3 for both multivariate normal covariates and multivariate binary covariates.
We can see that for the non-zero coefficients (β1, β2, β9, β10), the ASE and ESE agree well; for the
zero coefficients, the ASE tends to be bigger than the ESE. We note that although we can calculate the
standard errors based on the bootstrap or approximate approaches, it remains challenging to conceive
how one would construct a confidence interval or compute a p−value based on a standard Wald-based
pivotal or test statistic.
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Penalty β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Multivariate Normal Covariate
LASSO EBIAS -0.042 -0.043 0.008 -0.004 -0.002 0.000 0.005 -0.004 -0.052 -0.048

ASE 0.057 0.057 0.035 0.036 0.036 0.035 0.036 0.036 0.058 0.057
ESE 0.058 0.050 0.028 0.031 0.035 0.029 0.037 0.034 0.053 0.048

ALASSO EBIAS 0.004 0.003 0.003 -0.001 0.001 0.000 0.002 -0.003 -0.006 -0.003
ASE 0.061 0.062 0.043 0.045 0.046 0.044 0.045 0.045 0.062 0.060
ESE 0.059 0.052 0.018 0.023 0.027 0.024 0.034 0.028 0.052 0.047

SCAD EBIAS 0.004 0.002 0.005 -0.001 0.001 0.001 0.001 -0.003 -0.006 -0.003
ASE 0.061 0.062 0.047 0.047 0.048 0.047 0.047 0.048 0.063 0.061
ESE 0.059 0.052 0.020 0.021 0.029 0.020 0.036 0.030 0.052 0.048

Multivariate Binary Covariate
LASSO EBIAS -0.155 -0.231 0.033 0.032 0.020 0.008 0.003 0.005 -0.097 -0.100

ASE 0.240 0.249 0.142 0.135 0.139 0.069 0.073 0.075 0.132 0.133
ESE 0.258 0.258 0.122 0.118 0.100 0.059 0.057 0.075 0.132 0.139

ALASSO EBIAS -0.011 -0.071 0.018 0.036 0.016 0.005 0.001 -0.001 0.012 0.010
ASE 0.259 0.273 0.182 0.170 0.175 0.094 0.096 0.095 0.143 0.141
ESE 0.392 0.372 0.148 0.146 0.127 0.050 0.061 0.084 0.140 0.141

SCAD EBIAS -0.002 -0.071 0.018 0.031 0.007 0.005 -0.002 -0.003 0.013 0.009
ASE 0.259 0.272 0.182 0.179 0.181 0.094 0.099 0.099 0.142 0.141
ESE 0.381 0.366 0.145 0.139 0.119 0.042 0.053 0.083 0.142 0.141

Table C.1: Variance estimation by bootstrap for the simulated dataset with multivariate normal co-
variates and multivariate binary covariates for κ = 1.25, µ = 10, ρ = 0.3.
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