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Abstract

This thesis was originally motivated by considering vector space analogues of
problems in extremal set theory, but our main results concern colouring a graph
that is intimately related to these vector space analogues. The vertices of the
q-Kneser graph are the k-dimensional subspaces of a vector space of dimension
v over Fq, and two k-subspaces are adjacent if they have trivial intersection.
The new results in this thesis involve colouring the q-Kneser graph when k = 2.
There are two cases. When k = 2 and v = 4, the chromatic number is q2 + q. If
k = 2 and v > 4, the chromatic number is qv−1−1

q−1 . In both cases, we characterise
the minimal colourings. We develop some theory for colouring the q-Kneser
graph in general.
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Chapter 1

Introduction

Many problems in extremal set theory ask for the maximum size of a family
of sets that satisfy certain restrictions on the intersections of its members. By
replacing the word “set” with “subspace,” we can ask a similar question about
a family of subspaces of a vector space. This thesis is motivated by these vector
space analogues of problems in extremal set theory.

An interesting graph associated with extremal set theory is the Kneser graph.
Its vertices are the k-subsets of a fixed set of size v and two k-subsets are adjacent
if they are disjoint. Classical problems in extremal set theory, such as the Erdos-
Ko-Rado theorem, can be rewritten as questions about the size and structure
of independent sets in the Kneser graph.

In 1955, Martin Kneser conjectured that when v ≥ 2k the chromatic number
of the Kneser graph is v− 2k+ 2. The problem remained open for twenty three
years until Lovász found a proof that surprisingly uses algebraic topology.

Kneser’s long standing conjecture motivates the problem of colouring the
q-Kneser graph, the vector space analogue of the Kneser graph, which is con-
structed as follows. The vertices of the q-Kneser graph are the k-dimensional
subspaces of a vector space of dimension v over Fq, and two k-subspaces are
adjacent if they have trivial intersection. We need only consider the case k ≥ 2
and v ≥ 2k since when k = 1, the q-Kneser graph is complete and when v < 2k,
the q-Kneser graph is empty. The new results in this thesis involve colouring the
q-Kneser graph when k = 2 and will appear in [3]. There are two cases. When
k = 2 and v = 4, the chromatic number is q2 + q. If k = 2 and v > 4, the chro-
matic number is qv−1−1

q−1 . In both cases, we characterise the minimal colourings.
We develop some theory for colouring the q-Kneser graph in general.

1.1 The Kneser Graphs

The Kneser graph, Kv:k, has as its vertices the k-subsets of a fixed set of size v,
and two k-subsets are adjacent if they are disjoint. The Kneser graph appears in
many different combinatorial contexts, and we highlight three of its roles here.
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1. INTRODUCTION

First, the Kneser graph is related to extremal set theory; classical problems in
extremal set theory, such as the Erdos-Ko-Rado theorem, can be rewritten as
questions about the size and structure of independent sets in the Kneser graph.
Second, the Kneser graphs play the same role in fractional graph colouring as
the complete graphs do in graph colouring; understanding homomorphisms into
the Kneser graph helps us obtain a lower bound on the chromatic number of
any graph. Third, determining the chromatic number of the Kneser graph is in
itself an interesting problem, which remained open for twenty three years until
Lovasz found an ingenious proof using algebraic topology.

In extremal set theory, one common restriction on a family of sets is that it be
intersecting, that is, any two members pairwise intersect. The Erdős-Ko-Rado
and Hilton-Milner theorems, Theorem 1.1.1 and Theorem 1.1.2 respectively,
are two important results in extremal set theory about intersecting families of
k-subsets of a fixed v-set.

1.1.1 Theorem (Erdős-Ko-Rado). Suppose A is an intersecting family of
k-subsets of a v-set where v ≥ 2k. Then

|A| ≤
(
v − 1
k − 1

)
. (1.1.1)

Moreover, when v > 2k, equality holds if and only if A consists of the k-subsets
that contain a particular point.

An intersecting family is called trivial if all its members contain a fixed
element. The Erdős-Ko-Rado theorem asserts that the bound (1.1.1) is tight
only for trivial families. The Hilton-Milner theorem, Theorem 1.1.2, is concerned
with the maximum size of non-trivial intersecting families.

1.1.2 Theorem (Hilton-Milner). If v > 2k then the maximum size of a
non-trivial intersecting family of k-subsets of a v-set is(

v − 1
k − 1

)
−
(
v − k − 1
k − 1

)
+ 1.

Since two k-sets in the Kneser graph Kv:k are adjacent if they are disjoint,
an intersecting family of k-subsets of a v-set is an independent set in Kv:k.
Thus, the Erdős-Ko-Rado theorem asserts that α(Kv:k) =

(
v−1
k−1

)
and gives the

structure of maximal independent sets. Similarly, the Hilton-Milner theorem
can be rephrased in terms of independent sets of Kneser graphs.

Next we consider the Kneser graph’s relation to graph colouring. A colouring
of a graph gives an upper bound on its chromatic number. Often, the difficulty
in determining a graph’s chromatic number is to demonstrate a lower bound.
A graph’s fractional chromatic number, χ∗(G), is a good lower bound on its
chromatic number [7]. For the fractional chromatic number, the Kneser graphs
have a role analogous to that of the complete graphs for the ordinary chromatic
number.
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1.2. THE q-KNESER GRAPHS

1.1.3 Theorem. For any graph G, we have

χ∗(G) = min{v/k : G→ Kv:k}.

Consequently, studying graph homomorphisms into the Kneser graph (and
hence studying the chromatic number of Kneser graphs) is useful for finding the
chromatic number of any graph.

Determining the chromatic number of the Kneser graph, Kv:k, remained an
open problem for twenty-three years until Lovász gave a proof using Borsuk’s
theorem from algebraic topology.

1.1.4 Theorem.
χ(Kv:k) = v − 2k + 2.

Finding an optimal colouring of the Kneser graph, however, is easy. If α is a
k-subset of Kv:k and its largest element is greater than 2k, define this element
to be the colour of α. Thus, the k-subsets not contained in {1, . . . , 2k} can be
coloured with v− 2k colours. The k-subsets not already coloured induce a copy
of K2k:k, which is bipartite, so the remaining k-subsets can be coloured with
two colours. Thus we have coloured the Kneser graph Kv:k with v − 2k + 2
colours, and obtained an upper bound on its chromatic number.

Giving a lower bound on the Kneser graph’s chromatic number is not easy
since many of the classical lower bounds fail. Consider the Kneser graph
K3k−1:k. It’s chromatic number is large, χ(K3k−1:k) = k + 1, but it’s clique
number is small, ω(K3k−1:k) = 2, because it is triangle-free. Moreover, its inde-
pendence number, α(K3k−1:k) =

(
3k−1
k−1

)
, is large and so the corresponding lower

bound for the chromatic number

|V (K3k−1:k)|
α(K3k−1:k)

=

(
3k−1
k

)(
3k−1
k−1

) =
3k − 1
k

< 3

becomes further and further away from the actual value k+1 as k becomes large.
The fractional chromatic number, which can be a very good lower bound for
the chromatic number, is also much smaller than the chromatic number for the
Kneser graphs. Since Kv:k is vertex-transitive, its fractional chromatic number
is χ∗(Kv:k) = v/k, which is small in comparison to v − 2k + 2.

We see that the colouring problem for Kneser graphs is very interesting.
Moreover, all known proofs of Theorem 1.1.4 use some form of Borsuk’s the-
orem from algebraic topology, so there are no purely combinatorial proofs of
Theorem 1.1.4.

1.2 The q-Kneser Graphs

The vertices of the q-Kneser graph qKv:k are the k-dimensional subspaces of a
vector space of dimension v over Fq, and two k-subspaces are adjacent if they
have trivial intersection. The q-Kneser graph is useful for studying the vector
space analogues of the Erdős-Ko-Rado and Hilton-Milner theorems. Moreover,
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1. INTRODUCTION

as we will see in the next chaper, the q-Kneser graph could potentially provide
new insights into the Kneser graph. Our research in colouring the q-Kneser
graphs is motivated by the Kneser graph’s role in graph colouring as well as
the difficulty of proving Kneser’s conjecture. We hope to gain further intuition
about colouring the Kneser graphs by colouring their vector space analogues,
the q-Kneser graphs.

The vector space analogue of the Erdős-Ko-Rado problem is to determine
the maximum size of an intersecting family of k-subspaces of Fvq . Since two
k-subspaces are adjacent in qKv:k if they are disjoint, an intersecting family
of k-subspaces of Fvq is an independent set in qKv:k. An intersecting family of
k-spaces is trivial if all k-spaces contain a fixed one-dimensional vector space.
Similarly, the vector space analogue of the Hilton-Milner theorem is to determine
the maximum size of a non-trivial intersecting family of k-subspaces of Fvq .
Understanding the size and structure of independent sets in the q-Kneser graphs
is therefore useful for studying vector space analogues of problems in extremal
set theory.

We now consider how the q-Kneser graphs could provide new information
about the Kneser graphs. Formulas that enumerate combinatorial properties of
the q-Kneser graphs, for example the number of vertices or their eigenvalues,
involve the value q. Often, substituting q = 1 into these formulas yields the
corresponding values for the Kneser graphs.

Finally, we summarize our results on colouring q-Kneser graphs. Godsil and
Royle show in [3] that if v > 2k, then

χ(qKv:k) ≤ qv−k+1 − 1
q − 1

and if v = 2k, then
χ(qK2k:k) ≤ qk + qk−1.

We prove that the stated bounds are tight when k = 2, where we can also
characterise the minimal colourings. When v ≥ 5 these are essentially unique,
but when v = 4 there are a number of colourings.
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Chapter 2

Analogies between the
Kneser and q-Kneser graphs

We define the q-binomial coefficient, a generalisation of the binomial coefficient.
We show that the familiar binomial identities can be generalised to q-binomial
identities. When q is the order of a finite field Fq, the q-binomial coefficients
play the same role in the enumeration of subspaces of Fnq that the binomial
coefficients play in the enumeration of subsets. As a result, many properties of
the Kneser and q-Kneser graphs have analogous expressions in terms of binomial
coefficients and q-binomial coefficients respectively.

2.1 The Binomial and q-Binomial Coefficients

To explain the connections between the Kneser and q-Kneser graphs, we will
define a generalisation of the binomial coefficient. The binomial coefficient

(
n
k

)
is defined by (

n

k

)
:=

n!
k!(n− k)!

.

For a variable q and an integer n, define

[n] :=
qn − 1
q − 1

= qn−1 + qn−2 + . . .+ q + 1.

The q-factorial function [n]! is defined inductively by [0]! = 1 and

[n+ 1]! := [n+ 1][n]!.

We define the q-binomial coefficient
[
n
k

]
by[

n

k

]
:=

[n]!
[k]![n− k]!

.
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2. ANALOGIES BETWEEN THE KNESER AND q-KNESER GRAPHS

The q-binomial coefficients are a generalisation of the binomial coefficients
because when q = 1, we have [n] = n, so

[
n
k

]
=
(
n
k

)
. We now explore the

relationship between the binomial coefficient and its q-analogue. For example,
the binomial coefficient

(
n
k

)
equals the number of k-subsets of a fixed n-set.

We will show in Lemma 2.1.1 that when q is the order of a finite field Fq, the
q-binomial coefficient

[
n
k

]
equals the number of k-dimensional subspaces of the

n-dimensional vector space Fnq .

2.1.1 Lemma. When q is the order of a finite field Fq, the q-binomial coefficient[
n
k

]
equals the number of k-dimensional subspaces of the n-dimensional vector

space Fnq .

Proof. There are (qn−1)(qn−q)...(qn−qk−1) ways to choose k-tuple independent
vectors from F

n
q . Since a given k-space has (qk−1)(qk− q)...(qk− qk−1) distinct

ordered bases, the number of k-dimensional subspaces of Fnq is

(qn − 1)(qn − q) . . . (qn − qk−1)
(qk − 1)(qk − q) . . . (qk − qk−1)

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

=
[n][n− 1] . . . [n− k + 1]

[k]!

=
[n][n− 1] . . . [n− k + 1]

[k]!
[n− k]!
[n− k]!

=
[n]!

[k]![n− k]!
=
[
n

k

]
.

Thus, when q is the order of a finite field Fq, the q-binomial coefficient
[
n
k

]
equals

the number of k-dimensional subspaces of the n-dimensional vector space Fnq .

One interpretation of the binomial coefficient
(
n
k

)
is as the coefficient of

xkyn−k in the expansion of (x+ y)n:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k. (2.1.1)

It is well known that the q-binomial coefficient
[
n
k

]
can be viewed as the co-

efficient of xkyn−k in a noncommutative binomial formula; a proof is given in
[10].

2.1.2 Theorem. Let x and y be elements satisfying the commutation relation
yx = qxy, where q is a number commuting with both x and y, then

(x+ y)n =
n∑
k=0

[
n

k

]
xkyn−k. (2.1.2)
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2.1. THE BINOMIAL AND q-BINOMIAL COEFFICIENTS

When q = 1, the variables x and y commute so (2.1.2) reduces to (2.1.1).
As an example of elements satisfying such a commutation relation for q 6= 1,
consider the linear operators, µx and σq, on the space of polynomials whose
actions on a polynomial f(x) are

µx[f(x)] = xf(x), σq[f(x)] = f(qx).

For any f(x) we have

σqµx[f(x)] = σq[xf(x)] = qxf(qx) = qµxσq[f(x)].

Therefore
σqµx[f(x)] = qµxσq.

A familiar identity involving binomial coefficients is Pascal’s Identity,(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
, 1 ≤ k ≤ n− 1. (2.1.3)

Often, naively changing binomial coefficients in an identity to q-binomial coef-
ficients yields a q-identity: for example,(

n

k

)
=
(

n

n− k

)
,

[
n

k

]
=
[

n

n− k

]
for 0 ≤ k ≤ n. In this case, however, changing binomial coefficients to q-binomial
coefficients does not give a q-Pascal identity. When q 6= 1, we have[

2
1

]
= 1 + q 6= 2 =

[
1
0

]
+
[
1
1

]
.

As we will show in Theorem 2.1.3, there are interestingly two q-Pascal identities.
We provide a proof in the case where q is the order of a finite field Fq. Again,
when q = 1, both q-Pascal identities (2.1.4) and (2.1.5) reduce to Pascal’s
identity (2.1.3).

2.1.3 Theorem. Let q be the order of a finite field Fq. There are two q-Pascal
identities: [

n

k

]
= qn−k

[
n− 1
k − 1

]
+
[
n− 1
k

]
(2.1.4)

and [
n

k

]
=
[
n− 1
k − 1

]
+ qk

[
n− 1
k

]
(2.1.5)

where 1 ≤ k ≤ n− 1.

Proof. Let H be an (n− 1)-subspace of Fnq . To show the first identity, (2.1.4),
we partition the k-subspaces of Fnq into k-subspaces that are contained in H and
k-subspaces that aren’t contained in H. By Lemma 2.1.1, since H is isomorphic
to Fn−1

q , there are
[
n−1
k

]
k-spaces contained in H. If a k-subspace does not lie

7



2. ANALOGIES BETWEEN THE KNESER AND q-KNESER GRAPHS

in H, then it intersects H in a (k − 1)-space. By Lemma 2.1.1, there are
[
n−1
k−1

]
(k − 1)-subspaces in H, each of which is contained in[

n− (k − 1)
1

]
=
[
n− k + 1

1

]
=
qn−k+1 − 1

q − 1

k-subspaces of V and[
(n− 1)− (k − 1)

1

]
=
[
n− k

1

]
=
qn−k − 1
q − 1

k-subspaces of H. Therefore, each (k − 1)-subspace of H is contained in qn−k

k-subspaces of V that are not contained in H. We consequently have (2.1.4):[
n

k

]
= qn−k

[
n− 1
k − 1

]
+
[
n− 1
k

]
.

By the symmetry property of the coefficients,
[
n
k

]
=
[
n

n−k
]
, we have[

n

k

]
=
[

n

n− k

]
= qn−(n−k)

[
n− 1

n− k − 1

]
+
[
n− 1
n− k

]
= qk

[
n− 1
k

]
+
[
n− 1
k − 1

]
,

which gives the second identity, (2.1.5).

We can use induction and Pascal’s identity to show that the binomial coef-
ficient

(
n
k

)
is an integer. Similarly, we can use induction and Theorem 2.1.3 to

show that the q-binomial coefficient
[
n
k

]
is a polynomial in q. We have the follow-

ing combinatorial interpretation of the coefficients of the q-binomial coefficient[
n
k

]
as a polynomial in q; a proof is given in [12].

2.1.4 Theorem. Let [
n

k

]
=
k(n−k)∑
`=0

a`q
`.

Then the coefficient a` is the number of partitions of ` whose Ferrers diagrams
fit in a box of size k × n− k.

When we set q = 1 in the statement of Theorem 2.1.4, we obtain as a
corollary that there are

(
n
k

)
partitions whose Ferrers diagrams fit in a box of

size k × n− k.

2.2 From q-Kneser to Kneser

As we saw in the last section, we can recover binomial identities from their
corresponding q-binomial identities by setting q = 1. In this section, we ask
to what extent does setting q = 1 in results about the q-Kneser graphs yield
information about the Kneser graphs? It is easy to see that the Kneser graph
Kv:k has

(
v
k

)
vertices and is regular with valency

(
v−k
k

)
. In Lemma 2.2.1, we

show that the q-Kneser graph, qKv:k, has
[
v
k

]
vertices and is regular with valency

qk
2[v−k

k

]
.

8



2.2. FROM q-KNESER TO KNESER

2.2.1 Lemma. The q-Kneser graph qKv:k has
[
v
k

]
vertices and is regular with

valency qk
2[v−k

k

]
.

Proof. The vertices of the q-Kneser graph qKv:k are the k-dimensional subspaces
of Fvq . By Lemma 2.1.1, the q-Kneser graph has

[
v
k

]
vertices.

Now we show that the q-Kneser graph is regular and we determine its valency.
Let α be a vertex of qKv:k; it is a k-dimensional subspace and contains qk

elements of Fvq . There are (qv − qk)(qv − qk+1)...(qv − q2k−1) ways to choose
k-tuple independent vectors in Fvq that are not in α. Since a given k-space has
(qk − 1)(qk − q)...(qk − qk−1) distinct ordered bases, there are

(qv − qk)(qv − qk+1)...(qv − q2k−1)
(qk − 1)(qk − q)...(qk − qk−1)

= qk
2
[
v − k
k

]
k-spaces in Fvq that have trivial intersection with α. Consequently, the q-Kneser
graph qKv:k is regular with valency qk

2[v−k
k

]
.

When q = 1, the expressions for the number of vertices and valency of the
q-Kneser graph qKv:k reduce to those of the Kneser graph Kv:k, respectively(
v
k

)
and

(
v−k
k

)
. Many other parameters of the q-Kneser graphs, for example

the eigenvalues of the adjacency matrix and their multiplicities, are given by
expressions that involve q-binomial coefficients and which reduce to those of the
Kneser graph when we set q = 1. Theorem 2.2.2 appears in [4] and a proof of
Theorem 2.2.3 can be found in [7].

2.2.2 Theorem. The eigenvalues of the q-Kneser graph qKv:k are the integers

λi = (−1)iqk(k−i)
[
v − r − i
r − i

]
, 0 ≤ i ≤ k

occuring with multiplicities

m0 = 1, mi =
[
v

i

]
−
[
v

i− 1

]
.

2.2.3 Theorem. The eigenvalues of the Kneser graph Kv:k are the integers

λi = (−1)i
(
v − r − i
r − i

)
, 0 ≤ i ≤ k

occuring with multiplicities

m0 = 1, mi =
(
v

i

)
−
(

v

i− 1

)
.

Substituting q = 1 in the expression for χ(qKv:k) does not, however, give
χ(Kv:k). For example, we show in this paper that χ(qKv:2) = [v−1] when v > 4.
Consequently, the q-Kneser graph qK5:2 has chromatic number χ(qK5:2) = [4],
but the Kneser graph, K5:2, also known as the Petersen graph, has chromatic
number χ(K5:2) = 3. Therefore, the relationship between the chromatic num-
bers of the Kneser graph and the q-Kneser graph is more complex than setting
q = 1.
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2. ANALOGIES BETWEEN THE KNESER AND q-KNESER GRAPHS

2.3 Independent Sets

Another area where there are analogies between the Kneser and q-Kneser graphs
is the size and structure of their maximal independent sets. An independent set
in the Kneser graph Kv:k is a set of k-subsets in {1, . . . , v} that pairwise intersect
nontrivially. Similarly, an independent set in the q-Kneser graph qKv:k is a set
of k-dimensional spaces in Fvq that pairwise intersect nontrivially.

The Erdős-Ko-Rado theorem states that for v > 2k, the independence num-
ber of the Kneser graph, α(Kv:k), is

(
v−1
k−1

)
and that an independent set with

size
(
v−1
k−1

)
consists of the k-subsets of {1, . . . , v} that contain a particular point.

Chris Godsil and Mike Newman give a proof of the Erdős-Ko-Rado theorem
using linear algebra in [8]. For v = 2k, the bound α(K2k:k) =

(
2k−1
k−1

)
is correct,

but an independent set of size
(

2k−1
k−1

)
is not necessarily the set of k-subsets of

{1, . . . , 2k} that contain a particular point because K2k:k is isomorphic to
(

2k−1
k−1

)
vertex-disjoint copies of K2.

The maximal independent sets of the q-Kneser graph have a similar structure
to those of the Kneser graph. The q-analogue of the maximal independent set
in Kv:k is the set of k-spaces in Fvq that contain a particular one-dimensional
subspace, and is called a point pencil. A special case of the Erdős-Ko-Rado
theorem for vector spaces [5] is the following theorem.

2.3.1 Theorem. For v > 2k, α(qKv:k) =
[
v−1
k−1

]
and an independent set with

size
[
v−1
k−1

]
is a point pencil.

Mike Newman’s and Chris Godsil’s proof of the Erdős-Ko-Rado theorem in
[8] can be generalised to the q-Kneser graphs. The case v = 2k again requires
special attention. For v = 2k, there are two non-isomorphic classes of maximal
independent sets, the point pencils and the set of k-spaces contained in a (2k−1)-
dimensional space, both of which have size

[
2k−1
k−1

]
. Mike Newman and Chris

Godsil can prove this, and as Chris Godsil points out in [3], there is some
confusion about where a proof of this claim appears in the literature.

10



Chapter 3

Projective Prerequisites

We will use concepts from projective geometry to determine the chromatic num-
ber of the q-Kneser graph when k = 2. In this chapter, we define the projective
geometry of dimension v − 1 over the finite field Fq, denoted by PG(v − 1, q),
and discuss some of its properties, most important of which is duality. We will
also prove a special case of the Bose-Burton theorem.

3.1 Definitions

The objects of the projective geometry, PG(v − 1, q), are:

• points, which are the one-dimensional spaces of Fvq .

• lines, which are the two-dimensional spaces of Fvq .

• planes, which are the three-dimensional spaces of Fvq .

• i-flats, which are the (i+ 1)-dimensional spaces of Fnq for 0 ≤ i < v.

• hyperplanes, which are the (v − 1)-dimensional spaces of Fvq .

The incidence relation between the objects of the projective geometry, PG(v −
1, q), is defined by containment of the corresponding subspaces. The incidence
relation is symmetric; we say that a point is incident with a line (the point is on
the line) or that a line is incident with a point (the line passes through the point)
if the corresponding one-space is contained in the corresponding two-space. It
is easy to check that any line in PG(v− 1, q) contains at least three points, and
that two distinct points lie on a unique line.

The introduction of the projective geometry, PG(v − 1, q), allows us to vi-
sualise the q-Kneser graphs. For example, the vertices of qKv:2 are the lines of
PG(v−1, q). An independent set in qKv:2 is a set of 2-spaces in Fvq that pairwise
have non-trivial intersection, and corresponds to a set of lines in PG(v − 1, q)
any two of which intersect. The term point pencil suggests its pictorial represen-
tation as the set of lines through a point. We can visualise the other canonical

11



3. PROJECTIVE PREREQUISITES

independent set of qKv:2, the set of 2-spaces in a 3-space, as the lines on a
projective plane.

3.2 Duality

We now explore the concept of duality in PG(v − 1, q). The table below lists
geometric properties of PG(v−1, q) that we will use to determine the chromatic
number of qKv:2. Counting arguments similar to the one in Lemma 2.1.1 give
the values in the table.

Property PG(3, q) PG(v − 1, q)
Number of points q3 + q2 + q + 1 [v]
Number of lines (q2 + 1)(q2 + q + 1)

[
v
2

]
Number of planes/hyperplanes q3 + q2 + q + 1 [v]

Number of points on a line q + 1 q + 1
Number of planes on a line q + 1 [v − 2]

Number of lines through a point q2 + q + 1 [v − 1]
Number of lines on a plane q2 + q + 1 q2 + q + 1

Number of points on a plane/hyperplane q2 + q + 1 [v − 1]
Number of planes/hyperplanes on a point q2 + q + 1 [v − 1]

It is not a coincidence that the number of points equals the number of hy-
perplanes in PG(v− 1, q). Moreover, if we swap the words “point” and “plane”
in any of the statements above, the resulting statement is valid in PG(3, q). The
following statements, for example, are both valid in PG(3, q).

The number of points on a line is q + 1.
The number of planes on a line is q + 1.

This is a consequence of duality. For concreteness, we will explain duality for
the projective geometry, PG(3, q).

The usual dot product is an inner product in F4
q, and we say two vectors

are orthogonal if their inner product is zero. For a subspace S, define S⊥, the
orthogonal complement of S, to be the set of vectors that are orthogonal to
every element of S. Observe that we have a bijection between the points and
the planes of PG(3, q) that sends a point x to the plane x⊥. Similarly, we have
a bijection between the lines of PG(3, q) that sends the line L to the line L⊥.
Let x be a point of PG(3, q) on a line L, which in turn is on a plane P . Then
the point P⊥ is on the line L⊥, which in turn is on the plane x⊥. Consequently,
if we swap the words “point” and “plane” in any statement about PG(3, q) in
this thesis, the resulting statement is valid in PG(3, q). We say that point and
plane are dual in PG(3, q) and that line is self-dual.
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3.3. THE BOSE-BURTON THEOREM

3.3 The Bose-Burton Theorem

Consider a finite projective geometry PG(v − 1, q). The Bose-Burton theorem
asks: Given an integer 0 ≤ s ≤ v − 1, what is the cardinality of the smallest
set of points T with the property that every subspace of dimension s is incident
with at least one element of T? Bose and Burton solved this question in [2].
We will need the following special case of the Bose-Burton theorem.

3.3.1 Theorem. Suppose C is a set of points of PG(v − 1, q) such that every
line is incident with a point from C. We have |C| ≥ [v − 1] and, moreover, if
|C| = [v − 1] then C is the set of points on a hyperplane.

Proof. Let x be a point not in C. Since the point pencil on x has size [v − 1],
we must have |C| ≥ [v − 1].

We will show by induction that if S is a subspace of dimension k < v − 1
in C, then C contains a subspace of dimension k + 1 which contains S. Since
|C| = [v − 1], we see that C is the set of points on a hyperplane. First, assume
that S is a one-dimensional subspace, and let T be a one-dimensional subspace
in C distinct from S. Suppose, for contradiction, that a point y on the line S∨T
is not in C. Since both S and T lie on the line S ∨ T , at least one line through
y is not incident with a point from C because the size of the point pencil on y
is [v− 1] = |C|. This contradicts our definition of C so S ∨ T is contained in C.

Suppose we have shown the statement for all k < d < v − 1, and let S be
a d-dimensional subspace in C. Let T be a one-dimensional space not in S so
S∨T is a (d+1)-dimensional subspace. Suppose, for contradiction, that a point
y in S ∨ T is not contained in C. We have that y 6∈ S so all lines through y on
S ∨ T are incident with the points in S. Now T lies on a line through y so one
line through y on S ∨ T contains two points from C. Hence, at least one line
on y is not incident with a point from C because the size of the point pencil on
y is [v − 1] = |C|. This contradicts our definition of C so S ∨ T is contained in
C.
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Chapter 4

Colouring qKv:2

We determine the chromatic number of the q-Kneser graphs with k = 2. Godsil
and Royle proved that if v ≥ 2k then χ(qKv:k) ≤ [v− k+ 1] and if v = 2k then
χ(qKv:k) ≤ qk + qk−1. One new result of this thesis is that these upper bounds
are tight when k = 2. In addition, we characterise the minimal colourings. This
chapter forms the basis for the forthcoming article [3].

4.1 Covers of the q-Kneser graphs

We say that a family of independent sets covers a graph if every vertex in the
graph lies in some independent set. Recall that a point pencil is a maximal
independent set of the q-Kneser graph qKv:k, and that the independent set
consisting of the k-spaces in a (2k − 1)-space is maximal when v = 2k. In
this chapter, we say a cover of the q-Kneser graph qKv:k is a set of points and
(2k − 1)-spaces in PG(v − 1, q) such that every k-space is either on a point
or contained in a (2k − 1)-space. A cover of the q-Kneser graph qKv:k by n
points and (2k − 1)-spaces gives rise to a colouring of qKv:k with n colours.
Lemma 4.1.1, which is due to Chris Godsil and Gordon Royle, describes two
covers of the q-Kneser graph that give upper bounds on its chromatic number.

4.1.1 Lemma. If v ≥ 2k then

χ(qKv:k) ≤ [v − k + 1].

If v = 2k then
χ(qKv:k) ≤ qk + qk−1.

Proof. A subspace of dimension v−k+ 1 in Fvq has non-trivial intersection with
each k-space. It follows that the pencils on the points of such a subspace give a
colouring with [v − k + 1] colours.

If v = 2k, choose a subspace U of dimension k + 1, and a subspace T of
dimension k in U . We claim the point-pencils of the points in U\T , together
with the (2k−1)-spaces that contain T but not U cover every k-space in Fvq . By
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4. COLOURING qKv:2

considering dimension, any k-space S has nontrivial intersection with U , and
thus any k-space not covered by a point in U\T must contain a point of T .
Hence dim(S ∨ T ) ≤ 2k − 1 and so S is contained in a (2k − 1)-subspace that
contains T . If U ⊆ S ∨ T , then

U = U ∩ (S ∨ T ) = (U ∩ S) ∨ T = T

by the modular identity, which is a contradiction. Consequently, U is not con-
tained in S∨T so there is a (2k−1)-space that contains S∨T but not U . Hence
the (2k − 1)-spaces that meet U in T cover those k-spaces that do not contain
a point of U\T .

Now we count the number of point pencils and (2k− 1)-spaces in our cover.
The number of point pencils on the points of U\T is [k + 1]− [k]. The number
of (2k− 1)-spaces that contain T but not U is [k]− [k− 1] so we have a total of

([k + 1]− [k]) + ([k]− [k − 1]) = [k + 1]− [k − 1] = qk + qk−1

point pencils and (2k− 1)-spaces in our cover, which gives rise to a colouring of
qKv:k with qk + qk−1 colours.

4.2 Covers of qKv:2

Restricting to the q-Kneser graphs with k = 2, we have that a cover of qKv:2

is a set of points and planes such that every line is either on one of the the
points or lies in one of the planes. We have seen in Lemma 4.1.1 that covers of
qKv:2 can be used to give upper bounds on the chromatic number of qKv:2. A
property that is unique to qKv:2 is that covers of qKv:2 can be used to obtain a
lower bound on the chromatic number of qKv:2. As Lemma 4.2.1 shows, every
independent set in qKv:2 lies in a point pencil or a plane. Consequently, a
colouring of qKv:2 with n colours gives rise to a cover of qKv:2 using at most
n points and planes. If we can show that a cover of qKv:2 uses at least [v − 1]
points when v > 4 and at least q2 +q points and planes when v = 4, then [v−1]
and q2 + q are lower bounds for the chromatic number of qKv:2 when v > 4
and when v = 4 respectively. We will do this in Section 4.3 for qK4:2 and in
Section 4.5 for qKv:2 where v > 4, and thus determine the chromatic number of
qKv:2 by Lemma 4.1.1.

4.2.1 Lemma. Every independent set in qKv:2 lies in a point pencil or a plane.

Proof. Let S be an independent set in qKv:2. Suppose that the lines in S are not
coplanar. We show that S lies in a point pencil. Let `1 and `2 be two lines in S
that intersect in a one-dimensional subspace a. Let P be the plane determined
by `1 and `2 and let `3 be a line in S not on P . Since S is independent, `3
intersects `1 in a one-dimensional space x and intersects `2 in a one-dimensional
space y. We must have x = y otherwise `3 would lie on P . Consequently, `1
and `2 intersect in x and, as two points determine a line, we have x = a. Now,
any line, `4 in S on the plane P must intersect `3 since S is independent. Thus,
`4 intersects `3 in a so S lies in the point pencil on a.

16



4.3. THE CHROMATIC NUMBER OF qK4:2

In Lemma 4.1.1, we showed that the set of points on a hyperplane is one
cover for qKv:2 that uses [v − 1] points. We will see in Section 4.5 that all
minimal covers of qKv:2 for v > 4 look like this. Lemma 4.2.2 describes several
covers of qK4:2 that use q2 + q points and planes.

4.2.2 Lemma. Choose a plane U and a point a in U . Let m1,. . . ,ms be s lines
in U through a where 0 < s < q+ 1. The points in U not on these lines and the
planes distinct from U on these lines form a cover of qK4:2 with q2 + q points
and planes.

Proof. Let ` be a line. We have ` intersects U in a point, x, or ` lies on U .
First suppose ` intersects U in a point x. If x is not on one of the s lines, then
` is covered by a point. Therefore, assume that x lies on one of the s lines, mi,
through a. Then ` and mi determine a plane P on mi distinct from U , and `
lies on P .

Now, suppose ` lies on U . If ` is one of the s lines, mi, then ` is covered by a
plane on it. Otherwise, since ` contains q + 1 points and s < q + 1, ` intersects
a point, y, in U not on one of the s lines; in this case, ` is covered by a point.

We have shown that the points in U not on the s lines and the planes distinct
from U on the s lines form a cover of qK4:2. There are

(q2 + q + 1)− 1− sq = q(q + 1− s)

points in our cover and sq planes. This gives a total of q2+q points and planes.

We call a cover of the type described in Lemma 4.2.2 a standard cover. The
cover of qK4:2 given in Lemma 4.1.1 is an example of a standard cover where
s = 1. The standard covers economise the number of points and planes used
because they minimise the number of lines on multiple points from the cover
or contained in multiple planes from the cover. For example, in a standard
cover, no plane from the cover contains a point from the cover so there are no
lines in PG(3, q) covered by both a point and a plane. Corollary 4.4.4 shows
that standard covers contain q collinear points: if the line ` contains α1, . . . , αq
from the cover, then ` is the only line in PG(3, q) on more than one point from
α1, . . . , αq. Standard covers similarly contain q collinear planes. We will see in
Section 4.4 that every minimal cover of qK4:2 is a standard cover.

4.3 The chromatic number of qK4:2

In this section we show that χ(qK4:2) = q2 + q by showing that a minimal cover
of qK4:2 must contain at least q2 + q points and planes. Recall that there are
two maximal independent sets in qK4:2: the point pencils and the set of lines in
a plane, both of which have size q2 + q + 1. We also have that point and plane
are dual in PG(3, q) and that line is self-dual.

One cover of qK4:2 that uses q2 + q+ 1 points is the set of points on a plane.
We have seen that if we use both points and planes, we can obtain smaller covers
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4. COLOURING qKv:2

using only q2 + q points and planes. Lemma 4.3.1, which is due to Chris Godsil
and Gordon Royle, shows that a minimal cover of qK4:2 must use sufficient
quantities of both points and planes.

4.3.1 Lemma. Suppose we have a cover of qK4:2 formed from r points and s
planes. If r + s ≤ q2 + q, then r, s ≥ q.

Proof. Suppose r ≤ q− 1, and let a be a point not used in the cover. There are
q2 + q+ 1 lines on a, and so at least q2 + 2 of these lines are not covered by one
of our r points. Hence they must be covered by one of the s planes. The first
plane on a covers q + 1 lines through a, and each additional plane on a covers
at most q further lines. Hence if there are t of our s planes on a, then

(q + 1) + (t− 1)q ≥ q2 + 2

and therefore
t− 1 ≥ q − 1 +

1
q
.

This implies that t ≥ q + 1 since t is an integer.
Now count pairs (a,H) where a is point not in our cover and H is a plane

in the cover that contains a. We find that

s(q2 + q + 1) ≥ (q + 1)[(q3 + q2 + q + 1)− (q − 1)]

and hence

s ≥ (q3 + q2 + q − (q − 2))(q + 1)
q2 + q + 1

= q(q + 1)− (q + 1)(q − 2)
q2 + q + 1

.

Since s is an integer, this implies that s ≥ q2 + q and consequently r + s ≥
q2 + q + 1. Consequently, if r + s ≤ q2 + q then r ≥ q and, by duality, s ≥ q as
well.

Theorem 4.3.2 shows that a minimal cover of qK4:2 uses exactly q2 +q points
and planes, and so proves that χ(qK4:2) = q2 + q. We saw in Lemma 4.3.1 that
the number of points and the number of planes in a minimal cover of qK4:2

are both at least q. Theorem 4.3.2 gives a stronger condition, namely, that the
number of points and the number of planes in a minimal cover of qK4:2 are
divisible by q.

4.3.2 Theorem. Suppose C is a cover of qK4:2 with r + s ≤ q2 + q points and
planes. Then C contains exactly q2 +q point pencils and planes, and, moreover,
q | r.

Proof. Let C be a cover of qK4:2 with r + s ≤ q2 + q point pencils and planes.
Write r = kq + x where 0 ≤ x < q. By Lemma 4.3.1, s ≥ q which implies that
r ≤ q2 and k ≤ q. Suppose, for contradiction, that s < (q2 + q)− kq.

Let P be a plane that is not in the cover. Then P must contain some points
from the cover; otherwise, we’d need q2 + q + 1 planes in the cover to cover the
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lines on P . We want to know how many points from the cover P must contain.
Suppose P contains at most k points from the cover. Since k ≤ q, any k points
on P cover at most kq+1 lines, so at least (q2 + q+1)− (kq+1) = (q2 + q)−kq
lines on P are not covered by one of these k points. As s < (q2 + q) − kq, the
remaining (q2 + q)− kq lines on P cannot all be covered by planes. Therefore,
P must contain at least k + 1 points from the cover.

Each point of PG(3, q) lies in exactly q2 +q+1 lines; since r ≤ q2, any point
not in the cover lies on a line that is disjoint from the points in the cover. Let
` be a line that does not contain points from the cover. Since r = kq+ x where
x < q, at least two of the q + 1 planes on `, P1 and P2, will each contain fewer
than k+ 1 points from the cover. By the preceding paragraph, P1 and P2 must
be in the cover. To summarize, if ` is a line containing no points from the cover,
then two planes on ` are in the cover.

The plane P1 on ` contains at most k points from the cover so at least
(q2 + q)−kq lines on P1 don’t contain a point from the cover. By the preceding
paragraph, we need at least (q2 + q) − kq additional planes from the cover on
these lines. But s < (q2 + q)− kq so we have a contradiction.

Consequently, s ≥ (q2 + q)− kq. The number of point pencils and planes in
C is

r + s ≥ (kq + x) + ((q2 + q)− kq) = (q2 + q) + x.

As C satisfies r+s ≤ q2 + q, we must have x = 0. Therefore, C contains exactly
r + s = q2 + q point pencils and planes, and, moreover, q|r.

4.4 Characterising minimal colourings of qK4:2

We have shown that the minimal covers of qK4:2 have size q2 + q, and seen that
the standard covers defined in Lemma 4.2.2 are minimal covers. In this section,
we show conversely that every minimal cover of qK4:2 is a standard cover. Thus,
a minimal colouring of qK4:2 induces a standard cover of qK4:2; conversely, a
standard cover of qK4:2 gives rise to a minimal colouring of qK4:2. We have,
consequently, characterised the minimal colourings of qK4:2.

Let C be a minimal cover of qK4:2 and consider a plane P that is not in C.
The lines on P are either covered by points in the cover that lie on P or planes
in the cover that intersect P . Lemma 4.4.1 gives a lower bound on the number
of points from the minimal cover, C, that P must contain.

4.4.1 Lemma. Let C be a cover of qK4:2 with r = kq points and s = q(q+1−k)
planes. If P is a plane not in C, then it contains at least k points from C; if
equality holds then the k points are collinear.

Proof. Since P is not a plane in C, P must contain some points from C;
otherwise, we’d need q2+q+1 planes to cover the lines on P . The s = (q+1−k)q
planes in C cover at most (q + 1− k)q lines on P so at least kq + 1 lines on P
remain. If t < q + 1, then t points in a plane cover at most tq + 1 lines, with
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equality if and only if they are collinear. Consequently P contains at least k
points from C, and if it contains exactly k, they are collinear.

We would like to obtain an upper bound on the number of lines covered by
points from a minimal cover, C. Lemma 4.4.2 gives such an upper bound when
there is a plane containing q + 1 points from the cover. (As we shall see, such
a plane exists whenever the cover contains more than q points.)

4.4.2 Lemma. Let C be a cover of qK4:2 with r = kq points and s = q(q+1−k)
planes. Suppose P is a plane that contains at least q+ 1 points from the cover.
Then the points of C cover at most kq3 lines not in P .

Proof. A point of C in P covers q2 lines not in P . If x is a point in C not on
P , at least q+ 1 lines incident with x are incident with a point in C that lies on
P . Consequently x covers at most q2 lines that are not incident with a point of
C on P . Therefore the kq points of C cover at most kq3 lines not on P .

In a standard cover, no plane from the cover contains a point from the cover.
We will see in Lemma 4.4.7 that any minimal cover also has this economical
property. As a first step, Lemma 4.4.3 shows that every plane in PG(3, q)
contains a line that is disjoint from the points in a minimal cover.

4.4.3 Lemma. If C is a cover of qK4:2 with r = kq point pencils and s =
q(q + 1− k) planes, then each plane contains at least one line disjoint from the
points in C.

Proof. Let P be a plane and assume for contradiction that each line on P is
incident with a point from C. Since all planes from C meet P in a line, each
plane in C contains at least one point from C. Therefore on each plane of C
there are at least q + 1 lines that are incident with a point from C. Each plane
in C, consequently, covers at most q2 of the lines that do not contain points
from C. As there are

(q2 + 1)(q2 + q + 1) = q4 + q3 + 2q2 + q + 1

lines in total, the number of lines covered by the points in C is at least

(q4+q3+2q2+q+1)−sq2 = q4+q3+2q2+q+1−(q+1−k)q3 = kq3+2q2+q+1.

We know that q2 + q + 1 of these lines lie in P , the remaining lines, of which
there are at least kq3 + q2, must intersect P in a point.

Since every line in P is incident with a point from C, there are at least q+ 1
points from C on P . By Lemma 4.4.2, the kq points of C cover at most kq3

lines not on P , a contradiction.

An immediate corollary of Lemma 4.4.3 is Corollary 4.4.4 which shows that
a minimal cover cannot contain q+ 1 collinear points. We saw that one feature
of standard covers is that they contain q collinear points: if the line ` contains
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α1, . . . , αq from the cover, then ` is the only line in PG(3, q) on more than one
point from α1, . . . , αq. Consequently, one might think that we could construct
a smaller cover by having q+ 1 collinear points in the cover. As Corollary 4.4.4
shows, this is not the case. The reason is that we do not want planes from the
cover to contain points from the cover.

4.4.4 Corollary. Let C be a minimal cover of qK4:2. Then C does not contain
q + 1 collinear points. (Dually, C does not contain q + 1 collinear planes.)

Proof. Suppose, for contradiction, that there is a line ` consisting of q+1 points
from C. Let P be any plane on `. Since any line on P intersects ` in a point,
every line on P is incident with a point from C, which is a contradiction by
Lemma 4.4.3.

From Lemma 4.3.1, we know that a minimal cover of qK4:2 must contain at
least q points and at least q planes. Lemma 4.4.5 shows that minimal covers of
qK4:2 with exactly q points or exactly q planes are standard.

4.4.5 Lemma. Let C be a cover of qK4:2 with q2 points and q planes. Then
C is standard. (Dually, if C is a cover with q points and q2 planes, then C is
standard.)

Proof. Assume C contains q2 points and q planes. We will show first that there
is a plane containing at least q + 1 points from C.

Let `1 be a line not incident with a point in C By Corollary 4.4.4 there is a
plane H on `1 that is not in C and by Lemma 4.4.1, there are at least q points
from C on H. If there are exactly q points then they lie on a line `2, and any
plane containing `2 and a point in C not on `2 contains q + 1 points from C.
Otherwise, the plane H contains at least q + 1 points from C.

We next show that no plane of C contains a point of C, and that the q planes
of C lie on a common line.

Let P be a plane that contains at least q+1 points from C. By Lemma 4.4.2,
the q2 points in C cover at most q4 lines not in P . By Lemma 4.4.3, there is
a line on P that contains no point of C and so at most q2 + q lines on P are
incident with points of C. Hence the number of lines incident with the q2 points
in C is at most q4 + q2 + q.

Since any two planes have a line in common, the q planes in C cover at most
q(q2 + q) + 1 = q3 + q2 + 1 lines. The total number of lines is

q4 + q3 + 2q2 + q + 1 = (q4 + q2 + q) + (q3 + q2 + 1),

so the q2 points in C must cover exactly q4 + q2 + q lines and the q planes must
cover exactly q3 + q2 + 1. We also see that the set of lines covered by the points
of C is disjoint from the set of lines covered by the planes, and consequently no
point of C can lie in a plane of C.

Further, since the q planes cover exactly q3 + q2 + 1 lines, the q planes must
lie on a line `.

Let Q be the unique plane on ` not in the cover. Then the q2 points of our
cover must lie on Q, and hence the points of the cover are the points of Q\`.
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In a standard cover with kq points and q(q + 1 − k) planes, there is a dis-
tinguished plane that contains all kq points from the cover. Any plane that
is not in the cover and not the distinguished plane contains exactly k points
from the cover. On the distinguished plane, any line not incident with a point
from the cover lies on q planes from the cover. As a step towards proving that
every minimal cover is a standard cover, Lemma 4.4.6 shows that if P is a plane
containing at least k + 1 points from the cover, then any line not incident with
a point from the cover lies on two planes from the cover. We show in Theo-
rem 4.4.8 that a plane P containing at least k + 1 points from a minimal cover
is the distinguished plane in a standard cover.

4.4.6 Lemma. Let C be a cover of qK4:2 with r = kq points and s = q(q+1−k)
planes and let P be a plane not in C that contains at least k+ 1 points from C.
Then any line on P not incident with a point from C lies on a least two planes
from C.

Proof. Let ` be a line on P that is not incident with a point from the cover. Let

H1, . . . ,Hq+1

denote the q + 1 planes on `, where H1 = P . Since ` contains no point of the
cover, these planes partition the kq points of the cover. By Lemma 4.4.1, each
plane not in C contains at least k points from C. Since P contains k+ 1 points
from the cover, it follows that at least two of the planes on ` must lie in the
cover.

We have seen in Lemma 4.4.5 that a minimal cover with exactly q points or
exactly q planes has the property that no plane in the cover contains a point
from the cover. Lemma 4.4.7 extends this result to minimal covers with greater
than q points and greater than q planes. Lemma 4.4.7 assumes that there is
a plane P containing q + 1 points from the cover and that there is a point y
on q + 1 planes from the cover, but as we shall see in Theorem 4.4.8, this is
always the case for minimal covers with greater than q points and greater than
q planes.

4.4.7 Lemma. Let C be a cover of qK4:2 with r = kq points and s = q(q+1−k)
planes. Suppose there is a plane P that contains at least q + 1 points from the
cover and a point y that lies on at least q+1 planes. Then no plane in the cover
contains a point from the cover.

Proof. Let P be a plane that contains at least q + 1 points from C. By
Lemma 4.4.2, our r = kq points cover at most kq3 lines not in P . Since there is a
line in P that contains no points from C, our r points cover at most kq3 +q2 +q
lines. Dually, the number of lines covered by the s planes in C is at most

sq2 + q2 + q = (q + 1− k)q3 + q2 + q.

Suppose, for contradiction, that some plane in C contains a point from C.
Then there are q+ 1 lines that are covered by both by a point in C and a plane
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from C. Hence the number of lines covered by the points and planes of C is at
most

(kq3 + q2 + q) + ((q + 1− k)q3 + q2 + q)− (q + 1) = q4 + q3 + 2q2 + q − 1

Since there are q4 + q3 + 2q2 + q + 1 lines altogether, this provides our contra-
diction.

We have seen in Lemma 4.4.5 that minimal covers with exactly q points or
exactly q planes are standard. Theorem 4.4.8 extends this result to all minimal
covers.

4.4.8 Theorem. A cover of qK4:2 with q2 + q points and planes is standard.

Proof. Let C be a cover of qK4:2 with q2 + q point pencils and planes. We may
assume that there are r = kq point pencils and s = (q + 1 − k)q planes. By
Lemma 4.4.5 and duality, we may assume that 2 ≤ k ≤ q − 1. We will prove
the statement via Lemma 4.4.7 by showing that there is a plane P containing
q+ 1 points from the cover, and that there is a point y on q+ 1 planes from the
cover.

As a first step, we show that there is a line that contains no point from C
and lies on exactly one plane from C. Let m be a line that contains no point
from C. There are q + 1 planes on m and kq points in the cover, so there is a
plane H on m that contains fewer than k points. By Lemma 4.4.1 we see that
H lies in the cover. At most (k − 1)q + 1 lines on H are incident with points
of C and therefore there are at least q(q+ 2− k) lines in H not incident with a
point from C. Since there are only q(q + 1− k) planes in C, there is a line ` in
H which is not contained in a second plane from C.

Next we show that there is a plane that contains at least q + 2 points from
C.

Let H1, . . . ,Hq denote the planes on ` other than H. These q planes do not
belong to C and therefore by Lemma 4.4.1, there are at least k points from C
on each of them. Since these planes partition the points of C into q classes,
each plane contains exactly k points from C and, by Lemma 4.4.1, each set of
k points lies on a line. Denote the line on Hi by mi. The k points on Hi cover
exactly kq + 1 lines on Hi; the remaining (q + 1 − k)q lines on Hi are covered
by planes of C. Since there are exactly (q+ 1− k)q planes in C, each line of Hi

that is not covered by a point of C is contained in exactly one plane from C.
Note that H contains no points of C.

The plane H1 contains ` and therefore m1 intersects ` in a point x. The
lines other than m1 on x in H1 are covered by planes of C, and so there are q
planes from C on x. For i = 2, . . . , q these planes intersect Hi in q distinct lines
through x, and these lines do not contain points of C. Therefore each of the
lines m2, . . . ,mq intersects ` in x.

Let P be the plane determined by m1 and m2. The lines on P incident
with x are m1, m2, the intersection of P with H and the intersection of P with
H3, . . . ,Hq. The planes in C intersect H1 in lines that contain no points of C,
but P ∩H1 = m1 which does contain points from C. Therefore P is not in C.

23



4. COLOURING qKv:2

Since P contains 2k points from C, by Lemma 4.4.6 any line on P not
incident with a point from C lies on at least two planes from C. As there are
q planes from C on x, at most q/2 lines on P incident with x do not contain
points from C. Consequently at least (q+2)/2 lines on P incident with x contain
points from C. Referring to our listing above of the lines on x in P , we see that
m1 and m2 contain k points from C. As H contains no points of C, the line
P ∩ H is disjoint from C. If P ∩ Hi contains a point from C then P ∩ Hi is
mi, because this is the only line on x in Hi that contains points from C. Then
P ∩ Hi contains k points from C. Since k ≥ 2, it follows that the number of
points from C on P is at least

k
q + 2

2
≥ q + 2.

So we have shown that there is a plane that contains at least q + 2 points from
C; the dual of our argument shows that there is a point y on at least q + 2
planes from C.

By Lemma 4.4.7, no plane in C contains a point from C. The (q + 1 − k)q
planes in C each meet P in a line, and so by Lemma ?? there are at least q+1−k
lines in P that contain no point of C. Thus there are at most q2 + k lines in
P that do contain points of C. Each point of C in P covers q2 lines not in P .
Since there are at least q + 2 points of C in P , each point of C not in P covers
at most

(q2 + q + 1)− (q + 2) = q2 − 1

lines not covered by points of C in P . So the number of lines covered by the
points of C is at most

kq3 + q2 + k,

and if equality holds, all points of C lie in P and there are exactly q + 1 − k
lines in P disjoint from C, each of which lies in q planes from C.

Dually, the number of lines covered by the (q+1−k)q planes of C is at most

(q + 1− k)q3 + q2 + (q + 1− k)

and, if equality holds, these planes have a common point y and there are exactly
k lines incident with y that do not lie on a plane from C. Since the total number
of lines is

q4 + q3 + 2q2 + q + 1 = (kq3 + q2 + k) + ((q + 1− k)q3 + q2 + q + 1− k),

our last two inequalities must be tight. Therefore all points of C lie in P and
all the planes of C contain y. Hence C is a standard cover.

4.5 The chromatic number of qKv:2 for v > 4

In this section, we show χ(qKv:2) = [v − 1] when v > 4 and characterise the
minimal colourings. Theorem 4.5.1, which is joint work with Chris Godsil, shows
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that in a cover of qKv:2 with at most [v − 1] points and planes the number of
points is at least [v − 1]. By Lemma 4.1.1, χ(qKv:2) = [v − 1]. We work
projectively in the space PG(v − 1, q).

4.5.1 Theorem. Suppose we have a cover of qKv:2 by r points and s planes
such that r + s ≤ [v − 1]. Then r ≥ [v − 1].

Proof. Suppose, for contradiction, that r < [v − 1], and define δ := [v − 1]− r.
Let C denote the set of points in the cover so |C| = r.

We determine a lower bound on the number of lines that do not contain a
point of C, by counting the flags (x, `x) where x is a point not in C and `x is a
line on x disjoint from C. Each point x lies on [v− 1] lines, and therefore there
are at least [v − 1] − r = δ lines through x that are disjoint from C. As there
are [v]− r points not in C, the number of flags is at least

([v]− r)δ = ([v]− [v − 1] + [v − 1]− r)δ = (qv−1 + δ)δ.

Since each line disjoint from C lies in exactly q + 1 flags, it follows that the
number of lines disjoint from C is at least

(qv−1 + δ)δ
v + 1

.

Each of the lines disjoint from C must be contained in one of the s planes,
and a plane contains exactly q2 + q + 1 lines. Therefore

s ≥ (qv−1 + δ)δ
(q + 1)(q2 + q + 1)

. (4.5.1)

Since r + s ≤ [v − 1], we have s ≤ δ so

(qv−1 + δ)δ
(q + 1)(q2 + q + 1)

≤ δ,

from which we have

δ ≤ (q + 1)(q2 + q + 1)− qv−1. (4.5.2)

Observe that

q4 − (q + 1)(q2 + q + 1) = q4 − q3 − 2q2 − 2q − 1 = q(q(q2 − q − 2)− 2)− 1

and therefore

qv−1 − (q + 1)(q2 + q + 1) = (qv−1 − q4) + q(q(q2 − q − 2)− 2)− 1.

If q > 2 then q2 − q − 2 > 0 and so the right side is positive. If q = 2 then the
right side is equal to

(2v−1 − 16)− 5,

which is positive if v > 5. Consequently, we conclude that the right hand side
of (2) is negative in these cases, which is a contradiction. Therefore, r = [v− 1]
if v > 5 or if v = 5 and q > 2.
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Finally we consider the case where v = 5 and q = 2. Let x be a point not in
C. Since r < [4] = 15, by assumption, at least one of the 15 lines on x must be
covered by one of the s planes in the cover. Consequently, x must lie on one of
the s planes in the cover. Since, r+ s ≤ [4] = 15, we have r ≤ 15− s so at least

31− (15− s) = 16 + s (4.5.3)

points don’t lie in C, and must lie on one of the s planes in the cover. Since
planes contain 7 points, we must have 7s ≥ 16 + s so s ≥ 3.

Suppose s > 3. Then r ≤ 11, so at least four of the 15 lines on x must lie
on the s planes. Since a plane on x covers three lines on x, we must have that
x lies on at least two planes in the cover. Consequently, 7s/2 ≥ 16 + s, which
implies that s ≥ 7. Since s ≤ δ ≤ 5 by (2), this is a contradiction.

Therefore, s = 3 so at least 19 points must lie on the three planes in the cover
by (4.5.3). However in 2K5:2 distinct planes intersect, so three planes cannot
contain 19 distinct points. We have the desired contradiction, so r = [4] = 15
when v = 5 and q = 2.

A minimal cover of qKv:2 has exactly [v−1] points. Theorem 3.3.1, which is
a special case of the Bose-Burton theorem, shows that these [v− 1] points must
lie on a hyperplane so this is the only type of minimal colouring of qKv:2.
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Chapter 5

Colouring qKv:k

In this chapter, we develop some theory for colouring the q-Kneser graph qKv:k

in general. We first survey some of the work done on the Kneser conjecture
before Lovász’s result, most notably Garey’s and Johnson’s determination of
the chromatic number of Kv:3 [6]. We then try to extend the ideas in [6] to
colouring the q-Kneser graph, qKv:3. Finally, we note the usefulness of graph
homomorphisms for colouring the Kneser graphs and their q-analogues.

5.1 The Kneser conjecture before Lovász

Before Lovász’s result, only the chromatic numbers of the Kneser graphs Kv:2

and Kv:3 had been determined. We will show how these were computed in
Lemma 5.1.1 and Lemma 5.1.2, respectively.

5.1.1 Lemma. For v ≥ 4, the chromatic number of the Kneser graph, Kv:2, is
χ(Kv:2) = v − 2.

Proof. We will prove the statement by induction on v. The statement is true
for v = 4 because K4:2 is bipartite.

Suppose, for contradiction, that Kv:2 has a colouring C with v−3 colours. If
a colour class Ci contains more than three vertices, then it lies in a point pencil.
Recolour Kv:2 so Ci is a point pencil and then remove all vertices in Ci to obtain
a colouring of Kv−1:2 with v − 4 < (v − 1) − 2 colours. This contradicts the
induction hypothesis, so all colour classes in C contain at most three vertices.
Consequently, we must have that

3(v − 3) ≥ |Kv:2| =
v(v − 1)

2
.

This implies that v2−7v+18 ≤ 0, which is a contradiction because v2−7v+18
has no real zeros. Thus, the chromatic number of Kv:2 is χ(Kv:2) = v − 2.
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An important step in Lemma 5.1.1 is the assertion that if a colour class
contains more than three vertices then it lies in a point pencil. Garey and
Johnson show in [6] that if an independent set in Kv:3 contains greater than
3v − 8 vertices, then it lies in a point pencil. Consequently, we are able to
compute the chromatic number of Kv:3 in a similar manner to that of Kv:2.

5.1.2 Lemma. The chromatic number of the Kneser graph, Kv:3, is χ(Kv:3) =
v − 4.

Proof. We prove the statement by induction on v. The statement is true for
v = 6 because K6:3 is bipartite.

Suppose, for contradiction, that Kv:3 has a colouring C with v − 5 colours.
As in Lemma 5.1.1, if C contains a colour class with greater than 3v−8 vertices,
then we could obtain a colouring of Kv−1:3 with v−6 < (v−1)−4 colours, which
would contradict the induction hypothesis. Consequently, all colour classes of
C contain fewer than 3v − 8 vertices, so we must have

(v − 5)(3(v − 8)) ≥ |Kv:3| =
v(v − 1)(v − 2)

6
.

This implies that v3−6v2+25v−40 ≤ 0, which is never true for v ≥ 6. Therefore,
the chromatic number of the Kneser graph, Kv:3, is χ(Kv:3) = v − 4.

In Lemma 5.1.1, we asserted that an independent set in Kv:2 of size greater
than three lies in a point pencil and in Lemma 5.1.2 we claimed that an inde-
pendent set of Kv:3 with size greater than 3v− 8 lies in a point pencil. Both of
these statements are special cases of Theorem 5.1.3, which is due to Hilton and
Milner [9].

5.1.3 Theorem (Hilton-Milner). The maximum size of an independent set
in Kv:k that does not lie in a point pencil is

1 +
(
v − 1
k − 1

)
+
(
v − k − 1
k − 1

)
.

Unfortunately, we cannot use the Hilton-Milner bound and an argument
similar to those of Lemma 5.1.1 and Lemma 5.1.2 to prove the Kneser conjecture
because

(v − 2k + 1)
(

1 +
(
v − 1
k − 1

)
+
(
v − k − 1
k − 1

))
>

(
v

k

)
for v = 10 and k = 4 so we cannot reach a contradiction.

5.2 Covering Planes

The proof of Theorem 4.5.1 is similar to the proofs of Lemma 5.1.1 and Lemma 5.1.2
because it uses the fact that the q2 + q+ 1 lines in a plane are the largest inde-
pendent set in qKv:2 that do not lie in a point pencil.

28



5.2. COVERING PLANES

In this section we describe an approach for colouring qKv:3 for v > 6 that is
similar to Theorem 4.5.1, which is due to Chris Godsil. To make the strategy
into a proof, we would need a reasonable upper bound on the size of a maximal
independent set in qKv:3 that does not lie in a point pencil. For k = 3, a
q-analogue of the Hilton-Milner bound, Theorem 5.1.3, would provide such an
upper bound, but, to our knowledge, such a result is not yet known. In the next
chapter, we will discuss our conjectures for a q-analogue of the Hilton-Milner
bound for k = 3 and their implications for the approach described below.

Define a blob to be a maximal independent set in qKv:3 that does not lie
in a point pencil. Suppose we have a cover of qKv:3 with at most [v − 2] point
pencils and blobs. As in Theorem 4.5.1, we wish to show the number of points
in our cover is at least [v − 2]. Let C denote the set of centres of the point
pencils and let r = |C|. Let s equal the number of blobs in the cover. Define
δ := [v − 2]− r, and suppose for a contradiction that δ > 0.

We first derive a lower bound on the number of planes disjoint from C. The
number of points not in C is

[v]− r = [v]− ([v − 2] + δ) = qv−1 + qv−2 + δ.

Let x be a point not in C. There are [v − 1] lines on x. Since a point in C
cannot lie on two lines on x, the number of lines on x disjoint from C is at least

[v − 1]− r = [v − 1]− [v − 2] + δ = qv−2 + δ.

Let ` be a line disjoint from C. There are [v − 2] planes on `. Since a point in
C cannot lie on two planes on `, there are at least [v − 2] − r = δ planes on `
that are disjoint from C.

It follows that the number of flags (x, `, P ) consisting of a point x not in C,
a line ` on x disjoint from C, and a plane P on ` disjoint from C is at least

(qv−1 + qv−2 + δ)(qv−2 + δ)δ.

Since each plane disjoint from C lies in exactly (q2 + q+ 1)(q+ 1) of these flags,
the number of planes disjoint from C is at least

(qv−1 + qv−2 + δ)(qv−2 + δ)δ
(q2 + q + 1)(q + 1)

.

Let β denote the maximum size of a blob. Then the number of blobs in our
cover must be at least

δ ≥ s ≥ (qv−1 + qv−2 + δ)(qv−2 + δ)δ
β(q2 + q + 1)(q + 1)

.

Since δ ≥ 1 by assumption, we obtain the following lower bound on β:

β ≥ (qv−1 + qv−2 + 1)(qv−2 + 1)
(q2 + q + 1)(q + 1)

.

We conjecture that this lower bound is too large and so we can arrive at a
contradiction. A proof of this conjecture would show that the number of points
in the cover is exactly [v − 2], so by Lemma 4.1.1 we would have χ(qKv:3) =
[v − 2].

29



5. COLOURING qKv:k

5.3 Homomorphisms

We show using graph homomorphisms that to colour all the q-Kneser graphs,
qKv:k, we only need to colour the q-Kneser graphs qK2k:k and qK2k+1:k for each
k.

A homomorphism from a graph G to a graph H is a function f from V (G)
to V (H) such that if u and v are adjacent vertices in G, then f(u) and f(v) are
adjacent in H. If there is a homomorphism f : G → H, then χ(G) ≤ χ(H), so
homomorphisms are useful for colouring problems.

We have the following homomorphisms between Kneser graphs. The Kneser
graph, Kv:k, is an induced subgraph of Kv+1:k, and this embedding is called the
extension map. For a positive integer t, the Kneser graph, Kv:k, is an induced
subgraph of Ktv:tk, and this embedding is called the multiplication map. Stahl
found a homomorphism from Kv:k to Kv−2:k−1. By induction, this implies there
is a homomorphism from Kv:k to Kv−2k+2:1, which is the complete graph on
v − 2k + 2 vertices. Consequently, χ(Kv:k) ≤ v − 2k + 2 so we call Stahl’s
map the colouring map. In [11], Stahl makes a conjecture about necessary
and sufficient conditions for the existence of a homomorphism from Kv:k to
Kw:`. A reformulation of this conjecture, due to Chris Godsil, is that there is a
homomorphism from Kv:k to Kw:` if and only if there is a homomorphism from
Kv:k to Kw:` that is a composition of extension, multiplication and colouring
maps.

The following homomorphisms between the q-Kneser graphs are known [3]:

(a) The extension map, embedding qKv:k in qKv+1:k.

(b) The field of order q is a subfield of the field of order qr so we have a subfield
map qKv:k → qrKv:k.

(c) A k-space in a v-dimensional vector space over Fqr can be viewed as a
subspace of dimension rk in a space of dimension rv over Fq. This leads
to a q-analogue of the multiplication map, embedding qrKv:k as an induced
subgraph of qKrv:rk.

(d) Each k-subspace is the row space of a unique k × v matrix in reduced row
echelon form. The subspace spanned by the last k − 1 rows of this matrix
is a (k − 1)-subspace of a (v − 1)-dimensional space. Hence we have a
homomorphism from qKv:k to qKv−1:k−1.

(e) Finally qKv:k is an induced subgraph of K[v]:[k] because we can view F
v
q as

a set of [v] vectors, and a k-dimensional subspace of Fvq is a subset of [k]
vectors from F

v
q .

We do not have a q-analogue of Stahl’s colouring map because

χ(qK3:1) = q2 + q + 1 < q3 + q2 + q + 1 = χ(qK5:2)

so there is no homomorphism from qK5:2 to qK3:1.
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The fourth homomorphism above shows that we have the following homo-
morphisms

qK2k+1:k → qK2k:k−1 → . . .→ qKk+3:2.

If we could show for each k that χ(qK2k+1:k) = [k+2], then by Lemma 4.1.1 we
would be able to colour all q-Kneser graphs excluding those of the form qK2k:k.
Therefore, colouring the q-Kneser graphs in general reduces to colouring the
q-Kneser graphs qK2k:k and qK2k+1:k for each k. We restate this observation:

5.3.1 Lemma. If χ(qK2k:k) = qk + qk−1 and χ(qK2k+1:k) = [k + 2] for all
positive integers k, then for v ≥ 2k we have χ(qKv:k) = [v − k + 1].
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Chapter 6

Hilton-Milner and
Kruskal-Katona

We discuss two classical results in extremal set theory, the Hilton-Milner and
Kruskal-Katona theorems, and suggest possible vector space analogues of these
results.

6.1 The Hilton-Milner theorem

The Hilton-Milner theorem [9] was originally stated in terms of intersecting fam-
ilies of sets. For our purposes, we use the following reformulation of the Hilton-
Milner problem: What is the size of the largest independent set in the Kneser
graph that does not lie in a point pencil? We give two important examples
of such independent sets and then give the full statement of the Hilton-Milner
theorem, Theorem 6.1.1.

Example 1: Let V = {1, ..., v}, let α be a k-set of V , and suppose 1 /∈ α.
Define F1 to be the set of all k-sets of V that contain 1 and intersect α, together
with the set α. It is easy to see that F1 is an independent set of Kv:k that is
not contained in a point pencil, and that

|F1| =
(
v − 1
k − 1

)
−
(
v − k − 1
k − 1

)
+ 1.

Example 2: Let V = {1, ...v} and define F2 to be the set of all k-sets of V
that contain at least two elements from {1, 2, 3}. It is easy to see that F2 is
an independent set in Kv:k. For k = 2 we have F1 = F2, and for k=3 we have
|F1| = |F2|. When v > 2k and k ≥ 4 we have |F1| > |F2|.
6.1.1 Theorem (Hilton-Milner). For v > 2k, the maximum size of an in-
dependent set in the Kneser graph, Kv:k, that does not lie in a point pencil
is

1 +
(
v − 1
k − 1

)
+
(
v − k − 1
k − 1

)
.
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Moreover, equality is possible only for F1 or F2; the latter occurs only for
k ≤ 3.

The restriction v > 2k is necessary because K2k:k is isomorphic to
(

2k−1
k−1

)
vertex-disjoint copies of K2. As a corollary of the Hilton-Milner theorem, we
have:

6.1.2 Corollary. The point pencils are the only independent sets that attain
equality in the Erdős-Ko-Rado theorem.

6.2 q-Hilton-Milner conjectures

In this section we present our conjectures for a q-analogue of the Hilton-Milner
theorem for k = 3, and their implications for the covering planes approach
described in Section 5.2. We first give the q-analogues of the independent sets
defined in the examples of the previous section.

Example 1: Let P be a plane in Fvq , and let p be a point not on P . The naive
analogue of F1 is the set of all planes that contain p and meet P , together with
the plane P . This independent set, however, is not maximal. Let P ′ 6= P be
a plane in the 4-space p ∨ P that does not contain p. We have P ′ intersects
every plane in the independent set non-trivially so P ′ can be added to the set.
Consequently, define qF1 to be the union of the set of planes that contain p and
meet P and the set of planes in the 4-space p ∨ P . It is not hard to show that
qF1 is a maximal independent set and that

|qF1| =
[
v − 1

2

]
− q6

[
v − 4

2

]
+ q3.

Example 2: Let P be a plane in Fvq . Define qF2 to be the set of planes that
intersect P in a line, together with the plane P . We have that qF2 is a maximal
independent set and that

|qF2| =
[
v − 1

2

]
− q6

[
v − 4

2

]
+ q3 = |qF1|.

Conjecture: For v > 6, the maximum size of an independent set, F , in the
q-Kneser graph, qKv:k, that does not lie in a point pencil is

|F | =
[
v − 1

2

]
− q6

[
v − 4

2

]
+ q3.

Moreover, equality is possible only for F = qF1 or F = qF2.

When q = 1, we have |qF1| = |F1| = 3v − 8 = |F2| = |qF2| so our conjecture
for the q-analogue of the Hilton-Milner theorem reduces to the Hilton-Milner
theorem in the case k = 3. Furthermore, if our conjecture is correct, then we
have the desired contradiction in the covering planes argument of Section 5.2
since

β ≥ (qv−1 + qv−2 + 1)(qv−2 + 1)
(q2 + q + 1)(q + 1)

≥ |qF1|.
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6.3 The Kruskal-Katona Theorem

The Kruskal-Katona theorem is an important theorem in extremal set theory
that implies the Erdős-Ko-Rado theorem. Although the Kruskal-Katona the-
orem is not directly related to our research on colouring q-Kneser graphs, we
include it here as part of a broader approach of considering vector space ana-
logues of problems in extremal set theory.

Let X = {1, 2, . . . , n}, and let Xk denote the set of k-subsets of X. Suppose
A ⊆ Xk is a family of k-subsets of X where 1 ≤ k ≤ n− 1. Define the shadow
∂A of A to be

∂A := {B ∈ Xk−1|B ⊆ A ∈ A}

The Kruskal-Katona theorem addresses two questions. First, given n, k, and
|A|, what is the minimum size of the shadow of A? Second, what is the structure
of families A whose shadows have the minimum size? We provide an example.

Example: The Kruskal-Katona problem for n = 8, k = 2 and |A| = 7 can be
stated as follows: Choose seven edges of the complete graph K8 so that they are
incident with the fewest number of vertices possible. One choice for the seven
edges is

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 5}.

The strategy for choosing the edges is to keep the largest vertex as small as
possible. Given |A|, let v be the least integer such that |A| ≤

(
v
2

)
. The minimum

size for the shadow of A when k = 2 is |∂A| = v.

One simple lower bound on |∂A| is given by the LYM inequality, Lemma 6.3.1.

6.3.1 Lemma.

|∂A| ≥ |A|(n
k

)( n

k − 1

)
Proof. We count ordered pairs (A,B) where A ∈ A, B ∈ ∂A, and B ⊂ A.
Every set B ∈ ∂A is contained in n − k + 1 elements of Xk, and thus in at
most n − k + 1 elements of A. Every set A ∈ A contains k elements of ∂A.
Consequently,

|∂A|(n− k + 1) ≥ {(A,B)|A ∈ A, B ∈ ∂A, B ⊆ A} = |A|k

and so

|∂A|
(
n

k

)
≥ |A|k
n− k + 1

(
n

k

)
= |A|

(
n

k − 1

)
.

Dividing both sides by
(
n
k

)
gives the desired inequality.

6.3.1 The Colex Order

Recall that in the example above we chose edges in a way that kept the largest
vertex as small as possible. This strategy can be generalized to build fami-
lies of k-sets whose shadows have the minimum size. To formalize this, we
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define the colex order on Xk. Write A,B ∈ Xk as A = {a1, a1, . . . , ak},
B = {b1, b2, . . . , bk} where a1 < a2, . . . , < ak and b1 < b2, . . . , < bk. We say
A < B in the colex order if A 6= B and for s = max{t|at 6= bt}, we have as < bs.
The colex order defines a total order on Xk. Observe that in the example, we
picked the edges in colex order. The Kruskal-Katona theorem asserts that the
shadow of A ⊆ Xk is at least as large as the shadow of the first |A| sets in the
colex order on Xk.

We now show how to find the size of the shadow of the first m sets in the colex
order on Xk. Proofs of the following theorems appear in [1]. Theorem 6.3.3 is
due to Kruskal and Katona.

6.3.2 Theorem. For any positive integers m ≥ 1 and k ≥ 1, there is a unique
solution to the equation

m =
(
mk

k

)
+
(
mk − 1
k − 1

)
+ · · ·+

(
mh

h

)
with integers mk > mk−1, · · · , > mh ≥ h ≥ 1. Furthermore, the size of the
shadow of the first m sets in the colex order on Xk is

∂(k)(m) :=
k∑
j=h

(
mj

j − 1

)
.

6.3.3 Theorem (Kruskal-Katona). Let k be a positive integer and let A ⊆
Xk. Then

|∂A| ≥ ∂(k)(|A|) (6.3.1)

i.e. the shadow of A is at least as large as the shadow of the first |A| sets in
the colex order on Xk. If |A| =

(
mk
k

)
for some mk ≥ k then equality holds in

(6.3.1) if and only if A ' {1, 2, . . . ,mk}k.

6.3.2 Kruskal-Katona implies EKR

We now give Daykin’s proof of the Erdős-Ko-Rado theorem from the Kruskal-
Katona theorem.

6.3.4 Theorem. Suppose A is an intersecting family of k-subsets of an n-set,
X, where n > 2k. Then

|A| ≤
(
n− 1
k − 1

)
Moreover, equality holds if and only if A consists of the k-subsets of X that
contain a particular point.

Proof. Let B = {X − A|A ∈ A} ⊆ Xn−k. Since A is an intersecting family,
for A ∈ A and B ∈ B, we have A 6⊂ B. Let ∂t denote the operation of taking
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shadows t times. Since n > 2k, ∂n−2k is defined and we have ∂n−2kB ⊆ Xk and
∂n−2kB ∩ A = ∅. Hence,

|∂n−2kB|+ |A| ≤
(
n

k

)
. (6.3.2)

Since |A| = |B|, if |B| ≤
(
n−1
k−1

)
, then |A| ≤

(
n−1
k−1

)
, and the Erdős-Ko-Rado bound

holds. If |B| ≥
(
n−1
k−1

)
, then by Theorem 6.3.3

|∂B| ≥
(

n− 1
n− k − 1

)
, |∂2B| ≥

(
n− 1

n− k − 2

)
, . . . , |∂n−2kB| ≥

(
n− 1
k

)
. (6.3.3)

By (6.3.2), this implies

|A| ≤
(
n

k

)
−
(
n− 1
k

)
=
(
n− 1
k − 1

)
,

so the Erdős-Ko-Rado bound holds.
Now suppose |A| =

(
n−1
k−1

)
. We have |B| =

(
n−1
k−1

)
=
(
n−1
n−k
)
. We show that all

the inequalities in (6.3.3) are tight. By (6.3.2), |∂n−2kB| =
(
n−1
k

)
. Theorem 6.3.2

gives unique integers mk+1 > mk, · · · , > mh ≥ h ≥ 1 such that

|∂n−2k−1B| =
k+1∑
j=h

(
mj

j

)
.

Moreover,

|∂n−2kB| =
k+1∑
j=h

(
mj

j − 1

)
.

Since |∂n−2kB| =
(
n−1
k

)
, we must have mk+1 = n − 1 and h = k + 1. Con-

sequently, |∂n−2k−1B| =
(
n−1
k+1

)
. By induction, |∂B| =

(
n−1

n−k−1

)
=
(
n−1
n−k
)
, so by

Theorem 6.3.3, B ' {1, 2, . . . , n− 1}n−k. Consequently,

A ' {S ∈ {1, 2, . . . , n}k|n ∈ S}.

so the Erdős-Ko-Rado theorem is proved.

We now formulate a q-analogue of the Kruskal-Katona problem. Let V = F
n
q

and let Vk denote the set of k-subspaces of V. Let A ⊂ Vk be a family of k-
subspaces of V. Define the q-shadow of A, ∂qA to be

∂qA = {B ∈ Vk−1|B ⊆ A ∈ A}

Given n, k, and |A|, what is the minimum size of the q-shadow of A? Moreover,
what is the structure of families A whose shadows have the minimum size?
To our knowledge, no q-analogue of the Kruskal-Katona theorem is known. It
would be interesting if there is a q-analogue of the Kruskal-Katona theorem,
and if Daykin’s argument could be generalized to prove q-EKR, Theorem 2.3.1.
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