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Abstract

The central topic of this thesis is parking functions. A parking function is a se-

quence of positive integers (a1; a2; : : : ; an) such that its non-decreasing rearrange-

ment (b1; b2; : : : ; bn) satis�es bi � i. We give a survey of some of the current liter-

ature concerning these sequences and focus on their interaction with other combi-

natorial objects; namely noncrossing partitions, hyperplane arrangements and tree

inversions. In the �nal chapter, we discuss generalizations of both parking functions

and the above structures.
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Chapter 1

Introduction

The central mathematical objects of this thesis are parking functions. A parking

function is a sequence (a1; a2; : : : ; an) of positive integers whose non-decreasing

rearrangement (b1; b2; : : : ; bn) satis�es bi � i. Parking functions, from their de�-

nition, seem to be simple sequences but they have arisen in, surprisingly, diverse

areas of mathematics. They were �rst studied by Konheim and Weiss [9] in an occu-

pancy problem in computer science but since have attracted attention as interesting

objects in their own right.

It turns out that the number of parking functions of length n is (n + 1)n�1.

One immediately recognizes this as the tree number of the complete graph on n+1

vertices or, equivalently, the number of trees on a �xed vertex set of cardinality

n+ 1. There exists very simple bijections and other basic techniques showing that

the number of parking functions of length n and the number of trees on n+1 vertices

are the same, but we will be concentrating on how parking functions interact with

a notion that is a re�nement of trees, namely tree inversions. Parking functions

1



CHAPTER 1. INTRODUCTION 2

and their interaction with tree inversions is the focus of Chapter 5.

The number (n+1)n�1 also appears in the study of (at least) two other combina-

torial structures and they are noncrossing partitions and hyperplane arrangements.

It is known that the set of noncrossing partitions of f1; 2; : : : ; n+ 1g is a subposet
of the poset of partitions of f1; 2; : : : ; n + 1g. It turns out that the number of

maximal chains in the poset of noncrossing partitions is (n + 1)n�1. We show this

by exhibiting a bijection with parking functions of the appropriate length. Fur-

ther, associated with parking functions is a symmetric function PFn which will be

closely related to a symmetric function FNCn that is associated with noncrossing

partitions. Noncrossing partitions are dealt with in Chapter 3. Concerning hyper-

plane arrangements, we will be talking about two hyperplane arrangements, the

braid arrangement and the Shi arrangement. It is the Shi arrangement that has

links with parking functions and our discussion of the braid arrangement is more or

less needed to understand the Shi arrangement. In addition, a generating function

associated with hyperplane arrangements, known as the distance enumerator, is

shown to be connected with parking functions. Chapter 4 is devoted to hyperplane

arrangements.

The �nal chapter, Chapter 6, deals with two generalizations of parking functions.

We will show that there are generalizations of noncrossing partitions, hyperplane

arrangements and tree inversions that �t with at least one of the two generalizations

of parking functions given in Chapter 6.



Chapter 2

Fundamental Concepts

2.1 Background

In the following subsections we introduce some necessary terminology that will

be used later. This section may be skipped by those who feel comfortable with

the material. The notation is consistent with the following pieces of literature.

The notation in Sections 2.1.2 and 2.1.1, on representation theory and symmetric

functions, is consistent with Sagan [15] Macdonald [12] whereas the the notation in

Section 2.1.3 on partially ordered sets (posets) is consistent with Stanley [20][21].

These sections are in no way meant to be complete, they merely introduce the

material and the notation.

2.1.1 Symmetric Functions

A partition � of n is a sequence of non-negative integers (�1; �2; : : : ; �l) in non-

increasing order that sum to n. Each positive �i is called a part of �. The number

3



CHAPTER 2. FUNDAMENTAL CONCEPTS 4

of positive entries in �, l(�), is called the length of �. We use � ` n to mean that

� is a partition of n. De�ne mi(�) to be the number of parts of � equal to i and

we will often write � = 1m1(�)2m2(�) � � �nmn(�), indicating that the number of i's

occurring in � is mi(�). A sequence � of non-negative integers is said to have shape

� if its non-increasing rearrangement is � and we use sh(�) to mean the shape of

�. Let x = x1; x2; : : : and for any sequence � = (�1; �2; : : : ), we denote by x
� the

monomial x�11 x
�2

2 � � � . For the rest of this section, � = (�1; �2; : : : ; �n) ` n.
For our purposes, a symmetric function f(x) is a formal power series in a count-

able number of variables (which we assume to be x1; x2; : : : ) such that (i j)f(x) =

f(x), where (i j)f(x) is the series obtained by transposing the variables xi and xj

in f(x). The set of symmetric functions forms a ring which we call �. Further-

more, the ring of symmetric functions happens to be a vector space that has several

di�erent bases, which we now de�ne.

The monomial symmetric functions are the symmetric functions, indexed by

partitions  of n,

m =
X

� : sh(�)=

x�

The set f m j  ` n; n � 0g of monomial symmetric functions forms a basis for �.

The one part elementary symmetric functions, one part complete symmetric

functions and the one part power sum symmetric functions are the symmetric
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functions, indexed by non-negative integers,

er =
X

1�i1<i2<���<ir

xi1xi2 : : : xir ;

hr =
X

1�i1�i2�����ir

xi1xi2 : : : xir

and

pr =
X
i�1

x
r

i
;

respectively, and we de�ne e0; h0; and p0 to equal 1. The sets f er j r � 0g,
f hr j r � 0g and f pr j r � 0g generate �. Further, we de�ne

e� = e�1e�2 : : : e�n;

h� = h�1h�2 : : : h�n

and

p� = p�1p�2 : : : p�n

as the elementary symmetric functions, complete symmetric functions and power

sum symmetric functions, respectively. The sets f e� j � ` n; n � 0g, f h� j � `
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n; n � 0g and f p� j � ` n; n � 0g are all bases for �.
The last type of symmetric functions that we will be using are the Schur sym-

metric functions. The Schur symmetric functions, indexed by a partition � of n,

for positive n, can be de�ned as

s� = det(h�i�i+j)1�i<j�n

A function on � that will be used later is ! : � �! � which maps er to hr. It

can be easily shown that ! is an algebra isomorphism. It turns out ! is its own

inverse.

2.1.2 Group Representations and Permutation Groups

Let GLd be the general linear group of dimension d (the set of all invertible d� d
matrices) over the �eld C . Given any group G, a matrix representation of G is a

group homomorphism

X : G �! GLd;

or equivalently, X satis�es

1. X(�) = I, where � is the identity in G and I is the identity matrix in GLd.

2. X(gh) = X(g)X(h) for all g; h 2 G.

The parameter d is called the dimension of the representation. We may also write

GL(V ) for GLd, where V is a d dimensional vector space. Equivalently, we can use
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the language of modules to describe a representation. That is, a vector space V is

a G-module if there is a multiplication gv of elements in V by elements of G such

that

1. gv 2 V ,

2. g(cv+ dw) = cgv+ dgw,

3. (gh)v = g(hv),

4. ev = v, where e is the identity of G.

for all g; h 2 G, v;w 2 V and scalars c; d.

The following two representations will be used later.

Example 2.1 The simplest representation is the trivial representation. This the

representation

X : G �! GL1

such that X(g) = [1] for all g 2 G. This is clearly a representation. 2

Example 2.2 The permutation representation is obtained when a group G acts

on a set S. We take the vector space C [S] = c1s1+c2s2+� � �+cnsn where ci 2 C and

S = fs1; s2; : : : ; sng. Letting v = c1s1+c2s2+ � � �+cnsn then X(g) is de�ned as the

matrix associated with the linear transformation g:v = c1g:s1+c2g:s2+ : : :+cng:sn,

where g:si is g acting on si, with respect to the basis (s1; s2; : : : ; sn). 2



CHAPTER 2. FUNDAMENTAL CONCEPTS 8

Another concept that we will be using is that of an induced representation.

Suppose that H is a subgroup of the group G and that t1; t2; : : : ; tn is a transversal

(i.e. the sets t1H; t2H; : : : ; tmH are all disjoint and t1H [ t2H [ : : : [ tmH = G).

Further suppose that X : H �! GLd is a representation of the group H. Then the

induced representation indG
H
X : G �! GLmd is de�ned as

indG
H
X(g) =

2
66666664

X(t1gt
�1
1 ) X(t1gt

�1
2 ) � � � X(t1gt

�1
m
)

X(t2gt
�1
1 ) X(t2gt

�1
2 ) � � � X(t2gt

�1
m
)

...
...

. . .
...

X(tmgt
�1
1 ) X(tmgt

�1
2 ) � � � X(tmgt

�1
m
)

3
77777775

where, in the matrix, X(j) is the zero matrix if j =2 H.

The group that we will be interested in is the symmetric group, Sn. We will use

either the standard cycle representation of a permutation (writing a permutation

as the product of cycles) or writing a permutation as a word. We denote by Sn

the symmetric group on n symbols. If H is a subgroup of Sn acting on a set S

then the orbit of an element s 2 S is the set f g:s j g 2 Hg. The action of H on

S is said to be transitive if there is only one orbit, i.e. for any s 2 S the orbit of s

is S. Often we wish to specify a set other than f1; 2; : : : ; ng as our underlying set
for the symmetric group. Thus, we write SA where A is a set with cardinality n

to mean the symmetric group has as its underlying set the symbols in A. A useful

subgroup of Sn is the Young Subgroup S�, where � = (�1; �2; : : : ; �l) ` n which is
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the subgroup de�ned as

Sf1;2;::: ;�1g �Sf�1+1;�1+2;::: ;�1+�2g � � � � �Sfn��l+1;n��l+2;::: ;ng:

2.1.3 Partially Ordered Sets

A poset P is an ordered pair (P;�P ) where P is a set and � is a reexive, transitive

and anti-symmetric relation on the set P . We note the abuse of notation of calling

both the poset P and its underlying set P the same thing. This abuse, will, in fact

turn out to be convenient. Given a poset P we call Q = (Q;�Q) a subposet of P

if Q � P and for x; y 2 Q, x �Q y if and only if x �P y. We say that x covers

y if x > y and no z satis�es x > z > y. For any x; y 2 P we denote by [x; y] the

subposet of P whose underlying set is f z j x � z � yg. We call [x; y] an interval.

If P contains an x such that x � y for all y 2 P we call x the 0̂ of P . Similarly, if

P contains an x such that x � y for all y 2 P then we denote x by 1̂. P is called

a chain if any two elements of P are comparable. A chain in P is just a subposet

of P that is a chain. If 0̂; 1̂ 2 P and if every maximal chain in P has the the same

length, say n, then we call P a graded poset of rank n. In that case, there exists

a unique function � : P �! N (which we will call the rank function) such that

�(0̂) = 0 and �(x) = �(y) + 1 whenever x covers y. If P is graded of rank n then

P is called rank symmetric if the number of elements of rank i is the same as the

number of elements of rank n � i. Further, P is locally rank symmetric if every

interval is rank symmetric. The dual of a poset P , P �, is the poset on the same

set as P and x � y in P � if and only if y � x in P . P is called self-dual if P = P
�.
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Given two posets P and Q de�ne the direct product of P and Q, P �Q, on the set

f (x; y) j x 2 P; y 2 Qg and (x; y) � (x0; y0) if and only if x � x0 in P and y � y
0 in

Q.

We note some obvious facts. If P is graded and self-dual, it is rank symmetric.

Further, the product of two self-dual posets P and Q is also self-dual and, hence,

rank symmetric. We will be using this fact later.

Suppose that P is a graded poset of rank n with rank function �. Let �(s; t) be

shorthand for �(t)� �(s) and de�ne FP to be the formal power series

FP (x) =
X

0̂�t0�t1�:::�tk�1<tk=1̂

x
�(t0;t1)

1 x
�(t1;t2)

2 : : : x
�(tk�1;tk)

k
(2.1)

where the sum is over all multichains that contain 1̂ precisely once (this ensures

that (2.1) is, in fact, a formal power series i.e. that each monomial has a �nite

coeÆcient). For the set S = fm1;m2; : : : ;mjg we write S = fm1;m2; : : : ;mjg<
to mean that m1 < m2 < : : : < mj. We de�ne �P (S) to be the number of chains

0̂ < t1 < t2 : : : < tj < 1̂ such that S = f�(t1); �(t2); : : : ; �(tj)g. Further, for any

partition � ` n, � = (�1; �2; : : : ; �l) we de�ne S� = f�1; �1+�2; : : : ; �1+�2+ : : :+
�l�1g. An immediate result of the above de�nition of FP (x) is the following.

Proposition 2.3

FP (x) =
X

fm1 ;m2 ;::: ;mj
g<

S�[n�1]

X
1�i1<i2<:::<ij+1

x
m1

i1
x
m2�m1

i2
: : : x

n�mj

ij+1
�P (S)
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and FP (x) is a symmetric function if and only if

FP (x) =
X
�`n

�P (S�)m�:

2.2 De�nitions

We begin with a de�nition of parking functions.

De�nition 2.4 A parking function of length n is a sequence (a1; a2; : : : ; an) of

positive integers such that its non-decreasing rearrangement (b1; b2; : : : ; bn) satis�es

bi � i. We denote by Pn the set of all parking functions of length n.

Below we give an alternative de�nition of a parking function (which will explain

the name \parking function"). The main strength of the de�nition which is about

to follow is that it allows for an easy proof of one of our �rst results. Consider

the following scenario. Suppose that n cars labelled 1; 2; : : : ; n are trying to park

in n parking spots, also labelled 1; 2; : : : ; n. Further suppose that each car has a

preferred parking spot i.e. car 1 prefers to park in spot a1, car 2 in spot a2 and

so on. Call the sequence (a1; a2; : : : ; an) the preference sequence. The cars will

attempt to park in the following manner. Car 1 will park in its preferred spot.

Now suppose that cars 1 to i� 1 have parked. Car i will try to park by driving to

its preferred spot and if it is unoccupied, it will park in its preferred spot. If it is

occupied then it will drive to the next (in numerical order) unoccupied spot. If no
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such spot exists, car i cannot park. We now give the second de�nition of a parking

function. See Figure 2.1.

a1 a2 an

1 2 n

Figure 2.1: The parking scenario.

De�nition 2.5 Given the above scenario, a parking function is a preference se-

quence which allows all n cars to park.

Before we proceed, let us see why the above two de�nitions are equivalent. To

see that the �rst de�nition is a necessary condition for the second, let us assume

a set of n cars has the preference sequence (a1; a2; : : : ; an) that does not satisfy

the �rst de�nition, i.e. if (b1; b2; : : : ; bn) is the non-decreasing rearrangement of

(a1; a2; : : : ; an) then for some k, bk > k. Then the n � k cars corresponding to

bk+1; : : : ; bn will try to park in the fewer than n � bk parking spots and since

n� bk � n � k we see not all cars can park.

The suÆciency of the �rst de�nition for the second is similar. Suppose that the

preference sequence (a1; a2; : : : ; an) does not allow all cars to park. Assume that

after all cars have attempted to park (the ones that can't park just leave the lot) the

empty spot with the largest label is i. From this we can deduce that at least n�i+1

cars had preferred spots i+ 1 to n (the n� i cars that are parked from spots i+ 1
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to n and at least one car that left the lot must have preferred a spot greater than

i for otherwise one of them would have parked in spot i). In the non-decreasing

rearrangement (b1; b2; : : : ; bn) of (a1; a2; : : : ; an), we see that bi; bi+1; :::; bn are all

greater than or equal to i+ 1. In particular, bi � i+ 1 > i.

2.3 Some Basic Results

In this section we prove a few basic results about parking functions which will

motivate much of what is to come. The �rst result pertains to the decomposition

of parking functions into smaller parking functions. We will later see that this

will be a very powerful tool in proving some facts about parking functions. The

second result concerns primitive parking functions (which will be de�ned below).

In Section 2.3.1, we will count the number of parking functions.

2.3.1 Decomposition of Parking Functions

The following two propositions gives us a way to decompose parking functions and

are due to Beissinger and Peled [2, Decomposition Lemma]. First we need some

notation. If (a1; a2; : : : ; an) is a parking function, let a
�

n
be the largest integer such

that (a1; a2; : : : ; a
�

n
) is still a parking function, i.e. (a1; a2; : : : ; a

�

n
) is a parking

function but (a1; a2; : : : ; a
�

n
+ 1) is not. Call (a1; a2; : : : ; a

�

n
) the reduced form of

(a1; a2; : : : ; an)

Proposition 2.6 Suppose that (a1; a2; : : : ; an) is a parking function of length n

with reduced form (a1; a2; : : : ; a
�

n
). Let (b1; b2; : : : ; bn) be the non-decreasing rear-



CHAPTER 2. FUNDAMENTAL CONCEPTS 14

rangement of (a1; a2; : : : ; a
�

n
). Then, there is a unique l satisfying bl = a

�

n
, namely

l = a
�

n
.

Proof. Let l = a
�

n
. Clearly, for some i, bi = a

�

n
. From the de�nition of a parking

function, we must have i � l. If i > l then we can clearly increase a�
n
to at least i

and still have a parking function, a contradiction. Thus, we see the only choice for

i is l. 2

Proposition 2.7 Let (a1; a2; : : : ; an) be a parking function and (a1; a2; : : : ; a
�

n
) its

reduced form with l = a
�

n
. De�ne A1 = fi j ai < a

�

n
g and A2 = fi j ai > a

�

n
g.

Then both (ai)i2A1
and (ai � l)i2A2

are parking functions of length l� 1 and n� l,
respectively.

Proof. It is immediate fromDe�nition 2.4 that (ai)i2A1
is a parking function. Using

the notation from Proposition 2.6, the terms (ai)i2A2
correspond to bl+1; bl+2; : : : ; bn

in the non-decreasing rearrangement of (a1; a2; : : : ; an). Hence, bl+1 � l+ 1; bl+2 �
l + 2 and so on, implying that (bl+1 � l) � 1; (bl+2 � l) � 2 and so on. Hence,

(ai � l)i2A2
is a parking function. 2

Example 2.8 For the parking function (7; 8; 5; 2; 3; 3; 1; 2), we see that the largest

number a�
n
such that (7; 8; 5; 2; 3; 3; 1; a�

n
) is still a parking function is a�

n
= 6. In-

deed, in the non-decreasing rearrangement of (7; 8; 5; 2; 3; 3; 1; 6), which is (1; 2; 3; 3;

5; 6; 7; 8), there is only one l such that bl = 6 and that is l = 6. 2
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2.3.2 Primitive Parking Functions

A primitive parking function of length n is a non-decreasing sequence of length

n that is a parking function. Our next result concerns the number of primitive

parking functions of length n.

Proposition 2.9 The number of primitive parking functions of length n is the

Catalan number 1
n+1

�
2n

n

�
.

Proof. It follows from Proposition 2.7 that every primitive parking function de-

composes into two primitive parking functions of length l � 1 and n � l where l

is also given in Proposition 2.7. Conversely, given two primitive parking functions

of length l � 1 and n � l we can make a primitive parking function of length n in

the obvious manner; if a1; a2; : : : ; al�1 and b1; b2; : : : ; bn�l are two primitive park-

ing functions then (a1; : : : ; al�1; l; b1 + l; b2 + l; : : : ; bn�l + l) is a primitive parking

function of length n. Hence, if f(n) is the number of primitive parking functions

of length n, then

f(n) =

n�1X
i=0

f(i)f(n � i� 1)

Here, we note that f(0) = f(1) = 1. If we set F (x) =
P

1

n=0
f(n)xn then

F (x) =

1X
n=0

f(n + 1)xn+1 + 1

= xF (x)2 + 1 (2.2)
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The last line above implies that

F (x) =
1 �p1� 4x

2x

a function which has a Taylor series

F (x) =

1X
n=0

1

n+ 1

�
2n

n

�
x
n (2.3)

Alternatively, we can apply the Lagrange Inversion Formula (see Goulden and Jack-

son [7, Sec. 1.2] Stanley [24, Sec. 5.4]) to (2.2) to obtain (2.3). This completes the

proof. 2

2.3.3 The Total Number of Parking Functions

We now use De�nition 2.4 to prove the next result, which can be found in Foata

and Riordan [5] and is due to H. Pollak.

Proposition 2.10 The number of parking functions of length n is (n+ 1)n�1.

Proof. Suppose that we have n cars and they are going to try and park in n spots.

We will modify our parking scenario slightly by adjoining an (n + 1)st parking

space to the lot and making a circular lot in such a manner that one would move

in the clockwise direction to get from n + 1 to 1. We allow the parking spot n + 1

as a preferred spot. Let us consider preference sequences (a1; a2; : : : ; an) with the

property that 1 � ai � n+1. The cars park in the same manner that they would in

the linear lot except that if a car tries to park in its preferred spot and it is occupied

then the car will drive in the clockwise direction and �nd the next unoccupied spot.
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It is clear in this scenario that all the cars can park, leaving one spot empty. It is

also clear that the empty spot is the spot labelled n+1 if and only if the preference

sequence is a parking function of length n. Further, it is clear that if the sequence

(a1; a2; : : : ; an) leaves spot k empty then the sequence (a1+i; a2+i; : : : ; an+i) leaves

spot k+i (mod n+1) empty. The orbit of the sequence (a1; a2; : : : ; an) is the set of

sequences f(a1; a2; : : : ; an); (a1+1; a2+1; : : : ; an+1); : : : ; (a1+n; a2+n; : : : ; an+n)g.
It follows from the above that given a preference sequence, where each term in the

sequence is between 1 and n+1, then the orbit of the sequence contains precisely one

parking function, the sequence that leaves spot n+1 empty. An easy observation is

that given two preference sequences the orbits of the two sequences either coincide

or are disjoint. Hence, decompose the set of all parking functions into classes of size

n+ 1 with each class containing precisely one parking function. Since the number

of preference sequences is (n+1)n the number of parking functions is (n+1)n�1.2

Notes and References

x2.1 In this thesis, it will be assumed that the reader is comfortable with the objects

discussed in this section, namely group representations, symmetric functions and

partially ordered sets. It is also assumed that the reader is familiar with generating

functions and permutation groups. The two books Ledermann [11] and Sagan [15]

are similar and give a very thorough introduction to the representation of groups.

Concerning symmetric function, the landmark book Macdonald [12] gives a full

account of symmetric functions. Another book on the subject of symmetric func-

tions is Stanley [24]. An advantage of [24] is that it also gives a great treatment of
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generating functions. Two other great sources on generating functions are Goulden

and Jackson [7] and Wilf [26]. The book [7] gives a very complete account whereas

[26] gives a simpler, briefer account of the material and is, currently, available free

of charge from the author's website. A basic treatment of partially ordered sets

is given in Stanley [20]. For those needing reference on the symmetric group, the

above books Sagan [15], Lederman [11] and Macdonald [12] all deal with them since

it is impossible to attack the material in those books without the symmetric group.

The book Dixon and Mortimer [3] is fully devoted to the symmetric group.

x2.3 The decomposition of parking functions (Proposition 2.6 and 2.7) can be found

in Beissinger and Peled [2, Decomposition Lemma]. There, the authors give a re-

sult concerning parking functions (in the paper the authors, in fact, discuss \major

sequences" which are sequences (a1; a2; : : : ; an) such that (n�a1; n�a2; : : : ; n�an)
are parking functions) and external activity of trees. Proposition 2.10 is proven in

many di�erent papers and in just as many di�erent ways. It is proved in Konheim

and Weiss [9], the paper that parking functions originally appeared in, using recur-

sion. The proof given here is due to H. Pollak and is given in Foata and Riordan

[5] (a paper of which Pollak is not the author). The proof can also be found in

Stanley [24, Ex. 5.49].



Chapter 3

Noncrossing Partitions

Noncrossing partitions are objects that are not speci�c to combinatorics; they are

found in many other areas of mathematics. In this chapter we explore the relation-

ship between noncrossing partitions and parking functions. We will do this with

techniques ranging from simple to more sophisticated.

3.1 De�nitions and Elementary Results

We begin with the de�nition of a noncrossing partition. We use the notation [n] =

f1; 2; : : : ; ng.

De�nition 3.1 A noncrossing partition of the set [n] is a set partition of [n] such

that if a < b < c < d and B and B0 are blocks of our partition then a; c 2 B and

b; d 2 B0 imply that B = B
0. We denote by NCn the set of all noncrossing partitions

of [n].

19
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A nice way to graphically visualize a noncrossing partition of [n] is by drawing [n]

on a circle and then for each block, draw the convex hull of the points in that block.

Example 3.2 For the partition of [12] into the blocks ff1; 6; 7; 10; 11g; f2; 4; 5g;
f3g; f8; 9g; f12gg the graphical representation is in Figure 3.1. 2
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Figure 3.1: A graphical look at a noncrossing partition.

One of the properties that we will be looking at later is that the set of noncrossing

partitions of length n, which we will denote by NCn, is a poset where the ordering

is given by re�nement; that is, � � � if every block of � is contained in a block

of �. Notice that NCn has both a 0̂ (which is ff1g; f2g; : : : ; fngg) and a 1̂ (which
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is f1; 2; : : : ; ng). It is clear that every maximal chain has length n and, thus, the

poset NCn is graded and the rank function � is given by �(fB1; B2; : : : ; Bkg) =
(jB1j � 1) + (jB2j � 1) + � � � + (jBkj � 1). Later, we will further discuss the poset

properties of noncrossing partitions (see Section 2.1.3 for poset terminology).

Our �rst result concerning noncrossing partitions will be the number of noncross-

ing partitions of length n. We will show that the number of noncrossing partitions

of length n is the same as the number of primitive parking functions of length n.

We will show this by demonstrating that noncrossing partitions satisfy the same

recursion as primitive parking functions (and from the obvious fact that the number

of noncrossing partitions of length 1 is one). To make the recursions work, we say

that the number of noncrossing partitions of length 0 is also one. This, in principle,

provides us with a (recursive) bijection between primitive parking functions and

noncrossing partitions.

Proposition 3.3 The number of noncrossing partitions of length n is the Catalan

number 1
n+1

�
2n

n

�
.

Proof. Let cn be the number of noncrossing partitions of length n and consider

an arbitrary noncrossing partition of length n. Let k be the largest number in the

block containing 1. Removing k from this block and considering all the integers less

than k, we see that this can be any noncrossing partition of length k � 1. Further,

all the integers greater than k form an arbitrary noncrossing partition of length

n � k. Thus, we see that the number of noncrossing partitions of length n and

value k, where k has the property given previously, is ck�1cn�k. Summing over all
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possible k we get

cn+1 =

nX
k=1

ck�1cn�k

or

cn+1 =

n�1X
k=0

ckcn�k�1

Thus, noncrossing partitions satisfy the same recursion (given in Proposition 2.9)

as primitive parking functions. As discussed earlier, it is clear that the number of

noncrossing partitions of [n] satis�es the same initial conditions that the number

of primitive parking functions does. Hence, the number of noncrossing partitions

of [n] is the Catalan number, as claimed. 2

Our next result can be considered a re�nement of the above result in that it

shows that primitive parking functions of a certain type are in 1� to�1 correspon-
dence with noncrossing partitions of a certain type. Of course, we must �rst de�ne

what we mean by a \certain type".

To each parking function p 2 Pn, we assign a frequency sequence, f1; f2; : : : ; fn,

where fi is the number of i's in p. Notice that
P

n

i=1
fi = n and, therefore, we can

consider the sequence f1; f2; : : : ; fn as a partition of n (after a suitable reordering

of the sequence). We call a parking function a parking function of type � if the

shape of its frequency sequence is � (see Section 2.1.1 for de�nition of \shape").

Similarly, we assign a frequency sequence f1; f2; : : : ; fn to a noncrossing partition

B = fB1; B2; : : : ; Bkg where fi = jBij. We call a noncrossing partition a noncross-
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ing partition of type � if the sequence f1; f2; : : : ; fn is a partition of n. We denote

the set of primitive parking functions of length n and type � by Pr�
n
and, simi-

larly, the set of noncrossing partitions of [n] and type � by NC�

n
. We will use the

same notation for Pr�
n
as we use for partitions i.e. the primitive parking function

i
j1

1 i
j2

2 : : : i
jk

k
contains jk occurrences of ik.

Proposition 3.4 jNC�

n
j = jPr�

n
j

Proof. Suppose that B = fB1; B2; : : : ; Bkg is a noncrossing partition in NC�

n
. Let

I = (i1; i2; : : : ; ik) where ij is the smallest number in Bj. We assume the blocks

B1; B2; : : : ; Bk are ordered so that i1 < i2 < � � � < ik. De�ne  n : NC
�

n
�! Pr�

n
by

 n(B) = i
jB1j

1 i
jB2j

2 � � � ijBkj

k

(we note that  n is not a function of the partition �). We will now show that  n

is a bijection.

First of all, it is not clear that  n actually does what it is supposed to, i.e. it is

not clear that it maps elements of NC�

n
to Pr�

n
. However, if we look at  n a slightly

di�erent way it does become clear. Consider for each noncrossing partition B in

NC�

n
the function �B : [n] �! [n] de�ned by

�B(i) = the smallest element of the block containing i in B

Clearly, (�B(1); �B(2); : : : ; �B(n)) is just  n(B) with the elements of  n(B) per-

muted and �B(i) � i, implying that (�B(1); �B(2); : : : ; �B(n)) (and, hence,  n(B))

is a parking function.
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We now want to show that  n is a bijection. We do this by de�ning  n's inverse.

To this end, we will de�ne a function �n : Pr
�

n
�! NC�

n
by the following rule. We

de�ne �n recursively and set �1(1) = ff1gg. Now suppose that p 2 Pr�
n
and that

p = i
j1

1 i
j2

2 : : : i
jk

k
. We decompose p into two objects, one object being the primitive

parking function �p = i
j1

1 i
j2

2 : : : i
jk�1

k�1 and second object the ordered pair (ik, jk).

Recursively, we know that �n�jk (�p) = fA1; A2; : : : ; Akg where fA1; A2; : : : ; Akg is
a partition of [n� jk]. De�ne

�n(p) = f �A1;
�A2; : : : ;

�Ak+1g

where

�Al = f x j x 2 Al and x < ikg [ f x+ j j x 2 Al and x � ikg

for 1 � l � k and

�Ak+1 = fik; ik + 1; : : : ; ik + jk � 1g

It is clear that �n does its job, i.e., it maps primitive parking functions of length

n of type � to noncrossing partitions of length n and type �. Further, it is clear

that  n Æ �n(p) = p for any parking function of length n. Thus, we see that  n is a

bijection, proving the claim. 2



CHAPTER 3. NONCROSSING PARTITIONS 25

3.2 The Noncrossing Partition Symmetric Func-

tion and the Parking Function Symmetric

Function

3.2.1 De�nitions and Useful Concepts

Consider the set of parking functions, Pn, of length n. The symmetric group, Sn,

acts on Pn (as a group action) in an obvious way; by permuting the coordinates of

a parking function.

Example 3.5 p = (1; 3; 5; 2; 1; 5; 3; 2) 2 P8 and � = (132)(45) 2 S8 we have

�(p) = (3; 5; 1; 1; 2; 5; 3; 2). 2

We can consider the permutation representation given in Example 2.2 associ-

ated with the above action of Sn on Pn. That is, we consider the vector space V
of all complex linear combinations of elements in Pn, C [Pn ], and our representation

X : Sn �! GL(V ) will be the matrix associated with the following linear trans-

formation: for v = a1v1 + a2v2; : : : ; anvn (where v1; v2; : : : ; vn are the n parking

functions)

X(g)(v) = a1g:v1 + a2g:v2; : : : ; ang:vn

where g:v represents the above action.

Example 3.6 We can explicitly compute the case n = 2. In this case, the 3

parking functions (and, hence the dimension of the representation is 3) are 11, 12
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and 21. The above form an ordered basis for the vector space V = C [P2]. The

representation X : S2 �! GL(V ) is given as follows. The 2 elements of the group

S2 are e (the identity) and (1 2). The identity element e �xes all of the basis

vectors and (1 2):11 = 11, (1 2):12 = 21 and (1 2):21 = 12. Hence, the permutation

representation is given by

X(e) =

2
66664

1 0 0

0 1 0

0 0 1

3
77775

and

X((1 2)) =

2
66664

1 0 0

0 0 1

0 1 0

3
77775

2

The parking function symmetric function on n, denoted as PFn, is

PFn =
X
�`n

z
�1
�
��p�

where for � = (1m1(�); 2m2(�); : : : ; n
mn(�))

z� = 1m1(�)m1(�)! 2
m2(�)m2(�)! : : : n

mn(�)
mn(�)!
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and �� is the value of the character of the permutation representation above on the

conjugacy class �. This mapping, which maps characters to symmetric functions, is

not particular to the above representation, but can be used on any representation.

It is known as the Frobenius characteristic and is often (see [12, Sec. 1.7]) denoted

by ch; that is, for any character �,

ch(�) =
X
�`n

z
�1
�
��p� (3.1)

Our aim is to show a connection between PFn and FNCn
(where Fp is de�ned in

Section 2.1.3). We do this now.

3.2.2 The Parking Function Symmetric Function, PF
n

In order to learn more about PFn we are going to learn something about the

character of the above permutation representation X. To do this, we look for

submodules of our representation that are easy to work with, as the characters

of the submodules will sum up to the character of the entire representation (see

Ledermann [11, Sec. 1.4] Sagan [15, Sec. 1.4]). Notice that the orbit of a parking

function under the above group action will just consist of all possible permutations

of the primitive parking function in that orbit. Thus, the representation above

restricted to an orbit (under the group action) of a parking function will form

a submodule. It is clear that the representation X restricted to the submodules

associated with the orbits of two parking functions are equivalent representations

if and only if the parking functions are of the same type. Thus, we denote the
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submodule corresponding to orbits of parking functions of type � by X� and their

associated character by �� (we note that our use of �� deviates from the notation

in Macdonald [12]. In that book, �� refers to the irreducible character of the

symmetric group indexed by the partition � of n.). It follows that the multiplicity of

a particular submodule is the number of primitive parking functions that have type

associated to that representation. The following two lemmas will be very important

for computing PFn. We refer the reader to Section 2.1.1 for the de�nition of h�,

the complete symmetric function, for we will be using in the next lemma.

Lemma 3.7 (Key Lemma) The contribution of the orbit of a parking function

of type � to PFn is h�, the complete symmetric function. Phrased di�erently, in

PFn the contribution of all the terms that contain some �xed character �� is h�

(not counting the multiplicity of that character).

Lemma 3.8 The submodule associated with a parking function of type � has mul-

tiplicity

1

n+ 1

�
n + 1

m0(�);m1(�); : : : ;mn(�)

�
(3.2)

where
�

n+1

m0(�);m1(�);::: ;mn(�)

�
is the multinomial coeÆcient and m0(�) = n + 1 �P

n

i=1mi(�). Equivalently, the number of primitive parking functions of type � is

the above number.

Notice Proposition 3.4 and Lemma 3.8 imply that the number of noncrossing

partitions of type � is given by (3.2)
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Before we prove these two lemmas, we �rst see how they are useful in computing

PFn. The lemmas state that the contribution of a submodule corresponding to the

orbit of a parking function of type � to PFn is h�. Further, the multiplicity of the

submodule in the representation is

1

n+ 1

�
n + 1

m0(�);m1(�); : : : ;mn(�)

�

where m0(�) = n + 1 �Pn

i=1mi(�). Let � be the character of the permutation

representation above and suppose

� =
X
`n

c�


is the decomposition of � into the above submodules indexed by partitions  of n

(which correspond to submodules associated with parking functions of type ) and

with c as the multiplicity of �. Then, we have

PFn =
X
�`n

z
�1
�
��p�

=
X
�`n

z
�1
�
(
X
`n

c�
)�p�

=
X
`n

c

X
�`n

z
�1
�
�


�
p�

=
X
`n

c

X
�`n

ch(�) (3.3)

=
X
`n

1

n+ 1

�
n+ 1

m0();m1(); : : : ;mn()

�
h (3.4)
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where ch(�) is de�ned in (3.1), (3.3) follows from Lemma 3.7 and (3.4) follows

from Lemma 3.8. Finally, a simple computation will reveal that (3.3) simpli�es to

[tn]
1

n+ 1
H(t)n+1

where

H(t) = h0 + h1t+ h2t
2 + : : : (3.5)

We state this a proposition for easy reference later. It appears in Stanley [23, (1)].

Proposition 3.9

PFn = [tn]
1

n+ 1
H(t)n+1

It is now time to prove the above two lemmas.

Proof of Lemma 3.7. Suppose that �� is the character of a submodule corre-

sponding to a primitive parking function p of type � and let 
 be the orbit of p.

Our goal is to show that

X
�`n

z
�1
�
�
�

�
p� = h� (3.6)
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It is more instructive to begin by working backwards i.e. show that

h� =
X
�`n

z
�1
�
�
�

�
p� (3.7)

(it turns out doing this motivates our steps more). It is well known that

hk =
X
�`k

z
�1
�
p�

(see Macdonald [12, (2.140)]) for any k and, hence,

h� =

 X
�`�1

z
�1
�
p�

! X
�`�2

z
�1
�
p�

!
� � �
 X
�`�n

z
�1
�
p�

!

where � = (�1; �2; : : : ; �n). The right hand side of the above is, by de�nition

ch(1S�1
) � ch(1S�2

) � � � ch(1S�n
)

where 1Sm
is the trivial character on the group Sm and this is

ch(ind
S�1+�2+���+�n

S�1
�S�2

�:::S�n

1S�1
� 1S�2

� : : :� 1S�n
) (3.8)

(see Macdonald [12, (7.3)]) Let us see what (3.8) really means. Let us begin with

the character (1S�1
�1S�2

� : : :�1S�n
). Given the way that we embedS�1

�S�2
�

: : :�S�n
into S�1+�2+:::+�n we see that (1S�1

� 1S�2
� : : :� 1S�n

) is simply 1S�
,

where S� is the Young Subgroup (see Section 2.1.2 for the de�nition). Hence, we
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want to compute

ch(ind
S�1+�2+���+�n

S�1
�S�2

�:::S�n

1S�
) (3.9)

Let [1]S�
be the representation associated with the above trivial character 1S�

.

Let t1; t2; : : : ; tm be a transversal (see Section 2.1.2 for de�nition) for the subgroup

S�. From the de�nition of an induced representation (see Section 2.1.2 for de�ni-

tion), we see that (3.9) is the character for the representation, �X , given by

�X = indSn

S�
[1]S�

(g) =

2
66666664

[1]S�
(t1gt

�1
1 ) [1]S�

(t1gt
�1
2 ) � � � [1]S�

(t1gt
�1
m
)

[1]
S�

(t2gt
�1
1 ) [1]S�

(t2gt
�1
2 ) � � � [1]S�

(t2gt
�1
m
)

...
...

. . .
...

[1]
S�

(tmgt
�1
1 ) [1]S�

(tmgt
�1
2 ) � � � [1]S�

(tmgt
�1
m
)

3
77777775

where in the above matrix [1]S�
(g) = 0 if g =2 S�. Notice that the (i; i) entry

on the main diagonal of the above matrix (in fact, any entry) will be equal to 1

if tigt
�1
i
2 S� and 0 if it is not. Hence, the trace of the above matrix will be

the number of tigt
�1
i

on the main diagonal that lie in the Young Subgroup S�.

Therefore, the character of the above representation, ��, is

��(g) = #f i j tigt�1i 2 S�g (3.10)

Call the right hand side of (3.10), N(g). The claim is that the above character

is equal to the character �� (and, therefore, by the uniqueness of characters (see

[15, Cor. 1.9.4]), the representation �X and X above are the same). By proving the
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above claim we will prove that (3.7) holds, completing the proof of the lemma. We

prove the claim now by showing that N(g) = �(g).

Fix a g in G and suppose that g is in the conjugacy class C. Looking at the

de�nition of N(g), it is clear that N(g) is independent of the transversal that we

pick. Thus, N(g) can be obtained by conjugating g by all the elements of Sn and

then dividing by the number of transversals i.e.

N(g) =
jf t j t 2 Sn and tgt�1 2 S�gj

S�

We note that every element in the conjugacy class C will appear the same number

of times as a conjugate of g, that is, if a and b are both in C then the number of

conjugates of g that are equal to a is the same as the number of conjugates of g

that are equal to b. Therefore, conjugating g by all the jSnj elements of Sn, each

conjugate of g will appear jSnj=jCj times. But of these, only jS� \ Cj are in S�.

Therefore, we see that

jf t j t 2 Sn and tgt�1 2 S�gj = jS� \ Cj jSnj
jCj

implying that

N(g) =
jf t j t 2 Sn and tgt�1 2 S�gj

jS�j =
jS� \ Cj
jS�j

jSnj
jCj (3.11)
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We make the easy observation that the number of parking functions in 
 is

�
n

m1(�);m2(�); : : : ;mn(�)

�
(3.12)

and it also clear that jSnj=jS�j is equal to (3.12). Thus, we see that from (3.11)

that

N(g) =
jS� \ Cj
jCj j
j:

Since Sn acts transitively (see Section 2.1.2 for de�nition) on 
 we have that

N(g) = Fix(g) (see Dixon and Mortimer [3, Ex. 1.7.6]), where Fix(g) is the number

of elements of 
 �xed by g. From the de�nition of ��(g) we see that ��(g) = Fix(g)

implying that N(g) = �
�(g), completing the proof. 2

Proof of Lemma 3.8. In this proof we will use the parking lot de�nition of a

parking function, i.e. De�nition 2.5. Further, we will use the circular parking lot

scenario we used in the proof of Proposition 2.10. The number of ways of choosing

a preference sequence whose terms come from [n+ 1] and are of \type �" (we will

take this to be de�ned analogously to the de�nition of parking functions of type �)

is clearly

�
n+ 1

m0(�);m1(�); : : : ;mn(�)

�

However, we found in Proposition 2.10 that preference sequences of length n whose

terms come from [n + 1] are in (n + 1) � to � 1 correspondence with parking

functions of length n. This correspondence clearly holds when we restrict the
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above to primitive parking functions of type �; that is, preference sequences of

length n whose terms come from [n+ 1] and are of type � are in (n + 1) � to � 1

correspondence with primitive parking functions of length n of type �. Hence, the

number of primitive parking functions of type � is

jPr�
n
j = 1

n+ 1

�
n+ 1

m0(�);m1(�); : : : ;mn(�)

�
:

2

3.2.3 Consequences of the Computation of PFn

The following are symmetric function expansions of PFn, all of which can be found

in Stanley [23, Prop. 2.2].

Proposition 3.10 The following are expansions of PFn.

PFn =
X
�`n

1

n+ 1

�
n+ 1

m0(�);m1(�); : : : ;mn(�)

�
h� (3.13)

=
X
�`n

(n+ 1)l(�)�1z�1
�
p� (3.14)

=
X
�`n

1

n+ 1

"Y
i

�
n + �i

n

�#
m� (3.15)

=
X
�`n

1

n+ 1
s�(1

n+1)s� (3.16)
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where � = (�1; �2; : : : ; �n). We also have

X
n�0

PFnt
n+1 = (tE(�t))<�1> (3.17)

where E(t) =
P

i�0 eit
i (see Section 2.1.1 for de�nition of ei) and <�1> denotes

compositional inverse

Proof. (3.13) follows from Lemmas 3.7 and 3.8. From the de�nition of H(t) given

in (3.5) we see that

H(t) =

1Y
i=1

1

1� xit

and, therefore, H(t) is clearly the Cauchy product, de�ned as

Y
(x;y) =

Y
i;j

1

1 � xiyj (3.18)

with y1; y2; : : : ; yn+1 equal to t and yi = 0 for all i > n + 1. Using the two well

known expansions for the Cauchy product

Y
(x;y) =

X
�

z
�1
�
p�(x)p�(y) (3.19)

and

Y
(x;y) =

X
�

m�(x)h�(y) (3.20)
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(see Macdonald [12, Sec. 1.4]) we see that (3.19) implies that

PFn =
X
�

z
�1
�
p�(1

n+1)p�(x)

By de�nition, the power sum symmetric function, pj , is

pj = x
j

1 + x
j

2 + : : :

and, hence, pj(1
n+1) = n+ 1, from which (3.14) follows. (3.20) implies that

PFn =
X
�

h�(1
n+1)m�(x)

By de�nition,

hj =
X

1�i1�i2�:::�ij�j

xi1xi2 : : : xij

and, hence, we see that hj(1
n+1) is just the number of multisets of [n+ 1] of size j

which is well known to be the number
�
n+j

n

�
, from which (3.15) follows. (3.16) is a

direct consequence of the well known expansion for the Cauchy identity

Y
�

s�(x)s�(y)

The �nal equation, (3.17), can be obtained by applying the Lagrange Inversion

Formula (see Goulden and Jackson [7, Sec. 1.2] Stanley [24, Sec. 5.4]) and using
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the fact that

E(t) =
1

H(�t)

(see Macdondald [12, (2.6)]). In detail,

[tn+1](tE(�t))<�1> =
1

n+ 1
[tn]

�
1

E(�t)
�
n+1

=
1

n+ 1
[tn]H(t)n+1

= PFn

2

Some things to note are interpretations for the formulas in Proposition 3.10.

From the de�nition of PFn and (3.14) we see for any g 2 Sn whose cycle type is �

that

�(g) = (n+ 1)l(�)�1

implying that the number of parking functions that g �xes is (n + 1)l(�)�1. Fur-

ther, on a thought that purely concerns symmetric functions, it is known that the

Frobenius characteristic takes irreducible character �� (here, we stick with the no-

tation in Macdonald [12]. That is, �� denotes the irreducible representation of the

symmetric group.) indexed by partitions � of n, to s�. Thus, from (3.16) we see

that the multiplicity of the irreducible representation �� is s�(1
n+1).

Example 3.11 We look at the simplest non-trivial example for an illustration of
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the above interpretation of Proposition 3.10. For n = 3, there are sixteen parking

functions and they are

111,

112, 121, 211,

113, 131, 311,

122, 212, 221,

123, 213, 231, 321, 312, 132

and, for ease, we list them with the �rst parking function of each line being the

primitive parking function in that orbit. We see that

[t3]
1

4
H(t)4 = h3 + 3h12 + h111 (3.21)

Indeed, there is one primitive parking function of type 111, three of type 12 and

one of type 3. Further, from (3.14) of Proposition 3.10 we see (3.21) is also equal

to

16z�1111p111 + 4z�112 p12 + z
�1
3 p3

The only element of S3 of type 111 is the identity permutation and it, clearly, �xes

all sixteen parking functions. A permutation of type 12 is (1 2) and it �xes the

parking functions 111, 112, 113 and 221 for a total of 4. It is clear that any three

cycle �xes only 111. 2
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3.2.4 The Noncrossing Partition Symmetric Function

We �nally make a connection between the parking function symmetric function and

noncrossing partition. Much of what follows will be given without proof, however,

we refer the reader to the literature containing the proofs. We apply (2.1) to the

poset NCn+1. The �rst question we wish to answer is whether or not FNCn+1
is a

symmetric function. According to Stanley [21, Thm. 1.4], FNCn+1
is a symmetric

function if NCn+1 is locally rank symmetric (see Section 2.1.3 for poset terminol-

ogy). However, in Simion and Ullman [18, Thm. 1.1] it is shown that NCi is self-dual

and in Nica and Speicher [14, Sec. 1.3] it is shown that every interval in NCn+1 is

a product of NCi's. As was discussed in Section 2.1.3, this is suÆcient to conclude

that NCn+1 is locally rank symmetric. Hence, FNCn+1
is a symmetric function. In

Proposition 2.3, we saw that

FP (x) =
X
�`n

�P (S�)m�

where S� = f�1; �1 + �2; : : : ; �1 + �2 + � � �+ �lg and l is the length of �. From the

evaluation of �NCn+1
(S�) given in Edelman [4, Thm. 3.2] we have

FNCn+1
=
X
�`n

1

n+ 1

"Y
i

�
n + 1

�i

�#
m�

The proof of the following proposition can be found in Stanley [23, Prop. 2.2].
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Proposition 3.12

!PFn =
X
�`n

1

n+ 1

"Y
i

�
n+ 1

�i

�#
m� (3.22)

where ! is the standard involution on the ring of symmetric functions (de�ned in

Section 2.1.1).

Proof. We denote by !x the involution ! acting only on the variables x1; x2; : : : . If

we are to take the generating function

E(t) =
X
i�0

eit
i

then it easily follows from the de�nition of er that

E(t) =
Y
i

(1 + xit):

Clearly from the de�nition of ! and the fact that H(t) =
Q

i

1
1�xit

we have

!H(t) = E(t) =
Y
i

(1 + xit)

Also, it is clear that

Y
(x;y) =

Y
j

H(yj)
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and, hence, we see from (3.18) that

!x

Y
(x;y) =

Y
j

!xH(yj) =
Y
j

E(yj) =
Y
i;j

(1 + xiyj): (3.23)

Hence, we see that !x
Q
(x;y) is symmetric in x and y. From (3.20) and the

symmetry of the Cauchy product we obtain

Y
(x;y) =

X
�

h�(x)m�(y)

and, therefore,

!x

Y
(x;y) =

X
�

e�(x)m�(y)

Since !x
Q

i;j
(x;y) is symmetric in x and y

!x

Y
i;j

(x;y) =
X
�

m�(x)e�(y)

Therefore, 1
n+1

[tn]H(t)n+1 is

X
�`n

1

n+ 1
e�(1

n+1)m�

The de�nition of er gives er(1
n+1) =

�
n+1

r

�
and the result follows. 2

Corollary 3.13

!PFn = FNCn+1
(x)



CHAPTER 3. NONCROSSING PARTITIONS 43

Recall from Section 3.2.1 that a noncrossing partition of type � = (�1; �2; : : : ; �n)

is a noncrossing partition with block sizes �1; �2; : : : . In the next corollary, we

use the following noncrossing partition analogue of the exponential formula due to

Speicher [19, pg. 616] (see also [24, Ex. 5.35]) (the following proof is the one used

in [24, Ex. 5.35]). Given a function f : N �! R (where R is a commutative ring

with identity) with f(0) = 1 and F (t) =
P

n�0 f(n)t
n, de�ne the function g with

g(0) = 1

g(n) =
X

fB1;B2;::: ;Bng2NCn

f(jB1j)f(jB2j) : : : f(jBnj)

Then,

X
n�0

g(n)tn+1 =

�
t

F (t)

�
<�1>

where the <�1> denotes the compositional inverse. The proof of this follows from

Lemma 3.8 and the fact that the number of noncrossing partitions of type � is given

by the number in Lemma 3.8. Letting si to be the number of blocks of size i in a
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noncrossing partition (where k =
P

i
si), we have

g(n) =
X

fB1;B2;::: ;Bng2NCn

f(jB1j)f(jB2j) : : : f(jBnj)

=
X

s1+2s2+���+nsn

n!

(n� k + 1)!s1!s2! : : : sn!
f(1)s1f(2)s2 : : : f(n)sn

=
X
k�1

n!

(n � k + 1)!k!

X
i1+i2+���+ik=n

f(i1)f(i2) : : : f(ik)

i1!i2! : : : ik!

=
1

n+ 1

X
k�1

�
n+ 1

k

�
[xn]

 X
i�1

f(i)
x
i

i!

!
k

= [xn]
1

n+ 1
(F (x)n+1 � 1)

= [xn]
1

n+ 1
F (x)n+1

where the second line above follows from Lemma 3.8. Applying the Lagrange

Inversion Formula (see Goulden and Jackson [7, Sec. 1.2] Stanley [24, Sec. 5.4]),

the last line above implies

g(n) = [xn+1]

�
x

F (x)

�
<�1>

The following corollary is due to Stanley [23, Prop. 2.4].

Corollary 3.14 Let � be a partition of n. Then the coeÆcient of h� in PFn is

equal to the number of noncrossing partitions of type � in NCn.

Note the interesting fact that Corollary 3.13 refers to NCn+1 and Corollary 3.14

refers to NCn.
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Proof. If we set f(n) = hn, then writing g(n) =
P

�`n
u�h� we clearly have that

u� is the number of members of NCn of type �. But if f(n) = hn then F (t) = H(t)

and, hence,

X
n�0

g(n)tn+1 = (tE(�t))<�1>

(using the fact that E(�t) = 1=H(t)). But (3.17) then implies that g(n) = PFn

and we have our result. 2

Notice that Corollary 3.14 gives us another proof of Proposition 3.4.

Notes and References

x3.1 The material in this section is due to the author of this thesis.

x3.2 The material in this section is almost wholly due R. Stanley. The work

concerning the parking function symmetric function and the noncrossing partition

symmetric function can be found in Stanley [23]. In it, however, Stanley calls the

proof of Proposition 3.9 \clear" and omits it entirely. The details (Lemma 3.7

and 3.8) were �lled in by the author of this thesis. However, Stanley does provide

full proofs of Proposition 3.10 and Corollary 3.14. The proof of Corollary 3.13 is

presented essentially the way it is here.



Chapter 4

Hyperplane Arrangements

A hyperplane arrangement in Rn is a discrete set of hyperplanes in Rn. Given a

hyperplane arrangement H in Rn, we can remove H from R
n and we obtain a col-

lection of connected sets. Call these connected sets the regions of the hyperplane

arrangement H. The question that we will primarily be interested in is the number

of regions created when we remove a hyperplane arrangement from R
n. A gener-

ating function that we will be considering is the distance enumerator, DH, which

we now de�ne. For the hyperplane arrangement H we pick a region, R0 and call

R0 the base region. For any region R de�ne d(R) to be the number of hyperplanes

separating (in the topological sense) R from R0. Finally, de�ne

DH(q) =
X
R

q
d(R) (4.1)

where the sum is over all regions of H. We will primarily be interested in two

arrangements, the braid arrangement and the Shi arrangement, both of which will

46
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be dealt with in the following sections.

4.1 The Braid Arrangement

The braid arrangement in Rn is the set of hyperplanes xi � xj = 0 for all 1 � i <

j � n. We denote the braid arrangement by Bn.

Example 4.1 In Figure 4.1 we have the braid arrangement for n = 3. Of course,

the intersection of all three planes is the line x1 = x2 = x3. 2

Notice that because our hyperplanes are all of the form xi�xj = 0, 1 � i < j �
n, the regions of the braid arrangement do not contain any points (a1; a2; : : : ; an)

such that ai = aj for some i and j. Hence, for every (a1; a2; : : : ; an) in R
n there

exists a unique ! 2 S such that a!(1) > a!(2) > : : : > a!(n). The claim is that

every region can be labelled with a unique permutation ! determined as above.

To see this, �rst notice that any other point (b1; b2; : : : ; bn) in the same region as

(a1; a2; : : : ; an) also satis�es b!(1) > b!(2) > : : : > b!(n). This is clear because if

for some i and j, we have a!(i) > a!(j) and b!(j) > b!(i) then (a1; a2; : : : ; an) and

(b1; b2; : : : ; bn) lie on opposite sides of the hyperplane x!(i) � x!(j) = 0 and, hence,

cannot be in the same region. Furthermore, for any two permutations ! and !
0

the two regions labelled by ! and !0 must be di�erent. This is because of the fact

that there must exist an i and j such that !(i) > !(j) but !0(i) < !
0(j) (to see

why di�erent permutations have this property see Proposition 4.4 below). In this

case, the region labelled ! would be on the side x!(i)� x!(j) > 0 of the hyperplane

x!(i)�x!(j) = 0 and the region labelled !0 would be on the side x!(i)�x!(j) < 0 of the
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x2−x3=0 x1−x3=0

x1−x 2 = 0

Figure 4.1: The braid arrangement for n = 3.

same hyperplane. Therefore, we see every region R can be uniquely labelled by the

! 2 Sn, where ! is the unique permutation such that every point (a1; a2; : : : ; an)

satis�es a!(1) > a!(2) > : : : > a!(n).

Notice that the region labelled by the identity permutation contains points

(a1; a2; : : : ; an) such that a1 > a2 > : : : > an. Let R0 be the region x1 > x2 : : : > xn

labelled by the identity permutation. For any permutation !, an inversion of !

is an ordered pair (!(i); !(j)) such that i < j and !(i) > !(j). From the above

discussion, given any permutation ! that labels the region R, (!(i); !(j)) is not
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an inversion ! if and only if R and R0 lie on the same side of the hyperplane

x!(i) � x!(j) = 0. Hence, the number of hyperplanes that separate the region R

and R0 is the number of inversions in !. We state this as a proposition for ease of

reference later.

Proposition 4.2 In the above labelling of Bn if the region R is labelled by the

permutation ! then (!(i); !(j)) is an inversion if and only if the hyperplane xi �
xj = 0 separates R from R0.

Proposition 4.2 can be found in Stanley [25, Intro.].

Example 4.3 The labelling discussed above for B3 is given in Figure 4.2. 2

We give a slightly di�erent de�nition of the labels on the braid arrangement

that will give us a particularly nice result about the generating function DBn
(q)

given in (4.1). We associate an n-tuple �(R) of positive integers with every region

of Bn. First, we de�ne �(R0) = (1; 1; : : : ; 1). Now suppose that �(R) is known and

�(R0) is not, R and R
0 are only separated by xi � xj = 0 and R and R0 are on

the same side of xi � xj = 0. Then, de�ne �(R0) = �(R) + ei where ei is the i
th

standard basis vector. Hence, if R is the region separated from R0 by the set of

hyperplanes S and (a1; a2; : : : ; an) labels R then

ai = #f i j xi = xj 2 Sg

Notice that the same region R characterized by the set S would have been labelled,

in the previous labelling, by the permutation ! that has the property that for a

�xed j the number of !(i) such that !(i) > !(j) and i < j is equal to a!(j) (because
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123 213

231

321

132

312x3>x1

x2>x3

x1>x2 x2>x1

x1>x3

x3>x2

Figure 4.2: The permutation labelling of the braid arrangement.

all the hyperplanes in S of the form x!(j)� xk = 0 will form inversions with !(j)),

so

a!(j) = #f !(i) j !(i) > !(j) and i < jg (4.2)

The sequence (a1; a2; : : : ; an) in (4.2) is called the inversion table of !. From an

inversion table (a1; a2; : : : ; an) one can construct a permutation ! (written as a

word) via the following rule. Begin by starting the word as \n". Now suppose
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that n; n� 1; : : : ; n� i+ 1 have been inserted into the word. Insert n� i into the
word so that there are an�i numbers to the left of it. It is immediately clear that

(a1; a2; : : : ; an) is the inversion table of !. Further, it is clear that one can construct

a permutation given any sequence (a1; a2; : : : ; an) of non-negative integers such that

ai � n� i. What may not be immediately clear is the following proposition, which

can be found in Stanley [20, Prop. 1.3.9].

Proposition 4.4 Let I : [0; n� 1]� [0; n� 2]� : : :� [0; 0] �! Sn be the mapping

given above. Then I is a bijection.

Proof. To prove this we display the inverse of I. Given a permutation (written as a

word) ! = !1!2 : : : !n we construct the inversion table as follows. a1 is the number

of entries to the left of 1 in !. Remove 1 from the word !. After a1; a2; : : : ; ai have

been de�ned and 1; 2; : : : ; i removed from the word !, set ai+1 to be the number

of elements to the left of i + 1 in what remains of !. Clearly, we get an object in

[0; n� 1]� [0; n� 2] � : : :� [0; 0]. Further, it is clear that the procedure outlined

will be the inverse of I, completing the proof. 2

Example 4.5 For (5; 7; 3; 2; 3; 3; 0; 1; 0) 2 [0; 8]�[0; 7]�: : :�[0; 0] the permutation

! built up via the above algorithm is

9

98

798

7986

79856
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794856

7943856

79438562

794381562 2

In (4.2) �(R) is the inversion table of !, where ! is the permutation labelling

of R. In addition, it is clear that if �(R) = (a1; a2; : : : ; an) then d(R) = a1 + a2 +

� � �+ an. Hence, we have the following result for the generating function DBn
given

in (4.1).

Corollary 4.6

DBn
(q) = (1 + q)(1 + q + q

2) : : : (1 + q + : : :+ q
n�1); n � 1 (4.3)

the usual q-analogue of n!

Proof.

DBn
(q) =

X
R

q
d(R) (4.4)

=
X

(a1;a2 ;::: ;an)

ai2[0;n�i]

q
a1+a2+���+an (4.5)

=

0
@ X

a12[0;n�1]

q
a1

1
A
0
@ X

a22[0;n�2]

q
a2

1
A : : :

0
@ X

an2[0;0]

q
an

1
A (4.6)

=

 
n�1X
i=0

q
i

! 
n�2X
i=0

q
i

!
: : :

 
0X
i=0

q
i

!
(4.7)

2
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4.2 The Shi Arrangement

The other hyperplane arrangement that we will be discussing is the Shi arrange-

ment. The Shi arrangement in Rn is the set of hyperplanes xi � xj = 0; 1 for all

1 � i < j � n. We denote the by Sn the Shi arrangement in R
n. In R

3 this

arrangement is given in Figure 4.3. Notice that all the intersections between two

x1−x2=0

x1−x2=1

x1−x3=1 x1−x3=0

x2−x3=0x2−x3=1

Figure 4.3: The Shi arrangement in R3 as viewed along the vector (1; 1; 1).

planes are lines parallel to x1 = x2 = x3.

Our goal in this and the following two sections is to show that the number of

regions in the Shi arrangement in Rn is (n + 1)n�1 and to evaluate the distance
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enumerator for the Shi arrangement. We do the former by presenting a bijection

between the regions of the of the Shi arrangement in R
n and parking functions

of length n. We show the latter by presenting a second bijection which allows us

to evaluate the distance enumerator. Although the second bijection allows us to

evaluate the distance enumerator, the �rst bijection has the advantage of being

relatively simple.

Before we discuss labelling the Shi arrangement, we must �nd a convenient way

to describe the regions of the Shi arrangement. To that end, suppose that R is a

region in the Shi arrangement. We notice that the Shi arrangement contains the

braid arrangement, hence, specifying a permutation will tell us where R is with

respect to the braid arrangement. Suppose the appropriate permutation is ! and,

therefore, R lies somewhere in the region x!(1) > x!(2) > : : : > x!(n). If i < j is

not an inversion of ! one has that x!(i) > x!(j) and !(i) < !(j) which implies that

x!(i)� x!(j) > 0. Hence, in these cases, we need to specify more information about

where R is, for it may lie in 0 < x!(i) � x!(j) < 1 or x!(i) � x!(j) > 1. However, we

need not (and, in fact, cannot) specify this for all non-inversion pairs, for some will

be implied by transitivity. For example, for the region x!(1) > x!(2) > : : : > x!(n) >

x!(1)�1 the fact that x!(1)�x!(n�1) < 1 is implied by the fact that x!(n) > x!(1)�1
and x!(n�1) > x!(n). Assuming !(i) < !(j) < !(k) < !(l) for i < j < k < l, notice
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that in the region x!(1) > x!(2) > : : : > x!(n)

x!(j) � x!(k) > 1 =) x!(i) > x!(j) > x!(j) � 1 > x!(k) > x!(l)

=) x!(i) � 1 > x!(l)

=) x!(i) � x!(l) > 1

Hence, we see that if \inner" hyperplane pairs satisfy x!(j) � x!(k) > 1 then so

will the \outer" pairs x!(i) and x!(l), that is x!(i) � x!(l) > 1.

A convenient way to represent the above facts is with a valid arc arrangement.

Given a region R, to make a valid arc arrangement, one �nds the permutation !

that tells us where R is with respect to the contained braid arrangement. Then for

any pair i; j such that x!(i)�x!(j) > 1 we draw an arc between !(i) and !(j). After

this is done for all pairs i; j, we remove all arcs that contain other arcs (above, the

\inner" planes implication of the \outer" planes). From the above discussion, we

see that valid arc arrangements (on some permutation) uniquely specify a region.

A valid arc arrangement is always assumed to have an underlying permutation.

Example 4.7 If ! = 21378546 then a valid arc arrangement, A, is in Figure 4.4.

Inversions such as 1 < 2 specify regions such as x1� x2 < 0. Of the non-inversions

2  1  3  7  8  5  4  6  
Figure 4.4: A valid arc arrangement.

we have that all of x1�x7 > 1, x3�x8 > 1, and x5�x6 > 1 are true because these
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pairs happen to be arcs themselves. The non-inversion pair (2; 7) contains the pair

(1; 7) so we must have x2 � x7 > 1 and the pair (2; 8) also contains the pair (1; 7)

so we also have x2 � x8 > 1. The rest of the following are all implied (in the same

manner as above) by the three arcs (1; 7), (3; 8) and (5; 6); x2�x5 > 1, x2�x4 > 1,

x2 � x6 > 1, x1 � x8 > 1, x1 � x5 > 1, x1 � x4 > 1, x1 � x6 > 1, x3 � x5 > 1,

x3 � x4 > 1 and x3 � x6 > 1 whereas x2 � x3 < 1, x1 � x3 < 1, x3 � x7 < 1,

x7 � x8 < 1 and x4 � x6 < 1. 2

Theorem 4.8 The regions of Sn can be labelled with all the elements of Pn, the
parking functions of length n.

Corollary 4.9 The number of regions in the Shi arrangement, Sn, is (n+ 1)n�1.

4.3 The Proof of Theorem 4.8

We now describe our �rst labelling. Notice that any set of arcs in a valid arc arrange-

ment, partitions [n] into blocks that are chains of increasing integers. For example,

the set of arcs in Figure 4.4 gives us the partition ff2g; f1; 7g; f3; 8g; f5; 6g; f4gg
(of course, chains may have length greater than two). Let �(A) be the partition

associated with a valid arc arrangement A, and suppose that A has � as its un-

derlying permutation. Let R be the region in Sn with valid arc arrangement A.
De�ne a function  n : Sn �! Pn (of course, this  n has nothing to do with the  n

given in Proposition 3.4) such that  n(R) is the sequence (a1; a2; : : : ; an) where ai

is the position of the smallest member of the block that contains i in �(A). Since
ai � ��1(i) we see that  n(R) is a parking function.
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Example 4.10 The parking function we get from the valid arc arrangement A
given in Example 4.7 is (2; 1; 3; 7; 6; 6; 2; 3). 2

Proof of Theorem 4.8 (Athanasiadis, Linusson [1, Thm. 2.2]). Proving

that  n above is a bijection will prove Theorem 4.8 and that is the route we will

take. Given a parking function (a1; a2; : : : ; an) we build a valid arc arrangement a

step at a time. Take all the i such that ai = 1 and put them in a chain (connect

them with arcs) in increasing order. Now assume that all the ai = j � 1 have been

put into place as a chain with arcs linking the chain in increasing order. Since

(a1; a2; : : : ; an) is a parking function, at least j � 1 numbers with arcs have been

put into place. Considering all i such that ai = j put the smallest such i in the jth

spot in the sequence and we now note that there is precisely one way to put in the

rest of the ai = j so the resulting string will be a valid arc arrangement i.e. no arc

contains another arc. To see why this is true we look a little closer at the structure

of a valid arc arrangement, and we prove the claim with an induction argument on

the number of terms i such that ai = j that we have inserted into our growing valid

arc arrangement. Since we have placed the �rst such i (we must place it in the jth

position), the base case for our induction is dealt with.

Suppose that i's for which ai = j are i1; i2; : : : ; it (it is assumed that i1 < i2 <

� � � < it). Assume that we have placed im into our growing valid arc arrangement.

Our task is, of course, to place im+1 into our arc arrangement in a unique way. Let

x1; x2; : : : ; xl be the numbers to the right of im in our arc arrangement (we assume

that if i < j then xi is to the left of xj). Notice that there are no numbers to the

right of im in the valid arc arrangement that are the beginning of some chain (in
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fact, it is clear that there is no number to the right of i1 that is the beginning of a

chain). Since no xi is the beginning of each chain, the predecessor of xi (the number

preceding xi in the chain containing xi) is well de�ned (note that the predecessor

of any xi may be to the left or right of im). Let xp be the �rst (i.e. p is as small as

possible) of the x's such that the predecessor of xp is to the right of im. Suppose the

predecessor of xp is xk. Hence, in general, our valid arc arrangement must look like

the arc arrangement in Figure 4.5. The claim is that we must place im+1 between

mi x1 xkx p-1 px

Figure 4.5: What the arc arrangement must look like. The arc emerging from the
numbers x1; x2; : : : ; xp�1 going towards the left indicate that the predecessor of all
these numbers lie to the left of im.

xp�1 and xp. The reason why no other position for im+1 works is because 1) if im+1

placed before xp�1 then the arc from im to im+1 will be contained in the arc from

the predecessor of xp�1 to xp�1 and 2) if im+1 is placed after xp then the arc from

im to im+1 will contain the arc from xk and xp. The reason why placing im+1 in

between xp�1 and xp works is because if it did not, then either the arc from im to

im+1 contains an arc or it is contained in an arc. If the arc from im to im+1 contains

an arc, our choice of xp would be contradicted. If, on the other hand, the arc from
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im to im+1 is contained in an arc then that arc must also contain the arc between

xk and xp, a contradiction. Thus, there is a unique way to place im+1, completing

our induction.

It is certainly clear that if we apply the above map to a parking function

(a1; a2; : : : ; an) and then apply  n to the result, we get the same parking func-

tion with which we started. The converse is also clearly true i.e., if we apply  n

to a valid arc arrangement and then apply the above map to the resulting parking

function, we will obtain our original arc arrangement. Thus,  n is a bijection. 2

The labelling produced by the above for S3 is given in Figure 4.6.

113

131

112111

123

321

312

213

211

212

122

221

311

231132

x1−x2=0

x1−x2=1

121

x1−x3=1 x1−x3=0

x2−x3=0x2−x3=1

Figure 4.6: The Athanasiadis/Linusson labelling of the Shi arrangement in R3.
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4.4 The Second Bijection between Sn and Pn

We use a slightly di�erent encoding than a valid arc arrangement to describe a

region. A region R in Sn may be thought of as an ordered pair (!; I) (which we

call a valid pair) where ! 2 Sn and I is a set of intervals [!(i); !(j)] de�ned for

i < j as f!(i); !(i + 1); : : : ; !(j)g where (a) (!(i); !(j)) is a non-inversion of the

permutation ! and (b) the elements of I form an anti-chain under the relation of

set inclusion, i.e. no set of I is a subset of another set of I. The region that is

described by a particular (!; I) is

x!(1) > x!(2) > : : : > x!(n)

x!(r) � x!(s) < 1 if [!(r); !(s)] 2 I
x!(r) � x!(s) > 1 if r < s; !(r) < !(s) and no set

[!(i); !(j)] 2 I satis�es i � r < s � j

Notice that this is not exactly the same as the description of regions in the last

section using the valid arc arrangements, however, they are almost the same. To

give a similar description as that given for an arc arrangement we would, for a given

region R that lies somewhere in x!(1) > x!(2) > : : : > x!(n), draw an arc for each

(!(i); !(j)) such that i < j, !(i) < !(j) and x!(i) � x!(j) < 1 and remove all the

arcs contained in another arc (this is where this description di�ers from the one in

the last section, and this di�erence is caused by the fact that in this case we are

drawing arcs for hyperplanes 0 < x!(i) � x!(j) < 1 whereas in the last section we

drew arcs for the hyperplanes x!(i)�x!(j) > 1). We remove arcs that are contained
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in other arcs because i < j < k < l, x!(i) � x!(l) < 1 and

x!(i) > x!(j) > x!(k) > x!(l) (4.8)

imply that

x!(l) + 1 > x!(i) > x!(j) > x!(k) > x!(l) (4.9)

Notice that (4.8) and (4.9) imply that x!(r) � x!(s) < 1 for any r < s and r; s 2
fi; j; k; lg. Thus, we see that arcs inside other arcs are forced.

We allow pairs (!; I) to be on sets other than [n], namely we allow valid pairs

on any t-element subset of [n]. In that case, we call (!; I) a valid t-pair. If i < j

and !(i) > !(j) then we call the pair (!(i); !(j)) an inversion. Similarly, if i < j,

!(i) < !(j) and no interval of I contains both !(i) and !(j) then we call the pair

(!(i); !(j)) separated. For any valid pair (!; I) de�ne

F (!; I; i) = f j j (i; j) is an inversion g [ f j j (i; j) is separated g
f(!; I; i) = #F (!; I; i)

Before we describe our labelling, we slightly modify our de�nition of a parking

function. We will maintain the language of De�nition 2.4 except that a parking

function is a sequence of non-negative integers and require that bi � i� 1. Clearly,

(a1; a2; : : : ; an) is a parking function under the old de�nition if and only if (a1 �
1; a2 � 1; : : : ; an � 1) is a parking function under the new de�nition. The reason

we do this is so that the weights in the generating function DSn
work out nicely.
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Further, it turns out that this de�nition is also more convenient for the objects in

the next chapter.

Our labelling � will be as follows. Let R0 be the region x1 > x2 > : : : > xn >

x1 � 1 and de�ne �(R0) = (0; 0; : : : ; 0). Now suppose that �(R) has been de�ned,

the only plane separating R and R0 is the plane xi � xj = m and R and R0 lie on

the same side of xi � xj = m. In this case, de�ne �(R0) to be �(R) + ej if m = 0

and �(R) + ei if m = 1. The labelling for S3 in this case is in Figure 4.7.

210
x1−x2=0

x1−x2=1

000

012 011

002

020

021

201

200

102 100

110

120

010001

101

x1−x3=1 x1−x3=0

x2−x3=0x2−x3=1

Figure 4.7: The Stanley/Pak labelling � for S3.

Notice that the region R0 is in the middle of all the parallel planes, i.e., the
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region R0 satis�es 0 < xi�xj < 1 for all i < j. Assuming that R is separated from

R0 bym planes, R is labelled by a1; a2; : : : ; an and a1+a2+� � �+an = m then if R0 is

labelled as above with �(R0) = �(R)+ei then m+1 planes separate R0 from R0 and

the sum of the entries in �(R0) is = a1+a2+: : :+ai�1+ai+1+ai+1+: : :+an = m+1.

Thus, we see that for any region R, if R is labelled a1; a2; : : : ; an then

d(R) = a1 + a2 + � � � + an (4.10)

Furthermore, from the above argument we can see that a!(i) is the number of planes

such that

1. x!(j) � x!(i) = 0 separates R from R0 where (!(i); !(j)) is an inversion

2. x!(i) � x!(j) = 1 separates R from R0 where (!(i); !(j)) is separated

i.e. a!(i) = f(!; I; !(i)). Hence,

�(R) = (f(!; I; 1); f(!; I; 2); : : : ; f(!; I; n))

It is clear that �(R) is a parking function because a!(i) = f(!; I; !(i)) cannot be

greater than n� !(i) the number of elements to the right of !(i) in !.

Example 4.11 For the valid pair (!; I) where ! = 71342865 and I = f[1; 4]; [3; 8];
[4; 6]g we get the parking function � = (4; 1; 3; 2; 0; 1; 7; 2). Indeed, F (!; I; 7) =

f1; 3; 4; 2; 6; 5g [f8g which implies that f(!; I; 7) = 7. 2

The Second Bijection between Sn and Pn. (Stanley, Pak [25, Thm. 2.1]).

Given a parking function (a1; a2; : : : ; an) we build a valid (!; I) step by step. We
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show that there will be at most one way to build (!; I), implying that the map

R 7! �(R) is injective. From the Athanasiadis/Linusson proof of Theorem 4.8, we

know that the number of regions in the Shi arrangement is (n + 1)n�1 allowing us

to conclude that the map R 7! �(R) is a bijection.

After the mth step we will have a valid m-pair (!m; Im) and we will build it

up with the condition that f(!m; Im; i) = ai for all i in !
m. Let b1b2 : : : bn be the

permutation obtained from a1; a2; : : : ; an by listing the indices i such that ai = 0

from greatest to least, the indices i such that ai = 1 from greatest to least and so

on. For example, the parking function � = (4; 1; 3; 2; 0; 1; 7; 2) above would have

b1b2 : : : bn = 56248317. We obtain !m by inserting bm into the permutation !m�1

and adding an appropriate interval [bm; cm] to I
m�1 and remove intervals from I

m�1

so that Im remains an anti-chain. We describe this precisely now.

Because at all stages we require f(!m; Im; i) = ai for every i 2 !
m, we must

have that f(!m�1; Im�1; h) = f(!m; Im; h) for all h in !
m�1. This means that

when we insert bm into !m�1 we cannot insert it to the right of a larger term c (be-

cause then we would create another inversion with c and, therefore, f(!m; Im; c) >

f(!m�1; Im�1; c)) and we cannot insert it to the right of a smaller term c unless there

exists a d > c such that d would be to the right of bm and (c; d) is not separated

(for otherwise we would create another separated pair with c and, again, we would

have f(!m; Im; c) > f(!m�1; Im�1; c)). Furthermore, we cannot choose [bm; cm] to

include any separate pairs in (!m�1; Im�1) because we want separated pairs to re-

main separated. This is because if i < j and were separated in (!m�1; Im�1) and

not in (!m; Im) then we would have f(!m�1; Im�1; i) > f(!m; Im; i). The claim is
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that with the above stipulations, there is only one way to insert bm and choose the

interval [bm; cm]. We show this claim now.

First note that once we have inserted bm there is only one way to choose the

interval [bm; cm] given that f(!m; Im; bm) = abm i.e. if bm is inserted after !m�1(p)

then cm is chosen as the integer such that cm > bm and the number of terms after

cm is abm � j where j is the number of inversions (bm; i). Thus, let us assume that

there are two places that we can insert bm, say after !m�1(p) and !m�1(j) where

p < j, and that the resulting permutations are !m and �!m, respectively. Hence,

a portion of !m and �!m look like : : : ; p; bm; : : : ; j; : : : and : : : ; p; : : : ; j; bm; : : : ,

respectively. Further, let [bm; cm] and [bm; dm] be the intervals added to Im�1 to

obtain I
m and �Im respectively. Since we want f(!m�1; Im�1; h) = f(!m; Im; h),

we know that !m�1(j) < bm. Clearly, then we must have that cm < dm (since

f(!m; Im; bm) = f(�!m; �I; bm) and the fact that (bm; !
m(j)) is an inversion in !

m

but not in �!m) which implies that (!m(j); dm) is separated in (!m; Im) (there must

be at least one less separation in (!m; Im)). Hence, [!m�1(j); dm] is separated in

(!m�1; Im�1). But because separated pairs must remain separated, (!m�1(j); dm)

is separated in (�!m; �Im), a contradiction. Thus, there is at most one way to choose

(!m; Im) for each m and, thus, at most one choice for (!; I). 2

Corollary 4.12

DSn
(q) =

X
(a1;a2;::: ;an)

q
a1+a2+���+an (4.11)

where the sum is over all parking functions (a1; a2; : : : ; an) 2 Pn.
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Notes and References

x4.1Most of the material in this section comes from two papers by R. Stanley. The

material on the braid arrangement can be found in Stanley [25, Intro.][22]. The

author's treatment of the braid arrangement in the former paper is muchmore thor-

ough than the latter, however the latter gives a quick, concise introduction to the

material. A nice concise look at permutation inversions and other elementary per-

mutation statistics is given in Stanley [20, Sec. 1.3]. In particular, the Proposition

4.4 can be found there.

x4.2 - x4.4 Concerning the Shi arrangement, this hyperplane arrangement was

�rst considered in Shi [16][17] and later in Headley [8]. The elementary proof of

Theorem 4.8 is given in Athansiadis and Linusson [1, Thm. 2.2]. Further, in [1]

the authors give the convenient labelling, of the Shi arrangement, we called valid

arc arrangements. The second bijection between Sn and Pn (given in Section 4.4)

can be found in Stanley [25, Thm. 2.1]. In [25], Stanley states the theorem in the

earlier paper [22, Thm. 5.1], where it is stated without proof. Although the proof

is omitted, this paper expediently deals with some interesting topics concerning

hyperplane arrangements, trees, interval orders and parking functions. In [22],

Stanley collaborated with I. Pak on the proof given here.



Chapter 5

Tree Inversions

Inversions in trees are a weight on trees that have an interesting connection with

parking functions, as described in this chapter. We assume that a tree on n + 1

vertices will have the vertex labels [n]0 = f0; 1; : : : ; ng. We denote a rooted tree by

(T; r) where r is the root of T .

De�nition 5.1 Given a rooted tree (T; r) a tree inversion is an ordered pair (i; j)

where i < j and the unique path connecting i to the root contains the vertex j.

De�ne inv(T; r) to be the number of inversions of (T; r).

Example 5.2 Consider the tree T in Figure 5.1 with root 0. The inversions in the

tree are the ordered pairs (11; 13); (4; 7); (1; 7) and (2; 5) and, therefore, inv(T; 0) =

4. 2

We note that if the root r is not 0 then any vertex with a label i smaller than the

root will create the inversion (i; r). If no root is speci�ed, it will be assumed that

67
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0

1 2

3

4

5

6

7

9 1011

13

12

Figure 5.1: A tree with root 0.

the root of the tree is the vertex labelled 0, i.e. (T; 0) will be written as T . In most

cases, the root of our tree will be 0.

5.1 The Parking Function Generating Function

and the Inversion Enumerator for Trees

We de�ne two generating functions that will make the connection between parking

functions and tree inversions explicit. We use the modi�ed de�nition of a parking

function that we used for the second proof of Theorem 4.8 in the last chapter; that

is, a sequence of non-negative integers (a1; a2; : : : ; an) is a parking function if its

non-decreasing rearrangement (b1; b2; : : : ; bn) satis�es bi � i � 1. We will soon see
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that this is a convenient modi�cation in this context. We now de�ne a generating

function pertaining to parking functions. First, we de�ne the weight !n of a parking

function to be

!n(a1; a2; : : : ; an) =

�
n

2

�
�

nX
i=1

ai (5.1)

To see what this weight function means geometrically, we note that

!n(a1; a2; : : : ; an) =

�
n

2

�
�
X
i=1

ai

=
X
i=1

i�
X
i=1

ai

=
X
i=1

(i� ai)

and, hence we see that the weight of a parking function is the area between the unit

step function (beginning at 0) and the parking function, when the non-decreasing

rearrangement of the parking function is displayed as a lattice path from 0 to n.

Example 5.3 For the parking function p = (1; 0; 0; 3; 5; 7; 3; 3) displayed in Figure

5.2, we see its weight is 6. 2

De�ne the parking function generating function to be

Pn(q) =
X

(a1;a2;::: ;an)

q
!n(a1;a2;::: ;an) (5.2)
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1
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2 3 4 5 6 7 81

Figure 5.2: A graphical look at the weight of (1; 0; 0; 3; 5; 7; 3; 3) 2 P8.

where the above sum is over all parking functions of length n. We de�ne, for trees,

the inversion enumerator to be

In(q) =
X

T : jV (T )j=n+1

q
inv(T ) (5.3)

The generating function In(q) for the �rst few values of n is

I1(q) = 1

I2(q) = 1

I3(q) = 2 + q

I4(q) = 6 + 6q + 3q2 + q
3
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I5(q) = 24 + 36q + 30q2 + 20q3 + 10q4 + 4q5 + q
6

Example 5.4 In the case of n = 3 the three trees are displayed in Figure 5.3. The

0

1

2

0

21

0

2

1

Figure 5.3: The trees on three vertices.

�rst two trees in Figure 5.3 are the trees with no inversions and the last tree is the

tree with one inversion, giving I2(q) = 2 + q. 2

The above generating functions have some very remarkable properties which

we will now present as a theorem. Parts (a) and (c) of the following theorem can

be found in Kreweras [10, Thm. I] whereas part (b) can be found in Stanley [25,

Thm. 3.1].

Theorem 5.5 (a) In(q) satis�es

In(1 + q) =
X
G

q
e(G)�n (5.4)

where G ranges over all connected graphs (without loops or multiple edges) on

n+ 1 labelled vertices, and where e(G) denotes the number of edges of G.
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(b) We have the following two generating function identities

X
n�0

In(q)(q � 1)n
x
n+1

(n+ 1)!
= log

X
n�0

q
(n2)

x
n

n!
(5.5)

X
n�0

In(q)(q � 1)n
x
n

n!
=

P
n�0 q

(n+1
2 ) xn

n!P
n�0 q

(n2) xn
n!

(5.6)

(c)

In(q) = Pn(q) (5.7)

Before we prove the above theorem, we discuss some of its consequences. From

(a) and (c) of Theorem 5.5 we get the expansion

Pn(1 + q) =
X
G

q
e(G)�n (5.8)

(where G has the same range as in part (a)) giving us a nice result concerning

parking functions and connected graphs. An interesting consequence of part (c) is

that the number of trees with no inversions is n! (since the number of trees with no

inversions correspond to parking functions of lowest weight, i.e., parking functions

whose non-decreasing rearrangement is 1; 2; : : : ; n and there are n! of these parking

functions). Further, since the number of trees on n + 1 vertices is (n + 1)n�1, it

follows from part (c) that Pn(1) = (n + 1)n�1, giving another proof of Proposition

2.10. As well, from (5.8) we see that Pn(2) is the number of connected graphs on
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n+ 1 vertices. We prove Thm 5.5 below, but before we do this we must introduce

a useful concept and prove a lemma.

Let G be a connected graph on the vertex set [n]0. We de�ne a certain spanning

tree �G on G with the following rule. Start at the vertex 0 and when at any vertex

move to the adjacent vertex with the largest label, if possible, otherwise backtrack.

Example 5.6 For the graph G in Figure 5.4, �G is given in Figure 5.5. The order

that the vertices were traversed in applying the above algorithm to obtain �G is

0; 5; 4; 3; 4; 2 and 1. 2

0

2

3

4

5 1

Figure 5.4: A connected graph G.

The following lemma can be found in Stanley [24, Ex. 5.48].
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0

1

2

3

4

5

Figure 5.5: �G for the graph in Figure 5.4.

Lemma 5.7 Let � be a tree on [n]0. Then for any connected graph G on [n]0, we

have �G = � if and only if every edge of G that is not in � has the form fi; kg,
where (i; j) is an inversion of � and k is the parent of j in � .

Proof. Suppose that � is a tree on [n]0 and G is a connected graph on the same

vertex set. Further, suppose that every edge of G not in � has the form given in

the lemma. For a contradiction, assume that �G 6= � . In this case, there exists an

edge e = fi; kg of �G that is not in � . Since e is an edge of G not in � , k has a

child j such that (i; j) is an inversion in � . We may assume that the edge e has the

property that the distance from k to 0 is minimized. Hence the path connecting k

to 0 coincides for �G and � . It is clear from the above, when the algorithm we use to
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obtain �G was run, it must at some point arrive at k via this path. Because fi; kg
is an edge of �G, we must choose i next in our algorithm. But j > i, and hence we

should choose j instead of i at this point, unless j has already been chosen in the

algorithm. But in that case, the algorithm must have chosen j, backtracked and

then visited k. But this is impossible, since we wouldn't have backtracked from the

vertex j, we would have picked k (either right away, or after picking some other

vertices and then backtracking to j), a contradiction.

Conversely, suppose that �G = � and, again for a contradiction, that there exists

an edge e of G not in � such that e = fi; kg and the child j of k on the path from k

to i in � is such that (i; j) is NOT an inversion. This is clearly impossible because

when we ran the algorithm to get �G at some point we chose the vertex k and since

j and i are both descendants of k in � , they both must be chosen after k. Hence,

they would both be available for choosing and since (i; j) is not an inversion, i > j

and we would have chosen fi; kg to be in our tree, a contradiction. 2

Notice that the number of inversions in a tree does not depend on the actual

labels on a tree, it just depends on the relative ordering of the labels. Thus, in

general, we can have a tree with n+ 1 vertices whose labels come from any subset

of N of size n + 1. Given any subset A � N such that jAj = n + 1 and any i 2 A
de�ne the rank of i (denoted rank(i)) to be 1 plus the number of elements in A

less than i. Further notice that given two sets V and V 0, both subsets of N, there

is a map from trees on the �rst vertex set to trees on the second vertex set that

preserves the number of inversions and is given by mapping the vertex of rank i

in V to the vertex of rank i in V 0. We will be using this relabelling repeatedly in
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what follows.

Now for the proof of Theorem 5.5.

Proof of Theorem 5.5. (a) For any tree � on [n]0 we de�ne the set {(� ) to be

the set of inversion edges de�ned in Lemma 5.7, i.e. the set of edges fi; kg such
that the child j of k on the path in � from i to k have the property that (i; j) is

an inversion of � . Now, if we �x a � and consider all connected graphs G on [n]0

with �G = � , we see that any such G is simply � together with some subset of {(� ).

Therefore,

X
G

q
e(G)�n = (1 + q)inv(�)

where the sum is over all connected graphs G on n + 1 vertices such that �G = � .

Further, Lemma 5.7 states that all connected graphs G can be obtained uniquely

via the above method, i.e. by adding the edges of some subset of {(�G) to �G. Hence,

summing over all trees � we get

X
G

q
e(G)�n =

X
�

(1 + q)inv(�) (5.9)

where the �rst sum is now over all connected graphs G with n+1 vertices. Noting

that the right hand side of (5.9) is In(1 + q), we have our result.

(b) The �rst of the equations, (5.5), is a direct result of the exponential formula

(see Stanley [24, Cor. 5.1.6]). To see this, clearly (1+q)(
n

2) is the generating function
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for a graph on n vertices where qi marks a graph with i edges. Hence,

exp

 X
n�1

X
G

q
e(G)x

n

n!

!
=
X
n�0

(1 + q)(
n

2)
x
n

n!

where the summation over G is over all connected graphs G on n vertices and from

(a) the left hand side becomes

exp

 X
n�0

In(1 + q)qn
x
n+1

(n+ 1)!

!
=
X
n�0

(1 + q)(
n

2)
x
n

n!

giving us

X
n�0

In(q)(q � 1)n
x
n+1

(n+ 1)!
= log

 X
n�0

q
(n2)x

n

n!

!
(5.10)

We note that (5.6) follows by applying d

dx
to (5.10).

(c) We prove this by showing that the two generating functions in question

satisfy the same recursion, viz they both satisfy

Fn+1(q) =

nX
i=0

�
n

i

�
(qi + q

i�1 + : : :+ 1)Fi(q)Fn�i(q) (5.11)

with F0(q) = 1. We will begin with the parking function generating function.

Given a parking function p = (a1; a2; : : : ; an+1), from Proposition 2.7 we can de-

compose p into two parking functions p0 = (a01; a
0

2; : : : ; a
0

l
) and p00 = (a001; a

00

2; : : : ; a
00

n�l+1),

a subset of size l of [n] (the set A1 given in Proposition 2.7) and an integer

a
�

n+1 � an+1 2 [l]0 (also given in Proposition 2.7). Conversely, given two park-
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ing functions p0 = (a01; a
0

2; : : : ; a
0

l
) and p

00 = (a001; a
00

2; : : : ; a
00

n�l+1) of length l and

n � l + 1 respectively, a subset A1 of size l of [n] and an integer a�
n+1 � an+1 2 [l]0

we can construct a parking function p by the following: For each i 2 A1 de�ne ai

to be a0
j
where i is the jth smallest element of A1. Similarly, for each i 2 [n]nA1

de�ne ai to be a
00

j
+ l where i is the jth smallest element of [n]nA1. Further,

!l(p
0) + !n�l+1(p

00) + a
�

n+1 � an+1 =

�
l

2

�
�

lX
i=1

a
0

i
+

�
n+ 1� l

2

�
�

n+1�lX
i=1

a
00

i

+ a
�

n+1 � an+1

=

l�1X
i=1

i�
X
i2A1

ai +

nX
i=l+1

i�
X
i2A2

(a00
i
+ l)

+ a
�

n+1 � an+1

=

nX
i=1

i�
nX
i=1

ai � an+1

= !n+1(p)

where the second last line follows from the fact that a�
n+1 = l (see Proposition

2.7). Hence, there is a bijection between parking functions p of length n + 1 and

quadruples (p0; p00; A1; a
�

n+1 � an+1) such that the weight of !n+1(p) = !l(p
0) +

!n�1+1(p
00) + a

�

n+1 � an+1 (where p corresponds to the quadruple (p0; p00; A1; a
�

n+1 �
an+1)). Thus, we have

Pn+1(q) =

nX
i=0

�
n

i

�
(qi + q

i�1 + : : :+ 1)Pi(q)Pn�i(q)

and since, clearly, P0(q) = 1, we see that Pn(q) satis�es (5.11).
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Now, we prove that In(q) satis�es (5.11) by proving that a tree can be similarly

decomposed. Clearly, I0(q) = 1. Given a tree T on [n+1]0, let e be the edge on the

path from 0 to n+1 that is incident with 0. Removing e from the graph we obtain

two trees T1 and (T2; r) on the vertex sets V1 and V2 respectively, jV2j = i+ 1 and

where r is the other vertex incident with e on the tree T . We note that V2 � [n+1]

and necessarily n+1 2 V2. Notice that inv(T ) = inv(T1)+ inv(T2; r). If we replace

the root r of T2 with a vertex labelled 0, and make it the new root, then notice that

we lose r0 inversions, where r0 is rank(r)� 1. Call this new tree T 0

2. We can relabel

the vertices of T1 and T
0

2 with the vertex sets [n�i]0 and [i]0, respectively, preserving
the order of the labels and, therefore, preserving the number of inversions in the

two trees. Thus, we obtain a quadruple (T1; T
0

2; V; r
0) where T1 is a tree on [n� i]0,

T
0

2 is a tree on [i]0, a set V = V2nfn+ 1g and a number r0 between 0 and i. Notice

that inv(T ) = inv(T 0

1) + inv(T 0

2) + r
0. Conversely, suppose that we are given a

quadruple (T1; T2; V; r
0), where T1 is a tree on the [n � i]0, T2 is a tree on the [i]0,

V is a subset of [n] of size i and r
0 is a number in [i]0, then we can construct a

tree T with inv(T ) = inv(T1) + inv(T2) + r
0 in the following way: First, we change

the non-zero labels in T1 to labels in [n]nV , maintaining the relative order of the

vertices to obtain a new tree T 0

1. Second, we obtain a new tree, T 0

2, from the tree T2

by replacing the non-zero labels on T2 with V [ fn+ 1gnfrg where r is the vertex
of rank r0 + 1, in preserving their order. Next we relabel the root 0 with the label

r. Now attach the vertex labelled 0 of T 0

1 to the new root, r, of T 0

2 to get T . Notice

that inv(T ) = inv(T 0

1) + inv(T 0

2) + r
0. Summing over all i will account for all trees
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and hence we see that

In+1(q) =

nX
i=0

�
n

i

�
(qi + q

i�1 + : : : q + 1)Ii(q)In�i(q);

so In(q) satis�es (5.11). 2

Notice the above proof gives us an recursive bijection between parking functions

of weight m and trees with m inversions. To make this more convincing, since

both parking functions and tree inversions satisfy (5.11) we have the following

correspondence

p ! (A; p0; p00; r) ! (V; T1; T2; r) ! T

where

1. p is a parking function of length n + 1

2. (A; p0; p00; r) is a quadruple where

(a) A is some i-subset of [n+ 1]

(b) p0 is a parking function with labels in A

(c) p00 is a parking function on the labels [n+ 1]nA

(d) r is a number between 0 and i

and

1. T is a tree on [n+ 1]0

2. (V; T1; T2; r) is a quadruple where
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(a) V is an i-subset of [n]

(b) T1 is a tree on the vertices n+ 1 � i vertices [n]0nV

(c) T2 is a tree on the i+ 1 vertices V [ fn+ 1g

(d) r is a number between 0 and i

The r in the parking function case is obtained from the di�erence a�
n+1 � an+1

whereas the r in the case of trees tells us which vertex of T2 should be made the

root of T2. This fact will be exploited in the next chapter.

The following corollary gives a connection between the inversion enumerator for

trees and the distance enumerator for the Shi arrangement.

Corollary 5.8

In(q) = q
(n2)DSn

(1=q):

Proof. This follows from Corollary 4.12 and Theorem 5.5.

Notes and References

x5.1. The proof of Theorem 5.5(a) and Theorem 5.5(b) can be found in Stanley

[24, Ex. 5.48]. In it, most of the proof is left as an exercise and Stanley gives

the full reference as follows: (5.6) was �rst proved in Mallows and Riordan [13]

using an indirect generating function method. The bijection given in Theorem

5.5(a) can be found in Gessel and Wang [6] in which the authors give a simple, yet

useful, combinatorial bijection. The proof used in Theorem 5.5(c) can be found in
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Kreweras [10, Thm. I]. In this paper, Kreweras begins with (5.11) and describes

some objects that satisfy the recursion.

With regard to tree inversions, we note that there are bijections from parking

functions to trees that don't preserve the statistic tree inversion. For example in

Foata and Riordan [5, Sec. 2], they give a mapping (which the authors credit to

H. Pollak) that maps parking functions to Pr�ufer codes. They describe this map

\: : : [the map] is simplicity itself.", which it is. They also give another mapping in

Section 3 of that paper by putting both parking functions and trees into one-to-one

correspondence with another set.



Chapter 6

Generalizations of Parking

Functions

We now consider two generalizations of parking functions. Initially, the two gen-

eralizations seem very similar but there will be subtle and important di�erences

between the two. The �rst one we will call k̂-parking functions and the second

k-parking functions. It turns out that we can, likewise, generalize the objects in

the previous chapters and the generalizations �t well with at least one of k̂-parking

functions or k-parking functions. We will see that k-parking functions are much

more complex than k̂-parking functions.

6.1 ^k-Parking Functions

A k̂-parking function of length n is a sequence of positive integers (a1; a2; : : : ; an)

such that its non-decreasing rearrangement (b1; b2; : : : ; bn) satis�es bi � ki. Notice

83
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that the number of k̂-parking functions is kn(n + 1)n�1. This is true because any

k̂-parking function (a1; a2; : : : ; an) can be written as the sum k(q1; q2; : : : ; qn) �
(r1; r2; : : : ; rn) where (q1; q2; : : : ; qn) is a 1̂-parking function (notice that 1̂-parking

functions are simply parking functions) and 0 � ri � k � 1. Denote the set of

k̂-parking functions by P̂(k)
n .

6.1.1 Noncrossing Partitions

The �rst object that we generalize from the previous chapters are noncrossing

partitions. A k-noncrossing partition of the set f1; 2; : : : ; kng is a noncrossing

partition of the set f1; 2; : : : ; kng such that every block has size divisible by k.

Denote by NC
(k)

n+1 the set of k-noncrossing partitions. We can consider NC
(k)

n+1 as

a poset in the same way that we considered NCn+1 a poset. Notice, however, that

NC
(k)
n+1 does not have a 0̂. Even so, it is clear that every maximal chain in NC

(k)
n+1 has

the same length, namely n. Suppose that � and � are k-noncrossing partitions such

that � < � and such that no other k-noncrossing partition � satis�es � < � < �.

Clearly, � must be obtained from � by merging two blocks B and B0 of �. Suppose

that minB < minB0. De�ne

�(�; �) = maxf i j i 2 B and i < minB 0g (6.1)

and for the chain m = (�0; �1; : : : ; �n) in NC
(k)

n+1 de�ne

�(m) = (�(�0; �1);�(�1; �2); : : : ;�(�n�1; �n))
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We prove that � is a bijection between the maximal chains of NC
(k)
n+1 and P̂(k)

n .

Example 6.1 In NC
(1)

n+1, let the following be the maximal chain m

1� 2� 3 � 4� 5

#
13 � 2� 4 � 5

#
135 � 2� 4

#
1345 � 2

#
12345

where �0 = 1 � 2 � 3 � 4 � 5 and so on. We see that �(�0; �1) = 1; �(�1; �2) =

3; �(�2; �3) = 3 and �(�3; �4) = 1 implying that �(m) = (1; 3; 3; 1). 2

Before we give a proof that � is a bijection, we �rst make a note about parking

functions. Notice that the number of i's occurring in a parking function is at

most n � i + 1. Further, any sequence (a1; a2; : : : ; an) that has at most n � i + 1

occurrences of i's, for all i = 1; 2; : : : ; n is a parking function. The necessity of

the above condition follows from De�nition 2.4 and the suÆciency follows from

De�nition 2.5. This, clearly, carries over into k̂-parking functions, namely that a

sequence (a1; a2; : : : ; an) is a k̂-parking function if and only if the number of aj

satisfying k(i� 1) + 1 � aj � ki is at most n� i+1. Now for the proof, which can

be found in Stanley [23, Thm. 3.1].
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Theorem 6.2 � is a bijection between maximal chains of NC
(k)
n+1 and P̂(k)

n .

Proof. Let m = (�0; �1; : : : ; �n) be a maximal chain in NC
(k)

n+1. Notice that if

�(m) = (a1; a2; : : : ; an) then as = r, for some k(i � 1) + 1 � r � ki, 1 � i � n if

and only if �s is obtained from �s�1 by joining a block B and B 0 where r 2 B and

1) r = maxB and r < minB 0 or 2) there exists an l 2 B such that l > maxB0. In

either case, all of the elements of B 0 are greater than k(i � 1) + 1. Clearly, there

can be at most n� i+1 blocks with this property. Further, every time we have an

as such that k(i� 1) + 1 � as � ki, there is one less block in �s than in �s�1 that

has the property that every one of its members is greater than k(i� 1) + 1. Hence,

there are at most n� i+ 1 members of (a1; a2; : : : ; an) that lie in between k(i� 1)

and ki. Thus, (a1; a2; : : : ; an) is a k̂-parking function.

Next we show that � is injective. To that end, suppose that �(m) = �(m0) =

(a1; a2; : : : ; an). Let r = maxf ai j 1 � i � ng and s = maxf i j ai = rg. The �rst
claim is that there exists a block B in �s�1 such that B = fr+1; r+2; : : : ; k+ rg.
We prove the claim now.

If r and r + 1 are in the same block of �s�1 then it is impossible that as = r.

Hence, r and r + 1 are in di�erent blocks in �s�1 and assume that r 2 B and

r + 1 2 B
0. If there exists an i 2 B

0 such that i < r, then by the noncrossing

property of �s, we must combine B and B 0 to get �s (otherwise, if we combined B

with some other block B00 then the blocks B[B00 would \cross" the block B0 in �s).

However, then as < r (because then as 2 B0 and, hence, could not be r). Therefore,

B
0 does not contain elements less than r. If B0 has more than k elements in it then

for some t < s, at > r (because we would have combined the block containing r+1
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with another block containing elements all greater than r to make B0). Finally, if

B
0 = fr + 1; r + 2; : : : ; j � 1; j + ki + 1; : : : g (i.e. B 0 is not a block of the form

fm;m + 1; : : : ;m + kg) then for some t > s, at = j � 1 > r (this follows from

the noncrossing property of �0; �1; : : : ; �n. Thus, the block B
0 containing r + 1 is

fr + 1; r + 2; : : : ; k + rg.
Our next claim is that �s is obtained by combining the block that contains r,

B, and the block that contains r + 1, B0. If not, then in order for as to equal r we

must merge B with a block B00 all of whose elements are greater than r. At some

point t > s we must merge the block containing r, B(3), and the block containing

r + 1, B(4). Since B [B0 � B(3), B(3) contains r and elements greater than all the

elements in B0 (the noncrossing property of �t�1). Hence, when we merge B(3) with

B
(4) to obtain �t we get at = r, contradicting our choice of s.

It is clear now how we can uniquely recover m from the k̂-parking function

p = (a1; a2; : : : ; an) by induction. Namely, remove as from p, and call the new

sequence p0, and notice that p0 is still a k̂-parking function. By induction, there

exists a maximal chain m
0 = (�0; �1; : : : ; �s�1; �s+1; : : : ; �n) in NC

(k)
n . In all the �i,

replace every number j greater than r in every block with j + k. For each �i such

that i � s � 1 add the block fr + 1; r + 2; : : : ; k + rg and call these new blocks

�
0

0; �
0

1; : : : ; �
0

s�1. For each �i such that i � s+1 take the block containing r and form

its union with fr+ 1; r+2; : : : ; k + rg and call these new block �0
s+1; �

0

s+2; : : : ; �
0

n
.

Finally, de�ne �0
s
the same as �s�1 except that we merge the block containing r

with the block fr + 1; r + 2; : : : ; k + rg.
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Notice that the above proof suÆces to show that � is surjective, since the last

paragraph holds for an arbitrary k̂-parking function. 2

Corollary 6.3 The number of maximal chains in NC
(k)

n+1 is kn(n+ 1)n�1.

6.1.2 Tree Inversions

A rooted k̂-tree (T; r) on n+ 1 vertices is a rooted tree on n+ 1 vertices such that

each edge is assigned a colour 0; 1; : : : ; k� 1. Notice that if we �x the root (to be 0

in most cases) then the number of rooted k̂-trees is clearly kn(n+ 1)n�1. In a tree

T , let �(e) be the colour of the edge e and de�ne Path(v;w) to be the set of edges

on the unique path from v to w. De�ne invk to be

invk(T; r) = inv(T; r) +
X
v

X
e2Path(v;r)

�(e)

where inv(T; r) is the number of ordinary inversions in a tree (as de�ned in De�ni-

tion 5.1). We de�ne the inversion enumerator for k̂-trees as

I
(k)
n
(q) =

X
T : jV (T )j=n+1

q
invk(T ) (6.2)

where the sum is over all rooted k̂-trees.

Example 6.4 In Figure 6.1 we have the rooted k-tree T with root 0. Here we

have k = 5 and the number of vertices is 8. Since, inv(T ) = 3 and

X
v

X
e2Path(v;r)

�(e) = 26



CHAPTER 6. GENERALIZATIONS OF PARKING FUNCTIONS 89

we have invk(T ) = 29. 2

3 4

2

4

0

1

3

4

2

5 6

7

0

21

Figure 6.1: A rooted k̂-tree T rooted at 0.

Proposition 6.5 There exists a bijection �̂n between the set of k̂-parking functions

of length n and rooted k̂-trees that preserves the weights in the generating functions

P̂
(k)
n (q) and Î

(k)
n (q), i.e. �̂n implies P̂

(k)
n (q) = Î

(k)
n (q).

Proof. The proof is almost identical to the proof of Theorem 5.5(c) except for the

following fact. In that proof, the di�erence a�
n
� an gives one the information of

what root to give the tree T2, as it was called. In the case with k̂-parking functions

the di�erence a�
m
�am can be at most kj. Thus, we see that this di�erence gives the

information of what vertex is the root of T2 but it also tells us the colour of the edge
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connecting the root of T2 with the vertex labelled 0 of T1. This information about

the colour of the edge connecting the two roots is obtained by dividing a�
n
� an by

j to obtain tj + r where t is the quotient and r is the remainder. We then colour

the edge connecting the two roots t, adding tj to the weight of the tree (since there

are j vertices in T2). 2

We note that Thm 5.5(c) relied heavily upon Proposition 2.7. This does not

present a problem because a similar proposition holds for k̂-parking functions. The

statement of this proposition can be found below in Lemma 6.7 except we must

replace all occurences of k(j � 1) in the lemma with kj.

6.2 k-Parking Functions

De�nition 6.6 A k-parking function of length n is a sequence (a1; a2; : : : ; an) of

non-negative integers such that its non-decreasing rearrangement (b1; b2; : : : ; bn)n

satis�es bi � k(i�1). We denote by P(k)
n the set of all k-parking functions of length

n.

Lemma 6.7 Let (a1; a2; : : : ; an) be a k-parking function of length n. Let a�
n
be the

largest number such that (a1; a2; : : : ; an�1; a
�

n
) is a k-parking function. Then a�

n
is

equal to k(j�1) for some j. Furthermore, a�
n
is the only term in (a1; a2; : : : ; an�1; a

�

n
)

that is equal to k(j � 1) and in the non-decreasing reordering (b1; b2; : : : ; bn) of

(a1; a2; : : : ; an�1; a
�

n
), we have bj = a

�

n
.

Proof. The proof for this is completely analogous to the proof of Proposition 2.6

and 2.7. 2
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For the k-parking function (a1; a2; : : : ; an) we call the k-parking function (a1; a2;

: : : ; an�1; a
�

n
) the reduced complement of (a1; a2; : : : ; an). In our next results we will

count the number of k-parking functions of length n. However, we will �rst prove

a stronger result we will be using later. De�ne the k-parking function generating

function as

P
(k)
n

(q) =
X

(a1;a2;::: ;an)2P
(k)
n

q
!
(k)
n (a1;a2;::: ;an) (6.3)

where

!
(k)
n
(a1; a2; : : : ; an) = k

�
n

2

�
�

nX
i=1

ai

We �nd a recursion for P
(k)
n (q) and use it to compute the number of k-parking

functions of length n. The following theorem is due to Yan [27, Thm. 7].

Theorem 6.8

P
(k)

n+1(q) =

nX
j=0

�
n

j

�
(1 + q + : : :+ q

kj)(1 + q + � � �+ q
k�1)n�jP

(k)

j
(q)P

(1)

n�j
(qk)

for n � 1 and P
(k)
0 (q) = 1.

Proof. We denote by P(k)

n;j
the set of k-parking functions of length n whose re-

duced complement has a�
n
equalling kj. Clearly, if the reduced complement of

(a1; a2; : : : ; an) is (a1; a2; : : : ; an�1; kj) then any other k-parking function (a1; a2;

: : : ; an�1; x), where x � kj also has reduced complement (a1; a2; : : : ; an�1; kj).
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Thus,

P
(k)

n+1(q) =

nX
j=0

(1 + q + � � �+ q
kj)P

(k)

n+1;j(q) (6.4)

Fixing a k-parking function p in P(k)

n+1;j , consider the two sets A1 and A2 de�ned by

A1 = f i j ai < kjg

and

A2 = f i j ai > kjg

From Lemma 6.7 we see that the union of these two sets has cardinality n. Let

p
0 = (ai)i2A1

and

p
00 = (ai � kj)i2A2

It is clear that p0 can be any arbitrary k-parking function of length j. Notice that

p
00 is a sequence of length n � j and can be written as

p
00 = k(q1; q2; : : : ; qn�j) + (r1; r2; : : : ; rn�j)
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where (q1; q2; : : : ; qn�j) can be any arbitrary 1-parking function of length n� j and
(r1; r2; : : : ; rn�j) is a n� j-tuple with 0 � ri � k � 1, i.e. p00 can be any k̂-parking

function. Hence, the weight of p00 is,

k

�
n� j + 1

2

�
�
X
i2A2

(ai � kj)

Thus, we see that (noting that we have
�
n

j

�
choices for the set A1)

P
(k)

n+1;j(q) =

�
n

j

�
(1 + q + � � �+ q

k�1)n�jP
(k)

j
(q)P

(1)

n�j
(qk) (6.5)

Substituting (6.5) into (6.4)

P
(k)

n+1(q) =

nX
j=0

�
n

j

�
(1 + q + � � � + q

kj)(1 + q + � � � + q
k�1)n�jP

(k)

j
(q)P

(1)

n�j
(qk)

(6.6)

2

Proposition 6.9 P
(k)
n (1) = (kn+1)n�1, i.e. the number of k-parking functions of

length n is (kn+ 1)n�1 for n � 0 and k � 1.

Proof. Denote by p
(k)
n and p

(k)

n;j
the number of elements in P(k)

n and the number of

elements in P(k)

n;j
, respectively. Clearly, if we take P

(k)
n+1(q) and substitute in q = 1

we will get the number of k-parking functions of length n + 1. If this process is

carried out on (6.6) we get

p
(k)

n+1 =

nX
j=0

�
n

j

�
(kj + 1)kn�jp

(k)

j
p
(1)

n�j
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Multiplying both sides by x
n

n!
and summing over all n � 0 we get

d

dx
P

(k)(x) =

�
kx

d

dx
P

(k)(x) + P
(k)(x)

�
H(x) (6.7)

where

P
(k)(x) =

X
n�0

p
(k)
n

x
n

n!

and

H(x) =
X
n�0

k
n(n+ 1)n�1

x
n

n!

From (6.7) we obtain the di�erential equation

d

dx
P

(k)(x) =
H(x)

1� kxH(x)
P

(k)(x)

and since P (k)(0) = p
(k)

0 = 1, we divide by P (k)(x) to get

d

dx
log(P (k)(x)) =

H(x)

1� kxH(x)
(6.8)

Applying the Lagrange Inversion Formula (see Goulden and Jackson [7, Sec. 1.2]

Stanley [24, Sec. 5.4]) to

y = x exp(ky) (6.9)
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and

exp(ky)

one �nds

H(x) = exp(ky) (6.10)

Now, applying x d

dx
to (6.9) and solving for x dy

dx
, we obtain

x
dy

dx
=

y

1� ky

Substituting (6.9) and (6.10) into the right hand side of the above gives us

x
dy

dx
=

x exp(ky)

1 � kx exp(ky) =
xH(x)

1 � kxH(x)

so (6.8) becomes

d

dx
log(P (k)(x)) =

dy

dx

and we conclude that

log(P (k)(x)) = y



CHAPTER 6. GENERALIZATIONS OF PARKING FUNCTIONS 96

since y(0) = 0 from the de�nition of y. Thus,

P
(k)(x) = exp(y)

and applying Lagrange's Theorem, again, gives

p
(k)
n

= n![xn] exp(y)

=
n!

n
[xn�1] exp(kx)n exp(x)

= (kn+ 1)n�1

for n � 1 and p
(k)

0 = 1. 2

6.2.1 Hyperplane Arrangements

We say very little about hyperplane arrangements here in this chapter except that

the proof given in Section 4.4 can be generalized to k-parking functions. The

generalization of the Shi arrangement, called the extended Shi arrangement and

denoted by Sk
n
, is the collection of hyperplanes

xi � xj = �k + 1;�k + 2; : : : ; k; for 1 � i < j � n

The proof is similar to that given in Section 4.4 except this time the regions are

described by a k+1-tuple (!; I1; I2; : : : ; Ik) where the permutation ! has the same

function as in the case k = 1 and Im speci�es which coordinates are a distance m

from each other. Of course, as in the case of k = 1 there are certain compatibil-
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ity requirements between ! and the Im's that must be satis�ed. As for the case

k = 1, given a k-parking function (a1; a2; : : : ; an), we build up the k + 1-tuple

(!; I1; I2; : : : ; Ik) one step at a time.

A consequence of this is that the distance enumerator for the extended Shi

arrangement Sk
n
is given by

D
S
k
n
(q) =

X
(a1;a2;::: ;an)

(a1;a2 ;::: ;an)2P
(k)
n

q
a1+a2+���+an

6.2.2 Tree Inversions

In this section we give a result that generalizes most of Theorem 5.5. We will be

generalizing the notions of tree inversions and connected rooted graphs.

A rooted k-tree on n+1 vertices is a rooted tree T with root r on n+1 vertices

whose non-root edges (root edges are edges that emerge from the root) can be

coloured one of the k colours 0; 1; : : : ; k � 1. Root edges are coloured with the

colour 0. We denote a rooted k-tree by (T; r). If no root is speci�ed we assume

that the root is the vertex labelled 0. We de�ne the inversion enumerator for rooted

k-trees, denoted by I
(k)
n (q), the same as Î

(k)
n (q) except that we sum over all rooted

k-trees instead of rooted k̂-trees (of course). Another object that we need is a

connected k-graph. A connected k-graph (G; r) on the n+1 vertices [n]0 is a graph

G that has its edges coloured any one of the k colours 0; 1; : : : ; k � 1. Here, r is a

distinguished vertex, which we will call the root and r has the property that any

edges emerging from it must have colour 0. We don't allow loops but two edges

can have the same endpoint as long as they don't have the same colour. De�ne the
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generating function C
(k)
n (q) to be

C
(k)
n
(q) =

X
G :G connected

q
e(G)�n (6.11)

where e(G) is the number of edges of G.

Example 6.10 In Figure 6.2 we have a rooted connected k-graph G with root 0.

Here, k = 4 and the number of vertices is 6. The numbers beside an edge indicate

that the edge is possibly a multiple edge with the colours indicated. Since there

are 10 edges, we see that e(G)� n = 10 � 5 = 5. 2

0

2

3

4

5 1

0

1,2

0

0

2,3

1,2,3

1

Figure 6.2: A rooted graph G with root 0. The numbers beside each edge indicate

that the edge is, in fact, a multiple edge with the colours listed as the colours of
the edges.

Without delay we prove the generalization of the Theorem 5.5. The proof is by

showing that P
(k)
n (1 + q) and C

(k)
n (q) satisfy the same recursion and I

(k)
n (1 + q) and
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C
(k)
n (q) satisfy the same recursion. The following theorem can be found in Stanley

[25, Thm. 3.3] and Yan [27].

Theorem 6.11 P
(k)
n (1 + q) = C

(k)
n (q) = I

(k)
n (1 + q) for n � 0 and k � 0.

Proof. It was shown in Theorem 6.8 that the generating function P
(k)
n (q) satis�es

the recurrence

P
(k)

n+1(q) =

nX
j=0

�
n

j

�
(1 + q + � � � + q

k�1)n�j (1 + q + � � � + q
kj)P

(k)

j
(q)P

(1)

n�j
(qk)

and hence

P
(k)

n+1(1 + q) =

nX
j=0

�
n

j

��
(1 + q)k � 1

q

�n�j

(1 + q)kj+1 � 1

q
P

(k)

j
(1 + q)P

(1)

n�j
((1 + q)k)

(6.12)

We show that C
(k)

n+1(q) also satis�es the recursion given in (6.12).

Given a connected k-graph G on the n+2 vertices [n+1]0, (in which we assume

the root to be 0) we delete the vertex labelled 1. This will split G up into two

sets of components, one set consisting of the component containing the vertex 0

and the other set consisting of the components not containing the vertex labelled

0. Consider the subgraph consisting of the components not containing the vertex

0, the vertex 1 and all the edges from 1 to the components not containing 0. Call

this subgraph K and suppose that it has i+ 1 vertices. Let L be GnK (see Figure

6.3 to see the subgraphs K and L in an arbitrary graph). Clearly, both K and L
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are connected. Hence we have

C
(k)

n+1 =
X
K[L

q
e(L)�(n�i) � qe(K)�i+1 � qd(G)

where d(G) is the number of edges from the vertex 1 to the subgraph L. There are

The subgraph L The subgraph K

0 1

Figure 6.3: The subgraphs K and L. Of course, the \edges" between 1 and com-

ponents merely indicate that 1 is adjacent to a component and not the number of

edges between 1 and that component.

�
n

i

�
ways to choose the vertices in K (since the vertex 1 must be in K). Notice that

K does not have the structure of a connected k-graph, since what we may consider

as the root (the vertex 1) can have edges emerging from it that are not coloured 0.

In fact, since K has no distinguished vertex in this way, its structure is similar to
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that of a connected 1-graph. However, between any two vertices of K there can be

any subset of edges coloured 0; 1; : : : ; k � 1. Hence, we see that

q
�(i+1)

X
K

q
e(G) =

X
K0 :K0 a connected 1-graph

 
q
�(n+1)

kX
j=1

�
k

j

�
q
j

!e(K0)

(6.13)

= q
�(i+1)

�
((1 + q)k � 1)i �C(1)

i
((1 + q)k � 1)

�
(6.14)

= q
�1

�
(1 + q)k � 1)

q

�i

� C(1)

i
((1 + q)k � 1) (6.15)

Clearly, the subgraph L is a just a connected k-graph on n � i vertices and,

hence,

X
L

q
e(L)�(n�i) = C

(k)

n�i
(q)

The possible values of d(G) can be computed as follows. If 0 and 1 are neighbours

then 1 can have i neighbours in the rest of L, where i is between 0 and k(n � i)
(remembering that we can have edges with the same endpoints as long as they have

di�erent colours). Or, if 0 and 1 are not neighbours then there must be at least
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one edge from 1 to the rest of L and there can be as many as k(n� i). Hence,

C
(k)

n+1(q) =
X
G

q
e(G)�n

=
X
K[L

q
e(K)�(i+1) � qe(L)�(n�i) � qd(G)

=
X
i=0

�
n

i

�
C

(k)

n�i
(q)q�1

�
(1 + q)k � 1

q

�i

C
(1)

i
((1 + q)k � 1)�

0
@q k(n�i)X

j=0

�
k(n � i)

j

�
q
j +

k(n�i)X
j=1

�
k(n� i)

j

�
q
j

1
A

=
X
i=0

�
n

i

�
q
�1

�
(1 + q)k � 1

q

�i

C
(k)

n�i
(q)C

(1)

i
((1 + q)k � 1)�

0
@(q + 1)

k(n�i)X
j=0

�
k(n� i)

j

�
q
j � 1

1
A

=
X
i=0

�
n

i

��
(1 + q)k � 1

q

�i

(1 + q)k(n�i)+1 � 1

q
�

C
(k)

n�i
(q)C

(1)

i
((1 + q)k � 1)

This completes the �rst equality. To prove the second we will show that I
(k)
n (q)

satis�es the recursion

I
(k)
n
(q) =

X
a1+a2+���+ak+1=n

�
n

a1; a2; : : : ; ak+1

�
� qa2+2a3+���+(k�1)ak �

(1 + q + � � �+ q
a1+a2+���+akI

(k)
a1
I
(k)
a2
� � � I(k)

ak+1
(6.16)
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and C
(k)
n (q) satis�es the recursion

C
(k)
n+1(q) =

X
a1+a2+���+ak+1=n

�
n

a1; a2; : : : ; ak+1

�
� (1 + q)a2+2a3+���+(k�1)ak �

(1 + q)a1+a2+���+ak+1+1 � 1

q
C

(k)
a1
C

(k)
a2
� � �C(k)

ak+1
(6.17)

We begin with I
(k)

n+1(q). Given any tree T on the vertex set [n+ 1]0 rooted at 0,

there is a unique edge e emerging from 0 that is on the path between the vertex 0

and the vertex 1. If we remove e from T , then we get two trees, T0 and (T1; r), where

e = f0; rg. Suppose that the tree T0 has ak + 1 vertices. Then T1 has n + 1 � ak
vertices and

invk(T ) = invk(T0) + invk(T1; r)

since the colour of e is necessarily 0. Notice that T0 is a rooted k-tree rooted at 0.

Hence,

I
(k)

n+1(q) =
X
T

q
invk(T )

=
X

(T0;(T1;r))

q
invk(T0)+invk(T1;r)

=

nX
ak=0

�
n

ak

�X
T0

q
invk(T0) �

X
(T1;r)

q
invk(T1;r)

=

nX
ak=0

�
n

ak

�
I
(k)
ak
(q)

X
(T1;r)

q
invk(T1;r) (6.18)

Now we compute
P

(T1;r)
q
invk(T1;r). Notice that as far as it pertains to tree inversion,
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the actual labels on the trees don't matter, only the relative ordering of the labels

are important. Hence, we assume that all the trees in the sum over all (T1; r) in

(6.18) are on the vertex set [n � ak]0. Let Tr be the trees with root r (see Figure

6.4). If we remove r from the tree T1 we create a collection of rooted trees. Let

(Hi;s1
; r1); (Hi;s2

; r2); : : : ; (Hi;si
; ri), for 0 � i � k � 1, be the rooted trees that had

edges coloured i connecting them to r. Suppose that the total number of vertices

in all these trees is ai and let Si be the rooted tree created by attaching a new

root 0 to all the roots of (Hi;s1
; r1); (Hi;s2

; r2); : : : ; (Hi;si
; ri) (see Figure 6.4). Then

T0The subtree

(T1,r)The subtree

0

r

i ij

Figure 6.4: Decomposing a tree T into T0 and (T1; r).
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clearly,

invk(T1; r) = r � 1 + a1 + 2a2 + � � �+ kak + invk(S0) + invk(S2) + � � �+ invk(Sk�1)

implying that

X
(T1;r)

q
invk(T1;r) =

n+1�akX
j=1

X
T2Tr

q
invk(T )

=

n+1�akX
j=1

q
r�1

X
T2Tr;jSij=ai

q
a1+2a2+���kak+invk(S0)+invk(S2)+���+invk(Sk�1)

=

n+1�akX
j=1

q
r�1

X
a0+a1+���ak�1=n�ak

jSij=ai for 0�i�k�1

�
n� ak

a0; a1; : : : ; ak�1

�
q
a1+2a2+���+kak �

q
invk(S0)+invk(S1)+���+invk(Sk�1)

=

 
n�akX
j=0

q
j

! X
a0+a1+���+ak�1=n�ak

�
n� ak

a0; a1; : : : ; ak�1

�
�

q
a1+2a2+���+kak � I(k)

a0
(q) � I(k)

a1
(q) � � � I(k)

ak
(q)

Substituting the last equation into (6.18) we get our result. We now prove (6.17).

Suppose that G0; G1; : : : ; Gk is a sequence of connected k-graphs with ai+ 1 =

jV (Gi)j. Further, suppose that their vertex sets are disjoint except that each graph

has a vertex, its root, labelled 0 and the union of all the vertex sets is [n]0. We want

to \merge" the above graphs into one graph on [n+1]0. First, for 0 � i � k� 1, in

graph Gi colour the edges that emerge from 0 with the colour i. Second, for each

i listed above, in Gi draw any number of edges from 0 to the other vertices of Gi

having any colour less than i�1. Now, merge the graphs G0; G1; : : : ; Gk�1 into one
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connected k-graph by identifying all the vertices labelled 0 and call the new graph

H. In H, relabel the vertex 0 with the label n+1. Now, make a new vertex 0 and

attach any number of edges from 0 to the vertices H (no multiple edges) and call

this new graph H
0. All such edges will be given the colour 0 (this is why we did

not allow multiple edges). Finally, merge the vertex 0 of Gk and the vertex 0 of H 0

to get a connected k-graph on [n+ 1]0.

The above procedure gives a bijection (it can clearly be reversed) between con-

nected k-graphs on [n+1]0 and sequences (G0; G1; : : :Gk; E0; E1; : : : ; Ek�1; S) where

the G's are given above, the Ei is a set of arbitrary edges whose endpoints are the

root of Gi and some other vertex in Gi and S is a nonempty subset of the vertices

in G0; G1; : : : ; Gk�1 to which we attached the new 0. Hence, C
(k)

n+1(q) equals

X
G

q
e(G)�n =

X
a0+a1+���+ak=n

X
(G0;G1;::: ;Gk;E0 ;E1 ;::: ;Ek ;S)

jV (Gi)j=ai

q
jE0jq

jE1j � � � qjEk�1jq
jSj �

q
e(G0)�a0 � qe(G1)�a1 � � � qe(Gk)�ak

=
X

a0+a1+���+ak=n

�
n

a0; a1; : : : ak

�
(1 + q)a1 � � � (1 + q)(k�1)ak�1 �

((1 + q)a0+a1+���+ak�1 � 1)C(k)
a0
(q)C(k)

a1
(q) � � �C(k)

ak
(q)

Dividing both sides by q completes the proof. 2

From this it follows that the number of k-parking functions of length n is the

number of rooted k-trees (with root 0) on n+ 1 vertices. If we de�ne

Rk(x) =
X
i�0

rk
x
n

n!
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where rk is the number of k-trees it is clear that Rk(x) is equal to exp(y) where

y = x exp(ky). Using the Lagrange Inversion formula (see Goulden and Jackson

[7, Sec. 1.2] Stanley [24, Sec. 5.4]) gives rk = (kn + 1)n�1. Compare this with

Proposition 6.9.

Above, in Theorem 6.11 we showed that P
(k)
n (q) = I

(k)
n (q) via generating function

techniques and using connected k-graphs and the generating function C
(k)
n (q). We

now prove that P
(k)
n (q) = I

(k)
n (q) by presenting a direct bijection. For clarity, we

give an example after the proof and it is advised that one follows it along with the

proof.

Theorem 6.12 There exists a bijection �n between k-parking functions of length n

and rooted k-trees with n + 1 vertices that preserves the weights in the generating

functions P
(k)
n (q) and I

(k)
n (q) i.e., the existence of �n implies P

(k)
n (q) = I

(k)
n (q).

Proof. We prove this by inductively de�ning a function �n. For the base case,

n = 0, we map the empty k-parking function to the tree with the lone vertex 0.

Suppose that �n has been de�ned for all n < m. We now de�ne �m. Let

p = (a1; a2; : : : ; am) be a k-parking function and let ! be the unique permutation

such that 1) a!(1) < a!(2) < � � � < a!(m) (i.e. (a!(1); a!(2); : : : ; a!(m)) is a non-

decreasing rearrangement of (a1; a2; : : : ; am)) and 2) if a!(i) = a!(j) and i < j then

!(i) < !(j). Suppose that s is the index such that !(s) = m and let j be the

largest index smaller than s that satis�es a!(j) = k(j � 1). De�ne

A1 = f i j ai < k(j � 1)g
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and

A2 = f i j ai > k(j � 1)g

The fact that jA1 [A2j = m� 1 is guaranteed by Lemma 6.7. De�ne p0 = (ai)i2A1
.

It is clear that p0 is a k-parking function of length j � 1 and, thus, �j�1(p
0) gives us

a rooted k-tree T1 (with labels in A1 [ f0g, by the induction hypothesis). We are

further guaranteed by the induction hypothesis that

invk(T1) = k

�
j � 1

2

�
�
X
i2A1

ai

Dealing with the rest of p, we notice that (a!(j+1)� k(j� 1) + 1; a!(j+2)� k(j�
1)+1; : : : ; a!(s)�k(j�1)+1; a!(s+1)�k(j�1); : : : ; a!(m)�k(j�1)) is a k̂-parking
function written in non-decreasing order (we know that this is in non-decreasing

order because a!(s) < a!(s+1). Setting r = s�j, we wish to re-index the last sequence
with the set A0

2 de�ned as A2nf!(t)g, where !(t) is the member of A2 [ !(j) with
rank r + 1. To do this we consider the sequence of labels that currently label

the sequence, namely (!(j + 1); !(j + 2); : : : ; !(m)). We create the new sequence

� = (!(j); !(j +1); : : : ; !(s� 1); !(s+1); : : : ; !(m)) (we removed the entry !(s),

shifted the entries !(j+1); !(j+2); : : : ; !(s�1) to the right and made !(j) the �rst

entry). For all the entries in �, let !(i)� 1 be the member of A2 [ !(j) with next

highest rank. Notice that we need not concern ourselves with what !(s)� 1 equals

since it does not occur in �. For all i � j where rank of !(i) > r+1 we replace !(i) in

� with !(i)�1. Call this new vector �0 which we suppose is (�01; �
0

2; : : : ; �
0

m�j
). We
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now re-index the sequence (a!(j+1)+ 1; a!(j+2)+1; : : : ; a!(s)+1; a!(s+1); : : : ; a!(m))

with �0. Or, we can simply de�ne a new sequence (a00
�
0

1
; a

00

�
0

2
; : : : ; a

00

�
0

m�j

) such that

a
00

�
0

1
= a!(j+1) +1; a00

�
0

2
= a!(j+2)+ 1; : : : ; a00

�
0

m�j

= a!(m)+ 1 and de�ne our k̂-parking

function to be p00 = (a00
i
)i2A02 (notice that (a!(j+1)� k(j� 1)+1; a!(j+2)� k(j� 1)+

1; : : : ; a!(s) + 1; a!(s+1); : : : ; a!(m)) is the non-decreasing rearrangement of p00). At

this point we would also like to record the number !(t) (as this is going to give us

the root of the tree that we get from p
00) and we emphasize this by writing (p00; !(t)).

Further, we note that the above process is reversible, i.e. given a k̂-parking function

indexed on some set A and a number !(t) not in A we can construct the sequence

(a!(j); a!(j+1); : : : ; a!(m)).

From Proposition 6.5 we have that �̂m�j(p
00) is a rooted k̂-tree T2 (rooted at 0

and with the rest of the labels coming from A
0

2) such that

invk(T2) = k

�
m� j + 1

2

�
�
X
i2A

0

2

a
00

i

If we are to replace the label on the root (0) with the label !(t) we obtain a new
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tree (T 0

2; !(t)) such that

invk(T
0

2; !(t)) = invk(T2) + r

= k

�
m� j + 1

2

�
�
X
i2A

0

2

a
00

i
+ r

= k

 
m�jX
i=1

i

!
�

sX
i=j+1

(ai � k(j � 1) + 1) �
mX

i=s+1

(ai � k(j � 1)) + r

= k

 
m�jX
i=1

i

!
�
X
i2A2

(ai � k(j � 1))

= k

 
m�1X
i=j

i

!
�
X
i2A2

ai

= k

 
m�1X
i=j�1

i

!
�

X
i2A2[f!(j)g

ai

We now create the �nal tree T by attaching the vertex 0 of T1 to the root !(t) of

T2. We see that invk(T ) equals

invk(T1) + invk(T
0

2; !(j)) = k

�
j � 1

2

�
�
X
i2A1

ai + k

 
m�1X
i=j�1

i

!
�

X
i2A2[f!(j)g

ai

= k

�
m

2

�
�

mX
i=1

ai

and since the above is reversible, this completes the proof. 2

Instead of explicitly displaying the inverse we simply work out an example (using

the notation in the proof) of both the forward map and the inverse.

Example 6.13 Let k = 4 and p = (a1; a2; : : : ; an) = (0; 5; 12; 3; 19; 13; 16; 13). In

this case, ! = 14236975 and, hence, (a!(1); a!(2); : : : ; a!(n)) is (0; 3; 5; 12; 13; 13; 16; 19)
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and s = 6 (where s in the proof is de�ned as !(s) = n. Since the largest j less

than s such that a!(j) = k(j � 1) is j = 4 we have that p splits up into the

two sequences p0 = (0; 5; 3) indexed by the set A1 = (1; 2; 4) and the sequence

(19; 13; 16; 13) indexed by the set A2 = (5; 6; 7; 8). !(j) = !(4) = 3 singles out

the entry a3 = 12. Applying induction to p0 gives us the tree T1 in Figure 6.5.

Dealing with the rest of p, r = s � j = 8 � 4 = 2 and the member of A2 [ f!(j)g

0

2

14

0 3

0

Figure 6.5: The tree T1 in Example 6.13.

of rank r + 1 = 3 is 6, which we called !(t) in the proof. The sequence of leftover

labels A2 [ f!(j)g = (!(j); !(j + 1); : : : ; !(n)) = (3; 6; 8; 7; 5) and the �rst step

of our re-indexing gives us � = (3; 6; 7; 5) and �nally we have �0 = (3; 7; 8; 5) with

!(t) = 6. Hence, we obtain from �
0 the sequence (a003; a

00

7; a
00

8; a
00

5) = (13� k(j � 1) +

1; 13 � k(j � 1) + 1; 16 � k(j � 1); 19 � k(j � 1)) = (2; 2; 4; 7) making a k̂-parking

function p
00 = (2; 7; 2; 4) indexed by (3; 5; 7; 8). From Proposition 6.5 we get the

tree T2 from p
00 given in Figure 6.6. Finally, the proof says to replace the root in
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0

3

3

5

8

7

0

2

2

Figure 6.6: The tree T2 in Example 6.13.

the tree T2 with the label !(t) = 6 and attach the vertex 6 to the vertex 0 of T1.

The �nal tree T is in Figure 6.7. Indeed,

k

�
n

2

�
�

8X
i=1

ai = 112 � 81 = 31

and

invK(T ) = 31

To reverse the process, suppose that we are given the tree T in Figure 6.7. We �nd

the largest label, 8 in our case, in the tree and we remove the edge f0; 6g from the

tree (f0; 6g being the edge emerging from 0 on the unique path from 0 to 8). We

obtain two trees T1 and (T 0

2; 6). De�ne A1 and A2 to be the vertex sets of T1 and
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0

00

0

0

1

2

2

2

3 3

7

8

3

5

4

6

Figure 6.7: The image of p under �8 in Example 6.13.

(T 0

2; 6), respectively. By the induction hypothesis, there exists a k-parking function

p
0 such that �j�1(p

0) = T1. We index p0 with the elements of A1 and in this case we

get

p
0 = (a1; a2; a4) = (0; 5; 3) (6.19)

For (T 0

2; 6) we replace the root label 6 with the label 0, obtaining a tree T2. From

Proposition 6.5 we get a k̂-parking function indexed by A2nf6g, namely p
00 =

(a003; a
00

5; a
00

7; a
00

8) = (2; 7; 2; 4). We must now subtract 1 from the 2 smallest members

of p00 (the number 2 is obtained from the fact that 2 is the rank of the root 6 in the



CHAPTER 6. GENERALIZATIONS OF PARKING FUNCTIONS 114

set A2 minus 1). This gives us the sequence �p00 = (a003�1; a005; a007�1; a008) = (1; 7; 1; 4).

Next, we wish to re-index p00. We do this by reversing the relabelling done in the

above proof. We let �0 = (3; 7; 8; 5) (the order of the labels when we write p00 in

non-decreasing order). The rank of 6 in the set A2 is 3, implying that we per-

form the operation 	1 on every label in (3; 7; 8; 5) of rank 3 or higher (where 	1
is the obvious inverse of the operation �1 in the proof) and obtain the sequence

� = (3; 6; 7; 5). We now insert the highest label (8) into the 2nd spot of �, move

the label in spot 2 one to the left and remove the label 3 from the sequence. Doing

this gives us the sequence (6; 8; 7; 5). Now we add k(j � 1) = 12 to each member of

�p00 above (where j is the cardinality of A1). De�ne the new sequence

(a6; a8; a7; a5) = (13; 13; 16; 19) (6.20)

Set a3 = k(j � 1) = 12 (where 3 is the label we removed from �). Finally,

we combine (6.19) and (6.20) with a3 = 12 and we get p = (a1; a2; : : : ; an) =

(0; 5; 12; 3; 19; 13; 16; 13), the k-parking function we started with. 2

Notes and References

x6.1 The bijection involving noncrossing partitions is due to R. Stanley and can

be found in [23, Thm. 3.1]. There Stanley gives the proof for k = 1, and the

extension to arbitrary k was essentially routine. Concerning rooted k̂-trees, we

note that they are not mentioned anywhere in the current literature and they were

basically introduced because of their use in Theorem 6.12. As we mentioned earlier,
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k̂-parking functions are a routine extension of parking functions and aren't nearly

as interesting or complex as k-parking functions.

x6.2 Most of the material in this section can be found in Stanley [25] and Yan [27].

The proof of Theorem 6.8 is in [27] (although there the generating function is for

\complements of parking functions") from which it was just a matter of working

with generating functions to obtain the number of k-parking functions, given in

Proposition 6.9. Theorem 6.11 can be found in both [25][27]. It is this author's

opinion that the treatment of Theorem 6.11 in [27] is slightly more accessible than

in [25]. Theorem 6.12 was given by the author of this thesis, with the help of I.P.

Goulden.

Although little was made of the generating function C
(k)
n (q), it was useful in

the preceding section because it satis�ed the two recursions given in Theorem 6.11.

What is more remarkable is that in [27], Yan gives yet another interesting recursion

satis�es by C
(k)
n (q) (it is given without proof).
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