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Summary

In cluster-randomized trials, intervention effects are often formulated by specifying marginal
models, fitting them under a working independence assumption, and using robust variance esti-
mates to address the association in the responses within clusters. We develop sample size criteria
within this framework, with analyses based on semiparametric Cox regression models fitted with
event times subject to right censoring. At the design stage, copula models are specified to en-
able derivation of the asymptotic variance of estimators from a marginal Cox regression model
and to compute the number of clusters necessary to satisfy power requirements. Simulation stud-
ies demonstrate the validity of the sample size formula in finite samples for a range of cluster
sizes, censoring rates and degrees of within-cluster association among event times. The power
and relative efficiency implications of copula misspecification is studied, as well as the effect of
within-cluster dependence in the censoring times. Sample size criteria and other design issues are
also addressed for the setting where the event status is only ascertained at periodic assessments
and times are interval censored.
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1 INTRODUCTION

Cluster randomization is employed in clinical trials when it is appropriate on ethical [1], practical [2],
or contextual [3] grounds to assign groups of individuals (e.g. families, schools, hospitals, or com-
munities) to receive one of two or more interventions. In studies aiming to reduce the spread of
infectious disease, for example, prevention strategies are most naturally administered to large groups
of individuals (e.g. municipalities), and the resulting evidence of impact thereby reflects direct effects
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(susceptibility), indirect effects (infectiousness of others), and the effect of herd immunity [4]. Cluster
randomization also offers a way of minimizing contamination across treatment groups and can often
enhance compliance [5, 6]. In some fields of research, the units providing the response are paired or
otherwise grouped, as is the case in ophthalmology or audiology. In such settings, interventions that
are administered and act through the blood stream (e.g. medications) necessitate randomizing indi-
viduals, and the units providing the response are clustered within individuals. The many advantages
of cluster randomization have led to its increased use in recent years in diverse areas of research in-
cluding health promotion [7], education for disease management [8], clinical research [9], and health
policy and program evaluation [10]. Donner and Klar [11] give a thorough account of the practical
and methodological issues in the conduct of cluster-randomized trials.

While much of the methodological work on cluster-randomized trials to date has been for con-
tinuous or binary responses, in many settings interest lies in evaluating the effect of an intervention
in delaying or preventing the occurrence of an event. In patients with insulin-dependent diabetes
mellitus, for example, interest may lie in the effect of medical therapies on the time to severe vision
loss in each eye [12]; such times are correlated within individuals due to shared exposure to blood
sugar levels, blood pressures, and other systemic features. Chronic otitis media is a condition aris-
ing in children characterized by poor drainage of fluid from the inner ear. A common intervention
involves the surgical insertion of a ventilating tube and interest then may lie in assessing an experi-
mental post-surgery medical therapy designed to prolong the function of the ventilating tubes. The
child is then the unit of randomization [13, 14], and the times to failure of the tubes in the left and
right ears would naturally be correlated. Settings involving time to event responses with larger cluster
sizes include studies of fall prevention in retirement homes [15], studies of primary care practices and
survival in patients with depression [16], and studies of pediatric clinics and time to discontinuation
of breast-feeding [17].

Cox regression models involving random effects, or frailty terms, are widely used for analysing
correlated time to event data [18, 19]. In this framework failure times are typically considered to
be independent conditional on a latent variable representing unexplained differences between clus-
ters, and the association among responses within clusters arises by marginalizing over the random
effects. There are several important limitations of this approach for the analysis of event times in
cluster-randomized trials. First, specification of a proportional hazard model given cluster-level ran-
dom effects is unappealing when the treatment indicator is fixed at the cluster level [20, 21]. Second,
regression coefficients reflect the multiplicative effects of the intervention, conditional on the latent
variable; the proportional hazards assumption does not hold in the marginal model obtained by inte-
grating out the random effects, making the interpretation of the intervention effect challenging. Third,
while the dependence within clusters is accommodated in the marginal joint distribution, the associ-
ation is not modeled in an appealing way. Simple measures of within-cluster dependence do not in
general arise from the random effects formulation with censored failure time data, so it is difficult to
extract useful information for the design of future similar trials.

Methods involving intervention effects specified on the basis of marginal Cox models feature
none of these limitations and are therefore much more appealing. For large numbers of small groups
of correlated failure time, Lee et al. [12] developed very useful methods for robust inference about
regression coefficients in marginal Cox models fitted under a “working independence” assumption,
similar in spirit to the working independence assumption adopted when clustered categorical data are
analysed via generalized estimating equations [22] or when multivariate failure time data are analysed
by the marginal approach of Wei et al. [23, 24]. Robust “sandwich” variance estimates provided by
Lee et al. [12] ensure valid inference when there is within-cluster dependence in event times. The
simple marginal interpretation of intervention effects and use of robust variance estimation make this
a useful and simple framework for the analysis of event times in cluster-randomized trials.

A considerable amount of attention has been directed at the development of sample size formu-
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lae for the cluster-randomized trials with continuous and discrete outcomes [5, 25–28], but relatively
little work has been done for trials involving censored event times; in what follows, the term sample
size is used to mean the number of clusters. Jahn-Eimermacher et al. [29] developed sample size
criteria on the basis of a frailty model for the within-cluster dependence, but as mentioned earlier
the frailty approach is unappealing for use in cluster-randomized trials. Manatunga and Chen [14]
derived sample size formula for bivariate event times under a parametric proportional hazards model
with exponential margins. Jung [30] proposed a simulation-based sample size calculation procedure
involving a weighted rank test for clustered survival data, which allows variable cluster size. Moer-
beek [31] studied the effect of sample size on precision of parameter estimates and statistical power
for clustered randomized trials with discrete event times based on a generalized linear mixed model.
Xie and Waksman [32] adapted the usual sample size criteria for log-rank tests by the introduction
of a design effect involving the average cluster size and the intraclass correlation coefficient of the
censoring (i.e., status) indicator of the response times. While the formula is relatively simple, the
sample size criterion is based on an approximation of the asymptotic distribution of regression coef-
ficients. More importantly, because the intraclass correlation coefficient in their design effect is for
the censoring indicators rather than the underlying failure times, its magnitude is driven by both the
dependence in the failure times within clusters and the within-cluster dependence in the censoring
times. As a result, the event times may be independent within clusters, for example, but the censoring
indicators may be highly correlated within clusters if the censoring times are dependent. Moreover,
the correlation in the censoring indicators depends on both the administrative censoring time and the
distribution of the random censoring time, so any plans to modify a study by extending follow-up or
attempting to reduce loss to follow-up will render the measure of within-cluster dependence invalid.

We derive sample size criteria for cluster-randomized trials with censored time to event responses
when the intervention effect is specified through a marginal semiparametric proportional hazards
model fitted under a working independence assumption, and robust variance estimates are used as
in Lee et al. [12]. Of course at the design stage a fully parametric model is required so a Weibull
proportional hazard model is adopted to accommodate trend in the marginal hazard. Within-cluster
dependence is conveniently modeled using copula functions [33, 34] as intervention effects may be
specified in terms of the marginal distributions and within-cluster dependence is modeled by a sep-
arate association parameter. The resulting joint model is used to evaluate the components of the
robust variance formula [12] for a variety of practical settings, and our approach does not involve any
approximations apart from the usual ones used in large sample theory. We also study the effect of
copula misspecification and the impact of within-cluster dependence in the random right censoring
times. Sample size criteria are also developed for cluster-randomized trials with interval-censored
event times that arise when the events are only detectable upon periodic inspection (e.g., radiographic
examination, based on blood tests, urinalysis, etc.).

The remainder of this paper is organized as follows. In Section 2 we define notation and review
copula models and the robust marginal method of Lee et al. [12]. The asymptotic distribution of the
test statistic is then derived to facilitate the development of sample size criteria, and simulation studies
are carried out to validate the derivations. In Section 3 we explore the impact of misspecification of the
copula function and the impact of within-cluster dependence in the censoring times. Design criteria
for cluster-randomized trials with type II interval-censored failure times are developed in Section 4.
Section 5 contains an illustrative example, and concluding remarks and topics for future research are
given in Section 6.
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2 SAMPLE SIZE FOR TRIALS WITH CLUSTERED EVENT TIMES SUBJECT TO

RIGHT-CENSORING

2.1 NOTATION AND ROBUST MARGINAL METHODS

We consider the setting in which n clusters, each comprised of J individuals, are randomly assigned to
receive either an experimental or standard intervention. We let Tij denote an event time of interest for
individual j in cluster i, j = 1, . . . , J , i = 1, . . . , n, and assume interest lies in examining the effect of
the experimental intervention by fitting a Cox regression model. Let Zi be a binary covariate where
Zi = 1 indicates that cluster i is assigned to the experimental intervention and Zi = 0 otherwise;
we let P (Zi = 1) = p. It is possible to generalize the methods that follow to accommodate a p × 1
cluster-level covariate vector as we discuss in Section 6.

Suppose the plan is to observe individuals over the interval (0, C†] where C† is an administrative
censoring time, and let C∗ij denote a random (possibly latent) time of withdrawal from the study for
individual j in cluster i with survivor function G∗(s) = P (C∗ij ≥ s). Then Cij = min(C∗ij, C

†)

denotes the resultant right-censoring time. We then let Xij = min(Tij, Cij), Y †ij(t) = I(t ≤ Tij),
Yij(t) = I(t ≤ Cij), and Ȳij(t) = Yij(t)Y

†
ij(t) where the latter indicates individual j in cluster i is

under observation and at risk of the event at time t; thus here, and in what follows, quantities with
a vinculum (overbar) are observable in the presence of right censoring. Let Nij(t) = I(Tij ≤ t)
indicate that individual j in cluster i experienced the event at or before time t, and dNij(t) = I(Tij =
t). When viewed as a random function of time, {Nij(s), 0 < s} is a right-continuous stochastic
process. If dN̄ij(t) = Ȳij(t)dNij(t) and N̄ij(t) =

∫ t
0
dN̄ij(s), then {N̄ij(s), 0 < s} is the observed

counting process for individual j in cluster i. Finally we let N̄i(t) = (N̄i1(t), . . . , N̄iJ(t))′, Ȳi(t) =
(Ȳi1(t), . . . , ȲiJ(t))′ and let {Ȳi(·), N̄i(·), Zi} denote the data from cluster i.

Marginal proportional hazard models are based on the assumption that given Zi, Tij has a hazard
function of the form

λij(t|Zi) = λ0(t;α) exp(Ziβ) (2.1)

where λ0(t;α) is a baseline hazard function indexed by a vector of parameters α, and β is a scalar
regression coefficient; let θ = (α′, β)′. The marginal Cox regression model is obtained by leaving
λ0(t;α) of an unspecified form, making it a semiparametric model.

Lee et al. [12] considered the semiparametric Cox model and proposed estimation of β under a
working independence assumption by which observations in each cluster are treated as independent
of one another. This gives a partial score function for β, written as U(β) =

∑n
i=1 Ui(β), where

Ui(β) =
J∑
j=1

∫ ∞
0

{
Zi −

S1(t; β)

S0(t; β)

}
dN̄ij(t) , (2.2)

with Sr(t; β) =
∑J

j=1 Srj(t; β), Srj(t; β) = n−1
∑n

i=1 Ȳij(t)Z
r
i exp(Ziβ), r = 0, 1, Z0

i = 1 and
Z1
i = Zi; the root of U(β) = 0 is β̂, the estimate.

If the marginal Cox regression model is correctly specified, n−1/2U(β) is asymptotically normally
distributed with mean zero and variance [12]

B = E[U2
i (β)] , (2.3)

estimated by

B̂ =
1

n

n∑
i=1

U2
i (β)

∣∣∣∣
β=β̂

.
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Lee et al. [12] showed that β̂ is consistent with n1/2(β̂ − β)
D−→ N(0,Γ) asymptotically, where

Γ = B/A2 and

A = −E[∂Ui(β)/∂β] . (2.4)

Note that (2.4) can be consistently estimated by

Â = − 1

n

n∑
i=1

∂Ui(β)/∂β

∣∣∣∣
β=β̂

,

and so robust inferences are based on Γ̂ = B̂/Â2 for a given sample.

2.2 SAMPLE SIZE CALCULATIONS VIA COPULA MODELS FOR CLUSTERED FAILURE TIMES

While the robust analyses based on marginal Cox models in the previous section can be carried out
once data are collected, model assumptions are required to derive the sample size (number of clusters)
on the basis of large sample theory. In the context of clustered event time data, copula functions offer
a convenient way of constructing joint distributions with proportional marginal hazards [33, 34]. In
what follows, we use J to denote the dimension of the multivariate vector to coincide with the size of
the clusters in the previous section.

A copula function in J dimensions is a multivariate distribution on [0, 1]J whose margins are
uniform over [0, 1] [34]. Thus, for a J−dimensional uniform random vector U = (U1, . . . , UJ)′, the
joint probability function

C(u1, . . . , uJ ;φ) = P (U1 ≤ u1, . . . , UJ ≤ uJ ;φ) ,

defines a copula indexed by the parameter φ. The family of Archimedean copulas [35] can be written
as

C(u1, . . . , uJ ;φ) = H−1 (H(u1;φ) + · · ·+H(uJ ;φ);φ) ,

where H : [0, 1] → [0,∞) is a continuous, strictly decreasing and convex generator function satis-
fying H(1;φ) = 0. Kendall’s τ , a widely used measure of association with event time data, can be
written as

τ = 1 + 4

∫ 1

0

H(u;φ)

H′(u;φ)
du

for Archimedean copulas.
If Ti = (Ti1, . . . , TiJ)′ is a J × 1 vector of failure times, a joint model for Ti|Zi is obtained via the

probability integral transforms Uij = F(Tij|Zi; θ), j = 1, . . . , J , and linking all marginal survivor
functions via the copula as

F(ti|Zi;ψ) = P (Ti1 > ti1, . . . , TiJ > tiJ |Zi;ψ) = C(F(ti1|Zi; θ), . . . ,F(tiJ |Zi; θ);φ) , (2.5)

where F(·|Zi; θ) is the survivor function for Tij given the covariate Zi and ψ = (θ′, φ)′. Because
Kendall’s τ is invariant to monotonic transformations, it also measures the association between the
event times defined by the conditional (given Zi) probability integral transform [35].

The Clayton copula is widely used in survival analysis and has generator function H(u;φ) =
φ−1(u−φ − 1), and then yields a joint survivor function for Ti|Zi of the form

F(ti|Zi;ψ) =
(
F(ti1|Zi; θ)−φ + · · ·+ F(tiJ |Zi; θ)−φ − (J − 1)

)−1/φ
. (2.6)
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The Frank copula with generatorH(u;φ) = − log((exp(−φu)− 1)/(exp(−φ)− 1)) and the Gumbel
copula with generator H(u;φ) = (− log u)φ are two other members of the Archimedean family that
we consider shortly.

Returning to the issue of sample size determination, we consider the null and alternative hypothe-
sesH0 : β = β0 = 0 andHA : β 6= β0, respectively, and let βA denotes the clinically important effect
of interest. Under a two-sided test at the γ1 level of significance, the number of clusters required to
ensure 1− γ2 power to reject H0 at βA can be determined on the basis of a Wald test. The asymptotic
robust variance of this Wald statistic involves the variance of the score statistic B and the information
A. To derive the expressions for these two quantities (2.3) and (2.4), we evaluate their asymptotic
expressions under a fully specified parametric model at the design stage. The variance of the score
statistic also depends on the within-cluster association of failure times and the form of the joint dis-
tribution is implied by the copula function (2.5). Explicit expressions for (2.3) and (2.4) are given in
(A.9) and (A.10) of Appendix A. Note that (A.9) is derived for a more general case, in which cen-
soring times are also correlated within clusters, but if we further assume independent within-cluster
censoring times, then (A.13) can be used instead. Let Γ = B/A2 denote the asymptotic variance of
the estimator β̂, then the required sample size (number of clusters) is

n ≥
{
zγ1/2
√

Γ0 + zγ2
√

ΓA
βA

}2

(2.7)

where zu is the 100(1 − u)% percentile of the standard normal distribution and Γ0 and ΓA are the
asymptotic variances of β̂ evaluated under the null and alternative hypotheses.

2.3 EMPIRICAL VALIDATION OF SAMPLE SIZE FORMULA UNDER CORRECT MODEL SPECIFI-
CATION

We consider a two-arm cluster-randomized trial with equal allocation probabilities where the binary
treatment indicator takes the value Zi = 1 if cluster i is randomized to the experimental intervention
and Zi = 0 otherwise; and P (Zi = 1) = P (Zi = 0) = 0.5. We assume Tij|Zi has a propor-
tional hazards structure as in (2.1), where the cumulative baseline hazard is of a Weibull form with
Λ0(t;α) =

∫ t
0
λ0(s;α)ds = (λ0t)

κ and α = (λ0, κ)′. The parameter κ accommodates a decreasing
(κ < 1), constant (κ = 1) or increasing (κ > 1) hazard; here we focus primarily on the case with
κ = 0.75 to reflect modest decreasing trend in risk. If the plan is to observe individuals over(0, C†],
without loss of generality we let C† = 1 denote the administrative censoring time. The parameter
λ0 is then chosen as the solution to P (Tij > C†|Zi = 0) = pa to give the desired administrative
censoring rate for the control group, where pa = 0.2. A random censoring time for the jth individual
in cluster i is denoted by C∗ij and assumed to be exponentially distributed with rate ρ; we assume here
that Cij ⊥ Cik|Zi so censoring is independent within clusters. The effective right-censoring time is
then Cij = min(C∗ij, C

†), and the value ρ that solves P (Tij > Cij|Zi = 0) = p0 gives p0, the net
censoring rate in the control arm; we consider p0 = 0.2 to correspond to the case of strictly admin-
istrative censoring and p0 = 0.5 to correspond to the case of 30% random and 20% administrative
censoring.

Suppose the within-cluster association in the failure time is induced by the Clayton copula with pa-
rameter φ, so the joint survivor function for Ti = (Ti1, . . . , TiJ)

′ is given by (2.6), where J is the clus-
ter size. The copula parameter is chosen to give Kendall’s τ of 0.05, 0.1, and 0.25 for small, mild and
moderate within-cluster associations, respectively. We consider cluster sizes of J = 2, 5, 20, and 100
that represent from small to large cluster sizes. For each parameter combination, we compute the re-
quired number of clusters (n) on the basis of (2.7) to give power 1− γ2 = 0.8 using a two-sided test
with a type I error rate γ1 = 0.05. We then generate the corresponding clustered event times and (inde-
pendent) censoring times, fit the marginal Cox model, and obtain the robust variance estimate derived
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by Lee et al. [12] to test the null hypothesis of no treatment effect. We report empirical standard error
(ESE) and average robust standard error (ASE) for β̂, empirical rejection rate (REJ%) defined as the
percentage of samples in which the null hypothesis H0 : β = 0 is rejected by a two-sided Wald test
at the nominal 5% level, and the empirical coverage probability (ECP%) of nominal 95% confidence
intervals for β (the proportion of simulated samples for which the nominal 95% confidence interval
contained the true value of β). Because the ECP% is the complement of the REJ% when β = 0, we
do not report it in this case; see Table 1.

For each parameter configuration we generate 2000 samples, so the half-width of a 95% confi-
dence interval for the type I error rate would be approximately 1.96(0.05×0.95/2000)1/2 = 0.01, and
one could expect the REJ% to fall outside the range [0.04, 0.06] in one out of 20 settings by chance;
by similar arguments, one would expect the ECP% to fall within the range 94 and 96% 19 times out of
20. If the nominal power 0.80 is correct, then the empirical power would be expected to fall outside
the range [0.78, 0.82] for one out of every 20 configurations. From Table 1, it is apparent that the
REJ% under β = 0 are within the acceptable range for most cases. Under the alternative hypothesis,
the empirical coverage probabilities are within the acceptable range of 94-96%, and the REJ% are
broadly compatible with the nominal level. All of these findings support the validity of the derived
sample size formula. Similar results are seen when the baseline hazard is increasing (κ = 1.25) or
constant (κ = 1.0); see Section S2 of the Supporting information.

3 ASYMPTOTIC CALCULATIONS INVESTIGATING DESIGN ROBUSTNESS AND

RELATIVE EFFICIENCY

3.1 ROBUSTNESS OF POWER TO MISSPECIFICATION OF THE COPULA FUNCTION

Choosing a suitable copula at the design stage is challenging, so here we explore the sensitivity of
study power to misspecified copula functions. We consider the same parameter configurations as in
Section 2, where κ = 0.75 and the administrative censoring rate is pa = 0.2. The sample size is
estimated under the Clayton copula with Kendall’s τ = 0.1 and 0.25 with βA = log 0.8. Under
the derived number of clusters, we construct the corresponding power curves under the Frank or
Gumbel copula functions with the same value of Kendall’s τ . Figure 1 shows these power curves for
different copula functions for J = 20 under different net censoring rates (p0 = 0.2, 0.5 and 0.7) in the
control arm. When the censoring rate is mild and due strictly to administrative censoring (p0 = 0.2),
misspecification of the copula function impacts power, but use of the Clayton copula ensures power
is maintained under the Frank or Gumbel copula functions. When the net censoring rate increases
to 50%, the impact of copula misspecification is negligible, however, when the net censoring rate
increases to 70%, the impact on power is again appreciable; in this case, the Clayton copula leads
to samples sizes which are too small. These findings suggest that the misspecification of copula
functions can have significant impact on study power and the impact depends on the censoring rate.
The findings are broadly similar for cluster sizes of J = 2, 5 and 100.

To examine the effect of copula misspecification more fully we next consider the asymptotic
relative efficiencies of the estimators through the functions

AREF :C =
asvarF (β̂)

asvarC(β̂)
, AREG:C =

asvarG(β̂)

asvarC(β̂)
, and AREF :G =

asvarF (β̂)

asvarG(β̂)
, (3.1)

where asvar() denotes an asymptotic variance and ‘C’, ‘F’, and ‘G’ denote the Clayton, Frank and
Gumbel copulas, respectively. We set κ = 0.75 and β = log 0.8 and set the control administrative
censoring rate to pa = 0.2 at C† = 1; again λ0 is found to satisfy P (Tij > C†|Zij = 0) = pa.
The random censoring times are assumed to be independently exponentially distributed with rate ρ,
which is selected to ensure a net censoring rate for the control arm through the constraint P (Tij >
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Figure 1: Power curves for different copula functions when sample size is estimated on the basis of
the the Clayton copula with τ = 0.10 (left column) and τ = 0.25 (right column) under 20% (top row),
50% (middle row) and 70% (bottom row) net censoring for the control arm; κ = 0.75, βA = log 0.8,
pa = 0.2, J = 20.
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Cij|Zi = 0) = p0, where p0 ranges from 0.2 to 0.8. Figure 2 displays the contour plots of the
asymptotic relative efficiencies in (3.1) as a function of the degree of within-cluster association in the
event times (Kendall’s τ ) and the net censoring rate (p0) for both J = 20 (left panels) and J = 100
(right panels); we restrict attention to values of Kendall’s τ ranging from 0 to 0.4 to cover realistic
scenarios. For J = 20, if the net censoring rate is less than 40%, the Gumbel copula leads to a more
efficient estimator, followed by the Frank copula and then the Clayton copula; the Clayton copula
should therefore be used for the sample size calculations to ensure adequate power among this set of
copulas. If the net censoring rate in this setting is higher than 40-50%, the Gumbel copula should be
adopted at the design stage since it yields the estimator with the greater variance. The trend is broadly
similar for J = 100.
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Figure 2: Contour plots of the asymptotic relative efficiencies in (3.1) for estimators defined as the
solution to (2.2) when clustered failure times are generated on the basis of different copula functions;
κ = 0.75, β = log 0.8, pa = 0.2.

Both Figure 1 and Figure 2 show that the proposed formula for calculating required sample size
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is sensitive to both the copula function and censoring rate. A simple pragmatic approach to deal with
this sensitivity is to consider a class of copula functions and a range of administrative and random
censoring rates. The required sample sizes can be computed for each configuration by (2.7), and the
largest sample size can then be chosen to ensure the pre-specified power requirements are met for any
copula model and censoring pattern among those considered. Of course there may also be uncertainty
in the value of Kendall’s τ , but in this case the largest plausible value of τ will lead to the largest
sample size within a given copula family and at a given censoring rate.

3.2 IMPACT OF WITHIN-CLUSTER DEPENDENCE IN THE RANDOM CENSORING TIMES

Although the assumption of independent censoring times within clusters is commonly, the factors
inducing the association in the failure times within clusters may also induce an association in the
censoring times. Here we examine the impact of within-cluster dependence in the censoring times
on study power. We consider a trial designed to have 80% power to detect β = log 0.8 on the basis
of a two-sided Wald test at the 5% significance level under the assumption that random censoring
times are independent within clusters and a Clayton copula model is used for the response. In this
case, the minimal required sample size is estimated under the within-cluster independent censoring
assumption (2.7) in which (A.13) is used to compute B. We then calculate the theoretical power when
the within-cluster censoring times are correlated, and (A.9) is used to compute B. We let κ = 0.75,
pa = 0.2, and consider J = 2 and J = 20 with net censoring rates ranging from 0.2 to 0.8. The
Clayton, Frank and Gumbel copula functions are considered for jointly modeling the distribution of
the censoring times within clusters. While it is more general to allow different degrees of within-
cluster associations for the failure and censoring times, for parsimony we restrict attention to the case
that the value of Kendall’s τ is the same for the failure times (τ ) and censoring times (τc).

Figure 3 suggests that the naive assumption of within-cluster independence in the censoring times
can lead to sample sizes which are too small and hence studies with inadequate power. As the net
censoring rate increases (and hence the proportion of event times censored by the random censoring
time increases) this effect becomes more pronounced. For example, for J = 20 and τ = 0.25, the
power is 0.8 for all the copula functions when p0 = 0.2 as in this case there is no dependent random
censoring time. However, when the net censoring rate increases to 80%, the power decreases to
0.756, 0.765 and 0.766 under the Clayton, Frank and Gumbel copula models for the censoring times.
Further, if we compare the left panel to the right panels of Figure 3, we find that when the association
in the censoring times increases, the power implications of ignoring the within-cluster dependence
become more serious for all copula functions. The power is also more seriously impacted with larger
cluster sizes; compare the top panels to the respective bottom panels of Figure 3.

A reviewer suggested examining the effect of misspecifying the shape of the baseline hazard
function in the marginal event time distribution in the setting where the administrative and random
censoring rates are correct; this ensures that the expected number of events is comparable in the
assumed and true parameter settings but would mean, naturally, that the times of the events would be
misspecified. The details on how this was investigated, along with the associated findings, are given
in Section S3 of the Supporting information. We find that there is negligible impact on power of
misspecifying the shape parameter in this setting when there is only administrative censoring. When
the event times are subject to random censoring, there can be an increase or decrease in the power
compared to the nominal level, and the extent of the effect depends on the copula function modeling
the within-cluster dependence; this is not surprising as it is well known that the different copula
functions model the association between event times differently over the range of possible values.
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Figure 3: Power implications of within-cluster association in the random censoring times under joint
censoring models induced by different copula functions where the within-cluster association in the
failure and censoring times are constrained to be the same (τ = τc); the original sample size is com-
puted on the basis of a Clayton copula model for the failure times and the assumption of independent
censoring times; κ = 0.75, βA = log 0.8, p0 = 0.2.
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4 SAMPLE SIZE CALCULATIONS FOR TRIALS WITH CLUSTERED INTERVAL-
CENSORED EVENT TIMES

4.1 ESTIMATING EQUATIONS AND SAMPLE SIZE CRITERIA

Interval-censored event times arise when it is only possible to determine whether events have occurred
at periodic assessments [36]. In rheumatology studies, for example, interest lies in the time to the
development of joint damage, but the extent of joint damage is only possible to determine when
patients undergo radiographic examination [37]. In this case the time of joint damage will only be
known to fall between the time of the first radiograph showing evidence of damage and the time of the
preceding radiographic examination. Other examples include trials aiming to evaluate osteoporosis
treatments for the prevention of asymptomatic fractures, studies of the development of new metastatic
lesions, and studies in nephrology on the development of kidney stones.

We assume again that Tij|Zi follows a proportional hazards model (2.1) with a q × 1 parameter
α indexing the baseline hazard and β the regression parameter of interest. The marginal survivor
function F(t|Zi; θ) = P (Tij ≥ t|Zi; θ) is then indexed by a (q + 1) × 1 parameter θ = (α′, β)′.
In the present setting, we consider a cluster-randomized trial in which the plan is to observe each
individual at R prespecified assessment times a1, . . . , aR; we let a0 = 0 and aR+1 = ∞. Under this
observation scheme, we observe Yijr = I(ar−1 < Tij ≤ ar), r = 1, . . . , R + 1. The response data
provided by individual j in cluster i is Yij = (Yij1, . . . , YijR)′, where Yij,R+1 = 1 −

∑R
r=1 Yijr, and

Yi = (Y ′i1, . . . , Y
′
iJ)′ contains all response data from cluster i, i = 1, . . . , n. Let µij = (µij1, . . . , µijR)′,

where

µijr = E[Yijr|Zi; θ] = P (ar−1 < Tij ≤ ar|Zi; θ) = F(ar−1|Zi; θ)−F(ar|Zi; θ) , r = 1, . . . , R.

Let µi = (µ′i1, . . . , µ
′
iJ)′ denote a JR × 1 vector and Di = [∂µi/∂α

′, ∂µi/∂β] a JR × (q + 1)
matrix of associated derivatives. We consider the generalized estimating equations for θ, similar to
those of Kor et al. [38],

U(θ) =
n∑
i=1

Ui(θ) =
n∑
i=1

[
Ui(α)
Ui(β)

]
=

n∑
i=1

D′iV
−1
i (Yi − µi) . (4.1)

where Vi is a JR × JR working covariance matrix. A working independence assumption is par-
ticularly convenient in this context, and provided robust variance estimates are used at the time of
analysis, inferences can be valid when there is within-cluster dependence in the event times. In this
case Vi is block diagonal with R × R block diagonal matrices Vij = Cov(Yij, Y

′
ij|Zi), j = 1, . . . , J ,

which account for the correlation of responses at different assessment times within individuals; that
is,

Vi =

 Vi1
. . .

ViJ

 =


Cov(Yi1, Y

′
i1|Zi) 0

. . .

0 Cov(YiJ , Y
′
iJ |Zi)

 , (4.2)

and the (r, s)th entry of Vij is

Cov(Yijr, Yijs|Zi) =

{
µijr(1− µijr), r = s ;
−µijrµijs, r 6= s .

(4.3)

Note that if the marginal regression models are correctly specified, n−1/2U(θ) is asymptotically
multivariate normal with mean zero and covariance given analogously to (2.3) by

B = E[Ui(θ)Ui(θ)
′] , (4.4)
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estimated as

B̂ =
1

n

n∑
i=1

Ui(θ)U
′
i(θ)

∣∣∣∣
θ=θ̂

.

The estimator θ̂ is the root of U(θ) = 0 and is consistent for θ with n1/2(θ̂ − θ)
D−→ N(0,Γ)

asymptotically, where Γ = A−1B[A−1]′, and A = −E[∂Ui(θ)/∂θ
′]. Again the matrix A can be

consistently estimated by

Â = − 1

n

n∑
i=1

∂Ui(θ)/∂θ
′
∣∣∣∣
θ=θ̂

. (4.5)

Model assumptions are required to derive the sample size formula on the basis of the preceding
asymptotic variance formula for clustered interval-censored data. Copula functions can be used to
construct the joint distribution with any specified marginal properties. Consider a cluster-randomized
trial in which the treatment is randomly allocated to clusters. Suppose we aim to test whether the
treatment has an effect on the time to a certain event. The null hypothesis is H0 : β = β0 = 0, and
the alternative hypothesis is HA : β 6= β0, and let βA denote the clinically important effect.

As in Section 2, the limiting distribution of a Wald statistic can be used to select the required
sample size (number of clusters) for a two-sided test with significance level γ1 and power 1− γ2. The
key point is to derive the formulae for A = E[−∂Ui(θ)/∂θ′] and B = E[Ui(θ)U

′
i(θ)], and hence the

form of Γ = A−1B[A−1]′, so the required sample size can be obtained on the basis of Ψ = Γq+1,q+1,
the element from the covariance matrix; the formulae are outlined in Appendix B. The resulting
sample size n necessary to detect the effect of treatment with the specified power is

n ≥
{
zγ1/2
√

Ψ0 + zγ2
√

ΨA

βA

}2

, (4.6)

where Ψ0 and ΨA are the elements of Γ computed under the null and alternative settings. At the
design stage of clinical trials, to estimate the required number of clusters, specifications of the effect
of interest βA, cluster size J , inspection times a1, . . . , aR, parametric baseline hazard function, and
especially the joint distribution for clustered event times are required.

4.2 EMPIRICAL VALIDATION OF SAMPLE SIZE FORMULA FOR CLUSTERED INTERVAL-CENSORED

EVENT TIMES

Here we examine the performance of the proposed sample size formula for clustered interval-censored
data. Consider an equal allocation cluster-randomized trial with binary treatment covariateZi, P (Zi =
1) = P (Zi = 0) = 0.5. Assume that Tij follows the proportional hazards model given by (2.1)
with Weibull baseline cumulative hazard Λ0(s) = (λ0s)

κ, where α = (log λ0, log κ)′, q = 2, and
θ = (α′, β)′, j = 1, . . . , J, i = 1, . . . , n; we consider cluster sizes of J = 2, 5, 20 and 100. Sup-
pose κ = 0.75 and choose λ0 so that P (Tij > 1|Zi = 0) = pa to give a specified administrative
censoring rate; we set pa = 0.2. Suppose the plan is to assess each individual R times over the in-
terval [0, 1] at prespecified assessment times a1, . . . , aR evenly spaced over the observation interval,
that is, ar = r/R, r = 1, . . . , R, with R = 2, 4 or 12. Let Yij = (Yij1, . . . , YijR)

′ denote the event
information provided by individual j in cluster i, where Yijr = I(ar−1 < Tij ≤ ar).

Suppose the within-cluster association in the underlying failure times is induced by the Clayton
copula with Kendall’s τ of 0.05, 0.10, and 0.25 for small, mild and moderate within-cluster associa-
tion respectively. For each parameter combination, we estimate the sample size (number of clusters)
by (4.6) given βA = log 0.8, the type I error rate γ1 = 0.05 and power 1 − γ2 = 0.8. After ob-
taining the required minimum sample size, we generate the corresponding covariate Zi and clustered
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response Yi. Parameter estimate are then obtained via the estimating equation (4.1). For each param-
eter combination, nsim = 2000 datasets are simulated and analysed to yield 2000 estimates of β and
respective robust variance estimates. The ESE, ASE, REJ% and 95% ECP% are summarized in Table
2.

The REJ% is close to the nominal type I error rate when β = 0 and close to the nominal power
when β = log 0.8, with the latter supporting the validity of the sample size formula. The empirical
biases (not shown) are all negligible, so it is not surprising that the empirical coverage probabilities
are all compatible with the nominal 95% level. As the number of assessments increases, the required
sample size is found to decrease, but the extent of this decrease from the case of R = 4 to R = 12 is
quite small, particularly when cluster sizes are large. To clearly understand the impact of the number
of assessments on the efficiency, we computed the asymptotic relative efficiency of estimators for the
marginal parameters, defined as

AREr,k =
asvar(θ̃k)

asvarr(θ̂k)
,

where asvar(θ̃k) is the asymptotic variance of θk for R = 100; this value is large enough to mimic the
case that the event times are known precisely, that is, the case of clustered right-censored event times.
The term asvarr(θ̂k) represents the asymptotic variance of θ̂k for the case R = r, corresponding to
clustered interval-censored failure time data, where k = 1, 2, 3.

Figure 4 shows the trend of asymptotic relative efficiency for estimators of the marginal param-
eters with cluster sizes of J = 2, 5, and 20, respectively. From these figures, we note that when the
number of assessments increases to R = 8, the asymptotic relative efficiencies for both λ0 and β
are close to 1 in all cases considered. This also supports the empirical findings that the number of
clusters required decreases very little when the number of assessments increases from R = 4 to 12.
Figure 4 also shows that the impact of the number of assessments is more severe for small cluster
sizes, which agrees with what we found from Table 2. As one might expect, however, the number of
assessments seriously affects the efficiency of the estimator for the trend parameter κ, so when the
entire marginal distribution is of interest, increasing the number of assessments certainly can improve
efficiency for some features of the distribution. There is of course a trade-off between the statistical
goals of precision and power and the economic and other costs. The development of optimal design
criteria which enables one to weigh the merits of increasing the number of clusters or the number of
follow-up assessments to be scheduled, subject to prespecified budgetary constraints, represents an
important area of future research.

5 ILLUSTRATIVE EXAMPLE INVOLVING TREATMENT FOR OTITIS MEDIA

Otitis media is inflammation of the inner ear which puts patients at risk of permanent damage and loss
of hearing. We illustrate the steps in trial design by considering the study discussed in Manatunga
and Chen [14] in which children from 6 months to 8 years of age with otitis media requiring surgical
insertion of tubes in the auditory canal are randomized to receive either 2 weeks of medical therapy
with prednisone and sulfamethoprim or no medical therapy (standard care). The trial is conceived on
the basis of the data in Le and Lindgren [13] in which all children except one had bilateral inflam-
mation, and so we consider clusters of size two with J = 2. In the absence of information on the
trend, we set κ = 1. The median time to failure of the inserted tube was estimated to be 7 months,
assuming 30 days per month yields λ0 = − log 0.5/210 ≈ 0.0033. As in Manatunga and Chen [14]
we set τ = 0.56 to reflect moderate to strong within-child association in the failure times. Since
follow-up is planned for 1.5 years, we set C† = 540 and anticipate an administrative censoring rate
of 17% for the control arm. To accommodate study withdrawal, we adopt an exponential model for
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Table 2: Sample size estimation and empirical properties of estimator β̂ under cluster-randomized
design for interval-censored data when the Clayton copula is used to induce the within-cluster asso-
ciation between event times; κ = 0.75, βA = log 0.8, pa = 0.2, nsim= 2000.

β = 0 β = log 0.8

J τ R n ESE ASE REJ% ESE ASE REJ% ECP%

2 0.05 2 458 0.081 0.079 5.6 0.083 0.081 79.0 94.3
4 440 0.078 0.079 4.9 0.080 0.081 81.3 95.4

12 433 0.079 0.079 5.1 0.081 0.081 79.6 95.4

0.10 2 490 0.079 0.079 4.6 0.080 0.081 78.5 95.6
4 471 0.079 0.079 5.2 0.081 0.081 78.0 94.9

12 465 0.080 0.079 5.2 0.082 0.081 79.8 94.6

0.25 2 584 0.077 0.079 4.2 0.079 0.080 78.1 95.5
4 564 0.080 0.079 5.7 0.082 0.081 80.9 94.3

12 557 0.081 0.079 5.0 0.082 0.081 80.0 94.4

5 0.05 2 222 0.076 0.079 4.8 0.078 0.080 82.2 95.7
4 214 0.080 0.079 5.6 0.082 0.081 79.5 94.3

12 212 0.079 0.079 5.7 0.081 0.080 79.6 94.4

0.10 2 272 0.080 0.079 5.4 0.082 0.080 80.0 93.9
4 265 0.080 0.079 5.4 0.081 0.080 79.1 94.4

12 262 0.080 0.079 5.5 0.082 0.080 78.6 94.9

0.25 2 422 0.079 0.079 4.8 0.079 0.080 81.1 95.1
4 413 0.079 0.079 5.3 0.079 0.080 79.7 95.3

12 409 0.081 0.079 5.1 0.082 0.080 79.5 95.0

20 0.05 2 103 0.078 0.079 4.8 0.078 0.079 80.6 95.7

4 101 0.079 0.079 5.5 0.080 0.080 78.7 94.9
12 101 0.079 0.078 5.6 0.080 0.079 78.9 95.1

0.10 2 164 0.080 0.079 4.7 0.080 0.079 78.9 94.8
4 161 0.080 0.079 4.9 0.080 0.080 80.1 94.8

12 160 0.080 0.079 5.3 0.080 0.080 78.5 95.1

0.25 2 342 0.080 0.079 5.3 0.080 0.080 79.0 95.1
4 337 0.081 0.079 5.7 0.081 0.080 79.4 94.8

12 336 0.078 0.079 4.9 0.079 0.080 79.4 95.3

100 0.05 2 72 0.080 0.078 5.1 0.082 0.079 79.7 93.5
4 71 0.078 0.079 4.6 0.078 0.079 79.7 95.5

12 71 0.076 0.078 4.6 0.077 0.078 81.3 95.3

0.10 2 135 0.080 0.079 5.4 0.080 0.079 80.1 94.9
4 134 0.080 0.079 5.5 0.080 0.079 81.5 94.9

12 133 0.081 0.079 5.7 0.081 0.079 79.4 94.8

0.25 2 320 0.079 0.080 4.9 0.079 0.080 81.0 95.4
4 317 0.079 0.079 4.3 0.079 0.080 82.0 95.4

12 316 0.081 0.079 5.4 0.082 0.080 79.2 94.3
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Figure 4: Asymptotic relative efficiency of estimators for marginal parameters for clustered interval-
censored event times as a function of the number of assessments, degree of dependence and copula
function.
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loss to follow-up to give a net rate of censoring in the control arm of 40% or 60%. Note that this
setting is slightly different than the setting discussed in Section 3 where different individuals within
each cluster had different censoring times; here the clusters are defined by children and the times to
failure of the left and right tubes would be censored at a common time. The formula in Appendix A
can be easily modified to address this by defining G̃(·) as the survival distribution for the cluster-level
censoring time and replacing G(s, t) by G̃(max(s, t)) in (A.9). Under Clayton, Frank and Gumbel
copulas, we compute the number of children required to randomize to ensure 80% power to detect a
30, 40 or 50% reduction in the marginal hazard for failure based on a two-sided test at the 5% level.
The results displayed in Table 3 provide a simple illustration of how the most conservative copula
depends on the rate of censoring. When the net censoring is expected to be 40%, the Clayton copula
yields the largest sample size, but when it is 60%, the Frank copula yields the largest sample sizes.

Table 3: Number of clusters (children) required for otitis media study under Clayton, Frank and
Gumbel copulas for different clinically important treatment effects and net censoring rates.

exp(β) = 0.7 exp(β) = 0.6 exp(β) = 0.5

Censoring % Clayton Frank Gumbel Clayton Frank Gumbel Clayton Frank Gumbel

40% 366 357 347 181 177 172 101 99 96
60% 521 530 519 258 263 259 144 147 145

6 DISCUSSION

We derived sample size formulae for cluster-randomized trials involving right- and interval-censored
event times in which the analysis is based on a marginal proportional hazards assumption. For right-
censored data, we derived expressions for the asymptotic robust variance of the Wald statistic on the
basis of the approach of Lee et al. [12], and for clustered interval-censored data, we likewise adopted
the structure of Kor et al. [38]. Both of these frameworks invoke a working independence assumption,
so robust variance estimation is required to ensure valid inference in the presence of within-cluster as-
sociation. The simulation studies conducted confirm that the formulae are valid. Code for computing
the required sample size is available in R from the authors upon request. Robustness of these formulae
to the misspecification of copula functions and to within-cluster dependence in the censoring times is
also investigated using large sample theory for clustered failure times in the context of right-censored
data.

As in other sample size formula for cluster-randomized trials, the derived formulae require speci-
fication of the degree of within-cluster dependence, measured in the failure time setting by Kendall’s
τ . A good approximation to the degree of within-cluster dependence is important [39], so it is there-
fore customary to rely on estimates reported in the literature. We recognize that it is unlikely that
values of Kendall’s τ would be reported in the clinical literature, and so we recommend the conduct
of small pilot studies. More recently, there has been increased interest in planning trials with adaptive
sample size re-estimation. This is carried out in its simplest form by having an internal pilot study,
after which blinded data are used to estimate unknown parameters; these new estimates are then used
to revise sample size calculations. This is a generally important area of research as these methods
increase efficiency. We have developed such methods in another context [40] and plan to study this in
the present setting in future work.

We have focussed on settings with a single binary treatment indicator, but the proposed meth-
ods extend naturally to deal with trials where analyses control for cluster-level covariates. A two-
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dimensional covariate vector would arise if one designed a three-armed trial, in which case one might
specify Zi = (Zi1, Zi2)

′ where Zi1 and Zi2 indicate assignment to the first and second experimen-
tal treatments, respectively, and Zi1 = Zi2 = 0 if cluster i is assigned to the control intervention.
More generally, other multidimensional descriptive cluster-level covariates can be incorporated into
the analyses, but at the design stage their joint distribution would have to be specified to facilitate
computation of the matrix expectations in the robust variance formula; see Appendices A and B.
Individual-level covariates can also be controlled for in the analysis in principle, but assumptions
would again be required regarding their joint distribution and in particular the extent to which these
covariates are dependent within clusters.

We also restricted attention to the setting in which cluster sizes are fixed at a common value,
denoted by J . While this is often reasonable, cluster sizes routinely vary within studies. When
planning studies in this case, it is perhaps most common to use formulae derived for fixed cluster sizes
but to use the anticipated average cluster size J̄ =

∑n
i=1 Ji/n in the formula in place of J [29,32,41].

When cluster sizes vary and the response is continuous, use of the average size in the formula derived
for common cluster sizes can lead to inadequate power; the loss in power can be small, however, if
the cluster size tends to be large and the intraclass correlation coefficient is small [42,43]. Manatunga
et al. [42] developed a refinement to the usual sample size formula for continuous outcomes to deal
with variable cluster sizes, which involves adding a correction term (a function of the coefficient of
variation of the cluster size) to the formula on the basis of a common cluster size. Van Breukelen et
al. [43] investigated the consequences of unequal versus equal cluster sizes in terms of the precision
of treatment effects estimators in cluster-randomized trials with continuous outcomes. They provide a
formula for the approximate relative efficiency of the estimators, which can be used to adjust an initial
estimate of the number of clusters required on the basis of a common cluster size. Candel and Van
Breukelen [44] extended this approach to varying cluster size with binary outcomes when the analysis
is based on the mixed logistic regression. We are not aware of any methods for dealing with variable
cluster sizes for event time responses, and so extensions to deal with this represent an important area
of future research.

In principle, the methods we develop can be adapted to the setting in which the number of clusters
is fixed, and the goal is to determine the number of individuals within each cluster necessary to
achieve the desired power. This may be a more appropriate framework in a health promotion study, for
example, in which clinics are randomized to deliver one of two smoking cessation programs. If there
are a fixed number of clinics available to take part but patients are continually being referred to these
clinics, it is natural to want to know how many patients should be recruited from these clinics to ensure
adequate power to detect a specified effect of an experimental cessation program. As pointed out by
Hemming et al. [45], the limiting robust standard deviation of estimators obtained under the working
independence assumption decreases as the cluster size increases, but there is a positive limiting value.
As a result, for a given number of clusters, minimal clinically important effect, and type I error rate,
there is a limit to the power that can be achieved by increasing the cluster size. Conversely, for a
given number of clusters, power, and type I error rate, there is a limit to how small the effect can
even as cluster sizes increase. In situations where small clinically important effects are specified, it
may therefore be necessary to select the number of clusters and the cluster size in concert to ensure
practical and statistical constraints are met.

When the clustered event times are interval-censored data, our sample size formula is derived
based on the assumption that all the assessments on each individual are available. Individuals may
of course prematurely drop-out of studies, leading to missed assessments. In this case, the response
vectors are incompletely observed, but modifications to the estimating functions are straightforward
if assumptions about the withdrawal process are made.
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APPENDIX A LIMITING DISTRIBUTION OF THE WALD STATISTIC BASED ON

CLUSTERED RIGHT-CENSORED EVENT TIMES

In what follows, we consider the setting in which Zi is a fixed binary treatment indicator and as-
sume that the marginal distribution of Tij , the event time for individual j in cluster i, satisfies the
proportional hazard assumption with

λij(t|Zi) = λ0(t;α) exp(Ziβ) ,

where λ0(t;α) is the baseline hazard function indexed by a vector α, aβ is the coefficient of interest,
and j = 1, . . . , J , i = 1, . . . , n. If C† is an administrative censoring time, the plan is to observe over
(0, C†], but C∗ij is a random censoring time with survivor function G∗(c), representing a possible early
withdrawal time. The net censoring time for individual j in cluster i is then Cij = min(C∗ij, C

†), with
survivor function G(c).

In counting process notation, we let {Nij(t), 0 < t} denote the right-continuous counting process
for Tij , where Nij(t) = I(Tij ≤ t) indicates that the event occurred at or before time t for individual
j in cluster i. Then dNij(t) = 1 if individual j in cluster i experiences the event at time t, and
dNij(t) = 0 otherwise. Let Ȳij(t) = Yij(t)Y

†
ij(t) be the indicator that the jth individual in cluster i is

under observation and at risk of event at time t, where Y †ij(t) = I(Tij ≥ t) and Yij(t) = I(Cij ≥ t).
Under working independence assumption, the partial score function for β is

U(β) =
n∑
i=1

J∑
j=1

∫ ∞
0

Ȳij(t)

(
Zi −

∑J
j=1 S1j(t; β)∑J
j=1 S0j(t; β)

)
dNij(t) ,

where Srj(t; β) = n−1
∑n

i=1 Ȳij(t)Z
r
i exp(Ziβ), r = 0, 1 and Z0

i = 1 and Z1
i = Zi. Lee et al.

[12] show that the score function is asymptotically equivalent to a sum of independent identically
distributed terms

n−1/2U(β) = n−1/2
n∑
i=1

J∑
j=1

ζij

where

ζij =

∫ ∞
0

Ȳij(t)(Zi −W (t))dMij(t) ,

where we suppress the functional dependence on β in the termsW (t) =
∑J

j=1 s1j(t; β)/
∑J

j=1 s0j(t; β)
with srj(t; β) the limit of Srj(t; β), and

Mij(t) = Nij(t)−
∫ t

0

Ȳij(u) exp(Ziβ)λ0(u)du

where {Mij(t), 0 < t} is a martingale. By the Central Limit Theorem, n−1/2U(β) converges to a
normal random variable with mean 0 and variance B, where

B = n−1
n∑
i=1

Var(ζi·) =
J∑

j,k=1

Cov (ζij, ζik) =
J∑

j,k=1

E(ζijζik) , (A.1)

where ζi· =
∑J

j=1 ζij , i = 1, . . . , n.

The root of U(β) = 0 is a consistent estimator β̂ with n1/2(β̂ − β)
D−→ N(0,Γ), where Γ = B/A2

andA = −E[∂Ui(β)/∂β]. The sample size formula is derived on the basis of this limiting distribution
with the B andA computed on the basis of parametric models. We give the results of these derivations
in the following two sections under the assumption of dependent within-cluster censoring times and
independent censoring within clusters.
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A.1 GENEARL DERIVATION OF B

We first consider a general case in which the censoring times could be correlated within clusters.
Assume (Ci1, . . . , CiJ)′ ⊥ Zi and let G(u) = P (Cij ≥ u) be the survivor function for the censoring
time Cij , and G(s, t) = P (Cij ≥ s, Cik ≥ t) denote the joint survivor function for the censoring
times (Cij, Cik) within cluster i; both are assumed common across the two groups. The joint survivor
function G(s, t) describes the association between within-cluster censoring times.

To derive an expression for (A.1) we first consider the case where j = k and note

E
[
ζ2ij
]

= E

[∫ C

0

Ȳij(s)(Zi −W (s))2λij(s)ds

]
= EZi

[
EY †

ij(s)|Zi

{
EYij(s)|Y †

ij(s),Zi

[∫ C

0

Ȳij(s)(Zi −W (s))2λij(s)ds

]}]
= EZi

[
EY †

ij(s)|Zi

{∫ C

0

G(s)Y †ij(s)(Zi −W (s))2λij(s)ds

}]
= EZi

[∫ C

0

G(s)P (Tij ≥ s|Zi)(Zi −W (s))2λij(s)ds

]
= EZi

[∫ C

0

G(s)(Zi −W (s))2fj(s|Zi)ds
]

(A.2)

where fj(s|Zi) is the conditional density of the event time for individual j in cluster i. And EZi
[·]

depends on the trial allocation probability.
For j 6= k, since

E[ζijζik] = E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dMij(s)dMik(t)

]
,

and

dMij(s)dMik(t) = dNij(s)dNik(t)− dNij(s)Ȳik(t)dΛik(t)− Ȳij(s)dΛij(s)dNik(t)

−Ȳij(s)Ȳik(t)dΛij(s)dΛik(t) ,

then

E[ζijζik] = E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]
− E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dΛik(t)

]
− E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dNik(t)

]
+ E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dΛik(t)

]
. (A.3)
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The first term in (A.3) is then computed as

E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]
= EZi

[
EY †

ij(s),Y
†
ik(t)|Zi

{
EdNij(s),dNik(t)|Y †

ij(s),Y
†
ik(t),Zi[

EYij(s),Yik(t)|Zi,Y
†
ij(s),Y

†
ik(t),dNij(s),dNik(t)

{∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)
}]}]

= EZi

[
EY †

ij(s),Y
†
ik(t)|Zi

{
EdNij(s),dNik(t)|Y †

ij(s),Y
†
ik(t),Zi

[
∫∫

(0,C]2
G(s, t)Y †

ij(s)Y
†
ik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]}]
= EZi

[
EY †

ij(s),Y
†
ik(t)|Zi

{∫∫
(0,C]2

G(s, t)Y †
ij(s)Y

†
ik(t)(Zi −W (s))(Zi −W (t))P (Tij = s, Tik = t|Y †

ij(s), Y
†
ik(t), Zi)dsdt

}]
= EZi

[ ∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt
]
, (A.4)

where fjk(s, t|Zi) is the pairwise conditional density for (Tij, Tik) obtained through the specification
of a copula function. Using the same strategy for remaining terms of (A.3), we obtain

E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dΛik(t)

]
= EZi

[ ∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)e

Ziβdsdt
]
, (A.5)

E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dNik(t)

]
= EZi

[ ∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)e

Ziβdsdt
]
, (A.6)

and

E

[∫∫
(0,C]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dΛik(t)

]
= EZi

[ ∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)e
Ziβdsdt

]
. (A.7)

where Fjk(s, t|Zi) is the pairwise conditional survivor function for (Tij, Tik) obtained through the
specification of a copula function. Plugging (A.4 - A.7) into (A.3), we obtain

E[ζijζik] = EZi

{∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt

−
∫∫

(0,C]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)e

Ziβdsdt

−
∫∫

(0,C]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)e

Ziβdsdt

+

∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)e
Ziβdsdt

}
. (A.8)
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The asymptotic variance of n−1/2U(β) can then be calculated as

B =
J∑
j=1

EZi

[∫ C

0

G(s)(Zi −W (s))2fj(s|Zi)ds
]

+
∑
j 6=k

[
EZi

{∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt

−
∫∫

(0,C]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)e

Ziβdsdt

−
∫∫

(0,C]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)e

Ziβdsdt

+

∫∫
(0,C]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)e
Ziβdsdt

}]
. (A.9)

The expression for A is likewise computed as

A = E

{
J∑
j=1

∫ ∞
0

Ȳij(t)

[
(
∑

k s2k(t; β)) (
∑

k s0k(t; β))− (
∑

k s1k(t; β))2

(
∑

k s0k(t; β))2

]
dNij(t)

}

= EZi

{
J∑
j=1

∫ C

0

[
(
∑

k s2k(t; β)) (
∑

k s0k(t; β))− (
∑

k s1k(t; β))2

(
∑

k s0k(t; β))2

]
G(t)fj(t|Zi)dt

}
, (A.10)

where
s0k(t; β) = E

(
Ȳik(t) exp(Ziβ)

)
= EZi

(
G(t)Fk(t|Zi) exp(Ziβ)

)
(A.11)

and

s1k(t; β) = s2k(t; β) = E
(
Ȳik(t) exp(Ziβ)Zi

)
= EZi

(G(t)Fk(t|Zi) exp(Ziβ)Zi) . (A.12)

Having expressions for B andA the asymptotic variance of β̂ can then be obtained and used for power
and sample size calculations.

A.2 DERIVATION OF B WHEN CENSORING TIMES ARE INDEPENDENT WITHIN CLUSTERS

In the special case in which the censoring times are independent within clusters, the term A is unaf-
fected. The computation of E[ζijζik] for j 6= k and hence the derivation of B is, however, affected. In
this case, we obtain

B =
J∑
j=1

EZi

[∫ C

0

G(s)(Zi −W (s))2fj(s|Zi)ds
]

+
∑
j 6=k

[
EZi

{∫∫
(0,C]2

G(s)G(t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt

−
∫∫

(0,C]2
G(s)G(t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)e

Ziβdsdt

−
∫∫

(0,C]2
G(s)G(t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)e

Ziβdsdt

+

∫∫
(0,C]2

G(s)G(t)Fjk(s, t|Zi)(Zi −W (s))(Zi −W (t))λ0(s)e
Ziβλ0(t)e

Ziβdsdt

}]
, (A.13)
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where the pairwise survivor function of the censoring times G(s, t) in (A.9) is simply replaced by
G(s)G(t) under the independent within-cluster censoring assumption.

APPENDIX B LIMITING DISTRIBUTION OF WALD STATISTICS WITH CLUSTERED

INTERVAL-CENSORED DATA

We assume again that Tij|Zi satisfies the proportional hazards assumption in (2.1) with marginal
distribution indexed by θ = (α′, β)′ where α is a q× 1 parameter vector. Consider a trial in which in-
dividuals are event-free at a0 = 0, and are scheduled to be observed at R assessment times a1, . . . , aR
over (0, C†] where aR = C† and aR+1 = ∞. Let Yij = (Yij1, . . . , YijR)′ denote the event time infor-
mation provided by individual j in cluster i, where Yijr = I(ar−1 < Tij ≤ ar) indicates that the event
was determined to have occurred in (ar−1, ar]; let Yi = (Y ′i1, . . . , Y

′
iJ)′. Adopted the strategy in Kor et

al. [38], the estimating function for parameter θ can be written as

U(θ) =
n∑
i=1

Ui(θ) =
n∑
i=1

D′iV
−1
i (Yi − µi) ,

where µi = E[Yi|Zi] is the conditional mean of Yi|Zi, Di = ∂µi/∂θ
′, and Vi is the working matrix.

Under the working independence assumption, Vi is a block diagonal matrix with the blocks Vij =
Cov(Yij, Y

′
ij|Zi), j = 1, . . . , J , which accounts for the negative dependence between responses at

different assessment times for each individual; that is,

Vi =


Cov(Yi1, Y

′
i1|Zi) 0

. . .

0 Cov(YiJ , Y
′
iJ |Zi)

 . (B.1)

As stated in Section 4, the estimator θ̂ is the root of U(θ) = 0 and has asymptotically normal
distribution,

n1/2(θ̂ − θ)→ N(0,Γ) ,

where Γ = A−1B [A−1]′. Hence the asymptotic distribution for β is

n1/2(β̂ − β)→ N(0,Ψ) , (B.2)

where Ψ = Γ[q + 1, q + 1].
The null and alternative hypotheses are H0 : β = β0 = 0 and HA : β 6= β0, respectively, and let

βA be the clinically important effect of interest. To derive the expression for A and B, we note that

A = E[−∂Ui(θ)/∂θ′] = EZi
[D′iV

−1
i Di] ,

B = E[Ui(θ)U
′
i(θ)] = E[D′iV

−1
i (Yi − µi)(Yi − µi)′V −1i Di] = EZi

[D′iV
−1
i WiV

−1
i Di] ,

where Wi = Cov(Yi, Y
′
i |Zi) is the full covariance matrix of Yi, which accounts for both the within-

cluster association between Yij and Yik, j, k = 1, . . . , J and the association within-individuals over
time (i.e. between Yijr and Yijs, r, s = 1, . . . , R) such that

Wi =


Cov(Yi1, Y

′
i1|Zi) Cov(Yi1, Y

′
i2|Zi) · · · Cov(Yi1, Y

′
iJ |Zi))

Cov(Yi2, Y
′
i2|Zi) · · · Cov(Yi2, Y

′
iJ |Zi)

. . . ...
Cov(YiJ , Y

′
iJ |Zi)

 . (B.3)
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Note that

Cov(Yij, Y
′
ij|Zi) =


Cov(Yij1, Yij1|Zi) Cov(Yij1, Yij2|Zi) · · · Cov(Yij1, YijR|Zi)

Cov(Yij2, Yij2|Zi) · · · Cov(Yij2, YijR|Zi)
. . . ...

Cov(YijR, YijR|Zi)

 , (B.4)

where

Cov(Yijr, Yijr|Zi) = µijr(1− µijr) , and Cov(Yijr, Yijs|Zi) = E[YijrYijs|Zi]− µijrµijs = −µijrµijs ,
(B.5)

j = 1, . . . , J . The covariance between Yij and Y ′ik, j 6= k, is more involved and makes use of the
copula assumptions. Specifically,

Cov(Yij, Y
′
ik|Zi) = E[YijY

′
ik|Zi]− µijµ′ik

=


E[Yij1Yik1|Zi] E[Yij1Yik2|Zi] · · · E[Yij1YikR|Zi]

E[Yij2Yik2|Zi] · · · E[Yij2YjkR|Zi]
. . . ...

E[YijRYikR|Zi]

− µijµ′ik , (B.6)

where

E[YijrYiks|Zi] = F(ar−1, as−1|Zi)−F(ar−1, as|Zi)−F(ar, as−1|Zi) + F(ar, as|Zi) , (B.7)

can be calculated based on the copula model. By plugging (B.4) and (B.6) into (B.1) and (B.3), we
obtain the expression for Vi andWi, and hence we can obtainA and B. On the basis of the asymptotic
property of the Wald statistic (B.2), we derive the sample size criteria (4.6).
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S1. Survivor and hazard functions for proportional hazard model

The baseline survivor and hazard functions of the proportional hazards model adopted in Section 2.3
are displayed in Figure 1S.

Figure 1S: The marginal survivor and hazard functions for the control group (Z = 0) when the
baseline hazard is decreasing (κ = 0.75), constant (κ = 1.0), and increasing (κ = 1.25).
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S2. Additional Simulation Results

The main body of the manuscript reported results when the sample size calculations and empirical
investigations were carried out with a decreasing Weibull baseline hazard with κ = 0.75. Analogous
results are provided here for the case of an increasing (κ = 1.25) and constant (κ = 1.0) baseline
hazard; see Table 1S.

p0 = 0.2 p0 = 0.5

β = 0 β = βA β = 0 β = βA

J τ n ESE ASE REJ% ESE ASE ECP% REJ% n ESE ASE REJ% ESE ASE ECP% REJ%

κ = 1.25

2 0.05 433 0.079 0.079 5.2 0.080 0.081 95.8 79.8 676 0.078 0.079 4.7 0.081 0.081 94.7 79.8
0.10 464 0.080 0.079 5.4 0.081 0.081 94.8 79.3 707 0.081 0.079 5.8 0.083 0.081 93.7 77.5
0.25 556 0.077 0.079 4.5 0.081 0.081 94.5 80.5 800 0.081 0.079 5.5 0.080 0.081 95.8 80.0

5 0.05 211 0.078 0.079 5.2 0.079 0.080 94.8 79.8 308 0.079 0.079 5.4 0.083 0.081 94.5 78.5
0.10 262 0.080 0.079 5.0 0.080 0.080 94.5 80.5 359 0.079 0.079 4.5 0.081 0.081 95.2 78.2
0.25 409 0.080 0.079 5.2 0.081 0.080 95.0 79.8 508 0.078 0.079 5.2 0.082 0.081 94.4 78.7

20 0.05 100 0.080 0.079 5.1 0.080 0.079 94.4 80.5 125 0.080 0.078 5.5 0.081 0.080 93.8 79.8
0.10 160 0.078 0.079 5.5 0.081 0.079 94.3 80.3 185 0.079 0.079 5.3 0.080 0.080 95.0 79.8
0.25 335 0.080 0.079 5.2 0.081 0.080 94.3 79.9 361 0.078 0.079 5.2 0.080 0.080 95.6 78.2

100 0.05 71 0.078 0.078 5.3 0.080 0.079 95.0 78.9 76 0.080 0.078 5.7 0.079 0.078 94.6 80.4
0.10 133 0.080 0.079 5.3 0.079 0.079 95.0 79.3 138 0.078 0.079 5.4 0.081 0.079 94.3 80.7
0.25 316 0.081 0.079 5.3 0.080 0.079 94.8 80.7 322 0.080 0.079 4.6 0.079 0.080 95.5 80.0

κ = 1.0

2 0.05 433 0.077 0.079 4.5 0.080 0.081 95.3 79.5 676 0.079 0.079 4.5 0.082 0.081 94.6 77.6
0.10 464 0.080 0.079 5.3 0.081 0.081 95.0 77.1 708 0.079 0.079 5.7 0.081 0.081 95.0 78.6
0.25 556 0.081 0.079 5.6 0.082 0.081 94.2 78.0 801 0.078 0.079 5.0 0.083 0.081 94.7 77.1

5 0.05 211 0.079 0.079 4.7 0.080 0.080 95.5 79.2 309 0.079 0.079 4.8 0.081 0.081 94.8 78.5
0.10 262 0.081 0.079 5.8 0.082 0.080 94.2 80.0 359 0.078 0.079 5.2 0.081 0.081 95.2 78.5
0.25 409 0.081 0.079 5.8 0.083 0.080 94.3 79.2 509 0.080 0.079 5.2 0.082 0.081 94.4 78.7

20 0.05 100 0.078 0.079 4.9 0.079 0.079 94.8 79.8 125 0.081 0.078 5.6 0.078 0.080 95.8 79.8
0.10 160 0.079 0.079 4.4 0.080 0.080 95.1 79.0 185 0.079 0.079 5.0 0.080 0.080 94.8 78.2
0.25 335 0.081 0.079 5.5 0.081 0.080 94.3 79.1 363 0.080 0.079 5.1 0.082 0.080 94.5 79.5

100 0.05 71 0.080 0.078 5.4 0.080 0.078 94.3 80.5 76 0.078 0.078 5.2 0.077 0.078 95.3 80.3
0.10 133 0.079 0.079 4.8 0.079 0.079 95.0 80.2 138 0.080 0.079 5.2 0.081 0.079 94.2 79.5
0.25 316 0.080 0.079 5.1 0.080 0.080 94.7 79.8 324 0.079 0.079 4.7 0.082 0.080 94.1 78.5

Table 1S: Sample size estimation and empirical properties of estimators under cluster-randomized
designs when within-cluster association is induced by Clayton copula; pa = 0.20, βA = log 0.8,
nsim= 2000.

S3. Impact of Misspecification of Marginal Parameter

At the suggestion of a referee we further explore the effect of misspecification here by consider-
ing whether there is any impact of misspecifying the extent of trend in the baseline hazard function
on sample size, when the expected number of events is correctly specified. We assume that the
marginal distribution of Tij|Zi is of the proportional hazards form (2.1), where the baseline hazard
is λ0(s;α)ds = dΛ0(s;α) with Weibull cumulative hazard Λ0(s;α) = (λ0s)

κ, α = (λ0, κ)
′. As in

Section 2, we focus on the test of H0 : β = 0 vs. HA : β ̸= 0 and let βA denote the minimal
clinically important effect of interest. The sample size is determined to ensure 100(1− γ2)% = 80%
power to reject H0 at βA, given the type I error rate 100γ1% = 5%.

If the administrative censoring rate pa and net censoring rate p0 are correctly specified but there
is no useful pilot data on what κ values are appropriate, one might use κ = 1.0 to compute the
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required number of clusters by (2.7) at βA = log 0.8. To explore sensitivity of the power to the
parameter κ, with the derived number of clusters we next examine the theoretical power at different
values of κ under an administrative censoring rate of pa = 0.2 and net censoring rate of p0 = 0.2 or
0.5 for the control group, we consider values of κ ranging from 0.5 to 1.5 and examine the impact
of misspecification under the Clayton, Frank, and Gumbel copula functions. Figure 2S and Figure
3S show the power of such test when the sample size is calculated based on formula (2.7) by using
κ = 1.0 for 20% and 50% net censoring rates, respectively. Settings with cluster sizes of 2 and 100
and weak (τ = 0.1) and moderate (τ = 0.25) degrees of within cluster association are considered. As
can be seen from Figure 2S, when there is only administrative censoring there is no impact on power
from misspecification of κ; all power functions are horizontal lines with value 0.8 for all copula
models. When there is random censoring, Figure 3S indicates the effect of misspecifying the shape
parameter. The effect of κ misspecification is smaller when J = 2 than when J = 100. Moreover the
power is more robust to misspecification of the shape parameter under the Clayton copula than it is
under the Frank and Gumbel copulas.

Figure 2S: Theoretical power as a function of κ for trials designed with the correct values of pa =
p0 = 0.2 but sample size is determined under the assumption κ = 1.
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Figure 3S: Theoretical power as a function of κ for trials designed with the correct values of pa = 0.2
and random censoring yielding a 50% net censoring rate (p0 = 0.50), but sample size is determined
under the assumption κ = 1.
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