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Abstract

In this thesis, we investigate two expressions for symmetric group characters: Kerov’s

universal character polynomials and Stanley’s character polynomials. We give a

new explicit form for Kerov’s polynomials, which exactly evaluate the characters

of the symmetric group scaled by degree and a constant. We use this explicit ex-

pression to obtain specific information about Kerov polynomials, including partial

answers to positivity questions. We then use the expression obtained for Kerov’s

polynomials to obtain results about Stanley’s character polynomials.
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Chapter 1

Introduction

Finding expressions for group characters is a very old task. In the case of the sym-

metric groups, much is known about their characters. In fact, there are well known

combinatorial algorithms for computing the characters of the symmetric group,

the Murnaghan-Nakayama rule (see Theorem 2.3.1) being such an example. As

well as the Murnaghan-Nakayama rule, the ring of symmetric functions provides

a calculus for computing symmetric group characters. Unfortunately, in the case of

symmetric functions, one often needs to know the characters in order to use them

effectively for computational purposes. Therefore, as a tool for computing charac-

ters, they are not as effective as one might hope. In the case of the Murnaghan-

Nakayama rule, when the symmetric group is large, its use becomes quite cum-

bersome and other methods are needed to obtain information about symmetric

group characters. In Kerov [18, 19], Kerov and Vershik [20] the authors recognize

the shortcomings of such methods and approach the problem from a probabilistic

point of view. Thus, instead of trying to compute symmetric group characters for

large groups exactly, they try to obtain asymptotic information about characters.

The probability used is not classical probability; the authors use the theory of

free probability, which has connections to both functional analysis and combina-

torics. This use of free probability in the asymptotics of the symmetric group char-

acters was studied by Biane [1, 2, 3], who obtained some remarkable asymptotic re-

sults. More specifically, Biane has an asymptotic expression for characters in terms

of quantities called free cumulants, which are, very briefly and superficially, a se-

quence of functions R2, R3, . . . mapping Young diagrams to the complex numbers.

Biane proves that χ̂ω(k 1n−k), which is the symmetric group character associated

with an arbitrary partition ω and evaluated at a k-cycle, and scaled by degree and

a constant, gets asymptotically close to Rk+1(ω). In fact, he proves a more general

1
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result, giving asymptotic results about χ̂ω(σ), where σ is an arbitrary shape (see

Example 3.2.1).

The question arises of whether there is a useful expression in terms of Ri(ω)
that exactly evaluates the character χ̂ω(k 1n−k). Such an expression would probably

not give any additional information about the asymptotics of characters but, as we

shall see, is interesting in its own right. Biane [1] (more correctly, Biane and Kerov,

as Biane attributes this result to Kerov, who gave the result at a talk at an IHP con-

ference) answered this question in the affirmative; the expressions for characters

they found are known as Kerov’s universal character polynomials. We shall see these

expressions have some very remarkable algebraic and combinatorial properties.

The first property concerning these expressions for χ̂ω(k 1n−k) is that they are,

indeed, polynomials (this is not obvious at the outset). The second, and by far

more surprising, is that these polynomials are independent of ω (hence the adjective

“universal”). At this point, an example is useful. The fifth Kerov polynomial is

Σ5 = R6 + 15 R4 + 5 R2
2 + 8 R2. (1.1)

As mentioned above, the Ri can be thought of as functions from, in this example,

partitions of n ≥ 5 to complex numbers. Evaluating this at any such partition, say

ω = (3 2 2), a partition of 7, we obtain

χ̂ω(5 1 1) = Σ5(ω)

= R6(ω) + 15 R4(ω) + 5 R2(ω)2 + 8 R2(ω).

Given that the Ri(ω) are readily obtained, we see that the above expression evalu-

ates the character χ̂ω(5 1 1). For arbitrary ω, we emphasize, again, that the Kerov

polynomial Σ5 above is independent of ω and n.

The only expression known until now for Kerov’s polynomials is an implicit

one (due to Biane [1, Theorem 5.1]), which can be derived from a seemingly in-

tractable formula of Frobenius. Other results have been obtained, for example,

coefficients of some specific terms have been found, but otherwise these polynomi-

als are somewhat of a mystery. They are the subject of the first half of this thesis.

Here, we give a new explicit expression for Kerov’s polynomials. The expression

is obtained by using Biane’s expression with Lagrange inversion, and considering

the graded pieces of Kerov’s polynomials. We use this explicit expression to obtain

new results for Kerov’s polynomials, in particular giving affirmative partial an-

swers to some positivity conjectures; namely, it is conjectured by Biane and Kerov

that the coefficients of Kerov’s polynomials are all positive. Further, we use our

explicit expression to reprove some results.
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In the second half of this thesis, we discuss another polynomial expression for

characters which was introduced by Stanley [28], and which we call Stanley’s char-
acter polynomials. As an example, suppose that p× q is a partition of n with p parts,

all equal to q. Then, for any partition µ of k, where k ≤ n, Stanley proved that

χ̂p×q(µ 1n−k) = (−1)k ∑
u,ν

uν=λµ

p`(u)(−q)`(ν), (1.2)

where λµ is any fixed permutation in the conjugacy class µ in the symmetric group

on k letters, and `(u) is the number of cycles in u. Stanley also obtained formulas for

general shapes (that is, Stanley considers shapes more general than the rectangle

p× q) and the expressions are, predictably, more complex.

We shall see that there are connections between Kerov’s character polynomials

and Stanley’s character polynomials. Both Kerov polynomials and Stanley’s poly-

nomials are based on the same formula of Frobenius. To make use of Frobenius’

expression, we make heavy use of Lagrange’s Inversion Theorem in the treatment

of both Kerov’s and Stanley’s polynomials. Moreover, we shall see that we can use

results concerning Kerov’s polynomials and apply them to Stanley’s polynomials.

In particular, we are able to answer some positivity questions concerning Stanley’s

polynomials.

The thesis is organized as follows. In Chapter 2 we briefly review some funda-

mental concepts (representations, symmetric functions, Lagrange inversion) that

many readers may already know, so we include no proofs (except for Section 2.5

where a suitable reference was not found). This chapter may, therefore, be omit-

ted by those who feel comfortable with the background material. Chapter 3 deals

exclusively with Kerov’s character polynomials. In Section 3.1 and 3.2 we give the

background and motivation for Kerov’s polynomials, including a very brief discus-

sion about the asymptotics of characters. Although this thesis offers no new results

in this direction, it seems appropriate to provide some details about this motivating

aspect of Kerov’s polynomials. In Section 3.3.2, we start from some fairly basic ex-

pressions and begin to derive our explicit expression for Kerov’s polynomials. We

include the formula of Frobenius and the proof given by Macdonald [21, Section

I.7, Exercise 6], and give an essentially self-contained derivation of Kerov’s polyno-

mials. In this way, we provide a complete expository account of the basic material

leading up to Kerov’s polynomials. Finally, in Section 3.4 we state the main re-

sult of this thesis, in Theorem 3.4.1, which gives an explicit expression for Kerov’s

polynomials. We also give some equivalent forms of the main theorem in Theo-

rems 3.4.2 and 3.4.3, which are included since they help with later computations.
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Our explicit expression for Kerov’s polynomials is quite complicated, but we are

able to show that a lot of useful information can be extracted from this expression

in spite of its complexity, including some positivity results which are presented in

Section 3.5. We postpone the proof of the main result until the end of Chapter 3, in

Section 3.6.

In Chapter 4 we study Stanley’s character polynomials. For Stanley’s rectan-

gular case, given in (1.2) above, we give a new proof in Section 4.1.2. The proof

given here is slightly simpler than Stanley’s proof and, more importantly, exploits

in a new way an already known connection between shift symmetric functions and

scaled characters χ̂ω(µ). We then consider Stanley’s character polynomials in the

general case, and interpret them as a specialization of Kerov’s polynomials. This

enables us to use some of the results in Chapter 3 to obtain results about Stanley’s

polynomials. In particular, we are able to give some new positivity results.

We conclude the thesis with a theorem that gives a strong connection between

the positivity of Kerov’s polynomials and the positivity of Stanley’s polynomials;

that is, we show the former implies the latter. In particular, we introduce a C-
expansion for Kerov’s polynomials and it is immediate that the positivity of this C-

expansion does imply positivity of Kerov’s polynomials in the so called R-expansion
given in (1.1). Furthermore, we show C-positivity of Kerov’s polynomials does im-

ply positivity for Stanley’s polynomials. As we shall see, most of our results here

concern the C-expansion, as they greatly simplify our expressions. Therefore, it is

this author’s belief that these C-expansions are the most likely to yield further in-

formation about Kerov’s polynomials (and, consequently, Stanley’s polynomials).

We make a final note about the results found in this thesis. In general, we label

theorems, lemmas, proofs, etc. by the authors who gave them. When no label is

given the results are new; however, in Chapter 3 most such results also appear in

Goulden and Rattan [12].



Chapter 2

Fundamental Concepts

In this chapter we review the necessary terminology for the thesis. This chapter

may be omitted by those who feel comfortable with the material. The notation

in Sections 2.1 and 2.2, on representation theory and symmetric functions, is con-

sistent with Macdonald [21] and Sagan [24], while the notation in Section 2.4 is

consistent with Goulden and Jackson [8] and Stanley [27].

2.1 Partitions, Group Representations and the Symmetric

Group

A partition is a weakly ordered list of positive integers λ = λ1λ2 . . . λk, where λ1 ≥
λ2 ≥ . . . ≥ λk. The integers λ1, . . . , λk are called the parts of the partition λ, and we

denote the number of parts (often called the length of a partition) by `(λ) = k. If

λ1 + . . . + λk = d, then λ is a partition of d, and we write λ ` d. We denote by P
the set of all partitions, including the single partition of 0 (which has no parts).

Let GLd be the general linear group of dimension d (the set of all invertible d× d
matrices) over the field C. Given any group G, a matrix representation of G is a group

homomorphism

X : G −→ GLd,

or equivalently, X satisfies

1. X(e) = I, where e is the identity in G and I is the identity matrix in GLd.

2. X(gh) = X(g)X(h) for all g, h ∈ G.

The parameter d is called the dimension of the representation. We may also write

GL(V) for GLd, where V is a d-dimensional vector space. Equivalently, we can use

5



6 2.1 Partitions, Group Representations and the Symmetric Group

the language of modules to describe a representation. That is, a vector space V is

a G-module if there is a multiplication g · v of elements in V by elements of G such

that

1. g · v ∈ V,

2. g · (cv + dw) = cg · v + dg · w,

3. (g · h) · v = g · (h · v),

4. e · v = v, where e is the identity of G,

for all g, h ∈ G, v, w ∈ V and scalars c, d.

If V is a G-module then W is a called a submodule of V if W is a subspace of V
and W is a G-module. The module V is called irreducible if the only submodules of

V are trivial subspaces. Furthermore, G-modules V and W are equivalent if there is

a vector space isomorphism that commutes with the action of G on V and W, i.e., if

there exists an isomorphism θ : V →W such that θ(g · v) = g · θ(v).

For any representation X of G, the trace of the matrices X(g) holds much of the

information of the representation. Accordingly, define the character of a representa-

tion X to be the map χ : G → C given by χ(g) = trace(X(g)). Characters are called

irreducible, equivalent, etc., if their associated representations have these proper-

ties. Also, the degree of a character is the dimension of the associated representation,

which is clearly χ(e), where e is the identity element of the group.

The study of group characters can shed a lot of light on group representations.

One can define an inner product on the space of group characters. In this space, a

group character χ is irreducible if and only if the inner product of χ with itself is

1. Indeed, the character of a representation embodies much of the representation

itself.

The group that we are most interested in is the symmetric group on n letters,

denoted by Sn. We use either the standard cycle representation of a permutation

(writing a permutation as the product of cycles), or write a permutation as a word.

Example 2.1.1. The simplest representation is the trivial representation. This is the

representation

X : G −→ GL1

such that X(g) = [1] for all g ∈ G. 2

Example 2.1.2. The permutation representation is obtained when a group G acts on

a set S. We take the vector space C[S] = c1s1 + c2s2 + · · ·+ cnsn where ci ∈ C and
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S = {s1, s2, . . . , sn}. Letting v = c1s1 + c2s2 + · · ·+ cnsn, then X(g) is defined as the

matrix associated with the linear transformation g · v = c1g · s1 + c2g · s2 + . . . +
cng · sn, where g · si is g acting on si, with respect to the basis (s1, s2, . . . , sn). 2

Example 2.1.3. The left regular representation is similar to the permutation represen-

tation and is one of the most important representations. In this case we take the

group algebra C[G] (endowed with the obvious product), and an element g ∈ G acts

on a v = c1g1 + c2g2 + . . . + cngn by g · v = c1g · g1 + c2g · g2 + . . . + cng · gn where

g · gi is the usual multiplication in G. 2

We now state some fundamental theorems of representation theory.

Theorem 2.1.4 (Maschke). If V is a G-module then V is the direct sum of irreducible
modules.

Theorem 2.1.5. The number of inequivalent irreducible representations of a group G is
equal to the number of conjugacy classes.

Theorem 2.1.6. In the group algebra C[G], every irreducible representation appears with
multiplicity equal to its dimension.

Thus, we see that the irreducible representations play a fundamental role in the

group algebra. Now define [n] = {1, 2, . . . , n}. The symmetric group on n letters,

denoted Sn, is the set of bijections from [n] to itself. For the symmetric group Sn

the conjugacy classes can be naturally indexed by the partitions of n. Therefore,

the number of inequivalent representations of Sn is the number of partitions of n,

and we write the conjugacy class associated with the partition λ as Cλ. Represen-

tations of Sn are therefore indexed by partitions, and we write Xλ or [λ] for the

representation associated with the partition λ. Similarly, for characters we write

χλ. Furthermore, since characters are class functions, we replace χλ(g) by χλ(µ)
when g belongs to the conjugacy class µ. We also use the notations χλ

µ and χλ(µ)
in place of χλ(µ); each is the character associated with the partition λ, evaluated

at the conjugacy class µ. We denote by 1n the partition of n with n parts equal to

1 and, therefore, the conjugacy class C1n is the conjugacy class containing only the

identity element. Thus, χλ(1n) is the degree of the character χλ.

Various scalings of irreducible symmetric group characters have been consid-

ered in the recent literature. The central character is given by

χ̃ω(λ) = |Cλ|
χω(λ)
χω(1n)

.



8 2.1 Partitions, Group Representations and the Symmetric Group

For the symmetric group, we often denote the degree of χω by f ω. For results about

the central character, see, for example, Corteel et al. [4], Frumkin et al. [6], Katriel

[17]. Related to this scaling, for the conjugacy class Ck 1n−k only, is the normalized
character, given by

χ̂ω(k 1n−k) = (n)k
χω(k 1n−k)

χω(1n)
= kχ̃ω(k 1n−k), (2.1)

where (n)k = n(n− 1) · · · (n− k + 1) is the falling factorial, with (n)0 = 1 (we also

allow n to be an indeterminate). This character evaluation is the central object of

this thesis.

Example 2.1.7. The following are some operations on representations.

a. Induction: For any representation X of a subgroup H contained in a group

G, the representation X ↑G
H is the representation of G induced by X to G.

b. Restriction: For any representation X of a group G containing a subgroup

H, the representation X ↓G
H is the representation of H known as the restriction

of X to H.

c. Kronecker product: For the representations X and Y of G, we denote by

X⊗Y their Kronecker product.

d. Outer product: For the repsentations X and Y of G, we denote by X ◦ Y
their outer product. 2

We refer the reader to Sagan [24] for the definitions of these fundamental oper-

ations.

2.1.1 The Group Algebra of the Symmetric Group

In the symmetric group Sn, as we discussed above, conjugacy classes are indexed

by partitions of n. Let the cycle type of a permutation σ be the partition whose parts

are the lengths of the cycles in σ. In terms of cycle type of permutations, it is easy to

describe the conjugacy classes of Sn; the conjugacy class Cλ consists of all members

σ of Sn with cycle type λ. The centre of C[Sn] is spanned by the elements

Kα = ∑
σ∈Cα

σ.
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The (Kα)α`n form a linear basis for the centre of C[Sn]. A natural task is to deter-

mine the structure constants of this basis are, i.e., to determine the numbers cγ
α,β

such that

KαKβ = ∑
γ

cγ
α,βKγ. (2.2)

This task, it turns out, is very difficult and has been heavily studied; see Corteel

et al. [4], Goulden [7], Goulden and Jackson [9, 10], Goulden and Pepper [11],

Goulden and Yong [13], Irving [15].

Since the group algebra is finite, its centre has a basis { Fα | α ` n} of orthogonal

idempotents with

Fα =
f α

n! ∑
θ`n

χα(θ)Kθ .

Furthermore, the previous equation can be inverted to obtain

Kα = |Cα|∑
θ`n

χθ(α)
f θ

Fθ .

Finally, determining the product KαKβ through the orthogonal idempotents we

have

[Kγ]KαKβ =
|Cα||Cβ|

n! ∑
θ`n

1
f θ

χθ(γ)χθ(α)χθ(β). (2.3)

2.2 Symmetric Functions

Letting mi(λ) to be the number of parts of a partition λ ` n equal to i, we often

rewrite λ = 1m1(λ)2m2(λ) · · · nmn(λ). A sequence α of non-negative integers is said

to have shape λ if its non-increasing rearrangement is λ, and we use sh(α) to mean

the shape of α. Let x = x1, x2, . . . and for any sequence α = (α1, α2, . . .), we denote

by xα the monomial xα1
1 xα2

2 · · · . For the rest of this section, λ = (λ1, λ2, . . . , λ`) ` n.

A tableau of shape λ, Young diagram of λ or a Young tableau of shape λ is an array

of boxes (i, j), where 1 ≤ i ≤ ` and 1 ≤ j ≤ λi. Visually, as with matrices, as i
increases we move down the array and as j increases we move to the right (see

Figure 2.1). This way of visualizing tableaux is often known as the “English con-

vention”. Some authors (most notably Francophones, hence we call the following

the “French convention”) prefer the use of coordinate geometry; a tableau is an ar-

ray of boxes (i, j) where i increases left to right, j increases up, and 1 ≤ j ≤ ` and

1 ≤ i ≤ λj. As we will be most often using the English convention, we will specify

the convention only when we decide to switch to the French one. A standard Young
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tableau, or an SYT, is a filling of the boxes of a tableau of shape λ with the num-

bers 1, 2, . . . , n, with rows and columns strictly increasing. A semi-standard Young
tableau, or an SSYT, is a filling of the boxes of shape λ with positive integers such

that rows are weakly increasing and columns strictly increasing. The following

Figure 2.1: The tableau of shape (6, 4, 4, 1, 1) drawn in the English convention (left)

and French convention (right).

theorem connects SYT to characters of the symmetric group.

Theorem 2.2.1. The number of SYT of shape λ is the degree f λ of χλ.

The algebra of symmetric functions is defined in the following way. Let Λ(n) be

the algebra of formal series symmetric in the n variables x1, x2, . . . , xn. Define a

morphism from Λ(n + 1) → Λ(n) by setting xn+1 = 0 in a symmetric function.

Finally, let Λ, the algebra of symmetric functions, be the projective limit

Λ = lim
←

Λ(n), n→ ∞.

By definition, a function f ∈ Λ is a sequence f1, f2, . . . where

1. fn ∈ Λ(n),

2. fn+1(x1, . . . , xn, 0) = fn(x1, . . . , xn),

3. supn deg fn < ∞.

Although this formally defines symmetric functions, informally a symmetric func-

tion f (x) is a formal power series in a countable number of variables (which we

assume to be x1, x2, . . .) such that (i j) f (x) = f (x), where (i j) f (x) is the series

obtained by transposing the variables xi and xj in f (x). The set of symmetric func-

tions, with the operations addition and multiplication, form the ring of symmetric
functions, which we denote by Λ. The ring of symmetric functions is a vector space;

the following are some of its bases.
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The monomial symmetric functions are the symmetric functions, indexed by par-

titions γ of n, defined by

mγ = ∑
α : sh(α)=γ

xα.

The set {mγ | γ ` n, n ≥ 0} of monomial symmetric functions forms a basis for Λ.

The one-part elementary symmetric functions, one-part complete symmetric functions
and the one-part power sum symmetric functions are the symmetric functions, indexed

with positive integers, given by

er = ∑
1≤i1<i2<···<ir

xi1 xi2 . . . xir ,

hr = ∑
1≤i1≤i2≤···≤ir

xi1 xi2 . . . xir ,

and

pr = ∑
i≥1

xr
i ,

respectively, and we define e0, h0, and p0 to equal 1. The sets { er | r ≥ 1}, { hr | r ≥
1} and { pr | r ≥ 1} generate Λ. Furthermore, we define

eλ = eλ1 eλ2 . . . eλn ,

hλ = hλ1 hλ2 . . . hλn ,

and

pλ = pλ1 pλ2 . . . pλn ,

as the elementary symmetric functions, complete symmetric functions and power sum
symmetric functions, respectively. The sets { eλ | λ ` n, n ≥ 0}, { hλ | λ ` n, n ≥ 0}
and { pλ | λ ` n, n ≥ 0} are all bases for Λ.

The last symmetric functions we define here are the Schur functions; the Schur

functions, sλ, are defined combinatorially by

sλ = ∑
T an SSYT of shape λ

xT, (2.4)

where xT is the monomial xi1 xi2 · · · xin , and i1, i2, . . . , in are the numbers in the boxes

of the SSYT T.

Alternatively, we can define the Schur functions in an algebraic way. For any

σ ∈ Sn, define xσα be the monomial x
ασ(1)
1 x

ασ(2)
2 · · · xασ(n)

n . Let

aα = ∑
σ∈Sn

ε(σ)xσα, (2.5)
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where ε(σ) is the sign of the permutation σ. It is not difficult to see that aα is zero

unless all αi are distinct and, in that case, we may assume that α1 > α2 > · · · > αn.

We define the staircase sequence to be δ = n − 1 n − 2 . . . 0, and write α = λ + δ

where λ is a partition with at most n parts. It is not hard to see that aλ+δ is divisible

by aδ and that the quotient is symmetric in the n variables x1, x2, . . . , xn. We define

sλ(x1, x2, . . . , xn) as

sλ(x1, x2, . . . , xn) =
aλ+δ

aδ
∈ Λ(n), (2.6)

which are the Schur polynomials, and we obtain the Schur functions by extending

these to the ring Λ.

There is a standard inner product 〈·, ·〉 on Λ for which the Schur functions are

an orthonormal basis, i.e., 〈sλ, sµ〉 = δλµ. Under this inner product, the power sums

form an orthogonal basis; that is 〈pλ, pµ〉 = zλδλµ, where

zλ = 1m1(λ)m1(λ)! 2m2(λ)m2(λ)! · · · |λ|m|λ|(λ)m|λ|(λ)!.

The following theorem connects this inner product in symmetric functions to char-

acters.

Theorem 2.2.2.

χλ(ρ) = 〈sλ, pρ〉.

2.2.1 Classical Results in Symmetric Function Theory

For any partition λ, the partition λ′ is called the conjugate partition, and is the par-

tition obtained by interchanging the rows and columns of the Young diagram of λ.

The notation u ∈ λ denotes the box u of λ. For any u = (i, j) ∈ λ the content of

u, denoted by c(u), is the quantity j− i, and hook length of u, denoted by h(u), is

λi + λj − i− j + 1. Using the inner product at the end of the last section, we have

the following two expressions.

Theorem 2.2.3. Writing the Schur functions as a linear combination of the power sum
symmetric functions, we have

sλ = ∑
ρ`n

z−1
ρ χλ(ρ)pρ,

where λ is a partition of n.
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Theorem 2.2.4. Writing the power sum symmetric functions as a linear combination of
the Schur functions, we have

pρ = ∑
λ`n

χλ(ρ)sλ,

where ρ is a partition of n.

From Theorem 2.2.4 and the algebraic definition of Schur functions given at the

end of the previous section, we obtain the following theorem.

Theorem 2.2.5. The character χλ(ρ) is [xλ+δ] aδ pρ.

We also require the following two results. We use the notation Hλ for ∏u∈λ h(u),

where λ ` n.

Theorem 2.2.6. For λ ` p, we have

sλ(1p) = ∏u∈λ(p + c(u))
Hλ

,

where 1p is the substitution xi = 1 for 1 ≤ i ≤ p and xi = 0 for i > p.

The following is the famous hook formula of Frame, Robinson and Thrall (see [5]).

Theorem 2.2.7 (Frame, Robinson and Thrall). For any partition λ ` n we have

f λ =
n!
Hλ

.

The following theorem is a consequence of the previous two results.

Theorem 2.2.8.

∏
u∈λ

(x + c(u)) = ∑
β`n

|Cβ|
f λ

χλ(β)x`(β).

Theorem 2.2.8 follows from Theorems 2.2.6, 2.2.7 and 2.2.3, by noting that for any

integer t, a substitution of xi = 1 for all 1 ≤ i ≤ t into the equation in Theorem 2.2.6,

yields the theorem for t. Noting that both sides of the equation are polynomials in

t of degree n, gives the result with t replaced by the indeterminate x.
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2.3 The Murnaghan-Nakayama Rule

In this section we state the Murnaghan-Nakayama rule, a combinatorial algorithm

that computes symmetric group characters.

In a Young diagram λ with n boxes, a border strip is a connected set of boxes

that contains no 2× 2 subset of boxes. The height of a border strip B, ht(B), is one

less than the number of columns occupied by B. Suppose that α is partition of n.

A border strip tableau of shape λ and type α is an assignment of positive integers to

the boxes of λ satisfying,

1. every row and column is weakly increasing,

2. the integer i appears αi times,

3. the set of squares occupied by i forms a border strip Bi.

The height of a border strip tableau B of shape λ and type α with B1, B2, . . . Bk border

strips, denoted by ht(B), is ht(B1) + ht(B2) + · · ·+ ht(Bk).

Theorem 2.3.1 (Murnaghan-Nakayama Rule). For any partitions λ and α of n, we
have

χλ(α) = ∑
T

(−1)ht(T),

summed over all border strip tableaux of shape λ and type α.

2.4 Formal Power Series and Lagrange Inversion

For any ring K with a unit, let K[[z]] and K((z)) denote the ring of formal power

series and the ring of formal Laurent series in the indeterminate z. We need to deal

with the compositional inverse of power series on many occasions, so knowing

when they exist is pertinent. See Stanley [27, Proposition 5.4.1] for a proof of the

following result.

Theorem 2.4.1. A formal power series f (z) = a1z + a2z2 + · · · ∈ K[[z]] has an inverse,
denoted by f (z)〈−1〉, if and only if a1 is invertible in K, in which case the inverse of f (z) is
unique.

Finally, given a formal power series the question of how to compute its inverse

may arise. We require the following notation. Let [zn] f (z) be the coefficient of zn

in the series f (z). We will use Lagrange’s Implicit Function Theorem on a number of
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occasions; we state it in three forms, the second and third being clearly equivalent

(see, e.g., Goulden and Jackson [8, Section 1.2] or Stanley [27, Proposition 5.4.2] for

a proof).

Theorem 2.4.2. Suppose ψ ∈ K[[z]] is a formal power series with invertible constant
term. Then the functional equation s = zψ(s) has a unique formal power series solution
s = s(z). Moreover

a. For a formal power series F ∈ K[[x]], and n ≥ 0, we have

[zn]F(s)
z
s

ds
dz

= [yn]F(y)ψ(y)n.

b. For a formal Laurent series F ∈ K((x)) and n 6= 0, we have

[zn]F(s) =
1
n
[yn−1]

(
d

dy
F(y)

)
ψ(y)n,

and if n = 0 we have

[z0] F(s) = [y0] F(y) + [y−1] F′(y) log
(

φ(y)
φ(0)

)
.

c. Alternatively, suppose that H(z) is a formal power series with no constant term
and invertible linear coefficient and let F ∈ K((x)) be any Laurent series. Then, if
s = H(z)〈−1〉 we have for n 6= 0

[zn]F(s) =
1
n
[yn−1]F′(y)

(
y

H(y)

)n

.

Forms 2.4.2.b and 2.4.2.c of Lagrange’s Theorem are equivalent from the observa-

tion that if s = H(z)〈−1〉 then s = zψ(s), where ψ = z/H(z).

Theorem 2.4.2 is referred to as either Lagrange’s Theorem or as Lagrange in-

version. Throughout this thesis we use Lagrange’s Theorem in all of the forms in

Theorem 2.4.2, and we highlight which form we use when we feel it necessary.

2.5 Formal Residues

In this thesis, we shall on occasion need the residue theorem. In our application of

the residue theorem, however, we shall be in the context of formal Laurent series.
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We, thus, make sure that this is a valid application with the following two proposi-

tions. First, for any rational series T(z), let [z−1]∞ T(z) denote the coefficient of 1/z
when T(z) is expanded in powers of 1/z (so, we consider its formal Laurent series

in 1/z).

The next proposition expresses, essentially, that the residue is invariant under

translation.

Proposition 2.5.1. For any rational series T(z), we have

[z−1]∞ T(z) = [z−1]∞ T(z− c)

where c is any constant.

Proof. Using a partial fraction decomposition, for some k, α1, α2, . . . , αk, m1, m2, . . . , mk

the rational series T(z) is equal to

T(z) = B0(z) +
k

∑
i=1

Bi(z)
(z− αi)mi

= B0(z) +
k

∑
i=1

Bi(z)/zmi(
1− αi

z

)mi
,

where for 1 ≤ i ≤ k each Bi(z) is a polynomial with deg Bi(z) < mi and B0(z) is a

polynomial. Then,

[z−1]∞ T(z) =
k

∑
i=1

[zmi−1]Bi(z),

and since deg Bi(z) < mi, we have

[zmi−1] Bi(z) = [zmi−1] Bi(z− c),

and we obtain our result. 2

Finally, we have the formal series version of the residue theorem. Note that the

following only deals with the case where all poles are simple, which is all we use

in this thesis.

Proposition 2.5.2. For D(z) = ∏k
i=1(z − αi), with αi all distinct, and a polynomial

N(z) we have

[z−1]∞
N(z)
D(z)

=
k

∑
i=1

N(αi)
D′(αi)
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Proof. Again, using partial fractions

N(z)
D(z)

= B0(z) +
k

∑
i=1

Bi

z− αi
(2.7)

= B0(z) +
k

∑
i=1

Bi/z
1− αi

z
, (2.8)

where Bi are constants and B0(z) is a polynomial. Multiplying (2.7) by z− αj and

evaluating the result at z = αj we obtain

N(αj)

∏k
i=1
i 6=j

(αj − αi)
= Bj. (2.9)

But

D′(αj) =
k

∏
i=1
i 6=j

(αj − αi), (2.10)

and comparing (2.9) and (2.10) to (2.8), the result follows. 2





Chapter 3

Kerov’s Character Polynomials

In this chapter we investigate the first type of character polynomial discussed in

Chapter 1, Kerov’s character polynomials. Briefly, Kerov’s character polynomials

are polynomials in variables R2, R3, . . . , which are functions from Young diagrams

to complex numbers, that exactly evaluate the normalized character given in (2.1).

Recall from Chapter 1 that the fifth Kerov polynomial is

Σ5 = R6 + 15 R4 + 5 R2
2 + 8 R2.

For general k, the Kerov polynomial Σk is somewhat of a mystery. Notice that the

term of “highest weight” in Σ5 is R6; it is known that the term of highest weight in

Σk is Rk+1. But aside from a few other results, little is known about the coefficients

of Kerov’s polynomials. It is conjectured that the coefficient of each term is positive.

In Section 3.1, we introduce the basic material on Kerov polynomials. In Section

3.2, we describe the historical motivation behind Kerov’s polynomials; this moti-

vation comes from recent results by Biane concerning the asymptotics of characters.

In Section 3.3 we cover preliminary results important to the rest of the thesis; in

particular, we include the proof of Macdonald of Frobenius’ expression for char-

acters upon which the computation of Kerov’s polynomials (and the polynomials

in Chapter 4) relies. Finally, in Section 3.4, we state our main result in Theorem

3.4.1, followed by two variants of the main result. In Section 3.5, we give applica-

tions of the main result, including providing affirmative answers to some positivity

conjectures. The proof of the main result is delayed until Section 3.6.

19
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3.1 Background

In this chapter we shall see that the normalized character χ̂ω(k 1n−k), given in (2.1),

has a polynomial expression. The statement of this expression requires some no-

tation involving partitions ω of n, which we develop now. We adapt the follow-

ing description from Biane [2, 3]: consider the Young diagram of ω, in the French

convention (see Section 2.2, Figure 2.1), and translate it, if necessary, so that the

bottom left of the diagram is placed at the origin of an (x, y) plane. Finally, rotate

the diagram counter-clockwise by 45◦. Note that ω is uniquely determined by the

y2x2y1x1 x4y3x3

|x|

τω(x)

Figure 3.1: The partition (4 3 3 3 1) of 14, drawn in the French convention, and ro-

tated by 45◦.

curve τω(x) (see Figure 3.1). The value of τω(x) is equal to |x| for large negative

or positive values of x and it is clear that τ′ω(x) = ±1, where differentiable. The

interlacing sequence of points xi and yi in Figure 3.1 are the x-coordinates of the

local minima and maxima, respectively, of the curve τω(x). We suitably scale the

size of the boxes in Young diagrams so that the points xi and yi are integers. We

call the sequence

x1 < y1 < x2 < y2 < · · · < xm−1 < ym−1 < xm
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the interlacing sequence of maxima and minima associated with ω. Note that another

way to look at this sequence of interlacing points is that they are the sequence

of contents (see page 12) of the boxes immediately below the corners (after the

above rotation has taken place). For example, in Figure 3.1, the box below the

corner which is above the x-coordinate y1 has content -4 (keeping in mind that

the partition in Figure 3.1 was drawn in the French convention and then rotated),

implying that y1 = −4. We also call the local minima and maxima of the diagram

the inside and outside corners, respectively, of the diagram. Setting

σω(x) = (τω(x)− |x|)/2, (3.1)

consider the function

Hω(z) =
1
z

exp
∫

R

1
z− x

σ′ω(x) dx. (3.2)

For now assume that an interlacing sequence of points xi and yi satisfy

x1 < y1 < x2 < y2 < · · · < yt−1 < xt < 0 < yt < xt+1 < · · · xn−1 < yn−1 < xn,

so 0 lies between the tth minimum and tth maximum (other interlacing sequences

are dealt with in a similar manner). Then (3.2) becomes

1
z

exp

(
t−1

∑
i=1

(∫ yi

xi

1
z− x

(1) dx +
∫ xi+1

yi

1
z− x

(0) dx
)

+
∫ 0

xt

1
z− x

(1) dx +
∫ yt

0

1
z− x

(0) dx

+
m−1

∑
t

(∫ xi+1

yi

1
z− x

(−1) dx +
∫ yi

xi+1

1
z− x

(0) dx
))

=
1
z

exp

(
t−1

∑
i=1

(log(z− yi)− log(z− xi))−
m−1

∑
i=t

(log(z− xi+1)− log(z− yi))

)

=
1
z

exp

(
m−1

∑
i=1

(log(z− yi)− log(z− xi)) + log z− log(z− xm)

)

=
∏m−1

i=1 (z− yi)
∏m

i=1(z− xi)
,

that is,

Hω(z) =
∏m−1

i=1 (z− yi)
∏m

i=1(z− xi)
, (3.3)

where m is the number of inside corners in the diagram ω. Note that Hω(z) has a

power series expansion in 1/z (see Section 2.5), i.e.

Hω(z) = z−1 +
∞

∑
k=1

Mkz−k−1. (3.4)
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Now let Rω(z) = 1 + Ri(ω)zi, i ≥ 1 be defined by

Rω(z) = zH〈−1〉
ω (z), (3.5)

where 〈−1〉 denotes compositional inverse.

Although the series Hω(z) and Rω(z) are derived purely from the shape of the

tableau ω, they can be used to evaluate the normalized character χ̂ω(k 1n−k). In

fact, one can express the normalized characters in terms of the Ri(ω). Furthermore,

this expression is a polynomial in the Ri(ω) and this expression is independent of ω,

as is expressed in the following theorem. We give Biane’s proof of the theorem in

Section 3.3.1.

Theorem 3.1.1 (Biane, Kerov). For k ≥ 1, there exist universal polynomials Σk, with
integer coefficients, such that

χ̂ω(k 1n−k) = Σk(R2(ω), R3(ω), . . . , Rk+1(ω)), (3.6)

for all ω ` n with n ≥ k.

These polynomials are the subject of this chapter. They first appear in the lit-

erature in Biane [1], and with proof in Biane [3, Theorem 1.1]. The author of those

two papers, however, attributes Theorem 3.1.1 to Kerov, who described this result

in a talk at an IHP conference in 2000. We have, therefore, associated both names

with the theorem here. The polynomials Σk are known as Kerov’s character polynomi-
als. They are referred to as “universal polynomials” in Theorem 3.1.1 to emphasize

that they are independent of ω and n, subject only to n ≥ k. Thus, we now write

Kerov’s polynomials with Ri(ω) replaced by an indeterminate Ri, i ≥ 2 for each

i. In indeterminates Ri, the first six of Kerov’s character polynomials, as listed in

Biane [3], are given below:

Σ1 = R2

Σ2 = R3

Σ3 = R4 + R2

Σ4 = R5 + 5R3

Σ5 = R6 + 15R4 + 5R2
2 + 8R2

Σ6 = R7 + 35R5 + 35R3R2 + 84R3

(3.7)
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3.2 Motivation: Asymptotics of Characters and Free Proba-

bility

Although we largely consider Kerov’s polynomials from a formal series aspect,

we briefly look at their origins in studying the asymptotics of symmetric group

characters.

Much is known about the characters of the symmetric group. The connections

to the ring of symmetric functions provide a computational tool for computing

the characters. There are also well known algorithms, such as the Murnaghan-

Nakayama rule (see Theorem 2.3.1), to compute irreducible characters. When the

group Sn is large, however, these algorithms become cumbersome and somewhat

ineffective. Thus, in order to answer questions about large symmetric group char-

acters, we must move to a different approach.

The approach that has been recently explored is a probabilistic one and, more

precisely, it appears that the theory of free probability provides the correct setting.

Very briefly, free probability can be viewed as a highly non-commutative probabil-

ity (that, in fact, does not reduce to classical probability in the commutative case),

where the notion of independence is replaced by a notion of freeness. In the ex-

amples given later in this section, Biane [2] used the theory of free probability to

obtain asymptotic results for characters. Futhermore, the presence of non-crossing

partitions plays a role in both free probability and the asymptotics of the symmetric

group, and this appears not to be a coincidence. In fact, this connection has been

explored recently (see Śniady [25]).

The approach is as follows. Define a set of generalized Young diagrams to be the

set of continuous real functions τω(x), as we did for the diagram in Figure 3.1.

Note, that τω(x) has the properties

1. |τω(u1)− τω(u2)| ≤ |u1 − u2| for all u1, u2 ∈ R,

2. τω(u) = |u| for all u ∈ R, such that |u| is sufficiently large.

It turns out there is a one-to-one correspondence between continuous Young dia-

grams ω and probability measures mω on R with compact support that satisfy

Hω(z) =
1
z

exp
∫

R

1
z− x

σ′ω(x) dx =
∫

R

1
z− x

d(mω),

where σ′ω(x) is defined as in (3.2) (see Kerov [18, 19]). Thus, we can now think

of Young diagrams as measures on the real line, and operations on those measures
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giving rise to other Young diagrams. The advantage of this is clear; we can now

use the tools and techniques of analysis to study Young diagrams. The series∫
R

1
z− x

d(mω)

is known as the moment generating series (since the coefficient of (1/z)k+1 in this

series is ∫
R

xkd(mω),

which is the kth moment of the measure mω) or the Cauchy transform of the measure

mω. From probability theory, the full set of moments (or the moment generating

series) of the probability measure mω describes the measure uniquely, since mω has

compact support.

In fact, the measure mω has a very concrete description in terms of ω. If the

associated interlacing sequence of ω is (xi)1≤i≤m and (yi)1≤i≤m−1 then the measure

mω is

mω =
m

∑
i=1

µkδxk ,

where δxk is the usual delta function at xk and

µk =
∏m−1

i=1 (xk − yi)
∏m

i=1
i 6=k

(xk − xi)
.

This gives the correct measure as∫
R

1
z− x

d(mω) =
∫

R

1
z− x

m

∑
k=1

∏m−1
i=1 (xk − yi)

∏m
i 6=k(xk − xi)

δxk

=
m

∑
k=1

1
z− xk

∏m−1
i=1 (xk − yi)

∏m
i=1
i 6=k

(xk − xi)
,

which is the partial fraction decomposition of the rational function on the right

hand side of (3.3). The free cumulant generating series of the measure ω is defined as

the inverse of the moment generating series, as in (3.5). Although free cumulants

on the surface seem to simply complicate matters, some operations with measures

are simpler in terms of the cumulants. For example, the moments of the (free) con-

volution of measures µ � λ have no simple expression in terms of the moments of

the individual measures, which is a drawback, as we shall soon see. However, in

terms of the free cumulants Ri we have the following very simple relationship:

Ri(µ � λ) = Ri(µ) + Ri(λ) (3.8)
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(in fact, (3.8) is often taken as the definition of free convolution). After defining

these concepts and putting them in the context of free probability, one now has

the tools of analysis and the theory of free probability at one’s disposal to obtain

asymptotic results about the symmetric group, as has been carried out in Biane [2].

Example 3.2.1 (Asymptotics of Characters). Prior to the use of free probability the-

ory, Kerov and Vershik [20] gave asymptotic results concerning the representation

of the infinite symmetric group. Their results, however, were mainly concerned

with Young diagrams of order n, the shape of which has largest part approximately

n. Most Young diagrams, however, do not have this property; in fact, it can be

shown (see Biane [2]) that most Young diagrams of order n have largest part and

number of parts approximately of order
√

n. We call a Young diagram balanced if it

has this property. Now consider a sequence of permutations σn ∈ Sn, n ≥ 1, where

each σn is balanced and each σn has ki cycles of length i. Setting r = ∑i iki, we have

lim
n→∞

χω(σn)
χω(1n)

= ∏
i≥2

Rki
i+1(ω)n−r + O(n−

r+1
2 ),

or, equivalently
χω(σn)
χω(1n)

−→∏
i≥2

Rki
i+1(ω)n−r. 2

There are standard questions that can be asked and have been answered about

small representations of the symmetric group. For example, the Kronecker prod-

uct of two irreducible representations in Example 2.1.7.b is not itself irreducible, so

a natural question to ask is what it is as the sum of irreducible characters. When

considering large symmetric groups, however, one can give only statistical infor-

mation about this sum.

Example 3.2.2 (Asymptotics of Restriction). Suppose that ω is a generalized Young

diagram. For any real t such that 0 ≤ t ≤ 1, there is a unique diagram ωt whose

free cumulants satisfy Rn(ωt) = tn−1Rn(ω). Suppose ωn is a sequence of general-

ized Young diagrams that, after a suitable rescaling, converges to the diagram ω as

n −→ ∞, and pn is a sequence such that pn/n −→ t as n −→ ∞. Then, the restric-

tion of the representations [ωn] to the group Spn is “close” to the representation

[ωt]. See Biane [2, 3] for details. 2

Example 3.2.3 (Asymptotics of Induction). We now consider the case of the outer

product of representations. Recall that given two representations [λ] and [µ] of Sn

and Sm, then the outer product [λ] ◦ [µ] is the representation of Sn+m induced by
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the Kronecker product [λ]⊗ [µ], a representation of Sn ×Sm. We note a few facts

about the outer product. The structure constants of the outer product, that is the

constants gγ
λ,µ given by

[λ] ◦ [µ] = ∑
γ

gγ
λ,µ[γ],

are known as the celebrated Littlewood-Richardson coefficients. They are most often

seen as the structure constants in the product of Schur symmetric functions:

sλsµ = ∑
γ

gγ
λ,µsγ.

Let pn and qn be sequences of integers asymptotic to
√

n, and λn and µn be dia-

grams with pn and qn boxes which, when scaled, converge to λ and µ, respectively.

Then, the outer product [λn] ◦ [µn], a representation of Spn+qn that is the induced

representation of [λn]⊗ [µn] of Spn ×Sqn , approaches the diagram [λ] � [µ], when

properly scaled. As mentioned in (3.8), the free cumulants of [λ]� [µ] have a simple

expression in terms of [λ] and [µ]. See Biane [2, 3] for details. 2

The previous examples give motivation and a historical context for Kerov’s

polynomials. Although the asymptotics of characters were the original setting in

which Kerov’s polynomials first appear, we shall not be studying this aspect of

Kerov’s polynomials. Here, we will study Kerov’s polynomials for their own sake,

not only because they can facilitate the computation of characters, but also because

Theorem 3.1.1 is certainly a surprising and significant result.

3.3 Preliminaries and Previous Results

Before we explain how to obtain the Kerov polynomials, we first give an example

of how they can be used to compute the characters χλ(k 1n−k). We do this by taking

a Kerov polynomial from (3.7) and computing the Ri(λ) from the series Hλ(z).

Example 3.3.1. We use (3.4) and (3.5) to compute the character χ(4 3 3 3 1)(5 19), i.e.
we compute the character for the shape in Figure 3.1 evaluated at a 5-cycle.

We will use Lagrange’s Theorem 2.4.2 to compute the relevant Rk(ω) from (3.4)

and (3.5). To use Lagrange’s Theorem, we express Rω(z) in terms of the power series
Hω(1/z). Clearly, from (3.5),

Hω(Rω(z)/z) = z,
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so 1

(Hω(1/z))〈−1〉 =
z

Rω(z)
,

giving

Rω(z) =
z

(Hω(1/z))〈−1〉 . (3.9)

For the shape (4 3 3 3 1) we have

Hω(1/z) =
z(1 + 4z)(1 + z)(1− 3z)

(1 + 5z)(1 + 3z)(1− 2z)(1− 4z)

= z + 14z3 − 14z4 + 258z5 − 502z6 + · · ·

and

Rk(ω) = [zk]
z

(Hω(1/z))〈−1〉

= − 1
k− 1

[z]
(

1
Hω(1/z)

)k−1

.

One can easily compute that R2(ω) = 14, R4(ω) = −134 and R6(ω) = 2358. Using

Kerov’s polynomial for Σ5 in (3.7) and specializing to the shape ω, we compute

χ̂ω(5 19) = R6 + 15R4 + 5R2
2 + 8R2

= 2358 + 15(−134) + 5(14)2 + 8(14)

= 1440,

which gives

χω(5 19) =
χω(114)
(14)5

χ̂ω(5 19)

=
21021

240240
1440

= 126. 2

All coefficients appearing in the list (3.7) are positive. It is conjectured that this

holds in general: that for any k ≥ 1, all nonzero coefficients in Σk are positive. In

Biane [3], this conjecture, which we shall call the R-positivity conjecture, is attributed

to Kerov. It has been verified for all k up to 15 by Biane [1], who computed Σk for

1To clarify this notation, (Hω(1/z))〈−1〉 means ”take the compositional inverse of the function
Hω(1/z)” whereas H〈−1〉

ω (1/z) means ”take the compositional inverse of Hω(z) and substitute 1/z
for z in the result”.
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k ≤ 15, using an implicit formula for Σk (see (3.19) and (3.20) below or Biane [1,

Theorem 5.1]) that he credits to Okounkov (private communication). Biane further

comments that “It seems plausible that S. Kerov was aware of this (see especially

the account of Kerov’s central limit theorem in Ivanov and Olshanski [16]).”

We are now in a position to find an explicit expression for Kerov’s polynomials.

Our treatment of the subject begins with a very brief summary of Biane’s Theorem

3.1.1; we are less interested in the actual existence of Kerov polynomials and more

interested in how to compute them. There is, however, one aspect of Biane’s proof

that we mention here, stated in Theorem 3.3.6.

3.3.1 The Existence of Kerov’s Polynomials

We include this section for two reasons: to emphasize the combinatorics underly-

ing Kerov polynomials and to give a proof of Theorem 3.3.6 below, as it is important

in this chapter and the next. Our treatment of this material, however, is brief as we

are primarily interested in determining Kerov’s polynomials.

Let λ be a Young diagram with k boxes and let n ≥ k. Suppose φ is an injective

map from the cells of λ to the set [n] = {1, 2, . . . , n}, and let σφ to be the permutation

in Sn whose cycles are given by the rows of φ(λ) (see Figure 3.2). Note, in λ parts

of size 1 only contribute fixed point to σφ. Define Φλ be the collection of all such

7

9

1

2

10

13

15 5

4

6

19 12

Figure 3.2: An example of an injection φ from cells of a diagram to [19]. The per-

mutation σφ is (10 15 5 19 12)(1 13 4)(9 2 6).

maps, and let aλ;n be the member of the group algebra of C[Sn] which is the formal

sum of all the elements in Φλ; that is,

aλ;n = ∑
φ∈Φλ

σφ.

We abbreviate a(k);n by ak;n. It follows that a1;n = n.e, where e is the identity in

Sn. Furthermore, define the sign of a partition λ to be (−1)|λ|−`(λ), and denote it
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by sign(λ) (hence, if a permutation σ is in the conjugacy class Cλ, then sign(λ) =
ε(σ)). Finally, define the weight of a term ai1;nai2;n · · · aip;n in the group algebra C[Sn]
as i1 + i2 + · · · + ip − p. The following theorem, although not stated exactly as

below, is proved in Biane [1, Lemma 3.1]. We do not reproduce the proof here; the

proof is by induction on the number of parts of a partition.

Lemma 3.3.2 (Biane). There exist polynomials Pλ, with integer coefficients and indepen-
dent of n, such that

aλ;n = Pλ(a1;n, a2;n, . . . , a|λ|;n).

Furthermore, each monomial in Pλ has weight congruent to sign(λ)(mod 2).

Let Jn be the members of the group algebra C[Sn+1] given by

Jn = (1 ∗) + (2 ∗) + · · ·+ (n ∗),

where the symbols on which Sn+1 acts are 1, 2, . . . , n, ∗ (we use the symbol “∗”
to distinguish it from the other symbols). The Jn are commonly known as Jucys-
Murphy elements. There is a natural embedding of Sn in Sn+1 (consisting of per-

mutations with ∗ as a fixed point), and define an expectation En as the projection

of C[Sn+1] onto C[Sn], given by En(σ) = σ if σ ∈ Sn and 0 otherwise. We can

take the kth moment of a Jucys-Murphy element with respect to this expectation,

i.e.Mk = En(Jk
n). From this we can contruct the kth free cumulantRk of Jk

n by

Rk = ∑
l1,l2,...lr
∑ jlj=k

(−1)1+l1+l2+···+lr k− 2 + ∑i li
l1!l2! . . . lr!(k− 1)!

Ml1
1M

l2
2 · · ·M

lr
r (3.10)

(note that this is obtained by using Lagrange inversion and finding the kth coeffi-

cient on the right hand side of (3.5)). Let the weight of the monomial Ri1
j1

. . .Rit
jt

be ∑t
l=1 il jl . We apply the term “weight” as in the last context whenever it is ap-

propriate; that is, the weights of the monomialsMi1
j1

. . .Mit
jt and Ri1

j1
. . . Rit

jt are also

∑t
l=1 il jl . We also find it useful to refer to the sign of a monomial of R’s (or M’s) of

weight k, which is (−1)k.

The following lemma connectsRk and the free cumulants of the series (3.5) and

is found in Biane [1, Lemma 4.1].

Lemma 3.3.3 (Biane).
χω(Rk)
χω(1n)

= Rk(ω).
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We note that the proof of the previous lemma involves the computation of the

eigenvalues of the Jucys-Murphy elements (i.e., the images of the Jucys-Murphy

element under the left regular representation), as computed in Okounkov and Ver-

shik [23].

The following theorem has very important consequences and it is found in

Biane [1, page 6]. Example 3.3.5 follows the proof of the theorem and amplifies

some of the details omitted in the proof.

Theorem 3.3.4 (Biane). For k ≥ 2 and n ≥ k, we have

ak−1;n = Rk + {terms ofRj with j < k}. (3.11)

Furthermore, the expression on the right hand side of (3.11) only involves terms with sign
(−1)k.

Proof (Biane). We see that Mk, which equals the expectation En(Jk
n), can be com-

puted in the following way. Clearly,

Jk
n = ∑

i1,i2,...,ik∈[n]
(i1 ∗)(i2 ∗) · · · (ik ∗). (3.12)

By definition, a term (i1 ∗)(i2 ∗) · · · (ik ∗) in this sum gives a non-trivial contri-

bution to Mk if and only if (i1 ∗)(i2 ∗) · · · (ik ∗) fixes ∗. Let us explore precisely

when this happens by tracking successive partial products of transpositions. For

convenience, set σ = (i1 ∗)(i2 ∗) · · · (ik ∗).

If i1, i2, . . . , ik are all distinct, then ∗ is not fixed by σ, since then σ(∗) = ik,

implying σ does not contribute to Mk. In fact, if σ fixes ∗ it is clear that one of

i1, i2, . . . , ik−1 must equal ik. Suppose that ij1 = ik. Then, we have (ij1 ∗) · · · (ik k)
fixing ∗, and we are left to repeat the previous argument on (i1 ∗) · · · (ij1−1 ∗); that

is, if ∗ is fixed by (i1 ∗) · · · (ij1−1 ∗), then for some j2 we have ij2 = ij1−1. In this

manner we obtain a sequence j1, j2, . . . , jt, and σ fixes ∗ if and only if jt = 1. The

sign of all the permutations on the right hand side of (3.12) is (−1)k.

Let π be the partition of [k] such that l and m are in the same part if and only

if il = im; we write i1, i2, . . . , ik ∼ π and say π is the partition associated with the

sequence i1, . . . , ik. The conjugacy class of σ in Sn+1 only depends on this partition

and not on the actual sequence i1, i2, . . . , ik. Accordingly, let λ(π) be the conjugacy

class to which π gives rise, and set

Zπ = ∑
i1,i2,...,ik∼π

(i1 ∗)(i2 ∗) · · · (ik ∗).
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Furthermore, call the partitions π for which λ(π) fixes ∗ admissible. Evidently,

Mk = ∑
π admissible

Zπ.

As usual, set `(π) to be the number of parts in π. Then, we see that the num-

ber of sequences i1, i2, . . . , ik associated with an admissible partition λ is (n)`(π)

since, after linearly ordering the parts of π, the first part of π gives a set of integers

{b1, . . . , br} which means that ib1 = · · · = ibr , and the number of choices for this

common integer is n. Similarly, the second part of π is some set {c1, . . . , ct} imply-

ing that ic1 = · · · = ict , and there are n− 1 choices for this common integer. The

argument continues in this fashion. By symmetry, all terms in aλ(π);n appear the

same number of times in the sum, and from the definition of aλ(π);n the number of

terms in a aλ(π);n is (n)|λ(π)|. Since |λ(π)| ≤ `(π), we arrive at the expression

Zπ =
(n)`(π)

(n)|λ(π)|
aλ(π);n.

The longest cycle for an admissible partition is k− 1; this occurs if and only if the

admissible partition is {1, k}, {2}, . . . , {k− 1}. For all other admissible partitions π

we have `(π) < k− 1. Thus, we see

Mk = ak−1;n + ∑
π admissible

weight of π<k−1

(n)`(π)

(n)|λ(π)|
aλ(π);n.

From the comments earlier concerning the sign of the permutations in the sum, the

right hand side of the last equation only contains terms of sign (−1)k. Applying

Lemma 3.3.2, we conclude that

Mk = ak−1;n + (polynomial in aj;n: where j < k− 1 and the sign

of each term is (−1)k).

We invert this equation to obtain

ak−1;n =Mk + (polynomial inMj: where j < k and the

sign of all terms is (−1)k).

Finally, from (3.10) we have

ak−1;n = Rk + (polynomial inRj: where j < k and the

sign of all terms is (−1)k),

and the result follows. 2
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To illustrate the details in the proof of Theorem 3.3.4, we provide the following

example.

Example 3.3.5. The product of the following k = 8 transpositions

(1 ∗)(2 ∗)(3 ∗)(1 ∗)(9 ∗)(1 ∗)(2 ∗)(9 ∗)

is (1 9)(2 3). Here the sequence i1, . . . , ik is 1, 2, 3, 1, 9, 1, 2, 9. The sequence j1, . . . , jt
in the proof is 5, 1 and, indeed, ∗ is a fixed point of the product of transposi-

tions. The partition associated with the above sequence 1, 2, 3, 1, 9, 1, 2, 9 is π =
{1, 4, 6}{2, 7}{3}{5, 8}. The product

(5 ∗)(2 ∗)(4 ∗)(5 ∗)(1 ∗)(5 ∗)(2 ∗)(1 ∗)

also has π associated to it and, indeed, the product evaluates as (1 5)(2 4), which

has the same conjugacy class as (1 9)(2 3). We, therefore, have confirmed that π is

admissible in this case.

Note that the product

(2 ∗)(2 ∗)(3 ∗)(1 ∗)(9 ∗)(1 ∗)(2 ∗)(9 ∗)

is (1 9 2 3 ∗), making the partition {1, 2, 7}, {3}, {4, 6}, {5, 8} not admissible. The

sequence j1, . . . , jt in this case is 5, and jt 6= 1. 2

Proof of Theorem 3.1.1 (Biane). Applying Lemma 3.3.3 to Theorem 3.3.4, we obtain

χω(ak:n)
χω(1n)

=
χω(Rk+1)

χω(1n)
+
(

terms of
χω(Rj)
χω(1n)

with j ≤ k and sign (−1)k+1
)

,

and since the number of terms in ak;n is (n)k we have

(n)k
χω(k 1n−k)

χω(1n)
= Rk+1(ω) +

(
terms of Rj(ω) with j ≤ k and sign (−1)k+1

)
,

allowing us to conclude that

χ̂ω(k 1n−k) = Rk+1(ω) +
(

terms of Rj(ω) with j ≤ k and sign (−1)k+1
)

,

completing the proof. 2

The proof of Theorem 3.1.1 also provides a proof of the following theorem.

Theorem 3.3.6 (Biane). In the Kerov polynomial Σk only terms of sign (−1)k+1 appear
with non-zero coefficient; that is, only terms of weight i, where i ≡ k + 1(mod 2) appear
with non-zero coefficient.
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3.3.2 Computation of Kerov’s Polynomials and Frobenius’ Expression
for Characters

At this point we have given no indication of how to compute a Kerov polynomial.

We have seen how one can use them to compute characters in Example 3.3.1 but, to

this point, the Kerov polynomials given in (3.7), even the first two, are not obvious.

We will now fully lay out the ground work that we use later to compute Kerov’s

polynomials.

From Theorem 2.2.5 we see that the character is the coefficient of xµ in aδ pρ.

This, as we have seen in Chapter 2, is based on the basic character expansion of the

Schur functions in terms of the power sum symmetric functions. Below, we include

Frobenius’ formula for the normalized character. This formula at first appears too

complex to carry out the Lagrange inversion calculation, but we shall see an explicit

formula for Kerov’s polynomials can be determined from it.

Our first step is to find an expression for the degree of the character λ. We begin

with a technical lemma.

Lemma 3.3.7. For any y1, y2, . . . , yn we have

det
(
(yi)j

)
1≤i,j≤n = det

(
yj

i

)
1≤i,j≤n

Proof. It is well known that Stirling numbers of the second kind satisfy the equation

xj =
j

∑
r=0

S(j, r) (x)r. (3.13)

(see Stanley [26, Section 1.4]). Applying this to the n variables y1, y2, . . . , yn, we

have

yj
i =

j

∑
r=0

S(j, r) (yi)r.

Since S(i, j) = 0 if j > i, the matrix (S(i, j))1≤i,j≤n is triangular. Moreover, S(i, i) = 1

for all i, making det(S(i, j)) = 1. The result now follows. 2

The determinant det
(

yj
i

)
1≤i,j≤n

given in Lemma 3.3.7 is known as the Vandermonde

determinant and is equal to ∏i<j(yi − yj). We use the notation ∆(y1, y2, . . . , yn) to

denote the Vandermonde determinant. As in Section 2.2.1, let ω = ω1ω2 · · ·ω` ` n
be a partition of n with ` parts, and there are αi parts of size i. For convenience, we

define ω`+1, . . . , ωn = 0 and consider ω = ω1 . . . ωn. Recall from Section 2.2 that

the staircase sequence of length n is δ = n− 1 n− 2 . . . 0. Finally, set µi = ωi + δi =
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ωi + n− i. With this notation we have the following expression for the degree of

χω. The proof is as presented in Macdonald [21, Section I.7, Exercise 6].

Lemma 3.3.8 (Frobenius). The degree of the symmetric group character χω is

f ω =
n!
µ!

∆(µ1, µ2, . . . , µn),

where µ! = µ1! · · · µn!.

Proof (Macdonald). From Theorem 2.2.5 we see that f ω = χω(1n) is

[xµ]aδ p(1n) =

(
∑

σ∈Sn

ε(σ)xσ(δ)

)(
n

∑
i=1

xi

)n

= [xµ]

(
∑

σ∈Sn

ε(σ)xσ(δ)

)(
n

∑
i=1

xi

)n

= ∑
σ∈Sn

ε(σ)[xµ]xσ(δ)

(
n

∑
i=1

xi

)n

. (3.14)

But,

[xµ]xσ(δ)

(
n

∑
i=1

xi

)n

=
(

n
µ1 − n + σ(1), µ2 − n + σ(2), . . . , µn − n + σ(n)

)
,

so,

[xµ]aδ pρ = ∑
σ∈Sn

ε(σ)n!
1

∏n
i=1 (µi − n + σ(i))!

.

The last expression has a compact description; it is precisely the permutation char-

acterization of the determinant:

∑
σ∈Sn

ε(σ)n!
1

∏n
i=1 (µi − n + σ(i))!

= n! det
(

1
(µi − n + j)!

)
1≤i,j≤n

.

Proceeding, we see

n! det
(

1
(µi − n + j)!

)
=

n!
µ!

det
(
(µi)n−j

)
1≤i,j≤n

=
n!
µ!

det
(

µ
n−j
i

)
1≤i,j≤n

=
n!
µ!

∆(µ1, µ2, . . . , µn),

where the second equality follows from Lemma 3.3.7. 2



Chapter 3 Kerov’s Character Polynomials 35

We now give the expression for characters due to Frobenius; this expression will

eventually lead to our explicit expression for Kerov’s polynomials, given below in

Theorem 3.4.1.

Theorem 3.3.9 (Frobenius).

χ̂ω(k 1n−k) = −1
k
[z−1]∞(z)k

θ(z− k)
θ(z)

, (3.15)

where

θ(z) =
n

∏
i=1

(z− µi),

µi = ωi + n− i, for 1 ≤ i ≤ n ,

(3.16)

Recall from Section 2.5, that [z−1]∞ is the coefficient of [z−1] when the trailing series

is expanded in powers of 1
z . We point out that µi = n− i if i ≥ ` + 1. The following

is a proof as presented in Macdonald [21, Section I.7, Exercise 7].

Proof (Macdonald). From Theorem 2.2.5 we have

χω(k 1n−k) = [xµ]aδ pk p(1n−k)

= [xµ]

(
∑

σ∈Sn

ε(σ)xσ(δ)

)(
n

∑
i=1

xk
i

)(
n

∑
i=1

xi

)n−k

=
n

∑
i=1

[xµ]xk
i

(
∑

σ∈Sn

ε(σ)xσ(δ)

)(
n

∑
i=1

xi

)n−k

=
n

∑
i=1

(n− k)!∆(µ1, . . . , µi − k, . . . , µn)
µ1! · · · (µi − k)! · · · µn!

where the last equation follows from (3.14). Thus, the normalized character χ̂ω(k 1n−k)
is given by

χ̂ω(k 1n−k) =
n!

(n− k)!
χω(k 1n−k)

f ω

=
n

∑
i=1

µi!
(µi − k)! ∏

j 6=i

µi − µj − k
µi − µj

= −1
k

n

∑
i=1

µi!
(µi − k)!

∏j µi − µj − k

∏j 6=i µi − µj

= −1
k

n

∑
i=1

µi(µi − 1) · · · (µi − k + 1)
θ(µi − k)

θ′(µi)

= −1
k
(z)k

θ(z− k)
θ(z)

,

where the last line follows from Proposition 2.5.2. This completes the proof. 2
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A brief version of the following lemma is given in Biane [1], and we amplify the

details here.

Lemma 3.3.10 (Biane). The rational function Hω(z) for ω ` n given in (3.3) is related
to the function θ above by

1
Hω(z− n)

=
zθ(z− 1)

θ(z)
.

Proof (Biane). Let ω and µ be as defined in (3.16). Then,

zθ(z− 1)
θ(z)

= z
n

∏
i=1

(z− 1− µi)
(z− µi)

= z
`

∏
i=1

(z− n− (ωi − i + 1))
(z− n− (ωi − i))

n

∏
i=`+1

(z− n + i− 1)
(z− n + i))

= (z− n + `)
`

∏
i=1

(z− n− (ωi − i + 1))
(z− n− (ωi − i))

. (3.17)

Note that for a block t, t + 1, . . . , r, where ωt = ωt+1 = · · · = ωr, we have

r

∏
i=t

(z− n− (ωi − i + 1))
(z− n− (ωi − i))

=
(z− n− (ωt − t + 1))

(z− n− (ωr − r))
. (3.18)

Thus, for a block in ω where all the parts are equal, only two terms of the product
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ωt − t + 1

ωr − r

Figure 3.3: Only the corners of a diagrams survive as non-trivial terms.

on the left hand side of (3.17) survive; the first box (in the numerator) and the

last box (in the denominator). Note that both of these values are the contents of
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the boxes immediately up and left from a corner (see Figure 3.3). Recall that the

corners of type ωt − t + 1 and ωt − t are inside and outside corners, respectively.

The factor z− n + ` outside the product in (3.17) is the last corner. Furthermore, if

we were to draw the diagram as in Figure 3.1, we would see that the values of the

inside corners ωt − t + 1 correspond to the local minima and, likewise, the outside

corners to the local maxima. Thus, the numerator of (3.17) is a product of the form

`

∏
i=1

(z− n− xi),

where the xi are the values of the local minima when the diagram of ω is rotated

as in Figure 3.1, and similarly for the denominator. Therefore, we see that (3.17) is

simply the reciprocal of the rational function given in (3.3). 2

From (3.15) we obtain

χ̂ω(k 1n−k) = −1
k
[z−1]∞(z) · (z− 1) · · · (z− k + 1)

θ(z− k)
θ(z)

= −1
k
[z−1]∞ z

θ(z− 1)
θ(z)

(z− 1)
θ(z− 2)
θ(z− 1)

· · · (z− (k− 1))
θ(z− k)

θ(z− (k− 1))

= −1
k
[z−1]∞

1
Hω(z− n)

1
Hω(z− n− 1)

· · · 1
Hω(z− n− (k− 1))

.

Applying Proposition 2.5.1 to the previous expression, we have

χ̂ω(k 1n−k) = −1
k
[z−1]∞

1
Hω(z)

1
Hω(z− 1)

· · · 1
Hω(z− (k− 1))

. (3.19)

However, we saw in (3.9) that

Ri+1(ω) = −1
i
[z−1]∞

(
1

Hω(z)

)i

. (3.20)

The last two equations hold for any ω, so substituting G(z) = 1
H(z) and replac-

ing the coefficients in G(z) by indeterminates, and noting by Theorem 3.1.1 that

Kerov’s polynomials are universal, we obtain the following implicit formula for

Kerov’s polynomials, which can be found, with essentially the above proof, in

Biane [1, Theorem 5.1].

Theorem 3.3.11 (Biane). Let G be the power series

G(z) = ∑
j≥1

gjzj.
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Define Sk to be

Sk = −1
k
[z−1]∞

k−1

∏
i=0

G(z− j),

and
Ri+1 = −1

i
[z−1]∞ G(z)i.

Then, when Sk is expressed in terms of the Ri, it gives Kerov’s polynomials.

We shall, however, mainly be using the following slight modification of Theorem

3.3.11, as it is more convenient in terms of our notation. This corollary can be found

in Stanley [29] (without proof).

Corollary 3.3.12 (Stanley). Let R(x) = 1 + ∑i≥2 Rizi and

F(z) =
z

R(z)
, G(z) =

1
F〈−1〉(z−1)

. (3.21)

Then, for k ≥ 1,

Σk = −1
k
[z−1]∞

k−1

∏
j=0

G(z− j).

Proof. By Lagrange inversion (Theorem 2.4.2.c) and Theorem 3.3.11, we have

Ri = [zi] R(z)

= [zi−1]
1

F(z)

= − 1
i− 1

[zi]
(

z
F〈−1〉(z)

)i−1

= − 1
i− 1

[z]
(

1
F〈−1〉(z)

)i−1

. (3.22)

But

G(z) =
1

F〈−1〉(1/z)
,

which implies that

G (1/z) =
1

F〈−1〉(z)
.

Thus, from Theorem 3.3.11 and (3.22) we have

Ri = − 1
i− 1

[z−1]∞ G(z)i−1,
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and

Σk = −1
k
[z−1]∞

k−1

∏
j=0

G(z− j). 2

3.4 The Main Result

We now obtain an explicit formula for Kerov’s polynomials; this is the main result

of this chapter, stated as Theorem 3.4.1. Variants of the main theorem are given

also, as Theorems 3.4.2 and 3.4.3. The main result is obtained by considering the

graded pieces of Kerov’s polynomials, as follows. For n ≥ 0, we define

Σk,2n = [uk+1−2n]Σk(R2u2, . . . , Rk+1uk+1), (3.23)

the sum of all terms of weight k + 1− 2n in Σk (from Theorem 3.3.6 all other terms

are 0). In order to state the main result, we introduce the generating series C(z) =

∑m≥0 Cmzm, given by

C(z) =
1

1−∑i≥2(i− 1)Rizi . (3.24)

The initial terms of C(z) are C0 = 1, C1 = 0, and the general terms Cm are given by

Cm = ∑
j2,j3,...≥0

2j2+3j3+...=m

(j2 + j3 + . . .)! ∏
i≥2

((i− 1)Ri)ji

ji!
, m ≥ 2. (3.25)

Note, that as a sum of monomials in the Ri, the weight of Cm is m; thus, we define

the weight of the monomial Ci1
j1

. . . Cit
jt to be ∑t

l=1 il jl . We emphasize that weights of

monomials R’s and C’s are compatible.

As in Section 2.2, for λ ` n we denote the monomial symmetric function with

exponents given by the parts of λ, in indeterminates x1, x2, . . ., by mλ. Here, we

consider the particular evaluation of the monomial symmetric function at xi = i,
for i = 1, . . . , k− 1, and xi = 0, for i ≥ k, and write this as m̂λ. Let D = z d

dz , and I
be the identity operator, and define Pm(z) by

Pm(z) = − 1
m!

C(z)(D + (m− 2)I)C(z) . . . (D + I)C(z)DC(z), m ≥ 1. (3.26)

For example, we have

P1(z) = −C(z), P2(z) = −1
2

C(z)DC(z), (3.27)

P3(z) = −1
6
(
C(z)2DC( z) +C(z)(DC(z))2 + C(z)2D2C(z)

)
.

Finally, for a partition λ, we write Pλ(z) = ∏l(λ)
j=1 Pλj(z). We now state the main

result.
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Theorem 3.4.1 (Main Theorem). For n ≥ 1, k ≥ 2n− 1,

Σk,2n = −1
k
[zk+1−2n] ∑

λ`2n
m̂λ

Pλ(z)
C(z)

.

We postpone the proof of Theorem 3.4.1 until Section 3.6. There is a slight modifi-

cation of this result, given below, in which the term corresponding to the partition

with one part is given a simpler (but equivalent) evaluation.

Theorem 3.4.2. For n ≥ 1, k ≥ 2n− 1,

Σk,2n = −1
k
[zk+1−2n]

 k− 1
2n

m̂2nP2n−1(z) + ∑
λ`2n

l(λ)≥2

m̂λ
Pλ(z)
C(z)

 .

The following result gives a generating series form of the main result.

Theorem 3.4.3. For n ≥ 1, k ≥ 2n− 1,

Σk,2n = −1
k
[u2nzk+1]

1
C(z)

k−1

∏
j=1

(1 + ∑
i≥1

jiPi(z)uizi),

and

Σk = −1
k
[zk+1]

1
C(z)

k−1

∏
j=1

(1 + ∑
i≥1

jiPi(z)zi).

Note that, for each n ≥ 1, these results give Σk,2n as the coefficient of zk+1−2n in

a polynomial in C(z) and

DiC(z) = ∑
m≥2

miCmzm, i ≥ 1.

Thus Σk,2n is written as a polynomial in the Cm’s, with coefficients that are rational

in k, so the results here give C-expansions for Σk,2n, for n ≥ 1.

We also postpone the proofs of Theorems 3.4.2 and 3.4.3 until Section 3.6. In the

meantime we give some applications of the main theorems.

Using the above results, with the help of Maple, we have determined the C-

expansions and the R-expansions of Σk (see Appendices A and B where we have

listed the first 20 R-expansions and 22 C-expansions, respectively, of Kerov’s poly-

nomials. We listed only the first 20 R-expansions as for higher k the expansions are

a number of pages long). Note that it easily follows from the main theorems that
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Σk,0 = Rk+1 (see Theorem 3.5.3 below). The R-expansions are in complete agree-

ment with those reported in Biane [1] for k ≤ 11. The C-expansions are given below

for k ≤ 10:

Σ1 − R2 = 0

Σ2 − R3 = 0

Σ3 − R4 = C2

Σ4 − R5 = 5
2 C3

Σ5 − R6 = 5 C4 + 8 C2

Σ6 − R7 = 35
4 C5 + 42 C3

Σ7 − R8 = 14 C6 + 469
3 C4 + 203

3 C2
2 + 180 C2

Σ8 − R9 = 21 C7 + 1869
4 C5 + 819

2 C3C2 + 1522 C3

Σ9 − R10 = 30 C8 + 1197 C6 + 963
2 C3

2 + 1122 C4C2 + 81 C2
3 + 26060

3 C4 + 17680
3 C2

2

+ 8064 C2

Σ10 − R11 = 165
4 C9 + 5467

2 C7 + 4433
2 C4C3 + 1133

2 C3C2
2 + 11033

4 C5C2 + 38225 C5

+ 52580 C3C2 + 96624 C3

Note the form of the data presented above. We have

Σk − Σk,0 = ∑
k≥1

Σk,2n,

where Σk,0 = Rk+1 remains on the left hand side, and we can recover the individual

Σk,2n on the right hand side: recall that the weight of the monomial Cm1 . . . Cmi is

m1 + . . . + mi and, therefore, from (3.23) and (3.25), Σk,2n is the sum of all terms of

weight k + 1− 2n.

In the above C-expansions for k ≤ 10, all nonzero coefficients are positive ratio-

nals, with apparently small denominators. In fact, we have computed all the data

for k = 25 (though not included k = 23, 24 and 25 in Appendix B as each poly-

nomial is a number of pages long). We do not have a precise conjecture about the

denominators, but conjecture that the positivity holds for all k.

Conjecture 3.4.4. For n ≥ 1, k ≥ 2n− 1, Σk,2n is C-positive.

This C-positivity conjecture implies the R-positivity conjecture, from (3.25) (so,

the data in Appendix B also confirm the R-positivity conjecture for k ≤ 25). Theo-

rem 3.5.4 gives an immediate proof that Conjecture 3.4.4 holds for n = 1 and all k.

In Corollary 3.5.10, we are able to prove that Conjecture 3.4.4 holds for n = 2 and



42 3.5 Special Cases of the Main Result

all k. We are not able to prove the conjecture for any larger value of n, though The-

orem 3.5.14 below, together with (3.24), proves that the linear terms are C-positive

for all n. We shall see that the introduction of the indeterminates Ck and the gener-

ating series C(z) simplify expressions a great deal. Moreover, we shall see how this

introduction leads to new results about Stanley’s polynomials in the next chapter.

The conjecture does not hold for n = 0, as described below. We have Σk,0 =
Rk+1, and it is straightforward to determine the C-expansion for the Ri’s: from

(3.24), we obtain

1−∑
i≥2

(i− 1)Rizi =
1

C(z)

= ∑
j2,j3,...≥0

(j2 + j3 + . . .)! ∏
m≥2

(−Cmzm)jm

jm!
,

so we conclude that

Ri =
1

i− 1 ∑
j2,j3,...≥0

2j2+3j3+...=i

(−1)1+j2+j3+...(j2 + j3 + . . .)! ∏
m≥2

Cjm
m

jm!
, i ≥ 2.

Thus, terms of negative sign appear in the C-expansion of Ri, for i ≥ 4. This is the

reason that we have presented the data for k up to 10 with Rk+1 subtracted on the

left hand side. This is also the reason that the R-positivity conjecture does not imply

the C-positivity conjecture, so R-positivity and C-positivity are not equivalent.

3.5 Special Cases of the Main Result

We now give some special cases of the main result.

3.5.1 Monomial Symmetric Functions: A Computational Tool

To make the expression for Σk,2n that arises from Theorem 3.4.1 (or Theorem 3.4.2)

explicit, we need to evaluate the m̂λ, which are monomial symmetric functions in

1, 2, . . . , k− 1. For general results about symmetric functions, see Macdonald [21].

Proposition 3.5.1. For indeterminates ai, i ≥ 1, let A(x) = 1 + ∑i≥1 aixi, and aλ =

∏l(λ)
j=1 aλj , where λ = λ1 . . . λl(λ) is a partition. Then

∑
λ∈P

m̂λaλ = exp ∑
j≥1

m̂j ∑
i≥1

(−1)i−1

i
[xj](A(x)− 1)i.
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Proof. We have

∑
λ∈P

mλaλ = ∏
n≥1

A(xn)

= exp ∑
n≥1

log(A(xn))

= exp ∑
n≥1

∑
i≥1

(−1)i−1

i
(A(xn)− 1)i,

and the result follows. 2

Proposition 3.5.1 gives an expression for m̂λ as a polynomial in m̂i, i ≥ 1, by

equating coefficients of aλ. To evaluate the m̂i, i ≥ 1, we apply the following result.

Proposition 3.5.2. For j ≥ 1,

m̂j =
j

∑
i=1

S(j, i)i!
(

k
i + 1

)
,

where S(j, i), the Stirling numbers of the second kind, are given by

∑
j≥0

j

∑
i=0

S(j, i)ui xj

j!
= exp u(ex − 1).

Proof. Using (3.13), we have

xj =
n

∑
i=0

S(j, i)i!
(

x
i

)
.

Summing both sides from x = 1 to x = k− 1 and using the identity

k−1

∑
j=1

(
j
i

)
=
(

k
i + 1

)
,

we obtain the result. 2

As special cases of this result, we have the following, well-known sums of inte-

ger powers.

m̂1 = 1
2 (k− 1)k, m̂2 = 1

6 (k− 1)k(2k− 1), m̂3 = 1
4 (k− 1)2k2, (3.28)

m̂4 = 1
30 (k− 1)k(2k− 1)(3k2 − 3k− 1).
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3.5.2 The Cases n = 0, 1, 2

In this section, we apply the main theorem to obtain specific results about the co-

efficients of terms in Kerov’s polynomials. Note, from Biane’s Theorem 3.3.4 it

follows that the largest term in Σk is Rk+1. This follows easily from Theorem 3.4.1,

which we consider now.

Proposition 3.5.3. The term of highest degree in Σk is Rk+1, and it is the only term of
weight k + 1.

Proof. From Theorem 3.4.1 the term of highest weight is Σk,0, which is

−1
k
[zk+1−2n]

1
C(z)

= Rk+1,

giving the result. 2

Next we consider the case n = 1 of Theorem 3.4.2. An expression for this case

was conjectured by Biane [1, Conjecture 6.4]; specifically Biane conjectured that the

terms of weight k− 1 in Kerov’s polynomials are given by

(k + 1)k(k− 1)
24 ∑

j2,j3,...≥0
2j2+3j3+...=k−1

(j2 + j3 + . . .)! ∏
i≥2

((i− 1)Ri)ji

ji!
, k− 1 ≥ 2. (3.29)

which is 1
4 (k+1

3 ) times Ck−1 given in (3.25). This was later proven in Śniady [25],

by a combinatorial method, but more along the lines of the work done by Biane; it

appears that the combinatorial proof given by Śniady is inspired by the free prob-

ability approach developed by Biane. The proof we give below is far more direct

than Śniady’s proof. We state the result as a theorem now.

Theorem 3.5.4. In Σk for k ≥ 1, the terms of weight k− 1 are given by

Σk,2 = 1
24 (k− 1)k(k + 1)Ck−1.

In particular, Σk,2 is C-positive.

Proof. From Theorem 3.4.2, with n = 1, we obtain

Σk,2 = −1
k
[zk−1]

(
− 1

2 (k− 1)m̂2C(z) + m̂11C(z)
)

=
1
k
( 1

2 (k− 1)m̂2 − m̂11
)
[zk−1]C(z).
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But from Proposition 3.5.1, we obtain

m̂11 = 1
2 (m̂2

1 − m̂2),

and the result follows from (3.28), by routine manipulation. 2

From Theorem 3.5.4 we obtain easily the following corollaries.

Corollary 3.5.5. In the R-expansion of Kerov’s polynomial Σk, the terms of weight k− 1

have positive coefficients.

Proof. This follows directly from Theorem 3.5.4 and (3.25). 2

Corollary 3.5.6. The sum of the coefficients of the R’s of terms of weight k − 1 in Σk is
1
4 (k+1

3 )2k−3.

Proof. By Theorem 3.5.4 the coefficient of [zk−1] in C(z) is the collection of terms of

degree k − 1 in Σk. Of course, setting Ri = 1 for all i will yield the result. From

(3.24) we see

C(z) =
1

−t2 d
dt

R(z)
t

.

Setting Ri = 1 for all i in R(z), we obtain

d
dz

R(z)
z

= − 1
z2 +

1
(1− z)2 =

(2z− 1)
z2(1− z)2 ,

from which it follows that

C(z) =
(1− z)2

1− 2z
= 1 +

z2

1− 2z
.

Taking the coefficient [tk−1] in the last expression and multiplying by 1
4 (k+1

3 ) yields

the result. 2

Next we consider the case n = 2 of Theorem 3.4.2, to obtain an explicit C-expansion

for Σk,4.

Theorem 3.5.7. In Σk for k ≥ 3, the terms of weight k− 3 are given by

Σk,4 = α(k) ∑
i,j,m≥0

i+j+m=k−3

CiCjCm + β(k) ∑
i,j,m≥0

i+j+m=k−3

i2CiCjCm,

where

α(k) = − 1
17280 (k− 3)(k− 1)2k(k + 1)(k2 − 4k− 6),

β(k) = 1
2880 (k− 1)k(k + 1)(2k2 − 3).
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Proof. From Theorem 3.4.2, with n = 2, letting b = 1
6 (m̂31− 1

4 (k− 1)m̂4), we obtain

Σk,4 = −1
k
[tk−3]

(
b
(
C(z)2DC(z) + C(z)(DC(z))2 + C(z)2D2C(z)

)
+ 1

4 m̂22C(z) (DC(z))2 − 1
2 m̂211C(z)2DC(z) + m̂1111C(z)3)

= −1
k
[tk−3]

(
m̂1111C(z)3 + (b− 1

2 m̂211)C(z)2DC(z)

+ bC(z)2D2C(z) + (b + 1
4 m̂22)C(z)(DC(z))2)

= −1
k
[tk−3]

(
m̂1111C(z)3 + (b− 1

2 m̂211) 1
3 DC(z)3

+ bC(z)2D2C(z) + (b + 1
4 m̂22)

( 1
6 D2C(z)3 − 1

2 C(z)2D2C(z)
))

= −1
k
(
m̂1111 + 1

3 (k− 3)(b− 1
2 m̂211) + 1

6 (k− 3)2(b + 1
4 m̂22)

)
[tk−3]C(z)3

− 1
k
( 1

2 b− 1
8 m̂22

)
[tk−3]C(z)2D2C(z).

But from Proposition 3.5.1, we obtain

m̂31 = m̂3m̂1 − m̂4,

m̂22 = 1
2 (m̂2

2 − m̂4),

m̂211 = 1
2 (m̂2m̂2

1 − 2m̂3m̂1 − m̂2
2 + 2m̂4),

m̂1111 = 1
24 (m̂4

1 − 6m̂2m̂2
1 + 8m̂3m̂1 + 3m̂2

2 − 6m̂4),

so from (3.28), by routine manipulation, we obtain

Σk,4 = α(k)[zk−3]C(z)3 + β(k)[zk−3]C(z)2D2C(z), (3.30)

where α(k) and β(k) are given above. The result follows. 2

For monomials in R2, R3, . . . that are pure powers of a single Rm, we have the

following form of the above result.

Corollary 3.5.8. For m ≥ 2, i ≥ 1,

[Ri
m]Σmi+3,4 = 1

34560 (m− 1)imi(i + 1)(i + 2)(mi + 2)(mi + 3)(mi + 4)

× (m3i3 + 2m2(m + 4)i2 + 4m(3m + 5)i + 15m + 18).

Proof. From Theorem 3.5.7, we obtain

[Ri
m]Σmi+3,4 = α(mi + 3)[Ri

mzmi]C(z)3 + β(mi + 3)[Ri
mzmi]C(z)2D2C(z).
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Now, setting Rj = 0 for j 6= m, we obtain C(z) = (1− (m− 1)Rmzm)−1, so

[Ri
mzmi]C(z)3 = (m− 1)i

(
i + 2

2

)
.

Also, we have

D2C(z) = Dm(m− 1)Rmzm(1− (m− 1)Rmzm)−2

= Dm
(
(1− (m− 1)Rmzm)−2 − (1− (m− 1)Rmzm)−1

)
= m2(m− 1)

(
2Rmzm(1− (m− 1)Rmzm)−3

−Rmzm(1− (m− 1)Rmzm)−2) ,

so

[Ri
mzmi]C(z)2D2C(z) = (m− 1)im2

(
2
(

i + 3
4

)
−
(

i + 2
3

))
.

The result follows by routine manipulation. 2

The following conjecture of Stanley, communicated by Biane (private communica-

tion), is an immediate consequence of Corollary 3.5.8.

Corollary 3.5.9 (Conjectured by Stanley). For i ≥ 1,

[Ri
2]Σ2i+3,4 = 1

540 i(i + 1)3(i + 2)3(i + 3)(2i + 3).

Proof. We set m = 2 in Corollary 3.5.8. Then the factor that is cubic in i becomes

8i3 + 48i2 + 88i + 48 = 8(i + 1)(i + 2)(i + 3),

and the result follows. 2

As the final result of this section, we are able to use the explicit C-expansion

given in Theorem 3.5.7, to prove the C-positivity of Σk,4.

Corollary 3.5.10. Σk,4 is C-positive for all k ≥ 3.

Proof. Consider 0 ≤ i ≤ j ≤ m, with i + j + m = k− 3, and let γ = |Aut(i, j, m)|.
Thus when k = 12, for example, γ = 1 for (i, j, m) = (2, 3, 4) or (0, 2, 7), γ = 2

for (i, j, m) = (2, 2, 5) or (1, 4, 4), and γ = 6 for (i, j, m) = (3, 3, 3). Then, from

Theorem 3.5.7, we obtain

[CiCjCm]Σk,4 =
6
γ

α(k) +
2
γ

(i2 + j2 + m2)β(k). (3.31)
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Now, the minimum value of x2 + y2 + z2 over the reals, subject to x + y + z = c,

for any fixed real c, is achieved at x = y = z = c/3, so in the above expression we

have i2 + j2 + m2 ≥ 1
3 (k− 3)2. But β(k) > 0 for k ≥ 3, so we obtain

[CiCjCm]Σk,4 ≥
2
γ

(
3α(k) + 1

3 (k− 3)2β(k)
)

= 1
8640γ (k− 3)(k− 1)k(k + 1)

(
−3(k− 1)(k2 − 4k− 6)

+2(k− 3)(2k2 − 3)
)

= 1
8640γ (k− 3)(k− 1)k3(k + 1)(k + 3)

≥ 0,

for k ≥ 3, giving the result. 2

Corollary 3.5.11 (Conjectured by Biane and Kerov). Σk,4 is R-positive for all k ≥ 3.

Proof. Follows from Corollary 3.5.10 and (3.25). 2

3.5.3 The Case n = 3

In this section, we give a compact expression for Σk,6 in terms of our C′s. We are

not able, however, to use this expression to show positivity. This illustrates that

Theorem 3.4.1 alone does not, unfortunately, fully explain Kerov’s polynomials.

We do, however, hope that the work done in the chapter serves as a good basis for

future work. To simplify our notation in the following theorem and proof, we will

replace C(z) with C and Pλ(z) with Pλ.
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Theorem 3.5.12. In Σk for k ≥ 5, the terms of weight k− 5 are given by

Σk,6 = −1
k

[zk−5]
(
− 1

362880
k (k− 1)

(
1918 k7 − 21041 k6 + 74635 k5 − 102143 k4

+31879 k3 + 26860 k2 − 4416 k− 3780
)

C2(DC)3

− 1
725760

k (k− 1)
(

30 k7 + 213 k6 − 2009 k5 + 4193 k4 − 2254 k3 − 847 k2

+292 k + 60) C4(D3C)

+
1

120960
k (3 k− 5) (k− 1)

(
111 k5 − 392 k4 + 277 k3 + 132 k2 − 42 k− 24

)
C(DC)4

− 1
362880

k (k− 1)
(

507 k6 − 2589 k5 + 4159 k4 − 1511 k3 − 1154 k2 + 232 k

+180) C3(D2C)2

+
1

725760
k (k− 1)

(
249 k6 − 1299 k5 + 2096 k4 − 739 k3 − 592 k2 + 101 k

+90) C4(D4C)

+
1

241920
k (k− 1)

(
630 k8 − 10052 k7 + 59791 k6 − 161489 k5 + 190331 k4 − 51967 k3

−46584 k2 + 7036 k + 6080
)

C3(DC)2

+
1

725760
k (k− 1)

(
15 k8 + 162 k7 − 2407 k6 + 8424 k5 − 10357 k4 + 1907 k3 + 3159 k2

−313 k− 390) C4(D2C)

− 1
483840

k (k− 1)
(
210 k9 − 4305 k8 + 35392 k7 − 147530 k6

+322402 k5 − 332609 k4 + 80524 k3 + 74812 k2 − 10560 k− 9120
)

C4(DC)

+
1

2903040
k (k− 1) (k− 2) (k− 3) (k− 4) (k− 5) (k− 6)

(
63 k5 − 315 k4 + 315 k3

+91 k2 − 42 k− 16
)

C5) .

Proof. From Theorem 3.4.2 we have

Σk,6 = −1
k

[zk−5]

 k− 1
6

m̂6P5 + ∑
λ`6

`(λ)≥2

m̂λ
Pλ

C

 .

In (3.27) we have already computed P1, P2 and P3. We now find P4 and P5. Recall

that the differential operator D does not commute with C. Therefore, we use brack-

ets to indicate when an operation has taken place; that is, D(CDC) indicates that
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the preceding D is still to operate on CDC, whereas (DC)(DC) = (DC)2. We have

P4 = − 1
24

C(D + 2I)C(D + I)CDC

= − 1
24

C(D + 2I)(−6P3)

= − 1
24
(
CD

(
C2DC + C(DC)2 + C2D2C

)
+ 2C3DC + 2C2(DC)2 + 2C3(D2C)

)
= − 1

24
(
4C2(DC)2 + 3C3D2C + C(DC)3 + 4C2(DC)(D2C) + C3D3C + 2C3DC

)
,

and

P5 =− 1
120

C(D + 3I)(−24P4)

=− 1
120

(
8C2(DC)3 + 8C3(DC)(D2C) + 9C3(DC)(D2C) + 3C4D3C + C(DC)4

+ 3C2(DC)2(D2C) + 8C2(DC)2D2C + 4C3(D2C)2 + 4C3(DC)(D3C)

+ 3C3(DC)(D3C) + C4D4C + 6C3(DC)2 + 2C4(D2C) + 12C3(DC)2

+ 9C4D2C + 3C2(DC)3 + 12C3(DC)(D2C) + 3C4(D3C) + 6C4DC
)

=− 1
120

(
11C2(DC)3 + 29C3(DC)(D2C) + 6C4D3C + C(DC)4 + 11C2(DC)2(D2C)

+ 4C3(D2C)2 + 7C3(DC)D3C + C4D4C + 18C3(DC)2 + 11C4D2C

+6C4DC
)

.

This gives

Σk,6 =− 1
k

[zk−5]
((

k− 1
6

m̂6 − m̂51

)
P5 −

1
2

m̂42(DC)P4 + m̂33
P2

3
C

+ m̂411CP4

− m̂3111C2P3 − m̂321P3P2 −
1
8

m̂222C2(DC)3 + m̂2211CP2
2 + m̂21111C3P2

+m̂111111C5)
=− 1

k
[zk−5]

((
k− 1

6
m̂6 − m̂51

)
P5 +

(
m̂411C− 1

2
m̂42(DC)

)
P4

+
(

m̂33
P3

C
− m̂3111C2 +

1
2

m̂321CDC
)

P3 −
1
8

m̂222C2(DC)3

+
1
4

m̂2211C3(DC)2 − 1
2

m̂21111C4(DC) + m̂111111C5
)

.

In order to deal with the last expression, we divide it up into two parts: the terms

involving P5 and P4 in the first part, and the remaining terms in the second part.
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Setting d = − 1
120

(
k−1

6 m̂6 − m̂51

)
, the first part becomes

dP5 +
(

m̂411C− m̂42

2
DC
)

P4

=
(

11d− m̂411

24
+

m̂42

12

)
C2(DC)3 +

(
29d− m̂411

6
+

m̂42

16

)
C3(DC)D2C

+
(

6d− m̂411

24

)
C4D3C +

(
d +

m̂42

48

)
C(DC)4 +

(
11d +

m̂42

12

)
C2(DC)2D2C

+ 4dC3(D2C)2 +
(

7d +
m̂42

48

)
C3(DC)D3C + dC4D4C

+
(

18d− m̂411

6
+

m̂42

24

)
C3(DC)2 +

(
11d− m̂411

8

)
C4D2C +

(
6d− m̂411

12

)
C4DC.

Simplifying the second part we have

− m̂33

6

((
CDC + (DC)2 + CD2C

)
− m̂3111C2 +

m̂321

2
CDC

)
·
(
−1

6
(
C2DC + C(DC)2 + C2D2C

))
=
(

m̂33

36
+

m̂3111

6
− m̂321

12

)
C3(DC)2

+
(

m̂33

18
− m̂321

12

) (
C2(DC)3 + C3(DC)(D2C)

)
+

m̂33

36

(
C(DC)4 + 2C2(DC)2(D2C) + C3(D2C)2

)
+

m̂3111

6

(
C4DC + C4D2C

)
.

(3.32)

If we set

a =
m̂33

36
+

m̂3111

6
− m̂321

12
, b =

m̂33

18
− m̂321

12
,

then the expression in (3.32) becomes

(
a +

m̂2211

4

)
C3(DC)2 +

(
m̂3111

6
− m̂21111

2

)
C4DC

+
(

b− m̂222

8

)
C2(DC)3 + bC3(DC)(D2C)

+
m̂33

36

(
C(DC)4 + 2C2(DC)2(D2C) + C3(D2C)2

)
+

m̂3111

36

(
C4D2C

)
+ m̂111111C5.
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Therefore, we have

Σk,6 =− 1
k

[zk−5]
((

b− 1
8

m̂222 + 11d− m̂411

24
+

m̂42

12

)
C2(DC)3

+
(

b + 29d− m̂411

6
+

m̂42

18

)
C3(DC)(D2C) +

(
6d− m̂411

24

)
C4D3C

+
(

m̂33

36
+ d +

m̂42

48

)
C(DC)4 +

(
m̂33

18
+ 11d +

m̂42

12

)
C2(DC)2D2C

+
(

m̂33

36
+ 4d

)
C3(D2C)2 +

(
7d +

m̂42

48

)
C3(DC)D3C + dC4D4C

+
(

a +
m̂2211

4
+ 18d− m̂411

6
+

m̂42

24

)
C3(DC)2

+
(

m̂3111

6
+ 11d− m̂411

8

)
C4D2C

+
(

m̂3111

6
− m̂21111

2
+ 6d− m̂411

12

)
C4DC + m̂111111C5

)
.

To simplify the above expression further, we apply the rule [zk−5] D f = (k −
5) [zk−5] f . Using the product rule for differentiation, we apply this rule to the

following terms; the aim is to reduce the number of distinct terms involving the

series C in the last expression.

1.

D(C3(DC)D2C) = 3C2(DC)2D2C + C3(D2C)2 + C3(DC)D3C,

implying

C2(DC)2(D2C) =
1
3

D(C3(DC)D2C)− 1
3

C3(D2C)2 − 1
3

C3(DC)D3C.

2.

D(C4D3C) = 4C3(DC)D3C + C4D4C,

implying

C3(DC)D3C =
1
4

D(C4D3C)− 1
4

C4D4C.

3.

D(C4D2C) = 4C3(DC)D2C + C4D3C,
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implying

C3(DC)D2C =
1
4

D(C4D2C)− 1
4

C4D3C.

Thus, for example using 2. above, we eliminate the term C2(DC)2D2C by

[zk−5] C2(DC)2(D2C) = [zk−5]
(

1
4

D(C4D3C)− 1
4

C4D4C
)

= [zk−5]
1
4

D(C4D3C)− [zk−5]
1
4

C4D4C

= [zk−5]
1
4
(k− 5)C4D3C− [zk−5]

1
4

C4D4C

= [zk−5]
(

1
4
(k− 5)C4D3C− 1

4
C4D4C

)
.

Doing this in turn for the expressions in 1., 2. and 3., and substituting the original

values for the parameters a and b into Σk,6, we obtain after simplifying,

Σk,6 = −1
k

[zk−5]
((

m̂33

18
− m̂321

12
− m̂222

8
+ 11d− m̂411

24
+

m̂42

12

)
C2(DC)3

+
((
−5

4
− (k− 5)

12

)
d +

(
− 5

576
(k− 5)− 1

64

)
m̂42 +

(
− 1

108
(k− 5)

− 1
72

)
m̂33 +

m̂321

48

)
C4D3C +

(
d +

m̂33

36
+

m̂42

48

)
C(DC)4

+
(

d
3

+
m̂33

108
− m̂42

36

)
C3(D2C)2 +

(
d
6

+
m̂42

576
+

m̂33

216

)
C4D4C (3.33)

+
(

m̂33

36
+

m̂3111

6
− m̂321

12
+

m̂2211

4
+ 18d− m̂411

6
+

m̂42

24

)
C3(DC)2

+
(

m̂3111

6
+
(

11(k− 5)2

12
+

29(k− 5)
4

+ 11
)

d−
(

(k− 5)
24

+
1
8

)
m̂411

+
(

(k− 5)2

216
+

k− 5
72

)
m̂33 −

k− 5
48

m̂321 +
(

(k− 5)2

144
+

k− 5
64

)
m̂42

)
C4D2C

+
(

m̂3111

6
− m̂21111

2
+ 6d− m̂411

12

)
C4DC + m̂111111C5

)
.
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Using Propositions 3.5.1 and 3.5.2 we have

m̂111111 =
1

2903040
k (k− 1) (k− 2) (k− 3) (k− 4) (k− 5) (k− 6)

·
(

63 k5 − 315 k4 + 315 k3 + 91 k2 − 42 k− 16
)

m̂21111 =
1

241920
k (k− 1) (k− 2) (k− 3) (k− 4) (k− 5)

·
(

210 k5 − 945 k4 + 868 k3 + 273 k2 − 118 k− 48
)

m̂3111 =
1

20160
k (k− 1) (k− 2) (k− 3) (k− 4)

·
(

105 k5 − 399 k4 + 315 k3 + 123 k2 − 44 k− 20
)

m̂222 =
1

45360
k (k− 1) (k− 2) (k− 3) (2 k− 1) (2 k− 3) (2 k− 5)

(
35 k2 + 21 k + 4

)
m̂51 =

1
168

k (k− 1) (k− 2)
(

14 k5 − 38 k4 + 19 k3 + 14 k2 − 3 k− 2
)

m̂321 =
1

2520
k (k− 1) (k− 2) (k− 3)

·
(

105 k5 − 378 k4 + 279 k3 + 113 k2 − 39 k− 20
)

m̂2211 =
1

60480
k (k− 1) (k− 2) (k− 3) (k− 4)

·
(

420 k5 − 1736 k4 + 1477 k3 + 494 k2 − 205 k− 90
)

m̂33 =
1

672
k (k− 1) (k− 2)

(
21 k5 − 69 k4 + 45 k3 + 21 k2 − 6 k− 4

)
m̂42 =

1
1260

k (k− 1) (k− 2) (2 k− 1) (2 k− 3)
(
21 k3 − 24 k2 − 22 k− 5

)
m̂6 =

1
42

k (2 k− 1) (k− 1)
(

3 k4 − 6 k3 + 3 k + 1
)

m̂411 =
1

5040
k (k− 1) (k− 2) (k− 3)

·
(

126 k5 − 399 k4 + 258 k3 + 134 k2 − 39 k− 20
)

.

Substituting these monomial symmetric functions into (3.33) and simplifying gives

the desired result. 2

We see from the above proof that Pi(z) becomes substantially more difficult to com-

pute as we increase i.

We end this section with an observation that may seem trivial in light of Theo-

rems 3.5.7 and 3.5.12 (or simply Theorem 3.4.1); we shall, however, find it useful in

the next chapter.
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Theorem 3.5.13. For k ≥ 1,

Σk,2n = ∑
i1,i2,...,i2n−1≥0

i1+i2+···+i2n−1=k+1−2n

γi1,i2,...,i2n−1 Ci1 · Ci2 · · ·Ci2n−1

where the Ct are given in (3.24) and the γ’s are rational. In particular, Σk,2n is C-positive
(and, consequently, R-positive) if all γi1,i2,...,i2n−1 are positive.

3.5.4 The Linear Terms

Previously, for n ≥ 1, only one explicit result was known; the following result

for the linear coefficients is due to Biane [1] and Stanley [29]. What follows is an

original proof based on the results of the last section.

Theorem 3.5.14 (Biane, Stanley). For n ≥ 1, k ≥ 2n− 1, the coefficient of Rk+1−2n in
Σk,2n is equal to the number of k-cycles c in Sk such that (1 . . . k)c has k− 2n cycles.

Proof. For i ≥ 1, let A(i)(z) consist of the terms in Pi(z) that are linear in the Cm’s.

Also, let Ln,k = [Rk+1−2n]Σk,2n. We apply Theorem 3.4.3 to determine Ln,k. From

(3.24), we have

Ln,k =
[

Ck+1−2n

k− 2n

]
Σk,2n =

[
Ck+1−2n

k− 2n

]
Σk

= −1
k

[
Ck+1−2n

k− 2n
zk+1

]
1

C(z)

k−1

∏
j=1

(1− jz + ∑
i≥1

ji A(i)(z)zi)

= −1
k

[
Ck+1−2n

k− 2n
zk+1

]
1

C(z)

(
k−1

∏
j=1

(1 + ∑
i≥1

ji A(i)(z)zi

1− jz
)

)
k−1

∏
a=1

(1− az)

= −1
k

[
Ck+1−2n

k− 2n
zk+1

](
1− C(z) +

k−1

∑
j=1

∑
i≥1

ji A(i)(z)zi

1− jz

)
k−1

∏
a=1

(1− az).

But, for i ≥ 1,

A(i)(z) = − 1
i!

(D + (i− 2)I) . . . (D + I)DC(z) = − ∑
m≥2

(
−(m− 1)

i

)
(−1)i Cm

m− 1
zm.

Now let Cm
m−1 = xm−1, m ≥ 2, which gives

∑
i≥1

ji A(i)(z)zi = − ∑
m≥2

(
(1− jz)−(m−1) − 1

)
xm−1zm

= − z
1− xz

1−jz
+

z
1− xz

,
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and

1− C(z) = − ∑
m≥2

(m− 1)xm−1zm = − z
(1− xz)2 +

z
1− xz

.

Thus we obtain

Ln,k =
1
k
[xk−2nzk+1]

(
z

(1− xz)2 −
z

1− xz
+

k−1

∑
j=1

(
z

1− (j + x)z
− z

(1− jz)(1− xz)

))

·
k−1

∏
a=1

(1− az).

We now finish the proof using the method of Biane [1, Theorem 6.1]: Replace z by

z−1, and multiply by zk, to obtain

Ln,k =
1
k
[xk−2n][z−1]∞(z)k

(
z

(z− x)2 −
1

z− x
+

k−1

∑
j=1

(
1

z− j− x
− z

(z− j)(z− x)

))
.

Using Proposition 2.5.1, in the previous equation we may substitute z + c for z,

where c is independent of z. Thus, substituting z + j + x for z in the first term of

the summation over j, and substituting z + x for z in all other terms, we obtain

Ln,k =
1
k
[xk−2n]

(
[z](z + x)(z + x)k − (x)k +

k−1

∑
j=1

(
(x + j)k −

x(x)k

x− j

))
(3.34)

=
1
k
[xk−2n]

k−1

∑
j=0

(x + j)k. (3.35)

The rest of the proof is found in Biane [1]; there, however, the proof is very brief,

so we include a more complete version here.

For any partition λ ` k consider the generating series

Qλ(x) = ∏
u∈λ

(x + c(u)) (3.36)

as well as the series

Tk(x, y) =
1
k! ∑

λ`k
f λχλ(ck)Qλ(x)Qλ(y).

where ck is the k-cycle. By Theorem 2.2.8 series Qλ(x) satisfies

Qλ(x) = ∑
σ∈Sk

χλ(σ)
f λ

x`(σ)

= ∑
β`k

|Cβ|
f λ

χλ(β)x`(β),
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where, from Section 2.2.1, the set Cβ is the conjugacy class in Sn of elements asso-

ciated with the partition β and f λ is the degree of χλ. Thus, we have

Tk(x, y) =
1
k! ∑

λ`k
∑
α`k

∑
β`k

f λχλ(ck)
|Cα|
f λ

χλ(α)
|Cβ|
f λ

χλ(β)

= ∑
α,β`k

x`(α)y`(β) |Cα||Cβ|
k! ∑

λ`k

1
f λ

χλ(ck)χλ(α)χλ(β). (3.37)

But, from (2.3), Section 2.1.1, we have

cγ
α,β = [Kγ]KαKβ =

|Cα||Cβ|
k! ∑

λ`k

1
f λ

χλ(γ)χλ(α)χλ(β).

Therefore, it follows from (3.37) that

Tk(x, y) = ∑
α,β`k

cck
α,βx`(α)y`(β).

which gives

Tk(x, y) = ∑
σ∈Sn

x`(σ−1ck)y`(σ). (3.38)

To prove the final result, we find the coefficient of xk−2ny of the left hand side and

the right hand side of (3.38).

We first find the coefficient of the left hand side of (3.38). Note that χλ(ck) =
0 unless λ = (k − i 1i); that is, χλ(ck) is 0 unless λ is a hook. When λ is the

hook (k − i 1i), the character χλ(ck) = (−1)i (this is a direct consequence of the

Murnaghan-Nakayama rule, Theorem 2.3.1). Thus, from (3.36), when λ is the hook

(k− i 1i) we have

Qλ(x) = ∏
u∈λ

(x + c(u))

= (x− 1) · · · (x− i) · x · (x + 1) · · · (x + k− i− 1)

= (x + k− i− 1)k.

The degree f (k−i 1i) of the hook λ can be computed as follows. By Theorem 2.2.1, the

degree f (k−i 1i) is the number of SYT of the hook (k− i 1i), which is clearly (k−1
i ).
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Thus, we obtain

[y]
1
k!

Qλ(y) = [y]
1
k! ∑

σ∈Sk

χλ(σ)
f λ

y`(σ)

= ∑
σ∈Sk
`(σ)=1

χλ(σ)
f λ

=
1
k!

(−1)i

(k−1
i )

(k− 1)!

=
1
k

(−1)i

(k−1
i )

.

Finally, we have

[xk−2ny] Tk(x, y) = [xk−2ny]
1
k! ∑

λ`k
f λχλ(ck)Qλ(x)Qλ(y)

= [xk−2n]
k−1

∑
j=0

(−1)j
(

k− 1
j

)
(x + k− j− 1)k

1
k

(−1)j

(k−1
j )

= [xk−2i]
1
k

k−1

∑
j=0

(x + j)k.

But, from (3.35), this is the coefficient of the linear term [Rk+1−2i]Σk. Now, the right

hand side of (3.38) is

[xk−2ny] ∑
σ∈S

x`(σ−1ck)y`(σ) = [xk−2n] ∑
σ∈S

`(σ)=1

x`(σ−1ck)

= ∑
σ∈Sk

`(σ)=1, `(σ−1ck)=k−2n

1,

completing the proof. 2

3.6 Lagrange Inversion and the Proof of the Main Result

As a first step, we translate Corollary 3.3.12 into formal power series, using the

notation

φ(x) = xG(x−1), Φ(x, u) = ∑
i≥0

Φi(x)ui = (1− ux)φ(x(1− ux)−1), (3.39)

where G(x) is defined in (3.21).

Proposition 3.6.1. The following two equations hold.
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1. For k ≥ 1,

Σk = −1
k
[xk+1]

k−1

∏
j=0

Φ(x, j). (3.40)

2. For k, n ≥ 1,

Σk,2n = −1
k
[u2nxk+1]

k−1

∏
j=0

Φ(x, ju). (3.41)

Proof. For (3.40), we first replace x by x−1 in Corollary 3.3.12, to obtain

Σk = −1
k
[xk+1]

k−1

∏
j=0

xG(x−1(1− jx)),

and the result follows immediately.

For (3.41), we let ϑ be the substitution operator Ri 7→ uiRi, i ≥ 2. Then, from

(3.23), we have

Σk,2n = [uk+1−2n]ϑΣk. (3.42)

Now, from (3.21), we have

ϑF(x) =
x

ϑR(x)
=

x
R(ux)

=
1
u

F(ux).

Applying ϑ to both sides of the equation F(F〈−1〉(x)) = x we obtain

x = ϑF(ϑF〈−1〉(x))

=
1
u

F(uϑF〈−1〉(x))

implying

ϑF〈−1〉(x) =
1
u

F〈−1〉(ux).

Thus, combining this with (3.21) and (3.39), we obtain

ϑφ(x) = xϑG(x−1) =
x

ϑF〈−1〉(x)
=

ux
F〈−1〉(ux)

= φ(ux),

and then

ϑΦ(x, j) = (1− jx)φ(ux(1− jx)−1) = Φ(ux, ju−1).
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Combining this with (3.42) and (3.40) gives

Σk,2n = −1
k
[uk+1−2nxk+1]

k−1

∏
j=0

Φ(ux, ju−1)

and (3.41) now follows, by substituting first x = xu−1, and then u = u−1. 2

Next, we give an expression for the coefficients Φi, i ≥ 0, defined in (3.39).

Proposition 3.6.2. For i ≥ 0,

Φi(x) =
x
i!

(
x2 d

dx

)i φ(x)
x

. (3.43)

Note that for i = 0, this specializes to Φ0(x) = φ(x).

Proof. From (3.21) and (3.39), we have

φ(x) = 1 + ∑
j≥2

φjxj,

where φj, j ≥ 2 are polynomials in the Ri’s. For i = 0, we have Φ0(x) = Φ(x, 0) =
φ(x). For i ≥ 1, we have

Φi(x) = [ui]Φ(x, u) = [ui]

(
1− ux + ∑

j≥2
φjxj(1− ux)1−j

)

= −
(

1
i

)
x + ∑

j≥2
φj

(
j + i− 2

i

)
xj+i

=
x
i!

(
x2 d

dx

)i
(

1
x

+ ∑
j≥2

φjxj−1

)
,

and the result follows. 2

We consider the functional equation

w = zφ(w), (3.44)

where φ is given by (3.39). Then from (3.21) and (3.39), we have

w = zwG(w−1) =
zw

F〈−1〉(w)
,

so F〈−1〉(w) = z, and from (3.21) we deduce that

z = wR(z). (3.45)

We now relate the series C(z) and differential operator D of Section 2 to the

variable w.
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Proposition 3.6.3.
Dw
w

=
1

R(z)C(z)
(3.46)

w2 d
dw

= zC(z)D (3.47)

Proof. From (3.24) and (3.21), we obtain

C(z) =
1

−zD R(z)
z

. (3.48)

But
Dw
w

= −wD
1
w

= − z
R(z)

D
R(z)

z
,

from (3.45), and result (3.46) follows.

Now, (3.46) gives the operator identity

w
d

dw
= R(z)C(z)D,

and multiplying by w and using (3.45), we obtain result (3.47). 2

Proof of Theorem 3.4.1. For a partition λ, let Φλ(x) = ∏l(λ)
j=1 Φλj(x). Then from

(3.41) and (3.43), we have

Σk,2n = −1
k
[xk+1] ∑

λ`2n
m̂λΦλ(x)φ(x)k−l(λ)

= −1
k
[xk+1] ∑

λ`2n
m̂λ

Φλ(x)
φ(x)l(λ)+1

φ(x)k+1

= −1
k
[zk+1] ∑

λ`2n
m̂λ

1
R(z)C(z)

Φλ(w)
φ(w)l(λ)+1

,

where the last equality follows from Theorem 2.4.2.a and (3.46). But, from (3.43),

(3.44) and (3.47), for i ≥ 1 we have

Φi(w)
φ(w)

=
1
i!

w
φ(w)

(w2 d
dw

)i φ(w)
w

=
z
i!

(zC(z)D)i−1zC(z)D
1
z

= − z
i!

(zC(z)D)i−1C(z).

Finally, we prove by induction on i ≥ 1 that

− 1
i!

(zC(z)D)i−1C(z) = zi−1Pi(z),
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where Pi(z) is defined in Section 2. The result is clearly true for i = 1. For the

induction step, we have

− 1
(i + 1)!

(zC(z)D)iC(z) =
1

i + 1
zC(z)Dzi−1Pi(z)

=
1

i + 1

(
ziC(z)D + (i− 1)ziC(z)I

)
Pi(z)

= ziPi+1(z),

as required. Together, these results give

Φi(w)
φ(w)

= ziPi(z),

so
Φλ(w)

φ(w)l(λ)+1
= z2n Pλ(z)

φ(w)
,

since λ ` 2n, and the result follows from (3.44) and (3.45). 2

Proof of Theorem 3.4.2. In the proof of Theorem 3.4.1, the term in Σk,2n correspond-

ing to the partition with the single part 2n can be treated in the following modified

way. We obtain

−1
k
[xk+1]m̂2nΦ2n(x)φ(x)k−1 = −1

k
[xk−2]m̂2nx−3Φ2n(x)φ(x)k−1

= −1
k
[xk−2]m̂2nx−3 x

(2n)!
x2 d

dx

(
x2 d

dx

)2n−1

· φ(x)
x

φ(x)k−1

= − k− 1
k

[zk−1]m̂2n
1

(2n)!

(
w2 d

dw

)2n−1 φ(w)
w

,

from Theorem 2.4.2.b, and the result follows as in the above proof of Theorem 3.4.1.

2



Chapter 4

Stanley’s Character Polynomials

In this chapter we explore expressions for the normalized characters in terms of

polynomials introduced by Stanley [28]. We shall see that there are some connec-

tions between the polynomials in this chapter and Kerov’s polynomials. In partic-

ular, we show that there are positivity conjectures for Stanley’s polynomials whose

proofs follow from the positivity results we have thus far obtained for Kerov’s poly-

nomials; we end the chapter by showing a strong connection between positivity of

Kerov’s polynomials and positivity of Stanley’s polynomials in general.

In Section 4.1, we give the “rectangular shape” version of Stanley’s polynomi-

als. The main theorem in this case was introduced in Chapter 1 in (1.2) and is

also found below in Theorem 4.1.1. This particular expression for the rectangular

character connects it to permutation factorizations. We devote all of Section 4.1

to this rectangular case. The new proof of this result promised in Chapter 1 is at

the end of this section in Section 4.1.2. As mentioned earlier, we make use of shift
symmetric functions, and we give a brief account of these in Section 4.1.1. Finally,

Sections 4.2 and 4.3 deal with the general case of non-rectangular shapes. In par-

ticular, in the general case Stanley conjectures a certain kind of positivity (here we

have called this p, q-positivity) for a particular form of his polynomials. We are

able to prove that the terms of highest degree in Stanley’s polynomials are p, q-

positive and, furthermore, using results from Chapter 3, we are able to prove that

p, q-positivity holds for the terms of second and third highest degrees, all of which

are new results. As in the case of Kerov’s polynomials we are, unfortunately, un-

able to show positivity in general. As mentioned above, however, we are able to

show a strong connection between positivity of Kerov’s polynomials (specifically

C-positivity) and p, q-positivity for Stanley’s polynomials.

63
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4.1 Stanley’s Polynomials for Rectangular Shapes

As in Chapter 3, in this chapter we shall discuss expressions for the normalized

characters χ̂ω. We begin with a specific two variable case of Stanley’s results - as

they have a particularly simple form - and discuss the general form later.

We begin with the character χ̂ω when ω has the rectangular shape of p parts,

all equal to q. We denote this shape by p× q. The following theorem can be found

in Stanley [28].

Theorem 4.1.1 (Stanley). Suppose that p× q ` n and µ ` k for k ≤ n. Let λµ be any
fixed permutation in the conjugacy class indexed by µ in Sk. Then,

χ̂p×q(µ 1n−k) = (−1)k ∑
u,ν

uν=λµ

p`(u)(−q)`(ν).

This result can be written in terms of the connection coefficients of the symmetric

group, given in (2.2); Theorem 4.1.1 then becomes

χ̂ω(µ 1n−k) = (−1)k ∑
u,ν`k

cµ
u,ν p`(u)(−q)`(ν).

Stanley’s proof of this involves a combination of results; results about certain

tableaux, the Murnaghan-Nakayama rule, Theorem 2.3.1, and the following sym-

metric function identity

∑
ω`k

Hω sω(x)sω(y)sω(z) = ∑
ω`k

pω(x)pω(y)pω(z),

which appears in Hanlon et al. [14]. Here, we present an original proof with the

aim of making the result more transparent and, in addition, of showing more con-

nections between what are known as shift symmetric functions and the normalized

character χ̂ω (we shall see that there is already a known relationship between these

objects). Sections 4.1.1 gives the necessary background for this proof.

4.1.1 A Brief Account of Shift Symmetric Functions

In Section 2.2, on page 10, we have given the formal definition of a symmetric

function f ∈ Λ as the limit of functions f1, f2, . . . where fi ∈ Λ(i). In a similar

manner, we can define the shift symmetric algebra Λ∗(n) as the set of series in n
variables that are shift symmetric; that is, the algebra Λ∗(n) is the set of series f in n



Chapter 4 Stanley’s Character Polynomials 65

variables x1, x2, . . . , xn such that f is symmetric in the new variables

x′i = xi − i.

Finally, define the algebra Λ∗ of shift symmetric functions as the limit

Λ∗ = lim
←−

Λ∗(n).

Just as the ordinary Schur polynomials sλ(x1, x2, . . . , xn) can be defined as

sλ(x1, x2, . . . , xn) =
det

(
x

λj+n−j
i

)
1≤i,j≤n

det
(

xn−j
i

)
1≤i,j≤n

,

we can analogously define shift Schur polynomials s∗λ(x1, x2, . . . , xn) by

s∗λ(x1, x2, . . . , xn) =
det

(
(xi + n− i)λj+n−j

)
1≤i,j≤n

det
(
(xi)n−j

)
1≤i,j≤n

.

Finally, the shift Schur functions, denoted by s∗λ ∈ Λ∗ are defined as the limit of the

sequence (s∗λ(x1, x2, . . . , xn))n≥1. Furthermore, recall from Theorem 2.2.4, that the

power sum symmetric functions pµ can be written as a linear combination of Schur

functions by

pµ = ∑
ρ`k

χρ(µ)sρ,

where µ is a partition of k. Analogous to this we define the p-sharp shift symmetric

functions p]
µ by

p]
µ = ∑

ρ`k
χρ(µ)s∗ρ

(see Okounkov and Olshanski [22, Section 1] for more details).

The following result connects shift symmetric functions and the normalized

characters χ̂, and can be found in Okounkov and Olshanski [22, (15.21)].

Theorem 4.1.2 (Okounkov, Olshanski). Suppose that µ ` k and λ ` n, with k ≤ n.
Then

p]
µ(λ) = χ̂λ(µ 1n−k).

The following theorem gives a combinatorial interpretation to shift Schur func-

tions; it is also found in Okounkov and Olshanski [22, Theorem 11.1]. For any
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shape µ, a reverse tableau of shape µ is a function T : boxes of µ 7→ P, where P is

the set of positive integers, such that T is weakly decreasing along the rows of µ

and strongly decreasing along the columns of µ. We denote by RTab(µ) the set of

reverse tableau of shape µ.

Theorem 4.1.3 (Okounkov, Olshanski). For λ ∈ P ,

s∗λ = ∑
T∈RTab(µ)

∏
u∈µ

(xT(u) − c(u)),

where T(u) is the value assigned to the box u by the tableau T and, again, c(u) is the
content of the box u.

4.1.2 Proof of Theorem 4.1.1

We are now ready to give a proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. As a first step to this proof, for a partition λ ` k we

evaluate s∗λ(x1, x2, . . . , xp) with xi = q for 1 ≤ i ≤ p; that is, we compute the

evaluation s∗λ(p× q). Using Theorem 4.1.3 we obtain

s∗λ(p× q) = ∑
T∈RTab(λ)

∏
u∈λ

(xT(u) − c(u))

∣∣∣∣∣
(x1,...,xp)=(q,...,q)

= ∑
T∈RTab(λ)

∏
u∈λ

(q− c(u))

= (−1)k ∏
u∈λ

(−q + c(u)) ∑
T∈RTab(λ)

1

∣∣∣∣∣
(x1,...,xp)=(q,...,q)

. (4.1)

The number of RTab(λ) is clearly the number of SSYT of shape λ filled with only

numbers 1, 2, . . . , p, which is sλ(1p) from (2.4). Thus, from (4.1) above and Theorem

2.2.6 in Section 2.2, we have

s∗λ(p× q) = (−1)k ∏
u∈λ

(−q + c(u)) sλ(1p)

=
(−1)k

Hλ
∏
u∈λ

(−q + c(u))(p + c(u)).
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Therefore, from Theorem 4.1.2 and Theorem 2.2.8 we have

χ̂p×q(µ 1n−k) = ∑
λ`k

χλ(µ)s∗λ(p× q)

= (−1)k ∑
λ`k

χλ(µ)
Hλ

∏
u∈λ

(−q + c(u))(p + c(u))

= (−1)k ∑
α,β,λ`k

χλ(µ)
Hλ

|Cα|
f λ

χλ(α)p`(α) |Cβ|
f λ

χλ(β)(−q)`(β)

= (−1)k ∑
α,β,`k

p`(α)(−q)`(β) |Cα||Cβ|
k! ∑

λ`k

1
f λ

χλ(α)χλ(β)χλ(µ)

= (−1)k ∑
α,β`k

p`(α)(−q)`(β)cµ
α,β,

where the third equality follows from Theorem 2.2.7 in Section 2.2, and the last

equality follows from (2.3). This completes the proof. 2

4.2 Generalizations to Non-Rectangular Shapes

In the previous section we gave a polynomial form for the normalized character

χ̂ω(µ 1n−k) when the shape ω is a rectangle. Naturally, there is an analogous ques-

tion for arbitrary shapes σ. To consider that question, let σ be the shape with pi

parts of size qi, for i from 1 to m and where q1 is the size of the largest part (see

Figure 4.1). Thus, p1, p2, . . . , pm are positive integers and q1 > q2 > · · · > qm. We

denote the partition σ with the notation p× q. Define the function Fk in indeter-

minates p1, . . . , pm, q1, . . . , qm by

Fk(p1, p2, . . . , pm; q1, q2, . . . , qm) = χ̂p×q(k 1n−k) (4.2)

We often denote (p1, . . . , pm) by p and (q1, . . . , qm) by q, giving us the notation

Fk(p; q) for Fk(p1, p2, . . . , pm; q1, q2, . . . , qm). The following theorem with proof

appears in Stanley [28, Proposition 1].

Theorem 4.2.1 (Stanley). Fk(p1, p2, . . . , pm; q1, q2, . . . , qm) is a polynomial in the p’s
and q’s such that Fk(1, 1, . . . , 1; −1,−1, . . . ,−1) = (k + m− 1)k.

In light of this theorem, we call the polynomials in (4.2) Stanley’s character polyno-
mials. Note that the rectangular case of Theorem 4.1.1 is the case m = 1 in (4.2). We

emphasize that Stanley’s proof below also uses Frobenius’ Theorem 3.3.9, just as

the proof of Theorem 3.4.1.
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q1

q2

q
m

p
m

p1

p2

Figure 4.1: The shape p× q.

Proof (Stanley). Using Frobenius’ formula (3.15) with λ = p× q and µ and θ de-

fined as in (3.16), we obtain

Fk(p; q) = −1
k
[z−1]∞ (z)k

θ(z− k)
θ(z)

= −1
k
[z−1]∞

(z)k

m

∏
i=1

(z− (qi + pi + pi+1 + · · ·+ pm))k

m

∏
i=1

(z− (qi + pi+1 + pi+2 + · · ·+ pm))k

, (4.3)

where the last equation is obtained by cancelling common factors (similar to the

proof of Lemma 3.3.10 where the only surviving factors were corners). Since

1
z− a

=
1
z

+
a
z2 +

a2

z3 . . . ,

it follows that Fk(p; q) is a polynomial in the p’s and q’s. To show that it has integer

coefficients we can, equivalently, show that

[z−1]∞

(z)k

m

∏
i=1

(z− (qi + pi + pi+1 + · · ·+ pm))k

m

∏
i=1

(z− (qi + pi+1 + pi+2 + · · ·+ pm))k
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is divisible by k. Note that it is clear that

(z)k
θ(z− k)− θ(z)

θ(z)

is divisible by k, implying that

(z)k
θ(z− k)

θ(z)
≡ (z)k(mod k).

Finally, we have

[z−1]∞(z)k = 0,

proving that Fk(p; q) has integer coefficients. For the rest of the theorem, we have

Fk(1, 1, . . . , 1; −1,−1, . . . ,−1) = −1
k
[z−1]∞

(z− k + 1)(z−m + 1)k

z + 1
.

From Proposition 2.5.2, we have

−1
k
[z−1]∞

(z− k + 1)(z−m + 1)k

z + 1
= (−m)k

= (−1)k(k + m− 1)k. 2

Stanley also generalizes Fk(p; q) to

Fµ(p; q) = χ̂p×q(µ 1n−k),

where µ is a partition of k. Stanley states that Fµ(p; q) is, by the Murnaghan-

Nakayama rule, Theorem 2.3.1, a polynomial with integer coefficients. Finally, in

[28, Conjecture 1], Stanley gives a positivity conjecture for the series Fµ(p; q). For

convenience, we use the notation −q = (−q1,−q2, . . . ,−qm), and Fµ(p; −q) is the

series Fµ(p; q) with qi replaced by −qi.

Conjecture 4.2.2 (Stanley). For any partition µ ` k with k ≤ n, the polynomial
(−1)kFµ(p; −q) has non-negative integer coefficients summing to (k + m− 1)k.

We refer to this property (all coefficients of all terms in the p’s and q’s being posi-

tive) as p, q-positivity. Although this is conjectured for all partitions µ ` k, it is not

yet even proven when µ has a single part; i.e. it is not proven that (−1)kFk(p; −q)
has non-negative coefficients. The expressions (−1)kFk(p; −q) for k = 1, 2, 3, 4 and
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m = 2 are given in (4.4). These data also appear in Stanley [28, page 8].

−F1(a, p; −b,−q) = ab + pq,

F2(a, p; −b,−q) = a2b + ab2 + 2 apq + p2q + pq2,

−F3(a, p; −b,−q) = a3b + 3 a2b2 + 3 a2 pq + ab3 + 3 abpq + 3 ap2q

+ 3 apq2 + p3q + 3 p2q2 + pq3 + ab + pq,

F4(a, p; −b,−q) = a4b + 6 a3b2 + 4 a3 pq + 6 a2b3 + 12 a2bpq (4.4)

+ 6 a2 p2q + 6 a2 pq2 + ab4 + 4 ab2 pq + 4 abp2q

+ 4 abpq2 + 4 ap3q + 14 ap2q2 + 4 apq3 + p4q

+ 6 p3q2 + 6 p2q3 + pq4 + 5 a2b + 5 ab2 + 10 apq + 5 p2q

+ 5 pq2.

Finally, Stanley mentions that the terms of highest degree in Fk(p; q), i.e. the terms

of degree k + 1, have a particularly nice expression. Keeping Stanley’s notation, let

Gk(p; q) be the terms of highest degree in Fk(p; q). We have the following ex-

pression for the generating series of Gk(p; q), which we call Gp; q(z). This theorem

appears, with proof, in [28, Proposition 2].

Theorem 4.2.3 (Stanley). The generating series for Gk(p; q) is

Gp; q(z) = 1 + ∑
i≥1

Gi−1(p; q)zi =
z

z
m

∏
i=1

(
1−

(
qi +

m

∑
j=i+1

pj

)
z

)
m

∏
i=1

(
1−

(
qi +

m

∑
j=i

pj

)
z

)

〈−1〉 . (4.5)

Proof (Stanley). From (4.3) we have

Gk−1(p; q) = −1
k
[z−1]∞

zk
m

∏
i=1

(
z−

(
qi +

m

∑
j=i

pj

))k

m

∏
i=1

(
z−

(
qi +

m

∑
j=i+1

pj

))k .

Call the quantity after the “[z−1]∞” operator in the last equation L(z)k. Setting

M(z) = zL(1/z) note that M(0) = 1. Then, using Lagrange Theorem 2.4.2, the last

equation becomes

−1
k
[z] M(z)k = [zk+1]

z(
z

M(z)

)〈−1〉 ,
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giving the desired result. 2

Of course, p, q-positivity of (−1)kFk(p; −q) would imply that (−1)kGk(p; −q) is

also p, q-positive. Stanley does not prove p, q-positivity for the latter series in [28]

but states that Elizalde has proven this in a private communication to him. In fact,

Elizalde shows (according to Stanley)

(−1)kGk(p; q) =
1
k ∑

i1+···+im+j1+···+jm=k+1

(
k
i1

)((
i1
j1

))
m

∏
s=2

(
min(is,js)

∑
r=0

(
k
r

)((
r

js − r

))(
k− r− ii − · · · − is−1 − j1 − · · · − js−1

is − r

))
· pi1

1 · · · p
im
m qi1

1 · · · q
im
m ,

where
(
(n

k)
)

= (n+k−1
k ). However, as far as this author can see, no proof exists in

the literature.

In the next sections we give partial answers to the positivity questions concern-

ing (−1)kF(p; −q). As alluded to at the beginning of this chapter, we use Kerov’s

polynomials to answer these questions.

4.3 Applying Kerov Polynomials to Stanley’s Polynomials

Note that both (3.6) and (4.2) give expressions for the normalized character χ̂ω,

the former directly and the second through the series H in (3.4). Since they hold

for any shapes p× q, we can conclude that they give the same expression for χ̂ω.

Thus, we will use (3.4) and (3.6) to obtain results about Stanley’s polynomials. More

specifically, using (3.4) we obtain the Ri in Kerov’s polynomials for a general shape

ω. It turns out that the generating series Rω(z) is almost the same as the generating

series Gp; q(z) in (4.5) (we qualify our use of “almost” later). We prove this in

Section 4.3.2. We shall, in addition, see that Rω(z) has a much nicer form than

Gp; q(z), and this nicer form allows us to show the positivity of the top terms of

(−1)kFk(p; −q). The main result needed to show the positivity of the top terms

of (−1)kFk(p; −q) is given in Theorem 4.3.3 of Section 4.3.2, the main theorem of

this chapter. In Section 4.3.3 we use Theorem 4.3.3 and the results from Chapter 3

to prove the positivity of the terms of degree k− 1 and k− 3 in Fk(p; q). Finally,

we end the chapter by showing in Theorem 4.3.10 that C-positivity for Kerov’s

polynomials implies p, q-positivity for Stanley’s polynomials.
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4.3.1 The Series H for the Shape p× q

We now compute what the series H must be for the shape p× q. For the shape

p× q, it is not difficult to see that its interlacing sequence of maxima and minima

is

x1 = q1, y1 = q1 − p1, x2 = q2 − p1, y2 = q2 − p1 − p2, x3 = q3 − p1 − p2,

y3 = q3− p1− p2− p3, . . . , xm = qm−
m−1

∑
i=1

pi, ym = qm−
m

∑
i=1

pi, xm+1 = −
m

∑
i=1

pi.

Using the notation developed in Chapter 3, and from (3.3) in Example 3.3.1, we

have

Hp×q(1/z) =

z (1− (q1 − p1) z) (1− (q2 − (p1 + p2)) z) · · ·
(

1−
(

qm −
m

∑
i=1

pi

)
z

)

(1− q1z) (1− (q2 − p1) z) · · ·
(

1−
(

qm −
m−1

∑
i=1

pi

)
z

)(
1 +

m

∑
i=1

pi

)

=

z
m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
z

)
(

1 +
m

∑
j=1

pjz

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
z

) , (4.6)

and we obtain

Rp×q(z) =
z

z
m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
z

)
(

1 +
m

∑
j=1

pjz

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
z

)

〈−1〉 . (4.7)

Alternatively, from (3.9), it follows from the comment immediately following The-

orem 2.4.2 that if

φp×q(z) =
z

Hp×q(1/z)

=

(
1 + ∑m

j=1 pjz
)

∏m
i=1

(
1−

(
qi −∑i−1

j=1 pj

)
z
)

∏m
i=1

(
1−

(
qi −∑i

j=1 pj

)
z
) , (4.8)

then
z

Rp×q(z)
= z φp×q

(
z

Rp×q(z)

)
. (4.9)
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Applying Theorem 2.4.2.b, we obtain for k ≥ 2

Rk(p× q) = [zk−1]
Rp×q(z)

z

=
1

k− 1
[yk−2]− 1

y2 φk−1
p×q(y)

= − 1
k− 1

[yk]φk−1
p×q(y). (4.10)

Remark 1. The φ in the previous equations is the same as the φ in (3.39), with G
replaced by a series determined by the partition p× q rather than a general series.

Indeed by (3.21) we see that F(z) = (H(1/z))〈−1〉, implying that

φ(z) = zG( 1
z )

=
z

F〈−1〉(z)

=
z

(H( 1
z ))
〈−1〉 .

Also, note that (4.9) is essentially (3.44) and (3.45). 2

Of course, substituting Ri(p× q) for Ri in Kerov’s polynomials will give us the

normalized character χ̂p×q(k 1n−k). In fact, in Appendix C we have done just that

(using Maple) to produce the polynomials (−1)kFk(a, p;−b,−q) for k from 1 to 10.

Note that the data agree with Stanley’s data given in (4.4). We, therefore, can now

use Kerov’s polynomials to better understand Stanley’s character polynomials. It

is clear from (4.6) and (4.8) that Ri(p× q) is a homogenous polynomial of degree

i in the p’s and q’s. Therefore, since Kerov’s polynomial Σk is graded with terms

of weight k + 1(mod 2) (Theorem 3.3.6) in the Ri’s, we see that Stanley’s character

polynomials are also graded with terms of degree k + 1(mod 2). We state this now

as a proposition, for easy reference later.

Proposition 4.3.1. Terms of degree i in Fk(p; q) are obtained from the terms of weight i
in Kerov’s polynomials Σk with the Ri’s evaluated at the shape p× q.

To further reinforce the idea that we are dealing with polynomials, and to make

convenient variable substitutions, we depart from the notation of Chapter 3. We

shall replace Ri(p× q) with Ri(p; q) and Rp×q(z) with Rp; q(z) to emphasize that

these objects are polynomials in p’s and q’s. We do this analogously with Hp×q(z)
and φp×q(z); that is, the series φp; q(z) will denote the series in (4.8) and Hp; q(z)
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will denote the series in (4.6). We shall deal with the terms of different weights

separately, starting with the terms of highest degree, namely the terms of degree

k + 1.

4.3.2 Terms of Degree k + 1

The expression for the top terms in Stanley’s polynomials is given implicitly in

(4.5). From (3.9) and Proposition 4.3.1, we can obtain a similar formula for the top

terms; that is, the top term in Fk(p; q) is Rk+1(p; q) and, therefore, the generating

series for the top terms is

Rp; q(z) =
z

z
m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
z

)
(

1 +
m

∑
j=1

pjz

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
z

)

〈−1〉 . (4.11)

Evidently, the two generating series Rp; q(z) and Gp; q(z) should be equal; after all

they both generate the top terms of Fk(p; q), although it is not obvious from (4.5)

and (4.11) that this is the case. It turns out that Rp; q(z) and Gp; q(z) are almost the

same; we state this more precisely in the next proposition.

Proposition 4.3.2. The generating series Rp; q(z) and Gp; q(z) are identical except for the
linear terms; more precisely

Rp; q(z) = Gp; q(z)−
m

∑
i=1

piz.

Proof. From Theorem 2.4.2, it suffices to show that Rp; q(z) + ∑m
i=1 piz satisfies the

same equation as Gp; q(z). In this proof, we denote Rp; q(z) and Gp; q(z) by R and

G, respectively. From (4.11) we have

z
R

=


z

m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
z

)
(

1 +
m

∑
j=1

pjz

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
z

)

〈−1〉

.
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By the definition of compositional inverse we have, from the last expression,

z =

z
m

∏
i=1

(
R−

(
qi −

i

∑
j=1

pj

)
z

)
(

R +
m

∑
j=1

pjz

)
m

∏
i=1

(
R−

(
qi −

i−1

∑
j=1

pj

)
z

)

=

z
m

∏
i=1

((
R +

m

∑
j=1

pjz

)
−
(

qi +
m

∑
j=i+1

pj

)
z

)
(

R +
m

∑
j=1

pjz

)
m

∏
i=1

((
R +

m

∑
j=1

pjz

)
−
(

qi +
m

∑
j=i

pj

)
z

)

=

z(
R + ∑m

j=1 pjz
) m

∏
i=1

1−
(

qi +
m

∑
j=i+1

pj

)
z(

R + ∑m
j=1 pjz

)


m

∏
i=1

1−
(

qi +
m

∑
j=i

pj

)
z(

R + ∑m
j=1 pjz

)
 .

Again, from the definition of compositional inverse, we conclude that

z(
R + ∑m

j=1 pjz
) =


z

m

∏
i=1

(
1−

(
qi +

m

∑
j=i+1

pj

)
z

)
m

∏
i=1

(
1−

(
qi +

m

∑
j=i

pj

)
z

)

〈−1〉

.

Comparing this expression with (4.5), the result follows. 2

Remark 2. Using Theorem 2.4.2.b we can directly compute the linear terms. From

the comment following Theorem 2.4.2, note that since Gp; q(z) satisfies (4.5), it must

also satisfy

z
Gp; q(z)

= zψp; q

(
z

Gp; q(z)

)
,

where

ψp; q(z) =

m

∏
i=1

(
1−

(
qi +

m

∑
j=i

pj

)
z

)
m

∏
i=1

(
1−

(
qi +

m

∑
j=i+1

pj

)
z

) .
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Thus, using Lagrange inversion Theorem 2.4.2.b, we have

[z] Gp; q(z) = [z0]
1

z
m

∏
i=1

(
1−

(
qi +

m

∑
j=i+1

pj

)
z

)
m

∏
i=1

(
1−

(
qi +

m

∑
j=i

pj

)
z

)

〈−1〉

= [y0]
−1
y

+ [y−1]
−1
y2 log


m

∏
i=1

(
1−

(
qi +

m

∑
j=i

pj

)
z

)
m

∏
i=1

(
1−

(
qi +

m

∑
j=i+1

pj

)
z

)


= −[y]
m

∑
i=1

− log

(1−
(

qi +
m

∑
j=i

pj

)
y

)−1


+ log

(1−
(

qi +
m

∑
j=i+1

pj

)
z

)−1


=
m

∑
i=1

((
qi +

m

∑
j=i

pj

)
−
(

qi +
m

∑
j=i+1

pj

))

=
m

∑
i=1

pi.

Similarly, for Rp; q(z) we use (4.9) and Theorem 2.4.2.b to obtain

[z] Rp; q(z) = [z0]
1

z
m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
z

)
(

1 +
m

∑
j=1

pjz

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
z

)

〈−1〉

= [y0]
1
y

+ [y−1]− 1
y2 log



(
1 +

m

∑
j=1

pjy

)
m

∏
i=1

(
1−

(
qi −

i−1

∑
j=1

pj

)
y

)

y
m

∏
i=1

(
1−

(
qi −

i

∑
j=1

pj

)
y

)
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= −[y]

 m

∑
i=1
− log

(1 +
m

∑
j=1

pjy

)−1
− log

(1−
(

qi −
i−1

∑
j=1

pj

)
y

)−1


+ log

(1−
(

qi −
i

∑
j=1

pj

)
y

)−1


= −
m

∑
j=1

pj +
m

∑
i=1

(
qi −

i−1

∑
j=1

pj −
(

qi −
i

∑
j=1

pj

))

= −
m

∑
j=1

pj +
m

∑
i=1

pi

= 0.

The last equation comes as no surprise, as is clear from the combinatorial origins

in Section 3.3.1. Note also, from the data in Appendix A, that the term R1 never

appears. 2

Through Lagrange Inversion, we see that the Ri are written in terms of the series

φp; q given in (4.10). We use the notation φp;−q, Rk(p;−q) and Gk(p;−q) to denote

that we are substituting −qi for qi for all i in these series. We have the following

compact expression for the series φp;−q(−z).

Theorem 4.3.3. For p1, p2, . . . , pm and q1, q2, . . . , qm, we have

φp;−q(−z) =
n

∏
i=1

(
1 +

piqiz
(1− ri−1z) (1− (qi + ri)z)

)
.

where ri = ∑i
j=1 pj.

Proof. We have, from (4.8),

φp;−q(−z) =
(1− rmz)

m

∏
i=1

(1− (qi + ri−1) z)

m

∏
i=1

(1− (qi + ri) z)
.

Now set An(z) = 1− rnz, F0 = 1 and

Fn(z) = An(z)

n

∏
i=1

(1− (qi + ri−1) z)

n

∏
i=1

(1− (qi + ri) z)
. (4.12)
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Note that φp;−q(−z) = Fm(z). Then,

Fn(z) =
Fn−1(z)
An−1(z)

1− (qn + rn−1) z
1− (qn + rn) z

An(z)

=
Fn−1(z)
An−1(z)

An−1(z)
(

1− qnz
An−1(z)

)
An−1(z)

(
1− (qn + pn) z

An−1(z)

)An−1(z)
(

1− pnz
An−1(z)

)

= Fn−1(z)
1− (qn + pn)z

An−1(z)
+

pnqnz
A2

n−1(z)

1− (qn + pn)z
An−1(z)

= Fn−1(z)

1 +
pnqnz

A2
n−1(z)

(
1− (qn+pn)z

An−1(z)

)


= Fn−1(z)
(

1 +
pnqnz

An−1(z) (1− (qn + rn)z)

)
= Fn−1(z)

(
1 +

pnqnz
(1− rn−1z) (1− (qn + rn)z)

)
. (4.13)

Therefore, from (4.13) we have

φp;−q(−z) = Fm(z)

=
Fm(z)
F0(z)

=
Fm(z)

Fm−1(z)
· Fm−1(z)

Fm−2(z)
· · · F1(z)

F0(z)

=
m

∏
i=1

(
1 +

piqiz
(1− ri−1z) (1− (qi + ri)z)

)
. 2

Corollary 4.3.4. φp;−q(−z) is p, q-positive.

Proof. Each multiplicand in Theorem 4.3.3 is p, q-positive, making the product p, q-

positive. 2

Corollary 4.3.5. For all k ≥ 1, the series in p’s and q’s (−1)kRk+1(p;−q) and
(−1)kGk(p;−q) are p, q-positive. That is, the terms of highest degree in (−1)kFk(p; −q)
all have positive coefficients.

Proof. The series (−1)kGk(p;−q) is by definition the terms of highest degree in

(−1)kFk(p; −q), and by Proposition 4.3.2, (−1)kGk(p;−q) = (−1)kRk+1(p;−q)
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are equal for all k ≥ 1. Thus, it suffices to show that (−1)kRk+1(p;−q) is p, q-

positive for all k ≥ 1.

By (4.10) we have

(−1)kRk+1(p;−q) = (−1)k
(
−1

k
[yk+1] φk

p;−q(y)
)

=
1
k
[(−y)k+1]φk

p;−q(y)

=
1
k
[yk+1]φk

p;−q(−y),

and the result follows. 2

4.3.3 Terms of Degree k − 1, k − 3 and a General Connection Between
Kerov’s Polynomials and Stanley’s Polynomials

In this section we deal with terms of degree k− 1 and k− 3 in Stanley’s polynomi-

als. We note that in Stanley [28] there are no results concerning terms not of highest

degree; Stanley comments only on the series Gp;−q(z), the terms of highest degree

in k + 1. Moreover, we note the complication that in (−1)kΣk there are negative

terms when one evaluates the Ri in terms of the shape p; q and substitutes −q’s

for all the q’s. More precisely, consider, for example, Σ5 given in Appendix A. We

see from the comments at the beginning of Section 4.3 that

(−1)5F5(p;−q) = (−1)5Σ5(p; q)|q→−q

= (−1)5 (R6(p;−q) + 15R4(p;−q) + 5R2(p;−q)2

+8R2(p;−q))

= (−1)5R6(p;−q) + 15(−1)3R4(p;−q)

− 5((−1)R2(p;−q))2 + 8(−1)R2(p;−q).

Note that all terms are p, q-positive except for the term−5((−1)R2(p;−q))2. Thus,

p, q-positivity would not immediately follow from positivity of Kerov’s polynomi-

als. For the terms of degree k− 1 and k− 3, however, we can use the results given

in Chapter 3. We begin with the following theorem.

Theorem 4.3.6. For k ≥ 3, the terms of degree k− 1 in Fk(p; q) are given by

− k(k + 1)
24

[yk−3]φ′′p;−q(y)φk−1
p;−q(y).



80 4.3 Applying Kerov Polynomials to Stanley’s Polynomials

Proof. From Proposition 4.3.1 and Theorem 3.5.4, the terms of degree k− 1 in Fk(p; q)
are given by

1
4

(
k + 1

3

)
Ck−1(p; q).

From (3.44), (3.45) and (3.48) we obtain the system of equations

z = wR(z), w = zφp;−q(w), C(z) =
1

−z2 d
dz

1
w

,

where φp;−q(z) is given in (4.8). Thus,

z
d
dz

w =
w

1− zφ′p;−q(w)
,

from which we obtain

C(z) =
1

−z2 d
dz

1
w

=
1

z2

w2
d
dz w

=
w
z

(1− zφ′p;−q(w))

= φp;−q(w)− wφ′p;−q(w).

Therefore, for all k ≥ 2, we have by Lagrange Theorem 2.4.2.b that

[zk−1] C(z) = [zk−1] φp;−q(w)− [zk−1] wφ′p;−q(w)

=
1

k− 1
[yk−2] φ′p;−q(y)φk−1

p;−q(y)

− 1
k− 1

[yk−2]
(

φ′p;−q(y) + yφ′′p;−q(y)
)

φk−1
p;−q(y)

= − 1
k− 1

[yk−3]φ′′p;−q(y)φk−1
p;−q(y),

and the result follows. 2

Example 4.3.7. Define Sk(a, p;−b,−q) to be the terms of degree k− 1 in Fk(a, p;−b,−q).

In the following equations, we give the polynomials Sk(a, p;−b,−q), for k from 2
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to 6, using Theorem 4.3.6 and Maple.

−S3(a, p;−b,−q) = ab + pq

S4(a, p;−b,−q) = 5 a2b + 5 ab2 + 10 apq + 5 p2q + 5 pq2

−S5(a, p;−b,−q) = 15 a3b + 40 a2b2 + 45 a2 pq + 15 ab3 + 35 abpq + 45 ap2q

+ 45 apq2 + 15 p3q + 40 p2q2 + 15 pq3

S6(a, p;−b,−q) = 35 a4b + 175 a3b2 + 140 a3 pq + 175 a2b3 + 315 a2bpq

+ 210 a2 p2q + 210 a2 pq2 + 35 ab4 + 105 ab2 pq + 105 abp2q

+ 105 abpq2 + 140 ap3q + 420 ap2q2 + 140 apq3 + 35 p4q

+ 175 p3q2 + 175 p2q3 + 35 pq4.

One can compare these polynomials to those given in Appendix C. 2

From Theorem 4.3.6 we obtain the following positivity result.

Corollary 4.3.8. For k ≥ 3, the terms of degree k − 1 in (−1)kFk(p;−q) are p, q-
positive.

Proof. The terms of degree k− 1 in Fk(p; q) are given in Theorem 4.3.6. Therefore,

the terms of degree k− 1 in (−1)kFk(p; −q) are

(−1)k 1
4

(
k + 1

3

)
Ck−1(p;−q) = −1

4

(
k + 1

3

)
[zk−1] Cp;−q(−z)

=
k(k + 1)

24
[yk−1](−y)2 d2

d(−y)2

(
φp;−q(−y)

)
· φk−1

p;−q(−y)

=
k(k + 1)

24
[yk−1]y2

(
d2

dy2 (−1)2
) (

φp;−q(−y)
)

· φk−1
p;−q(−y)

=
k(k + 1)

24
[yk−1]y2 d2

dy2

(
φp;−q(−y)

)
φk−1

p;−q(−y).

From Theorem 4.3.4 both φp;−q(−y) and, of course then, d2

dy2 φp;−q(−y) are p, q-

positive, proving the result. 2

In addition, we can give a positivity result for the terms of third highest degree in

(−1)kF(p;−q).

Corollary 4.3.9. For k ≥ 5, the terms of degree k− 3 in (−1)kF(p;−q) are p, q-positive.
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Note that the k ≥ 5 restriction is there simply because the terms are otherwise 0.

Proof. From Theorem 3.5.7, the terms of third highest degree are

Σk,4 = ∑
i,j,m≥0

i+j+m=k−3

τi,j,mCiCjCm,

where τi,j,m ≥ 0 and is given in (3.31). Therefore,

(−1)kΣk,4 = (−1)k ∑
i,j,m≥0

i+j+m=k−3

τi,j,mCi(p; q)Cj(p; q)Cm(p; q)

= ∑
i,j,m≥0

i+j+m=k−3

τi,j,m

(
(−1)i+1Ci(p; q)

) (
(−1)j+1Cj(p; q)

)
·
(
(−1)m+1Cm(p; q)

)
. (4.14)

Substituting −q for q in the (4.14), we see from the proof of Corollary 4.3.8, that

each (−1)t+1Ct+1(p;−q) is p, q-positive. Thus, after the subtitution of −q for q,

each summand in (4.14) is the product of p, q-positive terms, making the last ex-

pression in (4.14) p, q-positive, completing the proof. 2

Finally, the following theorem gives a general connection between Kerov’s poly-

nomials and Stanley’s polynomials. The proof we give is essentially the proof of

Corollary 4.3.9 (in particular, Corollary 4.3.9 would follow as a consequence).

Theorem 4.3.10. If Kerov’s polynomials Σk are C-positive then Stanley’s polynomials
(−1)kFk(p; −q) are p, q-positive.

Proof. From Proposition 4.3.1 the terms of degree i in Stanley’s polynomials are

obtained from the terms of weight i in Kerov’s polynomials. From Theorem 3.5.13

the terms of degree k + 1− 2n in Stanley’s polynomials are obtained from

∑
i1,...,i2n−1≥0

i1+···+i2n−1=k+1−2n

γi1,...,i2n−1 Ci1(p; q) · · ·Ci2n−1(p; q).

Thus, the terms of degree k + 1− 2n in (−1)kFk(p; −q) are given by

∑
i1,...,i2n−1≥0

i1+···+i2n−1=k+1−2n

γi1,...,i2n−1

(
(−1)i1−1Ci1(p; −q)

)
· · ·
(
(−1)i2n−1−1Ci2n−1(p; −q)

)
.

From the proof of Corollary 4.3.8, each (−1)j−1Cj(p; −q) is p, q-positive, and the

result follows. 2



Appendix A

The R-expansions of Kerov’s
Character Polynomials for k ≤ 20

Σ2 = R3

Σ3 = R4 + R2

Σ4 = R5 + 5 R3

Σ5 = R6 + 15 R4 + 5 R2
2 + 8 R2

Σ6 = R7 + 35 R5 + 35 R3R2 + 84 R3

Σ7 = R8 + 70 R6 + 84 R4R2 + 469 R4 + 56 R3
2 + 14 R2

3 + 224 R2
2 + 180 R2

Σ8 = R9 + 126 R7 + 168 R5R2 + 1869 R5 + 252 R4R3 + 126 R3R2
2 + 2688 R3R2 +

3044 R3

Σ9 = R10 + 210 R8 + 300 R6R2 + 5985 R6 + 480 R5R3 + 270 R4
2 + 270 R4R2

2 +
10548 R4R2 + 26060 R4 + 360 R3

2R2 + 6714 R3
2 + 30 R2

4 + 2400 R2
3 + 14580 R2

2 +
8064 R2

Σ10 = R11 + 330 R9 + 495 R7R2 + 16401 R7 + 825 R6R3 + 990 R5R4 + 495 R5R2
2 +

32901 R5R2 + 152900 R5 + 1485 R4R3R2 + 46101 R4R3 + 330 R3
3 + 330 R3R3

2 +
33000 R3R2

2 + 258060 R3R2 + 193248 R3

83
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Σ11 = R12 + 495 R10 + 770 R8R2 + 39963 R8 + 1320 R7R3 + 1650 R6R4 + 825 R6R2
2 +

87890 R6R2 + 696905 R6 + 880 R5
2 + 2640 R5R3R2 + 130108 R5R3 + 1485 R4

2R2 +
71214 R4

2 + 1980 R4R2
3 + 660 R4R2

3 + 105545 R4R2
2 + 1459700 R4R2 + 2286636 R4 +

1320 R3
2R2

2 + 136345 R3
2R2 + 902440 R3

2 + 55 R2
5 + 15400 R2

4 + 386980 R2
3 +

1401444 R2
2 + 604800 R2

Σ12 = R13 + 715 R11 + 1144 R9R2 + 88803 R9 + 2002 R8R3 + 2574 R7R4 +
1287 R7R2

2 + 209352 R7R2 + 2641925 R7 + 2860 R6R5 + 4290 R6R3R2 +
321750 R6R3 + 5148 R5R4R2 + 369798 R5R4 + 3432 R5R3

2 + 1144 R5R2
3 +

280995 R5R2
2 + 6390956 R5R2 + 18128396 R5 + 3861 R4

2R3 + 5148 R4R3R2
2 +

802230 R4R3R2 + 8581144 R4R3 + 2288 R3
3R2 + 173745 R3

3 + 715 R3R2
4 +

240240 R3R2
3 + 7379372 R3R2

2 + 33549516 R3R2 + 19056960 R3

Σ13 = R14 + 1001 R12 + 1638 R10R2 + 183183 R10 + 2912 R9R3 + 3822 R8R4 +
1911 R8R2

2 + 456092 R8R2 + 8691683 R8 + 4368 R7R5 + 6552 R7R3R2 +
720902 R7R3 + 2275 R2

6 + 8190 R6R4R2 + 855400 R6R4 + 5460 R6R3
2 + 1820 R6R2

3 +
662025 R6R2

2 + 23377562 R6R2 + 109425316 R6 + 4368 R5
2R2 + 448084 R5

2 +
13104 R5R4R3 + 8736 R5R3R2

2 + 1996540 R5R3R2 + 32944938 R5R3 + 2457 R4
3 +

4914 R2
4R2

2 + 1100190 R4
2R2 + 17749927 R4

2 + 13104 R4R3
2R2 + 1436435 R4R3

2 +
1365 R4R2

4 + 672490 R4R2
3 + 32392724 R4R2

2 + 253452836 R4R2 + 292271616 R4 +
1456 R3

4 + 3640 R3
2R2

3 + 1314495 R3
2R2

2 + 40788384 R3
2R2 + 153561772 R3

2 +
91 R2

6 + 71344 R2
5 + 5475652 R2

4 + 73713276 R2
3 + 190217664 R2

2 + 68428800 R2

Σ14 = R15 + 1365 R13 + 2275 R11R2 + 355355 R11 + 4095 R10R3 + 5460 R9R4 +
2730 R9R2

2 + 924742 R9R2 + 25537655 R9 + 6370 R8R5 + 9555 R8R3R2 +
1494402 R8R3 + 6825 R7R6 + 12285 R7R4R2 + 1815177 R7R4 + 8190 R7R3

2 +
2730 R7R2

3 + 1424150 R7R2
2 + 74586655 R7R2 + 539651112 R7 + 13650 R6R5R2 +

1957865 R6R5 + 20475 R6R4R3 + 13650 R6R3R2
2 + 4452175 R6R3R2 +

108780815 R6R3 + 10920 R5
2R3 + 12285 R5R4

2 + 16380 R5R4R2
2 +

5165615 R5R4R2 + 121953975 R5R4 + 21840 R5R3
2R2 + 3384745 R5R3

2 +
2275 R5R2

4 + 1603875 R5R2
3 + 116367160 R5R2

2 + 1457761032 R5R2 +
2961802480 R5 + 24570 R4

2R3R2 + 3741465 R4
2R3 + 10920 R4R3

3 + 13650 R4R3R2
3 +

6951945 R4R3R2
2 + 319646600 R4R3R2 + 1900585960 R4R3 + 9100 R3

3R2
2 +

3030755 R3
3R2 + 67649400 R3

3 + 1365 R3R2
5 + 1248520 R3R4

2 + 113233120 R3R2
3 +

1831663288 R3R2
2 + 5823745200 R3R2 + 2699672832 R3
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Σ15 = R16 + 1820 R14 + 3080 R12R2 + 654654 R12 + 5600 R11R3 + 7560 R10R4 +
3780 R10R2

2 + 1767024 R10R2 + 68396900 R10 + 8960 R9R5 + 13440 R9R3R2 +
2907744 R9R3 + 9800 R8R6 + 17640 R8R4R2 + 3597384 R8R4 + 11760 R8R3

2 +
3920 R8R2

3 + 2851800 R8R2
2 + 213459960 R8R2 + 2273360089 R8 + 5040 R7

2 +
20160 R7R5R2 + 3961104 R7R5 + 30240 R7R4R3 + 20160 R7R3R2

2 + 9151800 R7R3R2 +
319751360 R7R3 + 10500 R6

2R2 + 2037000 R6
2 + 33600 R6R5R3 + 18900 R6R4

2 +
25200 R6R4R2

2 + 10970400 R6R4R2 + 368042400 R6R4 + 33600 R6R3
2R2 +

7209300 R6R3
2 + 3500 R6R2

4 + 3448200 R6R2
3 + 363356700 R6R2

2 +
6893328064 R6R2 + 22556777880 R6 + 20160 R5

2R4 + 13440 R5
2R2

2 +
5767440 R5

2R2 + 190928800 R5
2 + 80640 R5R4R3R2 + 16801680 R5R4R3 +

17920 R5R3
3 + 22400 R5R3R2

3 + 15800400 R5R3R2
2 + 1047424280 R5R3R2 +

9387340928 R5R3 + 15120 R4
3R2 + 3103380 R4

3 + 30240 R4
2R3

2 + 12600 R4
2R2

3 +
8746920 R4

2R2
2 + 568600060 R4

2R2 + 5006452864 R4
2 + 50400 R4R3

2R2
2 +

22949640 R4R3
2R2 + 727222860 R4R3

2 + 2520 R4R2
5 + 3182550 R4R2

4 +
418373760 R4R2

3 + 10422033664 R4R2
2 + 55848839760 R4R2 + 51381813456 R4 +

11200 R3
4R2 + 2508240 R3

4 + 8400 R3
2R2

4 + 8340780 R3
2R2

3 + 800181760 R2
3R2

2 +
12869508064 R3

2R2 + 33336787680 R3
2 + 140 R2

7 + 263424 R2
6 + 51093280 R2

5 +
1933747200 R2

4 + 17295397560 R2
3 + 34907328000 R2

2 + 10897286400 R2

Σ16 = R17 + 2380 R15 + 4080 R13R2 + 1154062 R13 + 7480 R12R3 +
10200 R11R4 + 5100 R11R2

2 + 3212320 R11R2 + 169537940 R11 + 12240 R10R5 +
18360 R10R3R2 + 5366832 R10R3 + 13600 R9R6 + 24480 R9R4R2 + 6740432 R9R4 +
16320 R9R3

2 + 5440 R9R2
3 + 5386280 R9R2

2 + 558874320 R9R2 + 8433097673 R9 +
14280 R8R7 + 28560 R8R5R2 + 7540792 R8R5 + 42840 R8R4R3 + 28560 R8R3R2

2 +
17640560 R8R3R2 + 855690920 R8R3 + 30600 R7R6R2 + 7906360 R7R6 +
48960 R7R5R3 + 27540 R7R4

2 + 36720 R7R4R2
2 + 21642360 R7R4R2 +

1004725160 R7R4 + 48960 R7R3
2R2 + 14255180 R7R3

2 + 5100 R7R2
4 +

6868000 R7R2
3 + 1018466260 R7R2

2 + 28015362432 R7R2 + 138687993080 R7 +
25500 R6

2R3 + 61200 R6R5R4 + 40800 R6R5R2
2 + 23470200 R6R5R2 +

1066471880 R6R5 + 122400 R6R4R3R2 + 34340000 R6R4R3 + 27200 R6R3
3 +

34000 R6R3R2
3 + 32609400 R6R3R2

2 + 3033562280 R6R3R2 + 39375602368 R6R3 +
10880 R5

3 + 65280 R5
2R3R2 + 18083920 R5

2R3 + 73440 R5R4
2R2 +

20084820 R5R4
2 + 97920 R5R4R3

2 + 40800 R5R4R2
3 + 38092920 R5R4R2

2 +
3436658120 R5R4R2 + 43442253696 R5R4 + 81600 R5R3

2R2
2 + 50098320 R5R3

2R2 +
2210817700 R5R3

2 + 4080 R5R2
5 + 7003150 R5R2

4 + 1302945280 R5R2
3 +

47980320192 R5R2
2 + 403288092320 R5R2 + 640277565264 R5 + 36720 R4

3R3 +
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91800 R4
2R3R2

2 + 55581840 R4
2R3R2 + 2409452500 R4

2R3 + 81600 R4R3
3R2 +

24356920 R4R3
3 + 30600 R4R3R2

4 + 40807480 R4R3R2
3 + 5459072640 R4R3R2

2 +
128040338880 R4R3R2 + 514531785200 R4R3 + 5440 R5

3 + 27200 R3
3R2

3 +
26801180 R3

3R2
2 + 2333847040 R3

3R2 + 26603024736 R3
3 + 2380 R3R2

6 +
5117952 R3R2

5 + 1145198880 R3R2
4 + 50584764800 R3R2

3 + 536391335160 R3R2
2 +

1314589943808 R3R2 + 520105017600 R3

Σ17 = R18 + 3060 R16 + 5304 R14R2 + 1958502 R14 + 9792 R13R3 +
13464 R12R4 + 6732 R12R2

2 + 5596536 R12R2 + 393481660 R12 + 16320 R11R5 +
24480 R11R3R2 + 9471720 R11R3 + 18360 R10R6 + 33048 R10R4R2 + 12047832 R10R4 +
22032 R10R3

2 + 7344 R10R2
3 + 9687960 R10R2

2 + 1358203032 R10R2 +
28157550993 R10 + 19584 R9R7 + 39168 R9R5R2 + 13653312 R9R5 +
58752 R9R4R3 + 39168 R9R3R2

2 + 32256480 R9R3R2 + 2118341712 R9R3 +
9996 R8

2 + 42840 R8R6R2 + 14522760 R8R6 + 68544 R8R5R3 + 38556 R8R4
2 +

51408 R8R4R2
2 + 40283880 R8R4R2 + 2527831320 R8R4 + 68544 R8R3

2R2 +
26582220 R8R3

2 + 7140 R8R2
4 + 12880560 R8R2

3 + 2616205956 R8R2
2 +

100776536520 R8R2 + 720447491400 R8 + 22032 R7
2R2 + 7398468 R7

2 +
73440 R7R6R3 + 88128 R7R5R4 + 58752 R7R5R2

2 + 44631120 R7R5R2 +
2727348216 R7R5 + 176256 R7R4R3R2 + 65539080 R7R4R3 + 39168 R7R3

3 +
48960 R7R3R2

3 + 62723880 R7R3R2
2 + 7988140608 R7R3R2 + 145251275016 R7R3 +

45900 R6
2R4 + 30600 R6

2R2
2 + 23001000 R6

2R2 + 1393439340 R6
2 + 48960 R6R5

2 +
195840 R6R5R3R2 + 71257200 R6R5R3 + 110160 R6R4

2R2 + 39642300 R6R4
2 +

146880 R6R4R3
2 + 61200 R6R4R2

3 + 75765600 R6R4R2
2 + 9299362848 R6R4R2 +

163914689928 R6R4 + 122400 R6R3
2R2

2 + 99847800 R6R3
2R2 + 6011731692 R6R3

2 +
6120 R6R2

5 + 14047950 R6R2
4 + 3611048608 R6R2

3 + 189612052992 R6R2
2 +

2367891394224 R6R2 + 5943136639504 R6 + 117504 R5
2R4R2 + 41815920 R5

2R4 +
78336 R5

2R3
2 + 32640 R5

2R2
3 + 39939120 R5

2R2
2 + 4842223968 R5

2R2 +
84530220708 R5

2 + 176256 R5R4
2R3 + 293760 R5R4R3R2

2 + 234004320 R5R4R3R2 +
13694468184 R5R4R3 + 130560 R5R3

3R2 + 51375360 R5R3
3 + 48960 R5R3R2

4 +
86622480 R5R3R2

3 + 15888265824 R5R3R2
2 + 528470969472 R5R3R2 +

3143822584896 R5R3 + 16524 R4
4 + 55080 R4

3R2
2 + 43347960 R4

3R2 +
2496204180 R4

3 + 220320 R4
2R3

2R2 + 85640220 R4
2R3

2 + 27540 R4
2R2

4 +
48109320 R4

2R2
3 + 8676349296 R4

2R2
2 + 283879059264 R4

2R2 +
1664828612280 R4

2 + 48960 R4R3
4 + 146880 R4R3

2R2
3 + 189973980 R4R3

2R2
2 +

22369864800 R4R3
2R2 + 356862570912 R4R3

2 + 4284 R4R2
6 + 12172272 R4R2

5 +
3734409312 R4R2

4 + 236162036160 R4R2
3 + 3798814728504 R4R2

2 +
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15435445558464 R4R2 + 11905898330880 R4 + 48960 R3
4R2

2 + 41669040 R3
4R2 +

2402180104 R3
4 + 17136 R3

2R2
5 + 40026840 R3

2R2
4 + 9608537088 R3

2R2
3 +

443605042080 R3
2R2

2 + 4620143919648 R3
2R2 + 9107976760416 R3

2 + 204 R2
8 +

822528 R2
7 + 353456928 R2

6 + 31642208256 R2
5 + 752018450616 R2

4 +
5003578123776 R2

3 + 8355017145600 R2
2 + 2324754432000 R2

Σ18 = R19 + 3876 R17 + 6783 R15R2 + 3215142 R15 + 12597 R14R3 +
17442 R13R4 + 8721 R13R2

2 + 9398331 R13R2 + 862928092 R13 + 21318 R12R5 +
31977 R12R3R2 + 16084431 R12R3 + 24225 R11R6 + 43605 R11R4R2 +
20683305 R11R4 + 29070 R11R3

2 + 9690 R11R2
3 + 16715250 R11R2

2 +
3098068389 R11R2 + 86027797713 R11 + 26163 R10R7 + 52326 R10R5R2 +
23694957 R10R5 + 78489 R10R4R3 + 52326 R10R3R2

2 + 56424870 R10R3R2 +
4909530555 R10R3 + 27132 R9R8 + 58140 R9R6R2 + 25494390 R9R6 +
93024 R9R5R3 + 52326 R9R4

2 + 69768 R9R4R2
2 + 71483130 R9R4R2 +

5939392476 R9R4 + 93024 R9R3
2R2 + 47238750 R9R3

2 + 9690 R9R2
4 +

22994370 R9R2
3 + 6249977325 R9R2

2 + 327662916825 R9R2 + 3262699892088 R9 +
61047 R8R7R2 + 26331606 R8R7 + 101745 R8R6R3 + 122094 R8R5R4 +
81396 R8R5R2

2 + 80480295 R8R5R2 + 6490978284 R8R5 + 244188 R8R4R3R2 +
118532925 R8R4R3 + 54264 R8R3

3 + 67830 R8R3R2
3 + 114157890 R8R3R2

2 +
19468614081 R8R3R2 + 482319595929 R8R3 + 52326 R7

2R3 + 130815 R7R6R4 +
87210 R7R6R2

2 + 84666375 R7R6R2 + 6730584852 R7R6 + 69768 R7R5
2 +

279072 R7R5R3R2 + 131716170 R7R5R3 + 156978 R7R4
2R2 + 73387215 R7R4

2 +
209304 R7R4R3

2 + 87210 R7R4R2
3 + 141149385 R7R4R2

2 + 23119387473 R7R4R2 +
553802501121 R7R4 + 174420 R7R3

2R2
2 + 186324165 R7R3

2R2 +
15006465012 R7R3

2 + 8721 R7R2
5 + 26351955 R7R2

4 + 9151327732 R7R2
3 +

664563711816 R7R2
2 + 11825317043640 R7R2 + 44160980070544 R7 +

72675 R6
2R5 + 145350 R6

2R3R2 + 67951125 R6
2R3 + 348840 R6R5R4R2 +

159957675 R6R5R4 + 232560 R6R5R3
2 + 96900 R6R5R2

3 + 153707625 R6R5R2
2 +

24676446441 R6R5R2 + 582100836033 R6R5 + 261630 R6R4
2R3 + 436050 R6R4R3R2

2 +
451747800 R6R4R3R2 + 35145645504 R6R4R3 + 193800 R6R3

3R2 +
99346725 R6R3

3 + 72675 R6R3R2
4 + 168387975 R6R3R2

3 + 41576328732 R6R3R2
2 +

1908984783384 R6R3R2 + 16166926380888 R6R3 + 62016 R5
3R2 +

28159140 R5
3 + 279072 R5

2R4R3 + 232560 R5
2R3R2

2 + 238432140 R5
2R3R2 +

18336328860 R5
2R3 + 104652 R5R4

3 + 261630 R5R4
2R2

2 + 265423635 R5R4
2R2 +

20116645428 R5R4
2 + 697680 R5R4R3

2R2 + 350148150 R5R4R3
2 + 87210 R5R4R2

4 +
197690535 R5R4R2

3 + 47504097084 R5R4R2
2 + 2127087877032 R5R4R2 +
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17639100251208 R5R4 + 77520 R5R3
4 + 232560 R5R3

2R2
3 + 391006035 R5R3

2R2
2 +

61506255612 R5R3
2R2 + 1346569377120 R5R3

2 + 6783 R5R2
6 + 25192062 R5R2

5 +
10441525392 R5R2

4 + 922360363320 R5R2
3 + 21593547979560 R5R2

2 +
135419270647824 R5R2 + 177317274898944 R5 + 261630 R4

3R3R2 +
129899295 R4

3R3 + 174420 R4
2R3

3 + 261630 R4
2R3R2

3 + 434959875 R4
2R3R2

2 +
67373930460 R4

2R3R2 + 1452375874728 R4
2R3 + 348840 R4R3

3R2
2 +

382255965 R4R3
3R2 + 29061223444 R4R3

3 + 61047 R4R3R2
5 + 184565430 R4R3R2

4 +
59068658592 R4R3R2

3 + 3760094847960 R4R3R2
2 + 56357253645120 R4R3R2 +

169914189023568 R4R3 + 46512 R3
5R2 + 25192062 R3

5 + 67830 R3
3R2

4 +
162113700 R3

3R2
3 + 38155561056 R3

3R2
2 + 1580651249760 R3

3R2 +
11537475926976 R3

3 + 3876 R3R2
7 + 17581536 R3R2

6 + 8561138256 R3R2
5 +

875902898640 R3R2
4 + 24050910615048 R3R2

3 + 187683394106304 R3R2
2 +

376118453760768 R3R2 + 130859579289600 R3

Σ19 = R20 + 4845 R18 + 8550 R16R2 + 5126010 R16 + 15960 R15R3 + 22230 R14R4 +
11115 R14R2

2 + 15283866 R14R2 + 1801329010 R14 + 27360 R13R5 + 41040 R13R3R2 +
26413116 R13R3 + 31350 R12R6 + 56430 R12R4R2 + 34289376 R12R4 + 37620 R12R3

2 +
12540 R12R2

3 + 27823125 R12R2
2 + 6690798510 R12R2 + 243582356589 R12 +

34200 R11R7 + 68400 R11R5R2 + 39650340 R11R5 + 102600 R11R4R3 +
68400 R11R3R2

2 + 95027550 R11R3R2 + 10751609040 R11R3 + 35910 R10R8 +
76950 R10R6R2 + 43069770 R10R6 + 123120 R10R5R3 + 69255 R10R4

2 +
92340 R10R4R2

2 + 121832370 R10R4R2 + 13162873770 R10R4 + 123120 R10R3
2R2 +

80606835 R10R3
2 + 12825 R10R2

4 + 39381300 R10R2
3 + 14038852905 R10R2

2 +
978155763966 R10R2 + 13178203976145 R10 + 18240 R9

2 + 82080 R9R7R2 +
44957496 R9R7 + 136800 R9R6R3 + 164160 R9R5R4 + 109440 R9R5R2

2 +
138929520 R9R5R2 + 14540098080 R9R5 + 328320 R9R4R3R2 + 205115640 R9R4R3 +
72960 R9R3

3 + 91200 R9R3R2
3 + 198558360 R9R3R2

2 + 44469403860 R9R3R2 +
1466199316140 R9R3 + 41895 R8

2R2 + 22779708 R8
2 + 143640 R8R7R3 +

179550 R8R6R4 + 119700 R8R6R2
2 + 148368150 R8R6R2 + 15244146120 R8R6 +

95760 R8R5
2 + 383040 R8R5R3R2 + 231651420 R8R5R3 + 215460 R8R4

2R2 +
129228120 R8R4

2 + 287280 R8R4R3
2 + 119700 R8R4R2

3 + 249849810 R8R4R2
2 +

53646016830 R8R4R2 + 1707778339500 R8R4 + 239400 R8R3
2R2

2 +
330264270 R8R3

2R2 + 34937664930 R8R3
2 + 11970 R8R2

5 + 46908435 R8R2
4 +

21566912920 R8R2
3 + 2110776824691 R8R2

2 + 51770353887060 R8R2 +
275057386118488 R8 + 92340 R7

2R4 + 61560 R7
2R2

2 + 75688875 R7
2R2 +

7730011680 R7
2 + 205200 R7R6R5 + 410400 R7R6R3R2 + 244099650 R7R6R3 +
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492480 R7R5R4R2 + 288001620 R7R5R4 + 328320 R7R5R3
2 + 136800 R7R5R2

3 +
278165700 R7R5R2

2 + 58249583070 R7R5R2 + 1819579841292 R7R5 +
369360 R7R4

2R3 + 615600 R7R4R3R2
2 + 819743220 R7R4R3R2 +

83469926190 R7R4R3 + 273600 R7R3
3R2 + 180525840 R7R3

3 + 102600 R7R3R2
4 +

307313790 R7R3R2
3 + 100324623840 R7R3R2

2 + 6207119862102 R7R3R2 +
72472927653840 R7R3 + 35625 R6

3 + 256500 R6
2R4R2 + 148720125 R6

2R4 +
171000 R6

2R3
2 + 71250 R6

2R2
3 + 143597250 R6

2R2
2 + 29822367225 R6

2R2 +
926094355230 R6

2 + 273600 R6R5
2R2 + 157268700 R6R5

2 + 820800 R6R5R4R3 +
684000 R6R5R3R2

2 + 894432600 R6R5R3R2 + 89352654510 R6R5R3 +
153900 R6R4

3 + 384750 R6R4
2R2

2 + 498507750 R6R4
2R2 + 49148644440 R6R4

2 +
1026000 R6R4R3

2R2 + 658529550 R6R4R3
2 + 128250 R6R4R2

4 + 373384200 R6R4R2
3 +

117903765840 R6R4R2
2 + 7080614444394 R6R4R2 + 80661647984100 R6R4 +

114000 R6R3
4 + 342000 R6R3

2R2
3 + 739596375 R6R3

2R2
2 + 153218346120 R6R3

2R2 +
4509698600727 R6R3

2 + 9975 R6R2
6 + 47872020 R6R2

5 + 26369945910 R6R2
4 +

3175405116900 R6R2
3 + 104413147057500 R6R2

2 + 958343893560768 R6R2 +
1954656775501200 R6 + 145920 R5

3R3 + 246240 R5
2R4

2 + 410400 R5
2R4R2

2 +
526823640 R5

2R4R2 + 51380833980 R5
2R4 + 547200 R5

2R3
2R2 + 347937120 R5

2R3
2 +

68400 R5
2R2

4 + 197225700 R5
2R2

3 + 61587533280 R5
2R2

2 + 3663655405623 R5
2R2 +

41432280110400 R5
2 + 1231200 R5R4

2R3R2 + 775481580 R5R4
2R3 +

547200 R5R4R3
3 + 820800 R5R4R3R2

3 + 1740605580 R5R4R3R2
2 +

351642690000 R5R4R3R2 + 10105007432094 R5R4R3 + 547200 R5R3
3R2

2 +
765952320 R5R3

3R2 + 76114633840 R5R3
3 + 95760 R5R3R2

5 + 371500920 R5R3R2
4 +

156825338040 R5R3R2
3 + 13527648124560 R5R3R2

2 + 283569436423800 R5R3R2 +
1247637548296416 R5R3 + 115425 R4

4R2 + 72009810 R4
4 + 307800 R4

3R3
2 +

153900 R4
3R2

3 + 323136135 R4
3R2

2 + 64374037560 R4
3R2 + 1823325743637 R4

3 +
923400 R4

2R3
2R2

2 + 1279634895 R4
2R3

2R2 + 125380658760 R4
2R3

2 +
53865 R4

2R2
5 + 206817660 R4

2R2
4 + 86041245780 R4

2R2
3 + 7310914509420 R4

2R2
2 +

151162866081900 R4
2R2 + 657260785021416 R4

2 + 410400 R4R3
4R2 +

281494500 R4R3
4 + 359100 R4R3

2R2
4 + 1091552280 R4R3

2R2
3 +

334724507460 R4R3
2R2

2 + 18557168880240 R4R3
2R2 + 187336894109520 R4R3

2 +
6840 R4R2

7 + 39642246 R4R2
6 + 25394402880 R4R2

5 + 3531762669060 R4R2
4 +

137312829420660 R4R2
3 + 1605438838388808 R4R2

2 + 5263620826167360 R4R2 +
3518998580742912 R4 + 18240 R3

6 + 159600 R3
4R2

3 + 360025680 R3
4R2

2 +
72322105590 R3

4R2 + 1961702574480 R3
4 + 31920 R3

2R2
6 + 156847698 R3

2R2
5 +

82209481200 R3
2R2

4 + 8939828459460 R3
2R2

3 + 254146381414020 R3
2R2

2 +
1928968296107184 R3

2R2 + 3077385808793760 R3
2 + 285 R2

9 +
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2257200 R2
8 + 1949355540 R2

7 + 366283126092 R2
6 + 19653117610140 R2

5 +
333416706139944 R2

4 + 1766923640720640 R2
3 + 2533181737248000 R2

2 +
640237370572800 R2

Σ20 = R21 + 5985 R19 + 10640 R17R2 + 7963242 R17 + 19950 R16R3 + 27930 R15R4 +
13965 R15R2

2 + 24161312 R15R2 + 3600529450 R15 + 34580 R14R5 + 51870 R14R3R2 +
42114982 R14R3 + 39900 R13R6 + 71820 R13R4R2 + 55133022 R13R4 +
47880 R13R3

2 + 15960 R13R2
3 + 44884175 R13R2

2 + 13777132940 R13R2 +
645643728093 R13 + 43890 R12R7 + 87780 R12R5R2 + 64275442 R12R5 +
131670 R12R4R3 + 87780 R12R3R2

2 + 154858550 R12R3R2 + 22412869490 R12R3 +
46550 R11R8 + 99750 R11R6R2 + 70390250 R11R6 + 159600 R11R5R3 +
89775 R11R4

2 + 119700 R11R4R2
2 + 200570650 R11R4R2 + 27730238750 R11R4 +

159600 R11R3
2R2 + 132830425 R11R3

2 + 16625 R11R2
4 + 65090200 R11R2

3 +
29904022575 R11R2

2 + 2713702951204 R11R2 + 48296666026245 R11 + 47880 R10R9 +
107730 R10R7R2 + 74113452 R10R7 + 179550 R10R6R3 + 215460 R10R5R4 +
143640 R10R5R2

2 + 231144690 R10R5R2 + 30916566300 R10R5 + 430920 R10R4R3R2 +
341946990 R10R4R3 + 95760 R10R3

3 + 119700 R10R3R2
3 + 332406900 R10R3R2

2 +
96095650770 R10R3R2 + 4132917328806 R10R3 + 111720 R9R8R2 + 75869052 R9R8 +
191520 R9R7R3 + 239400 R9R6R4 + 159600 R9R6R2

2 + 249760700 R9R6R2 +
32704206000 R9R6 + 127680 R9R5

2 + 510720 R9R5R3R2 + 391137040 R9R5R3 +
287280 R9R4

2R2 + 218424570 R9R4
2 + 383040 R9R4R3

2 + 159600 R9R4R2
3 +

424129020 R9R4R2
2 + 117454289680 R9R4R2 + 4873746557946 R9R4 +

319200 R9R3
2R2

2 + 561265320 R9R3
2R2 + 76707501290 R9R3

2 + 15960 R9R2
5 +

79996175 R9R2
4 + 47823086640 R9R2

3 + 6170892626493 R9R2
2 +

203052301928980 R9R2 + 1482541157911384 R9 + 97755 R8
2R3 +

251370 R8R7R4 + 167580 R8R7R2
2 + 258538700 R8R7R2 + 33506088840 R8R7 +

279300 R8R6R5 + 558600 R8R6R3R2 + 418531050 R8R6R3 + 670320 R8R5R4R2 +
494817190 R8R5R4 + 446880 R8R5R3

2 + 186200 R8R5R2
3 + 479977050 R8R5R2

2 +
129220584220 R8R5R2 + 5249012612186 R8R5 + 502740 R8R4

2R3 +
837900 R8R4R3R2

2 + 1417670940 R8R4R3R2 + 186131320130 R8R4R3 +
372400 R8R3

3R2 + 312564630 R8R3
3 + 139650 R8R3R2

4 + 534002980 R8R3R2
3 +

226662265480 R8R3R2
2 + 18501103588926 R8R3R2 + 290018736202160 R8R3 +

143640 R7
2R5 + 287280 R7

2R3R2 + 213654525 R7
2R3 + 149625 R7R6

2 +
718200 R7R6R4R2 + 522211200 R7R6R4 + 478800 R7R6R3

2 + 199500 R7R6R2
3 +

506311050 R7R6R2
2 + 134425148200 R7R6R2 + 5407355314242 R7R6 +

383040 R7R5
2R2 + 276392620 R7R5

2 + 1149120 R7R5R4R3 + 957600 R7R5R3R2
2 +

1582035000 R7R5R3R2 + 202786960670 R7R5R3 + 215460 R7R4
3 + 538650 R7R4

2R2
2 +
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882739620 R7R4
2R2 + 111810118140 R7R4

2 + 1436400 R7R4R3
2R2 +

1167446070 R7R4R3
2 + 179550 R7R4R2

4 + 664315050 R7R4R2
3 +

271766087320 R7R4R2
2 + 21475567775466 R7R4R2 + 327783015866040 R7R4 +

159600 R7R3
4 + 478800 R7R3

2R2
3 + 1317499995 R7R3

2R2
2 +

354258608480 R7R3
2R2 + 13748469525693 R7R3

2 + 13965 R7R2
6 + 85607312 R7R2

5 +
61659245550 R7R2

4 + 9898982639700 R7R2
3 + 443808528768220 R7R2

2 +
5724588717327484 R7R2 + 17142759609274320 R7 + 399000 R6

2R5R2 +
285700625 R6

2R5 + 598500 R6
2R4R3 + 498750 R6

2R3R2
2 + 817351500 R6

2R3R2 +
103937388625 R6

2R3 + 638400 R6R5
2R3 + 718200 R6R5R4

2 + 1197000 R6R5R4R2
2 +

1929843300 R6R5R4R2 + 240065731500 R6R5R4 + 1596000 R6R5R3
2R2 +

1275962100 R6R5R3
2 + 199500 R6R5R2

4 + 725761050 R6R5R2
3 +

291463568200 R6R5R2
2 + 22684702093242 R6R5R2 + 342284494563900 R6R5 +

1795500 R6R4
2R3R2 + 1423532250 R6R4

2R3 + 798000 R6R4R3
3 +

1197000 R6R4R3R2
3 + 3210274200 R6R4R3R2

2 + 836718853600 R6R4R3R2 +
31554503733942 R6R4R3 + 798000 R6R3

3R2
2 + 1414421750 R6R3

3R2 +
181673930200 R6R3

3 + 139650 R6R3R2
5 + 688660700 R6R3R2

4 +
378586122600 R6R3R2

3 + 43431665508000 R6R3R2
2 + 1239640039043560 R6R3R2 +

7659265765864468 R6R3 + 255360 R5
3R4 + 212800 R5

3R2
2 + 340256560 R5

3R2 +
41901955900 R5

3 + 1915200 R5
2R4R3R2 + 1505714280 R5

2R4R3 + 425600 R5
2R3

3 +
638400 R5

2R3R2
3 + 1697306100 R5

2R3R2
2 + 437776713920 R5

2R3R2 +
16357803585333 R5

2R3 + 718200 R5R4
3R2 + 559872810 R5R4

3 + 1436400 R5R4
2R3

2 +
718200 R5R4

2R2
3 + 1892774205 R5R4

2R2
2 + 482039954480 R5R4

2R2 +
17770606709373 R5R4

2 + 2872800 R5R4R3
2R2

2 + 5002877460 R5R4R3
2R2 +

627792712680 R5R4R3
2 + 167580 R5R4R2

5 + 811552700 R5R4R2
4 +

435577112040 R5R4R2
3 + 48811009650480 R5R4R2

2 + 1364825110628980 R5R4R2 +
8288663588798152 R5R4 + 638400 R5R3

4R2 + 550928560 R5R3
4 + 558600 R5R3

2R2
4 +

2144353680 R5R3
2R2

3 + 850028506740 R5R3
2R2

2 + 62291109499080 R5R3
2R2 +

852305979460320 R5R3
2 + 10640 R5R2

7 + 78187242 R5R2
6 +

65274085800 R5R2
5 + 12152587839700 R5R2

4 + 652209543128220 R5R2
3 +

10957473664583484 R5R2
2 + 54731025150293520 R5R2 + 61290148786433280 R5 +

269325 R4
4R3 + 1077300 R4

3R3R2
2 + 1859383890 R4

3R3R2 +
230350983240 R4

3R3 + 1436400 R4
2R3

3R2 + 1228459155 R4
2R3

3 +
628425 R4

2R3R2
4 + 2390137680 R4

2R3R2
3 + 934884554940 R4

2R3R2
2 +

67549101390540 R4
2R3R2 + 912161144802600 R4

2R3 + 191520 R4R3
5 +

1117200 R4R3
3R2

3 + 3157169960 R4R3
3R2

2 + 810515337240 R4R3
3R2 +

28715565324600 R4R3
3 + 111720 R4R3R2

6 + 690329052 R4R3R2
5 +
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466045965000 R4R3R2
4 + 67021753121400 R4R3R2

3 + 2600964850573320 R4R3R2
2 +

28098738300314436 R4R3R2 + 67764383615834640 R4R3 + 223440 R3
5R2

2 +
416998624 R3

5R2 + 52689230790 R3
5 + 148960 R3

3R2
5 + 759612210 R3

3R2
4 +

403580839200 R3
3R2

3 + 42639983920380 R3
3R2

2 + 1078026577321540 R3
3R2 +

5683381632400984 R3
3 + 5985 R3R2

8 + 52668000 R3R2
7 + 50829096780 R3R2

6 +
10743281472924 R3R2

5 + 653621753210580 R3R2
4 + 12704844357384984 R3R2

3 +
78267651477160320 R3R2

2 + 133371684885600000 R3R2 + 41680704936960000 R3



Appendix B

The C-expansions of Kerov’s
Character Polynomials for k ≤ 22

Σ1 − R2 = 0

Σ2 − R3 = 0

Σ3 − R4 = C2

Σ4 − R5 = 5/2 C3

Σ5 − R6 = 5 C4 + 8 C2

Σ6 − R7 = 35
4 C5 + 42 C3

Σ7 − R8 = 14 C6 + 469
3 C4 + 203

3 C2
2 + 180 C2

Σ8 − R9 = 21 C7 + 1869
4 C5 + 819

2 C2C3 + 1522 C3

Σ9 − R10 = 30 C8 + 1197 C6 + 963
2 C3

2 + 1122 C2C4 + 81 C2
3 + 26060

3 C4 + 17680
3 C2

2 +
8064 C2

Σ10 − R11 = 165
4 C9 + 5467

2 C7 + 4433
2 C3C4 + 1133

2 C3C2
2 + 11033

4 C2C5 + 38225 C5 +
52580 C2C3 + 96624 C3

Σ11 − R12 = 55 C10 + 5709 C8 + 139381 C6 + 762212 C4 + 604800 C2 + 639232 C2
2 +

93
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623414
3 C2C4 + 6160 C2C6 + 86229 C3

2 + 9691
2 C3C5 + 119383

3 C2
3 + 6611

3 C4
2 +

3982
3 C4C2

2 + 4433
4 C2C3

2

Σ12 − R13 = 143
2 C11 + 88803

8 C9 + 2641925
6 C7 + 4532099 C5 + 9528480 C3 +

7710560 C2C3 + 2151292
3 C2C5 + 50765

4 C2C7 + 549549 C3C4 + 39897
4 C3C6 + 1287

2 C3
3 +

2309879
6 C3C2

2 + 18161
4 C4C2C3 + 34463

4 C5C4 + 23595
8 C5C2

2

Σ13 − R14 = 91 C12 + 61061
3 C10 + 1241669 C8 + 109425316

5 C6 + 97423872 C4 +
68428800 C2 + 92793792 C2

2 + 610712284
15 C2C4 + 10960872

5 C2C6 + 73346
3 C2C8 +

82526899
5 C3

2 + 6539117
4 C3C5 + 116207

6 C3C7 + 166710908
15 C2

3 + 3786068
45 C2

4 + 55237
6 C3C2C5 +

6574906
9 C4

2 + 55220789
45 C4C2

2 + 10103561
10 C2C3

2 + 43043
12 C3

2C4 + 4095 C2C4
2 +

48958
3 C4C6 + 91819

12 C5
2 + 18382

3 C6C2
2

Σ14 − R15 = 455
4 C13 + 71071

2 C11 + 25537655
8 C9 + 89941852 C7 + 740450620 C5 +

1349836416 C3 + 1430971360 C2C3 + 184556554 C2C5 + 72560345
12 C2C7 + 178087

4 C2C9 +
410641868

3 C3C4 + 17974671
4 C3C6 + 35672 C3C8 + 6162403

8 C3
3 + 420037072

3 C3C2
2 +

21934523
4 C4C2C3 + 7556835

2 C5C4 + 87440665
24 C5C2

2 + 2660372
3 C3C2

3 + 180271
12 C4C2C5 +

35945
2 C6C2C3 + 18109

3 C3C4
2 + 178633

6 C4C7 + 108381
16 C5C3

2 + 107289
4 C5C6 + 71617

6 C7C2
2

Σ15 − R16 = 140 C14 + 59514 C12 + 68396900
9 C10 + 324765727 C8 + 4511355576 C6 +

17127271152 C4 + 10897286400 C2 + 17780056848 C2
2 + 9593568768 C2C4 +

3645670794
5 C2C6 + 137654720

9 C2C8 + 77308 C2C10 + 3822841344 C3
2 + 523886162 C3C5 +

103019720
9 C3C7 + 62706 C3C9 + 3190473216 C2

3 + 3145878221
45 C2

4 + 14513315 C3C2C5 +
2083561321

9 C4
2 + 26029444313

45 C4C2
2 + 2330866761

5 C2C3
2 + 16718455

3 C3
2C4 + 9021695

3 C3
2C2

2 +
57691360

9 C2C4
2 + 84031640

9 C4C6 + 22071320
9 C4C2

3 + 39000550
9 C5

2 + 29836760
3 C6C2

2 +
20986 C5C3C4 + 33502 C7C2C3 + 27244 C6C2C4 + 53700 C2

5 + 3150 C4
3 +

12579 C2C5
2 + 46018 C5C7 + 52276 C8C4 + 21966 C8C2

2 + 12579 C6C3
2 + 21966 C6

2

Σ16 − R17 = 170 C15 + 577031
6 C13 + 16953794 C11 + 8433097673

8 C9 + 69343996540
3 C7 +

160069391316 C5 + 260052508800 C3 + 337156189272 C2C3 + 163778076160
3 C2C5 +

10243810615
4 C2C7 + 35951702 C2C9 + 386665

3 C2C11 + 118577899520
3 C3C4 +

36585716371
20 C3C6 + 27213192 C3C8 + 317441

3 C3C10 + 150420961280
3 C3C2

2 +
109769

3 C6C3C4 + 64218590023
20 C4C2C3 + 17678202573

40 C3
3 + 6047653559

4 C5C4 +
17590797787

8 C5C2
2 + 9312340563

10 C3C2
3 + 35888836

3 C3C4
2 + 53889337

4 C3
2C5 +

8152163
2 C2C3

3 + 5536730
9 C3C2

4 + 197194288
9 C4C7 + 19416006 C5C6 + 59236262

9 C5C2
3 +

225622028
9 C7C2

2 + 131473648
9 C3C4C2

2 + 36471664 C3C2C6 + 270981394
9 C4C2C5 +
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67864
3 C7C3

2 + 30821
2 C5C4

2 + 50558
3 C3C5

2 + 230911
3 C5C8 + 265523

3 C9C4 + 230911
6 C9C2

2 +
127075

3 C5C2C6 + 178993
3 C8C2C3 + 48127 C7C2C4 + 213605

3 C7C6

Σ17 − R18 = 204 C16 + 150654 C14 + 35771060 C12 + 3128616777 C10 +
102921070200 C8 + 5943136639504

5 C6 + 3968632776960 C4 + 2324754432000 C2 +
4386384368640 C2

2 + 13839469318432
5 C2C4 + 1338680692224

5 C2C6 + 56975901642
7 C2C8 +

79369328 C2C10 + 207468 C2C12 + 5441834311016
5 C3

2 + 187135682712 C3C5 +
5847039364 C3C7 + 60854237 C3C9 + 172278 C3C11 + 5235284660944

5 C2
3 +

82059886720 C4
2 + 1289581576192

5 C4C2
2 + 1021326327216

5 C2C3
2 + 62798 C7C3C4 +

74873222791
7 C5C2C3 + 206925200064

5 C2
4 + 6663318827

35 C2
5 + 23550440

3 C4
3 + 3825085

2 C3
4 +

23352062206
5 C6C4 + 265556157497

35 C6C2
2 + 8618088069

4 C5
2 + 19941030379

5 C4C3
2 +

163660978681
35 C2C4

2 + 113751303108
35 C4C2

3 + 136983821263
35 C3

2C2
2 + 52411629 C4C3C5 +

345324264
5 C4C2C6 + 26949114 C4C2C3

2 + 35657653 C5C3C2
2 + 86410116 C7C2C3 +

46721984
3 C4

2C2
2 + 48830800 C4C8 + 4599860

3 C4C2
4 + 31761712 C2C5

2 +
42097389 C5C7 + 58861072 C8C2

2 + 158159517
5 C6C3

2 + 99832568
5 C6

2 + 83179368
5 C6C2

3 +
2500275 C3

2C2
3 + 33354 C2C6

2 + 144908 C10C4 + 64634 C10C2
2 + 125358 C9C5 +

39219 C8C3
2 + 113628 C8C6 + 54859 C7

2 + 25534 C6C4
2 + 101898 C9C2C3 +

82348 C8C2C4 + 70618 C7C2C5 + 54978 C6C3C5 + 23579 C5
2C4

Σ18 − R19 = 969
4 C17 + 229653 C15 + 215732023

3 C13 + 86027797713
10 C11 +

407837486511 C9 + 22080490035272
3 C7 + 44329318724736 C5 + 65429789644800 C3 +

99400589430912 C2C3 + 57403472915324
3 C2C5 + 1155211200918 C2C7 +

950092202421
40 C2C9 + 4979564707

30 C2C11 + 1295553
4 C2C13 + 40796114441240

3 C3C4 +
4005088325334

5 C3C6 + 1207208811663
70 C3C8 + 773582093

6 C3C10 + 543609
2 C3C12 +

19893520260584 C3C2
2 + 113827138 C6C3C4 + 8624464303302

5 C4C2C3 +
1166646696471

5 C3
3 + 183141

16 C5
3 + 654250047912 C5C4 + 1210202085609 C5C2

2 +
3368284829784

5 C3C2
3 + 1103642081327

105 C3C4
2 + 334910356587

28 C3
2C5 + 1812379517331

280 C2C3
3 +

188430360467
70 C3C2

4 + 406837382257
30 C4C7 + 237989645181

20 C5C6 + 1309518988019
120 C5C2

3 +
1433185387549

60 C7C2
2 + 9910640096179

420 C3C4C2
2 + 4688116263351

140 C3C2C6 +
326574932023

12 C4C2C5 + 711451751
10 C7C3

2 + 143273110
3 C5C4

2 + 418794371
8 C3C5

2 +
263997913

3 C5C8 + 152800641
40 C5C2

4 + 621920027
6 C9C4 + 5195632973

40 C9C2
2 +

1365663703
20 C5C4C2

2 + 2666514549
20 C5C2C6 + 609610497

10 C5C2C3
2 + 1933209587

10 C8C2C3 +
4578172607

30 C7C2C4 + 1684006043
20 C6C3C2

2 + 1607214731
30 C4

2C2C3 + 670508917
60 C4C3C2

3 +
1207972196

15 C7C6 + 2363793781
60 C7C2

3 + 93700685
6 C4C3

3 + 559985423
120 C3

3C2
2 + 1049427

16 C3
2C9 +

167637 C3C2C10 + 84303
2 C3C6

2 + 460275
2 C4C11 + 84303

2 C4
2C7 + 795549

4 C5C10 +
167637 C7C8 + 712215

4 C9C6 + 104652 C11C2
2 + 210273

2 C3C4C8 + 716091
8 C3C5C7 +
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545547
4 C4C2C9 + 295545

4 C4C5C6 + 462213
4 C5C2C8 + 210273

2 C7C2C6

Σ19 − R20 = 285 C18 + 341734 C16 + 492214 C14C2 + 138563770 C14 + 834157
2 C13C3 +

355604 C12C4 + 164141 C12C2
2 + 331126870 C12C2 + 22143850599 C12 +

615581
2 C11C5 + 533615

2 C11C3C2 + 260452912 C11C3 + 273638 C10C6 + 218994 C10C4C2 +
631158910

3 C10C4 + 424327
4 C10C3

2 + 814623575
3 C10C2

2 + 64396272576 C10C2 +
4392734658715

3 C10 + 506293
2 C9C7 + 369683

2 C9C5C2 + 177250525 C9C5 + 342361
2 C9C4C3 +

1641178029
4 C9C3C2 + 189399024243

4 C9C3 + 123158 C8
2 + 164350 C8C6C2 +

158419492 C8C6 + 287717
2 C8C5C3 + 68514 C8C4

2 + 969972838
3 C8C4C2 +

259245538114
7 C8C4 + 305514243

2 C8C3
2 + 263259326

3 C8C2
3 + 69280372562 C8C2

2 +
93812776439170

21 C8C2 + 275057386118488
7 C8 + 315039

4 C7
2C2 + 228476330

3 C7
2 + 260395

2 C7C6C3 +
233073

2 C7C5C4 + 3291521335
12 C7C5C2 + 63056251045

2 C7C5 + 481825807
2 C7C4C3 +

1137609401
6 C7C3C2

2 + 97848576596 C7C3C2 + 9332762596030
3 C7C3 + 54853 C6

2C4 +
129237525 C6

2C2 + 74499618051
5 C6

2 + 205751
4 C6C5

2 + 840751539
4 C6C5C3 +

97308690 C6C4
2 + 445674640

3 C6C4C2
2 + 2685041310908

35 C6C4C2 + 7346860279390
3 C6C4 +

136000347 C6C3
2C2 + 691080377949

20 C6C3
2 + 27375485

3 C6C2
4 + 170852955694

5 C6C2
3 +

35744738324805
7 C6C2

2 + 3957833393740496
35 C6C2 + 390931355100240 C6 +

1078264535
12 C5

2C4 + 270804625
4 C5

2C2
2 + 561510198935

16 C5
2C2 + 3375817861985

3 C5
2 +

1329304657
6 C5C4C3C2 + 1577882763237

28 C5C4C3 + 132707419
4 C5C3

3 + 307885139
12 C5C3C2

3 +
284189873839

4 C5C3C2
2 + 49022595196035

7 C5C3C2 + 541568082522388
7 C5C3 + 32902110 C4

3C2 +
175384768130

21 C4
3 + 87899187

2 C4
2C3

2 + 11108825 C4
2C2

3 + 1076797387186
35 C4

2C2
2 +

21265702002485
7 C4

2C2 + 708436340027840
21 C4

2 + 172789591
6 C4C3

2C2
2 + 733224560821

14 C4C3
2C2 +

2547878026595 C4C3
2 + 58064535211

7 C4C2
4 + 60408198352160

21 C4C2
3 +

12981413205554944
105 C4C2

2 + 972677565188640 C4C2 + 1172999526914304 C4 +
32651861

8 C3
4C2 + 18294308688

5 C3
4 + 132896134353

10 C3
2C2

3 + 23840385374335
7 C3

2C2
2 +

3379097580196164
35 C3

2C2 + 378415097098200 C3
2 + 3440157689

15 C2
6 + 5286009473005

21 C2
5 +

2485798266001168
105 C2

4 + 403314720431760 C2
3 + 1360182210333696 C2

2 +
640237370572800 C2

Σ20 − R21 = 665
2 C19 + 3981621

8 C17 + 2921611
4 C15C2 + 257180675 C15 +

2497607
4 C14C3 + 6432811

12 C13C4 + 6008807
24 C13C2

2 + 1901199185
3 C13C2 + 215214576031

4 C13 +
1861601

4 C12C5 + 1649599
4 C12C3C2 + 504405445 C12C3 + 1649599

4 C11C6 +
4100789

12 C11C4C2 + 1229939825
3 C11C4 + 332899

2 C11C3
2 + 1082828335

2 C11C2
2 +

1637630071049
10 C11C2 + 9659333205249

2 C11 + 4524793
12 C10C7 + 3464783

12 C10C5C2 +
1033296475

3 C10C5 + 3252781
12 C10C4C3 + 830421885 C10C3C2 + 243998460503

2 C10C3 +
1437597

4 C9C8 + 1013593
4 C9C6C2 + 303243800 C9C6 + 226898 C9C5C3 +
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2616775
24 C9C4

2 + 656931080 C9C4C2 + 381861940929
4 C9C4 + 5016203205

16 C9C3
2 +

555002540
3 C9C2

3 + 7478365873853
40 C9C2

2 + 31444409071747
2 C9C2 + 185317644738923 C9 +

2828777
12 C8C7C2 + 283402670 C8C7 + 801591

4 C8C6C3 + 2192771
12 C8C5C4 +

548801035 C8C5C2 + 79857448134 C8C5 + 493037935 C8C4C3 + 1218511135
3 C8C3C2

2 +
2674461641817

10 C8C3C2 + 11056290809191 C8C3 + 574693
6 C7

2C3 + 1980769
12 C7C6C4 +

496995160 C7C6C2 + 726378891259
10 C7C6 + 234346

3 C7C5
2 + 3337310005

8 C7C5C3 +
195653165 C7C4

2 + 2830314860
9 C7C4C2

2 + 1032662358322
5 C7C4C2 + 25652503028593

3 C7C4 +
2346874585

8 C7C3
2C2 + 3792224610069

40 C7C3
2 + 371539775

18 C7C2
4 + 1986144353137

20 C7C2
3 +

116903069433311
6 C7C2

2 + 1750388490230204
3 C7C2 + 2857126601545720 C7 +

589589
8 C6

2C5 + 392625405
2 C6

2C3 + 342699675 C6C5C4 + 812679305
3 C6C5C2

2 +
178896551886 C6C5C2 + 7454891522946 C6C5 + 460381970 C6C4C3C2 +
743948589328

5 C6C4C3 + 564216115
8 C6C3

3 + 173445395
3 C6C3C2

3 + 821116861005
4 C6C3C2

2 +
26519230552588 C6C3C2 + 1976456435543004

5 C6C3 + 2549050925
48 C5

3 + 5037310115
24 C5

2C3C2 +
2177801711965

32 C5
2C3 + 1712753195

9 C5C4
2C2 + 122857227055

2 C5C4
2 + 1383608405

8 C5C4C3
2 +

415741945
9 C5C4C2

3 + 1642774719023
10 C5C4C2

2 + 63904696399901
3 C5C4C2 +

960260028766000
3 C5C4 + 2969662855

48 C5C3
2C2

2 + 5774518913501
40 C5C3

2C2 +
18425301534137

2 C5C3
2 + 1015502915473

40 C5C2
4 + 23482580555049

2 C5C2
3 +

2089209436560898
3 C5C2

2 + 7968503084481940 C5C2 + 15322537196608320 C5 +
463872365

9 C4
3C3 + 971272685

18 C4
2C3C2

2 + 125790280406 C4
2C3C2 +

48171959117441
6 C4

2C3 + 754636585
24 C4C3

3C2 + 180637049432
5 C4C3

3 + 1448594574357
20 C4C3C2

3 +
74387110579337

3 C4C3C2
2 + 4867677973687652

5 C4C3C2 + 5579810732881000 C4C3 +
1356125 C3

5 + 1189408281397
40 C3

3C2
2 + 6689263658631 C3

3C2 + 649068861012996
5 C3

3 +
34429198881

10 C3C2
5 + 25645850568511

6 C3C2
4 + 6884348761637992

15 C3C2
3 +

9045629032098120 C3C2
2 + 36040768049583360 C3C2 + 20840352468480000 C3

Σ21 − R22 = 385 C20 + 711018 C18 + 1061060 C16C2 + 1385037566
3 C16 +

1828827
2 C15C3 + 790328 C14C4 + 372603 C14C2

2 + 3507397388
3 C14C2 +

124242757177 C14 + 1377607
2 C13C5 + 1242241

2 C13C3C2 + 11290334077
12 C13C3 +

609840 C12C6 + 519596 C12C4C2 + 2310015928
3 C12C4 + 1016631

4 C12C3
2 +

3106284313
3 C12C2

2 + 393708729722 C12C2 + 14797534469445 C12 +
1106875

2 C11C7 + 881265
2 C11C5C2 + 7764215261

12 C11C5 + 836143
2 C11C4C3 +

4832746391
3 C11C3C2 + 2970985784459

10 C11C3 + 519596 C10C8 + 384230 C10C6C2 +
564473668 C10C6 + 700777

2 C10C5C3 + 169554 C10C4
2 + 11545968082

9 C10C4C2 +
700017932306

3 C10C4 + 616977559 C10C3
2 + 3343330936

9 C10C2
3 + 473553871714 C10C2

2 +
50992044863900 C10C2 + 7077838516218976

9 C10 + 1016631
4 C9

2 + 700777
2 C9C7C2 +

6204823757
12 C9C7 + 610533

2 C9C6C3 + 565411
2 C9C5C4 + 1064489668 C9C5C2 +
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1546817550201
8 C9C5 + 3894044143

4 C9C4C3 + 9957847757
12 C9C3C2

2 + 6873909137557
10 C9C3C2 +

290357000949015
8 C9C3 + 169554 C8

2C2 + 752430844
3 C8

2 + 565411
2 C8C7C3 +

248864 C8C6C4 + 2819450656
3 C8C6C2 + 857135391882

5 C8C6 + 475167
4 C8C5

2 +
9725872211

12 C8C5C3 + 3457984244
9 C8C4

2 + 1927290178
3 C8C4C2

2 + 7931856944858
15 C8C4C2 +

27875380678440 C8C4 + 1822930318
3 C8C3

2C2 + 4925609142531
20 C8C3

2 + 44213565 C8C2
4 +

4035812228756
15 C8C2

3 + 67926023784005 C8C2
2 + 168767042934507028

63 C8C2 +
17897083115235280 C8 + 475167

4 C7
2C4 + 8093880553

18 C7
2C2 + 493343217521

6 C7
2 +

430045
2 C7C6C5 + 1464321639

2 C7C6C3 + 23463486343
36 C7C5C4 + 6436323949

12 C7C5C2
2 +

5323441926803
12 C7C5C2 + 94136371878045

4 C7C5 + 8462394083
9 C7C4C3C2 +

3800430811947
10 C7C4C3 + 439766261

3 C7C3
3 + 2255671385

18 C7C3C2
3 + 16831897327861

30 C7C3C2
2 +

372061576548095
4 C7C3C2 + 16383277117811428

9 C7C3 + 33957 C6
3 + 306965901 C6

2C4 +
753096784

3 C6
2C2

2 + 208408794209 C6
2C2 + 11097032286312 C6

2 +
3453497399

12 C6C5
2 + 1618240393

2 C6C5C3C2 + 328684950594 C6C5C3 +
3358074544

9 C6C4
2C2 + 2258403863408

15 C6C4
2 + 345404576 C6C4C3

2 + 868617970
9 C6C4C2

3 +
6484803160066

15 C6C4C2
2 + 71888517206462 C6C4C2 + 63800029849136636

45 C6C4 +
398040610

3 C6C3
2C2

2 + 3898308311051
10 C6C3

2C2 + 127551908595069
4 C6C3

2 +
221728417295

3 C6C2
4 + 44348315138844 C6C2

3 + 122595298723281868
35 C6C2

2 +
55471381061750896 C6C2 + 786428482773580416

5 C6 + 2051053763
6 C5

2C4C2 +
6634956102005

48 C5
2C4 + 472517177

3 C5
2C3

2 + 174532083
4 C5

2C2
3 + 1569614727989

8 C5
2C2

2 +
32764304190625 C5

2C2 + 11693830821540175
18 C5

2 + 10304016217
36 C5C4

2C3 +
2559003667

12 C5C4C3C2
2 + 9401745383492

15 C5C4C3C2 + 205448157647235
4 C5C4C3 +

766893259
12 C5C3

3C2 + 7402164521367
80 C5C3

3 + 12113379545267
60 C5C3C2

3 +
718170365491155

8 C5C3C2
2 + 98686652869909687

21 C5C3C2 + 37307675379381880 C5C3 +
193738402

9 C4
4 + 283322105

9 C4
3C2

2 + 4151946322832
45 C4

3C2 + 22636800335545
3 C4

3 +
757072745

9 C4
2C3

2C2 + 729420366367
6 C4

2C3
2 + 3901474135328

45 C4
2C2

3 +
38582154471008 C4

2C2
2 + 638400239419113116

315 C4
2C2 + 16197890261019280 C4

2 +
296958695

24 C4C3
4 + 1105554319562

5 C4C3
2C2

2 + 258512022828477
4 C4C3

2C2 +
8378690015197106

5 C4C3
2 + 433344704408

45 C4C2
5 + 15872049129137 C4C2

4 +
245541358459097756

105 C4C2
3 + 66363251422136768 C4C2

2 + 2058579138243817728
5 C4C2 +

430926266757888000 C4 + 1233151775933
40 C3

4C2 + 35543774185101
8 C3

4 +
289141078303

15 C3
2C2

4 + 25014224340111 C3
2C2

3 + 286563107279919371
105 C3

2C2
2 +

51228739999477524 C3
2C2 + 793897768725836544

5 C3
2 + 100061577 C2

7 +
2379030797816

3 C2
6 + 81518838944024812

315 C2
5 + 14369083146112816 C2

4 +
914744603149001856

5 C2
3 + 519085894846464000 C2

2 + 221172909834240000 C2

Σ22 − R23 = 1771
4 C21 + 2994761

3 C19 + 18147437
12 C17C2 + 6434962655

8 C17 +
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3938704
3 C16C3 + 6851999

6 C15C4 + 1627549
3 C15C2

2 + 8349313973
4 C15C2 + 548419232603

2 C15 +
11994983

12 C14C5 + 5484787
6 C14C3C2 + 6788107645

4 C14C3 + 10627771
12 C13C6 +

3086853
4 C13C4C2 + 25177214293

18 C13C4 + 18179315
48 C13C3

2 + 137405194355
72 C13C2

2 +
2701936792445

3 C13C2 + 169969248772505
4 C13 + 4801181

6 C12C7 + 7893347
12 C12C5C2 +

2355490973
2 C12C5 + 1887886

3 C12C4C3 + 12034804441
4 C12C3C2 + 688051965205 C12C3 +

2229689
3 C11C8 + 3433969

6 C11C6C2 + 20445945289
20 C11C6 + 12710467

24 C11C5C3 +
515361

2 C11C4
2 + 434726998849

180 C11C4C2 + 16300332146153
30 C11C4 + 46739816321

40 C11C3
2 +

64307781109
90 C11C2

3 + 5671586795842
5 C11C2

2 + 769863883063401
5 C11C2 + 15232017986753678

5 C11 +
8576953

12 C10C9 + 515361 C10C7C2 + 33248400053
36 C10C7 + 2750363

6 C10C6C3 +
1719641

4 C10C5C4 + 72031191551
36 C10C5C2 + 5379487307293

12 C10C5 + 22268670127
12 C10C4C3 +

29220797419
18 C10C3C2

2 + 1671151488809 C10C3C2 + 999053349038507
9 C10C3 +

5842529
12 C9C8C2 + 1751343671

2 C9C8 + 9976043
24 C9C7C3 + 4475317

12 C9C6C4 +
34787640921

20 C9C6C2 + 15634691064399
40 C9C6 + 8608831

48 C9C5
2 + 1534016418 C9C5C3 +

8802190045
12 C9C4

2 + 45507459899
36 C9C4C2

2 + 154610056429477
120 C9C4C2 +

2044419635349455
24 C9C4 + 2415987827

2 C9C3
2C2 + 97091729946079

160 C9C3
2 + 810575062

9 C9C2
4 +

82105272758641
120 C9C2

3 + 26237434776737807
120 C9C2

2 + 111189221091312573
10 C9C2 +

98479238251514890 C9 + 602140
3 C8

2C3 + 688919
2 C8C7C4 + 58069844987

36 C8C7C2 +
727690062165

2 C8C7 + 3791711
12 C8C6C5 + 26996311111

20 C8C6C3 + 22006963891
18 C8C5C4 +

12471356953
12 C8C5C2

2 + 4248139382003
4 C8C5C2 + 282229564075195

4 C8C5 +
33600536585

18 C8C4C3C2 + 13978441985002
15 C8C4C3 + 1179464495

4 C8C3
3 + 4676569139

18 C8C3C2
3 +

43431948068531
30 C8C3C2

2 + 13633873212160447
45 C8C3C2 + 266803847737746638

35 C8C3 +
2413873

16 C7
2C5 + 15478628803

24 C7
2C3 + 862477

6 C7C6
2 + 22096184341

20 C7C6C4 +
83815466537

90 C7C6C2
2 + 57420251310433

60 C7C6C2 + 319674568301494
5 C7C6 +

18802575187
36 C7C5

2 + 13992905278
9 C7C5C3C2 + 18712369927163

24 C7C5C3 +
2910217255

4 C7C4
2C2 + 3618817848833

10 C7C4
2 + 2734823993

4 C7C4C3
2 + 197746824 C7C4C2

3 +
65949511551649

60 C7C4C2
2 + 8285980050025069

36 C7C4C2 + 262058373765775246
45 C7C4 +

2494321687
9 C7C3

2C2
2 + 242585790753053

240 C7C3
2C2 + 18744932208844051

180 C7C3
2 +

2426036919955
12 C7C2

4 + 27775400613303217
180 C7C2

3 + 712079738884590461
45 C7C2

2 +
1005560670496102028

3 C7C2 + 1331809866212570976 C7 + 19734348887
40 C6

2C5 +
7268658881

10 C6
2C3C2 + 7316321799193

20 C6
2C3 + 113232374629

90 C6C5C4C2 +
2512360105541

4 C6C5C4 + 5876712083
10 C6C5C3

2 + 15136740289
90 C6C5C2

3 +
112840406348527

120 C6C5C2
2 + 990888330974698

5 C6C5C2 + 25271712462896097
5 C6C5 +

32564606833
60 C6C4

2C3 + 19261611556
45 C6C4C3C2

2 + 46816597345177
30 C6C4C3C2 +

5796176016604757
36 C6C4C3 + 1313302001

10 C6C3
3C2 + 18863584826713

80 C6C3
3 +

10973011573491
20 C6C3C2

3 + 18594547219829807
60 C6C3C2

2 + 147234598534568479
7 C6C3C2 +

1114403568091052932
5 C6C3 + 6973211047

36 C5
3C2 + 18573163276415

192 C5
3 + 8950075123

18 C5
2C4C3 +
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4649043751
24 C5

2C3C2
2 + 8501853238241

12 C5
2C3C2 + 5280723464413745

72 C5
2C3 + 909498821

6 C5C4
3 +

4198138549
24 C5C4

2C2
2 + 9547228266818

15 C5C4
2C2 + 2361746942897485

36 C5C4
2 +

2864253986
9 C5C4C3

2C2 + 22840224408749
40 C5C4C3

2 + 17318474049041
40 C5C4C2

3 +
88285082317708487

360 C5C4C2
2 + 753639792348084103

45 C5C4C2 + 537883396502498200
3 C5C4 +

767683719
32 C5C3

4 + 91328503577993
160 C5C3

2C2
2 + 3182725168324144

15 C5C3
2C2 +

250016402650880382
35 C5C3

2 + 3289481283671
120 C5C2

5 + 6991507370698399
120 C5C2

4 +
1019960205968778943

90 C5C2
3 + 1317449568399997186

3 C5C2
2 + 3920438943718640112 C5C2 +

6471032463145324800 C5 + 377501047
4 C4

3C3C2 + 7594583700176
45 C4

3C3 +
3047785499

72 C4
2C3

3 + 9873413253231
20 C4

2C3C2
2 + 33014547844759393

180 C4
2C3C2 +

649449859252043894
105 C4

2C3 + 13594491798239
48 C4C3

3C2 + 414991944017273
8 C4C3

3 +
5818863142433

60 C4C3C2
4 + 29241250643311313

180 C4C3C2
3 + 1478410979219565743

63 C4C3C2
2 +

3021521521513835956
5 C4C3C2 + 2712067327341076320 C4C3 + 384720588967

32 C3
5 +

6365425901263
120 C3

3C2
3 + 7875539720705189

120 C3
3C2

2 + 436808216691304139
70 C3

3C2 +
398098512218656788

5 C3
3 + 28670278021

18 C3C2
6 + 42268370443088

3 C3C2
5 +

1627219738615076276
315 C3C2

4 + 4877286472561078576
15 C3C2

3 + 4754022059945728416 C3C2
2 +

15808640764412390400 C3C2 + 8198570710149120000 C3



Appendix C

Stanley’s Character Polynomials
(−1)kFk(a, p,−b,−q) for k ≤ 10

−F1(a, p,−b,−q) = ab + pq

F2(a, p,−b,−q) = a2b + ab2 + 2 apq + p2q + pq2

−F3(a, p,−b,−q) = a3b + 3 a2b2 + 3 a2 pq + ab3 + 3 abpq + 3 ap2q + 3 apq2 + p3q +
3 p2q2 + pq3 + ab + pq

F4(a, p,−b,−q) = a4b + 6 a3b2 + 4 a3 pq + 6 a2b3 + 12 a2bpq + 6 a2 p2q + 6 a2 pq2 +
ab4 + 4 ab2 pq + 4 abp2q + 4 abpq2 + 4 ap3q + 14 ap2q2 + 4 apq3 + p4q + 6 p3q2 +
6 p2q3 + pq4 + 5 a2b + 5 ab2 + 10 apq + 5 p2q + 5 pq2

−F5(a, p,−b,−q) = a5b + 10 a4b2 + 5 a4 pq + 20 a3b3 + 30 a3bpq + 10 a3 p2q +
10 a3 pq2 + 10 a2b4 + 30 a2b2 pq + 20 a2bp2q + 20 a2bpq2 + 10 a2 p3q + 40 a2 p2q2 +
10 a2 pq3 + ab5 + 5 ab3 pq + 5 ab2 p2q + 5 ab2 pq2 + 5 abp3q + 20 abp2q2 + 5 abpq3 +
5 ap4q + 35 ap3q2 + 35 ap2q3 + 5 apq4 + p5q + 10 p4q2 + 20 p3q3 + 10 p2q4 + pq5 +
15 a3b + 40 a2b2 + 45 a2 pq + 15 ab3 + 35 abpq + 45 ap2q + 45 apq2 + 15 p3q +
40 p2q2 + 15 pq3 + 8 ab + 8 pq

F6(a, p,−b,−q) = a6b + 15 a5b2 + 6 a5 pq + 50 a4b3 + 60 a4bpq + 15 a4 p2q +
15 a4 pq2 + 50 a3b4 + 120 a3b2 pq + 60 a3bp2q + 60 a3bpq2 + 20 a3 p3q + 90 a3 p2q2 +
20 a3 pq3 + 15 a2b5 + 60 a2b3 pq + 45 a2b2 p2q + 45 a2b2 pq2 + 30 a2bp3q + 135 a2bp2q2 +
30 a2bpq3 + 15 a2 p4q + 120 a2 p3q2 + 120 a2 p2q3 + 15 a2 pq4 + ab6 + 6 ab4 pq +
6 ab3 p2q + 6 ab3 pq2 + 6 ab2 p3q + 27 ab2 p2q2 + 6 ab2 pq3 + 6 abp4q + 48 abp3q2 +

101
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48 abp2q3 + 6 abpq4 + 6 ap5q + 69 ap4q2 + 146 ap3q3 + 69 ap2q4 + 6 apq5 + p6q +
15 p5q2 + 50 p4q3 + 50 p3q4 + 15 p2q5 + pq6 + 35 a4b + 175 a3b2 + 140 a3 pq +
175 a2b3 + 315 a2bpq + 210 a2 p2q + 210 a2 pq2 + 35 ab4 + 105 ab2 pq + 105 abp2q +
105 abpq2 + 140 ap3q + 420 ap2q2 + 140 apq3 + 35 p4q + 175 p3q2 + 175 p2q3 +
35 pq4 + 84 a2b + 84 ab2 + 168 apq + 84 p2q + 84 pq2

−F7(a, p,−b,−q) = a7b + 21 a6b2 + 7 a6 pq + 105 a5b3 + 105 a5bpq + 21 a5 p2q +
21 a5 pq2 + 175 a4b4 + 350 a4b2 pq + 140 a4bp2q + 140 a4bpq2 + 35 a4 p3q + 175 a4 p2q2 +
35 a4 pq3 + 105 a3b5 + 350 a3b3 pq + 210 a3b2 p2q + 210 a3b2 pq2 + 105 a3bp3q +
525 a3bp2q2 + 105 a3bpq3 + 35 a3 p4q + 315 a3 p3q2 + 315 a3 p2q3 + 35 a3 pq4 +
21 a2b6 + 105 a2b4 pq + 84 a2b3 p2q + 84 a2b3 pq2 + 63 a2b2 p3q + 315 a2b2 p2q2 +
63 a2b2 pq3 + 42 a2bp4q + 378 a2bp3q2 + 378 a2bp2q3 + 42 a2bpq4 + 21 a2 p5q +
273 a2 p4q2 + 609 a2 p3q3 + 273 a2 p2q4 + 21 a2 pq5 + ab7 + 7 ab5 pq + 7 ab4 p2q +
7 ab4 pq2 + 7 ab3 p3q + 35 ab3 p2q2 + 7 ab3 pq3 + 7 ab2 p4q + 63 ab2 p3q2 + 63 ab2 p2q3 +
7 ab2 pq4 + 7 abp5q + 91 abp4q2 + 203 abp3q3 + 91 abp2q4 + 7 abpq5 + 7 ap6q +
119 ap5q2 + 427 ap4q3 + 427 ap3q4 + 119 ap2q5 + 7 apq6 + p7q + 21 p6q2 + 105 p5q3 +
175 p4q4 + 105 p3q5 + 21 p2q6 + pq7 + 70 a5b + 560 a4b2 + 350 a4 pq + 1050 a3b3 +
1540 a3bpq + 700 a3 p2q + 700 a3 pq2 + 560 a2b4 + 1414 a2b2 pq + 1036 a2bp2q +
1036 a2bpq2 + 700 a2 p3q + 2324 a2 p2q2 + 700 a2 pq3 + 70 ab5 + 266 ab3 pq +
238 ab2 p2q + 238 ab2 pq2 + 266 abp3q + 938 abp2q2 + 266 abpq3 + 350 ap4q +
1974 ap3q2 + 1974 ap2q3 + 350 apq4 + 70 p5q + 560 p4q2 + 1050 p3q3 + 560 p2q4 +
70 pq5 + 469 a3b + 1183 a2b2 + 1407 a2 pq + 469 ab3 + 959 abpq + 1407 ap2q +
1407 apq2 + 469 p3q + 1183 p2q2 + 469 pq3 + 180 ab + 180 pq

F8(a, p,−b,−q) = a8b + 28 a7b2 + 8 a7 pq + 196 a6b3 + 168 a6bpq + 28 a6 p2q +
28 a6 pq2 + 490 a5b4 + 840 a5b2 pq + 280 a5bp2q + 280 a5bpq2 + 56 a5 p3q + 308 a5 p2q2 +
56 a5 pq3 + 490 a4b5 + 1400 a4b3 pq + 700 a4b2 p2q + 700 a4b2 pq2 + 280 a4bp3q +
1540 a4bp2q2 + 280 a4bpq3 + 70 a4 p4q + 700 a4 p3q2 + 700 a4 p2q3 + 70 a4 pq4 +
196 a3b6 + 840 a3b4 pq + 560 a3b3 p2q + 560 a3b3 pq2 + 336 a3b2 p3q + 1848 a3b2 p2q2 +
336 a3b2 pq3 + 168 a3bp4q + 1680 a3bp3q2 + 1680 a3bp2q3 + 168 a3bpq4 + 56 a3 p5q +
812 a3 p4q2 + 1904 a3 p3q3 + 812 a3 p2q4 + 56 a3 pq5 + 28 a2b7 + 168 a2b5 pq +
140 a2b4 p2q + 140 a2b4 pq2 + 112 a2b3 p3q + 616 a2b3 p2q2 + 112 a2b3 pq3 + 84 a2b2 p4q +
840 a2b2 p3q2 + 840 a2b2 p2q3 + 84 a2b2 pq4 + 56 a2bp5q + 812 a2bp4q2 + 1904 a2bp3q3 +
812 a2bp2q4 + 56 a2bpq5 + 28 a2 p6q + 532 a2 p5q2 + 2044 a2 p4q3 + 2044 a2 p3q4 +
532 a2 p2q5 + 28 a2 pq6 + ab8 + 8 ab6 pq + 8 ab5 p2q + 8 ab5 pq2 + 8 ab4 p3q + 44 ab4 p2q2 +
8 ab4 pq3 + 8 ab3 p4q + 80 ab3 p3q2 + 80 ab3 p2q3 + 8 ab3 pq4 + 8 ab2 p5q + 116 ab2 p4q2 +
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272 ab2 p3q3 + 116 ab2 p2q4 + 8 ab2 pq5 + 8 abp6q + 152 abp5q2 + 584 abp4q3 +
584 abp3q4 + 152 abp2q5 + 8 abpq6 + 8 ap7q + 188 ap6q2 + 1016 ap5q3 + 1742 ap4q4 +
1016 ap3q5 + 188 ap2q6 + 8 apq7 + p8q + 28 p7q2 + 196 p6q3 + 490 p5q4 + 490 p4q5 +
196 p3q6 + 28 p2q7 + pq8 + 126 a6b + 1470 a5b2 + 756 a5 pq + 4410 a4b3 + 5460 a4bpq +
1890 a4 p2q + 1890 a4 pq2 + 4410 a3b4 + 9576 a3b2 pq + 5544 a3bp2q + 5544 a3bpq2 +
2520 a3 p3q + 9156 a3 p2q2 + 2520 a3 pq3 + 1470 a2b5 + 4872 a2b3 pq + 3612 a2b2 p2q +
3612 a2b2 pq2 + 2856 a2bp3q + 11004 a2bp2q2 + 2856 a2bpq3 + 1890 a2 p4q +
11844 a2 p3q2 + 11844 a2 p2q3 + 1890 a2 pq4 + 126 ab6 + 588 ab4 pq + 504 ab3 p2q +
504 ab3 pq2 + 504 ab2 p3q + 2100 ab2 p2q2 + 504 ab2 pq3 + 588 abp4q + 3864 abp3q2 +
3864 abp2q3 + 588 abpq4 + 756 ap5q + 6762 ap4q2 + 13272 ap3q3 + 6762 ap2q4 +
756 apq5 + 126 p6q + 1470 p5q2 + 4410 p4q3 + 4410 p3q4 + 1470 p2q5 + 126 pq6 +
1869 a4b + 8526 a3b2 + 7476 a3 pq + 8526 a2b3 + 14364 a2bpq + 11214 a2 p2q +
11214 a2 pq2 + 1869 ab4 + 4788 ab2 pq + 4788 abp2q + 4788 abpq2 + 7476 ap3q +
20790 ap2q2 + 7476 apq3 + 1869 p4q + 8526 p3q2 + 8526 p2q3 + 1869 pq4 + 3044 a2b +
3044 ab2 + 6088 apq + 3044 p2q + 3044 pq2

−F9(a, p,−b,−q) = a9b + 36 a8b2 + 9 a8 pq + 336 a7b3 + 252 a7bpq +
36 a7 p2q + 36 a7 pq2 + 1176 a6b4 + 1764 a6b2 pq + 504 a6bp2q + 504 a6bpq2 +
84 a6 p3q + 504 a6 p2q2 + 84 a6 pq3 + 1764 a5b5 + 4410 a5b3 pq + 1890 a5b2 p2q +
1890 a5b2 pq2 + 630 a5bp3q + 3780 a5bp2q2 + 630 a5bpq3 + 126 a5 p4q + 1386 a5 p3q2 +
1386 a5 p2q3 + 126 a5 pq4 + 1176 a4b6 + 4410 a4b4 pq + 2520 a4b3 p2q + 2520 a4b3 pq2 +
1260 a4b2 p3q + 7560 a4b2 p2q2 + 1260 a4b2 pq3 + 504 a4bp4q + 5544 a4bp3q2 +
5544 a4bp2q3 + 504 a4bpq4 + 126 a4 p5q + 2016 a4 p4q2 + 4956 a4 p3q3 + 2016 a4 p2q4 +
126 a4 pq5 + 336 a3b7 + 1764 a3b5 pq + 1260 a3b4 p2q + 1260 a3b4 pq2 + 840 a3b3 p3q +
5040 a3b3 p2q2 + 840 a3b3 pq3 + 504 a3b2 p4q + 5544 a3b2 p3q2 + 5544 a3b2 p2q3 +
504 a3b2 pq4 + 252 a3bp5q + 4032 a3bp4q2 + 9912 a3bp3q3 + 4032 a3bp2q4 +
252 a3bpq5 + 84 a3 p6q + 1764 a3 p5q2 + 7224 a3 p4q3 + 7224 a3 p3q4 + 1764 a3 p2q5 +
84 a3 pq6 + 36 a2b8 + 252 a2b6 pq + 216 a2b5 p2q + 216 a2b5 pq2 + 180 a2b4 p3q +
1080 a2b4 p2q2 + 180 a2b4 pq3 + 144 a2b3 p4q + 1584 a2b3 p3q2 + 1584 a2b3 p2q3 +
144 a2b3 pq4 + 108 a2b2 p5q + 1728 a2b2 p4q2 + 4248 a2b2 p3q3 + 1728 a2b2 p2q4 +
108 a2b2 pq5 + 72 a2bp6q + 1512 a2bp5q2 + 6192 a2bp4q3 + 6192 a2bp3q4 +
1512 a2bp2q5 + 72 a2bpq6 + 36 a2 p7q + 936 a2 p6q2 + 5436 a2 p5q3 + 9576 a2 p4q4 +
5436 a2 p3q5 + 936 a2 p2q6 + 36 a2 pq7 + ab9 + 9 ab7 pq + 9 ab6 p2q + 9 ab6 pq2 +
9 ab5 p3q + 54 ab5 p2q2 + 9 ab5 pq3 + 9 ab4 p4q + 99 ab4 p3q2 + 99 ab4 p2q3 + 9 ab4 pq4 +
9 ab3 p5q + 144 ab3 p4q2 + 354 ab3 p3q3 + 144 ab3 p2q4 + 9 ab3 pq5 + 9 ab2 p6q +
189 ab2 p5q2 + 774 ab2 p4q3 + 774 ab2 p3q4 + 189 ab2 p2q5 + 9 ab2 pq6 + 9 abp7q +
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234 abp6q2 + 1359 abp5q3 + 2394 abp4q4 + 1359 abp3q5 + 234 abp2q6 + 9 abpq7 +
9 ap8q + 279 ap7q2 + 2109 ap6q3 + 5499 ap5q4 + 5499 ap4q5 + 2109 ap3q6 +
279 ap2q7 + 9 apq8 + p9q + 36 p8q2 + 336 p7q3 + 1176 p6q4 + 1764 p5q5 + 1176 p4q6 +
336 p3q7 + 36 p2q8 + pq9 + 210 a7b + 3360 a6b2 + 1470 a6 pq + 14700 a5b3 +
15750 a5bpq + 4410 a5 p2q + 4410 a5 pq2 + 23520 a4b4 + 44730 a4b2 pq + 21420 a4bp2q +
21420 a4bpq2 + 7350 a4 p3q + 28980 a4 p2q2 + 7350 a4 pq3 + 14700 a3b5 +
43050 a3b3 pq + 27090 a3b2 p2q + 27090 a3b2 pq2 + 16590 a3bp3q + 69300 a3bp2q2 +
16590 a3bpq3 + 7350 a3 p4q + 50610 a3 p3q2 + 50610 a3 p2q3 + 7350 a3 pq4 + 3360 a2b6 +
13950 a2b4 pq + 10440 a2b3 p2q + 10440 a2b3 pq2 + 8460 a2b2 p3q + 37800 a2b2 p2q2 +
8460 a2b2 pq3 + 6840 a2bp4q + 49320 a2bp3q2 + 49320 a2bp2q3 + 6840 a2bpq4 +
4410 a2 p5q + 43560 a2 p4q2 + 89220 a2 p3q3 + 43560 a2 p2q4 + 4410 a2 pq5 +
210 ab7 + 1170 ab5 pq + 990 ab4 p2q + 990 ab4 pq2 + 930 ab3 p3q + 4500 ab3 p2q2 +
930 ab3 pq3 + 990 ab2 p4q + 7650 ab2 p3q2 + 7650 ab2 p2q3 + 990 ab2 pq4 + 1170 abp5q +
11970 abp4q2 + 24960 abp3q3 + 11970 abp2q4 + 1170 abpq5 + 1470 ap6q +
18990 ap5q2 + 60540 ap4q3 + 60540 ap3q4 + 18990 ap2q5 + 1470 apq6 + 210 p7q +
3360 p6q2 + 14700 p5q3 + 23520 p4q4 + 14700 p3q5 + 3360 p2q6 + 210 pq7 + 5985 a5b +
42588 a4b2 + 29925 a4 pq + 77028 a3b3 + 110502 a3bpq + 59850 a3 p2q + 59850 a3 pq2 +
42588 a2b4 + 96606 a2b2 pq + 74628 a2bp2q + 74628 a2bpq2 + 59850 a2 p3q +
180900 a2 p2q2 + 59850 a2 pq3 + 5985 ab5 + 19377 ab3 pq + 16497 ab2 p2q +
16497 ab2 pq2 + 19377 abp3q + 63612 abp2q2 + 19377 abpq3 + 29925 ap4q +
150975 ap3q2 + 150975 ap2q3 + 29925 apq4 + 5985 p5q + 42588 p4q2 + 77028 p3q3 +
42588 p2q4 + 5985 pq5 + 26060 a3b + 63600 a2b2 + 78180 a2 pq + 26060 ab3 +
49020 abpq + 78180 ap2q + 78180 apq2 + 26060 p3q + 63600 p2q2 + 26060 pq3 +
8064 ab + 8064 pq

F10(a, p,−b,−q) = a10b + 45 a9b2 + 10 a9 pq + 540 a8b3 + 360 a8bpq +
45 a8 p2q + 45 a8 pq2 + 2520 a7b4 + 3360 a7b2 pq + 840 a7bp2q + 840 a7bpq2 +
120 a7 p3q + 780 a7 p2q2 + 120 a7 pq3 + 5292 a6b5 + 11760 a6b3 pq + 4410 a6b2 p2q +
4410 a6b2 pq2 + 1260 a6bp3q + 8190 a6bp2q2 + 1260 a6bpq3 + 210 a6 p4q +
2520 a6 p3q2 + 2520 a6 p2q3 + 210 a6 pq4 + 5292 a5b6 + 17640 a5b4 pq + 8820 a5b3 p2q +
8820 a5b3 pq2 + 3780 a5b2 p3q + 24570 a5b2 p2q2 + 3780 a5b2 pq3 + 1260 a5bp4q +
15120 a5bp3q2 + 15120 a5bp2q3 + 1260 a5bpq4 + 252 a5 p5q + 4410 a5 p4q2 +
11340 a5 p3q3 + 4410 a5 p2q4 + 252 a5 pq5 + 2520 a4b7 + 11760 a4b5 pq + 7350 a4b4 p2q +
7350 a4b4 pq2 + 4200 a4b3 p3q + 27300 a4b3 p2q2 + 4200 a4b3 pq3 + 2100 a4b2 p4q +
25200 a4b2 p3q2 + 25200 a4b2 p2q3 + 2100 a4b2 pq4 + 840 a4bp5q + 14700 a4bp4q2 +
37800 a4bp3q3 + 14700 a4bp2q4 + 840 a4bpq5 + 210 a4 p6q + 4830 a4 p5q2 +
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21000 a4 p4q3 + 21000 a4 p3q4 + 4830 a4 p2q5 + 210 a4 pq6 + 540 a3b8 + 3360 a3b6 pq +
2520 a3b5 p2q + 2520 a3b5 pq2 + 1800 a3b4 p3q + 11700 a3b4 p2q2 + 1800 a3b4 pq3 +
1200 a3b3 p4q + 14400 a3b3 p3q2 + 14400 a3b3 p2q3 + 1200 a3b3 pq4 + 720 a3b2 p5q +
12600 a3b2 p4q2 + 32400 a3b2 p3q3 + 12600 a3b2 p2q4 + 720 a3b2 pq5 + 360 a3bp6q +
8280 a3bp5q2 + 36000 a3bp4q3 + 36000 a3bp3q4 + 8280 a3bp2q5 + 360 a3bpq6 +
120 a3 p7q + 3420 a3 p6q2 + 21240 a3 p5q3 + 38400 a3 p4q4 + 21240 a3 p3q5 +
3420 a3 p2q6 + 120 a3 pq7 + 45 a2b9 + 360 a2b7 pq + 315 a2b6 p2q + 315 a2b6 pq2 +
270 a2b5 p3q + 1755 a2b5 p2q2 + 270 a2b5 pq3 + 225 a2b4 p4q + 2700 a2b4 p3q2 +
2700 a2b4 p2q3 + 225 a2b4 pq4 + 180 a2b3 p5q + 3150 a2b3 p4q2 + 8100 a2b3 p3q3 +
3150 a2b3 p2q4 + 180 a2b3 pq5 + 135 a2b2 p6q + 3105 a2b2 p5q2 + 13500 a2b2 p4q3 +
13500 a2b2 p3q4 + 3105 a2b2 p2q5 + 135 a2b2 pq6 + 90 a2bp7q + 2565 a2bp6q2 +
15930 a2bp5q3 + 28800 a2bp4q4 + 15930 a2bp3q5 + 2565 a2bp2q6 + 90 a2bpq7 +
45 a2 p8q + 1530 a2 p7q2 + 12420 a2 p6q3 + 33705 a2 p5q4 + 33705 a2 p4q5 +
12420 a2 p3q6 + 1530 a2 p2q7 + 45 a2 pq8 + ab10 + 10 ab8 pq + 10 ab7 p2q + 10 ab7 pq2 +
10 ab6 p3q + 65 ab6 p2q2 + 10 ab6 pq3 + 10 ab5 p4q + 120 ab5 p3q2 + 120 ab5 p2q3 +
10 ab5 pq4 + 10 ab4 p5q + 175 ab4 p4q2 + 450 ab4 p3q3 + 175 ab4 p2q4 + 10 ab4 pq5 +
10 ab3 p6q + 230 ab3 p5q2 + 1000 ab3 p4q3 + 1000 ab3 p3q4 + 230 ab3 p2q5 + 10 ab3 pq6 +
10 ab2 p7q + 285 ab2 p6q2 + 1770 ab2 p5q3 + 3200 ab2 p4q4 + 1770 ab2 p3q5 +
285 ab2 p2q6 + 10 ab2 pq7 + 10 abp8q + 340 abp7q2 + 2760 abp6q3 + 7490 abp5q4 +
7490 abp4q5 + 2760 abp3q6 + 340 abp2q7 + 10 abpq8 + 10 ap9q + 395 ap8q2 +
3970 ap7q3 + 14585 ap6q4 + 22252 ap5q5 + 14585 ap4q6 + 3970 ap3q7 + 395 ap2q8 +
10 apq9 + p10q + 45 p9q2 + 540 p8q3 + 2520 p7q4 + 5292 p6q5 + 5292 p5q6 +
2520 p4q7 + 540 p3q8 + 45 p2q9 + pq10 + 330 a8b + 6930 a7b2 + 2640 a7 pq +
41580 a6b3 + 39270 a6bpq + 9240 a6 p2q + 9240 a6 pq2 + 97020 a5b4 + 164010 a5b2 pq +
66990 a5bp2q + 66990 a5bpq2 + 18480 a5 p3q + 78540 a5 p2q2 + 18480 a5 pq3 +
97020 a4b5 + 254100 a4b3 pq + 138600 a4b2 p2q + 138600 a4b2 pq2 + 69300 a4bp3q +
311850 a4bp2q2 + 69300 a4bpq3 + 23100 a4 p4q + 173250 a4 p3q2 + 173250 a4 p2q3 +
23100 a4 pq4 + 41580 a3b6 + 155100 a3b4 pq + 102300 a3b3 p2q + 102300 a3b3 pq2 +
69300 a3b2 p3q + 331650 a3b2 p2q2 + 69300 a3b2 pq3 + 42900 a3bp4q + 336600 a3bp3q2 +
336600 a3bp2q3 + 42900 a3bpq4 + 18480 a3 p5q + 199650 a3 p4q2 + 425700 a3 p3q3 +
199650 a3 p2q4 + 18480 a3 pq5 + 6930 a2b7 + 34815 a2b5 pq + 26400 a2b4 p2q +
26400 a2b4 pq2 + 21450 a2b3 p3q + 109725 a2b3 p2q2 + 21450 a2b3 pq3 + 18150 a2b2 p4q +
150975 a2b2 p3q2 + 150975 a2b2 p2q3 + 18150 a2b2 pq4 + 14685 a2bp5q +
164175 a2bp4q2 + 356400 a2bp3q3 + 164175 a2bp2q4 + 14685 a2bpq5 + 9240 a2 p6q +
130845 a2 p5q2 + 441375 a2 p4q3 + 441375 a2 p3q4 + 130845 a2 p2q5 + 9240 a2 pq6 +
330 ab8 + 2145 ab6 pq + 1815 ab5 p2q + 1815 ab5 pq2 + 1650 ab4 p3q + 9075 ab4 p2q2 +
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1650 ab4 pq3 + 1650 ab3 p4q + 14850 ab3 p3q2 + 14850 ab3 p2q3 + 1650 ab3 pq4 +
1815 ab2 p5q + 21450 ab2 p4q2 + 47850 ab2 p3q3 + 21450 ab2 p2q4 + 1815 ab2 pq5 +
2145 abp6q + 31185 abp5q2 + 107250 abp4q3 + 107250 abp3q4 + 31185 abp2q5 +
2145 abpq6 + 2640 ap7q + 46365 ap6q2 + 216480 ap5q3 + 354750 ap4q4 +
216480 ap3q5 + 46365 ap2q6 + 2640 apq7 + 330 p8q + 6930 p7q2 + 41580 p6q3 +
97020 p5q4 + 97020 p4q5 + 41580 p3q6 + 6930 p2q7 + 330 pq8 + 16401 a6b +
167013 a5b2 + 98406 a5 pq + 471240 a4b3 + 589050 a4bpq + 246015 a4 p2q +
246015 a4 pq2 + 471240 a3b4 + 954690 a3b2 pq + 602250 a3bp2q + 602250 a3bpq2 +
328020 a3 p3q + 1067880 a3 p2q2 + 328020 a3 pq3 + 167013 a2b5 + 490545 a2b3 pq +
362835 a2b2 p2q + 362835 a2b2 pq2 + 314325 a2bp3q + 1108800 a2bp2q2 +
314325 a2bpq3 + 246015 a2 p4q + 1355805 a2 p3q2 + 1355805 a2 p2q3 + 246015 a2 pq4 +
16401 ab6 + 65505 ab4 pq + 52305 ab3 p2q + 52305 ab3 pq2 + 52305 ab2 p3q +
205920 ab2 p2q2 + 52305 ab2 pq3 + 65505 abp4q + 385935 abp3q2 + 385935 abp2q3 +
65505 abpq4 + 98406 ap5q + 769560 ap4q2 + 1446720 ap3q3 + 769560 ap2q4 +
98406 apq5 + 16401 p6q + 167013 p5q2 + 471240 p4q3 + 471240 p3q4 +
167013 p2q5 + 16401 pq6 + 152900 a4b + 659340 a3b2 + 611600 a3 pq + 659340 a2b3 +
1060620 a2bpq + 917400 a2 p2q + 917400 a2 pq2 + 152900 ab4 + 353540 ab2 pq +
353540 abp2q + 353540 abpq2 + 611600 ap3q + 1624480 ap2q2 + 611600 apq3 +
152900 p4q + 659340 p3q2 + 659340 p2q3 + 152900 pq4 + 193248 a2b + 193248 ab2 +
386496 apq + 193248 p2q + 193248 pq2
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asymptotics of characters, 23, 25

C-expansion, 40, 45, 47

C-positivity, 44, 47, 55

conjecture, 41

character

definition, 6

degree of, 6

equivalent, 6

irreducible, 6

normalized, 8

corners, inside and outside, 21

free cumulantRk, 29

free cumulant generating series, 22, 24

free probability, 23

group algebra, 7, 28

interlacing sequence of maxima and min-

ima, 21

Jucys-Murphy elements, 29

Kerov’s character polynomial, 22

Lagrange Inversion Theorem, 15

Littlewood-Richardson coefficients, 26

measures

convolution of, 24

momentMk, 29

moment generating series, 21, 23

Murnaghan-Nakayama rule, 23, 57, 64,

69

partition

admissible, 31

definition of, 5

length of, 5

part of, 5

sign of, 29

permutation

conjugacy class of, 8

cycle type of, 8

sign of, 12

p, q-positive, 69, 71, 78, 81

R-expansion, 40

R-positivity, 41, 45, 48, 55

conjecture, 27

representation

definition of, 5

dimension, 5

induced, 8

irreducible, 6

Kronecker product, 8

left regular, 7

outer product, 8, 25

restriction, 8, 25

submodule, 6

shift symmetric functions, 65

p-sharp shift symmetric functions, 65
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shift Schur functions, 65

sign of

monomial in M’s, 29

monomial in R’s, 29

partition, 29

permutation, 12

staircase sequence, 12, 33

Stanley’s character polynomials, 67, 69,

73

symmetric functions

complete, 11

definition of, 10

elementary, 11

inner product on, 12

monomial, 10

power sum, 11

Schur, 11

shift, see shift symmetric functions

tableau, see Young diagram

top terms of Stanley’s polynomial, 70

Vandermonde determinant, 33

weight of

monomial in C’s, 39, 41

monomial in group algebra, 29

monomial in R’s, 29

Young diagram

box of

content of, 12

hook length of, 12

definition of, 9

English convention, 9

French convention, 9

generalized, 23

reverse tableau, 66

semi-standard, 10

standard, 10

Young tableau, see Young diagram

semi-standard, see Young diagram

standard, see Young diagram
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