Character Polynomials and Lagrange Inversion

by

Amarpreet Rattan

A thesis
presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2005
(C)Amarpreet Rattan 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

In this thesis, we investigate two expressions for symmetric group characters: Kerov's universal character polynomials and Stanley's character polynomials. We give a new explicit form for Kerov's polynomials, which exactly evaluate the characters of the symmetric group scaled by degree and a constant. We use this explicit expression to obtain specific information about Kerov polynomials, including partial answers to positivity questions. We then use the expression obtained for Kerov's polynomials to obtain results about Stanley's character polynomials.

Acknowledgements

I would like to thank Caroline Colijn. Our many great times together made my whole PhD . experience that much better. Without her love and support the making of this thesis would have been a very difficult experience.

I would like to thank various people for scientific support. I had many informative discussions with Chris Godsil and David Wagner, both of whom also gave useful comments as examiners. I would also like to thank my other examiners Philippe Biane, David Jackson and Andu Nica for their comments. As for technical support, I would like to thank Peter Colijn, James Muir and Simon Alexander.

A special thanks goes to John Irving, my mathematical travelling partner. Our many conference adventures will never be forgotten (hopefully for good reasons rather than bad). In addition, John and I had many fruitful conversations concerning the material in Chapter 4

I would also like to thank my family: my parents, my brother Gurpreet, his wife Melissa Hagen and their new daughter Maia, for the many days and nights I spent in a welcoming, warm environment, typesetting this thesis.

Finally, I would especially like to thank my PhD. supervisor Ian Goulden. Always relaxed, encouraging and available, Ian invariably made me feel better about my work after one of our meetings. His excellent advice and great ideas helped me with many difficult mathematical concepts and his tireless reviews of theorems and drafts this thesis will always be greatly appreciated.

Contents

List of Figures xi
Index of Notation xiii
1 Introduction 1
2 Fundamental Concepts 5
2.1 Partitions, Group Representations and the Symmetric Group 5
2.1.1 The Group Algebra of the Symmetric Group 8
2.2 Symmetric Functions 9
2.2.1 Classical Results in Symmetric Function Theory 12
2.3 The Murnaghan-Nakayama Rule 14
2.4 Formal Power Series and Lagrange Inversion 14
2.5 Formal Residues 15
3 Kerov's Character Polynomials 19
3.1 Background 20
3.2 Motivation: Asymptotics of Characters and Free Probability 23
3.3 Preliminaries and Previous Results 26
3.3.1 The Existence of Kerov's Polynomials 28
3.3.2 Computation of Kerov's Polynomials and Frobenius' Expres- sion for Characters 33
3.4 The Main Result 39
3.5 Special Cases of the Main Result 42
3.5.1 Monomial Symmetric Functions: A Computational Tool 42
3.5.2 The Cases $n=0,1,2$ 44
3.5.3 The Case $n=3$ 48
3.5.4 The Linear Terms 55
3.6 Lagrange Inversion and the Proof of the Main Result 58
4 Stanley's Character Polynomials 63
4.1 Stanley's Polynomials for Rectangular Shapes 64
4.1.1 A Brief Account of Shift Symmetric Functions 64
4.1.2 Proof of Theorem 4.1.1 66
4.2 Generalizations to Non-Rectangular Shapes 67
4.3 Applying Kerov Polynomials to Stanley's Polynomials 71
4.3.1 \quad The Series H for the Shape $\mathbf{p} \times \mathbf{q}$ 72
4.3.2 Terms of Degree $k+1$ 74
4.3.3 Terms of Degree $k-1, k-3$ and a General Connection Be- tween Kerov's Polynomials and Stanley's Polynomials 79
A The R-expansions of Kerov's Character Polynomials for $k \leq 20$ 83
B The C-expansions of Kerov's Character Polynomials for $k \leq 22$ 93
C Stanley's Character Polynomials $(-1)^{k} F_{k}(a, p,-b,-q)$ for $k \leq 10$ 101
Bibliography 107
Index 111

List of Figures

2.1 The tableau of shape $(6,4,4,1,1)$ drawn in the English convention (left) and French convention (right). 10
3.1 The partition (43331) of 14, drawn in the French convention, and rotated by 45° 20
3.2 An example of an injection ϕ from cells of a diagram to [19]. The permutation σ_{ϕ} is $(101551912)(1134)(926)$ 28
3.3 Only the corners of a diagrams survive as non-trivial terms. 36
4.1 The shape $\mathbf{p} \times \mathbf{q}$. 68

Index of Notation

Notation $a_{\lambda ; n}$	Description an element in $\mathbb{C}\left[\mathfrak{S}_{n}\right]$
$C(z)$	generating series of $C^{\prime} \mathrm{s}$
$\chi_{\lambda}(\mu), \chi^{\lambda}(\mu), \chi_{\mu}^{\lambda}$	characters of the symmetric group associated with the partition λ evaluated at the conjugacy class μ
C_{λ}	the conjugacy class of \mathfrak{S}_{n} indexed by λ
$c(u)$	content of a box u in a Young diagram
$c_{\alpha, \beta}^{\gamma}$	structure constants of the central elements K_{α}
D	differential operator $z \frac{d}{d z}$
$\Delta\left(y_{1}, y_{2}, \ldots, y_{n}\right)$	Vandermonde determinant
δ	staircase sequence
$\begin{aligned} & e_{\lambda} \\ & \varepsilon(\sigma) \end{aligned}$	elementary symmetric function indexed by λ the sign of a permutation σ
$f(z)^{\langle-1\rangle}$	compositional inverse of $f(z)$
f^{ω}	the degree of the irreducible character χ_{ω} of \mathfrak{S}_{n}
$F_{k}(\mathbf{p} ; \mathbf{q})$	Stanley's character polynomial
$G_{\mathbf{p} ; \mathbf{q}}(z)$	generating series for top terms of Stanley's polynomial
$G_{k}(\mathbf{p} ; \mathbf{q})$	top terms of Stanley's polynomial

Notation	Description
H_{λ}	the product of hooks
h_{λ}	complete symmetric function indexed by λ
$H_{\omega}(z)$	moment generating series of continuous Young diagram ω
$h(u)$	hook length of a box u in a Young diagram
$H_{\mathbf{p} ; \mathbf{q}}(z)$	moment generating series for Stanley's character polynomial
J_{n}	Jucys-Murphy elements
K_{λ}	central element of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ indexed by λ
$\lambda \vdash d$	λ an integer partition of d
Λ	ring of symmetric functions
$\Lambda(n)$	ring of symmetric polynomials in n variables
Λ^{*}	ring of shift symmetric functions
$\Lambda^{*}(n)$	ring of shift symmetric polynomials in n variables
λ_{μ}	fixed permutation in C_{μ}
[λ]	the representation of \mathfrak{S}_{d} associated with the partition $\lambda \vdash d$
$\ell(\lambda)$	number of parts in the partition λ
\hat{m}_{λ}	substitution of $1, \ldots, k-1$ into monomial symmetric function
m_{λ}	monomial symmetric function indexed by λ
$m_{i}(\lambda)$	number of parts of λ equal to i
\mathcal{M}_{k}	$k^{\text {th }}$ moment of the Jucys-Murphy element
$(n){ }_{k}$	the falling factorial $n(n-1) \cdots(n-k+1)$
[n]	the set $\{1,2, \ldots, n\}$
1^{n}	the partition of n with n parts equal to 1

Notation Description

| ϑ | substitution operator $R_{i} \mapsto u^{i} R_{i}$ |
| :--- | :--- | :--- |
| $T(u)$ | value assigned to the box u by the tableau T |

Chapter 1

Introduction

Finding expressions for group characters is a very old task. In the case of the symmetric groups, much is known about their characters. In fact, there are well known combinatorial algorithms for computing the characters of the symmetric group, the Murnaghan-Nakayama rule (see Theorem 2.3.1) being such an example. As well as the Murnaghan-Nakayama rule, the ring of symmetric functions provides a calculus for computing symmetric group characters. Unfortunately, in the case of symmetric functions, one often needs to know the characters in order to use them effectively for computational purposes. Therefore, as a tool for computing characters, they are not as effective as one might hope. In the case of the MurnaghanNakayama rule, when the symmetric group is large, its use becomes quite cumbersome and other methods are needed to obtain information about symmetric group characters. In Kerov [18, 19], Kerov and Vershik [20] the authors recognize the shortcomings of such methods and approach the problem from a probabilistic point of view. Thus, instead of trying to compute symmetric group characters for large groups exactly, they try to obtain asymptotic information about characters.

The probability used is not classical probability; the authors use the theory of free probability, which has connections to both functional analysis and combinatorics. This use of free probability in the asymptotics of the symmetric group characters was studied by Biane [1, 2, 3], who obtained some remarkable asymptotic results. More specifically, Biane has an asymptotic expression for characters in terms of quantities called free cumulants, which are, very briefly and superficially, a sequence of functions R_{2}, R_{3}, \ldots mapping Young diagrams to the complex numbers. Biane proves that $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$, which is the symmetric group character associated with an arbitrary partition ω and evaluated at a k-cycle, and scaled by degree and a constant, gets asymptotically close to $R_{k+1}(\omega)$. In fact, he proves a more general
result, giving asymptotic results about $\widehat{\chi}_{\omega}(\sigma)$, where σ is an arbitrary shape (see Example 3.2.1).

The question arises of whether there is a useful expression in terms of $R_{i}(\omega)$ that exactly evaluates the character $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$. Such an expression would probably not give any additional information about the asymptotics of characters but, as we shall see, is interesting in its own right. Biane [1] (more correctly, Biane and Kerov, as Biane attributes this result to Kerov, who gave the result at a talk at an IHP conference) answered this question in the affirmative; the expressions for characters they found are known as Kerov's universal character polynomials. We shall see these expressions have some very remarkable algebraic and combinatorial properties.

The first property concerning these expressions for $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$ is that they are, indeed, polynomials (this is not obvious at the outset). The second, and by far more surprising, is that these polynomials are independent of ω (hence the adjective "universal"). At this point, an example is useful. The fifth Kerov polynomial is

$$
\begin{equation*}
\Sigma_{5}=R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2} . \tag{1.1}
\end{equation*}
$$

As mentioned above, the R_{i} can be thought of as functions from, in this example, partitions of $n \geq 5$ to complex numbers. Evaluating this at any such partition, say $\omega=(322)$, a partition of 7 , we obtain

$$
\begin{aligned}
\hat{\chi}_{\omega}(511) & =\Sigma_{5}(\omega) \\
& =R_{6}(\omega)+15 R_{4}(\omega)+5 R_{2}(\omega)^{2}+8 R_{2}(\omega) .
\end{aligned}
$$

Given that the $R_{i}(\omega)$ are readily obtained, we see that the above expression evaluates the character $\widehat{\chi}_{\omega}(511)$. For arbitrary ω, we emphasize, again, that the Kerov polynomial Σ_{5} above is independent of ω and n.

The only expression known until now for Kerov's polynomials is an implicit one (due to Biane [1, Theorem 5.1]), which can be derived from a seemingly intractable formula of Frobenius. Other results have been obtained, for example, coefficients of some specific terms have been found, but otherwise these polynomials are somewhat of a mystery. They are the subject of the first half of this thesis. Here, we give a new explicit expression for Kerov's polynomials. The expression is obtained by using Biane's expression with Lagrange inversion, and considering the graded pieces of Kerov's polynomials. We use this explicit expression to obtain new results for Kerov's polynomials, in particular giving affirmative partial answers to some positivity conjectures; namely, it is conjectured by Biane and Kerov that the coefficients of Kerov's polynomials are all positive. Further, we use our explicit expression to reprove some results.

In the second half of this thesis, we discuss another polynomial expression for characters which was introduced by Stanley [28], and which we call Stanley's character polynomials. As an example, suppose that $p \times q$ is a partition of n with p parts, all equal to q. Then, for any partition μ of k, where $k \leq n$, Stanley proved that

$$
\begin{equation*}
\widehat{\chi}_{p \times q}\left(\mu 1^{n-k}\right)=(-1)^{k} \sum_{\substack{u, v \\ u v=\lambda_{\mu}}} p^{\ell(u)}(-q)^{\ell(v)}, \tag{1.2}
\end{equation*}
$$

where λ_{μ} is any fixed permutation in the conjugacy class μ in the symmetric group on k letters, and $\ell(u)$ is the number of cycles in u. Stanley also obtained formulas for general shapes (that is, Stanley considers shapes more general than the rectangle $p \times q$) and the expressions are, predictably, more complex.

We shall see that there are connections between Kerov's character polynomials and Stanley's character polynomials. Both Kerov polynomials and Stanley's polynomials are based on the same formula of Frobenius. To make use of Frobenius' expression, we make heavy use of Lagrange's Inversion Theorem in the treatment of both Kerov's and Stanley's polynomials. Moreover, we shall see that we can use results concerning Kerov's polynomials and apply them to Stanley's polynomials. In particular, we are able to answer some positivity questions concerning Stanley's polynomials.

The thesis is organized as follows. In Chapter 2 we briefly review some fundamental concepts (representations, symmetric functions, Lagrange inversion) that many readers may already know, so we include no proofs (except for Section 2.5 where a suitable reference was not found). This chapter may, therefore, be omitted by those who feel comfortable with the background material. Chapter 3 deals exclusively with Kerov's character polynomials. In Section 3.1 and 3.2 we give the background and motivation for Kerov's polynomials, including a very brief discussion about the asymptotics of characters. Although this thesis offers no new results in this direction, it seems appropriate to provide some details about this motivating aspect of Kerov's polynomials. In Section 3.3.2, we start from some fairly basic expressions and begin to derive our explicit expression for Kerov's polynomials. We include the formula of Frobenius and the proof given by Macdonald [21, Section I.7, Exercise 6], and give an essentially self-contained derivation of Kerov's polynomials. In this way, we provide a complete expository account of the basic material leading up to Kerov's polynomials. Finally, in Section 3.4 we state the main result of this thesis, in Theorem 3.4.1, which gives an explicit expression for Kerov's polynomials. We also give some equivalent forms of the main theorem in Theorems 3.4 .2 and 3.4.3. which are included since they help with later computations.

Our explicit expression for Kerov's polynomials is quite complicated, but we are able to show that a lot of useful information can be extracted from this expression in spite of its complexity, including some positivity results which are presented in Section 3.5. We postpone the proof of the main result until the end of Chapter 3, in Section 3.6

In Chapter 4 we study Stanley's character polynomials. For Stanley's rectangular case, given in (1.2) above, we give a new proof in Section 4.1.2. The proof given here is slightly simpler than Stanley's proof and, more importantly, exploits in a new way an already known connection between shift symmetric functions and scaled characters $\widehat{\chi}_{\omega}(\mu)$. We then consider Stanley's character polynomials in the general case, and interpret them as a specialization of Kerov's polynomials. This enables us to use some of the results in Chapter 3 to obtain results about Stanley's polynomials. In particular, we are able to give some new positivity results.

We conclude the thesis with a theorem that gives a strong connection between the positivity of Kerov's polynomials and the positivity of Stanley's polynomials; that is, we show the former implies the latter. In particular, we introduce a Cexpansion for Kerov's polynomials and it is immediate that the positivity of this C expansion does imply positivity of Kerov's polynomials in the so called R-expansion given in (1.1). Furthermore, we show C-positivity of Kerov's polynomials does imply positivity for Stanley's polynomials. As we shall see, most of our results here concern the C-expansion, as they greatly simplify our expressions. Therefore, it is this author's belief that these C-expansions are the most likely to yield further information about Kerov's polynomials (and, consequently, Stanley's polynomials).

We make a final note about the results found in this thesis. In general, we label theorems, lemmas, proofs, etc. by the authors who gave them. When no label is given the results are new; however, in Chapter 3 most such results also appear in Goulden and Rattan [12].

Chapter 2

Fundamental Concepts

In this chapter we review the necessary terminology for the thesis. This chapter may be omitted by those who feel comfortable with the material. The notation in Sections 2.1 and 2.2, on representation theory and symmetric functions, is consistent with Macdonald [21] and Sagan [24], while the notation in Section 2.4 is consistent with Goulden and Jackson [8] and Stanley [27].

2.1 Partitions, Group Representations and the Symmetric Group

A partition is a weakly ordered list of positive integers $\lambda=\lambda_{1} \lambda_{2} \ldots \lambda_{k}$, where $\lambda_{1} \geq$ $\lambda_{2} \geq \ldots \geq \lambda_{k}$. The integers $\lambda_{1}, \ldots, \lambda_{k}$ are called the parts of the partition λ, and we denote the number of parts (often called the length of a partition) by $\ell(\lambda)=k$. If $\lambda_{1}+\ldots+\lambda_{k}=d$, then λ is a partition of d, and we write $\lambda \vdash d$. We denote by \mathcal{P} the set of all partitions, including the single partition of 0 (which has no parts).

Let $G L_{d}$ be the general linear group of dimension d (the set of all invertible $d \times d$ matrices) over the field \mathbb{C}. Given any group G, a matrix representation of G is a group homomorphism

$$
X: G \longrightarrow G L_{d},
$$

or equivalently, X satisfies

1. $X(e)=I$, where e is the identity in G and I is the identity matrix in $G L_{d}$.
2. $X(g h)=X(g) X(h)$ for all $g, h \in G$.

The parameter d is called the dimension of the representation. We may also write $G L(V)$ for $G L_{d}$, where V is a d-dimensional vector space. Equivalently, we can use
the language of modules to describe a representation. That is, a vector space V is a G-module if there is a multiplication $g \cdot v$ of elements in V by elements of G such that

1. $g \cdot v \in V$,
2. $g \cdot(c v+d w)=c g \cdot v+d g \cdot w$,
3. $(g \cdot h) \cdot v=g \cdot(h \cdot v)$,
4. $e \cdot v=v$, where e is the identity of G,
for all $g, h \in G, v, w \in V$ and scalars c, d.
If V is a G-module then W is a called a submodule of V if W is a subspace of V and W is a G-module. The module V is called irreducible if the only submodules of V are trivial subspaces. Furthermore, G-modules V and W are equivalent if there is a vector space isomorphism that commutes with the action of G on V and W, i.e., if there exists an isomorphism $\theta: V \rightarrow W$ such that $\theta(g \cdot v)=g \cdot \theta(v)$.

For any representation X of G, the trace of the matrices $X(g)$ holds much of the information of the representation. Accordingly, define the character of a representation X to be the map $\chi: G \rightarrow \mathbb{C}$ given by $\chi(g)=\operatorname{trace}(X(g))$. Characters are called irreducible, equivalent, etc., if their associated representations have these properties. Also, the degree of a character is the dimension of the associated representation, which is clearly $\chi(e)$, where e is the identity element of the group.

The study of group characters can shed a lot of light on group representations. One can define an inner product on the space of group characters. In this space, a group character χ is irreducible if and only if the inner product of χ with itself is 1. Indeed, the character of a representation embodies much of the representation itself.

The group that we are most interested in is the symmetric group on n letters, denoted by \mathfrak{S}_{n}. We use either the standard cycle representation of a permutation (writing a permutation as the product of cycles), or write a permutation as a word.

Example 2.1.1. The simplest representation is the trivial representation. This is the representation

$$
X: G \longrightarrow G L_{1}
$$

such that $X(g)=[1]$ for all $g \in G$.
Example 2.1.2. The permutation representation is obtained when a group G acts on a set S. We take the vector space $\mathbb{C}[S]=c_{1} s_{1}+c_{2} s_{2}+\cdots+c_{n} s_{n}$ where $c_{i} \in \mathbb{C}$ and
$S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Letting $v=c_{1} s_{1}+c_{2} s_{2}+\cdots+c_{n} s_{n}$, then $X(g)$ is defined as the matrix associated with the linear transformation $g \cdot v=c_{1} g \cdot s_{1}+c_{2} g \cdot s_{2}+\ldots+$ $c_{n} g \cdot s_{n}$, where $g \cdot s_{i}$ is g acting on s_{i}, with respect to the basis $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

Example 2.1.3. The left regular representation is similar to the permutation representation and is one of the most important representations. In this case we take the group algebra $\mathbb{C}[G]$ (endowed with the obvious product), and an element $g \in G$ acts on a $v=c_{1} g_{1}+c_{2} g_{2}+\ldots+c_{n} g_{n}$ by $g \cdot v=c_{1} g \cdot g_{1}+c_{2} g \cdot g_{2}+\ldots+c_{n} g \cdot g_{n}$ where $g \cdot g_{i}$ is the usual multiplication in G.

We now state some fundamental theorems of representation theory.
Theorem 2.1.4 (Maschke). If V is a G-module then V is the direct sum of irreducible modules.

Theorem 2.1.5. The number of inequivalent irreducible representations of a group G is equal to the number of conjugacy classes.

Theorem 2.1.6. In the group algebra $\mathbb{C}[G]$, every irreducible representation appears with multiplicity equal to its dimension.

Thus, we see that the irreducible representations play a fundamental role in the group algebra. Now define $[n]=\{1,2, \ldots, n\}$. The symmetric group on n letters, denoted \mathfrak{S}_{n}, is the set of bijections from $[n]$ to itself. For the symmetric group \mathfrak{S}_{n} the conjugacy classes can be naturally indexed by the partitions of n. Therefore, the number of inequivalent representations of \mathfrak{S}_{n} is the number of partitions of n, and we write the conjugacy class associated with the partition λ as C_{λ}. Representations of \mathfrak{S}_{n} are therefore indexed by partitions, and we write X^{λ} or $[\lambda]$ for the representation associated with the partition λ. Similarly, for characters we write χ^{λ}. Furthermore, since characters are class functions, we replace $\chi^{\lambda}(g)$ by $\chi^{\lambda}(\mu)$ when g belongs to the conjugacy class μ. We also use the notations χ_{μ}^{λ} and $\chi_{\lambda}(\mu)$ in place of $\chi^{\lambda}(\mu)$; each is the character associated with the partition λ, evaluated at the conjugacy class μ. We denote by 1^{n} the partition of n with n parts equal to 1 and, therefore, the conjugacy class $C_{1^{n}}$ is the conjugacy class containing only the identity element. Thus, $\chi_{\lambda}\left(1^{n}\right)$ is the degree of the character χ_{λ}.

Various scalings of irreducible symmetric group characters have been considered in the recent literature. The central character is given by

$$
\tilde{\chi}_{\omega}(\lambda)=\left|\mathcal{C}_{\lambda}\right| \frac{\chi_{\omega}(\lambda)}{\chi_{\omega}\left(1^{n}\right)} .
$$

For the symmetric group, we often denote the degree of χ_{ω} by f^{ω}. For results about the central character, see, for example, Corteel et al. [4], Frumkin et al. [6], Katriel [17]. Related to this scaling, for the conjugacy class $\mathcal{C}_{k 1^{n-k}}$ only, is the normalized character, given by

$$
\begin{equation*}
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)=(n)_{k} \frac{\chi_{\omega}\left(k 1^{n-k}\right)}{\chi_{\omega}\left(1^{n}\right)}=k \widetilde{\chi}_{\omega}\left(k 1^{n-k}\right) \tag{2.1}
\end{equation*}
$$

where $(n)_{k}=n(n-1) \cdots(n-k+1)$ is the falling factorial, with $(n)_{0}=1$ (we also allow n to be an indeterminate). This character evaluation is the central object of this thesis.

Example 2.1.7. The following are some operations on representations.
a. Induction: For any representation X of a subgroup H contained in a group G, the representation $X \uparrow_{H}^{G}$ is the representation of G induced by X to G.
b. Restriction: For any representation X of a group G containing a subgroup H, the representation $X \downarrow_{H}^{G}$ is the representation of H known as the restriction of X to H.
c. Kronecker product: For the representations X and Y of G, we denote by $X \otimes Y$ their Kronecker product.
d. Outer product: For the repsentations X and Y of G, we denote by $X \circ Y$ their outer product.

We refer the reader to Sagan [24] for the definitions of these fundamental operations.

2.1.1 The Group Algebra of the Symmetric Group

In the symmetric group \mathfrak{S}_{n}, as we discussed above, conjugacy classes are indexed by partitions of n. Let the cycle type of a permutation σ be the partition whose parts are the lengths of the cycles in σ. In terms of cycle type of permutations, it is easy to describe the conjugacy classes of \mathfrak{S}_{n}; the conjugacy class C_{λ} consists of all members σ of \mathfrak{S}_{n} with cycle type λ. The centre of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ is spanned by the elements

$$
K_{\alpha}=\sum_{\sigma \in C_{\alpha}} \sigma .
$$

The $\left(K_{\alpha}\right)_{\alpha \vdash n}$ form a linear basis for the centre of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$. A natural task is to determine the structure constants of this basis are, i.e., to determine the numbers $c_{\alpha, \beta}^{\gamma}$ such that

$$
\begin{equation*}
K_{\alpha} K_{\beta}=\sum_{\gamma} c_{\alpha, \beta}^{\gamma} K_{\gamma} . \tag{2.2}
\end{equation*}
$$

This task, it turns out, is very difficult and has been heavily studied; see Corteel et al. [4], Goulden [7], Goulden and Jackson [9, 10], Goulden and Pepper [11], Goulden and Yong [13], Irving [15].

Since the group algebra is finite, its centre has a basis $\left\{F_{\alpha} \mid \alpha \vdash n\right\}$ of orthogonal idempotents with

$$
F_{\alpha}=\frac{f^{\alpha}}{n!} \sum_{\theta \vdash n} \chi_{\alpha}(\theta) K_{\theta} .
$$

Furthermore, the previous equation can be inverted to obtain

$$
K_{\alpha}=\left|C_{\alpha}\right| \sum_{\theta \vdash n} \frac{\chi_{\theta}(\alpha)}{f^{\theta}} F_{\theta} .
$$

Finally, determining the product $K_{\alpha} K_{\beta}$ through the orthogonal idempotents we have

$$
\begin{equation*}
\left[K_{\gamma}\right] K_{\alpha} K_{\beta}=\frac{\left|C_{\alpha}\right|\left|C_{\beta}\right|}{n!} \sum_{\theta \vdash n} \frac{1}{f \theta} \chi_{\theta}(\gamma) \chi_{\theta}(\alpha) \chi_{\theta}(\beta) . \tag{2.3}
\end{equation*}
$$

2.2 Symmetric Functions

Letting $m_{i}(\lambda)$ to be the number of parts of a partition $\lambda \vdash n$ equal to i, we often rewrite $\lambda=1^{m_{1}(\lambda)} 2^{m_{2}(\lambda)} \cdots n^{m_{n}(\lambda)}$. A sequence α of non-negative integers is said to have shape λ if its non-increasing rearrangement is λ, and we use $\operatorname{sh}(\alpha)$ to mean the shape of α. Let $\mathbf{x}=x_{1}, x_{2}, \ldots$ and for any sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, we denote by \mathbf{x}^{α} the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots$. For the rest of this section, $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \vdash n$.

A tableau of shape λ, Young diagram of λ or a Young tableau of shape λ is an array of boxes (i, j), where $1 \leq i \leq \ell$ and $1 \leq j \leq \lambda_{i}$. Visually, as with matrices, as i increases we move down the array and as j increases we move to the right (see Figure 2.1). This way of visualizing tableaux is often known as the "English convention". Some authors (most notably Francophones, hence we call the following the "French convention") prefer the use of coordinate geometry; a tableau is an array of boxes (i, j) where i increases left to right, j increases up, and $1 \leq j \leq \ell$ and $1 \leq i \leq \lambda_{j}$. As we will be most often using the English convention, we will specify the convention only when we decide to switch to the French one. A standard Young
tableau, or an SYT, is a filling of the boxes of a tableau of shape λ with the numbers $1,2, \ldots, n$, with rows and columns strictly increasing. A semi-standard Young tableau, or an SSYT, is a filling of the boxes of shape λ with positive integers such that rows are weakly increasing and columns strictly increasing. The following

Figure 2.1: The tableau of shape ($6,4,4,1,1$) drawn in the English convention (left) and French convention (right).
theorem connects SYT to characters of the symmetric group.
Theorem 2.2.1. The number of $S Y T$ of shape λ is the degree f^{λ} of χ_{λ}.

The algebra of symmetric functions is defined in the following way. Let $\Lambda(n)$ be the algebra of formal series symmetric in the n variables $x_{1}, x_{2}, \ldots, x_{n}$. Define a morphism from $\Lambda(n+1) \rightarrow \Lambda(n)$ by setting $x_{n+1}=0$ in a symmetric function. Finally, let Λ, the algebra of symmetric functions, be the projective limit

$$
\Lambda=\lim _{\leftarrow} \Lambda(n), \quad n \rightarrow \infty
$$

By definition, a function $f \in \Lambda$ is a sequence f_{1}, f_{2}, \ldots where

1. $f_{n} \in \Lambda(n)$,
2. $f_{n+1}\left(x_{1}, \ldots, x_{n}, 0\right)=f_{n}\left(x_{1}, \ldots, x_{n}\right)$,
3. $\sup _{n} \operatorname{deg} f_{n}<\infty$.

Although this formally defines symmetric functions, informally a symmetric function $f(\mathbf{x})$ is a formal power series in a countable number of variables (which we assume to be $\left.x_{1}, x_{2}, \ldots\right)$ such that $(i j) f(\mathbf{x})=f(\mathbf{x})$, where $(i j) f(\mathbf{x})$ is the series obtained by transposing the variables x_{i} and x_{j} in $f(\mathbf{x})$. The set of symmetric functions, with the operations addition and multiplication, form the ring of symmetric functions, which we denote by Λ. The ring of symmetric functions is a vector space; the following are some of its bases.

The monomial symmetric functions are the symmetric functions, indexed by partitions γ of n, defined by

$$
m_{\gamma}=\sum_{\alpha: \operatorname{sh}(\alpha)=\gamma} \mathbf{x}^{\alpha} .
$$

The set $\left\{m_{\gamma} \mid \gamma \vdash n, n \geq 0\right\}$ of monomial symmetric functions forms a basis for Λ.
The one-part elementary symmetric functions, one-part complete symmetric functions and the one-part power sum symmetric functions are the symmetric functions, indexed with positive integers, given by

$$
\begin{aligned}
& e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}} \\
& h_{r}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}
\end{aligned}
$$

and

$$
p_{r}=\sum_{i \geq 1} x_{i}^{r}
$$

respectively, and we define e_{0}, h_{0}, and p_{0} to equal 1. The sets $\left\{e_{r} \mid r \geq 1\right\},\left\{h_{r} \mid r \geq\right.$ $1\}$ and $\left\{p_{r} \mid r \geq 1\right\}$ generate Λ. Furthermore, we define

$$
\begin{aligned}
& e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \ldots e_{\lambda_{n}} \\
& h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots h_{\lambda_{n}}
\end{aligned}
$$

and

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{n}}
$$

as the elementary symmetric functions, complete symmetric functions and power sum symmetric functions, respectively. The sets $\left\{e_{\lambda} \mid \lambda \vdash n, n \geq 0\right\},\left\{h_{\lambda} \mid \lambda \vdash n, n \geq 0\right\}$ and $\left\{p_{\lambda} \mid \lambda \vdash n, n \geq 0\right\}$ are all bases for Λ.

The last symmetric functions we define here are the Schur functions; the Schur functions, s_{λ}, are defined combinatorially by

$$
\begin{equation*}
s_{\lambda}=\sum_{T \text { an SSYT of shape } \lambda} x_{T}, \tag{2.4}
\end{equation*}
$$

where x_{T} is the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, and $i_{1}, i_{2}, \ldots, i_{n}$ are the numbers in the boxes of the SSYT T.

Alternatively, we can define the Schur functions in an algebraic way. For any $\sigma \in \mathfrak{S}_{n}$, define $\mathbf{x}^{\sigma \alpha}$ be the monomial $x_{1}^{\alpha_{\sigma(1)}} x_{2}^{\alpha_{\sigma(2)}} \cdots x_{n}^{\alpha_{\sigma(n)}}$. Let

$$
\begin{equation*}
a_{\alpha}=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathbf{x}^{\sigma \alpha} \tag{2.5}
\end{equation*}
$$

where $\varepsilon(\sigma)$ is the sign of the permutation σ. It is not difficult to see that a_{α} is zero unless all α_{i} are distinct and, in that case, we may assume that $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{n}$. We define the staircase sequence to be $\delta=n-1 n-2 \ldots 0$, and write $\alpha=\lambda+\delta$ where λ is a partition with at most n parts. It is not hard to see that $a_{\lambda+\delta}$ is divisible by a_{δ} and that the quotient is symmetric in the n variables $x_{1}, x_{2}, \ldots, x_{n}$. We define $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as

$$
\begin{equation*}
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{a_{\lambda+\delta}}{a_{\delta}} \in \Lambda(n), \tag{2.6}
\end{equation*}
$$

which are the Schur polynomials, and we obtain the Schur functions by extending these to the ring Λ.

There is a standard inner product $\langle\cdot, \cdot\rangle$ on Λ for which the Schur functions are an orthonormal basis, i.e., $\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda \mu}$. Under this inner product, the power sums form an orthogonal basis; that is $\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}$, where

$$
z_{\lambda}=1^{m_{1}(\lambda)} m_{1}(\lambda)!2^{m_{2}(\lambda)} m_{2}(\lambda)!\cdots|\lambda|^{m_{|\lambda|}(\lambda)} m_{|\lambda|}(\lambda)!.
$$

The following theorem connects this inner product in symmetric functions to characters.

Theorem 2.2.2.

$$
\chi_{\lambda}(\rho)=\left\langle s_{\lambda}, p_{\rho}\right\rangle .
$$

2.2.1 Classical Results in Symmetric Function Theory

For any partition λ, the partition λ^{\prime} is called the conjugate partition, and is the partition obtained by interchanging the rows and columns of the Young diagram of λ. The notation $u \in \lambda$ denotes the box u of λ. For any $u=(i, j) \in \lambda$ the content of u, denoted by $c(u)$, is the quantity $j-i$, and hook length of u, denoted by $h(u)$, is $\lambda_{i}+\lambda_{j}-i-j+1$. Using the inner product at the end of the last section, we have the following two expressions.

Theorem 2.2.3. Writing the Schur functions as a linear combination of the power sum symmetric functions, we have

$$
s_{\lambda}=\sum_{\rho \vdash n} z_{\rho}^{-1} \chi_{\lambda}(\rho) p_{\rho},
$$

where λ is a partition of n.

Theorem 2.2.4. Writing the power sum symmetric functions as a linear combination of the Schur functions, we have

$$
p_{\rho}=\sum_{\lambda \vdash n} \chi_{\lambda}(\rho) s_{\lambda},
$$

where ρ is a partition of n.

From Theorem 2.2.4 and the algebraic definition of Schur functions given at the end of the previous section, we obtain the following theorem.

Theorem 2.2.5. The character $\chi_{\lambda}(\rho)$ is $\left[\mathbf{x}^{\lambda+\delta}\right] a_{\delta} p_{\rho}$.
We also require the following two results. We use the notation H_{λ} for $\prod_{u \in \lambda} h(u)$, where $\lambda \vdash n$.

Theorem 2.2.6. For $\lambda \vdash p$, we have

$$
s_{\lambda}\left(\mathbf{1}^{\mathbf{p}}\right)=\frac{\prod_{u \in \lambda}(p+c(u))}{H_{\lambda}}
$$

where $1^{\mathbf{p}}$ is the substitution $x_{i}=1$ for $1 \leq i \leq p$ and $x_{i}=0$ for $i>p$.

The following is the famous hook formula of Frame, Robinson and Thrall (see [5]).

Theorem 2.2.7 (Frame, Robinson and Thrall). For any partition $\lambda \vdash n$ we have

$$
f^{\lambda}=\frac{n!}{H_{\lambda}} .
$$

The following theorem is a consequence of the previous two results.

Theorem 2.2.8.

$$
\prod_{u \in \lambda}(x+c(u))=\sum_{\beta \vdash n} \frac{\left|C_{\beta}\right|}{f^{\lambda}} \chi_{\lambda}(\beta) x^{\ell(\beta)} .
$$

Theorem 2.2 .8 follows from Theorems 2.2.6, 2.2.7 and 2.2 .3 , by noting that for any integer t, a substitution of $x_{i}=1$ for all $1 \leq i \leq t$ into the equation in Theorem 2.2.6, yields the theorem for t. Noting that both sides of the equation are polynomials in t of degree n, gives the result with t replaced by the indeterminate x.

2.3 The Murnaghan-Nakayama Rule

In this section we state the Murnaghan-Nakayama rule, a combinatorial algorithm that computes symmetric group characters.

In a Young diagram λ with n boxes, a border strip is a connected set of boxes that contains no 2×2 subset of boxes. The height of a border strip $B, \operatorname{ht}(B)$, is one less than the number of columns occupied by B. Suppose that α is partition of n. A border strip tableau of shape λ and type α is an assignment of positive integers to the boxes of λ satisfying,

1. every row and column is weakly increasing,
2. the integer i appears α_{i} times,
3. the set of squares occupied by i forms a border strip B_{i}.

The height of a border strip tableau B of shape λ and type α with $B_{1}, B_{2}, \ldots B_{k}$ border strips, denoted by $\mathrm{ht}(B)$, is $\operatorname{ht}\left(B_{1}\right)+\operatorname{ht}\left(B_{2}\right)+\cdots+\operatorname{ht}\left(B_{k}\right)$.

Theorem 2.3.1 (Murnaghan-Nakayama Rule). For any partitions λ and α of n, we have

$$
\chi_{\lambda}(\alpha)=\sum_{T}(-1)^{\mathrm{ht}(T)},
$$

summed over all border strip tableaux of shape λ and type α.

2.4 Formal Power Series and Lagrange Inversion

For any ring K with a unit, let $K[[z]]$ and $K((z))$ denote the ring of formal power series and the ring of formal Laurent series in the indeterminate z. We need to deal with the compositional inverse of power series on many occasions, so knowing when they exist is pertinent. See Stanley [27, Proposition 5.4.1] for a proof of the following result.

Theorem 2.4.1. A formal power series $f(z)=a_{1} z+a_{2} z^{2}+\cdots \in K[[z]]$ has an inverse, denoted by $f(z)^{\langle-1\rangle}$, if and only if a_{1} is invertible in K, in which case the inverse of $f(z)$ is uпique.

Finally, given a formal power series the question of how to compute its inverse may arise. We require the following notation. Let $\left[z^{n}\right] f(z)$ be the coefficient of z^{n} in the series $f(z)$. We will use Lagrange's Implicit Function Theorem on a number of
occasions; we state it in three forms, the second and third being clearly equivalent (see, e.g., Goulden and Jackson [8, Section 1.2] or Stanley [27, Proposition 5.4.2] for a proof).

Theorem 2.4.2. Suppose $\psi \in K[[z]]$ is a formal power series with invertible constant term. Then the functional equation $s=z \psi(s)$ has a unique formal power series solution $s=s(z)$. Moreover
a. For a formal power series $F \in K[[x]]$, and $n \geq 0$, we have

$$
\left[z^{n}\right] F(s) \frac{z}{s} \frac{d s}{d z}=\left[y^{n}\right] F(y) \psi(y)^{n} .
$$

b. For a formal Laurent series $F \in K((x))$ and $n \neq 0$, we have

$$
\left[z^{n}\right] F(s)=\frac{1}{n}\left[y^{n-1}\right]\left(\frac{d}{d y} F(y)\right) \psi(y)^{n},
$$

and if $n=0$ we have

$$
\left[z^{0}\right] F(s)=\left[y^{0}\right] F(y)+\left[y^{-1}\right] F^{\prime}(y) \log \left(\frac{\phi(y)}{\phi(0)}\right) .
$$

c. Alternatively, suppose that $H(z)$ is a formal power series with no constant term and invertible linear coefficient and let $F \in K((x))$ be any Laurent series. Then, if $s=H(z)^{\langle-1\rangle}$ we have for $n \neq 0$

$$
\left[z^{n}\right] F(s)=\frac{1}{n}\left[y^{n-1}\right] F^{\prime}(y)\left(\frac{y}{H(y)}\right)^{n} .
$$

Forms 2.4.2.b and 2.4.2.c of Lagrange's Theorem are equivalent from the observation that if $s=H(z)^{\langle-1\rangle}$ then $s=z \psi(s)$, where $\psi=z / H(z)$.

Theorem 2.4.2 is referred to as either Lagrange's Theorem or as Lagrange inversion. Throughout this thesis we use Lagrange's Theorem in all of the forms in Theorem 2.4.2, and we highlight which form we use when we feel it necessary.

2.5 Formal Residues

In this thesis, we shall on occasion need the residue theorem. In our application of the residue theorem, however, we shall be in the context of formal Laurent series.

We, thus, make sure that this is a valid application with the following two propositions. First, for any rational series $T(z)$, let $\left[z^{-1}\right]_{\infty} T(z)$ denote the coefficient of $1 / z$ when $T(z)$ is expanded in powers of $1 / z$ (so, we consider its formal Laurent series in $1 / z$).

The next proposition expresses, essentially, that the residue is invariant under translation.

Proposition 2.5.1. For any rational series $T(z)$, we have

$$
\left[z^{-1}\right]_{\infty} T(z)=\left[z^{-1}\right]_{\infty} T(z-c)
$$

where c is any constant.
Proof. Using a partial fraction decomposition, for some $k, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, m_{1}, m_{2}, \ldots, m_{k}$ the rational series $T(z)$ is equal to

$$
\begin{aligned}
T(z) & =B_{0}(z)+\sum_{i=1}^{k} \frac{B_{i}(z)}{\left(z-\alpha_{i}\right)^{m_{i}}} \\
& =B_{0}(z)+\sum_{i=1}^{k} \frac{B_{i}(z) / z^{m_{i}}}{\left(1-\frac{\alpha_{i}}{z}\right)^{m_{i}}}
\end{aligned}
$$

where for $1 \leq i \leq k$ each $B_{i}(z)$ is a polynomial with $\operatorname{deg} B_{i}(z)<m_{i}$ and $B_{0}(z)$ is a polynomial. Then,

$$
\left[z^{-1}\right]_{\infty} T(z)=\sum_{i=1}^{k}\left[z^{m_{i}-1}\right] B_{i}(z)
$$

and since $\operatorname{deg} B_{i}(z)<m_{i}$, we have

$$
\left[z^{m_{i}-1}\right] B_{i}(z)=\left[z^{m_{i}-1}\right] B_{i}(z-c)
$$

and we obtain our result.
Finally, we have the formal series version of the residue theorem. Note that the following only deals with the case where all poles are simple, which is all we use in this thesis.

Proposition 2.5.2. For $D(z)=\prod_{i=1}^{k}\left(z-\alpha_{i}\right)$, with α_{i} all distinct, and a polynomial $N(z)$ we have

$$
\left[z^{-1}\right]_{\infty} \frac{N(z)}{D(z)}=\sum_{i=1}^{k} \frac{N\left(\alpha_{i}\right)}{D^{\prime}\left(\alpha_{i}\right)}
$$

Proof. Again, using partial fractions

$$
\begin{align*}
\frac{N(z)}{D(z)} & =B_{0}(z)+\sum_{i=1}^{k} \frac{B_{i}}{z-\alpha_{i}} \tag{2.7}\\
& =B_{0}(z)+\sum_{i=1}^{k} \frac{B_{i} / z}{1-\frac{\alpha_{i}}{z}}, \tag{2.8}
\end{align*}
$$

where B_{i} are constants and $B_{0}(z)$ is a polynomial. Multiplying (2.7) by $z-\alpha_{j}$ and evaluating the result at $z=\alpha_{j}$ we obtain

$$
\begin{equation*}
\frac{N\left(\alpha_{j}\right)}{\prod_{\substack{i=1 \\ i \neq j}}^{k}\left(\alpha_{j}-\alpha_{i}\right)}=B_{j} . \tag{2.9}
\end{equation*}
$$

But

$$
\begin{equation*}
D^{\prime}\left(\alpha_{j}\right)=\prod_{\substack{i=1 \\ i \neq j}}^{k}\left(\alpha_{j}-\alpha_{i}\right) \tag{2.10}
\end{equation*}
$$

and comparing (2.9) and (2.10) to (2.8), the result follows.

Chapter 3

Kerov's Character Polynomials

In this chapter we investigate the first type of character polynomial discussed in Chapter 1. Kerov's character polynomials. Briefly, Kerov's character polynomials are polynomials in variables R_{2}, R_{3}, \ldots, which are functions from Young diagrams to complex numbers, that exactly evaluate the normalized character given in (2.1). Recall from Chapter 1 that the fifth Kerov polynomial is

$$
\Sigma_{5}=R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2} .
$$

For general k, the Kerov polynomial Σ_{k} is somewhat of a mystery. Notice that the term of "highest weight" in Σ_{5} is R_{6}; it is known that the term of highest weight in Σ_{k} is R_{k+1}. But aside from a few other results, little is known about the coefficients of Kerov's polynomials. It is conjectured that the coefficient of each term is positive.

In Section 3.1, we introduce the basic material on Kerov polynomials. In Section 3.2. we describe the historical motivation behind Kerov's polynomials; this motivation comes from recent results by Biane concerning the asymptotics of characters. In Section 3.3 we cover preliminary results important to the rest of the thesis; in particular, we include the proof of Macdonald of Frobenius' expression for characters upon which the computation of Kerov's polynomials (and the polynomials in Chapter (4) relies. Finally, in Section 3.4, we state our main result in Theorem 3.4.1. followed by two variants of the main result. In Section 3.5, we give applications of the main result, including providing affirmative answers to some positivity conjectures. The proof of the main result is delayed until Section 3.6

3.1 Background

In this chapter we shall see that the normalized character $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$, given in (2.1), has a polynomial expression. The statement of this expression requires some notation involving partitions ω of n, which we develop now. We adapt the following description from Biane [2, 3]: consider the Young diagram of ω, in the French convention (see Section 2.2, Figure 2.1), and translate it, if necessary, so that the bottom left of the diagram is placed at the origin of an (x, y) plane. Finally, rotate the diagram counter-clockwise by 45°. Note that ω is uniquely determined by the

Figure 3.1: The partition (43331) of 14, drawn in the French convention, and rotated by 45°.
curve $\tau_{\omega}(x)$ (see Figure 3.1. The value of $\tau_{\omega}(x)$ is equal to $|x|$ for large negative or positive values of x and it is clear that $\tau_{\omega}^{\prime}(x)= \pm 1$, where differentiable. The interlacing sequence of points x_{i} and y_{i} in Figure 3.1 are the x-coordinates of the local minima and maxima, respectively, of the curve $\tau_{\omega}(x)$. We suitably scale the size of the boxes in Young diagrams so that the points x_{i} and y_{i} are integers. We call the sequence

$$
x_{1}<y_{1}<x_{2}<y_{2}<\cdots<x_{m-1}<y_{m-1}<x_{m}
$$

the interlacing sequence of maxima and minima associated with ω. Note that another way to look at this sequence of interlacing points is that they are the sequence of contents (see page 12) of the boxes immediately below the corners (after the above rotation has taken place). For example, in Figure 3.1, the box below the corner which is above the x-coordinate y_{1} has content -4 (keeping in mind that the partition in Figure 3.1 was drawn in the French convention and then rotated), implying that $y_{1}=-4$. We also call the local minima and maxima of the diagram the inside and outside corners, respectively, of the diagram. Setting

$$
\begin{equation*}
\sigma_{\omega}(x)=\left(\tau_{\omega}(x)-|x|\right) / 2, \tag{3.1}
\end{equation*}
$$

consider the function

$$
\begin{equation*}
H_{\omega}(z)=\frac{1}{z} \exp \int_{\mathbb{R}} \frac{1}{z-x} \sigma_{\omega}^{\prime}(x) d x . \tag{3.2}
\end{equation*}
$$

For now assume that an interlacing sequence of points x_{i} and y_{i} satisfy

$$
x_{1}<y_{1}<x_{2}<y_{2}<\cdots<y_{t-1}<x_{t}<0<y_{t}<x_{t+1}<\cdots x_{n-1}<y_{n-1}<x_{n}
$$

so 0 lies between the $t^{\text {th }}$ minimum and $t^{\text {th }}$ maximum (other interlacing sequences are dealt with in a similar manner). Then (3.2) becomes

$$
\begin{aligned}
& \frac{1}{z} \exp \left(\sum_{i=1}^{t-1}\left(\int_{x_{i}}^{y_{i}} \frac{1}{z-x}(1) d x+\int_{y_{i}}^{x_{i+1}} \frac{1}{z-x}(0) d x\right)\right. \\
& +\int_{x_{t}}^{0} \frac{1}{z-x}(1) d x+\int_{0}^{y_{t}} \frac{1}{z-x}(0) d x \\
& \left.+\sum_{t}^{m-1}\left(\int_{y_{i}}^{x_{i+1}} \frac{1}{z-x}(-1) d x+\int_{x_{i+1}}^{y_{i}} \frac{1}{z-x}(0) d x\right)\right) \\
& =\frac{1}{z} \exp \left(\sum_{i=1}^{t-1}\left(\log \left(z-y_{i}\right)-\log \left(z-x_{i}\right)\right)-\sum_{i=t}^{m-1}\left(\log \left(z-x_{i+1}\right)-\log \left(z-y_{i}\right)\right)\right) \\
& =\frac{1}{z} \exp \left(\sum_{i=1}^{m-1}\left(\log \left(z-y_{i}\right)-\log \left(z-x_{i}\right)\right)+\log z-\log \left(z-x_{m}\right)\right) \\
& =\frac{\prod_{i=1}^{m-1}\left(z-y_{i}\right)}{\prod_{i=1}^{m}\left(z-x_{i}\right)}
\end{aligned}
$$

that is,

$$
\begin{equation*}
H_{\omega}(z)=\frac{\prod_{i=1}^{m-1}\left(z-y_{i}\right)}{\prod_{i=1}^{m}\left(z-x_{i}\right)} \tag{3.3}
\end{equation*}
$$

where m is the number of inside corners in the diagram ω. Note that $H_{\omega}(z)$ has a power series expansion in $1 / z$ (see Section 2.5), i.e.

$$
\begin{equation*}
H_{\omega}(z)=z^{-1}+\sum_{k=1}^{\infty} M_{k} z^{-k-1} \tag{3.4}
\end{equation*}
$$

Now let $R_{\omega}(z)=1+R_{i}(\omega) z^{i}, i \geq 1$ be defined by

$$
\begin{equation*}
R_{\omega}(z)=z H_{\omega}^{\langle-1\rangle}(z) \tag{3.5}
\end{equation*}
$$

where $\langle-1\rangle$ denotes compositional inverse.
Although the series $H_{\omega}(z)$ and $R_{\omega}(z)$ are derived purely from the shape of the tableau ω, they can be used to evaluate the normalized character $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$. In fact, one can express the normalized characters in terms of the $R_{i}(\omega)$. Furthermore, this expression is a polynomial in the $R_{i}(\omega)$ and this expression is independent of ω, as is expressed in the following theorem. We give Biane's proof of the theorem in Section 3.3.1.

Theorem 3.1.1 (Biane, Kerov). For $k \geq 1$, there exist universal polynomials Σ_{k}, with integer coefficients, such that

$$
\begin{equation*}
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)=\Sigma_{k}\left(R_{2}(\omega), R_{3}(\omega), \ldots, R_{k+1}(\omega)\right), \tag{3.6}
\end{equation*}
$$

for all $\omega \vdash n$ with $n \geq k$.

These polynomials are the subject of this chapter. They first appear in the literature in Biane [1], and with proof in Biane [3, Theorem 1.1]. The author of those two papers, however, attributes Theorem 3.1.1 to Kerov, who described this result in a talk at an IHP conference in 2000. We have, therefore, associated both names with the theorem here. The polynomials Σ_{k} are known as Kerov's character polynomials. They are referred to as "universal polynomials" in Theorem 3.1.1 to emphasize that they are independent of ω and n, subject only to $n \geq k$. Thus, we now write Kerov's polynomials with $R_{i}(\omega)$ replaced by an indeterminate $R_{i}, i \geq 2$ for each i. In indeterminates R_{i}, the first six of Kerov's character polynomials, as listed in Biane [3], are given below:

$$
\begin{align*}
& \Sigma_{1}=R_{2} \\
& \Sigma_{2}=R_{3} \\
& \Sigma_{3}=R_{4}+R_{2} \tag{3.7}\\
& \Sigma_{4}=R_{5}+5 R_{3} \\
& \Sigma_{5}=R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2} \\
& \Sigma_{6}=R_{7}+35 R_{5}+35 R_{3} R_{2}+84 R_{3}
\end{align*}
$$

3.2 Motivation: Asymptotics of Characters and Free Probability

Although we largely consider Kerov's polynomials from a formal series aspect, we briefly look at their origins in studying the asymptotics of symmetric group characters.

Much is known about the characters of the symmetric group. The connections to the ring of symmetric functions provide a computational tool for computing the characters. There are also well known algorithms, such as the MurnaghanNakayama rule (see Theorem 2.3.1), to compute irreducible characters. When the group \mathfrak{S}_{n} is large, however, these algorithms become cumbersome and somewhat ineffective. Thus, in order to answer questions about large symmetric group characters, we must move to a different approach.

The approach that has been recently explored is a probabilistic one and, more precisely, it appears that the theory of free probability provides the correct setting. Very briefly, free probability can be viewed as a highly non-commutative probability (that, in fact, does not reduce to classical probability in the commutative case), where the notion of independence is replaced by a notion of freeness. In the examples given later in this section, Biane [2] used the theory of free probability to obtain asymptotic results for characters. Futhermore, the presence of non-crossing partitions plays a role in both free probability and the asymptotics of the symmetric group, and this appears not to be a coincidence. In fact, this connection has been explored recently (see Śniady [25]).

The approach is as follows. Define a set of generalized Young diagrams to be the set of continuous real functions $\tau_{\omega}(x)$, as we did for the diagram in Figure 3.1 . Note, that $\tau_{\omega}(x)$ has the properties

1. $\left|\tau_{\omega}\left(u_{1}\right)-\tau_{\omega}\left(u_{2}\right)\right| \leq\left|u_{1}-u_{2}\right|$ for all $u_{1}, u_{2} \in \mathbb{R}$,
2. $\tau_{\omega}(u)=|u|$ for all $u \in \mathbb{R}$, such that $|u|$ is sufficiently large.

It turns out there is a one-to-one correspondence between continuous Young diagrams ω and probability measures m_{ω} on \mathbb{R} with compact support that satisfy

$$
H_{\omega}(z)=\frac{1}{z} \exp \int_{\mathbb{R}} \frac{1}{z-x} \sigma_{\omega}^{\prime}(x) d x=\int_{\mathbb{R}} \frac{1}{z-x} d\left(m_{\omega}\right),
$$

where $\sigma_{\omega}^{\prime}(x)$ is defined as in (3.2) (see Kerov [18, 19]). Thus, we can now think of Young diagrams as measures on the real line, and operations on those measures
giving rise to other Young diagrams. The advantage of this is clear; we can now use the tools and techniques of analysis to study Young diagrams. The series

$$
\int_{\mathbb{R}} \frac{1}{z-x} d\left(m_{\omega}\right)
$$

is known as the moment generating series (since the coefficient of $(1 / z)^{k+1}$ in this series is

$$
\int_{\mathbb{R}} x^{k} d\left(m_{\omega}\right)
$$

which is the $k^{\text {th }}$ moment of the measure m_{ω}) or the Cauchy transform of the measure m_{ω}. From probability theory, the full set of moments (or the moment generating series) of the probability measure m_{ω} describes the measure uniquely, since m_{ω} has compact support.

In fact, the measure m_{ω} has a very concrete description in terms of ω. If the associated interlacing sequence of ω is $\left(x_{i}\right)_{1 \leq i \leq m}$ and $\left(y_{i}\right)_{1 \leq i \leq m-1}$ then the measure m_{ω} is

$$
m_{\omega}=\sum_{i=1}^{m} \mu_{k} \delta_{x_{k}}
$$

where $\delta_{x_{k}}$ is the usual delta function at x_{k} and

$$
\mu_{k}=\frac{\prod_{i=1}^{m-1}\left(x_{k}-y_{i}\right)}{\prod_{\substack{i=1 \\ i \neq k}}^{m}\left(x_{k}-x_{i}\right)} .
$$

This gives the correct measure as

$$
\begin{aligned}
\int_{\mathbb{R}} \frac{1}{z-x} d\left(m_{\omega}\right) & =\int_{\mathbb{R}} \frac{1}{z-x} \sum_{k=1}^{m} \frac{\prod_{i=1}^{m-1}\left(x_{k}-y_{i}\right)}{\prod_{i \neq k}^{m}\left(x_{k}-x_{i}\right)} \delta_{x_{k}} \\
& =\sum_{k=1}^{m} \frac{1}{z-x_{k}} \frac{\prod_{i=1}^{m-1}\left(x_{k}-y_{i}\right)}{\prod_{\substack{i=1 \\
i \neq k}}^{m}\left(x_{k}-x_{i}\right)},
\end{aligned}
$$

which is the partial fraction decomposition of the rational function on the right hand side of (3.3). The free cumulant generating series of the measure ω is defined as the inverse of the moment generating series, as in 3.5. Although free cumulants on the surface seem to simply complicate matters, some operations with measures are simpler in terms of the cumulants. For example, the moments of the (free) convolution of measures $\mu \boxplus \lambda$ have no simple expression in terms of the moments of the individual measures, which is a drawback, as we shall soon see. However, in terms of the free cumulants R_{i} we have the following very simple relationship:

$$
\begin{equation*}
R_{i}(\mu \boxplus \lambda)=R_{i}(\mu)+R_{i}(\lambda) \tag{3.8}
\end{equation*}
$$

(in fact, (3.8) is often taken as the definition of free convolution). After defining these concepts and putting them in the context of free probability, one now has the tools of analysis and the theory of free probability at one's disposal to obtain asymptotic results about the symmetric group, as has been carried out in Biane [2].

Example 3.2.1 (Asymptotics of Characters). Prior to the use of free probability theory, Kerov and Vershik [20] gave asymptotic results concerning the representation of the infinite symmetric group. Their results, however, were mainly concerned with Young diagrams of order n, the shape of which has largest part approximately n. Most Young diagrams, however, do not have this property; in fact, it can be shown (see Biane [2]) that most Young diagrams of order n have largest part and number of parts approximately of order \sqrt{n}. We call a Young diagram balanced if it has this property. Now consider a sequence of permutations $\sigma_{n} \in \mathfrak{S}_{n}, n \geq 1$, where each σ_{n} is balanced and each σ_{n} has k_{i} cycles of length i. Setting $r=\sum_{i} i k_{i}$, we have

$$
\lim _{n \rightarrow \infty} \frac{\chi_{\omega}\left(\sigma_{n}\right)}{\chi_{\omega}\left(1^{n}\right)}=\prod_{i \geq 2} R_{i+1}^{k_{i}}(\omega) n^{-r}+O\left(n^{-\frac{r+1}{2}}\right)
$$

or, equivalently

$$
\frac{\chi_{\omega}\left(\sigma_{n}\right)}{\chi_{\omega}\left(1^{n}\right)} \longrightarrow \prod_{i \geq 2} R_{i+1}^{k_{i}}(\omega) n^{-r} .
$$

There are standard questions that can be asked and have been answered about small representations of the symmetric group. For example, the Kronecker product of two irreducible representations in Example 2.1.7.b is not itself irreducible, so a natural question to ask is what it is as the sum of irreducible characters. When considering large symmetric groups, however, one can give only statistical information about this sum.

Example 3.2.2 (Asymptotics of Restriction). Suppose that ω is a generalized Young diagram. For any real t such that $0 \leq t \leq 1$, there is a unique diagram ω_{t} whose free cumulants satisfy $R_{n}\left(\omega_{t}\right)=t^{n-1} R_{n}(\omega)$. Suppose ω_{n} is a sequence of generalized Young diagrams that, after a suitable rescaling, converges to the diagram ω as $n \longrightarrow \infty$, and p_{n} is a sequence such that $p_{n} / n \longrightarrow t$ as $n \longrightarrow \infty$. Then, the restriction of the representations $\left[\omega_{n}\right]$ to the group $\mathfrak{S}_{p_{n}}$ is "close" to the representation [ω_{t}]. See Biane [2, 3] for details.

Example 3.2.3 (Asymptotics of Induction). We now consider the case of the outer product of representations. Recall that given two representations $[\lambda]$ and $[\mu]$ of \mathfrak{S}_{n} and \mathfrak{S}_{m}, then the outer product $[\lambda] \circ[\mu]$ is the representation of \mathfrak{S}_{n+m} induced by
the Kronecker product $[\lambda] \otimes[\mu]$, a representation of $\mathfrak{S}_{n} \times \mathfrak{S}_{m}$. We note a few facts about the outer product. The structure constants of the outer product, that is the constants $g_{\lambda, \mu}^{\gamma}$ given by

$$
[\lambda] \circ[\mu]=\sum_{\gamma} g_{\lambda, \mu}^{\gamma}[\gamma]
$$

are known as the celebrated Littlewood-Richardson coefficients. They are most often seen as the structure constants in the product of Schur symmetric functions:

$$
s_{\lambda} s_{\mu}=\sum_{\gamma} g_{\lambda, \mu}^{\gamma} s_{\gamma}
$$

Let p_{n} and q_{n} be sequences of integers asymptotic to \sqrt{n}, and λ_{n} and μ_{n} be diagrams with p_{n} and q_{n} boxes which, when scaled, converge to λ and μ, respectively. Then, the outer product $\left[\lambda_{n}\right] \circ\left[\mu_{n}\right]$, a representation of $\mathfrak{S}_{p_{n}+q_{n}}$ that is the induced representation of $\left[\lambda_{n}\right] \otimes\left[\mu_{n}\right]$ of $\mathfrak{S}_{p_{n}} \times \mathfrak{S}_{q_{n}}$, approaches the diagram $[\lambda] \boxplus[\mu]$, when properly scaled. As mentioned in $(3.8$, the free cumulants of $[\lambda] \boxplus[\mu]$ have a simple expression in terms of $[\lambda]$ and $[\mu]$. See Biane [2, 3] for details.

The previous examples give motivation and a historical context for Kerov's polynomials. Although the asymptotics of characters were the original setting in which Kerov's polynomials first appear, we shall not be studying this aspect of Kerov's polynomials. Here, we will study Kerov's polynomials for their own sake, not only because they can facilitate the computation of characters, but also because Theorem 3.1.1 is certainly a surprising and significant result.

3.3 Preliminaries and Previous Results

Before we explain how to obtain the Kerov polynomials, we first give an example of how they can be used to compute the characters $\chi^{\lambda}\left(k 1^{n-k}\right)$. We do this by taking a Kerov polynomial from (3.7) and computing the $R_{i}(\lambda)$ from the series $H_{\lambda}(z)$.

Example 3.3.1. We use 3.4 and 3.5 to compute the character $\chi_{(43331)}\left(51^{9}\right)$, i.e. we compute the character for the shape in Figure 3.1 evaluated at a 5-cycle.

We will use Lagrange's Theorem 2.4.2 to compute the relevant $R_{k}(\omega)$ from 3.4) and (3.5). To use Lagrange's Theorem, we express $R_{\omega}(z)$ in terms of the power series $H_{\omega}(1 / z)$. Clearly, from 3.5,

$$
H_{\omega}\left(R_{\omega}(z) / z\right)=z
$$

so 1

$$
\left(H_{\omega}(1 / z)\right)^{\langle-1\rangle}=\frac{z}{R_{\omega}(z)^{\prime}}
$$

giving

$$
\begin{equation*}
R_{\omega}(z)=\frac{z}{\left(H_{\omega}(1 / z)\right)^{\langle-1\rangle}} . \tag{3.9}
\end{equation*}
$$

For the shape (43331) we have

$$
\begin{aligned}
H_{\omega}(1 / z) & =\frac{z(1+4 z)(1+z)(1-3 z)}{(1+5 z)(1+3 z)(1-2 z)(1-4 z)} \\
& =z+14 z^{3}-14 z^{4}+258 z^{5}-502 z^{6}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
R_{k}(\omega) & =\left[z^{k}\right] \frac{z}{\left(H_{\omega}(1 / z)\right)^{\langle-1\rangle}} \\
& =-\frac{1}{k-1}[z]\left(\frac{1}{H_{\omega}(1 / z)}\right)^{k-1}
\end{aligned}
$$

One can easily compute that $R_{2}(\omega)=14, R_{4}(\omega)=-134$ and $R_{6}(\omega)=2358$. Using Kerov's polynomial for Σ_{5} in (3.7) and specializing to the shape ω, we compute

$$
\begin{aligned}
\hat{\chi}_{\omega}\left(51^{9}\right) & =R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2} \\
& =2358+15(-134)+5(14)^{2}+8(14) \\
& =1440,
\end{aligned}
$$

which gives

$$
\begin{aligned}
\chi_{\omega}\left(51^{9}\right) & =\frac{\chi_{\omega}\left(1^{14}\right)}{(14)_{5}} \widehat{\chi}_{\omega}\left(51^{9}\right) \\
& =\frac{21021}{240240} 1440 \\
& =126 .
\end{aligned}
$$

All coefficients appearing in the list (3.7) are positive. It is conjectured that this holds in general: that for any $k \geq 1$, all nonzero coefficients in Σ_{k} are positive. In Biane [3], this conjecture, which we shall call the R-positivity conjecture, is attributed to Kerov. It has been verified for all k up to 15 by Biane [1], who computed Σ_{k} for

[^0]$k \leq 15$, using an implicit formula for Σ_{k} (see (3.19) and (3.20) below or Biane [1, Theorem 5.1]) that he credits to Okounkov (private communication). Biane further comments that "It seems plausible that S. Kerov was aware of this (see especially the account of Kerov's central limit theorem in Ivanov and Olshanski [16])."

We are now in a position to find an explicit expression for Kerov's polynomials. Our treatment of the subject begins with a very brief summary of Biane's Theorem 3.1.1. we are less interested in the actual existence of Kerov polynomials and more interested in how to compute them. There is, however, one aspect of Biane's proof that we mention here, stated in Theorem 3.3.6.

3.3.1 The Existence of Kerov's Polynomials

We include this section for two reasons: to emphasize the combinatorics underlying Kerov polynomials and to give a proof of Theorem 3.3.6 below, as it is important in this chapter and the next. Our treatment of this material, however, is brief as we are primarily interested in determining Kerov's polynomials.

Let λ be a Young diagram with k boxes and let $n \geq k$. Suppose ϕ is an injective map from the cells of λ to the set $[n]=\{1,2, \ldots, n\}$, and let σ_{ϕ} to be the permutation in \mathfrak{S}_{n} whose cycles are given by the rows of $\phi(\lambda)$ (see Figure 3.2. Note, in λ parts of size 1 only contribute fixed point to σ_{ϕ}. Define Φ_{λ} be the collection of all such

Figure 3.2: An example of an injection ϕ from cells of a diagram to [19]. The permutation σ_{ϕ} is $(101551912)(1134)(926)$.
maps, and let $a_{\lambda ; n}$ be the member of the group algebra of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ which is the formal sum of all the elements in Φ_{λ}; that is,

$$
a_{\lambda ; n}=\sum_{\phi \in \Phi_{\lambda}} \sigma_{\phi}
$$

We abbreviate $a_{(k) ; n}$ by $a_{k ; n}$. It follows that $a_{1 ; n}=n . e$, where e is the identity in \mathfrak{S}_{n}. Furthermore, define the sign of a partition λ to be $(-1)^{|\lambda|-\ell(\lambda)}$, and denote it
by $\operatorname{sign}(\lambda)$ (hence, if a permutation σ is in the conjugacy class C_{λ}, then $\operatorname{sign}(\lambda)=$ $\varepsilon(\sigma))$. Finally, define the weight of a term $a_{i_{1} ; n} a_{i_{2} ; n} \cdots a_{i_{p} ; n}$ in the group algebra $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ as $i_{1}+i_{2}+\cdots+i_{p}-p$. The following theorem, although not stated exactly as below, is proved in Biane [1, Lemma 3.1]. We do not reproduce the proof here; the proof is by induction on the number of parts of a partition.

Lemma 3.3.2 (Biane). There exist polynomials P_{λ}, with integer coefficients and independent of n, such that

$$
a_{\lambda ; n}=P_{\lambda}\left(a_{1 ; n}, a_{2 ; n}, \ldots, a_{|\lambda| ; n}\right) .
$$

Furthermore, each monomial in P_{λ} has weight congruent to $\operatorname{sign}(\lambda)(\bmod 2)$.
Let J_{n} be the members of the group algebra $\mathbb{C}\left[\mathfrak{S}_{n+1}\right]$ given by

$$
J_{n}=(1 *)+(2 *)+\cdots+(n *),
$$

where the symbols on which \mathfrak{S}_{n+1} acts are $1,2, \ldots, n, *$ (we use the symbol " $*$ " to distinguish it from the other symbols). The J_{n} are commonly known as JucysMurphy elements. There is a natural embedding of \mathfrak{S}_{n} in \mathfrak{S}_{n+1} (consisting of permutations with $*$ as a fixed point), and define an expectation E_{n} as the projection of $\mathbb{C}\left[\mathfrak{S}_{n+1}\right]$ onto $\mathbb{C}\left[\mathfrak{S}_{n}\right]$, given by $E_{n}(\sigma)=\sigma$ if $\sigma \in \mathfrak{S}_{n}$ and 0 otherwise. We can take the $k^{\text {th }}$ moment of a Jucys-Murphy element with respect to this expectation, i.e. $\mathcal{M}_{k}=E_{n}\left(J_{n}^{k}\right)$. From this we can contruct the $k^{\text {th }}$ free cumulant \mathcal{R}_{k} of J_{n}^{k} by

$$
\begin{equation*}
\mathcal{R}_{k}=\sum_{\substack{l_{1} l_{2}, \ldots l_{r} \\ \sum l_{j}=k}}(-1)^{1+l_{1}+l_{2}+\cdots+l_{r}} \frac{k-2+\sum_{i} l_{i}}{l_{1}!l_{2}!\ldots l_{r}!(k-1)!} \mathcal{M}_{1}^{l_{1}} \mathcal{M}_{2}^{l_{2}} \cdots \mathcal{M}_{r}^{l_{r}} \tag{3.10}
\end{equation*}
$$

(note that this is obtained by using Lagrange inversion and finding the $k^{\text {th }}$ coefficient on the right hand side of (3.5). Let the weight of the monomial $\mathcal{R}_{j_{1}}^{i_{1}} \ldots \mathcal{R}_{j_{t}}^{i_{t}}$ be $\sum_{l=1}^{t} i_{l} j_{l}$. We apply the term "weight" as in the last context whenever it is appropriate; that is, the weights of the monomials $\mathcal{M}_{j_{1}}^{i_{1}} \ldots \mathcal{M}_{j_{t}}^{i_{t}}$ and $R_{j_{1}}^{i_{1}} \ldots R_{j_{t}}^{i_{t}}$ are also $\sum_{l=1}^{t} i_{l j} j_{l}$. We also find it useful to refer to the sign of a monomial of R's (or M's) of weight k, which is $(-1)^{k}$.

The following lemma connects \mathcal{R}_{k} and the free cumulants of the series (3.5) and is found in Biane [1, Lemma 4.1].

Lemma 3.3.3 (Biane).

$$
\frac{\chi_{\omega}\left(\mathcal{R}_{k}\right)}{\chi_{\omega}\left(1^{n}\right)}=R_{k}(\omega) .
$$

We note that the proof of the previous lemma involves the computation of the eigenvalues of the Jucys-Murphy elements (i.e., the images of the Jucys-Murphy element under the left regular representation), as computed in Okounkov and Vershik [23].

The following theorem has very important consequences and it is found in Biane [1, page 6]. Example 3.3.5 follows the proof of the theorem and amplifies some of the details omitted in the proof.

Theorem 3.3.4 (Biane). For $k \geq 2$ and $n \geq k$, we have

$$
\begin{equation*}
a_{k-1 ; n}=\mathcal{R}_{k}+\left\{\text { terms of } \mathcal{R}_{j} \text { with } j<k\right\} . \tag{3.11}
\end{equation*}
$$

Furthermore, the expression on the right hand side of (3.11) only involves terms with sign $(-1)^{k}$.

Proof (Biane). We see that \mathcal{M}_{k}, which equals the expectation $E_{n}\left(J_{n}^{k}\right)$, can be computed in the following way. Clearly,

$$
\begin{equation*}
J_{n}^{k}=\sum_{i_{1}, i_{2}, \ldots, i_{k} \in[n]}\left(i_{1} *\right)\left(i_{2} *\right) \cdots\left(i_{k} *\right) \tag{3.12}
\end{equation*}
$$

By definition, a term $\left(i_{1} *\right)\left(i_{2} *\right) \cdots\left(i_{k} *\right)$ in this sum gives a non-trivial contribution to \mathcal{M}_{k} if and only if $\left(i_{1} *\right)\left(i_{2} *\right) \cdots\left(i_{k} *\right)$ fixes $*$. Let us explore precisely when this happens by tracking successive partial products of transpositions. For convenience, set $\sigma=\left(i_{1} *\right)\left(i_{2} *\right) \cdots\left(i_{k} *\right)$.

If $i_{1}, i_{2}, \ldots, i_{k}$ are all distinct, then $*$ is not fixed by σ, since then $\sigma(*)=i_{k}$, implying σ does not contribute to \mathcal{M}_{k}. In fact, if σ fixes $*$ it is clear that one of $i_{1}, i_{2}, \ldots, i_{k-1}$ must equal i_{k}. Suppose that $i_{j_{1}}=i_{k}$. Then, we have $\left(i_{j_{1}} *\right) \cdots\left(i_{k} k\right)$ fixing $*$, and we are left to repeat the previous argument on $\left(i_{1} *\right) \cdots\left(i_{j_{1}-1} *\right)$; that is, if $*$ is fixed by $\left(i_{1} *\right) \cdots\left(i_{j_{1}-1} *\right)$, then for some j_{2} we have $i_{j_{2}}=i_{j_{1}-1}$. In this manner we obtain a sequence $j_{1}, j_{2}, \ldots, j_{t}$, and σ fixes $*$ if and only if $j_{t}=1$. The sign of all the permutations on the right hand side of (3.12) is $(-1)^{k}$.

Let π be the partition of $[k]$ such that l and m are in the same part if and only if $i_{l}=i_{m}$; we write $i_{1}, i_{2}, \ldots, i_{k} \sim \pi$ and say π is the partition associated with the sequence i_{1}, \ldots, i_{k}. The conjugacy class of σ in \mathfrak{S}_{n+1} only depends on this partition and not on the actual sequence $i_{1}, i_{2}, \ldots, i_{k}$. Accordingly, let $\lambda(\pi)$ be the conjugacy class to which π gives rise, and set

$$
\mathcal{Z}_{\pi}=\sum_{i_{1}, i_{2}, \ldots, i_{k} \sim \pi}\left(i_{1} *\right)\left(i_{2} *\right) \cdots\left(i_{k} *\right) .
$$

Furthermore, call the partitions π for which $\lambda(\pi)$ fixes $*$ admissible. Evidently,

$$
\mathcal{M}_{k}=\sum_{\pi \text { admissible }} \mathcal{Z}_{\pi} .
$$

As usual, set $\ell(\pi)$ to be the number of parts in π. Then, we see that the number of sequences $i_{1}, i_{2}, \ldots, i_{k}$ associated with an admissible partition λ is $(n)_{\ell(\pi)}$ since, after linearly ordering the parts of π, the first part of π gives a set of integers $\left\{b_{1}, \ldots, b_{r}\right\}$ which means that $i_{b_{1}}=\cdots=i_{b_{r}}$, and the number of choices for this common integer is n. Similarly, the second part of π is some set $\left\{c_{1}, \ldots, c_{t}\right\}$ implying that $i_{c_{1}}=\cdots=i_{c_{t}}$, and there are $n-1$ choices for this common integer. The argument continues in this fashion. By symmetry, all terms in $a_{\lambda(\pi) ; n}$ appear the same number of times in the sum, and from the definition of $a_{\lambda(\pi) ; n}$ the number of terms in a $a_{\lambda(\pi) ; n}$ is $(n)_{|\lambda(\pi)|}$. Since $|\lambda(\pi)| \leq \ell(\pi)$, we arrive at the expression

$$
\mathcal{Z}_{\pi}=\frac{(n)_{\ell(\pi)}}{(n)_{|\lambda(\pi)|}} a_{\lambda(\pi) ; n}
$$

The longest cycle for an admissible partition is $k-1$; this occurs if and only if the admissible partition is $\{1, k\},\{2\}, \ldots,\{k-1\}$. For all other admissible partitions π we have $\ell(\pi)<k-1$. Thus, we see

$$
\mathcal{M}_{k}=a_{k-1 ; n}+\sum_{\substack{\pi \text { admissible } \\ \text { weighto of } \pi<k-1}} \frac{(n)_{\ell(\pi)}}{(n)_{|\lambda(\pi)|}} a_{\lambda(\pi) ; n} .
$$

From the comments earlier concerning the sign of the permutations in the sum, the right hand side of the last equation only contains terms of sign $(-1)^{k}$. Applying Lemma 3.3.2, we conclude that

$$
\begin{array}{r}
\mathcal{M}_{k}=a_{k-1 ; n}+\left(\text { polynomial in } a_{j ; n}: \text { where } j<k-1\right. \text { and the sign } \\
\text { of each term is } \left.(-1)^{k}\right) .
\end{array}
$$

We invert this equation to obtain

$$
\begin{aligned}
& a_{k-1 ; n}=\mathcal{M}_{k}+\left(\text { polynomial in } \mathcal{M}_{j}: \text { where } j<k\right. \text { and the } \\
& \text { sign of all terms is } \left.(-1)^{k}\right) .
\end{aligned}
$$

Finally, from (3.10) we have

$$
\begin{aligned}
& a_{k-1 ; n}=\mathcal{R}_{k}+\left(\text { polynomial in } \mathcal{R}_{j}: \text { where } j<k\right. \text { and the } \\
& \left.\qquad \text { sign of all terms is }(-1)^{k}\right),
\end{aligned}
$$

and the result follows.

To illustrate the details in the proof of Theorem 3.3.4, we provide the following example.

Example 3.3.5. The product of the following $k=8$ transpositions

$$
(1 *)(2 *)(3 *)(1 *)(9 *)(1 *)(2 *)(9 *)
$$

is $(19)(23)$. Here the sequence i_{1}, \ldots, i_{k} is $1,2,3,1,9,1,2,9$. The sequence j_{1}, \ldots, j_{t} in the proof is 5,1 and, indeed, $*$ is a fixed point of the product of transpositions. The partition associated with the above sequence $1,2,3,1,9,1,2,9$ is $\pi=$ $\{1,4,6\}\{2,7\}\{3\}\{5,8\}$. The product

$$
(5 *)(2 *)(4 *)(5 *)(1 *)(5 *)(2 *)(1 *)
$$

also has π associated to it and, indeed, the product evaluates as (15)(24), which has the same conjugacy class as $(19)(23)$. We, therefore, have confirmed that π is admissible in this case.

Note that the product

$$
(2 *)(2 *)(3 *)(1 *)(9 *)(1 *)(2 *)(9 *)
$$

is $(1923 *)$, making the partition $\{1,2,7\},\{3\},\{4,6\},\{5,8\}$ not admissible. The sequence j_{1}, \ldots, j_{t} in this case is 5 , and $j_{t} \neq 1$.

Proof of Theorem 3.1.1 (Biane). Applying Lemma3.3.3 to Theorem3.3.4, we obtain

$$
\frac{\chi_{\omega}\left(a_{k: n}\right)}{\chi_{\omega}\left(1^{n}\right)}=\frac{\chi_{\omega}\left(\mathcal{R}_{k+1}\right)}{\chi_{\omega}\left(1^{n}\right)}+\left(\text { terms of } \frac{\chi_{\omega}\left(\mathcal{R}_{j}\right)}{\chi_{\omega}\left(1^{n}\right)} \text { with } j \leq k \text { and } \operatorname{sign}(-1)^{k+1}\right)
$$

and since the number of terms in $a_{k ; n}$ is $(n)_{k}$ we have

$$
(n)_{k} \frac{\chi_{\omega}\left(k 1^{n-k}\right)}{\chi_{\omega}\left(1^{n}\right)}=R_{k+1}(\omega)+\left(\text { terms of } R_{j}(\omega) \text { with } j \leq k \text { and } \operatorname{sign}(-1)^{k+1}\right)
$$

allowing us to conclude that

$$
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)=R_{k+1}(\omega)+\left(\text { terms of } R_{j}(\omega) \text { with } j \leq k \text { and } \operatorname{sign}(-1)^{k+1}\right)
$$

completing the proof.
The proof of Theorem 3.1.1 also provides a proof of the following theorem.
Theorem 3.3.6 (Biane). In the Kerov polynomial Σ_{k} only terms of sign $(-1)^{k+1}$ appear with non-zero coefficient; that is, only terms of weight i, where $i \equiv k+1(\bmod 2)$ appear with non-zero coefficient.

3.3.2 Computation of Kerov's Polynomials and Frobenius' Expression for Characters

At this point we have given no indication of how to compute a Kerov polynomial. We have seen how one can use them to compute characters in Example 3.3.1 but, to this point, the Kerov polynomials given in (3.7), even the first two, are not obvious. We will now fully lay out the ground work that we use later to compute Kerov's polynomials.

From Theorem 2.2.5 we see that the character is the coefficient of \mathbf{x}^{μ} in $a_{\delta} p_{\rho}$. This, as we have seen in Chapter 2 , is based on the basic character expansion of the Schur functions in terms of the power sum symmetric functions. Below, we include Frobenius' formula for the normalized character. This formula at first appears too complex to carry out the Lagrange inversion calculation, but we shall see an explicit formula for Kerov's polynomials can be determined from it.

Our first step is to find an expression for the degree of the character λ. We begin with a technical lemma.

Lemma 3.3.7. For any $y_{1}, y_{2}, \ldots, y_{n}$ we have

$$
\operatorname{det}\left(\left(y_{i}\right)_{j}\right)_{1 \leq i, j \leq n}=\operatorname{det}\left(y_{i}^{j}\right)_{1 \leq i, j \leq n}
$$

Proof. It is well known that Stirling numbers of the second kind satisfy the equation

$$
\begin{equation*}
x^{j}=\sum_{r=0}^{j} S(j, r)(x)_{r} . \tag{3.13}
\end{equation*}
$$

(see Stanley [26, Section 1.4]). Applying this to the n variables $y_{1}, y_{2}, \ldots, y_{n}$, we have

$$
y_{i}^{j}=\sum_{r=0}^{j} S(j, r)\left(y_{i}\right)_{r} .
$$

Since $S(i, j)=0$ if $j>i$, the matrix $(S(i, j))_{1 \leq i, j \leq n}$ is triangular. Moreover, $S(i, i)=1$ for all i, making $\operatorname{det}(S(i, j))=1$. The result now follows.

The determinant $\operatorname{det}\left(y_{i}^{j}\right)_{1 \leq i, j \leq n}$ given in Lemma 3.3.7 is known as the Vandermonde determinant and is equal to $\prod_{i<j}\left(y_{i}-y_{j}\right)$. We use the notation $\Delta\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ to denote the Vandermonde determinant. As in Section 2.2.1, let $\omega=\omega_{1} \omega_{2} \cdots \omega_{\ell} \vdash n$ be a partition of n with ℓ parts, and there are α_{i} parts of size i. For convenience, we define $\omega_{\ell+1}, \ldots, \omega_{n}=0$ and consider $\omega=\omega_{1} \ldots \omega_{n}$. Recall from Section 2.2 that the staircase sequence of length n is $\delta=n-1 n-2 \ldots 0$. Finally, set $\mu_{i}=\omega_{i}+\delta_{i}=$
$\omega_{i}+n-i$. With this notation we have the following expression for the degree of χ_{ω}. The proof is as presented in Macdonald [21, Section I.7, Exercise 6].

Lemma 3.3.8 (Frobenius). The degree of the symmetric group character χ_{ω} is

$$
f^{\omega}=\frac{n!}{\mu!} \Delta\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right),
$$

where $\mu!=\mu_{1}!\cdots \mu_{n}!$.
Proof (Macdonald). From Theorem 2.2.5 we see that $f^{\omega}=\chi_{\omega}\left(1^{n}\right)$ is

$$
\begin{align*}
{\left[\mathbf{x}^{\mu}\right] a_{\delta} p_{\left(1^{n}\right)} } & =\left(\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathbf{x}^{\sigma(\delta)}\right)\left(\sum_{i=1}^{n} x_{i}\right)^{n} \\
& =\left[\mathbf{x}^{\mu}\right]\left(\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathbf{x}^{\sigma(\delta)}\right)\left(\sum_{i=1}^{n} x_{i}\right)^{n} \\
& =\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma)\left[\mathbf{x}^{\mu}\right] \mathbf{x}^{\sigma(\delta)}\left(\sum_{i=1}^{n} x_{i}\right)^{n} \tag{3.14}
\end{align*}
$$

But,

$$
\left[\mathbf{x}^{\mu}\right] \mathbf{x}^{\sigma(\delta)}\left(\sum_{i=1}^{n} x_{i}\right)^{n}=\binom{n}{\mu_{1}-n+\sigma(1), \mu_{2}-n+\sigma(2), \ldots, \mu_{n}-n+\sigma(n)}
$$

so,

$$
\left[x^{\mu}\right] a_{\delta} p_{\rho}=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) n!\frac{1}{\prod_{i=1}^{n}\left(\mu_{i}-n+\sigma(i)\right)!}
$$

The last expression has a compact description; it is precisely the permutation characterization of the determinant:

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) n!\frac{1}{\prod_{i=1}^{n}\left(\mu_{i}-n+\sigma(i)\right)!}=n!\operatorname{det}\left(\frac{1}{\left(\mu_{i}-n+j\right)!}\right)_{1 \leq i, j \leq n} .
$$

Proceeding, we see

$$
\begin{aligned}
n!\operatorname{det}\left(\frac{1}{\left(\mu_{i}-n+j\right)!}\right) & =\frac{n!}{\mu!} \operatorname{det}\left(\left(\mu_{i}\right)_{n-j}\right)_{1 \leq i, j \leq n} \\
& =\frac{n!}{\mu!} \operatorname{det}\left(\mu_{i}^{n-j}\right)_{1 \leq i, j \leq n} \\
& =\frac{n!}{\mu!} \Delta\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)
\end{aligned}
$$

where the second equality follows from Lemma 3.3.7.

We now give the expression for characters due to Frobenius; this expression will eventually lead to our explicit expression for Kerov's polynomials, given below in Theorem 3.4.1.

Theorem 3.3.9 (Frobenius).

$$
\begin{equation*}
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)=-\frac{1}{k}\left[z^{-1}\right]_{\infty}(z)_{k} \frac{\theta(z-k)}{\theta(z)}, \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
\theta(z) & =\prod_{i=1}^{n}\left(z-\mu_{i}\right) \tag{3.16}\\
\mu_{i} & =\omega_{i}+n-i, \text { for } 1 \leq i \leq n
\end{align*}
$$

Recall from Section 2.5 , that $\left[z^{-1}\right]_{\infty}$ is the coefficient of $\left[z^{-1}\right]$ when the trailing series is expanded in powers of $\frac{1}{z}$. We point out that $\mu_{i}=n-i$ if $i \geq \ell+1$. The following is a proof as presented in Macdonald [21, Section I.7, Exercise 7].

Proof (Macdonald). From Theorem 2.2.5we have

$$
\begin{aligned}
\chi_{\omega}\left(k 1^{n-k}\right) & =\left[\mathbf{x}^{\mu}\right] a_{\delta} p_{k} p_{\left(1^{n-k}\right)} \\
& =\left[\mathbf{x}^{\mu}\right]\left(\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathbf{x}^{\sigma(\delta)}\right)\left(\sum_{i=1}^{n} x_{i}^{k}\right)\left(\sum_{i=1}^{n} x_{i}\right)^{n-k} \\
& =\sum_{i=1}^{n}\left[\mathbf{x}^{\mu}\right] x_{i}^{k}\left(\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathbf{x}^{\sigma(\delta)}\right)\left(\sum_{i=1}^{n} x_{i}\right)^{n-k} \\
& =\sum_{i=1}^{n} \frac{(n-k)!\Delta\left(\mu_{1}, \ldots, \mu_{i}-k, \ldots, \mu_{n}\right)}{\mu_{1}!\cdots\left(\mu_{i}-k\right)!\cdots \mu_{n}!}
\end{aligned}
$$

where the last equation follows from (3.14). Thus, the normalized character $\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)$ is given by

$$
\begin{aligned}
\hat{\chi}_{\omega}\left(k 1^{n-k}\right) & =\frac{n!}{(n-k)!} \frac{\chi_{\omega}\left(k 1^{n-k}\right)}{f^{\omega}} \\
& =\sum_{i=1}^{n} \frac{\mu_{i}!}{\left(\mu_{i}-k\right)!} \prod_{j \neq i} \frac{\mu_{i}-\mu_{j}-k}{\mu_{i}-\mu_{j}} \\
& =-\frac{1}{k} \sum_{i=1}^{n} \frac{\mu_{i}!}{\left(\mu_{i}-k\right)!} \frac{\prod_{j} \mu_{i}-\mu_{j}-k}{\prod_{j \neq i} \mu_{i}-\mu_{j}} \\
& =-\frac{1}{k} \sum_{i=1}^{n} \mu_{i}\left(\mu_{i}-1\right) \cdots\left(\mu_{i}-k+1\right) \frac{\theta\left(\mu_{i}-k\right)}{\theta^{\prime}\left(\mu_{i}\right)} \\
& =-\frac{1}{k}(z)_{k} \frac{\theta(z-k)}{\theta(z)},
\end{aligned}
$$

where the last line follows from Proposition 2.5.2. This completes the proof.

A brief version of the following lemma is given in Biane [1], and we amplify the details here.

Lemma 3.3.10 (Biane). The rational function $H_{\omega}(z)$ for $\omega \vdash n$ given in (3.3) is related to the function θ above by

$$
\frac{1}{H_{\omega}(z-n)}=\frac{z \theta(z-1)}{\theta(z)}
$$

Proof (Biane). Let ω and μ be as defined in (3.16). Then,

$$
\begin{align*}
\frac{z \theta(z-1)}{\theta(z)} & =z \prod_{i=1}^{n} \frac{\left(z-1-\mu_{i}\right)}{\left(z-\mu_{i}\right)} \\
& =z \prod_{i=1}^{\ell} \frac{\left(z-n-\left(\omega_{i}-i+1\right)\right)}{\left(z-n-\left(\omega_{i}-i\right)\right)} \prod_{i=\ell+1}^{n} \frac{(z-n+i-1)}{(z-n+i))} \\
& =(z-n+\ell) \prod_{i=1}^{\ell} \frac{\left(z-n-\left(\omega_{i}-i+1\right)\right)}{\left(z-n-\left(\omega_{i}-i\right)\right)} . \tag{3.17}
\end{align*}
$$

Note that for a block $t, t+1, \ldots, r$, where $\omega_{t}=\omega_{t+1}=\cdots=\omega_{r}$, we have

$$
\begin{equation*}
\prod_{i=t}^{r} \frac{\left(z-n-\left(\omega_{i}-i+1\right)\right)}{\left(z-n-\left(\omega_{i}-i\right)\right)}=\frac{\left(z-n-\left(\omega_{t}-t+1\right)\right)}{\left(z-n-\left(\omega_{r}-r\right)\right)} . \tag{3.18}
\end{equation*}
$$

Thus, for a block in ω where all the parts are equal, only two terms of the product

Figure 3.3: Only the corners of a diagrams survive as non-trivial terms.
on the left hand side of (3.17) survive; the first box (in the numerator) and the last box (in the denominator). Note that both of these values are the contents of
the boxes immediately up and left from a corner (see Figure 3.3). Recall that the corners of type $\omega_{t}-t+1$ and $\omega_{t}-t$ are inside and outside corners, respectively. The factor $z-n+\ell$ outside the product in (3.17) is the last corner. Furthermore, if we were to draw the diagram as in Figure 3.1. we would see that the values of the inside corners $\omega_{t}-t+1$ correspond to the local minima and, likewise, the outside corners to the local maxima. Thus, the numerator of (3.17) is a product of the form

$$
\prod_{i=1}^{\ell}\left(z-n-x_{i}\right)
$$

where the x_{i} are the values of the local minima when the diagram of ω is rotated as in Figure 3.1, and similarly for the denominator. Therefore, we see that (3.17) is simply the reciprocal of the rational function given in (3.3).

From (3.15) we obtain

$$
\begin{aligned}
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right) & =-\frac{1}{k}\left[z^{-1}\right]_{\infty}(z) \cdot(z-1) \cdots(z-k+1) \frac{\theta(z-k)}{\theta(z)} \\
& =-\frac{1}{k}\left[z^{-1}\right]_{\infty} z \frac{\theta(z-1)}{\theta(z)}(z-1) \frac{\theta(z-2)}{\theta(z-1)} \cdots(z-(k-1)) \frac{\theta(z-k)}{\theta(z-(k-1))} \\
& =-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{1}{H_{\omega}(z-n)} \frac{1}{H_{\omega}(z-n-1)} \cdots \frac{1}{H_{\omega}(z-n-(k-1))} .
\end{aligned}
$$

Applying Proposition 2.5.1 to the previous expression, we have

$$
\begin{equation*}
\widehat{\chi}_{\omega}\left(k 1^{n-k}\right)=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{1}{H_{\omega}(z)} \frac{1}{H_{\omega}(z-1)} \cdots \frac{1}{H_{\omega}(z-(k-1))} . \tag{3.19}
\end{equation*}
$$

However, we saw in (3.9) that

$$
\begin{equation*}
R_{i+1}(\omega)=-\frac{1}{i}\left[z^{-1}\right]_{\infty}\left(\frac{1}{H_{\omega}(z)}\right)^{i} . \tag{3.20}
\end{equation*}
$$

The last two equations hold for any ω, so substituting $G(z)=\frac{1}{H(z)}$ and replacing the coefficients in $G(z)$ by indeterminates, and noting by Theorem 3.1.1 that Kerov's polynomials are universal, we obtain the following implicit formula for Kerov's polynomials, which can be found, with essentially the above proof, in Biane [1, Theorem 5.1].

Theorem 3.3.11 (Biane). Let G be the power series

$$
G(z)=\sum_{j \geq 1} g_{j} z^{j} .
$$

Define S_{k} to be

$$
S_{k}=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \prod_{i=0}^{k-1} G(z-j),
$$

and

$$
R_{i+1}=-\frac{1}{i}\left[z^{-1}\right]_{\infty} G(z)^{i} .
$$

Then, when S_{k} is expressed in terms of the R_{i}, it gives Kerov's polynomials.
We shall, however, mainly be using the following slight modification of Theorem 3.3.11, as it is more convenient in terms of our notation. This corollary can be found in Stanley [29] (without proof).

Corollary 3.3.12 (Stanley). Let $R(x)=1+\sum_{i \geq 2} R_{i} z^{i}$ and

$$
\begin{equation*}
F(z)=\frac{z}{R(z)}, \quad G(z)=\frac{1}{F^{\langle-1\rangle}\left(z^{-1}\right)} \tag{3.21}
\end{equation*}
$$

Then, for $k \geq 1$,

$$
\Sigma_{k}=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \prod_{j=0}^{k-1} G(z-j)
$$

Proof. By Lagrange inversion (Theorem 2.4.2.c) and Theorem 3.3.11, we have

$$
\begin{align*}
R_{i} & =\left[z^{i}\right] R(z) \\
& =\left[z^{i-1}\right] \frac{1}{F(z)} \\
& =-\frac{1}{i-1}\left[z^{i}\right]\left(\frac{z}{F^{\langle-1\rangle}(z)}\right)^{i-1} \\
& =-\frac{1}{i-1}[z]\left(\frac{1}{F^{\langle-1\rangle}(z)}\right)^{i-1} . \tag{3.22}
\end{align*}
$$

But

$$
G(z)=\frac{1}{F^{\langle-1\rangle}(1 / z)}
$$

which implies that

$$
G(1 / z)=\frac{1}{F^{\langle-1\rangle}(z)} .
$$

Thus, from Theorem 3.3.11 and (3.22) we have

$$
R_{i}=-\frac{1}{i-1}\left[z^{-1}\right]_{\infty} G(z)^{i-1}
$$

and

$$
\Sigma_{k}=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \prod_{j=0}^{k-1} G(z-j) .
$$

3.4 The Main Result

We now obtain an explicit formula for Kerov's polynomials; this is the main result of this chapter, stated as Theorem 3.4.1. Variants of the main theorem are given also, as Theorems 3.4 .2 and 3.4.3. The main result is obtained by considering the graded pieces of Kerov's polynomials, as follows. For $n \geq 0$, we define

$$
\begin{equation*}
\Sigma_{k, 2 n}=\left[u^{k+1-2 n}\right] \Sigma_{k}\left(R_{2} u^{2}, \ldots, R_{k+1} u^{k+1}\right), \tag{3.23}
\end{equation*}
$$

the sum of all terms of weight $k+1-2 n$ in Σ_{k} (from Theorem 3.3.6 all other terms are 0). In order to state the main result, we introduce the generating series $C(z)=$ $\sum_{m \geq 0} C_{m} z^{m}$, given by

$$
\begin{equation*}
C(z)=\frac{1}{1-\sum_{i \geq 2}(i-1) R_{i} z^{i}} . \tag{3.24}
\end{equation*}
$$

The initial terms of $C(z)$ are $C_{0}=1, C_{1}=0$, and the general terms C_{m} are given by

$$
\begin{equation*}
C_{m}=\sum_{\substack{j_{2} j_{3}, \ldots \geq 0 \\ 2 j_{2}+3 j_{3}+\ldots=m}}\left(j_{2}+j_{3}+\ldots\right)!\prod_{i \geq 2} \frac{\left((i-1) R_{i}\right)^{j_{i}}}{j_{i}!}, \quad m \geq 2 . \tag{3.25}
\end{equation*}
$$

Note, that as a sum of monomials in the R_{i}, the weight of C_{m} is m; thus, we define the weight of the monomial $C_{j_{1}}^{i_{1}} \ldots C_{j_{t}}^{i_{t}}$ to be $\sum_{l=1}^{t} i_{l j}$. We emphasize that weights of monomials R's and C's are compatible.

As in Section 2.2, for $\lambda \vdash n$ we denote the monomial symmetric function with exponents given by the parts of λ, in indeterminates x_{1}, x_{2}, \ldots, by m_{λ}. Here, we consider the particular evaluation of the monomial symmetric function at $x_{i}=i$, for $i=1, \ldots, k-1$, and $x_{i}=0$, for $i \geq k$, and write this as \hat{m}_{λ}. Let $D=z \frac{d}{d z}$, and I be the identity operator, and define $P_{m}(z)$ by

$$
\begin{equation*}
P_{m}(z)=-\frac{1}{m!} C(z)(D+(m-2) I) C(z) \ldots(D+I) C(z) D C(z), \quad m \geq 1 . \tag{3.26}
\end{equation*}
$$

For example, we have

$$
\begin{gather*}
P_{1}(z)=-C(z), \quad P_{2}(z)=-\frac{1}{2} C(z) D C(z) \tag{3.27}\\
P_{3}(z)=-\frac{1}{6}\left(C(z)^{2} D C(z)+C(z)(D C(z))^{2}+C(z)^{2} D^{2} C(z)\right) .
\end{gather*}
$$

Finally, for a partition λ, we write $P_{\lambda}(z)=\prod_{j=1}^{l(\lambda)} P_{\lambda_{j}}(z)$. We now state the main result.

Theorem 3.4.1 (Main Theorem). For $n \geq 1, k \geq 2 n-1$,

$$
\Sigma_{k, 2 n}=-\frac{1}{k}\left[z^{k+1-2 n}\right] \sum_{\lambda \vdash 2 n} \hat{m}_{\lambda} \frac{P_{\lambda}(z)}{C(z)} .
$$

We postpone the proof of Theorem 3.4.1 until Section 3.6. There is a slight modification of this result, given below, in which the term corresponding to the partition with one part is given a simpler (but equivalent) evaluation.

Theorem 3.4.2. For $n \geq 1, k \geq 2 n-1$,

$$
\Sigma_{k, 2 n}=-\frac{1}{k}\left[z^{k+1-2 n}\right]\left(\frac{k-1}{2 n} \hat{m}_{2 n} P_{2 n-1}(z)+\sum_{\substack{\lambda \lambda 2 n \\ l(\lambda) \geq 2}} \hat{m}_{\lambda} \frac{P_{\lambda}(z)}{C(z)}\right) .
$$

The following result gives a generating series form of the main result.
Theorem 3.4.3. For $n \geq 1, k \geq 2 n-1$,

$$
\Sigma_{k, 2 n}=-\frac{1}{k}\left[u^{2 n} z^{k+1}\right] \frac{1}{C(z)} \prod_{j=1}^{k-1}\left(1+\sum_{i \geq 1} j^{i} P_{i}(z) u^{i} z^{i}\right)
$$

and

$$
\Sigma_{k}=-\frac{1}{k}\left[z^{k+1}\right] \frac{1}{C(z)} \prod_{j=1}^{k-1}\left(1+\sum_{i \geq 1} j^{i} P_{i}(z) z^{i}\right)
$$

Note that, for each $n \geq 1$, these results give $\Sigma_{k, 2 n}$ as the coefficient of $z^{k+1-2 n}$ in a polynomial in $C(z)$ and

$$
D^{i} C(z)=\sum_{m \geq 2} m^{i} C_{m} z^{m}, \quad i \geq 1
$$

Thus $\Sigma_{k, 2 n}$ is written as a polynomial in the C_{m} 's, with coefficients that are rational in k, so the results here give C-expansions for $\Sigma_{k, 2 n}$, for $n \geq 1$.

We also postpone the proofs of Theorems 3.4.2 and 3.4.3 until Section 3.6. In the meantime we give some applications of the main theorems.

Using the above results, with the help of Maple, we have determined the Cexpansions and the R-expansions of Σ_{k} (see Appendices A and B where we have listed the first 20 R-expansions and 22 C-expansions, respectively, of Kerov's polynomials. We listed only the first 20 R-expansions as for higher k the expansions are a number of pages long). Note that it easily follows from the main theorems that
$\Sigma_{k, 0}=R_{k+1}$ (see Theorem 3.5.3 below). The R-expansions are in complete agreement with those reported in Biane [1] for $k \leq 11$. The C -expansions are given below for $k \leq 10$:

$$
\begin{aligned}
\Sigma_{1}-R_{2} & =0 \\
\Sigma_{2}-R_{3} & =0 \\
\Sigma_{3}-R_{4} & =C_{2} \\
\Sigma_{4}-R_{5} & =\frac{5}{2} C_{3} \\
\Sigma_{5}-R_{6} & =5 C_{4}+8 C_{2} \\
\Sigma_{6}-R_{7} & =\frac{35}{4} C_{5}+42 C_{3} \\
\Sigma_{7}-R_{8} & =14 C_{6}+\frac{469}{3} C_{4}+\frac{203}{3} C_{2}^{2}+180 C_{2} \\
\Sigma_{8}-R_{9} & =21 C_{7}+\frac{1869}{4} C_{5}+\frac{819}{2} C_{3} C_{2}+1522 C_{3} \\
\Sigma_{9}-R_{10} & =30 C_{8}+1197 C_{6}+\frac{963}{2} C_{3}^{2}+1122 C_{4} C_{2}+81 C_{2}^{3}+\frac{26060}{3} C_{4}+\frac{17680}{3} C_{2}^{2} \\
& +8064 C_{2} \\
\Sigma_{10}-R_{11} & =\frac{165}{4} C_{9}+\frac{5467}{2} C_{7}+\frac{4433}{2} C_{4} C_{3}+\frac{1133}{2} C_{3} C_{2}^{2}+\frac{11033}{4} C_{5} C_{2}+38225 C_{5} \\
& +52580 C_{3} C_{2}+96624 C_{3}
\end{aligned}
$$

Note the form of the data presented above. We have

$$
\Sigma_{k}-\Sigma_{k, 0}=\sum_{k \geq 1} \Sigma_{k, 2 n}
$$

where $\Sigma_{k, 0}=R_{k+1}$ remains on the left hand side, and we can recover the individual $\Sigma_{k, 2 n}$ on the right hand side: recall that the weight of the monomial $C_{m_{1}} \ldots C_{m_{i}}$ is $m_{1}+\ldots+m_{i}$ and, therefore, from (3.23) and (3.25), $\Sigma_{k, 2 n}$ is the sum of all terms of weight $k+1-2 n$.

In the above C-expansions for $k \leq 10$, all nonzero coefficients are positive rationals, with apparently small denominators. In fact, we have computed all the data for $k=25$ (though not included $k=23,24$ and 25 in Appendix B as each polynomial is a number of pages long). We do not have a precise conjecture about the denominators, but conjecture that the positivity holds for all k.

Conjecture 3.4.4. For $n \geq 1, k \geq 2 n-1, \Sigma_{k, 2 n}$ is C-positive.
This C-positivity conjecture implies the R-positivity conjecture, from 3.25) (so, the data in Appendix Balso confirm the R-positivity conjecture for $k \leq 25$). Theorem 3.5.4 gives an immediate proof that Conjecture 3.4.4 holds for $n=1$ and all k. In Corollary 3.5.10, we are able to prove that Conjecture 3.4.4 holds for $n=2$ and
all k. We are not able to prove the conjecture for any larger value of n, though Theorem 3.5.14 below, together with (3.24), proves that the linear terms are C-positive for all n. We shall see that the introduction of the indeterminates C_{k} and the generating series $C(z)$ simplify expressions a great deal. Moreover, we shall see how this introduction leads to new results about Stanley's polynomials in the next chapter.

The conjecture does not hold for $n=0$, as described below. We have $\Sigma_{k, 0}=$ R_{k+1}, and it is straightforward to determine the C-expansion for the R_{i} 's: from (3.24), we obtain

$$
\begin{aligned}
1-\sum_{i \geq 2}(i-1) R_{i} z^{i} & =\frac{1}{C(z)} \\
& =\sum_{j_{2}, j_{3}, \ldots \geq 0}\left(j_{2}+j_{3}+\ldots\right)!\prod_{m \geq 2} \frac{\left(-C_{m} z^{m}\right)^{j_{m}}}{j_{m}!}
\end{aligned}
$$

so we conclude that

$$
R_{i}=\frac{1}{i-1} \sum_{\substack{j_{2}, \ldots, \ldots \geq 0 \\ 2 j_{2}+3 j_{3}+\ldots=i}}(-1)^{1+j_{2}+j_{3}+\ldots}\left(j_{2}+j_{3}+\ldots\right)!\prod_{m \geq 2} \frac{C_{m}^{j_{m}}}{j_{m}!}, \quad i \geq 2 .
$$

Thus, terms of negative sign appear in the C-expansion of R_{i}, for $i \geq 4$. This is the reason that we have presented the data for k up to 10 with R_{k+1} subtracted on the left hand side. This is also the reason that the R-positivity conjecture does not imply the C-positivity conjecture, so R-positivity and C-positivity are not equivalent.

3.5 Special Cases of the Main Result

We now give some special cases of the main result.

3.5.1 Monomial Symmetric Functions: A Computational Tool

To make the expression for $\Sigma_{k, 2 n}$ that arises from Theorem 3.4.1 (or Theorem 3.4.2) explicit, we need to evaluate the \hat{m}_{λ}, which are monomial symmetric functions in $1,2, \ldots, k-1$. For general results about symmetric functions, see Macdonald [21].

Proposition 3.5.1. For indeterminates $a_{i}, i \geq 1$, let $A(x)=1+\sum_{i \geq 1} a_{i} x^{i}$, and $a_{\lambda}=$ $\prod_{j=1}^{l(\lambda)} a_{\lambda_{j}}$, where $\lambda=\lambda_{1} \ldots \lambda_{l(\lambda)}$ is a partition. Then

$$
\sum_{\lambda \in \mathcal{P}} \hat{m}_{\lambda} a_{\lambda}=\exp \sum_{j \geq 1} \hat{m}_{j} \sum_{i \geq 1} \frac{(-1)^{i-1}}{i}\left[x^{j}\right](A(x)-1)^{i} .
$$

Proof. We have

$$
\begin{aligned}
\sum_{\lambda \in \mathcal{P}} m_{\lambda} a_{\lambda} & =\prod_{n \geq 1} A\left(x_{n}\right) \\
& =\exp \sum_{n \geq 1} \log \left(A\left(x_{n}\right)\right) \\
& =\exp \sum_{n \geq 1} \sum_{i \geq 1} \frac{(-1)^{i-1}}{i}\left(A\left(x_{n}\right)-1\right)^{i}
\end{aligned}
$$

and the result follows.

Proposition 3.5.1 gives an expression for \hat{m}_{λ} as a polynomial in $\hat{m}_{i}, i \geq 1$, by equating coefficients of a_{λ}. To evaluate the $\hat{m}_{i}, i \geq 1$, we apply the following result.

Proposition 3.5.2. For $j \geq 1$,

$$
\hat{m}_{j}=\sum_{i=1}^{j} S(j, i) i!\binom{k}{i+1},
$$

where $S(j, i)$, the Stirling numbers of the second kind, are given by

$$
\sum_{j \geq 0} \sum_{i=0}^{j} S(j, i) u^{i} \frac{x^{j}}{j!}=\exp u\left(e^{x}-1\right) .
$$

Proof. Using (3.13), we have

$$
x^{j}=\sum_{i=0}^{n} S(j, i) i!\binom{x}{i} .
$$

Summing both sides from $x=1$ to $x=k-1$ and using the identity

$$
\sum_{j=1}^{k-1}\binom{j}{i}=\binom{k}{i+1}
$$

we obtain the result.

As special cases of this result, we have the following, well-known sums of integer powers.

$$
\begin{gather*}
\hat{m}_{1}=\frac{1}{2}(k-1) k, \quad \hat{m}_{2}=\frac{1}{6}(k-1) k(2 k-1), \quad \hat{m}_{3}=\frac{1}{4}(k-1)^{2} k^{2}, \tag{3.28}\\
\hat{m}_{4}=\frac{1}{30}(k-1) k(2 k-1)\left(3 k^{2}-3 k-1\right) .
\end{gather*}
$$

3.5.2 The Cases $n=0,1,2$

In this section, we apply the main theorem to obtain specific results about the coefficients of terms in Kerov's polynomials. Note, from Biane's Theorem 3.3.4 it follows that the largest term in Σ_{k} is R_{k+1}. This follows easily from Theorem 3.4.1, which we consider now.

Proposition 3.5.3. The term of highest degree in Σ_{k} is R_{k+1}, and it is the only term of weight $k+1$.

Proof. From Theorem 3.4.1 the term of highest weight is $\Sigma_{k, 0}$, which is

$$
-\frac{1}{k}\left[z^{k+1-2 n}\right] \frac{1}{C(z)}=R_{k+1},
$$

giving the result.
Next we consider the case $n=1$ of Theorem 3.4.2. An expression for this case was conjectured by Biane [1, Conjecture 6.4]; specifically Biane conjectured that the terms of weight $k-1$ in Kerov's polynomials are given by

$$
\begin{equation*}
\frac{(k+1) k(k-1)}{24} \sum_{\substack{j_{2}, j_{3} \ldots \geq 0 \\ 2 j_{2}+3 j_{3}+\ldots=k-1}}\left(j_{2}+j_{3}+\ldots\right)!\prod_{i \geq 2} \frac{\left((i-1) R_{i}\right)^{j_{i}}}{j_{i}!}, \quad k-1 \geq 2 . \tag{3.29}
\end{equation*}
$$

which is $\frac{1}{4}\binom{k+1}{3}$ times C_{k-1} given in (3.25). This was later proven in Śniady [25], by a combinatorial method, but more along the lines of the work done by Biane; it appears that the combinatorial proof given by Śniady is inspired by the free probability approach developed by Biane. The proof we give below is far more direct than Śniady's proof. We state the result as a theorem now.

Theorem 3.5.4. In Σ_{k} for $k \geq 1$, the terms of weight $k-1$ are given by

$$
\Sigma_{k, 2}=\frac{1}{24}(k-1) k(k+1) C_{k-1} .
$$

In particular, $\Sigma_{k, 2}$ is C-positive.
Proof. From Theorem 3.4.2, with $n=1$, we obtain

$$
\begin{aligned}
\Sigma_{k, 2} & =-\frac{1}{k}\left[z^{k-1}\right]\left(-\frac{1}{2}(k-1) \hat{m}_{2} C(z)+\hat{m}_{11} C(z)\right) \\
& =\frac{1}{k}\left(\frac{1}{2}(k-1) \hat{m}_{2}-\hat{m}_{11}\right)\left[z^{k-1}\right] C(z) .
\end{aligned}
$$

But from Proposition 3.5.1, we obtain

$$
\hat{m}_{11}=\frac{1}{2}\left(\hat{m}_{1}^{2}-\hat{m}_{2}\right),
$$

and the result follows from (3.28), by routine manipulation.
From Theorem 3.5.4 we obtain easily the following corollaries.
Corollary 3.5.5. In the R-expansion of Kerov's polynomial Σ_{k}, the terms of weight $k-1$ have positive coefficients.

Proof. This follows directly from Theorem 3.5.4 and (3.25).
Corollary 3.5.6. The sum of the coefficients of the R's of terms of weight $k-1$ in Σ_{k} is $\frac{1}{4}\binom{k+1}{3} 2^{k-3}$.

Proof. By Theorem 3.5.4 the coefficient of $\left[z^{k-1}\right]$ in $C(z)$ is the collection of terms of degree $k-1$ in Σ_{k}. Of course, setting $R_{i}=1$ for all i will yield the result. From (3.24) we see

$$
C(z)=\frac{1}{-t^{2} \frac{d}{d t} \frac{R(z)}{t}} .
$$

Setting $R_{i}=1$ for all i in $R(z)$, we obtain

$$
\frac{d}{d z} \frac{R(z)}{z}=-\frac{1}{z^{2}}+\frac{1}{(1-z)^{2}}=\frac{(2 z-1)}{z^{2}(1-z)^{2}}
$$

from which it follows that

$$
C(z)=\frac{(1-z)^{2}}{1-2 z}=1+\frac{z^{2}}{1-2 z} .
$$

Taking the coefficient $\left[t^{k-1}\right]$ in the last expression and multiplying by $\frac{1}{4}\binom{k+1}{3}$ yields the result.

Next we consider the case $n=2$ of Theorem 3.4.2, to obtain an explicit C-expansion for $\Sigma_{k, 4}$.

Theorem 3.5.7. In Σ_{k} for $k \geq 3$, the terms of weight $k-3$ are given by

$$
\Sigma_{k, 4}=\alpha(k) \sum_{\substack{i, j, m \geq 0 \\ i+j+m=k-3}} C_{i} C_{j} C_{m}+\beta(k) \sum_{\substack{i, j, m \geq 0 \\ i+j+m=k-3}} i^{2} C_{i} C_{j} C_{m},
$$

where

$$
\begin{aligned}
\alpha(k) & =-\frac{1}{17280}(k-3)(k-1)^{2} k(k+1)\left(k^{2}-4 k-6\right) \\
\beta(k) & =\frac{1}{2880}(k-1) k(k+1)\left(2 k^{2}-3\right) .
\end{aligned}
$$

Proof. From Theorem 3.4.2, with $n=2$, letting $b=\frac{1}{6}\left(\hat{m}_{31}-\frac{1}{4}(k-1) \hat{m}_{4}\right)$, we obtain

$$
\begin{aligned}
\Sigma_{k, 4} & =-\frac{1}{k}\left[t^{k-3}\right]\left(b\left(C(z)^{2} D C(z)+C(z)(D C(z))^{2}+C(z)^{2} D^{2} C(z)\right)\right. \\
& \left.+\frac{1}{4} \hat{m}_{22} C(z)(D C(z))^{2}-\frac{1}{2} \hat{m}_{211} C(z)^{2} D C(z)+\hat{m}_{1111} C(z)^{3}\right) \\
& =-\frac{1}{k}\left[t^{k-3}\right]\left(\hat{m}_{1111} C(z)^{3}+\left(b-\frac{1}{2} \hat{m}_{211}\right) C(z)^{2} D C(z)\right. \\
& \left.+b C(z)^{2} D^{2} C(z)+\left(b+\frac{1}{4} \hat{m}_{22}\right) C(z)(D C(z))^{2}\right) \\
& =-\frac{1}{k}\left[t^{k-3}\right]\left(\hat{m}_{1111} C(z)^{3}+\left(b-\frac{1}{2} \hat{m}_{211}\right) \frac{1}{3} D C(z)^{3}\right. \\
& \left.+b C(z)^{2} D^{2} C(z)+\left(b+\frac{1}{4} \hat{m}_{22}\right)\left(\frac{1}{6} D^{2} C(z)^{3}-\frac{1}{2} C(z)^{2} D^{2} C(z)\right)\right) \\
& =-\frac{1}{k}\left(\hat{m}_{1111}+\frac{1}{3}(k-3)\left(b-\frac{1}{2} \hat{m}_{211}\right)+\frac{1}{6}(k-3)^{2}\left(b+\frac{1}{4} \hat{m}_{22}\right)\right)\left[t^{k-3}\right] C(z)^{3} \\
& -\frac{1}{k}\left(\frac{1}{2} b-\frac{1}{8} \hat{m}_{22}\right)\left[t^{k-3}\right] C(z)^{2} D^{2} C(z) .
\end{aligned}
$$

But from Proposition 3.5.1, we obtain

$$
\begin{aligned}
\hat{m}_{31} & =\hat{m}_{3} \hat{m}_{1}-\hat{m}_{4} \\
\hat{m}_{22} & =\frac{1}{2}\left(\hat{m}_{2}^{2}-\hat{m}_{4}\right) \\
\hat{m}_{211} & =\frac{1}{2}\left(\hat{m}_{2} \hat{m}_{1}^{2}-2 \hat{m}_{3} \hat{m}_{1}-\hat{m}_{2}^{2}+2 \hat{m}_{4}\right) \\
\hat{m}_{1111} & =\frac{1}{24}\left(\hat{m}_{1}^{4}-6 \hat{m}_{2} \hat{m}_{1}^{2}+8 \hat{m}_{3} \hat{m}_{1}+3 \hat{m}_{2}^{2}-6 \hat{m}_{4}\right)
\end{aligned}
$$

so from 3.28, by routine manipulation, we obtain

$$
\begin{equation*}
\Sigma_{k, 4}=\alpha(k)\left[z^{k-3}\right] C(z)^{3}+\beta(k)\left[z^{k-3}\right] C(z)^{2} D^{2} C(z) \tag{3.30}
\end{equation*}
$$

where $\alpha(k)$ and $\beta(k)$ are given above. The result follows.
For monomials in R_{2}, R_{3}, \ldots that are pure powers of a single R_{m}, we have the following form of the above result.

Corollary 3.5.8. For $m \geq 2, i \geq 1$,

$$
\begin{aligned}
{\left[R_{m}^{i}\right] \Sigma_{m i+3,4} } & =\frac{1}{34560}(m-1)^{i} m i(i+1)(i+2)(m i+2)(m i+3)(m i+4) \\
& \times\left(m^{3} i^{3}+2 m^{2}(m+4) i^{2}+4 m(3 m+5) i+15 m+18\right)
\end{aligned}
$$

Proof. From Theorem 3.5.7, we obtain

$$
\left[R_{m}^{i}\right] \Sigma_{m i+3,4}=\alpha(m i+3)\left[R_{m}^{i} z^{m i}\right] C(z)^{3}+\beta(m i+3)\left[R_{m}^{i} z^{m i}\right] C(z)^{2} D^{2} C(z)
$$

Now, setting $R_{j}=0$ for $j \neq m$, we obtain $C(z)=\left(1-(m-1) R_{m} z^{m}\right)^{-1}$, so

$$
\left[R_{m}^{i} z^{m i}\right] C(z)^{3}=(m-1)^{i}\binom{i+2}{2}
$$

Also, we have

$$
\begin{aligned}
D^{2} C(z)= & \operatorname{Dm}(m-1) R_{m} z^{m}\left(1-(m-1) R_{m} z^{m}\right)^{-2} \\
= & \operatorname{Dm}\left(\left(1-(m-1) R_{m} z^{m}\right)^{-2}-\left(1-(m-1) R_{m} z^{m}\right)^{-1}\right) \\
= & m^{2}(m-1)\left(2 R_{m} z^{m}\left(1-(m-1) R_{m} z^{m}\right)^{-3}\right. \\
& \left.\quad-R_{m} z^{m}\left(1-(m-1) R_{m} z^{m}\right)^{-2}\right),
\end{aligned}
$$

so

$$
\left[R_{m}^{i} z^{m i}\right] C(z)^{2} D^{2} C(z)=(m-1)^{i} m^{2}\left(2\binom{i+3}{4}-\binom{i+2}{3}\right) .
$$

The result follows by routine manipulation.
The following conjecture of Stanley, communicated by Biane (private communication), is an immediate consequence of Corollary 3.5.8.

Corollary 3.5.9 (Conjectured by Stanley). For $i \geq 1$,

$$
\left[R_{2}^{i}\right] \Sigma_{2 i+3,4}=\frac{1}{540} i(i+1)^{3}(i+2)^{3}(i+3)(2 i+3) .
$$

Proof. We set $m=2$ in Corollary 3.5.8. Then the factor that is cubic in i becomes

$$
8 i^{3}+48 i^{2}+88 i+48=8(i+1)(i+2)(i+3)
$$

and the result follows.

As the final result of this section, we are able to use the explicit C-expansion given in Theorem 3.5.7, to prove the C-positivity of $\Sigma_{k, 4}$.

Corollary 3.5.10. $\Sigma_{k, 4}$ is C-positive for all $k \geq 3$.
Proof. Consider $0 \leq i \leq j \leq m$, with $i+j+m=k-3$, and let $\gamma=|\operatorname{Aut}(i, j, m)|$. Thus when $k=12$, for example, $\gamma=1$ for $(i, j, m)=(2,3,4)$ or $(0,2,7), \gamma=2$ for $(i, j, m)=(2,2,5)$ or $(1,4,4)$, and $\gamma=6$ for $(i, j, m)=(3,3,3)$. Then, from Theorem 3.5.7, we obtain

$$
\begin{equation*}
\left[C_{i} C_{j} C_{m}\right] \Sigma_{k, 4}=\frac{6}{\gamma} \alpha(k)+\frac{2}{\gamma}\left(i^{2}+j^{2}+m^{2}\right) \beta(k) \tag{3.31}
\end{equation*}
$$

Now, the minimum value of $x^{2}+y^{2}+z^{2}$ over the reals, subject to $x+y+z=c$, for any fixed real c, is achieved at $x=y=z=c / 3$, so in the above expression we have $i^{2}+j^{2}+m^{2} \geq \frac{1}{3}(k-3)^{2}$. But $\beta(k)>0$ for $k \geq 3$, so we obtain

$$
\begin{aligned}
& {\left[C_{i} C_{j} C_{m}\right] \Sigma_{k, 4} \geq } \frac{2}{\gamma}\left(3 \alpha(k)+\frac{1}{3}(k-3)^{2} \beta(k)\right) \\
&=\frac{1}{8640 \gamma}(k-3)(k-1) k(k+1)\left(-3(k-1)\left(k^{2}-4 k-6\right)\right. \\
&\left.\quad+2(k-3)\left(2 k^{2}-3\right)\right) \\
&=\frac{1}{8640 \gamma}(k-3)(k-1) k^{3}(k+1)(k+3) \\
& \geq 0,
\end{aligned}
$$

for $k \geq 3$, giving the result.

Corollary 3.5.11 (Conjectured by Biane and Kerov). $\Sigma_{k, 4}$ is R-positive for all $k \geq 3$.

Proof. Follows from Corollary 3.5.10 and 3.25).

3.5.3 The Case $n=3$

In this section, we give a compact expression for $\Sigma_{k, 6}$ in terms of our $C^{\prime} s$. We are not able, however, to use this expression to show positivity. This illustrates that Theorem 3.4.1 alone does not, unfortunately, fully explain Kerov's polynomials. We do, however, hope that the work done in the chapter serves as a good basis for future work. To simplify our notation in the following theorem and proof, we will replace $C(z)$ with C and $P_{\lambda}(z)$ with P_{λ}.

Theorem 3.5.12. In Σ_{k} for $k \geq 5$, the terms of weight $k-5$ are given by

$$
\begin{gathered}
\Sigma_{k, 6}=-\frac{1}{k}\left[z^{k-5}\right]\left(-\frac{1}{362880} k(k-1)\left(1918 k^{7}-21041 k^{6}+74635 k^{5}-102143 k^{4}\right.\right. \\
\left.+31879 k^{3}+26860 k^{2}-4416 k-3780\right) C^{2}(D C)^{3} \\
-\frac{1}{725760} k(k-1)\left(30 k^{7}+213 k^{6}-2009 k^{5}+4193 k^{4}-2254 k^{3}-847 k^{2}\right. \\
+292 k+60) C^{4}\left(D^{3} C\right)
\end{gathered} \begin{array}{r}
+\frac{1}{120960} k(3 k-5)(k-1)\left(111 k^{5}-392 k^{4}+277 k^{3}+132 k^{2}-42 k-24\right) C(D C)^{4} \\
\begin{array}{r}
-\frac{1}{362880} k(k-1)\left(507 k^{6}-2589 k^{5}+4159 k^{4}-1511 k^{3}-1154 k^{2}+232 k\right.
\end{array} \\
+180) C^{3}\left(D^{2} C\right)^{2}
\end{array} \begin{array}{r}
+\frac{1}{725760} k(k-1)\left(249 k^{6}-1299 k^{5}+2096 k^{4}-739 k^{3}-592 k^{2}+101 k\right. \\
+\frac{1}{241920} k(k-1)\left(630 k^{8}-10052 k^{7}+59791 k^{6}-161489 k^{5}+190331 k^{4}-51967 k^{3}\right. \\
\left.-46584 k^{2}+7036 k+6080\right) C^{3}(D C)^{2} \\
+\frac{1}{725760} k(k-1)\left(15 k^{8}+162 k^{7}-2407 k^{6}+8424 k^{5}-10357 k^{4}+1907 k^{3}+3159 k^{2}\right. \\
-313 k-390) C^{4}\left(D^{2} C\right)
\end{array} \begin{array}{r}
-\frac{1}{483840} k(k-1)\left(210 k^{9}-4305 k^{8}+35392 k^{7}-147530 k^{6}\right. \\
+\frac{1}{2903040} k(k-1)(k-2)(k-3)(k-4)(k-5)(k-6)\left(63 k^{5}-315 k^{4}+315 k^{3}\right. \\
\left.\left.+91 k^{2}-42 k-16\right) C^{5}\right) .
\end{array}
$$

Proof. From Theorem 3.4.2 we have

$$
\Sigma_{k, 6}=-\frac{1}{k}\left[z^{k-5}\right]\left(\frac{k-1}{6} \hat{m}_{6} P_{5}+\sum_{\substack{\lambda \leftarrow 6 \\ \ell(\lambda) \geq 2}} \hat{m}_{\lambda} \frac{P_{\lambda}}{C}\right) .
$$

In (3.27) we have already computed P_{1}, P_{2} and P_{3}. We now find P_{4} and P_{5}. Recall that the differential operator D does not commute with C. Therefore, we use brackets to indicate when an operation has taken place; that is, $D(C D C)$ indicates that
the preceding D is still to operate on $C D C$, whereas $(D C)(D C)=(D C)^{2}$. We have

$$
\begin{aligned}
P_{4} & =-\frac{1}{24} C(D+2 I) C(D+I) C D C \\
& =-\frac{1}{24} C(D+2 I)\left(-6 P_{3}\right) \\
& =-\frac{1}{24}\left(C D\left(C^{2} D C+C(D C)^{2}+C^{2} D^{2} C\right)+2 C^{3} D C+2 C^{2}(D C)^{2}+2 C^{3}\left(D^{2} C\right)\right) \\
& =-\frac{1}{24}\left(4 C^{2}(D C)^{2}+3 C^{3} D^{2} C+C(D C)^{3}+4 C^{2}(D C)\left(D^{2} C\right)+C^{3} D^{3} C+2 C^{3} D C\right),
\end{aligned}
$$

and

$$
\begin{aligned}
P_{5}= & -\frac{1}{120} C(D+3 I)\left(-24 P_{4}\right) \\
= & -\frac{1}{120}\left(8 C^{2}(D C)^{3}+8 C^{3}(D C)\left(D^{2} C\right)+9 C^{3}(D C)\left(D^{2} C\right)+3 C^{4} D^{3} C+C(D C)^{4}\right. \\
& +3 C^{2}(D C)^{2}\left(D^{2} C\right)+8 C^{2}(D C)^{2} D^{2} C+4 C^{3}\left(D^{2} C\right)^{2}+4 C^{3}(D C)\left(D^{3} C\right) \\
& +3 C^{3}(D C)\left(D^{3} C\right)+C^{4} D^{4} C+6 C^{3}(D C)^{2}+2 C^{4}\left(D^{2} C\right)+12 C^{3}(D C)^{2} \\
& \left.+9 C^{4} D^{2} C+3 C^{2}(D C)^{3}+12 C^{3}(D C)\left(D^{2} C\right)+3 C^{4}\left(D^{3} C\right)+6 C^{4} D C\right) \\
= & -\frac{1}{120}\left(11 C^{2}(D C)^{3}+29 C^{3}(D C)\left(D^{2} C\right)+6 C^{4} D^{3} C+C(D C)^{4}+11 C^{2}(D C)^{2}\left(D^{2} C\right)\right. \\
& +4 C^{3}\left(D^{2} C\right)^{2}+7 C^{3}(D C) D^{3} C+C^{4} D^{4} C+18 C^{3}(D C)^{2}+11 C^{4} D^{2} C \\
& \left.+6 C^{4} D C\right) .
\end{aligned}
$$

This gives

$$
\begin{aligned}
\Sigma_{k, 6}= & -\frac{1}{k}\left[z^{k-5}\right]\left(\left(\frac{k-1}{6} \hat{m}_{6}-\hat{m}_{51}\right) P_{5}-\frac{1}{2} \hat{m}_{42}(D C) P_{4}+\hat{m}_{33} \frac{P_{3}^{2}}{C}+\hat{m}_{411} C P_{4}\right. \\
& -\hat{m}_{3111} C^{2} P_{3}-\hat{m}_{321} P_{3} P_{2}-\frac{1}{8} \hat{m}_{222} C^{2}(D C)^{3}+\hat{m}_{2211} C P_{2}^{2}+\hat{m}_{21111} C^{3} P_{2} \\
& \left.+\hat{m}_{111111} C^{5}\right) \\
= & -\frac{1}{k}\left[z^{k-5}\right]\left(\left(\frac{k-1}{6} \hat{m}_{6}-\hat{m}_{51}\right) P_{5}+\left(\hat{m}_{411} C-\frac{1}{2} \hat{m}_{42}(D C)\right) P_{4}\right. \\
& +\left(\hat{m}_{33} \frac{P_{3}}{C}-\hat{m}_{3111} C^{2}+\frac{1}{2} \hat{m}_{321} C D C\right) P_{3}-\frac{1}{8} \hat{m}_{222} C^{2}(D C)^{3} \\
& \left.+\frac{1}{4} \hat{m}_{2211} C^{3}(D C)^{2}-\frac{1}{2} \hat{m}_{21111} C^{4}(D C)+\hat{m}_{111111} C^{5}\right) .
\end{aligned}
$$

In order to deal with the last expression, we divide it up into two parts: the terms involving P_{5} and P_{4} in the first part, and the remaining terms in the second part.

Setting $d=-\frac{1}{120}\left(\frac{k-1}{6} \hat{m}_{6}-\hat{m}_{51}\right)$, the first part becomes

$$
\left.\begin{array}{l}
d P_{5}+\left(\hat{m}_{411} C-\frac{\hat{m}_{42}}{2} D C\right) P_{4} \\
\quad=\left(11 d-\frac{\hat{m}_{411}}{24}+\frac{\hat{m}_{42}}{12}\right) C^{2}(D C)^{3}+\left(29 d-\frac{\hat{m}_{411}}{6}+\frac{\hat{m}_{42}}{16}\right) C^{3}(D C) D^{2} C \\
+\left(6 d-\frac{\hat{m}_{411}}{24}\right) C^{4} D^{3} C+\left(d+\frac{\hat{m}_{42}}{48}\right) C(D C)^{4}+\left(11 d+\frac{\hat{m}_{42}}{12}\right) C^{2}(D C)^{2} D^{2} C \\
\quad+4 d C^{3}\left(D^{2} C\right)^{2}+\left(7 d+\frac{\hat{m}_{42}}{48}\right) C^{3}(D C) D^{3} C+d C^{4} D^{4} C
\end{array}\right]+\left(18 d-\frac{\hat{m}_{411}}{6}+\frac{\hat{m}_{42}}{24}\right) C^{3}(D C)^{2}+\left(11 d-\frac{\hat{m}_{411}}{8}\right) C^{4} D^{2} C+\left(6 d-\frac{\hat{m}_{411}}{12}\right) C^{4} D C .
$$

Simplifying the second part we have

$$
\begin{gather*}
-\frac{\hat{m}_{33}}{6}\left(\left(C D C+(D C)^{2}+C D^{2} C\right)-\hat{w}_{3111} C^{2}+\frac{\hat{w}_{321}}{2} C D C\right) \\
\cdot\left(-\frac{1}{6}\left(C^{2} D C+C(D C)^{2}+C^{2} D^{2} C\right)\right) \\
=\left(\frac{\hat{w}_{33}}{36}+\frac{\hat{w}_{3111}}{6}-\frac{\hat{w}_{321}}{12}\right) C^{3}(D C)^{2} \\
+\left(\frac{\hat{w}_{33}}{18}-\frac{\hat{m}_{321}}{12}\right)\left(C^{2}(D C)^{3}+C^{3}(D C)\left(D^{2} C\right)\right) \\
+\frac{\hat{m}_{33}}{36}\left(C(D C)^{4}+2 C^{2}(D C)^{2}\left(D^{2} C\right)+C^{3}\left(D^{2} C\right)^{2}\right)+\frac{\hat{w}_{3111}}{6}\left(C^{4} D C+C^{4} D^{2} C\right) \tag{3.32}
\end{gather*}
$$

If we set

$$
a=\frac{\hat{m}_{33}}{36}+\frac{\hat{w}_{3111}}{6}-\frac{\hat{m}_{321}}{12}, \quad b=\frac{\hat{m}_{33}}{18}-\frac{\hat{m}_{321}}{12}
$$

then the expression in (3.32) becomes

$$
\begin{aligned}
& \left(a+\frac{\hat{m}_{2211}}{4}\right) C^{3}(D C)^{2}+\left(\frac{\hat{m}_{3111}}{6}-\frac{\hat{m}_{21111}}{2}\right) C^{4} D C \\
& +\left(b-\frac{\hat{m}_{222}}{8}\right) C^{2}(D C)^{3}+b C^{3}(D C)\left(D^{2} C\right) \\
& + \\
& \frac{\hat{m}_{33}}{36}\left(C(D C)^{4}+2 C^{2}(D C)^{2}\left(D^{2} C\right)+C^{3}\left(D^{2} C\right)^{2}\right)+\frac{\hat{m}_{3111}}{36}\left(C^{4} D^{2} C\right)+\hat{m}_{111111} C^{5} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\Sigma_{k, 6}= & -\frac{1}{k}\left[z^{k-5}\right]\left(\left(b-\frac{1}{8} \hat{m}_{222}+11 d-\frac{\hat{m}_{411}}{24}+\frac{\hat{m}_{42}}{12}\right) C^{2}(D C)^{3}\right. \\
& +\left(b+29 d-\frac{\hat{m}_{411}}{6}+\frac{\hat{m}_{42}}{18}\right) C^{3}(D C)\left(D^{2} C\right)+\left(6 d-\frac{\hat{m}_{411}}{24}\right) C^{4} D^{3} C \\
& +\left(\frac{\hat{m}_{33}}{36}+d+\frac{\hat{m}_{42}}{48}\right) C(D C)^{4}+\left(\frac{\hat{m}_{33}}{18}+11 d+\frac{\hat{m}_{42}}{12}\right) C^{2}(D C)^{2} D^{2} C \\
& +\left(\frac{\hat{m}_{33}}{36}+4 d\right) C^{3}\left(D^{2} C\right)^{2}+\left(7 d+\frac{\hat{m}_{42}}{48}\right) C^{3}(D C) D^{3} C+d C^{4} D^{4} C \\
& +\left(a+\frac{\hat{m}_{2211}}{4}+18 d-\frac{\hat{m}_{411}}{6}+\frac{\hat{m}_{42}}{24}\right) C^{3}(D C)^{2} \\
& +\left(\frac{\hat{m}_{3111}}{6}+11 d-\frac{\hat{m}_{411}}{8}\right) C^{4} D^{2} C \\
& \left.+\left(\frac{\hat{m}_{3111}}{6}-\frac{\hat{m}_{21111}}{2}+6 d-\frac{\hat{m}_{411}}{12}\right) C^{4} D C+\hat{m}_{111111} C^{5}\right) .
\end{aligned}
$$

To simplify the above expression further, we apply the rule $\left[z^{k-5}\right] D f=(k-$ 5) $\left[z^{k-5}\right] f$. Using the product rule for differentiation, we apply this rule to the following terms; the aim is to reduce the number of distinct terms involving the series C in the last expression.
1.

$$
D\left(C^{3}(D C) D^{2} C\right)=3 C^{2}(D C)^{2} D^{2} C+C^{3}\left(D^{2} C\right)^{2}+C^{3}(D C) D^{3} C
$$

implying

$$
C^{2}(D C)^{2}\left(D^{2} C\right)=\frac{1}{3} D\left(C^{3}(D C) D^{2} C\right)-\frac{1}{3} C^{3}\left(D^{2} C\right)^{2}-\frac{1}{3} C^{3}(D C) D^{3} C .
$$

2.

$$
D\left(C^{4} D^{3} C\right)=4 C^{3}(D C) D^{3} C+C^{4} D^{4} C
$$

implying

$$
C^{3}(D C) D^{3} C=\frac{1}{4} D\left(C^{4} D^{3} C\right)-\frac{1}{4} C^{4} D^{4} C .
$$

3.

$$
D\left(C^{4} D^{2} C\right)=4 C^{3}(D C) D^{2} C+C^{4} D^{3} C,
$$

implying

$$
C^{3}(D C) D^{2} C=\frac{1}{4} D\left(C^{4} D^{2} C\right)-\frac{1}{4} C^{4} D^{3} C
$$

Thus, for example using 2. above, we eliminate the term $C^{2}(D C)^{2} D^{2} C$ by

$$
\begin{aligned}
{\left[z^{k-5}\right] C^{2}(D C)^{2}\left(D^{2} C\right) } & =\left[z^{k-5}\right]\left(\frac{1}{4} D\left(C^{4} D^{3} C\right)-\frac{1}{4} C^{4} D^{4} C\right) \\
& =\left[z^{k-5}\right] \frac{1}{4} D\left(C^{4} D^{3} C\right)-\left[z^{k-5}\right] \frac{1}{4} C^{4} D^{4} C \\
& =\left[z^{k-5}\right] \frac{1}{4}(k-5) C^{4} D^{3} C-\left[z^{k-5}\right] \frac{1}{4} C^{4} D^{4} C \\
& =\left[z^{k-5}\right]\left(\frac{1}{4}(k-5) C^{4} D^{3} C-\frac{1}{4} C^{4} D^{4} C\right)
\end{aligned}
$$

Doing this in turn for the expressions in 1., 2. and 3., and substituting the original values for the parameters a and b into $\Sigma_{k, 6}$, we obtain after simplifying,

$$
\begin{align*}
\Sigma_{k, 6} & =-\frac{1}{k}\left[z^{k-5}\right]\left(\left(\frac{\hat{m}_{33}}{18}-\frac{\hat{m}_{321}}{12}-\frac{\hat{m}_{222}}{8}+11 d-\frac{\hat{m}_{411}}{24}+\frac{\hat{m}_{42}}{12}\right) C^{2}(D C)^{3}\right. \\
& +\left(\left(-\frac{5}{4}-\frac{(k-5)}{12}\right) d+\left(-\frac{5}{576}(k-5)-\frac{1}{64}\right) \hat{m}_{42}+\left(-\frac{1}{108}(k-5)\right.\right. \\
& \left.\left.-\frac{1}{72}\right) \hat{m}_{33}+\frac{\hat{m}_{321}}{48}\right) C^{4} D^{3} C+\left(d+\frac{\hat{m}_{33}}{36}+\frac{\hat{m}_{42}}{48}\right) C(D C)^{4} \\
& +\left(\frac{d}{3}+\frac{\hat{m}_{33}}{108}-\frac{\hat{m}_{42}}{36}\right) C^{3}\left(D^{2} C\right)^{2}+\left(\frac{d}{6}+\frac{\hat{m}_{42}}{576}+\frac{\hat{m}_{33}}{216}\right) C^{4} D^{4} C \tag{3.33}\\
& +\left(\frac{\hat{m}_{33}}{36}+\frac{\hat{m}_{3111}}{6}-\frac{\hat{m}_{321}}{12}+\frac{\hat{m}_{2211}}{4}+18 d-\frac{\hat{m}_{411}}{6}+\frac{\hat{m}_{42}}{24}\right) C^{3}(D C)^{2} \\
& +\left(\frac{\hat{m}_{3111}}{6}+\left(\frac{11(k-5)^{2}}{12}+\frac{29(k-5)}{4}+11\right) d-\left(\frac{(k-5)}{24}+\frac{1}{8}\right) \hat{m}_{411}\right. \\
& \left.+\left(\frac{(k-5)^{2}}{216}+\frac{k-5}{72}\right) \hat{m}_{33}-\frac{k-5}{48} \hat{m}_{321}+\left(\frac{(k-5)^{2}}{144}+\frac{k-5}{64}\right) \hat{m}_{42}\right) C^{4} D^{2} C \\
& \left.+\left(\frac{\hat{m}_{3111}}{6}-\frac{\hat{m}_{21111}}{2}+6 d-\frac{\hat{m}_{411}}{12}\right) C^{4} D C+\hat{m}_{111111} C^{5}\right) .
\end{align*}
$$

Using Propositions 3.5.1 and 3.5.2 we have

$$
\begin{aligned}
\hat{m}_{111111}= & \frac{1}{2903040} k(k-1)(k-2)(k-3)(k-4)(k-5)(k-6) \\
& \cdot\left(63 k^{5}-315 k^{4}+315 k^{3}+91 k^{2}-42 k-16\right) \\
\hat{m}_{21111}= & \frac{1}{241920} k(k-1)(k-2)(k-3)(k-4)(k-5) \\
& \cdot\left(210 k^{5}-945 k^{4}+868 k^{3}+273 k^{2}-118 k-48\right) \\
\hat{m}_{3111}= & \frac{1}{20160} k(k-1)(k-2)(k-3)(k-4) \\
& \cdot\left(105 k^{5}-399 k^{4}+315 k^{3}+123 k^{2}-44 k-20\right) \\
\hat{m}_{222}= & \frac{1}{45360} k(k-1)(k-2)(k-3)(2 k-1)(2 k-3)(2 k-5)\left(35 k^{2}+21 k+4\right) \\
\hat{m}_{51}= & \frac{1}{168} k(k-1)(k-2)\left(14 k^{5}-38 k^{4}+19 k^{3}+14 k^{2}-3 k-2\right) \\
\hat{m}_{321}= & \frac{1}{2520} k(k-1)(k-2)(k-3) \\
& \cdot\left(105 k^{5}-378 k^{4}+279 k^{3}+113 k^{2}-39 k-20\right) \\
\hat{m}_{2211}= & \frac{1}{60480} k(k-1)(k-2)(k-3)(k-4) \\
& \cdot\left(420 k^{5}-1736 k^{4}+1477 k^{3}+494 k^{2}-205 k-90\right) \\
\hat{m}_{33}= & \frac{1}{672} k(k-1)(k-2)\left(21 k^{5}-69 k^{4}+45 k^{3}+21 k^{2}-6 k-4\right) \\
\hat{m}_{42}= & \frac{1}{1260} k(k-1)(k-2)(2 k-1)(2 k-3)\left(21 k^{3}-24 k^{2}-22 k-5\right) \\
\hat{m}_{6}= & \frac{1}{42} k(2 k-1)(k-1)\left(3 k^{4}-6 k^{3}+3 k+1\right) \\
\hat{m}_{411}= & \frac{1}{5040} k(k-1)(k-2)(k-3) \\
& \cdot\left(126 k^{5}-399 k^{4}+258 k^{3}+134 k^{2}-39 k-20\right) .
\end{aligned}
$$

Substituting these monomial symmetric functions into (3.33) and simplifying gives the desired result.

We see from the above proof that $P_{i}(z)$ becomes substantially more difficult to compute as we increase i.

We end this section with an observation that may seem trivial in light of Theorems 3.5.7 and 3.5.12 (or simply Theorem 3.4.1); we shall, however, find it useful in the next chapter.

Theorem 3.5.13. For $k \geq 1$,

$$
\Sigma_{k, 2 n}=\sum_{\substack{i_{1}, i_{2}, \ldots, i_{2 n-1} \geq 0 \\ i_{1}+i_{2}+\ldots+i_{2 n-1}=k+1-2 n}} \gamma_{i_{1}, i_{2}, \ldots, i_{2 n-1}} C_{i_{1}} \cdot C_{i_{2}} \cdots C_{i_{2 n-1}}
$$

where the C_{t} are given in (3.24) and the γ 's are rational. In particular, $\Sigma_{k, 2 n}$ is C-positive (and, consequently, R-positive) if all $\gamma_{i_{1}, i_{2}, \ldots, i_{2 n-1}}$ are positive.

3.5.4 The Linear Terms

Previously, for $n \geq 1$, only one explicit result was known; the following result for the linear coefficients is due to Biane [1] and Stanley [29]. What follows is an original proof based on the results of the last section.

Theorem 3.5.14 (Biane, Stanley). For $n \geq 1, k \geq 2 n-1$, the coefficient of $R_{k+1-2 n}$ in $\Sigma_{k, 2 n}$ is equal to the number of k-cycles c in \mathfrak{S}_{k} such that $(1 \ldots k) c$ has $k-2 n$ cycles.

Proof. For $i \geq 1$, let $A^{(i)}(z)$ consist of the terms in $P_{i}(z)$ that are linear in the C_{m} 's. Also, let $L_{n, k}=\left[R_{k+1-2 n}\right] \Sigma_{k, 2 n}$. We apply Theorem 3.4.3 to determine $L_{n, k}$. From (3.24), we have

$$
\begin{aligned}
L_{n, k} & =\left[\frac{C_{k+1-2 n}}{k-2 n}\right] \Sigma_{k, 2 n}=\left[\frac{C_{k+1-2 n}}{k-2 n}\right] \Sigma_{k} \\
& =-\frac{1}{k}\left[\frac{C_{k+1-2 n}}{k-2 n} z^{k+1}\right] \frac{1}{C(z)} \prod_{j=1}^{k-1}\left(1-j z+\sum_{i \geq 1} j^{i} A^{(i)}(z) z^{i}\right) \\
& =-\frac{1}{k}\left[\frac{C_{k+1-2 n}}{k-2 n} z^{k+1}\right] \frac{1}{C(z)}\left(\prod_{j=1}^{k-1}\left(1+\sum_{i \geq 1} \frac{j^{i} A^{(i)}(z) z^{i}}{1-j z}\right)\right) \prod_{a=1}^{k-1}(1-a z) \\
& =-\frac{1}{k}\left[\frac{C_{k+1-2 n}}{k-2 n} z^{k+1}\right]\left(1-C(z)+\sum_{j=1}^{k-1} \sum_{i \geq 1} \frac{j^{i} A^{(i)}(z) z^{i}}{1-j z}\right) \prod_{a=1}^{k-1}(1-a z) .
\end{aligned}
$$

But, for $i \geq 1$,

$$
A^{(i)}(z)=-\frac{1}{i!}(D+(i-2) I) \ldots(D+I) D C(z)=-\sum_{m \geq 2}\binom{-(m-1)}{i}(-1)^{i} \frac{C_{m}}{m-1} z^{m} .
$$

Now let $\frac{C_{m}}{m-1}=x^{m-1}, m \geq 2$, which gives

$$
\begin{aligned}
\sum_{i \geq 1} j^{i} A^{(i)}(z) z^{i} & =-\sum_{m \geq 2}\left((1-j z)^{-(m-1)}-1\right) x^{m-1} z^{m} \\
& =-\frac{z}{1-\frac{x z}{1-j z}}+\frac{z}{1-x z^{\prime}}
\end{aligned}
$$

and

$$
1-C(z)=-\sum_{m \geq 2}(m-1) x^{m-1} z^{m}=-\frac{z}{(1-x z)^{2}}+\frac{z}{1-x z}
$$

Thus we obtain

$$
\begin{array}{r}
L_{n, k}=\frac{1}{k}\left[x^{k-2 n} z^{k+1}\right]\left(\frac{z}{(1-x z)^{2}}-\frac{z}{1-x z}+\sum_{j=1}^{k-1}\left(\frac{z}{1-(j+x) z}-\frac{z}{(1-j z)(1-x z)}\right)\right) \\
\cdot \prod_{a=1}^{k-1}(1-a z) .
\end{array}
$$

We now finish the proof using the method of Biane [1, Theorem 6.1]: Replace z by z^{-1}, and multiply by z^{k}, to obtain
$L_{n, k}=\frac{1}{k}\left[x^{k-2 n}\right]\left[z^{-1}\right]_{\infty}(z)_{k}\left(\frac{z}{(z-x)^{2}}-\frac{1}{z-x}+\sum_{j=1}^{k-1}\left(\frac{1}{z-j-x}-\frac{z}{(z-j)(z-x)}\right)\right)$.
Using Proposition 2.5.1, in the previous equation we may substitute $z+c$ for z, where c is independent of z. Thus, substituting $z+j+x$ for z in the first term of the summation over j, and substituting $z+x$ for z in all other terms, we obtain

$$
\begin{align*}
L_{n, k} & =\frac{1}{k}\left[x^{k-2 n}\right]\left([z](z+x)(z+x)_{k}-(x)_{k}+\sum_{j=1}^{k-1}\left((x+j)_{k}-\frac{x(x)_{k}}{x-j}\right)\right) \tag{3.34}\\
& =\frac{1}{k}\left[x^{k-2 n}\right] \sum_{j=0}^{k-1}(x+j)_{k} . \tag{3.35}
\end{align*}
$$

The rest of the proof is found in Biane [1]; there, however, the proof is very brief, so we include a more complete version here.

For any partition $\lambda \vdash k$ consider the generating series

$$
\begin{equation*}
Q_{\lambda}(x)=\prod_{u \in \lambda}(x+c(u)) \tag{3.36}
\end{equation*}
$$

as well as the series

$$
T_{k}(x, y)=\frac{1}{k!} \sum_{\lambda \vdash k} f^{\lambda} \chi_{\lambda}\left(c_{k}\right) Q_{\lambda}(x) Q_{\lambda}(y)
$$

where c_{k} is the k-cycle. By Theorem 2.2 .8 series $Q_{\lambda}(x)$ satisfies

$$
\begin{aligned}
Q_{\lambda}(x) & =\sum_{\sigma \in \mathfrak{S}_{k}} \frac{\chi_{\lambda}(\sigma)}{f^{\lambda}} x^{\ell(\sigma)} \\
& =\sum_{\beta \vdash k} \frac{\left|C_{\beta}\right|}{f^{\lambda}} \chi_{\lambda}(\beta) x^{\ell(\beta)},
\end{aligned}
$$

where, from Section 2.2.1, the set C_{β} is the conjugacy class in \mathfrak{S}_{n} of elements associated with the partition β and f^{λ} is the degree of χ_{λ}. Thus, we have

$$
\begin{align*}
T_{k}(x, y) & =\frac{1}{k!} \sum_{\lambda \vdash k} \sum_{\alpha \vdash k} \sum_{\beta \vdash k} f^{\lambda} \chi_{\lambda}\left(c_{k}\right) \frac{\left|C_{\alpha}\right|}{f^{\lambda}} \chi_{\lambda}(\alpha) \frac{\left|C_{\beta}\right|}{f^{\lambda}} \chi_{\lambda}(\beta) \\
& =\sum_{\alpha, \beta \vdash k} x^{\ell(\alpha)} y^{\ell(\beta)} \frac{\left|C_{\alpha}\right|\left|C_{\beta}\right|}{k!} \sum_{\lambda \vdash k} \frac{1}{f^{\lambda}} \chi_{\lambda}\left(c_{k}\right) \chi_{\lambda}(\alpha) \chi_{\lambda}(\beta) . \tag{3.37}
\end{align*}
$$

But, from (2.3), Section 2.1.1, we have

$$
c_{\alpha, \beta}^{\gamma}=\left[K_{\gamma}\right] K_{\alpha} K_{\beta}=\frac{\left|C_{\alpha}\right|\left|C_{\beta}\right|}{k!} \sum_{\lambda \vdash k} \frac{1}{f^{\lambda}} \chi_{\lambda}(\gamma) \chi_{\lambda}(\alpha) \chi_{\lambda}(\beta) .
$$

Therefore, it follows from (3.37) that

$$
T_{k}(x, y)=\sum_{\alpha, \beta \vdash k} c_{\alpha, \beta}^{c_{k}} x^{\ell(\alpha)} y^{\ell(\beta)}
$$

which gives

$$
\begin{equation*}
T_{k}(x, y)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\ell\left(\sigma^{-1} c_{k}\right)} y^{\ell(\sigma)} \tag{3.38}
\end{equation*}
$$

To prove the final result, we find the coefficient of $x^{k-2 n} y$ of the left hand side and the right hand side of (3.38).

We first find the coefficient of the left hand side of (3.38). Note that $\chi_{\lambda}\left(c_{k}\right)=$ 0 unless $\lambda=\left(k-i 1^{i}\right)$; that is, $\chi_{\lambda}\left(c_{k}\right)$ is 0 unless λ is a hook. When λ is the hook $\left(k-i 1^{i}\right)$, the character $\chi_{\lambda}\left(c_{k}\right)=(-1)^{i}$ (this is a direct consequence of the Murnaghan-Nakayama rule, Theorem 2.3.1). Thus, from (3.36), when λ is the hook ($k-i 1^{i}$) we have

$$
\begin{aligned}
Q_{\lambda}(x) & =\prod_{u \in \lambda}(x+c(u)) \\
& =(x-1) \cdots(x-i) \cdot x \cdot(x+1) \cdots(x+k-i-1) \\
& =(x+k-i-1)_{k} .
\end{aligned}
$$

The degree $f^{\left(k-i 1^{i}\right)}$ of the hook λ can be computed as follows. By Theorem 2.2.1, the degree $f^{\left(k-i 1^{i}\right)}$ is the number of SYT of the hook $\left(k-i 1^{i}\right)$, which is clearly $\binom{k-1}{i}$.

Thus, we obtain

$$
\begin{aligned}
{[y] \frac{1}{k!} Q_{\lambda}(y) } & =[y] \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \frac{\chi_{\lambda}(\sigma)}{f^{\lambda}} y^{\ell(\sigma)} \\
& =\sum_{\substack{\sigma \in \mathfrak{S}_{k} \\
\ell(\sigma)=1}} \frac{\chi_{\lambda}(\sigma)}{f^{\lambda}} \\
& =\frac{1}{k!} \frac{(-1)^{i}}{\binom{k-1}{i}}(k-1)! \\
& =\frac{1}{k} \frac{(-1)^{i}}{\binom{k-1}{i}} .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
{\left[x^{k-2 n} y\right] T_{k}(x, y) } & =\left[x^{k-2 n} y\right] \frac{1}{k!} \sum_{\lambda \vdash k} f^{\lambda} \chi_{\lambda}\left(c_{k}\right) Q_{\lambda}(x) Q_{\lambda}(y) \\
& =\left[x^{k-2 n}\right] \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}(x+k-j-1)_{k} \frac{1}{k} \frac{(-1)^{j}}{\binom{k-1}{j}} \\
& =\left[x^{k-2 i}\right] \frac{1}{k} \sum_{j=0}^{k-1}(x+j)_{k} .
\end{aligned}
$$

But, from (3.35), this is the coefficient of the linear term $\left[R_{k+1-2 i}\right] \Sigma_{k}$. Now, the right hand side of (3.38) is

$$
\begin{aligned}
{\left[x^{k-2 n} y\right] \sum_{\sigma \in \mathfrak{S}} x^{\ell\left(\sigma^{-1} c_{k}\right)} y^{\ell(\sigma)} } & =\left[x^{k-2 n}\right] \sum_{\substack{\sigma \in \mathfrak{S} \\
\ell(\sigma)=1}} x^{\ell\left(\sigma^{-1} c_{k}\right)} \\
& =\sum_{\substack{\sigma \in \mathfrak{G}_{k} \\
\ell(\sigma)=1, \ell\left(\sigma^{-1} c_{k}\right)=k-2 n}} 1,
\end{aligned}
$$

completing the proof.

3.6 Lagrange Inversion and the Proof of the Main Result

As a first step, we translate Corollary 3.3 .12 into formal power series, using the notation

$$
\begin{equation*}
\phi(x)=x G\left(x^{-1}\right), \quad \Phi(x, u)=\sum_{i \geq 0} \Phi_{i}(x) u^{i}=(1-u x) \phi\left(x(1-u x)^{-1}\right) \tag{3.39}
\end{equation*}
$$

where $G(x)$ is defined in (3.21).
Proposition 3.6.1. The following two equations hold.

1. For $k \geq 1$,

$$
\begin{equation*}
\Sigma_{k}=-\frac{1}{k}\left[x^{k+1}\right] \prod_{j=0}^{k-1} \Phi(x, j) \tag{3.40}
\end{equation*}
$$

2. For $k, n \geq 1$,

$$
\begin{equation*}
\Sigma_{k, 2 n}=-\frac{1}{k}\left[u^{2 n} x^{k+1}\right] \prod_{j=0}^{k-1} \Phi(x, j u) \tag{3.41}
\end{equation*}
$$

Proof. For (3.40), we first replace x by x^{-1} in Corollary 3.3.12, to obtain

$$
\Sigma_{k}=-\frac{1}{k}\left[x^{k+1}\right] \prod_{j=0}^{k-1} x G\left(x^{-1}(1-j x)\right)
$$

and the result follows immediately.
For (3.41), we let ϑ be the substitution operator $R_{i} \mapsto u^{i} R_{i}, i \geq 2$. Then, from (3.23), we have

$$
\begin{equation*}
\Sigma_{k, 2 n}=\left[u^{k+1-2 n}\right] \vartheta \Sigma_{k} . \tag{3.42}
\end{equation*}
$$

Now, from (3.21), we have

$$
\vartheta F(x)=\frac{x}{\vartheta R(x)}=\frac{x}{R(u x)}=\frac{1}{u} F(u x) .
$$

Applying ϑ to both sides of the equation $F\left(F^{\langle-1\rangle}(x)\right)=x$ we obtain

$$
\begin{aligned}
x & =\vartheta F\left(\vartheta F^{\langle-1\rangle}(x)\right) \\
& =\frac{1}{u} F\left(u \vartheta F^{\langle-1\rangle}(x)\right)
\end{aligned}
$$

implying

$$
\vartheta F^{\langle-1\rangle}(x)=\frac{1}{u} F^{\langle-1\rangle}(u x) .
$$

Thus, combining this with (3.21) and (3.39), we obtain

$$
\vartheta \phi(x)=x \vartheta G\left(x^{-1}\right)=\frac{x}{\vartheta F^{\langle-1\rangle}(x)}=\frac{u x}{F^{\langle-1\rangle}(u x)}=\phi(u x),
$$

and then

$$
\vartheta \Phi(x, j)=(1-j x) \phi\left(u x(1-j x)^{-1}\right)=\Phi\left(u x, j u^{-1}\right) .
$$

Combining this with (3.42) and (3.40) gives

$$
\Sigma_{k, 2 n}=-\frac{1}{k}\left[u^{k+1-2 n} x^{k+1}\right] \prod_{j=0}^{k-1} \Phi\left(u x, j u^{-1}\right)
$$

and (3.41) now follows, by substituting first $x=x u^{-1}$, and then $u=u^{-1}$.
Next, we give an expression for the coefficients $\Phi_{i}, i \geq 0$, defined in (3.39).
Proposition 3.6.2. For $i \geq 0$,

$$
\begin{equation*}
\Phi_{i}(x)=\frac{x}{i!}\left(x^{2} \frac{d}{d x}\right)^{i} \frac{\phi(x)}{x} . \tag{3.43}
\end{equation*}
$$

Note that for $i=0$, this specializes to $\Phi_{0}(x)=\phi(x)$.

Proof. From (3.21) and (3.39), we have

$$
\phi(x)=1+\sum_{j \geq 2} \phi_{j} x^{j}
$$

where $\phi_{j}, j \geq 2$ are polynomials in the R_{i} 's. For $i=0$, we have $\Phi_{0}(x)=\Phi(x, 0)=$ $\phi(x)$. For $i \geq 1$, we have

$$
\begin{aligned}
\Phi_{i}(x) & =\left[u^{i}\right] \Phi(x, u)=\left[u^{i}\right]\left(1-u x+\sum_{j \geq 2} \phi_{j} x^{j}(1-u x)^{1-j}\right) \\
& =-\binom{1}{i} x+\sum_{j \geq 2} \phi_{j}\binom{j+i-2}{i} x^{j+i} \\
& =\frac{x}{i!}\left(x^{2} \frac{d}{d x}\right)^{i}\left(\frac{1}{x}+\sum_{j \geq 2} \phi_{j} x^{j-1}\right),
\end{aligned}
$$

and the result follows.
We consider the functional equation

$$
\begin{equation*}
w=z \phi(w), \tag{3.44}
\end{equation*}
$$

where ϕ is given by (3.39). Then from (3.21) and (3.39), we have

$$
w=z w G\left(w^{-1}\right)=\frac{z w}{F^{\langle-1\rangle}(w)},
$$

so $F^{\langle-1\rangle}(w)=z$, and from (3.21) we deduce that

$$
\begin{equation*}
z=w R(z) . \tag{3.45}
\end{equation*}
$$

We now relate the series $C(z)$ and differential operator D of Section 2 to the variable w.

Proposition 3.6.3.

$$
\begin{align*}
& \frac{D w}{w}=\frac{1}{R(z) C(z)} \tag{3.46}\\
& w^{2} \frac{d}{d w}=z C(z) D \tag{3.47}
\end{align*}
$$

Proof. From (3.24) and 3.21, we obtain

$$
\begin{equation*}
C(z)=\frac{1}{-z D \frac{R(z)}{z}} \tag{3.48}
\end{equation*}
$$

But

$$
\frac{D w}{w}=-w D \frac{1}{w}=-\frac{z}{R(z)} D \frac{R(z)}{z}
$$

from 3.45, and result (3.46) follows.
Now, (3.46) gives the operator identity

$$
w \frac{d}{d w}=R(z) C(z) D
$$

and multiplying by w and using (3.45), we obtain result (3.47).
Proof of Theorem 3.4.1. For a partition λ, let $\Phi_{\lambda}(x)=\prod_{j=1}^{l(\lambda)} \Phi_{\lambda_{j}}(x)$. Then from 3.41 and 3.43 , we have

$$
\begin{aligned}
\Sigma_{k, 2 n} & =-\frac{1}{k}\left[x^{k+1}\right] \sum_{\lambda \vdash 2 n} \hat{m}_{\lambda} \Phi_{\lambda}(x) \phi(x)^{k-l(\lambda)} \\
& =-\frac{1}{k}\left[x^{k+1}\right] \sum_{\lambda \vdash 2 n} \hat{m}_{\lambda} \frac{\Phi_{\lambda}(x)}{\phi(x)^{l(\lambda)+1}} \phi(x)^{k+1} \\
& =-\frac{1}{k}\left[z^{k+1}\right] \sum_{\lambda \vdash 2 n} \hat{m}_{\lambda} \frac{1}{R(z) C(z)} \frac{\Phi_{\lambda}(w)}{\phi(w)^{l(\lambda)+1}}
\end{aligned}
$$

where the last equality follows from Theorem 2.4.2.a and (3.46). But, from 3.43), (3.44) and (3.47), for $i \geq 1$ we have

$$
\begin{aligned}
\frac{\Phi_{i}(w)}{\phi(w)} & =\frac{1}{i!} \frac{w}{\phi(w)}\left(w^{2} \frac{d}{d w}\right)^{i} \frac{\phi(w)}{w} \\
& =\frac{z}{i!}(z C(z) D)^{i-1} z C(z) D \frac{1}{z} \\
& =-\frac{z}{i!}(z C(z) D)^{i-1} C(z)
\end{aligned}
$$

Finally, we prove by induction on $i \geq 1$ that

$$
-\frac{1}{i!}(z C(z) D)^{i-1} C(z)=z^{i-1} P_{i}(z)
$$

where $P_{i}(z)$ is defined in Section 2. The result is clearly true for $i=1$. For the induction step, we have

$$
\begin{aligned}
-\frac{1}{(i+1)!}(z C(z) D)^{i} C(z) & =\frac{1}{i+1} z C(z) D z^{i-1} P_{i}(z) \\
& =\frac{1}{i+1}\left(z^{i} C(z) D+(i-1) z^{i} C(z) I\right) P_{i}(z) \\
& =z^{i} P_{i+1}(z)
\end{aligned}
$$

as required. Together, these results give

$$
\frac{\Phi_{i}(w)}{\phi(w)}=z^{i} P_{i}(z)
$$

so

$$
\frac{\Phi_{\lambda}(w)}{\phi(w)^{l(\lambda)+1}}=z^{2 n} \frac{P_{\lambda}(z)}{\phi(w)},
$$

since $\lambda \vdash 2 n$, and the result follows from (3.44) and (3.45).
Proof of Theorem 3.4.2. In the proof of Theorem 3.4.1, the term in $\Sigma_{k, 2 n}$ corresponding to the partition with the single part $2 n$ can be treated in the following modified way. We obtain

$$
\begin{aligned}
-\frac{1}{k}\left[x^{k+1}\right] \hat{m}_{2 n} \Phi_{2 n}(x) \phi(x)^{k-1} & =-\frac{1}{k}\left[x^{k-2}\right] \hat{m}_{2 n} x^{-3} \Phi_{2 n}(x) \phi(x)^{k-1} \\
& =-\frac{1}{k}\left[x^{k-2}\right] \hat{m}_{2 n} x^{-3} \frac{x}{(2 n)!} x^{2} \frac{d}{d x}\left(x^{2} \frac{d}{d x}\right)^{2 n-1} \\
& . \frac{\phi(x)}{x} \phi(x)^{k-1} \\
& =-\frac{k-1}{k}\left[z^{k-1}\right] \hat{m}_{2 n} \frac{1}{(2 n)!}\left(w^{2} \frac{d}{d w}\right)^{2 n-1} \frac{\phi(w)}{w},
\end{aligned}
$$

from Theorem 2.4.2.b, and the result follows as in the above proof of Theorem 3.4.1

Chapter 4

Stanley's Character Polynomials

In this chapter we explore expressions for the normalized characters in terms of polynomials introduced by Stanley [28]. We shall see that there are some connections between the polynomials in this chapter and Kerov's polynomials. In particular, we show that there are positivity conjectures for Stanley's polynomials whose proofs follow from the positivity results we have thus far obtained for Kerov's polynomials; we end the chapter by showing a strong connection between positivity of Kerov's polynomials and positivity of Stanley's polynomials in general.

In Section 4.1, we give the "rectangular shape" version of Stanley's polynomials. The main theorem in this case was introduced in Chapter 1 in (1.2) and is also found below in Theorem 4.1.1. This particular expression for the rectangular character connects it to permutation factorizations. We devote all of Section 4.1 to this rectangular case. The new proof of this result promised in Chapter 1 is at the end of this section in Section 4.1.2. As mentioned earlier, we make use of shift symmetric functions, and we give a brief account of these in Section 4.1.1. Finally, Sections 4.2 and 4.3 deal with the general case of non-rectangular shapes. In particular, in the general case Stanley conjectures a certain kind of positivity (here we have called this \mathbf{p}, \mathbf{q}-positivity) for a particular form of his polynomials. We are able to prove that the terms of highest degree in Stanley's polynomials are $\mathbf{p}, \mathbf{q}-$ positive and, furthermore, using results from Chapter 3. we are able to prove that \mathbf{p}, \mathbf{q}-positivity holds for the terms of second and third highest degrees, all of which are new results. As in the case of Kerov's polynomials we are, unfortunately, unable to show positivity in general. As mentioned above, however, we are able to show a strong connection between positivity of Kerov's polynomials (specifically C-positivity) and $\mathbf{p}, \mathbf{q}-$ positivity for Stanley's polynomials.

4.1 Stanley's Polynomials for Rectangular Shapes

As in Chapter 3, in this chapter we shall discuss expressions for the normalized characters $\widehat{\chi}_{\omega}$. We begin with a specific two variable case of Stanley's results - as they have a particularly simple form - and discuss the general form later.

We begin with the character $\widehat{\chi} \omega$ when ω has the rectangular shape of p parts, all equal to q. We denote this shape by $p \times q$. The following theorem can be found in Stanley [28].

Theorem 4.1.1 (Stanley). Suppose that $p \times q \vdash n$ and $\mu \vdash k$ for $k \leq n$. Let λ_{μ} be any fixed permutation in the conjugacy class indexed by μ in \mathfrak{S}_{k}. Then,

$$
\widehat{\chi}_{p \times q}\left(\mu 1^{n-k}\right)=(-1)^{k} \sum_{\substack{u, v \\ u v=\lambda_{\mu}}} p^{\ell(u)}(-q)^{\ell(v)} .
$$

This result can be written in terms of the connection coefficients of the symmetric group, given in (2.2); Theorem 4.1.1 then becomes

$$
\widehat{\chi}_{\omega}\left(\mu 1^{n-k}\right)=(-1)^{k} \sum_{u, v \vdash k} c_{u, \nu}^{\mu} p^{\ell(u)}(-q)^{\ell(v)} .
$$

Stanley's proof of this involves a combination of results; results about certain tableaux, the Murnaghan-Nakayama rule, Theorem 2.3.1, and the following symmetric function identity

$$
\sum_{\omega \vdash k} H_{\omega} s_{\omega}(x) s_{\omega}(y) s_{\omega}(z)=\sum_{\omega \vdash k} p_{\omega}(x) p_{\omega}(y) p_{\omega}(z)
$$

which appears in Hanlon et al. [14]. Here, we present an original proof with the aim of making the result more transparent and, in addition, of showing more connections between what are known as shift symmetric functions and the normalized character $\widehat{\chi}_{\omega}$ (we shall see that there is already a known relationship between these objects). Sections 4.1.1 gives the necessary background for this proof.

4.1.1 A Brief Account of Shift Symmetric Functions

In Section 2.2, on page 10, we have given the formal definition of a symmetric function $f \in \Lambda$ as the limit of functions f_{1}, f_{2}, \ldots where $f_{i} \in \Lambda(i)$. In a similar manner, we can define the shift symmetric algebra $\Lambda^{*}(n)$ as the set of series in n variables that are shift symmetric; that is, the algebra $\Lambda^{*}(n)$ is the set of series f in n
variables $x_{1}, x_{2}, \ldots, x_{n}$ such that f is symmetric in the new variables

$$
x_{i}^{\prime}=x_{i}-i .
$$

Finally, define the algebra Λ^{*} of shift symmetric functions as the limit

$$
\Lambda^{*}=\underset{\leftrightarrows}{\lim } \Lambda^{*}(n) .
$$

Just as the ordinary Schur polynomials $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be defined as

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}}
$$

we can analogously define shift Schur polynomials $s_{\lambda}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by

$$
s_{\lambda}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\left(x_{i}+n-i\right)_{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(\left(x_{i}\right)_{n-j}\right)_{1 \leq i, j \leq n}}
$$

Finally, the shift Schur functions, denoted by $s_{\lambda}^{*} \in \Lambda^{*}$ are defined as the limit of the sequence $\left(s_{\lambda}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)_{n \geq 1}$. Furthermore, recall from Theorem 2.2.4 that the power sum symmetric functions p_{μ} can be written as a linear combination of Schur functions by

$$
p_{\mu}=\sum_{\rho \vdash k} \chi_{\rho}(\mu) s_{\rho},
$$

where μ is a partition of k. Analogous to this we define the p-sharp shift symmetric functions p_{μ}^{\sharp} by

$$
p_{\mu}^{\sharp}=\sum_{\rho \vdash k} \chi_{\rho}(\mu) s_{\rho}^{*}
$$

(see Okounkov and Olshanski [22, Section 1] for more details).
The following result connects shift symmetric functions and the normalized characters $\widehat{\chi}$, and can be found in Okounkov and Olshanski [22, (15.21)].

Theorem 4.1.2 (Okounkov, Olshanski). Suppose that $\mu \vdash k$ and $\lambda \vdash n$, with $k \leq n$. Then

$$
p_{\mu}^{\sharp}(\lambda)=\widehat{\chi}_{\lambda}\left(\mu 1^{n-k}\right) .
$$

The following theorem gives a combinatorial interpretation to shift Schur functions; it is also found in Okounkov and Olshanski [22, Theorem 11.1]. For any
shape μ, a reverse tableau of shape μ is a function T : boxes of $\mu \mapsto \mathbb{P}$, where \mathbb{P} is the set of positive integers, such that T is weakly decreasing along the rows of μ and strongly decreasing along the columns of μ. We denote by $\operatorname{RTab}(\mu)$ the set of reverse tableau of shape μ.

Theorem 4.1.3 (Okounkov, Olshanski). For $\lambda \in \mathcal{P}$,

$$
s_{\lambda}^{*}=\sum_{T \in \operatorname{RTab}(\mu)} \prod_{u \in \mu}\left(x_{T(u)}-c(u)\right),
$$

where $T(u)$ is the value assigned to the box u by the tableau T and, again, $c(u)$ is the content of the box u.

4.1.2 Proof of Theorem 4.1.1

We are now ready to give a proof of Theorem 4.1.1.
Proof of Theorem 4.1.1. As a first step to this proof, for a partition $\lambda \vdash k$ we evaluate $s_{\lambda}^{*}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ with $x_{i}=q$ for $1 \leq i \leq p$; that is, we compute the evaluation $s_{\lambda}^{*}(p \times q)$. Using Theorem 4.1.3 we obtain

$$
\begin{align*}
s_{\lambda}^{*}(p \times q) & =\left.\sum_{T \in \operatorname{RTab}(\lambda)} \prod_{u \in \lambda}\left(x_{T(u)}-c(u)\right)\right|_{\left(x_{1}, \ldots, x_{p}\right)=(q, \ldots, q)} \\
& =\sum_{T \in \operatorname{RTab}(\lambda)} \prod_{u \in \lambda}(q-c(u)) \\
& =\left.(-1)^{k} \prod_{u \in \lambda}(-q+c(u)) \sum_{T \in \operatorname{RTab}(\lambda)} 1\right|_{\left(x_{1}, \ldots, x_{p}\right)=(q, \ldots, q)} . \tag{4.1}
\end{align*}
$$

The number of $\operatorname{RTab}(\lambda)$ is clearly the number of SSYT of shape λ filled with only numbers $1,2, \ldots, p$, which is $s_{\lambda}\left(1^{p}\right)$ from (2.4). Thus, from (4.1) above and Theorem 2.2.6 in Section 2.2, we have

$$
\begin{aligned}
s_{\lambda}^{*}(p \times q) & =(-1)^{k} \prod_{u \in \lambda}(-q+c(u)) s_{\lambda}\left(\mathbf{1}^{\mathbf{p}}\right) \\
& =\frac{(-1)^{k}}{H_{\lambda}} \prod_{u \in \lambda}(-q+c(u))(p+c(u)) .
\end{aligned}
$$

Therefore, from Theorem 4.1.2 and Theorem 2.2.8 we have

$$
\begin{aligned}
\widehat{\chi}_{p \times q}\left(\mu 1^{n-k}\right) & =\sum_{\lambda \vdash k} \chi_{\lambda}(\mu) s_{\lambda}^{*}(p \times q) \\
& =(-1)^{k} \sum_{\lambda \vdash k} \frac{\chi_{\lambda}(\mu)}{H_{\lambda}} \prod_{u \in \lambda}(-q+c(u))(p+c(u)) \\
& =(-1)^{k} \sum_{\alpha, \beta, \lambda \vdash k} \frac{\chi_{\lambda}(\mu)}{H_{\lambda}} \frac{\left|C_{\alpha}\right|}{f^{\lambda}} \chi_{\lambda}(\alpha) p^{\ell(\alpha)} \frac{\left|C_{\beta}\right|}{f^{\lambda}} \chi_{\lambda}(\beta)(-q)^{\ell(\beta)} \\
& =(-1)^{k} \sum_{\alpha, \beta, \vdash-k} p^{\ell(\alpha)}(-q)^{\ell(\beta)} \frac{\left|C_{\alpha}\right|\left|C_{\beta}\right|}{k!} \sum_{\lambda \vdash k} \frac{1}{f^{\lambda}} \chi_{\lambda}(\alpha) \chi_{\lambda}(\beta) \chi_{\lambda}(\mu) \\
& =(-1)^{k} \sum_{\alpha, \beta \vdash k} p^{\ell(\alpha)}(-q)^{\ell(\beta)} c_{\alpha, \beta^{\prime}}^{\mu}
\end{aligned}
$$

where the third equality follows from Theorem 2.2 .7 in Section 2.2, and the last equality follows from (2.3). This completes the proof.

4.2 Generalizations to Non-Rectangular Shapes

In the previous section we gave a polynomial form for the normalized character $\widehat{\chi}_{\omega}\left(\mu 1^{n-k}\right)$ when the shape ω is a rectangle. Naturally, there is an analogous question for arbitrary shapes σ. To consider that question, let σ be the shape with p_{i} parts of size q_{i}, for i from 1 to m and where q_{1} is the size of the largest part (see Figure 4.1]. Thus, $p_{1}, p_{2}, \ldots, p_{m}$ are positive integers and $q_{1}>q_{2}>\cdots>q_{m}$. We denote the partition σ with the notation $\mathbf{p} \times \mathbf{q}$. Define the function F_{k} in indeterminates $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{m}$ by

$$
\begin{equation*}
F_{k}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, q_{2}, \ldots, q_{m}\right)=\widehat{\chi}_{\mathbf{p} \times \mathbf{q}}\left(k 1^{n-k}\right) \tag{4.2}
\end{equation*}
$$

We often denote $\left(p_{1}, \ldots, p_{m}\right)$ by \mathbf{p} and $\left(q_{1}, \ldots, q_{m}\right)$ by \mathbf{q}, giving us the notation $F_{k}(\mathbf{p} ; \mathbf{q})$ for $F_{k}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, q_{2}, \ldots, q_{m}\right)$. The following theorem with proof appears in Stanley [28, Proposition 1].

Theorem 4.2.1 (Stanley). $F_{k}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, q_{2}, \ldots, q_{m}\right)$ is a polynomial in the p^{\prime} s and q 's such that $F_{k}(1,1, \ldots, 1 ;-1,-1, \ldots,-1)=(k+m-1)_{k}$.

In light of this theorem, we call the polynomials in (4.2) Stanley's character polynomials. Note that the rectangular case of Theorem 4.1.1 is the case $m=1$ in (4.2). We emphasize that Stanley's proof below also uses Frobenius' Theorem 3.3.9, just as the proof of Theorem 3.4.1.

Figure 4.1: The shape $\mathbf{p} \times \mathbf{q}$.

Proof (Stanley). Using Frobenius' formula (3.15) with $\lambda=\mathbf{p} \times \mathbf{q}$ and μ and θ defined as in (3.16), we obtain

$$
\begin{align*}
F_{k}(\mathbf{p} ; \mathbf{q}) & =-\frac{1}{k}\left[z^{-1}\right]_{\infty}(z)_{k} \frac{\theta(z-k)}{\theta(z)} \\
& =-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{(z)_{k} \prod_{i=1}^{m}\left(z-\left(q_{i}+p_{i}+p_{i+1}+\cdots+p_{m}\right)\right)_{k}}{\prod_{i=1}^{m}\left(z-\left(q_{i}+p_{i+1}+p_{i+2}+\cdots+p_{m}\right)\right)_{k}} \tag{4.3}
\end{align*}
$$

where the last equation is obtained by cancelling common factors (similar to the proof of Lemma 3.3.10 where the only surviving factors were corners). Since

$$
\frac{1}{z-a}=\frac{1}{z}+\frac{a}{z^{2}}+\frac{a^{2}}{z^{3}} \ldots
$$

it follows that $F_{k}(\mathbf{p} ; \mathbf{q})$ is a polynomial in the p^{\prime} s and q^{\prime} s. To show that it has integer coefficients we can, equivalently, show that

$$
\left[z^{-1}\right]_{\infty} \frac{(z)_{k} \prod_{i=1}^{m}\left(z-\left(q_{i}+p_{i}+p_{i+1}+\cdots+p_{m}\right)\right)_{k}}{\prod_{i=1}^{m}\left(z-\left(q_{i}+p_{i+1}+p_{i+2}+\cdots+p_{m}\right)\right)_{k}}
$$

is divisible by k. Note that it is clear that

$$
(z)_{k} \frac{\theta(z-k)-\theta(z)}{\theta(z)}
$$

is divisible by k, implying that

$$
(z)_{k} \frac{\theta(z-k)}{\theta(z)} \equiv(z)_{k}(\bmod k) .
$$

Finally, we have

$$
\left[z^{-1}\right]_{\infty}(z)_{k}=0,
$$

proving that $F_{k}(\mathbf{p} ; \mathbf{q})$ has integer coefficients. For the rest of the theorem, we have

$$
F_{k}(1,1, \ldots, 1 ;-1,-1, \ldots,-1)=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{(z-k+1)(z-m+1)_{k}}{z+1} .
$$

From Proposition 2.5.2, we have

$$
\begin{aligned}
-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{(z-k+1)(z-m+1)_{k}}{z+1} & =(-m)_{k} \\
& =(-1)^{k}(k+m-1)_{k}
\end{aligned}
$$

Stanley also generalizes $F_{k}(\mathbf{p} ; \mathbf{q})$ to

$$
F_{\mu}(\mathbf{p} ; \mathbf{q})=\widehat{\chi}_{\mathbf{p} \times \mathbf{q}}\left(\mu 1^{n-k}\right),
$$

where μ is a partition of k. Stanley states that $F_{\mu}(\mathbf{p} ; \mathbf{q})$ is, by the MurnaghanNakayama rule, Theorem 2.3.1, a polynomial with integer coefficients. Finally, in [28, Conjecture 1], Stanley gives a positivity conjecture for the series $F_{\mu}(\mathbf{p} ; \mathbf{q})$. For convenience, we use the notation $-\mathbf{q}=\left(-q_{1},-q_{2}, \ldots,-q_{m}\right)$, and $F_{\mu}(\mathbf{p} ;-\mathbf{q})$ is the series $F_{\mu}(\mathbf{p} ; \mathbf{q})$ with q_{i} replaced by $-q_{i}$.

Conjecture 4.2.2 (Stanley). For any partition $\mu \vdash k$ with $k \leq n$, the polynomial $(-1)^{k} F_{\mu}(\mathbf{p} ;-\mathbf{q})$ has non-negative integer coefficients summing to $(k+m-1)_{k}$.

We refer to this property (all coefficients of all terms in the p^{\prime} s and q 's being positive) as \mathbf{p}, \mathbf{q}-positivity. Although this is conjectured for all partitions $\mu \vdash k$, it is not yet even proven when μ has a single part; i.e. it is not proven that $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ has non-negative coefficients. The expressions $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ for $k=1,2,3,4$ and
$m=2$ are given in (4.4). These data also appear in Stanley [28, page 8].

$$
\begin{align*}
-F_{1}(a, p ;-b,-q)= & a b+p q, \\
F_{2}(a, p ;-b,-q)= & a^{2} b+a b^{2}+2 a p q+p^{2} q+p q^{2}, \\
-F_{3}(a, p ;-b,-q)= & a^{3} b+3 a^{2} b^{2}+3 a^{2} p q+a b^{3}+3 a b p q+3 a p^{2} q \\
& +3 a p q^{2}+p^{3} q+3 p^{2} q^{2}+p q^{3}+a b+p q, \\
F_{4}(a, p ;-b,-q)= & a^{4} b+6 a^{3} b^{2}+4 a^{3} p q+6 a^{2} b^{3}+12 a^{2} b p q \tag{4.4}\\
& +6 a^{2} p^{2} q+6 a^{2} p q^{2}+a b^{4}+4 a b^{2} p q+4 a b p^{2} q \\
& +4 a b p q^{2}+4 a p^{3} q+14 a p^{2} q^{2}+4 a p q^{3}+p^{4} q \\
& +6 p^{3} q^{2}+6 p^{2} q^{3}+p q^{4}+5 a^{2} b+5 a b^{2}+10 a p q+5 p^{2} q \\
& +5 p q^{2} .
\end{align*}
$$

Finally, Stanley mentions that the terms of highest degree in $F_{k}(\mathbf{p} ; \mathbf{q})$, i.e. the terms of degree $k+1$, have a particularly nice expression. Keeping Stanley's notation, let $G_{k}(\mathbf{p} ; \mathbf{q})$ be the terms of highest degree in $F_{k}(\mathbf{p} ; \mathbf{q})$. We have the following expression for the generating series of $G_{k}(\mathbf{p} ; \mathbf{q})$, which we call $G_{\mathbf{p} ; \mathbf{q}}(z)$. This theorem appears, with proof, in [28, Proposition 2].
Theorem 4.2.3 (Stanley). The generating series for $G_{k}(\mathbf{p} ; \mathbf{q})$ is

$$
\begin{equation*}
G_{\mathbf{p} ; \mathbf{q}}(z)=1+\sum_{i \geq 1} G_{i-1}(\mathbf{p} ; \mathbf{q}) z^{i}=\frac{z}{\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)}\right)^{\langle-1\rangle}} \tag{4.5}
\end{equation*}
$$

Proof (Stanley). From (4.3) we have

$$
G_{k-1}(\mathbf{p} ; \mathbf{q})=-\frac{1}{k}\left[z^{-1}\right]_{\infty} \frac{z^{k} \prod_{i=1}^{m}\left(z-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right)\right)^{k}}{\prod_{i=1}^{m}\left(z-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right)\right)^{k}} .
$$

Call the quantity after the " $\left[z^{-1}\right]_{\infty}$ " operator in the last equation $L(z)^{k}$. Setting $M(z)=z L(1 / z)$ note that $M(0)=1$. Then, using Lagrange Theorem 2.4.2, the last equation becomes

$$
-\frac{1}{k}[z] M(z)^{k}=\left[z^{k+1}\right] \frac{z}{\left(\frac{z}{M(z)}\right)^{\langle-1\rangle}}
$$

giving the desired result.

Of course, \mathbf{p}, \mathbf{q}-positivity of $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ would imply that $(-1)^{k} G_{k}(\mathbf{p} ;-\mathbf{q})$ is also \mathbf{p}, \mathbf{q}-positive. Stanley does not prove \mathbf{p}, \mathbf{q}-positivity for the latter series in [28] but states that Elizalde has proven this in a private communication to him. In fact, Elizalde shows (according to Stanley)

$$
\begin{aligned}
& (-1)^{k} G_{k}(\mathbf{p} ; \mathbf{q})=\frac{1}{k} \sum_{i_{1}+\cdots+i_{m}+j_{1}+\cdots+j_{m}=k+1}\binom{k}{i_{1}}\left(\binom{i_{1}}{j_{1}}\right) \\
& \prod_{s=2}^{m}\left(\sum_{r=0}^{\min \left(i_{s}, j_{s}\right)}\binom{k}{r}\left(\binom{r}{j_{s}-r}\right)\binom{k-r-i_{i}-\cdots-i_{s-1}-j_{1}-\cdots-j_{s-1}}{i_{s}-r}\right) \\
& \quad \cdot p_{1}^{i_{1}} \cdots p_{m}^{i_{m}} q_{1}^{i_{1}} \cdots q_{m}^{i_{m}},
\end{aligned}
$$

where $\left(\binom{n}{k}\right)=\binom{n+k-1}{k}$. However, as far as this author can see, no proof exists in the literature.

In the next sections we give partial answers to the positivity questions concerning $(-1)^{k} F(\mathbf{p} ;-\mathbf{q})$. As alluded to at the beginning of this chapter, we use Kerov's polynomials to answer these questions.

4.3 Applying Kerov Polynomials to Stanley's Polynomials

Note that both (3.6) and (4.2) give expressions for the normalized character $\hat{\chi}_{\omega}$, the former directly and the second through the series H in (3.4). Since they hold for any shapes $\mathbf{p} \times \mathbf{q}$, we can conclude that they give the same expression for $\widehat{\chi}_{\omega}$. Thus, we will use (3.4) and (3.6) to obtain results about Stanley's polynomials. More specifically, using (3.4) we obtain the R_{i} in Kerov's polynomials for a general shape ω. It turns out that the generating series $R_{\omega}(z)$ is almost the same as the generating series $G_{\mathbf{p} ; \mathbf{q}}(z)$ in (4.5) (we qualify our use of "almost" later). We prove this in Section 4.3.2. We shall, in addition, see that $R_{\omega}(z)$ has a much nicer form than $G_{\mathbf{p} ; \mathbf{q}}(z)$, and this nicer form allows us to show the positivity of the top terms of $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$. The main result needed to show the positivity of the top terms of $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ is given in Theorem 4.3.3 of Section 4.3.2, the main theorem of this chapter. In Section 4.3.3 we use Theorem 4.3 .3 and the results from Chapter 3 to prove the positivity of the terms of degree $k-1$ and $k-3$ in $F_{k}(\mathbf{p} ; \mathbf{q})$. Finally, we end the chapter by showing in Theorem 4.3 .10 that C-positivity for Kerov's polynomials implies \mathbf{p}, \mathbf{q}-positivity for Stanley's polynomials.

4.3.1 The Series H for the Shape $\mathbf{p} \times \mathbf{q}$

We now compute what the series H must be for the shape $\mathbf{p} \times \mathbf{q}$. For the shape $\mathbf{p} \times \mathbf{q}$, it is not difficult to see that its interlacing sequence of maxima and minima is

$$
\begin{gathered}
x_{1}=q_{1}, \quad y_{1}=q_{1}-p_{1}, \quad x_{2}=q_{2}-p_{1}, \quad y_{2}=q_{2}-p_{1}-p_{2}, \quad x_{3}=q_{3}-p_{1}-p_{2} \\
y_{3}=q_{3}-p_{1}-p_{2}-p_{3}, \ldots, \quad x_{m}=q_{m}-\sum_{i=1}^{m-1} p_{i}, \quad y_{m}=q_{m}-\sum_{i=1}^{m} p_{i}, \quad x_{m+1}=-\sum_{i=1}^{m} p_{i}
\end{gathered}
$$

Using the notation developed in Chapter 3. and from (3.3) in Example 3.3.1, we have

$$
\begin{align*}
H_{\mathbf{p} \times \mathbf{q}}(1 / z) & =\frac{z\left(1-\left(q_{1}-p_{1}\right) z\right)\left(1-\left(q_{2}-\left(p_{1}+p_{2}\right)\right) z\right) \cdots\left(1-\left(q_{m}-\sum_{i=1}^{m} p_{i}\right) z\right)}{\left(1-q_{1} z\right)\left(1-\left(q_{2}-p_{1}\right) z\right) \cdots\left(1-\left(q_{m}-\sum_{i=1}^{m-1} p_{i}\right) z\right)\left(1+\sum_{i=1}^{m} p_{i}\right)} \\
& =\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)} \tag{4.6}
\end{align*}
$$

and we obtain

$$
\begin{equation*}
R_{\mathbf{p} \times \mathbf{q}}(z)=\frac{z}{\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)}\right)^{\langle-1\rangle}} \tag{4.7}
\end{equation*}
$$

Alternatively, from (3.9), it follows from the comment immediately following Theorem 2.4.2 that if

$$
\begin{align*}
\phi_{\mathbf{p} \times \mathbf{q}}(z) & =\frac{z}{H_{\mathbf{p} \times \mathbf{q}}(1 / z)} \\
& =\frac{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}, \tag{4.8}
\end{align*}
$$

then

$$
\begin{equation*}
\frac{z}{R_{\mathbf{p} \times \mathbf{q}}(z)}=z \phi_{\mathbf{p} \times \mathbf{q}}\left(\frac{z}{R_{\mathbf{p} \times \mathbf{q}}(z)}\right) . \tag{4.9}
\end{equation*}
$$

Applying Theorem 2.4.2.b, we obtain for $k \geq 2$

$$
\begin{align*}
R_{k}(\mathbf{p} \times \mathbf{q}) & =\left[z^{k-1}\right] \frac{R_{\mathbf{p} \times \mathbf{q}}(z)}{z} \\
& =\frac{1}{k-1}\left[y^{k-2}\right]-\frac{1}{y^{2}} \phi_{\mathbf{p} \times \mathbf{q}}^{k-1}(y) \\
& =-\frac{1}{k-1}\left[y^{k}\right] \phi_{\mathbf{p} \times \mathbf{q}}^{k-1}(y) . \tag{4.10}
\end{align*}
$$

Remark 1. The ϕ in the previous equations is the same as the ϕ in (3.39), with G replaced by a series determined by the partition $\mathbf{p} \times \mathbf{q}$ rather than a general series. Indeed by (3.21) we see that $F(z)=(H(1 / z))^{\langle-1\rangle}$, implying that

$$
\begin{aligned}
\phi(z) & =z G\left(\frac{1}{z}\right) \\
& =\frac{z}{F^{\langle-1\rangle}(z)} \\
& =\frac{z}{\left(H\left(\frac{1}{z}\right)\right)^{\langle-1\rangle}} .
\end{aligned}
$$

Also, note that (4.9) is essentially (3.44) and (3.45).
Of course, substituting $R_{i}(\mathbf{p} \times \mathbf{q})$ for R_{i} in Kerov's polynomials will give us the normalized character $\widehat{\chi}_{\mathbf{p} \times \mathbf{q}}\left(k 1^{n-k}\right)$. In fact, in Appendix C we have done just that (using Maple) to produce the polynomials $(-1)^{k} F_{k}(a, p ;-b,-q)$ for k from 1 to 10. Note that the data agree with Stanley's data given in (4.4). We, therefore, can now use Kerov's polynomials to better understand Stanley's character polynomials. It is clear from (4.6) and (4.8) that $R_{i}(\mathbf{p} \times \mathbf{q})$ is a homogenous polynomial of degree i in the p^{\prime} s and q 's. Therefore, since Kerov's polynomial Σ_{k} is graded with terms of weight $k+1(\bmod 2)$ (Theorem 3.3.6) in the $R_{i}{ }^{\prime} s$, we see that Stanley's character polynomials are also graded with terms of degree $k+1(\bmod 2)$. We state this now as a proposition, for easy reference later.

Proposition 4.3.1. Terms of degree i in $F_{k}(\mathbf{p} ; \mathbf{q})$ are obtained from the terms of weight i in Kerov's polynomials Σ_{k} with the R_{i} 's evaluated at the shape $\mathbf{p} \times \mathbf{q}$.

To further reinforce the idea that we are dealing with polynomials, and to make convenient variable substitutions, we depart from the notation of Chapter 3. We shall replace $R_{i}(\mathbf{p} \times \mathbf{q})$ with $R_{i}(\mathbf{p} ; \mathbf{q})$ and $R_{\mathbf{p} \times \mathbf{q}}(z)$ with $R_{\mathbf{p} ; \mathbf{q}}(z)$ to emphasize that these objects are polynomials in p^{\prime} s and q^{\prime} s. We do this analogously with $H_{\mathbf{p} \times \mathbf{q}}(z)$ and $\phi_{\mathbf{p} \times \mathbf{q}}(z)$; that is, the series $\phi_{\mathbf{p} ; \mathbf{q}}(z)$ will denote the series in (4.8) and $H_{\mathbf{p} ; \mathbf{q}}(z)$
will denote the series in (4.6). We shall deal with the terms of different weights separately, starting with the terms of highest degree, namely the terms of degree $k+1$.

4.3.2 Terms of Degree $k+1$

The expression for the top terms in Stanley's polynomials is given implicitly in (4.5). From (3.9) and Proposition 4.3.1, we can obtain a similar formula for the top terms; that is, the top term in $F_{k}(\mathbf{p} ; \mathbf{q})$ is $R_{k+1}(\mathbf{p} ; \mathbf{q})$ and, therefore, the generating series for the top terms is

$$
\begin{equation*}
R_{\mathbf{p} ; \mathbf{q}}(z)=\frac{z}{\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)}\right)^{\langle-1\rangle} .} \tag{4.11}
\end{equation*}
$$

Evidently, the two generating series $R_{\mathbf{p} ; \mathbf{q}}(z)$ and $G_{\mathbf{p} ; \mathbf{q}}(z)$ should be equal; after all they both generate the top terms of $F_{k}(\mathbf{p} ; \mathbf{q})$, although it is not obvious from (4.5) and (4.11) that this is the case. It turns out that $R_{\mathbf{p} ; \mathbf{q}}(z)$ and $G_{\mathbf{p} ; \mathbf{q}}(z)$ are almost the same; we state this more precisely in the next proposition.

Proposition 4.3.2. The generating series $R_{\mathbf{p} ; \mathbf{q}}(z)$ and $G_{\mathbf{p} ; \mathbf{q}}(z)$ are identical except for the linear terms; more precisely

$$
R_{\mathbf{p} ; \mathbf{q}}(z)=G_{\mathbf{p} ; \mathbf{q}}(z)-\sum_{i=1}^{m} p_{i} z .
$$

Proof. From Theorem 2.4.2, it suffices to show that $R_{\mathbf{p} ; \mathbf{q}}(z)+\sum_{i=1}^{m} p_{i} z$ satisfies the same equation as $G_{\mathbf{p} ; \mathbf{q}}(z)$. In this proof, we denote $R_{\mathbf{p} ; \mathbf{q}}(z)$ and $G_{\mathbf{p} ; \mathbf{q}}(z)$ by R and G, respectively. From (4.11) we have

$$
\frac{z}{R}=\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)}\right)^{\langle-1\rangle} .
$$

By the definition of compositional inverse we have, from the last expression,

$$
\begin{aligned}
& z=\frac{z \prod_{i=1}^{m}\left(R-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(R+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(R-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)} \\
&=\frac{z \prod_{i=1}^{m}\left(\left(R+\sum_{j=1}^{m} p_{j} z\right)-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)}{\left(R+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(\left(R+\sum_{j=1}^{m} p_{j} z\right)-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)} \\
&=\frac{z}{\left(R+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) \frac{z}{\left(R+\sum_{j=1}^{m} p_{j} z\right)}\right)} \\
& \prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) \frac{z}{\left(R+\sum_{j=1}^{m} p_{j} z\right)}\right)
\end{aligned} .
$$

Again, from the definition of compositional inverse, we conclude that

$$
\frac{z}{\left(R+\sum_{j=1}^{m} p_{j} z\right)}=\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)}\right)^{\langle-1\rangle} .
$$

Comparing this expression with (4.5), the result follows.

Remark 2. Using Theorem 2.4.2.b we can directly compute the linear terms. From the comment following Theorem 2.4.2, note that since $G_{\mathbf{p} ; \mathbf{q}}(z)$ satisfies (4.5), it must also satisfy

$$
\frac{z}{G_{\mathbf{p} ; \mathbf{q}}(z)}=z \psi_{\mathbf{p} ; \mathbf{q}}\left(\frac{z}{G_{\mathbf{p} ; \mathbf{q}}(z)}\right)
$$

where

$$
\psi_{\mathbf{p} ; \mathbf{q}}(z)=\frac{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)} .
$$

Thus, using Lagrange inversion Theorem 2.4.2.b, we have

$$
\begin{aligned}
{[z] G_{\mathbf{p} ; \mathbf{q}}(z) } & =\left[z^{0}\right] \frac{1}{\left.\left(\frac{\left.\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)\right)^{\langle-1\rangle}}{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)}\right)^{\left(\prod_{i=1}\right.}\right)} \\
& =\left[y^{0}\right] \frac{-1}{y}+\left[y^{-1}\right] \frac{-1}{y^{2}} \log \left(\frac{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right) z\right)}\right) \\
& =-[y] \sum_{i=1}^{m}\left(-\log \left(\left(1-\left(q_{i}+\sum_{j=i}^{m} p_{j}\right) y\right)^{-1}\right)\right. \\
& \left.\left.=\sum_{i=1}^{m}\left(\left(q_{i}+\sum_{j=i}^{m} p_{j}\right)-\left(q_{i}+\sum_{j=i+1}^{m} p_{j}\right)\right)^{-1}\right)\right) \\
& =\sum_{i=1}^{m} p_{i} .
\end{aligned}
$$

Similarly, for $R_{\mathbf{p} ; \mathbf{q}}(z)$ we use (4.9) and Theorem 2.4.2.b to obtain

$$
\begin{aligned}
{[z] R_{\mathbf{p} ; \mathbf{q}}(z) } & =\left[z^{0}\right] \frac{1}{\left(\frac{z \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) z\right)}{\left(1+\sum_{j=1}^{m} p_{j} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) z\right)}\right)^{\langle-1\rangle}} \\
& =\left[y^{0}\right] \frac{1}{y}+\left[y^{-1}\right]-\frac{1}{y^{2}} \log \left(\frac{\left(1+\sum_{j=1}^{m} p_{j} y\right) \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) y\right)}{y \prod_{i=1}^{m}\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) y\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-[y]\left(\sum_{i=1}^{m}-\log \left(\left(1+\sum_{j=1}^{m} p_{j} y\right)^{-1}\right)-\log \left(\left(1-\left(q_{i}-\sum_{j=1}^{i-1} p_{j}\right) y\right)^{-1}\right)\right) \\
& \quad+\log \left(\left(1-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right) y\right)^{-1}\right) \\
& =-\sum_{j=1}^{m} p_{j}+\sum_{i=1}^{m}\left(q_{i}-\sum_{j=1}^{i-1} p_{j}-\left(q_{i}-\sum_{j=1}^{i} p_{j}\right)\right) \\
& =-\sum_{j=1}^{m} p_{j}+\sum_{i=1}^{m} p_{i} \\
& =0 .
\end{aligned}
$$

The last equation comes as no surprise, as is clear from the combinatorial origins in Section 3.3.1. Note also, from the data in Appendix A, that the term R_{1} never appears.

Through Lagrange Inversion, we see that the R_{i} are written in terms of the series $\phi_{\mathbf{p} ; \mathbf{q}}$ given in (4.10). We use the notation $\phi_{\mathbf{p} ;-\mathbf{q}}, R_{k}(\mathbf{p} ;-\mathbf{q})$ and $G_{k}(\mathbf{p} ;-\mathbf{q})$ to denote that we are substituting $-q_{i}$ for q_{i} for all i in these series. We have the following compact expression for the series $\phi_{\mathbf{p} ;-\mathbf{q}}(-z)$.

Theorem 4.3.3. For $p_{1}, p_{2}, \ldots, p_{m}$ and $q_{1}, q_{2}, \ldots, q_{m}$, we have

$$
\phi_{\mathbf{p} ;-\mathbf{q}}(-z)=\prod_{i=1}^{n}\left(1+\frac{p_{i} q_{i} z}{\left(1-r_{i-1} z\right)\left(1-\left(q_{i}+r_{i}\right) z\right)}\right) .
$$

where $r_{i}=\sum_{j=1}^{i} p_{j}$.
Proof. We have, from (4.8),

$$
\phi_{\mathbf{p} ;-\mathbf{q}}(-z)=\frac{\left(1-r_{m} z\right) \prod_{i=1}^{m}\left(1-\left(q_{i}+r_{i-1}\right) z\right)}{\prod_{i=1}^{m}\left(1-\left(q_{i}+r_{i}\right) z\right)}
$$

Now set $A_{n}(z)=1-r_{n} z, F_{0}=1$ and

$$
\begin{equation*}
F_{n}(z)=A_{n}(z) \frac{\prod_{i=1}^{n}\left(1-\left(q_{i}+r_{i-1}\right) z\right)}{\prod_{i=1}^{n}\left(1-\left(q_{i}+r_{i}\right) z\right)} . \tag{4.12}
\end{equation*}
$$

Note that $\phi_{\mathbf{p} ;-\mathbf{q}}(-z)=F_{m}(z)$. Then,

$$
\begin{align*}
F_{n}(z) & =\frac{F_{n-1}(z)}{A_{n-1}(z)} \frac{1-\left(q_{n}+r_{n-1}\right) z}{1-\left(q_{n}+r_{n}\right) z} A_{n}(z) \\
& =\frac{F_{n-1}(z)}{A_{n-1}(z)} \frac{A_{n-1}(z)\left(1-\frac{q_{n} z}{A_{n-1}(z)}\right)}{A_{n-1}(z)\left(1-\frac{\left(q_{n}+p_{n}\right) z}{A_{n-1}(z)}\right)} A_{n-1}(z)\left(1-\frac{p_{n} z}{A_{n-1}(z)}\right) \\
& =F_{n-1}(z) \frac{1-\frac{\left(q_{n}+p_{n}\right) z}{A_{n-1}(z)}+\frac{p_{n} q_{n} z}{A_{n-1}^{2}(z)}}{1-\frac{\left(q_{n}+p_{n}\right) z}{A_{n-1}(z)}} \\
& =F_{n-1}(z)\left(1+\frac{p_{n} q_{n} z}{A_{n-1}^{2}(z)\left(1-\frac{\left(q_{n}+p_{n}\right) z}{A_{n-1}(z)}\right)}\right) \\
& =F_{n-1}(z)\left(1+\frac{p_{n} q_{n} z}{A_{n-1}(z)\left(1-\left(q_{n}+r_{n}\right) z\right)}\right) \\
& =F_{n-1}(z)\left(1+\frac{p_{n} q_{n} z}{\left(1-r_{n-1} z\right)\left(1-\left(q_{n}+r_{n}\right) z\right)}\right) . \tag{4.13}
\end{align*}
$$

Therefore, from (4.13) we have

$$
\begin{aligned}
\phi_{\mathbf{p} ;-\mathbf{q}}(-z) & =F_{m}(z) \\
& =\frac{F_{m}(z)}{F_{0}(z)} \\
& =\frac{F_{m}(z)}{F_{m-1}(z)} \cdot \frac{F_{m-1}(z)}{F_{m-2}(z)} \cdots \frac{F_{1}(z)}{F_{0}(z)} \\
& =\prod_{i=1}^{m}\left(1+\frac{p_{i} q_{i} z}{\left(1-r_{i-1} z\right)\left(1-\left(q_{i}+r_{i}\right) z\right)}\right) .
\end{aligned}
$$

Corollary 4.3.4. $\phi_{\mathbf{p} ;-\mathbf{q}}(-z)$ is \mathbf{p}, \mathbf{q}-positive.
Proof. Each multiplicand in Theorem4.3.3 is \mathbf{p}, \mathbf{q}-positive, making the product \mathbf{p}, \mathbf{q} positive.

Corollary 4.3.5. For all $k \geq 1$, the series in p^{\prime} s and $q^{\prime} s(-1)^{k} R_{k+1}(\mathbf{p} ;-\mathbf{q})$ and $(-1)^{k} G_{k}(\mathbf{p} ;-\mathbf{q})$ are \mathbf{p}, \mathbf{q}-positive. That is, the terms of highest degree in $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ all have positive coefficients.

Proof. The series $(-1)^{k} G_{k}(\mathbf{p} ;-\mathbf{q})$ is by definition the terms of highest degree in $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$, and by Proposition 4.3.2. $(-1)^{k} G_{k}(\mathbf{p} ;-\mathbf{q})=(-1)^{k} R_{k+1}(\mathbf{p} ;-\mathbf{q})$
are equal for all $k \geq 1$. Thus, it suffices to show that $(-1)^{k} R_{k+1}(\mathbf{p} ;-\mathbf{q})$ is $\mathbf{p}, \mathbf{q}-$ positive for all $k \geq 1$.

By (4.10) we have

$$
\begin{aligned}
(-1)^{k} R_{k+1}(\mathbf{p} ;-\mathbf{q}) & =(-1)^{k}\left(-\frac{1}{k}\left[y^{k+1}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{k}(y)\right) \\
& =\frac{1}{k}\left[(-y)^{k+1}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{k}(y) \\
& =\frac{1}{k}\left[y^{k+1}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{k}(-y),
\end{aligned}
$$

and the result follows.

4.3.3 Terms of Degree $k-1, k-3$ and a General Connection Between Kerov's Polynomials and Stanley's Polynomials

In this section we deal with terms of degree $k-1$ and $k-3$ in Stanley's polynomials. We note that in Stanley [28] there are no results concerning terms not of highest degree; Stanley comments only on the series $G_{\mathbf{p} ;-\mathbf{q}}(z)$, the terms of highest degree in $k+1$. Moreover, we note the complication that in $(-1)^{k} \Sigma_{k}$ there are negative terms when one evaluates the R_{i} in terms of the shape $\mathbf{p} ; \mathbf{q}$ and substitutes $-q^{\prime}$ s for all the q 's. More precisely, consider, for example, Σ_{5} given in Appendix A. We see from the comments at the beginning of Section 4.3 that

$$
\begin{aligned}
(-1)^{5} F_{5}(\mathbf{p} ;-\mathbf{q})= & \left.(-1)^{5} \Sigma_{5}(\mathbf{p} ; \mathbf{q})\right|_{\mathbf{q} \rightarrow-\mathbf{q}} \\
= & (-1)^{5}\left(R_{6}(\mathbf{p} ;-\mathbf{q})+15 R_{4}(\mathbf{p} ;-\mathbf{q})+5 R_{2}(\mathbf{p} ;-\mathbf{q})^{2}\right. \\
& \left.\quad+8 R_{2}(\mathbf{p} ;-\mathbf{q})\right) \\
= & (-1)^{5} R_{6}(\mathbf{p} ;-\mathbf{q})+15(-1)^{3} R_{4}(\mathbf{p} ;-\mathbf{q}) \\
& \quad-5\left((-1) R_{2}(\mathbf{p} ;-\mathbf{q})\right)^{2}+8(-1) R_{2}(\mathbf{p} ;-\mathbf{q}) .
\end{aligned}
$$

Note that all terms are \mathbf{p}, \mathbf{q}-positive except for the term $-5\left((-1) R_{2}(\mathbf{p} ;-\mathbf{q})\right)^{2}$. Thus, \mathbf{p}, \mathbf{q}-positivity would not immediately follow from positivity of Kerov's polynomials. For the terms of degree $k-1$ and $k-3$, however, we can use the results given in Chapter 3. We begin with the following theorem.

Theorem 4.3.6. For $k \geq 3$, the terms of degree $k-1$ in $F_{k}(\mathbf{p} ; \mathbf{q})$ are given by

$$
-\frac{k(k+1)}{24}\left[y^{k-3}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime \prime}(y) \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(y) .
$$

Proof. From Proposition 4.3.1 and Theorem 3.5.4, the terms of degree $k-1$ in $F_{k}(\mathbf{p} ; \mathbf{q})$ are given by

$$
\frac{1}{4}\binom{k+1}{3} C_{k-1}(\mathbf{p} ; \mathbf{q})
$$

From (3.44), (3.45) and (3.48) we obtain the system of equations

$$
z=w R(z), \quad w=z \phi_{\mathbf{p} ;-\mathbf{q}}(w), \quad C(z)=\frac{1}{-z^{2} \frac{d}{d z} \frac{1}{w}}
$$

where $\phi_{\mathbf{p} ;-\mathbf{q}}(z)$ is given in (4.8). Thus,

$$
z \frac{d}{d z} w=\frac{w}{1-z \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(w)^{\prime}}
$$

from which we obtain

$$
\begin{aligned}
C(z) & =\frac{1}{-z^{2} \frac{d}{d z} \frac{1}{w}} \\
& =\frac{1}{\frac{z^{2}}{w^{2}} \frac{d}{d z} w} \\
& =\frac{w}{z}\left(1-z \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(w)\right) \\
& =\phi_{\mathbf{p} ;-\mathbf{q}}(w)-w \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(w) .
\end{aligned}
$$

Therefore, for all $k \geq 2$, we have by Lagrange Theorem 2.4.2.b that

$$
\begin{aligned}
{\left[z^{k-1}\right] C(z)=} & {\left[z^{k-1}\right] \phi_{\mathbf{p} ;-\mathbf{q}}(w)-\left[z^{k-1}\right] w \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(w) } \\
= & \frac{1}{k-1}\left[y^{k-2}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(y) \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(y) \\
& \quad-\frac{1}{k-1}\left[y^{k-2}\right]\left(\phi_{\mathbf{p} ;-\mathbf{q}}^{\prime}(y)+y \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime \prime}(y)\right) \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(y) \\
= & -\frac{1}{k-1}\left[y^{k-3}\right] \phi_{\mathbf{p} ;-\mathbf{q}}^{\prime \prime}(y) \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(y),
\end{aligned}
$$

and the result follows.

Example 4.3.7. Define $S_{k}(a, p ;-b,-q)$ to be the terms of degree $k-1$ in $F_{k}(a, p ;-b,-q)$. In the following equations, we give the polynomials $S_{k}(a, p ;-b,-q)$, for k from 2
to 6, using Theorem 4.3.6 and Maple.

$$
\begin{aligned}
-S_{3}(a, p ;-b,-q) & =a b+p q \\
S_{4}(a, p ;-b,-q) & =5 a^{2} b+5 a b^{2}+10 a p q+5 p^{2} q+5 p q^{2} \\
-S_{5}(a, p ;-b,-q) & =15 a^{3} b+40 a^{2} b^{2}+45 a^{2} p q+15 a b^{3}+35 a b p q+45 a p^{2} q \\
& +45 a p q^{2}+15 p^{3} q+40 p^{2} q^{2}+15 p q^{3} \\
S_{6}(a, p ;-b,-q) & =35 a^{4} b+175 a^{3} b^{2}+140 a^{3} p q+175 a^{2} b^{3}+315 a^{2} b p q \\
& +210 a^{2} p^{2} q+210 a^{2} p q^{2}+35 a b^{4}+105 a b^{2} p q+105 a b p^{2} q \\
& +105 a b p q^{2}+140 a p^{3} q+420 a p^{2} q^{2}+140 a p q^{3}+35 p^{4} q \\
& +175 p^{3} q^{2}+175 p^{2} q^{3}+35 p q^{4} .
\end{aligned}
$$

One can compare these polynomials to those given in Appendix C.
From Theorem 4.3.6 we obtain the following positivity result.
Corollary 4.3.8. For $k \geq 3$, the terms of degree $k-1$ in $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ are $\mathbf{p}, \mathbf{q}-$ positive.

Proof. The terms of degree $k-1$ in $F_{k}(\mathbf{p} ; \mathbf{q})$ are given in Theorem 4.3.6. Therefore, the terms of degree $k-1$ in $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ are

$$
\begin{aligned}
(-1)^{k} \frac{1}{4}\binom{k+1}{3} C_{k-1}(\mathbf{p} ;-\mathbf{q}) & =-\frac{1}{4}\binom{k+1}{3}\left[z^{k-1}\right] C_{\mathbf{p} ;-\mathbf{q}}(-z) \\
= & \frac{k(k+1)}{24}\left[y^{k-1}\right](-y)^{2} \frac{d^{2}}{d(-y)^{2}}\left(\phi_{\mathbf{p} ;-\mathbf{q}}(-y)\right) \\
& \cdot \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(-y) \\
= & \frac{k(k+1)}{24}\left[y^{k-1}\right] y^{2}\left(\frac{d^{2}}{d y^{2}}(-1)^{2}\right)\left(\phi_{\mathbf{p} ;-\mathbf{q}}(-y)\right) \\
& \cdot \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(-y) \\
= & \frac{k(k+1)}{24}\left[y^{k-1}\right] y^{2} \frac{d^{2}}{d y^{2}}\left(\phi_{\mathbf{p} ;-\mathbf{q}}(-y)\right) \phi_{\mathbf{p} ;-\mathbf{q}}^{k-1}(-y) .
\end{aligned}
$$

From Theorem 4.3.4 both $\phi_{\mathbf{p} ;-\mathbf{q}}(-y)$ and, of course then, $\frac{d^{2}}{d y^{2}} \phi_{\mathbf{p} ;-\mathbf{q}}(-y)$ are $\mathbf{p}, \mathbf{q}-$ positive, proving the result.

In addition, we can give a positivity result for the terms of third highest degree in $(-1)^{k} F(\mathbf{p} ;-\mathbf{q})$.

Corollary 4.3.9. For $k \geq 5$, the terms of degree $k-3$ in $(-1)^{k} F(\mathbf{p} ;-\mathbf{q})$ are \mathbf{p}, \mathbf{q}-positive.

Note that the $k \geq 5$ restriction is there simply because the terms are otherwise 0 .
Proof. From Theorem 3.5.7, the terms of third highest degree are

$$
\Sigma_{k, 4}=\sum_{\substack{i, j, j \geq 0 \\ i+j+m=k-3}} \tau_{i, j, m} C_{i} C_{j} C_{m}
$$

where $\tau_{i, j, m} \geq 0$ and is given in (3.31). Therefore,

$$
\begin{align*}
(-1)^{k} \Sigma_{k, 4}= & (-1)^{k} \sum_{\substack{i, j, j \geq 0 \\
i+j+m=k-3}} \tau_{i, j, m} C_{i}(\mathbf{p} ; \mathbf{q}) C_{j}(\mathbf{p} ; \mathbf{q}) C_{m}(\mathbf{p} ; \mathbf{q}) \\
= & \sum_{\substack{i, j, m \geq 0 \\
i+j+m=k-3}} \tau_{i, j, m}\left((-1)^{i+1} C_{i}(\mathbf{p} ; \mathbf{q})\right)\left((-1)^{j+1} C_{j}(\mathbf{p} ; \mathbf{q})\right) \\
& \cdot\left((-1)^{m+1} C_{m}(\mathbf{p} ; \mathbf{q})\right) \tag{4.14}
\end{align*}
$$

Substituting $-\mathbf{q}$ for \mathbf{q} in the (4.14), we see from the proof of Corollary 4.3.8, that each $(-1)^{t+1} C_{t+1}(\mathbf{p} ;-\mathbf{q})$ is \mathbf{p}, \mathbf{q}-positive. Thus, after the subtitution of $-\mathbf{q}$ for \mathbf{q}, each summand in (4.14) is the product of \mathbf{p}, \mathbf{q}-positive terms, making the last expression in (4.14) \mathbf{p}, \mathbf{q}-positive, completing the proof.

Finally, the following theorem gives a general connection between Kerov's polynomials and Stanley's polynomials. The proof we give is essentially the proof of Corollary 4.3.9 (in particular, Corollary 4.3.9 would follow as a consequence).

Theorem 4.3.10. If Kerov's polynomials Σ_{k} are C-positive then Stanley's polynomials $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ are \mathbf{p}, \mathbf{q}-positive.

Proof. From Proposition 4.3.1 the terms of degree i in Stanley's polynomials are obtained from the terms of weight i in Kerov's polynomials. From Theorem 3.5.13 the terms of degree $k+1-2 n$ in Stanley's polynomials are obtained from

$$
\sum_{\substack{i_{1}, \ldots, i_{2 n-1} \geq 0 \\ i_{1}+\cdots+i_{2 n-1}=k+1-2 n}} \gamma_{i_{1}, \ldots, i_{2 n-1}} C_{i_{1}}(\mathbf{p} ; \mathbf{q}) \cdots C_{i_{2 n-1}}(\mathbf{p} ; \mathbf{q})
$$

Thus, the terms of degree $k+1-2 n$ in $(-1)^{k} F_{k}(\mathbf{p} ;-\mathbf{q})$ are given by

$$
\sum_{\substack{i_{1}, \sum_{i 2 n} \geq 0 \\ i_{1}+\cdots+i_{2 n-1}=k+1-2 n}} \gamma_{i_{1}, \ldots, i_{2 n-1}}\left((-1)^{i_{1}-1} C_{i_{1}}(\mathbf{p} ;-\mathbf{q})\right) \cdots\left((-1)^{i_{2 n-1}-1} C_{i_{2 n-1}}(\mathbf{p} ;-\mathbf{q})\right) .
$$

From the proof of Corollary 4.3.8 each $(-1)^{j-1} C_{j}(\mathbf{p} ;-\mathbf{q})$ is \mathbf{p}, \mathbf{q}-positive, and the result follows.

Appendix A

The R-expansions of Kerov's
 Character Polynomials for $k \leq 20$

$\Sigma_{2}=R_{3}$
$\Sigma_{3}=R_{4}+R_{2}$
$\Sigma_{4}=R_{5}+5 R_{3}$
$\Sigma_{5}=R_{6}+15 R_{4}+5 R_{2}{ }^{2}+8 R_{2}$
$\Sigma_{6}=R_{7}+35 R_{5}+35 R_{3} R_{2}+84 R_{3}$
$\Sigma_{7}=R_{8}+70 R_{6}+84 R_{4} R_{2}+469 R_{4}+56 R_{3}{ }^{2}+14 R_{2}{ }^{3}+224 R_{2}{ }^{2}+180 R_{2}$
$\Sigma_{8}=R_{9}+126 R_{7}+168 R_{5} R_{2}+1869 R_{5}+252 R_{4} R_{3}+126 R_{3} R_{2}^{2}+2688 R_{3} R_{2}+$ $3044 R_{3}$
$\Sigma_{9}=R_{10}+210 R_{8}+300 R_{6} R_{2}+5985 R_{6}+480 R_{5} R_{3}+270 R_{4}{ }^{2}+270 R_{4} R_{2}{ }^{2}+$ $10548 R_{4} R_{2}+26060 R_{4}+360 R_{3}{ }^{2} R_{2}+6714 R_{3}{ }^{2}+30 R_{2}{ }^{4}+2400 R_{2}{ }^{3}+14580 R_{2}{ }^{2}+$ $8064 R_{2}$
$\Sigma_{10}=R_{11}+330 R_{9}+495 R_{7} R_{2}+16401 R_{7}+825 R_{6} R_{3}+990 R_{5} R_{4}+495 R_{5} R_{2}{ }^{2}+$ $32901 R_{5} R_{2}+152900 R_{5}+1485 R_{4} R_{3} R_{2}+46101 R_{4} R_{3}+330 R_{3}{ }^{3}+330 R_{3} R_{2}^{3}+$ $33000 R_{3} R_{2}{ }^{2}+258060 R_{3} R_{2}+193248 R_{3}$
$\Sigma_{11}=R_{12}+495 R_{10}+770 R_{8} R_{2}+39963 R_{8}+1320 R_{7} R_{3}+1650 R_{6} R_{4}+825 R_{6} R_{2}{ }^{2}+$ $87890 R_{6} R_{2}+696905 R_{6}+880 R_{5}^{2}+2640 R_{5} R_{3} R_{2}+130108 R_{5} R_{3}+1485 R_{4}{ }^{2} R_{2}+$ $71214 R_{4}{ }^{2}+1980 R_{4} R_{3}^{2}+660 R_{4} R_{2}{ }^{3}+105545 R_{4} R_{2}{ }^{2}+1459700 R_{4} R_{2}+2286636 R_{4}+$ $1320 R_{3}{ }^{2} R_{2}{ }^{2}+136345 R_{3}{ }^{2} R_{2}+902440 R_{3}{ }^{2}+55 R_{2}{ }^{5}+15400 R_{2}{ }^{4}+386980 R_{2}{ }^{3}+$ $1401444 R_{2}{ }^{2}+604800 R_{2}$
$\Sigma_{12}=R_{13}+715 R_{11}+1144 R_{9} R_{2}+88803 R_{9}+2002 R_{8} R_{3}+2574 R_{7} R_{4}+$ $1287 R_{7} R_{2}{ }^{2}+209352 R_{7} R_{2}+2641925 R_{7}+2860 R_{6} R_{5}+4290 R_{6} R_{3} R_{2}+$ $321750 R_{6} R_{3}+5148 R_{5} R_{4} R_{2}+369798 R_{5} R_{4}+3432 R_{5} R_{3}{ }^{2}+1144 R_{5} R_{2}{ }^{3}+$ $280995 R_{5} R_{2}{ }^{2}+6390956 R_{5} R_{2}+18128396 R_{5}+3861 R_{4}{ }^{2} R_{3}+5148 R_{4} R_{3} R_{2}{ }^{2}+$ $802230 R_{4} R_{3} R_{2}+8581144 R_{4} R_{3}+2288 R_{3}{ }^{3} R_{2}+173745 R_{3}{ }^{3}+715 R_{3} R_{2}{ }^{4}+$ $240240 R_{3} R_{2}{ }^{3}+7379372 R_{3} R_{2}{ }^{2}+33549516 R_{3} R_{2}+19056960 R_{3}$
$\Sigma_{13}=R_{14}+1001 R_{12}+1638 R_{10} R_{2}+183183 R_{10}+2912 R_{9} R_{3}+3822 R_{8} R_{4}+$ $1911 R_{8} R_{2}{ }^{2}+456092 R_{8} R_{2}+8691683 R_{8}+4368 R_{7} R_{5}+6552 R_{7} R_{3} R_{2}+$ $720902 R_{7} R_{3}+2275 R_{6}^{2}+8190 R_{6} R_{4} R_{2}+855400 R_{6} R_{4}+5460 R_{6} R_{3}{ }^{2}+1820 R_{6} R_{2}{ }^{3}+$ $662025 R_{6} R_{2}{ }^{2}+23377562 R_{6} R_{2}+109425316 R_{6}+4368 R_{5}{ }^{2} R_{2}+448084 R_{5}{ }^{2}+$ $13104 R_{5} R_{4} R_{3}+8736 R_{5} R_{3} R_{2}{ }^{2}+1996540 R_{5} R_{3} R_{2}+32944938 R_{5} R_{3}+2457 R_{4}{ }^{3}+$ $4914 R_{4}^{2} R_{2}{ }^{2}+1100190 R_{4}{ }^{2} R_{2}+17749927 R_{4}{ }^{2}+13104 R_{4} R_{3}{ }^{2} R_{2}+1436435 R_{4} R_{3}{ }^{2}+$ $1365 R_{4} R_{2}{ }^{4}+672490 R_{4} R_{2}{ }^{3}+32392724 R_{4} R_{2}{ }^{2}+253452836 R_{4} R_{2}+292271616 R_{4}+$ $1456 R_{3}{ }^{4}+3640 R_{3}{ }^{2} R_{2}{ }^{3}+1314495 R_{3}{ }^{2} R_{2}{ }^{2}+40788384 R_{3}{ }^{2} R_{2}+153561772 R_{3}{ }^{2}+$ $91 R_{2}{ }^{6}+71344 R_{2}{ }^{5}+5475652 R_{2}{ }^{4}+73713276 R_{2}{ }^{3}+190217664 R_{2}{ }^{2}+68428800 R_{2}$
$\Sigma_{14}=R_{15}+1365 R_{13}+2275 R_{11} R_{2}+355355 R_{11}+4095 R_{10} R_{3}+5460 R_{9} R_{4}+$ $2730 R_{9} R_{2}{ }^{2}+924742 R_{9} R_{2}+25537655 R_{9}+6370 R_{8} R_{5}+9555 R_{8} R_{3} R_{2}+$ $1494402 R_{8} R_{3}+6825 R_{7} R_{6}+12285 R_{7} R_{4} R_{2}+1815177 R_{7} R_{4}+8190 R_{7} R_{3}{ }^{2}+$ $2730 R_{7} R_{2}{ }^{3}+1424150 R_{7} R_{2}{ }^{2}+74586655 R_{7} R_{2}+539651112 R_{7}+13650 R_{6} R_{5} R_{2}+$ $1957865 R_{6} R_{5}+20475 R_{6} R_{4} R_{3}+13650 R_{6} R_{3} R_{2}{ }^{2}+4452175 R_{6} R_{3} R_{2}+$ $108780815 R_{6} R_{3}+10920 R_{5}{ }^{2} R_{3}+12285 R_{5} R_{4}{ }^{2}+16380 R_{5} R_{4} R_{2}{ }^{2}+$ $5165615 R_{5} R_{4} R_{2}+121953975 R_{5} R_{4}+21840 R_{5} R_{3}{ }^{2} R_{2}+3384745 R_{5} R_{3}{ }^{2}+$ $2275 R_{5} R_{2}{ }^{4}+1603875 R_{5} R_{2}{ }^{3}+116367160 R_{5} R_{2}{ }^{2}+1457761032 R_{5} R_{2}+$ $2961802480 R_{5}+24570 R_{4}{ }^{2} R_{3} R_{2}+3741465 R_{4}{ }^{2} R_{3}+10920 R_{4} R_{3}{ }^{3}+13650 R_{4} R_{3} R_{2}{ }^{3}+$ $6951945 R_{4} R_{3} R_{2}{ }^{2}+319646600 R_{4} R_{3} R_{2}+1900585960 R_{4} R_{3}+9100 R_{3}{ }^{3} R_{2}{ }^{2}+$ $3030755 R_{3}{ }^{3} R_{2}+67649400 R_{3}{ }^{3}+1365 R_{3} R_{2}{ }^{5}+1248520 R_{3} R_{2}^{4}+113233120 R_{3} R_{2}{ }^{3}+$ $1831663288 R_{3} R_{2}^{2}+5823745200 R_{3} R_{2}+2699672832 R_{3}$
$\Sigma_{15}=R_{16}+1820 R_{14}+3080 R_{12} R_{2}+654654 R_{12}+5600 R_{11} R_{3}+7560 R_{10} R_{4}+$ $3780 R_{10} R_{2}{ }^{2}+1767024 R_{10} R_{2}+68396900 R_{10}+8960 R_{9} R_{5}+13440 R_{9} R_{3} R_{2}+$ $2907744 R_{9} R_{3}+9800 R_{8} R_{6}+17640 R_{8} R_{4} R_{2}+3597384 R_{8} R_{4}+11760 R_{8} R_{3}{ }^{2}+$ $3920 R_{8} R_{2}{ }^{3}+2851800 R_{8} R_{2}{ }^{2}+213459960 R_{8} R_{2}+2273360089 R_{8}+5040 R_{7}{ }^{2}+$ $20160 R_{7} R_{5} R_{2}+3961104 R_{7} R_{5}+30240 R_{7} R_{4} R_{3}+20160 R_{7} R_{3} R_{2}^{2}+9151800 R_{7} R_{3} R_{2}+$ $319751360 R_{7} R_{3}+10500 R_{6}{ }^{2} R_{2}+2037000 R_{6}{ }^{2}+33600 R_{6} R_{5} R_{3}+18900 R_{6} R_{4}{ }^{2}+$ $25200 R_{6} R_{4} R_{2}{ }^{2}+10970400 R_{6} R_{4} R_{2}+368042400 R_{6} R_{4}+33600 R_{6} R_{3}{ }^{2} R_{2}+$ $7209300 R_{6} R_{3}{ }^{2}+3500 R_{6} R_{2}{ }^{4}+3448200 R_{6} R_{2}{ }^{3}+363356700 R_{6} R_{2}{ }^{2}+$ $6893328064 R_{6} R_{2}+22556777880 R_{6}+20160 R_{5}{ }^{2} R_{4}+13440 R_{5}{ }^{2} R_{2}{ }^{2}+$ $5767440 R_{5}^{2} R_{2}+190928800 R_{5}^{2}+80640 R_{5} R_{4} R_{3} R_{2}+16801680 R_{5} R_{4} R_{3}+$ $17920 R_{5} R_{3}{ }^{3}+22400 R_{5} R_{3} R_{2}{ }^{3}+15800400 R_{5} R_{3} R_{2}^{2}+1047424280 R_{5} R_{3} R_{2}+$ $9387340928 R_{5} R_{3}+15120 R_{4}{ }^{3} R_{2}+3103380 R_{4}{ }^{3}+30240 R_{4}{ }^{2} R_{3}{ }^{2}+12600 R_{4}{ }^{2} R_{2}{ }^{3}+$ $8746920 R_{4}{ }^{2} R_{2}{ }^{2}+568600060 R_{4}{ }^{2} R_{2}+5006452864 R_{4}{ }^{2}+50400 R_{4} R_{3}{ }^{2} R_{2}{ }^{2}+$ $22949640 R_{4} R_{3}{ }^{2} R_{2}+727222860 R_{4} R_{3}{ }^{2}+2520 R_{4} R_{2}{ }^{5}+3182550 R_{4} R_{2}{ }^{4}+$ $418373760 R_{4} R_{2}{ }^{3}+10422033664 R_{4} R_{2}^{2}+55848839760 R_{4} R_{2}+51381813456 R_{4}+$ $11200 R_{3}{ }^{4} R_{2}+2508240 R_{3}{ }^{4}+8400 R_{3}{ }^{2} R_{2}{ }^{4}+8340780 R_{3}{ }^{2} R_{2}{ }^{3}+800181760 R_{3}^{2} R_{2}{ }^{2}+$ $12869508064 R_{3}{ }^{2} R_{2}+33336787680 R_{3}{ }^{2}+140 R_{2}{ }^{7}+263424 R_{2}{ }^{6}+51093280 R_{2}{ }^{5}+$ $1933747200 R_{2}{ }^{4}+17295397560 R_{2}{ }^{3}+34907328000 R_{2}{ }^{2}+10897286400 R_{2}$
$\Sigma_{16}=R_{17}+2380 R_{15}+4080 R_{13} R_{2}+1154062 R_{13}+7480 R_{12} R_{3}+$ $10200 R_{11} R_{4}+5100 R_{11} R_{2}{ }^{2}+3212320 R_{11} R_{2}+169537940 R_{11}+12240 R_{10} R_{5}+$ $18360 R_{10} R_{3} R_{2}+5366832 R_{10} R_{3}+13600 R_{9} R_{6}+24480 R_{9} R_{4} R_{2}+6740432 R_{9} R_{4}+$ $16320 R_{9} R_{3}{ }^{2}+5440 R_{9} R_{2}{ }^{3}+5386280 R_{9} R_{2}{ }^{2}+558874320 R_{9} R_{2}+8433097673 R_{9}+$ $14280 R_{8} R_{7}+28560 R_{8} R_{5} R_{2}+7540792 R_{8} R_{5}+42840 R_{8} R_{4} R_{3}+28560 R_{8} R_{3} R_{2}{ }^{2}+$ $17640560 R_{8} R_{3} R_{2}+855690920 R_{8} R_{3}+30600 R_{7} R_{6} R_{2}+7906360 R_{7} R_{6}+$ $48960 R_{7} R_{5} R_{3}+27540 R_{7} R_{4}{ }^{2}+36720 R_{7} R_{4} R_{2}^{2}+21642360 R_{7} R_{4} R_{2}+$ $1004725160 R_{7} R_{4}+48960 R_{7} R_{3}{ }^{2} R_{2}+14255180 R_{7} R_{3}{ }^{2}+5100 R_{7} R_{2}{ }^{4}+$ $6868000 R_{7} R_{2}{ }^{3}+1018466260 R_{7} R_{2}{ }^{2}+28015362432 R_{7} R_{2}+138687993080 R_{7}+$ $25500 R_{6}{ }^{2} R_{3}+61200 R_{6} R_{5} R_{4}+40800 R_{6} R_{5} R_{2}^{2}+23470200 R_{6} R_{5} R_{2}+$ $1066471880 R_{6} R_{5}+122400 R_{6} R_{4} R_{3} R_{2}+34340000 R_{6} R_{4} R_{3}+27200 R_{6} R_{3}{ }^{3}+$ $34000 R_{6} R_{3} R_{2}{ }^{3}+32609400 R_{6} R_{3} R_{2}{ }^{2}+3033562280 R_{6} R_{3} R_{2}+39375602368 R_{6} R_{3}+$ $10880 R_{5}{ }^{3}+65280 R_{5}{ }^{2} R_{3} R_{2}+18083920 R_{5}{ }^{2} R_{3}+73440 R_{5} R_{4}{ }^{2} R_{2}+$ $20084820 R_{5} R_{4}{ }^{2}+97920 R_{5} R_{4} R_{3}{ }^{2}+40800 R_{5} R_{4} R_{2}{ }^{3}+38092920 R_{5} R_{4} R_{2}{ }^{2}+$ $3436658120 R_{5} R_{4} R_{2}+43442253696 R_{5} R_{4}+81600 R_{5} R_{3}{ }^{2} R_{2}{ }^{2}+50098320 R_{5} R_{3}{ }^{2} R_{2}+$ $2210817700 R_{5} R_{3}{ }^{2}+4080 R_{5} R_{2}{ }^{5}+7003150 R_{5} R_{2}{ }^{4}+1302945280 R_{5} R_{2}{ }^{3}+$ $47980320192 R_{5} R_{2}{ }^{2}+403288092320 R_{5} R_{2}+640277565264 R_{5}+36720 R_{4}{ }^{3} R_{3}+$
$91800 R_{4}{ }^{2} R_{3} R_{2}{ }^{2}+55581840 R_{4}{ }^{2} R_{3} R_{2}+2409452500 R_{4}{ }^{2} R_{3}+81600 R_{4} R_{3}{ }^{3} R_{2}+$ $24356920 R_{4} R_{3}{ }^{3}+30600 R_{4} R_{3} R_{2}{ }^{4}+40807480 R_{4} R_{3} R_{2}{ }^{3}+5459072640 R_{4} R_{3} R_{2}{ }^{2}+$ $128040338880 R_{4} R_{3} R_{2}+514531785200 R_{4} R_{3}+5440 R_{3}^{5}+27200 R_{3}{ }^{3} R_{2}{ }^{3}+$ $26801180 R_{3}{ }^{3} R_{2}{ }^{2}+2333847040 R_{3}{ }^{3} R_{2}+26603024736 R_{3}{ }^{3}+2380 R_{3} R_{2}{ }^{6}+$ $5117952 R_{3} R_{2}{ }^{5}+1145198880 R_{3} R_{2}{ }^{4}+50584764800 R_{3} R_{2}{ }^{3}+536391335160 R_{3} R_{2}{ }^{2}+$ $1314589943808 R_{3} R_{2}+520105017600 R_{3}$
$\Sigma_{17}=R_{18}+3060 R_{16}+5304 R_{14} R_{2}+1958502 R_{14}+9792 R_{13} R_{3}+$ $13464 R_{12} R_{4}+6732 R_{12} R_{2}{ }^{2}+5596536 R_{12} R_{2}+393481660 R_{12}+16320 R_{11} R_{5}+$ $24480 R_{11} R_{3} R_{2}+9471720 R_{11} R_{3}+18360 R_{10} R_{6}+33048 R_{10} R_{4} R_{2}+12047832 R_{10} R_{4}+$ $22032 R_{10} R_{3}{ }^{2}+7344 R_{10} R_{2}{ }^{3}+9687960 R_{10} R_{2}{ }^{2}+1358203032 R_{10} R_{2}+$ $28157550993 R_{10}+19584 R_{9} R_{7}+39168 R_{9} R_{5} R_{2}+13653312 R_{9} R_{5}+$ $58752 R_{9} R_{4} R_{3}+39168 R_{9} R_{3} R_{2}^{2}+32256480 R_{9} R_{3} R_{2}+2118341712 R_{9} R_{3}+$ $9996 R_{8}{ }^{2}+42840 R_{8} R_{6} R_{2}+14522760 R_{8} R_{6}+68544 R_{8} R_{5} R_{3}+38556 R_{8} R_{4}{ }^{2}+$ $51408 R_{8} R_{4} R_{2}{ }^{2}+40283880 R_{8} R_{4} R_{2}+2527831320 R_{8} R_{4}+68544 R_{8} R_{3}{ }^{2} R_{2}+$ $26582220 R_{8} R_{3}{ }^{2}+7140 R_{8} R_{2}{ }^{4}+12880560 R_{8} R_{2}{ }^{3}+2616205956 R_{8} R_{2}{ }^{2}+$ $100776536520 R_{8} R_{2}+720447491400 R_{8}+22032 R_{7}{ }^{2} R_{2}+7398468 R_{7}^{2}+$ $73440 R_{7} R_{6} R_{3}+88128 R_{7} R_{5} R_{4}+58752 R_{7} R_{5} R_{2}{ }^{2}+44631120 R_{7} R_{5} R_{2}+$ $2727348216 R_{7} R_{5}+176256 R_{7} R_{4} R_{3} R_{2}+65539080 R_{7} R_{4} R_{3}+39168 R_{7} R_{3}{ }^{3}+$ $48960 R_{7} R_{3} R_{2}{ }^{3}+62723880 R_{7} R_{3} R_{2}{ }^{2}+7988140608 R_{7} R_{3} R_{2}+145251275016 R_{7} R_{3}+$ $45900 R_{6}{ }^{2} R_{4}+30600 R_{6}{ }^{2} R_{2}{ }^{2}+23001000 R_{6}{ }^{2} R_{2}+1393439340 R_{6}{ }^{2}+48960 R_{6} R_{5}{ }^{2}+$ $195840 R_{6} R_{5} R_{3} R_{2}+71257200 R_{6} R_{5} R_{3}+110160 R_{6} R_{4}{ }^{2} R_{2}+39642300 R_{6} R_{4}{ }^{2}+$ $146880 R_{6} R_{4} R_{3}{ }^{2}+61200 R_{6} R_{4} R_{2}{ }^{3}+75765600 R_{6} R_{4} R_{2}{ }^{2}+9299362848 R_{6} R_{4} R_{2}+$ $163914689928 R_{6} R_{4}+122400 R_{6} R_{3}{ }^{2} R_{2}{ }^{2}+99847800 R_{6} R_{3}{ }^{2} R_{2}+6011731692 R_{6} R_{3}{ }^{2}+$ $6120 R_{6} R_{2}{ }^{5}+14047950 R_{6} R_{2}{ }^{4}+3611048608 R_{6} R_{2}{ }^{3}+189612052992 R_{6} R_{2}{ }^{2}+$ $2367891394224 R_{6} R_{2}+5943136639504 R_{6}+117504 R_{5}{ }^{2} R_{4} R_{2}+41815920 R_{5}{ }^{2} R_{4}+$ $78336 R_{5}{ }^{2} R_{3}{ }^{2}+32640 R_{5}{ }^{2} R_{2}{ }^{3}+39939120 R_{5}{ }^{2} R_{2}{ }^{2}+4842223968 R_{5}{ }^{2} R_{2}+$ $84530220708 R_{5}^{2}+176256 R_{5} R_{4}{ }^{2} R_{3}+293760 R_{5} R_{4} R_{3} R_{2}{ }^{2}+234004320 R_{5} R_{4} R_{3} R_{2}+$ $13694468184 R_{5} R_{4} R_{3}+130560 R_{5} R_{3}{ }^{3} R_{2}+51375360 R_{5} R_{3}{ }^{3}+48960 R_{5} R_{3} R_{2}{ }^{4}+$ $86622480 R_{5} R_{3} R_{2}{ }^{3}+15888265824 R_{5} R_{3} R_{2}{ }^{2}+528470969472 R_{5} R_{3} R_{2}+$ $3143822584896 R_{5} R_{3}+16524 R_{4}{ }^{4}+55080 R_{4}{ }^{3} R_{2}{ }^{2}+43347960 R_{4}{ }^{3} R_{2}+$ $2496204180 R_{4}{ }^{3}+220320 R_{4}{ }^{2} R_{3}{ }^{2} R_{2}+85640220 R_{4}{ }^{2} R_{3}{ }^{2}+27540 R_{4}{ }^{2} R_{2}{ }^{4}+$ $48109320 R_{4}{ }^{2} R_{2}{ }^{3}+8676349296 R_{4}{ }^{2} R_{2}{ }^{2}+283879059264 R_{4}{ }^{2} R_{2} \quad+$ $1664828612280 R_{4}{ }^{2}+48960 R_{4} R_{3}{ }^{4}+146880 R_{4} R_{3}{ }^{2} R_{2}{ }^{3}+189973980 R_{4} R_{3}{ }^{2} R_{2}{ }^{2}+$ $22369864800 R_{4} R_{3}{ }^{2} R_{2}+356862570912 R_{4} R_{3}{ }^{2}+4284 R_{4} R_{2}{ }^{6}+12172272 R_{4} R_{2}{ }^{5}+$ $3734409312 R_{4} R_{2}{ }^{4}+236162036160 R_{4} R_{2}{ }^{3}+3798814728504 R_{4} R_{2}{ }^{2}+$
$15435445558464 R_{4} R_{2}+11905898330880 R_{4}+48960 R_{3}{ }^{4} R_{2}{ }^{2}+41669040 R_{3}{ }^{4} R_{2}+$ $2402180104 R_{3}{ }^{4}+17136 R_{3}{ }^{2} R_{2}{ }^{5}+40026840 R_{3}{ }^{2} R_{2}{ }^{4}+9608537088 R_{3}{ }^{2} R_{2}{ }^{3}+$ $443605042080 R_{3}{ }^{2} R_{2}{ }^{2}+4620143919648 R_{3}{ }^{2} R_{2}+9107976760416 R_{3}{ }^{2}+204 R_{2}{ }^{8}+$ $822528 R_{2}{ }^{7}+353456928 R_{2}{ }^{6}+31642208256 R_{2}{ }^{5}+752018450616 R_{2}{ }^{4}+$ $5003578123776 R_{2}{ }^{3}+8355017145600 R_{2}{ }^{2}+2324754432000 R_{2}$
$\Sigma_{18}=R_{19}+3876 R_{17}+6783 R_{15} R_{2}+3215142 R_{15}+12597 R_{14} R_{3}+$ $17442 R_{13} R_{4}+8721 R_{13} R_{2}{ }^{2}+9398331 R_{13} R_{2}+862928092 R_{13}+21318 R_{12} R_{5}+$ $31977 R_{12} R_{3} R_{2}+16084431 R_{12} R_{3}+24225 R_{11} R_{6}+43605 R_{11} R_{4} R_{2}+$ $20683305 R_{11} R_{4}+29070 R_{11} R_{3}{ }^{2}+9690 R_{11} R_{2}{ }^{3}+16715250 R_{11} R_{2}{ }^{2}+$ $3098068389 R_{11} R_{2}+86027797713 R_{11}+26163 R_{10} R_{7}+52326 R_{10} R_{5} R_{2}+$ $23694957 R_{10} R_{5}+78489 R_{10} R_{4} R_{3}+52326 R_{10} R_{3} R_{2}{ }^{2}+56424870 R_{10} R_{3} R_{2}+$ $4909530555 R_{10} R_{3}+27132 R_{9} R_{8}+58140 R_{9} R_{6} R_{2}+25494390 R_{9} R_{6}+$ $93024 R_{9} R_{5} R_{3}+52326 R_{9} R_{4}^{2}+69768 R_{9} R_{4} R_{2}^{2}+71483130 R_{9} R_{4} R_{2}+$ $5939392476 R_{9} R_{4}+93024 R_{9} R_{3}{ }^{2} R_{2}+47238750 R_{9} R_{3}{ }^{2}+9690 R_{9} R_{2}{ }^{4}+$ $22994370 R_{9} R_{2}{ }^{3}+6249977325 R_{9} R_{2}{ }^{2}+327662916825 R_{9} R_{2}+3262699892088 R_{9}+$ $61047 R_{8} R_{7} R_{2}+26331606 R_{8} R_{7}+101745 R_{8} R_{6} R_{3}+122094 R_{8} R_{5} R_{4}+$ $81396 R_{8} R_{5} R_{2}{ }^{2}+80480295 R_{8} R_{5} R_{2}+6490978284 R_{8} R_{5}+244188 R_{8} R_{4} R_{3} R_{2}+$ $118532925 R_{8} R_{4} R_{3}+54264 R_{8} R_{3}{ }^{3}+67830 R_{8} R_{3} R_{2}{ }^{3}+114157890 R_{8} R_{3} R_{2}{ }^{2}+$ $19468614081 R_{8} R_{3} R_{2}+482319595929 R_{8} R_{3}+52326 R_{7}{ }^{2} R_{3}+130815 R_{7} R_{6} R_{4}+$ $87210 R_{7} R_{6} R_{2}{ }^{2}+84666375 R_{7} R_{6} R_{2}+6730584852 R_{7} R_{6}+69768 R_{7} R_{5}{ }^{2}+$ $279072 R_{7} R_{5} R_{3} R_{2}+131716170 R_{7} R_{5} R_{3}+156978 R_{7} R_{4}{ }^{2} R_{2}+73387215 R_{7} R_{4}{ }^{2}+$ $209304 R_{7} R_{4} R_{3}{ }^{2}+87210 R_{7} R_{4} R_{2}{ }^{3}+141149385 R_{7} R_{4} R_{2}{ }^{2}+23119387473 R_{7} R_{4} R_{2}+$ $553802501121 R_{7} R_{4}+174420 R_{7} R_{3}{ }^{2} R_{2}{ }^{2} \quad+\quad 186324165 R_{7} R_{3}{ }^{2} R_{2} \quad+$ $15006465012 R_{7} R_{3}{ }^{2}+8721 R_{7} R_{2}{ }^{5}+26351955 R_{7} R_{2}{ }^{4}+9151327732 R_{7} R_{2}{ }^{3}+$ $664563711816 R_{7} R_{2}{ }^{2}+11825317043640 R_{7} R_{2}+44160980070544 R_{7} \quad+$ $72675 R_{6}{ }^{2} R_{5}+145350 R_{6}{ }^{2} R_{3} R_{2}+67951125 R_{6}{ }^{2} R_{3}+348840 R_{6} R_{5} R_{4} R_{2}+$ $159957675 R_{6} R_{5} R_{4}+232560 R_{6} R_{5} R_{3}{ }^{2}+96900 R_{6} R_{5} R_{2}{ }^{3}+153707625 R_{6} R_{5} R_{2}{ }^{2}+$ $24676446441 R_{6} R_{5} R_{2}+582100836033 R_{6} R_{5}+261630 R_{6} R_{4}{ }^{2} R_{3}+436050 R_{6} R_{4} R_{3} R_{2}{ }^{2}+$ $451747800 R_{6} R_{4} R_{3} R_{2}+35145645504 R_{6} R_{4} R_{3}+193800 R_{6} R_{3}{ }^{3} R_{2} \quad+$ $99346725 R_{6} R_{3}{ }^{3}+72675 R_{6} R_{3} R_{2}{ }^{4}+168387975 R_{6} R_{3} R_{2}{ }^{3}+41576328732 R_{6} R_{3} R_{2}{ }^{2}+$ $1908984783384 R_{6} R_{3} R_{2}+16166926380888 R_{6} R_{3}+62016 R_{5}{ }^{3} R_{2} \quad+$ $28159140 R_{5}{ }^{3}+279072 R_{5}{ }^{2} R_{4} R_{3}+232560 R_{5}{ }^{2} R_{3} R_{2}{ }^{2}+238432140 R_{5}{ }^{2} R_{3} R_{2}+$ $18336328860 R_{5}{ }^{2} R_{3}+104652 R_{5} R_{4}{ }^{3}+261630 R_{5} R_{4}{ }^{2} R_{2}{ }^{2}+265423635 R_{5} R_{4}{ }^{2} R_{2}+$ $20116645428 R_{5} R_{4}{ }^{2}+697680 R_{5} R_{4} R_{3}{ }^{2} R_{2}+350148150 R_{5} R_{4} R_{3}{ }^{2}+87210 R_{5} R_{4} R_{2}{ }^{4}+$ $197690535 R_{5} R_{4} R_{2}{ }^{3}+47504097084 R_{5} R_{4} R_{2}{ }^{2}+2127087877032 R_{5} R_{4} R_{2}+$
$17639100251208 R_{5} R_{4}+77520 R_{5} R_{3}{ }^{4}+232560 R_{5} R_{3}{ }^{2} R_{2}{ }^{3}+391006035 R_{5} R_{3}{ }^{2} R_{2}{ }^{2}+$
$61506255612 R_{5} R_{3}{ }^{2} R_{2}+1346569377120 R_{5} R_{3}{ }^{2}+6783 R_{5} R_{2}{ }^{6}+25192062 R_{5} R_{2}{ }^{5}+$
$10441525392 R_{5} R_{2}{ }^{4}+922360363320 R_{5} R_{2}{ }^{3} \quad+21593547979560 R_{5} R_{2}{ }^{2} \quad+$
$135419270647824 R_{5} R_{2}+177317274898944 R_{5} \quad+\quad 261630 R_{4}{ }^{3} R_{3} R_{2} \quad+$
$129899295 R_{4}{ }^{3} R_{3}+174420 R_{4}{ }^{2} R_{3}{ }^{3}+261630 R_{4}{ }^{2} R_{3} R_{2}{ }^{3}+434959875 R_{4}{ }^{2} R_{3} R_{2}{ }^{2}+$
$67373930460 R_{4}{ }^{2} R_{3} R_{2}+1452375874728 R_{4}{ }^{2} R_{3}+348840 R_{4} R_{3}{ }^{3} R_{2}{ }^{2} \quad+$
$382255965 R_{4} R_{3}{ }^{3} R_{2}+29061223444 R_{4} R_{3}{ }^{3}+61047 R_{4} R_{3} R_{2}{ }^{5}+184565430 R_{4} R_{3} R_{2}{ }^{4}+$
$59068658592 R_{4} R_{3} R_{2}{ }^{3}+3760094847960 R_{4} R_{3} R_{2}{ }^{2}+56357253645120 R_{4} R_{3} R_{2}+$
$169914189023568 R_{4} R_{3}+46512 R_{3}{ }^{5} R_{2}+25192062 R_{3}{ }^{5}+67830 R_{3}{ }^{3} R_{2}{ }^{4}+$
$162113700 R_{3}{ }^{3} R_{2}{ }^{3}+38155561056 R_{3}{ }^{3} R_{2}{ }^{2} \quad+\quad 1580651249760 R_{3}{ }^{3} R_{2} \quad+$
$11537475926976 R_{3}{ }^{3}+3876 R_{3} R_{2}{ }^{7}+17581536 R_{3} R_{2}{ }^{6}+8561138256 R_{3} R_{2}{ }^{5}+$
$875902898640 R_{3} R_{2}{ }^{4}+24050910615048 R_{3} R_{2}{ }^{3}+187683394106304 R_{3} R_{2}{ }^{2}+$
$376118453760768 R_{3} R_{2}+130859579289600 R_{3}$
$\Sigma_{19}=R_{20}+4845 R_{18}+8550 R_{16} R_{2}+5126010 R_{16}+15960 R_{15} R_{3}+22230 R_{14} R_{4}+$ $11115 R_{14} R_{2}{ }^{2}+15283866 R_{14} R_{2}+1801329010 R_{14}+27360 R_{13} R_{5}+41040 R_{13} R_{3} R_{2}+$ $26413116 R_{13} R_{3}+31350 R_{12} R_{6}+56430 R_{12} R_{4} R_{2}+34289376 R_{12} R_{4}+37620 R_{12} R_{3}^{2}+$ $12540 R_{12} R_{2}{ }^{3}+27823125 R_{12} R_{2}{ }^{2}+6690798510 R_{12} R_{2}+243582356589 R_{12}+$ $34200 R_{11} R_{7}+68400 R_{11} R_{5} R_{2}+39650340 R_{11} R_{5}+102600 R_{11} R_{4} R_{3}+$ $68400 R_{11} R_{3} R_{2}{ }^{2}+95027550 R_{11} R_{3} R_{2}+10751609040 R_{11} R_{3}+35910 R_{10} R_{8}+$ $76950 R_{10} R_{6} R_{2}+43069770 R_{10} R_{6}+123120 R_{10} R_{5} R_{3}+69255 R_{10} R_{4}{ }^{2}+$ $92340 R_{10} R_{4} R_{2}{ }^{2}+121832370 R_{10} R_{4} R_{2}+13162873770 R_{10} R_{4}+123120 R_{10} R_{3}{ }^{2} R_{2}+$ $80606835 R_{10} R_{3}{ }^{2}+12825 R_{10} R_{2}{ }^{4}+39381300 R_{10} R_{2}{ }^{3}+14038852905 R_{10} R_{2}{ }^{2}+$ $978155763966 R_{10} R_{2}+13178203976145 R_{10}+18240 R_{9}{ }^{2}+82080 R_{9} R_{7} R_{2}+$ $44957496 R_{9} R_{7}+136800 R_{9} R_{6} R_{3}+164160 R_{9} R_{5} R_{4}+109440 R_{9} R_{5} R_{2}{ }^{2}+$ $138929520 R_{9} R_{5} R_{2}+14540098080 R_{9} R_{5}+328320 R_{9} R_{4} R_{3} R_{2}+205115640 R_{9} R_{4} R_{3}+$ $72960 R_{9} R_{3}{ }^{3}+91200 R_{9} R_{3} R_{2}{ }^{3}+198558360 R_{9} R_{3} R_{2}{ }^{2}+44469403860 R_{9} R_{3} R_{2}+$ $1466199316140 R_{9} R_{3}+41895 R_{8}{ }^{2} R_{2}+22779708 R_{8}^{2}+143640 R_{8} R_{7} R_{3}+$ $179550 R_{8} R_{6} R_{4}+119700 R_{8} R_{6} R_{2}{ }^{2}+148368150 R_{8} R_{6} R_{2}+15244146120 R_{8} R_{6}+$ $95760 R_{8} R_{5}^{2}+383040 R_{8} R_{5} R_{3} R_{2}+231651420 R_{8} R_{5} R_{3}+215460 R_{8} R_{4}{ }^{2} R_{2}+$ $129228120 R_{8} R_{4}{ }^{2}+287280 R_{8} R_{4} R_{3}{ }^{2}+119700 R_{8} R_{4} R_{2}{ }^{3}+249849810 R_{8} R_{4} R_{2}{ }^{2}+$ $53646016830 R_{8} R_{4} R_{2}+1707778339500 R_{8} R_{4}+239400 R_{8} R_{3}{ }^{2} R_{2}{ }^{2} \quad+$ $330264270 R_{8} R_{3}{ }^{2} R_{2}+34937664930 R_{8} R_{3}{ }^{2}+11970 R_{8} R_{2}{ }^{5}+46908435 R_{8} R_{2}{ }^{4}+$ $21566912920 R_{8} R_{2}{ }^{3}+2110776824691 R_{8} R_{2}{ }^{2} \quad+\quad 51770353887060 R_{8} R_{2} \quad+$ $275057386118488 R_{8}+92340 R_{7}{ }^{2} R_{4}+61560 R_{7}^{2} R_{2}^{2}+75688875 R_{7}^{2} R_{2}+$ $7730011680 R_{7}^{2}+205200 R_{7} R_{6} R_{5}+410400 R_{7} R_{6} R_{3} R_{2}+244099650 R_{7} R_{6} R_{3}+$
$492480 R_{7} R_{5} R_{4} R_{2}+288001620 R_{7} R_{5} R_{4}+328320 R_{7} R_{5} R_{3}{ }^{2}+136800 R_{7} R_{5} R_{2}{ }^{3}+$ $278165700 R_{7} R_{5} R_{2}^{2}+58249583070 R_{7} R_{5} R_{2}+1819579841292 R_{7} R_{5}+$ $369360 R_{7} R_{4}{ }^{2} R_{3}+615600 R_{7} R_{4} R_{3} R_{2}{ }^{2} \quad+\quad 819743220 R_{7} R_{4} R_{3} R_{2} \quad+$ $83469926190 R_{7} R_{4} R_{3}+273600 R_{7} R_{3}{ }^{3} R_{2}+180525840 R_{7} R_{3}{ }^{3}+102600 R_{7} R_{3} R_{2}{ }^{4}+$ $307313790 R_{7} R_{3} R_{2}{ }^{3}+100324623840 R_{7} R_{3} R_{2}{ }^{2}+6207119862102 R_{7} R_{3} R_{2}+$ $72472927653840 R_{7} R_{3}+35625 R_{6}{ }^{3}+256500 R_{6}{ }^{2} R_{4} R_{2}+148720125 R_{6}{ }^{2} R_{4}+$ $171000 R_{6}{ }^{2} R_{3}{ }^{2}+71250 R_{6}{ }^{2} R_{2}{ }^{3}+143597250 R_{6}{ }^{2} R_{2}{ }^{2}+29822367225 R_{6}{ }^{2} R_{2}+$ $926094355230 R_{6}^{2}+273600 R_{6} R_{5}^{2} R_{2}+157268700 R_{6} R_{5}^{2}+820800 R_{6} R_{5} R_{4} R_{3}+$ $684000 R_{6} R_{5} R_{3} R_{2}{ }^{2}+894432600 R_{6} R_{5} R_{3} R_{2}+89352654510 R_{6} R_{5} R_{3} \quad+$ $153900 R_{6} R_{4}{ }^{3}+384750 R_{6} R_{4}{ }^{2} R_{2}{ }^{2}+498507750 R_{6} R_{4}{ }^{2} R_{2}+49148644440 R_{6} R_{4}{ }^{2}+$ $1026000 R_{6} R_{4} R_{3}{ }^{2} R_{2}+658529550 R_{6} R_{4} R_{3}{ }^{2}+128250 R_{6} R_{4} R_{2}{ }^{4}+373384200 R_{6} R_{4} R_{2}{ }^{3}+$ $117903765840 R_{6} R_{4} R_{2}{ }^{2}+7080614444394 R_{6} R_{4} R_{2}+80661647984100 R_{6} R_{4}+$ $114000 R_{6} R_{3}{ }^{4}+342000 R_{6} R_{3}{ }^{2} R_{2}{ }^{3}+739596375 R_{6} R_{3}{ }^{2} R_{2}{ }^{2}+153218346120 R_{6} R_{3}{ }^{2} R_{2}+$ $4509698600727 R_{6} R_{3}{ }^{2}+9975 R_{6} R_{2}{ }^{6}+47872020 R_{6} R_{2}{ }^{5}+26369945910 R_{6} R_{2}{ }^{4}+$ $3175405116900 R_{6} R_{2}{ }^{3}+104413147057500 R_{6} R_{2}{ }^{2}+958343893560768 R_{6} R_{2}+$ $1954656775501200 R_{6}+145920 R_{5}{ }^{3} R_{3}+246240 R_{5}{ }^{2} R_{4}{ }^{2}+410400 R_{5}{ }^{2} R_{4} R_{2}{ }^{2}+$ $526823640 R_{5}{ }^{2} R_{4} R_{2}+51380833980 R_{5}{ }^{2} R_{4}+547200 R_{5}{ }^{2} R_{3}{ }^{2} R_{2}+347937120 R_{5}{ }^{2} R_{3}{ }^{2}+$ $68400 R_{5}{ }^{2} R_{2}{ }^{4}+197225700 R_{5}{ }^{2} R_{2}{ }^{3}+61587533280 R_{5}{ }^{2} R_{2}{ }^{2}+3663655405623 R_{5}{ }^{2} R_{2}+$ $41432280110400 R_{5}{ }^{2}+1231200 R_{5} R_{4}{ }^{2} R_{3} R_{2} \quad+\quad 775481580 R_{5} R_{4}{ }^{2} R_{3} \quad+$ $547200 R_{5} R_{4} R_{3}{ }^{3}+820800 R_{5} R_{4} R_{3} R_{2}{ }^{3}+1740605580 R_{5} R_{4} R_{3} R_{2}{ }^{2}+$ $351642690000 R_{5} R_{4} R_{3} R_{2}+10105007432094 R_{5} R_{4} R_{3}+547200 R_{5} R_{3}{ }^{3} R_{2}{ }^{2}+$ $765952320 R_{5} R_{3}{ }^{3} R_{2}+76114633840 R_{5} R_{3}{ }^{3}+95760 R_{5} R_{3} R_{2}{ }^{5}+371500920 R_{5} R_{3} R_{2}{ }^{4}+$ $156825338040 R_{5} R_{3} R_{2}{ }^{3}+13527648124560 R_{5} R_{3} R_{2}{ }^{2}+283569436423800 R_{5} R_{3} R_{2}+$ $1247637548296416 R_{5} R_{3}+115425 R_{4}{ }^{4} R_{2}+72009810 R_{4}{ }^{4}+307800 R_{4}{ }^{3} R_{3}{ }^{2}+$ $153900 R_{4}{ }^{3} R_{2}{ }^{3}+323136135 R_{4}{ }^{3} R_{2}{ }^{2}+64374037560 R_{4}{ }^{3} R_{2}+1823325743637 R_{4}{ }^{3}+$ $923400 R_{4}{ }^{2} R_{3}{ }^{2} R_{2}{ }^{2}+1279634895 R_{4}{ }^{2} R_{3}{ }^{2} R_{2}+125380658760 R_{4}{ }^{2} R_{3}{ }^{2}+$ $53865 R_{4}{ }^{2} R_{2}{ }^{5}+206817660 R_{4}{ }^{2} R_{2}{ }^{4}+86041245780 R_{4}{ }^{2} R_{2}{ }^{3}+7310914509420 R_{4}{ }^{2} R_{2}{ }^{2}+$ $151162866081900 R_{4}{ }^{2} R_{2}+657260785021416 R_{4}{ }^{2}+410400 R_{4} R_{3}{ }^{4} R_{2}+$ $281494500 R_{4} R_{3}{ }^{4}+359100 R_{4} R_{3}{ }^{2} R_{2}{ }^{4} \quad+\quad 1091552280 R_{4} R_{3}{ }^{2} R_{2}{ }^{3} \quad+$ $334724507460 R_{4} R_{3}{ }^{2} R_{2}{ }^{2}+18557168880240 R_{4} R_{3}{ }^{2} R_{2}+187336894109520 R_{4} R_{3}{ }^{2}+$ $6840 R_{4} R_{2}{ }^{7}+39642246 R_{4} R_{2}{ }^{6}+25394402880 R_{4} R_{2}{ }^{5}+3531762669060 R_{4} R_{2}{ }^{4}+$ $137312829420660 R_{4} R_{2}{ }^{3}+1605438838388808 R_{4} R_{2}{ }^{2}+5263620826167360 R_{4} R_{2}+$ $3518998580742912 R_{4}+18240 R_{3}{ }^{6}+159600 R_{3}{ }^{4} R_{2}{ }^{3}+360025680 R_{3}{ }^{4} R_{2}{ }^{2}+$ $72322105590 R_{3}{ }^{4} R_{2}+1961702574480 R_{3}{ }^{4}+31920 R_{3}{ }^{2} R_{2}{ }^{6}+156847698 R_{3}{ }^{2} R_{2}{ }^{5}+$ $82209481200 R_{3}{ }^{2} R_{2}{ }^{4}+8939828459460 R_{3}{ }^{2} R_{2}{ }^{3}+254146381414020 R_{3}{ }^{2} R_{2}{ }^{2}+$ $1928968296107184 R_{3}{ }^{2} R_{2}+3077385808793760 R_{3}{ }^{2}+285 R_{2}{ }^{9}+$
$2257200 R_{2}{ }^{8}+1949355540 R_{2}{ }^{7}+366283126092 R_{2}{ }^{6}+19653117610140 R_{2}{ }^{5}+$ $333416706139944 R_{2}{ }^{4}+1766923640720640 R_{2}{ }^{3}+2533181737248000 R_{2}{ }^{2}+$ $640237370572800 R_{2}$
$\Sigma_{20}=R_{21}+5985 R_{19}+10640 R_{17} R_{2}+7963242 R_{17}+19950 R_{16} R_{3}+27930 R_{15} R_{4}+$ $13965 R_{15} R_{2}^{2}+24161312 R_{15} R_{2}+3600529450 R_{15}+34580 R_{14} R_{5}+51870 R_{14} R_{3} R_{2}+$ $42114982 R_{14} R_{3}+39900 R_{13} R_{6}+71820 R_{13} R_{4} R_{2}+55133022 R_{13} R_{4}+$ $47880 R_{13} R_{3}{ }^{2}+15960 R_{13} R_{2}{ }^{3}+44884175 R_{13} R_{2}{ }^{2}+13777132940 R_{13} R_{2}+$ $645643728093 R_{13}+43890 R_{12} R_{7}+87780 R_{12} R_{5} R_{2}+64275442 R_{12} R_{5}+$ $131670 R_{12} R_{4} R_{3}+87780 R_{12} R_{3} R_{2}^{2}+154858550 R_{12} R_{3} R_{2}+22412869490 R_{12} R_{3}+$ $46550 R_{11} R_{8}+99750 R_{11} R_{6} R_{2}+70390250 R_{11} R_{6}+159600 R_{11} R_{5} R_{3}+$ $89775 R_{11} R_{4}{ }^{2}+119700 R_{11} R_{4} R_{2}{ }^{2}+200570650 R_{11} R_{4} R_{2}+27730238750 R_{11} R_{4}+$ $159600 R_{11} R_{3}{ }^{2} R_{2}+132830425 R_{11} R_{3}{ }^{2}+16625 R_{11} R_{2}{ }^{4}+65090200 R_{11} R_{2}{ }^{3}+$ $29904022575 R_{11} R_{2}{ }^{2}+2713702951204 R_{11} R_{2}+48296666026245 R_{11}+47880 R_{10} R_{9}+$ $107730 R_{10} R_{7} R_{2}+74113452 R_{10} R_{7}+179550 R_{10} R_{6} R_{3}+215460 R_{10} R_{5} R_{4}+$ $143640 R_{10} R_{5} R_{2}^{2}+231144690 R_{10} R_{5} R_{2}+30916566300 R_{10} R_{5}+430920 R_{10} R_{4} R_{3} R_{2}+$ $341946990 R_{10} R_{4} R_{3}+95760 R_{10} R_{3}{ }^{3}+119700 R_{10} R_{3} R_{2}{ }^{3}+332406900 R_{10} R_{3} R_{2}{ }^{2}+$ $96095650770 R_{10} R_{3} R_{2}+4132917328806 R_{10} R_{3}+111720 R_{9} R_{8} R_{2}+75869052 R_{9} R_{8}+$ $191520 R_{9} R_{7} R_{3}+239400 R_{9} R_{6} R_{4}+159600 R_{9} R_{6} R_{2}{ }^{2}+249760700 R_{9} R_{6} R_{2}+$ $32704206000 R_{9} R_{6}+127680 R_{9} R_{5}^{2}+510720 R_{9} R_{5} R_{3} R_{2}+391137040 R_{9} R_{5} R_{3}+$ $287280 R_{9} R_{4}{ }^{2} R_{2}+218424570 R_{9} R_{4}{ }^{2}+383040 R_{9} R_{4} R_{3}{ }^{2}+159600 R_{9} R_{4} R_{2}{ }^{3}+$ $424129020 R_{9} R_{4} R_{2}{ }^{2} \quad+117454289680 R_{9} R_{4} R_{2} \quad+4873746557946 R_{9} R_{4} \quad+$ $319200 R_{9} R_{3}{ }^{2} R_{2}{ }^{2}+561265320 R_{9} R_{3}{ }^{2} R_{2}+76707501290 R_{9} R_{3}{ }^{2}+15960 R_{9} R_{2}{ }^{5}+$ $79996175 R_{9} R_{2}{ }^{4}+47823086640 R_{9} R_{2}{ }^{3}+6170892626493 R_{9} R_{2}{ }^{2}+$ $203052301928980 R_{9} R_{2}+1482541157911384 R_{9}+97755 R_{8}{ }^{2} R_{3} \quad+$ $251370 R_{8} R_{7} R_{4}+167580 R_{8} R_{7} R_{2}{ }^{2}+258538700 R_{8} R_{7} R_{2}+33506088840 R_{8} R_{7}+$ $279300 R_{8} R_{6} R_{5}+558600 R_{8} R_{6} R_{3} R_{2}+418531050 R_{8} R_{6} R_{3}+670320 R_{8} R_{5} R_{4} R_{2}+$ $494817190 R_{8} R_{5} R_{4}+446880 R_{8} R_{5} R_{3}{ }^{2}+186200 R_{8} R_{5} R_{2}{ }^{3}+479977050 R_{8} R_{5} R_{2}{ }^{2}+$ $129220584220 R_{8} R_{5} R_{2}+5249012612186 R_{8} R_{5}+502740 R_{8} R_{4}{ }^{2} R_{3} \quad+$ $837900 R_{8} R_{4} R_{3} R_{2}{ }^{2} \quad+\quad 1417670940 R_{8} R_{4} R_{3} R_{2} \quad+\quad 186131320130 R_{8} R_{4} R_{3} \quad+$ $372400 R_{8} R_{3}{ }^{3} R_{2}+312564630 R_{8} R_{3}{ }^{3}+139650 R_{8} R_{3} R_{2}{ }^{4}+534002980 R_{8} R_{3} R_{2}{ }^{3}+$ $226662265480 R_{8} R_{3} R_{2}{ }^{2}+18501103588926 R_{8} R_{3} R_{2}+290018736202160 R_{8} R_{3}+$ $143640 R_{7}{ }^{2} R_{5}+287280 R_{7}{ }^{2} R_{3} R_{2}+213654525 R_{7}{ }^{2} R_{3}+149625 R_{7} R_{6}^{2}+$ $718200 R_{7} R_{6} R_{4} R_{2}+522211200 R_{7} R_{6} R_{4}+478800 R_{7} R_{6} R_{3}{ }^{2}+199500 R_{7} R_{6} R_{2}{ }^{3}+$ $506311050 R_{7} R_{6} R_{2}{ }^{2}+134425148200 R_{7} R_{6} R_{2}+5407355314242 R_{7} R_{6} \quad+$ $383040 R_{7} R_{5}{ }^{2} R_{2}+276392620 R_{7} R_{5}^{2}+1149120 R_{7} R_{5} R_{4} R_{3}+957600 R_{7} R_{5} R_{3} R_{2}^{2}+$ $1582035000 R_{7} R_{5} R_{3} R_{2}+202786960670 R_{7} R_{5} R_{3}+215460 R_{7} R_{4}{ }^{3}+538650 R_{7} R_{4}{ }^{2} R_{2}{ }^{2}+$
$882739620 R_{7} R_{4}{ }^{2} R_{2} \quad+\quad 111810118140 R_{7} R_{4}{ }^{2} \quad+1436400 R_{7} R_{4} R_{3}{ }^{2} R_{2} \quad+$ $1167446070 R_{7} R_{4} R_{3}{ }^{2} \quad+\quad 179550 R_{7} R_{4} R_{2}{ }^{4} \quad+\quad 664315050 R_{7} R_{4} R_{2}{ }^{3} \quad+$ $271766087320 R_{7} R_{4} R_{2}{ }^{2}+21475567775466 R_{7} R_{4} R_{2}+327783015866040 R_{7} R_{4}+$ $159600 R_{7} R_{3}{ }^{4}+478800 R_{7} R_{3}{ }^{2} R_{2}{ }^{3}+\quad+1317499995 R_{7} R_{3}{ }^{2} R_{2}{ }^{2} \quad+$ $354258608480 R_{7} R_{3}{ }^{2} R_{2}+13748469525693 R_{7} R_{3}{ }^{2}+13965 R_{7} R_{2}{ }^{6}+85607312 R_{7} R_{2}{ }^{5}+$ $61659245550 R_{7} R_{2}{ }^{4}+9898982639700 R_{7} R_{2}{ }^{3}+443808528768220 R_{7} R_{2}{ }^{2}+$ $5724588717327484 R_{7} R_{2}+17142759609274320 R_{7}+399000 R_{6}{ }^{2} R_{5} R_{2}+$ $285700625 R_{6}{ }^{2} R_{5}+598500 R_{6}{ }^{2} R_{4} R_{3}+498750 R_{6}{ }^{2} R_{3} R_{2}{ }^{2}+817351500 R_{6}{ }^{2} R_{3} R_{2}+$ $103937388625 R_{6}{ }^{2} R_{3}+638400 R_{6} R_{5}{ }^{2} R_{3}+718200 R_{6} R_{5} R_{4}{ }^{2}+1197000 R_{6} R_{5} R_{4} R_{2}{ }^{2}+$ $1929843300 R_{6} R_{5} R_{4} R_{2}+240065731500 R_{6} R_{5} R_{4}+1596000 R_{6} R_{5} R_{3}{ }^{2} R_{2}+$ $1275962100 R_{6} R_{5} R_{3}{ }^{2}+199500 R_{6} R_{5} R_{2}{ }^{4} \quad+\quad 725761050 R_{6} R_{5} R_{2}{ }^{3} \quad+$ $291463568200 R_{6} R_{5} R_{2}{ }^{2}+22684702093242 R_{6} R_{5} R_{2}+342284494563900 R_{6} R_{5}+$ $1795500 R_{6} R_{4}{ }^{2} R_{3} R_{2} \quad+\quad 1423532250 R_{6} R_{4}{ }^{2} R_{3}+798000 R_{6} R_{4} R_{3}{ }^{3} \quad+$ $1197000 R_{6} R_{4} R_{3} R_{2}{ }^{3}+3210274200 R_{6} R_{4} R_{3} R_{2}{ }^{2}+836718853600 R_{6} R_{4} R_{3} R_{2}+$ $31554503733942 R_{6} R_{4} R_{3}+798000 R_{6} R_{3}{ }^{3} R_{2}{ }^{2}+1414421750 R_{6} R_{3}{ }^{3} R_{2} \quad+$ $181673930200 R_{6} R_{3}{ }^{3}+139650 R_{6} R_{3} R_{2}{ }^{5}+\quad 688660700 R_{6} R_{3} R_{2}{ }^{4} \quad+$ $378586122600 R_{6} R_{3} R_{2}{ }^{3}+43431665508000 R_{6} R_{3} R_{2}{ }^{2}+1239640039043560 R_{6} R_{3} R_{2}+$ $7659265765864468 R_{6} R_{3}+255360 R_{5}{ }^{3} R_{4}+212800 R_{5}{ }^{3} R_{2}{ }^{2}+340256560 R_{5}{ }^{3} R_{2}+$ $41901955900 R_{5}{ }^{3}+1915200 R_{5}{ }^{2} R_{4} R_{3} R_{2}+1505714280 R_{5}{ }^{2} R_{4} R_{3}+425600 R_{5}{ }^{2} R_{3}{ }^{3}+$ $638400 R_{5}{ }^{2} R_{3} R_{2}{ }^{3}+1697306100 R_{5}{ }^{2} R_{3} R_{2}{ }^{2}+437776713920 R_{5}{ }^{2} R_{3} R_{2} \quad+$ $16357803585333 R_{5}{ }^{2} R_{3}+718200 R_{5} R_{4}{ }^{3} R_{2}+559872810 R_{5} R_{4}{ }^{3}+1436400 R_{5} R_{4}{ }^{2} R_{3}{ }^{2}+$ $718200 R_{5} R_{4}{ }^{2} R_{2}{ }^{3}+1892774205 R_{5} R_{4}{ }^{2} R_{2}{ }^{2} \quad+482039954480 R_{5} R_{4}{ }^{2} R_{2} \quad+$ $17770606709373 R_{5} R_{4}{ }^{2}+2872800 R_{5} R_{4} R_{3}{ }^{2} R_{2}{ }^{2}+5002877460 R_{5} R_{4} R_{3}{ }^{2} R_{2}+$ $627792712680 R_{5} R_{4} R_{3}{ }^{2} \quad+\quad 167580 R_{5} R_{4} R_{2}{ }^{5}+811552700 R_{5} R_{4} R_{2}{ }^{4}+$ $435577112040 R_{5} R_{4} R_{2}{ }^{3}+48811009650480 R_{5} R_{4} R_{2}{ }^{2}+1364825110628980 R_{5} R_{4} R_{2}+$ $8288663588798152 R_{5} R_{4}+638400 R_{5} R_{3}{ }^{4} R_{2}+550928560 R_{5} R_{3}{ }^{4}+558600 R_{5} R_{3}{ }^{2} R_{2}{ }^{4}+$ $2144353680 R_{5} R_{3}{ }^{2} R_{2}{ }^{3}+850028506740 R_{5} R_{3}{ }^{2} R_{2}{ }^{2}+62291109499080 R_{5} R_{3}{ }^{2} R_{2}+$ $852305979460320 R_{5} R_{3}{ }^{2}+10640 R_{5} R_{2}{ }^{7}+78187242 R_{5} R_{2}{ }^{6} \quad+$ $65274085800 R_{5} R_{2}{ }^{5}+12152587839700 R_{5} R_{2}{ }^{4}+652209543128220 R_{5} R_{2}{ }^{3}+$ $10957473664583484 R_{5} R_{2}{ }^{2}+54731025150293520 R_{5} R_{2}+61290148786433280 R_{5}+$ $269325 R_{4}{ }^{4} R_{3} \quad+\quad 1077300 R_{4}{ }^{3} R_{3} R_{2}{ }^{2} \quad+\quad 1859383890 R_{4}{ }^{3} R_{3} R_{2} \quad+$ $230350983240 R_{4}{ }^{3} R_{3}+1436400 R_{4}{ }^{2} R_{3}{ }^{3} R_{2} \quad+1228459155 R_{4}{ }^{2} R_{3}{ }^{3} \quad+$ $628425 R_{4}{ }^{2} R_{3} R_{2}{ }^{4}+2390137680 R_{4}{ }^{2} R_{3} R_{2}{ }^{3}+934884554940 R_{4}{ }^{2} R_{3} R_{2}{ }^{2} \quad+$ $67549101390540 R_{4}{ }^{2} R_{3} R_{2}+912161144802600 R_{4}{ }^{2} R_{3}+191520 R_{4} R_{3}{ }^{5}+$ $1117200 R_{4} R_{3}{ }^{3} R_{2}{ }^{3} \quad+3157169960 R_{4} R_{3}{ }^{3} R_{2}{ }^{2} \quad+810515337240 R_{4} R_{3}{ }^{3} R_{2} \quad+$ $28715565324600 R_{4} R_{3}{ }^{3}+111720 R_{4} R_{3} R_{2}{ }^{6}+690329052 R_{4} R_{3} R_{2}{ }^{5}+$
$466045965000 R_{4} R_{3} R_{2}{ }^{4}+67021753121400 R_{4} R_{3} R_{2}{ }^{3}+2600964850573320 R_{4} R_{3} R_{2}{ }^{2}+$ $28098738300314436 R_{4} R_{3} R_{2}+67764383615834640 R_{4} R_{3}+223440 R_{3}{ }^{5} R_{2}{ }^{2}+$ $416998624 R_{3}{ }^{5} R_{2}+52689230790 R_{3}{ }^{5}+148960 R_{3}{ }^{3} R_{2}{ }^{5}+759612210 R_{3}{ }^{3} R_{2}{ }^{4}+$ $403580839200 R_{3}{ }^{3} R_{2}{ }^{3}+42639983920380 R_{3}{ }^{3} R_{2}{ }^{2}+1078026577321540 R_{3}{ }^{3} R_{2}+$ $5683381632400984 R_{3}{ }^{3}+5985 R_{3} R_{2}{ }^{8}+52668000 R_{3} R_{2}{ }^{7}+50829096780 R_{3} R_{2}{ }^{6}+$ $10743281472924 R_{3} R_{2}{ }^{5}+653621753210580 R_{3} R_{2}{ }^{4}+12704844357384984 R_{3} R_{2}{ }^{3}+$ $78267651477160320 R_{3} R_{2}{ }^{2}+133371684885600000 R_{3} R_{2}+41680704936960000 R_{3}$

Appendix B

The C-expansions of Kerov's Character Polynomials for $k \leq 22$

$$
\begin{aligned}
& \Sigma_{1}-R_{2}=0 \\
& \Sigma_{2}-R_{3}=0 \\
& \Sigma_{3}-R_{4}=C_{2} \\
& \Sigma_{4}-R_{5}=5 / 2 C_{3} \\
& \Sigma_{5}-R_{6}=5 C_{4}+8 C_{2} \\
& \Sigma_{6}-R_{7}=\frac{35}{4} C_{5}+42 C_{3} \\
& \Sigma_{7}-R_{8}=14 C_{6}+\frac{469}{3} C_{4}+\frac{203}{3} C_{2}^{2}+180 C_{2} \\
& \Sigma_{8}-R_{9}=21 C_{7}+\frac{1869}{4} C_{5}+\frac{819}{2} C_{2} C_{3}+1522 C_{3} \\
& \Sigma_{9}-R_{10}=30 C_{8}+1197 C_{6}+\frac{963}{2} C_{3}^{2}+1122 C_{2} C_{4}+81 C_{2}^{3}+\frac{26060}{3} C_{4}+\frac{17680}{3} C_{2}^{2}+
\end{aligned}
$$ $8064 C_{2}$

$\Sigma_{10}-R_{11}=\frac{165}{4} C_{9}+\frac{5467}{2} C_{7}+\frac{4433}{2} C_{3} C_{4}+\frac{1133}{2} C_{3} C_{2}^{2}+\frac{11033}{4} C_{2} C_{5}+38225 C_{5}+$ $52580 C_{2} C_{3}+96624 C_{3}$
$\Sigma_{11}-R_{12}=55 C_{10}+5709 C_{8}+139381 C_{6}+762212 C_{4}+604800 C_{2}+639232 C_{2}^{2}+$

$$
\begin{aligned}
& \frac{623414}{3} C_{2} C_{4}+6160 C_{2} C_{6}+86229 C_{3}^{2}+\frac{9691}{2} C_{3} C_{5}+\frac{119383}{3} C_{2}^{3}+\frac{6611}{3} C_{4}^{2}+ \\
& \frac{3982}{3} C_{4} C_{2}^{2}+\frac{4433}{4} C_{2} C_{3}^{2} \\
& \Sigma_{12}-R_{13}=\frac{143}{2} C_{11}+\frac{88803}{8} C_{9}+\frac{2641925}{6} C_{7}+4532099 C_{5}+9528480 C_{3}+ \\
& 7710560 C_{2} C_{3}+\frac{2151922}{3} C_{2} C_{5}+\frac{50765}{4} C_{2} C_{7}+549549 C_{3} C_{4}+\frac{39897}{4} C_{3} C_{6}+\frac{1287}{2} C_{3}^{3}+ \\
& \frac{2309879}{6} C_{3} C_{2}^{2}+\frac{18161}{4} C_{4} C_{2} C_{3}+\frac{34463}{4} C_{5} C_{4}+\frac{23595}{8} C_{5} C_{2}^{2}
\end{aligned}
$$

$$
\Sigma_{13}-R_{14}=91 C_{12}+\frac{61061}{3} C_{10}+1241669 C_{8}+\frac{109425316}{5} C_{6}+97423872 C_{4}+
$$

$$
68428800 C_{2}+92793792 C_{2}^{2}+\frac{610712284}{15} C_{2} C_{4}+\frac{10960872}{5} C_{2} C_{6}+\frac{73346}{3} C_{2} C_{8}+
$$

$$
\frac{82526899}{5} C_{3}{ }^{2}+\frac{6539117}{4} C_{3} C_{5}+\frac{116207}{6} C_{3} C_{7}+\frac{166710908}{15} C_{2}{ }^{3}+\frac{3786068}{45} C_{2}{ }^{4}+\frac{55237}{6} C_{3} C_{2} C_{5}+
$$

$$
\frac{6574906}{9} C_{4}^{2}+\frac{55220789}{45} C_{4} C_{2}^{2}+\frac{10103561}{10} C_{2} C_{3}^{2}+\frac{43043}{12} C_{3}^{2} C_{4}+4095 C_{2} C_{4}^{2}+
$$

$$
\frac{48958}{3} C_{4} C_{6}+\frac{91819}{12} C_{5}^{2}+\frac{18382}{3} C_{6} C_{2}^{2}
$$

$$
\Sigma_{14}-R_{15}=\frac{455}{4} C_{13}+\frac{71071}{2} C_{11}+\frac{25537655}{8} C_{9}+89941852 C_{7}+740450620 C_{5}+
$$

$$
1349836416 C_{3}+1430971360 C_{2} C_{3}+184556554 C_{2} C_{5}+\frac{72560345}{12} C_{2} C_{7}+\frac{178087}{4} C_{2} C_{9}+
$$

$$
\frac{410641868}{3} C_{3} C_{4}+\frac{17974671}{4} C_{3} C_{6}+35672 C_{3} C_{8}+\frac{6162403}{8} C_{3}{ }^{3}+\frac{420037072}{3} C_{3} C_{2}^{2}+
$$

$$
\frac{21934523}{4} C_{4} C_{2} C_{3}+\frac{7556835}{2} C_{5} C_{4}+\frac{87440665}{24} C_{5} C_{2}^{2}+\frac{2660372}{3} C_{3} C_{2}{ }^{3}+\frac{180271}{12} C_{4} C_{2} C_{5}+
$$

$$
\frac{35945}{2} C_{6} C_{2} C_{3}+\frac{18109}{3} C_{3} C_{4}^{2}+\frac{178633}{6} C_{4} C_{7}+\frac{108381}{16} C_{5} C_{3}^{2}+\frac{107289}{4} C_{5} C_{6}+\frac{71617}{6} C_{7} C_{2}^{2}
$$

$\Sigma_{15}-R_{16}=140 C_{14}+59514 C_{12}+\frac{68396900}{9} C_{10}+324765727 C_{8}+4511355576 C_{6}+$ $17127271152 C_{4}+10897286400 C_{2}+17780056848 C_{2}{ }^{2}+9593568768 C_{2} C_{4}+$ $\frac{3645670794}{5} C_{2} C_{6}+\frac{137654720}{9} C_{2} C_{8}+77308 C_{2} C_{10}+3822841344 C_{3}^{2}+523886162 C_{3} C_{5}+$ $\frac{103019720}{9} C_{3} C_{7}+62706 C_{3} C_{9}+3190473216 C_{2}^{3}+\frac{3145878221}{45} C_{2}^{4}+14513315 C_{3} C_{2} C_{5}+$ $\frac{2083561321}{9} C_{4}{ }^{2}+\frac{26029444313}{45} C_{4} C_{2}{ }^{2}+\frac{2330866761}{5} C_{2} C_{3}{ }^{2}+\frac{16718455}{3} C_{3}{ }^{2} C_{4}+\frac{9021695}{3} C_{3}{ }^{2} C_{2}{ }^{2}+$ $\frac{57691360}{9} C_{2} C_{4}{ }^{2}+\frac{84031640}{9} C_{4} C_{6}+\frac{22071320}{9} C_{4} C_{2}{ }^{3}+\frac{39000550}{9} C_{5}{ }^{2}+\frac{29836760}{3} C_{6} C_{2}{ }^{2}+$ $20986 C_{5} C_{3} C_{4}+33502 C_{7} C_{2} C_{3}+27244 C_{6} C_{2} C_{4}+53700 C_{2}{ }^{5}+3150 C_{4}{ }^{3}+$ $12579 C_{2} C_{5}{ }^{2}+46018 C_{5} C_{7}+52276 C_{8} C_{4}+21966 C_{8} C_{2}{ }^{2}+12579 C_{6} C_{3}{ }^{2}+21966 C_{6}{ }^{2}$
$\Sigma_{16}-R_{17}=170 C_{15}+\frac{577031}{6} C_{13}+16953794 C_{11}+\frac{8433097673}{8} C_{9}+\frac{69343996540}{3} C_{7}+$ $160069391316 C_{5}+260052508800 C_{3}+337156189272 C_{2} C_{3}+\frac{163778076160}{3} C_{2} C_{5}+$ $\frac{10243810615}{4} C_{2} C_{7}+35951702 C_{2} C_{9}+\frac{386665}{3} C_{2} C_{11}+\frac{118577899520}{3} C_{3} C_{4}+$ $\frac{36585716371}{20} C_{3} C_{6}+27213192 C_{3} C_{8}+\frac{317441}{3} C_{3} C_{10}+\frac{150420961280}{3} C_{3} C_{2}{ }^{2}+$ $\frac{109769}{3} C_{6} C_{3} C_{4}+\frac{64218590023}{20} C_{4} C_{2} C_{3}+\frac{17678202573}{40} C_{3}{ }^{3}+\frac{6047653559}{4} C_{5} C_{4}+$ $\frac{17590797787}{8} C_{5} C_{2}{ }^{2}+\frac{9312340563}{10} C_{3} C_{2}{ }^{3}+\frac{35888836}{3} C_{3} C_{4}{ }^{2}+\frac{53889337}{4} C_{3}{ }^{2} C_{5}+$ $\frac{8152163}{2} C_{2} C_{3}{ }^{3}+\frac{5536730}{9} C_{3} C_{2}{ }^{4}+\frac{197194288}{9} C_{4} C_{7}+19416006 C_{5} C_{6}+\frac{59236262}{9} C_{5} C_{2}{ }^{3}+$ $\frac{225622028}{9} C_{7} C_{2}^{2}+\frac{131473648}{9} C_{3} C_{4} C_{2}^{2}+36471664 C_{3} C_{2} C_{6}+\frac{270981394}{9} C_{4} C_{2} C_{5}+$

```
67864 }\mp@subsup{C}{7}{}\mp@subsup{C}{3}{2}+\frac{30821}{2}\mp@subsup{C}{5}{}\mp@subsup{C}{4}{2}+\frac{50558}{3}\mp@subsup{C}{3}{}\mp@subsup{C}{5}{2}+\frac{230911}{3}\mp@subsup{C}{5}{}\mp@subsup{C}{8}{}+\frac{265523}{3}\mp@subsup{C}{9}{}\mp@subsup{C}{4}{}+\frac{230911}{6}\mp@subsup{C}{9}{}\mp@subsup{C}{2}{2}
\frac{127075 }{3}\mp@subsup{C}{5}{\prime}\mp@subsup{C}{2}{}\mp@subsup{C}{6}{}+\frac{178993}{3}\mp@subsup{C}{8}{}\mp@subsup{C}{2}{}\mp@subsup{C}{3}{}+48127\mp@subsup{C}{7}{}\mp@subsup{C}{2}{}\mp@subsup{C}{4}{}+\frac{213605}{3}\mp@subsup{C}{7}{}\mp@subsup{C}{6}{}
\Sigma17 - R R18 = 204C16 + 150654C14 + 35771060 C12 + 3128616777C C C C 
102921070200 C8 + [ 5943136639504 5}\mp@subsup{C}{6}{}+3968632776960 C4 +2324754432000 C C +
4386384368640 C 2 }\mp@subsup{}{}{2}+\frac{13839469318432}{5}\mp@subsup{C}{2}{}\mp@subsup{C}{4}{}+\frac{1338680692224}{5}\mp@subsup{C}{2}{}\mp@subsup{C}{6}{}+\frac{56975901642}{7}\mp@subsup{C}{2}{}\mp@subsup{C}{8}{}
79369328 C C C 10 + 207468 C2 C12 + [ 5441834311016
5847039364 C C C C + 60854237 C C C9 + 172278 C C C C11 + 
82059886720 C4 }\mp@subsup{}{}{2}+\frac{1289581576192}{5}\mp@subsup{C}{4}{}\mp@subsup{C}{2}{2}+\frac{1021326327216}{5}\mp@subsup{C}{2}{}\mp@subsup{C}{3}{2}+62798\mp@subsup{C}{7}{}\mp@subsup{C}{3}{}\mp@subsup{C}{4}{}
74873222791 
\frac{23352062206 5}{5}\mp@subsup{C}{6}{}\mp@subsup{C}{4}{}+\frac{265556157497}{35}\mp@subsup{C}{6}{}\mp@subsup{C}{2}{2}+\frac{8618088069}{4}\mp@subsup{C}{5}{2}+\frac{19941030379}{5}\mp@subsup{C}{4}{}\mp@subsup{C}{3}{2}+
\ 163660978681 C}\mp@subsup{C}{2}{}\mp@subsup{C}{4}{}\mp@subsup{}{}{2}+\frac{113751303108}{35}\mp@subsup{C}{4}{}\mp@subsup{C}{2}{}\mp@subsup{}{}{3}+\frac{136983821263}{35}\mp@subsup{C}{3}{2}\mp@subsup{}{}{2}\mp@subsup{C}{2}{2}+52411629 C4 C C C C C +
345324264 }\mp@subsup{}{5}{2}\mp@subsup{C}{4}{}\mp@subsup{C}{2}{}\mp@subsup{C}{6}{}+26949114\mp@subsup{C}{4}{}\mp@subsup{C}{2}{}\mp@subsup{C}{3}{2}+35657653\mp@subsup{C}{5}{}\mp@subsup{C}{3}{}\mp@subsup{C}{2}{2}+86410116\mp@subsup{C}{7}{}\mp@subsup{C}{2}{}\mp@subsup{C}{3}{}\mp@subsup{C}{3}{}
```



```
2500275 C C }\mp@subsup{}{}{2}\mp@subsup{C}{2}{}\mp@subsup{}{}{3}+33354\mp@subsup{C}{2}{}\mp@subsup{C}{6}{}\mp@subsup{}{}{2}+144908\mp@subsup{C}{10}{}\mp@subsup{C}{4}{}+64634\mp@subsup{C}{10}{}\mp@subsup{C}{2}{2}\mp@subsup{}{}{2}+125358\mp@subsup{C}{9}{}\mp@subsup{C}{5}{}
```


$\Sigma_{18}-R_{19}=\frac{969}{4} C_{17}+229653 C_{15}+\frac{215732023}{3} C_{13}+\frac{86027797713}{10} C_{11}+$
$407837486511 C_{9}+\frac{22080490035272}{3} C_{7}+44329318724736 C_{5}+65429789644800 C_{3}+$
$99400589430912 C_{2} C_{3}+\frac{57403472915324}{3} C_{2} C_{5}+1155211200918 C_{2} C_{7}+$
$\frac{950092202421}{40} C_{2} C_{9}+\frac{4979564707}{30} C_{2} C_{11}+\frac{1295553}{4} C_{2} C_{13}+\frac{40796114441240}{3} C_{3} C_{4}+$
$\frac{4005088325334}{5} C_{3} C_{6}+\frac{1207208811663}{70} C_{3} C_{8}+\frac{773582093}{6} C_{3} C_{10}+\frac{543609}{2} C_{3} C_{12}+$
$19893520260584 C_{3} C_{2}^{2}+113827138 C_{6} C_{3} C_{4}+\frac{8624464303302}{5} C_{4} C_{2} C_{3}+$
$\frac{1166646696471}{5} C_{3}{ }^{3}+\frac{183141}{16} C_{5}{ }^{3}+654250047912 C_{5} C_{4}+1210202085609 C_{5} C_{2}{ }^{2}+$
$\frac{3368284829784}{5} C_{3} C_{2}{ }^{3}+\frac{1103642081327}{105} C_{3} C_{4}{ }^{2}+\frac{334910356587}{28} C_{3}{ }^{2} C_{5}+\frac{1812379517331}{280} C_{2} C_{3}{ }^{3}+$
$\frac{188430360467}{70} C_{3} C_{2}{ }^{4}+\frac{406837382257}{30} C_{4} C_{7}+\frac{237989645181}{20} C_{5} C_{6}+\frac{1309518988019}{120} C_{5} C_{2}{ }^{3}+$
$\frac{1433185387549}{60} C_{7} C_{2}{ }^{2}+\frac{9910640096179}{420} C_{3} C_{4} C_{2}{ }^{2}+\frac{4688116263351}{140} C_{3} C_{2} C_{6}+$
$\frac{326574932023}{12} C_{4} C_{2} C_{5}+\frac{711451751}{10} C_{7} C_{3}{ }^{2}+\frac{143273110}{3} C_{5} C_{4}{ }^{2}+\frac{418794371}{8} C_{3} C_{5}^{2}+$
$\frac{263997913}{3} C_{5} C_{8}+\frac{152800641}{40} C_{5} C_{2}{ }^{4}+\frac{621920027}{6} C_{9} C_{4}+\frac{5195632973}{40} C_{9} C_{2}{ }^{2}+$
$\frac{1365663703}{20} C_{5} C_{4} C_{2}{ }^{2}+\frac{2666514549}{20} C_{5} C_{2} C_{6}+\frac{609610497}{10} C_{5} C_{2} C_{3}{ }^{2}+\frac{1933200587}{10} C_{8} C_{2} C_{3}+$
$\frac{4578172607}{30} C_{7} C_{2} C_{4}+\frac{1684006043}{20} C_{6} C_{3} C_{2}{ }^{2}+\frac{1607214731}{30} C_{4}{ }^{2} C_{2} C_{3}+\frac{670508917}{60} C_{4} C_{3} C_{2}{ }^{3}+$
$\frac{1207972196}{15} C_{7} C_{6}+\frac{2363793781}{60} C_{7} C_{2}{ }^{3}+\frac{93700685}{6} C_{4} C_{3}{ }^{3}+\frac{559985423}{120} C_{3}{ }^{3} C_{2}{ }^{2}+\frac{1049427}{16} C_{3}{ }^{2} C_{9}+$
$167637 C_{3} C_{2} C_{10}+\frac{84303}{2} C_{3} C_{6}{ }^{2}+\frac{460275}{2} C_{4} C_{11}+\frac{84303}{2} C_{4}{ }^{2} C_{7}+\frac{795549}{4} C_{5} C_{10}+$
$167637 C_{7} C_{8}+\frac{712215}{4} C_{9} C_{6}+104652 C_{11} C_{2}^{2}+\frac{210273}{2} C_{3} C_{4} C_{8}+\frac{716091}{8} C_{3} C_{5} C_{7}+$
$\frac{545547}{4} C_{4} C_{2} C_{9}+\frac{295545}{4} C_{4} C_{5} C_{6}+\frac{462213}{4} C_{5} C_{2} C_{8}+\frac{210273}{2} C_{7} C_{2} C_{6}$
$\Sigma_{19}-R_{20}=285 C_{18}+341734 C_{16}+492214 C_{14} C_{2}+138563770 C_{14}+\frac{834157}{2} C_{13} C_{3}+$ $355604 C_{12} C_{4}+164141 C_{12} C_{2}^{2}+331126870 C_{12} C_{2}+22143850599 C_{12}+$ $\frac{615581}{2} C_{11} C_{5}+\frac{533615}{2} C_{11} C_{3} C_{2}+260452912 C_{11} C_{3}+273638 C_{10} C_{6}+218994 C_{10} C_{4} C_{2}+$ ${ }^{\frac{631158910}{3}} C_{10} C_{4}+\frac{424327}{4} C_{10} C_{3}{ }^{2}+\frac{814623575}{3} C_{10} C_{2}{ }^{2}+64396272576 C_{10} C_{2}+$ $\frac{439273658715}{3} C_{10}+\frac{506293}{2} C_{9} C_{7}+\frac{369683}{2} C_{9} C_{5} C_{2}+177250525 C_{9} C_{5}+\frac{342361}{2} C_{9} C_{4} C_{3}+$ $\frac{1641778029}{4} C_{9} C_{3} C_{2}+\frac{189399024243}{4} C_{9} C_{3}+123158 C_{8}{ }^{2}+164350 C_{8} C_{6} C_{2}+$ $158419492 C_{8} C_{6}+\frac{287717}{2} C_{8} C_{5} C_{3}+68514 C_{8} C_{4}^{2}+\frac{969972838}{3} C_{8} C_{4} C_{2}+$ $\frac{259245388114}{7} C_{8} C_{4}+\frac{}{} \frac{305514243}{2} C_{8} C_{3}{ }^{2}+\frac{26359326}{3} C_{8} C_{2}{ }^{3}+69280372562 C_{8} C_{2}{ }^{2}+$ $\frac{93812776439170}{21} C_{8} C_{2}+\frac{275057886118488}{7} C_{8}+\frac{315039}{4} C_{7}{ }^{2} C_{2}+\frac{228476330}{3} C_{7}{ }^{2}+\frac{260395}{2} C_{7} C_{6} C_{3}+$ $\frac{233073}{2} C_{7} C_{5} C_{4}+\frac{3291521335}{12} C_{7} C_{5} C_{2}+\frac{63056251045}{2} C_{7} C_{5}+\frac{481825807}{2} C_{7} C_{4} C_{3}+$ $\frac{1137609401}{6} C_{7} C_{3} C_{2}{ }^{2}+97848576596 C_{7} C_{3} C_{2}+\frac{933276256030}{3} C_{7} C_{3}+54853 C_{6}{ }^{2} C_{4}+$ $129237525 C_{6}{ }^{2} C_{2}+\frac{7499618051}{5} C_{6}{ }^{2}+\frac{205751}{4} C_{6} C_{5}{ }^{2}+\frac{840751539}{4} C_{6} C_{5} C_{3}+$ $97308690 C_{6} C_{4}{ }^{2}+\frac{44567640}{3} C_{6} C_{4} C_{2}{ }^{2}+\frac{2685041310908}{35} C_{6} C_{4} C_{2}+\frac{734880279390}{3} C_{6} C_{4}+$ $136000347 C_{6} C_{3}{ }^{2} C_{2}+\frac{691080377949}{20} C_{6} C_{3}{ }^{2}+\frac{27375485}{3} C_{6} C_{2}{ }^{4}+\frac{170852955694}{5} C_{6} C_{2}{ }^{3}+$ $\frac{3574778324805}{7} C_{6} C_{2}{ }^{2}+\frac{395833393740496}{35} C_{6} C_{2}+390931355100240 C_{6}+$ $\frac{1078264535}{12} C_{5}^{2} C_{4}+\frac{270804625}{4} C_{5}^{2} C_{2}^{2}+\frac{561510198935}{16} C_{5}^{2} C_{2}+\frac{3375817861985}{3} C_{5}^{2}+$ $\frac{1329304657}{6} C_{5} C_{4} C_{3} C_{2}+\frac{1577882763237}{28} C_{5} C_{4} C_{3}+\frac{132707419}{4} C_{5} C_{3}{ }^{3}+\frac{307885139}{12} C_{5} C_{3} C_{2}{ }^{3}+$ $\frac{284189873839}{4} C_{5} C_{3} C_{2}{ }^{2}+\frac{40022595196035}{7} C_{5} C_{3} C_{2}+\frac{541568882522388}{7} C_{5} C_{3}+32902110 C_{4}{ }^{3} C_{2}+$ $\frac{175384768130}{21} C_{4}{ }^{3}+\frac{87899187}{2} C_{4}{ }^{2} C_{3}{ }^{2}+11108825 C_{4}{ }^{2} C_{2}{ }^{3}+\frac{1076797387186}{35} C_{4}{ }^{2} C_{2}{ }^{2}+$ $\frac{21265720002485}{7} C_{4}{ }^{2} C_{2}+\frac{708436340027840}{21} C_{4}{ }^{2}+\frac{172789591}{6} C_{4} C_{3}{ }^{2} C_{2}{ }^{2}+\frac{733224560821}{14} C_{4} C_{3}{ }^{2} C_{2}+$ $2547878026595 C_{4} C_{3}{ }^{2}+\frac{58064555211}{7} C_{4} C_{2}{ }^{4}+\frac{60408198352160}{21} C_{4} C_{2}{ }^{3}+$ ${ }^{12981411205554944}{ }_{105} C_{4} C_{2}{ }^{2}+972677565188640 C_{4} C_{2}+1172999526914304 C_{4}+$ $\frac{32651861}{8} C_{3}{ }^{4} C_{2}+\frac{18294308688}{5} C_{3}{ }^{4}+\frac{132896134353}{10} C_{3}{ }^{2} C_{2}{ }^{3}+\frac{238403853774355}{7} C_{3}{ }^{2} C_{2}{ }^{2}+$ $\frac{3379097580196164}{35} C_{3}{ }^{2} C_{2}+378415097098200 C_{3}{ }^{2}+\frac{3440157899}{15} C_{2}{ }^{6}+\frac{5286009473005}{21} C_{2}{ }^{5}+$ ${ }^{2485798266001168}{ }_{105} C_{2}{ }^{4}+403314720431760 C_{2}{ }^{3}+1360182210333696 C_{2}{ }^{2}+$ $640237370572800 C_{2}$
$\Sigma_{20}-R_{21}=\frac{665}{2} C_{19}+\frac{3981621}{8} C_{17}+\frac{2921611}{4} C_{15} C_{2}+257180675 C_{15}+$ $\frac{2497607}{4} C_{14} C_{3}+\frac{6438811}{12} C_{13} C_{4}+\frac{6008807}{24} C_{13} C_{2}^{2}+\frac{1901199185}{3} C_{13} C_{2}+\frac{215214576031}{4} C_{13}+$ $\frac{1861601}{4} C_{12} C_{5}+\frac{1649599}{4} C_{12} C_{3} C_{2}+504405445 C_{12} C_{3}+\frac{1695599}{4} C_{11} C_{6}+$ $\frac{4100789}{12} C_{11} C_{4} C_{2}+\frac{1229938255}{3} C_{11} C_{4}+\frac{332899}{2} C_{11} C_{3}{ }^{2}+\frac{1082828335}{2} C_{11} C_{2}^{2}+$ $\frac{1637630071049}{10} C_{11} C_{2}+{ }^{9659333205249} C_{11}+\frac{4524793}{12} C_{10} C_{7}+\frac{3464783}{12} C_{10} C_{5} C_{2}+$ $\frac{1033296775}{3} C_{10} C_{5}+\frac{3252781}{12} C_{10} C_{4} C_{3}+830421885 C_{10} C_{3} C_{2}+\frac{243998460503}{2} C_{10} C_{3}+$ $\frac{1437597}{4} C_{9} C_{8}+\frac{1013593}{4} C_{9} C_{6} C_{2}+303243800 C_{9} C_{6}+226898 C_{9} C_{5} C_{3}+$

Appendix C

Stanley's Character Polynomials $(-1)^{k} F_{k}(a, p,-b,-q)$ for $k \leq 10$

$-F_{1}(a, p,-b,-q)=a b+p q$
$F_{2}(a, p,-b,-q)=a^{2} b+a b^{2}+2 a p q+p^{2} q+p q^{2}$
$-F_{3}(a, p,-b,-q)=a^{3} b+3 a^{2} b^{2}+3 a^{2} p q+a b^{3}+3 a b p q+3 a p^{2} q+3 a p q^{2}+p^{3} q+$ $3 p^{2} q^{2}+p q^{3}+a b+p q$
$F_{4}(a, p,-b,-q)=a^{4} b+6 a^{3} b^{2}+4 a^{3} p q+6 a^{2} b^{3}+12 a^{2} b p q+6 a^{2} p^{2} q+6 a^{2} p q^{2}+$ $a b^{4}+4 a b^{2} p q+4 a b p^{2} q+4 a b p q^{2}+4 a p^{3} q+14 a p^{2} q^{2}+4 a p q^{3}+p^{4} q+6 p^{3} q^{2}+$ $6 p^{2} q^{3}+p q^{4}+5 a^{2} b+5 a b^{2}+10 a p q+5 p^{2} q+5 p q^{2}$
$-F_{5}(a, p,-b,-q)=a^{5} b+10 a^{4} b^{2}+5 a^{4} p q+20 a^{3} b^{3}+30 a^{3} b p q+10 a^{3} p^{2} q+$ $10 a^{3} p q^{2}+10 a^{2} b^{4}+30 a^{2} b^{2} p q+20 a^{2} b p^{2} q+20 a^{2} b p q^{2}+10 a^{2} p^{3} q+40 a^{2} p^{2} q^{2}+$ $10 a^{2} p q^{3}+a b^{5}+5 a b^{3} p q+5 a b^{2} p^{2} q+5 a b^{2} p q^{2}+5 a b p^{3} q+20 a b p^{2} q^{2}+5 a b p q^{3}+$ $5 a p^{4} q+35 a p^{3} q^{2}+35 a p^{2} q^{3}+5 a p q^{4}+p^{5} q+10 p^{4} q^{2}+20 p^{3} q^{3}+10 p^{2} q^{4}+p q^{5}+$ $15 a^{3} b+40 a^{2} b^{2}+45 a^{2} p q+15 a b^{3}+35 a b p q+45 a p^{2} q+45 a p q^{2}+15 p^{3} q+$ $40 p^{2} q^{2}+15 p q^{3}+8 a b+8 p q$
$F_{6}(a, p,-b,-q)=a^{6} b+15 a^{5} b^{2}+6 a^{5} p q+50 a^{4} b^{3}+60 a^{4} b p q+15 a^{4} p^{2} q+$ $15 a^{4} p q^{2}+50 a^{3} b^{4}+120 a^{3} b^{2} p q+60 a^{3} b p^{2} q+60 a^{3} b p q^{2}+20 a^{3} p^{3} q+90 a^{3} p^{2} q^{2}+$ $20 a^{3} p q^{3}+15 a^{2} b^{5}+60 a^{2} b^{3} p q+45 a^{2} b^{2} p^{2} q+45 a^{2} b^{2} p q^{2}+30 a^{2} b p^{3} q+135 a^{2} b p^{2} q^{2}+$ $30 a^{2} b p q^{3}+15 a^{2} p^{4} q+120 a^{2} p^{3} q^{2}+120 a^{2} p^{2} q^{3}+15 a^{2} p q^{4}+a b^{6}+6 a b^{4} p q+$ $6 a b^{3} p^{2} q+6 a b^{3} p q^{2}+6 a b^{2} p^{3} q+27 a b^{2} p^{2} q^{2}+6 a b^{2} p q^{3}+6 a b p^{4} q+48 a b p^{3} q^{2}+$
$48 a b p^{2} q^{3}+6 a b p q^{4}+6 a p^{5} q+69 a p^{4} q^{2}+146 a p^{3} q^{3}+69 a p^{2} q^{4}+6 a p q^{5}+p^{6} q+$ $15 p^{5} q^{2}+50 p^{4} q^{3}+50 p^{3} q^{4}+15 p^{2} q^{5}+p q^{6}+35 a^{4} b+175 a^{3} b^{2}+140 a^{3} p q+$ $175 a^{2} b^{3}+315 a^{2} b p q+210 a^{2} p^{2} q+210 a^{2} p q^{2}+35 a b^{4}+105 a b^{2} p q+105 a b p^{2} q+$ $105 a b p q^{2}+140 a p^{3} q+420 a p^{2} q^{2}+140 a p q^{3}+35 p^{4} q+175 p^{3} q^{2}+175 p^{2} q^{3}+$ $35 p q^{4}+84 a^{2} b+84 a b^{2}+168 a p q+84 p^{2} q+84 p q^{2}$
$-F_{7}(a, p,-b,-q)=a^{7} b+21 a^{6} b^{2}+7 a^{6} p q+105 a^{5} b^{3}+105 a^{5} b p q+21 a^{5} p^{2} q+$ $21 a^{5} p q^{2}+175 a^{4} b^{4}+350 a^{4} b^{2} p q+140 a^{4} b p^{2} q+140 a^{4} b p q^{2}+35 a^{4} p^{3} q+175 a^{4} p^{2} q^{2}+$ $35 a^{4} p q^{3}+105 a^{3} b^{5}+350 a^{3} b^{3} p q+210 a^{3} b^{2} p^{2} q+210 a^{3} b^{2} p q^{2}+105 a^{3} b p^{3} q+$ $525 a^{3} b p^{2} q^{2}+105 a^{3} b p q^{3}+35 a^{3} p^{4} q+315 a^{3} p^{3} q^{2}+315 a^{3} p^{2} q^{3}+35 a^{3} p q^{4}+$ $21 a^{2} b^{6}+105 a^{2} b^{4} p q+84 a^{2} b^{3} p^{2} q+84 a^{2} b^{3} p q^{2}+63 a^{2} b^{2} p^{3} q+315 a^{2} b^{2} p^{2} q^{2}+$ $63 a^{2} b^{2} p q^{3}+42 a^{2} b p^{4} q+378 a^{2} b p^{3} q^{2}+378 a^{2} b p^{2} q^{3}+42 a^{2} b p q^{4}+21 a^{2} p^{5} q+$ $273 a^{2} p^{4} q^{2}+609 a^{2} p^{3} q^{3}+273 a^{2} p^{2} q^{4}+21 a^{2} p q^{5}+a b^{7}+7 a b^{5} p q+7 a b^{4} p^{2} q+$ $7 a b^{4} p q^{2}+7 a b^{3} p^{3} q+35 a b^{3} p^{2} q^{2}+7 a b^{3} p q^{3}+7 a b^{2} p^{4} q+63 a b^{2} p^{3} q^{2}+63 a b^{2} p^{2} q^{3}+$ $7 a b^{2} p q^{4}+7 a b p^{5} q+91 a b p^{4} q^{2}+203 a b p^{3} q^{3}+91 a b p^{2} q^{4}+7 a b p q^{5}+7 a p^{6} q+$ $119 a p^{5} q^{2}+427 a p^{4} q^{3}+427 a p^{3} q^{4}+119 a p^{2} q^{5}+7 a p q^{6}+p^{7} q+21 p^{6} q^{2}+105 p^{5} q^{3}+$ $175 p^{4} q^{4}+105 p^{3} q^{5}+21 p^{2} q^{6}+p q^{7}+70 a^{5} b+560 a^{4} b^{2}+350 a^{4} p q+1050 a^{3} b^{3}+$ $1540 a^{3} b p q+700 a^{3} p^{2} q+700 a^{3} p q^{2}+560 a^{2} b^{4}+1414 a^{2} b^{2} p q+1036 a^{2} b p^{2} q+$ $1036 a^{2} b p q^{2}+700 a^{2} p^{3} q+2324 a^{2} p^{2} q^{2}+700 a^{2} p q^{3}+70 a b^{5}+266 a b^{3} p q+$ $238 a b^{2} p^{2} q+238 a b^{2} p q^{2}+266 a b p^{3} q+938 a b p^{2} q^{2}+266 a b p q^{3}+350 a p^{4} q+$ $1974 a p^{3} q^{2}+1974 a p^{2} q^{3}+350 a p q^{4}+70 p^{5} q+560 p^{4} q^{2}+1050 p^{3} q^{3}+560 p^{2} q^{4}+$ $70 p q^{5}+469 a^{3} b+1183 a^{2} b^{2}+1407 a^{2} p q+469 a b^{3}+959 a b p q+1407 a p^{2} q+$ $1407 a p q^{2}+469 p^{3} q+1183 p^{2} q^{2}+469 p q^{3}+180 a b+180 p q$
$F_{8}(a, p,-b,-q)=a^{8} b+28 a^{7} b^{2}+8 a^{7} p q+196 a^{6} b^{3}+168 a^{6} b p q+28 a^{6} p^{2} q+$ $28 a^{6} p q^{2}+490 a^{5} b^{4}+840 a^{5} b^{2} p q+280 a^{5} b p^{2} q+280 a^{5} b p q^{2}+56 a^{5} p^{3} q+308 a^{5} p^{2} q^{2}+$ $56 a^{5} p q^{3}+490 a^{4} b^{5}+1400 a^{4} b^{3} p q+700 a^{4} b^{2} p^{2} q+700 a^{4} b^{2} p q^{2}+280 a^{4} b p^{3} q+$ $1540 a^{4} b p^{2} q^{2}+280 a^{4} b p q^{3}+70 a^{4} p^{4} q+700 a^{4} p^{3} q^{2}+700 a^{4} p^{2} q^{3}+70 a^{4} p q^{4}+$ $196 a^{3} b^{6}+840 a^{3} b^{4} p q+560 a^{3} b^{3} p^{2} q+560 a^{3} b^{3} p q^{2}+336 a^{3} b^{2} p^{3} q+1848 a^{3} b^{2} p^{2} q^{2}+$ $336 a^{3} b^{2} p q^{3}+168 a^{3} b p^{4} q+1680 a^{3} b p^{3} q^{2}+1680 a^{3} b p^{2} q^{3}+168 a^{3} b p q^{4}+56 a^{3} p^{5} q+$ $812 a^{3} p^{4} q^{2}+1904 a^{3} p^{3} q^{3}+812 a^{3} p^{2} q^{4}+56 a^{3} p q^{5}+28 a^{2} b^{7}+168 a^{2} b^{5} p q+$ $140 a^{2} b^{4} p^{2} q+140 a^{2} b^{4} p q^{2}+112 a^{2} b^{3} p^{3} q+616 a^{2} b^{3} p^{2} q^{2}+112 a^{2} b^{3} p q^{3}+84 a^{2} b^{2} p^{4} q+$ $840 a^{2} b^{2} p^{3} q^{2}+840 a^{2} b^{2} p^{2} q^{3}+84 a^{2} b^{2} p q^{4}+56 a^{2} b p^{5} q+812 a^{2} b p^{4} q^{2}+1904 a^{2} b p^{3} q^{3}+$ $812 a^{2} b p^{2} q^{4}+56 a^{2} b p q^{5}+28 a^{2} p^{6} q+532 a^{2} p^{5} q^{2}+2044 a^{2} p^{4} q^{3}+2044 a^{2} p^{3} q^{4}+$ $532 a^{2} p^{2} q^{5}+28 a^{2} p q^{6}+a b^{8}+8 a b^{6} p q+8 a b^{5} p^{2} q+8 a b^{5} p q^{2}+8 a b^{4} p^{3} q+44 a b^{4} p^{2} q^{2}+$ $8 a b^{4} p q^{3}+8 a b^{3} p^{4} q+80 a b^{3} p^{3} q^{2}+80 a b^{3} p^{2} q^{3}+8 a b^{3} p q^{4}+8 a b^{2} p^{5} q+116 a b^{2} p^{4} q^{2}+$
$272 a b^{2} p^{3} q^{3}+116 a b^{2} p^{2} q^{4}+8 a b^{2} p q^{5}+8 a b p^{6} q+152 a b p^{5} q^{2}+584 a b p^{4} q^{3}+$ $584 a b p^{3} q^{4}+152 a b p^{2} q^{5}+8 a b p q^{6}+8 a p^{7} q+188 a p^{6} q^{2}+1016 a p^{5} q^{3}+1742 a p^{4} q^{4}+$ $1016 a p^{3} q^{5}+188 a p^{2} q^{6}+8 a p q^{7}+p^{8} q+28 p^{7} q^{2}+196 p^{6} q^{3}+490 p^{5} q^{4}+490 p^{4} q^{5}+$ $196 p^{3} q^{6}+28 p^{2} q^{7}+p q^{8}+126 a^{6} b+1470 a^{5} b^{2}+756 a^{5} p q+4410 a^{4} b^{3}+5460 a^{4} b p q+$ $1890 a^{4} p^{2} q+1890 a^{4} p q^{2}+4410 a^{3} b^{4}+9576 a^{3} b^{2} p q+5544 a^{3} b p^{2} q+5544 a^{3} b p q^{2}+$ $2520 a^{3} p^{3} q+9156 a^{3} p^{2} q^{2}+2520 a^{3} p q^{3}+1470 a^{2} b^{5}+4872 a^{2} b^{3} p q+3612 a^{2} b^{2} p^{2} q+$ $3612 a^{2} b^{2} p q^{2}+2856 a^{2} b p^{3} q+11004 a^{2} b p^{2} q^{2}+2856 a^{2} b p q^{3}+1890 a^{2} p^{4} q+$ $11844 a^{2} p^{3} q^{2}+11844 a^{2} p^{2} q^{3}+1890 a^{2} p q^{4}+126 a b^{6}+588 a b^{4} p q+504 a b^{3} p^{2} q+$ $504 a b^{3} p q^{2}+504 a b^{2} p^{3} q+2100 a b^{2} p^{2} q^{2}+504 a b^{2} p q^{3}+588 a b p^{4} q+3864 a b p^{3} q^{2}+$ $3864 a b p^{2} q^{3}+588 a b p q^{4}+756 a p^{5} q+6762 a p^{4} q^{2}+13272 a p^{3} q^{3}+6762 a p^{2} q^{4}+$ $756 a p q^{5}+126 p^{6} q+1470 p^{5} q^{2}+4410 p^{4} q^{3}+4410 p^{3} q^{4}+1470 p^{2} q^{5}+126 p q^{6}+$ $1869 a^{4} b+8526 a^{3} b^{2}+7476 a^{3} p q+8526 a^{2} b^{3}+14364 a^{2} b p q+11214 a^{2} p^{2} q+$ $11214 a^{2} p q^{2}+1869 a b^{4}+4788 a b^{2} p q+4788 a b p^{2} q+4788 a b p q^{2}+7476 a p^{3} q+$ $20790 a p^{2} q^{2}+7476 a p q^{3}+1869 p^{4} q+8526 p^{3} q^{2}+8526 p^{2} q^{3}+1869 p q^{4}+3044 a^{2} b+$ $3044 a b^{2}+6088 a p q+3044 p^{2} q+3044 p q^{2}$
$-F_{9}(a, p,-b,-q)=a^{9} b+36 a^{8} b^{2}+9 a^{8} p q+336 a^{7} b^{3}+252 a^{7} b p q+$ $36 a^{7} p^{2} q+36 a^{7} p q^{2}+1176 a^{6} b^{4}+1764 a^{6} b^{2} p q+504 a^{6} b p^{2} q+504 a^{6} b p q^{2}+$ $84 a^{6} p^{3} q+504 a^{6} p^{2} q^{2}+84 a^{6} p q^{3}+1764 a^{5} b^{5}+4410 a^{5} b^{3} p q+1890 a^{5} b^{2} p^{2} q+$ $1890 a^{5} b^{2} p q^{2}+630 a^{5} b p^{3} q+3780 a^{5} b p^{2} q^{2}+630 a^{5} b p q^{3}+126 a^{5} p^{4} q+1386 a^{5} p^{3} q^{2}+$ $1386 a^{5} p^{2} q^{3}+126 a^{5} p q^{4}+1176 a^{4} b^{6}+4410 a^{4} b^{4} p q+2520 a^{4} b^{3} p^{2} q+2520 a^{4} b^{3} p q^{2}+$ $1260 a^{4} b^{2} p^{3} q+7560 a^{4} b^{2} p^{2} q^{2}+1260 a^{4} b^{2} p q^{3}+504 a^{4} b p^{4} q+5544 a^{4} b p^{3} q^{2}+$ $5544 a^{4} b p^{2} q^{3}+504 a^{4} b p q^{4}+126 a^{4} p^{5} q+2016 a^{4} p^{4} q^{2}+4956 a^{4} p^{3} q^{3}+2016 a^{4} p^{2} q^{4}+$ $126 a^{4} p q^{5}+336 a^{3} b^{7}+1764 a^{3} b^{5} p q+1260 a^{3} b^{4} p^{2} q+1260 a^{3} b^{4} p q^{2}+840 a^{3} b^{3} p^{3} q+$ $5040 a^{3} b^{3} p^{2} q^{2}+840 a^{3} b^{3} p q^{3}+504 a^{3} b^{2} p^{4} q+5544 a^{3} b^{2} p^{3} q^{2}+5544 a^{3} b^{2} p^{2} q^{3}+$ $504 a^{3} b^{2} p q^{4}+252 a^{3} b p^{5} q+4032 a^{3} b p^{4} q^{2}+9912 a^{3} b p^{3} q^{3}+4032 a^{3} b p^{2} q^{4}+$ $252 a^{3} b p q^{5}+84 a^{3} p^{6} q+1764 a^{3} p^{5} q^{2}+7224 a^{3} p^{4} q^{3}+7224 a^{3} p^{3} q^{4}+1764 a^{3} p^{2} q^{5}+$ $84 a^{3} p q^{6}+36 a^{2} b^{8}+252 a^{2} b^{6} p q+216 a^{2} b^{5} p^{2} q+216 a^{2} b^{5} p q^{2}+180 a^{2} b^{4} p^{3} q+$ $1080 a^{2} b^{4} p^{2} q^{2}+180 a^{2} b^{4} p q^{3}+144 a^{2} b^{3} p^{4} q+1584 a^{2} b^{3} p^{3} q^{2}+1584 a^{2} b^{3} p^{2} q^{3}+$ $144 a^{2} b^{3} p q^{4}+108 a^{2} b^{2} p^{5} q+1728 a^{2} b^{2} p^{4} q^{2}+4248 a^{2} b^{2} p^{3} q^{3}+1728 a^{2} b^{2} p^{2} q^{4}+$ $108 a^{2} b^{2} p q^{5}+72 a^{2} b p^{6} q+1512 a^{2} b p^{5} q^{2}+6192 a^{2} b p^{4} q^{3}+6192 a^{2} b p^{3} q^{4}+$ $1512 a^{2} b p^{2} q^{5}+72 a^{2} b p q^{6}+36 a^{2} p^{7} q+936 a^{2} p^{6} q^{2}+5436 a^{2} p^{5} q^{3}+9576 a^{2} p^{4} q^{4}+$ $5436 a^{2} p^{3} q^{5}+936 a^{2} p^{2} q^{6}+36 a^{2} p q^{7}+a b^{9}+9 a b^{7} p q+9 a b^{6} p^{2} q+9 a b^{6} p q^{2}+$ $9 a b^{5} p^{3} q+54 a b^{5} p^{2} q^{2}+9 a b^{5} p q^{3}+9 a b^{4} p^{4} q+99 a b^{4} p^{3} q^{2}+99 a b^{4} p^{2} q^{3}+9 a b^{4} p q^{4}+$ $9 a b^{3} p^{5} q+144 a b^{3} p^{4} q^{2}+354 a b^{3} p^{3} q^{3}+144 a b^{3} p^{2} q^{4}+9 a b^{3} p q^{5}+9 a b^{2} p^{6} q+$ $189 a b^{2} p^{5} q^{2}+774 a b^{2} p^{4} q^{3}+774 a b^{2} p^{3} q^{4}+189 a b^{2} p^{2} q^{5}+9 a b^{2} p q^{6}+9 a b p^{7} q+$
$234 a b p^{6} q^{2}+1359 a b p^{5} q^{3}+2394 a b p^{4} q^{4}+1359 a b p^{3} q^{5}+234 a b p^{2} q^{6}+9 a b p q^{7}+$ $9 a p^{8} q+279 a p^{7} q^{2}+2109 a p^{6} q^{3}+5499 a p^{5} q^{4}+5499 a p^{4} q^{5}+2109 a p^{3} q^{6}+$ $279 a p^{2} q^{7}+9 a p q^{8}+p^{9} q+36 p^{8} q^{2}+336 p^{7} q^{3}+1176 p^{6} q^{4}+1764 p^{5} q^{5}+1176 p^{4} q^{6}+$ $336 p^{3} q^{7}+36 p^{2} q^{8}+p q^{9}+210 a^{7} b+3360 a^{6} b^{2}+1470 a^{6} p q+14700 a^{5} b^{3}+$ $15750 a^{5} b p q+4410 a^{5} p^{2} q+4410 a^{5} p q^{2}+23520 a^{4} b^{4}+44730 a^{4} b^{2} p q+21420 a^{4} b p^{2} q+$ $21420 a^{4} b p q^{2}+7350 a^{4} p^{3} q+28980 a^{4} p^{2} q^{2}+7350 a^{4} p q^{3}+14700 a^{3} b^{5}+$ $43050 a^{3} b^{3} p q+27090 a^{3} b^{2} p^{2} q+27090 a^{3} b^{2} p q^{2}+16590 a^{3} b p^{3} q+69300 a^{3} b p^{2} q^{2}+$ $16590 a^{3} b p q^{3}+7350 a^{3} p^{4} q+50610 a^{3} p^{3} q^{2}+50610 a^{3} p^{2} q^{3}+7350 a^{3} p q^{4}+3360 a^{2} b^{6}+$ $13950 a^{2} b^{4} p q+10440 a^{2} b^{3} p^{2} q+10440 a^{2} b^{3} p q^{2}+8460 a^{2} b^{2} p^{3} q+37800 a^{2} b^{2} p^{2} q^{2}+$ $8460 a^{2} b^{2} p q^{3}+6840 a^{2} b p^{4} q+49320 a^{2} b p^{3} q^{2}+49320 a^{2} b p^{2} q^{3}+6840 a^{2} b p q^{4}+$ $4410 a^{2} p^{5} q+43560 a^{2} p^{4} q^{2}+89220 a^{2} p^{3} q^{3}+43560 a^{2} p^{2} q^{4}+4410 a^{2} p q^{5}+$ $210 a b^{7}+1170 a b^{5} p q+990 a b^{4} p^{2} q+990 a b^{4} p q^{2}+930 a b^{3} p^{3} q+4500 a b^{3} p^{2} q^{2}+$ $930 a b^{3} p q^{3}+990 a b^{2} p^{4} q+7650 a b^{2} p^{3} q^{2}+7650 a b^{2} p^{2} q^{3}+990 a b^{2} p q^{4}+1170 a b p^{5} q+$ $11970 a b p^{4} q^{2}+24960 a b p^{3} q^{3}+11970 a b p^{2} q^{4}+1170 a b p q^{5}+1470 a p^{6} q+$ $18990 a p^{5} q^{2}+60540 a p^{4} q^{3}+60540 a p^{3} q^{4}+18990 a p^{2} q^{5}+1470 a p q^{6}+210 p^{7} q+$ $3360 p^{6} q^{2}+14700 p^{5} q^{3}+23520 p^{4} q^{4}+14700 p^{3} q^{5}+3360 p^{2} q^{6}+210 p q^{7}+5985 a^{5} b+$ $42588 a^{4} b^{2}+29925 a^{4} p q+77028 a^{3} b^{3}+110502 a^{3} b p q+59850 a^{3} p^{2} q+59850 a^{3} p q^{2}+$ $42588 a^{2} b^{4}+96606 a^{2} b^{2} p q+74628 a^{2} b p^{2} q+74628 a^{2} b p q^{2}+59850 a^{2} p^{3} q+$ $180900 a^{2} p^{2} q^{2}+59850 a^{2} p q^{3}+5985 a b^{5}+19377 a b^{3} p q+16497 a b^{2} p^{2} q+$ $16497 a b^{2} p q^{2}+19377 a b p^{3} q+63612 a b p^{2} q^{2}+19377 a b p q^{3}+29925 a p^{4} q+$ $150975 a p^{3} q^{2}+150975 a p^{2} q^{3}+29925 a p q^{4}+5985 p^{5} q+42588 p^{4} q^{2}+77028 p^{3} q^{3}+$ $42588 p^{2} q^{4}+5985 p q^{5}+26060 a^{3} b+63600 a^{2} b^{2}+78180 a^{2} p q+26060 a b^{3}+$ $49020 a b p q+78180 a p^{2} q+78180 a p q^{2}+26060 p^{3} q+63600 p^{2} q^{2}+26060 p q^{3}+$ $8064 a b+8064 p q$
$F_{10}(a, p,-b,-q)=a^{10} b+45 a^{9} b^{2}+10 a^{9} p q+540 a^{8} b^{3}+360 a^{8} b p q+$ $45 a^{8} p^{2} q+45 a^{8} p q^{2}+2520 a^{7} b^{4}+3360 a^{7} b^{2} p q+840 a^{7} b p^{2} q+840 a^{7} b p q^{2}+$ $120 a^{7} p^{3} q+780 a^{7} p^{2} q^{2}+120 a^{7} p q^{3}+5292 a^{6} b^{5}+11760 a^{6} b^{3} p q+4410 a^{6} b^{2} p^{2} q+$ $4410 a^{6} b^{2} p q^{2}+1260 a^{6} b p^{3} q+8190 a^{6} b p^{2} q^{2}+1260 a^{6} b p q^{3}+210 a^{6} p^{4} q+$ $2520 a^{6} p^{3} q^{2}+2520 a^{6} p^{2} q^{3}+210 a^{6} p q^{4}+5292 a^{5} b^{6}+17640 a^{5} b^{4} p q+8820 a^{5} b^{3} p^{2} q+$ $8820 a^{5} b^{3} p q^{2}+3780 a^{5} b^{2} p^{3} q+24570 a^{5} b^{2} p^{2} q^{2}+3780 a^{5} b^{2} p q^{3}+1260 a^{5} b p^{4} q+$ $15120 a^{5} b p^{3} q^{2}+15120 a^{5} b p^{2} q^{3}+1260 a^{5} b p q^{4}+252 a^{5} p^{5} q+4410 a^{5} p^{4} q^{2}+$ $11340 a^{5} p^{3} q^{3}+4410 a^{5} p^{2} q^{4}+252 a^{5} p q^{5}+2520 a^{4} b^{7}+11760 a^{4} b^{5} p q+7350 a^{4} b^{4} p^{2} q+$ $7350 a^{4} b^{4} p q^{2}+4200 a^{4} b^{3} p^{3} q+27300 a^{4} b^{3} p^{2} q^{2}+4200 a^{4} b^{3} p q^{3}+2100 a^{4} b^{2} p^{4} q+$ $25200 a^{4} b^{2} p^{3} q^{2}+25200 a^{4} b^{2} p^{2} q^{3}+2100 a^{4} b^{2} p q^{4}+840 a^{4} b p^{5} q+14700 a^{4} b p^{4} q^{2}+$ $37800 a^{4} b p^{3} q^{3}+14700 a^{4} b p^{2} q^{4}+840 a^{4} b p q^{5}+210 a^{4} p^{6} q+4830 a^{4} p^{5} q^{2}+$
$21000 a^{4} p^{4} q^{3}+21000 a^{4} p^{3} q^{4}+4830 a^{4} p^{2} q^{5}+210 a^{4} p q^{6}+540 a^{3} b^{8}+3360 a^{3} b^{6} p q+$ $2520 a^{3} b^{5} p^{2} q+2520 a^{3} b^{5} p q^{2}+1800 a^{3} b^{4} p^{3} q+11700 a^{3} b^{4} p^{2} q^{2}+1800 a^{3} b^{4} p q^{3}+$ $1200 a^{3} b^{3} p^{4} q+14400 a^{3} b^{3} p^{3} q^{2}+14400 a^{3} b^{3} p^{2} q^{3}+1200 a^{3} b^{3} p q^{4}+720 a^{3} b^{2} p^{5} q+$ $12600 a^{3} b^{2} p^{4} q^{2}+32400 a^{3} b^{2} p^{3} q^{3}+12600 a^{3} b^{2} p^{2} q^{4}+720 a^{3} b^{2} p q^{5}+360 a^{3} b p^{6} q+$ $8280 a^{3} b p^{5} q^{2}+36000 a^{3} b p^{4} q^{3}+36000 a^{3} b p^{3} q^{4}+8280 a^{3} b p^{2} q^{5}+360 a^{3} b p q^{6}+$ $120 a^{3} p^{7} q+3420 a^{3} p^{6} q^{2}+21240 a^{3} p^{5} q^{3}+38400 a^{3} p^{4} q^{4}+21240 a^{3} p^{3} q^{5}+$ $3420 a^{3} p^{2} q^{6}+120 a^{3} p q^{7}+45 a^{2} b^{9}+360 a^{2} b^{7} p q+315 a^{2} b^{6} p^{2} q+315 a^{2} b^{6} p q^{2}+$ $270 a^{2} b^{5} p^{3} q+1755 a^{2} b^{5} p^{2} q^{2}+270 a^{2} b^{5} p q^{3}+225 a^{2} b^{4} p^{4} q+2700 a^{2} b^{4} p^{3} q^{2}+$ $2700 a^{2} b^{4} p^{2} q^{3}+225 a^{2} b^{4} p q^{4}+180 a^{2} b^{3} p^{5} q+3150 a^{2} b^{3} p^{4} q^{2}+8100 a^{2} b^{3} p^{3} q^{3}+$ $3150 a^{2} b^{3} p^{2} q^{4}+180 a^{2} b^{3} p q^{5}+135 a^{2} b^{2} p^{6} q+3105 a^{2} b^{2} p^{5} q^{2}+13500 a^{2} b^{2} p^{4} q^{3}+$ $13500 a^{2} b^{2} p^{3} q^{4}+3105 a^{2} b^{2} p^{2} q^{5}+135 a^{2} b^{2} p q^{6}+90 a^{2} b p^{7} q+2565 a^{2} b p^{6} q^{2}+$ $15930 a^{2} b p^{5} q^{3}+28800 a^{2} b p^{4} q^{4}+15930 a^{2} b p^{3} q^{5}+2565 a^{2} b p^{2} q^{6}+90 a^{2} b p q^{7}+$ $45 a^{2} p^{8} q+1530 a^{2} p^{7} q^{2}+12420 a^{2} p^{6} q^{3}+33705 a^{2} p^{5} q^{4}+33705 a^{2} p^{4} q^{5}+$ $12420 a^{2} p^{3} q^{6}+1530 a^{2} p^{2} q^{7}+45 a^{2} p q^{8}+a b^{10}+10 a b^{8} p q+10 a b^{7} p^{2} q+10 a b^{7} p q^{2}+$ $10 a b^{6} p^{3} q+65 a b^{6} p^{2} q^{2}+10 a b^{6} p q^{3}+10 a b^{5} p^{4} q+120 a b^{5} p^{3} q^{2}+120 a b^{5} p^{2} q^{3}+$ $10 a b^{5} p q^{4}+10 a b^{4} p^{5} q+175 a b^{4} p^{4} q^{2}+450 a b^{4} p^{3} q^{3}+175 a b^{4} p^{2} q^{4}+10 a b^{4} p q^{5}+$ $10 a b^{3} p^{6} q+230 a b^{3} p^{5} q^{2}+1000 a b^{3} p^{4} q^{3}+1000 a b^{3} p^{3} q^{4}+230 a b^{3} p^{2} q^{5}+10 a b^{3} p q^{6}+$ $10 a b^{2} p^{7} q+285 a b^{2} p^{6} q^{2}+1770 a b^{2} p^{5} q^{3}+3200 a b^{2} p^{4} q^{4}+1770 a b^{2} p^{3} q^{5}+$ $285 a b^{2} p^{2} q^{6}+10 a b^{2} p q^{7}+10 a b p^{8} q+340 a b p^{7} q^{2}+2760 a b p^{6} q^{3}+7490 a b p^{5} q^{4}+$ $7490 a b p^{4} q^{5}+2760 a b p^{3} q^{6}+340 a b p^{2} q^{7}+10 a b p q^{8}+10 a p^{9} q+395 a p^{8} q^{2}+$ $3970 a p^{7} q^{3}+14585 a p^{6} q^{4}+22252 a p^{5} q^{5}+14585 a p^{4} q^{6}+3970 a p^{3} q^{7}+395 a p^{2} q^{8}+$ $10 a p q^{9}+p^{10} q+45 p^{9} q^{2}+540 p^{8} q^{3}+2520 p^{7} q^{4}+5292 p^{6} q^{5}+5292 p^{5} q^{6}+$ $2520 p^{4} q^{7}+540 p^{3} q^{8}+45 p^{2} q^{9}+p q^{10}+330 a^{8} b+6930 a^{7} b^{2}+2640 a^{7} p q+$ $41580 a^{6} b^{3}+39270 a^{6} b p q+9240 a^{6} p^{2} q+9240 a^{6} p q^{2}+97020 a^{5} b^{4}+164010 a^{5} b^{2} p q+$ $66990 a^{5} b p^{2} q+66990 a^{5} b p q^{2}+18480 a^{5} p^{3} q+78540 a^{5} p^{2} q^{2}+18480 a^{5} p q^{3}+$ $97020 a^{4} b^{5}+254100 a^{4} b^{3} p q+138600 a^{4} b^{2} p^{2} q+138600 a^{4} b^{2} p q^{2}+69300 a^{4} b p^{3} q+$ $311850 a^{4} b p^{2} q^{2}+69300 a^{4} b p q^{3}+23100 a^{4} p^{4} q+173250 a^{4} p^{3} q^{2}+173250 a^{4} p^{2} q^{3}+$ $23100 a^{4} p q^{4}+41580 a^{3} b^{6}+155100 a^{3} b^{4} p q+102300 a^{3} b^{3} p^{2} q+102300 a^{3} b^{3} p q^{2}+$ $69300 a^{3} b^{2} p^{3} q+331650 a^{3} b^{2} p^{2} q^{2}+69300 a^{3} b^{2} p q^{3}+42900 a^{3} b p^{4} q+336600 a^{3} b p^{3} q^{2}+$ $336600 a^{3} b p^{2} q^{3}+42900 a^{3} b p q^{4}+18480 a^{3} p^{5} q+199650 a^{3} p^{4} q^{2}+425700 a^{3} p^{3} q^{3}+$ $199650 a^{3} p^{2} q^{4}+18480 a^{3} p q^{5}+6930 a^{2} b^{7}+34815 a^{2} b^{5} p q+26400 a^{2} b^{4} p^{2} q+$ $26400 a^{2} b^{4} p q^{2}+21450 a^{2} b^{3} p^{3} q+109725 a^{2} b^{3} p^{2} q^{2}+21450 a^{2} b^{3} p q^{3}+18150 a^{2} b^{2} p^{4} q+$ $150975 a^{2} b^{2} p^{3} q^{2}+150975 a^{2} b^{2} p^{2} q^{3}+18150 a^{2} b^{2} p q^{4}+14685 a^{2} b p^{5} q+$ $164175 a^{2} b p^{4} q^{2}+356400 a^{2} b p^{3} q^{3}+164175 a^{2} b p^{2} q^{4}+14685 a^{2} b p q^{5}+9240 a^{2} p^{6} q+$ $130845 a^{2} p^{5} q^{2}+441375 a^{2} p^{4} q^{3}+441375 a^{2} p^{3} q^{4}+130845 a^{2} p^{2} q^{5}+9240 a^{2} p q^{6}+$ $330 a b^{8}+2145 a b^{6} p q+1815 a b^{5} p^{2} q+1815 a b^{5} p q^{2}+1650 a b^{4} p^{3} q+9075 a b^{4} p^{2} q^{2}+$

$$
\begin{aligned}
& 1650 a b^{4} p q^{3}+1650 a b^{3} p^{4} q+14850 a b^{3} p^{3} q^{2}+14850 a b^{3} p^{2} q^{3}+1650 a b^{3} p q^{4}+ \\
& 1815 a b^{2} p^{5} q+21450 a b^{2} p^{4} q^{2}+47850 a b^{2} p^{3} q^{3}+21450 a b^{2} p^{2} q^{4}+1815 a b^{2} p q^{5}+ \\
& 2145 a b p^{6} q+31185 a b p^{5} q^{2}+107250 a b p^{4} q^{3}+107250 a b p^{3} q^{4}+31185 a b p^{2} q^{5}+ \\
& 2145 a b p q^{6}+2640 a p^{7} q+46365 a p^{6} q^{2}+216480 a p^{5} q^{3}+354750 a p^{4} q^{4}+ \\
& 216480 a p^{3} q^{5}+46365 a p^{2} q^{6}+2640 a p q^{7}+330 p^{8} q+6930 p^{7} q^{2}+41580 p^{6} q^{3}+ \\
& 97020 p^{5} q^{4}+97020 p^{4} q^{5}+41580 p^{3} q^{6}+6930 p^{2} q^{7}+330 p q^{8}+16401 a^{6} b+ \\
& 167013 a^{5} b^{2}+98406 a^{5} p q+471240 a^{4} b^{3}+589050 a^{4} b p q+246015 a^{4} p^{2} q+ \\
& 246015 a^{4} p q^{2}+471240 a^{3} b^{4}+954690 a^{3} b^{2} p q+602250 a^{3} b p^{2} q+602250 a^{3} b p q^{2}+ \\
& 328020 a^{3} p^{3} q+1067880 a^{3} p^{2} q^{2}+328020 a^{3} p q^{3}+167013 a^{2} b^{5}+490545 a^{2} b^{3} p q+ \\
& 362835 a^{2} b^{2} p^{2} q+362835 a^{2} b^{2} p q^{2}+314325 a^{2} b p^{3} q+1108800 a^{2} b p^{2} q^{2}+ \\
& 314325 a^{2} b p q^{3}+246015 a^{2} p^{4} q+135505 a^{2} p^{3} q^{2}+1355805 a^{2} p^{2} q^{3}+246015 a^{2} p q^{4}+ \\
& 16401 a b^{6}+65505 a b^{4} p q+52305 a b^{3} p^{2} q+52305 a b^{3} p q^{2}+52305 a b^{2} p^{3} q+ \\
& 205920 a b^{2} p^{2} q^{2}+52305 a b^{2} p q^{3}+65505 a b p^{4} q+38593 a b p^{3} q^{2}+38593 a b p^{2} q^{3}+ \\
& 65505 a b p q^{4}+98406 a p^{5} q+769560 a p^{4} q^{2}+1446720 a p^{3} q^{3}+769560 a p^{2} q^{4}+ \\
& 98406 a p q^{5}+16401 p^{6} q+167013 p^{5} q^{2}+471240 p^{4} q^{3}+471240 p^{3} q^{4}+ \\
& 167013 p^{2} q^{5}+16401 p q^{6}+152900 a^{4} b+659340 a^{3} b^{2}+611600 a^{3} p q+659340 a^{2} b^{3}+ \\
& 1060620 a^{2} b p q+917400 a^{2} p^{2} q+917400 a^{2} p q^{2}+152900 a b^{4}+353540 a b^{2} p q+ \\
& 353540 a b p^{2} q+353540 a b p q^{2}+611600 a p^{3} q+1624480 a p^{2} q^{2}+611600 a p q^{3}+ \\
& 152900 p^{4} q+659340 p^{3} q^{2}+659340 p^{2} q^{3}+152900 p q^{4}+193248 a^{2} b+193248 a b^{2}+ \\
& 386496 a p q+193248 p^{2} q+193248 p q^{2}
\end{aligned}
$$

Bibliography

[1] P. Biane. Characters of symmetric groups and free cumulants. Asymptotic Combinatorics with Applications to Mathematical Physics, A. Vershik (Ed.), Springer Lecture Notes in Mathematics, 1815:185-200, 2003.
[2] P. Biane. Representations of the symmetric groups and free probability. Advances in Mathematics, 138:126-181, 1998.
[3] P. Biane. Free cumulants and representations of large symmetric groups. Proceedings of the XIIIth International Congress of Mathematical Physics, London, Int. Press, pages 321-326, 2000.
[4] Sylvie Corteel, Alain Goupil, and Gilles Schaeffer. Content evaluation and class symmetric functions. Advances in Mathematics, 188(2):315-336, 2004.
[5] J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook of graphs of \mathfrak{S}_{n}. Canadian Journal of Mathematics, 6:316-324, 1954.
[6] A. Frumkin, G. James, and Y. Roichman. On trees and characters. Journal of Algebraic Combinatorics, 17(3):323-334, 2003.
[7] I. P. Goulden. A differential operator for symmetric functions and the combinatorics of multiplying transpositions. Transactions of the American Mathematical Society, 344(1):421-440, 1994.
[8] I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. John Wiley and Sons, Dover Reprint, 2004.
[9] I. P. Goulden and D. M. Jackson. Symmetric functions and Macdonald's result for top connexion coefficients in the symmetric group. Journal of Algebra, 166 (2):364-378, 1994.
[10] I.P. Goulden and D.M. Jackson. Transitive factorizations into transpositions and holomorphic mapings on the sphere. Proceedings of the American Mathematics Society, 125:51-60, 1997.
[11] I.P. Goulden and S. Pepper. Labelled trees and factorizations of a cycle into transpositions. Discrete Mathematics, 113:263-268, 1993.
[12] I.P. Goulden and A. Rattan. An explicit form for Kerov's character polynomials. preprint, 2005, math.CO/0505317.
[13] I.P. Goulden and A. Yong. Tree-like properties of cycle factorizations. Journal of Combinatorial Theory Series A, 98:106-117, 2002.
[14] P. Hanlon, R. Stanley, and J. Stembridge. Some combinatorial aspects of the spectra of normal distributed random matrices. Contemporary Mathematica, 158:151-174, 1992.
[15] J. C. Irving. Combinatorial Constructions for Transitive Factorizations in the Symmetric Group. PhD thesis, University of Waterloo, 2004.
[16] V. Ivanov and G. Olshanski. Kerov's central limit theorem for the Plancherel measure on Young diagrams. Symmetric functions 2001: Surveys of developments and perspectives, S. Fomin (Ed.), NATO Science series II. Mathematics, Physics and Chemistry, 74:93-151, 2002.
[17] J. Katriel. Explicit expression for the central characters of the symmetric group. Discrete Applied Mathematics, 67:149-156, 1996.
[18] S Kerov. Transition probabilities of continual Young diagrams and the Markov moment problem. Functional Analysis and Applications, 27:104-117, 1993.
[19] S Kerov. The differential model of growth of Young diagrams. Proceedings of St. Petersburg Mathematical Society, 4:167-194, 1996.
[20] S. Kerov and A. Vershik. The asymptotic character theory of the symmetric group. Functional Analysis and Applications, 15:246-255, 1981.
[21] I. G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford, second edition, 1995.
[22] A. Okounkov and G. Olshanski. Shifted Schur functions. St. Petersburg Mathematics Journal, 2:239-300, 1998. English Version.
[23] A. Okounkov and A. Vershik. A new approach to representation theory of the symmetric group. Selecta Mathematica, N.S., 2(4):581-605, 1996.
[24] B. E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions. Wadsworth and Brook/Cole, Pacific Grove, California, 1991.
[25] P. Śniady. Asymptotics of characters of symmetric groups and free probability. preprint, 2003.
[26] R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, Cambridge, 1996.
[27] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1998.
[28] R. P. Stanley. Irreducible symmetric group characters of rectangular shape. Séminaire Lothar. Combin., 50:B50d, 11pp, 2003.
[29] R.P. Stanley. Kerov's character polynomial and irreducible symmetric group characters of rectangular shape. Transparencies from a talk at CMS meeting, Quebec City, 2002.

Index

asymptotics of characters, 23, 25
C-expansion, 40, 45, 47
C-positivity, 44, 47, 55
conjecture,41
character
definition, 6
degree of, 6
equivalent, 6
irreducible, 6
normalized, 8
corners, inside and outside,21
free cumulant $\mathcal{R}_{k}, 29$
free cumulant generating series, 22,24
free probability, 23
group algebra, 7, 28
interlacing sequence of maxima and minima, 21

Jucys-Murphy elements,29
Kerov's character polynomial,22
Lagrange Inversion Theorem, 15
Littlewood-Richardson coefficients,26
measures
convolution of, 24
moment $\mathcal{M}_{k}, 29$
moment generating series, 21,23

Murnaghan-Nakayama rule, 23, 57, 64 . 69
partition
admissible, 31
definition of,5
length of,5
part of,5
sign of, 29
permutation
conjugacy class of, 8
cycle type of, 8
sign of,12
p, q-positive, 69, 71, 78, 81
R-expansion, 40
R-positivity, 41, 45, 48,55
conjecture, 27
representation
definition of,5
dimension, 5
induced, 8
irreducible, 6
Kronecker product, 8
left regular, 7
outer product, 8,25
restriction, 8,25
submodule, 6
shift symmetric functions, 65
p-sharp shift symmetric functions,65
shift Schur functions, 65
sign of
monomial in M's, 29
monomial in R's, 29
partition, 29
permutation, 12
staircase sequence, 12, 33
Stanley's character polynomials, 67, 69 .
73
symmetric functions
complete, 11
definition of, 10
elementary, 11
inner product on, 12
monomial, 10
power sum, 11
Schur, 11
shift, see shift symmetric functions
tableau, see Young diagram
top terms of Stanley's polynomial, 70
Vandermonde determinant, 33
weight of
monomial in $\mathrm{C}^{\prime} \mathrm{s}, 39,41$
monomial in group algebra, 29
monomial in R's, 29

Young diagram
box of
content of, 12
hook length of,12
definition of, 9
English convention, 9
French convention, 9
generalized, 23
reverse tableau, 66
semi-standard, 10
standard,10
Young tableau, see Young diagram
semi-standard, see Young diagram
standard, see Young diagram

[^0]: ${ }^{1}$ To clarify this notation, $\left(H_{\omega}(1 / z)\right)^{\langle-1\rangle}$ means "take the compositional inverse of the function $H_{\omega}(1 / z)$ " whereas $H_{\omega}^{\langle-1\rangle}(1 / z)$ means "take the compositional inverse of $H_{\omega}(z)$ and substitute $1 / z$ for z in the result".

