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Abstract

A minimalist self-consistent field theory for small amphiphilic molecules is presented. The equa-

tions for this model are less involved than those for block copolymers and are easily implemented

computationally. A new convergence technique based on a variant of Anderson mixing is also pre-

sented which allows the equations to be solved more rapidly than block copolymer self-consistent

field theory. The computational speed up and simplicity of equations result from a lack of configura-

tional degrees of freedom in the amphiphilic molecular model. The omission of polymeric flexibility

leads to qualitatively different predictions compared to known diblock copolymer behaviour.
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I. INTRODUCTION

The self-assembly of amphiphilic molecules is of fundamental importance in biology and

nanotechnology [1]. Amphiphilic block copolymers are being intensely researched, both ex-

perimentally and theoretically, for nanotechnological applications [2–4]. While a full array of

theoretical tools have been used to understand amphiphilic block copolymer self-assembly,

self-consistent field theory (SCFT) has been of particular utility — see for example refer-

ences 5–9 and references therein. SCFT is well suited to studying long polymer molecules

and is computationally more tractable than many simulation approaches [10]. In contrast,

amphiphilic surfactants and lipids have not been as extensively studied using SCFT. Sur-

factants and lipids have in common that they are much smaller than block copolymers, with

more complicated and restricted internal degrees of freedom. As such, the computational

burden of a faithful SCFT representation can be prohibitive and the fundamental mean field

approximation of SCFT becomes less reliable.

Nonetheless, important SCFT contributions have been made in the study of small am-

phiphilic molecules. Schmid and Schick developed a form of SCFT based on connected hard

rods in which density functional theory was used to enforce excluded volume [11, 12]. This

application was confined to a one dimensional analysis of Langmuir monolayers because the

method was computationally demanding. Szleifer et al. also confined their SCFT method to

one dimensional, spherically symmetric solutions for amphiphilic aggregates [13–16]. Whit-

more et al. have developed a lattice-based SCFT for lipid molecules with compressibility

[17–19]. This approach is valuable in studies of bilayers. Another popular lattice-based

approach is that of Scheutjens, Fleer, Leermakers et al. [20–22]. Off-lattice, Gaussian string

SCFT methods for lipids have been developed by Lee, Mezzenga and Fredrickson on the

one hand [23, 24], and Schick, Müller, Katsov and Lee on the other [25–32]. These methods

use a coarse-graining philosophy wherein the behaviour of lipid self-assembly is understood

in terms of a generic amphiphilic molecule, specifically, a block copolymer [33]. Surfactant

behaviour has also been examined using this SCFT block copolymer stand-in philosophy

[34]. Using such a model for lipids, Katsov, Müller, Schick and Lee (hereafter referred to

as KMSL) have made a number of contributions towards understanding behaviours of lipid

membranes. In particular, Katsov, Müller and Schick predict a novel pathway for mem-

brane fusion [25, 26]. Comparisons with simulations using widely different models for lipid
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molecules show a universality of behaviour that is in agreement with their approach [25].

Other dynamic [6, 7, 9, 35, 36] or lower dimensional SCFT studies [5, 8, 9, 37] have also

pointed towards a universality of behaviour between lipids and amphiphilic block copoly-

mers.

There are issues with the philosophy of KMSL. First, using a Gaussian chain block copoly-

mer as a model for a small amphiphilic molecule grossly overestimates the configurational

degrees of freedom. Second, for complex lipid mixtures, such as studied experimentally by

Katsaras et al. [38], fully 3D predictions are required. Copolymer-based dynamic 3D SCFT

becomes computationally intensive and does not necessarily reveal the ultimately stable

phases required for many applications. Even for equilibrium calculations, KMSL have, for

the most part, confined themselves to special geometries so as to reduce computational costs.

Third, steric and orientational effects that act on length scales too small to be of relevance

for many block copolymers are important for smaller amphiphilic molecules. Fourth, the

mean field approximation of SCFT works well for large polymeric molecules but will be

worse for small amphiphilic molecules.

In this paper, we address the first two of these points. The KMSL approach has been

validated in some contexts by other methods [25, 33]. This lends credibility to the idea

of keeping the excessive Gaussian chain configurational degrees of freedom as a simple and

pragmatic way to enable an SCFT calculation. We present as an alternative the other ex-

treme, where all the polymeric degrees of freedom are removed. This has two advantages.

First, by removing configurational freedom, we greatly reduce the computational burden,

allowing us to conduct larger scale and less restricted computations. In polymer SCFT, the

main computational burden is the repeated solution of modified diffusion equations. These

equations vanish in our model and are replaced by simple convolution integrals. Second,

since our model will allow us to adjust internal degrees of freedom continuously, we can qual-

itatively reproduce block copolymer behaviour on the one hand, lending further evidence

in support of KMSL in some circumstances, and on the other we can show that fundamen-

tally different physics can dictate behaviour when internal molecular degrees of freedom are

suppressed.

These results will be demonstrated through the use of a deliberately artificial environ-

ment. Block copolymer physics is based fundamentally on packing frustration [39]. Packing

frustration is most clearly manifested in pure copolymer melts, so a logical test arena for dis-
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tinguishing possible qualitative differences of behaviour between molecules with and without

configurational entropy would be a pure melt system. Such an environment is not realistic

for small amphiphilic molecules. Computationally, however, this poses no problem. By ex-

amining a deliberately artificial system of pure small amphiphilic molecules, we subject our

model to the most severe test. If, under these conditions, we find behaviour qualitatively the

same as for block copolymers, then we can be fairly certain that for milder and more realistic

situations, a block copolymer model of small amphiphilic molecules should be good for most

coarse, qualitative predictions. On the other hand, if the fundamental physics is found to

be different, then one must be on the lookout for situations where qualitative predictions of

a block copolymer stand-in model might fail.

We find that both situations can occur. In our simple model, allowing some internal vibra-

tional degree of freedom, we get qualitatively the same behaviour as for diblock copolymers.

For small amphiphilic molecules that might map onto this situation, the KMSL approach

is appropriate. Nonetheless, even for this case our method still has computational advan-

tages. If the stiffness of the internal vibrational motion is turned up very high so as to

be suppressed, the results are qualitatively inconsistent with block copolymers. This does

not invalidate the KMSL model, but it does provide evidence that there could be exotic

situations where the fundamental physics governing the qualitative behaviour of small am-

phiphilic molecules might not be the same as for block copolymers. Such situations could

become increasingly important in circumstances with, for example, nanoparticles or biologi-

cal inclusions in membranes, where excessive configurational degrees of freedom could change

results dramatically. An example of such an exotic situation has already been reported by

us in the context of polymer systems [40].

II. THEORY

Small amphiphilic molecules are modelled as two repulsive point particles, each with a

chosen volume and potential, bound together by a connectivity potential which is charac-

terized by a spring constant k — see the schematic in figure 1. The parameter k gives the

vibrational stiffness of the molecule. For small values of k, the “head” and “tail” groups can

move somewhat with respect to each other, coarsely representing changing conformations of

the amphiphilic molecule. For large values of k, the relative head and tail positions are fixed
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FIG. 1: Schematic of small amphiphilic molecular model. The shaded zones correspond to the

potentials of the interaction sites, which are themselves shown as white dots. Each of the two

sites is assigned, in general, a different volume and potential in order to give it coarse features

corresponding to various lipid or surfactant molecules.

within the molecule, representing an amphiphilic molecule with little or no internal degrees

of freedom. The SCFT equations are derived through a standard path integral formalism

given in the appendix. The resulting four equations are

wH(r) =
∫
dr′VHT (|r− r′|)ϕT (r′)− κ̃ [1− ϕH(r)− ϕT (r)] (1)

wT (r) =
∫
dr′VHT (|r− r′|)ϕH(r′)− κ̃ [1− ϕH(r)− ϕT (r)] (2)

ϕH(r) =
φHV

Q

∫
dr′G(r, r′) (3)

ϕT (r) =
φTV

Q

∫
dr′G(r′, r) (4)

where G(r, r′) is

G(r, r′) = exp [−φHwH(r)− φTwT (r′)− Vconn(|r− r′|)] (5)

and Q is

Q =
∫
drdr′G(r, r′). (6)

H denotes head groups, T tail groups and V is the calculation volume in the canonical

ensemble. In equations (1) and (2), VHT (r) is the (effective) repulsive interaction between
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heads and tails of distinct molecules. Vconn(r) in equation (5) for the propagator G(r, r′)

is the connectivity potential between heads and tails within a single molecule. These two

potentials will in general be chosen to reflect properties of the amphiphilic molecules. As

described in the appendix, we have chosen Gaussian forms for them. The prefactor and

width of the VHT (r) Gaussian are given by V0
HT and Vw

HT , respectively. While the non-

local nature of the potential VHT (r) is distinct from the typical implementation of modern

SCFT, non-local potentials have also been extensively used in SCFT in the form of square

gradient terms. The seminal works of Hong, Whitmore and Noolandi are good examples

of this [41, 42]. In our case, the non-local potential is essential for physical results since

the molecules have negligible non-locality in their architecture, unlike extended polymer

molecules. In the polymer case, it is this non-local architecture that gives the required

non-locality to the problem so that interfaces are not trivial step functions. For us, the

potential provides this important non-locality. The volume fractions of heads and tails

as a function of position are given by ϕH(r) and ϕT (r), respectively, whereas the global

volume fractions of heads and tails are given by φH and φT . Q is the partition function of a

single amphiphilic molecule subject to the fields wH(r) and wT (r), and these are in turn the

chemical potential fields of the heads and tails, respectively. Finally, κ̃ is a parameter that

enforces a constant overall density in the liquid, that is, incompressibility. These equations

are solved self-consistently, as described in the Computational section, to provide ϕH(r) and

ϕT (r) as output; that is, the equilibrium or meta-stable morphologies of the amphiphilic

system. The free energy of a given morphology found in this way is

F

nkBT
= − lnQ+

1

V

∫
dr
{∫

dr′ϕH(r)VHT (|r− r′|)ϕT (r′)

+
κ̃

2
[1− ϕH(r)− ϕT (r)]2 − wH(r)ϕH(r)− wT (r)ϕT (r)

}
+ ln

[
V
∫
dre−Vconn(r)

]
(7)

with a uniform limit of
F

nkBT
= φHφT

∫
drVHT (r). (8)

All volumes in equations (1)-(8) are made dimensionless with the molecular volume v0 as

explained in the appendix.

Input parameters are φT , k, l, V0
HT (prefactor of the Gaussian form), Vw

HT (width of the

Gaussian form), κ̃ and V . The volume V is not a physical parameter, and κ̃ is not arbitrary
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since it should be taken as large as possible to enforce incompressibility. For this work, we

fix the spring equilibrium length at l = 1σ and the head-tail Gaussian potential width at

Vw
HT = 0.5σ. As mentioned in the appendix, we choose the volume of one molecule v0 as

a reference volume, σ ≡ v
1/3
0 as our length scale and we make all potentials dimensionless

with the thermal energy kBT where kB is Boltzmann’s constant and T is the temperature.

This leaves just three parameters: φT , k and V0
HT . Because of incompressibility, φH is not

independent. Of course, one could choose to adjust the other parameters which are available

to more accurately describe shapes and interactions of different amphiphilic molecules. One

could also choose different, more realistic, potentials. Since lipid and surfactant molecules

are, in general, so much smaller than block copolymers, it makes sense that there are more

parameters necessary to specify the present model. Block copolymer molecular features and

potentials are negligible on the length scale of the polymeric molecule. That is not the case

for smaller amphiphilic molecules. Nonetheless, the model has in common with KMSL a

minimalist amphiphilic philosophy, so certain molecular features are not represented. For

example, any rod-like rigidity in the molecule will be lost. Due to the incompressibility

method of enforcing excluded volume, the particularly shape of the molecular constituents

is not fixed. Thus the molecules are truly soft and deformable depending on the morphology

that they form, and will not act completely as point masses as implied in figure (1).

III. COMPUTATIONAL

We surveyed a two dimensional parameter space, varying φT from 0 to 1 and V0
HT from

10 to 50, for two values of vibrational stiffness, k = 10 and k = 1000. For each point of this

parameter space, one would ideally optimize the size and shape of the calculational box so

as to remove commensurability effects due to the periodic nature of the amphiphilic mor-

phologies. We decided however to use a larger box to relieve commensurability effects since

this is more scalable for possible later work involving amphiphilic molecules in solution. For

such cases, predicted morphologies may not be strongly periodic, and a large box size would

be a more appropriate approach. For the present system, the large box is supplemented with

two other, smaller, box sizes in order to clarify cases where many defects might be present in

the larger box. Although this method does not allow for the construction of rigorous phase

diagrams, it does allow for the qualitative phase behaviour of the system to be understood.
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Since this system is deliberately fictional in that amphiphilic molecules do not self-assemble

in a pure, solvent free, environment, the exact details of such phase maps are not required

in any case. We chose cubical boxes with sides of length 5σ, 7.5σ and 10σ, respectively. For

each of these three box sizes, we did three independent runs starting from different random

configurations. About 2000 runs were done in total for both two dimensional φT × V0
HT

parameter spaces corresponding to k = 10 and k = 1000. This gave us a good, qualitative,

picture of the behaviours of these systems.

The algorithm we used for solving equations (1)-(6) is as follows. We discretized the

equations on a three dimensional, regularly spaced grid. For this work, we found that a

discretization of 643 was a good compromise between accuracy and speed. We made a

guess for the volume fractions ϕH/T (r) and substituted these into equations (1) and (2).

This required the Fourier transform ϕ̄H/T (k). The fields wH/T (r) were then exponentiated

(equation (5)), each of these was Fourier transformed and equation (6) was solved for Q

through a convolution integral and then integrating over space using simple sums. For

periodic boundary conditions, simple sums have exponential order and no improvement can

be had from more complicated Newton-Cotes quadratures [43]. Equations (3) and (4) were

solved by using Q and the same convolution integral results. There were therefore two

pairs of Fourier transforms in each iteration of the algorithm. The resulting ϕH/T (r) volume

fractions were mixed in a superposition with the original ones using Picard iteration until

convergence was complete. We used a self-consistency criterion of less than one part in 106

difference between input and output ϕH/T (r) volume fractions according to the square of a

relative L2 norm.

The reader might notice that we used a different incompressibility condition than is

generally employed in block copolymer SCFT. Normally, a pressure field ξ(r) is included as a

Lagrange multiplier to enforce incompressibility. The above algorithm using the ξ(r) pressure

field is unstable except for very coarse grids. The algorithm is stable however when using a

quadratic energy penalty proportional to κ̃ to enforce incompressibility. This method was

originated by Helfand [44] and continues to be used due to its favourable numerical properties

[6, 36, 45]. We found that a value of κ̃ = 1000 created an energy penalty sufficient to keep

a total volume fraction of 1 to within approximately half a percent. Using this approach,

the equations can be iterated on either the fields wH/T (r) or the volume fractions ϕH/T (r).

We found a slight benefit to iterating on the volume fractions and judge this approach to
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be more scalable in terms of possible future work involving dynamics.

Although the energy penalty approach is stable, the equations are very stiff, meaning we

had to use a small mixing parameter for the Picard iteration resulting in many iterations for

convergence. Fortunately, the SCFT equations are continuous with respect to the energy

penalty parameter κ̃, so the equations can be solved in stages. We began with κ̃ = 10,

which allowed a large mixing parameter of 0.1 to be used for an initial solution of the SCFT

equations from a random input. Then, this output, which did not satisfy incompressibility,

was used for another stage of the computation with κ̃ = 100 and a mixing parameter of

0.01. Finally, this was in turn used as the input for a final stage with κ̃ = 1000 and a mixing

parameter of 0.001. This process resulted in significantly faster convergence and ultimately

satisfied incompressibility.

Within each κ̃ stage of the convergence, there were iterations where the convergence

levelled off and we were unable to compute a satisfactory self-consistent solution. To resolve

this, we here introduce a new form of Anderson iteration. Anderson iteration is a linear

extrapolation technique, based on a saved history of previous iterations, that can speed

block copolymer convergence enormously [43, 46]. For other non-block copolymer SCFT

however, it can become unstable and fail. One of us previously introduced a method in

which single Anderson steps were interleaved with clumps of Picard iteration steps in order

to “punch though” stalled patches of convergence [47, 48]. This is in contrast to a previous

block copolymer implementation that switched from exclusive Picard iteration to exclusive

Anderson iteration [46]. These occasional, single, Anderson steps were taken regularly and

accepted only if they improved the convergence status; they were rejected otherwise [47, 48].

This method unfortunately doesn’t work for the present set of amphiphilic SCFT equations,

but it does form the basis of our new approach. In this approach, a single Anderson step was

taken if the convergence rate dropped below some threshold. We used a different threshold

for each κ̃ stage of the convergence: the square of a relative L2 norm change in the iterated

value of ϕH/T (r) of less than 1% for κ̃ = 10 or 100 prompted an Anderson step. For κ̃ = 1000,

we used a threshold of 0.1%. Unlike references 47 and 48, we kept the Anderson step even if it

worsened the level of convergence. Indeed, that was the usual outcome. The large Anderson

step normally exceeded the stability limit, but the convergence would subsequently “heal”

after some Picard iterations to a level better than that at which it was previously stuck. In

some cases, the convergence improvement after a single Anderson step was up to an order
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FIG. 2: Convergence vs iterations for Picard iteration (dashed line) and new, stepped Anderson

variant (solid line).

of magnitude. More typically however, the “unstable” Anderson step provided a means to

punch through a convergence sticking point. The use of a combination of a large, unstable,

explicit step followed by a number of smaller, stable, explicit steps in the convergence of

PDEs was demonstrated by Eriksson et al. [49]. We used this idea coupled with the

Anderson method of determining a near optimal large step [50]. Taken together, adjusting

κ̃ in stages and using occasional, single, unstable Anderson steps allowed us to converge

the SCFT equations (1)-(6) very rapidly. Without these techniques, the equations would

be intractable using an ordinary explicit Picard algorithm. Figure 2 shows the iteration

improvement for this approach over regular Picard iteration for a gyroid morphology. In

figure 2, one can see two large jumps in the solid curve from a convergence level of 10−6

(our chosen level of self-consistency) up to ∼ 100. This is where we used the output of

weaker incompressibility values of κ̃ as the input for runs with stronger incompressibility.

The smaller and more frequent jumps and noise in the convergence of the solid curve are

caused by single Anderson iterations whereas the smooth portions of the curve are the Picard

“healing” iterations. The dashed curve shows the same computation starting with a strong

incompressibility parameter κ̃ = 1000 and using only Picard iteration. Even within a single
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stage of the solid curve, one can see a clear improvement of convergence trajectory due to

the Anderson iterations. For the results shown in figure 2, and throughout this work, just

two iterations were saved in the Anderson history. This was found to give good convergence

most of the time, although occasionally, for difficult runs, we used more iterations in the

history [65]. More information on the particulars of how Anderson iteration works and is

implemented can be found in references [43, 46, 50]. It should be noted that Anderson mixing

is quite straightforward to implement and is completely modular. That is, the subroutine

is unaffected by the nature of the equations to be solved and so can be easily applied to a

variety of problems throughout science and engineering.

The fields and volume fractions of the converged SCFT equations (1)-(6) were used in

equation (7) to find the free energies of competing structures. We estimate our free energies

to be accurate to half a percent for k = 10 and about three percent for k = 1000. The

limiting factor for accuracy was the spatial grid size. This level of accuracy in the free

energies was not enough to determine subtle features in phase maps, but was sufficient to

give a qualitative sense of system behaviours. One could of course choose to increase the

accuracy, but as mentioned, this is not helpful for the present fictional system. Lastly, since

all runs can be done independently, the parameter space surveys were easily parallelized

through a straightforward serial farming approach.

IV. RESULTS AND DISCUSSION

For a “loose” spring constant of k = 10, we found phases consistent with diblock copoly-

mers and in the same qualitative order. Specifically, as we varied φT from 0 to 1 and V0
HT

from 10 to 50, we found body-centered cubic spheres (S), hexagonally packed cylinders (C),

bicontinuous gyroid (G), perforated lamellar (PL) and lamellar phases (L) in qualitatively

the same locations of volume fraction-segregation parameter space as for diblock copolymers

[39]. Examples of our results at k = 10 and V0
HT = 30 are shown in figure 3. In diblock

copolymers, the G phase is stable rather than PL but they are very close in free energy,

so it is not surprising to observe both here [66]. This is indicative that the present model

can be made to behave in qualitatively the same way as diblock copolymers and thus can

be used as a minimalist model of amphiphilic molecules in the same spirit as KMSL. The

computational reduction realized through not having to repeatedly solve modified diffusion
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(a) (b)

(c) (d)

FIG. 3: Tail group densities of sample morphologies at k = 10 and V0
HT = 30. (a) φT = 0.2 (body

centre cubic spheres) (b) φT = 0.3 (hexagonally packed cylinders) (c) φT = 0.35 (bicontinuous,

three-point coordinated complex phase) (d) φT = 0.5 (lamellae). For each panel, the isosurfaces

are drawn at the value of φT . Contour plots on faces show internal density profiles according to

the colorbars.

equations means that this model could be a complementary approach to KMSL allowing

comparatively large cells in full three dimensions to be examined. Also, the SCFT equa-

tions for this model are much simpler to implement, allowing for rapid development and
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(a) (b)

(c) (d)

FIG. 4: Tail group densities of sample morphologies at k = 1000 and V0
HT = 30, except for panel

(c) which is at V0
HT = 40. (a) φT = 0.2 (disordered spheres) (b) φT = 0.3 (hexagonally packed

cylinders) (c) φT = 0.35 (perforated lamellae at V0
HT = 40) (d) φT = 0.5 (lamellae). For each

panel, the isosurfaces are drawn at the value of φT . Contour plots on faces show internal density

profiles according to the colorbars.

modification of code.

For a stiff spring constant of k = 1000, the classical S, C and L phases were still found.

Examples of our results at k = 1000 and V0
HT = 30 are shown in figure 4. The presence of
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the complex PL and G phases was greatly reduced, with the PL phase appearing only at

higher segregations and for narrow regions of the phase diagram. The G phase was observed

only rarely and always with a detectably higher free energy than the PL phase. In addition,

many results showed highly defected structures with almost identical free energies to the

stable phases. Thus the free energy landscape seems to have been splintered compared to

the k = 10 or block copolymer situations, with many defected morphologies with similar

free energies competing with each other. This was seen most clearly in the S phase which

ceased to be always BCC for k = 1000. A disordered spherical phase was found which we

assume is a defected close packed morphology. A comparison between k = 10 and k = 1000

S morphologies, with all other parameters equal, showed that the spheres in the two cases

had the same maximum internal volume fractions and edge profiles. The only differences

were that the spheres in the k = 1000 case had smaller diameters and were more densely

packed. Specifically, for V0
HT = 30 and φT = 0.2, we counted 4 spheres in a cubic box of side

5σ for k = 10 compared to 8 spheres in the same size box for k = 1000.

These changes in self-assembly behaviour are consistent with the removal of the main

physics of block copolymers, namely, packing frustration. Packing frustration for block

copolymers is the tendency to form morphologies with constant thickness interfaces so as to

reduce polymer stretching [39]. For example, the stability domain of the G phase at high

segregations is expected to be reduced because the strong stretching of polymer molecules

causes polymeric configurational entropy to be of less importance [51]. Similarly, the S phase

adopts a BCC configuration in diblock copolymers since this stretches the polymers less than

a closed packed configuration. The results for our model with k = 1000 provides evidence

that structures tend to be determined more locally than globally. That is, they prefer to

have constant mean curvature in order to reduce interfacial energy; this is the dominant

physical mechanism for small amphiphilic molecules with minimal configurational degrees

of freedom. There is still packing frustration of a sort, namely that space must be filled, but

this does not have the same implications as block copolymer packing frustration [52].

The idea of turning the connectivity stiffness up even higher may tempt the idea of

using this model to represent amphiphilic hard rods, however this must be approached with

caution. Although some generic amphiphilic behaviour common with the hard rod system

may be reproduced, the particularly interesting liquid crystal phases are beyond such a

model. This is due to the use of an ensemble averaged excluded volume. More complicated
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SCFT models, using varieties of classical density functional theory or related techniques,

have been successfully used to model rod-coil and semi-flexible polymer systems. Examples

of these approaches can be found in references 53–63. These approaches must deal with

orientational degrees of freedom, making them much more computationally intensive. They

go beyond the spirit of the generic amphiphilic behaviour modelled in KMSL or our present

approach.

V. CONCLUSIONS

We have introduced a simple SCFT model of small amphiphilic molecules that is com-

putationally much simpler to implement and faster to run than block copolymer SCFT. It

makes relatively large volume calculations tractable and thus complements polymeric SCFT

and computer simulation approaches to modelling lipid and surfactant molecules. When

taken together, the block copolymer and small molecule SCFTs cover two disparate ap-

proximations of lipid or surfactant molecules. Specifically, one heavily overestimates the

configurational degrees of freedom while the other can be adjusted to ignore them com-

pletely. Our model is flexible in that it can qualitatively reproduce the behaviour of diblock

copolymers for a suitably weak strength of connectivity potential. For a stronger connec-

tivity potential, the predictions are qualitatively different from diblock copolymer systems

due to the suppression of packing frustration. Disordered spheres with a packing higher

than that of BCC spheres together with an unstable gyroid phase indicate that for a pure

amphiphilic theoretical test system with a strong connectivity potential, the fundamental

physics governing the self-assembly is distinct from block copolymers.

Although the SCFT equations for this model are simple, converging them proved, at first,

to be non-trivial. The Anderson iteration variant that we introduce here is a simple and

modular solution to the stiffness of the SCFT equations. When coupled with a variable

incompressibility approach, the equations become rapidly soluble.

In future work, it will be necessary to add a solvent so that more realistic amphiphilic

systems can be studied. Multiple solvents could be added to model oil-water-surfactant sys-

tem equilibriums in large 3D cells. Multiple amphiphilic molecules could be added to study

complex vesicle and micelle formation. For very complicated mixtures, it may be possible

to take advantage of GPU computing to deal with the FFTs. In particular, it must be
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emphasized that the present results which show a difference in physical mechanism between

non-flexible amphiphilic molecules and block copolymers is a deliberately artificial case. The

addition of solvent would, in most cases, reduce the severity of the environment with re-

spect to the role of polymer configurational entropy. The present results do not therefore

negate the previous findings of KMSL with respect to pore formation and membrane fusion,

but rather offer a computationally less demanding method. It is also a method that may

be of utility for situations where the inclusion of excessive polymeric degrees of freedom in

modelling small amphiphilic molecules may not be appropriate.

Appendix: Derivation of the SCFT Equations

Consider a system of n amphiphilic molecules. We write a coarse-grained model for these

molecules based on the potential

Vtot =
n∑

i=1

Vconn(rH
i , r

T
i ) +

n∑
i,j=1

VHT (|rH
i − rT

j |) + VEOS({rH , rT}) (A.1)

where H denotes head groups and T tail groups. All energies are made dimensionless in this

work by dividing by kBT , where kB is Boltzmann’s constant and T is temperature. r
H(T )
i is

the position of a single head (tail) group of molecule i. In the third term of equation (A.1),

the notation {rH , rT} refers to the set of all molecule head and tail group positions. The

three terms of (A.1) are, respectively, connectivity of heads and tails, two-body interactions

between heads and tails and an equation of state term to enforce incompressibility. VHH and

VTT terms are possible too, but we can set them to zero since, through incompressibility,

they can be removed. The two-body term will be converted later to a field based description

using the instantaneous volume fraction operators

ϕ̂H(T ) = vH(T )

n∑
i=1

δ(r− r
H(T )
i ) (A.2)

where vH or vT are the volumes of single head or tail groups. The EOS term will be defined

only in a field based way. The connectivity term will be left in a particle based description.

Therefore we have

Vtot =
n∑

i=1

Vconn(rH
i , r

T
i ) + VHT [ϕ̂H , ϕ̂T ] + VEOS[ϕ̂H , ϕ̂T ]

≡
n∑

i=1

Vconn(rH
i , r

T
i ) + V [ϕ̂H , ϕ̂T ] (A.3)
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where, for simplicity, we have defined V as the sum of the last two terms. The partition

function for this system in the canonical ensemble is

Z =
N
n!

∫ n∏
i=1

drH
i dr

T
i exp

[
−

n∑
i=1

Vconn(rH
i , r

T
i )

]
exp {−V [ϕ̂H , ϕ̂T ]} (A.4)

where N is a normalization constant arising from kinetic energy terms; it has units of

1/volume2n. Using the delta functional identity∫
DΦδ[Φ− φ̂]F [Φ] = F [φ̂] (A.5)

where F is any functional, equation (A.4) becomes

Z =
N
n!

∫
DΦHDΦT δ[ΦH − φ̂H ]δ[ΦT − φ̂T ]

n∏
i=1

drH
i dr

T
i

× exp

[
−

n∑
i=1

Vconn(rH
i , r

T
i )

]
exp {−V [ΦH ,ΦT ]} . (A.6)

Now using the delta functional definition

δ[Φ− φ̂] =
∫ i∞

−i∞
DW exp

[
1

v0

∫
drW (Φ− φ̂)

]
(A.7)

where v0 is a reference volume, the partition function (A.6) becomes

Z =
N
n!

∫
DΦHDΦTDWHDWT

n∏
i=1

drH
i dr

T
i exp

[
−

n∑
i=1

Vconn(rH
i , r

T
i )

]

× exp
{
−V [ΦH ,ΦT ] +

1

v0

∫
dr
[
WH(ΦH − φ̂H) +WT (ΦT − φ̂T )

]}
. (A.8)

One can show that

exp
[
− 1

v0

∫
drWφ̂

]
=

n∏
i=1

exp
[
vx

v0

W (ri)
]

(A.9)

where x = H or T . The partition function (A.8) is then

Z =
N
n!

∫
DΦHDΦTDWHDWT

n∏
i=1

drH
i dr

T
i

exp
[
−vH

v0

WH(rH
i )− vT

v0

WT (rT
i )− Vconn(rH

i , r
T
i )
]

× exp
{
−V [ΦH ,ΦT ] +

1

v0

∫
dr (WHΦH +WT ΦT )

}
. (A.10)

Let us define a single molecule partition function as

Q ≡
∫
drdr′G(r, r′) (A.11)
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where

G(r, r′) = exp
[
−vH

v0

WH(r)− vT

v0

WT (r′)− Vconn(r, r′)
]
. (A.12)

Z becomes

Z =
N
n!

∫
DΦHDΦTDWHDWTQ

n

× exp
{
−V [ΦH ,ΦT ] +

1

v0

∫
dr (WHΦH +WT ΦT )

}
(A.13)

where Q has units of (volume)2. We make both Q and N dimensionless using the reference

volume v0. Taking the mean field (saddle function) of this gives

Z =
N
n!
Qn exp

{
−V [ΦH ,ΦT ] +

1

v0

∫
dr (WHΦH +WT ΦT )

}
. (A.14)

The free energy is therefore

F

kBT
= lnn!− n lnQ+ V [ϕH , ϕT ]− 1

v0

∫
dr (wHϕH + wTϕT ) (A.15)

where constant terms are added and dropped as convenient. Dividing by n

F

nkBT
= − lnQ+

(vH + vT )

V
V [ϕH , ϕT ]− (vH + vT )

V

∫ dr

v0

(wHϕH + wTϕT ) (A.16)

since n = V/(vH + vT ) for a neat amphiphilic system where V is the system volume.

Next, we need to choose the particle based potential Vconn(r, r′) and the field based

potential V [ϕH , ϕT ]. We start with the latter. It is comprised of two terms:

V [ϕH , ϕT ] = VHT [ϕH , ϕT ] + VEOS[ϕH , ϕT ].

The first is easily written in terms of the particle based potential of equation (A.1) and is

VHT [ϕH , ϕT ] =
∫ dr

v0

dr′

v0

ϕH(r)VHT (|r− r′|)ϕT (r′). (A.17)

Substitution of equation(s) (A.2) into the instantaneous version (with carets) of equation

(A.17) will return the original particle based potential term from (A.1). The mean field

version looks the same but without the carets. One must choose the particle based potential

between head and tail groups of different molecules. Relative to the head-head and tail-tail

interactions, this should, from an incompressible point of view, be repulsive. We choose a

Gaussian potential described by a prefactor V0
HT and width Vw

HT which we found to behave

well computationally. Specifically, it is

VHT (r) = V0
HT exp

[
−r2

(Vw
HT )2

]
. (A.18)
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The equation of state term is chosen as

VEOS[ϕH , ϕT ] =
κ

2

∫
dr [1− ϕH(r)− ϕT (r)]2 (A.19)

where κ is a compressibility parameter that should be chosen as a large number to penalize,

quadratically, any deviation from incompressibility. In block copolymer SCFT, an exact

incompressibility is incorporated through an additional field, but this approach is numerically

unstable for the present set of equations. The only remaining term is the connectivity term

Vconn(r, r′) that appears in the single molecule partition function Q of equation (A.11). We

use a simple spring potential

Vconn(r, r′) = k (|r− r′| − l)2
(A.20)

which, when placed in (A.11), gives another Gaussian. The spring constant k should be cho-

sen as stiff to suppress vibrational freedom but can be varied to model different amphiphilic

molecules. l is the equilibrium spacing between the centers of the head and tail groups.

With these choices, the free energy (A.16) becomes

F

nkBT
= − lnQ+

(vH + vT )

V

∫ dr

v0

{∫ dr′

v0

ϕH(r)VHT (|r− r′|)ϕT (r′)

+
v0κ

2
[1− ϕH(r)− ϕT (r)]2 − wH(r)ϕH(r)− wT (r)ϕT (r)

}
.

(A.21)

We choose v0 ≡ vH + vT as our reference volume, σ ≡ v
1/3
0 as our length scale (meaning that

l/σ is on the order of 1) and κ̃ ≡ v0κ as a dimensionless compressibility parameter. The

free energy then simplifies to

F

nkBT
= − lnQ+

v0

V

∫ dr

v0

{∫ dr

v0

′
ϕH(r)VHT (|r− r′|)ϕT (r′)

+
κ̃

2
[1− ϕH(r)− ϕT (r)]2 − wH(r)ϕH(r)− wT (r)ϕT (r)

}
. (A.22)

The uniform limit of this is

F

nkBT
= φHφT

∫ dr

v0

VHT (r)− ln

[
V

v0

∫ dr

v0

e−Vconn(r)

]
(A.23)

where φH and φT are the global volume fractions of heads and tails, respectively. To make

our zero of free energy more similar to the block copolymer case, we can subtract off the
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total connectivity energy term. This has no effect on morphology because, operationally,

this residual term doesn’t appear in the SCFT equations. The free energy becomes

F

nkBT
= − lnQ+

1

V

∫
dr
{∫

dr′ϕH(r)VHT (|r− r′|)ϕT (r′)

+
κ̃

2
[1− ϕH(r)− ϕT (r)]2 − wH(r)ϕH(r)− wT (r)ϕT (r)

}
+ ln

[
V
∫
dre−Vconn(r)

]
. (A.24)

which is the same as equation (7) of the theory section. The uniform limit is now

F

nkBT
= φHφT

∫
drVHT (r) (A.25)

which is the same as equation (8) of the theory section. In equations (A.24) and (A.25), we

have simplified the presentation by absorbing the v0 molecular volume into dimensionless

distance units. Taking functional derivatives of (A.24) with respect to the volume fraction

functions and chemical potential fields give the SCFT equations (1)-(6) of the theory section.
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