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Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-
weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension 
between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer 
bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion 
explanation are shown to be valid for a range of different polymer compressibilities. 
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An understanding of polymer surface tension is vital for 
many industrial processes such as foaming, suspensions, 
wetting, and blending [1]. Predictions for foaming processes 
depend on classical nucleation theory which in turn requires 
values of surface tension as input. As a result, efforts to 
improve the measurement and understanding of polymer sur­
face tensions have been ongoing for many years. In theoret­
ical studies, the molecular-weight (MW) dependence of 
polymer surface tension is particularly important since 
higher MW polymers offer challenges for accurate experi­
mental measurements. Although progress has been made in 
experimentally measuring surface tensions of high MW poly­
mers (see Ref. [2]), theoretical verifications and explanations 
for observed behaviors are lacking. That being said, some 
important contributions related to this subject have been 
made; see, for example, Poser and Sanchez [3], Helfand, 
Bhattacharjee, and Fredrickson [4], Ermoshkin and Semenov 
[5], and Kumar and Jones [6]. 

In this paper, we show that many approximations made in 
previous works [3–6] are unnecessary as the polymer surface 
tension can be calculated using full numerical self-
consistent-field theory (SCFT) with no approximations be­
yond the mean field. SCFT is an appropriate method to use to 
study polymer surface tension because although SCFT is a 
coarse-grained theory, it is microscopic in the sense that it 
includes all polymer configurational degrees of freedom, un­
like phenomenological density gradient theory, for example, 
[7–9]. Jones and Richards [10] point out that presently poly­
mer surface tension MW dependence is “explained” in terms 
of a mix of phenomenological density gradient theory for 
higher MW and an empirical formula for lower MW. This is 
a wholly unsatisfactory situation. We will show that SCFT 
spontaneously reproduces the expected experimental two re­
gime behavior of polymer surface tension, and allows us to 
explain why there is a change of behavior between low and 
high MW polymer surface tensions. Since an understanding 
of MW dependence of surface tension is an important ingre­
dient for the advancement of many industrial processes, 
these SCFT results represent an important step beyond pre­
vious theories. 

The SCFT formalism for polymer surface tension has 
been described by us in a previous presentation [11] where it 
was successfully used to predict qualitative surface tension 
trends as a function of temperature and pressure for a single 
polymer MW. There we used a parameter a=0.1; a is the 

ratio of the volume of a solvent molecule to the volume of a 
polymer molecule. It is inversely proportional to the polymer 
MW. In the present work, we lower the value of a (increase 
the polymer MW) to investigate the behavior of surface ten­
sion as a function of MW. The free energy for a compressible 
polymer-solvent system is 

NF ¢s Qsa ¢h Qha Qp= −  ln( ) − ln( ) − ¢p ln( )
p0kBTV a V¢s a V¢h V¢p 

1 1 
+ f dr( N'p(r)'s(r) + N's(r)'s(r)xps xssV 2

1 
+ xppN'p(r)'p(r) − ws(r)'s(r) − wh(r)'h(r)

2

− wp(r)'p(r) − i(r)[1 −  's(r) − 'h(r) − 'p(r)]) , 

(1) 

where 's(r), 'p(r), and 'h(r) are the local volume fractions 
of solvent, polymer, and “holes,” respectively, and ws(r), 
wp(r), and wh(r) are conjugate chemical potential fields. The 
function i(r) is a pressure field that enforces a constant total 
density, including the holes. Compressible systems with in­
homogeneous total densities are thus modeled in this incom­
pressible formalism through the presence or absence of va­
cancies (holes). This is a method introduced by Hong and 
Noolandi that reduces to the Sanchez-Lacombe equation of 
state in the limit of a homogeneous system [12]. Other equa­
tions of state can also be chosen within the SCFT formalism 
[13]. Qs and Qp are the partition functions for single mol­
ecules of solvent and polymer, respectively, subject to the 
fields ws(r) and wp(r), while an analogous role is played by 
Qh for the holes. ¢s, ¢p, and ¢h are the global volume frac­
tions of solvent, polymer, and holes, respectively, in the sys­
tem. The x parameters are the Flory-Huggins representations 
of the interactions between solvent and polymer segments 
based on a segment volume p0 

−1, taken to be the same for all 
constituents. With respect to this segment volume, a polymer 
has a degree of polymerization N and a becomes simply 
1 /N. Note that a can be more complicated if different seg­
ment volumes are used for the various constituents and so we 
will continue to refer to a in some places in the interest of 
generality of formalism. We have presented a free energy 
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density (1) by dividing F by the system volume V. This free 
energy density is made dimensionless by dividing by the 
thermal energy kBT, where kB is Boltzmann’s constant and T 
is the temperature, and multiplying by the volume of a single 
polymer, N /p0. Since we are to compare the surface tensions 
of a number of different MW polymers, we choose a refer­
ence N0 corresponding to the value N0=10  (a=0.1). The 
surface tension (interfacial tension between polymer and sol­
vent) y is found from the excess free energy Fex through y 
=Fex / A where A is the surface area between the phases. The 
excess free energy is the free energy of the entire system 
minus the free energies of the bulk system on either side of 

bulk−Fbulk−Fh 
bulkthe interface Fex=F− F bulk [14,15]. Here, Fis p 

for i=s , p , h can be found from Eqs. (14)–(18) of Ref. [11]. 
The area A can be replaced with V / L where L is the extent of 
the simulation in the direction perpendicular to A; it must be 
chosen large enough so that bulk conditions are reached on 
both sides of the interface. To make this surface tension di­
mensionless, the distance L can be divided by a factor R0, the g 
unperturbed radius of gyration of the reference MW polymer 
with N=10. All distances in this work will be measured in 
terms of this reference radius of gyration. We can also divide 
the volume V by the volume of the reference polymer, N0 / p0. 
Last, we can divide the surface tension by the energy kBT. 
The dimensionless surface tension expression then becomes 

0yRg L N0Fex = ( ) , 
a2p0kBT R0 p0kBTVg 

(2)

where a is the statistical segment length of a polymer seg­
ment (the average length of a polymer segment). The total 
system free energy (1) required to calculate the excess free 
energy (surface tension) is found by varying (1) to give the 
set of self-consistent equations 

ws(r) = xpsN' p(r) + xssN' s(r) + i(r) , (3) 

wp(r) = xpsN' s(r) + xppN' p(r) + i(r) , (4) 

wh(r) = i(r) , (5) 

' s(r) + ' p(r) + ' h(r) = 1,  (6) 

¢sV −aw (r)s' s(r) = e , 
Qs 

(7)

¢hV −awh(' h(r) = e r), 
Qh 

(8)

¢pV 1 

' p(r) = f dsq(r,s)q(r,1  −  s) , 
Qp 0 

(9)

where q(r ,s) is the solution to the modified diffusion equa­
tion 

aq(r,s) Na2 

= V2q(r,s) − wp(r)q(r,s) . 
as 6 

(10)

The set of Eqs. (3)–(10) is solved numerically. More infor­
mation on the theoretical method including details of the 
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excess free energy expression can be found in Ref. [11]. 
For clarity of discussion, we begin by examining an in­

compressible system, where ¢h =0. Surface tension as a 
function of 1 /N is plotted in Fig. 1 for a system with xN0 
=10. The surface tension is seen to increase with increasing 
MW (decreasing 1 / N) in agreement with experiment 
[2,7–9,16,17]. Further, the surface tension increases accord-

xing to y=y(o)−c(1 /N) [c is a constant and y(o) is the 
surface tension at infinite molecular-weight] with x=2 /3 for 
lower MW and x=1 for higher MW in agreement with ex­
periment [7–9,16]. These trends are shown in the insets of 
Fig. 1. The lower inset shows the entire data set plotted as 
ln[y2/3(o)−y] versus ln(1 / N) where y2/3(o) is the extrapo­
lated y intercept (infinite MW limit) for the data set based on 

2/3a linear fitting of the lower MW data only with (1 /N) . 
Clearly the lower MW data fit well, producing a slope of 
0.666, but higher MW data deviates from the 2 / 3 behavior, 
as expected. This higher MW data is therefore plotted in the 
upper inset as ln[y1(o)−y] versus ln(1 /N) where y1(o) is 
the extrapolated y intercept (infinite MW limit) for the data 
set based on a linear fitting of the higher MW data only with 
(1 /N). The linear agreement is excellent, producing a slope 
of 1.015. SCFT therefore shows the same two-regime behav­
ior as has been discussed and debated in the literature [3–10]. 
SCFT predicts this two-regime behavior spontaneously from 
a single theory. 

FIG. 1. Dimensionless surface tension as a function of inverse 
molecular-weight 1 /N for an incompressible system (open circles). 
The lower inset shows the same data plotted logarithmically. The 
solid line in the lower inset is a fit producing a slope of 0.67. The 
upper inset shows a subset of the data corresponding to higher 
molecular-weights and the line is a fit producing a slope of 1.01. 
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To explain why there is a change of behavior in polymer 
surface tension, the thermodynamic components of the sur­
face tension can be examined. In general, free energies can 
be written in terms of thermodynamic contributions as F 
= U−TS where U is the internal energy and S is the entropy 
of the system. We can therefore break up the surface tension 
into contributions from the various thermodynamic compo­
nents [11,18]. For an incompressible case we obtain y=yU 

where the summed terms are the contribu­+ ySTp 
+ySCp 

+ySTs 
tions to the surface tension from the internal energy, polymer 
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translational entropy, polymer configurational entropy, and 
solvent translational entropy, respectively. These components 
are plotted for the present case in Fig. 2 where they have 
been shifted along the y axis for clarity. Some components 
are found to change behavior at around the same place as the 
total surface tension, as roughly indicated by the vertical line 
in Fig. 2. In particular, the internal energy contribution 
changes qualitatively with increasing MW from increasing 
(right of the vertical line) to decreasing (left of the vertical 
line). 

FIG. 2. Thermodynamic components of the dimensionless sur­
face tension as a function of inverse molecular-weight 1 /N. The 
legend labels the components. All components have been shifted to 
zero at 1 /N =0.1 to better show their behavior (enlarge the scale) as 
MW is increased. The vertical line shows roughly where the behav-
iors of the components change. 
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Figure 3 shows the bulk solvent and polymer volume 
fractions far from the interface. SCFT predicts that the width 
of the interface between the polymer and solvent becomes 
more narrow with increasing MW, contributing to a drop in 
the internal energy of the system. Likewise, from Fig. 3 the 
amount of polymer in the solvent bulk phase and vice versa 
decrease with increasing MW so that the internal energy in 
the bulk regions should also drop. Since yU initially in­
creases in Fig. 2, it must be from the form of Fex that the 
bulk internal energy decreases initially at a faster rate than 
the system as a whole. At some point however, this ceases to 
be the case, yU starts to decrease, and the surface tension 
curve changes behavior. From Fig. 3 we see why the bulk 
internal energy ceases to decrease faster than the system as a 
whole. The plot of the polymer in the bulk solvent phase 
[Fig. 3(b)] shows that almost all polymer is eventually ex­
cluded from the solvent side of the interface. Beyond this 
point, the solvent bulk internal energy cannot significantly 
decrease anymore and the system internal energy starts to 
decrease more rapidly than the bulk internal energy. In other 
words, the change of polymer surface tension dependence on 
MW is a result of reaching the point of almost total exclusion 
of polymer from the solvent bulk domain. 

FIG. 3. Bulk volume fractions far from the interface of (a) sol­
vent in polymer rich phase and (b) polymer in solvent rich phase as 
a function of inverse molecular-weight 1 /N. 
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The incompressible system gives a simple accounting of 
the physics involved in this polymer surface tension problem 
but, more realistically, one would prefer to verify that these 
conclusions are also valid for compressible systems. The 

 

two-regime behavior of polymer surface tension with MW is 
indeed also predicted by SCFT for compressible systems. 
Figures 4 and 5 shows a number of different MW-dependent 
surface tensions for a range of compressibilities. In the re­
gions of Fig. 5 where a linear dependence of inverse MW is 
found, there is consistently no discernible polymer in the 
solvent phase. Similarly, for regions where a (1 /N)2/3 depen­
dence is observed, there is always a non-negligible amount 
of polymer in the solvent phase. 

It would be interesting to investigate further if systems 
with very large hole volume fractions (very high compress­
ibilities) continue along the same trends as observed here. 
Quantitative predictions should also be possible if some op­
tional simplifications of SCFT are removed, in particular the 
assumption of a common volume p0 

−1 for polymer segments, 
solvent volumes, and hole sizes. At higher molecular-
weights, the ground-state approximation for polymer con­
figurational entropy is valid, and so the formalism should be 
reducible to something similar to density gradient theory, but 
with a more rigorous derivation. Given the quantitative suc­
cess of phenomenological density gradient theory, a similar 
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quantitative success of the more elaborate microscopic, mul­
ticomponent SCFT approach is to be expected, and compari­
sons could be made between the two approaches. This can be 
studied in future work. It would also be interesting to see if 
the functional forms of low and high molecular-weight poly­
mer surface tension can be derived using the differences be­
tween the thermodynamic components of the surface ten­
sions and bulk surface tensions. 

FIG. 4. Logarithmic plot of the dimensionless surface tension as 
a function of inverse molecular-weight for polymer plus solvent 
total global volume fractions of 0.99 (triangles), 0.95 (diamonds), 
0.90 (squares), and 0.85 (circles). These correspond to hole volume 
fractions of 1%, 5%, 10%, and 15%, respectively. The surface ten­
sion is plotted as the logarithm of the difference between the di­
mensionless surface tension and an extrapolated infinite MW sur­
face tension for a 2 /3 power relationship as discussed in the text. 
The results have also been shifted along the y axis so that the 
smallest MW of each set falls at 0, 0.5, 1.0, and 1.5, respectively, to 
clearly show the results beside each other. The solid lines show a 
2 /3 slope. 

−4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8 −2.6 −2.4 
−1.5 

−1 

−0.5 

0 

0.5 

1 

1.5 
ln

(γ
 2/

3 (∞
)−

γ)
 

1% holes 
5% holes 
10% holes 
15% holes 

ln(1/N) 

FIG. 5. Same data as Fig. 4 but plotted with an infinite 
molecular-weight surface tension based on an extrapolation for a 
linear power relationship. The results have been shifted along the y 
axis so that the largest MW of each set falls at 0, 0.5, 1.0, and 1.5 
for 1%, 5%, 10%, and 15% hole volume fractions, respectively, in 
order to clearly show the results beside each other. 
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In summary, we have demonstrated that mean-field exact 
results for polymer surface tension as a function of polymer 
molecular-weight can reproduce higher and lower MW be­
havior in agreement with experiments. We can explain the 
change in behavior between higher and lower MW in terms 
of the almost complete exclusion of polymer from the bulk 
solvent region. It is found that this explanation and predic­
tion are also valid for compressible systems. These two ex­
perimentally observed domains of polymer surface tension 
with molecular-weight can be spontaneously reproduced 
with a single theory. 
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