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Abstract

Interest in the human microbiome has risen quickly in recent years as the microbes

that live in and on our body have been implicated in a growing number of human health

and disease states. This interest has been supported by advances in DNA sequencing

technology that have allowed us to obtain vast amounts of sequence data, and yet we

have difficulty assigning function to many of the gene sequences obtained. As research

on the role of these microorganisms continues, there will be an increased need for high-

throughput methods that can provide knowledge of microbial gene function. Functional

metagenomics is one such method, and it relies on first cloning environmental DNA

to generate metagenomic libraries that are maintained in Escherichia coli and second,

screening the cloned DNA for particular functions of interest. This powerful function-

first method allows for the isolation of genes whose role may not have been predicted

using DNA sequence homology. This thesis describes the analysis of techniques used in

functional metagenomics research, as well as the development of new strategies to aid

in functional screening of metagenomic libraries, particularly those constructed from

gut-derived DNA. The work is divided into four data chapters that each explore a

distinct aspect of the functional metagenomics approach.

The first data chapter describes the evaluation of a pooled strategy for sequenc-

ing cosmid clones that were previously isolated in functional screens of metagenomic

libraries. Ninety-two large-insert clones were pooled for Illumina-sequencing and the

assembled sequence data were evaluated against reference sequence data that were ob-

tained from individual barcoded Illumina sequencing of the same clones. The results

indicated that a pooled strategy works well provided that sufficient sequencing depth

is obtained and that pooled clones do not share sequence similarity to the extent that

would be problematic for assembly of short reads that derive from those clones.

The second data chapter is an exploration of possible causes for the known cloning

bias of metagenomic libraries, by comparing environmental DNA before cloning to the

DNA cloned in the final metagenomic library in E. coli. For a human gut metagenomic

library, DNA was sampled and Illumina-sequenced at three different steps during the

construction of the library. Analyses of the sequence data showed that there was indeed

major bias in the final library, but that the bias was not due to fragmentation of the

DNA during the cloning process as has been previously suggested; rather, the data

were consistent with alternative hypotheses that suggest bias occurs after the DNA is
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introduced into E. coli, and analyses provide support for the hypothesis that spurious

transcription of foreign DNA in E. coli may be contributing to the bias of libraries.

Bias was also examined for a soil metagenomic library using 16S rRNA gene sequencing

and though broad phylum-level biases were not as severe as observed for the human

gut library, analyses revealed a bias in the relative abundance of individual OTUs.

The third data chapter describes efforts to develop Bacteroides thetaiotaomicron

(B. theta) VPI-5482 as a surrogate host for screening metagenomic libraries constructed

from human gut-derived DNA. In this strategy, metagenomic libraries that have been

constructed in E. coli can be transferred to B. theta using triparental conjugation. A

member of the Bacteroidetes was chosen to specifically address the likely barrier to

gene expression in E. coli of DNA that originates from this phylum. To allow the

library to be replicated in B. theta, a B. theta-compatible library cloning vector was

constructed, and this vector was used to generate genomic and metagenomic clone

libraries. A metagenomic library was successfully screened in B. theta, leading to

functional complementation of a B. theta mutant strain unable to grow on chondroitin

sulfate as sole carbon source. However, further examination of the complemented clones

indicated that the library clone DNA had integrated into the B. theta mutant genome.

To address this problem, an alternative method for screening was devised, and although

this method demonstrates that screening in B. theta remains feasible, more work is

required to optimize the conjugation efficiency and the level of throughput.

The fourth and last data chapter is an exploration of the use of transcriptional ter-

minator elements in library cloning vectors, inspired by the results of previous chapters.

Two unidirectional transcriptional terminators were added to a copy number-inducible

fosmid vector, flanking the cloning site, with the intention of reducing insert-born

transcription into the vector backbone. The terminators were tested using a reporter

gene to confirm their functionality in this context, and derivative vectors were gener-

ated for future testing of whether or in what contexts terminators may help alleviate

cloning bias in metagenomic libraries. The work described in this thesis contributes

to method advancement for functional metagenomics through the analysis of a cost-

effective strategy for sequencing library clones, the examination of potential causes of

sequence bias in metagenomic libraries, the development of a surrogate host for more

productive functional screening, and the consideration of vector elements that may

improve metagenomic library stability in E. coli .
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CHAPTER 1. INTRODUCTION

1.2 Abstract

Interest in the human microbiome has risen quickly in recent years as technological

advancements have allowed us to explore the microbial world in unprecedented depth,

and the gut environment in particular has attracted much attention. The interaction

between the human host and their microorganisms begins at birth, varies between in-

dividuals, and fluctuates throughout life with environmental influences such as diet.

These microbes contribute to our health, but have also been implicated in various dis-

ease states through an altered composition of microbiota although causal links for many

have yet to be shown. Moving from more correlative studies to those providing explana-

tory mechanisms will likely require a broader knowledge of microbial gene function, as

many genes identified from shotgun metagenomic sequencing datasets lack a sequence

homology-based functional annotation, interfering with our ability to understand the

role of the microorganisms present as a whole. To address this lack in knowledge will

require high-throughput methods to mine genes using a function-first approach, al-

lowing function to be determined for those genes whose function could not have been

predicted using sequence homology. Functional metagenomics is one such method, in

which DNA is isolated from environmental samples, cloned en masse, and screened for

particular enzymatic activities. This thesis describes the analysis and development of

methods to advance functional metagenomics, particularly for study of the human gut

microbiome.
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CHAPTER 1. INTRODUCTION

1.3 Interest in the human microbiome

Over the past couple of decades, there has been mounting interest in the human micro-

biome, that is, the community of microorganisms living on and in the human body and

the host environment with which they interact [171]. The microorganisms themselves

are distinctly referred to as the microbiota [199]. The productivity in this research area

has been largely due to technological advances in DNA sequencing, allowing researchers

to deep-sequence DNA samples isolated from various parts of the body. This requires

isolating the metagenomic DNA of these environments – a term originally coined by Jo

Handelsman during studies of soil microorganisms that refers to the collective genomic

DNA from an environmental sample [118].

Metagenomic methods are crucial in studies of the human microbiome, as many

of these organisms may not be easily cultured using standard laboratory techniques.

Some estimates of the fraction of uncultured bacteria in oliogtrophic environments have

been as high as 99% [242,319]; in the nutrient-rich system of the gastrointestinal tract,

however, previous studies have cited 50% uncultivated taxa in the stomach (2006)

[22], 80% in the distal intestine (2006) [102], and 70% in the oral cavity (2010) [60].

Although these taxa are occasionally referred to as “unculturable” [242], recent reports

have challenged this idea with the isolation hundreds of species from the human gut,

including novel ones, using carefully designed and comprehensive culturing techniques

[109,163,319].

In 2007, with growing interest in the scientific community and funding from the

NIH, the Human Microbiome Project (HMP) was inititated – a five-year, ✩150 million

collaborative endeavour to characterize various human microbial communities, target-

ing the skin, oral cavity, nasal cavity, vagina, and gastrointestinal tract [233]. Today,

the list of body sites has expanded to include other body parts, such as the urogenital
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CHAPTER 1. INTRODUCTION

tract, with the goal of providing 3,000 reference genomes, either sequenced or collected

from public databases. The majority of these genomes will be sequenced only to a

high-quality draft stage, which is the second of six possible stages of completion, as

provisionally defined by the HMP Consortium. To be considered high-quality, the

draft sequence must, among other requirements, have >90% of the genome included in

contigs ≥500 bp, with >90% of bases at >5Ö read coverage, and >90% of Bacterial

“core genes” present. At the moment, the HMP has ∼1,700 bacterial reference genomes

either finished or in progress.

1.4 The human gut microbiome

A fact often given to illustrate the importance of the human microbiome is that micro-

bial cells outnumber human cells by at least a factor of 10, and their genes outnumber

human genes by at least a factor of 100 [102, 253], although a more recent study has

countered this widely cited claim with estimates that the bacterial cell to human cell

ratio is in fact closer to one-to-one [260]. Regardless of the precise number, it is indis-

putable that microorganisms occupy our body sites where they play an important role;

of all human microbiomes, the gut seems to have attracted the most research interest,

likely because the vast majority of the microbes we harbour reside in the gastroin-

testinal tract, particularly in the distal gut where they aid in host metabolism [102]

and influence host immunity [176, 246]. To determine which organisms form the mi-

crobiota, and in what proportion, the culture-independent approach of 16S rRNA gene

sequencing is often used – sequencing either the full 16S rRNA gene length or one of

the hypervariable regions. Typically, though somewhat arbitrarily, cut-offs of 95% and

97-98% identity are used to define Genus and Species (or Operational Taxonomic Unit,

OTU), respectively [12].
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1.4.1 Initial colonization

The gastrointestinal tract of a newborn is sterile and, in a vaginal birth, the mother’s

microbes serve as the initial inoculum for the newborn, along with other external con-

tacts that may take place during birth. Initial colonizing bacteria are facultative,

lowering the redox potential of the environment, allowing strict anaerobes to flour-

ish [150]. Later in life, other microorganisms are introduced; for example, with the

ingestion of food, bacterial survival through the acidic environment of the stomach is

aided by the rise in pH immediately following a meal [170]. Interestingly, studies have

suggested that birthing via caesarean section may have negative consequences. For ex-

ample, compared to infants delivered vaginally, initial colonization of the gut of infants

delivered by C-section was delayed, with persisting differences in microbiota composi-

tion. In addition, infant immune function may be affected due to lack of exposure to

microorganisms [145].

With weaning and the introduction of solid food, the next major community

succession brings an increase in Bacteroidetes and Firmicutes, the dominant phyla of

the adult gut [145]. One study tracked the developing gut microbiota of an infant,

delivered vaginally, for the first 2.5 years of life and found, as one might expect, that

changes in composition were associated with life events [156]. For instance, the early

microbiota provided lactate utilization functions, and later additions provided functions

for plant polysaccharide metabolism.

1.4.2 Diversity, variability, and individuality

Though the human gut harbours higher bacterial density than any environment, its

diversity is low when compared to that of soil [12], with fewer bacterial phyla repre-

sented [325]. Generally, the dominant phyla in the human gut are by far the Bac-
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teroidetes and Firmicutes, followed by a much smaller representation of the Proteobac-

teria, and then others [288]. Despite being from only a handful of phyla, it is estimated

that more than one thousand species are present in the human gut [164], although

there can be substantial differences between individuals [310]. As one might expect,

the diversity of the gut mcrobiota is greatly affected by environmental factors; diet in

particular is very important in influencing gut microbial diversity [55]; such changes

may reflect the different metabolic specializations of microbial species [288], and there

is evidence that certain taxa can be lost over time with a long-term diet that is low

in fibre [284]. There have been efforts to try to classify the microbiota of individuals

into groups, called “enterotypes” [8,338], although more recent work has acknowledged

that discrete groups may not exist and that variation in the microbiota appears to be

continuous [155].

Interestingly, one study attempted to use the microbiota from various body sites

of individuals as an identifying “code”, and found that the majority of microbiota

codes collected from the same individuals 30-300 days later uniquely identified their

host in a group of 120 people [93], suggesting remarkable potential stability of the

microbiota within an individual. Such findings naturally lead to the question of whether

host genotype can influence the composition of the microbiota. Although twin studies

have had conflicting results and suggest that any effect of host genotype influence on

the microbiota is likely small, more systematic studies in mice suggest that there are

significant associations between variations in certain host loci and variation in microbial

taxa, with most loci being involved in immunity and some in metabolism [288]. Future

genome-wide association studies are required, treating the gut microbiota composition

as a phenotype, to elucidate the relationship between variation in host genotype and

variation in the gut microbiota.
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Beyond environmental and host influences, there is still a substantial amount

of variability in gut microbial composition that appears to be random [288], which

may confound association studies. Rather than trying to assess variation by looking

at taxonomic compositions, it may be more informative to focus on the functional

composition. In one study, it was found that in lean individuals, despite a large variation

in microbial community, there existed a core gut microbiota at the functional level,

and deviations from this core were associated with obesity [309]. This emphasizes

the importance of a function-based viewpoint with respect to studies of the human

microbiome.

1.4.3 Mutualism between host and microbiota

The microorganisms comprising the microbiota have in the past often been described

as “commensals”, but such a label is misleading as more evidence suggests that host-

microbiota interactions tend to be mutualistic in nature [12]. The microbiota in the

gut possess a large arsenal of enzymes for breaking down complex polysaccharides

in the human diet and they contribute about 10% of the calories that are absorbed

[72]. Interestingly, differences in the gut microbiota between individuals can lead to

differences in the capacity to obtain energy from ingested food [311], and in addition

to contributing calories, the microbiota have also been shown to be involved in the

promotion of fat storage host adipocytes [11]. Although such consequences may be

undesirable in this age, they may have been very advantageous to our ancestors in

earlier times when food was much more scarce.
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While we do not necessarily need the additional calories provided by our resi-

dent microbes, colonocytes primarily use bacterially produced butyrate as an energy

source, and in its absence, these cells suffer from an energy deficit that leads them to

degrade their own cellular components for survival [67]. This illustrates the impor-

tant mutualistic relationship that hosts have evolved over time with the microbiota,

leading to dependence on microbial metabolites. In some cases, the host may even

require metabolites; for example, germ-free mice raised without gut microbes require

supplementation of vitamin K and some forms of vitamin B [130]. The gut microbiota

produce metabolites that otherwise would not be circulating in the body and they also

change the concentrations of some that are produced [332]. Interestingly, a number of

metabolites that are predicted to be produced by the microbiota are currently used as

drugs, suggesting that many of these metabolites may be bioactive [134]. While the

vast number of small molecules produced by the microbes in the gut at high micromolar

concentrations remain to be identified, some are likely to be relevant for pharmaceutical

applications once their roles in human physiology are elucidated [66].

In addition to producing drug-like compounds, resident microbes may also af-

fect orally ingested drugs, a fact that can lead to unexpected consequences in health

care. In one study that examined urine metabolites of the widely used painkiller ac-

etaminophen, it was found that there were differences between individuals in the ratio

of two metabolites, acetaminophen glucuronide and acetaminophen sulfate, and the dif-

ference was attributed to bacterially produced compounds that compete for sulfonation

in the gut [46]. Another study in which the efficacy of a statin used in the treatment

of high cholesterol was examined, researchers found that differences in efficacy between

individuals correlated with gut-derived metabolites [140]. Interestingly, a case in which

the mechanism of drug metabolism was actually demonstrated was that for Eggerthella

lenta inactivating the drug digoxin, which is used in the treatment of cardiac disease:
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a strain of E. lenta was known to inactivate the drug in vitro, and RNA-seq analysis

revealed that exposure to digoxin led to upregulation of an operon containing two genes

predicted to be cytochromes capable of using digoxin as an electron acceptor, and that

the presence of this operon was higher in the guts of individuals that showed a high

level of inactivation of the drug [116]. These examples illustrate the important and

likely under-appreciated influence of the gut microbiota on host drug metabolism.

1.4.4 Disease and the gut microbiota

Given that the host and the microbiota share such a close interaction, it would seem

to follow that in some situations, they may be able to cause harm, and indeed, mi-

crobes with whom the host participates in mutualism can sometimes take on the role of

pathogen [103]. In straightforward examples, opportunitistic pathogens may traverse

through broken barriers in the host such as wounds in the skin or perforations in the

lining of the gut [328]. Mutualistic organisms may also incidentally aid the virulence

of pathogens by generating metabolites such as sugars [53], or perhaps by harbouring

a reservoir of antibiotic resistance genes that can potentially spread to more serious

pathogens, although evidence suggests there may be barriers to the general transfer of

these genes among members of the microbiota [283].

Interestingly, there is a growing list of disease states that appear to be associated

with a change in the composition of the gut microbiota. For example, in both Type I

diabetic and obese individuals, the ratio of Firmicutes to Bacteroidetes has been shown

to be altered. With obesity, there appears to be an increase in the relative abundance

of Firmicutes [104]; the reverse is true for diabetes, in which there is both an increase

in Bacteroidetes and a decrease in Firmicutes as children become autoimmune [311].

Though these descriptions of the changing gut microbiota are very broad, it has been
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suggested that they may prove to be useful as diagnostic markers, for example, to

identify infants at high risk for onset of Type I diabetes.

A number of other GI-related disease states have also been shown to be associated

with changes in the microbiota, such as colorectal cancer [198,281], Type II diabetes [90,

322], and inflammatory bowel disease [92], including Crohn’s Disease [78, 196]. Other

non-gastrointestinal diseases have also implicated the microbiota, such as cardiovascular

disease [129], allergies [96], multiple sclerosis [19], and neurodevelopmental disorders

such as autism spectrum disorder [131]. There have also even been suggestions that

the microbiota may be involved in behavioural or mood disorders [91]. The many

health conditions in which the microbiota also vary are perhaps not surprising as the

microbes in the gut have been recognized for their importance in host immunity [246].

The interaction between an individual and their gut microbiota is a complex one, in

which both partners may influence the other. Though fascinating, the exact relationship

between certain disease states and their altered microbiota remains to be elucidated [83].
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1.5 Challenges in metagenomics and microbiome

research

The gut microbiome has recently become a hot topic in the popular media even as the

scientific community struggles to understand the specifics of how the microbiota con-

tribute to human health and disease. Challenges in the metagenomics and microbiome

fields tend to fall into two broad areas.

1.5.1 Correlation versus causation

The use of antibiotics leading to reduced diversity in the gut microbiota has been

blamed by some for many different conditions [23] and while there is likely some truth

to the idea that widespread antibiotic use has had broad unexpected consequences,

more work is required to tease apart the many factors that contribute to complex

diseases. Furthermore, although certain disease states appear to be associated with

a change in the composition of microbiota based on 16S rRNA gene sequencing, the

exact mechanisms will need to be determined before causality can be ascribed. Even

gene function-based analyses of sequence data [189,234], although extremely useful for

generation of hypotheses, are in themselves merely correlative as there are many factors

that can influence the expression of genes in a given system, including physical linkage

to other genes as well as environmental and cell-to-cell interactions [2]. Knowledge

pertaining to these levels of regulation will need to be integrated for the generation of

meaningful and biologically relevant models of the microbiota.

12



CHAPTER 1. INTRODUCTION

Thus, a current challenge in metagenomics and microbiome research is moving

beyond survey-type, correlation studies, and incorporating methods that allow causal-

ity to be determined [2], including biochemistry, genetics, and, generally, controlled

hypothesis-driven experiments [256], for example using enrichment cultures or cultures

of a subset of the microbiota. Recent efforts to array cultured isolates from the human

gut microbiota combined with culture of these microbes in gnotobiotic mice [109] al-

low for tractable, combinatorial approaches to systematic identification of organisms or

groups of organisms that result in specific phenotypes in the host [82]. These types of

methods will likely be critical in determining whether, in which direction, and to what

extent these relationships are causal.

1.5.2 Informatics and sequence data annotation

The Human Microbiome Project, along with other large-scale sequencing-heavy projects,

illustrate the power of today’s high-throughput, low-cost sequencing technology in aid-

ing our study of these previously underappreciated microbial communities, as well as

making such studies feasible for smaller laboratories. However, a 2011 review discussed

the limitations of the current shotgun sequencing approach [293], arguing that genomes

could only be assembled for the most dominant members of a complex community, cit-

ing previous work in the Sargasso Sea [315], and that the probability of capturing rare

organisms, such as methylotrophs, is low [223].

The generation of large amounts of sequence data across many different labs

leads to many practical issues not discussed here but which include requiring an op-

timized/standardized work pipeline, large quantities of computer memory as well as

databases, high-quality analytical tools, and trained bioinformaticians [292]. Beyond

these issues lies an additional hurdle which must happen after obtaining genomes or
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metagenomes from a sequencing project: the functional annotation of genes. The

research community has recognized the need for easily accessible and user-friendly

computational tools to aid in the analysis of metagenomic sequence data, and many

stand-alone or web-based tools and databases, such as MG-RAST [211, 334], have be-

come available. To carry out automated functional assignments, these software use

homology-based annotation, comparing metagenomic sequences to existing protein and

nucleotide databases.

One obvious pitfall in a sequence homology-based strategy is genes that are similar

in function but dissimilar in sequence to known genes cannot be annotated. Further-

more, the case may very likely be that we currently simply have not amassed enough

sequences of known function to be able to accurately and thoroughly annotate new sets

of sequences. For example, in a 2007 dataset of 480 Mb of gut metagenomic sequence

data and a predicted 660,000 genes from 13 individuals [161], more than one-half of pre-

dicted genes could not be assigned to a Cluster of Orthologous Groups (COG) [300,301]

and therefore could not be given a functional assignment. Indeed, a 2015 US-initiated

call for a Unified Microbiome Initative has emphasized the need for characterizing genes

with currently unknown function [2]. Although there are computational approaches to

improve functional annotation of genes, such as inference of gene function from operon

rearrangements [217], it is becoming increasingly necessary to complement sequence-

based approaches with high-throughput approaches that provide proof-of-function for

genes, to obtain the information necessary to carry out functional annotation. To iden-

tify novel genes whose functions may not be predicted from their sequence alone, a

functional metagenomic approach can be used.
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1.6 Functional metagenomics

In general, use of the term “functional metagenomics” implies a very specific function-

based “wet-lab” methodology, herein described. Although the term is occasionally

co-opted to mean something different – for example, to mean sequence-based metage-

nomics with a focus on gene function [62, 244] or even completely redefined to mean

the study of functional members of the microbiota that influence human health [183]

– such uses are rare in the scientific literature. In this section, a brief introduction to

the overall methodology and its advantages is provided, setting the context for subse-

quent chapters of this thesis, in which various aspects of the functional metagenomic

approach are described in greater detail.

1.6.1 General methodology

Functional metagenomics is an experimental approach that involves isolating DNA

from microbial communities to study the functions of proteins encoded by that DNA,

typically through cloning DNA fragments, expressing genes in a surrogate host, and

screening for enzymatic activities of interest. Using such a function-based approach

can be powerful for the discovery of novel enzymes whose functions could not have

been predicted based on DNA sequence alone. New information from function-based

analyses can then be used to annotate genomes and metagenomes derived solely from

sequence-based analyses. In this way, functional metagenomics complements sequence-

based metagenomics, analogous to how molecular genetics of model organisms has

provided knowledge of gene function that has been widely applicable in genomics.
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Figure 1.1: Summary of metagenomic library construction. Steps involved in the construc-
tion of a metagenomic library, from original environmental sample to the final library in the E. coli
host. Adapted from [166].
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Functional metagenomics begins with the construction of a metagenomic library,

the steps of which are summarized in Figure 1.1. Cosmid- or fosmid-based libraries

are preferred due to their large and consistent insert size and high cloning efficiency.

DNA is extracted from the environmental sample of interest, such as soil or feces.

After DNA is extracted from the sample, it is then size-selected through pulsed-field

gel electrophoresis to enrich for high-molecular weight fragments. The fragments are

subsequently end-repaired and ligated to a linearized and blunt-ended cos-based vector.

The ligation mixture is then packaged into λ phage heads through recognition of the cos

site, and the phage are used to transduce E. coli to generate the metagenomic library

(Figure 1.1). The library contains relatively large insert DNA, typically 25 to 40 kb

for cos-based vectors. There are two major advantages to using a cos-based vector and

phage transduction to construct clone libraries: the high efficiency of transduction as

well as the reduced likelihood of insert concatemers.

Once the metagenomic library has been constructed in E. coli , functional screen-

ing can be carried out. In the most straightforward approach, screening of the library

can be done in the same E. coli host in which library construction took place. For ex-

ample, to isolate clones conferring antibiotic resistance genes, the host cells can simply

be plated on selective media containing antibiotics (Figure 1.2). This example, while

simple, has been useful for exploring the antibiotic resistance gene reservoir harboured

by our gut microbiota. Interestingly, in one study, it was found that resistance genes

isolated through a culture-independent approach were substantially more novel com-

pared to those that had been isolated through an aerobic culture-dependent approach,

with on average, ∼61% versus ∼90% identity at the nucleotide level to the best hit in

Genbank, respectively [283]. As this example illustrates, functional screening in E. coli

can be productive, although there may be limitations.
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E. coli carrying clone with 

antibiotic resistance gene

E. coli carrying clone without 

antibiotic resistance gene

Media containing antibiotic

Figure 1.2: Example of a functional screen in E. coli . The library in E. coli
is plated onto media with antibiotics to select for library clones that confer resistance.

Screening in hosts other than the E. coli library host, however, may provide ad-

ditional hits from functional screens due to possible differences in elements required

for gene expression between the original organism and E. coli . Though it is arguably

difficult to quantify, one estimate of how much of the metagenome is accessible by

screening in E. coli is 40%, based on analysis of 32 genomes from different bacteria

and archea, counting ORFs with ribosome-binding sites and promoters that would be

recognized in E. coli [97]. The fraction of “inaccessible” genes depends of course on the

particular environmental DNA sample. Regardless, to address this problem, metage-

nomic libraries can be transferred from the E. coli library host to other surrogate hosts

that may be more suitable for screening; this may be done efficiently using conjugation

or, if the recipient species is amenable, transformation or electroporation. The issue of

possible barriers to transcription and translation in E. coli is a particularly important

methodological limitation in functional metagenomics and will be discussed in greater

detail below and in subsequent chapters.
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1.6.2 The power of a function-based approach

In this section, several examples from the scientific literature have been specifically

chosen to highlight the strengths of a functional metagenomics approach.

Avoiding sequence-based biases

Functional metagenomics offers an avenue to finding novel proteins by functional en-

richment or selection of metagenomic material. For example, one study identified three

clones from activated sludge and soil samples that each carried novel genes of a luxI-

luxR-type quorum sensing system [119]: when these gene sequences were compared to

the NCBI protein database, the novel luxI and luxR genes had only ∼30-50% similarity

to known lux proteins. It may be difficult to predict the function of genes with such

low sequence similarity, illustrating the utility of a function-based approach.

In another study, the authors screened soil libraries containing a total of 3.6×109

bp for antibiotic resistance genes, and identified clones conferring resistance to ampi-

cillin, gentamicin, chloramphenicol, and trimethoprim [307]. Of particular interest was

the discovery of a novel trimethoprim resistance gene. Trimethoprim inhibits the en-

zyme dihydrofolate reductase (DHFR), and resistance to it is most commonly conferred

by a mutant DHFR. However, the authors found that their trimethoprim resistance gene

was very different from known dhfr genes; from biochemical analyses, it was found to

be distinctly different in its mechanism and properties, and was therefore deemed to

represent a novel group of DHFRs. Furthermore, its closest matches were to reductases

involved in lipid metabolism, not dhfr genes, illustrating that function cannot always

be surmised from sequence alone. Currently, we simply may not have enough data to

functionally annotate new sequences accurately.
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Enrichment of desired sequences

Not only can functional selections find novel proteins, they can also greatly reduce the

sheer quantity of genetic material to be sequenced. In one study, a high-throughput

functional metagenomic approach was used to find enzymes in the human gut involved

in dietary fiber catabolism, reducing the amount of metagenomic DNA to be sequenced

from 5.4×109 bp to 8.4×105 bp, a reduction of almost four orders of magnitude, simply

by selecting for the growth of library clones on different polysaccharides [299]. Using

this approach, the authors identified 73 carbohydrate-active enzymes, corresponding

to a five-fold enrichment in the target-gene identification over random sequencing. If

enrichment can be performed prior to sequencing, a great deal of time and resources

can be saved, not to mention the value of having experimental data regarding function.

High-throughput functional screening strategies

In addition to straightforward functional screens, it is possible to design more complex

screens that can still be high-throughput. An example of such a screen was one car-

ried out to identify metagenomic clones that could modulate NF-κB activity in human

intestinal epithelial cells [164]. NF-κB is a transcription factor involved in immunity

and inflammation in the gut. Using a reporter system in human cells, they screened

over 2,600 clones and identified 171 clones that either up- or down-regulated NF-κB in

human cells. They went on to analyze one stimulatory clone, using transposon muta-

genesis to identify two genes necessary for the stimulatory effects. These genes were

predicted to encode a permease and putative lipoprotein, which allowed the authors to

surmise a putative mechanism for the clone’s modulatory activity. Again, there is an

important feedback loop to be appreciated here: functional annotations help function-

based studies, which in turn help future functional annotations, and so on.
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1.6.3 Important considerations

These several examples illustrate the wide applicability of functional screens. There are

important considerations, however, in undertaking a functional metagenomic approach.

First, consideration must be given to choosing an appropriate environment for the de-

sired target genes; for instance, a rumen sample from a grass-fed cow may be ideal for

generating a metagenomic library that is enriched with genes encoding enzymes for cel-

lulose degradation [108]. Second, an appropriate vector must be selected for the library

backbone, and the choice depends on various factors, such as whether a small-insert

or large-insert library is desired, and in the former case, whether expression vectors

would be advantageous to help drive gene expression in E. coli [141]. Third, surrogate

host(s) other than E. coli may be considered, for either an attempt to increase the hit

rate [302,312] or for the complementation of specific phenotypes [320]. Alternative ex-

pression hosts that have been used include Agrobacterium tumefaciens, Caulobacter vib-

rioides, Rhizobium leguminosarum, Ralstonia metallidurans, Pseudomonas fluorescens,

Pseudomonas putida, Xanthomonas campestris, Burkholderia graminis, Sinorhizobium

meliloti, and Bacillus subtilis [1, 50, 186,254,302,308,312].

Finally, other logistics in the screening strategy have to be considered, such as

whether to pool clones for screening or to instead keep clones arrayed and carry out indi-

vidual clone screening; in the latter case, the achievable throughput must be very care-

fully considered because, depending on the particular screen, clone-by-clone screening

may not be a feasible strategy, although the design of automated microfluidic screening

strategies is an exciting area of development [47, 313]. There are of course limitations

and biases in this method [71], as there are with all methods. Nevertheless, functional

metagenomics is a powerful experimental strategy that can help improve our under-

standing of the mechanisms that underlie biological phenomena as well as aid in the

functional annotation of the exponentially increasing number of metagenomes.
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1.7 Thesis outline

This thesis centres on methods to aid in the determination of gene function. The

objective of this work was to advance the methods used in functional metagenomics

research, through both the analysis of existing techniques as well as the development

of new strategies and systems for functional screening. The results of this work are

presented in four data chapters, each of which concerns a specific method or system:

❼ Chapter 3 evaluates the feasibility of using a pooled method for sequencing large-

insert metagenomic clones. A set of 92 clones, isolated from various functional

screens, was sequenced using Illumina in two ways: first, experimentally as a

pool, and second, individually using barcodes. The latter was done to generate

reference data for evaluation of the former pooled strategy. The results from

pooled sequencing were analyzed for their accuracy and completeness to determine

whether such a strategy was worthwhile.

❼ Chapter 4 explores the sequence bias of a human gut metagenomic library, par-

ticularly the point at which bias is introduced during the cloning process. The

metagenomic DNA was sampled and sequenced at three points during library

construction, and the sequence data were analyzed for bias and potential causes.

❼ Chapter 5 describes the development of B. theta as a host for screening of

metagenomic libraries constructed from gut-derived DNA. A species from the

Bacteroidetes phylum was chosen to help combat the likely barrier to transcrip-

tion that may limit hit rates when screening gut metagenomic libraries in E. coli ,

as well as to open the door to new possibilities of phenotypes that can be com-

plemented. This chapter describes the modification of vectors for use in B. theta;

the generation of B. theta-compatible clone libraries, including genomic as well
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as metagenomic libraries; and, importantly, the successful proof-of-principle func-

tional complementation of a B. theta polysaccharide degradation mutant using a

human gut metagenomic library.

❼ Chapter 6 concerns the transcriptional terminators that were designed into the

B. theta-compatible vector that was constructed for Chapter 5. This chapter pro-

vides the rationale for including the terminators; describes the design, synthesis,

and cloning of the fragment carrying the terminators; and presents the results of

testing the functionality of the terminators.

Though each data chapter above concerns a distinct topic, all are explorations of

various aspects of the function-based approach. Together, the work described in this

thesis furthers knowledge of the methods and techniques currently used in functional

metagenomics as well as those that may potentially be used in the future of this field.
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General materials and methods
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2.2 Strains, plasmids, and oligonucleotides

2.2.1 Bacterial strains

All E. coli and Bacteroides strains used in this study are summarized in Table 2.1.

Genotypes and descriptions as well as literature references where applicable are pro-

vided for each strain. All strains can be found in the Charles Lab main frozen culture

collection. B. theta strains were archived as 25% glycerol stocks and E. coli strains

were archived as either 25% glycerol or 7% DMSO stocks.

2.2.2 Plasmids

All plasmids used in this study are summarized in Table 2.2. Descriptions and literature

references where applicable are provided for each plasmid. All plasmids can be found

in the Charles Lab E. coli frozen culture collection.

2.2.3 Oligonucleotide sequences

All oligonucleotides used in this study are summarized in Table 2.3. Descriptions and

DNA sequences are provided for each. Oligos were synthesized by either Integrated

DNA Technologies, Inc. or Bio Basic Inc. Lyophilized DNA was dissolved to a concen-

tration of 100 ➭M and stored at -20❽.
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Table 2.1: Bacterial strains used in this study.

Strain Genotype or description Ref./Source

E. coli DH5α F- supE44 ∆lacU169 hsdR17 recA1 endA1 gyrA96

(NxR) thi-1 relA1 (Φ80lacZ ∆M15)

[21]

E. coli EPI300 F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80dlacZ

∆M15 ∆lacX74 recA1 endA1 araD139 ∆(ara,

leu)7697 galU galK λ- rpsL (SmR) nupG trfA dhfr

Epicentre

E. coli HB101 F- mcrB mrr hsdS20 (rB- mB-) recA13 leuB6

ara-14 proA2 lacY1 galK2 xyl-5 mtl-1 rpsL20

(SmR) glnV44 λ-

[25]

E. coli S17-1 F- recA thi pro hsdR rspL (SmR)

RP4-2-Tc::Mu-aphA::Tn7 (KmS)

[88, 271]

E. coli S17-1 λ-pir λ lysogen of S17-1, providing pir protein required

for plasmids with R6K origin of replication

[271]

B. fragilis NCTC 9343 Bacteroides fragilis type strain; same as ATCC

25285

[126]

B. theta VPI-5482 Bacteroides thetaiotaomicron type strain; same as

ATCC 29148

[339]

B. theta BtUW24 VPI-5482 carrying deletion of tdk (BT 2275) [159]

B. theta BtUW25 BtUW24 carrying deletion of anSME (BT 0238);

anSME is also known as chuR

[17]

B. theta BtUW1 VPI-5482 thrC ::pKNOCK-bla-tetQ ; threonine

single recombinant auxotroph in BT 2401

This study

B. theta BtUW2 VPI-5482 trpD ::pKNOCK-bla-tetQ ; tryptophan

single recombinant auxotroph in BT 0530

This study

B. theta BtUW3 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR1

This study

B. theta BtUW4 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR2

This study

Continued on next page
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Table 2.1 – Continued from previous page

Strain Genotype/description Ref./Source

B. theta BtUW5 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR3

This study

B. theta BtUW6 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR4

This study

B. theta BtUW7 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR5

This study

B. theta BtUW8 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR6

This study

B. theta BtUW9 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR7

This study

B. theta BtUW10 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR8

This study

B. theta BtUW11 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR9

This study

B. theta BtUW12 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR10

This study

B. theta BtUW13 BtUW25 carrying presumably integrated clone

from BT3 genomic library designated chuR11

This study

B. theta BtUW14 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR1

This study

B. theta BtUW15 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR2

This study

B. theta BtUW16 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR3

This study

Continued on next page
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Table 2.1 – Continued from previous page

Strain Genotype/description Ref./Source

B. theta BtUW17 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR4

This study

B. theta BtUW18 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR5

This study

B. theta BtUW19 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR6

This study

B. theta BtUW20 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR8

This study

B. theta BtUW21 BtUW25 carrying presumably integrated clone

from CLGM3 metagenomic library designated

chuR9

This study

B. theta BtUW22 BtUW25 carrying presumably integrated clone

5B2 from arrayed CLGM3 metagenomic library;

EPI300 clone from Plate 5 Row B, Well 2

This study

B. theta BtUW23 BtUW25 carrying presumably integrated clone

5B9 from arrayed CLGM3 metagenomic library;

EPI300 clone from Plate 5 Row B, Well 9

This study
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Table 2.2: Plasmids used in this study.

Plasmid Description Ref.

R751 Mobilizer plasmid used for triparental matings; TpR [137,212]

pRK2013 Mobilizer plasmid used for triparental matings; ColEI origin and

KmR (NmR)

[124]

pRK600 Derivative of pRK2013; KmR::Tn9; CmR [89]

pHC79 Cosmid vector derived from pBR322 [127]

pJC8 Cosmid vector with RK2 origin of replication; Genbank accession

KC149513

[43]

pAFD1 E. coli -Bacteroides shuttle vector with pUC origin of replication;

received from Nadja Shoemaker

[249]

pKNOCK-

bla-tetQ

B. theta suicide vector with E. coli R6K ori ; ApR in E. coli ; TcR

in B. theta

[200]

pJET1.2 Vector for blunt end PCR product cloning kit (Thermo Fisher

K1231); Genbank accession EF694056

[194]

pCC1FOS Copy-number inducible fosmid vector; Genbank accession

EU140751

Epicentre

pKL1 pAFD1 with cos sequence cloned in the BamHI site using BglII

fragment from pHC79; see Figure 5.8

This study

pKL2 pKL1 with polylinker between the EcoR1 and KpnI sites

(EcoR1-NotI-Eco72I-NdeI-KpnI linker); see Figure 5.8

This study

pKL3 pKL2 with gentamicin resistance stuffer cloned as Eco72I

fragment from pJC8; see Figure 5.8

This study

pKL4 pCC1FOS with gentamicin resistance stuffer cloned as Eco72I

fragment from pJC8; see Figure 5.12

This study

pKL5 pKL4 with RK2 oriT from pJC8 cloned in the HindIII site; see

Figure 5.12

This study

pKL6 pKL5 with ermF -repA fragment from pKL8 cloned in the EcoRI

site; see Figure 5.12

This study

Continued on next page
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Table 2.2 – Continued from previous page

Plasmid Description Ref.

pKL7 pKL6 with removal of the Eco72I stuffer carrying the gentamicin

resistance gene; see Figure 5.12

This study

pKL8 pJET1.2 with ermF -repA PCR product amplfied from pAFD1 This study

pKL9 pJET1.2 with synthesized transcriptional terminator (TT)

fragment; sequence verified

This study

pKL10A pKL7 with TT fragment blunt-end cloned in the Eco72I site of

pKL7; note that this clone has deletion of a single base A from

ilvGEDA terminator sequence; see Figure 6.5

This study

pKL10B pKL7 with TT fragment blunt-end cloned in the Eco72I site of

pKL7, in reverse orientation to pKL10A; note that this clone has

deletion of a single base A from ilvGEDA terminator sequence

This study

pKL11 pKL10 with the Eco72I stuffer removed; note that this plasmid

was constructed prior to determining that pKL10A had a deletion

of a single base A from the ilvGEDA terminator sequence

This study

pKL13 pKL7 with TT fragment blunt-end cloned in the Eco72I site of

pKL7; see Figure 5.12

This study

pKL14 pKL13 with removal of the Eco72I stuffer carrying Ptac and

gentamicin resistance gene; see Figure 6.9

This study

pKL15 pKL13 with GFPuv cloned in as PacI-SgsI fragment; see

Figure 6.7

This study

pKL16 pKL15 with removal of the PacI-NheI fragment containing the

transcriptional terminator (ilvGEDA TT) by double digestion,

blunting, and ligating; see Figure 6.7

This study

pKL17 pKL13 with flipped Eco72I stuffer, so that Ptac driving

transcription in the opposite orientation to pKL13; see Figure 6.7

This study

pKL18 pKL17 with GFPuv cloned in as CpoI-SfaAI fragment; see

Figure 6.7

This study

Continued on next page
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Table 2.2 – Continued from previous page

Plasmid Description Ref.

pKL19 pKL18 with removal of the NsiI-CpoI fragment containing the

transcriptional terminator (rnpB T1 TT) by double digestion,

blunting, and ligating; see Figure 6.7

This study

pKL20 pKL14 with gentamicin resistance stuffer cloned as Eco72I

fragment from pJC8; see Figure 6.9

This study

pKL21 pKNOCK-bla-tetQ with ∼600 bp thrC fragment (BT 2401)

cloned as SalI-KpnI fragment; see Figure 5.15A

This study

pKL22 pKNOCK-bla-tetQ with ∼350 bp trpD fragment (BT 0530)

cloned as SalI-KpnI fragment; see Figure 5.15A

This study

BT2 random clone from BT1 genomic library; see Table 3.7 This study

BF4 random clone from BF1 genomic library; see Table 3.7 This study

PO3 random clone from CLGM1 metagenomic library; see Table 3.7 This study

CLGM3

5B2

chuR complementing clone from CLGM3 metagenomic library This study

CLGM3

5B9

chuR complementing clone from CLGM3 metagenomic library This study
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Table 2.3: Oligonucleotides used in this study.

Oligo Description Sequence (5’ to 3’)

KL10 Oligo 1 to generate EcoRI-NotI-Eco72I-NdeI-KpnI

polylinker

AATTCGCGGCCGCCACGTGCA

TATGGGTAC

KL11 Oligo 2 to generate EcoRI-NotI-Eco72I-NdeI-KpnI

polylinker

CCATATGCACGTGGCGGCCGC

G

KL12 F primer to amplify ∼800 bp containing RK2 oriT

from pJC8, with HindIII adaptor

CCT AAGCTT TCGGTCTTGC

CTTGCTCGTCGG

KL13 R primer to amplify ∼800 bp containing RK2 oriT

from pJC8, with HindIII adaptor

CCT AAGCTT GCGCTTTTCC

GCTGCATAACCC

KL14 F to amplify ∼4 kb containing ermF -IS4351-ori-repA

from pAFD1, with EcoR1 adaptor

CCT GAATTC ACTTTTGTGC

AATGTTGAAGATTAGTAATTC

TATTC

KL15 R to amplify ∼4 kb containing ermF -IS4351-ori-repA

from pAFD1, with EcoR1 adaptor

CCT GAATTC ATAACAGCCG

GTGACAGCCGGC

KL16 Primer walking round #2 of ermF -IS4351-ori-repA

fragment (#1 used KL14)

GTTCAACCAAAGCTGTGTCGT

TTTCAATAGC

KL33 Primer walking round #3 of ermF -IS4351-ori-repA

fragment

CAGGTATGCCAAACGTGGTTC

TAAAAATGC

KL42 Primer walking ermF -IS4351-ori-repA fragment;

check second A of round #2 results

GGAACTGCAAAATTCCTAAAA

TCACAACC

KL43 Primer walking round #4 of ermF -IS4351-ori-repA

fragment

CAAGCCCGTCAGGGCGCGTCA

GCGGGTGTTGG

KL44 Check orientation of 778 bp oriT in B. theta

compatible pCC1FOS derivatives

GGATCCTCTAGAGTCGACCTG

CAGGCATGC

KL45 Primer walking round #5 of ermF -IS4351-ori-repA

fragment

AACAGACAAAGCCGTTTATAA

AGGACTTGC

KL46 Primer walking round #6 of ermF -IS4351-ori-repA

fragment

GTCAGCAACAAAGGTAGTACT

TTATTATCG

Continued on next page
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Table 2.3 – Continued from previous page

Oligo Description Sequence (5’ to 3’)

KL47 F primer for GFPuv ORF +50 base upstream, with

PacI adapter

CCT TTAATTAA TGCATGCC

TGCAGGTCGACTCTAGAGGAT

CCCC

KL48 R primer for GFPuv ORF +100 base downstream,

with SgsI adapter

CCT GGCGCGCC CGCGCGAG

ACGAAAGGGCCCGTACGGCCG

KL49 F primer for GFPuv ORF +50 base upstream, with

CpoI adapter

CCT CGGACCG TGCATGCCT

GCAGGTCGACTCTAGAGGATC

CCC

KL50 R primer for GFPuv ORF +100 base downstream,

with SfaAI adapter

CTCCT GCGATCGC CGCGCG

AGACGAAAGGGCCCGTACGGC

CG

KL51 Sequence TT fragment primer 1 GGCAAATTGGCGATGGAGCCG

ACTTTTAGC

KL52 Sequence TT fragment primer 2 TATTTGCAGTACCAGCGTACG

GCCCACAG

KL53 Sequence TT fragment primer 3 ATCCTGCCACGTCGCCCGTTA

CACCGGACC

KL54 Sequence TT fragment primer 4 TCAGAAGGAAGGTCCAGTCGG

TCATGCCTTTGC

KL55 Sequence TT fragment primer 5 (for pKL10A) AATCTTCAACATTGCACAAAA

GTGAATTCG

KL56 Sequence TT fragment primer 6 (for pKL10A) GATAACAATTTCACACCCTAA

GGCACGTGG

KL57 Sequence TT fragment primer 7 (for pKL10B) ATTGCACTCCACCGCTGATGA

CATCAGTCG

KL58 Sequence TT fragment primer 8 (for pKL10B) AAATCCTGTATATCGTGCGAA

AAAGGATGG

KL59 Sequence TT fragment primer 9 (for pKL9B) CATTCGTATTGCACGACATTG

CACTCCACC

Continued on next page

34



CHAPTER 2. GENERAL MATERIALS AND METHODS

Table 2.3 – Continued from previous page

Oligo Description Sequence (5’ to 3’)

KL60 Sequence TT fragment primer 10 (for pKL9B) CCTACAACGGTTCCTGATGAG

GTGGTTAGC

KL61 F primer for B. theta chuR ORF (BT 0238) ATGAAAGCAACAACTTATGCA

CCTTTTGCCAAACC

KL62 R primer for B. theta chuR ORF (BT 0238) TTAATATTCTATTTTTAAACT

TCCGTCTTTTAGTGCTTTC

KL63 F primer for primer for B. theta chuR ORF

(BT 0238) 300 bp upstream

TCTCCATCCCTCAAAGTCTTC

AGATATAACATTTTTCC

KL65 R primer for primer for B. theta chuR ORF

(BT 0238) 300 bp upstream

TAACCGCAGTGATGGTTAGTC

AGGATCAAGC

KL66 Sequence chuR ORF from CLGM chuR5, toward

ORF start (nt 265 relative to B. theta sequence)

GGGCGTATTTCTTTTGCAGCT

CCATCG

KL67 Sequence chuR ORF from CLGM chuR5, toward

ORF start (nt 222 relative to B. theta sequence)

AAGCGGACGCATCAGCGTTTC

TCCACC

KL68 Sequence chuR ORF from CLGM chuR5, toward

ORF end (nt 1006 relative to B. theta sequence)

TCGGAACAATGAAATACCAAT

CACTCC

KL69 Sequence chuR ORF from CLGM chuR5, toward

ORF end (nt 1058 relative to B. theta sequence)

TCTATTTGCCTGCAACGGAGA

ATGTCC

thrCIDMF

(SalI)

F primer for amplifying B. theta ∼600-bp thrC

fragment (BT 2401) with SalI adapter, designed by

Eric Martens

GCGGTCGACGAGATTGCTTAT

CGGGTAGCC

thrCIDMR

(KpnI)

R primer for amplifying B. theta ∼600-bp trpD

fragment (BT 2401) KpnI adapter, designed by Eric

Martens

GCGGGTACCACACAAATCACG

GCATTATCGG

trpDIDMF

(SalI)

R primer for amplifying B. theta ∼350-bp trpD

fragment (BT 0530) KpnI adapter, designed by Eric

Martens

GCGGTCGACGGAAATGCGGGT

TCCGGTTG

Continued on next page
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Table 2.3 – Continued from previous page

Oligo Description Sequence (5’ to 3’)

trpDIDMR

(KpnI)

R primer for amplifying B. theta ∼350-bp trpD

fragment (BT 0530) KpnI adapter, designed by Eric

Martens

GCGGGTACCGAATGTACGTAC

CGCCAATCC

JC102 F sequencing primer for pJC8 [43] TAACAATTTCACACAGGAAAC

AGCTATGAC

JC103 R sequencing primer for pJC8 [43] GCGATTAAGTTGGGTAACGCC

AGGGTTTTC

KL-JC102 F sequencing primer for B. theta compatible fosmid;

see Figure 6.4

TAACAATTTCACACAGGAAAC

AGCTATGACG

KL-JC103 R sequencing primer for B. theta compatible fosmid;

see Figure 6.4

GCGATTAAGTTGGGTAACGCC

AGGGTTTTCG
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2.3 Bacterial culture

2.3.1 Growth media

All recipes for media and solutions are provided in Appendix A. The following sections

describe methods used for E. coli molecular biology work; for B. theta methods, see

Section 5.6 of Chapter 5. E. coli was routinely grown at 37❽ using LB, with shaking at

200 rpm. For cultures to be used for alkaline lysis-based minipreps, E. coli was grown

in either LB or TB media.

2.3.2 Antibiotics

Antiobiotics used in the culture of E. coli are summarized in Table 5.6. Concentrations

for antibiotics are denoted using the abbreviation (see Table 2.4) followed by the con-

centration as a subscript; for example ampicillin at 100 ➭g/ml would be Ap100. Note

that antibiotic concentrations were halved when used in liquid media.

Table 2.4: Antibiotic concentrations used for E. coli .

Antibiotic Abbrev. Solvent Final conc. agar

ampicillin Ap water 100 ➭g/ml

chloramphenicol Cm ethanol 10 ➭g/ml

gentamicin Gm water 25 ➭g/ml

kanamycin Km water 25 ➭g/ml

nalidixic acid NA water; add NaOH drops to dissolve 10 ➭g/ml

tetracycline Tc ethanol 10 ➭g/ml

trimethoprim Tp DMSO 400 ➭g/ml

37



CHAPTER 2. GENERAL MATERIALS AND METHODS

2.4 DNA introduction and extraction methods

2.4.1 Calcium chloride-based competent cell preparation

Competent cell preparation was based on the protocol from Sambrook and Russell [251].

The desired strain was streaked from frozen stock onto LB agar with antibiotic selection,

if possible (e.g., EPI300 was streaked onto LB Sm200). A single colony was used to

inoculate a liquid overnight culture, using the same antibiotic selection. The overnight

culture was used to inoculate liquid LB media, without antibiotics, at a volume ratio of

1:200. The culture was grown to OD600 ∼0.9 [298], as measured on a Spectronic Spec

20D spectrophotometer (warmed up for at least 15 minutes). The culture flask was

chilled on ice for ∼30 minutes to halt cell growth. All subsequent work was performed

on ice to keep the cells cold at all times.

Cells were collected by centrifugation in polyethylene centrifuge bottles at 6,000Ög

at 4❽ for 10 minutes, using a rotor/adapter that was chilled at 4❽ for several hours.

The supernatant was decanted and the cells were gently resuspended in 0.1 M CaCl2

(chilled overnight at 4❽), at a ratio of approximately 1 volume per 2-3 volumes of

overnight culture equivalent. The cells were again collected by centrifugation at 6,000Ög

at 4❽ for 10 minutes and the supernatant was decanted. The cells were then gently

resuspended in the same volume of chilled 0.1 M CaCl2 and incubated for several hours

on ice or overnight on ice at 4❽. Cells were again pelleted at 6,000Ög at 4❽ for 10

minutes, using a rotor/adapter that had been chilled at 4❽. The supernatant was de-

canted, the bottle was pop-spun, and all remaining supernatant was carefully removed.

Cells were gently resuspended using 0.1 M CaCl2 15% glycerol (v/v; chilled overnight

at 4❽) in a volume equal to 1.5% of the original culture volume. Cells were frozen at

-80❽ in 0.2 or 1 ml aliquots.
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2.4.2 Calcium chloride-based transformation

Calcium chloride-based transformation was based on the protocol from Sambrook and

Russell [251]. Cells were thawed from -80❽ on ice, with periodic gentle flicking of the

tube. DNA was mixed with cells in a microfuge tube, not exceeding a volume ratio

of 1:10. The mixture was incubated on ice for 30 minutes, then heat-shocked at 42❽

for 90 seconds, followed by immediate transfer to ice for 1-2 minutes. 1 ml of LB was

added, and cells were allowed to recover at 37❽ for 1 hour without shaking. Cells

were pelleted by centrifugation at 8,000-13,000Ög for 1 minute. The supernatant was

decanted, leaving ∼100 ➭l to resuspend the cells for spreading onto selective agar plates.

2.4.3 Plasmid DNA miniprep

Home-made kit for routine plasmid preps

This protocol and the recipes for the solutions used in this protocol were obtained

from the OpenWetWare version of the commercial Qiagen QIAprep Spin Miniprep Kit.

Please see Section A.7 for the solution recipes.

Overnight cultures of E. coli were prepared using 3-5 ml LB or 2-3 ml TB with

the appropriate antibiotics and supplementation. 2-5 ml of culture was pelleted in a

2-ml microfuge tube, and resuspended in 250 ➭l of Solution P1. 250 ➭l of the alkaline

Solution P2 was added, and the tube was inverted ∼10 times to lyse the cells. 250 ➭l of

Solution N3 was added and the tube was inverted ∼10 times to neutralize the mixture.

Cell debris was pelleted by centrifugation at 21,000Ög for 5-7 minutes. The super-

natant containing the plasmid DNA was transferred to a silica spin column (BioBasic

SD5005), the column was pop spun for ∼5 seconds at 13,000Ög, and the flow-through

was discarded. If the strain carrying the plasmid was not an endA1 mutant, then
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500 ➭l of PB wash solution was pop spun through the column to remove contaminat-

ing nucleases, and the flow-through was discarded. The column was then washed at

least 2 times with 500-750 ➭l of PE wash solution by pop spinning and discarding the

flow-through. As much ethanol wash as possible was removed by gentle tapping of the

tube containing the flow-through onto a paper towel, and the column was spun for 2

minutes at 13,000Ög. The spin column was transferred to a new microfuge tube, and

50 ➭l of T10E0.1 (pH 8.5) was added to the column. DNA was eluted by centrifuga-

tion at 10,000Ög for 30 seconds. Miniprepped plasmid DNA was quantified using the

Nanodrop ND-1000 Spectrophotometer.

Commercial kits for DNA sequencing

For samples intended for DNA sequencing, plasmid DNA was prepared using commer-

cial miniprep kits according to the manufacturer’s recommendations. Kits used were

the EZ-10 Spin Column Plasmid DNA Mini-preps Kit (BioBasic BS614), the GeneJET

Plasmid Miniprep Kit (Thermo-Fisher K0502), or the QIAprep spin miniprep kit (Qi-

agen 27106). Miniprepped plasmid DNA was quantified using the Nanodrop ND-1000

Spectrophotometer.

2.4.4 Plasmid DNA maxiprep

Large-scale preparations of plasmid DNA were based on the protocol from Charles,

1990 [35]; see Appendix A.9 for the solution recipes. All centrifugation steps were

carried out at room temperature.

The desired strain were streaked from frozen stock onto LB agar with the appro-

priate antibiotics. A single colony was used to inoculate 5 ml liquid overnight culture,

using the same antibiotic selection. The 5-ml overnight was then used to seed an
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overnight 1 L culture, using the same antibiotic selection. The following day, the cells

were pelleted by centrifuging at 7,000Ög for 10 minutes, such that there were two cell

pellets with the equivalent of 500 ml of culture each. Each pellet was resuspended in

10 ml TEG and pooled for 20 ml.

The cells were then lysed by the addition of 40 ml ALS followed by inversion

∼10 times. The mixture was neutralized with 30 ml HSS followed by inversion ∼10

times, and cooled at -70❽ for 20-30 minutes. The debris was pelleted by centrifuging

at 10,000Ög for 10-15 minutes, and the solution was decanted through cheesecloth into

a fresh 250-ml centrifuge bottle. 90 ml of isopropanol was added to the solution to

precipitate the DNA, followed by by centrifuging at 10,000Ög for 10 minutes. The

supernatant was discarded and the bottle was inverted on a paper towel to dry the

pellet. The pellet was resuspended in 8 ml TE and the mixture was transferred to

40-ml centrifuge tube. 4 ml of 7.5 M NH4Ac was added and mixed, and proteins were

allowed to precipitate on ice for 15-30 minutes. Protein was pelleted by centrifuging at

10,000 Ö g for 10-15 minutes and the supernatant was transferred to a new tube. 12 ml

isopropanol was added to the solution to precipitate the DNA, followed by centrifuging

at 10,000Ög for 10-15 minutes. The supernatant was discarded and the bottle was

inverted on a paper towel to dry the pellet.

The pellet was resuspended in 800 ➭l TE and transferred to two microcentrifuge

tubes, with 400 ➭l per tube. To each tube, 4 ➭l of 5 M NaCl and 5 ➭l of 10 mg/ml

RNase A was added, followed by incubation at 37❽ for 30 minutes. 2.5 ➭l of 20% SDS

and and 5 ➭l of 19.2 mg/ml Proteinase K was added, followed by incubation at 37❽ for

30 minutes. The mixture was then extracted with an equal volume of phenol-chloroform

(1:1) and then extracted with an equal volume of only chloroform. To precipitate the

DNA, 25 ➭l of 5 M NaCl and 500 ➭l isopropanol were added. The precipitated DNA

was carefully removed with a pipette and dipped into 70% ethanol to wash and placed

41



CHAPTER 2. GENERAL MATERIALS AND METHODS

into a new tube, with the precipitate from both tubes being combined. The DNA

was allowed to dry, and then resuspended in 1 ml TE, and dissolved overnight at 4❽.

To quantify, the DNA was diluted 1-in-10 and 1-in-100; 25 ➭l of these dilutions was

quantified using the Nanodrop ND-1000 Spectrophotometer as well as run on a gel

to confirm the concentrations. Typically, plasmid maxipreps can be obtained with

concentrations ∼1 ➭g/➭l.

2.4.5 HMW DNA extraction from fecal samples

Prior to DNA extraction, fecal samples were pre-processed based on the method de-

scribed by Lee and Hallam [175], by placing 5 g of sample in a mortar with 1 ml of

denaturing solution (4 M guanidine isothiocyanate, 10 mM Tris-HCl [pH 8.0], 1 mM

EDTA, 0.5% beta-mercaptoethanol). The sample was frozen using liquid nitrogen,

ground with a pestle to a homogeneous powder, then transferred to a conical tube for

storage at -80➦C.

DNA was extracted from soil or feces according to the method described by Zhou

et al. [347]. Briefly, 5 g of soil or fecal sample were incubated in 13.5 ml of extrac-

tion buffer (100 mM Tris [pH 8.0], 100 mM EDTA, 100 mM sodium phosphate [pH 8.0],

1.5 M NaCl, 1% CTAB), with the addition of proteinase K (to 75 ➭g/ml), shaking at

37➦C for 30 minutes. After adding SDS (to 2% w/v in 15 ml), the sample was incu-

bated at 65➦C for 2 h with gentle inversions every 15 minutes. After centrifugation at

6,000Ög for 10 minutes at room temperature, the supernatant was collected, extracted

with chloroform:isoamyl alcohol (24:1), and DNA was precipitated with 0.6 volumes

of isopropanol at room temperature for 1 h. DNA was collected by centrifugation at

6,000Ö g for 20 minutes at room temperature, followed by a 70% ethanol wash. The

DNA pellet was suspended overnight at 4➦C in 0.5-3 ml of TE buffer (10 mM Tris-HCl
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[pH 8.0] and 0.1 mM EDTA [pH 8.0]). The DNA was quantified by gel electrophoresis,

using bacteriophage λ DNA as a standard (see Section 2.5.8).

2.4.6 HMW DNA extraction from pure cultures

DNA was isolated from liquid bacterial cultures based on a method described by Charles

and Nester [36]. Briefly, cells were cultured in 50 ml of liquid media, and the cell pellets

were recovered after centrifugation at 7000Ög for 5 minutes at room temperature. Cells

were washed with 8 ml of wash buffer (10 mM Tris [pH 8.0], 25 mM EDTA [pH 8.0],

150 mM NaCl), and resuspended in 4 ml of buffer (10 mM Tris [pH 8.0], 25 mM EDTA).

The following were added, to a final volume of 5 ml: NaCl (to 0.5 M), proteinase K

(to 0.5 mg/ml), and lysozyme (to 2.5 mg/ml). After incubation at 37➦C for 30 minutes

with shaking, 250 ➭l of 20% SDS were added, the mixture was incubated at 65➦C for

60 minutes, then centrifuged at 6,000Ög for 10 minutes at room temperature. The

supernatant was collected, and protein was precipitated with 0.5 volumes of 7.5 M

ammonium acetate on ice for 20 minutes. The mixture was centrifuged at 10,000Ög for

15 minutes, the supernatant was collected and centrifuged at 8,500Ög for 10 minutes

to further clear the supernatant. The supernatant was decanted and the mixtured was

extracted with chloroform in a 1:1 volume. The supernatant was collected and DNA

was precipitated with 1 volume of isopropanol at room temperature for 30 minutes.

DNA was spooled out, dipped in a 70% ethanol wash, and placed in a microfuge tube.

The tube was centrifuged at 15,000Ög for 1 minute, the supernatant was removed, and

the pellet was allowed to dry. Finally, the pellet was allowed to dissolve in 2 ml of TE

overnight at 4➦C. The DNA was quantified by gel electrophoresis, using bacteriophage

λ DNA as a standard (see Section 2.5.8).
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2.5 DNA manipulation methods

2.5.1 Gel electrophoresis

Routine gel electrophoresis was carried out using TAE buffer; see Appendix A.6 for

the 50Ö TAE stock recipe. The stock was diluted to 1Ö in 20-L working volumes and

stored at room temperature for use. A concentration of 0.8% or 0.85% agarose was

used to visualize bands greater than 10-20 kb, including genomic DNA preparations;

1.0% agarose was used for fragments ranging between 500 and 10,000 bp; and on the

rare occasion, 2% agarose was used to visualize small bands, typically less than a

few hundred basepairs. Gels were typically run using 5 V/cm. Commercial molecular

ladders were used for size estimation: 25-50 ng of either the λ-HindIII Ladder or the

1-kb DNA Ladder (Thermo-Fisher FERSM0101 and FERSM0311, respectively). For

visualization on the UV transilluminator, Gel Red stain was used; contrary to the

manufacturer’s recommendations, the stain was diluted 50,000Ö rather than 10,000Ö.

2.5.2 Ethanol precipitation

Ethanol precipitation was used to concentrate DNA or to change the buffer in which

the DNA was dissolved. Ions were added in the form of either 1/10 volume of 3 M

sodium acetate (pH 5.2), 1/50 volume of 5 M sodium chloride, or 1/2 volume of 7.5 M

ammonium acetate. The solution was mixed, and alcohol was added in the form of

either 3 volumes of ethanol or 1 volume of isopropanol. DNA was chilled either on

ice or at -20❽ for 10-60 minutes, and centrifuged at 21,000Ög for 10-30 minutes. The

superntant was removed, the tube was pop spun, and the remaining supernatant was

carefully removed. 100 ➭l of 70% ethanol was washed over the pellet and immediately

removed. The pellet was allowed to dry with the tube inverted on a Kim Wipe for a
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few minutes until the edges of the pellet began to become translucent. The DNA was

dissolved in a small volume of TE buffer, typically 10-20 ➭l.

2.5.3 Gel extraction

This protocol is based on the Qiagen QIAquick Gel Extraction Kit, using a home-made

binding buffer recipe [149]. Please see Appendix A.8 for the solution recipes.

The sample of DNA was run on an 1Ö TAE agarose gel, using the appropriate

agarose concentration and 1 mM guanosine [111]. The desired fragment was excised,

placed in a microfuge tube and weighed on an analytical balance. Binding buffer was

added to the fragment, using 3 or 4 ➭l per mg of gel; for example, 300-400 ➭l for a 100-

mg gel fragment. The gel was dissolved by incubating at 65❽ with frequent inverting

and vortexing. After dissolution, the mixture was transferred to a silica spin column

(BioBasic SD5005), the column was pop spun for ∼5 seconds at 13,000Ög, and the

flow-through was discarded. The column was then washed at least 2 times with 500 to

750 ➭l of PE wash solution by pop spinning and discarding the flow-through. As much

ethanol wash as possible was removed by gentle tapping of the tube containing the flow-

through onto a paper towel, and the column was spun for 2 minutes at 13,000Ög. The

spin column was transferred to a new microfuge tube, and 30-50 ➭l of T10E0.1 (pH 8.5)

was added to the column. DNA was eluted by centrifugation at 10,000Ög for 30 seconds.

Extracted DNA was quantified using the Nanodrop ND-1000 Spectrophotometer.

2.5.4 Restriction enzyme digestion

Routine restriction enzyme digestion was carried out using the FastDigest line of en-

zymes from Thermo-Fisher Scientific, using the FastDigest universal Green Buffer with

loading dye included. Digestion conditions were generally modified from the manufac-
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turer’s recommendations, herein described. Restriction digestion was either carried out

on a larger scale to prepare DNA for cloning (Table 2.5) or on a smaller scale to confirm

the results of cloning (Table 2.6). Enzyme volumes were not allowed to exceed 10%

of the total reaction volume. Digests were either used directly for cloning after heat

inactivation, or were purified by silica column using the protocol for gel extraction (see

Section 2.5.3) with a 3-4:1 volume ratio of binding buffer to digest.

Table 2.5: General digestion recipe for cloning purposes.

DNA ∼1-3 ➭g

FastDigest enzyme (1U/➭ l) 1-3 ➭l

10Ö FastDigest Green Buffer 3-6 ➭l

sterile dH2O top up

Total 30-60 ➭l

Table 2.6: General digestion recipe for diagnostic purposes.

DNA ∼50-100 ng

FastDigest enzyme (1U/➭ l) 0.5 ➭l

10Ö FastDigest Green Buffer 1 ➭l

sterile dH2O top up

Total 10 ➭l
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2.5.5 Ligation

Routine ligations were carried out in 10-15 ➭l volumes, using T4 DNA Ligase (Thermo-

Fisher L0014) or Fast-Link DNA Ligase (Epicentre LK0750H) according to the manu-

facturer’s recommendations. Sticky-end ligations were incubated for 1-3 hours at room

temperature whereas blunt-end ligations were incubated overnight either at 16❽ or

room temperature.

2.5.6 Estimation of digestion and dephosphorylation efficiency

The following outlines how to estimate the digestion and dephosphorylation efficiency

for a large-scale preparation of vector for library construction. It is recommended

that this be performed after purification of the backbone from the stuffer (by either

gel extraction or electroelution) to test the integrity of the DNA for ligation, that is,

ensuring that the ends of the DNA are ligatable.

First, the large-scale digestion and dephosphorylation was set up as in Table 2.7,

using non-FastDigest Eco72I and FastAP (Themo-Fisher R0361 and F0651, respec-

tively). The reaction was incubated for 3.5 hours at 37❽, heat-inactivated for 30

minutes at 80❽, and stored at -20❽.

Table 2.7: Recipe for large-scale digest and desphosphorylation.

vector DNA 100 ➭g

10Ö Tango Buffer 100 ➭l

Eco72I 30 ➭l

FastAP 30 ➭l

sterile dH2O top up

Total 1000 ➭l
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After digestion and dephosphorylation, the mixture was assessed for cutting and

dephosphorylation efficiency; reactions were set up as summarized in Table 2.8 using

T4 polynucleotide kinase (Thermo-Fisher EF0651) and typically reactions were set up

in duplicate. Reactions were incubated for 45 minutes at room temperature (not 37❽

specifically), followed by addition of 0.25 ➭l Fast-Link ligase (Epicentre LK0750H), and

overnight incubation at 16❽. The mixtures were then used to transform home-made

EPI300 competent cells.

Table 2.8: Recipes for assessment of digestion and dephosphorylation efficiency

−PNK + ligase +PNK − ligase +PNK + ligase

DNA, dig. and dephos. 1 1 1

10Ö FL biffer 1 1 1

ATP, 10 mM 0.5 0.5 0.5

T4 PNK 0 0.5 0.5

H2O 7.5 7 7

Total 10 ➭l 10 ➭l 10 ➭l

No. transformants x y z

After transformation, colonies were counted (Table 2.8) and the efficiency of diges-

tion and dephosphorylation were estimated using the two equations below. Typically,

digestion efficiency was 97% and desphosphorylation efficiency was 99%.

% of vector DNA that is cut =
(

1 −
y

z

)

× 100

% of cut vector that is desphosphorylated =
(

1 −
x− y

z

)

× 100
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2.5.7 Sanger DNA sequencing

For routine Sanger sequencing, samples were typically submitted to The Centre for

Applied Genomics (Toronto) or BioBasic Inc. (Markham).

2.5.8 Gel quantification of genomic and metagenomic DNA

Both genomic and metagenomic DNA were quantified by agarose gel electrophoresis

against a dilution series of commercial λ DNA (Thermo-Fisher FERSD0011; 300 ng/➭ l).

For high-molecular-weight DNA species that may form a somewhat heterogeneous mix-

ture, the Nanodrop ND-1000 Spectrophotometer may not be as inaccurate as quantifi-

cation on an agarose gel.

A series of λ DNA dilutions was prepared to use as standards: 0, 5, 10, 25, 50, 75,

and 100 ng. The standards were run on a 0.8% or 0.85% agarose gel pre-strained with

Gel Red (Section 2.5.8), along with varying volumes of the sample(s) to be quantified,

e.g., 0.1 and 0.9 ➭l (Figure 2.1A). Using the free software ImageJ [257], pixel intensity

was quantified for the standards and samples (Figure 2.1B). A line of best fit was

generated for the data points from the λ DNA standard, which was then used to

estimate the concentration of DNA for the experimental sample(s) (Figure 2.1C).
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Figure 2.1: Gel quantification of high-molecular-weight DNA samples using λ DNA
dilution standards. (A) Samples of unknown concentration are run on a gel against the λ standard.
(B) ImageJ used to quantify pixel intensity in the selected lanes. (C) Pixel intensity for the λ standard
is plotted and a line of best fit is generated.
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2.5.9 Pulsed field gel electrophoresis

Pulsed-field gel electrophoresis was used to visualize/separate high-molecular-weight

DNA fragments. The following section describes the protocol and parameters for elec-

trophoresis as well as the preparation of λ DNA-based ladders.

Pulsed-field gel electrophoresis using Bio-Rad CHEF MAPPER

Gels were prepared using pulsed-field certified agarose (Bio-Rad 1620137) at 1% agarose

in 100 ml 1Ö TAE buffer. The gel rig was filled with 1Ö TAE, the parameters on the

Bio-Rad CHEF Mapper were set (Table 2.9), and the buffer was circulated to cool to

14❽. The cooling was stopped, the circulation was paused, the gel was was placed in

the rig, and samples were loaded; DNA extracts were either run for diagnostics (500 ng)

or for size-selection by excision (30 ➭g). The circulation was resumed followed by the

cooling, and the run was allowed to proceed overnight (Table 2.9).

The next day, the gel was post-stained. For diagnostic gels, post-staining was

done in 200 ml of 1Ö TAE buffer supplemented with 20-25 ➭l of Gel Red stain diluted

1-in-5 in dH2O, shaking gently at room temperature for 1-2 hours; the gel was then

rinsed in buffer, destained in 200 ml of buffer for 15-60 minutes, and visualized on a

UV transilluminator. For excision gels, only the edges of the gel were stained and the

fragment was excised without exposure to either Gel Red stain or UV/blue light (see

Figure 2.2).
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Table 2.9: Settings for pulsed-field gel electrophoresis on Bio-Rad CHEF Mapper.

Parameter Diagnostic gel Excision gel

input DNA range 10-100 kb 10-100 kb

calibration factor 1.0 1.0

buffer 0.5Ö TBE✯ 0.5Ö TBE✯

temperature 14❽ 14❽

agarose 1% 1%

voltage 6 V/cm 5 V/cm

pulse 1-10 s 0.5-8.5 s

ramping factor linear linear

runtime 16 h 14 h

Preparation of λ DNA molecular markers for pulsed-field electrophoresis

Commercial λ DNA (Thermo-Fisher FERSD0011; 300 ng/➭ l) was used to prepare

home-made molecular weight markers for use in pulsed-field gel electrophoresis. The

size of the λ genome is 48.5 kb. λ DNA was self-ligated using T4 DNA ligase (Thermo-

Fisher FEREL0014) to generate concatemers appropriate for assessing the size range

of crude DNA extracts: ∼50 kb, ∼100 kb, ∼150 kb, etc. The recipe for the self-ligation

reaction is provided in Table 2.10. To generate a marker at ∼25 kb, λ DNA was digested

with XbaI, which halves the 48.5-kb genome. The recipe for the digestion reaction is

provided in Table 2.11.

✯setting used although buffer was 1Ö TAE
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The ligation and digestion mixtures were used to make a combined working ladder.

λ-ligated and λ-XbaI were diluted to 5 ng/➭l and 2.5 ng/➭l, respectively, with loading

dye added. For electrophoresis, 75-100 ng of the combined ladder was used; Figure 2.2

depicts the use of this combined ladder as a guide to excise a gel fragment, particularly

in comparison with a commercial ladder whose largest marker is 40 kb (Invitrogen

10511-012).

Table 2.10: Ligation recipe for self-ligated λ DNA.

λ DNA (300 ng/➭l) 33.3 ➭l

T4 DNA ligase 3 ➭l

10Ö T4 DNA Ligase Buffer 10 ➭l

sterile dH2O 53.7 ➭l

Total 100 ➭l (100 ng/➭l)

Table 2.11: Digestion recipe for XbaI-digested λ DNA.

λ DNA (300 ng/➭ l) 33.3 ➭l

FastDigest XbaI 10 ➭l

10Ö FastDigest Green Buffer 10 ➭l

sterile dH2O 46.7 ➭l

Total 100 ➭l (100 ng/➭l)
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Figure 2.2: Pulsed-field gel electrophoresis using home-made λ DNA mark-
ers. CM: commercial marker, 1 kb Extension Ladder (Invitrogen 10511-012); HM:
home-made λ marker, containing XbaI-digested λ and ligated λ DNA.
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2.5.10 Electroelution

Preparation of dialysis tubing

Dialysis tubing (Sigma D-9652) was cut in forearm-length segments and immersed in

2% sodium bicarbonate, 1 mM EDTA. The tubing was boiled for 10 minutes, taking

care to keep the tubing submerged. The tubing was then removed and thoroughly

rinsed with distilled water straight from the tap, using three rinses outside and three

inside. The tubing was immersed in 1 mM EDTA, boiled for another 10 minutes,

and then transferred to 1 mM EDTA, 20% ethanol. All air trapped air bubbles were

removed and the tubing was stored at 4❽ . Typically, ∼10 segments of tubing were

prepared at a time; the tubing will keep for years in the storage solution.

Electroelution

The DNA to be electroeluted was run on either a typical agarose gel (for example,

100 ➭g of digested vector DNA) or a pulsed-field agarose gel (for example, 30 ➭g of

crude extract DNA from feces), and the desired fragment was excised from the gel. The

fragment was placed inside a segment of dialysis tubing that was previously thoroughly

rinsed with distilled water and equilibrated to room temperature in 1Ö TAE. One end

of the tubing was clamped, the same buffer was used to fill the tubing, and the other

end was clamped (Figure 2.3A). The tubing was submerged in 1Ö TAE in the gel rig,

and the DNA was eluted using ∼3 V/cm for 3 hours (Figure 2.3B). The buffer inside

the tubing was then decanted into a sterile conical tube; the bag was rinsed twice

with 2-3 ml of 1Ö TAE, and that buffer also retained, for a total volume of less than

50 ml. The mixture of DNA was subsequently concentrated using a 30 kDa Amicon

centrifugal filter (Millipore UFC903024), followed by a standard ethanol precipitation

(see Section 2.5.2).
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A B

Figure 2.3: Setup of apparatus for electroelution. (A) Gel fragments containing
desired the DNA are excised and placed in dialysis tubing with buffer. (B) The fragment
is subjected to an electric field and the DNA migrates into the buffer contained in the
dialysis tubing.
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2.6 Summary of constructed libraries

Several genomic and metagenomic libraries were constructed in this study; protocols

for library construction are provided in the specific materials and methods section of

each chapter. Table 2.12 summarizes the details for each library: the library name, the

source of the DNA, the vector used, the E. coli library host used for transduction, the

approximate number of unique clones, and the estimated average insert size.

Table 2.12: Genomic and metagenomic libraries constructed in this study.

Library

name

DNA source Vector Host No.

clones

Estimated avg.

insert size

BT1 B. theta genomic DNA pJC8 HB101 8,000 27 ➧8 kb (n=17)

BF1 B. frag genomic DNA pJC8 HB101 18,000 30 ➧7 kb (n=18)

CLGM1 pooled human feces pJC8 HB101 42,000 28 ➧9 kb (n=36)

BT2 B. theta genomic DNA pKL3 HB101 15,000 nd

CLGM2 pooled human feces pKL3 HB101 65,000 nd

BT3 B. theta genomic DNA pKL13❸ EPI300 36,000 nd

CLGM3 pooled human feces pKL13❸ EPI300 115,000 26 ➧10 kb (n=19)

❸Eco72I stuffer fragment not purified from backbone prior to ligation; see Section 5.6.9
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3.2 Abstract

High-throughput sequencing methods have been instrumental in the growing field of

metagenomics, with technological improvements enabling greater throughput at de-

creased costs. Nonetheless, the economy of high-throughput sequencing cannot be

fully leveraged in the sub-discipline of functional metagenomics. In this area of re-

search, environmental DNA is typically cloned to generate large-insert libraries from

which individual clones are isolated, based on specific activities of interest. Sequence

data are required for complete characterization of such clones, but the sequencing of

a large set of clones requires individual barcode-based sample preparation; this can

become costly, as the cost of clone barcoding scales linearly with the number of clones

processed, and thus sequencing a large number of metagenomic clones often remains

cost-prohibitive.

This chapter investigates a hybrid Sanger/Illumina pooled sequencing strategy that

omits barcoding altogether, and evaluates the strategy by comparing the pooled se-

quencing results to reference sequence data obtained from traditional barcode-based

sequencing of the same set of clones. Using identity and coverage metrics, the results

show that pooled sequencing can generate high-quality sequence data, without pro-

ducing problematic chimeras. Though caveats of a pooled strategy exist and further

optimization of the method is required to improve recovery of complete clone sequences

and to avoid circumstances that generate unrecoverable clone sequences, our results

demonstrate that pooled sequencing represents an effective and low-cost alternative for

sequencing large sets of metagenomic clones.
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3.3 Introduction

With the advent of high-throughput sequencing, metagenomics has emerged as a pow-

erful way to explore DNA recovered from terrestrial, aquatic, and host-associated mi-

crobial communities. Sequence-based metagenomics involves bulk sequencing of en-

vironmental DNA and has generated a wealth of genome information from myriad

environmental samples. With this wealth of sequence data serving as a foundational

resource, the stage is set for function-based metagenomics, or functional metagenomics,

which is arguably essential for the recovery and annotation of hypothetical proteins with

as-yet-unknown functions [117,242].

3.3.1 Sanger-based sequencing of metagenomic clones

Functional metagenomics allows exploration of the densely populated microbial habi-

tats that are rich resources for the discovery of novel enzymes. Applying this approach,

the genetic material of the microbial community is extracted from an environmental

sample, and the DNA is cloned into appropriate vectors to generate metagenomic li-

braries that are maintained using E. coli as a surrogate host. These libraries may

then be subjected to function-based activity screens, either in E. coli or various other

surrogate hosts, after which positive clones are isolated for analysis.

A critical step in functional metagenomic studies is obtaining DNA sequence for

the isolated clones in order to identify the gene(s) responsible for the function(s) of

interest, particularly if the goal is to identify novel enzymes. Prior to the existence

of high-throughput sequencing, it was, and still is, common to use other methods to

identify the gene or operon carried on the insert DNA. One strategy is to Sanger-

sequence the clone to obtain a sequence fragment, by primer-walking along the insert

[86, 136, 270, 307] or first subcloning smaller fragments of the insert that carry the
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activity of interest [20,85,105,135,186,190,230,236,237,259]. A variant of this strategy

is to use transposon mutagenesis, which may be followed by screening for loss of activity

[3, 52, 73, 119, 164, 169, 254, 282, 318, 329]. Regardless of the specific strategy, multiple

steps are usually required to obtain sequence data for large-insert clones.

3.3.2 High-throughput sequencing of clones using barcodes

Although current high-throughput sequencing methods are an appropriate scale for

sequencing of microbial genomes, the throughput is typically far greater than required

for coverage of single clones. This has led to the practice of “multiplexing”, which

involves combining multiple clones for sequencing, using DNA barcodes (or indexes) to

track sequence reads from individual clones within the larger set (Figure 3.1, Barcoded

Sequencing). Examples of this strategy include the sequencing of large-insert clones

identified from screens for enzymes involved in dietary fibre catabolism [299], prebiotic

breakdown [34], and cellulosic biomass conversion [108]. Barcoded sequencing enables

sequence data recovery from many clones simultaneously, yet the cost of barcoding

every clone can be several-fold higher than the cost of the sequencing itself. This

sample preparation cost can be a bottleneck for the smaller molecular microbiology lab,

where isolating clones is relatively easy, but sequence analysis of the clones becomes

cost-prohibitive.

3.3.3 Aims of this work

Our lab investigated the possibility of circumventing the barcoding step by testing a

clone pooling and sequencing approach (Figure 3.1, Pooled Sequencing). As part of this

sequencing strategy, end sequences for every clone are generated by Sanger-sequencing;

these sequences are called “end-tags” to describe their role in the downstream sequence
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retrieval process in which we match clones to next-generation sequence data assemblies.

In a pooled method, clones are sequenced together and users rely on the post-sequencing

assembly process to generate contigs that represent individual clones. After assembly,

contigs exist in a pool; to retrieve a specific clone’s contig, the clone’s end-tags are used

to query the pool.

A set of 92 large-insert clones was chosen for this analysis; cosmid clones were iso-

lated previously by different members of the lab from various functional screens. End-

tags were obtained from Sanger sequencing each clone and, concurrently, the clones were

pooled for sequencing and assembly. Though the reduced cost of pooled sequencing is

very attractive, the data obtained could be of poorer quality; while some compromise

is of course made in a strategy that seeks economy, our lab was uncertain about the

extent of the trade-off. Therefore, to evaluate the results of the pooled sequencing

strategy, we had the same set of 92 large-insert clones sequenced using barcodes, gen-

erating sequences to which the pooled sequencing results could be compared. The aim

was not to do a comparison of the two methods to show that the pooled method is su-

perior; rather, the aim was to examine the results of the pooled sequencing approach,

using high-quality reference sequences from traditional barcoded sequencing. Although

a similar pooled clone sequencing method has recently been described by others for

metagenome-derived medium-insert plasmids [69] and large-insert fosmids [321], this

is the first report of using a pooled strategy for sequencing large-insert metagenomic

clones while also critically evaluating the performance of this pooled strategy by com-

paring the results to barcoded reference sequences of the same clones.
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Figure 3.1: Overview of the two methods used in this study for sequencing of large-insert
cosmid clones, barcoded sequencing and pooled sequencing. Traditional barcoded sequencing
(left) uses DNA barcodes to keep clones as separate samples throughout the sequencing and assembly
process. Pooled sequencing (right) involves combining clones into one sample for sequencing and
assembly, and subsequently using previously obtained Sanger “end-tags” to retrieve specific clone
sequences. [167]
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3.4 Results and discussion

3.4.1 Pooled and barcoded sequencing results

A total of 92 cosmid clones were subjected to both pooled sequencing and barcoded se-

quencing. Of the 92 large-insert cosmid clones, I excluded 19 from subsequent analyses

due to incomplete sequencing data. Of the excluded clones, 15 clones had insufficient

barcoded sequence data for successful assembly. These samples appeared to have high

contamination of E. coli genomic DNA and/or mobilizer plasmid DNA. Under my direc-

tion, Mike Hall examined the effect of contamination on clone assembly. The estimated

percent E. coli contamination in each of the 92 samples ranged from 1% to nearly 50%,

and, not surprisingly, the higher the contamination, the less likely a successful assembly

(Figure 3.2).
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Figure 3.2: Fraction of clones failing assembly, binned by estimated percent
E. coli contamination. Raw sequence data from barcoded sequencing of 92 clones
were examined for E. coli contamination. [167]
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The remaining 4 of the 19 clones repeatedly failed Sanger end sequencing re-

actions, possibly due to secondary structure associated with the insert DNA. In our

lab’s experience, it is occasionally difficult to obtain Sanger reads for certain clones,

which we speculate may be caused by such secondary structure effects. In total, 73

clones yielded sufficient data for evaluation of the pooled sequencing results, using the

barcoded sequencing results as a reference.

As a result of using different providers for the pooled and barcoded sequencing

(see Section 3.6.6 and Section 3.6.5 for details), there was unequal depth of sequencing

between the two sequencing approaches (Figure 3.3; see Table 3.3 for individual clone

depth); however, it was the barcoded strategy that had the greater depth, which was

ideal for its use as the reference data set.
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Figure 3.3: Clone sequencing read depth in barcoded sequencing versus
pooled sequencing. Values from Table 3.3 were used to compare overall read depth
for barcoded versus pooled sequencing strategies. [167]
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3.4.2 Evaluation of pooled sequencing results

Using the set of 73 clones, the accuracy and completeness of the pooled sequencing

approach was evaluated. First, contigs for each clone were retrieved from the pooled

sequencing results using that clone’s end tags (see Section 3.6.6 for details; retrieved

contigs for all clones are provided in Table 3.9). Then, for each clone, the barcoded

sequencing result (i.e., the “barcoded contig”) was the reference to which the pooled

sequencing result (i.e., the retrieved “pooled contig”) was compared. Specifically, the

retrieved pooled contig was aligned to its respective barcoded contig, using NCBI nu-

cleotide BLAST [4] running the Megablast algorithm. By aligning the pooled contig to

the barcoded contig for each clone, it was possible to quantitatively assess the pooled

sequencing approach, by obtaining values for percent identity (i.e., did pooled sequenc-

ing return the expected sequence for the clone?) and percent coverage (i.e., did pooled

sequencing return the expected length for the clone?). Katja Engel and Greg Vey

assisted me in these analyses.

Our initial reservations about a pooled sequencing strategy centred on one major

issue, which was that assembly of reads generated from a pooled sample may result in

chimeric assemblies – that is, assemblies that are derived from more than one clone.

However, when retrieved pooled contigs were aligned to barcoded contigs for each clone,

the majority of clones showed alignments of greater than 99.9% identity, with identity

values ranging from 99.4-100.0% (Figure 3.4).
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Figure 3.4: Alignment identity between pooled sequencing result and bar-
coded sequencing result. For all 73 clones, end-tags were used to retrieve contigs
from pooled sequencing results; retrieved contigs were aligned to the reference barcoded
sequencing result, and clones were binned by percent identity. [167]

Identity values showed high accuracy and little variability, indicating that the

pooled sequencing strategy is capable of generating consistently accurate sequence data.

Contrary to our concerns, the alignments showed no problems with chimeric sequences,

and that most sequences had an error rate of less than one base per thousand. Indeed,

this might be an overestimation of the error because the pooled sequencing and assembly

method may mask the presence of single nucleotide polymorphisms (discussed further

in Section 3.4.4).

The same alignments were used to determine clone coverage obtained by the

pooled method and, in contrast to identity, the sequence coverage of pooled clones

varied widely. To assess clone coverage, I first categorized the 73 clones into Clone

Types (Type A, B, C, or D) based on whether one or both end-tags were obtained,

whether the end-tags were able to retrieve a pooled contig, and whether one or two

pooled contigs were retrieved (Figure 3.5; designations for each clone are provided in

Table 3.1).
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Figure 3.5: Percent coverage of pooled sequencing result relative to barcoded sequencing
result. Each of the 73 clones was categorized into Clone Types A, B, C, or D by the number of end-
tags obtained (one or two), whether the end-tag retrieved a contig from the pool, and the completeness
of the retrieved pooled sequencing result relative to the reference barcoded sequencing result (full or
partial coverage). Clone Type descriptions are given above. [167]
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Table 3.1: Clone type classification for 73 clones. [167]

Count Clone Clone Type

1 BF4 B

2 BT2 A

3 Cel-1 B

4 Cel-32-1 B

5 Cel-3-22-2 B

6 Cel-60-1 B

7 CM-111 D

8 CM-123 A

9 CM-129 A

10 CM-130 A

11 CM-136 A

12 cm18 C

13 CM-18 A

14 CM-19 D

15 CM-2 C

16 Cm26 B

17 Cm3 D

18 Cm30 B

19 CM-31 D

20 CM-4 D

21 cm42 B

22 CM-69 C

23 CM-92 A

24 CX4s17 D

25 CX4s8 B

26 CX6-4 C

27 CX9-10 B

28 CX9s4 B

29 Km-1 C

30 lac-ec1 C

31 lac-ec104 D

32 lac111 C

33 lac121 B

34 lac-ec123 C

35 lac127 B

36 lac13 A

37 lac146 B

38 lac153 B

39 lac16 A

40 lac160 A

41 lac161 A

42 lac170 B

43 lac193 A

44 lac20 B

45 lac24B C

46 lac27B C

47 lac35B C

48 lac36W A

49 lac55 A

50 lac71 B

51 lac82 D

52 lac84 A

53 MEL125 B

54 MEL126 B

55 PO3 A

56 RCX18 B

57 RCX2 B

58 RCX24 A

59 RCX25 D

60 RCX28 B

61 RCX31 A

62 RCX32 B

63 RCX6 D

64 RCX7 D

65 RCX8 A

66 RCX9 D

67 RCX92 A

68 PCX9M1 A

69 PCX9M3 B

70 PCX9M5 B

71 Xyl 2 B

72 Xyl 3 B

73 Xyl 4 A

70



CHAPTER 3. EVALUATION OF POOLED ILLUMINA SEQUENCING FOR METAGENOMIC CLONES

Type A represents the ideal outcome, in which the two end-tags retrieved the

same contig from the pool; in this case, pooled sequencing resulted in ∼100% coverage

for the clone. Type B represents a scenario in which end-tags retrieved different contigs

due to a gap in coverage in the middle of the clone. Types C and D represent cases

in which coverage was variable and likely underestimated, given that one of the two

end-tags either failed to retrieve a contig or was simply missing, respectively. Coverage

was highly variable, ranging from 0.4-100.0% over the 73 clones analyzed (Figure 3.5;

percent coverage for all clones is provided in Table 3.2).

To determine how well the pooled sequencing strategy worked overall, I used the

same coverage data (from Figure 3.5) to bin the 73 clones by coverage (Figure 3.6B).

About one-half of the clones showed a retrieved coverage of 90-100%, with an overall

average coverage of 71%. I next asked whether the retrieved coverage was an underes-

timation of the actual coverage achieved by pooled sequencing. To obtain an estimate

of the actual coverage, it was necessary to account for unretrieved clone sequences in

the pooled sequencing results, which would have occurred due to sequencing gaps, re-

sulting in multiple contigs for a single clone. A comparison of the retrieved coverage to

the actual coverage may help to determine whether increasing sequencing depth could

increase clone coverage.

Mike Hall assisted me in recovering unretrieved sequences for each clone, using

the reference barcoded sequencing result to query the pool (rather than using the end-

tags). As an example of this difference, when the specific end-tags for Lactose clone 20

are used to retrieve its sequence from the pool, we obtained a retrieved coverage of 48%

(Figure 3.6A); however, when the reference barcoded sequencing result is used instead

to query the pooled sequencing results, the coverage improved to 95%. This latter

value reflects the actual sequence coverage of the clone found in the pooled sequencing

results.
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This strategy was employed to correct for unretrieved sequences for all 73 clones,

using a 250-base length cut-off and 99.6% identity cut-off; after this correction, coverage

improved to an average of 85%, with over 80% of the clones showing 90-100% coverage

(Figure 3.6C; retrieved versus estimated actual coverage for each clone is provided in

Table 3.2).

Figure 3.6: Retrieved coverage and estimated actual coverage of pooled
sequencing relative to barcoded sequencing. (A) An example clone, Lactose
clone 20, shows retrieved coverage at 48% (using end-tags as queries), but an actual
coverage of 98% (using barcoded result as query). (B and C) Percent coverage for each
of the 73 clones, binned in ten-percent increments. Retrieved coverage (B) is compared
to estimated actual coverage (C). [167]
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Table 3.2: Retrieved versus estimated actual coverage for 73 clones [167]

Count Clone

1 BF4 0.7367 0.9854

2 BT2 0.9946 0.9946

3 Cel-1 0.5079 0.9289

4 Cel-32-1 0.4487 0.9404

5 Cel-3-22-2 0.4488 0.9404

6 Cel-60-1 0.4826 0.9459

7 CM-111 0.9941 0.9941

8 CM-123 0.9933 0.9933

9 CM-129 0.9917 0.9917

10 CM-130 0.9936 0.9936

11 CM-136 0.9934 0.9934

12 cm18 0.0394 0.1026

13 CM-18 0.9754 0.9754

14 CM-19 0.1214 0.9944

15 CM-2 0.4178 0.9931

16 Cm26 0.0900 0.1867

17 Cm3 0.0043 0.0911

18 Cm30 0.0789 0.1125

19 CM-31 0.9940 0.9940

20 CM-4 0.9939 0.9939

21 cm42 0.1159 0.2099

22 CM-69 0.1004 0.9856

23 CM-92 0.9947 0.9947

24 CX4s17 0.8590 0.9885

25 CX4s8 0.8417 0.8417

26 CX6-4 1.0000 1.0000

27 CX9-10 0.9908 0.9910

28 CX9s4 0.6895 0.9611

29 Km-1 0.9385 0.9619

30 lac-ec1 0.0878 0.3406

31 lac-ec104 0.1895 0.2589

32 lac111 0.1998 0.9667

33 lac121 0.8896 0.9806

34 lac-ec123 0.3211 0.3940

35 lac127 0.9922 0.9922

36 lac13 0.9937 0.9937

37 lac146 0.9794 0.9794

38 lac153 0.9875 0.9875

39 lac16 0.9865 0.9865

40 lac160 0.9941 0.9941

41 lac161 0.9941 0.9941

42 lac170 0.5329 0.9502

43 lac193 0.9940 0.9940

44 lac20 0.4826 0.9459

45 lac24B 0.0635 0.1732

46 lac27B 0.0624 0.1700

47 lac35B 0.0167 0.1278

48 lac36W 0.9938 0.9938

49 lac55 0.8491 0.8491

50 lac71 0.7695 0.9438

51 lac82 0.0204 0.8006

52 lac84 0.9817 0.9817

53 Mel-125 0.9905 0.9905

54 Mel-126 0.8557 0.9760

55 PO3 0.9782 0.9782

56 RCX18 0.9984 0.9984

57 RCX2 0.7704 0.9985

58 RCX24 0.9991 0.9991

59 RCX25 0.7666 1.0000

60 RCX28 0.9951 0.9951

61 RCX31 1.0000 1.0000

62 RCX32 0.5387 0.9968

63 RCX6 0.6946 0.9796

64 RCX7 0.2809 0.9970

65 RCX8 0.9836 0.9836

66 RCX9 0.6714 1.0000

67 RCX92 0.9853 0.9853

68 PCX9M1 1.0000 1.0000

69 PCX9M3 0.8872 0.9890

70 PCX9M5 1.0000 1.0000

71 Xyl 2 0.9692 0.9692

72 Xyl 3 0.9686 0.9686

73 Xyl 4 1.0000 1.0000

Retrieved Coverage 

(Pooled relative to Barcoded)

Estimated Actual Coverage 

(Pooled relative to Barcoded)
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These data suggest that an increase in the sequencing depth of the pooled strategy

may help to increase clone coverage, as this should reduce the occurrence of gaps that

prevent retrieval of the full clone sequence. Indeed, others have shown full recovery of

circular DNA molecules using a pooled sequencing approach in other applications. For

example, bulk sequencing of the plasmid fraction of an activated sludge metagenome

resulted in the complete assembly of forty plasmids, which were confirmed to be closed

circular replicons by PCR [261], and pooled sequencing of mitochondrial genomes re-

sulted in complete assembly of each, although the authors found that de novo tran-

scriptome assemblers, designed for handling reads with differential coverage, provided

much better assembly then assemblers meant for genomes [247]. Together, these results

support our findings that a pooled strategy can be an effective alternative.

3.4.3 Clones with sequence similarity may have poor recovery

To determine if factors other than depth of sequencing affect clone coverage in a pooled

approach, I first examined the sequence similarity between clones. To do this, I per-

formed an all-by-all pair-wise BLAST comparison of clones, using their barcoded ref-

erence sequences (see Section 3.6.9 for details). I found that the majority of the 73

clones had little or no sequence similarity to any other clone in the pool (Figure 3.7A).

However, some clones did have sequence similarity; furthermore, the clones that had

sequence similarity were often the same clones that had poor retrieved coverage from

pooled sequencing (Figure 3.7B). This was particularly striking when comparing to the

actual coverage (Figure 3.7C), suggesting that increasing the depth of sequencing may

improve clone coverage from pooled sequencing, but only for those clones that do not

have sequence similarity to other clones present in the pool.
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Figure 3.7: Heat map of clone sequence similarity and corresponding bar plots of clone
coverage. Pair-wise sequence similarity is shown for all 73 clones (A), juxtaposed to their pooled
sequencing coverage, showing both retrieved coverage (B) and actual coverage (C). [167]
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I next asked what the sequencing read depth was for each clone to try to under-

stand how the read depth and clone sequence similarity might be related. I asked Mike

Hall to estimate the read depth of each of the 73 clones by aligning the raw reads to the

assembled contig (see Section 3.6.8 for details; read depth for both pooled sequencing

and barcoded sequencing for each clone is provided in Table 3.3). The idea that similar

clones are problematic for a pooled sequencing strategy was corroborated using the

data from Mike Hall’s read depth analysis of each of the 73 clones. To examine the

relationship between read depth and pooled sequencing coverage, I plotted the read

depth of each clone against both its retrieved and actual coverage (Figure 3.8). I found

that for a number of clones, the estimated read depth was particularly high and yet

the coverage was unusually low; upon inspecting the identity of these clones, I found

them to be the same clones that shared sequence similarity.

Perhaps not unexpectedly, these results suggest that when clones have sequence

similarity, pooling and fragmenting the DNA for sequencing causes: (a) an overrep-

resentation of similar sequences in the pooled sequencing data, and (b) difficulty in

assembling the sequences, leading to lack of coverage for the clones from which the

sequences originate. There may be other factors that impact the success of pooled

sequencing and assembly, such as the presence of repetitive sequences, but this work

results suggest that sequencing depth and clone sequence similarity are two significant

factors.
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Figure 3.8: Clone read depth plotted against clone coverage in pooled sequencing. The
overall read depth for each clone in the pooled sequencing strategy was estimated and plotted against
either the uncorrected coverage (A) or corrected coverage (B). [167]
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Table 3.3: Estimated read depth for both pooled and barcoded approaches,
ranked by depth of pooled sequencing. [167]

Barcode Clone Name

AGATAG lac55 3952 29704

GTGAAA lac27B 3196 8300

CAGATC lac35B 2616 8277

GCCAAT Cm30 2547 7716

GTCCGC Cm3 2544 9925

TTCTCC lac24B 2506 8611

AGAAGA cm18 2456 11288

AATAGG Cm26 2357 8367

CAGGCG lac-ec104 2350 10874

ATCTAT lac-ec1 2312 8384

AAAGCA cm42 2301 9909

CCTTAG lac-ec123 2020 8490

CACTCA Cel-1 1608 7606

ATGAGC lac71 1526 8087

CATGGC lac82 1314 11190

ACCCAG PO3 1263 10374

CACCGG RCX8 1142 7197

TCCCGA Cel-60-1 1117 6917

TCGAAG lac20 1117 5935

TTCGAA Km-1 1111 8388

AGCATC lac170 1093 3274

GAAACC Cel-3-22-2 1056 11067

CCGCAA Cel-32-1 1056 9250

GCAAGG CM-18 990 18870

GAGTGG RCX92 984 7952

TGGCGC CX4s8 868 16764

ACTTGA lac153 743 8880

ATCACG Xyl 2 700 27923

GATCAG Xyl 3 687 21714

GATATA lac84 663 14161

GGCACA lac111 545 7344

GTGGCC lac146 507 7717

GCTCCA lac16 491 9720

AGGTTT lac127 489 8199

CGGAAT lac121 485 10593

ACAAAC lac36W 484 8909

AGTTCC CM-69 479 10386

ACTGAT Mel-125 474 9722

TGCTGG RCX25 430 5919

CCGTCC RCX28 409 7582

CAAAAG BF4 408 11194

ATTCCT lac193 402 7991

CCCATG RCX18 400 7213

TGCCAT CM-129 397 8858

ACCGGC CM-136 391 9065

ACATCT lac161 373 10605

TACAGC CM-123 366 7313

CTTGTA RCX32 361 5984

ATCCTA Mel-126 358 10115

AACTTG CM-4 342 8342

GAATAA lac13 340 8453

ACGATA RCX6 310 7541

TGAATG CM-2 304 8761

TAGCTT CM-130 300 8133

AGCGCT BT2 297 11897

CGTACG lac160 270 5424

CAACTA CM-31 268 7539

CCACGC CM-111 267 8209

ACAGTG CX6-4 267 5986

TAATCG CM-92 256 5029

GCCGCG PCX9M3 255 5055

GCACTT RCX2 246 6884

CTCAGA RCX9 240 7227

AAACAT CX9-10 231 8804

GTAGAG CX4s17 227 5772

CTATAC CM-19 224 7553

ATAATT RCX7 218 6747

TATAAT RCX24 191 6843

CTGCTG PCX9M1 178 6976

AAGGAC CX9s4 167 7853

AACCCC Xyl 4 164 10947

TCATTC PCX9M5 163 5026

TGACCA RCX31 163 4348

Mean 881 9249

Pooled Sequencing 
Read Depth

Barcoded Sequencing 
Read Depth
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3.4.4 Consensus assemblies: a caveat of the pooled approach

Due to the nature of the pooled assembly, overlapping clones assemble into larger con-

tigs. Indeed, three clones were determined to be overlapping by the barcoded sequence

data, as well as the pooled sequence data (Figure 3.9).

Figure 3.9: Overlapping clones assemble into one contig. Three overlapping
clones as revealed by barcoded sequencing (above) and pooled sequencing (below). Lo-
cations of end-tags are indicated by vertical dashed lines. White dashed boxes indicate
gaps in the pooled sequencing data; black boxes indicate a contig. Lengths of all contigs
are given. [167]

In the latter, three contigs were retrieved from the pool using their six end-tags;

more than one contig was retrieved due to incomplete sequencing and/or assembly by

the pooled method, as discussed above (i.e., Figure 3.6 and Figure 3.7). Although

this larger contig is derived from three clones, such a contig should not be classified as

chimeric because it represents the metagenomic DNA as it would be found in nature.

Furthermore, individual clone sequences can be easily delineated from the greater contig

by alignment of clone end-tags to the contig (as illustrated in Figure 3.9).

This particular caveat of pooled sequencing can be viewed as a positive aspect

rather than a negative one, because clones from different screens can be immediately
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identified as overlapping simply from the clone sequence retrieval process. That be-

ing said, the assembly of a consensus sequence from overlapping clones may imply

a loss of clone-specific information. It is possible that, in some cases, overlapping

clones represent different strains of the same microorganism, or different alleles of the

same genes(s). Through pooled assembly and depending on the assembler parameters,

such clone-specific allelic information, in the form of single nucleotide polymorophisms

(SNPs) or similar small sequence variations, may be lost – that is, the final consensus

sequence may represent only the most frequent allele. If it should arise, the issue of in-

formation loss for allelic variations may be remedied by further analysis. For example,

if clones were determined to be overlapping from the consensus contig obtained from

pooled sequencing, it would be possible to examine the raw reads to determine if SNPs

are present. If so, sequencing primers could be designed for the target loci to determine

exactly which SNP(s) belong to which clones in the physical DNA collection.

3.4.5 Improvements and considerations

In this study, our lab investigated the quality of data obtained from pooled sequencing

because this strategy offered an economical solution to the high cost of traditional

barcoded sequencing. At the time this work began, there was a large cost difference in

the two services that were available (Table 3.4 and Table 3.5). Since then, this difference

has decreased, and it is likely that it will continue to do so with further developments in

sequencing technology. At least for the time being, however, pooled sequencing remains

a more affordable option for functional metagenomics research, particularly if a large

number of clones must be sequenced.
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Table 3.4: Cost of barcoded sequencing at the Genome Sciences Centre,
BC Cancer Agency, Vancouver, Canada. [167]

Traditional Barcoded Illumina

miniprep $100.00

barcoded library construction $8,700.00

sequencing $1,300.00

assembly (in-house) $0.00

total cost $10,100.00

turnaround time 6 months

average coverage per clone 100% (reference)

Table 3.5: Cost of pooled sequencing at the Beijing Genomics Institute,
Tai Po, Hong Kong. [167]

Sanger-Illumina Pooled Sequencing

miniprep $100.00

Sanger end-sequencing $1,000.00

library construction $400.00

pooled sequencing $300.00

assembly and annotation $400.00

total cost $2,200.00

turnaround time 4 months

average coverage per clone, uncorrected 71%

average coverage per clone, corrected 85%
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In our workflow, the lab concurrently had clones analyzed by pooled sequencing

and by Sanger sequencing (for the generation of end-tags); this was done concurrently

due to anticipation of a lengthy turnaround time for the Illumina sequencing results,

which is typically (and was in fact) the case. However, given our experience, I recom-

mend obtaining end sequences for all clones before carrying out pooled sequencing, due

to the unexpected difficulty of Sanger-sequencing certain clones. Without two end-tags

for each clone, it becomes difficult to retrieve the corresponding contig from the pool

without further work, such as subcloning and sequencing fragments of the insert (which

would negate the ease and economy of the pooled sequencing strategy).

Assembly for both the barcoded and the pooled sequencing strategies revealed

contamination with E. coli genomic DNA sequences, indicating that minipreps of cos-

mid clones contained host DNA. Similar results were reported for genomic library BAC

clones isolated for pooled sequencing [193]. Such contamination adds undesired DNA

template to the sequencing reaction, affecting required-depth-of-coverage calculations,

and possibly leading to insufficient sequencing and poor clone sequence recovery. This

may have been a problem in our own incomplete recovery for the pooled strategy. We

recommend removing contaminating genomic DNA by cesium chloride density purifi-

cation or pre-treatment of samples with Plasmid-Safe DNase (Epicentre), which may

help reduce genomic contamination up to ten-fold [16]. Clone sequence recovery was

not problematic in the barcoded sequencing strategy because the sequencing depth

was extremely high for the purpose of generating high-quality reference sequence data

(Figure 3.3).

Another consideration for pooled sequencing relates to the problem of sequence

similarity (Figure 3.7). These results indicate that clones that have sequence similarity

are problematic in a pooled strategy, likely due to difficulties in assembling the similar

reads and resulting in poor clone sequence recovery. The simple solution would be to
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avoid pooling clones that share sequence similarity, but this remains a difficult, if not

impossible, task without prior knowledge of the clone sequence. A possible way to

reduce the potential for sequence similarity may be to assemble pools of clones such

that the diversity of functional screens represented is maximized within a pool. In this

way, the presence of homologous genes may be reduced.

One other consideration for the pooled sequencing strategy relates to the issue of

consensus assemblies, which may occur for overlapping clones during assembly process

(Figure 3.9). Since overlapping clones likely (though not always) result from the same

functional screen, it is possible for the experimental biologist to minimize their pres-

ence by doing restriction profile comparisons prior to selecting clones for pooling and

sequencing. It may also be possible to reduce loss of clone-specific sequence variation by

using combinatorial or overlapping clone pooling approaches, which have been used by

others for strategic sequencing of BAC clones from genomic libraries [30,193] as well as

plasmid-based oligonucleotide libraries [79]. In such an approach, a large set of clones

is divided into subpools such that each clone is present in multiple subpools, but no

two clones are in the same subpool more than once, which can help resolve ambiguity

in the case that clones in one pool have sequence similarity. In the simplest approach

for combining the barcoded and pooled sequencing strategies, a large pool of clones

could be split into smaller subpools, each of which gets barcoded. By strategically

using a mixture of barcoding, pooling, and/or duplicate sequencing, one can strike a

balance between making use of sequencing power and being able to recover accurate

and complete clone sequence information.
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3.5 Conclusions

We explored a more economical sequencing strategy than barcoded sequencing by using

a pooled sequencing method that successfully obtained sequence information for a set of

large-insert clones. In particular, we validated this method by comparing the sequence

data to reference data generated from barcoded sequencing of the same set of clones.

By observing identity and coverage between the two datasets for 73 clones, I have

demonstrated high quality assemblies from the pooled sequencing dataset. Using the

pooled strategy, retrieved clone sequences showed high accuracy, with identity at 99.9-

100% for the majority of clones. The amount of sequence recovered for each clone,

however, was variable; averaged across 73 clones, the retrieved coverage was 71%, with

some clones showing full coverage, and others with minimal coverage. Correcting for

sequencing gaps, the average coverage increased to 85%. These results suggest that

increasing sequencing depth can improve clone coverage, but that clones that have

sequence similarity are problematic in a pooled strategy regardless. Though pooled

sequencing has generated promising results, refinement of the method is required: se-

quencing depth will need to be optimized to obtain maximum recovery of clone se-

quence, and the choice of clones to pool will also need consideration, to minimize the

presence of clones with sequence similarity.

These results demonstrate that, with further optimization, a pooled sequencing

approach could become the preferred method of generating clone sequence data, as its

cost is a fraction of that of barcoded sequencing. It is important to note that clone

sequence recovery may not be complete or even possible for all clones that have been

pooled for sequencing; however, until the cost of barcoding many samples becomes

affordable in the way that Sanger sequencing has become affordable, pooled sequencing

of large sets of clones remains a relevant and reasonable strategy.
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3.6 Specific materials and methods

3.6.1 Ethics Statement

Approval for the collection of human fecal samples was obtained from the Office of

Research Ethics of the University of Waterloo in Waterloo, Canada, and written consent

was obtained from the volunteers. No identification was attached to the collected

samples and samples were pooled prior to use.

3.6.2 Isolation of HMW DNA

Soil samples were obtained from diverse environments across Canada [222]. Information

regarding the metagenomic libraries constructed from Canadian soil samples is available

online through the Canadian MetaMicrobiome Project website (http://www.cm2bl.org).

The isolation of high-molecular-weight DNA was previously described for fecal

samples (Section 2.4.5) and for pure bacterial cultures (Section 2.4.6). Extracted DNA

was either cloned directly or purified further by synchronous coefficient of drag al-

teration (SCODA) using the Aurora (Boreal Genomics) according to an established

protocol [75]. Crude or SCODA-purified DNA was quantified by gel electrophoresis,

using bacteriophage λ DNA as a standard.
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3.6.3 Construction of large-insert metagenomic cosmid libraries

The cosmid vector pJC8 (Genbank accession KC149513; [43]) formed the backbone

of all metagenomic libraries constructed in this study. In addition to constructing

new libraries, existing metagenomic clones were used from previous libraries [320],

constructed in the cosmid vector pRK7813 (Genbank accession KC442292; [139]). All

libraries have entries in the NCBI BioSample database [13], and details regarding the

libraries used in this study are summarized in Table 3.6.

Table 3.6: Metagenomic and genomic libraries screened.

Library

name

NCBI

BioSample

DNA source No.

clones

Vector Ref.

12AC SAMN02324088 soil (agricultural) 80,000 pJC8 [43]

BF1 SAMN02324093 Bacteroides fragilis 18,000 pJC8 this study

BT1 SAMN02324089 Bacteroides thetaiotaomicron 8,000 pJC8 this study

CLGM1 SAMN02324081 human feces 42,000 pJC8 this study

CX3 SAMN02324235 activated sludge (pulp and

paper)

2,500 pRK7813 [320]

CX4 SAMN02393652 activated sludge (pulp and

paper)

3,900 pRK7813 [320]

CX6 SAMN02393657 activated sludge (municipal) 3,300 pRK7813 [320]

CX9 SAMN02393684 soil (creek) 22,000 pRK7813 [320]

CX10 SAMN02393686 soil (creek) 8,700 pRK7813 [320]
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Libraries were constructed as previously described [43]. Briefly, the vector pJC8

was digested with Eco72I/PmlI to produce blunt ends and then dephosphorylated. The

backbone was purified from the 0.8 kb gentamicin resistance gene stuffer, either with

an EZ-10 Spin Column DNA Gel Extraction Kit (BioBasic) or by electroelution. The

high-molecular-weight DNA extracted from either environmental samples or pure cul-

ture (up to 25 ➭g of either crude or purified DNA) was size-selected by pulsed-field

gel electrophoresis (PFGE) using a CHEF MAPPER Pulsed Field Gel Electrophore-

sis System (Bio-Rad). The gel fragment containing DNA of approximately 40-70 kb

was excised, then electroeluted and concentrated using an Amicon Ultra Centrifugal

Filter with 30 kDa MWCO (Millipore). Purified DNA (2.5 ➭g) was end-repaired using

the End-It DNA End-Repair Kit (Epicentre). A phenol:chloroform extraction was per-

formed to remove T4 polynucleotide kinase, and DNA was precipitated, resuspended in

TE, and quantified by gel electrophoresis, using bacteriophage λ DNA as a standard.

The purified and blunt-ended DNA was then ligated to the linearized cosmid vector.

Ligations were carried out at 14❽ overnight with Fast-Link DNA Ligase (Epicentre),

using 500 ng of end-repaired insert DNA and a vector-to-insert molar ratio of 10:1.

Ligations were packaged into λ phage heads using Gigapack III XL Packaging Extract

(Stratagene 200209) according to the manufacturer’s instructions, and the final phage

suspension was stored at 4❽.

To prepare cells for transduction, E. coli HB101 was streaked from frozen stock

onto LB agar, and a single colony was then inoculated into 5 ml of LB. The culture

was grown overnight at 37➦C, and was subcultured 1:200 in 5 ml of LB supplemented

with 0.2% maltose and 10 mM MgSO4. The culture was grown to an OD600 of 0.8

(Spectronic Spec 20D). Cells were pelleted by centrifugation, resuspended in 2.5 ml

of LB supplemented with 10 mM MgSO4, and held on ice. For an estimate of phage

concentration, 10 ➭l phage were mixed with 90 ➭l cells, and the mixture was incubated
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at room temperature for 30 minutes, and moved to 37❽ for 30 minutes. Cells were

pelleted by centrifugation and plated on LB with 20 ➭g/ml tetracycline to select for

transductants. Plates were incubated overnight at 37❽ and colonies were counted to

estimate phage concentration in the suspension. Finally, the transduction was scaled

up to achieve approximately 1000 colonies per plate. Several plates were counted for

an estimate of metagenomic library size, and then pooled and stored at -80❽. For

regular use, libraries were propagated from the original frozen stock. For an estimate

of average insert size, library stocks were streaked onto LB with 20 ➭g/ml tetracycline,

and colonies were selected at random for restriction analysis.

3.6.4 Functional screens and positive clones

Various function-based screens were performed in our laboratory, including screens for

antibiotic resistance genes, conjugation genes, and carbohydrate utilization genes. Tens

to hundreds of positive clones were isolated from each screen although 92 distinct clones

(based on restriction enzyme digestion patterns) were chosen for full sequencing. The

list of clones and the screens from which they were isolated are provided (Table 3.7).

Cosmid clone DNA was isolated from either E. coli HB101 or DH5α.
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Table 3.7: Functional screens from which cosmid clones were isolated; bolded clone
names indicate those excluded from analyses. [167]

Count Clone Name Functional Screen Library Name Vector Backbone

1 BF4 random clone Bacteroides fragilis cosmid library BF1 pJC8

2 BT2 random clone Bacteroides theta cosmid library BT1 pJC8

3 Cel-1 cellobiose utilization 12AC pJC8

4 Cel-32-1 cellobiose utilization 12AC pJC8

5 Cel-3-22-2 cellobiose utilization 12AC pJC8

6 Cel-3-24-2 cellobiose utilization 12AC pJC8

7 Cel-60-1 cellobiose utilization 12AC pJC8

8 CM-10 conjugation 12AC pJC8

9 CM-110 conjugation 12AC pJC8

10 CM-111 conjugation 12AC pJC8

11 CM-123 conjugation 12AC pJC8

12 CM-129 conjugation 12AC pJC8

13 CM-130 conjugation 12AC pJC8

14 CM-131 conjugation 12AC pJC8

15 CM-135 conjugation 12AC pJC8

16 CM-136 conjugation 12AC pJC8

17 CM-15 conjugation 12AC pJC8

18 cm18 chloramphenicol resistance 12AC pJC8

19 CM-18 conjugation 12AC pJC8

20 CM-19 conjugation 12AC pJC8

21 CM-2 conjugation 12AC pJC8

22 CM-20 conjugation 12AC pJC8

23 Cm26 chloramphenicol resistance 12AC pJC8

24 Cm3 chloramphenicol resistance 12AC pJC8

25 Cm30 chloramphenicol resistance 12AC pJC8

26 CM-31 conjugation 12AC pJC8

27 CM-4 conjugation 12AC pJC8

28 cm42 chloramphenicol resistance 12AC pJC8

29 CM-45 conjugation 12AC pJC8

30 CM-56 conjugation 12AC pJC8

31 CM-64 conjugation 12AC pJC8

32 CM-69 conjugation 12AC pJC8

33 CM-92 conjugation 12AC pJC8

34 CX4s17 PHB synthesis CX4 pRK7813

35 CX4s8 PHB synthesis CX4 pRK7813

36 CX6-4 PHB synthesis CX6 pRK7813

37 CX9-10 PHB synthesis CX9 pRK7813

38 CX9s4 PHB synthesis CX9 pRK7813

39 jac97W lactose utilization 12AC pJC8

40 Km-1 kanamycin resistance 12AC pJC8

41 lac-ec1 lactose utilization 12AC pJC8

42 lac100B lactose utilization 12AC pJC8

43 lac-ec104 lactose utilization 12AC pJC8

44 lac111 lactose utilization 12AC pJC8

45 lac121 lactose utilization 12AC pJC8

46 lac112W lactose utilization 12AC pJC8

47 lac-ec123 lactose utilization 12AC pJC8

48 lac127 lactose utilization 12AC pJC8

49 lac13 lactose utilization 12AC pJC8

50 lac146 lactose utilization 12AC pJC8

51 lac153 lactose utilization 12AC pJC8

52 lac16 lactose utilization 12AC pJC8

53 lac160 lactose utilization 12AC pJC8

54 lac161 lactose utilization 12AC pJC8

55 lac170 lactose utilization 12AC pJC8

56 lac193 lactose utilization 12AC pJC8

57 lac20 lactose utilization 12AC pJC8

58 lac224 lactose utilization 12AC pJC8

59 lac24B lactose utilization 12AC pJC8

60 lac27B lactose utilization 12AC pJC8

61 lac35B lactose utilization 12AC pJC8

62 lac36B lactose utilization 12AC pJC8

63 lac36W lactose utilization 12AC pJC8

64 lac55 lactose utilization 12AC pJC8

65 lac71 lactose utilization 12AC pJC8

66 lac82 lactose utilization 12AC pJC8

67 lac84 lactose utilization 12AC pJC8

68 Mel-125 melibiose utilization 12AC pJC8

69 Mel-126 melibiose utilization 12AC pJC8

70 PO3 random clone human gut library CLGM1 pJC8

71 RCX11 3-hydroxybutyrate utilization CX4 pRK7813

72 RCX12 3-hydroxybutyrate utilization CX4 pRK7813

73 RCX13 3-hydroxybutyrate utilization CX4 pRK7813

74 RCX15 3-hydroxybutyrate utilization CX4 pRK7813

75 RCX18 3-hydroxybutyrate utilization CX9 pRK7813

76 RCX2 3-hydroxybutyrate utilization CX3 pRK7813

77 RCX24 3-hydroxybutyrate utilization CX9 pRK7813

78 RCX25 3-hydroxybutyrate utilization CX9 pRK7813

79 RCX28 3-hydroxybutyrate utilization CX9 pRK7813

80 RCX31 3-hydroxybutyrate utilization CX9 pRK7813

81 RCX32 3-hydroxybutyrate utilization CX10 pRK7813

82 RCX6 3-hydroxybutyrate utilization CX4 pRK7813

83 RCX7 3-hydroxybutyrate utilization CX9 pRK7813

84 RCX8 3-hydroxybutyrate utilization CX9 pRK7813

85 RCX9 3-hydroxybutyrate utilization CX10 pRK7813

86 RCX92 3-hydroxybutyrate utilization CX9 pRK7813

87 PCX9M1 3-hydroxybutyrate utilization CX9 pRK7813

88 PCX9M3 3-hydroxybutyrate utilization CX9 pRK7813

89 PCX9M5 3-hydroxybutyrate utilization CX9 pRK7813

90 Xyl 2 xylose utilization CX9 pRK7813

91 Xyl 3 xylose utilization CX9 pRK7813

92 Xyl 4 xylose utilization CX9 pRK7813
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3.6.5 Barcoded sequencing

Cosmid DNA was prepared from E. coli DH5α using a GeneJET Plasmid Miniprep

Kit (Thermo Scientific), and 1-2 ➭g of DNA from each of the 92 samples was adjusted

to ¿25 ng/➭l. Samples were submitted to the BC Cancer Agency at the Michael Smith

Genome Sciences Centre for individual barcoding and 75-base paired-end sequencing

on the Illumina HiSeq 2000 platform, using in-house protocols and reagents for library

construction. Clones were sequenced to a read depth of approximately 9000-fold, on

average (Figure 3.3 and Table 3.3). This high coverage was ideal for a high-quality

reference data set. Vector sequences were subtracted from the raw data by comparing all

reads against the vector backbone using BLAST (with a requirement for 100% identity),

and the data were assembled using ABySS version 1.3.2 [272]; default settings were

used, with the exception of a k -mer length of 64. At the time of assembly, the complete

sequence of the cosmid vector pJC8 was not yet available; as a result, vector subtraction

used the closely related parent vector pRK404 (Genbank accession AY204475; [63]), and

assemblies were checked subsequently for remaining vector sequences.

After assembly, the barcoded sequencing data were prepared in order to use as

a reference for evaluation of the pooled sequencing data. For the majority of clones,

assembly resulted in a single contig, usually exceeding 30 kb, as expected. For cases

in which assembly resulted in more than one contig, contigs were manually checked

for sequences from contaminating E. coli genomic DNA, helper plasmids, and cloning

vectors, and those contigs were removed. For 3 clones, multiple contigs remained,

indicating the samples may have been insufficiently sequenced, resulting in gaps. Ac-

cordingly, we concatenated the multiple large contigs and treated them as one contig.

Using the described strategy, reference contigs were obtained for 77 out of 92 clones.

The average contig length was 33.5 kb, with the largest being 47.2 kb and the smallest

1.8 kb. Though our cloning strategy enriches for high-insert clones, we have occasion-
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ally observed smaller inserts after carrying out functional screening. These smaller

inserts may have arisen from recombination and subsequent loss of cloned DNA after

the library construction process. Sequence data have been made available for download

(see below). Barcodes are provided in Table 3.8.
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Table 3.8: Barcodes corresponding to each clone for Illumina sequencing. [167]

Count Clone Name Barcode

1 BF4 CAAAAG

2 BT2 AGCGCT

3 Cel-1 CACTCA

4 Cel-32-1 CCGCAA

5 Cel-3-22-2 GAAACC

6 Cel-3-24-2 GCCTTA

7 Cel-60-1 TCCCGA

8 CM-10 AAGACT

9 CM-110 CTAGCT

10 CM-111 CCACGC

11 CM-123 TACAGC

12 CM-129 TGCCAT

13 CM-130 TAGCTT

14 CM-131 GGCTAC

15 CM-135 TTAGGC

16 CM-136 ACCGGC

17 CM-15 CGATGT

18 cm18 AGAAGA

19 CM-18 GCAAGG

20 CM-19 CTATAC

21 CM-2 TGAATG

22 CM-20 ATGTCA

23 Cm26 AATAGG

24 Cm3 GTCCGC

25 Cm30 GCCAAT

26 CM-31 CAACTA

27 CM-4 AACTTG

28 cm42 AAAGCA

29 CM-45 CCAACA

30 CM-56 AGGCCG

31 CM-64 GATGCT

32 CM-69 AGTTCC

33 CM-92 TAATCG

34 CX4s17 GTAGAG

35 CX4s8 TGGCGC

36 CX6-4 ACAGTG

37 CX9-10 AAACAT

38 CX9s4 AAGGAC

39 jac97W CGAGAA

40 Km-1 TTCGAA

41 lac-ec1 ATCTAT

42 lac100B GACGGA

43 lac-ec104 CAGGCG

44 lac111 GGCACA

45 lac121 CGGAAT

46 lac112W TCGGCA

47 lac-ec123 CCTTAG

48 lac127 AGGTTT

49 lac13 GAATAA

50 lac146 GTGGCC

51 lac153 ACTTGA

52 lac16 GCTCCA

53 lac160 CGTACG

54 lac161 ACATCT

55 lac170 AGCATC

56 lac193 ATTCCT

57 lac20 TCGAAG

58 lac224 CATTTT

59 lac24B TTCTCC

60 lac27B GTGAAA

61 lac35B CAGATC

62 lac36B AAATGC

63 lac36W ACAAAC

64 lac55 AGATAG

65 lac71 ATGAGC

66 lac82 CATGGC

67 lac84 GATATA

68 Mel-125 ACTGAT

69 Mel-126 ATCCTA

70 PO3 ACCCAG

71 RCX11 AAGCGA

72 RCX12 ACTCTC

73 RCX13 ATACGG

74 RCX15 CACGAT

75 RCX18 CCCATG

76 RCX2 GCACTT

77 RCX24 TATAAT

78 RCX25 TGCTGG

79 RCX28 CCGTCC

80 RCX31 TGACCA

81 RCX32 CTTGTA

82 RCX6 ACGATA

83 RCX7 ATAATT

84 RCX8 CACCGG

85 RCX9 CTCAGA

86 RCX92 GAGTGG

87 PCX9M1 CTGCTG

88 PCX9M3 GCCGCG

89 PCX9M5 TCATTC

90 Xyl 2 ATCACG

91 Xyl 3 GATCAG

92 Xyl 4 AACCCC
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3.6.6 Sanger end-sequencing and pooled sequencing

Cosmid DNA was prepared from E. coli DH5α using a GeneJET Plasmid Miniprep

Kit (Thermo Scientific). Aliquots of 100 ng from each of the 92 samples were pooled

and concentrated to 125 ng/➭l. The pooled samples were sequenced by the Beijing

Genomics Institute (BGI) using 90-base paired-end sequencing on the Illumina HiSeq

2000 platform, using in-house protocols and reagents for library construction. Clones

were sequenced to a read depth of approximately 900-fold on average (Figure 3.3),

upon recommendation of >100-fold coverage. The service provider subtracted vector

sequences using SOAPaligner version 2.21 [184] (again, using pRK404), and completed

assembly using SOAPdenovo version 1.05 [185], using a k -mer size of 31, and BWA

version 0.5.8 [181]. This resulted in 563 contigs ranging between 0.5 kb to 97.7 kb,

with a mean contig length of 11.7 kb. Contigs exceeding the expected insert size were

determined to be E. coli genomic DNA contamination, the presence of which did not

interfere with clone sequence retrieval, as retrieval is done using clone end sequences.

Concurrent to pooled sequencing, samples were end-sequenced by Sanger sequenc-

ing at BioBasic Inc., Lucigen Corporation, or The Centre for Applied Genomics, to

generate end-tags. One or both end sequences were obtained for 83 out of 92 clones.

Sequencing primers used were standard M13 forward and M13 reverse from the se-

quencing facility, or custom primers JC102 (5’TAACAATTTCACACAGGAAACAGCTATGAC) and

JC103 (5’GCGATTAAGTTGGGTAACGCCAGGGTTTTC). The obtained end-tags were then used

to query the pooled sequencing results, using NCBI nucleotide BLAST [4] running the

Megablast algorithm. In this manner, contigs were retrieved from the pool for each

clone; see Table 3.9 for details. Pooled sequence data and end sequence data have been

made available for download (see Section 3.6.10).
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Table 3.9: Summary of retrieved contigs for the pooled sequencing approach. [167]

Count Clone
Forward End-Tag (M13F/JC103) Reverse End-Tag (M13R/JC102)

End Tag? Tag Len Retrieved Contig ID Contig Len Align. Identity End Tag? Tag Len Retrieved Contig ID Contig Len Align. Identity

1 BF4 Y 661 scaffold196_1 9979 0.9847457627 Y 720 scaffold199_1 16126 0.9984802432

2 BT2 Y 517 scaffold258_1 39283 0.9712389381 Y 510 scaffold258_1 39283 0.9841986456

3 Cel-1 Y 1000 scaffold10_1 3594 0.9804347826 Y 563 scaffold7_1 17578 0.9936708861

4 Cel-32-1 Y 559 scaffold10_1 3594 0.9810526316 Y 561 scaffold7_1 17578 0.9977728285

5 Cel-3-22-2 Y 559 scaffold10_1 3594 0.9810526316 Y 561 scaffold7_1 17578 0.9977728285

6 Cel-60-1 Y 545 scaffold15_1 24084 0.9838337182 Y 1042 scaffold26_1 13528 0.9873817035

7 CM-111 Y 761 scaffold146_1 36324 0.9352226721 N

8 CM-123 Y 805 scaffold155_1 32613 0.9955686854 Y 886 scaffold155_1 32613 0.982278481

9 CM-129 Y 633 scaffold213_1 25538 0.962745098 Y 759 scaffold213_1 25538 0.987933635

10 CM-130 Y 607 scaffold248_1 33740 0.987933635 Y 764 scaffold248_1 33740 1

11 CM-136 Y 602 scaffold63_1 31929 1 Y 402 scaffold63_1 31929 0.9765886288

12 cm18 Y 567 no hit Y 844 scaffold151_1 3127 0.9943582511

13 CM-18 Y 995 scaffold126_1 8660 0.9836448598 Y 525 scaffold126_1 8660 1

14 CM-19 Y 564 scaffold260_2 4083 0.9953379953 N

15 CM-2 Y 882 no hit Y 519 scaffold185_1 13797 0.9976470588

16 Cm26 Y 747 scaffold151_1 3127 1 Y 1114 scaffold73_1 1676 0.9953488372

17 Cm3 Y 720 scaffold116_1 629 1 N

18 Cm30 Y 1166 scaffold116_1 629 1 Y 763 scaffold127_1 2108 0.9906542056

19 CM-31 N Y 343 scaffold246_1 34863 1

20 CM-4 Y 522 scaffold223_1 35472 0.9797979798 N

21 cm42 Y 1039 scaffold151_1 3127 0.9855715871 Y 770 scaffold73_1 1676 0.9910979228

22 CM-69 Y 763 no hit Y 921 scaffold110_1 2278 0.9875466999

23 CM-92 Y 1043 scaffold242_1 37050 0.9953271028 Y 641 scaffold242_1 37050 0.9811320755

24 CX4s17 N Y 562 scaffold65_1 35609 0.9945454545

25 CX4s8 Y 766 scaffold35_2 3907 0.9957627119 Y 1121 scaffold54_1 2383 0.9465478842

26 CX6-4 Y 844 scaffold118_1 40976 0.9927971188 Y 688 no hit

27 CX9-10 Y 927 scaffold13_1 7483 0.9812981298 Y 611 scaffold74_1 27257 0.995

28 CX9s4 Y 1184 scaffold234_1 12189 0.969273743 Y 681 scaffold210_1 12971 0.9910313901

29 Km-1 Y 687 scaffold56_1 32939 0.9963702359 Y 810 no hit

30 lac-ec1 Y 743 no hit Y 524 scaffold85_1 3220 0.9900497512

31 lac-ec104 N Y 521 scaffold24_1 12023 0.9974811083

32 lac111 Y 561 scaffold45_5 6060 0.9946380697 Y 247 no hit

33 lac121 Y 1166 scaffold128_1 22461 0.983463035 Y 598 scaffold134_1 3736 0.9940944882

34 lac-ec123 Y 813 scaffold24_1 12023 0.9897510981 Y 348 no hit

35 lac127 Y 607 scaffold75_1 14099 0.9957983193 Y 841 scaffold109_1 17771 0.9919354839

36 lac13 Y 684 scaffold259_1 34172 0.9910394265 Y 762 scaffold259_1 34172 0.9864253394

37 lac146 Y 768 scaffold52_1 15507 0.9968652038 Y 727 scaffold249_1 10025 0.9920760697

38 lac153 Y 640 scaffold11_1 17026 0.9872881356 Y 1076 scaffold11_2 18778 0.9969325153

39 lac16 Y 920 scaffold84_2 32539 0.9849812265 Y 601 scaffold84_2 32539 0.9943019943

40 lac160 Y 603 scaffold243_1 36291 0.9978991597 Y 645 scaffold243_1 36291 0.9981751825

41 lac161 Y 641 scaffold77_1 35961 0.9902534113 Y 919 scaffold77_1 35961 0.9879951981

42 lac170 Y 445 scaffold15_1 24084 0.9860627178 Y 634 scaffold26_1 13528 0.9941634241

43 lac193 Y 601 scaffold135_1 35915 1 Y 679 scaffold135_1 35915 0.9982905983

44 lac20 Y 734 scaffold15_1 24084 0.9918032787 Y 962 scaffold26_1 13528 0.9844074844

45 lac24B Y 653 no hit Y 569 scaffold27_2 5893 0.9857397504

46 lac27B Y 570 no hit Y 809 scaffold27_2 5893 0.9937578027

47 lac35B Y 855 scaffold97_1 1604 1 Y 686 no hit

48 lac36W Y 723 scaffold58_1 34351 0.9461325967 Y 467 scaffold58_1 34351 0.9892933619

49 lac55 Y 1096 scaffold150_1 1502 0.9657407407 Y 810 scaffold150_1 1502 0.9888888889

50 lac71 Y 501 scaffold23_2 3999 0.9893333333 Y 814 scaffold15_1 24084 0.9926199262

51 lac82 Y 493 scaffold71_1 701 0.9909090909 N

52 lac84 Y 575 scaffold107_1 15739 0.9808362369 Y 406 scaffold107_1 15739 0.9971346705

53 Mel-125 Y 847 scaffold138_1 11638 0.9847645429 Y 436 scaffold138_3 21002 0.9794721408

54 Mel-126 Y 479 scaffold100_1 24125 0.9971590909 Y 516 scaffold205_1 7863 0.9926289926

55 PO3 Y 570 scaffold42_1 32512 0.994011976 Y 421 scaffold42_1 32512 1

56 RCX18 Y 961 scaffold6_1 5837 0.9853095488 Y 1047 scaffold39_1 28772 0.9912790698

57 RCX2 Y 1075 scaffold194_1 6764 0.9704433498 Y 574 scaffold194_4 19345 0.9891304348

58 RCX24 Y 811 scaffold108_1 43364 0.9899874844 Y 956 scaffold108_1 43364 0.9957805907

59 RCX25 N Y 1039 scaffold25_1 31529 0.9889558233

60 RCX28 Y 561 scaffold43_1 35659 0.9746835443 Y 1076 scaffold43_2 3459 0.9885167464

61 RCX31 Y 840 scaffold32_1 39632 0.9401197605 Y 1213 scaffold32_1 39632 0.9634042553

62 RCX32 Y 538 scaffold206_1 3977 0.9961759082 Y 1045 scaffold88_1 15979 0.9884281581

63 RCX6 Y 602 scaffold31_2 26136 0.9956709957 N

64 RCX7 Y 803 scaffold201_3 10607 0.9936788875 N

65 RCX8 Y 801 scaffold30_1 33899 0.9885931559 Y 1005 scaffold30_1 33899 0.9867617108

66 RCX9 N Y 643 scaffold46_1 23784 0.9919614148

67 RCX92 Y 1169 scaffold2_1 34796 0.9759572573 Y 1039 scaffold2_1 34796 0.982230997

68 PCX9M1 Y 526 scaffold181_1 37968 0.9633204633 Y 1228 scaffold181_1 37968 0.9885462555

69 PCX9M3 Y 524 scaffold55_2 7811 0.9595375723 Y 970 scaffold21_1 22427 0.9823651452

70 PCX9M5 Y 805 scaffold239_1 19889 0.9874529486 Y 1012 scaffold244_1 17171 0.9791459782

71 Xyl 2 Y 218 scaffold188_1 1491 0.9770642202 Y 209 scaffold61_1 1834 0.9959349593

72 Xyl 3 Y 683 scaffold87_1 4981 0.9939577039 Y 924 scaffold14_1 3665 0.9869423286

73 Xyl 4 Y 641 scaffold177_1 32570 0.9789644013 Y 180 scaffold177_1 32570 0.975
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3.6.7 E. coli genomic DNA contamination analysis

Because contamination of samples with E. coli genomic DNA was found to affect down-

stream assembly of barcoded samples, raw data were used to estimate percent contam-

ination. The genome of E. coli DH1 (Genbank accession CP001637) was used as a

reference, being the parent of DH5α, the strain used in the lab for cosmid propagation.

All sequence reads were examined for similarity to the DH1 genome, using a criterion of

100% identity. Contamination ranged from 1% to approximately 50% in the barcoded

samples (Figure 3.2) and 5% in the pooled sample (data not shown).

3.6.8 Read depth analysis

Read depth was estimated for each clone, for both barcoded sequencing and pooled

sequencing. In both cases, the barcoded clone sequence was used as the reference

sequence; raw reads were aligned to the reference sequence using BWA version 0.7.6a

[180] and depth at each base was counted using SAMtools version 0.1.18 [181]. Average

read depth for each clone was calculated (Figure 3.3) as well as read depth at every

base across each clone (Appendix B.1).

3.6.9 Clone sequence similarity analysis

Sequence similarity was estimated for all clones using BLAST [4] on the barcoded

reference sequences, specifically blastn with an e-value cut-off of 0.001. In each pair-

wise comparison, the total alignment length was divided by the shorter clone length

to obtain a similarity value between 0 and 1. Clones with no sequence similarity

identifiable by BLAST were assigned a similarity value of 0.
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3.6.10 Data availability

Raw sequence data are available at the NCBI Sequence Read Archive under Study

SRP031898. Accession numbers for all SRA Experiments are provided (Table 3.10) as

are Sanger end sequences for the pooled sequencing strategy (http://www.cm2bl.org/

~data) and barcode information for the barcoded sequencing strategy (Table 3.8). In

addition, raw data and relevant information for both barcoded and pooled sequencing

may be accessed online: http://www.cm2bl.org/~data
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Table 3.10: Accession numbers for datasets uploaded to NCBI SRA. [167]

NCBI Experiment Title NCBI SRA Experiment Accession Number

Pooled sequencing of cosmid clones from metagenomic libraries SRX367531

MetaMicrobiome-AAACAT SRX375037

MetaMicrobiome-AAAGCA SRX375038

MetaMicrobiome-AAATGC SRX375039

MetaMicrobiome-AACCCC SRX375040

MetaMicrobiome-AACTTG SRX375041

MetaMicrobiome-AAGACT SRX375042

MetaMicrobiome-AAGCGA SRX375043

MetaMicrobiome-AAGGAC SRX375044

MetaMicrobiome-AATAGG SRX375045

MetaMicrobiome-ACAAAC SRX375046

MetaMicrobiome-ACAGTG SRX375047

MetaMicrobiome-ACATCT SRX375048

MetaMicrobiome-ACCCAG SRX375049

MetaMicrobiome-ACCGGC SRX375050

MetaMicrobiome-ACGATA SRX375051

MetaMicrobiome-ACTCTC SRX375052

MetaMicrobiome-ACTGAT SRX375053

MetaMicrobiome-ACTTGA SRX375054

MetaMicrobiome-AGAAGA SRX375055

MetaMicrobiome-AGATAG SRX375056

MetaMicrobiome-AGCATC SRX375057

MetaMicrobiome-AGCGCT SRX375058

MetaMicrobiome-AGGCCG SRX375059

MetaMicrobiome-AGGTTT SRX375060

MetaMicrobiome-AGTTCC SRX375061

MetaMicrobiome-ATAATT SRX375062

MetaMicrobiome-ATACGG SRX375063

MetaMicrobiome-ATCACG SRX375064

MetaMicrobiome-ATCCTA SRX375065

MetaMicrobiome-ATCTAT SRX375066

MetaMicrobiome-ATGAGC SRX375067

MetaMicrobiome-ATGTCA SRX375068

MetaMicrobiome-ATTCCT SRX375069

MetaMicrobiome-CAAAAG SRX375070

MetaMicrobiome-CAACTA SRX375071

MetaMicrobiome-CACCGG SRX375072

MetaMicrobiome-CACGAT SRX375073

MetaMicrobiome-CACTCA SRX375074

MetaMicrobiome-CAGATC SRX375075

MetaMicrobiome-CAGGCG SRX375076

MetaMicrobiome-CATGGC SRX375077

MetaMicrobiome-CATTTT SRX375078

MetaMicrobiome-CCAACA SRX375079

MetaMicrobiome-CCACGC SRX375080

MetaMicrobiome-CCCATG SRX375081

MetaMicrobiome-CCGCAA SRX375082

MetaMicrobiome-CCGTCC SRX375083

MetaMicrobiome-CCTTAG SRX375084

MetaMicrobiome-CGAGAA SRX375085

MetaMicrobiome-CGATGT SRX375086

MetaMicrobiome-CGGAAT SRX375087

MetaMicrobiome-CGTACG SRX375088

MetaMicrobiome-CTAGCT SRX375089

MetaMicrobiome-CTATAC SRX375090

MetaMicrobiome-CTCAGA SRX375091

MetaMicrobiome-CTGCTG SRX375092

MetaMicrobiome-CTTGTA SRX375093

MetaMicrobiome-GAAACC SRX375094

MetaMicrobiome-GAATAA SRX375095

MetaMicrobiome-GACGGA SRX375096

MetaMicrobiome-GAGTGG SRX375097

MetaMicrobiome-GATATA SRX375098

MetaMicrobiome-GATCAG SRX375099

MetaMicrobiome-GATGCT SRX375100

MetaMicrobiome-GCAAGG SRX375101

MetaMicrobiome-GCACTT SRX375102

MetaMicrobiome-GCCAAT SRX375103

MetaMicrobiome-GCCGCG SRX375104

MetaMicrobiome-GCCTTA SRX375105

MetaMicrobiome-GCTCCA SRX375106

MetaMicrobiome-GGCACA SRX375107

MetaMicrobiome-GGCTAC SRX375108

MetaMicrobiome-GTAGAG SRX375109

MetaMicrobiome-GTCCGC SRX375110

MetaMicrobiome-GTGAAA SRX375111

MetaMicrobiome-GTGGCC SRX375112

MetaMicrobiome-TAATCG SRX375113

MetaMicrobiome-TACAGC SRX375114

MetaMicrobiome-TAGCTT SRX375115

MetaMicrobiome-TATAAT SRX375116

MetaMicrobiome-TCATTC SRX375117

MetaMicrobiome-TCCCGA SRX375118

MetaMicrobiome-TCGAAG SRX375119

MetaMicrobiome-TCGGCA SRX375120

MetaMicrobiome-TGAATG SRX375121

MetaMicrobiome-TGACCA SRX375122

MetaMicrobiome-TGCCAT SRX375123

MetaMicrobiome-TGCTGG SRX375124

MetaMicrobiome-TGGCGC SRX375125

MetaMicrobiome-TTAGGC SRX375126

MetaMicrobiome-TTCGAA SRX375127

MetaMicrobiome-TTCTCC SRX375128
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4.2 Abstract

Background: Clone libraries provide researchers with a powerful resource to study

nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided

in studies of microbial biodiversity and function, and allowed the mining of novel en-

zymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid

vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries,

and it was speculated to be a result of fragmentation and loss of AT-rich sequences dur-

ing cloning. However, evidence in the literature suggests that transcriptional activity

or gene product toxicity may play a role.

Results: To explore possible mechanisms responsible for sequence bias in clone li-

braries, I constructed a cosmid library from a human microbiome sample and sequenced

DNA from different steps during library construction: crude extract DNA, size-selected

DNA, and cosmid library DNA. I confirmed a GC bias in the final cosmid library, and

provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences

but is likely occurring after DNA is introduced into E. coli . To investigate the influ-

ence of strong constitutive transcription, I searched the sequence data for consensus

promoter sequences and found that rpoD/σ70 promoter sequences were underrepre-

sented in the cosmid library. Furthermore, when I examined the genomes of taxa that

were differentially abundant in the cosmid library relative to the original sample, I

found the bias to be more correlated with the number of rpoD/σ70 consensus sequences

in the genome than with simple GC content.

Conclusions: The GC bias of metagenomic libraries does not appear to be due to DNA

fragmentation. Rather, analysis of promoter sequences provides support for the hy-

pothesis that strong constitutive transcription from sequences recognized as rpoD/σ70

consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of

the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to

propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional

activity on clone stability are not well understood. Further work is required to tease

apart the effects of transcription from those of gene product toxicity.

101



CHAPTER 4. ANALYSIS OF CLONING BIAS IN METAGENOMIC LIBRARIES

4.3 Introduction

Clone libraries can be generated using a range of source material, from the DNA of

a single organism to the DNA from environmental sources representing often com-

plex microbial communities. Libraries generated from microbial communities are called

metagenomic libraries, and they have been central to a powerful methodology contribut-

ing to understanding the diversity of microbial communities, expanding the knowledge

of gene function, and mining for novel sequences encoding functions of interest. These

activities all fall under the umbrella of functional metagenomics and require cloning

the DNA, typically using low-copy vectors such as cosmids or fosmids. Cloned DNA

is typically propagated in E. coli , and if the vector host range allows, the DNA can

subsequently be transferred to other surrogate hosts that may be more suitable for

heterologous expression.

4.3.1 Possible causes of sequence bias in metagenomic libraries

The general assumption in cloning-based metagenomic approaches is that foreign DNA

can be stably maintained in E. coli and that the cloned DNA is a fair representation

of the original sample. However, it has been previously observed that fosmid libraries

exhibit a GC bias [54, 101, 304]. In general, such cloning biases may affect conclusions

derived from analysis of the clone libraries. The observed GC bias of fosmid libraries

was suggested to be due to fragmentation and subsequent loss of AT-rich sequences

during the cloning process, purportedly because AT-rich sequences have fewer hydro-

gen bonds which makes them more vulnerable to non-perpendicular shear forces [304].

Other possible reasons for the bias in libraries include transcriptional activity of the

cloned DNA [41] as well as toxicity from expressed genes [84, 287]. Though the exact

mechanism(s) by which GC bias occurs has not yet been fully elucidated, the fragmenta-
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tion explanation has been echoed by others [110, 192] despite being purely speculative

and lacking experimental support. Indeed, in my own experience, extracting high-

molecular-weight genomic DNA from low-GC organisms is no more difficult than from

E. coli . I have previously constructed genomic libraries in cosmid vectors using DNA

from Bacteroides thetaiotaomicron and Bacteroides fragilis (Table 2.12; both ∼43%

GC) with no difficulties obtaining high-quality DNA (Figure 4.1) [167].
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Figure 4.1: Pulsed-field gel electrophoresis of extracted Bacteroides ge-
nomic DNA. Genomic DNA extracted from Bacteroides thetaiotaomicron, Bac-
teroides fragilis, and Bacteroides ovatus was found to be high-molecular-weight by
pulsed-field gel electrophoresis. For more details on the molecular markers, see Sec-
tion 2.5.9.
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Furthermore, in the Charles laboratory, we have observed that on occasion, cosmid

clones from metagenomic libraries appear to have suffered insert loss, which is discussed

in greater detail in the “Results and discussion” section below. Therefore, it seemed

that the suggestion by Temperton et al. [304] that the GC bias in cosmid/fosmid

libraries might be due to fragmentation of AT-rich sequences was unlikely to be true;

rather, events occurring in vivo may be contributing substantially to the sequence bias

of libraries.

4.3.2 Aims of this work

I investigated the nature of this GC bias, to characterize whether, and by what mech-

anism, biases may be introduced into the lab’s own cosmid libraries. In particular, I

wished to determine if fragmentation was a major cause of bias, or if there is evidence

that the bias was indeed occurring in vivo. To answer this question, I constructed a

cosmid library using DNA isolated from pooled human fecal samples, saving a portion

of the DNA from three steps of the library construction process: (1) the crude extract

DNA, (2) the size-selected DNA, and (3) the cloned DNA from the constructed cosmid

library (Figure 4.2). The DNA samples were sequenced and the resulting datasets were

analyzed to investigate if, where, and how any bias may have been introduced. Con-

sistent with the aforementioned studies, I observed GC bias in the constructed cosmid

library. However, the results indicate that fragmentation of DNA does not cause any

significant bias; rather, the results are consistent with the hypothesis that the bias

occurs after DNA is introduced into the E. coli host.
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Figure 4.2: Overview of the experimental design for this library bias study. A pooled
human fecal sample was used to construct a metagenomic cosmid library, during which DNA from
three distinct steps was collected and sequenced in order to investigate possible sequence biases and
at what steps the biases were introduced. [165]
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4.4 Results and discussion

4.4.1 DNA sampling and sequencing results

I collected DNA at the three main steps of cosmid library construction: the crude

extract DNA, the size-selected DNA, and the final cosmid library DNA (Figure 4.2).

Before sequencing, I first checked the quality of each sample by gel electrophoresis

(Figure 4.3). As expected, the crude extract was the only sample that contained a heavy

smear of fragmented DNA; the selection for high-molecular-weight DNA greatly reduced

fragmented DNA, as evidenced by its absence from the size-selected sample. The cosmid

library sample exhibited the characteristic multiple banding pattern representing the

various possible conformations of uncut circular DNA.

Figure 4.3: Gel electrophoresis of crude extract, size-selected, and cosmid
library DNA samples. Diluted and undiluted amounts of each sample were gel
electrophoresed for quality control check of DNA prior to Illumina sequencing. [165]
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After confirming DNA quality, the samples were paired-end sequenced on an

Illumina HiSeq 2000 platform, generating ∼1.2 Gb of DNA sequence per sample. It

was expected that the cosmid library would be contaminated with E. coli genomic

DNA and cosmid vector DNA as a result of (1) isolating cosmid DNA from E. coli

cells and (2) the fact that each and every cosmid clone sequenced included its vector

backbone. Thus, for fair treatment, I subtracted E. coli and pJC8 sequences from all

samples (see “Methods” section). For E. coli and pJC8, respectively, 6701 and 164

reads were removed from crude extract data (∼0.05% of all reads); 9273 and 2410 from

size-selected data (∼0.09%); and 851,410 and 2,130,004 from the cosmid library DNA

(∼23%). As expected, the dataset originating from the cosmid library sample had

the highest number of reads subtracted. Though the crude extract and size-selected

samples contained a small amount, these likely represent true environmental sequences;

however, their subtraction was necessary for equal treatment of all samples, and the

small fraction removed should not affect overall conclusions from the data.

After host and vector sequence subtraction, I used Nonpareil [243] to estimate the

overall sequencing coverage of the samples, which was ∼85% for the crude extract and

size-selected samples and ∼95% for the cosmid library sample (Figure 4.4). Interest-

ingly, despite one-quarter of reads in the cosmid library sample being from E. coli or

pJC8, this sample appeared to have the best sequencing coverage, suggesting that the

cosmid library suffered a decrease in diversity as a result of cloning bias. Overall, the

relatively high sequencing coverage for all three samples was sufficient for the down-

stream comparative sequence analyses; for all subsequent results discussed here, the

forward and reverse sequencing reads for the three samples were analyzed separately.
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Figure 4.4: Estimate of sample sequencing coverage using Nonpareil. The software Non-
pareil was used to estimate sequencing coverage for each of the three samples. The software takes a
sequence data file as input and, based on the redundancy of the reads, calculates curves of coverage
versus sequencing effort. [165]
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4.4.2 GC bias is not caused by fragmentation of AT-rich DNA

The experimental design (Figure 4.2) was such that I could address whether the bias

in the metagenomic library was due to fragmentation of DNA during cloning. Because

both crude extract and size-selected samples were sequenced, I could determine whether

the removed fragmented DNA from the crude extract (visible in Figure 4.3) led to a

bias in the size-selected DNA sample. I calculated the percent GC in each of the three

datasets and found that the GC bias was only present in the final cosmid library and

not the size-selected sample (Table 4.1), effectively ruling out fragmentation as the

mechanism for cosmid library bias.

Table 4.1: Percent GC of crude extract, size-selected, and cosmid library
datasets. GC content was calculated after subtraction of E. coli and vector
DNA from all samples. [165]

Sample/dataset No. reads No. Mb %GC

Crude extract F 6,654,484 599 47.7

Crude extract R 6,654,567 599 47.8

Size-selected F 6,645,306 598 46.9

Size-selected R 6,645,817 598 46.9

Cosmid library F 5,134,020 462 53.0

Cosmid library R 5,191,538 467 53.1

After confirming that the bias occurs post size selection, I next asked if certain

taxa were differentially represented across the samples to see if this would point to a

possible reason for library sequence bias. I used Taxy [209] as well as Taxy-Pro [154]

as part of the CoMet web server [189] to do a fast preliminary comparison of taxa

abundance across the three different samples. Taxy calculates k -mer frequencies for the
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dataset and then uses mixture modeling of k-mer frequencies of sequenced genomes to

obtain a profile similar to that of the sample, whereas Taxy-Pro has a similar modeling

approach but uses protein domains rather than k -mer frequencies. Both tools generated

very similar profiles for the crude extract and the size-selected DNA but a very different

profile for the cosmid library DNA (see Figure 4.5 for Taxy results), supporting the

percent GC results.

Figure 4.5: Distribution of bacterial phyla predicted by Taxy. The software
Taxy was used to estimate the distribution of bacterial phyla in each of the three
samples, using a k -mer length of 7.

With positive results from this preliminary work, I then performed more thorough

taxonomic analyses using two different approaches; in the first, all sequencing reads were

used, and in the second, only the 16S rRNA gene-containing reads were used.
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In the first approach, I used the Metagenome Phylogenetic Analysis (MetaPhlAn)

tool, a profiling tool that maps reads against clade-specific marker sequences [258] to

estimate sample composition down to the species level (see Appendix C.1 for summary

table of MetaPhlAn output). I examined the abundance of the top four most common

phyla in human gut metagenomes to see whether there were large overall changes in taxa

abundance across the samples (Figure 4.6). The crude extract and size-selected samples

showed high Firmicutes and Bacteroidetes content with lower levels of Actinobacteria

and Proteobacteria, compositions that are typical of gut-derived samples [72,197,288].

Notably, these results indicated that that DNA from the Firmicutes was nearly absent

in the cosmid library sample, accompanied by an equivalent increase in the Actinobac-

teria. These results were consistent with the percent GC analysis, as members of the

Firmicutes phylum are generally known to be low-GC, and those of the Actinobacteria,

high-GC [97,188].

Figure 4.6: Histogram of abundance of the top four phyla in crude extract,
size-selected, and cosmid library samples. Abundance of the Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria phyla in each sample, as determined
using MetaPhlAn. [165]
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I also examined the MetaPhlAn results at the species level to see which genomes

may be under- or overrepresented in the cosmid library, choosing to examine the top

50 most differentially abundant species (Figure 4.7). Several members of the Bifi-

dobacterium genus were substantially overrepresented in the cosmid library while many

members of the Firmicutes were completely or very nearly lost; for example, Eubac-

terium rectale, Ruminococcus bromii, and Faecalibacterium prausnitzii were all highly

abundant in the original sample.

Figure 4.7: Heatmap of 50 species with differential abundance across crude
extract, size-selected, and cosmid library samples. Abundance in each sample
of the top 50 species determined to be differentially abundant using MetaPhlAn. Abun-
dance is depicted on a log scale. [165]
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In the second approach, I identified reads in the datasets that were from the 16S

rRNA gene, and used the RDP classifier to classify these to the genus level (Figure 4.8).

I found that analyses using only 16S rRNA gene-containing reads showed high agree-

ment with analyses carried out using all reads (i.e., Figure 4.6), indicating that 16S

rRNA gene content tracks well with genomic content in large-insert cosmid libraries.

Both approaches – using all reads or only reads from the 16S rRNA gene – provided

similar results, and both were in agreement with percent GC, Taxy, and Taxy-Pro re-

sults, all of which provide compelling evidence that cosmid library biases are not due

to fragmentation of AT-rich sequences during the cloning process.
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Figure 4.8: 16S rRNA gene analysis results using Infernal for identification of 16S-
containing reads, RDP classifier to classify reads, and MEGAN for visualization of results.
16S rRNA sequences from forward and reverse datasets were classified for all three samples. [165]
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4.4.3 GC content may be a proxy for E. coli σ70

promoter content

From these results, our laboratory’s own experiences, and what was previously known

in the literature, there was reason to suspect that the cause of the bias occurred in

vivo. I wondered whether these AT-rich sequences might have a regulatory role in vivo

and noticed that they may resemble the constitutive E. coli promoter, and in fact, I

am not the first to suggest this resemblance [64, 218], particularly of the ❂10 Pribnow

box (Figure 4.9).

Figure 4.9: Sequence logo of rpoD/σ70 promoter consensus. The consensus
sequence for rpoD/σ70 promoters is AT-rich. Adapted from [262]

To investigate whether transcription of the insert may be having a negative effect

on its maintenance by the host cell, I analyzed the sequence data from the three samples

for E. coli consensus promoter sequences; in particular, I was interested in examining

the data for differential abundance of the rpoD/σ70 consensus sequence, as σ70 is the

“house-keeping” sigma factor whose promoters are constitutive.
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In my analysis, I used the known promoter consensus sequence for rpoD/σ70

[262], and, as negative controls, I used the consensus sequence for: rpoE/σ24 [241];

rpoH /σ32 [224]; rpoN /σ54, which has a GC-rich consensus [346]; as well as the primary

sigma factor of Bacteroides , σABfr [15], because the Bacteroides genus had comparable

abundance across the three samples (Figure 4.8) and because Bacteroides constitutive

promoters are not recognized by E. coli [206]. I examined each of the three samples for

relative abundance of these five consensus sequences; consensus sequences are provided

in Table 4.2.

Table 4.2: Consensus promoter sequences for selected sigma factors.

Sigma factor Consensus sequence Ref.

rpoD (σ70) TTGACAN15-19TATAAT [262]

rpoE (σ24) GGAACTTN15-19TCAAA [241]

rpoH (σ32) TTG[A/T][A/T][A/T]N13-14CCCCAT[A/T]T [224]

rpoN (σ54) TGGCAN7TGC [346]

Bacteroides (σABfr) TTTGN19-21TAN2TTTG [15]

The results showed that while the crude extract and size-selected samples had

similar promoter content profiles, the cosmid library exhibited a deviation (Figure 4.10).

Supporting the hypothesis, only the rpoD consensus content was considerably different

in abundance, by about an order of magnitude when compared to either the crude

extract or size-selected sample.
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Figure 4.10: Histogram of sigma factor consensus sequence content in
crude extract, size-selected, and cosmid library samples. Bars indicate the
number of consensus sequences in each sample, for select E. coli sigma factors and the
Bacteroides primary sigma factor, normalized to the amount of sequence data for that
sample. Consensus content is depicted on a log scale. [165]

The loss of these specific sequences from the cosmid library suggests that the

widely used cloning host E. coli may be problematic for cosmid-cloned fragments of

DNA that incidentally contain constitutively active rpoD promoter sequences; indeed,

these findings are supported by previous reports in the literature, which is discussed in

more detail in the following section. If E. coli does in fact exclude constitutively active

rpoD promoter-containing sequences, simply switching to a different cloning/library

host (even if it were possible) would likely alleviate one problem only to introduce

another, as all organisms have sequences from which constitutive transcription arises.

It may be that multiple backgrounds, with different constitutively active sequences, are

required for the maintenance of metagenomic libraries in an effort to increase sample

representativeness.
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Given that rpoD promoter sequences were underrepresented in the cosmid library

and that certain species appear to be over- or underrepresented, I next asked whether

a species’ abundance in the cosmid library could be predicted from the rpoD consensus

content of its genome. And in particular, is rpoD consensus content more predictive of

library abundance than simple GC content?

To answer these questions, I turned to the results of the MetaPhlAn analysis,

which gave me a list of the top 50 most differentially abundant species (Figure 4.7).

To analyze the genomes of these species for possible sequence determinants of library

abundance, I used the NCBI Genome database to find sequenced representatives of each

species where possible and was able to retrieve 46 genomes (complete, draft, or whole

genome shotgun sequences; see Section 4.6.6 for details); for each genome, I calculated

the percent GC as well as the number of rpoD consensus promoter sequences present

(Table 4.3).
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Table 4.3: Length, percent GC, and rpoD consensus content of the 46 genomes. [165]
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Next, to quantify bias in the cosmid library relative to the original sample (the

crude extract), I calculated the change in abundance of the 46 species (using the average

abundance of the forward and reverse datasets). I then plotted the change in abundance

first against genome percent GC (Figure 4.10A) and second against rpoD consensus

content, normalizing to genome size (Figure 4.10B). The results show that while library

bias only generally correlates with GC content, library bias correlates surprisingly well

with the rpoD consensus content of the genome.

Figure 4.11: Bias in cosmid library relative to crude extract, against
GC content or rpoD consensus content. Species abundance was obtained from
MetaPhlAn analysis of the crude extract and cosmid library samples. Bias is calculated
as change in percent abundance (cosmid library abundance / crude extract abundance)
plotted against GC content (a) or rpoD consensus content (b). Change in abundance is
depicted on a log scale; CE0 values indicate zero abundance in the crude extract sample
and CL0 values indicate zero abundance in the cosmid library sample, as predicted by
MetaPhlAn. [165]
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These results suggest that GC content may be only a rough proxy for rpoD con-

sensus content (as rpoD consensus sequences are AT-rich), but GC content itself may

not be an accurate predictor of library presence/abundance; indeed, in some cases, a

genome may have a moderate or relatively high percent GC but also possess an un-

usually high rpoD consensus content, leading to an underrepresentation in the cosmid

library that could not have been predicted from GC content alone (Figure 4.10). These

results are also consistent with the previous observation that library bias was more

obvious among organisms with low GC content [54] because AT-rich genomes would

have an increased number of rpoD promoter-like sequences simply by chance [219].

4.4.4 Examining the published literature: evidence for tran-

scriptional activity of cloned AT-rich DNA interfering

with stability of circular vectors

This chapter describes analyses concerning metagenomic DNA. However, if there are

rpoD consensus-like sequences that are interfering with the maintenance of foreign DNA

in E. coli , then the scope of the problem extends beyond metagenomics applications.

Curious about the extent of the problem, I performed literature searches to find re-

ports of experienced difficulties cloning AT-rich DNA and/or investigations of possible

mechanisms for those difficulties. My search was fruitful, leading us to literature that

spans the past three decades.

It was reported that there are difficulties associated with cosmid cloning of very

AT-rich genomic DNA [99, 106], and even when genomic libraries can be constructed,

cosmid clones may be unstable [27, 120, 240, 265], which simply means that foreign

DNA fragments are not able to be maintained in the E. coli library host. Thus, if

selection is applied for a marker present on the vector, then in vivo events may lead
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to insert deletion, which has been observed by our lab as well as others, despite using

a host that is a recA mutant [265]. This is particularly evident when the library is

constructed using a high-copy number vector (e.g., one containing a ColE1-type origin

of replication), which has been experienced by our lab (Figure 5.10) and others [40]

and is in agreement with the observation that F-based, single-copy fosmids perform

better than multi-copy cosmids at stably maintaining insert DNA [148]. Loss of cloned

sequence is even more widespread for inserts that have repetitive DNA sequences [33],

as such sequences may be conducive to recombination. One way to combat insert loss

is by minimizing outgrowth of the library-containing cells as much as possible [265],

though this is not always feasible for shared cosmid libraries such as the Canadian

MetaMicroBiome Library collection [222], which require outgrowth to generate stocks

for sharing with the scientific community.

But what is the mechanism for plasmid instability? It was previously shown that

transcriptional activity from a cloned strong promoter could affect plasmid stability by

(1) interfering with the origin of replication via transcriptional read-through into the

vector as well as (2) changing the abundance of protein products involved in plasmid

copy number. Furthermore, plasmid instability was alleviated by placing transcriptional

terminator sequences that flank the multiple cloning site [291]. It was also observed that

strong phage promoters could only be cloned into plasmids that possess a downstream

termination signal [100, 162]. Similarly, AT-rich pneumococcal DNA was found to

contain a high incidence of E. coli strong promoter sequences, and that cloning of

the DNA was improved by using a vector with efficient transcriptional terminators

[40,41,289], although analysis of a set of pneumococcal promoter-containing sequences

indicated that transcription strong enough to interfere with plasmid stability may be

relatively rare and that other factors could be contributing to cloning difficulty [61].

122



CHAPTER 4. ANALYSIS OF CLONING BIAS IN METAGENOMIC LIBRARIES

Another consideration is that efficient transcription of poly-dT (as well as poly-

dG) DNA tracts may cause the DNA to form a stable complex with its own accumulated

transcription products, leading to transcriptional stalling that may interfere with the

replication fork [152, 153, 160]. One particularly interesting observation that has sur-

prisingly not attracted more interest is that linear cloning vectors with transcriptional

terminators provide even more stability than circular vectors with transcriptional ter-

minators [106, 107]. The advantage of these vectors is increased stability due to their

linear conformation, but intriguingly, the mechanism remains unclear, although DNA

supercoiling of plasmids is thought to play a role (Ronald Godiska, personal communi-

cation).

Our findings along with the aforementioned facts suggest that multiple, distinct

mechanisms may be at play to cause cloning bias in E. coli , but that there is evidence

that transcriptional activity of cloned DNA may be contributing to the sequence bias

observed in metagenomic libraries. It is often assumed that toxicity of gene products

may influence the stable maintenance or “clonability” of DNA in E. coli [84, 287,302],

but it is currently unclear whether gene product toxicity is a major factor in the bias

of typical clone libraries constructed using circular vectors. It is interesting to consider

that cloning bias could be due primarily to purely transcriptional activity rather than

the often-blamed protein toxicity.

4.4.5 Cloning bias in a soil metagenomic library

The previous sections discuss the results of using shotgun sequencing to examine bias

in a human fecal library (CLGM1 library; NCBI BioSample SAMN02324081). This

section also discusses the results of 16S rRNA gene sequencing to examine bias in

a corn field soil library (12AC library; NCBI BioSample SAMN02324088) [43]. Both
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libraries were constructed using the same vector, the RK2-based cosmid pJC8 (Genbank

accession KC149513). To examine possible bias in the soil library, I compared the

16S rRNA gene sequences from the original DNA that was extracted from the sample

to the 16S rRNA gene sequences from the final cloned library DNA isolated from

E. coli . Figure 4.12A summarizes analysis at the phylum level for both the fecal and

soil samples.

At the phylum level, the fecal library differs substantially in the relative abun-

dance of phyla compared to its corresponding extract, as discussed in the previous

section. On the contrary, the relative abundance of phyla in the corn field soil library

seemed similar to its extract (Figure 4.12A), although some caution should be exercised

in their interpretation. Unfortunately, the majority of 16S rRNA gene sequences from

the library sample were E. coli contamination, despite treating the library cosmid DNA

preparation with Plasmid-Safe DNase to remove host genomic DNA prior to PCR, as

well as obtaining on the order of millions of sequences from Illumina sequencing; after

subtracting E. coli host sequences, I was left with approximately 30,000 sequences to

represent the metagenomic library (see Section 4.6.7 for details). This high level of

host contamination could be due to preferential amplification of template during PCR

based on differences in DNA conformation: though present in very small quantities,

linear DNA may be more efficiently amplified over supercoiled or closed circular plas-

mid DNA [39]. The issue of E. coli host contamination in 16S rRNA gene analysis

needs to be addressed for future examination of bias in metagenomic libraries.

When I examined the soil samples more closely, I found that the similarity of the

library and extract at the phylum level does not extend to the “species” level: examina-

tion of the individual OTUs in each sample revealed that only a small fraction of OTUs

are shared between the library and original sample (Figure 4.12B). Interestingly, this

analysis indicated that there were a number of OTUs in the library that were not iden-
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Figure 4.12: Metagenomic libraries exhibit cloning bias when compared to the original
environmental sample. (A) Relative abundance of bacterial phyla from two previously constructed
metagenomic libraries, a human fecal library [165] and a corn field soil library [43], compared to their
original sample DNA extracts. (B) Number of OTUs identified from corn field soil DNA extract and
library, and whether the OTUs were present in the library sample only, the extract sample only, or
present in both. (C) Examination of cloning bias by comparing the relative abundance of OTUs that
were present in both the DNA extract and the cosmid library, shown on a log scale; horizontal line at
1 denotes equal relative abundance in both samples.
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tified in the extract sample (Figure 4.12B) and although this number is halved when

the library data are compared to extract data that have not been rarefied (data not

shown), they nevertheless remain, indicating that these OTUs are either extremely rare

in the original sample and their DNA is preferentially cloned or that the identification

of these OTUs is due to sequencing errors. A further analysis of the OTU fraction that

is shared between extract and library samples shows a large range in the bias in relative

abundance of each OTU, with some OTUs exhibiting a 1000-fold overrepresentation

and others a 1000-fold underrepresentation in the library (Figure 4.12C). While there

may be concern that 16S rRNA gene profiles of libraries compared to extracts may

not provide an accurate comparison of cloned DNA content in general, I have shown

in a previous section that for large-insert RK2 oriV -based cosmid libraries, 16S rRNA

gene tracks well with genomic content (Figure 4.4.2). The analysis of the corn field

DNA extract and corresponding metagenomic library suggests that though the overall

relative abundance of phyla may remain similar, bias is occurring on the level of indi-

vidual OTUs. This indicates that when trying to understand bias, using the popular

representation of samples as barplots of bacterial phyla may be inappropriate; rather

an OTU-level analysis may be required (Figure 4.12B versus Figure 4.12C). For mining

purposes, the fact that certain taxa are under- or overrepresented might not pose a

barrier to screening, but it may be useful to know from the beginning what sequences

are not likely to be captured in libraries.

4.5 Conclusions

The results presented in this chapter and what was already known from the literature

together support the hypothesis that GC bias in typical clone libraries (that is, using

circular vectors) is related to constitutive promoter activity of the insert in E. coli ,

126



CHAPTER 4. ANALYSIS OF CLONING BIAS IN METAGENOMIC LIBRARIES

although DNA topology as well as toxic protein effects may also influence insert and

plasmid maintenance. In this analyses, I have focused only on would-be strong consti-

tutive promoters in E. coli (rpoD/σ70 consensus sequences) because there is evidence

that high-level transcription may have negative effects. It is important to acknowledge,

however, that functional metagenomic approaches rely on E. coli (or other hosts) being

able to transcribe and translate foreign DNA, in order to identify fragments encoding

functions of interest. This ability of E. coli to initiate low-level transcription from

diverse sources [214] and to be able to produce foreign proteins has been immensely

advantageous for functional metagenomics and likely has contributed to the general

assumption that E. coli is tolerant of foreign DNA, whether it expresses it or not. Our

work, however, suggests that more careful consideration of cloning strategies may be

required.

The stability of foreign DNA in E. coli is influenced by the copy number of its

host plasmid and, as a result, single-copy fosmids may be ideal as the library back-

bone [148], although the success of some functional screens may be dependent on a

higher gene dose. Possible alternatives to fosmid vectors include BACs [142] as well as

linear vectors, which may provide exceptional stability [106]. However, cos-based vec-

tors are likely to remain popular for their advantages: the availability of high-quality

commercial packaging extracts, the efficiency of transduction over transformation, and

the decreased probability of insert concatemers due to the phage head upper size limit.

Though there exists variety in library cloning vectors, further work is required to un-

derstand how and to what extent cloning vector choice impacts library sequence bias.

Currently, there are three outstanding questions: (1) to what extent does tran-

scription contribute to metagenomic library bias, (2) what factors affect whether tran-

scription will be problematic, and (3) how can transcriptional effects be minimized so

that DNA can be faithfully maintained in E. coli . An important consideration may
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be the likelihood of an rpoD consensus sequence being cloned on any given fragment

from a genome or metagenome. As an example, let us consider Ruminococcus bromii,

which was one of the most highly abundant species in the original sample but became

nearly absent in the cosmid library according to our analyses (∼7% versus ∼0.01%, re-

spectively; see Section C.1). R. bromii has a genome size of 2.25 Mb; theoretically, its

genome can be represented in ∼80 fragments if we consider that the average fragment

in the particular cosmid library discussed here is ∼28 kb (data not shown). Given that

there were 77 rpoD consensus sequences identified in its genome (Table 4.3), poten-

tially many fragments could include a sequence that behaves as a strong, constitutive

promoter in E. coli . I acknowledge that although this work supports the hypothesis

that constitutive transcription contributes to library bias, more concrete evidence is

required to confirm this hypothesis.

If strong transcription from the insert into the vector backbone contributes in part

to the observed cloning bias—affecting the origin of replication, for example—it may

be helpful to use vectors that include transcriptional terminators flanking the cloning

site. Our lab is currently investigating the extent to which transcriptional termina-

tors alleviate the cosmid library sequence bias, which may help tease apart the issue

of transcription from that of gene product toxicity. While it is generally recognized

that different expression hosts are needed for functional screening (discussed in Sec-

tion 1.6.3), it is not as widely acknowledged that using E. coli as the sole cloning host

for metagenomic DNA itself may be quite limiting due to the potential lack of sample

representativeness from the outset. It is interesting that despite decades of using E. coli

as “the workhorse of molecular biology,” there is still much left to discover about how it

tolerates exogenous DNA, which should serve as a reminder to us of how necessary it is

to continually re-evaluate even our most basic methodological assumptions, particularly

when they concern the inner workings of the cell.
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4.6 Specific materials and methods

4.6.1 Sampling of DNA during fecal library construction

Methods for the construction of cosmid libraries, including the specific human gut

metagenomic library discussed here (NCBI BioSample ID SAMN02324081), have been

previously described in detail [167]. Briefly, DNA was extracted from pooled human

fecal samples using freeze-grinding with liquid nitrogen followed by gentle lysis. Crude-

extracted DNA was then size-selected by pulsed field gel electrophoresis using a CHEF

Mapper Pulsed Field Gel Electrophoresis System (Bio-Rad), followed by electroelution,

retaining fragments between approximately 40 and 70 kb. The size-selected DNA was

end-repaired, purified, and ligated into the Eco72I site of linearized dephosphorylated

pJC8 vector DNA (Genbank accession KC149513). The ligation product was packaged

into λ phage heads using Gigapack III XL Packaging Extract (Stratagene 200209),

followed by transduction of E. coli HB101. Transductants were recovered on LB agar

supplemented with tetracycline (20 ➭g/ml) and incubated overnight at 37❽. Resulting

colonies were enumerated to estimate library size (∼42,000 clones), and colonies were

resuspended, pooled, and frozen at -80❽ to form the cosmid library stock.

During construction of the cosmid library, DNA was sampled from three steps:

(1) the crude extract DNA, (2) the size-selected DNA, and (3) the final cosmid library

DNA, prepared from the frozen stock using a GeneJET Plasmid Miniprep Kit (Thermo

Scientific K0502).
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4.6.2 Purification, quantification, and Illumina sequencing of

DNA

Two of the three DNA samples, the cosmid library DNA and the size-selected DNA,

were sufficiently pure for Illumina sequencing, as gauged by 260/280 and 260/230-

nm ratios (Nanodrop ND-1000 Spectrophotometer); however, the crude extract DNA

required further purification. Crude extract DNA concentration was estimated by gel

electrophoresis, using bacteriophage λ DNA as a standard; ∼150 ➭g in 1 ml was purified

and concentrated on the synchronous coefficient of drag alteration (SCODA) instrument

(Boreal Genomics), using an established protocol [75].

All samples were re-quantified by gel electrophoresis, using bacteriophage λ DNA

as a standard, and >2 ➭g of each sample was sent to the Beijing Genomics Institute

(BGI, Hong Kong) for 90-base paired-end sequencing on the Illumina HiSeq 2000 plat-

form, using their in-house protocols and reagents for 350-bp fragment library construc-

tion. Approximately 6.7 million reads were obtained in both the forward and the

reverse direction, generating ∼1.2 Gb of sequence data per sample. All sequence data

have been made publicly available (see “Data” section).

4.6.3 Subtraction of E. coli and vector DNA from fecal se-

quence data

The fecal cosmid library sequence data were expected to have substantial contamination

with E. coli genomic DNA and pJC8 vector sequences. Sequence data were cleaned

of contaminating E. coli genomic DNA and vector DNA, using BLAT [146] with a

conservative criterion of 100% identity. To remove E. coli contamination, I used the

genome of E. coli K12 MG1655 (Genbank accession U00096.3), which to our knowledge

130



CHAPTER 4. ANALYSIS OF CLONING BIAS IN METAGENOMIC LIBRARIES

is currently the closest sequenced relative of HB101, the library host strain. To remove

vector contamination, I used the sequence of pJC8 (Genbank accession KC149513), for-

matted to simulate Eco72I-cut, cloning-ready vector by removing the 0.8-kb gentamicin

resistance gene stuffer present between the two Eco72I sites.

4.6.4 Taxonomic analysis

To examine taxonomy based on only the 16S rRNA gene sequences present in the data,

I identified 16S-containing reads using Infernal version 1.1 [220] and classified them

using the RDP Classifier version 2.8 [323]. The classifier output was visualized using

the MEtaGenome ANalyzer (MEGAN) version 5.6 [132]. To examine taxonomy using

all sequence reads (i.e., not only those identified as 16S reads), I used the MetaPhlAn

tool version 2.0, along with its built-in scripts for visualization [258].

4.6.5 Promoter analysis

To estimate promoter content in the data, I searched for known sigma factor consensus

sequences for the E. coli sigma factors, rpoD/σ70, rpoE/σ24, rpoH /σ32, rpoN /σ54, as

well as for the Bacteroides primary sigma factor, σABfr. To do this, I used regular

expression pattern matching with Python version 2.7.3; consensus promoter sequences

and literature references were provided in Table 4.2 and regular expressions are provided

in Table 4.4.
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Table 4.4: Regular expressions used for selected promoter consensus sequences.

Sigma factor Regular expression

rpoD (σ70) TTGACA.{15,19}TATAAT

rpoE (σ24) GGAACTT.{15,19}TCAAA

rpoH (σ32) TTG[AT][AT][AT].{13,14}CCCCAT[AT]T

rpoN (σ54) TGGCA.{7}TGC

Bacteroides (σABfr) TTTG.{19,21}TA.{2}TTTG

4.6.6 Analysis of reference genomes

Genome sequences were downloaded from the NCBI Genbank database as complete

genomes, draft genomes, or from whole genome shotgun sequencing projects. Organ-

ism names and accession numbers, as well as other relevant information, are provided

(Table 4.5).
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Table 4.5: NCBI accession numbers for genome sequences of the 46 species selected for percent
GC and rpoD consensus content analysis. [165]
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4.6.7 16S rRNA analysis for soil extract and library

Construction of the 12AC library was previously described [43]. Crude DNA extract

of corn field soil was purified using the SCODA method [75]. Cosmid library DNA

was miniprepped from E. coli HB101 using a GeneJet Plasmid Miniprep kit (Thermo

Scientific K0502). Cosmid DNA was treated with Plasmid-Safe ATP-dependent DNase

according to the supplier’s recommendations (Epicentre Biotechnologies E3101K). PCR

was carried out on the samples as previously described, using bacterial V3-specific

primers 5’CCTACGGGAGGCAGCAG and 5’ATTACCGCGGCTGCTGG [14]. Amplicons were se-

quenced at the NRC-PBI Saskatoon Research Facility (Saskatoon, Canada) using the

Illumina GAIIx platform. Paired-end sequences were assembled using PANDAseq ver-

sion 2.8 [205] using default parameters; 1,823,112 and 1,886,370 sequences were assem-

bled for the extract and cosmid library sample, from an input of 1,960,793 and 2,035,138

paired-end sequences, respectively. E. coli sequences were filtered out, using a crite-

rion of 100% identity to E. coli MG1655 (the closest sequenced relative of HB101),

resulting in 233 sequences removed from the extract sample and 1,453,806 sequences

removed from the cosmid library sample. Sequences were subsequently processed via

AXIOME2 [195] running QIIME version 1.9, specifying UPARSE (USEARCH version

7.0) to cluster the sequences using default parameters and the RDP classifier version 2.2

trained with the Greengenes database version 13.8 to classify defined OTUs. From the

resulting OTU table, E. coli was filtered a second time by manually removing OTUs

classified as Enterobacteriaceae, which consisted of 109 sequences from the extract sam-

ple and 335,994 sequences from cosmid library sample. The extract sample was then

rarefied using QIIME to match the cosmid library, retaining ∼30,000 sequences for each

sample, altogether comprising ∼4000 OTUs.
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4.6.8 Data availability

Raw Illumina sequence data for the CLGM1 human gut cosmid library (NCBI BioSam-

ple SAMN02324081), size-selected, and crude extract DNA samples are available at the

NCBI Sequence Read Archive under Study SRP031898. Accession numbers for SRA

Experiments are: SRX683591 for the crude extract, SRX683589 for the size-selected,

and SRX683586 for the cosmid library. Sequence data for the 12AC corn field DNA

extract and corresponding metagenomic library (NCBI BioSample SAMN02324088)

previously constructed [43] have been deposited at NCBI SRA; accession numbers are

SRX1015944 and SRX1015946 for the extract and cosmid library, respectively. In

addition, raw data and other relevant data for this study may be accessed online:

http://www.cm2bl.org/~data
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5.2 Abstract

Functional metagenomic approaches are becoming increasingly important in this age of

relatively inexpensive high-throughput sequencing, in which obtaining sequence data

from metagenomes is widely accessible but lack of knowledge of gene function makes

annotation of those datasets incomplete. Function-based approaches can help to fill

this gap in knowledge by providing information about gene function for as-yet unchar-

acterized sequences through the cloning, expression, and functional screening/selection

of DNA from metagenomes. Importantly, this process is dependent on the ability to ex-

press the cloned DNA in a surrogate host; though E. coli is a popular host for screening

of metagenomic libraries, it may not be ideal.

Regarding human gut metagenomic DNA in particular, the Gammaproteobacte-

ria E. coli may be inadequate due to barriers in transcription and/or translation. The

bacterial community that inhabits the human distal gut is composed predominantly of

members of the Bacteroidetes and Firmicutes phyla; though there are Proteobacteria

present, they are usually vastly outnumbered. For one dominant member of the Bac-

teroidetes phylum, Bacteroides thetaiotaomicron (B. theta), it has been shown that the

E. coli σ70 sigma factor is unable to substitute the function of the Bacteroides sigma

factor in vivo and is therefore unable to transcribe Bacteroides DNA, although spurious

transcription is possible.

With growing interest in the human gut microbiome, B. theta is attracting the

attention of researchers interested in understanding its dominance and stability in the

gut environment as well as those interested in harnessing these properties for micro-

biome engineering. In this chapter, I discuss how B. theta might be useful for functional

metagenomics as a screening host, to express DNA present in gut-derived metagenomic

libraries. B. theta is a good candidate because it already has reasonably well-developed

molecular genetic methods, including methods for conjugation and mutant construc-

tion. In addition, it has inherent advantages such as aerotolerance and the ability to

degrade various complex polysaccharides, which make it relatively easy to manipulate

in a typical laboratory setting and provides potential phenotypes for functional comple-

mentation, respectively. Here, I present the results of developing B. theta VPI-5482 as a

surrogate host for functional screening, through the construction of B. theta-compatible

cos-based cloning vectors, generation of human gut metagenomic libraries, and attempt

to complement B. theta mutants. In my first unsuccessful attempt, I constructed a high-
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copy cosmid vector called pKL3, based on an existing E. coli -B. theta shuttle vector,

but found after generating libraries that metagenomic DNA inserts maintained at high

copy number were unstable and led to difficulty conjugating into B. theta. In my sec-

ond attempt, I constructed a fosmid vector called pKL13, based on the commerical

pCC1FOS, and found that metagenomic libraries were both more stable and exhibited

sufficient conjugation efficiency for attempting functional screens in B. theta.

For B. theta mutant strains to use in complementation screens, I constructed

amino acid auxotrophs using single recombination of a suicide vector to disrupt genes

in either the threonine or tryptophan biosynthesis operons. Unfortunately, complemen-

tation of single recombinants proved unsuccessful as the recombinants had a tendency

to revert to wild-type. Instead, I tried to complement an existing B. theta deletion mu-

tant, a mutant missing the chuR gene that is required for growth on chondroitin sulfate

as sole carbon source. This screen was successful, leading to the isolation and analysis

of several complementing clones from the human gut metagenomic library, including

one chuR gene exhibiting 97% nucleotide sequence identity to the wild-type VPI-5482

sequence. Unfortunately, however, this analysis also led to the discovery that fosmid

clone DNA appeared to have recombined into the B. theta chuR mutant host genome.

The inability to retrieve fosmid clone DNA poses a barrier to screening of pooled

metagenomic libraries; to tackle this problem, it was necessary to track individual

clones being conjugated into B. theta. In a proof-of-principle experiment, I generated

an arrayed collection using a subset of clones from the pKL13-based metagenomic

library, and performed a two-step screening strategy to identify which clones in the

array led to complementation of the chuR phenotype. Results from this attempt show

that the method is promising, although mating conditions need to be refined to achieve

the high throughput required for screening hundreds of thousands of clones in this

manner. Based on the results presented here, B. theta has potential for use as a host

in functional screening of gut-derived metagenomic DNA.
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5.3 Introduction

Bacteroides thetaiotaomicron, or B. theta, is a microbe that is frequently a dominant

member of the human gut, specifically the distal intestine [12, 339]. It is a Gram-

negative anaerobe whose genome sequence was made available in 2003 [339]. The

sequenced representative is the type strain from the Virginia Polytechnic Institute,

VPI-5482; an alternative name for the same strain from the American Type Culture

Collection is ATCC 29148 [339]. The type strain has one 6.3-Mb chromosome and one

33-kb plasmid called p5482.

As research interest concerning the role of the human-associated microbiota in

human health has grown, and particularly of the human gut microbiota, so too has

the interest in B. theta grown. Its dominance in the gut, its ability to break down

complex polysaccharides from both the host as well as the host dietary intake, and its

tractability in bacterial genetics has brought it to the forefront of human microbiota

studies. This introduction will discuss B. theta’s role and functions in its symbiosis with

the host, give an overview of molecular genetic methods used to work with B. theta

in the laboratory, and finally, touch on the reasons that B. theta would be a suitable

expression host for functional metagenomics.

5.3.1 Mutualistic role and polysaccharide utilization abilities

The digestion of complex polysaccharides in the gut requires the action of glycoside

hydrolases (GHs) and polysaccharide lyases (PLs), enzymes which are able to hydrolyze

glycosidic bonds and cleave carbohydrates using an elimination mechanism, respectively

[56]. Interestingly, compared to the microbes that reside in our gastrointestinal tract,

humans have no PLs and only a relatively small number of GHs, with only a handful of

these participating in digestion, specifically of starch, sucrose, and lactose (Figure 5.1).
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Other GHs:

Lysosomal GHs

GHs for processing of host N -glycans

GHs involved in tissue development

GHs for defence against pathogens

GH-like proteins with regulatory functions
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GH1, GH13,

GH31, GH37

GH families:

GH1, GH9, GH18,

GH31, GH35
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Non-digestive

Digestive

Possibly digestive

Figure 5.1: Classification of glycoside hydrolases encoded by the human genome.
Adapted from [72].

In general, the gut microbiota allow energy to be harvested from many complex

polysaccharides in the common human diet that would otherwise be undigestable, such

as pectin, cellulose, and hemicellulose [12]. Our resident microbiota produce short chain

fatty acids from fermentation of these polysaccharides, which are then taken up by our

colonocytes [48], particularly butyrate [67]; in this manner, our microbiota have been

estimated to produce between 5-10% of our energy requirements [207]. An assessment

of a fraction of these bacteria whose genomes are sequenced reveals that many species

possess GHs and PLs; in particular though, members of the Bacteroidetes have both a

large number as well as diverse members of GHs and PLs, with B. theta close to the

top (Figure 5.2).
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Figure 5.2: Total number and number of different GH and PL genes in gut bacterial
genomes. Adapted from [72].

That B. theta would possess both a large number and diverse members of these

enzymes is perhaps not surprising, as it has been characterized as a “generalist” with

the ability to degrade a broad range of polysaccharides in the gut, in contrast to “spe-

cialists” that can only degrade one or a few polysaccharides [158]. Its relatively large

genome size of ∼6.3 Mb has been attributed to this generalist lifestyle in the “use-it-

or-lose-it” hypothesis of gene retention [221].

The Starch Utilization System (SUS) in B. theta is a canonical example of an

operon devoted to the degradation of a particular polysaccharide (Figure 5.3). The

system was first studied in the 1980s in the laboratory of the late Abigail Salyers. Using

transposon mutagenesis, it was found that starch utilization mutants had insertions

clustered within an 18-kb region of the chromosome [297]. Biochemical and genetic

analyses of B. theta revealed that cells did not secrete extracellular enzymes, but instead

bound starch for eventual degradation in the periplasm or cytoplasm [5, 6]. Later
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work in the Salyers lab identified all 8 members of the sus locus, susRABCDEFG

[57, 58, 238, 239]. Briefly, outer membrane proteins SusE, SusF, and SusD bind the

starch molecule allowing it to be degraded into smaller oligosaccharides by the amylase

SusG; SusE and SusF were shown to be not required for growth on starch [45] though

they are involved in enhancing starch binding [32,263]. SusG-generated oligosaccharides

are transported via the transporter SusC to the periplasm where SusA and SusB cleave

them to form smaller mono- and disaccharides, which are finally transported into the

cytoplasm for use by the cell. SusR is involved in activation of the locus and its

expression is induced by maltose.

Monosaccharide import

Oligosaccharides

Starch

Amylases

Inner membrane

SusR

SusD

SusC

SusFSusE

Maltose sensor and regulator:
transcriptional activation of the sus operon

TonB

SusG
(GH13)

SusA
(GH13)

SusB
(GH97)

Outer membrane

Figure 5.3: Overview of the canonical Starch Utilization System (SUS). Adapted
from [158]
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The sus locus is one example of an operon that encodes an entire membrane-

associated multi-protein system for tackling the degradation of a specific polysaccharide,

namely starch. B. theta uses similar operons to degrade other carbohydrates, called

SUS-like systems or polysaccharide utilization loci (PULs) [202]. Remarkably, B. theta

is estimated to have a total of 88 of these PULs, which comprise 18% of its genome

and 866 of its genes, enabling it to degrade a wide range of glycans, from host-derived

glycans such as mucin O-glycans and chondroitin sulfate to plant-derived glycans such

as amylopectin and inulin [200,202], although the majority of its 88 PULs are thought

to be involved in the breakdown of plant polysaccharides [331].

These systems are interesting in that they afford members of the Bacteroidetes

a competitive advantage, but each species may have its own micro-habitat or niche

depending on the array of PULs its genome possesses. For example, B. theta seems

well-suited for growth on host mucins while a related species, Bacteroides ovatus , may

thrive on plant cell wall hemicellulose [158]. The SUS and SUS-like systems are of

particular interest because Bacteroides mutants deficient in these systems may be good

candidates for use as hosts in functional complementation screening.

5.3.2 Overview of molecular methods for B. theta

Over the past few decades, research interest in members of the Bacteroides has grown,

leading to the development of molecular methods for use with these organisms, specif-

ically with B. theta. Work in the Salyers’ lab led to the development of Bacteroides as

a genetic system, as well as the related Porphyromonas and Prevotella. Abigail Salyers

was interested in the Bacteroides and related organisms for both their environmental

and clinical significance. As mentioned, her lab did the initial studies on the sus locus

in B. theta, but her lab also studied antibiotic resistance in B. theta, mediated by
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mobile elements, which include conjugative transposons [250] and mobilizable insertion

elements [182]. Their work developing genetic methods in B. theta culminated in the

publication of two important reviews of genetic techniques in B. theta, one in 1999

called “Genetic Methods for Bacteroides Species” [249] and another in 2000, called

“Starting a new genetic system: lessons from Bacteroides” [248]. In the following sec-

tions, I will attempt to summarize the microbiology and molecular genetic methods

used to work with B. theta, both those that stem from early work and those that have

been developed since then.

Vectors

All of the B. theta-compatible vectors in use today appear to use origins of replication

that can be traced back to just a few native plasmids originally isolated from Bacteroides

species. From the literature, the two most common originate from the 4.4-kb plasmid

pB8-51 isolated from Bacteroides eggerthii B8-51 [268] and the 2.7-kb plasmid pBI143

isolated from Bacteroides fragilis IB143 [274]. Both plasmids have a copy number of

approximately 10 to 20 in Bacteroides and, interestingly, the two origins have been

shown to be compatible [290], although pB8-51 appears to have a broader host range

and can replicate in Prevotella and Porphyromonas species in addition to Bacteroides

species. The plasmid pBI143 was sequenced in 1995 [278], about one decade after its

isolation.

A range of B. theta vectors have been developed: shuttle vectors and suicide

vectors, many of which have been previously reviewed by Salyers et al. [249], and

even expression vectors are available for use in Bacteroides [277]. Nucleotide sequence

data available for some B. theta plasmids (native plasmids or cloning vectors) are

summarized in Table 5.1.
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Table 5.1: Plasmids relevant for genetics in B. theta, with available sequence

Vector Source Ref.

pBI143 Genbank U30316 (1995) [278]

pFD288 Genbank U30830 (1995) [278]

pBA Genbank AF203972 (2006) [336]

pFD1146 Genbank JQ776640 (2012) [228]

pBUN24 Genbank EU818711 (2013) [264]

pVAL-1 Genbank AB775653 (2014) [314]

pTIO-1 Genbank AB775804 (2014) [296]

pKNOCK-bla-ermG https://gordonlab.wustl.edu/plasmids/ [159]

pKNOCK-bla-tetQ https://gordonlab.wustl.edu/plasmids/ [200]

pNBU2-bla-ermG https://gordonlab.wustl.edu/plasmids/ [159]

pNBU2-bla-tetQ https://gordonlab.wustl.edu/plasmids/ [200]

There have not been many cosmid vectors constructed for use in the Bacteroides ,

however, as searches of the literature have turned up only two cosmids, both constructed

in the late 1980s:

❼ pNJR1/pNJR5 [265] was constructed in Abigail Salyers’ lab and employs the

Bacteroides pB8-51 origin and the E. coli RSF1010 origin (IncQ).

❼ pOA10 [112] was constructed at UCSD and uses the less popular Bacteroides

pCP1/pBFTM10 origin and the E. coli pBR322 origin.
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Selectable markers and reporters

There are two antibiotic selectable markers that appear to be favoured for use in

B. theta, erythromycin and tetracycline. Other antibiotics have been used successfully

in B. theta in the literature, however, and a summary of the possibilities is presented

in Table 5.2.

Table 5.2: Antibiotic markers in B. theta.

Antibiotic Concentration Reference

erythromycin (ermF, ermG) 10-25 ➭g/ml [32,268]

tetracycline (tetQ✯) 3 ➭g/ml [265]

clindamycin (ermF, ermG) 5-20 ➭g/ml [268,274]

ampicillin (cfxA) 25-50 ➭g/ml [182]

chloramphenicol (cat) 10-15 ➭g/ml [277,290]

Additionally, reporter systems that have been used successfully in B. theta or

closely related species include:

❼ β-glucoronidase (uidA) [249]

❼ β-xylosidase (xyaA) [249]

❼ chloramphenicol acetyl transferase (cat) [15]

❼ catechol 2,3-dioxygenase (xylE ) [38]

❼ luciferase, including lux and [206] and Nanoluc [215]

✯distinct from E. coli tetracycline resistance

147



CHAPTER 5. DEVELOPMENT OF BACTEROIDES THETAIOTAOMICRON AS A SCREENING HOST

Conjugation

The native plasmids isolated from Bacteroides species – pBI143, pB8-51, and pBFTM10

– all have mob regions and can be mobilized by R751 or RP4/RK2 [267, 276] though

these helper plasmids cannot replicate in the recipient [250]. Interestingly, despite the

fact that R751 does not recognize the RK2 oriT , most or all of the B. theta plasmids

can be mobilized by both R751 and RK2 [248].

Conjugations from an E. coli donor into a B. theta recipient can be done anaer-

obically on nitrocellulose filters placed on TYG agar plates [268, 279] or aerobically as

a lawn on brain-heart-infusion blood plates [159]; in the latter method, anaerobic in-

cubation is not required likely because the initial growth of E. coli sets up a barrier to

the oxygen, allowing the anaerobic B. theta to grow between the agar surface and the

E. coli lawn. Conjugations from a B. theta donor into an E. coli recipient are possible

but require that the the Bacteroides strain express transfer genes, such as those from

a conjugative transposon, as it has been shown that R751 integrated into the genome

of B. theta was not able to mobilize out on its own, likely because R751 transfer genes

are not expressed in Bacteroides [250,269].

Conjugations require counter-selection. For conjugations from B. theta into E. coli ,

selection via aerobic incubation of plates is obviously sufficient, although transconju-

gants must be streaked for purity because B. theta can co-culture with E. coli [267].

Conjugations from E. coli into B. theta on the other hand require the use of antibiotics

against the E. coli donor because it is a facultative anaerobe that is able to grow in the

absence of oxygen. The B. theta type strain VPI-5482 has been reported to be naturally

resistant to all aminoglycosides [268], up to 1 mg/ml [266] as well as nalidixic acid [306].

The antibiotics that can be used and their concentrations are listed in Table 5.3.
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Table 5.3: Counter-selection against E. coli .

Antibiotic Concentration Reference

gentamicin 200 ➭g/ml [314]

geneticin (G418) 400 ➭g/ml [267]

nalidixic acid 100 ➭g/ml [268,306]

cefoxitin 50 ➭g/ml [133]

streptomycin 200 ➭g/ml this study

kanamycin 200 ➭g/ml this study

Transduction

There is currently no transducing phage for Bacteroides [248]. A transducing phage

would provide a means to isolate the genetic background of mutant strains to ensure

the absence of other mutations, or to combine two mutations into a single background.

However, the search for a transducing phage can be difficult and time-consuming [248],

which is probably why such a tool for the Bacteroides remains elusive.

Electroporation

Wild-type Bacteroides strains are typically recalcitrant to the introduction of heterolo-

gous DNA, possibly due to the presence of restriction-modification systems. However,

it has been shown that E. coli -derived DNA can be electroporated into some Bac-

teroides species [275], with especially high efficiency into B. fragilis [133]. The same

group has reported being able to successfully electroporate E. coli HB101-derived DNA

into B. theta VPI-5482 [133]. Interestingly, the Salyers group was not able to achieve

this, but they have published that B. theta-derived DNA can be re-introduced into
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B. theta via electroporation at high frequencies [182], both observations that I can

confirm (unpublished data).

Mutant construction

B. theta mutant construction is fairly straightforward as suicide vectors and conjuga-

tion strategies are available. Single recombinants can be made using a suicide vector,

such as pKNOCK-bla-ermG (Figure 5.15A) [159], which carries the ori R6K origin

of replication that requires the use of λ-pir strains. Conveniently, constructs can be

mated from E. coli S17-1 λ-pir in biparental conjugations [201] that are more efficient

that triparental conjugations using a mobilizer strain .

Double crossover-based methods allow for the construction of clean deletions (e.g.,

the removal of a specific open reading frame), and can be generated using the suicide

vector pExchange-tdk [159], a derivative of pKNOCK-bla-ermG that carries the B. theta

tdk gene. The tdk gene provides the counter-selection that is required to make a clean

deletion and must be used in combination with a B. theta tdk deletion mutant. In the

presence of Tdk, B. theta becomes sensitive to the nucleotide analog 5-fluoro-2-deoxy-

uridine (FUdR) [159]. Thus, mutant construction involves the following steps:

❼ cloning the ORF’s upstream and downstream regions into the vector, generating

the deletion construct

❼ conjugating the new construct into the tdk mutant, selecting with erythromycin

for integration of the suicide plasmid into the genome at the location of the ORF

❼ selecting with FUdR for loss of the integrated plasmid, followed by screening

FUdR-resistant, erythromycin-sensitive clones for loss of the ORF, using PCR
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5.3.3 Use of B. theta in systems biology and synthetic biology

Since this project began, there have been studies in systems biology and synthetic bi-

ology making use of B. theta. In a recent study, a functional genomic approach was

used to explore which B. theta genes contribute to fitness in the gut: small fragments

of B. theta genomic DNA were cloned into an E. coli expression vector to drive ex-

pression of B. theta genes, forgoing the requirement for E. coli to recognize native

B. theta elements for transcription and translation [341]. The researchers introduced

this library into mice; then, by sampling mouse feces that was shed and sequencing

the DNA present, they were able to identify which B. theta genes were carried by the

clones that dominated the population in the mouse gut as time progressed. Perhaps

unsurprisingly, the two genes that dominated by far (>90% by sequencing) were ones

involved in carbohydrate utilization: BT 1759 encodes a periplasmic glycoside hydro-

lase involved in hydrolyzing fructo-oligosaccharides and sucrose [285] and the adjacent

BT 1758 encodes a glucose/galactose transporter. This experiment illustrates the po-

tential of using functional genomics to understand how specific genes might contribute

to a microbe’s fitness in the host gut. Although this experiment was done in E. coli

and using only B. theta genomic DNA, the next step would be to use larger inserts

for cloning, metagenomic DNA from the whole gut community, or even a different

surrogate host [81].

In another study, B. theta was engineered to respond to environmental cues

present in the mouse gut by expressing a luciferase reporter gene as well as recording

this encounter through the modification of its own DNA [215]; this is often described

as equipping the organism with “synthetic genetic memory”. First, as a foundation for

their work, the researchers developed a repertoire of genetic parts to use in B. theta, in-

cluding promoters and RBSs that together allow gene expression to be controlled over a

104-fold range. They also develop inducible systems based on E. coli ’s IPTG-inducible
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lac system as well as on B. theta’s previously characterized natural polysaccharide uti-

lization systems, which encode hybrid two-component transcriptional regulators that

sense and respond to the presence of carbohydrates such as rhamnose, chondroitin sul-

fate, and arabinogalactan [200,203,231]. Next, they design the responsive genetic mem-

ory by coupling the rhamnose utilization regulator to expression of serine integrases for

unidirectional inversion of DNA at a designed “memory array” located on the chromo-

some. Another important contribution by the authors to the B. theta genetics toolbox

is the development an inducible system for knocking down gene expression in B. theta

by using CRISPR interference (CRISPRi) and they demonstrate that CRISPRi can

be used to down-regulate gene expression in B. theta cells colonizing the mouse gut.

These exciting developments in synthetic biology will hopefully spur efforts in micro-

biome engineering that may be important for the development of therapeutics to treat

gastrointestinal diseases [286].

These examples in the recent literature illustrate B. theta’s potential in both pure

and applied research and its utility as a model for both studying the adaptive functions

of the microbiota in the gut as well as for manipulating the microbiota for the benefit

of the host.

5.3.4 Suitability as a host for screening human gut metage-

nomic DNA

Functional metagenomics is dependent on the ability to effectively screen libraries for

gene function, therefore requiring that the cloned fragments be expressed in the surro-

gate host. The human gut microbial community is dominated by members of the Bac-

teroidetes phylum, suggesting that human gut-derived libraries contain a large portion

of Bacteroidetes genes. However, previous studies suggest a barrier to the expression
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of Bacteroides-derived genes in the popular Proteobacteria host E. coli at the level of

transcription due to lack of promoter recognition [206]. B. theta’s primary sigma factor

recognizes a consensus sequence markedly different from E. coli ’s σ70 (Figure 4.9); the

consensus has been identified and comprises two elements situated at -33 and -7 from

the start of transcription, separated by 19-21 nucleotides: TTTGN19-21TAN2TTTG [15,317].

Most interestingly, though this would appear to be a contradiction of the above

facts, there are at least several examples in the literature where functional screens

of metagenomic libraries in an E. coli surrogate host have turned up positive clones

carrying DNA that appears to be from Bacteroides :

❼ A metagenomic fosmid libary constructed from the fecal samples of patients with

Crohn’s Disease was screened for ability to modify NF-κB expression in human

intestinal epithelial cells using a reporter system. NF-κB is a transcription factor

that is involved in immune and inflammatory responses in the gut. This led to

the identification of a clone whose insert’s closest match was Bacteroides vulgatus

[164,196].

❼ A metagenomic fosmid libary constructed from the fecal sample of a healthy

pescatarian was screened for carbohydrate-active enzymes able to degrade resis-

tant substrates and/or able to withstand high temperature or extreme pH. Of

the 26 clones sequenced, 9 were taxonomically assigned to members of the Bac-

teroidetes with 7 in the Bacteroides genus, on the basis of sequence similarity of

predicted ORFs to known protein sequences [299].
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❼ Fosmid libraries were generated from the foregut contents of Tammar wallabies

and screened for ability to degrade cellulose or xylan. Sequencing and assembly

of 33 fosmids resulted in contigs for which the majority were assigned to the order

Bacteroidiales and half possessed homologs of genes present in Bacteroides PULs,

including susC and susD [235].

❼ A BAC library constructed from a dairy cow rumen sample was screened for

hydrolase activity. Subcloning and sequencing of positive clones revealed that

that the endoglucanase genes from two of the clones had blastx best hits to

Bacteroides species [108].

❼ A BAC library was constructed using whole intestinal samples from mice, and

the library was screened for enhanced adherence to surfaces via biofilm. The two

clones isolated were additionally tested for increased intestinal colonization in

vivo in the mouse gut. The clones were sequenced and both blastn analysis and

tetranucleotide frequency analysis revealed best hits to Bacteroides species [342].

I think that the most likely explanation for the successful isolation of Bacteroidetes-

derived DNA from screening in E. coli is that the expression was due to spurious

transcription at incidental E. coli σ70 consensus promoter-like sequences. Spurious

transcription has been discussed in detail in Chapter 4 and simply means that tran-

scription begins at a place on the DNA that is not at the native promoter of a gene.

Bacteroidetes DNA could be expressed if transcription were to initiate spuriously and

if E. coli were able to translate ORFs by recognizing RBSs present on the transcript.

This scenario is plausible as E. coli has been demonstrated to recognize the RBS of the

B. theta 16S rRNA operon despite not recognizing its promoter [206].
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It is important to note that though this spurious transcription may have facili-

tated functional screening in the above cases, it cannot be relied on in general because

stretches of cloned DNA may lack the sequences that give rise to such transcription in

E. coli . There is currently a lack of suitable surrogate hosts for systematic functional

screening of Bacteroidetes-derived DNA from the human gut metagenome. Given that

Bacteroides are dominant members of the gut microbial community and some species

are well-developed as genetic models, the development of a Bacteroides species as a host

is a natural choice. In particular, the described genetic tools available for B. theta and

its genetic tractability make it an ideal candidate for development as a surrogate host

for functional metagenomics. This section further discusses the practical and technical

aspects of this proposed development.

To use B. theta as a host for screening requires constructing a library using a

cloning vector that is capable of replicating in both E. coli and B. theta. The library

is constructed and maintained in E. coli as usual and subsequently transferred into a

recipient B. theta strain in a triparental conjugation with the help of a mobilizer strain

(Figure 5.4A). The B. theta transconjugants can then be plated on media selecting for

functional complementation, that is, colonies of B. theta carrying cloned environmental

DNA able to confer the desired phenotype upon the recipient; for example, wild-type

B. theta can be selected on media containing an antibiotic to isolate library clones

harbouring resistance genes (Figure 5.4B).
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Figure 5.4: Overview of using B. theta as a host for functional metagenomics (A) Li-
braries from E. coli are conjugated into a B. theta mutant strain using a triparental mating and (B)
functionally complemented B. theta transconjugants are grown on selective media.
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Oxygen tolerance and laboratory culture

The culture of an obligate anaerobe requires growth in the absence of oxygen. B. theta

is an obligate anaerobe but unlike other organisms that are highly sensitive to the pres-

ence of oxygen, it is able to survive for a limited time upon exposure to oxygen, making

it convenient to work with in a laboratory setting. B. theta possesses enzymes that

protect it from both superoxide- and hydrogen peroxide-induced damage to biological

molecules, such as superoxide dismutase (SOD) [49], and catalase and other scavenging

enzymes [216], respectively. Being an anaerobe, B. theta has a central metabolism that

is blocked in the presence of oxygen. Its central metabolism has two iron-sulphur clus-

ter enzymes that are sensitive to superoxide or molecular oxygen, which render them

inactive; however, both can be repaired rapidly upon return to anaerobic conditions

without new protein synthesis, explaining how B. theta can recover quickly after expo-

sure to oxygen in the lab [227]. Outside of its central metabolism, B. theta has other

iron-sulphur proteins that may also be affected by oxygen.

This ability to rapidly repair oxygen-induced damage makes it possible to culture

B. theta without the use of an expensive anaerobic chamber. B. theta can be cultured in

liquid using the pyrogallol method to create anerobic conditions inside a typical culture

and the indicator dye resazurin can be used to to determine whether this has been done

successfully (Figure 5.5 and Section 5.6.2). Culture on solid media in the absence of

an anaerobic chamber can be done with the aid of a GasPak jar used in conjunction

with one-time-use GasPak sachets that deplete oxygen inside the jar (Figure 5.6A);

an even more cost-effective solution is to use inexpensive air-tight containers that can

effectively replace GasPak jars (Figure 5.6B and C; Section 5.6.2).
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Figure 5.5: Resazurin as an indicator dye for oxidizing/reducing envi-
ronments The dye resazurin is initially blue-purple in oxidizing conditions (left-most
tube), turns irreversibly pink in reducing conditions (right-most tube), and reversibly
colourless in anaerobic conditions (centre tube).

Figure 5.6: Anaerobic jars used in the culture of B. theta. (A) GasPak 100
System anaerobic jar, ∼✩500; (B) Anchor Hocking stainless steel canister, ✩20; (C)
Lock & Lock glass container, ✩7.

158



CHAPTER 5. DEVELOPMENT OF BACTEROIDES THETAIOTAOMICRON AS A SCREENING HOST

Stability of cloned Bacteroides DNA in E. coli

Although I have shown in Chapter 4 that major cloning bias can occur when construct-

ing human gut metagenomic libraries, likely as a result of selection against AT-rich,

rpoD consensus-containing sequence in vivo by the E. coli host, this appears to affect

members of the Firmicutes to a much greater extent than members of the Bacteroidetes

(Figure 4.5 and Figure 4.6). Although a previous study found large segments of Bac-

teroides DNA to be unstable in E. coli [265], I have found that using the low-copy

cosmid vector pJC8, Bacteroides-derived content appears to be similar between the

crude extracted DNA and the final cosmid library (Figure 4.7).

Again, the factors affecting the stability of cloned DNA are not well understood;

however, my own observations support the notion that there is good representation of

metagenomic DNA from the human gut that is likely to be expressed in B. theta. It is

anticipated that Bacteroides DNA will be relatively stable in a low-copy IncP cosmid

vector or single-copy fosmid vector, thereby facilitating functional screens in a B. theta

host.

Functional complementation of Bacteroides mutant phenotypes

Though E. coli does not recognize B. theta promoters, it does recognize B. theta RBSs.

One might be inclined to suggest that functional screening in E. coli could be improved

by heterologous expression of the B. theta housekeeping sigma factor in E. coli ; however,

although the B. theta sigma factor has been shown to be able to interact with the E. coli

RNA polymerase in vitro, the complex is unable to initiate transcription [317]. But

even if this were possible, there is another reason why screening in B. theta would

be more advantageous: B. theta’s various polysaccharide degradation abilities provide

a range of phenotypes that can potentially be complemented on selective media, if
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the appropriate B. theta mutant strains were available. Cosmid or fosmid libraries

in particular may be very powerful for functional screening as the large DNA inserts

of these libraries would capture the large operons that encode multi-protein systems

characteristic of PULs (Figure 5.3).

5.3.5 Aims of this work

The objective of this work was to develop B. theta VPI-5482 as a surrogate host to

use in functional screening of human gut metagenomic libraries. This required the

construction of a library cloning vector with an origin of replication for B. theta, and

generation of a metagenomic clone library using this vector. The library was used

to attempt functional complementation of B. theta mutants possessing a suitable and

relevant phenotype such as deficiency in the utilization of a particular polysaccharide

as compared to wild-type. The goal was to isolate and sequence complementing clones

with the hope of finding either novel complementing genes or at least genes different in

sequence from the wild-type, thereby demonstrating the effectiveness and potential of

using B. theta as a host.
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5.4 Results and discussion

5.4.1 Problems arising from pUC-based cosmid libraries

Construction of a B. theta-compatible pUC-based cosmid pKL3

To be able to screen a library in a B. theta host, the library must be constructed using

a vector that is able to replicate in B. theta. To generate a suitable cloning vector, I

first started with the E. coli -B. theta shuttle vector pAFD1 (Figure 5.7).

Figure 5.7: Bacteroides shuttle vector, pAFD1. Constucted in Abigail Salyers
lab [249], this vector was generously shared by Nadja Shoemaker. Unique restriction
sites in MCS: EcoRI, SstI, KpnI, SmaI/XmaI, BamHI, SalI, AccI, BspMI, PstI, SphI.
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pAFD1 was constructed by ligating the native Bacteroides plasmid pBI143 [278]

to the E. coli vector pUC19 [340], followed by introducing the ermF gene for ery-

thromycin resistance in B. theta. To this base vector, I added the following elements,

which are also summarized in Figure 5.8:

❼ A cos site, by cloning in the BglII fragment from the cosmid pHC79 into the

compatible BamHI site of pAFD1 (Figure 5.8A), generating pKL1. The cos site

enables packaging of DNA into λ phage heads.

❼ A polylinker (or multiple cloning site) to introduce the Eco72I restriction site

(Figure 5.8B), generating pKL2. The Eco72I site was desired because this par-

ticular blunt-end restriction site has been used to successfully generate cos-based

libraries and the preparation of digested, desphosphorylated vector DNA has be-

come routine. The polylinker fragment was generated by phosphorylating and

annealing two complementary oligos, KL10 and KL11 (see Section 5.6.4).

❼ The gentamicin resistance stuffer, as an Eco72I fragment from pJC8 into the

Eco72I site of pKL2 (Figure 5.8C), generating pKL3. The stuffer is routinely

included in vectors constructed in our laboratory to aid in restriction enzyme

cleavage because we find that without a stuffer, digestion does not progress to

completion or near-completion.
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Figure 5.8: Construction of pUC-based B. theta-compatible cosmid vector pKL3. The
shuttle vector pAFD1 (A) was modified by adding: the cos site from pHC79 as a BglII fragment,
generating pKL1 (B); a polylinker carrying Eco72I, generating pKL2 (C); the gentamicin resistance
stuffer from pJC8, generating pKL3 (D). Note that these are stylized diagrams and are not to scale.
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Confirmation of pKL3 functionality; generation of clone libraries using pKL3

After constructing pKL3 (Figure 5.8D) from pAFD1, I then checked that the addition

of the cos site and polylinker did not interfere with the vector’s ability to replicate in

B. theta. To do this, pKL2 was conjugated from E. coli S17-1 into B. theta, while

pAFD1 was also conjugated as a positive control (Figure 5.9); note that pKL3 was

not used because the presence of the gentamicin resistance gene stuffer would have

interfered with the gentamicin used as E. coli counter-selection in this experiment.

The results indicated that the constructed derivative was still functional in B. theta

and that pKL3 could be used as a library backbone.

I then used this new pUC-based cosmid to construct a metagenomic library from

a human fecal sample for screening in B. theta. The library was constructed in E. coli

HB101 and named Charles Lab Gut Microbiome 2 (CLGM2; Figure 5.10A) because it

was the second library to be constructed from the pooled stool samples of anonymous

donors of the Charles Lab. I also constructed a library using B. theta genomic DNA

for use as a control in selection experiments (Table 2.12).

Figure 5.9: Conjugation of positive control pAFD1 and constructed deriva-
tive pKL2 into B. theta. pAFD1 and pKL2 were separately conjugated into B. theta
to determine functionality of pKL2. Growth media: BHIH Em10 Gm200
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Instability of metagenomic insert DNA in high-copy vector

After the library was constructed, colonies were pooled from all the plates (Figure 5.10A)

and frozen in aliquots as libraries typically are in the Charles Lab. One aliquot was

used to plate isolated colonies from which random clones were selected for examination

of insert size: cosmid DNA was miniprepped and subjected to an EcoR1-KpnI double

digest to simultaneously release and digest the cloned insert DNA (Figure 5.10B).

Figure 5.10: Random clones from CLGM2 library exhibit insert loss Ran-
domly selected clones from CLGM2 library were miniprepped, ordered by DNA con-
centration, and subjected to EcoRI-KpnI double digest, revealing that nearly half have
insert sizes much smaller than expected.
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The diagnostic digest of 22 random clones yielded an unexpected result: while

clones #10 to #22 exhibited restriction patterns typical of large cosmid DNA in-

serts, clones #1 to #9 had noticeably smaller or even non-existent DNA inserts (Fig-

ure 5.10B). This result suggested that a sizeable portion of the library was unstable;

the possible causes of this instability that lead to cloning bias were previously discussed

in Chapter 4 (see Section 4.4.4). Despite the observed instability, I decided to try to

use this library due to time constraints.

Difficulty conjugating CLGM2 metagenomic library

To use the library and attempt to carry out functional screening in a B. theta host, the

library requires transfer from E. coli to B. theta via conjugation. To do this, I carried

out a triparental conjugation using the library strain HB101(CLGM2) as donor, B. theta

as recipient, and J53(R751) as helper (Figure 5.11A); I also simultaneously conjugated

the empty vector from HB101(pKL2) into B. theta as a control. It was necessary to

use R751 as the helper plasmid instead of the commonly used pRK600 or pRK2013

to avoid plasmid incompatibility issues as pKL2/pKL3 and pRK600/pRK2013 are all

ColE1-related plasmids.

The conjugation was plated on media selecting for the transconjugant, B. theta

carrying the conjugated cosmids; recall that B. theta has natural resistance to nalidixic

acid and aminoglycosides, such as kanamycin. While the empty vector showed an

acceptable conjugation efficiency, the efficiency of the CLGM2 library was poor (Fig-

ure 5.11B). This poor transfer of the library was not specific to the B. theta recipient,

as conjugation was also poor for an E. coli recipient when tested (data not shown).

The reason for the library’s poor transfer is not clear, although it maybe be related to

the high-copy number of the vector backbone in combination with maintaining large

DNA inserts that may be transcriptionally active.
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Recipient:  B. theta

Donor: HB101 (CLGM2) Mobilizer: J53 (R751)A

B

vector only
100 dilution

CLGM2 library
100 dilution

Figure 5.11: Triparental conjugation of CLGM2 library into B. theta. (A)
Overview of triparental conjugation experiment for transfer of CLGM2 library from
E. coli HB101 donor to B. theta recipient. (B) Result of conjugation into B. theta of
vector alone (left) or CLGM2 library (right). Growth media: BHIH Em25 NA25 Km200

A poor efficiency of conjugation into B. theta severely hinders the success of

functional screens because library clone DNA cannot be transferred to the recipient in

order to undergo selection. In combination, the instability of insert DNA in the library

and the poor transfer of the library into recipient cells rendered the CLGM2 library

effectively unuseable. Therefore, I decided to re-build the system, using a single-copy

vector backbone to avoid possible high copy number-related problems.
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5.4.2 Efficient conjugation of fosmid-based libraries into B. theta

Construction of a B. theta-compatible fosmid pKL13

For the backbone of the new library cloning vector, I decided to use the commercial

vector pCC1FOS (Figure 5.12A). The properties, advantages, and disadvantages of this

vector are discussed in greater detail in Section 6.3.2 of the following Chapter 6.

Briefly, pCC1FOS replicates as a single-copy fosmid in E. coli strains as it carries

the F plasmid origin of replication. In addition, it carries the RK2 origin of replication

which, combined with the trfA gene product, increases copy number in members of the

Proteobacteria. For example, the commercial strain E. coli EPI300 has been designed

for use with pCC1FOS: EPI300 carries trfA under the control of an arabinose-inducible

promoter, which allows the fosmid to be maintained at single-copy but induced to a

higher copy number when desired. The vector also carries the chloramphenicol resis-

tance gene for selection in E. coli .

pCC1FOS is used widely for the construction of fosmid libraries; both the pop-

ularity and the properties of pCC1FOS made it an attractive choice for use as a base

vector for construction of B. theta-compatible libraries. The following points below

describe the step-by-step construction of the pCC1FOS B. theta-compatible derivative

pKL13; the steps are also summarized graphically (Figure 5.12):

❼ The gentamicin resistance stuffer was added, as an Eco72I fragment from pJC8

into the Eco72I site of pCC1FOS, generating pKL4 (Figure 5.12B). As previously,

the stuffer was added to aid digestion of the vector for library cloning.

❼ An oriT sequence was added to allow the vector to be conjugated between strains,

particularly between E. coli and B. theta. The sequence was PCR-amplified as

an ∼800-bp fragment from pJC8 using primers KL12 and KL13 with HindIII
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adapters, and ligated into the unique HindIII site of pKL4, generating pKL5

(Figure 5.12C). Though the actual functional oriT sequence is only ∼100 bp,

including the surrounding region reportedly improves transfer frequency by two

orders of magnitude [113].

❼ A fragment from pAFD1 was added, which includes (a) the ermF gene encoding

erythromycin resistance as a selectable marker for B. theta and (b) the repA gene

and internal ori for replication in B. theta. The fragment was PCR-amplified

as an ∼4-kb fragment from pAFD1 using primers KL14 and KL15 with EcoRI

adapters, ligated into pJET1.2 forming pKL8, and subcloned as an EcoRI frag-

ment from pKL8 into the unique EcoRI site of pKL5, generating pKL6 (Fig-

ure 5.12D). Note that because the sequence of pAFD1 was not known, I deduced

the fragment’s probable sequence and designed PCR primers based on related

vectors that have been sequenced: the sequence of repA was determined from the

native B. fragilis plasmid pBI143 [278]; the sequence of ermF was determined

from the vectors pFD288 and pFD1146 [228, 278], which are related to pAFD1

through the shared ermF marker that was originally from pBF4 [326]. I was

uncertain about the sequence for the portion between the ermF and repA el-

ements, so to obtain the complete sequence, I carried out primer walking (see

Section 5.6.6).

❼ Deletion of the gentamicin resistance gene stuffer, generating pKL7 (Figure 5.12E).

At this time, I was finishing my work on Chapter 4, and decided to include tran-

scriptional terminators that flank the cloning site in my new vector (see next

point), which required removing this stuffer.
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❼ In place of the gentamicin resistance stuffer, I cloned in what I called the “tran-

scriptional terminator” fragment. The elements of this fragment are discussed in

detail in Section 6.4.1. The fragment includes: two unidirectional transcriptional

terminators that stop potential insert-initiated transcription from going into the

vector backbone, and a stuffer comprising a gentamicin resistance gene as well as

a Ptac promoter for terminator testing purposes (see Section 6.4.3). The fragment

was cloned as a blunt SwaI fragment from pKL9 into the blunt Eco72I site of

pKL7, terminating the existing Eco72I sites but reintroducing new Eco72I sites,

which flank the stuffer (Figure 5.12F).
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Figure 5.12: Construction of B. theta-compatible fosmid vector pKL13. The commerical vector pCC1FOS (A) was
modified by adding the gentamicin resistance stuffer from pJC8, generating pKL4 (B); the fragment carrying the oriT from pJC8
with BamHI adapters, generating pKL5 (C); the fragment from pAFD1 carrying ermF and repA-ori with EcoRI adapters, generating
pKL6 (D); deleting the gentamicin resistance stuffer, generating pKL7 (E); adding the transcriptional terminator fragment, generating
pKL13 (F). Note that these are stylized diagrams and are not to scale.
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Analysis of new vector passaged through B. theta ; generation of clone li-

braries using pKL13

After constructing the new vector, I performed a check to see that the vector was

behaving as expected. Because the pCC1FOS backbone is not a vector that is normally

used in the Bacteroides , the check was important to make sure that the new vector is

stable in B. theta and was therefore appropriate to use as a library cloning vector.

To perform the check, I used pK11; note that pKL11 is identical to pKL13 except

for a point mutation in one of the transcriptional terminators and the removal of the

stuffer between the Eco72I sites (see Table 2.2). I carried out a triparental mating

to conjugate pKL11 from E. coli HB101 to B. theta, using DH5α(pRK600) as helper;

following this, six clones of B. theta carrying pKL11 were selected and streak-purified,

fosmid DNA was isolated from the clones, and the DNA was re-introduced into E. coli

for subsequent isolation and restriction analysis (Figure 5.13A). Note that plasmid

miniprepped DNA from B. theta cannot be analyzed directly because it contains DNA

from B. theta’s own native plasmid (see Section 5.3), which complicates restriction

digest analyses.

The B. theta-passaged fosmid DNA isolated from E. coli was digested and com-

pared to digested pKL11 from E. coli that had not been passaged through B. theta

(Figure 5.13B). From the results, it can be seen that the passaged vector DNA is the

same size as the original vector, meaning undesired recombination events that may

have increased or decreased the vector size did not occur. Importantly, this experiment

demonstrates that the vector is stable and can be isolated intact by plasmid miniprep

from B. theta; this point will returned later in Section 5.4.4 where I encounter difficul-

ties isolating plasmid DNA.
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Recipient:  B. theta

Donor: HB101 (pKL11) Helper: DH5α (pRK600)A

B

23.1 kb

9.4 kb

Bt-passaged pKL11

1 2 3 4 5 6 pKL11

Ec

6.6 kb

4.4 kb

2.3 kb
2.0 kb

Figure 5.13: Analysis of fosmid vector DNA passaged through B. theta and re-
introduced into E. coli . (A) pKL11 was conjugated from E. coli to B. theta in a triparental mating;
plasmid DNA was isolated from six B. theta clones carrying pKL11, re-introduced into E. coli , and
isolated from E. coli for analysis (B) Gel electrophoresis of Eco72I-digested B. theta-passaged pKL11,
against a control preparation of pKL11 from E. coli .
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After making sure the fosmid vector was stable in B. theta, I used pKL13 to gen-

erate clone libraries. Library construction was carried out using a protocol as described

earlier with the exception that the Eco72I stuffer was not separated from the vector

preparation prior to ligation to the genomic/metagenomic DNA (see Section 5.6.9 for

technical details). As before, I generated two libraries to use in selection experiments:

a B. theta genomic library named BT3, and human gut metagenomic library named

CLGM3 (see Table 2.12). Both libraries were constructed in an EPI300 background,

because EPI300 offers copy-number inducibility and I found that it transduces at least

as well as HB101 (Table 5.4).

Table 5.4: Transduction efficiency using HB101, S17-1, or EPI300.

Strain used
Number of transductants

Trial 1 count Trial 2 count

HB101 162 413

S17-1 34 61

EPI300 592 430

Conjugation of CLGM3 metagenomic library into B. theta host

Hoping that using new single-copy vector backbone would resolve the conjugation prob-

lems encountered, I performed a triparental mating to transfer the library from EPI300

to B. theta, using HB101(pRK2013) as helper (Figure 5.14A). A similar mating us-

ing the pKL13 vector alone was done alongside as a control. Note that the pRK2013

helper is a ColE1 plasmid, and is compatible with pKL13, which carries the F and RK2

origins.
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The mating was plated on media selecting for B. theta transconjugants (Fig-

ure 5.14B). Comparing the dilution plate giving rise to colonies between Figure 5.11B

and Figure 5.14B, it can be seen that the conjugation efficiency of the vector alone is

improved using the single-copy fosmid, but more importantly, the efficiency of CLGM3

is showing an improvement of easily one thousand-fold. The marked improvement in

transfer of the library meant that it was well-suited for functional screening in B. theta.

Before proceeding to a screen, however, I first wanted to more quantitatively assess the

conjugation efficiencies.

vector only
10-2 dilution

CLGM3 library
10-2 dilution

A

B

Recipient:  B. theta

Donor: EPI300 (CLGM3) Mobilizer: HB101 (pRK2013)

Figure 5.14: Triparental conjugation of CLGM3 library into B. theta. (A)
Overview of triparental conjugation experiment for transfer of CLGM3 library from
E. coli EPI300 donor to B. theta recipient. (B) Result of conjugation into B. theta of
vector alone (left) or CLGM3 library (right). Growth media: BHIH Em25 NA25 Km200
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Conjugation efficiencies

To calculate the efficiency of conjugation of both empty pKL13 and the CLGM3 library

into B. theta, I repeated the triparental conjugations as depicted in Figure 5.14A. The

matings were serially diluted and plated on media with different antibiotics to select

for the donor, recipient, or transconjugant:

❼ Donor: E. coli EPI300 (pKL13/CLGM3), on LB Cm10

❼ Recipient: B. theta, on BHIH NA25 Km200

❼ Transconjugant: B. theta (pKL13/CLGM3), on BHIH Em25 NA25 Km200

From counting the number of colonies arising on the plates for each of the donor,

recipient, and transconjugant dilutions, it was possible to determine the conjugation ef-

ficiency with respect to the donor as well as the recipient, which is simply the number of

transconjugants divided by the number of donors or recipients, respectively (Table 5.5).

Table 5.5: Conjugation efficiency of pKL13 vector and CLGM3 library into B. theta.

pKL13 vector only CLGM3 library

relative to donor 2.1 × 10−5 8.2 × 10−6

relative to recipient 2.6 × 10−2 1.1 × 10−2

For matings in which B. theta is the recipient, it would be most useful to refer

to the conjugation efficiency with respect to the recipient as this is the limiting factor;

this is because conjugations are performed aerobically where B. theta growth can only

occur after the E. coli cells have formed a lawn, thereby protecting B. theta from

atmospheric oxygen (see Section 5.6.8 for details on methods); hence, the recipient cell

count is much lower than the donor cell count.
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The conjugation efficiency was calculated to be 2.6×10−2 for pKL13 and 1.1×10−2

for the CLGM3 library (Table 5.5). This means that 2-3% of B. theta cells present in

the pKL13 conjugation will receive the vector; for the library, this number is closer to

1%. Though the fraction of transconjugants obtained from a mating is not as high as,

for example, matings involving Sinorhizobium meliloti as recipient [94], the frequency

of transfer was sufficiently high to move forward and try functional screening using

B. theta as an expression host.

5.4.3 Functional complementation using a B. theta host

Construction of B. theta single recombinant amino acid auxotrophs and

attempt at complementation

To execute a functional screen as described in Figure 5.4, a prerequisite is having a

B. theta mutant whose phenotype can be complemented and, ideally, the complemen-

tated mutant can be selected rather than screened for. During my visit to laboratory of

Eric Martens at the University of Michigan, I constructed two mutants for this purpose;

both were mutants in amino acid biosynthesis: the first was a threonine auxotroph and

the second, a tryptophan auxotroph.

For a quick construction, rather than making clean deletions, I settled for generat-

ing single recombinant mutants by disrupting the thrC (BT 2401) and trpD (BT 0530)

genes. To do this, I PCR-amplified and cloned an internal fragment from either the thrC

or trpD gene into B. theta suicide vector pKNOCK-bla-tetQ (Figure 5.15A), generating

pKL21 and pKL22, respectively. The constructed plasmids were then mated into wild-

type B. theta; pKNOCK-bla-tetQ is unable to replicate in B. theta and thus selection

for tetracycline resistance allows isolation of single recombinants in which the plasmid

has integrated into the genome at the locus specified by the cloned fragment. I isolated
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threonine and tryptophan auxotrophs and checked their phenotype on minimal media;

as expected, the thr mutant could not grow unless threonine was supplemented and

the trp mutant could not grow unless tryptophan was supplemented (Figure 5.15B).

Figure 5.15: Construction of B. theta single recombinant amino acid aux-
otrophs. (A) A fragment of either thrC or trpD was PCR-amplified and cloned into the
B. theta suicide vector pKNOCK-bla-tetQ ; adapted from [200] (B) Phenotypic check of
constructed mutants on minimal media; WT: wild-type, trp1: tryptophan auxotroph,
thr1: threonine auxotroph.
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Out of the two mutants, I decided to use the B. theta tryptophan auxotroph in

the first functional screen of the CLGM3 library. I mated the CLGM3 library from

E. coli EPI300 into the B. theta tryptophan auxotroph, and selected for complemented

transconjugants on minimal media with no supplemented amino acids; as negative and

positive controls, I also mated the vector, pKL13, as well as the B. theta genomic

library, BT3, respectively (Figure 5.16). Unfortunately, though the CLGM3 metage-

nomic library and BT3 genomic library matings gave rise to colonies on the selective

media, the vector-only control did as well – at an even greater frequency. It was most

likely that the single recombinant mutant was unstable and the vector was recombining

out of the chromosome, despite the inclusion of tetracycline as selection; that is, the

mutant was reverting to wild-type phenotype under the selection for functional trypto-

phan biosynthesis genes. The greater frequency of reversion seen for the vector over the

two libraries can likely be attributed to a greater efficiency of conjugation for smaller

plasmids; this was also evident in Figure 5.14B.

Figure 5.16: Results of functional screen for tryptophan biosynthesis genes
in B. theta single recombinant. The vector-only control, pKL13 (left), the BT3
genomic library (centre), and the CLGM3 metagenomic library (right) were mated into
the B. theta tryptophan auxotroph and conjugations were plated on media selecting
for complementation. Growth media: MM glucose Tc2 Em25 NA25 Km200
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It was most regrettable that I did not construct deletion mutants instead of single

recombinant mutants: if the trpD gene were deleted instead of simply interrupted, there

would be no possibility of reversion to wild-type phenotype. Given the time constraints,

however, it was not feasible to begin the construction of clean deletions of the thrC or

trpD genes; rather, as Eric Martens suggested, I made use of a B. theta deletion mutant

that had been previously constructed and characterized.

Successful complementation of the B. theta chuR / anSME mutant

The mutant chosen for the next attempt at functional complementation was B. theta

∆chuR, also called ∆anSME [17]. The chuR/anSME gene (BT 0238) was first iden-

tified by Abigail Salyers’ group through transposon mutagenesis as a regulator of

chondroitin sulfate and heparin utilization [44]. Knocking out this single gene renders

B. theta unable to grow on chondroitin sulfate or heparin as sole carbon source, as

shown in Figure 5.17 ❸.

Figure 5.17: Phenotype of B. theta wild-type and ∆chuR mutant. Pheno-
type of the B. theta wild-type (top half) and ∆chuR mutant (bottom half) on BHIH
complex media (A) or minimal media with chondroitin sulfate as sole carbon source
(B).

❸Note that the strain isogenic to ∆chuR is ∆tdk, which is in turn isogenic to the wild-type. The
wild-type and ∆tdk exhibit comparable growth on chondroitin sulfate; see Appendix D.1
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Chondroitin sulfate is a polysaccharide that is composed of alternating N-acetyl-

galactosamine and glucuronic acid residues, with the sugar residues carrying sulfate

groups at certain positions [80]. The breakdown of this polysaccharide requires the

action of sulfatase enzymes, of which B. theta may encode up to 28 [17]; however, the

sulfatases must be modified post-translationally by the product of the chuR/anSME

gene, an anaerobic sulfatase maturase enzyme [18]; without the post-translational

modification, the sulfatases are not active. The 1.2-kb chuR/anSME gene is part of a

three-gene operon but is currently the only characterized member (Figure 5.18). The

phenotype being dependent on the single chuR gene, as well as the clean phenotype of

the B. theta ∆chuR mutant on chondroitin sulfate as sole carbon source (Figure 5.17B),

make it a very good candidate for functional complementation.

Figure 5.18: Genomic region of the B. theta chuR (anSME ; BT 0238)
gene. The 1.2-kb chuR gene (underlined in red) of the B. theta genome and its
surrounding region. Adapted from the KEGG Genome Database [143]
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To screen the CLGM3 library for chuR/anSME genes, I once again performed

a triparental conjugation, mating the CLGM3 library from E. coli EPI300 into the

B. theta ∆chuR strain, selecting on minimal media with chondroitin sulfate. Also

as before, for negative and positive controls, respectively, I performed matings of the

vector, pKL13, as well as the B. theta genomic library, BT3. Each of the three conju-

gations was plated on multiple plates to select for transconjugants with ability to use

chondroitin sulfate as sole carbon source; one of each is shown in Figure 5.19.

A B C

Figure 5.19: Results of functional screen for chuR/anSME genes using
B. theta ∆chuR background. Selection plates onto which conjugations were spread,
using as donor: pKL13 vector only (A), BT3 genomic library (B), and CLGM3 metage-
nomic library (C). Black arrows indicate several examples of isolated colonies. Growth
media: MM chondroitin sulfate

Unlike my first attempt at complementation, the negative control had no colonies

(Figure 5.19A). The positive control, using B. theta’s own genomic DNA to complement

the mutant, resulted in colonies, as was expected (Figure 5.19B). Most importantly, the

experimental mating using the CLGM3 metagenomic library also yielded colonies (Fig-

ure 5.19C). This result indicates that the B. theta ∆chuR mutant can be complemented

using cloned metagenomic DNA from the human gut, although the phylogenetic origin

of the complementing DNA remained to be determined. From the BT3 and CLGM3
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plates, I streak-purified colonies to confirm the restored phenotype and to purify the

clone in the case that one colony arose from more than one complemented cell. The

positive clones from the streak-purification provide clear evidence that the mutant’s

ability to grow on chondroitin sulfate has been restored (Figure 5.20). After the dif-

ficulties that I encountered, that the functional screen seemed to be working well was

promising. The next step was to isolate the complementing fosmids from B. theta for

eventual restriction analyses and DNA sequencing.

A B C

Figure 5.20: Streak purification of complementing chuR/anSME clones.
Control streaks of wild-type and ∆chuR (A), four complementing clones from the BT3
library (B), and one complementing clone from the CLGM3 library (C). Growth media:
MM chondroitin sulfate
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5.4.4 DNA of positive clones appears to be integrated into the

host genome

In Section 5.4.2, I showed that the fosmid vector could be isolated from B. theta and

re-introduced into E. coli . Now, with streak-purified complementing clones from the

successful chuR/anSME screen of both the BT3 library and the CLGM3 library, I

needed to employ the same method to isolate the clone DNA from the B. theta ∆chuR

host. I inoculated the clones in liquid media for a plasmid miniprep, and included the

antibiotic erythromycin in the media to ensure that the fosmid backbone was present.

The first clue that something was amiss was when only about half of the clones grew up

in the liquid media containing the antibiotic. I proceeded to do the plasmid miniprep

for those clones that grew; when I attempted to transform E. coli with the preparation,

however, I did not obtain transformants for any of the samples, which indicated that

there was no fosmid DNA isolated from B. theta.

At this point, I hypothesized that the fosmid DNA may have integrated into

the host genome. If the DNA were in fact integrated into the genome, this would be

unfortunate as the functional metagenomic method employed in our lab hinges on being

able to retrieve the DNA for sequence analysis. With this hypothesis in mind, I isolated

genomic DNA from the same clones to analyze, that is, from the clones that did grow in

the presence of erythromycin. Genomic DNA was prepared from the following strains

for analysis:

❼ BT3 library: chuR clones #2, 5, 6, 9, 10, in B. theta ∆chuR background

❼ CLGM3 library: chuR clones #1, 2, 3, 4, 5, 8, 9, in B. theta ∆chuR background

❼ B. theta ∆chuR, as a control

❼ wild-type B. theta, as a control
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To establish whether the genomic DNA contained integrated fosmid DNA, I per-

formed a PCR to test for the presence of the fosmid’s oriT sequence, and I included

pKL13 as a positive control (Figure 5.21A). As suspected, all of the clones from the

BT3 and CLGM3 library were positive for the oriT while the wild-type and ∆chuR

controls were negative. This suggested that the fosmid DNA was integrated into the

genome of the ∆chuR background; the location of integration is uncertain but recom-

bination would theoretically be possible anywhere along shared homologous tracts of

DNA, which would likely be present on the complementing chuR fosmid clone.

Following that line of thought, if the fosmid DNA had recombined into the genome

for so many clones, could it be that most or even all of the fosmid clones were carry-

ing DNA from B. theta strains (rather than other species) present in the pooled fecal

samples? This scenario could explain the clones’ propensity for homologous recombi-

nation. To see if this was the case, I designed PCR primers for the ORF of the B. theta

chuR gene; these primers are likely to amplify only exact or very close matches to the

B. theta VPI-5482 wild-type sequence (primers KL61 and KL62 were 35 and 40 bases

in length, respectively; see Table 2.3). I carried out this PCR, using the pKL13 plas-

mid DNA and ∆chuR genomic DNA as negative controls (Figure 5.21B). As expected,

all of the clones from the BT3 library were positive; and from the CLGM3 library,

all but one clone (chuR clone #2) showed amplification using primers based on the

B. theta chuR sequence. I tried reducing the annealing temperature of the PCR in an

attempt to amplify the chuR ORF from CLGM3 clone #2, but a PCR product was

not obtained even when using an annealing temperature as low as 45❽. This suggests

that this clone may be carrying a copy of chuR that is quite different in sequence from

B. theta; unfortunately, such sequences are the ones desired in a functional metage-

nomics approach and the problem of recombination prevented the retrieval of the clone’s

chuR-complementing sequence.
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Figure 5.21: PCR analysis supporting the hypothesis that complementing fosmid DNA
is integrated into the genome of B. theta ∆chuR host. PCR for: (A) the oriT sequence on
the pKL13 vector backbone; (B) chuR ORF based on B. theta wild-type sequence; (C) fragment 300
bp upstream to 300 bp downstream of the chuR ORF; (D) chuR ORF plus −300 bp downstream; (E)
chuR ORF plus 300 bp upstream.
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From Figure 5.21B, it appeared that all but one clone from the CLGM3 library

had a chuR gene exactly or very similar to the B. theta VPI-5482 wild-type, because

PCR using B. theta-specific primers was successful. However, before I proceeded to

analyze the sequences for these amplified ORFs, I first wanted to perform another

check to support the hypothesis that the fosmid clones had integrated into the genome

of the ∆chuR background. This deletion strain carries a clean removal of the 1,200-bp

chuR ORF, and primers designed to +300 bp upstream and −300 bp downstream of the

ORF would amplify only 600 bp from the mutant versus 1,800 bp from the wild-type.

I used such primers to confirm that indeed the chuR 600-bp deletion fragment in the

host genome was still intact for all BT3 and CLGM3 library clones (Figure 5.21C).

The result of this last PCR was somewhat surprising, however, for another reason.

I had expected the BT3 library clones (and perhaps some of the CLGM3 clones as well)

to exhibit both the 600-bp and 1800-bp bands – the prior from the B. theta ∆chuR

background and the latter from the complementing fosmid DNA carrying the B. theta

chuR gene. That all of the BT3 clones from Figure 5.21C were exhibiting just the 600-

bp band suggested that the smaller product may be preferred in the PCR. To determine

if this was the case, I used primer combinations such that the smaller PCR product

was not a possibility: amplifying either the chuR ORF plus 300 bp downstream or

amplifying the chuR ORF plus 300 bp upstream (Figure 5.21D and E, respectively).

The results of this PCR confirmed that indeed the smaller PCR product was preferred

and that the wild-type complementing DNA was present in the clones originating from

the BT3 genomic library. Interestingly, 6 of the 7 clones from the CLGM3 human

gut library also showed amplification (Figure 5.21D), supporting my hypothesis that

these gut clones likely carried B. theta DNA – although CLGM3 clone #9 did not

produce a PCR product in the amplification that included the 300-bp upstream of the

ORF (Figure 5.21E), a result that suggests this particular complementing fosmid may
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simply not be carrying a fragment that includes this 300-bp upstream region.

Consistent with a lack of amplification of the chuR ORF for CLGM3 clone #2

in Figure 5.21B, this clone did not produce PCR products in either Figure 5.21D or

Figure 5.21E. For the 6 other clones isolated from the CLGM3 human gut library,

however, the successful amplification of the chuR ORF (Figure 5.21B) meant that

sequence analysis of the complementing ORF on the metagenomic DNA was possible.

5.4.5 Sequence analysis of positive clones isolated from com-

plementation of B. theta reveals a chuR variant

Of the 6 metagenomic chuR ORFs that were amplified (Figure 5.21B), I suspected

that all or most of them would be near or exact matches to the B. theta VPI-5482

chuR ORF. To analyze the sequence of these ORFs, the PCR products from CLGM3

chuR clones #1, 3, 4, 5, 8, and 9 were purified and submitted for Sanger sequencing.

As a control, I also sequenced a PCR product originating from the B. theta genomic

libary, BT3 chuR clone #2; this sequence should be the wild-type B. theta sequence,

consistent with the source DNA used to make the BT3 library.

After Sanger sequencing, the single BT3 and 6 CLGM3 chuR sequences were

aligned (Figure 5.22). All but one of the metagenomic chuR sequences were an exact

match to the B. theta wild-type chuR sequence. To reiterate, this result was not

surprising if homologous recombination occurred for all of these clones, suggesting that

there was significant sequence similarity between the host genome and the DNA carried

on the fosmid clones.
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. . . . : . . . . 1 . . 120

1 CLGM3_chuR5_KL61 AAGCTGC-WTGTYMT-GGTAAGCCCGTGGGAGCCGTATGTAATCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAACCTATACAAAGAAAACCCCAAACATGTAATGAGCGATGA

2 CLGM3_chuR1_KL61 GAGCTCYAYYGTYMWGGGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

3 CLGM3_chuR3_KL61 GAGCTGC-WTGTYMT-GGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

4 BT3_chuR2_KL61 GAGCTG--AYGTYMT-GGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

5 CLGM3_chuR8_KL61 AAGCTCC-WYGTYMT-GGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

6 CLGM3_chuR4_KL61 GAGCTGCAYTGTYMT-GGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

7 CLGM3_chuR9_KL61 TAGCTG--AWGTTMT-GGTAAGCCCGTGGGAGCCGTATGCAACCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCGAATCTATACAAAGAAAACCCGAAACATGTAATGAGCGATGA

. . : . . . . 2 . . . . 240

1 CLGM3_chuR5_KL61 ACTACTGGAAAAGTTTATCGACGAGTATATCAGTTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

2 CLGM3_chuR1_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

3 CLGM3_chuR3_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

4 BT3_chuR2_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

5 CLGM3_chuR8_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

6 CLGM3_chuR4_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

7 CLGM3_chuR9_KL61 GCTACTGGAAAAGTTTATCGACGAGTATATCAACTCTCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGGCGATGGA

: . . . . 3 . . . . : . 360

1 CLGM3_chuR5_KL61 ACTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGGACCTTACTCACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

2 CLGM3_chuR1_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

3 CLGM3_chuR3_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

4 BT3_chuR2_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

5 CLGM3_chuR8_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

6 CLGM3_chuR4_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

7 CLGM3_chuR9_KL61 GCTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGAACCTTGCTTACAGACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTC

. . . 4 . . . . : . . . 480

1 CLGM3_chuR5_KL61 TATTGATGGCCCGCAAGAGTTTCATGACGAATACCGCAAGAACAAAATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATTAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

2 CLGM3_chuR1_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

3 CLGM3_chuR3_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

4 BT3_chuR2_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

5 CLGM3_chuR8_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

6 CLGM3_chuR4_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

7 CLGM3_chuR9_KL61 CATTGATGGCCCGCAAGAGTTTCATGACGAATATCGCAAAAATAAGATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATCAATCTCCTGAAAAAACATGGAGTAGAATGGAACGC

. 5 . . . . : . . . . 6 600

1 CLGM3_chuR5_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATCCAGTTCGCCCCGATTGTTGAACGCATTGTTTCACATCA

2 CLGM3_chuR1_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

3 CLGM3_chuR3_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

4 BT3_chuR2_KL6 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

5 CLGM3_chuR8_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

6 CLGM3_chuR4_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

7 CLGM3_chuR9_KL61 TATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAAGAAATAGATTGCCATTATATTCAGTTCGCTCCGATTGTTGAACGCATTGTTTCACATCA

. . . . : . . . . 7 . . 720

1 CLGM3_chuR5_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGAGCATTGGCTGATTTCTCCATAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

2 CLGM3_chuR1_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

3 CLGM3_chuR3_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

4 BT3_chuR2_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

5 CLGM3_chuR8_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

6 CLGM3_chuR4_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

7 CLGM3_chuR9_KL61 GGACGGTCGTCATCTTGCCTCTCTGGCAGAAGGTAAAGAAGGGGCATTGGCTGATTTTTCCGTAAGTCCGGAACAATGGGGTAACTTTCTCTGTACAATTTTTGATGAATGGGTAAAAGA

. . : . . . . 8 . . . . 840

1 CLGM3_chuR5_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCTACATTGGCTAACTGGATGGGTGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

2 CLGM3_chuR1_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

3 CLGM3_chuR3_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

4 BT3_chuR2_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

5 CLGM3_chuR8_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

6 CLGM3_chuR4_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

7 CLGM3_chuR9_KL61 AGATGTGGGCAAATTCTTCATACAGATATTCGATTCCACATTGGCTAACTGGATGGGCGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAA

: . . . . 9 . . . . : . 960

1 CLGM3_chuR5_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAGACTTTGGTGGAAATGATGCATAGTGAACGACAGCA-AACTTCGGGACAATGAA

2 CLGM3_chuR1_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATAT-AATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTCGGAACAATGAA

3 CLGM3_chuR3_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTC-GAACAATGAA

4 BT3_chuR2_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTCGGAACAATGAA

5 CLGM3_chuR8_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTC-GAACAATGAA

6 CLGM3_chuR4_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTCGGAACAATG-A

7 CLGM3_chuR9_KL61 CGGAGACGTATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAAACTTTGGTGGAAATGATGCATAGTGAACGACAGCATAACTTC-GAACAATGAA

. . . 0 . . . . : . . . 1080

1 CLGM3_chuR5_KL61 ATACCAATCACTCCCAACACAATGCAAGGAGTGCGACTTTCTATTTGCCTGCAACGGARATGTCCAAAGAACCGCTTCAGTCGGACAGCGGACGGCGAACCCGGTCTG-ACTATTTGTGC

2 CLGM3_chuR1_KL61 ATACCAATCACT-CCAACCCAATGCAAGGAGTGCGACTTTCTATTTG-CTGCAACGGAGATGTC--AAGAA-CGCTTCAGTCGGACAGC-GACG--CGACCCGGTCTG-ACTATCTGTGC

3 CLGM3_chuR3_KL61 ATACCAATCACTCCCAACCC-ATGCAA-GAGTGCGACTTTCTATTTG-CTGCAACGGAGATGTC-AAAGAACCGCTTCAGTCGGACAGC-GACG--CGACCC-GTCTG-ACTATCTGTGC

4 BT3_chuR2_KL61 ATACCAATCACTCCCAACCCAATGCAA-GAGTGCGACTTTCTATTTGCCTGCAACGGAGATGTC--AAGAACCGCTTCAGTCGGACAGC-GACGGCGAACCC-GTCTGAACTATCTGTGC

5 CLGM3_chuR8_KL61 ATACCAATCACTCCCAACCCAATGCAAGGAGTGCGACTTTCTATTTGCCTGCAACGGAGATGTCCAAAGAACCGCTTCAGTCGGACAGCGGACGGCGAACCCGGTCTGAACTATCTGTGC

6 CLGM3_chuR4_KL61 ATACCAATCACTCCCAACCCAATGCAAGGAGTGCGACTTTCTATTTGCCTGCAACGGAGATGTCCAAAGA--CGCTTCAGTCGGACAGCGGACGGCGAACCC-GTCTG-ACTATCTGTGC

7 CLGM3_chuR9_KL61 ATACCAATCACTCCCAACCCAATGCAAGGAGTGCGACTTTCTATTTGCCTGCAACGGAGATGTCCAAAGAACCGCTTCAGTCGGACAGCGGACG-CGAACCC-GTCTG-ACTATCTGTGC

1

Figure 5.22: Sequence anlaysis of chuR ORFs PCR-amplified from positive clones iso-
lated from BT3 and CLGM3 libraries. Alignment of sequences from the chuR ORFs from one
clone from the BT3 library (BT3 chuR2) and six clones from the CLGM3 library (CLGM3 chuR1,
chuR3, chuR4, chuR5, chuR8, and chuR9). Alignment generated using MUSCLE [70] and the
alignment visualized using MView [28] on the EMBL-EBI web server [208], with colouring of
purines/pyrimidines and mismatches.
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Though it was not surprising that nearly all sequenced chuR ORFs from the inte-

grated CLGM3 library clones were exact matches to wild-type B. theta, this outcome

was interesting in a different light: it meant that nearly all positive clones isolated

from the human gut metagenomic library in the chuR/anSME screen were of B. theta

origin, albeit of “wild” B. theta from the feces of the volunteers who contributed to

the library. Should we be surprised that nearly all chuR sequences recovered are from

B. theta, rather than from other species? Perhaps no, considering that Bacteroides

is the most common genus in human fecal samples [8] and that B. theta is often a

dominating species in the distal gut [339]. To see if this ORF was present in public

metagenomes, I performed a BLAST analysis, using the B. theta chuR sequence to

query the NCBI database of assembled metagenomic contigs, and found exact or near

identical full-length sequences in over a dozen assembled gut metagenomes (Table D.1

in Appendix D.3), suggesting that this particular chuR sequence may be relatively

widespread, as would be expected for a gene from a common gut microbe. However, I

was also interested in whether non-identical chuR/anSME genes have been annotated

in metagenomes; a BLAST search using blastx against the NCBI env nr database sug-

gests that indeed there may be many proteins of varying sequence similarity that can

potentially complement the ∆chuR mutant (Table D.2 in Appendix D.3)

From the alignment of the chuR sequences, one metagenomic chuR sequence was

not identical to the B. theta wild-type – CLGM3 chuR clone #5 (Figure 5.22). The full

ORF was obtained for this clone by Sanger sequencing (see Section 5.6.13 for primer

and sequence data details). It shared ∼97% nucleotide identity with the wild-type using

blastn, and its best hit in the NCBI nr database was B. theta VPI-5482 using megablast.

Comparing its translated sequence to the B. theta chuR 415-residue protein sequence

revealed three changes at the amino acid level: Asn62Ser, Val232Ile, and His325Gln

(Figure 5.23).
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Figure 5.23: Alignment of the chuR sequence of CLGM3 chuR clone #5 to B. theta

VPI-5482 chuR (BT 0238). Sanger sequencing reads were obtained from CLGM3 chuR clone #5
and the reads were assembled using Geneious version 6.0. The assembly was aligned to the wild-type
sequence using MUSCLE [70] and the alignment visualized using MView [28] on the EMBL-EBI web
server [208]. Alignments were generated for the ORF nucleotide sequence (A) and the translated ORF
sequence (B). Residues differing from B. theta wild-type are indicated in white.
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The three amino acid changes observed for this clone were in not in the three conserved

cysteine clusters thought to be involved in the ability of the chuR enzyme to mature

sulfatase enzymes [18].

The level of sequence similarity of this clone to wild-type B. theta suggests that

this particular chuR gene carried by clone #5 may belong to an as-yet unsequenced

species in the Bacteroides genus or perhaps another strain of B. theta, based on blastx

results from querying the B. theta chuR sequence against the NCBI Refseq protein

database (Table D.3 in Appendix D.3). The identification of a chuR gene from a

human gut metagenomic library that is different in sequence from the B. theta VPI-

5482 host is a clear indication that functional screening of metagenomic libraries using

B. theta is a viable strategy.

5.4.6 Attempt to use arrayed libraries to track individual donor

fosmids in complementation screens

The unanticipated problem of presumed homologous recombination in B. theta was

an obstacle to screening using the lab’s usual strategy, which requires retrieving the

complementing fosmid from the transconjugant after the functional complementation

screen. Using a recA mutant of B. theta as a host was one possibility that may have re-

duced the probability of recombination; however, a constructed recA mutant of B. theta

was reported to have the unexpected phenotype of sensitivity to oxygen [49]. This in-

creased sensitivity would make B. theta less versatile to work with in a laboratory

setting and therefore the use of a B. theta recA mutant did not seem suitable.

Another solution to tackle the problem of unintended recombination was to modify

the screening strategy so that I could track the fosmid clones being conjugated into the

B. theta recipient. By tracking the clones in individual conjugations, any positive result
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can be traced back to the specific E. coli clone used as donor, so that there is no need

to retrieve DNA from B. theta at all, and the risk of not being able to retrieve the clone

is obviated. Unfortunately, to track the clones for conjugations into B. theta required

essentially “de-pooling” the fosmid libraries to obtain individual clones for tracking.

To test this strategy with a subset of the libraries, I arrayed ∼600 clones from the BT3

genomic library and ∼1000 clones from the CLGM3 metagenomic library, making an

arrayed collection of individual clone stocks in 96-well format (Figure 5.24).

Figure 5.24: Arraying ∼1000 clones from the CLGM3 fosmid library (A) A
frozen aliquot of the pooled CLGM3 library was diluted and plated for isolated colonies;
(B) colonies were picked, inoculated, and saved in 96-well format. Six blank wells were
included on each of the 12 plates as negative inoculation controls.

193



CHAPTER 5. DEVELOPMENT OF BACTEROIDES THETAIOTAOMICRON AS A SCREENING HOST

Though the libraries were arrayed to isolate individual clones, it was not feasible

to carry out a separate mating for each clone; considering that the full CLGM3 metage-

nomic library contains ∼115 000 clones, this would not be a viable future strategy –

without prior development of small-scale, high-throughput E. coli -B. theta conjuga-

tions and likely investing in and optimizing a robotic liquid handling system. Rather

than carry out conjugations using single clones as the E. coli donor in matings, I in-

stead used a pooled-clone mating system in which two rounds of conjugation were

required, using a spot-conjugation method devised for moderately increased through-

put (see Section 5.6.8 for description of two E. coli -B. theta conjugation methods used

in this study):

Round 1: Pooled conjugations. In the first round, the 12 clones in each

row of every plate of the arrayed collection were pooled (Figure 5.25A) and

the pool was used as the donor in a mating with the B. theta ∆chuR recip-

ient (Figure 5.25B). The conjugation spot was resuspended, washed, and

streaked out on selective media to isolate complemented transconjugants –

that is, those B. theta recipient cells that received a library fosmid carrying

a gene that could provide the missing chuR function (Figure 5.25C).

Round 2: Resolution conjugations. Any positive clone arising from the

first round was double checked by streak purification on the same selective

media (Figure 5.25D). Then, to resolve which clone in that particular pool

was responsible for the complementation, a second round of conjugation

was carried out using individual clones as donor. Though it is possible that

more than one of the 12 clones led to the positive result, the likely scenario

is that just one of the clones was responsible for the complementation.
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Figure 5.25: Functional complementation of B. theta ∆chuR using pooled E. coli donors
from arrayed CLGM3 library. (A) Clones from each row were pooled for every row of each of
the 12 96-well plates; rows were tracked by plate and row, e.g., the clone pool from Plate 2 Row
A was labeled Pool 2A. (B) Pools from each plate were mated into the B. theta ∆chuR deletion
using the spot conjugation method. (C) Spots were resuspended, washed, and streaked on minimal
media with chondroitin sulfate as sole carbon source; positive pools were identified, e.g. Pool 2E. (D)
Putative-positive complemented transconjugants were re-streaked on the same media for confirmation
of phenotype.
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This strategy was applied to screen the arrayed CLGM3 metagenomic library for

chuR-complementing clones and in the pooled-conjugation round, a number of rows

from various 96-well plates were identified as having a positive clone(s). However, the

spot-mating strategy requires optimization because it is difficult to select the comple-

mented transconjugants from the heavy background of E. coli ; put another way, the

mating spot contains high background making it difficult to both obtain and gauge a

positive (Figure 5.25C). Though the natural inclination may be to perform the mat-

ings anaerobically to favour the recipient growth, conjugations using IncP systems have

been documented to require oxygen for high-frequency transfer and may not work well

anaerobically [249].

With putative positives from the pooled conjugations, I then performed resolution-

round conjugations to identify single clones in the pool that were responsible for the

complemented phenotype. Due to the described difficulties in this strategy and time

constraints, I was only able to identify two putative positive clones that restored the

ability to use chondroitin sulfate to the B. theta ∆chuR recipient: from the 5B pool

that gave a positive in the first round (pooled clones from Plate 5, Row B), clone #5B2

was identified as the putative clone responsible for the complementation (Well 2). Inter-

estingly, clone #5B9 was also identified as having an intermediate phenotype, between

that of the wild-type and the deletion mutant; I streak-purified both of the 5B2 and

5B9 clones to confirm their phenotype on minimal media with chondroitin sulfate as

sole carbon source (Figure 5.26).
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Figure 5.26: Streak purification of B. theta chuR carrying CLGM3 fos-
mid clone 5B2 or 5B9, for confirmation of phenotype. B. theta chuR carrying
CLGM3 fosmid 5B2 (left plate, bottom-left quadrant) exhibits functional complemen-
tation when compared to the positive control wild-type (left plate, top-left quadrant)
and negative control vector-only streak (left plate, top-right quadrant). B. theta chuR
carrying CLGM3 fosmid 5B9 shows an intermediate phenotype between wild-type and
mutant (right plate, bottom-right quadrant).

After identifying the specific wells of the arrayed collection with the putative clone

carrying a chuR-complementing gene (Plate 5, Row B, Wells 2 and 9), I was then able

to go back to the collection and examine the DNA from E. coli that had never been

passaged through B. theta. Diagnostic digests of these clones showed a high-molecular-

weight insert for both clones, although interestingly, copy number induction of these

clones led to loss of the insert (Figure D.4 in Appendix D.1). BLAST analysis, using

the megablast algorithm, detected no sequence similarity between the ilvGEDA and

rnpB terminators, so it is unclear how the insert could have recombined out.

With only two complementing clones identified in the resolution mating round,

this two-step strategy to screen the arrayed collection will have to be repeated to

identify more putative individual complementing clones. Further analysis of the two

complementing clones is also required, to determine the origin of insert DNA carried
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by the clones and whether the DNA encodes a chuR ORF that is novel in sequence.

Though this two-step method appears to be a viable strategy for screening human gut

metagenomic libraries in a B. theta host, optimization of the method will be required

to reduce E. coli background, raise the frequency of obtaining transconjugants, and

increase throughput for E. coli -B. theta conjugations as well as selection for phenotypic

complementation.

5.5 Conclusions

B. theta is becoming more widely used in both pure and applied research. Its important

role in degrading polysaccharides in the host gut and its dominance in the microbiota

community make it an ideal candidate for study and manipulation. In this Chapter,

B. theta was chosen to be developed as a host to screen gut-derived metagenomic DNA

because it would likely be able to express a greater fraction of the cloned DNA than

would E. coli . Unexpectedly, the complementation of a B. theta chuR mutant suggested

that B. theta is prone to homologous recombination, which presents difficulties for

the screening of pooled metagenomic libraries. Screening of arrayed clone libraries is

possible and is presented here, but the strategy is labour-intensive and likely requires a

semi-automated high-throughput approach; with such an approach, the conditions for

E. coli -B. theta conjugations will also require optimization. Though difficulties were

encountered in using a B. theta host to screen a human gut library, the identification

of a chuR gene different in sequence from the B. theta wild-type demonstrates that

B. theta shows some promise as screening host.
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5.6 Specific materials and methods

5.6.1 Strains and plasmids

The E. coli and B. theta strains and plasmids used were described in Chapter 2, specif-

ically Table 2.1 for strains and Table 2.2 for plasmids.

5.6.2 Growth media and anaerobic culture

Methods for the culture of B. theta were based on those generously shared by Nicole

Koropatkin and Eric C. Martens of the University of Michigan.

Culture in liquid media

B. theta was routinely cultured in liquid broth using brain heart infusion broth (BD

Biosciences B237200), supplemented with 1.2 ➭M histidine, 1.9 ➭M hematin, 1 ➭g/ml

menadione, and 0.5 ➭g/ml cysteine. I called this media BHI+; see Appendix A.4 for

the recipe. Before discovering that B. theta grows very well in BHI+, I also used TYG

for liquid culture; see Appendix A.3 for the recipe.

Cultures of B. theta were started by inoculation either from a single colony or

from frozen stock, using the pyrogallol method [128]: after inoculation, two cotton balls

were inserted into the mouth of the culture tube using sterile forceps, with the second

cotton ball not fully inserted. The cotton was lit using the flame of a Bunsen burner

to purge the culture tube of oxygen; after the flame extinguished, the cotton ball was

pushed about an inch further into the culture tube, and overtop of the cotton ball was

added 200 ➭l of 20% NaCO3 (w/v) and 200 ➭l of 35% pyrogallol (w/v), and the tube

was then immediately plugged with a rubber stopper. Pyrogallol is activated in the
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presence of alkalinity to react with oxygen creating a reducing environment.

Cultures of B. theta were incubated at 37❽ without shaking. Typically, resazurin

was added to the liquid media as an indicator dye (1 ➭g/ml): it is blue in an oxidizing

environment, turns irreversibly pink in a reducing environment, and reversibly colour-

less in the absence of oxygen (Figure 5.5).

Culture on solid media

B. theta was routinely cultured on agar using brain heart infusion broth (BD Bio-

sciences B237200), supplemented with 10% defibrinated horse blood (Bio-media Un-

limited MOHD500); see Appendix A.4 for the recipe. B. theta was also cultured on

solid minimal media; see Appendix A.5 for the recipe.

Agar plates were incubated in air-tight jars with GasPak EZ Anaerobe sachets

(BD Biosciences B260678) to deplete oxygen. Originally, the air-tight container used

was the GasPak 100 System 13 Ö 23 cm polycarbonate jar; however, inexpensive air-

tight containers purchased from local stores demonstrated comparable results, including

Anchor Hocking stainless steel canisters and Lock & Lock glass containers (Figure 5.6).

Lubricating grease was applied to the gaskets of air-tight containers to ensure a good

seal.
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5.6.3 Antibiotics

Antiobiotics used in the culture of B. theta are summarized in Table 5.6. Concentra-

tions for antibiotics are denoted using the abbreviation (see Table 5.6) followed by the

concentration as a subscript; for example erythromycin at 10 ➭g/ml would be Em10.

Note that antibiotic concentrations were halved when used in liquid media.

Table 5.6: Antibiotic concentrations used for B. theta

Antibiotic Abbrev. Solvent Final conc.

erythromycin Em ethanol 10-25 ➭g/ml

gentamicin Gm dH2O 200 ➭g/ml

kanamycin Km dH2O 200 ➭g/ml

nalidixic acid NA dH2O 25 ➭g/ml

tetracycline Tc ethanol 2 ➭g/ml
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5.6.4 Preparation of DNA polylinker/MCS from complemen-

tary oligos

The following protocol was used to phosphorylate and anneal oligos KL10 and KL11 to

form a polylinker. See Table 2.3 for DNA sequences. The protocol for annealing com-

plementary oligos is based on the protocol from OpenWetWare (http://openwetware.

org/wiki/Endy:Annealing_complementary_primers).

Phosphorylation of oligos

Oligos KL10 (30 bases) and KL11 (22 bases) were each diluted to 100 pmol/➭ l and 40 ➭l

of each were used in separate phosphorylation reactions, using T4 polynucleotide kinase

(Thermo-Fisher K0031) according to the recipe in Table 5.7. This volume corresponded

to 36 ➭g and 27 ➭g for KL10 and KL11, respectively. The reactions were incubated at

37❽ for 1.5 hours, followed by heat inactivation at 80-85❽ for 20 minutes and cooling

on ice.

Table 5.7: Recipe for phosphorylating oligos.

oligo DNA (100 pmol/➭ l) 40 ➭l

10Ö T4 DNA Ligase Buffer 5 ➭l

T4 PNK (10 units; in excess) 1 ➭l

sterile dH2O 4 ➭l

Total 50 ➭l (80 pmol/➭ l)

202

http://openwetware.org/wiki/Endy:Annealing_complementary_primers
http://openwetware.org/wiki/Endy:Annealing_complementary_primers


CHAPTER 5. DEVELOPMENT OF BACTEROIDES THETAIOTAOMICRON AS A SCREENING HOST

Annealing complementary oligos

Phosphorylated KL10 and KL11 were combined in an annealing reaction mix (Ta-

ble 5.8). The tube was placed in a floating rack and incubated in a beaker of boiling

water for 5 minutes. The beaker was then removed from the heat and allowed to cool

to room temperature slowly over ∼20 minutes, with later cooling sped up by placing

the beaker on ice. As a check, 0.5 ➭l of the annealed KL10/KL11 reaction was run

on a 2% agarose gel, against 0.5 ➭l and 1 ➭l of the phosphorylated KL10 and KL11 as

controls (Figure D.1 in Appendix D.1). The generated polylinker was stored at -20❽

until ready to be used for ligating to the vector, EcoRI- and KpnI-digested pKL1.

Table 5.8: Recipe for annealing complementary oligos.

phosphorylated KL10 20 ➭l (14.6 ➭g)

phosphorylated KL11 20 ➭l (10.8 ➭g)

0.85% NaCl 10 ➭l (14 mM final)

Total 50 ➭l (508 ng/➭ l)
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5.6.5 PCR of ermF -repA and oriT

The oriT fragment was amplified from pJC8 (10 ng) using primers KL12/KL13 (pos-

sessing HindIII adapters) and the ermF -repA fragment was amplified from pAFD1

(10 ng) using primers KL14/KL15 (possessing EcoRI adapters). KOD Hot Start DNA

Polymerase (Novagen 71086) was used according to the manufacturer’s recommenda-

tions. The touchdown PCR protocol used for both fragments is summarized in Ta-

ble 5.9. To prepare for cloning, the PCR products were gel extracted, digested with

the appropriate restriction enzyme, and column-purified, using routine protocols pre-

viously described in Chapter 2.

Table 5.9: Touchdown PCR protocol for ermF -repA and oriT .

Temperature Duration

94❽ 2 min

98❽ 10 sec























Ö6 cycles; ❴1❽/cycle65 ✙ 59❽ 30 sec

68❽ 1 min/kb; round up nearest min

98❽ 10 sec























Ö25 cycles58❽ 30 sec

68❽ 1 min/kb; round up to nearest min

68❽ 5 min

20❽ hold
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5.6.6 Primer walking to sequence the ermF -repA fragment

The ermF -repA fragment from pAFD1 was sequenced in order to compile the com-

plete sequence for the constructed vector pKL13. The ∼4-kb fragment was sequenced

by primer walking using oligos KL14, KL16, KL33, KL42, KL43, KL45, and KL46

(Table 2.3). Multiple templates were sequenced from which the consensus was taken,

using different combinations of the following for each round of primer walking: pAFD1,

pKL6, pKL7, and pKL8 (Table 2.2). The consensus sequence for the ermF -repA frag-

ment is included in Appendix D.2. See Section 5.6.13 for information on sequence data

availability.

5.6.7 Miniprep of plasmid DNA from B. theta

Plasmid DNA was isolated from liquid B. theta cultures using the QIAprep spin

miniprep kit (Qiagen 27106), according to the manufacturer’s recommendations, in-

cluding optional washes to reduce nuclease contamination. Typically, 5 ml of culture

was used for plasmid minipreps.
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5.6.8 Conjugation from E. coli donor to B. theta recipient

Lawn conjugations

The following protocol was based on one shared with me by Nicole Koropatkin and

Eric Martens from the University of Michigan. Matings were carried out using 5 ml of

each of the donor, mobilizer, and recipient strains.

The E. coli donor and mobilizer were cultured in 5-ml LB supplemented with

the appropriate antibiotics and grown to OD600 of ∼0.4; B. theta recipient cultures

were cultured in 5 ml BHI+ and grown to OD600 of ∼0.3-0.4 (Spectronic Spec 20D

spectrophotometer). Cultures were placed on ice to halt cell growth. Cultures were

transferred to 15-ml conical tubes and cells were pelleted by centrifuging at 7,000Ög

at room temperature for 5 minutes. The supernatant was removed and the cells were

resuspended in either BHI+ or 1Ö Bt salts (see Appendix A.5). Donor, mobilizer, and

recipient were mixed in a final volume of 1 ml, and the mixture was swirled evenly over

the surface of a BHIH agar plate. The plate was dried for several minutes in a laminar

flow hood and then incubated aerobically overnight with the agar side down.

Overnight mating lawns were scraped off the agar plate with a wooden stick and

resuspended in 2 ml BHI+ or 1Ö Bt salts. Typically, serial ten-fold dilutions were made

from 10-1 to 10-3, and 100 ➭l of each dilution was plated on the BHIH supplemented

with appropriate antibiotics to select for transconjugants – typically, Km200 and NA25

to select against E. coli and Em10-25 to select for the vector. If the mating lawn was

plated on minimal media, then the initial resuspension of the mating lawn was washed to

remove complex media components; this was accomplished by at least three repititions

of centifugation and resuspension in 1 ml 1Ö Bt salts.

206



CHAPTER 5. DEVELOPMENT OF BACTEROIDES THETAIOTAOMICRON AS A SCREENING HOST

Spot conjugations for increased throughput

I modified the preceding conjugation protocol shared by Nicole Koropatkin and Eric

Martens to achieve a higher throughput for mating library clones into B. theta. Using

spots rather than lawns, up to 10 or 12 matings can be performed per agar plate

(Figure 5.25B). Matings were carried out using 5 ml-equivalents of each of the donor

and mobilizer spotted onto 10-15 ml-equivalent of spread-plated recipient.

Cultures of E. coli and B. theta were grown as for the lawn conjugations. 10-15 ml

of the B. theta recipient culture was centrifuged; the supernatant was removed and the

cells were resuspended in 100 ➭l 1Ö Bt salts (see Appendix A.5) and spread on a BHIH

plate, and the plate was dried for several minutes in the laminar flow hood. 5 ml of each

of the E. coli donor and mobilizer were centrifuged; the supernatant was removed from

both, the mobilizer cell pellet was resuspended in 20 ➭l 1Ö Bt salts, the resuspension

was transferred to the donor cell pellet for resuspension, and then the mixture was

spotted onto the plate overlaying the B. theta cells (Figure 5.25B). The mating spots

were dried for several minutes in the laminar flow hood and then incubated aerobically

overnight with the agar side down.

Overnight spot matings were processed exactly as lawn matings, with the only

difference being that the volume used for resuspension was smaller: 500 ➭l 1Ö Bt salts

or BHI+ was used instead of 2 ml.
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5.6.9 Genomic and metagenomic library construction

The libraries constructed in this chapter using either pKL3 or pKL13 are summarized

in Table 2.12. Libraries were constructed as described previously in Section 3.6.3, with

some exceptions that are detailed below.

pKL3-based libraries

The CLGM2 metagenomic library and BT2 genomic library (see Section 2.6) were both

constructed using pKL3. Library construction was carried out as previously described in

Section 3.6.3, with the minor exception that transductants were selected on ampicillin

instead of tetracycline. This was due to the resistance marker present on the base

vector, pAFD1, which was used to construct pKL3 (Figure 5.8).

pKL13-based libraries

The CLGM3 metagenomic library and BT3 genomic library (see Section 2.6) were

both constructed using pKL13. Library construction was carried out as previously

described in Section 3.6.3, with a few exceptions. First, transductants were selected on

chloramphenicol instead of tetracycline; this was due to the resistance marker present on

the base vector, pCC1FOS, which was used to construct pKL13 (Figure 5.12). Second,

EPI300 was used for the library host instead of HB101, due to its advantageous copy

number control feature when used in conjunction with pCC1FOS.

The third and last exception to library construction is a highly unusual and there-

fore notable one: the pKL13 vector backbone was not purified away from the stuffer

between the Eco72I sites; that is, the vector was simply digested to release the stuffer,

and the mixture was used for ligation to high-molecular weight metagenomic or ge-
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nomic DNA. This means that some subset of clones in the CLGM3 and BT3 libraries

may be “contaminated” with the pKL13 stuffer. The reason for not removing the

stuffer was that I had technical difficulties doing so: after purifying the digested and

dephosphorylated backbone by electroelution and achieving a concentrated preparation

of ∼350 ng/➭l, I was no longer able to ligate the vector, which I discovered in carry-

ing out calculations for digestion and dephosphorylation efficiency using T4 PNK and

ligase (as described in Section 2.5.6). To ensure that the preparation had not been

contaminated with nucleases, I ran the purified DNA on an agarose gel and saw that it

was indeed intact (Figure D.2 in Appendix D.1). It is still unclear why the vector was

no longer ligatable, but it is possible that after digestion and dephosporylation, the

vector ends may be sensitive to disruption when subjected to an electric field. In any

case, I was forced to make a preparation of the vector without stuffer purification to use

in library construction. After constructing the CLGM3 and BT3 libraries, I estimated

using the CLGM3 library that the percent of gentamicin-resistant clones is 1-2%, which

provides an estimate of the upper limit for stuffer contamination (the stuffer carries a

gentamicin resistance gene; see Figure 5.12).
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5.6.10 Construction of thrC and trpD single recombinants

The ∼600-bp thrC (BT 2401) and ∼350-bp trpD (BT 0530) fragments were amplified

from B. theta genomic DNA (55 ng) using primers thrCIDMF-SalI/thrCIDMR-KpnI

and trpDIDMF-SalI/trpDIDMR-KpnI, respectively (see Table 2.3), with restriction

enzyme adapters as indicated by the primer names. Pfx DNA Polymerase (Invitrogen

11708-013) was used according to the manufacturer’s recommendations. The PCR

protocol used for both fragments is summarized in Table 5.10.

Table 5.10: PCR protocol for thrC and trpD fragments.

Temperature Duration

94❽ 5 min

94❽ 15 sec























Ö30 cycles58❽ 30 sec

68❽ 60 sec

68❽ 5 min

10❽ hold

To prepare for cloning, the PCR products were purified using a QIAquick PCR

Purification Kit (Qiagen 28104) and digested using NEB enzymes according to the

manufacturer’s recommendations in a sequential double digest: purified PCR products

were digested with SalI in NEB Buffer 3 (NEB R0138), the sample was ethanol pre-

cipitated, and the DNA was resuspended in NEB Buffer 1 for digest with KpnI (NEB

R0142). The digested fragments were purified by gel extraction using a QIAquick Gel

Extraction Kit (Qiagen 28704), and ligated to similarly cut and purified pKNOCK-bla-
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tetQb. Ligations were microdialyzed against water using DNA filter paper (Millipore

VCWP09025), and then used to electroporate S17-1 λ-pir. Clones were streak-purified,

then screened and verified by restriction digest. Clones of pKNOCK-bla-tetQbcarrying

the thrC and trpD fragment were named pKL21 and pKL22, respectively.

pKL21 and pKL22 were conjugated from S17-1 λ-pir into wild-type B. theta in

a biparental mating using the lawn conjugation method (Section 5.6.8). Mating lawns

were resuspended and diluted, and transconjugants carrying the integrated plasmid

were selected on BHIH Gm200 Tc2. Transconjugants were streak-purified and inoculated

into 5 ml TYG Tc2 for generation of frozen stocks; the B. theta BtUW1 and BtUW2

strains were added to the Charles lab strain collection (see Table 2.1). The phenotype

of the strains were also checked on minimal media with and without the appropriate

amino acid supplementation (Figure 5.15B).
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5.6.11 Genomic DNA miniprep of B. theta

This protocol is a scaled-down version of the one described in Section 2.4.6, which

is based on the method described by Charles and Nester [36]. Briefly, B. theta was

cultured in 10 ml of liquid media with the appropriate antibiotics, and the cell pellets

were recovered after centrifugation at 7000Ög for 5 minutes at room temperature. Cells

were resuspended in 400 ➭l buffer (10 mM Tris [pH 8.0], 25 mM EDTA). The following

were added: 50 ➭l 5 M NaCl, 10 ➭l 10 mg/ml RNase A, 5 ➭l 19.2 mg/ml proteinase K

(optional), and the tube was inverted several times. 25 ➭l 20% SDS was added and

the sample was incubated at 65❽ for 30-60 minutes. 260 ➭l 7.5 M ammonium acetate

was added and the sample was incubated on ice for 20 minutes. The mixture was

centrifuged at 21,000Ög for 15 minutes, the supernatant was decanted carefully, and

the mixture was extracted with chloroform in a 1:1 volume. The DNA was precipitated

with 800 ➭l isopropanol, and pelleted by centrifuging at 21,000Ög for 3 minutes. The

pellet was washed with 100 ➭l 70% ethanol, centrifuged at 21,000Ög for 1 minute, the

supernatant was removed, and the pellet was allowed to dry. Finally, the pellet was

allowed to dissolve in 50 ➭l of TE overnight at 4❽. The DNA was quantified by gel

electrophoresis, using bacteriophage λ DNA as a standard (see Section 2.5.8).
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5.6.12 Analysis of genomic DNA for fosmid clone recombina-

tion using PCR

Genomic DNA was isolated from the B. theta clones carrying chuR-complementing fos-

mid DNA, and used as template in the PCR. Taq-based 2X PCR Master Mix (Thermo

Scientific K0171) was used according to the manufacturer’s recommendations, with the

exception that RNAseA was typically added to the reaction in small amounts to remove

RNA contamination from the genomic DNA prep. The general touchdown PCR pro-

tocol used is summarized in Table 5.11. Target PCR products and their corresponding

primer sets were (see Table 2.3 for primer details):

❼ RK2 oriT (∼800 bp): KL12, KL13

❼ chuR ORF (∼1200 bp): KL61, KL62

❼ chuR ORF + 300-bp upstream and downstream (∼1800 bp): KL63, KL65

❼ chuR ORF + 300-bp downstream (∼1500 bp): KL61, KL65

❼ chuR ORF + 300-bp upstream (∼1500 bp): KL63, KL62

Table 5.11: Touchdown PCR protocol for analysis of genomic DNA.

Temperature Duration

95❽ 3 min

95❽ 30 sec























Ö11 cycles; ❴1❽/cycle60 ✙ 50❽ 30 sec

72❽ 1 min/kb

95❽ 30 sec























Ö20 cycles50❽ 30 sec

72❽ 1 min/kb

72❽ 5 min

20❽ hold
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5.6.13 Data availability

The expected sequence for the B. theta-compatible pKL13 fosmid is provided in Ap-

pendix D.2 and has been submitted to NCBI Genbank (NCBI accession KU746975).

The sequence of the ermF -repA fragment from pAFD1 is provided in Appendix D.2.

Sanger sequencing reads for chuR clone #5 are provided in Appendix D.2. Addi-

tionally, raw sequencing data in ABI (.ab1) format can be accessed online: https:

//github.com/itskathylam/phd
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6.2 Abstract

Functional metagenomics is a powerful experimental approach for studying gene func-

tion, starting from the extracted DNA of mixed microbial populations. A functional

approach relies on the construction and screening of metagenomic libraries – physical

libraries that contain DNA cloned from environmental metagenomes. Library construc-

tion is often a technically challenging and laborious endeavour, thus necessitating the

careful design of library cloning vectors to ensure the presence of elements that aid in

the library’s downstream applications.

The commercial fosmid vector pCC1FOS is widely used for the construction of

metagenomic libraries. As I described in Chapter 5, I used pCC1FOS as the base plas-

mid to construct the B. theta-compatible library vector pKL13, introducing various

additional elements, including two transcriptional terminators that flank the cloning

site, which were anticipated to reduce insert-borne transcription into the vector back-

bone should such transcription be problematic for clone stability. The two terminators

are taken from the ilvGEDA and rnpB genes of E. coli MG1655, which were docu-

mented to be strong terminators. Here, I provide the rationale for the design of the

transcriptional terminator (TT) fragment encoding the terminators, describe its syn-

thesis and cloning, and most importantly, present the results of testing the functionality

of the two terminators using the fluorescent reporter GFPuv. With the use of a simple

testing scheme, both terminators appear to be reducing transcription in vivo, justifying

their inclusion in the pKL13 fosmid.

Finally, in the last results section of this chapter, I discuss how the TT fragment

may be taken advantage of in future experiments to test whether the transcriptional

terminators help protect against or alleviate the observed cloning bias of metagenomic

libraries. Several constructs have been built for this purpose and though such ex-

periments are outside the scope of this work, it will be important for the functional

metagenomics approach to understand the factors that affect DNA representation in

clone libraries.
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6.3 Introduction

6.3.1 The challenges of constructing large-insert metagenomic

libraries

The functional metagenomic approach and the steps involved in constructing libraries

using a cos-based vector were previously described (Section 1.6.1 and Figure 1.1). With

the number of steps involved, the construction of a metagenomic library can be a

laborious and time-consuming procedure, requiring a high level of skill at the laboratory

bench. There are several technically challenging steps in the process of metagenomic

library construction. First, the DNA extracted from the environmental sample must be

of sufficient length for efficient packaging into lambda phage heads, which have a lower

size limit for packaging [229]. Extraction usually employs gentle lysis to avoid shearing

the DNA [347] but even so it may be difficult to achieve large fragment sizes [141]. I

find that starting with crude DNA extracts containing at least ∼75 kb fragments leads

to high-quality cos-based libraries, and it is crucial to check the fragment size range

of crude extracts by pulsed-field electrophoresis before proceeding. In my experience,

a particularly useful and affordable molecular ladder to use for pulsed-field gels is self-

ligated lambda DNA, which can be easily prepared in-house and results in bands at ∼50,

∼100, and ∼150 kb. A freeze-grinding step prior to extraction [175] can substantially

improve cell lysis. Although this additional step might also fragment DNA [26], I find

that it does not hinder library construction, consistent with previous work showing that

freeze-grinding results in minimal shearing [347].
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Extracts are often contaminated with compounds that co-purify with DNA, re-

quiring additional purification steps that may lead to loss of DNA. Common contami-

nants in soil-derived DNA extracts are humic acids, visible as a brown coloring of the

extract. Such contaminants may interfere with enzymatic reactions [303]. Non-linear

electrophoresis is effective for contaminant removal [232] and generates purified and

highly concentrated DNA suitable for PCR or metagenomic analysis [75], yet requires

access to specialized equipment. I have found that for library construction, humic

acids can simply be allowed to run off the gel during pulsed-field electrophoresis of

crude extract for size-selection because humic acids travel much faster than large DNA

fragments when subjected to an electric field. Alternatively, to avoid contaminating

the circulating buffer, electrophoresis can be paused after contaminants have formed a

front, the part of the gel containing humic acids excised, and then this region replaced

with fresh gel [43].

After the DNA has been size-selected and electroeluted from a pulsed-field gel, it

must be end-repaired and then ligated to a desphosphorylated and blunt-ended vector.

To ensure a proper size range of DNA (∼25 to 40 kb) before ligation, the DNA can be

checked for co-migration with the largest band of a lambda-HindIII ladder on a typical

agarose gel [26] or, as I prefer, running the sample on a pulsed-field gel for a more

accurate size assessment. The end-repair is a particularly challenging step in library

construction because there is no simple way to confirm that ends are indeed blunt

following the end repair step. My current strategy is to use a small amount of the

ligation to transform E. coli prior to the costly packaging step; resulting transformants

indicate the presence of circular DNA molecules arising from ligation of successfully

blunt-ended fragments. Though the ligation conditions may not favour the formation

of circular molecules, this is currently the best proxy for successful end-repair.
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Other challenges include the sensitivity of packaging extracts as well as the prepa-

ration of purified digested dephosphorylated vector DNA for ligation. Although excel-

lent commercial products are available for both reagents, in-house vector preparation

may still be required when specific expression hosts are to be used in functional screen-

ing that are outside the host range of available commercial vectors [43,50,308,330]. The

culminating step of library construction is the transduction of E. coli . Although it is

possible to generate many thousands of clones with the first attempt, troubleshooting

may be required to increase library size in some cases. When the transduction results

in a disappointingly small number of transductants (zero in the worst case!), it is not

easy to determine the cause.

Indeed, metagenomic library construction is in many ways a craft that takes

time and practice to master. Given that there are substantial challenges and costs

associated with library construction, as well as possible difficulties in obtaining rare

environmental samples, a clear corollary is that researchers active in this field ought

to find ways to maximize these valuable resources for shared benefit. In particular,

collections of metagenomic libraries that can be used in a variety of hosts would be

extremely valuable if able to be accessed by the wider scientific community. Our lab

and collaborators have previously made metagenomic libraries publicly available [222]

and continue to advocate for increased sharing and strategizing [37]. Though there are

obvious administrative obstacles, services such as Addgene [125] may facilitate these

efforts.
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6.3.2 Properties of pCC1FOS, a popular vector for library

construction

Due to the difficulties of library construction, commercial products that aid in genera-

tion of cosmid or fosmid libraries are popular. Indeed, one widely used cloning-ready

commercial vector is pCC1FOS (Genbank accession EU140751; available from Epicen-

tre Biotechnologies), shown in Figure 6.1. In recent years, as functional metagenomics

has gained traction, a number of metagenomic libraries from remarkably diverse envi-

ronments have been constructed using pCC1FOS, some of which are listed in Table 6.1.

Figure 6.1: Commercial fosmid vector, pCC1FOS. pCC1FOS is avilable from
Epicentre Biotechnologies. Notable elements include: chloramphenicol resistance, an
F origin of replication for E. coli , and an RK2 origin of replication for Proteobacteria
compatible with strains carrying trfA.
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Table 6.1: Examples of metagenomic libraries constructed from diverse environmental
samples using cloning vector pCC1FOS or derivatives. Libraries that are based on the com-
mercial pCC1FOS or pCC2FOS vector can be screened in any RK2-compatible host that expresses
the trfA gene product required for the broad-host-range RK2 oriV origin of replication.

Sampled environment Vector; screening host(s) Ref.

Host-associated environments

bovine rumen pCC1FOS; E. coli [321]

elephant feces pCC1FOS; E. coli [237]

human distal ileum pCC1FOS; E. coli [34]

human feces pCC1FOS; E. coli [138]

human feces (pescatarian) pCC1FOS; E. coli [299]

marine sponge pCC1FOS [343]

termite gut pCC1FOS, pCC2FOS; E. coli [191,324]

Extreme environments

Alaskan soil pCC1FOS; E. coli [3]

Alaskan floodplain soil pCC1FOS; E. coli [335]

Antarctic Pennisula meltwater pCC1FOS; E. coli [87]

glacial ice pCC1FOS; E. coli [270]

hot spring sediment/biofilm pCT3FK; E. coli , T. thermophilus✯ [177]

hydrothermal fluids pCC1FOS; E. coli [24]

Marine or freshwater environments

bog pCC1FOS; E. coli [282]

marine sediment pRS44; P. fluorescens, X. campestris❸ [1]

ocean tidal flat sediment pCC1FOS; E. coli [173,174]

ocean water column pCC1FOS [59]

river sediment pCC1FOS; E. coli [237]

Continued on next page

✯Thermus thermophilus
❸Pseudomonas fluorescens, Xanthomonas campestris
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Table 6.1 – Continued from previous page

Sampled environment Vector; screening host(s) Ref.

Polluted environments

crude oil-contaminated shore pMPO579; E. coli❹ [305]

polluted river pCC1FOS; E. coli [316]

Agricultural, engineered, or other environments

activated sludge pCC1FOS, pCC2FOS; E. coli [294,345]

compost: leaf branch pCC1FOS; E. coli [295]

compost: lumber waste pCT3FK; E. coli , T. thermophilus✯ [177]

compost: wood, manure, plant

debris

pCC1FOS; E. coli [226]

decomposing leaf litter pCC1FOS; E. coli [225]

orchard soil pCC1FOS; E. coli [65]

sugarcane bagasse pCC1FOS [213]

The pCC1FOS cloning vector has several advantages over other commercial op-

tions. It carries a chloramphenicol resistance (cat) marker that is superior to the

common ampicillin resistance (bla) marker; because beta-lactamases that break down

ampicillin are secreted into the media, satellite colony formation sometimes arises on

ampicillin selection plates, and this background growth can be particularly problem-

atic for the dense platings that are often required for library construction. In addition

to an F plasmid origin of replication for single-copy maintenance, the pCC1FOS vec-

tor also carries an oriV origin of replication from the RK2 plasmid. The oriV is a

broad-host-range origin, conferring the ability to replicate in diverse members of the

Proteobacteria [10], but requires the trfA gene product for replication and results in an

❹derivatives of E. coli EPI300 to increase transcription
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estimated 15 copies per cell [68]. Though trfA is not carried by the fosmid, it can be

provided in trans; notably, the commercial E. coli strain EPI300 (also available from

Epicentre Biotechnologies) carries trfA under the control of an inducible promoter that

is advertised to increase copy number from 1 copy per cell to 10-200 copies. The strain

likely possesses a trfA copy-up mutant allele under control of araC -PBAD, which is

induced by L-arabinose [333]. In the past, our lab has preferred HB101 as a library

host due to its receptiveness to transduction, but I have found that EPI300 appears

to transduce at least as well as, if not better than, HB101 (Table 5.4). It also has

the advantages of being an endA1 mutant and supporting copy-number inducibility,

allowing for less-degraded and higher-yield plasmid DNA preparations, respectively.

pCC1FOS lacks an origin of transfer

Despite its popularity, pCC1FOS has some disadvantages that make resulting libraries

less versatile than they could be. First, pCC1FOS does not possess an origin of transfer

(oriT ) that would allow the fosmid to be efficiently transferred by conjugation, medi-

ated by a helper plasmid, to other species that may be more suitable for heterologous

expression or even to different strains of E. coli . Others have achieved conjugation

capabilities by adding the RK2 oriT to pCC1FOS [1, 29, 305]. To enable conjugation

after library construction has already taken place, still others have retrofitted individ-

ual pCC1FOS-based clones with an oriT [29, 179]. This retrofitting strategy has also

been used for the cosmid vector SuperCos-1 [115], which is an alternative cos-based

cloning vector (Stratagene, Agilent Technologies). These modifications illustrate the

need for fosmid and cosmid vector design to include the oriT so that duplication of

work can be avoided. It is possible that transformation can be used to transfer libraries

to other hosts, but only for recipients that are amenable to those techniques and that

will not reject DNA that has been synthesized in E. coli due to the presence of host
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restriction-modification systems. There is little leeway here though if desired hosts are

isolates that have not yet been adapted for routine laboratory techniques.

pCC1FOS is not inherently broad-host-range

Given that the broad-host-range oriV is used to achieve a higher copy number in con-

junction with EPI300 expressing the trfA gene, another disadvantage of pCC1FOS is

that trfA is not included on the vector. The consequence is that species that would

otherwise be able to use the oriV cannot replicate pCC1FOS. Perhaps it is not surpris-

ing then that for the vast majority of studies highlighted here (Table 6.1), E. coli was

used as the screening host. This is an enormous disadvantage for functional metage-

nomics because different clones can be isolated from the same metagenomic library

when different screening hosts are used [50, 204]. Our lab has found that using the

legume-symbiont Sinorhizobium meliloti as a host results in a much greater diversity

of clones than E. coli when screening a corn field soil metagenomic library for beta-

galactosidase activity, though this greater diversity does not appear to be related to

phylogenetic distance of the origin of the cloned DNA to the surrogate host [Cheng

et al., in preparation]. The importance of devising systems that allow for functional

screening in diverse expression hosts has been reviewed by others [71, 187, 302, 312],

but what of the large number of libraries that have already been constructed? Can we

make use of them for screening in non-E. coli hosts? The libraries listed in Table 6.1,

as well as potentially many other metagenomic libraries constructed using pCC1FOS

or derivatives, would be accessible to any RK2-compatible host if a copy of the trfA

gene were also made available. This solution has already been applied by others: one

group inserted a wild-type trfA gene into the chromosome of the Gammaproteobac-

teria species Pseudomonas fluorescens and Xanthomonas campestris for screening of

libraries constructed using a pCC1FOS derivative [1]. Another group inserted araC -
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PBAD-trfA into the chromosome of E. coli to give copy number inducibility to the

lambda Red recombineering strain EL350 [327]. The introduction of trfA into RK2-

compatible species is a straightforward way to expand the range of expression hosts for

existing pCC1FOS-based libraries.

An alternative to inserting the trfA gene into desired expression hosts for main-

taining metagenomic clones is to modify the vector for integration into the host genome,

which bypasses the requirement for trfA. This strategy has already been employed to

integrate clones into a locus in the genome of the thermophile Thermus thermophilus

for functional screening: pCC1FOS was first modified to include a T. thermophilus

selectable marker as well as regions for homologous recombination at the target lo-

cus [7]. In our lab, pCC1FOS has also been modified by John Heil to carry ΦC31 att

sites [122] for integrase-mediated site-specific recombination of cloned insert DNA into

the genomes of landing pad strains, including Sinorhizobium meliloti, Ochrobactrum

anthropi, and Agrobacterium tumefaciens [123]. As a general strategy, however, chro-

mosomal insertion is potentially less useful than recombinant clone maintenance due to

the difficulty in retrieving the integrated insert DNA for manipulation, including DNA

sequence analysis, when non-arrayed (i.e., pooled) libraries have been screened.
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6.3.3 Inclusion of transcriptional terminators in cloning

vectors

In addition to an oriT and broad-host range oriV , pCC1FOS may also be improved

by the addition of transcriptional terminators that flank the fosmid’s Eco72I cloning

site (Figure 6.1). The benefits of using terminators for cloning have previously been

discussed (Section 4.4.4); briefly, transcriptional terminators may help alleviate cloning

bias in some cases where DNA, particularly AT-rich DNA, may contain sequences that

resemble the σ70 promoter consensus sequence. Spurious transcription initiating from

efficient promoters near the vector-insert junction can interfere with the plasmid’s origin

of replication or can lead to overproduction of proteins involved in control of plasmid

copy number, affecting plasmid maintenance [291]. For cloning metagenomic DNA,

it may be a good precaution to include terminators that prevent transcription into

the vector backbone and indeed, commercial vectors are available that make use of

transcriptional terminators to combat this problem.

Figure 6.2: Lucigen pEZ BAC cloning vector includes transcriptional ter-
minators. Transcriptional terminators indicated by red stop signs. Two terminators
flank the cloning site to reduce isert-driven transcription and one terminator follows the
parC gene to reduce vector-driven transcription into the insert. Adapted from Lucigen
BAC Cloning Kits product manual.
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For example, the pEZ BAC cloning vector from Lucigen Corporation (Figure 6.2)

has two terminators that flank the cloning site to reduce insert-driven transcription.

Interestingly, it also has another terminator to reduce vector-driven transcription into

the insert. In one particular line of vectors available from Lucigen, the linear pJAZZ

vectors, the two terminators flanking the cloning site were disclosed as the phage T7

terminator and the E. coli rrnB terminator [106], both of which have been documented

as relatively strong terminators in standardized tests of terminator efficiency [31].

6.3.4 Testing the efficiency of transcriptional terminators

The characterization of transcriptional terminator strength has been of recent inter-

est as more parts are needed to build complex systems in synthetic biology endeav-

ours. This has led to the standardized testing of hundreds of natural and synthetic

transcriptional terminators to both understand their sequence determinants to aid in

prediction and modelling of terminators, as well as to find strong terminators for use

in designed biological systems that require a tight control of transcription by RNA

polymerase [31, 42].

Efforts to characterize terminators so far have focussed on only intrinsic termi-

nation, also called Rho-independent termination, which is one of two ways that tran-

scription can be terminated in E. coli and accounts for ∼80% of terminators in its

genome [252]. Intrinsic terminators consist of a GC-rich hairpin-forming sequence fol-

lowed by a run of Ts in the DNA, which is called the oligoT tract in the DNA [157]

or the U-tract [42] or poly-U tail [31] in the corresponding RNA. The folding of the

nascent RNA into a hairpin disrupts the RNA:DNA hybrid that stabilizes the tran-

scription elongation complex, leading to its dissociation; the stretch of Ts downstream

from the hairpin sequence is important in this process because it contributes to pausing
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of the elongation complex, allowing time for hairpin formation [114,157].

In contrast to intrinsic termination, Rho-dependent termination is more complex:

Rho binds to sites on the RNA in a sequence-specific manner, and can traverse the

transcript to catch up with the elongation complex to cause RNA release; however, the

binding sites can be separated from the site of transcriptional termination by hundreds

of nucleotides, and the factors leading transcriptional termination by Rho are currently

not well understood [252]. This complexity makes Rho-dependent termination difficult

to predict on the basis of sequence and thus efforts to characterize terminators have

concentrated on the more straightforward intrinsic terminators.

The strength (or efficiency) of intrinsic terminators has been measured using

devices designed for standardized testing with fluorescent reporter proteins: briefly,

flow cytometry is used to compare the level of expression of a reporter downstream

of the transcriptional terminator to the level of expression of an upstream reporter,

normalizing to measurements obtained from a control construct lacking a terminator

(Figure 6.3).

RFP GFP

GC Stem (5-9 nts)
Poly-U tail (7-9 nts)

Loop (3-5 nts)

Figure 6.3: Device for standardized testing of transcriptional terminators.
Flourescent protein reporter genes are used to measure the efficiency of transcriptional
terminators. Adapted from [31].
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To be able to compare measurements of terminator strength requires careful design

of the testing device, including the choice of upstream and downstream reporters, as

well as understanding possible effects of neighbouring sequence context, which can

influence terminator strength [31]. In any case, the use of fluorescent reporters is a

convenient way to gauge whether transcriptional terminators are functioning in vivo.

6.3.5 Aims of this work

In Chapter 5, I used the commercial vector pCC1FOS to construct the B. theta-

compatible fosmid vector pKL13. I included the oriT for conjugation ability and two

unidirectional, Rho-independent transcriptional terminators that flank the cloning site

to reduce potential transcription into the vector. The latter were introduced by the

cloning of a synthesized fragment. This chapter elaborates on how the transcriptional

terminator (TT) fragment was designed, providing rationale for each element, par-

ticularly those required for terminator testing. The main objective was to test the

functionality of the terminators, that is, to determine whether each of the two termina-

tors was indeed able to reduce transcription in the fosmid context. Such confirmation

would justify their inclusion in the pKL13 library cloning vector. Given this objective,

the testing was intended to be a crude check and involved just one reporter protein,

GFPuv. This reporter was measured in the presence versus absence of each of the two

transcriptional terminators, demonstrating that each terminator behaved as expected

in reducing transcription.
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6.4 Results and discussion

6.4.1 Design of a transcriptional terminator fragment

After deciding to introduce terminators to reduce potential transcription into the

pCC1FOS vector backbone, I considered two options for the synthesis of the frag-

ment encoding transcriptional terminators, using Integrated DNA Technologies (IDT)

as the manufacturer: custom gene synthesis or gBlocks gene fragments. The difference

between the two is that custom gene synthesis delivers the desired fragment cloned into

a plasmid, whereas gBlock fragments arrive as uncloned double-stranded fragments.

Because a gBlock fragment is not cloned, the product will contain a small proportion

of incorrect sequences, such as insertions or deletions, although the product is accompa-

nied by an estimated purity and a recommendation from IDT regarding the probability

of obtaining the correct clone. For example, for a ∼1,500-bp fragment with approxi-

mately 85% purity, the IDT technical support team suggests that users screen about 6

colonies for >95% chance of the correct clone.

The price for gene synthesis was estimated to be nearly three times that for gBlock

synthesis. The transcriptional terminator (TT) fragment was synthesized as a gBlock,

and because the lab was offered a free trial, I also designed the TT fragment to include

the ∼1-kb gentamicin resistance stuffer as well as all the elements required for testing

both the transcriptional terminators, short of a reporter gene. The final design came

to 1,500 bp (Figure 6.4; DNA sequences provided in Table 6.2).
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Figure 6.4: Transcriptional terminator (TT) fragment design. The length of
each element is indicated by the number above the element. Note that this diagram is
stylized and is therefore not to scale.

More specifically, the following elements were included in the TT fragment:

❼ A stuffer fragment, flanked by Eco72I sites (a.k.a PmlI; CAC^GTG). As described

in Section 5.4.2, the presence of a stuffer aids in complete digestion of the vector;

the vector is typically purified to remove the stuffer prior to ligation.

❼ A gentamicin resistance gene within the stuffer, identical to the sequence from

pJC8. The resistance gene is flanked by BstBI sites (a.k.a. Bsp119I; TT^CGAA) for

optional removal or swap of the resistance gene. The resistance gene was included

because (1) there was no cost to synthesis, (2) it would reduce required cloning

downstream, and (3) the resistance gene confers antibiotic resistance that would

make cloning the synthesized fragment more straightforward.

❼ An inducible Ptac promoter, also within the stuffer. Ptac is a strong promoter,

possessing the consensus sequence for rpoD/σ70 (Figure 4.9). The promoter is

flanked by Eco81I sites (a.k.a. Bsu36I; CC^TNAGG). This restriction enzyme was

specifically chosen for being a 7-cutter and lacking specificity at the centre base;

though Eco81I will cut on either side of the Ptac, the two sites are actually dif-

ferent in sequence: CC^TAAGG on the NheI side versus CC^TCAGG on the NsiI side.
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This design allows for the future swapping-in of different promoters, if desired:

complementary oligos can be synthesized, annealed to form the double-stranded

promoter sequence, and then cloned in directionally.

❼ Two transcriptional terminators positioned to reduce transcription outward –

that is, into the vector backbone. Both the ilvGEDA and rnpB T1 transcrip-

tional terminators are from E. coli MG1655; sequences were taken from the com-

prehensive study on terminator efficiency by Cambray et al. [31]. These were

not the strongest terminators reported in that study because the strong stem-

loop structures associated with very strong terminators were incompatible with

gBlock synthesis; however, both of the chosen terminators were reported by Cam-

bray et al. to reduce expression 64- to 128-fold, which still make them very good

transcriptional terminators.

❼ A 3-frame translational stop upstream of each of the two transcriptional termina-

tors. These two translational stops differ in sequence to avoid potential problems

with homologous recombination (Table 6.2). They were designed upstream of the

transcriptional stops to ensure that the latter are effective: if perchance ribosomes

were actively translating the nascent mRNA, transcriptional termination may be

abolished due to interference with the formation of the stem-loop structure in

Rho-independent termination [337].

❼ Two primer-binding sites for Sanger end-sequencing of cloned inserts, KL-JC102

and KL-JC103. Other than the addition of an extra base, these sequences are

identical to the sequencing primer sites for pJC8 (the extra base was included

to ensure the 3’ end of the primer ends with two bases that are either C or

G). These sites are internal to the transcriptional terminators because the stem-

loop structures may hinder Sanger sequencing. Furthermore, each primer-binding
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site was positioned between the translational stop and the transcriptional stop

because there is evidence to suggest that transcriptional termination is effective

when the spacing is ∼20-60 bases [337].

❼ A pair of unique restriction sites downstream of each of the two transcriptional

terminators, for directional cloning of a downstream reporter gene to test termi-

nator functionality. The two pairs were: SgsI (a.k.a. AscI; GG^CGCGCC) and PacI

(TTAAT^TAA) on the ilvGEDA side, and CpoI (a.k.a. RsrII; CG^GWCCG) and SfaAI

(a.k.a. SgfI, AsiSI; GCGAT^CGC) on the rnpB side.

❼ Single restriction sites upstream of each translational stop: NheI (G^CTAGC) on

the ilvGEDA side and NsiI (a.k.a. Mph1103I; ATGCA^T) on the rnpB side. These

were included for two reasons, with only the first being relevant to this chapter:

(1) in the case that an additional upstream reporter gene had to be cloned for

testing transcriptional termination (as in Figure 6.3) – ideally two sites would

have been included on each side for directional cloning but unique restriction

sites were limited for a vector of this size (Figure 5.12); (2) so that the cloned

insert DNA can be released from the vector for restriction digest analysis of clones

from metagenomic libraries.

❼ A SwaI site (ATTT^AAAT) on both ends of the fragment so that the entire TT

fragment can be subcloned from one vector to another.
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Table 6.2: DNA sequences for elements of the TT fragment.

Element Length Sequence (5’ to 3’)

excess bases 5 GCATA

SwaI 8 ATTTAAAT

SfaAI 8 GCGATCGC

spacer 8 GACCTGCT

CpoI 7 CGGACCG

rnpB T1 TT 82 GACAGTCATTCATCTTTCTGCCCCTCCAAAAGCAAAAACCCGCCGAAGCGGGTTTTTACGTAAATCAGGTGA

AACTGACCGA
➜

KL-JC102 F 31 TAACAATTTCACACAGGAAACAGCTATGACG

3F stop 1 11 TCACCTAGTTA
➜

NsiI 6 ATGCAT

Eco72I 6 CACGTG

BstBI 6 TTCGAA

Gm resistance 1056 CGTGTTGCCCCAGCAATCAGCGCGACCTTGCCCCTCCAACGTCATCTCGTTCTCCGCTCATGAGCTCAGCCA

ATCGACTGGCGAGCGGCATCGCATTCTTCGCATCCCGCCCTCTGGCGGATGCAGGAAGATCAACGGATCTCG

GCCCAGTTGACCCAGGGCTGTCGCCACAATGTCGCGGGAGCGGATCAACCGAGCAAAGGCATGACCGACTGG

ACCTTCCTTCTGAAGGCTCTTCTCCTTGAGCCACCTGTCCGCCAAGGCAAAGCGCTCACAGCAGTGGTCATT

CTCGAGATAATCGACGCGTACCAACTTGCCATCCTGAAGAATGGTGCAGTGTCTCGGCACCCCATAGGGAAC

CTTTGCCATCAACTCGGCAAGATGCAGCGTCGTGTTGGCATCGTGTCCCACGCCGAGGAGAAGTACCTGCCC

ATCGAGTTCATGGACACGGGCGACCGGGCTTGCAGGCGAGTGAGGTGGCAGGGGCAATGGATCAGAGATGAT

CTGCTCTGCCTGTGGCCCCGCTGCCGCAAAGGCAAATGGATGGGCGCTGCGCTTTACATTTGGCAGGCGCCA

GAATGTGTCAGAGACAACTCCAAGGTCCGGTGTAACGGGCGACGTGGCAGGATCGAACGGCTCGTCGTCCAG

ACCTGACCACGAGGGCATGACGAGCGTCCCTCCCGGACCCAGCGCAGCACGCAGGGCCTCGATCAGTCCAAG

TGGCCCATCTTCGAGGGGCCGGACGCTACGGAAGGAGCTGTGGACCAGCAGCACACCGCCGGGGGTAACCCC

AAGGTTGAGAAGCTGACCGATGAGCTCGGCTTTTCGCCATTCGTATTGCACGACATTGCACTCCACCGCTGA

TGACATCAGTCGATCATAGCACGATCAACGGCACTGTTGCAAATAGTCGGTGGTGATAAACTTATCATCCCC

TTTTGCTGATGGAGCTGCACATGAACCCATTCAAAGGCCGGCATTTTCAGCGTGACATCATTCTGTGGGCCG

TACGCTGGTACTGCAAATACGGCATCAGTTACCGTGAGCCGGAGGATC
➯

BstBI 6 TTCGAA

Eco81I 7 CCTCAGG

Continued on next page

➜sequence shown has been reverse-complemented for continuity; see Figure 6.4
➯synthesized gBlock fragment differs from this sequence by a point mutation; see Appendix E.2
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Table 6.2 – Continued from previous page

Element Length Sequence (5’ to 3’)

Ptac 67 GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACAC

Eco81I 7 CCTAAGG

Eco72I 6 CACGTG

NheI 6 GCTAGC

3F stop 2 11 TGACTAAGTGA

KL-JC103 R 31 CGAAAACCCTGGCGTTACCCAACTTAATCGC
❺

ilvGEDA TT 89 TAGAGATCAAGCCTTAACGAACTAAGACCCCCGCACCGAAAGGTCCGGGGGTTTTTTTTGACCTTAAAAACA

TAACCGAGGAGCAGACA

PacI 8 TTAATTAA

spacer 8 ATCCAGCC

SgsI 8 GGCGCGCC

SwaI 8 ATTTAAAT

excess bases 5 TTGAC

6.4.2 Synthesis and cloning of terminator fragment

The TT fragment was synthesized by IDT as a gBlock gene fragment in the form of

200 fmol (200 ng) of the product – blunt DNA fragments with phosphorylated 5’ ends.

I attempted to clone the TT fragment into two different vectors concurrently: first,

directly into pKL7 (Figure 5.12) to generate the desired B. theta-compatible fosmid

vector; second, in case the first attempt did not work, the TT fragment was also cloned

into the intermediate vector pJET1.2 for eventual transfer to pKL7. Both cloning

attempts were successful and a couple of clones from each were chosen for screening by

sequencing to find the correct clone; the pJET1.2-based clones were called pKL9 and

the fosmid-based clones were called pKL10 (Table 2.2).

❺sequence shown has been reverse-complemented for continuity; see Figure 6.4
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Both clones in the fosmid backbone contained a deletion of a critical base in

the ilvGEDA terminator (Figure 6.5A and B) and in fact, all four clones contained a

deletion in the gentamicin resistance gene fragment (Figure 6.5A and C), although this

did not affect the gentamicin resistance phenotype. Not surprisingly, the error in the

terminator was in a run of As (corresponding to the U-tract) near the core stem-loop

structure. From this experience, it is probably advisable to use gBlocks gene fragments

for sequences without known strong secondary structure and for fragments of relatively

small size to minimize the cost of screening by sequencing.

Figure 6.5: Screening by Sanger sequencing for correct TT fragment se-
quence. Six Sanger reads were obtained for pKL10 and aligned to the expected se-
quence (A) revealing two errors: one in the ilvGEDA terminator (B) and the other
in the gentamicin resistance gene fragment (C). Adapted from images generated by
Geneious version 6.0 created by BioMatters.

237



CHAPTER 6. INCLUSION OF TRANSCRIPTIONAL TERMINATORS IN CLONING VECTORS

Because pKL9 carried only the inconsequential error in the gentamicin resistance

gene fragment, the TT fragment was usable (see Appendix E.2 for sequence). Accord-

ingly, the TT fragment was subcloned from pKL9 as a blunt-ended SwaI-fragment into

the blunt Eco72I site of pKL7, generating pKL13 (Figure 5.12), which was the final

library vector that I used for constructing B. theta-compatible libraries in Chapter 5.

After constructing pKL13, the TT fragment was double-checked by restriction digest,

using all of the enzymes whose sites were designed into the fragment (Figure 6.6).

Figure 6.6: Restriction digest check of TT fragment cloned in pKL13.
Restriction enzyme sites and sizes of the elements in the TT fragment (A) were checked
by restriction digest alongside uncut pKL13 as control (B); pullout shows agarose gel
section under adjusted brightness and contrast to increase DNA fragment visibility.
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6.4.3 Testing functionality of transcriptional terminators

Though the two chosen transcriptional terminators, the ilvGEDA and rnpB T1 termi-

nators, had been previously characterized [31], I wanted to confirm that the terminators

were indeed functional in their new context to justify their inclusion in the B. theta-

compatible library vector, pKL13 (Figure 5.12). This confirmation was not meant to

be a precise quantification of terminator efficiency; rather, it was intended to be a

crude check of function. To do a simple check of transcriptional terminator function-

ality, a reporter gene can be cloned downstream of the terminator, and the level of

expression of that reporter gene can be compared in the presence versus absence of

the terminator. For a reporter, I chose green fluorescent protein (GFP), specifically

the GFPuv variant isolated by molecular evolution and determined to be 16-18 times

brighter than wild-type GFP [51]. Though the fluoresecence of another variant called

enhanced GFP (EGFP) has been reported to be even higher – about 35 times brighter

than wild-type GFP [344], EGFP may be more appropriate for eukaryotic rather than

bacterial systems [144].

Having chosen the reporter gene, the vector was then prepared for the introduction

of the GFPuv reporter: to test each terminator, the Ptac promoter must be upstream

of that terminator and the GFPuv reporter must be downstream. pKL13 had the

Ptac promoter oriented toward the ilvGEDA terminator, and thus I cloned GFPuv

downstream of the terminator to generate pKL15, and then deleted the terminator

to generate pKL16 (Figure 6.7, left). To generate constructs for testing the rnpB

terminator, I first reversed the orientation of the Eco72I stuffer (see Section 6.6.2) to

generate in pKL17, which placed the Ptac upstream of the rnpB terminator; analogous

to the first set of constructs, I cloned GFPuv downstream of the terminator to generate

pKL18, and then deleted the terminator to generate pKL19 (Figure 6.7, right).
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Figure 6.7: Overview of constructed plasmids for testing of transcriptional terminators using GFPuv reporter gene. To
test functionality of the ilvGEDA and rnpB transcriptional terminator sequences, respectively: the Ptac promoter orientation was manipulated
(pKL13 and pKL17), the GFPuv reporter gene was cloned (pKL15 and pKL18), and the terminators were deleted (pKL16 and pKL19).
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In each of the two plasmids that now lacked either the ilvGEDA or rnpB terminator–

pKL16 or pKL19, respectively – DNA was deleted starting from the translational stop

to the transcriptional stop, inclusive (Figure 6.7). I decided to delete the entire segment

instead of simply deleting the stem-loop-containing sequences because the segment was

designed to work as a unit for the termination of transcription. To see if the deleted

sequences were conferring transcriptional termination in the fosmid context, the fluores-

cence from expressed GFPuv was compared in EPI300 cells carrying constructs with

versus without the terminator unit – that is, pKL15 was compared to pKL16 while

pKL18 was compared to pKL19 – under two different conditions (Figure 6.8).

1 mM IPTG, 0.2% arabinose1 mM IPTG

neg. controls

0

200000

400000
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pKL15 pKL16 pKL18 pKL19 pKL15 pKL16 pKL18 pKL19 pKL13 EPI300

TT upstream 

of GFPuv: (+) (−) (+) (−) (+) (−) (+) (−)

Ptac induced Ptac induced, copy number induced

na na

Figure 6.8: Fluorescence from EPI300 cells expressing GFPuv with or
without transcriptional terminators. Strains were grown under two different con-
ditions to assay GFPuv fluorescence from constructs with and without the ilvGEDA or
rnpB terminating sequences; red line indicates background fluorescence of empty cells.
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The two different conditions used to test the presence versus absence of the termi-

nator units were: (1) Ptac promoter induction alone using IPTG, or (2) Ptac promoter

induction in combination with copy number induction using arabinose. In the latter

condition, the presence of the terminators resulted in cells displaying a level of fluores-

cence that was comparable to negative-control cells that lacked GFPuv; conversely, the

absence of either the ilvGEDA terminator unit (pKL16) or the rnpB terminator unit

(pKL19) led to an increase in fluorescence as a result of higher GFPuv transcription

(Figure 6.8, centre and right panels). This result confirmed that the two unidirectional

terminators are functional in the pKL13 context. Interestingly, this difference was only

observed when plasmid copy number was induced (Figure 6.8, left versus centre panel),

indicating that there is a limit of detection with the current experimental set-up (see

Section 6.6.5). It would be interesting to know what the exact copy number is for these

plasmid constructs that were compared, as Epicentre provides a rather large range for

copy number (from 10 to 200 copies per cell) without explanation of the influencing

factors [77].

In considering copy number for these constructs, it is conceivable that the copy

number of plasmids with the terminator may be different from the copy number of

the those lacking the terminator, as copy number can be affected by various factors,

such as growth media composition and nutrient limitation [95] or, in this case, the

presence/size of cloned DNA [280,333]. In the case of these GFPuv testing constructs,

however, the difference of ∼150 bases between constructs being compared is unlikely

to lead to very large differences in copy number, although if there were a difference,

it is more likely that increased transcription would lead to decreased copy number,

meaning that the difference observed in GFPuv expression would be even greater if

plasmid copy number were controlled for. It would be interesting to see how strong

transcription affects plasmid copy number for this particular vector. To control for
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differences in copy number, plasmid copy number can be estimated for each plasmid in

the particular strain under the specific growth condition [172]; alternatively, differences

in plasmid copy number can be accounted for by simply using testing constructs that

make use of an upstream reporter gene in addition to a downstream reporter gene so

that transcription can be normalized to variability in reporter gene expression owing to

factors other than transcription termination (Figure 6.3). That being said, the precise

quantification of terminator efficiency is beyond the scope of this thesis, although I did

design the TT fragment to allow for upstream reporter gene cloning (Figure 6.4).

6.4.4 Constructs for testing the effect of transcription on

cloning bias

The TT fragment was designed with two intentions: (1) to include terminators in the

B. theta-comptaible vector where they may help alleviate cloning bias (as discussed

in Section 4.5), and (2) to use in further experiments to test the extent to which

transcriptional terminators protect against cloning bias. For the latter, one future

goal is to compare the cloning bias between two metagenomic libraries that have been

constructed in a vector with transcriptional terminators versus one without. To prepare

vectors for this purpose, I deleted the Ptac-gentamicin stuffer in pKL13 (Figure 5.12)

and replaced it with only the gentamicin stuffer gene from pJC8, generating pKL20,

although the orientation of the gentamicin stuffer gene in pKL20 is currently uncertain

(Figure 6.9A, B, and C). The next step would be to delete the two transcriptional

terminator units to obtain a vector identical to pKL20 but for the missing terminators

(Figure 6.9C and D).
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Figure 6.9: Vectors for future work to test the effect of transcription terminators on
cloning bias. (A) pKL13, containing the TT fragment; (B) pKL14, in which the Ptac-gentamicin
stuffer was removed as a Eco72I frament; (C) pKL20, which contains just the gentamicin resistance
gene stuffer from pJC8; (D) and (E) show suggested next steps for removal of the two transcriptional
terminators to generate a vector that can be used for direct comparison to pKL20.
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Cloning bias could then be compared between the two vectors, pKL20 and that

of Figure 6.9E, after using them to construct metagenomic libraries from the same

DNA sample. For cloning bias experiments, it may be desirable to first delete the

ermF -repA fragment from pKL20, which would reduce cloning vector size by ∼4 kb

(see Figure 5.12C and D).

A advantage of using the pCC1FOS backbone is that plasmid copy number can be

induced, allowing comparison of cloning bias not only between presence versus absence

of terminators, but also between single-copy versus multi-copy maintenance of metage-

nomic libraries. With carefully designed experiments, it may be possible to tease apart

the factors that affect library representativeness – distinguishing transcriptional effects

from copy-number effects, though it may be easier to do so with cloned fragments

smaller in size than typical fosmid inserts.

Although the pCC1FOS backbone allows for copy number induction, cloning bias

could be observed under even greater copy number, as would be the case for pUC-

based vectors [340], which have been reported in the literature at up to 500-700 copies

per cell [210]. It may be interesting to determine whether transcriptional terminators

alleviate cloning bias under these conditions; in fact, the pUC19-based, high-copy pKL3

cosmid that I constructed is one vector that could be used for this purpose (Figure 5.8).

To transfer the TT fragment – and any derivatives constructed from it – to a different

vector, the fragment can simply be subcloned as an blunted SgsI-SfaAI fragment into

the destination plasmid (Figure 6.9).

245



CHAPTER 6. INCLUSION OF TRANSCRIPTIONAL TERMINATORS IN CLONING VECTORS

6.5 Conclusions

In the previous Chapter 5, pCC1FOS was modified to include an oriT to allow the

vector to be conjugated between strains, as well as a TT fragment carrying transcrip-

tional terminators that flank the cloning site to block transcription into the vector

backbone. This chapter described the design, synthesis, and characterization of the

TT fragment. Using GFPuv, the ilvGEDA and rnpB transcriptional terminator units

were determined to be functional in the pKL13 fosmid context. This chapter also de-

scribed the construction of plasmids and fragments that may be used to test the effect

of transcription on the observed cloning bias of metagenomic libraries, although the

various factors that lead to cloning bias and their relative contributions remain to be

elucidated.
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6.6 Specific materials and methods

6.6.1 Preparation of pCC1FOS-based vectors using arabinose

induction

Plasmid minipreps of pCC1FOS-based vectors were prepared from cultures that had

been induced with either 1Ö commerical autoinduction solution (Epicentre AIS107F)

or 0.2% arabinose. EpiCentre sells the solution without details about composition,

but based on the literature, it is clear that the inducer of plasmid copy number is

arabinose. I induced using a final concentration of 0.2% arabinose (see Appendix E.1)

although it might be useful to drop concentration to 0.02% [147]. I did not test varying

concentrations of arabinose for optimal yields of plasmid DNA.

6.6.2 Reversing orientation of stuffer fragment

The construction of pKL17 from pKL13 required reversing the orientation of the stuffer

fragment, so that the Ptac would be oriented in the opposite direction (see Figure 6.7 for

construct diagrams). To release the stuffer, 1 ➭g of pKL13 was digested with Eco72I

(Thermo-Fisher FD0364) in 20 ➭l and heat-inactivated at 80❽. For ligation, 1 ➭l of

the digest was used in a 10 ➭l ligation using T4 DNA ligase (Thermo-Fisher EL0014).

Ligations were used to transform EPI300 and clones were streak-purified and screened

by restriction enzyme digest (see Appendix E.1 for agarose gel image).
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6.6.3 Cloning of GPFuv

The GFPuv ORF and RBS were amplified from pGFPuv (1 ng; Genbank accession

U62636) using primers KL47/KL48 (with PacI and SgsI adapters) or KL49/KL50 (with

CpoI and SfaAI adapters) for cloning into pKL13 or pKL17, respectively (see Figure 6.7

for construct diagrams).

High-fidelity Phusion DNA polymerase (Thermo-Fisher F-530L) was used ac-

cording to the manufacturer’s recommendations. The two-step PCR protocol used is

summarized in Table 5.9. To prepare for cloning, the PCR products were gel extracted,

digested with the appropriate restriction enzymes, and column-purified, using routine

protocols previously described in Chapter 2.

Table 6.3: PCR protocol for GFPuv.

Temperature Duration

98❽ 30 sec

98❽ 10 sec











Ö30 cycles
72❽ 30 sec

72❽ 5 min

22❽ hold
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6.6.4 Deletion of transcriptional terminators

Plasmid DNA was prepared for pKL15 and pKL18; 3 ➭g was used for PacI-NheI and

NsiI-CpoI double digestion, respectively, to release the transcriptional terminators (see

Figure 6.7 for construct diagrams). Digestions were incubated at 37❽ for 2.5 hours,

and the vector backbone was gel extracted and purified. 200 ng of each sample was used

in end-repair reaction using the End-It DNA End-Repair Kit (Epicentre ER81050) in

a volume of 20 ➭l, according to the manufacturer’s instructions. The reaction volume

was then doubled by the addition of water to achieve 0.5 mM ATP concentration, and

Fast-Link buffer and ligase were added (Epicentre LK0750H), according to the manu-

facturer’s instructions. The ligation was incubated overnight at room temperature.

After the end-repair and ligation, the two desired constructs – with the tran-

scriptional terminator deleted – no longer had the restriction sites that flanked the

deleted terminator sequence. To effectively remove those DNA molecules that still had

these sites due to possible incomplete digestion, the ligations were subjected to another

double digest with the corresponding enzymes; this step digests undesired molecules,

enriching for the correct ones. The digest was then used to transform EPI300 and clones

were streak-purified and screened by restriction enzyme digest (see Appendix E.1 for

agarose gel images).
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6.6.5 Fluorescence assay for GFPuv expression

Strains were streaked from frozen stock onto solid media with the appropriate antibi-

otics. For each strain, an isolated colony was inoculated in triplicate into 5 ml of liquid

media, using experimental and control conditions (Table 6.4). After overnight culture,

500 ➭l was transferred to 4.5 ml of saline and used to take an OD600 reading (Spectronic

20 spectrophotometer). The remaining 4.5 ml of culture was centrifuged at 8,000Ög for

1 minute and resuspended in 1 ml saline.

The sample were effectively standardized by OD in the following manner: using

the OD values, a standardization factor for each sample was calculated by dividing

the OD of the sample with the lowest OD, by the OD of that sample; a fraction

of each 1 ml sample was taken corresponding to the calculated dilution factor. Cells

were pelleted by centrifugation at 8,000Ög for 1 minute and resuspended in 300 ➭l

saline. Samples were transferred to a black opaque microtiter plate for fluoresence

assay on the FilterMax F5 Multi-Mode Microplate Reader (Molecular Devices) using

the Softmax Pro software (version 6.2.2); the filters used were 360/35 nm for excitation

and 535/25 nm for emission.

Table 6.4: Strains used in fluorescence assay to test transcriptional terminators.

Media Strains

LB Cm5, 1 mM IPTG, 0.2% arabinose pKL15, pKL16, pKL17, and pKL18; all in EPI300

LB Cm5, 1 mM IPTG pKL15, pKL16, pKL17, and pKL18; all in EPI300

LB Cm5 pKL13 in EPI300

LB Sm100 EPI300
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7.2 Abstract

Method development will be crucial to the continuing success of functional metage-

nomics for elucidating and understanding microbial gene function. This thesis has

focused on development and analysis of methods for functional metagenomics, includ-

ing devising strategies for large-insert clone sequencing (Chapter 3), understanding se-

quence bias in metagenomic libraries (Chapter 4), expanding screening host range for

gut-derived libraries (Chapter 5), and exploring the importance of transcriptional ter-

minators in cloning vectors (Chapter 6). The results presented in this thesis contribute

towards method advancement, but also suggest new avenues for further investigation.

The near future may bring changes to the functional metagenomics field. For

example, improvements in long-read sequencing technology, making it possible to obtain

on the order of thousands of bases of accurate DNA sequence, will undoubtedly change

clone sequencing strategies. On the other hand, expression host development will likely

advance at a slower pace, with steady and likely labour-intensive work to generate or

modify organisms to make them suitable for heterologous screening. Another issue

to be addressed is that of sequence bias in clone libraries, particularly for libraries

constructed using gut-derived DNA; factors contributing to library bias need to be

better understood to inform strategies to address such bias. These methodological

improvements will complement sequence-based metagenomics methods, providing basic

knowledge about gene function as well as supporting applied work aimed at mining

novel enzymes and engineering or modifying microbiomes.
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7.3 Summary and claims of contributions to

knowledge

This section briefly summarizes the broad goals of each of the four data chapters in

this thesis, as well as lists my claims of contributions to scientific knowledge based on

the results of each chapter.

Chapter 3: Evaluation of pooled sequencing for metagenomic clones

In Chapter 3, I presented the results of using a pooled method for sequencing

large-insert cosmid clones isolated from functional screens of metagenomic libraries.

Illumina sequence data from the pooled approach were evaluated against reference data

obtained from barcoded sequencing of the same clones. The objective was to determine

the extent to which the more cost-effective pooled sequencing strategy was capable of

generating accurate and near-complete assemblies for the metagenomic inserts. My

specific claims of contributions to knowledge are:

1. By comparison to the barcoded reference data, I showed that DNA sequence

for large-insert metagenomic clones can be effectively recovered from a pooled

short-read (75-base) sequencing approach.

2. I showed that two major factors affecting clone sequence recovery are sequencing

depth and clone sequence similarity. In the first case, coverage of the clones can

be improved by increasing the depth of sequencing to close any potential gaps;

however, in the latter case, coverage may not improve for those clones in the pool

that have high sequence similarity (but not identical) due to problems assembling

the short reads.
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Chapter 4: Analysis of cloning bias in metagenomic libraries

In Chapter 4, I presented the results of analyzing sequence bias in metagenomic

libraries and exploring the possible causes of this bias during library construction. I

did this by analyzing data obtained from sequencing the DNA at various points in the

construction of a human fecal metagenomic library. The objective was to determine if

DNA fragmentation was a major cause of cloning bias or alternatively, if events occur-

ring in vivo in E. coli were a more important factor. My specific claims of contributions

to knowledge are:

3. I showed that the low-copy cosmid-based human gut metagenomic library did

suffer from cloning bias but that DNA fragmentation/size selection was not a

major cause of this bias; rather, the bias appears to occur after introduction of

the cloned DNA into E. coli .

4. By analyzing the sequence data for promoter consensus sequences, I provided

support for the hypothesis that spurious transcription in E. coli may be a major

cause of bias. I emphasized how this finding is in agreement with older published

results which I found by careful examination of the scientific literature.

Chapter 5: Development of B. theta as a screening host

In Chapter 5, I presented the results of efforts to develop Bacteroides thetaio-

taomicron as a host for screening human gut metagenomic libraries. Arguably the most

important chapter of this thesis, it was also the most challenging. The objective was to

construct a cloning vector able to replicate in B. theta, generate B. theta-compatible

clone libraries using such a vector, and finally to demonstrate that constructed libraries

can be successfully screened in a B. theta host. Positive clones isolated from a proof-
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of-principle functional screen would support the notion of using B. theta as a host for

screening gut-derived DNA. My specific claims of contributions to knowledge are:

5. I constructed a mobilizable B. theta-compatible fosmid vector, pKL13, and used

this vector to construct a B. theta genomic library as well as a human gut metage-

nomic library. Both the vector and the libraries are resources that may be useful

in future functional metagenomics work.

6. By introducing both libraries into a B. theta deletion mutant unable to grow on

chondroitin sulfate as sole carbon source, I achieved complementation thereby

demonstrating that it was possible to carry out functional screening in B. theta,

particularly of a metagenomic library.

7. Although I found that fosmid clone DNA appeared to be integrated into the

genome of B. theta, I was able to obtain and analyze partial DNA sequence

data from the metagenomic clones that were able to complement the B. theta

chuR mutant. Through this, I identified a chuR ORF that showed high sequence

similarity to the VPI-5482 strain but was not found in the NCBI nr database,

indicating that this is a novel chuR ORF.

Chapter 6: Inclusion of transcriptional terminators in cloning vectors

In Chapter 6, I presented the results of designing, cloning, and testing tran-

scriptional terminators for a fosmid vector. The objective was to introduce elements

to reduce insert-driven transcription into the vector backbone, as well as to make a

terminator-containing construct general enough for introduction into other cloning vec-

tors. My specific claims of contributions to knowledge are:
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8. I incorporated two transcriptional terminators into the B. theta-compatible fos-

mid pKL13 that flank the site of large-insert cloning, and demonstrated their

functionality in that context.

9. I generated constructs that will be useful for future experiments to examine

whether the presence of transcriptional terminators will alleviate the cloning bias

observed for metagenomic libraries.

7.4 Future directions and perspective

Function-based approaches are likely to be increasingly important as the fields of micro-

bial ecology and metagenomics advance. The development and refinement of methods

for functional metagenomics will be instrumental in this advancement [74]. The work

described in this thesis was carried out towards this goal, although further work needs

to be done to expand on the findings presented. Accordingly, there are several broad

considerations discussed below that are relevant to method development for functional

metagenomics.
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Sequencing clones from metagenomic libraries

Although Chapter 3 was focused on a pooled-clone Illumina sequencing strategy

and discussed the limitation of pooling clones for short-read sequencing, it is possible

that short-read technologies will soon be obsolete. Within the last decade, there has

been marked increase even in the length of reads obtained by Illumina (Solexa) instru-

ments, from less than 50 bases on the Illumina GA II ten years ago to 2Ö 300 bases

on the Illumina MiSeq today. Although Illumina offers the lowest error rate among

sequencing technologies currently in popular use, at ≤1% [245, 255], other sequencing

technologies that are able to offer much longer read lengths may soon gain the advan-

tage as they improve their error rates. For example, Pacific Biosciences sequencing can

generate reads several-kb long on average, although the throughput and ∼15% error

rate need to be improved for it to gain more widespread usage [76].

A particularly exciting long-read sequencing technology that is being developed

comes from Oxford Nanopore Technologies, with a median length in the thousands of

bases and upper-limit length of tens of thousands of bases [9]; the length obtained,

however, depends on the quality of the input DNA, which offers the prospect of ob-

taining the entire DNA sequence of a typical fosmid insert in just a single read! Like

PacBio sequencing, this technology is also limited by a high error rate, which is close to

∼30% [9] although a rate of 4% has been reported by the company [121]. The refine-

ment and availability of affordable long-read sequencing technologies may soon obviate

the need for the more difficult methods involved in short-read sequencing and assembly,

particularly for clone pools.
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Representativeness of metagenomic libraries

Though not so much a concern for functional screens, it is interesting to consider

the factors that influence library representativeness; elucidating these factors may lead

to the development of better strategies for accessing the full potential of environmental

metagenomes. If spurious transcription does indeed contribute substantially to cloning

bias, it would be worth investigating strategies to alleviate such transcription. For

example, the use of transcriptional terminators has already been discussed in detail in

Chapter 4 and Chapter 6; in the latter, I generated constructs containing terminators

that flank the site of cloning, which can be introduced into different vectors for library

construction and examination of bias (Section 6.4.4). It is important to note that for

fosmid vectors, inserts may be very large and events occurring at the vector-insert

junction may contribute to only a small fraction of the observed bias; on the other

hand, these events may cause the whole insert to be lost.

For tackling potential transcription more globally, that is, across the entire cloned

fragment, another possibility is based on the observation that E. coli H-NS (histone-

like nucleoid structuring) protein binds AT-rich DNA, including sequences that may

be recognized by the E. coli housekeeping sigma factor σ70 [168], silencing spurious

transcription by RNA polymerase [273]. It is possible that increasing the cellular con-

centration of H-NS will suppress transcription from σ70 promoter-like sequences in

cloned metagenomic DNA, thereby reducing transcriptional effects that may poten-

tially lead to insert exclusion. The caveat of using H-NS, however, is that suppression

of transcription may be undesirable if the host used for library construction is to be

used directly for functional screening.
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Appropriate hosts for functional screening

Depending on the target activity, functional screens can exhibit a low hit rate [312]

the reasons for which might include barriers at the level of both transcription and

translation. Improving E. coli as a screening host to address these problems will likely

improve future hit rates. Examples include introducing heterologous sigma factors to

guide RNA polymerase to otherwise untranscribed regions [98], employing T7 RNA

polymerase to help drive transcription [305], as well as forming hybrid ribosomes [151]

that may influence expression.

Nevertheless, it will be important to move beyond E. coli into different screen-

ing hosts, particularly for the complementation of mutant phenotypes not possible in

E. coli , such as those of B. theta and other members of the Bacteroidetes described

in Chapter 5. The future of functional metagenomics will likely see the development

of a greater variety of alternative hosts for functional screening, which will not only

likely lead to an increase in the hit rates of functional screens but also make available

a broader range of phenotypes for functional complementation.

Functional metagenomics using a mouse model

An exciting avenue of research involves performing functional screens in vivo, that

is, in a germ-free (gnotobiotic) mouse model, to explore how particular genes contribute

to fitness in terms of host colonization or other effects on the host organism. This has

already been demonstrated in principle using E. coli to screen a B. theta genomic library

(in an expression vector) for fitness determinants in a mouse model [341]. Moving to

a metagenomic library is the obvious next step [81]. A further exciting step would be

to carry out functional screening in B. theta or another closely related host, should the

development of such organisms for functional metagenomics be successful.
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7.5 Concluding remarks

Method development is and will continue to be important in the functional metage-

nomics field, particularly as (1) interest in the human microbiome drives research into

characterizing microbial gene function and understanding the mechanisms that lead to

effects on the host organism, and (2) knowledge of gene function is required to comple-

ment sequence-based metagenomics research. The identification of obstacles to cloning

and screening will aid in the development of new tools and technologies for functional

metagenomics, providing us with greater reach in terms of what we are able to gather

from functional screens. Refining function-based methods will be crucial for the bio-

prospecting of novel enzymes and compounds, for the determination of gene function

to guide the development of reliable models of microbial ecosystem functioning, and to

support efforts in microbiome engineering and development of therapeutics.
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[11] Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A.,

Semenkovich, C. F., and Gordon, J. I. The gut microbiota as an environmental
factor that regulates fat storage. Proceedings of the National Academy of Sciences of
the United States of America 101 (2004), 15718–15723. [Page 8]

[12] Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon,

J. I. Host-bacterial mutualism in the human intestine. Science 307 (2005), 1915–1920.
[Page 5], [Page 6], [Page 8], [Page 140], [Page 141]

[13] Barrett, T., Clark, K., Gevorgyan, R., Gorelenkov, V., Gribov, E.,

Karsch-Mizrachi, I., Kimelman, M., Pruitt, K. D., Resenchuk, S., Tatusova,

T., Yaschenko, E., and Ostell, J. BioProject and BioSample databases at NCBI:
facilitating capture and organization of metadata. Nucleic Acids Research 40 (2012),
D57–D63. [Page 86]

[14] Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G.,

and Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries
from complex microbial communities by assembling paired-end Illumina reads. Applied
and Environmental Microbiology 77 (2011), 3846–3852. [Page 134]

[15] Bayley, D. P., Rocha, E. R., and Smith, C. J. Analysis of cepA and other
Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiology
Letters 193 (2000), 149–154. [Page 116], [Page 147], [Page 153]

[16] Bazzani, R. P., Cai, Y., Hebel, H. L., Hyde, S. C., and Gill, D. R. The
significance of plasmid DNA preparations contaminated with bacterial genomic DNA on

263



BIBLIOGRAPHY

inflammatory responses following delivery of lipoplexes to the murine lung. Biomaterials
32 (2011), 9854–9865. [Page 82]

[17] Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. Sulfatases and
a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and
fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. Journal of
Biological Chemistry 286 (2011), 25973–25982. [Page 27], [Page 137], [Page 180], [Page
181]

[18] Benjdia, A., Subramanian, S., Leprince, J., Vaudry, H., Johnson, M. K., and

Berteau, O. Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-
adenosylmethionine enzymes. Journal of Biological Chemistry 283 (2008), 17815–17826.
[Page 181], [Page 192]

[19] Berer, K., Mues, M., Koutrolos, M., Rasbi, Z. A., Boziki, M., Johner,

C., Wekerle, H., and Krishnamoorthy, G. Commensal microbiota and myelin
autoantigen cooperate to trigger autoimmune demyelination. Nature 479 (2011), 538–
541. [Page 11]

[20] Berlemont, R., Delsaute, M., Pipers, D., D’Amico, S., Feller, G., Gal-

leni, M., and Power, P. Insights into bacterial cellulose biosynthesis by functional
metagenomics on Antarctic soil samples. The ISME Journal 3 (2009), 1070–1081. [Page
62]

[21] Bethesda Research Laboratories. BRL pUC host: E. coli DH5α competent cells.
Focus 8 (1986), 8. [Page 27]

[22] Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A.,

Francois, F., Perez-Perez, G., Blaser, M. J., and Relman, D. A. Molecular
analysis of the bacterial microbiota in the human stomach. Proceedings of the National
Academy of Sciences of the United States of America 103 (2006), 732–737. [Page 4]

[23] Blaser, M. J. Missing microbes: how the overuse of antibiotics is fueling our modern
plagues. HarperCollins Publishers Ltd, 2014. [Page 12]
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Simell, T., Simell, O., Neu, J., Wasserfall, C. H., Schatz, D., Atkinson,

M. A., and Triplett, E. W. Toward defining the autoimmune microbiome for type
1 diabetes. The ISME Journal 5 (2011), 82–91. [Page 10]

[105] Gloux, K., Berteau, O., El Oumami, H., Béguet, F., Leclerc, M., and Doré,
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APPENDIX A. RECIPES FOR MEDIA AND SOLUTIONS

A.1 LB: lysogeny broth (or Luria-Bertani media)

This recipe is for the Lennox variety of LB [178].

Prepare:

❼ 10 g tryptone

❼ 5 g yeast extract

❼ 5 g sodium chloride

❼ top to 1000 ml with distilled water

Aliquot 200 ml per bottle. If preparing solid media, add:

❼ 3-4 g agar per bottle

Autoclave. Store at room temperature and steam agar media prior to use.

A.2 TB: terrific broth media

This protocol was adapted from Cold Spring Harbor Protocols: http://cshprotocols.

cshlp.org/content/2006/1/pdb.rec8620

Prepare:

❼ 12 g tryptone

❼ 24 g yeast extract

❼ 8 ml 50% glycerol

❼ top to 900 ml with distilled water

Aliquot 90 ml per bottle and autoclave. Prior to use, add per bottle:

❼ 10 ml 0.17 M KH2PO4, 0.72 M K2HPO4
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APPENDIX A. RECIPES FOR MEDIA AND SOLUTIONS

A.3 TYG: tryptone yeast glucose media

This recipe was adapted from one shared with me by Nicole Koropatkin and Eric Martens

from the University of Michigan.

Prepare and autoclave:

❼ 10 g tryptone

❼ 5 g yeast extract

❼ 2 g glucose

❼ top to 860 ml with distilled water

Add per 172 ml of media:

❼ 20 ml potassium phosphate buffer, pH 7.2

❼ 8 ml TYG salts (per litre: 0.5 g MgSO4 –7 H2O, 10 g NaHCO3, 2 g NaCl)

❼ 50 ➭l 0.8% CaCl2

❼ 50 ➭l 0.4 mg/ml FeSO4·7H2O

Store at room temperature. Prior to use, add per 5 ml of broth:

❼ 5 ➭l 1.2 mM histidine-1.9 mM hematin solution (hematin dissolved in 1 M NaOH, neu-

tralized with equivalent volume 1 M HCl, and histidine solution added)

❼ 5 ➭l 1 mg/ml menadione (Vitamin K; dissolved in ethanol)

❼ 20 ➭l 0.25 mg/ml resazurin indicator

❼ 50 ➭l 50 mg/ml cysteine, thawed from -20❽
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A.4 BHI: brain heart infusion media

BHI blood agar (BHIH)

This recipe was shared with me by Nicole Koropatkin and Eric Martens from the University

of Michigan.

Prepare:

❼ 37 g brain heart infusion power (BD cat. no. B211059)

❼ top to 900 ml with distilled water

Aliquot 450 ml per bottle and add:

❼ 10 g agar per bottle; include a stir bar

Autoclave. Store at room temperature. Steam prior to use, cool agar on stir plate, and add:

❼ 50 ml defibrinated horse blood, equilibrated to room temperature

BHI broth with supplementation (BHI+)

This recipe was adapted from the TYG recipe shared with me by Nicole Koropatkin and Eric

Martens from the University of Michigan.

Prepare:

❼ 37 g brain heart infusion powder (BD cat. no. B211059)

❼ top to 1 L with distilled water

Aliquot 200 ml per bottle and autoclave. Before use, add per 5 ml of broth:

❼ 5 ➭l 1.2 mM histidine-1.9 mM hematin solution (hematin dissolved in 1 M NaOH, neu-

tralized with equivalent volume 1 M HCl, and histidine solution added)

❼ 5 ➭l 1 mg/ml menadione (Vitamin K; dissolved in ethanol)

❼ 20 ➭l 0.25 mg/ml resazurin indicator

❼ 50 ➭l 50 mg/ml cysteine, thawed from -20❽
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A.5 Bt MM: B.theta minimal media

This recipe was adapted from one shared with me by Nicole Koropatkin and Eric Martens

from the University of Michigan, specifically by addition of trace elements.

Prepare and autoclave to store at room temperature or use directly:

❼ 2.5 g carbon source (e.g. glucose or chondroitin sulfate)

❼ 10 g agar, for solid media; include a stir bar

❼ top to 440 ml with distilled water

Use stir plate to mix while adding:

❼ 50 ml 10Ö Bt salts (per litre: 136 g KH2PO4, 8.75 g NaCl, 11.25 g (NH4)2SO4)

❼ 5 ml 50 mg/ml cysteine, thawed from -20❽

❼ 500 ➭l 1.2 mM histidine-1.9 mM hematin solution (hematin dissolved in 1 M NaOH,

neutralized with equivalent volume 1 M HCl, and histidine solution added)

❼ 500 ➭l trace elements (per litre: 0.247 g H3BO3, 0.1 g CuSO4·5H2O, 0.338 g MnSO4·H2O,

0.282 g ZnSO4·7H2O, 0.056 g CoSO4·7H2O, 0.048 g Na2MoO4·2H2O)

❼ 500 ➭l 0.8% CaCl2

❼ 500 ➭l 0.4 mg/ml FeSO4·7H2O

❼ 500 ➭l 1 mg/ml menadione (vitamin K; dissolved in ethanol)

❼ 500 ➭l 0.1 M MgCl2

❼ 500 ➭l 0.01 mg/ml vitamin B12 (dissolved in ethanol)

Note that B. theta minimal media plates should not be stored at all; they should be prepared

fresh on the day they are required.
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A.6 TAE: tris acetic acid EDTA electrophoresis buffer

This protocol was adapted from OpenWetWare: http://openwetware.org/wiki/1X_TAE

For 50Ö TAE stock, prepare in a starting volume of ∼600-700 ml:

❼ 242 g Tris free base

❼ 18.6 g disodium EDTA (add before glacial acetic acid)

❼ 57.1 ml glacial acetic acid

❼ pH to 8.0 (optional; should be about 8)

❼ top to 1000 ml

Dilute 1 in 50 with distilled water. The 1Ö dilution can be stored at room temperature for

weeks in a large carboy.

A.7 Plasmid miniprep solutions

Recipes for the following solutions were obtained from OpenWetWare and were based on

buffers from the Qiagen QIAprep Spin Miniprep Kit. The recipes are reproduced here but

can be found at: http://openwetware.org/wiki/Qiagen_Buffers

P1: resuspension solution

Prepare and autoclave:

❼ 50 mM Tris-HCl pH 8.0

❼ 10 mM EDTA

Add:

❼ RNaseA to 100 ➭g/ml

Store at 4❽ .
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APPENDIX A. RECIPES FOR MEDIA AND SOLUTIONS

P2: lysis solution

Prepare non-sterile:

❼ 200 mM NaOH, from 2 M stock

❼ 1% SDS, from 20% stock (may require heating if precipitated; do not steam)

N3: neutralization solution

Prepare non-sterile:

❼ 4.2 M guanidine hydrchloride (or guanidine isothiocyanate)

❼ 0.9 M potassium acetate

❼ pH to 4.8

PB: optional wash solution

Prepare non-sterile:

❼ 5 M guanidine hydrchloride (or guanidine isothiocyanate)

❼ 30% isopropanol

PE: ethanol wash solution

Prepare:

❼ 10 mM Tris-HCl pH 7.5, sterile

❼ 80% ethanol
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A.8 Gel extraction solutions

The recipe for the binding buffer was found in the literature [149]. The recipe for the ethanol

wash was obtained from OpenWetWare and is based on buffers from the Qiagen QIAquick

Gel Extraction Kit; see http://openwetware.org/wiki/Qiagen_Buffers

Binding buffer

Prepare non-sterile:

❼ 140 mM MES-NaOH (pH 7.0)

❼ 20 mM EDTA

❼ 5.5 M guanidine isothiocyanate

PE: ethanol wash solution

Same as for plasmid miniprep.
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A.9 Plasmid maxiprep solutions

The recipes for these alkaline lysis solutions were provided by my supervisor, Trevor Charles.

TEG: resuspension

Dilute from concentrated stocks using dH2O to make:

❼ 50 mM Tris-Cl pH 8.0 (1/20 of 1 M stock)

❼ 20 mM Na-EDTA pH 8.0 (1/10 of 0.2 stock)

❼ 1% glucose

ALS: alkaline lysis

Dilute from concentrated stocks using sterile dH2O to make:

❼ 0.2 M NaOH (1/10 of 2 M stock)

❼ 1% SDS (1/20 of 20% stock)

Store in plastic bottle; do not store in glass.

HSS: neutralization

Dissolve in 60 ml:

❼ 147 g of K-Ac

Then add:

❼ 282 ml glacial acetic acid

❼ top up to 500 ml with dH2O
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APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3

B.1 Clone sequencing read depth

Graphs of clone sequencing read depth for each of the 73 clones are presented on the following

pages. For each clone, the barcoded contig was used as a reference, to which raw reads from

pooled sequencing or barcoded sequencing were aligned.
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B.2 Python scripts

Parse all-by-all BLAST results

1 #!/usr/bin/python

2

3 from Bio.Blast import NCBIXML

4 ’’’

5 #From command line, execute all-by-all blastn to generate results.xml:

6 #blastn -query contigs-5.fa -subject contigs-5.fa -evalue .001 -out results.xml

-outfmt 5→֒

7 ’’’

8

9 from interval import Interval, IntervalSet

10

11 file = open("results.xml")

12 blast_records = NCBIXML.parse(file)

13

14 ##accumulate distance between contig pairs in dictionary (where 1 = identical)

15 distance = {}

16

17 ##for each queried sequence

18 for blast_record in blast_records:

19 #print "\n" + blast_record.query

20 #print str(blast_record.query_letters)

21

22 ##for each subject sequence

23 for alignment in blast_record.alignments:

24

25 ##accumulate hsp intervals for each subject sequence, by iterating

through each hsp→֒

26 hsp_interval_list = []

27 for hsp in alignment.hsps:

28

29 ##if alignment was on subject complement, subtract alignment length

from start to get interval→֒

30 if hsp.frame == (1,-1):

31 hsp_interval = IntervalSet([Interval(hsp.sbjct_start,

hsp.sbjct_start - hsp.align_length)])→֒

32 hsp_interval_list.append(hsp_interval)

33

34 ##otherwise, alignment was on subject given strand, add alignment

length to start to get interval→֒

35 else:

36 hsp_interval = IntervalSet([Interval(hsp.sbjct_start,

hsp.sbjct_start + hsp.align_length)])→֒

37 hsp_interval_list.append(hsp_interval)

38

310



APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3

39

40 ##use interval addition to remove overlapping regions over hsps

41 new_intervalset = IntervalSet()

42 for interval in hsp_interval_list:

43 new_intervalset = new_intervalset + interval

44

45 ##calculate length of the subject sequence that was involved in the

alignment = [aligned length]→֒

46 range_list =[]

47 for interval in new_intervalset:

48 start = interval.lower_bound

49 end = interval.upper_bound

50 for i in range(start, end):

51 range_list.append(i)

52

53 ##check which of query/subject is shorter; then divide the [aligned

length] by length of the shorter one→֒

54 ##note: blast_record.query_letters = query length; alignment.length =

subject length→֒

55 ##keep track of the fraction and query/subject names for putting in dict

56 fraction = 0

57 if blast_record.query_letters <= alignment.length:

58 fraction = float(len(range_list))/blast_record.query_letters

59 else:

60 fraction = float(len(range_list))/alignment.length

61

62 ##save the fraction (distance), which represents the homology between

the query and subject→֒

63 ##put the names into a list to sort; this overwrites duplicate key-value

pairs in the dictionary→֒

64 name_pair = [str(blast_record.query), str(alignment.hit_def)]

65 name_pair = sorted(name_pair)

66 new_name_pair = ":".join(name_pair)

67 distance[str(new_name_pair)] = fraction

68

69 ##write distances to file

70 out = open("out.txt", "w")

71 for item in distance:

72 #print item + "\t\t\t" + str(distance[item])

73 names = item.split(":")

74 row = names[0] + "," + names[1] + "," + str(distance[item]) + "\n"

75 out.write(row)

76

77
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C.1 MetaPhlAn output of taxa abundance

The output of MetaPhlAn is presented on the following pages (Table C.1); results for both

the forward and reverse reads are included for all three samples: the crude extract, the

size-selected, and the cosmid library.

313



APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 4

Table C.1: Summary of Metaphlan output.

ID cosmid_library_F cosmid_library_R size_selected_F size_selected_R crude_extract_F crude_extract_R

k__Archaea 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota|c__Methanobacteria 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales|f__Methanobacteriaceae 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales|f__Methanobacteriaceae|g__Methanosphaera 0 0 0.00435 0.00178 0 0

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales|f__Methanobacteriaceae|g__Methanosphaera|s__Methanosphaera_stadtmanae 0 0 0.00435 0.00178 0 0

k__Bacteria 100 100 99.99565 99.99822 100 100

k__Bacteria|p__Actinobacteria 77.97123 77.44348 13.0776 12.73214 11.14398 10.89272

k__Bacteria|p__Actinobacteria|c__Actinobacteria 77.97123 77.44348 13.0776 12.73214 11.14398 10.89272

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales 0.05618 0.05321 0 0 0.00107 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Actinomycetaceae 0.01117 0.01193 0 0 0.00107 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Actinomycetaceae|g__Actinomyces 0.01117 0.01193 0 0 0.00107 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Actinomycetaceae|g__Actinomyces|s__Actinomyces_odontolyticus 0.01117 0.01193 0 0 0.00107 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Micrococcaceae 0.045 0.04128 0 0 0 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Micrococcaceae|g__Rothia 0.045 0.04128 0 0 0 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Micrococcaceae|g__Rothia|s__Rothia_mucilaginosa 0.045 0.04128 0 0 0 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales 54.98204 54.69089 9.20296 8.88183 7.87557 7.72522

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae 54.98204 54.69089 9.20296 8.88183 7.87557 7.72522

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium 54.98204 54.69089 9.20296 8.88183 7.87557 7.72522

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium|s__Bifidobacterium_adolescentis 18.44349 18.6723 2.55627 2.60934 2.23682 2.20449

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium|s__Bifidobacterium_breve 0.24638 0.22541 0.00578 0.00119 0 0

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium|s__Bifidobacterium_catenulatum 0.41224 0.39189 0.02275 0.03965 0.03462 0.04135

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium|s__Bifidobacterium_longum 16.0106 16.00286 3.40731 2.95913 2.92716 2.95269

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium|s__Bifidobacterium_pseudocatenulatum 19.86934 19.39843 3.21084 3.27252 2.67697 2.52669

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales 22.93302 22.69937 3.87464 3.85031 3.26734 3.1675

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae 22.93302 22.69937 3.87464 3.85031 3.26734 3.1675

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Collinsella 21.21125 20.97976 3.40455 3.37866 2.95099 2.88259

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Collinsella|s__Collinsella_aerofaciens 21.21125 20.97976 3.40455 3.37866 2.95099 2.88259

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Eggerthella 1.32363 1.30562 0.33117 0.33524 0.23774 0.22797

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Eggerthella|s__Eggerthella_lenta 1.32363 1.30562 0.33117 0.33524 0.23774 0.22797

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Gordonibacter 0.39814 0.414 0.13892 0.13641 0.07862 0.05694

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Gordonibacter|s__Gordonibacter_pamelaeae 0.39814 0.414 0.13892 0.13641 0.07862 0.05694

k__Bacteria|p__Bacteroidetes 12.02304 12.32339 21.24834 21.47013 29.50008 29.97218

k__Bacteria|p__Bacteroidetes|c__Bacteroidia 12.02304 12.32339 21.24834 21.47013 29.50008 29.97218

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales 12.02304 12.32339 21.24834 21.47013 29.50008 29.97218

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae 4.38677 4.55248 16.24903 16.56666 19.28831 19.85961

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides 4.38677 4.55248 16.24903 16.56666 19.28831 19.85961

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_caccae 0.02079 0.02183 0.09667 0.09511 0.11722 0.11225

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_cellulosilyticus 0.14931 0.13825 0.4679 0.46279 0.58924 0.56722

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_coprocola 0 0 0.00149 0 0.02463 0.02992

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_dorei 0.04273 0.04379 0.13965 0.17031 0.16946 0.18184

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_eggerthii 0 0 0.01255 0.00905 0.02386 0.01879

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_finegoldii 0.01691 0.01896 0.09499 0.12025 0.16818 0.16985

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_fragilis 0.00975 0.00487 0.16213 0.16516 0.15296 0.10438

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_intestinalis 0 0 0.01787 0.01626 0.02399 0.02366

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_ovatus 0.2891 0.2753 1.00239 0.96548 1.35037 1.24824

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_stercoris 0 0 0.00534 0 0.04992 0.0393

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_thetaiotaomicron 0.37345 0.34607 1.03798 1.0592 1.00328 1.09393

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_unclassified 1.94406 2.20922 7.37793 7.50927 9.23866 9.92434

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_uniformis 0.20634 0.22197 0.66519 0.67599 0.76074 0.72604

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_vulgatus 1.24732 1.23935 4.96679 5.15465 5.39491 5.41351

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_xylanisolvens 0.087 0.03287 0.20016 0.16315 0.22089 0.20633

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae 0.45788 0.57906 0.53245 0.51046 0.64013 0.66208

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Odoribacter 0 0 0.00323 0.00411 0.02077 0.01833

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Odoribacter|s__Odoribacter_splanchnicus 0 0 0.00323 0.00411 0.02077 0.01833

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Parabacteroides 0.45788 0.57906 0.52921 0.50635 0.61936 0.64376

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Parabacteroides|s__Parabacteroides_distasonis 0 0 0.01105 0.00648 0.01848 0.02003

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Parabacteroides|s__Parabacteroides_johnsonii 0.00907 0.00771 0.03531 0.03845 0.06263 0.0511

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Parabacteroides|s__Parabacteroides_merdae 0.14744 0.15162 0.4486 0.44856 0.46743 0.48847

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Parabacteroides|s__Parabacteroides_unclassified 0.30136 0.41973 0.03425 0.01287 0.07082 0.08416

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae 0.24934 0.24731 1.55259 1.55722 5.90395 5.86084

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae|g__Prevotella 0.24934 0.24731 1.55259 1.55722 5.90395 5.86084

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae|g__Prevotella|s__Prevotella_copri 0.24934 0.24731 1.55259 1.55722 5.90395 5.86084

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Rikenellaceae 6.92906 6.94454 2.91427 2.83578 3.66768 3.58964

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Rikenellaceae|g__Alistipes 6.92906 6.94454 2.91427 2.83578 3.66768 3.58964

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Rikenellaceae|g__Alistipes|s__Alistipes_putredinis 4.07745 4.16533 1.93769 1.90829 2.52303 2.4627

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Rikenellaceae|g__Alistipes|s__Alistipes_shahii 2.85161 2.77921 0.97658 0.92749 1.14465 1.12694

k__Bacteria|p__Firmicutes 0.12246 0.1209 64.05676 64.28564 57.83246 57.5862

k__Bacteria|p__Firmicutes|c__Bacilli 0 0 1.1275 1.12086 0.77354 0.81422

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales 0 0 1.1275 1.12086 0.77354 0.81422

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae 0 0 0.2723 0.27887 0.18615 0.18228

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae|g__Lactobacillus 0 0 0.2723 0.27887 0.18615 0.18228

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae|g__Lactobacillus|s__Lactobacillus_ruminis 0 0 0.2723 0.27887 0.18615 0.18228

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae 0 0 0.8552 0.84199 0.58739 0.63194

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus 0 0 0.8552 0.84199 0.58739 0.63194

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_australis 0 0 0 0 0.00098 0

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_parasanguinis 0 0 0.65839 0.62618 0.40991 0.44214

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_salivarius 0 0 0.19291 0.20442 0.15672 0.16197

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_thermophilus 0 0 0.0039 0.01139 0.01977 0.02783

k__Bacteria|p__Firmicutes|c__Clostridia 0.11169 0.112 59.90936 60.12072 53.74329 53.51115

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales 0.11169 0.112 59.90936 60.12072 53.74329 53.51115

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae 0 0 2.14418 2.13152 2.01952 2.05992

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium 0 0 2.14418 2.13152 2.01952 2.05992

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_asparagiforme 0 0 0 0 0.092 0.09041

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_bartlettii 0 0 0.09874 0.09638 0.13193 0.13979

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_bolteae 0 0 0.24807 0.23127 0.37966 0.3917

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_cf 0 0 0.0322 0.03402 0.02676 0.03709

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_hathewayi 0 0 0.04425 0.04094 0.03153 0.02295

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_leptum 0 0 0.53848 0.53178 0.36475 0.39324

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_nexile 0 0 1.00147 1.01887 0.834 0.83276

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_scindens 0 0 0.10052 0.1023 0.05908 0.0583
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k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_symbiosum 0 0 0.08044 0.07595 0.09982 0.09368

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_Family_XI_Incertae_Sedis 0 0 0 0.01519 0 0

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_Family_XI_Incertae_Sedis|g__Clostridiales_Family_XI_Incertae_Sedis_unclassified 0 0 0 0.01519 0 0

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_uncl 0 0 0.17969 0.14638 0.17607 0.12738

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_uncl|g__Blautia 0 0 0.17969 0.14638 0.17607 0.12738

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_uncl|g__Blautia|s__Blautia_hydrogenotrophica 0 0 0.01461 0.01872 0.01027 0.00784

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_uncl|g__Blautia|s__Blautia_unclassified 0 0 0.16508 0.12766 0.16581 0.11954

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae 0.03335 0.04003 24.42598 24.53932 19.17275 19.06187

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium 0.03335 0.04003 24.42598 24.53932 19.17275 19.06187

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_eligens 0 0 1.01733 1.00474 2.74208 2.69392

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_hallii 0 0 2.03682 1.99023 1.17307 1.17818

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_limosum 0 0 0.00953 0.00807 0 0.0017

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_rectale 0.03335 0.04003 21.04378 21.22138 14.77741 14.73719

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_siraeum 0 0 0.02265 0.02074 0.05463 0.05181

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_ventriosum 0 0 0.29587 0.29417 0.42556 0.39907

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae 0 0 5.0478 5.04547 4.05289 4.08144

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Coprococcus 0 0 1.31986 1.35062 0.96688 0.94963

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Coprococcus|s__Coprococcus_catus 0 0 0.28149 0.27011 0.24307 0.2411

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Coprococcus|s__Coprococcus_comes 0 0 1.03837 1.08051 0.72381 0.70853

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Dorea 0 0 3.42776 3.43285 2.36608 2.37726

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Dorea|s__Dorea_formicigenerans 0 0 1.12478 1.10088 0.73896 0.73629

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Dorea|s__Dorea_longicatena 0 0 2.30298 2.33198 1.62712 1.64097

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Roseburia 0 0 0.30018 0.262 0.71993 0.75456

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Roseburia|s__Roseburia_intestinalis 0 0 0.08844 0.06943 0.1149 0.12747

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Roseburia|s__Roseburia_inulinivorans 0 0 0.21175 0.19257 0.60503 0.62708

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae 0.07834 0.07197 28.11171 28.24284 28.32206 28.18054

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Anaerotruncus 0 0 0.07834 0.08228 0.0747 0.07836

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Anaerotruncus|s__Anaerotruncus_colihominis 0 0 0.07834 0.08228 0.0747 0.07836

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Faecalibacterium 0.06524 0.06307 11.96027 11.82916 17.6229 17.44306

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Faecalibacterium|s__Faecalibacterium_cf 0.01223 0.01123 4.52787 4.39973 6.195 6.21572

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Faecalibacterium|s__Faecalibacterium_prausnitzii 0.05301 0.05183 6.87077 6.68096 9.82464 10.16358

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Faecalibacterium|s__Faecalibacterium_unclassified 0 0 0.56163 0.74848 1.60325 1.06376

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus 0.0131 0.00891 16.05678 16.32131 10.61971 10.64383

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus|s__Ruminococcus_bromii 0.0131 0.00891 11.80023 11.97115 7.02601 6.99219

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus|s__Ruminococcus_gnavus 0 0 0.96046 0.92369 0.60017 0.60577

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus|s__Ruminococcus_lactaris 0 0 0.1605 0.15906 0.14736 0.13247

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus|s__Ruminococcus_obeum 0 0 1.31916 1.32292 0.88979 0.87322

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Ruminococcus|s__Ruminococcus_torques 0 0 1.81643 1.9445 1.95638 2.04018

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Subdoligranulum 0 0 0.01632 0.01009 0.00475 0.01528

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Ruminococcaceae|g__Subdoligranulum|s__Subdoligranulum_variabile 0 0 0.01632 0.01009 0.00475 0.01528

k__Bacteria|p__Firmicutes|c__Erysipelotrichi 0 0 0.67104 0.67619 0.49115 0.47528

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales 0 0 0.67104 0.67619 0.49115 0.47528

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae 0 0 0.67104 0.67619 0.49115 0.47528

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Catenibacterium 0 0 0.21822 0.21838 0.15408 0.14172

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Catenibacterium|s__Catenibacterium_mitsuokai 0 0 0.21822 0.21838 0.15408 0.14172

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Coprobacillus 0 0 0.17556 0.1848 0.10687 0.10931

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Coprobacillus|s__Coprobacillus_bacterium 0 0 0.17556 0.1848 0.10687 0.10931

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Holdemania 0 0 0.27726 0.27302 0.23019 0.22424

k__Bacteria|p__Firmicutes|c__Erysipelotrichi|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Holdemania|s__Holdemania_filiformis 0 0 0.27726 0.27302 0.23019 0.22424

k__Bacteria|p__Firmicutes|c__Negativicutes 0.01077 0.0089 2.34886 2.36787 2.82449 2.78555

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales 0.01077 0.0089 2.34886 2.36787 2.82449 2.78555

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Acidaminococcaceae 0 0 0.14545 0.16028 0.19088 0.15305

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Acidaminococcaceae|g__Acidaminococcaceae_unclassified 0 0 0.14545 0.16028 0.19088 0.15305

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae 0.01077 0.0089 2.20341 2.20758 2.63361 2.6325

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Dialister 0.01077 0.0089 1.6548 1.67255 1.16702 1.19352

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Dialister|s__Dialister_invisus 0.01077 0.0089 1.6548 1.67255 1.16702 1.19352

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Megamonas 0 0 0.54684 0.53234 1.46205 1.42808

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Megamonas|s__Megamonas_hypermegale 0 0 0.54684 0.53234 1.46205 1.42808

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Veillonella 0 0 0.00176 0.00269 0.00454 0.01091

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Veillonella|s__Veillonella_unclassified 0 0 0.00176 0.00269 0.00454 0.01091

k__Bacteria|p__Proteobacteria 9.65819 9.90084 1.57642 1.47372 1.49978 1.52766

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria 0.68372 0.77154 0.30892 0.28465 0.44194 0.51069

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales 0.68372 0.77154 0.30892 0.28465 0.44194 0.51069

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae 0.68372 0.77154 0.30892 0.28465 0.44194 0.51069

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae|g__Bilophila 0.4798 0.44882 0.12539 0.1176 0.16021 0.15952

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae|g__Bilophila|s__Bilophila_wadsworthia 0.4798 0.44882 0.12539 0.1176 0.16021 0.15952

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae|g__Desulfovibrio 0.20392 0.32272 0.18353 0.16705 0.28173 0.35117

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae|g__Desulfovibrio|s__Desulfovibrio_desulfuricans 0.06007 0.16577 0.07934 0.04913 0.08314 0.1506

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__Desulfovibrionales|f__Desulfovibrionaceae|g__Desulfovibrio|s__Desulfovibrio_piger 0.14385 0.15694 0.10419 0.11792 0.19858 0.20057

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria 8.97448 9.1293 1.2675 1.18907 1.05785 1.01697

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Alteromonadales 0.01216 0 0 0 0.03468 0.0038

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Alteromonadales|f__Shewanellaceae 0.01216 0 0 0 0.03468 0.0038

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Alteromonadales|f__Shewanellaceae|g__Shewanella 0.01216 0 0 0 0.03468 0.0038

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Alteromonadales|f__Shewanellaceae|g__Shewanella|s__Shewanella_oneidensis 0.01216 0 0 0 0.03468 0.0038

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales 8.95048 9.12138 1.09247 1.00767 0.94133 0.91524

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae 8.95048 9.12138 1.09247 1.00767 0.94133 0.91524

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Enterobacter 0.08686 0.07763 0 0 0 0

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Enterobacter|s__Enterobacter_cloacae 0.08686 0.07763 0 0 0 0

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Escherichia 5.16069 5.22912 0.65059 0.56245 0.43353 0.45782

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Escherichia|s__Escherichia_coli 5.16069 5.22912 0.65059 0.56245 0.43353 0.45782

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Klebsiella 3.70294 3.81462 0.44188 0.44522 0.5078 0.45742

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Klebsiella|s__Klebsiella_pneumoniae 3.70294 3.81462 0.42971 0.44389 0.45181 0.40999

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Klebsiella|s__Klebsiella_unclassified 0 0 0.01218 0.00133 0.05598 0.04744

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pasteurellales 0.01184 0.00793 0.17502 0.1814 0.08184 0.09792

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pasteurellales|f__Pasteurellaceae 0.01184 0.00793 0.17502 0.1814 0.08184 0.09792

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pasteurellales|f__Pasteurellaceae|g__Haemophilus 0.01184 0.00793 0.17502 0.1814 0.08184 0.09792

k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pasteurellales|f__Pasteurellaceae|g__Haemophilus|s__Haemophilus_parainfluenzae 0.01184 0.00793 0.17502 0.1814 0.08184 0.09792

k__Bacteria|p__Verrucomicrobia 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Verrucomicrobiaceae 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Verrucomicrobiaceae|g__Akkermansia 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Verrucomicrobiaceae|g__Akkermansia|s__Akkermansia_muciniphila 0.22507 0.2114 0.03653 0.03659 0.02369 0.02124
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C.2 Python scripts

Filter E. coli or vector reads using BLAT, in batch

1 #!/usr/bin/python

2

3 from Bio import SeqIO

4 import sys

5 import os

6 import time

7

8 #FUNCTIONS

9

10 #run blat and parse results; return a set of unique read names that are hits to

the subject→֒

11 def run_blat(files_dir, reads_filename, subject_filename):

12

13 #run blat in the shell

14 results_filename = reads_filename + "_BLAT_" + subject_filename + ".psl"

15 os.system("blat " + subject_filename + " " + files_dir + reads_filename + "

" + files_dir + results_filename)→֒

16

17 #open results

18 results_file = open(files_dir + results_filename)

19

20 #clear the header lines

21 for i in range(0,5):

22 results_file.readline()

23

24 #track the names of reads that are 100% identical to E. coli (90 base

identity)→֒

25 match_names = set()

26 for line in results_file:

27

28 #parse the line

29 line = line.split(’\t’)

30 match = line[0]

31 mismatch = line[1]

32 gaps = line[6]

33 query_name = line[9]

34

35 #if the match was 100% identical (90 bases), accumulate the name

36 if match == ’90’ and mismatch == ’0’ and gaps == ’0’:

37 match_names.add(query_name)

38

39 #delete psl files

40 os.system("rm " + files_dir + "*.psl")

41
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42 return match_names

43

44 #INPUT FILES

45

46 filenames_dir = sys.argv[1]

47 vector_filename = sys.argv[2]

48 ec_filename = sys.argv[3]

49

50 #get list of filenames into array to process

51 filenames = os.listdir(filenames_dir)

52 filenames.sort()

53

54 #RUN BLAT AND PARSE RESULTS FOR EACH FILE

55

56 #write summary file of results

57 summary_file = open(filenames_dir + "summary.txt", "w")

58 summary_file.write("filename \ttotal reads \ttotal dirty \tec \tvector \n")

59

60 #process files

61 for filename in filenames:

62

63 #get sets of read names that are hits

64 ec_hits = run_blat(filenames_dir, filename, ec_filename)

65 vector_hits = run_blat(filenames_dir, filename, vector_filename)

66

67 #track for summary file

68 total_count = 0

69 total_dirty_count = 0

70 vector_count = 0

71 ec_count = 0

72

73 #write clean and dirty reads to new files; also summary file

74 clean_file = open(filenames_dir + filename + "_clean_chked.fa", "w")

75 dirty_file = open(filenames_dir + filename + "_dirty_chked.fa", "w")

76

77 #open the reads file; for each FASTA sequence read

78 for seq_record in SeqIO.parse(filenames_dir + filename, "fasta"):

79 total_count = total_count + 1

80

81 if (seq_record.id in ec_hits):

82 SeqIO.write(seq_record, dirty_file, "fasta")

83 ec_hits.remove(seq_record.id) #remove id from set to make following

searches faster→֒

84 ec_count = ec_count + 1

85 total_dirty_count = total_dirty_count + 1

86

87 elif (seq_record.id in vector_hits):

88 SeqIO.write(seq_record, dirty_file, "fasta")

89 vector_hits.remove(seq_record.id) #remove id from set to make

following searches faster→֒

90 vector_count = vector_count + 1

91 total_dirty_count = total_dirty_count + 1

317



APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 4

92

93 #if not in list of read names, it’s a clean read

94 else:

95

96 #write to clean file

97 SeqIO.write(seq_record, clean_file, "fasta")

98

99 #write to summary

100 output = filename + "\t" + str(total_count) + "\t" + str(total_dirty_count)

+ "\t" + str(ec_count) + "\t" + str(vector_count) + "\n"→֒

101 summary_file.write(output)
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Check filtering of E. coli and vector reads, in batch

1 #!/usr/bin/python

2

3 from Bio import SeqIO

4 import sys

5 import os

6 import time

7

8 #input: directory of files to process; fasta Ec file; fasta vector file

9 filenames_dir = sys.argv[1]

10 vector_filename = sys.argv[2]

11 ec_filename = sys.argv[3]

12

13 #get list of filenames into array to process

14 filenames = os.listdir(filenames_dir)

15 filenames.sort()

16

17 #for ec, vector: get the sequence, rev comp of the sequence, in preparation for

checking→֒

18 ec = SeqIO.read(ec_filename, "fasta")

19 ec_rc = ec.reverse_complement()

20 vector = SeqIO.read(vector_filename, "fasta")

21 vector_rc = vector.reverse_complement()

22

23 #prep output file

24 outfile = open(filenames_dir + "results_Ec_or_pJC8.txt", "w")

25 outfile.write("filename \ttotal \tboth \tEc \tvector \tunaccounted \n")

26

27 #process each file

28 for filename in filenames:

29

30 #check whether each read in the file is from pJC8 or Ec or both; should not

be any unaccounted, but track in case→֒

31 both_count = 0

32 ec_count = 0

33 vector_count = 0

34 unaccounted = 0

35 total = 0

36 unaccounted_file = open(filenames_dir + filename + "_unaccounted_reads",

"w")→֒

37

38 for seq_record in SeqIO.parse(filenames_dir + filename, "fasta"):

39 total = total + 1

40

41 #if seq in both

42 if (seq_record.seq in ec.seq or seq_record.seq in ec_rc.seq):

43 ec_count = ec_count + 1

44 if (seq_record.seq in vector.seq or seq_record.seq in

vector_rc.seq):→֒
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45 vector_count = vector_count + 1

46 both_count = both_count + 1

47

48 elif (seq_record.seq in vector.seq or seq_record.seq in vector_rc.seq):

49 vector_count = vector_count + 1

50

51 #this shouldn’t happen

52 else:

53 unaccounted = unaccounted + 1

54 SeqIO.write(seq_record, unaccounted_file, "fasta")

55

56 #write to output file: filename, total num reads, num Ec reads, num pjc8

reads→֒

57 output_line = filename + "\t" + str(total) + "\t" + str(both_count) + "\t" +

str(ec_count) + "\t" + str(vector_count) + "\t" + str(unaccounted) + "\n"→֒

58 outfile.write(output_line)
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Calculate percent GC, in batch

1 #!/usr/bin/python

2 from Bio import SeqIO

3 import sys

4 import os

5

6 #function to calc percent gc from all seqs in a fasta file

7 def get_gc(files_dir, filename):

8

9 #track number of each base

10 bases = {’A’:0, ’C’:0, ’G’:0, ’T’:0}

11

12 #open the reads file; for each FASTA sequence, track bases in seq

13 for seq_record in SeqIO.parse(files_dir + filename, "fasta"):

14 for base in seq_record.seq:

15 if base == ’A’:

16 bases[’A’] = bases[’A’] + 1

17 elif base == ’C’:

18 bases[’C’] = bases[’C’] + 1

19 elif base == ’G’:

20 bases[’G’] = bases[’G’] + 1

21 else:

22 bases[’T’] = bases[’T’] + 1

23

24 #do the stats

25 total_bases = float(sum(bases.values()))

26 gc = (bases[’G’] + bases[’C’]) / total_bases * 100

27 return gc

28

29 #input file in fasta

30 filenames_dir = sys.argv[1]

31 filenames = os.listdir(filenames_dir)

32 filenames.sort()

33

34 #summary file

35 results_file = open(filenames_dir + "summary.txt", "w")

36 results_file.write("filename \t%GC \n")

37

38 #process each file

39 for filename in filenames:

40 gc = get_gc(filenames_dir, filename)

41 output = filename + "\t" + str(gc) + "\n"

42 results_file.write(output)
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Find consensus promoter sequences, in batch

1 #!/usr/bin/python

2

3 from Bio import SeqIO

4 import sys

5 import os

6 import re

7

8 #FUNCTIONS

9

10 #look for consensus sequences 1 promoter; return count

11 def find_one_consensus(sequence, filename):

12

13 #compile regex

14 p = re.compile(sequence)

15 count = 0

16

17 #iterate through each fasta sequence

18 for seq_record in SeqIO.parse(filename, "fasta"):

19

20 #check the sequence

21 for match in p.finditer(str(seq_record.seq)):

22 count = count + 1

23

24 #check the reverse complement

25 for match in p.finditer(str(seq_record.reverse_complement().seq)):

26 count = count + 1

27

28 return count

29

30 #look for consensus sequences for 5 promoters; return a string to be printed to

file→֒

31 def find_all_consensus(files_dir, reads_filename):

32

33 #file location

34 location = files_dir + reads_filename

35

36 #rpoD sigma 70

37 rpod_count = find_one_consensus("TTGACA.{15,19}TATAAT", location)

38

39 #rpoE sigma 24

40 rpoe_count = find_one_consensus("GGAACTT.{15,19}TCAAA", location)

41

42 #rpoH sigma 32

43 rpoh_count = find_one_consensus("TTG[AT][AT][AT].{13,14}CCCCAT[AT]T",

location)→֒

44

45 #rpoN sigma 54

46 rpon_count = find_one_consensus("TGGCA.{7}TGC", location)
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47

48 #Bacteroides sigma AB

49 bacteroides_count = find_one_consensus("TTTG.{19,21}TA.{2}TTTG", location)

50

51 output = filename + "\t" + str(rpod_count) + "\t" + str(rpoe_count) + "\t" +

str(rpoh_count) + "\t" + str(rpon_count)+ "\t" + str(bacteroides_count) +

"\n"

→֒

→֒

52 return output

53

54 #INPUT FILES

55

56 filenames_dir = sys.argv[1]

57 filenames = os.listdir(filenames_dir)

58 filenames.sort()

59

60 #PROCESS ALL FILES

61

62 #write summary file of results

63 summary_file = open(filenames_dir + "summary.txt", "w")

64 summary_file.write("filename \trpoD reads \trpoE \trpoH \trpoN \tBacteroides

\n")→֒

65

66 #process files

67 for filename in filenames:

68

69 #get sets of read names that are hits

70 output = find_all_consensus(filenames_dir, filename)

71

72 #write to summary

73 summary_file.write(output)
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Calculate phyla percentages from OTU table

1 import sys

2 import os

3

4 otu_filename = sys.argv[1]

5

6 #prep outfile

7 phyla_filename = os.path.splitext(otu_filename)[0] + "_phyla_percent.txt"

8 phyla_file = open(phyla_filename, "w")

9

10 #get otu table

11 otu_file = open(otu_filename, "r")

12

13 #discard first header line

14 otu_file.readline()

15

16 #start dict to keep phyla counts

17 cosmid = {}

18 bulk = {}

19

20 #process each line, adding to both dicts

21 for line in otu_file:

22 line = line.split(",")

23 bulk_count = int(line[1])

24 cosmid_count = int(line[2])

25 phylum = line[4]

26

27 #check if phylum in either dict and add accordingly

28 if phylum in cosmid:

29 cosmid[phylum] = cosmid[phylum] + cosmid_count

30 bulk[phylum] = bulk[phylum] + bulk_count

31 else:

32 cosmid[phylum] = cosmid_count

33 bulk[phylum] = bulk_count

34

35 #given a dictionary of phyla counts, return dict of phyla fractions

36 def get_phyla_fractions(phyla_dict):

37

38 #get total member count

39 total = 0

40 for phylum in phyla_dict:

41 total = total + phyla_dict[phylum]

42 total = float(total)

43

44 #make new dict of fractions

45 new_dict = {}

46 for phylum in phyla_dict:

47 new_dict[phylum] = phyla_dict[phylum]/total

48
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49 return new_dict

50

51 cosmid_fraction = get_phyla_fractions(cosmid)

52 bulk_fraction = get_phyla_fractions(bulk)

53

54 #write phyla fractions to new file

55 for item in cosmid_fraction:

56 phyla_file.write(item)

57 phyla_file.write("\t")

58 phyla_file.write(str(format(cosmid_fraction[item], ’.9f’)))

59 phyla_file.write("\t")

60 phyla_file.write(str(format(bulk_fraction[item], ’.9f’)))

61 phyla_file.write("\n")

62

63 phyla_file.close()

64

65

66

67
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D.1 Images

Annealing of oligos KL10 and KL11

KL11
phos

KL10
phos

KL10/11
ann

KL11
phos

KL10
phos

KL10/11
ann

250 bp

500 bp

1 μl 0.5 μl 

Figure D.1: Agarose gel of annealed complementary oligos. 1 ➭l and 0.5 ➭l of
phosphorylated and annealed KL10/KL11 were run against unannealed phosphorylated
controls of each individually.
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pKL13 preparation post-stuffer removal

0.5 μl 0.25 μl

23,130 bp
10,000 bp9,416 bp

Figure D.2: Agarose gel of unligatable pKL13 vector prep after removal of
stuffer. Agarose gel showed that the vector preparation was nuclease-free and highly
concentrated, but ligation attempts with this vector were unsuccessful.
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Phenotype of B. theta VPI-5482 wild-type versus ∆tdk on

chondroitin sulfate

Figure D.3: Comparable phenotype of B. theta VPI-5482 wild-type versus
∆tdk on chondroitin sulfate as sole carbon source Note that ∆tdk is isogenic to
the ∆chuR mutant used for functional screening. In the Charles lab collection, they
have been designated B. theta BtUW24 and BtUW25, respectively; see Table 2.1.
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Agarose gel of CLGM3 chuR complementing clones with versus

without arabinose induction

The following gel images show the unexpected negative effect of using copy-number induction

on insert stability. Fosmid DNA of chuR complementing CLGM3 clones was miniprepped

and digested from cultures that were either copy-number induced (Figure D.4A) or cultures

in which fosmid DNA was present in single copy (Figure D.4B). The insert was observed to

be lost in the former case.

Figure D.4: Agarose gel of CLGM3 chuR complementing clones with ver-
sus without copy number induction. (A) CLGM3 clone 5B2 was miniprepped and
digested from cultures grown in the presence of 0.2% arabinose. (B) CLGM3 clones
5B2 and 5B9 were miniprepped and digested from cultures grown in the absence of
arabinose.
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D.2 Sequence data

ermF -repA fragment (pAFD1)

>ermF -repA fragment (pAFD1)

ATAACAGCCGGTGACAGCCGGCTGACAGGGGGTTAAGGGGGCTTGTCCCCTTACACACGCACTCTTTAGGGTGCTAG

TGTGCTATCACCATACTGCATAGGTGCGAAGTTAGTGAATGTTTTGTAAATGCACAAATAAAGGGAAAAACATTTGG

ATTTGCGATAATAAAGTACTACCTTTGTTGCTGACCAAACGGTAGCTGACCGATACGGGAGAGTTACCAAAATACAA

GCCGCTGGAGTTAATTGACGGACATCCGACATCTCCAGCGGCTTTATTTTTGCCTATCTGCTTCGCCTAGGCACACC

AGTACCTCTACTAAAAATGTACTTCAAAGATACTTATTTTCTACCGACTTGATAGTTTTTACCCCATATTCTTGGAC

ATTTTTCCCCCATGAGGTTATCTTTGTAGGGTGAAAGAGAAACCCATAAACGGGGATAGATTGAATGCTGGGAAGCA

TAAACAATCGGGGTAAGGTTAGCGAACCTTGCCTTTCATCCCCCATTATAACTTTACATAGAGGAACTTTATCTATC

CCCCCCCGCCCCCAAAGGGGGAGCGACCAAACGGCAGCTTCACTCAATGGAGTGTTACTGTTCATCAAAGCCAAGTG

ATAATTGTCGTTTCTCTGCTTCTTCTTTCTTTTGGGCAGCTAAAGTCTTTTTCCGAACGTATGTTTTAGCAAATGTC

ACTCGGTCACCATTGAATACTATCAGAGGATTAATAAACCAAAGATTATCGGCTGGTCCTCGGGCTATGATTTCAGC

TTTTACAAGTTCTGCAAGTCCTTTATAAACGGCTTTGTCTGTTTTGTATTTGGTATATTCTAGGCATTTTTTTCTAT

TGAAAATGATTAAATCATTTTTGGGTTTCATGCAGGTCATAAAGTAACCAAAAACCCGAATAGCTGCTTGTGATAGG

TCAAAGAATGCAGCAAAGTTAGAAAGATACAATTTAGTGAATTGTTCTTCATCTACTTCTATTTGACGGATAAACGA

AGTCTTAAACACTTCTCCAGTTTCAGTGTCGGCTAAAGCTACTACAGCTCTCTTATCGCCACCACTATTACTCTTAT

ACTTTTTAACAACATGATTTTCAATACCTTCTATAGCTTGTTTCATAAAAGGATTTTCTTCGTTCTTTTGAAAATCG

GTTAACTTAACTGCTTTTTTATTTTCCATTTTGATATGTTTTTGGGAAATATTATTCTCCACAAAGTAAACTATTAT

TTTCCATAAAAACAATATTAAGGGAAATATTATTTTCCTATTTAGTATCATATTAGGAAATCGGTATTTTCTAGATT

GGAAAATGAGAATTTCCAATATGGAAAATGCCCTATATTGTGTATCAAGTACTTAACTTATTCTATTTCTTTTATTC

TTAATATACCCCCAAAACAGCACAAAATCAGTCACTTAAAAATCATCGGTCGGGGAATGGTGCACTCTCAGTACAAT

CTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGC

TCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCG

AAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAAAT

TCTGATTAATAATTTGTTTAAATTTTTCGTTTGGCGTGAGGTATCCAAGTCTTTTACGAGGTCGATTATTGAGTTTA

TTTTCAATCCACTTAATCTGTTTGTTGGTTACTTCACTAAAGTCCTTACCCTTTGGGATATACTGCCTGATAAGCCC

GTTGGTGTTTTCATTGGCACCACGTTCCCATGAGTGGTATGGTTTGCAAAAATAGAATTTTATTTCCAATTTTTGCG

CAATTTCCTCGTGCTTTGCAAACTCCTTTCCATTGTCAGCCGTAATTGTGTGTATTAAGTTTTTCACTTTCCGCAGT

GCCCATACTGCAATCTTAGCTACCGGGATGGCTTCTTTTCCCGACAACTTGCGTATCCAGACCCTGCTTGTTGCTCT

GTCGTTAATGGTAAGAATGGCACCTTTGTGGTTCTTACCAATAATTGTATCTATCTCTAAATCACCAAATCTCTCCT

TCAGTTCCACTATCTCGGGACGCTCATCAATATCCACCCTGCCTGGGATAAATCCTCGCCCTGCATTTTTAGAACCA

CGTTTGGCATACCTGCGACCTTGTCTGCGAAGATATTTGTGCAGTTTGCCACCCCGCCGCTTATCCTCCCAAATCCA

GCGATATATCGTTTCGTGAGATACCATCGCAATTCCCTCCAAGCGGCTCCTGCCGACAATCTGCTCCGGGCTGAATC

CTTTCTTCAACAGCTTTATTATCCGTTTTCTCATTGCCGGTGTAAGCACTTCCTTGCGATGTTTTTGCTGCTTGCGC

CTGTCTGCTTTTCGCTGGGCAAGCTCCATGCTATAGCTACCACTTCGGGCGTCGCAATTGCGCTTTATCTCCCTGTA

AACAGTGCTTTTATCTACTCCGATAGCTTCCGCTATTGCTTTTTTGCTCATCGGTATTTGCAACATCATAGAAATTG

CATACCTTTGTTCCTCGGTTATATGTTTGCTCATCTGCAACTTTTTTTTCTTTGGACGGACAATTAAAGCAAAGATA

GCAAACTTTATCCATTCAGAGTGAGAGAAAGGGGGACATTGTCTCTCTTTCCTCTCTGAAAAATAAATGTTTTTATT

GCTTATTATCCGCACCCAAAAAGTTGCATTTATAAGTTGAACTCAAGAAGTATTCACCTGTAAGAAGTTACTAATGA

CAAAAAAGAAATTGCCCGTTCGTTTTACGGGTCAGCACTTTACTATTGATAAAGTGCTAATAAAAGATGCAATAAGA

CAAGCAAATATAAGTAATCAGGATACGGTTTTAGATATTGGGGCAGGCAAGGGGTTTCTTACTGTTCATTTATTAAA
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AATCGCCAACAATGTTGTTGCTATTGAAAACGACACAGCTTTGGTTGAACATTTACGAAAATTATTTTCTGATGCCC

GAAATGTTCAAGTTGTCGGTTGTGATTTTAGGAATTTTGCAGTTCCGAAATTTCCTTTCAAAGTGGTGTCAAATATT

CCTTATGGCATTACTTCCGATATTTTCAAAATCCTGATGTTTGAGAGTCTTGGAAATTTTCTGGGAGGTTCCATTGT

CCTTCAATTAGAACCTACACAAAAGTTATTTTCGAGGAAGCTTTACAATCCATATACCGTTTTCTATCATACTTTTT

TTGATTTGAAACTTGTCTATGAGGTAGGTCCTGAAAGTTTCTTGCCACCGCCAACTGTCAAATCAGCCCTGTTAAAC

ATTAAAAGAAAACACTTATTTTTTGATTTTAAGTTTAAAGCCAAATACTTAGCATTTATTTCCTGTCTGTTAGAGAA

ACCTGATTTATCTGTAAAAACAGCTTTAAAGTCGATTTTCAGGAAAAGTCAGGTCAGGTCAATTTCGGAAAAATTCG

GTTTAAACCTTAATGCTCAAATTGTTTGTTTGTCTCCAAGTCAATGGTTAAACTGTTTTTTGGAAATGCTGGAAGTT

GTCCCTGAAAAATTTCATCCTTCGTAGTTCAAAGTCGGGTGGTTGTCAAGATGATTTTTTTGGTTTGGTGTCGTCTT

TTTTTAAGCTGCCGCATAACGGCTGGCAAATTGGCGATGGAGCCGACTTTTAGCACAAATGTTGAATAGAATTACTA

ATCTTCAACATTGCACAAAAGT
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pKL13

Below is the theoretical sequence for pKL13.

>pKL13 expected

GCGGCCGCAAGGGGTTCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATT

GTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTC

GCCATTCAGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGG

ATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAAT

TGTAATACGACTCACTATAGGGCGAATTCATAACAGCCGGTGACAGCCGGCTGACAGGGGGTTAAGGGGGCTTGTCC

CCTTACACACGCACTCTTTAGGGTGCTAGTGTGCTATCACCATACTGCATAGGTGCGAAGTTAGTGAATGTTTTGTA

AATGCACAAATAAAGGGAAAAACATTTGGATTTGCGATAATAAAGTACTACCTTTGTTGCTGACCAAACGGTAGCTG

ACCGATACGGGAGAGTTACCAAAATACAAGCCGCTGGAGTTAATTGACGGACATCCGACATCTCCAGCGGCTTTATT

TTTGCCTATCTGCTTCGCCTAGGCACACCAGTACCTCTACTAAAAATGTACTTCAAAGATACTTATTTTCTACCGAC

TTGATAGTTTTTACCCCATATTCTTGGACATTTTTCCCCCATGAGGTTATCTTTGTAGGGTGAAAGAGAAACCCATA

AACGGGGATAGATTGAATGCTGGGAAGCATAAACAATCGGGGTAAGGTTAGCGAACCTTGCCTTTCATCCCCCATTA

TAACTTTACATAGAGGAACTTTATCTATCCCCCCCCGCCCCCAAAGGGGGAGCGACCAAACGGCAGCTTCACTCAAT

GGAGTGTTACTGTTCATCAAAGCCAAGTGATAATTGTCGTTTCTCTGCTTCTTCTTTCTTTTGGGCAGCTAAAGTCT

TTTTCCGAACGTATGTTTTAGCAAATGTCACTCGGTCACCATTGAATACTATCAGAGGATTAATAAACCAAAGATTA

TCGGCTGGTCCTCGGGCTATGATTTCAGCTTTTACAAGTTCTGCAAGTCCTTTATAAACGGCTTTGTCTGTTTTGTA

TTTGGTATATTCTAGGCATTTTTTTCTATTGAAAATGATTAAATCATTTTTGGGTTTCATGCAGGTCATAAAGTAAC

CAAAAACCCGAATAGCTGCTTGTGATAGGTCAAAGAATGCAGCAAAGTTAGAAAGATACAATTTAGTGAATTGTTCT

TCATCTACTTCTATTTGACGGATAAACGAAGTCTTAAACACTTCTCCAGTTTCAGTGTCGGCTAAAGCTACTACAGC

TCTCTTATCGCCACCACTATTACTCTTATACTTTTTAACAACATGATTTTCAATACCTTCTATAGCTTGTTTCATAA

AAGGATTTTCTTCGTTCTTTTGAAAATCGGTTAACTTAACTGCTTTTTTATTTTCCATTTTGATATGTTTTTGGGAA

ATATTATTCTCCACAAAGTAAACTATTATTTTCCATAAAAACAATATTAAGGGAAATATTATTTTCCTATTTAGTAT

CATATTAGGAAATCGGTATTTTCTAGATTGGAAAATGAGAATTTCCAATATGGAAAATGCCCTATATTGTGTATCAA

GTACTTAACTTATTCTATTTCTTTTATTCTTAATATACCCCCAAAACAGCACAAAATCAGTCACTTAAAAATCATCG

GTCGGGGAATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCA

TGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTT

AATGTCATGATAATAATGGTTTCTTAAATTCTGATTAATAATTTGTTTAAATTTTTCGTTTGGCGTGAGGTATCCAA

GTCTTTTACGAGGTCGATTATTGAGTTTATTTTCAATCCACTTAATCTGTTTGTTGGTTACTTCACTAAAGTCCTTA

CCCTTTGGGATATACTGCCTGATAAGCCCGTTGGTGTTTTCATTGGCACCACGTTCCCATGAGTGGTATGGTTTGCA

AAAATAGAATTTTATTTCCAATTTTTGCGCAATTTCCTCGTGCTTTGCAAACTCCTTTCCATTGTCAGCCGTAATTG

TGTGTATTAAGTTTTTCACTTTCCGCAGTGCCCATACTGCAATCTTAGCTACCGGGATGGCTTCTTTTCCCGACAAC

TTGCGTATCCAGACCCTGCTTGTTGCTCTGTCGTTAATGGTAAGAATGGCACCTTTGTGGTTCTTACCAATAATTGT

ATCTATCTCTAAATCACCAAATCTCTCCTTCAGTTCCACTATCTCGGGACGCTCATCAATATCCACCCTGCCTGGGA

TAAATCCTCGCCCTGCATTTTTAGAACCACGTTTGGCATACCTGCGACCTTGTCTGCGAAGATATTTGTGCAGTTTG

CCACCCCGCCGCTTATCCTCCCAAATCCAGCGATATATCGTTTCGTGAGATACCATCGCAATTCCCTCCAAGCGGCT

CCTGCCGACAATCTGCTCCGGGCTGAATCCTTTCTTCAACAGCTTTATTATCCGTTTTCTCATTGCCGGTGTAAGCA

CTTCCTTGCGATGTTTTTGCTGCTTGCGCCTGTCTGCTTTTCGCTGGGCAAGCTCCATGCTATAGCTACCACTTCGG

GCGTCGCAATTGCGCTTTATCTCCCTGTAAACAGTGCTTTTATCTACTCCGATAGCTTCCGCTATTGCTTTTTTGCT

CATCGGTATTTGCAACATCATAGAAATTGCATACCTTTGTTCCTCGGTTATATGTTTGCTCATCTGCAACTTTTTTT

TCTTTGGACGGACAATTAAAGCAAAGATAGCAAACTTTATCCATTCAGAGTGAGAGAAAGGGGGACATTGTCTCTCT
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TTCCTCTCTGAAAAATAAATGTTTTTATTGCTTATTATCCGCACCCAAAAAGTTGCATTTATAAGTTGAACTCAAGA

AGTATTCACCTGTAAGAAGTTACTAATGACAAAAAAGAAATTGCCCGTTCGTTTTACGGGTCAGCACTTTACTATTG

ATAAAGTGCTAATAAAAGATGCAATAAGACAAGCAAATATAAGTAATCAGGATACGGTTTTAGATATTGGGGCAGGC

AAGGGGTTTCTTACTGTTCATTTATTAAAAATCGCCAACAATGTTGTTGCTATTGAAAACGACACAGCTTTGGTTGA

ACATTTACGAAAATTATTTTCTGATGCCCGAAATGTTCAAGTTGTCGGTTGTGATTTTAGGAATTTTGCAGTTCCGA

AATTTCCTTTCAAAGTGGTGTCAAATATTCCTTATGGCATTACTTCCGATATTTTCAAAATCCTGATGTTTGAGAGT

CTTGGAAATTTTCTGGGAGGTTCCATTGTCCTTCAATTAGAACCTACACAAAAGTTATTTTCGAGGAAGCTTTACAA

TCCATATACCGTTTTCTATCATACTTTTTTTGATTTGAAACTTGTCTATGAGGTAGGTCCTGAAAGTTTCTTGCCAC

CGCCAACTGTCAAATCAGCCCTGTTAAACATTAAAAGAAAACACTTATTTTTTGATTTTAAGTTTAAAGCCAAATAC

TTAGCATTTATTTCCTGTCTGTTAGAGAAACCTGATTTATCTGTAAAAACAGCTTTAAAGTCGATTTTCAGGAAAAG

TCAGGTCAGGTCAATTTCGGAAAAATTCGGTTTAAACCTTAATGCTCAAATTGTTTGTTTGTCTCCAAGTCAATGGT

TAAACTGTTTTTTGGAAATGCTGGAAGTTGTCCCTGAAAAATTTCATCCTTCGTAGTTCAAAGTCGGGTGGTTGTCA

AGATGATTTTTTTGGTTTGGTGTCGTCTTTTTTTAAGCTGCCGCATAACGGCTGGCAAATTGGCGATGGAGCCGACT

TTTAGCACAAATGTTGAATAGAATTACTAATCTTCAACATTGCACAAAAGTGAATTCGAGCTCGGTACCCGGGGATC

CCACAAATGGCGCGCCGGCTGGATTTAATTAATGTCTGCTCCTCGGTTATGTTTTTAAGGTCAAAAAAAACCCCCGG

ACCTTTCGGTGCGGGGGTCTTAGTTCGTTAAGGCTTGATCTCTAGCGATTAAGTTGGGTAACGCCAGGGTTTTCGTC

ACTTAGTCAGCTAGCCACGTGCCTTAGGGTGTGAAATTGTTATCCGCTCACAATTCCACACATTATACGAGCCGATG

ATTAATTGTCAACAGCTCCCTGAGGTTCGAAGATCCTCCGGCTCACGGTAACTGATGCCGTATTTGCAGTACCAGCG

TACGGCCCACAGAATGATGTCACGCTGAAAATGCCGGCCTTTGAATGGGTTCATGTGCAGCTCCATCAGCAAAAGGG

GATGATAAGTTTATCACCACCGACTATTTGCAACAGTGCCGTTGATCGTGCTATGATCGACTGATGTCATCAGCGGT

GGAGTGCAATGTCGTGCAATACGAATGGCGAAAAGCCGAGCTCATCGGTCAGCTTCTCAACCTTGGGGTTACCCCCG

GCGGTGTGCTGCTGGTCCACAGCTCCTTCCGTAGCGTCCGGCCCCTCGAAGATGGGCCACTTGGACTGATCGAGGCC

CTGCGTGCTGCGCTGGGTCCGGGAGGGACGCTCGTCATGCCCTCGTGGTCAGGTCTGGACGACGAGCCGTTCGATCC

TGCCACGTCGCCCGTTACACCGGACCTTGGAGTTGTCTCTGACACATTCTGGCGCCTGCCAAATGTAAAGCGCAGCG

CCCATCCATTTGCCTTTGCGGCAGCGGGGCCACAGGCAGAGCAGATCATCTCTGATCCATTGCCCCTGCCACCTCAC

TCGCCTGCAAGCCCGGTCGCCCGTGTCCATGAACTCGATGGGCAGGTACTTCTCCTCGGCGTGGGACACGATGCCAA

CACGACGCTGCATCTTGCCGAGTTGATGGCAAAGGTTCCCTATGGGGTGCCGAGACACTGCACCATTCTTCAGGATG

GCAAGTTGGTACGCGTCGATTATCTCGAGAATGACCACTGCTGTGAGCGCTTTGCCTTGGCGGACAGGTGGCTCAAG

GAGAAGAGCCTTCAGAAGGAAGGTCCAGTCGGTCATGCCTTTGCTCGGTTGATCCGCTCCCGCGACATTGTGGCGAC

AGCCCTGGGTCAACTGGGCCGAGATCCGTTGATCTTCCTGCATCCGCCAGAGGCGGGATGCGAAGAATGCGATGCCG

CTCGCCAGTCGATTGGCTGAGCTCATGAGCGGAGAACGAGATGACGTTGGAGGGGCAAGGTCGCGCTGATTGCTGGG

GCAACACGTTCGAACACGTGATGCATTAACTAGGTGACGTCATAGCTGTTTCCTGTGTGAAATTGTTATCGGTCAGT

TTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCGGT

CCGAGCAGGTCGCGATCGCATTTGTGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGCGCTTTTCCGCTGC

ATAACCCTGCTTCGGGGTCATTATAGCGATTTTTTCGGTATATCCATCCTTTTTCGCACGATATACAGGATTTTGCC

AAAGGGTTCGTGTAGACTTTCCTTGGTGTATCCAACGGCGTCAGCCGGGCAGGATAGGTGAAGTAGGCCCACCCGCG

AGCGGGTGTTCCTTCTTCACTGTCCCTTATTCGCACCTGGCGGTGCTCAACGGGAATCCTGCTCTGCGAGGCTGGCC

GGCTACCGCCGGCGTAACAGATGAGGGCAAGCGGATGGCTGATGAAACCAAGCCAACCAGGAAGGGCAGCCCACCTA

TCAAGGTGTACTGCCTTCCAGACGAACGAAGAGCGATTGAGGAAAAGGCGGCGGCGGCCGGCATGAGCCTGTCGGCC

TACCTGCTGGCCGTCGGCCAGGGCTACAAAATCACGGGCGTCGTGGACTATGAGCACGTCCGCGAGCTGGCCCGCAT

CAATGGCGACCTGGGCCGCCTGGGCGGCCTGCTGAAACTCTGGCTCACCGACGACCCGCGCACGGCGCGGTTCGGTG

ATGCCACGATCCTCGCCCTGCTGGCGAAGATCGAAGAGAAGCAGGACGAGCTTGGCAAGGTCATGATGGGCGTGGTC

CGCCCGAGGGCAGAGCCATGACTTTTTTAGCCGCTAAAACGGCCGGGGGGTGCGCGTGATTGCCAAGCACGTCCCCA

TGCGCTCCATCAAGAAGAGCGACTTCGCGGAGCTGGTGAAGTACATCACCGACGAGCAAGGCAAGACCGAAAGCTTG

AGTATTCTATAGTCTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCT

CACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACAT
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TAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGC

GAACCCCTTGCGGCCGCCCGGGCCGTCGACCAATTCTCATGTTTGACAGCTTATCATCGAATTTCTGCCATTCATCC

GCTTATTATCACTTATTCAGGCGTAGCAACCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCG

CCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATG

AACCTGAATCGCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGCGAAGA

AGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAACATATTC

TCAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAAACTG

CCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAAAACGGTGTAACAAGGGT

GAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCA

AGAATGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAATATCCAGCTG

AACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATAT

CAACGGTGGTATATCCAGTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAAAAT

ACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCCA

AAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACACCAGGATTTATTTATTCTGCGAAGTGATCTTCCGTCACAG

GTATTTATTCGCGATAAGCTCATGGAGCGGCGTAACCGTCGCACAGGAAGGACAGAGAAAGCGCGGATCTGGGAAGT

GACGGACAGAACGGTCAGGACCTGGATTGGGGAGGCGGTTGCCGCCGCTGCTGCTGACGGTGTGACGTTCTCTGTTC

CGGTCACACCACATACGTTCCGCCATTCCTATGCGATGCACATGCTGTATGCCGGTATACCGCTGAAAGTTCTGCAA

AGCCTGATGGGACATAAGTCCATCAGTTCAACGGAAGTCTACACGAAGGTTTTTGCGCTGGATGTGGCTGCCCGGCA

CCGGGTGCAGTTTGCGATGCCGGAGTCTGATGCGGTTGCGATGCTGAAACAATTATCCTGAGAATAAATGCCTTGGC

CTTTATATGGAAATGTGGAACTGAGTGGATATGCTGTTTTTGTCTGTTAAACAGAGAAGCTGGCTGTTATCCACTGA

GAAGCGAACGAAACAGTCGGGAAAATCTCCCATTATCGTAGAGATCCGCATTATTAATCTCAGGAGCCTGTGTAGCG

TTTATAGGAAGTAGTGTTCTGTCATGATGCCTGCAAGCGGTAACGAAAACGATTTGAATATGCCTTCAGGAACAATA

GAAATCTTCGTGCGGTGTTACGTTGAAGTGGAGCGGATTATGTCAGCAATGGACAGAACAACCTAATGAACACAGAA

CCATGATGTGGTCTGTCCTTTTACAGCCAGTAGTGCTCGCCGCAGTCGAGCGACAGGGCGAAGCCCTCGGCTGGTTG

CCCTCGCCGCTGGGCTGGCGGCCGTCTATGGCCCTGCAAACGCGCCAGAAACGCCGTCGAAGCCGTGTGCGAGACAC

CGCGGCCGGCCGCCGGCGTTGTGGATACCTCGCGGAAAACTTGGCCCTCACTGACAGATGAGGGGCGGACGTTGACA

CTTGAGGGGCCGACTCACCCGGCGCGGCGTTGACAGATGAGGGGCAGGCTCGATTTCGGCCGGCGACGTGGAGCTGG

CCAGCCTCGCAAATCGGCGAAAACGCCTGATTTTACGCGAGTTTCCCACAGATGATGTGGACAAGCCTGGGGATAAG

TGCCCTGCGGTATTGACACTTGAGGGGCGCGACTACTGACAGATGAGGGGCGCGATCCTTGACACTTGAGGGGCAGA

GTGCTGACAGATGAGGGGCGCACCTATTGACATTTGAGGGGCTGTCCACAGGCAGAAAATCCAGCATTTGCAAGGGT

TTCCGCCCGTTTTTCGGCCACCGCTAACCTGTCTTTTAACCTGCTTTTAAACCAATATTTATAAACCTTGTTTTTAA

CCAGGGCTGCGCCCTGTGCGCGTGACCGCGCACGCCGAAGGGGGGTGCCCCCCCTTCTCGAACCCTCCCGGTCGAGT

GAGCGAGGAAGCACCAGGGAACAGCACTTATATATTCTGCTTACACACGATGCCTGAAAAAACTTCCCTTGGGGTTA

TCCACTTATCCACGGGGATATTTTTATAATTATTTTTTTTATAGTTTTTAGATCTTCTTTTTTAGAGCGCCTTGTAG

GCCTTTATCCATGCTGGTTCTAGAGAAGGTGTTGTGACAAATTGCCCTTTCAGTGTGACAAATCACCCTCAAATGAC

AGTCCTGTCTGTGACAAATTGCCCTTAACCCTGTGACAAATTGCCCTCAGAAGAAGCTGTTTTTTCACAAAGTTATC

CCTGCTTATTGACTCTTTTTTATTTAGTGTGACAATCTAAAAACTTGTCACACTTCACATGGATCTGTCATGGCGGA

AACAGCGGTTATCAATCACAAGAAACGTAAAAATAGCCCGCGAATCGTCCAGTCAAACGACCTCACTGAGGCGGCAT

ATAGTCTCTCCCGGGATCAAAAACGTATGCTGTATCTGTTCGTTGACCAGATCAGAAAATCTGATGGCACCCTACAG

GAACATGACGGTATCTGCGAGATCCATGTTGCTAAATATGCTGAAATATTCGGATTGACCTCTGCGGAAGCCAGTAA

GGATATACGGCAGGCATTGAAGAGTTTCGCGGGGAAGGAAGTGGTTTTTTATCGCCCTGAAGAGGATGCCGGCGATG

AAAAAGGCTATGAATCTTTTCCTTGGTTTATCAAACGTGCGCACAGTCCATCCAGAGGGCTTTACAGTGTACATATC

AACCCATATCTCATTCCCTTCTTTATCGGGTTACAGAACCGGTTTACGCAGTTTCGGCTTAGTGAAACAAAAGAAAT

CACCAATCCGTATGCCATGCGTTTATACGAATCCCTGTGTCAGTATCGTAAGCCGGATGGCTCAGGCATCGTCTCTC

TGAAAATCGACTGGATCATAGAGCGTTACCAGCTGCCTCAAAGTTACCAGCGTATGCCTGACTTCCGCCGCCGCTTC

CTGCAGGTCTGTGTTAATGAGATCAACAGCAGAACTCCAATGCGCCTCTCATACATTGAGAAAAAGAAAGGCCGCCA
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GACGACTCATATCGTATTTTCCTTCCGCGATATCACTTCCATGACGACAGGATAGTCTGAGGGTTATCTGTCACAGA

TTTGAGGGTGGTTCGTCACATTTGTTCTGACCTACTGAGGGTAATTTGTCACAGTTTTGCTGTTTCCTTCAGCCTGC

ATGGATTTTCTCATACTTTTTGAACTGTAATTTTTAAGGAAGCCAAATTTGAGGGCAGTTTGTCACAGTTGATTTCC

TTCTCTTTCCCTTCGTCATGTGACCTGATATCGGGGGTTAGTTCGTCATCATTGATGAGGGTTGATTATCACAGTTT

ATTACTCTGAATTGGCTATCCGCGTGTGTACCTCTACCTGGAGTTTTTCCCACGGTGGATATTTCTTCTTGCGCTGA

GCGTAAGAGCTATCTGACAGAACAGTTCTTCTTTGCTTCCTCGCCAGTTCGCTCGCTATGCTCGGTTACACGGCTGC

GGCGAGCGCTAGTGATAATAAGTGACTGAGGTATGTGCTCTTCTTATCTCCTTTTGTAGTGTTGCTCTTATTTTAAA

CAACTTTGCGGTTTTTTGATGACTTTGCGATTTTGTTGTTGCTTTGCAGTAAATTGCAAGATTTAATAAAAAAACGC

AAAGCAATGATTAAAGGATGTTCAGAATGAAACTCATGGAAACACTTAACCAGTGCATAAACGCTGGTCATGAAATG

ACGAAGGCTATCGCCATTGCACAGTTTAATGATGACAGCCCGGAAGCGAGGAAAATAACCCGGCGCTGGAGAATAGG

TGAAGCAGCGGATTTAGTTGGGGTTTCTTCTCAGGCTATCAGAGATGCCGAGAAAGCAGGGCGACTACCGCACCCGG

ATATGGAAATTCGAGGACGGGTTGAGCAACGTGTTGGTTATACAATTGAACAAATTAATCATATGCGTGATGTGTTT

GGTACGCGATTGCGACGTGCTGAAGACGTATTTCCACCGGTGATCGGGGTTGCTGCCCATAAAGGTGGCGTTTACAA

AACCTCAGTTTCTGTTCATCTTGCTCAGGATCTGGCTCTGAAGGGGCTACGTGTTTTGCTCGTGGAAGGTAACGACC

CCCAGGGAACAGCCTCAATGTATCACGGATGGGTACCAGATCTTCATATTCATGCAGAAGACACTCTCCTGCCTTTC

TATCTTGGGGAAAAGGACGATGTCACTTATGCAATAAAGCCCACTTGCTGGCCGGGGCTTGACATTATTCCTTCCTG

TCTGGCTCTGCACCGTATTGAAACTGAGTTAATGGGCAAATTTGATGAAGGTAAACTGCCCACCGATCCACACCTGA

TGCTCCGACTGGCCATTGAAACTGTTGCTCATGACTATGATGTCATAGTTATTGACAGCGCGCCTAACCTGGGTATC

GGCACGATTAATGTCGTATGTGCTGCTGATGTGCTGATTGTTCCCACGCCTGCTGAGTTGTTTGACTACACCTCCGC

ACTGCAGTTTTTCGATATGCTTCGTGATCTGCTCAAGAACGTTGATCTTAAAGGGTTCGAGCCTGATGTACGTATTT

TGCTTACCAAATACAGCAATAGTAATGGCTCTCAGTCCCCGTGGATGGAGGAGCAAATTCGGGATGCCTGGGGAAGC

ATGGTTCTAAAAAATGTTGTACGTGAAACGGATGAAGTTGGTAAAGGTCAGATCCGGATGAGAACTGTTTTTGAACA

GGCCATTGATCAACGCTCTTCAACTGGTGCCTGGAGAAATGCTCTTTCTATTTGGGAACCTGTCTGCAATGAAATTT

TCGATCGTCTGATTAAACCACGCTGGGAGATTAGATAATGAAGCGTGCGCCTGTTATTCCAAAACATACGCTCAATA

CTCAACCGGTTGAAGATACTTCGTTATCGACACCAGCTGCCCCGATGGTGGATTCGTTAATTGCGCGCGTAGGAGTA

ATGGCTCGCGGTAATGCCATTACTTTGCCTGTATGTGGTCGGGATGTGAAGTTTACTCTTGAAGTGCTCCGGGGTGA

TAGTGTTGAGAAGACCTCTCGGGTATGGTCAGGTAATGAACGTGACCAGGAGCTGCTTACTGAGGACGCACTGGATG

ATCTCATCCCTTCTTTTCTACTGACTGGTCAACAGACACCGGCGTTCGGTCGAAGAGTATCTGGTGTCATAGAAATT

GCCGATGGGAGTCGCCGTCGTAAAGCTGCTGCACTTACCGAAAGTGATTATCGTGTTCTGGTTGGCGAGCTGGATGA

TGAGCAGATGGCTGCATTATCCAGATTGGGTAACGATTATCGCCCAACAAGTGCTTATGAACGTGGTCAGCGTTATG

CAAGCCGATTGCAGAATGAATTTGCTGGAAATATTTCTGCGCTGGCTGATGCGGAAAATATTTCACGTAAGATTATT

ACCCGCTGTATCAACACCGCCAAATTGCCTAAATCAGTTGTTGCTCTTTTTTCTCACCCCGGTGAACTATCTGCCCG

GTCAGGTGATGCACTTCAAAAAGCCTTTACAGATAAAGAGGAATTACTTAAGCAGCAGGCATCTAACCTTCATGAGC

AGAAAAAAGCTGGGGTGATATTTGAAGCTGAAGAAGTTATCACTCTTTTAACTTCTGTGCTTAAAACGTCATCTGCA

TCAAGAACTAGTTTAAGCTCACGACATCAGTTTGCTCCTGGAGCGACAGTATTGTATAAGGGCGATAAAATGGTGCT

TAACCTGGACAGGTCTCGTGTTCCAACTGAGTGTATAGAGAAAATTGAGGCCATTCTTAAGGAACTTGAAAAGCCAG

CACCCTGATGCGACCACGTTTTAGTCTACGTTTATCTGTCTTTACTTAATGTCCTTTGTTACAGGCCAGAAAGCATA

ACTGGCCTGAATATTCTCTCTGGGCCCACTGTTCCACTTGTATCGTCGGTCTGATAATCAGACTGGGACCACGGTCC

CACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGA

CCACGGTCCCACTCGTATCGTCGGTCTGATAATCAGACTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATT

AGTCTGGGACCATGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGT

CTGATTATTAGTCTGGAACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGT

ATCGTCGGTCTGATTATTAGTCTGGGACCACGATCCCACTCGTGTTGTCGGTCTGATTATCGGTCTGGGACCACGGT

CCCACTTGTATTGTCGATCAGACTATCAGCGTGAGACTACGATTCCATCAATGCCTGTCAAGGGCAAGTATTGACAT

GTCGTCGTAACCTGTAGAACGGAGTAACCTCGGTGTGCGGTTGTATGCCTGCTGTGGATTGCTGCTGTGTCCTGCTT

ATCCACAACATTTTGCGCACGGTTATGTGGACAAAATACCTGGTTACCCAGGCCGTGCCGGCACGTTAACCGGGCTG
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CATCCGATGCAAGTGTGTCGCTGTCGACGAGCTCGCGAGCTCGGACATGAGGTTGCCCCGTATTCAGTGTCGCTGAT

TTGTATTGTCTGAAGTTGTTTTTACGTTAAGTTGATGCAGATCAATTAATACGATACCTGCGTCATAATTGATTATT

TGACGTGGTTTGATGGCCTCCACGCACGTTGTGATATGTAGATGATAATCATTATCACTTTACGGGTCCTTTCCGGT

GATCCGACAGGTTACGGGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAGGCGTTTCCGT

TCTTCTTCGTCATAACTTAATGTTTTTATTTAAAATACCCTCTGAAAAGAAAGGAAACGACAGGTGCTGAAAGCGAG

CTTTTTGGCCTCTGTCGTTTCCTTTCTCTGTTTTTGTCCGTGGAATGAACAATGGAAGTCCGAGCTCATCGCTAATA

ACTTCGTATAGCATACATTATACGAAGTTATATTCGAT
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Sanger sequencing reads of CLGM3 chuR clones #5

Primer KL61

>CLGM3 chuR clone 5 primer KL61

AAGCTGCWTGTYMTGGTAAGCCCGTGGGAGCCGTATGTAATCTCGCATGCGAATACTGCTATTATTTGGAAAAGGCG

AACCTATACAAAGAAAACCCCAAACATGTAATGAGCGATGAACTACTGGAAAAGTTTATCGACGAGTATATCAGTTC

TCAAACCATGCCTCAAGTGCTTTTTACCTGGCACGGTGGAGAAACGCTGATGCGTCCGCTTTCTTTTTATAAAAAGG

CGATGGAACTGCAAAAGAAATACGCCCGCGGACGTACGATTGACAATTGTATCCAGACGAATGGGACCTTACTCACA

GACGAATGGTGCGAGTTCTTCCGTGAAAACAACTGGCTGGTAGGGGTTTCTATTGATGGCCCGCAAGAGTTTCATGA

CGAATACCGCAAGAACAAAATGGGCAAACCTTCTTTCGTCAAAGTGATGCAAGGGATTAATCTCCTGAAAAAACATG

GAGTAGAATGGAACGCTATGGCTGTTGTGAACGATTTCAATGCCGAATATCCATTAGACTTTTATAATTTCTTCAAA

GAAATAGATTGCCATTATATCCAGTTCGCCCCGATTGTTGAACGCATTGTTTCACATCAGGACGGTCGTCATCTTGC

CTCTCTGGCAGAAGGTAAAGAAGGAGCATTGGCTGATTTCTCCATAAGTCCGGAACAATGGGGTAACTTTCTCTGTA

CAATTTTTGATGAATGGGTAAAAGAAGATGTGGGCAAATTCTTCATACAGATATTCGATTCTACATTGGCTAACTGG

ATGGGTGAGCAACCGGGCGTATGTACAATGGCGAAGCATTGCGGACATGCCGGCGTTATGGAATTCAACGGAGACGT

ATACTCTTGTGACCACTTCGTATTCCCGGAATATAAATTGGGAAATATCTATAGCCAGACTTTGGTGGAAATGATGC

ATAGTGAACGACAGCAAACTTCGGGACAATGAAATACCAATCACTCCCAACACAATGCAAGGAGTGCGACTTTCTAT

TTGCCTGCAACGGARATGTCCAAAGAACCGCTTCAGTCGGACAGCGGACGGCGAACCCGGTCTGACTATTTGTGCAA

AGGATATTACCAATACTTTCASMWGTAGCYTCCTATWWTGGATTYMTGAAAAARRATTAATGAATCAMCA

Primer KL62

>CLGM3 chuR clone 5 primer KL62

GTAATGATGTTYGGCAGGAGCCTGTTGATTCATTAATTCTTTTTTCATGAAATCCATATAGGGAGCTACATGCTGAA

AGTATYGGTAATATCCTTTGCACAAATAGTTCAGACCGGGTTCGCCGTCCGCTGTCCGACTGAAGCGGTTCTTTGGA

CATTCTCCGTTGCAGGCAAATAGAAAGTCGCACTCCTTGCATTGTGTTGGGAGTGATTGGTATTTCATTGTCCCGAA

GTTTTGCTGTCGTTCACTATGCATCATTTCCACCAAAGTCTGGCTATAGATATTTCCCAATTTATATTCCGGGAATA

CGAAGTGGTCACAAGAGTATACGTCTCCGTTGAATTCCATAACGCCGGCATGTCCGCAATGCTTCGCCATTGTACAT

ACGCCCGGTTGCTCACCCATCCAGTTAGCCAATGTAGAATCGAATATCTGTATGAAGAATTTGCCCACATCTTCTTT

TACCCATTCATCAAAAATTGTACAGAGAAAGTTACCCCATTGTTCCGGACTTATGGAGAAATCAGCCAATGCTCCTT

CTTTACCTTCTGCCAGAGAGGCAAGATGACGACCGTCCTGATGTGAAACAATGCGTTCAACAATCGGGGCGAACTGG

ATATAATGGCAATCTATTTCTTTGAAGAAATTATAAAAGTCTAATGGATATTCGGCATTGAAATCGTTCACAACAGC

CATAGCGTTCCATTCTACTCCATGTTTTTTCAGGAGATTAATCCCTTGCATCACTTTGACGAAAGAAGGTTTGCCCA

TTTTGTTCTTGCGGTATTCGTCATGAAACTCTTGCGGGCCATCAATAGAAACCCCTACCAGCCAGTTGTTTTCACGG

AAGAACTCGCACCATTCGTCTGTGAGTAAGTCCCATTCGTCTGGATACAATTGTCAATCGTACGTCCGCGGGCGTAT

TTCTTTTGCAGTTCCATCGCGTTTTATAAAAGAAAGCGGACGCATCAGCGTTTCTCACGTGCCAGTAAAAGCACTTG

AGCATGGTTTGAGACTGATATACTCGTCGATAACTTTTCCAGTAGTCATCGCTCATACATGTTTGGGGTTTTCTTTT

GTATAGTCGCTTTCAAWAATAGCAGTATCSCATGCGAGAATACATACGCTCACGGGCTTACATGACTAGCRGTTKGC

TAAGTGAG
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Primer KL66

>CLGM3 chuR clone 5 primer KL66

CCAATCTTYCAGGAGCGGACGCATCAGCGTTTCTCCACCGTGCCAGGTAAAAAGCACTTGAGGCATGGTTTGAGAAC

TGATATACTCGTCGATAAACTTTTCCAGTAGTTCATCGCTCATTACATGTTTGGGGTTTTCTTTGTATAGGTTCGCC

TTTTCCAAATAATAGCAGTATTCGCATGCGAGATTACATACGGCTCCCACGGGCTTTACCATGACATAAAGCGGTTT

GGCAAAAGGTGCATAAGTTGGTGCTTTCATCATACTGATGCGCCTGCGTGAGCGAGGTTTCCGGCGAGAGGGGGGTA

AACAGTTCASCCKGYGCCTGCTCCGGCTTCARCCSCAGAGGAGGSSAGCAGAAGAAGARAGGACGGGRGGAGGAGTC

AGAAKCTTATGTTGTTTATTCGWGGGAAGGCCATGTCGGGKGCGCCGATCATKASTGGGATMAGCWASTTTCCSAAG

CCRCCRATTATRATAGGKATRACTATAAAGAAAATTMTAACGAARGCATGGKCGGTAACRATAACATTGTAAATCTG

GACATCACCCATTASGGSCCYGGGTTGGWTTAGCTCGGMTYRRGMAGKGMSGCTTAWKGCCGYGCCRCCTATYCCRG

CTCRGGCACCWAACACTATATRRGGGTGCCKATATCTTRRRWW

Primer KL67

>CLGM3 chuR clone 5 primer KL67

ATGCGTCCGTAAGCACTTGAGGCATGGTTTGAGAACTGATATACTCGTCGATAAACTTTTCCAGTAGTTCATCGCTC

ATTACATGTTTGGGGTTTTCTTTGTATAGGTTCGCCTTTTCCAAATAATAGCAGTATTCGCATGCGAGATTACATAC

GGCTCCCACGGGCTTTACCATGACATAAAGCGGTTTGGCAAAAGGTGCATAAGTTGTTGCTTTCATSATGGGCCTTC

CCCCCCCGGSKGGGGGGCGCTYCYGGSYCCCCCCCCCTMCCTSTKCCTGTCCGCKRGCSYCCKCGGGGGARGMWSSK

SYAAAAKGMWYYMGCTGRCCTCSGWTCCKCCCTCACACCKGARASRKSGWCAKYAKAGGRSCRTMASWWAACYTAMS

AGTTKCYWCCWCCCCYCTTGGWTGGGGGCSCGYCSYTRSTCGGSSYCRCTARTWKTKWWMGAACAARWTSRAACWCG

AAACKCKWAGCTTGWTACTGTTATCMAAACTWCTAARGAGTSWGAWCCGCCMGRMKAAKAYTKGTTCTCCTTCTTCY

CCCCCYCCCMSCKTTGGCAGRTCTWAGTWCTACSCMRWWAWAGMTCRASGACSRRWTTARGMMGTKCYTSTARTGCG

GAYCASGAGYYAACGMWRTRWRMKGTTAKSTRCTGTTTGGAARTTWGCAAAA

Primer KL68

>CLGM3 chuR clone 5 primer KL68

CCCACGCATGAGTGCGACTTTCTATTTGCCTGCAACGGAGAATGTCCAAAGAACCGCTTCAGTCGGACAGCGGACGG

CGAACCCGGTCTGAACTATTTGTGCAAAGGATATTACCAATACTTTCAGCATGTAGCTCCCTATATGGATTTCATGA

AAAAAGAATTAATGAATCAACAGGCTCCTGCCAACATCATGAAAGCACTAAAAGACGGAAGTTTAAAAATAGAATAT

TAAASGCMGSCCGGMGGGACCAARRCTMCSCCCCCCATSKGTTCTTCTGSTGGCCGSCTRAYGAGGKGKWGAAGCCM

SWKMAGAWRTTGWGMKTACTCCTGATCCACRTCTCGTWAGAAACGGGKMCAMGAAMAGAGARAARCRWARCWAWYSA

TTCCTTCCGTCCSCTTAGGTTYCGTACSCSRGMKGRGTGGGWCACWCMAMMSKKTTKGAAYMATWAKWAAMCTGCSA

ARCCCGGCCATAWKACYATAWCCCAAAMYAWTAWWTATWWGGRCSGMSCSYGYAGRACTSTWCYWCTRCYMCTATCC

KYYCWWCCCYRRAWSCCKKARTTSCCMWMCTACTRYMAGATRGAKATKMRTWAGAMGTKCYGGGCAGYGCGGGYGAM

GCGGYWAACRGKKYCTSMGGSTGMTMTRTMTTGMYWYGKGGRAYMCAGYCMKGKARRKWRTTAWAAKGRCAAYWTYT

TTMSAR
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Primer KL69

>CLGM3 chuR clone 5 primer KL69

TAAGAMCGCTTMGTCGGACGCGGACGGCGAACCCGGTCTGAACTATTTGTGCAAAGGATATTACCAATACTTTCAGC

ATGTAGCTCCCTATATGGATTTCATGAAAAAAGAATTAATGAATCAACAGGCTCCTGCCAACATCATGAAAGCACTA

AAAGACGGAAGTTTAAAAATAGAATATTAACGCKTTGGTGYCTTTTGKKCGGATKGKSTTGCYGSATMAMCTTACGA

GSRCGGKCARGTGKAGGWAAAGAAMCKCCMCCCAACYTTCWKSCSWYGCYWGCGAGGGCGGTWGCSGGRGCSAAAAA

RAAAARAGGTTYGTTKTKYCTGCCTTKYTTCWASGSCAGMKGAGRARAGSAAGASARGAARGGCTGRTGARAGTYKC

CRYAAMMTSTGGACGYGGRCTAMKCRMGAGGKGGSSCCKCSARCCRTKATGGAWAWAGGASRKACTCRGATGCCGAA

CCMTGGTACTATWATCCAWYMRACYAMWTAKMAAMGSRGRKCCMAGGGAMARRAAWTCACTKTCATTSTCGSKAYMA

MSCCCTSGCGSCACKAGATCYCTCCGCTGRKMGAAGATKAASTAGGATAAARGMWGTTCCYRYCCAGTSCGGCTCAY

KMAKGMAASRGRTCAAMKGSTGYGASYAGCSTGCKMTASCTGSSGSYWRCCKGTMWKSRTAWTCTCTCMKKWWKATR

TAGAGAGCA
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D.3 BLAST analyses

BLAST of B. theta chuR against NCBI WGS metagenome con-

tigs

The following page summarizes the results of BLAST analysis using the Megablast algo-

rithm, querying the B. theta VPI-5482 chuR/anSME gene (BT 0238) against the NCBI

WGS database, specifying tax id 408169 for assembled metagenomic contigs.
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Table D.1: BLAST (megablast) results for B. theta chuR against metagenomic contigs.

Description Max score Total score Query cover E value Ident Accession

gut metagenome genome assembly P2E7-k21-2014-09-20, contig contig-179000065, whole genome shotgun sequence 2300 2300 100.00% 0 100.00% CEBV01025663.1

gut metagenome genome assembly P2E0-k21-2014-09-20, contig contig-4470000086, whole genome shotgun sequence 2300 2300 100.00% 0 100.00% CEAB01052623.1

gut metagenome genome assembly P22E0-k21-2014-09-20, contig contig-576000124, whole genome shotgun sequence 2300 2300 100.00% 0 100.00% CDZR01059274.1

gut metagenome genome assembly P22E7-k21-2014-09-20, contig contig-4000110, whole genome shotgun sequence 2300 2300 100.00% 0 100.00% CDZN01021567.1

gut metagenome genome assembly P15E7-k21-2014-09-20, contig contig-58, whole genome shotgun sequence 2300 2300 100.00% 0 100.00% CDYN01010010.1

gut metagenome genome assembly P3E7-k21-2014-09-20, contig contig-32000034, whole genome shotgun sequence 2289 2289 100.00% 0 99.00% CEAK01009572.1

gut metagenome genome assembly P23C90-k21-2014-09-20, contig contig-79000054, whole genome shotgun sequence 2274 2274 98.00% 0 100.00% CDZU01019025.1

gut metagenome genome assembly P20E0-k21-2014-09-20, contig contig-328000126, whole genome shotgun sequence 2139 2139 100.00% 0 98.00% CDZL01023776.1

gut metagenome genome assembly P20E90-k21-2014-09-20, contig contig-1784000118, whole genome shotgun sequence 2139 2139 100.00% 0 98.00% CDZJ01030116.1

gut metagenome genome assembly P11E7-k21-2014-09-20, contig contig-475000077, whole genome shotgun sequence 2139 2139 100.00% 0 98.00% CDYJ01032401.1

gut metagenome genome assembly P11E7-k21-2014-09-20, contig contig-64000044, whole genome shotgun sequence 2139 2139 100.00% 0 98.00% CDYJ01018206.1

gut metagenome genome assembly P13E90-k21-2014-09-20, contig contig-4649000084, whole genome shotgun sequence 2134 2134 100.00% 0 98.00% CDYU01038733.1

gut metagenome genome assembly P13E7-k21-2014-09-20, contig contig-2656000067, whole genome shotgun sequence 2134 2134 100.00% 0 98.00% CDYM01021406.1

gut metagenome genome assembly P22E90-k21-2014-09-20, contig contig-158000023, whole genome shotgun sequence 1796 1796 78.00% 0 100.00% CDZS01010650.1

gut metagenome genome assembly P17E90-k21-2014-09-20, contig contig-625000026, whole genome shotgun sequence 1679 1679 78.00% 0 98.00% CDZK01010597.1

gut metagenome genome assembly P9E7-k21-2014-09-20, contig contig-114000075, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDZX01019418.1

gut metagenome genome assembly P14E90-k21-2014-09-20, contig contig-1458000087, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDZB01057382.1

gut metagenome genome assembly P14E7-k21-2014-09-20, contig contig-10000044, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDZA01027718.1

gut metagenome genome assembly P11E90-k21-2014-09-20, contig contig-3536000126, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDYR01053020.1

gut metagenome genome assembly P11E90-k21-2014-09-20, contig contig-76000025, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDYR01010643.1

gut metagenome genome assembly P10E90-k21-2014-09-20, contig contig-39000086, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDYK01030801.1

gut metagenome genome assembly P10E0-k21-2014-09-20, contig contig-19000019, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDYI01008742.1

gut metagenome genome assembly P9E90-k21-2014-09-20, contig contig-51000017, whole genome shotgun sequence 1546 1546 100.00% 0 89.00% CDTY01007659.1

gut metagenome genome assembly P38C7-k21-2014-09-20, contig contig-101000018, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CEAH01010496.1

gut metagenome genome assembly P38C90-k21-2014-09-20, contig contig-618000043, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CEAG01020626.1

gut metagenome genome assembly P38C0-k21-2014-09-20, contig contig-657000020, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CEAF01011572.1

gut metagenome genome assembly P25C90-k21-2014-09-20, contig contig-3488000001, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CEAA01000885.1

gut metagenome genome assembly P25C7-k21-2014-09-20, contig contig-2000100, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CDZY01046211.1

gut metagenome genome assembly P25C0-k21-2014-09-20, contig contig-3510000034, whole genome shotgun sequence 1541 1541 100.00% 0 89.00% CDZW01013549.1

gut metagenome genome assembly P11E7-k21-2014-09-20, contig contig-403000088, whole genome shotgun sequence 1541 1541 99.00% 0 89.00% CDYJ01036724.1

gut metagenome genome assembly P15E90-k21-2014-09-20, contig contig-135000065, whole genome shotgun sequence 1360 1360 59.00% 0 100.00% CDYY01027497.1

Human gut metagenome DNA, contig sequence: F2-Y_034152, whole genome shotgun sequence 1229 1229 70.00% 0 92.00% BABA01034152.1

Chicken gut metagenome c108720, whole genome shotgun sequence 1227 1227 56.00% 0 98.00% JFBN01021268.1

gut metagenome genome assembly P20E7-k21-2014-09-20, contig contig-146000123, whole genome shotgun sequence 1175 1175 53.00% 0 98.00% CDZM01024581.1

gut metagenome genome assembly P3E7-k21-2014-09-20, contig contig-211000094, whole genome shotgun sequence 1157 1157 93.00% 0 85.00% CEAK01026614.1

gut metagenome genome assembly P6C0-k21-2014-09-20, contig contig-37000001, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CEBY01000578.1

gut metagenome genome assembly P6C7-k21-2014-09-20, contig contig-846000044, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CEAZ01023225.1

gut metagenome genome assembly P6C7-k21-2014-09-20, contig contig-75000008, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CEAZ01004158.1

gut metagenome genome assembly P6C90-k21-2014-09-20, contig contig-95, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CEAX01040480.1

gut metagenome genome assembly P13E7-k21-2014-09-20, contig contig-86000092, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CDYM01029143.1

gut metagenome genome assembly P10E90-k21-2014-09-20, contig contig-3440000062, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CDYK01022411.1

gut metagenome genome assembly P10E7-k21-2014-09-20, contig contig-820000014, whole genome shotgun sequence 1153 1153 100.00% 0 83.00% CDYF01004576.1

gut metagenome genome assembly P8C0-k21-2014-09-20, contig contig-7000103, whole genome shotgun sequence 1134 1134 97.00% 0 84.00% CECJ01021445.1

gut metagenome genome assembly P8C90-k21-2014-09-20, contig contig-56000001, whole genome shotgun sequence 1134 1134 97.00% 0 84.00% CEAI01000265.1

gut metagenome genome assembly P8C7-k21-2014-09-20, contig contig-1902000025, whole genome shotgun sequence 1134 1134 97.00% 0 84.00% CEAE01006842.1

gut metagenome genome assembly P12E90-k21-2014-09-20, contig contig-124000056, whole genome shotgun sequence 1134 1134 97.00% 0 84.00% CDYL01015147.1

gut metagenome genome assembly P12E7-k21-2014-09-20, contig contig-1108000122, whole genome shotgun sequence 1134 1134 97.00% 0 84.00% CDYE01010333.1

gut metagenome genome assembly P22E90-k21-2014-09-20, contig contig-1259000039, whole genome shotgun sequence 1120 1120 98.00% 0 83.00% CDZS01017641.1

gut metagenome genome assembly P3E7-k21-2014-09-20, contig contig-13000052, whole genome shotgun sequence 1118 1118 97.00% 0 83.00% CEAK01014454.1

gut metagenome genome assembly P11E90-k21-2014-09-20, contig contig-358000043, whole genome shotgun sequence 1118 1118 97.00% 0 83.00% CDYR01018557.1

gut metagenome genome assembly P11E7-k21-2014-09-20, contig contig-484000011, whole genome shotgun sequence 1118 1118 97.00% 0 83.00% CDYJ01004907.1

gut metagenome genome assembly P11E0-k21-2014-09-20, contig contig-427000011, whole genome shotgun sequence 1118 1118 97.00% 0 83.00% CDYG01004237.1

Uncultured Bacteroides sp. TS29_contig120613, whole genome shotgun sequence 1118 1118 97.00% 0 83.00% ADJT01001577.1

gut metagenome genome assembly P15E90-k21-2014-09-20, contig contig-3699000064, whole genome shotgun sequence 1114 1114 98.00% 0 83.00% CDYY01027356.1

gut metagenome genome assembly P22E7-k21-2014-09-20, contig contig-580000085, whole genome shotgun sequence 1112 1112 97.00% 0 83.00% CDZN01016749.1

gut metagenome genome assembly P1E90-k21-2014-09-20, contig contig-3956000077, whole genome shotgun sequence 1112 1112 97.00% 0 83.00% CDZF01029773.1

gut metagenome genome assembly P17E90-k21-2014-09-20, contig contig-1000031, whole genome shotgun sequence 1107 1107 97.00% 0 83.00% CDZK01012354.1

gut metagenome genome assembly P17E0-k21-2014-09-20, contig contig-2522000019, whole genome shotgun sequence 1107 1107 97.00% 0 83.00% CDYT01005576.1

gut metagenome genome assembly P8C0-k21-2014-09-20, contig contig-1526000091, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CECJ01019076.1

gut metagenome genome assembly P4E90-k21-2014-09-20, contig contig-81, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CEAN01008867.1

gut metagenome genome assembly P4E0-k21-2014-09-20, contig contig-1344000072, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CEAM01008655.1

gut metagenome genome assembly P2E90-k21-2014-09-20, contig contig-267000058, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CEAC01018913.1

gut metagenome genome assembly P22E90-k21-2014-09-20, contig contig-174000057, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDZS01025645.1

gut metagenome genome assembly P22E0-k21-2014-09-20, contig contig-151000108, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDZR01051462.1

gut metagenome genome assembly P22E7-k21-2014-09-20, contig contig-115000011, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDZN01002285.1

gut metagenome genome assembly P20E0-k21-2014-09-20, contig contig-4, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDZL01000577.1

gut metagenome genome assembly P20E90-k21-2014-09-20, contig contig-1000054, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDZJ01013511.1

gut metagenome genome assembly P11E7-k21-2014-09-20, contig contig-82000075, whole genome shotgun sequence 1098 1098 100.00% 0 83.00% CDYJ01031218.1

gut metagenome genome assembly P4E7-k21-2014-09-20, contig contig-7, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CECB01000484.1

gut metagenome genome assembly P2E7-k21-2014-09-20, contig contig-13000091, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CEBV01035922.1

gut metagenome genome assembly P2E0-k21-2014-09-20, contig contig-10000091, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CEAB01054968.1

gut metagenome genome assembly P21E90-k21-2014-09-20, contig contig-39000037, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CDZQ01017534.1

gut metagenome genome assembly P21E0-k21-2014-09-20, contig contig-3967000011, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CDZP01004662.1

gut metagenome genome assembly P21E7-k21-2014-09-20, contig contig-67, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CDZO01021369.1

gut metagenome genome assembly P17E7-k21-2014-09-20, contig contig-1796000017, whole genome shotgun sequence 1092 1092 100.00% 0 83.00% CDYP01003565.1

gut metagenome genome assembly P9E0-k21-2014-09-20, contig contig-52000056, whole genome shotgun sequence 1086 1086 100.00% 0 82.00% CEAD01017927.1

Human gut metagenome DNA, contig sequence: F2-Y_034151, whole genome shotgun sequence 1086 1086 63.00% 0 91.00% BABA01034151.1

gut metagenome genome assembly P20E7-k21-2014-09-20, contig contig-52000037, whole genome shotgun sequence 1085 1085 97.00% 0 83.00% CDZM01007421.1

gut metagenome genome assembly P5E90-k21-2014-09-20, contig contig-31, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CEAQ01005343.1

gut metagenome genome assembly P5E7-k21-2014-09-20, contig contig-1000113, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CEAP01016593.1

gut metagenome genome assembly P5E0-k21-2014-09-20, contig contig-1000008, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CEAO01001616.1

gut metagenome genome assembly P25C90-k21-2014-09-20, contig contig-13000090, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CEAA01038482.1

gut metagenome genome assembly P25C7-k21-2014-09-20, contig contig-69000065, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDZY01029940.1

gut metagenome genome assembly P25C0-k21-2014-09-20, contig contig-171000038, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDZW01014946.1

gut metagenome genome assembly P23C7-k21-2014-09-20, contig contig-4814000032, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDZV01016032.1

gut metagenome genome assembly P23C90-k21-2014-09-20, contig contig-5000026, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDZU01009275.1

gut metagenome genome assembly P23C0-k21-2014-09-20, contig contig-4924000103, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDZT01052918.1

gut metagenome genome assembly P11E90-k21-2014-09-20, contig contig-3000020, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDYR01008444.1

gut metagenome genome assembly P12E90-k21-2014-09-20, contig contig-6, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDYL01001587.1

gut metagenome genome assembly P12E0-k21-2014-09-20, contig contig-98, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDYH01018076.1

gut metagenome genome assembly P12E7-k21-2014-09-20, contig contig-13000083, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDYE01007002.1

gut metagenome genome assembly P9E90-k21-2014-09-20, contig contig-543000015, whole genome shotgun sequence 1081 1081 100.00% 0 82.00% CDTY01007069.1

gut metagenome genome assembly P18E7-k21-2014-09-20, contig contig-118000077, whole genome shotgun sequence 1070 1070 100.00% 0 82.00% CDZC01019985.1

gut metagenome genome assembly P17E90-k21-2014-09-20, contig contig-1230000094, whole genome shotgun sequence 1042 1042 96.00% 0 82.00% CDZK01036991.1

gut metagenome genome assembly P5E90-k21-2014-09-20, contig contig-113000023, whole genome shotgun sequence 1033 1033 45.00% 0 99.00% CEAQ01004113.1

gut metagenome genome assembly P10E7-k21-2014-09-20, contig contig-820000010, whole genome shotgun sequence 918 918 79.00% 0 83.00% CDYF01003333.1

gut metagenome genome assembly P9E7-k21-2014-09-20, contig contig-850000067, whole genome shotgun sequence 891 891 77.00% 0 83.00% CDZX01017508.1

gut metagenome genome assembly P3E0-k21-2014-09-20, contig contig-335000076, whole genome shotgun sequence 880 880 80.00% 0 82.00% CEAJ01016762.1

gut metagenome genome assembly P3E90-k21-2014-09-20, contig contig-692000068, whole genome shotgun sequence 859 859 67.00% 0 85.00% CEAL01020555.1

gut metagenome genome assembly P17E0-k21-2014-09-20, contig contig-1507000010, whole genome shotgun sequence 843 843 80.00% 0 82.00% CDYT01003220.1
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BLAST of B. theta chuR against NCBI metagenomic proteins

The following page summarizes the results of BLAST analysis using blastx, querying the trans-

lated B. theta VPI-5482 chuR/anSME gene (BT 0238) against the NCBI env nr database for

matches to metagenomic proteins. Bolded results indicate proteins described as regulators of

sulfatases.
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Table D.2: BLAST (blastx) results for B. theta chuR against metagenomic proteins.

Description Max score Total score Query cover E value Identity Accession

regulator of arylsulfatase activity [gut metagenome] 789 789 99.00% 0 89.00% EJX02180.1

transcriptional regulator [gut metagenome] 746 746 97.00% 0 85.00% EJX05687.1

regulator of arylsulfatase activity [gut metagenome] 696 696 97.00% 0 79.00% EJW97079.1

regulator of arylsulfatase activity [gut metagenome] 653 653 97.00% 0 73.00% EJW94445.1

regulator of arylsulfatase activity [gut metagenome] 589 589 97.00% 0 65.00% EJX08867.1

regulator of arylsulfatase activity [mine drainage metagenome] 420 420 94.00% 9.00E-141 49.00% CBI09006.1

hypothetical protein GOS_1705184 [marine metagenome] 408 408 99.00% 9.00E-135 46.00% EDJ38325.1

Anaerobic sulfatase-maturating enzyme-like protein AslB [human gut metagenome] 384 384 94.00% 1.00E-127 45.00% ETJ17740.1

hypothetical protein GOS_2771047 [marine metagenome] 381 381 93.00% 3.00E-126 46.00% ECW15524.1

hypothetical protein GOS_9576743 [marine metagenome] 359 359 94.00% 3.00E-117 43.00% EBF56645.1

hypothetical protein GOS_1912926 [marine metagenome] 342 342 90.00% 5.00E-111 43.00% EDA92056.1

hypothetical protein GOS_2939750 [marine metagenome] 342 342 90.00% 8.00E-111 43.00% ECV22775.1

hypothetical protein LCGC14_0569180 [marine sediment metagenome] 333 333 96.00% 1.00E-107 40.00% KKN56736.1

unnamed protein product [marine sediment metagenome] 322 322 89.00% 2.00E-104 43.00% GAF78354.1

hypothetical protein GOS_1100717 [marine metagenome] 321 321 92.00% 1.00E-102 41.00% EDE61078.1

hypothetical protein GOS_9380034 [marine metagenome] 291 291 62.00% 1.00E-093 50.00% EBG75305.1

hypothetical protein LCGC14_0093800 [marine sediment metagenome] 275 275 90.00% 2.00E-085 38.00% KKO03456.1

unnamed protein product [marine sediment metagenome] 250 250 80.00% 8.00E-077 40.00% GAF67375.1

hypothetical protein LCGC14_0644950 [marine sediment metagenome] 249 249 94.00% 1.00E-075 35.00% KKN49236.1

unnamed protein product [marine sediment metagenome] 247 247 68.00% 3.00E-076 41.00% GAF90965.1

hypothetical protein LCGC14_0691880 [marine sediment metagenome] 244 244 93.00% 1.00E-073 35.00% KKN44555.1

hypothetical protein GOS_9597097 [marine metagenome] 232 232 88.00% 6.00E-069 34.00% EBF44117.1

unnamed protein product [marine sediment metagenome] 230 230 61.00% 5.00E-070 41.00% GAI42214.1

unnamed protein product [marine sediment metagenome] 216 216 55.00% 6.00E-065 47.00% GAI16149.1

unnamed protein product [marine sediment metagenome] 213 213 50.00% 3.00E-064 49.00% GAJ02304.1

hypothetical protein GOS_4005653 [marine metagenome] 185 185 39.00% 2.00E-053 50.00% ECG00326.1

hypothetical protein LCGC14_3094110 [marine sediment metagenome] 181 181 69.00% 1.00E-050 34.00% KKK53506.1

Radical SAM domain protein [mine drainage metagenome] 179 179 52.00% 3.00E-051 40.00% EQD33795.1

unnamed protein product [marine sediment metagenome] 178 178 68.00% 7.00E-050 36.00% GAI74417.1

unnamed protein product [marine sediment metagenome] 176 176 63.00% 1.00E-049 37.00% GAG65792.1

Arylsulfatase regulator (Fe-S oxidoreductase) [human gut metagenome] 168 168 34.00% 1.00E-047 53.00% EKC66373.1

regulator of arylsulfatase activity [human gut metagenome] 164 164 33.00% 4.00E-046 54.00% EKC57400.1

hypothetical protein LCGC14_0496100 [marine sediment metagenome] 162 162 55.00% 1.00E-044 36.00% KKN63973.1

unnamed protein product [marine sediment metagenome] 146 146 33.00% 1.00E-039 49.00% GAG76514.1

anaerobic sulfatase-maturating enzyme [gut metagenome] 144 144 64.00% 2.00E-037 31.00% EJW98913.1

unnamed protein product [marine sediment metagenome] 141 141 34.00% 1.00E-037 48.00% GAG04863.1

hypothetical protein GOS_2819697 [marine metagenome] 136 136 62.00% 2.00E-033 32.00% ECV87608.1

unnamed protein product [marine sediment metagenome] 135 135 27.00% 5.00E-036 53.00% GAG98419.1

unnamed protein product [marine sediment metagenome] 130 130 39.00% 2.00E-033 40.00% GAJ24261.1

unnamed protein product [marine sediment metagenome] 129 129 40.00% 6.00E-033 41.00% GAJ09634.1

unnamed protein product [marine sediment metagenome] 127 127 38.00% 2.00E-032 41.00% GAG08714.1

hypothetical protein GOS_1405925 [marine metagenome] 127 127 83.00% 2.00E-030 27.00% EDC83749.1

unnamed protein product [marine sediment metagenome] 124 124 28.00% 1.00E-031 49.00% GAI25361.1

unnamed protein product [marine sediment metagenome] 123 123 28.00% 2.00E-031 48.00% GAH39779.1

unnamed protein product [marine sediment metagenome] 120 120 30.00% 4.00E-030 45.00% GAH65020.1

hypothetical protein GOS_1097727 [marine metagenome] 116 116 46.00% 4.00E-027 34.00% EDE62797.1

unnamed protein product [marine sediment metagenome] 115 115 29.00% 2.00E-028 46.00% GAH01613.1

hypothetical protein GOS_2866977 [marine metagenome] 115 115 52.00% 3.00E-027 33.00% ECV60952.1

unnamed protein product [marine sediment metagenome] 115 115 51.00% 2.00E-027 32.00% GAF67662.1

unnamed protein product [marine sediment metagenome] 114 114 26.00% 1.00E-027 47.00% GAI73590.1

hypothetical protein GOS_1921962 [marine metagenome] 113 113 83.00% 1.00E-025 25.00% EDA87173.1

hypothetical protein GOS_9432695 [marine metagenome] 110 110 40.00% 4.00E-025 32.00% EBG44141.1

hypothetical protein GOS_1740763 [marine metagenome] 108 108 24.00% 8.00E-026 49.00% EDJ18224.1

unnamed protein product [marine sediment metagenome] 108 108 38.00% 9.00E-026 33.00% GAH64000.1

unnamed protein product [marine sediment metagenome] 108 108 38.00% 4.00E-025 33.00% GAG22266.1

hypothetical protein GOS_8408113 [marine metagenome] 104 104 40.00% 4.00E-022 33.00% EBM44987.1

hypothetical protein LCGC14_2565200 [marine sediment metagenome] 102 102 75.00% 4.00E-022 26.00% KKL09503.1

hypothetical protein GOS_4562577 [marine metagenome] 100 100 32.00% 6.00E-023 38.00% ECJ37744.1

hypothetical protein GOS_9386950 [marine metagenome] 98.6 98.6 56.00% 2.00E-021 24.00% EBG71229.1

sulfatase regulatory protein [mine drainage metagenome] 95.5 95.5 18.00% 8.00E-022 57.00% EQD66842.1

unnamed protein product [marine sediment metagenome] 95.1 95.1 22.00% 2.00E-021 48.00% GAG44443.1

hypothetical protein GOS_5191566 [marine metagenome] 95.1 95.1 35.00% 1.00E-020 33.00% ECB22898.1

hypothetical protein GOS_5526512 [marine metagenome] 92.8 92.8 64.00% 6.00E-019 25.00% ECT54974.1

unnamed protein product [marine sediment metagenome] 92 92 34.00% 2.00E-019 34.00% GAG90103.1

unnamed protein product [marine sediment metagenome] 89 89 22.00% 3.00E-019 43.00% GAH43108.1

unnamed protein product [marine sediment metagenome] 88.2 88.2 20.00% 5.00E-019 45.00% GAH16442.1

hypothetical protein GOS_7334446 [marine metagenome] 87.8 87.8 78.00% 4.00E-017 25.00% EBT06716.1

radical SAM domain-containing protein [mine drainage metagenome] 87.4 87.4 88.00% 1.00E-016 22.00% EQD33563.1

hypothetical protein GOS_1503414 [marine metagenome] 87 87 89.00% 1.00E-016 24.00% EDC28425.1

hypothetical protein GOS_1957776 [marine metagenome] 86.7 86.7 56.00% 2.00E-017 27.00% EDA67724.1

hypothetical protein GOS_9494848 [marine metagenome] 85.9 85.9 22.00% 3.00E-017 43.00% EBG06992.1

hypothetical protein OBE_11873 [human gut metagenome] 80.1 80.1 11.00% 2.00E-016 72.00% EKC54820.1

hypothetical protein GOS_9515512 [marine metagenome] 79.3 79.3 18.00% 5.00E-015 49.00% EBF94215.1

unnamed protein product [marine sediment metagenome] 77.4 77.4 19.00% 1.00E-014 47.00% GAG97456.1

unnamed protein product [marine sediment metagenome] 74.7 74.7 30.00% 6.00E-014 32.00% GAI92648.1

radical SAM domain-containing protein [human gut metagenome] 74.7 74.7 43.00% 2.00E-012 30.00% EKC58775.1

hypothetical protein GOS_7012149 [marine metagenome] 74.7 74.7 36.00% 2.00E-013 28.00% EBU74838.1

hypothetical protein GOS_9617987 [marine metagenome] 73.9 73.9 41.00% 1.00E-012 30.00% EBF31477.1

unnamed protein product [marine sediment metagenome] 73.6 73.6 20.00% 1.00E-013 37.00% GAJ17489.1

hypothetical protein LCGC14_1197950 [marine sediment metagenome] 73.6 73.6 79.00% 5.00E-012 23.00% KKM94474.1

unnamed protein product [marine sediment metagenome] 73.2 73.2 26.00% 3.00E-013 34.00% GAH46004.1

arylsulfatase regulator [human gut metagenome] 73.2 73.2 37.00% 6.00E-013 26.00% EKC74149.1

unnamed protein product [marine sediment metagenome] 71.2 71.2 16.00% 6.00E-013 48.00% GAJ20278.1

hypothetical protein LCGC14_1882520 [marine sediment metagenome] 70.9 70.9 13.00% 4.00E-011 55.00% KKL92659.1

hypothetical protein LCGC14_1566370 [marine sediment metagenome] 70.1 70.1 49.00% 4.00E-011 29.00% KKM29052.1

hypothetical protein LCGC14_1351350 [marine sediment metagenome] 68.6 68.6 18.00% 1.00E-011 43.00% KKM79300.1

hypothetical protein GOS_2993326 [marine metagenome] 68.6 68.6 38.00% 2.00E-010 32.00% ECU92664.1

Radical SAM domain protein [mine drainage metagenome] 68.6 68.6 38.00% 5.00E-011 25.00% EQD79036.1

unnamed protein product [marine sediment metagenome] 68.2 68.2 32.00% 9.00E-011 29.00% GAH57071.1

hypothetical protein Q604_UNBC13573G0001 [human gut metagenome] 66.2 66.2 15.00% 3.00E-011 45.00% ETJ31946.1

unnamed protein product [marine sediment metagenome] 65.5 65.5 43.00% 7.00E-010 26.00% GAF75495.1

hypothetical protein GOS_9625176 [marine metagenome] 63.9 63.9 81.00% 5.00E-009 24.00% EBF27058.1

unnamed protein product [marine sediment metagenome] 63.2 63.2 29.00% 1.00E-009 35.00% GAI24881.1

hypothetical protein GOS_9446156 [marine metagenome] 62.8 62.8 68.00% 1.00E-008 25.00% EBG35936.1

hypothetical protein LCGC14_0223720 [marine sediment metagenome] 62.4 62.4 41.00% 2.00E-008 26.00% KKN90789.1

hypothetical protein LCGC14_0491760 [marine sediment metagenome] 62 62 82.00% 2.00E-008 22.00% KKN64433.1

unnamed protein product [marine sediment metagenome] 61.2 61.2 18.00% 2.00E-009 38.00% GAG90102.1

hypothetical protein GOS_5487000 [marine metagenome] 60.8 60.8 57.00% 3.00E-008 22.00% ECE73955.1

unnamed protein product [marine sediment metagenome] 60.5 60.5 25.00% 1.00E-008 35.00% GAI37089.1

unnamed protein product [marine sediment metagenome] 60.5 60.5 37.00% 1.00E-008 31.00% GAG31974.1
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BLAST of B. theta chuR against NCBI Refseq proteins

The following page summarizes the results of BLAST analysis using blastx, querying the

translated B. theta VPI-5482 chuR/anSME gene (BT 0238) against the NCBI Refseq protein

database for matches to known proteins.
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Table D.3: BLAST (blastx) results for B. theta chuR against Refseq proteins.

Description Max score Score Query cover E value Identity Accession

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 874 874 99.00% 0 100.00% WP_008766211.1

anaerobic sulfatase maturase [Bacteroides thetaiotaomicron] 872 872 99.00% 0 99.00% WP_016267954.1

anaerobic sulfatase maturase [Bacteroides thetaiotaomicron] 871 871 99.00% 0 99.00% WP_022471893.1

anaerobic sulfatase-maturase [Bacteroides thetaiotaomicron] 870 870 99.00% 0 99.00% WP_048697144.1

anaerobic sulfatase maturase [Bacteroides thetaiotaomicron] 869 869 99.00% 0 99.00% WP_054959252.1

anaerobic sulfatase maturase [Bacteroides faecis] 851 851 99.00% 0 98.00% WP_010537511.1

anaerobic sulfatase maturase [Bacteroides thetaiotaomicron] 850 850 99.00% 0 97.00% WP_022301748.1

anaerobic sulfatase maturase [Bacteroides caccae] 814 814 99.00% 0 91.00% WP_005680548.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 811 811 99.00% 0 91.00% WP_004297342.1

anaerobic sulfatase maturase [Bacteroides faecichinchillae] 810 810 99.00% 0 91.00% WP_025074644.1

anaerobic sulfatase maturase [Bacteroides finegoldii] 808 808 99.00% 0 91.00% WP_007759188.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 813 813 99.00% 0 90.00% WP_008643298.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 811 811 99.00% 0 90.00% WP_008021790.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 810 810 99.00% 0 90.00% WP_004315949.1

anaerobic sulfatase maturase [Bacteroides ovatus] 809 809 99.00% 0 90.00% WP_004306013.1

anaerobic sulfatase maturase [Bacteroides finegoldii] 808 808 99.00% 0 90.00% WP_022276071.1

anaerobic sulfatase maturase [Bacteroides finegoldii] 807 807 99.00% 0 90.00% WP_032839687.1

anaerobic sulfatase maturase [Bacteroides ovatus] 807 807 99.00% 0 90.00% WP_004319514.1

anaerobic sulfatase maturase [Bacteroides acidifaciens] 802 802 99.00% 0 90.00% WP_044656247.1

anaerobic sulfatase maturase [Bacteroides pyogenes] 796 796 99.00% 0 90.00% WP_027326227.1

anaerobic sulfatase maturase [Bacteroides pyogenes] 793 793 99.00% 0 89.00% WP_021646122.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 772 772 98.00% 0 87.00% WP_002561758.1

anaerobic sulfatase maturase [Bacteroides salyersiae] 768 768 98.00% 0 86.00% WP_005923804.1

anaerobic sulfatase maturase [Bacteroides fragilis] 766 766 98.00% 0 86.00% WP_042985698.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 766 766 98.00% 0 86.00% WP_005789094.1

anaerobic sulfatase maturase [Bacteroides fragilis] 765 765 98.00% 0 86.00% WP_032570972.1

anaerobic sulfatase maturase [Bacteroides fragilis] 764 764 98.00% 0 86.00% WP_014299157.1

anaerobic sulfatase maturase [Bacteroides fragilis] 763 763 98.00% 0 86.00% WP_010993230.1

anaerobic sulfatase maturase [Bacteroides fragilis] 762 762 98.00% 0 86.00% WP_032580200.1

anaerobic sulfatase maturase [Bacteroides fragilis] 762 762 98.00% 0 86.00% WP_032528627.1

anaerobic sulfatase maturase [Bacteroidaceae bacterium MS4] 756 756 97.00% 0 86.00% WP_042368025.1

anaerobic sulfatase maturase [Bacteroides fragilis] 768 768 99.00% 0 85.00% WP_005807432.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 766 766 99.00% 0 85.00% WP_032530728.1

anaerobic sulfatase maturase [Bacteroides fragilis] 765 765 99.00% 0 85.00% WP_005821013.1

anaerobic sulfatase maturase [Bacteroides fragilis] 764 764 99.00% 0 85.00% WP_005780285.1

anaerobic sulfatase maturase [Bacteroides oleiciplenus] 751 751 97.00% 0 85.00% WP_009131239.1

anaerobic sulfatase maturase [Bacteroides intestinalis] 749 749 97.00% 0 85.00% WP_007664013.1

anaerobic sulfatase maturase [Candidatus Bacteroides timonensis] 747 747 97.00% 0 85.00% WP_044264327.1

anaerobic sulfatase maturase [Bacteroides cellulosilyticus] 746 746 97.00% 0 85.00% WP_029428463.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 746 746 97.00% 0 85.00% WP_007214474.1

anaerobic sulfatase maturase [Bacteroides cellulosilyticus] 745 745 97.00% 0 85.00% WP_007217653.1

anaerobic sulfatase maturase [Bacteroides reticulotermitis] 753 753 99.00% 0 84.00% WP_044161034.1

anaerobic sulfatase maturase [Bacteroides eggerthii] 747 747 98.00% 0 84.00% WP_004292631.1

anaerobic sulfatase maturase [Bacteroides eggerthii] 745 745 98.00% 0 84.00% WP_004290378.1

anaerobic sulfatase maturase [Bacteroides gallinarum] 745 745 98.00% 0 84.00% WP_018668146.1

anaerobic sulfatase maturase [Bacteroides helcogenes] 744 744 97.00% 0 84.00% WP_013548456.1

anaerobic sulfatase maturase [Bacteroides stercoris] 744 744 98.00% 0 84.00% WP_005654844.1

anaerobic sulfatase maturase [Bacteroides stercoris] 744 744 98.00% 0 84.00% WP_016661344.1

anaerobic sulfatase maturase [Bacteroides plebeius] 734 734 97.00% 0 84.00% WP_007559240.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteria] 745 745 98.00% 0 83.00% WP_005835998.1

anaerobic sulfatase maturase [Bacteroides uniformis] 743 743 98.00% 0 83.00% WP_057088086.1

anaerobic sulfatase maturase [Bacteroides fluxus] 742 742 98.00% 0 83.00% WP_009124014.1

anaerobic sulfatase maturase [Bacteroides clarus] 742 742 98.00% 0 83.00% WP_009120536.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 741 741 98.00% 0 83.00% WP_005826708.1

anaerobic sulfatase maturase [Bacteroides uniformis] 740 740 98.00% 0 83.00% WP_044467894.1

anaerobic sulfatase maturase [Bacteroides uniformis] 736 736 98.00% 0 83.00% WP_016273382.1

anaerobic sulfatase maturase [Bacteroides uniformis] 734 734 98.00% 0 82.00% WP_035448004.1

anaerobic sulfatase maturase [Bacteroides coprosuis] 720 720 98.00% 0 81.00% WP_006745530.1

anaerobic sulfatase maturase [Bacteroides plebeius] 692 692 96.00% 0 81.00% WP_007558660.1

anaerobic sulfatase maturase [Bacteroides coprophilus] 711 711 97.00% 0 80.00% WP_008140154.1

anaerobic sulfatase maturase [Bacteroides massiliensis] 704 704 98.00% 0 80.00% WP_005941469.1

anaerobic sulfatase maturase [Bacteroides propionicifaciens] 723 723 98.00% 0 79.00% WP_018108809.1

anaerobic sulfatase maturase [Bacteroides coprocola] 702 702 97.00% 0 78.00% WP_007570292.1

anaerobic sulfatase maturase [Bacteroides barnesiae] 698 698 98.00% 0 77.00% WP_018709694.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 689 689 98.00% 0 77.00% WP_007833026.1

anaerobic sulfatase maturase [Bacteroides vulgatus] 687 687 98.00% 0 77.00% WP_005850852.1

anaerobic sulfatase maturase [Bacteroides vulgatus] 687 687 98.00% 0 77.00% WP_005840257.1

anaerobic sulfatase maturase [Bacteroides vulgatus] 686 686 98.00% 0 77.00% WP_032953086.1

anaerobic sulfatase maturase [Bacteroides vulgatus] 686 686 98.00% 0 77.00% WP_016271815.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 684 684 98.00% 0 77.00% WP_008667464.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 682 682 98.00% 0 77.00% WP_016275423.1

anaerobic sulfatase maturase [Bacteroides uniformis] 678 678 97.00% 0 76.00% WP_057253591.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroides] 670 670 98.00% 0 75.00% WP_005829655.1

anaerobic sulfatase maturase [Prevotella pleuritidis] 675 675 97.00% 0 74.00% WP_021584912.1

anaerobic sulfatase maturase [Prevotella pleuritidis] 672 672 97.00% 0 74.00% WP_024991366.1

anaerobic sulfatase-maturase [Parabacteroides goldsteinii] 657 657 98.00% 0 74.00% WP_048315582.1

MULTISPECIES: anaerobic sulfatase maturase [Parabacteroides] 656 656 98.00% 0 74.00% WP_028729461.1

MULTISPECIES: anaerobic sulfatase maturase [Parabacteroides] 655 655 98.00% 0 74.00% WP_010803049.1

anaerobic sulfatase maturase [Parabacteroides goldsteinii] 655 655 98.00% 0 74.00% WP_007656924.1

anaerobic sulfatase maturase [Parabacteroides goldsteinii] 655 655 98.00% 0 74.00% WP_046147140.1

anaerobic sulfatase maturase [Dysgonomonas capnocytophagoides] 656 656 96.00% 0 73.00% WP_026626529.1

anaerobic sulfatase maturase [Parabacteroides johnsonii] 656 656 98.00% 0 73.00% WP_008149604.1

anaerobic sulfatase maturase [Parabacteroides merdae] 649 649 97.00% 0 73.00% WP_005649385.1

anaerobic sulfatase maturase [Parabacteroides merdae] 648 648 97.00% 0 73.00% WP_005643440.1

MULTISPECIES: anaerobic sulfatase maturase [Bacteroidales] 645 645 96.00% 0 73.00% WP_005862697.1

anaerobic sulfatase maturase [Prevotella enoeca] 657 657 97.00% 0 72.00% WP_036888348.1

anaerobic sulfatase maturase [Prevotella bergensis] 657 657 98.00% 0 72.00% WP_044123378.1

anaerobic sulfatase maturase [Barnesiella viscericola] 656 656 98.00% 0 72.00% WP_025277267.1

anaerobic sulfatase maturase [Parabacteroides johnsonii] 654 654 99.00% 0 72.00% WP_008157651.1

anaerobic sulfatase maturase [Bacteroides salanitronis] 651 651 97.00% 0 72.00% WP_013617485.1

anaerobic sulfatase maturase [Barnesiella intestinihominis] 647 647 97.00% 0 72.00% WP_008862184.1

anaerobic sulfatase maturase [Bacteroides sp. 3_1_19] 645 645 96.00% 0 72.00% WP_008779794.1

anaerobic sulfatase maturase [Parabacteroides distasonis] 644 644 96.00% 0 72.00% WP_057327522.1

MULTISPECIES: anaerobic sulfatase maturase [Parabacteroides] 644 644 96.00% 0 72.00% WP_005857302.1

anaerobic sulfatase maturase [Parabacteroides distasonis] 642 642 96.00% 0 72.00% WP_036611496.1

anaerobic sulfatase maturase [Parabacteroides distasonis] 642 642 96.00% 0 72.00% WP_011966246.1

anaerobic sulfatase maturase [Bacteroides paurosaccharolyticus] 650 650 98.00% 0 71.00% WP_024993888.1

anaerobic sulfatase maturase [Prevotella buccalis] 644 644 97.00% 0 70.00% WP_036873332.1

anaerobic sulfatase maturase [Prevotella buccalis] 642 642 97.00% 0 70.00% WP_004350830.1

MULTISPECIES: anaerobic sulfatase maturase [Prevotella] 639 639 97.00% 0 70.00% WP_023056581.1
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E.1 Images

Arabinose induction

λ-HindIII uninduced commerical

solution

arabinose

Figure E.1: Agarose gel of miniprepped DNA following induction using
arabinose versus commerical solution. Plasmid minipreps of pKL13 were com-
pared from three cultures: an uninduced negative control, induction using 1Ö autoin-
duction solution (Epicentre), or induction using 0.2% arabinose.
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Confirmation of pKL17

Six putative pKL17 clones were screened using two restriction digests; see Figure 6.7 for

construct diagrams.

1. SfaAI-SgsI double digest, to check fragment still present (Figure E.2A)

❼ Expected for pKL17: 1470 bp

2. MssI-XhoI double digest, for orientation of stuffer (Figure E.2B)

❼ Expected for pKL13: 1300 bp (control)

❼ Expected for pKL17: 745 bp

B

1000 bp

1500 bp

750 bp

A

1500 bp

123456 123456pKL13

Figure E.2: Agarose gel of putative pKL17 clones. Putative clones of pKL17
were digested with: (A) SfaAI and SgsI, and (B) MssI and XhoI for orientation; white
arrow indicates clone with desired restriction pattern.
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Confirmation of pKL16

Six putative pKL16 clones were screened using two restriction digests; see Figure 6.7 for

construct diagrams.

1. NheI and PacI single digests, along with uncut control (Figure E.3A)

❼ Expected for pKL18: both PacI and NheI cut once (positive control)

❼ Expected for pKL16: neither PacI nor NheI will cut

2. Eco72I-SgsI double digest (Figure E.3B)

❼ Expected for pKL15: 1155 bp, 1021 bp (control)

❼ Expected for pKL16: 1155 bp, 886 bp

A

B

1

N P UC

2

N P UC

3

N P UC

4

N P UC

5

N P UC

6

N P UC

pKL18

N P

1000 bp

1 2 3 4 5 6 pKL15

1500 bp

750 bp

Figure E.3: Agarose gel of putative pKL16 clones. Putative clones of pKL16
were digested with: (A) NheI (N) and PacI (P) individually to check for loss of sites,
using uncut DNA as a control (UC); (B) and Eco72I and SgsI doubly to confirm
deletion of the terminator; white arrow indicates clone with desired restriction pattern.
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Confirmation of pKL19

Six putative pKl19 clones were screened using two restriction digests; see Figure 6.7 for

construct diagrams.

1. NsiI and CpoI single digests, along with uncut control (Figure E.4A)

❼ Expected for pKL18: both NsiI and CpoI cut once (positive control)

❼ Expected for pKL19: neither NsiI nor CpoI will cut

2. Eco72I-SfaAI double digest (Figure E.4B)

❼ Expected for pKL18: 1155 bp, 1012 bp (control)

❼ Expected for pKL19: 1155 bp, 885 bp

A

B

1

N C UC

2

N C UC

3

N C UC

4

N C UC

5

N C UC

6

N C UC

pKL18

N C

1000 bp

1 2 3 4 5 6 pKL18

1500 bp

Figure E.4: Agarose gel of putative pKL19 clones. Putative clones of pKL19
were digested with: (A) NsiI (N) and CpoI (C) individually to check for loss of sites,
using uncut DNA as a control (UC); (B) and Eco72I and SfaAI doubly to confirm
deletion of the terminator; white arrow indicates clones with desired restriction pattern.
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E.2 Sequence data

TT fragment cloned in pKL13

Note that the sequence of the actual TT fragment in pKL13 differs from the designed sequence

by one base, due to a point mutation in the synthesis of the fragment.

>TT fragment cloned in pKL13

AAATGGCGCGCCGGCTGGATTTAATTAATGTCTGCTCCTCGGTTATGTTTTTAAGGTCAAAAAAAACCCCCGGACCT

TTCGGTGCGGGGGTCTTAGTTCGTTAAGGCTTGATCTCTAGCGATTAAGTTGGGTAACGCCAGGGTTTTCGTCACTT

AGTCAGCTAGCCACGTGCCTTAGGGTGTGAAATTGTTATCCGCTCACAATTCCACACATTATACGAGCCGATGATTA

ATTGTCAACAGCTCCCTGAGGTTCGAAGATCCTCCGGCTCACGGTAACTGATGCCGTATTTGCAGTACCAGCGTACG

GCCCACAGAATGATGTCACGCTGAAAATGCCGGCCTTTGAATGGGTTCATGTGCAGCTCCATCAGCAAAAGGGGATG

ATAAGTTTATCACCACCGACTATTTGCAACAGTGCCGTTGATCGTGCTATGATCGACTGATGTCATCAGCGGTGGAG

TGCAATGTCGTGCAATACGAATGGCGAAAAGCCGAGCTCATCGGTCAGCTTCTCAACCTTGGGGTTACCCCCGGCGG

TGTGCTGCTGGTCCACAGCTCCTTCCGTAGCGTCCGGCCCCTCGAAGATGGGCCACTTGGACTGATCGAGGCCCTGC

GTGCTGCGCTGGGTCCGGGAGGGACGCTCGTCATGCCCTCGTGGTCAGGTCTGGACGACGAGCCGTTCGATCCTGCC

ACGTCGCCCGTTACACCGGACCTTGGAGTTGTCTCTGACACATTCTGGCGCCTGCCAAATGTAAAGCGCAGCGCCCA

TCCATTTGCCTTTGCGGCAGCGGGGCCACAGGCAGAGCAGATCATCTCTGATCCATTGCCCCTGCCACCTCACTCGC

CTGCAAGCCCGGTCGCCCGTGTCCATGAACTCGATGGGCAGGTACTTCTCCTCGGCGTGGGACACGATGCCAACACG

ACGCTGCATCTTGCCGAGTTGATGGCAAAGGTTCCCTATGGGGTGCCGAGACACTGCACCATTCTTCAGGATGGCAA

GTTGGTACGCGTCGATTATCTCGAGAATGACCACTGCTGTGAGCGCTTTGCCTTGGCGGACAGGTGGCTCAAGGAGA

AGAGCCTTCAGAAGGAAGGTCCAGTCGGTCATGCCTTTGCTCGGTTGATCCGCTCCCGCGACATTGTGGCGACAGCC

CTGGGTCAACTGGGCCGAGATCCGTTGATCTTCCTGCATCCGCCAGAGGCGGGATGCGAAGAATGCGATGCCGCTCG

CCAGTCGATTGGCTGAGCTCATGAGCGGAGAACGAGATGACGTTGGAGGGGCAAGGTCGCGCTGATTGCTGGGGCAA

CACGTTCGAACACGTGATGCATTAACTAGGTGACGTCATAGCTGTTTCCTGTGTGAAATTGTTATCGGTCAGTTTCA

CCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCGGTCCGA

GCAGGTCGCGATCGCATTT

352


	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Acknowledgements and declarations
	Abstract
	Interest in the human microbiome
	The human gut microbiome
	Initial colonization
	Diversity, variability, and individuality
	Mutualism between host and microbiota
	Disease and the gut microbiota

	Challenges in metagenomics and microbiome research
	Correlation versus causation
	Informatics and sequence data annotation

	Functional metagenomics
	General methodology
	The power of a function-based approach
	Important considerations

	Thesis outline

	General materials and methods
	Acknowledgements and declarations
	Strains, plasmids, and oligonucleotides
	Bacterial strains
	Plasmids
	Oligonucleotide sequences

	Bacterial culture
	Growth media
	Antibiotics

	DNA introduction and extraction methods
	Calcium chloride-based competent cell preparation
	Calcium chloride-based transformation
	Plasmid DNA miniprep
	Plasmid DNA maxiprep
	HMW DNA extraction from fecal samples
	HMW DNA extraction from pure cultures

	DNA manipulation methods
	Gel electrophoresis
	Ethanol precipitation
	Gel extraction
	Restriction enzyme digestion
	Ligation
	Estimation of digestion and dephosphorylation efficiency
	Sanger DNA sequencing
	Gel quantification of genomic and metagenomic DNA
	Pulsed field gel electrophoresis
	Electroelution

	Summary of constructed libraries

	Evaluation of pooled Illumina sequencing for metagenomic clones
	Acknowledgements and declarations
	Abstract
	Introduction
	Sanger-based sequencing of metagenomic clones
	High-throughput sequencing of clones using barcodes
	Aims of this work

	Results and discussion
	Pooled and barcoded sequencing results
	Evaluation of pooled sequencing results
	Clones with sequence similarity may have poor recovery
	Consensus assemblies: a caveat of the pooled approach
	Improvements and considerations

	Conclusions
	Specific materials and methods
	Ethics Statement
	Isolation of HMW DNA
	Construction of large-insert metagenomic cosmid libraries
	Functional screens and positive clones
	Barcoded sequencing
	Sanger end-sequencing and pooled sequencing
	E. coli genomic DNA contamination analysis
	Read depth analysis
	Clone sequence similarity analysis
	Data availability


	Analysis of cloning bias in metagenomic libraries
	Acknowledgements and declarations
	Abstract
	Introduction
	Possible causes of sequence bias in metagenomic libraries
	Aims of this work

	Results and discussion
	DNA sampling and sequencing results
	GC bias is not caused by fragmentation of AT-rich DNA
	GC content may be a proxy for E. coli70 promoter content
	Examining the published literature: evidence for transcriptional activity of cloned AT-rich DNA interfering with stability
	Cloning bias in a soil metagenomic library

	Conclusions
	Specific materials and methods
	Sampling of DNA during fecal library construction
	Purification, quantification, and Illumina sequencing of DNA
	Subtraction of E. coli and vector DNA from fecal sequence data
	Taxonomic analysis
	Promoter analysis
	Analysis of reference genomes
	16S rRNA analysis for soil extract and library
	Data availability


	Development of Bacteroides thetaiotaomicron as a screening host
	Acknowledgements and declarations
	Abstract
	Introduction
	Mutualistic role and polysaccharide utilization abilities
	Overview of molecular methods for B. theta
	Use of B. theta in systems biology and synthetic biology
	Suitability as a host for screening human gut metagenomic DNA
	Aims of this work

	Results and discussion
	Problems arising from pUC-based cosmid libraries
	Efficient conjugation of fosmid-based libraries into B. theta
	Functional complementation using a B. theta host
	DNA of positive clones appears to be integrated into the host genome
	Sequence analysis of positive clones isolated from complementation of B. theta reveals a chuR variant
	Attempt to use arrayed libraries to track individual donor fosmids in complementation screens

	Conclusions
	Specific materials and methods
	Strains and plasmids
	Growth media and anaerobic culture
	Antibiotics
	Preparation of DNA polylinker/MCS from complementary oligos
	PCR of ermF-repA and oriT
	Primer walking to sequence the ermF-repA fragment
	Miniprep of plasmid DNA from B. theta
	Conjugation from E. coli donor to B. theta recipient
	Genomic and metagenomic library construction
	Construction of thrC and trpD single recombinants
	Genomic DNA miniprep of B. theta
	Analysis of genomic DNA for fosmid clone recombination using PCR
	Data availability


	Inclusion of transcriptional terminators in cloning vectors
	Acknowledgements and declarations
	Abstract
	Introduction
	The challenges of constructing large-insert metagenomic libraries
	Properties of pCC1FOS, a popular vector for library construction
	Inclusion of transcriptional terminators in cloning vectors
	Testing the efficiency of transcriptional terminators
	Aims of this work

	Results and discussion
	Design of a transcriptional terminator fragment
	Synthesis and cloning of terminator fragment
	Testing functionality of transcriptional terminators
	Constructs for testing the effect of transcription on cloning bias

	Conclusions
	Specific materials and methods
	Preparation of pCC1FOS-based vectors using arabinose induction
	Reversing orientation of stuffer fragment
	Cloning of GPFuv
	Deletion of transcriptional terminators
	Fluorescence assay for GFPuv expression


	Summary, future directions, and concluding remarks
	Acknowledgements and declarations
	Abstract
	Summary and claims of contributions to knowledge
	Future directions and perspective
	Concluding remarks

	Bibliography
	Appendices
	Recipes for media and solutions
	LB: lysogeny broth (or Luria-Bertani media)
	TB: terrific broth media
	TYG: tryptone yeast glucose media
	BHI: brain heart infusion media
	Bt MM: B.theta minimal media
	TAE: tris acetic acid EDTA electrophoresis buffer
	Plasmid miniprep solutions
	Gel extraction solutions
	Plasmid maxiprep solutions

	Supplementary information for Chapter 3
	Clone sequencing read depth
	Python scripts

	Supplementary information for Chapter 4
	MetaPhlAn output of taxa abundance
	Python scripts

	Supplementary information for Chapter 5
	Images
	Sequence data
	BLAST analyses

	Supplementary information for Chapter 6
	Images
	Sequence data


