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Abstract

In this thesis, we cover the general topic of state complexity. In particular, we examine

the bounds on the state complexity of some different representations of regular languages.

As well, we consider the state complexity of the operation root(L).

We give quick treatment of the deterministic state complexity bounds for nondeter-

ministic finite automata and regular expressions. This includes an improvement on the

worst-case lower bound for a regular expression, relative to its alphabetic length.

The focus of this thesis is the study of the increase in state complexity of a regu-

lar language L under the operation root(L). This operation requires us to examine the

connections between abstract algebra and formal languages.

We present results, some original to this thesis, concerning the size of the largest monoid

generated by two elements. Also, we give good bounds on the worst-case state complexity

of root(L). In turn, these new results concerning root(L) allow us to improve previous

bounds given for the state complexity of two-way deterministic finite automata.
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Chapter 1

Introduction

A language is a set of strings over some finite set of symbols called an alphabet. The set of

all strings over the alphabet Σ is denoted by Σ∗; this includes the empty string, denoted

by ε. In terms of the Chomsky hierarchy, a class of languages is a set of languages that

can specified using a particular model of description.

One of the simplest models commonly used, in terms of descriptive capability, is the

deterministic finite automaton, which is defined as follows.

A deterministic finite automaton, or DFA, is a 5-tuple A = (Q, Σ, δ, q0, F ), where Q

is a finite non-empty set of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the

transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. We

assume that δ is defined on all elements of its domain. The domain of δ can be extended

in the obvious way to Q×Σ∗, where Σ∗ is the free monoid over the alphabet Σ. For a DFA

A, the set L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F} is said to be the language recognized by A.

The class of languages recognized by DFAs is known as the class of regular languages.

There are, however, a number of other models that can be used to describe this same class.

Some of these other models include regular expressions, non-deterministic finite automata,

and regular grammars. For a thorough introduction to languages and automata theory,

consult a suitable reference text such as the one by Hopcroft and Ullman [11].

The descriptional complexity of a language is a measure of the amount of information

required to represent a language using a particular model. One such measure, for regular

languages, is state complexity. The deterministic state complexity (or simply state com-
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2 Chapter 1. Introduction

plexity) of a language L ⊆ Σ∗, denoted by sc(L), is defined as the size (the number of

states) of the smallest DFA recognizing L. Of course, there are many other measures of

the descriptional complexity of regular languages; for a survey, see the work of Ellul [7].

In this thesis, we are concerned, almost exclusively, with the state complexity of regular

languages. Naturally then, given a regular language, we need a method to determine the

number of states in its minimal DFA. The technique we employ is based on the Myhill–

Nerode equivalence relation, denoted ∼L, defined as follows.

Let L be a regular language. Then for x, y ∈ Σ∗, x ∼L y when

xz ∈ L ⇔ yz ∈ L, for all z ∈ Σ∗.

The equivalence relation ∼L is right-invariant, that is if x ∼L y then xz ∼L yz for all

z ∈ Σ∗.

The following results, proven by Nerode [21], provide us with method for determining

the size of the minimal DFA recognizing a language.

Theorem 1.1 (Nerode). Let L ⊆ Σ∗ be a regular language. Then the number of states in

the minimal DFA recognizing L is equal to the number of equivalence classes of the relation

∼L.

Note, however, that the actual statement of Theorem 1.1 given here is closer to the

version provided by Rabin and Scott [28].

In Chapter 2 we consider, briefly, the relative descriptional complexity of converting

between two different representations of a regular language. More precisely, we examine

the worst-case state complexity of a regular languages relative to the size of its description

as an NFA and as a regular expression.

In addition to comparing the complexity of different representations of the same lan-

guage, we can also consider the state complexity of a language resulting from an operation,

relative to the complexity of the operand languages. This topic has been widely studied.

Yu and Zhuang [36] and Birget [3] investigated the state complexity of the intersection of

regular languages. Their work was then extended by Yu, Zhuang, and Salomaa [35, 37],

to include other basic operations such as union, concatenation, reversal, complement, and

Kleene closure. Pighizzini and Shallit [24] gave special treatment to union, intersection,

and concatenation in the unary case, that is, for an alphabet of size 1.
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For regular languages L1 and L2 over an arbitrary alphabet Σ, with sc(L1) = m and

sc(L2) = n, a summary of the known results is given in Table 1.2. These upper bounds are

tight.

Operation State Complexity

L1 ∪ L2 mn

L1 ∩ L2 mn

Σ∗\L1 m

L1L2 m2n − 2n−1

LR
1 2m

L∗
1 2m−1 + 2m−2

Table 1.2: State complexity of some basic operations

In this thesis, we focus on the problem of determining the worst-case state complexity

of the operation root(L), given by

root(L) = {w ∈ Σ∗ : ∃n ≥ 1 such that wn ∈ L},

where L is a regular language. This entails a discussion of the monoid of transformations

of a finite set. For a language L, over a k-letter alphabet, there is a natural connection

between the state complexity of root(L) and the largest monoid generated by k elements.

This problem of the largest monoid has had very little treatment. In fact, until recently,

the most interesting case, k = 2, seems to have had no treatment at all.

In Chapter 3, we discuss monoids and their various connections to formal languages.

We present results concerning the size of the largest monoid generated by a k element set,

with a focus on the case for k = 2. Much of the work included in this chapter was done

independently. However, this author later discovered that these results had recently been

published by Holzer and König [9, 10].

In Chapter 4, we show how to construct a language based on a particular monoid, so

that we can apply the results of Chapter 3 to obtain bounds (in some cases, tight bounds)

on the worst-case state complexity of the operation root(L). In turn, we use this result to

improve the lower bound for the worst-case state complexity of an n-state 2DFA.
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Finally, in Chapter 5, we summarize the main results of this thesis, and present some

open problems.



Chapter 2

State Complexity of Representations

of Regular Languages

As defined in Chapter 1, the set of regular languages is exactly the set of languages that

are accepted by a DFA. However, there are other representations to consider.

One such representation is a generalization of a DFA. A non-deterministic finite au-

tomaton, or NFA, is a 5-tuple A = (Q, Σ, δ, q0, F ), where Q is a finite non-empty set

of states, Σ is the finite input alphabet, δ : Q × Σ → QQ is the transition function,

q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. For an NFA A, the set

L(A) = {w ∈ Σ∗ : δ(q0, w) ∩ F �= ∅} is said to be the language recognized by A.

Another very different representation of regular languages is based on few basic oper-

ations. For languages X,Y ⊆ Σ∗, define the concatenation of X and Y , denoted XY , by

the set

XY = {xy ∈ Σ∗ : x ∈ X, y ∈ Y }.
Define X0 = {ε} and X i = XX i−1 for i ≥ 1. The Kleene closure of a language X, denoted

X∗, is given by the set

X∗ =
∞⋃
i=0

X i.

Then a regular language can be represented by a regular expression, defined as follows.

1. ∅ is a regular expression and denotes the empty set.

5



6 Chapter 2. State Complexity of Representations of Regular Languages

2. ε is a regular expression and denotes the set {ε}.

3. For a ∈ Σ, a is a regular expression, and denotes the set {a}.

4. For any regular expressions x and y, that denote the languages X and Y respectively,

we have that:

(a) (x · y), equivalently (xy), is a regular expression and denotes the set XY ;

(b) (x + y) is a regular expression and denotes the set X ∪ Y ;

(c) (x∗) is a regular expression and denotes the set X∗.

Of the three operations, ∗ has the highest precedence, followed by ·, and then by +.

Superfluous parentheses can be omitted.

When considering these alternative forms, a natural question which arises is: what is

the efficiency of these representations relative to deterministic finite automata? In other

words, when given a representation of a regular language in one of these other forms,

what is the worst-case state complexity of the language relative to the complexity of this

representation? Of course, in order to consider such a question, we must first decide on a

measure of the complexity of these other forms.

An obvious measure of the complexity of a particular NFA is the number of states.

This measure is the most common, although other methods could certainly be based on

the number of transitions, or any other information unique to a particular NFA.

For a regular expression, since it is a string, the natural choice as a measure seems to be

its length. There are, however, a variety of accepted methods for determining the length of

a regular expression. One such method, the method we will use, is known as the alphabetic

length. This is defined as the number of alphabet (Σ) symbols in the expression. Note that

the symbol ε, denoting the empty string, is not considered to be a symbol of the alphabet,

and, therefore, does not contribute to the length of an expression; this choice prevents

the artificial padding of an expression to increase its length. Some other methods include

the ordinary length, the total number of symbols including parenthesis and operators; and

the reverse polish length, the total number of symbols when the expression is rewritten in

parenthesis-free reverse polish notation.
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2.1 Deterministic State Complexity of NFAs

The following theorem gives us a tight upper bound on the deterministic state complexity

of a language recognized by an NFA.

Theorem 2.1. For an NFA A, with n states, we have sc(L(A)) ≤ 2n. Furthermore, this

bound is tight.

Proof. We have that |2Q| = 2n, where 2Q is the set of all subsets of Q. Then the bound

sc(L(A)) ≤ 2n is immediate from the subset construction method for converting an NFA

to a DFA given by Rabin and Scott[28], which gives us a DFA with 2n states recognizing

L(A).

To show that this bound is tight, consider the language Ln = (0 + (01∗)n−10)∗. An

NFA for Ln is A = {Q, Σ, δ, q1, F}, where Q = {q1, . . . , qn}, Σ = {0, 1}, F = {q1}, and δ is

defined as follows:

δ(q1, 0) = {q1, q2};
δ(q1, 1) = ∅;
δ(qi, 0) = {qi+1}, for 2 ≤ i < n;

δ(qi, 1) = {qi}, for 2 ≤ i ≤ n;

δ(qn, 0) = {q1}.

The NFA A is depicted in Figure 2.2.

q1 q2 q3 qn0

0 1

00 0

0

1 1

Figure 2.2: The NFA for (0 + (01∗)n−10)∗.
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In his study of the ambiguity of nondeterministic finite automata, Leung [17] proved

that the language Ln has state complexity 2n. We give our own version of the proof here.

A set of states P ⊆ Q is called reachable if there exists a string u such that δ(q1, u) = P .

Furthermore, for P ′ ⊆ Q, a string x is said to distinguish P and P ′ if one of δ(P, x)∩F �= ∅
and δ(P ′, x)∩F �= ∅ is true, but not both. By δ(P, x) we mean

⋃
q∈P δ(q, x). If there is no

string that distinguishes P and P ′, then P and P ′ are equivalent.

In order to show that the smallest DFA recognizing Ln has 2n states, we must show

that each subset of states is reachable, and that no subset of states is equivalent to any

other subset of states. These facts imply that there exist 2n strings that are pairwise

inequivalent, with respect to the Myhill–Nerode equivalence relation ∼L defined at the end

of Chapter 1.

For P ⊆ Q, define wP ∈ Σ∗ by wP = w10wn0wn−10 · · · 0w1, where wi = ε, if qi ∈ P ,

and wi = 1 otherwise. Furthermore, define uP ∈ Σ∗ by uP = 0n−1wP .

As the following lemma will show, the string wP gives us a degree of control over the

non-determinism in A, by allowing us to cancel out any states not in P . We will then use

this fact to show that the string uP allows us to reach the state P .

Lemma 2.3 (Leung). For P ⊆ Q, we have

1. δ(Q\P,wP ) = ∅;

2. δ(P,wP ) = P .

Proof. To show that δ(Q\P,wP ) = ∅, notice that for qi �∈ P , if i > 1, we have

δ(qi, wP ) = δ(qi, w10wn0 · · · 0w1)

= δ(qn, 0wi0 · · · 0w1)

= δ(q1, wi0wi−10 · · · 0w1)

= ∅ (since wi = 1).
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If i = 1, then clearly δ(qi, wP ) = ∅, since δ(q1, 1) = ∅. Now, to show that δ(P,wP ) = P ,

notice that for qi ∈ P , we have

δ(qi, wP ) = δ(qi, w10wn0 · · · 0w1)

= δ(qn, 0wi0 · · · 0w1)

= δ(q1, wi0wi−10 · · · 0w1)

= δ(q1, 0wi−10 · · · 0w1) (since wi = ε)

⊇ δ(q2, wi−10 · · · 0w1)

= δ(q1+i−1, w1)

= {qi}.
Then it follows that δ(P,wP ) ⊇ P . Furthermore, for any qi �∈ P if qi ∈ δ(P,wP ), then we

must have that q1 ∈ δ(q1, wi0 · · · 0w1). But wi = 1, so δ(q1, wi0 · · · 0w1) = ∅. Therefore

δ(P,wP ) = P , and the proof is complete.

It follows from Lemma 2.3 that

δ(q1, uP ) = δ(Q,wP ) = δ(Q\P,wP ) ∪ δ(P,wP ) = P.

Hence, every set of states P is reachable. Now, for any P ′ ⊆ Q, let qi be the largest index

i such that qi is an element of one of P or P ′, but not both. If i = 1, then let x = ε,

otherwise let x = (10)n−i+1. Without loss of generality, assume that qi ∈ P . Then we have

δ(P, x) ⊆ δ(qi, x) = {q1}.
However, δ(qj, x) = qj+n−i+1 �= q1, for all 1 < j < i; and δ(qj, x) = ∅, for all j > i, or

j = 1. Then δ(P ′, x) ∪ F = ∅, so we can distinguish P and P ′. Then by Theorem 1.1,

sc(Ln) = 2n. Hence, the bound of 2n on the state complexity is tight.

2.2 Deterministic State Complexity of Regular Ex-

pressions

As seen in the previous section, the language Ln can be represented by the regular expres-

sion (0 + (01∗)n−10)∗ with alphabetic length 2n. Then the result of Theorem 2.1 implicitly
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gives us a lower bound of 2n/2 on the worst-case state complexity of a regular expression

with alphabetic length n. However, with a small modification to the regular expression,

we can use the same proof technique to improve this bound. This fact was shown by Ellul,

Krawetz, Shallit, and Wang [8]. A more detailed proof is given here.

Theorem 2.4. The language Kr = (0∗(01∗)r−10)∗ has state complexity 2r + 2r−2 = 5
4
· 2r.

Proof. An NFA for Kr is B = {Q, Σ, δ, q0, F}, where Q = {q0, q1, . . . , qr+1}, Σ = {0, 1},
F = {q0, qr+1}, and δ is defined as follows:

δ(q0, 0) = δ(q1, 0) = {q1, q2};
δ(q0, 1) = δ(q1, 1) = δ(qr+1) = δ(qr+1, 0) = ∅;
δ(qi, 0) = {qi+1}, for 2 ≤ i < r;

δ(qi, 1) = {qi}, for 2 ≤ i ≤ r;

δ(qr, 0) = {q0, q1, qr+1}.

The NFA B is depicted in Figure 2.5.

q1 q2 q3 qr
qr+1q0 0

1

0 0 0

1

0

1

0

0

0

0

0

Figure 2.5: The NFA for (0∗(01∗)r−10)∗.

We will show that the only reachable sets of states are those of the form:

(a) {q0};
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(b) {q0, q1, qr+1} ∪ X, where X ⊆ {q2, q3, · · · , qr};
(c) {q1, q2} ∪ Y , where Y ⊆ {q3, q4, · · · , qr};
(d) Z, where Z ⊆ {q2, q3, · · · , qr}.

For P ⊂ Q, define wP ∈ Σ∗ by wP = 0wr0wr−10 · · · 0w20, where wi = ε, if qi ∈ P , and

wi = 1, otherwise.

Lemma 2.6. For P = {q0, q1, qr+1} ∪ X, where X ⊆ {q2, q3, · · · , qr}, we have

1. δ(Q\P,wP ) = ∅;

2. δ(qi, 1wP ) ⊇ {qi}, when qi ∈ P ;

3. δ(P,wP ) = P .

Proof. To show that δ(Q\P,wP ) = ∅, notice that for qi �∈ P , we have

δ(qi, wP ) = δ(qi, 0wr0 · · · 0w20)

= δ(qr, 0wi0 · · · 0w20)

= δ({q0, q1, qr+1}, wi0wi−10 · · · 0w20)

= ∅ (since wi = 1).

To show that δ(qi, wP ) ⊇ {qi}, when qi ∈ P , notice that for 2 ≤ i ≤ r, we have

δ(qi, wP ) = δ(qi, 0wn0 · · · 0w20)

= δ(qr, 0wi0 · · · 0w20)

= δ({q0, q1, qr+1}, wi0wi−10 · · · 0w20)

⊇ δ(q1, 0wi−10 · · · 0w20) (since wi = ε)

⊇ δ(q2, wi−10 · · · 0w20)

= {qi}.

Furthermore, notice

δ(q0, wP ) ⊇ δ(qr, 0) = {q0, q1, qr+1}.
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It follows that δ(P,wP ) ⊇ P . Now, for 2 ≤ i ≤ r, if qi ∈ δ(P,wP ), then we must have

that {q0, q1} ∩ δ({q0, q1}, wi0 · · · 0w20) �= ∅. This implies that wi = ε, and hence qi ∈ P .

Therefore δ(P,wP ) = P , and the proof is complete.

Lemma 2.7. For P = {q1, q2} ∪ X, where X ⊆ {q3, q4, · · · , qr}, we have

1. δ(Q\P, 1wP ) = ∅;

2. δ(P, 1wP ) = P .

Proof. First, notice that wP = wP ′ , for some P ′ of the form required by Lemma 2.6. Then,

by Lemma 2.6, for 3 ≥ i ≤ r, we have

δ(qi, 1wP ) = δ(qi, wP ) = δ(qi, wP ′) = ∅, when qi ∈ P .

Clearly δ({q0, qr+1}, 1wP ) = ∅, and so δ(Q\P, 1wP ) = ∅.
Also by Lemma 2.6, for 3 ≤ i ≤ r, we have

δ(qi, 1wP ) ⊇ {qi}, when qi ∈ P .

Notice

δ(q2, 1wP ) ⊇ δ(qr, 0w20) = δ({q0, q1, qr+1, w20) = {q1, q2}.
Then it follows that δ(P, 1wP ) ⊇ P . Furthermore, for 3 ≤ i ≤ r, if qi �∈ P we have

δ(P, 1wP ) ⊆ δ(P ′, wP ′) �� qi, by Lemma 2.6. Finally, if δ(P, 1wP ) contains q0 or qr+1,

then this implies that qr ∈ δ(P, 10wr0 · · · 0w2) ⇒ q2 ∈ δ(q0, 1), a contradiction. Hence,

δ(P, 1wP 1) = P , and the proof is complete.

Lemma 2.8. For P ⊆ {q2, q3, · · · , qr}, we have

1. δ(Q\P, 1wP 1) = ∅;

2. δ(P, 1wP 1) = P .

Proof. First, notice that wP = wP ′ for some P ′ of the form required by Lemma 2.6. Then

by Lemma 2.6, for 2 ≤ i ≤ r, we have

δ(qi, 1wP 1) = δ(qi, wP ′1) = ∅, when qi ∈ P .
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Clearly δ({q0, q1, qr+1}, 1wP 1) = ∅, and so δ(Q\P, 1wP 1) = ∅.
Also by Lemma 2.6, for 2 ≤ i ≤ r, we have

δ(qi, 1wP 1) ⊇ {qi}, when qi ∈ P .

Furthermore, for 2 ≤ i ≤ r, if qi �∈ P we have δ(P, 1wP 1) ⊆ δ(P ′, wP ′) �� qi, by Lemma

2.6. Finally, {q0, q1, qr+1} ∩ δ(P, 1wP 1) = ∅, since {q0, q1, qr+1} ∩ δ(Q, 1) = ∅. Hence,

δ(P, 1wP 1) = P , and the proof is complete.

Clearly the set {q0} is reachable. For P ⊆ {q2, q3, · · · , qr}, we have δ(q0, 0
r1wP 1) =

δ(Q, 1wP 1) = P , by Lemma 2.8. Furthermore, for P = {q1, q2}∪X, with X ⊆ {q3, q4, · · · , qr},
we have δ(q0, 0

r1wP ) = δ(Q, 1wP ) = P , by Lemma 2.7. And finally, for P = {q0, q1, qr+1}∪
X, with X ⊆ {q2, q3, · · · , qr}, we have δ(q0, 0

rwP ) = δ(Q,wP ) = P , by Lemma 2.6.

Hence, every set of states P is reachable, when P is in one of the forms (a)–(d) given

above. Now, suppose that P is a reachable set of states; that is for some xΣ∗, we have

δ(q0, x) = P . If q0 �∈ P , then to arrive in state q1 we must have taken the transition

δ(q0, 0) = {q1, q2}, or δ(q1, 0) = {q1, q2}, on the last symbol of x. It follows that q2 ∈ P .

Furthermore, if qr+1 ∈ P then we must have taken the transition δ(qr, 0) = {q0, q1, qr+1}
on the last symbol of x. It follows that q0, q1 ∈ P . Hence, sets of the form (a)–(d) are the

only reachable sets of states. This gives a total of 2r−1 + 2r−2 + 2r−2 + 1 reachable sets of

states.

It is easy to see that the subsets {q0} and {q0, q1, qr+1} are equivalent in terms of the

Myhill-Nerode Theorem. Then for any two sets P, P ′ of two different forms, we can restrict

our discussion to those of the form (b)–(c). Any set of the form (b) can be distinguished

from a set of the form (c) or (d) by the string ε, since sets of the form (c) or (d) contain

no final states. If the set P is of the form (c), and P ′ is of the form (d), then consider the

string x = 0(10)r. Then

δ(P, x) ⊆ δ(q1, x) = {q0, q1, qr+1}.

However, δ(qj, x) = ∅, for 1 < j ≤ r, so that δ(P ′, x) = ∅.
For any two different sets P, P ′ of the same form, let qi be the largest index i such that

qi is an element of one of P or P ′, but not both. Then i ≥ 2. Let x = (10)r−i+1. Without
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loss of generality, assume that qi ∈ P . Then we have

δ(P, x) ⊆ δ(qi, x) = {q0, q1, qr+1}.

However, δ(qj, x) = qj+r−i+1, for all 1 < j < i; and δ(qj, x) = ∅, for all j > i or j ∈ {0, 1}.
Then δ(P ′, x) ∪ F = ∅, so we can distinguish P and P ′.

Then by the Myhill-Nerode theorem, the state complexity of the language Kr is 2r +

2r−2.

Since the language Kr is represented by the regular expression (0∗(01∗)r−10)∗, which

has alphabetic length 2r = n, this gives us a worst-case lower bound of 5
4
· 2n/2 on the

state complexity of a regular expression of alphabetic length n. Currently, the best known

upper bound is 2n + 1, and so the problem of finding a tight upper bound remains open

(see Open Problem 5.1).



Chapter 3

Monoids

We leave the topic of state complexity for the moment to consider the monoid, an object

from abstract algebra with significant connections to formal languages. Much like a group,

a monoid is a set of elements with an operation for composing those elements. However,

unlike a group, it is not required that every element of the the monoid have an inverse.

Formally, a monoid (M, ·) is a set M with a binary operation, denoted by ·. The

operation · is associative, and the set M is closed under this operation. Furthermore, M

contains a unique identity element, denoted by 1, such that 1 ·x = x · 1 = x, for all x ∈ M .

For a set X ⊆ M , if X is closed under the operations ·, then (X, ·) is a submonoid of (M, ·).
If for some X ⊆ M , we have that M is the closure of X under the operation ·, then we

say that the set X generates the monoid (M, ·) and we write span(X) = M . The elements

of X are known as generators.

When the context is clear, and there is no uncertainty regarding the implied binary

operation, we often denote the monoid (M, ·) simply by M .

For x ∈ M , if there exists y ∈ M such that x · y = 1, we say that y is the inverse of x,

and we write y = x−1. If such an element exists, it is unique. Furthermore, we have that

x is the inverse of y.

A simple example of a monoid is the set of non-negative integers N with the addition

operation, denoted +. It is clear that + is associative and that the set N is closed under

this operation. Here, the element 0 is the unique identity element.

The most common example of a monoid involves the functions that map a set into itself.

15



16 Chapter 3. Monoids

For a set Q, a function f : Q → Q is called a transformation. The set of all transformations

of Q is denoted by QQ. For transformations f, g ∈ QQ, their composition is written f · g,

and is given by (f · g)(q) = g(f(q)), for all q ∈ Q. With composition defined in this way,

it is clear that the transformation i : Q → Q, given by i(q) = q for all q ∈ Q, serves as the

identity element. Then the set QQ and the composition operator form a monoid.

Transformations and their monoids have been studied in some detail by Dénes (whose

work is summarized in [6]), and Salomaa [31, 32]. Dénes investigated several algebraic and

combinatorial properties of transformations, while much of Salomaa’s work is concerned

with subsets that generate the full monoid of transformations.

It is the monoid that provides the major link between formal languages and algebraic

theory. In fact, for a finite non-empty alphabet Σ, the set Σ∗ is itself a monoid. That is,

the set of strings Σ∗ together with the concatenation operation form a monoid, with the

empty string ε as the identity element. This monoid is known as the free monoid over the

alphabet Σ.

A more interesting occurrence of a monoid in formal languages describes the behaviour

of a DFA. Let A = (Q, Σ, δ, q0, F ) be a DFA. For w ∈ Σ∗, define the function δw : Q → Q

by δw(q) = δ(q, w), for all q ∈ Q. If we denote the empty word by ε, then δε is the identity

function. Define the composition operation, denoted ·, by (f ·g)(q) = g(f(q)), for all q ∈ Q.

Then the set of all functions δw together with the composition operator form a monoid,

where δε is the identity element. This is called the transition monoid of A.

It is not hard to see that for any x, y ∈ Σ∗ we have δxy = δx · δy. So the transition

monoid of A is generated by the set {δa ∈ QQ : a ∈ Σ}.

Example 3.1. For the DFA M, depicted in Figure 3.2, we have

δa(q) =


1 if q = 1,

3 if q ∈ {2, 3};
and δb(q) =


2 if q = 1,

1 if q ∈ {2, 3}.
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Figure 3.2: The automaton M.

Then (X, ·) is the transition monoid of M, where X = {δε, δa, δb, δba, δbb}.

In Chapter 4, we will see an application of the results discussed in this chapter to the

transition monoid of a regular language. This will give us new bounds concerning the state

complexity of an operation on regular languages.

Possibly the most important example of a monoid in formal languages is based on a

congruence relation of a language. Let L be a language over the alphabet Σ. The syntactic

congruence of L is the relation ≈L, where x ≈L y for x, y ∈ Σ∗ if and only if for all

u, v ∈ Σ∗ we have uxv ∈ L ⇔ uyv ∈ L. For x ∈ Σ∗, let [x]L denote the equivalence

class of x ∈ Σ∗. Then for y ∈ Σ∗ let the concatenation of the equivalence classes be given

by [x]L[y]L = [xy]L. Then the quotient Σ∗/ ≈L, with concatenation, forms the syntactic

monoid of L. It is well known [14, Chap. 6, Prop. 1.8] that if A is the minimal DFA

recognizing L, then the syntactic monoid of L is isomorphic to the transition monoid of A.

The study of the syntactic monoid forms the basis of the the so-called “algebraic theory”

of formal languages. A good overview can be found in [26].

In this chapter, we investigate the problem of determining the largest monoid generated

by a finite set of elements. However, before we can begin that discussion, we must first

define some notation and terminology.
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3.1 The Monoid of Transformations of a Finite Set

Define Zn = {1, 2, . . . , n}, and let Tn = ZZn
n be the set of transformations of Zn. Note that

|Tn| = nn.

For γ ∈ Tn we write

γ =

(
1 2 · · · n

γ(1) γ(2) · · · γ(n)

)
.

When composing elements of Tn, we often omit the composition operator. Instead, com-

position is implied by juxtaposition. That is, for γ, δ ∈ Tn we have γ · δ = γδ. When an

element is composed with itself k times, where k is a positive integer, we write γk; e.g.,

γ3 = γγγ. If γ has an inverse δ, we write δ = γ−1. Then for a positive integer k, we have

γ−k = (γ−1)k. The element γ0 denotes the identity transformation.

Definition. The order of a transformation γ is the size of the set generated by {γ}, and

is denoted by ord(γ).

Definition. For γ ∈ Tn, define the image of γ by

img(γ) = {y ∈ Zn : y = γ(z) for some z ∈ Zn}.
Definition. For γ ∈ Tn, define the rank of γ as the number of distinct elements in the

image of γ, and denote it by rank(γ). That is, rank(γ) = | img(γ)|.
Example 3.3. Let γ ∈ T5 be given by

γ =

(
1 2 3 4 5

1 1 4 5 3

)
.

Then img(γ) = {1, 3, 4, 5} and rank(γ) = 4. Furthermore,

{γ0, γ1, γ2, . . .} = {γ0, γ1, γ2, γ3},
so ord(γ) = 4.

When considering the transformations of a finite set, we can safely restrict the discussion

to transformations of the set Zn, since every finite monoid is isomorphic to a submonoid of

Tn for some n. In fact, every monoid is isomorphic to a transformation monoid [25, Chap.

1, Prop. 1.5].
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3.2 The Group of Permutations of a Finite Set

A group (G, ·) is a monoid where every element has an inverse. If H ⊆ G is also a group,

then H is a subgroup of G.

Let γ ∈ Tn be a bijection; in other words, suppose rank(γ) = n. Then γ is called a

permutation. Define Sn ⊆ Tn to be the set of all permutations of Zn. Then (Sn, ·) is a

submonoid of (Tn, ·). In fact, Sn is a group, and is known as the symmetric group. Note

that |Sn| = n!.

Let X = {x1, . . . , xk}, where k < n, be a subset of Zn. Let γ ∈ Sn be given by

γ(x) =


x(i+1) mod k if x = xi ∈ X,

x otherwise.

Then γ is called a cycle, in particular, a k-cycle. For γ, we write γ = (x1 x2 · · · xk).

Appropriately, this notation is called cycle notation. When γ is a 2-cycle, it is known as a

transposition.

In general, any permutation can be uniquely expressed as a composition of disjoint

cycles. Suppose that γ = γ1γ2 · · · γm, is such a decomposition. Then γ can be expressed in

cycle notation as the juxtaposition of the cycle notation of each γi.

Example 3.4. Let γ ∈ S7 be given by γ = γ1γ2γ3, where γ1 = (1 3 2), γ2 = (4 5), and

γ3 = (6 7), then in cycle notation, γ = (1 3 2)(4 5)(6 7).

For a more in-depth discussion of permutations and permutation groups, consult an

abstract algebra text such as [1].

We will now mention, briefly, a few results concerning the size of the largest groups

generated by a finite set. Since it is well known that the group Sn can be generated by the

set X = {a, b}, where a is any n-cycle and b is any transposition, the problem is solved

for sets of size two or more. We can still ask, however, for a characterization of these

generating sets. One such result was proved by Piccard [23, Part 1, Prop. 42].

Theorem 3.5 (Piccard). Except when n = 4 and a is one of (1 2)(3 4), (1 3)(2 4), or

(1 4)(2 3), if a ∈ Sn is not the identity permutation, then there exists b ∈ Sn such that the

set {a, b} generates Sn.



20 Chapter 3. Monoids

In the case of the largest group generated by a single element, consider the function

g(n) given by

g(n) = max
γ∈Sn

{ord(γ)}. (∗)

This function is known as Landau’s function, and has been well studied (for a survey, see

[19, 22]). Probably the earliest significant result concerning the function g, was obtained

by Landau [15], who proved that

log g(n) ∼
√

n log n.

3.3 Monoids Generated by Finite Sets

In this section, we examine the problem of determining the size of the largest monoid

generated by a set of size m. We begin with the following well known result:

Lemma 3.6. Let n ≥ 3. Suppose H ⊆ Tn and H generates Tn. Then |H| ≥ 3. Fur-

thermore, |H| = 3 if and only if H can be written in the form H = {a, b, c}, where {a, b}
generates Sn and rank(γ) = n − 1.

For a proof of this lemma, see Dénes [5]. This gives us the result that the largest

submonoid generated by three elements has the full size nn, and thus solves the problem

for m ≥ 3. Furthermore, as demonstrated in the next lemma, there is a gap of at least
(

n
2

)
between the size of Tn, and the largest proper submonoid of Tn. This fact is independent of

the number of generators. Though this gap is almost certainly not tight, it is large enough

for its intended application in the following chapter.

Lemma 3.7. For n ≥ 1, if M ⊆ Tn is a monoid such that |M | > nn − (
n
2

)
, then M = Tn.

Proof. For 1 ≤ n ≤ 3, the result can easily be verified computationally, so assume that

n ≥ 4.

Since |M | > |Tn| −
(

n
2

)
, there are at most

(
n
2

) − 1 elements of Tn missing from M .

There are
(

n
2

)
transpositions in Tn. Then it follows that M must contain at least one

transposition. Also, there are (n−1)! permutations of Zn whose cycle structure consists of
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a single cycle with length n. Since n ≥ 4, we have that (n − 1)! ≥ (
n
2

)
. Again, considering

the size of M , it follows that M must contain at least one n-cycle. Hence Sn ⊆ M .

Now consider the transformations in Tn with rank n− 1. For a transformation to have

rank n − 1, two elements of Zn must have the same image; this can be done in
(

n
2

)
ways.

Furthermore, we must have that one element of Zn is missing from the image; this can be

done in n ways. Finally, the n− 1 elements of the image can be arranged in (n− 1)! ways.

This gives a total of
(

n
2

) · n!. It follows that M must contain at least one transformation

of rank n − 1. Then by Lemma 3.6, we have that M = Tn.

The case for m = 1 has been studied in connection with Landau’s function. Szalay [34]

showed that the largest submonoid of Tn generated by a single element has size

exp

{√
n

(
log n + log log n − 1 +

log log n − 2 + o(1)

log n

)}
.

In the case m = 2, the determining of the largest monoid on m generators is considerably

more involved. This case is the focus for the remainder of this chapter.

3.3.1 Sets of Size Two: The Single Cycle Case

Before we examine the full problem of determining the largest monoid on two generators,

we focus on the case where one of the generators is a cycle, and the other is a non-bijective

transformation. The study of this particular class of monoids gives us some insight into

how the properties of the generators of a monoid interact to determine its elements. This

class, however, provides more than just an interesting example of two-generated monoids

– it also has a role in the proof of the largest monoid.

Let n ≥ 4, and let 1 ≤ p < n
2

be an integer such that p | n. Now let a, b ∈ Tn, where

a =

(
1 2 3 · · · n−3 n−2 n−1 n

2 3 4 · · · n−2 n−1 n 1

)
,

and if p odd, define

b =

(
1 2 · · · p p+1 p+2 · · · n−2 n−1 n

1 2 · · · p 1 p+1 · · · n−3 n−1 n−2

)
,
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while if p even, define

b =

(
1 2 · · · p p+1 p+2 · · · n−2 n−1 n

1 2 · · · p 1 p+1 · · · n−3 n−2 n−1

)
.

When n = 4 and p = 2, or when n = 6 and p = 3, the above definition of b is somewhat

ambiguous. In these two cases, respectively, we take

b =

(
1 2 3 4

1 2 1 3

)
, and b =

(
1 2 3 4 5 6

1 2 3 1 5 4

)
.

Let V p
n denote the monoid generated by a and b. Furthermore, define α = ab, β = ap+1b,

and γ = b, all restricted to the domain Zn−1.

Lemma 3.8. We have span(α, β, γ) = Tn−1.

Proof. We begin by proving that Sn−1 ⊆ span(α, β). Note that it suffices to show that

span(α, β) contains an (n−1)-cycle and a transposition.

Define q = n
p
. Then 2 ≤ q ≤ n.

For odd p, we have

α =

(
1 2 · · · p−1 p p+1 · · · n−3 n−2 n−1

2 3 · · · p 1 p+1 · · · n−3 n−1 n−2

)
,

In cycle notation we can write this as α = (1 2 3 · · · p)(n − 2 n − 1). Since p is odd, we

have αp = (n − 2 n − 1), a transposition. For β, first notice that

ap+1 =

(
1 2 · · · n−p−1 n−p n−p+1 · · · n−1 n

p+2 p+3 · · · n 1 2 · · · p 1

)
,

which gives

β =

(
1 2 · · · n−p−3 n−p−2 n−p−1 n−p n−p+1 · · · n−1

p+1 p+2 · · · n−3 n−1 n−2 1 2 · · · p

)
.

If p = 1, then in cycle notation we can write β = (1 2 · · · n−3 n−1). Then

βαp = (1 2 · · · n−3 n−2 n−1),
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an (n−1)-cycle.

Now, assume p > 1. Notice that β(i) = i + p for 1 ≤ i ≤ n − 2p. Then q − 2

applications of β will send the element i successively to i + p, i + 2p, . . . , i + (q − 3)p, and

finally i+(q−2)p. If i = p−1, then i+(q−2)p = n−p−1. Then since β(n−p−1) = n−2

and β(n − 2) = p − 1, it follows that β contains the q-cycle

βq = (p−1 2p−1 · · · n−p−1 n−2).

Similarly, if 1 ≤ i ≤ p−3 then β(i+(q−2)p) = i+(q−1)p = n−p+i and β(n−p+i) = i+1.

Furthermore, if i = p − 2 then β(i + (q − 2)p) = n − 1 and β(n − 1) = p. And finally, if

i = p then β(i + (q − 2)p) = 1. Then it follows that β contains the (n−q−1)-cycle

βn−q−1 = (1 p+1 · · · n−p+1 2 · · · n−p−2 n−1 p · · · n−p).

Hence β = βn−q−1βq.

Recall that αp = (n − 2 n − 1). Now n − 2 is in βq, and n − 1 is in βn−q−1. Then it

follows that

βαp = (1 · · · n−p−2 n−2 p−1 · · · n−p−1 n−1 p · · · n−p),

an (n−1)-cycle.

Then when p is odd and 1 ≤ p ≤ n
2
, we have that αp is a transposition and βαp is an

(n−1)-cycle. Hence span(αp, βαp) = Sn−1.

For even p, we have that

α =

(
1 2 · · · p−1 p p+1 · · · n−3 n−2 n−1

2 3 · · · p 1 p+1 · · · n−3 n−2 n−1

)
,

In cycle notation we can write this as α = (1 2 · · · p). For β we have

β =

(
1 2 · · · n−p−3 n−p−2 n−p−1 n−p n−p+1 · · · n−1

p+1 p+2 · · · n−3 n−2 n−1 1 2 · · · p

)
,

so that β(i) = (p + i) mod n − 1. It follows that β is an (n−1)-cycle. Then

βn−q−1 = (1 n−1 n−2 · · · 2) and βq = (1 2 3 · · · n−1).
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This gives

βn−q−1 · α · βq = (2 3 · · · p+1) ⇒ (βn−q−1 · α · βq)−1 = (2 p+1 · · · 3),

⇒ α2(βn−q−1 · α · βq)−1 = (1 2 · · · p−1)(p p+1).

But p is even, so p−1 is odd. This gives (α2(βn−q−1·α·βq)−1)p−1 = (p p+1), a transposition.

Hence span(α, β) = Sn−1.

In either case, we have that span(α, β) = Sn−1. It follows from Lemma 3.6 that

span(α, β, γ) = Tn−1.

The following lemma gives a characterization of the elements in V p
n .

Lemma 3.9. We have

V p
n = {c ∈ Tn : c(j) = c(j + p) for some j ∈ Zn} ∪ {ai : 1 ≤ i ≤ n},

where j + p = (j + p) mod n.

Proof. Let c ∈ Tn. If rank(c) = n, then since rank(b) < n, we have that c ∈ V p
n if and only

if c = ai for some i. So assume that that c ∈ Tn\Sn.

If c ∈ V p
n , then since c �∈ Sn we must have that c = aibc′ for some i ∈ Zn and some

c′ ∈ V p
n . Furthermore, for j = n − i + 1, we have ai(j) = 1 and ai(j + p) = 1 + p. Then

aib(j) = 1 and aib(j + p) = 1. It follows that aibc′(j) = aibc′(j + p).

Now suppose c ∈ Tn\Sn with c(j) = c(j + p) = r for some j. Then there exists x ∈ Zn

such that ax(j) = 1 and ax(j + p) = 1 + p. Furthermore, since rank(c) < n there exists

some s ∈ Zn\ img(c). Let y ∈ Zn be such that ay(s) = n.

Notice that img(cay) ⊆ Zn−1 = img(axb). Then by Lemma 3.8, there exists d ∈ V p
n

such that axbd = cay, and hence axbda−y = caya−y = c. It follows that c ∈ V p
n .

An important fact regarding this family of V p
n monoids is that, as shown in Lemma 3.8,

if its elements are restricted to the domain and range Zn−1, then these restricted elements

can generate the monoid Tn−1. This fact makes it easy for us to characterize which elements

are contained in V p
n . The problem is reduced to considering how the permutation a can

arrange the elements of Zn before the non-bijective transformation b is first applied, and

how a can arrange the elements of Zn after b is last applied. It was an attempt to exploit
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this fact that led to the discovery of the monoid Uk,l described later in this chapter. Let

us now turn the discussion toward the analysis of the size of these V p
n monoids.

For any function f : Zn → Zn in Tn, we can view the elements in the domain Zn as

vertices of a graph, and we can view the elements in the range Zn as colours. This gives a

natural bijection between transformations and vertex colourings of a graph.

A proper colouring of a graph is a vertex colouring such that no two adjacent vertices

have the same colour. Define the function f(n, q) to be the number of proper colourings

of a q-gon, using n colours. A well known result from graph theory [29, Thm. 6] gives us

f(n, q) = (n − 1)q + (−1)q(n − 1).

Note that the formula for f(n, q) holds even when q = 2, if we take a 2-gon to be a graph

with two vertices and a single edge. This gives us the following fact concerning the size of

the monoid V p
n .

Theorem 3.10. For n ≥ 4, and 1 ≤ p < n
2
. If p | n, and q = n

p
, then

|V p
n | = s(n, q) = nn − (f(n, q))p + n.

Proof. Construct a graph G in the following way: take the elements of Zn to be the vertices,

and for every vertex x ∈ Zn, add the edge (x, x − p), and the edge (x, x + p). Since pq = n,

the resulting graph G will consist of p components. Each component of the graph will be a

q-gon, with the elements of {i, i+p, . . . , i+(q−1)p} as its vertices for some i ∈ {1, . . . , q}.
Figure 3.11 shows this construction; note that the dotted edges indicate the edges and

vertices that are not explicitly shown.

1 + (q − 1)p
1

1 + p

1 + 2p

1 + 3p

2 + (q − 1)p
2

2 + p

2 + 2p

2 + 3p

n
p

2p

3p

4p

Figure 3.11: The graph G.
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Let C = {c ∈ Tn : c(j) = c(j + p) for some j ∈ Zn}. From the graph G, it is clear that

for c ∈ Tn, we have c ∈ C if and only if c is not a proper colouring of G. However, since

the components of G can be properly coloured independently (each one in f(n, q) ways) we

have that G can be properly coloured in f(n, q)p ways. It follows that C = nn − f(n, q)p.

Now since a has order n, we have, by Lemma 3.9,

|V p
n | = s(n, q) = nn − (f(n, q))p + n.

Now that we have a formula for the size of these V p
n monoids, we can determine what

value of p produces the largest monoid.

Lemma 3.12. Let n = 2i. Then

s(n, n) > s(n, j) for all j | n, j > 1.

Proof. It suffices to show that

f(n, n) < f(n, j)
n
j for all j | n, j > 1.

For n = 2i and j | n, j > 1, we have that n and j are even. Then

f(n, j)
n
j = ((n − 1)j + n − 1)

n
j

> ((n − 1)j)
n
j + n − 1

= (n − 1)n + n − 1

= f(n, n),

as required.

Lemma 3.13. If n is not a power of 2, then let q be the least prime such that q > 2 and

q | n. Then

s(n, q) ≥ s(n, j) for all j | n, j > 1.
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Proof. It suffices to show that

f(n, q)
n
q < f(n, j)

n
j for all j | n, j > 1.

Since q is odd, we have

f(n, q)
n
q = ((n − 1)q − n + 1)

n
q

< ((n − 1)q)
n
q

= (n − 1)n.

If j is even, then f(n, j)
n
j > (n − 1)n. Assume that j is odd. Then

f(n, j) = (n − 1)j − (n − 1).

Furthermore

f(n, q)
j
q = ((n − 1)q − (n − 1))

j
q

< (n − 1)j − (n − 1)
j
q .

Since j > q, it follows that

f(n, q)
j
q < (n − 1)j − (n − 1) = f(n, j),

and hence

f(n, q)
n
q < f(n, j)

n
j .

For a fixed value of n, define Vn to be largest monoid of the form V p
n .

Theorem 3.14. For n ≥ 4, if n = 2i then let q = n, otherwise let q = min{q | n : q is odd}.
Now let p = n

q
. Then V p

n = Vn.

Proof. The result follows immediately from a combination of Lemma 3.12, and Lemma

3.13.
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This work was completed in April 2003 by Krawetz, Lawrence, and Shallit. However,

in June 2003 this author discovered that similar results were obtained by Holzer and König

[9, 10]. Actually, the work of Holzer and König contains a few more results concerning the

size of the monoid Vn, both relative and absolute. A summary is provided here.

Lemma 3.15 (Holzer and König). For the family of monoids of the form Vn, we have

lim
n→∞

|Vn|
nn

= 1 − 1

e
.

Lemma 3.16 (Holzer and König). Let a ∈ Sn be a cycle of any length, and let b ∈
Tn\Sn. If X is the monoid generated by {a, b}, then |X| ≤ |Vn|.

Lemma 3.17 (Holzer and König). Let a, b ∈ Sn. If X is the monoid generated by

{a, b}, then |X| ≤ |Vn|.

Lemma 3.18 (Holzer and König). Let a, b ∈ Tn\Sn. If X is the monoid generated by

{a, b}, then |X| ≤ |Vn|.

Lemma 3.17 and Lemma 3.18 show us that the largest monoid on two generators must

have one permutation and one non-bijective function as its generators. This gives us the

following trivial upper bound. Here, g(n) is Landau’s function, (∗) in Section 3.2.

Corollary 3.19 (Holzer and König). Let U ∈ Tn be the largest monoid generated by

two generators. Then

|U | ≤ nn − n! + g(n).

Lemmas 3.16-3.18 prove that the monoid Vn, is actually the largest possible in a number

of different cases. This reduces the search for the overall largest monoid to the case where

a is an arbitrary permutation and b is a non-bijective transformation.

3.3.2 Sets of Size Two: The General Case

If a is an arbitrary permutation and b a non-bijective transformation, then we have two

possibilities: either b identifies two elements from the same cycle in a, or b identifies two

elements from different cycles in a. Let us continue by considering the case where a is
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a permutation with exactly two cycles, and b is a transformation that identifies only two

elements, one from each cycle in a. The intuition behind the following choice for the

generators a and b is that we want to maximize the number of elements generated by a

alone, but we still want to be able to generate the full monoid of transformations Tn−1,

when the elements of span(a, b) are restricted to Zn−1.

Let n ≥ 5. Define k, l ∈ Zn such that gcd(k, l) = 1, k + l = n, and l > k > 1.

Furthermore, define a, b ∈ Tn by

a =

(
1 2 · · · k−1 k k+1 · · · n−1 n

2 3 · · · k 1 k+2 · · · n k+1

)
,

and when k = 2, or l is even

b =

(
1 2 3 4 · · · n−1 n

k+1 2 3 4 · · · n−1 1

)
.

otherwise

b =

(
1 2 3 4 · · · n−1 n

k+1 3 2 4 · · · n−1 1

)
.

In cycle notation, we have a = (1 · · · k)(k+1 · · · n). Let Uk,l denote the monoid generated

by a and b.

Now define x, 1 ≤ x ≤ k such that lx ≡ −1 (mod k). Furthermore, define α = ab,

β = ax+1b, and γ = b all restricted to the domain Zn−1.

Lemma 3.20. For n ≥ 5, we have span(α, β, γ) = Tn−1.

Proof. First, we will show that Sn−1 ⊆ span(α, β). To prove this fact, recall that it suffices

to show that span(α, β) contains a cycle of length n − 1 and a transposition.

If k �= 2, and l odd, it is easy to see that

α =

(
1 2 3 · · · k−1 k k+1 · · · n−2 n−1

3 2 4 · · · k k+1 k+2 · · · n−1 1

)
.
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Note that α ∈ Sn−1. In cycle notation, we have

α = (1 3 4 · · · n−1).

So α is in fact a cycle of length n − 2.

For β, notice that

β(i) =


b(i) 1 ≤ i ≤ k,

ab(i) k + 1 ≤ i ≤ n − 1,

giving us

β =

(
1 2 3 4 · · · k k+1 · · · n−2 n−1

k+1 3 2 4 · · · k k+2 · · · n−1 1

)
.

Note that β ∈ Sn−1. In cycle notation, we have

β = (1 k+1 k+2 · · · n−1)(2 3).

So β has a cycle of odd length l and a cycle of length 2. It follows that, βl = (2 3), a

transposition. Furthermore, since αβl = (1 2 3 4 · · · n−1) is a cycle of length n − 1, we

have span(αβl, βl) = Sn−1. Hence span(α, β) = Sn−1.

If k = 2, or l even, it is easy to see that

α =

(
1 2 3 · · · n−2 n−1

2 3 4 · · · n−1 1

)
.

Note that α ∈ Sn−1. In cycle notation, we have

α = (1 2 3 4 · · · n−1).

So α is in fact a cycle of length n − 1.

For β, notice that

β(i) =


b(i) 1 ≤ i ≤ k,

ab(i) k + 1 ≤ i ≤ n − 1,
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which gives us

β =

(
1 2 3 4 · · · k k+1 · · · n−2 n−1

k+1 2 3 4 · · · k k+2 · · · n−1 1

)
.

Note that β ∈ Sn−1. In cycle notation, we have

β = (1 k + 1 k + 2 · · · n − 1).

Now, if k = 2 we have

βα−1 = (1 3 · · · n − 1)(1 n − 1 · · · 2)

= (1 2).

So span(α, β) = Sn−1. Otherwise l is even. Define

β′ = α−1β2αβ−1

= (1 n−1 · · · 2)(1 k+1 · · · n−1)2(1 2 · · · n−1)(1 n−1 · · · k+1)

= (1 k+1)(2 k+2 · · · n−1).

It follows that (β′)l−1 = (1 k+1). Hence span(α, β) = Sn−1.

In either case, we have that span α, β = Sn−1. It follows from Lemma 3.6 that

span α, β, γ = Tn−1.

Now let us characterize the elements of Tn that are not generated by {a, b}. These

elements come in two basic forms described in the two following lemmas.

Define A = {1, . . . , k} and B = {k + 1, . . . , n}.

Lemma 3.21. For n ≥ 5, define

Ok,l = {q ∈ Tn : all elements B are in img(q)}.

Then

Uk,l ∩ Ok,l = {ai : i > 0}.
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Proof. Certainly {ai : i > 0} ⊆ Ok,l since img(ai) = Zn. If w �∈ {ai : i > 0}, then

w = w′bai for some i ≥ 0 and some w′ ∈ Uk,l. Let j = ai(n), then j is not in the image of

w, since n is not in the image of b. Since n ∈ B, j ∈ B, and hence w �∈ Ok,l. Therefore

Uk,l ∩ Ok,l = {ai : i > 0}.
Lemma 3.22. For n ≥ 5, define

Pk,l = {q ∈ Tn : q(A) ∩ q(B) = ∅}.

Then

Uk,l ∩ Pk,l = {ai : i > 0}.
Proof. Certainly {ai : i > 0} ⊆ Pk,l since ai is a permutation. If w �∈ {ai : i > 0},
then w = aibw′ for some i > 0 and some w′ ∈ Uk,l. Let s, t be such that ai(s) = 1 and

ai(t) = k + 1. Then aib(s) = aib(t) since b(1) = b(k + 1). It follows that w(s) = w(t).

Furthermore, since ai(s) = 1 and ai(t) = k + 1, we must have that s ∈ A and t ∈ B.

Therefore w �∈ Pk,l, so that Uk,l ∩ Pk,l = {ai : i > 0}.
This next lemma shows that, with the exception of the permutations, the previously

described elements are the only elements not generated by {a, b}.
Lemma 3.23. For n ≥ 5, let w ∈ Tn, with rank(w) < n. Then w ∈ Uk,l if and only if

w �∈ Ok,l ∪ Pk,l.

Proof. If w ∈ Uk,l has rank < n, then it follows from Lemma 3.21 and Lemma 3.22 that

w �∈ Ok,l ∪ Pk,l.

For w �∈ Ok,l ∪ Pk,l, since w �∈ On, there exists r ∈ B such that r ≤ n and r is not

in the range of w. Furthermore, since w �∈ Pk,l there exists s ∈ A and t ∈ B such that

w(s) = w(t). Let i ≥ 0 be such that ai(s) = 1 and ai(t) = k + 1. Let j ≥ 0 be such that

aj(n) = r. Then by Lemma 3.20, there exists w′ ∈ Uk,l be such that aiw′aj = w. This

completes the proof.

We are now ready to completely describe the monoid Uk,l.

Lemma 3.24. For n ≥ 5, we have

Uk,l = {ai : i > 0} ∪ (Tn\ (Ok,l ∪ Pk,l)) .
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Proof. It is easy to see that

Uk,l ∩ Sn = {ai : i > 0}.
Certainly Sn ⊂ On. Then it follows from Lemma 3.23, that

Uk,l\Sn = Tn\ (Ok,l ∪ Pk,l) .

Hence

Uk,l = {ai : i > 0} ∪ (Tn\ (Ok,l ∪ Pk,l)) .

For any function f : Zn → Zn in Tn, we can view the elements of Zn, in the domain,

as vertices of a graph, and the elements of Zn, in the range, as colours. This provides

a correspondence between transformations and vertex colourings of a graph. By viewing

Tn in this way, we see that each function in Pk,l corresponds to a colouring of a graph

with vertex set Zn, such that no vertex in A has the same colour as a vertex in B. Then

the number of elements in Pk,l is exactly the number of proper vertex colourings of the

complete bipartite graph, where one component is the set of vertices A, and the other

component is the set of vertices B.

Lemma 3.25. For positive integers k,l, and j, define g(k, l, j) to be the number of proper

vertex colourings, using j colours, of the complete bipartite graph with vertex sets of size k

and l. Then for n ≥ 5 there exist coprime integers k and l such that k + l = n, and

g(k, l, n) ≤ nn

(
4(n − 1)

n2 + 4n − 20

)
.

Proof. If n odd, take k = n−1
2

, and l = n+1
2

. Otherwise, if n = 2i for some even i, take

k = n
2
− 1, and l = n

2
+ 1. Otherwise, n = 2i for some odd i, so take k = n

2
− 2, and

l = n
2

+ 2. We can easily verify that, in all cases, the choice of k, l is coprime.

We can give an upper bound on the size of g(k, l, j) using the following result, proved

by Lazebnik [16], concerning the number of proper colourings of a graph.

Theorem 3.26 (Lazebnik). Let v, e, and λ be integers with 0 ≤ e ≤ v(v − 1)/2, and

λ ≥ 2. Define κ(v, e, λ) to be the greatest number of proper colourings of a graph with v
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vertices and e edges using λ colours. Then

κ(v, e, λ) ≤
(

λ − 1

λ − 1 + e

)
λv.

There are kl edges in a complete bipartite graph with vertex sets of size k and l. If we

take λ = j, v = n, and e = kl, then by Theorem 3.26 we have

g(k, l, j) ≤ (j − 1)jn

j − 1 + kl
.

But
(

n
2

+ 2
) · (n

2
− 2

) ≤ kl so that

g(k, l, n) ≤ (j − 1)jn

j − 1 +
(

n
2

+ 2
) · (n

2
− 2

)
≤ (j − 1)kn

j − 1 + (n−1)2

4

≤ nn

(
4(n − 1)

n2 + 4n − 20

)
,

as required.

The connection between the elements of Ok,l and the strings described in the following

lemma is clear.

Lemma 3.27. Let n = k + l, with k < l. Define h(k, l, j) to be the number of length-j

strings over the alphabet {1, . . . , n}, such that each string contains at least one occurrence

of each of the elements of {k + 1, . . . , n}. Then

h(k, l, n) < 1.5372 · nn+4

(
2

e

)n
2

.

Proof. There are l elements in the set {k+1, . . . , n}. We can select the l positions for these

elements in
(

n
l

)
ways. For each selection of positions, we can arrange the odd elements in

l! ways. For each arrangement, the remaining k positions can be occupied in no more than
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nk ways. Then we have

h(n, n) ≤
(

n

l

)
· l! · nk

=
n!

l!
· (l)(l − 1) · · · (k + 1) · nk

<
n!

l!
· nk+4

A version of Stirling’s Formula [30] gives us

√
2πnn+ 1

2 e−n · e 1
12n+1 < n! <

√
2πnn+ 1

2 e−n · e 1
12n .

For n ≥ 1, e
1

12n+1 > 1, and e
1

12n ≤ e
1
12 . So

n!

l!
<

nn+ 1
2 · e−n · e 1

12

ll+
1
2 · e−l

.

But since xx+ 1
2 e−x is increasing for x > 0, we have

n!

l!
<

nn+ 1
2 · e−n · e 1

12(
n
2

)n
2
+ 1

2 · e−n
2

= e
1
12 · nn

2 · 2n
2
+ 1

2 · e−n
2

< 1.5372 · nn
2

(
2

e

)n
2

,

where 1.5372
.
=

√
2e

1
12 . This gives us the desired result.

We are now ready to give a lower bound on the size of the largest monoid generated by

two transformations.

Theorem 3.28. Define An to be the largest submonoid of Tn that can be generated by two

elements. Then for n ≥ 189 we have

|An| > nn(1 − 4n−1).
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Proof. Choose coprime integers k, l with k as large as possible, so that k + l = n, and

1 < k < l < n. Certainly |An| ≥ |Uk,l|. Define g(k, l, n) as in Lemma 3.25. Then

|Pk,l| = g(n, n). Also, define h(k, l, n) as in Lemma 3.27, so that |Ok,l| = h(k, l, n). It

follows from Lemma 3.24, that

|Uk,l| = nn − |Ok,l| − |Pk,l| + |Ok,l ∩ Pk,l| + kl.

This gives us

|An| ≥ |Uk,l|
= nn − |Ok,l| − |Pk,l| + |Ok,l ∩ Pk,l| + k · l
> nn − |Ok,l| − |Pk,l|
= nn − h(k, l, n) − g(k, l, n)

> nn − 1.5372 · nn+4

(
2

e

) 1
2
n

− nn

(
4(n − 1)

n2 + 4n − 20

)
(by Lemma 3.27 and Lemma 3.25).

The reader can verify that for n ≥ 189, we have 4
n

> 4(n−1)
n2+4n−20

+ 1.5372 · n4
(

2
e

) 1
2
n
, which

gives

|An| > nn(1 − 4n−1).

Corollary 3.29. For each n ≥ 5, there exists a monoid An such that

lim
n→∞

|An|
nn

= 1.

Proof. The result is an immediate consequence of Theorem 3.28.

This work was completed in May 2003 by Krawetz, Lawrence, and Shallit [13]. Unfor-

tunately, these results were already known to Holzer and König [9].

We now give a summary of the proof, due to Holzer and König, that the Uk,l monoids

are, in fact, the largest two-generated monoids. However, for the purposes of their use in

the next chapter, many of the intermediate results given by Holzer and König have been

improved upon, somewhat. In these cases, the proofs are very similar to those given for
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the original results, and include only small changes. In each case, the statement of the

original result will follow as a corollary.

We begin with a slightly more general definition of the Uk,l monoids, as used by Holzer

and König.

For coprime integers k, l ≥ 2, where k+ l = n, let α = (1 2 · · · k)(k+1 k+2 · · · n) be

a permutation of Zn composed of two cycles, one of length k, the other of length l. Define

Uk,l to be the set of all transformations γ ∈ Tn where exactly one of the following is true:

1. γ = αm for some positive integer m;

2. For some i ∈ {1, · · · , k} and some j ∈ {k + 1, · · · , n} we have that γ(i) = γ(k) and

for some m ∈ {k + 1, · · · , n} we have that m �∈ img(γ).

Let π1 = (1 2 · · · k) be an element of Sn−1, and let π2 ∈ Sn−1 be a permutation such

that π1 and π2 generate Sn−1. Now define β ∈ Tn by

β =

(
1 2 · · · n − 1 n

π2(1) π2(2) · · · π2(n − 1) π2(1)

)
.

Lemma 3.30 (Holzer and König). The set Uk,l is a submonoid of Tn and is generated

by {α, β}.
Holzer and König [10] also gave the following formula to compute the size of Uk,l.

Lemma 3.31 (Holzer and König). For n = k + l, we have

|Uk,l| = kl +
n∑

i=1

((
n

i

)
−

(
k

i − l

))({
n

i

}
−

i∑
r=1

{
k

r

}{
l

i − r

})
i!,

where
{

n
i

}
is a Stirling number of the second kind, the number of ways to partition a set

of n elements into i non-empty sets.

Theorem 3.32 (Holzer and König). For n ≥ 7, there exist coprime integers k,l such

that n = k + l and

|Uk,l| ≥ nn

(
1 −

√
2

(
2

e

)n
2

e
1
12 −

√
8

1√
n

e
1
12

)
.
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In the previous section, we defined the monoid V l
n. This monoid is generated by a

single-cycle permutation, and a non-bijective transformation that identifies two elements

from that cycle. The next lemma gives an upper bound on the size of a monoid that is

more general than V l
n.

Lemma 3.33 (Holzer and König). Let a ∈ Tn be any permutation, and let b ∈ Tn be a

non-bijective transformation that identifies two elements of the same cycle in a. Then

| span(a, b)| ≤ nn +
√

2πn
(n

e

)n

e
1
12 − nn

(
(n − 1)(n − 2)

n2

)n
3

.

With Lemma 3.32 and Lemma 3.33, we are now ready to give the first result leading

to the maximality of the monoid Uk,l.

Lemma 3.34. Let a ∈ Tn be any permutation, and let b ∈ Tn be a non-bijective trans-

formation that identifies two elements of the same cycle in a. Then there exist coprime

integers k,l, with n = k + l, such that

|Uk,l| ≥ | span(a, b)| +
(

n

2

)
.

Proof. From Lemma 3.32 it follows that for some coprime integers k,l, with n = k + l, we

have

|Uk,l| ≥ nn

(
1 −

√
2

(
2

e

)n
2

e
1
12 −

√
8

1√
n

e
1
12

)
.

Also, from Lemma 3.33, we have

| span(a, b)| ≤ nn +
√

2πn
(n

e

)n

e
1
12 − nn

(
(n − 1)(n − 2)

n2

)n
3

.

Then | span(a, b)| ≤ |Uk,l| when

√
2

(
2

e

)n
2

e
1
12︸ ︷︷ ︸

A(n)

+
√

8
1√
n

e
1
12︸ ︷︷ ︸

B(n)

<

(
(n − 1)(n − 2)

n2

)n
3

︸ ︷︷ ︸
C(n)

−
√

2πn

(
1

e

)n

e
1
12︸ ︷︷ ︸

D(n)

.

For n = 20, we have C(n) > 0.358 and D(n) < 10−7. On the interval [20,∞), the

function C(n) is strictly increasing while the function |D(n)| is strictly decreasing. So for
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n ≥ 20, this gives C(n)−D(n) > 0.357. For n = 82, we have A(n) < 10−4 and B(n) < 0.34.

On the interval [82,∞), both A(n) and B(n) are strictly decreasing. So for n ≥ 82, this

gives A(n) + B(n) < 0.35. Hence, for n ≥ 82, we have C(n) − D(n) − A(n) − B(n) >

0.007 > n2−n. This gives

|Uk,l| − | span(a, b)| ≥ n2−n · nn = n2 >

(
n

2

)
.

For n ≤ 81, Holzer and König [10] verified computationally that the largest such

span(a, b) monoids were, in fact, the V l
n monoids. This author verified computationally

that for 7 ≤ n ≤ 81 and some appropriate k,l, we have |Uk,l| ≥ |V j
n | +

(
n
2

)
for all j.

Corollary 3.35 (Holzer and König). Let a ∈ Tn be any permutation, and let b ∈ Tn be

a non-bijective transformation that identifies two elements of the same cycle in a. Then

there exist coprime integers k,l, with n = k + l, such that

|Uk,l| ≥ | span(a, b)|.
Lemma 3.36. For prime numbers n ≥ 7, let α ∈ Sn be a permutation with exactly 2 cycles,

and let β ∈ Tn be any transformation that identifies elements from at least two different

cycles of α. Let V denote span(α, β). Then either V is isomorphic to a Uk,l monoid, or

there exist coprime integers k,l ≥ 2 such that k + l = n and

|Uk,l| ≥ |V | +
(

n

2

)
.

Proof. Let s and t denote the lengths of the the two cycles in α, and let r denote the

element missing from the image of β.

In the degenerate case, where one of the cycles in α has length 1, it follows from Lemma

3.16 and Lemma 3.34 that for some appropriate k, l we have

|Uk,l| ≥ |V | +
(

n

2

)
.

When α has no cycle of length 1, we have s, t ≥ 2. let Cs be the set of elements contained

in the cycle of length s, and let Ct be defined similarly. Without loss of generality, assume

r ∈ Cs. Let

V ′ = span(α) ∪ {γ ∈ Tn : m �∈ img(γ), m ∈ Cs; and γ(i) = γ(j), i ∈ Cs, j ∈ Ct}.
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Certainly V ⊆ V ′. If V = V ′, then V is isomorphic to Us,t.

Now, if V ⊂ V ′, then assume that r = n, and let V ′′ denote the restriction of V to

the domain and range Zn−1. Then V ′′ �= Tn−1, otherwise, an argument similar to the one

used in the proof of Lemma 3.24 would show that V = V ′. Hence, there exists X ⊆ Tn−1,

such that V ′′ ⊆ Tn−1\X. It follows from arguments similar to those used in the proof of

Lemma 3.7 that X contains at least all transpositions, all (n−1)-cycles, or all (n−1)-rank

transformations.

If X contains all transpositions, then |X| ≥ (
n−1

2

)
. Furthermore, for every γ ∈ X, let

γ′ ∈ Tn be an extension of γ such that γ′ ∈ V ′. Then γ′(n) can be any element of Ct. But

γ′ �∈ V . Hence,

|V | ≤ |V ′| − t ·
(

n − 1

2

)
≤ |Us,t| −

(
n

2

)
.

If X contains all (n − 1)-cycles, then a similar argument shows that

|V | ≤ |V ′| − t · (n − 2)! ≤ |Us,t| −
(

n

2

)
.

Finally, if X contains all (n − 1)-rank transformations, then |X| ≥ (
n−1

2

)
(n − 2)!, so that

|V | ≤ |V ′| −
(

n − 1

2

)
(n − 2)! ≤ |Us,t| −

(
n

2

)
.

If r �= n, then a similar argument, considering the restriction of V to the domain and

range Zn\{r}, will lead to the same conclusion.

Lemma 3.37. For prime numbers n ≥ 7, let α ∈ Sn be any permutation with at least

3 cycles, and let β ∈ Tn be any transformation that identifies elements from at least two

different cycles of a. Then there exist coprime integers k,l ≥ 2 such that k + l = n and

|Uk,l| ≥ | span(α, β)| +
(

n

2

)
.

Proof. Let U denote the monoid span(α, β). We will construct a new monoid U ′ that is

isomorphic to some Uk,l monoid, and show that |U ′| ≥ |U | + (
n
2

)
.

Define i, j to be elements from two different cycles of α such that β(i) = β(j). Further-

more, define r to be an element missing from the image of β.
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Let m be the number of cycles in α, and let k1, . . . , km be their lengths. For 1 ≤ i ≤ m,

define Ci as the set of elements contained in the cycle of length ki. Then∑
1≤i≤m

ki = n, and
⋃

1≤i≤m

Ci = Zn.

Without loss of generality, assume that i ∈ C1 and j ∈ C2. Then either r ∈ C1 ∪C2, or

r �∈ C1 ∪ C2.

Case 1: r ∈ C1 ∪ C2.

Without loss of generality, assume that r ∈ C2. Let α′ be a permutation

composed of two cycles; the first containing the elements C ′
1 = C1, and the

second containing the elements C ′
2 = C2 ∪ · · · · · ·Cm Let k = |C ′

1|, and l = |C ′
2|.

Since n = k + l is prime, we have that k and l are coprime, and we can find a

transformation β′ so that span(α′, β′) = U ′, where

U ′ = span(α′)∪{γ ∈ Tn : m �∈ img(γ), m ∈ C ′
1; and γ(i) = γ(j), i ∈ C ′

1, j ∈ C ′
2},

with U ′ isomorphic to Uk,l. Now,

U ⊆ span(α)∪{γ ∈ Tn : m �∈ img(γ), m ∈ C1; and γ(i) = γ(j), i ∈ C1, j ∈ C2}.

It follows then, since C1 ⊆ C ′
1, and C1 ⊆ C ′

1, that U\Sn ⊆ U ′\Sn.

In the worst case the monoid U may contain k1 · · · km permutations, while U ′

contains exactly kl. However, we will show that the difference in the number

of rank n − 1 transformations is more than enough to compensate.

We enumerate the rank n − 1 elements of U as follows: select an element of

C1 to identify with an element for C2 (this can be done in k1k2 ways); select

an element of C2 to omit from the image (this can be done in k2 ways); finally,

arrange the elements of the image, in (n − 1)! ways. Then we have at most

k1k
2
2(n−1)! transformations of rank n−1 in the monoid U . By similar reasoning,

there are exactly kl2(n − 1)! transformations of rank n − 1 in the monoid U ′.

This gives a difference of (kl2 − k1k
2
2)(n − 1)!.
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Case 1.a: k1 ≥ n
2

+ 1.

We have,

kl2 − k1k
2
2 = k1(l

2 − k2
2)

= k1(l + k2)(l − k2)

≥
(n

2
+ 1

)
(l + k2)(l − k2)

≥
(n

2
+ 1

)
(2) since 1 ≤ k2 < l

≥ n + 1.

Case 1.b: k1 < n
2

+ 1.

Since k1 < n
2

+ 1, we have that l ≥ n
2

+ 1. Now, since 1 ≤ k2 < l, this

also gives us (l + k2) ≥ n + 1, or (l − k2) ≥ 2. Thus,

kl2 − k1k
2
2 = k1(l

2 − k2
2)

≥ (l + k2)(l − k2)

≥ n + 1.

In either case, this gives (n + 1)(n − 1)! more elements in U ′\Sn. Therefore

|U ′\Sn| ≥ |U\Sn| + (n + 1)(n − 1)!

≥ |U\Sn| + n! +

(
n

2

)

≥ |U | +
(

n

2

)
.

Case 2: r �∈ C1 ∪ C2.

Without loss of generality, assume that r ∈ C3. Let α′ be a permutation

composed of two cycles; the first containing the elements C ′
1 = C1 ∪

⋃
4≤i≤m Ci,

and the second containing the elements C ′
2 = C2∪C3 Let k = |C ′

1|, and l = |C ′
2|.

Then kl2 −k1k2k3 ≥ n+1. So by an argument similar to the one given for case

1, we have the desired result.
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Hence, the result is proved.

Corollary 3.38 (Holzer and König). For prime numbers n ≥ 7, let α ∈ Sn be any

permutation with at least 2 cycles, and let β ∈ Tn be any transformation that identifies

elements from at least two different cycles of a. Then there exist coprime integers k,l ≥ 2

such that k + l = n and

|Uk,l| ≥ | span(α, β)|.
We are now ready to state the main result of this chapter.

Theorem 3.39. For all prime numbers n ≥ 7, there exist coprime integers k,l ≥ 2 such

that k + l = n and for any two-generated monoid U ⊆ Tn, we have |Uk,l| ≥ |U | + (
n
2

)
.

Proof. If U is a two-generated monoid, then we must have one of the following cases:

Case 1: U is generated by two permutations.

This case is covered by Lemma 3.17 and Lemma 3.34.

Case 2: U is generated by two non-bijective functions.

This case is covered by Lemma 3.18 and Lemma 3.34.

Case 3: U is generated by a permutation and a non-bijective function identifying two

elements from the same cycle.

This case is covered by Lemma 3.16 and Lemma 3.34.

Case 4: U is generated by a permutation and a non-bijective function identifying two

elements from different cycles.

This case is covered by Lemma 3.36 and Lemma 3.37.

Hence, we have the desired result.

Corollary 3.40 (Holzer and König). For all prime numbers n ≥ 7, there exist coprime

integers k,l ≥ 2 such that k + l = n and Uk,l is the largest two-generated submonoid of Tn.

It seems likely that the results of Theorem 3.39 and Corollary 3.40, will hold in general

and so we give the following conjectures.
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Conjecture 3.41 (Holzer and König). For any n ≥ 7, there exist coprime integers

k,l ≥ 2 such that k + l = n and Uk,l is the largest two-generated submonoid of Tn.

Conjecture 3.42. For any n ≥ 7, there exist coprime integers k,l ≥ 2 such that k + l = n

and for any two-generated monoid U ⊆ Tn, we have |Uk,l| ≥ |U | + (
n
2

)
.

Though Corollary 3.40 gives us proof that a Uk,l monoid is maximal when n is prime,

it does not offer any method to determine the integers k and l. Holzer and König believe,

however, that these values are as close to n
2

as possible, as in the proof of Lemma 3.25.



Chapter 4

State complexity of root(L)

In this chapter, we focus on determining the worst-case state complexity of the operation

root(L), given by

root(L) = {w ∈ Σ∗ : ∃n ≥ 1 such that wn ∈ L},

where L is a regular language. Note that this operation is not the same as the ROOT(L)

operation studied by Horváth, Leupold, and Lischke [12].

The study of the root(L) operation requires us to examine the connections between finite

automata and algebra. We will show that the algebraic structure of a DFA recognizing L

provides a basis for the construction of a DFA recognizing root(L). This relationship allows

us to apply the results of Chapter 3 to obtain non-trivial lower bounds on the worst-case

state complexity of root(L).

The operation root(L) is regularity preserving, that is, when L ⊆ Σ∗ is regular, root(L)

is regular. This fact can be demonstrated by applying Theorem 2.1 of [27], with λ =

[1], ν = [1], and µ : Σ∗ → P(Σ∗)1×1 given by µ(w) = [w+]. Here P(Σ∗)1×1 is the set of

1 × 1 matrices with entries in the power set of Σ∗, and w+ is the set {w,w2, w3, . . .}.
For the purposes of this thesis, however, we require a construction for root(L) involving

automata. The first construction we give uses a type of automaton known as a 2DFA. The

class of languages recognized by these automata was shown, by Rabin and Scott [28], to

be equivalent to the class of regular languages. Here we will give a definition similar to

that used by Birget [4].

45
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Intuitively, a DFA is a machine that processes its input tape. At any given point during

processing, the tape head of the DFA is located at some position on the input tape. After

each step of processing, the tape head moves one symbol to the right. In this sense, a DFA

is only capable of reading its input tape once, from left to right. A 2DFA, on the other

hand, is an extension of this model. This machine, instead, is permitted to move its tape

head left, right, or not at all. So a 2DFA is capable of reading its input tape an arbitrary

number of times.

More formally, a two-way deterministic finite automaton, or 2DFA, is is a 5-tuple A =

(Q, Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is the finite input alphabet,

δ : Q × Σ ∪ {#, $} → Q × {−1, 0, 1} is the transition function, q0 ∈ Q is the initial state,

and F ⊆ Q is the set of final states. Note that the symbols # and $ are not in Σ. Instead,

they serve as left and right tape end-markers, respectively.

A configuration of A is composed of a state (considered the current state), the contents

of the input tape, and the position of the tape head on the tape. On the input w ∈ Σ∗, a

configuration can be represented by a string of the form w′qxw′′, where q ∈ Q is the current

state, x ∈ Σ ∪ {#, $}, and w′xw′′ = #w$. In the configuration w′qxw′′, the tape head

is located at the symbol x. The automaton A begins computation in the configuration

represented by q0#w$. For any configuration of the form w′qxw′′, let δ(q, x) = (q′, d). If

δ(q, x) is not defined, or if w′ = ε and d = −1, then the automaton crashes and processing

stops. Otherwise, the next configuration is exactly one of the following:

1. w′xq′w′′, if d = 1;

2. w′q′xw′′, if d = 0;

3. v′qx′v′′, where v′x′ = w′ and v′′ = xw′′, if d = −1.

Then the computation of a word w ∈ Σ∗ is a sequence of configurations beginning with

q0#w$. If the configuration w′qw′′ is precedes the configuration v′pv′′ in the sequence, then

we say that v′pv′′ is reachable from w′qw′′ and we write w′qw′′ ⇒∗ v′pv′′. If q0#w$ reaches

the configuration #w$q, then processing stops. If q ∈ F , then we say that A accepts or

recognizes w. The language recognized by A is given by

L(A) = {w ∈ Σ∗ : w is accepted by A} ⊆ Σ∗.
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Note that it is possible for a machine to reach the same configuration more than once. In

this case, the automaton has entered an infinite loop, and processing will never stop.

The definition given above for a 2DFA includes the use of end-markers. Though this use

is common, it is not strictly necessary. Shepherdson [33] proved that end-markers provide

no additional computational power. That is, the class of languages recognizable by 2DFA

does not depend on the use of end-markers in the definition.

Theorem 4.1. The operation root(L) is regularity preserving.

Proof. The idea of this construction is to use a 2DFA to simulate the behaviour of a DFA

recognizing L. However, when the end of input is reached, computation in the DFA is

suspended while the tape head is brought back to the beginning of the input string. Once

the tape head is reset, computation resumes. If, when the end of input is reached, the

2DFA is in a final state of the simulated DFA, then the machine has done so by reading a

string of the form wi. In this case, the 2DFA accepts the string.

More formally, for a regular language L, let A = (Q, Σ, δ, q0, F ) be a DFA recognizing

L. Define the 2DFA A′ = (Q′, Σ, ρ, q′0, F
′) as follows:

• Q′ = Q ∪ {q′ : q ∈ Q};

• F ′ = {q′ ∈ Q′ : q ∈ F};

• ρ(q, a) = (δ(q, a), 1), for all q ∈ Q and a ∈ Σ;

• ρ(q, $) = (q,−1), for all q ∈ Q, q �∈ F ;

• ρ(q, $) = (q′, 1), for all q ∈ Q, q ∈ F .

• ρ(q′, a) = (q′,−1), for all q ∈ Q and a ∈ Σ;

• ρ(q′, #) = (q, 1), for all q ∈ Q;

To see that L(A′) = root(L), consider any w ∈ root(L). Let k ≥ 1 be the least integer

such that wk ∈ L. Let denote qi = δ(q0, w
i) for 1 ≤ 1 ≤ k. Then qk ∈ F , since wk ∈ L.

This gives us

q′0#w$ ⇒∗ #q0w$ ⇒∗ #wq1$ ⇒∗ q′1#w$ ⇒∗ #q1w$ ⇒∗ #wqk$ ⇒∗ #w$q′k.
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Hence, w ∈ L(A′).

Now, while processing w ∈ Σ∗ it is clear that the movement of the tape head will only

change direction when a tape end-marker is reached. So we can consider the configuration

of A′ after each left-to-right scan of the string w. Let qi denote the current state of the

the 2DFA after the ith scan, when the tape head is on the right end-marker. Then the

movement of the tape head back to the beginning of input is represented by the sequence

#wqi$ ⇒∗ #qiw$, so qi is also the current state at the beginning of the (i + 1)th scan.

If w ∈ L(A′), then w is scanned k times, where k is an integer. Furthermore, we have

qk ∈ F ′. Each scan of the input gives us δ(qi, w) = qi+1 for 1 ≤ i < k. Then it follows that

δ(q0, w
k) = δ(q1, w

k−1) = δ(qk−1, w) = qk ∈ F.

Hence w ∈ root(L). This completes the proof.

Though the idea behind the machine constructed in the proof of Theorem 4.1 is simple,

the notation is cumbersome. This makes the execution of the idea much more complicated

than desired. A more elegant proof, involving automata, of the regularity of root(L) is

given in the following theorem.

Theorem 4.2. For a language L and a DFA A = (Q, Σ, δ, q0, F ) with L = L(A), define

the DFA A′ = (QQ, Σ, δ′, q′0, F
′) where q′0 = δε, F ′ = {f : ∃n ≥ 1 such that fn(q0) ∈ F},

and δ′ is given by

δ′(f, a) = fδa, for all f ∈ QQ and a ∈ Σ.

Then root(L) = L(A′).

Proof. An easy induction on |w|, w ∈ Σ∗, proves that δ′(q′0, w) = δw. Then

x ∈ root(L) ⇔ ∃n ≥ 1 : xn ∈ L

⇔ δx(q0) ∈ F ′

⇔ δ′(q′0, x) ∈ F ′.
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The construction of Theorem 4.2 uses, as its states, transformations of states of the

automaton for L. Zhang [38] used a similar technique to characterize regularity-preserving

operations. To recognize the image of a language under an operation, Zhang constructed

a new automaton with states based on Boolean matrices. These matrices represent the

transformations of states in the original automaton.

The result of Theorem 4.2 also allows us to give our first bound on the state complexity

of root(L).

Corollary 4.3. For regular language L, if sc(L) = n then sc(root(L)) ≤ nn.

Proof. This is immediate from the construction given in Theorem 4.2.

Despite the simplicity of its description, the DFA in Theorem 4.2 is actually quite large,

using nn states versus the 2n states used in the 2DFA construction of Theorem 4.1. This

suggests at least an nO(n) upper bound on the state complexity of a language recognized

by an n-state 2DFA. We will revisit this idea in the last section of this chapter. For now,

we continue with an analysis of the state complexity of root(L).

4.1 Unary languages

For unary regular languages, the problem is simple enough that we are able to attack it

directly, without having to employ results from algebra. In the unary case, it turns out

that the state complexity of the root of a language is bounded by the state complexity of

the original language.

Proposition 4.4. If L is a unary regular language, then sc(root(L)) ≤ sc(L). This bound

is tight.

The idea of the following proof is that given a particular DFA recognizing L, we can

modify it by adding states to the set of final states. The resulting DFA will recognize the

language root(L).

Proof. Let Σ = {a} be the alphabet of L. Since L is regular and unary, there exists a DFA

A recognizing L, such that A = ({q0, . . . , qn−1}, {a}, δ, q0, F ), where

δ(qi, a) = qi+1, for all 0 ≤ i < n − 1,
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and

δ(qn−1, a) = qj, for some 0 ≤ j ≤ n − 1.

We call the states q0, . . . , qj−1 the tail, and the states qj, . . . , qn−1 the loop.

Notice that root(L) = {as ∈ Σ∗ : s | t, at ∈ L}. Since words in root(L) are divisors of

words in L, the following theorem [2, Thm. 4.3.1] is useful.

Theorem 4.5. Let u, v, and f be integers. Then the equation

gu + hv = f

has a solution in integers g and h if and only if gcd(u, v) | f .

For all strings at ∈ L, we have some k ≥ 0 and some b ≤ n − 1 such that t = kl + b,

where l = n − j is the number of states in the loop. Let s = lm + c for some m ≥ 0 and

some 0 ≤ c < l. Then

s | t ⇔ ∃r : lk + b = r(lm + c)

⇔ ∃r : lk − rlm = rc − b

⇔ ∃r : gcd(l,−lm) | rc − b (by Theorem 4.5)

⇔ ∃r : l | rc − b

⇔ ∃r, v : rc − b = lv

⇔ ∃r, v : rc − lv = b

⇔ gcd(l, c) | b. (by Theorem 4.5)

It follows that the set of divisors of a number of the form kl + b, k ≥ 0, b ≤ n − 1 is as

follows:

{lm + c ∈ Z : m ≥ 0, gcd(l, c) | b}.
Then for each at ∈ L, the divisors of t = kl + b can be recognized by changing the

corresponding states into final states. Therefore, sc(root(L)) ≤ sc(L).

To show that this bound is tight, for n ≥ 2 consider the language Ln = {an−2}. Under

the Myhill–Nerode equivalence relation ∼Ln , no two strings in the set {ε, a, a2, . . . , an−2}
are equivalent. That is, for any two strings ai and aj, where 0 ≤ i, j ≤ n − 2, we can
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distinguish ai and aj with the string an−2−i. All other strings in Σ∗ are equivalent to an−1.

This gives sc(Ln) = n. Furthermore, since an−2 is the longest word in root(Ln), δ(q0, a
n−2)

cannot be a state in the loop. It follows that we require exactly n − 1 states in the tail

plus a single, non-final state in the loop. Hence sc(root(Ln)) = n. Therefore the bound is

tight.

4.2 Languages on larger alphabets

First, recall, from the beginning of Chapter 3, the definition of the transition monoid of

an automaton.

Definition. Let A = (Q, Σ, δ, q0, F ) be DFA. For w ∈ Σ∗, define the function δw : Q → Q

by δw(q) = δ(q, w), for all q ∈ Q. If we denote the empty word by ε, then δε is the identity

function. Define the composition operation, denoted ·, by (f ·g)(q) = g(f(q)), for all q ∈ Q.

Then the set of all functions δw together with the composition operator form a monoid,

with δε as the identity element. This is called the transition monoid of A. Instead of (f ·g),

we will simply write fg.

For a regular language L ⊆ Σ∗, if A is the minimal DFA such that L = L(A), then as

we saw in Theorem 4.2, based on the set of all transformations of the states of A, we can

construct an automaton A′ to recognize root(L).

Though this new DFA, A′, has all transformations of Q as its states, it is easy to see

that the only reachable states are those that are a composition of the transformations

δa1 , . . . , δam , where a1, . . . , am ∈ Σ. The elements δa1 , . . . , δam , and all of their compositions

is precisely the transition monoid of A. This fact gives us the following corollary.

Corollary 4.6. For a regular language L, let A be the smallest DFA recognizing L. Then

if M is the transition monoid of A, we have that sc(root(L)) ≤ |M |.

Proof. In Theorem 4.2, the only reachable states in the construction of A′ are those that

belong to the transition monoid of A.

This connection between the state complexity of root(L) and the transition monoid of

DFA for L allows us to exploit the results of Theorem 3.28 and Theorem 3.39. The bound
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given in Corollary 4.6, however, is not necessarily tight. Even without the unreachable

states, the DFA of Theorem 4.2 is not necessarily minimal. In the following section, we

will show how to create a language based on a particular transition monoid, such that the

number of equivalent states in the DFA of Theorem 4.2 is minimal.

4.2.1 Constructing Automata from Monoids

By associating an alphabet with the generators of a monoid, we can define a transition

function for a DFA. The definition of the DFA is then completed by choosing a start state

and a set of final states. This construction is given more formally below.

Let n,m be integers with n,m ≥ 1. For a set of transformations X = {α1, . . . , αm},
let M ⊆ Tn denote the monoid generated by X. Then a DFA based on X is a DFA

M = (Zn, Σ, δ, z0, F ), where |Σ| ≥ m, z0 ∈ Zn, F ⊆ Zn, and δ is given by

δa = Ψ(a), for all a ∈ Σ,

for some map Ψ : Σ → X ∪ {δε} that is surjective on X.

Proposition 4.7. Let M = (Zn, Σ, δ, z0, F ) be a DFA. Then M is the transition monoid

of M if and only if M is based on X, for some X ⊆ Tn that generates the monoid M .

Proof. For a DFA M based on X, the fact that M is the transition monoid of M is

immediate from the construction. For any DFA M that has M as its transition monoid,

we have that the set {δa ∈ Tn : a ∈ Σ} generates M . Then we can simply take Ψ given by

Ψ(a) = δa, for all a ∈ Σ.

In particular, let AΨ,X = (Zn, Σ, δ, z0, F ) denote the DFA based on X when z0 = 1,

F = {1}, and Ψ is bijective on an m-element subset of Σ, with all other elements of Σ

mapped to δε. If Ψ1 and Ψ2 are maps over the same domain, then AΨ1,X is isomorphic to

AΨ2,X , up to a renaming of the states and alphabet symbols. For this reason, we will often

denote this DFA simply by AΣ,X .

Example 4.8. Let Y = {α, β}, where

α =

(
1 2 3 4 5

2 1 4 5 3

)
, and β =

(
1 2 3 4 5

2 3 4 1 2

)
.
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Define Φ by Φ(a) = α and Φ(b) = β. Then Figure 4.9 depicts the DFA AΦ,Y .

1 2

4 3 5

a,b

a,b
b

a

b

a

b

a

Figure 4.9: The automaton AΦ,Y .

For n ≥ 5, define Xn ⊆ Tn to be a subset of transformations, and let Mn denote the

monoid generated by Xn. In particular, define Xk,l = {α, β}, where α and β are as in

Lemma 3.30. Then Xk,l generates Uk,l. We now state our main result concerning the state

complexity of root(L(AΣ,Xn)).

Theorem 4.10. If Uk,l ⊆ Mn, for some coprime integers k ≥ 2 and l ≥ 3, with k + l = n,

then the minimal DFA recognizing root(L(AΣ,Xn)) has |Mn| −
(

n
2

)
states.

Before we are ready to prove this theorem, we must state a few more definitions and

lemmas.

Definition. Let ρ ∈ Tn. For any i, j, k, if ρ(i) = k = ρ(j) implies that i = j, then we say

that k is unique.

Definition. Let ρ ∈ Tn have rank 2, with img(ρ) = {i, j}. Then by the complement of ρ,

we mean the transformation ρ ∈ Tn, where

ρ(k) =


i, if ρ(k) = j;

j, if ρ(k) = i.
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For example, if ρ =

(
1 2 3 · · · n − 1 n

3 3 2 · · · 2 2

)
, then ρ =

(
1 2 3 · · · n − 1 n

2 2 3 · · · 3 3

)
.

It is easy to see that, in general, ρ and ρ have the same rank, and ρ = ρ.

For an automaton M = (Zn, Σ, δ, z0, F ), define the DFA M∗ = (Mn, Σ, δ′, δε, F
′),

where δε is the identity element of Tn, δ′(η, a) = ηδa for all η ∈ Mn, for all a ∈ Σ, and

F ′ = {η ∈ Tn : η(z0) = z0}. Then L(M∗) = root(L(M)).

For η, θ ∈ Mn, with η �= θ, note that η and θ are equivalent states if and only if for all

ρ ∈ Σ∗ we have that

δ′(η, ρ) ∈ F ′ ⇔ δ′(θ, ρ) ∈ F ′.

However, since δ′(η, ρ) = ηδρ, this is equivalent to saying that η and θ are equivalent states

in M if and only if for all ρ ∈ Mn, we have

ηρ ∈ F ′ ⇔ θρ ∈ F ′.

Lemma 4.11. Let Y ⊆ Tn generate Mn, and let M = (Zn, Σ, δ, z0, F ) be an automaton

based on Y such that z0 ∈ F . Let η, θ ∈ Mn, with η �= θ and rank(η) = 2. If η(z0) is

unique in the image of η, and η = θ, then η and θ are equivalent states in M∗.

Proof. We have

η =

(
1 2 · · · z0 − 1 z0 z0 + 1 · · · n

j j · · · j i j · · · j

)
,

and

θ =

(
1 2 · · · z0 − 1 z0 z0 + 1 · · · n

i i · · · i j i · · · i

)
,

for some i �= j.

If η(z0) ∈ F , then η ∈ F ′. If θ(z0) ∈ F , then θ ∈ F ′. Otherwise, θ(z0) ∈ Zn\{z0}. Since

θ(z) = η(z0) ∈ F for all z ∈ Zn\{z0}, we have that θ2(z0) ∈ F , and hence θ ∈ F ′. Similarly,

θ(z0) ∈ F implies that η, θ ∈ F ′. Furthermore, if img(η) ∩ F = ∅, then img(ηn) ∩ F = ∅,
for all n, and hence ηn(z0) �∈ F so that η �∈ F ′. Since img(η) = img(θ), this gives θ �∈ F ′.

Therefore η ∈ F ′ if and only if θ ∈ F ′.
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Let ρ ∈ Mn. Since η and θ have rank 2, ηρ and θρ have rank ≤ 2. If ηρ has rank 2,

then ρ(i) �= ρ(j), so that ηρ = θρ. Hence ηρ ∈ F ′ if and only if θρ ∈ F ′. The argument

is the same for the case where θρ has rank 2. Now, if ηρ has rank 1, then we must have

ρ = ρ′σρ′′, where σ(s) = σ(t) for some s and t, and where ρ′ is a permutation such that

either ηρ′(z0) = s and ηρ′(z) = t, for all z �= z0, or ηρ′(z0) = t and ηρ′(z) = s, for all z �= z0.

Without loss of generality, assume the former. Then clearly θρ′(z0) = t and θρ′(z) = s, for

all z �= z0. It follows that ηρ′σ = θρ′σ, so that ηρ = θρ.

Therefore η and θ are equivalent states.

Lemma 4.12. Let Y ⊆ Tn generate Mn, and let M = (Zn, Σ, δ, z0, F ) be an automaton

based on Y , such that z0 �∈ F . Let η, θ ∈ Mn, with η(z0) unique in the image of η,

rank(η) = 2, and img(η) = img(θ). If θ(z0) = η(z0), and if θ(z) = η(z0) implies that

z ∈ F , then η and θ are equivalent states in M∗.

Proof. If η(z0) ∈ F , then η ∈ F ′. Since θ(z0) = η(z0), it follows that θ ∈ F ′. Now suppose

that η(z0) �∈ F . If η ∈ F ′, then since rank(η) = 2, we must have that η2(z0) ∈ F . Now

θ(z0) �∈ F , so θ(θ(z0)) �= η(z0). But since rank(θ) = 2, and img(θ) = img(η), it follows

that θ2(z0) = η2(z0). Hence θ ∈ F ′. If η �∈ F ′, then η(z0) = z0 or img(η)∩F = ∅. In either

case, this implies that θ �∈ F ′. Therefore η ∈ F ′ if and only if θ ∈ F ′.

Let ρ ∈ Mn. Then, following an argument similar to the one used in the proof of

Lemma 4.11, we have that ηρ ∈ F ′ if and only if θρ ∈ F ′. Therefore η and θ are equivalent

states.

Now that we have a characterization of equivalent states in the general case for M∗,

we turn our attention toward the specific case, for A∗
Σ,Xn

.

Lemma 4.13. Let η, θ ∈ Mn, with η �= θ. If rank(η) = 1, then η and θ are not equivalent

states in A∗
Σ,Xn

.

Proof. Since η has rank 1, we have that img(η) = {z1} for some z1. If η(1) �= θ(1), then

take ρ ∈ Uk,l such that ρ(z1) = 2, and ρ(z) = 1, for all z �= z1. Then img(ηρ) = {2},
so that ηρ �∈ F ′. But θρ(1) = 1, so that θρ ∈ F ′. Hence η and θ are not equivalent. If

η(1) = θ(1), then rank(θ) �= 1 so that for some z2 �= 1 we have θ(z2) �= z1. Take ρ ∈ Uk,l

such that ρ(θ(z2)) = 1, and ρ(z) = z2, for all z �= θ(z2). Then img(ηρ) = {z2}, so that

ηρ �∈ F ′. But (θρ)2(1) = 1, so that θρ ∈ F ′. Hence η and θ are not equivalent.
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Lemma 4.14. For η, θ ∈ Mn, with η �= θ, let η have rank 2. Then η and θ are equivalent

states in A∗
Σ,Xn

if and only if η(1) is unique in the image of η, and η = θ.

Proof. Let img(η) = {i, j} for some i, j. Without loss of generality, assume that η(1) = i.

Since 1 ∈ F , Lemma 4.11 applies and gives the result in the forward direction. For the

other direction, we have two cases.

Case 1. i is not unique in the image of η.

Case 1.a. i = η(1) �= θ(1).

Since i is not unique, η(z) = i, for some z �= 1. Choose ρ ∈ Uk,l such

that ρ(i) = z, and ρ(θ(1)) = 1. Then ηρ(1) = ηρ(z) = z so that

(ηρ)n(1) = z, for all n ≥ 0. This gives us ηρ �∈ F ′. But θρ(1) = 1, so

that θρ ∈ F ′.

Case 1.b. i = η(1) = θ(1).

Case 1.b.i. img(η) = img(θ).

Since img(η) = img(θ) and η �= θ, then for some z �= 1,

we must have either i = η(z) �= θ(z) = j, or j = η(z) �=
θ(z) = i. Without loss of generality, assume the former.

Choose ρ ∈ Uk,l such that ρ(i) = z, and ρ(j) = 1. Then

(ηρ)n(1) = z, for all n ≥ 0, and (θρ)2(1) = 1. This gives us

ηρ �∈ F ′ and θρ ∈ F ′.

Case 1.b.ii. img(η) �= img(θ).

If rank(θ) = 1 then by Lemma 4.13, η and θ are not equiva-

lent. Otherwise there exists some z1 ∈ Zn such that θ(z1) �∈
img(η). Choose ρ ∈ Uk,l such that ρ(θ(z1)) = 1, and ρ(z) =

2, for all z �= θ(z1). Then ηρ �= θρ and rank(ηρ) = 1, and so

by Lemma 4.13, ηρ and θρ are not equivalent. Hence η and

θ are not equivalent.
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Case 2. i is unique in the image of η, and η �= θ.

If rank(θ) = 1 then by Lemma 4.13, η and θ are not equivalent. If img(η) =

img(θ), then since η �= θ, we have that θ(1) is not unique. So we can reverse

the roles of η and θ and apply case 1 to get the desired result. Assume then,

that img(η) �= img(θ), and rank(θ) ≥ 2. Then the fact that η and θ are not

equivalent follows just as in case 1.b.ii.

Therefore, η, and θ are equivalent states if and only if η(1) is unique in the image of η,

and η = θ.

Lemma 4.15. Let η, θ ∈ Mn, with η �= θ. If η, θ have rank ≥ 3, then η and θ are not

equivalent states in A∗
Σ,Xn

.

Proof. Since η �= θ, there exists some z1 ∈ Zn such that η(z1) �= θ(z1). Let z2 = η(z1).

Take ρ ∈ Uk,l such that ρ(z2) = 1, and ρ(z) = 2, for all z �= z2. Since rank(η) ≥ 3,

we have rank(ηρ) = 2. If ηρ(1) is not unique, then by Lemma 4.14, ηρ and θρ are not

equivalent. Hence η and θ are not equivalent. If ηρ(1) is unique, then it must be that

z1 = 1. Furthermore, since rank(θ) ≥ 3, we cannot have θ(z) = z2 for all z �= 1, so we

cannot have θρ(z) = 1 for all z �= 1. Therefore θρ �= ηρ. Then by Lemma 4.14, ηρ and θρ

are not equivalent. Hence η and θ are not equivalent.

We are now ready to prove Theorem 4.10.

Proof (Theorem 4.10). Lemma 4.13 – 4.15 cover all possible cases for η, θ ∈ Mn, η �= θ.

Therefore, two states are equivalent if and only if they satisfy the hypothesis of Lemma

4.11. There are
(

n
2

)
such equivalence classes in Uk,l ⊆ Mn, each containing exactly 2

elements. All other elements of Mn are in equivalence classes by themselves. It follows

that the minimal DFA recognizing root(L(AΣ,Xn)) has |Mn| −
(

n
2

)
states.

4.2.2 Alphabets of Size Two

Now that we have established a close relationship between sc(root(L)) and the transition

monoid of the the minimal automaton recognizing L, we can take advantage of results
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concerning the size of the largest monoids to give bounds on the worst-case state complexity

of root(L).

An immediate result of Corollary 3.19 gives us the following upper bound.

Corollary 4.16. For any binary language L, we have

sc(root(L)) ≤ nn − n! + g(n),

where g(n) is Landau’s function.

The following corollary to Theorem 4.10 gives a lower bound for alphabets of size two.

It also proves the existence of a sequence of regular binary languages with state complexity

n whose root has a state complexity that approaches nn as n increases without bound.

We now state our first main result of this chapter.

Corollary 4.17. For n ≥ 7, there exists a regular language L over an alphabet of size 2,

with sc(L) ≤ n, such that

sc(root(L)) ≥ nn

(
1 −

√
2

(
2

e

)n
2

e
1
12 −

√
8

1√
n

e
1
12

)
−

(
n

2

)
.

Proof. The result follows from a combination of Theorem 3.32 and Theorem 4.10.

In contrast to the operations summarized in Table 1.2, whose state complexity is O(2n),

Corollary 4.17 gives us a relatively simple operation on regular languages whose worst-case

state complexity is nn(1 − O(n− 1
2 )), even for binary alphabets.

Theorem 4.10 does not apply when l = 2, but unfortunately, Theorem 3.39 does not

exclude this possibility. To guarantee that this fact is of no consequence, we must show

that not only is the monoid Un−2,2 never the largest, but that it is also smaller than the

largest monoid by at least
(

n
2

)
elements. The following lemma demonstrates this.

Lemma 4.18. For n ≥ 7, we have that

|U2,n−2| − |Un−2,2| ≥
(

n

2

)
.
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Proof (Lemma 4.18). As stated in [10], for k + l = n, we have the following formula

|Uk,l| = kl +
n∑

i=1

((
n

i

)
−

(
k

i − l

))({
n

i

}
−

i∑
r=1

{
k

r

}{
l

i − r

})
i!,

where
{

n
i

}
is a Stirling number of the second kind, the number of ways to partition a set

of n elements into i non-empty sets. This gives

|Uk,l| − |Ul,k| =
n∑

i=1

((
l

i − k

)
−

(
k

i − l

))({
n

i

}
−

i∑
r=1

{
k

r

}{
l

i − r

})
i!. (∗)

Since
{

n
k

}
= 0 whenever k > n or k < 1, for k = 2, and l = n − 2, we have

i∑
r=1

{
2

r

}{
n − 2

i − r

}
=

{
n − 2

i − 2

}
+

{
n − 2

i − 1

}
.

Also, notice that
(

n−2
i−2

) − (
2

i−n+2

)
is positive when 2 ≥ i ≥ n − 1, and zero otherwise, so

that (∗) becomes

|U2,n−2| − |Un−2,2| ≥
n−1∑
i=2

({
n

i

}
−

{
n − 2

i − 2

}
−

{
n − 2

i − 1

})
i!.

And finally, using the identity
{

n
k

}
=

{
n−1
k−1

}
+ k

{
n−1

k

}
, we see that{

n

i

}
=

{
n − 2

i − 2

}
+ (2i − 1)

{
n − 2

i − 1

}
+ (i − 1)

{
n − 2

i

}
,

so that we get

|U2,n−2| − |Un−2,2| ≥
n−1∑
i=2

(
(2i − 2)

{
n − 2

i − 1

}
+ (i − 1)

{
n − 2

i

})
i! ≥

n−1∑
i=2

i! ≥
(

n

2

)
.

The choice of start and final states in the construction of the DFA AΣ,Xn is the best

possible. The following theorem will show that for any other DFA with the same tran-

sition function, a different assignment of start and final states will not increase the state

complexity of the language it recognizes.
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Theorem 4.19. Let Y ⊆ Tn generate Mn, and let M = (Zn, Σ, δ, z0, G) be an automaton

based on Y . Then sc(root(L(M))) ≤ sc(root(L(AΣ,Xn)).

Proof. If z0 ∈ G, then Lemma 4.11 applies. It follows that there are at least
(

n
2

)
pairs of

equivalent states in M∗. If z0 �∈ G, then Lemma 4.12 applies, and again we have at least(
n
2

)
pairs of equivalent states in M∗. In either case, this gives

sc(root(L(M))) ≤ |Mn| −
(

n

2

)
≤ sc(root(L(AΣ,Xn)).

We now state our second main result of this chapter.

Corollary 4.20. For prime numbers n ≥ 7, there exist positive, coprime integers k ≥ 2,

l ≥ 3, with k+l = n, such that if L is a language over an alphabet of size 2, with sc(L) ≤ n,

then sc(root(L)) ≤ |Uk,l| −
(

n
2

)
. Furthermore, this bound is tight.

Proof. Let U ′ denote the largest two-generated submonoid of Tn. Then by Theorem 3.39

and Lemma 4.18, we have that U ′ = Uk′,l′ for some coprime integers k′ ≥ 2, l′ ≥ 3 with

k′ + l′ = n.

Let M be the smallest DFA recognizing L, and let M be the transition monoid of M. If

M is of the form Uk,l, with k ≥ 2, l ≥ 3, then |Uk,l| ≤ |U ′|. It follows from Theorem 4.19 that

sc(root(L)) ≤ |Uk,l|−
(

n
2

) ≤ |U ′|−(
n
2

)
. If M is of the form Uk,l, with k = n−2, l = 2, then by

Corollary 4.6 and Lemma 4.18 we have sc(root(L)) ≤ |Un−2,2| ≤ |U2,n−2| −
(

n
2

) ≤ |U ′| − (
n
2

)
.

Let V denote the largest two-generated submonoid of Tn that is not of the form Uk,l for

some coprime integers k ≥ 2, l ≥ 3 with k + l = n. Again, by Theorem 3.39 we have that

|U ′| − |V | ≥ (
n
2

)
. It follows from Corollary 4.6 that if M is not of the form Uk,l, we have

sc(root(L)) ≤ |M | ≤ |V | ≤ |Uk,l| −
(

n

2

)
.

The fact that the bound is tight is an immediate consequence of Theorem 4.10.

If Conjecture 3.42 is true, then the result stated in the following conjecture is an

immediate result.
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Conjecture 4.21. For and integer n ≥ 7, there exist positive, coprime integers k ≥ 2,

l ≥ 3, with k+l = n, such that if L is a language over an alphabet of size 2, with sc(L) ≤ n,

then sc(root(L)) ≤ |Uk,l| −
(

n
2

)
. This bound is tight.

4.2.3 Alphabets of Size Three or More

The results concerning the largest monoid on ≥ 3 generators are definite and much simpler.

For this reason, on alphabets of size ≥ 3 we are able to give a much better bound.

We now state our third main result of this chapter.

Theorem 4.22. Let Σ be an alphabet of size m ≥ 3. For n ≥ 1, if L is a language over Σ

with sc(L) ≤ n, then sc(root(L)) ≤ nn − (
n
2

)
. Furthermore, this bound is tight.

Proof. Define M to be the transition monoid of the smallest DFA recognizing L. If |M | ≤
nn − (

n
2

)
, then certainly sc(root(L)) ≤ nn − (

n
2

)
. So suppose that |M | > nn − (

n
2

)
. Then it

follows from Lemma 3.7 that M = Tn.

For 1 ≤ n ≤ 6, this author verified computationally that if the transition monoid of the

minimal DFA recognizing L is Tn, then sc(root(L)) = nn−(
n
2

)
. For n ≥ 7, if the transition

monoid is Tn, then clearly Uk,l ⊆ Tn for some suitable k, l so that Theorem 4.10 applies,

and hence sc(root(L)) = nn − (
n
2

)
.

To show that the bound is tight, it suffices to show that for any n there exists a language

L over Σ such that the transition monoid of the minimal DFA recognizing L is Tn. Let X

be a set of transformations such that |X| = min(n, 3) and X generates Tn. For n ∈ {1, 2},
the fact that such an X exists is easy to check. For n ≥ 3, the existence of X follows from

Lemma 3.6. Then the language L(AΣ,X), gives the desired result.

4.3 An Application to the State Complexity of 2DFAs

As noted in the introduction to this chapter, the nn states used by the DFA of Theorem

4.2, and the 2n states used by the 2DFA of Theorem 4.1 suggest that there is at least an

nO(n) blow-up in the number of states when converting from a 2DFA to a DFA. This bound

was proven by Shepherdson [33], who showed that given an n-state 2DFA it was possible

to construct an n(n + 1)n state DFA to accept the same language. Birget [4] improved
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Shepherdson’s result by showing that an equivalent DFA can be constructed using only

nn states. Unfortunately, these general constructions give no indication that the bound is

tight. To date, the best known results show that the worst-case lower bound is nΘ(n). Two

examples are presented here.

Let Σ = a, b, c, and define the DFA Bm = (Zm, Σ, δ, 1,m), where δ is given by δa =

(2 3 · · · m 1), δb = (1 2), and

δc =

(
1 2 3 · · · k

1 1 3 · · · k

)
.

So, δa is a m-cycle permutation, δb is a transposition, and δc is a transformation of rank

m − 1. Then w ∈ L(Bm) if and only if w(1) = m when w is viewed as a transformation of

Zn.

Now define the language Fm = {xdy : x, y ∈ Σ∗ and yx ∈ L(Bm)}. So Fm is a language

over the alphabet {a, b, c, d}. Moore [20] showed the language Fm was recognizable by a

2DFA with end-markers using 2m + 5 states, but that the minimal DFA recognizing Fm

had exactly mm +m(2m−2)+2 states. Then with n = 2m+5, it follows that the function

f(n) =

(
n − 5

2

)n−5
2

+

(
n − 5

2

) (
2

n−5
2 − 2

)
+ 2,

is a lower bound on the worst-case blow-up of an n-state 2DFA. Furthermore, f(n) ∈ nΘ(n).

The second example of an nΘ(n) blow-up is based on the language Gm, defined by

Gm = {0i110i21 · · · 10im2k0ik : 1 ≤ k ≤ m, and 1 ≤ ij ≤ m, for j ∈ {1, . . . ,m}}.

So Gm is a language over the alphabet {0, 1, 2}. Meyer and Fischer [18] claimed that

the language Gm can be recognized by a 2DFA with end-markers using 5m + 5 states.

Moreover, they claimed that the smallest DFA recognizing Gm has at least mm states.

Then for n = 5m + 5, this gives a lower bound of nΘ(n) on the worst-case blow-up. To get

an idea of the upper bound of this example, consider the following lemma, which gives an

upper bound on the size of the minimal DFA for Gm.

Lemma 4.23. For sufficiently large m, we have that the minimal DFA recognizing the

language Gm has at most 2 · mm+2 states.
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Proof. The strings in Gm consist of m blocks of 0’s separated singleton 1’s. Near the end

of each string is a block of 2’s, the length of which indicates which block of 0’s should be

repeated at the end.

Now, with respect to the relation ∼Gm , consider the equivalence classes of the strings

in Σ∗. Certainly ε is in an equivalence class by itself since it is the only string x ∈ Σ∗ for

which xy ∈ Gm for all y ∈ Gm.

For a string x of the form 0i, 1 ≤ i ≤ m. Let y ∈ Σ∗ be some prefix of a word in Gm. If

y is of the same form as x, but not equal, then y = 0j, 1 ≤ j ≤ m, and j �= i. Then there

exists a string with a suitable number of leading 0’s that will distinguish x and y. If y is

not of the same form as x, then y must contain a 1. Then there exists a string with m− 1

1’s that will distinguish x and y. Hence x is in an equivalence class by itself. This gives m

classes.

In general, it is not hard to see that if x is of the form

0i110i21 · · · 10is , 1 ≤ s ≤ m, 1 ≤ ij ≤ m for j ∈ {1, . . . , s},

then x is in an equivalence class by itself. To count these classes, consider the number of

strings of this form when s is fixed. Each string has s blocks of 0’s, and up to m 0’s in

each block. This gives ms strings. Then in total we have
∑

1≤s≤m ms = mm+1−m
m−1

classes.

Furthermore, it is easy to see that x is in an equivalence class by itself when x is in one

of the following forms:

• 0i110i21 · · · 10ir1, 1 ≤ r ≤ m − 1, 1 ≤ ij ≤ m for j ∈ {1, . . . , r};

• 0i110i21 · · · 10im2, 1 ≤ ij ≤ m for j ∈ {1, . . . ,m}.
Then by similar counting we get mm+1−m

m−1
equivalence classes. Now, strings of the form

0i110i21 · · · 10im2k, 2 ≤ k ≤ m, 1 ≤ ij ≤ m for j ∈ {1, . . . ,m},

can account for no more than mm+1 classes. And strings of the form

0i110i21 · · · 10im2k0r, 2 ≤ k ≤ m, 1 ≤ r ≤ m, 1 ≤ ij ≤ m for j ∈ {1, . . . , m},

can account for no more than mm+2 classes. All other strings not yet discussed are con-

tained in a single class, since they are not prefixes of any word in Gm.
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In total, this gives us at most 2 · mm+1−m
m−1

+ mm+1 + mm+2 + 2 classes. For sufficiently

large m, this quantity is less than 2 · mm+2, as required.

If n = 5m + 5, then it follows from Lemma 4.23 that the n-state 2DFA construction

given by Meyer and Fischer for the language Gm has a blow-up of at most

g(n) = 2 ·
(

n − 5

5

)n
5
+1

,

states when converted to a DFA.

As it turns out, our results for the state complexity of root(L) can be used to improve

the bounds demonstrated for the languages Fm and Gm. Recall the definition of the

automaton AΣ,Xk,l
from Section 4.2.1. For all n ≥ 7, let k, l be coprime integers such that

the bound of Theorem 3.28 is achieved. Then define Hn = root(L(AΣ,Xk,l
)).

Theorem 4.24. For sufficiently large n, there exists an n-state 2DFA with end-markers

such that the equivalent DFA has at least

h(n) =
(n

2

)n
2 − 4 ·

(n

2

)n
2
−1

− 1

8
n2,

states.

Proof. Let n = 2m. Then by Theorem 4.1, the language Hm is recognized by a 2DFA with

n states. It follows from Theorem 3.28 and Theorem 4.10 that for sufficiently large m we

have

sc(Hm) ≥ mm − 4mm−1 −
(

m

2

)
≥ mm − 4mm−1 − 1

2
m2

≥
(n

2

)n
2 − 4 ·

(n

2

)n
2
−1

− 1

8
n2,

as required.

Hence, Theorem 4.24 gives us yet another example of an nΘ(n) blow-up in the number

of states when converting from a 2DFA to a DFA. Furthermore, when we consider that the
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ratio

h(n)

f(n)
∈ Θ

(
n

5
2

)
,

and the ratio

h(n)

g(n)
∈ Θ

((
25

32

) 1
10

n

n
3
10

n

)
,

we see that Theorem 4.24 actually gives a significant improvement over the results due to

Moore [20] and Meyer and Fischer [18].

Despite this improvement of the worst-case lower bound, Corollary 4.3 shows that the

worst case achievable by a 2DFA recognizing a language of the form root(L) is less than

nn/2. It is clear then that we cannot use root(L) to prove that the upper bound of nn on

2DFA-to-DFA conversion is tight. Hence, the problem of finding a tight bound remains

open (see Open Problem 5.2).





Chapter 5

Open Problems

In this chapter, we state some open problems, given in the context of the results presented

in this thesis.

In Section 2.2, Theorem 2.4, proved by Ellul, Krawetz, Shallit, and Wang [8], gives

us an improved lower bound of 5
4
· 2n/2 on the worst case state complexity of a regular

expression. However, with an upper bound of 2n + 1, there is still a significant gap.

Open Problem 5.1. Give a tight upper bound on the state complexity of a regular expres-

sion.

In Section 4.3 we returned to the problem of determining the state complexity of other

representations of regular languages. In particular, Theorem 4.24 improved on the results

of Moore [20], and Meyer and Fischer [18] concerning the lower bound of the worst-case

state complexity of a language recognized by an n-state 2DFA. As noted, however, we were

not able to show that the upper bound of nn, proved by Birget [4], is tight. So we have

the following problem.

Open Problem 5.2. Let L be a language over an alphabet of size k ≥ 1, and recognized

by an n-state 2DFA with end-markers. Give a tight upper bound on the state complexity

of L.

The results of Chapter 3 are relevant to more than just theoretical computer science,

though it has perhaps been our main motivation. The results are applicable to any finitely

generated monoid.
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It is clear that the problem of the maximal monoid on two generators is not solved

with the proof of Corollary 3.40. In fact, even in the prime case, we are not certain how

to choose the integers k, l so that Uk,l is maximal.

Open Problem 5.3. For n prime, determine the values of k, l such that the monoid Uk,l

is maximal.

Open Problem 5.4. For composite n > 7, determine the largest two-generated monoid

of transformations of Zn.

Actually, Open Problem 5.4 reduces to determining the analog of Lemma 3.33, Lemma

3.34, and Corollary 3.35, for values of n that are not prime. All other facts leading to the

proof of Theorem 3.39 are proven for any n.

In Chapter 4, Corollary 4.17 gives us the existence of an infinite family of languages

whose root has state complexity approaching nn, for alphabets of size two or more. In

Theorem 4.22 we obtain a tight upper bound on the state complexity of languages over

arbitrarily sized alphabets. In the case of binary languages, Corollary 4.20 gives us a tight

upper bound when state complexity of the original language is prime. Though this bound

is not specific, any result concerning 5.3 will apply immediately. This leaves us with the

case for binary languages with non-prime state complexity.

Open Problem 5.5. For composite n > 7, if L is a binary language with state complexity

n, what is the tight upper bound on the state complexity of root(L)?

Of course, in the case for n not prime, since we do not know the structure of the

largest two-generated monoid, it is possible that results similar to Theorem 4.10 do not

hold. However, given the size of the Uk,l monoids, it seems unlikely that any monoid large

enough would not contain the elements necessary for the techniques used in the proof of

Theorem 4.10 to apply.

Open Problem 5.6. For any monoid M ⊆ Tn, with |M | ≥ |Uk,l|, for all k, l, if M is the

transition monoid of a minimal DFA A, is sc(root(L(A))) = |M | − (
n
2

)
?

A solution to Open Problem 5.6 would guarantee that any results concerning the size

of the largest two-generated monoid would apply to the state complexity of root(L). Cur-

rently, without having a proof of Conjecture 3.41, it is impossible to say whether or not

we will be able to use such a result to prove Conjecture 4.21.
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We conclude with a problem whose solution could prove useful in the pursuit of a

solution to Open Problem 5.5. No effort was made to improve the size of the gap between

Uk,l and other more general monoids, proved in Lemma 3.34. We chose this bound because

it served a specific purpose in the proof of Corollary 4.20. It is almost certain that this

bound can be improved upon.

Open Problem 5.7. Let V be the largest monoid generated by a set {α, β}, where α ∈ Sn

and β ∈ Tn is a non-bijective transformation that identifies two elements of the same cycle

in α. Improve the bound

|Uk,l| − |V | ≥
(

n

2

)
,

for some n = k + l.
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