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Abstract 

The three-dimensional (3D) city models have gained more and more attentions because of 

their considerable potential applications at present. In particular, the demands for Level of 

Detail (LoD) building models become urgent. Mobile Laser Scanning (MLS) has supplied a 

brand-new technology in the acquisition and update of 3D information in urban off-terrain 

features, particularly for building façade details. Accordingly, generating LoD3 building 

models from MLS point clouds becomes a new trend in recent studies.  

As a consequence, a method that can accurately and automatically extract 3D windows from 

raw MLS point clouds is presented in this thesis. To provide solid and credible information for 

LoD3 building models, this automated method endeavors to identify window frames on 

building facades from MLS point clouds. This algorithm can typically be regarded as a 

stepwise procedure to interpret MLS point clouds as semantic features. A voxel-based upward-

growing method is firstly applied to distinguish non-ground points from ground points. Noise 

is then filtered out from non-ground points by statistical analysis. In order to segment out the 

building facades, all the remaining non-ground points are clustered based on conditional 

Euclidean clustering algorithm; clusters whose density and width are over a given threshold 

will be designated as points for building facades. After a building façade is successfully 

extracted, a volumetric box is created to contain façade points so that neighbours of each point 

can be operated. A manipulator is finally applied according to the structural characteristics of 

window frames to extract the potential window points.  
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The experimental results demonstrate that the proposed algorithm can successfully extract 

the rectangular or curved windows in the test datasets with promising accuracies. The 2D 

validation and 3D validation were both conducted in this study. In the 2D validation, the lowest 

F-measure of the test datasets is 0.740, and the highest can be 0.977. While in the 3D 

validation, the lowest correctness of the test dataset is 79.58%, and the highest can be 97.96%.  

After further analysis of the experimental results, it was found that, for those windows concave 

on walls or with curtains drawn, the performance of the proposed method was influenced. 

Furthermore, big holes caused by system errors in raw point clouds also had negative impacts 

on the proposed method.  

In conclusion, this thesis makes a considerable contribution to extracting 3D rectangular, 

irregular and arc-rounded windows from noisy MLS point clouds with high accuracy and high 

efficiency. It has supplied a promising method for generating LoD3 building models.  

 



 

 v 

Acknowledgements 

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. 

Jonathan Li, who offers me not only professional research backgrounds but also life guidance 

in my master program. Also, thanks to my thesis committee members: Dr. Mike Chapman, Dr. 

Peter Deadman and Dr. David Clausi; thank you for reviewing my dissertation and providing 

me the precious comments on my study. Especially, I need to express my thanks for Dr. Peter 

Deadman, who is on sabbatical leave but still willing to be my thesis reader.  

In addition, I need to thank TOLLUCH Engineering, for providing me the raw MLS point 

clouds and digital images in this study.  

I would like to thank my friends and group mates: Haocheng Zhang, who provided me 

relevant literatures and backgrounds of the building façade segmentation; Weikai Tan, who 

offered me strong support in generating orthophotos in ArcGIS 10.2.2; Dr. Xiaoliang Zou, who 

discussed with me about structuring this thesis; and all other friends who support me in life 

here and in China.  

I also would like to thank my family in China: my dear parents, thanks for your financial 

support, and for encouraging me whenever I need you. 

 

 



 

 vi 

Table of Contents 
AUTHOR'S DECLARATION ................................................................................................. ii	

Abstract .................................................................................................................................... iii	

Acknowledgements ................................................................................................................... v	

Table of Contents ..................................................................................................................... vi	

List of Abbreviations ............................................................................................................... ix	

List of Figures .......................................................................................................................... xi	

List of Tables ......................................................................................................................... xiii	

Chapter 1 Introduction .............................................................................................................. 1	

1.1 Motivation ....................................................................................................................... 1	

1.1.1 Requirements for LoD3 Building Models ................................................................ 1	

1.1.2 Advantages of MLS Point Cloud in LoD3 Building Modeling ................................ 2	

1.1.3 Challenges of Window Extraction from MLS Point Cloud ..................................... 4	

1.2 Objectives ........................................................................................................................ 5	

1.3 Structure of the Thesis ..................................................................................................... 6	

Chapter 2 Background and Related Work ................................................................................ 7	

2.1 Introduction to Mobile Laser Scanning ........................................................................... 7	

2.1.1 What is Mobile Laser Scanning ................................................................................ 7	

2.1.2 Components of MLS Systems .................................................................................. 9	

2.1.3 Principle of MLS Systems ...................................................................................... 12	

2.1.4 RIEGL VMX-450 ................................................................................................... 14	

2.2 Related Concepts ........................................................................................................... 16	

2.2.1 WGS84 and UTM ................................................................................................... 16	

2.2.2 2D and 3D Feature Extraction ................................................................................ 18	

2.3 Building Façade Extraction Using MLS Point Cloud ................................................... 18	

2.3.1 2D Building Façade Extraction .............................................................................. 18	

2.3.2 3D Building Façade Extraction .............................................................................. 20	

2.4 Window Extraction Using MLS Point Cloud ............................................................... 22	

2.4.1 2D Window Extraction ........................................................................................... 22	



 

 vii 

2.4.2 3D Window Extraction ........................................................................................... 23	

2.5 Chapter Summary .......................................................................................................... 24	

Chapter 3 Semi-automated Extraction of 3D Windows ......................................................... 26	

3.1 Workflow ...................................................................................................................... 26	

3.2 Ground Points Removal ................................................................................................ 28	

3.2.1 Voxel-based Upward Growing Algorithm ............................................................. 28	

3.2.2 Noise Removal Using Statistical Analysis ............................................................. 32	

3.3 3D Window Extraction .................................................................................................. 35	

3.3.1 Conditional Euclidean Clustering ........................................................................... 35	

3.3.2 Building Façade Extraction by Density/Width Analysis ........................................ 38	

3.3.3 Window Extraction Using Hole Detection Algorithm ........................................... 40	

3.4 Validation ...................................................................................................................... 41	

3.4.1 Window Regions in 2D .......................................................................................... 41	

3.4.2 Window Regions in 3D .......................................................................................... 45	

3.5 Chapter Summary .......................................................................................................... 45	

Chapter 4 Results and Validation ........................................................................................... 46	

4.1 Design of the Environment ........................................................................................... 46	

4.1.1 Study Area .............................................................................................................. 46	

4.1.2 Point Cloud Data .................................................................................................... 48	

4.1.3 Reference Data ....................................................................................................... 54	

4.2 Results and Evaluation .................................................................................................. 55	

4.2.1 Ground Removal ..................................................................................................... 55	

4.2.2 Noise Removal Using Statistical Analysis ............................................................. 59	

4.2.3 Classification by Conditional Euclidean Clustering ............................................... 63	

4.2.4 Building Façade Extraction .................................................................................... 69	

4.2.5 Window Extraction Using Hole Detection Algorithm ........................................... 73	

4.3 Results in Accuracy Assessment ................................................................................... 79	

4.3.1 Window Regions in 2D .......................................................................................... 79	

4.3.2 Window Regions in 3D .......................................................................................... 83	



 

 viii 

4.4 Chapter Summary .......................................................................................................... 84	

Chapter 5 Conclusions and Recommendations ....................................................................... 85	

5.1 Conclusions ................................................................................................................... 85	

5.2 Contributions ................................................................................................................. 86	

5.3 Limitations and Recommended Further Works ............................................................ 87	

References ............................................................................................................................... 89	

 



 

 ix 

List of Abbreviations 
  

2D  Two-dimensional 

3D Three-dimensional  

ALS Airborne Laser Scanning 

CCD Charge Coupled Device 

CSV Comma Separated Value 

CTP Conventional Terrestrial Pole 

DMI Distance Measurement Indicator 

DOD US Department of Defense 

DTM Digital Terrain Model 

GIS Geographic Information System 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

MLS Mobile Laser Scanning 

IMU Inertial Measurement Unit 

FOV Field of View 

LiDAR  Light Detection and Ranging 

LoD Level of Detail 

PCA Principal Component Analysis 

PCL Point Cloud Library 

RANSAC Random Sample Consensus 

TIN Triangulated Irregular Network 

TLS Terrestrial Laser Scanning 



 

 x 

 

TOF Time of Flight 

POS Position and Orientation System 

WGS84 World Geodetic System 1984 

UTM Universal Transverse Mercator projection 



 

 xi 

List of Figures 

Figure 1-1 LoD building models (SimStadt, 2016) .................................................................. 2	

Figure 2-1 Basic components of an MLS system ..................................................................... 9	

Figure 2-2 Principle of direct geo-referencing (Zhang, 2016) ................................................ 13	

Figure 2-3 Workflow of RiPROCESS (RIEGL, 2014) .......................................................... 16	

Figure 2-4 WGS4 reference frame (Defense Mapping Agency, 2015) .................................. 17	

Figure 3-1 Workflow of the proposed method ....................................................................... 27	

Figure 3-2 Principle of voxel-based upward-growing algorithm ........................................... 30	

Figure 3-3 Demo of voxel-based upward-growing method .................................................... 32	

Figure 3-4 Principle of noise removal using statistical analysis ............................................. 34	

Figure 3-5 Demo of noise removal using statistical analysis ................................................. 35	

Figure 3-6 Principle of conditional Euclidean clustering method .......................................... 36	

Figure 3-7 Demo of conditional Euclidean clustering algorithm (Yu et al., 2015) ................ 37	

Figure 3-8 Geo-referenced frame in 3D point cloud .............................................................. 42	

Figure 3-9 Base map of orthophoto generation ...................................................................... 43	

Figure 4-1 Location of the study area ..................................................................................... 47	

Figure 4-2 Trajectory of the study area (Google, 2015) ......................................................... 47	

Figure 4-3 The RIEGL VMX-450 system of TULLOCH Engineering ................................. 48	

Figure 4-4 Five datasets used in this study ............................................................................. 52	

Figure 4-5 Gaussian density distribution of five test datasets ................................................ 54	

Figure 4-6 Ground removal results obtained using ................................................................. 57	

Figure 4-7 Gaussian density distribution of non-ground points ............................................. 59	

Figure 4-8 Noise removal results ............................................................................................ 61	

Figure 4-9 Gaussian density distribution of noise removal results ......................................... 63	

Figure 4-10 Clustering results ................................................................................................. 67	

Figure 4-11 Gaussian density distribution of remaining clusters ........................................... 68	

Figure 4-12 Width of five typical features in the study area .................................................. 69	

Figure 4-13 Density of five typical features in the study area ................................................ 70	

Figure 4-14 Building facades extracted from the five test datasets ........................................ 71	



 

 xii 

Figure 4-15 Gaussian density distribution of front facades .................................................... 73	

Figure 4-16 Extracted windows .............................................................................................. 78	

Figure 4-17 2D validation results ........................................................................................... 83	

 



 

 xiii 

List of Tables 
 

Table 1 Parameters used in direct geo-referencing ................................................................. 14	
Table 2 Results of the ground removal ................................................................................... 56	
Table 3 Efficiency of the proposed method ............................................................................ 79	
Table 4 2D performance evaluation ........................................................................................ 80	
Table 5 3D performance evaluation ........................................................................................ 84	



 1 

Chapter 1 Introduction 

1.1 Motivation 

1.1.1 Requirements for LoD3 Building Models 

With the continual development of three-dimensional (3D) spatial information technology 

and the proposed concepts of Digital Earth, Smart City, Virtual Reality, Intelligent 

Transportation Systems, experts’ research focus has been gradually shifting from two-

dimensional (2D) planes to 3D space (Lemmens et al., 2011). The 3D city model has proved 

useful for a variety of applications such as telecommunication, urban planning, environmental 

simulation, cartography, virtual tourism, and mobile navigation (Yang et al, 2013). Currently, 

considerable achievements have been made in related works on the 3D city modeling, and the 

most high-profile product of which is Google Earth. This system incorporates the global digital 

terrain model (DTM), global satellite images, 3D building models of some metropolitan areas, 

and spatial information on roads, addresses, administrative borders as well as special 

attractions, which come together to create the Digital Earth (Google, 2016). One of the most 

fundamental databases of Digital Earth is 3D building models.  

Buildings are major urbanized bodies. Reconstructing building models has become more 

and more urgent with the continuously enhanced requirements of achieving more detailed 

features on building facades in user scenes (Cheng et al., 2011). Commercial enterprises such 

as Google, Sony, Apple and Nokia have invested enormous manpower and technical resources 

into realistic 3D city modeling (Zhu & Hyyppa, 2014). Ample texture information and complex 

3D geometric structures of buildings result in contradictions between the realistic presentation 

of 3D scenes and computer performances (Haala & Kada, 2010). Therefore, the ability to 
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reconstruct building models of large scenes efficiently becomes urgent. The details of 3D 

building moedels can be described by the Level of Detail (LoD). A significant technical feature 

in the digital GIS is to support the concept of multiple levels of feature details (Over et al., 

2010). The concept of LoD was firstly put forward by Clark in 1976 (Guercke et al., 2011). As 

shown in Figure 1-1, the 3D LoD building model can be basically separated into four levels: 

LoD1 describes block models or roof structures, LoD2 describes building models with texture 

and roof models, LoD3 describes detailed architecture models with external doors and 

windows, and LoD4 describes interior models including rooms, stairs, windows, doors, 

furnishings, and so on (Over et al., 2010).  

 

Figure 1-1 LoD building models (SimStadt, 2016) 

1.1.2 Advantages of MLS Point Cloud in LoD3 Building Modeling  

In traditional aerial photogrammetry, building rooftops are almost the only part of a 

building, which are visible in aerial photographs. Therefore, the algorithms for the 3D building 

modeling start with the extraction of the roof’s geometric characteristics and then extend them 

by integrating the walls to form complete 3D building models. One of the most widely applied 
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approach of 3D building modeling at present is to use aerial digital images to identify footprints 

and corners of buildings. This approach can acquire accurate 3D geometric information of 

buildings, however, it still demands abundant manual work to ensure the accuracy. (Sahin et 

al., 2012; Demir & Baltsavias, 2012).  In sum, because of the high complexity and diversity of 

building geometric properties, the building modeling depending on aerial images is not a fully 

automatic process so far.  

In recent years, with the continuous promotions of laser scanning as well as integrated 

position and orientation technology, the quick acquisition to high-quality 3D information of 

realistic scenes is capable of being realized (Yu et al., 2015). Currently, precise 3D point clouds 

can be acquired through airborne laser scanning (ALS) systems, mobile laser scanning (MLS) 

systems and static terrestrial laser scanning (TLS) systems (Hyyppä et al., 2013). Each laser 

point not only contains factual geographic coordinate information, but also records laser 

reflective intensity of feature surfaces. Laser imaging technology uses active non-contact 

measurements to directly get access to the information of the scanned 3D surfaces, the data 

acquisition depends little on illuminations. It also has the capability of recording real-time 

point cloud data at a high scanning speed precisely and actively (Pu & Vosselman, 2009; Zhu 

& Hyyppa, 2014).  However, 3D building models generated from ALS point clouds can only 

be regarded as LoD2 models; detailed architecture models such as windows and doors cannot 

be built from ALS point clouds. Therefore, TLS point clouds and MLS point clouds become 

the optimal choices in generating LoD3 building models. 

Nowadays, MLS point clouds are more applicable than TLS point clouds in a cosmopolitan 

extent due to its higher flexibility and acquisition rate in large-scaled complex scenes (Guan et 
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al., 2015). In addition, an MLS system can capture point clouds and close-range images along 

with the movements of vehicles, which enriches the data sources. In contrast, instruments in 

TLS systems should be fixed in one position, resulting in the stationary resolution and density 

of laser scanning point clouds (Jochem et al., 2011; Yang et al., 2012; Aijazi et al., 2014). The 

whole process to capture a completed street scene is rather time-consuming and demands a 

great cost in manpower, which highly reduces the adaptability of TLS point clouds (Williams 

et al., 2013). 

1.1.3 Challenges of Window Extraction from MLS Point Cloud 

Points of building facades are in high density, and texture information of building facades 

cannot be directly acquired from 3D point clouds (Puente et al., 2013). Thus, point clouds 

should be interpreted as various features before LoD3 building modeling. The most 

challenging work of the LoD3 building modeling from the noisy point cloud is to extract 

detailed features on facades, such as windows, doors, and remove holes caused by systematic 

errors (Haala & Kada, 2010). Windows are indispensable frames on building facades, 

nevertheless, there are no laser points for window glasses due to the very low reflectivity. In 

addition, because of aesthetic requirements and cultural diversities, windows are designed in 

multitudinous shapes (Pu & Vosselman, 2007; Wang et al., 2011). Accordingly, generating a 

reliable method to extract windows while retain their geometry, semantic and coordinate 

information precisely from the noisy MLS point clouds has become a colossal challenge in 

recent years.  

This thesis will focus on establishing an effective rationale and developing an automatic 

algorithm for 3D window extraction from an MLS point cloud according to theories and 
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methods in geomatics, computer vision, numerical analysis and computational geometry. The 

method proposed in the thesis is to enable an intelligent processing and modeling of an MLS 

point cloud with the minimal manual intervention. This study will improve the level of 

automation in the intelligent interpretation and the 3D window extraction from MLS point 

clouds. It will also extend engineering applications and promote practicalities of MLS data in 

mobile mapping, digital heritage management, surveying, and geomatics.  

1.2 Objectives 

The objective of this thesis is to develop a semi-automatic approach for the creation of the 

LOD3 building models in typical Canadian residential houses, in particular, to extract building 

windows from large-volume mixed-density, unstructured MLS point clouds.  

The specific objectives of this thesis are:  

1) To develop a semi-automatic algorithm for building facades segmentation from a noisy 

MLS point cloud to solve challenging problems in feature classifications and volume 

data processing of MLS point clouds.  

2) To develop a semi-automatic algorithm for 3D window extraction by semantically and 

topologically analyzing characteristics of segmented building facades, as well as to 

recover topological and geometric relationships of detailed features (including windows, 

doors, and façade outlines) on facades.  

3) To develop a solid accuracy assessment mechanism to validate the extracted window 

points and provide fundamental proofs for applications of the proposed method.   
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1.3 Structure of the Thesis 

This thesis is extended from the successive chapters: 

Chapter 2 presents a literature review about current related works on MLS systems. The 

chapter starts by introducing the working principle of MLS systems. The main components 

and the properties of current commercial MLS systems are described, and a working principle 

about how to generate geo-referencing 3D point clouds together with digital images in MLS 

systems is presented. The chapter continues by introducing the concepts of the WGS84 

coordinate systems, the UTM projection, and feature extraction. This chapter ends with 

introducing historical related works on building façade extraction and window extraction from 

MLS point clouds.  

Chapter 3 elaborately describes the methodology applied in this thesis. This chapter extends 

into three main sections. Firstly, the study area, test datasets, the programming platform, the 

related software, and the workflow are presented. This chapter continues by introducing the 

stepwise data processing algorithms in detail, including the voxel-based upward-growing 

algorithm, the statistical analysis, the conditional Euclidean clustering, the density/width 

analysis, and the hole detection algorithm. Finally, an accuracy assessment mechanism is 

described to validate the proposed method. 

In Chapter 4, the experimental results are presented and discussed.  

And finally, Chapter 5 summarizes the contributions and limitations of this thesis; also, 

recommendations of future works are put forward.   
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Chapter 2 Background and Related Work 

This chapter comprises a literature review of backgrounds and related works of this study. 

Firstly, a brief introduction about mobile laser scanning technology is presented, and basic 

components of an MLS system are described. Then detailed information of RIEGL VMX-450 

system is introduced.  Furthermore, this chapter reviews the most state-of-art semi-automatic 

and automatic algorithms in building façade reconstruction and window extraction.  By 

introducing a brief information of the MLS system and reviewing the historical related 

technology of building façade reconstruction and window extraction, this chapter elaborately 

offers an appropriate theoretical background in understanding algorithms of the methodology 

in this study.  

2.1 Introduction to Mobile Laser Scanning 

2.1.1 What is Mobile Laser Scanning 

Mobile laser scanning is defined as a mapping technology used to obtain 3D information of 

features by laser scanners mounted on mobile vehicles (Haala et al., 2008; Marshall, 2011). 

MLS systems utilize near-infrared laser spectrums to scan surfaces of objects by constantly 

emitting laser beams. They also record 3D coordinates and intensity properties of scanned 

points simultaneously when the laser energy returns from the features (Lemmens et al., 2011; 

Olsen, 2013; GIM, 2013). Compared with conventional optical imaging systems, MLS systems 

can access highly qualified 3D information of wide-range scenes, and record the information 

in high-density and high-precision point clouds (Brenner, 2009; Yen et al., 2011). In addition, 

active laser measurements are applied in MLS systems so that data acquisition will not be 
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influenced by any ambient lighting conditions; thus, field work can be undertaken in both the 

day and the night (Zhu et al., 2011). The main characteristics MLS point clouds can be 

summarized as follows:  

(1) Point density. The MLS system can obtain 3D point clouds with high accuracy, high 

density and rich details. For instance, RIEGL VMX -450 system can collect 7000-8000 

pts/m2 (Schrock, 2013); 

(2) Noise. MLS systems usually generate measuring disturbances in different directions 

caused by acceleration, deceleration, direction shift and road undulation. Additionally, 

mechanical perturbations of vehicles and disturbances of the MLS platform also occur 

in the measurements.  

(3) Intensity information. Most current commercial MLS systems can record energy of laser 

pulses reflected from the scanned objects. Therefore, intensity information of the 

scanned surfaces can be stored in 3D point clouds.  

(4) Scene complexity. MLS systems is capable of obtaining high-density point cloud in 

urban areas. The acquired 3D point clouds contain ample features, such as low shrubs, 

fences, poles, traffic signs, bus stops, vehicles, pedestrians, road curbs, flower beds, and 

buildings. Therefore, the complex scenes and diverse objects in 3D point cloud lead to 

difficulties in automatic feature classifications and recognitions.  

(5) Occlusions. Due to the complex scenes in urban areas, detailed information on building 

facades is often occluded by objects, such as trees, poles, traffic signs, etc. Occlusions 

often lead to incomplete data acquisition on buildings and loss of facade details.  
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2.1.2 Components of MLS Systems 

MLS systems are usually carried by various vehicles and in synchronized control of 

multiple sensors. Typically, an MLS system consists of six main portions (as shown in Figure 

2-1): laser scanners, optical cameras, a GNSS, an IMU, a DMI, and a control system for data 

synchronization. The GNSS, the IMU, and the DMI compose a position and orientation system 

(POS).  

 

Figure 2-1 Basic components of an MLS system 

 

1) Laser Scanner 

There are distinguishable quantities and configurations of laser scanners in different MLS 

systems. Laser scanners scan surfaces of features by intermittently emitting continuous waves 

or laser pulses. Two principle techniques are applied in the plurality of MLS systems for range 

measurements: time-of-flight (TOF) and phase shift (Pu et al., 2011; Puente et al., 2013). 

A TOF scanner first launches a short laser pulse to a target, and the distance (d) from the 

target to the MLS system can be determined by calculating the time interval between pulse 
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transmission and reception when the pulse is reflected back from the target (Puente et al., 

2013).  The distance d can be computed by the following expression:  

 
2-1 

in which, c is the speed of light and Δt is the time interval between pulse transmission and 

reception. At present, the majority of MLS systems are equipped with TOF scanners since the 

TOF scanner can reach a further range over phase-based scanners (Brenner, 2009). On the 

contrary, phase-based scanners transmit a continuous amplitude-modulated wave to a target at 

first, and the distance (d) from the target to the MLS system can be achieved by calculating the 

phase shift between signal transmission and reception (Puente et al, 2013). The distance d can 

be computed by the following expression:  

 
2-2 

where ϕ is the phase shift, λ is the modulated amplitude, n is the number of transmitted 

waves. Phase-based scanners can achieve higher ranging accuracy but reach shorter range than 

the TOF scanners; the range of a phase-based scanner in recent commercial MLS systems is 

about 100 meters (Lichti, 2010).  

2) Optical Digital Camera 

Different MLS systems are equipped with different numbers and types of optical cameras 

to capture auxiliary texture information in various scenes (Zhou & Vosselman, 2012). For 

example, a RIEGL VMX -450 MLS system carries four digital cameras simultaneously. The 

original 3D point cloud lacks sophisticated texture information; nevertheless, texture 

information obtained by digital cameras can be superimposed upon the 3D point cloud to 

d = 1
2
cΔt

d = Δϕ
2π

λ
2
+ λ
2
n
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generate a color point cloud. The generated color point cloud can not only provide an ampler 

visual effect, but also broadens the scope of point cloud applications, such as 3D games and 

elaborated 3D object reconstruction.  

However, digital images captured by optical cameras have perspective distortions. 

Perspective distortion refers to a deformation that is caused by changes in relative proportions 

of distance, resulting that an object and its surrounding areas look completely different in 

standard lens and in reality (Valente & Soatto, 2015). Perspective distortion is caused by 

changes in shooting distances and imaging angles, it is indispensable in MLS systems since 

digital images are captured while the vehicle is moving.  

3)  Position and Orientation System 

As mentioned before, a position and orientation system is composed of GNSS, IMU and 

DMI. GNSS mainly provides three observations: time, location and speed. Despite the fact that 

GNSS can afford highly accurate positioning information in broad vision, its positioning 

accuracy will decline when satellite signals are blocked by tall trees, buildings or other objects. 

IMU can offer orientation information on three directions, including acceleration and rotation 

angles from three axes, and its working process will not be influenced by magnitude of satellite 

signals. However, with the accumulation of time, time drift will appear in IMU that the 

positioning and orienting accuracy will decrease (Puente et al., 2013). Accordingly, the 

combination of GNSS and IMU is able to provide more accurate position and orientation 

information for MLS systems. Positioning accuracy of GNSS can be enhanced by IMU when 

GNSS is under poor satellite signals, and time drift of IMU can be compensated by positioning 

information of GNSS. Typically, DMI is fixed on the left rear wheel of a car to measure 
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travelling distances of the vehicle by recording the number of rotations of the wheels. DMI is 

able to give constraints to time drift of IMU especially when satellite signals are poor.   

4) Central Control 

The main role of a central system is to synchronize and store data acquired by sensors (laser 

scanners and digital cameras), as well as signals acquired by position and orientation systems 

(GNSS, IMU, DMI).  

2.1.3 Principle of MLS Systems 

(1) Working Principle  

In RIEGL VMX-450, when the vehicle is moving, the GPS receiver constantly measures 

instant real-time geodetic coordinate of GPS antenna phase centre. The IMU records instant 

attitude angles (including direction angle, ie: roll, pitch, and yaw). The laser scanners transmit 

and receive laser beams by line scanning mode, and keep track of scanning angles and distances 

between the scanning centre and the scanned points. The CCD cameras or the panoramic 

cameras get direct access to texture information of features at a certain frequency. By 

integrating scanning frequency and field of view (FOV) of laser scanners, with scanning angles 

and distances from the scanning centre to the scanned points, coordinates of scanning points 

in the laser scanner coordinate system can be computed. Then through the positional 

relationship between GPS, IMU and laser scanners, coordinates of scanning points in World 

Geodetic System 84 (WGS 84) can be obtained through coordinate transformation (Lichti, 

2010; Pu et al., 2011; Zhou & Vosselman, 2012; Puente et al., 2013). Therefore, real-time 3D 

information of roads and off-road features can be accessed.  

(2) Direct geo-referencing and scanned parameters 
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Figure 2-2 shows the principle of the direct geo-referencing of MLS systems. The 

scanning angle α and the scanning range d of a scanned point P are measured by laser 

scanners. By coordinate system transformation, the coordinate of point P in the mapping 

frame can be calculated from the centre of the GPS antenna.  

Parameters used in the calculation are listed in Table 1, thus the coordinate of point P 

can be derived by the following equation (Guan, 2013): 

 
𝑋"
𝑌"
𝑍"

= 𝑅'(') 𝜔, 𝜑, κ ∙ (𝑅(')0 ∆𝜔, ∆𝜑, ∆κ ∙ 𝑟"0 𝛼	𝑑 +
𝑙8
𝑙9
𝑙:

+
𝐿8
𝐿9
𝐿:

) +
𝑋="0
𝑌="0
𝑍="0

 2-1 

 

 

Figure 2-2 Principle of direct geo-referencing (Zhang, 2016) 
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Table 1 Parameters used in direct geo-referencing 

Parameters Description 

𝑿𝑷, 𝒀𝑷, 𝒁𝑷 Coordinate of point P in the mapping frame 

𝑿𝑮𝑷𝑺, 𝒀𝑮𝑷𝑺, 𝒁𝑮𝑷𝑺 
Coordinate of the phase centre of the GPS antenna in the mapping 

frame 

𝑹𝑴𝑰𝑴𝑼(𝝎,𝝋, 𝛋) 

Rotation matrix from IMU coordinate system to the mapping frame. 

𝜔,𝜑, κ are roll, pitch and yaw of IMU with respect to the mapping 

frame  

𝒓𝑷𝑺 (𝜶	𝒅) Relative position of point P in the laser scanner coordinate system 

𝑳𝑿, 𝑳𝒀, 𝑳𝒁 The offsets from the origin of GPS to the origin of IMU 

𝒍𝑿, 𝒍𝒀, 𝒍𝒁 
The offsets from the origin of IMU to the origin of the laser scanner 

coordinate system  

𝑹𝑰𝑴𝑼𝑺 (∆𝝎, ∆𝝋, ∆𝛋) 

Rotation matrix from the laser scanner coordinate system to the IMU 

coordinate system. ∆𝜔, ∆𝜑, ∆κ are bore sight angles which align the 

scanners with the IMU 

 

2.1.4 RIEGL VMX-450 

Test datasets used in this thesis were acquired by a RIEGL VMX-450 system from Tulloch 

Engineering, an Ottawa based geomatics company. A RIEGL VMX-450 system consists of 

two fully integrated and calibrated RIEGL VQ-450 laser scanners, four RIEGL VMX-450-

CS6 optical cameras with pixel array is 2452H×2056 V, one Global Positioning System (GPS) 

receiver, an IMU and a DMI. The pulse repetition of two laser scanners can be 1.1 MHz for 

high-resolution mobile laser scanning in urban areas, 600 kHz for medium range applications, 

and 300 kHz for long range applications. The maximum range of a single laser scanner is 800 

m, and the highest precision of this system can achieve 5 mm (1σ). As shown in Figure 2-1, 
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two laser scanners of RIEGL VMX-450 are fixed on both sides of the principal axis at an 

elevation of 45˚, and one single laser scanner can provide 360˚ profiles at a pulse frequency of 

550,000 measurements/sec (1,1 million measurements/sec for two laser scanners). According 

to RIEGL Datasheet Introduction, the speed of the vehicle was about 20-30 km/h and the pulse 

repetition rate was about 1.1 MHz in this study (RIEGL, 2015).    

RIEGL VMX-450 has its own data processing software (RiPROCESS) to transform laser 

scanner raw data to 3D point clouds in WGS84 or UTM (Universal Transverse Mercator). The 

workflow of RiPROCESS is shown in Figure 2-3. Two different kinds of raw laser scanner 

data are separately input into the software modules, RiANALYZE and SDCImport, to be 

transformed into laser scan data in the scanner’s own coordinate system. Then the processed 

laser scan data and the mounting orientation are input into the software module, RiWORLD. 

Then by combing information in the laser scan data and the trajectory data, laser point clouds 

in WGS84 or UTM can be generated.  
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Figure 2-3 Workflow of RiPROCESS (RIEGL, 2014) 

2.2 Related Concepts 

2.2.1 WGS84 and UTM 

The standard used in the GPS of RIEGL VMX-450 is WGS84, which is a protocol reference 

system. The origin of the WGS84 is the earth’s centre of mass. Its Z-axis points to 

Conventional Terrestrial Pole (CTP), which was determined by the International Time Bureau 

(BIH) in 1984. Its X-axis points to the intersection of the BIH Zero Meridian (epoch 1954.0) 

and the equator corresponding to CTP. And its Y-axis completes a right-handed coordinate 

system with the X-axis and Z- axis. WGS84 coordinate system was originally established by 
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the US Department of Defense (DOD). The WGS84 was firstly regarded as the coordinate 

reference datum of GPS satellite broadcast ephemeris in January, 1987 (Leick et al., 2015).  

 

Figure 2-4 WGS4 reference frame (Defense Mapping Agency, 2015) 

 

The plane projection method of 3D point clouds in this thesis is UTM. The UTM projection 

is a conformal cylindrical projection method, which causes almost no distortion when the 

projection is completed.  UTM is a horizontal position representation which uses a 2D 

Cartesian coordinate system to specify exact point locations on the surface of Earth. It 

distributes the Earth into 60 UTM zones, while each zone utilizes a transverse Mercator 

projection to map a region. The coordinates in each zone can be expressed by X, Y, and Z.   

As mentioned in Section 2.1.4, 3D point clouds and trajectory data generated by RIEGL 

VMX-450 are in WGS84 and UTM. In addition, coordinates in Google Earth are also 

expressed in WGS84 and UTM (Google, 2016). One of the main objectives of this thesis is to 

extract 3D window points which can be used in practical applications. Therefore, the object 
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space coordinate system used in thesis should be WGS84 and UTM in order to guarantee that 

output 3D window points can be aligned with geo-referenced information in Google Earth.   

2.2.2 2D and 3D Feature Extraction 

2D feature extraction is a concept from computer vision and image processing. It originally 

refers to using computer technologies to determine whether an image point belongs to a 

specific image feature. The result of the 2D feature extraction is to divide image points into 

different subsets, while these subsets always belong to isolated points, continuous curves and 

continuous areas (Nixon & Aguado, 2012). The concept of feature extraction is extended to 

3D objects nowadays in fields of photogrammetry and remote sensing.  Primarily, 3D feature 

extraction refers to determining whether a point with geospatial information (x, y, z) in 3D 

data belongs to a certain object in reality (Steder et al., 2011). However, it is more difficult to 

create and manipulate 3D information than 2D information. Some experts still prefer to solving 

problems of feature extraction on images by projecting 3D datasets onto 2D planes (XoY plane, 

YoZ plane or XoZ plane), while the projection usually results in information loss of a certain 

dimension and accuracy loss of final feature extraction (Pu et al., 2011).  

2.3 Building Façade Extraction Using MLS Point Cloud 

2.3.1 2D Building Façade Extraction 

Some experts have tried to convert 3D point clouds into 2D planes to extract building 

facades based on the generated geo-referenced images. Arachchige et al. (2012) applied an 

automatic processing algorithm to detect building facades by choosing intelligent seed points. 

This method firstly used the random sample consensus (RANSAC) algorithm to achieve 



 

 19 

segmented planar patches, and then introduced intelligent seed points and growing rules to 

detect important specific building façade features, finally, a rule based partitioning tree was 

applied to recognize the designated features on building facades (Arachchige et al., 2012). In 

most cases, the large size of MLS point clouds increases the difficulties to be processed 

automatically. This algorithm decreases the complexity for computing abundant data by 

separately processing the test point clouds step by step; this advantage of the method 

remarkably prompts the workflow for handling large MLS data; nonetheless, this algorithm 

requires abundant façade prior knowledge of geometry and the building façade extraction is 

completed in a 2D plane. In addition, Yang et al. (2012) proposed an algorithm for 

automatically extracting building façades from 3D point cloud by generating geo-referenced 

images. They firstly employed planer division to grid raw point clouds to calculate the weights 

of points in each cell based on spatial distribution analysis. Then the weighted points were 

projected onto a geo-referenced image to extract building facades using inverse-distance-

weighted interpolation method (Yang et al., 2012). This algorithm highly enhanced the 

computational efficiency; however, the process of generating geo-referenced images produced 

some accuracy loss.  

Similarly, Zhu et al. (2011) developed an automated algorithm to extract points of buildings 

in the binary images. The algorithm firstly transformed all the points contained in the top-view 

in each overlap into binary images and compared the differences between X and Y coordinates 

in each overlap in the selected cutoff-boxes. The cutoff-boxes were designed to decrease the 

influences caused by trees close to the buildings. Then a step of standard image processing was 

introduced to remove all the off-building points on the binary images; afterwards, the 
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processed binary images were re-transformed into point cloud files (Zhu et al., 2011). This 

algorithm can be applied not only in extraction of building façades, but also other binary feature 

extraction. However, this algorithm needs a manual check in the final step to ensure its 

accuracy. The accuracy relies heavily on different illuminations between images and 

influences caused by the nearby features, such as trees and pole-like objects. Thus, the degree 

of automation of this algorithm still needs to be improved.  

2.3.2 3D Building Façade Extraction 

Points on buildings have heights, thus most methods can use height information to segment 

buildings out of the whole points cloud. However, the detailed information on buildings is hard 

to detect and reconstruct. Furthermore, trees or some pole-like objects also contain height 

information; thus, using the latter steps to distinguish features on buildings from trees or other 

features containing height information becomes a hot issue. Yang et al. (2013) introduced a 

semi-automated algorithm to extract building façade footprints by using random sample 

consensus technique. The method projected all the points on buildings to different planes, and 

then by using Principal Component Analysis (PCA) algorithm, points on planes were selected 

to compute their scanning beam angle, start and ending point to each corresponding façade 

footprint. And finally, the footprints on building facades could be determined. This method 

can be applied to most detections of building facades; it can effectively decrease the influences 

caused by noise or other features, but the method does not enable one to achieve desirable 

accuracy for those buildings that have more complex structures (Yang et al., 2013).  

Jochem et al. (2011) also introduced an algorithm based on the coordinate information 

contained in geo-referenced 3D point clouds. This algorithm used information in a 3D point 
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cloud to compute the 3D horizons of all the points, and then by computing different slope and 

aspect angle corresponding to each point, the building facades could be successfully classified. 

This algorithm also developed a workflow to detect the interior wall and exterior wall of 

building facades, which could also help to compute the solar energy in the future (Jochem et 

a., 2011). However, building facades which are not influenced by shadows can be successfully 

detected, for those buildings under shadows of trees, this algorithm cannot work as expected.  

Furthermore, some algorithms are developed not only to detect but also to reconstruct 

building facades in urban areas. Significant semantic information such as size, positions, 

topology and shapes, are always contained in features (windows, doors, rooftops, walls, etc.) 

on facades, and these semantic features can also be utilized to reconstruct building facades. Pu 

& Vosselman (2009) first proposed an algorithm to reconstruct building facades in a TLS point 

cloud. And then in 2011, Pu et al. (2011) put forward a semi-automated algorithm to 

reconstruct building façades by fusing MLS data and images. The method was based on a prior 

semantic knowledge of features on building facades, such as windows and doors, and Pu set a 

constraint for each corresponding feature on building facades. The large-sized point cloud was 

firstly segmented by a growing segmentation algorithm to planar planes. And each segment 

was processed by the defined constraints to determine the most likely feature (Pu et al., 2011). 

This method can work well for most features on building facades except for windows, since 

usually there were no sufficient laser points for windows. Additionally, since this method uses 

convex hull polygons and concave polygons to extract building facades, which requires ample 

prior-knowledge about buildings, this algorithm failed in extracting building facades with 

complex structures, such as curved walls and non-vertical walls.  
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2.4 Window Extraction Using MLS Point Cloud 

Building façade reconstruction is used to establish an outer contour wireframe model 

according to characteristics of building façades, and then to obtain facets (rooftops, walls, 

windows and doors) point cloud data after divisions, and finally to extract boundaries 

(including inner and outer boundaries) on these facets and sketch boundary lines.  However, 

boundaries are often not smooth and coplanar, also they always have confused topological 

relationships because of potential missing parts in point cloud and inaccurate segmentations 

(over-segmentation or fake segmentation); therefore, applying relevantly accurate algorithms 

to adjust extract semantic information (windows, doors, crossbars, etc.) on facades becomes 

essential. It is always difficult to obtain promised results in high-level detailed featured 

extraction, especially for windows. Since windows have a low laser reflection rate, there are 

usually no laser points or few laser points representing windows in 3D point clouds, meaning 

that effective 3D information on windows cannot be directly obtained without human 

intervention. To conquer the problems induced by insufficient raw point cloud data, a series of 

explorations have been conducted by different experts in recent years. 

2.4.1 2D Window Extraction 

The window extraction is usually the subsequent procedure of the building façade 

extraction. Extracted building facades are always planar structures in the point cloud, meaning 

that most researches in window extraction are conducted in 2D plane or 2D images. Aijazi et 

al. (2014) proposed an automatic window detection method from TLS datasets. The extracted 

building façade was firstly projected into a 2D plane and a watertight boundary of this façade 

is generated to build a sealed environment. Then a point inversion algorithm was applied, 
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resulting that all holes including windows are surfaced out (Aijazi et al., 2014). The standard 

accuracy of this method can be over 90%; however, the extracted building façade was projected 

to a 2D plane first before window extraction, which will inevitably lead to some accuracy loss. 

Similarly, Mesolongitis & Stamos (2012) developed an algorithm under the assumption that 

windows were periodic structures on facades. The algorithm firstly converted 3D point cloud 

into a 2D binary map, then by iteratively sorting alignment and peak location analysis, 

windows were finalized with the result that 4,744 windows were successfully detected out of 

6,614 testing samples. Nevertheless, this method can only detect window existences on 

building facades rather than exact window frames, and the completeness of the result is also 

low (Mesolongitis & Stamos, 2012).  

Window edges are usually linear features on walls, which also enlightens researchers to 

inspect windows by detecting linear structures on building facades. Nguatem et al. (2014) 

developed a method to localize windows and doors in a 3D point cloud. This method depended 

on Monte Carlo Simulation (MC-Simulation). Templates of windows and doors were firstly 

generated while a parametric B-spline curve was used to interpolate windows and doors as 

continuous curves, and then 2D shape-space method was introduced to match similar shapes 

of the templates in the point cloud (Nguatem et al., 2014). This method can achieve high 

completeness in window detection. However, it can only be used in rectangular window 

detections. 

2.4.2 3D Window Extraction 

As mentioned before, windows are usually holes on building facades; insufficient raw 

points for windows on building façade enhance the difficulties in window detection. However, 
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this characteristic provides some experts inspirations that hole-detection algorithms can be 

applied in window extraction. Pu & Vosselman (2007) put forward an approach of window 

extraction based on hole detections in a TLS point cloud. A TIN (triangulated irregular 

network) was firstly produced to contain all points in extracted building facades. And then 

boundary points of the building façade could be successfully inspected since long TIN edges 

only appear at outer boundaries. Then points belonging to the same holes were clustered by 

boundary tracing, and holes could be detected in the TIN mesh at last. This method offers a 

promising approach in window recognition and it can achieve relatively high accuracy in the 

end.  

Similarly, Wang et al. (2011) proposed an algorithm based on hole detections in an MLS 

point cloud. They mentioned that except for some rare cases of extraordinary architecture, edge 

of building structures such as windows, doors, are usually aligned along horizontal and vertical 

directions. They generated a pattern that divided potential window frames into four categories: 

upper borders, lower borders, left borders and right borders. Then a volumetric grid was 

manipulated to obtain more explicit neighborhood relationships among sparse points. By 

detecting these frames along with holes, windows can be successfully extracted (Wang et al., 

2011). This approach can achieve a 100% correctness rate in experiments; however, prior 

semantic knowledge about sizes of windows and intervals between windows is essentially 

needed.  

2.5 Chapter Summary 

This chapter firstly reviewed related backgrounds about MLS systems, including MLS 

technology, components and the working principle of MLS systems. Especially, basic 
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information of RIEGL VMX-450 system used in this thesis is introduced. Then the chapter 

continued by introducing the coordinate system used in the thesis and the concept of feature 

extraction.  

In addition, the most state-of-the-art building façade extraction algorithms were reviewed 

in this chapter. It can be summarized that large-sized data volume, unevenly distributed point 

density, occlusions, and diverse façade structures of MLS point clouds bring great difficulties 

to building facade segmentations. So far, there is still no cosmopolitan-recognized method to 

automatically extract 3D building facades from wide-range scenes with complex 

environments. In allusion to the problems in existed studies, a new algorithm of building façade 

extraction will be proposed in Chapter 3.  

Furthermore, algorithms of window extraction in recent studies were also reviewed. By 

comparing the results of the reviewed 2D window extraction algorithms and 3D window 

extraction algorithms, it can be concluded that Wang’s method (Wang et al., 2011) can achieve 

a promising result so far, except that prior knowledge of window sizes and intervals between 

adjacent windows should be provided first. Therefore, in Chapter 3, a revised algorithm of 

Wang’s method will be proposed.  
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Chapter 3  Semi-automated Extraction of 3D Windows 

This chapter provides a detailed introduction of the methodology of semi-automated LOD3 

feature extraction in this study, namely, 3D window extraction from MLS point clouds. The 

study area and the test datasets are described first. Then information about the software and 

the programming platform are summarized. Furthermore, a stepwise workflow of the 

methodology is presented, including the ground point removal using voxel-based upward-

growing algorithm, the noise removal using statistical analysis, the classification using 

conditional Euclidean clustering algorithm, the building façade extraction using density/width 

analysis, and the window extraction using hole detection algorithm. Finally, an accuracy 

assessment mechanism is introduced.  

3.1 Workflow 

To provide solid and credible information for building reconstruction in a LoD3 building 

models, this semi-automated 3D window extraction method endeavors to identify window 

frames on building facades from MLS point clouds. This algorithm is a stepwise procedure to 

interpret the MLS point cloud into sematic features. Figure 3-1 shows the workflow of the 

methodology.   
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Figure 3-1 Workflow of the proposed method 

The raw point cloud is firstly allocated into a 3D grid, then a voxel-based upward-growing 

filtering method is applied to distinguish non-ground points from ground points. Then noise is 

filtered out from the raw MLS point cloud by computing and analyzing the distances from each 

point to its neighbours. By assuming that the computed distances of each point should behave 

according to Gaussian distribution with a certain mean and a standard deviation, points whose 

mean distances to their neighbours are beyond a given interval are taken as noise. In order to 

segment the building facades, all the remaining non-ground points are clustered based on 

conditional Euclidean clustering algorithm. Then all the clustered point clouds are projected 

onto a pseudo 2D plane (XoY) ignoring z values (3D information of the point cloud are still 

marked and retained). Under the hypothesis that points of building facades are near-linear 
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features on the XoY plane, then the projected clusters whose density and width are over a 

threshold will be designated as points for building facades.  After a building façade is 

successfully extracted, a volumetric box is created to contain façade points so that neighbours 

of each point can be operated. A manipulator is applied according to the structural 

characteristics of window frames to extract the potential window points. The window frames 

are divided into left, right, upper and lower crossbars. By the fact that points only existed above 

upper crossbars, the upper crossbars can be extracted, and the left, right and lower crossbars 

can be detected accordingly. Thus, the windows and outliers on building facades can be 

extracted.  

The programming platform of Microsoft Visual Studio 2010 and third-party programming 

library Point Cloud Library (PCL) are utilized to realize statistical analysis, voxel-based 

upward-growing filtering method, conditional Euclidean clustering, density/width analysis and 

hole-detection algorithm. Cloud Compare v2.6.2 is used to display and analyze the tested data 

and experimental results, and ArcGIS 10.2.2 is employed to generate orthophotos which are 

captured by optical cameras along with the point clouds in the study area.   

3.2 Ground Points Removal 

3.2.1 Voxel-based Upward Growing Algorithm 

Typically, MLS systems have a more straightforward perspective to the ground points, 

therefore, 3D point clouds collected by MLS systems always have high-density and large-

volume ground points. Nevertheless, these high-density ground points will undoubtedly 

increase the complexity and efficiency of non-ground object detection algorithms. Thus, 
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applying fast and effective pretreating method to filter out ground points in 3D scene point 

clouds is of great significance in enhancing reducing data search range and improving the 

performance of 3D non-ground object detection algorithms. In this section, a voxel-based 

upward-growing algorithm (Yu et al., 2015) is described to filter out ground points from the 

raw MLS point cloud.   

Grounds are always undulating in the 3D point cloud scenario. If the entire tested 3D point 

cloud dataset was processed simultaneously, the running time of voxel-based upward-growing 

method will increase, additionally, the performance of the proposed algorithm is not promising. 

Therefore, in order to quickly and effectively process the undulating ground points, the entire 

point cloud will be segmented first, and ground-point filters will be applied in each block step 

by step. By using this strategy, the ground undulation in each block will be alleviated, and the 

filtering result will be more promising.  

As shown in Figure 3-2 (a), the entire 3D point cloud will be perpendicularly and parallelly 

segmented into a series of local point blocks (Blocki, i=1, 2, 3, …, Nb) according to a certain 

width (wb, which is determined by the size of tested datasets) in the XY plane, Nb is the total 

number of the generated local point blocks, and these local point blocks will be individually 

processed to filter out ground points. Secondly, as shown in Figure 3-2 (b), each Blocki (i=1, 

2, 3, …, Nb) will be divided into a series of spatially continuous point cloud voxels (vj, j=1, 

2, …, Nv) based on a certain width (wv) by using Octree Spatial Index, where wv is determined 

by wb and average point density, and Nv is the total number of generated voxels. Additionally, 

as shown in Figure 3-2 (c), each voxel has 26 adjacent voxels. Based on the unique octree 

index structure, a voxel-based upward-growing method is proposed and described as follows:   



 

 30 

 

Figure 3-2 Principle of voxel-based upward-growing algorithm 

 (a) Segmented raw point cloud; (b) Octree Spatial Index in a local block (Yu et al., 2015); 

(c) Voxel-based upward-growing pattern 

Figure 3-2 (c) displays the detailed procedure of voxel-based upward-growing method. For 

each voxel vj (j=1, 2, …, Nv), the upward-growing process firstly grows along with its ‘9 

neighbours’, where ‘9 neighbours’ of a certain voxel is defined as voxels adjacent to the voxel 

vj and locating above the voxel vj. For instance, the ‘9 neighbours of vj in Figure 3-2 (c) are 

voxel L1, voxel L2… voxel L9. Next, the upward-growing process regards the ‘9 neighbours’ 

(L1, L2… L9) of voxel vj as the starting points, and continues to grow up at the same pattern. 

And by this analogy, the rest of the upward-growing processes regard the generated ‘9 

neighbours’ voxels as starting points to grow up. This recursive upward-growing process will 

stop only when all grown voxels have no ‘9 neighbours’ to grow up. Then, voxel vh with the 

maximum local height value, which is also the highest point in the growing region, can be 

calculated. The ‘local height value’ of a certain voxel is defined as the height difference 

between the certain voxel and the lowest voxel in the local block which contains the certain 
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voxel. And the ‘global height value’ of a certain voxel is defined as the height difference 

between the certain voxel and the lowest voxel in the entire 3D point cloud. Finally, voxel vj 

(j=1, 2, …, Nv) will be designated as ground voxel (a voxel which contains ground points) or 

non-ground voxel (a voxel which contains non-ground points) according to the following 

criterions. By filtering out voxels which are marked as ground voxels, ground points can be 

removed from the raw point cloud dataset. The criterion can be described as follows:  

(1) Define a local ground undulation threshold hg (which is determined by the maximum z 

value of tested datasets), which constrains the largest local ground undulation in each 

local block of a certain 3D point cloud scene.  

(2) Define a global ground undulation threshold he (which is also determined by the 

maximum z value of tested datasets), which restrains the largest ground undulation in 

the entire point 3D point cloud scene.  

(3) If the global height value of a voxel vj (j=1, 2, …, Nv) is smaller than he, and the local 

height value of the voxel vh is smaller than hg, the voxel vj will be designated as a 

ground voxel and removed from the raw point cloud.  

(4) If the global height value of a voxel vj (j=1, 2, …, Nv) is higher than he, or and the local 

height value of the voxel vh is higher than hg, then the voxel vj will be designated as a 

non-ground voxel and all points in voxel vj will remain.  

The voxel-based upward-growing method has the following advantages: (1) it firstly 

segments the global point cloud into series of local point blocks and filters out the ground 

points in each block, which highly enhances the efficiency and reduces the running time to 
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process large-scene undulating 3D point cloud datasets. (2) the growing pattern of voxel-based 

upward-growing algorithm can effectively retain the integrity of the non-surface data. Figure 

3-3(a) presents a raw 3D point cloud which contains abundant ground points and Figure 3-3(b) 

shows the non-ground points after ground points are filtered out by the voxel-based upward-

growing algorithm.   

 

Figure 3-3 Demo of voxel-based upward-growing method 

(a) A raw 3D point cloud which contains abundant ground points; (b) the filtered non-ground 

points 

3.2.2 Noise Removal Using Statistical Analysis 

Noise inevitably exists in the MLS point cloud even after ground points have been removed, 

which are primarily presented as isolated points, outliers and point mutations in some local 

areas. In order to remove noise out of non-ground features, a statistical analysis filter in PCL 

package (PCL, 2015) is applied here to differentiate noise from non-ground feature. The 

statistical analysis filter is generated by PCL in its point cloud processing library. PCL is a 

large-scale cross-platform open source C++ programming library, which is built up by 
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absorbing previous valuable algorithms in related point cloud studies. It implements ample 

relevant common algorithms and efficient data structure of point clouds, which refers to point 

cloud acquisition, filtering, segmentation, registration, retrieval, feature extraction, 

identification, tracking, surface reconstruction, and visualization. The window extraction 

algorithm in this thesis is proposed to be applied in practical commercial applications. The 

PCL package is an easy-to-access commercial library which can be directly taken advantage 

of here.  

Noise removal algorithm based on statistical analysis has been proved in a series of research 

studies (Zhang, 1992; Rusu et al., 2008; Rusu & Cousins, 2011; PCL, 2015). It firstly 

implements by finding k (determined by average point density) nearest points from a certain 

point and computing distances from a point to its neighbours. For each point pi (i=1, 2, …, Np) 

the mean distance of it from all its neighbours di (i=1, 2, …, Np) have then been calculated, 

where Np is the total number of points in the tested non-ground points. Under the assumption 

that the distribution of mean distances of all the points should be Gaussian distribution with a 

certain mean value and a standard deviation, then points outside a thresholding interval will be 

considered as noise and removed from the non-ground points. The thresholding interval is 

determined by the computed mean value and standard deviation in Gaussian distribution.  

Figure 3-4 shows the principle of statistical analysis, Figure 3-4(a) indicates neighbour points 

of a given point pi and distances from pi to its neighbour points, and Figure 3- 4(b) presents the 

mean k-nearest neighbour distance.  
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Figure 3-4 Principle of noise removal using statistical analysis 

 (a) Neighbourhood of a certain point; (b) Mean K-nearest neighbours distances (PCL, 

2015) 

In this methodology, the procedure of noise removal is situated after ground point removal 

since high-density. Abundant ground points will enhance time and space complexity of the 

algorithm. Therefore, filtering out ground points at first will improve the efficiency of the 

entire processing algorithm. Figure 3-5 (a) gives an example of 3D point cloud with sparse 

noise. Figure 3-5 (b) shows the noise-removed point cloud by noise removal algorithm using 

statistical analysis, which indicates that noise can be successfully removed by noise removal 

algorithm using statistical analysis.  
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Figure 3-5 Demo of noise removal using statistical analysis 

(a) Raw point cloud with sparse noise; (b) Resulted point cloud after applying noise removal 

algorithm using statistical analysis (PCL, 2015) 

3.3 3D Window Extraction 

3.3.1 Conditional Euclidean Clustering 

There are no topological relationships between point to point in a discrete and sparse 3D 

non-ground point cloud. Therefore, points belonging to the same semantic object in the scene 

are still isolated and unorganized even after filtering ground points and noises. In order to 

distinguish specific 3D objects from non-ground points, valid and sensitive clustering and 

segmentation method should be applied, to organize the sparse non-ground points into 

topological and semantic objects. This section utilizes conditional Euclidean clustering method 

to conduct fast segmentation of the 3D unorganized non-ground points. Conditional Euclidean 

clustering algorithm is a method to find the nearest neighbours which is inspired and proved 

by Yu et al. (2015). This method segments discrete points into series of clusters according to 
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a certain distance by computing Euclidean distances between a certain point and its adjacent 

ones. In this methodology, a Euclidean distance threshold (dc) should be given first according 

to density and resolution of a tested dataset. If the Euclidean distance between two adjacent 

points is less than or equal to dc, these two points will be designated into the same cluster. 

Otherwise, these two points will be assigned into different clusters. The detailed conditional 

Euclidean Clustering method will be presented below: 

 

Figure 3-6 Principle of conditional Euclidean clustering method 

 

Initially, all non-ground points are marked as non-clustered points. As shown in Figure 3-6 

(a), the conditional Euclidean clustering algorithm starts at any one of the non-clustered points 

pi, i=1, 2, …, Noff, in which Noff is the total number of non-ground points. pi is firstly marked 

as a clustered point, and assigned with a class identifier cLabel. Next, as shown in Figure 3-6 

(b), pi is designated as the centre of a sphere, and dc is the radius of the sphere, all the non-

clustered points which are within the spherical neighbourhood will be marked as clustered 

points, and the same class identifier cLabel will also be assigned to these new clustered points. 

Thirdly, as shown in Figure 3-6 (c), these new clustered points are respectively regarded as 

new starts of the conditional Euclidean clustering algorithm, and the same clustering pattern 
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will be continued outwards radially. By this analogy, the conditional Euclidean clustering 

method consistently marks non-clustered points which are within the spherical neighbourhood 

of a newly clustered point as clustered points, and assigns them the same class identifier cLabel. 

This recursive clustering process ends when there are no more non-clustered points within the 

spherical neighbourhood of these clustered points. Then, one of the rest of the non-clustered 

points will be selected as a new start, and the same conditional Euclidean clustering pattern 

will continue until all the non-ground points are clustered. When all non-ground points are 

clustered and assigned with different class identifiers, points with the same class identifier will 

represent for the same cluster. Figure 3-7 shows the clustering results by using conditional 

Euclidean clustering method. Figure 3-7 (a) presents noise-removed non-ground points, and 

Figure 3-7 (b) indicates that an independent semantic object can be effectively separated by 

using conditional Euclidean clustering algorithm. 

 

Figure 3-7 Demo of conditional Euclidean clustering algorithm (Yu et al., 2015) 

 

As shown in Figure 3-7, a spatial independent semantic object can be effectively separated 

after conditional Euclidean clustering algorithm has been applied. In addition, the time 

complexity of conditional Euclidean algorithm is low so that segmentations of non-ground 

independent semantic objects can be completed at a high efficiency. Since the final targets in 
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this methodology are 3D windows on building facades, prior knowledge (size, height, etc.) of 

the targeted objects can also be utilized for in-depth filtering. It can further improve the 

processing efficiency of the 3D clustering algorithm, so that small sizes of useless clusters 

(cars, transmission lines, pole-like objects) can be removed. A height difference threshold hc 

and a width threshold wc are defined preliminarily, then a cluster whose height difference hr is 

smaller than the given hc or whose width wr is smaller than the given wc will be removed. 

“Height difference” represents for the absolute subtraction result between the maximum z 

value and minimum z value of a specific cluster. The width of a cluster is the absolute 

subtraction result between maximum x value and minimum y value, or the subtraction result 

between maximum y value and minimum y value of a specific cluster. The targeted clusters 

can be refined by the following equation: 

			𝑇𝑟𝑢𝑒	𝑐𝑙𝑢𝑠𝑡𝑒𝑟,																															𝑖𝑓		ℎY > ℎ[	＆＆	𝑤Y > 𝑤[
𝐹𝑎𝑙𝑠𝑒	𝑐𝑙𝑢𝑠𝑡𝑒𝑟,																															𝑖𝑓		ℎY < ℎ[		𝑜𝑟	𝑤Y < 𝑤[

 3-1 

 

3.3.2 Building Façade Extraction by Density/Width Analysis 

MLS point clouds can directly record rigorous 3D coordinates from real scenes, which 

facilitates immediate 3D geometric feature extraction. Large field of view and powerful ability 

of acquiring high-resolution data make MLS point clouds can be more conducive not only in 

large-scale building structure detections, but also in detailed feature extraction. However, as 

mentioned in Chapter 2, there is still no sophisticated algorithms that can quickly and 

effectively classify 3D MLS point clouds measured from large-scale complex environments 

into individual objects (ground, building, wire, rod-shaped object, tree, etc.). Therefore, in this 

section, a density/width analysis method is put forward based on the density and geometric 
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properties of building facades in point clouds. The building façade extraction method by 

density/width analysis proposed in this section is inspired by the culling mechanism presented 

in Melzer & Briese (2004). In the culling mechanism, Melzer & Briese (2014) pointed out that 

features in 3D point cloud had different density properties. The algorithm put forward in this 

section is based on his assertion.  

The X-Y plane is firstly subdivided into a 2D grid by g m× g m, in which g is pre-defined 

by average point density of input clusters generated by conditional Euclidean clustering 

algorithm. The input clusters are then projected into this gridded X-Y plane, and the z value of 

each point is remaining as a label. The total number of this cluster will be recorded as Nc. For 

each cluster, the length Wid and the average density Den of the projected cluster can be 

calculated by: 

𝑊b = 𝑥def − 𝑥dhi 3-2 

𝑊j = 𝑦def − 𝑦dhi 3-3 

𝑊𝑖𝑑 = 	𝑊b	, 											𝑊b > 𝑊j
	𝑊j	, 											𝑊b < 𝑊j

 3-4 

𝐴𝑟𝑒𝑎 =
	𝑊b×𝑊j,														𝑊b ≠ 0	𝑎𝑛𝑑	𝑊j ≠ 0
	𝑊b,																																																	𝑊j = 0
	𝑊j,																																																	𝑊b = 0

 3-5 

𝐷𝑒𝑛 = 𝑁[/𝐴𝑟𝑒𝑎 3-6 
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where xmax is the maximum x value in the input cluster, ymax is the maximum y value in the 

input cluster, xmin is the minimum x value in the input cluster and ymin is the minimum y value 

of the input cluster, Area is the pseudo rectangular acreage of the projected area. Especially, 

when the  	𝑊b = 0 and 	𝑊j = 0, the input cluster will be directly regarded as non-façade points. 

Under the prior knowledge that clusters belonging to building facades have a relatively high 

average density and width at the same time, clusters whose average density and width are 

inside a given thresholding interval will be regarded as building facades and remained to be 

processed in the next step. The given thresholding interval is determined by the density of raw 

3D point clouds.   

3.3.3 Window Extraction Using Hole Detection Algorithm 

Automated extraction of windows from point clouds relies on the extraction of the window 

edge on the building facades. Wang et al. (2011) proposed a hole-detection algorithm for 

window extraction. In their algorithm, prior knowledge of window sizes and distances between 

windows are needed. A pattern that classifies window frames into four categories is firstly 

conducted: horizontal borders on the top and bottom of windows, and vertical borders on the 

left and right side of windows always leave holes on building facades (Wang et al., 2011). In 

order to simulate neighbourhood relationships among points, a volumetric manipulator at a 

grid size vg is created to contain all the points of the extracted building façade, where vg is 

determined by the density of the input point cloud. Then an operator is conducted according to 

the window pattern to localize windows excluding window crossbars. For each voxel (i, j, k), 

I bespeak f (i, j, k) =0 if there is no laser point in this voxel, and f (i, j, k) =1 if there are laser 

points in this voxel, the equation of the operator lists below:  
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As shown in Eq. 3-7, the upper horizontal window border is recognized if the upper 

neighbour exists while the lower neighbour does not; the same rationale is manipulated to the 

lower border, left border and right border of windows. When window frames are successfully 

localized by this mechanism, points belonging to these four window borders will be designated 

into a classifier and marked as window points.  

3.4 Validation 

3.4.1 Window Regions in 2D  

Digital images were taken as the references for validations. As mentioned in Chapter 2, 

digital images and 3D point clouds are collected together while the vehicle is moving so that 

the two kinds of sensors (optical camera and laser scanner) share the same environmental 

variables.  Digital images have distortions, however, 3D points of window frames contain 

absolute coordinates and geometric information. Therefore, optical distortions in images 

should be eliminated first so that digital images can be a reference for the validation. In this 
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study, orthophotos of building façades should be generated to validate the extracted 3D 

windows before the accuracy assessment. 

(1) Orthoimagery Generation 

Figure 3-8 shows the geo-referenced frame of 3D point clouds. Detailed 2D information of 

the building façades is only included when the 3D point cloud is projected to a vertical plane 

(XoZ), where axes of X, Y, and Z are corresponding to axes in the UTM projection (UTM 

zone: 18N). Therefore, the extracted building windows are assessed their 2D projections on 

the vertical plane (XoZ), namely window outlines. The extracted window outlines are 

compared with the windows’ polygons generated by digitizing building window outline from 

the vertical orthoimagery of building facades. 

 

Figure 3-8 Geo-referenced frame in 3D point cloud 

 

In order to generate orthophotos of the projected 3D point cloud in XoZ plane, several 

control points (C1, C2, … Cn, n=1, 2, 3…) in raw 3D points cloud are firstly selected to draw a 
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base map. Only 2D information (x, z) of the selected control points is used to generate the base 

map. As shown in Figure 3-9, the control points are gridded evenly according to their 

coordinates in the base map. Image space coordinate system is used to describe the location of 

image points in 2D plane in this section. The locations of image points are described by the 

numbers of rows and columns in pixel arrays in this paper. Specifically, coordinate x of a pixel 

is the row number in the pixel array, and coordinate y of a pixel is the column number in the 

pixel array. Generating orthophotos is indeed geo-referencing raster datasets. Orthophoto 

generation can be operated by the module Geo-referencing in ArcGIS 10.2.2. The referenced 

digital image for each dataset is input as a raster layer into ArcGIS first. The process identifies 

the spatial information of the raster dataset by linking locations on the raster layer with the 

corresponding locations (with known x,y coordinates) on the base map. Then the pixels in the 

raster layer will be relocated according to the control points on the base map. 

 

Figure 3-9 Base map of orthophoto generation 
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According to ArcGIS Resources (ArcGIS, 2016), a least-square fitting algorithm is applied 

here to optimize the global accuracy of the generated orthophotos. There are several modules 

in transforming a raster dataset in ArcGIS. One control point is needed for zero-order shift, 3 

for affine transformation (1-order polynomial), 6 for second order polynomial transformation 

and 10 for third order polynomial transformation. The more control points, the higher the 

transformation order, and the more the distortion will be corrected. Nonetheless, this research 

needs to achieve optimal accuracy at least cost of control points. After repeated tests, it was 

found that second order polynomial transformation performed adequately on the digital images 

those needed to be transformed. Then by linking each control point in base map and its 

corresponding image point6 in raster layer, the distortion in digital images can be corrected, 

and final orthophotos of building facades on the vertical plane (XoZ) can be generated.  

When orthophotos are successfully generated, the extracted windows will be overlapped on 

the orthophotos in Cloud Compare v2.6.2 to generate the overlapped photos. The resolutions 

of the referenced orthophoto and the overlapped photo for each dataset are adjusted to be the 

same to avoid the influences caused by different resolutions.  

(1) Quantitative Assessment 

The accuracy assessment mechanism of window regions in 2D is conducted based on 

completeness (cpt), correctness (crt), F-measure (F). As shown in Equation 3-8 to 3-10, the 

cpt represents the integrity of the extracted windows; the crt shows how many valid and correct 

windows are extracted by using the proposed methodology; and F-measure is a global score 

by integrating correctness and completeness. Where 𝐶� represents f the number of valid pixels 

belonging to the exact windows in the extracted points, 𝑅� is the number of the window pixels 
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interpreted manually from the generated orthophotos, and 𝑅Y is the number of pixels of the 

extracted points by the proposed method.  

𝑐𝑟𝑡 = 𝐶�/𝑅Y 3-8 

𝑐𝑝𝑡 = 𝐶�/𝑅� 3-9 

F = 2×
𝑐𝑝𝑡×𝑐𝑟𝑡
𝑐𝑝𝑡 + 𝑐𝑟𝑡

 3-10 

 

3.4.2 Window Regions in 3D 

The accuracy assessment of window regions in 3D is based on correctness (crt). Window 

points are manually extracted from the raw point clouds in this section. For each 3D point 

extracted by the proposed method, a corresponding point extracted by the manual interpretation 

should be found. The crt shows the portion of correct window points extracted by the proposed 

method and it is defined as 𝐶i/𝑅i , where 𝐶i  is the number of valid 3D window points 

extracted by the proposed method those can be found in manually interpreted points,  and 𝑅i 

is the total number of extracted 3D window points by the proposed method.  

 

3.5 Chapter Summary 

This chapter detailed the methodology. The rationales of the voxel-based upward-growing 

algorithm, statistical analysis, conditional Euclidean clustering algorithm, density/width 

analysis, and hole detection algorithm are presented in details. Quantitative assessment method 

has also been described. Some experimental datasets will be employed to test the feasibility, 

the efficiency and the accuracy of the proposed methodology in Chapter 4.  
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Chapter 4 Results and Validation 

This chapter presents the results of window extraction and validation. Firstly, results of the 

test datasets after applying the stepwise algorithms are presented and discussed. Then the 

accuracy assessments in both 2D and 3D are demonstrated.   

4.1 Design of the Environment 

A study area is chosen to test the proposed approach for semi-automated extraction of 

building windows on different building types. The point clouds covering the building facades 

were acquired by a commercial MLS system. Accuracy of the extracted building windows is 

assessed using the reference data. 

4.1.1 Study Area 

The study area is located in the City of Kingston, Ontario, Canada (longitude 

76°33'22.57"W, latitude 44°13'7.40"N). Kingston is a city located in Eastern Ontario where 

the St. Lawrence River flows out of Lake Ontario. It is midway between Toronto and Montreal 

(see Figure 4-1). Figure 4-2 shows the sections of King Street West and Front Road nearby the 

lakeshore of Lake Ontario, which were surveyed by a RIEGL VMX-450 system The point 

cloud datasets of a 3.7 km long road section of King Street West were used to evaluate the 

developed algorithms. On this road section, there exist different dwelling types (such as single-

detached, semi-detached houses), commercial and high-rise buildings.  
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Figure 4-1 Location of the study area 

 

Figure 4-2 Trajectory of the study area (Google, 2015) 
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4.1.2 Point Cloud Data 

The point cloud datasets were acquired on August 29th, 2013 by a RIEGL VMX-450 system 

from TULLOCH Engineering (as shown in Figure 4-3). The total of over 916 million points 

were stored in 45 LAS files, which use 23.8 GB generated by TerraScan Software. The 10 GB 

images taken by the CCD cameras were saved as JPEG format, including a CSV (Comma 

Separated Value) file containing the origin and direction coordinates, timestamp, roll, pitch, 

and yaw information. 

 

Figure 4-3 The RIEGL VMX-450 system of TULLOCH Engineering 

Figure 4-4 shows the five datasets that were selected from the data acquired by the RIEGL 

VMX-450 system. Figures 4-4(a), (c) and (e) show Dataset 1, a single-detached house with its 

digital image, front view and oblique view of an MLS point cloud with 787,235 points in about 

86.79m2. Figures 4-4(b), (d) and (f) show Dataset 2, a single-detached house covered by 

1,442,607 points in approximately 185.31m2. Figures 4-4(g), (i) and (k) show Dataset 3, a 

single-detached house covered by 1,281,313 points in about 212.94m2. Figures 4-4(h), (i) and 

(l) is the fourth MLS point cloud with 725,579 points in approximately 324.86m2, and Figures 

(m), (n) and (o) is the fifth MLS point cloud with 3,336,229 points in approximately 
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1,577.45m2. Datasets 2 and 4 are selected since they include typical window types (rectangular, 

irregular and arc-rounded windows) in the study area. Dataset 3 was used to test whether the 

proposed method will be influenced by occlusions of trees. Dataset 5 was used to validate the 

flexibility of the proposed method in complex scenes. In addition, holes usually exist on 

building facades in 3D point cloud due to systematic errors in MLS systems. As such, Dataset 

1 was used to test the influences that big holes will have on the hole detection algorithm.   

Figure 4-5 shows Gaussian density distributions of the five test datasets. Point density is 

influenced by elements such as distance from laser scanners to the scanned point, scanning 

angle, frequency of transmitted scanning beams, etc. The average densities of test datasets are 

different. The density analysis was completed using volume density analysis module in Cloud 

Compare v2.6.2. The entire point cloud was gridded into 1 m×1 m×1 m volumes, and points 

in these volumes are calculated. Different colours in the figures represent for areas within 

different densities. Colours demonstrated in Figures 4-5 (a), (c), (e), (g) and (i) and charts 

(Figures 4-5(b), (d), (f), (h) and (j)) are corresponding to each other. Generally speaking, 

features close to the road centre lines have higher densities than those of further away, and 

ground objects have higher density than non-ground objects. Additionally, as shown in Figures 

4-5(b), (d), (f), (h) and (j), the average densities of Datasets 1 to 5 are 5,628.5, 6980.1, 4653.3, 

1569.7, and 4771.2 pts/m3, respectively.   
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(a) Digital image of Dataset 1 

 
(b) Digital image of Dataset 2 

 
(c) Front view of Dataset 1 

 
(d) Front view of Dataset 2 

 
(e) Oblique view of Dataset 1 

 
(f) Oblique view of Dataset 2 
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(g) Digital image of Dataset 3 

 
(h) Digital image of Dataset 4 

 
(i) Front view of Dataset 3 

 
(j) Front view of Dataset 4 

 
(k) Oblique view of Dataset 3 

 
(l) Oblique view of Dataset 4 
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(m)  Digital image of Dataset 5 

 

(n) Front view of Dataset 5 

 

(o) Oblique view of Dataset 5 

Figure 4-4 Five datasets used in this study 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 

 
(j) 

 

Figure 4-5 Gaussian density distribution of five test datasets 

 

4.1.3 Reference Data 

The four CS6 cameras of the RIEGL VMX-450 system captured digital colour images, 

which were used as the reference data for validation of the 2D window extraction in this study. 

The FOV of a RIEGL VMX-450-CS6 camera is 80˚×65˚(H×V), 5 mm lens. The trigger of the 

camera system has a constant time interval. The speed of the vehicle was about 20-30 km/h. 

So there are some overlaps between two adjacent images; the digital image which is selected 

to generate the orthophotos should the one who has the maximum coverage of the targeted 
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buildings. Accordingly, the digital images used in this study are shown in Figures 4-4(a), (b), 

(g), (h) and (m).  

4.2 Results and Evaluation 

4.2.1 Ground Removal 

The parameters used in this section are listed below. As mentioned in Section 3.2, the results 

obtained by the voxel-based upward-growing algorithm is influenced by the following three 

parameters:  

� wv: size of a voxel,  

� hg: a pre-defined local ground undulation threshold, and  

� he: a pre-defined global ground undulation threshold.  

According to the point density of the test datasets, the voxel size was set as wv = 0.5 m, hg = 

0.5 m, and he = 3.0 m, respectively, in this experiment.  to ensure there are more than 500 points 

in one voxel to confirm the time complexity of this algorithm (since points on the ground have 

high density). Figure 4-6 shows the ground removal results obtained by the voxel-based 

upward-growing algorithm using the five test datasets. Table 2 lists the ground removal results, 

which show that removing ground points can considerably reduce the number of points and 

improve computing efficiency.  
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Table 2 Results of the ground removal 

Dataset Raw point cloud Non-ground points Percentage of ground points 

1 787,235 339,105 57% 

2 1,442,607 747,583 48% 

3 1,281,313 865,063 32% 

4 725,579 623,087 14% 

5 3,336,229 1,061,303 68% 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 

Figure 4-6 Ground removal results obtained using 

(a) Dataset 1; (b) Dataset 2; (c) Dataset 3; (d) Dataset 4; (e) Dataset 5.  

Figure 4-7 presents Gaussian point density analysis of non-ground points in the five test 

datasets. The average point densities of the non-ground points become 4,076, 5,920, 3,959, 

1,643 and 1,628 pts/m3 in Datasets 1 to 5.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 
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(i) 

 
(j) 

 

Figure 4-7 Gaussian density distribution of non-ground points 

4.2.2 Noise Removal Using Statistical Analysis 

K-nearest neighbourhood should be searched before starting the algorithm, k should be set 

according to the raw point density. k = 50 is selected in this experiment according to the point 

density. Figures 4-8(a), (c), (e), (g) and (i) show the non-ground points of the five test datasets, 

while (b), (d), (f), (h) and (j) show the corresponding non-ground points after noise removal. 

As can be seen, discrete noises can be successfully removed from the test datasets. However, 

some points belonging to trees, utility lines, cars and rooftops are also removed. Those points 

belonging to rooftops in Datasets 2 and 4 are even removed because of their low point density. 

However, it will not make any difference to the final result, since the targeted objects of this 

methodology are windows on building facades. Points belonging to trees, utility lines, cars and 

rooftops can also be regarded as “noise points” and removed.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 4-8 Noise removal results 

Discrete noise points can reduce the average point density of the entire point cloud after 

ground and noise removal. The Gaussian density distribution analysis for the five test datasets 

are displayed in Figure 4-9. As shown in Figures 4-9 (b), (d), (f), (h) and (j), the average density 

for the five test datasets become 4,109.1 pts/m3, 6,206.7pts/m3, 4,129.4 pts/m3, 1,647.4 pts/m3, 

1,741.1 pts/m3, respectively. All of them are larger compared with the average density of non-

ground points, which also indirectly suggests that sparse noise points are removed after 

processing. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 4-9 Gaussian density distribution of noise removal results 

 

4.2.3 Classification by Conditional Euclidean Clustering 

After ground and noise removal, the remained points still have no topological relationships. 

According to the Gaussian point density distributions of the five noise-removed results, dc=0.1 

m, hc=1.0 m and wc=2.0 m are used in this experiment, since the targeted building facades are 

always higher and wider than 2 m. As mentioned in Section 3.2, the results obtained by the 

conditional Euclidean clustering algorithm is influenced by the following three parameters:  

� dc: a Euclidean distance threshold,  
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� hc: a pre-defined height difference threshold 

� wc: a pre-defined width threshold.  

 Figures 4-10(a), (c), (e), (g) and (i) show the noise-removed datasets before applying the 

conditional Euclidean clustering algorithm. Figures 4-10(b), (d), (f), (h) and (j) show the 

clustering results of the five noise-removed datasets. As can be seen, sparse points (noise which 

still remains in the last procedure) and small clusters (such as stairs in front of the façade in 

Dataset 1, curtains and doors in Dataset 2, 3 and 4, and cars, trees, boats in Dataset 5) are all 

removed by setting the threshold hc and wc. Only a telegraph pole, an ad board, and house 

facades are remained in the five results. As shown in Figures 4-11(b), (d), (f), (h) and (j), the 

average density for the five test datasets become 4552.0 pts/m3, 5666.4 pts/m3, 3755.19 pts/m3, 

1564.33 pts/m3, 2061.3 pts/m3, respectively. Average point densities in Dataset 1 and 5 are 

larger than the average point densities of noise-removed datasets, which indicate that sparse 

points and small clusters are removed so that the remaining points have more compact 

geometry relationships after conditional Euclidean clustering.  However, windows and doors 

in Dataset 2, 3, and 4 are concave on the front façade, they are not in the same plane as the 

front facade, so that the frames of windows and doors on the three datasets are removed 

together with curtains, resulting that the average point density become smaller than that in the 

noise-removed dataset.  

Disordered points have topological relationships now and clusters can be designated as 

semantic objects after conditional Euclidean clustering method. However, side facades are put 

into different clusters against front building facades, and some rooftops of houses are even 
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removed. After inspecting the raw noise-removed point cloud, it can be concluded because of 

scanning angles that there are gaps between side facades and building facades, rooftops and 

front facades, which are larger than the given threshold dc. In addition, density of front facades, 

side facades and rooftops are also varied due to scanner angles and scanning distances from 

the scanning centre to targeted points. Therefore, points belonging to front facades, rooftops 

and side facades are assigned into various clusters. Especially, rooftops in Datasets 1, 3 and 5 

are removed because their height differences (the substation result between the maximum z 

value and minimum z value) are smaller than the given threshold hc.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 
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(h) 
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(i) 

 

(j) 

Figure 4-10 Clustering results 
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(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Figure 4-11 Gaussian density distribution of remaining clusters 
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4.2.4 Building Façade Extraction 

When discrete points are segmented into different semantic clusters, distinguishing a 

specific semantic cluster from the others becomes much simpler. The results obtained by the 

density/width analysis is influenced by the following three parameters:  

� Denb: a pre-defined average density threshold of building facades,  

� Widb: a pre-defined width threshold of building facades. 

Figures 4-12 and 4-13 respectively indicate the ranges of widths and the densities of five 

typical features (trees, cars, building facades, pole-like objects and ad boards) in the study area. 

According to Figures 4-12 and 4-13, it can be concluded that width/ length of a house should 

not be smaller than 7 m, and the average density of front house facades in a X-Y plane should 

be larger than 4000 pts/m2. Thereby, this experiment set Denb=4000 pts/m2, and Widb=8 m for 

all the test datasets.  

 

Figure 4-12 Width of five typical features in the study area 
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Figure 4-13 Density of five typical features in the study area 

 

Figure 4-14 presents the extracted building facades of the test datasets. The front building 

facades in Datasets 1, 2, 3, and 5 can be elaborately differentiated from other clusters and 

extracted, while the side building facades are missing. The side building façade in Dataset 4 

can be successfully extracted while its back façade is missing. After re-calculating the average 

planar density in the XoY plane of side facades, the result demonstrates that average planar 

densities of side facades in the test datasets except Dataset 4, and the back façade in Dataset 4 

are lower than 1000 pts/m2.  Due to influences of scanner angles and scanning distances from 

a scanner centre to points on side facades, volumes of points on side facades cannot satisfy the 

given threshold, they are filtered out as other non-façade points in this Density/Width Analysis 

algorithm. Furthermore, holes and compact noises are still remaining on the extracted building 

facades according to insufficient points caused by system errors in MLS systems or curtains 

behind windows, which will inevitably have side-effects on the following procedures.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-14 Building facades extracted from the five test datasets 
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Figure 4-15 show the Gaussian point density of the extracted building facades. The average 

point densities of the front façade in the five test datasets become about 4,881, 6,013, 3,830, 

1,702 and 2,163 pts/ m3, respectively, which all become higher due to the more compact points. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

 

(j) 

 

Figure 4-15 Gaussian density distribution of front facades 

 

4.2.5 Window Extraction Using Hole Detection Algorithm 

In this section, the size of a voxel still needs to be different from that used in ground 

removal, since the hole detection algorithm used in this section needs to elaborately examine 

each voxel and its neighbours. To guarantee the time complexity as well as the precision of 

this algorithm, there should be no more than 10 points in the same voxel. As shown in Figure 

4-15, the highest density of the test front facades is about 9000 pts/m3, so the size of a voxel 
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was set as vg = 0.05 m in this section to make sure there cannot be more than 2 points in a 

voxel. The extracted windows are shown in Figure 4-16. The promising results indicate that 

the proposed window extraction algorithm can successfully extract all windows on the test 

datasets, including rectangular, irregular and arc-rounded windows. In addition, as shown in 

the results of Dataset 3, the proposed method is not influenced by occlusions of trees. However, 

as shown in Figures 4-16 (c), (d), (k) and (l), some big holes caused by systematic errors of 

MLS systems are also extracted from the raw point cloud. Furthermore, as shown in Figure 4-

16 (l), only window frames on front façade in Dataset 4 can be extracted. 

 
(a) Dataset 1 in digital images 

 
(b) Dataset 2 in digital images 

 
(c) Extracted windows and building 

outliers of Dataset 1 

 

 

 
(d) Extracted windows and building 

outliers of Dataset 2 
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(e) Extracted windows overlapped on 

the front façades of Dataset 1 

 
(f) Extracted windows overlapped on 

the front façades of Dataset 2 

 
(g) Extracted windows overlapped on 

raw point clouds of Dataset 1 

 
(h) Extracted windows overlapped on 

raw point clouds of Dataset 2 
 

 
(i) Dataset 3 in digital images 

 
(j) Dataset 4 in digital images 



 

 76 

 
(k) Extracted windows and building 

outliers of Dataset 3 

 
(l) Extracted windows and building 

outliers of Dataset 4 

 
(m) Extracted windows overlapped on the 

front façades of Dataset 3 

 
(n) Extracted windows overlapped on 

the front façades of Dataset 4 

 
(m) Extracted windows overlapped on 

raw point clouds of Dataset 3 

 
(n) Extracted windows overlapped on 

raw point clouds of Dataset 4 
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(o) Dataset 5 in digital images 

 

(p) Extracted windows and building outliers of Dataset 5 

 

(q) Extracted windows overlapped on the front façades of Dataset 5 
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(r) Extracted windows overlapped on raw point clouds of Dataset 5 
 

Figure 4-16 Extracted windows 

 

In addition, Table the efficiency of the proposed method is shown in Table 5. For each 

dataset, the consuming time of each procedure has been calculated. The computer used in this 

study is a Mac Pro with an 8 GB RAM, and an Intel i5-4728U CPU. The consuming time of 

each procedure suggests that the efficiencies of the proposed building façade extraction 

algorithm and window extraction algorithm are both high. As mentioned in Chapter 1, the 

objectives of this study are mainly focused on developing semi-automatic algorithms of 

building façade extraction and window extraction, so the algorithms of noise removal and 

clustering directly took advantage of the commercial programming package and Yu’s (Yu et 

al., 2015) work. Total efficiency of the proposed method can be further improved by modifying 

the algorithms of noise removal and clustering.  
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Table 3 Efficiency of the proposed method 

Dataset 1 2 3 4 5 

Size 26 MB 50MB 41.5 MB 23.5 MB 164MB 

Point Number 787,235 1,442,607 1,281,313 725,579 3,336,229 

Ground Removal 1.5s 2.1s 1.8s 1.3s 6.4s 

Noise Removal 19.3s 45.3s 40.4s 17.6s 199.9s 

Clustering 40.2s 74.1s 65.9s 27.2s 217.7s 

Façade Extraction 9.0s 13.1s 11.4s 7.2s 20.7s 

Window Extraction 5.5s 6.5s 5.7s 3.2s 12.5s 

Total Time 75.5s 140.2s 125.2s 56.5s 457.2s 

 

4.3  Results in Accuracy Assessment 

4.3.1 Window Regions in 2D 

Figures 4-17 (a), (c), (e), (g) and (i) show the manual interpretation results in generated 

orthophotos in ArcGIS 10.2.2. Figures 4-17 (b), (d), (f), (h) and (j) present the orthophotos 

overlapped by extracted window points. As mentioned in Chapter 3, the manually interpreted 

orthophoto and the overlapped orthorphoto are set in the same resolution. After pixel analysis 

of Figure 4-17, the correctness (crt), completeness (cpt) and F-measure of these five test 

datasets are listed in Table 4. As shown in the Table 4, the correctness, completeness, and F-

measure of Dataset 1 are relatively low since big holes in the raw point cloud are also extracted 

by the hole-detection algorithm. In Datasets 2, 3 and 4, the correctness is adequately high but 

the completeness is relatively low. As shown in Figure 4-17(c), (e) and (g), curtains are 
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dropped down when the data was collecting; in addition, the windows are recessed on the 

building façade and they are not on the same vertical plane as the building façade. Therefore, 

only points of outer frames of the windows are put into the same cluster as the building façade 

(see Figure 4-10(d) in Section 4.2.3). As a result, the outer frames of the windows in the three 

datasets can be extracted, while the inner crossbars of the windows are removed. The 

completeness, correctness, and F-measure of Dataset 5 are all very high, since there are no 

impacts of curtains, holes, or occlusions on the raw point cloud. 

 

Table 4 2D performance evaluation 

Dataset Correctness Completeness F-measure 

1 79.67% 95.4% 0.868 

2 97.60% 85.17% 0.910 

3 95.42% 72.74% 0.826 

4 88.54% 63.51% 0.740 

5 97.79% 97.63% 0.977 

 

 
(a) Manual interpreted polygon in the 

orthophoto of Dataset 1 

 
(b) Orthophoto overlapped by extracted 

window points of Dataset 1 
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(c) Manual interpreted polygon in the 

orthophoto of Dataset 2 

 
(d) Orthophoto overlapped by extracted 

window points of Dataset 2 

 
(e) Manual interpreted polygon in the 

orthophoto of Dataset 3 

 
(f) Orthophoto overlapped by extracted 

window points of Dataset 3 
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(g) Manual interpreted polygon in the 

orthophoto of Dataset 4 

 
(h) Orthophoto overlapped by extracted 

window points of Dataset 4 
 

 
(i) Manual interpreted polygon in the orthophoto of Dataset 5 
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(j) Orthophoto overlapped by extracted window points of Dataset 5 

Figure 4-17 2D validation results 

 

4.3.2 Window Regions in 3D 

The results of 3D performance evaluation are listed in Table 5. Compared with the 

performance evaluation results in Table 4, it can be concluded that the values of the correctness 

in the test datasets in 2D and 3D are basically aligned with each other. The correctness values 

of Datasets 2, 3 and 5 are 95.34%, 96.23%, and 97.96%, respectively. Such results prove that 

the proposed method can extract accurate 3D window frames when there are no defects in the 

raw point clouds. However, the correctness values of Datasets 1 and 4 are 79.58%, and 86.12%, 

respectively, which are lower among the test datasets. It again suggests that the big holes 

caused by system errors have considerably negative effects on the proposed method.   
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Table 5 3D performance evaluation 

Dataset 𝑪𝒏 𝑹𝒏 Correctness 

1 3035 3814 79.58% 

2 8638 9061 95.34% 

3 7000 7274 96.23% 

4 4495 5226 86.12% 

5 7445 7600 97.96% 

 

4.4 Chapter Summary 

This chapter presents the experimental results of the proposed method. According to the 

performance evaluations in 2D and 3D, it can be concluded that the proposed method can be 

successfully applied in extracting rectangular and curved windows with high accuracy in the 

test datasets. However, for those windows with curtains drawn or concave on walls, the 

proposed method can only extract the outer frames of the windows. In addition, point defects 

in the raw point cloud will also have considerably negative impact on the final result. Holes 

caused by system errors of MLS systems will also be extracted by the proposed hole detection 

algorithm.  

This chapter also provides the efficiency analysis of the proposed method. It indicates that 

the efficiencies of the proposed algorithms of building façade extraction and window 

extraction are high, however, the total efficiency of the proposed method should be improved 

in the future by modifying algorithms of noise removal and clustering.  
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

According to its unique data structure and convenient data collection methods, MLS 

systems have enormous commercial potentials in applications of the future LoD3 building 

modeling. MLS systems utilize active laser imaging technique to avoid influences of lighting 

conditions so that data can be collected both day and night. And by employing integrated 

position and orientation technology, MLS systems can directly acquire geo-referenced, high-

density and highly accurate datasets. However, discrete points collected by MLS systems are 

in large volumes, evenly distributed and have no topological or semantic relationships with 

each other. Therefore, there is still no sophisticated commercial software nowadays, which can 

successfully handle and interpret information contained in MLS point clouds for practical 

applications.  

To provide a credible approach for the LoD3 building modeling, this study proposes a 

method that can semi-automatically extract 3D window points from MLS point clouds. Non-

ground points are filtered out from noise and ground points by using voxel-based upward-

growing algorithm and statistical analysis. Then semantic clusters are segmented by 

conditional Euclidean clustering algorithm. Next, building facades are extracted using 

density/width algorithm. Eventually, a manipulator is applied according to the structural 

characteristics of window frames to extract the potential window points.  

Five datasets are tested in this study to prove the feasibility of the proposed method. The F-

measure of Dataset 1, 2, 3, 4 and 5 in the 2D validation are 0.737, 0.910, 0.826, 0.740 and 

0.977.  The correctness of the five test datasets in 3D validation are 79.58%, 95.34%, 96.23%, 
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86.12% and 97.96%. After detailed analysis of the experimental results, it demonstrates that 

the proposed method in this thesis can successfully extract all types of 3D windows and glass 

doors (including rectangular, irregular and arc-rounded ones) from the test datasets with 

promising accuracies. However, for those windows with curtains drawn, concave in walls or 

there being holes in raw point clouds, the accuracy of the proposed method will be influenced. 

In addition, the experimental results also suggest that the proposed method is not influenced 

by tree occlusions.  

Generally, this thesis provides a promising method to extract 3D building windows for LoD3 

building models. It offers a potential idea to meet the demands of commercial companies, such 

as Google and Microsoft, who are endeavoring to establish realistic 3D city models nowadays.  

5.2 Contributions 

The method put forward in this study makes several contributions to LoD3 modeling; 

generally, the objectives stated in Chapter 1 have been fulfilled. The detailed contributions can 

be described in the following aspects: 

1. A semi-automated 3D building façade segmentation algorithm in MLS point clouds has 

been presented. As discussed in Chapter 3, the density and width properties of building 

facades in 3D point clouds facilitate to segment facades against other non-ground 

features. This algorithm reduces accuracy loss by segmenting facades directly from 3D 

point clouds. It also has higher computing efficiency over those previous methods which 

applied planar growing algorithms.  
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2. A revised hole detection algorithm to extract windows from MLS point cloud has been 

proposed. Windows are regarded as holes in this algorithm. By introducing the 

characteristics of window frames, the algorithm functions effectively in extracting 

windows directly from 3D point clouds. Furthermore, the algorithm can be applied in 

extracting all types of windows, including rectangular, arc-rounded and irregular ones. 

5.3 Limitations and Recommended Further Works 

According to the experimental results in Chapter 4, some limitations still exist in the 

proposed method. Therefore, some recommendations are made in order to the conquer the 

limitations of the proposed method. The details can be described as follows:   

(1) Side facades are filtered out by conditional Euclidean clustering algorithm and 

density/width analysis. Because points clouds covering side facades usually have 

relatively low density than those of front facades. Therefore, the building façade 

segmentation method proposed in this study can only be applied in extracting front 

facades. However, side facades are also important in LoD3 building models. Related 

works on extracting side facades are still needed to be continued. 

(2) Big holes caused by system errors of laser scanners are also extracted by the proposed 

hole detection algorithm. Thus more works are still needed to remove the extracted 

holes. Some algorithms in computer vision, such as contour tracing, have already been 

proposed to distinguish circular or semi-circular contour lines in point clouds.  
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(3) Doors recessed in building facades or those with glass are also extracted by the 

proposed method. There is no effective method to remove doors from the extracted 

window frames so far. More studies should be involved in the future. 

(4) There are no high-rise buildings in the test study area. Therefore, the proposed method 

is only proved in houses and townhouses. Point cloud density is influenced by the 

distance between the centre of the laser scanner and the targeted point. Point clouds on 

higher floors may have lower densities. It may influence the performance of the 

conditional Euclidean clustering algorithm. Therefore, in the future, tests on high-rise 

buildings are needed to test the application range of the proposed method.  

(5) The efficiency of the proposed method is still need to be improved. As mentioned in 

Chapter 4, the noise removal algorithm and the clustering algorithm completely depend 

on others’ work. However, they are proved to be time-consuming in the test datasets. 

Therefore, the algorithms of removing noise and clustering still warrant discussion.  

(6) The extracted window points can provide real 3D geographic information. For some 

applications which need aesthetic 3D building models, these extracted points still need 

to be regularized with digital images afterwards.  
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