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Abstract

This thesis presents techniques for accurately computing a number of fundamental oper-

ations on approximate polynomials. The general goal is to determine nearby polynomials

which have a non-trivial result for the operation.

We proceed by first translating each of the polynomial operations to a particular struc-

tured matrix system, constructed to represent dependencies in the polynomial coefficients.

Perturbing this matrix system to a nearby system of reduced rank yields the nearby poly-

nomials that have a non-trivial result.

The translation from polynomial operation to matrix system permits the use of emerging

methods for solving sophisticated least squares problems. These methods introduce the

required dependencies in the system in a structured way, ensuring a certain minimization is

met. This minimization ensures the determined polynomials are close to the original input.

We present translations for the following operations on approximate polynomials:

• Division

• Greatest Common Divisor (GCD)

• Bivariate Factorization

• Decomposition

The Least Squares problems considered include classical Least Squares (LS), Total Least

Squares (TLS) and Structured Total Least Squares (STLS). In particular, we make use

of some recent developments in formulation of STLS, to perturb the matrix system, while

maintaining the structure of the original matrix. This allows reconstruction of the result-

ing polynomials without applying any heuristics or iterative refinements, and guarantees a

result for the operation with zero residual.

Underlying the methods for the LS, TLS and STLS problems are varying uses of the
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Singular Value Decomposition (SVD). This decomposition is also a vital tool for deter-

mining appropriate matrix rank, and we spend some time establishing the accuracy of the

SVD. We present an algorithm for relatively accurate SVD recently introduced in [8], then

used to solve LS and TLS problems. The result is confidence in the use of LS and TLS for

the polynomial operations, to provide a fair contrast with STLS. The SVD is also used to

provide the starting point for our STLS algorithm, with the prescribed guaranteed accuracy.

Finally, we present a generalized implementation of the Riemannian SVD (RiSVD), which

can be applied on any structured matrix to determine the result for STLS. This has the

advantage of being applicable to all of our polynomial operations, with the penalty of

decreased efficiency. We also include a novel, yet naive, improvement that relies on ran-

domization to increase the efficiency, by converting a rectangular system to one that is

square.

The results for each of the polynomial operations are presented in detail, and the benefits

of each of the Least Squares solutions are considered. We also present distance bounds

that confirm our solutions are within an acceptable tolerance.
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Chapter 1

Introduction

When working with polynomials in practical applications, it is often the case that the

coefficients are only known to some prescribed accuracy. This restriction may be due to

measurement limitations, previous computation, or even the limits of physical storage. We

call polynomials with this restriction approximate polynomials .

In order to work sensibly with approximate polynomials, even basic polynomial opera-

tions must be carefully considered. For example, dividing two approximate polynomials

will most likely be impossible using traditional methods. The polynomials

p = 37.1336x2 + 5.6102x − 67.9573,

q = −5.32x − 7.61,

are divisible, with p/q = −6.98x + 8.93. However, if we are limited in our measurement of

p to 2 decimal places, then

p = 37.13x2 + 5.61x − 67.95,

q = −5.32x − 7.61,

are not divisible. In this case, we seek “nearby” polynomials that are divisible.

This thesis focuses on approximate polynomial inputs, however, solving this problem is

1



2 Structured Total Least Squares for Approximate Polynomial Operations

not limited to this case. The methods presented here can be used whenever a polynomial

operation yields a trivial result, and we seek a nearby “more interesting” case. For example,

if a polynomial does not factor, it may be instructive to find the nearest polynomial that

does. A simple extension determines a radius of inapplicability of a polynomial operation,

with benefits as in [16].

1.1 Approximate Polynomials

We use the term approximate polynomial to refer to a polynomial intuitively known to

have some error (from measurement, computational roundoff, etc.) in it’s coefficients. For

example, the approximate univariate polynomial p ∈ R[x]:

p = pnx
n + pn−1x

n−1 + · · · + p1x + p0,

having errors in it’s coefficients pi of ∆pi, is actually a perturbed version of some polynomial

p̂ ∈ R[x], where

p̂ = p + ∆p

= (pn + ∆pn)xn + · · · + (p0 + ∆p0).

Hence, for a general approximate polynomial p ∈ R[x1 . . . xn], there is an (implicit) impli-

cation that there exists (or that there is suspected to exist) a polynomial p̂ ∈ R[x1 . . . xn]

such that

p̂ = p + ∆p,

for some ∆p ∈ R[x1 . . . xn], having “small” coefficients. ∆p shall be called the perturbation

of the polynomial p̂, that resulted in the approximate polynomial p1. The goal of applying

operations to approximate polynomials shall be to make the coefficients of ∆p as small

as possible, while ensuring that p̂, the determined polynomial has some desired property,

such as factorization.

1The sign of ∆p is interchanged here from the previous formulae. This is acceptable since the size of

∆p is the important thing.
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Hence, for each input polynomial p, we recover a polynomial p̂ that is close to p. There

is no guarantee that the recovered polynomial will be the polynomial p̂ from which p is

intuitively formed. We strive to find the closest polynomial to p that gives a non trivial

result, which may turn out to be closer to p than the full-accuracy polynomial p̂.

In order to formalize the concepts of “nearby”, “close”, and “small” as mentioned, measures

of distance between polynomials must first be discussed.

1.2 Polynomial Norms

As with many mathematical objects that contain numeric values, there are a variety of

norms defined for polynomials. The most obvious of this is the coefficient 2-norm , defined

on an input f ∈ R[x]:

f = fnx
n + fn−1x

n−1 + . . . f1x + f0

to be the square root of the sum of the squares of the absolute values of the coefficients,

i.e.

||f ||2 =

√

√

√

√

n
∑

i=1

|fi|2.

This norm is, in fact, a specific instance of the more general coefficient lp-norm,

||f ||p =

(

n
∑

i=1

|fi|p
)1/p

.

One additional norm, sometimes called the polynomial height, occurs when p → ∞. This

corresponds to

||f ||∞ = max
i

|fi|.

These norms satisfy the properties consistent with defining a norm (non-negativity, scaling

invariance, and the triangle inequality on a vector containing the polynomial coefficients).
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They can thus be used to reasonably define the distance between two polynomials g, h as

||g − h||p for a given norm lp. Minimizing this distance will be the goal throughout this

thesis, whenever “nearby” polynomials are sought.

We shall further use small polynomial norms to classify a polynomial as having desired

small coefficients. Here it is important to note the effect of different choices of norm.

Consider the polynomials

f(x) =
√

98.0x10 +
√

0.2x9 +
√

0.2x8 + · · · +
√

0.2x1 +
√

0.2x0,

g(x) =
√

10.0x10 +
√

10.0x9 +
√

10.0x8 + · · · +
√

10.0x1 + 0x0.

Both of these polynomials will have l2 norm equal to
√

100 = 10, however, the l1 and l∞

norms are:

||f ||1 =
√

98 + 10
√

10 ≈ 14.37, ||f ||∞ = 98.0,

||g||1 = 10
√

10 ≈ 31.62, ||g||∞ = 10.0.

Clearly, the application must be considered before a polynomial norm is chosen. This

thesis uses the coefficient 2-norm, l2, unless otherwise stated.

In order to better demonstrate the effects of each algorithm, independent of the size of

the polynomial coefficients, we measure relative error of the polynomials. For one input

polynomial and a perturbation f, ∆f ∈ R[x1, . . . , xn], we measure

||f + ∆f ||
||f || .

For the case of two input polynomials f, g, we have
( ||f + ∆f ||

||f ||

)2

+

( ||g + ∆g||
||g||

)2

as a measure of the combined relative error of each polynomial. We chose this metric2

since it is essentially equivalent to starting the algorithm with polynomials f, g with ||f || =

||g|| = 1.

2alternative choice would be ||f+∆f ||2+||g+∆g||2

||f ||2+||g||2
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1.3 Polynomial Operations

Polynomial operations can often be performed by translating the dependencies that would

yield a result into a matrix system, where the coefficients of the polynomial(s) are mapped

to predefined positions in a matrix. This defines a linear basis for generating matrices that

correspond to the polynomial operations.

The basis defines a structure on the matrix system, and from any matrix exhibiting this

structure we can extract the coefficients of the polynomial(s) it represents. A simple exam-

ple would be for the polynomial f(x) = 3x+2, we can define the structured matrix system
[

3 2

2 0

]

. Any structured matrix of the form

[

a b

b 0

]

then corresponds to a polynomial,

f(x) = ax + b. The basis for this particular translation would be
[

1 0

0 0

]

,

[

0 1

1 0

]

, so that

a

[

1 0

0 0

]

+ b

[

0 1

1 0

]

=

[

a b

b 0

]

.

The translation of the polynomials involved in a polynomial operation to a structured ma-

trix system permits the use of matrix algorithms to evaluate potential perturbations on the

system. We carefully choose the structure of the matrix system, so that linear dependency

in the matrix corresponds to dependencies in the coefficients of the polynomial that will

yield a non-trivial result.

We determine results for the following polynomial operations defined on approximate poly-

nomials:

• Division: Find the nearest polynomials p̂, q̂ to approximate polynomial inputs p, q

such that q̂|p̂

• GCD: Find the nearest polynomials f̂ , ĝ to approximate polynomial inputs f, g such

that f̂ , ĝ have a non-trivial GCD.
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• Bivariate Factorization: Find the nearest polynomial f̂ to approximate polynomial

input f such that f̂ is reducible to a product of non-trivial factors.

• Decomposition: Find the nearest polynomial f̂ to approximate polynomial input f

such that f̂ is the composition of two non-trivial polynomials, i.e. f̂ = g(h(x)) for

some g, h.

The structured matrix system chosen for each operation is linear in the coefficients of the

polynomials, and typically of full rank. The goal is to transform this matrix system into

one that is rank-deficient, while maintaining the same structure. This is accomplished by

solving one of several least squares problems.

By reducing the rank, we are establishing dependencies in the matrix entries (and hence

the polynomial coefficients). This perturbed matrix, along with a vector in its null space,

is used to construct the perturbed polynomial(s) that yield the non-trivial result, and may

provide that result as well.

1.4 Matrix Norms

As with polynomials, there are many norms that can be used to measure the size of a

matrix. Since we will be translating our polynomial operations to matrix systems, we first

present briefly some standard matrix norms.

Often it is useful to measure such things as the maximum absolute sum of a matrix row

(||M ||∞), a column (||M ||1), or some measure of the eigenvalues of the matrix (||M ||2).
However, the matrix norm that most naturally follows the intuitive idea of Euclidean

”closeness” is the Frobenius Norm (||M ||F ).

||M ||F =

√

√

√

√

m
∑

i

n
∑

j

M [i, j]2

This norm measures the magnitude of each entry of the matrix. We utilize the convention

that ||M || = ||M ||F unless otherwise stated.
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1.5 Least Squares Problems

In order to introduce the required dependencies into these structured matrix systems, sev-

eral variations of the classical Least Squares (LS) problem are solved. The classical LS

problem dates back to Gauss in the early 19th century, originally formulated to fit obser-

vations to the predicted data.

LS can formulated in terms of matrices A ∈ R
m×n, b ∈ R

m×1. Historically, the matrix

A would contain the set of observed data, with the goal of fitting it to an expected result

b through a set of parameters x.

The determination of the parameter vector x is then thought of as solving a system of

linear equations:

Ax ≈ b.

The Least Squares problem is to determine x such that the following minimization holds:

min||∆b||

(

∃x ∈ R
n×1 : Ax = b + ∆b

)

. (1.1)

Methods to solve the LS problem determine such an x by perturbing the vector b to in-

troduce a deficiency. However, by allowing perturbation in the matrix A as well, we can

increase the overall proximity of the matrix system to the original. This natural extension

to the LS problem is called Total Least Squares (TLS).

The TLS problem is to find a vector x with the minimization:

min||∆A||,||∆b||

(

∃x ∈ R
n×1 : (A + ∆A)x = b + ∆b

)

. (1.2)

Finally, the Structured Total Least Squares (STLS) problem involves the same minimiza-

tion as TLS, however the additional constraint that A + ∆A has the same linear structure

as A is imposed. A solution to this problem will allow us to form the output polynomi-

als without the concern of determining which matrix entry should be used for a certain

polynomial coefficient.
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1.6 Accurate Matrix Decompositions

Solutions to the Least Squares problems rely heavily on variations of the regular Singular

Value Decomposition (SVD). This matrix decomposition has received significant interest

[14] for numerical and computational reasons 3.

The SVD of a real matrix A is of the form UΣV T , where U, V are orthogonal (UUT =

V V T = 1) matrices and Σ is a diagonal matrix whose entries are sorted in decreasing order

from left to right. The ith diagonal entry of Σ gives the minimal 2-norm distance from the

matrix A to a matrix of rank i − 1.

Since the desired application involves small relative perturbations of the exact polynomi-

als, we require algorithms that compute the SVD (and it’s more sophisticated variations)

accurately for the corresponding matrix systems.

In particular, attempts are made to determine the various decompositions to as much

accuracy as the input data merits. Traditional algorithms for the SVD attain accuracy

dependent on the conditioning of the input matrix [14]. However, by analyzing the per-

turbation of a matrix and it’s effect on the SVD, it has been shown [8] that the entries of

the input matrix may determine the decomposition to a much stronger accuracy.

This increased accuracy is used to guarantee precise results where the use of traditional

algorithms do not, in particular for the application to the Least Squares problems.

1.7 Overview of Chapters

The remainder of this thesis is structured as follows:

Chapter 2 introduces the transformations of polynomial operations on approximately spec-

ified input polynomials into structured linear systems. This includes a brief outline of the

3In particular, it allows us to assign a value for the conceptual numeric rank of the matrix
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algorithm to be used and the desired result.

Chapter 3 presents the least squares problems to be solved for our linear systems. The

motivation behind each problem is illustrated by example, and algorithms that yield a

solution are given. Results for matrices of various (linear) structures are presented.

Chapter 4 discusses the accuracy of the least squares solutions, based on the matrix algo-

rithm used to derive them. The matrix algorithms themselves are presented and analyzed

when permisible, and an extensive set of matrices are used to show their effectiveness.

Chapter 5 contains the resulting operations on approximate polynomials. This includes

numerical evidence of the success of each of the presented techniques for different sets of

data. The data is contrasted to yield a good estimate for the success and failure of the

techniques under certain conditions and interpretations. The solutions and their distances

from the input for each operation and technique are presented and discussed.

Chapter 6 concludes the work by presenting the achievements, and indicating the areas

that could benefit from further study.

1.8 Conclusion

This thesis presents a set of polynomial operations and their translation to a corresponding

structured matrix system. By applying techniques for least squares problems, implemented

with careful matrix decompositions, meaningful results to these operations are obtained

for nearby polynomials.



Chapter 2

Approximate Polynomial Operations

This chapter introduces the approximate polynomial operations that motivate the trans-

lation to the various least squares problems presented in this thesis. As mentioned in the

introduction, these techniques are applied to a structured system that is derived from the

coefficients of the input polynomials. The following sections detail the transformation of

four polynomial operations to such (linear) systems, and where possible, the recovery of

the resulting polynomials..

2.1 Division

Given two polynomials p, q ∈ R[x], polynomial division seeks to find a third polynomial,

r ∈ R[x], such that qr = p.

When applied to approximate polynomials p, q, it is expected that there will be no such r,

even if the perturbed polynomials p̂, q̂ are divisible. For example, consider the polynomials:

p = 3.02x2 + 6.98x + 2,

q = 2.78x + 0.96.

10



Approximate Polynomial Operations 11

Inspecting these polynomials naturally leads one to consider ∆p = 0.02x2 − 0.02x, ∆q =

−0.22x + −0.04, resulting in

p̂ = p − ∆p = 3x2 + 7x + 2, ||∆p|| = 0.02828427125,

q̂ = q − ∆q = 3x + 1, ||∆q|| = 0.2236067977.
(2.1)

This is simply the perturbation we would expect upon correcting the polynomials p, q in

the natural way, that being rounding the near-integer values to integers.

For this example, this rounding results in a pair of polynomials p, q that are divisible,

since p = q(x + 2). However it is clearly naive to simply round all real coefficients to

integers and proceed from there. While this particular perturbation did yield a non trivial

result, there may be choices for p, q that also give such a result, but are closer in norm to

p̂, q̂. This could also be viewed as an optimization problem:

min
||∆p||2+||∆q||2

(

∃r ∈ R[x] : p̂ + ∆p = (q̂ + ∆q) r

)

.

This search for the minimal polynomial is the motivation for transforming the polynomial

equation p̂ = q̂r into a matrix system, and solving least squares problems to find the cor-

responding best polynomials p, q, r.

For example (2.1), we actually determine the polynomials:

p̂ = 3.021239746x2 + 6.97632779x + 2.010877327,

q̂ = 2.786505424x + 0.9407305076, and

p̂

q̂
= 1.084239679x + 2.137570017.

The corresponding polynomial norms show significant improvement over (2.1):

||∆p|| = 0.01154722214,

||∆q|| = 0.02033799102.
(2.2)
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2.1.1 Matrix Representation

Solving the polynomial equation p = qr can be viewed as a collection of constraints on the

coefficients of p. For example, the coefficient of degree 2 of p must be the sum of all degree

2 terms resulting from multiplying q, r.

In general, the degree of q must also be considered, since it will be less than that of

p, or else the division is trivial. Let m = degx(q), n = degx(p)−m, so that degxp = m + n.

If dq = min(d, n), then the degree d term be of form:

pd =

dq
∑

i=0

qird−i.

This can be written as a vector product equation as

[

q0 q1 . . . qdq−1 qdq

]

















rd

rd−1

...

rd−dq+1

rd−dq

















= pd.

There will be one such equation for every possible coefficient of p. The system shall then

be solved for the coefficients of r, which are contained in the vector ~r. To get an idea for

this structure, consider the equations of lowest degree.

q0r0 = p0

q1r0 + q0r1 = p1

q2r0 + q1r1 + q0r2 = p2

...
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The matrix representation (Q~r = ~p) becomes clear
































q0 0 0 . . . 0 0

q1 q0 0 . . . 0 0

q2 q1 q0 . . . 0 0
...

...
...

. . .
...

...

qn qn−1 qn−2 . . . qn−m+1 qn−m

0 qn qn−1 . . . qn−m+2 qn−m+1

...
...

...
. . .

...
...

0 0 0 . . . 0 qn

















































r0

r1

r2

...

rm

















=

















p0

p1

p2

...

pm+n

















where Q ∈ R
m+n×n is formed from the coefficients of q as indicated. Consider the rounded

example (2.1):






1 0 0

3 1 0

0 3 1













r0

r1

r2






=







2

7

3






.

A solution to this matrix equation is r0 = 2, r1 = 1, r2 = 0, or r = 2 + x as expected.

2.1.2 Determining Solutions

If there is no immediate solution to the matrix equation Q~r = p, then we could solve the

Total Least Squares problem for minimal ∆Q, ∆~p such that

(Q + ∆Q)~r = ~p + ∆~p (2.3)

for some ~r. The polynomials r, p̂ = p + ∆p can be immediately extracted from the vectors

~r, ~p + ∆~p. However, we have applied a perturbation ∆Q to the matrix representation of

the polynomial q. If the perturbation does not maintain the structure of Q, then the so-

lution that has been determined may not be meaningful, since the system will no longer

correspond to a polynomial. The values of (2.3) may not yield divisible polynomials at all.

Since we can verify that q̂r = p relatively easily, a collection of heuristics may be ap-

plied to Q + ∆Q in an attempt to recover a suitable q̂. It is difficult to assert that any
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polynomial q̂ can be found in this way, let alone that such a polynomial is in any way

optimal.

A second option is to apply such an algorithm iteratively, refining the input polynomi-

als at each iteration. We have the relationship that for p/q = r, then p/r = q, so take the

polynomials r, p+∆p discovered in (2.3) and use them as input to the next iteration. This

may eventually converge to a solution for (2.3) that has Q+∆Q having the same structure

as Q, at which point the polynomial q + ∆q can be extracted from Q + ∆Q.

Instead of either of these options, we shall apply a method of solving (2.3) that preserves

the structure of the matrix Q. With this condition, q̂ can be extracted trivially along with

p̂, r to yield the desired solution to p̂ = q̂r.

2.1.3 Multivariate Polynomials

The approach outline for univariate polynomials can be logically extended to multivariate

polynomial inputs. The idea remains the same, that being enforcing constraints on the

coefficients of certain degrees. One caveat is that the matrix system generated will grow

quickly, as can be imagined if one considers all of the contributing terms to the coefficient

of f in x3y2z4.

To deal with the expanding array of coefficients, we introduce some notation. Denote

the coefficient of the polynomial f ∈ R[x1 . . . xn], in the variables xe1

1 . . . xen
n as fe1,...,en

.

Consider the following polynomials p, q ∈ R[x, y]:

p = 3x2y + 2x2 + 6xy2 + 4xy,

q = 3y + 2.
(2.4)

One can verify that

p1,1 = q0,0r1,1 + q1,0r0,1 + q1,1r0,0 + q0,1r1,0

= 2r1,1 + 3r1,0.
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Before proceeding to the matrix system, a decision must be made on an ordering for the

terms of a general multivariate polynomial.

Term Ordering

For a polynomial p in n variables, i.e., p ∈ R[x1 . . . xn], the coefficients must be ordered in

some way to allow consistent application of the matrix equations. This will, in fact, fix a

basis for the matrix structure, as we shall see.

We have chosen lexicographical ordering, best illustrated by the following example of 3

variables x, y, z, with degree 2:

1 x x2 xy xz y y2 yz z z2

This choice directly affects the structure of the generating matrix system, so it may be

instructive to consider other orderings, such as the Chebyshev basis. This will not change

the operation of the algorithms, however it may lead to matrix systems that have an

easier to determine solution to the Least Squares problems under particular matrix norms.

Further, a different basis may make it easier to apply heuristics to recover the perturbed

polynomials from the TLS solution.

Matrix Structure

Under this ordering, our input polynomial p from (2.4) can be represented by the array

1

0
x

0
x2

2
x3

0
x2y

3
xy

4
xy2

6
y

0
y2

0
y3

0 ,

and similarly q by

1

2
x

0
y

3 .
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Matching up coefficients leads to the following matrix system





































1

2
x

0
x2

0
xy

0
y

0
y2

0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 3 0 0 0

0 3 0 2 0 0

0 0 0 3 0 0

3 0 0 0 2 0

0 0 0 0 3 2

























































r0,0

r1,0

r2,0

r1,1

r0,1

r0,2





















=





































0

0

2

0

3

4

6

0

0





































,

where each column of the matrix is the coefficient vector corresponding to our input poly-

nomial q multiplied by the monomial indicated at the top of the column.

This system has the solution vector

1

0
x

0
x2

1
xy

2
y

0
y2

0 .

This corresponds to the output polynomial h = x2 + 2xy, since for (2.4) there is an exact

solution. If there is no such solution, then we solve one of the the least squares problems

to find a solution to (2.3). This allows us to recover p̂, q̂, r with p̂ = q̂r as desired.

Hence the methods applied in the univariate case can be directly applied to multivari-

ate inputs, for suitably formed structured matrix Q.

2.2 Greatest Common Divisor

Given two polynomials f, g ∈ R[x], a common divisor d ∈ R[x] is a polynomial that sat-

isfies d | f and d | g. A greatest common divisor (GCD) ensures that, for all polynomials

d0 ∈ R[x], d0 | f and d0 | g implies d0 | d.
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We can write d as a linear combination of f, g, i.e.

uf + vg = d. (2.5)

Along with GCD, we have the usual least common multiple (LCM) l ∈ R[x] of the polyno-

mials f, g. If f/d = rf and g/d = rg, then l = frg = grf .

Almost all pairs of polynomials have a GCD of 1. Particularly, for approximate poly-

nomial GCD, we expect any perturbation ∆f or ∆g to destroy coefficient dependencies

that would lead to a GCD of degree > 0.

We thus regard this as an optimization problem, to determine the nearest polynomials

to f, g that have a non-trivial GCD.

2.2.1 Matrix Representation

Determination of a greatest common divisor is equivalent to finding a particular linear

combination of f, g, since this combination produces the GCD. The Sylvester matrix of

two polynomials provides a convenient way of representing linear combinations of two

polynomials. Consider

f = x4 + 4x2 + 3,

g = 2x3 − x2 + 2x − 1,
(2.6)

which has GCD (1 + x2) by construction. The Sylvester matrix of f, g can be written as:

S(f, g) =





























f

3
xf

0
x2f

0
g
−1

xg

0
x2g

0
x3g

0

0 3 0 2 −1 0 0

4 0 3 −1 2 −1 0

0 4 0 2 −1 2 −1

1 0 4 0 2 −1 2

0 1 0 0 0 2 −1

0 0 1 0 0 0 2





























.
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Multiplying this matrix by a partitioned vector x =

[

u

v

]

gives the linear combination

uf + vg. This is precisely the form of the desired GCD.

By solving the Least Squares problems on the Sylvester matrix of the input polynomials,

we can reduce the rank of S(f, g). This determines the nearest Sylvester matrix (because

of the minimization in the least squares problem) of perturbed polynomials that have a

non-trivial GCD.

2.2.2 Determining Solutions

Once the Sylvester matrix of the perturbed polynomials has been determined, the com-

putation of the GCD is done by determining the linear combination of f, g that gives the

monic GCD. The degree of the GCD can be determined by examining the rank of the

Sylvester matrix.

In [4], the GCD is determined by examining the Singular Value Decomposition of the

Sylvester matrix. This method determines a nearby matrix that is rank deficient, but does

not maintain the structure of a Sylvester matrix.

We shall develop a solution to the STLS problem that avoids the need to reconstruct

a polynomial, since the matrix structure will remain constant.

The construction of S(f, g) is done to ensure that it has column dimension equal to the

maximum possible degree of the LCM of f, g. We also know that the degree of the actual

LCM of f, g will be the rank of S(f, g). Combining these two ideas yields:

Fact 1 The rank deficiency of the Sylvester matrix S(f, g) is equal to the degree of the

GCD of polynomials f, g, where the rank deficiency is defined as the column dimension of

S(f, g) minus the rank of S(f, g).

Thus the rank of the GCD for the perturbed polynomials is known, which will then allow us

to compute the polynomials u, v that result in the monic GCD of f, g. This is accomplished
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by solving a subsystem of

S(f, g)

[

u

v

]

= d

that corresponds to the entries of d with degree greater than or equal to the degree of the

GCD. We can do this since we know our desired result d will have the form




























∗
...

∗
1

0
...

0





























with the 1 representing the leading coefficient of the GCD. The system (2.2.2) is then

solved just for this leading coefficient and the zeros at higher degree. If the degree of the

GCD is γ, then we take the sub-matrix of S(f, g) consisting of the rows γ . . . m+n. (2.2.2)

becomes:

S̄(f, g)

[

u

v

]

=













1

0
...

0













which can be easily solved for u, v. Then this u, v are multiplied by f, g to give the GCD

d = uf + vg.

2.3 Bivariate Factorization

A polynomial f is said to be irreducible if there does not exist two polynomials g, h such

that f = gh. There have been several recent methods developed for factoring bivariate

polynomials. In [5], a method based on integrating a local solution along the curve is used
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to reconstruct components or factors of the original bivariate polynomial.

In [3], a subsequent method using numerical computation to determine a candidate for

factorization is presented. The candidate with high probability is a correct factorization.

This method relies on 4 tools: zero-sum relations at triplets, partial information on mon-

odromy action, Newton interpolation on a structured grid, and finally a homotopy method.

A third method, that closely fits the structured matrix construction methods for divi-

sion and GCD, was developed in [11]. This method relies on a new and useful criteria for

determining when a bivariate polynomial is irreducible [21] [16]:

Fact 2 A bivariate polynomial f(x, y) ∈ R[x, y] is irreducible if and only if there are no

non-trivial solutions g, h ∈ R[x, y] to the equation

∂

∂y

g

f
=

∂

∂x

h

f
. (2.7)

Such a solution g, h can be used to construct [11] the factors of f . Applying the quotient

rule to (2.7) we get

f
∂g

∂y
− g

∂f

∂y
− f

∂h

∂x
+ h

∂f

∂x
= 0, (2.8)

which corresponds to a linear system of equations in the coefficients of g, h.

By solving the least squares problems for the linear system (2.8), we can ensure that

there are non-trivial solutions to the equation (2.7), for a nearby polynomial f̂ .

2.3.1 Degree Bounds

Before proceeding to the linear system, degree bounds for the polynomials should be con-

sidered.

Let degx,y(f) = (m,n) denote the maximal degree of x, y respectively in f(x, y) ∈ R[x, y].

So the total degree of f is at most m + n, and minimally max(m,n). Ruppert [21] fur-

ther demonstrated that degree bounds should be placed on g, h to avoid trivial factors as
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follows:

degx(g) ≤ m − 1, degy(g) ≤ n,

degx(h) ≤ m, degy(h) ≤ n − 2.

Now since degx,y(g) ≤ (m− 1, n), we have degx,y(
∂g
∂y

) ≤ (m− 1, n− 1), so the term f ∂g
∂y

has

bounds

degx,y(f
∂g

∂y
) ≤ (2m − 1, 2n − 1).

Checking all four terms of (2.8) confirms that the maximal degree of the terms in (2.8) is

(2m− 1, 2n− 1), so there are a total of (2m− 1 + 1)(2n− 1 + 1) = 4mn coefficients to be

set to zero.

Fact 3 Of the 4mn coefficients of (2.8), 2n correspond to terms that will always be zero.

This can be observed by considering the terms of (2.8) of maximal degree (n − 1) in y.

The last two terms, f ∂h
∂x

+h∂f
∂x

, clearly have coefficient 0 at y = 2n−1, since degy(h) = n−2.

In f ∂g
∂y

, we require y degrees of n, n − 1 in f, ∂g
∂y

respectively. The terms of ∂g
∂y

with y

degree n− 1 are the terms of g with y degree n multiplied by the terms of f with y degree

n.

The second term g ∂f
∂y

results in the same coefficients, hence the opposite signs yield a

cancelation of terms. So any term of (2.8) with degree in y of 2n − 1 is zero.

2.3.2 Matrix Representation

From the degree bounds above, it is clear that (2.8) can be expressed as a linear system of

dimension (4mn− 2m)× (2mn + n− 1). Denote this matrix R(f), the Ruppert matrix of

the input polynomial f .

The rows of the matrix shall correspond to the coefficients of (2.8) at each of the pos-

sible degree pairs (i, j), following the same ordering described for polynomial division.
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Working with a general degree (2, 2) polynomial f ∈ R[x, y], we expect 4mn − 2n = 12

such rows. We have:

f(x, y) =
∑

0≤i≤2

∑

0≤j≤2

fi,jx
iyj.

The first row of R(f) corresponds to the degree 0 term of (2.8), so equals

f0,0g0,1 − g0,0f0,1 + h0,0f1,0 − f0,0h1,0,

resulting in the row:

g0,0

−f0,1

g1,0

0
g1,1

0
g1,2

0
g0,1

f0,0

g0,2

0
h0,0

f1,0

h1,0

−f0,0

h2,0

0 .

The full matrix system (including rows normally ignored due to Fact 3, indicated by bold

row labels) for this example is as follows:

1

x

x2

x3

x3y

x3y2

x3y3

x2y

x2y2

x2y3

xy

xy2

xy3

y

y2

y3







































































g0,0

−f0,1

g1,0

0
g1,1

0
g1,2

0
g0,1

f0,0

g0,2

0
h0,0

f1,0

h1,0

−f0,0

h2,0

0

−f1,1 −f0,1 f0,0 0 f1,0 0 2f2,0 0 −2f0,0

−f2,1 −f1,1 f1,0 0 f2,0 0 0 f2,0 −f1, 0

0 −f2,1 f2,0 0 0 0 0 0 0

0 −2f2,2 0 2f2,0 0 0 0 0 0

0 0 −f2,2 f2,1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−2f2,2 −2f1,2 0 2f1,0 0 2f2,0 0 f2,1 −f1,1

0 0 −f1,2 f1,1 −f2,2 f2,1 0 f2,2 −f1,2

0 0 0 0 0 0 0 0 0

−2f1,2 −2f0,2 0 2f0,0 0 2f1,0 2f2,1 0 −2f0,1

0 0 −f0,2 f0,1 −f1,2 f1,1 2f2,2 0 −2f0,2

0 0 0 0 0 0 0 0 0

−2f0,2 0 0 0 0 2f0,0 f1,1 −f0,1 0

0 0 0 0 −f0,2 f0,1 f1,2 −f0,2 0

0 0 0 0 0 0 0 0 0







































































.
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2.3.3 Determining Solutions

R(f) will have full rank if and only if there are no non-trivial solutions to our equation

(2.8), hence if and only if f is irreducible due to Fact (2).

In solving the Least Squares problems, we compute a matrix R̂ = R(f) + ∆R that is

rank-deficient. At the same time, a vector y is computed such that R̂y = 0. This vector

will contain the coefficients of the polynomials g, h in the prescribed coefficient order.

As with the other operations, if the matrix R̂ does not have the same structure as R(f),

then recovering the polynomial f̂ = f + ∆f will be difficult. Once again, this problem

is avoiding by solving the STLS problem, as opposed to LS or TLS. STLS ensures that

R̂ = R(f̂) for some polynomial f̂ .

2.4 Decomposition

A polynomial f ∈ R[x] is said to be decomposable if there exists polynomials g, h ∈ R[x]

such that f(x) = g(h(x)). Applying the restrictions that degx(g) < degx(f),degx(h) <

degx(f) eliminates trivial solutions.

Decomposition of such a polynomial f is the search for suitable polynomials g, h. As

with the previous polynomial operations, if no such g, h can be found, then the closest

polynomial f̂ = f + ∆f is the desired solution.

A method proposed by [12] verifies decomposability by transforming the problem to that

of irreducibility of the bivariate polynomial φf (x, y) = (f(x)−f(y))
(x−y)

.

Fact 4 A polynomial f(x) ∈ R[x] of composite degree1 is indecomposable if and only if

φf (x, y) is irreducible.

One can then use the methods described in the previous section on bivariate factorization

to attain a solution. For a general polynomial of degree 3, f = f0 + f1x + f2x
2 + f3x

3, we

1A polynomial of prime degree will trivially be indecomposable.
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have:

φf (x, y) = f1(1) +

f2(x + y) +

f3(x
2 + xy + y2).

2.4.1 Degree Bounds

The method of the previous section can be refined for the particular polynomial φfx, y,

since the Ruppert matrix R(φ) for this polynomial will exhibit a certain structure.

Let f =
∑n

i=0 fix
i, then the terms of degree i in φf (x, y) (combined in x and y) must

have coefficient fi+1 (as was seen in the degree 4 example). The polynomial φ has form

φf (x, y) =
n−1
∑

i=0

fi+1

i
∑

j=0

xi−jyj.

The degree bounds of φf (x, y) are thus less than of f(x), namely

degy(φf (x, y)) ≤ n − 1,

degx(φf (x, y)) ≤ n − 1.

Therefore the required g, h will have bounds of

degx(g) ≤ n − 2, degy(g) ≤ n − 1,

degx(h) ≤ n − 1, degy(h) ≤ n − 3.

2.4.2 Matrix Representation

From the degree bounds above, the equation (2.8), applied to φf (x, y), can be expressed

as a linear system. The number of equations shall be

(4(n − 1)(n − 1) − 2(n − 1)) = 4n2 − 10n + 6.
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There are (2(n − 1)(n − 1) + (n − 1) − 1) = 2n2 − 3n variables, so the linear system has

dimension (4n2 − 10n + 6) × (2n2 − 3n).

Denote the matrix representation of the system R(φf (x, y)), the Ruppert matrix of the

input polynomial φf (x, y).

For the degree 3 example, the matrix would be of dimension 12 × 9:

Rφf (x,y) =



















































−f2 f1 0 0 0 0 f2 −f1 0

−f3 f2 0 −f2 f1 0 2f3 0 −2f1

0 f3 0 −f3 f2 0 0 f3 −f2

0 0 0 0 f3 0 0 0 0

−2f3 0 2f1 0 0 0 f3 −f2 0

0 0 2f2 −2f3 0 2f1 0 0 −2f2

0 0 2f3 0 0 2f2 0 0 −f3

0 0 0 0 0 2f3 0 0 0

0 −f3 f2 0 0 0 0 −f3 0

0 0 f3 0 −f3 f2 0 0 −2f3

0 0 0 0 0 f3 0 0 0

0 0 0 0 0 0 0 0 0



















































,

which again will be full rank if the polynomial f is indecomposable.

2.4.3 Determining Solutions

Solving the STLS problem preserves the structure of the computed R̂ giving R̂, y as before.

Then the algorithm of [11] can be used to recover the factors of φf (x, y). Of course, once

f has been determined a regular decomposition algorithm can be run to determine g, h.

2.5 Conclusion

This section has shown a reduction of the approximate polynomial operations division,

GCD, bivariate factorization, and decomposition, to a corresponding structured matrix
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system. The structure of each system has been presented, and a method of manipulating

this system has been briefly discussed, yielding the result of the polynomial operation. .



Chapter 3

Least Squares Problems

Solving linear systems of equations is one of the most fundamental numerical computations.

In its most basic form, we seek a solution vector x ∈ R
n that maps each of the input

equations ai ∈ R
n to their desired value bi ∈ R, using the standard dot product vector

multiplication. Placing the inputs ai into the rows of a matrix A ∈ R
m×n yields the typical

matrix equation

Ax = b. (3.1)

The vector x can be generally thought of as a collection of parameters xi, whose values

are determined so that they satisfy equation (3.1). Depending on the number of equations

(m), it may be the case that there are no such values. In such circumstances, a best value

for x would conceptually be one that makes Ax ≈ b. For the classical LS problem, this

vector satisfies Ax = b + ∆b, and best x minimizes ||∆b||2. The more sophisticated Least

Squares problems involve a more complicated definition, given with their introduction in

this chapter.

One can reformulate (3.1) as a rank reduction problem on the transformed system

Cy = 0, (3.2)

27
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where C ∈ R
m×n+1, y ∈ R

n+1, and are generated as follows:

C =













a11 . . . a1n b1

a21 . . . a2n b2

...
. . .

...
...

am1 . . . amn bm













y =

















x1

x2

...

xn

−1

















. (3.3)

Setting Cy = 0 ensures the aix = bi as required, but now we are looking for vectors y in

the nullspace of C. Reducing the rank of C can then guarantee the existence of such a

non-trivial solution y. Any computed vector y, scaled by − 1
yn+1

(provided yn+1 is non-zero)

to have a last entry yn+1 = −1, is of the same required form in (3.3).

There are many techniques for determining such x (or y) for a linear system, but we

must first specify the exact problem to be solved. We consider three Least Squares prob-

lems, applicable not when an exact solution x or y exists for the system, but when the

input A, b or C must be perturbed to find such solutions.

3.1 Singular Value Decomposition

As we shall see, the singular value decomposition is a valuable tool for computing solutions

to the minimization of the least squares problems. It’s computation is left to the next

chapter, however we formally introduce the concept here.

Theorem 3.1.1 For a matrix A ∈ R
m×n, there exist orthogonal matrices U ∈ R

m×m and

V ∈ R
n×n, and a diagonal matrix Σ ∈ R

m×n such that

A = UΣV T . (3.4)

Further, the entries in the matrix Σ are called the singular values of A, and are in decreasing

order from left to right of the matrix, i.e:

σ1 ≥ · · · ≥ σr > 0.

The value r ≤ n is commonly known as the rank of the matrix A. If r < n, then A is said

to be singular, or rank deficient.
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3.2 Least Squares

We have the definition of the LS minimization from (1.1), which minimizes the residual

||Ax − b||2, so that as ||Ax − b||2 → 0, Ax → b. (1.1) can thus be restated as:

min
||x||

(

||Ax − b||2
)

. (3.5)

Essentially, the problem is to determine a new vector b̂ = b + ∆b for which there exists an

x having residual of zero, and minimizes ∆B. In terms of (3.1), we seek a solution vector

x to

Ax = b + ∆b.

3.2.1 Solution

For a matrix A ∈ R
m×n with rank r, we can rewrite the SVD of A, in terms of the columns

of U, V from (3.4) as:

A =
n

∑

i=1

uiσiv
T
i , (3.6)

where ui, vi are the ith column of U, V respectively. The solution to (3.5) can be determined

from the following theorem:

Theorem 3.2.1 For A ∈ R
m×n with rank r, and b ∈ R

m, the vector of smallest 2-norm

that minimizes ||Ax − b||2 is:

x =

(

r
∑

i=1

viσ
−1
i uT

i

)

b. (3.7)

The matrix in (3.7) is known as the (Moore-Penrose) pseudo-inverse of A, denoted A†, so

that

A† =

(

r
∑

i=1

viσ
−1
i uT

i

)

,

and (3.7) becomes

x = A†b.
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3.2.2 Discussion

It is clear that in our applications, a solution to the Least Squares problem will only as-

sume coefficients of certain polynomials (i.e. those that appear in b) are approximate. The

structure of the matrix A will clearly be preserved, since it remains unchanged for the

solution to (3.5).

A natural extension of the LS problem must also be considered, namely Total Least Squares.

By allowing perturbations in the matrix A, the space in which we search for solutions x

is significantly expanded. This will most often yield a solution that better approximates

(3.1).

3.3 Total Least Squares

The Total Least Squares (TLS) problem incorporates perturbations in the input matrix A.

To formulate this, the minimization and the equation are separated as:

(A + ∆A)x = b + ∆b,

min
||∆A||2+||∆b||

|| [∆A|∆b] ||. (3.8)

3.3.1 Solution

The solution to the total least squares problem can also be determined from the singular

value decomposition of the matrix C, formed by joining A, b as in (3.2). If the rank of

C < n + 1, then there exists a non-trivial vector in it’s null space, and the vector x can be

determined.

If the rank of C = n+1, then the Eckhart-Young-Mirsky Theorem [17] is used to compute
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the best rank n approximation of C. Write the SVD of C, as in (3.4)

C = UΣV T , Σ =













σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . . 0

0 0 . . . σn+1













.

Then form the matrix:

Σ̂ =

















σ1 0 . . . 0 0

0 σ2 . . . 0 0
...

...
. . . 0 0

0 0 . . . σn 0

0 0 . . . 0 0

















by forcing the smallest singular value σn+1 to be zero.

Theorem 3.3.1 The matrix Ĉ = UΣ̂V T is of rank n, such that ||C − Ĉ|| is minimized,

and the solution1 to (3.8) is

x =
−1

vn+1,n+1

[v1,n+1, . . . , vn,n+1]
T . (3.9)

3.3.2 Discussion

Application of the TLS technique to the input system yields an x that better approximates

(3.1). However, the result is a solution

(A + ∆A)x = (b + ∆b),

which does not necessarily preserve the structure of A as described in the introduction.

For the application to approximate polynomial operations, we shall see this can have un-

desirable consequences.

We also must be wary of matrices whose SVD yields a value of vn+1,n+1 → 0. This

1Subject to the assertion that vn+1,n+1 6= 0.
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should not be the case for full rank matrices C, however roundoff error in computation of

the SVD can introduce this possibility.

The alternative is to solve a modified form of TLS, with an additional constraint that

the structure of the input matrix remains constant. This is known as the Structured Total

Least Squares (STLS) problem.

3.4 Structured Total Least Squares

Structured Total Least Squares (STLS) incorporates an additional constraint to the TLS

problem. The purpose of the constraint is to ensure that the matrices considered for solu-

tion have the same structure as the matrices used for input.

To illustrate, consider an input matrix C ∈ R
2×3 =

[

α β ψ

β γ ω

]

If the entries of C are derived from input polynomials2 , then the matrix used to gen-

erate a solution should be of the same form, namely:

Ĉ =

[

α + ∆α β + ∆β ψ + ∆ψ

β + ∆β γ + ∆γ ω + ∆ω

]

This would ensure that the [2,1] and [1,2] entries of Ĉ are the same, since presumably they

are derived from the same polynomial coefficient.

A natural way of formalizing this constraint is to define a collection of basis matrices

for the matrix structure in question. For this example, we define the entry vector c ∈ R
k =

(c1, . . . , ck) containing the distinct entries of C:

c =
[

α β γ ψ ω
]

.

2or from are formed for other application that requires preserving structure of the matrix
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The matrix C can then be expressed as:

C =
k

∑

i=1

ci (Ti),

for a set of k = 5 basis matrices Ti ∈ R
2×3:

T1 =

[

1 0 0

0 0 0

]

, T2 =

[

0 1 0

1 0 0

]

, T3 =

[

0 0 0

0 1 0

]

,

T4 =

[

0 0 1

0 0 0

]

, T5 =

[

0 0 0

0 0 1

]

.

Using this general definition, the STLS problem becomes the determination of a vector

y ∈ R
m×n+1 and perturbed entry vector ĉ = c + ∆c with:

( k
∑

i=1

ĉi (Ti)

)

y = 0,

min
∆c

||ĉ − c||.
(3.10)

This choice of basis matrices and entry vector corresponds to a particular method of viewing

the STLS problem, the RiSVD.

3.4.1 RiSVD

The Riemannian SVD (RiSVD) approach (proposed in [19]) to formalizing the STLS prob-

lem relies on the entry vector ĉ ∈ R
k+1 and structure-dependent basis matrices Ti as above.

Structure Representation

The structure relation for C, Ĉ of (3.2) is then simply

Ĉ = C + ∆C = T0 +
k

∑

i=1

Tiĉi,

C = T0 +
k

∑

i=1

Tici.
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For completeness we have introduced the matrix T0 as a constant matrix that can be added

to the structured matrix. This will not impact our application in any way. Consider the

structure matrix H ∈ R
3×2 and vector b ∈ R

3

H =







h1 h2

h2 h3

h3 h4






b =







c1

h4

c2







with k = 6, and

c =
[

h1 h2 h3 h4 c1 c2

]T

.

The structure dependent matrices are then

T1 =







1 0 0

0 0 0

0 0 0






, T2 =







0 1 0

1 0 0

0 0 0






, T3 =







0 0 0

0 1 0

1 0 0






,

T4 =







0 0 0

0 0 1

0 1 0






, T5 =







0 0 1

0 0 0

0 0 0






, T6 =







0 0 0

0 0 0

0 0 1






.

Problem Formulation

We have the formalization of the STLS problem in (3.10), further add the constraint

||y|| = 1 (simple normalization). Then, in [19], it is show that (3.10) is equivalent to the

non-linear, generalized SVD:

Find the triplet (u, τ, v) corresponding to the smallest τ such that

Cv = Dvuτ, uT Dvu = 1,

CT u = Duvτ, vtDuv = 1,

vT v = 1.

(3.11)
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with Du defined as

Duv =
m

∑

i=1

T T
i (uT Tiv)u,

Du =
m

∑

i=1

(T T
i u)(uT Ti),

and Dv similarly

Dv =
m

∑

i=1

(Tiv)(vT T T
i ).

Then, for y = v and ĉi = ci − uT Tivτ , a solution for (3.10) is found. We note at this

stage that the solutions appear to be a good approximation to (3.10), but they are not

necessarily exact solutions, as was the case with the LS and TLS problems.

Algorithm

In order to find the triplet (u, τ, v), the QR Decomposition of C is used to create a block

triangular representation of the constraints. Since the constraints reduce to a restricted

singular value decomposition (RSVD) if Du, Dv were constant [19], an iterative method

can be used to refine u, v with these matrices constant at each iteration.

The QR Decomposition of C ∈ R
m×n can be partitioned:

C =
[

Q1 Q2

]

[

R

0

]

,

where Q1 ∈ R
m×n,Q2 ∈ R

m×(m−n), R ∈ R
n×n. The vector u ∈ R

m can be written as

u = Q1z + Q2w,
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where z ∈ R
n, w ∈ R

m−n. The constraint CT u = Duτ is thus:

Duvτ = CT u

= (
[

Q1 Q2

]

[

R

0

]

)T (Q1z + Q2w)

= (
[

RT 0
]

[

QT
1

QT
2

]

)(Q1z + Q2w)

= (RT QT
1 )(Q1z + Q2w)

= RT QT
1 Q1z

= RT z.

Cv = Dvuτ is similarly partitioned:

Cv = Dvuτ

(
[

Q1 Q2

]

[

R

0

]

)v = Dv(Q1z + Q2w)τ

which yields the (m + n) × (m + n) linear system:







RT 0 0

QT
2 DvQ1 QT

2 DvQ2 0

QT
1 DvQ1τ QT

1 DvQ2τ −R













z

w

v






=







Duvτ

0

0






. (3.12)

Each step of the iteration will solve (3.12) for fixed Du, Dv using the values of u, v from

the previous iteration. This can be easily accomplished since the linear system is block

triangular in structure.

The solution yields the refined v, and z, w such that the refined u can be constructed

as Q1z + Q2w. At the highest level, the algorithm can be described

1. zi+1 = R−T Dui
viτi;

2. wi+1 = −(QT
2 Dvi

Q2)
−1(QT

2 Dvi
Q1)zi+1;

3. ui+1 = Q1zi+1 + Q2wi+1;



Least Squares Problems 37

4. vi+1 = R−1QT
1 Dvi

ui+1.

Our implementation of the QR iteration is left to the following chapter, which describes

the accuracy constraints on the computation. A novel approach to increase the efficiency of

the simple implementation, by working with only square matrix systems, is also presented.

3.4.2 STLN

The choice of basis matrices to represent the structure of an input matrix for RiSVD is

certainly not unique (see [17] for a detailed treatment). A second way to approach the

STLS problem is called Structured Total Least Norm (STLN).

STLN formalizes the structure constraint by first defining vectors α, β that contain the dis-

tinct perturbations of A, b in (3.1). We then force the perturbation
[

∆A ∆b
]

to follow the

same structure as the input. This clearly ensures the correct structure for A+∆A, b+∆b.

The minimization in (3.10) is then rewritten in terms of the vectors α, β and two weighting

matrices Wα,Wβ.

Structure Representation

For the input A ∈ R
m×n, b ∈ R

m, let α ∈ R
p be a vector containing each of the distinct

entries of ∆A. Further, define β ∈ R
q to contain all of the distinct entries of ∆b that are

not in α (hence not in ∆A.

STLN requires the formation of three structure-dependent basis matrices, P1, P2 ∈ R
m×p,Q ∈

R
m×q. These matrices are constructed such that

∆Ax = P1α,

∆b = P2α + Qβ.
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providing the means of mapping the vectors α, β to the desired perturbation matrices.

Consider once again the structure matrix H ∈ R
3×2 and vector b ∈ R

3

H =







h1 h2

h2 h3

h3 h4






, b =







c1

h4

c2






.

Hence p = 4, q = 2, and

α =
[

∆h1 ∆h2 ∆h3 ∆h4

]T

,

β =
[

∆c1 ∆c2

]

.

The basis matrices for this example begin with:

P1 =







x1 x2 0 0

0 x1 x2 0

0 0 x1 x2






,

so that

P1α =







x1 x2 0 0

0 x1 x2 0

0 0 x1 x2

















∆h1

∆h2

∆h3

∆h4











=







∆h1x1 + ∆h2x2

∆h2x1 + ∆h3x2

∆h3x1 + ∆h4x2







= ∆Ax.

Similarly we have

P2 =







0 0 0 0

0 0 0 1

0 0 0 0






, Q =







1 0

0 0

0 1






.
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Problem Formulation

The system (A + ∆A)x = b + ∆b is thus transformed to Ax + P1α = b + (P2α + Qβ). The

minimization in (3.10), derived from

min
||∆A||2+||∆b||

|| [∆A|∆b] ||,

is reformulated in terms of α, β:

min
α,β,x

αT W 2
αα + βT W 2

ββ.

with weighting matrices Wα ∈ R
p×p,Wβ ∈ R

q×q. These are diagonal matrices, defined such

that W 2
α[i, i] = d if α[i] appears d times in the matrix A, similarly for β in b. So (3.10) is

now:

Ax + P1α = b + P2α + Qβ,

min
α,β,x

αT W 2
αα + βT W 2

ββ.
(3.13)

Methods

Several methods for solving the STLS problem under the Structured Total Least Norm

framework are suggested in [15]. We outline two such algorithms, and motivate further

exploration of these in our applications:

1. The weighted residual method

This methods adds a weighted term of a form of the residual (r = Ax − b) to the

minimization in (3.13). The additional term is defined as ωr̂T r̂, where r̂ = r − Qβ,

essentially providing a corrected residual r̂ as the elements of β are refined.

By doing so, the constrained minimization problem is transformed into an uncon-

strained minimization, which can be solved in a variety of ways. However, this will

only yield an approximation of the constrained problem.

The weight ω appears to be a limiting factor for this method. The choice of ω
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must be adequately large to ensure that the approximation is sufficiently close to a

solution of the constrained problem. However, large ω can lead to numeric instability

(see e.g. [18]).

2. The iterative quadratic programming method

IQP solves the minimization of (3.13) iteratively, and is studied in detail in [17]

In each iteration, the objective function is solved by first linearizing the constraints

around the current solution point.

3.4.3 CTLS

The Constrained Total Least Squares (CTLS) approach formalizes the structure constraint

by putting the distinct entries of C in (3.2) into a vector v, and defining the set of allowable

matrices as the result of a mapping Fv on this vector v.

The matrix Ĉ = C + ∆C is formed by mapping the combined vector v + ∆v under the

mapping rule, where ∆v is denoted the noise vector .

Structure Representation

Given a matrix A ∈ R
m×n with k distinct entries, form the vector v ∈ R

k from these k

entries. CTLS defines n structure matrices Fi ∈ R
m×k, one for each column of A, such

that Fiv yields the ith column of A.

Consider once again the structure matrix H ∈ R
3×2 and the vector b ∈ R

3, in the form of

the full matrix C as (3.2)

C =







h1 h2 c1

h2 h3 h4

h3 h4 c2






.

There are 6 distinct elements of the matrix, so k = 6, and

v =
[

h1 h2 h3 h4 c1 c2

]T

.
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The second structure matrix and the result of mapping v by it are:

F2 =







0 1 0 0 0

0 0 1 0 0

0 0 0 1 0






, F2v =

[

h2 h3 h4

]T

.

F2v is the required second column of C. The other structure matrices are formed to have

the same effect.

Problem Formulation

The formulation of the STLS problem under the CTLS framework differs from (3.10) in

the specification of the function to be minimized. Define W ∈ R
k×k, as before, a weighting

matrix of the vector v ∈ R
k, where W [i, i] = wi is the number of times the element vi

appears in the matrix A. The weighting matrix for the example is:

W =





















1 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1





















.

If ∆v ∈ R
k is the noise vector , then the minimization becomes

min
∆v

∆vT W∆v. (3.14)

The equation (A + ∆A)x = (b + ∆b) must still hold, but is reformulated to include the

structure constraint as follows
(

n
∑

i=1

Fi(v + ∆v)

)

x = Fn+1(v + ∆v).

In [1], the following problem formulation is derived from (3.14)

min
x

yT CT
(

H(x)W−1H(x)T
)−1

Cy, (3.15)

with H(x) = (
∑n

i=1 x(i)Fi) − Fn+1.
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Methods

There are several methods to solve the minimization of (3.15), see e.g. [17]. We discuss

three such methods here:

1. Newton’s Method

Newton’s method can be used to calculate (analytically) the first and second or-

der (gradient and Hessian respectively) information for (3.15). The convergence rate

is quite high, however there are a few points of concern.

First, pure Newton’s method does not necessarily descend to a minimum, and may

in fact result in a maximum value for the function. Initial criteria must be carefully

chosen, and the Hessian can also become ill-conditioned.

Further, the initial values are crucial for Newton’s method, since it will converge

to a global minimum or maximum if they are near the starting criteria.

Finally, the computational cost of Newton’s method makes it inappropriate for this

problem. There are well-known alternatives that maintain an adequately high con-

vergence rate, and are more computationally efficient.

2. Conjugate Gradient

The most obvious alternative, conjugate gradient can be used to find the minimum

of the function (3.15) (see [14]).

3. Quasi-Newton Method

A second alternative, Quasi-Newton (see [13] [10] for a detailed treatment) is noted

to be less sensitive to accuracy issues (see [17]) than CG. Since the reduction of

STLS often involves relatively small quantities, Quasi-Newton may be better suited

for solving the minimization problem.
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3.4.4 Summary

The main focus of contrasting the three formulations of the STLS problem is that each

one formulates the minimization in a different way. The respective minimizations have

been shown in [17] to be equivalent, however they are quite different, and required very

different algorithms to be optimized. Table 3.1 summarizes the formulations, including the

minimization functions.

Method Form Storage
Mapped

Solution
Minimization Algorithm(s)

CTLS
(A + ∆A)x

= b + ∆b
v

(
∑

Fiv̂) x

= Fn+1v̂
||v̂ − v|| CG

Quasi-Newton

STLN
(A + ∆A)x

= b + ∆b
α, β

Ax + P1α =

b + P2α + Qβ

αT W 2
αα+

βT W 2
ββ

Weighted Residual

Iterative QP

RiSVD Cy = 0 ci (
∑

Tiĉi) y = 0
∑

(c[i] − ĉ[i])2 Inverse Iteration

Table 3.1: Summary of the three formulations of STLS

presented in this chapter.

We once again emphasize that the computed solutions to the minimizations of the

various formulations appear to only be approximate solutions of the STLS problem (3.10).

3.5 Geometric Interpretation

To graphically illustrate the differences between the three Least Squares problems (LS,

TLS, STLS), consider the simple example:

[

1.04

3.48

]

[

x
]

=

[

3.48

7.88

]

.

So that C =
[

A b
]

=

[

1.04 3.48

3.48 7.88

]

is a structured (Hankel) matrix.
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We have one variable, x, which should yield

1.04x = 3.48,

3.48x = 7.88.

These are derived from the satisfiable values of:

1.04 − 0.04 = 1, 3.48 + 0.02 = 3.50, 7.88 − 0.13 = 7.50,

which hold for x = 2.50. We can assign the values in the two equations to points in the

plane, (1.04, 3.48) and (3.48, 7.88) to provide a geometric interpretation of the methods.

LS perturbs only the vector b, so the points will only be moved along the vertical axis.

TLS minimizes the sum of the distances between the original points and their perturbed

value.

STLS requires constant structure, in this case, that means the horizontal perturbation

of the second point must equal the horizontal perturbation of the first.

Figure 3.1 demonstrates this geometric interpretation for the three methods, with a solid

line for the LS perturbation, a dotted line for the TLS perturbation, and a dashed line for

the STLS perturbation. STLS has been split into the change in each of the coordinates,

to emphasize the point that the vertical coordinate change of Point 1 must equal the hor-

izontal coordinate change of point 2.

It is interesting to note that, for this small example, the values of x determined by LS,TLS,

and STLS are 2.353, 2.385, 2.444 respectively. Having STLS closer to our expected value

than TLS is unexpected, as we shall see 3.

3In this case, it is caused by a matrix closer than the matrix of satisfiable values used for the construction,

that also happens to be satisfiable (without the structure constraint).
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(a) Point 1, (1.04, 3.48)
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(b) Point 2, (3.48, 7.88)

Figure 3.1: A geometric representation of the perturbations from LS,TLS, and STLS

3.6 Results

We contrast the solutions to the three Least Squares problems here. In particular, we

identify the matrix norms of the perturbation that led to the derived systems. It is clear

that the Least Squares solution should have higher matrix norm than that of the Total

Least Squares solution, since TLS generalizes to LS if only perturbing the last row of the

matrix corresponds to the minimum.

The STLS solution however, must also maintain the structure of the vector b (as well

as A), a restriction not imposed by the TLS and LS problem. This will make it possible

(although very unlikely) that the perturbation for the LS solution will actually be smaller

(in matrix norm) than that of the STLS solution.

We consider three common type of structured matrices, but first we must define the metrics

used to measure the size of the perturbation.
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3.6.1 Metrics

We focus on the second formulation of the input system, Cy = 0:

[

A + ∆A b + ∆b
]

[

x

−1

]

= 0,

of which all three methods determine a solution x for a particular ∆A, ∆b. In the case of

LS, ∆A = 0. Each of the least squares problems is attempting to find a solution to Ax ≈ b

in some sense, so we measure the perturbation
[

∆A ∆b
]

.

3.6.2 Experimental Evidence

The size of the matrix
[

∆A ∆b
]

has been measured for a varying set of (linearly) struc-

tured matrix inputs. These structured matrices have been chosen from some of the most

common in computer algebra. Each result is outlined here, and comparisons are made to

show the required perturbation for each problem.

Toeplitz Matrices

A Toeplitz matrix T ∈ R
n×n has the form

T =



















t1 t2 t3 . . . tn

tn+1 t1 t2
. . .

...

tn+2 tn+1 t1
. . . t3

...
. . . . . . . . . t2

t2n−1 . . . tn+2 tn+1 t1



















,

which contains 2n− 1 distinct elements. The result of the three least squares problems for

Toeplitz matrices of dimension n = 5, with varying size of entries t1 are:
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Entry Range LS TLS STLS

0..10 1.106834972 .5854754222 .8051267476

-10..10 1.714899221 .8582976909 1.173944129

0..100 39.50966527 22.13895275 29.80559918

-100..100 59.52824294 31.20138288 42.58801001

−1010..1010 6.867239734 1010 3.750138140 1010 5.071373274 1010

−10−10..10−10 6.832120886 10−10 3.836338463 10−10 4.843752406 10−10

Table 3.2: Average ||∆T || for 100 random matrices with

entries ti in the range indicated

The computed norm appears to increase linearly with the size of the matrix entries.

This is unfortunate, but clearly was expected, since the distance between entries becomes

greater. This results in a larger perturbation being required to introduce a dependency.

Next we consider increasing the dimension of the matrix from n = 5 to n = 100.

Distinct Entries Matrix Dimension LS TLS STLS

9 5 6.855527289 3.617996045 4.810891056

39 20 7.457438422 2.285583544 4.846676928

99 50 10.55219407 1.792919462 3.679065444

199 100 11.146653176 1.537119066 4.595730262

Table 3.3: Average ||∆T || for 100 random matrices with

the number of distinct entries indicated

With LS, the norm sees a small increase. However TLS actually sees an improvement

in the computed matrix ∆T . This is not altogether surprising, since the TLS solution is

free to perturb any entries of the input matrix. Increasing the number of entries gives the

TLS solution more freedom to vary the structure of the matrix.
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The STLS results appear to be a bit more cryptic. The matrix norm seems to decrease with

growing dimension, but not in all cases. We shall defer discussion until different structured

matrices have been considered.

It is expected that TLS perturbation will be smaller than STLS, which will in turn be

smaller than LS. The percent reduction in the matrix norm is listed below, averaged out

over the variable dimension and input size.

TLS v LS STLS v LS TLS v STLS

Variable Entry Size 46.31 % 27.85 % 25.58 %

Variable Dimension 71.45 % 47.18 % 48.86 %

Table 3.4: Perturbation Norm Comparison

The difference between the STLS perturbation and LS perturbation is almost the same

as that of TLS and STLS. This is quite an encouraging result for STLS.

Hankel Matrices

A Hankel matrix H ∈ R
n×n is similar to the Toeplitz matrix, but the diagonal bands are

in the opposite direction. The Hankel matrix of dimension 5 is

H =

















h1 h2 h3 h4 h5

h2 h3 h4 h5 h6

h3 h4 h5 h6 h7

h4 h5 h6 h7 h8

h5 h6 h7 h8 h9

















,

which contains 2n− 1 distinct elements. The result of the three least squares problems for

Hankel matrices of dimension n = 5, with varying size of entries t1 are shown below.
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Entry Range LS TLS STLS

0..10 3.736294816 2.067872052 2.847205556

-10..10 6.279127286 3.683435474 4.900647284

0..100 39.50966527 22.13895275 29.80559918

-100..100 59.52824294 31.20138288 42.58801001

−1010..1010 6.867239734 1010 3.750138140 1010 5.071373274 1010

−10−10..10−10 6.832120886 10−10 2.836338463 10−10 3.443752406 10−10

Table 3.5: Average ||∆H|| for 100 random matrices with

entries ti in the range indicated

The results are similar to that of the Toeplitz matrix, with the norm growing with the

size of the entries. Varying the dimension also appears to have similar results, as can be

seen below:

Distinct Entries Matrix Dimension LS TLS STLS

9 5 6.279127286 3.683435474 4.900647284

39 20 7.546744004 2.217896928 4.664149136

99 50 10.36000905 1.781211831 3.620477956

199 100 9.384907377 1.476655292 4.598787336

Table 3.6: Average ||∆H|| for 100 random matrices with

the number of distinct entries indicated

Once again we see the peculiarity with STLS, which does not see a linear improvement.

We conjecture that this is a consequence of the increased dimension both increasing the

number of values to be perturbed, but also increases the difficulty of maintaining the

structure.
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Dimension TLS v LS STLS v LS TLS v STLS

Variable Entry Size 65.76 % 58.72 % 27.22 %

Variable Dimension 70.58 % 47.01 % 48.66 %

Table 3.7: Perturbation Norm Comparison

This result closely parallels that of Toeplitz matrices, except that for fixed dimension,

the STLS perturbation seems to be much closer to TLS perturbation.

Banded Matrices

Finally, we shall look at a particular class of banded matrices, namely a five-diagonal

matrix B. These matrices have non-zero entries on and surrounding the matrix diagonal.

The general five-diagonal matrix looks like:

B =

























a1 b1 c1 0 . . . 0

d1 a2 b2
. . . . . .

...

e1 d2 a3
. . . . . . 0

0 e2 d3
. . . . . . cn−2

...
. . . . . . . . . . . . bn−1

0 . . . 0 en−2 dn−1 an

























,

which contains at most 5n − 6 non-zero elements. The result of the three least squares

problems for banded matrices of dimension n = 5, with varying size of entries t1 are shown

here:
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Entry Range LS TLS STLS

0..10 2.223362237 .8705973794 1.015604533

-10..10 4.139204088 1.699833434 1.986179678

0..100 38.06424199 22.13895275 29.80559921

-100..100 61.63919317 31.09812152 42.47299864

−1010..1010 5.316521541 109 2.987158552 109 3.922439387 109

−10−10..10−10 3.461578640 10−9 6.700901544 10−10 8.002919634 10−10

Table 3.8: Average ||∆B|| for 100 random matrices with

entries ti in the range indicated

The computed norm appears to vary linearly with the matrix entries as expected. Next

we consider increasing the dimension of the matrix from n = 5 to n = 100.

Distinct Entries Matrix Dimension LS TLS STLS

19 5 3.673034334 1.656436934 1.894319779

94 20 2.916759876 .3015408709 .4481092128

244 50 2.451905580 0.08840127934 0.1984047521

494 100 1.666472430 0.03756954195 0.2270315949

Table 3.9: Average ||∆B|| for 100 random matrices with

the number of distinct entries indicated

With five-diagonal matrices, we see that all of the problems have results with better

matrix norms for increased dimension. We conjecture this is due to increased number of

zeroes in the matrix as the dimension increases, yielding greater flexibility of perturbation.
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Dimension TLS v LS STLS v LS TLS v STLS

Variable Entry Size 55.94 % 43.70 % 20.22 %

Variable Dimension 84.68 % 77.84 % 46.04 %

Table 3.10: Perturbation Norm Comparison

For this structured matrix, STLS seems to be much closer to TLS than it was for

Toeplitz and Hankel matrices. This is likely due to the increased number of structure

entries. The five-diagonal matrix makes no assertion on two entries being the same (except

for the zeroes), so TLS and STLS will be acting the same way on the band around the

diagonal. TLS will see improvement by perturbing the zeros, something not permitted for

STLS.

3.6.3 Discussion

Given a matrix C, the three Least Squares problems all require a matrix ∆C and a vector

y such that (C + ∆C)y = 0. The results shown indicate that the Total Least Squares

solution achieves this for the smallest possible ∆C.

However, the solution found for STLS appears to be a substantial improvement over LS

as well, and guarantees the structure of the matrix ∆C. For applications that need the

structure of C + ∆C to remain consistent, the STLS solution can be used to find this y.

Of course, STLS algorithms do not guarantee minimal solutions, where as LS and TLS do.

However, the distance from the smallest structured matrix seems to also be fairly close to

the smallest unstructured matrix, dependent of course on the structure chosen.

3.7 Conclusion

In this chapter, a pair of techniques deriving from the basic Least Squares problem have

been introduced. For these problems, given input data A ∈ R
m×n and b ∈ R

m (or similarly

C ∈ R
m×n+1), determine a solution x that in some manner best solves Ax = b (Cy = 0)
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for an interpretation of the input data.

The solution to the Structured Total Least Squares problem is particularly useful for

polynomial operations in computer algebra, since the structure of the input matrix is

preserved. This in turn shall allow reconstruction of the perturbed polynomials that yield

an interesting result.



Chapter 4

Singular Value Decompositions

The Least Squares problems of the previous chapter rely heavily on various forms of the

classical singular value decomposition (SVD). In particular, the presented solution for TLS

required the determination of the smallest singular value(s) of the regular SVD, while STLS

requires a solution to the RiSVD.

In this chapter we present algorithms for the computation of the SVD, paying close at-

tention to the accuracy of the singular values that they generate. These algorithms can

then be used to effectively solve the minimization equations of each of the Least Squares

problems.

4.1 Accuracy

The accuracy of the SVD is quite easily stated if the goal is simply the singular values

in the decomposition. We state here the error bound that is attained with a traditional

algorithm for the singular value decomposition, as well as a more modern error bound that

we shall employ. But first, the error bounds are motivated by the introduction of numeric

rank .

54
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4.1.1 Numeric Rank

The singular value decomposition is a very valuable computational tool, since it provides

a means to determine an estimate for the rank of a matrix A ∈ R
m×n.

Given the singular value decomposition of A as in (3.4), the rank of the matrix A is

the number r with, for all σi 6= 0, σi ≥ σr and σr > 0. In other words, σr is the smallest

non-zero singular value.

When computing the SVD numerically, roundoff error can lead to the singular value σr+1

(in some cases, many of σi, i > r) to become non-zero. These values are quite small, usually

much less than one. Consider the matrix A =







0 1 0

1 0 0

0 0 0






, with perturbed version:

Â = A + ∆A

=







0 1 0

1 0 0

0 0 0






+







−0.0003 0.0000 0.0003

−0.0010 0.0006 0.0003

−0.0008 0.0003 0.0010







=







−0.0003 1.0000 0.0003

0.9990 0.0006 0.0003

−0.0008 0.0003 0.0010






.

Clearly A is constructed to have rank two, with σ1 = σ2 = 1, and σ3 = 0. Now ∆A

represents roundoff error in A, meaning the computed SVD will actually be the SVD for

the perturbed matrix Â. These (rounded) singular values are (1.0000, 0.9999, 0.0010).

So if the computed SVD is used to decide the rank of A, the rank will be three. This

is often called the numeric rank of A, and is usually computed based on some ǫ, with

0 < ǫ ≪ 1, that is used to indicate a level at which the singular values should be inter-

preted as zero. For this example, if ǫ is chosen to be 0.01, then the last singular value

would be interpreted as zero, and the numeric rank would (correctly) be determined to be

two.
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We wish to avoid this complication, since incorrect rank determination will cause the Least

Squares methods to discover a minimum that may not satisfy the primary constraints, i.e.

Ax 6= b (or Cy 6= 0).

This would in turn lead to polynomials that do not provide a result for the desired op-

eration. By applying the more modern (relative) accuracy bounds, we can ensure correct

rank determination, and avoid these concerns. We first discuss traditional error bounds

and note why they are inadequate in some cases.

Traditional Error Bounds

With both input error and roundoff, a traditional algorithm computes the SVD for a

perturbed version of an exact matrix A ∈ R
m×n, i.e.

Â = A + ∆A.

∆A is kept small by applying the restriction ||∆A|| ≤ η||A|| for 0 ≤ η ≪ 1. The error

bounds that one can achieve is:

Let Û ∈ R
m×m, Σ̂ ∈ R

m×n, V̂ T ∈ R
n×n be the SVD of input matrix Â, where

Σ̂ = diag(σ̂1, . . . , σ̂n). Then the traditional error bound, for algorithms that

provide absolute accuracy is:

|σi − σ̂i| ≤ η · ||G|| = η · σ1. (4.1)

The values σi are the singular values of the exact matrix A. From (4.1) it is clear that the

error in all of the singular values is bounded in terms of the largest singular value, σ1. In

particular, the smallest singular value σr may not be determined to any accuracy at all if

σ1 ≫ σr.

Relative Accuracy Bounds

As for traditional bounds, the input shall be a perturbed version of the exact matrix A,

however, in [7], it is shown that Â can be expressed as a multiplicative perturbation of A,
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i.e.,

Â = ÊAF̂ .

Ê, F̂ are defined as

Ê = I + E,

F̂ = I + F.

The error in the input is bounded by constraining the perturbations E,F as ||E|| ≤
ηE, ||F || ≤ ηF , and defining η = max(ηE, ηF ). Then we have:

Let Û , Σ̂, V̂ T be the SVD of input matrix Â, where Σ̂ = diag(σ̂1, . . . , σ̂n). Then

the bound for algorithms that provide guaranteed relative accuracy is:

|σi − σ̂i|
σi

≤ ηE + ηF + ηEηF ≤ 2η + η2. (4.2)

Any algorithm that meets this relative accuracy bound can thus guarantee the smallest

singular value(s) are computed accurately. We can thus use this SVD computation to

confidently determine the solutions for LS and TLS. Note that this does not mean that

algorithms that can only provide the traditional bound will not be able to determine

solutions for LS and TLS. Relative error bounds simply give confidence that the computed

values are correct for the input data.

4.2 Singular Value Decomposition

Algorithms for computing the singular value decomposition have a long history, see e.g.

[14]. With [8], algorithms that provide this guaranteed relative accuracy have been devel-

oped. Most such algorithms follow the same steps:

1. Reduce the input matrix A to bidiagonal form B using orthogonal matrices U1, V1,

so A = U1BV1.

2. Determine the SVD of B, i.e. U2, Σ, V2 such that B = U2ΣV2

3. Combine these to get the SVD of A = (U1U2)Σ(V1V2)
T
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In [9], the practical algorithms for the SVD are described:

1. QR Iteration and its variations

These algorithms are generally the fastest for determining the singular values of a

bidiagonal matrix. The method of [8] is of this form, and shall be explored in detail.

It has the advantage that is also provides the required singular vectors.

2. Divide and Conquer

The fastest algorithm for large dimension matrices, but does not provide relative

accuracy of singular values.

3. Bisection and Inverse Iteration

This method works well for determining the singular values within an interval, and

can provide guaranteed relative accuracy of singular values by narrowing the interval.

However, the singular vectors may suffer from a loss of orthogonality, making it

impossible to recover the perturbed matrix as required in our applications.

4. Jacobi’s Method

By implicitly applying Jacobi’s Method to AAT , some classes of matrices A can yield

accurate singular values. Attempts to fit the matrices derived from the polynomial

operations could yield a better SVD-based algorithm.

All but Jacobi’s method follow the 3 steps outlined above, involving first reducing the input

matrix to bidiagonal form, meaning a matrix that is zero except for the diagonal and first

super-diagonal.

4.2.1 Bidiagonal SVD

For an input matrix A, orthogonal matrices U1, V1 ∈ R
n×n can be constructed such that

A = U1BV1 (see [2]), with B a matrix of bidiagonal form. The question is then to determine

the Singular Value Decomposition of B with guaranteed relative accuracy.
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Perturbation Bounds

Consider a symmetric tridiagonal matrix J , with zero diagonal in R
n×n, i.e.:

J =



















0 b1 0 . . . 0

b1 0 b2
. . .

...

0 b2 0
. . . 0

...
. . . . . . . . . bn−1

0 . . . 0 bn−1 0



















. (4.3)

Construct J + ∆J , by multiplying one offdiagonal entry of J by α 6= 0. Then, for ᾱ =

max (|α|, |α|−1), Theorem 2 of [8] established that if λi are the eigenvalues of J , then the

eigenvalues λ̄i of J + ∆J are bounded by:

λi

ᾱ
≤ λ̄i ≤ ᾱλi.

So a change in one of the entries of the matrix can only change the eigenvalues by that

same amount. This can clearly be applied for perturbations to all the entries, taking

ᾱ =
∏n

i=1 max |αi|, |αi|−1. No eigenvalue will change more than this product.

Note that for any matrix B, the eigenvalues of

B̄ ≡
[

0 BT

B 0

]

are equal to the singular values of B (and possibly their negatives). So perform a per-

mutation on the rows and columns of B̄ formed when B is bidiagonal, to yield a suitable

matrix J of the form (4.3).
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Then for

B + ∆B =



















α1b1 α2b2 0 . . . 0

0 α3b3 α4b4
. . .

...

0
. . . . . . . . . 0

...
. . . . . . α2n−3b2n−3 α2n−2b2n−2

0 . . . 0 0 α2n−1b2n−1



















,

ᾱ =
2n−1
∏

i=1

max
(

|αi|, |αi|−1
)

,

we have

σi

ᾱ
≤ σ̄i ≤ ᾱσi.

σi are the singular values of B and σ̄i are the singular values of B + ∆B. This result

provides the vehicle for relatively accurate singular values, as opposed to the traditional

absolute accuracy.

Zero-Shift QR Iteration

Traditional QR Iteration on BT B can be used to compute the singular values of a bidiago-

nal matrix B. This algorithm iteratively refines B to converge on a diagonal matrix whose

entries are the singular values of B.

Each iteration proceeds by first computing a shift σ2, and (implicitly) forming the QR

factorization of the matrix QR = BT B − σ2I. The next B is generated from

BT B = RQ + σ2I.

However, the roundoff errors can be order ǫB, which can destroy the relative accuracy of

the singular values.

The standard method of computing the QR decomposition of a matrix involves apply-

ing Given’s rotations about a certain angle, using Wilkinsons’s shift. By setting the shift
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to zero, and carefully choosing the angles of rotation, the offdiagonal elements can be ze-

roed without the possibility for cancellation, i.e. without −σ2I.

Let J(i, j, θ) denote the Given’s rotation of the i, j entries by θ, i.e. for n = 5:

J(3, 4, θ) =

















1 0 0 0 0

0 1 0 0 0

0 0 cos θ sin θ 0

0 0 − sin θ cos θ 0

0 0 0 0 1

















.

The choice of θ is based on making the jth entry of (J(i, j, θ)) x equal to zero, for a given

vector x. This can be accomplished by choosing tan θ = xj/xi for a particular x.

Both algorithms begin by applying the Given’s rotation J1 ≡ J(1, 2, θ1). They differ in

their choice of θ1, as will be discussed in a moment. B is post-multiplied by J1, introducing

a non-zero value in the (2,1) entry of BJ1. This non-zero is then “chased” off the matrix

by a series of further rotations.

J2 ≡ J(1, 2, θ2) is chosen to introduce a zero in this (2,1) entry of J2BJ1, but will then

introduce a non-zero in the (1,3) entry. J3 ≡ J(2, 3, θ3) is then chosen to “chase” that

non-zero down to the (3,2) position, and the process continues for the duration of the

iteration.

In total, 2(n − 1) rotations will be required to chase the non-zero entry off of the ma-

trix.

Now, standard QR Iteration chooses the original angle, θ1, to introduce a zero in the

(2,1) entry of JT
1 (BT B − σ2I), so

tan θ1 =
(BT B)1,2

σ2 − (BT B)1,1

.

Using Wilkinson’s shift guarantees linear convergence to the desired diagonal matrix [8].
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However, for zero-shift QR, we simply need to zero the (2,1) entry of JT
1 (B), so

tan θ1 = −(BT B)1,2

(BT B)1,1

= −b1,2

b1,1

.

Thus when the matrix J1 is applied to B, the (1,2) entry of BJ1 will be zero. Again the

non-zero in the (2,1) will have to be ”chased” off the matrix with further rotation, but this

zero in (1,2) will propagate through the rotation. This propagation can be incorporated

into an algorithm, yielding improved efficiency over standard QR iteration.

Implementation

The zero-shift QR algorithm is fairly simple to implement. First we set up a procedure,

GivensRotation , which computes the values of cos, sin (and r) for a given vector [f, g], i.e.

[

cos sin

− sin cos

][

f

g

]

=

[

r

0

]

.

The diagonal elements of the matrix are stored in a vector s = [s1 . . . sn], and the off-

diagonal entries in a vector e = [e1 . . . en−1]. Then one iteration can be summarized as:

Initialization Phase:

1. cos0 = 1;

2. f = s1 g = e1;

for i from 1 to n-1

1. cos, sin, r = GivensRotation(f, g);

2. ei−1 = r sin0;

3. f = r cos0;

4. g = si+1 sin h = si+1 cos;

5. cos, sin, r = GivensRotation(f, g);

6. si = r;

7. f = h g = ei+1;

8. sin0 = sin cos0 = cos;
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end for

Cleanup Phase:

1. en−1 = h sin;

2. sn = h cos.

There is clearly an absence of possible cancellation, so the algorithm shall proceed at nearly

machine precision.

Convergence

The convergence rate of the zero shift QR on a symmetric matrix is known to be essentially

the same as inverse iteration [8]. The last off-diagonal element will linearly converge to

zero with a constant factor of σ2
n−1/σ

2
n.

4.2.2 Experimental Results

We present here results for the bidiagonal SVD algorithm. First we present results for

increased QR iterations:

Iterations Roundoff error in σn Relative error in σn Roundoff error for all σi

10 0.1125208366 0.05356465432 12.75890948

20 0.1978281924 0.02912351033 6.325897846

50 0.004771707879 0.0006027857690 2.266760745

100 2.187994035 × 10−15 1.544765955 × 10−17 1.1737740818

Table 4.1: Error in the computed singular values for dif-

ferent iterations

The relative errors in σn are made quite small in early iterations. Varying dimension

has no negative effect on the relative accuracy, as can be seen from the following two tables.

The first presents the error for random matrices, and the second presents the error when

the matrices are constructed to have one very small singular value, of order 10−30.
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Dimension Roundoff error in σn Relative error in σn Roundoff error for all σi

3 5.377902855 × 10−4 7.767028455 × 10−6 1.289983128 × 10−3

5 1.289338934 × 10−6 2.601620526 × 10−8 2.518860262 × 10−3

10 1.081430462 × 10−8 8.618170255 × 10−10 2.589038785 × 10−2

20 6.662715090 × 10−10 5.337934560 × 10−11 0.1238719948

50 2.401918446 × 10−12 8.006394821 × 10−13 9.440612729

Table 4.2: Error in the computed singular values for vary-

ing dimension

Dimension Roundoff error in σn Relative error in σn Roundoff error for all σi

3 3.978700646 × 10−30 3.947160142 × 10−2 6.980728515 × 10−4

5 4.958117479 × 10−30 4.925267976 × 10−2 1.206230610 × 10−3

10 4.577435537 × 10−30 4.482349158 × 10−2 0.02467295934

20 5.651057135 × 10−30 5.361805845 × 10−2 0.1378697980

50 1.294070995 × 10−28 8.189721750 × 10−1 1.088537792

Table 4.3: Error in the computed singular values for vary-

ing dimension of matrices with one small singular value

We lastly contrast the errors for varying coefficient sizes for both random matrices and

matrices constructed with small singular values. Again we see that the relative error is not

adversely affected by widely varying coefficient size.
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Entry Range Roundoff error in σn Relative error in σn Roundoff error for all σi

0 . . . 10 2.141029366 × 10−4 2.140981382 × 10−4 3.067681214 × 10−2

−10 . . . 10 8212201265 × 10−5 7.261861170 × 10−5 3.640709528 × 10−2

−100 . . . 100 7.399891445 × 10−8 2722134104 × 10−8 0.1159135002

−1010 . . . 1010 1.379236650 × 105 8.338349303 × 10−6 9.825063442 × 107

Table 4.4: Error in the computed singular values for vary-

ing size of entries

Entry Range Roundoff error in σn Relative error in σn Roundoff error for all σi

0 . . . 10 2.598692468 × 10−31 2.476215472 × 10−3 2.817809720 × 10−2

−10 . . . 10 3.277414658 × 10−31 1.145099780 × 10−2 3.033119536 × 10−2

−100 . . . 100 5.749740370 × 10−30 5578860270 × 10−1 9.116097130 × 10−2

−1010 . . . 1010 1.215984740 × 107 1.312539217 × 10−8 8.749806106 × 107

Table 4.5: Error in the computed singular values for vary-

ing size of entries, of matrices with one small singular

value

Discussion

These results provide the verification that the bidiagonal SVD algorithm determines singu-

lar values with low relative error. In particular, the relative error in a very small singular

value was shown to be correct.

Once again, we emphasize that the presence of guaranteed relative accuracy merely gives

confidence in the computed singular values. We found it extremely rare that traditional al-

gorithms for the singular value decomposition were not able to provide sufficiently accurate

singular values, particularly for our applications to Least Squares problems for approximate

polynomial operations.
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4.3 Riemannian Singular Value Decomposition

From (3.11) for the STLS problem, we have the RiSVD formulation:

Find the triplet (u, τ, v) corresponding to the smallest τ such that

Cv = Dvuτ, uT Dvu = 1,

CT u = Duvτ, vtDuv = 1,

vT v = 1.

This non-linear SVD corresponds to the restricted singular value decomposition (RSVD)

if the matrices Du, Dv are assumed to be constant (see [20] for an extensive study of the

RSVD).

This suggests an iterative algorithm, as noted in [19], that would hold these matrices

constant for each iteration, and refine solutions u, v.

From (3.12), we have the translation of (3.11) to the lower triangular linear system:







RT 0 0

QT
2 DvQ1 QT

2 DvQ2 0

QT
1 DvQ1τ QT

1 DvQ2τ −R













z

w

v






=







Duvτ

0

0






.

The iterations will proceed as follows:

1. zi+1 = R−T Dui
viτi;

2. wi+1 = −(QT
2 Dvi

Q2)
−1(QT

2 Dvi
Q1)zi+1;

3. ui+1 = Q1zi+1 + Q2wi+1;

4. vi+1 = R−1QT
1 Dvi

ui+1.

The vectors vi must then be normalized, or else ||vi|| → 0, even though ||vi||||ui|| remains

constant.
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A second normalization is required to ensure the following constraint holds:

vT
i Du1

vi = uT
i Dv1

ui = 1.

We can specialize this algorithm to the case when m = n, which simplifies the system to:

[

RT 0

QT Dvτ −R

][

u

v

]

=

[

Duvτ

0

]

.

We provide two implementations, one for regular (rectangular) matrices, and one for these

special square matrices. We also provide methods of converting rectangular matrices to

square ones, in an attempt to use the square algorithm on rectangular matrices.

4.3.1 Implementation

As we require a functioning algorithm for the RiSVD of several different structured matrix

classes, we implemented the inverse iteration algorithm of [19]. This algorithm was chosen

for it’s simplicity and generality over the different matrix classes. Where efficiency is a

concern, the algorithm should be tuned for the particular matrix structure in question.

We first describe our simplified square matrix version of the algorithm of [19]. We use

placeholders for forming the structured matrix of the algorithm described in 3.4.1, namely

Dui
, Dvi

and C.

Input: ĉ, B, where ĉ is a list of the entries of the matrix Ĉ, and B is a list of struc-

ture basis matrices.

Output: c, v, where c contains the entries of the perturbed matrix C, and v is a vector

such that Cv = 0.
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Initialization Phase:

1. Q,R = the QR Decomposition of C;

2. U, Σ, V t = the SVD of C;

3. τ0, u0, v0 = the smallest singular value and it’s corresponding singular vectors;

4. γ0 =
(

vT
0 Du0

v0

)1/4
;

5. u0 = u0/γ0 v0 = v0/γ0;

Repeat for i = 1 until convergence:

System Solving Phase:

1. ui = Q
(

R−T Dui−1
vi−1τi−1

)

;

2. vi = R−1QT Dvi−1
uiτi−1;

Normalization Phase:

1. vi = vi/||vi||;
2. γi =

(

vT
i Dui

vi

)1/4
;

3. ui = ui/γi vi = vi/γi;

4. τi = uT
i Cvi;

End Repeat

For rectangular matrices, we present the algorithm in detail as discussed in section 3.4.1.

But first, note that you can use the previous algorithm for square matrices on a matrix of

dimension m × n. This is accomplished by pre-multiplying the input matrix C by a ma-

trix E ∈ R
n×m. The new basis matrices are EBi, where Bi were the original basis matrices.

By choosing random E that does not introduce dependencies into EC, we see that the

computed EC, v will often have the desired property that Cv = 0.

We have also implemented the full algorithm:
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Input: ĉ, B, where ĉ is a list of the entries of the matrix Ĉ, and B is a list of struc-

ture basis matrices.

Output: c, v, where c contains the entries of the perturbed matrix C, and v is a vector

such that Cv = 0.

Initialization Phase:

1. Q1, Q2, R = the full QR Decomposition of C;

2. U, Σ, V t = the SVD of C;

3. τ0, u0, v0 = the smallest singular value and it’s corresponding singular vectors;

4. γ0 =
(

vT
0 Du0

v0

)1/4
;

5. u0 = u0/γ0 v0 = v0/γ0;

Repeat for i = 1 until convergence:

System Solving Phase:

1. zi =
(

R−T Dui−1
vi−1τi−1

)

;

2. wi = −
(

QT
2 Dvi−1

Q2

)−1 (

QT
2 Dvi−1

Q1

)

zi;

3. ui = Q1zi + Q2wi;

4. vi = R−1QT Dvi−1
uiτi−1;

Normalization Phase:

1. vi = vi/||vi||;
2. γi =

(

vT
i Dui

vi

)1/4
;

3. ui = ui/γi vi = vi/γi;

4. τi = uT
i Cvi;

End Repeat

The major difference here is the extra steps in the system solving phase. First, we re-

quire the full QR decomposition of C, partitioned as:

C =
[

Q1 Q2

]

[

R

0

]

.
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Next, we have to solve for z, w at each iteration (where u = Q1z +Q2w). This involves the

potentially costly inversion of
(

QT
2 Dvi−1

Q2

)

when determining w. Again, the particular

matrix structure is the determining factor for the practicality of determining w, either by

the computing the stated inversion, or solving the system
(

QT
2 Dvi−1

Q2

)

w =
(

QT
2 Dvi−1

Q1z
)

.

4.3.2 Experimental Results

The results of the previous section, for STLS, were compiled using the RiSVD algorithm.

As such, we simply contrast the speed of the two techniques (squared vs rectangular) here,

as well as providing a measure for the failure caused by the randomization. The metrics

below are for Toeplitz matrices.

Rows Columns Speedup Success Rate

20 2 29.14% 0.12

20 5 23.67% 0.26

20 10 21.49% 0.54

20 15 18.91%, 0.87

20 20 2.057907268% 1.00

Table 4.6: Speedup and Success Rate of various eccen-

tricities of input matrix

4.4 Conclusion

In this chapter, we have presented accurate algorithms for both the regular singular value

decomposition and the Riemaniann singular value decomposition. These algorithms per-

mit the use of the Least Squares methods described in the previous chapter, including on

severely ill-conditioned matrices.

Using these, we can now implement the approximate polynomial operations with confi-

dence, using the solutions from the various Least Squares problems.
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Results

This chapter outlines the results of applying the solutions to the Least Squares problems

of Chapter 3 to the polynomial operations of Chapter 2. For each operation, we show an

example illustrating the steps of the algorithm. Results are then presented for randomly

selected input polynomials, as well as for polynomials known to be close to others that

yield a non-trivial result for the operation in question.

5.1 Metrics

Our approximate polynomial operations take, as input, a set of one or two polynomials,

namely f ∈ R[x]1 or f, g ∈ R[x] . The notation introduced here for f should also be applied

to g where applicable.

We shall denote the computed polynomial f̂ , which are equal to f +∆f for some (hopefully

small) polynomial ∆f . In order to measure the success of our operations in terms of a

(loose) upper bound, we construct input polynomials f from another set of polynomials f̄ ,

which are known to give a non-trivial result for the operation in question. We then seek

to verify

||f − f̂ || ≤ ||f − f̄ ||.
1For factorization, the polynomial would be f ∈ R[x, y]

71
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We also present ||f − f̂ || for randomly generated input polynomials f , of varying degree d

and magnitude range of coefficients.

Unless otherwise stated, the results presented in this chapter have been run on a ran-

dom sampling of 100 inputs. The presented metrics are the average values attained for

that sample. In all cases, we have ensured that no individual sample was outside any

sought-after bounds.

5.2 Polynomial Division

For input (approximate) polynomials p̂, q̂ ∈ R[x], we seek nearby polynomials

p = p̂ + ∆p,

q = q̂ + ∆q,
(5.1)

such that q | p. The polynomial r is also determined that satisfies p/q = r.

5.2.1 Example

Consider example (2.1), which had input

p = 3.02x2 + 6.98x + 2,

q = 2.78x + 0.96.

The multiplication matrix Q for the polynomial q is






0.96 0

2.78 0.96

0 2.78






,

and we seek an r such that solves the obviously over-constrained system:






0.96 0

2.78 0.96

0 2.78







[

r0

r1

]

≈







2

6.98

3.02






. (5.2)
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Least Squares

The Least Squares solution is







0.96 0

2.78 0.96

0 2.78







[

2.129494442

1.08823181892465714

]

=







2

6.98

3.02






+







0.044314664

0.015302906

0.00528445661054679







=







2.044314664

6.96469709439862862

3.02528445661054679






.

Notice that LS does not perturb the multiplication matrix, only the right-hand side. The

result is a perturbed polynomial p̂ = p + ∆p and a polynomial r such that p̂/q = r, i.e.

3.02528445661054679x2 + 6.96469709439862862x + 2.044314664

2.78x + 0.96
=

1.08823181892465714x + 2.129494442.

The distance from the perturbed p̂ to p is computed to be 0.04717937964 using the poly-

nomial 2-norm.

Total Least Squares

The TLS result for (5.2), has left hand side:













0.96 0

2.78 0.96

0 2.78






+







−0.0140677749386000084 −0.00718889467108000010

0.00477751005300008914 0.00244139650460006852

−0.169088714121500006 −0.000864074781999679687













[

r0

r1

]

=







0.9459322250614 −0.007188894671080

2.784777510053 0.9624413965046

−0.001690887141215 2.779135925218







[

2.129570368

1.088250070675

]

,
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and right hand side:







2

6.98

3.02






+







0.006605922

−0.002243415

0.000794004







=







2.006605922

6.977756585025

3.020794003883






.

The polynomials r, p̂ can be read off the system as in the LS case, giving us the values

p̂ = 3.020794003883x2 + 6.977756585025x + 2.006605922,

r = 1.088250070675x + 2.129570368.

However, TLS also perturbed the matrix Q in arriving at these values. Due to this, there

may not be a polynomial q̂ such that p̂/q̂ = r, and this result provides little more than

polynomials p̂, r that may be closer to being divisible. To check how far off the solution is,

we compute the residual p̂ − qr for both the original polynomial q and a somewhat naive

attempt to recover q̂ from the first column of Q + ∆Q.

This q̂ will likely introduce higher degree than q, if the zeroes in the first column of Q

were destroyed by TLS. We compute the residual with q̂1, q̂2, where q̂1 includes the higher

degree terms, and q̂2 does not. 2

The result of using these estimates q̂1, q̂2 for q̂, and the original polynomial q, are:

p − qr = −0.004541193x2 + 0.012830894x − 0.037781631,

p − q̂1r = 0.001840108051x3 − 0.006139456x2 + 0.017966107x − 0.007823315,

p − q̂2r = 0.001840108051x3 − 0.006139456x2 + 0.016125999x − 0.011424178.

2There are all sorts of other heuristics that can be applied to Q + ∆Q to recover a polynomial q that

is hoped to divide p. Instead, we shall use STLS to guarantee a q that divides p.
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Clearly any of these options does not have zero residual, so the choices for q̂ are not correct.

Note that ||∆p|| = 0.007021506867 is quite small, as expected. This p is certainly closer to

p̂ than the one computed by LS. But it does not result in a pair of divisible polynomials.

Structured Total Least Squares

Solving STLS on the system (5.2) gives a left hand side perturbation of:













0.96 0

2.78 0.96

0 2.78






+







−0.0192694923999999768 0

0.00650542400000020393 −0.0192694923999999768

0 0.00650542400000020393













[

r0

r1

]

=







0.9407305076 0

2.786505424 0.9407305076

0 2.786505424







[

2.13757001674005265

1.08423967866386128

]

,

and right hand side:







2

6.98

3.02






+







0.0108773270000002144

−0.00367221000000039766

0.00123974599999998603







=







2.010877327

6.97632779

3.021239746






.

Now the structure of Q was preserved, so we can read p̂, r and q̂ off of the system. We

have:

p̂ = 3.021239746x2 + 6.976327794x + 2.010877327,

q̂ = 2.786505424x + .9407305076,

r = 1.08423967866386128x + 2.13757001674005265.

As expected, p̂ − q̂r = −0.0000000001x, which we shall call zero. 3

3Since it’s a negligible difference, presumably due to roundoff error in the computation
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The polynomial norms ||∆p||, ||∆q|| are 0.01154722214, 0.02033799102 respectively. This

is in an improvement over the LS solution, which had ||∆p|| = 0.04717937964. The results

of the next section show the differences in norm more thoroughly.

5.2.2 Metrics

Polynomial division takes two input polynomials p, q as input, so the metrics run will be

on the polynomials p, q and their corresponding matrix systems.

5.2.3 Results

We begin by illustrating the size of the residual when using a naive choice 4 of coefficients

of q from the matrix Q + ∆Q constructed to solve the TLS problem.

Coefficient Range ||p̂ − q̂r|| ||p̂−q̂r||
||p||2+||q||2

0..10 9.658454272 0.6118358388

-10..10 45.61990497 1.619070883

-100..100 215.0753496 1.542072386

−10−10..10−10 6.923436617 × 10−9 0.9983980614

−1010..1010 1.800493692 × 1010 1.051108620

Table 5.1: Size of the residual for computed p̂, q̂ for vary-

ing coefficient sizes

The results of Table 5.1 are using q̂ = q2, which appears to be the best of our naive

choices for the coefficients of q̂, as discussed in the example.

We now present the proximity of the computed polynomials for each of the three Least

Squares solutions. Table 5.2 presents the relative error for varying coefficient size:

4Recall that the solution to the TLS problem does not maintain the structure of Q in Q + ∆Q, so any

choice of coefficients of q will likely not divide p exactly.
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LS STLS TLS

Coefficient Range
(

||∆p||
||p||

)2 (

||∆p||
||p||

)2

+
(

||∆q||
||q||

)2 (

||∆p||
||p||

)2

+
(

||∆q||
||q||

)2

0..10 0.2135766876 0.07989683728 0.04585486761

-10..10 0.4623086923 0.1172845136 0.06909769835

-100..100 0.4309319746 0.1102616381 0.07852343945

−10−10..10−10 0.4740415579 0.1410581410 0.1081253334

−1010..1010 0.4823037453 0.1159398145 0.08518335096

Table 5.2: Relative distance from computed polynomials

to input polynomials for varying coefficient sizes

Clearly the coefficient size has no dramatic effect on the computed distance. We next

proceed for increasing degrees of the polynomials p, q, keeping the degree of q about 1/2

that of p.

LS STLS

deg p deg q
(

||∆p||
||p||

)2 (

||∆p||
||p||

)2

+
(

||∆q||
||q||

)2

2 1 0.1404706996 0.1120178032

5 3 0.1727037476 0.07683297644

10 5 0.1526386114 0.01681960245

50 25 0.1434667582 0.006326673340

Table 5.3: Relative distance from computed polynomials

to input polynomials for varying degrees of p,q.

The results from Table 5.3 are particularly encouraging, as increasing degrees does not

adversely affect the relative distances. Further, the STLS solution actually appears to get

closer with increased degree. We speculate this is due to the increased number of coeffi-

cients that can be perturbed, making dependency easier to achieve via perturbation.

With an efficient algorithm (tailored to the matrix for polynomial division) for solving
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the STLS problem, approximate division of very large degree polynomials may be possible.

We next hold the degree of p constant, to examine the effect of the relationship between

the degrees of p, q.

LS STLS

deg p deg q
(

||∆p||
||p||

)2 (

||∆p||
||p||

)2

+
(

||∆q||
||q||

)2

10 1 0.03338328964 0.03006721368

10 2 0.07686260030 0.03611606497

10 5 0.1792974687 0.01908563260

10 9 0.3022687571 0.02172860283

Table 5.4: Distance from computed polynomials to input

polynomials for varying degrees of q

It appears from this result that STLS problem significantly outperforms the LS solution

when deg p → deg q.

Finally we present the verification that the solution to the STLS problem comes within

a loose upper bound for the polynomial perturbation. As described in the first section of

this chapter, we have constructed p, q to be near polynomials p̄, q̄ that are divisible. We

vary the perturbation as a percentage of the coefficient range of f . Our methods should

give polynomials at least as close as those, and we see that they do:

Constructed p̄, q̄ Computed p̂, q̂

Perturbation
(

||p−p̄||
||p||

)2

+
(

||q−q̄||
||q||

)2 (

||p−p̂||
||p||

)2

+
(

||q−q̂||
||q||

)2

0.001 0.001808138829 0.000001467121824

0.05 0.01058177531 0.003097649796

0.5 0.6464343778 0.1112758661

1.0 1.442602022 0.1491508842

Table 5.5: The relative polynomial norms for p̂, q̂ from

the solutions to the STLS problem for perturbed p, q
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5.3 Polynomial GCD

For input (approximate) polynomials f, g, we seek nearby polynomials

f̂ = f + ∆f,

ĝ = g + ∆g,
(5.3)

such that f̂ , ĝ have a non-trivial GCD d.

5.3.1 Metrics

The distance between these polynomials is clearly ||∆f ||, ||∆g|| from (5.3), for a suitable

choice of polynomial norm.

For the results of this section, we present the sizes of each of these polynomial norms,

as well as their sum. This is intended to illustrate that, depending on the application,

different choices for the data fitting algorithm may be appropriate.

5.3.2 Example

To illustrate the Least Squares solutions, consider a perturbed version of example 2.6:

f = 1.3x4 + 3.86x2 + 2.99,

g = 1.6x3 − 0.66x2 + 2.1x − 1.

The Sylvester Matrix of f, g is:



























2.99 0 0 −1 0 0 0

0 2.99 0 2.1 −1 0 0

3.86 0 2.99 −0.66 2.1 −1 0

0 3.86 0 1.6 −0.66 2.1 −1

1.3 0 3.86 0 1.6 −0.66 2.1

0 1.3 0 0 0 1.6 −0.66

0 0 1.3 0 0 0 1.6



























.



80 Structured Total Least Squares for Approximate Polynomial Operations

STLS is used to find the closest rank deficient Sylvester matrix, which will then contain

the coefficients of the polynomials f, g that have non-trivial GCD. The entries of f, g can

then be read directly off of the matrix.

Using the RiSVD based STLS method, we get:

f̂ = 1.25824867x4 − 0.01353770965x3 + 3.89146970x2 + 0.008763275821x + 2.966337760,

ĝ = 1.590471846x3 − 0.6565466692x2 + 2.106918905x − 1.002835919.

This seems odd, since we were expecting the polynomials of example 2.6. We compare the

distance of the f̂ , ĝ that we have computed from f, g to that of f̄ , ḡ (the f, g from example

2.6).

||f − f̄ || = 0.3312099032, ||f − f̂ || = 0.05961115731,

||g − ḡ|| = 7.016387960, ||g − ĝ|| = 0.01259463756.

This makes it clear that the computed f̂ , ĝ are much closer to f, g than the example data

f̄ , ḡ. Hence for this example, one does not have to move f, g very far to find polynomials

with a non-trivial GCD.

We multiply the Sylvester matrix by the vector

[

u

v

]

to find the polynomial combina-

tion of f̂ , ĝ that yields the GCD. Computing the rank of S(f̂ , ĝ) indicates the degree of

the GCD is two, so we solve the system

S(f̂ , ĝ)

[

u

v

]

=























d0

d1

1

0
...

0























,



Results 81

for the polynomials u, v. The result is

u = 1.258248657x2 − 0.08178672133x + 2.197212408,

v = 1.590471846x − 0.7428157879,

d = 1.000000000x2 + 0.05424121083x + 1.350046013,

The GCD remains close to the one used in the construction of example (2.6), which was

x2 + 1. However, as we have seen, the polynomials f̂ , ĝ are much closer to f, g than f̄ , ḡ

were.

5.3.3 Results

We first consider varying coefficient ranges for the input polynomials.

Coefficient Range ||∆f ||
||f ||

||∆g||
||g||

0..10 0.1049889030 0.08243073495

-10..10 .1280712135 .1574863840

-100..100 .1362641966 .1156061933

−10−10..10−10 0.07231108725 0.1797500075

−1010..1010 0.07294338785 0.1002649575

Table 5.6: Normalized distance to nearest polynomial for

varying coefficient sizes

The results in Table 5.6 demonstrate that, as was the case for division, the coefficient

size does not impact the relative proximity of the computed solutions.

We next alter the degrees of f, g, and find that the increasing degrees of g compared

to f does not have the same impact as it did for polynomial division.
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Degree f Degree g ||∆f ||
||f ||

||∆g||
||g||

2 1 0.1462551207 0.2185669912

5 3 0.09102810325 0.1358309873

10 1 0.08718679625 0.2826079907

10 5 0.03892541024 0.1273642670

10 9 0.05592024420 0.1457978732

10 10 0.03676434782 0.08493033090

Table 5.7: Relative distance to nearest polynomial for

varying degrees

We present here the average degree of the computed GCD’s. It is interesting to note

that, although we are only seeking the closest non-trivial GCD, occasionally we find poly-

nomials with a GCD of degree greater than one. This becomes more prevalent as the

degree of f increases, and particularly when the degree of g approaches that of f .

Degree f Degree g Degree of GCD

2 1 1.00

5 3 1.25

10 1 1.00

10 5 1.31

10 9 1.72

10 10 1.78

Table 5.8: Average Degree of Computed GCD

Finally we present the verification that the solution to the STLS problem comes within

the loose upper bound for the polynomial perturbation.

As described in the first section of this chapter, we have constructed f, g to be near poly-

nomials f̄ , ḡ that have a non trivial GCD. Our methods should give polynomials f̂ , ĝ, that

are at least as close as those, and we see that they do:
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Constructed f̄ , ḡ Computed f̂ , ĝ

Perturbation
(

||f−f̄ ||
||f ||

)2

+
(

||g−ḡ||
||g||

)2 (

||f−f̂ ||
||f ||

)2

+
(

||g−ĝ||
||g||

)2

0.001 3.182791951 × 10−6 2.407164294 × 10−7

0.05 0.009695806014 0.0006064908956

0.5 0.5453310650 0.02018600801

1.0 1.183334514 0.1780722686

Table 5.9: The polynomial norms for f , g of the solutions

from the STLS problem

Comparison

We also compare our result to a current implementation of approximate polynomial GCD

in Maple 9.5. The Symbolic-Numeric Algorithms for Polynomials (SNAP) package con-

tains an implementation of an QR-based algorithm from [6], which we call QRGCD.

We begin by noting the efficiency of the QRGCD was far superior than our STLS-based

GCD for our trials. This was to be expected, since we are using our generalized RiSVD

algorithm. Implementation of an RiSVD algorithm specifically designed for Sylvester ma-

trices would clearly lessen this distance.

The GCD of the polynomials computed by the QRGCD were also generally of higher

degree in x, compared to those computed from our GCD algorithm. If this is a considera-

tion of the application, the QRGCD result certainly should be considered.

However, our formulation of approximate polynomial GCD simply requires a non-trivial

GCD of the computed polynomials. The following table shows the distance of the computed

f, g from the inputs for both the QRGCD and our STLS GCD for varying degrees.
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Degree f, g QRGCD STLS GCD

2,2 0.8582967314 0.001410190318

4,4 1.710840424 0.0007058442816

10,10 0.6526856978 0.0005886810762

20,20 3.133090590 0.00001634913584

Table 5.10: Distance from input to computed polynomi-

als, i.e. ||f − f̂ ||2 + ||g − ĝ||2, for varying polynomial

degrees

The QRGCD algorithm requires a tolerance ǫ, which we provided the values of 10−i for

1 ≤ i ≤ 10, and took the best resulting polynomials.

We see a significant improvement in the distance for the computed polynomials using our

STLS GCD, which indeed shows our algorithm better minimizes the distance to nearby

polynomials with non-trivial GCD.

5.4 Bivariate Polynomial Factorization

For an input (approximate) polynomial f ∈ R[x, y], we seek a nearby polynomial

f̂ = f + ∆f (5.4)

that factors into two polynomials g, h of degree greater than 0 in either x, y, i.e. f̂ = gh.

5.4.1 Metrics

The success of this algorithm is measured by the closeness of the computed f̂ to f . We

thus present metrics for this distance as a polynomial norm, as well as the matrix norm

for the corresponding Ruppert matrices Ĉ, C.
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5.4.2 Example

Consider the polynomial product:

f̂ = (−9y2 + 21y − 9)(8x − 10)

= −72xy2 + 168xy + 90y2 − 72x − 210y + 90.
(5.5)

This would be a satisfactory result for approximate factorization on polynomial near f̂ ,

such as:

f = −71.9996xy2 + 168.0001xy + 90.0040y2 − 72.0004x − 209.9990y + 89.9960,

which has ||f̂ − f || = 0.005773214010.

The Ruppert matrix of f̂ , which is used to represent equation (2.8), will be rank defi-

cient, since f̂ is reducible to gh. However the Ruppert matrix of f , namely:

R(f) =





















210.0070 90.0040 0. −71.9955 −90.0040

−167.9937 −71.9955 0. 0. 0.

143.9928 0. −143.9910 0. 0.

0. 71.9964 167.9937 0. 0.

−180.0080 0. 180.0010 167.9937 210.0070

0. −90.0040 −210.0070 −71.9964 −90.00400





















,

is full rank, indicating the perturbed polynomial is irreducible. We apply the methods to

solve the least squares problems and attempt to recover the polynomial f̂ .

Least Squares

Applying LS to the matrix R(f) results in the solution vector and perturbed last column

















.208685443367336242

−.486945588191690038

.208691506720978608

1.25009058659023832

−1

















,





















−90.0030305868063891

0.0000513272355462390806

−0.000497434556258724570

0.000529026947866384490

210.008851811640398

−90.0016484407331063





















.
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A problem is evident, the LS solution destroys the structure of R(f), and we would have

to turn to heuristics to recover the perturbed f̂ . Clearly the same would be true for TLS,

so we move on to STLS.

Structured Total Least Squares

Running STLS on R(f) results in the perturbed matrix R(f̂):





















209.9986210 89.99666990 0 −71.99951198 −89.99666990

−168.0005362 −71.99951198 0 0 0

143.99894026 0 −143.99902396 0 0

0 71.99947013 168.0005362 0 0

−180.00842892 0 179.9933398 168.0005362 209.998621

0 −90.00421446 −209.9986210 −71.99947013 −90.00421446





















,

which is a rank 4 matrix. The recovered polynomial f̂ = −71.99947013xy2+168.0005362xy+

90.00421446y2 − 71.99951198x− 209.9986210y + 89.99666990 is hence reducible, by Fact 2

from Chapter 2.

5.4.3 Results

We present the result for varying coefficient size for the polynomial f . As expected, the

norms are proportional to the coefficient size, so the normalized values are near constant.

Coefficient Range ||f−f̂ ||
||f ||

0..10 9.551343893 × 10−9

-10..10 1.051857727 × 10−8

-100..100 7.460063028 × 10−9

−10−10..10−10 1.012089194 × 10−8

−1010..1010 8.031845900 × 10−9

Table 5.11: The polynomial norms for varying polyno-

mial coefficient sizes
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Next we examine the result with varied degrees of x, y in f .

degx f degy f ||f−f̂ ||
||f ||

3 3 3.650159990 × 10−9

5 5 1.008749778 × 10−8

5 2 7.839490195 × 10−10

1 10 7.192546625 × 10−11

Table 5.12: The absolute and relative error in polynomial

norm for varying degrees of randomly selected input ma-

trices

We finally present the results illustrating the loose upper bound creating by construction

of f = f̄ + ∆r, where f̄ is reducible and the perturbation ∆f is of varying size.

Constructed f̄ Computed f̂

Perturbation ||f−f̄ ||
||f ||

||f−f̂ ||
||f ||

0.001 0.001711663405 0.00007071475000

0.05 0.08202853172 0.002880334318

0.5 0.4655400370 0.009005855892

1.0 0.6970496082 0.01817045542

Table 5.13: The absolute and relative polynomial norms

for varying percentage perturbations

5.5 Polynomial Decomposition

For an input (approximate) polynomial f ∈ R[x], we seek a nearby polynomial

f̂ = f + ∆f, (5.6)

that is the result of composing two polynomials g, h of degree greater than 0, i.e f̂ =

g(h(x)).
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5.5.1 Metrics

The success of this algorithm is measured by the closeness of the computed f̂ to f . We

thus present metrics for this distance as a polynomial norm, as well as the matrix norm

for the corresponding Ruppert matrices Ĉ, C.

5.5.2 Example

Consider the polynomial:

f̄ = 5(5x2 − 4x − 1)2 + 7(5x2 − 4x − 1) − 9

= 125x4 − 200x3 + 65x2 − 11.
(5.7)

This would be a satisfactory result for a polynomial near f̄ , such as:

f = 125.004x4 − 200.001x3 + 64.992x2 + 12.010x − 10.997,

which has ||f̄ − f || = 0.01378404875. As with bivariate factorization, we will not be able

to directly recover the polynomial using LS or TLS.

Structured Total Least Squares

Applying STLS to the Ruppert matrix of the polynomial

φf =
f(x) − f(y)

x − y

results in the polynomial

f̂ = 125.0027x4 − 200.0025x3 + 64.9903x2 + 12.0079x − 11.0000,

whose Ruppert matrix is rank-deficient. This is not the expected polynomial, however,

checking polynomial norms, we see that:

||f̂ − f || = 0.013024047933250483519,

which was less than the distance from f̄ to f .

5.5.3 Results

We begin once more by showing the result for varying coefficient size.
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Coefficient Range ||f−f̂ ||
||f ||

0..10 0.2298759767

-10..10 0.1088538228

-100..100 0.2017510047

−10−10..10−10 0.1183948973

−1010..1010 0.05163572271

Table 5.14: The polynomial norms for varying polyno-

mial coefficient sizes

Next we consider varying the degree of f in x.

deg f ||f−f̂ ||
||f ||

4 0.1857000690

6 0.5693608685

8 0.3129447854

10 0.5845054782

Table 5.15: The polynomial norms for varying polyno-

mial degrees

Finally we check the upper bound forced by construction.

Constructed f̄ Computed f̂

Perturbation ||f−f̄ ||
||f ||

||f−f̂ ||
||f ||

0.001 0.002713153120 0.0005457163710

0.05 0.1040215824 0.001764036423

0.5 0.6309007380 0.1212705356

1.0 0.7983857975 0.1521307424

Table 5.16: The matrix and polynomial norms for varying

percentage perturbations
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Again the polynomial norm is within the upper bound, so the solution to the STLS

problem is within this bound.

5.6 Conclusion

We have demonstrated the successful computation of four fundamental operations on ap-

proximate polynomials. The resulting polynomial norms have been shown to be within a

modest upper bound. Furthermore, the computation has been shown to be successful for

varying polynomial degree and coefficient sizes, with predicted effects on these norms.



Chapter 6

Conclusions and Further Research

This chapter summarizes the conclusions from this work. It further describes areas that

may benefit from further research.

6.1 Conclusions

This thesis has presented the application of the Structured Total Least Squares problem to

approximate polynomial operations. We now detail the conclusions that have been made

as a result of this work.

• For each of the four basic polynomial operations, it is shown that our methods find

a nearby set of polynomials with a non-trivial (and hence interesting) result.

• The classical Least Squares problem, and more sophisticated variations on it have

been applied to ensure an improved minimization on the polynomial norms of the

derived result. In particular, the Structured Total Least Squares result has been

generically applied to determine a result for all of the approximate polynomial oper-

ations.

• The Least Squares problems have been thoroughly contrasted, and a novel geometric

interpretation of the problem being solved has been illustrated. The Least Squares

and Total Least Squares problems have been solved using a high accuracy Singular

91
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Value Decomposition. This has resulted in a guarantee that the solution to the Least

Squares and Total Least Squares is found.

• The accuracy of the Singular Value Decomposition algorithm has been established to

meet prescribed relative accuracy bounds. The increased accuracy has been exploited

in cases where rank detection would have previously been ambiguous. The resulting

starting values for the RiSVD algorithm thus have the correct numeric rank for the

input matrices.

• An inverse iteration algorithm to solve the Riemannian SVD has been presented. This

generalized algorithm has been shown to determine a solution to the Rimeannian SVD

for many classes of structured matrices, including those defined by corresponding

approximate polynomial operations.

• A naive randomized version of the inverse iteration algorithm has been developed,

which increases the efficiency dramatically for skewed (m ≫ n) matrices.

• The application of the Structured Total Least Squares problem to the systems repre-

senting approximate polynomial operations has been shown to give results that meet

and exceed modest upper bounds. Furthermore, applying this method to random

matrices has resulted in polynomials that are very close to the inputs (in terms of

distance relative to the input polynomial norm(s)).

• Certain coefficients of the differential equations used for bivariate factorization of

polynomials with real coefficients were established to be zero (Fact 3, Section 2.3.1).

This reduces the size of the Ruppert matrix by 2n, where n is the degree of the second

variable of the polynomial. The algorithms for solving the Least Squares problems

on this reduced matrix will clearly be more efficient. This result was also used to

reduce the size of the Ruppert matrix defined for polynomial decomposition.

6.2 Further Research

The application of Structured Total Least Squares to matrix representations of approximate

polynomial operations is a new approach. We summarize here some future possibilities in
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this area.

• In this thesis we focused on the general application of the problem to several approx-

imate polynomial operations. The consequence of this was the adoption of the very

general inverse iteration algorithm, which is quite inefficient in its presented form.

This algorithm needs to be adapted to run efficiently for each class of structured

matrices.

• We further motivate the exploration of an algorithm that would determine an efficient

algorithm for the STLS problem. That is, given input of the basis matrices for the

class of structured matrices, determine an efficient algorithm for convergence on the

RiSVD solution.

• The translation to the Least Squares problem results in a minimization in terms of

matrix norm. Minimizing this norm may not guarantee a minimal polynomial is

found. The link between polynomial and matrix norm may result in a new Least

Squares type problem being formulated to ensure minimal polynomial norm.

• The randomization of the inverse iteration algorithm is quite naive. The choice of a

squaring matrix should be done much more cautiously, to ensure that a solution to

the derived system will also be correct for the original.

• The choice of term ordering for multivariate division, bivariate factorization and

decomposition can be altered to potentially improve the result derived from the

Least Squares solutions.

• Proof of convergence of the inverse iteration algorithm for the STLS problem would

clearly be of great importance.
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