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ABSTRACT 

 

Effect of Silica Nanoparticles on Interfacial Tension and 

Crystallization of Poly(Lactic Acid) in Supercritical Carbon Dioxide 

 

Kaveh Sarikhani 

 

 

In this thesis, the effect of silica nanoparticles on two of the most important parameters 

in the foaming of poly (lactic acid) (PLA) was studied: interfacial tension and crystallization. 

According to classical nucleation theory, the nucleation rate is inversely related to the 

exponential cubic power of interfacial tension, similarly the critical nucleation cell size to 

interfacial/surface tension. A decrease in surface tension decreases the energy barrier for cell 

nucleation and consequently increases the number of cells, leading to an exponential increase 

in cell density and smaller cell size. Solid nanoparticles, such as those made of silica, can be 

adsorbed at the interface and decrease the interfacial tension between polymer melt and 

surrounding fluid. They can also prevent coalescence through repulsion between two similar 

particles at the interface of two growing cells or increase in elasticity of the interface. 

Furthermore, nanoparticles can act as nucleating agents for the foaming of polymers by 

increasing local stress variations around the particles. In particular, nanoparticles can 

improve PLA crystallization, which is one of the approaches to address the low melt 

strength of PLA, one of the barriers for PLA foaming. In addition to melt strength, 

crystallization and crystallinity can further improve the mechanical properties of PLA.   

At first, the interfacial behavior of the PLA/ supercritical carbon dioxide (CO2) under 

foaming conditions was studied using Axisymmetric Drop Shape Analysis Profile (ADSA-P). 

The results showed a decrease in interfacial tension with increasing temperature and 

pressure, and a decrease in dependency of interfacial tension on temperature at high 

pressures.  
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As the next step, the interfacial tension of PLA composites made with surface- modified 

silica is studied. The interfacial tension between PLA and supercritical CO2 decreased as a 

result of nanoparticles’ adsorption to the interface. There was a minimum at 2 wt. % loading 

of the nanoparticles and the interfacial tension curve reached a plateau afterwards. The 

lateral capillary force of the adsorbed aggregates of the nanoparticles to the PLA-CO2 

interface was considered the reason for the observed increase in interfacial tension. Contact 

angle measurements at high pressures showed the affinity of the surface-modified 

nanoparticles to the polymer-supercritical CO2 interface. A comparison of calculated binding 

energy of the nanoparticles to the PLA-CO2 interface with thermal energy (kBT) showed that 

the adsorption was irreversible. 

Last, the crystallization behavior of PLA/surface-modified silica nanocomposites under 

isothermal, non-isothermal, and isothermal with compressed CO2 conditions were studied. A 

significant improvement in crystallization rate was observed after introduction of amine-

modified silica nanoparticles. A modified Hoffman-Lauritzen nucleation theory showed that 

the low surface energy of the modified nanoparticles and interfacial energy between 

polymer/nanoparticle facilitated the crystallization. Avrami exponents obtained from 

isothermal investigation of the nanocomposites indicated the sporadic formation of three-

dimensional spherulites in the PLA matrix, which shift into the range of two-dimensional at 

higher temperatures. In the presence of compressed CO2, crystallization rate increases, but at 

pressures higher than 21 bar no significant effect was observed. Nanocomposites of PLA 

samples with lower molecular weight and higher stereoregularity also showed a significant 

increase in crystallization rate with no change in crystallization mechanism in presence of the 

nanoparticles. 
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1. CHAPTER 1: INTRODUCTION AND THESIS OBEJCTIVES 

 Introduction 1.1

Foams are interesting materials consisting of a dispersion of voids in a dense continuum 

[1]. Among foams, polymeric foams have attractive mechanical, energy-absorbing, and 

thermal-insulation properties [2]. Foams are made of either chemical blowing agents or 

physical blowing agents. Although the former have drawbacks such as environmental issues 

and processing limitations, physical blowing agents have been promising in producing 

microcellular polymer foams (polymeric foams with micron size cells). Among physical 

blowing agents, supercritical fluids such as carbon dioxide (CO2) and nitrogen are both 

suitable candidates to substitute for conventional physical blowing agents like 

chloroflurocarbons (CFCs) [3]. Two steps are involved in polymer foaming using physical 

blowing agents: nucleation and growth, which includes absorption of enough gas molecules 

in polymer in order to reach a thermodynamically unstable threshold to be able to nucleate a 

bubble bigger than a critical size and then growth of the bubbles [1]. 

 In order to improve the foaming behaviour of microcellular foams, both phenomena can 

be addressed: increasing the number of nucleating sites through incorporation of particles 

with a higher modulus to enhance nucleation through lowering the energy barrier for 

nucleation of cells caused by fluctuation in pressure and stress around particles [4] and 

improving cell growth by modification of rheological properties such as melt strength via 

improvement in crystallization. Moreover, the particle’s surface geometry can also be a 

determining factor in improving cell nucleation [5].  All the above-mentioned enhancements 

can be satisfied by engineering a nanoparticle of a specific size and geometry and modifying 

it to not only act as a nucleating site, but to be able to adsorb to the interface and improve 

the crystallization of the polymer. 

On the other hand, based on classical nucleation theory (CNT), the nucleation rate is 

inversely related to the exponential cubic power of surface tension [6]; lowering surface 

tension decreases the energy barrier for cell nucleation and exponentially increases the 

number of cells leading to higher cell densities. Additionally, lower surface tension leads to 

smaller cell size since critical cell size is directly related to surface tension [1]. Considering 

these facts, one may manipulate the surface tension of polymer composites using an 
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appropriate modification on the nanoparticle surfaces and/or various shapes [7,8] of 

nanoparticles to dictate their location at the interface between polymers and supercritical 

carbon dioxide. This aim can be achieved by incorporating a CO2 philic functional group on 

the surface of the nanoparticles [9] and amphiphilic characteristics of the particles to induce 

the nanoparticles’ migration to the interface. Eventually, with desired design of nanoparticles 

and appropriate modification of nanoparticles, one can achieve higher solubility of CO2 in 

the matrix, which leads to higher solubility of CO2 or preventing the solubility reduction as a 

result of vitrified polymers in composites. Furthermore, to decrease the bubble size a higher 

percentage of carbon dioxide is required to increase the bubble pressure against suppressing 

surface tension force during bubble growth [10]. Incorporation of nanoparticles decrease the 

surface tension, and their adsorption to the interface could possibly prevent coalescence 

because of their steric and electrostatic stabilization [11]. In addition, the adsorbed film of 

the particles is shown to increase the surface modulus as a result of interactions between the 

adsorbed molecules [12]. 

Beside microcellular polymeric foam applications, nanoparticle modification and control 

over their localisation at the interface can be used in Pickering emulsions [13–15]. 

 

 Thesis Objectives 1.2

Based on previous works, the goal of the current study is to study the effect of silica 

based nanoparticles on interfacial tension and crystallization behavior of PLA under 

compressed carbon dioxide. It was shown that PLA is a potential sustainable material with 

processing challenges during foaming. In this work, surface-modified silica nanoparticles are 

used to change interfacial behavior and crystallization of PLA/ CO2 system. 

As discussed earlier, interfacial tension and crystallization of polymer materials are two 

key factors determining foaming of polymers. Herein, the synthesis of silica nanoparticles 

with a desired shape, size, and surface chemistry is designed in order to study their effect on 

interfacial tension and crystallization of PLA. It is shown that the nanoparticles with tuned 

surface properties can be adsorbed to the interface and decrease the interfacial tension 

between melted polymer and supercritical fluids. The nanoparticles can also act as a 

nucleating agent for nucleating step of the foaming. The decrease in surface tension 

decreases the energy barrier for cell nucleation and consequently increases the number of 

cells, leading to an exponential increase in cell densities and smaller cell sizes. Furthermore, 
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the irreversible adsorption of the nanoparticles to the PLA/CO2 interface can prevent 

coalescence phenomena. The nanoparticles improve crystallization behavior of the PLA. 

Improvement in crystallization for polymers with slow crystallization rate (such as for PLA) 

is an effective route and hence to increase the melt strength to create a stable bubbles during 

growth step in foaming. 

 

 Thesis Organization  1.3

This thesis is divided into six chapters. The first two chapters include an introduction and 

the literature review on the subject of study. The Chapters 3 to 5 each presents the scientific 

results relating to one of the objective questions. And each chapter consists of a published or 

submitted article. The structure of the main part of the thesis and a brief review for each 

chapter are as follows:  

Chapter 3 discusses the effect of supercritical carbon dioxide on interfacial tension of 

PLA in the melting point window and under foaming processing conditions using the 

pendant drop method. The study of PLA interfacial tension in that temperature window is 

of practical application as most polymeric foams form and stabilize in that temperature 

range. The results show a decrease in interfacial tension with increasing temperature and 

pressure with a reduction in interfacial tension dependency on temperature at high pressures 

due to a reduction in CO2 solubility at high temperatures. Furthermore, the relationship 

between the interfacial tension and the density-difference of polymer-supercritical CO2 

mixtures is studied by the generalized Macleod equation. The stability range for the melted 

drop can also be clarified by the dimensionless Bond number to have both valid and 

accurate interfacial tension measurements. 

In chapter 4, interfacial behavior of PLA-silica nanocomposites in a CO2 environment is 

investigated in detail at high temperature and high pressures. We observed a nonlinear trend 

in interfacial tension values with increasing amount of nanoparticles. The reason for an 

increase in interfacial tension at higher contents of the nanoparticles was attributed to the 

lateral capillary forces of the adsorbed aggregates of the nanoparticles to the PLA/CO2 

interface; the interfacial tension increased due to attractive lateral capillary forces originating 

from the perturbation of the PLA/CO2 interface by particles. The compatibility between the 

nanoparticles and PLA at high pressures of CO2 decreased based on contact angle results. In 
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addition, binding energy calculations showed irreversible adsorption of the nanoparticles to 

the interface. 

In chapter 5, a detailed study was performed on the dispersion and crystallization of the 

surface – modified silica nanoparticles in PLA matrices. Contact angle measurement at low 

and high temperatures showed that nanoparticles with amine modification had lower surface 

energy and higher work of adhesion led to a higher level of dispersion. A better dispersion 

means more individual nucleating sites across the matrices. Furthermore, it was shown that 

based on Lauritzen–Hoffman secondary nucleation theory, lower surface energy led to an 

improvement in crystallization through reduction in energy barrier for nucleation. The 

crystallization behavior of PLA/surface-modified silica nanocomposites at different loadings 

of amine-modified silica (1, 2, and 8 wt. %) under both isothermal and non-isothermal 

conditions is studied. In order to consider crystallization improvement for foaming 

processes, isothermal crystallization under compressed CO2 was also investigated. A 

significant improvement in crystallization rate was observed after introduction of amine-

modified silica nanoparticles. The Avrami equation was used to investigate the mechanism 

of the crystallization. An increase in isothermal crystallization led to an Avrami exponent in 

the range of two-dimensional structures, due to the formation of a less packed crystal 

structure at higher temperatures. High-pressure DSC results also showed an increase in 

crystallization rate at 15 bar compared with the atmospheric pressure condition. However, 

an increase in pressure up to 21 bar had no significant effect on crystallization rate. The PLA 

samples with lower molecular weight and lower D-content also showed a significant increase 

in crystallization rate but with no change in crystallization mechanism with a presence of the 

nanoparticles.  

In Chapter 6 concluding remarks and suggested recommendations for future work are 

presented. Briefly, the chapters and the relationship between the chapters are shown in the 

following flowchart: 
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Chapter	1	

• Intorduc1on		
• Parmaters	determining	morphology	and	quality	of	foams	

Chapter	2	
• Literature	survey	

Chapter	3	

• Interfacial	tension	of	PLA/CO2	vs.	T	and	P		
• Interfacial	tension	is	a	key	parameter	in	nuclea1on	rate	and	cri1csl	radius	(nuclea1on	
step)	
• Understanding	the	interfacial	tension	in	foaming	processing	condi1ons	helps	to	
control	the	final	product	proper1es	

Chapter	4	

• Effect	of	surface-modified	silica	nanopar1cles	on	interfacial	tension	of	PLA/CO2		
• Nanopar1cles	act	as	nuclea1ng	agent	for	foaming	
• Nanopar1cles	affect	interfacial	tension	of	PLA/CO2			
• Nanopar1cles	also	improve	interfacial	rheological	proper1es	(improtant	for	growth	
step)	

Chapter	5	
• Effect	of	surface-modified	silica	nanopar1cles	on	crystalliza1on	of	PLA	
• Crystals	are	also	important	in	foaming	nuclea1on	
• Crystals	prevent	cell	ruptor	and	increase	melt	viscosity	(important	for	growth	step)	

Chapter	6	 • Conclusions	and	recommenda1ons	
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2. CHAPTER 2: LITERATURE REVIEW  

 

 Foaming of Poly Lactic Acid (PLA) 2.1

 Poly Lactic Acid (PLA) 2.1.1

Poly lactic acid or polylactide (PLA) is a biodegradable and biocompatible thermoplastic 

polyester derived from lactic acid produced from sustainable resources [16]. PLA was first 

produced by Carothers as a low molecular weight product by heating lactic acid in vacuum, 

in 1932 [17]. Lactic acid is the building block of PLA which is also the side product of PLA 

hydrolytic degradation. Lactic acid is a naturally occurring organic acid that can be produced 

by fermentation of sugars such as cornstarch and sugarcane [18]. 

 Lactic acid (2-hydroxypropionic acid) is a chiral molecule with two enantiomers of L- 

and D-lactic acid. The L-lactic acid has an advantage over the D-form as it provides the 

polymer with high mechanical strength [17]. In Figure 2-1, three stereoforms of lactide 

namely L-lactide, D-lactide, and meso-lactide are shown [17,18]. 

 
Figure 2-1. Three stereoforms of lactide: L-lactide, D-lactide, and meso-lactide [18] 
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Thanks to its biocompatibility and low immunogenicity, nontoxic degradation, and good 

mechanical properties, PLA has been used in pharmaceutical and biomedical applications 

such as implants, drug delivery, and tissue engineering scaffolds [19]. 

 

 Foaming of Polymers 2.1.2

Polymeric foams are made from polymers using either chemical or physical blowing 

agents. In foams with physical blowing agents the gas is directly injected into the polymer 

melt or polymer composite melt, but in chemical blowing agents the gas is produced through 

chemical decomposition. Foams made from using of chemical blowing agents have 

processing and environmental drawbacks. Foam processing with a physical blowing agent 

involves the saturation of the polymer at a certain pressure and temperature using a certain 

gas or supercritical fluid. The mixture of polymer/gas is subjected to a sudden 

thermodynamic instability (such as temperature increase or pressure drop) and consequently 

the gas escapes the mixture, causing a cellular structure formation. If the cell membranes 

around a bubble remain unchanged the foam is closed-cell, but if the membrane ruptures the 

foam is an open one. [20]. 

 

 

Figure 2-2. Schematic of polymer foam production using supercirtical fluid as a physical blowing 
agent. 

 

According to classical nucleation theory [6,21,22], the nucleation rate N depends on: 

𝑁 = 𝐶𝑓 exp( −  !" ! !!

! ! ! ∆!!
)                                                             2-1                                                              
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where C is a function of gas concentration, f is the frequency factor of gas molecules 

joining the nucleus, γ the surface/interfacial tension, T is the temperature, and ΔP is the 

pressure related to supersaturation developed in the polymer. As can be seen, the nucleation 

and foaming of polymers is strongly influenced by the polymer’s surface/interfacial tension. 

Nucleation rate is inversely related to the exponential cubic power of surface/interfacial 

tension; lowering surface tension decreases the energy barrier for cell nucleation and 

exponentially increases the number of cells leading to higher cell densities 

Foaming involves the introduction of a gaseous phase into a melt, then foaming by the 

gas, and afterwards solidifying the melt before the bubbles collapse. Gas bubbles have a 

spherical shape as the spherical form has the lowest surface energy for a given volume. 

There must be sufficient gas molecules together to overcome the resistance of the 

surrounding matrix. In the other words, the size of the bubbles should reach a critical bubble 

radius (Rcr) to have a stable growing bubble in system:  

 

𝑅!" =  !!
(!!!!)

                                                                                            2-2 

 

where γ is the surface/interfacial tension, Pb is the bubble pressure, and P is the 

surrounding pressure. For the case of bubbles smaller than the critical radius, the surface 

tension force is high and causes the gas clusters to collapse. In the ultimate equilibrium state 

Pb is equal to P, and Rcr becomes an infinity; a spherical bubble cannot be made as any 

bubble size is smaller than the infinite critical radius. After passing the equilibrium state, the 

bubbling process may happen when the system reaches another equilibrium through a series 

of non-equilibrium states. When an instability like a drop in pressure happens and 

surrounding pressure becomes less than the bubble pressure, the system reaches to an 

equilibrium through bubbling. In other words, in the bubbling phenomenon the system 

creates a significant amount of interfacial area for diffusion to dissipate any energetic 

inequalities.  For very small sizes of bubbles, the bubble pressure is relatively high to be able 

to endure the surface tension force. The high bubble pressure makes the foaming process 

unstable even though the buoyancy force is low. The unstable bubbles grow and expand in 

size and evidently dissipates the pressure gradient across the interface. For systems with low 

resistance the buoyancy force is significant and therefore the bubbles accumulate on top of 
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the liquid (like soda or soapy water systems). The bubble walls will rupture when the bubbles 

collide because of the material drainage and thinning of the cell walls [1].  

 

 PLA Foams 2.1.3

PLA foams are promising candidates to replace petroleum based foams products such as 

polystyrene (PS) foam due to their competitive material and processing costs, and 

mechanical properties. In addition, PLA foams have biodegradable and biocompatible 

characteristics which make them an attractive replacement for commodity and synthetic 

foam products for solving global waste disposal concerns [16]. The applications of PLA 

foams would be in commodity applications such as packaging, shock-absorbing, 

construction, thermal and sound insulation [23]. The majority of PLA foams are produced 

using physical blowing agents. The foam structure is produced by a thermodynamic 

instability and ejection of the dissolved gas from the PLA/gas mixture and followed by cell 

stabilization by solidification of the product as the temperature drops below Tg. 

PLA foams are produced through various processing methods such as extrusion, foam 

injection molding, and expanded PLA (EPLA) bead method [24–26]. In extrusion and 

injection molding methods, normally a low-density PLA foam with simple geometries or a 

high-density foam with three dimensional complex geometries are produced. However, bead 

foaming results in low-density foam with three dimensional complex geometries [24,27].  

 

 Surface /Interfacial tension of polymers under Supercritical 2.2

Fluids 

 

The interfacial tension of polymers and supercritical fluids is the subject of many works. 

A supercritical fluid is defined as “ any substance, the temperature and pressure of which are 

higher than their critical values, and which has a density close to or higher than its critical 

density ” [28].  Supercritical carbon dioxide (CO2) is an economic, non-toxic, non-

flammable, and environmentally friendly solvent in polymer blending, synthesis, coating, and 

polymer foaming [3,29,30]. In microcellular foaming using physical blowing agents, the 

surface tension between a polymer melt and a fluid is a principal factor in determining cell 

nucleation and growth. 
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There are various methods to measure the surface/interfacial tension of liquids and melts. 

Pendant and sessile drop methods for measuring surface tension have numerous advantages, 

such as, using small quantities of liquids/melts, operating at various temperatures and 

pressures, and being useful for both dynamic and steady-state surface/ interfacial tensions. 

In recent years, there have been some attempts at measuring the surface tension of polymers 

at various temperatures and pressures. The relationship between the equilibration time and 

steady state surface tension and a polymer chain structure is investigated by Kwok et al. [31]. 

They have shown that the surface tension increase initially due to chain relaxation occurs in 

relatively shorter times and then reduces because of relaxation or rearrangements of polymer 

chains. These two phenomena become more significant if the temperature is lowered. 

Different equilibration measurement time was demonstrated for polyethylene and 

polypropylene; the observations are believed to occur because of different steric side groups, 

but the molecular weight has a more significant role in equilibration time. 

Both polypropylene-polystyrene (PP-PS) and PP interfacial tension under supercritical 

CO2 have been investigated [22]. It was observed that the interfacial tension in both cases 

decreases remarkably; however, it reaches a plateau at high pressures. In the case of PS and 

CO2, the values of interfacial tension converge for various temperatures at higher pressures, 

leading to disappearance of the effect of temperature at higher pressures. This phenomenon 

occurs because of the counterbalance between the interfacial tension reduction effect of 

temperature and solubility reduction at higher temperature (less CO2 means less reduction in 

interfacial tension).  Moreover, the effect of supercritical CO2 on PP and PS compatibility, 

regardless of PP’s molecular weight, was a sharp decrease in interfacial tension after 50 atm 

due to possibly shielding of the undesirable contact between two polymers.  

Park et al.  [32] measured the surface tension of polystyrene under supercritical CO2 at 

different pressures and temperatures.  In order to estimate (Pressure-Volume-Temperature) 

PVT data to calculate the density of their system, they used the Sanchez-Lacombe (SL) 

equation of state (EOS). They also found an exponent of 2.5 for the Macleod equation. They 

also investigated [33] the effect of processing conditions such as pressure and temperature 

on the interfacial tension of polystyrene. They used self-consistent field theory to explain the 

surface tension trend with processing conditions. In another work from this group [34], the 

effect of the molecular weight of PS under supercritical nitrogen was explored. 

Monodispersed polystyrene with higher molecular weight had higher interfacial tension and 
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more dependency on temperature and pressure than low molecular weight ones. 

Furthermore, polydisperese polystyrene had higher surface tension than monodispersed one, 

probably because of the possibility of finding polystyrene chains with higher molecular 

weight than those of monodisperse one. 

Wei et al. [35] investigated the effect of various temperatures and pressures on the surface 

tension of high density polyethylene (HDPE) under supercritical nitrogen. Although their 

model of surface tension had coefficients consistent with those of polystyrene, no 

interaction term between temperature and pressure was observed. On the other hand, unlike 

amorphous polymers, the trend for HDPE as a semi-crystalline polymer was anomalous 

below the melting-point temperatures at which the polymer crystallizes; the surface tension 

dropped first and then diminished to reach a plateau. The authors concluded that crystals 

formed in the polymer melt possibly acted as nanoparticles to decrease the surface tension. 

The reduction in surface tension depends on the rate of temperature change: the faster the 

temperature changes, the less the change in surface tension. In another study, Thompson et 

al. [36] carried out an investigation based on self-consistent field theory (SCFT) to 

demonstrate the effect of nano-sized polymeric crystals on surface tension. Their 

calculations showed that nanocrystals can be selectively located at the polymer surface. They 

also suggested that preferential location of nanocrystals will provide a narrower boundary 

with a smaller “spatial extent” than the polymer chains, a phenomenon that leads to lower 

internal energy and consequently lower surface tension. 

 Lia et al. [6] considered the effect of long-chain branching on the density and interfacial 

tension behaviour of poly (propylene) PP in supercritical CO2.  The densities of the systems 

were calculated using the Sanchez-Lacombe (SL) equation of state (EOS), Simha-Somcynsky 

(SS) EOS, and experimental data. The density differences measured by SS EOS are identical 

to those of measured experimentally. The deviation of density difference obtained from SL 

EOS with experimental values is higher when pressure and/or temperature increases. The 

results showed higher interfacial tension, lower solubility, and a lower swelling ratio for 

branched PP because the greater force requires creating new interface and expanding the 

polymer as a result of entanglements of long chain branches and the polymer’s higher melt 

elasticity. 

Surface/interfacial tension of polylactide acid (PLA) and specifically at high temperatures 

is scarcely reported in literature.  In one work [37], the CO2 solubility and the pressure–
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volume–temperature (PVT) behavior of PLA were investigated using a magnetic suspension 

balance (MSB) instrument. It was shown that as the temperature increased, the swelling and 

the solubility decreased, while an increase in pressure results in higher swelling and solubility 

values. The effect of D-lactic acid content (D-content) on the solubility of CO2 and swelling 

was not significant. Mahmood et al. [38], measured the interfacial tension and density of 

PLA/CO2 mixtures using a sessile drop method at high-pressures and high-temperatures. It 

was shown that the density difference between of the mixture and the CO2 decreased with 

increasing the gas pressure. Temperature dependency of interfacial tension was related to 

CO2 pressure. In the other words, at lower pressures the interfacial tension decreased with 

an increase in temperature, but at a higher pressures it was the opposite way. The reason was 

attributed to hydraulic pressure and polymer swelling effect of CO2 which act in a competing 

manner. PLA samples with different D-content showed no significant effect on density 

difference and interfacial tension of PLA. 

 

  Self-Assembly and Adsorption of Nanoparticles at Fluid-2.3

Fluid Interfaces 

 

Colloidal particles, whether with homogeneous surface chemistry or heterogeneous 

(Janus particles) (Figure 2-3), are surface active and similar to a surfactant can spontaneously 

adsorb to the interface between two immiscible fluids (liquid–gas or liquid–liquid) [39]. The 

adsorption to curved interfaces was first reported by Pickering [40] and Ramsden [41] about 

a century ago [42].  
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Figure 2-3.Schematic of (a) homogeneous, (b) heterogeneous or amphiphilic (Janus) colloidal 

particles and (c) a surfactant molecule [39] 
 

Particles at fluid interfaces are available in various natural systems and technological 

processes  [43,44] including food science, cosmetics, oil production and renewable energies 

[45,46]. Adsorption of particles at fluid interfaces is also a new route to produce new 

materials based on the assembly of the particles at interfaces. The presence of particles at the 

interface and its effectiveness in stabilization of fluid-fluid interfaces depends on the surface 

chemistry, size, shape, roughness and wettability of the particles. Wettability is a key factor 

characterized by the three-phase contact angle and is analogous to the hydrophilic– lipophilic 

balance (HLB) in surfactants [47]. Wettability of particles mainly depends on the surface 

chemistry of the particle and on the chemical nature of the two phases at the interface. The 

surface of the particles can be modified either by surface physisorption or chemisorption of 

molecules. For physisorption cases, the adsorption of surface active agent (e.g. long-chain 

surfactant or short-chain alcohols) to the particles’ surface occur because of electrostatics, 

hydrogen bonds, and van der Waals interactions [48,49], but in chemisorption, like 

silanization of silica surfaces, chemical modification  happens by covalent bonding between 

surface active agent and particle’s surface [50]. Another interesting route to tune the 

wettability is through Janus-type particles. These particles have assymetrical wettability with 

particular physico-chemical properties and structure of the layers at the fluid interfaces 

[8,51]. In general, unlike micrometer particles, unmodified nanoparticles are not surface 

active in Pickering emulsions or foams, because they do not spontaneously adsorb to the 

interface and consequently do not significantly reduce surface tension [52,53]. However, the 

emulsification properties of particles can be enhanced through surface modification of the 
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nanoparticle [13,54,55]. Alvarez et al. [55] studied the interfacial dynamics and rheology of 

silica nanoparticles grafted by poly(2-9 dimethylamino) ethyl methacrylate) PDMAEMA at 

both air-water and oil-water interfaces. At oil-water interface, the nanoparticles with a higher 

grafted density had a much lower equilibrium surface tension and faster dynamics. The 

dynamics was much faster in higher concentrations of particles with high grafting density. It 

has been shown that particles with high grafting density had faster interfacial penetration 

than those with medium grafting density. The grafting density of polymers on the particle’s 

surface determines the dynamic and conformational relation of nanoparticles at the interface.  

In other words, despite the lower bulk diffusion of nanoparticles with higher grafting 

density, each such particle carries more chains to the interface: the higher number of chains 

transported to the interface and also relaxation of chains at the interface determines the 

cohesion pressure.  

The geometry of particles is also among the determining factors in the interfacial 

behaviour of liquid-liquid interfaces. Ruhland et al. [8] investigated the effect of polymeric 

Janus particles’ geometry and shape on orientation and structure formation at liquid-liquid 

interface through both experimental and simulation approaches. Janus discs showed 

maximum reduction in interfacial tension, and the Janus cylinders led to the lowest 

equilibrium interfacial tension, and the spheres had low surface activity. They also observed 

different adsorption kinetics: spherical particles of small size (50 nm) had a fast adsorption 

regime at the beginning due to a higher diffusion coefficient, while for anisotropic particles, 

the kinetic was slow. The simulation results showed that the disc-shaped particles had two 

minima in their energy profile. The value of energy barrier for removal from the interface for 

spherical, cylindrical, and global minimum of disc shapes were 5×10 4 kT, 1×10 6  kT, and 

1.5×10 6 kT respectively. The results indicate that the energy barrier for expulsion from the 

interface is strong for particles with large cross-sectional areas such as cylinders and discs. 

The authors concluded that the difference in dynamic interfacial behaviours of particles 

emerges from dissimilar packing behaviours, forms, and shapes which are the factors that 

determine the energy barrier values and adsorption steps. 

Since the localization of nanoparticles at an oil-water interface and its adsorption energy 

are functions of contact angle and interfacial tension of the oil, water, and particle, the 

contact angle of nanoparticles at the interface has been widely investigated [50,56]. In one 

study [57], the relationship between the effect of the chain length and structure of polymers 



15 
 

in soft core-shell nanoparticles on liquid-liquid interfacial behaviour, contact angle, and inter-

particle distance has been addressed. The core-shell nanoparticle was composed of iron 

oxide grafted by linear and dendritic poly (ethylene glycol) (PEG). It has been observed that 

linear PEG nanoparticles have faster adsorption than dendritic ones: one reason for this 

finding is that the dendritic nanoparticles have higher surface charges, leading to a repulsive 

electrostatic barrier upon adsorption at the interface. The other reason is that rigid dendritic 

shells make particles resemble hard spheres having adsorption energy in range of 20 kBT or 

less (reversible adsorption and desorption) compared to adsorption energies of thousands of 

kBT (irreversible) for the case of linear polymers.  Although the hydrophilicity and contact 

angle of the nanoparticles are independent of molecular weight and the architecture of PEG 

chains, the equilibrium interfacial tension of water/n-decane is inversely proportional to the 

molecular weight of polymer at the shell. X-ray reflectivity results show that the interparticle 

distance between dendritics is much larger than their shell due to long-range repulsion of 

surface charges. At saturation, this distance is also larger than the thickness of linear 

polymers due to stretching of the polymer chains and different conformations at the 

interface. 

The effect of surface charge (pH, ionic strength, and temperature) on adsorption of gold 

nanoparticles capped with n-dodecanethiol to the oil/water interface was also investigated 

[58]. It was shown that the lower the thickness of the double layer, the higher the chance of 

the nanoparticles being adsorbed at the interface. For all pH values, at the beginning of the 

dynamic IFT measurement, nanoparticles experience free diffusion, while at equilibrium the 

diffusion is hindered. They showed that at very low concentrations of salt, the chance of 

adsorption of ions at the interface is low, so the oil-water interface is not disturbed. On the 

other hand, at high ionic strengths,   Na+ ions screen the negative charge on the surface of 

nanoparticles. This phenomenon leads to diminishing the double layer thickness and 

consequent adsorption of higher concentrations of nanoparticles at the interface.  Studies on 

temperature effects also revealed that at higher temperatures the adsorption density 

decreases and the area per particle increases leading to an increase in interfacial tension. 

Thompson et al. [59] illustrated the effect of the size and volume fraction of 

nanoparticles in their distribution in diblock copolymer domains. In the case of a high-

volume fraction of large particles, the exclusion of chains-ends from the centre of one region 

provides room for nanoparticles to self-assemble at the centre, leading to a nanosheet at the 
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centre. However, for a low-volume fraction of nanoparticles, the number of nanoparticles is 

not enough to form a well-organized structure at the centre. The distinct structures formed 

in various volume fractions can be explained in terms of entropic contributions, where in a 

low volume fraction, the chains should stretch to be around the particles, leading to entropic 

penalty due to loss in conformational entropy. However, for higher-volume fractions, the 

loss in translational entropy is counterbalanced by the free energy gain by the polymer. The 

scenario is completely different for small particles: the nanoparticles tend to self-assemble at 

the interface of two regions. From entropy point of view one can say that for small particles 

the stretching of chains is not significant and a more uniform dispersion of particles 

increases the entropic free energy of each block, leading to positioning of particles at the 

interface. 

Besides factors affecting the entropy of the systems such as the size and volume fraction 

of the nanoparticle-block copolymer systems, one can meet the aim of localization through 

an enthalpic point of view. Chiu et al. [60] controlled the localization of nanoparticles 

through manipulation of surface chemistry.  They observed that gold nanoparticles coated 

with a homopolymer of one of the two diblocks under investigation, with a core-shell size of 

around 8 nm, were localized in the rich domain with the same block to lower their enthalpy. 

In their observations, the nanoparticles segregated around the centre of the same domain. 

To accommodate the nanoparticles, chain ends near the centre moved instead of stretching, 

a phenomenon that has a higher entropic penalty than the translational entropy of 

nanoparticles. In order to localise the nanoparticles at the interface, the nanoparticle should 

be covered by homopolymers of both blocks. The adsorption at the interface happened 

when the difference of interfacial energies of the nanoparticles with each homopolymer was 

much less than the interfacial energy of the diblock copolymer.  

In another study, the surface tension of silica and titanium dioxide dispersions as a 

function of concentration has been investigated [61]. For both dispersions, two distinct 

regions were observed one at the low and the other at the high concentration of particles. At 

low concentrations, the surface tension decreased when the concentration increased, while 

after a minimum of around 5-7 wt%, surface tension increased to a constant value. The 

minimum was higher in SiO2 dispersions, than in TiO2 ones, and it happened at higher 

concentrations of particles. The reduction in surface tension was related to a 

thermodynamically favourable phenomenon of adsorption due to lowering the energy of the 



17 
 

system and raising its entropy. However, at a higher concentration of particles at the 

interface the attractive capillary force between particles increased, leading to an increase in 

the work needed to deform the interface, and as a result, an increase in the surface tension. 

Since the contact angle and density of both particles are roughly the same, the only reason 

for the difference in their surface tension values is their unlike size and surface-to-volume 

ratio. The TiO2 particles are smaller and higher numbers of them are expected to be at the 

interface. 

The presence of nanoparticles at liquid-liquid or liquid-vapour interfaces provides a line 

at the contact of the three phases (nanoparticle and the two other fluids). This line of tension 

is defined as “an excess positive or negative energy per unit of length to the total surface 

energy” [62]. Although the line of tension has only a small value, it has a significant role in 

wetting phenomena such as adsorption of spherical solid particles at the interface [63]. From 

a thermodynamic point of view, a positive line of tension makes the three-phase system 

unstable, leading to a decrease in the length of the line of tension, and consequently a 

drying/ wetting transition [63–65]. This transition is a function of a dimensionless parameter 

consisting of the ratio of the line of tension to the product of surface tension of two liquid 

phases and the radius of particle. The shape and orientation of nanoparticles at the interface 

was investigated by Faraudoa et al. [65]. They found a critical value for the aspect ratio of 

non-spherical particles using the generalized Young’s equation, beyond which the particles 

could not adsorb to the interface. The results showed that spherical and oblate particles 

adsorbed to the interface, while particles with a higher aspect ratio did not have tendency to 

move toward the interface. It has been shown that a small deviation from a spherical shape 

with an aspect ratio between 1 and 1.9 results in stabilization even though elongated particles 

are less stable than spherical and oblate ones. The most stable condition arose from an 

oblate form with a symmetry axis parallel to the normal of interface. The stability for other 

shapes and orientations are as follows: sphere, prolate with perpendicular, prolate with 

parallel and oblate with perpendicular symmetry axes to the normal of the interface had less 

stability at the interface. The results highlighted the importance of the shape of nanoparticles 

in their self-assembly at liquid-fluid interface. 
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 Foam Stabilization with Particles 2.4

 Pickering foams and emulsions are stabilized by particles. In some systems, surfactants 

with the dual function of foaming agent and particle hydrophobizing agent may also be 

added [66].In the food industry, many colloids are stabilized, at least in part, by adsorption of 

particulate material to oil–water (emulsions) or air–water (foams) interfaces. Examples of 

Pickering emulsions and foams in food industries include casein micelles (in homogenized 

milk), egg-yolk lipoprotein granules (in mayonnaise), fat crystals (in spreads and margarine), 

and partially aggregated emulsion droplets or fat crystals at bubble interfaces (in whipped 

creams) [67]. Small solid particles, surfactants, and proteins prevent the collapse of the foam 

by adsorbing at interfaces and acting as a surface active agent [44,68]. Figure 2-4 [69] shows 

the possible configurations of the particles in solid stabilized emulsions and the mechanism 

responsible for their stabilization.   Nanoparticles can be used for stabilization of viscous 

CO2-in-water foams for utilization in enhanced oil recovery (EOR) and geologic CO2 storage 

(GCS) applications [70]. Proteins are widely used as a foaming agents because they strongly 

adsorb to the gas–water interface, and have good steric and electrostatic stabilization. 

Furthermore, the adsorbed film of the particles have high surface rheological moduli as a 

result of interactions between the adsorbed molecules [11]. 

Another well-known example of particle –stabilizing of foams is the floatation method 

(for extraction of minerals). In floatation, the mineral particles adhere to air bubbles which 

have already created by frothing agents (surface active agents) and collectors. In addition to 

the role of frothing agent to delay or prevent the coalescence of bubbles, mineral particles 

contribute in stabilization of bubbles [66]. Particle-stabilized aqueous foams are also made 

using zirconium phosphate [71], surface modified iron particles [72], silica [68,73,74], 

polymeric latex [75], cellulose [76], and graphite and quartz particles [77]. 
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Figure 2-4. Possible configurations of the particles in solid stabilized emulsions (a-e, and the 

mechanism responsible for stability of the emulsions (i- iv) [69] 
 

Alargova et al.[78] demonstrated that particles with non-spherical shape can act as an 

effective foam stabilizer in the absence of any additives. They have shown that extreme foam 

stability even under drying or vacuum treatment was obtained using polymer rodlike 

particles due to the strong particle attachment to the bubbles, microrod entanglement and 
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formation of rigid hairy shells around the bubbles. Madivala et al.[79] also investigated the 

effect of aspect ratio of both hydrophilic and hydrophobic ellipsoidal particles on the 

stability of oil-in-water and water-in-oil emulsions. In another system [80], the foaming 

behaviour of platelet clay particles coated with fluorinating agents were studied for different 

air and oil mixtures. The foaming depends both on oil surface tension and the surface energy 

of the particles. Pickering oil/air foams were formed for liquids with higher surface tensions 

with three-phase contact angles between 65 and 125°. For oils with surface tensions above 

27 mN.m-1, oil drops were stabilised with particles in air and the resulting products were dry 

oil powders. 

 

  Effect of Particles on PLA Crystallization 2.5

In foaming of PLA, cell coalescence and cell rupture occur during cell growth step 

because of insufficiency in low melt strength [81], consequently, gas loss as a result of cell 

rupture during foam expansion results in  significant shrinkage in the final product [10,16]. 

Numerous solutions are suggested for improvement the low melt strength of PLA including 

using chain extenders, branching the chains [81,82], and mixing with fillers and additives 

[83–85]. Among all the solutions, improvement in PLA’s crystallization kinetics during 

processing and foaming is considered as an effective way to improve the viscoelastic 

properties to create better cell nucleation and growth through formation of a network of 

nucleated crystals [86–88]. Furthermore, promoting the crystallization of the polymers can 

lead to heterogeneous cell nucleation around the crystals [89], since the crystals can create 

local stress variations around themselves [88,90]. Based on classical nucleation theory, the 

presence of an interface reduces the free energy for nucleation and consequently increases 

the nucleation rate. It was shown that presence of spherulites in a PLLA matrix enhanced 

the cell nucleation  and the number of nucleated cells  increased significantly as the 

spherulite density increased [91]. The reason for the observed phenomena is the ejection of 

CO2 from the spherulites and its accumulation at the crystalline/amorphous interface [91]. 

Despite the advantages of crystallization on foam processing, there must be a balanced 

amount of crystals in the systems; high modulus and stiffness because of very high level of 

crystallinity restrain foam expansion [92]. Furthermore, gas solubility would decrease 

significantly as gases cannot easily dissolve in the crystalline phase [93]. 
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 Since PLA has low nucleation and slow crystallization kinetics in homogeneous 

conditions [94], it is necessary to improve PLA crystallization kinetics by adding nucleation 

sites (nucleating agents) and increasing chain mobility through plasticization (short length 

molecules or CO2). The nucleating agents decrease the crystallization half-time and the 

energy barrier for nucleation. Minerals and fillers are among the physical nucleating agents 

for crystallization [87]. Silica is a promising additive to improve crystallization of PLA. There 

are reports showing its efficacy on promoting the crystallization. In one study, the effect of 

silica nanoparticles on non-isothermal crystallization kinetics of PLA was studied [95]. It was 

shown that silica promoted the crystallization nucleation while it also increased the 

crystallization activation energy. In the other words, the nanoparticles hindered the 

movement of the molecular segments of PLA and decreased the crystal growth rate. 

However the overall crystallization rate increased denoting the effect of silica on 

crystallization nucleation of PLA was more dominant than the crystal growth. 

In another study [96], crystallization behavior of in-situ polymerized PLA/silica 

composites of silica and silane-modified silica nanoparticles were studied. Both crystallinity 

and crystallization rates were higher in the presence of silica and it was even faster when the 

surface of silica was modified. Isothermal crystallization evaluations using the Avrami 

equation also showed faster crystallization with kinetics of crystallization constant of two 

orders of magnitude greater for the modified silica.  

It was also claimed that for nanoparticles with higher compatibility with the matrix, the 

nucleating effect of silica was more significant and the melting point was slightly higher than 

PLA. Nofar et al. [85] studied the effect of different fillers on the crystallization kinetics of 

PLA at atmospheric pressure and under CO2 pressures. Their results showed that PLA/talc 

composites had faster nucleation and growth rate with high crystallinity and more perfection 

in the crystals. In the PLA/nanocomposites (silica and clay) the final crystal nucleation 

density was higher than talc, but the nucleation was slower probably because of higher 

surface area and hindering effect of the nanoparticles on PLA chain mobility and crystal 

growth because of more molecular entanglement. The hindering effect was more notable in 

clay compared with silica possibly due to a longer aspect ratio of the clays. The crystallization 

kinetics increase at low pressures of CO2 as a result of an increment in molecular mobility of 

PLA.  
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 Summary  3.1

In this chapter the interfacial tension of poly lactic acid (PLA) melt is measured in 

supercritical carbon dioxide (CO2) at processing temperatures and pressures using 

Axisymmetric Drop Shape Analysis Profile (ADSA-P). Interfacial tension is a key parameter 

in nucleation rate as well as critical bubble size. The results from this chapter are important 

from processing prospective and are obtained to both have a comparison with PLA 

composites (Chapter 4) and to find the range of stability for the melted drop.  

The results are published in Thermochimica Acta (2015). The co-authors include professor 

Pu Chen as supervisor, professors Chul B. Park and Russell Thompson as co-supervisors, 

and Kazem Jeddi who assisted me in performing some replica experiments of the interfacial 

measurements. 

 

 Introduction 3.2

The interfacial and surface tension of polymers is a key thermodynamic parameter in 

various applications such as polymer blending [97], wetting [98], dispersion of particles or 

fibres in polymers [99], and polymer foaming [6]. Numerous methods can be used to 

measure the interfacial tension of polymers. Among them, Axisymmetric Drop Shape 

Analysis (ADSA) is a powerful and precise technique for the measurement of surface 

tensions and contact angles of liquids and solids. The technique can be applied for various 

systems such as pendant drop, sessile drop, and captive bubbles [100]. Generally, ADSA 

methods work based on the numerical fit between the profile obtained from the shape of 

drops or bubbles and the theoretical drop shape from the Laplace equation of capillarity 

[101]. 

Even though the importance of surface tension and interfacial tension of polymer melts 

is evident in many applications, data related to high-pressures and high-temperatures are 

rarely reported in the literature because of the high viscosities, difficulties of forming the 

drop in high temperatures, thermal degradation, and lack of PVT data at high temperatures 

and high pressures. 

In foam materials, the interfacial tension between a dense continuum and the dispersed 

voids plays a critical role in the structure and properties of final products [1]. Among foams, 

polymeric foams have attractive mechanical, energy-absorbing, and thermal-insulation 
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properties [2]. One promising polymer in the foam industry is polylactide (PLA);  a 

biodegradable and biocompatible polyester derived from lactic acid [29]. Because of its high 

modulus, high strength and appropriate clarity, this aliphatic thermoplastic polyester can be 

seen as a potential replacement for petroleum-based synthetic polymers [87]. Besides its 

decent mechanical properties, PLA has significant environmental merits compared with 

other commodity polymers, including its renewable agricultural source, the consumption of 

carbon dioxide during its production, its compostability and recyclability [29,102].  

Polymeric foams are made of either chemical blowing agents or physical blowing agents. 

The former have drawbacks such as environmental issues and processing limitations. On the 

other hand, physical blowing agents have shown promise in producing microcellular polymer 

foams. Among physical blowing agents, supercritical fluids such as carbon dioxide (CO2) and 

nitrogen are both suitable candidates to substitute for conventional physical blowing agents 

like chlorofluorocarbons (CFCs) [103]. Two steps are involved in polymer foaming using 

physical blowing agents: nucleation and growth. The first step includes absorption of enough 

gas molecules in the polymer matrix to reach a thermodynamically unstable threshold to be 

able to nucleate a bubble bigger than a critical size. The second involves growth of the 

bubbles [1]. 

In order to improve the foaming behaviour of microcellular foams, one can increases the 

number of nucleating sites through manipulating surface tension. Based on classical 

nucleation theory (CNT), the nucleation rate is inversely related to the exponential cubic 

power of surface tension [6,22]; lowering surface tension decreases the energy barrier for cell 

nucleation and exponentially increases the number of cells, leading to higher cell densities. 

Additionally, lower surface tensions lead to a smaller cell size since critical cell size is directly 

related to surface tension [1]. For the above mentioned reasons, a study of the effect of 

processing conditions (temperature and pressure) on the interfacial tension of PLA and the 

blowing agent (CO2) is indispensable. Despite the importance of foaming and blending of 

biodegradable polymers such as PLA with supercritical CO2 (SCCO2), there is very scarce 

data for interfacial and surface tension of PLA at high temperatures and high pressures 

[104]. Mahmood et. al [104], have reported the interfacial tension of PLA and supercritical 

CO2 using a sessile drop method at temperatures higher than melting point for PLA with 

different D-contents. In the current work, surface tension measurement of a different grade 

of PLA with different molecular weight and D-content is measured using a different method 
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(pendant drop). Surface tension of PLA at high temperatures and the interfacial tension of 

PLA and SCCO2 are investigated in the melting point window and under foaming processing 

conditions using the pendant drop method. The study of PLA interfacial tension near the 

melting point seems essential because not only do most polymeric foams form and stabilize 

in temperatures in the range of the melting point, but also the solubility of supercritical CO2 

in the polymer may vary at temperatures around and below the melting point of the 

polymers. The results shows that unlike polymers with high level of crystallinity (such as 

high-density polyethylene (HDPE)) [35,36], no anomalous behaviour in interfacial tension 

due to crystallization is observed in PLA. 

 

 Materials and Methods 3.3

 Materials 3.3.1

In this work, PLA under the trade name of PLA-2002D with Mn = 100 kg/mol and D-

content of 4.5 % was kindly provided by NatureWorks. Carbon dioxide chromatographic 

grade (purity 99.99 %) was purchased from PRAXAIR, Canada. 

 Solubility Measurement 3.3.2

The solubility of CO₂ in the PLA melts was obtained using a Magnetic Suspension 

Balance (MSB) from Rubotherm GmbH as the schematic shows in  

Figure 3-1. Details about the experimental apparatus and procedure can be found in 

previous publications [105–107], however, a brief overview of the solubility measurement is 

as follows. At vacuum (P=0) and temperature T, polymer pellets were weighed as W (0, T) 

from the balance readout. After adjustment of pressure and completion of gas sorption in 

the polymer by reaching saturation point, the weight of the saturated polymer melt was 

recorded from the readout on the MSB, and was defined as W (P,T) at pressure (P) and 

temperature (T). Then, using the obtained weights, the amount of gas dissolved in the 

polymer melt, Wg, was calculated as below [108]: 

 

𝑊! = 𝑊 𝑃,𝑇 −𝑊 0,𝑇 + 𝜌!!!(𝑉! + 𝑉! + 𝑉!)                          3-1                   
 

where the density of the gas, 𝜌!!! was obtained using a MSB [106]; 𝑉! is the volume of 

the sample holder, 𝑉! is the volume of the neat polymer (without gas dissolution and volume 
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swelling) at pressure P and temperature T. The latter was obtained from the mass and 

specific volume (𝑉!") based on Tait’s PLA equation. The term  𝑉! is the swollen volume of 

the polymer melt due to gas dissolution.  

 

 
 

Figure 3-1.A schematic of the magnetic suspension balance (MSB) [109] 
 

If the volume of swollen polymer (𝑉!) is not considered, the apparent solubility 

𝑋!""!#$%& is as follows:   

 

𝑋!""!#$%& =
! !,! !! !,! !!!"!(!!!!!)

!"## !" !"#$%&
                                        3-2  

 

It is obvious that the apparent solubility is less than the actual solubility. The corrected 

solubility, 𝑋!"##$!%$& , considering the buoyancy effect , can also be calculated: 

 

𝑋!"##$!%$& = 𝑋!""!!"#$ +
!!"#!!

!"## !" !"#$%&
                                             3-3                              

                                                       

Theoretically, an approximation of the swollen volume can be obtained using the 

following calculation: 
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𝑉! = [ 1 + 𝑋 + 𝑣!,!"#$%&' − 𝑣!,!"#$]×𝑚                                                       3-4  
      

where X is the gas solubility in the polymer melt from the Simha Somcynsky (SS) 

equation of state (EOS), m is the initial weight of the polymer, vp,pure is the specific volume of 

pure polymer that can be obtained from Tait’s equation, and vp,mixture is the specific volume of 

the polymer/gas mixture at equilibrium that can be calculated using the EOS. 

More details about the PVT behavior of the polymer-CO2 mixture can be found in the 

literature [107,110]. In brief, it is as follows. Each measurement at each pressure is recorded 

until the volume of the polymer-CO2 mixture becomes unchanged. The swollen volume was 

determined by the ratio between the final equilibrium volume and the initial volume from 

Tait’s equation: 

 

𝑆! = !(!,!,!!!)
!(!,!,!!")

= !(!,!,!!")
!!"#$%&!(!,!)

                                                           3-5 

 

where V(T,P, teq) is the measured equilibrium volume of the polymer-CO2 mixture at 

temperature T, pressure P, and equilibrium time teq. V(T,P,tini) is the volume of the PLA 

sample under the same conditions, taken from Tait’s equation. 

 

 Surface Tension Measurement 3.3.3

Axisymmetric drop shape analysis profile (ADSA-P) technique was used to measure the 

surface tension of PLA at various temperatures and pressures ranging from 143 to 168 ˚ C. 

The surface tension of the polymer samples was measured by fitting the shape and 

dimensions of the menisci, obtained through image capturing, to the theoretical drop profile 

based on the Laplace equation of capillarity: 

 

∆𝑃 = 𝛾( !
!!
+ !

!!
)                                                                              3-6                               

 

In order to provide processing conditions for surface tension measurements, a high-

temperature and high-pressure chamber was designed as explained previously [32,35]. The 

optical viewing chamber is a stainless steel cylinder equipped with an electrical band heater 

and temperature controller. The chamber is a hollow cylinder, with an inner diameter of 30 
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mm and length of 25 mm, and two optical-quality sapphire windows (Meller Optics, Inc.) 

that make it possible to observe the pendant drop of polymer melt during the experiment.  

Before starting the experiments, the accuracy of the technique was tested using a drop of 

pure water, and the value of 72.12 ± 0.11 mJ/m2 was consistent for all the measurements. 

This agrees with a well-established literature value of water surface tension at 23 ° C [111]. A 

small amount of polymer, ~ 0.004-0.006 g, was attached to the tip of a stainless steel rod 

with a diameter of 1 cm and a polished tip to avoid asymmetric drop formation.  The 

method used here has advantages over using drops formed by heating polymer in the 

capillary tube of a syringe: it eliminates the capillary rise and necking effects, besides allowing 

for a known system density. To measure the density of the polymer-gas mixture, the volume 

of one drop was obtained from the pendant drop profile using ADSA software [112] and 

used to calculate the density of polymer melts at different pressures and temperatures, after 

the initial weight of the polymer and amount of absorbed supercritical carbon dioxide had 

been obtained by solubility measurements. The density is an input for surface tension 

measurement and is introduced through the capillary constant: 𝐶 = ∆! !
!

, where C is the 

capillary constant, Δρ is the density difference between the polymer and the supercritical 

fluid, γ is interfacial tension, and g is gravity’s acceleration. The simultaneous measurement 

of interfacial tension includes introduction of the density of the sample after measurement 

of its volume. The results can be recalculated using the new density through the capillary 

constant [112–114]. 

 Differential Scanning Calorimetry   3.3.4

The thermal behavior of PLA at atmospheric pressure was performed using Differential 

Scanning Calorimeter (DSC), Q2000 (TA Instruments). The PLA sample was heated from 

room temperature to 200 °C at a heating rate of 10 K/min and then equilibrated at 190 °C 

for 5 min to eliminate the thermal history. Then the sample was cooled to 10 °C at a rate of 

2 K/min and eventually the sample was reheated to 190 °C at a rate of 10 K/min.  

 Results and Discussions 3.4

 Stability of Polymer Melt Drops 3.4.1

Due to the importance of crystallization on surface tension through preferential 

adsorption of crystallized polymer particles at interfaces [35,36], the presence of any crystals 
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in the system should be shown. Figure 3-2 shows isothermal differential scanning 

calorimetry of the PLA melt at 143 °C. No peak is observed after more than 2.5 hours of 

experiment denoting the absence of crystals at the lowest temperature of the interfacial 

tension measurements. 

In order to find the desired size of the polymer melt drop for pendant drop 

measurements, the stability of the drops can be investigated through a dimensionless Bond 

number, as shown in the Equation 4-7: 

 

𝐵𝑜 = ∆! ! !!

!
                                                                                         3-7                                                               

 

where ∆𝜌 is the density difference between PLA-SCCO2 , 𝑔 is gravitational acceleration, 

𝑅 is the average radius of curvature of the drop, and 𝛾 is the interfacial tension between the 

two phases . Since Bond number is the ratio between buoyancy forces and surface forces, it 

can determine the range of stability of the drop as well as the validity of surface tension 

measurements [115]. With this in mind, polymer drops with a wide range of weights at 

different pressures were formed. Figure 3-3 shows the range of stability of polymer melt 

drops based on Bond number. Bond numbers for drops with surface tension value 

discrepancies of a maximum 2% from the average are shown. The lower and higher limit for 

polymer melt drops are 0.37 and 0.48, respectively. It turns out that for polymer drops with 

Bond number beyond 0.48, breakage and necking phenomena were happened, and for Bond 

numbers below 0.37 the accuracy of measurements were questionable due to the formation 

of “close to spherical” drops and an imbalanced ratio between buoyancy forces and surface 

forces [115,116].   
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Figure 3-2.Isothermal differential scanning calorimetry of PLA 2002 sample at 143 °C 

 
Figure 3-3. Bond number vs. pressure reflecting the range of stability of polymer drops. 
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 Solubility Measurements 3.4.2

Like surface tension, solubility is another determining factor in microcellular foam 

processing and polymer blending [107,117,118]. Knowing solubility, as well as surface 

tension in the processing range of temperature and pressure, one can decide on the 

processing window of the desired polymer. Figure 3-4 presents the solubility data in the 

pressure range of 3450 to 13790 kPa for temperatures of 140, 150, 160 ° C. As can be seen 

from the graph, at a constant temperature, an increase in pressure increases the solubility due 

to higher dissolution of gas molecules at high pressures. On the other hand, as temperature 

increases the solubility of CO2 decreases; although there is more free-volume for adsorption 

of gas molecules at elevated temperatures, the rate of desorption for physisorption is higher 

[119]. Moreover, a reduction in the polymer viscosity leads to less resistance in retention of 

gas molecules in polymer melt. Beside the importance of solubility results in the processing 

of polymers with supercritical CO2, they can be used to simultaneously determine the density 

of the mixture at high temperatures and pressures; the amount of dissolved carbon dioxide is 

added to the initial weight of polymer. 

 

 
Figure 3-4. Solubility data of PLA at pressures from 3450 to 13790 kPa and 140,150, and 160 ° C 
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 Effect of Pressure and Temperature on Interfacial Tension 3.4.3

Figure 3-5 shows the variation of PLA interfacial tension as a function of temperature 

and pressure. The interfacial tension decreases when both temperature and pressure increase. 

The reduction in interfacial tension of the polymer and supercritical CO2 caused by 

increasing temperature happens because of a change in the overall internal energy of the 

system. It has been shown that the internal energy of mixture of polymers and gases 

(supercritical CO2) is dominant in determining the overall internal energy [33]. Thus, the 

polymer-gas internal energy determines the reduction in surface tension at higher 

temperatures. Surface tension can be obtained from a derivative of the free energy with 

respect to surface area. Free energy is defined as F= U- TS, where F is free energy, U is 

internal energy and S is entropy. The entropic contribution improves the mixing of the 

polymer-gas system, while an increase in internal energy promotes segregation of the 

polymer and gas. An increase in temperature leads to a reduction in the effective interaction 

between polymer and gas molecules, and so the internal energy decreases.  On the other 

hand, a reduction in internal energy makes entropy a relatively larger contributor in the free 

energy and improves mixing across the interface. The interface then becomes more diffuse 

leading to a lower surface tension. 
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Figure 3-5.Interfacial tension between polymer and supercritical carbon dioxide at different pressures 

and temperatures 

 
Figure 3-6. Interfacial tension of PLA and supercritical CO2 as a function of temperature at different 

pressures and related slope of linear function at various pressures 
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 In terms of density of the system, for an increase in pressure, the density of the CO2-rich 

phase increases. As explained in references [32,33], the surface tension drops when the CO2 

phase increases in density to be more similar to the density on the polymer side of the 

interface. Thus one can say the drop in surface tension with increasing pressure is due to a 

reduction of the density difference between two sides of the interface as the reduction in 

density difference between phases can be seen in Figure 3-7. 

Based on Figure 3-6, because of the interaction term between pressure and temperature, 

the temperature dependency of interfacial tension is different at low and high pressures. It 

was observed that at low pressures, interfacial tension decreases when temperature increases, 

while at high pressures, the interfacial tension becomes less dependent on the temperature. 

This independence occurs because at high temperatures and high pressures two competing 

effects occur: on the one hand, surface tension is reduced because of an increase in 

temperature, and on the other hand, the solubility of CO2 decreases at high temperatures, as 

can be seen in Figure 3-4. The interaction between the two above-mentioned competing 

factors leads to a diminishing of the temperature effect on the interfacial tension at high 

pressures [6,32]. 

 

 Density and Surface Tension Relationship 3.4.4

The trends for density of gas-PLA mixture, density difference between gas-PLA mixture 

and surrounding (supercritical CO2), and density of CO2 at 160 °C are shown in Figure 3-7. 

From the graph it can be seen that the mixture density does not change significantly with 

increasing pressure since the increase in drop volume due to CO2 dissolution is compensated 

by an increase in mass owing to CO2 absorption. On the contrary, on the gas side (drop 

surrounding) the density of CO2 increases with an increase in pressure, the fact which leads 

to a decrease in the density difference across the interface. 

The generalized Macleod equation is used to find the relationship between the interfacial 

tension and density of polymer-supercritical CO2 mixtures: 

 

𝛾 = 𝐶(𝜌! − 𝜌! )!                                                                                    3-8  
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where γ is the interfacial tension between polymer and supercritical CO2, C is a constant, 

n is Macleod’s exponent, and ρp  and ρf  are the density of the polymer and the supercritical 

fluid, respectively. The relationship between density and surface tension originate from the 

dependency of surface tension on the distance between the molecules. In other words, the 

attractive van der Waals forces lessen according to the 4th power of the intramolecular 

distances: an increase in a fluid’s temperature increases the distance between molecules, and 

consequently, density decreases [120].  Figure 3-8 shows the surface tension of polymer-

supercritical CO2 as a function of density in logarithmic scale for four temperatures. The 

results for all the temperatures follow the same trend, and the slope is in range of 1.84 to 

1.94. This is higher than the surface tension at atmospheric pressure because of the 

reduction in conformational restriction at the polymer surface due to the presence of CO2 

molecules [32]. 

 
Figure 3-7.Comparison between density, density difference of PLA-CO2 mixture, CO2 density (y-

axis on the left side), and CO2 solubility (y-axis on the left side) at different temperatures and 160 °C. 
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Figure 3-8. Surface tension vs. density difference of polymer-supercritical CO2 in natural logarithmic 

scale at different temperatures. 
  

 Conclusions 3.5

In this work, we have investigated the dependency of the interfacial tension of poly lactic 

acid (PLA) in supercritical carbon dioxide on temperature and pressure using the 

Axisymmetric Drop Shape Analysis Profile (ADSA-P) pendant drop method. The interfacial 

tension of PLA-supercritical carbon dioxide is measured in the temperature and pressure 

range of microcellular foaming and blending processes. The results showed a reduction in 

interfacial tension with increasing temperature and pressure in the ranges of 143°C to 168°C 

and 3450 to 13790 kPa, respectively. The interfacial tension dependency on temperature at 

high pressures decreases because of two competing factors: reduction in interfacial tension 

as a result of an increase in temperature, and the reduction in solubility of CO2 at high 

temperatures. The relationship between interfacial tension and the density-difference of 

polymer-supercritical-CO2 mixtures showed similar trends in different temperatures with 

slopes in the range of 1.84 to 1.94. In addition, the stability of melted PLA for pendant drop 
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measurements was examined by dimensionless Bond number and it turned out that drops in 

the range of 0.36-0.48 were stable. 
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 Summary 4.1

In this chapter the effect of surface-modified nanoparticles on interfacial tension of poly 

lactic acid (PLA) melt under supercritical carbon dioxide (CO2) is measured. The 

nanoparticles can act as nucleating agent in foaming. The interfacial tension between PLA 

and supercritical CO2 is observed to decrease as a result of nanoparticles’ adsorption to the 

interface. In some cases to improve the surface rheological properties to prevent 

coalescence. The results are of practical importance for further development of polymer 

nanocomposite foams.  

The results are published in Langmuir (2015). The co-authors include professor Pu Chen 

as supervisor, professors Chul B. Park and Russell Thompson as co-supervisors, and Kazem 

Jeddi who assisted me in performing some replica experiments of the interfacial 

measurements. 

 

 Introduction 4.2

Polymer nanocomposites are interesting materials with broad applications and 

exceptional properties such as better mechanical, thermal, electrical, and electrochemical 

properties [121–125]. In most cases dispersion of the nanoparticles within the polymer 

matrix of the nanocomposites is desired, however for some applications, such as 

colloidosomes, nanoparticle-armed polymer latex, Janus structures, and foams and emulsions 

stabilized by particles, localization is necessary [42,43,45,126,127]. 

In polymeric foams made with dissolved supercritical fluids, the cell size and the cell 

density can be controlled by reducing the interfacial tension between the polymer and the 

dispersed phase (supercritical fluid). According to classical nucleation theory (CNT), the 

nucleation rate is inversely related to the exponential cubic power of interfacial tension; 

[6,22] therefore one can increase the number of nucleating sites by lowering the surface 

tension. The decrease in surface tension decreases the energy barrier for cell nucleation and 

consequently increases the number of cells, leading to an exponential increase in cell 

densities. Moreover, lowering the surface tension results in a smaller cell size, since the 

critical cell size is directly related to surface tension [1]. It is noteworthy that CNT with its 

surface tension predictions is expected to break down for nano-cellular foams, although this 

is beyond the scope of this paper [128,129]. 
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Similar to the role of surfactants in reduction the surface tension of foams, particles can 

be used to promote foam formation and stabilization. As a general concept, solid 

nanoparticles, such as silica, can be adsorbed at the interface and decrease the interfacial 

tension between polymer melts and supercritical fluids. Furthermore, nanoparticles can act 

as nucleating agents for the foaming of polymers by increasing local stress variations around 

the particles (directly) [130,131] , and/or by promoting the crystallization of the polymers 

[89], since the crystals can create local stress variations as the nanoparticles do (indirectly) 

[88,90]. 

A large number of recent studies have focused on the incorporation of solid 

nanoparticles as surfactants in the stabilization of foams and emulsions, provided that they 

are adsorbed to the fluid-gas or fluid-fluid interface, respectively, and it has been shown that 

the contact angle of the particles dictates the stability [103,132]. For small particles, for 

which the effect of gravity is negligible, the energy (E) required to remove the particle from 

the interface is called binding energy or adsorption energy (the free energy change upon 

particle adsorption to the interface), and is given by [133] 

                                                            4-1  
 

 

where r is the radius of the particle, γαβ is the interfacial tension between two phases 

(polymer-supercritical fluid in our case), and θ is the  Young contact angle between the 

particle and the two phases (particle at the interface). Young contact angle is defined as 

 

cos𝜃 = (𝛾!" − 𝛾!") 𝛾!"                                                                             4-2 

 

where γαp , γβp are the interfacial tension of the particle-polymer and particle-supercritical 

fluid interfaces, respectively. In the binding energy equation, considering the polymer-

supercritical fluid interface with colloidal nanoparticles in the polymer phase, the sign inside 

the bracket is negative for removal into the polymer phase, and positive for removal into the 

supercritical fluid phase ,or  simply the (±) signs correlate to the cases where the particle 

center is above (positive) or below (negative) the interfacial plane. The particles will attach to 

E = −𝜋𝑟2   𝛾𝛼𝛽 (1± cos𝜃)
2  
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the interface and the adsorption is irreversible if E >> kBT, where kB is the Boltzmann 

constant and T is temperature in Kelvin [51,133,134]. 

Although adsorption of solid particles to an interface can decrease interfacial tension, 

some self-assembled structures at the interface can increase the tension at the interface due 

to an increase in lateral capillary forces. The interface of the polymer melt can be deformed 

due to the adsorption of particles at the interface. In general, deformation of a liquid surface 

can cause a lateral capillary force [135]. Depending on the particles’ weight and wetting 

properties, the force is considered as an immersion force or a floatation force [136,137]. If 

the force from the weight of the particles is significant and the particles are floating at the 

interface, the attractive or repulsive force is called a floatation force. On the other hand, for 

small particles partially immersed in both phases, the force is called an immersion force. The 

deformation of the liquid surface and magnitude of the immersion capillary force depend on 

the wetting properties of the particle, the magnitude of the contact angle, and the position of 

the contact line, and they are independent of particle weight. Equation 4-3 shows the 

amount of the capillary interaction energy between two immersed particles: [136,138,139] 

 

∆𝑤 = 2𝜋 𝛾 𝑄!𝐾!(𝑞𝐿)                                                                                        4-3 
 

where γ is the interfacial tension, Q is the capillary charge of the particle, defined as 

𝑄 = 𝑟 sin𝜃, θ is the contact angle between a particle and the liquid at the interface,  r is the 

radius of the contact line, q is defined as 𝑞! =  ∆! !
!

 , g is gravity, Δρ is the density difference, 

K0 is the modified Bessel’s function of zeroth order, and L is the distance between two 

particles. Equation 3 is valid when the distance between the particles is much smaller than 

the capillary length (L << q-1 and also when the radii of the two contact lines is much smaller 

that the particle separation. It can be seen from equation 5-3 that for fairly close particles, 

the capillary interaction (even for nanoparticles) is significant. 

In this work, interfacial behavior of PLA-silica nanocomposites in a CO2 environment is 

investigated in detail. Interestingly, a non-linear trend in interfacial tension values with 

increasing amount of nanoparticles is observed. It is observed that lateral capillary force of 

the adsorbed aggregates of the nanoparticles to the PLA- CO2 interface is the reason for the 

observed increase in interfacial tension at higher contents of the nanoparticles. 
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 Experimental  4.3

 Materials 4.3.1

Polylactic acid (PLA), grade 2002D, with Mn= 100 kg/mol and D-content of 4.5% was 

kindly provided by NatureWorks Inc. Carbon dioxide chromatographic grade with purity of 

99.99% was purchased from PRAXAIR, Canada. Tetraethyl orthosilicate (TEOS), 

ammonium hydroxide (28-30 % aqueous solution), (3-Aminopropyl) triethoxysilane 

(APTES) 99% were purchased from Sigma-Aldrich. Deionized water (18.2 M�) was 

obtained from a Millipore Milli-Q system. 

 Synthesis of silica nanoparticles 4.3.2

Silica nanoparticles were made using the well-known Stöber method [140]. A typical 

procedure to make an 80 nm silica particle was as follows: at room temperature, 8cc of 

tetraethylorthosilicate (TEOS; Sigma-Aldrich) was added to 100 cc of ethanol. The pH was 

adjusted using 16 cc of ammonium hydroxide solution (28wt %). The sol-gel reaction was 

carried out for four hours. Particle size was monitored using Dynamic Light Scattering 

(DLS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy 

(TEM). After four hours, the silica was separated by centrifuging at 14000 rpm and washed 

with ethanol six times. Afterwards, the silica nanoparticles were dried in an oven for 48 

hours at 80˚ C. 

 Surface modification of silica nanoparticle 4.3.3

Surface modification of silica nanoparticles was carried out through another sol-gel 

reaction on the surface of re-dispersed silica nanoparticles in toluene or ethanol. The 

reaction happens between first (3-aminopropyl) trimethoxysilane (APTES) and the hydroxyl 

functional groups on the surface of silica nanoparticles [141,142]. In order to modify the 

surface of silica with amine functional groups, 1.6 g of silica nanoparticles were dispersed in 

100 ml ethanol containing 5 ml ammonium hydroxide solution (28 %), then 3 ml of APTES 

was added to the solution and stirred for 24 h at 75 ˚ C. At the end of the reaction, the 

particles were collected by centrifuge, washed three times with ethanol, and dried in a 

vacuum oven at 80 ° C. 
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 Compounding of silica nanoparticles with PLA 4.3.4

A co-rotating miniature twin screw extruder (Haake Mini Lab Rheomex CTW5) was used 

to disperse the synthesized nanoparticles in PLA matrices at 180 ° C at 150 rpm. The 

residence time of the polymer in the compounder was set based on thermal analysis and 

sample testing to make sure there was no polymer degradation during compounding. 

 

 Characterization  4.4

 Interfacial tension and contact angle measurements 4.4.1

Interfacial tension of PLA composites at various pressures of supercritical CO2 and at 

153˚ C was measured using axisymmetric drop shape analysis profile (ADSA-P) technique. 

The technique, instrument, and methodology is explained in detail in section 3.3.3. 

Contact angle measurements were also carried out in a similar high pressure high 

temperature chamber capable of mounting the silicon surface on top of the inversed 

stainless steel rod. 

 Characterization of the nanoparticles 4.4.2

Field emission scanning electron microscopy (FE-SEM) (Ultra, Zeiss) with energy-

dispersive X-ray (EDX) spectroscopy was used to investigate the morphology of the 

nanoparticles. The samples were gold-sputtered prior to SEM. SEM images of the solidified 

PLA-silica APTES nanocomposite melts are also measured through gold-sputtering of 

solidified sample after the interfacial tension measurement. Sufficient amount of time is 

provided to assure the equilibrium interfacial tension is provided.The hydrodynamic 

diameter of silica nanoparticles were determined by dynamic light scattering (DLS) on a 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, U.K.) equipped with a 4 mW 

He�Ne laser operating at 633 nm. FTIR spectrums were obtained using a Bruker Vertex 70 

FTIR spectrometer from 400 to 4000 cm-1 on a KBr pellet. A Dimension Icon® AFM 

(Bruker Nano Surfaces) with a silicon nitride tip (type SCANASYST-AIR, Bruker) with a 

radius of 2 nm was used for AFM imaging in the PeakForce® QNM mode. 
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 Results and Discussions 4.5

Shape and size of the synthesized silica nanoparticles can be observed in SEM and TEM 

images Figure 4-1A and B. The uniform spherical particles have an average diameter of 

around 80 nm as confirmed with DLS results in Figure 4-1 C (number-average diameter ~ 

80 nm and z-average diameter ~100 nm). 

FTIR spectra in Figure 4-2 prove the presence of modification on silica nanoparticles. In 

the spectra, the Si-O peaks at 800 and 1100 cm-1, Si-OH at 950 cm-1, and the broad OH peak 

in range of 3200 to 3700 cm-1 can be observed in both silica and silica-APTES. However, 

after surface modification with APTES, the intensity of OH peak is decreased showing a 

reduction in the number of surface OH groups. It is noteworthy to mention that the OH 

peak can be attributed to both surface hydroxyl groups and adsorbed water molecules. There 

are significant number of hydroxyl groups in terms of isolated silanols, germinals, and 

vicinals as well as hydrogen bonded hydroxyl groups. The number of hydroxyl groups on 

surface varies depending on hydroxylation state of silica and can be as high as 4.9 OH.nm-1 

even after vacuum treatment at high temperatures [143]. On the other hand, there are always 

water molecules accompanying the OH groups on the surface as the peak at 1630 cm-1. 

These water molecules only can be removed with high temperature thermal treatment. Once 

they are removed from the surface, the water molecules will immediately adsorb to the 

surface from atmosphere and their presence on the surface seems inevitable [144]. 

 For the silica modified with APTES, bending of –CH3 at 1385 cm-1 and stretching of C-

H at 2933 cm-1 for alkanes, and bending of N-H at 694 cm-1 are recognizable. The Si-OH 

peak at 950 cm-1 is also decreased significantly. 
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Figure 4-1.Scanning Electron Microscopy (SEM) (A) and Transmission Electron Microscopy (TEM) 
(B) images of synthesized silica nanoparticles (C) intensity and number diameter distribution results 

of the silica nanoparticles obtained from DLS. 
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Figure 4-2. FTIR spectrum of silica nanoparticles before (top) and after (bottom) surface 

modification with APTES. 
 

In Figure 4-3, the surface tension values of PLA-silica composites versus silica content at 

pressures of CO2 ranging from 0 to 13790 kPa (gauge pressure) is illustrated. As can be seen, 

the interfacial tension decreases with an increase in silica content up to 2 wt. % and then an 

increase and a plateau is observable in all the pressures. The decrease in interfacial tension 

can be attributed to the adsorption of the silica nanoparticles to the PLA/ CO2 interface. It 

has been observed that nanoparticles dispersed in a polymer matrix migrate to a crack 

generated at the interface between the polymer and a glassy layer. [145] Thompson et al.[36] 
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showed that the probability of finding a nano-crystal in the vicinity of the polymer surface is 

higher than the bulk. Nano-crystals form a narrower boundary at an interface with a fluid 

which lowers the internal energy and thus the interfacial tension. Furthermore, a reduction in 

surface tension of an air-water interface in a low concentration of nanoparticles as a results 

of a decrease in internal energy of the interface has been reported. The phenomena has been 

observed for suspensions of titanium oxides [137], and silica [61] at basic pH values where 

there is a minimum in interfacial tension versus concentration curve around 5-7 wt.% of the 

particles. For both cases, eventually the interfacial tension value will be constant after 10-12 

wt. %. Notwithstanding the evidences for adsorption of the nanoparticles to the interface, 

the reduction in interfacial tension is not as significant as silica in oil-water systems [146]. 

The reason can be explained in the mechanism the nanoparticles act to decrease the 

interfacial tension; unlike the surfactants, particles are driven to the interfaces to remove 

contact between the two phases [147] and where the nanoparticles’ contact area with the 

interface is small then the effect on interfacial tension will be less [148]. 

As a general fact, nanoparticles can be used as a surfactant in stabilizing foams and 

emulsions [73,126,133]. There are a few reasons for adsorption of nanoparticles to the PLA-

CO2 interface: first of all, for a particle in a two phase system, due to weaker interactions 

compared with bulk, creating a surface is more favorable at the interface rather than any of 

the phases (with the same molecules surrounding). Secondly, the adsorption is 

thermodynamically favorable not only because of a desirable interaction between amine 

groups on silica surfaces and carbon dioxide, but also because of an increase in entropy of 

the polymer bulk as a results of increase in free volume and a reduction in entropy-restricting 

polymer adsorption at the particle interfaces [149]. 

As can be seen in Figure 4-3 and Figure 4-4, the interfacial tension increases for values 

higher than 2 wt. % of silica. An increase in interfacial tension after a certain loading of 

nanoparticles can be related to the lateral capillary force created by a deformation of the 

PLA melt meniscus as a result of partial immersion of silica nanoparticles in the interface 

[61,137,150,151]. 

It is noteworthy that observation of a minimum in interfacial tension-concentration 

curves should not be mistaken for being the same as the case of aqueous solution of 

surfactants [152]. In the latter case, the minimum is seen before the critical micelle 

concentration (CMC) for surface-active impurities in the surfactant system. Due to the 
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presence of nanoparticles at the interface, the shape of interface surrounding them at the 

fluid phase boundaries is perturbed and is not flat; this fact causes a significant distant 

dependent capillary force between the particles [138]. Deformation, and subsequently 

capillary force is related to the wetting behavior of the particles (contact angle between three 

phases) and the distance between particles [150]. The immersion force, the force between 

small particles partially immersed in both phases, can be attractive or repulsive depending on 

the sign of the meniscus slope angles at the two contact lines of the two particles adjacent to 

each other: if the product of the sine of the contact angles for the two particles are positive 

(negative), the capillary force is going to be attractive (repulsive) [150]. For similar silica 

nanoparticles with similar surface properties, the contact angles are the same and 

consequently the force is attractive, provided that the particles are close enough to each 

other. As can be seen in SEM images in Figure 4-5, in higher loadings of silica, the number 

of the nanoparticles is higher at the interface of solidified PLA nanocomposits, and the 

chance of finding particles close enough to induce an attractive capillary force towards each 

other is higher. The high capillary force at the interface resists a deformation or stretching in 

surface area. Since interfacial tension is defined as the work required against a change in the 

surface area, an increase in the resistance at the interface leads to an increase in the force 

required to increase the surface (due to capillary force in our case) which eventually causes 

an increase in interfacial tension in higher loadings of the particles [137] . .. 
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Figure 4-3. Interfacial tension values of PLA-silica APTES composites versus silica content at 
different pressures of carbon dioxide (gauge pressure) at 153º C 

  

 
Figure 4-4. Interfacial tension values of PLA-silica APTES composites versus different pressures of 

carbon dioxide for various loadings of silica nanoparticles at 153º C 
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In order to prove the presence of the silica nanoparticles at the interface, SEM images of 

the solidified nanocomposites are obtained after interfacial tension measurements at 

atmospheric pressure of carbon dioxide environment and consequently solidification of the 

pendant drop polymer melt.  Figure 4-5 shows the SEM results for different loadings of 

APTES-modified silica-PLA nanocomposites. It is clear in SEM images that in 4 and 8 wt.% 

of the nanoparticles, the number of the nanoparticles increases significantly which leads to 

an increase in the chance of finding nanoparticles in vicinity of another particle: particles 

with distance less than capillary length cause localized lateral capillary forces at higher 

loadings of the nanoparticles a dominant force. Considering Equation 4-3, at higher loadings 

of the nanoparticles the two conditions for capillary forces to be effective are available: the 

distance between the particles in nanoparticle systems are lower than capillary length L << q-

1 and the particle separation is large enough. It should be noted that even though the surface 

is more covered at higher loadings of nanoparticles (8 wt.%), the surface coverage is much 

less than aqueous systems (typically more that 90% coverage) [134], therefore the 

nanoparticles separation can be considered large. EDX results for a surface of 0.5 wt. % 

nanocomposite in  

Figure 4-6 shows the presence of a silicon peak for bright spots, proving the spots are 

silica nanoparticles. 
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Figure 4-5. SEM images of solidified PLA-silica APTES nanocomposite melts in different loading of 
silica after interfacial tension measurement 
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Figure 4-6. EDX spectroscopy of spot 1 (top) and spot 2 (bottom) of PLA nanocomposites after 
being at 153 ° C for the length of the pendant drop measurement 

 

In addition to direct observation of nanoparticles at the interface, one can show that the 

adsorption of nanoparticles is thermodynamically favorable and irreversible. It has been 

shown that if the binding energy of nanoparticles (the energy to detach particles from the 

interface) is high enough (compared with thermal fluctuations) the adsorption is irreversible 

[132,133,153].  

Equation 5-1 is used to calculate binding energy of the particles at the interface. In 

addition to SEM, this is another proof showing irreversible adsorption of the nanoparticles 

to a PLA melt-air or supercritical CO2 interface. Knowing the interfacial tension between 

PLA- supercritical CO2 at the desired temperature and pressure, interfacial tension at 0 wt. % 

in Figure 4-3 or Figure 4-4, the only unknown is the contact angle between the particles at 

the PLA melt and supercritical CO2 interface. In order to measure the contact angle between 

silica-PLA-CO2, one can make a pellet out of the particle and perform the contact angle 
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measurement. However, due to the porosity of the pellet, the liquid or polymer melt on top 

will diffuse into the pellet making the measurement impossible. To overcome this difficulty, 

surfaces with the exact surface chemistry of silica and silica modified with APTES can be 

used for contact angle measurements. Silicon has a natural oxide layer on the surface which 

after washing with Piranha solution and removing hydrocarbons, has an abundant number 

of hydroxyl groups on the surface [154,155]. In this work, a silicon wafer with surface 

modification is used as a homologous surface to modified silica.  

AFM images of the silicon wafer before and after surface modification with APTES are 

shown in Figure 4-7. Both surfaces are uniform and smooth as the root mean square (Rq) 

and arithmetic average (Ra) roughness values for silicon wafers are 0.3 and 0.2 nm and those 

of silicon modified with APTES are 9.6 and 7.5, respectively. As shown previously [156,157], 

contact angle measurements are independent of surface roughness for values less than 150 

nm. 
 

 

Figure 4-7. AFM images of silicon (A) and silicon-APTES (B) 
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Figure 4-8. Plot of contact angle of PLA on silicon (black squares) and silicon-APTES (red circles) 
surfaces vs. pressure of surrounding CO2 at 153º C (the maximum value for error bar is ± 0.2 º for 

95% confidence interval) 
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Figure 4-9.Plot of calculated binding energy of silica-APTES nanoparticles at PLA - CO2 interface 

using contact angle results as a function of CO2 pressure at 153º C (426 K) 
 

Figure 4-8 shows the contact angle of PLA on silica-APTES surfaces as a function of the 

pressure of surrounding CO2 at 153º C. The silica-APTES contact angle increases with an 

increase in CO2 pressure. In the other words, compatibility of nanoparticles with PLA 

decrease at higher pressures.  However, because of a more favorable interaction between the 

amine group of APTES and PLA, its contact angle is lower. In both cases, the binding 

energy in Figure 4-9, is significantly higher than the thermal energy (kBT), where kB is the 

Boltzmann constant and T is temperature in Kelvin, making the adsorption irreversible. 

Based on contact angle and binding energy results, it can be concluded that as the pressure 

of CO2 increases and the contact angle decreases, the work of adhesion will be less, and 

consequently there is less tendency towards bulk PLA for nanoparticles, the condition which 

leads to more adsorption of nanoparticles at the interface. The affinity of the nanoparticles 

towards the interface can be explained in terms of an entropy penalty of polymer chains near 

the nanoparticles in the presence of CO2; any constraint on polymer configurations such as 

stretching in the vicinity of a particle, causes a decrease in the conformational entropy of 
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polymer chains, a phenomena that leads to the segregation of the nanoparticles at the 

polymer-gas interface to minimize the entropic penalty [145,158,159]. The “entropy-driven” 

segregation is more pronounced when the polymer chains are expanded as a result of gas 

absorption specifically near the critical point of the gas [160,161]. 

 

 Conclusions 4.6

In summary, the effect of synthesized silica nanoparticles on interfacial tension between 

PLA and supercritical CO2 at high temperature and high pressures was studied. In the 

interfacial tension curve, a minimum in silica loading of 2 wt. % for all the pressures was 

observed, and for higher amounts of silica the interfacial tension value reached a plateau. 

Adsorption of the silica nanoparticles decreased the interfacial tension, however for higher 

amounts (more than 2 wt. %) of nanoparticles, interfacial tension is increased due to 

attractive lateral capillary forces originating from the perturbation of the PLA- CO2 interface 

by particles. Contact angle measurements at high temperatures and pressures showed a 

decrease in compatibility between the nanoparticles and PLA with increasing CO2, which 

facilitated the adsorption phenomena at high pressures. Furthermore, binding energy 

calculations showed irreversible adsorption due to high values of energy compared with 

thermal fluctuations.  
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SILICA NANOPARTICLES ON CRYSTALLIZATION BEHAVIOR OF 

POLY (LACTIC ACID) UNDER COMPRESSED CARBON DIOXIDE  

K. Sarikhani ,  R. Nasser i  ,V. Lotocki ,  R.B. Thompson, C.B. Park, P. Chen 3 

 

 

 

Graphical Abstract 

 

 

 

 

 

 

 

 
                                                

3 Submitted to Polymer - POLYMER-16-213 
 



58 
 

 Summary 5.1

To further investigate the effect of the nanoparticles on fundamental foaming related 

properties, the crystallization behavior of poly (lactic acid) (PLA)/ amine-modified silica 

nanocomposites at different loadings of amine-modified silica under isothermal, non-

isothermal, and isothermal under compressed CO2 is studied. Crystallization is an important 

factor in growth step of foaming, therefore; it is important from practical point of view for 

further development of polymer nanocomposite foams. Incorporation of the nanoparticles 

significantly improved the crystallization of PLA in all the conditions. 

A manuscript using the data in this chapter is submitted to Polymer (2016). The co-authors 

include professor Pu Chen as supervisor, professors Chul B. Park and Russell Thompson as 

co-supervisors, Rasool Nasseri who assisted me in developing Hoffman- Lauritzen theory, 

Victor Lotocki as my co-op student help me in performing some of the DSC experiments. 

 

 Introduction 5.2

One promising application for PLA is being used as polymeric foam materials. In 

addition to the general advantages of foam materials, PLA foams have the biodegradable and 

biocompatible characteristics which make them an attractive replacement for commodity 

foam products for solving global waste disposal concerns [16]. Despite numerous valuable 

advances, production of PLA foams with uniform morphology using physical blowing 

agents is still challenging [162,163]. One barrier for PLA foam production is its low melt- 

strength. Various methods, such as introducing chain extenders [164], branching the chains 

[81,82,88], and compounding with various fillers and additives (micro and nanoparticles) 

[83–85] have been used to address the low melt strength of PLA. In addition to melt 

strength, improvement in crystallization behavior and crystallinity can further improve the 

mechanical properties of PLA [27,165–168]. 

Nanoparticles can be used to improve PLA foamability through the improvement in 

crystallization, melt strength, and reduction of interfacial tension of the PLA system. It has 

been shown that both carbon dioxide (CO2) dissolution [38,169] and the addition of 

nanoparticles [170] can reduce the interfacial tension of PLA – CO2 mixtures. In addition, 

nanoparticles can serve as nucleating agents in the nucleation step of foaming [130,131]. In 

heterogeneous nucleation a pre-existing surface causes the reduction in free energy barrier 

against the primary nucleation. It was shown that in polypropylene composites filled with 
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hydrophobic fumed silica (modified with dimethyldichlorosilane), the nucleus size for 

crystallization decreases with incorporation of foreign surfaces as result of less resistance in 

creation of interface between the crystal and substrate compared with that of free polymer 

[171,172].This would be an important factor in improvement of PLA crystallization with 

very slow kinetics. 

In this project, the crystallization behavior of PLA/silica nanocomposites at different 

loadings of silica in both isothermal and non-isothermal conditions is studied. Prior to 

crystallization analysis, a proper surface modification of the silica nanoparticles is selected to 

satisfy the need for a well-dispersed nanocomposites, higher-absorption of CO2, and a faster 

crystallization rate. Surface energy of the nanoparticles and interfacial energy between 

polymer/nanoparticle at high temperatures are used in a modified Hoffman-Lauritzen 

nucleation theory to prove acceleration of the crystallization process in the presence of 

nanoparticles.  In order to consider the crystallization improvement for foaming processes, 

isothermal crystallization under compressed CO2 is also investigated. The heterogeneous 

nucleation provided by nucleation agents such as silica nanoparticles improves the 

crystallization rate at high temperatures when there is less driving force for homogeneous 

nucleation. In addition to the role as a blowing agent in foaming, the effect of carbon 

dioxide as a plasticizer on crystallization is more dominant at lower temperatures where 

higher chain mobility is required for crystallization. That is the reason why the effect of CO2 

has been studied at a low and narrow crystallization temperature window. Combining 

nucleation (through heterogeneous nucleation of surface-modified silica nanoparticles) and 

plasticization (via dissolution of carbon dioxide in polymer matrices) is expected to increase 

the crystallization rate and broaden the crystallization temperature window in the foaming 

process of PLA.  

 

 Experimental 5.3

 Materials 5.3.1

Three different grades of polylactic acid (PLA) under trade names of 2002D, 3001D, and 

4032D were kindly provided by NatureWorks Inc. The molecular weight and D-content of 

the PLA grades are listed in Table 5.1. Chromatographic grade carbon dioxide with a purity 

of 99.98% was purchased from Linde Gas for high-pressure DSC measurements. Tetraethyl 
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orthosilicate (TEOS- Sigma-Aldrich) and ammonium hydroxide (28-30% solution - Sigma-

Aldrich), were used for synthesis and (3-Aminopropyl) triethoxysilane (APTES) (99% - 

Sigma-Aldrich) was used for surface modification of the silica nanoparticles. The deionized 

water was from a Millipore Milli-Q system with 18.2 MΩ resistivity. 

 

Table 5.1.Molecular weight and D-content of PLA materials in the current work 
 

	 PLA Trade 
Name 

Number Average 
Molecular Weight 

(kg/mol) 

D-content 
(%) 

PLA 2002D 100 4.5 
PLA 3001D 72 1.4 
PLA 4032D 58 1.8  

 Synthesis, surface modification, and compounding of silica 5.3.2

nanoparticles 

The synthesis, surface modification, characterization of silica nanoparticles as well as 

compounding of the silica nanoparticles with PLA can be found in detail in sections 4.3.2 to 

4.3.3.  

Morphology and dispersion of the nanoparticles in PLA was obtained using field 

emission scanning electron microscopy (FE-SEM) (Ultra, Zeiss). Thermal analysis was 

performed using a DSC2000 (TA Instruments) at atmospheric pressure and a DSC 204 HP 

(NETZSCH, Germany) at high pressures of CO2.  The crystal structure of PLA was 

characterized using X-ray diffraction (XRD) techniques (Bruker) with Cu-Kα radiation with 

wavelength of 1.5406 Å operating at 40 kV and 30 mA. 

 Isothermal analysis and kinetics of crystallization  5.3.3

Calorimetry was used to study the kinetics of crystallization. The samples were heated 

from room temperature to 200 °C at the rate of 10 °C/min then equilibrated at that 

temperature for 5 min to remove all previous thermal and stress histories. The samples were 

cooled to the isothermal temperature at the rate of 30 °C/min and then were equilibrated at 

the isothermal temperature, and heat flow was measured as a function of time for 60 min or 

until crystallization was completed. The heat flow data was converted to a fraction relative to 

the final crystallinity level, and the results were plotted as a function of time to obtain 
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Avrami plots. The Avrami equation (6-1) was used to analyze the crystallization kinetics of 

the samples [173,174]: 

 

𝑥 𝑡 = 1−  𝑒(!!")!                                                                                                 5-1 

                                                                                                          

where x(t) is the relative crystallinity at time t, k is a kinetic rate constant and n is the 

Avrami exponent. The double-log Avrami plots of ln(− ln(1− 𝑥 𝑡 )) versus ln(𝑡) were 

plotted to obtain the Avrami exponent, n, and the crystallization kinetic constant, k.  

The Avrami exponent normally has a value, which lies between 2 and 4 for polymer 

crystallization, and it determines the mechanism of nucleation (homogeneous or 

heterogeneous and simultaneous or sporadic), the dimensionality of crystal growth (two or 

three dimensional) and growth mechanism (linear or diffusion controlled) of the system. The 

higher Avrami exponents are attributed to sporadic (or combination of sporadic and 

simultaneous) nucleation with three-dimensional spherulitic growth. On the other hand, the 

lower exponent values represent instantaneous (accompanied with some sporadic) 

nucleation with two-dimensional growth [87,175]. Another important piece of information 

obtained from isothermal crystallization is the crystallization half-time (t 1/2) which is defined 

as the time it takes to reach 50% of crystallization. The reciprocal of t ½ is a measure of 

crystallization kinetics and is defined as the crystallization rate (G). 

 Results and Discussion 5.4

 Calculation of surface energy calculations and its effect on 5.4.1

dispersion of nanoparticles and crystallization of PLA 

The size, uniformity, and surface modification of silica nanoparticles has been already 

examined with SEM, TEM, DLS, and FTIR, and the results were presented in our previous 

work [170]. The silica nanoparticles were spherical and monodispersed with a z-average size 

of 100 nm. Figure 5-1 shows the SEM image of the cryogenically fractured surface of PLA 2 

wt.% nanocomposite at two different magnifications. The surface modified silica 

nanoparticles show excellent distribution and good dispersion inside the polymeric matrices, 

and the individual spherical particles and small aggregates of two to three particles are 

uniformly distributed inside the PLA matrices.  
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The surfaces of silica nanoparticles are modified with amine containing silanes for the 

following reasons: first of all, it provide a surface with lower energy. The surface–modified 

silica contributes to better dispersion of the particles in the matrices and the work of 

adhesion will be higher in the case of a proper selection of surface modification.  Secondly, 

the amine group can improve the adsorption of CO2 on the surface of the silica particles 

[176] via induced interaction between the basic amines functional groups on the surface of 

modified particles and the acidic CO2 molecules to form ammonium carbamates in 

anhydrous conditions [177]. Thirdly, the amphiphilic characteristic of the surface–modified 

nanoparticles, and their affinity towards CO2, promotes their irreversible adsorption to the 

polymer/ CO2 interface [170]. On the other hand, the three–phase contact angle between 

nanoparticle/ polymer/ CO2 is a determining factor in the free energy barrier for 

heterogeneous nucleation (Whet) in polymer foams [178,179]: 

 

                    5-2                    
                           

 

where F is the energy reduction factor for heterogeneous nucleation and γ l is the liquid 

(melt) surface tension. The factor depends on the geometry of the nucleating site and it can 

be a function of θ [180]: 

 

 

                                              5-3 
                                                                                               

                                    

where θ is the three – phase contact angle between nanoparticle (solid)/ polymer (liquid)/ 

CO2 (gas) from Young’s equation: 

                                                         5-4                                                                                 
 

where γ! is the liquid-vapor surface tension, γ! is the solid-vapor surface tension, and γ!" 

is the solid-liquid interfacial tension. 

Equation 5-3 shows that an increase in θ leads to a decrease in F and consequently Whet. 

Considering Young’s equation, in order to have a larger θ one can either decreases γ! or 

  𝛾! cos𝜃 = 𝛾!−𝛾!" 

𝑊ℎ𝑒𝑡 =  
16 𝜋 𝛾𝑙

3 𝐹
3 (𝑃𝑏𝑢𝑏𝑏𝑙𝑒 − 𝑃𝑠𝑦𝑠𝑡𝑒𝑚 )2 =  𝑊ℎ𝑜𝑚𝑜  𝐹 

𝐹 (𝜃) =  
2 + 3 cos 𝜃 − 𝑐𝑜𝑠3 𝜃

4
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increases γ!". On the other hand, due to low surface energy of polymer melts, a low-energy 

solid-gas interface is required to minimize the interfacial tension between the dispersed 

particles and the polymer matrix for improvement of particles wettability, better dispersion 

of particles and a uniform composite. Moreover, in foams stabilized with nanoparticles it is 

required for the particles to have the ability to adsorb to the interface of the two phases. 

Partial wetting of the solid particles by the two phases is one of the key requirements for 

their adsorption at the interface [181]. In polymer foams, surface modification of silica with 

CO2–philic functional groups is shown to promote nanoparticles’ adsorption to the polymer-

carbon dioxide interface with high binding energies to the interface [170]. As a result of all 

this, surface modification of silica nanoparticles in the current study is a key step to both 

reduce the energy barrier for nucleation in foaming and to provide a low surface energy 

particle for better dispersion.  

Contact angle measurements of silicon wafers and silicon modified with APTES at room 

and high temperatures are used to determine the surface energy of the nanoparticles (Table 

I.1). The surface of silicon has a natural oxide layer that makes it chemically identical to 

silica. The same surface can be modified with different silanes or polymers to study the 

contact angle and wetting properties of the corresponding particles [170,182]. 
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Figure 5-1.SEM image of 2 wt% PLA nanocomposite fractured in liquid nitrogen. The large image is 

at 1k and the inset is at 50k magnification 
 

Contact angle and pendant drop measurements at high temperature were carried as 

described previously [32,169,183]. As shown in Table 5.2, at high temperatures, the silicon-

APTES contact angle is lower than the unmodified one, showing more compatibility and 

affinity between nanoparticles and PLA.  Both modified and unmodified silicon samples 

show a slight increase in contact angle with an increase in temperature possibly due to 

different thermal coefficients for surface tension and surface energy (Figure I-2 Appendix I). 

Based on surface tension measurement of the PLA melt at high temperatures presented in 

Figure I-1 (Appendix I) and the contact angle measurement in Figure I-2 (Appendix I), one 

can measure the work of adhesion via Young-Dupre’s equation. The adhesion energy or 

work of adhesion per unit area of the two interface is defined as the energy change of 

bringing unit area of one part (or surface) into contact with unit area of another part in a 

vacuum [62]. The calculated work of adhesion (Figure 5-2) for surface modified 

nanoparticles is higher than the unmodified one, showing better interaction between the 

APTES-modified silica and PLA. Nanoparticles with lower surface energy and higher work 

of adhesion result in higher levels of dispersion. Acquiring higher dispersion is a key step to 
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practically achieve the desired properties of the composite. In the case of nanoparticles as 

nucleating agents in crystallization, a better dispersion means more individual nucleating sites 

across matrices [184]. 

 

Table 5.2. Surface energy calculation of silicon and silicon-APTES and corresponding interfacial 
tension with PLA obtained by contact angle and surface tension values of PLA at high temperature  

Temperature 
PLA Silicon Silicon APTES 

Surface 
tension 

Contact 
Angle 

Surface energy 
(Neumann) 

Interfacial 
tension 

Contact 
Angle 

Surface energy 
(Neumann) 

Interfacial 
tension 

°C (mJ/m2) (° ) (mJ/m2) (mJ/m2) (° ) (mJ/m2) (mJ/m2) 
153 23.2 65.8 11.8 2.4 53.9 14.9 1.2 
170 21.0 67.3 10.3 2.3 55.1 13.1 1.2 
180 19.0 68.6 9.1 2.1 56.7 11.5 1.1 

	

 

 
 

Figure 5-2.Work of adhesion between PLA and silicon and silicon-APTES surfaces as representatives 
of silica and silica-APTES nanoparticle surfaces 
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 Isothermal and non-isothermal melt crystallization of 5.4.2

nanocomposites 

The non-isothermal thermal plots of PLA and PLA silica nanocomposites are shown in 

Figure 5-3. Cooling graphs were obtained at a 2 °C/min cooling rate at atmospheric 

pressure. The corresponding thermal properties are also shown in Table 5.3. Although it 

underwent cold-crystallization and the subsequently formed crystals were melted, there is no 

detectable peak for virgin PLA during the cooling section The slow crystallization kinetics of 

the 2002D PLA samples are a result of their high D-content and high molecular weight 

[185,186]. Even at low cooling rates, the time necessary for polymer chain rearrangement 

and reorientation is longer than the time required for measurement. In other words, stable 

nuclei cannot be formed at fast cooling rates and at higher temperatures [187]. This problem 

also arises when there is a large amount of co-monomers that possess different 

stereochemistry [186]. Only after rearrangement during cooling and the availability of more 

activation energy during heating does the material show cold-crystallization, and 

consequently, a melting peak. At higher cooling and heating rates (10 °C/min), both cold-

crystallization and melting peaks are barely detectable for PLA 2002D. However, after the 

incorporation of only a small amount of surface modified silica nanoparticles (0.5 wt.%), a 

significant change in crystallization behavior of PLA can be observed; exothermic 

crystallization peaks appear at temperatures between 100 and 107 °C for different loadings 

of silica. An increase in the amount of silica nanoparticles leads to an increase in both 

crystallization temperature and heat of crystallization up to 107 °C and 23 J/g, respectively. 

The shifts to higher crystallization temperatures by the presence of surface modified silica 

indicate an acceleration in the overall PLA crystallization [188]. Figure 5-4 shows the wide-

angle XRD patterns of PLA and PLA silica nanocomposites. For the virgin PLA, there is no 

distinct peak, and only a wide peak can be seen while all the nanocomposites show � type 

crystal structure with orthorhombic unit cells with diffraction peaks at 2θ = 16.8, 19.2, and 

22.3° corresponding to (110), (203) and (205) crystal planes [87,189,190]. The intensity of � 

peaks is nearly constant with an increase in the amount of silica nanoparticles. 

Isothermal analysis has been performed at temperatures in the range of non-isothermal 

crystallization peaks. Two temperatures, 102 and 110 °C, were selected based on the 
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crystallization peaks of the non-isothermal curves. As expected, there was no peak for PLA. 

However, from Figure 5-5 one can observe that after the incorporation of 0.5 wt.% surface-

modified silica nanoparticles, the isothermal peak appears with crystallization half-times of 

12.5 and 9.2 min for 102 and 110 °C, respectively. As a general trend for the isothermal 

curves at both temperatures, the half-time decreases with an increase in the amount of 

surface modified silica nanoparticles [87,89]. 

 

6.4.2.1  Comparison o f  nuc leat ion rate  in pure matr ix and nanocomposi te  

based on Hoffman-Lauri tzen nuc leat ion theory 

The Hoffman-Lauritzen nucleation theory is used to show the effect of the nanoparticles 

and their surface modification on crystallization nucleation, Investigation on the steady-state 

nucleation rate in crystallization of a condensed system was firstly proposed by Turnbull and 

Fischer [191]: 

 

𝐼 =  𝐼! 𝑒𝑥𝑝(−
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where 𝐼! is the pre-exponential factor,  T is the absolute temperature, Δ𝐻∗ is the heat of 

activation of the jump rate process, Δ𝜙∗ is the free energy of formation of a nucleus of 

critical size, and 𝑘 is the Boltzmann constant. The first exponential term of this equation is a 

transport term which is the probability of a chain segment of critical length reaching to the 

surface of the crystal. Hoffman et al. [192] developed the equation 5-5 and replaced the local 

motion jump rate for the first exponential term: 
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where U* is the activation energy for reptational diffusion. And Δ𝜙∗ is defined as follows:  

𝛥𝜙 = 2𝜈𝑎𝑏𝜎! + 2𝜈𝑎𝑙𝜎 + 2𝑏𝑙𝜎 − 𝜈𝑎𝑏𝑙 𝛥𝑓                                                        5-7 

 

where 𝑎, 𝑏, and 𝑙 are width, thickness and length of a stem and a nucleus is composed of 

𝜈 stems. 𝜎 and 𝜎! are lateral and fold surface free energies of nucleus, respectively. Should 
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the heat of fusion be independent of temperature, the quantity of Δ𝑓 (bulk free energy of 

fusion) near the melting point (𝑇!! ) can be approximated by [193]: 

 

𝛥𝑓 = 𝛥ℎ! − 𝑇𝛥𝑆! = 𝛥ℎ! − 𝑇
!!!
!!!

= 𝛥ℎ!
!"
!!!

                                   5-8      

                  

and Δℎ! is the heat of fusion with Δ𝑇 = 𝑇!! − 𝑇 the undercooling. 

As it can be observed in equation 7, only the polymer bulk properties define the free 

energy of nucleus formation. As illustrated in Scheme 5-1, the free energy of formation of a 

nucleus starting from the surface of a nanoparticle is different from a nucleus starting inside 

the matrix of a polymer [194]. The free energy of formation of a nucleus in presence of a 

nanoparticle can be written as:   

𝛥𝜙 !"!#
∗ = 2𝜈𝑎𝑏𝜎! + 𝜈𝑎𝑙(𝜎 + 𝜎! − 𝜎!) + 2𝑏𝑙𝜎 − 𝜈𝑎𝑏𝑙(𝛥𝑓)       5-9 

                   

where 𝜎! is the surface energy of nanoparticle and 𝜎! is the interfacial energy between the 

nucleus and nanoparticle surfaces.  

 

 
Scheme 5-1. Schematic representation of a nucleus: a) inside the matrix of a nanocomposite or in 
pure polymer; b) on the surface of a nanoparticle 

 
Derivation of the free energy of nucleation in respect to the nucleus dimensions results to 

a set of equations for each scenario (with or without nanoparticles). Solving the equations 

leads to obtaining the critical dimensions of the nucleus:  
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!"#
!"

|!,! = 0
!"#
!"

|!,! = 0 
!"#
!"
|!,! = 0

                                                                                                            5-10 

 

The values of 𝑎∗,𝑏∗, and 𝑙∗ (critical dimensions of nucleus) obtained by solving the set of 

equation, are substituted into equations 5-7 and 5-8. The  Δ𝜙∗ for both cases are developed 

and used to find the nucleation rate of both nuclei starting from the surface of nanoparticles 

and starting inside the matrix of pure polymer as follows: 

 

𝐼 =  𝐼! 𝑒𝑥𝑝(−
!∗

!(!!!!)
) 𝑒𝑥𝑝[−  !"!!!

!"#!!
2𝜎 ]                                                              5-11 

 

𝐼!"!# =  𝐼! 𝑒𝑥𝑝(−
!∗

!(!!!!)
) 𝑒𝑥𝑝[−  !"!!!

!"#!!
𝜎 + 𝜎! − 𝜎! ]                                      5-12  

 

The obtained nucleation rate in presence of a nanoparticle is similar to the case of non-

coherent surface nucleation formulated by Hoffman and Lauritzen [193] where non-

coherent surface nucleation term was used for molecules with different orientation on the 

nucleus surface from that of substrate polymer crystal.  

In the case of APTES modified silica, based on surface/interfacial energy results of Table 

5.2, the lateral surface free energy is much higher than the difference of surface energy of 

nanoparticle and interfacial energy of the nucleus and nanoparticle surfaces ( 𝜎 ≫ (𝜎! − 𝜎!) 

). Therefore, the second exponential of equation 5-12 is much larger than the same term in 

equation 5-11 leading to the conclusion that the nucleation in the presence of nanoparticle 

surfaces is much faster and more facile to occur than the pure polymer state (in this specific 

grade of PLA).  

Following the nucleation rate, the rate of crystallization can also be expressed as [192] 

 

𝐺 =  𝐺! 𝑒𝑥𝑝(−
!∗

!(!!!!)
) 𝑒𝑥𝑝[−  !!"!!

!"#$
]                                                             5-13 

 

where 𝐺! is the pre-exponential factor. If the nucleation step is much slower than the 

growth step, nucleation will be the determining step in crystallization rate. In the other 
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words, one can say that if the energy barrier for nucleation is significantly high, the polymer 

chains cannot be in crystal structure and consequently no growth happens.  Figure 5-3 shows 

that on the time scale of the experiment there is no crystallization occurring in pure polymer 

while occurrence of crystallization is obvious in all nanocomposite samples. Since there is no 

difference between the growth rate of pure polymer and nanocomposites (first exponential 

term), it can be concluded that nucleation is the determining step in crystallization of PLA 

2002 and lack of nucleation prevent the crystallization in the time scale of calorimetry 

experiment. Modified Hoffman-Lauritzen nucleation theory for the nanocomposites justifies 

the facilitation of the nucleation and consequently the occurrence of crystallization. 

It is noteworthy that in all the above equations, the lateral surface energy is approximated 

with that of the bulk surface tension of polymer. 

 

6.4.2.2  Invest igat ion o f  the crys tal l izat ion mechanism by Avrami equat ion 

Isothermal analysis based on the Avrami equation [173,174] was performed to investigate 

the kinetics of crystallization. Although the Avrami equation represents the initial section of 

polymer crystallization correctly, its exponent can provide valuable information about the 

crystallization behavior of polymers [195]. The relative crystallinity curves of the 

nanocomposites in two different temperatures are shown in Figure 5-5. The crystallization 

half-times obtained from the relative crystallinity curves are summarized in Table 5.4. The 

Avrami double-log plots of the nanocomposites in both temperatures are also shown in 

Figure 5-6. As it can be seen, all nanocomposites have an n value (Avrami exponent value) in 

the range of 3-4 and 2-3 at 102 and 110 °C, respectively. The low n values correspond to two 

dimensional (disc shaped) spherulite growth with predetermined and sporadic mechanisms 

at the beginning of crystallization respectively, while higher n values are correlated to three 

dimensional spherulitic growth with a sporadic or a combination of sporadic and 

simultaneous nucleation types  [195,196]. The results show that in the presence of silica 

nanoparticles, an increase in temperature pushes the crystallization mechanism for PLA 

from three-dimensional to two-dimensional spherulitic nucleation and growth. Similar 

effects were observed due to the plasticizing effect CO2 has on the reorientation of polymer 

chains to less close-packed planar crystals [197]. The crystallization rates (G) (reciprocal of 

t1/2) of the nanocomposites are also summarized in Table 5.4. The crystallization rate 
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increases with an increase in the loading of silica. Furthermore, the nanocomposites show 

higher crystallization rates at higher temperatures. 

 

 
Figure 5-3.Cooling segment of non-isothermal thermal analysis of PLA and its silica nanocomposites 

obtained at atmospheric pressure with 2 °C/min cooling rate (peaks are exothermic) 
 

 

 

Table 5.3. Summary of non-isothermal analysis of PLA and PLA-silica nanocomposites 
 

	 Samples Tc  (˚ C) ΔHc  (J/g) Crystallinity
% 

PLA 2002D - - - 
0.5 wt% 101 9 10 
1 wt% 101 8 9 
2 wt% 104 18 19 
8 wt% 107 23 25 
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Figure 5-4.Wide-angle X-ray diffraction patterns of PLA and its corresponding silica nanocomposites 
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Figure 5-5.Isothermal DSC plots of PLA 2002D and its silica nanocomposites at a) 102 °C and b) 

110 °C (peaks are exothermic) and Relative crystallinity plots of PLA 2002D silica nanocomposites at 
c) 102 °C and d) 110 °C 

 
Figure 5-6.Avrami double-log plots of PLA2002D silica nanocomposites at a) 102 °C and b) 110 °C 



74 
 

 

 

Table 5.4. Avrami exponent, kinetic constant, half-time, and crystallization rate of the PLA2002D 
silica nanocomposites at 102 and 110 °C 

Sample Temperature (°C) n k    t ½ (min) G (min-1) 
0.5 wt% 

102 

3.15 1.04 12.5 0.080 
1    wt% 4.64 0.75 10.8 0.092 
2    wt% 3.17 1.06 9.4 0.106 
8    wt% 3.63 2.77 8.4 0.119 
0.5 wt% 

110 

2.57 1.52 9.2 0.108 
1    wt% 2.36 1.27 10.2 0.098 
2    wt% 2.29 2.60 7.2 0.138 
8    wt% 2.62 2.50 6.6 0.151 

	

 

 Effect of carbon dioxide on melt crystallization of 5.4.3

nanocomposites 

 
The isothermal high pressure DSC plots of PLA silica nanocomposites under 15 and 21 

bar carbon dioxide are presented in Figure 5-7.  The crystallization half-time results from 

high-pressure DSC measurements were also compared with atmospheric pressure in Table 

5.5. As can be observed, the crystallization half-time decreases significantly due to the 

plasticization effect of CO2 molecules, which in turn causes an increase in the mobility of the 

polymer chains and a decrease in the energy barrier for crystallization [197]. Based on the 

Hoffman-Lauritzen nucleation theory, the solubilized CO2 plasticizes the matrix and 

facilitates the molecular movement that leads to the decrease of energy barrier for reptational 

diffusion of polymer chain (U∗). On the other hand, application of high pressure increases 

the melting point and undercooling (Δ𝑇) according to the Clausius-Clapeyron equation and, 

consequently, based on equation 9 an increase in Δ𝑓 increases the second exponential term 

in equation 13 and further accelerates the crystallization rate.  

 In the other words, the activation energy barrier for crystallization comes from the chain 

energy dissipation which comes as a result of chain retraction and folding [198].  The 

retraction and folding phenomenon depends on not only the viscosity, but also CO2, which, 

as a solvent is capable of diluting and plasticizing it [29,199,200]. On the other hand, for a 
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polymer chain to retract and fold, it is required to create a new surface while interfacial 

tension resists against this phenomenon. It has been shown that under compressed CO2, the 

interfacial tension of polymer melts decreases, and by this same effect, compressed CO2 can 

increase the rate of crystallization by lowering the activation energy associated with it 

[6,104,169]. As the results show, by further increasing CO2 pressure, the crystallization half-

time remains constant or slightly increases.  Other studies [197,201] showed an increase in 

both the total crystallinity and the crystallization rate at pressures of CO2 up to 20 bar.  

 
 

 
Figure 5-7.Isothermal high pressure DSC plots of PLA 2002D and its silica nanocomposites at 102 

°C and a) 15 bar  and b) 21 bar (peaks are exothermic) 
 

Table 5.5. Comparison between crystallization half-time of silica nanocomposites at three different 
pressures of carbon dioxide 

         t1/2 (min)   

Sample Atmospheric 15 bar 21 bar 

0.5 wt% 12.5 6.5 7.0 
1 wt% 11.7 7.8 8.5 
2 wt% 8.5 4.8 5.1 
8 wt% 8.1 4.5 5.0 
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  Nanocomposites of different molecular weights and D-5.4.4

contents of PLA 

The effect of nanoparticles on PLA crystallization can be observed more clearly in the 

4032D and 3001D grades which have a lower molecular weight and less D-content 

compared to 2002D. As shown in Figure 5-8 and Figure 5-9, the 3001D and 4032D grades 

have a very wide peak in the range of 35-40 min at both 102 and 110 °C. It can be further 

observed that surface-modified silica nanoparticles accelerate the crystallization process by 

decreasing the half-time by up to a factor of 10 at both 102 and 110 °C. Analysis of the 

Avrami curves shows that the n value after incorporation of silica nanoparticles has not 

changed significantly In other words, PLA undergoes three-dimensional bulk crystallization 

before and after the incorporation of nanoparticles [89,202]. It has also been shown that the 

Avrami exponent is usually higher than 3 for linear PLA which corresponds to 

heterogeneous three-dimensional nucleation and growth [197]. In other words, the lack of 

entanglement in PLA's linear chain structure promotes the three-dimensional growth 

mechanism. However, for PLA 2002D nanocomposite samples with higher molecular 

weight, as long as the conditions for both nucleation (presence of silica nanoparticles) and 

higher mobility and dynamics of polymer chains (crystallization at higher temperature) are 

provided, the Avrami exponent tends to be lower and corresponds to the two-dimensional 

mechanism. 
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Figure 5-8.Isothermal DSC and relative crystallinity plots of PLA 3001D (a and c) and PLA 4032D 

(b and d) and their silica nanocomposites at 102 °C (peaks are exothermic) 
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Figure 5-9.Isothermal DSC and relative crystallinity plots of PLA 3001D (a and c) and PLA 4032D 

(b and d) and their silica nanocomposites at 110 °C (peaks are exothermic) 
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Table 5.6.Avrami exponent, kinetic constant, half-time, and crystallization rate of the PLA 3001D, 
4032D and their silica nanocomposites at 102 and 110 °C 

Sample 
Temperature 

(°C) n k t ½ (min) G (min -1) 

3001D 

102 

4.2 0.41 28 0.035 
3001D-2 wt% 4.09 11.04 3.5 0.285 

4032D 4.6 0.31 32 0.031 
4032D-2 wt% 4.44 5.56 3.2 0.312 

3001D 

110 

4.1 0.84 31 0.032 
3001D-2 wt% 3.29 11.58 3.2 0.312 

4032D 3.27 1.08 32 0.031 
4032D-2 wt% 3.5 11.16 3.5 0.285 

	

 

 Conclusions 5.5

The present study was designed to determine the effect of surface-modified silica 

nanoparticles on PLA crystallization. Both isothermal and non- isothermal crystallization for 

various loadings of silica nanoparticles were explored. The results showed a remarkable 

improvement in crystallization rate and crystallinity for PLA with high molecular weight and 

D-content. The WAXD patterns of the samples showed the appearance of α type crystal 

structures with orthorhombic unit cells after the incorporation of surface-modified silica 

nanoparticles. A modified Hoffman-Lauritzen nucleation theory justified the acceleration of 

crystallization by introduction of the surface energy of nanoparticles, interfacial energy 

between nanoparticle and lateral surface of crystals into the rate equation. Analysis of the 

Avrami equation showed a three-dimensional spherulitic structure which, at higher 

temperatures, proceeds towards a two-dimensional structure with less packed crystals. It was 

shown that the presence of carbon dioxide increases the crystallization rate at 15 bar, but at 

the higher pressure of 21 bar, the crystallization rate became nearly constant. The 

crystallization rate of PLA grades with lower molecular weights and lower D-content 

increased by up to a factor of 10 with no change in crystallization mechanism after the 

incorporation of surface-modified silica nanoparticles. 
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6. CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 Conclusions 6.1

In this dissertation, a fundamental study is reported on the effect of the surface-modified 

silica nanoparticles on foam processing related properties of the poly (lactic acid) (PLA). The 

effect of synthesized amine-modified silica nanoparticles on interfacial tension and 

crystallization of PLA has been studied. In the foaming process, the nucleation and foaming 

of polymers was strongly influenced by surface/interfacial tension. As nucleation rate is 

inversely related to the exponential cubic power of surface/interfacial tension, one can lower 

the surface tension to decrease the energy barrier for cell nucleation and exponentially 

increases the number of cells. On the other hand, enough molecules of gas should be 

available and the size of the bubbles should reach a critical bubble radius to have a stable 

growing bubble in system. For bubbles smaller than the critical radius, the surface tension 

force is high and causes the gas clusters to collapse.  

Similar to their role in systems in food science, cosmetics, oil production and renewable 

energies, particles can adsorb to the fluid interfaces. Adsorption of particles at fluid 

interfaces is not only a new rout to produce new self-assembled materials, but also their 

presence at the interface can stabilize fluid-fluid interface. One of the key characteristics of 

particles at the interface is their wettability at the three-phase interface and it mainly depends 

on the surface chemistry of the particle and on the chemical nature of the two phases at the 

interface. Silica nanoparticles are inexpensive and easy to manufacture nanoparticles that can 

adsorb to the interface and decrease the interfacial tension between polymer melts and 

supercritical fluids. The nanoparticles can act as nucleating agents for the foaming of 

polymers by decreasing the energy barrier for nucleation, increasing local stress variations 

around the particles, or indirectly affect the nucleation via crystallization induction of the 

polymers. On the hand, in PLA foams cell coalescence and cell rupture happens during in 

cell growth step because of its low melt strength. Improvement in PLA’s crystallization 

kinetics during processing and foaming is considered as an effective way to improve the melt 

strength through formation of the network of nucleated crystals. Moreover, promoting the 

crystallization of the polymers can lead to heterogeneous cell nucleation around the crystals 
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as the presence of an interface reduces the free energy for nucleation and consequently 

increases the nucleation rate.  

Surface modification of silica nanoparticles and alteration of its wettability was an 

important step in this project. The surface-modified nanoparticles provide a surface with 

lower energy which contribute in both better dispersion of the particles in the matrix and 

higher work of adhesion. For the amine modification, the interaction and adsorption of CO2 

on the surface of the silica particles can be increased via interaction between basic amine 

groups on the surface and acidic CO2 molecules. Furthermore, the surface-modified 

nanoparticles are surface-active and their affinity towards CO2 promotes their irreversible 

adsorption to the polymer/ CO2 interface. On the hand, the free energy barrier for 

heterogeneous nucleation of polymer foams depends on the three–phase contact angle 

between the nanoparticle/ polymer/ CO2. An increase in three-phase contact angle leads to a 

decrease in nucleation barrier. 

As the first step of this study, we have used Axisymmetric Drop Shape Analysis Profile 

(ADSA-P) pendant drop method to investigate the interfacial tension of PLA in supercritical 

carbon dioxide at high temperatures and pressures. The temperature and pressure range of 

the measurement is in those of microcellular foaming and blending processes, i.e. 143°C to 

168°C and 3450 to 13790 kPa. The results showed a reduction in interfacial tension with 

increasing temperature and pressure and a decrease in its dependency on temperature at high 

pressures. At high pressures interfacial tension decreases as a result of an increase in 

temperature, but at the same time solubility of CO2 decreases at high temperatures. The 

relationship between interfacial tension and the density-difference of polymer-supercritical-

CO2 mixtures using generalized Macleod equation showed a decrease in values of interfacial 

tension with an increase in temperature. The slopes were in the range of 1.84 to 1.94. The 

dimensionless Bond number was used to study the stability of melted PLA for pendant drop 

measurements and the results showed that the drops with values in range of 0.36-0.48 were 

stable. 

In the next step, the effect of synthesized silica nanoparticles with CO2 – philic (amine) 

surface modification on interfacial tension between PLA and supercritical CO2 was studied. 

The interfacial tension of silica-containing PLA and supercritical CO2 is measured using 

pendant drop method at high pressures and high temperatures. Although the interfacial 

tension decreases as a result of the nanoparticles’ adsorption to the interface, a minimum in 
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silica loading of 2 wt. % for all the pressures was observed. At higher loadings of the silica 

nanoparticles, interfacial tension increased to a final plateau value due to attractive lateral 

capillary forces originating from the perturbation of the PLA- CO2 interface by particles. 

Although the capillary force at the interface resists a deformation or stretching in surface 

area and slightly increase the surface tension, it can increase the surface elasticity of the 

interface. Contact angle measurements at high temperatures and pressures showed a 

decrease in compatibility between the nanoparticles and PLA with increasing CO2, but in 

general the adsorption of nanoparticles was thermodynamically favorable and irreversible. 

The binding energy calculations showed irreversible adsorption due to high values of energy 

compared with thermal fluctuations.  

The other step was to study the effect of surface-modified silica nanoparticles on PLA 

crystallization. Both isothermal and non- isothermal crystallization for various loadings of 

silica nanoparticles were investigated. Ahead of nanocomposite preparation, a proper surface 

modification of the silica nanoparticles was selected to satisfy the need for a well-dispersed 

nanocomposites, higher-absorption of CO2, and faster crystallization rate.  Surface energy 

and interfacial energy between polymer/nanoparticle calculations at high temperatures are 

used to calculate work of adhesion and also explanation of acceleration of the crystallization 

process in presence of the nanoparticles. For PLA with high molecular weight and D-

content, the crystallization rate and crystallinity increased significantly. The incorporation of 

surface-modified silica nanoparticles developed alfa type crystal structure with orthorhombic 

unit cells. A modified Hoffman-Lauritzen nucleation theory was developed considering the 

surface energy of nanoparticles, interfacial energy between nanoparticle and lateral surface of 

crystals into rate equation. The model confirmed the acceleration and occurrence of 

crystallization for nanocomposite samples. Isothermal analysis based on the Avrami equation 

was performed to investigate the kinetics of crystallization. The results revealed a 

sporadically formed three-dimensional spherulitic structure. The Avrami exponent analysis at 

higher temperatures moved towards a two-dimensional structure with less packed crystals. In 

order to consider the crystallization improvement for foaming processes, isothermal 

crystallization under compressed CO2 is also investigated. The heterogeneous nucleation 

provided by nucleation agents such as silica nanoparticles improves the crystallization rate at 

high temperatures when there is less driving force for homogeneous nucleation. In addition 

to the role as a blowing agent in foaming, the effect of carbon dioxide as a plasticizer on 
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crystallization is more dominant at lower temperatures where higher chain mobility is 

required for crystallization. That is the reason why the effect of CO2 has been studied at a 

low and narrow crystallization temperature window. Therefore, combining nucleation and 

plasticization is expected to increase the crystallization rate and broaden the crystallization 

temperature window in the foaming process of PLA.  It was shown that the presence of 

carbon dioxide increases the crystallization rate at 15 bar, but at the higher pressure of 21 

bar, the crystallization rate became nearly constant. The crystallization rate of PLA grades 

with lower molecular weights and lower D-content increased by up to a factor of 10 with no 

change in crystallization mechanism after the incorporation of surface-modified silica 

nanoparticles. 

 

 Original Contributions 6.2

Long after their discovery in early 20th century by Pickering and Ramsden, solid stabilized 

foams and emulsion came to the centre of attention less than a decade ago. There has been 

numerous work done on aqueous Pickering foams and emulsions, however; to the best of 

our knowledge, there is no study been performed on the solid stabilization of polymer 

foams, study on adsorption of nanoparticles to polymer interface in a supercritical 

environment, and the effect amine-modified silica nanoparticles on crystallization in 

atmospheric and compressed CO2. In this thesis, nanoparticles are used to observe their 

effect on foaming of poly lactic acid from fundamental point of views. As it was discussed in 

chapter 1 and 2, interfacial tension and crystallization are two fundamental and key 

characteristics that determine foaming behavior of polymers.  

The three main chapters, including Chapter 4, 5, and 6, are focusing on the effect of 

carbon dioxide on PLA interfacial tension, effect of silica nanoparticles and their adsorption 

behavior in PLA/CO2 system, and effect of the nanoparticles and CO2 on PLA 

crystallization, respectively. The dependency of PLA/ CO2 interfacial tension to processing 

conditions is the first step to find the processing window and demonstration of nucleation 

and growth phenomena. Interfacial tension of PLA in presence of CO2 was studied in details 

in Chapter 4 and the results were published journal of Thermochimica Acta in 2015. 

According to our results, the surface-modified silica nanoparticles can irreversibly adsorb 

to see PLA/ CO2 interface. The effectiveness of the nanoparticles in interfacial tension 

reduction was studied thoroughly in the previously optimized processing conditions. The 
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presence of nanoparticles at the interface can stabilize the bubbles and prevent the growing 

bubbles from coalescence phenomena due to repulsion between nanoparticles in adjacent 

interface. Furthermore, the interfacial tension increased after a certain percentage of the 

nanoparticles due to capillary interaction between the particles at the interface. Higher 

interfacial modulus is the critical in foam stabilization as Ostwald-ripening and draining 

destabilization mechanisms are coupled to the interfacial viscoelasticity. This part of study 

was discussed in details in Chapter 5 and the results were published in journal of Langmuir 

in 2015.  

Crystallization improvement using nanoparticles as another step in improvement of PLA 

foaming was also studied thoroughly in Chapter 6. PLA’s low melt strength leads to cell 

coalescence and cell rupture during growth step. Heterogeneous nucleation effect of surface-

modified silica nanoparticles and plasticization effect of carbon dioxide was shown to 

increase the crystallization rate, induce the crystallization, and broaden the crystallization 

temperature window in the foaming process of PLA.  This part of the research is submitted 

to Polymer. 

 

 Recommendations  6.3

We propose the following suggestions and recommendations as future work to further 

delve into the different steps of this research: 

In this work the two important parameter controlling the foaming process of polymeric 

foams have been studied. The results of chapters 4 and 5 show that interfacial tension and 

crystallization of PLA have been changed because of the silica nanoparticles in the system. It 

is beneficial from practical point of view to do batch foaming of the nanocomposites to 

correlate the change in interfacial and crystallization properties to the final foam properties. 

 As discussed in chapter 2 and chapter 5, the contact angle and wettability of the 

nanoparticles is a key factor to reduce the energy barrier for nucleation in foaming and to 

provide a low surface energy particle for better dispersion, as well as better crystal 

nucleation. It is suggested to study the effect of various surface modifications of silica on 

interfacial behavior, crystallization, and stabilization of polymeric systems. Furthermore, the 

effect of these nanoparticles and surface modification can also be studied in aqueous foams 

as a more simple system for investigation. 
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In order to increase the amount of absorbed CO2 and prevent the undesired effect of 

vitrified polymer layer around the nanoparticles, it is interesting to study the effect of porous 

nanoparticles with CO2 – philic modification on CO2 solubility and melt strength of the 

nanocomposites. The porous structure can also be effective in creation of nano-sized cell 

structure in foaming of the nanocomposites.   

The rheological properties of the interface Interfacial modulus is a critical characteristics 

in foam stability. An interfacial layer with a high surface elastic modulus and a resistance to 

compression reduces the coarsening process in foams. It is important from practical point of 

view to study the interfacial rheology of the solid-stabilized foams  

The effect of nanoparticles aspect ratio and shape on adsorption to the interface and the 

stability of Pickering foams is also important as different shapes have different dynamics of 

adsorption and surface coverage at the interface. 
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Appendix I. Supporting Information (SI) for Chapter 6 

 
I1. Interfacial tension and contact angle measurements 

 
Surface tension of PLA at various temperatures was measured using axisymmetric drop 

shape analysis profile (ADSA-P) technique. The interfacial tension of the polymer samples 

was measured by fitting the shape and dimensions of their menisci to the theoretical drop 

profile based on the Laplace equation of capillarity: 

∆𝑃 = 𝛾( !
!!
+ !

!!
)                                                                                                    I-1 

                                                                                                                 

 where 𝛾 is surface tension, ∆𝑃 is the pressure difference across the interface, and R1 and 

R2 are two principal radii of curvature. If gravity is the only external force, ∆𝑃 can be 

expressed as a linear function of height: 

 ∆𝑃 =  ∆𝑃! + ∆𝜌 𝑔𝑧                                                                                            I-2 
                                                                         

where ∆𝑃! is the pressure difference at a reference plane, and z is the vertical height of 

the drop measured from a reference plane [203]. A high-temperature chamber was designed 

for both pendant drop and sessile drop measurement [32,35,169]. For the contact angle 

measurements the silicon surfaces were mounted on top of the inversed stainless steel rod. 

Prior to the surface tension measurement, the accuracy was tested using a pendant drop 

measurement of water. The value of 72.12 ± 0.11 mJ.m-2 was consistent for water at room 

temperature.  

 

I2. Contact Angle Measurements and Surface Energy Calculations 

at Room Temperature 

The contact angle measurement and surface energy calculations based on Equations 8-4 

and 8-7 are summarized in Table I.1. The results were obtained using two different 

equations of state; one using the Neumann approach and the other one based on a surface 

energy component approach using the Van Oss equation of state [203,204]. The contact 
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angles of three liquids are used in the calculation of Van Oss components. For the results 

obtained through the Neumann approach (Equations 8-3 and 8-4), the contact angle of only 

one liquid suffices to calculate the surface energy: 

   

                                                     I-3 
 

 

where β = 0.0001247( m2/mJ)2 .Combining the equation 7 with Young’s equation: 

          

                                                                 I-4 
 

And for the Van Oss equation of state, the surface tension components are introduced as:                                                        

                                                                       I-5 
                                                                                                                                                              

 

which lead to the equation for solid – liquid interfacial tension: 

 

                                                          I-6 
   

                                                                                                                       

Combining with Young’s equation: 

 

                                                                   I-7 
 

 
 

Table I.1. Room – temperature water contact angle and surface energy results for silica and silica-
APTES obtained via Van Oss and Neumann equations of state 

	

                           Van Oss components (mJ/m2) Neumann (mJ/m2) 

Samples 
Water 

Contact 
Angle (°) 

95 % 
CI LW acid base total 

total 
(water) total (Glycerol) 

Silica 18.8 ±1.4 38.1 46.2 2.3 58.8  68.4 58.6 
Silica-

APTES 
32.8 ±1.9 37.3 42.1 1.2 51.8 62.4 52.4 

 
 

  𝛾! (1 +  cos 𝜃) = 2 !𝛾!!"𝛾!!" + 2 !𝛾!!𝛾!! + 2 !𝛾!!𝛾!!  

  𝛾 = 𝛾!" + 2 !𝛾!𝛾!  

  𝛾!" = (!𝛾!!" − !𝛾!!")! + 2 !!𝛾!! −!𝛾!!! (!𝛾!! − !𝛾!!)   

  cos 𝜃 = −1 + 2 !
!!
!!

 𝑒!!(!!!!!)!   

  𝛾!" = 𝛾! + 𝛾! − 2!𝛾!𝛾! 𝑒!!(!!!!!)!  
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I3. Surface Tension and Contact Angle at High Temperatures 

 
Figure I-1.Surface tension of PLA 2002D obtained from pendant drop measurement at high 

temperatures 

 
Figure I-2.Contact angle of PLA polymer melt on silicon (black square) and silicon-APTES (red 

circle) surfaces at high temperatures (the maximum value for error bar is ± 0.2 º for 95% confidence 
interval) 
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