
Brick Generation and
Conformal Subgraphs

by

Nishad Kothari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2016

c© Nishad Kothari 2016



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

The results in Chapters 2 and 3 are based on the paper [KM16] co-authored with my
supervisor U. S. R. Murty.

iii



Abstract

A nontrivial connected graph is matching covered if each of its edges lies in a perfect
matching. Two types of decompositions of matching covered graphs, namely ear decomposi-
tions and tight cut decompositions, have played key roles in the theory of these graphs. Any
tight cut decomposition of a matching covered graph results in an essentially unique list
of special matching covered graphs, called bricks (which are nonbipartite and 3-connected)
and braces (which are bipartite).

A fundamental theorem of Lovász (1983) states that every nonbipartite matching cov-
ered graph admits an ear decomposition starting with a bi-subdivision of K4 or of the
triangular prism C6. This led Carvalho, Lucchesi and Murty (2003) to pose two problems:
(i) characterize those nonbipartite matching covered graphs which admit an ear decom-
position starting with a bi-subdivision of K4, and likewise, (ii) characterize those which
admit an ear decomposition starting with a bi-subdivision of C6.

In the first part of this thesis, we solve these problems for the special case of planar
graphs. In Chapter 2, we reduce these problems to the case of bricks, and in Chapter 3,
we solve both problems when the graph under consideration is a planar brick.

A nonbipartite matching covered graph G is near-bipartite if it has a pair of edges
α and β such that G−{α, β} is bipartite and matching covered; examples are K4 and C6.
The first nonbipartite graph in any ear decomposition of a nonbipartite graph is a bi-
subdivision of a near-bipartite graph. For this reason, near-bipartite graphs play a central
role in the theory of matching covered graphs. In the second part of this thesis, we establish
generation theorems which are specific to near-bipartite bricks.

Deleting an edge e from a brick G results in a graph with zero, one or two vertices of
degree two, as G is 3-connected. The bicontraction of a vertex of degree two consists of
contracting the two edges incident with it; and the retract of G− e is the graph J obtained
from it by bicontracting all its vertices of degree two. The edge e is thin if J is also a brick.
Carvalho, Lucchesi and Murty (2006) showed that every brick, distinct from K4, C6 and
the Petersen graph, has a thin edge.

In general, given a near-bipartite brick G and a thin edge e, the retract J of G− e need
not be near-bipartite. In Chapter 5, we show that every near-bipartite brick G, distinct
fromK4 and C6, has a thin edge e such that the retract J of G−e is also near-bipartite. Our
theorem is a refinement of the result of Carvalho, Lucchesi and Murty which is appropriate
for the restricted class of near-bipartite bricks.
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For a simple brick G and a thin edge e, the retract of G− e may not be simple. It was
established by Norine and Thomas (2007) that each simple brick, which is not in any of
five well-defined infinite families of graphs, and is not isomorphic to the Petersen graph,
has a thin edge such that the retract J of G− e is also simple.

In Chapter 6, using our result from Chapter 5, we show that every simple near-bipartite
brick G has a thin edge e such that the retract J of G− e is also simple and near-bipartite,
unless G belongs to any of eight infinite families of graphs. This is a refinement of the
theorem of Norine and Thomas which is appropriate for the restricted class of near-bipartite
bricks.
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Chapter 1

Introduction and summary

This chapter presents a broad survey of the topics relevant to this thesis. Our main results,
namely, Theorems 1.10, 1.11, 1.12, 1.22 and 1.24 are presented within the overall context,
and we highlight these using a bar on the left side. In addition, Section 1.8 has a list of
our results.

1.1 Matching covered graphs

One of the motivations for the study of perfect matchings and edge-colorings was the four-
color conjecture. Tait (1880) observed that the four-color conjecture is equivalent to the
statement that every 2-connected planar cubic graph is 3-edge-colorable. (The Petersen
graph shows that planarity is an essential assumption for this conclusion to hold.)

Meanwhile, motivated by a problem about factoring polynomials, Petersen (1891)
showed that every 2-connected cubic graph has a perfect matching. Tutte [Tut47] proved
his celebrated 1-factor Theorem characterizing graphs which have a perfect matching. (The
number of odd components of a graph G is denoted by odd(G).)

Theorem 1.1 [Tutte’s Theorem] A graph G has a perfect matching if and only if
odd(G− S) ≤ |S| for each subset S of V (G).

Tutte deduced as a corollary that, in fact, in a 2-connected cubic graph each edge lies
in a perfect matching. Figure 1.1 shows two cubic graphs, namely K4 and the triangular
prism C6, which play prominent roles in this thesis.
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Let G be a graph that has a perfect matching. A nonempty subset S of its vertices is
a barrier if it satisfies the equality odd(G− S) = |S|. For distinct vertices u and v of G, it
is easily deduced from Tutte’s Theorem that the graph G− {u, v} has a perfect matching
if and only if no barrier of G contains both u and v.

An edge e of G is admissible if there is some perfect matching of G that contains e;
otherwise it is inadmissible. Clearly, an edge is admissible if and only if no barrier of G
contains both ends of e.

K4 C6

Figure 1.1: The two smallest nonbipartite matching covered graphs

A connected graph with two or more vertices is matching covered if each of its edges is
admissible. The observation made above implies the following characterization of matching
covered graphs. (It can be used to establish, in particular, that every 2-connected cubic
graph is matching covered.)

Proposition 1.2 Let G be a connected graph with a perfect matching. Then G is matching
covered if and only if every barrier of G is stable (that is, an independent set). 2

The following fundamental theorem is due to Kotzig (see [LP86, page 150]).

Theorem 1.3 [The Canonical Partition Theorem] The maximal barriers of a
matching covered graph G partition its vertex set.

For a matching covered graph G, the partition of its vertex set defined by its maximal
barriers is called the canonical partition of V (G). For instance, for a bipartite matching
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covered graph H[A,B], the canonical partition of V (H) consists of precisely two parts,
namely, its color classes A and B; this is implied by the following proposition which may
be derived from the well-known Hall’s Theorem. (The neighbourhood of a set of vertices S
is denoted by N(S).)

Proposition 1.4 [Characterizations of Bipartite Matching Covered Graphs]
Let H[A,B] denote a bipartite graph on four or more vertices, where |A| = |B|. Then the
following statements are equivalent:

(i) H is matching covered,

(ii) |N(S)| ≥ |S|+ 1 for every nonempty proper subset S of A, and

(iii) H − {a, b} has a perfect matching for each pair of vertices a ∈ A and b ∈ B. 2

Matching covered graphs are referred to as ‘1-extendable’ graphs in [LP86]. The term
‘matching covered’ was introduced by Lovász in his seminal work [Lov87] characterizing
the matching lattice. For a comprehensive treatment of matching theory and its origins,
we refer the reader to Lovász and Plummer [LP86], and to Schrijver [Sch03].

For general graph-theoretical notation and terminology, we essentially follow Bondy
and Murty [BM08]. All graphs considered here are loopless; however, we allow multiple
(parallel) edges.

It is surprising that matching covered graphs, defined in terms of these seemingly
modest axioms, possess a strikingly rich structure. Our investigations, reported in this
thesis, are concerned with certain specific questions related to the structure of matching
covered graphs, and reinforce the above claim.

This thesis may be viewed as consisting of two main parts. The first part pertains
to the problem of characterizing planar matching covered graphs which do not contain
specific types of subdivisions of K4 and C6 — a problem that arises from a thirty year
old result (Theorem 1.6) of Lovász. In the second part, we explore generation procedures
for an important class of matching covered graphs which are referred to as ‘near-bipartite
bricks’.
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Part I - Conformal Subgraphs

1.2 A theorem of Lovász

Several important classes of graphs are characterized by the absence of subdivisions of
certain graphs as subgraphs. For example, as was shown by Kuratowski (1930), planar
graphs are characterized by the property that they do not contain a subgraph which is a
subdivision of either K5 or of K3,3. In the context of matching covered graphs, the notions
of subdivision and subgraph need to be employed in a restricted sense, as explained below.

Figure 1.2: The Petersen graph

The length of a path is the number of its edges. A path is odd (even) if its length is
odd (even). To bi-subdivide an edge e means to subdivide e by inserting an even number
of vertices; or equivalently, to replace e by an odd path. A bi-subdivision of a graph J is
a graph H obtained from J by means of bi-subdividing a subset of its edges. It is easily
verified that any bi-subdivision of a matching covered graph on four or more vertices is
also matching covered; however, this is clearly not true for arbitrary subdivisions.

In Figure 1.2, the subgraph whose edges are depicted by the bold lines is a bi-subdivision
of K4. (Bi-subdivisions are also known as totally odd subdivisions. There is an extensive
literature dealing with bi-subdivisions of K4 in the context of chromatic graph theory. See
[Zan98] and [Tho01].)

A matching covered subgraph H of a matching covered graph G is conformal if the
graph G − V (H) has a perfect matching; equivalently, H is conformal if each perfect
matching of H extends to a perfect matching of G. In Figure 1.2, the bi-subdivision of
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K4 depicted by the bold lines is a spanning subgraph, whence conformal. In general, a
conformal subgraph may not be spanning. (In the literature, conformal subgraphs have
been referred to as ‘nice’ subgraphs by Lovász [Lov83], as ‘central’ subgraphs by Robertson
et al. [RST99], and as ‘well-fitted’ subgraphs by McCuaig [McC01].)

1.2.1 Ear decompositions

Bipartite graphs

A single ear of a graph is an odd path whose internal vertices (if any) have degree two in
the graph.

Let H be a bipartite graph and K a subgraph of H. A bipartite ear decomposition
of H starting with K is a sequence H1 ⊂ H2 ⊂ · · · ⊂ Hr of subgraphs of H such that
(i) H1 := K and Hr := H, and (ii) for each i such that 1 ≤ i ≤ r − 1, the graph Hi+1 is
the union of Hi and exactly one single ear of Hi+1.

The following may be deduced from the fact that, for a bipartite matching covered
graph K[A,B], the graph K − {a, b} has a perfect matching for every pair of vertices
a ∈ A and b ∈ B (see Proposition 1.4).

Proposition 1.5 Let H be a bipartite graph and suppose that K is a matching covered
subgraph of H. If H admits a bipartite ear decomposition starting with K, then the graph H
is also matching covered. 2

It is easily seen that each subgraph in a bipartite ear decomposition of H is a conformal
subgraph of H. Conversely, given any conformal matching covered subgraph K of a bipar-
tite matching covered graph H, there exists a bipartite ear decomposition of H starting
with K. In particular, since the subgraph H[e] induced by any edge e is conformal, H
admits a bipartite ear decomposition starting with H[e]. See [LP86, page 124].

Nonbipartite graphs

The ‘addition of single ears’ is not sufficient to construct nonbipartite matching covered
graphs. For instance, it is not possible to obtain K4 from its conformal subgraph C4, by
means of adding single ears, such that at each step we have a matching covered graph.
To fix this, one must allow the ‘addition of two single ears simultaneously’, as explained
below.
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A pair of vertex-disjoint single ears is called a double ear. Let G be a matching covered
graph and H a matching covered subgraph of G. An ear decomposition of G starting
with H is a sequence G1 ⊂ G2 ⊂ · · · ⊂ Gr of matching covered subgraphs of G such that
(i) G1 := H and Gr := G, and (ii) for each i such that 1 ≤ i ≤ r − 1, the graph Gi+1 is
the union of Gi and exactly one single or double ear of Gi+1. We say that Gi+1 is obtained
from Gi by adding a single ear, or by adding a double ear, as applicable.

A basic result from [LP86, page 182] states that a matching covered subgraph H of
a matching covered graph G is conformal if and only if G admits an ear decomposition
starting with H. Consequently, every matching covered graph G admits an ear decompo-
sition starting with G[e], where e is any edge of G. Clearly, the second graph in such a
sequence is obtained by adding a single ear, and it is a cycle of even length. (It should be
noted that a matching covered graph may admit different ear decompositions, possibly of
different lengths.)

In other words, every matching covered graph G may be constructed from K2 by means
of adding single or double ears such that, at each step, we have a matching covered graph.
A subtle point needs to be made here. A double ear consists of two vertex-disjoint single
ears; its addition is justified only if neither of its constituent single ears can be added
individually to obtain a matching covered graph. Henceforth, we will implicitly assume
this property when considering ear decompositions. (In [LP86], such an ear decomposition
is called ‘non-refinable’.)

For instance, as noted earlier, every bipartite matching covered graph may be con-
structed by adding single ears alone. Conversely, any matching covered graph, obtained
from a bipartite matching covered graph by adding a single ear, is also bipartite.

Now let G be a nonbipartite matching covered graph, and let G1 ⊂ G2 ⊂ · · · ⊂ Gr be an
ear decomposition of G starting with G1

∼= K2. It follows from the above observation that,
at some stage, a double ear is added. Let Gk, where 3 ≤ k ≤ r, be the first graph in the
sequence obtained by adding a double ear. Then all graphs G1, G2, . . . , Gk−1 are bipartite,
and Gk is nonbipartite. This observation is of significance, especially in the second part of
this thesis, and we will return to it in Section 1.6.

A natural question arises from the above observation: given a nonbipartite matching
covered graph G, how early can the first double ear be added? Lovász [Lov83] answered
this by proving that G admits an ear decomposition G1 ⊂ G2 ⊂ · · · ⊂ Gr starting with
G1
∼= K2 such that either G3 is a bi-subdivision of K4, or G4 is a bi-subdivision of C6. This

fundamental result of Lovász may be restated as follows.
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Theorem 1.6 [Lovász’s Theorem] Each nonbipartite matching covered graph G ad-
mits an ear decomposition starting with either a bi-subdivision of K4 or of C6.

A short proof of the above theorem was given by Carvalho and Lucchesi [CL96]. We
remark that, in general, a nonbipartite matching covered graph need not admit an ear
decomposition which uses only one double ear addition. For example, every ear decompo-
sition of the Petersen graph requires the addition of at least two double ears (see [LP86,
page 178]).

1.2.2 K4-based and C6-based graphs

For a matching covered graph J , we say that G is J-based if G contains a conformal
subgraph H which is a bi-subdivision of J . Otherwise, we say that G is J-free. This notion
has played a crucial role in characterizing important classes of matching covered graphs.
For example, Little [Lit75] showed that a bipartite matching covered graph is Pfaffian if
and only if it is K3,3-free.

Lovász’s Theorem (1.6) implies that every nonbipartite matching covered graph is either
K4-based, or is C6-based, or both. For example, the Petersen graph isK4-based but C6-free;
on the other hand, each prism (see page 13) on 4k + 2 vertices, where k ≥ 1, is C6-based
but K4-free; whereas each complete graph on 2k vertices, where k ≥ 3, is K4-based as well
as C6-based.

Alternatively, the K4-based matching covered graphs are precisely those which admit
an ear decomposition starting with a bi-subdivision of K4. An analogous statement holds
for C6-based graphs.

This led Carvalho, Lucchesi and Murty [CLM03] to pose two problems: (i) determine
whether or not a given matching covered graph G is K4-free, and likewise, (ii) determine
whether or not G is C6-free. These problems are, in general, unsolved. In the first part of
this thesis, we solve these problems for the special case of planar matching covered graphs.
In the next two sections, we state the highlights of our solution.

1.3 Bricks

It is well-known that each matching covered graph may be ‘decomposed’, in an essentially
unique manner, into special matching covered graphs called ‘bricks’ and ‘braces’. This
procedure is known as the ‘tight cut decomposition’.

7



This decomposition theory was developed by Kotzig, Lovász and Plummer, and its
import is due to the fact that the properties of a matching covered graph may often be
understood by analysing the properties of its bricks and braces. For instance, a matching
covered graph is Pfaffian if and only if each of its bricks and braces is Pfaffian; see [LR91].
Our Theorem 1.10 is another example of this type. We now proceed to describe this
decomposition procedure.

1.3.1 Tight cut decomposition

For a nonempty proper subset X of the vertices of a graph G, we denote by ∂(X) the
cut associated with X, that is, the set of all edges of G that have one end in X and the
other end in X := V (G) − X. We refer to X and X as the shores of ∂(X). A cut is
trivial if any of its shores is a singleton. For a cut ∂(X), we denote the graph obtained
by contracting the shore X to a single vertex x by G/(X → x). In case the label of the
contraction vertex x is irrelevant, we simply write G/X. The two graphs G/X and G/X
are called the ∂(X)-contractions of G. In Figure 1.3, the three edges crossing the bold line
constitute a nontrivial cut, say ∂(X), and the two ∂(X)-contractions are K4 and K3,3.

Figure 1.3: A nontrivial tight cut

Let G be a matching covered graph. A cut ∂(X) is a tight cut if |M ∩ ∂(X)| = 1
for every perfect matching M of G. It is easily verified that if ∂(X) is a nontrivial tight
cut of G, then each ∂(X)-contraction is a matching covered graph that has strictly fewer
vertices than G. If either of the ∂(X)-contractions has a nontrivial tight cut, then that
graph can be further decomposed into even smaller matching covered graphs. We can
repeat this procedure until we obtain a list of matching covered graphs, each of which is
free of nontrivial tight cuts. This procedure is known as a tight cut decomposition of G.
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For instance, if S is a barrier of G, and K is an odd component of G−S, then ∂(V (K))
is a tight cut of G. Such a tight cut is called a barrier cut, and such cuts play an important
role in the second part of this thesis. The graph in Figure 1.3 has a barrier cut depicted by
the bold line, and each of its contractions (that is, K4 and K3,3) is free of nontrivial tight
cuts. Note that, if v is a vertex of degree two then {v} ∪ N(v) is the shore of a barrier
cut. A barrier is trivial if it has a single vertex. Note that if G is nonbipartite then each
nontrivial barrier gives rise to a nontrivial tight cut.

Now suppose that {u, v} is a 2-vertex-cut of G such that G − {u, v} has an even
component, say K. Then each of the sets V (K) ∪ {u} and V (K) ∪ {v} is a shore of a
nontrivial tight cut of G. Such a tight cut is called a 2-separation cut. The graph in
Figure 1.4 has a 2-separation cut, and each of its contractions is K4 with multiple edges.
(We remark that, a graph may have a tight cut which is neither a barrier cut nor a
2-separation cut.)

Let G be a matching covered graph free of nontrivial tight cuts. If G is bipartite then
it is a brace; otherwise it is a brick. Thus, a tight cut decomposition of G results in a
list of bricks and braces. For example, a tight cut decomposition of the graph shown in
Figure 1.3 yields the brick K4 and the brace K3,3.

In general, a matching covered graph may admit several tight cut decompositions.
However, Lovász [Lov87] proved the following remarkable result, and demonstrated its
significance by using it to compute the dimension of the matching lattice.

Theorem 1.7 [The Unique Decomposition Theorem] Any two tight cut decompo-
sitions of a matching covered graph yield the same list of bricks and braces (except possibly
for multiplicities of edges).

In particular, any two tight cut decompositions of a matching covered graph G yield
the same number of bricks; this number is denoted by b(G). We remark that G is bipartite
if and only if b(G) = 0.

A graph G, with four or more vertices, is bicritical if G−{u, v} has a perfect matching
for every pair of distinct vertices u and v. For instance, the graph shown in Figure 1.4
is bicritical. The following characterization of bicritical graphs follows immediately from
Tutte’s Theorem.

Proposition 1.8 [Characterization of Bicritical Graphs] Let G be a graph that
has a perfect matching. Then G is bicritical if and only if every barrier of G is trivial. 2
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Figure 1.4: A bicritical graph which is not a brick

Equivalently, for a bicritical graph G, the canonical partition of V (G) consists of |V (G)|
parts, each of which contains a single vertex. Since a brick is a nonbipartite matching
covered graph which is free of nontrivial tight cuts, it follows from the above observations
that every brick is 3-connected and bicritical. Edmonds, Lovász and Pulleyblank [ELP82]
established the converse; their proof was based on LP-duality.

Theorem 1.9 [Characterization of Bricks] A graph G is a brick if and only if it
is 3-connected and bicritical.

In particular, a brick is free of nontrivial barriers and of 2-vertex cuts. Szigeti [Szi02]
obtained a simple proof of Theorem 1.9 which does not use LP-duality.

Throughout this thesis, we shall mainly be interested in nonbipartite matching covered
graphs, and especially in bricks. Three cubic bricks, namely K4, C6 and the Petersen
graph, occupy a special position in the theory of matching covered graphs.

1.3.2 Reduction to the case of bricks

As discussed in Section 1.2.2, given a planar matching covered graph G, we would like to
determine whether or not G is K4-free, and likewise, whether or not G is C6-free.

As a first step, we reduce the above problems to the case of bricks. Let J denote any
cubic brick. The key idea is to show that if G is a matching covered graph and ∂(X) is
a nontrivial tight cut of G, then G is J-free if and only if each of its ∂(X)-contractions is
J-free. (We remark that this statement is not true if J is a cubic brace, as can be inferred
from the graph in Figure 1.3 with K3,3 playing the role of J ; and it is also not true if J is
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an arbitrary brick.) It now follows from the Unique Decomposition Theorem (1.7) that G
is J-free if and only if each of its bricks and braces is J-free. (We point out that braces,
being bipartite, are trivially J-free.)

Theorem 1.10 [Reduction to the case of Bricks] Let J denote any cubic brick.
A nonbipartite matching covered graph is J-free if and only if each of its bricks is J-free.

We emphasize that the above theorem has nothing to do with planarity. We present a
proof of Theorem 1.10 in Chapter 2.

It is straightforward to see that, for a planar matching covered graph, each of its bricks
and braces is also planar. In view of Theorem 1.10, it suffices to characterize K4-free planar
bricks and C6-free planar bricks. We discuss our solutions to these problems in Section 1.4.

1.3.3 Norine-Thomas bricks

Here, we shall describe five infinite families of bricks; namely, odd wheels, prisms, Möbius
ladders, truncated biwheels and staircases; we refer to these as the Norine-Thomas families
for reasons explained in Section 1.5. Furthermore, we say that a brick is Norine-Thomas if
it belongs to any of these families, or if it is isomorphic to the Petersen graph. We adopt
the terminology of Carvalho et al. [CLM08].

Odd Wheels. The odd wheel W2k+1, for k ≥ 1, is defined to be the join of an odd cycle
C2k+1 and K1. See Figure 1.6a. The smallest odd wheel is K4. If k ≥ 2, then W2k+1 has
exactly one vertex of degree 2k + 1, called its hub, and the edges incident at the hub are
called its spokes. The remaining 2k+ 1 vertices lie on a cycle, called the rim, and they are
referred to as rim vertices.

Each member of the remaining four families contains a bipartite matching covered
subgraph which is either a ‘ladder’ or a ‘partial biwheel’. These bipartite graphs are also the
main building blocks of additional families of bricks which are of interest in Section 1.7.3.
For this reason, we start with a description of these two families of bipartite graphs.

Ladders. Let x0x1 . . . xj and y0y1 . . . yj be two vertex-disjoint paths, where j ≥ 2. The
graph K obtained by the union of these two paths, and by adding edges xiyi for 0 ≤ i ≤ j,
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is called a ladder, and its edges joining xi and yi are referred to as its rungs. See Figure 1.5.
The two rungs x0y0 and xjyj are external, and the remaining rungs are internal. We say
that K is odd (even) if it has an odd (even) number of rungs.

Partial Biwheels. Let x0x1 . . . x2j+1 be an odd path, where j ≥ 1. The graph K
obtained by adding two new vertices u and w, joining u to vertices in {x0, x2, . . . , x2j},
and joining w to vertices in {x1, x3, . . . , x2j+1}, is called a partial biwheel; the vertices
x0 and x2j+1 are referred to as its ends, whereas u and w are referred to as its hubs; and an
edge incident with a hub is called a spoke. See Figure 1.5. The two spokes ux0 and wx2j+1

are external, and the remaining spokes are internal.

a b

u

w

a b

u

w

a

u

w

b

a

u w

b

Figure 1.5: Partial biwheels (top) and Ladders (bottom)

When referring to a ladder or to a partial biwheel, sayK[A,B], with external rungs/spokes
au and bw, we adopt the convention that a, w ∈ A and b, u ∈ B; furthermore, when K is
a partial biwheel, u and w shall denote its hubs; as shown in Figure 1.5. (Sometimes, we
may also use subscript notation, such as Ai, Bi, aiui and biwi where i is an integer, and
this convention extends naturally.)

It should be noted that a partial biwheel of order six is also a ladder. However, a
partial biwheel of order eight or more has only two vertices of degree two, namely, its
ends; whereas every ladder has four such vertices. We remark that, a biwheel, as defined
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by McCuaig [McC01], has order at least eight and contains an additional edge joining its
ends; and these constitute an important class of braces.

We now proceed to describe the remaining four Norine-Thomas families using ladders
and partial biwheels.

Prisms, Möbius Ladders and Truncated Biwheels. Let H[A,B] denote either a
ladder or a partial biwheel of order n, with external rungs/spokes au and bw, and let G be
the graph obtained from H by adding two edges, namely, aw and bu. If H is an odd ladder
then G is a prism and it is denoted by Pn, see Figure 1.6b. If H is an even ladder then
G is a Möbius ladder and it is denoted by Mn, see Figure 1.6f. Finally, if H is a partial
biwheel then G is a truncated biwheel and it is denoted by Tn, see Figure 1.6c. Note that
C6 is the smallest prism as well as the smallest truncated biwheel. For convenience, we
shall consider K4 to be the smallest Möbius ladder.

(a) (b) (c)

(d) (e) (f)

Figure 1.6: (a) Odd wheel W7, (b) Prism P10, (c) Truncated biwheel T8, (d) Odd staircase
St8, (e) Even staircase St10, (f) Möbius ladder M8
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Staircases. Let K[A1, B1] denote a ladder of order n, with external rungs a1u1 and
b1w1. Then the graph G obtained from K, by adding two new vertices a2 and b2, and by
adding five new edges a1a2, u1a2, b1b2, w1b2 and a2b2, is called a staircase, and it is denoted
by Stn+2. We say that G is an odd (even) staircase if K is an odd (even) ladder. See
Figures 1.6d and 1.6e.

1.4 Planar bricks

In this section, we state our characterizations of K4-free planar bricks and of C6-free planar
bricks. Observe that, for a cubic brick J , a matching covered graph G is J-free if and only
if the underlying simple graph of G is J-free. We may thus restrict our attention to simple
planar bricks.

A well-known result due to Whitney [Whi33] says that every simple 3-connected planar
graph has a unique embedding in the plane. We may thus refer to the faces of simple
planar bricks without any ambiguity.

In what follows, the number of odd faces will play a key role. Observe that, for a
3-connected planar graph G, the number of its odd faces is the same as the number of odd
faces of its underlying simple graph. Being nonbipartite, each planar brick has at least two
odd faces.

Observe that every Norine-Thomas brick, except for the Petersen graph and the Möbius
ladders of order eight or more, is planar. Among the planar ones, every prism, truncated
biwheel and even staircase has precisely two odd faces. On the other hand, every odd
staircase has exactly four odd faces; and since each face of an odd wheel is odd, every odd
wheel has at least four odd faces.

1.4.1 K4-free planar bricks

We begin by noting that K4 has exactly four odd faces, and so does any bi-subdivision
of K4. This immediately implies that each K4-based planar graph has four or more odd
faces. (In particular, prisms, truncated biwheels and even staircases are K4-free.)

We establish that the converse is also true when the graph under consideration is a
brick; that is, we show that every planar brick with four or more odd faces is K4-based.
(In particular, odd staircases and odd wheels are K4-based.) This leads us to the following
compact characterization of K4-free planar bricks.
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Theorem 1.11 [Characterization of K4-free Planar Bricks] A planar brick
is K4-free if and only if it has precisely two odd faces.

It is important to note that, in general, a planar 3-connected matching covered graph
with four or more odd faces may not be K4-based, as shown by the graph in Figure 3.2.
In other words, the bicriticality property of bricks is indispensable; recall Theorem 1.9.

1.4.2 C6-free planar bricks

Observe that C6 has two vertex-disjoint odd cycles, and thus every C6-based graph inherits
this property. Consequently, the odd wheels are C6-free. By investigating the odd cycles
of St8 (see Figure 1.6d), one may easily verify that it is C6-free. More generally, each
odd staircase is C6-free. We show that apart from these two infinite families, there is one
exceptional C6-free simple planar brick which we call the Tricorn (see Figure 1.8).

Theorem 1.12 [Characterization of C6-free Planar Bricks] A planar brick
is C6-free if and only if its underlying simple graph is either an odd wheel, or an odd
staircase, or the Tricorn.

We emphasize that Theorems 1.10, 1.11 and 1.12 together provide a complete char-
acterization of K4-free planar matching covered graphs, and of C6-free planar matching
covered graphs. These results also appear in [KM16].

We present proofs of Theorems 1.11 and 1.12 in Chapter 3. The principal tool we
use for proving these results is the brick generation procedure established by Norine and
Thomas [NT07]. We discuss their result, and a related result of Carvalho, Lucchesi and
Murty [CLM06], in the next section.
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Part II - Brick Generation

1.5 Removable edges

As discussed in Section 1.3, the properties of a matching covered graph can often be
deduced by analysing its bricks and braces. This has led researchers to develop inductive
tools for studying the properties of bricks and braces; these have found useful applications.

McCuaig [McC01] described a procedure for generating simple braces, and used it
in [McC04] to derive a structural characterization of Pfaffian bipartite matching covered
graphs. Carvalho, Lucchesi and Murty [CLM06] established a generation procedure for
bricks, and applied it to show that the only ‘solid’ planar bricks are the odd wheels; this
may also be deduced from our Theorem 1.12 since solid bricks are also C6-free. Norine
and Thomas [NT07] established a generation procedure for simple bricks; our proofs of
Theorems 1.11 and 1.12 rely heavily on their result.

In this section, we review the aforementioned works of Carvalho et al. [CLM06], and
of Norine and Thomas [NT07]. We shall find it convenient to state all of the results using
the terminology of Carvalho et al. [CLM06, CLM08].

An edge e of a matching covered graph G is removable if G−e is also matching covered;
otherwise it is non-removable. For example, each edge of the Petersen graph is removable.
All bricks in the Norine-Thomas families, except for K4 and C6, have removable edges;
these are indicated in Figure 1.6 by the bold lines.

We remark that the notion of a removable edge is intrinsically related to ear decompo-
sitions. To see this, note that an edge e of a matching covered graph G is removable if and
only if G admits an ear decomposition in which the edge e is the last (single) ear added.

The following was established by Lovász [Lov87].

Theorem 1.13 [Removable Edge Theorem] Every brick distinct from K4 and C6

has a removable edge.

We point out that, if e is a removable edge of a brick G, then G− e may not be a brick.
For instance, G− e may have vertices of degree two.

In what follows, we will define three types of removable edges: ‘b-invariant’ edges,
‘thin’ edges and ‘strictly thin’ edges, in that order. In the context of bricks, each type is a
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specialization of the preceding type as depicted in Figure 1.7; for instance, an arrow from
‘thin’ to ‘b-invariant’ indicates that a thin edge is a special type of b-invariant edge.

strictly thin strictly R-thin

thin R-thin

b-invariant R-compatible

removable

Figure 1.7: Types of removable edges in bricks; the ones in the shaded area are only
applicable to near-bipartite bricks and they are introduced in Section 1.7

1.5.1 Near-bricks and b-invariant edges

Recall that b(G) denotes the number of bricks of a matching covered graph G (in any
tight cut decomposition), and it is well-defined due to the Unique Decomposition Theo-
rem (1.7). A near-brick is a matching covered graph with b(G) = 1. Clearly, every brick
is a near-brick. However, the converse is not true. For instance, the graph shown in Fig-
ure 1.3 is a near-brick but it is not a brick. When proving theorems concerning bricks, one
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often needs the flexibility of dealing with the wider class of near-bricks, whose properties
are akin to those of bricks.

A removable edge e of a matching covered graph G is b-invariant if b(G− e) = b(G).
In particular, if G is a brick then e is b-invariant if and only if G − e is a near-brick.
For example, in every member of the Norine-Thomas families, each removable edge is
b-invariant. On the other hand, it is easily verified that if G is the Petersen graph and e is
any edge, then b(G− e) = 2. Thus each edge of the Petersen graph is removable, but none
of them is b-invariant.

Confirming a conjecture of Lovász, the following result was proved by Carvalho, Luc-
chesi and Murty [CLM02a].

Theorem 1.14 [b-invariant Edge Theorem] Every brick distinct from K4 and C6

and the Petersen graph has a b-invariant edge.

In [CLM02a], Carvalho et al. established a generalization of the above theorem. For
instance, their result shows that the staircase St8 is the only brick with a unique b-invariant
edge, which is depicted in Figure 1.6d by a bold line.

1.5.2 Bicontractions, retracts and bi-splittings

Let G be a matching covered graph and let v be a vertex of degree two, with two distinct
neighbours u and w. The bicontraction of v is the operation of contracting the two edges vu
and vw incident with v. Note that X := {u, v, w} is the shore of a tight cut of G, and that
the graph resulting from the bicontraction of v is the same as the ∂(X)-contraction G/X,
whereas the other ∂(X)-contraction G/X is isomorphic to C4 (possibly with multiple
edges).

The retract of G is the graph obtained from G by bicontracting all its degree two
vertices. The above observation implies that the retract of a matching covered graph is
also matching covered. Carvalho et al. [CLM05] showed that the retract of a matching
covered graph is unique up to isomorphism. It is important to note that even if G is simple,
the retract of G may have multiple edges.

The operation of bi-splitting is the converse of the operation of bicontraction. Let H
be a graph and let v be a vertex of H of degree at least two. Let G be a graph obtained
from H by replacing the vertex v by two new vertices v1 and v2, distributing the edges in
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H incident with v between v1 and v2 such that each gets at least one, and then adding a
new vertex v0 and joining it to both v1 and v2. Then we say that G is obtained from H
by bi-splitting v into v1 and v2. It is easily seen that if H is matching covered, then G is
also matching covered, and that H can be recovered from G by bicontracting the vertex
v0 and denoting the contraction vertex by v.

1.5.3 Thin edges

A b-invariant edge e of a brick G is thin if the retract of G−e is a brick. As the graph G−e
can have zero, one or two vertices of degree two, the retract of G − e is obtained by
performing at most two bicontractions, and it has at least |V (G)| − 4 vertices.

For example, if G is an odd wheel of order six or more and if e is any spoke, then
the retract of G − e is a smaller odd wheel with multiple edges; thus, each spoke of G
is a thin edge. More generally, if G belongs to any of the Norine-Thomas families, and
if e denotes any removable edge, then the retract of G − e is a smaller Norine-Thomas
brick with multiple edges; consequently, e is thin. It should be noted that, in general, a
b-invariant edge may not be thin.

The original definition of a thin edge, due to Carvalho et al. [CLM06], was in terms
of barriers; ‘thin’ being a reference to the fact that the barriers of G− e are sparse. This
viewpoint will also be useful to us in Chapter 5 where further explanation is provided.
Carvalho, Lucchesi and Murty [CLM06] used their b-invariant Edge Theorem (1.14) to
derive the following stronger result.

Theorem 1.15 [Thin Edge Theorem] Every brick distinct from K4 and C6 and the
Petersen graph has a thin edge.

The following is an immediate consequence of the above theorem.

Theorem 1.16 [CLM06] Given any brick G, there exists a sequence G1, G2, . . . , Gk of
bricks such that:

(i) G1 is either K4 or C6 or the Petersen graph,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists a thin edge ei of Gi such that Gi−1 is the retract of Gi− ei.
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Carvalho et al. [CLM06] also described four elementary ‘expansion operations’ which
may be applied to any brick to obtain a larger brick with at most four more vertices. Each
of these operations consists of bi-splitting at most two vertices and then adding a suitable
edge. Given a brick J , the application of any of these four operations to J results in a
brick G such that G has a thin edge e with the property that J is the retract of G − e.
Thus, any brick may be generated from one of the three basic bricks (K4 and C6 and the
Petersen graph) by means of these four expansion operations.

One of the problems with this brick generation procedure is that, even if Gk = G is a
simple brick, there is no guarantee that all the intermediate bricks G2, G3, . . . Gk−1 are also
simple. In fact, certain bricks cannot be generated by staying within the realm of simple
bricks.

1.5.4 Strictly thin edges

A thin edge e of a simple brick G is strictly thin if the retract of G − e is simple. As an
example, consider the Tricorn, shown in Figure 1.8, which has precisely three removable
edges indicated by bold lines; deleting one of them, say e, and taking the retract yields
the simple odd wheel W5. Thus each removable edge of the Tricorn is strictly thin. By
contrast, in a Norine-Thomas brick, none of the thin edges is strictly thin.

e

Tricorn
W5

Figure 1.8: Removable edges of the Tricorn

Using this terminology, the theorem of Norine and Thomas [NT07] may be stated as
follows.
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Theorem 1.17 [Strictly Thin Edge Theorem] Let G be a simple brick. If G is free
of strictly thin edges then G is either the Petersen graph, or it is an odd wheel, a prism, a
Möbius ladder, a truncated biwheel or a staircase.

Equivalently, the only simple bricks devoid of strictly thin edges are the Norine-Thomas
bricks. It should be noted that Norine and Thomas did not state their results in terms of
strictly thin edges.

Subsequently, Carvalho et al. [CLM08] used their Thin Edge Theorem (1.15) to deduce
the Strictly Thin Edge Theorem (1.17). The following result of Norine and Thomas [NT07]
is an immediate consequence of Theorem 1.17.

Theorem 1.18 Given any simple brick G, there exists a sequence G1, G2, . . . , Gk of simple
bricks such that:

(i) G1 is a Norine-Thomas brick,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists a strictly thin edge ei of Gi such that Gi−1 is the retract
of Gi − ei.

The above theorem implies that every simple brick can be generated from one of the
Norine-Thomas bricks by repeated application of the four expansion operations such that
at each step we have a simple brick.

We remark that Norine and Thomas proved a generalization of Theorem 1.18, which
they refer to as the ‘splitter theorem for bricks’, since it is motivated by the splitter
theorem for 3-connected graphs due to Seymour [Sey80]. The notions of thin and strictly
thin edges are easily generalized to braces (see [CLM08]). A ‘splitter theorem for braces’
was established by McCuaig [McC01].

1.6 Near-bipartite graphs

A nonbipartite matching covered graph G is near-bipartite if it has a pair R := {α, β} of
edges such that the graph H := G − R is bipartite and matching covered; for instance,
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K4 and C6 are the smallest near-bipartite bricks. Observe that the edge α joins two vertices
in one color class of H, and that β joins two vertices in the other color class. Consequently,
if M is any perfect matching of G then α ∈M if and only if β ∈M .

The significance of near-bipartite graphs arises from the theory of ear decompositions
(see Section 1.2.1). Observe that if G is any nonbipartite matching covered graph, and
if G1 ⊂ G2 ⊂ · · · ⊂ Gr is an ear decomposition of G starting with a conformal bipartite
matching covered subgraph G1, then the first nonbipartite graph in this sequence, say Gk,
is a bi-subdivision of a near-bipartite graph (where the double ear added may be viewed
as adding two edges, one joining two vertices in one color class of Gk−1 and another edge
joining two vertices in the other color class, and then bi-subdividing those edges). In this
sense, near-bipartite graphs constitute the class of nonbipartite matching covered graphs
which are closest to being bipartite.

Since the problems of characterizing K4-free nonplanar bricks and C6-free nonplanar
bricks do not seem to be tractable with the tools available to us, it may be worthwhile
studying these questions for the restricted class of near-bipartite bricks. This approach
has been successful in the theory of Pfaffian orientations; although there has been no
significant progress in characterizing Pfaffian bricks; Fischer and Little [FL01] were able
to characterize Pfaffian near-bipartite graphs.

With this in mind, we undertook to investigate generation procedures which are specific
to near-bipartite bricks. We hope that these results can be used to derive characterizations
of important classes of near-bipartite bricks.

1.6.1 Removable doubletons

A pair of distinct edges R := {α, β} of a matching covered graph G is a removable doubleton
if neither α nor β is removable, but the graph G − R is matching covered. It should be
noted that, in general, the graph G − R need not be bipartite. However, Lovász [Lov87]
proved that if G is a brick then G−R is indeed bipartite; the following more general result
of Carvalho et al. [CLM02b] shows that the conclusion holds even if G is a near-brick.

Theorem 1.19 Let G be a matching covered graph, and let R be a removable doubleton.
Then b(G−R) = b(G)− 1.

The above theorem implies that every near-bipartite graph is a near-brick. In fact, as
we will see in Chapter 4, the unique brick of a near-bipartite graph is also near-bipartite.
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e

α

βα′

β′

Figure 1.9: The staircase St8

A graph may have several removable doubletons; for instance, K4 and C6 have three;
the staircase St8 shown in Figure 1.9 has two, namely R := {α, β} and R′ := {α′, β′}. It
is easily verified that every Norine-Thomas brick (see Section 1.3.3), except for the odd
wheels of order six or more and for the Petersen graph, is near-bipartite; among these, only
the truncated biwheels, of order eight or more, have a unique removable doubleton.

1.7 Generating near-bipartite bricks

The difficulty in using either Theorem 1.16 or Theorem 1.18 as an induction tool for
studying near-bipartite bricks, is that even if Gk := G is a near-bipartite brick, there is no
guarantee that all of the intermediate bricks G1, G2, . . . Gk−1 are also near-bipartite.

For instance, the brick shown in Figure 1.10a is near-bipartite with a (unique) removable
doubleton R := {α, β}. Although the edge e is thin; the retract of G − e, as shown in
Figure 1.10b, is not near-bipartite since it has three edge-disjoint triangles.

α

β

e

(a) (b)

Figure 1.10: (a) A near-bipartite brick G with a thin edge e ; (b) The retract of G − e is
not near-bipartite
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In other words, deleting an arbitrary thin edge may not preserve the property of being
near-bipartite. In this sense, neither the Thin Edge Theorem (1.15) nor the Strictly Thin
Edge Theorem (1.17) is adequate for obtaining inductive proofs of results that pertain only
to the class of near-bipartite bricks.

To fix this problem, we decided to look for a thin edge whose deletion preserves the prop-
erty of being near-bipartite. Recall that a graph may have several removable doubletons.
We find it convenient to fix a removable doubleton R (of the brick under consideration), and
then look for a thin edge whose deletion preserves this removable doubleton. To make this
precise, we will first define a special type of removable edge which we call ‘R-compatible’.

1.7.1 R-compatible edges

We use the abbreviation R-graph for a near-bipartite graph G with (fixed) removable
doubleton R, and we shall refer to H := G − R as its underlying bipartite graph. In the
same spirit, an R-brick is a brick with a removable doubleton R.

A removable edge e of an R-graph G is R-compatible if it is removable in H as well.
Equivalently, an edge e is R-compatible if G − e and H − e are both matching cov-
ered. For instance, the staircase St8, shown in Figure 1.9, has two removable doubletons
R := {α, β} and R′ := {α′, β′}, and its unique removable edge e is R-compatible as well as
R′-compatible.

Now, let G denote the R-brick shown in Figure 1.10a, where R := {α, β}. The thin
edge e is incident with an edge of R at a cubic vertex; consequently, H−e has a vertex whose
degree is only one, and so it is not matching covered. In particular, e is not R-compatible.

The brick shown in Figure 1.11 has two distinct removable doubletons R := {α, β} and
R′ := {α′, β′}. Its edges a1u1 and b1w1 are both R′-compatible, but neither of them is
R-compatible. (In Section 1.7.3, we will generalize the graphs in Figures 1.10a and 1.11 to
infinite families which play important roles in our work.)

Observe that, if e is an R-compatible edge of an R-graph G, then R is a removable
doubleton of G− e, whence G− e is also an R-graph; in particular, G− e is near-bipartite.
By Theorem 1.19, G− e is a near-brick; and this proves the following. (See Figure 1.7.)

Proposition 1.20 Every R-compatible edge is b-invariant. 2
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a1

b1

u1

w1

a2 b2α
β

α′

β′

Figure 1.11: The edges a1u1 and b1w1 are R′-compatible, but they are not R-compatible

Furthermore, as we will see in Chapter 4, if e is an R-compatible edge of an R-brick G
then the unique brick J of G− e is also an R-brick; in particular, J is near-bipartite. The
following is a special case of a theorem of Carvalho, Lucchesi and Murty [CLM99].

Theorem 1.21 [R-compatible Edge Theorem] Every R-brick distinct fromK4 and C6

has an R-compatible edge.

In [CLM99], they proved a stronger result. In particular, they showed the existence of an
R-compatible edge in R-graphs with minimum degree at least three, and used it to establish
a generalization of Lovász’s Theorem (1.6). (They did not use the term ‘R-compatible’.)
Using the notion of R-compatibility, we now define a thin edge whose deletion preserves
the property of being near-bipartite.

1.7.2 R-thin edges

A thin edge e of an R-brick G is R-thin if it is R-compatible. Equivalently, an edge e is
R-thin if it is R-compatible as well as thin, and in this case, the retract of G− e is also an
R-brick. See Figure 1.7.

As noted earlier, the staircase St8, shown in Figure 1.9, has two removable doubletons
R and R′. Its unique removable edge e is R-thin as well as R′-thin; to see this, note that
the retract J of St8 − e is isomorphic to K4 with multiple edges, and each of R and R′ is
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a removable doubleton of J . It is easily verified that if G is a Norine-Thomas brick which
is near-bipartite, then each of its thin edges is R-thin for some removable doubleton R.

It is desirable to characterize R-bricks free of R-thin edges, as this would yield a genera-
tion theorem for near-bipartite bricks analogous to Theorem 1.16. Using the R-compatible
Edge Theorem (1.21) of Carvalho et al., we proved the following stronger result.

Theorem 1.22 [R-thin Edge Theorem] Every R-brick distinct from K4 and C6

has an R-thin edge.

We present a proof of the above theorem in Chapter 5. Our proof uses tools from the
work of Carvalho et al. [CLM06], and the overall approach is inspired by their proof of the
Thin Edge Theorem (1.15). The following is an immediate consequence of Theorem 1.22.

Theorem 1.23 Given any R-brick G, there exists a sequence G1, G2, . . . , Gk of R-bricks
such that:

(i) G1 is either K4 or C6,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists an R-thin edge ei of Gi such that Gi−1 is the retract
of Gi − ei.

It follows from the above theorem that every near-bipartite brick can be generated
from one of K4 and C6 by means of the expansion operations. However, as in the case
of Theorem 1.16, it has the shortcoming that, even if Gk = G is a simple near-bipartite
brick, the intermediate bricks G1, G2, . . . , Gk are not guaranteed to be simple. As before,
we shall overcome this hurdle using the notion of strictly thin edges.

1.7.3 Strictly R-thin edges

An R-thin edge e of a simple R-brick G is strictly R-thin if it is strictly thin. In other
words, a strictly R-thin edge e is one which is R-compatible as well as strictly thin; and in
this case, the retract of G− e is also a simple R-brick. See Figure 1.7.
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For instance, let G denote the R-brick shown in Figure 1.12(a), where R := {α, β}.
The retract of G− e is the truncated biwheel T8 shown in Figure 1.12(b); consequently, e
is strictly R-thin.

α

β

e

(a)

α

β

(b)

Figure 1.12: Edge e is strictly R-thin

Recall that the Norine-Thomas bricks are precisely those simple bricks which are free of
strictly thin edges. In particular, every R-brick, which is a member of the Norine-Thomas
families, is free of strictly R-thin edges. A natural question arises as to whether there are
any simple R-bricks, different from the Norine-Thomas bricks, which are also free of strictly
R-thin edges. It turns out that there indeed are such bricks; we have already encountered
two examples in Figures 1.10a and 1.11, as explained below.

Let G denote the R-brick, shown in Figure 1.10a, where R := {α, β} is its unique
removable doubleton. It can be checked that G has precisely four strictly thin edges,
depicted by bold lines; these are similar under the automorphisms of the graph. As noted
earlier, if e is any of these edges, then e is not R-compatible; furthermore, the retract
of G−e is isomorphic to the graph shown in Figure 1.10b, which is not even near-bipartite
as it has three edge-disjoint triangles. Thus, the generation of G using the Norine-Thomas
procedure cannot be achieved within the class of near-bipartite bricks.

Now, let G denote the brick shown in Figure 1.11; it has two removable doubletons
R := {α, β} and R′ := {α′, β′}. It may be verified that G has precisely two strictly thin
edges, namely a1u1 and b1w1, each of which is R′-compatible but neither is R-compatible.
In particular, G is free of strictly R-thin edges; in this sense it is similar to the graph in
Figure 1.10a. On the other hand, G has strictly R′-thin edges; if e is any such edge then
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the retract of G− e is a simple near-bipartite brick with removable doubleton R′. In this
sense, G is different from the graph in Figure 1.10.

We will introduce seven infinite families of simple R-bricks which are free of strictly
R-thin edges, and are different from the Norine-Thomas families. The members of these
will be described using their specific bipartite subgraphs, each of which is either a ladder
or a partial biwheel; see Figure 1.5. The occurrence of these subgraphs may be justified as
follows. Let G be a simple R-brick which is free of strictly R-thin edges. If e is any R-thin
edge of G, at least one end of e is cubic and the retract of G− e has multiple edges. These
strictures can be used to deduce that G contains either a ladder or a partial biwheel, or
both, as subgraphs.

In our descriptions of these families, we use α and β to denote the edges of the (fixed)
removable doubleton R. Apart from R, a member may have at most one removable dou-
bleton which will be denoted as R′ := {α′, β′}. We adopt the notational conventions stated
in Section 1.3.3. (Recall that a partial biwheel of order six is also a ladder; for this reason,
some of our families overlap.)

Pseudo-Biwheels. Let K[A1, B1] denote a partial biwheel, of order at least eight, and
with external spokes a1u1 and b1w1. Then the graphG obtained fromK, by adding two new
vertices a2 and b2, and by adding five new edges α := a1a2, α

′ := u1a2, β := b1b2, β
′ := w1b2

and a2b2, is called a pseudo-biwheel. Figure 1.11 shows the smallest pseudo-biwheel.

It is worth comparing the above with our desription of staircases in Section 1.3.3.
Although a pseudo-biwheel G is free of strictly R-thin edges, the two external spokes of K,
namely a1u1 and b1w1, are both strictly R′-thin.

In order to describe the members of the remaining six families, we need two (sub)graphs.
For i ∈ {1, 2}, let Ki[Ai, Bi] denote either a ladder or a partial biwheel with external
rungs/spokes aiui and biwi, such that K1 and K2 are disjoint.

Double Biwheels, Double Ladders and Laddered Biwheels of Type I. Let
the graph G be obtained from K1 ∪ K2, by adding edges α := a1a2 and β := b1b2, by
identifying vertices u1 and u2, and by identifying vertices w1 and w2. There are three
possibilities depending on the graphs K1 and K2. In the case in which K1 and K2 are both
partial biwheels, G is a double biwheel of type I. Likewise, in the case in which K1 and K2

are both ladders, G is a double ladder of type I. Finally, when one of K1 and K2 is a partial
biwheel and the other one is a ladder, G is a laddered biwheel of type I.
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A member of any of these families has a unique removable doubleton R, and is free
of strictly R-thin edges. The graph in Figure 1.10a is the smallest member of each of
these families, although its drawing is suggestive of a double biwheel. Figure 1.13a shows a
double ladder. A laddered biwheel is obtained from the graph in Figure 1.13b by identifying
u1 with u2, and likewise, w1 with w2.

a2 b2

a1 b1

α β

(a)

α

β

a2

b2

w2

u2

w1

b1u1

a1

(b)

Figure 1.13: (a) A double ladder of type I ; (b) A laddered biwheel of type I is obtained
by identifying u1 with u2 and likewise w1 with w2

Double Biwheels, Double Ladders and Laddered Biwheels of type II. Let
the graph G be obtained from K1∪K2, by adding four edges, namely, α := a1a2, β := b1b2,
α′ := u1w2 and β′ := w1u2. As before, we have three possibilities. In the case in which
K1 and K2 are both partial biwheels of order at least eight, G is a double biwheel of type II.
Likewise, in the case in which K1 and K2 are both ladders, G is a double ladder of type II.
Finally, when one of K1 and K2 is a partial biwheel of order at least eight, and the other
one is a ladder, G is a laddered biwheel of type II.

A member of any of these families has two removable doubletons R and R′, and it is
free of strictly R-thin edges. However, a double biwheel or a laddered biwheel as shown in
Figure 1.14 has strictly R′-thin edges; these are the external spokes of a partial biwheel of
order at least eight as depicted by the bold lines in the figure.
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α

β

α′

β′

(a)

α

α′

β′

β

(b)

Figure 1.14: (a) A laddered biwheel of type II ; (b) A double biwheel of type II

On the other hand, a double ladder, as shown in Figure 1.15, is free of strictly R′-thin
edges as well. This may be explained as follows. Every double ladder is cubic, and it has
precisely four strictly thin edges; these are the external rungs of the two ladders, depicted
by bold lines in the figure. One end of any such edge, say e, is incident with an edge of R
and the other end is incident with an edge of R′; since each end of e is cubic, it is neither
R-compatible nor R′-compatible.

e

α

β

α′

β′

Figure 1.15: A double ladder of type II
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Using a strengthening of the R-thin Edge Theorem (1.22), we proved that the seven fam-
ilies described above and four of the Norine-Thomas families are the only simple R-bricks
which are free of strictly R-thin edges.

Theorem 1.24 [Strictly R-thin Edge Theorem] Let G be a simple R-brick. If
G is free of strictly R-thin edges then G belongs to one of the following infinite families:

(i) Truncated biwheels

(ii) Prisms

(iii) Möbius ladders

(iv) Staircases

(v) Pseudo-biwheels

(vi) Double biwheels of type I

(vii) Double ladders of type I

(viii) Laddered biwheels of type I

(ix) Double biwheels of type II

(x) Double ladders of type II

(xi) Laddered biwheels of type II

We present a proof of the above theorem in Chapter 6. Our proof is inspired by the
proof of the Strictly Thin Edge Theorem (1.17) given by Carvalho et al. [CLM08], and
uses several of their results and techniques.

We shall denote by N the union of all of the eleven families which appear in the
statement of Theorem 1.24. The following is an immediate consequence.

Theorem 1.25 Given any simple R-brick G, there exists a sequence G1, G2, . . . , Gk of
simple R-bricks such that:

(i) G1 ∈ N ,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists an R-thin edge ei of Gi such that Gi−1 is the retract
of Gi − ei.

In other words, every simple R-brick can be generated from some member of N by
repeated application of the expansion operations such that at each step we have a simple
R-brick.
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Finally, recall that members of three of the aforementioned families do have strictly
R′-thin edges, where R′ := {α′, β′} in our description of these families; these are pseudo-
biwheels, double biwheels of type II and laddered biwheels of type II. In view of this,
we say that a strictly thin edge e of a simple near-bipartite brick G is compatible if it is
R-compatible for some removable doubleton R. We thus have the following theorem (with
eight infinite families) alluded to in the abstract.

Theorem 1.26 Let G be a simple near-bipartite brick. If G is free of compatible strictly
thin edges then G belongs to one of the following infinite families:

(i) Truncated biwheels

(ii) Prisms

(iii) Möbius ladders

(iv) Staircases

(v) Double biwheels of type I

(vi) Double ladders of type I

(vii) Laddered biwheels of type I

(viii) Double ladders of type II

Four of the families in the above theorem are Norine-Thomas families; these are free of
strictly thin edges. As we did in Figure 1.10, it may be verified that if G is a member of
any of the remaining four families and e is any strictly thin edge of G then the retract J
of G − e is not near-bipartite. (For example, consider the graph G and edge e shown in
Figure 1.15, and let J be the retract of G−e. It can be checked that J has four odd cycles,
C0, C1, C2 and C3, such that C1, C2 and C3 are edge-disjoint with C0, and furthermore,
there is no single edge which belongs to all three of them.)

1.8 Summary of main contributions

Here, we summarize the main results proved in this thesis.

Part I - Conformal Subgraphs (these results have appeared in [KM16])

• In Chapter 2, for any cubic brick J , we reduce the problem of characterizing J-free
graphs to that of characterizing J-free bricks. In particular, we prove Theorem 1.10,
which states that a nonbipartite matching covered graph G is J-free if and only if
each of its bricks is J-free.
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• In Chapter 3, we establish our characterizations of K4-free planar bricks and C6-free
planar bricks:

– We prove Theorem 1.11 which states that a planar brick is K4-free if and only
if it has precisely two odd faces.

– We prove Theorem 1.12 which states that a planar brick is C6-free if and only
if its underlying simple graph is either an odd wheel, or an odd staircase, or the
Tricorn.

Part II - Brick Generation

• In Chapter 5, we present a proof of the R-thin Edge Theorem (1.22) which states that
every R-brick distinct from K4 and C6 has an R-thin edge. This yields a generation
procedure for near-bipartite bricks.

• In Chapter 6, we present a proof of the Strictly R-thin Edge Theorem (1.24) which
gives a complete characterization of those simple R-bricks which are free of strictly
R-thin edges. This yields a generation procedure for simple near-bipartite bricks.
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Chapter 2

Conformal subgraphs and tight cuts

We recall Lovász’s Theorem (1.6) which says that every nonbipartite matching covered
graph is K4-based, or is C6-based, or both. As discussed in Section 1.2.2, in the first part
of this thesis, our goal is to characterize those planar matching covered graphs which are
K4-free, and those which are C6-free.

In this chapter, we reduce these problems to the case of bricks by proving Theorem 1.10,
which is restated below.

Theorem 1.10 [Reduction to the case of Bricks] Let J denote any cubic brick. A
nonbipartite matching covered graph is J-free if and only if each of its bricks is J-free.

It suffices to prove Theorem 2.8, which states that for any nontrivial tight cut C, the
given matching covered graph G is J-free if and only if both C-contractions of G are J-free.

Recall that a matching covered subgraph H of a matching covered graph G is confor-
mal if every perfect matching of H extends to a perfect matching of G. The following
proposition is an easy consequence.

Proposition 2.1 Let H be a conformal subgraph of a matching covered graph G, and let
C be a tight cut of G. Then C ∩ E(H) is a tight cut of H. 2
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2.1 Bi-subdivisions of bricks

Let H be a bi-subdivision of a simple brick J . We refer to the vertices of H of degree
three or more as branch vertices, and the remaining vertices as subdivision vertices. Each
branch vertex of H corresponds to a unique vertex of J , and we refer to both of these using
the same label. As shown in Figure 2.1, for each edge uv of J , there is a unique odd path
in H, denoted Puv, between vertices u and v, such that each internal vertex (possible none)
of Puv is a subdivision vertex. If Puv := w1w2 . . . w2k where w1 := u and w2k := v, we say
that an edge wiwi+1 is of odd parity if i is odd; otherwise of even parity. Note that the first
and last edges (possibly not distinct) of the path Puv are both of odd parity, regardless of
the order in which it is traversed.

J

v

u

C ∩ E(H)

w5

w4

w3

w2

H

v

u

Puv C

u

v

G

Figure 2.1: Perfect matchings MJ , MH and MG

Let G be a J-based simple matching covered graph. By definition, G has a conformal
subgraph H which is a bi-subdivision of J . With each perfect matching MJ of J , we
associate a perfect matching MH of H as follows: for each edge uv in MJ , the set MH

contains precisely the odd edges of the path Puv, and for each edge uv in E(J)−MJ , the
set MH contains precisely the even edges of Puv. In fact, every perfect matching of H
arises this way. Thus MJ → MH is a bijective correspondence between the sets of perfect
matchings of J and H. Since H is a conformal subgraph of G, the matching MH can
be extended to a perfect matching MG of G. This extension is, in general, not unique.
Figure 2.1 illustrates these observations, where the edges depicted in bold lines indicate
the perfect matchings MJ , MH and MG.
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Now let C be a nontrivial tight cut of G. An edge uv of J is a C-crossing edge if the
path Puv meets the cut C in at least one edge, that is, E(Puv)∩C is nonempty; and in this
case, we say that Puv is a C-crossing path. Furthermore, if |E(Puv) ∩ C| = 1 we say that
Puv crosses C once, and if |E(Puv) ∩ C| = 2 we say that Puv crosses C twice, and so on.
Referring to Figure 2.1, the edge uv of J is the only C-crossing edge, and the corresponding
C-crossing path Puv crosses C twice — once in the edge w2w3 of even parity, and once in
the edge w5v of odd parity.

In the following result, we establish some simple properties of C-crossing paths with
respect to a given tight cut C of G. In its proof, we shall make implicit use of Proposi-
tion 2.1.

Proposition 2.2 Let J be a brick, and G be a J-based matching covered graph. Let H be
a conformal subgraph of G which is a bi-subdivision of J , and let C be a nontrivial tight
cut of G.

(i) For a C-crossing path Puv, any two C-crossing edges of Puv must be of opposite parity.
(Thus, |C ∩ E(Puv)| ≤ 2.)

(ii) If a C-crossing path Puv crosses C twice, then there are no other C-crossing paths.

(iii) If Puv and Puw are two C-crossing paths, then each of them must cross C in an edge
of odd parity.

Proof: Suppose first that a path Puv crosses C at least twice, and let e and f be two
distinct C-crossing edges. In case both e and f are odd edges, let MJ be any perfect
matching of J containing the edge uv, and in case both e and f have even parity, let MJ

be a perfect matching of J which does not contain the edge uv. Then the perfect matching
MH of H contains both e and f . Since H is a conformal subgraph of G, there would then
be a perfect matching MG of G containing e and f , implying that |MG ∩ C| ≥ 2. This is
impossible because C is a tight cut. This proves the first part of the assertion.

Now suppose Pst and Puv are two distinct C-crossing paths. Note that s need not be
distinct from u and v, and the same holds for t. Assume that Puv crosses C twice; let f1
and f2 be the two C-crossing edges. Without loss of generality, assume that f1 is an odd
edge and f2 is an even edge. Let e be a C-crossing edge of Pst. In case e is an odd edge,
let MJ be a perfect matching of J which contains the edge st, and in case e is an even
edge, let MJ be a perfect matching of J which does not contain the edge st. Depending on
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whether MJ contains the edge uv or not, the perfect matching MH of H contains either f1
or f2, respectively. By choice of MJ , it follows that MH contains e. Since H is a conformal
subgraph of G, we can extend MH to a perfect matching MG of G, leading to the same
contradiction as before.

Now suppose Puv and Puw are two distinct C-crossing paths. It follows that each of
these paths crosses C exactly once, say in edges e and f , respectively. In case e is odd and
f is even, let MJ be a perfect matching of J which contains the edge uv, and in case both
e and f have even parity, let MJ be a perfect matching of J which contains neither uv nor
uw (such a perfect matching exists since u has at least three neighbours in J). Then the
perfect matching MH of H contains both e and f . Since H is a conformal subgraph of G,
we can extend MH to a perfect matching MG of G, leading to the same contradiction as
before. 2

2.2 Three lemmas on bricks

Here, we state three useful lemmas; the first two of these are specific to cubic bricks. The
following is an immediate consequence of a result of Plesník [LP86, Theorem 3.4.2].

Lemma 2.3 Let J be a cubic brick, and e1 and e2 be two edges of J . Then J − e1 − e2
has a perfect matching. 2

Lemma 2.4 For any vertex v of a cubic brick J , the graph J − v − NJ(v) has a perfect
matching.

Proof: Let u1 and u2 denote two neighbours of v in J . By Theorem 1.9, J is bicritical,
whence J − u1 − u2 has a perfect matching. The restriction of this matching to the edge
set of J − v −NJ(v) is a perfect matching of that graph. 2

The following result is an easy consequence of the above lemma.

Corollary 2.5 Let H be a bi-subdivision of a cubic brick J , and let v be a branch vertex
of H. Then the graph H − v −NH(v) has a perfect matching. 2
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Lemma 2.6 Let J be a brick (not necessarily cubic), let Y be a subset of V (J) with
|Y | ≥ |Y | ≥ 2, and let uv be an edge of J with u ∈ Y and v ∈ Y . Then there exists a
perfect matching MJ of J such that:

|MJ ∩ (∂(Y )− uv)| ≥ 2 (2.1)

Proof: If J has just four vertices, then J is K4, and the statement is obvious. So, we may
assume that |Y | ≥ 3. If |Y | is odd, take any perfect matchingMJ of J with |MJ∩∂(Y )| ≥ 3.
(Such a perfect matching must exist because J is a brick, and ∂(Y ) is a nontrivial odd cut
of J .) If |Y | is even, then take take any perfect matchingMJ of J with |MJ∩∂(Y −u)| ≥ 3.
It is now easy to see that MJ satisfies the required inequality. 2

2.3 Cubic bricks

We shall now proceed to prove Theorem 2.8 which implies the main result of this chapter,
namely Theorem 1.10.

Observe that, if H is a bi-subdivision of a cubic brick J , then bicontracting a vertex
of degree two of H results in another bi-subdivision of J . Furthermore, any bi-subdivision
of H is a bi-subdivision of J as well. This leads us to the following proposition, which we
shall use implicitly in the proof of Theorem 2.8.

Proposition 2.7 Let H be a bi-subdivision of a cubic brick J .

(i) Let P be an even path in H all of whose internal vertices are subdivision vertices.
Then the graph obtained from H by deleting the internal vertices of P and identifying
its ends is also a bi-subdivision of J .

(ii) Any graph obtained from H by replacing an edge of H by an odd path is also a
bi-subdivision of J . 2

Theorem 2.8 Let J be a cubic brick and G be a matching covered graph. Let C := ∂(X)
be a nontrivial tight cut in G. Then G is J-based if and only if at least one of G/(X → x)
and G/(X → x) is J-based.
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Proof: Suppose that G is J-based, that is, G has a conformal subgraph H such that H is a
bi-subdivision of J . Let Y and Y , respectively, denote the sets of branch vertices in X and
X. Adjust notation so that |Y | ≥ |Y |. We shall first show that |Y | ≤ 1. Assume to the
contrary that |Y | ≥ |Y | ≥ 2. In this case, clearly, H must have at least three C-crossing
paths, and all of these cross C in exactly one edge (by Proposition 2.2). Suppose that two
of the C-crossing edges e1 and e2 are even edges, then Lemma 2.3 implies that there exists
a perfect matchingMH of H which contains both e1 and e2. By extendingMH to a perfect
matching MG of G, we have |MG ∩ C| ≥ 2. This is impossible because C is a tight cut of
G. Hence we may assume that at most one C-crossing edge is an even edge. If there is
such an edge e, let Puv be the C-crossing path which contains the edge e, where u ∈ Y and
v ∈ Y . If there is no such edge, let u ∈ Y and v ∈ Y be two arbitrary vertices of J which
are adjacent. By Lemma 2.6, there exists a perfect matching MJ of J satisfying (2.1). The
perfect matching MH of H that corresponds to MJ meets the tight cut ∂(X) in at least
two edges, resulting in a contradiction. Thus, |Y | ≤ 1. We split the rest of the proof into
two cases depending on whether |Y | is zero or one.

If |Y | = 0, then all the branch vertices of H lie in X. It follows from Proposition 2.2
that there is at most one C-crossing path. In case there are no C-crossing paths, H
itself is a conformal subgraph of G/X. Otherwise, let Puv be the unique C-crossing path.
Proposition 2.2 implies that Puv crosses C in exactly two edges which are of different
parities; that is, an odd number of subdivision vertices of Puv lie in X. Let H1 denote
the subgraph of G/(X → x), obtained from H, by identifying all the subdivision vertices
in X with the single vertex x. Then H1 is a bi-subdivision of J (Proposition 2.7), and is a
conformal subgraph of G/X.

Finally, if |Y | = 1, there is precisely one branch vertex, say v, of H which lies in X.
By Proposition 2.2, it follows that the only C-crossing paths of H are those with one end
v, and that each of them crosses C exactly once in an edge of odd parity. In other words,
each of these C-crossing paths has an even number of subdivision vertices (possibly zero)
which lie in X. Consider the subgraph H1 of G/(X → x), obtained from H, by replacing
all of these subdivision vertices and the branch vertex v with the single vertex x. As in the
previous case, note that H1 is a bi-subdivision of J , and is a conformal subgraph of G/X.
This concludes the proof of the ‘if’ part of the assertion.

Now, to prove the converse, suppose that G/(X → x) is J-based; that is, G/(X → x)
has a conformal subgraph H1 such that H1 is a bi-subdivision of J . In case the vertex
x 6∈ V (H1), then H1 itself is a subgraph of G. It can be easily checked that H1 is a
conformal subgraph of G.

Now suppose x ∈ V (H1). It may either be a subdivision vertex ofH1 or a branch vertex.
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In the former case, let u1, u2, belonging to X, be the neighbours of x in H1, and in the
latter case, let u1, u2, u3, belonging to X, be the neighbours of x in H1. Each ui must
clearly have a neighbour in G that belongs to X. Select one such neighbour vi of ui and
identify the edge uix of H1 with the edge uivi of G. (We admit the possibility that vi = vj,
for i 6= j.) Furthermore, let Mi be a perfect matching of G containing the edge uivi, such
that the restriction ofMi to E(H1) is a perfect matching of H1. Let P denote the (M1,M2)-
alternating path in G starting with the edge u1v1 of M1, and ending with the edge v2u2 of
M2. In addition, when x is a branch vertex of H1, let Q denote the (M3,M2)-alternating
path in G starting with the edge u3v3 of M3, and ending with the edge v2u2 of M2.

Having established the notation common to both cases, for clarity, let us first deal with
the case in which x is a subdivision vertex of H1. In this case, let H be the subgraph of
G, obtained from H1, by replacing the path u1xu2 of length two by the even path P . It
is easy to see that H is a bi-subdivision of J and that the restriction of M1 (or of M2) to
E(H) is a perfect matching of H, implying that H is a conformal subgraph of G.

Now, suppose that x is a branch vertex of H1. In this case, let w be the first vertex of
the (M3,M2)-alternating u3u2-path Q that lies on the (M1,M2)-alternating u1u2-path P .
Let P1 and P2 denote the u1w- and u2w-segments of P , respectively, and let P3 denote the
u3w-segment of Q. These three paths have the end vertex w in common, but are otherwise
disjoint. Let H denote the subgraph of G obtained from H1 by replacing, for i = 1, 2, 3, the
edge uix by the path Pi. Clearly H is a conformal subgraph of G because the restriction
of M2 to E(G − V (H)) is a perfect matching of G − V (H). The graph H would be a
bi-subdivision of J as well if all the Pi are odd paths. The path P3, being an alternating
path starting and ending with an edge of M3, is clearly odd. The path P is an even path
as it is an alternating path which starts with an edge of M1 and ends with an edge of M2.
Let us proceed to show that the two segments P1 and P2 of P must both be of odd length.
If this is not the case, both P1 and P2 are even, and the vertices v1, v2 and v3 would have
to be distinct, and the tree P1∪P2∪P3 would have a perfect matching, say N ′, containing
the three edges u1v1, u2v2 and u3v3. By Corollary 2.5, the graph H1 − x − NH1(x) has a
perfect matching, say N ′′. Then N = N ′∪N ′′ would be a perfect matching of H containing
the three edges u1v1, u2v2 and u3v3. As H is a conformal subgraph of G, there would be
a perfect matching of G containing N , and it would have three edges in common with C.
This is impossible because C is a tight cut of G.

Hence the three paths P1, P2 and P3 must all be odd paths 1, and H is a bi-subdivision
of J , with w as one of its branch vertices. This completes the proof of the assertion. 2

1Each of P1 and P2 is an (M1,M2)-alternating path; P1 starts and ends with an M1-edge, whereas P2

starts and ends with an M2-edge.
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As noted earlier, Theorem 1.10 immediately follows from the above theorem. Cláudio
Lucchesi communicated to us an alternative proof of Theorem 2.8 which is based on the
theory of ear decompositions.

Figure 2.2: A matching covered graph whose unique brick is W5

We conclude this chapter by noting that the statement of Theorem 2.8 would not be
valid if J were an arbitrary brick or if J were a cubic brace, as explained below.

Let G be the matching covered graph shown in Figure 2.2. The unique brick J of G,
obtained by bicontracting the degree two vertex, is isomorphic to the odd wheel W5. In
particular, J is W5-based. However, since the maximum degree in G is four, and W5 has
a vertex of degree five, no bi-subdivision of W5 can be a conformal subgraph of G.

Now, suppose that G is the matching covered graph shown in Figure 1.3. The unique
brace J of G is isomorphic to K3,3. In particular, J is K3,3-based. However, it can be easily
verified that G is K3,3-free. (To see this, suppose that G has a conformal subgraph H which
is a bi-subdivision of K3,3. Since G and K3,3 are both cubic, no subgraph of G is isomorphic
to K3,3. Thus H is a spanning subgraph of G. Being bipartite, H can not use all three
edges of the unique triangle T of G. It follows from the degrees of the vertices that
H = G− f , where f is any edge of T . Observe that H, although a subdivision of K3,3, is
not a bi-subdivision, contrary to our hypothesis.)

In the next chapter, we shall establish our characterizations of K4-free planar bricks
and C6-free planar bricks.
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Chapter 3

Planar bricks

In the last chapter, we reduced the problems of characterizingK4-free and C6-free matching
covered graphs to the case of bricks.

In Sections 3.4 and 3.5, we shall establish our characterizations of K4-free planar bricks
(Theorem 1.11), and of C6-free planar bricks (Theorem 1.12), respectively — thus solving
the above problems for planar matching covered graphs. These theorems are restated
below.

Theorem 1.11 [Characterization of K4-free Planar Bricks] A planar brick is
K4-free if and only if it has precisely two odd faces.

Theorem 1.12 [Characterization of C6-free Planar Bricks] A planar brick is
C6-free if and only if its underlying simple graph is either an odd wheel, or an odd staircase,
or the Tricorn.

Our proofs for each of these results rely on the generation procedure for simple bricks
established by Norine and Thomas; see Theorem 1.18.

Observe that, for a cubic brick J , a matching covered graph G is J-free if and only
if the underlying simple graph of G is J-free. Thus we may restrict ourselves to simple
planar graphs and bricks (throughout this chapter). We now proceed to discuss planar
graphs and their embeddings.

A planar graph may have different embeddings in the plane. In any embedding of a
2-connected planar graph in the plane, every face is bounded by a cycle. A facial cycle in
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such an embedding is a cycle of the graph that bounds a face. It is easy to see that if C
is any facial cycle of a 3-connected planar graph, then C cannot have any chords and that
G − V (C) is connected (see [BM08, page 266]). Furthermore, it can be verified that if u
and v are two nonadjacent vertices of C, then there is a uv-path in G that is internally
disjoint from C.

Two embeddings of a 2-connected planar graph in the plane are regarded as the same
if the facial cycles in the two embeddings are the same; otherwise they are different.
According to a well-known result due to Whitney [Whi33], every simple 3-connected planar
graph has a unique embedding in the plane. In particular, every planar brick has a unique
embedding. Thus, we may refer to faces of planar bricks without any ambiguity. Even
when we are dealing with planar matching covered graphs which are not bricks, we restrict
ourselves to graphs with a given embedding, that is to plane graphs, and thereby avoid
any ambiguity as to which cycles are facial.

According to a deep result due to Tutte, every 3-connected planar graph has an em-
bedding in the plane in which all facial cycles are convex polygons. Tutte [Tut84, Theo-
rem XI.63] also proved the following relevant result.

Proposition 3.1 The boundaries of any two faces of a simple 3-connected planar graph
have at most two vertices in common, and if they do have two vertices in common, then
those vertices are adjacent. 2

3.1 Number of odd faces

A face F in a 2-connected plane graph G is even or odd according to the parity of the length
of the cycle of G that bounds F . We denote the number of odd faces in G by fodd(G). (This
function fodd(G) will play a crucial role in Section 3.4.) We note that fodd(G) is always even,
and it is zero if and only if G is bipartite.

Proposition 3.2 If G is a planar brick, then fodd(G) ≥ 2. Furthermore, if G is not an
odd wheel, then it has at least two vertex-disjoint odd faces.

Proof: The inequality fodd(G) ≥ 2 follows from the fact that G is not bipartite.
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Now, suppose that G is not an odd wheel. As per a result of Carvalho et al. [CLM06],
G has a nontrivial cut C := ∂(X) such that both C-contractions of G are nonbipartite
matching covered graphs; whence G[X] and G[X] are both nonbipartite. Thus G has two
vertex-disjoint odd cycles; consequently, G has at least two vertex-disjoint odd faces. 2

Let G be a plane matching covered graph, let v0 be a vertex of degree two of G, with
v1 and v2 as its two neighbours. Suppose that H is the plane graph obtained from G
by bicontracting v0 and denoting the resulting contraction vertex by v. Then there is a
natural one-to-one correspondence between the sets of faces of G and H (see Figure 3.1).
As shown in the figure, F2 and F4 are the only faces of G whose bounding cycles, viewed
as a set of edges, are different from the bounding cycles of the corresponding faces of H
— in G, these faces have the path v1v0v2 in their boundary, whereas in H they just have
v instead of v1v0v2. It follows that the parity of a face of H is the same as the parity of
the corresponding face of G.

v0 v2v1
F1

F2

F3

F4

v
F1

F2

F3

F4

Figure 3.1: Correspondence between faces of G and H

Let G be a plane brick, and let e be an edge of G. If e lies inside an odd face of
G − e, then fodd(G − e) = fodd(G); and if e lies inside an even face of G − e, then either
fodd(G − e) = fodd(G), or fodd(G − e) = fodd(G) − 2. Now suppose that H is the retract
of G − e. Since H is obtained from G − e by either zero, one, or two bicontractions,
fodd(H) = fodd(G− e). We thus have the following relationship between the number of odd
faces of G and H.

Proposition 3.3 Let e be a strictly thin edge in a plane brick G, and let H be the retract
of G− e. Then fodd(H) ≤ fodd(G) ≤ fodd(H) + 2. 2

It is easily verified that if H is a subgraph of a plane 2-connected graph G, then
fodd(G) ≥ fodd(H). Note that K4 has exactly four odd faces, and so does any bi-subdivision
of K4. This immediately implies the following.
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Proposition 3.4 Let G be a K4-based plane matching covered graph. Then fodd(G) ≥ 4. 2

The above provides a necessary condition for a plane matching covered graph to be
K4-based. It is not sufficient in general. For instance, let G denote the graph shown in
Figure 3.2. Observe that G has precisely four odd faces. However, it is K4-free, as can
be verified using Theorem 1.10 — its tight cut decomposition results in two bricks, each
isomorphic to C6 (which is K4-free), and the cube (which is a brace).

However, we show that for planar bricks this condition is indeed sufficient, that is, if
a planar brick has four or more odd faces then it is indeed K4-based. Our proof of this
assertion relies on the fact that in a planar brick with precisely two odd faces, each even
facial cycle is conformal. In order to prove this by induction we need to use a stronger
induction hypothesis concerning all facial cycles. This involves the notion of critical graphs.

Figure 3.2: K4-free graph with four odd faces — the bold lines indicate tight cuts

3.2 Critical graphs

A graph G is critical if for any vertex v, the graph G − {v} has a perfect matching. An
ear decomposition of a 2-connected critical graph G is a sequence G1 ⊂ G2 ⊂ · · · ⊂ Gr of
2-connected critical subgraphs of G such that (i) G1 is an odd cycle and Gr := G, and (ii)
for each i such that 1 ≤ i ≤ r − 1, Gi+1 is the union of Gi and exactly one single ear Pi+1

of Gi+1. The following is a well-known result. See [LP86, page 196].
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Theorem 3.5 A 2-connected graph G is critical if and only if it has an ear decomposition
G1 ⊂ G2 ⊂ · · · ⊂ Gr, starting with an odd cycle G1. Furthermore, G1 can be chosen to
contain any arbitrary vertex.

LetH be a graph and v be a vertex ofH of degree at least two. We recall the bi-splitting
operation defined in Section 1.5.2, where v is replaced by two new vertices v1 and v2, and
a third vertex v0 is introduced and joined to both v1 and v2. The next result proves that
bi-splitting a vertex of a 2-connected critical graph yields a graph which is also 2-connected
and critical.

Lemma 3.6 Let H be a 2-connected critical graph, and v ∈ V (H). If G is obtained from
H by bi-splitting v, then G is also a 2-connected critical graph.

Proof: We adopt the notation from the preceding paragraph. Since H is 2-connected and
critical, Theorem 3.5 implies that H admits an ear decomposition H1 ⊂ H2 ⊂ · · · ⊂ Hr,
where H1 can be chosen to be an odd cycle which contains the vertex v. For each i such
that 1 ≤ i ≤ r − 1, we have Hi+1 := Hi ∪ Pi+1 where Pi+1 is a single ear of Hi+1. To show
that G is also 2-connected and critical, we will extend this ear decomposition of H to an
ear decomposition of G, say G1 ⊂ G2 ⊂ · · · ⊂ Gr — such that Gi+1 := Gi ∪ Qi+1 and
Qi+1 is a single ear of Gi+1.

Let s and t be the unique distinct neighbours of v in the odd cycle H1. Note that s must
be a neighbour of exactly one of v1 and v2 in the graph G, and a similar statement holds
for t. We divide the rest of the proof into two cases, depending on the neighbourhoods of
v1 and v2:

Case 1: In G, the vertices s and t are both neighbours of v1. (The case when s and t are
both neighbours of v2 is analogous.)

Let G1 be the same as H1, except that v1 plays the role of vertex v. Let Hk be the
first subgraph in the sequence H1 ⊂ H2 ⊂ · · · ⊂ Hr, such that it contains an edge yv
for some y ∈ NG(v2). We note that k > 1. For all j such that 1 < j < k, we define
the odd path Qj to be the same as Pj, except that v1 plays the role of v, if applicable.
Suppose Pk := vy . . . z for some vertex z in Hk−1. Now we define Qk to be the odd path,
obtained by stretching Pk, as follows: let v1 play the role of v, and replace the edge vy
by the odd path v1v0v2y — that is, Qk := v1v0v2y . . . z. For the single ears Pj that follow
(that is, j > k), we define the odd path Qj to be the same as Pj, except that the role of
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v is played by either v1 or v2, as appropriate. More precisely, suppose Pj := vw . . . x. If
w ∈ NG(v1), then we define Qj to be v1w . . . x, and if w ∈ NG(v2), then we define Qj to be
v2w . . . x. For each i such that 1 ≤ i ≤ r − 1, we let Gi+1 := Gi ∪ Qi+1. We observe that
the sequence G1 ⊂ G2 ⊂ · · · ⊂ Gr is an ear decomposition of G.

Case 2: In G, the vertex s is a neighbour of v1, whereas t is a neigbour of v2.

Suppose the odd cycle H1 := svt . . . s. Now we define G1 to be the odd cycle, obtained
by stretching H1, as follows: replace the vertex v by the even path v1v0v2 — that is,
G1 := sv1v0v2 . . . s. For each single ear Pj, we define the odd path Qj to be the same
as Pj, except that the role of v is played by either v1 or v2, as in the previous case.
We let Gi+1 := Gi ∪ Qi+1 for each i such that 1 ≤ i ≤ r − 1, and observe that the
sequence G1 ⊂ G2 ⊂ · · · ⊂ Gr is an ear decomposition of G.

In each case, we obtain an ear decomposition of G. Thus, Theorem 3.5 implies that G
is 2-connected and critical. 2

3.3 Index of a thin edge

As mentioned earlier, all of our proofs in this chapter use the Strictly Thin Edge Theo-
rem (1.17), which says that every (simple) brick G, except for the Norine-Thomas bricks,
has a strictly thin edge e; and in this case, the retract of G− e is also a simple brick. To
carry out the case analysis, we shall find it convenient to associate each thin edge e with
a number, called its index, which is:

• zero, if both ends of e have degree four or more in G;

• one, if exactly one end of e has degree three in G;

• two, if both ends of e have degree three in G and e does not lie in a triangle;

• three, if both ends of e have degree three in G and e lies in a triangle.

The following proposition is easily verified.
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Proposition 3.7 Let G be a brick, let e be a thin edge of G, and let H be the retract of
G− e. If the index of e is zero, then H = G− e. If the index of e is one, then G− e has
precisely one vertex of degree two; and H has just one contraction vertex, and its degree
is at least four. If the index of e is two, then G − e has precisely two vertices of degree
two, and they have no common neighbour; and H has two contraction vertices, and their
degrees are at least four. If the index of e is three, then G − e has precisely two vertices
of degree two, and they have a common neighbour; and H has just one contraction vertex,
and its degree is at least five. 2

e1

G1

e2

G2

e3

G3

Figure 3.3: Strictly thin edges of indices one, two and three

Figure 3.3 illustrates strictly thin edges of indices one, two and three. The edge e1 in
G1 has index one, and the retract of G1 − e1 is the odd wheel on six vertices. The edge e2
in G2 has index two, and the retract of G2 − e2 is G1. The edge e3 in G3 has index three,
and the retract of G3 − e3 is again the odd wheel on six vertices.

Let G be a brick, let e be a thin edge of G, and let J be a cubic brick. If G is J-free,
then clearly G−e is also J-free. Since the retract of G−e is the brick of G−e, by applying
Theorem 2.8, we have the following relevant fact.

Proposition 3.8 Let G be a brick and e be a thin edge of G. Let H be the retract of G−e.
For any cubic brick J , if G is J-free then H is also J-free. 2

In particular, if G is a K4-free (C6-free) brick, and G1, G2, . . . , Gr is a sequence of bricks
as in Theorem 1.18, then each Gi is also K4-free (C6-free).
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3.4 K4-free planar bricks

In this section we will establish that a planar brick is K4-free if and only if it has exactly
two odd faces (Theorem 1.11). Our proof of this result relies on the fact that, in a planar
brick with exactly two odd faces, every even facial cycle is conformal.

It should be noted that an arbitrary planar brick may not satisfy this property. For
example, in the brick G3, shown in Figure 3.3, the outer face is even but not conformal.
Furthermore, an arbitrary planar matching covered graph with precisely two odd faces,
may not satisfy this property either. For instance, the outer face of the graph shown in
Figure 3.4 is not conformal. However, it is easily verified that in a plane bipartite matching
covered graph, every facial cycle is conformal; this was also shown by McCuaig [McC04].

Figure 3.4: Matching covered graph with two odd faces — the bold lines depict tight cuts

As alluded to earlier, proving the above fact concerning even facial cycles by induction
requires proving a statement concerning all facial cycles. Before formally stating and
proving that assertion concerning facial cycles, we shall set up the required notation and
make a few useful observations.

Let G be a planar brick with fodd(G) = 2. Let e := u0v0 be a strictly thin edge of
G, and let H be the retract of G − e. It follows from Proposition 3.3 that fodd(H) = 2.
Furthermore, as H is obtained from G− e by either zero, one or two bicontractions, there
is a one-to-one correspondence between the sets of faces of H and G − e. For any face Φ
of G− e, we shall denote by Φ′ the corresponding face of H.

We shall denote the two faces of G whose bounding cycles share the edge e by F1 and F2,
and by F the unique face of G− e which contains both u0 and v0. (Thus F ′ is the face of
H that corresponds to F .) Let u1 ∈ V (F1)\v0 and u2 ∈ V (F2)\v0 be neighbours of u0. Let
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v1 ∈ V (F1)\u0 and v2 ∈ V (F2)\u0 be neighbours of v0. Note that, for i ∈ {1, 2}, if ui = vi
then Fi is an odd face. Since an odd wheel has at least four odd faces, G is not an odd
wheel and thus by Proposition 3.2, at most one of F1 and F2 is an odd face. We assume
that F2 is an even face and hence that u2 6= v2, and admit the possibility that u1 = v1.

Depending on the index of the edge e, there are four possible scenarios. If the index
of e is zero, then H = G − e. If the index of e is one, exactly one end of e, say u0, has
degree three; the other end v0 has degree at least four. In this case, H is obtained from
G− e by shrinking {u1, u0, u2} to a single vertex; we shall denote the resulting contraction
vertex by u (see Figure 3.5a). If the index of e is two, both ends of e have degree three.
In this case, H is obtained from G − e by shrinking {u1, u0, u2} to a single vertex, and
{v1, v0, v2} to a single vertex; we shall denote the two resulting contraction vertices by
u and v, respectively (see Figure 3.5b). If the index of e is three, then both ends of e
have degree three and u1 = v1, and H is obtained from G − e by the bicontractions of
u0 and v0. This amounts to shrinking {u2, u0, u1, v0, v2} to a single vertex; we shall denote
the resulting contraction vertex by w (see Figure 3.5c).

v0

u0u1

v1

u2

v2

F1 F2

u

(a)

v0

u0u1

v1

u2

v2

F1 F2

u

v

(b)

u1

v0

u0 u2

v2

F1 F2

w

(c)

Figure 3.5: (a) Index of e is one, (b) Index of e is two, (c) Index of e is three

Proposition 3.9 Each vertex on F , other than u0 and v0, has a neighbour outside F .

Proof: If there is an edge of G− e joining two non-consecutive vertices on F , then it would
be a chord of F ′ in H. This is not possible because H is a simple 3-connected graph and
F ′ is a face of H. 2
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Proposition 3.10 If the index of e is one, any face Φ of G which contains u1 and u2 also
contains u0. If the index of e is two or three, then any face which contains u1 and u2 also
contains u0, and any face which contains v1 and v2 also contains v0.

Proof: Let us consider the case in which e has index one. By the proof of Proposition 3.9,
u1 and u2 are not adjacent. Thus, if a face Φ contains both u1 and u2 but not u0, the two
u1u2-segments of the bounding cycle of Φ contain internal vertices, and there would have
to exist a path connecting them which is internally disjoint from the bounding cycle. Such
a path would have to pass through u0. This is impossible because the degree of u0 is three.
The case in which the index of e is two or three is similar. 2

Proposition 3.11 Suppose that Φ is an odd face of G, and x /∈ V (Φ) is any vertex. Then
x has at least two neighbours in G which do not lie in V (Φ).

Proof: Suppose not. Then there exist edges xs and xt which are consecutive in the cyclic
order around x, such that s, t ∈ V (Φ). Note that s and t must be adjacent since otherwise
{s, t} is a 2-separation. Now, the triangle xstx bounds an odd face that is not disjoint
from the odd face Φ, which contradicts Proposition 3.2. 2

Proposition 3.12 Suppose the face F1 is odd, and let u0x1x2 . . . x2kv0u0 be the cycle
bounding F2, where x1 := u2 and x2k := v2. Then there exist vertices y1, y2, . . . , y2k, which
are not on the boundary of F such that xiyi is an edge for 1 ≤ i ≤ 2k, and yi 6= yi+1

for i ∈ {1, 3, . . . , 2k − 1}.

Proof: By Proposition 3.9, each xi has a neighbour outside V (F ). Suppose that there is
only one vertex y /∈ V (F ) that is adjacent to both xi and xi+1 for some i ∈ {1, 3, . . . , 2k−1}.
Then yxixi+1y would be the boundary of a triangular face, and the graph H would then
have two odd faces which are not vertex-disjoint. 2

With this preparation, we are now ready to state and prove the result concerning the
conformality of even facial cycles.

52



Theorem 3.13 Let G be a planar brick with fodd(G) = 2. Then:

(i) each even facial cycle is conformal, and,

(ii) for each odd facial cycle of G, the graph obtained from G by deleting the vertices of
that cycle is a 2-connected critical graph.

Proof: As noted earlier, the two odd faces of G must be vertex-disjoint. We use induction
on the number of edges to prove the theorem.

If G is a Norine-Thomas brick, then G is either a prism, or an even staircase, or a
truncated biwheel. In each case, it can be easily checked that the assertion holds.

Hence we may assume that G is not a Norine-Thomas brick. It follows that G has a
strictly thin edge e such that the retract of G − e, say H, is a planar brick with strictly
fewer edges than G. As already noted, fodd(H) = 2, and thus H has two vertex-disjoint
odd faces. We shall adopt the notation described earlier in this section. It should be
remembered that F is the face of G− e that contains the edge e, and that, for any face Φ
of G − e, the face of H that corresponds to Φ is denoted by Φ′. (In particular, F ′ is the
face of H that corresponds to the face F of G − e.) If e has index zero, or if V (Φ′) does
not contain any contraction vertex, then Φ′ = Φ. Otherwise, Φ′ and Φ are different. When
this is the case, careful analysis is required.

Case 1: Both F1 and F2 are even.

Since F1 is even, e cannot be of index three. We shall divide the analysis into three cases
depending on the index. Cases dealing with indices one and two are very similar.

Index of e is zero: In this case, H = G−e and F ′ is an even face of H. Hence, by induction,
F ′ is conformal in H, implying that F1 ∪ F2 is conformal in G. But each of F1 and F2 is
conformal in F1 ∪ F2. We deduce that both F1 and F2 are conformal in G.

Let Φ be any even face of G distinct from F1 and F2. Then Φ is also a face of H. By
induction, Φ is conformal in H. Since G − V (Φ) is either H − V (Φ) or H − V (Φ) + e, it
follows that Φ is conformal in G.

Now let Φ be an odd face of G. Then Φ is also a face of H. By induction, H − V (Φ)
is a 2-connected critical graph. But G − V (Φ) is either H − V (Φ) or H − V (Φ) + e. It
follows that G− V (Φ) is a 2-connected critical graph.
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Index of e is one: We first note that if Φ is any face of G distinct from F1 and F2, it follows
from Proposition 3.10 that {u0, u1, u2} ∩ V (Φ) is either {u0, u1, u2}, or {u1} or {u2}, or it
is empty. The main problem to contend with in analysing this case is that even if a face Φ
of G contains just one vertex of {u0, u1.u2}, the corresponding face Φ′ in H contains the
contraction vertex u.

Let us note that F ′ is an even face ofH, but it contains the contraction vertex. However,
H − V (F ′) and G− V (F1 ∪ F2) are still identical, implying that F1 and F2 are conformal
subgraphs of G (as in the index zero case).

Suppose that Φ 6= F1, F2 is an even face of G. Then Φ′ is an even face of H and, by
induction, H − V (Φ′) has a perfect matching, say M . If {u0, u1, u2}∩ V (Φ) = {u0, u1, u2},
then G − V (Φ) = H − V (Φ′) and M itself is a perfect matching of G − V (Φ). In each
of the other cases, either M + u0u2 or M + u0u1, as appropriate, is a perfect matching of
G−V (Φ). (Thus, suppose f is the edge ofM which is incident with the contraction vertex
u in H−V (Φ′). In G−V (Φ), this edge might be incident with either u1 or with u2. In the
former case, M +u0u2 is a perfect matching of G−V (Φ), and in the latter case, M +u0u1
is the desired perfect matching.)

Now suppose that Φ is an odd face of G. Then Φ′ is an odd face of H and, by induction,
H ′ := H − V (Φ′) is a 2-connected critical graph. Let us first note that if u1 /∈ V (Φ) then,
by Proposition 3.11, u1 has at least one neighbour, different from u0, which does not lie in
V (Φ). (A similar statement holds for u2.)

If {u0, u1, u2} ∩ V (Φ) = {u0, u1, u2}, then G− V (Φ) = H − V (Φ′), and thus G− V (Φ)
is a 2-connected critical graph.

If {u0, u1, u2}∩V (Φ) = ∅, then the contraction vertex u is a vertex of H ′ := H−V (Φ′).
Furthermore, by the observations made earlier, among the edges incident with u in H ′,
there is at least one which is incident with u1 in G, and at least one incident with u2. Thus
the graph G − V (Φ) can be obtained from H ′ by appropriately bi-splitting u. Thus, by
Lemma 3.6, G− V (Φ) is 2-connected and critical.

Now, suppose that {u0, u1, u2} ∩ V (Φ) = {u1}. In this case, the contraction vertex u
does belong to Φ′, and not to H ′ := H−V (Φ′). However, at least one neighbour of u2, say
y 6= u0, is in H ′. The graph G−V (Φ) can be obtained from H ′ by adding the ear yu2u0v0,
and then any remaining edges incident with u2. It follows that G − V (Φ) is 2-connected
and critical. The case in which {u0, u1, u2} ∩ V (Φ) = {u2} is similar.

Index of e is two: The face F ′ contains both the contraction vertices, and G − V (F ) =
H − V (F ′), implying, as before, the conformality of the even faces F1 and F2.
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For any face Φ 6= F1, F2 of G, {u0, u1, u2, v0, v1, v2} ∩ V (Φ) is either empty; or is one of
the four singletons {u1}, {u2}, {v1}, and {v2}; or is one of the two doubletons {u1, v1} and
{u2, v2}; or is one of {u0, u1, u2} and {v0, v1, v2}.

Suppose that Φ 6= F1, F2 is an even face of G, and let M be a perfect matching of
H−V (Φ′). Then one ofM+u0u1+v0v1,M+u0u1+v0v2,M+u0u2+v0v1,M+u0u2+v0v2,
M+v0v1,M+v0v2,M+u0u1, orM+u0u2, as appropriate, is a perfect matching ofG−V (Φ).

Now suppose that Φ is an odd face of G, and let H ′ := H − V (Φ′). By induction, H ′
is a 2-connected critical graph. We need to deduce from it that G − V (Φ) is 2-connected
and critical.

If {u0, u1, u2, v0, v1, v2}∩V (Φ) is empty, then neither u nor v lies in V (Φ′), and G−V (Φ)
can be obtained from H ′ by bi-splitting u and v successively, and is thus 2-connected and
critical.

If {u0, u1, u2, v0, v1, v2} ∩ V (Φ) = {u0, u1, u2}, then the contraction vertex u ∈ V (Φ′),
but v /∈ V (Φ′). In this case, G − V (Φ) can be obtained from H ′ by bi-splitting v. (The
case in which the intersection is {v0, v1, v2} is similar.)

If {u0, u1, u2, v0, v1, v2} ∩ V (Φ) is a singleton, then the bi-splitting operation, followed
by the addition of an ear of length three and any remaining edges does the trick. If
the intersection is a doubleton, say {u1, v1}, then u1 and v1 are adjacent. We note that
u2 and v2 are not adjacent since otherwise H is not simple. Both u and v belong to V (Φ′),
and in G, each of u2 and v2 would have a neighbour in V (F2) − {u0, v0}, say s and t
respectively, which are distinct. In this case adding the ear su2u0v0v2t to H ′, and then
adding any remaining edges incident with u2 and v2 yields G− V (Φ). This completes the
analysis of Case 1.

Case 2: F1 is odd and F2 is even.

Index of e is zero: In this case, F ′ is an odd face of H. By induction, H ′ := H−V (F ′) is a
2-connected critical graph. Using this, we now show that F2 is conformal. There must be
a neighbour y of u1 that is not in F ′, and hence in V (H ′). Let M be a perfect matching of
H ′− y. Let G′ denote the graph induced by the edge set E(F1) + yu1−u1u0−u0v0− v0v1.
Since G′ is an odd path, it has a perfect matching, say M ′. Then M ∪M ′ is a perfect
matching of G− V (F2).

Let Φ be an even face of G distinct from F2. Then Φ is also an even face of H.
Conformality of Φ in H implies the conformality of Φ in G.
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Now let us turn to odd faces of G. First let Φ be the odd face distinct from F1. Then
Φ is also an odd face of H. By induction, H − V (Φ) is a 2-connected critical graph. Since
F1 and Φ are vertex-disjoint, we have G − V (Φ) = H − V (Φ) + e, and thus G − V (Φ) is
2-connected and critical.

Finally, consider the odd face F1. To show that G − V (F1) is a 2-connected critical
graph, we show that the 2-connected critical graph H ′ := H − V (F ′) can be aug-
mented using appropriate ear additions to obtain G − V (F1). Let us label the vertices
such that the cycle bounding F2 is u0x1x2 . . . x2kv0u0, where x1 = u2 and x2k = v2. Then,
by Proposition 3.12, there exist vertices y1, y2, . . . , y2k /∈ V (F ), which are neighbours of
x1, x2, . . . , x2k, respectively, such that yi 6= yi+1 for i ∈ {1, 3, . . . , 2k − 1}. Adding the ears
y1x1x2y2, y3x3x4y4, . . . , y2k−1x2k−1x2ky2k to H ′ successively results in a 2-connected critical
graph whose vertex set is V (G)−V (F1). Now any remaining missing edges can be added as
ears of length one to obtain the graph G−V (F1). It follows that G−V (F1) is 2-connected
and critical.

Index of e is one: Since F ′ is an odd face of H, by induction, H − V (F ′) is a 2-connected
critical graph. The fact that F2 is conformal in G follows by an argument analogous to the
one used in the index zero case.

Let Φ 6= F2 be an even face of G. Then Φ′ is an even face of H and, by induction,
H ′ := H−V (Φ′) has a perfect matching, say M . If {u0, u1, u2}∩V (Φ) = {u0, u1, u2}, then
M is a perfect matching of G− V (Φ) as well. If {u0, u1, u2} ∩ V (Φ) is either empty, or is
a singleton {u1} or {u2}, then either M + u0u1 or M + u0u2, as appropriate, is a perfect
matching of G− V (Φ), and thus Φ is conformal.

Now let Φ 6= F1 be an odd face of G. Then Φ′ is an odd face of H and is vertex-disjoint
from F ′. By induction, H ′ := H − V (Φ′) is 2-connected and critical. Let us first note that
since u1 /∈ V (Φ), by Proposition 3.11, u1 has at least one neighbour, different from u0,
which does not lie in V (Φ). (A similar statement holds for u2.) Thus, the graph G−V (Φ)
can be obtained from H ′ by appropriately bi-splitting u, which implies that G − V (Φ) is
2-connected and critical.

Finally, consider the odd face F1. As in the index zero case, G−V (F1) can be obtained
from the 2-connected critical graph H−V (F ′) using appropriate ear additions, and is thus
2-connected and critical.

Index of e is two: As before, we note that H − V (F ′) is a 2-connected critical graph. The
conformality of F2 follows using an argument analogous to the previous cases.
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Let Φ 6= F2 be an even face of G, and let M be a perfect matching of H −V (Φ′). Then
one of M + u0u1 + v0v1, M + u0u1 + v0v2, M + u0u2 + v0v1, M + u0u2 + v0v2, M + v0v1,
M + v0v2, M + u0u1, or M + u0u2, as appropriate, is a perfect matching of G− V (Φ).

Now let Φ 6= F1 be an odd face of G. By induction, H ′ := H − V (Φ′) is 2-connected
and critical. Since Φ′ and F ′ are vertex-disjoint, G − V (Φ) can be obtained from H ′ by
bi-splitting u and v successively, and is thus 2-connected and critical.

We note that G−V (F1) can be obtained from the 2-connected critical graph H−V (F ′)
by adding ears appropriately, and is thus itself 2-connected and critical.

Index of e is three: First we note that u1 = v1. Recall that H is obtained from G −
e by shrinking {u2, u0, u1, v0, v2} to a single vertex, and that the resulting contraction
vertex is denoted by w. Observe that u2 and v2 are neither adjacent, nor do they have a
common neighbour, since otherwise H would not be simple. For any face Φ 6= F1, F2 of G,
{u0, u1, u2, v0, v2} ∩ V (Φ) is either empty; or is one of the three singletons {u1}, {u2} and
{v2}; or is one of {u0, u1, u2} and {v0, v1, v2}.

In H, the face F ′ is an odd face, and by induction, H ′ := H − V (F ′) is a 2-connected
critical graph. Let y be a neighbour of u1 that is not in F ′, and letM be a perfect matching
of H ′ − y. Then M + yu1 is a perfect matching of G− V (F2), and thus F2 is conformal.

Let Φ 6= F2 be an even face of G, and let M be a perfect matching of H −V (Φ′). Then
one of M + u0u1 + v0v2, M + u0u2 + v0v2, M + u0u2 + v0v1, M + u0u2, or M + v0v2, as
appropriate, is a perfect matching of G− V (Φ).

Now let Φ 6= F1 be an odd face of G. Since Φ′ and F ′ are vertex-disjoint faces of H,
neither u2 nor v2 lies in V (Φ). By Proposition 3.11, u2 has at least one neighbour, different
from u0, which does not lie in V (Φ). Similarly, v2 has at least one neighbour, different
from v0, which does not lie in V (Φ). Now, we observe that G − V (Φ) can be obtained
from the 2-connected critical graph H − V (Φ′) by appropriately bi-splitting the vertex w
into u1 and u2, and thereafter appropriately bi-splitting the vertex u1 into u1 and v2, and
adding the remaining edge u0v0. Thus, G− V (Φ) is 2-connected and critical.

Finally, consider the odd face F1. Let s and t be neighbours of u2 and v2, respectively,
such that s, t /∈ V (F2). As noted earlier, s and t are distinct. We note that s, t lie in the
2-connected critical graph H ′ := H − V (F ′). Let F2 := u0x1x2 . . . x2kv0u0, where x1 = u2
and x2k = v2. Adding the ear sx1x2 . . . x2kt to H ′ results in a 2-connected critical graph
whose vertex set is V (G)−V (F1). Now any remaining missing edges can be added as ears
of length one to obtain the graph G− V (F1), which is thus 2-connected and critical. This
completes the analysis of Case 2.
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Thus, all the facial cycles of G possess the desired properties, and this completes the
proof of Theorem 3.13. 2

We will use Theorem 3.13 to characterize K4-free planar bricks. However, before that
we need another technical result, which proves the existence of a conformal bi-subdivision
of K4 whenever a plane matching covered graph contains a certain configuration.

Lemma 3.14 Let G be a plane matching covered graph. Let F1 and F2 be two odd faces
which share exactly one edge e such that G− V (F1 ∪ F2) has a perfect matching. Then G
is K4-based.

Proof: We note that the subgraph with vertex set V (F1 ∪ F2) and edge set E(F1 ∪ F2)− e
is an even cycle; denote this cycle by C, and label its vertices such that C := w1w2 . . . w2kw1,
w2 ∈ V (F2) and e := w1w2j+1 for some 1 ≤ j < k. See Figure 3.6. Observe that w1 and w2j+1

belong to the same colour class of C. We refer to the vertices of C which belong to the
same colour class as w1 as black vertices, and the remaining vertices as white vertices.

By hypothesis, G − V (C) has a perfect matching; taking the union of such a match-
ing and the set {w1w2, w3w4, . . . , w2k−1w2k}, we obtain a perfect matching M of G itself.
Let Me denote some perfect matching of G which contains e. Clearly, the edges w1w2,
e := w1w2j+1, and w2j+1w2j+2 lie in an (Me,M)-alternating cycle; we let P denote the
unique (Me,M)-alternating path which starts at w2 and ends at w2j+2 and does not con-
tain e. See Figure 3.6. The edges in wavy lines depict the matching M , and those in thick
lines indicate the matching Me.

Since the path P has origin in V (F2)−{w1, w2j+1} and terminus in V (F1)−{w1, w2j+1},
it must clearly have a segment which has its origin in V (F2) − {w1, w2j+1} and terminus
in V (F1) − {w1, w2j+1} and is otherwise vertex-disjoint with C. Our goal is to show that
there is at least one such segment of P , say Q, both of whose ends are white vertices; in
general, the path P may have some segments which do not satisfy this property.

The first time that P leaves V (F2), it must clearly be from a white vertex. Suppose
that its next visit to V (F2), if any, is at a white vertex, say w2i. Let P [w2, w2i] denote
the (w2, w2i)-segment of P , and let C ′ denote the cycle w1w2P [w2, w2i]w2iw2i+1 . . . w2j+1w1.
The black vertex w2i−1 and the terminal vertex w2j+2 of P would be in different regions
determined by the cycle C ′. Since P must continue on from w2i to w2i−1 and eventually
terminate at w2j+2, this is impossible because G is a plane graph. Thus all re-entrances
of P in to V (F2), if any, must be at black vertices; which implies that all exits of P from
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V (F2) must be from white vertices. A similar argument shows that all entries of P into
V (F1) are at white vertices. We conclude that there must be a segment Q of P starting at a
white vertex x ∈ V (F2)−{w1, w2j+1} and ending at a white vertex y ∈ V (F1)−{w1, w2j+1}
which is internally-disjoint from V (F1) ∪ V (F2), as shown in Figure 3.6.

x

y

w1

w2w2k

w2j+1

w2j+2

Q

F1

e
F2

Figure 3.6: A conformal bi-subdivision of K4

Let H be the subgraph of G with vertex set V (C)∪V (Q) and edge set E(C)∪E(Q)+e.
Clearly, H is a bi-subdivision of K4. It is a conformal subgraph of G because the restriction
of the perfect matching M to E(H) is a perfect matching of H. 2

We now proceed to prove the main result of this section.
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3.4.1 Proof of Theorem 1.11

Let G be a planar brick. We may assume that G is simple. By Proposition 3.4, if G has
exactly two odd faces then G is K4-free. It remains to prove the converse.

We show that if fodd(G) ≥ 4, then G must be K4-based. We use induction on the
number of edges. If G is a Norine-Thomas brick, then it must be either an odd wheel or
an odd staircase. In either case, it can be easily checked that G is K4-based.

Hence we may assume that G is not a Norine-Thomas brick. It follows that G has a
strictly thin edge e such that the retract of G − e, say H, is a planar brick with strictly
fewer edges than G. Proposition 3.3 implies that 2 ≤ fodd(H) ≤ fodd(G). If fodd(H) ≥ 4,
then it follows from the induction hypothesis and Proposition 3.8 that G is K4-based. We
may thus assume that fodd(H) = 2. Proposition 3.3 implies that fodd(G) = 4.

Let us now see how it is possible for the number of odd faces of G to be four, whereas
the number of odd faces of H is only two. The edge e is drawn in a face F of G− e, giving
rise to two faces F1 and F2 of G. Any face Φ 6= F1, F2 of G is a face of G− e as well, and
thus corresponds to a unique face Φ′ of H, whose parity is the same as that of Φ. In case
of the face F ′ of H that corresponds to the face F of G − e, the parity of F ′ is the sum
(modulo 2) of the parities of the two faces F1 and F2. Thus the reduction in the number of
odd faces in going from G to H can occur only if both F1 and F2 are odd and F ′ is even.

Since fodd(H) = 2, the even face F ′ is conformal in H by Theorem 3.13. This implies
that the face F is a conformal even face of G− e. In other words, F1 and F2 are two odd
faces of G which share exactly one edge e such that G−V (F1∪F2) has a perfect matching.
It follows from Lemma 3.14 that G is K4-based. 2

Recall that a matching covered graph is a near-brick if it has precisely one brick. It
can be shown that Theorem 1.11 in fact holds for all plane near-bricks.

3.5 C6-free planar bricks

Observe that C6 has two vertex-disjoint odd cycles, whence each C6-based graph inherits
this property. In particular, odd wheels are C6-free. By investigating the odd cycles of
an odd staircase, it may be verified that these are also C6-free. (The remaining planar
Norine-Thomas bricks have exactly two odd faces, whence they are K4-free and C6-based.)

Apart from the odd wheels and the odd staircases, there is one exceptional C6-free
simple planar brick. This graph, which we call the Tricorn, is the unique planar brick G
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with a strictly thin edge e of index three such that the retract of G−e is the odd wheelW5.
See Figure 3.7.

v0u0

u1

u2 v2

e

(a)

w

(b)

Figure 3.7: (a) Tricorn, (b) W5

To see that the Tricorn is C6-free, consider any subgraph H of the Tricorn which is
a bi-subdivision of C6. Then H consists of two vertex-disjoint odd cycles C1 and C2

together with a 3-linkage linking C1 and C2 (three disjoint paths linking three vertices
of C1 with three vertices of C2). The Tricorn has precisely three 5-cycles and no two of
them are disjoint. So, one of C1 and C2 has to be a triangle because the Tricorn has ten
vertices. Assume without loss of generality that C1 is a triangle. If C2 is one of the other
two triangles, any 3-linkage linking C1 and C2 includes a path of length two, and so the
resulting subgraph would not be a bi-subdivision of C6. If C2 is the unique 5-cycle disjoint
from C1, again any 3-linkage linking C1 and C2 includes a path of length two. Finally, if
C2 is the unique 7-cycle disjoint from C1, the unique 3-linkage linking C1 and C2 consists
of three paths of length one. However, the ends of these three paths on C2 do not effect a
bi-subdivision of C6. We, thus have the following.

Proposition 3.15 Odd wheels, odd staircases and the Tricorn are C6-free. 2

We now proceed to show that if G is a planar brick, e is a strictly thin edge of G, and
the retract of G− e is an odd wheel W2k+1, then
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(i) either G is C6-based,

(ii) or the index of e is three, k = 2, and G is the Tricorn.

If e were a strictly thin edge of index two, then the retract of G− e would have at least
two vertices of degree exceeding three (see Proposition 3.7). Since W2k+1 has at most one
vertex of degree greater than three, this rules out the case in which e has index two. We
examine the other three possibilities in the following propositions.

Proposition 3.16 Let G be a brick, and let e := u0v0 be an edge of G such that G− e is
an odd wheel W2k+1. Then G is C6-based.

Proof: Clearly, 2k + 1 ≥ 5 and both ends of e are rim vertices of W2k+1. Label the hub
of W2k+1 as h, and the rim vertices in cyclic order as r0, r1, . . . , r2k such that r0 = u0 and
r2j = v0 for some 1 ≤ j ≤ k − 1. Then the two vertex-disjoint odd cycles r0r1 . . . r2jr0 and
r2khr2j+1r2j+2 . . . r2k, together with the three edges r0r2k, r1h and r2jr2j+1 linking the two
cycles, constitute a spanning subgraph of G, which is a bi-subdivision of C6. 2

Proposition 3.17 Let G be a planar brick, and let e := u0v0 be a strictly thin edge of
index one such that the retract of G− e is an odd wheel W2k+1. Then G is C6-based.

Proof: Since e has index one, exactly one end of e has degree three. Suppose that u0
has degree three and that u1 and u2 are its two neighbours in G − e. The contraction
vertex resulting from the bicontraction of u0 has degree at least four, and thus 2k+ 1 ≥ 5.
Since the hub h of W2k+1 is the only vertex of degree greater than three, it must be the
contraction vertex in the retract of G − e. Thus the vertices of G, other than u0, u1 and
u2, must be rim vertices of W2k+1; the neighbours of u1 and u2, other than u0, together
must consist of the set of all the rim vertices.

In G − e, the degree of u0 is two, and v0 is a vertex on the rim. Thus v0 must have
degree exactly four in G, and exactly one of u1 and u2 is a neighbour of v0. Without loss
of generality, assume that u1 is a neighbour of v0. Since G is planar, all the neighbours of
u1 and those of u2 (other than u0) must appear consecutively on the rim, and exactly one
of the neighbours of v0 on the rim should be adjacent to u2. Let r0 = v0, and label the
remaining rim vertices in cyclic order as r1, r2, . . . , r2k such that r2k is a neighbour of u2.
Then r0u0u1r0 and r2ku2r2k−1r2k are two triangles in G. The odd paths r0r2k, u0u2, and
u1r1r2 . . . r2k−1 link pairs of vertices of those two triangles. Together, they constitute a
spanning subgraph of G, which is a bi-subdivision of C6. 2
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Proposition 3.18 Let G be a planar brick, and let e := u0v0 be a strictly thin edge of
index three such that the retract of G − e is an odd wheel W2k+1. If k = 2, then G is the
Tricorn; otherwise, G is C6-based.

Proof: In this case, both u0 and v0 have degree two in G−e, and have exactly one common
neighbour. Let u1 = v1 be the common neighbour of u0 and v0, and let u2 and v2 be the
other two neighbours of u0 and v0 in G−e, respectively. (See Figure 3.5c.) The shrinking of
{u2, u0, u1, v0, v2} results in the contraction vertex of the retract of G−e, which has degree
at least five. Thus we have k ≥ 2, and that the hub of W2k+1 must be the contraction
vertex. It follows that in G, the vertices other than u2, u0, u1, v0, v2 must be the vertices
on the rim of W2k+1. Among the rim vertices, u1 has at least one neighbour, and u2 and
v2 have at least two each. Label the rim vertices as r0, r1, . . . , r2k such that r0, r1, . . . , ri
are the neighbours of u1 on the rim, and ri+1 is a neighbour of u2; in this order, let rj be
the last vertex on the rim that is adjacent to u2. Thus, according to this convention, rj−1
is adjacent to u2, and rj+1 and rj+2 are both adjacent to v2.

Let us first consider the case in which 2k + 1 = 5. The rim consists of the five vertices
r0, r1, r2, r3 and r4. It will have to be the case that r0 is adjacent to u1, the two vertices r1
and r2 are adjacent to u2, and r3 and r4 are adjacent to v2. Clearly, in this case, G has to
be the Tricorn.

Now suppose 2k + 1 ≥ 7. We shall consider three different cases and, in each case
indicate a spanning subgraph H of G which is a bi-subdivision of C6. (Each of these cases,
taking k = 4, is illustrated in Figure 3.8.)

Case 1: Vertex u1 has at least two neighbours on the rim. (In this case, both r0 and r1 are
neighbours of u1.) See Figure 3.8a.

The two triangles rj−1u2rjrj−1 and rj+2v2rj+1rj+2 — together with the odd paths
rj−1rj−2 . . . r1u1r0r2kr2k−1 . . . rj+2 and u2u0v0v2 and rjrj+1 linking them — constitute the
desired spanning subgraph H.

If u1 has just one neighbour, namely r0, on the rim, then the parities of the number of
neighbours of u2 and v2 on the rim are the same. We consider two cases according to their
common parity.

Case 2: Vertex r0 is the only neighbour of u1 on the rim, and both u2 and v2 have an odd
number of neighbours on the rim. See Figure 3.8b.
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The two triangles u1u0v0u1 and rj−1u2rjrj−1 — together with the odd paths u1r0r1 . . . rj−1
and u0u2 and v0v2r2kr2k−1 . . . rj+1rj linking them — constitute the desired spanning sub-
graph H.
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u0 u2

v0 v2
e

rj

rj−1

rj+1

rj+2

r2k

(a)
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r0 e
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rj−1

rj

rj+1
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r2k

(b)
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r0 e

r1

rj−2 rj−1
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rj+1

v2
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Figure 3.8: Index of e is three

Case 3: Vertex r0 is the only neighbour of u1 on the rim, and both u2 and v2 have an even
number of neighbours on the rim. See Figure 3.8c.
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Since 2k + 1 ≥ 7, at least one of u2 and v2 has at least four neighbours on the rim.
Without loss of generality, assume that u2 has at least four neighbours on the rim. The
two triangles u1u0v0u1 and rj−2u2rj−1rj−2 — together with the odd paths u1r0r1 . . . rj−2
and u0u2 and v0v2r2kr2k−1 . . . rjrj−1 linking them — constitute the desired spanning sub-
graph H.

In each of the above cases, we see that G is C6-based. 2

Next, we shall prove that if G is a planar brick, e is a strictly thin edge of G, and the
retract of G − e is an odd staircase St2k+4, then G is C6-based. Observe that if e is of
index one or more, then the retract of G − e would have a vertex of degree four or more
(see Proposition 3.7). Since a staircase is cubic, the only possibility is that e is of index
zero, that is, G is obtained from St2k+4 by adding the edge e.

Proposition 3.19 Let G be a brick, and let e be an edge of G such that H := G− e is an
odd staircase St2k+4. Then G is C6-based.

Proof: In order to have a convenient labelling of the vertices, we shall redefine odd staircases
as follows. Let r0r1 . . . rk and s0s1 . . . sk be two vertex-disjoint paths where k ≥ 2 and k is
even. The odd staircase St2k+4 is the graph obtained by the union of these two paths, along
with two new vertices x and y, and joining ri to si for 0 ≤ i ≤ k, and joining x to r0 and s0,
y to rk and sk, and x and y to each other. Figure 3.9 shows this labelling for the smallest
odd staircase St8.

x y

r0 r1 r2

s0 s1 s2

Figure 3.9: The odd staircase St8
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We label the vertices of H := St2k+4 as in the preceding paragraph. We shall divide the
proof into several cases, depending on the ends of e. In each case, we find a bi-subdivision
of C6, which is a conformal subgraph of G.

Case 1: e := xr2j+1 for some 0 ≤ 2j + 1 ≤ k.

The two odd cycles xr2j+1r2j . . . r0x and yrksky — together with the three odd paths
xy and r2j+1r2j+2 . . . rk and r0s0s1 . . . sk linking them — constitute a spanning subgraph
of G, which is a bi-subdivision of C6.

Case 2: e := xr2j for some 0 < 2j ≤ k.

The two odd cycles xr0s0x and yrkrk−1 . . . r2jr2j−1s2j−1s2j . . . sky — together with the
three odd paths xr2j and r0r1 . . . r2j−1 and s0s1 . . . s2j−1 linking them — constitute a span-
ning subgraph of G, which is a bi-subdivision of C6.

Case 3: e := rirj such that i < j and i ≡ j ≡ 0 (mod 2).

The two odd cycles riri+1 . . . rjri and xs0s1 . . . skyx — together with the three odd
paths risi and ri+1si+1 and rjsj linking them — constitute a conformal subgraph of G,
which is a bi-subdivision of C6.

Case 4: e := rirj such that i < j and i ≡ j ≡ 1 (mod 2).

The two odd cycles riri+1 . . . rjri and xr0s0s1 . . . skrkyx — together with the three odd
paths risi and ri+1si+1 and rjsj linking them — constitute a conformal subgraph of G,
which is a bi-subdivision of C6.

Case 5: e := rirj such that i < j and i 6≡ j (mod 2).

Observe that j− i is at least three. The two odd cycles xr0r1 . . . riri+1si+1si . . . s0x and
yrkrk−1 . . . rjrj−1sj−1sj . . . sky— together with the three odd paths rirj and ri+1ri+2 . . . rj−1
and si+1si+2 . . . sj−1 linking them — constitute a spanning subgraph of G, which is a bi-
subdivision of C6.

Case 6: e := risj such that i < j and i ≡ j (mod 2).

The two triangles xr0s0x and yskrky — together with the three odd paths xy and
r0r1 . . . risjsj+1 . . . sk and s0s1 . . . sisi+1ri+1ri+2 . . . rk linking them— constitute a conformal
subgraph of G, which is a bi-subdivision of C6.
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Case 7: e := risj such that i < j and i 6≡ j (mod 2).

Without loss of generality, assume that i ≡ 0 (mod 2). The two odd cycles riri+1 . . . rjsjri
and yrksky — together with the three odd paths riri−1 . . . r0s0xy and rjrj+1 . . . rk and
sjsj+1 . . . sk linking them— constitute a conformal subgraph of G, which is a bi-subdivision
of C6.

In each of the above cases, we see that G is C6-based. 2

Figure 3.10: Adding an edge to the Tricorn

Finally, we show that adding an edge to the Tricorn results in a C6-based brick. De-
pending on the ends of e, there are six cases to be checked (up to isomorphism). The
various possibilities are shown in Figure 3.10, and in each case, the edges depicted by the
bold lines constitute a spanning bi-subdivision of C6. We thus have the following.

Proposition 3.20 Let G be a brick, and let e be an edge of G such that H := G− e is the
Tricorn. Then G is C6-based. 2

We are now ready to prove the main result of this section.
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3.5.1 Proof of Theorem 1.12

Let G be a planar brick. We may assume that G is simple. As discussed, if G is an odd
wheel or an odd staircase or the Tricorn, then G is C6-free. We now establish the converse.

We use induction on the number of edges. If G is a Norine-Thomas brick, then the
result holds trivially.

Hence we may assume that G is not a Norine-Thomas brick, and thus, G has a strictly
thin edge e such that the retract of G − e, say H, is a C6-free planar brick with strictly
fewer edges than G. By induction, H is either an odd wheel, or an odd staircase, or the
Tricorn. We note that odd staircases and the Tricorn are cubic graphs, and that an odd
wheel has at most one vertex of degree exceeding three. If the index of e is two, then H
would have at least two vertices of degree at least four; thus we rule out this possibility.

If H is an odd staircase or the Tricorn, then e must be a strictly thin edge of index
zero, and H = G− e. Using Proposition 3.19 or 3.20, as appropriate, we conclude that G
must be C6-based, which is a contradiction.

If H is an odd wheel, then using Proposition 3.16, 3.17 or 3.18, as appropriate, we
conclude that G is either C6-based which contradicts the hypothesis, or otherwise G is
isomorphic to the Tricorn and we are done. 2

3.6 Nonplanar K4-free and C6-free bricks

There is an extensive class of bricks, known as solid bricks [CLM06], which are C6-free
and are of particular interest in matching theory. For example, each nonbipartite Möbius
ladder is a solid brick, and thus C6-free. The Petersen graph is an example of a C6-free
brick which is not solid.

There do exist infinite families of nonplanar K4-free bricks. The smallest such brick,
which we refer to as the Trellis, is shown in Figure 3.11.
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Figure 3.11: The Trellis — a nonplanar K4-free brick
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Chapter 4

Near-bipartite graphs

Here, we will examine properties of near-bipartite graphs that are relevant to us in Chap-
ters 5 and 6. Recall that an R-graph G is a near-bipartite graph with a fixed removable
doubleton R. We will adopt the following notational conventions.

Notation 4.1 For an R-graph G, we shall denote by H[A,B] the underlying bipartite
graph G−R. We let α and β denote the constituent edges of R, and we adopt the convention
that α := a1a2 has both ends in A, whereas β := b1b2 has both ends in B.

As we will see, certain pertinent properties of G are closely related to those of H. For
this reason, we also review well-known facts concerning bipartite matching covered graphs.

4.1 The exchange property

Recall that an edge of a matching covered graph is removable if its deletion results in
another matching covered graph. The removable edges of a bipartite graph satisfy an
‘exchange property’ and its proof immediately follows from bipartite ear decompositions;
see Section 1.2.1.

Proposition 4.2 [Exchange Property of Removable Edges] Let H denote a bi-
partite matching covered graph, and let e denote a removable edge of H. If f is a removable
edge of H − e, then:
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(i) f is removable in H, and

(ii) e is removable in H − f .

Proof: Observe that the graph H − f may be obtained from the matching covered graph
H − e − f by adding a single ear (that is, edge e). Thus, by Proposition 1.5, H − f is
matching covered. This proves (i). Statement (ii) follows immediately since H − f − e is
matching covered. 2

The following is a generalization of Proposition 4.2, and it is applicable to certain
situations that arise in Chapter 6:

Proposition 4.3 Let K be a conformal matching covered subgraph of a bipartite matching
covered graph H. Let e denote a removable edge of K. Then e is removable in H as well.

Proof: SinceK is a conformal matching covered subgraph, H admits a bipartite ear decom-
position starting with K, say H1 ⊂ H2 ⊂ · · · ⊂ Hr. Note that H1 = K and Hr = H. Each
graph in this sequence includes the edge e. Now, consider the bipartite ear decomposition
H1 − e ⊂ H2 − e ⊂ · · · ⊂ Hr − e of the graph H − e. Since H1 − e = K − e is matching
covered, Proposition 1.5 implies that Hr − e = H − e is also matching covered, that is, e
is removable in H. 2

ef

Figure 4.1: f is removable in St8 − e, but it is not removable in St8

We point out that the conclusion of Proposition 4.2 does not hold, in general, for
arbitrary removable edges of nonbipartite graphs. For instance, as shown in Figure 4.1,
the edge f is removable in the matching covered graph St8 − e, but it is not removable
in St8. However, as we prove next, the exchange property does hold for R-compatible
edges. Recall that an R-compatible edge of an R-graph G is one which is removable in G
as well as in the underlying bipartite graph H := G−R; see Section 1.7.1.
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Proposition 4.4 [Exchange Property of R-compatible Edges] Let G be an R-graph,
and let e denote an R-compatible edge of G. If f is an R-compatible edge of G− e, then:

(i) f is R-compatible in G, and

(ii) e is R-compatible in G− f .

Proof: Let H := G − R. Since f is R-compatible in G − e, each of the graphs G − e − f
and H− e− f is matching covered. To deduce (i), we need to show that each of G− f and
H − f is matching covered. Since f is removable in H − e, it follows from Proposition 4.2
that f is removable in H as well. That is, H − f is matching covered.

Next, we note that the edge e is admissible in H − f . Thus e is admissible in G − f .
As G− e− f is matching covered, we conclude that G− f is also matching covered. This
proves (i). Statement (ii) follows immediately, since each of G − f − e and H − f − e is
matching covered. 2

4.2 Non-removable edges of bipartite graphs

Let H[A,B] denote a bipartite graph, on four or more vertices, that has a perfect matching.
Using the well-known Hall’s Theorem, it can be shown that an edge f of H is inadmissible
(that is, f is not in any perfect matching of H) if and only if there exists a nonempty
proper subset S of A such that |N(S)| = |S| and f has one end in N(S) and its other end
is not in S.

Now suppose that H is matching covered, and let e denote a non-removable edge of H.
Then some edge f of H − e is inadmissible. This fact, coupled with the above observation,
may be used to arrive at the following characterization of non-removable edges in bipartite
matching covered graphs; see Figure 4.2.

Proposition 4.5 [Characterization of Non-removable Edges] Let H[A,B] de-
note a bipartite matching covered graph on four or more vertices. An edge e of H is
non-removable if and only if there exist partitions (A0, A1) of A and (B0, B1) of B such
that |A0| = |B0| and e is the only edge joining a vertex in B0 to a vertex in A1. 2
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A0 A1

B0 B1

e

Figure 4.2: Non-removable edge of a bipartite graph

In Figure 4.2, e is the only edge with one end in B0 and the other in A1. Consequently,
any edge f , with one end in A0 and the other in B1, is inadmissible once e is deleted. This
fact yields the following corollary. (A 4-cycle is referred to as a quadrilateral.)

Corollary 4.6 Suppose that Q is a quadrilateral of a bipartite matching covered graph H,
and let e and f denote two nonadjacent edges of Q. If f is admissible in H − e then e is
removable in H. 2

In our work, we will often be interested in finding an R-compatible edge incident at
a specified vertex v of an R-brick G. As a first step, we will upper bound the number
of edges of ∂(v), which are non-removable in the underlying bipartite graph H := G−R.
For this purpose, the next lemma of Lovász and Vempala [LV] is especially useful. It is an
extension of Proposition 4.5. See Figure 4.3.

Lemma 4.7 [The Lovász-Vempala Lemma] Let H[A,B] denote a bipartite matching
covered graph, and b ∈ B denote a vertex of degree d ≥ 3. Let ba1, ba2, . . . , bad be the
edges of H incident with b. Assume that the edges ba1, ba2, . . . , bar where 0 < r ≤ d
are non-removable. Then there exist partitions (A0, A1, . . . , Ar) of A and (B0, B1, . . . , Br)
of B, such that b ∈ B0, and for i ∈ {1, 2, . . . , r}: (i) |Ai| = |Bi|, (ii) ai ∈ Ai, and
(iii) N(Ai) = Bi ∪ {b}; in particular, bai is the only edge between B0 and Ai. 2

Observe that, as per the notation in the above lemma, if ba1 and ba2 are non-removable
edges, then the vertices a1 and a2 have no common neighbour distinct from b. That is,
there is no quadrilateral containing edges ba1 and ba2 both. This proves the following
corollary of Lovász and Vempala [LV].
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Figure 4.3: Non-removable edges incident at a vertex

Corollary 4.8 Let H denote a bipartite matching covered graph, and b denote a vertex of
degree three or more. If e and f are two edges incident at b which lie in a quadrilateral Q
then at least one of e and f is removable. 2

We conclude with an easy application of the Lovász-Vempala Lemma in the context of
near-bipartite bricks.

Corollary 4.9 Let G be an R-brick, and let H := G−R. Then for any vertex b, at most
two edges of ∂H(b) are non-removable in H.

Proof: We adopt Notation 4.1; assume without loss of generality that b ∈ B. If b has only
two distinct neighbours in H then the assertion is easily verified. Now suppose that b has
at least three distinct neighbours in H, and let d denote the degree of b in H.

Suppose instead that there are r ≥ 3 non-removable edges incident with b; we denote
these as ba1, ba2, . . . , bar. Then, by the Lovász-Vempala Lemma (4.7), there exist partitions
(A0, A1, . . . , Ar) of A and (B0, B1, . . . , Br) of B, such that b ∈ B0, and for i ∈ {1, 2, . . . , r}:
(i) |Ai| = |Bi|, (ii) ai ∈ Ai, and (iii) NH(Ai) = Bi ∪ {b}. See Figure 4.3.

Observe that, for i ∈ {1, 2, . . . , r}, every vertex of Ai is isolated in H − (Bi ∪ {b});
consequently, Bi ∪ {b} is a nontrivial barrier of H. Since G is free of nontrivial barriers
(by Theorem 1.9), adding the edges of R must kill each of these barriers. In particular, α
must have an end in each Ai for i ∈ {1, 2, . . . , r}. This is not possible, as r ≥ 3; thus we
have a contradiction. This completes the proof of Corollary 4.9. 2
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4.3 Barriers and tight cuts

We begin with a property of removable edges related to tight cuts which is easily verified;
it holds for all matching covered graphs, and will be useful to us in Chapter 5.

Proposition 4.10 Let G be a matching covered graph, and ∂(X) a tight cut of G, and e
an edge of G[X]. Then e is removable in G/X if and only if e is removable in G. 2

Let us revisit the notion of a barrier cut. If S is a barrier of a matching covered graph G
and K is an odd component of G − S then ∂(V (K)) is a tight cut of G, and is referred
to as a barrier cut. In Sections 4.3.1 and 4.3.2, among other things, we will see that every
nontrivial tight cut of a bipartite or of a near-bipartite graph is a barrier cut.

4.3.1 Bipartite graphs

Suppose that X is an odd subset of the vertex set of a bipartite graph H[A,B]. Then,
clearly one of the two sets A ∩ X and B ∩ X is larger than the other; the larger of the
two sets, denoted X+, is called the majority part of X; and the smaller set, denoted X−,
is called the minority part of X.

The following proposition is easily derived, and it provides a convenient way of visual-
izing tight cuts in bipartite matching covered graphs. See Figure 4.4.

Proposition 4.11 [Tight Cuts in Bipartite Graphs] A cut ∂(X) of a bipartite
matching covered graph H is tight if and only if the following hold:

(i) |X| is odd and |X+| = |X−|+ 1, consequently |X+| = |X−|+ 1, and

(ii) there are no edges between X− and X−. 2

Observe that, in the above proposition, X+ and X+ are both barriers of H. It follows
that every tight cut of a bipartite matching covered graph is a barrier cut.

Recall that, for a bipartite matching covered graph H[A,B], its maximal barriers are
precisely its color classes A and B. Now let S denote a nontrivial barrier of H which is not
maximal, and adjust notation so that S ⊂ B. It may be inferred from Proposition 4.11
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X+

X− X+

X−

Figure 4.4: Tight cuts in bipartite matching covered graphs

that H − S has precisely |S| − 1 isolated vertices each of which is a member of A, and it
has precisely one nontrivial odd component K which gives rise to a nontrivial barrier cut
of H, namely ∂(V (K)).

Since braces are bipartite matching covered graphs which are free of nontrivial tight
cuts, Proposition 4.11 may be used to obtain the following characterizations of braces.

Proposition 4.12 [Characterizations of Braces] Let H[A,B] denote a bipartite
graph of order six or more, where |A| = |B|. Then the following statements are equivalent:

(i) H is a brace,

(ii) |N(S)| ≥ |S|+ 2 for every nonempty subset S of A such that |S| < |A| − 1, and

(iii) H − {a1, a2, b1, b2} has a perfect matching for any four distinct vertices a1, a2 ∈ A
and b1, b2 ∈ B. 2

4.3.2 Near-bipartite graphs

Let G denote an R-graph. We adopt Notation 4.1. For an odd subset X of V (G), we
define its majority part X+ and its minority part X− by regarding it as a subset of V (H).

Observe that, if X is the shore of a tight cut in G then it is the shore of a tight cut
in H as well. This observation, coupled with Proposition 4.11, may be used to derive the
following characterization of tight cuts in near-bipartite graphs.
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Proposition 4.13 [Tight Cuts in Near-bipartite Graphs] A cut ∂(X) of an R-graph G
is tight if and only if the following hold:

(i) X is odd and |X+| = |X−|+ 1, and consequently, |X+| = |X−|+ 1,

(ii) there are no edges between X− and X−; adjust notation so that X− ⊂ A,

(iii) one of α and β has both ends in a majority part; adjust notation so that α has both
ends in X+, and

(iv) β has at least one end in X−.

Consequently, X+ is a nontrivial barrier of G. Moreover, the ∂(X)-contraction G/X is
near-bipartite with removable doubleton R, whereas the ∂(X)-contraction G/X is bipartite.

Proof: A simple counting argument shows that if all of the statements (i) to (iv) hold then
∂(X) is indeed a tight cut of G. See Figure 4.5. Now suppose that ∂(X) is a tight cut;
as noted earlier, ∂(X)− R is a tight cut of H. Thus (i) and (ii) follow immediately from
Proposition 4.11. Adjust notation so that X− ⊂ A.

α

β

X+

X− X+

X−

(a)

α

β

X+

X− X+

X−

(b)

Figure 4.5: Tight cuts in near-bipartite graphs

As each perfect matching of G which contains α must also contain β, we infer that at
most one of α and β lies in ∂(X). Furthermore, if α has both ends in X−, and likewise, if β
has both ends in X−, then a simple counting argument shows that any perfect matchingM
of G containing α and β meets ∂(X) in at least three edges; this is a contradiction.

The above observations imply that at least one of α and β has both ends in a majority
part; this proves (iii). As in the statement, adjust notation so that α has both ends in X+.
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Now, if β has both ends in X+ then it is easily seen that α and β are both inadmissible.
This proves (iv). Note that, either β has both ends in X− as shown in Figure 4.5a, or it
has one end in X− and the other end in X+ as shown in Figure 4.5b.

Note that X+ is a nontrivial barrier of G, and that G/X is bipartite. We let G1 := G/X
denote the other ∂(X)-contraction. Observe that H1 := H/X is bipartite and matching
covered. Furthermore, in G1, α has both ends in one color class of H1, and likewise, β
has both ends in the other color class of H1; this is true for each of the two cases shown
in Figure 4.5. Since H1 = G1 − R, we infer that G1 is near-bipartite with removable
doubleton R. This completes the proof of Proposition 4.13. 2

Recall that a near-brick is a matching covered graph whose tight cut decomposition
yields exactly one brick. The following is an immediate consequence of Proposition 4.13.

Corollary 4.14 An R-graph G is a near-brick, and its unique brick is also near-bipartite
with removable doubleton R. 2

In other words, a near-bipartite graph G is a near-brick, and its unique brick, say J ,
inherits its removable doubletons. The rank of G, denoted rank(G), is the order of the
unique brick of G. That is, rank(G) := |V (J)|.

Proposition 4.13 shows that every tight cut of a near-bipartite graph is a barrier cut.
Now, let S denote a nontrivial barrier of an R-graph G, and adjust notation so that S ⊂ B.
It may be inferred from Proposition 4.13 that G− S has precisely |S| − 1 isolated vertices
each of which is a member of A, and it has precisely one nontrivial odd component K which
yields a nontrivial tight cut of G, namely ∂(V (K)). Thus there is a bijective correspondence
between the nontrivial barriers of G and its nontrivial tight cuts.

4.4 The Three Case Lemma

Recall that a removable edge e of a brick G is b-invariant if G− e is a near-brick. In this
section, we will discuss a lemma of Carvalho, Lucchesi and Murty [CLM02b] that pertains
to the structure of such near-bricks, that is, those which are obtained from a brick by
deleting a single edge. This lemma is used extensively in their works [CLM02a, CLM06,
CLM12], and it will play a vital role in Chapter 5.

We will restrict ourselves to the case in which G is an R-brick and e is R-compatible.
(By Proposition 1.20, e is b-invariant.) We adopt Notation 4.1. As the name of the lemma
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suggests, there will be three cases, depending on which we say that the ‘index’ of e is zero,
one or two. In particular, the index of e (defined later) will be zero if G− e is a brick.

Now consider the situation in which G− e is not a brick; that is, G− e has a nontrivial
tight cut. By Proposition 4.13, G−e has a nontrivial barrier; let S be such a barrier which
is also maximal, and adjust notation so that S ⊂ B. We let I denote the set of isolated
vertices of (G − e) − S; note that I ⊂ A. Since G itself is free of nontrivial barriers, we
infer that one end of e lies in I and its other end lies in B − S. This observation, coupled
with the Canonical Partition Theorem (1.3) and the fact that e has only two ends, implies
that G− e has at most two maximal nontrivial barriers; furthermore, if it is has two such
barriers then one is a subset of A and the other is a subset of B.

The index of e, denoted index(e), is the number of maximal nontrivial barriers in G− e.
(This notion is closely related to the ‘index of a thin edge’ defined in Section 3.3. In fact, for
an R-thin edge, these are equivalent; see Proposition 4.17.) It follows from the preceding
paragraph that the index of e is either zero, one or two; and these form the three cases.
This is the gist of the lemma; apart from this, it provides further information in the index
two case which is especially useful to us. We now state the Three Case Lemma [CLM06],
as it is applicable to an R-compatible edge of an R-brick; see Figures 4.6 and 4.7. (The
reason for the asymmetry in our notation in Case (2) is discussed in Section 4.4.2.)

Lemma 4.15 [The Three Case Lemma] Let G be an R-brick, and e an R-compatible
edge. Let H[A,B] := G−R. Then one of the following three alternatives holds:

(0) G− e is a brick.

(1) G−e has only one maximal nontrivial barrier, say S. Adjust notation so that S ⊂ B.
Let I denote the set of isolated vertices of (G− e)− S. Then I ⊂ A, and e has one
end in I and other end in B − S.

(2) G − e has two maximal nontrivial barriers, say S1 and S∗2 . Adjust notation so that
S1 ⊂ B and S∗2 ⊂ A. Let I1 denote the set of isolated vertices of (G − e) − S1, and
I∗2 the set of isolated vertices of (G− e)− S∗2 . Then the following hold:

(i) I1 ⊂ A and I∗2 ⊂ B;

(ii) e has one end in I1 − S∗2 and other end in I∗2 − S1;

(iii) S2 := S∗2 − I1 is the unique maximal nontrivial barrier of (G − e)/X1, where
X1 := S1 ∪ I1; furthermore, S2 is a barrier of G− e as well, and I2 := I∗2 − S1

is the set of isolated vertices of (G− e)− S2. 2
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Now, let e denote an R-compatible edge of an R-brick G. By the rank of e, denoted
rank(e), we mean the rank of the R-graph G − e. That is, rank(e) := rank(G − e). Recall
that e is R-thin if the retract of G − e is a brick. In particular, every R-compatible edge
of index zero is R-thin, and these are the only edges whose rank equals n := |V (G)|.

In what follows, we will further discuss the cases in which the index of e is either one or
two; in each case, we shall relate the rank of e with the information provided by the Three
Case Lemma, and we examine the conditions under which e is R-thin. These discussions
are especially relevant to an important result in Chapter 5, namely, Lemma 5.17.

We adopt Notation 4.1. Let y and z denote the ends of e such that y ∈ A and z ∈ B.
Note that, if y is cubic, then the two neighbours of y in G− e constitute a barrier of G− e;
a similar statement holds for z. It follows that if both ends of e are cubic then the index
of e is two.

4.4.1 Index one

Suppose that the index of e is one. As in case (1) of the Three Case Lemma, we let S
denote the unique maximal nontrivial barrier of G − e, and I the set of isolated vertices
of (G− e)− S. Note that |I| = |S| − 1. We adjust notation so that S ⊂ B and I ⊂ A; see
Figure 4.6. Observe that y ∈ I and z ∈ B − S.

A

B

A− I

B − S S

I

z

y

Figure 4.6: An R-compatible edge of index one

In this case, G − e has a unique nontrivial tight cut ∂(X), where X := S ∪ I. Conse-
quently, (G−e)/X is the brick of G−e, and the rank of e is |V (G)−X|+1. Furthermore,
e is R-thin if and only if |S| = 2; and in this case, y is cubic, N(y) = S ∪ {z}, and
rank(e) = n− 2.
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4.4.2 Index two

Suppose that the index of e is two. As in case (2) of the Three Case Lemma, we let S1

denote one of the two maximal nontrivial barriers of G−e, and I1 the set of isolated vertices
of (G− e)− S1, adjusting notation so that S1 ⊂ B and I1 ⊂ A. Note that |I1| = |S1| − 1
and that y ∈ I1; see Figure 4.7.

Now, let S∗2 denote the unique maximal nontrivial barrier of G − e which is a subset
of A, and I∗2 the set of isolated vertices of (G − e) − S∗2 . As in the index one case (see
Figure 4.6), we would like to break V (G) into disjoint subsets in order to be able to
compute the rank of e. However, this is complicated by the possibility that S∗2 ∩ I1 may
be nonempty. This explains the asymmetry in our notation in case (2). Fortunately, it
turns out that S2 := S∗2 − I1 is the only maximal nontrivial barrier of (G − e)/X1, where
X1 := S1 ∪ I1. Furthermore, S2 is a barrier of G− e as well, and I2 := I∗2 − S1 is the set of
isolated vertices of (G− e)− S2. Note that |I2| = |S2| − 1 and that z ∈ I2; see Figure 4.7.
We let X2 := S2 ∪ I2.

A

B

S2

I2 S1

I1

z

y

Figure 4.7: An R-compatible edge of index two

In this case, ∂(X1) and ∂(X2) are both tight cuts of G− e; more importantly, ∂(X2) is
the unique tight cut of (G− e)/X1. Consequently, ((G− e)/X1)/X2 is the brick of G− e,
and the rank of e is |V (G)−X1 −X2|+ 2.

Furthermore, e is R-thin if and only if |S1| = 2 = |S2|; and in this case, y and z are
both cubic, N(y) = S1 ∪ {z} and N(z) = S2 ∪ {y}, and rank(e) = n− 4; also, by switching
the roles of S1 and S∗2 , we infer that |S∗2 | = 2.

82



4.4.3 Index and Rank of an R-thin Edge

The following characterization of R-thin edges is immediate from our discussion in the
previous two sections.

Proposition 4.16 [Characterization of R-thin Edges in terms of Barriers]
An R-compatible edge e of an R-brick G is R-thin if and only if every barrier of G− e has
at most two vertices. 2

In summary, if the index of e is zero then e is thin and its rank is n := |V (G)|. If the
index of e is one then rank(e) ≤ n− 2, and equality holds if and only if e is thin. Likewise,
if the index of e is two then rank(e) ≤ n− 4, and equality holds if and only if e is thin.

We conclude by showing that, for an R-thin edge, the notion of index used here is
equivalent to the one defined in Section 3.3.

Proposition 4.17 Let G be an R-brick, and e an R-thin edge. Then the following state-
ments hold:

(i) index(e) = 0 if and only if both ends of e have degree four or more in G;

(ii) index(e) = 1 if and only if exactly one end of e has degree three in G; and

(iii) index(e) = 2 if and only if both ends of e have degree three in G and e does not lie in
a triangle.

Proof: We note that index(e) = 0 if and only if G− e is free of nontrivial barriers, that is,
G − e is a brick; and since e is a thin edge, the latter holds if and only if both ends of e
have degree four or more in G. This proves (i).

Let n := |V (G)|. We note that index(e) = 1 if and only if rank(e) = n− 2; and since e
is a thin edge, the latter holds if and only if exactly one end of e has degree three in G.

Now suppose that index(e) = 2, whence rank(e) = n − 4, and consequently, both ends
of e have degree three in G. Conversely, if both ends of e have degree three in G then
G − e has two nontrivial barriers which lie in different color classes of (G − e) − R, and
thus index(e) = 2; furthermore, since e is R-compatible, neither end of e is incident with
an edge of R and thus e does not lie in a triangle. 2
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Chapter 5

Generating near-bipartite bricks

In this chapter, we establish the generation procedure for near-bipartite bricks discussed
in Section 1.7.2. Recall that an edge of an R-brick is R-thin if it is R-compatible as well
as thin. Our goal is to prove Theorem 1.22, which is restated below.

Theorem 1.22 [R-thin Edge Theorem] Every R-brick distinct from K4 and C6 has an
R-thin edge.

In fact, we will show something stronger, which is especially useful in the proof of
the main result of Chapter 6. Let G be an R-brick distinct from K4 and C6. Then, by
Theorem 1.21 of Carvalho et al., G has an R-compatible edge; let e be any such edge.
Recall from Chapter 4 that there are two parameters associated with e: the rank of e is the
order of the unique brick of G− e; and, the index of e is the number of maximal nontrivial
barriers of G− e, which by the Three Case Lemma (4.15) is either zero, one or two. Using
these parameters, we may state our stronger theorem as follows.

Theorem 5.1 Let G be an R-brick which is distinct from K4 and C6, and let e denote an
R-compatible edge of G. Then one of the following alternatives hold:

• either e is R-thin,

• or there exists another R-compatible edge f such that:

(i) f has an end each of whose neighbours in G− e lies in a barrier of G− e, and
(ii) rank(f) + index(f) > rank(e) + index(e).
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Since the rank and index are bounded quantities, the above theorem immediately im-
plies the R-thin Edge Theorem (1.22). Our proof uses tools from the work of Carvalho
et al. [CLM06], and the overall approach is inspired by their proof of the Thin Edge
Theorem (1.15).

The following proposition shows that condition (ii) in Theorem 5.1 is implied by a
weaker condition involving only the rank function.

Proposition 5.2 Suppose that e and f denote two R-compatible edges of an R-brick G.
If rank(f) > rank(e) then rank(f) + index(f) > rank(e) + index(e).

Proof: Note that, since the rank of an edge is even, rank(f) > rank(e)+1. As the index of an
edge is either zero, one or two, we only need to examine the case in which index(e) = 2 and
index(f) = 0. However, in this case, rank(f) = n and rank(e) ≤ n − 4 where n := |V (G)|,
and thus the conclusion holds. 2

In the statement of Theorem 5.1, if the given R-compatible edge e is thin, then the
assertion is vacuously true. Thus, in its proof, we may assume that e is not thin. It then
follows from Proposition 4.16 that G− e has a barrier with three or more vertices; let S be
such a barrier. In the next section, we introduce the notion of a candidate edge (relative
to e and S) which, as we will see, is an R-compatible edge that satisfies condition (i) in
the statement of Theorem 5.1, and has rank at least that of e.

5.1 The candidate set F(e, S)

Let G be an R-brick, and let e := yz denote an R-compatible edge which is not thin. We
first set up some notation which is used throughout this chapter.

Notation 5.3 We shall denote by H[A,B] the underlying bipartite graph G − R. We let
R := {α, β}; and we adopt the convention that α := a1a2 has both ends in A, whereas
β := b1b2 has both ends in B. Adjust notation so that y ∈ A and z ∈ B.

The reader is advised to review Section 4.3.2 before proceeding further. Let S be a
barrier of G− e such that |S| ≥ 3, and I the set of isolated vertices of (G− e)−S. Adjust
notation so that S ⊂ B and I ⊂ A, as shown in Figure 5.1a. Observe that X := S ∪ I is
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the shore of a tight cut in G − e, as well as in H − e. By Proposition 4.13, α has both
ends in A − I; whereas β either has both ends in B − S, or it has one end in B − S and
another in S. We denote the bipartite matching covered graph

(H − e)/X → x

by H(e, S). Note that its color classes are the sets I ∪ {x} and S; see Figure 5.1b.

w

u

f

A− I

B − S S

I

z

y

(a)

w

u

f

x

S

I

y

(b)

Figure 5.1: (a) S is a barrier of G− e such that |S| ≥ 3 ; (b) the bipartite graph H(e, S)

Definition 5.4 [The Candidate Set F(e, S)] We denote by F(e, S) the set of those
removable edges of H(e, S) which are not incident with the contraction vertex x, and we
refer to it as the candidate set (relative to e and the barrier S of G− e), and each member
of F(e, S) is called a candidate edge.

We remark that Carvalho et al. [CLM06] used a similar notion. Since their work
concerns general bricks (that is, not just near-bipartite ones), they consider the graph
(G− e)/X → x and its removable edges which are not incident with the contraction vertex.
See Lemma 23 and Theorem 24 in [CLM06].

Now, let f := uw denote a member of the candidate set F(e, S), as shown in Figure 5.1b.
The end w of f lies in I, and all of the neighbours of w, in G − e, lie in the barrier S;
consequently, f satisfies condition (i), Theorem 5.1. It should be noted that e and f are
adjacent if and only if w is the same as y. We now show that f is an R-compatible edge
and it has rank at least that of e. The argument pertaining to ranks is the same as that
in [CLM06, Lemma 26].
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Proposition 5.5 [Properties of Candidate Edges] Every member of F(e, S) is an
R-compatible edge of G − e, and of G, and has rank at least that of e. Conversely, each
R-compatible edge of G− e, which is incident with a vertex of I, is a member of F(e, S).

Proof: Let f be any member of F(e, S), as shown in Figure 5.1b. We will use Proposi-
tion 4.10 to show that f is R-compatible in G− e.

Observe that H(e, S) is one of the C-contractions of H − e, where C := ∂(X)− e−R
is a tight cut. Since f is removable in H(e, S) and f /∈ C, Proposition 4.10 implies that
f is removable in H − e as well. A similar argument shows that f is removable in G− e.
Thus, f is R-compatible in G− e; the exchange property (Proposition 4.4) implies that f
is R-compatible in G as well.

Note that since both ends of f are in the bipartite shore X, the brick of G − e − f is
the same as the brick of G− e. In particular, rank(G− e− f) = rank(G− e). On the other
hand, note that if D is any tight cut of G−f then D−e is a tight cut of G−e−f , whence
rank(G− f) ≥ rank(G− e− f). Thus rank(f) ≥ rank(e). This proves the first statement.

Now suppose that f is an R-compatible edge of G− e which is incident at some vertex
of I. In particular, H − e − f is matching covered; that is, f is removable in H − e. By
Proposition 4.10, f is removable in H(e, S). This completes the proof of Proposition 5.5.
2

In summary, we have shown that every candidate edge is R-compatible; furthermore,
it satisfies condition (i), Theorem 5.1; and it has rank at least that of e.

The following property of candidate sets will be useful in dealing with those nontrivial
barriers of G− e which are not maximal.

Corollary 5.6 Let S∗ be any barrier of G− e. If S ⊂ S∗ then F(e, S) ⊂ F(e, S∗).

Proof: Let f be a member of F(e, S). Then f is incident with some vertex of I, say w.
Note that w also lies in I∗ which denotes the set of isolated vertices of (G− e)− S∗.

As f is a member of F(e, S), Proposition 5.5 implies that f is R-compatible in G− e.
Consequently, since f is incident at w ∈ I∗, the last assertion of Proposition 5.5, with S∗
playing the role of S, implies that f is a member of F(e, S∗). Thus F(e, S) ⊂ F(e, S∗). 2
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Now, we will prove two lemmas; each of which gives an upper bound on the number of
non-removable edges incident at a vertex of the bipartite graph H(e, S), which is distinct
from the contraction vertex x. Both of them are easy applications of the Lovász-Vempala
Lemma (4.7); we will use arguments similar to those in the proof of Corollary 4.9.

Lemma 5.7 Let u denote a vertex of S which has degree three or more in H(e, S). Then
at most two edges of ∂(u)− β are non-removable in H(e, S). Furthermore, if precisely two
edges of ∂(u)− β are non-removable in H(e, S) and if vertices u and x are adjacent then
the edge ux is non-removable in H(e, S).

Proof: Assume that there are k ≥ 1 non-removable edges incident with the vertex u,
namely, uw1, uw2, . . . , uwk. Then, by Lemma 4.7, there exist partitions (A0, A1, . . . , Ak)
of I ∪ {x}, and (B0, B1, . . . , Bk) of S, such that u ∈ B0, and for j ∈ {1, 2, . . . , k}:
(i) |Aj| = |Bj|, (ii) wj ∈ Aj and (iii) N(Aj) = Bj ∪ {u}. See Figure 5.2.

I ∪ {x}

S

A0

u

A1 A2 Ak

B0 B1

w1

B2

w2

Bk

wk

Figure 5.2: Illustration for Lemma 5.7

For 1 ≤ j ≤ k, note that Bj ∪ {u} is a barrier of H(e, S). Moreover, if the set Aj

contains neither the contraction vertex x nor the end y of e, then Bj ∪{u} is a barrier of G
itself, which is not possible as G is a brick. We thus arrive at the conclusion that k ≤ 2,
which proves the first part of the assertion.

Now consider the case when k = 2. It follows from the above argument that one of
the vertices y and x lies in the set A1, whereas the other vertex lies in the set A2. Adjust
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notation so that y ∈ A1 and x ∈ A2. Observe that if u and x are adjacent, then ux is the
unique edge between B0 and A2, and it is non-removable in H(e, S) by assumption. This
completes the proof of Lemma 5.7. 2

Now we turn to the examination of non-removable edges of H(e, S) incident with ver-
tices in I. The proof is similar to that of Lemma 5.7, except that the roles of the color
classes S and I ∪ {x} are interchanged.

Lemma 5.8 Let w denote a vertex of I which has degree three or more in H(e, S). Then
at most two edges of ∂(w)− e are non-removable in H(e, S). Furthermore, if precisely two
edges of ∂(w)− e are non-removable in H(e, S) then the following hold:

(i) an end of β lies in S; adjust notation so that b1 ∈ S,

(ii) in H(e, S), the vertices b1 and x are nonadjacent,

(iii) if b1 and w are adjacent then the edge b1w is non-removable in H(e, S), and

(iv) w is distinct from the end y of e.

Proof: Suppose that there exist k ≥ 1 non-removable edges incident at the vertex w,
namely, wu1, wu2, . . . , wuk. Then, by Lemma 4.7, there exist partitions (A0, A1, . . . , Ak) of
the color class I ∪{x}, and (B0, B1, . . . , Bk) of the color class S, such that w ∈ A0, and for
j ∈ {1, 2, . . . , k}: (i) |Aj| = |Bj|, (ii) uj ∈ Bj and (iii) N(Bj) = Aj ∪ {w}. See Figure 5.3.

For 1 ≤ j ≤ k, note that Aj∪{w} is a barrier ofH(e, S). Furthermore, if the contraction
vertex x is not in Aj, or if an end of the edge β is not in Bj, then Aj ∪ {w} is a barrier
of G itself, which is absurd since G is a brick. Clearly, this would be the case for some
j ∈ {1, 2, . . . , k} if k ≥ 3. We conclude that k ≤ 2, thus establishing the first part of the
assertion.

Now suppose that k = 2. It follows from the preceding paragraph that an end of β
lies in B1 or in B2. This proves (i). Adjust notation so that b1 ∈ B1. Furthermore,
the contraction vertex x lies in A2. Consequently, vertices b1 and x are nonadjacent; this
verifies (ii). Note that if b1 and w are adjacent, then the edge b1w is the unique edge
between A0 and B1, and it is non-removable in H(e, S) by assumption. This proves (iii).
Finally, consider the case in which w = y, where y is the end of e in I. Observe that the
neighbourhood of A0− y lies in the set B0 in the graph H(e, S) as well as in G, whence
B0 is a barrier of G. We conclude that |B0| = 1, and that y is the only vertex of A0.
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Figure 5.3: Illustration for Lemma 5.8

Furthermore, the neighbourhood of A1 lies in B1 ∪ B0, and thus B1 ∪ B0 is a nontrivial
barrier in H(e, S) as well as in G, which is absurd. We conclude that w is distinct from
the end y of e; thus (iv) holds. This completes the proof of Lemma 5.8. 2

The above lemma implies that each vertex of I, except possibly the end y of e, is
incident with at least one candidate. Furthermore, if y has degree three or more in H(e, S)
then y is incident with at least two candidates; and likewise, if any other vertex of I, say w,
has degree four or more then w is incident with at least two candidates. We thus have the
following corollary which is used in the next section.

Corollary 5.9 The candidate set F(e, S) has cardinality at least |S| − 2. (In particular,
the set F(e, S) is nonempty.) Furthermore, if F(e, S) is a matching then each vertex of I
is cubic in G and |F(e, S)| = |S| − 2. 2

As we will see later, by a result of Carvalho et al. (Corollary 5.19), if the candidate set
F(e, S) is not a matching then it has a member whose rank is strictly greater than that
of e. For this reason, in the proof of Theorem 5.1, we will mainly have to deal with the
case in which the candidate set is a matching.
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5.1.1 When the candidate set is a matching

In this section, we suppose that the candidate set F(e, S) is a matching. We will make
several observations, and these will be useful to us in Section 5.3 where the proof of
Theorem 5.1 is presented. For all of the figures in the rest of this chapter, the solid vertices
are those which are known to be cubic in the brick G; the hollow vertices may or may not
be cubic.

Since F(e, S) is a matching, Corollary 5.9 implies that every vertex of I is cubic in G,
as shown in Figure 5.4. Furthermore, each of these vertices, except for the end y of e, is
incident with exactly one candidate edge; in particular, |F(e, S)| = |I| − 1 = |S| − 2.

Notation 5.10 We let w1, w2, . . . , wk denote the vertices of I− y, where k := |S|− 2, and
for 1 ≤ j ≤ k, denote the edge of F(e, S) incident with wj by fj and its end in S by uj.

H(e, S) :

S

I

f1 f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 5.4: When F(e, S) is a matching

Note that, since F(e, S) is a matching, the vertices u1, u2, . . . , uk are distinct, as shown
in Figure 5.4. Since every vertex of I is incident with two non-removable edges of H(e, S),
we deduce the following by assertions (i), (ii) and (iii) of Lemma 5.8, respectively:

(1) an end of β lies in S; adjust notation so that b1 ∈ S,

(2) in H(e, S), vertices b1 and x are nonadjacent; consequently, in G, all neighbours of b1,
except b2, lie in I, and

(3) b1 is distinct from each of u1, u2, . . . , uk.
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Furthermore, since b1 is not incident with any member of F(e, S), Lemma 5.7 implies
that it has precisely two neighbours in I; in particular, b1 is cubic in G.

Notation 5.11 We let u0 denote the vertex of S which is distinct from b1, u1, u2, . . . , uk.
That is, S = {b1, u0, u1, u2, . . . , uk}. (See Figure 5.4.)

As the vertex u0 is not incident with any candidate, we conclude using Lemma 5.7
that u0 has at most one neighbour in I. Observe that if u0 has no neighbours in I then
(S − u0)∪{z} is a barrier of G (where z is the end of e which is not in I), which is absurd
as G is a brick. Thus, u0 has precisely one neighbour in I.

We note that if y is the unique neighbour of u0 in the set I, then S − u0 is a barrier
of G, which leads us to the same contradiction as before. We thus conclude that u0 has
precisely one neighbour in the set I − y, and that its remaining neighbours lie in X; see
Figure 5.5. In particular, in H(e, S), there are are least two edges between u0 and x.

H(e, S) :

S

I

f1 f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 5.5: u0 and u1 are the only vertices adjacent with the contraction vertex x

Finally, since each vertex uj in the set {u1, u2, . . . , uk} is incident with exactly one
candidate, Lemma 5.7 implies that uj must satisfy one of the following conditions:

(i) either uj has some neighbour in the set X and it has precisely two neighbours in the
set I,

(ii) or otherwise, uj has no neighbours in the set X and it has precisely three neighbours
in the set I.
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Observe, by counting degrees of the vertices in I, that there are precisely 3k + 2 edges
with one end in I and the other end in S. Of these 3k+ 2 edges, precisely two are incident
with b1, and only one is incident with u0. Thus there are 3k−1 edges with one end in I and
the other end in {u1, u2, . . . , uk}. It follows immediately that exactly one vertex among
u1, u2, . . . , uk satisfies condition (i); every other vertex satisifes condition (ii).

Notation 5.12 We adjust notation so that u1 is the only vertex in {u1, u2, . . . , uk} which
has neighbours in X. (See Figure 5.5.)

Adopting the notation introduced thus far, the next proposition summarizes our obser-
vations in terms of the brick G.

Proposition 5.13 [When the Candidate Set is a Matching] The following hold:

(i) each vertex of I is cubic,

(ii) b1 is cubic and its neighbours lie in I ∪ {b2},

(iii) u0 has precisely one neighbour in I − y, and all of its remaining neighbours lie in X,

(iv) u1 has precisely two neighbours in I, and all of its remaining neighbours lie in X,

(v) if |S| ≥ 4, then each vertex of S−{b1, u0, u1} has precisely three neighbours and these
neighbours lie in I. 2

Observe that, if the barrier S has precisely three vertices, then the candidate set F(e, S)
has only one edge (that is, f1 = u1w1); in this case, all of the edges of G[X] are determined
by Proposition 5.13, as listed below, and as shown in Figure 5.6. (Note that the underlying
simple graph of H(e, S) is a ladder of order six whose cubic vertices are u1 and w1.)

Remark 5.14 Suppose that |S| = 3. Then the following hold:

(i) the three neighbours of b1 are y, w1 and b2,

(ii) u0 is adjacent with w1, and all of its remaining neighbours lie in X,

(iii) u1 is adjacent with y and with w1, and all of its remaining neighbours lie in X.
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H(e, S) :

S

I

f1

b1 u0 u1

x y w1

Figure 5.6: When F(e, S) is a matching, and S has only three vertices

We shall now consider the situation in which |S| ≥ 4, that is, k ≥ 2. Note that, as
per our notation, f1 = u1w1 is the only candidate whose end in S (that is, u1) has a
neighbour in X. In this sense, f1 is different from the remaining candidates f2, f3, . . . , fk.
In the following proposition, we first show that b1 is nonadjacent with the end w1 of f1.
Consequently, b1 is adjacent with at least one of w2, w3, . . . , wk; we shall assume without
loss of generality that b1 is adjacent with w2, as shown in Figure 5.7. In its proof, we will
apply the Lovász-Vempala Lemma (4.7) to the graph H(e, S), first at w1, and then at w2;
each of these applications is a refinement of the situation in Lemma 5.8.

Proposition 5.15 Suppose that |S| ≥ 4. Then the following hold:

(i) b1 and w1 are nonadjacent; adjust notation so that b1w2 is an edge of G,

(ii) y is adjacent with each of b1 and u2, and

(iii) u0 and w2 are nonadjacent.

Proof: First, we apply Lemma 4.7 to the graph H(e, S) at vertex w1. Since f1 = u1w1 is
the only removable edge incident with w1, there exist partitions (A0, A1, A2) of I∪{x}, and
(B0, B1, B2) of S, such that w1 ∈ A0, and |Aj| = |Bj| for j ∈ {0, 1, 2}, vertex u1 lies in B0,
and the remaining two neighbours of w1 lie in B1 and in B2, respectively. Furthermore,
N(B1) = A1 ∪ {w1} and N(B2) = A2 ∪ {w1}.

Suppose that b1 is a neighbour of w1, and adjust notation so that b1 ∈ B1. The
contraction vertex x lies in A2, since otherwise A2 ∪ {w1} is a nontrivial barrier in G. We
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will deduce that each of the sets B0, B1 and B2 is a singleton, and thus the barrier S has
precisely three vertices, contrary to the hypothesis.

First of all, note that the neighbourhood of B1 − b1 is contained in A1, and thus
if |A1| ≥ 2 then A1 is a nontrivial barrier in G; we conclude that |A1| = 1 and that
B1 = {b1}. Observe that the contraction vertex x is only adjacent with u1, which lies
in B0, and with u0. Thus the neighbourhood of B2 − u0 is contained in (A2 − x) ∪ {w1},
whence the latter is a barrier of G; we infer that A2 = {x}; consequently, the unique vertex
of B2 has precisely two neighbours, namely w1 and x. It follows that B2 = {u0}. Since the
vertex w1 is cubic, the neighbourhood of B0 − u1 is contained in (A0 − w1) ∪ A1, whence
the latter is a barrier of G; we infer that A0 = {w1}, thus B0 = {u1}. It follows that
|S| = 3, contrary to our hypothesis. Thus b1 and w1 are nonadjacent; this proves (i). As
in the statement of the proposition, adjust notation so that b1 and w2 are adjacent; see
Figure 5.7.

To deduce (ii) and (iii), we apply Lemma 4.7 to the graph H(e, S) at vertex w2. Similar
to the earlier situation, there exist partitions (A0, A1, A2) of I ∪{x}, and (B0, B1, B2) of S,
such that w2 ∈ A0, and |Aj| = |Bj| for j ∈ {1, 2, 3}, vertex u2 lies in B0, and the remaining
two neighbours of w2 lie in B1 and in B2, respectively. Adjust notation so that b1 lies in B1.
Also, N(B1) = A1 ∪ {w2} and N(B2) = A2 ∪ {w2}. As before, we conclude that x lies in
A2, and that |A1| = |B1| = 1.

Observe that the unique vertex of A1 has all of its neighbours in the set B0 ∪ B1. We
will show that B0 = {u2}; this implies that the unique vertex of A1 has precisely two
neighbours, and so it must be the end y of e; this immediately implies (ii).

Note that the neighbourhood of A0−w2 is contained in B0. Thus, if |A0| ≥ 2 then y lies
in A0 (since otherwise B0 is a barrier of G). If |A0| ≥ 3 then B0 is a barrier of G− e with
three or more vertices. (Note that the barrier B0 is contained in the barrier S.) Since no
end of β lies in B0, it follows from our earlier observations that the candidate set F(e, B0)
is not a matching. However, by Corollary 5.6, F(e, B0) is a subset of F(e, S), and the
latter is a matching; this is absurd. We conclude that A0 has at most two vertices, that
is, either A0 = {w2} or A0 = {y, w2}. Now suppose that A0 = {y, w2}. The unique vertex
of A1 is adjacent with b1, and thus statement (i) implies that w1 /∈ A1. Assume without
loss of generality that A1 = {w3}. Since w3 is cubic, we conclude that its neighbourhood is
precisely B0∪B1, and thus B0 = {u2, u3}. Observe that Q := w3u2w2b1w3 is a quadrilateral
in H(e, S) containing the vertex w3, and thus by Corollary 4.8, one of the edges w3u2
and w3b1 is removable in H(e, S); however, this contradicts our hypothesis since the only
removable edges are the members of F(e, S). We thus conclude that A0 = {w2}. As
explained earlier, A1 = {y}, and thus y is adjacent with each of b1 and u2; this proves (ii).
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H(e, S) :

S

I

f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 5.7: When F(e, S) is a matching, and S has four or more vertices; the vertices
u0 and w2 are nonadjacent

Now suppose that u0 and w2 are adjacent. Observe that u1 ∈ B2, and thus all of its
neighbours lie in A2, whence |A2| ≥ 3. The neighbourhood of B2 − {u0, u1} is contained
in A2 − x, whence the latter is a nontrivial barrier of G, which is a contradiction. We
thus conclude that u0 and w2 are nonadjacent; this proves (iii), and completes the proof
of Proposition 5.15. 2

5.2 The Equal Rank Lemma

Here, we present an important lemma which is used in the proof of Theorem 5.1. This
lemma considers the situation in which G is an R-brick and e := yz is an R-compatible
edge of index two that is not thin, and f is a candidate relative to a barrier of G− e such
that f is also of index two and its rank is equal to that of e. The reader is advised to
review the Three Case Lemma (4.15) and Section 4.4.2 before proceeding further.

The Equal Rank Lemma (5.17) relates the barrier structure of G− f to that of G− e.
More specifically, the lemma establishes subset/superset relationships between eight sets
of vertices: the barriers S1 and S2 of G − e (as in Case 2 of Lemma 4.15) and their
corresponding sets of isolated vertices I1 and I2, and likewise, the barriers S3 and S4

of G− f and their corresponding sets of isolated vertices I3 and I4. Among other things,
the lemma shows that S1 ∪ I1 ∪ S2 ∪ I2 = S3 ∪ I3 ∪ S4 ∪ I4. We now introduce the relevant
notation more precisely.
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Since e is of index two, by the Three Case Lemma, G − e has precisely two maximal
nontrivial barriers, and since e is not thin, at least one of these barriers, say S1, has three
or more vertices (see Proposition 4.16). We adopt Notation 5.3 for the brick G and edge e.
Assume without loss of generality that S1 ⊂ B, and let I1 denote the set of isolated vertices
of (G− e)−S1. We shall denote by S2 the maximal nontrivial barrier of (G− e)/X1 where
X1 := S1∪I1, and by I2 the set of isolated vertices of (G−e)−S2. Note that the end z of e
lies in I2 which is a subset of B, whereas the other end y of e lies in I1 which is a subset
of A. See Figure 5.8 (top).

By Corollary 5.9, the candidate set F(e, S1) is nonempty, and by Proposition 5.5, each
of its members is an R-compatible edge whose rank is at least that of e. Now, let f := uw
be a member of F(e, S1) such that u ∈ S1 and w ∈ I1, and suppose that the index of f
is two. The following result of Carvalho et al. [CLM06, Lemma 32] plays a crucial role in
our proof of the Equal Rank Lemma (5.17).

Lemma 5.16 Assume that index(e) = index(f) = 2. If rank(e) = rank(f) then S2 is a
subset of a barrier of G− f . 2

We shall let S3 denote the maximal nontrivial barrier of G − f which is contained in
the color class B, and I3 the set of isolated vertices of (G − f) − S3. Furthermore, let
S4 denote the maximal nontrivial barrier of (G − f)/(S3 ∪ I3), and I4 the set of isolated
vertices of (G− f)− S4. Note that the end u of f lies in I4, and its other end w lies in I3.
See Figure 5.8 (bottom). We are now ready to state the Equal Rank Lemma using the
notation introduced so far.

Lemma 5.17 [The Equal Rank Lemma] Assume that index(e) = index(f) = 2. If
rank(e) = rank(f) then the following statements hold:

(i) e and f are nonadjacent,

(ii) S3 ⊆ S1 − u and I3 ⊆ I1 − y,
(iii) S2 ⊂ S4 and I2 ⊂ I4,

(iv) S1 ∪ I2 = S3 ∪ I4 and S2 ∪ I1 = S4 ∪ I3,
(v) N(u) ⊆ S2 ∪ I1, and
(vi) e is a member of the candidate set F(f, S4).
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G− e:
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B

S2

I2

A− (S2 ∪ I1)

B − (S1 ∪ I2)
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S1

z

y w

u

f

G− f :

A

B

S4

I4

A− (S4 ∪ I3)

B − (S3 ∪ I4)

I3

S3

u

wy

z

e

Figure 5.8: The Equal Rank Lemma

Proof: We examine the graph G − e − f in order to prove (i) and (ii). Clearly, S3 is a
barrier of G−e−f . Observe that, since f has an end in S1, every barrier of G−e−f which
contains S1 is a barrier of G−e as well. Since S1 is a maximal barrier of G−e, we infer that
S1 is a maximal barrier of G − e − f as well. By the Canonical Partition Theorem (1.3),
to prove that S3 is a subset of S1, it suffices to show that S1 ∩S3 is nonempty. To see this,
note that w ∈ I1∩I3, and thus any neighbour of w in G−e−f lies in S1∩S3. Furthermore,
since u /∈ S3, we conclude that S3 ⊆ S1 − u; this proves part of (ii). In particular, z /∈ S3.
Consequently, y /∈ I3, and thus y and w are distinct. This proves (i).

Now we prove the remaining part of (ii). Let v ∈ I3, that is, v is isolated in (G−f)−S3.
Consequently, v is isolated in (G − f) − S1. Since f has an end in S1, we infer that v is
isolated in (G− e)− S1, that is, v ∈ I1. Thus I3 ⊆ I1 − y. This proves (ii).
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We will now prove (iii) and (iv). We begin by showing that S2 is a subset of S4. By
Lemma 5.16, S2 is a subset of the unique maximal nontrivial barrier of G − f which is
contained in the color class A, say S∗4 . By the Three Case Lemma (4.15), S∗4 = S4 ∪ I ′
for some (possibly empty) subset I ′ of I3. That is, S2 is a subset of S4 ∪ I ′. Note that
S2 and I1 are disjoint; by (ii), S2 ∩ I ′ = ∅. Thus, S2 ⊆ S4.

Since the ranks of e and f are equal, it follows that |A − (S2 ∪ I1)| = |A − (S4 ∪ I3)|
and likewise, |B − (S1 ∪ I2)| = |B − (S3 ∪ I4)|. In order to prove (iv), it suffices to prove
the following claim.

Claim 5.17.1 A− (S2 ∪ I1) ⊆ A− (S4 ∪ I3) and B − (S1 ∪ I2) ⊆ B − (S3 ∪ I4).

Proof: Let v1 ∈ A − (S2 ∪ I1). By (ii), v1 /∈ I3. To prove that v1 lies in A − (S4 ∪ I3), it
suffices to show that v1 /∈ S4.

Now, let v2 be any vertex in S2. We have already shown that S2 ⊆ S4, and thus v2 ∈ S4.
Note that, if v1 also belongs to the barrier S4, then (G − f) − {v1, v2} would not have a
perfect matching. In the following paragraph, we will show that (G− e− f)−{v1, v2} has
a perfect matching, say M ; consequently, v1 /∈ S4.

Let H1 be the graph (G−e−f)/X1 → x1, and let H2 be the graph (G−e−f)/X2 → x2
where X2 := S2 ∪ I2. Note that H1 and H2 are bipartite matching covered graphs. Let
J := ((G− e− f)/X1 → x1)/X2 → x2. Note that J is the brick of G− e− f . Let MJ be a
perfect matching of J−{x2, v1}. Let g denote the edge ofMJ incident with the contraction
vertex x1. Let M1 be a perfect matching of H1 which contains g. Let M2 be a perfect
matching of H2 − {v2, x2}. Observe that M := M1 +MJ +M2 is the desired matching.

Now, let v ∈ B − (S1 ∪ I2). By (ii), v /∈ S3. To prove that v lies in B − (S3 ∪ I4),
it suffices to show that v /∈ I4. To see this, note that since J is a brick, by Theorem 1.9,
J − {x1, x2} is connected; thus, v is not isolated in (G− f)− S4, that is, v /∈ I4. 2

It follows from (ii) and (iv) that the end y of e lies in S4, and thus S2 is a proper subset
of S4. Also, we infer from (ii) and (iv) that I2 is a subset of I4. Furthermore, the end u
of f lies in I4, whence I2 is a proper subset of I4. This proves (iii).

It remains to prove (v) and (vi). As noted above, u ∈ I4. Thus, all neighbors of u in G
lie in S4 ∪ {w} ⊆ S4 ∪ I3. It follows from (iv) that N(u) ⊆ S2 ∪ I1. This proves (v).

Finally, we prove (vi). Recall that H(f, S4) denotes the bipartite matching covered
graph (H − f)/X4 → x4 where X4 := S4 ∪ I4, and that F(f, S4) is the set of those
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removable edges of H(f, S4) which are not incident with the contraction vertex x4. Since
f is R-compatible in G− e (by Proposition 5.5), the exchange property (Proposition 4.4)
implies that e is R-compatible in G − f . Now, since the end z of e lies in I4, the last
assertion of Proposition 5.5 implies that e is a member of F(f, S4). This proves (vi), and
finishes the proof of the Equal Rank Lemma. 2

5.3 Proof of Theorem 5.1

Before we proceed to prove Theorem 5.1, we state two results of Carvalho et al. [CLM06]
which are useful to us. Suppose that G is an R-brick and e is an R-compatible edge which
is not thin. We let S1 denote a maximal nontrivial barrier of G− e such that |S1| ≥ 3, and
let f denote a member of the candidate set F(e, S1).

Note that, since e is not thin, its rank is at most n− 4 where n := |V (G)|. If the index
of f is zero then its rank is n, and in particular, it is greater than that of e. The following
result of Carvalho et al. [CLM06, Lemma 31] shows that this conclusion holds even if the
index of f is one.

Lemma 5.18 Suppose that f is a member of the candidate set F(e, S1). If the index of f
is one then rank(f) > rank(e). 2

The following corollary of Lemmas 5.16 and 5.18 was used implicitly by Carvalho et
al. [CLM06] in their proof of the Thin Edge Theorem (1.15). We provide its proof for the
sake of completeness.

Corollary 5.19 Assume that the index of e is two. If the candidate set F(e, S1) contains
two adjacent edges, say f and g, then at least one of them has rank strictly greater than
rank(e).

Proof: We know by Proposition 5.5 that each of f and g has rank at least rank(e). If
either of them has rank strictly greater than that of e then there is nothing to prove. Now,
suppose that rank(f) = rank(g) = rank(e). It follows from Lemma 5.18 that both f and g
are of index two. We intend to arrive at a contradiction using Lemma 5.16. We let I1
denote the set of isolated vertices of (G − e) − S1, and S2 denote the unique maximal
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nontrivial barrier of (G− e)/(S1∪ I1). By Lemma 5.16, S2 is a subset of a barrier of G−f ,
and likewise, S2 is a subset of a barrier of G− g.

Consider two distinct vertices of S2, say v1 and v2. Let M be a perfect matching of
the graph G− {v1, v2}. (Such a perfect matching exists as G is a brick.) As noted above,
S2 is a subset of a barrier of G − f . In particular, v1 and v2 lie in a barrier of G − f ,
whence (G− f)−{v1, v2} has no perfect matching. Thus f lies in M . Likewise, g also lies
in M . This is absurd since f and g are adjacent. We conclude that one of f and g has
rank strictly greater than rank(e). This completes the proof of Corollary 5.19. 2

We now proceed to prove Theorem 5.1.

Proof of Theorem 5.1: As in the statement of the theorem, let e denote an R-compatible
edge of an R-brick G. If the edge e is thin, then there is nothing to prove. Now consider the
case in which e is not thin. By the Three Case Lemma (4.15), G− e has either one or two
maximal nontrivial barriers, and by Proposition 4.16, at least one such barrier has three
or more vertices. Our goal is to establish the existence of another R-compatible edge f
which satisfies conditions (i) and (ii) in the statement of Theorem 5.1.

Recall that each candidate edge (relative to e and a barrier of G − e with three or
more vertices) is an R-compatible edge of G which satisfies condition (i) of Theorem 5.1
and has rank at least rank(e). (See Definition 5.4 and Proposition 5.5.) Furthermore, if a
candidate has rank strictly greater than rank(e), then by Proposition 5.2, it also satisfies
condition (ii) of Theorem 5.1, and in this case we are done. Keeping these observations in
view, we now use Lemma 5.18 to get rid of the case in which index of e is one.

Claim 5.20 We may assume that the index of e is two.

Proof: Suppose not. Then the index of e is one, and we let S denote the unique maximal
nontrivial barrier of G − e. As discussed earlier, |S| ≥ 3. Let f denote a member of the
candidate set F(e, S), which is nonempty by Corollary 5.9. If the index of f is zero then its
rank is clearly greater than rank(e), and by Lemma 5.18, this conclusion holds even if the
index of f is one. Now consider the case in which f is of index two. Since rank(f) ≥ rank(e),
we conclude that f satisfies condition (ii), Theorem 5.1. Thus, irrespective of its index,
the edge f satisfies both conditions (i) and (ii), and we are done. 2

We shall now invoke Corollary 5.19 to dispose of the case in which the candidate set
(relative to some barrier of G− e) is not a matching.
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Claim 5.21 We may assume that if S is a nontrivial barrier (not necessarily maximal)
of G − e with three or more vertices then the corresponding candidate set F(e, S) is a
matching.

Proof: Suppose that the candidate set F(e, S) is not a matching, and thus it contains two
adjacent edges, say f and g. We let S∗ denote the maximal nontrivial barrier of G − e
such that S ⊆ S∗. By Corollary 5.6, edges f and g are members of F(e, S∗) as well. Since
e is of index two (by Claim 5.20), Corollary 5.19 implies that at least one of f and g,
say f , has rank strictly greater than that of e. Thus f satisfies both conditions (i) and
(ii), Theorem 5.1, and we are done. 2

Now, since e is of index two (by Claim 5.20), the graph G−e has precisely two maximal
nontrivial barriers. Among these two, we shall denote by S1 the barrier which is bigger
(breaking ties arbitrarily if they are of equal size), and by I1 the set of isolated vertices
of (G− e)− S1. Thus |S1| ≥ 3. Let y and z denote the ends of e. We adopt Notation 5.3.
Assume without loss of generality that S1 is a subset of B, and thus by the Three Case
Lemma (4.15), the end y of e lies in I1.

As the candidate set F(e, S1) is a matching (by Claim 5.21), we invoke the observations
made in Section 5.1.1, with S1 playing the role of S, and I1 playing the role of I, and
likewise, X1 := S1 ∪ I1 playing the role of X. In particular, we adopt Notations 5.10, 5.11
and 5.12 and we apply Proposition 5.13. See Figure 5.9.

S1

I1

I2

S2

f1 f2 fk· · ·

β
b2 b1 u0 u1 u2 · · · uk

y w1 w2 · · · wk

z

Figure 5.9: Index of e is two, and S1 is the largest barrier of G− e

103



We let S2 denote the unique maximal nontrivial barrier of (G− e)/X1, and I2 the set
of isolated vertices of (G− e)− S2. By the Three Case Lemma (4.15), the end z of e lies
in I2, as shown in Figure 5.9. Note that |S2| ≤ |S1| by the choice of S1.

Note that, as per statements (iv) and (v) of Proposition 5.13, the edge f1 = u1w1 is the
only member of the candidate set F(e, S1) whose end in the barrier S1 (that is, vertex u1)
has some neighbour which lies in X1. Also, if |S1| = 3 then f1 is the unique member of
F(e, S1). For these reasons, it will play a special role.

Claim 5.22 We may assume that rank(f1) = rank(e). Consequently, the following hold:

(i) the index of f1 is two,

(ii) all neighbours of u1 lie in S2 ∪ I1, and
(iii) the vertex u0 has at least one neighbour in the set A− (S2 ∪ I1).

Proof: By Proposition 5.5, f1 is an R-compatible edge which has rank at least that of e,
and it satisfies condition (i), Theorem 5.1. If rank(f1) > rank(e), then by Proposition 5.2,
f1 satisfies condition (ii) as well, and we are done. We may thus assume that rank(f1) =
rank(e). It follows from Lemma 5.18 that the index of f1 is two; that is, (i) holds. Since e
and f1 = u1w1 are of equal rank and of index two each, the Equal Rank Lemma (5.17)(v)
implies that each neighbour of u1 lies in the set S2 ∪ I1, and this proves (ii). We shall now
use this fact to deduce (iii).

Since H is bipartite and matching covered, Proposition 1.4(ii) implies that the neigh-
bourhood of the set A−(S2∪I1), in the graph H, has cardinality at least |A−(S2∪I1)|+1,
and since |A − (S2 ∪ I1)| = |B − (S1 ∪ I2)|, we conclude that the set A − (S2 ∪ I1) has
at least one neighbour which is not in B − (S1 ∪ I2); it follows from Proposition 5.13 and
statement (ii) proved above that the only such neighbour is the vertex u0 of barrier S1. In
other words, the vertex u0 has at least one neighbour in the set A− (S2 ∪ I1) as shown in
Figure 5.9; this proves (iii), and completes the proof of Claim 5.22. 2

We shall now consider two cases depending on the cardinality of S1.

Case 1: |S1| ≥ 4.

We invoke Proposition 5.15, with S1 playing the role of S, and we adjust notation accord-
ingly. See Figure 5.10. Observe that Q := u2w2b1yu2 is a quadrilateral of G which contains
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the edge f2 = u2w2. Since f2 is a candidate, it is an R-compatible edge whose rank is at
least that of e, and it satisfies condition (i), Theorem 5.1. We will use the quadrilateral Q
and the Equal Rank Lemma to conclude that f2 has rank strictly greater than that of e,
and thus it satisfies condition (ii) as well.

S1

I1

I2

S2

f2 fk· · ·

β
b2 b1 u0 u1 u2 · · · uk

y w1 w2 · · · wk

z

Figure 5.10: When |S1| ≥ 4

Now, let v denote the neighbour of w2 which is distinct from u2 and b1. Clearly, v ∈ S1;
by Proposition 5.15(iii), v is distinct from u0.

Since each end of f2 is cubic, it is an R-compatible edge of index two. We first set up
some notation concerning the barrier structure of G − f2. We denote by S3 the maximal
nontrivial barrier of G − f2 which is a subset of B, and by I3 the set of isolated vertices
of (G−f2)−S3. We let S4 denote the unique maximal nontrivial barrier of (G−f2)/(S3∪I3),
and I4 the set of isolated vertices of (G− f2)− S4. By the Three Case Lemma (4.15), the
end u2 of f2 lies in I4, and its end w2 lies in I3. Also, since w2 ∈ I3, v ∈ S3.

Now, suppose for the sake of contradiction that rank(f2) = rank(e). Then we may apply
the Equal Rank Lemma (5.17) to conclude that S1∪I2 = S3∪I4 and that S2∪I1 = S4∪I3.
Furthermore, by Claim 5.22(iii), the vertex u0 has a neighbour in A− (S4 ∪ I3), and thus
u0 /∈ I4. We infer that u0 ∈ S3. We have thus shown that v and u0 are distinct vertices
of the barrier S3 of G− f2. Consequently, (G− f2)− {v, u0} has no perfect matching; we
will now use the quadrilateral Q = u2w2b1yu2 to contradict this assertion.

Since G is a brick, G − {v, u0} has a perfect matching, say M . If f2 is not in M then
we have the desired contradiction. Now suppose that f2 ∈ M . Since v and u0 both lie in
the color class B of H, we conclude that α ∈ M and that β /∈ M . See Figure 5.10. Note
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that each of v and u0 is distinct from b1, and that the neighbours of b1 are precisely b2, w2

and y. Since β = b1b2 is not in M , and since f2 = u2w2 lies in M , it must be the case
that yb1 lies in M . Now observe that the symmetric difference of M and Q is a perfect
matching of (G− f2)− {v, u0}, and thus we have the desired contradiction.

We conclude that rank(f2) > rank(e), and thus f2 is the desired R-compatible edge
which satisfies both conditions (i) and (ii), Theorem 5.1.

Case 2: |S1| = 3.

We note that since S1 has precisely three vertices, by Remark 5.14, all of the edges of G[X1]
are determined (where X1 = S1 ∪ I1). See Figure 5.11. Furthermore, f1 is the only
member of the candidate set F(e, S1), and by Claim 5.22, its index is two and its rank is
equal to rank(e). We will examine the barrier structure of G − f1 using the Equal Rank
Lemma (5.17), and argue that some edge adjacent with the given edge e = yz (that is,
either incident at y, or incident at z) is R-compatible and that its rank is strictly greater
than rank(e). Observe that, since index(e) = 2, each edge adjacent with e satisfies condition
(i), Theorem 5.1.

We let S3 denote the unique maximal nontrivial barrier of G − f1 which is a subset
of B, and I3 the set of isolated vertices of (G − f1) − S3. We denote by S4 the unique
maximal nontrivial barrier of (G − f1)/(S3 ∪ I3), and by I4 the set of isolated vertices
of (G− f1)− S4. See Figure 5.11. By the Three Case Lemma (4.15), the end u1 of f1 lies
in I4, and its end w1 lies in I3. Since each of b1 and u0 is a neighbour of w1 in G− f1, they
both lie in the barrier S3. By Lemma 5.17(ii), with f1 playing the role of f , we conclude
that S3 = {b1, u0} and that I3 = {w1}, as shown in the figure.

Observe that by the choice of S1, the barrier S2 of G − e contains either two or three
vertices. However, irrespective of the cardinality of S2, it follows from the above and from
Lemma 5.17(iv) that S4 = S2 ∪ {y} and that I4 = I2 ∪ {u1}. In particular, the barrier S4

of G− f1 contains either three or four vertices. Note that the end z of e lies in I2 which is
a subset of I4, and its end y lies in S4. Furthermore, Lemma 5.17(vi) implies that e is a
member of the candidate set F(f1, S4).

Claim 5.23 We may assume that e is the only member of F(f1, S4) which is incident
with z. Furthermore, we may assume that |S2| = 2.

Proof: Suppose there exists an edge g incident with z such that g is distinct from e and
that g ∈ F(f1, S4). By Proposition 5.5, g is an R-compatible edge of the brick G. We now
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G− e :

S1

I1

I2

S2

β
b2

f1

b1 u0 u1

y w1

z

G− f1 :

S3

I3

I4

S4

β
b2 b1 u0

w1

u1

y

z

e

Figure 5.11: When |S1| = 3

apply Corollary 5.19 (with f1 playing the role of e, and with edges e and g playing the roles
of f and g); at least one of e and g has rank strictly greater than rank(f1). However, by
Claim 5.22, the ranks of e and f1 are equal; consequently, rank(g) > rank(f1) = rank(e). By
Propostion 5.2, the edge g satisifes condition (ii), Theorem 5.1, and it satisfies condition (i)
because it is adjacent with the edge e, and thus we are done. So we may assume that e is
the only member of F(f1, S4) which is incident with z. Using this, we shall deduce that
the barrier S2 of G− e has only two vertices.

Suppose to the contrary that |S2| = 3. By Claim 5.21, the candidate set F(e, S2) is a
matching. Consequently, as we did in the case of S1, we may now invoke the observations
made in Section 5.1.1, with S2 playing the role of S, and I2 playing the role of I, and
likewise, X2 := S2 ∪ I2 playing the role of X. In particular, by Remark 5.14, all of the
edges of G[X2] are determined. It is worth noting that S2 is also a maximal barrier of G−e
(by the choice of S1). That is, each of S1 and S2 is a maximal barrier of G− e with exactly
three vertices. Keeping this symmetry in view, we now choose appropriate notation for
those vertices of X2 which are relevant to our argument. See Figure 5.12.
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G− e :

S1

I1

I2

S2

β
b2

f1

b1 u0 u1

y w1

u2

w2

f2

α
a1a2

z

G− f1 :

S3

I3

I4

S4

β
b2 b1 u0

w1

u1

y

z

e

w2

u2

α
a1a2

Figure 5.12: When |S1| = |S2| = 3

We shall let f2 := u2w2 denote the unique member of the candidate set F(e, S2), where
u2 ∈ I2 and w2 ∈ S2. In particular, I2 = {u2,z}. One of the ends of α = a1a2 lies in
the barrier S2; we adjust notation so that a2 ∈ S2. Consequently, w2 and a2 are distinct
vertices of S2. The vertex a2 is cubic, and its neighbours are z, u2 and a1. The vertex w2

is adjacent with z and u2, and all of its remaining neighbours lie in X2.

Observe that Q := zw2u2a2z is a quadrilateral of the bipartite graph H(f1, S4) which
contains the vertex z whose degree is three. Consequently, by Corollary 4.8, at least one of
zw2 and za2 is removable in H(f1, S4). However, since a2 has degree two in H(f1, S4), za2 is
non-removable; whence zw2 is removable. It follows that zw2 is a member of the candidate
set F(f1, S4); this contradicts our first assumption. We conclude that the barrier S2 has
only two vertices, and this completes the proof of Claim 5.23. 2

By Proposition 4.16, an R-compatible edge of index two is thin if and only if its rank
is n − 4; where n := |V (G)|. Observe that, since |S1| = 3 and |S2| = 2, the rank of e is
n− 6, and in this sense, it is very close to being thin; the same holds for the edge f1. We
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will establish a symmetry between the barrier structure of G − e and that of G − f1; see
Figure 5.13. Thereafter, we will argue that the edge g := yu1 is an R-thin edge of index
two; in particular, it is R-compatible and its rank is n− 4, and thus it satisfies condition
(ii), Theorem 5.1. Since g is adjacent with e, it satisfies condition (i) as well.

Since |S2| = 2, the set I2 contains only the end z of e, and the neighbourhood of z is
precisely the set S2∪{y} = S4. Also, I4 = I2 ∪ {u1} = {z, u1}, and by Claim 5.23, e = yz is
the only member of the candidate set F(f1, S4) which is incident with z. In other words, z is
incident with only one removable edge of the bipartite graph H(f1, S4), namely, the edge e.
We now deduce some consequences of this fact using standard arguments.

G− e :

S1

I1

I2

S2

w0

β
b2

f1

b1 u0 u1

y w1

z

α
a1a2

G− f1 :

S3

I3

I4

S4

β
b2 b1 u0

w1

u1

w0y

z

e

α
a1a2

Figure 5.13: When |S1| = 3 and |S2| = 2

First of all, by Lemma 5.8(i), an end of the edge α = a1a2 lies in the barrier S4. Adjust
notation so that a2 ∈ S4. By statement (ii) of the same lemma, a2 has no neighbours
in the set X4 where X4 := S4 ∪ I4. Consequently, the neighbourhood of a2 is precisely
I4 ∪ {a1} = {z, u1, a1}. Clearly, y and a2 are distinct vertices of S4, and we denote by w0

the remaining vertex of S4. Note that S2 = {w0, a2}.
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Next, we observe that if the vertices u1 and w0 are adjacent then Q := zw0u1a2z is
a quadrilateral of the bipartite graph H(f1, S4) and it contains the vertex z which has
degree three; by Corollary 4.8, one of the two edges zw0 and za2 is removable; however,
this contradicts the fact that e = yz is the only removable edge incident with z. Thus, the
vertices u1 and w0 are nonadjacent. It follows that u1 is cubic, and its neighbourhood is
precisely {y, a2, w1}.

Observe that we have six cubic vertices whose neighbourhoods are fully determined;
these are: the ends y and z of e, the ends u1 and w1 of f1, the end b1 of β, and the end a2
of α. There is a symmetry between the barrier structure of G − e and that of G − f1; as
is self-evident from Figure 5.13. We have not determined the degrees of the two vertices
u0 and w0; observe that if these vertices are not adjacent with each other then u0 has at least
two neighbours in A−(S2∪I1) and likewise, w0 has at least two neighbours in B−(S1∪I2);
whereas if u0w0 is an edge of G then u0 has at least one neighbour in A − (S2 ∪ I1) and
likewise, w0 has at least one neighbour in B − (S1 ∪ I2).

As mentioned earlier, we now proceed to prove that g = yu1 is an R-thin edge. We let
J := ((G − e)/X1 → x1)/X2 → x2 denote the unique brick of G − e, where X1 = S1 ∪ I1
and X2 := S2 ∪ I2. Note that J is near-bipartite with removable doubleton R.

Claim 5.24 The edge g = yu1 is R-thin. (That is, g is an R-compatible edge of index two
and its rank is n− 4.)

Proof: Observe that Q := yu1w1b1y is a quadrilateral in H = G − R which contains the
cubic vertex y. By Corollary 4.8, at least one of the edges g = yu1 and yb1 is removable
in H. Note that yb1 is not removable, whence g is removable in H. To conclude that g
is R-compatible, it suffices to show that edges α and β are admissible in G− g. We shall
prove something more general, which is useful in establishing the thinness of g as well.

Observe that, in G − g, the vertex y has neighbour set {z, b1}, and vertex u1 has
neighbour set {w1, a2}. We will show that, if v1 and v2 are distinct vertices of the color
class B such that {v1, v2} 6= {z, b1}, then (G−g)−{v1, v2} has a perfect matching, say M .
This has two consequences worth noting. First of all, if {v1, v2} = {b1, b2} then M + β is
a perfect matching of G − g which contains α and β both, whence g is an R-compatible
edge of G. Secondly, it shows that {z, b1} is a maximal nontrivial barrier of G − g. An
analogous argument establishes that {w1, a2} is also a maximal nontrivial barrier of G− g,
and consequently Proposition 4.16 implies that g is indeed R-thin.
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As mentioned above, suppose that v1 and v2 are distinct vertices of B such that
{v1, v2} 6= {z, b1}. Let N be a perfect matching of G − {v1, v2}. In what follows, we
consider different possibilities, and in each of them, we exhibit a perfect matching M of
(G − g) − {v1, v2}. If g /∈ N then clearly M := N . Now suppose that g ∈ N . Note that,
since v1, v2 ∈ B, the edge α lies in N and β does not lie in N . If b1 /∈ {v1, v2}, then the
edge b1w1 lies in N , and we let M := (N − g − b1w1) + f1 + yb1.

Now consider the case in which b1 ∈ {v1, v2}, and adjust notation so that b1 = v1.
Thus v2 6= z, whence zw0 ∈ N . Also, w1u0 lies in N . Observe that v2 lies in the set
B − (S1 ∪ I2). First, we consider the case when u0w0 is an edge of G. Observe that the
six cycle C := u1yzw0u0w1u1 is N -alternating and it contains the edge g. In this case, let
M denote the symmetric difference of N and C.

Finally, consider the situation in which u0w0 is not an edge of G. (In this case, to
construct M , we will not use the matching N .) As noted earlier, since u0 and w0 are
nonadjacent, w0 has at least two distinct neighbours in the set B− (S1∪ I2). In particular,
w0 has at least one neighbour, say v′, which lies in B−(S1∪I2) and is distinct from v2. Now,
letMJ be a perfect matching of J−{v′, v2}. Observe that α ∈MJ and β /∈MJ . Note that,
in the matchingMJ , the contraction vertex x1 is matched with some vertex in A−(S2∪I1),
which is a neighbour of u0 in the graph G. Now, we let M := MJ + w0v

′ + f1 + e.

In every scenario, M is a perfect matching of (G − g) − {v1, v2}, as desired. Thus, as
discussed earlier, g is R-compatible as well as thin. This proves Claim 5.24. 2

In summary, we have shown that g = yu1 is an R-compatible edge which satisfies both
conditions (i) and (ii), Theorem 5.1. This completes the proof. 2
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Chapter 6

Generating simple near-bipartite bricks

Here, we will use Theorem 5.1 from the last chapter to establish the generation proce-
dure for simple near-bipartite bricks discussed in Section 1.7.3. Recall that, for a simple
R-brick G, a strictly R-thin edge e is one which is R-compatible as well as strictly thin,
and in this case, the retract of G− e is also a simple R-brick. We will prove Theorem 1.24,
which is restated below.

Theorem 1.24 [Strictly R-thin Edge Theorem] Let G be a simple R-brick. If G is
free of strictly R-thin edges then G belongs to one of the following infinite families:

(i) Truncated biwheels
(ii) Prisms
(iii) Möbius ladders
(iv) Staircases
(v) Pseudo-biwheels
(vi) Double biwheels of type I

(vii) Double ladders of type I

(viii) Laddered biwheels of type I

(ix) Double biwheels of type II

(x) Double ladders of type II

(xi) Laddered biwheels of type II

There are eleven infinite families in the statement of the above theorem. The first four
of these (truncated biwheels, prisms, Möbius ladders and staircases) are Norine-Thomas
families, that is, they are free of strictly thin edges; these are described in Section 1.3.3.
All of the remaining seven families contain strictly thin edges, and these are described in
Section 1.7.3. We denote by N the union of all of these eleven families.

Recall the definitions of ladders and partial biwheels from Section 1.3.3. In our descrip-
tions of the aforementioned eleven families, we constructed their members using either one
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or two disjoint bipartite matching covered graphs, each of which is either a ladder or a
partial biwheel, and thereafter, adding a few vertices and/or edges and possibly identify-
ing two pairs of vertices. As we will see, these constructions are indicative of how these
graphs appear in our proof of Theorem 1.24. In the next section, we will define two special
types of subgraphs, namely, an ‘R-biwheel configuration’ and an ‘R-ladder configuration’;
we will conclude the section with a proof sketch of Theorem 1.24.

Throughout this chapter, we adopt the following notational and figure conventions.

Notation 6.1 For a simple R-brick G, we shall denote by H[A,B] the underlying bipartite
graph G−R. We let α and β denote the constituent edges of R, and we adopt the convention
that α := a1a2 has both ends in A, whereas β := b1b2 has both ends in B. We denote
by V (R) the set {a1, a2, b1, b2}. Furthermore, in all of the figures, the hollow vertices are
in A, and the solid vertices are in B.

6.1 R-configurations

We will also adopt the following notational conventions for a subgraph which is either a
ladder or a partial biwheel.

Notation 6.2 When referring to a subgraph K of H, such that K is either a ladder or a
partial biwheel with external rungs/spokes au and bw, we adopt the convention that a, w ∈ A
and b, u ∈ B; furthermore, when K is a partial biwheel, u and w shall denote its hubs; as
shown in Figures 6.1 and 6.3. (We may also use subscript notation, such as aiui and biwi

where i is an integer, and this convention extends naturally.)

6.1.1 R-biwheel configurations

Let K be a subgraph of H such that K is a partial biwheel with external spokes au and bw;
see Figure 6.1. We say that K is an R-biwheel configuration of G if it satisfies the following
conditions:

(i) in G, the hubs u and w are both noncubic, and every other vertex of K is cubic,
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a ∈ V (R) b ∈ V (R)

u

w

Figure 6.1: An R-biwheel configuration; in G, the free corners (hubs) u and w are noncubic,
and every other vertex is cubic.

(ii) the ends of K, namely a and b, both lie in V (R), and,

(iii) in G, every internal spoke of K is an R-thin edge whose index is one.

A pseudo-biwheel, as shown in Figure 6.2, has two removable doubletons R := {α, β}
and R′ := {α′, β′}. The subgraph K, depicted by solid lines, is an R-biwheel configuration.
(To see this, note that every internal spoke of K is an R-thin edge of index one.) However,
K is not an R′-biwheel configuration because its ends a and b are not incident with edges
of R′.

a

b

u

w

α
β

α′

β′

Figure 6.2: A pseudo-biwheel has only one R-biwheel configuration
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6.1.2 R-ladder configurations

Let K be a subgraph of H such that K is a ladder with external rungs au and bw; see
Figure 6.3. We say that K is an R-ladder configuration of G if it satisfies the following
conditions:

(i) in G, every vertex of K, except possibly for u and w, is cubic,

(ii) the vertices a and b both lie in V (R), and,

(iii) in G, every internal rung of K is an R-thin edge whose index is two.

a ∈ V (R)

u

w

b ∈ V (R)

a ∈ V (R)

u w

b ∈ V (R)

Figure 6.3: Two R-ladder configurations of different parities; each vertex, except possibly
for the free corners u and w, is cubic in G

A prism of order n has n
2
removable doubletons. If R := {α, β} is a fixed removable

doubleton of a prism G of order ten or more, then the graph H = G−R is itself an R-ladder
configuration, as shown in Figure 6.4. (An analogous statement holds for Möbius ladders
of order eight or more.)

6.1.3 Corners, rungs and spokes

We shall often need the flexibility of referring to a subgraph K which is either an R-ladder
configuration or an R-biwheel configuration, and in this case, we simply write that K is
an R-configuration. Additionally, we may also state that K has external rungs/spokes
au and bw (possibly with subscript notation); in this case, we implicitly adopt the conven-
tions stated in Notation 6.2, and we refer to a, u, b and w as the corners of K. Furthermore,
as shown in Figures 6.1 and 6.3, we will assume that a, b ∈ V (R). We refer to u and w as
the free corners of K; these may lie in V (R) as in Figure 6.4, or they may not lie in V (R)
as in Figure 6.2. Observe that any vertex of K, which is not a corner, does not lie in V (R).
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a w

u b

β

α

Figure 6.4: A prism has only one R-ladder configuration

For any two distinct rungs/spokes of an R-configuration K, say e and f , we say that
e and f are consecutive, or equivalently, that e is consecutive with f , whenever an end of e
which is not a free corner is adjacent with an end of f which is also not a free corner.
Clearly, each internal rung (spoke) is consecutive with two rungs (spokes); whereas each
external rung (spoke) is consecutive with only one rung (spoke) and the latter is internal.
Now, let e denote an internal rung (spoke) of K, and let f and g denote the two rungs
(spokes) with which e is consecutive. By definition, e is an R-thin edge of G. Observe that
f and g are multiple edges in the retract of G− e; consequently, e is not strictly thin.

6.1.4 Two distinct R-configurations

A laddered biwheel of type II, as shown in Figure 6.5, has two removable doubletons
R := {α, β} and R′ := {α′, β′}. Observe that the graph obtained by removing the edge
set R ∪R′ has two connected components, of which one is an R-ladder configuration with
external rungs a1u1 and b1w1, and the other is an R-biwheel configuration with external
spokes a2u2 and b2w2. In this case, the two R-configurations are vertex-disjoint.

On the other hand, a double ladder of type I, as shown in Figure 6.6, has only one
removable doubleton R := {α, β} and it has two R-ladder configurations which share their
free corners u1 and w1, but are otherwise vertex-disjoint. One of these is depicted by
dashed lines, and it has external rungs a1u1 and b1w1, whereas the other one has external
rungs a2u1 and b2w1.

The reader is advised to check that members of all of the eleven families that appear
in Theorem 1.24, except for K4 and C6, have either one or two R-configurations for an
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u1
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α
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α′

β′

Figure 6.5: A laddered biwheel of type II has two vertex-disjoint R-configurations

e

a2 b2

a1 b1

u1 w1α β

Figure 6.6: A double ladder of type I has two R-configurations which share their free
corners but are otherwise vertex-disjoint

appropriately chosen removable doubleton R. (The choice of R matters only in the case of
three families, namely, pseudo-biwheels, double biwheels of Type II and laddered biwheels
of Type II. Figure 6.2 shows a pseudo-biwheel and its two removable doubletons.)

In order to sketch a proof of Theorem 1.24, we will require a few results which are stated
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next; their proofs will appear in later sections. In particular, the following proposition
states that two distinct R-configurations are either vertex-disjoint, or they have the same
free corners but are otherwise vertex-disjoint; its proof appears in Section 6.3.1.

Proposition 6.3 [R-configurations are Almost Disjoint] Let G be a simple R-brick,
and letK1 denote an R-configuration with free corners u1 and w1. IfK2 is any R-configuration
distinct from K1, then precisely one of the following statements holds:

(i) K1 and K2 are vertex-disjoint, or,

(ii) u1 and w1 are the free corners of K2, and K2 is otherwise vertex-disjoint with K1.

By the above proposition, the only vertices that can be possibly shared between two
distinct R-configurations are their respective free corners. The remaining two corners of
each R-configuration lie in V (R). Since |V (R)| = 4, we immediately have the following
consequence.

Corollary 6.4 A simple R-brick has at most two distinct R-configurations. 2

For instance, if G is a Norine-Thomas brick or if it is a pseudo-biwheel then it has only
one R-configuration. On the other hand, if G is a double biwheel or a double ladder or a
laddered biwheel, then it has two R-configurations, say K1 and K2. Furthermore, if G is
of type II then K1 and K2 are vertex-disjoint as in Proposition 6.3(i); whereas, if G is of
type I then K1 and K2 have the same free corners but they do not have any other vertices
in common as in Proposition 6.3(ii).

6.1.5 The R-biwheel and R-ladder Theorems

It is easily verified that if G is any R-brick in N , then every R-thin edge of G lies in an
R-configuration. Here, we state two theorems which show that this is not a coincidence.

Now, let G be a simple R-brick which is free of strictly R-thin edges. Given any R-thin
edge e of G, we may invoke one of these theorems (depending on the index of e) to find an
R-configuration K containing the edge e. In particular, if the index of e is one, we apply
Theorem 6.5 and in this case K is an R-biwheel configuration; whereas, if the index of e
is two, we apply Theorem 6.6 and in this case K is an R-ladder configuration.
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Theorem 6.5 [R-biwheel Theorem] Let G be a simple R-brick which is free of strictly
R-thin edges, and let e denote an R-thin edge whose index is one. Then G contains an
R-biwheel configuration, say K, such that e is an internal spoke of K.

The proof of the above theorem appears in Section 6.2.2, and it is along the same lines
as the proof of [CLM08, Theorem 4.6].

Given the statement of Theorem 6.5, one would expect that, likewise, if e is an R-thin
edge whose index is two then G contains an R-ladder configuration, say K, such that e
is an internal rung of K. Unfortunately, this is not true, in general. Consider the double
ladder of type I, shown in Figure 6.6; e is an R-thin edge of index two, and although it is
part of an R-ladder configuration, it is not a rung of that ladder. We instead prove the
following slightly weaker statement concerning R-thin edges of index two.

Theorem 6.6 [R-ladder Theorem] Let G be a simple R-brick which is free of strictly
R-thin edges, and let e denote an R-thin edge whose index is two. Then G contains an
R-ladder configuration, say K, such that e ∈ E(K).

The proof of the above theorem appears in Section 6.2.3 and it is significantly longer
than that of the R-biwheel Theorem (6.5). These two theorems (6.5 and 6.6) are central
to our proof of the Strictly R-thin Edge Theorem (1.24).

6.1.6 Proof Sketch of Theorem 1.24

As in the statement of the theorem, let G be a simple R-brick which is free of strictly
R-thin edges. Our goal is to show that G is a member of one of the eleven infinite families
which appear in the statement of the theorem, that is, to show that G ∈ N . We adopt
Notation 6.1.

We may assume that G is different from K4 and C6, and thus, by the R-thin Edge
Theorem (1.22), G has an R-thin edge, say e1. Depending on the index of e1, we invoke
either the R-biwheel Theorem (6.5) or the R-ladder Theorem (6.6) to deduce that G has
an R-configuration, say K1, such that e1 ∈ E(K1). We shall let a1u1 and b1w1 denote the
external rungs/spokes of K1, and adjust notation so that u1 and w1 are its free corners.

We will show that either u1 and w1 both lie in V (R), or otherwise neither of them lies
in V (R). In the former case, we will conclude that G is either a prism or a Möbius ladder
or a truncated biwheel, and we are done.
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Now suppose that u1, w1 /∈ V (R). In this case, we will show that either G is a staircase
or a pseudo-biwheel, and we are done; or otherwise, G has an R-compatible edge which
is not in E(K1). In the latter case, we will apply Theorem 5.1 to deduce that G has an
R-thin edge, say e2, which is not in E(K1). Depending on the index of e2, we may once
again use either the R-biwheel Theorem (6.5) or the R-ladder Theorem (6.6) to conclude
that G has an R-configuration, say K2, such that e2 ∈ E(K2).

By Proposition 6.3, either K1 and K2 are vertex-disjoint, or otherwise K2 has the same
free corners as K1 but is otherwise vertex-disjoint with K1. In the latter case, we will
conclude that G is either a double biwheel or a double ladder or a laddered biwheel, each
of type I, and we are done.

Now suppose that K1 and K2 are vertex-disjoint. We will argue that either G is a
double biwheel or a double ladder or a laddered biwheel, each of type II, and we are done;
or otherwise, G has an R-compatible edge which is not in E(K1∪K2). In the latter case, we
will once again apply Theorem 5.1 to conclude that G has an R-thin edge, say e3, which is
not in E(K1∪K2). As usual, depending on the index of e3, we invoke either the R-biwheel
Theorem (6.5) or the R-ladder Theorem (6.6) to deduce that G has an R-configuration,
say K3, such that e3 ∈ E(K3).

We have thus located three distinct R-configurations in the brick G, namely, K1, K2

and K3. However, this contradicts Corollary 6.4, and completes the proof sketch of the
Strictly R-thin Edge Theorem (1.24).

6.2 R-thin edges

Here, we will prove the R-biwheel Theorem (6.5) and the R-ladder Theorem (6.6). Our
proofs are inspired by the work of Carvalho et al. [CLM08]. In the next section, we will
review conditions under which an R-thin edge is not strictly thin, and we will state a few
key lemmas (6.10, 6.11 and 6.12) from [CLM08] which are used in our proofs.

6.2.1 Multiple edges in retracts

Throughout this section, G is a simple R-brick, and we adopt Notation 6.1. Furthermore,
we shall let e denote an R-thin edge which is not strictly thin, and J the retract of G− e.
Since e is not strictly thin, J is not simple, and we shall let f and g denote two multiple
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(parallel) edges of J . It should be noted that since J is also an R-brick, neither edge of R
is a multiple edge of J . In particular, f and g do not lie in R.

We denote the ends of e by letters y and z with subscripts 1; that is, e := y1z1.
Adjust notation so that y1 ∈ A and z1 ∈ B. If either end of e is cubic, then we denote
its two neighbours in G − e by subscripts 0 and 2. For example, if y1 is cubic then
N(y1) = {z1, y0, y2}.

As G is simple, it follows that J has a contraction vertex which is incident with both
f and g. We infer that one end of e, say y1, is cubic, and that f is incident with y0, and
g is incident with y2. See Figure 6.7. As noted earlier, f /∈ R; consequently, e and f are
nonadjacent. Likewise, e and g are nonadjacent.

f g

y1

z1

y0 y2

e

Figure 6.7: f and g are multiple edges in the retract J of G− e; the vertex y1 is cubic.

We will consider two separate cases depending on whether the edges f and g are adjacent
(in G) or not. In the case in which they are adjacent, we shall denote their common end
by w, as shown in Figure 6.8a. Now suppose that f and g are nonadjacent. Since they are
multiple (parallel) edges of J , we infer that both ends of e are cubic, and that f and g join
the two contraction vertices of J . This proves the following proposition; see Figure 6.8b.

Proposition 6.7 Suppose that f and g are nonadjacent in G. Then the following hold:

(i) each end of e is cubic,

(ii) consequently, the index of e is two, and

(iii) one of f and g is incident with z0 whereas the other one is incident with z2. 2
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(b)

Figure 6.8: (a) when f and g are adjacent; (b) when f and g are nonadjacent

In view of statement (iii), whenever f and g are nonadjacent, we shall assume without
loss of generality that f := y0z0 and g := y2z2, as shown in Figure 6.8b.

Let us now focus on the case in which f and g are adjacent, as shown in Figure 6.8a.
We remark that, in this case, the index of e is not determined; that is, its index could
be either one or two depending on the degree of its end z1. Instead, we are able to say
something about the degree of w.

Proposition 6.8 Suppose that f and g are adjacent in G, and let w be their common end.
Then w has degree four or more.

Proof: First suppose that w is not a neighbour of z1. In this case, w is not affected by the
bicontractions in G− e. Consequently, w is a vertex of the brick J , whence it has at least
three distinct neighbours. Since f and g are multiple edges, w has degree four or more.

Now suppose that w is a neighbour of z1. Observe that the neighbours of y1 are precisely
y0, y2 and z1; each of which is adjacent with w. See Figure 6.8a. Note that, if w is cubic,
then its neighbourhood is the same as that of y1; and in this case, {y0, y2, z1} is a barrier
of the brick G; this is absurd. Thus w has degree four or more. 2

Note that f and g, being multiple edges of J , are both R-thin in J . We shall now
examine conditions under which one of them, say f , fails to be R-thin inG. This may be the
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case for three different reasons; firstly, f is non-removable in the bipartite graphH = G−R;
secondly, f is non-removable in G; and thirdly, f is removable in G but it is not thin.

We begin with the situation in which f is non-removable in H. Note that, if an end
of f is cubic (in G) and if it also lies in V (R), then it has degree two in H, rendering f
non-removable. We will now argue that the converse also holds.

Lemma 6.9 The edge f is non-removable in H if and only if it has a cubic end which lies
in V (R).

Proof: Suppose that f has no cubic end which lies in V (R). Consequently, each end of f
has degree two or more in H − f . Furthermore, since e and f are nonadjacent, each end
of f has degree two or more in H − e − f as well. We will argue H − e − f is matching
covered, that is, f is removable in H − e. The exchange property (Proposition 4.2) then
implies that f is also removable in H.

Note that f is a multiple edge of J −R, whence J −R− f is matching covered. Recall
that any graph obtained from a matching covered graph by means of bi-splitting a vertex is
also matching covered. (See Section 1.5.2.) We will argue that H − e− f may be obtained
from J −R− f by means of bi-splitting one or two vertices.

Note that J is obtained from G − e by means of bicontracting one or two vertices (of
degree two); likewise, J − R may be obtained from H − e by means of bicontractions.
Conversely, H−e may be obtained from J−R by means of bi-splitting one or two vertices;
these are the contraction vertices of J . As noted earlier, since each end of f has degree
two or more in H − e − f , we may similarly obtain H − e − f from J − R − f by means
of bi-splitting the same vertices. As discussed above, H − e − f is matching covered;
consequently, f is removable in H. 2

We now turn to the situation in which f is non-removable in G. For convenience, we
will state two lemmas (6.10 and 6.11), depending on the index of e. These appear in the
work of Carvalho et al. [CLM08, Lemma 4.2] as a single lemma. (In their work, they deal
with the more general context in which e is a thin edge of a brick G, which need not be
near-bipartite.)

The first lemma (6.10) considers the scenario in which the index of e is one. By
Proposition 6.7(ii), f and g are adjacent; and by Proposition 6.8, their common end w is
non-cubic.
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Lemma 6.10 [CLM08] Suppose that the index of e is one. If f is non-removable in G
then f has a cubic end which is adjacent with both ends of e. (In particular, the cubic end
of f lies in V (R).) 2

As w is non-cubic, y0 is the cubic end of f , and it is adjacent with z1, as shown in
Figure 6.9a. Clearly, the edge joining y0 and z1 is none other than β.

β

f g

w

y1

z1

y0 y2

e

(a)

e

f
g

α

β

(b)

Figure 6.9: Illustration for Lemma 6.10

The situation in Lemma 6.10 arises in truncated biwheels, as shown in Figure 6.9. Note
that, every perfect matching which contains e also contains f , rendering f non-removable.

The second lemma (6.11) deals with the scenario in which the index of e is two, that
is, each end of e is cubic.

Lemma 6.11 [CLM08] Suppose that the index of e is two. If f is non-removable in G
then the following hold:

(i) each end of f is cubic,

(ii) consequently, f and g are nonadjacent, and

(iii) the ends of f have a common neighbour.

(In particular, one of the ends of f is cubic and it also lies in V (R).) 2
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By statement (i), each end of f is cubic; thus f and g are nonadjacent (see Proposi-
tion 6.8). By Proposition 6.7, and as per our notation, f = y0z0 and g = y2z2, as shown
in Figure 6.10a. By statement (iii), y0 and z0 have a common neighbour, say x. Clearly,
one of xy0 and xz0 is an edge of R, depending on whether x lies in A or in B; however,
these cases are symmetric. Adjust notation so that x ∈ B; thus xy0 is the edge β. Using
the fact that G is free of nontrivial barriers, it is easily verified that x is not an end of g.

x

β

z0 z2

f g

y1

z1

y0 y2

e

(a)

β

α

f ge

(b)

Figure 6.10: Illustration for Lemma 6.11

The situation in Lemma 6.11 is observed in staircases, as shown in Figure 6.10b. The
edge f is non-removable since every perfect matching which contains e also contains f .

Finally, we turn to the case in which f is removable in G but it is not thin. This is
handled by Lemma 6.12 which appears in the work of Carvalho et al. [CLM08, Lemma 4.3].

Lemma 6.12 [CLM08] If f is removable in G but it is not thin then the following hold:

(i) the index of e is two,

(ii) f and g are adjacent and their common end w is not adjacent with any end of e,

(iii) g is a thin edge, and

(iv) N(y0) ⊆ N(z1) ∪ {w}; recall that y0 is the other end of f , and z1 is the end of e not
adjacent with y0. 2
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The lemma concludes that the index of e is two; that is, its end z1 is cubic, and as per
our notation, the neighbours of z1 are precisely y1, z0 and z2. Furthermore, it concludes
that f and g are adjacent and that their common end w is distinct from each of z0 and z2,
as shown in Figure 6.11a. Another consequence which may be inferred from their proof is
that all of the neighbours of y0 lie in the set N(z1) ∪ {w} = {w, y1, z0, z2}. (This is not
stated explicitly in the statement of [CLM08, Lemma 4.3].) Since y0 has degree at least
three, we may adjust notation so that y0 is adjacent with z0, and it may or may not be
adjacent with z2.

z0 z2

f g

w

y1

z1

y0 y2

e

(a)

f
g

e

z2 y2

w

z1 y1

y0z0

α β

(b)

Figure 6.11: Illustration for Lemma 6.12

The situation in Lemma 6.12 is best illustrated by a double ladder of type I in which at
least one of the two R-ladder configurations is of order eight, as shown in Figure 6.11b. The
edge e is R-thin; deleting it and taking the retract yields the staircase St10 with multiple
edges, two of which are f and g. It may be verified that both f and g are removable, but
of them only g is thin.

6.2.2 Proof of the R-biwheel Theorem

In this section, we prove the R-biwheel Theorem (6.5); our proof is along the same lines
as that of [CLM08, Theorem 4.6]. Before that, we need one more lemma pertaining to the
structure of R-thin edges of index one (in an R-brick which is free of strictly R-thin edges).
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Lemma 6.13 Let G be a simple R-brick which is free of strictly R-thin edges, e an R-thin
edge whose index is one, and y1 the cubic end of e. Let y0 and y2 denote the neighbours
of y1 in G− e. Then y0 and y2 are both cubic, and they have a common neighbour w which
is non-cubic. Let f := wy0 and g := wy2. Furthermore, the following statements hold:

(i) if f is not R-compatible then y0 ∈ V (R), and

(ii) if f is R-compatible then it is R-thin and its index is one.

(Similar statements also apply to g.)

Proof: Let J denote the retract of G−e, that is, J is obtained from G−e by bicontracting
the vertex y1. By hypothesis, e is not strictly thin, whence J has multiple edges. This
implies that G has a vertex w, distinct from y1, that is adjacent to both y0 and y2, as
shown in Figure 6.8a. As in the statement of the lemma, let f := wy0 and g := wy2. By
Proposition 6.8, w has degree four or more.

First consider the case in which f is not R-compatible. That is, either f is not removable
in H or it is not removable in G, and it follows from Lemma 6.9 or from Lemma 6.10,
respectively, that the end y0 of f is cubic and it lies in V (R).

Now consider the case in which f is R-compatible. Since the index of e is one,
Lemma 6.12 implies that f is thin, whence it is R-thin. By hypothesis, f is not strictly
R-thin. Consequently, the end y0 of f is cubic, and the index of f is one. Applying a
similar argument to the edge g, we may conclude that y2 is also cubic. 2

Proof of the R-biwheel Theorem (6.5): As in the statement of the theorem, let G be a
simple R-brick which is free of strictly R-thin edges, and let e denote an R-thin edge
whose index is one. Our goal is to show that G has an R-biwheel configuration of which e
is an internal spoke.

As in the statement of Lemma 6.13, we let y1 denote the cubic end of e, and y0 and y2
the neighbours of y1 in G − e. By the lemma, y0 and y2 are both cubic, and they have
a common neighbour w which is non-cubic. We denote by u the non-cubic end of e, as
shown in Figure 6.12. Observe that y0y1y2 is a path in H − {u,w}.

We let P := v1v2 . . . vj, where j ≥ 3, be a path of maximum length in the graph
H − {u,w} that has the following properties (see Figure 6.13):

(i) y1 is an internal vertex of P ,
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Figure 6.12: e is an R-thin edge of index one; y0, y1 and y2 are cubic; u and w are non-cubic

(ii) every vertex of P is cubic in G; furthermore, if it lies in A then it is adjacent with u,
and if it lies in B then it is adjacent with w, and

(iii) for every internal vertex vi of P , the edge that joins vi to one of u and w is R-thin of
index one.

(Note that the path y0y1y2 shown in Figure 6.12 satisfies all of the above properties;
thus such a path P exists.)

We adjust notation so that v1 lies in B as shown in Figure 6.13. It should be noted that
the other end of P , namely vj, may lie in A or in B, depending on whether P is an odd
path or even. We shall let K denote the subgraph of H, which has vertex set V (P )∪{u,w}
and edge set E(P ) ∪ {viw : 1 ≤ i ≤ j and i odd} ∪ {viu : 1 ≤ i ≤ j and i even}.

Our goal is to show that K is an R-biwheel configuration. To this end, we need to
establish two additional properties of the path P : first, that it is an odd path; and second,
that both its ends v1 and vj lie in V (R).

We begin by arguing that the two ends of P are nonadjacent (in G). Suppose not, that
is, say v1vj is an edge of G. Since each vertex of P is cubic, it follows that V (G) = V (K);
since otherwise {u,w} is a 2-vertex-cut of G, and we have a contradiction. Since G has
an even number of vertices, P is of odd length. Furthermore, either G is the same as K,
or otherwise, G has an additional edge joining u and w. In both cases, the graph G is
bipartite; this is absurd. Thus v1 and vj are nonadjacent.
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Figure 6.13: Illustration for the R-biwheel Theorem

Now, let f denote the edge v1w. We will argue that f is not R-compatible, and then
use this fact to deduce that v1 ∈ V (R). Suppose instead that f is R-compatible. Applying
Lemma 6.13(ii), with v2u playing the role of e, we conclude that f is R-thin and its index
is one. Let v0 denote the neighbour of v1 which is distinct from v2 and w; note that v0 ∈ A.
By the preceding paragraph, v0 is distinct from vj, and since each vertex of P is cubic, v0
is not in V (P ). Applying Lemma 6.13 again, this time with f playing the role of e, we
deduce that v0 is cubic. Furthermore, v0 and v2 have a common neighbour whose degree
is four or more; thus v0 is adjacent with u. Observe that the path v0v1P contradicts the
maximality of P . We conclude that f = v1w is not R-compatible. By Lemma 6.13(i), the
cubic end v1 of f lies in V (R).

A similar argument shows that vj lies in V (R). Since v1 and vj are nonadjacent, one
of them lies in A and the other one lies in B. (As per our notation, v1 ∈ B and vj ∈ A.)
In particular, P is an odd path, and thus K is an R-biwheel configuration. Observe that
by property (i) of the path P , the end y1 of e is an internal vertex of P , whence e is an
internal spoke of K, as desired. This completes the proof of Theorem 6.5. 2
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6.2.3 Proof of the R-ladder Theorem

Here, we prove the R-ladder Theorem (6.6); its proof is significantly longer than that of
the R-biwheel Theorem. In its proof, we will need two lemmas (6.14 and 6.15), each of
which pertains to the structure of R-thin edges of index two (in an R-brick which is free
of strictly R-thin edges); these lemmas correspond to two cases that appear in the proof
of Theorem 6.6.

Lemma 6.14 Let G be a simple R-brick which is free of strictly R-thin edges and e := y1z1
an R-thin edge whose index is two. Let y0 and y2 denote the neighbours of y1 which
are distinct from z1, and let z0 and z2 denote the neighbours of z1 which are distinct
from y1. Suppose that y1 is the only common neighbour of y0 and y2, and that z1 is the
only common neighbour of z0 and z2. Then there are precisely two (nonadjacent) edges,
say f and g, between {y0, y2} and {z0, z2}. Adjust notation so that f := y0z0 and g := y2z2.
Furthermore, the following statements hold:

(i) if f is not R-compatible then an end of f is cubic and it lies in V (R), and
(ii) if f is R-compatible then it is R-thin and its index is two.

(Similar statements also apply to g.)

Proof: Let J denote the retract of G−e, that is, J is obtained from G−e by bicontracting
vertices y1 and z1. By hypothesis, e is not strictly thin, whence J has multiple edges.
Also, as stated in the assumptions, y1 is the only common neighbour of y0 and y2, and
likewise, z1 is the only common neighbour of z0 and z2. It follows that there are precisely
two nonadjacent edges between {y0, y2} and {z0, z2}, as shown in Figure 6.8b. As in the
statement, adjust notation so that f := y0z0 and g := y2z2.

First consider the case in which f is not R-compatible. That is, either f is not removable
in H or it is not removable in G, and it follows from Lemma 6.9 or from Lemma 6.11,
respectively, that an end of f is cubic and it lies in V (R).

Now consider the case in which f is R-compatible. Since f and g are nonadjacent,
Lemma 6.12 implies that f is thin, whence it is R-thin. It remains to argue that the index
of f is two. Suppose to the contrary that an end of f , say z0, is non-cubic. By hypothesis,
f is not strictly R-thin, whence its other end y0 is cubic. Using the fact that y1 is the
only common neighbour of y0 and y2, it is easily verified that the retract of G− f has no
multiple edges, that is, f is strictly R-thin; this contradicts the hypothesis. Thus, each
end of f is cubic, whence the index of f is two. 2
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Lemma 6.15 Let G be a simple R-brick which is free of strictly R-thin edges and e := y1z1
an R-thin edge whose index is two. Let y0 and y2 denote the neighbours of y1 which are
distinct from z1, and let z0 and z2 denote the neighbours of z1 which are distinct from y1.
Suppose that y0 and y2 have a common neighbour w which is distinct from y1. Let f := y0w
and g := y2w. Then w is non-cubic and is distinct from each of z0 and z2. Furthermore,
f and g are both removable, y0 and y2 are both cubic, and the following statements hold:

(i) one of f and g is R-compatible; adjust notation so that f is R-compatible;

(ii) f is not thin, and its cubic end y0 is adjacent with (exactly) one of z0 and z2; and,

(iii) g is thin but it is not R-compatible, and its cubic end y2 lies in V (R).

Proof: Note that f and g are multiple edges in the retract J of G − e. Since f and g
are adjacent, by Proposition 6.8, their common end w is non-cubic. Consequently, by
Lemma 6.11, f and g are both removable. Note that y0 and y2 are nonadjacent, since
otherwise e is non-removable. In particular, at least one of y0 and y2 does not lie in V (R).
By Lemma 6.9, at least one of f and g is R-compatible.

We now argue that w is distinct from each of z0 and z2. Suppose not, and assume
without loss of generality that w = z0. By Lemma 6.12(ii), f and g are both thin; in par-
ticular, at least one of them is R-thin. Adjust notation so that f is R-thin. By hypothesis,
f is not strictly R-thin, whence the retract of G− f has multiple edges; consequently, the
end y0 of f is cubic. Let v denote the neighbour of y0 which is distinct from y1 and z0.
Furthermore, as f is not strictly R-thin, we infer that v and y1 have a common neighbour
which is distinct from y0; by Proposition 6.8, such a common neighbour is non-cubic. Since
z1 is cubic, we infer that y2 is non-cubic. By Lemma 6.9, g is R-compatible. As noted
earlier, g is thin; whence g is R-thin. Since each end of g is non-cubic, g is strictly R-thin,
contrary to the hypothesis. Thus w is distinct from each of z0 and z2; see Figure 6.14.

Let us review what we have proved so far. We have shown that y0 and y2 are not both ad-
jacent with z0. An analogous argument shows that y0 and y2 are not both adjacent with z2.
By symmetry, z0 and z2 are not both adjacent with y0; likewise, z0 and z2 are not both
adjacent with y2. In summary, there are at most two edges between {y0, y2} and {z0, z2};
and if there are precisely two such edges then they are nonadjacent.

Now we argue that y0 and y2 are both cubic. Suppose instead that y0 is non-cubic;
then, by Lemma 6.9, f is R-compatible. Note that since each end of f is non-cubic, if f is
thin then it is strictly R-thin, contrary to the hypothesis. So it must be the case that f is
not thin. By Lemma 6.12(iv), N(y0) ⊆ N(z1) ∪ {w} = {z0, z2, y1, w}. As y0 is non-cubic,
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Figure 6.14: Illustration for Lemma 6.15

it must be adjacent with each of z0 and z2; however, this contradicts what we have already
established in the preceding paragraph. We conclude that y0 and y2 are both cubic.

As noted earlier, at least one of f and g is R-compatible. As in statement (i) of the
lemma, adjust notation so that f is R-compatible. We will now argue that f is not thin.

Suppose instead that f is thin. Let v denote the neighbour of y0 which is distinct
from y1 and w. By hypothesis, f is not strictly R-thin, whence v and y1 have a common
neighbour which is distinct from y0; by Proposition 6.8, such a common neighbour is non-
cubic. However, this is not possible as each neighbour of y1 is cubic. Thus, f is not thin.
An analogous argument shows that if g is R-compatible then g is not thin.

Since f is removable but it is not thin, by Lemma 6.12(iv), N(y0) ⊆ N(z1) ∪ {w} =
{z0, z2, y1, w}. It follows from our previous observation that y0 is adjacent with exactly one
of z0 and z2; adjust notation so that y0 is adjacent with z0. This proves statement (ii).

Also, by Lemma 6.12, one of f and g is thin; as per our notation, g is thin. Consequently,
g is not R-compatible. By Lemma 6.9, the cubic end y2 of g lies in V (R). This proves
statement (iii), and we are done. 2

Proof of the R-ladder Theorem (6.6): As in the statement of the theorem, letG be a simple
R-brick which is free of strictly R-thin edges, and let e denote an R-thin edge whose index
is two. We shall let y1 and z1 denote the ends of e, where y1 ∈ A and z1 ∈ B. Furthermore,
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we let y0 and y2 denote the neighbours of y1 which are distinct from z1, and likewise, we
let z0 and z2 denote the neighbours of z1 which are distinct from y1.

Our goal is to show that G has an R-ladder configuration which contains the edge e. As
mentioned earlier, we will consider two separate cases which correspond to the situations
in Lemmas 6.14 and 6.15, respectively.

Case 1: y1 is the only common neighbour of y0 and y2, and likewise, z1 is the only common
neighbour of z0 and z2.

By Lemma 6.14, there are precisely two nonadjacent edges between {y0, y2} and {z0, z2}.
Adjust notation so that y0z0 and y2z2 are edges of G, as shown in Figure 6.15. Observe
that the graph in the figure is a ladder of which e is an internal rung; furthermore, it is a
subgraph of H.

z0 z2

y1

z1

y0 y2

e

Figure 6.15: The situation in Case 1

We let K be a subgraph of H of maximum order that has the following properties:

(i) K is a ladder and e is an internal rung of K, and

(ii) every internal rung of K is an R-thin edge whose index is two.

Note that the subgraph K is either an odd ladder or an even ladder; see Figure 6.16.
We shall denote by au and bw the external rungs of K such that a, w ∈ A and b, u ∈ B,
as shown in the figure. It follows from property (ii) of K that each of its vertices, except
possibly a, u, b and w, is cubic in G.

Remark 6.16 Note that, if |V (K)| = 6 then K is the same as the subgraph of H shown in
Figure 6.15; in particular, {u, b} = {y0, y2}, and likewise, {w, a} = {z0, z2}; consequently,
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by our hypothesis, y1 is the only common neighbour of u and b, and likewise, z1 is the only
common neighbour of w and a.

u

a

w

b

s2

t2

f

u

a w

bs2

t2

f

Figure 6.16: Illustration for Case 1 of the R-ladder Theorem

Our goal is to show that K is an R-ladder configuration. To this end, we need to
establish that a and b (or likewise, u and w) are both cubic in G and they lie in V (R).

Now, let f denote the edge au. We will argue that f is not R-compatible, and then
use this fact to deduce that one of the ends of f is cubic and it lies in V (R). As shown in
Figure 6.16, let s2 denote the neighbour of u in K which is distinct from a, and likewise,
let t2 denote the neighbour of a in K which is distinct from u.

Suppose instead that f is R-compatible. By Lemma 6.14(ii), with s2t2 playing the role
of e, we conclude that f is R-thin and its index is two. We shall let s0 denote the neighbour
of u which is distinct from s2 and a, and likewise, let t0 denote the neighbour of a which is
distinct from t2 and u. Note that s0 ∈ A and t0 ∈ B. It is easily seen that if s0 is the same
as w then V (K) ∩ A is a (nontrivial) barrier of G; this is absurd as G is a brick. Thus
s0 6= w, and likewise, t0 6= b. It follows that s0, t0 /∈ V (K).

We will use the fact that f is not strictly R-thin to deduce that s0 and t0 are adjacent;
this will help us contradict the maximality of K. First suppose that s0 and s2 have a
common neighbour x which is distinct from u. By Proposition 6.8, x is non-cubic. Observe
that, if |V (K)| ≥ 8 then every neighbour of s2 is cubic; and if |V (K)| = 6 then b is
the only neighbour of s2 which is possibly non-cubic. We conclude that |V (K)| = 6 and
that x = b. Now, s0 is a common neighbour of u and b; this contradicts the hypothesis
(see Remark 6.16). We conclude that u is the only common neighbour of s0 and s2. An
analogous argument shows that a is the only common neighbour of t0 and t2. It follows
that s0 and t0 are adjacent, as f is not strictly thin. Now, let K ′ denote the subgraph of H
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obtained from K by adding the vertices s0 and t0, and the edges us0, s0t0 and t0a; then K ′
contradicts the maximality of K.

We thus conclude that f = au is not R-compatible. Consequently, by Lemma 6.14(i),
with s2t2 playing the role of e, at least one of a and u is cubic and it also lies in V (R).
Adjust notation so that a is cubic and it lies in V (R).

An analogous argument shows that at least one of b and w is cubic and it lies in V (R);
we claim that b must satisfy both of these properties. Suppose not; then w is cubic and
it lies in V (R); this means that the edge α of R joins the vertices a and w. Observe that
{b, u} is a 2-vertex cut of G; this is absurd as G is a brick.

We have shown that a and b both are cubic and they lie in V (R). ThusK is an R-ladder
configuration. Observe that, by property (i) of K, the edge e is an internal rung of K. In
particular, e is an edge of K, as desired.

Case 2: y0 and y2 have a common neighbour which is distinct from y1, or likewise, z0 and z2
have a common neighbour which is distinct from z1.

As shown in Figure 6.17, assume without loss of generality that y0 and y2 have a common
neighbour, say w, which is distinct from y1. We let f := y0w and g := y2w. We invoke
Lemma 6.15 to infer the following: w is non-cubic and it is distinct from each of z0 and z2;
whereas y0 and y2 are both cubic; f and g are both removable edges. Furthermore, adjusting
notation as in the lemma, f isR-compatible but it is not thin and its cubic end y0 is adjacent
with one of z0 and z2. Assume without loss of generality that y0 is adjacent with z0. The
edge g is thin but it is not R-compatible and its cubic end y2 lies in V (R). As per our
notation, y2 is an end of β; we shall let x denote the other end of β.

We will consider two subcases. In the first one, we assume that z0 is cubic and it lies
in V (R); and in the second case, we assume that either z0 is non-cubic or it is not in V (R).

Case 2.1: z0 is cubic and it lies in V (R).

In this case, we shall denote by K the subgraph whose vertex set is {z0, z1, y0, y1, w, y2}
and edge set is {e, y1y2, g, f, y0z0, z0z1, y0y1}. Observe that K is a ladder of order six and it
is a subgraph of H; furthermore, two of its corners, namely y2 and z0, are cubic and they
both lie in V (R). To complete the proof in this case, we will show that K is an R-ladder
configuration; for this, we only need to prove that the internal rung y0y1 is R-thin and its
index is two.
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Figure 6.17: The situation in Case 2

We begin by showing that y0y1 is R-compatible, that is, y0y1 is removable in H as well
as in G. Here, we will not require the hypothesis that z0 is cubic and it lies in V (R).

Claim 6.17 The edge y0y1 is R-compatible.

Proof: Note that y0y1 is removable in the subgraph K. We will argue that K is a conformal
subgraph of H, and then use Proposition 4.3 to deduce that y0y1 is removable in H.

Let M be any perfect matching of H which contains the edge z0z1. Since M does not
contain α or β, it is easily verified that M ∩ E(K) is a perfect matching of K, whence K
is a conformal subgraph of H; consequently, y0y1 is removable in H.

To conclude that y0y1 is removable in G, we will show that G − y0y1 has a perfect
matching M which contains both α and β. Let N be a perfect matching of G − {z1, x};
such a perfect matching exists as G is a brick; note that α ∈ N and β /∈ N . Clearly, either
y1y2 ∈ N or g ∈ N . If y1y2 ∈ N , we let M := (N − y1y2) + e + β. On the other hand, if
g ∈ N then y0y1 ∈ N , and we let M := (N − g − y0y1) + e + f + β. In either case, M is
the desired perfect matching, and this completes the proof. 2

We now proceed to show that y0y1 is an R-thin edge. To this end, we will use the
characterization of R-thin edges in terms of barriers given by Proposition 4.16.
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Claim 6.18 The edge y0y1 is R-thin, and its index is two.

Proof: Observe that, since y0 and y1 are both cubic, G− y0y1 has two maximal nontrivial
barriers; one of them, say SA, is a subset of A and it contains z0 and w; the other one,
say SB, is a subset of B and it contains z1 and y2. In particular, the index of y0y1 is two.

We will argue that SA = {z0, w}; our argument does not use the fact that w is non-cubic,
and it may be mimicked to show that SB = {z1, y2}; thereafter, we apply Proposition 4.16
to infer that y0y1 is R-thin.

Note that w is in the barrier SA. Now, let v be any vertex in A − {z0, w}. We will
show that (G− y0y1)−{w, v} has a perfect matching M ; this would imply that v is not in
the barrier SA. Let N be a perfect matching of G− {w, v}; note that β ∈ N and α /∈ N .
If y0y1 /∈ N then let M := N , and we are done. Now suppose that y0y1 ∈ N . By our
hypothesis, z0 is cubic and it lies in V (R); this means that the three edges incident at z0
are z0y0, z0z1 and α. Since, y0y1 ∈ N and α /∈ N and v 6= z0, we conclude that z0z1 ∈ N .
Now, M := (N − y0y1− z0z1) + y0z0 + e is the desired perfect matching. We conclude that
SA = {z0, w}. As discussed in the preceding paragraph, this completes the proof. 2

We have shown that the only internal rung of K, namely y0y1, is an R-thin edge whose
index is two. As discussed earlier, K is indeed an R-ladder configuration, and since it
contains e, this completes the proof in this case (2.1).

Case 2.2: Either z0 is non-cubic or it does not lie in V (R), possibly both.

As per our notation, z0 ∈ A; it follows from the hypothesis of this case that z0 has at least
one neighbour which lies in B − {z1, y0}; we shall let u denote such a neighbour of z0, as
shown in Figure 6.18. Observe that u is distinct from y2; however, it is possible that u = x.

In this case, we will prove that z0z1 is an R-thin edge whose index is two; in particular,
z0 is cubic and z0 /∈ V (R). (If not, we will find a strictly R-thin edge contrary to the
hypothesis.) Thereafter, we argue that u is adjacent with z2; this establishes a certain
symmetry between y0, y1, y2, w and z0, z1, z2, u, respectively; see Figure 6.20. We shall
exploit this to deduce that y0y1 is an R-thin edge (whose index is two), and that z2 is cubic
and it lies in V (R). In the end, we will find an R-ladder configuration of order eight whose
internal rungs are y0y1 and z0z1.

Our first step is to show that z0z1 is R-compatible, that is, z0z1 is removable in H as
well as in G.
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Figure 6.18: The situation in Case 2.2 (all labelled vertices are pairwise distinct, except
possibly u and x)

Claim 6.19 The edge z0z1 is R-compatible.

Proof: Note that y0y1z1z0y0 is a quadrilateral containing the edges y0y1 and z0z1. We will
show that y0y1 is admissible in H−z0z1, and then invoke Corollary 4.6 to deduce that z0z1
is removable in H.

We need to show that H − z0z1 has a perfect matching M which contains y0y1. Let N
be any perfect matching of H −{u, y1}; such a perfect matching exists by Proposition 1.4.
Observe that g ∈ N ; consequently, y0z0 ∈ N . Now, M := (N − y0z0) + uz0 + y0y1 is the
desired perfect matching. As discussed above, z0z1 is removable in H.

To conclude that z0z1 is removable in G, we will show that G − z0z1 has a perfect
matching M which contains both α and β. Let N be any perfect matching of G which
contains α and β. If z0z1 /∈ N then let M := N , and we are done. Now suppose that
z0z1 ∈ N . Observe that y0y1 ∈ N ; furthermore, M := (N − y0y1 − z0z1) + e + y0z0 is the
desired perfect matching. This completes the proof. 2

We proceed to prove that z0z1 is an R-thin edge whose index is two. As we did in
Claim 6.18, we will use the characterization of R-thin edges given by Proposition 4.16.
However, here we need more general arguments since we do not know the degree of z0.
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Claim 6.20 The edge z0z1 is R-thin, and its index is two.

Proof: Observe that, since z1 is cubic, G− z0z1 has a maximal nontrivial barrier, say SA,
which is a subset of A and contains y1 and z2. We will first prove that SA = {y1, z2}.

Let v be any vertex in A − {y1, z2}. We will show that (G − z0z1) − {z2, v} has a
perfect matching M ; this would imply that v is not in the barrier SA. Let N be a perfect
matching of G − {z2, v}; note that β ∈ N and α /∈ N . If z0z1 /∈ N then let M := N ,
and we are done. Now suppose that z0z1 ∈ N , and observe that y0y1 ∈ N ; consequently,
M := (N − z0z1 − y0y1) + e+ y0z0 is the desired perfect matching. Thus, SA = {y1, z2}.

Since z0z1 is R-compatible, by the Three Case Lemma (4.15), either SA is the only
maximal nontrivial barrier of G−z0z1, or G−z0z1 has another maximal nontrivial barrier,
say SB, which is a subset of B. We now argue that, in the former case, z0z1 is strictly
R-thin, contrary to the hypothesis.

Suppose that SA is the only maximal nontrivial barrier of G − z0z1; in this case, the
index of z0z1 is one. By Proposition 4.16, z0z1 is R-thin. Also, z0 is non-cubic, since
otherwise its two neighbours distinct from z1 would lie in a barrier. Observe that, since z1
is the only common neighbour of y1 and z2, the retract of G− z0z1 is simple, and thus z0z1
is strictly R-thin; this is a contradiction.

It follows that G−z0z1 has a maximal nontrivial barrier, say SB, which is a subset of B;
in particular, the index of z0z1 is two. By the Three Case Lemma (4.15), z0 is isolated
in (G − z0z1) − SB; that is, in G − z0z1, every neighbour of z0 lies in the barrier SB. In
particular, u, y0 ∈ SB. We will prove that SB = {u, y0}.

Let v be any vertex in B−{u, y0}. We will show that (G− z0z1)−{u, v} has a perfect
matchingM ; this would imply that v is not in the barrier SB. Let N be a perfect matching
of G − {u, v}; note that α ∈ N and β /∈ N . If z0z1 /∈ N then let M := N , and we are
done. Now suppose that z0z1 ∈ N . If y0y1 ∈ N then M := (N − z0z1 − y0y1) + e + y0z0
is the desired perfect matching. Now suppose that y0y1 /∈ N ; then f, y1y2 ∈ N , and
M := (N−z0z1−f−y1y2)+y0z0+g+e is the desired perfect matching. Thus, as discussed
above, v /∈ SB; consequently, SB = {u, y0}. In particular, z0 is cubic. Furthermore, by
Proposition 4.16, z0z1 is R-thin. 2

We have shown that z0z1 is an R-thin edge and its index is two; in particular, both its
ends are cubic. The three neighbours of z0 are y0, z1 and u; see Figure 6.18.
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By hypothesis, z0z1 is not strictly R-thin; whence the retract of G− z0z1 has multiple
edges. Observe that z1 is the only common neighbour of y1 and z2. Consequently, at least
one of the following must hold: either u and y0 have a common neigbour which is distinct
from z0, or u and z2 are adjacent. We shall rule out the former case by arriving at a
contradiction.

f

w

z0

z1

y0 u ∈ V (R)

y1
z2

(a)

u = x

f g

w

y1

z1

y0
y2

z0
z2

(b)

Figure 6.19: When u is adjacent with w

Suppose that u and y0 have a common neighbour which is distinct from z0; this is true
if and only if u is adjacent with w. We now invoke Lemma 6.15, with z0z1 playing the role
of e, with u playing the role of y2, and with uw playing the role of g; see Figure 6.19a,
and compare with Figure 6.18. The lemma implies that u is a cubic vertex, and since f is
R-compatible, uw is thin but it is not R-compatible; furthermore, u ∈ V (R). In particular,
u is an end of β which implies that u = x; see Figures 6.18 and 6.19b. Note that all of the
labelled vertices in Figure 6.19b are pairwise distinct; furthermore, each of them except
w and possibly z2, is cubic. Since z2 has at least one neighbour in B which is distinct
from z1, the graph has more vertices; consequently, {w, z2} is a 2-vertex cut of G; this is a
contradiction.

We have shown that z0 is the only common neighbour of u and y0; as discussed earlier,
this implies that u and z2 are adjacent; see Figure 6.20. Note that u is now a common
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neighbour of z0 and z2, and it is distinct from z1; this establishes a symmetry between
y0, y1, y2, w, and z0, z1, z2, u, respectively. We invoke Lemma 6.15 to conclude that u is
non-cubic, whereas z2 is cubic and it lies in V (R). Using arguments analogous to those in
the proofs of Claims 6.19 and 6.20, we conclude that y0y1 is an R-thin edge (whose index
is two).

u

f g

α

w

βy1

z1

y0
y2

z0
z2

e

Figure 6.20: Illustration for Case 2.2 of the R-ladder Theorem; u is a common neighbour
of z0 and z2 which is distinct from z1

Now, let K denote the subgraph which consists of all of the labelled vertices shown
in Figure 6.20, and all of the edges between those vertices which are shown in the figure.
Note that K is an R-ladder configuration, and since it contains e, this completes the proof
of the R-ladder Theorem (6.6). 2

6.3 Properties of R-configurations

In this section, we prove a few results pertaining to R-configurations. These are used in
our proof of the Strictly R-thin Edge Theorem (1.24), which appears in the next section.

For the rest of this section, G is a simple R-brick, and we adopt Notation 6.1; fur-
thermore, K1 is an R-configuration with external rungs/spokes a1u1 and b1w1. As usual,
u1 and w1 are the free corners of K1; see Figure 6.21.

142



α

βa1

b1

u1

w1

(a)

α

β

a1

u1

w1

b1

(b)

α β

a1

u1 w1

b1

(c)

Figure 6.21: The R-configuration K1

Note that K1 is either a ladder or a partial biwheel. In either case, it is easily verified
that the graph obtained from K1 by adding two edges, one joining a1 and b1, and another
joining u1 and w1, is a brace. This fact, in conjunction with the characterization of braces
provided by Proposition 4.12, yields the following easy observation.

Proposition 6.21 The following statements hold:

(i) for every pair of distinct vertices v1, v2 ∈ A ∩ V (K1), the graph K1 − {b1, u1, v1, v2}
has a perfect matching; and likewise,

(ii) for every pair of distinct vertices v1, v2 ∈ B ∩ V (K1), the graph K1 − {a1, w1, v1, v2}
has a perfect matching. 2
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In the following lemma, we prove some conformality properties of R-configurations;
these are useful in subsequent lemmas to show that a certain edge is R-compatible.

Lemma 6.22 The following statements hold:

(i) u1 lies in V (R) if and only if w1 lies in V (R),
(ii) K1 is a conformal matching covered subgraph, and
(iii) the subgraph induced by E(K1) ∪R is conformal.

Proof: First, we prove (i). Suppose instead that u1 ∈ V (R) and w1 /∈ V (R); that is,
u1 = b2, whereas w1 and a2 are distinct; see Figure 6.22. For X := V (K1)− w1, note that
every edge in ∂(X), except for α, is either incident with u1 or with w1. Recall that if M
is any perfect matching, then α ∈M if and only if β ∈M . Using these facts, it is easy to
see that ∂(X) is a tight cut; this is a contradiction.

u1 = b2

α

a2

β

a1

b1

w1

Figure 6.22: ∂(X) is a nontrivial tight cut, where X := V (K1)− w1

Now, we prove (ii). Since K1 is either a ladder or a partial biwheel, it is matching
covered. To show that K1 is conformal, we will display a perfect matchingM of G−V (K1).
Let N be a perfect matching of H which contains a1u1; observe that M := N − E(K1) is
the desired perfect matching.

Note that, if u1, w1 ∈ V (R), then (iii) follows immediately from (ii). Now suppose
that u1, w1 /∈ V (R), and let N be a perfect matching of G − {a2, w1}; note that β ∈ N .
A simple counting argument shows that M := N − E(K1) − R is a perfect matching
of G− V (K1)− V (R); and this proves (iii). 2
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In the following two lemmas, apart from other things, we show that under certain
circumstances there exists an R-compatible edge which is not in K1.

Lemma 6.23 Suppose that u1, w1 /∈ V (R). Then at most one edge of ∂(u1) − E(K1) is
not R-compatible. (An analogous statement holds for w1.)

Proof: Note that, by Corollary 4.9, at most two edges of ∂(u1) are non-removable in H;
one of these is a1u1. Consequently, at most one edge of ∂(u1) − E(K1) is non-removable
in H. To complete the proof we will show that if e is any removable edge of H such that
e ∈ ∂(u1)− E(K1), then e is removable in G as well; for this, it suffices to show a perfect
matching M which contains α and β but does not contain e.

Let M1 be a perfect matching of G− V (K1)− V (R); such a perfect matching exists by
Lemma 6.22(iii). LetM2 be a perfect matching ofK1−{a1, b1}; sinceK1 is bipartite match-
ing covered, such a perfect matching exists by Proposition 1.4. Now, M := M1 ∪M2 ∪R
is the desired perfect matching alluded to above, and this completes the proof. 2

Lemma 6.24 Suppose that u1, w1 /∈ V (R). If |∂(u1)− E(K1)| ≤ 1 and |∂(w1)− E(K1)| ≤ 1
then the following statements hold:

(i) u1 and w1 are nonadjacent,
(ii) ∂(u1)−E(K1) has exactly one member, say α′, and likewise, ∂(w1)−E(K1) has exactly

one member, say β′,
(iii) α and α′ are adjacent if and only if β and β′ are adjacent,
(iv) if α and α′ are nonadjacent then at most one edge of ∂(v) − α′ is not R-compatible,

where v denotes the end of α′ which is distinct from u1; an analogous statement holds
for β and β′.

Proof: We first verify (i) and (ii). Observe that, if u1 and w1 are adjacent, or, if the sets
∂(u1)− E(K1) and ∂(w1)− E(K1) are both empty, then {a1, b1} is a 2-vertex cut of G;
this is absurd. This proves (i). Note that, if only one of ∂(u1)− E(K1) and ∂(w1)− E(K1)
is nonempty then H has a cut-edge; this is a contradiction. This proves (ii). As in the
statement, let α′ denote the only member of ∂(u1)−E(K1); and likewise, let β′ denote the
only member of ∂(w1)− E(K1). See Figure 6.23.

We now show that (iii) holds. Suppose instead that β and β′ are adjacent, whereas
α and α′ are nonadjacent. In particular, β′ has ends w1 and b2. We let T := B − V (K1)− b2,
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Figure 6.23: When |∂(u1)− E(K1)| = |∂(w1)− E(K1)| = 1

and note that T is nonempty. Furthermore, all of the neigbours of T lie in the set
S := A− V (K1); consequently, S is a nontrivial barrier of G; this is absurd.

We now proceed to prove (iv). Suppose that α and α′ are nonadjacent; and as in the
statement of the lemma, let v denote the end of α′ which is distinct from u1. By (iii),
β and β′ are also nonadjacent. We will first argue that at most one edge of ∂(v) − α′ is
non-removable in H.

Observe that {α′, β′} is a 2-cut of H; thus, neither α′ nor β′ is removable in H. By
Corollary 4.9, at most two edges of ∂(v) are non-removable in H; one of these is α′.
Consequently, at most one edge of ∂(v) − α′ is non-removable in H. To complete the
proof we will show that if e is any removable edge of H such that e ∈ ∂(v)− α′, then e is
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removable in G as well; for this, it suffices to show a perfect matching M which contains
α and β but does not contain e.

Let M1 be any perfect matching of G − {a2, v}; note that β ∈ M1. A simple count-
ing argument shows that β′ lies in M1 as well. Now, let M2 be a perfect matching of
K1 − {a1, u1, b1, w1}; such a perfect matching exists due to Proposition 6.21. Observe that
M := (M1 − E(K1)) ∪M2 ∪ {α, α′} is the desired perfect matching alluded to above. As
discussed, this completes the proof. 2

In the previous two lemmas, we have shown that under certain circumstances there
exists an R-compatible edge which is not in K1. However, in the proof of the Strictly
R-thin Edge Theorem (1.24), we will be interested in finding an R-thin edge which is not
in K1. To do so, we will choose an R-compatible edge appropriately, and use Theorem 5.1,
in conjunction with the following lemma, to argue that the chosen edge is indeed R-thin.

Lemma 6.25 Suppose that u1, w1 /∈ V (R). Let e denote an R-compatible edge which does
not lie in E(K1), let S denote a nontrivial barrier of G−e, and I the set of isolated vertices
of (G− e)− S. Then the following statements hold:

(i) S ∩ V (K1) contains at most one vertex, and
(ii) I ∩ V (K1) is empty.

Proof: Since e is R-compatible, S is a subset of one of the two color classes of H; assume
without loss of generality that S ⊂ A. To establish (i), we will show that if v1 and v2 are
any two distinct vertices in V (K1)∩A, then (G− e)− {v1, v2} has a perfect matching M .

Let M1 be a perfect matching of (H− e)−{v1, b2} where b2 is the end of β which is not
in V (K1); such a perfect matching exists by Proposition 1.4 asH−e is matching covered. A
simple counting argument shows thatM∩∂(V (K1)) contains only one edge, and this edge is
incident with the free corner u1. LetM2 be a perfect matching ofK1−{b1, u1, v1, v2}; such a
perfect matching exists due to Proposition 6.21. Observe thatM := (M1−E(K1))+M2+β
is the desired perfect matching of (G− e)− {v1, v2}, and this proves (i).

We now deduce (ii) from (i). Suppose to the contrary that I ∩ V (K1) is nonempty,
and let x denote any of its members. Observe that x is adjacent with at least two vertices
in V (K1), and each of these must lie in S; this contradicts (i), and completes the proof. 2
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6.3.1 Proof of Proposition 6.3

As in the statement of the proposition, let G be a simple R-brick, and let K1 be an
R-configuration with external rungs/spokes a1u1 and b1w1, where u1 and w1 denote the
free corners of K1; see Figure 6.21. Suppose that G has an R-configuration K2 which is
distinct from K1; that is, K1 and K2 are not identical subgraphs of G. We assume that
K1 and K2 are not vertex-disjoint. Our goal is to deduce that u1 and w1 are the free
corners of K2, and that K2 is otherwise vertex-disjoint with K1.

We first argue that u1, w1 /∈ V (R). Note that every vertex of K1, except possibly
u1 and w1, is cubic in G. Consequently, if u1, w1 ∈ V (R) then V (G) = V (K1), since
otherwise {u1, w1} is a 2-vertex cut of G; furthermore, either G is precisely the graph
induced by E(K1) ∪ R, or otherwise, G has one additional edge joining u1 and w1; in
either case, it is easily seen that K1 is the only subgraph with all the properties of an
R-configuration; this contradicts the hypothesis. By Lemma 6.22(i), u1, w1 /∈ V (R).

Claim 6.26 Let z1 be any vertex of K1 which is distinct from u1 and w1. If z1 ∈ V (K2)
then every edge of K1 which is incident with z1 lies in E(K2).

Proof: Assume that z1 ∈ V (K2). First consider the case in which z1 ∈ {a1, b1}. Note that
the degree of z1 in H is two; consequently, both edges of H incident with z1 lie in E(K2).

Now consider the case in which z1 /∈ {a1, b1}. Note that z1 is cubic. Observe that, for
an R-configuration K, any vertex of K, which is not one of its corners, is cubic in K as
well as in G. Thus, it suffices to show that z1 is not a corner of K2.

Suppose instead that z1 is a corner of K2. As z1 /∈ V (R), it is a free corner. Since z1
is cubic, K2 is an R-ladder configuration. Also, z1 must be adjacent with a corner of K2

which lies in V (R); such a corner is either a1 or b1. Adjust notation so that z1 is adjacent
with a1; thus, both edges of H incident with a1 lie in E(K2). Note that a1z1 is an external
rung of K2. Also, since u1 is not a corner of K2, it is cubic in K2 and in G. We infer that
K1 is also an R-ladder configuration; see Figure 6.24.

Let y1 denote the neighbour of u1 in K1 which is distinct from a1, and let v denote the
third neighbour of u1. Note that y1, v ∈ V (K2). Since |∂(u1)−E(K1)| = 1, Lemma 6.24(i)
implies that v is distinct from w1. Since K2 is a ladder, a1z1 lies in a quadrilateral of K2;
this implies that y1z1 ∈ E(K2). Note that u1y1 is an internal rung of K2.

Let y2 denote the neighbour of y1 which is distinct from u1 and z1. Note that y2 ∈ V (K2).
Since a1z1 and u1y1 are rungs of K2, it must be the case that v and y2 are adjacent and the
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Figure 6.24: Illustration for Claim 6.26; the solid lines show part of the R-configuration K1

edge joining them is a rung of K2; however, it is easily seen that v and y2 are nonadjacent.
We thus have a contradiction. This completes the proof of Claim 6.26. 2

We will now use Claim 6.26 to deduce that, sinceK1 andK2 are distinctR-configurations,
the only vertices of K1 which may lie in K2 are its free corners (that is, u1 and w1).

Suppose instead that (V (K1)− {u1, w1}) ∩ V (K2) is nonempty. Since K1 − {u1, w1}
is connected, Claim 6.26 implies that V (K1) ⊆ V (K2) and E(K1) ⊆ E(K2). Further-
more, since |V (K1) ∩ V (K2)| ≥ 6, the set (V (K2)− {u2, w2}) ∩ V (K1) is also nonempty,
where u2 and w2 denote the free corners of K2. By symmetry, V (K2) ⊆ V (K1) and
E(K2) ⊆ E(K1). We conclude that K1 and K2 are identical subgraphs of G; contrary
to our hypothesis.

Thus, each member of V (K1) ∩ V (K2) is a free corner of K1, and by symmetry, it is a
free corner of K2 as well. By our hypothesis, V (K1) ∩ V (K2) is nonempty; thus, at least
one of u1 and w1 is a free corner of K2. Adjust notation so that u1 is a free corner of K2.
To complete the proof, we will show that w1 is also a free corner of K2.

Suppose not, that is, say V (K1) ∩ V (K2) = {u1}, and let w2 denote the free corner
of K2 distinct from u1. Observe that the ends a2 of α and b2 of β both lie in V (K2);
see Figure 6.25. Furthermore, |B − V (K1 ∪ K2)| = |A − V (K1 ∪ K2)| + 1. We shall let
T := B − V (K1 ∪K2). Since every vertex of K1 ∪ K2, except possibly u1, w1 and w2, is
cubic, all neighbours of T lie in the set S := (A− V (K1 ∪K2)) ∪ {w1, w2}. Consequently,
S is a nontrivial barrier of G; this is absurd.

Thus, u1 and w1 are the free corners of K2, and K2 is otherwise vertex-disjoint with K1.
This completes the proof of Proposition 6.3. 2
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Figure 6.25: When K1 and K2 share only one free corner

6.4 Proof of the Strictly R-thin Edge Theorem

As in the statement of the theorem (1.24), let G be a simple R-brick which is free of strictly
R-thin edges. Our goal is to show that G is a member of one of the eleven infinite families
which appear in the statement of the theorem, that is, to show that G ∈ N . We adopt
Notation 6.1.

We may assume that G is different from K4 and C6, and thus, by the R-thin Edge
Theorem (1.22), G has an R-thin edge, say e1. Depending on the index of e1, we invoke
either the R-biwheel Theorem (6.5) or the R-ladder Theorem (6.6) to deduce that G has
an R-configuration, say K1, such that e1 ∈ E(K1). We shall let a1u1 and b1w1 denote the
external rungs/spokes of K1, and adjust notation so that u1 and w1 are its free corners.
See Notation 6.2 and Figure 6.21. Note that a1 is an end of α and b1 is an end of β.

By Lemma 6.22, either both free corners u1 and w1 lie in V (R), or otherwise, neither
of them lies in V (R); let us first deal with the former case.
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Claim 6.27 If u1, w1 ∈ V (R) then G is either a prism, or a Möbius ladder or a truncated
biwheel.

Proof: Suppose that u1, w1 ∈ V (R); that is, α = a1w1 and β = b1u1. Since every vertex
of K1 is cubic in G, except possibly u1 and w1, we conclude that V (G) = V (K1) as
otherwise {u1, w1} is a 2-vertex cut of G. Furthermore, either G is precisely the graph
induced by E(K1) ∪ R, or otherwise, G has one additional edge joining u1 and w1. In
the latter case, u1w1 is a strictly R-thin edge, contrary to the hypothesis. In the former
case, observe that: if K1 is an R-biwheel configuration, as shown in Figure 6.21a, then
G is a truncated biwheel; if K1 is an R-ladder configuration of odd parity, as shown in
Figure 6.21b, then G is a prism; and if K1 is an R-ladder configuration of even parity, as
shown in Figure 6.21c, then G is a Möbius ladder. 2

We may thus assume that neither u1 nor w1 lies in V (R). Consequently, the end a2
of α and the end b2 of β are both in V (G)− V (K1).

Claim 6.28 Either G is a staircase or a pseudo-biwheel, or otherwise, G has an R-compatible
edge which is not in E(K1).

Proof: We begin by noting that, if |∂(u1)− E(K1)| ≥ 2, then by Lemma 6.23, some edge
of ∂(u1)− E(K1) is R-compatible, and we are done; an analogous argument applies when
|∂(w1)− E(K1)| ≥ 2.

Now suppose that |∂(u1)−E(K1)| ≤ 1 and that |∂(w1)−E(K1)| ≤ 1. By Lemma 6.24
(i) and (ii), u1 and w1 are nonadjacent; furthermore, ∂(u1)−E(K1) has a single element,
say α′; likewise, ∂(w1) − E(K1) has a single element, say β′; see Figure 6.23. We let
R′ := {α′, β′}. By (iii) of the same lemma, α and α′ are adjacent if and only if β and β′
are adjacent.

First consider the case in which α and α′ are nonadjacent, and as in the statement of
Lemma 6.24(iv), let v denote the end of α′ which is distinct from u1; note that v /∈ V (K1).
By the lemma, ∂(v)− α′ contains an R-compatible edge, and we are done.

Now suppose that α and α′ are adjacent; whence β and β′ are also adjacent. Note
that α′ = u1a2 and β′ = w1b2. Every vertex of K1, except possibly u1 and w1, is cubic
in G; furthermore, ∂(u1) − E(K1) = {α′}, and likewise, ∂(w1) − E(K1) = {β′}. We infer
that V (G) = V (K1) ∪ {a2, b2} as otherwise {a2, b2} is a 2-vertex cut of G. Furthermore,
since each of a2 and b2 has degree at least three, there is an edge joining them; and G
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is precisely the graph induced by E(K1) ∪ R ∪ R′ ∪ {a2b2}. Observe that if K1 is an
R-biwheel configuration of order at least eight then G is a pseudo-biwheel, and otherwise,
G is a staircase. 2

We may thus assume that G has an R-compatible edge which is not in E(K1). We will
now use Theorem 5.1 and Lemma 6.25 to deduce that G has an R-thin edge which is not
in E(K1).

Claim 6.29 G has an R-thin edge, say e2, which is not in E(K1).

Proof: Among all R-compatible edges which are not in E(K1), we choose one, say e2, such
that rank(e2) + index(e2) is maximum; we intend to show that e2 is R-thin. Suppose not;
then, by Theorem 5.1, with e2 playing the role of e, there exists another R-compatible
edge f such that (i) f has an end each of whose neighbours in G− e2 lies in a (nontrivial)
barrier S of G− e2, and (ii) rank(f) + index(f) > rank(e2) + index(e2).

Let I denote the set of isolated vertices of (G − e2) − S. Condition (i) above implies
that f has one end in I and another end in S. By Lemma 6.25, with e2 playing the role
of e, the set I ∩V (K1) is empty. Since f has one end in I, we infer that f is not in E(K1);
this, combined with condition (ii) above, contradicts our choice of e2. We thus conclude
that e2 is R-thin. 2

Now, depending on the index of e2, we invoke either the R-biwheel Theorem (6.5) or
the R-ladder Theorem (6.6) to deduce that G has an R-configuration, say K2, such that
e2 ∈ E(K2). As e2 is not in E(K1) but it is in E(K2), the R-configurations K1 and K2 are
clearly distinct. By Proposition 6.3: either K1 and K2 are vertex-disjoint; or otherwise,
u1 and w1 are the free corners of K2, and K2 is otherwise vertex-disjoint with K1. In either
case, the end a2 of α and the end b2 of β are the two corners of K2 which are distinct from
its free corners. Let us first deal with the case in which K1 and K2 are not vertex-disjoint;
Figure 6.26 shows an example in which K1 and K2 are both R-biwheel configurations.

The proof of the following claim closely resembles that of Claim 6.27.

Claim 6.30 If K1 and K2 are not vertex-disjoint then G is either a double biwheel or a
double ladder or a laddered biwheel, each of type I.

Proof: As noted above, u1 and w1 are the free corners of K2, and K2 is otherwise vertex-
disjoint with K1. Consequently, the external rungs/spokes of K2 are a2u1 and b2w1; see
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Figure 6.26: When the two R-configurations are not disjoint; the vertices with the same
labels are to be identified

Figure 6.26. Since every vertex of K1 ∪K2 is cubic in G, except u1 and w1, we infer that
V (G) = V (K1) ∪ V (K2), as otherwise {u1, w1} is a 2-vertex cut of G. Furthermore, either
G is precisely the graph induced by E(K1 ∪K2) ∪ R, or otherwise, G has one additional
edge joining u1 and w1. In the latter case, u1w1 is a strictly R-thin edge, contrary to the
hypothesis. In the former case, observe that ifK1 andK2 are both R-biwheel configurations
then G is a double biwheel of type I; likewise, ifK1 andK2 are both R-ladder configurations
then G is a double ladder of type I; finally, if one of K1 and K2 is an R-ladder configuration
and the other one is an R-biwheel configuration then G is a laddered biwheel of type I. 2

We may thus assume that K1 and K2 are vertex-disjoint; and we shall let a2u2 and b2w2

denote the external rungs/spokes of K2; in particular, u2 and w2 denote the free corners
of K2. Figure 6.27 shows an example in which K1 is an R-ladder configuration and K2 is
an R-biwheel configuration.

We now find the remaining three families, or show the existence of an R-compatible
edge which is not in E(K1 ∪K2); the proof is similar to that of Claim 6.28.

Claim 6.31 Either G is a double biwheel or a double ladder or a laddered biwheel, each of
type II, or otherwise, G has an R-compatible edge which is not in E(K1 ∪K2).

Proof: We begin by noting that, if |∂(u1)− E(K1)| ≥ 2, then by Lemma 6.23, some edge
of ∂(u1) − E(K1) is R-compatible, and since u1 /∈ V (K2), such an edge is not in E(K2),
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Figure 6.27: When the two R-configurations are disjoint

and we are done; an analogous argument applies when |∂(w1) − E(K1)| ≥ 2, or when
|∂(u2)− E(K2)| ≥ 2 or when |∂(w2)− E(K2)| ≥ 2.

Now suppose that, for i ∈ {1, 2}, |∂(ui) − E(Ki)| ≤ 1 and |∂(wi) − E(Ki)| ≤ 1; by
Lemma 6.24 (i) and (ii), ui and wi are nonadjacent; furthermore, each of these inequalities
holds with equality. Let α′ denote the only member of ∂(u1) − E(K1), and let β′ denote
the only member of ∂(w1)− E(K1).

First consider the case in which either w2 is not an end of α′ or u2 is not an end
of β′. Assume without loss of generality that w2 is not an end of α′; thus the end of α′
distinct from u1, say v, is not in V (K1 ∪K2). By Lemma 6.24(iv), ∂(v) − α′ contains an
R-compatible edge; such an edge is not in E(K1 ∪K2), and we are done.

Now suppose that w2 is an end of α′ and u2 is an end of β′. Note that every vertex
of K1 ∪K2, except possibly u1, w1, u2 and w2, is cubic in G; furthermore, ∂(u1)−E(K1) =
∂(w2)−E(K2) = {α′}, and likewise, ∂(w1)−E(K1) = ∂(u2)−E(K2) = {β′}. We conclude
that V (G) = V (K1∪K2) and E(G) = E(K1∪K2)∪R∪R′. Observe that: if K1 and K2 are
both R-biwheel configurations then G is a double biwheel of type II; likewise, if K1 and K2

are both R-ladder configurations then G is a double ladder of type II; finally, if one of
K1 and K2 is an R-ladder configuration and the other one is an R-biwheel configuration
then G is a laddered biwheel of type II. 2

We may thus assume that G has an R-compatible edge which is not in E(K1 ∪ K2).
We will now use Theorem 5.1 and Lemma 6.25 to deduce that G has an R-thin edge which

154



is not in E(K1 ∪K2). The proof is almost identical to that of Claim 6.29, except that now
we have to deal with two R-configurations instead of just one.

Claim 6.32 G has an R-thin edge, say e3, which is not in E(K1 ∪K2).

Proof: Among all R-compatible edges which are not in E(K1∪K2), we choose one, say e3,
such that rank(e3) + index(e3) is maximum; we intend to show that e3 is R-thin. Suppose
not; then, by Theorem 5.1, with e3 playing the role of e, there exists another R-compatible
edge f such that (i) f has an end each of whose neighbours in G− e3 lies in a (nontrivial)
barrier S of G− e3, and (ii) rank(f) + index(f) > rank(e3) + index(e3).

Let I denote the set of isolated vertices of (G − e3) − S. Condition (i) above implies
that f has one end in I and another end in S. By Lemma 6.25, with e3 playing the role
of e, the set I ∩ V (K1) is empty; likewise, the set I ∩ V (K2) is empty. Since f has one
end in I, we infer that f is not in E(K1 ∪K2); this, combined with condition (ii) above,
contradicts our choice of e3. We thus conclude that e3 is R-thin. 2

Now, depending on the index of e3, we invoke either the R-biwheel Theorem (6.5) or
the R-ladder Theorem (6.6) to deduce that G has an R-configuration, say K3, such that
e3 ∈ E(K3). As e3 is not in E(K1 ∪ K2) but it is in E(K3), the R-configuration K3 is
distinct from each of K1 and K2. We have thus located three distinct R-configurations
in the brick G; namely, K1, K2 and K3. However, this contradicts Corollary 6.4, and
completes the proof of the Strictly R-thin Edge Theorem (1.24). 2
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Chapter 7

Conclusions

Lovász’s Theorem (1.6) led Carvalho, Lucchesi and Murty [CLM03] to pose two problems:
(i) determine whether or not a given matching covered graph G is K4-free, and likewise,
(ii) determine whether or not G is C6-free. In the first part of the thesis, we solved these
problems for the special case of planar matching covered graphs.

At a high level, our solution may be viewed as comprising of two steps. In Chapter 2, for
any cubic brick J , we reduced the problem of characterizing J-free matching covered graphs
to that of characterizing J-free bricks; see Theorem 1.10. In Chapter 3, we characterized
K4-free as well as C6-free planar bricks; see Theorems 1.11 and 1.12.

The natural extension of our work is to solve the aforementioned problems (i) and (ii)
for general matching covered graphs. In view of our results in Chapters 2 and 3, it suffices
to characterize K4-free nonplanar bricks and C6-free nonplanar bricks.

This is reminiscent of an important problem solved in the context of Pfaffian orienta-
tions. As per a theorem of Little [Lit75], a bipartite matching covered graph is Pfaffian if
and only if it is K3,3-free. Several years later, Robertson, Seymour and Thomas [RST99],
and independently McCuaig [McC04], gave a structural characterization ofK3,3-free braces.
Recently, in his Ph.D. thesis, Whalen [Wha14] gave a third proof of this theorem. It is
worth exploring whether any of these three approaches can be adapted to characterize
either K4-free or C6-free nonplanar bricks.

In the second part of the thesis, we established generation theorems which are specific
to near-bipartite bricks. In Chapter 5, we proved the R-thin Edge Theorem (1.22), which
states that every R-brick distinct from K4 and C6 has an R-thin edge. This is a refinement
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of the Thin Edge Theorem (1.15) of Carvalho, Lucchesi and Murty, which is appropriate
for the restricted class of near-bipartite bricks.

In Chapter 6, we proved the Strictly R-thin Edge Theorem (1.24), which gives a com-
plete characterization of those simple R-bricks which are free of strictly R-thin edges. This
is a refinement of the Strictly Thin Edge Theorem (1.17) of Norine and Thomas, which is
appropriate for the class of near-bipartite bricks.

It would be interesting to find applications of the R-thin Edge Theorem and the Strictly
R-thin Edge Theorem. In particular, since the problems of characterizing K4-free nonpla-
nar bricks and C6-free nonplanar bricks do not seem to be tractable with the inductive
tools available to us, it may be worthwhile studying these questions for the restricted class
of near-bipartite bricks. This approach has been successful in the theory of Pfaffian orien-
tations; although there has been no significant progress in characterizing Pfaffian bricks;
Fischer and Little [FL01] were able to characterize Pfaffian near-bipartite graphs. Related
to this, an easy corollary of the Strictly R-thin Edge Theorem is that every nonplanar
C6-free brick is M8-based, where M8 is the Möbius ladder of order eight.

The notions of thin and strictly thin edges are easily generalized to braces; see [CLM08,
CLM15]. It was shown by Carvalho, Lucchesi and Murty [CLM08] that every brace of order
six or more has a thin edge; their result may also be derived from an earlier theorem of
McCuaig [McC01] concerning the existence of strictly thin edges. In their recent work,
Carvalho et al. [CLM15] strengthened McCuaig’s result to show that every simple brace,
which is not in any of four infinite families, has at least two strictly thin edges. They also
give examples to show that their result is the best possible.

In view of the above, we would like to show the existence of at least two R-thin edges
in every R-brick that is distinct from K4, C6 and the staircase St8; see Figure 1.9. Such a
result is likely to be more useful when trying to solve problems pertaining to near-bipartite
bricks using induction; especially, if one can show that there are two R-thin edges which
are somewhat far apart.

More generally, it would be interesting to show the existence of at least two thin edges
in every brick that is distinct from K4, C6 and St8. Related to this, we were able to find
bricks which have a unique strictly thin edge; one of our examples appears in [CLM15].
We have also found R-bricks which have a unique strictly R-thin edge; in this sense, our
Theorem 1.24 is the best possible.
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Glossary of Notation

(A0, A1, . . . , Ar) partition of set, page 73

F(e, S) candidate set relative to edge and barrier, page 87

N union of all families which appear in statement of Theorem 1.24, page 31

X complement of vertex set (in graph), page 8

∂(v) cut associated with vertex (of graph), page 74

∂(X) cut associated with vertex set (of graph), page 8

∂G(v) cut associated with vertex of graph, page 74

∂G(X) cut associated with vertex set of graph, page 8

b(G) number of bricks in any tight cut decomposition of graph, page 9

G/(X → x) graph obtained by contracting shore to single vertex, page 8

G/X graph obtained by contracting shore (to single vertex), page 8

G[e] subgraph induced by edge, page 5

G[X] subgraph induced by vertex set, page 94

H(e, S) bipartite matching covered graph defined relative to edge and barrier, page 87

H[A,B] bipartite graph with color classes A and B, page 3

Mn Möbius ladder of order n, page 13

N(S) neighbourhood of set of vertices (in graph), page 3

N(v) neighbourhood of vertex (in graph), page 38

NG(S) neighbourhood of set of vertices in graph, page 3

NG(v) neighbourhood of vertex in graph, page 38

Pn prism of order n, page 13
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Puv path with ends specified, page 36

R = {α, β} two edges which constitute a removable doubleton, page 22

Stn staircase of order n, page 14

Tn truncated biwheel of order n, page 13

V (R) set of four vertices which are ends of edges of removable doubleton, page 114

Wn odd wheel of order n, page 11

X+ majority part of vertex set (of bipartite or near-bipartite graph), page 76

X− minority part of vertex set (of bipartite or near-bipartite graph), page 76

fodd(G) number of odd faces of plane graph, page 44

odd(G) number of odd components of a graph, page 1

rank(e) rank of R-compatible edge, page 81

rank(G) rank of near-bipartite graph, page 79
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Index

barrier, 2
bi-splitting

a vertex, 19, 47
bi-subdivision

of edge, 4
of graph, 4

bicontraction
of vertex, 18

bicritical graph, 9
brace, 9
brick, 9

R-brick, 24
Norine-Thomas, 11

candidate set, 87
canonical partition, 2
configuration

R-biwheel, 114
R-configuration, 116
R-ladder, 116

conformal subgraph, 4
consecutive

rungs/spokes, 117
contraction

∂(X)-contraction, 8
corner

free, 116
of an R-configuration, 116

critical graph, 46
cut

2-separation cut, 9

barrier cut, 9
shore of, 8
tight cut, 8

cycle
facial, 43

decomposition
ear decomposition
bipartite, 5
of 2-connected critical graph, 46
of matching covered graph, 6

tight cut decomposition, 8

ear
double, 6
single, 5

edge
C-crossing, 37
R-compatible, 24
R-thin, 25
b-invariant, 18
admissible, 2
candidate, 87
compatible, 32
inadmissible, 2
non-removable, 16
removable, 16
strictly R-thin, 26
strictly thin, 20
thin, 19

expansion operations, 20
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Graph
Trellis, 68
Tricorn, 15, 60

graph
J-based, 7
J-free, 7
R-brick, 24
R-graph, 24
bicritical, 9
brace, 9
brick, 9
critical, 46
matching covered, 2
near-bipartite, 21
near-brick, 17
underlying bipartite, 24

graph family
double biwheels of type I, 28
double biwheels of type II, 29
double ladders of type I, 28
double ladders of type II, 29
laddered biwheels of type I, 28
laddered biwheels of type II, 29
ladders, 12
Möbius ladders, 13
Norine-Thomas, 11
odd wheels, 11
partial biwheels, 12
prisms, 13
pseudo-biwheels, 28
staircases, 14
truncated biwheels, 13

index
of R-compatible edge, 80
of thin edge, 48

majority part, 76, 77

minority part, 76, 77

near-brick, 17
Norine-Thomas families, 11

path
C-crossing, 37

quadrilateral, 74

rank
of R-compatible edge, 81
of near-bipartite graph, 79

removable doubleton, 22
retract

of a graph, 18

subgraph
conformal, 4

vertex
branch, 36
subdivision, 36
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