# Brick Generation and Conformal Subgraphs 

by

Nishad Kothari

A thesis<br>presented to the University of Waterloo<br>in fulfillment of the<br>thesis requirement for the degree of<br>Doctor of Philosophy<br>in<br>Combinatorics and Optimization

Waterloo, Ontario, Canada, 2016
(C) Nishad Kothari 2016

## Author's Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

## Statement of Contributions

The results in Chapters 2 and 3 are based on the paper [KM16] co-authored with my supervisor U. S. R. Murty.


#### Abstract

A nontrivial connected graph is matching covered if each of its edges lies in a perfect matching. Two types of decompositions of matching covered graphs, namely ear decompositions and tight cut decompositions, have played key roles in the theory of these graphs. Any tight cut decomposition of a matching covered graph results in an essentially unique list of special matching covered graphs, called bricks (which are nonbipartite and 3-connected) and braces (which are bipartite).

A fundamental theorem of Lovász (1983) states that every nonbipartite matching covered graph admits an ear decomposition starting with a bi-subdivision of $K_{4}$ or of the triangular prism $\overline{C_{6}}$. This led Carvalho, Lucchesi and Murty (2003) to pose two problems: (i) characterize those nonbipartite matching covered graphs which admit an ear decomposition starting with a bi-subdivision of $K_{4}$, and likewise, (ii) characterize those which admit an ear decomposition starting with a bi-subdivision of $\overline{C_{6}}$.

In the first part of this thesis, we solve these problems for the special case of planar graphs. In Chapter 2, we reduce these problems to the case of bricks, and in Chapter 3, we solve both problems when the graph under consideration is a planar brick.

A nonbipartite matching covered graph $G$ is near-bipartite if it has a pair of edges $\alpha$ and $\beta$ such that $G-\{\alpha, \beta\}$ is bipartite and matching covered; examples are $K_{4}$ and $\overline{C_{6}}$. The first nonbipartite graph in any ear decomposition of a nonbipartite graph is a bisubdivision of a near-bipartite graph. For this reason, near-bipartite graphs play a central role in the theory of matching covered graphs. In the second part of this thesis, we establish generation theorems which are specific to near-bipartite bricks.

Deleting an edge $e$ from a brick $G$ results in a graph with zero, one or two vertices of degree two, as $G$ is 3 -connected. The bicontraction of a vertex of degree two consists of contracting the two edges incident with it; and the retract of $G-e$ is the graph $J$ obtained from it by bicontracting all its vertices of degree two. The edge $e$ is thin if $J$ is also a brick. Carvalho, Lucchesi and Murty (2006) showed that every brick, distinct from $K_{4}, \overline{C_{6}}$ and the Petersen graph, has a thin edge.

In general, given a near-bipartite brick $G$ and a thin edge $e$, the retract $J$ of $G-e$ need not be near-bipartite. In Chapter 5, we show that every near-bipartite brick $G$, distinct from $K_{4}$ and $\overline{C_{6}}$, has a thin edge $e$ such that the retract $J$ of $G-e$ is also near-bipartite. Our theorem is a refinement of the result of Carvalho, Lucchesi and Murty which is appropriate for the restricted class of near-bipartite bricks.


For a simple brick $G$ and a thin edge $e$, the retract of $G-e$ may not be simple. It was established by Norine and Thomas (2007) that each simple brick, which is not in any of five well-defined infinite families of graphs, and is not isomorphic to the Petersen graph, has a thin edge such that the retract $J$ of $G-e$ is also simple.

In Chapter 6, using our result from Chapter 5, we show that every simple near-bipartite brick $G$ has a thin edge $e$ such that the retract $J$ of $G-e$ is also simple and near-bipartite, unless $G$ belongs to any of eight infinite families of graphs. This is a refinement of the theorem of Norine and Thomas which is appropriate for the restricted class of near-bipartite bricks.

## Acknowledgements

No words can truly express my gratitude to my supervisors Joseph Cheriyan and U. S. R. Murty. Throughout these five years, they have invested tremendous effort in mentoring me, and in doing so, they have played somewhat complementary roles. Professor Murty taught me the beautiful subject of matching theory, and inspired me to seek new results in this area; often when I got stuck, he would rescue me with one of his brilliant ideas. On the other hand, Joseph encouraged me to push the boundaries of what I can achieve, and ensured that I remain focused despite many failures. During difficult times, when I had lost all hopes, they both patiently stood by me and expressed confidence in my abilities. Each of them has spent countless hours listening to me, checking my work as well as helping me write the results. However, most importantly, they have taught me the joy and integrity of mathematics, both in research and in teaching, and they have moulded me into a better person. I am forever indebted to them, and I thank my lucky stars for the opportunity of working under their tutelage.

I would like to thank members of the examining committee, namely, Jim Geelen, Bertrand Guenin, Charles Little and Naomi Nishimura, for showing interest in my work, and for their invaluable feedback. I am especially thankful to Charles; apart from flying all the way from New Zealand to attend my defense, he provided detailed comments and suggestions to improve my thesis. A special thanks to Jim for having several discussions with me, especially during my third year; his suggestions have led me to unexpected discoveries.

I am very thankful to Marcelo Carvalho and Cláudio Lucchesi; their joint works with Professor Murty have been the inspiration for much of the work in my thesis. Their expert suggestions have guided me in my research, and I am a victim of their contagious enthusiasm for matching theory. In April 2015, they traveled all the way from Brazil, and I was thrilled to have two weeks of caffeinated meetings with them about my research and other related problems. Some of these discussions were instrumental in obtaining the results that appear in Chapter 6.

These five years at the Department of Combinatorics and Optimization have been the most beautiful years of my life, and my experience has been enriched by the many friends that I made here - to name a few: Ahmad Abdi, Fidel Barrera-Cruz, Gabriel Coutinho, Linda Farczadi, Zhihan Gao, Cheolwon Heo, Rohan Kapadia, Mehdi Karimi, Abbas Mehrabian, Hadi Minooei, Natalie Mullin, Yingkai Ouyang, Devanshu Pandey, Luke Postle, Cristiane Sato, Abhinav Shantanam, Marcel Silva, Leanne Stuive, ... I will cherish their friendships for many years to come.

I would also like to thank all of the other faculty members at C\&O for creating a wonderful atmosphere for pursuing mathematics. A special thanks to Konstantinos Georgiou and David Wagner for attending my lectures and giving me feedback, and helping me become a better teacher. I also thank the many students for whom I was a TA or an instructor; I have learnt a lot from them. A big thanks to the department staff for helping me out whenever required, and for making it all seem so smooth and easy. I am grateful to the University of Waterloo as well as to the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding my doctoral studies.

Before moving to Waterloo, I was at Georgia Tech. I would like to extend special thanks to Robin Thomas and Santosh Pande. Robin, by virtue of his teaching and enthusiasm, is responsible for making me fall in love with graph theory. He also encouraged me in my pursuit of mathematics, despite knowing that I lacked a rigorous background. While I had no official advisor at Georgia Tech, Santosh was always willing to listen to my future academic plans, and he went out of his way to guide me. Two of my friends from Georgia Tech, namely Akash Kumar and Anand Louis, deserve a special mention; their enthusiasm for mathematics and all things theoretical definitely rubbed off on me.

Finally, I am truly privileged to have an incredibly supportive family. It is primarily due to my parents' teachings and their value systems that both my brother and I have chosen to pursue the academic path in search of truth and beauty. Innumerable discussions with my brother, Ninad, have been instrumental in making many of the more difficult decisions of my life. Both Ninad and his wife, Arushi, flew from Baltimore to attend my defense to make it even more memorable.

It seems as if the universe has conspired in helping me realize my dreams! Thank you.

## To my parents, Usia and $\mathfrak{B h a r a t}$.

## Table of Contents

Author's Declaration ..... ii
Statement of Contributions ..... iii
Abstract ..... iv
Acknowledgements ..... vi
Dedication ..... viii
List of Figures ..... xiii
1 Introduction and summary ..... 1
1.1 Matching covered graphs ..... 1
1.2 A theorem of Lovász ..... 4
1.2.1 Ear decompositions ..... 5
1.2.2 $K_{4}$-based and $\overline{C_{6}}$-based graphs ..... 7
1.3 Bricks ..... 7
1.3.1 Tight cut decomposition ..... 8
1.3.2 Reduction to the case of bricks ..... 10
1.3.3 Norine-Thomas bricks ..... 11
1.4 Planar bricks ..... 14
1.4.1 $\quad K_{4}$-free planar bricks ..... 14
1.4.2 $\quad \overline{C_{6}}$-free planar bricks ..... 15
1.5 Removable edges ..... 16
1.5.1 Near-bricks and $b$-invariant edges ..... 17
1.5.2 Bicontractions, retracts and bi-splittings ..... 18
1.5.3 Thin edges ..... 19
1.5.4 Strictly thin edges ..... 20
1.6 Near-bipartite graphs ..... 21
1.6.1 Removable doubletons ..... 22
1.7 Generating near-bipartite bricks ..... 23
1.7.1 $\quad R$-compatible edges ..... 24
1.7.2 $R$-thin edges ..... 25
1.7.3 Strictly $R$-thin edges ..... 26
1.8 Summary of main contributions ..... 32
2 Conformal subgraphs and tight cuts ..... 35
2.1 Bi-subdivisions of bricks ..... 36
2.2 Three lemmas on bricks ..... 38
2.3 Cubic bricks ..... 39
3 Planar bricks ..... 43
3.1 Number of odd faces ..... 44
3.2 Critical graphs ..... 46
3.3 Index of a thin edge ..... 48
$3.4 \quad K_{4}$-free planar bricks ..... 50
3.4.1 Proof of Theorem 1.11 ..... 60
$3.5 \quad \overline{C_{6}}$-free planar bricks ..... 60
3.5.1 Proof of Theorem 1.12 ..... 68
3.6 Nonplanar $K_{4}$-free and $\overline{C_{6}}$-free bricks ..... 68
4 Near-bipartite graphs ..... 71
4.1 The exchange property ..... 71
4.2 Non-removable edges of bipartite graphs ..... 73
4.3 Barriers and tight cuts ..... 76
4.3.1 Bipartite graphs ..... 76
4.3.2 Near-bipartite graphs ..... 77
4.4 The Three Case Lemma ..... 79
4.4.1 Index one ..... 81
4.4.2 Index two ..... 82
4.4.3 Index and Rank of an $R$-thin Edge ..... 83
5 Generating near-bipartite bricks ..... 85
5.1 The candidate set $\mathcal{F}(e, S)$ ..... 86
5.1.1 When the candidate set is a matching ..... 92
5.2 The Equal Rank Lemma ..... 97
5.3 Proof of Theorem 5.1 ..... 101
6 Generating simple near-bipartite bricks ..... 113
6.1 $R$-configurations ..... 114
6.1.1 $R$-biwheel configurations ..... 114
6.1.2 $\quad R$-ladder configurations ..... 116
6.1.3 Corners, rungs and spokes ..... 116
6.1.4 Two distinct $R$-configurations ..... 117
6.1.5 The $R$-biwheel and $R$-ladder Theorems ..... 119
6.1.6 Proof Sketch of Theorem 1.24 ..... 120
$6.2 \quad R$-thin edges ..... 121
6.2.1 Multiple edges in retracts ..... 121
6.2.2 Proof of the $R$-biwheel Theorem ..... 127
6.2.3 Proof of the $R$-ladder Theorem ..... 131
6.3 Properties of $R$-configurations ..... 142
6.3.1 Proof of Proposition 6.3 ..... 148
6.4 Proof of the Strictly $R$-thin Edge Theorem ..... 150
7 Conclusions ..... 157
References ..... 159
Glossary of Notation ..... 163
Index ..... 165

## List of Figures

1.1 The two smallest nonbipartite matching covered graphs ..... 2
1.2 The Petersen graph ..... 4
1.3 A nontrivial tight cut ..... 8
1.4 A bicritical graph which is not a brick ..... 10
1.5 Partial biwheels (top) and Ladders (bottom) ..... 12
1.6 (a) Odd wheel $W_{7}$, (b) Prism $P_{10}$, (c) Truncated biwheel $T_{8}$, (d) Odd stair- case $S t_{8}$, (e) Even staircase $S t_{10}$, (f) Möbius ladder $M_{8}$ ..... 13
1.7 Types of removable edges in bricks; the ones in the shaded area are only applicable to near-bipartite bricks and they are introduced in Section 1.7 . ..... 17
1.8 Removable edges of the Tricorn ..... 20
1.9 The staircase $S t_{8}$ ..... 23
1.10 (a) A near-bipartite brick $G$ with a thin edge $e$; (b) The retract of $G-e$ is not near-bipartite ..... 23
1.11 The edges $a_{1} u_{1}$ and $b_{1} w_{1}$ are $R^{\prime}$-compatible, but they are not $R$-compatible ..... 25
1.12 Edge $e$ is strictly $R$-thin ..... 27
1.13 (a) A double ladder of type I ; (b) A laddered biwheel of type I is obtained by identifying $u_{1}$ with $u_{2}$ and likewise $w_{1}$ with $w_{2}$ ..... 29
1.14 (a) A laddered biwheel of type II ; (b) A double biwheel of type II ..... 30
1.15 A double ladder of type II ..... 30
2.1 Perfect matchings $M_{J}, M_{H}$ and $M_{G}$ ..... 36
2.2 A matching covered graph whose unique brick is $W_{5}$ ..... 42
3.1 Correspondence between faces of $G$ and $H$ ..... 45
$3.2 \quad K_{4}$-free graph with four odd faces - the bold lines indicate tight cuts ..... 46
3.3 Strictly thin edges of indices one, two and three ..... 49
3.4 Matching covered graph with two odd faces - the bold lines depict tight cuts ..... 50
3.5 (a) Index of $e$ is one, (b) Index of $e$ is two, (c) Index of $e$ is three ..... 51
3.6 A conformal bi-subdivision of $K_{4}$ ..... 59
3.7 (a) Tricorn, (b) $W_{5}$ ..... 61
3.8 Index of $e$ is three ..... 64
3.9 The odd staircase $S t_{8}$ ..... 65
3.10 Adding an edge to the Tricorn ..... 67
3.11 The Trellis - a nonplanar $K_{4}$-free brick ..... 69
$4.1 f$ is removable in $S t_{8}-e$, but it is not removable in $S t_{8}$ ..... 72
4.2 Non-removable edge of a bipartite graph ..... 74
4.3 Non-removable edges incident at a vertex ..... 75
4.4 Tight cuts in bipartite matching covered graphs ..... 77
4.5 Tight cuts in near-bipartite graphs ..... 78
4.6 An $R$-compatible edge of index one ..... 81
4.7 An $R$-compatible edge of index two ..... 82
5.1 (a) $S$ is a barrier of $G-e$ such that $|S| \geq 3$; (b) the bipartite graph $H(e, S)$ ..... 87
5.2 Illustration for Lemma 5.7 ..... 89
5.3 Illustration for Lemma 5.8 ..... 91
5.4 When $\mathcal{F}(e, S)$ is a matching ..... 92
$5.5 u_{0}$ and $u_{1}$ are the only vertices adjacent with the contraction vertex $\bar{x}$ ..... 93
5.6 When $\mathcal{F}(e, S)$ is a matching, and $S$ has only three vertices ..... 95
5.7 When $\mathcal{F}(e, S)$ is a matching, and $S$ has four or more vertices; the vertices $u_{0}$ and $w_{2}$ are nonadjacent ..... 97
5.8 The Equal Rank Lemma ..... 99
5.9 Index of $e$ is two, and $S_{1}$ is the largest barrier of $G-e$ ..... 103
5.10 When $\left|S_{1}\right| \geq 4$ ..... 105
5.11 When $\left|S_{1}\right|=3$ ..... 107
5.12 When $\left|S_{1}\right|=\left|S_{2}\right|=3$ ..... 108
5.13 When $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$ ..... 109
6.1 An $R$-biwheel configuration; in $G$, the free corners (hubs) $u$ and $w$ are noncubic, and every other vertex is cubic. ..... 115
6.2 A pseudo-biwheel has only one $R$-biwheel configuration ..... 115
6.3 Two $R$-ladder configurations of different parities; each vertex, except possi- bly for the free corners $u$ and $w$, is cubic in $G$ ..... 116
6.4 A prism has only one $R$-ladder configuration ..... 117
6.5 A laddered biwheel of type II has two vertex-disjoint $R$-configurations ..... 118
6.6 A double ladder of type I has two $R$-configurations which share their free corners but are otherwise vertex-disjoint ..... 118
$6.7 f$ and $g$ are multiple edges in the retract $J$ of $G-e$; the vertex $y_{1}$ is cubic. ..... 122
6.8 (a) when $f$ and $g$ are adjacent; (b) when $f$ and $g$ are nonadjacent ..... 123
6.9 Illustration for Lemma 6.10 ..... 125
6.10 Illustration for Lemma 6.11 ..... 126
6.11 Illustration for Lemma 6.12 ..... 127
$6.12 e$ is an $R$-thin edge of index one; $y_{0}, y_{1}$ and $y_{2}$ are cubic; $u$ and $w$ are non-cubic 129
6.13 Illustration for the $R$-biwheel Theorem ..... 130130
6.14 Illustration for Lemma 6.15 ..... 133
6.15 The situation in Case 1 ..... 134
6.16 Illustration for Case 1 of the $R$-ladder Theorem ..... 135
6.17 The situation in Case 2 ..... 137
6.18 The situation in Case 2.2 (all labelled vertices are pairwise distinct, except possibly $u$ and $x$ ) ..... 139
6.19 When $u$ is adjacent with $w$ ..... 141
6.20 Illustration for Case 2.2 of the $R$-ladder Theorem; $u$ is a common neighbour of $z_{0}$ and $z_{2}$ which is distinct from $z_{1}$ ..... 142
6.21 The $R$-configuration $K_{1}$ ..... 143
$6.22 \partial(X)$ is a nontrivial tight cut, where $X:=V\left(K_{1}\right)-w_{1}$ ..... 144
6.23 When $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right|=\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right|=1$ ..... 146
6.24 Illustration for Claim 6.26; the solid lines show part of the $R$-configuration $K_{1} 149$
6.25 When $K_{1}$ and $K_{2}$ share only one free corner ..... 150
6.26 When the two $R$-configurations are not disjoint; the vertices with the same labels are to be identified ..... 153
6.27 When the two $R$-configurations are disjoint ..... 154

## Chapter 1

## Introduction and summary

This chapter presents a broad survey of the topics relevant to this thesis. Our main results, namely, Theorems 1.10, 1.11, 1.12, 1.22 and 1.24 are presented within the overall context, and we highlight these using a bar on the left side. In addition, Section 1.8 has a list of our results.

### 1.1 Matching covered graphs

One of the motivations for the study of perfect matchings and edge-colorings was the fourcolor conjecture. Tait (1880) observed that the four-color conjecture is equivalent to the statement that every 2 -connected planar cubic graph is 3 -edge-colorable. (The Petersen graph shows that planarity is an essential assumption for this conclusion to hold.)

Meanwhile, motivated by a problem about factoring polynomials, Petersen (1891) showed that every 2 -connected cubic graph has a perfect matching. Tutte [Tut47] proved his celebrated 1 -factor Theorem characterizing graphs which have a perfect matching. (The number of odd components of a graph $G$ is denoted by odd $(G)$.)

Theorem 1.1 [TUTTE's Theorem] $A$ graph $G$ has a perfect matching if and only if $\operatorname{odd}(G-S) \leq|S|$ for each subset $S$ of $V(G)$.

Tutte deduced as a corollary that, in fact, in a 2-connected cubic graph each edge lies in a perfect matching. Figure 1.1 shows two cubic graphs, namely $K_{4}$ and the triangular prism $\overline{C_{6}}$, which play prominent roles in this thesis.

Let $G$ be a graph that has a perfect matching. A nonempty subset $S$ of its vertices is a barrier if it satisfies the equality $\operatorname{odd}(G-S)=|S|$. For distinct vertices $u$ and $v$ of $G$, it is easily deduced from Tutte's Theorem that the graph $G-\{u, v\}$ has a perfect matching if and only if no barrier of $G$ contains both $u$ and $v$.

An edge $e$ of $G$ is admissible if there is some perfect matching of $G$ that contains $e$; otherwise it is inadmissible. Clearly, an edge is admissible if and only if no barrier of $G$ contains both ends of $e$.

$K_{4}$

$\overline{C_{6}}$

Figure 1.1: The two smallest nonbipartite matching covered graphs

A connected graph with two or more vertices is matching covered if each of its edges is admissible. The observation made above implies the following characterization of matching covered graphs. (It can be used to establish, in particular, that every 2-connected cubic graph is matching covered.)

Proposition 1.2 Let $G$ be a connected graph with a perfect matching. Then $G$ is matching covered if and only if every barrier of $G$ is stable (that is, an independent set).

The following fundamental theorem is due to Kotzig (see [LP86, page 150]).

Theorem 1.3 [The Canonical Partition Theorem] The maximal barriers of $a$ matching covered graph $G$ partition its vertex set.

For a matching covered graph $G$, the partition of its vertex set defined by its maximal barriers is called the canonical partition of $V(G)$. For instance, for a bipartite matching
covered graph $H[A, B]$, the canonical partition of $V(H)$ consists of precisely two parts, namely, its color classes $A$ and $B$; this is implied by the following proposition which may be derived from the well-known Hall's Theorem. (The neighbourhood of a set of vertices $S$ is denoted by $N(S)$.)

## Proposition 1.4 [Characterizations of Bipartite Matching Covered Graphs]

Let $H[A, B]$ denote a bipartite graph on four or more vertices, where $|A|=|B|$. Then the following statements are equivalent:
(i) $H$ is matching covered,
(ii) $|N(S)| \geq|S|+1$ for every nonempty proper subset $S$ of $A$, and
(iii) $H-\{a, b\}$ has a perfect matching for each pair of vertices $a \in A$ and $b \in B$.

Matching covered graphs are referred to as '1-extendable' graphs in [LP86]. The term 'matching covered' was introduced by Lovász in his seminal work [Lov87] characterizing the matching lattice. For a comprehensive treatment of matching theory and its origins, we refer the reader to Lovász and Plummer [LP86], and to Schrijver [Sch03].

For general graph-theoretical notation and terminology, we essentially follow Bondy and Murty [BM08]. All graphs considered here are loopless; however, we allow multiple (parallel) edges.

It is surprising that matching covered graphs, defined in terms of these seemingly modest axioms, possess a strikingly rich structure. Our investigations, reported in this thesis, are concerned with certain specific questions related to the structure of matching covered graphs, and reinforce the above claim.

This thesis may be viewed as consisting of two main parts. The first part pertains to the problem of characterizing planar matching covered graphs which do not contain specific types of subdivisions of $K_{4}$ and $\overline{C_{6}}-$ a problem that arises from a thirty year old result (Theorem 1.6) of Lovász. In the second part, we explore generation procedures for an important class of matching covered graphs which are referred to as 'near-bipartite bricks'.

## Part I - Conformal Subgraphs

### 1.2 A theorem of Lovász

Several important classes of graphs are characterized by the absence of subdivisions of certain graphs as subgraphs. For example, as was shown by Kuratowski (1930), planar graphs are characterized by the property that they do not contain a subgraph which is a subdivision of either $K_{5}$ or of $K_{3,3}$. In the context of matching covered graphs, the notions of subdivision and subgraph need to be employed in a restricted sense, as explained below.


Figure 1.2: The Petersen graph

The length of a path is the number of its edges. A path is odd (even) if its length is odd (even). To bi-subdivide an edge $e$ means to subdivide $e$ by inserting an even number of vertices; or equivalently, to replace $e$ by an odd path. A bi-subdivision of a graph $J$ is a graph $H$ obtained from $J$ by means of bi-subdividing a subset of its edges. It is easily verified that any bi-subdivision of a matching covered graph on four or more vertices is also matching covered; however, this is clearly not true for arbitrary subdivisions.

In Figure 1.2, the subgraph whose edges are depicted by the bold lines is a bi-subdivision of $K_{4}$. (Bi-subdivisions are also known as totally odd subdivisions. There is an extensive literature dealing with bi-subdivisions of $K_{4}$ in the context of chromatic graph theory. See [Zan98] and [Tho01].)

A matching covered subgraph $H$ of a matching covered graph $G$ is conformal if the graph $G-V(H)$ has a perfect matching; equivalently, $H$ is conformal if each perfect matching of $H$ extends to a perfect matching of $G$. In Figure 1.2, the bi-subdivision of
$K_{4}$ depicted by the bold lines is a spanning subgraph, whence conformal. In general, a conformal subgraph may not be spanning. (In the literature, conformal subgraphs have been referred to as 'nice' subgraphs by Lovász [Lov83], as 'central' subgraphs by Robertson et al. [RST99], and as 'well-fitted' subgraphs by McCuaig [McC01].)

### 1.2.1 Ear decompositions

## Bipartite graphs

A single ear of a graph is an odd path whose internal vertices (if any) have degree two in the graph.

Let $H$ be a bipartite graph and $K$ a subgraph of $H$. A bipartite ear decomposition of $H$ starting with $K$ is a sequence $H_{1} \subset H_{2} \subset \cdots \subset H_{r}$ of subgraphs of $H$ such that (i) $H_{1}:=K$ and $H_{r}:=H$, and (ii) for each $i$ such that $1 \leq i \leq r-1$, the graph $H_{i+1}$ is the union of $H_{i}$ and exactly one single ear of $H_{i+1}$.

The following may be deduced from the fact that, for a bipartite matching covered graph $K[A, B]$, the graph $K-\{a, b\}$ has a perfect matching for every pair of vertices $a \in A$ and $b \in B$ (see Proposition 1.4).

Proposition 1.5 Let $H$ be a bipartite graph and suppose that $K$ is a matching covered subgraph of $H$. If $H$ admits a bipartite ear decomposition starting with $K$, then the graph $H$ is also matching covered.

It is easily seen that each subgraph in a bipartite ear decomposition of $H$ is a conformal subgraph of $H$. Conversely, given any conformal matching covered subgraph $K$ of a bipartite matching covered graph $H$, there exists a bipartite ear decomposition of $H$ starting with $K$. In particular, since the subgraph $H[e]$ induced by any edge $e$ is conformal, $H$ admits a bipartite ear decomposition starting with $H[e]$. See [LP86, page 124].

## Nonbipartite graphs

The 'addition of single ears' is not sufficient to construct nonbipartite matching covered graphs. For instance, it is not possible to obtain $K_{4}$ from its conformal subgraph $C_{4}$, by means of adding single ears, such that at each step we have a matching covered graph. To fix this, one must allow the 'addition of two single ears simultaneously', as explained below.

A pair of vertex-disjoint single ears is called a double ear. Let $G$ be a matching covered graph and $H$ a matching covered subgraph of $G$. An ear decomposition of $G$ starting with $H$ is a sequence $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ of matching covered subgraphs of $G$ such that (i) $G_{1}:=H$ and $G_{r}:=G$, and (ii) for each $i$ such that $1 \leq i \leq r-1$, the graph $G_{i+1}$ is the union of $G_{i}$ and exactly one single or double ear of $G_{i+1}$. We say that $G_{i+1}$ is obtained from $G_{i}$ by adding a single ear, or by adding a double ear, as applicable.

A basic result from [LP86, page 182] states that a matching covered subgraph $H$ of a matching covered graph $G$ is conformal if and only if $G$ admits an ear decomposition starting with $H$. Consequently, every matching covered graph $G$ admits an ear decomposition starting with $G[e]$, where $e$ is any edge of $G$. Clearly, the second graph in such a sequence is obtained by adding a single ear, and it is a cycle of even length. (It should be noted that a matching covered graph may admit different ear decompositions, possibly of different lengths.)

In other words, every matching covered graph $G$ may be constructed from $K_{2}$ by means of adding single or double ears such that, at each step, we have a matching covered graph. A subtle point needs to be made here. A double ear consists of two vertex-disjoint single ears; its addition is justified only if neither of its constituent single ears can be added individually to obtain a matching covered graph. Henceforth, we will implicitly assume this property when considering ear decompositions. (In [LP86], such an ear decomposition is called 'non-refinable'.)

For instance, as noted earlier, every bipartite matching covered graph may be constructed by adding single ears alone. Conversely, any matching covered graph, obtained from a bipartite matching covered graph by adding a single ear, is also bipartite.

Now let $G$ be a nonbipartite matching covered graph, and let $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ be an ear decomposition of $G$ starting with $G_{1} \cong K_{2}$. It follows from the above observation that, at some stage, a double ear is added. Let $G_{k}$, where $3 \leq k \leq r$, be the first graph in the sequence obtained by adding a double ear. Then all graphs $G_{1}, G_{2}, \ldots, G_{k-1}$ are bipartite, and $G_{k}$ is nonbipartite. This observation is of significance, especially in the second part of this thesis, and we will return to it in Section 1.6.

A natural question arises from the above observation: given a nonbipartite matching covered graph $G$, how early can the first double ear be added? Lovász [Lov83] answered this by proving that $G$ admits an ear decomposition $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ starting with $G_{1} \cong K_{2}$ such that either $G_{3}$ is a bi-subdivision of $K_{4}$, or $G_{4}$ is a bi-subdivision of $\overline{C_{6}}$. This fundamental result of Lovász may be restated as follows.

Theorem 1.6 [LOVÁsz's ThEOREM] Each nonbipartite matching covered graph G admits an ear decomposition starting with either a bi-subdivision of $K_{4}$ or of $\overline{C_{6}}$.

A short proof of the above theorem was given by Carvalho and Lucchesi [CL96]. We remark that, in general, a nonbipartite matching covered graph need not admit an ear decomposition which uses only one double ear addition. For example, every ear decomposition of the Petersen graph requires the addition of at least two double ears (see [LP86, page 178]).

### 1.2.2 $\quad K_{4}$-based and $\overline{C_{6}}$-based graphs

For a matching covered graph $J$, we say that $G$ is $J$-based if $G$ contains a conformal subgraph $H$ which is a bi-subdivision of $J$. Otherwise, we say that $G$ is $J$-free. This notion has played a crucial role in characterizing important classes of matching covered graphs. For example, Little [Lit75] showed that a bipartite matching covered graph is Pfaffian if and only if it is $K_{3,3}$-free.

Lovász's Theorem (1.6) implies that every nonbipartite matching covered graph is either $K_{4}$-based, or is $\overline{C_{6}}$-based, or both. For example, the Petersen graph is $K_{4}$-based but $\overline{C_{6}}$-free; on the other hand, each prism (see page 13) on $4 k+2$ vertices, where $k \geq 1$, is $\overline{C_{6}}$-based but $K_{4}$-free; whereas each complete graph on $2 k$ vertices, where $k \geq 3$, is $K_{4}$-based as well as $\overline{C_{6}}$-based.

Alternatively, the $K_{4}$-based matching covered graphs are precisely those which admit an ear decomposition starting with a bi-subdivision of $K_{4}$. An analogous statement holds for $\overline{C_{6}}$-based graphs.

This led Carvalho, Lucchesi and Murty [CLM03] to pose two problems: (i) determine whether or not a given matching covered graph $G$ is $K_{4}$-free, and likewise, (ii) determine whether or not $G$ is $\overline{C_{6}}$-free. These problems are, in general, unsolved. In the first part of this thesis, we solve these problems for the special case of planar matching covered graphs. In the next two sections, we state the highlights of our solution.

### 1.3 Bricks

It is well-known that each matching covered graph may be 'decomposed', in an essentially unique manner, into special matching covered graphs called 'bricks' and 'braces'. This procedure is known as the 'tight cut decomposition'.

This decomposition theory was developed by Kotzig, Lovász and Plummer, and its import is due to the fact that the properties of a matching covered graph may often be understood by analysing the properties of its bricks and braces. For instance, a matching covered graph is Pfaffian if and only if each of its bricks and braces is Pfaffian; see [LR91]. Our Theorem 1.10 is another example of this type. We now proceed to describe this decomposition procedure.

### 1.3.1 Tight cut decomposition

For a nonempty proper subset $X$ of the vertices of a graph $G$, we denote by $\partial(X)$ the cut associated with $X$, that is, the set of all edges of $G$ that have one end in $X$ and the other end in $\bar{X}:=V(G)-X$. We refer to $X$ and $\bar{X}$ as the shores of $\partial(X)$. A cut is trivial if any of its shores is a singleton. For a cut $\partial(X)$, we denote the graph obtained by contracting the shore $\bar{X}$ to a single vertex $\bar{x}$ by $G /(\bar{X} \rightarrow \bar{x})$. In case the label of the contraction vertex $\bar{x}$ is irrelevant, we simply write $G / \bar{X}$. The two graphs $G / X$ and $G / \bar{X}$ are called the $\partial(X)$-contractions of $G$. In Figure 1.3, the three edges crossing the bold line constitute a nontrivial cut, say $\partial(X)$, and the two $\partial(X)$-contractions are $K_{4}$ and $K_{3,3}$.


Figure 1.3: A nontrivial tight cut

Let $G$ be a matching covered graph. A cut $\partial(X)$ is a tight cut if $|M \cap \partial(X)|=1$ for every perfect matching $M$ of $G$. It is easily verified that if $\partial(X)$ is a nontrivial tight cut of $G$, then each $\partial(X)$-contraction is a matching covered graph that has strictly fewer vertices than $G$. If either of the $\partial(X)$-contractions has a nontrivial tight cut, then that graph can be further decomposed into even smaller matching covered graphs. We can repeat this procedure until we obtain a list of matching covered graphs, each of which is free of nontrivial tight cuts. This procedure is known as a tight cut decomposition of $G$.

For instance, if $S$ is a barrier of $G$, and $K$ is an odd component of $G-S$, then $\partial(V(K))$ is a tight cut of $G$. Such a tight cut is called a barrier cut, and such cuts play an important role in the second part of this thesis. The graph in Figure 1.3 has a barrier cut depicted by the bold line, and each of its contractions (that is, $K_{4}$ and $K_{3,3}$ ) is free of nontrivial tight cuts. Note that, if $v$ is a vertex of degree two then $\{v\} \cup N(v)$ is the shore of a barrier cut. A barrier is trivial if it has a single vertex. Note that if $G$ is nonbipartite then each nontrivial barrier gives rise to a nontrivial tight cut.

Now suppose that $\{u, v\}$ is a 2 -vertex-cut of $G$ such that $G-\{u, v\}$ has an even component, say $K$. Then each of the sets $V(K) \cup\{u\}$ and $V(K) \cup\{v\}$ is a shore of a nontrivial tight cut of $G$. Such a tight cut is called a 2 -separation cut. The graph in Figure 1.4 has a 2-separation cut, and each of its contractions is $K_{4}$ with multiple edges. (We remark that, a graph may have a tight cut which is neither a barrier cut nor a 2 -separation cut.)

Let $G$ be a matching covered graph free of nontrivial tight cuts. If $G$ is bipartite then it is a brace; otherwise it is a brick. Thus, a tight cut decomposition of $G$ results in a list of bricks and braces. For example, a tight cut decomposition of the graph shown in Figure 1.3 yields the brick $K_{4}$ and the brace $K_{3,3}$.

In general, a matching covered graph may admit several tight cut decompositions. However, Lovász [Lov87] proved the following remarkable result, and demonstrated its significance by using it to compute the dimension of the matching lattice.

Theorem 1.7 [The Unique Decomposition Theorem] Any two tight cut decompositions of a matching covered graph yield the same list of bricks and braces (except possibly for multiplicities of edges).

In particular, any two tight cut decompositions of a matching covered graph $G$ yield the same number of bricks; this number is denoted by $b(G)$. We remark that $G$ is bipartite if and only if $b(G)=0$.

A graph $G$, with four or more vertices, is bicritical if $G-\{u, v\}$ has a perfect matching for every pair of distinct vertices $u$ and $v$. For instance, the graph shown in Figure 1.4 is bicritical. The following characterization of bicritical graphs follows immediately from Tutte's Theorem.

Proposition 1.8 [Characterization of Bicritical Graphs] Let $G$ be a graph that has a perfect matching. Then $G$ is bicritical if and only if every barrier of $G$ is trivial.


Figure 1.4: A bicritical graph which is not a brick

Equivalently, for a bicritical graph $G$, the canonical partition of $V(G)$ consists of $|V(G)|$ parts, each of which contains a single vertex. Since a brick is a nonbipartite matching covered graph which is free of nontrivial tight cuts, it follows from the above observations that every brick is 3-connected and bicritical. Edmonds, Lovász and Pulleyblank [ELP82] established the converse; their proof was based on LP-duality.

Theorem 1.9 [Characterization of Bricks] A graph $G$ is a brick if and only if it is 3-connected and bicritical.

In particular, a brick is free of nontrivial barriers and of 2-vertex cuts. Szigeti [Szi02] obtained a simple proof of Theorem 1.9 which does not use LP-duality.

Throughout this thesis, we shall mainly be interested in nonbipartite matching covered graphs, and especially in bricks. Three cubic bricks, namely $K_{4}, \overline{C_{6}}$ and the Petersen graph, occupy a special position in the theory of matching covered graphs.

### 1.3.2 Reduction to the case of bricks

As discussed in Section 1.2.2, given a planar matching covered graph $G$, we would like to determine whether or not $G$ is $K_{4}$-free, and likewise, whether or not $G$ is $\overline{C_{6}}$-free.

As a first step, we reduce the above problems to the case of bricks. Let $J$ denote any cubic brick. The key idea is to show that if $G$ is a matching covered graph and $\partial(X)$ is a nontrivial tight cut of $G$, then $G$ is $J$-free if and only if each of its $\partial(X)$-contractions is $J$-free. (We remark that this statement is not true if $J$ is a cubic brace, as can be inferred from the graph in Figure 1.3 with $K_{3,3}$ playing the role of $J$; and it is also not true if $J$ is
an arbitrary brick.) It now follows from the Unique Decomposition Theorem (1.7) that $G$ is $J$-free if and only if each of its bricks and braces is $J$-free. (We point out that braces, being bipartite, are trivially $J$-free.)

Theorem 1.10 [REDUCTION TO THE CASE OF BRIcks] Let J denote any cubic brick. A nonbipartite matching covered graph is $J$-free if and only if each of its bricks is $J$-free.

We emphasize that the above theorem has nothing to do with planarity. We present a proof of Theorem 1.10 in Chapter 2.

It is straightforward to see that, for a planar matching covered graph, each of its bricks and braces is also planar. In view of Theorem 1.10, it suffices to characterize $K_{4}$-free planar bricks and $\overline{C_{6}}$-free planar bricks. We discuss our solutions to these problems in Section 1.4.

### 1.3.3 Norine-Thomas bricks

Here, we shall describe five infinite families of bricks; namely, odd wheels, prisms, Möbius ladders, truncated biwheels and staircases; we refer to these as the Norine-Thomas families for reasons explained in Section 1.5. Furthermore, we say that a brick is Norine-Thomas if it belongs to any of these families, or if it is isomorphic to the Petersen graph. We adopt the terminology of Carvalho et al. [CLM08].

Odd Wheels. The odd wheel $W_{2 k+1}$, for $k \geq 1$, is defined to be the join of an odd cycle $C_{2 k+1}$ and $K_{1}$. See Figure 1.6a. The smallest odd wheel is $K_{4}$. If $k \geq 2$, then $W_{2 k+1}$ has exactly one vertex of degree $2 k+1$, called its $h u b$, and the edges incident at the hub are called its spokes. The remaining $2 k+1$ vertices lie on a cycle, called the rim, and they are referred to as rim vertices.

Each member of the remaining four families contains a bipartite matching covered subgraph which is either a 'ladder' or a 'partial biwheel'. These bipartite graphs are also the main building blocks of additional families of bricks which are of interest in Section 1.7.3. For this reason, we start with a description of these two families of bipartite graphs.

LADDERS. Let $x_{0} x_{1} \ldots x_{j}$ and $y_{0} y_{1} \ldots y_{j}$ be two vertex-disjoint paths, where $j \geq 2$. The graph $K$ obtained by the union of these two paths, and by adding edges $x_{i} y_{i}$ for $0 \leq i \leq j$,
is called a ladder, and its edges joining $x_{i}$ and $y_{i}$ are referred to as its rungs. See Figure 1.5. The two rungs $x_{0} y_{0}$ and $x_{j} y_{j}$ are external, and the remaining rungs are internal. We say that $K$ is odd (even) if it has an odd (even) number of rungs.

Partial Biwheels. Let $x_{0} x_{1} \ldots x_{2 j+1}$ be an odd path, where $j \geq 1$. The graph $K$ obtained by adding two new vertices $u$ and $w$, joining $u$ to vertices in $\left\{x_{0}, x_{2}, \ldots, x_{2 j}\right\}$, and joining $w$ to vertices in $\left\{x_{1}, x_{3}, \ldots, x_{2 j+1}\right\}$, is called a partial biwheel; the vertices $x_{0}$ and $x_{2 j+1}$ are referred to as its ends, whereas $u$ and $w$ are referred to as its hubs; and an edge incident with a hub is called a spoke. See Figure 1.5. The two spokes $u x_{0}$ and $w x_{2 j+1}$ are external, and the remaining spokes are internal.


Figure 1.5: Partial biwheels (top) and Ladders (bottom)

When referring to a ladder or to a partial biwheel, say $K[A, B]$, with external rungs/spokes $a u$ and $b w$, we adopt the convention that $a, w \in A$ and $b, u \in B$; furthermore, when $K$ is a partial biwheel, $u$ and $w$ shall denote its hubs; as shown in Figure 1.5. (Sometimes, we may also use subscript notation, such as $A_{i}, B_{i}, a_{i} u_{i}$ and $b_{i} w_{i}$ where $i$ is an integer, and this convention extends naturally.)

It should be noted that a partial biwheel of order six is also a ladder. However, a partial biwheel of order eight or more has only two vertices of degree two, namely, its ends; whereas every ladder has four such vertices. We remark that, a biwheel, as defined
by McCuaig [McC01], has order at least eight and contains an additional edge joining its ends; and these constitute an important class of braces.

We now proceed to describe the remaining four Norine-Thomas families using ladders and partial biwheels.

Prisms, Möbius Ladders and Truncated Biwheels. Let $H[A, B]$ denote either a ladder or a partial biwheel of order $n$, with external rungs/spokes $a u$ and $b w$, and let $G$ be the graph obtained from $H$ by adding two edges, namely, $a w$ and $b u$. If $H$ is an odd ladder then $G$ is a prism and it is denoted by $P_{n}$, see Figure 1.6b. If $H$ is an even ladder then $G$ is a Möbius ladder and it is denoted by $M_{n}$, see Figure 1.6f. Finally, if $H$ is a partial biwheel then $G$ is a truncated biwheel and it is denoted by $T_{n}$, see Figure 1.6c. Note that $\overline{C_{6}}$ is the smallest prism as well as the smallest truncated biwheel. For convenience, we shall consider $K_{4}$ to be the smallest Möbius ladder.


Figure 1.6: (a) Odd wheel $W_{7}$, (b) Prism $P_{10}$, (c) Truncated biwheel $T_{8}$, (d) Odd staircase $S t_{8}$, (e) Even staircase $S t_{10}$, (f) Möbius ladder $M_{8}$

Staircases. Let $K\left[A_{1}, B_{1}\right]$ denote a ladder of order $n$, with external rungs $a_{1} u_{1}$ and $b_{1} w_{1}$. Then the graph $G$ obtained from $K$, by adding two new vertices $a_{2}$ and $b_{2}$, and by adding five new edges $a_{1} a_{2}, u_{1} a_{2}, b_{1} b_{2}, w_{1} b_{2}$ and $a_{2} b_{2}$, is called a staircase, and it is denoted by $S t_{n+2}$. We say that $G$ is an odd (even) staircase if $K$ is an odd (even) ladder. See Figures 1.6d and 1.6e.

### 1.4 Planar bricks

In this section, we state our characterizations of $K_{4}$-free planar bricks and of $\overline{C_{6}}$-free planar bricks. Observe that, for a cubic brick $J$, a matching covered graph $G$ is $J$-free if and only if the underlying simple graph of $G$ is $J$-free. We may thus restrict our attention to simple planar bricks.

A well-known result due to Whitney [Whi33] says that every simple 3-connected planar graph has a unique embedding in the plane. We may thus refer to the faces of simple planar bricks without any ambiguity.

In what follows, the number of odd faces will play a key role. Observe that, for a 3 -connected planar graph $G$, the number of its odd faces is the same as the number of odd faces of its underlying simple graph. Being nonbipartite, each planar brick has at least two odd faces.

Observe that every Norine-Thomas brick, except for the Petersen graph and the Möbius ladders of order eight or more, is planar. Among the planar ones, every prism, truncated biwheel and even staircase has precisely two odd faces. On the other hand, every odd staircase has exactly four odd faces; and since each face of an odd wheel is odd, every odd wheel has at least four odd faces.

### 1.4.1 $K_{4}$-free planar bricks

We begin by noting that $K_{4}$ has exactly four odd faces, and so does any bi-subdivision of $K_{4}$. This immediately implies that each $K_{4}$-based planar graph has four or more odd faces. (In particular, prisms, truncated biwheels and even staircases are $K_{4}$-free.)

We establish that the converse is also true when the graph under consideration is a brick; that is, we show that every planar brick with four or more odd faces is $K_{4}$-based. (In particular, odd staircases and odd wheels are $K_{4}$-based.) This leads us to the following compact characterization of $K_{4}$-free planar bricks.

Theorem 1.11 [Characterization of $K_{4}$-Free Planar Bricks] A planar brick is $K_{4}$-free if and only if it has precisely two odd faces.

It is important to note that, in general, a planar 3-connected matching covered graph with four or more odd faces may not be $K_{4}$-based, as shown by the graph in Figure 3.2. In other words, the bicriticality property of bricks is indispensable; recall Theorem 1.9.

### 1.4.2 $\overline{C_{6}}$-free planar bricks

Observe that $\overline{C_{6}}$ has two vertex-disjoint odd cycles, and thus every $\overline{C_{6}}$-based graph inherits this property. Consequently, the odd wheels are $\overline{C_{6}}$-free. By investigating the odd cycles of $S t_{8}$ (see Figure 1.6 d ), one may easily verify that it is $\overline{C_{6}}$-free. More generally, each odd staircase is $\overline{C_{6}}$-free. We show that apart from these two infinite families, there is one exceptional $\overline{C_{6}}$-free simple planar brick which we call the Tricorn (see Figure 1.8).

Theorem 1.12 [Characterization of $\overline{C_{6}}$-Free Planar Bricks] A planar brick is $\overline{C_{6}}$-free if and only if its underlying simple graph is either an odd wheel, or an odd staircase, or the Tricorn.

We emphasize that Theorems 1.10, 1.11 and 1.12 together provide a complete characterization of $K_{4}$-free planar matching covered graphs, and of $\overline{C_{6}}$-free planar matching covered graphs. These results also appear in [KM16].

We present proofs of Theorems 1.11 and 1.12 in Chapter 3. The principal tool we use for proving these results is the brick generation procedure established by Norine and Thomas [NT07]. We discuss their result, and a related result of Carvalho, Lucchesi and Murty [CLM06], in the next section.

## Part II - Brick Generation

### 1.5 Removable edges

As discussed in Section 1.3, the properties of a matching covered graph can often be deduced by analysing its bricks and braces. This has led researchers to develop inductive tools for studying the properties of bricks and braces; these have found useful applications.

McCuaig [McC01] described a procedure for generating simple braces, and used it in [McC04] to derive a structural characterization of Pfaffian bipartite matching covered graphs. Carvalho, Lucchesi and Murty [CLM06] established a generation procedure for bricks, and applied it to show that the only 'solid' planar bricks are the odd wheels; this may also be deduced from our Theorem 1.12 since solid bricks are also $\overline{C_{6}}$-free. Norine and Thomas [NT07] established a generation procedure for simple bricks; our proofs of Theorems 1.11 and 1.12 rely heavily on their result.

In this section, we review the aforementioned works of Carvalho et al. [CLM06], and of Norine and Thomas [NT07]. We shall find it convenient to state all of the results using the terminology of Carvalho et al. [CLM06, CLM08].

An edge $e$ of a matching covered graph $G$ is removable if $G-e$ is also matching covered; otherwise it is non-removable. For example, each edge of the Petersen graph is removable. All bricks in the Norine-Thomas families, except for $K_{4}$ and $\overline{C_{6}}$, have removable edges; these are indicated in Figure 1.6 by the bold lines.

We remark that the notion of a removable edge is intrinsically related to ear decompositions. To see this, note that an edge $e$ of a matching covered graph $G$ is removable if and only if $G$ admits an ear decomposition in which the edge $e$ is the last (single) ear added.

The following was established by Lovász [Lov87].
Theorem 1.13 [Removable Edge Theorem] Every brick distinct from $K_{4}$ and $\overline{C_{6}}$ has a removable edge.

We point out that, if $e$ is a removable edge of a brick $G$, then $G-e$ may not be a brick. For instance, $G-e$ may have vertices of degree two.

In what follows, we will define three types of removable edges: ' $b$-invariant' edges, 'thin' edges and 'strictly thin' edges, in that order. In the context of bricks, each type is a
specialization of the preceding type as depicted in Figure 1.7; for instance, an arrow from 'thin' to ' $b$-invariant' indicates that a thin edge is a special type of $b$-invariant edge.


Figure 1.7: Types of removable edges in bricks; the ones in the shaded area are only applicable to near-bipartite bricks and they are introduced in Section 1.7

### 1.5.1 Near-bricks and $b$-invariant edges

Recall that $b(G)$ denotes the number of bricks of a matching covered graph $G$ (in any tight cut decomposition), and it is well-defined due to the Unique Decomposition Theorem (1.7). A near-brick is a matching covered graph with $b(G)=1$. Clearly, every brick is a near-brick. However, the converse is not true. For instance, the graph shown in Figure 1.3 is a near-brick but it is not a brick. When proving theorems concerning bricks, one
often needs the flexibility of dealing with the wider class of near-bricks, whose properties are akin to those of bricks.

A removable edge $e$ of a matching covered graph $G$ is b-invariant if $b(G-e)=b(G)$. In particular, if $G$ is a brick then $e$ is $b$-invariant if and only if $G-e$ is a near-brick. For example, in every member of the Norine-Thomas families, each removable edge is $b$-invariant. On the other hand, it is easily verified that if $G$ is the Petersen graph and $e$ is any edge, then $b(G-e)=2$. Thus each edge of the Petersen graph is removable, but none of them is $b$-invariant.

Confirming a conjecture of Lovász, the following result was proved by Carvalho, Lucchesi and Murty [CLM02a].

Theorem 1.14 [b-invariant Edge Theorem] Every brick distinct from $K_{4}$ and $\overline{C_{6}}$ and the Petersen graph has a b-invariant edge.

In [CLM02a], Carvalho et al. established a generalization of the above theorem. For instance, their result shows that the staircase $S t_{8}$ is the only brick with a unique $b$-invariant edge, which is depicted in Figure 1.6d by a bold line.

### 1.5.2 Bicontractions, retracts and bi-splittings

Let $G$ be a matching covered graph and let $v$ be a vertex of degree two, with two distinct neighbours $u$ and $w$. The bicontraction of $v$ is the operation of contracting the two edges $v u$ and $v w$ incident with $v$. Note that $X:=\{u, v, w\}$ is the shore of a tight cut of $G$, and that the graph resulting from the bicontraction of $v$ is the same as the $\partial(X)$-contraction $G / X$, whereas the other $\partial(X)$-contraction $G / \bar{X}$ is isomorphic to $C_{4}$ (possibly with multiple edges).

The retract of $G$ is the graph obtained from $G$ by bicontracting all its degree two vertices. The above observation implies that the retract of a matching covered graph is also matching covered. Carvalho et al. [CLM05] showed that the retract of a matching covered graph is unique up to isomorphism. It is important to note that even if $G$ is simple, the retract of $G$ may have multiple edges.

The operation of bi-splitting is the converse of the operation of bicontraction. Let $H$ be a graph and let $v$ be a vertex of $H$ of degree at least two. Let $G$ be a graph obtained from $H$ by replacing the vertex $v$ by two new vertices $v_{1}$ and $v_{2}$, distributing the edges in
$H$ incident with $v$ between $v_{1}$ and $v_{2}$ such that each gets at least one, and then adding a new vertex $v_{0}$ and joining it to both $v_{1}$ and $v_{2}$. Then we say that $G$ is obtained from $H$ by bi-splitting $v$ into $v_{1}$ and $v_{2}$. It is easily seen that if $H$ is matching covered, then $G$ is also matching covered, and that $H$ can be recovered from $G$ by bicontracting the vertex $v_{0}$ and denoting the contraction vertex by $v$.

### 1.5.3 Thin edges

A $b$-invariant edge $e$ of a brick $G$ is thin if the retract of $G-e$ is a brick. As the graph $G-e$ can have zero, one or two vertices of degree two, the retract of $G-e$ is obtained by performing at most two bicontractions, and it has at least $|V(G)|-4$ vertices.

For example, if $G$ is an odd wheel of order six or more and if $e$ is any spoke, then the retract of $G-e$ is a smaller odd wheel with multiple edges; thus, each spoke of $G$ is a thin edge. More generally, if $G$ belongs to any of the Norine-Thomas families, and if $e$ denotes any removable edge, then the retract of $G-e$ is a smaller Norine-Thomas brick with multiple edges; consequently, $e$ is thin. It should be noted that, in general, a $b$-invariant edge may not be thin.

The original definition of a thin edge, due to Carvalho et al. [CLM06], was in terms of barriers; 'thin' being a reference to the fact that the barriers of $G-e$ are sparse. This viewpoint will also be useful to us in Chapter 5 where further explanation is provided. Carvalho, Lucchesi and Murty [CLM06] used their b-invariant Edge Theorem (1.14) to derive the following stronger result.

Theorem 1.15 [Thin Edge Theorem] Every brick distinct from $K_{4}$ and $\overline{C_{6}}$ and the Petersen graph has a thin edge.

The following is an immediate consequence of the above theorem.

Theorem 1.16 [CLM06] Given any brick $G$, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of bricks such that:
(i) $G_{1}$ is either $K_{4}$ or $\overline{C_{6}}$ or the Petersen graph,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists a thin edge $e_{i}$ of $G_{i}$ such that $G_{i-1}$ is the retract of $G_{i}-e_{i}$.

Carvalho et al. [CLM06] also described four elementary 'expansion operations' which may be applied to any brick to obtain a larger brick with at most four more vertices. Each of these operations consists of bi-splitting at most two vertices and then adding a suitable edge. Given a brick $J$, the application of any of these four operations to $J$ results in a brick $G$ such that $G$ has a thin edge $e$ with the property that $J$ is the retract of $G-e$. Thus, any brick may be generated from one of the three basic bricks ( $K_{4}$ and $\overline{C_{6}}$ and the Petersen graph) by means of these four expansion operations.

One of the problems with this brick generation procedure is that, even if $G_{k}=G$ is a simple brick, there is no guarantee that all the intermediate bricks $G_{2}, G_{3}, \ldots G_{k-1}$ are also simple. In fact, certain bricks cannot be generated by staying within the realm of simple bricks.

### 1.5.4 Strictly thin edges

A thin edge $e$ of a simple brick $G$ is strictly thin if the retract of $G-e$ is simple. As an example, consider the Tricorn, shown in Figure 1.8, which has precisely three removable edges indicated by bold lines; deleting one of them, say $e$, and taking the retract yields the simple odd wheel $W_{5}$. Thus each removable edge of the Tricorn is strictly thin. By contrast, in a Norine-Thomas brick, none of the thin edges is strictly thin.


Tricorn

$W_{5}$

Figure 1.8: Removable edges of the Tricorn

Using this terminology, the theorem of Norine and Thomas [NT07] may be stated as follows.

Theorem 1.17 [Strictly Thin Edge Theorem] Let $G$ be a simple brick. If $G$ is free of strictly thin edges then $G$ is either the Petersen graph, or it is an odd wheel, a prism, a Möbius ladder, a truncated biwheel or a staircase.

Equivalently, the only simple bricks devoid of strictly thin edges are the Norine-Thomas bricks. It should be noted that Norine and Thomas did not state their results in terms of strictly thin edges.

Subsequently, Carvalho et al. [CLM08] used their Thin Edge Theorem (1.15) to deduce the Strictly Thin Edge Theorem (1.17). The following result of Norine and Thomas [NT07] is an immediate consequence of Theorem 1.17.

Theorem 1.18 Given any simple brick $G$, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of simple bricks such that:
(i) $G_{1}$ is a Norine-Thomas brick,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists a strictly thin edge $e_{i}$ of $G_{i}$ such that $G_{i-1}$ is the retract of $G_{i}-e_{i}$.

The above theorem implies that every simple brick can be generated from one of the Norine-Thomas bricks by repeated application of the four expansion operations such that at each step we have a simple brick.

We remark that Norine and Thomas proved a generalization of Theorem 1.18, which they refer to as the 'splitter theorem for bricks', since it is motivated by the splitter theorem for 3 -connected graphs due to Seymour [Sey80]. The notions of thin and strictly thin edges are easily generalized to braces (see [CLM08]). A 'splitter theorem for braces' was established by McCuaig [McC01].

### 1.6 Near-bipartite graphs

A nonbipartite matching covered graph $G$ is near-bipartite if it has a pair $R:=\{\alpha, \beta\}$ of edges such that the graph $H:=G-R$ is bipartite and matching covered; for instance,
$K_{4}$ and $\overline{C_{6}}$ are the smallest near-bipartite bricks. Observe that the edge $\alpha$ joins two vertices in one color class of $H$, and that $\beta$ joins two vertices in the other color class. Consequently, if $M$ is any perfect matching of $G$ then $\alpha \in M$ if and only if $\beta \in M$.

The significance of near-bipartite graphs arises from the theory of ear decompositions (see Section 1.2.1). Observe that if $G$ is any nonbipartite matching covered graph, and if $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ is an ear decomposition of $G$ starting with a conformal bipartite matching covered subgraph $G_{1}$, then the first nonbipartite graph in this sequence, say $G_{k}$, is a bi-subdivision of a near-bipartite graph (where the double ear added may be viewed as adding two edges, one joining two vertices in one color class of $G_{k-1}$ and another edge joining two vertices in the other color class, and then bi-subdividing those edges). In this sense, near-bipartite graphs constitute the class of nonbipartite matching covered graphs which are closest to being bipartite.

Since the problems of characterizing $K_{4}$-free nonplanar bricks and $\overline{C_{6}}$-free nonplanar bricks do not seem to be tractable with the tools available to us, it may be worthwhile studying these questions for the restricted class of near-bipartite bricks. This approach has been successful in the theory of Pfaffian orientations; although there has been no significant progress in characterizing Pfaffian bricks; Fischer and Little [FL01] were able to characterize Pfaffian near-bipartite graphs.

With this in mind, we undertook to investigate generation procedures which are specific to near-bipartite bricks. We hope that these results can be used to derive characterizations of important classes of near-bipartite bricks.

### 1.6.1 Removable doubletons

A pair of distinct edges $R:=\{\alpha, \beta\}$ of a matching covered graph $G$ is a removable doubleton if neither $\alpha$ nor $\beta$ is removable, but the graph $G-R$ is matching covered. It should be noted that, in general, the graph $G-R$ need not be bipartite. However, Lovász [Lov87] proved that if $G$ is a brick then $G-R$ is indeed bipartite; the following more general result of Carvalho et al. [CLM02b] shows that the conclusion holds even if $G$ is a near-brick.

Theorem 1.19 Let $G$ be a matching covered graph, and let $R$ be a removable doubleton. Then $b(G-R)=b(G)-1$.

The above theorem implies that every near-bipartite graph is a near-brick. In fact, as we will see in Chapter 4, the unique brick of a near-bipartite graph is also near-bipartite.


Figure 1.9: The staircase $S t_{8}$

A graph may have several removable doubletons; for instance, $K_{4}$ and $\overline{C_{6}}$ have three; the staircase $S t_{8}$ shown in Figure 1.9 has two, namely $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. It is easily verified that every Norine-Thomas brick (see Section 1.3.3), except for the odd wheels of order six or more and for the Petersen graph, is near-bipartite; among these, only the truncated biwheels, of order eight or more, have a unique removable doubleton.

### 1.7 Generating near-bipartite bricks

The difficulty in using either Theorem 1.16 or Theorem 1.18 as an induction tool for studying near-bipartite bricks, is that even if $G_{k}:=G$ is a near-bipartite brick, there is no guarantee that all of the intermediate bricks $G_{1}, G_{2}, \ldots G_{k-1}$ are also near-bipartite.

For instance, the brick shown in Figure 1.10a is near-bipartite with a (unique) removable doubleton $R:=\{\alpha, \beta\}$. Although the edge $e$ is thin; the retract of $G-e$, as shown in Figure 1.10b, is not near-bipartite since it has three edge-disjoint triangles.

(a)

(b)

Figure 1.10: (a) A near-bipartite brick $G$ with a thin edge $e$; (b) The retract of $G-e$ is not near-bipartite

In other words, deleting an arbitrary thin edge may not preserve the property of being near-bipartite. In this sense, neither the Thin Edge Theorem (1.15) nor the Strictly Thin Edge Theorem (1.17) is adequate for obtaining inductive proofs of results that pertain only to the class of near-bipartite bricks.

To fix this problem, we decided to look for a thin edge whose deletion preserves the property of being near-bipartite. Recall that a graph may have several removable doubletons. We find it convenient to fix a removable doubleton $R$ (of the brick under consideration), and then look for a thin edge whose deletion preserves this removable doubleton. To make this precise, we will first define a special type of removable edge which we call ' $R$-compatible'.

### 1.7.1 $\quad R$-compatible edges

We use the abbreviation $R$-graph for a near-bipartite graph $G$ with (fixed) removable doubleton $R$, and we shall refer to $H:=G-R$ as its underlying bipartite graph. In the same spirit, an $R$-brick is a brick with a removable doubleton $R$.

A removable edge $e$ of an $R$-graph $G$ is $R$-compatible if it is removable in $H$ as well. Equivalently, an edge $e$ is $R$-compatible if $G-e$ and $H-e$ are both matching covered. For instance, the staircase $S t_{8}$, shown in Figure 1.9, has two removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$, and its unique removable edge $e$ is $R$-compatible as well as $R^{\prime}$-compatible.

Now, let $G$ denote the $R$-brick shown in Figure 1.10a, where $R:=\{\alpha, \beta\}$. The thin edge $e$ is incident with an edge of $R$ at a cubic vertex; consequently, $H-e$ has a vertex whose degree is only one, and so it is not matching covered. In particular, $e$ is not $R$-compatible.

The brick shown in Figure 1.11 has two distinct removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. Its edges $a_{1} u_{1}$ and $b_{1} w_{1}$ are both $R^{\prime}$-compatible, but neither of them is $R$-compatible. (In Section 1.7.3, we will generalize the graphs in Figures 1.10a and 1.11 to infinite families which play important roles in our work.)

Observe that, if $e$ is an $R$-compatible edge of an $R$-graph $G$, then $R$ is a removable doubleton of $G-e$, whence $G-e$ is also an $R$-graph; in particular, $G-e$ is near-bipartite. By Theorem 1.19, $G-e$ is a near-brick; and this proves the following. (See Figure 1.7.)

Proposition 1.20 Every $R$-compatible edge is b-invariant.


Figure 1.11: The edges $a_{1} u_{1}$ and $b_{1} w_{1}$ are $R^{\prime}$-compatible, but they are not $R$-compatible

Furthermore, as we will see in Chapter 4, if $e$ is an $R$-compatible edge of an $R$-brick $G$ then the unique brick $J$ of $G-e$ is also an $R$-brick; in particular, $J$ is near-bipartite. The following is a special case of a theorem of Carvalho, Lucchesi and Murty [CLM99].

Theorem 1.21 [ $R$-compatible Edge Theorem] Every $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$ has an $R$-compatible edge.

In [CLM99], they proved a stronger result. In particular, they showed the existence of an $R$-compatible edge in $R$-graphs with minimum degree at least three, and used it to establish a generalization of Lovász's Theorem (1.6). (They did not use the term ' $R$-compatible'.) Using the notion of $R$-compatibility, we now define a thin edge whose deletion preserves the property of being near-bipartite.

### 1.7.2 $R$-thin edges

A thin edge $e$ of an $R$-brick $G$ is $R$-thin if it is $R$-compatible. Equivalently, an edge $e$ is $R$-thin if it is $R$-compatible as well as thin, and in this case, the retract of $G-e$ is also an $R$-brick. See Figure 1.7.

As noted earlier, the staircase $S t_{8}$, shown in Figure 1.9, has two removable doubletons $R$ and $R^{\prime}$. Its unique removable edge $e$ is $R$-thin as well as $R^{\prime}$-thin; to see this, note that the retract $J$ of $S t_{8}-e$ is isomorphic to $K_{4}$ with multiple edges, and each of $R$ and $R^{\prime}$ is
a removable doubleton of $J$. It is easily verified that if $G$ is a Norine-Thomas brick which is near-bipartite, then each of its thin edges is $R$-thin for some removable doubleton $R$.

It is desirable to characterize $R$-bricks free of $R$-thin edges, as this would yield a generation theorem for near-bipartite bricks analogous to Theorem 1.16. Using the $R$-compatible Edge Theorem (1.21) of Carvalho et al., we proved the following stronger result.

Theorem 1.22 [ $R$-Thin Edge Theorem] Every $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$ has an $R$-thin edge.

We present a proof of the above theorem in Chapter 5. Our proof uses tools from the work of Carvalho et al. [CLM06], and the overall approach is inspired by their proof of the Thin Edge Theorem (1.15). The following is an immediate consequence of Theorem 1.22.

Theorem 1.23 Given any $R$-brick $G$, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of $R$-bricks such that:
(i) $G_{1}$ is either $K_{4}$ or $\overline{C_{6}}$,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists an $R$-thin edge $e_{i}$ of $G_{i}$ such that $G_{i-1}$ is the retract of $G_{i}-e_{i}$.

It follows from the above theorem that every near-bipartite brick can be generated from one of $K_{4}$ and $\overline{C_{6}}$ by means of the expansion operations. However, as in the case of Theorem 1.16, it has the shortcoming that, even if $G_{k}=G$ is a simple near-bipartite brick, the intermediate bricks $G_{1}, G_{2}, \ldots, G_{k}$ are not guaranteed to be simple. As before, we shall overcome this hurdle using the notion of strictly thin edges.

### 1.7.3 Strictly $R$-thin edges

An $R$-thin edge $e$ of a simple $R$-brick $G$ is strictly $R$-thin if it is strictly thin. In other words, a strictly $R$-thin edge $e$ is one which is $R$-compatible as well as strictly thin; and in this case, the retract of $G-e$ is also a simple $R$-brick. See Figure 1.7.

For instance, let $G$ denote the $R$-brick shown in Figure 1.12(a), where $R:=\{\alpha, \beta\}$. The retract of $G-e$ is the truncated biwheel $T_{8}$ shown in Figure 1.12(b); consequently, $e$ is strictly $R$-thin.


Figure 1.12: Edge $e$ is strictly $R$-thin

Recall that the Norine-Thomas bricks are precisely those simple bricks which are free of strictly thin edges. In particular, every $R$-brick, which is a member of the Norine-Thomas families, is free of strictly $R$-thin edges. A natural question arises as to whether there are any simple $R$-bricks, different from the Norine-Thomas bricks, which are also free of strictly $R$-thin edges. It turns out that there indeed are such bricks; we have already encountered two examples in Figures 1.10a and 1.11, as explained below.

Let $G$ denote the $R$-brick, shown in Figure 1.10a, where $R:=\{\alpha, \beta\}$ is its unique removable doubleton. It can be checked that $G$ has precisely four strictly thin edges, depicted by bold lines; these are similar under the automorphisms of the graph. As noted earlier, if $e$ is any of these edges, then $e$ is not $R$-compatible; furthermore, the retract of $G-e$ is isomorphic to the graph shown in Figure 1.10b, which is not even near-bipartite as it has three edge-disjoint triangles. Thus, the generation of $G$ using the Norine-Thomas procedure cannot be achieved within the class of near-bipartite bricks.

Now, let $G$ denote the brick shown in Figure 1.11; it has two removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. It may be verified that $G$ has precisely two strictly thin edges, namely $a_{1} u_{1}$ and $b_{1} w_{1}$, each of which is $R^{\prime}$-compatible but neither is $R$-compatible. In particular, $G$ is free of strictly $R$-thin edges; in this sense it is similar to the graph in Figure 1.10a. On the other hand, $G$ has strictly $R^{\prime}$-thin edges; if $e$ is any such edge then
the retract of $G-e$ is a simple near-bipartite brick with removable doubleton $R^{\prime}$. In this sense, $G$ is different from the graph in Figure 1.10.

We will introduce seven infinite families of simple $R$-bricks which are free of strictly $R$-thin edges, and are different from the Norine-Thomas families. The members of these will be described using their specific bipartite subgraphs, each of which is either a ladder or a partial biwheel; see Figure 1.5. The occurrence of these subgraphs may be justified as follows. Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges. If $e$ is any $R$-thin edge of $G$, at least one end of $e$ is cubic and the retract of $G-e$ has multiple edges. These strictures can be used to deduce that $G$ contains either a ladder or a partial biwheel, or both, as subgraphs.

In our descriptions of these families, we use $\alpha$ and $\beta$ to denote the edges of the (fixed) removable doubleton $R$. Apart from $R$, a member may have at most one removable doubleton which will be denoted as $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. We adopt the notational conventions stated in Section 1.3.3. (Recall that a partial biwheel of order six is also a ladder; for this reason, some of our families overlap.)

Pseudo-Biwheels. Let $K\left[A_{1}, B_{1}\right]$ denote a partial biwheel, of order at least eight, and with external spokes $a_{1} u_{1}$ and $b_{1} w_{1}$. Then the graph $G$ obtained from $K$, by adding two new vertices $a_{2}$ and $b_{2}$, and by adding five new edges $\alpha:=a_{1} a_{2}, \alpha^{\prime}:=u_{1} a_{2}, \beta:=b_{1} b_{2}, \beta^{\prime}:=w_{1} b_{2}$ and $a_{2} b_{2}$, is called a pseudo-biwheel. Figure 1.11 shows the smallest pseudo-biwheel.

It is worth comparing the above with our desription of staircases in Section 1.3.3. Although a pseudo-biwheel $G$ is free of strictly $R$-thin edges, the two external spokes of $K$, namely $a_{1} u_{1}$ and $b_{1} w_{1}$, are both strictly $R^{\prime}$-thin.

In order to describe the members of the remaining six families, we need two (sub)graphs. For $i \in\{1,2\}$, let $K_{i}\left[A_{i}, B_{i}\right]$ denote either a ladder or a partial biwheel with external rungs/spokes $a_{i} u_{i}$ and $b_{i} w_{i}$, such that $K_{1}$ and $K_{2}$ are disjoint.

Double Biwheels, Double Ladders and Laddered Biwheels of Type I. Let the graph $G$ be obtained from $K_{1} \cup K_{2}$, by adding edges $\alpha:=a_{1} a_{2}$ and $\beta:=b_{1} b_{2}$, by identifying vertices $u_{1}$ and $u_{2}$, and by identifying vertices $w_{1}$ and $w_{2}$. There are three possibilities depending on the graphs $K_{1}$ and $K_{2}$. In the case in which $K_{1}$ and $K_{2}$ are both partial biwheels, $G$ is a double biwheel of type $I$. Likewise, in the case in which $K_{1}$ and $K_{2}$ are both ladders, $G$ is a double ladder of type $I$. Finally, when one of $K_{1}$ and $K_{2}$ is a partial biwheel and the other one is a ladder, $G$ is a laddered biwheel of type $I$.

A member of any of these families has a unique removable doubleton $R$, and is free of strictly $R$-thin edges. The graph in Figure 1.10a is the smallest member of each of these families, although its drawing is suggestive of a double biwheel. Figure 1.13a shows a double ladder. A laddered biwheel is obtained from the graph in Figure 1.13b by identifying $u_{1}$ with $u_{2}$, and likewise, $w_{1}$ with $w_{2}$.

(a)

(b)

Figure 1.13: (a) A double ladder of type I ; (b) A laddered biwheel of type I is obtained by identifying $u_{1}$ with $u_{2}$ and likewise $w_{1}$ with $w_{2}$

Double Biwheels, Double Ladders and Laddered Biwheels of type II. Let the graph $G$ be obtained from $K_{1} \cup K_{2}$, by adding four edges, namely, $\alpha:=a_{1} a_{2}, \beta:=b_{1} b_{2}$, $\alpha^{\prime}:=u_{1} w_{2}$ and $\beta^{\prime}:=w_{1} u_{2}$. As before, we have three possibilities. In the case in which $K_{1}$ and $K_{2}$ are both partial biwheels of order at least eight, $G$ is a double biwheel of type II. Likewise, in the case in which $K_{1}$ and $K_{2}$ are both ladders, $G$ is a double ladder of type II. Finally, when one of $K_{1}$ and $K_{2}$ is a partial biwheel of order at least eight, and the other one is a ladder, $G$ is a laddered biwheel of type II.

A member of any of these families has two removable doubletons $R$ and $R^{\prime}$, and it is free of strictly $R$-thin edges. However, a double biwheel or a laddered biwheel as shown in Figure 1.14 has strictly $R^{\prime}$-thin edges; these are the external spokes of a partial biwheel of order at least eight as depicted by the bold lines in the figure.


Figure 1.14: (a) A laddered biwheel of type II ; (b) A double biwheel of type II

On the other hand, a double ladder, as shown in Figure 1.15, is free of strictly $R^{\prime}$-thin edges as well. This may be explained as follows. Every double ladder is cubic, and it has precisely four strictly thin edges; these are the external rungs of the two ladders, depicted by bold lines in the figure. One end of any such edge, say $e$, is incident with an edge of $R$ and the other end is incident with an edge of $R^{\prime}$; since each end of $e$ is cubic, it is neither $R$-compatible nor $R^{\prime}$-compatible.


Figure 1.15: A double ladder of type II

Using a strengthening of the $R$-thin Edge Theorem (1.22), we proved that the seven families described above and four of the Norine-Thomas families are the only simple $R$-bricks which are free of strictly $R$-thin edges.

Theorem 1.24 [Strictly $R$-Thin Edge Theorem] Let $G$ be a simple $R$-brick. If $G$ is free of strictly $R$-thin edges then $G$ belongs to one of the following infinite families:
(i) Truncated biwheels
(vii) Double ladders of type I
(ii) Prisms
(viii) Laddered biwheels of type I
(iii) Möbius ladders
(ix) Double biwheels of type II
(iv) Staircases
(v) Pseudo-biwheels
(x) Double ladders of type II
(vi) Double biwheels of type I
(xi) Laddered biwheels of type II

We present a proof of the above theorem in Chapter 6. Our proof is inspired by the proof of the Strictly Thin Edge Theorem (1.17) given by Carvalho et al. [CLM08], and uses several of their results and techniques.

We shall denote by $\mathcal{N}$ the union of all of the eleven families which appear in the statement of Theorem 1.24. The following is an immediate consequence.

Theorem 1.25 Given any simple $R$-brick $G$, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of simple $R$-bricks such that:
(i) $G_{1} \in \mathcal{N}$,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists an $R$-thin edge $e_{i}$ of $G_{i}$ such that $G_{i-1}$ is the retract of $G_{i}-e_{i}$.

In other words, every simple $R$-brick can be generated from some member of $\mathcal{N}$ by repeated application of the expansion operations such that at each step we have a simple $R$-brick.

Finally, recall that members of three of the aforementioned families do have strictly $R^{\prime}$-thin edges, where $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ in our description of these families; these are pseudobiwheels, double biwheels of type II and laddered biwheels of type II. In view of this, we say that a strictly thin edge $e$ of a simple near-bipartite brick $G$ is compatible if it is $R$-compatible for some removable doubleton $R$. We thus have the following theorem (with eight infinite families) alluded to in the abstract.

Theorem 1.26 Let $G$ be a simple near-bipartite brick. If $G$ is free of compatible strictly thin edges then $G$ belongs to one of the following infinite families:
(i) Truncated biwheels
(v) Double biwheels of type I
(ii) Prisms
(vi) Double ladders of type I
(iii) Möbius ladders
(vii) Laddered biwheels of type I
(iv) Staircases
(viii) Double ladders of type II

Four of the families in the above theorem are Norine-Thomas families; these are free of strictly thin edges. As we did in Figure 1.10, it may be verified that if $G$ is a member of any of the remaining four families and $e$ is any strictly thin edge of $G$ then the retract $J$ of $G-e$ is not near-bipartite. (For example, consider the graph $G$ and edge $e$ shown in Figure 1.15, and let $J$ be the retract of $G-e$. It can be checked that $J$ has four odd cycles, $C_{0}, C_{1}, C_{2}$ and $C_{3}$, such that $C_{1}, C_{2}$ and $C_{3}$ are edge-disjoint with $C_{0}$, and furthermore, there is no single edge which belongs to all three of them.)

### 1.8 Summary of main contributions

Here, we summarize the main results proved in this thesis.

Part I - Conformal Subgraphs (these results have appeared in [KM16])

- In Chapter 2 , for any cubic brick $J$, we reduce the problem of characterizing $J$-free graphs to that of characterizing $J$-free bricks. In particular, we prove Theorem 1.10, which states that a nonbipartite matching covered graph $G$ is $J$-free if and only if each of its bricks is $J$-free.
- In Chapter 3, we establish our characterizations of $K_{4}$-free planar bricks and $\overline{C_{6}}$-free planar bricks:
- We prove Theorem 1.11 which states that a planar brick is $K_{4}$-free if and only if it has precisely two odd faces.
- We prove Theorem 1.12 which states that a planar brick is $\overline{C_{6}}$-free if and only if its underlying simple graph is either an odd wheel, or an odd staircase, or the Tricorn.


## Part II - Brick Generation

- In Chapter 5, we present a proof of the $R$-thin Edge Theorem (1.22) which states that every $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$ has an $R$-thin edge. This yields a generation procedure for near-bipartite bricks.
- In Chapter 6, we present a proof of the Strictly $R$-thin Edge Theorem (1.24) which gives a complete characterization of those simple $R$-bricks which are free of strictly $R$-thin edges. This yields a generation procedure for simple near-bipartite bricks.


## Chapter 2

## Conformal subgraphs and tight cuts

We recall Lovász's Theorem (1.6) which says that every nonbipartite matching covered graph is $K_{4}$-based, or is $\overline{C_{6}}$-based, or both. As discussed in Section 1.2.2, in the first part of this thesis, our goal is to characterize those planar matching covered graphs which are $K_{4}$-free, and those which are $\overline{C_{6}}$-free.

In this chapter, we reduce these problems to the case of bricks by proving Theorem 1.10, which is restated below.

Theorem 1.10 [Reduction to the case of Bricks] Let $J$ denote any cubic brick. $A$ nonbipartite matching covered graph is $J$-free if and only if each of its bricks is $J$-free.

It suffices to prove Theorem 2.8, which states that for any nontrivial tight cut $C$, the given matching covered graph $G$ is $J$-free if and only if both $C$-contractions of $G$ are $J$-free.

Recall that a matching covered subgraph $H$ of a matching covered graph $G$ is conformal if every perfect matching of $H$ extends to a perfect matching of $G$. The following proposition is an easy consequence.

Proposition 2.1 Let $H$ be a conformal subgraph of a matching covered graph $G$, and let $C$ be a tight cut of $G$. Then $C \cap E(H)$ is a tight cut of $H$.

### 2.1 Bi-subdivisions of bricks

Let $H$ be a bi-subdivision of a simple brick $J$. We refer to the vertices of $H$ of degree three or more as branch vertices, and the remaining vertices as subdivision vertices. Each branch vertex of $H$ corresponds to a unique vertex of $J$, and we refer to both of these using the same label. As shown in Figure 2.1, for each edge $u v$ of $J$, there is a unique odd path in $H$, denoted $P_{u v}$, between vertices $u$ and $v$, such that each internal vertex (possible none) of $P_{u v}$ is a subdivision vertex. If $P_{u v}:=w_{1} w_{2} \ldots w_{2 k}$ where $w_{1}:=u$ and $w_{2 k}:=v$, we say that an edge $w_{i} w_{i+1}$ is of odd parity if $i$ is odd; otherwise of even parity. Note that the first and last edges (possibly not distinct) of the path $P_{u v}$ are both of odd parity, regardless of the order in which it is traversed.


Figure 2.1: Perfect matchings $M_{J}, M_{H}$ and $M_{G}$

Let $G$ be a $J$-based simple matching covered graph. By definition, $G$ has a conformal subgraph $H$ which is a bi-subdivision of $J$. With each perfect matching $M_{J}$ of $J$, we associate a perfect matching $M_{H}$ of $H$ as follows: for each edge $u v$ in $M_{J}$, the set $M_{H}$ contains precisely the odd edges of the path $P_{u v}$, and for each edge $u v$ in $E(J)-M_{J}$, the set $M_{H}$ contains precisely the even edges of $P_{u v}$. In fact, every perfect matching of $H$ arises this way. Thus $M_{J} \rightarrow M_{H}$ is a bijective correspondence between the sets of perfect matchings of $J$ and $H$. Since $H$ is a conformal subgraph of $G$, the matching $M_{H}$ can be extended to a perfect matching $M_{G}$ of $G$. This extension is, in general, not unique. Figure 2.1 illustrates these observations, where the edges depicted in bold lines indicate the perfect matchings $M_{J}, M_{H}$ and $M_{G}$.

Now let $C$ be a nontrivial tight cut of $G$. An edge $u v$ of $J$ is a $C$-crossing edge if the path $P_{u v}$ meets the cut $C$ in at least one edge, that is, $E\left(P_{u v}\right) \cap C$ is nonempty; and in this case, we say that $P_{u v}$ is a $C$-crossing path. Furthermore, if $\left|E\left(P_{u v}\right) \cap C\right|=1$ we say that $P_{u v}$ crosses $C$ once, and if $\left|E\left(P_{u v}\right) \cap C\right|=2$ we say that $P_{u v}$ crosses $C$ twice, and so on. Referring to Figure 2.1, the edge $u v$ of $J$ is the only $C$-crossing edge, and the corresponding $C$-crossing path $P_{u v}$ crosses $C$ twice - once in the edge $w_{2} w_{3}$ of even parity, and once in the edge $w_{5} v$ of odd parity.

In the following result, we establish some simple properties of $C$-crossing paths with respect to a given tight cut $C$ of $G$. In its proof, we shall make implicit use of Proposition 2.1.

Proposition 2.2 Let $J$ be a brick, and $G$ be a J-based matching covered graph. Let $H$ be a conformal subgraph of $G$ which is a bi-subdivision of $J$, and let $C$ be a nontrivial tight cut of $G$.
(i) For a C-crossing path $P_{u v}$, any two $C$-crossing edges of $P_{u v}$ must be of opposite parity. (Thus, $\left|C \cap E\left(P_{u v}\right)\right| \leq 2$.)
(ii) If a C-crossing path $P_{u v}$ crosses $C$ twice, then there are no other $C$-crossing paths.
(iii) If $P_{u v}$ and $P_{u w}$ are two $C$-crossing paths, then each of them must cross $C$ in an edge of odd parity.

Proof: Suppose first that a path $P_{u v}$ crosses $C$ at least twice, and let $e$ and $f$ be two distinct $C$-crossing edges. In case both $e$ and $f$ are odd edges, let $M_{J}$ be any perfect matching of $J$ containing the edge $u v$, and in case both $e$ and $f$ have even parity, let $M_{J}$ be a perfect matching of $J$ which does not contain the edge $u v$. Then the perfect matching $M_{H}$ of $H$ contains both $e$ and $f$. Since $H$ is a conformal subgraph of $G$, there would then be a perfect matching $M_{G}$ of $G$ containing $e$ and $f$, implying that $\left|M_{G} \cap C\right| \geq 2$. This is impossible because $C$ is a tight cut. This proves the first part of the assertion.

Now suppose $P_{s t}$ and $P_{u v}$ are two distinct $C$-crossing paths. Note that $s$ need not be distinct from $u$ and $v$, and the same holds for $t$. Assume that $P_{u v}$ crosses $C$ twice; let $f_{1}$ and $f_{2}$ be the two $C$-crossing edges. Without loss of generality, assume that $f_{1}$ is an odd edge and $f_{2}$ is an even edge. Let $e$ be a $C$-crossing edge of $P_{s t}$. In case $e$ is an odd edge, let $M_{J}$ be a perfect matching of $J$ which contains the edge $s t$, and in case $e$ is an even edge, let $M_{J}$ be a perfect matching of $J$ which does not contain the edge st. Depending on
whether $M_{J}$ contains the edge $u v$ or not, the perfect matching $M_{H}$ of $H$ contains either $f_{1}$ or $f_{2}$, respectively. By choice of $M_{J}$, it follows that $M_{H}$ contains $e$. Since $H$ is a conformal subgraph of $G$, we can extend $M_{H}$ to a perfect matching $M_{G}$ of $G$, leading to the same contradiction as before.

Now suppose $P_{u v}$ and $P_{u w}$ are two distinct $C$-crossing paths. It follows that each of these paths crosses $C$ exactly once, say in edges $e$ and $f$, respectively. In case $e$ is odd and $f$ is even, let $M_{J}$ be a perfect matching of $J$ which contains the edge $u v$, and in case both $e$ and $f$ have even parity, let $M_{J}$ be a perfect matching of $J$ which contains neither $u v$ nor $u w$ (such a perfect matching exists since $u$ has at least three neighbours in $J$ ). Then the perfect matching $M_{H}$ of $H$ contains both $e$ and $f$. Since $H$ is a conformal subgraph of $G$, we can extend $M_{H}$ to a perfect matching $M_{G}$ of $G$, leading to the same contradiction as before.

### 2.2 Three lemmas on bricks

Here, we state three useful lemmas; the first two of these are specific to cubic bricks. The following is an immediate consequence of a result of Plesník [LP86, Theorem 3.4.2].

Lemma 2.3 Let $J$ be a cubic brick, and $e_{1}$ and $e_{2}$ be two edges of $J$. Then $J-e_{1}-e_{2}$ has a perfect matching.

Lemma 2.4 For any vertex $v$ of a cubic brick $J$, the graph $J-v-N_{J}(v)$ has a perfect matching.

Proof: Let $u_{1}$ and $u_{2}$ denote two neighbours of $v$ in $J$. By Theorem 1.9, $J$ is bicritical, whence $J-u_{1}-u_{2}$ has a perfect matching. The restriction of this matching to the edge set of $J-v-N_{J}(v)$ is a perfect matching of that graph.

The following result is an easy consequence of the above lemma.

Corollary 2.5 Let $H$ be a bi-subdivision of a cubic brick $J$, and let $v$ be a branch vertex of $H$. Then the graph $H-v-N_{H}(v)$ has a perfect matching.

Lemma 2.6 Let $J$ be a brick (not necessarily cubic), let $Y$ be a subset of $V(J)$ with $|Y| \geq|\bar{Y}| \geq 2$, and let uv be an edge of $J$ with $u \in Y$ and $v \in \bar{Y}$. Then there exists a perfect matching $M_{J}$ of $J$ such that:

$$
\begin{equation*}
\left|M_{J} \cap(\partial(Y)-u v)\right| \geq 2 \tag{2.1}
\end{equation*}
$$

Proof: If $J$ has just four vertices, then $J$ is $K_{4}$, and the statement is obvious. So, we may assume that $|Y| \geq 3$. If $|Y|$ is odd, take any perfect matching $M_{J}$ of $J$ with $\left|M_{J} \cap \partial(Y)\right| \geq 3$. (Such a perfect matching must exist because $J$ is a brick, and $\partial(Y)$ is a nontrivial odd cut of $J$.) If $|Y|$ is even, then take take any perfect matching $M_{J}$ of $J$ with $\left|M_{J} \cap \partial(Y-u)\right| \geq 3$. It is now easy to see that $M_{J}$ satisfies the required inequality.

### 2.3 Cubic bricks

We shall now proceed to prove Theorem 2.8 which implies the main result of this chapter, namely Theorem 1.10.

Observe that, if $H$ is a bi-subdivision of a cubic brick $J$, then bicontracting a vertex of degree two of $H$ results in another bi-subdivision of $J$. Furthermore, any bi-subdivision of $H$ is a bi-subdivision of $J$ as well. This leads us to the following proposition, which we shall use implicitly in the proof of Theorem 2.8.

Proposition 2.7 Let $H$ be a bi-subdivision of a cubic brick $J$.
(i) Let $P$ be an even path in $H$ all of whose internal vertices are subdivision vertices. Then the graph obtained from $H$ by deleting the internal vertices of $P$ and identifying its ends is also a bi-subdivision of $J$.
(ii) Any graph obtained from $H$ by replacing an edge of $H$ by an odd path is also a bi-subdivision of $J$.

Theorem 2.8 Let $J$ be a cubic brick and $G$ be a matching covered graph. Let $C:=\partial(X)$ be a nontrivial tight cut in $G$. Then $G$ is J-based if and only if at least one of $G /(\bar{X} \rightarrow \bar{x})$ and $G /(X \rightarrow x)$ is $J$-based.

Proof: Suppose that $G$ is $J$-based, that is, $G$ has a conformal subgraph $H$ such that $H$ is a bi-subdivision of $J$. Let $Y$ and $\bar{Y}$, respectively, denote the sets of branch vertices in $X$ and $\bar{X}$. Adjust notation so that $|Y| \geq|\bar{Y}|$. We shall first show that $|\bar{Y}| \leq 1$. Assume to the contrary that $|Y| \geq|\bar{Y}| \geq 2$. In this case, clearly, $H$ must have at least three $C$-crossing paths, and all of these cross $C$ in exactly one edge (by Proposition 2.2). Suppose that two of the $C$-crossing edges $e_{1}$ and $e_{2}$ are even edges, then Lemma 2.3 implies that there exists a perfect matching $M_{H}$ of $H$ which contains both $e_{1}$ and $e_{2}$. By extending $M_{H}$ to a perfect matching $M_{G}$ of $G$, we have $\left|M_{G} \cap C\right| \geq 2$. This is impossible because $C$ is a tight cut of $G$. Hence we may assume that at most one $C$-crossing edge is an even edge. If there is such an edge $e$, let $P_{u v}$ be the $C$-crossing path which contains the edge $e$, where $u \in Y$ and $v \in \bar{Y}$. If there is no such edge, let $u \in Y$ and $v \in \bar{Y}$ be two arbitrary vertices of $J$ which are adjacent. By Lemma 2.6, there exists a perfect matching $M_{J}$ of $J$ satisfying (2.1). The perfect matching $M_{H}$ of $H$ that corresponds to $M_{J}$ meets the tight cut $\partial(X)$ in at least two edges, resulting in a contradiction. Thus, $|\bar{Y}| \leq 1$. We split the rest of the proof into two cases depending on whether $|\bar{Y}|$ is zero or one.

If $|\bar{Y}|=0$, then all the branch vertices of $H$ lie in $X$. It follows from Proposition 2.2 that there is at most one $C$-crossing path. In case there are no $C$-crossing paths, $H$ itself is a conformal subgraph of $G / \bar{X}$. Otherwise, let $P_{u v}$ be the unique $C$-crossing path. Proposition 2.2 implies that $P_{u v}$ crosses $C$ in exactly two edges which are of different parities; that is, an odd number of subdivision vertices of $P_{u v}$ lie in $\bar{X}$. Let $H_{1}$ denote the subgraph of $G /(\bar{X} \rightarrow \bar{x})$, obtained from $H$, by identifying all the subdivision vertices in $\bar{X}$ with the single vertex $\bar{x}$. Then $H_{1}$ is a bi-subdivision of $J$ (Proposition 2.7), and is a conformal subgraph of $G / \bar{X}$.

Finally, if $|\bar{Y}|=1$, there is precisely one branch vertex, say $v$, of $H$ which lies in $\bar{X}$. By Proposition 2.2, it follows that the only $C$-crossing paths of $H$ are those with one end $v$, and that each of them crosses $C$ exactly once in an edge of odd parity. In other words, each of these $C$-crossing paths has an even number of subdivision vertices (possibly zero) which lie in $\bar{X}$. Consider the subgraph $H_{1}$ of $G /(\bar{X} \rightarrow \bar{x})$, obtained from $H$, by replacing all of these subdivision vertices and the branch vertex $v$ with the single vertex $\bar{x}$. As in the previous case, note that $H_{1}$ is a bi-subdivision of $J$, and is a conformal subgraph of $G / \bar{X}$. This concludes the proof of the 'if' part of the assertion.

Now, to prove the converse, suppose that $G /(\bar{X} \rightarrow \bar{x})$ is $J$-based; that is, $G /(\bar{X} \rightarrow \bar{x})$ has a conformal subgraph $H_{1}$ such that $H_{1}$ is a bi-subdivision of $J$. In case the vertex $\bar{x} \notin V\left(H_{1}\right)$, then $H_{1}$ itself is a subgraph of $G$. It can be easily checked that $H_{1}$ is a conformal subgraph of $G$.

Now suppose $\bar{x} \in V\left(H_{1}\right)$. It may either be a subdivision vertex of $H_{1}$ or a branch vertex.

In the former case, let $u_{1}, u_{2}$, belonging to $X$, be the neighbours of $\bar{x}$ in $H_{1}$, and in the latter case, let $u_{1}, u_{2}, u_{3}$, belonging to $X$, be the neighbours of $\bar{x}$ in $H_{1}$. Each $u_{i}$ must clearly have a neighbour in $G$ that belongs to $\bar{X}$. Select one such neighbour $v_{i}$ of $u_{i}$ and identify the edge $u_{i} \bar{x}$ of $H_{1}$ with the edge $u_{i} v_{i}$ of $G$. (We admit the possibility that $v_{i}=v_{j}$, for $i \neq j$.) Furthermore, let $M_{i}$ be a perfect matching of $G$ containing the edge $u_{i} v_{i}$, such that the restriction of $M_{i}$ to $E\left(H_{1}\right)$ is a perfect matching of $H_{1}$. Let $P$ denote the ( $M_{1}, M_{2}$ )alternating path in $G$ starting with the edge $u_{1} v_{1}$ of $M_{1}$, and ending with the edge $v_{2} u_{2}$ of $M_{2}$. In addition, when $\bar{x}$ is a branch vertex of $H_{1}$, let $Q$ denote the ( $M_{3}, M_{2}$ )-alternating path in $G$ starting with the edge $u_{3} v_{3}$ of $M_{3}$, and ending with the edge $v_{2} u_{2}$ of $M_{2}$.

Having established the notation common to both cases, for clarity, let us first deal with the case in which $\bar{x}$ is a subdivision vertex of $H_{1}$. In this case, let $H$ be the subgraph of $G$, obtained from $H_{1}$, by replacing the path $u_{1} \bar{x} u_{2}$ of length two by the even path $P$. It is easy to see that $H$ is a bi-subdivision of $J$ and that the restriction of $M_{1}$ (or of $M_{2}$ ) to $E(H)$ is a perfect matching of $H$, implying that $H$ is a conformal subgraph of $G$.

Now, suppose that $\bar{x}$ is a branch vertex of $H_{1}$. In this case, let $w$ be the first vertex of the $\left(M_{3}, M_{2}\right)$-alternating $u_{3} u_{2}$-path $Q$ that lies on the $\left(M_{1}, M_{2}\right)$-alternating $u_{1} u_{2}$-path $P$. Let $P_{1}$ and $P_{2}$ denote the $u_{1} w$ - and $u_{2} w$-segments of $P$, respectively, and let $P_{3}$ denote the $u_{3} w$-segment of $Q$. These three paths have the end vertex $w$ in common, but are otherwise disjoint. Let $H$ denote the subgraph of $G$ obtained from $H_{1}$ by replacing, for $i=1,2,3$, the edge $u_{i} \bar{x}$ by the path $P_{i}$. Clearly $H$ is a conformal subgraph of $G$ because the restriction of $M_{2}$ to $E(G-V(H))$ is a perfect matching of $G-V(H)$. The graph $H$ would be a bi-subdivision of $J$ as well if all the $P_{i}$ are odd paths. The path $P_{3}$, being an alternating path starting and ending with an edge of $M_{3}$, is clearly odd. The path $P$ is an even path as it is an alternating path which starts with an edge of $M_{1}$ and ends with an edge of $M_{2}$. Let us proceed to show that the two segments $P_{1}$ and $P_{2}$ of $P$ must both be of odd length. If this is not the case, both $P_{1}$ and $P_{2}$ are even, and the vertices $v_{1}, v_{2}$ and $v_{3}$ would have to be distinct, and the tree $P_{1} \cup P_{2} \cup P_{3}$ would have a perfect matching, say $N^{\prime}$, containing the three edges $u_{1} v_{1}, u_{2} v_{2}$ and $u_{3} v_{3}$. By Corollary 2.5, the graph $H_{1}-\bar{x}-N_{H_{1}}(\bar{x})$ has a perfect matching, say $N^{\prime \prime}$. Then $N=N^{\prime} \cup N^{\prime \prime}$ would be a perfect matching of $H$ containing the three edges $u_{1} v_{1}, u_{2} v_{2}$ and $u_{3} v_{3}$. As $H$ is a conformal subgraph of $G$, there would be a perfect matching of $G$ containing $N$, and it would have three edges in common with $C$. This is impossible because $C$ is a tight cut of $G$.

Hence the three paths $P_{1}, P_{2}$ and $P_{3}$ must all be odd paths ${ }^{1}$, and $H$ is a bi-subdivision of $J$, with $w$ as one of its branch vertices. This completes the proof of the assertion.

[^0]As noted earlier, Theorem 1.10 immediately follows from the above theorem. Cláudio Lucchesi communicated to us an alternative proof of Theorem 2.8 which is based on the theory of ear decompositions.


Figure 2.2: A matching covered graph whose unique brick is $W_{5}$

We conclude this chapter by noting that the statement of Theorem 2.8 would not be valid if $J$ were an arbitrary brick or if $J$ were a cubic brace, as explained below.

Let $G$ be the matching covered graph shown in Figure 2.2. The unique brick $J$ of $G$, obtained by bicontracting the degree two vertex, is isomorphic to the odd wheel $W_{5}$. In particular, $J$ is $W_{5}$-based. However, since the maximum degree in $G$ is four, and $W_{5}$ has a vertex of degree five, no bi-subdivision of $W_{5}$ can be a conformal subgraph of $G$.

Now, suppose that $G$ is the matching covered graph shown in Figure 1.3. The unique brace $J$ of $G$ is isomorphic to $K_{3,3}$. In particular, $J$ is $K_{3,3}$-based. However, it can be easily verified that $G$ is $K_{3,3}$-free. (To see this, suppose that $G$ has a conformal subgraph $H$ which is a bi-subdivision of $K_{3,3}$. Since $G$ and $K_{3,3}$ are both cubic, no subgraph of $G$ is isomorphic to $K_{3,3}$. Thus $H$ is a spanning subgraph of $G$. Being bipartite, $H$ can not use all three edges of the unique triangle $T$ of $G$. It follows from the degrees of the vertices that $H=G-f$, where $f$ is any edge of $T$. Observe that $H$, although a subdivision of $K_{3,3}$, is not a bi-subdivision, contrary to our hypothesis.)

In the next chapter, we shall establish our characterizations of $K_{4}$-free planar bricks and $\overline{C_{6}}$-free planar bricks.

## Chapter 3

## Planar bricks

In the last chapter, we reduced the problems of characterizing $K_{4}$-free and $\overline{C_{6}}$-free matching covered graphs to the case of bricks.

In Sections 3.4 and 3.5, we shall establish our characterizations of $K_{4}$-free planar bricks (Theorem 1.11), and of $\overline{C_{6}}$-free planar bricks (Theorem 1.12), respectively - thus solving the above problems for planar matching covered graphs. These theorems are restated below.

Theorem 1.11 [Characterization of $K_{4}$-Free Planar Bricks] A planar brick is $K_{4}$-free if and only if it has precisely two odd faces.

Theorem 1.12 [Characterization of $\overline{C_{6}}$-Free Planar Bricks] A planar brick is $\overline{C_{6}}$-free if and only if its underlying simple graph is either an odd wheel, or an odd staircase, or the Tricorn.

Our proofs for each of these results rely on the generation procedure for simple bricks established by Norine and Thomas; see Theorem 1.18.

Observe that, for a cubic brick $J$, a matching covered graph $G$ is $J$-free if and only if the underlying simple graph of $G$ is $J$-free. Thus we may restrict ourselves to simple planar graphs and bricks (throughout this chapter). We now proceed to discuss planar graphs and their embeddings.

A planar graph may have different embeddings in the plane. In any embedding of a 2-connected planar graph in the plane, every face is bounded by a cycle. A facial cycle in
such an embedding is a cycle of the graph that bounds a face. It is easy to see that if $C$ is any facial cycle of a 3-connected planar graph, then $C$ cannot have any chords and that $G-V(C)$ is connected (see [BM08, page 266]). Furthermore, it can be verified that if $u$ and $v$ are two nonadjacent vertices of $C$, then there is a $u v$-path in $G$ that is internally disjoint from $C$.

Two embeddings of a 2-connected planar graph in the plane are regarded as the same if the facial cycles in the two embeddings are the same; otherwise they are different. According to a well-known result due to Whitney [Whi33], every simple 3-connected planar graph has a unique embedding in the plane. In particular, every planar brick has a unique embedding. Thus, we may refer to faces of planar bricks without any ambiguity. Even when we are dealing with planar matching covered graphs which are not bricks, we restrict ourselves to graphs with a given embedding, that is to plane graphs, and thereby avoid any ambiguity as to which cycles are facial.

According to a deep result due to Tutte, every 3 -connected planar graph has an embedding in the plane in which all facial cycles are convex polygons. Tutte [Tut84, Theorem XI.63] also proved the following relevant result.

Proposition 3.1 The boundaries of any two faces of a simple 3-connected planar graph have at most two vertices in common, and if they do have two vertices in common, then those vertices are adjacent.

### 3.1 Number of odd faces

A face $F$ in a 2-connected plane graph $G$ is even or odd according to the parity of the length of the cycle of $G$ that bounds $F$. We denote the number of odd faces in $G$ by $\mathrm{f}_{\text {odd }}(G)$. (This function $\mathrm{f}_{\text {odd }}(G)$ will play a crucial role in Section 3.4.) We note that $\mathrm{f}_{\text {odd }}(G)$ is always even, and it is zero if and only if $G$ is bipartite.

Proposition 3.2 If $G$ is a planar brick, then $\mathrm{f}_{\text {odd }}(G) \geq 2$. Furthermore, if $G$ is not an odd wheel, then it has at least two vertex-disjoint odd faces.

Proof: The inequality $\mathrm{f}_{\text {odd }}(G) \geq 2$ follows from the fact that $G$ is not bipartite.

Now, suppose that $G$ is not an odd wheel. As per a result of Carvalho et al. [CLM06], $G$ has a nontrivial cut $C:=\partial(X)$ such that both $C$-contractions of $G$ are nonbipartite matching covered graphs; whence $G[X]$ and $G[\bar{X}]$ are both nonbipartite. Thus $G$ has two vertex-disjoint odd cycles; consequently, $G$ has at least two vertex-disjoint odd faces.

Let $G$ be a plane matching covered graph, let $v_{0}$ be a vertex of degree two of $G$, with $v_{1}$ and $v_{2}$ as its two neighbours. Suppose that $H$ is the plane graph obtained from $G$ by bicontracting $v_{0}$ and denoting the resulting contraction vertex by $v$. Then there is a natural one-to-one correspondence between the sets of faces of $G$ and $H$ (see Figure 3.1). As shown in the figure, $F_{2}$ and $F_{4}$ are the only faces of $G$ whose bounding cycles, viewed as a set of edges, are different from the bounding cycles of the corresponding faces of $H$ - in $G$, these faces have the path $v_{1} v_{0} v_{2}$ in their boundary, whereas in $H$ they just have $v$ instead of $v_{1} v_{0} v_{2}$. It follows that the parity of a face of $H$ is the same as the parity of the corresponding face of $G$.


Figure 3.1: Correspondence between faces of $G$ and $H$

Let $G$ be a plane brick, and let $e$ be an edge of $G$. If $e$ lies inside an odd face of $G-e$, then $\mathrm{f}_{\text {odd }}(G-e)=\mathrm{f}_{\text {odd }}(G)$; and if $e$ lies inside an even face of $G-e$, then either $\mathrm{f}_{\text {odd }}(G-e)=\mathrm{f}_{\text {odd }}(G)$, or $\mathrm{f}_{\text {odd }}(G-e)=\mathrm{f}_{\text {odd }}(G)-2$. Now suppose that $H$ is the retract of $G-e$. Since $H$ is obtained from $G-e$ by either zero, one, or two bicontractions, $\mathrm{f}_{\text {odd }}(H)=\mathrm{f}_{\text {odd }}(G-e)$. We thus have the following relationship between the number of odd faces of $G$ and $H$.

Proposition 3.3 Let e be a strictly thin edge in a plane brick $G$, and let $H$ be the retract of $G-e$. Then $\mathrm{f}_{\text {odd }}(H) \leq \mathrm{f}_{\text {odd }}(G) \leq \mathrm{f}_{\text {odd }}(H)+2$.

It is easily verified that if $H$ is a subgraph of a plane 2-connected graph $G$, then $\mathrm{f}_{\text {odd }}(G) \geq \mathrm{f}_{\text {odd }}(H)$. Note that $K_{4}$ has exactly four odd faces, and so does any bi-subdivision of $K_{4}$. This immediately implies the following.

Proposition 3.4 Let $G$ be a $K_{4}$-based plane matching covered graph. Then $\mathrm{f}_{\text {odd }}(G) \geq 4$.

The above provides a necessary condition for a plane matching covered graph to be $K_{4}$-based. It is not sufficient in general. For instance, let $G$ denote the graph shown in Figure 3.2. Observe that $G$ has precisely four odd faces. However, it is $K_{4}$-free, as can be verified using Theorem 1.10 - its tight cut decomposition results in two bricks, each isomorphic to $\overline{C_{6}}$ (which is $K_{4}$-free), and the cube (which is a brace).

However, we show that for planar bricks this condition is indeed sufficient, that is, if a planar brick has four or more odd faces then it is indeed $K_{4}$-based. Our proof of this assertion relies on the fact that in a planar brick with precisely two odd faces, each even facial cycle is conformal. In order to prove this by induction we need to use a stronger induction hypothesis concerning all facial cycles. This involves the notion of critical graphs.


Figure 3.2: $K_{4}$-free graph with four odd faces - the bold lines indicate tight cuts

### 3.2 Critical graphs

A graph $G$ is critical if for any vertex $v$, the graph $G-\{v\}$ has a perfect matching. An ear decomposition of a 2-connected critical graph $G$ is a sequence $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ of 2-connected critical subgraphs of $G$ such that (i) $G_{1}$ is an odd cycle and $G_{r}:=G$, and (ii) for each $i$ such that $1 \leq i \leq r-1, G_{i+1}$ is the union of $G_{i}$ and exactly one single ear $P_{i+1}$ of $G_{i+1}$. The following is a well-known result. See [LP86, page 196].

Theorem 3.5 A 2-connected graph $G$ is critical if and only if it has an ear decomposition $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$, starting with an odd cycle $G_{1}$. Furthermore, $G_{1}$ can be chosen to contain any arbitrary vertex.

Let $H$ be a graph and $v$ be a vertex of $H$ of degree at least two. We recall the bi-splitting operation defined in Section 1.5.2, where $v$ is replaced by two new vertices $v_{1}$ and $v_{2}$, and a third vertex $v_{0}$ is introduced and joined to both $v_{1}$ and $v_{2}$. The next result proves that bi-splitting a vertex of a 2-connected critical graph yields a graph which is also 2-connected and critical.

Lemma 3.6 Let $H$ be a 2-connected critical graph, and $v \in V(H)$. If $G$ is obtained from $H$ by bi-splitting $v$, then $G$ is also a 2 -connected critical graph.

Proof: We adopt the notation from the preceding paragraph. Since $H$ is 2-connected and critical, Theorem 3.5 implies that $H$ admits an ear decomposition $H_{1} \subset H_{2} \subset \cdots \subset H_{r}$, where $H_{1}$ can be chosen to be an odd cycle which contains the vertex $v$. For each $i$ such that $1 \leq i \leq r-1$, we have $H_{i+1}:=H_{i} \cup P_{i+1}$ where $P_{i+1}$ is a single ear of $H_{i+1}$. To show that $G$ is also 2-connected and critical, we will extend this ear decomposition of $H$ to an ear decomposition of $G$, say $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ - such that $G_{i+1}:=G_{i} \cup Q_{i+1}$ and $Q_{i+1}$ is a single ear of $G_{i+1}$.

Let $s$ and $t$ be the unique distinct neighbours of $v$ in the odd cycle $H_{1}$. Note that $s$ must be a neighbour of exactly one of $v_{1}$ and $v_{2}$ in the graph $G$, and a similar statement holds for $t$. We divide the rest of the proof into two cases, depending on the neighbourhoods of $v_{1}$ and $v_{2}$ :

Case 1: In $G$, the vertices $s$ and $t$ are both neighbours of $v_{1}$. (The case when $s$ and $t$ are both neighbours of $v_{2}$ is analogous.)

Let $G_{1}$ be the same as $H_{1}$, except that $v_{1}$ plays the role of vertex $v$. Let $H_{k}$ be the first subgraph in the sequence $H_{1} \subset H_{2} \subset \cdots \subset H_{r}$, such that it contains an edge $y v$ for some $y \in N_{G}\left(v_{2}\right)$. We note that $k>1$. For all $j$ such that $1<j<k$, we define the odd path $Q_{j}$ to be the same as $P_{j}$, except that $v_{1}$ plays the role of $v$, if applicable. Suppose $P_{k}:=v y \ldots z$ for some vertex $z$ in $H_{k-1}$. Now we define $Q_{k}$ to be the odd path, obtained by stretching $P_{k}$, as follows: let $v_{1}$ play the role of $v$, and replace the edge $v y$ by the odd path $v_{1} v_{0} v_{2} y$ - that is, $Q_{k}:=v_{1} v_{0} v_{2} y \ldots z$. For the single ears $P_{j}$ that follow (that is, $j>k$ ), we define the odd path $Q_{j}$ to be the same as $P_{j}$, except that the role of
$v$ is played by either $v_{1}$ or $v_{2}$, as appropriate. More precisely, suppose $P_{j}:=v w \ldots x$. If $w \in N_{G}\left(v_{1}\right)$, then we define $Q_{j}$ to be $v_{1} w \ldots x$, and if $w \in N_{G}\left(v_{2}\right)$, then we define $Q_{j}$ to be $v_{2} w \ldots x$. For each $i$ such that $1 \leq i \leq r-1$, we let $G_{i+1}:=G_{i} \cup Q_{i+1}$. We observe that the sequence $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ is an ear decomposition of $G$.

Case 2: In $G$, the vertex $s$ is a neighbour of $v_{1}$, whereas $t$ is a neigbour of $v_{2}$.
Suppose the odd cycle $H_{1}:=s v t \ldots s$. Now we define $G_{1}$ to be the odd cycle, obtained by stretching $H_{1}$, as follows: replace the vertex $v$ by the even path $v_{1} v_{0} v_{2}$ - that is, $G_{1}:=s v_{1} v_{0} v_{2} \ldots s$. For each single ear $P_{j}$, we define the odd path $Q_{j}$ to be the same as $P_{j}$, except that the role of $v$ is played by either $v_{1}$ or $v_{2}$, as in the previous case. We let $G_{i+1}:=G_{i} \cup Q_{i+1}$ for each $i$ such that $1 \leq i \leq r-1$, and observe that the sequence $G_{1} \subset G_{2} \subset \cdots \subset G_{r}$ is an ear decomposition of $G$.

In each case, we obtain an ear decomposition of $G$. Thus, Theorem 3.5 implies that $G$ is 2-connected and critical.

### 3.3 Index of a thin edge

As mentioned earlier, all of our proofs in this chapter use the Strictly Thin Edge Theorem (1.17), which says that every (simple) brick $G$, except for the Norine-Thomas bricks, has a strictly thin edge $e$; and in this case, the retract of $G-e$ is also a simple brick. To carry out the case analysis, we shall find it convenient to associate each thin edge $e$ with a number, called its index, which is:

- zero, if both ends of $e$ have degree four or more in $G$;
- one, if exactly one end of $e$ has degree three in $G$;
- two, if both ends of $e$ have degree three in $G$ and $e$ does not lie in a triangle;
- three, if both ends of $e$ have degree three in $G$ and $e$ lies in a triangle.

The following proposition is easily verified.

Proposition 3.7 Let $G$ be a brick, let e be a thin edge of $G$, and let $H$ be the retract of $G-e$. If the index of $e$ is zero, then $H=G-e$. If the index of $e$ is one, then $G-e$ has precisely one vertex of degree two; and $H$ has just one contraction vertex, and its degree is at least four. If the index of $e$ is two, then $G-e$ has precisely two vertices of degree two, and they have no common neighbour; and $H$ has two contraction vertices, and their degrees are at least four. If the index of $e$ is three, then $G-e$ has precisely two vertices of degree two, and they have a common neighbour; and $H$ has just one contraction vertex, and its degree is at least five.


Figure 3.3: Strictly thin edges of indices one, two and three

Figure 3.3 illustrates strictly thin edges of indices one, two and three. The edge $e_{1}$ in $G_{1}$ has index one, and the retract of $G_{1}-e_{1}$ is the odd wheel on six vertices. The edge $e_{2}$ in $G_{2}$ has index two, and the retract of $G_{2}-e_{2}$ is $G_{1}$. The edge $e_{3}$ in $G_{3}$ has index three, and the retract of $G_{3}-e_{3}$ is again the odd wheel on six vertices.

Let $G$ be a brick, let $e$ be a thin edge of $G$, and let $J$ be a cubic brick. If $G$ is $J$-free, then clearly $G-e$ is also $J$-free. Since the retract of $G-e$ is the brick of $G-e$, by applying Theorem 2.8, we have the following relevant fact.

Proposition 3.8 Let $G$ be a brick and e be a thin edge of $G$. Let $H$ be the retract of $G-e$. For any cubic brick $J$, if $G$ is $J$-free then $H$ is also $J$-free.

In particular, if $G$ is a $K_{4}$-free ( $\overline{C_{6}}$-free) brick, and $G_{1}, G_{2}, \ldots, G_{r}$ is a sequence of bricks as in Theorem 1.18, then each $G_{i}$ is also $K_{4}$-free ( $\overline{C_{6}}$-free).

## $3.4 \quad K_{4}$-free planar bricks

In this section we will establish that a planar brick is $K_{4}$-free if and only if it has exactly two odd faces (Theorem 1.11). Our proof of this result relies on the fact that, in a planar brick with exactly two odd faces, every even facial cycle is conformal.

It should be noted that an arbitrary planar brick may not satisfy this property. For example, in the brick $G_{3}$, shown in Figure 3.3, the outer face is even but not conformal. Furthermore, an arbitrary planar matching covered graph with precisely two odd faces, may not satisfy this property either. For instance, the outer face of the graph shown in Figure 3.4 is not conformal. However, it is easily verified that in a plane bipartite matching covered graph, every facial cycle is conformal; this was also shown by McCuaig [McC04].


Figure 3.4: Matching covered graph with two odd faces - the bold lines depict tight cuts

As alluded to earlier, proving the above fact concerning even facial cycles by induction requires proving a statement concerning all facial cycles. Before formally stating and proving that assertion concerning facial cycles, we shall set up the required notation and make a few useful observations.

Let $G$ be a planar brick with $\mathrm{f}_{\text {odd }}(\mathrm{G})=2$. Let $e:=u_{0} v_{0}$ be a strictly thin edge of $G$, and let $H$ be the retract of $G-e$. It follows from Proposition 3.3 that $\mathrm{f}_{\text {odd }}(\mathrm{H})=2$. Furthermore, as $H$ is obtained from $G-e$ by either zero, one or two bicontractions, there is a one-to-one correspondence between the sets of faces of $H$ and $G-e$. For any face $\Phi$ of $G-e$, we shall denote by $\Phi^{\prime}$ the corresponding face of $H$.

We shall denote the two faces of $G$ whose bounding cycles share the edge $e$ by $F_{1}$ and $F_{2}$, and by $F$ the unique face of $G-e$ which contains both $u_{0}$ and $v_{0}$. (Thus $F^{\prime}$ is the face of $H$ that corresponds to $F$.) Let $u_{1} \in V\left(F_{1}\right) \backslash v_{0}$ and $u_{2} \in V\left(F_{2}\right) \backslash v_{0}$ be neighbours of $u_{0}$. Let
$v_{1} \in V\left(F_{1}\right) \backslash u_{0}$ and $v_{2} \in V\left(F_{2}\right) \backslash u_{0}$ be neighbours of $v_{0}$. Note that, for $i \in\{1,2\}$, if $u_{i}=v_{i}$ then $F_{i}$ is an odd face. Since an odd wheel has at least four odd faces, $G$ is not an odd wheel and thus by Proposition 3.2, at most one of $F_{1}$ and $F_{2}$ is an odd face. We assume that $F_{2}$ is an even face and hence that $u_{2} \neq v_{2}$, and admit the possibility that $u_{1}=v_{1}$.

Depending on the index of the edge $e$, there are four possible scenarios. If the index of $e$ is zero, then $H=G-e$. If the index of $e$ is one, exactly one end of $e$, say $u_{0}$, has degree three; the other end $v_{0}$ has degree at least four. In this case, $H$ is obtained from $G-e$ by shrinking $\left\{u_{1}, u_{0}, u_{2}\right\}$ to a single vertex; we shall denote the resulting contraction vertex by $\mathbf{u}$ (see Figure 3.5a). If the index of $e$ is two, both ends of $e$ have degree three. In this case, $H$ is obtained from $G-e$ by shrinking $\left\{u_{1}, u_{0}, u_{2}\right\}$ to a single vertex, and $\left\{v_{1}, v_{0}, v_{2}\right\}$ to a single vertex; we shall denote the two resulting contraction vertices by $\mathbf{u}$ and $\mathbf{v}$, respectively (see Figure 3.5b). If the index of $e$ is three, then both ends of $e$ have degree three and $u_{1}=v_{1}$, and $H$ is obtained from $G-e$ by the bicontractions of $u_{0}$ and $v_{0}$. This amounts to shrinking $\left\{u_{2}, u_{0}, u_{1}, v_{0}, v_{2}\right\}$ to a single vertex; we shall denote the resulting contraction vertex by w (see Figure 3.5c).


Figure 3.5: (a) Index of $e$ is one, (b) Index of $e$ is two, (c) Index of $e$ is three

Proposition 3.9 Each vertex on $F$, other than $u_{0}$ and $v_{0}$, has a neighbour outside $F$.

Proof: If there is an edge of $G-e$ joining two non-consecutive vertices on $F$, then it would be a chord of $F^{\prime}$ in $H$. This is not possible because $H$ is a simple 3 -connected graph and $F^{\prime}$ is a face of $H$.

Proposition 3.10 If the index of $e$ is one, any face $\Phi$ of $G$ which contains $u_{1}$ and $u_{2}$ also contains $u_{0}$. If the index of $e$ is two or three, then any face which contains $u_{1}$ and $u_{2}$ also contains $u_{0}$, and any face which contains $v_{1}$ and $v_{2}$ also contains $v_{0}$.

Proof: Let us consider the case in which $e$ has index one. By the proof of Proposition 3.9, $u_{1}$ and $u_{2}$ are not adjacent. Thus, if a face $\Phi$ contains both $u_{1}$ and $u_{2}$ but not $u_{0}$, the two $u_{1} u_{2}$-segments of the bounding cycle of $\Phi$ contain internal vertices, and there would have to exist a path connecting them which is internally disjoint from the bounding cycle. Such a path would have to pass through $u_{0}$. This is impossible because the degree of $u_{0}$ is three. The case in which the index of $e$ is two or three is similar.

Proposition 3.11 Suppose that $\Phi$ is an odd face of $G$, and $x \notin V(\Phi)$ is any vertex. Then $x$ has at least two neighbours in $G$ which do not lie in $V(\Phi)$.

Proof: Suppose not. Then there exist edges $x s$ and $x t$ which are consecutive in the cyclic order around $x$, such that $s, t \in V(\Phi)$. Note that $s$ and $t$ must be adjacent since otherwise $\{s, t\}$ is a 2-separation. Now, the triangle $x s t x$ bounds an odd face that is not disjoint from the odd face $\Phi$, which contradicts Proposition 3.2.

Proposition 3.12 Suppose the face $F_{1}$ is odd, and let $u_{0} x_{1} x_{2} \ldots x_{2 k} v_{0} u_{0}$ be the cycle bounding $F_{2}$, where $x_{1}:=u_{2}$ and $x_{2 k}:=v_{2}$. Then there exist vertices $y_{1}, y_{2}, \ldots, y_{2 k}$, which are not on the boundary of $F$ such that $x_{i} y_{i}$ is an edge for $1 \leq i \leq 2 k$, and $y_{i} \neq y_{i+1}$ for $i \in\{1,3, \ldots, 2 k-1\}$.

Proof: By Proposition 3.9, each $x_{i}$ has a neighbour outside $V(F)$. Suppose that there is only one vertex $y \notin V(F)$ that is adjacent to both $x_{i}$ and $x_{i+1}$ for some $i \in\{1,3, \ldots, 2 k-1\}$. Then $y x_{i} x_{i+1} y$ would be the boundary of a triangular face, and the graph $H$ would then have two odd faces which are not vertex-disjoint.

With this preparation, we are now ready to state and prove the result concerning the conformality of even facial cycles.

Theorem 3.13 Let $G$ be a planar brick with $\mathrm{f}_{\text {odd }}(G)=2$. Then:
(i) each even facial cycle is conformal, and,
(ii) for each odd facial cycle of $G$, the graph obtained from $G$ by deleting the vertices of that cycle is a 2-connected critical graph.

Proof: As noted earlier, the two odd faces of $G$ must be vertex-disjoint. We use induction on the number of edges to prove the theorem.

If $G$ is a Norine-Thomas brick, then $G$ is either a prism, or an even staircase, or a truncated biwheel. In each case, it can be easily checked that the assertion holds.

Hence we may assume that $G$ is not a Norine-Thomas brick. It follows that $G$ has a strictly thin edge $e$ such that the retract of $G-e$, say $H$, is a planar brick with strictly fewer edges than $G$. As already noted, $\mathrm{f}_{\text {odd }}(\mathrm{H})=2$, and thus $H$ has two vertex-disjoint odd faces. We shall adopt the notation described earlier in this section. It should be remembered that $F$ is the face of $G-e$ that contains the edge $e$, and that, for any face $\Phi$ of $G-e$, the face of $H$ that corresponds to $\Phi$ is denoted by $\Phi^{\prime}$. (In particular, $F^{\prime}$ is the face of $H$ that corresponds to the face $F$ of $G-e$.) If $e$ has index zero, or if $V\left(\Phi^{\prime}\right)$ does not contain any contraction vertex, then $\Phi^{\prime}=\Phi$. Otherwise, $\Phi^{\prime}$ and $\Phi$ are different. When this is the case, careful analysis is required.

## Case 1: Both $F_{1}$ and $F_{2}$ are even.

Since $F_{1}$ is even, $e$ cannot be of index three. We shall divide the analysis into three cases depending on the index. Cases dealing with indices one and two are very similar.

Index of e is zero: In this case, $H=G-e$ and $F^{\prime}$ is an even face of $H$. Hence, by induction, $F^{\prime}$ is conformal in $H$, implying that $F_{1} \cup F_{2}$ is conformal in $G$. But each of $F_{1}$ and $F_{2}$ is conformal in $F_{1} \cup F_{2}$. We deduce that both $F_{1}$ and $F_{2}$ are conformal in $G$.

Let $\Phi$ be any even face of $G$ distinct from $F_{1}$ and $F_{2}$. Then $\Phi$ is also a face of $H$. By induction, $\Phi$ is conformal in $H$. Since $G-V(\Phi)$ is either $H-V(\Phi)$ or $H-V(\Phi)+e$, it follows that $\Phi$ is conformal in $G$.

Now let $\Phi$ be an odd face of $G$. Then $\Phi$ is also a face of $H$. By induction, $H-V(\Phi)$ is a 2 -connected critical graph. But $G-V(\Phi)$ is either $H-V(\Phi)$ or $H-V(\Phi)+e$. It follows that $G-V(\Phi)$ is a 2 -connected critical graph.

Index of e is one: We first note that if $\Phi$ is any face of $G$ distinct from $F_{1}$ and $F_{2}$, it follows from Proposition 3.10 that $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)$ is either $\left\{u_{0}, u_{1}, u_{2}\right\}$, or $\left\{u_{1}\right\}$ or $\left\{u_{2}\right\}$, or it is empty. The main problem to contend with in analysing this case is that even if a face $\Phi$ of $G$ contains just one vertex of $\left\{u_{0}, u_{1} \cdot u_{2}\right\}$, the corresponding face $\Phi^{\prime}$ in $H$ contains the contraction vertex $\mathbf{u}$.

Let us note that $F^{\prime}$ is an even face of $H$, but it contains the contraction vertex. However, $H-V\left(F^{\prime}\right)$ and $G-V\left(F_{1} \cup F_{2}\right)$ are still identical, implying that $F_{1}$ and $F_{2}$ are conformal subgraphs of $G$ (as in the index zero case).

Suppose that $\Phi \neq F_{1}, F_{2}$ is an even face of $G$. Then $\Phi^{\prime}$ is an even face of $H$ and, by induction, $H-V\left(\Phi^{\prime}\right)$ has a perfect matching, say $M$. If $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\left\{u_{0}, u_{1}, u_{2}\right\}$, then $G-V(\Phi)=H-V\left(\Phi^{\prime}\right)$ and $M$ itself is a perfect matching of $G-V(\Phi)$. In each of the other cases, either $M+u_{0} u_{2}$ or $M+u_{0} u_{1}$, as appropriate, is a perfect matching of $G-V(\Phi)$. (Thus, suppose $f$ is the edge of $M$ which is incident with the contraction vertex u in $H-V\left(\Phi^{\prime}\right)$. In $G-V(\Phi)$, this edge might be incident with either $u_{1}$ or with $u_{2}$. In the former case, $M+u_{0} u_{2}$ is a perfect matching of $G-V(\Phi)$, and in the latter case, $M+u_{0} u_{1}$ is the desired perfect matching.)

Now suppose that $\Phi$ is an odd face of $G$. Then $\Phi^{\prime}$ is an odd face of $H$ and, by induction, $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$ is a 2-connected critical graph. Let us first note that if $u_{1} \notin V(\Phi)$ then, by Proposition 3.11, $u_{1}$ has at least one neighbour, different from $u_{0}$, which does not lie in $V(\Phi)$. (A similar statement holds for $u_{2}$.)

If $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\left\{u_{0}, u_{1}, u_{2}\right\}$, then $G-V(\Phi)=H-V\left(\Phi^{\prime}\right)$, and thus $G-V(\Phi)$ is a 2 -connected critical graph.

If $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\emptyset$, then the contraction vertex $\mathbf{u}$ is a vertex of $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$. Furthermore, by the observations made earlier, among the edges incident with u in $H^{\prime}$, there is at least one which is incident with $u_{1}$ in $G$, and at least one incident with $u_{2}$. Thus the graph $G-V(\Phi)$ can be obtained from $H^{\prime}$ by appropriately bi-splitting $\mathbf{u}$. Thus, by Lemma 3.6, $G-V(\Phi)$ is 2-connected and critical.

Now, suppose that $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\left\{u_{1}\right\}$. In this case, the contraction vertex $\mathbf{u}$ does belong to $\Phi^{\prime}$, and not to $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$. However, at least one neighbour of $u_{2}$, say $y \neq u_{0}$, is in $H^{\prime}$. The graph $G-V(\Phi)$ can be obtained from $H^{\prime}$ by adding the ear $y u_{2} u_{0} v_{0}$, and then any remaining edges incident with $u_{2}$. It follows that $G-V(\Phi)$ is 2-connected and critical. The case in which $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\left\{u_{2}\right\}$ is similar.

Index of $e$ is two: The face $F^{\prime}$ contains both the contraction vertices, and $G-V(F)=$ $H-V\left(F^{\prime}\right)$, implying, as before, the conformality of the even faces $F_{1}$ and $F_{2}$.

For any face $\Phi \neq F_{1}, F_{2}$ of $G,\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{2}\right\} \cap V(\Phi)$ is either empty; or is one of the four singletons $\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{v_{1}\right\}$, and $\left\{v_{2}\right\}$; or is one of the two doubletons $\left\{u_{1}, v_{1}\right\}$ and $\left\{u_{2}, v_{2}\right\}$; or is one of $\left\{u_{0}, u_{1}, u_{2}\right\}$ and $\left\{v_{0}, v_{1}, v_{2}\right\}$.

Suppose that $\Phi \neq F_{1}, F_{2}$ is an even face of $G$, and let $M$ be a perfect matching of $H-V\left(\Phi^{\prime}\right)$. Then one of $M+u_{0} u_{1}+v_{0} v_{1}, M+u_{0} u_{1}+v_{0} v_{2}, M+u_{0} u_{2}+v_{0} v_{1}, M+u_{0} u_{2}+v_{0} v_{2}$, $M+v_{0} v_{1}, M+v_{0} v_{2}, M+u_{0} u_{1}$, or $M+u_{0} u_{2}$, as appropriate, is a perfect matching of $G-V(\Phi)$.

Now suppose that $\Phi$ is an odd face of $G$, and let $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$. By induction, $H^{\prime}$ is a 2-connected critical graph. We need to deduce from it that $G-V(\Phi)$ is 2-connected and critical.

If $\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{2}\right\} \cap V(\Phi)$ is empty, then neither $\mathbf{u}$ nor $\mathbf{v}$ lies in $V\left(\Phi^{\prime}\right)$, and $G-V(\Phi)$ can be obtained from $H^{\prime}$ by bi-splitting $\mathbf{u}$ and $\mathbf{v}$ successively, and is thus 2-connected and critical.

If $\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{2}\right\} \cap V(\Phi)=\left\{u_{0}, u_{1}, u_{2}\right\}$, then the contraction vertex $\mathbf{u} \in V\left(\Phi^{\prime}\right)$, but $\mathbf{v} \notin V\left(\Phi^{\prime}\right)$. In this case, $G-V(\Phi)$ can be obtained from $H^{\prime}$ by bi-splitting $\mathbf{v}$. (The case in which the intersection is $\left\{v_{0}, v_{1}, v_{2}\right\}$ is similar.)

If $\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{2}\right\} \cap V(\Phi)$ is a singleton, then the bi-splitting operation, followed by the addition of an ear of length three and any remaining edges does the trick. If the intersection is a doubleton, say $\left\{u_{1}, v_{1}\right\}$, then $u_{1}$ and $v_{1}$ are adjacent. We note that $u_{2}$ and $v_{2}$ are not adjacent since otherwise $H$ is not simple. Both $\mathbf{u}$ and $\mathbf{v}$ belong to $V\left(\Phi^{\prime}\right)$, and in $G$, each of $u_{2}$ and $v_{2}$ would have a neighbour in $V\left(F_{2}\right)-\left\{u_{0}, v_{0}\right\}$, say $s$ and $t$ respectively, which are distinct. In this case adding the ear $s u_{2} u_{0} v_{0} v_{2} t$ to $H^{\prime}$, and then adding any remaining edges incident with $u_{2}$ and $v_{2}$ yields $G-V(\Phi)$. This completes the analysis of Case 1.

## Case 2: $F_{1}$ is odd and $F_{2}$ is even.

Index of e is zero: In this case, $F^{\prime}$ is an odd face of $H$. By induction, $H^{\prime}:=H-V\left(F^{\prime}\right)$ is a 2-connected critical graph. Using this, we now show that $F_{2}$ is conformal. There must be a neighbour $y$ of $u_{1}$ that is not in $F^{\prime}$, and hence in $V\left(H^{\prime}\right)$. Let $M$ be a perfect matching of $H^{\prime}-y$. Let $G^{\prime}$ denote the graph induced by the edge set $E\left(F_{1}\right)+y u_{1}-u_{1} u_{0}-u_{0} v_{0}-v_{0} v_{1}$. Since $G^{\prime}$ is an odd path, it has a perfect matching, say $M^{\prime}$. Then $M \cup M^{\prime}$ is a perfect matching of $G-V\left(F_{2}\right)$.

Let $\Phi$ be an even face of $G$ distinct from $F_{2}$. Then $\Phi$ is also an even face of $H$. Conformality of $\Phi$ in $H$ implies the conformality of $\Phi$ in $G$.

Now let us turn to odd faces of $G$. First let $\Phi$ be the odd face distinct from $F_{1}$. Then $\Phi$ is also an odd face of $H$. By induction, $H-V(\Phi)$ is a 2-connected critical graph. Since $F_{1}$ and $\Phi$ are vertex-disjoint, we have $G-V(\Phi)=H-V(\Phi)+e$, and thus $G-V(\Phi)$ is 2 -connected and critical.

Finally, consider the odd face $F_{1}$. To show that $G-V\left(F_{1}\right)$ is a 2-connected critical graph, we show that the 2 -connected critical graph $H^{\prime}:=H-V\left(F^{\prime}\right)$ can be augmented using appropriate ear additions to obtain $G-V\left(F_{1}\right)$. Let us label the vertices such that the cycle bounding $F_{2}$ is $u_{0} x_{1} x_{2} \ldots x_{2 k} v_{0} u_{0}$, where $x_{1}=u_{2}$ and $x_{2 k}=v_{2}$. Then, by Proposition 3.12, there exist vertices $y_{1}, y_{2}, \ldots, y_{2 k} \notin V(F)$, which are neighbours of $x_{1}, x_{2}, \ldots, x_{2 k}$, respectively, such that $y_{i} \neq y_{i+1}$ for $i \in\{1,3, \ldots, 2 k-1\}$. Adding the ears $y_{1} x_{1} x_{2} y_{2}, y_{3} x_{3} x_{4} y_{4}, \ldots, y_{2 k-1} x_{2 k-1} x_{2 k} y_{2 k}$ to $H^{\prime}$ successively results in a 2-connected critical graph whose vertex set is $V(G)-V\left(F_{1}\right)$. Now any remaining missing edges can be added as ears of length one to obtain the graph $G-V\left(F_{1}\right)$. It follows that $G-V\left(F_{1}\right)$ is 2-connected and critical.

Index of $e$ is one: Since $F^{\prime}$ is an odd face of $H$, by induction, $H-V\left(F^{\prime}\right)$ is a 2-connected critical graph. The fact that $F_{2}$ is conformal in $G$ follows by an argument analogous to the one used in the index zero case.

Let $\Phi \neq F_{2}$ be an even face of $G$. Then $\Phi^{\prime}$ is an even face of $H$ and, by induction, $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$ has a perfect matching, say $M$. If $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)=\left\{u_{0}, u_{1}, u_{2}\right\}$, then $M$ is a perfect matching of $G-V(\Phi)$ as well. If $\left\{u_{0}, u_{1}, u_{2}\right\} \cap V(\Phi)$ is either empty, or is a singleton $\left\{u_{1}\right\}$ or $\left\{u_{2}\right\}$, then either $M+u_{0} u_{1}$ or $M+u_{0} u_{2}$, as appropriate, is a perfect matching of $G-V(\Phi)$, and thus $\Phi$ is conformal.

Now let $\Phi \neq F_{1}$ be an odd face of $G$. Then $\Phi^{\prime}$ is an odd face of $H$ and is vertex-disjoint from $F^{\prime}$. By induction, $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$ is 2-connected and critical. Let us first note that since $u_{1} \notin V(\Phi)$, by Proposition 3.11, $u_{1}$ has at least one neighbour, different from $u_{0}$, which does not lie in $V(\Phi)$. (A similar statement holds for $u_{2}$.) Thus, the graph $G-V(\Phi)$ can be obtained from $H^{\prime}$ by appropriately bi-splitting $\mathbf{u}$, which implies that $G-V(\Phi)$ is 2 -connected and critical.

Finally, consider the odd face $F_{1}$. As in the index zero case, $G-V\left(F_{1}\right)$ can be obtained from the 2-connected critical graph $H-V\left(F^{\prime}\right)$ using appropriate ear additions, and is thus 2 -connected and critical.

Index of e is two: As before, we note that $H-V\left(F^{\prime}\right)$ is a 2-connected critical graph. The conformality of $F_{2}$ follows using an argument analogous to the previous cases.

Let $\Phi \neq F_{2}$ be an even face of $G$, and let $M$ be a perfect matching of $H-V\left(\Phi^{\prime}\right)$. Then one of $M+u_{0} u_{1}+v_{0} v_{1}, M+u_{0} u_{1}+v_{0} v_{2}, M+u_{0} u_{2}+v_{0} v_{1}, M+u_{0} u_{2}+v_{0} v_{2}, M+v_{0} v_{1}$, $M+v_{0} v_{2}, M+u_{0} u_{1}$, or $M+u_{0} u_{2}$, as appropriate, is a perfect matching of $G-V(\Phi)$.

Now let $\Phi \neq F_{1}$ be an odd face of $G$. By induction, $H^{\prime}:=H-V\left(\Phi^{\prime}\right)$ is 2-connected and critical. Since $\Phi^{\prime}$ and $F^{\prime}$ are vertex-disjoint, $G-V(\Phi)$ can be obtained from $H^{\prime}$ by bi-splitting $\mathbf{u}$ and $\mathbf{v}$ successively, and is thus 2-connected and critical.

We note that $G-V\left(F_{1}\right)$ can be obtained from the 2-connected critical graph $H-V\left(F^{\prime}\right)$ by adding ears appropriately, and is thus itself 2-connected and critical.

Index of $e$ is three: First we note that $u_{1}=v_{1}$. Recall that $H$ is obtained from $G-$ $e$ by shrinking $\left\{u_{2}, u_{0}, u_{1}, v_{0}, v_{2}\right\}$ to a single vertex, and that the resulting contraction vertex is denoted by $\mathbf{w}$. Observe that $u_{2}$ and $v_{2}$ are neither adjacent, nor do they have a common neighbour, since otherwise $H$ would not be simple. For any face $\Phi \neq F_{1}, F_{2}$ of $G$, $\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{2}\right\} \cap V(\Phi)$ is either empty; or is one of the three singletons $\left\{u_{1}\right\},\left\{u_{2}\right\}$ and $\left\{v_{2}\right\}$; or is one of $\left\{u_{0}, u_{1}, u_{2}\right\}$ and $\left\{v_{0}, v_{1}, v_{2}\right\}$.

In $H$, the face $F^{\prime}$ is an odd face, and by induction, $H^{\prime}:=H-V\left(F^{\prime}\right)$ is a 2-connected critical graph. Let $y$ be a neighbour of $u_{1}$ that is not in $F^{\prime}$, and let $M$ be a perfect matching of $H^{\prime}-y$. Then $M+y u_{1}$ is a perfect matching of $G-V\left(F_{2}\right)$, and thus $F_{2}$ is conformal.

Let $\Phi \neq F_{2}$ be an even face of $G$, and let $M$ be a perfect matching of $H-V\left(\Phi^{\prime}\right)$. Then one of $M+u_{0} u_{1}+v_{0} v_{2}, M+u_{0} u_{2}+v_{0} v_{2}, M+u_{0} u_{2}+v_{0} v_{1}, M+u_{0} u_{2}$, or $M+v_{0} v_{2}$, as appropriate, is a perfect matching of $G-V(\Phi)$.

Now let $\Phi \neq F_{1}$ be an odd face of $G$. Since $\Phi^{\prime}$ and $F^{\prime}$ are vertex-disjoint faces of $H$, neither $u_{2}$ nor $v_{2}$ lies in $V(\Phi)$. By Proposition 3.11, $u_{2}$ has at least one neighbour, different from $u_{0}$, which does not lie in $V(\Phi)$. Similarly, $v_{2}$ has at least one neighbour, different from $v_{0}$, which does not lie in $V(\Phi)$. Now, we observe that $G-V(\Phi)$ can be obtained from the 2-connected critical graph $H-V\left(\Phi^{\prime}\right)$ by appropriately bi-splitting the vertex w into $u_{1}$ and $u_{2}$, and thereafter appropriately bi-splitting the vertex $u_{1}$ into $u_{1}$ and $v_{2}$, and adding the remaining edge $u_{0} v_{0}$. Thus, $G-V(\Phi)$ is 2 -connected and critical.

Finally, consider the odd face $F_{1}$. Let $s$ and $t$ be neighbours of $u_{2}$ and $v_{2}$, respectively, such that $s, t \notin V\left(F_{2}\right)$. As noted earlier, $s$ and $t$ are distinct. We note that $s, t$ lie in the 2-connected critical graph $H^{\prime}:=H-V\left(F^{\prime}\right)$. Let $F_{2}:=u_{0} x_{1} x_{2} \ldots x_{2 k} v_{0} u_{0}$, where $x_{1}=u_{2}$ and $x_{2 k}=v_{2}$. Adding the ear $s x_{1} x_{2} \ldots x_{2 k} t$ to $H^{\prime}$ results in a 2-connected critical graph whose vertex set is $V(G)-V\left(F_{1}\right)$. Now any remaining missing edges can be added as ears of length one to obtain the graph $G-V\left(F_{1}\right)$, which is thus 2 -connected and critical. This completes the analysis of Case 2 .

Thus, all the facial cycles of $G$ possess the desired properties, and this completes the proof of Theorem 3.13.

We will use Theorem 3.13 to characterize $K_{4}$-free planar bricks. However, before that we need another technical result, which proves the existence of a conformal bi-subdivision of $K_{4}$ whenever a plane matching covered graph contains a certain configuration.

Lemma 3.14 Let $G$ be a plane matching covered graph. Let $F_{1}$ and $F_{2}$ be two odd faces which share exactly one edge e such that $G-V\left(F_{1} \cup F_{2}\right)$ has a perfect matching. Then $G$ is $K_{4}$-based.

Proof: We note that the subgraph with vertex set $V\left(F_{1} \cup F_{2}\right)$ and edge set $E\left(F_{1} \cup F_{2}\right)-e$ is an even cycle; denote this cycle by $C$, and label its vertices such that $C:=w_{1} w_{2} \ldots w_{2 k} w_{1}$, $w_{2} \in V\left(F_{2}\right)$ and $e:=w_{1} w_{2 j+1}$ for some $1 \leq j<k$. See Figure 3.6. Observe that $w_{1}$ and $w_{2 j+1}$ belong to the same colour class of $C$. We refer to the vertices of $C$ which belong to the same colour class as $w_{1}$ as black vertices, and the remaining vertices as white vertices.

By hypothesis, $G-V(C)$ has a perfect matching; taking the union of such a matching and the set $\left\{w_{1} w_{2}, w_{3} w_{4}, \ldots, w_{2 k-1} w_{2 k}\right\}$, we obtain a perfect matching $M$ of $G$ itself. Let $M_{e}$ denote some perfect matching of $G$ which contains $e$. Clearly, the edges $w_{1} w_{2}$, $e:=w_{1} w_{2 j+1}$, and $w_{2 j+1} w_{2 j+2}$ lie in an $\left(M_{e}, M\right)$-alternating cycle; we let $P$ denote the unique $\left(M_{e}, M\right)$-alternating path which starts at $w_{2}$ and ends at $w_{2 j+2}$ and does not contain $e$. See Figure 3.6. The edges in wavy lines depict the matching $M$, and those in thick lines indicate the matching $M_{e}$.

Since the path $P$ has origin in $V\left(F_{2}\right)-\left\{w_{1}, w_{2 j+1}\right\}$ and terminus in $V\left(F_{1}\right)-\left\{w_{1}, w_{2 j+1}\right\}$, it must clearly have a segment which has its origin in $V\left(F_{2}\right)-\left\{w_{1}, w_{2 j+1}\right\}$ and terminus in $V\left(F_{1}\right)-\left\{w_{1}, w_{2 j+1}\right\}$ and is otherwise vertex-disjoint with $C$. Our goal is to show that there is at least one such segment of $P$, say $Q$, both of whose ends are white vertices; in general, the path $P$ may have some segments which do not satisfy this property.

The first time that $P$ leaves $V\left(F_{2}\right)$, it must clearly be from a white vertex. Suppose that its next visit to $V\left(F_{2}\right)$, if any, is at a white vertex, say $w_{2 i}$. Let $P\left[w_{2}, w_{2 i}\right]$ denote the ( $w_{2}, w_{2 i}$ )-segment of $P$, and let $C^{\prime}$ denote the cycle $w_{1} w_{2} P\left[w_{2}, w_{2 i}\right] w_{2 i} w_{2 i+1} \ldots w_{2 j+1} w_{1}$. The black vertex $w_{2 i-1}$ and the terminal vertex $w_{2 j+2}$ of $P$ would be in different regions determined by the cycle $C^{\prime}$. Since $P$ must continue on from $w_{2 i}$ to $w_{2 i-1}$ and eventually terminate at $w_{2 j+2}$, this is impossible because $G$ is a plane graph. Thus all re-entrances of $P$ in to $V\left(F_{2}\right)$, if any, must be at black vertices; which implies that all exits of $P$ from
$V\left(F_{2}\right)$ must be from white vertices. A similar argument shows that all entries of $P$ into $V\left(F_{1}\right)$ are at white vertices. We conclude that there must be a segment $Q$ of $P$ starting at a white vertex $x \in V\left(F_{2}\right)-\left\{w_{1}, w_{2 j+1}\right\}$ and ending at a white vertex $y \in V\left(F_{1}\right)-\left\{w_{1}, w_{2 j+1}\right\}$ which is internally-disjoint from $V\left(F_{1}\right) \cup V\left(F_{2}\right)$, as shown in Figure 3.6.


Figure 3.6: A conformal bi-subdivision of $K_{4}$

Let $H$ be the subgraph of $G$ with vertex set $V(C) \cup V(Q)$ and edge set $E(C) \cup E(Q)+e$. Clearly, $H$ is a bi-subdivision of $K_{4}$. It is a conformal subgraph of $G$ because the restriction of the perfect matching $M$ to $E(H)$ is a perfect matching of $H$.

We now proceed to prove the main result of this section.

### 3.4.1 Proof of Theorem 1.11

Let $G$ be a planar brick. We may assume that $G$ is simple. By Proposition 3.4, if $G$ has exactly two odd faces then $G$ is $K_{4}$-free. It remains to prove the converse.

We show that if $\mathrm{f}_{\text {odd }}(G) \geq 4$, then $G$ must be $K_{4}$-based. We use induction on the number of edges. If $G$ is a Norine-Thomas brick, then it must be either an odd wheel or an odd staircase. In either case, it can be easily checked that $G$ is $K_{4}$-based.

Hence we may assume that $G$ is not a Norine-Thomas brick. It follows that $G$ has a strictly thin edge $e$ such that the retract of $G-e$, say $H$, is a planar brick with strictly fewer edges than $G$. Proposition 3.3 implies that $2 \leq \mathrm{f}_{\text {odd }}(H) \leq \mathrm{f}_{\text {odd }}(G)$. If $\mathrm{f}_{\text {odd }}(H) \geq 4$, then it follows from the induction hypothesis and Proposition 3.8 that $G$ is $K_{4}$-based. We may thus assume that $\mathrm{f}_{\text {odd }}(H)=2$. Proposition 3.3 implies that $\mathrm{f}_{\text {odd }}(G)=4$.

Let us now see how it is possible for the number of odd faces of $G$ to be four, whereas the number of odd faces of $H$ is only two. The edge $e$ is drawn in a face $F$ of $G-e$, giving rise to two faces $F_{1}$ and $F_{2}$ of $G$. Any face $\Phi \neq F_{1}, F_{2}$ of $G$ is a face of $G-e$ as well, and thus corresponds to a unique face $\Phi^{\prime}$ of $H$, whose parity is the same as that of $\Phi$. In case of the face $F^{\prime}$ of $H$ that corresponds to the face $F$ of $G-e$, the parity of $F^{\prime}$ is the sum (modulo 2) of the parities of the two faces $F_{1}$ and $F_{2}$. Thus the reduction in the number of odd faces in going from $G$ to $H$ can occur only if both $F_{1}$ and $F_{2}$ are odd and $F^{\prime}$ is even.

Since $\mathrm{f}_{\text {odd }}(H)=2$, the even face $F^{\prime}$ is conformal in $H$ by Theorem 3.13. This implies that the face $F$ is a conformal even face of $G-e$. In other words, $F_{1}$ and $F_{2}$ are two odd faces of $G$ which share exactly one edge $e$ such that $G-V\left(F_{1} \cup F_{2}\right)$ has a perfect matching. It follows from Lemma 3.14 that $G$ is $K_{4}$-based.

Recall that a matching covered graph is a near-brick if it has precisely one brick. It can be shown that Theorem 1.11 in fact holds for all plane near-bricks.

## $3.5 \quad \overline{C_{6}}$-free planar bricks

Observe that $\overline{C_{6}}$ has two vertex-disjoint odd cycles, whence each $\overline{C_{6}}$-based graph inherits this property. In particular, odd wheels are $\overline{C_{6}}$-free. By investigating the odd cycles of an odd staircase, it may be verified that these are also $\overline{C_{6}}$-free. (The remaining planar Norine-Thomas bricks have exactly two odd faces, whence they are $K_{4}$-free and $\overline{C_{6}}$-based.)

Apart from the odd wheels and the odd staircases, there is one exceptional $\overline{C_{6}}$-free simple planar brick. This graph, which we call the Tricorn, is the unique planar brick $G$
with a strictly thin edge $e$ of index three such that the retract of $G-e$ is the odd wheel $W_{5}$. See Figure 3.7.


Figure 3.7: (a) Tricorn, (b) $W_{5}$

To see that the Tricorn is $\overline{C_{6}}$-free, consider any subgraph $H$ of the Tricorn which is a bi-subdivision of $\overline{C_{6}}$. Then $H$ consists of two vertex-disjoint odd cycles $C_{1}$ and $C_{2}$ together with a 3 -linkage linking $C_{1}$ and $C_{2}$ (three disjoint paths linking three vertices of $C_{1}$ with three vertices of $C_{2}$ ). The Tricorn has precisely three 5 -cycles and no two of them are disjoint. So, one of $C_{1}$ and $C_{2}$ has to be a triangle because the Tricorn has ten vertices. Assume without loss of generality that $C_{1}$ is a triangle. If $C_{2}$ is one of the other two triangles, any 3-linkage linking $C_{1}$ and $C_{2}$ includes a path of length two, and so the resulting subgraph would not be a bi-subdivision of $\overline{C_{6}}$. If $C_{2}$ is the unique 5 -cycle disjoint from $C_{1}$, again any 3 -linkage linking $C_{1}$ and $C_{2}$ includes a path of length two. Finally, if $C_{2}$ is the unique 7 -cycle disjoint from $C_{1}$, the unique 3 -linkage linking $C_{1}$ and $C_{2}$ consists of three paths of length one. However, the ends of these three paths on $C_{2}$ do not effect a bi-subdivision of $\overline{C_{6}}$. We, thus have the following.

Proposition 3.15 Odd wheels, odd staircases and the Tricorn are $\overline{C_{6}}$-free.

We now proceed to show that if $G$ is a planar brick, $e$ is a strictly thin edge of $G$, and the retract of $G-e$ is an odd wheel $W_{2 k+1}$, then
(i) either $G$ is $\overline{C_{6}}$-based,
(ii) or the index of $e$ is three, $k=2$, and $G$ is the Tricorn.

If $e$ were a strictly thin edge of index two, then the retract of $G-e$ would have at least two vertices of degree exceeding three (see Proposition 3.7). Since $W_{2 k+1}$ has at most one vertex of degree greater than three, this rules out the case in which $e$ has index two. We examine the other three possibilities in the following propositions.

Proposition 3.16 Let $G$ be a brick, and let $e:=u_{0} v_{0}$ be an edge of $G$ such that $G-e$ is an odd wheel $W_{2 k+1}$. Then $G$ is $\overline{C_{6}}$-based.

Proof: Clearly, $2 k+1 \geq 5$ and both ends of $e$ are rim vertices of $W_{2 k+1}$. Label the hub of $W_{2 k+1}$ as $h$, and the rim vertices in cyclic order as $r_{0}, r_{1}, \ldots, r_{2 k}$ such that $r_{0}=u_{0}$ and $r_{2 j}=v_{0}$ for some $1 \leq j \leq k-1$. Then the two vertex-disjoint odd cycles $r_{0} r_{1} \ldots r_{2 j} r_{0}$ and $r_{2 k} h r_{2 j+1} r_{2 j+2} \ldots r_{2 k}$, together with the three edges $r_{0} r_{2 k}, r_{1} h$ and $r_{2 j} r_{2 j+1}$ linking the two cycles, constitute a spanning subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Proposition 3.17 Let $G$ be a planar brick, and let $e:=u_{0} v_{0}$ be a strictly thin edge of index one such that the retract of $G-e$ is an odd wheel $W_{2 k+1}$. Then $G$ is $\overline{C_{6}}$-based.

Proof: Since $e$ has index one, exactly one end of $e$ has degree three. Suppose that $u_{0}$ has degree three and that $u_{1}$ and $u_{2}$ are its two neighbours in $G-e$. The contraction vertex resulting from the bicontraction of $u_{0}$ has degree at least four, and thus $2 k+1 \geq 5$. Since the hub $h$ of $W_{2 k+1}$ is the only vertex of degree greater than three, it must be the contraction vertex in the retract of $G-e$. Thus the vertices of $G$, other than $u_{0}, u_{1}$ and $u_{2}$, must be rim vertices of $W_{2 k+1}$; the neighbours of $u_{1}$ and $u_{2}$, other than $u_{0}$, together must consist of the set of all the rim vertices.

In $G-e$, the degree of $u_{0}$ is two, and $v_{0}$ is a vertex on the rim. Thus $v_{0}$ must have degree exactly four in $G$, and exactly one of $u_{1}$ and $u_{2}$ is a neighbour of $v_{0}$. Without loss of generality, assume that $u_{1}$ is a neighbour of $v_{0}$. Since $G$ is planar, all the neighbours of $u_{1}$ and those of $u_{2}$ (other than $u_{0}$ ) must appear consecutively on the rim, and exactly one of the neighbours of $v_{0}$ on the rim should be adjacent to $u_{2}$. Let $r_{0}=v_{0}$, and label the remaining rim vertices in cyclic order as $r_{1}, r_{2}, \ldots, r_{2 k}$ such that $r_{2 k}$ is a neighbour of $u_{2}$. Then $r_{0} u_{0} u_{1} r_{0}$ and $r_{2 k} u_{2} r_{2 k-1} r_{2 k}$ are two triangles in $G$. The odd paths $r_{0} r_{2 k}, u_{0} u_{2}$, and $u_{1} r_{1} r_{2} \ldots r_{2 k-1}$ link pairs of vertices of those two triangles. Together, they constitute a spanning subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Proposition 3.18 Let $G$ be a planar brick, and let $e:=u_{0} v_{0}$ be a strictly thin edge of index three such that the retract of $G-e$ is an odd wheel $W_{2 k+1}$. If $k=2$, then $G$ is the Tricorn; otherwise, $G$ is $\overline{C_{6}}$-based.

Proof: In this case, both $u_{0}$ and $v_{0}$ have degree two in $G-e$, and have exactly one common neighbour. Let $u_{1}=v_{1}$ be the common neighbour of $u_{0}$ and $v_{0}$, and let $u_{2}$ and $v_{2}$ be the other two neighbours of $u_{0}$ and $v_{0}$ in $G-e$, respectively. (See Figure 3.5c.) The shrinking of $\left\{u_{2}, u_{0}, u_{1}, v_{0}, v_{2}\right\}$ results in the contraction vertex of the retract of $G-e$, which has degree at least five. Thus we have $k \geq 2$, and that the hub of $W_{2 k+1}$ must be the contraction vertex. It follows that in $G$, the vertices other than $u_{2}, u_{0}, u_{1}, v_{0}, v_{2}$ must be the vertices on the rim of $W_{2 k+1}$. Among the rim vertices, $u_{1}$ has at least one neighbour, and $u_{2}$ and $v_{2}$ have at least two each. Label the rim vertices as $r_{0}, r_{1}, \ldots, r_{2 k}$ such that $r_{0}, r_{1}, \ldots, r_{i}$ are the neighbours of $u_{1}$ on the rim, and $r_{i+1}$ is a neighbour of $u_{2}$; in this order, let $r_{j}$ be the last vertex on the rim that is adjacent to $u_{2}$. Thus, according to this convention, $r_{j-1}$ is adjacent to $u_{2}$, and $r_{j+1}$ and $r_{j+2}$ are both adjacent to $v_{2}$.

Let us first consider the case in which $2 k+1=5$. The rim consists of the five vertices $r_{0}, r_{1}, r_{2}, r_{3}$ and $r_{4}$. It will have to be the case that $r_{0}$ is adjacent to $u_{1}$, the two vertices $r_{1}$ and $r_{2}$ are adjacent to $u_{2}$, and $r_{3}$ and $r_{4}$ are adjacent to $v_{2}$. Clearly, in this case, $G$ has to be the Tricorn.

Now suppose $2 k+1 \geq 7$. We shall consider three different cases and, in each case indicate a spanning subgraph $H$ of $G$ which is a bi-subdivision of $\overline{C_{6}}$. (Each of these cases, taking $k=4$, is illustrated in Figure 3.8.)

Case 1: Vertex $u_{1}$ has at least two neighbours on the rim. (In this case, both $r_{0}$ and $r_{1}$ are neighbours of $u_{1}$.) See Figure 3.8a.

The two triangles $r_{j-1} u_{2} r_{j} r_{j-1}$ and $r_{j+2} v_{2} r_{j+1} r_{j+2}$ - together with the odd paths $r_{j-1} r_{j-2} \ldots r_{1} u_{1} r_{0} r_{2 k} r_{2 k-1} \ldots r_{j+2}$ and $u_{2} u_{0} v_{0} v_{2}$ and $r_{j} r_{j+1}$ linking them - constitute the desired spanning subgraph $H$.

If $u_{1}$ has just one neighbour, namely $r_{0}$, on the rim, then the parities of the number of neighbours of $u_{2}$ and $v_{2}$ on the rim are the same. We consider two cases according to their common parity.

Case 2: Vertex $r_{0}$ is the only neighbour of $u_{1}$ on the rim, and both $u_{2}$ and $v_{2}$ have an odd number of neighbours on the rim. See Figure 3.8b.

The two triangles $u_{1} u_{0} v_{0} u_{1}$ and $r_{j-1} u_{2} r_{j} r_{j-1}$ - together with the odd paths $u_{1} r_{0} r_{1} \ldots r_{j-1}$ and $u_{0} u_{2}$ and $v_{0} v_{2} r_{2 k} r_{2 k-1} \ldots r_{j+1} r_{j}$ linking them - constitute the desired spanning subgraph $H$.


Figure 3.8: Index of $e$ is three

Case 3: Vertex $r_{0}$ is the only neighbour of $u_{1}$ on the rim, and both $u_{2}$ and $v_{2}$ have an even number of neighbours on the rim. See Figure 3.8c.

Since $2 k+1 \geq 7$, at least one of $u_{2}$ and $v_{2}$ has at least four neighbours on the rim. Without loss of generality, assume that $u_{2}$ has at least four neighbours on the rim. The two triangles $u_{1} u_{0} v_{0} u_{1}$ and $r_{j-2} u_{2} r_{j-1} r_{j-2}$ - together with the odd paths $u_{1} r_{0} r_{1} \ldots r_{j-2}$ and $u_{0} u_{2}$ and $v_{0} v_{2} r_{2 k} r_{2 k-1} \ldots r_{j} r_{j-1}$ linking them - constitute the desired spanning subgraph $H$.

In each of the above cases, we see that $G$ is $\overline{C_{6}}$-based.

Next, we shall prove that if $G$ is a planar brick, $e$ is a strictly thin edge of $G$, and the retract of $G-e$ is an odd staircase $S t_{2 k+4}$, then $G$ is $\overline{C_{6}}$-based. Observe that if $e$ is of index one or more, then the retract of $G-e$ would have a vertex of degree four or more (see Proposition 3.7). Since a staircase is cubic, the only possibility is that $e$ is of index zero, that is, $G$ is obtained from $S t_{2 k+4}$ by adding the edge $e$.

Proposition 3.19 Let $G$ be a brick, and let e be an edge of $G$ such that $H:=G-e$ is an odd staircase $S t_{2 k+4}$. Then $G$ is $\overline{C_{6}}$-based.

Proof: In order to have a convenient labelling of the vertices, we shall redefine odd staircases as follows. Let $r_{0} r_{1} \ldots r_{k}$ and $s_{0} s_{1} \ldots s_{k}$ be two vertex-disjoint paths where $k \geq 2$ and $k$ is even. The odd staircase $S t_{2 k+4}$ is the graph obtained by the union of these two paths, along with two new vertices $x$ and $y$, and joining $r_{i}$ to $s_{i}$ for $0 \leq i \leq k$, and joining $x$ to $r_{0}$ and $s_{0}$, $y$ to $r_{k}$ and $s_{k}$, and $x$ and $y$ to each other. Figure 3.9 shows this labelling for the smallest odd staircase $S t_{8}$.


Figure 3.9: The odd staircase $S t_{8}$

We label the vertices of $H:=S t_{2 k+4}$ as in the preceding paragraph. We shall divide the proof into several cases, depending on the ends of $e$. In each case, we find a bi-subdivision of $\overline{C_{6}}$, which is a conformal subgraph of $G$.

Case 1: $e:=x r_{2 j+1}$ for some $0 \leq 2 j+1 \leq k$.
The two odd cycles $x r_{2 j+1} r_{2 j} \ldots r_{0} x$ and $y r_{k} s_{k} y$ - together with the three odd paths $x y$ and $r_{2 j+1} r_{2 j+2} \ldots r_{k}$ and $r_{0} s_{0} s_{1} \ldots s_{k}$ linking them - constitute a spanning subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Case 2: $e:=x r_{2 j}$ for some $0<2 j \leq k$.
The two odd cycles $x r_{0} s_{0} x$ and $y r_{k} r_{k-1} \ldots r_{2 j} r_{2 j-1} s_{2 j-1} s_{2 j} \ldots s_{k} y$ - together with the three odd paths $x r_{2 j}$ and $r_{0} r_{1} \ldots r_{2 j-1}$ and $s_{0} s_{1} \ldots s_{2 j-1}$ linking them - constitute a spanning subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Case 3: $e:=r_{i} r_{j}$ such that $i<j$ and $i \equiv j \equiv 0(\bmod 2)$.
The two odd cycles $r_{i} r_{i+1} \ldots r_{j} r_{i}$ and $x s_{0} s_{1} \ldots s_{k} y x$ - together with the three odd paths $r_{i} s_{i}$ and $r_{i+1} s_{i+1}$ and $r_{j} s_{j}$ linking them - constitute a conformal subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.
Case 4: $e:=r_{i} r_{j}$ such that $i<j$ and $i \equiv j \equiv 1(\bmod 2)$.
The two odd cycles $r_{i} r_{i+1} \ldots r_{j} r_{i}$ and $x r_{0} s_{0} s_{1} \ldots s_{k} r_{k} y x$ - together with the three odd paths $r_{i} s_{i}$ and $r_{i+1} s_{i+1}$ and $r_{j} s_{j}$ linking them - constitute a conformal subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Case 5: $e:=r_{i} r_{j}$ such that $i<j$ and $i \not \equiv j(\bmod 2)$.
Observe that $j-i$ is at least three. The two odd cycles $x r_{0} r_{1} \ldots r_{i} r_{i+1} s_{i+1} s_{i} \ldots s_{0} x$ and $y r_{k} r_{k-1} \ldots r_{j} r_{j-1} s_{j-1} s_{j} \ldots s_{k} y$ - together with the three odd paths $r_{i} r_{j}$ and $r_{i+1} r_{i+2} \ldots r_{j-1}$ and $s_{i+1} s_{i+2} \ldots s_{j-1}$ linking them - constitute a spanning subgraph of $G$, which is a bisubdivision of $\overline{C_{6}}$.

Case 6: $e:=r_{i} s_{j}$ such that $i<j$ and $i \equiv j(\bmod 2)$.
The two triangles $x r_{0} s_{0} x$ and $y s_{k} r_{k} y$ - together with the three odd paths $x y$ and $r_{0} r_{1} \ldots r_{i} s_{j} s_{j+1} \ldots s_{k}$ and $s_{0} s_{1} \ldots s_{i} s_{i+1} r_{i+1} r_{i+2} \ldots r_{k}$ linking them - constitute a conformal subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

Case 7: $e:=r_{i} s_{j}$ such that $i<j$ and $i \not \equiv j(\bmod 2)$.
Without loss of generality, assume that $i \equiv 0(\bmod 2)$. The two odd cycles $r_{i} r_{i+1} \ldots r_{j} s_{j} r_{i}$ and $y r_{k} s_{k} y$ - together with the three odd paths $r_{i} r_{i-1} \ldots r_{0} s_{0} x y$ and $r_{j} r_{j+1} \ldots r_{k}$ and $s_{j} s_{j+1} \ldots s_{k}$ linking them - constitute a conformal subgraph of $G$, which is a bi-subdivision of $\overline{C_{6}}$.

In each of the above cases, we see that $G$ is $\overline{C_{6}}$-based.


Figure 3.10: Adding an edge to the Tricorn

Finally, we show that adding an edge to the Tricorn results in a $\overline{C_{6}}$-based brick. Depending on the ends of $e$, there are six cases to be checked (up to isomorphism). The various possibilities are shown in Figure 3.10, and in each case, the edges depicted by the bold lines constitute a spanning bi-subdivision of $\overline{C_{6}}$. We thus have the following.

Proposition 3.20 Let $G$ be a brick, and let e be an edge of $G$ such that $H:=G-e$ is the Tricorn. Then $G$ is $\overline{C_{6}}$-based.

We are now ready to prove the main result of this section.

### 3.5.1 Proof of Theorem 1.12

Let $G$ be a planar brick. We may assume that $G$ is simple. As discussed, if $G$ is an odd wheel or an odd staircase or the Tricorn, then $G$ is $\overline{C_{6}}$-free. We now establish the converse.

We use induction on the number of edges. If $G$ is a Norine-Thomas brick, then the result holds trivially.

Hence we may assume that $G$ is not a Norine-Thomas brick, and thus, $G$ has a strictly thin edge $e$ such that the retract of $G-e$, say $H$, is a $\overline{C_{6}}$-free planar brick with strictly fewer edges than $G$. By induction, $H$ is either an odd wheel, or an odd staircase, or the Tricorn. We note that odd staircases and the Tricorn are cubic graphs, and that an odd wheel has at most one vertex of degree exceeding three. If the index of $e$ is two, then $H$ would have at least two vertices of degree at least four; thus we rule out this possibility.

If $H$ is an odd staircase or the Tricorn, then $e$ must be a strictly thin edge of index zero, and $H=G-e$. Using Proposition 3.19 or 3.20 , as appropriate, we conclude that $G$ must be $\overline{C_{6}}$-based, which is a contradiction.

If $H$ is an odd wheel, then using Proposition 3.16, 3.17 or 3.18 , as appropriate, we conclude that $G$ is either $\overline{C_{6}}$-based which contradicts the hypothesis, or otherwise $G$ is isomorphic to the Tricorn and we are done.

### 3.6 Nonplanar $K_{4}$-free and $\overline{C_{6}}$-free bricks

There is an extensive class of bricks, known as solid bricks [CLM06], which are $\overline{C_{6}}$-free and are of particular interest in matching theory. For example, each nonbipartite Möbius ladder is a solid brick, and thus $\overline{C_{6}}$-free. The Petersen graph is an example of a $\overline{C_{6}}$-free brick which is not solid.

There do exist infinite families of nonplanar $K_{4}$-free bricks. The smallest such brick, which we refer to as the Trellis, is shown in Figure 3.11.


Figure 3.11: The Trellis - a nonplanar $K_{4}$-free brick

## Chapter 4

## Near-bipartite graphs

Here, we will examine properties of near-bipartite graphs that are relevant to us in Chapters 5 and 6 . Recall that an $R$-graph $G$ is a near-bipartite graph with a fixed removable doubleton $R$. We will adopt the following notational conventions.

Notation 4.1 For an $R$-graph $G$, we shall denote by $H[A, B]$ the underlying bipartite graph $G-R$. We let $\alpha$ and $\beta$ denote the constituent edges of $R$, and we adopt the convention that $\alpha:=a_{1} a_{2}$ has both ends in $A$, whereas $\beta:=b_{1} b_{2}$ has both ends in $B$.

As we will see, certain pertinent properties of $G$ are closely related to those of $H$. For this reason, we also review well-known facts concerning bipartite matching covered graphs.

### 4.1 The exchange property

Recall that an edge of a matching covered graph is removable if its deletion results in another matching covered graph. The removable edges of a bipartite graph satisfy an 'exchange property' and its proof immediately follows from bipartite ear decompositions; see Section 1.2.1.

Proposition 4.2 [Exchange Property of Removable Edges] Let $H$ denote a bipartite matching covered graph, and let e denote a removable edge of $H$. If $f$ is a removable edge of $H-e$, then:
(i) $f$ is removable in $H$, and
(ii) $e$ is removable in $H-f$.

Proof: Observe that the graph $H-f$ may be obtained from the matching covered graph $H-e-f$ by adding a single ear (that is, edge $e$ ). Thus, by Proposition 1.5, $H-f$ is matching covered. This proves (i). Statement (ii) follows immediately since $H-f-e$ is matching covered.

The following is a generalization of Proposition 4.2, and it is applicable to certain situations that arise in Chapter 6:

Proposition 4.3 Let $K$ be a conformal matching covered subgraph of a bipartite matching covered graph $H$. Let e denote a removable edge of $K$. Then $e$ is removable in $H$ as well.

Proof: Since $K$ is a conformal matching covered subgraph, $H$ admits a bipartite ear decomposition starting with $K$, say $H_{1} \subset H_{2} \subset \cdots \subset H_{r}$. Note that $H_{1}=K$ and $H_{r}=H$. Each graph in this sequence includes the edge $e$. Now, consider the bipartite ear decomposition $H_{1}-e \subset H_{2}-e \subset \cdots \subset H_{r}-e$ of the graph $H-e$. Since $H_{1}-e=K-e$ is matching covered, Proposition 1.5 implies that $H_{r}-e=H-e$ is also matching covered, that is, $e$ is removable in $H$.


Figure 4.1: $f$ is removable in $S t_{8}-e$, but it is not removable in $S t_{8}$

We point out that the conclusion of Proposition 4.2 does not hold, in general, for arbitrary removable edges of nonbipartite graphs. For instance, as shown in Figure 4.1, the edge $f$ is removable in the matching covered graph $S t_{8}-e$, but it is not removable in $S t_{8}$. However, as we prove next, the exchange property does hold for $R$-compatible edges. Recall that an $R$-compatible edge of an $R$-graph $G$ is one which is removable in $G$ as well as in the underlying bipartite graph $H:=G-R$; see Section 1.7.1.

Proposition 4.4 [Exchange Property of $R$-compatible Edges] Let $G$ be an $R$-graph, and let e denote an $R$-compatible edge of $G$. If $f$ is an $R$-compatible edge of $G-e$, then:
(i) $f$ is $R$-compatible in $G$, and
(ii) $e$ is $R$-compatible in $G-f$.

Proof: Let $H:=G-R$. Since $f$ is $R$-compatible in $G-e$, each of the graphs $G-e-f$ and $H-e-f$ is matching covered. To deduce (i), we need to show that each of $G-f$ and $H-f$ is matching covered. Since $f$ is removable in $H-e$, it follows from Proposition 4.2 that $f$ is removable in $H$ as well. That is, $H-f$ is matching covered.

Next, we note that the edge $e$ is admissible in $H-f$. Thus $e$ is admissible in $G-f$. As $G-e-f$ is matching covered, we conclude that $G-f$ is also matching covered. This proves (i). Statement (ii) follows immediately, since each of $G-f-e$ and $H-f-e$ is matching covered.

### 4.2 Non-removable edges of bipartite graphs

Let $H[A, B]$ denote a bipartite graph, on four or more vertices, that has a perfect matching. Using the well-known Hall's Theorem, it can be shown that an edge $f$ of $H$ is inadmissible (that is, $f$ is not in any perfect matching of $H$ ) if and only if there exists a nonempty proper subset $S$ of $A$ such that $|N(S)|=|S|$ and $f$ has one end in $N(S)$ and its other end is not in $S$.

Now suppose that $H$ is matching covered, and let $e$ denote a non-removable edge of $H$. Then some edge $f$ of $H-e$ is inadmissible. This fact, coupled with the above observation, may be used to arrive at the following characterization of non-removable edges in bipartite matching covered graphs; see Figure 4.2.

Proposition 4.5 [Characterization of Non-removable Edges] Let $H[A, B] d e-$ note a bipartite matching covered graph on four or more vertices. An edge e of $H$ is non-removable if and only if there exist partitions $\left(A_{0}, A_{1}\right)$ of $A$ and $\left(B_{0}, B_{1}\right)$ of $B$ such that $\left|A_{0}\right|=\left|B_{0}\right|$ and $e$ is the only edge joining a vertex in $B_{0}$ to a vertex in $A_{1}$.


Figure 4.2: Non-removable edge of a bipartite graph

In Figure $4.2, e$ is the only edge with one end in $B_{0}$ and the other in $A_{1}$. Consequently, any edge $f$, with one end in $A_{0}$ and the other in $B_{1}$, is inadmissible once $e$ is deleted. This fact yields the following corollary. (A 4-cycle is referred to as a quadrilateral.)

Corollary 4.6 Suppose that $Q$ is a quadrilateral of a bipartite matching covered graph $H$, and let $e$ and $f$ denote two nonadjacent edges of $Q$. If $f$ is admissible in $H-e$ then $e$ is removable in $H$.

In our work, we will often be interested in finding an $R$-compatible edge incident at a specified vertex $v$ of an $R$-brick $G$. As a first step, we will upper bound the number of edges of $\partial(v)$, which are non-removable in the underlying bipartite graph $H:=G-R$. For this purpose, the next lemma of Lovász and Vempala [LV] is especially useful. It is an extension of Proposition 4.5. See Figure 4.3.

Lemma 4.7 [The Lovász-Vempala Lemma] Let $H[A, B]$ denote a bipartite matching covered graph, and $b \in B$ denote a vertex of degree $d \geq 3$. Let $b a_{1}, b a_{2}, \ldots, b a_{d}$ be the edges of $H$ incident with $b$. Assume that the edges $b a_{1}, b a_{2}, \ldots, b a_{r}$ where $0<r \leq d$ are non-removable. Then there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ of $A$ and $\left(B_{0}, B_{1}, \ldots, B_{r}\right)$ of $B$, such that $b \in B_{0}$, and for $i \in\{1,2, \ldots, r\}$ : (i) $\left|A_{i}\right|=\left|B_{i}\right|$, (ii) $a_{i} \in A_{i}$, and (iii) $N\left(A_{i}\right)=B_{i} \cup\{b\}$; in particular, ba $a_{i}$ is the only edge between $B_{0}$ and $A_{i}$.

Observe that, as per the notation in the above lemma, if $b a_{1}$ and $b a_{2}$ are non-removable edges, then the vertices $a_{1}$ and $a_{2}$ have no common neighbour distinct from $b$. That is, there is no quadrilateral containing edges $b a_{1}$ and $b a_{2}$ both. This proves the following corollary of Lovász and Vempala [LV].


Figure 4.3: Non-removable edges incident at a vertex

Corollary 4.8 Let $H$ denote a bipartite matching covered graph, and $b$ denote a vertex of degree three or more. If e and $f$ are two edges incident at $b$ which lie in a quadrilateral $Q$ then at least one of e and $f$ is removable.

We conclude with an easy application of the Lovász-Vempala Lemma in the context of near-bipartite bricks.

Corollary 4.9 Let $G$ be an $R$-brick, and let $H:=G-R$. Then for any vertex $b$, at most two edges of $\partial_{H}(b)$ are non-removable in $H$.

Proof: We adopt Notation 4.1; assume without loss of generality that $b \in B$. If $b$ has only two distinct neighbours in $H$ then the assertion is easily verified. Now suppose that $b$ has at least three distinct neighbours in $H$, and let $d$ denote the degree of $b$ in $H$.

Suppose instead that there are $r \geq 3$ non-removable edges incident with $b$; we denote these as $b a_{1}, b a_{2}, \ldots, b a_{r}$. Then, by the Lovász-Vempala Lemma (4.7), there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ of $A$ and $\left(B_{0}, B_{1}, \ldots, B_{r}\right)$ of $B$, such that $b \in B_{0}$, and for $i \in\{1,2, \ldots, r\}$ : (i) $\left|A_{i}\right|=\left|B_{i}\right|$, (ii) $a_{i} \in A_{i}$, and (iii) $N_{H}\left(A_{i}\right)=B_{i} \cup\{b\}$. See Figure 4.3.

Observe that, for $i \in\{1,2, \ldots, r\}$, every vertex of $A_{i}$ is isolated in $H-\left(B_{i} \cup\{b\}\right)$; consequently, $B_{i} \cup\{b\}$ is a nontrivial barrier of $H$. Since $G$ is free of nontrivial barriers (by Theorem 1.9), adding the edges of $R$ must kill each of these barriers. In particular, $\alpha$ must have an end in each $A_{i}$ for $i \in\{1,2, \ldots, r\}$. This is not possible, as $r \geq 3$; thus we have a contradiction. This completes the proof of Corollary 4.9.

### 4.3 Barriers and tight cuts

We begin with a property of removable edges related to tight cuts which is easily verified; it holds for all matching covered graphs, and will be useful to us in Chapter 5.

Proposition 4.10 Let $G$ be a matching covered graph, and $\partial(X)$ a tight cut of $G$, and $e$ an edge of $G[X]$. Then $e$ is removable in $G / \bar{X}$ if and only if $e$ is removable in $G$.

Let us revisit the notion of a barrier cut. If $S$ is a barrier of a matching covered graph $G$ and $K$ is an odd component of $G-S$ then $\partial(V(K))$ is a tight cut of $G$, and is referred to as a barrier cut. In Sections 4.3.1 and 4.3.2, among other things, we will see that every nontrivial tight cut of a bipartite or of a near-bipartite graph is a barrier cut.

### 4.3.1 Bipartite graphs

Suppose that $X$ is an odd subset of the vertex set of a bipartite graph $H[A, B]$. Then, clearly one of the two sets $A \cap X$ and $B \cap X$ is larger than the other; the larger of the two sets, denoted $X_{+}$, is called the majority part of $X$; and the smaller set, denoted $X_{-}$, is called the minority part of $X$.

The following proposition is easily derived, and it provides a convenient way of visualizing tight cuts in bipartite matching covered graphs. See Figure 4.4.

Proposition 4.11 [Tight Cuts in Bipartite Graphs] $A$ cut $\partial(X)$ of a bipartite matching covered graph $H$ is tight if and only if the following hold:
(i) $|X|$ is odd and $\left|X_{+}\right|=\left|X_{-}\right|+1$, consequently $\left|\bar{X}_{+}\right|=\left|\bar{X}_{-}\right|+1$, and
(ii) there are no edges between $X_{-}$and $\bar{X}_{-}$.

Observe that, in the above proposition, $X_{+}$and $\bar{X}_{+}$are both barriers of $H$. It follows that every tight cut of a bipartite matching covered graph is a barrier cut.

Recall that, for a bipartite matching covered graph $H[A, B]$, its maximal barriers are precisely its color classes $A$ and $B$. Now let $S$ denote a nontrivial barrier of $H$ which is not maximal, and adjust notation so that $S \subset B$. It may be inferred from Proposition 4.11


Figure 4.4: Tight cuts in bipartite matching covered graphs
that $H-S$ has precisely $|S|-1$ isolated vertices each of which is a member of $A$, and it has precisely one nontrivial odd component $K$ which gives rise to a nontrivial barrier cut of $H$, namely $\partial(V(K))$.

Since braces are bipartite matching covered graphs which are free of nontrivial tight cuts, Proposition 4.11 may be used to obtain the following characterizations of braces.

Proposition 4.12 [Characterizations of Braces] Let $H[A, B]$ denote a bipartite graph of order six or more, where $|A|=|B|$. Then the following statements are equivalent:
(i) $H$ is a brace,
(ii) $|N(S)| \geq|S|+2$ for every nonempty subset $S$ of $A$ such that $|S|<|A|-1$, and
(iii) $H-\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ has a perfect matching for any four distinct vertices $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

### 4.3.2 Near-bipartite graphs

Let $G$ denote an $R$-graph. We adopt Notation 4.1. For an odd subset $X$ of $V(G)$, we define its majority part $X_{+}$and its minority part $X_{-}$by regarding it as a subset of $V(H)$.

Observe that, if $X$ is the shore of a tight cut in $G$ then it is the shore of a tight cut in $H$ as well. This observation, coupled with Proposition 4.11, may be used to derive the following characterization of tight cuts in near-bipartite graphs.

Proposition 4.13 [Tight Cuts in Near-bipartite Graphs] $A$ cut $\partial(X)$ of an $R$-graph $G$ is tight if and only if the following hold:
(i) $X$ is odd and $\left|X_{+}\right|=\left|X_{-}\right|+1$, and consequently, $\left|\bar{X}_{+}\right|=\left|\bar{X}_{-}\right|+1$,
(ii) there are no edges between $X_{-}$and $\bar{X}_{-}$; adjust notation so that $X_{-} \subset A$,
(iii) one of $\alpha$ and $\beta$ has both ends in a majority part; adjust notation so that $\alpha$ has both ends in $\bar{X}_{+}$, and
(iv) $\beta$ has at least one end in $\bar{X}_{-}$.

Consequently, $X_{+}$is a nontrivial barrier of $G$. Moreover, the $\partial(X)$-contraction $G / X$ is near-bipartite with removable doubleton $R$, whereas the $\partial(X)$-contraction $G / \bar{X}$ is bipartite.

Proof: A simple counting argument shows that if all of the statements (i) to (iv) hold then $\partial(X)$ is indeed a tight cut of $G$. See Figure 4.5. Now suppose that $\partial(X)$ is a tight cut; as noted earlier, $\partial(X)-R$ is a tight cut of $H$. Thus (i) and (ii) follow immediately from Proposition 4.11. Adjust notation so that $X_{-} \subset A$.


Figure 4.5: Tight cuts in near-bipartite graphs

As each perfect matching of $G$ which contains $\alpha$ must also contain $\beta$, we infer that at most one of $\alpha$ and $\beta$ lies in $\partial(X)$. Furthermore, if $\alpha$ has both ends in $X_{-}$, and likewise, if $\beta$ has both ends in $\bar{X}_{-}$, then a simple counting argument shows that any perfect matching $M$ of $G$ containing $\alpha$ and $\beta$ meets $\partial(X)$ in at least three edges; this is a contradiction.

The above observations imply that at least one of $\alpha$ and $\beta$ has both ends in a majority part; this proves (iii). As in the statement, adjust notation so that $\alpha$ has both ends in $\bar{X}_{+}$.

Now, if $\beta$ has both ends in $X_{+}$then it is easily seen that $\alpha$ and $\beta$ are both inadmissible. This proves (iv). Note that, either $\beta$ has both ends in $\bar{X}_{-}$as shown in Figure 4.5a, or it has one end in $\bar{X}_{-}$and the other end in $X_{+}$as shown in Figure 4.5 b.

Note that $X_{+}$is a nontrivial barrier of $G$, and that $G / \bar{X}$ is bipartite. We let $G_{1}:=G / X$ denote the other $\partial(X)$-contraction. Observe that $H_{1}:=H / X$ is bipartite and matching covered. Furthermore, in $G_{1}, \alpha$ has both ends in one color class of $H_{1}$, and likewise, $\beta$ has both ends in the other color class of $H_{1}$; this is true for each of the two cases shown in Figure 4.5. Since $H_{1}=G_{1}-R$, we infer that $G_{1}$ is near-bipartite with removable doubleton $R$. This completes the proof of Proposition 4.13.

Recall that a near-brick is a matching covered graph whose tight cut decomposition yields exactly one brick. The following is an immediate consequence of Proposition 4.13.

Corollary 4.14 An $R$-graph $G$ is a near-brick, and its unique brick is also near-bipartite with removable doubleton $R$.

In other words, a near-bipartite graph $G$ is a near-brick, and its unique brick, say $J$, inherits its removable doubletons. The rank of $G$, denoted $\operatorname{rank}(G)$, is the order of the unique brick of $G$. That is, $\operatorname{rank}(G):=|V(J)|$.

Proposition 4.13 shows that every tight cut of a near-bipartite graph is a barrier cut. Now, let $S$ denote a nontrivial barrier of an $R$-graph $G$, and adjust notation so that $S \subset B$. It may be inferred from Proposition 4.13 that $G-S$ has precisely $|S|-1$ isolated vertices each of which is a member of $A$, and it has precisely one nontrivial odd component $K$ which yields a nontrivial tight cut of $G$, namely $\partial(V(K))$. Thus there is a bijective correspondence between the nontrivial barriers of $G$ and its nontrivial tight cuts.

### 4.4 The Three Case Lemma

Recall that a removable edge $e$ of a brick $G$ is $b$-invariant if $G-e$ is a near-brick. In this section, we will discuss a lemma of Carvalho, Lucchesi and Murty [CLM02b] that pertains to the structure of such near-bricks, that is, those which are obtained from a brick by deleting a single edge. This lemma is used extensively in their works [CLM02a, CLM06, CLM12], and it will play a vital role in Chapter 5.

We will restrict ourselves to the case in which $G$ is an $R$-brick and $e$ is $R$-compatible. (By Proposition 1.20, $e$ is $b$-invariant.) We adopt Notation 4.1. As the name of the lemma
suggests, there will be three cases, depending on which we say that the 'index' of $e$ is zero, one or two. In particular, the index of $e$ (defined later) will be zero if $G-e$ is a brick.

Now consider the situation in which $G-e$ is not a brick; that is, $G-e$ has a nontrivial tight cut. By Proposition $4.13, G-e$ has a nontrivial barrier; let $S$ be such a barrier which is also maximal, and adjust notation so that $S \subset B$. We let $I$ denote the set of isolated vertices of $(G-e)-S$; note that $I \subset A$. Since $G$ itself is free of nontrivial barriers, we infer that one end of $e$ lies in $I$ and its other end lies in $B-S$. This observation, coupled with the Canonical Partition Theorem (1.3) and the fact that $e$ has only two ends, implies that $G-e$ has at most two maximal nontrivial barriers; furthermore, if it is has two such barriers then one is a subset of $A$ and the other is a subset of $B$.

The index of $e$, denoted index $(e)$, is the number of maximal nontrivial barriers in $G-e$. (This notion is closely related to the 'index of a thin edge' defined in Section 3.3. In fact, for an $R$-thin edge, these are equivalent; see Proposition 4.17.) It follows from the preceding paragraph that the index of $e$ is either zero, one or two; and these form the three cases. This is the gist of the lemma; apart from this, it provides further information in the index two case which is especially useful to us. We now state the Three Case Lemma [CLM06], as it is applicable to an $R$-compatible edge of an $R$-brick; see Figures 4.6 and 4.7. (The reason for the asymmetry in our notation in Case (2) is discussed in Section 4.4.2.)

Lemma 4.15 [The Three Case Lemma] Let $G$ be an $R$-brick, and e an $R$-compatible edge. Let $H[A, B]:=G-R$. Then one of the following three alternatives holds:
(0) $G-e$ is a brick.
(1) $G-e$ has only one maximal nontrivial barrier, say $S$. Adjust notation so that $S \subset B$. Let $I$ denote the set of isolated vertices of $(G-e)-S$. Then $I \subset A$, and e has one end in $I$ and other end in $B-S$.
(2) $G-e$ has two maximal nontrivial barriers, say $S_{1}$ and $S_{2}^{*}$. Adjust notation so that $S_{1} \subset B$ and $S_{2}^{*} \subset A$. Let $I_{1}$ denote the set of isolated vertices of $(G-e)-S_{1}$, and $I_{2}^{*}$ the set of isolated vertices of $(G-e)-S_{2}^{*}$. Then the following hold:
(i) $I_{1} \subset A$ and $I_{2}^{*} \subset B$;
(ii) e has one end in $I_{1}-S_{2}^{*}$ and other end in $I_{2}^{*}-S_{1}$;
(iii) $S_{2}:=S_{2}^{*}-I_{1}$ is the unique maximal nontrivial barrier of $(G-e) / X_{1}$, where $X_{1}:=S_{1} \cup I_{1}$; furthermore, $S_{2}$ is a barrier of $G-e$ as well, and $I_{2}:=I_{2}^{*}-S_{1}$ is the set of isolated vertices of $(G-e)-S_{2}$.

Now, let $e$ denote an $R$-compatible edge of an $R$-brick $G$. By the rank of $e$, denoted $\operatorname{rank}(e)$, we mean the rank of the $R$-graph $G-e$. That is, $\operatorname{rank}(e):=\operatorname{rank}(G-e)$. Recall that $e$ is $R$-thin if the retract of $G-e$ is a brick. In particular, every $R$-compatible edge of index zero is $R$-thin, and these are the only edges whose rank equals $n:=|V(G)|$.

In what follows, we will further discuss the cases in which the index of $e$ is either one or two; in each case, we shall relate the rank of $e$ with the information provided by the Three Case Lemma, and we examine the conditions under which $e$ is $R$-thin. These discussions are especially relevant to an important result in Chapter 5, namely, Lemma 5.17.

We adopt Notation 4.1. Let $y$ and $z$ denote the ends of $e$ such that $y \in A$ and $z \in B$. Note that, if $y$ is cubic, then the two neighbours of $y$ in $G-e$ constitute a barrier of $G-e$; a similar statement holds for $z$. It follows that if both ends of $e$ are cubic then the index of $e$ is two.

### 4.4.1 Index one

Suppose that the index of $e$ is one. As in case (1) of the Three Case Lemma, we let $S$ denote the unique maximal nontrivial barrier of $G-e$, and $I$ the set of isolated vertices of $(G-e)-S$. Note that $|I|=|S|-1$. We adjust notation so that $S \subset B$ and $I \subset A$; see Figure 4.6. Observe that $y \in I$ and $z \in B-S$.


Figure 4.6: An $R$-compatible edge of index one

In this case, $G-e$ has a unique nontrivial tight cut $\partial(X)$, where $X:=S \cup I$. Consequently, $(G-e) / X$ is the brick of $G-e$, and the rank of $e$ is $|V(G)-X|+1$. Furthermore, $e$ is $R$-thin if and only if $|S|=2$; and in this case, $y$ is cubic, $N(y)=S \cup\{z\}$, and $\operatorname{rank}(e)=n-2$.

### 4.4.2 Index two

Suppose that the index of $e$ is two. As in case (2) of the Three Case Lemma, we let $S_{1}$ denote one of the two maximal nontrivial barriers of $G-e$, and $I_{1}$ the set of isolated vertices of $(G-e)-S_{1}$, adjusting notation so that $S_{1} \subset B$ and $I_{1} \subset A$. Note that $\left|I_{1}\right|=\left|S_{1}\right|-1$ and that $y \in I_{1}$; see Figure 4.7.

Now, let $S_{2}^{*}$ denote the unique maximal nontrivial barrier of $G-e$ which is a subset of $A$, and $I_{2}^{*}$ the set of isolated vertices of $(G-e)-S_{2}^{*}$. As in the index one case (see Figure 4.6), we would like to break $V(G)$ into disjoint subsets in order to be able to compute the rank of $e$. However, this is complicated by the possibility that $S_{2}^{*} \cap I_{1}$ may be nonempty. This explains the asymmetry in our notation in case (2). Fortunately, it turns out that $S_{2}:=S_{2}^{*}-I_{1}$ is the only maximal nontrivial barrier of $(G-e) / X_{1}$, where $X_{1}:=S_{1} \cup I_{1}$. Furthermore, $S_{2}$ is a barrier of $G-e$ as well, and $I_{2}:=I_{2}^{*}-S_{1}$ is the set of isolated vertices of $(G-e)-S_{2}$. Note that $\left|I_{2}\right|=\left|S_{2}\right|-1$ and that $z \in I_{2}$; see Figure 4.7. We let $X_{2}:=S_{2} \cup I_{2}$.


Figure 4.7: An $R$-compatible edge of index two

In this case, $\partial\left(X_{1}\right)$ and $\partial\left(X_{2}\right)$ are both tight cuts of $G-e$; more importantly, $\partial\left(X_{2}\right)$ is the unique tight cut of $(G-e) / X_{1}$. Consequently, $\left((G-e) / X_{1}\right) / X_{2}$ is the brick of $G-e$, and the rank of $e$ is $\left|V(G)-X_{1}-X_{2}\right|+2$.

Furthermore, $e$ is $R$-thin if and only if $\left|S_{1}\right|=2=\left|S_{2}\right|$; and in this case, $y$ and $z$ are both cubic, $N(y)=S_{1} \cup\{z\}$ and $N(z)=S_{2} \cup\{y\}$, and $\operatorname{rank}(e)=n-4$; also, by switching the roles of $S_{1}$ and $S_{2}^{*}$, we infer that $\left|S_{2}^{*}\right|=2$.

### 4.4.3 Index and Rank of an $R$-thin Edge

The following characterization of $R$-thin edges is immediate from our discussion in the previous two sections.

Proposition 4.16 [Characterization of $R$-Thin Edges in terms of Barriers] An $R$-compatible edge e of an $R$-brick $G$ is $R$-thin if and only if every barrier of $G-e$ has at most two vertices.

In summary, if the index of $e$ is zero then $e$ is thin and its rank is $n:=|V(G)|$. If the index of $e$ is one then $\operatorname{rank}(e) \leq n-2$, and equality holds if and only if $e$ is thin. Likewise, if the index of $e$ is two then $\operatorname{rank}(e) \leq n-4$, and equality holds if and only if $e$ is thin.

We conclude by showing that, for an $R$-thin edge, the notion of index used here is equivalent to the one defined in Section 3.3.

Proposition 4.17 Let $G$ be an $R$-brick, and e an $R$-thin edge. Then the following statements hold:
(i) $\operatorname{index}(e)=0$ if and only if both ends of e have degree four or more in $G$;
(ii) $\operatorname{index}(e)=1$ if and only if exactly one end of e has degree three in $G$; and
(iii) $\operatorname{index}(e)=2$ if and only if both ends of e have degree three in $G$ and e does not lie in a triangle.

Proof: We note that index $(e)=0$ if and only if $G-e$ is free of nontrivial barriers, that is, $G-e$ is a brick; and since $e$ is a thin edge, the latter holds if and only if both ends of $e$ have degree four or more in $G$. This proves (i).

Let $n:=|V(G)|$. We note that index $(e)=1$ if and only if $\operatorname{rank}(e)=n-2$; and since $e$ is a thin edge, the latter holds if and only if exactly one end of $e$ has degree three in $G$.

Now suppose that $\operatorname{index}(e)=2$, whence $\operatorname{rank}(e)=n-4$, and consequently, both ends of $e$ have degree three in $G$. Conversely, if both ends of $e$ have degree three in $G$ then $G-e$ has two nontrivial barriers which lie in different color classes of $(G-e)-R$, and thus index $(e)=2$; furthermore, since $e$ is $R$-compatible, neither end of $e$ is incident with an edge of $R$ and thus $e$ does not lie in a triangle.

## Chapter 5

## Generating near-bipartite bricks

In this chapter, we establish the generation procedure for near-bipartite bricks discussed in Section 1.7.2. Recall that an edge of an $R$-brick is $R$-thin if it is $R$-compatible as well as thin. Our goal is to prove Theorem 1.22, which is restated below.

Theorem 1.22 [ $R$-Thin Edge Theorem] Every $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$ has an $R$-thin edge.

In fact, we will show something stronger, which is especially useful in the proof of the main result of Chapter 6 . Let $G$ be an $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$. Then, by Theorem 1.21 of Carvalho et al., $G$ has an $R$-compatible edge; let $e$ be any such edge. Recall from Chapter 4 that there are two parameters associated with $e$ : the rank of $e$ is the order of the unique brick of $G-e$; and, the index of $e$ is the number of maximal nontrivial barriers of $G-e$, which by the Three Case Lemma (4.15) is either zero, one or two. Using these parameters, we may state our stronger theorem as follows.

Theorem 5.1 Let $G$ be an $R$-brick which is distinct from $K_{4}$ and $\overline{C_{6}}$, and let e denote an $R$-compatible edge of $G$. Then one of the following alternatives hold:

- either e is $R$-thin,
- or there exists another $R$-compatible edge $f$ such that:
(i) $f$ has an end each of whose neighbours in $G-e$ lies in a barrier of $G-e$, and
(ii) $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}(e)+\operatorname{index}(e)$.

Since the rank and index are bounded quantities, the above theorem immediately implies the $R$-thin Edge Theorem (1.22). Our proof uses tools from the work of Carvalho et al. [CLM06], and the overall approach is inspired by their proof of the Thin Edge Theorem (1.15).

The following proposition shows that condition (ii) in Theorem 5.1 is implied by a weaker condition involving only the rank function.

Proposition 5.2 Suppose that e and $f$ denote two $R$-compatible edges of an $R$-brick $G$. If $\operatorname{rank}(f)>\operatorname{rank}(e)$ then $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}(e)+\operatorname{index}(e)$.

Proof: Note that, since the rank of an edge is even, $\operatorname{rank}(f)>\operatorname{rank}(e)+1$. As the index of an edge is either zero, one or two, we only need to examine the case in which index $(e)=2$ and index $(f)=0$. However, in this case, $\operatorname{rank}(f)=n$ and $\operatorname{rank}(e) \leq n-4$ where $n:=|V(G)|$, and thus the conclusion holds.

In the statement of Theorem 5.1, if the given $R$-compatible edge $e$ is thin, then the assertion is vacuously true. Thus, in its proof, we may assume that $e$ is not thin. It then follows from Proposition 4.16 that $G-e$ has a barrier with three or more vertices; let $S$ be such a barrier. In the next section, we introduce the notion of a candidate edge (relative to $e$ and $S$ ) which, as we will see, is an $R$-compatible edge that satisfies condition (i) in the statement of Theorem 5.1, and has rank at least that of $e$.

### 5.1 The candidate set $\mathcal{F}(e, S)$

Let $G$ be an $R$-brick, and let $e:=y z$ denote an $R$-compatible edge which is not thin. We first set up some notation which is used throughout this chapter.

Notation 5.3 We shall denote by $H[A, B]$ the underlying bipartite graph $G-R$. We let $R:=\{\alpha, \beta\}$; and we adopt the convention that $\alpha:=a_{1} a_{2}$ has both ends in $A$, whereas $\beta:=b_{1} b_{2}$ has both ends in $B$. Adjust notation so that $y \in A$ and $z \in B$.

The reader is advised to review Section 4.3.2 before proceeding further. Let $S$ be a barrier of $G-e$ such that $|S| \geq 3$, and $I$ the set of isolated vertices of $(G-e)-S$. Adjust notation so that $S \subset B$ and $I \subset A$, as shown in Figure 5.1a. Observe that $X:=S \cup I$ is
the shore of a tight cut in $G-e$, as well as in $H-e$. By Proposition 4.13, $\alpha$ has both ends in $A-I$; whereas $\beta$ either has both ends in $B-S$, or it has one end in $B-S$ and another in $S$. We denote the bipartite matching covered graph

$$
(H-e) / \bar{X} \rightarrow \bar{x}
$$

by $H(e, S)$. Note that its color classes are the sets $I \cup\{\bar{x}\}$ and $S$; see Figure 5.1b.


Figure 5.1: (a) $S$ is a barrier of $G-e$ such that $|S| \geq 3$; (b) the bipartite graph $H(e, S)$

Definition 5.4 [The Candidate $\operatorname{Set} \mathcal{F}(e, S)$ ] We denote by $\mathcal{F}(e, S)$ the set of those removable edges of $H(e, S)$ which are not incident with the contraction vertex $\bar{x}$, and we refer to it as the candidate set (relative to e and the barrier $S$ of $G-e$ ), and each member of $\mathcal{F}(e, S)$ is called a candidate edge.

We remark that Carvalho et al. [CLM06] used a similar notion. Since their work concerns general bricks (that is, not just near-bipartite ones), they consider the graph $(G-e) / \bar{X} \rightarrow \bar{x}$ and its removable edges which are not incident with the contraction vertex. See Lemma 23 and Theorem 24 in [CLM06].

Now, let $f:=u w$ denote a member of the candidate set $\mathcal{F}(e, S)$, as shown in Figure 5.1b. The end $w$ of $f$ lies in $I$, and all of the neighbours of $w$, in $G-e$, lie in the barrier $S$; consequently, $f$ satisfies condition (i), Theorem 5.1. It should be noted that $e$ and $f$ are adjacent if and only if $w$ is the same as $y$. We now show that $f$ is an $R$-compatible edge and it has rank at least that of $e$. The argument pertaining to ranks is the same as that in [CLM06, Lemma 26].

Proposition 5.5 [Properties of Candidate Edges] Every member of $\mathcal{F}(e, S)$ is an $R$-compatible edge of $G-e$, and of $G$, and has rank at least that of $e$. Conversely, each $R$-compatible edge of $G-e$, which is incident with a vertex of $I$, is a member of $\mathcal{F}(e, S)$.

Proof: Let $f$ be any member of $\mathcal{F}(e, S)$, as shown in Figure 5.1b. We will use Proposition 4.10 to show that $f$ is $R$-compatible in $G-e$.

Observe that $H(e, S)$ is one of the $C$-contractions of $H-e$, where $C:=\partial(X)-e-R$ is a tight cut. Since $f$ is removable in $H(e, S)$ and $f \notin C$, Proposition 4.10 implies that $f$ is removable in $H-e$ as well. A similar argument shows that $f$ is removable in $G-e$. Thus, $f$ is $R$-compatible in $G-e$; the exchange property (Proposition 4.4) implies that $f$ is $R$-compatible in $G$ as well.

Note that since both ends of $f$ are in the bipartite shore $X$, the brick of $G-e-f$ is the same as the brick of $G-e$. In particular, $\operatorname{rank}(G-e-f)=\operatorname{rank}(G-e)$. On the other hand, note that if $D$ is any tight cut of $G-f$ then $D-e$ is a tight cut of $G-e-f$, whence $\operatorname{rank}(G-f) \geq \operatorname{rank}(G-e-f)$. Thus $\operatorname{rank}(f) \geq \operatorname{rank}(e)$. This proves the first statement.

Now suppose that $f$ is an $R$-compatible edge of $G-e$ which is incident at some vertex of $I$. In particular, $H-e-f$ is matching covered; that is, $f$ is removable in $H-e$. By Proposition 4.10, $f$ is removable in $H(e, S)$. This completes the proof of Proposition 5.5.

In summary, we have shown that every candidate edge is $R$-compatible; furthermore, it satisfies condition (i), Theorem 5.1; and it has rank at least that of $e$.

The following property of candidate sets will be useful in dealing with those nontrivial barriers of $G-e$ which are not maximal.

Corollary 5.6 Let $S^{*}$ be any barrier of $G-e$. If $S \subset S^{*}$ then $\mathcal{F}(e, S) \subset \mathcal{F}\left(e, S^{*}\right)$.

Proof: Let $f$ be a member of $\mathcal{F}(e, S)$. Then $f$ is incident with some vertex of $I$, say $w$. Note that $w$ also lies in $I^{*}$ which denotes the set of isolated vertices of $(G-e)-S^{*}$.

As $f$ is a member of $\mathcal{F}(e, S)$, Proposition 5.5 implies that $f$ is $R$-compatible in $G-e$. Consequently, since $f$ is incident at $w \in I^{*}$, the last assertion of Proposition 5.5 , with $S^{*}$ playing the role of $S$, implies that $f$ is a member of $\mathcal{F}\left(e, S^{*}\right)$. Thus $\mathcal{F}(e, S) \subset \mathcal{F}\left(e, S^{*}\right)$.

Now, we will prove two lemmas; each of which gives an upper bound on the number of non-removable edges incident at a vertex of the bipartite graph $H(e, S)$, which is distinct from the contraction vertex $\bar{x}$. Both of them are easy applications of the Lovász-Vempala Lemma (4.7); we will use arguments similar to those in the proof of Corollary 4.9.

Lemma 5.7 Let u denote a vertex of $S$ which has degree three or more in $H(e, S)$. Then at most two edges of $\partial(u)-\beta$ are non-removable in $H(e, S)$. Furthermore, if precisely two edges of $\partial(u)-\beta$ are non-removable in $H(e, S)$ and if vertices $u$ and $\bar{x}$ are adjacent then the edge $u \bar{x}$ is non-removable in $H(e, S)$.

Proof: Assume that there are $k \geq 1$ non-removable edges incident with the vertex $u$, namely, $u w_{1}, u w_{2}, \ldots, u w_{k}$. Then, by Lemma 4.7, there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, \ldots, B_{k}\right)$ of $S$, such that $u \in B_{0}$, and for $j \in\{1,2, \ldots, k\}$ : (i) $\left|A_{j}\right|=\left|B_{j}\right|$, (ii) $w_{j} \in A_{j}$ and (iii) $N\left(A_{j}\right)=B_{j} \cup\{u\}$. See Figure 5.2.


Figure 5.2: Illustration for Lemma 5.7

For $1 \leq j \leq k$, note that $B_{j} \cup\{u\}$ is a barrier of $H(e, S)$. Moreover, if the set $A_{j}$ contains neither the contraction vertex $\bar{x}$ nor the end $y$ of $e$, then $B_{j} \cup\{u\}$ is a barrier of $G$ itself, which is not possible as $G$ is a brick. We thus arrive at the conclusion that $k \leq 2$, which proves the first part of the assertion.

Now consider the case when $k=2$. It follows from the above argument that one of the vertices $y$ and $\bar{x}$ lies in the set $A_{1}$, whereas the other vertex lies in the set $A_{2}$. Adjust
notation so that $y \in A_{1}$ and $\bar{x} \in A_{2}$. Observe that if $u$ and $\bar{x}$ are adjacent, then $u \bar{x}$ is the unique edge between $B_{0}$ and $A_{2}$, and it is non-removable in $H(e, S)$ by assumption. This completes the proof of Lemma 5.7.

Now we turn to the examination of non-removable edges of $H(e, S)$ incident with vertices in $I$. The proof is similar to that of Lemma 5.7, except that the roles of the color classes $S$ and $I \cup\{\bar{x}\}$ are interchanged.

Lemma 5.8 Let $w$ denote a vertex of I which has degree three or more in $H(e, S)$. Then at most two edges of $\partial(w)-e$ are non-removable in $H(e, S)$. Furthermore, if precisely two edges of $\partial(w)-e$ are non-removable in $H(e, S)$ then the following hold:
(i) an end of $\beta$ lies in $S$; adjust notation so that $b_{1} \in S$,
(ii) in $H(e, S)$, the vertices $b_{1}$ and $\bar{x}$ are nonadjacent,
(iii) if $b_{1}$ and $w$ are adjacent then the edge $b_{1} w$ is non-removable in $H(e, S)$, and
(iv) $w$ is distinct from the end $y$ of $e$.

Proof: Suppose that there exist $k \geq 1$ non-removable edges incident at the vertex $w$, namely, $w u_{1}, w u_{2}, \ldots, w u_{k}$. Then, by Lemma 4.7, there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of the color class $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, \ldots, B_{k}\right)$ of the color class $S$, such that $w \in A_{0}$, and for $j \in\{1,2, \ldots, k\}:$ (i) $\left|A_{j}\right|=\left|B_{j}\right|$, (ii) $u_{j} \in B_{j}$ and (iii) $N\left(B_{j}\right)=A_{j} \cup\{w\}$. See Figure 5.3.

For $1 \leq j \leq k$, note that $A_{j} \cup\{w\}$ is a barrier of $H(e, S)$. Furthermore, if the contraction vertex $\bar{x}$ is not in $A_{j}$, or if an end of the edge $\beta$ is not in $B_{j}$, then $A_{j} \cup\{w\}$ is a barrier of $G$ itself, which is absurd since $G$ is a brick. Clearly, this would be the case for some $j \in\{1,2, \ldots, k\}$ if $k \geq 3$. We conclude that $k \leq 2$, thus establishing the first part of the assertion.

Now suppose that $k=2$. It follows from the preceding paragraph that an end of $\beta$ lies in $B_{1}$ or in $B_{2}$. This proves (i). Adjust notation so that $b_{1} \in B_{1}$. Furthermore, the contraction vertex $\bar{x}$ lies in $A_{2}$. Consequently, vertices $b_{1}$ and $\bar{x}$ are nonadjacent; this verifies (ii). Note that if $b_{1}$ and $w$ are adjacent, then the edge $b_{1} w$ is the unique edge between $A_{0}$ and $B_{1}$, and it is non-removable in $H(e, S)$ by assumption. This proves (iii). Finally, consider the case in which $w=y$, where $y$ is the end of $e$ in $I$. Observe that the neighbourhood of $A_{0}-y$ lies in the set $B_{0}$ in the graph $H(e, S)$ as well as in $G$, whence $B_{0}$ is a barrier of $G$. We conclude that $\left|B_{0}\right|=1$, and that $y$ is the only vertex of $A_{0}$.


Figure 5.3: Illustration for Lemma 5.8

Furthermore, the neighbourhood of $A_{1}$ lies in $B_{1} \cup B_{0}$, and thus $B_{1} \cup B_{0}$ is a nontrivial barrier in $H(e, S)$ as well as in $G$, which is absurd. We conclude that $w$ is distinct from the end $y$ of $e$; thus (iv) holds. This completes the proof of Lemma 5.8.

The above lemma implies that each vertex of $I$, except possibly the end $y$ of $e$, is incident with at least one candidate. Furthermore, if $y$ has degree three or more in $H(e, S)$ then $y$ is incident with at least two candidates; and likewise, if any other vertex of $I$, say $w$, has degree four or more then $w$ is incident with at least two candidates. We thus have the following corollary which is used in the next section.

Corollary 5.9 The candidate set $\mathcal{F}(e, S)$ has cardinality at least $|S|-2$. (In particular, the set $\mathcal{F}(e, S)$ is nonempty.) Furthermore, if $\mathcal{F}(e, S)$ is a matching then each vertex of $I$ is cubic in $G$ and $|\mathcal{F}(e, S)|=|S|-2$.

As we will see later, by a result of Carvalho et al. (Corollary 5.19), if the candidate set $\mathcal{F}(e, S)$ is not a matching then it has a member whose rank is strictly greater than that of $e$. For this reason, in the proof of Theorem 5.1, we will mainly have to deal with the case in which the candidate set is a matching.

### 5.1.1 When the candidate set is a matching

In this section, we suppose that the candidate set $\mathcal{F}(e, S)$ is a matching. We will make several observations, and these will be useful to us in Section 5.3 where the proof of Theorem 5.1 is presented. For all of the figures in the rest of this chapter, the solid vertices are those which are known to be cubic in the brick $G$; the hollow vertices may or may not be cubic.

Since $\mathcal{F}(e, S)$ is a matching, Corollary 5.9 implies that every vertex of $I$ is cubic in $G$, as shown in Figure 5.4. Furthermore, each of these vertices, except for the end $y$ of $e$, is incident with exactly one candidate edge; in particular, $|\mathcal{F}(e, S)|=|I|-1=|S|-2$.

Notation 5.10 We let $w_{1}, w_{2}, \ldots, w_{k}$ denote the vertices of $I-y$, where $k:=|S|-2$, and for $1 \leq j \leq k$, denote the edge of $\mathcal{F}(e, S)$ incident with $w_{j}$ by $f_{j}$ and its end in $S$ by $u_{j}$.


Figure 5.4: When $\mathcal{F}(e, S)$ is a matching

Note that, since $\mathcal{F}(e, S)$ is a matching, the vertices $u_{1}, u_{2}, \ldots, u_{k}$ are distinct, as shown in Figure 5.4. Since every vertex of $I$ is incident with two non-removable edges of $H(e, S)$, we deduce the following by assertions (i), (ii) and (iii) of Lemma 5.8, respectively:
(1) an end of $\beta$ lies in $S$; adjust notation so that $b_{1} \in S$,
(2) in $H(e, S)$, vertices $b_{1}$ and $\bar{x}$ are nonadjacent; consequently, in $G$, all neighbours of $b_{1}$, except $b_{2}$, lie in $I$, and
(3) $b_{1}$ is distinct from each of $u_{1}, u_{2}, \ldots, u_{k}$.

Furthermore, since $b_{1}$ is not incident with any member of $\mathcal{F}(e, S)$, Lemma 5.7 implies that it has precisely two neighbours in $I$; in particular, $b_{1}$ is cubic in $G$.

Notation 5.11 We let $u_{0}$ denote the vertex of $S$ which is distinct from $b_{1}, u_{1}, u_{2}, \ldots, u_{k}$. That is, $S=\left\{b_{1}, u_{0}, u_{1}, u_{2}, \ldots, u_{k}\right\}$. (See Figure 5.4.)

As the vertex $u_{0}$ is not incident with any candidate, we conclude using Lemma 5.7 that $u_{0}$ has at most one neighbour in $I$. Observe that if $u_{0}$ has no neighbours in $I$ then $\left(S-u_{0}\right) \cup\{z\}$ is a barrier of $G$ (where $z$ is the end of $e$ which is not in $I$ ), which is absurd as $G$ is a brick. Thus, $u_{0}$ has precisely one neighbour in $I$.

We note that if $y$ is the unique neighbour of $u_{0}$ in the set $I$, then $S-u_{0}$ is a barrier of $G$, which leads us to the same contradiction as before. We thus conclude that $u_{0}$ has precisely one neighbour in the set $I-y$, and that its remaining neighbours lie in $\bar{X}$; see Figure 5.5. In particular, in $H(e, S)$, there are are least two edges between $u_{0}$ and $\bar{x}$.


Figure 5.5: $u_{0}$ and $u_{1}$ are the only vertices adjacent with the contraction vertex $\bar{x}$

Finally, since each vertex $u_{j}$ in the set $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is incident with exactly one candidate, Lemma 5.7 implies that $u_{j}$ must satisfy one of the following conditions:
(i) either $u_{j}$ has some neighbour in the set $\bar{X}$ and it has precisely two neighbours in the set $I$,
(ii) or otherwise, $u_{j}$ has no neighbours in the set $\bar{X}$ and it has precisely three neighbours in the set $I$.

Observe, by counting degrees of the vertices in $I$, that there are precisely $3 k+2$ edges with one end in $I$ and the other end in $S$. Of these $3 k+2$ edges, precisely two are incident with $b_{1}$, and only one is incident with $u_{0}$. Thus there are $3 k-1$ edges with one end in $I$ and the other end in $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. It follows immediately that exactly one vertex among $u_{1}, u_{2}, \ldots, u_{k}$ satisfies condition (i); every other vertex satisifes condition (ii).

Notation 5.12 We adjust notation so that $u_{1}$ is the only vertex in $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ which has neighbours in $\bar{X}$. (See Figure 5.5.)

Adopting the notation introduced thus far, the next proposition summarizes our observations in terms of the brick $G$.

Proposition 5.13 [When the Candidate Set is a Matching] The following hold:
(i) each vertex of I is cubic,
(ii) $b_{1}$ is cubic and its neighbours lie in $I \cup\left\{b_{2}\right\}$,
(iii) $u_{0}$ has precisely one neighbour in $I-y$, and all of its remaining neighbours lie in $\bar{X}$,
(iv) $u_{1}$ has precisely two neighbours in $I$, and all of its remaining neighbours lie in $\bar{X}$,
(v) if $|S| \geq 4$, then each vertex of $S-\left\{b_{1}, u_{0}, u_{1}\right\}$ has precisely three neighbours and these neighbours lie in I.

Observe that, if the barrier $S$ has precisely three vertices, then the candidate set $\mathcal{F}(e, S)$ has only one edge (that is, $f_{1}=u_{1} w_{1}$ ); in this case, all of the edges of $G[X]$ are determined by Proposition 5.13, as listed below, and as shown in Figure 5.6. (Note that the underlying simple graph of $H(e, S)$ is a ladder of order six whose cubic vertices are $u_{1}$ and $w_{1}$.)

Remark 5.14 Suppose that $|S|=3$. Then the following hold:
(i) the three neighbours of $b_{1}$ are $y, w_{1}$ and $b_{2}$,
(ii) $u_{0}$ is adjacent with $w_{1}$, and all of its remaining neighbours lie in $\bar{X}$,
(iii) $u_{1}$ is adjacent with $y$ and with $w_{1}$, and all of its remaining neighbours lie in $\bar{X}$.


Figure 5.6: When $\mathcal{F}(e, S)$ is a matching, and $S$ has only three vertices

We shall now consider the situation in which $|S| \geq 4$, that is, $k \geq 2$. Note that, as per our notation, $f_{1}=u_{1} w_{1}$ is the only candidate whose end in $S$ (that is, $u_{1}$ ) has a neighbour in $\bar{X}$. In this sense, $f_{1}$ is different from the remaining candidates $f_{2}, f_{3}, \ldots, f_{k}$. In the following proposition, we first show that $b_{1}$ is nonadjacent with the end $w_{1}$ of $f_{1}$. Consequently, $b_{1}$ is adjacent with at least one of $w_{2}, w_{3}, \ldots, w_{k}$; we shall assume without loss of generality that $b_{1}$ is adjacent with $w_{2}$, as shown in Figure 5.7. In its proof, we will apply the Lovász-Vempala Lemma (4.7) to the graph $H(e, S)$, first at $w_{1}$, and then at $w_{2}$; each of these applications is a refinement of the situation in Lemma 5.8.

Proposition 5.15 Suppose that $|S| \geq 4$. Then the following hold:
(i) $b_{1}$ and $w_{1}$ are nonadjacent; adjust notation so that $b_{1} w_{2}$ is an edge of $G$,
(ii) $y$ is adjacent with each of $b_{1}$ and $u_{2}$, and
(iii) $u_{0}$ and $w_{2}$ are nonadjacent.

Proof: First, we apply Lemma 4.7 to the graph $H(e, S)$ at vertex $w_{1}$. Since $f_{1}=u_{1} w_{1}$ is the only removable edge incident with $w_{1}$, there exist partitions $\left(A_{0}, A_{1}, A_{2}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, B_{2}\right)$ of $S$, such that $w_{1} \in A_{0}$, and $\left|A_{j}\right|=\left|B_{j}\right|$ for $j \in\{0,1,2\}$, vertex $u_{1}$ lies in $B_{0}$, and the remaining two neighbours of $w_{1}$ lie in $B_{1}$ and in $B_{2}$, respectively. Furthermore, $N\left(B_{1}\right)=A_{1} \cup\left\{w_{1}\right\}$ and $N\left(B_{2}\right)=A_{2} \cup\left\{w_{1}\right\}$.

Suppose that $b_{1}$ is a neighbour of $w_{1}$, and adjust notation so that $b_{1} \in B_{1}$. The contraction vertex $\bar{x}$ lies in $A_{2}$, since otherwise $A_{2} \cup\left\{w_{1}\right\}$ is a nontrivial barrier in $G$. We
will deduce that each of the sets $B_{0}, B_{1}$ and $B_{2}$ is a singleton, and thus the barrier $S$ has precisely three vertices, contrary to the hypothesis.

First of all, note that the neighbourhood of $B_{1}-b_{1}$ is contained in $A_{1}$, and thus if $\left|A_{1}\right| \geq 2$ then $A_{1}$ is a nontrivial barrier in $G$; we conclude that $\left|A_{1}\right|=1$ and that $B_{1}=\left\{b_{1}\right\}$. Observe that the contraction vertex $\bar{x}$ is only adjacent with $u_{1}$, which lies in $B_{0}$, and with $u_{0}$. Thus the neighbourhood of $B_{2}-u_{0}$ is contained in $\left(A_{2}-\bar{x}\right) \cup\left\{w_{1}\right\}$, whence the latter is a barrier of $G$; we infer that $A_{2}=\{\bar{x}\}$; consequently, the unique vertex of $B_{2}$ has precisely two neighbours, namely $w_{1}$ and $\bar{x}$. It follows that $B_{2}=\left\{u_{0}\right\}$. Since the vertex $w_{1}$ is cubic, the neighbourhood of $B_{0}-u_{1}$ is contained in $\left(A_{0}-w_{1}\right) \cup A_{1}$, whence the latter is a barrier of $G$; we infer that $A_{0}=\left\{w_{1}\right\}$, thus $B_{0}=\left\{u_{1}\right\}$. It follows that $|S|=3$, contrary to our hypothesis. Thus $b_{1}$ and $w_{1}$ are nonadjacent; this proves (i). As in the statement of the proposition, adjust notation so that $b_{1}$ and $w_{2}$ are adjacent; see Figure 5.7.

To deduce (ii) and (iii), we apply Lemma 4.7 to the graph $H(e, S)$ at vertex $w_{2}$. Similar to the earlier situation, there exist partitions $\left(A_{0}, A_{1}, A_{2}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, B_{2}\right)$ of $S$, such that $w_{2} \in A_{0}$, and $\left|A_{j}\right|=\left|B_{j}\right|$ for $j \in\{1,2,3\}$, vertex $u_{2}$ lies in $B_{0}$, and the remaining two neighbours of $w_{2}$ lie in $B_{1}$ and in $B_{2}$, respectively. Adjust notation so that $b_{1}$ lies in $B_{1}$. Also, $N\left(B_{1}\right)=A_{1} \cup\left\{w_{2}\right\}$ and $N\left(B_{2}\right)=A_{2} \cup\left\{w_{2}\right\}$. As before, we conclude that $\bar{x}$ lies in $A_{2}$, and that $\left|A_{1}\right|=\left|B_{1}\right|=1$.

Observe that the unique vertex of $A_{1}$ has all of its neighbours in the set $B_{0} \cup B_{1}$. We will show that $B_{0}=\left\{u_{2}\right\}$; this implies that the unique vertex of $A_{1}$ has precisely two neighbours, and so it must be the end $y$ of $e$; this immediately implies (ii).

Note that the neighbourhood of $A_{0}-w_{2}$ is contained in $B_{0}$. Thus, if $\left|A_{0}\right| \geq 2$ then $y$ lies in $A_{0}$ (since otherwise $B_{0}$ is a barrier of $G$ ). If $\left|A_{0}\right| \geq 3$ then $B_{0}$ is a barrier of $G-e$ with three or more vertices. (Note that the barrier $B_{0}$ is contained in the barrier $S$.) Since no end of $\beta$ lies in $B_{0}$, it follows from our earlier observations that the candidate set $\mathcal{F}\left(e, B_{0}\right)$ is not a matching. However, by Corollary 5.6, $\mathcal{F}\left(e, B_{0}\right)$ is a subset of $\mathcal{F}(e, S)$, and the latter is a matching; this is absurd. We conclude that $A_{0}$ has at most two vertices, that is, either $A_{0}=\left\{w_{2}\right\}$ or $A_{0}=\left\{y, w_{2}\right\}$. Now suppose that $A_{0}=\left\{y, w_{2}\right\}$. The unique vertex of $A_{1}$ is adjacent with $b_{1}$, and thus statement (i) implies that $w_{1} \notin A_{1}$. Assume without loss of generality that $A_{1}=\left\{w_{3}\right\}$. Since $w_{3}$ is cubic, we conclude that its neighbourhood is precisely $B_{0} \cup B_{1}$, and thus $B_{0}=\left\{u_{2}, u_{3}\right\}$. Observe that $Q:=w_{3} u_{2} w_{2} b_{1} w_{3}$ is a quadrilateral in $H(e, S)$ containing the vertex $w_{3}$, and thus by Corollary 4.8, one of the edges $w_{3} u_{2}$ and $w_{3} b_{1}$ is removable in $H(e, S)$; however, this contradicts our hypothesis since the only removable edges are the members of $\mathcal{F}(e, S)$. We thus conclude that $A_{0}=\left\{w_{2}\right\}$. As explained earlier, $A_{1}=\{y\}$, and thus $y$ is adjacent with each of $b_{1}$ and $u_{2}$; this proves (ii).


Figure 5.7: When $\mathcal{F}(e, S)$ is a matching, and $S$ has four or more vertices; the vertices $u_{0}$ and $w_{2}$ are nonadjacent

Now suppose that $u_{0}$ and $w_{2}$ are adjacent. Observe that $u_{1} \in B_{2}$, and thus all of its neighbours lie in $A_{2}$, whence $\left|A_{2}\right| \geq 3$. The neighbourhood of $B_{2}-\left\{u_{0}, u_{1}\right\}$ is contained in $A_{2}-\bar{x}$, whence the latter is a nontrivial barrier of $G$, which is a contradiction. We thus conclude that $u_{0}$ and $w_{2}$ are nonadjacent; this proves (iii), and completes the proof of Proposition 5.15.

### 5.2 The Equal Rank Lemma

Here, we present an important lemma which is used in the proof of Theorem 5.1. This lemma considers the situation in which $G$ is an $R$-brick and $e:=y z$ is an $R$-compatible edge of index two that is not thin, and $f$ is a candidate relative to a barrier of $G-e$ such that $f$ is also of index two and its rank is equal to that of $e$. The reader is advised to review the Three Case Lemma (4.15) and Section 4.4.2 before proceeding further.

The Equal Rank Lemma (5.17) relates the barrier structure of $G-f$ to that of $G-e$. More specifically, the lemma establishes subset/superset relationships between eight sets of vertices: the barriers $S_{1}$ and $S_{2}$ of $G-e$ (as in Case 2 of Lemma 4.15) and their corresponding sets of isolated vertices $I_{1}$ and $I_{2}$, and likewise, the barriers $S_{3}$ and $S_{4}$ of $G-f$ and their corresponding sets of isolated vertices $I_{3}$ and $I_{4}$. Among other things, the lemma shows that $S_{1} \cup I_{1} \cup S_{2} \cup I_{2}=S_{3} \cup I_{3} \cup S_{4} \cup I_{4}$. We now introduce the relevant notation more precisely.

Since $e$ is of index two, by the Three Case Lemma, $G-e$ has precisely two maximal nontrivial barriers, and since $e$ is not thin, at least one of these barriers, say $S_{1}$, has three or more vertices (see Proposition 4.16). We adopt Notation 5.3 for the brick $G$ and edge $e$. Assume without loss of generality that $S_{1} \subset B$, and let $I_{1}$ denote the set of isolated vertices of $(G-e)-S_{1}$. We shall denote by $S_{2}$ the maximal nontrivial barrier of $(G-e) / X_{1}$ where $X_{1}:=S_{1} \cup I_{1}$, and by $I_{2}$ the set of isolated vertices of $(G-e)-S_{2}$. Note that the end $z$ of $e$ lies in $I_{2}$ which is a subset of $B$, whereas the other end $y$ of $e$ lies in $I_{1}$ which is a subset of $A$. See Figure 5.8 (top).

By Corollary 5.9, the candidate set $\mathcal{F}\left(e, S_{1}\right)$ is nonempty, and by Proposition 5.5, each of its members is an $R$-compatible edge whose rank is at least that of $e$. Now, let $f:=u w$ be a member of $\mathcal{F}\left(e, S_{1}\right)$ such that $u \in S_{1}$ and $w \in I_{1}$, and suppose that the index of $f$ is two. The following result of Carvalho et al. [CLM06, Lemma 32] plays a crucial role in our proof of the Equal Rank Lemma (5.17).

Lemma 5.16 Assume that index $(e)=\operatorname{index}(f)=2$. If $\operatorname{rank}(e)=\operatorname{rank}(f)$ then $S_{2}$ is a subset of a barrier of $G-f$.

We shall let $S_{3}$ denote the maximal nontrivial barrier of $G-f$ which is contained in the color class $B$, and $I_{3}$ the set of isolated vertices of $(G-f)-S_{3}$. Furthermore, let $S_{4}$ denote the maximal nontrivial barrier of $(G-f) /\left(S_{3} \cup I_{3}\right)$, and $I_{4}$ the set of isolated vertices of $(G-f)-S_{4}$. Note that the end $u$ of $f$ lies in $I_{4}$, and its other end $w$ lies in $I_{3}$. See Figure 5.8 (bottom). We are now ready to state the Equal Rank Lemma using the notation introduced so far.

Lemma 5.17 [The Equal Rank Lemma] Assume that $\operatorname{index}(e)=\operatorname{index}(f)=2$. If $\operatorname{rank}(e)=\operatorname{rank}(f)$ then the following statements hold:
(i) e and $f$ are nonadjacent,
(ii) $S_{3} \subseteq S_{1}-u$ and $I_{3} \subseteq I_{1}-y$,
(iii) $S_{2} \subset S_{4}$ and $I_{2} \subset I_{4}$,
(iv) $S_{1} \cup I_{2}=S_{3} \cup I_{4}$ and $S_{2} \cup I_{1}=S_{4} \cup I_{3}$,
(v) $N(u) \subseteq S_{2} \cup I_{1}$, and
(vi) $e$ is a member of the candidate set $\mathcal{F}\left(f, S_{4}\right)$.


Figure 5.8: The Equal Rank Lemma

Proof: We examine the graph $G-e-f$ in order to prove (i) and (ii). Clearly, $S_{3}$ is a barrier of $G-e-f$. Observe that, since $f$ has an end in $S_{1}$, every barrier of $G-e-f$ which contains $S_{1}$ is a barrier of $G-e$ as well. Since $S_{1}$ is a maximal barrier of $G-e$, we infer that $S_{1}$ is a maximal barrier of $G-e-f$ as well. By the Canonical Partition Theorem (1.3), to prove that $S_{3}$ is a subset of $S_{1}$, it suffices to show that $S_{1} \cap S_{3}$ is nonempty. To see this, note that $w \in I_{1} \cap I_{3}$, and thus any neighbour of $w$ in $G-e-f$ lies in $S_{1} \cap S_{3}$. Furthermore, since $u \notin S_{3}$, we conclude that $S_{3} \subseteq S_{1}-u$; this proves part of (ii). In particular, $z \notin S_{3}$. Consequently, $y \notin I_{3}$, and thus $y$ and $w$ are distinct. This proves (i).

Now we prove the remaining part of (ii). Let $v \in I_{3}$, that is, $v$ is isolated in $(G-f)-S_{3}$. Consequently, $v$ is isolated in $(G-f)-S_{1}$. Since $f$ has an end in $S_{1}$, we infer that $v$ is isolated in $(G-e)-S_{1}$, that is, $v \in I_{1}$. Thus $I_{3} \subseteq I_{1}-y$. This proves (ii).

We will now prove (iii) and (iv). We begin by showing that $S_{2}$ is a subset of $S_{4}$. By Lemma 5.16, $S_{2}$ is a subset of the unique maximal nontrivial barrier of $G-f$ which is contained in the color class $A$, say $S_{4}^{*}$. By the Three Case Lemma (4.15), $S_{4}^{*}=S_{4} \cup I^{\prime}$ for some (possibly empty) subset $I^{\prime}$ of $I_{3}$. That is, $S_{2}$ is a subset of $S_{4} \cup I^{\prime}$. Note that $S_{2}$ and $I_{1}$ are disjoint; by (ii), $S_{2} \cap I^{\prime}=\emptyset$. Thus, $S_{2} \subseteq S_{4}$.

Since the ranks of $e$ and $f$ are equal, it follows that $\left|A-\left(S_{2} \cup I_{1}\right)\right|=\left|A-\left(S_{4} \cup I_{3}\right)\right|$ and likewise, $\left|B-\left(S_{1} \cup I_{2}\right)\right|=\left|B-\left(S_{3} \cup I_{4}\right)\right|$. In order to prove (iv), it suffices to prove the following claim.

Claim 5.17.1 $A-\left(S_{2} \cup I_{1}\right) \subseteq A-\left(S_{4} \cup I_{3}\right)$ and $B-\left(S_{1} \cup I_{2}\right) \subseteq B-\left(S_{3} \cup I_{4}\right)$.

Proof: Let $v_{1} \in A-\left(S_{2} \cup I_{1}\right)$. By (ii), $v_{1} \notin I_{3}$. To prove that $v_{1}$ lies in $A-\left(S_{4} \cup I_{3}\right)$, it suffices to show that $v_{1} \notin S_{4}$.

Now, let $v_{2}$ be any vertex in $S_{2}$. We have already shown that $S_{2} \subseteq S_{4}$, and thus $v_{2} \in S_{4}$. Note that, if $v_{1}$ also belongs to the barrier $S_{4}$, then $(G-f)-\left\{v_{1}, v_{2}\right\}$ would not have a perfect matching. In the following paragraph, we will show that $(G-e-f)-\left\{v_{1}, v_{2}\right\}$ has a perfect matching, say $M$; consequently, $v_{1} \notin S_{4}$.

Let $H_{1}$ be the graph $(G-e-f) / \overline{X_{1}} \rightarrow \overline{x_{1}}$, and let $H_{2}$ be the graph $(G-e-f) / \overline{X_{2}} \rightarrow \overline{x_{2}}$ where $X_{2}:=S_{2} \cup I_{2}$. Note that $H_{1}$ and $H_{2}$ are bipartite matching covered graphs. Let $J:=\left((G-e-f) / X_{1} \rightarrow x_{1}\right) / X_{2} \rightarrow x_{2}$. Note that $J$ is the brick of $G-e-f$. Let $M_{J}$ be a perfect matching of $J-\left\{x_{2}, v_{1}\right\}$. Let $g$ denote the edge of $M_{J}$ incident with the contraction vertex $x_{1}$. Let $M_{1}$ be a perfect matching of $H_{1}$ which contains $g$. Let $M_{2}$ be a perfect matching of $H_{2}-\left\{v_{2}, \overline{x_{2}}\right\}$. Observe that $M:=M_{1}+M_{J}+M_{2}$ is the desired matching.

Now, let $v \in B-\left(S_{1} \cup I_{2}\right)$. By (ii), $v \notin S_{3}$. To prove that $v$ lies in $B-\left(S_{3} \cup I_{4}\right)$, it suffices to show that $v \notin I_{4}$. To see this, note that since $J$ is a brick, by Theorem 1.9, $J-\left\{x_{1}, x_{2}\right\}$ is connected; thus, $v$ is not isolated in $(G-f)-S_{4}$, that is, $v \notin I_{4}$.

It follows from (ii) and (iv) that the end $y$ of $e$ lies in $S_{4}$, and thus $S_{2}$ is a proper subset of $S_{4}$. Also, we infer from (ii) and (iv) that $I_{2}$ is a subset of $I_{4}$. Furthermore, the end $u$ of $f$ lies in $I_{4}$, whence $I_{2}$ is a proper subset of $I_{4}$. This proves (iii).

It remains to prove ( $v$ ) and (vi). As noted above, $u \in I_{4}$. Thus, all neighbors of $u$ in $G$ lie in $S_{4} \cup\{w\} \subseteq S_{4} \cup I_{3}$. It follows from (iv) that $N(u) \subseteq S_{2} \cup I_{1}$. This proves (v).

Finally, we prove (vi). Recall that $H\left(f, S_{4}\right)$ denotes the bipartite matching covered graph $(H-f) / \overline{X_{4}} \rightarrow \overline{x_{4}}$ where $X_{4}:=S_{4} \cup I_{4}$, and that $\mathcal{F}\left(f, S_{4}\right)$ is the set of those
removable edges of $H\left(f, S_{4}\right)$ which are not incident with the contraction vertex $\overline{x_{4}}$. Since $f$ is $R$-compatible in $G-e$ (by Proposition 5.5), the exchange property (Proposition 4.4) implies that $e$ is $R$-compatible in $G-f$. Now, since the end $z$ of $e$ lies in $I_{4}$, the last assertion of Proposition 5.5 implies that $e$ is a member of $\mathcal{F}\left(f, S_{4}\right)$. This proves (vi), and finishes the proof of the Equal Rank Lemma.

### 5.3 Proof of Theorem 5.1

Before we proceed to prove Theorem 5.1, we state two results of Carvalho et al. [CLM06] which are useful to us. Suppose that $G$ is an $R$-brick and $e$ is an $R$-compatible edge which is not thin. We let $S_{1}$ denote a maximal nontrivial barrier of $G-e$ such that $\left|S_{1}\right| \geq 3$, and let $f$ denote a member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$.

Note that, since $e$ is not thin, its rank is at most $n-4$ where $n:=|V(G)|$. If the index of $f$ is zero then its rank is $n$, and in particular, it is greater than that of $e$. The following result of Carvalho et al. [CLM06, Lemma 31] shows that this conclusion holds even if the index of $f$ is one.

Lemma 5.18 Suppose that $f$ is a member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$. If the index of $f$ is one then $\operatorname{rank}(f)>\operatorname{rank}(e)$.

The following corollary of Lemmas 5.16 and 5.18 was used implicitly by Carvalho et al. [CLM06] in their proof of the Thin Edge Theorem (1.15). We provide its proof for the sake of completeness.

Corollary 5.19 Assume that the index of e is two. If the candidate set $\mathcal{F}\left(e, S_{1}\right)$ contains two adjacent edges, say $f$ and $g$, then at least one of them has rank strictly greater than rank $(e)$.

Proof: We know by Proposition 5.5 that each of $f$ and $g$ has rank at least rank(e). If either of them has rank strictly greater than that of $e$ then there is nothing to prove. Now, suppose that $\operatorname{rank}(f)=\operatorname{rank}(g)=\operatorname{rank}(e)$. It follows from Lemma 5.18 that both $f$ and $g$ are of index two. We intend to arrive at a contradiction using Lemma 5.16. We let $I_{1}$ denote the set of isolated vertices of $(G-e)-S_{1}$, and $S_{2}$ denote the unique maximal
nontrivial barrier of $(G-e) /\left(S_{1} \cup I_{1}\right)$. By Lemma 5.16, $S_{2}$ is a subset of a barrier of $G-f$, and likewise, $S_{2}$ is a subset of a barrier of $G-g$.

Consider two distinct vertices of $S_{2}$, say $v_{1}$ and $v_{2}$. Let $M$ be a perfect matching of the graph $G-\left\{v_{1}, v_{2}\right\}$. (Such a perfect matching exists as $G$ is a brick.) As noted above, $S_{2}$ is a subset of a barrier of $G-f$. In particular, $v_{1}$ and $v_{2}$ lie in a barrier of $G-f$, whence $(G-f)-\left\{v_{1}, v_{2}\right\}$ has no perfect matching. Thus $f$ lies in $M$. Likewise, $g$ also lies in $M$. This is absurd since $f$ and $g$ are adjacent. We conclude that one of $f$ and $g$ has rank strictly greater than $\operatorname{rank}(e)$. This completes the proof of Corollary 5.19.

We now proceed to prove Theorem 5.1.
Proof of Theorem 5.1: As in the statement of the theorem, let $e$ denote an $R$-compatible edge of an $R$-brick $G$. If the edge $e$ is thin, then there is nothing to prove. Now consider the case in which $e$ is not thin. By the Three Case Lemma (4.15), $G-e$ has either one or two maximal nontrivial barriers, and by Proposition 4.16, at least one such barrier has three or more vertices. Our goal is to establish the existence of another $R$-compatible edge $f$ which satisfies conditions (i) and (ii) in the statement of Theorem 5.1.

Recall that each candidate edge (relative to $e$ and a barrier of $G-e$ with three or more vertices) is an $R$-compatible edge of $G$ which satisfies condition (i) of Theorem 5.1 and has rank at least rank(e). (See Definition 5.4 and Proposition 5.5.) Furthermore, if a candidate has rank strictly greater than $\operatorname{rank}(e)$, then by Proposition 5.2, it also satisfies condition (ii) of Theorem 5.1, and in this case we are done. Keeping these observations in view, we now use Lemma 5.18 to get rid of the case in which index of $e$ is one.

Claim 5.20 We may assume that the index of e is two.

Proof: Suppose not. Then the index of $e$ is one, and we let $S$ denote the unique maximal nontrivial barrier of $G-e$. As discussed earlier, $|S| \geq 3$. Let $f$ denote a member of the candidate set $\mathcal{F}(e, S)$, which is nonempty by Corollary 5.9. If the index of $f$ is zero then its rank is clearly greater than $\operatorname{rank}(e)$, and by Lemma 5.18, this conclusion holds even if the index of $f$ is one. Now consider the case in which $f$ is of index two. Since $\operatorname{rank}(f) \geq \operatorname{rank}(e)$, we conclude that $f$ satisfies condition (ii), Theorem 5.1. Thus, irrespective of its index, the edge $f$ satisfies both conditions (i) and (ii), and we are done.

We shall now invoke Corollary 5.19 to dispose of the case in which the candidate set (relative to some barrier of $G-e$ ) is not a matching.

Claim 5.21 We may assume that if $S$ is a nontrivial barrier (not necessarily maximal) of $G-e$ with three or more vertices then the corresponding candidate set $\mathcal{F}(e, S)$ is a matching.

Proof: Suppose that the candidate set $\mathcal{F}(e, S)$ is not a matching, and thus it contains two adjacent edges, say $f$ and $g$. We let $S^{*}$ denote the maximal nontrivial barrier of $G-e$ such that $S \subseteq S^{*}$. By Corollary 5.6, edges $f$ and $g$ are members of $\mathcal{F}\left(e, S^{*}\right)$ as well. Since $e$ is of index two (by Claim 5.20), Corollary 5.19 implies that at least one of $f$ and $g$, say $f$, has rank strictly greater than that of $e$. Thus $f$ satisfies both conditions (i) and (ii), Theorem 5.1, and we are done.

Now, since $e$ is of index two (by Claim 5.20), the graph $G-e$ has precisely two maximal nontrivial barriers. Among these two, we shall denote by $S_{1}$ the barrier which is bigger (breaking ties arbitrarily if they are of equal size), and by $I_{1}$ the set of isolated vertices of $(G-e)-S_{1}$. Thus $\left|S_{1}\right| \geq 3$. Let $y$ and $z$ denote the ends of $e$. We adopt Notation 5.3. Assume without loss of generality that $S_{1}$ is a subset of $B$, and thus by the Three Case Lemma (4.15), the end $y$ of $e$ lies in $I_{1}$.

As the candidate set $\mathcal{F}\left(e, S_{1}\right)$ is a matching (by Claim 5.21), we invoke the observations made in Section 5.1.1, with $S_{1}$ playing the role of $S$, and $I_{1}$ playing the role of $I$, and likewise, $X_{1}:=S_{1} \cup I_{1}$ playing the role of $X$. In particular, we adopt Notations 5.10, 5.11 and 5.12 and we apply Proposition 5.13. See Figure 5.9.


Figure 5.9: Index of $e$ is two, and $S_{1}$ is the largest barrier of $G-e$

We let $S_{2}$ denote the unique maximal nontrivial barrier of $(G-e) / X_{1}$, and $I_{2}$ the set of isolated vertices of $(G-e)-S_{2}$. By the Three Case Lemma (4.15), the end $z$ of $e$ lies in $I_{2}$, as shown in Figure 5.9. Note that $\left|S_{2}\right| \leq\left|S_{1}\right|$ by the choice of $S_{1}$.

Note that, as per statements (iv) and (v) of Proposition 5.13, the edge $f_{1}=u_{1} w_{1}$ is the only member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$ whose end in the barrier $S_{1}$ (that is, vertex $u_{1}$ ) has some neighbour which lies in $\overline{X_{1}}$. Also, if $\left|S_{1}\right|=3$ then $f_{1}$ is the unique member of $\mathcal{F}\left(e, S_{1}\right)$. For these reasons, it will play a special role.

Claim 5.22 We may assume that $\operatorname{rank}\left(f_{1}\right)=\operatorname{rank}(e)$. Consequently, the following hold:
(i) the index of $f_{1}$ is two,
(ii) all neighbours of $u_{1}$ lie in $S_{2} \cup I_{1}$, and
(iii) the vertex $u_{0}$ has at least one neighbour in the set $A-\left(S_{2} \cup I_{1}\right)$.

Proof: By Proposition 5.5, $f_{1}$ is an $R$-compatible edge which has rank at least that of $e$, and it satisfies condition (i), Theorem 5.1. If $\operatorname{rank}\left(f_{1}\right)>\operatorname{rank}(e)$, then by Proposition 5.2, $f_{1}$ satisfies condition (ii) as well, and we are done. We may thus assume that rank $\left(f_{1}\right)=$ $\operatorname{rank}(e)$. It follows from Lemma 5.18 that the index of $f_{1}$ is two; that is, (i) holds. Since $e$ and $f_{1}=u_{1} w_{1}$ are of equal rank and of index two each, the Equal Rank Lemma (5.17)(v) implies that each neighbour of $u_{1}$ lies in the set $S_{2} \cup I_{1}$, and this proves (ii). We shall now use this fact to deduce (iii).

Since $H$ is bipartite and matching covered, Proposition 1.4(ii) implies that the neighbourhood of the set $A-\left(S_{2} \cup I_{1}\right)$, in the graph $H$, has cardinality at least $\left|A-\left(S_{2} \cup I_{1}\right)\right|+1$, and since $\left|A-\left(S_{2} \cup I_{1}\right)\right|=\left|B-\left(S_{1} \cup I_{2}\right)\right|$, we conclude that the set $A-\left(S_{2} \cup I_{1}\right)$ has at least one neighbour which is not in $B-\left(S_{1} \cup I_{2}\right)$; it follows from Proposition 5.13 and statement (ii) proved above that the only such neighbour is the vertex $u_{0}$ of barrier $S_{1}$. In other words, the vertex $u_{0}$ has at least one neighbour in the set $A-\left(S_{2} \cup I_{1}\right)$ as shown in Figure 5.9; this proves (iii), and completes the proof of Claim 5.22.

We shall now consider two cases depending on the cardinality of $S_{1}$.

Case 1: $\left|S_{1}\right| \geq 4$.
We invoke Proposition 5.15, with $S_{1}$ playing the role of $S$, and we adjust notation accordingly. See Figure 5.10. Observe that $Q:=u_{2} w_{2} b_{1} y u_{2}$ is a quadrilateral of $G$ which contains
the edge $f_{2}=u_{2} w_{2}$. Since $f_{2}$ is a candidate, it is an $R$-compatible edge whose rank is at least that of $e$, and it satisfies condition (i), Theorem 5.1. We will use the quadrilateral $Q$ and the Equal Rank Lemma to conclude that $f_{2}$ has rank strictly greater than that of $e$, and thus it satisfies condition (ii) as well.


Figure 5.10: When $\left|S_{1}\right| \geq 4$

Now, let $v$ denote the neighbour of $w_{2}$ which is distinct from $u_{2}$ and $b_{1}$. Clearly, $v \in S_{1}$; by Proposition $5.15(i i i), v$ is distinct from $u_{0}$.

Since each end of $f_{2}$ is cubic, it is an $R$-compatible edge of index two. We first set up some notation concerning the barrier structure of $G-f_{2}$. We denote by $S_{3}$ the maximal nontrivial barrier of $G-f_{2}$ which is a subset of $B$, and by $I_{3}$ the set of isolated vertices of $\left(G-f_{2}\right)-S_{3}$. We let $S_{4}$ denote the unique maximal nontrivial barrier of $\left(G-f_{2}\right) /\left(S_{3} \cup I_{3}\right)$, and $I_{4}$ the set of isolated vertices of $\left(G-f_{2}\right)-S_{4}$. By the Three Case Lemma (4.15), the end $u_{2}$ of $f_{2}$ lies in $I_{4}$, and its end $w_{2}$ lies in $I_{3}$. Also, since $w_{2} \in I_{3}, v \in S_{3}$.

Now, suppose for the sake of contradiction that $\operatorname{rank}\left(f_{2}\right)=\operatorname{rank}(e)$. Then we may apply the Equal Rank Lemma (5.17) to conclude that $S_{1} \cup I_{2}=S_{3} \cup I_{4}$ and that $S_{2} \cup I_{1}=S_{4} \cup I_{3}$. Furthermore, by Claim $5.22($ iii $)$, the vertex $u_{0}$ has a neighbour in $A-\left(S_{4} \cup I_{3}\right)$, and thus $u_{0} \notin I_{4}$. We infer that $u_{0} \in S_{3}$. We have thus shown that $v$ and $u_{0}$ are distinct vertices of the barrier $S_{3}$ of $G-f_{2}$. Consequently, $\left(G-f_{2}\right)-\left\{v, u_{0}\right\}$ has no perfect matching; we will now use the quadrilateral $Q=u_{2} w_{2} b_{1} y u_{2}$ to contradict this assertion.

Since $G$ is a brick, $G-\left\{v, u_{0}\right\}$ has a perfect matching, say $M$. If $f_{2}$ is not in $M$ then we have the desired contradiction. Now suppose that $f_{2} \in M$. Since $v$ and $u_{0}$ both lie in the color class $B$ of $H$, we conclude that $\alpha \in M$ and that $\beta \notin M$. See Figure 5.10. Note
that each of $v$ and $u_{0}$ is distinct from $b_{1}$, and that the neighbours of $b_{1}$ are precisely $b_{2}, w_{2}$ and $y$. Since $\beta=b_{1} b_{2}$ is not in $M$, and since $f_{2}=u_{2} w_{2}$ lies in $M$, it must be the case that $y b_{1}$ lies in $M$. Now observe that the symmetric difference of $M$ and $Q$ is a perfect matching of $\left(G-f_{2}\right)-\left\{v, u_{0}\right\}$, and thus we have the desired contradiction.

We conclude that $\operatorname{rank}\left(f_{2}\right)>\operatorname{rank}(e)$, and thus $f_{2}$ is the desired $R$-compatible edge which satisfies both conditions (i) and (ii), Theorem 5.1.

Case 2: $\left|S_{1}\right|=3$.
We note that since $S_{1}$ has precisely three vertices, by Remark 5.14, all of the edges of $G\left[X_{1}\right]$ are determined (where $X_{1}=S_{1} \cup I_{1}$ ). See Figure 5.11. Furthermore, $f_{1}$ is the only member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$, and by Claim 5.22, its index is two and its rank is equal to $\operatorname{rank}(e)$. We will examine the barrier structure of $G-f_{1}$ using the Equal Rank Lemma (5.17), and argue that some edge adjacent with the given edge $e=y z$ (that is, either incident at $y$, or incident at $z$ ) is $R$-compatible and that its rank is strictly greater than $\operatorname{rank}(e)$. Observe that, since index $(e)=2$, each edge adjacent with $e$ satisfies condition (i), Theorem 5.1.

We let $S_{3}$ denote the unique maximal nontrivial barrier of $G-f_{1}$ which is a subset of $B$, and $I_{3}$ the set of isolated vertices of $\left(G-f_{1}\right)-S_{3}$. We denote by $S_{4}$ the unique maximal nontrivial barrier of $\left(G-f_{1}\right) /\left(S_{3} \cup I_{3}\right)$, and by $I_{4}$ the set of isolated vertices of $\left(G-f_{1}\right)-S_{4}$. See Figure 5.11. By the Three Case Lemma (4.15), the end $u_{1}$ of $f_{1}$ lies in $I_{4}$, and its end $w_{1}$ lies in $I_{3}$. Since each of $b_{1}$ and $u_{0}$ is a neighbour of $w_{1}$ in $G-f_{1}$, they both lie in the barrier $S_{3}$. By Lemma 5.17 (ii), with $f_{1}$ playing the role of $f$, we conclude that $S_{3}=\left\{b_{1}, u_{0}\right\}$ and that $I_{3}=\left\{w_{1}\right\}$, as shown in the figure.

Observe that by the choice of $S_{1}$, the barrier $S_{2}$ of $G-e$ contains either two or three vertices. However, irrespective of the cardinality of $S_{2}$, it follows from the above and from Lemma 5.17 (iv) that $S_{4}=S_{2} \cup\{y\}$ and that $I_{4}=I_{2} \cup\left\{u_{1}\right\}$. In particular, the barrier $S_{4}$ of $G-f_{1}$ contains either three or four vertices. Note that the end $z$ of $e$ lies in $I_{2}$ which is a subset of $I_{4}$, and its end $y$ lies in $S_{4}$. Furthermore, Lemma 5.17 (vi) implies that $e$ is a member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$.

Claim 5.23 We may assume that $e$ is the only member of $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with $z$. Furthermore, we may assume that $\left|S_{2}\right|=2$.

Proof: Suppose there exists an edge $g$ incident with $z$ such that $g$ is distinct from $e$ and that $g \in \mathcal{F}\left(f_{1}, S_{4}\right)$. By Proposition 5.5, $g$ is an $R$-compatible edge of the brick $G$. We now


Figure 5.11: When $\left|S_{1}\right|=3$
apply Corollary 5.19 (with $f_{1}$ playing the role of $e$, and with edges $e$ and $g$ playing the roles of $f$ and $g$ ); at least one of $e$ and $g$ has rank strictly greater than $\operatorname{rank}\left(f_{1}\right)$. However, by Claim 5.22, the ranks of $e$ and $f_{1}$ are equal; consequently, $\operatorname{rank}(g)>\operatorname{rank}\left(f_{1}\right)=\operatorname{rank}(e)$. By Propostion 5.2, the edge $g$ satisifes condition (ii), Theorem 5.1, and it satisfies condition (i) because it is adjacent with the edge $e$, and thus we are done. So we may assume that $e$ is the only member of $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with $z$. Using this, we shall deduce that the barrier $S_{2}$ of $G-e$ has only two vertices.

Suppose to the contrary that $\left|S_{2}\right|=3$. By Claim 5.21, the candidate set $\mathcal{F}\left(e, S_{2}\right)$ is a matching. Consequently, as we did in the case of $S_{1}$, we may now invoke the observations made in Section 5.1.1, with $S_{2}$ playing the role of $S$, and $I_{2}$ playing the role of $I$, and likewise, $X_{2}:=S_{2} \cup I_{2}$ playing the role of $X$. In particular, by Remark 5.14, all of the edges of $G\left[X_{2}\right]$ are determined. It is worth noting that $S_{2}$ is also a maximal barrier of $G-e$ (by the choice of $S_{1}$ ). That is, each of $S_{1}$ and $S_{2}$ is a maximal barrier of $G-e$ with exactly three vertices. Keeping this symmetry in view, we now choose appropriate notation for those vertices of $X_{2}$ which are relevant to our argument. See Figure 5.12.


Figure 5.12: When $\left|S_{1}\right|=\left|S_{2}\right|=3$

We shall let $f_{2}:=u_{2} w_{2}$ denote the unique member of the candidate set $\mathcal{F}\left(e, S_{2}\right)$, where $u_{2} \in I_{2}$ and $w_{2} \in S_{2}$. In particular, $I_{2}=\left\{u_{2}, z\right\}$. One of the ends of $\alpha=a_{1} a_{2}$ lies in the barrier $S_{2}$; we adjust notation so that $a_{2} \in S_{2}$. Consequently, $w_{2}$ and $a_{2}$ are distinct vertices of $S_{2}$. The vertex $a_{2}$ is cubic, and its neighbours are $z, u_{2}$ and $a_{1}$. The vertex $w_{2}$ is adjacent with $z$ and $u_{2}$, and all of its remaining neighbours lie in $\overline{X_{2}}$.

Observe that $Q:=z w_{2} u_{2} a_{2} z$ is a quadrilateral of the bipartite graph $H\left(f_{1}, S_{4}\right)$ which contains the vertex $z$ whose degree is three. Consequently, by Corollary 4.8, at least one of $z w_{2}$ and $z a_{2}$ is removable in $H\left(f_{1}, S_{4}\right)$. However, since $a_{2}$ has degree two in $H\left(f_{1}, S_{4}\right), z a_{2}$ is non-removable; whence $z w_{2}$ is removable. It follows that $z w_{2}$ is a member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$; this contradicts our first assumption. We conclude that the barrier $S_{2}$ has only two vertices, and this completes the proof of Claim 5.23.

By Proposition 4.16, an $R$-compatible edge of index two is thin if and only if its rank is $n-4$; where $n:=|V(G)|$. Observe that, since $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$, the rank of $e$ is $n-6$, and in this sense, it is very close to being thin; the same holds for the edge $f_{1}$. We
will establish a symmetry between the barrier structure of $G-e$ and that of $G-f_{1}$; see Figure 5.13. Thereafter, we will argue that the edge $g:=y u_{1}$ is an $R$-thin edge of index two; in particular, it is $R$-compatible and its rank is $n-4$, and thus it satisfies condition (ii), Theorem 5.1. Since $g$ is adjacent with $e$, it satisfies condition (i) as well.

Since $\left|S_{2}\right|=2$, the set $I_{2}$ contains only the end $z$ of $e$, and the neighbourhood of $z$ is precisely the set $S_{2} \cup\{y\}=S_{4}$. Also, $I_{4}=I_{2} \cup\left\{u_{1}\right\}=\left\{z, u_{1}\right\}$, and by Claim 5.23, $e=y z$ is the only member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with $z$. In other words, $z$ is incident with only one removable edge of the bipartite graph $H\left(f_{1}, S_{4}\right)$, namely, the edge $e$. We now deduce some consequences of this fact using standard arguments.


Figure 5.13: When $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$

First of all, by Lemma $5.8(i)$, an end of the edge $\alpha=a_{1} a_{2}$ lies in the barrier $S_{4}$. Adjust notation so that $a_{2} \in S_{4}$. By statement (ii) of the same lemma, $a_{2}$ has no neighbours in the set $\overline{X_{4}}$ where $X_{4}:=S_{4} \cup I_{4}$. Consequently, the neighbourhood of $a_{2}$ is precisely $I_{4} \cup\left\{a_{1}\right\}=\left\{z, u_{1}, a_{1}\right\}$. Clearly, $y$ and $a_{2}$ are distinct vertices of $S_{4}$, and we denote by $w_{0}$ the remaining vertex of $S_{4}$. Note that $S_{2}=\left\{w_{0}, a_{2}\right\}$.

Next, we observe that if the vertices $u_{1}$ and $w_{0}$ are adjacent then $Q:=z w_{0} u_{1} a_{2} z$ is a quadrilateral of the bipartite graph $H\left(f_{1}, S_{4}\right)$ and it contains the vertex $z$ which has degree three; by Corollary 4.8, one of the two edges $z w_{0}$ and $z a_{2}$ is removable; however, this contradicts the fact that $e=y z$ is the only removable edge incident with $z$. Thus, the vertices $u_{1}$ and $w_{0}$ are nonadjacent. It follows that $u_{1}$ is cubic, and its neighbourhood is precisely $\left\{y, a_{2}, w_{1}\right\}$.

Observe that we have six cubic vertices whose neighbourhoods are fully determined; these are: the ends $y$ and $z$ of $e$, the ends $u_{1}$ and $w_{1}$ of $f_{1}$, the end $b_{1}$ of $\beta$, and the end $a_{2}$ of $\alpha$. There is a symmetry between the barrier structure of $G-e$ and that of $G-f_{1}$; as is self-evident from Figure 5.13. We have not determined the degrees of the two vertices $u_{0}$ and $w_{0}$; observe that if these vertices are not adjacent with each other then $u_{0}$ has at least two neighbours in $A-\left(S_{2} \cup I_{1}\right)$ and likewise, $w_{0}$ has at least two neighbours in $B-\left(S_{1} \cup I_{2}\right)$; whereas if $u_{0} w_{0}$ is an edge of $G$ then $u_{0}$ has at least one neighbour in $A-\left(S_{2} \cup I_{1}\right)$ and likewise, $w_{0}$ has at least one neighbour in $B-\left(S_{1} \cup I_{2}\right)$.

As mentioned earlier, we now proceed to prove that $g=y u_{1}$ is an $R$-thin edge. We let $J:=\left((G-e) / X_{1} \rightarrow x_{1}\right) / X_{2} \rightarrow x_{2}$ denote the unique brick of $G-e$, where $X_{1}=S_{1} \cup I_{1}$ and $X_{2}:=S_{2} \cup I_{2}$. Note that $J$ is near-bipartite with removable doubleton $R$.

Claim 5.24 The edge $g=y u_{1}$ is $R$-thin. (That is, $g$ is an $R$-compatible edge of index two and its rank is $n-4$.)

Proof: Observe that $Q:=y u_{1} w_{1} b_{1} y$ is a quadrilateral in $H=G-R$ which contains the cubic vertex $y$. By Corollary 4.8, at least one of the edges $g=y u_{1}$ and $y b_{1}$ is removable in $H$. Note that $y b_{1}$ is not removable, whence $g$ is removable in $H$. To conclude that $g$ is $R$-compatible, it suffices to show that edges $\alpha$ and $\beta$ are admissible in $G-g$. We shall prove something more general, which is useful in establishing the thinness of $g$ as well.

Observe that, in $G-g$, the vertex $y$ has neighbour set $\left\{z, b_{1}\right\}$, and vertex $u_{1}$ has neighbour set $\left\{w_{1}, a_{2}\right\}$. We will show that, if $v_{1}$ and $v_{2}$ are distinct vertices of the color class $B$ such that $\left\{v_{1}, v_{2}\right\} \neq\left\{z, b_{1}\right\}$, then $(G-g)-\left\{v_{1}, v_{2}\right\}$ has a perfect matching, say $M$. This has two consequences worth noting. First of all, if $\left\{v_{1}, v_{2}\right\}=\left\{b_{1}, b_{2}\right\}$ then $M+\beta$ is a perfect matching of $G-g$ which contains $\alpha$ and $\beta$ both, whence $g$ is an $R$-compatible edge of $G$. Secondly, it shows that $\left\{z, b_{1}\right\}$ is a maximal nontrivial barrier of $G-g$. An analogous argument establishes that $\left\{w_{1}, a_{2}\right\}$ is also a maximal nontrivial barrier of $G-g$, and consequently Proposition 4.16 implies that $g$ is indeed $R$-thin.

As mentioned above, suppose that $v_{1}$ and $v_{2}$ are distinct vertices of $B$ such that $\left\{v_{1}, v_{2}\right\} \neq\left\{z, b_{1}\right\}$. Let $N$ be a perfect matching of $G-\left\{v_{1}, v_{2}\right\}$. In what follows, we consider different possibilities, and in each of them, we exhibit a perfect matching $M$ of $(G-g)-\left\{v_{1}, v_{2}\right\}$. If $g \notin N$ then clearly $M:=N$. Now suppose that $g \in N$. Note that, since $v_{1}, v_{2} \in B$, the edge $\alpha$ lies in $N$ and $\beta$ does not lie in $N$. If $b_{1} \notin\left\{v_{1}, v_{2}\right\}$, then the edge $b_{1} w_{1}$ lies in $N$, and we let $M:=\left(N-g-b_{1} w_{1}\right)+f_{1}+y b_{1}$.

Now consider the case in which $b_{1} \in\left\{v_{1}, v_{2}\right\}$, and adjust notation so that $b_{1}=v_{1}$. Thus $v_{2} \neq z$, whence $z w_{0} \in N$. Also, $w_{1} u_{0}$ lies in $N$. Observe that $v_{2}$ lies in the set $B-\left(S_{1} \cup I_{2}\right)$. First, we consider the case when $u_{0} w_{0}$ is an edge of $G$. Observe that the six cycle $C:=u_{1} y z w_{0} u_{0} w_{1} u_{1}$ is $N$-alternating and it contains the edge $g$. In this case, let $M$ denote the symmetric difference of $N$ and $C$.

Finally, consider the situation in which $u_{0} w_{0}$ is not an edge of $G$. (In this case, to construct $M$, we will not use the matching $N$.) As noted earlier, since $u_{0}$ and $w_{0}$ are nonadjacent, $w_{0}$ has at least two distinct neighbours in the set $B-\left(S_{1} \cup I_{2}\right)$. In particular, $w_{0}$ has at least one neighbour, say $v^{\prime}$, which lies in $B-\left(S_{1} \cup I_{2}\right)$ and is distinct from $v_{2}$. Now, let $M_{J}$ be a perfect matching of $J-\left\{v^{\prime}, v_{2}\right\}$. Observe that $\alpha \in M_{J}$ and $\beta \notin M_{J}$. Note that, in the matching $M_{J}$, the contraction vertex $x_{1}$ is matched with some vertex in $A-\left(S_{2} \cup I_{1}\right)$, which is a neighbour of $u_{0}$ in the graph $G$. Now, we let $M:=M_{J}+w_{0} v^{\prime}+f_{1}+e$.

In every scenario, $M$ is a perfect matching of $(G-g)-\left\{v_{1}, v_{2}\right\}$, as desired. Thus, as discussed earlier, $g$ is $R$-compatible as well as thin. This proves Claim 5.24.

In summary, we have shown that $g=y u_{1}$ is an $R$-compatible edge which satisfies both conditions (i) and (ii), Theorem 5.1. This completes the proof.

## Chapter 6

## Generating simple near-bipartite bricks

Here, we will use Theorem 5.1 from the last chapter to establish the generation procedure for simple near-bipartite bricks discussed in Section 1.7.3. Recall that, for a simple $R$-brick $G$, a strictly $R$-thin edge $e$ is one which is $R$-compatible as well as strictly thin, and in this case, the retract of $G-e$ is also a simple $R$-brick. We will prove Theorem 1.24, which is restated below.

Theorem 1.24 [Strictly $R$-thin Edge Theorem] Let $G$ be a simple $R$-brick. If $G$ is free of strictly $R$-thin edges then $G$ belongs to one of the following infinite families:
(i) Truncated biwheels
(ii) Prisms
(iii) Möbius ladders
(iv) Staircases
(v) Pseudo-biwheels
(vi) Double biwheels of type I
(vii) Double ladders of type I
(viii) Laddered biwheels of type I
(ix) Double biwheels of type II
(x) Double ladders of type II
(xi) Laddered biwheels of type II

There are eleven infinite families in the statement of the above theorem. The first four of these (truncated biwheels, prisms, Möbius ladders and staircases) are Norine-Thomas families, that is, they are free of strictly thin edges; these are described in Section 1.3.3. All of the remaining seven families contain strictly thin edges, and these are described in Section 1.7.3. We denote by $\mathcal{N}$ the union of all of these eleven families.

Recall the definitions of ladders and partial biwheels from Section 1.3.3. In our descriptions of the aforementioned eleven families, we constructed their members using either one
or two disjoint bipartite matching covered graphs, each of which is either a ladder or a partial biwheel, and thereafter, adding a few vertices and/or edges and possibly identifying two pairs of vertices. As we will see, these constructions are indicative of how these graphs appear in our proof of Theorem 1.24. In the next section, we will define two special types of subgraphs, namely, an ' $R$-biwheel configuration' and an ' $R$-ladder configuration'; we will conclude the section with a proof sketch of Theorem 1.24.

Throughout this chapter, we adopt the following notational and figure conventions.

Notation 6.1 For a simple $R$-brick $G$, we shall denote by $H[A, B]$ the underlying bipartite graph $G-R$. We let $\alpha$ and $\beta$ denote the constituent edges of $R$, and we adopt the convention that $\alpha:=a_{1} a_{2}$ has both ends in $A$, whereas $\beta:=b_{1} b_{2}$ has both ends in $B$. We denote by $V(R)$ the set $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Furthermore, in all of the figures, the hollow vertices are in $A$, and the solid vertices are in $B$.

## 6.1 $R$-configurations

We will also adopt the following notational conventions for a subgraph which is either a ladder or a partial biwheel.

Notation 6.2 When referring to a subgraph $K$ of $H$, such that $K$ is either a ladder or a partial biwheel with external rungs/spokes au and bw, we adopt the convention that $a, w \in A$ and $b, u \in B$; furthermore, when $K$ is a partial biwheel, $u$ and $w$ shall denote its hubs; as shown in Figures 6.1 and 6.3. (We may also use subscript notation, such as $a_{i} u_{i}$ and $b_{i} w_{i}$ where $i$ is an integer, and this convention extends naturally.)

### 6.1.1 $R$-biwheel configurations

Let $K$ be a subgraph of $H$ such that $K$ is a partial biwheel with external spokes $a u$ and $b w$; see Figure 6.1. We say that $K$ is an $R$-biwheel configuration of $G$ if it satisfies the following conditions:
(i) in $G$, the hubs $u$ and $w$ are both noncubic, and every other vertex of $K$ is cubic,


Figure 6.1: An $R$-biwheel configuration; in $G$, the free corners (hubs) $u$ and $w$ are noncubic, and every other vertex is cubic.
(ii) the ends of $K$, namely $a$ and $b$, both lie in $V(R)$, and,
(iii) in $G$, every internal spoke of $K$ is an $R$-thin edge whose index is one.

A pseudo-biwheel, as shown in Figure 6.2, has two removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. The subgraph $K$, depicted by solid lines, is an $R$-biwheel configuration. (To see this, note that every internal spoke of $K$ is an $R$-thin edge of index one.) However, $K$ is not an $R^{\prime}$-biwheel configuration because its ends $a$ and $b$ are not incident with edges of $R^{\prime}$.


Figure 6.2: A pseudo-biwheel has only one $R$-biwheel configuration

### 6.1.2 $R$-ladder configurations

Let $K$ be a subgraph of $H$ such that $K$ is a ladder with external rungs $a u$ and $b w$; see Figure 6.3. We say that $K$ is an $R$-ladder configuration of $G$ if it satisfies the following conditions:
(i) in $G$, every vertex of $K$, except possibly for $u$ and $w$, is cubic,
(ii) the vertices $a$ and $b$ both lie in $V(R)$, and,
(iii) in $G$, every internal rung of $K$ is an $R$-thin edge whose index is two.


Figure 6.3: Two $R$-ladder configurations of different parities; each vertex, except possibly for the free corners $u$ and $w$, is cubic in $G$

A prism of order $n$ has $\frac{n}{2}$ removable doubletons. If $R:=\{\alpha, \beta\}$ is a fixed removable doubleton of a prism $G$ of order ten or more, then the graph $H=G-R$ is itself an $R$-ladder configuration, as shown in Figure 6.4. (An analogous statement holds for Möbius ladders of order eight or more.)

### 6.1.3 Corners, rungs and spokes

We shall often need the flexibility of referring to a subgraph $K$ which is either an $R$-ladder configuration or an $R$-biwheel configuration, and in this case, we simply write that $K$ is an $R$-configuration. Additionally, we may also state that $K$ has external rungs/spokes $a u$ and $b w$ (possibly with subscript notation); in this case, we implicitly adopt the conventions stated in Notation 6.2, and we refer to $a, u, b$ and $w$ as the corners of $K$. Furthermore, as shown in Figures 6.1 and 6.3 , we will assume that $a, b \in V(R)$. We refer to $u$ and $w$ as the free corners of $K$; these may lie in $V(R)$ as in Figure 6.4, or they may not lie in $V(R)$ as in Figure 6.2. Observe that any vertex of $K$, which is not a corner, does not lie in $V(R)$.


Figure 6.4: A prism has only one $R$-ladder configuration

For any two distinct rungs/spokes of an $R$-configuration $K$, say $e$ and $f$, we say that $e$ and $f$ are consecutive, or equivalently, that $e$ is consecutive with $f$, whenever an end of $e$ which is not a free corner is adjacent with an end of $f$ which is also not a free corner. Clearly, each internal rung (spoke) is consecutive with two rungs (spokes); whereas each external rung (spoke) is consecutive with only one rung (spoke) and the latter is internal. Now, let $e$ denote an internal rung (spoke) of $K$, and let $f$ and $g$ denote the two rungs (spokes) with which $e$ is consecutive. By definition, $e$ is an $R$-thin edge of $G$. Observe that $f$ and $g$ are multiple edges in the retract of $G-e$; consequently, $e$ is not strictly thin.

### 6.1.4 Two distinct $R$-configurations

A laddered biwheel of type II, as shown in Figure 6.5, has two removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. Observe that the graph obtained by removing the edge set $R \cup R^{\prime}$ has two connected components, of which one is an $R$-ladder configuration with external rungs $a_{1} u_{1}$ and $b_{1} w_{1}$, and the other is an $R$-biwheel configuration with external spokes $a_{2} u_{2}$ and $b_{2} w_{2}$. In this case, the two $R$-configurations are vertex-disjoint.

On the other hand, a double ladder of type I, as shown in Figure 6.6, has only one removable doubleton $R:=\{\alpha, \beta\}$ and it has two $R$-ladder configurations which share their free corners $u_{1}$ and $w_{1}$, but are otherwise vertex-disjoint. One of these is depicted by dashed lines, and it has external rungs $a_{1} u_{1}$ and $b_{1} w_{1}$, whereas the other one has external rungs $a_{2} u_{1}$ and $b_{2} w_{1}$.

The reader is advised to check that members of all of the eleven families that appear in Theorem 1.24, except for $K_{4}$ and $\overline{C_{6}}$, have either one or two $R$-configurations for an


Figure 6.5: A laddered biwheel of type II has two vertex-disjoint $R$-configurations


Figure 6.6: A double ladder of type I has two $R$-configurations which share their free corners but are otherwise vertex-disjoint
appropriately chosen removable doubleton $R$. (The choice of $R$ matters only in the case of three families, namely, pseudo-biwheels, double biwheels of Type II and laddered biwheels of Type II. Figure 6.2 shows a pseudo-biwheel and its two removable doubletons.)

In order to sketch a proof of Theorem 1.24, we will require a few results which are stated
next; their proofs will appear in later sections. In particular, the following proposition states that two distinct $R$-configurations are either vertex-disjoint, or they have the same free corners but are otherwise vertex-disjoint; its proof appears in Section 6.3.1.

Proposition 6.3 [ $R$-configurations are Almost Disjoint] Let $G$ be a simple $R$-brick, and let $K_{1}$ denote an $R$-configuration with free corners $u_{1}$ and $w_{1}$. If $K_{2}$ is any $R$-configuration distinct from $K_{1}$, then precisely one of the following statements holds:
(i) $K_{1}$ and $K_{2}$ are vertex-disjoint, or,
(ii) $u_{1}$ and $w_{1}$ are the free corners of $K_{2}$, and $K_{2}$ is otherwise vertex-disjoint with $K_{1}$.

By the above proposition, the only vertices that can be possibly shared between two distinct $R$-configurations are their respective free corners. The remaining two corners of each $R$-configuration lie in $V(R)$. Since $|V(R)|=4$, we immediately have the following consequence.

Corollary 6.4 A simple $R$-brick has at most two distinct $R$-configurations.

For instance, if $G$ is a Norine-Thomas brick or if it is a pseudo-biwheel then it has only one $R$-configuration. On the other hand, if $G$ is a double biwheel or a double ladder or a laddered biwheel, then it has two $R$-configurations, say $K_{1}$ and $K_{2}$. Furthermore, if $G$ is of type II then $K_{1}$ and $K_{2}$ are vertex-disjoint as in Proposition 6.3(i); whereas, if $G$ is of type I then $K_{1}$ and $K_{2}$ have the same free corners but they do not have any other vertices in common as in Proposition 6.3(ii).

### 6.1.5 The $R$-biwheel and $R$-ladder Theorems

It is easily verified that if $G$ is any $R$-brick in $\mathcal{N}$, then every $R$-thin edge of $G$ lies in an $R$-configuration. Here, we state two theorems which show that this is not a coincidence.

Now, let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges. Given any $R$-thin edge $e$ of $G$, we may invoke one of these theorems (depending on the index of $e$ ) to find an $R$-configuration $K$ containing the edge $e$. In particular, if the index of $e$ is one, we apply Theorem 6.5 and in this case $K$ is an $R$-biwheel configuration; whereas, if the index of $e$ is two, we apply Theorem 6.6 and in this case $K$ is an $R$-ladder configuration.

Theorem 6.5 [ $R$-BIWheel Theorem] Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges, and let e denote an $R$-thin edge whose index is one. Then $G$ contains an $R$-biwheel configuration, say $K$, such that $e$ is an internal spoke of $K$.

The proof of the above theorem appears in Section 6.2.2, and it is along the same lines as the proof of [CLM08, Theorem 4.6].

Given the statement of Theorem 6.5, one would expect that, likewise, if $e$ is an $R$-thin edge whose index is two then $G$ contains an $R$-ladder configuration, say $K$, such that $e$ is an internal rung of $K$. Unfortunately, this is not true, in general. Consider the double ladder of type I, shown in Figure 6.6; $e$ is an $R$-thin edge of index two, and although it is part of an $R$-ladder configuration, it is not a rung of that ladder. We instead prove the following slightly weaker statement concerning $R$-thin edges of index two.

Theorem 6.6 [ $R$-LADDER Theorem] Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges, and let e denote an $R$-thin edge whose index is two. Then $G$ contains an $R$-ladder configuration, say $K$, such that $e \in E(K)$.

The proof of the above theorem appears in Section 6.2.3 and it is significantly longer than that of the $R$-biwheel Theorem (6.5). These two theorems (6.5 and 6.6) are central to our proof of the Strictly $R$-thin Edge Theorem (1.24).

### 6.1.6 Proof Sketch of Theorem 1.24

As in the statement of the theorem, let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges. Our goal is to show that $G$ is a member of one of the eleven infinite families which appear in the statement of the theorem, that is, to show that $G \in \mathcal{N}$. We adopt Notation 6.1.

We may assume that $G$ is different from $K_{4}$ and $\overline{C_{6}}$, and thus, by the $R$-thin Edge Theorem (1.22), $G$ has an $R$-thin edge, say $e_{1}$. Depending on the index of $e_{1}$, we invoke either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to deduce that $G$ has an $R$-configuration, say $K_{1}$, such that $e_{1} \in E\left(K_{1}\right)$. We shall let $a_{1} u_{1}$ and $b_{1} w_{1}$ denote the external rungs/spokes of $K_{1}$, and adjust notation so that $u_{1}$ and $w_{1}$ are its free corners.

We will show that either $u_{1}$ and $w_{1}$ both lie in $V(R)$, or otherwise neither of them lies in $V(R)$. In the former case, we will conclude that $G$ is either a prism or a Möbius ladder or a truncated biwheel, and we are done.

Now suppose that $u_{1}, w_{1} \notin V(R)$. In this case, we will show that either $G$ is a staircase or a pseudo-biwheel, and we are done; or otherwise, $G$ has an $R$-compatible edge which is not in $E\left(K_{1}\right)$. In the latter case, we will apply Theorem 5.1 to deduce that $G$ has an $R$-thin edge, say $e_{2}$, which is not in $E\left(K_{1}\right)$. Depending on the index of $e_{2}$, we may once again use either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to conclude that $G$ has an $R$-configuration, say $K_{2}$, such that $e_{2} \in E\left(K_{2}\right)$.

By Proposition 6.3, either $K_{1}$ and $K_{2}$ are vertex-disjoint, or otherwise $K_{2}$ has the same free corners as $K_{1}$ but is otherwise vertex-disjoint with $K_{1}$. In the latter case, we will conclude that $G$ is either a double biwheel or a double ladder or a laddered biwheel, each of type I, and we are done.

Now suppose that $K_{1}$ and $K_{2}$ are vertex-disjoint. We will argue that either $G$ is a double biwheel or a double ladder or a laddered biwheel, each of type II, and we are done; or otherwise, $G$ has an $R$-compatible edge which is not in $E\left(K_{1} \cup K_{2}\right)$. In the latter case, we will once again apply Theorem 5.1 to conclude that $G$ has an $R$-thin edge, say $e_{3}$, which is not in $E\left(K_{1} \cup K_{2}\right)$. As usual, depending on the index of $e_{3}$, we invoke either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to deduce that $G$ has an $R$-configuration, say $K_{3}$, such that $e_{3} \in E\left(K_{3}\right)$.

We have thus located three distinct $R$-configurations in the brick $G$, namely, $K_{1}, K_{2}$ and $K_{3}$. However, this contradicts Corollary 6.4, and completes the proof sketch of the Strictly $R$-thin Edge Theorem (1.24).

## 6.2 $R$-thin edges

Here, we will prove the $R$-biwheel Theorem (6.5) and the $R$-ladder Theorem (6.6). Our proofs are inspired by the work of Carvalho et al. [CLM08]. In the next section, we will review conditions under which an $R$-thin edge is not strictly thin, and we will state a few key lemmas (6.10, 6.11 and 6.12 ) from [CLM08] which are used in our proofs.

### 6.2.1 Multiple edges in retracts

Throughout this section, $G$ is a simple $R$-brick, and we adopt Notation 6.1. Furthermore, we shall let $e$ denote an $R$-thin edge which is not strictly thin, and $J$ the retract of $G-e$. Since $e$ is not strictly thin, $J$ is not simple, and we shall let $f$ and $g$ denote two multiple
(parallel) edges of $J$. It should be noted that since $J$ is also an $R$-brick, neither edge of $R$ is a multiple edge of $J$. In particular, $f$ and $g$ do not lie in $R$.

We denote the ends of $e$ by letters $y$ and $z$ with subscripts 1 ; that is, $e:=y_{1} z_{1}$. Adjust notation so that $y_{1} \in A$ and $z_{1} \in B$. If either end of $e$ is cubic, then we denote its two neighbours in $G-e$ by subscripts 0 and 2 . For example, if $y_{1}$ is cubic then $N\left(y_{1}\right)=\left\{z_{1}, y_{0}, y_{2}\right\}$.

As $G$ is simple, it follows that $J$ has a contraction vertex which is incident with both $f$ and $g$. We infer that one end of $e$, say $y_{1}$, is cubic, and that $f$ is incident with $y_{0}$, and $g$ is incident with $y_{2}$. See Figure 6.7. As noted earlier, $f \notin R$; consequently, $e$ and $f$ are nonadjacent. Likewise, $e$ and $g$ are nonadjacent.


Figure 6.7: $f$ and $g$ are multiple edges in the retract $J$ of $G-e$; the vertex $y_{1}$ is cubic.

We will consider two separate cases depending on whether the edges $f$ and $g$ are adjacent (in $G$ ) or not. In the case in which they are adjacent, we shall denote their common end by $w$, as shown in Figure 6.8a. Now suppose that $f$ and $g$ are nonadjacent. Since they are multiple (parallel) edges of $J$, we infer that both ends of $e$ are cubic, and that $f$ and $g$ join the two contraction vertices of $J$. This proves the following proposition; see Figure 6.8b.

Proposition 6.7 Suppose that $f$ and $g$ are nonadjacent in $G$. Then the following hold:
(i) each end of e is cubic,
(ii) consequently, the index of e is two, and
(iii) one of $f$ and $g$ is incident with $z_{0}$ whereas the other one is incident with $z_{2}$.


Figure 6.8: (a) when $f$ and $g$ are adjacent; (b) when $f$ and $g$ are nonadjacent

In view of statement (iii), whenever $f$ and $g$ are nonadjacent, we shall assume without loss of generality that $f:=y_{0} z_{0}$ and $g:=y_{2} z_{2}$, as shown in Figure 6.8b.

Let us now focus on the case in which $f$ and $g$ are adjacent, as shown in Figure 6.8a. We remark that, in this case, the index of $e$ is not determined; that is, its index could be either one or two depending on the degree of its end $z_{1}$. Instead, we are able to say something about the degree of $w$.

Proposition 6.8 Suppose that $f$ and $g$ are adjacent in $G$, and let $w$ be their common end. Then $w$ has degree four or more.

Proof: First suppose that $w$ is not a neighbour of $z_{1}$. In this case, $w$ is not affected by the bicontractions in $G-e$. Consequently, $w$ is a vertex of the brick $J$, whence it has at least three distinct neighbours. Since $f$ and $g$ are multiple edges, $w$ has degree four or more.

Now suppose that $w$ is a neighbour of $z_{1}$. Observe that the neighbours of $y_{1}$ are precisely $y_{0}, y_{2}$ and $z_{1}$; each of which is adjacent with $w$. See Figure 6.8a. Note that, if $w$ is cubic, then its neighbourhood is the same as that of $y_{1}$; and in this case, $\left\{y_{0}, y_{2}, z_{1}\right\}$ is a barrier of the brick $G$; this is absurd. Thus $w$ has degree four or more.

Note that $f$ and $g$, being multiple edges of $J$, are both $R$-thin in $J$. We shall now examine conditions under which one of them, say $f$, fails to be $R$-thin in $G$. This may be the
case for three different reasons; firstly, $f$ is non-removable in the bipartite graph $H=G-R$; secondly, $f$ is non-removable in $G$; and thirdly, $f$ is removable in $G$ but it is not thin.

We begin with the situation in which $f$ is non-removable in $H$. Note that, if an end of $f$ is cubic (in $G$ ) and if it also lies in $V(R)$, then it has degree two in $H$, rendering $f$ non-removable. We will now argue that the converse also holds.

Lemma 6.9 The edge $f$ is non-removable in $H$ if and only if it has a cubic end which lies in $V(R)$.

Proof: Suppose that $f$ has no cubic end which lies in $V(R)$. Consequently, each end of $f$ has degree two or more in $H-f$. Furthermore, since $e$ and $f$ are nonadjacent, each end of $f$ has degree two or more in $H-e-f$ as well. We will argue $H-e-f$ is matching covered, that is, $f$ is removable in $H-e$. The exchange property (Proposition 4.2) then implies that $f$ is also removable in $H$.

Note that $f$ is a multiple edge of $J-R$, whence $J-R-f$ is matching covered. Recall that any graph obtained from a matching covered graph by means of bi-splitting a vertex is also matching covered. (See Section 1.5.2.) We will argue that $H-e-f$ may be obtained from $J-R-f$ by means of bi-splitting one or two vertices.

Note that $J$ is obtained from $G-e$ by means of bicontracting one or two vertices (of degree two); likewise, $J-R$ may be obtained from $H-e$ by means of bicontractions. Conversely, $H-e$ may be obtained from $J-R$ by means of bi-splitting one or two vertices; these are the contraction vertices of $J$. As noted earlier, since each end of $f$ has degree two or more in $H-e-f$, we may similarly obtain $H-e-f$ from $J-R-f$ by means of bi-splitting the same vertices. As discussed above, $H-e-f$ is matching covered; consequently, $f$ is removable in $H$.

We now turn to the situation in which $f$ is non-removable in $G$. For convenience, we will state two lemmas ( 6.10 and 6.11 ), depending on the index of $e$. These appear in the work of Carvalho et al. [CLM08, Lemma 4.2] as a single lemma. (In their work, they deal with the more general context in which $e$ is a thin edge of a brick $G$, which need not be near-bipartite.)

The first lemma (6.10) considers the scenario in which the index of $e$ is one. By Proposition 6.7(ii), $f$ and $g$ are adjacent; and by Proposition 6.8, their common end $w$ is non-cubic.

Lemma 6.10 [CLM08] Suppose that the index of $e$ is one. If $f$ is non-removable in $G$ then $f$ has a cubic end which is adjacent with both ends of $e$. (In particular, the cubic end of $f$ lies in $V(R)$.)

As $w$ is non-cubic, $y_{0}$ is the cubic end of $f$, and it is adjacent with $z_{1}$, as shown in Figure 6.9a. Clearly, the edge joining $y_{0}$ and $z_{1}$ is none other than $\beta$.


Figure 6.9: Illustration for Lemma 6.10

The situation in Lemma 6.10 arises in truncated biwheels, as shown in Figure 6.9. Note that, every perfect matching which contains $e$ also contains $f$, rendering $f$ non-removable.

The second lemma (6.11) deals with the scenario in which the index of $e$ is two, that is, each end of $e$ is cubic.

Lemma 6.11 [CLM08] Suppose that the index of $e$ is two. If $f$ is non-removable in $G$ then the following hold:
(i) each end of $f$ is cubic,
(ii) consequently, $f$ and $g$ are nonadjacent, and
(iii) the ends of $f$ have a common neighbour.
(In particular, one of the ends of $f$ is cubic and it also lies in $V(R)$.)

By statement ( $i$ ), each end of $f$ is cubic; thus $f$ and $g$ are nonadjacent (see Proposition 6.8). By Proposition 6.7, and as per our notation, $f=y_{0} z_{0}$ and $g=y_{2} z_{2}$, as shown in Figure 6.10a. By statement (iii), $y_{0}$ and $z_{0}$ have a common neighbour, say $x$. Clearly, one of $x y_{0}$ and $x z_{0}$ is an edge of $R$, depending on whether $x$ lies in $A$ or in $B$; however, these cases are symmetric. Adjust notation so that $x \in B$; thus $x y_{0}$ is the edge $\beta$. Using the fact that $G$ is free of nontrivial barriers, it is easily verified that $x$ is not an end of $g$.


Figure 6.10: Illustration for Lemma 6.11

The situation in Lemma 6.11 is observed in staircases, as shown in Figure 6.10b. The edge $f$ is non-removable since every perfect matching which contains $e$ also contains $f$.

Finally, we turn to the case in which $f$ is removable in $G$ but it is not thin. This is handled by Lemma 6.12 which appears in the work of Carvalho et al. [CLM08, Lemma 4.3].

Lemma 6.12 [CLM08] If $f$ is removable in $G$ but it is not thin then the following hold:
(i) the index of $e$ is two,
(ii) $f$ and $g$ are adjacent and their common end $w$ is not adjacent with any end of $e$,
(iii) $g$ is a thin edge, and
(iv) $N\left(y_{0}\right) \subseteq N\left(z_{1}\right) \cup\{w\}$; recall that $y_{0}$ is the other end of $f$, and $z_{1}$ is the end of $e$ not adjacent with $y_{0}$.

The lemma concludes that the index of $e$ is two; that is, its end $z_{1}$ is cubic, and as per our notation, the neighbours of $z_{1}$ are precisely $y_{1}, z_{0}$ and $z_{2}$. Furthermore, it concludes that $f$ and $g$ are adjacent and that their common end $w$ is distinct from each of $z_{0}$ and $z_{2}$, as shown in Figure 6.11a. Another consequence which may be inferred from their proof is that all of the neighbours of $y_{0}$ lie in the set $N\left(z_{1}\right) \cup\{w\}=\left\{w, y_{1}, z_{0}, z_{2}\right\}$. (This is not stated explicitly in the statement of [CLM08, Lemma 4.3].) Since $y_{0}$ has degree at least three, we may adjust notation so that $y_{0}$ is adjacent with $z_{0}$, and it may or may not be adjacent with $z_{2}$.


Figure 6.11: Illustration for Lemma 6.12
The situation in Lemma 6.12 is best illustrated by a double ladder of type I in which at least one of the two $R$-ladder configurations is of order eight, as shown in Figure 6.11b. The edge $e$ is $R$-thin; deleting it and taking the retract yields the staircase $S t_{10}$ with multiple edges, two of which are $f$ and $g$. It may be verified that both $f$ and $g$ are removable, but of them only $g$ is thin.

### 6.2.2 Proof of the $R$-biwheel Theorem

In this section, we prove the $R$-biwheel Theorem (6.5); our proof is along the same lines as that of [CLM08, Theorem 4.6]. Before that, we need one more lemma pertaining to the structure of $R$-thin edges of index one (in an $R$-brick which is free of strictly $R$-thin edges).

Lemma 6.13 Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges, e an $R$-thin edge whose index is one, and $y_{1}$ the cubic end of $e$. Let $y_{0}$ and $y_{2}$ denote the neighbours of $y_{1}$ in $G-e$. Then $y_{0}$ and $y_{2}$ are both cubic, and they have a common neighbour $w$ which is non-cubic. Let $f:=w y_{0}$ and $g:=w y_{2}$. Furthermore, the following statements hold:
(i) if $f$ is not $R$-compatible then $y_{0} \in V(R)$, and
(ii) if $f$ is $R$-compatible then it is $R$-thin and its index is one.
(Similar statements also apply to g.)

Proof: Let $J$ denote the retract of $G-e$, that is, $J$ is obtained from $G-e$ by bicontracting the vertex $y_{1}$. By hypothesis, $e$ is not strictly thin, whence $J$ has multiple edges. This implies that $G$ has a vertex $w$, distinct from $y_{1}$, that is adjacent to both $y_{0}$ and $y_{2}$, as shown in Figure 6.8a. As in the statement of the lemma, let $f:=w y_{0}$ and $g:=w y_{2}$. By Proposition 6.8, $w$ has degree four or more.

First consider the case in which $f$ is not $R$-compatible. That is, either $f$ is not removable in $H$ or it is not removable in $G$, and it follows from Lemma 6.9 or from Lemma 6.10, respectively, that the end $y_{0}$ of $f$ is cubic and it lies in $V(R)$.

Now consider the case in which $f$ is $R$-compatible. Since the index of $e$ is one, Lemma 6.12 implies that $f$ is thin, whence it is $R$-thin. By hypothesis, $f$ is not strictly $R$-thin. Consequently, the end $y_{0}$ of $f$ is cubic, and the index of $f$ is one. Applying a similar argument to the edge $g$, we may conclude that $y_{2}$ is also cubic.

Proof of the $R$-biwheel Theorem (6.5): As in the statement of the theorem, let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges, and let $e$ denote an $R$-thin edge whose index is one. Our goal is to show that $G$ has an $R$-biwheel configuration of which $e$ is an internal spoke.

As in the statement of Lemma 6.13, we let $y_{1}$ denote the cubic end of $e$, and $y_{0}$ and $y_{2}$ the neighbours of $y_{1}$ in $G-e$. By the lemma, $y_{0}$ and $y_{2}$ are both cubic, and they have a common neighbour $w$ which is non-cubic. We denote by $u$ the non-cubic end of $e$, as shown in Figure 6.12. Observe that $y_{0} y_{1} y_{2}$ is a path in $H-\{u, w\}$.

We let $P:=v_{1} v_{2} \ldots v_{j}$, where $j \geq 3$, be a path of maximum length in the graph $H-\{u, w\}$ that has the following properties (see Figure 6.13):
(i) $y_{1}$ is an internal vertex of $P$,


Figure 6.12: $e$ is an $R$-thin edge of index one; $y_{0}, y_{1}$ and $y_{2}$ are cubic; $u$ and $w$ are non-cubic
(ii) every vertex of $P$ is cubic in $G$; furthermore, if it lies in $A$ then it is adjacent with $u$, and if it lies in $B$ then it is adjacent with $w$, and
(iii) for every internal vertex $v_{i}$ of $P$, the edge that joins $v_{i}$ to one of $u$ and $w$ is $R$-thin of index one.
(Note that the path $y_{0} y_{1} y_{2}$ shown in Figure 6.12 satisfies all of the above properties; thus such a path $P$ exists.)

We adjust notation so that $v_{1}$ lies in $B$ as shown in Figure 6.13. It should be noted that the other end of $P$, namely $v_{j}$, may lie in $A$ or in $B$, depending on whether $P$ is an odd path or even. We shall let $K$ denote the subgraph of $H$, which has vertex set $V(P) \cup\{u, w\}$ and edge set $E(P) \cup\left\{v_{i} w: 1 \leq i \leq j\right.$ and $i$ odd $\} \cup\left\{v_{i} u: 1 \leq i \leq j\right.$ and $i$ even $\}$.

Our goal is to show that $K$ is an $R$-biwheel configuration. To this end, we need to establish two additional properties of the path $P$ : first, that it is an odd path; and second, that both its ends $v_{1}$ and $v_{j}$ lie in $V(R)$.

We begin by arguing that the two ends of $P$ are nonadjacent (in $G$ ). Suppose not, that is, say $v_{1} v_{j}$ is an edge of $G$. Since each vertex of $P$ is cubic, it follows that $V(G)=V(K)$; since otherwise $\{u, w\}$ is a 2 -vertex-cut of $G$, and we have a contradiction. Since $G$ has an even number of vertices, $P$ is of odd length. Furthermore, either $G$ is the same as $K$, or otherwise, $G$ has an additional edge joining $u$ and $w$. In both cases, the graph $G$ is bipartite; this is absurd. Thus $v_{1}$ and $v_{j}$ are nonadjacent.


Figure 6.13: Illustration for the $R$-biwheel Theorem

Now, let $f$ denote the edge $v_{1} w$. We will argue that $f$ is not $R$-compatible, and then use this fact to deduce that $v_{1} \in V(R)$. Suppose instead that $f$ is $R$-compatible. Applying Lemma 6.13(ii), with $v_{2} u$ playing the role of $e$, we conclude that $f$ is $R$-thin and its index is one. Let $v_{0}$ denote the neighbour of $v_{1}$ which is distinct from $v_{2}$ and $w$; note that $v_{0} \in A$. By the preceding paragraph, $v_{0}$ is distinct from $v_{j}$, and since each vertex of $P$ is cubic, $v_{0}$ is not in $V(P)$. Applying Lemma 6.13 again, this time with $f$ playing the role of $e$, we deduce that $v_{0}$ is cubic. Furthermore, $v_{0}$ and $v_{2}$ have a common neighbour whose degree is four or more; thus $v_{0}$ is adjacent with $u$. Observe that the path $v_{0} v_{1} P$ contradicts the maximality of $P$. We conclude that $f=v_{1} w$ is not $R$-compatible. By Lemma 6.13(i), the cubic end $v_{1}$ of $f$ lies in $V(R)$.

A similar argument shows that $v_{j}$ lies in $V(R)$. Since $v_{1}$ and $v_{j}$ are nonadjacent, one of them lies in $A$ and the other one lies in $B$. (As per our notation, $v_{1} \in B$ and $v_{j} \in A$.) In particular, $P$ is an odd path, and thus $K$ is an $R$-biwheel configuration. Observe that by property (i) of the path $P$, the end $y_{1}$ of $e$ is an internal vertex of $P$, whence $e$ is an internal spoke of $K$, as desired. This completes the proof of Theorem 6.5.

### 6.2.3 Proof of the $R$-ladder Theorem

Here, we prove the $R$-ladder Theorem (6.6); its proof is significantly longer than that of the $R$-biwheel Theorem. In its proof, we will need two lemmas (6.14 and 6.15), each of which pertains to the structure of $R$-thin edges of index two (in an $R$-brick which is free of strictly $R$-thin edges); these lemmas correspond to two cases that appear in the proof of Theorem 6.6.

Lemma 6.14 Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges and e $:=y_{1} z_{1}$ an $R$-thin edge whose index is two. Let $y_{0}$ and $y_{2}$ denote the neighbours of $y_{1}$ which are distinct from $z_{1}$, and let $z_{0}$ and $z_{2}$ denote the neighbours of $z_{1}$ which are distinct from $y_{1}$. Suppose that $y_{1}$ is the only common neighbour of $y_{0}$ and $y_{2}$, and that $z_{1}$ is the only common neighbour of $z_{0}$ and $z_{2}$. Then there are precisely two (nonadjacent) edges, say $f$ and $g$, between $\left\{y_{0}, y_{2}\right\}$ and $\left\{z_{0}, z_{2}\right\}$. Adjust notation so that $f:=y_{0} z_{0}$ and $g:=y_{2} z_{2}$. Furthermore, the following statements hold:
(i) if $f$ is not $R$-compatible then an end of $f$ is cubic and it lies in $V(R)$, and
(ii) if $f$ is $R$-compatible then it is $R$-thin and its index is two.
(Similar statements also apply to g.)

Proof: Let $J$ denote the retract of $G-e$, that is, $J$ is obtained from $G-e$ by bicontracting vertices $y_{1}$ and $z_{1}$. By hypothesis, $e$ is not strictly thin, whence $J$ has multiple edges. Also, as stated in the assumptions, $y_{1}$ is the only common neighbour of $y_{0}$ and $y_{2}$, and likewise, $z_{1}$ is the only common neighbour of $z_{0}$ and $z_{2}$. It follows that there are precisely two nonadjacent edges between $\left\{y_{0}, y_{2}\right\}$ and $\left\{z_{0}, z_{2}\right\}$, as shown in Figure 6.8b. As in the statement, adjust notation so that $f:=y_{0} z_{0}$ and $g:=y_{2} z_{2}$.

First consider the case in which $f$ is not $R$-compatible. That is, either $f$ is not removable in $H$ or it is not removable in $G$, and it follows from Lemma 6.9 or from Lemma 6.11, respectively, that an end of $f$ is cubic and it lies in $V(R)$.

Now consider the case in which $f$ is $R$-compatible. Since $f$ and $g$ are nonadjacent, Lemma 6.12 implies that $f$ is thin, whence it is $R$-thin. It remains to argue that the index of $f$ is two. Suppose to the contrary that an end of $f$, say $z_{0}$, is non-cubic. By hypothesis, $f$ is not strictly $R$-thin, whence its other end $y_{0}$ is cubic. Using the fact that $y_{1}$ is the only common neighbour of $y_{0}$ and $y_{2}$, it is easily verified that the retract of $G-f$ has no multiple edges, that is, $f$ is strictly $R$-thin; this contradicts the hypothesis. Thus, each end of $f$ is cubic, whence the index of $f$ is two.

Lemma 6.15 Let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges and $e:=y_{1} z_{1}$ an $R$-thin edge whose index is two. Let $y_{0}$ and $y_{2}$ denote the neighbours of $y_{1}$ which are distinct from $z_{1}$, and let $z_{0}$ and $z_{2}$ denote the neighbours of $z_{1}$ which are distinct from $y_{1}$. Suppose that $y_{0}$ and $y_{2}$ have a common neighbour $w$ which is distinct from $y_{1}$. Let $f:=y_{0} w$ and $g:=y_{2} w$. Then $w$ is non-cubic and is distinct from each of $z_{0}$ and $z_{2}$. Furthermore, $f$ and $g$ are both removable, $y_{0}$ and $y_{2}$ are both cubic, and the following statements hold:
(i) one of $f$ and $g$ is $R$-compatible; adjust notation so that $f$ is $R$-compatible;
(ii) $f$ is not thin, and its cubic end $y_{0}$ is adjacent with (exactly) one of $z_{0}$ and $z_{2}$; and, (iii) $g$ is thin but it is not $R$-compatible, and its cubic end $y_{2}$ lies in $V(R)$.

Proof: Note that $f$ and $g$ are multiple edges in the retract $J$ of $G-e$. Since $f$ and $g$ are adjacent, by Proposition 6.8, their common end $w$ is non-cubic. Consequently, by Lemma 6.11, $f$ and $g$ are both removable. Note that $y_{0}$ and $y_{2}$ are nonadjacent, since otherwise $e$ is non-removable. In particular, at least one of $y_{0}$ and $y_{2}$ does not lie in $V(R)$. By Lemma 6.9, at least one of $f$ and $g$ is $R$-compatible.

We now argue that $w$ is distinct from each of $z_{0}$ and $z_{2}$. Suppose not, and assume without loss of generality that $w=z_{0}$. By Lemma 6.12 (ii), $f$ and $g$ are both thin; in particular, at least one of them is $R$-thin. Adjust notation so that $f$ is $R$-thin. By hypothesis, $f$ is not strictly $R$-thin, whence the retract of $G-f$ has multiple edges; consequently, the end $y_{0}$ of $f$ is cubic. Let $v$ denote the neighbour of $y_{0}$ which is distinct from $y_{1}$ and $z_{0}$. Furthermore, as $f$ is not strictly $R$-thin, we infer that $v$ and $y_{1}$ have a common neighbour which is distinct from $y_{0}$; by Proposition 6.8, such a common neighbour is non-cubic. Since $z_{1}$ is cubic, we infer that $y_{2}$ is non-cubic. By Lemma 6.9, $g$ is $R$-compatible. As noted earlier, $g$ is thin; whence $g$ is $R$-thin. Since each end of $g$ is non-cubic, $g$ is strictly $R$-thin, contrary to the hypothesis. Thus $w$ is distinct from each of $z_{0}$ and $z_{2}$; see Figure 6.14.

Let us review what we have proved so far. We have shown that $y_{0}$ and $y_{2}$ are not both adjacent with $z_{0}$. An analogous argument shows that $y_{0}$ and $y_{2}$ are not both adjacent with $z_{2}$. By symmetry, $z_{0}$ and $z_{2}$ are not both adjacent with $y_{0}$; likewise, $z_{0}$ and $z_{2}$ are not both adjacent with $y_{2}$. In summary, there are at most two edges between $\left\{y_{0}, y_{2}\right\}$ and $\left\{z_{0}, z_{2}\right\}$; and if there are precisely two such edges then they are nonadjacent.

Now we argue that $y_{0}$ and $y_{2}$ are both cubic. Suppose instead that $y_{0}$ is non-cubic; then, by Lemma 6.9, $f$ is $R$-compatible. Note that since each end of $f$ is non-cubic, if $f$ is thin then it is strictly $R$-thin, contrary to the hypothesis. So it must be the case that $f$ is not thin. By Lemma 6.12(iv), $N\left(y_{0}\right) \subseteq N\left(z_{1}\right) \cup\{w\}=\left\{z_{0}, z_{2}, y_{1}, w\right\}$. As $y_{0}$ is non-cubic,


Figure 6.14: Illustration for Lemma 6.15
it must be adjacent with each of $z_{0}$ and $z_{2}$; however, this contradicts what we have already established in the preceding paragraph. We conclude that $y_{0}$ and $y_{2}$ are both cubic.

As noted earlier, at least one of $f$ and $g$ is $R$-compatible. As in statement (i) of the lemma, adjust notation so that $f$ is $R$-compatible. We will now argue that $f$ is not thin.

Suppose instead that $f$ is thin. Let $v$ denote the neighbour of $y_{0}$ which is distinct from $y_{1}$ and $w$. By hypothesis, $f$ is not strictly $R$-thin, whence $v$ and $y_{1}$ have a common neighbour which is distinct from $y_{0}$; by Proposition 6.8 , such a common neighbour is noncubic. However, this is not possible as each neighbour of $y_{1}$ is cubic. Thus, $f$ is not thin. An analogous argument shows that if $g$ is $R$-compatible then $g$ is not thin.

Since $f$ is removable but it is not thin, by Lemma 6.12(iv), $N\left(y_{0}\right) \subseteq N\left(z_{1}\right) \cup\{w\}=$ $\left\{z_{0}, z_{2}, y_{1}, w\right\}$. It follows from our previous observation that $y_{0}$ is adjacent with exactly one of $z_{0}$ and $z_{2}$; adjust notation so that $y_{0}$ is adjacent with $z_{0}$. This proves statement (ii).

Also, by Lemma 6.12, one of $f$ and $g$ is thin; as per our notation, $g$ is thin. Consequently, $g$ is not $R$-compatible. By Lemma 6.9, the cubic end $y_{2}$ of $g$ lies in $V(R)$. This proves statement (iii), and we are done.

Proof of the $R$-ladder Theorem (6.6): As in the statement of the theorem, let $G$ be a simple $\bar{R}$-brick which is free of strictly $R$-thin edges, and let $e$ denote an $R$-thin edge whose index is two. We shall let $y_{1}$ and $z_{1}$ denote the ends of $e$, where $y_{1} \in A$ and $z_{1} \in B$. Furthermore,
we let $y_{0}$ and $y_{2}$ denote the neighbours of $y_{1}$ which are distinct from $z_{1}$, and likewise, we let $z_{0}$ and $z_{2}$ denote the neighbours of $z_{1}$ which are distinct from $y_{1}$.

Our goal is to show that $G$ has an $R$-ladder configuration which contains the edge $e$. As mentioned earlier, we will consider two separate cases which correspond to the situations in Lemmas 6.14 and 6.15, respectively.

Case 1: $y_{1}$ is the only common neighbour of $y_{0}$ and $y_{2}$, and likewise, $z_{1}$ is the only common neighbour of $z_{0}$ and $z_{2}$.

By Lemma 6.14, there are precisely two nonadjacent edges between $\left\{y_{0}, y_{2}\right\}$ and $\left\{z_{0}, z_{2}\right\}$. Adjust notation so that $y_{0} z_{0}$ and $y_{2} z_{2}$ are edges of $G$, as shown in Figure 6.15. Observe that the graph in the figure is a ladder of which $e$ is an internal rung; furthermore, it is a subgraph of $H$.


Figure 6.15: The situation in Case 1

We let $K$ be a subgraph of $H$ of maximum order that has the following properties:
(i) $K$ is a ladder and $e$ is an internal rung of $K$, and
(ii) every internal rung of $K$ is an $R$-thin edge whose index is two.

Note that the subgraph $K$ is either an odd ladder or an even ladder; see Figure 6.16. We shall denote by $a u$ and $b w$ the external rungs of $K$ such that $a, w \in A$ and $b, u \in B$, as shown in the figure. It follows from property (ii) of $K$ that each of its vertices, except possibly $a, u, b$ and $w$, is cubic in $G$.

Remark 6.16 Note that, if $|V(K)|=6$ then $K$ is the same as the subgraph of $H$ shown in Figure 6.15; in particular, $\{u, b\}=\left\{y_{0}, y_{2}\right\}$, and likewise, $\{w, a\}=\left\{z_{0}, z_{2}\right\}$; consequently,
by our hypothesis, $y_{1}$ is the only common neighbour of $u$ and $b$, and likewise, $z_{1}$ is the only common neighbour of $w$ and $a$.


Figure 6.16: Illustration for Case 1 of the $R$-ladder Theorem

Our goal is to show that $K$ is an $R$-ladder configuration. To this end, we need to establish that $a$ and $b$ (or likewise, $u$ and $w$ ) are both cubic in $G$ and they lie in $V(R)$.

Now, let $f$ denote the edge $a u$. We will argue that $f$ is not $R$-compatible, and then use this fact to deduce that one of the ends of $f$ is cubic and it lies in $V(R)$. As shown in Figure 6.16, let $s_{2}$ denote the neighbour of $u$ in $K$ which is distinct from $a$, and likewise, let $t_{2}$ denote the neighbour of $a$ in $K$ which is distinct from $u$.

Suppose instead that $f$ is $R$-compatible. By Lemma 6.14(ii), with $s_{2} t_{2}$ playing the role of $e$, we conclude that $f$ is $R$-thin and its index is two. We shall let $s_{0}$ denote the neighbour of $u$ which is distinct from $s_{2}$ and $a$, and likewise, let $t_{0}$ denote the neighbour of $a$ which is distinct from $t_{2}$ and $u$. Note that $s_{0} \in A$ and $t_{0} \in B$. It is easily seen that if $s_{0}$ is the same as $w$ then $V(K) \cap A$ is a (nontrivial) barrier of $G$; this is absurd as $G$ is a brick. Thus $s_{0} \neq w$, and likewise, $t_{0} \neq b$. It follows that $s_{0}, t_{0} \notin V(K)$.

We will use the fact that $f$ is not strictly $R$-thin to deduce that $s_{0}$ and $t_{0}$ are adjacent; this will help us contradict the maximality of $K$. First suppose that $s_{0}$ and $s_{2}$ have a common neighbour $x$ which is distinct from $u$. By Proposition 6.8, $x$ is non-cubic. Observe that, if $|V(K)| \geq 8$ then every neighbour of $s_{2}$ is cubic; and if $|V(K)|=6$ then $b$ is the only neighbour of $s_{2}$ which is possibly non-cubic. We conclude that $|V(K)|=6$ and that $x=b$. Now, $s_{0}$ is a common neighbour of $u$ and $b$; this contradicts the hypothesis (see Remark 6.16). We conclude that $u$ is the only common neighbour of $s_{0}$ and $s_{2}$. An analogous argument shows that $a$ is the only common neighbour of $t_{0}$ and $t_{2}$. It follows that $s_{0}$ and $t_{0}$ are adjacent, as $f$ is not strictly thin. Now, let $K^{\prime}$ denote the subgraph of $H$
obtained from $K$ by adding the vertices $s_{0}$ and $t_{0}$, and the edges $u s_{0}, s_{0} t_{0}$ and $t_{0} a$; then $K^{\prime}$ contradicts the maximality of $K$.

We thus conclude that $f=a u$ is not $R$-compatible. Consequently, by Lemma 6.14(i), with $s_{2} t_{2}$ playing the role of $e$, at least one of $a$ and $u$ is cubic and it also lies in $V(R)$. Adjust notation so that $a$ is cubic and it lies in $V(R)$.

An analogous argument shows that at least one of $b$ and $w$ is cubic and it lies in $V(R)$; we claim that $b$ must satisfy both of these properties. Suppose not; then $w$ is cubic and it lies in $V(R)$; this means that the edge $\alpha$ of $R$ joins the vertices $a$ and $w$. Observe that $\{b, u\}$ is a 2-vertex cut of $G$; this is absurd as $G$ is a brick.

We have shown that $a$ and $b$ both are cubic and they lie in $V(R)$. Thus $K$ is an $R$-ladder configuration. Observe that, by property (i) of $K$, the edge $e$ is an internal rung of $K$. In particular, $e$ is an edge of $K$, as desired.

Case 2: $y_{0}$ and $y_{2}$ have a common neighbour which is distinct from $y_{1}$, or likewise, $z_{0}$ and $z_{2}$ have a common neighbour which is distinct from $z_{1}$.

As shown in Figure 6.17, assume without loss of generality that $y_{0}$ and $y_{2}$ have a common neighbour, say $w$, which is distinct from $y_{1}$. We let $f:=y_{0} w$ and $g:=y_{2} w$. We invoke Lemma 6.15 to infer the following: $w$ is non-cubic and it is distinct from each of $z_{0}$ and $z_{2}$; whereas $y_{0}$ and $y_{2}$ are both cubic; $f$ and $g$ are both removable edges. Furthermore, adjusting notation as in the lemma, $f$ is $R$-compatible but it is not thin and its cubic end $y_{0}$ is adjacent with one of $z_{0}$ and $z_{2}$. Assume without loss of generality that $y_{0}$ is adjacent with $z_{0}$. The edge $g$ is thin but it is not $R$-compatible and its cubic end $y_{2}$ lies in $V(R)$. As per our notation, $y_{2}$ is an end of $\beta$; we shall let $x$ denote the other end of $\beta$.

We will consider two subcases. In the first one, we assume that $z_{0}$ is cubic and it lies in $V(R)$; and in the second case, we assume that either $z_{0}$ is non-cubic or it is not in $V(R)$.

Case 2.1: $z_{0}$ is cubic and it lies in $V(R)$.
In this case, we shall denote by $K$ the subgraph whose vertex set is $\left\{z_{0}, z_{1}, y_{0}, y_{1}, w, y_{2}\right\}$ and edge set is $\left\{e, y_{1} y_{2}, g, f, y_{0} z_{0}, z_{0} z_{1}, y_{0} y_{1}\right\}$. Observe that $K$ is a ladder of order six and it is a subgraph of $H$; furthermore, two of its corners, namely $y_{2}$ and $z_{0}$, are cubic and they both lie in $V(R)$. To complete the proof in this case, we will show that $K$ is an $R$-ladder configuration; for this, we only need to prove that the internal rung $y_{0} y_{1}$ is $R$-thin and its index is two.


Figure 6.17: The situation in Case 2

We begin by showing that $y_{0} y_{1}$ is $R$-compatible, that is, $y_{0} y_{1}$ is removable in $H$ as well as in $G$. Here, we will not require the hypothesis that $z_{0}$ is cubic and it lies in $V(R)$.

Claim 6.17 The edge $y_{0} y_{1}$ is $R$-compatible.

Proof: Note that $y_{0} y_{1}$ is removable in the subgraph $K$. We will argue that $K$ is a conformal subgraph of $H$, and then use Proposition 4.3 to deduce that $y_{0} y_{1}$ is removable in $H$.

Let $M$ be any perfect matching of $H$ which contains the edge $z_{0} z_{1}$. Since $M$ does not contain $\alpha$ or $\beta$, it is easily verified that $M \cap E(K)$ is a perfect matching of $K$, whence $K$ is a conformal subgraph of $H$; consequently, $y_{0} y_{1}$ is removable in $H$.

To conclude that $y_{0} y_{1}$ is removable in $G$, we will show that $G-y_{0} y_{1}$ has a perfect matching $M$ which contains both $\alpha$ and $\beta$. Let $N$ be a perfect matching of $G-\left\{z_{1}, x\right\}$; such a perfect matching exists as $G$ is a brick; note that $\alpha \in N$ and $\beta \notin N$. Clearly, either $y_{1} y_{2} \in N$ or $g \in N$. If $y_{1} y_{2} \in N$, we let $M:=\left(N-y_{1} y_{2}\right)+e+\beta$. On the other hand, if $g \in N$ then $y_{0} y_{1} \in N$, and we let $M:=\left(N-g-y_{0} y_{1}\right)+e+f+\beta$. In either case, $M$ is the desired perfect matching, and this completes the proof.

We now proceed to show that $y_{0} y_{1}$ is an $R$-thin edge. To this end, we will use the characterization of $R$-thin edges in terms of barriers given by Proposition 4.16.

Claim 6.18 The edge $y_{0} y_{1}$ is $R$-thin, and its index is two.

Proof: Observe that, since $y_{0}$ and $y_{1}$ are both cubic, $G-y_{0} y_{1}$ has two maximal nontrivial barriers; one of them, say $S_{A}$, is a subset of $A$ and it contains $z_{0}$ and $w$; the other one, say $S_{B}$, is a subset of $B$ and it contains $z_{1}$ and $y_{2}$. In particular, the index of $y_{0} y_{1}$ is two.

We will argue that $S_{A}=\left\{z_{0}, w\right\}$; our argument does not use the fact that $w$ is non-cubic, and it may be mimicked to show that $S_{B}=\left\{z_{1}, y_{2}\right\}$; thereafter, we apply Proposition 4.16 to infer that $y_{0} y_{1}$ is $R$-thin.

Note that $w$ is in the barrier $S_{A}$. Now, let $v$ be any vertex in $A-\left\{z_{0}, w\right\}$. We will show that $\left(G-y_{0} y_{1}\right)-\{w, v\}$ has a perfect matching $M$; this would imply that $v$ is not in the barrier $S_{A}$. Let $N$ be a perfect matching of $G-\{w, v\}$; note that $\beta \in N$ and $\alpha \notin N$. If $y_{0} y_{1} \notin N$ then let $M:=N$, and we are done. Now suppose that $y_{0} y_{1} \in N$. By our hypothesis, $z_{0}$ is cubic and it lies in $V(R)$; this means that the three edges incident at $z_{0}$ are $z_{0} y_{0}, z_{0} z_{1}$ and $\alpha$. Since, $y_{0} y_{1} \in N$ and $\alpha \notin N$ and $v \neq z_{0}$, we conclude that $z_{0} z_{1} \in N$. Now, $M:=\left(N-y_{0} y_{1}-z_{0} z_{1}\right)+y_{0} z_{0}+e$ is the desired perfect matching. We conclude that $S_{A}=\left\{z_{0}, w\right\}$. As discussed in the preceding paragraph, this completes the proof.

We have shown that the only internal rung of $K$, namely $y_{0} y_{1}$, is an $R$-thin edge whose index is two. As discussed earlier, $K$ is indeed an $R$-ladder configuration, and since it contains $e$, this completes the proof in this case (2.1).

Case 2.2: Either $z_{0}$ is non-cubic or it does not lie in $V(R)$, possibly both.
As per our notation, $z_{0} \in A$; it follows from the hypothesis of this case that $z_{0}$ has at least one neighbour which lies in $B-\left\{z_{1}, y_{0}\right\}$; we shall let $u$ denote such a neighbour of $z_{0}$, as shown in Figure 6.18. Observe that $u$ is distinct from $y_{2}$; however, it is possible that $u=x$.

In this case, we will prove that $z_{0} z_{1}$ is an $R$-thin edge whose index is two; in particular, $z_{0}$ is cubic and $z_{0} \notin V(R)$. (If not, we will find a strictly $R$-thin edge contrary to the hypothesis.) Thereafter, we argue that $u$ is adjacent with $z_{2}$; this establishes a certain symmetry between $y_{0}, y_{1}, y_{2}, w$ and $z_{0}, z_{1}, z_{2}$, $u$, respectively; see Figure 6.20. We shall exploit this to deduce that $y_{0} y_{1}$ is an $R$-thin edge (whose index is two), and that $z_{2}$ is cubic and it lies in $V(R)$. In the end, we will find an $R$-ladder configuration of order eight whose internal rungs are $y_{0} y_{1}$ and $z_{0} z_{1}$.

Our first step is to show that $z_{0} z_{1}$ is $R$-compatible, that is, $z_{0} z_{1}$ is removable in $H$ as well as in $G$.


Figure 6.18: The situation in Case 2.2 (all labelled vertices are pairwise distinct, except possibly $u$ and $x$ )

Claim 6.19 The edge $z_{0} z_{1}$ is $R$-compatible.

Proof: Note that $y_{0} y_{1} z_{1} z_{0} y_{0}$ is a quadrilateral containing the edges $y_{0} y_{1}$ and $z_{0} z_{1}$. We will show that $y_{0} y_{1}$ is admissible in $H-z_{0} z_{1}$, and then invoke Corollary 4.6 to deduce that $z_{0} z_{1}$ is removable in $H$.

We need to show that $H-z_{0} z_{1}$ has a perfect matching $M$ which contains $y_{0} y_{1}$. Let $N$ be any perfect matching of $H-\left\{u, y_{1}\right\}$; such a perfect matching exists by Proposition 1.4. Observe that $g \in N$; consequently, $y_{0} z_{0} \in N$. Now, $M:=\left(N-y_{0} z_{0}\right)+u z_{0}+y_{0} y_{1}$ is the desired perfect matching. As discussed above, $z_{0} z_{1}$ is removable in $H$.

To conclude that $z_{0} z_{1}$ is removable in $G$, we will show that $G-z_{0} z_{1}$ has a perfect matching $M$ which contains both $\alpha$ and $\beta$. Let $N$ be any perfect matching of $G$ which contains $\alpha$ and $\beta$. If $z_{0} z_{1} \notin N$ then let $M:=N$, and we are done. Now suppose that $z_{0} z_{1} \in N$. Observe that $y_{0} y_{1} \in N$; furthermore, $M:=\left(N-y_{0} y_{1}-z_{0} z_{1}\right)+e+y_{0} z_{0}$ is the desired perfect matching. This completes the proof.

We proceed to prove that $z_{0} z_{1}$ is an $R$-thin edge whose index is two. As we did in Claim 6.18, we will use the characterization of $R$-thin edges given by Proposition 4.16. However, here we need more general arguments since we do not know the degree of $z_{0}$.

Claim 6.20 The edge $z_{0} z_{1}$ is $R$-thin, and its index is two.

Proof: Observe that, since $z_{1}$ is cubic, $G-z_{0} z_{1}$ has a maximal nontrivial barrier, say $S_{A}$, which is a subset of $A$ and contains $y_{1}$ and $z_{2}$. We will first prove that $S_{A}=\left\{y_{1}, z_{2}\right\}$.

Let $v$ be any vertex in $A-\left\{y_{1}, z_{2}\right\}$. We will show that $\left(G-z_{0} z_{1}\right)-\left\{z_{2}, v\right\}$ has a perfect matching $M$; this would imply that $v$ is not in the barrier $S_{A}$. Let $N$ be a perfect matching of $G-\left\{z_{2}, v\right\}$; note that $\beta \in N$ and $\alpha \notin N$. If $z_{0} z_{1} \notin N$ then let $M:=N$, and we are done. Now suppose that $z_{0} z_{1} \in N$, and observe that $y_{0} y_{1} \in N$; consequently, $M:=\left(N-z_{0} z_{1}-y_{0} y_{1}\right)+e+y_{0} z_{0}$ is the desired perfect matching. Thus, $S_{A}=\left\{y_{1}, z_{2}\right\}$.

Since $z_{0} z_{1}$ is $R$-compatible, by the Three Case Lemma (4.15), either $S_{A}$ is the only maximal nontrivial barrier of $G-z_{0} z_{1}$, or $G-z_{0} z_{1}$ has another maximal nontrivial barrier, say $S_{B}$, which is a subset of $B$. We now argue that, in the former case, $z_{0} z_{1}$ is strictly $R$-thin, contrary to the hypothesis.

Suppose that $S_{A}$ is the only maximal nontrivial barrier of $G-z_{0} z_{1}$; in this case, the index of $z_{0} z_{1}$ is one. By Proposition 4.16, $z_{0} z_{1}$ is $R$-thin. Also, $z_{0}$ is non-cubic, since otherwise its two neighbours distinct from $z_{1}$ would lie in a barrier. Observe that, since $z_{1}$ is the only common neighbour of $y_{1}$ and $z_{2}$, the retract of $G-z_{0} z_{1}$ is simple, and thus $z_{0} z_{1}$ is strictly $R$-thin; this is a contradiction.

It follows that $G-z_{0} z_{1}$ has a maximal nontrivial barrier, say $S_{B}$, which is a subset of $B$; in particular, the index of $z_{0} z_{1}$ is two. By the Three Case Lemma (4.15), $z_{0}$ is isolated in $\left(G-z_{0} z_{1}\right)-S_{B}$; that is, in $G-z_{0} z_{1}$, every neighbour of $z_{0}$ lies in the barrier $S_{B}$. In particular, $u, y_{0} \in S_{B}$. We will prove that $S_{B}=\left\{u, y_{0}\right\}$.

Let $v$ be any vertex in $B-\left\{u, y_{0}\right\}$. We will show that $\left(G-z_{0} z_{1}\right)-\{u, v\}$ has a perfect matching $M$; this would imply that $v$ is not in the barrier $S_{B}$. Let $N$ be a perfect matching of $G-\{u, v\}$; note that $\alpha \in N$ and $\beta \notin N$. If $z_{0} z_{1} \notin N$ then let $M:=N$, and we are done. Now suppose that $z_{0} z_{1} \in N$. If $y_{0} y_{1} \in N$ then $M:=\left(N-z_{0} z_{1}-y_{0} y_{1}\right)+e+y_{0} z_{0}$ is the desired perfect matching. Now suppose that $y_{0} y_{1} \notin N$; then $f, y_{1} y_{2} \in N$, and $M:=\left(N-z_{0} z_{1}-f-y_{1} y_{2}\right)+y_{0} z_{0}+g+e$ is the desired perfect matching. Thus, as discussed above, $v \notin S_{B}$; consequently, $S_{B}=\left\{u, y_{0}\right\}$. In particular, $z_{0}$ is cubic. Furthermore, by Proposition 4.16, $z_{0} z_{1}$ is $R$-thin.

We have shown that $z_{0} z_{1}$ is an $R$-thin edge and its index is two; in particular, both its ends are cubic. The three neighbours of $z_{0}$ are $y_{0}, z_{1}$ and $u$; see Figure 6.18.

By hypothesis, $z_{0} z_{1}$ is not strictly $R$-thin; whence the retract of $G-z_{0} z_{1}$ has multiple edges. Observe that $z_{1}$ is the only common neighbour of $y_{1}$ and $z_{2}$. Consequently, at least one of the following must hold: either $u$ and $y_{0}$ have a common neigbour which is distinct from $z_{0}$, or $u$ and $z_{2}$ are adjacent. We shall rule out the former case by arriving at a contradiction.

(a)

(b)

Figure 6.19: When $u$ is adjacent with $w$

Suppose that $u$ and $y_{0}$ have a common neighbour which is distinct from $z_{0}$; this is true if and only if $u$ is adjacent with $w$. We now invoke Lemma 6.15 , with $z_{0} z_{1}$ playing the role of $e$, with $u$ playing the role of $y_{2}$, and with $u w$ playing the role of $g$; see Figure 6.19a, and compare with Figure 6.18. The lemma implies that $u$ is a cubic vertex, and since $f$ is $R$-compatible, $u w$ is thin but it is not $R$-compatible; furthermore, $u \in V(R)$. In particular, $u$ is an end of $\beta$ which implies that $u=x$; see Figures 6.18 and 6.19 b . Note that all of the labelled vertices in Figure 6.19b are pairwise distinct; furthermore, each of them except $w$ and possibly $z_{2}$, is cubic. Since $z_{2}$ has at least one neighbour in $B$ which is distinct from $z_{1}$, the graph has more vertices; consequently, $\left\{w, z_{2}\right\}$ is a 2 -vertex cut of $G$; this is a contradiction.

We have shown that $z_{0}$ is the only common neighbour of $u$ and $y_{0}$; as discussed earlier, this implies that $u$ and $z_{2}$ are adjacent; see Figure 6.20. Note that $u$ is now a common
neighbour of $z_{0}$ and $z_{2}$, and it is distinct from $z_{1}$; this establishes a symmetry between $y_{0}, y_{1}, y_{2}, w$, and $z_{0}, z_{1}, z_{2}, u$, respectively. We invoke Lemma 6.15 to conclude that $u$ is non-cubic, whereas $z_{2}$ is cubic and it lies in $V(R)$. Using arguments analogous to those in the proofs of Claims 6.19 and 6.20 , we conclude that $y_{0} y_{1}$ is an $R$-thin edge (whose index is two).


Figure 6.20: Illustration for Case 2.2 of the $R$-ladder Theorem; $u$ is a common neighbour of $z_{0}$ and $z_{2}$ which is distinct from $z_{1}$

Now, let $K$ denote the subgraph which consists of all of the labelled vertices shown in Figure 6.20, and all of the edges between those vertices which are shown in the figure. Note that $K$ is an $R$-ladder configuration, and since it contains $e$, this completes the proof of the $R$-ladder Theorem (6.6).

### 6.3 Properties of $R$-configurations

In this section, we prove a few results pertaining to $R$-configurations. These are used in our proof of the Strictly $R$-thin Edge Theorem (1.24), which appears in the next section.

For the rest of this section, $G$ is a simple $R$-brick, and we adopt Notation 6.1; furthermore, $K_{1}$ is an $R$-configuration with external rungs/spokes $a_{1} u_{1}$ and $b_{1} w_{1}$. As usual, $u_{1}$ and $w_{1}$ are the free corners of $K_{1}$; see Figure 6.21.


Figure 6.21: The $R$-configuration $K_{1}$

Note that $K_{1}$ is either a ladder or a partial biwheel. In either case, it is easily verified that the graph obtained from $K_{1}$ by adding two edges, one joining $a_{1}$ and $b_{1}$, and another joining $u_{1}$ and $w_{1}$, is a brace. This fact, in conjunction with the characterization of braces provided by Proposition 4.12, yields the following easy observation.

Proposition 6.21 The following statements hold:
(i) for every pair of distinct vertices $v_{1}, v_{2} \in A \cap V\left(K_{1}\right)$, the graph $K_{1}-\left\{b_{1}, u_{1}, v_{1}, v_{2}\right\}$ has a perfect matching; and likewise,
(ii) for every pair of distinct vertices $v_{1}, v_{2} \in B \cap V\left(K_{1}\right)$, the graph $K_{1}-\left\{a_{1}, w_{1}, v_{1}, v_{2}\right\}$ has a perfect matching.

In the following lemma, we prove some conformality properties of $R$-configurations; these are useful in subsequent lemmas to show that a certain edge is $R$-compatible.

Lemma 6.22 The following statements hold:
(i) $u_{1}$ lies in $V(R)$ if and only if $w_{1}$ lies in $V(R)$,
(ii) $K_{1}$ is a conformal matching covered subgraph, and
(iii) the subgraph induced by $E\left(K_{1}\right) \cup R$ is conformal.

Proof: First, we prove (i). Suppose instead that $u_{1} \in V(R)$ and $w_{1} \notin V(R)$; that is, $u_{1}=b_{2}$, whereas $w_{1}$ and $a_{2}$ are distinct; see Figure 6.22. For $X:=V\left(K_{1}\right)-w_{1}$, note that every edge in $\partial(X)$, except for $\alpha$, is either incident with $u_{1}$ or with $w_{1}$. Recall that if $M$ is any perfect matching, then $\alpha \in M$ if and only if $\beta \in M$. Using these facts, it is easy to see that $\partial(X)$ is a tight cut; this is a contradiction.


Figure 6.22: $\partial(X)$ is a nontrivial tight cut, where $X:=V\left(K_{1}\right)-w_{1}$

Now, we prove (ii). Since $K_{1}$ is either a ladder or a partial biwheel, it is matching covered. To show that $K_{1}$ is conformal, we will display a perfect matching $M$ of $G-V\left(K_{1}\right)$. Let $N$ be a perfect matching of $H$ which contains $a_{1} u_{1}$; observe that $M:=N-E\left(K_{1}\right)$ is the desired perfect matching.

Note that, if $u_{1}, w_{1} \in V(R)$, then (iii) follows immediately from (ii). Now suppose that $u_{1}, w_{1} \notin V(R)$, and let $N$ be a perfect matching of $G-\left\{a_{2}, w_{1}\right\}$; note that $\beta \in N$. A simple counting argument shows that $M:=N-E\left(K_{1}\right)-R$ is a perfect matching of $G-V\left(K_{1}\right)-V(R)$; and this proves (iii).

In the following two lemmas, apart from other things, we show that under certain circumstances there exists an $R$-compatible edge which is not in $K_{1}$.

Lemma 6.23 Suppose that $u_{1}, w_{1} \notin V(R)$. Then at most one edge of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ is not $R$-compatible. (An analogous statement holds for $w_{1}$.)

Proof: Note that, by Corollary 4.9, at most two edges of $\partial\left(u_{1}\right)$ are non-removable in $H$; one of these is $a_{1} u_{1}$. Consequently, at most one edge of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ is non-removable in $H$. To complete the proof we will show that if $e$ is any removable edge of $H$ such that $e \in \partial\left(u_{1}\right)-E\left(K_{1}\right)$, then $e$ is removable in $G$ as well; for this, it suffices to show a perfect matching $M$ which contains $\alpha$ and $\beta$ but does not contain $e$.

Let $M_{1}$ be a perfect matching of $G-V\left(K_{1}\right)-V(R)$; such a perfect matching exists by Lemma 6.22(iii). Let $M_{2}$ be a perfect matching of $K_{1}-\left\{a_{1}, b_{1}\right\}$; since $K_{1}$ is bipartite matching covered, such a perfect matching exists by Proposition 1.4. Now, $M:=M_{1} \cup M_{2} \cup R$ is the desired perfect matching alluded to above, and this completes the proof.

Lemma 6.24 Suppose that $u_{1}, w_{1} \notin V(R)$. If $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right| \leq 1$ and $\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right| \leq 1$ then the following statements hold:
(i) $u_{1}$ and $w_{1}$ are nonadjacent,
(ii) $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ has exactly one member, say $\alpha^{\prime}$, and likewise, $\partial\left(w_{1}\right)-E\left(K_{1}\right)$ has exactly one member, say $\beta^{\prime}$,
(iii) $\alpha$ and $\alpha^{\prime}$ are adjacent if and only if $\beta$ and $\beta^{\prime}$ are adjacent,
(iv) if $\alpha$ and $\alpha^{\prime}$ are nonadjacent then at most one edge of $\partial(v)-\alpha^{\prime}$ is not $R$-compatible, where $v$ denotes the end of $\alpha^{\prime}$ which is distinct from $u_{1}$; an analogous statement holds for $\beta$ and $\beta^{\prime}$.

Proof: We first verify (i) and (ii). Observe that, if $u_{1}$ and $w_{1}$ are adjacent, or, if the sets $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ and $\partial\left(w_{1}\right)-E\left(K_{1}\right)$ are both empty, then $\left\{a_{1}, b_{1}\right\}$ is a 2-vertex cut of $G$; this is absurd. This proves (i). Note that, if only one of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ and $\partial\left(w_{1}\right)-E\left(K_{1}\right)$ is nonempty then $H$ has a cut-edge; this is a contradiction. This proves (ii). As in the statement, let $\alpha^{\prime}$ denote the only member of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$; and likewise, let $\beta^{\prime}$ denote the only member of $\partial\left(w_{1}\right)-E\left(K_{1}\right)$. See Figure 6.23.

We now show that (iii) holds. Suppose instead that $\beta$ and $\beta^{\prime}$ are adjacent, whereas $\alpha$ and $\alpha^{\prime}$ are nonadjacent. In particular, $\beta^{\prime}$ has ends $w_{1}$ and $b_{2}$. We let $T:=B-V\left(K_{1}\right)-b_{2}$,


Figure 6.23: When $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right|=\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right|=1$
and note that $T$ is nonempty. Furthermore, all of the neigbours of $T$ lie in the set $S:=A-V\left(K_{1}\right)$; consequently, $S$ is a nontrivial barrier of $G$; this is absurd.

We now proceed to prove (iv). Suppose that $\alpha$ and $\alpha^{\prime}$ are nonadjacent; and as in the statement of the lemma, let $v$ denote the end of $\alpha^{\prime}$ which is distinct from $u_{1}$. By (iii), $\beta$ and $\beta^{\prime}$ are also nonadjacent. We will first argue that at most one edge of $\partial(v)-\alpha^{\prime}$ is non-removable in $H$.

Observe that $\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ is a 2 -cut of $H$; thus, neither $\alpha^{\prime}$ nor $\beta^{\prime}$ is removable in $H$. By Corollary 4.9, at most two edges of $\partial(v)$ are non-removable in $H$; one of these is $\alpha^{\prime}$. Consequently, at most one edge of $\partial(v)-\alpha^{\prime}$ is non-removable in $H$. To complete the proof we will show that if $e$ is any removable edge of $H$ such that $e \in \partial(v)-\alpha^{\prime}$, then $e$ is
removable in $G$ as well; for this, it suffices to show a perfect matching $M$ which contains $\alpha$ and $\beta$ but does not contain $e$.

Let $M_{1}$ be any perfect matching of $G-\left\{a_{2}, v\right\}$; note that $\beta \in M_{1}$. A simple counting argument shows that $\beta^{\prime}$ lies in $M_{1}$ as well. Now, let $M_{2}$ be a perfect matching of $K_{1}-\left\{a_{1}, u_{1}, b_{1}, w_{1}\right\}$; such a perfect matching exists due to Proposition 6.21. Observe that $M:=\left(M_{1}-E\left(K_{1}\right)\right) \cup M_{2} \cup\left\{\alpha, \alpha^{\prime}\right\}$ is the desired perfect matching alluded to above. As discussed, this completes the proof.

In the previous two lemmas, we have shown that under certain circumstances there exists an $R$-compatible edge which is not in $K_{1}$. However, in the proof of the Strictly $R$-thin Edge Theorem (1.24), we will be interested in finding an $R$-thin edge which is not in $K_{1}$. To do so, we will choose an $R$-compatible edge appropriately, and use Theorem 5.1, in conjunction with the following lemma, to argue that the chosen edge is indeed $R$-thin.

Lemma 6.25 Suppose that $u_{1}, w_{1} \notin V(R)$. Let e denote an $R$-compatible edge which does not lie in $E\left(K_{1}\right)$, let $S$ denote a nontrivial barrier of $G-e$, and $I$ the set of isolated vertices of $(G-e)-S$. Then the following statements hold:
(i) $S \cap V\left(K_{1}\right)$ contains at most one vertex, and
(ii) $I \cap V\left(K_{1}\right)$ is empty.

Proof: Since $e$ is $R$-compatible, $S$ is a subset of one of the two color classes of $H$; assume without loss of generality that $S \subset A$. To establish (i), we will show that if $v_{1}$ and $v_{2}$ are any two distinct vertices in $V\left(K_{1}\right) \cap A$, then $(G-e)-\left\{v_{1}, v_{2}\right\}$ has a perfect matching $M$.

Let $M_{1}$ be a perfect matching of $(H-e)-\left\{v_{1}, b_{2}\right\}$ where $b_{2}$ is the end of $\beta$ which is not in $V\left(K_{1}\right)$; such a perfect matching exists by Proposition 1.4 as $H-e$ is matching covered. A simple counting argument shows that $M \cap \partial\left(V\left(K_{1}\right)\right)$ contains only one edge, and this edge is incident with the free corner $u_{1}$. Let $M_{2}$ be a perfect matching of $K_{1}-\left\{b_{1}, u_{1}, v_{1}, v_{2}\right\}$; such a perfect matching exists due to Proposition 6.21. Observe that $M:=\left(M_{1}-E\left(K_{1}\right)\right)+M_{2}+\beta$ is the desired perfect matching of $(G-e)-\left\{v_{1}, v_{2}\right\}$, and this proves (i).

We now deduce (ii) from (i). Suppose to the contrary that $I \cap V\left(K_{1}\right)$ is nonempty, and let $x$ denote any of its members. Observe that $x$ is adjacent with at least two vertices in $V\left(K_{1}\right)$, and each of these must lie in $S$; this contradicts (i), and completes the proof.

### 6.3.1 Proof of Proposition 6.3

As in the statement of the proposition, let $G$ be a simple $R$-brick, and let $K_{1}$ be an $R$-configuration with external rungs/spokes $a_{1} u_{1}$ and $b_{1} w_{1}$, where $u_{1}$ and $w_{1}$ denote the free corners of $K_{1}$; see Figure 6.21. Suppose that $G$ has an $R$-configuration $K_{2}$ which is distinct from $K_{1}$; that is, $K_{1}$ and $K_{2}$ are not identical subgraphs of $G$. We assume that $K_{1}$ and $K_{2}$ are not vertex-disjoint. Our goal is to deduce that $u_{1}$ and $w_{1}$ are the free corners of $K_{2}$, and that $K_{2}$ is otherwise vertex-disjoint with $K_{1}$.

We first argue that $u_{1}, w_{1} \notin V(R)$. Note that every vertex of $K_{1}$, except possibly $u_{1}$ and $w_{1}$, is cubic in $G$. Consequently, if $u_{1}, w_{1} \in V(R)$ then $V(G)=V\left(K_{1}\right)$, since otherwise $\left\{u_{1}, w_{1}\right\}$ is a 2-vertex cut of $G$; furthermore, either $G$ is precisely the graph induced by $E\left(K_{1}\right) \cup R$, or otherwise, $G$ has one additional edge joining $u_{1}$ and $w_{1}$; in either case, it is easily seen that $K_{1}$ is the only subgraph with all the properties of an $R$-configuration; this contradicts the hypothesis. By Lemma $6.22(i), u_{1}, w_{1} \notin V(R)$.

Claim 6.26 Let $z_{1}$ be any vertex of $K_{1}$ which is distinct from $u_{1}$ and $w_{1}$. If $z_{1} \in V\left(K_{2}\right)$ then every edge of $K_{1}$ which is incident with $z_{1}$ lies in $E\left(K_{2}\right)$.

Proof: Assume that $z_{1} \in V\left(K_{2}\right)$. First consider the case in which $z_{1} \in\left\{a_{1}, b_{1}\right\}$. Note that the degree of $z_{1}$ in $H$ is two; consequently, both edges of $H$ incident with $z_{1}$ lie in $E\left(K_{2}\right)$.

Now consider the case in which $z_{1} \notin\left\{a_{1}, b_{1}\right\}$. Note that $z_{1}$ is cubic. Observe that, for an $R$-configuration $K$, any vertex of $K$, which is not one of its corners, is cubic in $K$ as well as in $G$. Thus, it suffices to show that $z_{1}$ is not a corner of $K_{2}$.

Suppose instead that $z_{1}$ is a corner of $K_{2}$. As $z_{1} \notin V(R)$, it is a free corner. Since $z_{1}$ is cubic, $K_{2}$ is an $R$-ladder configuration. Also, $z_{1}$ must be adjacent with a corner of $K_{2}$ which lies in $V(R)$; such a corner is either $a_{1}$ or $b_{1}$. Adjust notation so that $z_{1}$ is adjacent with $a_{1}$; thus, both edges of $H$ incident with $a_{1}$ lie in $E\left(K_{2}\right)$. Note that $a_{1} z_{1}$ is an external rung of $K_{2}$. Also, since $u_{1}$ is not a corner of $K_{2}$, it is cubic in $K_{2}$ and in $G$. We infer that $K_{1}$ is also an $R$-ladder configuration; see Figure 6.24.

Let $y_{1}$ denote the neighbour of $u_{1}$ in $K_{1}$ which is distinct from $a_{1}$, and let $v$ denote the third neighbour of $u_{1}$. Note that $y_{1}, v \in V\left(K_{2}\right)$. Since $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right|=1$, Lemma 6.24(i) implies that $v$ is distinct from $w_{1}$. Since $K_{2}$ is a ladder, $a_{1} z_{1}$ lies in a quadrilateral of $K_{2}$; this implies that $y_{1} z_{1} \in E\left(K_{2}\right)$. Note that $u_{1} y_{1}$ is an internal rung of $K_{2}$.

Let $y_{2}$ denote the neighbour of $y_{1}$ which is distinct from $u_{1}$ and $z_{1}$. Note that $y_{2} \in V\left(K_{2}\right)$. Since $a_{1} z_{1}$ and $u_{1} y_{1}$ are rungs of $K_{2}$, it must be the case that $v$ and $y_{2}$ are adjacent and the


Figure 6.24: Illustration for Claim 6.26; the solid lines show part of the $R$-configuration $K_{1}$
edge joining them is a rung of $K_{2}$; however, it is easily seen that $v$ and $y_{2}$ are nonadjacent. We thus have a contradiction. This completes the proof of Claim 6.26.

We will now use Claim 6.26 to deduce that, since $K_{1}$ and $K_{2}$ are distinct $R$-configurations, the only vertices of $K_{1}$ which may lie in $K_{2}$ are its free corners (that is, $u_{1}$ and $w_{1}$ ).

Suppose instead that $\left(V\left(K_{1}\right)-\left\{u_{1}, w_{1}\right\}\right) \cap V\left(K_{2}\right)$ is nonempty. Since $K_{1}-\left\{u_{1}, w_{1}\right\}$ is connected, Claim 6.26 implies that $V\left(K_{1}\right) \subseteq V\left(K_{2}\right)$ and $E\left(K_{1}\right) \subseteq E\left(K_{2}\right)$. Furthermore, since $\left|V\left(K_{1}\right) \cap V\left(K_{2}\right)\right| \geq 6$, the set $\left(V\left(K_{2}\right)-\left\{u_{2}, w_{2}\right\}\right) \cap V\left(K_{1}\right)$ is also nonempty, where $u_{2}$ and $w_{2}$ denote the free corners of $K_{2}$. By symmetry, $V\left(K_{2}\right) \subseteq V\left(K_{1}\right)$ and $E\left(K_{2}\right) \subseteq E\left(K_{1}\right)$. We conclude that $K_{1}$ and $K_{2}$ are identical subgraphs of $G$; contrary to our hypothesis.

Thus, each member of $V\left(K_{1}\right) \cap V\left(K_{2}\right)$ is a free corner of $K_{1}$, and by symmetry, it is a free corner of $K_{2}$ as well. By our hypothesis, $V\left(K_{1}\right) \cap V\left(K_{2}\right)$ is nonempty; thus, at least one of $u_{1}$ and $w_{1}$ is a free corner of $K_{2}$. Adjust notation so that $u_{1}$ is a free corner of $K_{2}$. To complete the proof, we will show that $w_{1}$ is also a free corner of $K_{2}$.

Suppose not, that is, say $V\left(K_{1}\right) \cap V\left(K_{2}\right)=\left\{u_{1}\right\}$, and let $w_{2}$ denote the free corner of $K_{2}$ distinct from $u_{1}$. Observe that the ends $a_{2}$ of $\alpha$ and $b_{2}$ of $\beta$ both lie in $V\left(K_{2}\right)$; see Figure 6.25. Furthermore, $\left|B-V\left(K_{1} \cup K_{2}\right)\right|=\left|A-V\left(K_{1} \cup K_{2}\right)\right|+1$. We shall let $T:=B-V\left(K_{1} \cup K_{2}\right)$. Since every vertex of $K_{1} \cup K_{2}$, except possibly $u_{1}, w_{1}$ and $w_{2}$, is cubic, all neighbours of $T$ lie in the set $S:=\left(A-V\left(K_{1} \cup K_{2}\right)\right) \cup\left\{w_{1}, w_{2}\right\}$. Consequently, $S$ is a nontrivial barrier of $G$; this is absurd.

Thus, $u_{1}$ and $w_{1}$ are the free corners of $K_{2}$, and $K_{2}$ is otherwise vertex-disjoint with $K_{1}$. This completes the proof of Proposition 6.3.


Figure 6.25: When $K_{1}$ and $K_{2}$ share only one free corner

### 6.4 Proof of the Strictly $R$-thin Edge Theorem

As in the statement of the theorem (1.24), let $G$ be a simple $R$-brick which is free of strictly $R$-thin edges. Our goal is to show that $G$ is a member of one of the eleven infinite families which appear in the statement of the theorem, that is, to show that $G \in \mathcal{N}$. We adopt Notation 6.1.

We may assume that $G$ is different from $K_{4}$ and $\overline{C_{6}}$, and thus, by the $R$-thin Edge Theorem (1.22), $G$ has an $R$-thin edge, say $e_{1}$. Depending on the index of $e_{1}$, we invoke either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to deduce that $G$ has an $R$-configuration, say $K_{1}$, such that $e_{1} \in E\left(K_{1}\right)$. We shall let $a_{1} u_{1}$ and $b_{1} w_{1}$ denote the external rungs/spokes of $K_{1}$, and adjust notation so that $u_{1}$ and $w_{1}$ are its free corners. See Notation 6.2 and Figure 6.21. Note that $a_{1}$ is an end of $\alpha$ and $b_{1}$ is an end of $\beta$.

By Lemma 6.22, either both free corners $u_{1}$ and $w_{1}$ lie in $V(R)$, or otherwise, neither of them lies in $V(R)$; let us first deal with the former case.

Claim 6.27 If $u_{1}, w_{1} \in V(R)$ then $G$ is either a prism, or a Möbius ladder or a truncated biwheel.

Proof: Suppose that $u_{1}, w_{1} \in V(R)$; that is, $\alpha=a_{1} w_{1}$ and $\beta=b_{1} u_{1}$. Since every vertex of $K_{1}$ is cubic in $G$, except possibly $u_{1}$ and $w_{1}$, we conclude that $V(G)=V\left(K_{1}\right)$ as otherwise $\left\{u_{1}, w_{1}\right\}$ is a 2 -vertex cut of $G$. Furthermore, either $G$ is precisely the graph induced by $E\left(K_{1}\right) \cup R$, or otherwise, $G$ has one additional edge joining $u_{1}$ and $w_{1}$. In the latter case, $u_{1} w_{1}$ is a strictly $R$-thin edge, contrary to the hypothesis. In the former case, observe that: if $K_{1}$ is an $R$-biwheel configuration, as shown in Figure 6.21a, then $G$ is a truncated biwheel; if $K_{1}$ is an $R$-ladder configuration of odd parity, as shown in Figure 6.21 b , then $G$ is a prism; and if $K_{1}$ is an $R$-ladder configuration of even parity, as shown in Figure 6.21c, then $G$ is a Möbius ladder.

We may thus assume that neither $u_{1}$ nor $w_{1}$ lies in $V(R)$. Consequently, the end $a_{2}$ of $\alpha$ and the end $b_{2}$ of $\beta$ are both in $V(G)-V\left(K_{1}\right)$.

Claim 6.28 Either $G$ is a staircase or a pseudo-biwheel, or otherwise, $G$ has an $R$-compatible edge which is not in $E\left(K_{1}\right)$.

Proof: We begin by noting that, if $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right| \geq 2$, then by Lemma 6.23 , some edge of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ is $R$-compatible, and we are done; an analogous argument applies when $\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right| \geq 2$.

Now suppose that $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right| \leq 1$ and that $\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right| \leq 1$. By Lemma 6.24 (i) and (ii), $u_{1}$ and $w_{1}$ are nonadjacent; furthermore, $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ has a single element, say $\alpha^{\prime}$; likewise, $\partial\left(w_{1}\right)-E\left(K_{1}\right)$ has a single element, say $\beta^{\prime}$; see Figure 6.23. We let $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. By (iii) of the same lemma, $\alpha$ and $\alpha^{\prime}$ are adjacent if and only if $\beta$ and $\beta^{\prime}$ are adjacent.

First consider the case in which $\alpha$ and $\alpha^{\prime}$ are nonadjacent, and as in the statement of Lemma 6.24(iv), let $v$ denote the end of $\alpha^{\prime}$ which is distinct from $u_{1}$; note that $v \notin V\left(K_{1}\right)$. By the lemma, $\partial(v)-\alpha^{\prime}$ contains an $R$-compatible edge, and we are done.

Now suppose that $\alpha$ and $\alpha^{\prime}$ are adjacent; whence $\beta$ and $\beta^{\prime}$ are also adjacent. Note that $\alpha^{\prime}=u_{1} a_{2}$ and $\beta^{\prime}=w_{1} b_{2}$. Every vertex of $K_{1}$, except possibly $u_{1}$ and $w_{1}$, is cubic in $G$; furthermore, $\partial\left(u_{1}\right)-E\left(K_{1}\right)=\left\{\alpha^{\prime}\right\}$, and likewise, $\partial\left(w_{1}\right)-E\left(K_{1}\right)=\left\{\beta^{\prime}\right\}$. We infer that $V(G)=V\left(K_{1}\right) \cup\left\{a_{2}, b_{2}\right\}$ as otherwise $\left\{a_{2}, b_{2}\right\}$ is a 2 -vertex cut of $G$. Furthermore, since each of $a_{2}$ and $b_{2}$ has degree at least three, there is an edge joining them; and $G$
is precisely the graph induced by $E\left(K_{1}\right) \cup R \cup R^{\prime} \cup\left\{a_{2} b_{2}\right\}$. Observe that if $K_{1}$ is an $R$-biwheel configuration of order at least eight then $G$ is a pseudo-biwheel, and otherwise, $G$ is a staircase.

We may thus assume that $G$ has an $R$-compatible edge which is not in $E\left(K_{1}\right)$. We will now use Theorem 5.1 and Lemma 6.25 to deduce that $G$ has an $R$-thin edge which is not in $E\left(K_{1}\right)$.

Claim 6.29 $G$ has an $R$-thin edge, say $e_{2}$, which is not in $E\left(K_{1}\right)$.

Proof: Among all $R$-compatible edges which are not in $E\left(K_{1}\right)$, we choose one, say $e_{2}$, such that $\operatorname{rank}\left(e_{2}\right)+\operatorname{index}\left(e_{2}\right)$ is maximum; we intend to show that $e_{2}$ is $R$-thin. Suppose not; then, by Theorem 5.1, with $e_{2}$ playing the role of $e$, there exists another $R$-compatible edge $f$ such that (i) $f$ has an end each of whose neighbours in $G-e_{2}$ lies in a (nontrivial) barrier $S$ of $G-e_{2}$, and (ii) $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}\left(e_{2}\right)+\operatorname{index}\left(e_{2}\right)$.

Let $I$ denote the set of isolated vertices of $\left(G-e_{2}\right)-S$. Condition (i) above implies that $f$ has one end in $I$ and another end in $S$. By Lemma 6.25, with $e_{2}$ playing the role of $e$, the set $I \cap V\left(K_{1}\right)$ is empty. Since $f$ has one end in $I$, we infer that $f$ is not in $E\left(K_{1}\right)$; this, combined with condition (ii) above, contradicts our choice of $e_{2}$. We thus conclude that $e_{2}$ is $R$-thin.

Now, depending on the index of $e_{2}$, we invoke either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to deduce that $G$ has an $R$-configuration, say $K_{2}$, such that $e_{2} \in E\left(K_{2}\right)$. As $e_{2}$ is not in $E\left(K_{1}\right)$ but it is in $E\left(K_{2}\right)$, the $R$-configurations $K_{1}$ and $K_{2}$ are clearly distinct. By Proposition 6.3: either $K_{1}$ and $K_{2}$ are vertex-disjoint; or otherwise, $u_{1}$ and $w_{1}$ are the free corners of $K_{2}$, and $K_{2}$ is otherwise vertex-disjoint with $K_{1}$. In either case, the end $a_{2}$ of $\alpha$ and the end $b_{2}$ of $\beta$ are the two corners of $K_{2}$ which are distinct from its free corners. Let us first deal with the case in which $K_{1}$ and $K_{2}$ are not vertex-disjoint; Figure 6.26 shows an example in which $K_{1}$ and $K_{2}$ are both $R$-biwheel configurations.

The proof of the following claim closely resembles that of Claim 6.27.
Claim 6.30 If $K_{1}$ and $K_{2}$ are not vertex-disjoint then $G$ is either a double biwheel or a double ladder or a laddered biwheel, each of type $I$.

Proof: As noted above, $u_{1}$ and $w_{1}$ are the free corners of $K_{2}$, and $K_{2}$ is otherwise vertexdisjoint with $K_{1}$. Consequently, the external rungs/spokes of $K_{2}$ are $a_{2} u_{1}$ and $b_{2} w_{1}$; see


Figure 6.26: When the two $R$-configurations are not disjoint; the vertices with the same labels are to be identified

Figure 6.26. Since every vertex of $K_{1} \cup K_{2}$ is cubic in $G$, except $u_{1}$ and $w_{1}$, we infer that $V(G)=V\left(K_{1}\right) \cup V\left(K_{2}\right)$, as otherwise $\left\{u_{1}, w_{1}\right\}$ is a 2-vertex cut of $G$. Furthermore, either $G$ is precisely the graph induced by $E\left(K_{1} \cup K_{2}\right) \cup R$, or otherwise, $G$ has one additional edge joining $u_{1}$ and $w_{1}$. In the latter case, $u_{1} w_{1}$ is a strictly $R$-thin edge, contrary to the hypothesis. In the former case, observe that if $K_{1}$ and $K_{2}$ are both $R$-biwheel configurations then $G$ is a double biwheel of type I; likewise, if $K_{1}$ and $K_{2}$ are both $R$-ladder configurations then $G$ is a double ladder of type I; finally, if one of $K_{1}$ and $K_{2}$ is an $R$-ladder configuration and the other one is an $R$-biwheel configuration then $G$ is a laddered biwheel of type I.

We may thus assume that $K_{1}$ and $K_{2}$ are vertex-disjoint; and we shall let $a_{2} u_{2}$ and $b_{2} w_{2}$ denote the external rungs/spokes of $K_{2}$; in particular, $u_{2}$ and $w_{2}$ denote the free corners of $K_{2}$. Figure 6.27 shows an example in which $K_{1}$ is an $R$-ladder configuration and $K_{2}$ is an $R$-biwheel configuration.

We now find the remaining three families, or show the existence of an $R$-compatible edge which is not in $E\left(K_{1} \cup K_{2}\right)$; the proof is similar to that of Claim 6.28.

Claim 6.31 Either $G$ is a double biwheel or a double ladder or a laddered biwheel, each of type II, or otherwise, $G$ has an $R$-compatible edge which is not in $E\left(K_{1} \cup K_{2}\right)$.

Proof: We begin by noting that, if $\left|\partial\left(u_{1}\right)-E\left(K_{1}\right)\right| \geq 2$, then by Lemma 6.23 , some edge of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$ is $R$-compatible, and since $u_{1} \notin V\left(K_{2}\right)$, such an edge is not in $E\left(K_{2}\right)$,


Figure 6.27: When the two $R$-configurations are disjoint
and we are done; an analogous argument applies when $\left|\partial\left(w_{1}\right)-E\left(K_{1}\right)\right| \geq 2$, or when $\left|\partial\left(u_{2}\right)-E\left(K_{2}\right)\right| \geq 2$ or when $\left|\partial\left(w_{2}\right)-E\left(K_{2}\right)\right| \geq 2$.

Now suppose that, for $i \in\{1,2\},\left|\partial\left(u_{i}\right)-E\left(K_{i}\right)\right| \leq 1$ and $\left|\partial\left(w_{i}\right)-E\left(K_{i}\right)\right| \leq 1$; by Lemma 6.24 (i) and (ii), $u_{i}$ and $w_{i}$ are nonadjacent; furthermore, each of these inequalities holds with equality. Let $\alpha^{\prime}$ denote the only member of $\partial\left(u_{1}\right)-E\left(K_{1}\right)$, and let $\beta^{\prime}$ denote the only member of $\partial\left(w_{1}\right)-E\left(K_{1}\right)$.

First consider the case in which either $w_{2}$ is not an end of $\alpha^{\prime}$ or $u_{2}$ is not an end of $\beta^{\prime}$. Assume without loss of generality that $w_{2}$ is not an end of $\alpha^{\prime}$; thus the end of $\alpha^{\prime}$ distinct from $u_{1}$, say $v$, is not in $V\left(K_{1} \cup K_{2}\right)$. By Lemma 6.24(iv), $\partial(v)-\alpha^{\prime}$ contains an $R$-compatible edge; such an edge is not in $E\left(K_{1} \cup K_{2}\right)$, and we are done.

Now suppose that $w_{2}$ is an end of $\alpha^{\prime}$ and $u_{2}$ is an end of $\beta^{\prime}$. Note that every vertex of $K_{1} \cup K_{2}$, except possibly $u_{1}, w_{1}, u_{2}$ and $w_{2}$, is cubic in $G$; furthermore, $\partial\left(u_{1}\right)-E\left(K_{1}\right)=$ $\partial\left(w_{2}\right)-E\left(K_{2}\right)=\left\{\alpha^{\prime}\right\}$, and likewise, $\partial\left(w_{1}\right)-E\left(K_{1}\right)=\partial\left(u_{2}\right)-E\left(K_{2}\right)=\left\{\beta^{\prime}\right\}$. We conclude that $V(G)=V\left(K_{1} \cup K_{2}\right)$ and $E(G)=E\left(K_{1} \cup K_{2}\right) \cup R \cup R^{\prime}$. Observe that: if $K_{1}$ and $K_{2}$ are both $R$-biwheel configurations then $G$ is a double biwheel of type II; likewise, if $K_{1}$ and $K_{2}$ are both $R$-ladder configurations then $G$ is a double ladder of type II; finally, if one of $K_{1}$ and $K_{2}$ is an $R$-ladder configuration and the other one is an $R$-biwheel configuration then $G$ is a laddered biwheel of type II.

We may thus assume that $G$ has an $R$-compatible edge which is not in $E\left(K_{1} \cup K_{2}\right)$. We will now use Theorem 5.1 and Lemma 6.25 to deduce that $G$ has an $R$-thin edge which
is not in $E\left(K_{1} \cup K_{2}\right)$. The proof is almost identical to that of Claim 6.29, except that now we have to deal with two $R$-configurations instead of just one.

Claim 6.32 $G$ has an $R$-thin edge, say $e_{3}$, which is not in $E\left(K_{1} \cup K_{2}\right)$.

Proof: Among all $R$-compatible edges which are not in $E\left(K_{1} \cup K_{2}\right)$, we choose one, say $e_{3}$, such that $\operatorname{rank}\left(e_{3}\right)+\operatorname{index}\left(e_{3}\right)$ is maximum; we intend to show that $e_{3}$ is $R$-thin. Suppose not; then, by Theorem 5.1, with $e_{3}$ playing the role of $e$, there exists another $R$-compatible edge $f$ such that (i) $f$ has an end each of whose neighbours in $G-e_{3}$ lies in a (nontrivial) barrier $S$ of $G-e_{3}$, and (ii) $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}\left(e_{3}\right)+\operatorname{index}\left(e_{3}\right)$.

Let $I$ denote the set of isolated vertices of $\left(G-e_{3}\right)-S$. Condition (i) above implies that $f$ has one end in $I$ and another end in $S$. By Lemma 6.25 , with $e_{3}$ playing the role of $e$, the set $I \cap V\left(K_{1}\right)$ is empty; likewise, the set $I \cap V\left(K_{2}\right)$ is empty. Since $f$ has one end in $I$, we infer that $f$ is not in $E\left(K_{1} \cup K_{2}\right)$; this, combined with condition (ii) above, contradicts our choice of $e_{3}$. We thus conclude that $e_{3}$ is $R$-thin.

Now, depending on the index of $e_{3}$, we invoke either the $R$-biwheel Theorem (6.5) or the $R$-ladder Theorem (6.6) to deduce that $G$ has an $R$-configuration, say $K_{3}$, such that $e_{3} \in E\left(K_{3}\right)$. As $e_{3}$ is not in $E\left(K_{1} \cup K_{2}\right)$ but it is in $E\left(K_{3}\right)$, the $R$-configuration $K_{3}$ is distinct from each of $K_{1}$ and $K_{2}$. We have thus located three distinct $R$-configurations in the brick $G$; namely, $K_{1}, K_{2}$ and $K_{3}$. However, this contradicts Corollary 6.4, and completes the proof of the Strictly $R$-thin Edge Theorem (1.24).

## Chapter 7

## Conclusions

Lovász's Theorem (1.6) led Carvalho, Lucchesi and Murty [CLM03] to pose two problems: (i) determine whether or not a given matching covered graph $G$ is $K_{4}$-free, and likewise, (ii) determine whether or not $G$ is $\overline{C_{6}}$-free. In the first part of the thesis, we solved these problems for the special case of planar matching covered graphs.

At a high level, our solution may be viewed as comprising of two steps. In Chapter 2, for any cubic brick $J$, we reduced the problem of characterizing $J$-free matching covered graphs to that of characterizing $J$-free bricks; see Theorem 1.10. In Chapter 3, we characterized $K_{4}$-free as well as $\overline{C_{6}}$-free planar bricks; see Theorems 1.11 and 1.12.

The natural extension of our work is to solve the aforementioned problems (i) and (ii) for general matching covered graphs. In view of our results in Chapters 2 and 3, it suffices to characterize $K_{4}$-free nonplanar bricks and $\overline{C_{6}}$-free nonplanar bricks.

This is reminiscent of an important problem solved in the context of Pfaffian orientations. As per a theorem of Little [Lit75], a bipartite matching covered graph is Pfaffian if and only if it is $K_{3,3}$-free. Several years later, Robertson, Seymour and Thomas [RST99], and independently McCuaig [McC04], gave a structural characterization of $K_{3,3}$-free braces. Recently, in his Ph.D. thesis, Whalen [Wha14] gave a third proof of this theorem. It is worth exploring whether any of these three approaches can be adapted to characterize either $K_{4}$-free or $\overline{C_{6}}$-free nonplanar bricks.

In the second part of the thesis, we established generation theorems which are specific to near-bipartite bricks. In Chapter 5, we proved the $R$-thin Edge Theorem (1.22), which states that every $R$-brick distinct from $K_{4}$ and $\overline{C_{6}}$ has an $R$-thin edge. This is a refinement
of the Thin Edge Theorem (1.15) of Carvalho, Lucchesi and Murty, which is appropriate for the restricted class of near-bipartite bricks.

In Chapter 6, we proved the Strictly $R$-thin Edge Theorem (1.24), which gives a complete characterization of those simple $R$-bricks which are free of strictly $R$-thin edges. This is a refinement of the Strictly Thin Edge Theorem (1.17) of Norine and Thomas, which is appropriate for the class of near-bipartite bricks.

It would be interesting to find applications of the $R$-thin Edge Theorem and the Strictly $R$-thin Edge Theorem. In particular, since the problems of characterizing $K_{4}$-free nonplanar bricks and $\overline{C_{6}}$-free nonplanar bricks do not seem to be tractable with the inductive tools available to us, it may be worthwhile studying these questions for the restricted class of near-bipartite bricks. This approach has been successful in the theory of Pfaffian orientations; although there has been no significant progress in characterizing Pfaffian bricks; Fischer and Little [FL01] were able to characterize Pfaffian near-bipartite graphs. Related to this, an easy corollary of the Strictly $R$-thin Edge Theorem is that every nonplanar $\overline{C_{6}}$-free brick is $M_{8}$-based, where $M_{8}$ is the Möbius ladder of order eight.

The notions of thin and strictly thin edges are easily generalized to braces; see [CLM08, CLM15]. It was shown by Carvalho, Lucchesi and Murty [CLM08] that every brace of order six or more has a thin edge; their result may also be derived from an earlier theorem of McCuaig [McC01] concerning the existence of strictly thin edges. In their recent work, Carvalho et al. [CLM15] strengthened McCuaig's result to show that every simple brace, which is not in any of four infinite families, has at least two strictly thin edges. They also give examples to show that their result is the best possible.

In view of the above, we would like to show the existence of at least two $R$-thin edges in every $R$-brick that is distinct from $K_{4}, \overline{C_{6}}$ and the staircase $S t_{8}$; see Figure 1.9. Such a result is likely to be more useful when trying to solve problems pertaining to near-bipartite bricks using induction; especially, if one can show that there are two $R$-thin edges which are somewhat far apart.

More generally, it would be interesting to show the existence of at least two thin edges in every brick that is distinct from $K_{4}, \overline{C_{6}}$ and $S t_{8}$. Related to this, we were able to find bricks which have a unique strictly thin edge; one of our examples appears in [CLM15]. We have also found $R$-bricks which have a unique strictly $R$-thin edge; in this sense, our Theorem 1.24 is the best possible.

## References

[BM08] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
[CL96] M. H. Carvalho and C. L. Lucchesi. Matching covered graphs and odd subdivisions of $K_{4}$ and $\bar{C}_{6}$. J. Combin. Theory Ser. B, 66:263-268, 1996.
[CLM99] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Ear decompositions of matching covered graphs. Combinatorica, 19:151-174, 1999.
[CLM02a] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. On a conjecture of Lovász concerning bricks. II. Bricks of finite characteristic. J. Combin. Theory Ser. B, 85:137-180, 2002.
[CLM02b] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Optimal ear decompositions of matching covered graphs. J. Combin. Theory Ser. B, 85:59-93, 2002.
[CLM03] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Ear decompositions and conformal minors of matching covered graphs. Workshop on Combinatorics, Algorithms, and Applications, Ubatuba, http://www.ime.usp.br/ ~yoshi/pronex/Workshop/talks.html\#graphtheoryI-1, September 2003.
[CLM05] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Graphs with independent perfect matchings. J. Graph Theory, 48:19-50, 2005.
[CLM06] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. How to build a brick. Discrete Math., 306:2383-2410, 2006.
[CLM08] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Generating simple bricks and braces. Technical Report IC-08-16, Institute of Computing, University of Campinas, July 2008.
[CLM12] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. A generalization of Little's theorem on Pfaffian graphs. J. Combin. Theory Ser. B, 102:1241-1266, 2012.
[CLM15] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Thin edges in braces. The Electronic J. of Combin., 22, 2015.
[ELP82] J. Edmonds, L. Lovász, and William R. Pulleyblank. Brick decomposition and the matching rank of graphs. Combinatorica, 2:247-274, 1982.
[FL01] Ilse Fischer and C. H. C. Little. A characterisation of Pfaffian near bipartite graphs. J. Combin. Theory Ser. B, 82:175-222, 2001.
[KM16] N. Kothari and U. S. R. Murty. $K_{4}$-free and $\overline{C_{6}}$-free planar matching covered graphs. J. Graph Theory, 82:5-32, 2016.
[Lit75] C. H. C. Little. A characterization of convertible ( 0,1 )-matrices. J. Combin. Theory Ser. B, 18:187-208, 1975.
[Lov83] L. Lovász. Ear decompositions of matching-covered graphs. Combinatorica, 3:105-117, 1983.
[Lov87] L. Lovász. Matching structure and the matching lattice. J. Combin. Theory Ser. B, 43:187-222, 1987.
[LP86] L. Lovász and M. D. Plummer. Matching Theory. Number 29 in Annals of Discrete Mathematics. Elsevier Science, 1986.
[LR91] C. H. C. Little and F. Rendl. Operations preserving the Pfaffian property of a graph. J. Austral. Math. Soc. (Series A), 50:248-275, 1991.
[LV] L. Lovász and S. Vempala. On removable edges in matching covered graphs. Unpublished Manuscript.
[McC01] W. McCuaig. Brace generation. J. Graph Theory, 38:124-169, 2001.
[McC04] W. McCuaig. Pólya's permanent problem. The Electronic J. of Combin., 11, 2004.
[NT07] S. Norine and R. Thomas. Generating bricks. J. Combin. Theory Ser. B, 97:769-817, 2007.
[RST99] N. Robertson, P. D. Seymour, and R. Thomas. Permanents, Pfaffian orientations and even directed circuits. Ann. of Math. (2), 150:929-975, 1999.
[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[Sey80] P. D. Seymour. Decomposition of regular matroids. J. Combin. Theory Ser. B, 28:305-359, 1980.
[Szi02] Zoltán Szigeti. Perfect matchings versus odd cuts. Combinatorica, 22:575-589, 2002.
[Tho01] C. Thomassen. Totally odd $K_{4}$-subdivisions in 4-chromatic graphs. Combinatorica, 21(3):417-443, 2001.
[Tut47] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107111, 1947.
[Tut84] W. T. Tutte. Graph Theory, volume 21 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, 1984.
[Wha14] Peter Whalen. Pfaffian orientations, flat embeddings, and Steinberg's conjecture. PhD thesis, Georgia Institute of Technology, 2014.
[Whi33] H. Whitney. 2-isomorphic graphs. American Journal of Mathematics, 57:245254, 1933.
[Zan98] Wenan Zang. Proof of Toft's conjecture: Every graph containing no fully odd $K_{4}$ is 3-colorable. J. Comb. Optim., 2(2):117-188, 1998.

## Glossary of Notation

$\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ partition of set, page 73
$\mathcal{F}(e, S)$ candidate set relative to edge and barrier, page 87
$\mathcal{N} \quad$ union of all families which appear in statement of Theorem 1.24, page 31
$\bar{X} \quad$ complement of vertex set (in graph), page 8
$\partial(v)$ cut associated with vertex (of graph), page 74
$\partial(X)$ cut associated with vertex set (of graph), page 8
$\partial_{G}(v)$ cut associated with vertex of graph, page 74
$\partial_{G}(X)$ cut associated with vertex set of graph, page 8
$b(G)$ number of bricks in any tight cut decomposition of graph, page 9
$G /(X \rightarrow x)$ graph obtained by contracting shore to single vertex, page 8
$G / X$ graph obtained by contracting shore (to single vertex), page 8
$G[e]$ subgraph induced by edge, page 5
$G[X]$ subgraph induced by vertex set, page 94
$H(e, S)$ bipartite matching covered graph defined relative to edge and barrier, page 87
$H[A, B]$ bipartite graph with color classes $A$ and $B$, page 3
$M_{n} \quad$ Möbius ladder of order $n$, page 13
$N(S)$ neighbourhood of set of vertices (in graph), page 3
$N(v)$ neighbourhood of vertex (in graph), page 38
$N_{G}(S)$ neighbourhood of set of vertices in graph, page 3
$N_{G}(v)$ neighbourhood of vertex in graph, page 38
$P_{n} \quad$ prism of order $n$, page 13
$P_{u v} \quad$ path with ends specified, page 36
$R=\{\alpha, \beta\}$ two edges which constitute a removable doubleton, page 22
$S t_{n} \quad$ staircase of order $n$, page 14
$T_{n} \quad$ truncated biwheel of order $n$, page 13
$V(R)$ set of four vertices which are ends of edges of removable doubleton, page 114
$W_{n} \quad$ odd wheel of order $n$, page 11
$X_{+} \quad$ majority part of vertex set (of bipartite or near-bipartite graph), page 76
$X_{-} \quad$ minority part of vertex set (of bipartite or near-bipartite graph), page 76
$\mathrm{f}_{\text {odd }}(G)$ number of odd faces of plane graph, page 44
$\operatorname{odd}(G)$ number of odd components of a graph, page 1
rank ( $e$ ) rank of $R$-compatible edge, page 81
$\operatorname{rank}(G)$ rank of near-bipartite graph, page 79

## Index

barrier, 2
bi-splitting
a vertex, 19, 47
bi-subdivision
of edge, 4
of graph, 4
bicontraction
of vertex, 18
bicritical graph, 9
brace, 9
brick, 9
$R$-brick, 24
Norine-Thomas, 11
candidate set, 87
canonical partition, 2
configuration
$R$-biwheel, 114
$R$-configuration, 116
$R$-ladder, 116
conformal subgraph, 4
consecutive
rungs/spokes, 117
contraction
$\partial(X)$-contraction, 8
corner
free, 116
of an $R$-configuration, 116
critical graph, 46
cut
2-separation cut, 9
barrier cut, 9
shore of, 8
tight cut, 8
cycle
facial, 43
decomposition
ear decomposition
bipartite, 5
of 2-connected critical graph, 46
of matching covered graph, 6
tight cut decomposition, 8
ear
double, 6
single, 5
edge
$C$-crossing, 37
$R$-compatible, 24
$R$-thin, 25
$b$-invariant, 18
admissible, 2
candidate, 87
compatible, 32
inadmissible, 2
non-removable, 16
removable, 16
strictly $R$-thin, 26
strictly thin, 20
thin, 19
expansion operations, 20

## Graph

Trellis, 68
Tricorn, 15, 60
graph
$J$-based, 7
$J$-free, 7
$R$-brick, 24
$R$-graph, 24
bicritical, 9
brace, 9
brick, 9
critical, 46
matching covered, 2
near-bipartite, 21
near-brick, 17
underlying bipartite, 24
graph family
double biwheels of type I, 28
double biwheels of type II, 29
double ladders of type I, 28
double ladders of type II, 29
laddered biwheels of type I, 28
laddered biwheels of type II, 29
ladders, 12
Möbius ladders, 13
Norine-Thomas, 11
odd wheels, 11
partial biwheels, 12
prisms, 13
pseudo-biwheels, 28
staircases, 14
truncated biwheels, 13
index
of $R$-compatible edge, 80
of thin edge, 48
majority part, 76, 77
minority part, 76, 77
near-brick, 17
Norine-Thomas families, 11
path
$C$-crossing, 37
quadrilateral, 74
rank
of $R$-compatible edge, 81
of near-bipartite graph, 79
removable doubleton, 22
retract
of a graph, 18
subgraph
conformal, 4
vertex
branch, 36
subdivision, 36


[^0]:    ${ }^{1}$ Each of $P_{1}$ and $P_{2}$ is an $\left(M_{1}, M_{2}\right)$-alternating path; $P_{1}$ starts and ends with an $M_{1}$-edge, whereas $P_{2}$ starts and ends with an $M_{2}$-edge.

