Noname manuscript No.
(will be inserted by the editor)

A Composable Worst Case Latency Analysis
for Multi-Rank DRAM Devices under Open Row Policy

Zheng Pei Wu - Rodolfo Pellizzoni - Danlu Guo

Received: date / Accepted: date

Abstract As multi-core systems are becoming more popular in real-time embedded
systems, strict timing requirements for accessing shared resources must be met. In
particular, a detailed latency analysis for Double Data Rate Dynamic RAM (DDR
DRAM) is highly desirable. Several researchers have proposed predictable memory
controllers to provide guaranteed memory access latency. However, the performance
of such controllers sharply decreases as DDR devices become faster and the width of
memory buses is increased. High-performance Commercial-Off-The-Shelf (COTS)
memory controllers in general-purpose systems employ open row policy to improve
average case access latencies and memory throughput, but the use of such policy is
not compatible with existing real-time controllers. In this article, we present a new
memory controller design together with a novel, composable worst case analysis for
DDR DRAM that provides improved latency bounds compared to existing works by
explicitly modeling the DRAM state. In particular, our approach scales better with in-
creasing memory speed by predictably taking advantage of shorter latency for access
to open DRAM rows. Furthermore, it can be applied to multi-rank devices, which al-
low for increased access parallelism. We evaluate our approach based on worst case
analysis bounds and simulation results, using both synthetic tasks and a set of realis-
tic benchmarks. In particular, benchmark evaluations show up to 45% improvement
in worst case task execution time compared to a competing predictable memory con-
troller for a system with 16 requestors and one rank.

1 Introduction

In real-time embedded systems, the use of chip multiprocessors (CMPs) is becoming
more popular due to their low power and high performance capabilities. As appli-
cations running on these multi-core systems are becoming more memory intensive,

Zheng Pei Wu - Rodolfo Pellizzoni - Danlu Guo
Department of Electrical and Computer Engineering, University of Waterloo (Canada)
E-mail: {zpwu, rpellizz, dlguo} @uwaterloo.ca



2 Zheng Pei Wu et al.

the shared main memory resource is turning into a significant bottleneck. Therefore,
there is a need to bound the worst case memory latency caused by contention among
multiple cores to provide hard guarantees to real-time tasks. Several researchers have
addressed this problem by proposing new timing analyses for contention in main
memory and caches [30, 29, 28]. However, such analyses assume a constant time for
each memory request (load or store). In practice, modern CMPs use Double Data
Rate Dynamic RAM (DDR DRAM) as their main memory. The assumption of con-
stant access time in DRAM can lead to highly pessimistic bounds because DRAM
is a complex and stateful resource, i.e., the time required to perform one memory
request is highly dependent on the history of previous and concurrent requests.
DRAM access time is highly variable because of two main reasons: (1) DRAM
employs an internal caching mechanism where large chunks of data are first loaded
into a row buffer before being read or written. (2) In addition, DRAM devices use a
parallel structure; in particular, multiple operations targeting different internal buffers
can be performed simultaneously. Due to these characteristics, developing a safe yet
realistic memory latency analysis is very challenging. To overcome such challenges,
a number of other researches have proposed the design of predictable DRAM con-
trollers [25, 1, 31, 12, 27]. These controllers simplify the analysis of memory latency
by statically pre-computing sequences of memory commands. The key idea is that
static command sequences allow leveraging DRAM parallelism without the require-
ment to analyze dynamic state information. Existing predictable controllers have been
shown to provide tight, predictable memory latency for hard real-time tasks when
applied to older DRAM standards such as DDR2. However, as we show in our eval-
uation, they perform poorly in the presence of more modern DRAM devices such as
DDR3 [17]. The first drawback of existing predictable controllers is that they do not
take advantage of the caching mechanism. As memory devices are getting faster, the
performance of predictable controllers is greatly diminished because the difference
in access time between cached and not cached data in DRAM devices is growing.
Furthermore, as memory buses are becoming wider, the amount of data that can be
transferred in each bus cycle increases. For this reason, the ability of existing pre-
dictable controllers to exploit DRAM access parallelism in a static manner is dimin-
ished. Finally, memory controllers employed in Commercial-Off-The-Shelf (COTS)
systems are typically optimized for average case latency and maximum throughput,
and they behave quite differently compared to the discussed real-time controllers.
Hence, existing latency bounds cannot directly be applied to such controllers.
Therefore, in this article we consider a different approach that takes advantage
of the DRAM caching mechanism by explicitly modelling and analyzing DRAM
state information. In addition, we dynamically exploit the parallelism in the DRAM
structure to reduce the interference among multiple requestors (cores or DMA). Our
approach relies on the design of a new predictable memory controller, which fairly
arbitrates among commands of different requestors. The structure of our controller is
similar to existing controllers, but compared to COTS systems, we disable request re-
ordering to avoid a requestor being unfairly delayed (possibly forever). Our technique
relies on statically partitioning the available main memory (DRAM banks) among re-
questors. As such, it is targeted at partitioned real-time systems, such as integrated
modular avionics systems [26], where different applications are allocated on individ-



Title Suppressed Due to Excessive Length 3

ual cores and communication between applications is limited. For the same reason, it
is also restricted to multi-core, rather than many-core systems; in the evaluation, we
consider systems with up to 16 requestors.

In more details, the major contributions of this work are the following. (1) We
discuss the design of a new dynamic, predictable memory controller based on static
bank partitioning. (2) Based on the discussed controller, we derive a worst case DDR
DRAM memory latency analysis for individual load/store requests issued by a re-
questor under analysis in the presence of multiple other requestors contending for
memory access. Our analysis is composable, in the sense that the latency bound does
not depend on the activity of the other requestors, only on the number of requestors,
and it makes no assumption on the characteristics of the requestor under analysis (i.e.,
it can be an in-order/out-of-order core, DMA, etc.). (3) Based on the latency bounds
for individual requests, we show how to compute the overall latency suffered by a
task running on a fully timing compositional core [34]. (4) We evaluate our analy-
sis against previous predictable approaches using both synthetic tasks and a set of
benchmarks executed on an architectural simulator. In particular, we show that our
approach scales significantly better with faster memory devices. We show results both
in terms of worst case analysis bounds, and measured latency on the simulator. For
a commonly used DRAM in a system with 16 requestors and no inter-core commu-
nication, our method shows up to 45% improvements on task worst case execution
time compared to [25].

The rest of the article is organized as follows. Section 2 provides required back-
ground knowledge on how DRAM works. Section 3 compares our approach to related
work in the field. Section 4 discusses our memory controller design and Section 5
and 6 detail our worst case latency analysis. Section 7 discusses shared data, while
evaluation results are presented in Section 8. Finally, Section 9 concludes the article.

2 DRAM Basics

Modern DRAM memory systems are composed of a memory controller and mem-
ory device. Figure 1 shows an example of such system, where multiple cores and
DMA devices send requests to load or store data to the memory controller; the con-
troller handles individual requests by controlling the operation of the memory de-
vices, which stores the actual data. Since our request latency analysis is independent
of the characteristics of the hardware entity communicating with the memory con-
trollers, in Sections 2-5 we use the term requestor to denote any component (core or
DMA) that can send requests to the controller.

The device and controller are connected by a command bus and a data bus. The
command bus is used to transfer memory commands, which controls the operation of
the device, while the data bus carries the transferred data associated with a request.
The two buses can be used in parallel: a request of one requestor can use the command
bus while a request of another requestor uses the data bus. However, no more than
one request can use the command bus (or data bus) at the same time. The logic of the
controller is typically divided into a front end and back end. The front end generates
one or more memory commands for each request. The back end arbitrates among



4 Zheng Pei Wu et al.

generated commands and issues them to the device through the command bus. As we
discuss in Section 2.1, there are specific timing constraints that the back end must
satisfy.

Modern memory devices are organized into ranks and each rank is divided into
multiple banks, which can be accessed in parallel provided that no collisions occur on
either buses. Each bank comprises a row-buffer and an array of storage cells organized
as rows' and columns as shown in Figure 1. In addition, modern systems can have
multiple memory channels (i.e. multiple command and data bus). Each channel can
be treated independently or they could be interleaved together. This article treats each
channel independently and focuses on the analysis within a single channel. Note that
optimization of requestor assignments to channels in real-time memory controllers
has been discussed in [10, 11].

Requestors  DRAM Controller Memory Device
4 N
CORE s [P , /7| Bank N A , /7| Bank N A
\
f jcvp |y A0 e LTI
'Front End| BUS Bank 1 | Bank 1 |
CORE ! ) } | |
(T \ | (L) 1]
DMA : | 3 — — 5
| Back End| e [] L] -
! ! | DATA Row Buffer k Row Buffer k
Veoooooe | BUS
DMA Rank 1 Rank R
o J

Fig. 1: DDR DRAM Organization

To access the data in a DRAM row, an Activate (ACT) command must be issued
to load the data into the row buffer before it can be read or written. Once the data
is in the row buffer, a CAS (read or write) command can be issued to retrieve or
store the data. If a second request needs to access a different row within the same
bank, the row buffer must be written back to the data array with a Pre-charge (PRE)
command before the second row can be activated. Finally, a periodic Refresh (REF)
command must be issued to all ranks and banks to ensure data integrity. Note that
each command takes one clock cycle on the command bus to be serviced.

A row that is cached in the row buffer is considered open, otherwise the row is
considered closed. A request that accesses an open row is called an Open Request
and a request that accesses a closed row is called Close Request. To avoid confusion,
requests are categorized as load or store while read and write are used to refer to
memory commands. When a request reaches the front end of the controller, the cor-
rect memory commands will be generated based on the status of the row buffers. For
open requests, only a read or a write command is generated since the desired row is
already cached in the row buffer. For close request, if the row buffer contains a row
that is not the desired row, then a PRE command is generated to close the current row.

I DRAM rows are also referred to as ‘pages’ in the literature.



Title Suppressed Due to Excessive Length 5

Then an ACT is generated to load the new row and finally read/write is generated to
access data. If the row buffer is empty, then only ACT and read/write commands are
needed. Finally, all open rows must be closed with PRE commands before a REF can
be issued.

The size of a row is large (several kB), so each request only accesses a small por-
tion of the row by selecting the appropriate columns. Each CAS command accesses
data in a burst of length B L and the amount of data transferred is BL - Wy g, where
Wpgus is the width of the data bus. Since DDR memory transfers data on rising and
falling edge of clock, the amount of time for one transfer is ¢t gy = BL/2 memory
clock cycles. For example, with BL = 8 and Wy g of 64 bits, it will take 4 cycles
to transfer 64 bytes of data.

2.1 DRAM Timing Constraints

The memory device takes time to perform different operations and therefore timing
constraints between various commands must be satisfied by the memory controller.
The operation and timing constraints of memory devices are defined by the JEDEC
standard [17]. The standard defines different families of devices, such as DDR2 /
DDR3 / DDR4. As an example, Table 1 lists all timing parameters of interest to the
analysis, with typical values for DDR3 and DDR2 devices 2. Note that as the fre-
quency increases and thus the clock period becomes smaller, the value of the timing
parameters in number of clock cycles also tends to increase. Figures 2 and 3 illus-
trate the various timing constraints. Square boxes represent commands issued on the
command bus (A for ACT, P for PRE and R/W for Read and Write). The data be-
ing transferred on the data bus is also shown. To avoid excessive clutter, command
and data transfers belonging to the same request are shown on the same line, but we
stress again that the command and data buses can be operated in parallel. Horizontal
arrows represent timing constraints between different commands while the vertical
arrows show when each request arrives. R denotes rank and B denotes bank in the
figures. Note that constraints are not drawn to actual scale to make the figures easier
to understand.

Figure 2 shows constraints related to banks within the same rank. All three re-
quests are close requests targeting to the same rank. Request 1 and 3 are accessing
Bank 0 while Request 2 is accessing Bank 1. Notice the write command of Request
2 cannot be issued immediately once the {rcp timing constraint has been satisfied.
This is because there is another timing constraint, ¢ g7y, between read command of
Request 1 and write command of Request 2, and the write command can only be
issued once all applicable constraints are satisfied. Similarly, the ¢y g timing con-
straint between the end of the data of Request 2 and the read command of Request
3 must be satisfied before the read command is issued. Figure 3 shows timing con-
straints between different ranks, which only consist of ¢r7r [33]. This is the time
between end of data of one rank and beginning of data of another rank. Note Request
3 is targeting an open row, therefore, it does not need to issue PRE or ACT command.

2 We use DDR3 in our evaluation since we found it to be the most commonly employed standard in
related work on predictable DRAM controllers.



6 Zheng Pei Wu et al.

trrp

tras

Lre

Request 1 Request 3
=[5 ® ] g

i trep | tr tpus trp trcp |
i trrD : trrw twrr
A Request 2 3 f
R1 i :
B1 [P]
trep twr lpus twr

Fig. 2: Timing constraints for banks in same rank

Request 1 Request 3
B0 [R] [R]

trep tRL tpus

trTR trTR

Request 2
R2
BO

«— >
trep twr tpus

Fig. 3: Timing constraints between different ranks

Table 1: JEDEC Timing Constraints in Memory Cycles

Parameters | Description DDR2- | DDR3- | DDR3- | DDR3-
800E 800D 1333H | 2133M
trcD ACT to READ/WRITE delay 6 5 9 13
tRL READ to Data Start 6 5 9 13
twr WRITE to Data Start 5 5 7 10
tBUs Data bus transfer 4 4 4 4
trp PRE to ACT Delay 6 5 9 13
twr End of WRITE data to PRE Delay | 6 6 10 16
trTP Read to PRE Delay 3 4 5 8
trAS ACT to PRE Delay 18 15 24 35
trc ACT to ACT (same bank) 24 20 33 48
tRRD ACT to ACT (different bank) 3 4 5 6
trAw Four ACT Window 14 16 20 26
trTW READ to WRITE Delay 6 7 8 9
twTR WRITE to READ Delay 3 4 5 8
tRTR Rank to Rank Switch Delay 1 2 2 2
trRFC Time required to refresh a row 195 ns 160 ns 160 ns 160 ns
tREFI REF period 7.8 us 7.8 us 7.8 us 7.8 us

There are four important observations to notice from the timing diagrams. (1)
The access latency for a close memory request is significantly longer than an open
memory request. There are long timing constraints involved with PRE and ACT com-



Title Suppressed Due to Excessive Length 7

mands, which are not needed for open requests. For example, tpc dictates a large
time gap between two ACT commands to the same bank. (2) Switching from ser-
vicing load to store requests and vice-versa within the same rank incurs a timing
penalty. There is a constraint ¢t gy between issuing a read command and a succes-
sive write command. Even worse, the ¢ty constraint applies between the end of
the data transmission for a write command and any successive read command. (3)
Different banks within the same rank can be operated in parallel to a certain degree.
For example, two successive reads or two successive writes to different banks do not
incur any timing penalty besides contention on data bus. Furthermore, PRE and ACT
commands to different banks can be issued in parallel as long as the trrp and t paw
constraints are met. (4) Different ranks can also be operated in parallel even more
effectively. For example, there are no constraints between PRE or ACT of one rank
and another rank and thus they only contend on the command bus. CAS commands
between different ranks only need to satisfy the rank to rank switching constraint,
tRTR-

2.2 DRAM Row Policy and Mapping

In general, the memory controller can employ one of two different polices regarding
the management of row buffers: Open Row and Close Row Policy. Under open row
policy, the memory controller leaves the row buffer open for as long as possible. The
row buffer will be pre-charged if the refresh period is reached or another request needs
to access a different row (i.e., row miss). If a task has a lot of row hits, then only a
CAS command is needed for each of those requests, thus reducing latency. However,
if a task has a lot of row misses, each miss must issue ACT and CAS commands and
possibly a PRE command as well. Therefore, the overall latency for all requests per-
formed by a task under open row policy depends on the row hit ratio of the task itself.
In contrast, close row policy automatically pre-charges the row buffer after every re-
quest. Under this policy, the timing of every request is eminently predictable since all
requests have an ACT and a CAS command and thus incur the same latency. Further-
more, the controller does not need to schedule pre-charge commands which reduce
collision on command bus. The downside is that the overall latency for all requests
performed by a task might increase since a row must be opened and closed for each
request. High-performance controllers in general-purpose systems employ open-page
policy since it typically leads to better average-case delay [19]. On the other hand,
several predictable real-time controllers rely on the more predictable close-page pol-
icy. Finally, note that in some embedded memory controllers, for example in the
Freescale P4080 embedded platform [9], the policy is configurable.

When a request arrives at the memory controller, the incoming memory address
must be mapped to the correct rank, bank, row and column in order to access desired
data. There are two common mappings as employed in this work and other predictable
memory controllers: interleaved banks and private banks. Under interleaved banks,
each request accesses all banks or a subset of consecutive banks. The amount of data
transferred in one request is thus BL - Wygs - BI - BC, where BI is the number of
interleaved banks and BC' is the number of times each bank is accessed. For exam-



8 Zheng Pei Wu et al.

ple, with 4 banks interleaved, burst length of 8, BC' = 1 and data bus of 64 bits, the
amount of data transferred is 256 bytes. Although this mapping allows each requestor
to efficiently utilize multiple banks in parallel, each requestor also shares banks with
every other requestors. Therefore, requestors can cause mutual interference by clos-
ing each other’s rows. This mapping is typically used in systems where the data bus
is small such as 16 or 32 bits in order to access multiple banks so that the controller
can transfer the size of a cache block efficiently.

Under private banks, each requestor is assigned its own bank or set of banks.
Therefore, the state of row buffers accessed by one requestor cannot be influenced
by other requestors. A separate set of banks can be reserved for shared data that can
be concurrently accessed by multiple requestors. Detailed discussion of shared banks
will be described in Section 7. Under private banks, each request targets a single bank,
hence the amount of data transferred is BL - Wy s. The downside to this mapping
is that bank parallelism cannot be exploited by a single requestor. In order to transfer
the same amount of data as in interleaved banks, multiple accesses to the same bank
are required. However, for devices with large data bus such as 64 bits or larger, no
interleaving is required in order to transfer data at the granularity of a typical cache
block size in COTS systems, which is usually 64 bytes. Therefore, in such systems,
interleaving banks actually transfers more data than needed, thus resulting in wasted
data bus cycles. Note that if the hardware does not natively support private bank
partitioning, then OS-level virtual memory mapping or other software techniques are
needed to support this scheme [37].

3 Related Work

Several predictable memory controllers have been proposed in the literature [25, 1,
31, 12, 27]. The most closely related work is that of Paolieri et al. [25] and Akesson
etal. [1]. The Analyzable Memory Controller (AMC) [25] provides an upper bound
latency for memory requests in a multi-core system by utilizing a round-robin ar-
biter. Predator [1] uses credit-controlled static-priority (CCSP) arbitration [2], which
assigns priority to requests in order to guarantee minimum bandwidth and provide
a bounded latency. As argued in [25], the round-robin arbitration used by AMC is
better suited for hard real-time applications, while CCSP arbitration is intended for
streaming or multimedia real-time applications. Both controllers employ interleaved
banks mapping. Since under interleaved banks, there is no guarantee that rows opened
by one requestors will not be closed by another requestor, both controllers also use
close row policy, making the access latency of each request predictable.

In contrast, our previous work in [36] first proposed to employ private bank map-
ping with open row policy. By using a private bank scheme, we eliminate row inter-
ferences from other requestors since each requestor can only access their own banks.
Therefore, each hard real-time task can be analyzed in isolation [4] to determine the
number of open and close requests it produces. As a possible downside, this reduces
the total memory available to each requestor compared to interleaving, and might re-
quire increasing the DRAM size; however, such cost is typically significantly smaller
than the cost of enlarging the channel size by adding more channels. Also, the ap-



Title Suppressed Due to Excessive Length 9

proach cannot scale past a number of requestors equal to the number of banks in
the systems; however, 4 ranks systems have up to 32 total banks, and we envision
that systems having a larger number of requestors would require multiple memory
controllers to satisfy bandwidth requirements. As proved by the worst case latency
analysis introduced in [36], this approach leads to better latency bounds compared to
AMC and Predator because of two main reasons: first the latency of open requests
is much shorter than the one of close requests in DDR3 devices. Second, interleaved
bank mapping is only suitable for memory devices with small data bus in order to
transfer data at granularity of cache block size, which is typically 64 bytes on most
modern platforms. However, many data buses are large and can transfer 64 bytes data
chunks without interleaving any bank. Our previous work was limited to only DRAM
devices with one rank and did not consider latency for accessing shared data. This ar-
ticle extends the analysis to account for multiple ranks and shared data. Note that for
a single rank, the analysis result in this article is the same as our previous work. Fur-
thermore, simulation results are also included to compare against theoretical worst
case latency bounds.

Goossens et al. [12] have proposed a mix-row policy memory controller. Their ap-
proach is based on leaving a row open for a fixed time window to take advantage of
row hits. However, this time window is relatively small compared to an open row pol-
icy. In the worst case their approach is the same as close row policy if no assumptions
can be made about the exact time at which requests arrive at the memory controller,
which we argue is the case for non-trivial programs on modern processors. Reineke et
al. [27] propose a memory controller that uses private bank mapping; however, their
approach still uses the close row policy along with TDMA scheduling. Their work
is part of a larger effort to develop PTARM [24], a precision-timed (PRET [8, 5])
architecture. The memory controller is not compatible with a standard, COTS, cache-
based architecture. To the best of our knowledge, at the time of submission our pro-
posed controller was the first to utilize both open row policy and private bank scheme
to provide improved worst case memory latency bounds to hard real-time tasks in
multi-requestor systems.

The work in [33] proposed a rank hopping algorithm to maximize DRAM band-
width by scheduling a read group (or write group) to the same rank to leverage bank
parallelism until no more banks can be activated due to timing constraints. At that
point, another group of CAS commands are scheduled for another rank. This way,
they amortize the rank to rank switching time across a group of CAS commands.
However, this scheduling policy inherently re-orders requests and it is not suitable
for hard real time systems that require guaranteed latency bounds. The work in [21]
uses rank scheduling to reduce DRAM power usage. The ¢ty oy constraint that lim-
its the number of banks that can be activated in order to limit the amount of current
drawn to the device to prevent over heating problems. Therefore, their work aims to
improve power usage by minimizing the number of state transitions from low power
to active state by smartly scheduling ranks. In summary, rank scheduling and opti-
mizations have been applied to non real-time systems, but the predictable controllers
discussed above do not take ranks into account.

Since this manuscript has first been submitted, several new predictable memory
controllers have been proposed in the literature which attempt to reduce memory la-



10 Zheng Pei Wu et al.

tency either by dynamically scheduling commands or by employing rank switching.
Li et al. [23] proposed a dynamically scheduled controller based on close row policy.
The controller can dynamically accommodate requests of different sizes by interleav-
ing over varying number of banks. It also reduces average case latency by keeping
track of the bank state at run time and issuing commands as soon as possible, rather
than according to a static command sequence. The work by Hassan et al. [14] simi-
larly allows for varying request size. It builds upon [12] by using a mix-row policy
where large requests employ open page to more efficiently transfer data from main
memory. Furthermore, the authors construct an optimized work-conserving TDMA
schedule that allows the system designer to specify different latency and bandwidth
requirements for each requestor.

Three recent papers [16, 18, 32] have proposed mixed-criticality controllers to
allow guaranteed latency bounds for critical, hard real-time requestors while opti-
mizing average throughput for non-critical requestors. In all such proposals, non-
critical requestors are scheduled according to a First-Ready, First-Come-First-Serve
(FR-FCES) arbitration which is common in COTS controllers. On the other hand, the
critical requestors are Round Robin arbitrated with open page policy and have higher
priority than the non-critical requestors.

The authors of [7] and [22] employed rank switching to avoid the long read to
write and write to read timing constraints. Ecco et al. [7] proposed a close page con-
troller based on TDMA arbitration. Each requestor is assigned a private bank parti-
tion, and the arbitration switches between requestors assigned to banks in different
ranks. By carefully scheduling the static command sequences, the controller can sig-
nificantly reduce the size of each TDMA slot compared to previous static controllers
when handling small size requests that do not require interleaving. Krishnapillai et
al. [22] designed a Rank switching, Open row memory Controller (ROC). Similarly
to [7], ROC employs private bank assignments and alternates between requestors as-
signed to different ranks, but commands are dynamically scheduled at run-time rather
than based on static, pre-computed sequences.

Finally, the authors of [6] build upon our work in [36] by proposing an open page
controller with predictable request reordering. The key intuition is that a bounded re-
ordering of load and store requests can be beneficial: while a request under analysis
can be delayed by a larger number of other requests compared to round robin arbi-
tration, each interfering request has smaller latency since the number of read to write
and write to read switches is minimized.

4 Memory Controller

In this section, the arbitration rules of the memory controller are formalized in order
to derive worst case latency analysis. The structure and building blocks of the pro-
posed memory controller are similar to other existing controllers, albeit command ar-
bitration is modified to ensure that requestors are treated fairly. In particular, memory
re-ordering features typically employed in COTS memory controllers are eliminated
since they could lead to long and possibly unbounded latency as will be shown by the
end of this section. Therefore, we argue that the proposed memory controller would



Title Suppressed Due to Excessive Length 11

not require a large implementation effort and the rest of the discussion will focus on
the analysis of worst case memory bound rather than implementation details.

A possible structure to implement the proposed rules is shown in Figure 4 3. There
are private command buffers for each requestor in the system to store the memory
commands generated by the front end as discussed in Section 2. Because the con-
troller employs a private banks scheme, the front end can convert requests of each
requestor independently and in parallel. Therefore, we exclusively focus on the anal-
ysis of the back end delay, assuming that the command generators in the front end
take a constant time to convert a request into the corresponding commands. In ad-
dition, there is a global arbitration FIFO queue where memory commands from the
private command buffers are enqueued. In this implementation, arbitration is carried
out in two steps. First, a set of per-requestor arbiters are used to determine the state
of the commands at the head of each command buffer, and insert them into the global
FIFO when required; note that since the per-requestor arbiters operate in parallel, we
assume that commands from multiple buffers can be inserted into the FIFO queue
in the same clock cycle. Then, a global command arbiter determines the state of the
commands in the global arbitration queue and issues the commands on the command
bus without violating timing constraints; an acknowledgment signal is propagated
back to the per-requestor arbiter once a command of that arbiter is sent out. The
global command arbiter also generates all required refresh commands.

The detailed arbitration rules of the controller are outlined below.

1. Eachrequestor can only insert one command from its private command buffer into
the FIFO and must wait until that command is serviced before inserting another
command. PRE and ACT commands are considered serviced once they are issued
on the command bus. CAS command is considered serviced when the associated
data has finished being transmitted on the data bus (either trr, + tpys or twr +
tpus cycles after transmitting the CAS on the command bus). Hence, a requestor
is not allowed to insert another CAS command in the FIFO until the data of its
previous CAS command has been transmitted.

2. A requestor can enqueue a command into the FIFO only if all timing constraints
that are caused by previous commands of the same requestor are satisfied. This
implies that the command can be issued immediately if no other requestors are in
the system.

3. At the start of each memory cycle, the controller determines which commands
in the FIFO can be issued and which are blocked. If there is any non-blocked
command, it then issues the first such command in FIFO order. An exception is
made for CAS command as described in the next rule.

4. For CAS commands in the FIFO, if one CAS command is blocked due to timing
constraints caused by other requestors, then all CAS commands after the blocked
CAS in the FIFO will also be blocked. In other words, re-ordering of CAS com-
mands is not allowed.

5. Every refresh period trrrr, the global command arbiter stops servicing com-
mands from the global FIFO queue until it finishes issuing a static refresh com-

3 Note that our described latency analysis depends on the arbitration rules only, and not on the detailed
implementation of the controller.



Zheng Pei Wu et al.

mand sequence. The refresh sequence performs the following operations: 1) it
closes all open rows; 2) it issues a REF command; 3) it re-opens all previously

open rows.

/’*"*’ﬁ;ﬂ;za‘;"‘\ P

| Request \ / Command Global \
R | Queues ~ I'| Buffers C 4 FIFO I | CMD D
E i ¢ | BUS | R
Q | Generator RS Arbiter (Req.) Queue } IN

] I

I
U [ a1l [ d ! M
E } Generator | Arbiter (Req.)’ Command }
S ; —»| Arbiter [ D
T _ [T T C > 111+ (Global) !
O Generator } > Arbiter (Req.)’ i E

L] L]

R . T ‘ oan | Y
S — C d W ° Command | BUS | C
| > 111+ f
Ly Generator | /| Arbiter (Req.)’ / E

N N
N~ pid \\\ T C Ack. %
DRAM Controller S~ 7

Fig. 4: Memory Controller

It is clear from Rule-1 that the size of the FIFO queue is equal to the number of
requestors. Note that once a requestor is serviced, the next command from the same
requestor will go to the back of the FIFO. Intuitively, this implies that each requestor
can be delayed by at most one command for every other requestor; it will be formally
proved in Section 5. Therefore, this arbitration is very similar to a round robin arbiter,
as also employed in AMC [25]. Note that CAS commands are considered serviced
only when the associated data is transmitted to prevent a requestor from being delayed
by two, rather than one, data transfers of another requestor.

To understand Rule-2, assume a requestor is performing a close request consisting
of ACT and CAS commands. The ACT command is enqueued and after some time
it is serviced. Due to the tpcp timing constraint (please refer to Figures 2 or 3),
the CAS command cannot be enqueued immediately; the private buffer must hold
the CAS until o p cycles have expired before putting the CAS in the FIFO. This
rule ensures that a requestor is not delayed due to timing constraints of a different
requestor, as it will become more clear in the following discussion of Rule-4.

Finally, without Rule-4 the latency would be unbounded. Figure 5a shows an
example command schedule where Rule-4 does not apply. In the figure, the state of
the FIFO at the initial time ¢ = 0 is shown as the rectangular box. Let us consider the
chronological order of events. (1) A write command from Requestor 1 (R1) is at the
front of FIFO and it is serviced. (2) A read command (R2) cannot be serviced until
t = 16 due to tyy R timing constraint (crossed box in figure). (3) The controller then
services the next write command (R3) in the FIFO queue at ¢ = 4 following Rule-3.
Due to ¢ty R constraint, the earliest time to service read command is now pushed
back from ¢t = 16 to ¢t = 20. (4) Assume that another write command from Requestor
1 is enqueued at t = 17. The controller then services this command, effectively
pushing the read command back even further to ¢ = 33. Following the example, it
is clear that if Requestors 1 and 3 have a long list of write commands waiting to be
enqueued, the read command of Requestor 2 would be pushed back indefinitely and



Title Suppressed Due to Excessive Length 13

the worst case latency would be unbounded if the controller does not limit the number
of re-ordering. By enforcing Rule-4, latency becomes bounded because all CAS after
read (R2) would be blocked as shown in Figure 5b.

Front

R2:R ‘ twi tpus twrr !X] twr tpus twrr ;
L o |
t=0 : : twr tpus  twTR | ;

0 : T T T t
t=0 t=4 t=16 t =20 t =233
(a) Unbounded Latency

Front

A

R2:R : twr tpus twrr @ :

1 < S>< S '

: twr tpus

| | (oum)
t=0 : i trrw twr tgus | .
t=0 t=16 t=34

(b) Bounded latency

Fig. 5: Importance of Rule-4

Note that no additional rule is required to handle the data bus. Once a CAS com-
mand (read or write) is issued on the command bus, the data bus is essentially re-
served for that CAS command for a duration of ¢ gy7 g starting from t g, or tyy 1, cycles
after the CAS is issued. Hence, to avoid data bus conflicts, the ¢ gi7 g timing constraint
is used to prevent consecutive CAS commands to be issued before ¢ g5 cycles. This
would be implemented as part of the logic that determines which commands in the
FIFO can be issued.

5 Worst Case Per-Request Latency

In this section, the worst case latency for a single memory request of a requestor
under analysis is derived. In particular, the back end worst case latency is measured
as the time when the first command of a request arrives at the front of the private
per-requestor command buffer* until its data finishes transmitting. Then in Section 6,
the cumulative worst case latency over all requests generated by a task running on
a core is analyzed. In this section, we ignore the effects of refresh commands, since
accounting for refresh on a per-request basis is too pessimistic. Refresh delay is in-
corporated in the analysis in Section 6. We consider a system with R total ranks and

4 For short, it will be referred to as private buffer or command buffer or simply buffer; hence, we will
refer to this event as the request arriving at the buffer.



14 Zheng Pei Wu et al.

rank j is assigned M requestors, where 1 < j < R. The total number of requestors
in the system is M = Zle M; and one of these requestors is executing the task
under analysis.

Let t1*°¢ be the worst case latency for a given memory request of the task under
analysis. To simplify the analysis, the request latency is decomposed into two parts,
tac and top as shown in Figure 6. t 4¢ (Arrival-to-CAS) is the worst case interval
between the arrival of a request at the front of command buffer and the enqueuing of
its corresponding CAS command into the FIFO. ¢t p (CAS-to-Data) is the worst case
interval between the enqueuing of CAS and the end of data transfer. In all figures in
this section, a solid vertical arrow represents the time instant at which a request arrives
at the front of the buffer. A dashed vertical arrow represents the time instant at which
a command is enqueued into the FIFO; the specific command is denoted above the
arrow. A grey square box denotes interfering requestors while a white box denotes
task under analysis. Note that for a close request, ¢ 4¢ includes the latency required
to process a PRE and ACT command, as explained in Section 2. By decomposing,
the latency for £ 4 and tcp can now be computed separately, greatly simplifying the
analysis; £7*¢? is then computed as the sum of the two components. The downside is
that the analysis is pessimistic, since it assumes than an interfering requestor could
cause maximum delay on each individual command of the requestor under analysis,
while this might not be possible in practice.

Acmp

T : Request Arrives : : CMD Enqueued @ : CMD Serviced

*CAS
T :

tac tep

Req

Fig. 6: Worst Case Latency Decomposition

5.1 Arrival-to-CAS

We first show how to compute ¢ 4. Since the set of memory commands differ be-
tween open and close requests, we will consider each case separately. Furthermore,
since there are timing constraints between commands of requests targeting the same
bank, which depend on the type of the requests, we need to consider the sequence
of requests produced by the requestor under analysis. To simplify the analysis, we
make no assumption on the specific bank accessed by requests of the requestor under
analysis, i.e., in the worst case, the requestor under analysis can target a single private
bank. This allows us to compute ¢ 4 based on the type of the previous request of the
requestor under analysis only, rather than all previous requests.



Title Suppressed Due to Excessive Length 15

Open Request

In this case, the memory request under analysis is a single CAS command because
the row is already open. Therefore, ¢t 4 only includes the latency of timing con-
straints caused by previous requests of the core under analysis (arbitration Rule-2 in
Section 4). The earliest time a request can arrive at the front of the buffer is after
the previous request has finished transferring data (note that a CAS is only removed
from the front of the command buffer once the data is transmitted as per arbitration
Rule-1). If the previous and current request are of the same type (i.e., both are load or
store), then ¢ 4¢ is zero because there are no timing constraints between requests of
the same type. If the previous and current requests are of different types, there are two
cases as shown in Figure 7. 1) If the previous request is a store, then the tyyrr con-
straint comes into effect. 2) If the previous request is a load, then ¢z comes into
effect. In both cases, it is easy to see that the worst case ¢ 4 occurs when the current
request arrives as soon as possible, i.e., immediately after the data of the previous
request, since this maximizes the latency due to the timing constraint caused by the
previous request. Also note that ¢ g7y applies from the time when the previous read
command is issued, which is tg;, + tpys cycles before the current request arrives.
Therefore, Eq. (1) captures the ¢ 4 latency for an open request, where cur denotes
the type of the current request and prev denotes the type of the previous one.

twrTr if cur-load, prev-store;
tg’ém = { max{tgrw — trr — tpus,0} if cur-store, prev-load, (1)
0 otherwise.
,1‘ Read
W Data '
twr tBUs twrr
,1‘Write
R Data :
) tRL tBUS tac
trRTW

Fig. 7: Arrival-to-CAS for Open Request

Close Request

The analysis is more involved for close requests due to the presence of PRE and ACT
commands. Therefore, ¢ 4 is decomposed into smaller parts as shown in Figure 8.



16 Zheng Pei Wu et al.

Each part is either a JEDEC timing constraint shown in Table 1 or a parameter that
will be computed, as shown in Table 2. tpp and tp4 determine the time at which
a PRE and ACT command can be enqueued in the global FIFO queue, respectively,
and thus (partially) depend on timing constraints caused by the previous request of
the task under analysis. 7 p and ¢4 represent the worst case delay between inserting
a command in the FIFO queue and when that command is issued, and thus capture
interference caused by other requestors. Similarly to the open request case, the worst
case for ¢t 4 occurs when the current request arrives immediately after the previous
request has finished transferring data. In other words, the command buffer is back-
logged with outstanding commands.

Request PRE ACT CAS
TArrival T T T
A
| P | |
tpp trp trp
tpa tra trep
tac

Fig. 8: Arrival-to-CAS for Close request

Table 2: Timing Parameter Definition

Timing Parameter Definitions
tpp End of previous DATA to PRE Enqueued
trp Interference Delay for PRE
tpa End of previous DATA to ACT Enqueued
tra Interference Delay for ACT

tpp depends on the following timing constraints: 1) tg 4 if the previous request
was a close request; 2) t g p if the previous request was a load; 3) tyy r if the previous
request was a store; please refer to Figures 2 and Table 1 for a detailed illustration
of these constraints. Eq. (2) then summarizes the value of ¢pp. Similarly to Eq. (1),
for terms containing tpas and ¢ prp, they need to subtract the time interval between
issuing the relevant command of the previous request and the arrival of the current
request.

max{(trrp —trr —tBus),Q - (tras — tprev), 0} if prev-load,

t = 2
or max{twr,Q - (tras — tprev), 0} if prev-store, @
where
1 if prev-close; trep +trr +tpus  if prev-load,
Q = tprev -

0, if prev-open. trep +twr +teus if prev-store.



Title Suppressed Due to Excessive Length 17

Next, t7p is considered. In the worst case, when the PRE command of the core
under analysis is enqueued into the FIFO, there can be a maximum of M — 1 preced-
ing commands in the FIFO due to arbitration Rule-1. Each command can only delay
PRE for at most one cycle due to contention on the command bus; there are no other
interfering constraints between PRE and commands of other requestors, since they
must target different banks or ranks. In addition, any command enqueued after the
PRE would not affect it due to Rule-3. Note that the cycle it takes to issue the PRE
on the command bus is not included in ¢;p since it is already included in the trp
constraint. Therefore, the maximum delay suffered by the PRE command is:

tip=M—1. 3)

Let us consider tp 4 next. If the previous request was a close request, tp4 de-
pends on the ¢ g timing constraint. In addition, once PRE is serviced, the command
buffer must wait for the ¢z p timing constraint to expire before ACT can be enqueued.
Hence, tp 4 must be at least equal to the sum of ¢t pp, t;p, and tgp. Therefore, t pa
is obtained as the maximum of these two terms in Eq. (4), where again ¢,,..,, accounts
for the time at which the relevant command of the previous request is issued.

tpa =max{(tpp +trp + trpr), Qtrc — tprev)} )

Next, t74 is analyzed. We will show that the ACT command of the core under
analysis suffers maximal delay in the scenario shown in Figure 9 (the ACT under
analysis is shown as the white square box). Note that two successive ACT commands
within the same rank must be separated by at least trrp cycles. Furthermore, within
the same rank, no more than four ACT commands can be issued in any time window
of length ¢ p oy, which is larger than 4 -t prp for all devices. There are no constraints
between ACT and commands of requestors from other ranks. Assume the rank that
contains the core under analysis is rank 7. The worst case is produced when all M, —
1 other requestors from rank r enqueue an ACT command at the same time ¢y as
the core under analysis, which is placed last in the FIFO; furthermore, four ACT
commands of rank r have been completed immediately before t(; this forces the first
ACT issued after t( to wait for ¢t p 4y —4-t g rp before it can be issued. In addition, all
requestors from other ranks can enqueue a command before the core under analysis
in the FIFO (not shown in Figure 9) and hence contribute one cycle of delay on the
command bus. Thus, the value of ;4 is computed as:

M, —1
tra =(tpaw —4-trrp) + L 1 J “traw+

+ (M, —1) mod 4) - tggrp + (M — M,)

®)

Lemma 1 Assuming that the rank under analysis is rank r, the worst case for ty 4 is
computed by Eq.(5).

Proof Let t( be the time at which the ACT command of the core under analysis (ACT
under analysis) is enqueued in the global arbitration FIFO queue. The worst case in-
terference on the core under analysis is produced when at time t, there are M, — 1



18 Zheng Pei Wu et al.

lpaw ‘ tpaw
; !

T [A] N

|
to tra

Fig. 9: Interference Delay for ACT command

other ACT commands of rank r enqueued before the ACT under analysis. First note
that commands enqueued after the ACT under analysis cannot delay it; if the ACT un-
der analysis is blocked by the trrp or t pap timing constraint, then any subsequent
ACT command of rank r in the FIFO would also be blocked by the same constraint.
PRE or CAS commands of rank  or any commands from other ranks enqueued after
the ACT under analysis can execute before it according to arbitration Rule-3 if the
ACT under analysis is blocked; but they cannot delay it because those requestors ac-
cess different banks or ranks, and there are no timing constraints between ACT and
PRE or CAS of a different bank or commands of other ranks. Commands of other
ranks enqueued before ACT under analysis can contribute a delay of one cycle each
due to command bus contention and there are M — M, such requestors from other
ranks.

For requestors in rank r, each ACT of another requestor enqueued before the
ACT under analysis can contribute to its latency for at least a factor trrp, which
is larger than one clock cycle on all devices. Now assume by contradiction that a
requestor has a PRE or CAS command enqueued before the ACT under analysis at
time t(. Since again there are no timing constraints between such commands, the PRE
or CAS command can only delay the ACT under analysis for one clock cycle due to
command bus contention. Furthermore, after the PRE or CAS command is issued, any
further command of that requestor would be enqueued after the ACT under analysis.
Hence, the requestor of rank r would cause a total delay of one cycle, which is less
than trrp. Next, we will show that all requestors of rank r enqueueing their ACT
command at the same time ¢y is the worst case pattern. Requestors enqueueing an
ACT after ¢ty do not cause interference as already shown. If a requestor enqueues an
ACT at time ty — A with A < tggrp, the overall latency is reduced by A since the
requestor cannot enqueue another ACT before ¢ due to arbitration Rule-2.

To conclude the proof, it remains to note that one or more requestors of rank r
could instead issue an ACT at or before tg—tr rp and then enqueue another ACT at £
before the ACT under analysis. Due to the ¢t oy constraint, ACT commands issued
after ¢y could then suffer additional delay. Unfortunately, we do not know exactly
how many ACT commands should be issued at or before ty — trrp to produce the
worst case. Hence, in the rest of the proof, we first use the variable z to denote the
number of such commands, and then derive the delay based on the value of x; note



Title Suppressed Due to Excessive Length 19

that since ¢ 4y operates on 4 consecutive commands, we only need to consider up
to 4 previous ACT commands. Finally, we will obtain ¢74 by maximizing the delay
expression over the value of x.

In details, assume that = € [1, 4] ACT commands issued before ¢y — tgrrp delay
the (4 — = + 1)th ACT command issued after ¢; as an example in Figure 9, z = 4
and given 4 — x + 1 = 1, the 1st ACT command after ¢ is delayed. The latency of
the ACT under analysis is maximized when the z ACT commands are issued as late
as possible, causing maximum delay to the ACT commands after ¢y; therefore, in the
worst case, assume that the x ACT commands are issued starting at tg — « - trrpD-
Then, the total latency of the ACT under analysis is obtained as:

Vc—i—Mr—l
4

Note that since 4-tgrrp < tpaw for all memory devices, Eq.(6) is computed assum-
ing that a delay of ¢t p oy is incurred for every 4 CAS; the remaining CAS commands
add a latency of tgprp each. The term M — M, accounts for the one cycle delay
caused by each requestor from another rank, and the term x - tgrp accounts for the
fact that the x ACT commands start at tg — = - tgrp, While the command under
analysis is enqueued at t.

We next show how to maximize Eq.(6) over = € [1, 4]. Since the equation con-
tains a floor and module term, we perform an algebraic simplification to evaluate
the resulting delay. In details, let Z € [1,4] be the value such that ((Z + M, —
1) mod 4) = 0; note that z is well defined, since there must be a single value in
[1, 4] that makes the module equal to 0. Furthermore, let z = Z + y; note that since
both = and Z assume values in [1,4], y necessarily takes values in [—3, 3]. We can
then simplify Eq.(6) by substituting Z + y for z in the floor and module terms and
evaluating the expression for the case where y > 0 and the case where y < 0. In
particular, if y > 0, Eq.(6) is equivalent to:

J traw + ((:L‘-l—MT—l) mod 4) 'fRRD—CL'-tRRD—‘r(M—MT). (6)

QMT_IJ +1)'tFAw—i-y-tRRD_(55+y)'tRRD+(M_MT):

[ )
:{ T4 J'tFAw+tFAW—f'tRRD+(M—Mr)-
If instead y < 0, Eq.(6) is equivalent to:
M, —1 _
L 7 J'tFAw+(4+y)'tRRD—($+y)'tRRD+(M—Mr)=
M1 3)
:{ r4 J'tFAW+4'tRRD*f'tRRDJF(M*Mr)-

Since again 4 - tgrrp < traw, it follows that the latency in Eq.(7) is larger than the
latency in Eq.(8). Since furthermore, Eq.(7) does not depend on y, one can select any
value x > ; in particular, substituting = = 4 in Eq.(6) results in Eq.(5), thus proving
the lemma. O

Once the ACT command is serviced, the CAS can be inserted after trcop cycles,
leading to a total ¢ 4 latency for a close request of tp4 + t7a + trop. Therefore,
the following lemma is obtained:



20 Zheng Pei Wu et al.

Lemma 2 The worst case arrival-to-CAS latency for a close request can be com-
puted as:

tQlose —tpa+tra + trop. )

Proof As already shown, the computed tp 4 represents a worst case bound on the
latency between the arrival of the request under analysis and the time at which its as-
sociated ACT command is enqueued in the global FIFO arbitration queue. Similarly,
t7 4 represents a worst case bound on the latency between enqueuing the ACT com-
mand and issuing it. Since furthermore, a CAS command can only be enqueued t rcp
clock cycles after issuing the ACT due to arbitration Rule-2, the lemma is shown to
be correct. g

5.2 CAS-to-Data

We will now discuss the CAS-to-Data part of the single request latency. Due to the
complexities, in this section we provide the key intuitions and results of our analysis;
detailed proofs and ¢~ p derivation is then discussed in Appendix.

Let to be the time at which the CAS command of the core under analysis (CAS
under analysis) is enqueued into the arbitration FIFO. Assume all other requestors
also have a CAS command in the FIFO and the CAS under analysis is placed last in
the FIFO. Then the CAS-to-Data delay, t¢p, can be decomposed into two parts as
shown in Figure 10: 1) the time from ¢y until the data of the first CAS command is
transmitted; this is called t py s and it depends on whether the first CAS command
is a read or write. 2) The time from the end of data of the first CAS until all remain-
ing CAS finish transmitting data, including the CAS under analysis. This is called
tormer- Therefore, the CAS-to-Data delay is computed as the sum of tprrs and
toTHER-

&

tFIRST H toTHER

ACAS *
:

to tep

Fig. 10: Decomposition of CAS to Data Latency



Title Suppressed Due to Excessive Length 21

Lemma 3 Assuming all requestors insert a CAS command into the FIFO at t, then
the worst case latency for t prrst is computed according to Eq.(10).
Fr=twrr+trr +tpus if first CAS is read;
tFIRST = : . (10)
Fw =twr +tBus if first CAS is write.

Notice that beginning with a read command as the first CAS after ¢y leads to the
maximum tgrrsr since trr > tw for all devices and ¢ty g is always positive,
hence F'r > Fy. However, as we will discuss shortly, to maximize the overall delay
for tcp, it might not be desirable to always begin with a read after ¢y depending on
the calculation for torgeg.

Next, let us examine the delay from end of data of a CAS command to the end
of data of the next CAS command. For transition between two CAS commands of
same rank, the delay depends on the command order (i.e., write-to-read, read-to-
write, read-to-read, and write-to-write). For transition between two CAS commands
of different ranks, the delay only depends on tgrR.

Lemma 4 Assuming the FIFO is backlogged with only CAS commands, the delay
from the end of data of one CAS command to the end of data of next CAS command
is:

Dwr =twrr +trr +tBUs if write-to-read of same rank;

Drw =trrw +twr — trL if read-to-write of same rank; (11
Drnk =trrr +tBUS if rank-to-rank transition;

tpus otherwise.

Note that Dy g is always greater than the other cases for all devices. Between
Dprw and Dy, the greater of the two depends on the specific device parameters
but both are greater than tpy g for all devices. Since Dy g is always greater than
Dgrw or Dryk, it makes intuitive sense to maximize the number of write-to-read
transitions within the same rank to maximize the worst case latency.

However, since tcp has two parts, tprrst and torggr, both parts must be
maximized for the worst case. t prrsr is maximized by beginning with a read while
tormer 1s maximized by the number of write-to-read transitions. However, there is
an inter-dependency between the two parts and maximizing one may lower the other.
For example, consider the case where the CAS under analysis is a read and M is
even for all the ranks. In this case, all ranks have exactly % number of write-to-
read transitions and no requestor is left out with a single read or write as shown in
Figure 11a. Therefore, it is not immediately clear whether to break up a group of
write-to-read transitions to put a read command as the first CAS or to keep the write-
to-read and just begin with a write command instead. On the other hand, Figure 11b
shows the case where one of the ranks has an extra read. In this case, one can begin
with a read to maximize ¢tpyrgr While still maintaining the maximum number of
write-to-read groups.

To solve this complexity, in the Appendix we show that the problem of computing
an upper bound to {¢p can be formulated as an ILP problem. The ILP computes the



22 Zheng Pei Wu et al.

W R|{W R WR|WR| e ee |WRIWR

(a) No Ranks Have Extra Read

R|WR[WR W R|W R|e o« ¢ WRIW R

to
(b) Other Ranks Have Extra Read

Fig. 11: Trade off between maximizing tprrst and tormer

worst case latency based on the type of the first CAS and the maximum number
of transitions (write-to-read, read-to-write and rank-to-rank) that can interfere with
the CAS under analysis. The result in then proven correct in Lemma 7 provided in
Appendix.

Combining the results of Lemmas 2 and 7 then trivially yields the main theorem:

Theorem 1 Assuming that the type of the previous request of the task under analysis
is known, the worst case latency of the current request can be computed as:

e = t 4o +top, (12)

where t oc is derived according to either Eq.(1) for an open request or Eq.(9) for a
close request, and tco p is derived according to Eq.(37) in Appendix.

Proof As already shown, the ¢ 4 value is computed according to either Eq.(1) or
Eq.(9) and it is an upper bound to the arrival-to-CAS latency. The tcp value com-
puted according to Eq.(37) is an upper bound to the CAS-to-Data latency according
to Lemma 7. Hence, the sum of the two upper bounds is also an upper bound to the
overall latency ¢/°? of the current request from its arrival at the front of requestor
command buffer to finishing transmitting its data. O

6 Worst Case Cumulative Latency

This section shows how to use the results of previous section to compute the cumula-
tive latency over all requests generated by the task under analysis. Let us assume that
the requestor executing the task under analysis is a fully timing compositional core
as described in [34] (example: ARM7). This implies that the core is in-order and it
will stall on every memory request including store requests. Therefore, the task under
analysis can not have more than one request at once in the request queue of the mem-
ory controller, and the cumulative latency over all requests performed by the task can
simply be computed as the sum of the latencies of individual requests’. If modern out

5 Note that the core might be stalled while waiting for other shared physical resources, such as caches
and interconnect. Since this work focuses on access latency in the memory controller only, in the rest of
the session we assume that all other delays are already incorporated in the computation time of the task.



Title Suppressed Due to Excessive Length 23

of order cores are considered, then the latency of store requests might not need to be
considered because the architecture could effectively hide store latency. In addition,
multiple outstanding requests could simultaneously be in the request queue of the
memory controller. Therefore, the core and memory controller behaviours should be
jointly analyzed to derive a safe worst case upper bound. However, the focus of this
paper is not on modeling cores; furthermore, note that the analysis in Section 5 can
be applied regardless of the type of cores. Other requestors in the system can be out
of order cores or DMAs. While these requestors could have more than one request in
their request queues, this does not affect the analysis since each requestor can still en-
queue only one command at a time in the global FIFO queue. No further assumptions
are made on the behaviour of other requestors. For simplicity, let us assume that the
task under analysis runs non-preemptively on its assigned core; however, the analysis
could be easily extended if the maximum number of preemptions is known.

To derive a latency bound for the task under analysis, characterization of its mem-
ory requests is needed. Specifically, the analysis needs: (1) the number of each type
of request, as summarized in Table 3; (2) and the order in which requests of different
types are generated. There are two general ways of obtaining such a characterization.
One way is by measurement, running the task either on the real hardware platform
or in an architectural simulator while recording a trace of memory requests. This
method has the benefit of providing us with both the number and the order of mem-
ory requests. However, one can never be confident that the obtained trace corresponds
to the worst case. Alternatively, a static analysis tool [4] can be employed to obtain
safe upper bounds on the number of each type of requests. However, to be the best of
our knowledge, no available static analysis tool can provide an exact requests order,
since in general, the order is dependent on input values and code path, initial cache
state, etc. Since the analysis in Section 5 depends on the order of requests, this section
shows how to derive a safe worst case requests order given the number of each type
of requests. Regardless of which method is used, note that the number of open/close
and load/store requests depend only on the task itself since private bank mapping is
used to eliminate row misses caused by other requestors.

Table 3: Notation for Request Types

Notation Description

Nor Number of Open Load
Ncr Number of Close Load
Nos Number of Open Store
Ncs Number of Close Store

If the request order is known, then the cumulative latency can be obtained as the
sum of the latency for each individual request, since the previous request is known
based on the order. If the request order is not known, then a worst case pattern needs to
be derived. It is clear from the analysis in Section 5 that ¢ 4 depends on the order of
requests for the core under analysis while t-p does not. This allows us to decompose
the cumulative latency ¢7** Lask

into two parts similar to before: t5%", the sum of the
tcp portion of all requests, which is independent of the order; and tg‘é?k , the sum



24 Zheng Pei Wu et al.

of the t o¢ portion of all requests, for which a worst case request pattern is needed.
tg‘g”k is computed according to Eq.(13), where tge[‘}d is the ¢ p delay when the CAS
under analysis is read while /Y€ is for a write. Note the difference between the two

is captured in Eq. (30) and Eq. (31) in Appendix.
tg%sk = (Nor + Nei) - tg%ld + (Nos + N¢s) - tg/DMte. (13)

Now let us consider the different possible cases for ¢ 4. Note that ¢ 4¢, as com-
puted in Eq.(1) and Eq.(9), depends on both the previous request of the task under
analysis and the specific values of timing constraints, which vary based on the DDR
device. Since the current request can be either open or close and either a load or
store (4 cases), and similarly for the previous request, there are 16 different cases;
however, in practice the value of ¢ 4¢ is the same over several different cases. To de-
termine the actual number of different cases that must be considered, we conducted a
comprehensive numeric evaluation of ¢ 4 for all DDR3 devices defined in JEDEC;
complete results are provided in [35]. Based on the obtained results, there are only
five different values of ¢ 4 for any given DDR device that must be considered; these
are summarized as the five cases in Table 4. t4.,, Atgs and Atj, are positive terms
depending on the timing constraints of the specific DDR device; for ease of compar-
ison, t4e, 1S defined as the ¢4 latency of a close request preceded by an open load
(i.e., Case-3), while Atg and Aty are the additional delays compared to Case-3 for
Case-1 and Case-2, respectively. Note that ¢4, depends on the number of requestors
M and M,., while all other parameters in the table do not. Also, for all devices and
numbers of requestors, ¢4, is significantly larger than timing constraint ¢y rg. Fi-
nally, Atg is larger than Aty, for all devices, and also Atg — Aty is always larger
than tyrg.

Table 4: Arrival-to-CAS latency summary

Case Current Request Previous Request tac (ns)

1 close (load or store) (close or open) store tgev + Atg
2 close (load or store) close load tgew + AtL
3 close (load or store) open load tdew

4 open load (close or open) store tWTR

5 All other request 0

Notice three observations: first, open stores incur no ¢ 4 latency. This is because
trrw < trr + tpus for all devices, thus Equation 1 always evaluates to zero for
open stores. Second, both open load and close load/store requests suffer higher la-
tency when preceded by a store request (Case-1 and Case-4 respectively). When a
close request is preceded by a load request instead, the latency is maximized when
the preceding request is a close load rather than an open load (Case-2 rather than
Case-3). Therefore, intuitively a worst case pattern can be constructed by grouping
all close requests together, followed by open loads, and then “distributing” store re-
quests so that each store precedes either an open load or a close load/store request:
in the first case, the latency of the open load request is increased by ¢y g, while



Title Suppressed Due to Excessive Length 25

in the second case, the latency of the close request is increased by Atg — Aty, i.e.,
the difference between Case-1 and Case-2. Since the value of Atg — Aty is always
higher than tyy g for all devices, the latter case yields the actual worst case. One can
then obtain a bound to the cumulative ¢ 4 latency as follows:

thesh = (Nop + Nes) - (taew + Atr) + (Ats — Atp) -2+ twrr -y, (14)

where:
r =min(Ncr + Nes, Nos + Nes + 1), (15)
y =min(Nor, Nos + Nos + 1 — ). (16)
Task

Lemma 5 Eq.(14) computes a valid upper bound to t 4 &’".

Proof Let x represent the number of stores that precede a close request and let y
represent the number of stores that precede an open load. By definition, y is at most
equal to the total number of open loads. Similarly, = is at most equal to the total
number of close requests. Finally, notice that the total number of stores x + y is at
most equal to Nogs + Neg + 1; the extra store is due to the fact that we do not
know the state of the DRAM before the start of the task, hence we can conservatively
assume that a store operation precedes the first request generated by the task. Hence,
the following Constraints (17)-(19) hold:

y < Not (17)
2z < Ncp + Nes (18)
z+y < Nos+ Ncgs+1 (19)

We can then obtain an upper bound on t4%* by simply summing the contribution
of each case according to Table 4: (1) open stores add no latency; (2) y open loads
add latency tw g - y; the remaining Ny, — y requests add no latency; (3) = close
requests add latency (e, +Atg)-x; in the worst case, the remaining Nop, +Nos—x
requests add latency (tge, + Atr) - (Neor + Nes — x), since the latency for Case-2
is higher than for Case-3. The sum of all contributions is equivalent to Eq.(14). Since
furthermore Atg — Aty > twrr, Eq.(14) can be maximized by taking the maximum
value of z, which is min(N¢r, + Neos, Nos + Nes + 1) based on Constraints (17),
(18), and then taking the maximum value of y based on Constraints (17), (19) and the
computed value of x, which is min(Nor, Nos + Nos + 1 — x); these are the values
computed in Eq.(15), (16), hence the lemma follows. O

The final DRAM event that needs to be considered in the analysis is the refresh,
according to arbitration Rule-5 in Section 4. We start by computing the time required
to issue the static refresh command sequence, which we call ¢t pgrg. Figure 12 shows
the schedule for the command sequence, assuming that it starts at time ty. A Pre-
charge All command is used to close all opened banks. Since the sequence is static,
we then include a number of ACT commands equal to the total number of banks in the
device; if a bank is close prior to the start of the sequence, the corresponding ACT
command is simply changed to NOP (no operation). We construct the sequence in



26 Zheng Pei Wu et al.

such a way that no command in the global FIFO queue can be stalled by any command
issued during the sequence; this ensures that the maximum latency introduced by the
sequence is equal to trErs.

We can divide the latency for the refresh sequence in five parts: 1) the time from
to until the first PRE command can be issued, t 4 p (Arrival-to-PRE); 2) the time from
issuing the Pre-charge all command to the REF command, which is simply the trp
timing constraint; 3) the refresh time ¢t pr; 4) the time from end of refresh to issuing
the last ACT, tra (REF-t0-ACT); 5) and the time from issuing the last ACT to the
end of the command sequence, ¢ s g (ACT-to-End).
tap: in the worst case, any command could have been issued at time ¢y — 1 before
the start of the refresh sequence. Hence, we need to consider all possible timing
constraints between any previous command and a PRFE command, leading to the
following expression for ¢ 4 p:

tap = max(tras,trrp,twr +tpus +twr) — L. (20)
tra: weissue ACT commands in groups of R commands each, where each command
in a group targets a different rank. Since there are no timing constraints between
ACT commands to different ranks, each group requires max(tgrrp, R) clock cycles.
However, since we need to issue 8 groups total, one for each bank, the fifth group can
be delayed by the tp oy timing constraint. Hence, we obtain a latency:

tra = max (tFAW74 . max(tRRD,R)) + 3 -max(tgrp,R) + R — 1. 21

to
: tap : : tRFC__
[Pau | Refresh |
tRAS tRP ; ;
IwIWL tBUS tWR_ ! : i
— tRTR, g g g
(a) Perform Refresh
{rRA tAE End
traw
E tRRD IRRD {RRD IRRD {RRD tRRD {RRD
Al tras E
treD CAS

(b) After Refresh

Fig. 12: Refresh Static Sequence



Title Suppressed Due to Excessive Length 27

Note that the final R — 1 term accounts for the fact that we only consider the latency
up to the clock cycle when the last ACT in the eighth group is issued.

tap: since we want to ensure that no command in the global queue is delayed by
commands in the refresh sequence, we need to wait for the longest timing constraint
between an ACT command and any other command issued after ending the sequence.
This results in an added latency component:

tap = max (tgas,trep.tre — trp)- (22)

Note that the last component trc — trp accounts for the situation where after the
end of the refresh sequence, a bank is closed by a PRE command and then a new
row in that bank is opened by another ACT command ¢rp cycles later; since there
could exist a timing constraint g~ between the last ACT in the sequence and the
following ACT command, we wait for t o — t gp before ending the refresh sequence
and allowing the PRE command to be scheduled.

Based on Equations 20-22, the length of the refresh sequence is then:

trREFSs =tap +trp +trFC +tRA +taE. (23)

It remains to compute the total refresh latency imposed on the task under analysis. Let
tcomp be the task’s computation time, i.e., its execution time assuming that memory
requests have zero latency. Since in the worst case, the task can be delayed by up
to trers cycles every trprr, this is equivalent to saying that the task can execute
undisturbed for t rprr — trEFs every trerr; hence, the number of refreshes can be
upper bounded as [(tcomp + thask + tL4k) ) (trprr — tREFS)]y and we obtain the
task computation time ... as:

t. + tTask + tTask
Task Task comp AC CD
tewec - tcomp + tA%'S + tCES + ’V

trREFI —tREFS

-‘ “tREFS- (24)

7 Shared Data

A final but important discussion is relative to data sharing in hard real time systems.
Sharing between tasks executed on the same core does not introduce any change in
the analysis, since the two tasks cannot be executed at the same time. Hence, we dis-
tinguish two different cases: 1) a task executed on a core communicates via shared
memory with other tasks executed on different cores; 2) I/O communication where a
core must share I/O data with a DMA requestor. In the first case, all communicating
cores must be able to access the shared data. To support this, the memory controller
is modified as shown in Figure 13. First, the set of communicating cores that share
data are grouped into a shared queue partition in the front end, where each requestor
has a request queue within the shared queue partition. A round robin arbiter is used
for the shared queue partition. In the back end, the bank or set of banks that con-
tains the shared data for the set of communicating cores are partitioned as a “virtual”
requestor, which has a private command buffer shown as the “virtual” buffer in Fig-
ure 13. If there are multiple sets of communicating cores that share data, then each
set of communicating cores have a shared queue partition and virtual buffer. Note



28 Zheng Pei Wu et al.

that all requestors still have their own private request queues and command buffers
for requests that are not accessing shared data. Therefore, each requestor can issue a
request to either its own private queues (for non-shared data) or to the shared queue.
Assume there are M real requestors and s virtual requestors in the system. As a re-
sult, the size of the global FIFO is equal to M + s, i.e., the number of virtual buffers
plus the number of private buffers; similarly, when computing the latency of requests
targeting a private queue according to Section 5, a number of requestors equal to
M + s must be considered.

/ Front End \ / Back End \
Request C

ommand
Queues Buffers
_ 111t »_ 1111
. Command .
° Generator °
T > TTT] Global
FIFO
[ Queue
Shared Queue
—_ 1111 RR \}/irtual Buffer
IO | amier 110

— VRN J

Fig. 13: Modified Memory Controller to Handle Shared Data

To guarantee predictable timing, a round robin arbitration is used among the com-
municating cores for access to the virtual requestors. Since communicating requestors
can close each others’ rows in the virtual requestor partition, one must assume that all
requests issued by a virtual requestor are close requests. Assume that the task under
analysis is making a request to one virtual requestor, and let k£ be an upper bound to
the number of requestors that access this virtual requestor (including the task under
analysis). The worst case latency for a single request to shared data for the task under
analysis is then:

tard q(Load) ZtﬁizmM +s—1)+ 5, . (Load,M +5—1), (25)

Analysis

for a load request, while for a store request it is:

tg;g,ed Store) Ztgizw J(M+s—-1)+ thea (Store, M + s —1). (26)

Analysis

Note toed (M +4s—1) is the latency of a single request for each of the k — 1 other

requestors that are contending for shared data when the request reaches the front of
the virtual buffer until data is transferred. It is calculated according to Eq. (12) but
with M + s — 1 number of requestors contending (s virtual buffers plus A — 1 private



Title Suppressed Due to Excessive Length 29

buffers); this is because the task under analysis is executing on an in-order core and is
making a request to shared data and hence can not have a request in its private buffer.
For tﬁfml ysise 1L the single request latency for the task under analysis when either a
load or store request reaches the front of virtual buffer, again computed according to
Eq. (12) with a number of contending requestors of M + s — 1.

To derive the total latency for accessing shared data for the task under analysis,
assume the number of loads to shared data is Ng, and number of stores to shared data

is Ngg for the task under analysis. Then the total latency for shared data accesses is:
tefiarea = Nsi - tgnarea(Load) + Nss - tent, . o(Store). 27)

To finish computing Eq. (27), we now need to determine whether the worst case
latency is obtained when each of the remaining £ — 1 requests of other requestors is
a load or when it is a store. Note that in the worst case, the first request can always
be preceded by a close store. Hence, based on the decomposition in Eq. (12) and in

Table 4, we have tocf | = tge, + Ats + top, where top can either be tlY5¢ or
Other,1 CD

tg%‘d; in the first case, the ¢t 4 for the next request will be 4., + Atg, while in the

second case, it will be tgev + Atr. In summary, if all £ — 1 other requestors generate

astore, we obtain tr? =k - (tge, + Alg) + (k — 1) - tW5e 4 1575 where

tA"“lym is either a write or a read based on the request of the task under analysis;

while if all k& — 1 other requestors generate a load, to’ . =k - tge, + Ats + (k —

1) - (Aty, + tBeod) 4+ ¢27915% Taking the maximum of the two terms results in:

tEeD = ktdep+ AtsHtoR 4 (k—1) max{ Atg+t0 5", Aty +t8594). (28)

Since the activity of the virtual requestors are independent from the activity of the

private requestors, we can simply add the computed total latency for shared accesses

tLask . to the other latency components for the task under analysis. Hence, following

Equation 24, the resulting task’s execution time is:

t + tTa,.sk + tTuak: + tTask
come Shored |t ppps. (29)

Task | ;Task | ;Task
tevec = teomp+tal +toh +tsﬁimd+(
tREFI —tREFS

This mechanism works well for a significant number of existing and envisioned
real-time systems, for example, integrated modular avionics systems [26], which are
composed of a set of software partitions, one for each application, and each partition
is allocated on a single core. In this case, the amount of data shared among partitions
is typically either small or zero. Note that either an OS or a hypervisor still needs to
run on all cores, hence a shared kernel partition is always needed.

Even when the system is structured as a set of software partitions, high-speed I/0
still requires data to be shared among cores and DMA requestors. In this case, the
same approach as in [20] can be used: we assume that a global schedule is computed,
where the execution of a software partition and each DMA requestor that performs
input/output for that partition is not overlapped in time. As in [20], we can argue that
this static I/O scheduling approach is in fact common for safety-critical applications.
We can thus support I/O communication in the back-end by treating each DMA as a
separate requestor. The front-end is then modified to allow each core to access either



30 Zheng Pei Wu et al.

its own private bank partition, or the partition of any DMA requestor used by that
core; the global schedule ensures that there is no contention for access to the DMA
bank partition. For example, when a partition A is executing on core 1, the DMA for
partition A will not be executing and hence does not access data at same time. When
core 1 is not executing partition A, then DMA can access the shared bank.

8 Evaluation

In this section, we directly compare our approach against the Analyzable Memory
Controller (AMC) [25] since AMC employs a fair round robin arbitration that does
not prioritize the requestors, similarly to our system. Note that since we do not have
access to the implementation code in [25], we implemented a simplified AMC sim-
ulator based on optimized static message groups similar to [1]; the resulting analyt-
ical bounds do not change since the worst case per-request access time for a given
device and number of interleaved banks are the same as in [25]. We do not com-
pare against [1] because they use a non-fair arbitration. While [12] uses a fair work-
conserving TDM arbitration, we do not compare against it because in the worst case,
as discussed in Section 3, all requests must be treated as close requests; therefore, the
analytical bounds for [12] would be the same as for [2571°.

We show worst case analytical bounds as well as simulation results. The worst
case analytical bounds are shown for both synthetic and CHStone benchmark [13].
The former is used to show how the latency bound varies as various task parameters
are changed. We show results for three data bus sizes, 64 bits, 32 bits and 16 bits.
Since AMC uses interleaved bank, for 64 bits data bus, it does not make sense to
interleave any banks together because the size of each request would be too large
compared to cache block size (64 bytes) and this can be wasteful as discussed in
Section 3. For 32 bits data bus, AMC interleaves over two banks while our approach
needs to make two separate requests as discussed in Section 2.2; for 16 bits data bus,
AMC interleaves over four banks and our approach makes four requests. In addition,
note that AMC only considers devices with one rank. However, results for multiple
ranks are shown in order to study its effect on latency bounds. The memory device
used is DDR3-1333H. Since AMC was originally described for a slower DDR2 de-
vice, we recomputed the length of AMC static command groups based on the timing
parameters of the employed DDR3 device.

8.1 Experiment Methodology

For synthetic benchmark, we only show the worst case analytic bounds as various
benchmark parameters are changed. The worst case latency bound only depends
on the characteristics of the benchmark and not on the activity of other requestors.
Therefore, the analysis only takes benchmark characteristics, M (total number of re-
questors) and memory device parameters as input and computes the average worst
case latency bound for a single request (i.e., it computes the total latency for multiple

6 Furthermore, no simulation model or implementation of the controller in [12] is publicly available.



Title Suppressed Due to Excessive Length 31

Table 5: Summary of CHStone Benchmark

Benchmark | Number of Request | Row Hit Ratio
adpcm 584 0.44
aes 627 0.45
bf 940 0.30
gsm 541 0.48
jpeg 1438 0.29
mips 521 0.44
motion 575 0.40
sha 758 0.52
dfadd 684 0.43
dfdiv 647 0.46
dfmul 664 0.44
dfsin 714 0.44

requests and divide by the number of requests to get average single request latency).
Since it is a synthetic benchmark, no actual memory traces are available and hence a
worst case request pattern is computed according to Section 6. Essentially, synthetic
benchmarks are used to show how the worst case latency bound would vary if an
actual benchmark had these characteristics.

For the CHStone benchmark suite [13], we show both analytic bounds and sim-
ulation results. For each benchmark, we obtain the memory trace by running the
benchmark on the gem5 [3] architecture simulator; we employed a simple in-order
timing model using the x86 instruction set architecture as our objective is the evalu-
ation of the memory system rather than detailed core simulation. The core is clocked
at 1 GHz with private level (LVL) 1 and LVL 2 cache. LVLI cache is split 32 kB
instruction and 64 kB data. LVL?2 is unified cache of 2 MB and cache block size is
64 bytes. We believe that these parameters are representative of high-performance
embedded platforms such as the Freescale p4080. The DRAM latency in gem5 simu-
lator is set to zero. Therefore, each memory trace contains the timestamp when each
request was sent to main memory (i.e. last level cache miss) and the time gap between
two consecutive request is the time spend in the rest of the system such as CPU and
cache. Then the worst case analysis or simulation will add the realistic memory delay
for each request and finally output the cumulative execution time of the entire bench-
mark. Table 5 summarizes the characteristics of the tested benchmarks. Note that for
our settings, all memory requests produced by the core are reads since all benchmarks
are small enough to fit in last level cache and the number of conflict misses is smaller
than the size of the employed write back buffer. Since memory traces were obtained,
no worst case pattern is needed since the order of requests are assumed to be known;
instead, we simply computed the worst case latency of each request based on the type
of the previous request according to Table 4. The resulting computation takes linear
time in the number of memory requests and can scale to much larger traces that the
ones in Table 5.

In addition, we implemented a cycle accurate simulator of our memory controller
in Python. The implementation details and the source code of the simulator and com-
plete numeric results can be found in [35]. In the computation of analytic bound,



32 Zheng Pei Wu et al.

only the memory trace of benchmark under analysis is required and traces of other
interfering requestors are not needed.

However, for simulation results, the other requestors are running the /bm bench-
mark from SPEC2006 CPU suite [15], which is highly bandwidth intensive. We ob-
tained the memory trace of the /bm benchmark from gemS5. Then for the cumulative
latency simulation, both /bm trace and traces of benchmarks under analysis are used
as input to our simulator. Note that /bm benchmark is executing on an out of order
core that can generate up to 20 outstanding request to the memory controller while
benchmark under analysis is executing on an in-order core in our simulator.

8.2 Synthetic Benchmark

Since synthetic benchmark is used, various parameters can be changed and fed as
input to the analysis to observe how worst case latency bound changes. The parame-
ters that characterize a benchmark are row hit ratio and ratio of loads and stores.The
row hit ratio of the benchmark determines the number of open and close requests.
Figure 14 shows the result of 4 and 16 requestors for 64, 32 and 16 bits data bus. It
shows how the average worst case latency (y-axis) changes as the row hit ratio (x-
axis) is varied between 0% to 100%. In addition, the store percentage is arbitrarily
fixed at 20% of total requests (i.e., 20% stores and 80% loads). However, for a real
benchmark the number of load and store requests would be obtained as the output
of a static analysis tool such as [4], with the derived row hit ratio being a safe lower
bound.

In the figures, AMC is a straight line since they use close row policy, therefore
the latency does not depend on row hit ratio. The analytic bound for 1, 2 and 4 ranks
are shown for our approach since almost all current DRAM devices only go up to 4
ranks but it may increase in the future. Note that the requestors are divided evenly
among the ranks. Since open row policy is used, the latency improves as row hit ratio
increases. For 4 requestors and 64 bits bus, for a single rank our approach is between
23% to 56% better than AMC for 0% and 100% row hit ratio respectively. The im-
provement is even greater for 16 requestors. Note that in these cases our approach
performs better than AMC even when all requests are close because we are able to
exploit bank parallelism thanks to the private bank assumption. For 4 requestors and
32 bits data bus of a single rank, our approach performs 16% worse than AMC for
0% row hit ratio but it is up to 16% better for 100% row hit. For 16 bits data bus,
AMC performs significantly better; this is expected since AMC can efficiently inter-
leave over 4 banks, while our memory controller must issue 4 consecutive memory
requests. In summary, as discussed in Section 3, our solution is specifically targeted
at systems with large data buses.

Note that 2 and 4 ranks performs better than single rank when row hit ratio is low
because the interference on ACT commands is reduced. It is interesting to note that
for 4 requestors and 4 ranks for both data buses, the latency is up to 27% better than
1 rank, this is because requestors are divided evenly among ranks: each rank only has
1 requestors and hence there are no write-to-read groups at all. For 16 requestors, the
latency of 1, 2 and 4 ranks are very similar to each other but more ranks tend to do



Title Suppressed Due to Excessive Length

33

—+AMC -#-1Rank 2Rank ——4 Rank

200

—+AMC -#-1Rank 2Rank ——4 Rank

900

180 + 80 |
£ 160 - 700
T £
g 10 ¢ > 60
g
E 120 % 500
g 100 3
8 i g 400
g ¢ S
2 e g
f i 200
20 2 100
0 0
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Row Hit % Row Hit %
(a) 4 Requestors 64 bits bus (b) 16 Requestors 64 bits bus
—+AMC --1Rank ---2Rank -4 Rank ~+AMC -s-1Rank —o-2Rank —4 Rank
250 900
800
2 200 \ 700 \‘_\
> T -
g
g — £ 00 \
§ 150 N g
¥ § s00
] 3
9 100 o 400
% []
5 S 300
H 50 4
» S
F $ w0
©
, ¥ w0
0% 20% 40% 60% 80% 100% 0
0% 20% 40% 60% 80% 100%
Row Hit % Row Hit %
(c) 4 Requestors 32 bits bus (d) 16 Requestors 32 bits bus
~+-AMC -&-1Rank 2Rank ——4 Rank —+~AMC -&-1Rank 2Rank ——4 Rank
400 1600
350 \\ 1400
3 R ]
I - 0 %,}\5
g £
H 250 \ Z 1000
g
§
g 200 ¢+ & 800 4
9 @
g 10 3 600
2 100 %
i £ 400
2 50 H 200
®
0 H
0% 20% 40% 60% 80% 100% 0

0% 20% 40% 60%

Row Hit %

(f) 16 Requestors 16 bits bus

80% 100%

Row Hit %

(e) 4 Requestors 16 bits bus

Fig. 14: Synthetic Benchmark Results

better when row hit is low due to reduced interference on ACT commands. When row
hit ratio is high, the latency bound is the same for this particular device. In general, if
there are more ranks, there will be more rank-to-rank switches while less ranks will
have more read-to-write switches. For this particular device, the numbers happen to
be the same.

Table 6 shows the average worst case latency for a few DDR3 devices of different
speed. The number of requestors is fixed at 4, row hit is 40% and store percentage is
20%. As the speed of DRAM devices becomes faster, our approach improves rapidly
compared to AMC. For example, comparing 800D and 2133M devices, the worst case



34 Zheng Pei Wu et al.

latency decreases by 45% for our approach (149ns to 102.59ns) while only by 14%
for AMC (185ns to 163ns). This is because as clock frequency increases in memory
devices, the difference in the latency between open and close requests is increasing.
Therefore, close row policy becomes too pessimistic, while one can argue that open
row policy is better suited for current and future generations of memory devices.
Finally, varying the store percentage in the experiments does not have significant
effect on the trends discussed above.

8.3 CHStone Benchmark

All twelve benchmarks in the CHStone benchmark suite were used for evaluation
and Figure 15 and Figure 16 show the result for 4 and 16 requestors with varying
data bus size, respectively. Note that the y-axis is the normalized execution time of
the benchmarks against the worst case analytical bound of AMC. The T-bars are
the worst case analytical bound while rectangular boxes with shades are simulation
results. Therefore the T-bar of AMC is always 1 since everything else is normalized
against it.

First, let us compare the worst case analytical bounds (7-bars) in the figures. For 4
requestors and 64 bits data bus for a single rank, our approach is between 0% to 26%
better than AMC (the lower the value on the y-axis the better the improvement). For
16 requestors and 64 bits data bus for a single rank, the controller is between 7% to
44% better than AMC. Therefore, as the number of requestors increases, our approach
improves more since we can extract more parallelism out of the banks compared to a
close row policy used in AMC. The highest improvement is shown by gsm and motion
while the lowest improvement is shown by jpeg. The amount of improvement depends
on the benchmark itself. Specifically, it depends on both the row hit ratio as well as
the stall ratio, i.e., the percentage of time that the core would be stalled waiting for
memory access when the benchmark is executed in isolation without other memory
requestors. The row hit ratio ranges from 29% (jpeg) to 52% (sha) and stall ratio
ranges from 3% (jpeg) to 36% (motion) for all benchmarks. Note that even for 32 bits
data bus, most of the benchmarks with 4 ranks performs better than AMC. Some of
the benchmarks performs worse than AMC for single rank, with maximum of only
3% worse. The result shows that 2 and 4 ranks perform better than a single rank
as expected in the worst case since ACT commands have less interference. Finally,
as expected our solution performs significantly worse (up to 57%) than AMC for
16 bits data bus. Next, let us compare the simulation results (boxes with shades) in
the figures. For 4 requestors with 64 bits bus and 1 rank, the simulated time of our
approach is between 5% to 55% better compared to AMC. While for 16 requestors
with 64 bits bus and 1 rank, our approach is between 17% to 78% better than AMC.
Even for 4 requestors with 32 bits bus and 1 rank, the improvement is up to 50%

Table 6: Average Worst Case Latency (ns) of DDR3 Devices

Devices 800D | 1066F | 1333H | 1600K | 1866L | 2133M
AMC-64bits 185 185.27 180.9 178 169.84 163
1Rank-64bits 149 132.94 | 121.35 | 11642 | 108.71 | 102.59




Title Suppressed Due to Excessive Length 35

better than AMC, while in the case of 16 bits data bus, results are between 4 and 30%
better than AMC. Again the highest improvements are shown by benchmarks with
high stall ratio and row hit ratio.

Next, notice that the difference between simulated and analytical time (7-bar vs.
box) for AMC is quite small, the maximum difference is less than 10% of analytical

BAMC w1Rank = 2Rank ='4Rank
1.10
1.00
0.90
@ 0.80
E
= 070
2
3 060
g
“ 050
]
£ 040
E
z° 0.30
0.20
0.10
adpcm aes bf gsm jpeg mips. motion sha dfadd dfdiv dfmul dfsin
(a) 4 Requestors 64 bits bus
BAMC . 1Rank 2Rank = 4 Rank
1.10
1.00
0.90
o
£ 0.80
£
g 070
2
2 0.60
&
5 0.50
]
® 0.40 %
E i
S 030 i
020 B
.
0.10 ! o
% i
0.00 = : s i
adpcm aes bf gsm jpeg mips motion sha dfadd dfmul dfsin
(b) 4 Requestors 32 bits bus
BAMC ."1Rank 2Rank %4 Rank
1.80
1.60
1.40
@
£
= 120
=
2
3 100 | LI LL
g b i o
o i e #
g 080 # i & 5
L] ey a5 s .
2 i i i i
g o0 | & 2 & i
E & i i
2 & i &
0.40 - i [ty i
i 4 i
i 224 i 2
0.20 5 & i i
i e i o
000 N NI NI h BN BN \ N
adpem aes bf jpeg mips motion sha dfadd dfmul dfsin

(c) 4 Requestors 16 bits bus
Fig. 15: Simulation 4 Requestor Result



36

Zheng Pei Wu et al.

Normalized Execution Time

Normalized Execution Time

WAMC +« 1Rank 2Rank = 4Rank

jpeg mips motion sha dfadd

(a) 16 Requestors 64 bits bus

®AMC &« 1Rank = 2Rank =4 Rank

jpeg mips motion

(b) 16 Requestors 32 bits bus

"

dfdiv

dfmul

dfmul dfsin

Normalized Execution Time

HAMC 1Rank  2Rank 24 Rank

i
e
o

%

s

ipeg mips motion sha

(c) 16 Requestors 16 bits bus
Fig. 16: Simulation 16 Requestor Result

dfdiv

dfmul dfsin




Title Suppressed Due to Excessive Length 37

bound. This suggest that their controller behaves very close to the theoretical worst
case bound since close row policy is used. However, the difference between simu-
lated and analytical time of our approach varies. For 4 requestors with 64 bits data
bus and 1 rank, the difference ranges from 6% (jpeg) to 30% (motion) of analytical
bound; in general, the difference is significant for all benchmark with non-negligible
stall ratio. There are two main reasons for such difference. First, the worst case anal-
ysis presented in Section 5 assumes a specific pattern of interfering commands from
other requestors, in particular alternating read and write CAS. The probability that
other requestors generate exactly such worst case pattern of CAS commands at run-
time is clearly low, albeit non zero. Second, the proposed per-request analysis is not
tight, especially for close requests: our decomposition assumes that each of the PRE,
ACT and CAS commands suffer maximal interference by all other requestors, but in
reality and as an example, if a requestor delays an ACT command of the requestor
under analysis, it might not be able to cause maximal interference of the subsequent
CAS command. Furthermore, the [bm benchmark executed on interfering requestors
has significant row hit ratio; hence, the ACT delay suffered by the requestor under
analysis in simulation is much lower than the worst case analytical bound. Despite
such pessimism, our analytical bounds are still better than AMC for bus sizes of 32
bits or larger.

Another interesting and counter-intuitive trend is that for 2 and 4 ranks the simu-
lation results are worse compared to 1 rank, while the analytical bounds show that 2
and 4 ranks perform better. This is because in the analysis, the interference for ACT
in multiple ranks is reduced since the requestors are divided among the ranks; the
number of requestors that can issue an ACT to contend with core under analysis is
reduced. For the simulation, as discussed above the /bm benchmark does not usually
generate the worst case interference pattern and furthermore, /bm has more load than
store operations; hence, when increasing the number of ranks, the number of write-
to-read switches is not significantly reduced, while we still have to pay additional
rank to rank switching delay, thus leading to higher average latency.

8.4 Shared Data

Finally, we evaluated the effect of shared data on both the analytical bounds and sim-
ulation execution time. Figure 17 shows results for a system with 64 bits data bus,
1 rank and 8 total requestors: 7 real requestors plus a virtual requestor represent-
ing a shared data partition among all real requestors. We perform two experiments
where the requestor under analysis runs with the motion and the jpeg benchmark
from CHStone. The benchmarks have been selected because based on the results in
Figures 15 and 16, they show the largest and smallest improvements, respectively,
when compared to AMC; similarly to Section 8.3, all other requestors run /bm. We
synthetically altered the benchmark traces such that a certain percentage of memory
requests, between 0% and 100%, targets the shared data partition. For a given per-
centage of shared data, the shared requests are chosen at random independently for
each of the 7 real requestors. We plot results based on both the analytical bounds (/



38 Zheng Pei Wu et al.

~&—AMC —&—AMC-Simulation ~—1 Rank ——1 Rank-Simulation

Normalized Execution Time

0 10 20 30 40 50 60 70 80 90 100
Shared Data %

(a) motion

~de—AMC —&— AMC-Simulation ~#—1 Rank =1 Rank-Simulation

05 +

Normalized Execution Time

0 10 20 30 40 50 60 70 80 90 100
Shared Data %

(b) jpeg

Fig. 17: 7 Requestors 64 bits bus with 1 Shared Bank

Rank for our controller and AMC) and simulations (I Rank-Simulation and AMC-
Simulation.

At 0% shared data, the analytical bound is 38%(motion) and 5%(jpeg) better than
AMC, and the simulation result is 55%(motion) and 10%(jpeg) better; this improve-
ment is in between the results for 4 and 16 requestors in Figures 15, 16. The analytical
bound for our approach becomes higher than AMC when the shared data percentage
reaches 10% for both benchmarks. This shows that our approach is competitive for
small values of shared requests; as discussed in Section 7, we would expect that in
a partitioned system, shared data partitions are only required for system software
(OS or hypervisor), which should account for a limited number of memory requests.
Simulated execution time shows smaller change, for similar reasons to the ones cited
in Section 8.3, and gets closer to the AMC simulation time while the percentage of
shared data increases.

9 Conclusions

This article presented a new worst case latency analysis that takes DRAM state in-
formation into account to provide a composable bound. Our approach relies on a
private bank mapping scheme to avoid row interference between different requestors.
In turn, this allows us to effectively employ open row policy to reduce the latency for
consecutive requests targeting the same DRAM row. The article provides two main



Title Suppressed Due to Excessive Length 39

contributions. First, based on the proposed model, we derive an upper bound on the
latency of a single memory request. Then, for a task running on a fully-timing com-
positional core, we show how to use the derived per-request bound to compute the
task’s worst-case execution time. Our approach is specifically targeted at multi-core
systems using modern DRAM devices with high clock rate and wide data buses. As
shown in our evaluation, under such conditions existing real-time DRAM controllers
tend to perform poorly, since they cannot effectively interleave over multiple banks.
On the other hand, for devices with smaller data bus size, the interleaving mechanism
tends to perform better. Our approach also assumes a partitioned system where each
application is mapped to a single core and communication between cores is handled
through I/O devices. While the devised system can support communication through
shared memory, it involves a performance penalty.

The presented work could be extended in multiple directions. First of all, we
plan to synthesize and test the proposed controller on FPGA. Second, as discussed in
Section 8, our per-request analysis is pessimistic. An improved analysis could attempt
to model the relation among multiple interfering commands to tighten the latency
bounds, albeit deriving a worst case arrival pattern under such conditions is likely to
be very challenging due to the complexity of the involved DRAM timing constraints.

Acknowledgements This research was supported in part by NSERC DG 402369-2011 and CMC Mi-
crosystems. Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the sponsors.

Authors may self-archive the authors accepted manuscript of their articles on their own websites.
Authors may also deposit this version of the article in any repository, provided it is only made publicly
available 12 months after official publication or later. He/ she may not use the publisher’s version (the final
article), which is posted on SpringerLink and other Springer websites, for the purpose of self-archiving
or deposit. Furthermore, the author may only post his/her version provided acknowledgement is given to
the original source of publication and a link is inserted to the published article on Springer’s website. The
link must be provided by inserting the DOI number of the article in the following sentence: The final
publication is available at Springer via http://dx.doi.org/[10.1007/s11241-016-9253-4].

References

1. Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM
memory controller. In: Proceedings of the 5th IEEE/ACM international confer-
ence on Hardware/software codesign and system synthesis, CODES+ISSS, pp
251-256

2. Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling
using credit-controlled static-priority arbitration. In: Embedded and Real-Time
Computing Systems and Applications, 2008. RTCSA °08. 14th IEEE Interna-
tional Conference on, pp 3—14

3. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J,
Hower DR, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill
MD, Wood DA (2011) The gem5 simulator. SIGARCH Comput Archit News
39(2):1-7



40

Zheng Pei Wu et al.

11.

12.

13.

14.

15.

16.

17.
18.

Bourgade R, Ballabriga C, Cass H, Rochange C, Sainrat P (2008) Accurate anal-
ysis of memory latencies for WCET estimation. In: 16th International Confer-
ence on Real-Time and Network Systems (RTNS), pp 161-170

Bui D, Lee EA, Liu I, Patel HD, Reineke J (2011) Temporal isolation on mul-
tiprocessing architectures. In: Proceedings of the 48th Design Automation Con-
ference, DAC, pp 274-279

Ecco L, Ernst R (2015) Improved DRAM Timing Bounds for Real-Time DRAM
Controllers with Read/Write Bundling. In: Real-Time Systems Symposium
(RTSS), 2015 IEEE, TO APPEAR

. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller

using bank privatization and fixed priority scheduling. In: Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2014 IEEE 20th, pp 1-10
Edwards SA, Lee EA (2011) The Case for the Precision Timed (PRET) Machine.
In: Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pp 264—
265

Freescale (2013) P4080 website. URL http://www.freescale.com

. Gomony M, Akesson B, Goossens K (2013) Architecture and optimal configu-

ration of a real-time multi-channel memory controller. In: Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, pp 1307-1312

Gomony M, Akesson B, Goossens K (2015) A real-time multichannel memory
controller and optimal mapping of memory clients to memory channels. ACM
Transactions on Embedded Computing Systems (TECS) 14.2(25)

Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for
mixed time-criticality memory controllers. In: Proc. Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp 525-530

Hara Y, Tomiyama H, Honda S, Takada H, Ishii K (2008) CHStone: A bench-
mark program suite for practical C-based high-level synthesis. In: Circuits and
Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp 1192-1195
Hassan M, Hiren P, Pellizzoni R (2015) A framework for scheduling DRAM
memory accesses for multi-core mixed-time critical systems. In: Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015 IEEE, pp
307-316

Henning J (2006) SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH
Computer Architecture News 34(4):1-17

Jalle J, Quinones E, Abella J, Fossati L, Zulianello M, Cazorla F (2014) A Dual-
Criticality Memory Controller (DCmc): Proposal and Evaluation of a Space Case
Study. In: Real-Time Systems Symposium (RTSS), 2014 IEEE, pp 207-217
JEDEC (July 2012) DDR3 SDRAM Standard JESD79-3F

Kim D H Broman, Lee E, Zimmer M (2015) A predictable and command-level
priority-based DRAM controller for mixed-criticality systems. In: Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015 IEEE, pp
317-326

. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar RR (2014) Bound-

ing memory interference delay in cots-based multi-core systems. In: Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp 145-154



Title Suppressed Due to Excessive Length 41

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Kim J, Yoon M, Im S, Bradford R, Sha L (2013) Optimized Scheduling of Multi-
IMA Partitions with Exclusive Region for Synchronized Real-Time Multi-Core
System. In: Proceedings of Design, Automation and Test in Europe (DATE), pp
970-975

Kim S, Kim S, Lee Y (2012) DRAM power-aware rank scheduling. In: Proceed-
ings of the 2012 ACM/IEEE international symposium on Low power electronics
and design, ISLPED ’12, pp 397-402

Krishnapillai Y, Zheng P, Pellizzoni R (2014) A Rank-Switching, Open-Row
DRAM Controller for Time-Predictable Systems. In: Euromicro Conference
Real-Time Systems (ECRTS), 2014 26th, pp 27-38

LiY, Akesson B, Goossens K (2015) Architecture and analysis of a dynamically-
scheduled real-time memory controller. In: Real-Time System, 2015, pp 1-55
Liu I, Reineke J, Lee EA (2010) A PRET Architecture Supporting Concurrent
Programs with Composable Timing Properties. In: Signals, Systems and Com-
puters (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar
Conference on, pp 2111-2115

Paolieri M, Quifiones E, Cazorla F (2013) Timing effects of DDR memory sys-
tems in hard real-time multicore architectures: Issues and solutions. ACM Trans-
actions on Embedded Computing Systems (TECS) 12(1)

Radio A (November 1991) ARINC Specification 651: Design Guidance for Inte-
grated Modular Avionics. Aeronautical Radio, Inc, Annapolis, MD, prepared by
the Airlines Electronic Engineering Committee

Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM Controller:
Bank Privatization for Predictability and Temporal Isolation. In: Proceedings of
the 7th IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, CODES+ISSS, pp 99-108

Schliecker S, Negrean M, Nicolescu G, Paulin P, Ernst R (2008) Reliable perfor-
mance analysis of a multicore multithreaded system-on-chip. In: Proceedings of
the 6th IEEE/ACM/IFIP international conference on Hardware/Software code-
sign and system synthesis, CODES+ISSS, pp 161-166

Schliecker S, Negrean M, Ernst R (2010) Bounding the shared resource load
for the performance analysis of multiprocessor systems. In: Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, pp 759-764

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2011) Timing
Analysis for Resource Access Interference on Adaptive Resource Arbiters. In:
Real-Time and Embedded Technology and Applications Symposium (RTAS),
2011 17th IEEE, pp 213-222

Shah H, Raabe A, Knoll A (2012) Bounding WCET of applications using
SDRAM with Priority Based Budget Scheduling in MPSoCs. In: Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2012, pp 665-670
Valsan P, Yun H (2015) MEDUSA: A Predictable and High-Performance DRAM
Controller for Multicore based Embedded Systems

Wang DT (2005) Modern DRAM Memory systems: Performance Analysis and
Scheduling Algorithm. PhD thesis, University of Maryland at College Park
Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009)
Memory hierarchies, pipelines, and buses for future architectures in time-critical



42

Zheng Pei Wu et al.

35.

36.

37.

embedded systems. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 28(7):966-978

Wu Z, Pellizzoni R (2013) Memory Simulator and Results. URL http://
ece.uwaterloo.ca/~rpellizz/techreps/Mem—Sim.zip

Wu Z, Krish Y, Pellizzoni R (2013) Worst Case Analysis of DRAM Latency in
Multi-Requestor Systems. In: Real-Time Systems Symposium (RTSS), pp 372-
383

Yun H, Mancuso R, Wu Z, Pellizzoni R (2014) PALLOC: DRAM Bank-Aware
Memory Allocator for Performance Isolation on Multicore Platforms. In: Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp 155—
166



Title Suppressed Due to Excessive Length 43

Appendix: CAS-to-Data Derivation

In this appendix, we formally show the derivation of the CAS-to-Data latency tc p. We begin by providing
the proofs of Lemmas 3 and 4.

twr tpus

G

tRrL tpus

to trIrRsT

(a) Previous Write of Same Rank

tRL
> >< >
trTw twir tus

tFIRST

A
v
N
\ 4

i i
to UFIRST

(c) Previous CAS of Different Rank

Fig. 18: Latency of First CAS after ¢

Proof of Lemma 3. Note that since we assume that all requestors insert a CAS at ¢o, all requestors must
have finished transmitting their previous data by ¢o at the latest. Otherwise, if a requestor issues a CAS
before tg but finishes data transmission after ¢g, then it can not insert another CAS into the FIFO due to
arbitration Rule-1. Then, the delay for the first CAS after ¢p depends on the type of the last CAS before
to; hence, we have three cases, namely: (a) the last CAS is a write of the same rank as the request under
analysis; (b) the last CAS is a read of the same rank; (c) the last CAS targets a different rank. We next
prove that the worst case scenarios for each of the three cases are the ones depicted in Figure 18.

For case (a) as depicted in Figure 18a, at time t(, a requestor of rank r just finished transmitting a write
data. Therefore, if the first CAS after tg is a read from rank r, the read command would suffer a tyy
timing constraint. Hence, the time from ¢( until end of data of the first read would be tyyrr+trr+tBUS-
However, if the write data of rank 7 finished A time units before tg, then the overall delay of first CAS
would be decreased by A and hence finishing the write data exactly at tq is the worst case. If the first
CAS after t is instead a write from rank r, the CAS can start immediately at ¢o since there are no timing
constraints between write and write; hence, the delay is simply tywr, + tBus-

For case (b) as shown in Figure 18b, a requestor of rank r just finished transmitting a read data at
time tg. Hence, if the first CAS after tg is a write command of rank r, it would suffer a t gy from the
time when the read before o was issued. However, since tpy, + tpys > trrw for all JEDEC devices,



44 Zheng Pei Wu et al.

the first write after to actually can be issued immediately; therefore the delay is tyy 1, + tpys. Similarly,
since there are no constraints between read and read, the delay is t py, + t gy g if the first CAS after ¢ is
aread.

For case (c) in Figure 18c, a CAS of rank r just finished transmitting data at ¢o and the first CAS after
to is from another rank k. The only constraint between different ranks is ¢t g g, which is the minimum
gap between the end of data until the start of next data transmission. However, since both ¢y-1, and tpr,
are greater than t g for all devices, the first CAS command can be issued immediately. Thus, the delay
iseithertrr, +tpus or twr, +tpus depending on whether the first CAS is a read or write respectively.

To conclude the proof, notice Eq.(10) takes the maximum of all the cases discussed for read and write
separately and hence captures the worst case delay for t prrsT. [m]

Proof of Lemma 4. Since the FIFO is backlogged with only CAS commands, this means that the CAS
commands will be issued one after another as soon as possible without violating any timing constraints.
The transition from the end of data of a write command of rank r to the end of data of a read command of
rank 7 is shown in Figure 18a and the delay is tyyrr +trr +tBUs. The delay for the transition from the
end of read data to write data of rank 7 is shown in Figure 19a and is computed as max{trrw +twr —
trr —tpus,0}+tpus. Since trrw +twr > trr +tpus forall devices, the expression is reduced
to trrw + twr — trr. For the transition between two CAS commands of different ranks as shown in
Figure 19b, the delay is simply trrr + tBU s since there are no additional constraints. For read-to-read
or write-to-write transitions of the same rank, the delay is simply ¢ gy s since the only contention is the
shared data bus; in other words, the data are transferred continuously without any gap between them. O

As discussed in Section 5.2, we need to maximize the number of write-to-read transitions within the
same rank. Therefore, the calculation for the maximum number of write-to-read transitions is discussed
next.

Lemma 6 Assuming the rank under analysis is rank r and all requestors enqueue a CAS command at
time to and the CAS under analysis is placed last in the FIFO, the maximum number of write-to-read
transitions in all ranks is expressed in Eq.(30).

2 2
Twnr = (30)

le {%J if CAS under analysis is read.

(Zﬁér {%J) + {MJ if CAS under analysis is write;

Proof First, notice that grouping requestors of the same rank together will create more write-to-read tran-
sitions since by definition, a write-to-read transition is between requestors of the same rank. On the other
hand, if requestors of same rank are separated by placing commands of other ranks between them, this does
not create any write-to-read or read-to-write transitions, only rank-to-rank transitions. Hence, to maximize
write-to-read, one would only need to consider grouping requestors of the same ranks together. Now, let
us consider ranks that do not contain the core under analysis (i.e., 7 # r). Figure 20a shows two cases
of a sequence of read (R) and write (W) commands within one rank. The maximum number of write-to-
read transitions is computed by dividing the number of requestors in that rank by two and then taking the

S M; . .
floor of the result which yields | —5” |; note that two requestors are needed to form a write-to-read transi-
tion, and an odd one at the beginning or the end can not contribute to a write-to-read transition by itself.

CRC

>
=
2
=

< > < > i
! trL tgus ! v tRTR ’E '
| | (Data )
trRTw twr tgus >

(a) Read-to-Write Delay (b) Rank-to-Rank Delay

Fig. 19: Delay between two consecutive CAS commands



Title Suppressed Due to Excessive Length 45

For rank r (i.e., the rank under analysis), the maximum number of write-to-read transitions depends on
whether the CAS under analysis is a read or write since it is the last CAS to transmit data (i.e., last in the
FIFO). Figure 20b shows the sequence of CAS commands for the rank under analysis in different cases.
The CAS under analysis is the white box in the figure and it is either a read (R) or write (W). One can see
that the read case is the same as the other ranks. While for a write, it can not contribute a write-to-read
transition since it is the last one in the FIFO. Therefore, only the remaining M- — 1 requestors before it
can contribute write-to-read transitions and hence yields LM r—1 |. Thus, taking the sum of all ranks yield

2

Eq. (30) and the lemma is shown to be correct. O
R|WR|W R WIRW|R W
(a) Maximum write-to-read Transition of Other Ranks
READ WRITE
W R(W R R{W R|W
R|WR|W R W R[(W R|W

(b) Maximum write-to-read Transition of Rank Under Analysis

Fig. 20: Maximum write-to-read Transition of One Rank

Next, let us define a parameter E' to manage the complexity related to maximizing both ¢t pr rgr and
toTHER, as discussed in relation to Figure 11. We show that we need to consider three cases, corre-
sponding to £ = 1, E = 2 and E = 3, respectively.

Definition 1 Assuming the rank under analysis is rank r, let E represent the various cases to indicate
whether there is an extra read available or not as follows:

if 3j # rs.t. M is odd;
if V§ # r, M; is even and M- is odd and CAS under analysis is read; G1)

if Vj # r, M; is even and M- is even and CAS under analysis is write;

S = = N

otherwise.

For the first case, when E = 2, if there is any other rank for which the number of requestors is odd
as shown in the left part of Figure 20a, then beginning with a read or ending with a write does not affect
the maximum write-to-read transitions and hence choosing a read will help maximize ¢ty grgT. The case
of EE = 1 is when other ranks are all even but the rank under analysis can provide the extra read; for this
to happen, if M, is odd, then the CAS under analysis must be a read (bottom left in Figure 20b), while if
M- is even, the CAS under analysis must be a write (top right in Figure 20b). Finally, E = 0 indicates
that no rank has an extra read.

Notice by putting two consecutive write-to-read groups of the same rank together, there is a read-
to-write transition between them. While putting two groups of write-to-read of different ranks together,
there is a rank-to-rank transition between them. Therefore, the problem becomes how to place the write-
to-read groups such that the latency is maximized. Two ILP (Integer Linear Programming) problems are
defined to compute to7 g r- The variable x is the number of write-to-read transitions, y is the number



46 Zheng Pei Wu et al.

of read-to-write transitions and z is the number of rank-to-rank transitions.

Maximize:
z-Dwr+y-Drw +2-DrNK (32)
Subject to:
c+y+z=M-—-1 33)
z<Twr (34
z>R—-1 (35)
zeN, yeN, zeN (36)

Definition 2 Let tIOT iR be the solution to the ILP problem defined in Eq.(32)-Eq.(36).

Definition 3 Let t,(,)T HE R D€ the solution to the same ILP problem in Eq.(32)-Eq.(36) with the exception
of the constraint in Eq.(35), which is replaced with z > R.

Lemma 7 An upper bound for the worst case latency of tc p is:

FR4torypr TE=2
Frttorypr HE=1landR=1;
Fr+typppr ifE=1landR>2;
Fw +torypr it E=0.

tcp = (37)

Proof Let tg be the time at which the CAS command of the core under analysis (CAS under analysis)
is enqueued in the global arbitration FIFO queue and assume rank under analysis is rank r. First, let
us show that the worst case interference on the core under analysis is produced when at time ¢ there are
M —1 other CAS commands enqueued before the CAS under analysis. First note that commands enqueued
after the CAS under analysis cannot delay it; if the CAS under analysis is blocked, then any subsequent
CAS command is also blocked due to arbitration Rule-4. PRE or ACT commands of other requestors
enqueued after the CAS under analysis can execute before it according to arbitration Rule-3 if the CAS
under analysis is blocked, but they cannot delay it because those requestors access different banks or ranks,
and there are no timing constraints between CAS and PRE or ACT of a different bank or rank. Each CAS
of another requestor enqueued before the CAS under analysis contributes to its latency for at least a factor
of t s = 4 due to data bus contention. Now assume by contradiction that a requestor has a PRE or ACT
command enqueued before the CAS under analysis at time tq. Since again there are no timing constraints
between such commands, the PRE or ACT command can only delay the CAS under analysis for one clock
cycle due to command bus contention. Furthermore, after the PRE or ACT command is issued, any further
command of that requestor would be enqueued after the CAS under analysis. Hence, the requestor would
cause a total delay of one cycle, which is less than ¢ g7 g. Next, let us show that if all requestors enqueue
their CAS command at the same time, ¢g, is the worst case pattern. Requestors enqueueing a CAS after ¢o
do not cause interference as already shown. If a requestor enqueues a CAS at time t9 — A and finishes its
data transmission after ¢, the overall latency is reduced by A since that requestor cannot enqueue another
CAS before the CAS under analysis at to due to arbitration Rule-1.

Next, let us show the constraints in Eq.(33) to Eq.(36) holds. The total number of transitions is M — 1
since at time tq, all requestors enqueue a CAS into the FIFO and the transition delay is the gap between
consecutive data; the transition from g to the first CAS is considered separately in ¢ pr g7 . Since at some
point, the memory controller must switch from servicing commands of one rank to another, the number of
rank transitions z must be greater or equal to R — 1 where R is the total number of ranks in the system.
The maximum number of write-to-read transitions is Ty g as proved in Lemma 6. Lastly, all transitions
must be integer values since there can not be fraction of a transition. Next, let us discuss the case when one
of the other ranks has an extra read singled out (i.e., £ = 2). In this case, the first CAS can be a read as
shown in Figure 11b, which maximizes ¢t p; p g7 since Fr > Fyy for all devices. This still maintains the
maximum number of write-to-read transitions. Therefore, tcp is simply Fp + t/OT HER- Similarly, for
the case when £ = 1 and R = 1, the bound on z remains the same as in Eq. (35); in this case, there are no
rank-to-rank transitions at all since there is only a single rank in the system resulting in z = 0. Therefore,



Title Suppressed Due to Excessive Length 47

the first CAS can be a read without affecting the maximum number of write-to-read transitions and hence
. . ’
the delay is still tcp = Fr +torypR- - )

Next, we compute the case when there is more than one rank in the system and rank r has an extra
read but other ranks do not have a read (i.e., £ = 1 and R > 2). If the extra read is placed as the first
CAS, then the lower bound on z would increase to R because rank r must transmit data after other ranks
(since it contains the CAS under analysis which is placed last in FIFO); this incurs an extra rank-to-rank
switch because the rank following the first read can not be rank r. Therefore, placing the read as the first
CASleadstotcp = Fr + thHER while not placing the read first leads to tcp = Fyy + t/OTHER.
Subtracting the two yields,

1 ’
Fr+toruepr — Fw —loruer =
1"

=Fr —Fw — (toruer —toruer) =
:FR — FW — maX{DRW — DRNK,O}

The above equation hold since z increases by one when placing read as the first CAS, which means that
there must be one less write-to-read or read-to-write transitions because total number of transitions is
still M — 1. However, since Dyy g is greater than both Dry and Dgy K, the number of write-to-
read remains equal to upper bound of z and number of read-to-write transitions must decrease by one.

" . .
Therefore ¢ 7 i p has one more rank-to-rank switch compared to ¢ » while ¢ s has one

) OTHER OTHER
more read-to-write transition than ¢z - The computed difference is always greater than zero for
all devices. Therefore, the worst case latency is maximized by beginning with the read as the first CAS
resulting in F'g + thHER'

Finally, to conclude the proof, we consider the case when there is no extra read by itself that could
be used as the first CAS as already shown in Figure 11a. It is possible to switch the first write and read
commands to make the first CAS a read. Doing so will not increase the bound on z since it simply swaps
the first write with the second read. However, it will decrease write-to-read transitions by one and the new
bound is < Ty g — 1. Since x decreases by one, and the total number of transitions is still M — 1, there
must be an additional rank-to-rank or read-to-write transitions. Hence, the delay starting with a write (i.e.,
keeping the write read group) minus starting with a read would be,

Fw — Fr + (Dwr — max{Drw, DRNK })

For the above equation, the maximum of read-to-write or rank-to-rank delay is subtracted from Dy R.
The computed difference is always positive for all devices. Therefore, in this case, the worst case latency
is maximized by leaving the write-to-read group and by beginning with a write resulting in tcp = Fyy +
’

torHER: O

Although an ILP formulation is used to simplify the proof of Lemma 7, the objective function in
Eq.(32) can be solved in a greedy manner. The value of « will always be equal to the upper bound since it
will maximize the number of write-to-read transitions, then depending on the larger value between D pyy
and DR N K, either y or z will be maximized respectively.



