
Meta-learning Performance Prediction of
Highly Configurable Systems: A

Cost-oriented Approach

by

Atri Sarkar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c⃝ Atri Sarkar 2016

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A key challenge of the development and maintenance of configurable systems is to predict
the performance of individual system variants based on the features selected. It is usually infeas-
ible to measure the performance of all possible variants, due to feature combinatorics. Previous
approaches predict performance based on small samples of measured variants, but it is still open
how to dynamically determine an ideal sample that balances prediction accuracy and measure-
ment effort. In this work, we adapt two widely-used sampling strategies for performance predic-
tion to the domain of configurable systems and evaluate them in terms of sampling cost, which
considers prediction accuracy and measurement effort simultaneously.
To generate an initial sample, we develop two sampling algorithms. One based on a traditional
method of t-way feature coverage, and another based on a new heuristic of feature-frequencies.
Using empirical data from six real-world systems, we evaluate the two sampling algorithms and
discuss trade-offs. Furthermore, we conduct extensive sensitivity analysis of the cost model
metric we use for evaluation, and analyze stability of learning behavior of the subject systems.

iii

Acknowledgements

I would like to thank Prof. Krzysztof Czarnecki for giving me this opportunity. Prof. Czarnecki,
with his tenacity, knowledge and insight has truly been an inspiration to all of us.

I thank Dr. Jianmei Guo for being a mentor and guiding me throughout the work. Without
his work on performance prediction, it would not have been possible for me to delve deeper into
the subject. I also thank Prof. Sven Apel and Dr. Norbert Siegmund for their input and feedback
on the work.

I thank everyone at GSD Lab (Dr. Michal Antkiewicz, Manish, Eldar, Jimmy, Rodrigo,
Jordan, Peiyuan, Pavel, Ed and Hristiyan) for keeping me in good company. Especially Le-
onardo Passos, for all the conversations, and making this part of grad school life bearable.

Most importantly, I would like to thank my wife Piyusha for being a pillar of support, and
allowing us to venture on this chaotic yet exciting journey. My parents Ashim and Purabi, for
always believing in me and teaching me to question everything.

iv

Dedication

To Piyusha, Purabi and Ashim.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Performance prediction in practice . 3

2 Definitions and Running Example 6

3 Cost Model 7

4 Sampling Strategies 9
4.1 Progressive Sampling . 9

4.1.1 Gradient-Based . 10

4.1.2 Cost Minimization . 11

4.2 Projective Sampling . 11

vi

5 Initial Sample Generation 14

5.1 Feature-frequency based sample generation . 14

5.2 t-way sample generation . 18

6 Subject Systems 20

7 Evaluation 22

7.1 RQ1: Progressive vs. Projective . 22

7.2 RQ2: Comparison of Learning Curves . 27

7.3 RQ3: T-Way vs. Feature Frequency . 30

8 Sensitivity analysis 31

8.1 Design . 32

8.1.1 One-At-a-Time (OAT) SA method . 33

8.1.2 Parameter valuation: . 34

8.2 Results . 35

9 Stability of learning curves 46

10 Threats to Validity 49

11 Related Work 50

11.0.1 Performance Prediction . 50

11.0.2 Sampling Strategies . 51

12 Conclusion 52

References 53

vii

APPENDICES 57

A.1 Derivation of optimal sample size (n∗) . 57

A.1.1 Logarithmic . 57

A.1.2 Weiss and Tan . 58

A.1.3 Power law . 58

A.1.4 Exponential . 59

A.2 Code and implementation . 59

A.2.1 FAQ . 59

viii

List of Tables

1.1 Learning curve points (λn) for Apache (n : sample set size, ϵn : relative error %) 5

4.1 Projective functions of learning curves . 13

5.1 Coverage of selected features (xi = 1) and deselected feature (xi = 0) 16

5.2 Feature frequency table T. Row 1 : frequency of selected features. Row 2: fre-
quency of deselected features . 16

6.1 Overview of the six subject systems. Lang: language; LOC: lines of code; |X|:
number of all valid configurations; N : number of all features 20

7.1 Prediction accuracy at n∗ (optimal sample size) achieved by different sampling
strategies . 24

7.2 Comparison of decision cost (size of Λδ) and total cost 24

7.3 Size of Λδ (t-way vs. feature-frequency) . 27

8.1 OAT sensitivity analysis design . 33

8.2 Rate of change of total cost of prediction with respect to unit change in cost ratio
(R) . 41

8.3 Mean relative error and standard deviation of cost estimation 42

9.1 Distribution of curve selection vs random (no. of runs = 100) 47

9.2 Distribution of curve selection with respect to different sampling strategies (100
runs) . 48

9.3 Sensitivity of learning curves to sampling strategies 48

ix

List of Figures

1.1 General process of performance prediction by sampling 4

1.2 Regions of the learning curve in dependence of the sample size: (1) Steep incline;
(2) Gradual incline; (3) Plateau; n∗: marks the optimal sample size 5

4.1 Two stopping criteria for progressive sampling 11

4.2 Overview of projective sampling . 12

7.1 Cost curve and minimum total cost estimated through various sampling strategies.
- Progressive sampling; �-Projective sampling; N-Global minimum; - Cost

curve . 25

7.2 Learning curves for progressive and projective sampling. - Progressive
sampling; - Projective sampling (exponential curve); , - Optimal sample
size (n∗); - Initial data-points for projection 26

7.2 Total cost of prediction calculated by different sampling strategies (100 runs).
- Global minimum cost of prediction; - Minimum total cost calculated by

progressive sampling . 29

8.1 Sample 2-D pseudo-random sequence : 100,1000,2000 points 35

8.2 Sensitivity of total cost and accuracy to variations in R in the interval 1 to 10.
- 2-way; - 3-way; - feature frequency (ff =5); - Actual cost

(TotalCostminimum) . 38

8.3 Sensitivity of total cost and accuracy to variations in R in the interval 0 to 1.
- 2-way; - 3-way; - feature frequency (ff =5); - Actual cost

(TotalCostminimum) . 40

x

8.4 Sensitivity of total cost and accuracy to variantions in θ in the interval 2 to 3.
- 2-way; - 3-way; - feature frequency (ff =5); - Actual cost

(TotalCostminimum) . 45

xi

Chapter 1

Introduction

A hallmark of modern software systems is configurability. In fact, most large scale software from
web-servers to database systems to complex enterprise applications provide users with config-
urable options to tailor the behavior of the system. Selecting configuration options or features
allow stakeholders to customize these highly-configurable systems in various ways, giving rise
to a multitude of system variants or configurations. These configuration options may often be
referred to as features, and act as a source for product line architecture [7]1. Along with the de-
sired functional role, the features often have secondary influences on non-functional properties
like performance or cost.
Analyzing performance is a critical step in the evaluation of software quality. It helps developers
in judging how far the software matches the performance requirements. However, especially in
the case of configurable systems, this task is not trivial. Due to feature combinatorics, the number
of variants of a configurable system often increases exponentially with the number of features
the system provides. Take SQLite, one of the most widely used database engine, for example:
only 39 features give rise to over 3 million variants [31]. Due to an often complex benchmarking
process, measuring even a single system variant may be costly. In the light of these problems,
recent approaches predict performance based on a small sample of measured variants. Siegmund
et al. [31] proposed a measurement-based prediction approach that detects performance-relevant
feature interactions using specific sampling heuristics that meet different feature-coverage cri-
teria. Guo et al. [13] used a statistical learning technique to infer performance prediction rules
based on random samples. These approaches depend on certain sampling strategies (i.e., select-
ing a specific set of configurations to be measured) that provide fixed termination criteria for
the sampling process to achieve an acceptable prediction accuracy (e.g., 90%). However, these

1However, we contextualize our study to any configurable system, without holding any assumption on its relation
to product lines. We overload the term feature, and use it to refer to the configurable options.

1

sampling strategies cannot dynamically adjust the sampling process, including termination, in
terms of the specific characteristics of a given system, so they may measure more variants than
necessary.

In this work, we study the learning behavior of performance prediction models with respect
to size and quality of training samples. Consequently, we aim at a smart sampling strategy that
dynamically determines a “good” sample for a given system. A sample is considered good if it
is small enough to decrease the measurement effort and large enough to increase the prediction
accuracy at the same time. To quantify the goodness of a sample, we introduce a composite
model of sampling cost [33], which considers the measurement effort and prediction accuracy
simultaneously. We investigate two sampling strategies widely used in data mining: a classical
technique, called progressive sampling [27], and a state-of-the-art technique, called projective
sampling [20]. We conduct experiments on six real-world configurable systems and compare
the two sampling strategies in terms of sampling cost. Furthermore, we enhance projective
sampling by incorporating two heuristics for initial sample generation: a heuristic based on t-
way (e.g., 2-way and 3-way) feature coverage, as commonly used in combinatorial testing [18],
and a novel heuristic based on feature frequencies. We empirically compare the results of these
sampling strategies on our six real-world configurable systems. The thesis focuses primarily on
variability-aware performance prediction, which studies performance of a system with respect
to configurable features. We do not take into account performance influence due to other factors
like workload.

In summary, we make the following contributions:

• We adapt progressive and projective sampling strategies to performance prediction of con-
figurable systems, and we compare them in terms of the sampling cost, balancing predic-
tion accuracy and measurement effort.

• We propose a heuristic based on feature frequencies to guide the initial sample generation
of projective sampling. We compare it to a common heuristic based on t-way feature cov-
erage.

• Empirical results on six configurable systems demonstrate that projective sampling us-
ing the feature-frequency heuristic is cost-efficient. That is, it hits a sweet spot between
prediction accuracy and measurement effort. Moreover, we empirically identify the best
projective function for projective sampling in our experimental setup.

• We conduct a thorough sensitivity analysis on our cost model parameters. Apart from giv-
ing us an insight on how different parameter values influence the prediction process, our
analysis can help practitioners choose the appropriate strategy for their system.

2

• Learning behavior of a system is often a derivative of two major factors. The underlying
prediction model and the specific system under study. We use our case studies to look
deeper into this assumption, and study how sample quality play a role in determining the
learning behavior of a prediction model.

1.1 Performance prediction in practice

Figure 1.1 illustrates the general process of performance prediction by sampling. It starts with
an initial sample of measured configurations, which are used to build the prediction model. A
good initial sample significantly reduces the iterations of the entire prediction process. State-of-
the-art approaches fix the size of the initial sample to the number of features or potential feature
interactions of a system [31, 13]. However, such a strategy might not be the optimal one, as the
number of features (and their interactions) can be high and, at the same time, an acceptable pre-
diction accuracy might be achieved using a substantially smaller set of measured configurations.
In our approach, we use a combination of random sampling and feature-coverage heuristics to
dynamically build the initial sample. In particular, we propose a feature-frequency heuristic for
the initial sample generation, and we compare it to a technique based on t-way feature cover-
age, commonly used in combinatorial testing [18]. Then, we build prediction models using a
statistical learning technique, called Classification and Regression Tree (CART), which has been
demonstrated to be fast and accurate for performance prediction of configurable systems [13].

In previous work, prediction accuracy was the main evaluation metric used to estimate the
utility of the prediction models [31, 13, 34]. Recognizing the fact that there is a cost involved
in measuring the sample of configurations for building the prediction model, in our work we
consider both measurement effort, and prediction accuracy, to comprehensively evaluate the pre-
diction model. To this end, we propose sampling cost as the evaluation metric that quantifies
the utility of a sampling strategy by taking not only prediction accuracy into account, but also
measurement effort. Section 3 discusses the cost model in detail.

Most prediction models, including the ones used in our study are built in an iterative manner.
The performance engineer measures a few configurations of a system (i.e., the sampling set),
which are divided into a training set and a testing set2. The training set is used to build a pre-
diction model. This model is then evaluated using an evaluation metric on the testing set. If the
value of the metric for this model falls within an acceptable range, the process stops, otherwise

2Although we do not explicitly consider evaluation set, our cost model of section 3 is generic enough to include
these additional measurements

3

Start

End

Figure 1.1: General process of performance prediction by sampling

more measurements are added to the sample for refining the prediction model. This iterative
process can be illustrated in the form of a learning curve [27], as shown in Figure 1.2.

The learning curve of Figure 1.2 relates accuracy to the size of the training set. The horizontal
axis represents the size of the training set used to build the prediction model; the vertical axis
shows the accuracy of the corresponding model calculated using the testing set. An ideal learning
curve has three distinct regions. The first region has a steep incline, indicating rapid increase in
accuracy when adding sample points. The second (optional) region has a gradual increase in
prediction accuracy. Finally, the third region saturates in a plateau, where adding further sample
points will not result in significant accuracy improvements anymore. In traditional progressive
sampling, the smallest sample size for which the prediction model returns acceptable values in
terms of the evaluation metric is called the optimal sample size.

Our goal is to design a smart sampling strategy that reaches the optimal sample size as fast
as possible in terms of sampling cost. To this end, we define a stopping criterion based on the
sampling cost. Moreover, we investigate two sampling strategies widely used in data mining:
progressive sampling [27] and projective sampling [20], which will be explained in section 4.

4

1 2 3

Learning curve

A
c
c
u
ra

c
y

Sample size
n* (optimal sample size)

Figure 1.2: Regions of the learning curve in dependence of the sample size: (1) Steep incline; (2) Gradual
incline; (3) Plateau; n∗: marks the optimal sample size

Table 1.1: Learning curve points (λn) for Apache (n : sample set size, ϵn : relative error %)

n ϵn n ϵn

10 21.51 60 7.88
20 10.92 70 7.53
30 9.00 80 7.43
40 8.62 90 7.28
50 8.15

5

Chapter 2

Definitions and Running Example

We represent all features of a configurable software system as a set X of binary decision vari-
ables. If a feature is selected in a configuration, then the corresponding variable x is equal
to 1, and 0 otherwise. We denote the number of all features of a system as N , that is, X =
{x1, x2, ..., xN}. We represent each configuration of a system as an N -tuple, assigning value 1
or 0 to each variable in X . We denote all valid configurations of a configurable system as set X.

A learning curve represents a mapping between a training-set size and the corresponding
accuracy. A pair λn = (n, ϵn) represents a point in a learning curve, where n is the size of the
training set and ϵn denotes the prediction error of a model built with a training set of size n.
Assuming Sn ⊆ X as a training set (of size n), since we reuse samples from previous iterations,
the sample set Sn has only one additional new configuration as compared to set Sn−1.

For example, one of our subject systems of Section 6, Apache, has a total of 9 features,
and the total number of all valid configurations is 192. We follow the strategy used by Guo
et. al. [13] to generate the valid configurations. Table 1.1 shows the learning-curve points for
Apache measured at an interval of 10 configurations. At each step, 10 additional configurations
are measured and added to the training set. The accuracy of the prediction model (CART in our
case) is calculated at each step based on a testing set of a size equal to the training set, randomly
sampled from the set of configurations not measured so far.

6

Chapter 3

Cost Model

Typically, performance prediction models are evaluated on the basis of their prediction accuracy.
It is also common knowledge, and apparent from the learning curve (Figure 1.2), that usually
a larger training set results in higher prediction accuracy. However, a large training set is often
infeasible in terms of measurement effort. Thus, any performance prediction model built for
this purpose should be evaluated not only in terms of prediction accuracy, but also in terms
of measurement cost involved in building the training and testing sets. Weiss and Tian [33]
introduced the concept of utility-based sampling, in which they combined the above two factors
in the form of a composite cost model. We have modified the original cost model of Weiss and
Tian [33] to include the cost incurred in measuring the testing set along with the training set:

TotalCost = CostMeasurement(Training)

+ CostMeasurement(Testing)

+ CostModelBuilding

+ CostPredictionError (3.1)

We can simplify the above cost model by ignoring the cost incurred in building a performance
prediction model, as for CART, which is used in our approach, this cost is computationally
insignificant, compared to the other cost factors. Therefore, given a training set of size n, we
have the following cost function of n:

TotalCost(n) = θ · n+ ϵn · |S| ·R (3.2)

where θ (>1) is the multiplier accounting for the additional samples in the testing set. For
example, a 50:50 split between the training and testing sets, will result in a θ value 2 (1+1) - one

7

each for training and testing set. Similarly, a θ value 3 (2+1) would mean that the testing set is
twice the size of the training set. ϵn is the prediction error of this performance prediction model
built with the n configurations, |S| is the score set (i.e., the number of configurations whose
performance value will be predicted by the model), and R is a tuning parameter that controls the
ratio of the cost incurred due to the prediction error to the cost of acquiring training samples.
For example, R = 0.5 means that the cost to measure a configuration for the training sample is
twice the cost arising from an incorrect prediction of the performance of a configuration. The
actual value of R is problem specific and shall be set by domain experts. One way to do this is
by basing the measurement effort and prediction cost in the same unit. For instance, companies
often use man-hours as the unit of choice to quantify investment efforts [9]. In such scenarios,
the value of R can be derived by calculating the ratio of investment required in man-hours for
the two factors.

An interesting characteristic of the cost function is that, for a well-behaved, monotonically
non-decreasing learning curve, the cost function is convex (see Figure 4.1b) [20]. This charac-
teristic enables us to easily find the global minimum of the cost with respect to the sample size
(see Section 4).

8

Chapter 4

Sampling Strategies

In this section, we discuss two sampling strategies for building the training set independent of
the prediction model. We assume the learning curve of the prediction model to be well behaved,
that is, monotonically non-decreasing. We argue that this is a reasonable assumption based on
evidence from previous work [23] [12] and on our experience studying the data from our six
subject systems. There are local variations, though, where additional sample points sometimes
result in a reduced prediction accuracy, and we address them by using a moving-average smooth-
ing technique on the data points [15]. Still, for a wide range of sample sizes, we see the learning
curve to be monotonically non-decreasing in our experiments.

4.1 Progressive Sampling

Progressive sampling is a popular sampling strategy that has been used for a variety of learning
models [27] [21]. The central idea is to use a sampling schedule n0, n1, n2, n3, ..., nk, where
each ni is an integer that specifies the size of the sample set that is used to build a performance
prediction model at iteration i. Based on how the size of the sample set in each iteration is
calculated, progressive-sampling strategies can be divided into two kinds [16]. The first one is
arithmetic progressive sampling, where in each iteration, we add a constant number of additional
sample points to the training set according to the equation ni = n0 + i ∗ a. The second kind is
geometric progressive sampling, where the sample-set sizes are built in geometric progression,
according to the equation ni = n0 ∗ ai. The parameter a is a constant that defines how fast we
increase the size of the sample set.

The primary difference between arithmetic and geometric progressive sampling is the number
of sample points we add in each iteration, and using geometric progressive sampling, we can hit

9

the plateau region in the learning curve in fewer iterations [27]. This is an advantage in cases
where building the model is an expensive process. For example, as listed in Table 1.1, if we
set an acceptable prediction accuracy of the system to 92%, we can observe that the optimal
sample size for that accuracy is 60. If we start with an initial training set size of 10 and add 10
more configurations in each iteration reusing samples from preceding iterations, the arithmetic
sampling scheme needs

10(iteraton0) + 10(iteraton1) + 10(iteraton2)

+10(iteraton3) + 10(iteraton4)

that is, 50 measurements with the model being built 5 times, once in each iteration. For geometric
progressive sampling, if we start with the same 10 measurements and a minimum common ratio
of 2, the number of measurements needed is

10(iteraton0) + 10(iteraton1) + 20(iteraton2)

+40(iteraton3)

80, which is 30 more than that of arithmetic progressive sampling, although the model is built
only 4 times.
For performance prediction of configurable systems, the cost of acquiring training samples by
measuring system configurations usually overrides the cost of building the performance predic-
tion model (CART in our case), thus we consider only arithmetic progressive sampling in what
follows.

Stopping Criteria: For both arithmetic and geometric progressive sampling, we need to de-
cide when to stop sampling more configurations for measurement. This is a critical step that
needs to be performed in every iteration and to check whether the built prediction model has
converged to an acceptable prediction accuracy. Next, we discuss two common stopping criteria.

4.1.1 Gradient-Based

Linear Regression with Local Sampling (LRLS) uses the gradient of the learning curve to detect
convergence [22]. Using this method, we build additional models in the local neighborhood of
ni and determine their accuracy. We use these additional sample points to fit a linear regression
line and calculate the gradient, as illustrated in Figure 4.1a. If the gradient is less than a certain
threshold, we stop sampling and designate the sample size used in that iteration to be the final
sample size. However, this naive approach does not take the factor cost into account. Further-
more, it has the drawback of possibly getting stuck in a local plateau of the learning curve.

10

Sample size

A
c

c
u

ra
c

y

0 100 200 300 400 500

(a) Gradient-based
Sample size

C
o

s
t

50 100 150

1
0
0

2
0
0

3
0
0

(b) Cost minimization

Figure 4.1: Two stopping criteria for progressive sampling

4.1.2 Cost Minimization

As the measurement cost is of primary importance in our case, LRLS-based convergence detec-
tion is not well suited. A more pragmatic approach is to use the cost function of Equation 3.2 to
detect convergence of the learning curve [33]. Using this method, for each iteration, we calculate
the total cost of using the model with ni sample measurements. This problem now translates
into an optimization problem, where the objective is to find ni that minimizes the cost function.
Since the cost function is a convex function for well-behaved learning curves (cf. Figure 4.1b),
we can calculate a sample size that minimizes the total cost when we observe the first increase
in total cost. Thus, if the first increase in total cost is observed in iteration i, for a sample size of
ni, then the optimal sample size guaranteeing minimum cost is ni−1. As our evaluation of pre-
diction models is based on cost, we use the cost-minimization stopping criterion for progressive
sampling, when comparing it to projective sampling, which we describe next.

4.2 Projective Sampling

One of the weaknesses of progressive sampling is that the prediction model can converge only
after several iterations with a large sample size, and there is no way to determine this unless we
have actually built the model. This defeats the entire purpose of the prediction procedure, as there
is a risk that, even after spending resources in running benchmark tests for several configurations,
the cost and accuracy of the model at the point of convergence might not be acceptable for the
user. Projective sampling addresses this problem by approximating the learning curve using a
minimal set of initial sample points [20], thus providing stakeholders with an estimate of the

11

Figure 4.2: Overview of projective sampling

cost projection of the entire prediction process, thus helping them to decide whether to adopt
the prediction model for their system. We define the cost incurred in generating this projected
learning curve as the decision cost.

In Figure 4.2, we provide an overview of the steps involved in projective sampling. Projective
sampling starts with an empty training set, adding a constant number nδ of configurations to the
training set in each iteration. There is no minimum constraint to the value of the constant nδ

apart from being greater than 0, and we have seen from our experiments that even a value of 1
can give good results. In each iteration, we build the model and calculate the accuracy, this way
generating a sample point for the learning curve. The size of these initial sample points or the
number of iterations the algorithm should run, varies with the number of features of the system,
and we use a novel feature-frequency heuristic for sample generation (Section 5) to build this set.

This initial set of sample points represents a partial learning curve. In the next step, we search
for a best-fit function that can extrapolate the remaining learning curve. Learning curves for
black-box performance prediction methods, such as CART, exhibit usually good correlation with
one of four different types of projective functions [12] [20], as shown in Table 4.1. Parameters a
and b are the co-efficients of the projective functions, and |S| and R are the score set and the cost
ratio as defined in Equation 3.2. Using the information from the initial sample points, we follow
the approach proposed by Last [20] in selecting the projective learning function that exhibits
highest correlation with the sample points. Once we have determined the best-fit function that
can approximate the learning curve accurately, we can calculate the coefficients of the projected
function using the least-squares method [24].

The optimal sample size can be defined as the size of the training sample that minimizes the
cost function of Equation 3.2, ensuring the most optimal tradeoff between measurement cost and

12

Table 4.1: Projective functions of learning curves

Name Equation Optimal Sample Size

Logarithmic err(n) = a+ b.log(n) n∗ = − (R·|S|·b)
θ

Weiss and Tian err(n) = a+ bn
(n+1)

n∗ =
√

(−R·|S|·b)
θ

− 1

Power Law err(n) = anb n∗ = (−θ
R·|S|·a·b)

1
b−1

Exponential err(n) = abn n∗ = logb

(
−θ

R·|S|·a·ln b

)
prediction accuracy. In projective sampling, we have knowledge about the projected learning
curve, which gives us an estimate of the prediction error as a function of the sample size. If
we substitute the value of err in the cost equation, we can calculate the total cost of the predic-
tion process as a function of the sample size n. Figure 4.1b shows an example of cost versus
sample size for Apache. We can see from the figure that the cost function is convex, which
holds for a well-behaved learning curve having the distinct regions as described in section 1.1
[20]. Since all the candidate projective learning curves follow this property, the first derivative
d(Cost(n))/dn = 0 of the cost function is a global minimum. The solution of this equation
gives us the sample size n∗ that guarantees minimum cost. Table 4.1 shows the values of n∗ (cf.
Fig. 1.2) for the four different learning-curve equations in terms of the cost-equation variables
of Equation 3.2. Detailed derivation of the formulae is presented in appendix A.1. In the follow-
ing sections, we use n∗ to represent the optimal sample size that minimizes the cost function of
Equation 3.2.

13

Chapter 5

Initial Sample Generation

5.1 Feature-frequency based sample generation

An important step in projective sampling is the generation of the initial sample points that are
used to project the learning curve. Given a sample point λi of a learning curve, our objective is
to sample a set Λδ = {λ1, λ2, ..., λδ}, such that Λδ can be used to generate the projected learning
curve accurately.

There are two key aspects that need to be considered when designing sampling strategies
to build this set of sample points. First, one of the advantages of projective sampling is that it
gives stakeholders an estimate of the optimal sample size n∗ with minimal investment in terms
of measurement cost. However, to generate this projected curve, they need to measure δ con-
figurations and build the initial sample set. As defined in the last section, the cost of measuring
these configurations is the decision cost. Thus, the size of the set or the value of δ is critical.
To make the sampling strategy cost efficient, the value of δ should be less than n∗, otherwise we
would end up measuring more than the optimal number of configurations. Second, the accuracy
of the projected learning curve matters. It is important that the initial sample set should be able
to produce a projected learning curve that approximates the real learning curve accurately. Since
the size of this initial set Λδ needs to be kept small, there is a high probability that a suboptimal
strategy in generating these initial sample points will result in a projective function that is not
an accurate reflection of the learning behavior of the model. This can have a cascading effect
throughout the entire sampling process and result in a value of sample size (n∗) that is not optimal
in terms of cost.

To generate the initial sample set for projective sampling, we propose a heuristic based on
feature frequencies: For a configurable system, users can select or deselect features, and there

14

is typically a relation between features and the overall performance of the system in terms of
throughput or execution time [13]. As a consequence, the performance of the system may vary
substantially depending on whether a certain feature is selected or not. For example, in a Web
application, the system might slow down if logging is enabled, because it takes extra time to
perform I/O operations involved in directing messages to a log file. Thus, the first requirement of
a good representative sample is that the sample configurations in our initial sample set Λδ should
have each feature selected, at least, once. Also, since feature deselection can have an influence
on the performance values too, it is important that the sample configurations in Λδ should have
each feature deselected, at least, once. These constraints on feature selection and deselection
apply only to optional features; mandatory features are active for all the configurations in the
sample set.

In terms of our problem definition (Section 2), the set Sδ represents the set of δ distinct
configurations in the initial sample set Λδ. For a given feature i, the frequency of this feature is
defined by the following equation:

1 ≤
δ∑

j=1

xi(j) < δ (5.1)

where xi ∈ {1, 0} is a Boolean variable representing a feature i being selected or deselected
for a configuration j. Table 5.1 provides an example set Sδ of sample configurations and their
corresponding feature selections.

The initial sample set Λδ should exhibit a good correlation with the projected learning curve.
This is because the projected learning curve generated using the sample set is indicative of the
learning progress of the prediction model with respect to the sample size. If the correlation
is low, the projected curves might not model the learning behavior of the system accurately.
Prior work has shown that random sampling can be used for accurate performance prediction
of configurable systems [13]. In our approach, we use a combination of incremental random
sampling and a feature-frequency heuristic to build the initial sample. To keep track of feature
frequencies, our algorithm uses a 2×N feature-frequency table T (Table 5.2), where the columns
of the table represent N optional features of the system. Each cell in the first row contains the
number of configurations in the training set, for which the corresponding feature is selected;
the second row contains the number of configurations in the training set, for which the feature
is deselected. Table 5.2 shows the feature frequencies for the configurations in Table 5.1. For
example, feature x2 is selected in 5 and deselected in 3 configurations.

Algorithm 1 defines the steps involved in the generation of Λδ. The most important parameter
in the algorithm is thresh freq . This parameter sets a lower bound on the values of the feature-
frequency table, which means that the sample configurations used to generate the sample points

15

Table 5.1: Coverage of selected features (xi = 1) and deselected feature (xi = 0)

Conf. Features

x1 x2 x3 .. xi xN

1 0 1 1 0 0 0 1 1
2 0 0 1 1 1 0 0 0
3 1 1 0 1 0 1 1 1
4 0 1 0 1 0 1 0 0
5 1 1 0 0 0 1 0 1
6 0 0 0 1 1 1 0 0
7 1 1 0 1 0 0 0 1
8 1 0 0 0 1 0 0 1

Table 5.2: Feature frequency table T. Row 1 : frequency of selected features. Row 2: frequency of
deselected features

Features

x1 x2 x3 .. xi xN

selected 4 5 2 .. 3 5
deselected 4 3 6 .. 5 3

for the learning curve should have all the features selected and deselected for, at least, thresh freq
times. This threshold makes sample generation robust and diminishes the effect of any outliers
in the sample configurations. The second parameter is the number of sample points that we need
to project for a non-linear learning curve, which is 3, at least.

In the first step, the algorithm randomly samples a valid configuration and adds it to the
current sample set Scurr (Lines 2 and 3). The feature-frequency table T is then updated by
calculating the number of features that are selected and deselected in Scurr (Line 4). In the next
step (Line 5), the CART prediction model is built using the current configuration set Scurr, and
the prediction error ϵcurr is calculated. Using the set Scurr and ϵcurr, we obtain a sample point
λcurr for the learning curve. The algorithm then adds the sample point λcurr generated in the
current iteration to the set Λδ (Line 7). Variable curr freq holds the current minimum value of
feature selection and deselection frequencies in T. In the end, the set Λδ forms the final set of

16

Algorithm 1 Feature-frequency based sample generation for projective sampling
1: while (curr freq < thresh freq OR (curr ≤ 3) do
2: c← RAND() ◃ Randomly generate a configuration c
3: Scurr ← Scurr ∪ c
4: UPDATE(T) ◃ Update the feature-freq table T
5: ϵcurr ← CART(Scurr)
6: λcurr = (curr, ϵcurr)
7: Λδ ← Λδ ∪ λcurr ◃ Add the current learning curve sample point (λcurr) to Λδ

8: curr freq ← min(t[1, j], t[2, j])
9: curr ← curr + 1

10: end while

sample points we need to project the learning curve.

17

5.2 t-way sample generation

The performance profile of a system may not depend solely on individual features, but also inter-
actions among features. For example, in a Web application, the performance may take a hit when
caching is turned off and the application performs blocking reads [35]. Effects of interacting fea-
tures have been studied extensively for fault localization in the field of combinatorial testing,
where it has been seen that covering a 2-way and 3-way feature interactions can detect 93% and
98% of defects in a software [18]. Effects of feature interactions on performance prediction have
also been studied too [30] [31]. Whereas a strategy based on (t-way) feature coverage might be
an effective method to generate training samples for a prediction model, our objective is funda-
mentally different. Our primary objective is to generate sample points that estimate the learning
behavior of the prediction model.

The first step in t-way sampling is to generate a covering array (CA) of strength ‘t’. A
covering array for a system of X features has the following properties:

(1) Following the formulation from section 2, each feature xi : 1 ≤ i ≤ X can take 2 values.
Either 1 when the feature is active, or 0 when inactive.

(2) If SCA(t) is a covering array of strength t, the rows of any |SCA(t)|×t subarray must cover
all possible combination of feature values (2t), for the participating t features in the subarray, at
least once1.

where |SCA(t)| is the size (number of rows) of the covering array. Algorithm 2 shows the pro-
cess of generating samples using the t-way covering array. Compared to the previous algorithm,
t-way selects a random configuration from the t-way covering array without replacement, instead
of the entire configuration space. Also, since the covering array has a fixed size, the sampling
stops when all the configurations from the covering array are included in Scurr. Sampling from
a pre-defined set (SCA(t)), eliminates the need of feature-frequency based stopping criteria (line
4 and 8 of algorithm 1).

In Section 7, we compare the two sampling methods on the basis of total cost and accuracy.

1 The restriction of at least once is a more generalized form of at least ‘k’ times, used popularly for combinatorial
testing

18

Algorithm 2 t-way sample generation for projective sampling

1: while (curr ≤ |SCA(t)|) do
2: c← SELECT() ◃ Select a configuration from SCA(t)
3: Scurr ← Scurr ∪ c
4: ϵcurr ← CART(Scurr)
5: λcurr = (curr, ϵcurr)
6: Λδ ← Λδ ∪ λcurr ◃ Add the current learning curve sample point (λcurr) to Λδ

7: curr ← curr + 1
8: end while

19

Chapter 6

Subject Systems

To compare progressive and projective sampling, we evaluate the two sampling strategies in
terms of the sampling cost on six real-world configurable software systems. The six subject sys-
tems used in our evaluation include:

• Apache HTTP Server is the most popular Web server on the Internet. In our experiments,
we consider 9 features resulting in 192 valid configurations.
• Berkeley DB (C) is an embedded key-value-based database library that provides scalable

high-performance database management services to applications. Some of the applica-
tions using Berkeley DB are Subversion, Bitcoin, and Sendmail. In our experiments, we
consider 18 features resulting in 2560 valid configurations.
• Berkeley DB (Java) is a re-implementation of Berkeley DB in Java with 26 features and

400 valid configurations.

Table 6.1: Overview of the six subject systems. Lang: language; LOC: lines of code; |X|: number of all
valid configurations; N : number of all features

System Domain Lang. LOC |X| N

1 Apache Web Server C 230,277 192 9
2 LLVM Compiler C++ 47,549 1,024 11
3 x264 Encoder C 45,743 1,152 16
4 Berkeley DB Database C 219,811 2,560 18
5 Berkeley DB Database JAVA 42,596 400 26
6 SQLite Database C 312,625 3,932,160 39

20

• LLVM is a popular compiler and virtual-machine framework used for a variety of lan-
guages. We consider 11 features and 1024 valid configurations.
• SQLite is the most popular lightweight relational database management systems today. It

is used by several browsers and operating systems as an embedded database. We consider
39 features that give rise to more than 3 million valid configurations.
• x264 is a video-encoding library that encodes video streams to H.264/MPEG-4 AVC format.

It is used by several video converters and media players, such as VLC. x264 has 16 features
and 1152 valid configurations.

More information on these systems can be found as a part of SPL Conqueror project [31]; Table
6.1 provides an overview of the subject systems.

21

Chapter 7

Evaluation

By conducting experiments on six real-world configurable systems, we aim at answering the
following research questions:

• RQ1: Between progressive and projective sampling, which is cost efficient? (Section 7.1)
• RQ2: Which is the best projective function that fits the learning curve of a configurable

system? (Section 7.2)
• RQ3: Is a heuristic based on t-way feature coverage or feature frequencies better for the

initial sample generation of projective sampling? (Section 7.3)

7.1 RQ1: Progressive vs. Projective

Since cost efficiency is the primary determinant for judging the effectiveness of a sampling
strategy, we compare the total cost of sampling and prediction according to Equation 3.2, for
all six subject systems, using progressive and projective sampling. For both progressive and
projective sampling, we calculate the cost and accuracy of building prediction models with the
optimal sample set size (n∗). The value of n∗ is determined through the respective sampling
techniques. In the case of projective sampling, the accuracy figures shown is the real accuracy
calculated after the prediction model is built with n∗ samples and not the accuracy estimated
through the projected learning curve at n∗. To calculate the optimal sample size, we set the size
of the score set (S) to be proportional to the total number of configurations of the system (X).
Specifically, the size of S is set to |X|/3. The tuning parameter R, which controls the cost ratio
between measurement effort and prediction accuracy, is set to 1. This means that we equally
weigh the cost incurred in measuring samples and the cost due to prediction error. Evaluation of

22

sensitivity of our model to the cost ratio (R) is presented later in section 8.

Figure 7.1 shows the change in total cost of sampling with respect to sample size for the six
subject systems. The blue marker and the n∗ value is the optimal sample size and cost estimated
by progressive sampling; the black wedge indicates the global minimum and the black square
indicates cost estimated through projective sampling. Since projective sampling works on a
cost curve which is an approximation of the real cost, the black square of projective sampling
cost might not necessarily lie on the real cost curve which is shown in the figure. We see that
progressive sampling was able to reach the global minimum for only 3 out of the 6 subject
systems. This was possible in cases where the cost curve exhibited certain conditions : presence
of singular minima (Apache and Berkeley DB (JAVA)) or the first local minima (ordered by the
sample size) is also the global minima (SQLite). The cost curve follows this condition when the
learning is well behaved i.e monotonically non-decreasing with distinct regions (steep incline,
gradual incline, plateau), as seen in the curves of Apache and Berkeley DB (JAVA) (Fig. 7.2).
Projective sampling, on the other hand, is more robust. For learning curves that do not follow
this established pattern, e.g temporal variations in Berkeley DB (C), jumps in x264, projective
sampling is an accurate estimation of the global minimum cost. Even for well-behaved learning
curves, projective sampling’s estimate of cost is either same (Apache) or in close proximity of
global minimum (Berkeley DB (JAVA) and SQLite).

Although we prioritize cost efficiency over the absolute accuracy, we also compare the two
strategies based on accuracy, to validate whether the accuracy of the model is acceptable. The
prediction accuracy is calculated based on a testing set that is of the same size as the training
set. Also, we run the experiment 100 times and the prediction accuracy reported is the average
of the runs. We see in Table 7.1 that in terms of accuracy, there is no significant difference
between progressive and projective sampling. This observation vindicates the idea that predic-
tion accuracy by itself is not an appropriate metric for judging the utility of the sampling process.

Decision Cost. One of the key benefits of projective sampling is its ability to give a pro-
gnosis of the learning behavior of the prediction model. In other words, stakeholders can use
the projected learning curve to obtain an estimate of the prediction accuracy and cost. They can
check whether this value falls under an acceptable range and decide whether to use the prediction
model. The cost incurred in taking this decision is the same as the cost incurred in building the
initial configuration set, which is in our case the size of the set Λδ. Table 7.2 shows this cost for
each of the six systems. We can see that Λδ is significantly smaller than the total cost incurred
when the final prediction model is built with an optimal training set size.

23

Table 7.1: Prediction accuracy at n∗ (optimal sample size) achieved by different sampling strategies

Apache Berkeley DB (C) Berrkeley DB (JAVA) LLVM x264 SQLite
ff = 3 91.78 94.70 94.23 96.33 95.58 96.71

feature-frequency

ff = 4 92.02 96.25 95.08 96.51 95.82 96.73
ff = 5 92.10 96.10 95.00 96.58 97.37 96.74
ff = 6 92.15 98.51 95.78 96.64 97.49 96.59

t = 2 92.23 92.43 95.46 95.86 94.04 98.81
t-way

t = 3 92.38 99.43 95.25 96.54 98.64 99.30

progressive 92.71 99.58 97.04 98.50 99.81 96.86

Table 7.2: Comparison of decision cost (size of Λδ) and total cost

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM x264 SQLite

Decision Cost 19 22 24 17 23 671
Total Cost 633 1390 366 1269 671 7604

24

0 50 100 150

Sample Size

600

800

1000

1200

1400

C
o
s
t

n*:50

apache

(a) Apache

50 100 150 200 250 300 350

Sample Size

10000

20000

30000

40000

50000

60000

70000

C
o
s
t

n*:60

bc

(b) Berkeley DB C

0 20 40 60 80 100 120 140 160 180

Sample Size

500

1000

1500

2000

C
o
s
t

n*:60

bj

(c) Berkeley DB JAVA

50 100 150 200 250

Sample Size

800

1000

1200

1400

1600

1800

C
o
s
t

n*:70

llvm

(d) LLVM

50 100 150 200 250 300

Sample Size

1000

1500

2000

2500

3000

3500

C
o
s
t

n*:80

x264

(e) x264

0 200 400 600 800 1000

Sample Size

6800

7000

7200

7400

7600

7800

8000

C
o
s
t

n*:100

sqlite

(f) SQLite

Figure 7.1: Cost curve and minimum total cost estimated through various sampling strategies. - Pro-
gressive sampling; �-Projective sampling; N-Global minimum; - Cost curve

25

0 20 40 60 80

Sample size

0

20

40

60

80

100

A
c
c
u
ra

c
y

Apache

50 100 150 200 250

Sample size

20

40

60

80

100

A
c
c
u
ra

c
y

Berkeley DB (C)

0 20 40 60 80

Sample size

0

20

40

60

80

100

A
c
c
u
ra

c
y

Berkeley DB (JAVA)

0 20 40 60 80100120140
Sample size

0

20

40

60

80

100

A
c
c
u
ra

c
y

LLVM

50 100 150 200 250

Sample size

65

70

75

80

85

90

95
A

c
c
u
ra

c
y

SQLite

0 50 100 150 200

Sample size

0

20

40

60

80

100

x264

A
c
c
u
ra

c
y

Figure 7.2: Learning curves for progressive and projective sampling. - Progressive sampling;
- Projective sampling (exponential curve); , - Optimal sample size (n∗); - Initial data-points for
projection

26

7.2 RQ2: Comparison of Learning Curves

Figure 7.2 shows the learning curves for each of the six subject systems generated by progressive
and projective sampling. Although, for evaluation we had run the sampling process 100 times,
this figure shows the curve for a randomly selected run. The red circles denote the initial learning
curve sample points (Λδ), generated using the feature-frequency heuristic. The yellow curve
shows the actual learning curve of the system, and the green curve shows the projected one.

For projective sampling, we choose the projective function that has the highest correlation
with the initial set Λδ and for which the optimal number of samples (n∗) generated by that curve
is less than the total number of configurations of the system (X). The optimal sample size for a
class of projective functions can be calculated from the equations in Table 4.1. The upper bound
on the optimal sample size helps us to eliminate unrealistic sample sizes and thus to narrow
down our set of candidate projective functions. The triangular wedges show the optimal sample
sizes (n∗) for each of the curves. For both progressive and projective sampling, these values are
generated using the cost-minimization techniques described in Section 4.

We can see from Figure 7.2 that exponential functions are the most robust among all the
projective functions when used to fit the learning curve - they were the chosen class for all 6
systems. Although the figure shows the results of a single run, as we would see later in section
9, this is in tune with our overall findings. The effectiveness of exponential functions is corrob-
orated by the fact that they had overestimated the accuracy of the learning curve at the optimal
sample size by only 5%, with a standard deviation of 4%. For the generation of a cost-effective
optimal sample size n∗, progressive sampling is sensitive to local variations in the learning curve
and gets stuck in a suboptimal region, for example, in Berkeley DB (C). In contrast, projective
sampling generates realistic values of the optimal sample set, which are high in accuracy as well
as cost efficient.

Table 7.3: Size of Λδ (t-way vs. feature-frequency)

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM SQLite x264

t-way 2-way 8 20 10 10 21 12
3-way 18 56 27 17 60 29

ff=3 13 12 17 12 450 14
ff=4 16 16 20 14 522 19

feature frequency ff=5 20 22 24 18 671 21
ff=6 23 27 31 20 803 27

27

ff-
3(1

3)

ff-
4(1

6)

ff-
5(2

0)

ff-
6(2

3)

2-w
ay

(8
)

3-w
ay

(1
8)

Sampling strategy

540

560

580

600

620

640

660

680

700

T
o
ta

l
co

st
apache

(a) Apache

ff-
3(1

2)

ff-
4(1

6)

ff-
5(2

2)

ff-
6(2

7)

2-w
ay

(2
0)

3-w
ay

(5
6)

Sampling strategy

1000

1500

2000

2500

3000

3500

T
o
ta

l
co

st

Cost (progressive) =61596

bc

(b) Berkeley DB C

ff-
3(1

7)

ff-
4(2

0)

ff-
5(2

4)

ff-
6(3

1)

2-w
ay

(1
0)

3-w
ay

(2
7)

Sampling strategy

250

300

350

400

450

500

550

600

650

700

T
o
ta

l
co

st

bj

(c) Berkeley DB JAVA

28

ff-
3(1

2)

ff-
4(1

4)

ff-
5(1

8)

ff-
6(2

0)

2-w
ay

(1
0)

3-w
ay

(1
7)

Sampling strategy

1150

1200

1250

1300

1350

1400

1450

1500

T
o
ta

l c
os

t

Global minimum =872

llvm

(d) LLVM

ff-
3(1

4)

ff-
4(1

9)

ff-
5(2

1)

ff-
6(2

7)

2-w
ay

(1
2)

3-w
ay

(2
9)

Sampling strategy

500

1000

1500

2000

2500

3000

3500

T
o
ta

l c
o
st

x264

(e) x264

ff-
3(4

50)

ff-
4(5

22)

ff-
5(6

71)

ff-
6(8

03)

2-w
ay

(2
1)

3-w
ay

(6
0)

Sampling strategy

1000

2000

3000

4000

5000

6000

7000

8000

T
o
ta

l c
o
st

sqlite

(f) SQLite

Figure 7.2: Total cost of prediction calculated by different sampling strategies (100 runs). - Global
minimum cost of prediction; - Minimum total cost calculated by progressive sampling

29

7.3 RQ3: T-Way vs. Feature Frequency

In this section, we compare the t-way heuristic to select the initial sample set, which is widely
used in combinatorial [19] and product-line testing [11], to our proposal of a feature-frequency
heuristic. We use the tool JENNY to generate 2-way and 3-way feature-coverage configurations
used as the initial sample points Λδ

1, and compare it to feature-frequency sampling with thresh -
freq 3 to 6 (ff =3,4,5,6).

Figure 7.2 compares feature-frequency (ff=3,4,5,6) sampling to t-way (t=2,3) with respect
to total cost of prediction, after 100 runs of the sampling process. For reference, the figures
also shows the global minimum cost (blue line) and cost estimated through progressive sampling
(magenta line). The size of the Λδ for each sampling strategy, is indicated in braces.

As shown in table 7.3, the size of Λδ is smaller for 2-way sampling compared to 3-way, since
the number of samples to achieve t-way coverage increases exponentially to the strength of cover-
age (t). For most system (apart from SQLite), the size of Λδ for feature-frequency, is comparable
to 2-way and 3-way sampling. This enables us to control for the size of Λδ while evaluating
the cost estimation of the strategies. The only exception is SQLite, where the size generated by
feature frequency (450-803) is significantly greater than t-way (21-60). This difference throws
light on the drawback of t-way sampling for large systems. Lower strength t-way might not be
able to generate a Λδ set which is an accurate estimator of the projected curve, like we see in the
case on SQLite. To remediate this, a higher strength t-way can be used, which comes with the
trade-off of additional computation complexity. For example, most tools for generating t-way
coverage support upto t=6 strength [36]. Feature-frequence, on the other hand relies on random
sampling, which is computationally cheaper. This enables it to scale efficiently for large systems
like SQLite.

In term of total cost of sampling, feature-frequency’s estimate of cost is closer to the global
minimum for 5 out of 6 systems. The exception being Berkeley DB (C), where 3-way produces
a better estimate. Even then, feature frequency is a close second with a total cost of 1372,
compared to 3-way’s 1342. Similar to our previous evaluation, the cost ratio was set to 1. Section
8 compares the accuracy of cost estimation of the sampling strategies on a broader range of R
values.

1Jenny : http://burtleburtle.net/bob/math/jenny.html

30

Chapter 8

Sensitivity analysis

Sensitivity analysis (SA) is broadly defined as the investigation of potential changes in a multi-
dimensional model’s output with respect to variation in its input parameter values [26]. For the
purpose of sensitivity analysis, a model can simply be considered as a mapping between the input
and output parameters. If we denote x1, x2, ...xn as the input parameters and y1, y2, ...yd as the
output values, then the model M can be represented as

(y1, y2, ...yd) = M(x1, x2, ...xn)

Essentially, sensitivity analysis gives us a better understanding of the model, by reducing
uncertainty in the model’s response. Thus, decision makers use this as a powerful tool to evaluate
the stability and utility of the model.

The first step in sensitivity analysis (SA) is identifying the input factors (including paramet-
ers and their respective values), model and the model output [28]. For a general performance
prediction process, the entire process described in section 1.1, should be considered to be the
model M we want to study for sensitivity analysis. However, in our current analysis we find it
reasonable to restrict the model under study to the cost model of equation 3.2. This restriction of
the model helps in eliminating two factors from the SA process : the prediction model (CART,
SVM etc) and the sampling strategy (projective, progressive). Since, existing literature already
contain extensive exploration of the effects of these two factors on the overall prediction pro-
cess [13] [32] [34], we consider it worthwhile to conduct a systematic SA on the prediction cost
model instead. This choice is also driven by our aim to help practitioners reduce uncertainty in
the cost model.

We determine the input factors of the cost model that needs to be studied for SA from equation
3.2. They are the multiplier (θ), score set size (|S|), cost ratio (R), all of which appear as

31

parameters in the cost equation. We consider the output y of the model to be the total cost of
prediction process. In tune with our overall approach, since accuracy is already incorporated
in the total cost equation, we consider total cost as a more accurate reflection of the utility of
performance prediction.

8.1 Design

Once the input factors, model and output are identified, the next crucial step is to state up front
the questions that needs to be answered through sensitivity analysis [10]. To that end, we ask the
following.

• How sensitive is cost and accuracy of prediction to variations in cost ratio (R). i.e ratio of
the cost of measurement-error to cost of measuring sample configuration.

• How sensitive is cost and accuracy of prediction to variations in training-testing sample
size split.

Sensitivity analysis techniques are broadly categorized into global and local methods. Local
methods study the sensitivity of model outputs to perturbations to a given input parameter value,
around a point of interest. Global methods, on the other hand, measure sensitivity over the entire
range of each input parameter. This is often achieved with the help of prior knowledge about its
probability distribution.
Our SA experiments follow a local strategy because we are interested in studying model output
around a point of interest. For example, for the cost ratio, in absence of any prior information,
we take the case when the cost of measurement is equal to the cost of prediction error (R = 1), as
the point of interest. Also, the fact that we cannot assume an underlying probability distribution
of our model parameters, precludes any attempt at a global sensitivity analysis.

Relating the questions we want to study, and the factors in the cost model of equation 3.2, we
end up with the 3 factors for our sensitivity analysis : cost ratio (R), multiplier (θ) and the size
of the score set (|S|). For a given sample system, the size of the score set is a fixed value, which
can be pre-determined using a model counter [8]. Effectively, this means that for a given system,
considering the score set as one of the factors for SA and varying its value, has no practical
relevance. Thus, we exclude this factor from our analysis.

Our design of sensitivity analysis uses a One-At-a-Time (OAT) design strategy for local sens-
itivity analysis and a quasi-random sequence for parameter valuations. We briefly explain each
of these design strategies.

32

8.1.1 One-At-a-Time (OAT) SA method

One-At-a-Time (OAT) is one of the simplest technique for analyzing local sensitivity around
a base value (point of interest) for an input parameter. A chosen parameter is given a local
perturbation in the vicinity of the base value (x0), and the corresponding change in model output
is noted. The local perturbation can either be positive (x+) or negative (x−).

Table 8.1: OAT sensitivity analysis design

x1 x2 x3

0 x0
1 x0

2 x0
3

1 x+
1 x0

2 x0
3

2 x−
1 x0

2 x0
3

3 x0
1 x+

2 x0
3

4 x0
1 x−

2 x0
3

5 x0
1 x0

2 x+
3

6 x0
1 x0

2 x−
3

Table 8.1 shows the 7 runs of the model that would be required for a model of 3 factors
(x1, x2, x3). The first run (0) of the model is with the base value of each factor. In subsequent
runs (1-7), a single parameter is give a positive or negative perturbation, keeping the rest of the
factors at their base value.

To analyze the local sensitivity to the perturbation, we use the finite-difference approximation
method, where observed changes in the model output is calculated using the following equation
[28].

∂M

∂xi

=
M(xi +∆xi)−M(xi)

∆xi

Where xi : i ∈ 1, 2, ..n are the factors of the model and ∆xi = x+|−
i − xi, is the local

perturbation to the factor. For accuracy of analysis, size of ∆xi typically ranges within ±10% of
xi. In cases where SA deals with calculating slope, or rate of change of the model output, this
guideline helps in preserving local linearity of the model. In fact, this condition of linearity often
acts as a precondition for local sensitivity analysis [37]. As we would show in the subsequent
section, this condition is preserved for all the factors of the cost model.

One of the drawbacks of using OAT method for local sensitivity analysis, is that it cannot
capture any interaction that may occur between the parameters. However, in our case, we believe

33

that this is a reasonable trade-off since the two factors; cost-ratio and the multiplier have minimal
scope for any interaction.

8.1.2 Parameter valuation:

For each factor in our analysis, we set the value of local perturbation as follows:

• Cost ratio : R0 = 1;R+ = 10;R− = 0.1
• Multiplier : θ0 = 2; θ+ = 3

To further investigate model response, often sampling based techniques can be combined
with local SA, by generating a set of sample parameter values in the perturbation interval. In our
case, for both parameters, we use Sobol sampling to generate a set of parameter values within
the intervals [0.1,1],[1,10] for R and [2,3] for θ.

Sobol sequence: Sobol sequence is an efficient technique for generating low-discrepancy se-
quence of quasi-random numbers. The advantage of using Sobol sequence is that the random
numbers generated are equi-distributed in the given interval. This prevents the numbers from
forming a cluster, as often observed in typical pseudo-random number generators. Sobol se-
quence is widely used for sensitivity analysis, and our choice was also influenced by our aim to
achieve an even coverage of the values on the perturbation interval. Figure 8.1 shows a visual
comparison of two dimensional sequence of random numbers generated using Sobol sequence,
and a widely used pseudo-random generator Mersenne-Twister.

34

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Pseudo-random sequence generated using Sobol

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Pseudo-random sequence generated using Mersenne-Twister

Figure 8.1: Sample 2-D pseudo-random sequence : 100,1000,2000 points

8.2 Results

We discuss this section with respect to our two research questions on sensitivity analysis.

35

Effect of cost ratio(R) on total cost and prediction accuracy

The OAT approach helps us to analyse the effect of one factor, keeping the other constant. Thus,
the cost model reduces to a form of:

TotalCost(n∗) = c1 · n∗ + ϵ · c2 ·R (8.1)

where c1 and c2 represent the factors that are kept constant. The equation above calculates
the total cost of prediction for a system, at a certain optimal sample size. The optimal sample
size (n∗) is estimated through projective sampling, as discussed in section 4.2. An increase in the
cost ratio implies that the relative cost to measure configurations for training/testing sample, is
lesser than the cost incurred due to error in prediction (section 3). This means that, to minimize
cost, more sample measurements can be added to training/testing set, which eventually results in
an increase in the optimal sample size (n∗). This in turn, also results in a decrease in the fault
rate (ϵ). Thus, in other words, the overall effect of the change in the cost ratio (R), is influenced
by the shape of the learning curve. Since this curve can vary from one system to the other,
it is futile to analytically estimate the effect of the cost ratio changes on total cost. This leads
to an empirical sensitivity analysis being the appropriate choice to study the effect of this change.

Figures 8.2,8.3 show the effect of cost ratio on total cost of prediction. The figures account
for positive perturbation of R on the interval [1,10], and negative perturbation in the interval
[0,1] respectively. Each point in the curve is the median total cost obtained after 100 runs of the
sampling process, with the corresponding R value. As we observe from the results, total cost of
prediction has close to linear correlation with the cost ratio for all six systems. In other words,
the effect on total cost due to an increasing cost ratio and optimal sample size, dominates the de-
creasing effect of error rate. Table 8.2 compares the rate of change in total cost of prediction with
respect to changes in the cost ratio (R). We follow the finite-difference approximation method
to calculate the rate of change according to equation 8.1.1. Since the growth rate is positively
correlated with the the cost ratio, all the values in table 8.2 are positive.

Accuracy plots of figures 8.2,8.3 show sensitivity of optimal sample size (n∗) and corres-
ponding prediction accuracy to variations in R. As discussed earlier, increase in the cost ratio
(R) results in a corresponding increase in the optimal sample size, which is evident from these
figures. For a well behaved learning curve, this also results in a concomitant increase in predic-
tion accuracy of the model. This accounts for the increasing trend, as seen in the figure, when
the cost ratio increases.

36

1 2 3 4 5 6 7 8 9

Cost ratio (R)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
o
ta

l
c
o
s
t

apache

1 2 3 4 5 6 7 8 9

Cost ratio (R)

92.0

92.2

92.4

92.6

92.8

93.0

A
c
c
u
ra

c
y

65
67

67

71 72
75

77 77 76
76

39

40
40

42

45
47

49
48 48

50

59

64 65
68 71

74 77 77 77
78

apache

(a) Apache

1 2 3 4 5 6 7 8 9

Cost ratio (R)

1000

2000

3000

4000

5000

6000

7000

8000

T
o
ta

l
c
o
s
t

bc

1 2 3 4 5 6 7 8 9

Cost ratio (R)

92

93

94

95

96

97

98

99

100
A

c
c
u
ra

c
y 534

460

444

480

460

411 488456

424

470

209

286

233

242

278
261

267

261

278

284

558 506493457
524

479 518508496 520

bc

(b) Berkeley DB C

1 2 3 4 5 6 7 8 9

Cost ratio (R)

0

500

1000

1500

2000

2500

T
o
ta

l
c
o
s
t

bj

1 2 3 4 5 6 7 8 9

Cost ratio (R)

94.0

94.5

95.0

95.5

96.0

96.5

A
c
c
u
ra

c
y

49 52

55
56 57

59

62 63

61

61

57

52

51

54
53

61
61

60

58

66

46
53

55

56

61 61
62

62
64

63

bj

(c) Berkeley DB JAVA

37

1 2 3 4 5 6 7 8 9

Cost ratio (R)

0

2000

4000

6000

8000

10000

12000

T
o
ta

l
c
o
s
t

llvm

1 2 3 4 5 6 7 8 9

Cost ratio (R)

95.8

96.0

96.2

96.4

96.6

96.8

97.0

A
c
c
u
ra

c
y

53
58

63 64
66

70
69

73 69 72

33 36
37

39
40

41
42

42 42 43

49

55 57 58
61

63 64 65 65 67

llvm

(d) LLVM

1 2 3 4 5 6 7 8 9

Cost ratio (R)

0

5000

10000

15000

20000

25000

T
o
ta

l
c
o
s
t

x264

1 2 3 4 5 6 7 8 9

Cost ratio (R)

93

94

95

96

97

98

99

100
A

c
c
u
ra

c
y

160 218206

293
224

200

143123127
129

78 90 93
114

99 106 114
10196 97

198

317
378408

352
261 169172152 134

x264

(e) x264

1 2 3 4 5 6 7 8

Cost ratio (R)

0

5000

10000

15000

20000

25000

30000

35000

40000

T
o
ta

l
c
o
s
t

sqlite

1 2 3 4 5 6 7 8

Cost ratio (R)

96.5

97.0

97.5

98.0

98.5

99.0

99.5

A
c
c
u
ra

c
y

1068

22192242
1724

1910

1188

2173

51 57 58 60 62 66 66

125 143147152 158 163 173

sqlite

(f) SQLite

Figure 8.2: Sensitivity of total cost and accuracy to variations in R in the interval 1 to 10. - 2-way;
- 3-way; - feature frequency (ff =5); - Actual cost (TotalCostminimum)

38

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

100

200

300

400

500

600

700
T
o
ta

l
c
o
s
t

apache

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

90.8

91.0

91.2

91.4

91.6

91.8

92.0

92.2

92.4

92.6

A
c
c
u
ra

c
y

39

44

44

49 52

57

61 60
64 67

28 24

27

29

30

33
34

34

36 37

34

41 40
43

47
52 53 55 56 62

apache

(a) Apache

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

400

600

800

1000

1200

1400

1600

1800

T
o
ta

l
c
o
s
t

bc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

75

80

85

90

95

100
A

c
c
u
ra

c
y

371411425
489

535
571591585

594 531

173

215
197

210

220
232223236 229

227

427431411 444
486 552583553 614 604
bc

(b) Berkeley DB C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

50

100

150

200

250

300

350

400

T
o
ta

l
c
o
s
t

bj

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

A
c
c
u
ra

c
y

31

36
36

40

47
48 49

48
44

48

35
42 43

46
50

52
48

52

48

54
29

34

35

39

43 43
45

44
47 47

bj

(c) Berkeley DB JAVA

39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

200

400

600

800

1000

1200

1400

1600

T
o
ta

l
c
o
s
t

llvm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

95.0

95.2

95.4

95.6

95.8

96.0

96.2

96.4

96.6

96.8

A
c
c
u
ra

c
y

35 37
42

44 46
49 49 50 52 53

23

25
26

28

30
31 31 32 32

33

33
36

38

41 44
46 46 47 48

49

llvm

(d) LLVM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

0

500

1000

1500

2000

2500

3000

T
o
ta

l
c
o
s
t

x264

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

93

94

95

96

97

98

99
A

c
c
u
ra

c
y

110132
107

102
121

118

135
130 150

166

62

103

58
53

61
67

62
71 71 73

105
120

153

118
137

156
168

170
193 209

x264

(e) x264

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

0

1000

2000

3000

4000

5000

6000

7000

8000

T
o
ta

l
c
o
s
t

sqlite

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost ratio (R)

94

95

96

97

98

99

100

A
c
c
u
ra

c
y

5

390 362
549600694 898

1123

40 44 47 50 50 49 51 51
86 101

109 113118119 121 125

sqlite

(f) SQLite

Figure 8.3: Sensitivity of total cost and accuracy to variations in R in the interval 0 to 1. - 2-way;
- 3-way; - feature frequency (ff =5); - Actual cost (TotalCostminimum)

40

Table 8.2: Rate of change of total cost of prediction with respect to unit change in cost ratio (R)

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM x264 SQLite

2-way 507 1241 281 1393 2659 1844
3-way 543 1054 312 1217 454 1105

R = [0, 1] feature-frequency 564 1029 295 1180 389 7315
actual 565 841 261 729 395 6555

2-way 454 890 212 1254 2566 1873
3-way 482 468 233 500 454 1039

R = [1, 10] feature-frequency 496 506 187 1108 737 5005
actual 469 464 179 587 109 5059

Here, it is worth revisiting that the total cost of sampling as shown in the figures 8.2,8.3,
are the global minimum cost estimated by each sampling strategy (2-way, 3-way and feature-
frequency). Thus, similar to section 7, we evaluate the utility of the sampling strategies by how
close this estimate is to the global minimum. For a given cost ratio, the difference between the
global minimum cost, and the estimated minimum cost is apparent by the distance between the
red line (actual minimum) to the colored lines. For each cost ratio value, we calculate this error
of cost estimation for the three sampling strategies using the formula:

ErrorTotalCost =
|TotalCostprojective − TotalCostminimum|

|Costmax − Costmin|
(8.2)

Where Costmax and Costmin are the maximum and minimum total cost of prediction, for a
given subject system, using different strategies. Table 8.3 shows the mean and standard deviation
of ErrorTotalCost after grouping the individual cost ratios into their corresponding interval [1,10]
and [0,1]. We evaluate the robustness of a sampling strategy with respect to its ErrorTotalCost

using winner probabilities [32]. We calculate winner probability as the number of R values for
which a certain sampling strategy has the minimum ErrorTotalCost, divided by the total number
of R valuations (120). For example, if 2-way sampling had minimum ErrorTotalCost for 10
valuations of R, the winner probability of 2-way would be 10/120 = 0.0833. Table 8.3 shows
winner probabilities of the three sampling strategies. For feature-frequency, we had set the freq -
threshold to 5. We can see that feature-frequency (ff =5) is the most robust sampling strategy for
different values of R, with a winner probability slightly higher than 3-way sampling.

41

Table 8.3: Mean relative error and standard deviation of cost estimation

(a) A

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM x264 SQLite

2-way 0.063 ± 0.031 0.183 ± 0.108 0.054 ± 0.029 0.221 ± 0.158 0.422 ± 0.261 0.364 ± 0.184R = [0, 1]
3-way 0.016 ± 0.014 0.181 ± 0.096 0.101 ± 0.058 0.139 ± 0.114 0.038 ± 0.062 0.400 ± 0.215

feature-frequency 0.025 ± 0.004 0.248 ± 0.083 0.046 ± 0.029 0.133 ± 0.107 0.043 ± 0.0531 0.062 ± 0.029

2-way 0.020 ± 0.009 0.285 ± 0.176 0.101 ± 0.040 0.317 ± 0.160 0.524 ± 0.276 0.389 ± 0.181R = [1, 10]
3-way 0.010 ± 0.007 0.009 ± 0.006 0.131 ± 0.069 0.227 ± 0.125 0.055 ± 0.052 0.471 ± 0.229

feature-frequency 0.029 ± 0.017 0.038 ± 0.017 0.034 ± 0.0267 0.231 ± 0.125 0.100 ± 0.078 0.021 ± 0.009

(b) Winner probability of sampling strategies

2-way 3-way feature-frequency (5)

Winner probability 0.0833 0.4333 0.4833

Effect of training-testing split on cost of prediction and accuracy

In accordance with our OAT SA design, we analyze the model sensitivity to the second factor i.e
training-testing split. As discussed in section 3, the multiplier (θ) accounts for this split. Thus,
keeping the rest of the factors constant, the cost model reduces to the form:

TotalCost(n∗) = θ · n∗ + ϵ · c1 (8.3)

Where c1 represents the invariant factors in this analysis (cost factor R and score set |S|).
We only consider positive perturbations to the multiplier (θ) in the range [2,3]. A negative per-
turbation (or θ < 2) would make the size of testing set lower than the training set size, which
is not an acceptable practice in data analysis [14]. Figure 8.4 shows the sensitivity of total cost
of prediction and prediction accuracy with respect to changes to θ in the range [2,3]. As we
can see from the figure, apart from the Berkeley DB (C and JAVA), all other systems show only
marginal increase in total cost. This is in contrast to R, where the rate of increase was much
higher. Effect on prediction accuracy is also much subtler. With an increase in multiplier, since
the size of the testing set is growing, justified pessimism would expect a decrease in prediction
accuracy. However, as we see from the figure, the prediction accuracy maintains its stability in
the multiplier range.

A key difference between SA analysis of θ and R lies in their influence on optimal sample
size (n∗). Varying the values of the cost factor (R) preserves the shape of the learning curve,

42

which helps us judge its influence on the optimal sample size. However, changes to θ, have an
effect on the model prediction accuracy, and thus the learning curve of the system is not pre-
served. This prevents us from deducing a conclusive trend in the optimal sample size, like we
were able to for the cost ratio (R).

43

(a) Apache

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Training-testing split factor

560

580

600

620

640

660

680

700

T
o
ta

l
c
o
s
t

apache

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Training-testing split factor

91.4

91.6

91.8

92.0

92.2

92.4

92.6

A
c
c
u
ra

c
y 63

61

59

59

56

57

54

51

52

49

34

37

35 35

36

33

35

33

35
33

61
59 56 58 56 54 53 53 52 52

apache

(b) Berkeley DB C

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

1200

1300

1400

1500

1600

1700

1800

1900

2000

T
o
ta

l
c
o
s
t

bc

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

88

90

92

94

96

98

100

A
c
c
u
ra

c
y

496

443398
507

459

429

432

398
423

377

354

253
227

232

183

200
217

250

200

220

197

225

611 587535527 483
464 435

461433 416 425

bc

(c) Berkeley DB JAVA

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

340

360

380

400

420

440

460

T
o
ta

l
c
o
s
t

bj

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

A
c
c
u
ra

c
y

49
48

4747

43

43 42

42

43

41

39

53

52
52

49
48

43

45

4142

38

36

46 45
4445

45
43 42

4142 42

41

bj

44

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Training-testing split factor

800

900

1000

1100

1200

1300

1400

1500

1600

T
o
ta

l
c
o
s
t

llvm

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Training-testing split factor

95.8

96.0

96.2

96.4

96.6

A
c
c
u
ra

c
y

51 53 52 50 50 51 51
49

51
47

33 32 32 32 32 32 32 31 31 31

49 48 48 48 47 47 46 47 46 46

llvm

(d) LLVM

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

500

1000

1500

2000

2500

3000

T
o
ta

l
c
o
s
t

x264

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

93

94

95

96

97

98

99
A

c
c
u
ra

c
y 151

168

153
160

153 151
141142

144
136

124

69
63

72

64
71 70

636767 66
64

205 198194
200

186
186

178
170

172

161
162

x264

(e) x264

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

1000

2000

3000

4000

5000

6000

7000

8000

T
o
ta

l
c
o
s
t

sqlite

2.0 2.2 2.4 2.6 2.8 3.0 3.2

Training-testing split factor

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

A
c
c
u
ra

c
y

1241114011121064987 905 838765717 686 624

52 525151 51 51 505051 50 49

126 124123122 121 119 118118119 116 115

sqlite

(f) SQLite

Figure 8.4: Sensitivity of total cost and accuracy to variantions in θ in the interval 2 to 3. - 2-way;
- 3-way; - feature frequency (ff =5); - Actual cost (TotalCostminimum)

45

Chapter 9

Stability of learning curves

We have used four classes of learning curves as listed in table 4.1, to model the learning behavior
of a system. These learning curves map a training sample size with the estimated prediction
accuracy. The class of learning curve that shows highest correlation with the sampled data-
points’ prediction accuracy, is selected as the chosen curve, with the following restriction:

- The optimal sample size generated by the chosen curve is less than the total number of
configurations of the system.

- The pearson correlation-coefficient with the data-points is negative (when curve equations
express prediction error) or positive (when they express prediction accuracy).

If the chosen curve violates the first condition, the curve with the next highest correlation
value is chosen. Violation of the second condition indicates a less than ideal learning behavior,
thus rendering all four classes of learning curves ineffective. However, as we would see further,
the likelihood of this violation is minimal.

In this section we investigate the stability of curve selection, both with regards to different
sampling strategies and multiple runs of the algorithm. Specifically we are interested in answer-
ing the following research questions:

• Is the learning behavior of a system sensitive to sample quality.

• Is the learning behavior of a system sensitive to different sampling strategies i.e 2-way,3-
way and feature-frequency.

For the first part of our analysis, we execute multiple runs of our algorithm with feature-
frequency sampling (100 runs; ff =5). To ensure that the sample data-points used to study the
learning behavior is qualitatively different, we use unique seed for each run. The cumulative

46

Table 9.1: Distribution of curve selection vs random (no. of runs = 100)

Feature-frequency Random

Exponential Weiss-Tan Logarithmic Power Exponential Weiss-Tan Logarithmic Power
p-value success %

Apache 69 1 - 25 25 38 32 - <0.001 95
Berkeley DB (C) 55 4 4 19 18 21 23 20 <0.001 82
Berkeley DB (Java) 72 5 - 11 33 29 - 26 <0.001 88
LLVM 100 - - - - - - - - 100
x264 39 - - 61 60 - - 40 <0.001 100
SQLite 99 - - - - - - - - 99

distribution of the selected curve is then compared to a random distribution using chi-square
goodness of fit test.

Chi-square goodness of fit test is applied when the variable under study is categorical, and it
helps to determine if the sample data is consistent with the hypothesized distribution [29]. In our
case, the the chosen curve acts as the categorical variable, the population being the independent
runs of the experiment. With this information, we formulate the following null hypothesis:

H0 : The distribution of curve selection for feature-frequency sampling is consistent with
random distribution

Table 9.1 shows the comparison of the distribution, and the corresponding p-value. For each
group (feature-frequency and random), the numbers represent how many times the corresponding
curve was selected, out of 100 runs. The success % is the percentage of runs where our algorithm
was able to select a learning curve. For LLVM and SQLite, we do not compare the distributions,
since the same curve (exponential) was selected for all the runs. The p-value for all systems is
less than 0.001, thus even with conservative significance levels, we can reject the null hypothesis.
Thus, we see from this analysis that a) the learning behavior is independent of sample quality and
b) exponential curves are the most robust class of learning curves, that can model the learning
behavior of our subject systems.

For the second part of our analysis, we use goodness-of-fit test to investigate whether the
learning behavior is sensitive to different sampling strategies. We study this by selecting a
sampling strategy (ff =5) as the reference distribution, and comparing it with 2-way,3-way and
ff =3,4,6 strategies. Table 9.3 shows the goodness of fit χ2 and p−values for our subject systems
when different sampling strategies are compared to ff=5 distribution, using chi-square goodness-
of-fit. The table also lists the size of Λδ set for each sampling strategy within braces. Statistically
significant p values at significance level 0.01 are marked in bold. We observe from this table
that the distribution of curve selection for 2-way sampling is different from 3-way and feature-
frequency, as indicated by their low p-values. However, the distribution doesn’t change as much
between feature-frequency and 3-way.

47

Table 9.2: Distribution of curve selection with respect to different sampling strategies (100 runs)

Exponential Weiss-Tan Logarithmic Power

Apache 69 1 - 25
Berkeley DB (C) 55 4 4 19

Berkeley DB (JAVA) 72 5 - 11
feature-frequency LLVM 100 - - -

x264 39 - - 61
SQLite 99 - - -

Apache 94 - - 6
Berkeley DB (C) 85 1 2 7

Berkeley DB (JAVA) 53 9 - 21
2-way LLVM 100 - - -

x264 83 - 17
SQLite 100 - - -

Apache 79 - - 21
Berkeley DB (C) 76 - - 21

Berkeley DB (JAVA) 87 4 - 8
3-way LLVM 100 - - -

x264 13 - - 87
SQLite 100 - - -

Table 9.3: Sensitivity of learning curves to sampling strategies

Apache Berkeley DB (C) Berkeley DB (JAVA) LLVM x264 SQLite

2-way χ2 =66.81, p =2.98e-16 (8) χ2 =51.04 p =4.78e-11 (12) χ2 =11.78 p =0.002 (10) - χ2 =137.20 p =1.0e-31 (11) -
3-way χ2 =2.02 p =0.154 (18) χ2 =0.717 p =0.396 (27) χ2 =2.860 p =0.239 (18) - χ2 =59.77 p =1.06e-14 (29) -

ff=3 χ2 =3.76, p =0.052 (13) χ2 =5.42 p =0.143 (13) χ2 =4.66 p =0.096 (16) - χ2 =24.21 p =8.62e-07 (15) -
ff=4 χ2 =14.20, p =0.00016 (16) χ2 =5.68 p =0.127 (16) χ2 =6.52 p =0.038(20) - χ2 =13.61 p =0.0002 (19) -
ff=5 (19) (22) (24) - (23) -
ff=6 χ2 =3.20, p =0.0735 (22) χ2 =4.57 p =0.206 (27) χ2 =16.98 p =0.0002 (28) - χ2 =0.042 p =0.837 (27) -

Among the four classes of learning curves, we see that exponential functions are robust, even
across different sampling strategies (Figure 9.2).

48

Chapter 10

Threats to Validity

To increase internal validity, we performed automated random sampling, this way, avoiding mis-
leading effects of specifically selected samples for building prediction models. We randomly
selected samples of specific sizes (e.g., Λδ) from the entire population of each subject system.
We repeated each random sampling 100 times for training and testing the prediction models,
and we reported median and percentile results for the evaluation metrics, such as sampling cost,
prediction accuracy. In addition, we used a widely-accepted tool for t-way feature-coverage
generation, to make sure that the generated sets are correct.

In our experiments, the value of the tuning parameter R, which controls the cost ratio between
measurement effort and prediction accuracy, is set to 1. However, the value of this parameter is
domain-specific, and can be set by a domain expert. Nevertheless, in cases where the precise
value of this ratio is unknown, giving equal weights to both the cost factors seems to be a fair
assumption. In addition, we conducted a systematic sensitivity analysis of our cost model, to the
changes in the cost ratio R.

To increase external validity, we used a public dataset consisting of six real-world systems,
covering different domains, with different sizes, different configuration mechanisms, and differ-
ent programming languages. All the subject systems used in our case study are deployed and
used in real-world scenarios. However, we are aware that the results of our experiments are
not automatically transferable to all other configurable systems, but we are confident that we
controlled this threat sufficiently.

49

Chapter 11

Related Work

11.0.1 Performance Prediction

Recent approaches have used a combination of measurement and prediction techniques to eval-
uate the performance of software systems. Among the performance prediction models, it is
important to distinguish between two categories of models found in literature. The first type of
models, which can be referred to as white-box models, are built early in the life cycle, by study-
ing the underlying design and architecture of the software system in question. The idea is to
identify performance bottlenecks early, so that developers can take corrective actions. Queueing
networks, Petri Nets, and Stochastic Process Algebras are commonly used for this task [6]. The
second type of models, called black-box models, do not make any assumption on the design
and architecture, effectively treating the system as a black box. In this paper, we use black-box
predictive models.

Guo et al [13] used CART to predict the performance of configurable systems. On the same
dataset as ours, they observed an average accuracy of 94%. We build on their prediction model,
and we study how to determine the minimum sample size, rather than proposing a new learning
technique. Yi et al. [38] proposed an algorithm based on Fourier Learning for the performance
prediction of configurable systems. Their method provides theoretical guarantee of prediction
accuracy and confidence level, but it follows typical random sampling that is terminated only in
terms of prediction accuracy.

Westermann et al. [34] analyzed various statistical inference techniques to predict the per-
formance of configurable systems. They also analyzed three different configuration generation
methods, including Random Breakdown, Adaptive Equidistant Breakdown, and Adaptive Ran-
dom Breakdown. In their work, they do not take the measurement cost into account. We use a

50

composite cost function to guarantee an optimum between accuracy and measurement cost. Our
approach has further the advantage of giving stakeholders an early prognosis of the prediction
model through a minimal decision cost.

Siegmund et al. [31] used a measurement-based technique to predict performance by detect-
ing feature interactions. In follow-up work [30], they consider also numeric configuration options
by combining experimental designs with binary-option sampling. The number of samples needed
to be measured using their approach is higher than other prediction models, such as CART, due to
their focus on explaining the performance of a system (i.e., making the influences of all features
and their interactions explicit), which is a different goal.

11.0.2 Sampling Strategies

Provost et al. [27] introduced the idea of progressive sampling and proved that geometric pro-
gressive sampling is more efficient than arithmetic progressive sampling when model-building
cost is high. However, in the case of performance prediction of configurable systems, the cost
of building prediction models, such as CART, is comparatively low, but the measurement cost is
often high. In this case, arithmetic progressive sampling is more efficient.

Weiss and Tian [33] combined measurement cost and accuracy into a single composite cost
function and used it to evaluate the prediction process. We use their cost functions in our ap-
proach. They evaluated only progressive sampling approaches and did not develop a sampling
strategy to minimize the cost.

Last [20] used the cost function proposed by Weiss and Tian [33] and proposed projective
sampling, which guarantees a minimum cost and provides a numeric value for the optimal sample
size. We adapted their approach of projective sampling for performance prediction models. How-
ever, they did not provide guidelines on how to generate a good initial sample for projecting the
learning curve. We solve this problem using a heuristic based on feature frequencies and compare
it to a typical heuristic based on t-way feature coverage.

51

Chapter 12

Conclusion

We adapted two sampling strategies, progressive sampling and projective sampling, for the
performance prediction of configurable systems. To evaluate and compare the two sampling
strategies, we use the sampling cost, which considers the prediction accuracy and the measure-
ment effort simultaneously. In addition, we used two heuristics based on feature frequencies
and t-way feature coverage to generate the initial sample in projective sampling. We conducted
empirical studies on six real-world configurable systems to determine an ideal sampling strategy
for performance prediction of configurable systems.

Our key findings are as follows. First, projective sampling is better than the progressive
sampling in terms of both sampling cost and prediction accuracy, but it suffers from a depend-
ency on a proper initial sample and projective function. To obtain a good initial sample for
projective sampling, our heuristic based on feature frequencies is more effective than approaches
based on 2-way and 3-way feature coverage. Among four common projective functions, the
exponential function is the best to fit the learning curves of our subject systems accurately and
robustly. Furthermore, we recommend arithmetic progressive sampling instead of geometric
progressive sampling, because measuring the performance of configurations is often more costly
than learning a prediction model based on the training set.

Our presented approach, empirical findings, and sensitivity analysis, are meant to help stake-
holders in designing effective sampling strategies for performance prediction.

52

References

[1] Compuware. applied performance management survey (october 2006). http://www.
cnetdirectintl.com/direct%20/compuware/OvumAPM/APMSurveyReport.pdf. Accessed:
2015-03-23.

[2] Jenny tool. http://burtleburtle.net/bob/math/jenny.html. Accessed: 2015-03-23.

[3] Spec benchmark suite. http://www.spec.org. Accessed: 2015-03-23.

[4] Sqllite. https://sqlite.org/. Accessed: 2015-03-23.

[5] Sven Apel and Christian Kästner. An overview of feature-oriented software development.
Journal of Object Technology, 8(5):49–84, 2009.

[6] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
based performance prediction in software development: A survey. IEEE Transactions on
Software Engineering, 30(5):295–310, 2004.

[7] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva, Martin
Becker, Marsha Chechik, and Krzysztof Czarnecki. What is a feature?: a qualitative study
of features in industrial software product lines. In Proceedings of the 19th International
Conference on Software Product Line, pages 16–25. ACM, 2015.

[8] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

[9] Barry W Boehm. Software engineering economics, volume 197. Prentice-hall Englewood
Cliffs (NJ), 1981.

[10] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent ad-
vances. European Journal of Operational Research, 248(3):869–887, 2016.

53

http://www.cnetdirectintl.com/direct%20/compuware/Ovum APM/APM Survey Report.pdf
http://www.cnetdirectintl.com/direct%20/compuware/Ovum APM/APM Survey Report.pdf
http://burtleburtle.net/bob/math/jenny.html
http://www.spec.org
https://sqlite.org/

[11] Myra B Cohen, Matthew B Dwyer, and Jiangfan Shi. Coverage and adequacy in software
product line testing. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), pages 53–63. ACM, 2006.

[12] Lewis J Frey and DH Fisher. Modeling decision tree performance with the power law. In
Proceedings of the International Workshop on Artificial Intelligence and Statistics, pages
59–65, 1999.

[13] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wasowski.
Variability-aware performance prediction: A statistical learning approach. In Proceedings
of the International Conference on Automated Software Engineering (ASE), pages 301–311.
IEEE, 2013.

[14] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques.
Elsevier, 2011.

[15] Wolfgang Härdle. Smoothing techniques: With implementation in S. Springer Science &
Business Media, 1991.

[16] George H John and Pat Langley. Static versus dynamic sampling for data mining. In
Proceedings of the Conference on Knowledge Discovery and Data mining (KDD), pages
367–370. ACM, 1996.

[17] Heiko Koziolek. Performance evaluation of component-based software systems: A survey.
Perform. Eval., 67(8):634–658, August 2010.

[18] D Richard Kuhn, Raghu N Kacker, and Yu Lei. Practical combinatorial testing. NIST
Special Publication, 800(142):142, 2010.

[19] Rick Kuhn, Yu Lei, and Raghu Kacker. Practical combinatorial testing: Beyond pairwise.
IT Professional, 10(3):19–23, 2008.

[20] Mark Last. Improving data mining utility with projective sampling. In Proceedings of
the Conference on Knowledge Discovery and Data mining (KDD), pages 487–496. ACM,
2009.

[21] Aleksandar Lazarevic and Zoran Obradovic. Data reduction using multiple models integ-
ration. In Principles of Data Mining and Knowledge Discovery, pages 301–313. Springer,
2001.

54

[22] Rui Leite and Pavel Brazdil. Improving progressive sampling via meta-learning on learning
curves. In Proceedings of the European Conference on Machine Learning (ECML), pages
250–261. Springer, 2004.

[23] Huan Liu and Hiroshi Motoda. On issues of instance selection. Data Mining and Know-
ledge Discovery, 6(2):115–130, 2002.

[24] Douglas C Montgomery, George C Runger, and Norma F Hubele. Engineering statistics.
John Wiley & Sons, 2009.

[25] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 43(2):11, 2011.

[26] David J Pannell. Sensitivity analysis: strategies, methods, concepts, examples. Agric Econ,
16:139–152, 1997.

[27] Foster Provost, David Jensen, and Tim Oates. Efficient progressive sampling. In Proceed-
ings of the Conference on Knowledge Discovery and Data mining (KDD), pages 23–32.
ACM, 1999.

[28] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume 1. Wiley
New York, 2000.

[29] David J Sheskin. Handbook of parametric and nonparametric statistical procedures. crc
Press, 2003.

[30] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
influence models for highly configurable systems. In Proceedings of the International Sym-
posium on Foundations of Software Engineering (FSE). ACM, 2015.

[31] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don Batory, Marko
Rosenmüller, and Gunter Saake. Predicting performance via automated feature-interaction
detection. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 167–177. IEEE, 2012.

[32] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. Empirical comparison of regression
methods for variability-aware performance prediction. In Proceedings of the 19th Interna-
tional Conference on Software Product Line, pages 186–190. ACM, 2015.

[33] GaryM. Weiss and Ye Tian. Maximizing classifier utility when there are data acquisition
and modeling costs. Data Mining and Knowledge Discovery, 17(2):253–282, 2008.

55

[34] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. Automated infer-
ence of goal-oriented performance prediction functions. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 190–199. IEEE, 2012.

[35] Cemal Yilmaz, Arvind S Krishna, Atif Memon, Adam Porter, Douglas C Schmidt,
Aniruddha Gokhale, and Balachandran Natarajan. Main effects screening: A distributed
continuous quality assurance process for monitoring performance degradation in evolving
software systems. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 293–302. IEEE, 2005.

[36] Linbin Yu, Yu Lei, Raghu N Kacker, and D Rick Kuhn. Acts: A combinatorial test gen-
eration tool. In Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, pages 370–375. IEEE, 2013.

[37] X-Y Zhang, MN Trame, LJ Lesko, and S Schmidt. Sobol sensitivity analysis: A tool to
guide the development and evaluation of systems pharmacology models. CPT: Pharma-
cometrics & Systems Pharmacology, 4(2):69–79, 2015.

[38] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Performance prediction of
configurable software systems by Fourier learning. In Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE, 2015.

56

APPENDICES

A.1 Derivation of optimal sample size (n∗)

To solve for optimal sample size, d TotalCost(n)
dn

= 0

A.1.1 Logarithmic

d TotalCost(n)

dn
= 0

d (θ · n+ ϵn · |S| ·R)

dn
= 0

d (θ · n+ (a+ b · log(n)) · |S| ·R)

dn
= 0

d θ

dn
+

d

dn
a · |S| ·R + b · |S| ·R d

dn
log(n) = 0

θ +
b · |S| ·R

n
= 0

∴ n = −
R · |S| · b

θ

57

A.1.2 Weiss and Tan

d

dn
TotalCost(n) = 0

d

dn
(θ · n+ ϵn · |S| ·R) = 0

d

dn
(θ · n+ (a+

b n

n+ 1
) · |S| ·R) = 0

d θ

dn
+ |S| ·R · d

dn
(

b n

n+ 1
) = 0

θ + |S| ·R · ((n+ 1) · b− bn

(n+ 1)2
) = 0

θ +
|S| ·R · b
n+ 1

− |S|R · b · n
(n+ 12)

= 0

(n+ 1)2 · θ = −|S| ·R · b

∴ n =

√
−
R · |S| · b

θ
− 1

A.1.3 Power law

d

dn
TotalCost(n) = 0

d

dn
(θ · n+ ϵn · |S| ·R) = 0

d

dn
(θ · n+ (a · nb) · |S| ·R) = 0

d θ

dn
+ |S| ·R · a · d

dn
(nb) = 0

a ·R · |S| · b · n(b−1) = −θ

∴ n = (
−θ

R · |S| · a · b
)

1
(b−1)

58

A.1.4 Exponential

d

dn
TotalCost(n) = 0

d

dn
(θ · n+ ϵn · |S| ·R) = 0

d

dn
(θ · n+ (a · bn) · |S| ·R) = 0

d θ

dn
+ |S| ·R · a · d

dn
(bn) = 0

θ + |S| ·R · a · bn · ln(b) = 0

bn = − θ

a ·R · |S| · ln(b)

n log(b) = log(
−θ

R · |S| · a · ln(b)
)

∴ n = logb(
−θ

R · |S| · a · ln(b)
)

A.2 Code and implementation

Source is available at : https://github.com/atrisarkar/ASE extn

A.2.1 FAQ

Q. Where do I feed in the input files?
A. Input files are read from com.ase.extn.constants.data.input

Q: How can I execute progressive sampling?
A: Set the following parameters in com.ase.extn.constants.configs.py

strategy = ’progressive’
system = ’apache’|’bc’|’bj’|’llvm’|’x264’|’sqlite’|’all’
To display figures : plot = True

59

To display learning curve: plot real cost = False
To display cost curve: plot real cost = True
Execute com.ase.extn.cart.base.py
Results are generated under com.ase.extn.constants.data.output

Q: How can I execute projective sampling?
A: Set the following parameters in com.ase.extn.constants.configs.py

strategy = ’projective’
system = ’apache’|’bc’|’bj’|’llvm’|’x264’|’sqlite’|’all’
print detail = True
To display figures : plot = True
Execute com.ase.extn.cart.base.py
Results are displayed in the console

Q. How to setup the parameters for projective sampling?
A.

Cost-ratio (R) : r = <value>
Feature-frequency threshold (thresh freq) : projective feature threshold =
<value>
Multiplier for training-testing set split (θ) : th = <value>

Q. How to run t-way sampling?
A. Set the following parameters in com.ase.extn.constants.configs.py

tway = 2 | 3

Execute com.ase.extn.tway.twaysample.py
Results are displayed in the console

Q. How to run sensitivity analysis?
A. Set the following parameters in com.ase.extn.sensitivity.sanalysis.py

sensitivity = ’r’ | ’th’
com.ase.extn.constants.configs.r 0 to 1 = True : For SA in the interval
[0,1] for R

60

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Performance prediction in practice

	Definitions and Running Example
	Cost Model
	Sampling Strategies
	Progressive Sampling
	Gradient-Based
	Cost Minimization

	Projective Sampling

	Initial Sample Generation
	Feature-frequency based sample generation
	t-way sample generation

	Subject Systems
	Evaluation
	RQ1: Progressive vs. Projective
	RQ2: Comparison of Learning Curves
	RQ3: T-Way vs. Feature Frequency

	Sensitivity analysis
	Design
	One-At-a-Time (OAT) SA method
	Parameter valuation:

	Results

	Stability of learning curves
	Threats to Validity
	Related Work
	Performance Prediction
	Sampling Strategies

	Conclusion
	References
	APPENDICES
	Derivation of optimal sample size (n*)
	Logarithmic
	Weiss and Tan
	Power law
	Exponential

	Code and implementation
	FAQ

