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Abstract

Even-cycle and even-cut matroids are classes of binary matroids that generalize respectively
graphic and cographic matroids. We give algorithms to check membership for these classes of
matroids. We assume that the matroids are 3-connected and are given by their (0, 1)-matrix rep-
resentations. We first give an algorithm to check membership for p-cographic matroids that is
a subclass of even-cut matroids. We use this algorithm to construct algorithms for membership
problems for even-cycle and even-cut matroids and the running time of these algorithms is poly-
nomial in the size of the matrix representations. However, we will outline only how theoretical
results can be used to develop polynomial time algorithms and omit the details of algorithms.
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Chapter 1

Introduction

1.1 Membership problems

A matroid is graphic if its circuits correspond to the circuits of some graph G (by a cycle in a
graph we mean a subset of edges that induces a subgraph where all vertices have even degree,
and by a circuit we mean an inclusion-wise minimal cycle, i.e. a subset of edges that induces a
connected graph where every vertex has degree two). We say that G is a representation of that
matroid and denote the matroid by cycle(G). A matroid is cographic if it is the dual of a graphic
matroid, or equivalently, if its circuits correspond to the inclusion-wise minimal cuts of some
graph G. We say that G is a representation of that matroid and denote the matroid by cut(G).
In [15], Tutte gave a polynomial time algorithm to recognize if a binary matroid (described by
its (0, 1)-matrix representation) is a graphic matroid (and hence to recognize if a binary matroid
is a cographic matroid). The main contribution of this thesis is to prove analogous results for
two classes of binary matroids arising from graph-like objects, namely, the class of even-cycle
matroids and the class of even-cut matroids when the given matroids are 3-connected.

A signed-graph is a pair (G,Σ) where G is a graph and Σ is a subset of the edges of G, i.e.
Σ ⊆ E(G). We say that a set B ⊆ E(G) is even (resp. odd) if |B ∩ Σ| is even (resp. odd).
We will say that an edge e is odd when e ∈ Σ and even otherwise. A matroid is an even-cycle
matroid if its circuits correspond to the inclusion-wise minimal even cycles of some signed-
graph (G,Σ). We say that (G,Σ) is a signed-graph representation (or simply representation)
of that matroid and denote the matroid by ecycle(G,Σ). Observe that when Σ = ∅, every
cycle is even, hence ecycle(G,Σ) = cycle(G). In particular, graphic matroids are even-cycle
matroids. Even-cycle matroids are binary matroids, indeed, ecycle(G,Σ) can be represented
by the (0, 1)-matrix obtained by appending a row corresponding to the characteristic vector of
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Σ to the vertex-edge incidence matrix of G. A graft is a pair (G, T ) where G is a graph and
T is a subset of the vertices of G of even cardinality. Vertices T are called terminals. A cut
δG(U) := {uv ∈ E(G) : u ∈ U, v /∈ U}1 is even (resp. odd) if |U ∩ T | is even (resp.
odd). Note that as we have an even number of terminals, this is well-defined. A matroid is
an even-cut matroid if its circuits corresponds to the inclusion-wise minimal even cuts of some
graft (G, T ). We say that (G, T ) is a graft representation (or simply representation) of that
matroid and denote the matroid by ecut(G, T ). Observe that when T = ∅, every cut is even,
hence ecut(G, T ) = cut(G). In particular, cographic matroids are even-cut matroids. Even-cut
matroids are binary matroids, indeed, ecut(G, T ) can be represented by the (0, 1)-matrix obtained
by appending a row corresponding to the characteristic vector of a T -join (defined in 1.3.1) to
the (0, 1)-matrix representing cut(G). Note, the term representation for an even-cycle (resp.
even-cut) matroids will always refer to the signed-graph (resp. graft) representation. We will
use the term matrix representation to indicate the (0, 1)-matrix representing the matroid over the
two-element field.

LetM be a class of binary matroid. By the membership problem forM we mean the follow-
ing: we are given a (0, 1)-matrix representation A of a binary matroid M , we return either YES if
M ∈ M and NO if M /∈ M. An algorithm for testing membership problem is polynomial if its
running time is polynomial in the size ofA. The columns ofA correspond to the elements E(M)
ofM and the number of rows ofA is given by the rank ofM which is bounded by |E(M)|. Since
A is a (0, 1)-matrix, saying that the algorithm runs in time polynomial in the size of A is equiv-
alent to saying that the algorithm runs in time polynomial in the number of elements of M . The
main results in the paper are,

(1) A polynomial time algorithm for testing membership in the class of even-cycle matroids
when the given matroids are 3-connected;

(2) A polynomial time algorithm for testing membership in the class of even-cut matroids
when the given matroids are 3-connected.

A classM of matroid is minor closed if for all M ∈M every minor N of M is inM. Even-
cycle and even-cut matroids are minor closed classes of matroids. A binary matroid M is min-
imally non-even-cycle (resp. minimally non-even-cut) if it is not an even-cycle (resp. even-cut)
matroid but every proper minor of M is an even-cycle (resp. even-cut) matroid. The following
theorem is proven by the Matroid Minors Project [8].

Theorem 1.1.1. Every minor-closed class of binary matroids are well-quasi-ordered.

1We omit the sub-index G when there is no ambiguity.
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It follows from Theorem 1.1.1 that minimally non-even-cycle (resp. non-even-cut) matroids have
bounded sizes. The algorithm in (1) returns a compact certificate for membership. Namely, if
the matroid, say M , being tested is an even-cycle matroid, the algorithm returns a signed-graph
that is a representation of M . The algorithm in (2) returns a compact certificate for membership
If the matroid, say M , being tested is an even-cut matroid, the algorithm returns a graft that is a
representation of M .

In this thesis, we do not give all the details of the algorithms, but we focus on the theoretical
underpinnings of the algorithms, namely the fact that we can keep track of the representations.
We will outline only how these theoretical results can be used to develop polynomial time al-
gorithms. We prove (1) and (2) are polynomial, but we do not work out the exact bound. Fur-
thermore, the polynomial bound will depend on some constant efficient c that arises from the
Matroid Minors Project and that has no explicit bound (see [8]). However, the algorithm does
not use the value c for its computation.

1.2 The case of graphic matroids

Before identifying some of the challenges in designing a polynomial time algorithm for testing
membership in even-cycle or even-cut matroid, we will sketch how the membership problem
can be solved for the class of graphic matroids. The key property is the following result of
Whitney in [17] that under some mild connectivity assumption, graphic matroids have a unique
representation,

Theorem 1.2.1. If M is a 3-connected graphic matroid there exists a unique graph G with
cycle(G) = M .2

We review the definition of k-connected matroids in Section 2.3.1. Given a matroid M and
I, J ⊆ E(M) where I ∩ J = ∅, the matroid obtained by deleting elements I and contracting
elements J is denoted by M \ I/J . Note, that the order in which the minor operations are con-
ducted do not matter so the notation is well defined. Similarly, we denote by G \ I/J the graph
obtained from G by deleting edges I and contracting edges J . There is a one-to-one correspon-
dence between minor operations in a graphic matroid and minor operations in its representation,
namely,

Remark 1.2.2. Let I, J ⊆ E(G) where I ∩ J = ∅. Then cycle(G) \ I/J = cycle(G \ I/J).

2We will consider two graphs that only differ in vertex labels or isolated vertices to be identical.
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Note, that the Remark 1.2.2 implies in particular that the class of graphic matroids is closed
under minors. If M ′ is obtained from M by contracting (resp. deleting) some element e we say
thatM is obtained fromM ′ by uncontracting (resp. undeleting) element e. We use the analogous
definition for graphs as well. Suppose M is a graphic representation with representation G and
letM ′ = M \I/J be a minor ofM . Then by the previous remark, G arises from a representation
of M ′ by undeleting a set of edges I and uncontracting a set of edges J .

We are now ready to sketch an algorithm for testing if a matroid M is graphic. We will limit
ourselves to the case where M is 3-connected. In [13] Seymour proved that there exists a se-
quence of 3-connected matroidsM1,M2, . . . ,Mk whereM1,M2, . . . ,Mk are 3-connected,Mk is
the graphic matroid of a wheel (possibly K4) or the non-graphic matroid of a whirl and for every
i ∈ [k − 1]3, Mi+1 is isomorphic to a single element contraction or deletion of Mi. Moreover,
this sequence of 3-connected matroids can be constructed in time polynomial in E(M). If Mk is
non-graphic, then so is M . We may assume Mk is graphic. Let Gk denote the wheel for which
cycle(Gk) = Mk. Suppose that iteratively we constructed representations Gi for i = r, . . . , k.
If r = 1 then M1 = M is graphic. Otherwise Mr−1 is obtained from Mr by undeleting (or
uncontracting) some element e. If Mr−1 is graphic then its representation Gr−1 is obtained by
undeleting (or uncontracting) some edge e from a representation of Mr. But by Theorem 1.2.1
the representation of Mr is unique, it is Gr. Thus it suffices to check if we can undelete (or
uncontract) an edge of Gr to get a representation of Mr−1. We omit a description of this last
step but refer the interested reader to [14] and [3] for a detailed explanation of how this can be
carried.

We will see that the condition that M be 3-connected cannot be omitted in Theorem 1.2.1.
Given a graph G and X ⊆ E(G), we denote by VG(X) the set of vertices spanned by edges X ,
i.e. VG(X) = V (G[X]). We denote by BG(X) the set VG(X) ∩ VG(X̄)4; i.e. BG(X) is the set
of vertices in the boundary of X and X̄ . Consider a graph G with X ⊆ E(G) and |X|, |X̄| ≥ 2
where BG(X) consists of two vertices u, v. Let G′ be obtained by identifying vertex u and v
of G[X] with vertices v and u of G[X̄] (in that order). We say that G′ is obtained from G by
a Whitney-flip on X . We also call the operation that consists of identifying two components of
a graph, or splitting two blocks of a graph a Whitney flip. It can be readily checked that if G
and G′ are related by a sequence of Whitney-flips, then they have the same cycles, i.e. they are
representations of the same graphic matroid. In [17], Whitney proved the converse namely,

Theorem 1.2.3. Any two representations of a graphic matroid are related by a sequence of
Whitney flips.

3[k] = {1, . . . , k}.
4S̄ denotes the complement of set S.
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It is well known that if a graphic matroidM is 3-connected, then every representationG ofM
is 3-connected. Since there are no Whitney-flip possible in a 3-connected graph, Theorem 1.2.1
follows immediately from Theorem 1.2.3. Theorem 1.2.3 provides a very precise description of
the set of all representations of a graphic matroid. We will see that the situation is markedly
worse in the case of even-cycle and even-cut matroids.

1.3 What makes the problem difficult?

1.3.1 A first bad example

Unlike graphic matroids, which have a unique graph representation up to Whitney-flips, even-
cycle and even-cut matroids may have multiple representations up to Whitney-flips, even though
they are 3-connected. Before we see examples, we will introduce a natural ways to attain signed-
graph (resp. graft) representations from one signed-graph (resp. graft) representation.

Two graphs G and G′ are equivalent if G and G′ are related by a sequence of Whitney-
flips. Since cycle(G) = cycle(G′) it follows in particular, that for any Σ ⊆ E(G) we also have
ecycle(G,Σ) = ecycle(G′,Σ). The set Σ′ ⊆ E(G) is a signature of (G,Σ) if ecycle(G,Σ) =
ecycle(G,Σ′). It can be readily checked that Σ′ is a signature if and only if Σ′ = Σ4δ(U)
for some U ⊆ V (G). We say that (G,Σ′) is obtained by resigning (G,Σ). Thus (G,Σ) and
(G′,Σ′) are representations of the same even-cycle matroid if they are related by resigning and
Whitney-flips. We will call such a pair of signed-graphs, equivalent. Note that this is indeed an
equivalence relation (see [10]), thus we can partition the set of all representations of an even-
cycle matroid into equivalence classes.

We say that a subset of edges J is a T -join of G where (G, T ) is a graft, if the vertices of odd
degree of G[J ] is given by T . A graft (G, T ) is equivalent to a graft (G′, T ′) if G′ is equivalent
to G and there exists a T -join of G that is a T ′-join of G′. Note that as G and G′ have the same
cycles this implies readily that for every J ⊆ E(G), J is a T -join of G if and only if J is a
T ′-join of G′. Clearly, if (G, T ) and (G′, T ′) are equivalent then ecut(G, T ) = ecut(G′, T ′) since
cocycles of ecut(G, T ) are precisely the cycles of G and the T -joins of (G, T ). Note that this is
indeed an equivalence class (see [6]), thus we can partition the set of all representations of an
even-cut matroid into equivalence classes.

Now, we will introduce an example with multiple inequivalent representations. The ma-
troid R10 is a 4-connected binary matroid with the following matrix representation in Figure 1.1
(see [7]). The matroid R10 is an even-cycle matroid and it has six inequivalent representations
that are all isomorphic to the signed-graph

(
K5, E(K5)

)
(see [11]). We introduce two examples
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a b c d e f g h i j


1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 0 0 1 1

Figure 1.1: Binary representation of R10.

in Figure 1.2. The matroid R10 is also an even-cut matroid and it has ten inequivalent represen-

aa

bb

cc

ddee

ff

gg

hh

ii jj aa

bb

cc

dd

ee

ff

gghh

ii

jj

Figure 1.2: Inequivalent signed-graph representations of R10. All edges are
odd. The edge labelling is the same as in Figure 1.1.

tations that are all isomorphic to the graft given in Figure 1.3. We introduce two examples in
Figure 1.3. Figure 1.2 and Figure 1.3 show that it is possible for a 4-connected even-cycle (or
even-cut) matroid to have multiple inequivalent representations. Thus unlike the case of graphic
matroid, a membership algorithm for either even-cycle of even-cut matroids would need to keep
track of multiple representations. This would not be a problem as long as the number of pairwise
inequivalent representations is bounded by a polynomial in the number of elements of matroids.
Alas we will see that this is not case for the class of even-cycle matroid, nor is it the case for the
class of even-cut matroids.
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aa

bb

cc

dd

ee

ff

gg hh

ii

jj aa

bb

cc

dd

ee

ff

gg

hh ii

jj

Figure 1.3: Inequivalent graft representations of R10. White vertices are ter-
minals. The edge labelling is the same as in Figure 1.1

1.3.2 An even-cycle matroid with an exponential number of inequivalent
representations

In this section, we will introduce an even-cycle matroid that has an exponential number of pair-
wise inequivalent representations. A mixed graph is a graph with both edges and directed edges.
Let ~H be a mixed graph with exactly two directed edges, say L and R, that are disjoint. Con-
struct G from ~H by identifying the tail of L with the tail of R; by identifying the head of L
with the head of R; and by removing L and R. Denote by s1 (resp. s2) the tail (resp. head)
of L in ~H . Let Σ := δ ~H(s1)4δ ~H(s2). Then (G,Σ) is a signed graph. Suppose we have a sets
X0, X1, . . . , Xn where n ≥ 2 with the following properties: (i) X0 = {L}, Xn = E( ~H) \ {R};
(ii) for all i ∈ [n], Xi−1 ⊂ Xi, V ~H(Xi−1) ⊂ V ~H(Xi) and |B ~H(Xi)| = 2. For all i ∈ [n], let
Pi = Xi − Xi−1. We illustrate the construction of (G,Σ) in Figure 1.4. Note that we can con-
struct an example where n = Θ(|E(G)|) and ecycle(G,Σ) is 3-connected. Now, construct a new
mixed graph ~H ′ from ~H by repeatedly doing Whitney-flips on sets Xi for all i ∈ I ⊆ [n] so that
the ends of L and R remain disjoint. Let (G′,Σ′) be the signed-graph that arises from ~H ′ by the
same way in the construction of (G,Σ). We say that (G,Σ) and (G′,Σ) are related by shuffling
{Pi|i ∈ I}. We illustrate this shuffling in Figure 1.5. It can be readily checked in [10] that
ecycle(G,Σ) = ecycle(G′,Σ′). It is now straightforward to see that we can have an exponential
number (in the number of elements) of inequivalent signed-graph representations all related by
shuffling subsets of edges. Hence, we can have an exponential number of pairwise inequiva-
lent representations for an even-cycle matroid. In particular, it implies that a polynomial time
recognition algorithm for even-cycle matroids cannot record the set of all pairwise inequivalent
representations.
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L R

~H

(G,⌃)

P1 P2
. . . Pn

P1

P2
. . .

Pn

Figure 1.4: Construction of the example in Section 1.3.2. Shaded edges are
odd.

1.3.3 An even-cut matroid with exponential number of inequivalent repre-
sentations

In this section, we will introduce an even-cut matroid that has an exponential number of inequiv-
alent representations. Consider a graft (G, T ) where |T | = 4. Suppose that we have a partition
P1, P2, . . . , Pn of E(G) and for every i ∈ [n], we have BG(Pi) = T . We illustrate the con-
struction of (G, T ) in Figure 1.6. Note that we can construct an example where n = Θ(|E(G)|)
and ecut(G, T ) is 3-connected. For every i ∈ [n] let Gi = G[Pi]. Denote by t1, t2, t3, t4 the
terminal vertices T . For every i ∈ I ⊆ [n] let G′i be a graph constructed from Gi by relabelling
the terminals in arbitrary one of three possible ways, (i) interchange the labels of t1 and t2 the
labels of t3 and t4; (ii) interchange the labels of t1 and t3 the labels of t2 and t4; (iii) interchange
the labels of t1 and t4 the labels of t2 and t3. Now let G′ be obtained from G by identifying
vertices t1 (resp. t2, t3, t4) in each of Gi for i ∈ [n]. Then (G′, T ) is a graft. We say that (G, T )
and (G′, T ) are related by shuffling {Pi|i ∈ I}. We illustrate this shuffling in Figure 1.7. It
can be readily checked in [6] that ecut(G, T ) = ecut(G′, T ). It is now straightforward to see
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L R

~H

(G,⌃)

P1 P2
. . . Pn

P1

P2
. . .

Pn

P1 P2
. . . Pn

P1

P2
. . .

Pn

~H 0

(G0,⌃)

Whitney � flips

Shufflings

L R

Figure 1.5: Shuffling in the example in Section 1.3.2. Shaded edges are odd.

t1 t2 t3t4

P1

P2

. . .

Pn

(G, T )

Figure 1.6: Construction of the example in Section 1.3.3. White vertices are
terminals. Dotted edges mean identifying vertices.
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t1 t2 t3t4

P1

P2

. . .

Pn

(G, T )

Shufflings

t1 t2 t3t4

P1

P2

. . .

Pn

(G0, T )

Figure 1.7: Shuffling of the example in Section 1.3.3. White vertices are
terminals.

that we can have an exponential number (in the number of elements) of inequivalent graft repre-
sentations all related by shuffling subsets of edges. Hence, we can have an exponential number
of pairwise inequivalent representations for an even-cut matroid. In particular, it implies that a
polynomial time recognition algorithm for even-cut matroids cannot record the set of all pairwise
inequivalent representations.

1.4 P-graphic and p-cographic matroids

In Section 1.3.2 and Section 1.3.3, we showed that there exist examples that have an exponential
number of inequivalent representations. In this section, we will introduce a subclass of even-
cycle matroids, p-graphic matroids, such that even-cycle matroids that are not p-graphic are
nicely behaved. We also introduce a subclass of even-cut matroids, p-cographic matroids, such
that even-cut matroids that are not p-cographic are nicely behaved.

Before we proceed, we require a number of definitions from [11]. Denote by loop(H) the set
of loops of a graphH . Consider a graphH and a vertex v and α ⊆ δH(v)∪ loop(H). We say that
G is obtained from H by splitting v into v1, v2 according to α if V (G) = V (H)−{v}∪ {v1, v2}
and for every e = (u,w) ∈ E(H):

(1) if e /∈ δH(v) ∪ loop(H), then e = (u,w) ∈ E(G);

10



(2) if e ∈ loop(H)− α, then e = (u,w) ∈ E(G)5;

(3) if e ∈ loop(H) ∩ α, then e = (v1, v2) ∈ E(G);

(4) if e ∈ δH(v) ∩ α and w = v then e = (u, v1) ∈ E(G);

(5) if e ∈ δH(v)− α and w = v then e = (u, v2) ∈ E(G).

Note that if you identify v1 and v2 inH you get the graphG back. Consider a signed graph (G,Σ)
we say that u ∈ V (G) is a blocking vertex if every odd circuit of (G,Σ) uses u. Equivalently, u
is a blocking vertex if there exists a signature Γ of (G,Σ) where Γ ⊆ δG(u)∪ loop(G) (see [11]).

Remark 1.4.1. If an even-cycle matroid has a representation with a blocking vertex then it is
graphic.

Proof. Let (G,Σ) be the representation. We may assume that Σ ⊆ δ(u) ∪ loop(G) for some
vertex u. Let G′ be obtained from G by splitting u according to Σ. Then clearly cycle(G′) =
ecycle(G,Σ).

Consider a signed graph (G,Σ) we say that u, v ∈ V (G) is a blocking pair if every odd
circuit of (G,Σ) uses at least one of u, v. Equivalently, u, v is a blocking pair if there exists a
signature Γ of (G,Σ) where Γ ⊆ δG(u) ∪ δG(v) ∪ loop(G) (see [11]). We say that an even-
cycle matroid M is pinch-graphic (or p-graphic for short) if it has a representation that has a
blocking pair. We say that (G,Σ) is a blocking pair representation or BP-representation of M .
The name arises from the fact that if we identify a blocking pair u, v of a representation (G,Σ)
where Σ ⊆ δ(u)∪ δ(v)∪ loop(G) then we obtain a blocking vertex which is, by Remark 1.4.1, a
representation of a graphic matroid. In other words, pinch-graphic matroids are one ’pinch’ away
from being graphic. Observe that examples in Section 1.3.2 have by construction a blocking pair.

Consider a signed graph (G,Σ) and I, J ⊆ E(G) where I ∩ J 6= ∅. If I contains an odd
circuit, then let Γ = ∅ otherwise there exists a signature Γ of Σ where Γ ∩ I = ∅. Then
(G,Σ)/I \ J denotes the signed graph (G/I \ J,Γ). Note that minors of signed graph are only
defined up to resigning. Analogously to Remark 1.2.2 we have

Remark 1.4.2. Let I, J ⊆ E(G) where I∩J = ∅. Then ecycle(G,Σ)/I \J = ecycle((G,Σ)/I \
J).

Similarly, for even-cut matroids we have an analogous Remark 1.4.3.

5If e is a loop on v in H , then it can be arbitrarily chosen to be a loop at v1 or at v2 in G.
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Remark 1.4.3. If an even-cut matroid has a representation with exactly two terminals then it is
cographic.

Proof. Let (G, T ) be a representation where T = {t1, t2}. Let G′ be obtained from G by identi-
fying t1 and t2. Then clearly cut(G′) = ecut(G, T ).

We say that an even-cut matroid M is pinch-cographic (or p-cographic for short) if it has
a representation (G, T ) where |T | ≤ 4. We say that (G, T ) is a T4-representation of M . The
name arises from the fact that if we identify say t1, t2 ∈ T in that representation, we obtain a
representation with only at most two terminals which is, by Remark 1.4.3, a representation of
a cographic matroid. In other words, p-cographic matroids are one ’pinch’ away from being
cographic. Observe that examples in Section 1.3.3 have by construction four terminals.

Consider a graft (G, T ) and I, J ⊆ E(G) where I ∩ J 6= ∅. Let G′ = G/I \ J . If J contains
an odd cut then (G, T )/I \ J denotes (G′, ∅). Otherwise then there exists a T -join L of G that is
disjoint from J and (G, T )/I \ J denotes (G′, T ′) where T ′ is the set of vertices of odd degree
of G′[L− I]. Analogously to Remark 1.4.2 we have

Remark 1.4.4. Let I, J ⊆ E(G) where I ∩J = ∅. Then ecut(G, T )/I \J = ecut((G, T )\I/J).

1.5 Thesis Overview

In the rest of the thesis, we will introduce two steps for solving the membership problems for
even-cycle and even-cut matroids. The main idea starts from the following nice properties in
Theorem 1.5.1 and Theorem 1.5.2.

Theorem 1.5.1. There exists a constant c such that every 3-connected even-cycle matroid that is
not p-graphic has at most c inequivalent representations.

Theorem 1.5.2. There exists a constant c such that every 3-connected even-cut matroid that is
not p-cographic has at most c inequivalent representations.

We postpone the proof of Theorem 1.5.1 and Theorem 1.5.2 until Section 2.4. According to these
theorems, to keep track of all representations up to equivalence classes is a good strategy as the
number of equivalence classes is bounded by a constant. In Chapter 2, by relying on these nice
properties, we assume that we have polynomial time algorithms that recognize p-graphic and p-
cographic matroids when the given matroids are 3-connected. Then we will solve the weakened
membership problems for even-cycle and even-cut matroids using these algorithms, namely,
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(1) Assuming the existence of a polynomial time algorithm recognizing p-graphic matroids,
we show how to design a polynomial time algorithm for testing membership for the class
of even-cycle matroids when the given matroids are 3-connected;

(2) Assuming the existence of a polynomial-time algorithm recognizing p-cographic matroids,
we show how to design a polynomial time algorithm for testing membership for the class
of even-cut matroids when the given matroids are 3-connected.

To complete our algorithms, we need algorithms to recognize p-graphic matroids and p-cographic
matroids. However, membership problems for p-graphic and p-cographic are equivalent since
they are dual to each other.

Proposition 1.5.3. A matroid M is p-graphic if and only if dual of M is p-cographic.

We postpone the proof of Proposition 1.5.3 until Section 3.1. In Chapter 3, we will solve the
membership problem for p-cographic matroids, namely,

(3) We show how to design a polynomial time algorithm for testing membership for the class
of p-cographic matroids when the given matroids are 3-connected.
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Chapter 2

Recognizing even-cycle and even-cut
matroids

The goal of this chapter is to solve the membership problems for even-cycle and even-cut ma-
troids when the given matroids are 3-connected. In this chapter, we assume that there exist
algorithms for recognizing p-graphic and p-cographic matroids, respectively. These recogni-
tion algorithms will be explained in Chapter 3. We also assume that these algorithms return a
compact certificate for membership or non-membership. We will use these algorithms to solve
membership problem for even-cycle and even-cut matroids. In Section 2.1 and 2.2, we give brief
outlines of algorithms for recognizing even-cycle and even-cut matroids. In Section 2.3, we will
introduce concepts of matroid connectivity and some ingredients to prove the main results that
are used in the algorithms. The proofs for these results will be in Section 2.4.

2.1 An algorithm for recognizing even-cycle matroids

To solve the membership problem for even-cycle matroids, we will use a similar strategy for
the membership problem for graphic matroids as the one mentioned in Section 1.2. In this
section, we give a brief overview of these algorithms as this will also be helpful in outlining
the membership algorithm for even-cycle and even-cut matroids. We start with the following
observation,

Proposition 2.1.1. LetM be a minor closed class of binary matroids and suppose that we have a
polynomial time algorithm to solve the membership problem forM when the given matroids are
3-connected. Then given any 3-connected binary matroid M /∈M described by its (0, 1)-matrix
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representation, we can find in polynomial time a 3-connected minor N of M that is minimally
not inM.

Proof. Pick e ∈ E(M). We check if M/e /∈ M and M/e is 3-connected. If it is, we define
M ′ as M/e. Otherwise we check if M \ e /∈ M and M \ e is 3-connected. If it is, we define
M ′ as M \ e. We repeat for every element e ∈ M . If M ′ is not defined, then return N = M .
Otherwise, we repeat the above procedure with M ′. We recursively find minors of M , until we
find a 3-connected minor N of M that is minimally not inM.

Observe that if a signed graph (G,Σ) has a blocking pair, say u, v, then for every minor (G′,Σ′)
the vertices u′, v′ corresponding to respectively u, v will form a blocking pair. This proves in
particular, that the class of p-graphic matroids is minor closed.

Let M be an even-cycle matroid and let N = M/I \ J be a minor of M . Suppose that
(G,Σ) is a representation of M . It follows from Remark 1.4.2 that (H,Γ) := (G,Σ)/I \ J
is a representation of N . We say that representation (H,Γ) of N extends to the representation
(G,Σ) of M . Remark 1.4.2 implies that every representation of M is obtained by extending
some representation of N . It is possible, however, that a single representation of N extends to
several inequivalent representations of M . If N is a minor of a matroid M then M is a major of
N . The following results are proved in [10],

Proposition 2.1.2. Let M be a matroid and let N = M \ e for some element e. Suppose that
N is an even-cycle matroid. Let F be an equivalence class of representations of N . Let F ′ be
the set of all extensions of F to M . Then F ′ is contained in at most one equivalence class of the
representations of M .

Proposition 2.1.3. Let M be a matroid without loops and coloops, and let N = M/e for some
element e. Suppose that N is an even-cycle matroid that is not graphic. Let F be an equivalence
class of representations of N . Let F ′ be the set of all extensions of F to M . Then F ′ is contained
in at most two equivalence classes of the representations of M .

Recall that an equivalence class for an even-cycle matroid is given by the set of all signed
graphs that are equivalent to a fixed signed graph that is a representation of that matroid. Partition
the set of all signed-graph representations into equivalence classes. Let E(M) be obtained by
selecting one signed-graph from each equivalence classe, i.e. E(M) is a maximal collection of
representations of M that are pairwise inequivalent. The membership algorithm will keep track
of E(M) for even-cycle matroids that are not p-graphic.

Now let us outline how having a polynomial algorithm for membership in the class of p-
graphic yields a polynomial algorithm for membership in the class of even-cycle matroids. Note
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that we assume for such an algorithm that if the answer is YES then the algorithm returns a
representation that has a blocking pair. Consider a 3-connected binary matroid M given by
a (0, 1)-matrix representation. We check if M is p-graphic; if it is, then it is also an even-
cycle matroid. Moreover, the membership algorithm returns a representation (G,Σ). In fact,
(G,Σ) has a blocking pair. We can then return (G,Σ) as a certificate and stop. Otherwise,
because of Proposition 2.1.1 we can find a minor N of M that is minimal with respect to (i)
N is non p-graphic and (ii) N is 3-connected. However, unlike the membership problem for
graphic matroids in Section 1.2, we cannot use Theorem 1.1.1 to find a small minor of M , since
3-connectivity is not minor-closed. Instead, we have the following similar result.

Theorem 2.1.4. There exists a constant c such that if a binary matroidN is minimal with respect
to the following properties,

(1) N is non-p-graphic, and

(2) N is 3-connected,

then |E(N)| < c.

We will postpone the proof of Theorem 2.1.4 until Section 2.4. It follows from Theorem 2.1.4
that the size of N is a constant independent of M . Then, we check if N an even-cycle matroid
(it has constant size so this can be done in constant time). If it is not, then M is not an even-
cycle matroid either and we can stop. Otherwise, we can use brute force to find E(N). As M
and N are 3-connected, [13] implies that we can construct a sequence of 3-connected matroids
M1, . . . ,Mk where M = M1, Mk = N , and for every i ∈ [k − 1], Mi+1 is obtained from
Mi by deleting or contracting an element, say ei of Mi. Inductively, we constructed E(Mi+1).
Using Proposition 2.1.2 and Proposition 2.1.3, we can construct E(Mi) from E(Mi+1) in time
polynomial in the size of Mi and the cardinality of E(Mi). However, the cardinality of E(Mi)
is bounded by a constant because of Theorem 1.5.1. It follows that E(Mi) can be constructed
in polynomial time in the size of Mi. If E(Mi) = ∅ then Mi is not an even-cycle matroid and
neither is M . Otherwise, if i = 1 then Mi = M is an even-cycle matroid with representations
E(Mi), and if i > 1 then we recursively construct E(Mi−1).

2.2 An algorithm for recognizing even-cut matroids

We can proceed in a similar way to obtain a polynomial membership algorithm for even-cut
matroid using a polynomial recognition algorithm for p-cographic matroids. Observe that if a
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graft (G, T ) has at most four terminals then so does every minor (G′, T ′) of (G, T ). This proves
in particular, that the class of p-cographic matroids is minor closed.

Let M be an even-cut matroid and let N = M/I \ J be a minor of M . Suppose that
(G, T ) is a representation of M . It follows from Remark 1.4.4 that (G′, T ′) := (G, T ) \ I/J
is a representation of N . We say that representation (G′, T ′) of N extends to the representation
(G, T ) of M . Remark 1.4.4 implies that every representation of M is obtained by extending
some representation of N . It is possible, however, that a single representation of N extends
to several inequivalent representations of M . Recall that an equivalence class for an even-cut
matroid is given by the set of all grafts that are equivalent to a fixed graft that is a representation
of that matroid. The following result appears in [6],

Proposition 2.2.1. Let M be a matroid and let N = M \ e for some element e. Suppose that
N is an even-cut matroid. Let F be an equivalence class of representations of N . Let F ′ be the
set of all extensions of F to M . Then F ′ is contained in at most one equivalence class of the
representations of M .

Proposition 2.2.2. Let M be a matroid without loops and coloops, and let N = M/e for some
element e. Suppose that N is an even-cut matroid that is not cographic. Let F be an equivalence
class of representations of N . Let F ′ be the set of all extensions of F to M . Then F ′ is contained
in at most two equivalence classes of the representations of M .

Let M be an even-cut matroid. Partition the set of all graft representations into equivalence
classes. Let E(M) be obtained by selecting one graft from each equivalence class, i.e. E(M) is
a maximal collection of representations of M that are pairwise inequivalent. The membership
algorithm will keep track of E(M) for even-cut matroids that are not p-cographic.

Now let us outline how having a polynomial algorithm for membership in the class of p-
cographic yields a polynomial algorithm for membership in the class of even-cut matroids. Note
we assume for such an algorithm that if the answer is YES then the algorithm returns a representa-
tion that has 4 terminals. Consider a 3-connected binary matroid M given by a (0, 1)-matrix rep-
resentation. We check if M is p-cographic; if it is, then it is also an even-cut matroid. Moreover,
the membership algorithm returns a representation (G, T ). In fact, |T | = 4. We can then return
(G, T ) as a certificate and stop. Otherwise, because of Proposition 2.1.1 we can find a minor N
of M that is minimal with respect to (i) N is non p-cographic and (ii) N is 3-connected. The
following theorem follows the Theorem 2.1.4 since p-cographic matroids are dual of p-graphic
matroids by Proposition 1.5.3,

Theorem 2.2.3. There exists a constant c such that if a binary matroidN is minimal with respect
to the following properties,
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(1) N is non-p-cographic, and

(2) N is 3-connected,

then |E(N)| < c.

It follows from theorem 2.2.3 that the size of N is a constant independent of M . Then, we check
if N an even-cut matroid (it has constant size so this can be done in constant time). If it is not,
then M is not an even-cut matroid either and we can stop. Otherwise, we can use brute force
to find E(N). As M and N are 3-connected, [13] implies that we can construct a sequence
of 3-connected matroids M1, . . . ,Mk where M = M1, Mk = N , and for every i ∈ [k − 1],
Mi+1 is obtained from Mi by deleting or contracting an element, say ei of Mi. Inductively, we
constructed E(Mi+1). Using Proposition 2.2.1 and Proposition 2.2.2, we can construct E(Mi)
from E(Mi+1) in time polynomial in the size of Mi and the cardinality of E(Mi). However, the
cardinality of E(Mi) is bounded by a constant because of Theorem 1.5.2. It follows that E(Mi)
can be constructed in polynomial time in the size of Mi. If E(Mi) = ∅ then Mi is not an even-
cut matroid and neither is M . Otherwise, if i = 1 then Mi = M is an even-cut matroid with
representations E(Mi), and if i > 1 then we recursively construct E(Mi−1).

2.3 Matroid connectivity

2.3.1 The connectivity function

Tutte [16] introduced connectivity and separations in matroids. In this section, we review these
definitions and present their applications to even-cycle and even-cut matroids. Let M be a
matroid with a rank function r. For X ⊆ E(M), the connectivity function is defined as
λM(X) = r(X)+r(X̄)−r(M). A partition (X, X̄) ofE(M) is k-separating if λM(X) ≤ k−1.
It is exactly k-separating when equality holds. A partition (X, X̄) is a k-separation if it is ex-
actly k-separating and |X|, |X̄| ≥ k. M is k-connected if it has no r-separations for any r < k.
We simply say that M is connected if M is 2-connected. Let G be a connected graph and let
X ⊆ E(G). The partition (X, X̄) is a k-separation of G if |X|, |X̄| ≥ k, |BG(X)| = k and
both G[X] and G[X̄] are connected. Note that with this definition two parallel edges of G form a
2-separation of G. A connected graph G is k-connected if it has no r-separations for any r < k.

A signed-graph is bipartite if all its cycles are even. The number of components of a graph
G is denoted by κ(G). The next propositions from [10] describes the connectivity function for
even-cycle matroids.
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Proposition 2.3.1. Let (G,Σ) be a non-bipartite signed-graph where G is connected and let
(X1, X2) be a partition of E(G). For i = 1, 2 let pi = 0 if (G[Xi],Σ ∩ Xi) is bipartite and let
pi = 1 otherwise. Then

λecycle(G,Σ)
(Xi) = |BG(X1)|+ p1 + p2 − κ(G[X1])− κ(G[X2]).

We will use the following application of this proposition,

Proposition 2.3.2. Suppose that ecycle(G,Σ) is 3-connected. Let S denote the set of all odd
loops. Then

(1) (G,Σ) has no even loop,

(2) |S| ≤ 1 and

(3) G \ S is 2-connected.

Moreover, if G has a 2-separation (X, X̄), then (G[X],Σ ∩ X) and (G[X̄],Σ ∩ X̄) are both
non-bipartite.

The next propositions [6] describes the connectivity function for even-cut matroids.

Proposition 2.3.3. Let (G, T ) be a graft where T 6= ∅ and G is connected and let X1, X2 be a
partition of E(G). For i = 1, 2 let pi = 0 if (G, T )/X̄i has no odd cut and let pi = 1 otherwise.
Then

λecut(G,T )(Xi) = |BG(X1)|+ p1 + p2 − κ(G[X1])− κ(G[X2]).

Given a separation X of G, we define the interior of X in G to be IG(X) = VG(X) − BG(X).
We will use the following application of this proposition,

Proposition 2.3.4. Suppose that ecut(G, T ) is 3-connected. Let S denote the set of all odd
bridges. Then

(1) (G, T ) has no even bridge,

(2) |S| ≤ 1 and

(3) G/S is 2-connected.

Moreover, if G has a 2-separation (X, X̄) then T ∩ IG/X̄(X) and T ∩ IG/X(X̄) are both non-
empty.
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2.3.2 2-Sums in p-graphic matroids

Let M1 and M2 be binary matroids that have exactly one element, say e, in common. The 2-sum
M = M1 ⊕2 M2 of M1 and M2 is defined as the matroid with elements E(M1)4E(M2) and
circuits that are either circuits of Mi avoiding e for i ∈ {1, 2} or; are of the form C14C2 where
for i ∈ {1, 2}, Ci is a circuit of Mi using e. We will use the following results from [9].

Proposition 2.3.5. Let M be a binary matroid and let X ⊆ E(M). Then (X, X̄) is a 2-
separation of M if and only if there exists M1,M2 with E(M1) − E(M2) = X and M =
M1 ⊕2 M2. Moreover, if M is 2-connected then M1 and M2 are minors of M .

Next we present two natural ways of constructing 2-sums of even-cycle matroids in terms of
representations. Let (G1,Σ) be a signed graph and let G2 be a graph. Suppose that E(G1) ∩
E(G2) = {e} where e is not a loop of G1 or G2 and suppose also that e /∈ Σ. Let G be obtained
from G1 and G2 by identifying e and then deleting e (we can get two possible graphs in that way
and these graphs are related by a single Whitney-flip). Then it can be readily checked that,

ecycle(G,Σ) = ecycle(G1,Σ)⊕2 cycle(G2). (2.1)

We then say that (G,Σ) is obtained from (G1,Σ) and G2 by summing on an edge.

Let (G1,Σ1) and (G2,Σ2) be non-bipartite signed graphs. Suppose that E(G1) ∩ E(G2) =
{e} where e is an odd loop of both (G1,Σ1) and (G2,Σ2). Let G be obtained by taking the
disjoint union of G1 and G2 and deleting the loop e. Let Σ = Σ14Σ2. Then it can be readily
checked that,

ecycle(G,Σ) = ecycle(G1,Σ1)⊕2 ecycle(G2,Σ2). (2.2)

We then say that (G,Σ) is obtained from (G1,Σ1) and (G2,Σ2) by summing on a loop.

By Proposition 2.3.5, to understand 2-sums in p-graphic matroids, we need to understand
2-separations in p-graphic matroids. Before we proceed, we require a definition. Let G be a
graph and let (E1, E2) be a partition of E(G). Then we define auxiliary graph G̃ of G according
to E1, E2 as follows:

(1) each component of G[E1], G[E2] is a vertex of G̃.

(2) each vertex of G that is incident to two components of G[E1], G[E2] is an edge between
corresponding vertices in G̃.

Note that every auxiliary graphs are bipartite.
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Proposition 2.3.6. Let M be an even-cycle matroid that is not graphic where (X1, X2) is a 2-
separation of M . Let (G′,Σ) be a representation of M . Then there exists a graph G equivalent
to G′ and its auxiliary graph G̃ according to (X1, X2) where for i ∈ {1, 2}, Gi = G[Xi] and
Σi = Σ ∩Xi , such that either

(1) both (G1,Σ1) and (G2,Σ2) are non-bipartite and G̃ is a 1-path graph,

(2) exactly one of (G1,Σ1), (G2,Σ2) is non-bipartite and G̃ is a 2-circuit graph,

(3) both (G1,Σ1) and (G2,Σ2) are bipartite and G̃ is a union of two 2-circuit graphs sharing
one vertex in common.

Moreover, in (3), let G1 be the corresponding graph to a vertex of degree 4 in the auxiliary graph
and let G2 be the union of two components C1 and C2 respectively corresponding to two vertices
of degree 2 in the auxiliary graph. Let BG(E(C1)) = {a1, a2} and let BG(E(C2)) = {b1, b2}.
Then (δ(a1) ∪ δ(b1)) ∩X1 is a signature of Σ.

Proof. LetG be a graph equivalent toG′ such that G̃ has the minimum number of vertices. Since
G is connected, G̃ is connected. Let (A1, A2) be a bipartition of G̃ where for i ∈ {1, 2}, Ai are
components of Gi.

Claim 1. There exists a cut-edge in G̃ if and only if (1) occurs.

Proof. Suppose that there exists a cut-edge e = uv of G̃ where u ∈ A1 and v ∈ A2. Then
deleting e divides G̃ into two components C1 containing u and C2 containing v. By the way of
contradiction, let us assume |V (G̃)| ≥ 3. We may assume that C1 contains at least two vertices.
Then there exists a vertex w ∈ A2 in C1. Let H be a graph obtained from G by splitting the
vertex corresponding to e according to u and v, and identifying one vertex of the component
corresponding to w and one vertex of the component corresponding to v. Then H is a graph
equivalent to G where H̃ has less number of vertices than G̃, giving a contradiction. Thus, u, v
are the only vertices and G̃ is a 1-path graph. Since λM(E(M1)) = 1, by Proposition 2.3.1, both
(G1,Σ1), (G2,Σ2) are non-bipartite. The opposite direction is trivial. ♦

Claim 2. There is no path (v1, v2, v3, v4) of length 3 in G̃ such that deg(v2) = deg(v3) = 2.
Also, there is no 3-circuit (v1, v2, v3) in G̃ such that deg(v2) = deg(v3) = 2.

Proof. Suppose that there exists a path (v1, v2, v3, v4) in G̃. Let X = E(v2) ∪E(v3) in G. Since
(X, X̄) is a 2-separation of G, we can perform a Whitney-flip on X to obtain an auxiliary graph
with less number of vertices, giving a contradiction. We can use the same argument for the
second result. ♦
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Let k = |BG(E(G1))|. For i ∈ {1, 2}, let pi = 0 if (Gi,Σi) is bipartite and let pi = 1 otherwise.
By Proposition 2.3.1, k = κ(G1)+κ(G2)+1−p1−p2. Thus, |E(G̃)| = k = |V (G̃)|+1−p1−p2.
There are the following cases.

Case 1. Both (G1,Σ1) and (G2,Σ2) are non-bipartite.
Since p1 = p2 = 1, we have |E(G̃)| = |V (G̃)| − 1. Thus, G̃ is a tree. By Claim 1, (1) occurs.

Case 2. Exactly one of (G1,Σ1) and (G2,Σ2) is bipartite.
We may assume (G1,Σ1) is bipartite. Since p1 = 0 and p2 = 1, |E(G̃)| = |V (G̃)|. By Claim 1,
there is no vertex of degree 1. Thus, G̃ is a circuit. By Claim 2, G̃ is a 2-circuit and (2) occurs.

Case 3. Both (G1,Σ1) and (G2,Σ2) are bipartite.
Since p1 = p2 = 0, |E(G̃)| = |V (G̃)| + 1. By Claim 1, there is no vertex of degree 1. Thus, in
G̃, either every vertex has degree 2 except two vertices of degree 3, or every vertex has degree 2
except one vertex of degree 4.

Claim 3. Every vertex has degree 2 except one vertex of degree 4 in G̃.

Proof. Suppose that every vertex has degree 2 except two vertices of degree 3 in G̃. Let u, v be
vertices of degree 3. Then, there exists a path P1 between u and v, and consider H = G̃\P1.
Since every vertex in H except isolated vertices has degree 2, H is a circuit or a union of two
disjoint circuits. If H is a union of two disjoint cycles, then each edge of P1 is a cut-edge
contradicting Claim 1. Thus, H is a cycle containing both u, v, so G̃ is a union of three internally
disjoint u, v-paths P1, P2, P3. By Claim 2, length of P1, P2, P3 is at most 2. Suppose that u, v are
contained in the different partition of (A1, A2). Then, P1, P2, P3 are 1-paths and for i ∈ {1, 2},
Gi is connected. Let BG(X1) = {v1, v2, v3}. Since (G2,Σ2) is bipartite, we may assume Σ = Σ1.
Since (G1,Σ1) is bipartite, Σ1 is a cut of G1. If this cut does not separate v1, v2, v3 in G1, then
(G,Σ) is bipartite, giving a contradiction. If this cut separate v1, v2, v3 (say, v1 and v2, v3), then
v1 is a blocking vertex, giving a contradiction by Remark 1.4.1. Thus, u, v are contained in the
same partition of (A1, A2). Thus, P1, P2, P3 are 2-paths. We can use the similar argument to
show that (G,Σ) is graphic, giving a contradiction. ♦

By Claim 3, every vertex has degree 2 except one vertex u of degree 4 in G̃. G̃\u is a union of
disjoint two paths. Thus, G̃ is a union of two circuits sharing one vertex in common. By Claim 2,
these circuits are 2-circuits and (3) occurs. We can use the similar argument in Claim 3 to prove
the last part.

Now we can prove the following Proposition 2.3.7 and Proposition 2.3.8 about a 2-sum in
p-graphic matroids.
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Proposition 2.3.7. Let M be a p-graphic matroid that is not graphic. Suppose there exist ma-
troids M1 and M2 such that E(M1) ∩ E(M2) = {e} and M = M1 ⊕2 M2. Then for some
i ∈ {1, 2}, Mi is p-graphic and non-graphic but M3−i is graphic.

Proof. Proposition 2.3.5 implies that M1,M2 are minor of M . It follows that M1,M2 are both
p-graphic. Moreover, if M1,M2 are both graphic then so is M , a contradiction. It suffices to
show that for some i ∈ {1, 2}, Mi is graphic. Let (G′,Σ) be a BP-representation of M and
for i ∈ {1, 2}, let Xi = E(Mi) − {e}. Apply Proposition 2.3.6 to M and (G′,Σ) with the
2-separation (X1, X2) and let G be the result graph. For i ∈ {1, 2}, let Gi = G[Xi] and let
Σi = Σ ∩Xi.

Case 1. The outcome (1) occurs.
Then, (G,Σ) is obtained by summing on a loop from (G1,Σ1) and (G2,Σ2) where for i ∈ {1, 2},
Mi = ecycle(Gi,Σi). Suppose that none of (G1,Σ1) and (G2,Σ2) is graphic. By Remark 1.4.1,
for i ∈ {1, 2}, (Gi,Σi) has at least two vertices to intersect all odd circuits. Thus, (G,Σ) require
at least three vertices to intersect all odd circuits (as (G1,Σ1) and (G2,Σ2) share at most one
vertex). But this contradicts the fact that (G,Σ) is a BP-representation.

Case 2. The outcome (2) occurs.
Then, (G,Σ) is obtained by summing on an edge from (G1,Σ1) and (G2,Σ2) where for i ∈
{1, 2}, Mi = ecycle(Gi,Σi). Suppose that (G1,Σ1) is bipartite. Then, M1 is graphic.

Case 3. The outcome (3) occurs.
Let G1 be the corresponding graph to a vertex of degree 4 in the auxiliary graph. Let G2 be
the union of two components C1 and C2 respectively corresponding to two vertices of degree
2 in the auxiliary graph. Let BG(E(C1)) = {a1, a2} and let BG(E(C2)) = {b1, b2}. Since
(δ(a1)∪ δ(b1))∩X1 is a signature of Σ, an edge set C ⊆ E(M2) is a circuit of M2 if and only if
C is either a circuit of G2 or the union of {e} and an inclusion-wise minimal {a1, a2, b1, b2}-join
of G2. Now construct a graph H from G2 by (i) identifying a1 and b1, and (ii) adding an edge
e = (a2, b2). Then, cycle(H) = M2. Thus, M2 is graphic.

Proposition 2.3.8. Let M1 be a p-graphic matroid and let M2 be a graphic matroid. Suppose
that E(M1)∩E(M2) = {e}. ThenM = M1⊕2M2 is p-graphic. Moreover, ifM1 is not graphic,
then so is M .

Before we can proceed to the proof of Proposition 2.3.8, we require some preliminaries. Consider
a signed graph (G,Σ) and vertices v1, v2 ∈ V (G) where Σ ⊆ δG(v1) ∪ δG(v2) ∪ loop(G). We
can construct a signed graph (G′,Σ) from (G,Σ) by replacing the incidences of every odd edge
e as follows:
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• if e = v1v2 in G, then e becomes a loop in G′ incident to v1;

• if e is a loop in G, then e = v1v2 in G′;

• if e = xvi, for i ∈ {1, 2} and x 6= v1, v2, then e = xv3−i in G′.

In this case, we say that (G′,Σ) is obtained from (G,Σ) by a Lovász-flip. In [11] it is shown that
ecycle(G′,Σ) = ecycle(G,Σ) i.e. they are both representations of the same p-graphic matroid.
An immediate corollary is the following observation,

Remark 2.3.9. Let M be a connected p-graphic matroid and let e be some element of M . Then
there exists a BP-representation of M where e is not a loop.

Proof of Proposition 2.3.8. Let e be the unique element in E(M1) ∩ E(M2). Let (G1,Σ) be a
BP-representation of M1. Because of Remark 2.3.9 we may assume that e is not an odd loop of
(G1,Σ1). By resigning we may also assume that e /∈ Σ1. Let G2 be representation of M2. Then
by summing (G1,Σ) and G2 on edge e we obtain a BP-representation (G,Σ) of M . The last part
directly follows from Proposition 2.3.5.

2.4 Bounding the number of representations

The following results respectively appears in [10] and [6].

Theorem 2.4.1. Let N be a 3-connected even-cycle matroid that is not p-graphic. Let M be a
3-connected major of N . For every equivalence class F of N , the set of extensions of F to M is
the union of at most two equivalence classes.

Theorem 2.4.2. Let N be a 3-connected even-cut matroid that is not p-cographic. Let M be a
3-connected major of N . For every equivalence class F of N , the set of extensions of F to M is
the union of at most two equivalence classes.

Now, we are ready to prove Theorem 1.5.1 and Theorem 1.5.2.

Proof of Theorem 1.5.1. Let c be the constant from Theorem 2.1.4. Let M be a 3-connected
even-cycle matroid that is not p-graphic. Let N be a minimal matroid with respect to (1) N
is non-p-graphic and (2)N is 3-connected. By the Theorem 2.1.4, |E(N)| < c. Let c′ be the
maximum number of inequivalent representations for a matroid on at most c elements. Then
|S(N)| ≤ c′. It follows from Theorem 2.4.1 that |S(M)| ≤ 2c′.

24



Proof of Theorem 1.5.2. Let c be the constant from Theorem 2.2.3. Let M be a 3-connected
even-cut matroid that is not p-cographic. Let N be a minimal matroid with respect to (1) N is
non-p-cographic and (2)N is 3-connected. By the Theorem 2.2.3, |E(N)| < c. Let c′ be the
maximum number of inequivalent representations for a matroid on at most c elements. Then
|S(N)| ≤ c′. It follows from Theorem 2.4.2 that |S(M)| ≤ 2c′.

Now it remains that to prove Theorem 2.1.4. Before we prove Theorem 2.1.4, we need
following lemmas.

Lemma 2.4.3. LetN be a binary matroid that is minimally non-p-graphic. ThenN is connected.
Moreover, if N is not 3-connected, then N has at most one 2-separation.

Proof. Suppose N is not connected. Then there exists a 1-separation (X1, X2) of N . Since N is
a minimally non-p-graphic matroid, N |X1 and N |X2 are p-graphic. For i ∈ {1, 2}, let (Gi,Σi)
be BP-representations for N |Xi

. By Remark 2.3.1, since (X1, X2) is a 1-separation of N , at least
one of (Gi,Σi) is bipartite. Thus, N is p-graphic, giving a contradiction.

For the second part, we assume that N has at least two 2-separations. By [1], there exists
N1, N2, N3 such thatN = N1⊕2N2⊕2N3 whereE(N1)∩E(N2) = {e}, E(N2)∩E(N3) = {f}
and E(N1) ∩ E(N3) = ∅. Since N is minimally non-p-graphic, N1 ⊕2 N2 and N2 ⊕2 N3 are
p-graphic. By Proposition 2.3.8, N1 and N3 are not graphic, otherwise N is p-graphic. Since N2

is connected, there exists a circuitC containing e and f inN2. ThenN \(N2−C)/(C−{e, f}) is
2-sum ofN1 andN3 where e and f are regarded as the same edge. It contradicts Proposition 2.3.7
as N1 and N3 are both not graphic.

The following lemmas are proven respectively in [4] and [2].

Lemma 2.4.4. Let M be a matroid and let N be a minor of M . Suppose that N has a unique
exact 2-separation (X, Y ) and that M is minimal major of N that bridges (X, Y ). Then M is
3-connected.

Lemma 2.4.5. If (X, Y ) is an exact 2-separation in a matroid N and M is a minimal matroid
that bridges the 2-separation (X, Y ) in N , then |E(M)| < |E(N)|+ 5.

We now prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Let N be a binary matroid that is minimal with respect to (1) N is non-
p-graphic and (2)N is 3-connected. LetN ′ be a minor ofN that is minimally non-p-graphic. Let
c be the maximum size of an excluded minor for p-graphic. By Theorem 1.1.1, c is a constant.
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Note that |E(N ′)| ≤ c. By Lemma 2.4.3, either N ′ is 3-connected, or N ′ is connected and has
a unique 2-separation. If N ′ is 3-connected, then N = N ′. Thus, we may assume that N ′ is
connected and has unique 2-separation (X, Y ). Let N ′′ be a minor of N and a major of N ′ that
minimally bridges (X, Y ). It follows from Lemma 2.4.4 thatN ′′ is 3-connected. Thus, N = N ′′.
By Lemma 2.4.5, |E(N)| < |E(N ′)|+ 5 ≤ c+ 5.
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Chapter 3

Recognizing p-graphic and p-cographic
matroids

The goal of this chapter is solving membership problems for p-graphic and p-cographic ma-
troids when the given matroids are 3-connected. By Proposition 1.5.3, it suffices to have an
algorithm for recognizing p-cographic matroids. In Section 3.1, we introduce folding/unfolding
operations between aBP -representation and a T4 representation, and prove Proposition 1.5.3. In
Section 3.2, we give a brief outline of an algorithm for recognizing p-cographic matroids. Un-
like other algorithms mentioned in the previous sections, this algorithm keep track of two types
of classes: equivalence classes and anemone classes. Both classes and related results will be
considered respectively in Section 3.3 and Section 3.4.

3.1 From p-graphic to p-cographic

Before we proceed to the proof for Proposition 1.5.3, we need a number of definitions from [11].
Consider a signed graph (G,Σ) where Σ ⊆ δG(s) ∪ δG(t) and suppose that there are no loops
and edges between s and t. The graft (H,T ) obtained from (G,Σ) by unfolding on s, t is defined
as follows:

(1) split s into s1, s2 according to Σ ∩ δG(s);

(2) split t into t1, t2 according to Σ ∩ δG(t);

(3) set T = {s1, s2, t1, t2}.
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Figure 3.1: Folding/unfolding between a BP -representation and a T4-
representation. Shaded edges are odd and white vertices are terminals.

We illustrate the construction in the following picture, Let us extend this definition to the case
where we have loops or edges e with ends s, t of G as follows:

(a) If e is an even loop in G it remains an even loop at the same vertex in H; If e is an even
loop at s (resp. t) in G, it remains an even loop at s1 or s2 (resp. t1 or t2) in H .

(b) If e is an odd loop in G at s, we have e = (s1, s2).

(c) If e is an odd loop in G at t, we have e = (t1, t2).

(d) If e = (s, t) is even we have a choice e = (s1, t1) or e = (s2, t2) in H .

(e) If e = (s, t) is odd we have a choice e = (s1, t2) or e = (s2, t1) in H .

Note that, for (a)-(e), the edge e behaves similarly to a path Q of length two with respect to the
previous definition. For instance for (d), we think of e as a path Q with two odd edges or two
even edges. For (e), we think of e as a path Q where the edge incident to s is odd and the edge
incident to t is even or vice-versa. We say that (G,Σ) is obtained from (H,T ) by folding with
pairing s1, s2 and t1, t2.

The following characterization of the cocycles of even-cycle and even-cut matroids appears
in [11]. We follow closely the proof given in that paper.

Proposition 3.1.1.

(1) The cocycles of ecycle(G,Σ) are precisely cuts of G and signatures of (G,Σ);
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(2) The cocycles of ecut(G, T ) are precisely cycles of G and T -joins of G.

Proof of Proposition 1.5.3. Let M be a p-graphic matroid. By definition there exists a repre-
sentation (G,Σ) with vertices s, t such that Σ ⊆ δG(s) ∪ δG(t) ∪ loop(G). Let (H,T ) =
(H, {s1, s2, t1, t2}) be a T4-representation obtained by unfolding (G,Σ) on s, t where s1, s2 cor-
respond to s and t1, t2 correspond to t. Let N = ecut(H,T ). We need to show that the cycles of
M are equal to the cocycles of N . Because of Proposition 3.1.1 it suffices to show that the set of
all even-cycles of (G,Σ) is equal to the union of the set of all cycles and all T -joins of H . Sup-
pose that C is an even cycle of (H,Γ). For every v ∈ V (H)−{s, t}, |δH(v)∩C| = |δG(v)∩C|,
which is even. For i = 1, 2 define d(s, i) = |C ∩ δG(si)| and d(t, i) = |C ∩ δG(ti)|. Since C
is a cycle d(s, 1), d(s, 2) have the same parity and so do d(t, 1), d(t, 2). Note that α = δG(s1),
β = δG(t1) and Γ = α∆β. Thus, as |C ∩ Γ| is even, d(s, 1) and d(t, 1) have the same parity.
Thus d(s, 1), d(s, 2), d(t, 1), d(t, 2) are either all even or all odd. In the former case C is a cycle
of G, in the later case it is a T -join of G. The converse is similar.

3.2 An algorithm for recognizing p-cographic matroids

In this section, we give a brief version of an algorithms to solve the membership problem
for p-graphic(resp. p-cographic) matroids when the given matroids is 3-connected and is not
graphic(resp. cographic). By Proposition 1.5.3, it is enough to solve the membership problem
for p-cographic matroids. We will use the same strategy for membership problem for graphic
matroids that is mentioned in Section 1.2. In section 1.3.3, the example shows that we may have
exponentially many equivalence classes for a p-cographic matroid. To solve this, we will use
an additional class of representations, called an anemone class. These classes will be used to
consider all representations obtained by shuffling petals in Section 1.3.3 as one class of repre-
sentations. The formal definition for anemone class will be introduced in Section 3.3. Recall
that an equivalence class for an p-graphic matroid is given by the set of all signed graphs that are
equivalent to a fixed signed graph that is a representation of that matroid. We only consider T4-
representations, since p-graphic matroids are minor-closed. Let A(M) be obtained by selecting
one T4-representation from each anemone classes and let S(M) be obtained by selecting one T4-
representation from each equivalence classes that have at least one T4-representation that is not
contained in any anemone classes. The membership algorithm will keep track ofA(M)∪S(M)
for p-cographic matroids that are not cographic. Then as an analogue of Theorem 1.5.2, we have
the following result,

Theorem 3.2.1. Let M be a 3-connected p-cographic matroid that is not cographic. Then the
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set of all T4-representations of M is contained in a polynomial number of equivalence represen-
tations and a polynomial number of anemone classes.

Now let us outline a polynomial time algorithm for the membership problem for p-cographic
matroids. Consider a 3-connected binary matroid M given by a (0, 1)-matrix representation.
We check if M is cographic by using the membership algorithm for cographic matroids. If
M is cographic, then it is also a p-cographic matroid. Moreover, the membership algorithm
returns a representation (G, T ) where T = ∅. We can then return (G, ∅) as a certificate and stop.
Otherwise, because of Proposition 2.1.1 we can find a minor N of M that is minimally non-
cographic. Note that every minimally non-cographic matroids is 3-connected. By Theorem 1.1.1,
N has a bounded size. As M and N are 3-connected, by[13], this implies that we can construct
a sequence of 3-connected matroids M1, . . . ,Mk where M = M1, Mk = N , and for every
i ∈ [k − 1], Mi+1 is obtained from Mi by deleting or contracting an element, say ei of Mi.
Iteratively, we constructed S(Mi+1) ∪ A(Mi+1). Then, we can construct S(Mi) ∪ A(Mi) from
S(Mi+1)∪A(Mi+1) in polynomial time in the size of Mi and the cardinality of S(Mi)∪A(Mi).
However, the cardinality of S(Mi) ∪ A(Mi) is bounded by a polynomial number because of
Theorem 3.2.1. It follows that S(Mi)∪A(Mi) can be constructed in polynomial time in the size
ofMi. If S(Mi)∪A(Mi) = ∅ thenMi is not a p-cographic matroid and neither isM . Otherwise,
if i = 1 then Mi = M is a p-cographic matroid with representations S(Mi) ∪ A(Mi), and if
i > 1 then we iteratively construct S(Mi−1) ∪ A(Mi−1).

3.3 Anemone classes

3.3.1 Flowers

Let us review the definition of flowers from [12]. Given a matroid M with rank function r, the
connectivity function λM returns for every X ⊆ E(M) the integer, λM(X) := r(X) + r(X̄) −
r(E(M)). A flower Φ of a 3-connected matroid M is an ordered partition (P1, . . . , Pn) of E(M)
where |Pi| ≥ 2 and λM(Pi) = λM(Pi ∪ Pi+1) = 2 for all i ∈ [n] where all indices are taken
modulo n. The sets P1, . . . , Pn are the petals of the flower.

By a cyclic subset of [n] we mean a proper subset of the form {i, i + 1, . . . , j − 1, j} with
i ≤ j or the complement of such a set. The flower Φ is a daisy if for every cyclic subset I of [n],
the set ∪i∈IPi is 3-separating (i.e. the union of consecutive petals is 3-separating) and no other
union of petals is 3-separating. The flower Φ is an anemone if for every non-empty proper subset
I of [n], the set ∪i∈IPi is 3-separating (i.e. the union of an arbitrary set of petals is 3-separating).
It is shown in [12] that for a 3-connected matroid, every flower is either a daisy or an anemone.
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Definition 3.3.1. Let (G, T ) be a graft with |T | = 4. Denote byE0 the set of edges ofG that have
both ends in T . Let P1, . . . , Pn be a partition of E(G) − E0. The pair Φ = (E0, {P1, . . . , Pn})
where n ≥ 4 is an ordinary anemone of (G, T ) if for every i ∈ [n]:

(1) G[Pi] is connected,

(2) BG(Pi) ⊆ T and |BG(Pi)| ≥ 3.

We say that P1, . . . , Pn are the petals of the ordinary anemone and edges in E0 are loose.

Definition 3.3.2. Let Φ = (E0, {P1, . . . , Pk}) be an ordinary anemone of (G, T ) where T =
{t1, t2, t3, t4}. We say that (G, T ) and (G′, T ) are related by rearranging loose edges if G can be
obtained from G′ by repeatedly replacing edge e = tptq by e = trts where {p, q, r, s} = [4]. For
every i ∈ [n] let G′i be the graph obtained from G[Pi] by relabeling the terminals in one of three
possible ways,

(1) interchange the labels of t1 and t2 the labels of t3 and t4;

(2) interchange the labels of t1 and t3 the labels of t2 and t4;

(3) interchange the labels of t1 and t4 the labels of t2 and t3. 1

Now let G′ be obtained by identifying vertices t1 (resp. t2, t3, t4) in each of G′i for i = 1, . . . , k.
We then say that (G, T ) and (G′, T ′) are related by rearranging petals.

In the previous definition, it can be readily checked that if Φ is an ordinary anemone for
(G, T ) and (G′, T ′) is obtained from (G, T ) by rearranging petals and loose edges, then Φ is an
ordinary anemone for (G′, T ′) as well. Moreover, it can be checked that C ⊆ E(G) is a cycle or
a T -join of (G, T ) if and only if C is a cycle or a T ′-join of (G′, T ′). Thus, (G, T ) and (G′, T ′)
are representations of the same p-cographic matroid. This leads to the following definition, given
Φ an ordinary anemone of (G, T ) the set of all grafts obtained from (G, T ) by rearranging the
loose edges or petals is the anemone class generated by (G, T ) and Φ. Note no two members of
an anemone class are related by Whitney-flips in general, i.e. are equivalent.

We saw in the introduction that ordinary anemones may give rise to p-cographic matroids
that have an exponential number of pairwise inequivalent T4-representations. In this section we
gain a better understanding of these types of anemone.

1proceed as if T ⊆ VG(Pi) for all i ∈ [k] by thinking of vertices in T \ VG(Pi) as isolated vertices of G.
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3.3.2 Representations of ordinary anemones

We will show that for a p-cographic matroid, an ordinary anemone for one representation will
correspond, for another representation, to either an ordinary anemone or to a skewed anemone
that we define next.

Definition 3.3.3. Let (G, T ) be a graft with |T | = 4. Let v1, v2, v3 be distinct vertices of G and
let X = {v1, v2, v3}. Denote by E0 as follows:

(a) if X ⊆ T , then let E0 be the set of all edges that have both ends in T ,

(b) if |T ∩ X| = 2, then let E0 be the set of all edges that have both ends in X or that have
both ends in T −X .

(c) if |T ∩X| ≤ 1, then let E0 be the set of all edges that have both ends in X .

The pair Φ = (E0, {P1, . . . , Pn}) where E0, P1, . . . , Pn is a partition of E(G) and where n ≥ 4
is a skewed anemone for (G, T ) if

(1) T ⊆ VG(Pi) for some i ∈ [n].

Moreover, for every i ∈ [n]:

(2) G[Pi] is connected, and

(3) BG(Pi) = X .

P1, . . . , Pn are the petals of the skewed anemone and edges in E0 are loose.

We illustrate the construction in Figure 3.2, Let E be a set and let S = {S1, . . . , Sp} and
R = {R1, . . . , Rq} be two partitions of E. If for every i ∈ [q], Ri ⊆ Sj for some j ∈ [p], thenR
is a refinement of S. If R is a refinement of S then S is a coarsening of R. An ordinary (resp.
skewed) anemone Φ of a graft (G, T ) is maximal if no refinement Φ′ of Φ where |Φ′| > |Φ| is an
ordinary (resp. skewed) anemone.

We are now ready to state the main result of this section,

Proposition 3.3.4. Let M be a 3-connected p-cographic matroid with T4-representations (G, T )
and (G′, T ′). Then Φ is an ordinary or skewed anemone of (G′, T ′) if Φ is an ordinary anemone
of (G, T ). Moreover, if Φ is a maximal in (G, T ) if and only if it is maximal in (G′, T ′).
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Figure 3.2: Construction of a skewed anemone. White vertices are terminals.
Dotted edges mean identifying vertices.

We next define a set of matroid properties that captures the behaviour of ordinary and skewed
anemones with exactly three petals. What we need is essentially the notion of a copaddle, a type
of matroid anemone; however, it will be convenient in our case to modify the definition in [12]
to treat separately the elements of M that are in the co-span of each petal Pi. This leads to the
following definition.

Definition 3.3.5. Consider a binary matroid M with a partition (E0, P1, P2, . . . , Pn) of E(M).
Let N = M/E0. Then (E0, {P1, . . . , Pn}) is a copaddle of M if for every i ∈ [n],

(1) e ∈ E0 if and only if e is a coloop of M \ Pi,

(2) λN(Pi) = 2,

and for all distinct i, j ∈ [n],

(3) uN(Pi, Pj) = 0,

(4) uN∗(Pi, Pj) = 2,

where P1, . . . , Pn are the petals of the copaddle. Observe that this is related to the common
notion of anemone as we can move the elements in E0 to any petal Pi, that is,

Remark 3.3.6. Let M be a 3-connected binary matroid. If (E0, {P1, . . . , Pn}) is a copaddle of
M , then (E0 ∪ P1, . . . , Pn) is an anemone of M .

33



The proof of Proposition 3.3.4 is covered in the next three sections. In Section 3.3.2 we study
1- and 3-separations in even-cut matroids. In Section 3.3.2 we show that ordinary and skewed
anemone give rise to copaddles. As a corollary we prove that ordinary and skewed anemones
correspond matroid anemone. In Section 3.3.2 we show that copaddles correspond to ordinary
or skewed anemone. We complete the proof of Proposition 3.3.4 in Section 3.3.2.

1- and 3-separations in grafts.

Consider a graft (G, T ) and X ⊂ E(G) where X 6= ∅. We say that X induces a 1-separation
of Type I in (G, T ) if G[X], G[X̄] are connected; |BG(X)| = 1; and T ⊆ VG(X) or T ⊆
VG(X̄). We say that X induces a 1-separation of Type II in (G, T ) if G[X], G[X̄] are connected;
|BG(X)| = 2; and T = BG(X).

We will need the following result about 1-separations,

Proposition 3.3.7. Let M = ecut(G, T ) where G is connected. Consider X ⊂ E(G) where
X 6= ∅ andG[X], G[X̄] are connected. Then λM(X) = 0 if and only ifX induces a 1-separation
of Type I or II.

Proof. Follows immediately from Proposition 2.3.3.

Consider a graft (G, T ) and X ⊂ E(G) where X 6= ∅. We say that X induces a 3-separation
of Type I in (G, T ) if G[X], G[X̄] are connected; |BG(X)| = 2; and IG(X) ∩ T 6= ∅, and
IG(X̄) ∩ T 6= ∅. We say that X induces a 3-separation of Type II in (G, T ) if G[X], G[X̄] are
connected; |BG(X)| = 3; T * BG(X); and T ⊆ VG(X) or T ⊆ VG(X̄). We say that X induces
a 3-separation of Type III in (G, T ) ifG[X], G[X̄] are connected; |BG(X)| = 4; and T ⊆ BG(X)
where T 6= ∅.

We will need the following result about 3-separations,

Proposition 3.3.8. Let M = ecut(G, T ) where G is connected. Consider X ⊂ E(G) where
X 6= ∅ andG[X], G[X̄] are connected. Then λM(X) = 2 if and only ifX induces a 3-separation
of Type I, II or III.

Proof. Follows immediately from Proposition 2.3.3.

Proposition 3.3.9. Let (G, T ) be a graft with a partition P1, P2, P3 of E(G). Suppose that G[Pi]
and G \ Pi is connected for all i ∈ [3]. Let M = ecut(G, T ) and let {i, j, k} = [3]. Then

(1) λM(Pi) = 2 if and only if Pi induces a 3-separation of Type I, II, or III in (G, T );
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(2) uM(Pi, Pj) = 0 if and only if Pi induces a 1-separation of Type I or II of (G, T )/Pk;

(3) uM∗(Pi, Pj) = 2 if and only if Pi induces a 3-separation of Type I, II, or III in (G, T )\Pk.

Proof. (1) Follows directly from Proposition 3.3.8. (2) Remark 1.4.4 implies that (G′, T ′) =
(G, T )/Pk is a representation ofM\Pk. ThusuM(Pi, Pj) = λecut(G′,T ′)(Pi). By Proposition 3.3.7,
λecut(G′,T ′)(Pi) = 0 if and only if Pi induces a 1-separation of Type I or II of (G′, T ′). (3) As
the function λ is invariant under duals, λ(M/Pk)∗(Pi) = λM/Pk

(Pi). Remark 1.4.4 implies that
(G′, T ′) := (G, T ) \ Pk is a representation of M/Pk. Thus uM∗(Pi, Pj) = λecut(G′,T ′)(Pi). By
Proposition 3.3.8, λecut(G′,T ′)(Pi) = 2 if and only if Pi induces a 3-separation of Type I, II, or III
of (G′, T ′).

Proposition 3.3.10. Let (G, T ) be a representation of a matroid M with disjoint subsets P1, P2

of E(G). Suppose that G[Pi] is connected for i = 1, 2. Let M = ecut(G, T ). If uM∗(P1, P2) = 2
then G[P1 ∪ P2] is connected.

Proof. Let P3 = E(G) − (P1 ∪ P2). As in the proof of Proposition 3.3.9(c) we show that
λM∗(P1, P2) = λecut(G′,T ′)(Pi) where (G′, T ′) = (G, T ) \ P3. Suppose for a contradiction
G[P1 ∪ P2] is not connected. As G[P1], G[P2] are connected, VG(P1) ∩ VG(P2) = ∅. But then
Proposition 2.3.3 implies that λecut(G′,T ′)(P1) ≤ 1, a contradiction.

From ordinary or skewed anemones to copaddles

Proposition 3.3.11. Let M be a 3-connected p-cographic matroid M with a T4-representation
(G, T ). If Φ is an ordinary anemone of (G, T ), then Φ is a copaddle of M .

Proof. We have Φ = (E0, {P1, . . . , Pn}) for some partitionE0, P1, . . . , Pn ofE(M). We need to
prove properties (1)-(4) of Definition 3.3.5. By (1) and (2) in Definition 3.3.1, G[Pi] is connected
for i ∈ [n]. (1) e ∈ E0 if and only if e has both ends in T . Let i ∈ [n]. Remark 1.4.4 implies that
(G, T )/Pi is a representation of M \Pi. By (2) in Definition 3.3.1, either e is a loop of G/Pi or e
is an edge of (G, T )/Pi where the unique terminals are the ends of e. In either cases e is a coloop
of M \Pi. (2) Let i, j ∈ [n]. Remark 1.4.4 implies that (H,T ) := (G, T )\E0 is a representation
of N = M/E0. By Definition 3.3.1(1), G[Pi] is connected, and by Definition 3.3.1(1) and (2),
G[E(M) − Pi] is connected. By Definition 3.3.1(2), BH(Pi) ⊆ T where α := |BH(Pi) ∩ T | ∈
{3, 4}. If α = 3 then Pi induces a 3-separation of Type II in (H,T ). If α = 4 then Pi induces a
3-separation of Type III in (H,T ). In both cases, Proposition 3.3.9(1) implies that λN(Pi) = 2
as required. (3) Let α := |BG(E(M) − Pi) ∩ T |. By Definition 3.3.1(2), α ∈ {3, 4}. If α = 3
then Pi induces a 1-separation of Type II in (H,T )/(E(M) − Pi). If α = 4 then Pi induces a

35



1-separation of Type I in (H,T )/(E(M) − Pi). In both cases, Proposition 3.3.9(2) implies that
uN(Pi, Pj) = 0 as required. (4) Let (H ′, T ′) = (H,T ) \ (E(M) − Pi). By Definition 3.3.1(2),
α := |BG′(Pi)| ∈ {2, 3, 4}. If α = 2 then Pi induces a 3-separation of Type I in (G′, T ′). If
α = 3 then Pi induces a 3-separation of Type II in (G′, T ′). If α = 4 then Pi induces a 3-
separation of Type III in (G′, T ′). In all cases, Proposition 3.3.9(3) implies that uN∗(Pi, Pj) = 2
as required.

We leave the proof of the following result as an exercise as it is very similar to that of Proposi-
tion 3.3.11.

Proposition 3.3.12. Let M be a p-cographic matroid M with a T4-representation (G, T ). If Φ
is a skewed anemone of (G, T ), then Φ is a copaddle of M .

This together with Remark 3.3.6 implies the following remark.

Remark 3.3.13. Let M be a 3-connected p-cographic matroid with a T4-representation (G, T ).
If (E0, {P1, . . ., Pn}) is an ordinary or a skewed anemone of (G, T ) then (E0 ∪ P1, P2, . . . , Pn)
is an anemone of M .

From copaddles to ordinary or skewed anemones

Proposition 3.3.14. Let M be a 3-connected p-cographic matroid with a T4-representation
(G, T ). Consider a partition E0, P1, . . . , Pn of E(M) whereG[Pi] is connected for every i ∈ [n].
Suppose that for every coarsening Q1, Q2, Q3 of P1, . . . , Pn, (E0, {Q1, Q2, Q3}) is a copaddle of
M . Then Φ = (E0, {P1, . . . , Pn}) is an ordinary or a skewed anemone of (G, T ).

We will proceed by induction on the number of petals. Let us first consider the base case
where we have exactly three petals.

Proposition 3.3.15. Let M be a 3-connected p-cographic matroid that is not cographic. Let
(G, T ) be a T4-representation of M . If Φ = (E0, {Q1, Q2, Q3}) is a copaddle of M and G[Qi]
is connected for all i ∈ [3] then Φ is an ordinary or a skewed anemone of (G, T ).

Proof. Let H = G \ E0. Remark 1.4.4 implies that (H,T ) is a representation of N = M/E0.

Claim 1.

(a) If BG(Qi) ⊆ T for all i ∈ [3], then Φ is an ordinary anemone.
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(b) If T ⊆ VG(Qi) for some i ∈ [3] and there exists a, b, c ∈ V (G) such that for all i ∈ [3],
BG(Qi) ⊆ {a, b, c}, then Φ is a skewed anemone.

Proof. (a) Let e ∈ E0 and let i ∈ [3]. Since e is a coloop of M \ Qi it is either a loop of G/Qi

or an edge of (G, T )/Qi where the only terminals are then end of e. Since this holds for all
i ∈ [3] and since by hypothesis BG(Qi) ⊆ T the ends of e must be in T . We need to show that
each property (1) and (2) of Definition 3.3.1 holds. (1) holds by hypothesis, (2) by hypothesis
BG(Qi) ⊆ T . By Definition 3.3.5(4), λM(Qi) = 2. By Proposition 3.3.9(1) Qi induces a 3-
separation of Type II, or III in (H,T ). It follows that |BH(Q3) ∩ T | ∈ {3, 4} as required. (b)
Similarly as in (a) we prove that edges in E0 have both ends in {a, b, c}. We need to show that
each property (1)-(3) of Definition 3.3.3 holds. (1) by hypothesis, (2) by Claim 1. The proof for
(3) is similar to (2) of part (a). ♦

Consider first the case where for some i ∈ [3], T ∩ IH(Qi) 6= ∅. We may assume i = 3. Let
(H ′, T ′) = (H,T ) \Q3. As T ∩IH(Q3) 6= ∅, T ′ = ∅. By Definition 3.3.5(4), uM∗(Q1, Q2) = 2.
Equivalently, by Proposition 3.3.9(3) Q1 induces a 3-separation of Type I, II, or III in (H ′, T ′).
But as T ′ = ∅ it is must be of Type II. Denote by a, b, c the vertices in BH′(Q1). Thus VH(Q1) ∩
VH(Q2) = {a, b, c}. By Definition 3.3.5(2), λM(Q1) = 2. By Proposition 3.3.9(1) Q1 induces
a 3-separation of Type I, II, or III in (H,T ). Since BH(Q1) ⊆ {a, b, c} and since T ∩ IH(Q3) \
V (Q1) 6= ∅, it must be of Type II. Thus BH(Q1) = {a, b, c} and T ∩ IH(Q1) = ∅. Similarly,
BH(Q2) = {a, b, c} and T ∩ IH(Q2) = ∅. Thus BH(Q3) ⊆ {a, b, c} and T ⊆ VH(Q3). It then
follows from the Claim that Φ is a skewed anemone of (G, T ).

Thus we will assume that,

IH(Qi) ∩ T = ∅ for all i ∈ [3]. (3.1)

Let (H ′, T ′) := (H,T )/Q3. By Definition 3.3.5(3), uN(Q1, Q2) = 0. By Proposition 3.3.9(2),
Case 1 or Case 2 occurs.

Case 1. Q1 (resp. Q2) induces a 1-separation of (H ′, T ′) of Type I.

It follows that BH(Qi) ⊆ BH(Q3) for i = 1, 2. Because of (3.1), T ′ = ∅ thus T ⊆ VH(Q3).
But then (3.1) implies in fact that T ⊆ BH(Q3). Proposition 3.3.10 implies that H[Q1 ∪ Q2]
is connected. By Definition 3.3.5(2), λM(Q3) = 2. By Proposition 3.3.9(a) Q3 induces a 3-
separation of Type I, II, or III in (H,T ). As T ⊆ BH(Q3) it must be of Type III. Since M is a p-
cographic matroid that is not cographic, |T | = 4 and BH(Q3) = T . Then BH(Qi) ⊆ BH(Q3) =
T for i = 1, 2. By Definition 3.3.5(2), λM(Qi) = 2 for i = 1, 2. By Proposition 3.3.9(1) Qi

induces a 3-separation of Type I, II, or III in (H,T ). As IH(Qi) ∩ T = ∅, it must be of Type II
or III. In all cases it follows from the Claim that Φ is an ordinary anemone for (H,T ).
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Case 2. Q1 (resp. Q2) induces a 1-separation of (H ′, T ′) of Type II.

Denote by t1, t2, t3, t4 the vertices in T . Then we have, say, t1 which is the unique vertex in
VH(Q1) ∩ VH(Q2)− VH(Q3), and t2, t3, t4 ∈ BH(Q3). Because of t1, H[Q1 ∪Q2] is connected.
By Definition 3.3.5(2), λM(Q3) = 2. By Proposition 3.3.9(1) Q3 induces a 3-separation of Type
I, II, or III in (H,T ). Because of t1 it is not of Type III. Because of t2, t3, t4 it is not of Type
I, thus it is of Type II, i.e. BH(Q3) = {t2, t3, t4}. By Definition 3.3.5(2), λM(Qi) = 2 for
i = 1, 2. By Proposition 3.3.9(1) Qi induces a 3-separation of Type I, II, or III in (H,T ). As
IH(Qi) ∩ T = ∅, it must be of Type II or III. In all cases it follows from the Claim that Φ is an
ordinary anemone for (H,T ).

We now generalize the previous result to the case where we have an arbitrary number of
petals.

Proof of Proposition 3.3.14. We have Φ = (E0, {P1, . . . , Pn}). Let us proceed by induction
on n. We may assume n ≥ 4 for otherwise the result follows from Proposition 3.3.15. De-
fine Φ+(i, j) as the partition Φ − {Pi, Pj} ∪ {Pi ∪ Pj} and define Φ−(i, j) as the partition
∪`∈[k]−{i,j}P`, Pi, Pj . Observe that if {Q1, Q2, Q3} is a coarsening of Φ+(i, j) (resp. Φ−(i, j))
then it is also a coarsening of Φ. Moreover, if the petals G[Pi] are connected in G then so are the
petals in any coarsening. Thus the hypothesis of the theorem also hold for Φ+(i, j) and Φ−(i, j).

For all distinct i, j ∈ [k] it follows by induction that Φ+(i, j) is an ordinary or skewed
anemone of (G, T ) and that Φ−(i, j) is an ordinary or skewed anemone of (G, T ). Consider
first the case where IG(Pi) ∩ T = ∅ for all i ∈ [k]. Pick distinct i, j ∈ [k]. Then Φ+(i, j) and
Φ+(i, j) are both ordinary anemones of (G, T ). It follows that for all P ∈ Φ+(i, j) ∪ Φ−(i, j),
BG(P ) ⊆ T and |BG(P )∩T | ∈ {3, 4}. In particular, this holds for all P = Pi with i = 1, . . . , k,
hence Φ is an ordinary anemone. Consider the case where IG(Pi) ∩ T 6= ∅ for some i ∈ [k].
Pick j ∈ [k]− {i}. Then Φ+(i, j) and Φ+(i, j) are both skewed anemones of (G, T ). It follows
that there exists a, b, c ∈ V (G) such that for all P ∈ Φ+(i, j) ∪ Φ−(i, j), BG(P ) = {a, b, c}. In
particular, this holds for all P = Pi with i = 1, . . . , k, hence Φ is a skewed anemone.

The proof of Proposition 3.3.4

Let M be a matroid and let X, Y ⊆ E(M). We say that X and Y are crossing if none of X ∩ Y ,
X ∩ Ȳ , X̄ ∩ Y and X̄ ∩ Ȳ is an empty set.

Lemma 3.3.16. Let M be a 3-connected p-cographic matroid with T4-representations (G, T )
and (G′, T ′). Let Φ = (E0, {P1, . . . , Pn}) be an ordinary anemone of (G, T ). Then for all
i ∈ [n], G′[E(M)− Pi] is connected.
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Proof. Suppose not. Then there exists X ⊆ E(M)− Pi such that (X, X̄) is a 1- or 2-separation
of M ′ = M\Pi. Thus, λM ′(X) ≤ 1. Suppose that for every i ∈ [n], X and Pi are not crossing.
Then, by taking complement of X if necessary, we may assume X ⊆ Pj for some j ∈ [n]−{i}.
Then λM(X) = λM ′(X) ≤ 1, a contradiction. Thus, X and Pj are crossing for some j ∈
[n] − {i}. Then by submodularity, λM ′(X ∩ Pj) + λM ′(X ∪ Pj) ≤ λM ′(X) + λM ′(Pj) ≤ 3.
Thus, λM ′(X ∩ Pj) ≤ 1 or λM ′(X ∪ Pj) ≤ 1. Since M is 3-connected, X ∩ Pj or X̄ ∩ P̄j is an
edge. By the similar argument, X ∩ P̄j or X̄ ∩Pj is an edge. If X̄ ∩Pj is an edge, then |Pj| = 2.
This contradicts that |BG(Pj)| ≥ 3. Thus, X ∩ P̄j is an edge. Thus, for some k ∈ [n] − {i, j},
X ∩ Pk 6= ∅ and IG(X) ∩ T 6= ∅. Thus, λM ′(X) = 2, giving a contradiction.

We are now ready for the proof of the main result of this section.

Proof of Proposition 3.3.4. Let Φ = (E0, {P1, . . . , Pn}) be an ordinary anemone of (G, T ).

Claim 1. G′[Pi] is connected for all i ∈ [n].

Proof. Suppose there exists i ∈ [n] such that G′[Pi] is not connected. Let C1, . . . , Ck be com-
ponents of G′[Pi]. By Proposition 2.3.3, λ(Pi) = |BG′(Pi)| + p1 + p2 − k − 1 where p1, p2

are corresponding constant in Proposition 2.3.3. Since M is 3-connected, |BG′(Cj)| ≤ 2 for
all j = 1, . . . , k. Suppose k ≤ 4. Then, λ(Pi) ≤ |BG′(Pi)| − k − 1 ≤ 3 contradicting
λ(Pi) = 2. If k = 3, then |BG′(Cj)| = 2 for all j = 1, 2, 3 and p1 = p2 = 0. Since M is
3-connected IG′(Cj) 6= ∅, so p1 = 1, giving a contradiction. Thus, k = 2. If |BG′(Pi)| = 5,
then |BG′(Cj)| = 2 for some j ∈ [2] and p1 = p2 = 0, but by the similar argument, p1 = 1,
giving a contradiction. Thus, |BG′(Pi)| = 4, |BG′(Cj)| = 2, p1 = 1 and p2 = 0. Since M is
3-connected, IG′(Cj) 6= ∅ for j = 1, 2 and IG′(P̄i) = ∅. Thus, Pi is the unique petal such that
G′[Pi] is not connected. Then we can use the same argument in the proof of Proposition 3.3.15
to show that there exists a, b, c ∈ V (G′) such that for all j ∈ [n] but i, BG′(Pj) = {a, b, c}. By
Proposition 3.3.16, BG′(Cj) ∩ {a, b, c} 6= ∅ for j = 1, 2. We may assume |BG′(C1)| = 1. Thus,
there exists m ∈ [n] such that BG′(Cj) ⊆ VG′(Pm). Then λ(Pi, Pm) ≤ 1, giving a contradiction.
♦

Let Q1, Q2, Q3 be a coarsening of P1, . . . , Pn and let Φ′ = (E0, {Q1, Q2, Q3}). If Φ′ is
an ordinary anemone of (G, T ) then by Proposition 3.3.11 Φ′ is a copaddle. If Φ′ is a skewed
anemone of (G, T ) then by Proposition 3.3.12 Φ′ is a copaddle. It follows from Claim 2 and
Proposition 3.3.14 that Φ is an ordinary or a skewed anemone of (G′, T ′). Suppose for a contra-
diction, Φ is maximal in (G, T ) but that Φ is not maximal in (G′, T ′). Then there is a refinement
Φ̂ of Φ that is an ordinary or skewed anemone of (G′, T ′). Applying the first part of the theorem
it follows that Φ̂ is an ordinary or skewed anemone of (G, T ). Observe that Φ is an ordinary
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(resp. skewed) anemone of (G, T ) if and only if Φ̂ is an ordinary (resp. skewed) anemone of
(G, T ), contradicting the fact that Φ is maximal.

3.3.3 Ordinary anemones related by arranging petals and loose edges

If Φ is an ordinary anemone for two T4-representations of a p-cographic matroid, then we can
describe exactly the relationship between these representations. The analogous statement where
we replace ordinary anemones by skewed ones is not true.

Proposition 3.3.17. Let M be a 3-connected p-cographic matroid that is not cographic. Let
(G, T ) and (G′, T ′) be T4-representations of M . If Φ = (E0, {P1, . . . , Pn}) is a maximal or-
dinary anemone of both (G, T ) and (G′, T ′), then (G, T ), (G′, T ′) are related by rearranging
petals and loose edges.

Proof. Let i ∈ [n]. Let H be obtained from G[Pi] by identifying vertices in BG(Pi) and let H ′

be obtained from G′[Pi] by identifying vertices in BG′(Pi).

Claim 1. H and H ′ are equivalent.

Proof. Let D = E(M)− Pi. By Definition 3.3.1(2), α := |BG(Pi)| ∈ {3, 4}. Consider first the
case where α = 4. Then H = G/D, and T ⊆ VG(D). In particular, (G, T )/D = (H, ∅). It
follows that

ecut(G, T ) \D = ecut((G, T )/D) = ecut(H, ∅) = cut(H),

Consider now the case where α = 3, say BG(G) = {t1, t2, t3} where T = {t1, t2, t3, t4}. Denote
by Ĥ the graph obtained G[Pi] by identifying t1, t2, t3 to a single vertex, say t̂. Then Ĥ = G/D.
Note that H is obtained from Ĥ by identifying t̂ and t4. It follows that,

ecut(G, T ) \D = ecut((G, T )/D) = ecut((Ĥ, {t̂, t4}) = cut(H),

where the first equation holds by Remark 1.4.4. Thus in both cases cut(H) = ecut(G, T ) \ D.
Similarly, for G′ we show that cut(H ′) = ecut(G′, T ′) \D. It follows that cut(H) = cut(H ′), or
equivalently, cycle(H) = cycle(H ′). By Theorem 1.2.3 this implies that H and H ′ are related
by Whitney-flips. Thus, H and H ′ are equivalent. ♦

Claim 2. H and H ′ are isomorphic.

Proof. By Claim 1, H and H ′ are equivalent. Suppose H and H ′ are not isomorphic. Suppose
there is a 2-separation (X,Pi −X) of H that is also a 2-separation of G. By Proposition 2.3.3,
λM(X) = 1. This contradicts 3-connectivity of M . Thus, every 2-separation of H has the
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identified vertex as its one of boundary vertices and it is a 3-,4- or 5-separation in G. Thus, no
two 2-separations in the sequence of Whitney-flips from H to H ′ are crossing. Let (X,Pi −X)
be one of 2-separations that is performed from H to H ′. Then, (X,Pi−X) is also a 2-separation
of H ′. By rearranging petals if necessary, we may assume there exist two petals Pj, Pk where
i, j, k are all distinct and BG(Pj)∩BG(Pk) = T . Then we can find a path Q1 in G[Pj] and a path
Q2 in G[Pk], such that Q1 ∪Q2 is a T -join of (G, T ). Let Q = Q1 ∪Q2 and let R = P̄i −Q. In
fact, there are at least two choices for the pair (Q1, Q2), thus we may assume that in G/Q \ R,
(X,Pi−X) is a 3-separation. SinceQ is a cocircuit of ecut(G, T ),Q is either a T ′-join of (G′, T ′)
or a circuit of G′. Consider first the case where Q is a T ′-join of (G′, T ′). Let F = G/Q \R and
let F ′ = G′/Q \R. Then,

cut(F ) = ecut(F, ∅) = ecut(G, T )/Q \R = ecut(G′, T ′)/Q \R = ecut(F ′, ∅) = cut(F ′)

By Theorem 1.2.3, F and F ′ are related by Whitney-flips, giving a contradiction. Consider now
the case where Q is a circuit of G′. Note that VG′(Q) ∩ T ≥ 2, otherwise Q is a disjoint union
of two circuits in ecut(G, T )/Pi, but Q is a circuit in ecut(G′, T ′)/Pi, giving a contradiction. Let
F = G/Q \ R and let F ′ = G′/Q \ R. Note that in ecut(G′, T ′)/Q \ R, there are at most two
terminals. By identifying possible two terminals, we may assume that ecut(G′, T ′)/Q\R has no
terminals. Then,

cut(F ) = ecut(F, ∅) = ecut(G, T )/Q \R = ecut(G′, T ′)/Q \R = ecut(F ′, ∅) = cut(F ′)

By Theorem 1.2.3, F and F ′ are related by Whitney-flips, giving a contradiction. ♦

Claim 3. Let i ∈ [n] then G[Pi] and G′[Pi] are isomorphic.

Proof. Suppose for a contradiction that G[Pi] and G′[Pi] are not isomorphic. It follows from
Claim 1 that we must have edges e1, e2 ∈ Pi such that in G, ej is incident to tj for j = 1, 2 where
t1, t2 are distinct elements of T , and in G′, e1, e2 are incident to the same vertex t′ ∈ T ′. Since
Φ is maximal, G[Pi] \ B(Pi) is connected. It follows that there exists a path Q in G[Pi] \ B(Pi)
such that Q ∪ {e1, e2} forms a t1t2-path in G[Pi]. But then Claim 1 implies that Q ∪ {e1, e2}
forms a circuit in G′[Pi]. By Proposition 3.1.1 it implies that Q ∪ {e1, e2} is a cocircuit of M .
But, then, Proposition 3.1.1 implies that Q ∪ {e1, e2} is either a circuit of G or a T -join of G, a
contradiction as Q ∪ {e1, e2} is a path of G and |T | = 4. ♦

By a tripod of G[Pi] (resp. G′[Pi]) we mean a triple (Q1, Q2, Q3) where Q1, Q2, Q3 are three
edge disjoint paths in G (resp. G′) that share exactly one vertex v0 ∈ IG(Pi) as an initial vertex
and where the other end of Qj , for j = 1, 2, 3 is a vertex in T .

Claim 4. Let i ∈ [n]. Then there exists a tripod (Q1, Q2, Q3) of G[Pi] (resp. G′[Pi]) and distinct
elements t1, t2, t3 ∈ T where tj is the end of Qj for j = 1, 2, 3.
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Proof. Since Φ is maximal, G[Pi] \ B(Pi) is connected. It follows that there exists in G: a t1, t2-
path L ⊆ Pi that is internally disjoint from T , and a path L′ with end in VG(L) − T and t3 that
is internally disjoint from L. Then L ∪ L′ contain the edges of the required tripod. Similarly, we
can find the tripod in G′[Pi]. ♦

Since M is not cographic, there exists j ∈ [n], say j = 1, such that BG(Pj) = T (for other-
wise we can rearrange the petals to get another representation ofM where a terminal becomes an
isolated vertex, which implies that M is cographic). Denote by t1, t2, t3, t4 the elements in T and
T ′. Recall from Claim 2, that G[Pi] and G′[Pi] are isomorphic for all i ∈ [n]. We may assume
that G[P1] are G[P2] are identical, in particular that vertex tj of G[P1] corresponds to vertex tj
of G′[P1] for all j = 1, . . . , 4. It can be readily checked that edges of E0 in G and G′ are related
by rearranging edges. We need to show that G \E0 are G′ \E0 are related by rearranging petals.
Let i ∈ {2, . . . , n}. It suffices to show that G′[Pi] is obtained from G[Pi] by either:

i. keeping same labels for vertices of G[Pi] and G′[Pi]; or

ii. interchanging the labels of t1 and t2 & the labels of t3 and t4; or

iii. interchanging the labels of t1 and t3 & the labels of t2 and t4; or

iv. interchanging the labels of t1 and t4 & the labels of t2 and t3. 2

By Claim 3 there exists a tripod (Q1, Q2, Q3) of G[P1] where tj is the end of Qj for j = 1, 2, 3.
We may assume (after possibly relabeling the vertices of T in both G and G′ that BG(Pi) ⊇
{t1, t2, t3}. By Claim 3 there exists a tripod (R1, R2, R3) of G[Pi] where tj is the end of Rj for
j = 1, 2, 3. By Claim 2 (Q1, Q2, Q3) is a tripod of G′[P1] and (R1, R2, R3) is a tripod of G′[Pi].
Denote by C(i, j) the set Qi ∪Qj ∪Ri ∪Rj . Exactly one of the following cases 1-4 occurs.

Case 1: R1 has end t1 inG′. C(1, 2) is a circuit ofG. By Proposition 3.1.1 it is either a circuit
of a T ′-join of G′, but it cannot be the latter, hence it is a circuit. It follows that R2 has end t2 in
G′. By considering C(1, 3) we prove similarly that R3 has end t3 in G′. Hence, (i) occurs.

Case 2: R2 has end t1 inG′. C(1, 2) is a circuit ofG. By Proposition 3.1.1 it is either a circuit
of a T ′-join of G′, but it cannot be the latter, hence it is a circuit. It follows that R2 has end t1 in
G′. C(1, 3) is a circuit of G. By Proposition 3.1.1 it is either a circuit of a T ′-join of G′. But it
cannot be the former, hence it is a T ′-join. It follows that R3 has end t4 in G′. Hence, (ii) occurs.

Case 3: R3 has end t1 in G′. Similarly, as in the previous case, we have that R3 has end t1 in
G′, R1 has end t3 in G′ and R2 has end t4 in G′. Hence, outcome (iii) occurs.

2If T * BG(Pi) then for the purpose of relabeling we think of the vertex in T − BG(Pi) as part of G[Pi].
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Case 4: none of R1, R2, R3 has end t1 in G′. C(2, 3) is a circuit of G. By Proposition 3.1.1 it
is either a circuit of a T ′-join of G′, but it cannot be the latter, hence it is a circuit. It follows that
R2, R3 have ends t2, t3 or t3, t2 respectively in G′. Then r1 has end t4 in G′. C(1, 2) is a circuit
of G. But it cannot be the former, hence it is a T ′-join. Hence, R3 has end t2 in G′ and R2 has
end t3 in G′. Hence, outcome (iv) occurs.

3.3.4 Bounding the number of representations with anemones

The key result in this section is the following,

Proposition 3.3.18. Let M be a 3-connected p-cographic matroid. Then there exist anemone
classes F1, . . . , Fk where k ∈ O (rank(M)3) such that if (G, T ) is a T4-representation of M
and there exists Φ that is a maximal ordinary anemone for (G, T ), then (G, T ) ∈ Fi for some
i ∈ [k].

Before we proceed with the proof we wish to show that k cannot be chosen as a constant in
the previous result. Consider a wheel Wn with vertices v0, v1, . . . , vn and for i = 1, . . . , n,
edges v0vi and vivi+1 (where n + 1 = 1). Construct a graph G from Wn by applying the
following construction for each i ∈ [n]: (a) add to Wn, 2-connected graphs G[Pi] and G[P ′i ]
where BG(Pi) = BG(P ′i ) = {v0, vi}, and (b) let Σ such that Σ ∩ {vivi+1|i ∈ [n]} = v1v2 and
such that for all i ∈ [n], Σ∩(Pi∪P ′i ) ⊆ δG(v0) and there exists an odd circuit of (G,Σ) contained
in Pi (resp. P ′i ) that is using v0 and avoiding vi. Then for every i ∈ [n] we can resign (G,Σ) to
get a signature Γi ⊆ δG(v0)∪ δG(vi). Denote by (Hi, Ti) the graft obtained by unfolding (G,Γi)
on v0, vi. Then Φ = (∅, G \ (Pi ∪ P ′i ), Pi, P

′
i ) is an ordinary anemone for (Hi, Ti). Moreover, by

Proposition 1.5.3 (Hi, Ti) for all i ∈ [n] are representations of the same even-cut matroid. We
illustrate the construction in Figure 3.3,

LetG be a connected graph and let S ⊆ V (G). By a proper S-bridge we mean the connected
graph obtained from a component of G \ S by adding all the edges of G that have one end in
the component and one end in S. An S-bridge is either an edge with both ends in S or a proper
S-bridge. We have the following nice relation between proper bridges and petals of maximal
flowers,

Remark 3.3.19. Let Φ = (E0, {P1, . . . , Pn}) be a maximal ordinary anemone for (G, T ). Then
the petals P1, . . . , Pn are exactly the proper T -bridges of G.

Remark 3.3.20. Let Φ = (E0, {P1, . . . , Pn}) be a maximal skewed anemone for (G, T ). Then
the petals P1, . . . , Pn are exactly the proper BG(P1)-bridges of G.
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Figure 3.3: Linearly many ordinary anemones. Bold edges and shaded edges
are odd. White vertices are terminal.

We are now ready for the proof of the main result in this section.

Proof of Theorem 3.3.18. Let (G1, T1), . . . , (Gk, Tk) be a maximal set of T4-representations with
the following properties:

• for each i ∈ [k], there exists a maximal ordinary anemone Φi for (Gi, Ti),

• for every distinct i, j ∈ [k], (Gi, Ti) and (Gj, Tj) are in distinct anemone equivalence
classes.

We need to show that k ∈ O(|V |3).

Claim 1. Φ1, . . . ,Φk are all distinct
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Proof. Suppose that for distinct i, j ∈ [k], Φi = Φj . Then Φi is a maximal ordinary anemone for
both (Gi, Ti) and (Gj, Tj). By Proposition 3.3.17, (Gi, Ti) and (Gj, Tj) are related by rearranging
petals and edges. Hence, (Gi, Ti) and (Gj, Tj) are in the same anemone class, a contradiction.
♦

Let i ∈ [k]. By Proposition 3.3.4 Φi is either: (i) a maximal ordinary anemone of (G1, T1) or
(ii) a maximal skewed anemone of (G1, T1). By Remark 3.3.19 it follows that there is a unique
ordinary anemone as in (i). By Remark 3.3.20 it follows that there are at most

(|V |
3

)
skewed

anemones as in (ii) because it is the number of choices for the three-vertex boundary. It follows
that k ∈ O(|V |3) as required.

3.3.5 Extending anemones

Suppose that we have a p-cographic matroidM , and thatN is obtained by deleting or contracting
a single element of M . The proof of Theorem 3.2.1 (as well as the membership algorithm for
p-cographic matroids) relies on the fact that we can describe the representations of M from the
representations of N . In particular, we need to show that the number of equivalence classes
and anemone classes of N and M only differ by a polynomial in |E(N)|. Two key steps are
propositions 3.3.25 and 3.3.27 in this section.

First let us count the maximum number of grafts in an anemone class.

Remark 3.3.21. Let Φ be an anemone for some graft (G, T ). If Φ has k petals, then the anemone
class obtained generated by Φ and (G, T ) has cardinality at most 8× 3k.

Proof. There are at most 23 ways of rearranging loose edges, and each petal can be rearranged
in three possible ways (see Definition 3.3.2).

Before we proceed further we need some additional results and definitions.

Remark 3.3.22. LetM be a matroid andN = M \e for some e ∈ E(M). ThenM is determined
by the cycles of N as well as a unique cycle of M using e.

Proof. Let C be the unique cycle of M using e. For any cycle C1 of M using e, C2 = C4C1 is
a cycle of M avoiding e. Thus, C1 = C4C2.

Proposition 3.3.23. Let M be an p-cographic matroid and let eE(M). Let N = M/e and
suppose that both M and N are 3-connected. Consider a set Γ ⊆ E(N) where Γ ∪ {e} is a
cocycle of M . Suppose that (G, T ) is representation of N . Then (G′, T ′) is a representation of
M that extends N if and only if (G′, T ′) satisfies one of the following,
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i. Γ is a {v1, v2}-join and G′ is obtained from G by adding edge e = (v1, v2), or

ii. For every T -join J of (G, T ), Γ4J is a {v1, v2}-join and G′ is obtained from G by adding
edge e = (v1, v2).

Proof. Suppose (G′, T ′) is a representation ofM that extendsN . By Remark 1.4.4, (G′, T ′)\e =
(G, T ). Thus T ′ = T . Since Γ∪{e} is a cocycle of M , Γ∪{e} is either a cycle of G′ or a T -join
of (G′, T ). For the former case, (i) holds. For the latter case, let J be a T -join of (G, T ). Since J
is also a T -join of (G′, T ), (Γ∪ {e})4J is a cycle of G′. Thus, (ii) holds. The converse follows
from Remark 3.3.22 (by duality).

Proposition 3.3.24. Let M be an p-cographic matroid and let e ∈ E(M). Let N = M \ e and
suppose that both M and N are 3-connected. Consider a set Γ ⊆ E(N) where Γ∪{e} is a cycle
of M . Suppose that (G, T ) is representation of N . Then (G′, T ′) is a representation of M that
extends (G, T ) where |T ′| = |T | if and only if (G′, T ′) can be constructed in the following way,

i. find Γ′ = Γ4D where D is an even cut of (G, T ) and Γ′ ⊆ δG(v) for some v ∈ V (G),

ii. G′ is obtained from G by splitting v according to Γ′ into v1, v2 and adding edge e = (v1, v2),

iii. if v /∈ T then T ′ = T ,

iv. if v ∈ T then T ′ = T − {v} ∪ {v3−i} for some i ∈ [2] where vi is incident to the edges of Γ′

in G′.

Moreover, if e is not a loop ofM , then Γ′ 6= ∅. If there is no parallel edge of e inM , then |Γ′| > 1
and |δ(v)4Γ′| > 1.

Proof. Suppose (G′, T ′) is a representation ofM that extendsN . By Remark 1.4.4, (G′, T ′)/e =
(G, T ). Let e = (v1, v2) and let v be a vertex obtained by contracting e. Since |T ′| = |T |, not all
of v1, v2 are terminals. If both v1, v2 are not terminals, then T ′ = T and v /∈ T . If exactly one of
v1, v2 is a terminal, then T ′ = T − {v} ∪ {vi} for some i ∈ [2] and v ∈ T . We may assume that
v1 is not a terminal. Then D = δG′(v1) 4(Γ ∪ {e}) is an even cut of (G′, T ′) avoiding e. Thus,
D is an even cut of (G, T ). Note that v1 is incident to all edges of Γ′ in G′. The converse follows
from Remark 3.3.22. The last part follows from Proposition 2.3.3.

Let M be a p-cographic matroid and let (G, T ) be a T4-representation. We say that (G, T ) is
of anemone type if there exists Φ that is an anemone for (G, T ).
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Proposition 3.3.25. Let M be a p-cographic matroid, let e ∈ E(M) and let N = M/e where M
andN are 3-connected. Let (Go, T ) be a T4-representation ofN and let Φ = (E0, {P1, . . . , Pk})
be an ordinary anemone for (Go, T ). Let FN be the anemone class generated by Φ and (Go, T ).
LetFM be the set of T4-representations ofM that extend some representation inFN . Then either,

i. FM is contained in at most 216 equivalence classes, or

ii. FM is contained in a unique anemone class.

Moreover, suppose that we are given a set Γ ⊆ E(N) where Γ ∪ {e} is a cocycle of M . Then
together with (Go, T ) we can construct in time polynomial in |E(G)| the equivalence classes in
(i) or the anemone class in (ii).

Proof. In this thesis, we will omit the proof for the algorithmic part. Let Γ ⊆ E(N) where
Γ ∪ {e} is a cocycle of M . For i ∈ [k], let Hi = G[Pi] and let Γi = Γ ∩ Pi. Let (G, T ) ∈ FN .
Suppose that (G, T ) extends to some representation in FM . It follows from Proposition 3.3.23
that, after possibly replacing Γ by Γ4J where J is a T -join of (G, T ), we have VG(Γ) = {v1, v2}
for some {v1, v2} ⊆ V (G) and e = (v1, v2). Consider first the case where v1, v2 ∈ V (Hi) for
some i ∈ [k]. Then for an arbitrary (G′, T ) in the anemone class FN , (G′, T ) is obtained from
(G, T ) by rearranging petals and loose edges. It means that every representation in FN extends
to a representation of M . Moreover, it is easy to check that the resulting representations remain
related by rearranging petals and edges. Hence, outcome (ii) occurs.

Thus, we may assume that for distinct i, j ∈ [k], v1 ∈ IG(Pi) and v2 ∈ IG(Pj). Let (G′, T )
be an arbitrary representation in FN .

Claim 1. (G′, T ) extends to M if and only if Pi and Pj are rearranged from (G, T ) in the same
way.

Proof. Suppose that Pi and Pj are rearranged in a different way. Since VG(Γ) = {v1, v2},
VG′(Γ) = {v1, v2, t1, t2} for some distinct terminals t1, t2 ∈ T . This contradicts Proposi-
tion 3.3.23. ♦

It follows that all representations (G, T ) ∈ FN that extend to some representation of M are
exactly the representations for which Pi and Pj are rearranged like they are one petal. Moreover,
either we have at least 4 petals, in which case outcome (ii) occurs, or there are at most 3 petals
in which case outcome (i) occurs as 8× 33 = 216.

We leave the proof of the following remark as an exercise (it is equivalent to the problem of
checking if a graph is bipartite).
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Remark 3.3.26. Let (G,Γ) be a signed graph and let R ⊆ V (G). Then we can check in time
polynomial in |E(G)| if there exists a cut δ(U) such that all edges in Γ4δ(U) have at least one
endpoint in R.

We say that an ordinary anemone Φ = (E0, {P1, . . . , Pk}) is degenerate if it is also a skewed
anemone.

Proposition 3.3.27. LetM be a p-cographic matroid, let e ∈ E(M) and letN = M \e whereM
andN are 3-connected. Let (Go, T ) be a T4-representation ofN and let Φ = (E0, {P1, . . . , Pk})
be a maximal ordinary anemone for (Go, T ). Let FN be the anemone class generated by Φ and
(Go, T ). Let FM be the set of T4-representations of M that extend some representation (G, T ) in
FN such that Φ is not degenerate in (G, T ). Then either,

i. FM is contained in at most 216 equivalence classes, or

ii. FM is contained in a unique anemone class.

Moreover, suppose that we are given a set Γ ⊆ E(N) where Γ ∪ {e} is a cycle of M . Then
together with (Go, T ) we can construct in time polynomial in |E(G)| the equivalence classes in
(i) or find a representative for the anemone class in (ii).

Proof. In this thesis, we will omit the proof for the algorithmic part. Let (G, T ), (G′, T ) ∈
FN such that Φ is non-degenerate ordinary anemone in (G, T ) and (G′, T ), respectively. By
Proposition 3.3.24, we may assume that there exist v ∈ V (G) and Γ ⊆ E(G) such that Γ ⊆ δG(v)
and that (G, T ) extends by splitting v according to Γ. Similarly, we may assume that there exists
v′ ∈ V (G′) and Γ′ ⊆ E(G′) such that Γ′ ⊆ δG′(v

′) and that (G′, T ) extends by splitting v′

according to Γ′. Then, for some U ⊆ V (G), Γ4Γ′ = δG(U). For i ∈ [k], let Γi = Γ ∩ Pi and let
Γ′i = Γ′ ∩ Pi. Then, Γi4Γ′i = δG[Pi](Ui) for some Ui ⊆ V (Pi).

Claim 1. If Γi 6= Γ′i, then there exists a vertex u ∈ VG(Pi) such that Γi = Γ′i4δG[Pi](u).

Proof. Since Γi 6= Γ′i, we may assume that Γi 6= ∅. Then, v ∈ VG(Pi). Suppose Γ′i = ∅. Since
Γi4Γ′i is a cut of G[Pi], so Γi is a cut of G[Pi]. Thus, Γi = δG[Pi](v). Thus, Γi = Γ′i4δG[Pi](v).
Now, suppose Γ′i 6= ∅. Then there exists a vertex w ∈ VG(Pi) such that Γ′i ⊆ δG[Pi](w). If
v = w, then Γi4Γ′i ⊆ δG[Pi](v) is a cut of VG(Pi). Since both Γi and Γ′i are not empty, Γ′i =
Γi4δG[Pi](v). Thus, we may assume that v 6= w. Then {v, w} forms a two-vertex cut-set of
G[Pi]. Let (X, X̄) be a 2-separation of G[Pi]. If IG[Pi](X) ∩ T = ∅, then λM(X) = 1 by
Proposition 2.3.3, contradicting 3-connectivity of M . Thus, IG[Pi](X) ∩ T 6= ∅, and similarly,
IG[Pi](X̄) ∩ T 6= ∅. Let T = {t1, t2, t3, t4}. There are following three cases up to exchanging X
and X̄ .
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Case 1. BG[Pi](X) ∩ T = ∅.
Without loss of generality, we may assume that t1, t2 ∈ IG[Pi](X) and that t3 ∈ IG[Pi](X̄).

Since v, w /∈ T , Γ = Γi and Γ′ = Γ′i. Since Γ4Γ′ is a cut of G, for every j 6= i, BG(Pj) =
{t1, t2, t4}. Thus, Φ is a degenerate ordinary anemone in (G, T ), a contradiction.

Case 2. |BG[Pi](X) ∩ T | = 1.

Without loss of generality, we may assume the BG[Pi](X) ∩ T = {t1}, t2 ∈ IG[Pi](X) and
t3 ∈ IG[Pi](X̄). Since Γ4Γ′ is a cut of G, either for every j 6= i, BG(Pj) = {t1, t2, t4} or for
every j 6= i, BG(Pj) = {t1, t3, t4}. In both cases, Φ is a degenerate ordinary anemone in (G, T ),
a contradiction.

Case 3. |BG[Pi](X) ∩ T | = 2. Without loss of generality, we may assume the BG[Pi](X) ∩ T =
{t1, t2}, t3 ∈ IG[Pi](X) and t4 ∈ IG[Pi](X̄). Then, X and X̄ are both petals, contradicting
maximality of Φ. ♦

Suppose v /∈ T . Let Pi be the petal such that v ∈ IG(Pi). By 3-connectivity of M and
Proposition 3.3.24, |Γ| > 1 and |δ(v)4Γ| > 1. By Claim 1, v = v′ and either Γ = Γ′ or
Γ = Γ′4δG(v), in which case outcome (ii) occurs. Now suppose v ∈ T . Note that D := Γ4Γ′

is an even cut of (G, T ) and every even cut of (G, T ) can be generated by cuts of the form
δG(IG(Pi)) and a cuts of the form δ(ta)4δ(tb) where a, b are distinct and a, b ∈ [4]. By Claim
1, for i ∈ [k], D ∩ Pi is either the empty set or is of the form δG[Pi](tj) for some tj ∈ T . Thus,
D ∩ Pi = ∅ for all i ∈ [k]. Let I be the set of all i ∈ [k] such that Γi 6= ∅. Then, either
|[k] − I| ≤ 4, in which case outcome (i) occurs, or |[k] − I| ≥ 5, in which case outcome (ii)
occurs.

3.4 Bounding the number of representations

3.4.1 Equivalence classes and anemone classes

In this section, we will prove Theorem 3.2.1, which we restate here:

Theorem 3.2.1. LetM be a 3-connected p-cographic matroid that is not cographic. Then the set
of all T4-representations of M is contained in the union of a polynomial number of equivalence
classes and a polynomial number of anemone classes.
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Let M be a 3-connected p-cographic matroid that is not cographic. For a equivalence class F
of M , we say that F is anemone type if for every T4-representation (G, T ) ∈ F , (G, T ) has a
non-degenerate ordinary anemone. The Proposition 3.3.18 shows that the number of anemone
classes for M is bounded by a polynomial function of E(M). Thus, it suffices to bound the
number of equivalence classes that are not anemone types by a polynomial function of |E(M)|.
First, in Section 3.4.2, we will prove Lemma 3.4.1 that there are polynomially many equivalence
classes containing a representation with a degenerate ordinary anemone.

Lemma 3.4.1. Let M be a 3-connected p-cographic matroid that is not cographic. Then the
number of equivalence classes for M that contains a representation with a degenerate ordinary
anemone is bounded by polynomial function of |E(M)|.

Fortunately, by Proposition 2.2.1, column extension of an equivalence class does not increase
the number of equivalence classes. In fact, if we have possible anemone classes after column ex-
tension, then we may reduce the number of equivalence classes. However, by Proposition 2.2.2,
row extension of equivalence classes may double the number of equivalence classes so that even-
tually, we have exponentially many equivalence classes as we saw in Section 1.3.3. Let F be a
equivalence class of N and let M be a 3-connected p-cographic row major of N . We say that F
is row stable for M , if the set of all extensions of F to M is contained in at most one equivalence
class. Otherwise, we say that F is row unstable for M . In the Section 3.4.5, we will prove the
following lemma stating that the number of row unstable equivalence classes F such that every
T4-representation in F has no ordinary anemone, is bounded by polynomial function of |E(M)|.
Thus, row extension only increase the number of equivalence classes that are not anemone type
by a polynomial function of |E(M)|.

Lemma 3.4.2. Let N be a 3-connected p-cographic matroid that is not cographic. Let M be a
3-connected p-cographic major of N . Let F1, . . . ,Fk be equivalence classes for N that are row
unstable forM . Suppose that every T4-representation in F1∪· · ·∪Fk has no ordinary anemone.
Then k = O(|E(M)14|).

Proof of Theorem 3.2.1. Let N be a minimally non-cographic minor of M . Note that N is 3-
connected and p-cographic. By Seymour [13], there exists a sequence of 3-connected matroids
N1, . . . , Nk, whereN = N1,M = Nk andNi is a column or row minor ofNi+1 for all i ∈ [k−1].
Since N is non-cographic and M is p-cographic, Ni is p-cographic and non-cographic for all
i ∈ [k]. By Theorem 1.1.1, N has a constant size. Thus, the set of all T4-representations of
M is contained in a constant number equivalence classes. By the Proposition 3.3.18, there is
a polynomial function p1 such that for each i ∈ [k], the number of anemone classes for Ni is
bounded by p1(|E(M)|). Thus, it suffices to prove that there exists a polynomial function p2
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such that for i ∈ [k− 1] the number of equivalence classes that are not anemone type from Ni to
Ni+1 is increased by p2(|E(M)|). Note that N = N1 has the constant size, so there is a bounded
number of equivalence classes for N .

Consider the case that Ni is a column minor of Ni+1. By Proposition 2.2.1, an extension
from each equivalence class for Ni does not increase the number of equivalence classes for Ni+1.
By Proposition 3.3.25, an extension from each anemone classes for Ni increases the number of
equivalence classes forNi+1 by at most 216. By Proposition 3.3.18, there are at most p1(|E(M)|)
anemone classes.

Now consider the case that Ni is a row minor of Ni+1. By Proposition 2.2.2, an extension
from each equivalence class for Ni increases the number of equivalence classes for Ni+1 by at
most 1. By Lemma 3.4.1 and Lemma 3.4.2, there exists a polynomial function p3 such that the
number of such extensions is bounded by p3(|E(M)|). By Proposition 3.3.27, an extension from
each anemone classes forNi increases the number of equivalence classes forNi+1 by at most 216.
By Proposition 3.3.18, there are at most p1(|E(M)|) anemone classes. Thus, p2 = 216× p1 + p3

is a polynomial function that we want.

3.4.2 Equivalence classes that are not anemone type

Let M be a 3-connected p-cographic matroid that is not cographic. Let (H,T ) be a T4-represent-
ation for M that contains a non-degenerate ordinary anemone Φ = (E0, {P1, . . . , Pk}). Note
that there exists three distinct petals Pi, Pj, Pl for i, j, l ∈ [k] such that

(1) BH(Pi) = T , and

(2) BH(Pj) ∪ BH(Pl) = T .

The following lemma implies that equivalence classes which contain a representation with a
non-degenerate ordinary anemone are anemone type.

Lemma 3.4.3. Let M be a 3-connected p-cographic matroid that is not cographic. Let (H,T )
be a T4-representation for M that contains a non-degenerate ordinary anemone Φ = (E0, {P1,
. . ., Pk}). Suppose F is an equivalence class containing (H,T ). Then F = {(H,T )}.

Proof. Let T = {t1, t2, t1, t2} and let (X, X̄) be a 2-separation of H where BH(X) = {u, v}. If
X ⊆ Pi for some i ∈ [k], then by Proposition 2.3.3, λM(X) = 1 contradicting 3-connectivity
of M . Thus, X and Pi are crossing for some i ∈ [k]. We may assume that u ∈ IH(Pi) and
v ∈ IH(P̄i). Let N = cycle(H). Then λN(X) = 1 and λN(Pi) ∈ {2, 3}. By submodularity
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of connectivity function, λN(X ∩ Pi) + λN(X ∪ Pi) ≤ λN(X) + λN(Pi) ≤ 4. Suppose that
λN(X ∩ Pi) = λN(X ∪ Pi) = 2. Then, |BH(X ∩ Pi) ∩ BH(X ∩ P̄i)| = 2. and |BH(X̄ ∩
Pi) ∩ BH(X̄ ∩ P̄i)| = 2. Since for j ∈ [k] − {i}, H[Pj]\BH(Pj) is connected, v ∈ IH(Pj)
contradicting that every pair of petals can have a common vertex only in T . Thus, we may
assume λN(X ∩ Pi) = 1. By the similar argument, λN(X̄ ∩ Pi) = 1 or λN(X ∩ P̄i) = 1. If
λN(X̄ ∩Pi) = 1, then |BH(Pi)| = 2, giving a contradiction. Thus, λN(X ∩ P̄i) = 1. Since M is
3-connected, X ∩ Pi and X ∩ P̄i share a vertex (say t1) in T . We may assume that X ∩ P̄i is an
edge of Pj where j ∈ [k] and i 6= j. Then for l ∈ [k] − {i, j} , BH(Pl) = {t2, t3, t4}. Thus, X
is the unique 2-separation of H . However, Whitney-flip on X increases the number of terminal
vertices to size of 6, giving a contradiction.

Proof of Theorem 3.4.1. Let F be a equivalence class that contains a T4-representation with a
degenerate ordinary anemone Φ. By Lemma 3.4.3, for every (H,T ) ∈ F , Φ is not a non-
degenerate ordinary anemone in (H,T ). Thus, Φ has a petal Pi where |BH(Pi)| = 4 and there
exists t1, t2, t3 ∈ T such that for a petal Pj 6= Pi of Φ, BH(Pj) = {t1, t2, t3}. Thus, for each
anemone class F ′, there are at most 4 representations that has a degenerate ordinary anemone.
By Proposition 3.3.18, there exists a polynomial function p such that the number of anemone
classes for M is bounded by p(|E(M)|). Thus, the number of equivalence classes that contains
a T4-representation with a degenerate ordinary anemone is bounded by 4× p(|E(M)|).

3.4.3 Homologous representations

In [6], the following lemma explains how row unstable equivalence classes extend.

Lemma 3.4.4. Let M be an even cut matroid that is not cographic and let F be an equivalence
class of M . Let N be a row major of M with no loops or coloops. Suppose that the set F ′ of
extensions of F to N is the union of two equivalence classes F1 and F2. Then for any (H1, T1) ∈
F1 and (H2, T2) ∈ F2, (H1, T1) and (H2, T2) are basic siblings or nested siblings.

A basic sibling and a nested sibling are defined in [11]. As corollary, if M and N are p-
cographic, then we have the following result from [5].

Corollary 3.4.5. Let M be a 3-connected p-cographic matroid that is not cographic. Let F be
a row unstable equivalence class of M . Then there exists a representation (H,T ) in F and a
partition P = ({u1, v1}, {u2, v2}) of T , such that, for i ∈ {1, 2}, a representation obtained by
adding an edge (ui, vi) to (H,T ) is contained in Fi.
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In this case, we call (H,T ) a representative of F with a pairing P and we call (H,T, P ) an
extended T4-representation for M .

For i = 1, 2, let (Hi, Ti) be a representative of a row unstable equivalence class Fi with a
pairing Pi and let (Gi,Σi) be a signed graph obtained by folding (Hi, Ti) according to Pi. Then
we say that (H1, T1, P1) and (H2, T2, P2) are homologous if (G1,Σ1) and (G2,Σ2) are equivalent.
The following lemma explains the relation between row unstable equivalence classes.

Lemma 3.4.6. Let N be a 3-connected p-cographic matroid which is not cographic and let
F1, . . . ,Fk be equivalence classes for N that is row unstable for a row major M of N . For
i ∈ [k], Let (Hi, Ti) be a representative of Fi with a pairing Pi. Then (H1, T1, P1), · · · , (Hk, Tk,
Pk) are homologous.

Proof. Let e ∈ E(M) where N = M/e. For i ∈ {1, 2}, let (H ′i, T
′
i ) = (Hi, Ti)/e. By Corol-

lary 3.4.5, ends of e are vertices of T1, so |T ′1| = 2. Thus, G1 can be obtained by identifying two
vertices of |T ′1| from (H ′1, T

′
1) and cut(G1) = ecut(H ′1, T

′
1). Similarly, cut(G2) = ecut(H ′2, T

′
2).

Since ecut(H1, T1) = ecut(H2, T2), ecut(H ′1, T
′
1) = ecut(H ′2, T

′
2). Thus, cut(G1) = cut(G2).

Thus, G1 and G2 are equivalent, and (G1,Σ1), (G2,Σ2) are also equivalent.

3.4.4 Whitney flip sequences and the gap function

Let (H1, T1, P1) and (H2, T2, P2) be homologous extended T4-representations for M . For i =
1, 2, let (Gi,Σi) be a signed-graph obtained by folding (Hi, Ti) according to Pi and let {ui, vi} be
blocking pair obtained by identifying vertices of Ti. Then, Σi ⊆ δ(ui) ∪ δ(vi). (Gi,Σi, {ui, vi})
is an extended BP-representation for M if (Gi,Σi) is a BP-representation for M and Σi ⊆
δ(ui)∪ δ(vi). In this case, Ri = (Gi,Σi, {ui, vi}) is obtained by folding (Hi, Ti, Pi). We say that
R1, R2 are equivalent if (G1,Σ1), (G2,Σ2) are equivalent. Since R1, R2 are equivalent, we can
find a sequence of Whitney-flips from G1 to G2.

LetG1, . . . , Gk+1 be graphs and letX1, . . . , Xk be a 2-separation ofG1, . . . , Gk, respectively.
Suppose that for i = 1, . . . , k, Gi+1 is a graph obtained by performing a Whitney-flip on Xi in
Gi. Then, we say that S = (X1, . . . , Xk) is a w-sequence of G1 and denote Gk+1 = Wflip[G,S].
For X, Y ∈ S , X, Y are crossing if none of X ∩ Y , X ∩ Ȳ , X̄ ∩ Y , X̄ ∩ Y is an empty set.
Otherwise, X, Y are non-crossing. We say that S is non-crossing if for every pairs X, Y ∈ S ,
X, Y are non-crossing. Note that if S is non-crossing, then we can rearrange the order of S
arbitrarily.
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Let (G1,Σ1, {u1, v1}) and (G2,Σ2, {u2, v2}) be extended BP-representations for a matroid
M . We say that (S1,S2,S3) is a nice Whitney-flip sequence from (G1, Σ1, {u1, v1}) to (G2, Σ2,
{u2, v2}) if S2 is non-crossing w-sequence and there exist graphs H1 and H2, such that,

(1) for all X ∈ S1 ∪ S2 ∪ S3, X is a minimal 2-separation(that is, X induces connected graph
after deleting boundary vertices of X).

(2) H1 = Wflip[G1,S1], where {u1, v1} ∩ BG1(X) = ∅ for all X ∈ S1,

(3) H2 = Wflip[G2,S3], where {u2, v2} ∩ BG2(X) = ∅ for all X ∈ S3, and

(4) H2 = Wflip[H1,S2], where {u1, v1} ∩ BH1(X) 6= ∅ and {u2, v2} ∩ BH2(X) 6= ∅ for all
X ∈ S2.

By using the following lemma from [11], there exists a nice w-sequence (S1,S2,S3) from (G1,
Σ1, {u1, v1}) to (G2, Σ2, {u2, v2}).

Lemma 3.4.7. LetG1, G2 be 2-connected equivalent graphs and let Z ⊆ V (G1), where |Z| ≤ 2.
Then, there exist a w-sequence S1 of G1 and a graph H with a non-crossing w-sequence S2 such
that:

(1) H = Wflip[G1,S1], where Z ∪ BG1(X) = ∅ for all X ∈ S1 and

(2) G2 = Wflip[H,S2], where Z ∪ BG1(X) 6= ∅ for all X ∈ S2.

To use this lemma, we set Z = {u1, v1}. We may assume that each Whitney-flip in S1 ∪ S2

is minimal. Let S ′2 be a set of all X ∈ S2 such that {u2, v2}∩BG2(X) 6= ∅ and let S3 = S2−S ′2.
We can rearrange S2 into (S ′2,S4), because S2 is non-crossing. Then (S1,S ′2,S3) is a nice w-
sequence.

Let R1 = (G1,Σ1, {u1, v1}), R2 = (G2,Σ2, {u2, v2}) be extended BP-representations for a
matroid M . By using a nice w-sequence, we can define a function gap(R1, R2) by the minimum
|S2| among all nice w-sequences (S1,S2,S3) from R1 to R2.

3.4.5 The proof of Lemma 3.4.2

Extended BP-representations with large gap

In this section, we will prove following Lemma 3.4.8 stating that if we have two homologous
extended T4-representations for a matroid with large gap, then at least one of them has an ordinary
anemone.

54



Lemma 3.4.8. LetM be a 3-connected p-cographic matroid which is not cographic. Let (H1, T1,
P1), (H2, T2, P2) are homologous extended T4-representation for M . For i = 1, 2, let Ri = (Gi,
Σi, {ui, vi}) be an extended BP-representation obtained by folding (Hi, Ti, Pi). If gap(R1, R2) >
10, then at least one of (H1, T1) and (H2, T2) has an ordinary anemone.

A w-sequence S = (X1, . . . , Xk) of a graph G is a w-star of G with a center z if S is non-
crossing and there exist distinct z, v1, . . . , vk ∈ V (G) such that for i ∈ [k], BG(Xi) = {z, vi}.
To prove Lemma 3.4.8, we need following Lemma 3.4.9 from [11] and Remark 3.4.10. We omit
the proof of Remark 3.4.10.

Lemma 3.4.9. Let G1, G2 be equivalent graphs with G2 = Wflip[G1,S] for some non-crossing
w-sequence S. Suppose that there exist vertices z1 ∈ V (G1) and z2 ∈ V (G2) such that z1 ∈
BG1(X) and z2 ∈ BG2(X) for every X ∈ S. Then G2 = Wflip[G1,S ′] for some S ′ which is a
w-star of G1 with center z1 and a w-star of G2 with center z2.

Remark 3.4.10. Let X1, X2, X3 be non-crossing 2-separations of a graph G. Suppose z ∈
BG(X1) ∩ BG(X2) and z /∈ BG(X3). Then, X3 ∩ (X1 ∪X2) = ∅ or X̄3 ∩ (X1 ∪X2) = ∅.

Now, we need to define some terminology for signed graphs. LetG be a connected graph and
let u, v be distinct vertices of G. Let E0 be a set of edges of G that have both ends in {u, v} and
let P1, . . . , Pk be a partition of E(G)− E0. We say that Φ = (E0, {P1, . . . , Pk}) where k ≥ 3 is
a graphic anemone of G with a spine {u, v}, if

(1) for each i ∈ [n], BG(Pi) = {u, v},

(2) for each i ∈ [n], IG(Pi) 6= ∅, and

(3) for each i ∈ [n], G[Pi]\{u, v} is connected.

The sets P1, P2, . . . , Pn are called the petals of Φ.

Lemma 3.4.11. Let M be a 3-connected p-cographic matroid that is not cographic. Let (H ,
T , P ) be an extended T4-representation for M and let (G,Σ, {u, v}) be an extended BP-
representation obtained by folding (H,T, P ). Suppose that Φ = (E0, {P1, . . . , Pk}) is a graphic
anemone of G with a spine {u, v}. Then Φ is an ordinary anemone of (H,T ).

Proof. Since (H,T ) is a graft obtained by unfolding (G,Σ), |T | = 4. Suppose that we split
u into u1, u2 and split v into v1, v2 in H . Then, for every edge e ∈ E0, the ends of e are in
{u1, u2, v1, v2}. Since G[Pi] \ {u, v} is connected and M is 3-connected, H[Pi] is connected.
Since BG(Pi) = {u, v}, BH(Pi) ⊆ T . By 3-connectivity of M , |BH(Pi)| ≥ 3.
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We now prove Lemma 3.4.8.

Proof of Lemma 3.4.8. Suppose (H1, T1) and (H2, T2) have no ordinary anemone. Let (S1, S2,
S3) be a nice w-sequence from R1 to R2. Let G′1 = Wflip[G1,S1] and Let G′2 = Wflip[G2,S2].
Note that for every 2-separation X ∈ S2, BG′1(X) ∩ {u1, v1} 6= ∅ and BG′2(X) ∩ {u2, v2} 6= ∅.
Since, (H1, T1) and (H2, T2) have no ordinary anemone, there are at most two 2-separations in
S2 that have both u1, v1 as its boundary vertices in G′1. Thus, we may assume there is no such
2-separations and |S2| ≥ 11. Similarly, we may assume there is no 2-separations in S2 that have
both u2, v2 as its boundary vertices inG′2 and |S2| ≥ 13. Let (Xuu,Xuv,Xvu,Xvv) be a partition
of S2 such that, for s, t ∈ {u, v}, Xst be 2-separation in S2 incident to s1 in (G′1,Σ1) and incident
to t2 in (G′2,Σ2). Since |S2| ≥ 13, without loss of generality, |Xuu| ≥ 4. By Lemma 3.4.9, Xuu

is a w-star ofWflip[(G
′
1,Σ1), Xvu∪Xvv] with center u1 and a w-star ofWflip[(G

′
2,Σ2), Xuv] with

a center u2. Let A be a set of vertices in the boundary of Xuu which is not u1.

Case 1. |A| ≥ 3.
Let a1, a2, a3 ∈ A and let Xi be a 2-separation where BG′1(Xi) for i = 1, 2, 3. By Remark 3.4.10,
G1[X1∪X2∪X3] and G′1[X1∪X2∪X3] are isomorphic since every 2-separations in S1 does not
contain u1, v1 at the boundary. Since M is 3-connected and each Xi is minimal, G′1[Xi] contains
an odd circuit Ci of G′. Since u1, v1 is a blocking pair of G1, Ci contains u1 and avoids ai in G′1.
Thus, C1, C2, C3 are pairwise disjoint in G′2. By Remark 3.4.10, C1, C2, C3 are pairwise disjoint
in G2 since every 2-separations in S3 does not contain u2, v2 at the boundary. Thus, G2 has no
blocking pair, giving a contradiction.

Case 1. |A| ≤ 2.
There exists a ∈ A such that there are at least three 2-separations X1, X2, X3 in S2 with {u1, a}
as boundary vertices. By Remark 3.4.10,G1[X1∪X2∪X3] andG′1[X1∪X2∪X3] are isomorphic
since every 2-separations in S1 does not contain u1, v1 at the boundary. Since M is 3-connected
and each Xi is minimal, G′1[Xi] contains an odd circuit Ci of G′. Since u1, v1 is a blocking pair
of G1, Ci contains u1 and avoids a in G′1. Thus, all of C1, C2, C3 have a common vertex and
avoid u2 in G′2. By Remark 3.4.10, C1, C2, C3 have a common vertex w and avoid u2 in G2 since
every 2-separations in S3 does not contain u2, v2 at the boundary. Since {u2, v2} is a blocking
pair of G2, w = v2. Thus, (H2, T2) has an ordinary anemone, giving a contradiction.

Extended BP-representations with small gap

In this section, we will prove following Lemma 3.4.12 stating that if we have large number of
extended T4-representations with pairwise small gap, then at least one of them has an ordinary
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anemone.

Lemma 3.4.12. Let M be a 3-connected p-cographic matroid which is not cographic. For i ∈
[k], let (Hi, Ti, Pi) be an extended T4-representation for M . Suppose that for i, j ∈ [k], (Hi, Ti,
Pi), (Hj , Tj , Pj) are homologous. For i ∈ [k], let Ri = (Gi, Σi, {ui, vi}) be an extended BP-
representation obtained by folding (Hi, Ti, Pi). Suppose that for i, j ∈ [k], gap(Gi, Gj) ≤ 10.
Then either (Hi, Ti) has an ordinary anemone for some i ∈ [k] or k = O(|E(M)|14).

To prove Lemma 3.4.12, we need following lemmas. We postpone the proof for Lemma 3.4.13
until the end of this section.

Lemma 3.4.13. Let (G1,Σ1, {u1, v1}), · · · , (Gk,Σk, {uk, vk}) be extended BP-representations
that are equivalent. Suppose for any i, j ∈ [k], gap(Gi, Gj) ≤ 10. Let M = ecycle(G1,Σ1).
Then either Gi = Gj for some i 6= j or k = O(|E(M)|12).

Lemma 3.4.14. Let M be a 3-connected p-cographic matroid which is not cographic. Let
(H1, T1, P1),. . ., (Hk, Tk, Pk) be extended T4-representations that are pairwise homologous and
let (Gi,Σi, {ui, vi}) be an extended BP-representation obtained by folding (Hi, Ti, Pi). Suppose
there exists a graph G such that for every i ∈ [k], G = Gi. Then either (Hi, Ti) has an ordinary
anemone for some i ∈ [k] or k = O(|E(M)|2).

Proof. Suppose that k 6= O(|E(M)|2). Let m be the maximum number of extended BP-
representations with the same blocking pair {u, v} and let I ⊆ [k] be the set of indices of these
extended BP-representations. Note that there are at most |V (G)|2 choices for a blocking pair
{u, v} in G. Thus, m 6= O(1). Let E0 be a set of edges of G that have both ends in u, v.
Let C1, . . . , Cl be components of G \ {u, v}. For a ∈ [l], let Pa = G[V (Ca) ∪ {u, v}]. By
3-connectivity of M , for every a ∈ [l], BG(Pa) = {u, v}. For i, j ∈ I , since (G,Σi) and (G,Σj)
are equivalent, D := Σi4Σj is a cut of G. Note that Σi ∪ Σj ⊆ δ(u) ∪ δ(v). Thus, D is a cut of
G generated by δ(u), δ(v) and δ(P1) . . . , δ(Pl). Thus l ≥ 3 and (E0, {P1, . . . , Pl}) is a graphic
anemone. By Lemma 3.4.11, for i ∈ I , (Hi, Ti) has an ordinary anemone.

Before we prove Lemma 3.4.13, we need following lemmas.

Lemma 3.4.15. Let (H1, T1, P1), (H2, T2, P2) be extended T4-representations that are homolo-
gous and for i = 1, 2, let Ri = (Gi,Σi, {ui, vi}) be extended BP-representations obtained by
folding (Hi, Ti, Pi). Then there exists (H ′2, T

′
2, P

′
2) and its folding R′2 = (G′2,Σ

′
2, {u′2, v′2}) such

that

(1) (H ′2, T
′
2, P

′
2) and (H2, T2, P2) are equivalent.
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(2) (H ′2, T
′
2, P

′
2) and (H1, T1, P1) are homologous.

(3) there exists a nice w-sequence (S1,S2,S3) from R1 to R′2 such that |S2| = gap(R1, R2) =
gap(R1, R

′
2) and |S3| = 0.

Proof. Let (S ′1,S ′2,S ′3) be a nice w-sequence from R1 to R2 where |S ′2| = gap(R1, R2) and let
S ′3 = (X1, . . . , Xk) and let S̄ ′3 be a w-sequence of G2 obtained by reverse the order of S3. Since
Xi ∩ {u2, v2} = ∅ for all i ∈ [k], S̄ ′3 is a w-sequence of H2. Let (H ′2, T

′
2) = Wflip[(H2, T2), S̄ ′3].

SinceXi∩{u2, v2} = ∅, IH2(Xi)∩T2 has even size. Thus, T ′2 = T2 and (H ′2, T2, P2), (H2, T2, P2)
are equivalent. Let R′2 be a extended BP-representation obtained by folding (H ′2, T2, P2). Then,
(S ′1,S ′2, ∅) is a nice w-sequence from R1 to R′2. Thus, (H ′2, T

′
2, P

′
2) and (H1, T1, P1) are homolo-

gous. For the last part, |S ′2| = gap(R1, R
′
2), otherwise gap(R1, R2) can be smaller.

We may assume that (H ′2, T2, P2) is chosen with minimum |S1|. In this case, we call (H ′2,
T2, P2) a alternative of (H2, T2, P2) for (H1, T1, P1).

Lemma 3.4.16. Let M be a 3-connected p-cographic matroid that is not cographic. Let (H1, T1,
P1), (H ′2, T2, P2) be extended T4-representations forM that are homologous and let (H2, T2, P2)
be an alternative of (H ′2, T2, P2) for (H1, T1, P1) For i ∈ [2], let Ri = (Gi,Σi, {ui, vi}) be ex-
tended BP-representations obtained by folding (Hi, Ti, Pi). Then S1 is non-crossing. Moreover,
there exists a set S only dependent of (H1, T1, P1) such that |S| ≤ 16 and S1 ∈ S for any choice
of (H ′2, T2, P2).

Proof. Let X = {X1, . . . , Xk} be the set of all minimal 2-separations of G1 avoiding u1, v1.
Note that S1 ⊆ X .

Claim 1. X is non-crossing.

Proof. Suppose X is crossing. Let (Xi, X̄i), (Xj, X̄j) be the pair of 2-separations in X . Since
Xi, Xj are minimal, all of Xi ∩Xj , X̄i ∩Xj , Xi ∩ X̄j , X̄i ∩ X̄j are either a 2-separation in G1 or
a set of one edge. By 3-connectivity, at least three of them contains at least two edges and each
of them contains an odd cycle. Since they cannot contain u1 or v1 in their boundary, there is no
blocking pair. Contradiction. ♦

The first part of the lemma follows from Claim 1 since S1 ⊆ X .

Claim 2. We may assume X1 ⊆ · · · ⊆ Xk.
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Proof. By 3-connectivity of M , for i ∈ [k], each of Xi and X̄i contains one vertex of {u1, v1}
in its interior. We may assume u1 ∈ IG1(Xi) for all i ∈ [k]. For distinct i, j ∈ [k], Xi, Xj are
non-crossing, so Xi ⊆ Xj or Xj ⊆ Xi. Since X is non-crossing, we can rearrange X such that
X1 ⊆ · · · ⊆ Xk. ♦

If |X | ≤ 2, then there are only four possibilities for S1. Thus, we may assume that |X | ≥ 3.

Claim 3. There is no X ∈ S2 such that X,X2 are crossing.

Proof. Suppose there existsX ∈ S2 such thatX,X2 are crossing. We may assume u1 ∈ BG1(X).
Since u1 ∈ IG1(X1) and X1 ⊆ X2, X1, X are crossing. Since X,X1, X2 are minimal, all of
X ∩X1, X̄ ∩X1, X ∩ (X2 −X1), X̄ ∩ (X2 −X1), X ∩ X̄2, X̄ ∩ X̄2 are either a 2-separation
of G1, an empty set or a set of one edge. Since X crosses with X1 and X2 respectively, X ∩X1,
X̄ ∩X1, X ∩ X̄2, X̄ ∩ X̄2 are not empty and at least one of X ∩ (X2 −X1), X̄ ∩ (X2 −X1) is
not empty, otherwise X1 = X2. By 3-connectivity of M , at least 4 of them contain at least two
edges and each of them contains an odd cycle of (G1,Σ1). Thus, BG1(X) = {u1, v1}. Thus, X is
crossing with each element of S2. By the similar argument above, at least 6 of X ∩X1, X̄ ∩X1,
X ∩ (X2 −X1), X̄ ∩ (X2 −X1), X ∩ (X3 −X2), X̄ ∩ (X3 −X2), X ∩ X̄3, X̄ ∩ X̄3 contain an
odd cycle of (G1,Σ1) and then there is no blocking pair. Contradiction. ♦

It follows from Claim 3 that for eachX ∈ S2,X crosses with none ofX2, . . . , Xk−1. Thus for
i = 2, . . . , k − 1, Xi is a 2-separation of G2 . By the construction of alternative representation,
Xi is not a 2-separation of H2. Thus, when we unfold (G2,Σ2) to (H2, T2), at least one vertex
of BG2(Xi) is splitted, namely, BG2(Xi) contains at least one of u2, v2. We may assume that
u2 ∈ BG2(Xi) for some 2 ≤ i ≤ k − 1.

Claim 4. For 2 ≤ j ≤ k − 1, j 6= i, u2 ∈ BG2(Xj).

Proof. Suppose v2 ∈ BG2(Xj). We may assume j < i. Since Xi is not a 2-separation after
unfolding andM is 3-connected, there exists an odd circuit C containing u2 and avoiding v2 such
that C ⊆ Xi. Since C avoids v2, C ⊆ (Xi−Xj). Then C avoids u1, v1 in G1. Contradiction. ♦

Since for all 2 ≤ i ≤ k − 1, BG2(Xi) share a vertex in common, there are fixed choices of
X3, . . . , Xk−2 for S1. Thus,there are only constantly many S1 for all (H ′2, T2, P2).

Now, we are ready to prove Lemma 3.4.13 and Lemma 3.4.12.
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Proof of Lemma 3.4.13. Let us fix (G1,Σ1, {u1, v1} and for i = 2, . . . , k, let (G′i,Σ
′
i, {u′i, v′i}

be alternatives of (Gi,Σi, {ui, vi}. Let (S ′1,S2, ∅) be a nice sequence from G1 to G′i. By
Lemma 3.4.16, S1 is non-crossing Whitney flips and |S1| ≤ 2. Thus, there are O(|E(M)|2)
choices for S ′1. Let Ki = Wflip[G

′
i,S ′1]. Then S2 is non-crossing Whitney flips of Ki and

|S2| ≤ 9. Thus, there are O(|E(M)|10) choices for S2. Thus, k = O(|E(M)|12).

Proof of Lemma 3.4.12. Suppose that k 6= O(|E(M)|14). Let m be the maximum number of
extended BP-representations with the same graph G and let I be the set of indices of these
extended BP-representations. By Lemma 3.4.13, m 6= O(|E(M)2). By Lemma 3.4.14, there
exists i ∈ [k] such that (Hi, Ti) has an ordinary anemone.

The proof of Lemma 3.4.2

We now prove Theorem 3.4.2.

Proof of Theorem 3.4.2. For i ∈ [k], let Ri = (Hi, Ti, Pi) be an extended T4-representation for
N that is a representative for Fi. By Lemma 3.4.6, R1,. . .,Rk are homologous. For i ∈ [k],
let Si = (Gi,Σi, {ui, vi}) be an extended BP -representation obtained by folding Ri. Let m be
the maximum gap among S1, . . . , Sk. Let i, j ∈ [k] be the indices such that gap(Si, Sj) = m.
If m > 10, then by Lemma 3.4.8, then at least one of (Hi, Ti) and (Hj, Tj) has an ordinary
anemone, giving a contradiction. If m ≤ 10, then by Lemma 3.4.12, k = O(|E(M)|14).
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