
Giving Meaning to Macros

by

Christopher Allan Mennie

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c©Christopher Allan Mennie 2004

I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With the prevalence of legacy C/C++ code, issues of readability and maintainability have become

increasingly important. When we consider the problem of refactoring or migrating C/C++ code, we

see the significant role that preprocessor directives play.It is partially because of these preprocessor

directives that code maintenance has become extremely difficult.

This thesis describes a method of fact extraction and code manipulation to create a set of

transformations which will remove preprocessor directives from the original source, converting

them into regular C/C++code with as few changes as possible,while maintaining readability in the

code. In addition, some of the subtle issues that may arise when migrating preprocessor directives

are explored. After discussing the general architecture ofthe test implementation, an examination

of some metrics gathered by running it on two software systems is given.

iii

Contents

1 Introduction 1

1.1 Motivation .. 1

1.2 Objective .5

1.3 Thesis Overview .. 7

2 Background and Related Work 8

2.1 The C/C++ Preprocessor 8

2.1.1 #include Directive . 8

2.1.2 Conditional Directives 9

2.1.3 Macro Expansion . 11

2.1.4 Other CPP Features .14

2.2 Fact Extractors .. . 15

2.2.1 CPPX . 17

2.3 TA Modelling Language .. . 20

2.3.1 TA Macro Schema . 21

2.4 Grok . 28

iv

2.4.1 Language . 30

2.4.2 Embedded Grok Interpreter .. . 31

2.5 Related Work .32

3 Approach to Migrating Macros 34

3.1 Fact Extraction .. . 34

3.2 Classification .. . 36

3.3 Placement .38

3.4 Transformations 40

3.5 Pitfalls in Migration 41

3.5.1 Language Issues . 41

3.5.2 Varied Macro Uses . 43

4 Macro Fact Extraction and Classification 44

4.1 Macro Fact Extraction 44

4.1.1 Extracting macro facts .. . 45

4.1.2 Extracting facts from original code 48

4.2 Macro Classifications 50

4.2.1 Unparameterized Macros .. . 50

4.2.2 Parameterized Macros .. 55

4.2.3 Conditionals . 56

4.2.4 Other . 58

4.3 Macro Migrations .. . 59

4.3.1 Implemented Migrations .. . 59

v

4.3.2 Possible Future Migrations 61

4.3.3 Current Unknown Migrations .. . 65

5 Implemented Architecture and Framework 66

5.1 Document Conventions 67

5.2 Fact Extractor .. . 67

5.3 Migration Engine .. . 69

5.3.1 Driver . 69

5.3.2 Coordinator . 71

5.3.3 Transformation Store .. . 72

5.3.4 Second Stage Singletons .. . 72

5.3.5 Classification Worker .. . 73

5.3.6 Classification Type .. 77

5.4 Source Transformer 80

5.5 Process View of Architecture 80

6 Experimental Results 83

6.1 Discussion .. 84

6.2 Confessions .. 86

6.2.1 Nethack . 86

6.2.2 Vim . 88

7 Conclusion 92

7.1 Future Work .93

vi

Bibliography 94

vii

List of Tables

6.1 Results of experiment on Vim and Nethack 84

6.2 Explanation of metrics 89

6.3 Details for simple constant macros 89

6.4 Details for enumerated constant macros 90

6.5 Details for constant expression macros 90

6.6 Details for parameterless function macros 90

6.7 Details for keyword alias macros 90

6.8 Details for empty declaration macros 91

viii

List of Figures

1.1 Example code with preprocessor directives 3

1.2 Example code with preprocessor directives migrated away 4

2.1 Simple#include directive examples . 9

2.2 CPP Conditional Examples 11

2.3 Migrated CPP Conditional Examples 11

2.4 Example facts of afor loop within a function in TA format 17

2.5 Example literal source code facts 18

2.6 Example of preprocessor operation facts 19

2.7 Complete TA example .. 21

3.1 Example of indirect expansion of macro A from direct expansion of macro B . . . 35

3.2 UNIX, SMALL, and CONFIGURABLE can be seen as being dependent on one

another . 36

3.3 Example of classification resolution 36

3.4 Block dependency graph example 37

3.5 Examples of overlapping scope and original declarationas ancestor to LCA of uses 39

3.6 Switch declaration examples 39

ix

3.7 Example transformation file 40

3.8 Un-realizable migration examples 42

4.1 Simple code fragment with preprocessor directives 45

4.2 Example macro facts in TA format 46

4.3 Simple code fragment with multi-line macro declaration. 47

4.4 Example multi-line macro facts in TA format 48

4.5 Simple code fragment 49

4.6 Example token facts in TA format 49

5.1 High Level Architecture 67

5.2 Fact Extractor Architecture 68

5.3 Migration Engine Component 70

5.4 Classification Worker Component 74

5.5 Classification Type Component 78

5.6 Source Transformer Component 81

5.7 Migration Engine Process View 82

x

Acknowledgements

First and foremost I would like to thank my supervisor, Charlie Clarke. I would like to say

thanks for accepting me as a student despite my marks, and allowing me the autonomy to follow

my own research interests. If it were not for Charlie pushingme to submit a conference paper, I

might never have had the wonderful opportunity of backpacking in Europe.

I would like to dedicate this thesis to my daughter, Harmony.You have been a source of great

joy and inspiration, and I love you very dearly.

Finally, I would like to thank my friends and family. Your help and guidance has been much

appreciated.

Kallisti.

xi

Chapter 1

Introduction

1.1 Motivation

The C/C++ preprocessor (CPP) is a macro processor whose language constructs are prevalent in

C/C++ code, especially when looking at legacy systems. CPP implements a simple scheme which

allows the user to substitute sections of text, conditionally include textual sections, or create strings

from a given input text. Traditionally this input text is C/C++ code, but CPP may be seen as a

language in its own right. An almost complete grammar of CPP can be found in Favre [6].

The output from CPP has all the preprocessor directives removed and is given to the C/C++

compiler to be compiled, leading us to say that C/C++ programs are actually written in two lan-

guages, CPP and C/C++. Code from both languages is almost always intermingled in the original

(un-compiled/un-preprocessed) source code and it is worthnoting that their scoping rules are sig-

nificantly different. Scoping blocks in C are either at a global level, or within well defined blocks,

delineated by braces. Alternatively, definitions in CPP areall declared at a global level and can

1

CHAPTER 1. INTRODUCTION 2

only be brought out of scope explicitly, using the#undef preprocessor directive. These differ-

ences in scoping rules lead to not only intermingled code, but also overlapping block structures,

respective to both languages.

For simplicity’s sake, a single language would be easier to deal with rather than a heterogeneous

mixture of the two. A method is proposed herein to migrate preprocessor directives into regular

C/C++ code. The intended results focus on trying to keep the transformed code as close as possible

to the original, in terms of both meaning and readability. The term “migrate” has been chosen to

convey the process because in essence this method is migrating one language, CPP, into another,

that being C/C++. While the migration method is somewhat unorthodox, in that it requires the

“outside” C/C++ code that the CPP code expands into, the term“migration” is still felt to be

appropriate.

As an example, if we consider the code in figure 1.1, despite the use of preprocessor directives

we should have an intuitive feel for what those directives are really representing. The simple

constant macros are just static constants, whereas the parameterized macros are acting as inline

functions. The code in figure 1.2 demonstrates how the preprocessor directives in figure 1.1 could

be rewritten in C/C++. This is the sort of migration that the method described herein strives to

accomplish.

While preprocessor macros were necessary to write C code, their use has largely become a

supererogatory effort in C++. In “The Design and Evolution of C++” [18] Stroustrup states that

use of the C preprocessor should be avoided and details the introduced C++ features to help do

just that. Refactoring C or C++ is also made all the more difficult when macros are used [7].

Furthermore the task of migration for C or C++ code, is greatly hampered by the inclusion of

macros [15].

CHAPTER 1. INTRODUCTION 3

//warn of any dangerous monsters in vicinity
#define mon_warning(mon) (Warning && !(mon)->mpeaceful & & \

(distu((mon)->mx, (mon)->my) < 100) && \
(((int) ((mon)->m_lev / 4)) >= flags.warnlevel))

#define WEAPON_SYM ’)’
#define ARMOR_SYM ’[’
#define RING_SYM ’=’
#define AMULET_SYM ’"’

//These attributes are used in a case label
#define A_CHAOTIC (-1)
#define A_NEUTRAL 0
#define A_LAWFUL 1

struct edog {
int apport; /* amount of training */
long whistletime; /* last time he whistled */
long hungrytime; /* will get hungry at this time */

};
#define EDOG(mon) ((struct edog *)&(mon)->mextra[0])

Figure 1.1: Example code with preprocessor directives

CHAPTER 1. INTRODUCTION 4

//warn of any dangerous monsters in vicinity
bool mon_warning(most *mon)
{

return (Warning && !(mon)->mpeaceful &&
(distu((mon)->mx, (mon)->my) < 100) &&
(((int) ((mon)->m_lev / 4)) >= flags.warnlevel))

}

const char WEAPON_SYM = ’)’;
const char ARMOR_SYM = ’[’;
cosnt char RING_SYM = ’=’;
cosnt char AMULET_SYM = ’"’;

//These attributes are used in a case label
enum {

A_CHAOTIC = (-1),
A_NEUTRAL = 0,
A_LAWFUL = 1

};

struct edog {
int apport; /* amount of training */
long whistletime; /* last time he whistled */
long hungrytime; /* will get hungry at this time */

};
edog *EDOG(monst *mon)
{

return ((struct edog *)&(mon)->mextra[0]);
}

Figure 1.2: Example code with preprocessor directives migrated away

CHAPTER 1. INTRODUCTION 5

Aside from manipulating source code, there is also the issueof fact extraction and visualisation.

Most of the available fact extractors work with code that hasalready been run through CPP, and as

such does not provide any representation of the original macros. Often this may not matter as most

macro uses are for constant variables [5]. Still, one may be interested in the dependencies between

macros and code, had such constants actually existed as variables. One may be misled from the

visualised call graph due to the transitive property of macros being used as functions. A C/C++

function which uses a function-like macro will appear to directly call any methods the macro calls.

It would be convenient to treat such macros like their C/C++ counterparts, in hopes of providing a

clearer representation of the original source code.

1.2 Objective

The largest problems in dealing with things like migration or refactoring C/C++ code stems from

the intermixing of the two languages. One solution would be to get rid of one of the languages,

namely CPP. Ideally in doing this, as few changes as possibleto the original source should be

made. CPP itself will translate the code into straight C/C++, but the implied semantic information

that was encoded in the preprocessor directives is lost, notto mention a great deal of readability.

Also, it would be useful to preserve the original functionality as closely as possible, in that minor

differences in performance or execution branches are acceptable so long as the program runs as it

did before.

The approach taken here is to rewrite the original macros using C/C++ language constructs

which mimic the macro as closely as possible. A method to perform this task is outlined, and

some early results of its usefulness using a test implementation is presented. While the aim is to

CHAPTER 1. INTRODUCTION 6

handle as many types of macro use as possible, the implemented system can currently only migrate

constant macros and parameterless function-like macros. It may seem fairly trivial to migrate such

simple constructs, but in truth a substantial amount of workwas required. Fortunately the majority

of this work applies to migrating most other types of macro use.

Though macros are mostly used for simple tasks, like constants and inlined functions, it might

beg the question as to why removing them would be difficult. While in truth most are not difficult

to rewrite, the two main issues to deal with are the differentlanguage scoping rules and the lack of

strong types for the macros.

While the approach to migration is intended to be as straightforward and easy to perform as

possible, as always, the devil is in the details. The following steps are taken in the outlined method:

1. Extract the code and macro facts

2. Choose the order in which to migrate each macro

3. Determine how each macro is being used

4. Generate a plan to transform each macro

5. Transform each macro

This method is intended to be as straightforward and intuitive as possible. The hardest part with

this project was in discovering the more obscure language rules that the migration engine is likely

to run into, such as those discussed in section 3.5.

Originally macros were provided in C was for enhancing the language. Many of these enhance-

ments were incorporated into the creation of C++ [18]. As such, the focus of this thesis will be on

CHAPTER 1. INTRODUCTION 7

C++ and not C since there are far fewer options for the rewriting or migrating of macros in C. The

method outlined is equally valid for C code, just with fewer migration options available.

1.3 Thesis Overview

The organisation of this thesis is as follows:

Chapter 2 discusses background material and related work. Adiscussion of the C preprocessor

is given in detail, covering both its operation and semantics. A brief description of fact extractors

follows. The TA file format, used to represent the facts extracted from the fact extractors used in

this project, is also described. To manipulate the extracted facts the Grok interpreter is used, which

is therein discussed. Finally this chapter details relatedworks.

In chapter 3 the approach taken to migrate C/C++ macros is described. Some of the pitfalls

that one encounters when trying to migrate C/C++ macros is also discussed.

Following that, chapter 4 discusses macros. Macro fact extraction is first covered in this chap-

ter, succeeded by a taxonomy of macros.

The details of the implemented system are described in chapter 5. The architecture and inter-

faces used in the design and implementation are also discussed.

Results of a case study are presented in chapter 6. Using the implemented system, two popular

open source applications were analysed in terms of classification of macros and issues encountered

during the migration process.

Finally, chapter 7 concludes with a summary of this thesis, and outlines the salient points made.

The chapter ends with a discussion of future areas of work.

Chapter 2

Background and Related Work

2.1 The C/C++ Preprocessor

In addition to each C/C++ compiler there is a macro preprocessor, which we will call CPP. More

than just a convenience, CPP originally helped programmersovercome some of the limitations

of C. While most of these deficiencies have been addressed in later versions of C and C++ [18],

the preprocessor has persisted out of a need for backwards compatibility with older versions of

C/C++. Before the C/C++ compiler actually compiles a given source, the preprocessor is run and

that output is compiled. CPP has three main operations: inclusion of files, conditional directives,

and macro expansion.

2.1.1 #include Directive

C/C++ relies on the preprocessor to include files within sources. Most commonly this inclusion

is done for the purpose of including header files for the standard C/C++ libraries. The C/C++

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

/* File: header.h */ /* File: file.c */ /* What the compiler
#ifndef _HH int a = 5; sees */
#define _HH #include “header.h” int a = 5;
{ some stuff } int b = 6; { some stuff }
#undef _HH int b = 6;

Figure 2.1: Simple#include directive examples

compiler only compiles a single, self-contained, source file at a time. As such, CPP is required

to follow each inclusion directive encountered, starting at the original source file, and build the

resulting code to be compiled. To actually include a file the#include directive is used. When

an#include directive is encountered, CPP stops processing the currentfile, and continues with

processing the file given in the directive. When that file has been processed, CPP returns to pro-

cessing the original file at the spot it left off. This processing is recursive, and a file may include

itself or cyclic inclusion paths may occur. To avoid the potential problem of infinite inclusion, in-

cluded files are commonly encapsulated with guards using preprocessor conditionals. Some simple

examples of the#include directive are given in figure 2.1.

As there is no comparable C/C++ facility to the#include directive, no migration techniques

are proposed for it.

2.1.2 Conditional Directives

Conditional directives in CPP are used to include or excludecode for compilation. We find this

most useful in the case of configuration management. For example, should we be compiling our

source under two different operating systems, we may find that some library functions have a

slightly different syntax. In this situation we are not ableto use conditionals in C/C++ since both

versions of the functions can not be simultaneously compiled. Rather than duplicating the source

CHAPTER 2. BACKGROUND AND RELATED WORK 10

and making the changes in each, we can use a preprocessor conditional directive to choose which

flavour of call to use. Alternatively, say our code containeda lot of debugging methods which

were overly time consuming. If we wished to remove them in thefinal release we could wrap

those calls in CPP conditionals and exclude them during the final build. Another useful, though

less pervasive, use of CPP conditionals is when we wish to comment out a piece of code that

already contains embedded comments. Since we can not nest C-style comments, we can use CPP

when this need arises.

The syntax of the conditional directives is similar to C/C++conditionals. Each CPP condi-

tional starts with one of#if , #ifdef , or #ifndef . #ifdef and#ifndef are aliases for

“#if defined(...) ” and “#if !defined(...) ”, respectively. At the end of a CPP

conditional block the directives#endif or #else are used if we want to either terminate the

conditional block or add a block for the negation of the condition, respectively. If one wants to

nest conditionals, the directive#elsif can be used as a substitute for#else then#if .

Each conditional is judged on a C-like expression. This expression may contain integer arith-

metic, bit-wise/logical, and equality operations. In addition to integers, literals may be used in the

arithmetic expression. If such a literal is actually a previously defined macro, then the literal is

replaced with its expansion. Otherwise the literal is evaluated as 0. There is also thedefined()

operator which evaluates to 1 if the literal parameter givento it is a declared macro, and 0 other-

wise.

To illustrate CPP conditions, some examples are provided infigure 2.2.

In terms of migrating conditional directives, one possibleapproach would be to replace the

directive with a regular C/C++if statement. Even if the directive is an#ifdef , #ifndef , or

usesdefined() it could still be replaced with a regular C/C++if statement. In this later case

CHAPTER 2. BACKGROUND AND RELATED WORK 11

#if 4+5 == 9 #ifndef _HH #if 0 #if defined(CPU1)
... #define _HH { code with call(a);
#else { stuff } comments } #else
... #endif #endif call(a,b);
#endif #endif

Figure 2.2: CPP Conditional Examples

if (4+5 == 9) { if (_HH == 0) { if (0) {
... { stuff } { code with
} else { } comments }
... }
}

Figure 2.3: Migrated CPP Conditional Examples

the macro literal being evaluated could itself be migrated as a flag, and the migrated C/C++if

statement would then evaluate that flag.

In terms of the examples given in figure 2.2, only the first and third examples could be migrated

in this way. If the second example did not contain the line “#define _HH ”, we could also use

this technique to migrate it. With this change in mind, the first three examples in figure 2.2 could

be migrated as shown in figure 2.3, provided the result is valid C++.

An alternate approach would be to decide upon a static configuration and simply include or

exclude the evaluated conditional blocks, exactly as the preprocessor would. This approach would

be necessary to handle the fourth example in figure 2.2.

2.1.3 Macro Expansion

At its simplest, declared CPP macros are used as aliases for other expressions. Any expression can

be declared as a macro expansion, be it valid C code or not. Forexample, the following are valid

CHAPTER 2. BACKGROUND AND RELATED WORK 12

macro declarations:

#define foo 5

#define fnord else } ; ...

Beyond simple aliases or abbreviations, macros may be declared to take any number of param-

eters as well. Whatever is passed as a macro parameter is usedverbatim in the macro’s expansion.

To clarify, consider the following snippet of code:

#define mac_func(a) 1 a 2

mac_func(blah)

When CPP processes this code the expansion of the macro givenon the second line is replaced

with “1 blah 2 ”. A common use of parameterized macros is as a form of inline functions.

As hinted at in the above examples, macros are declared usingthe#define directive. For a

parameterized macro, a set of brackets with a comma delimited list of arguments is appended to

the macro name. Following the name and optional argument list is the macro expansion. Once

a macro is declared any further instances of the macro’s name, outside of CPP directives, will be

replaced with the macro’s expansion.

Whenever a macro is expanded, the CPP will recursively replace any instances of literals that

are the name of declared macros with the respective macro’s expansion. If we had the following

declarations:

#define a 1 2

#define b a 3

then any expansion ofb would result in “1 2 3 ”. We should note however, that the description

of macro expansion so far should lead one to conclude that theCPP could be used as a lambda

CHAPTER 2. BACKGROUND AND RELATED WORK 13

calculus interpreter. This would be the case if it was not forthe feature that once a macro has been

expanded, it can no longer be expanded within the same instance. For example, say we made the

declarations:

#define a 1 2 b

#define b a 3

If the CPP were to expand outa, we would get “1 2 a 3 ” and not an infinite string of “1

2”.

Every declared macro remains in scope until either the CPP finishes processing or explicitly

brought out of scope using the#undef directive. As such, the expansion of a macro may differ

between two instances. This could happen if any macros are used in the original expansion, and

those macros being used are either removed from scope or redeclared. To clarify, observe the

following example:

int a = 10;

#define a 1 + 2

#define b a + 3

int z = b;

#undef a

int y = b;

The resulting code will be processed as:

int a = 10;

int z = 1 + 2 + 3;

int y = a + 3;

CHAPTER 2. BACKGROUND AND RELATED WORK 14

In addition to user defined macros, there are a number of standard predefined macros. For

example, the macro__LINE__ expands out to the current line, whereas the macro__STDC__

expands to 1 if the C/C++ compiler is ANSI standard C compliant.

The possibilities when using macro expansion are enormous.However, it is usually the case

that macros are used to represent a constant value or brief expression [5], like the second and final

examples in this subsection. A sample of these sorts of macros and their possible migrations is

given in section 1.1 in, figures 1.1 and 1.2.

2.1.4 Other CPP Features

Beyond the above three types of operations, the CPP can also perform “stringification” and string

concatenation. Stringification involves taking a macro parameter and replacing it with a quoted

string version of the given value. In the macro expansion anyargument to undergo stringification

is prefixed with a#. To clarify, say we make the following declaration:

#define DBG(msg) printf(“Error: “ #msg “\n”);

DBG(x == 2)

The CPP will then produce the following:

printf(“Error: “ “x == 2” “\n”);

The string concatenation operation takes two literals separated by “##” and creates a new literal

by concatenating them together. In addition to literals twooperators which when placed together

form a valid operator, such as “+” and “=” or “ ! ” and “=” may be concatenated. As an example,

consider the following lines:

CHAPTER 2. BACKGROUND AND RELATED WORK 15

#define decl(typ) typ typ ## _type;

decl(int)

The resulting processed code would be:

int int_type;

These two operations, stringification and string concatenation have no obvious parallel in

C/C++. As such no migration techniques are proposed for themin this thesis.

Of interest with CPP is that every directive must be declaredon a single line. Consequently,

the expansion of a macro is in place and does not affect the compiler’s line number tracking. We

can certainly declare a multi-line macro, but only if we use line continuation markers, essentially

declaring it on a single line. The following example illustrates that given the definition:

#define func_mac(a, b) a + 5 \

* 7 + b \

+ b * a

the preprocessor will expand every instance offunc_mac on a single line as:

a + 5 * 7 + b + b * a

2.2 Fact Extractors

Source code can be seen or represented in a number of different ways. The most obvious is the

source itself. The information the source provides us comesin the form of discrete tokens of

words, numbers, operators, etc. When compiling the source however, the compiler will produce

other representations of the code.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

Given the source, the compiler will use the preprocessor to generate a partial representation of

the preprocessor directives as it creates the code that willactually be compiled. The term “partial

representation” is used because not all information about the preprocessor’s operation is stored. For

example, the preprocessor does not keep track of each expansion occurrence after said expansion

has completed. After the preprocessor has created the code that the compiler will compile, the

compiler will create an abstract syntax tree representing the input code. From this abstract syntax

tree, assembly code is generated and then assembled into thefinal binary object.

What we see is that the code goes through many representations, from source to abstract syntax

tree to binary object. Each of these representations, whilepresenting the same basic information,

is different from the others.

By creating a convenient to use database of the details of a representation allows us to more

easily explore properties of the source code. For example, say we wanted to know what functions

made use of global variable X. We could look through the source for every instance of the word

“X”, and then eliminate all the local variables that overshadow the global variable. After a bit of

work we would find our answer. The compiler however has already done this. Its abstract syntax

tree representation has to know for each variable named X, which X it is referring to. It would be

much easier to query the abstract syntax tree, than parse andpartially compile the code ourselves

to answer our question.

Because the compiler creates these representations for us,it does not make sense for us to

duplicate that effort when examining the code. Rather we should extract the relevant information

from each representation and place it in a database. These extracted facts will be represented

as a directed tree, or perhaps even a directed graph. Each node will have a type and associated

properties. Edges between nodes will represent relations between them. For example, a function

CHAPTER 2. BACKGROUND AND RELATED WORK 17

$INSTANCE @1 cFunction
$INSTANCE @2 cBlock
$INSTANCE @3 cForLoop
contain @1 @2
contain @2 @3

Figure 2.4: Example facts of afor loop within a function in TA format

that contains afor loop will have a representation including a node for the function, a node for

the function’s block, a node for thefor loop, and a containment relation between them, like in

figure 2.4. A description of the fact format, TA, is given in section 2.3.

As we extract more out from the abstract syntax tree, we learnabout where functions and

variables are referenced throughout the code, among other things.

Facts can be generated from the other representations, evenif they are not natively presented as

a graph. For example, the original source code can be represented as a bunch of word nodes, strung

together with an ordering relation. The operation of the preprocessor can be recorded by creating

facts about every declaration and expansion, and each conditional encountered. Examples of literal

source code facts and preprocessor operation facts are given in figures 2.5 and 2.6, respectively. As

we can see, even the simplest of expressions or operations can generate a large number of facts.

Any program which extracts such information is called a factextractor. For the system this

thesis describes, the C/C++ fact extractor CPPX [10] and ourown fact extractor, CPP0-CPPX, was

used.

2.2.1 CPPX

CPPX is a fact extractor written by the University of Waterloo’s Software Architecture Group

(SWAG). Based on GCC, CPPX can extract facts from any C or C++ program that GCC can

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Original Line of Code:

int a = 6;

Generated Facts:

FACT TUPLE :
$INSTANCE @8 cToken
$INSTANCE @9 cToken
$INSTANCE @10 cToken
$INSTANCE @11 cToken
$INSTANCE @12 cToken
AndThen @8 @9
AndThen @9 @10
AndThen @10 @11
AndThen @11 @12
FACT ATTRIBUTE :
@8 { type = CPP_NAME value = "696e74" file = "test.cc" line = 1

sourceColumn = 1 }
@9 { type = CPP_NAME value = "61" file = "test.cc" line = 1

sourceColumn = 5 }
@10 { type = CPP_EQ value = "3d" file = "test.cc" line = 1

sourceColumn = 7 }
@11 { type = CPP_NUMBER value = "36" file = "test.cc" line = 1

sourceColumn = 9 }
@12 { type = CPP_SEMICOLON value = "3b" file = "test.cc" line = 1

sourceColumn = 10 }

Figure 2.5: Example literal source code facts

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Original Code:

#define add5(x) x+5
int a = 6;
int b = add5(a)

Generated Facts:

FACT TUPLE :
$INSTANCE @15 cMacroDecl
$INSTANCE @21 cMacroParameter
$INSTANCE @31 cMacroExpansion
cMacroParameter @21 @15
cMacroExpansion @31 @15
FACT ATTRIBUTE :
@15 { name = "add5" file = "test.cc" line = 3 startLine = 2

params = 1 }
@21 { name = "x" parameterIndex = 0 }
@31 { file = "test2.cc" line = 5 }

Figure 2.6: Example of preprocessor operation facts

CHAPTER 2. BACKGROUND AND RELATED WORK 20

compile. Currently only the abstract syntax tree representation facts are extracted.

2.3 TA Modelling Language

CPPX by default uses a subset of TA [9] as its fact extraction output. TA, or the Tuple-Attribute

language, is a simple language that can be used to represent graphs. There are two main parts to a

TA factbase: the tuples and the attributes.

The tuple section is used to declare nodes and relations between them. Each node must first be

defined with a type using the “$INSTANCE” relation. A function node may be declared like:

$INSTANCE @2 cFunction

What this means is that the node@2is of typecFunction . The node name does not need

to be prefixed with a “@”, it is simply something CPPX does. While “$INSTANCE” is a special

relation whose nodes should be declared before being used inany other relations, it is treated the

same as any other relation in the tuple section. In general a relation tuple is declared like:

<Relation name> <From node> <To node>

If we wanted to represent the inclusion or containment of afor block within a function we

could use something like:

$INSTANCE @2 cFunction

$INSTANCE @3 cBlock

$INSTANCE @4 cFor

contain @2 @3

contain @3 @4

CHAPTER 2. BACKGROUND AND RELATED WORK 21

FACT TUPLE :
$INSTANCE @2 cFunction
$INSTANCE @7 cBlock
$INSTANCE @27 cForLoop
contain @2 @7
contain @7 @27
FACT ATTRIBUTE :
@2 { file = test.cc line = 3 name = f visb = pub extern = true }
@7 { line = 5 }
@27 { line = 4 }

Figure 2.7: Complete TA example

In this very simple way we can represent any directed graph, as the “$INSTANCE” relation

declares the nodes and the other relations represent the edges between them. There are no restric-

tions on the number of relations that may exist between two nodes. This leads to the understanding

that beyond simply representing directed graphs, TA in factrepresents directed multigraphs.

The attribute section of a TA factbase is just as simple as thetuple section. Every node with

attributes includes a single entry in the attribute section. This entry lists attribute and value pairs in

much the same way as an attribute list for an XML element. Continuing with our function example,

its respective attributes could look like:

@2 { file = test.cc line = 3 name = f visb = pub extern = true }

A complete TA factbase might look like the one given in figure 2.7.

2.3.1 TA Macro Schema

As CPPX only extracted facts from the compiler’s AST, it was necessary to write our own macro

fact extractor. Our approach to this was to take the GNU GCC C preprocessor and modify it to

CHAPTER 2. BACKGROUND AND RELATED WORK 22

export facts about its operation. Beyond the immediate changes necessary to accomplish this, a

schema for the extracted facts needed to be created. We informally describe here the scheme used

to describe the macro facts.

Macro Declarations and Expansions

Every macro declaration creates an instance tuple of typecMacroDecl . Associated with this

tuple are the attributesname, file , line , startLine , andparams which represent the name

of the macro, the file in which it was declared, the line after the end of the macro declaration, the

line the macro declaration started on, and the number of parameters the macro takes, respectively.

For example, the statement “#define func(a) 5 + a ” could create the following instance

tuple and attributes:

$INSTANCE @15 cMacroDecl

@15 { name = "func" file = "test.c" line = 6

startLine = 5 params = 1 }

Each parameter of a macro also creates an instance tuple. In this case an instance tuple of type

cMacroParameter is created. This tuple has the associated attributesnameandparameterIndex

which represent the name of the literal as given in the macro declaration and the ordered index of

the parameter, respectively. We also need to associate the parameter with its containing macro.

This is done by creating acMacroParameter tuple. Continuing with our example above, we

would include the following facts in our TA file:

$INSTANCE @21 cMacroParameter

cMacroParameter @21 @15

@21 { name = "a" parameterIndex = 0 }

CHAPTER 2. BACKGROUND AND RELATED WORK 23

The final set of facts extracted from our macro declaration have to do with the macro expan-

sion. Each literal token of the macro expansion has an associatedcMacroDefinitionToken

instance tuple created for it in the extracted facts. Along with this tuple are attributes describing the

token’s lexical type, literal value, file, line, and starting column, all represented bytype , value ,

file , line , andsourceColumn , respectively. To enforce the order of the tokens in the re-

lation tuples, for every token after the first an entry in theAndThen relation is created, forming

a linked list of sorts of tokens for a given expansion. Finally, the first token is associated with

the declaring macro through thecMacroDefines relation. To complete our example above, the

following facts related to the macro expansion would be added:

$INSTANCE @16 cMacroDefinitionToken

$INSTANCE @18 cMacroDefinitionToken

$INSTANCE @20 cMacroDefinitionToken

AndThen @16 @18

AndThen @18 @20

cMacroDefines @16 @15

@16 { type = CPP_NUMBER value = "5" file = "test.c"

line = 5 sourceColumn = 17 }

@18 { type = CPP_PLUS value = "+" file = "test.c"

line = 5 sourceColumn = 19 }

@20 { type = CPP_MACRO_ARG value = "a" file = "test.c"

line = 5 sourceColumn = 21 }

Every expansion of a macro generates a set of facts as well. AcMacroExpansion instance

tuple is created for each expansion with the associated attributesfile , line , andsourceColumn ,

CHAPTER 2. BACKGROUND AND RELATED WORK 24

to indicate where the expansion occurred. The expansion needs to be associated with the original

macro and this is done through thecMacroExpansion relation. The final additions to our ex-

ample above when including the expansion facts would be:

$INSTANCE @23 cMacroExpansion

cMacroExpansion @23 @15

@23 { file = "test.c" line = 6 sourceColumn = 1}

Preprocessor Conditionals

Extracted preprocessor conditional facts begin with an instance tuple that declares their type. By

this it is meant that#if , #ifdef , and#ifndef are represented bycMacroIf , cMacroIfdef ,

andcMacroIfndef instance tuples, respectively. Each of these three instance tuples have as-

sociated with themfile , line , andentered attributes which represent the location of the

directive and whether or not the condition was true, and thuswhether or not the conditional block

was entered. Both thecMacroIfdef andcMacroIfndef instance tuples also have aname

attribute. This attribute specifies the literal value of themacro whose declaration is being queried.

We consider the following example to clarify the above paragraph:

Original Code Extracted Facts

#ifdef a $INSTANCE @11 cMacroIfdef

#endif @11 { name = "a" file = "test.c" line = 29

entered = false }

At the end of each conditional there is an#endif statement, which also has facts associated

with it. Namely for each#endif statement acMacroEndif instance tuple is created with

associatedfile andline attributes.

CHAPTER 2. BACKGROUND AND RELATED WORK 25

Should the conditional be a little more complicated and involve an #else or #elif , an

instance tuple of typecMacroElse or cMacroElif would be extracted. These instance tuples

have the samefile , line , andentered attributes as acMacroIf instance tuple.

Since preprocessor conditionals can be nested, the problemof identifying which conditional

statements belong to which conditional block becomes an issue. To avoid parsing the code, which

the preprocessor and the fact extractor does anyway, the relationcMacroBlockPart is exported

in the facts. This relation represents a linked list of conditional statements within the same condi-

tional block. To clarify this point, we consider the following example:

Original Code Extracted Facts

#ifdef a $INSTANCE @11 cMacroIfdef

#else $INSTANCE @14 cMacroElse

#endif $INSTANCE @17 cMacroEndif

cMacroBlockPart @11 @14

cMacroBlockPart @14 @17

@11 { file = "test.c" line = 39 entered = false }

@14 { file = "test.c" line = 40 entered = true }

@17 { file = "test.c" line = 41 }

The final preprocessor directive to discuss is thedefined() operator. When adefined()

operator is encountered the fact extractor will include acMacroDefined instance tuple. This

instance tuple has associated with itfile , line , sourceColumn , andarg attributes, repre-

senting the location of the operator and the name of the macroliteral that was searched for. When

the literal that was searched for was found a new tuple in thecMacroSubject relation is added

to the facts, indicating which macro thedefined() operator operated on. If the searched for

CHAPTER 2. BACKGROUND AND RELATED WORK 26

literal is not found, a tuple in thecMacroSubject relation is not created. To associate the

defined() operator with the parent#if statement, a tuple in thecMacroBlockPart rela-

tion is added. The following example will illustrate the facts that are created with adefined()

directive:

Original Code Extracted Facts

#define a $INSTANCE @11 cMacroDecl

#if defined(a) && $INSTANCE @25 cMacroIf

defined(b) $INSTANCE @26 cMacroDefined

#endif $INSTANCE @27 cMacroDefined

$INSTANCE @30 cMacroEndif

cMacroBlockPart @25 @30

cMacroBlockPart @25 @26

cMacroBlockPart @25 @27

cMacroSubject @26 @11

@11 { name = "a" file = "test.c" line = 26

startLine = 25 }

@25 { file = "test.c" line = 27

entered = false }

@26 { file = "test.c" arg = "a" line = 26

sourceColumn = 13 }

@27 { file = "test.c" arg = "b" line = 26

sourceColumn = 27 }

@30 { file = "test.c" line = 28 }

CHAPTER 2. BACKGROUND AND RELATED WORK 27

Other Preprocessor Constructs

We discuss here the remaining preprocessor constructs, namely #undef , #include , stringifica-

tion and string concatenation.

When encountering an#undef , the fact extractor first creates acMacroUndef instance

tuple, with the attributesfile and line . A tuple in thecMacroSubject relation is then

created, linking the#undef statement with the macro being undefined. If the#undef statement

did not undefine an in-scope macro, then no tuple is added to thecMacroSubject relation. The

following example will illustrate the#undef statement facts:

Original Code Extracted Facts

#define a $INSTANCE @11 cMacroDecl

#undef a $INSTANCE @17 cMacroUndef

#undef b $INSTANCE @18 cMacroUndef

cMacroSubject @17 @11

@11 { name = "a" file = "test.c" line = 7 startLine = 6 }

@17 { file = "test.c" line = 7}

@18 { file = "test.c" line = 8}

For every file referenced in the fact attributes the preprocessor fact extractor will create a

cFile instance tuple. This instance tuple contains a single attribute, file , which gives the

name of the file. While a reasonable convention, this instance tuple makes more sense in light of

the facts extracted from a#include directive. When such a directive is encountered, the fact

extractor will first create acInclude instance tuple, withfile andline attributes. To indicate

which file is being included, a tuple in thecIncludes relation is created that links the respective

CHAPTER 2. BACKGROUND AND RELATED WORK 28

cInclude node with its correspondingcFile node. Finally, a tuple in thecontain relation is

created from the file node in which the#include directive is found, to thecInclude node. To

clarify, let us consider the following facts extracted fromfile test.c :

Original Code Extracted Facts

#include “b.h” $INSTANCE @11 cInclude

$INSTANCE @18 cFile

$INSTANCE @22 cFile

contain @18 @11

cIncludes @11 @22

@11 { file = "test.c" line = 7 }

@18 { file = "test.c" }

@22 { file = "b.h" }

No progress was made towards the migration of stringification or string concatenation prepro-

cessor operators. Because of this, no steps have been taken in formulating extracted facts for these

operations.

2.4 Grok

The most common means of manipulating TA databases is with a language called Grok [8]. Grok

is akin to a restricted form of SQL in that it defines a set of commands for manipulating binary

relations and sets. A TA factbase is represented as a set of binary relations. Within each TA factbase

the tuple section is reflected in a straightforward manner. The tuple relation name, becomes the

relation name under Grok with the two parameters thusly forming part of the relation. For example,

CHAPTER 2. BACKGROUND AND RELATED WORK 29

the TA line

$INSTANCE @2 cFunction

would add the tuple(@2, cFunction) to the “$INSTANCE” relation in Grok.

TA attributes are also represented as binary relations. Every attribute in an attribute list is

represented by Grok as a relation. The relation’s entities are then composed of the node name that

the attribute is associated with and the attribute value. Ifwe had the following attribute in a TA

factbase,

@2 { file = test.cc line = 3 name = f }

we would represent this in Grok by adding the tuples(@2, test.cc), (@2, 3), (@2,

f) to thefile , line , andname relations, respectively.

To further clarify, say we had the TA factbase from figure 2.7.If loaded into a Grok interpreter,

the resulting relations would be:

Relation Tuples

$INSTANCE (@2 cFunction), (@7 cBlock), (@27 cForLoop)

contain (@2 @7), (@7 @27)

@_file (@2 test.cc)

@_line (@2 3), (@7 5), (@27 4)

@_name (@2 f)

@_visb (@2 pub)

@_extern (@2 true)

CHAPTER 2. BACKGROUND AND RELATED WORK 30

We note that the Grok interpreter appends the prefix “@_” to the name of the attribute relations.

As well as relations, Grok defines commands for manipulatingunordered sets and some simple

constructs that allow it to be used as a scripting language.

2.4.1 Language

The Grok language itself consists of very concise operatorsfor manipulating relations, sets, strings,

and numbers, plus some simple control flow constructs. For example, the following script will take

as it’s first argument a TA factbase’s file name whose facts were extracted from a source file. It’s

assumed this source file contained a function whose body contained a single entity. The name of

this function is given to the script as it’s second argument.Once it has this information, the script

will determine the type of the entity within the named function:

addta $1

functionNode := @_name . {$2}

cBlock := (rng ((id functionNode) o contain))

literalNode := (rng ((id cBlock) o contain))

builtinNode := (rng ((id literalNode) o cInstance))

type := (inv @_name) . builtinNode

if type == EMPTYSET then

type := (inv @_name) . (rng ((id builtinNode) o cInstance))

addsuffix type "*"

end if

CHAPTER 2. BACKGROUND AND RELATED WORK 31

This example demonstrates some simple set and relation operators, such as the relational com-

position operator, “o”, and set projection operator, “. ”, as well as the “rng ” operator which

returns the range of a relation. The specific details of the script’s function aren’t important to

understanding this example of the Grok language.

As we can see, the language has a straightforward infix notation. Operators such as “+”, “ - ”,

and “̂ ” are used to represent operations like union, difference, and intersection, respectively, for

both sets and relations. As well as simple set operations Grok allows us to do things like create

relations through the cross product of two sets or take the transitive closure of a relation.

A full description of the Grok language, including tutorials, examples, and language specifica-

tion can be found in the introductory paper written by Holt [8].

2.4.2 Embedded Grok Interpreter

The Grok interpreter is normally used as a stand-alone application, appropriately called “grok”.

This interpreter is most commonly used to run scripts that are part of SWAG’s Software Architec-

ture Toolkit. An interactive command-line interpreter wasalso a feature of grok.

As Grok is written in Turing, and then transcoded into C by theTuring compiler, an embedded

version of grok was created from the “hijacked” C source. Rather than interpreting commands

from the console, grok is tricked into accepting a command directly via a method call. Hooks were

added to retrieve relation and set contents. In this way we were able to use grok directly within

our system, rather than indirectly through scripts. We use TA for the databases in our system,

necessitating the creation of an embedded version of grok.

CHAPTER 2. BACKGROUND AND RELATED WORK 32

2.5 Related Work

In conducting this research, we were inspired by the work of Ernst, Badros and Notkin [5, 2]. They

examine preprocessor usage in 26 large C programs [5] and describe a tool that allows preprocessor

constructs to be analyzed along with the remainder of the source in a unified framework [2]. Along

with other applications, the tool was applied to replace macro definitions for constant values with

equivalent C declarations [1]. Unfortunately, the structure of the tool restricts an analysis to a

single file at a time, since it is based on existing compiler technology. The work was not extended

to other macro types or to C++.

In this thesis, we take a different approach to the problem, analyzing a complete software sys-

tem before and after preprocessing, and merging the resulting factbases into a unified description

of preprocessor transformations. This approach permits preprocessor constructs in header files to

be translated into C++ constructs that reflect their usage throughout the system. While we mainly

focus on constant macros in this thesis, our approach provides a framework for handling other

preprocessor constructs and for accommodating different dialects of C++, including C.

Several other researchers have developed preprocessor-aware methods for analyzing C/C++

source [4, 12, 13]. The problem of tracking substitutions through the preprocessor is examined

by Kullbach and Riediger [12]. Theirfolding method allows a user to visualize the actions of

the preprocessor on a particular construct. Cox and Clarke [4] describe a technique for mapping

facts, expressed as XML and generated by an analysis of the preprocessed source, back through the

preprocessor to be properly situated in the original source. Malton et al. [14] describe a “source

factoring” process that aids the analysis and transformation of code written in PL/1, and other

languages, where preprocessor and macro constructs are heavily used.

Conditional compilation poses a particularly serious problem to a software analysis system.

CHAPTER 2. BACKGROUND AND RELATED WORK 33

Text excluded by an#ifdef may contain syntax errors, code in a different dialect, comments,

or complete gibberish. Given the problems they cause [17], source code should be re-written

or transformed to eliminate these constructs, but in some cases this transformation may be im-

possible. Somé and Lethbridge [16] discuss many of the problems associated with conditional

compilation and describe a parsing method for efficiently processing conditionally excluded code.

Others [11, 3] have applied symbolic execution and partial evaluation techniques to analyze con-

ditional constructs.

Chapter 3

Approach to Migrating Macros

3.1 Fact Extraction

As outlined in section 1.2, we take a straightforward approach to the migration of macros:

1. Extract the code and macro facts

2. Choose the order in which to migrate each macro

3. Determine how each macro is being used

4. Generate a plan to transform each macro

5. Transform each macro

The first step is to extract the facts about the system. For each compiled source we use our custom

preprocessor fact extractor, CPP0-CPPX, to extract the macro and lexer token facts and CPPX to

extract the ASG facts. By lexer token facts we mean the same thing as literal source code facts,

34

CHAPTER 3. APPROACH TO MIGRATING MACROS 35

#define A 6
#define B A+7
int func() {

return B;
}

Figure 3.1: Example of indirect expansion of macro A from direct expansion of macro B

such as those shown in figure 2.5. With these three separate fact files we ensure that each node has

a unique name, and then merge the three factbases together. From this new factbase we remove

any of the facts that will not be needed; the standard C include header facts in particular. From

here we merge the facts into the overall project factbase. Finally, duplicate entries in the factbase

are identified, as they may have different names but the same attributes, and removed.

Once we are satisfied with our extracted facts, we choose the order in which to migrate the

macro instances. This is largely intended for macros definedvia the#define preprocessor direc-

tive, although it may matter for removing#if statements and the like. Since we are not extracting

facts from the output of CPP, we do not want to expand macros out in our migration system. Ideally

we want to only need to know where each macro is directly expanded, in the original source code,

rather than indirectly expanded, as seen in figure 3.1.

In the simplest case, macros which do not depend on any othersmay be migrated without

paying attention to the order in which they are processed. However, we may come across the

situation in which for a particular macro to be migrated correctly, every macro that it depends on

must also be migrated along with it. In this case we must ensure that these groups of macros are

migrated together. Depending on how one handles#if statements, one could deem all macros in

an#if statement condition as being dependent on each other, as illustrated in figure 3.2.

CHAPTER 3. APPROACH TO MIGRATING MACROS 36

#if defined(UNIX) && !defined(SMALL)
&& defined(CONFIGURABLE)

Figure 3.2: UNIX, SMALL, and CONFIGURABLE can be seen as being dependent on one an-
other

Code Classifications for A Resolution for A

#define A 5 1) Constant Value 1) Constant Value
#ifdef A 2) Configuration Setting
#endif

Figure 3.3: Example of classification resolution

3.2 Classification

After deciding the order in which to migrate the macros, we determine as much as we can from

each macro in the prescribed sequence. This involves looking at how each macro is used and

assigning a classification, of which we have identified almost two dozen types of macro classi-

fications, which are described in section 4.2. The macro being processed is matched against the

criteria for each classification type. If more than one classification criteria is met, then a resolution

heuristic is applied to determine which classification bestmatches the macro’s use. We note that

multiple classifications mean that any of them would be technically correct, in that the resulting

transformations would work. The heuristically chosen match is intended to reflect the classifica-

tion that mirrors as closely as possible the intent the original coder had when creating the macro

(figure 3.3).

To optimize the classification process we have allowed for multiple passes to be performed.

Certain classifications are subclassifications of others and rather than eliminating these possibilities

as quickly as possible, we wait until the resolution of the previous pass has been completed. So far

CHAPTER 3. APPROACH TO MIGRATING MACROS 37

Figure 3.4: Block dependency graph example

only two passes have been found necessary, but the possibility for more remains.

From the classification of the macro we determine the transformations necessary to migrate the

macro. For the purposes of declarative macros, the two main things we need to determine are the

new scope of the migrated macro and what C type to associate with it.

To deal with the scoping issue, we create a directed graph representing the C blocks found in

the system and their respective types, say a function or afor block. We represent an included

file as being the ancestor node of the including file. An example of the block dependency graph

structure can be seen in figure 3.4.

Inferring a type for the macro involves delving into the factbase and seeing how the compiler

made use of the given macro.

CHAPTER 3. APPROACH TO MIGRATING MACROS 38

3.3 Placement

Once we have this block dependency graph, we look for each block in which the macro to be

migrated has been used, outside of a preprocessor directive. The least common ancestor of these

blocks, in the graph, then represents a block in which the resulting migrated declaration of the

macro may be placed. Due to the different scoping rules between C/C++ and CPP, we need to

locate this block in case the scope of the macro is not consistent between the two languages. In an

attempt to minimise the structural changes to the code, a rule is added to the placement method just

given. Let us assume that the block in which the macro is declared has a path in the block graph

to the discovered least common ancestor block. This added rule states that the resulting block

in which the migrated macro declaration will be placed will be the same as that of the original

declaration. In other words, just because we could declare the migrated macro “closer” to where

it is used, does not mean we should necessarily do so. The original declaration tends to be in a

reasonable place, like a header file for example, and the migrated declaration should remain there

if possible (figure 3.5).

Though we know the block in which we want the migrated macro declaration to be in, we still

have to choose a specific line to place it on. If the original declaration was in the target block, then

we simply try to replace the old declaration with the new. Otherwise we choose the line before the

first use of the macro, or as close as possible if the target block is different from the first use. In

some cases it may not be possible to insert a new declaration at those initially chosen lines. The

target declaration line, for example, may be in the middle ofa statement that has been split across

multiple lines. Or the target block can not include the type of declaration we wish to make. An

example of the latter case is shown in figure 3.6. We can not declare a variable within a switch

statement that has multiple case labels, unless the particular case label contains a proper C block,

CHAPTER 3. APPROACH TO MIGRATING MACROS 39

Ex 1 Ex 2

int funcA() #define A 5
{

#define A 5 int func()
return A; {

} if(true) {
return A;

int funcB() }
{ if(true) {

return A; return A;
} }

}

Figure 3.5: Examples of overlapping scope and original declaration as ancestor to LCA of uses

braces and all.

To resolve the above issue we start from the target line in thetarget block, and search backwards

in the file until we reach the first line which will legally accept the migrated macro declaration.

After all this work one final task must be performed, in that wemust check for any name conflicts

which may now arise. As we have possibly moved the declaration to a new location in the source,

we are now at risk of causing a name conflict with other entities in the code. To resolve any such

Legal Illegal

switch(something) { switch(something) {
case 4: case 4:
{ int macro = 7;

int macro = 7; case 5:
} return;
case 5: }

return;
}

Figure 3.6: Switch declaration examples

CHAPTER 3. APPROACH TO MIGRATING MACROS 40

<MacroInfo>
<File fileName="keymap.h">

<DelLine fileName="keymap.h"
lineNumber="24"/>

<InsertLine fileName="keymap.h"
lineNumber="25"
lineVal="const int KOF = 0;"/>

</File>
</MacroInfo>

Figure 3.7: Example transformation file

conflicts we must decide whether to rename either the migrated macro, or that which it conflicts

with.

3.4 Transformations

Once the renaming issue is resolved, we take all this information gathered about the macro and

create a series of transformation steps. We define a set of simple commands to insert or delete a

line or lexer token based on the information gathered, like those shown in figure 3.7. After all the

macros have been processed, this allows us to form a series ofsteps in which, if followed, will take

the original source and transform it with the newly migratedmacros.

We use a simple script that takes the transformations to be performed and actually performs

them on the source code.

All that said and done, we accept that there may be instances of macro usages that simply can

not be migrated without extensive code rewriting, best leftto the software engineers.

CHAPTER 3. APPROACH TO MIGRATING MACROS 41

3.5 Pitfalls in Migration

The approach we have described generally works. For the mostpart, once the scoping and name

conflict issues are resolved, the macro transformations immediately follow. However, we must

also consider the semantics of the C language and the interesting situations which arise that are not

immediately obvious, plus the potential varied use of a given macro. While not an exhaustive list

of issues, we discuss a few which were immediately encountered in the course of our case study in

chapter 6.

3.5.1 Language Issues

One good example of a migration pitfall is when a macro is usedinside a case label. Case labels

must have constant values associated with them, and once we migrate a macro to a variable (con-

stant or not), or method, the original code will no longer compile. Furthermore, in the case of

migrating to a method, it is impossible to compile the code without some significant changes and

work-arounds, at the detriment of readability and maintainability.

In this case one must ultimately change the code in a less thanstraightforward way to work

around this problem. Our approach in handling simple constant macros which appear in case labels

is to declare them, the macros, within an enumeration as opposed to a variable. We work with the

assumption that this is what the original coder intended by the macro and group the enumerated

migrated macros together. When multiple enumerations are to be made in the same block we look

at which ones are used in the same switch statements and placethem in the same enumeration,

grouping them together in a greedy fashion.

Another interesting problem is when we discover that a macrosimply can not be migrated. For

CHAPTER 3. APPROACH TO MIGRATING MACROS 42

Constant String Concatenation

#define mac_str “constStr”
printf(“a” mac_str “b”);

Constant String Initializer

#define mac_str “constStr”
char str[] = “a” mac_str “b”;

Figure 3.8: Un-realizable migration examples

example, if we have a constant string that is used in a constant string concatenation or as a constant

initializer (figure 3.8). One could argue that in some, or even most, cases these types of macro

instances could be cleverly rewritten to allow migration.

A different problem is the use of gotos. When a macro is declared between the goto statement

and the target label. Without taking this into consideration, the approach above could decide that

the newly migrated declaration should simply reconstitutethe one in place. However the goto

jump will now cross over the new initialisation, causing a compilation error. We do not have this

problem if the declaration is within a proper C block, of course.

Considering the maintainability aspects, we must also facethe issue of comments. While

beyond the scope of this thesis, if a migrated macro is placedin a different location, then any

comments associated with it must also be similarly moved andplaced.

When it comes to the nuances of the language, we must accept that there are certain instances

of macro use in which we simply can not do anything about them without resorting to significant

code re-engineering, which we are trying to avoid. Similarly we may be constrained in how we

can handle undefined and/or compiler dependent functionality, such as the comparison of pointers

between equivalent string constants. We briefly discuss howwe could handle the differences in

language dialects and compilers in section 5.3.

CHAPTER 3. APPROACH TO MIGRATING MACROS 43

3.5.2 Varied Macro Uses

An issue that has not been dealt with is what to do with macros whose use differs based on the

context. More concretely, consider the case of when a macro’s expansion includes the expansion

of another macro. So long as both these macros are always in scope for every use, there is no

problem. However, consider the case if the macro within the expansion is not in scope, relative to

the encapsulating macro, some of the times it is used. In thissituation we have a problem as this

implies that the encapsulating macro is sometimes using C variables that happen to be in scope

when the macro is used.

Similarly for macros that are used in a polymorphic way, liketemplates for abstract data types,

we again encounter this problem of the macro having different semantics depending on where it is

used. In some cases we could duplicate the original macro based on its different instances of use,

but this leads to readability/maintainability problems and naming issues.

Chapter 4

Macro Fact Extraction and Classification

4.1 Macro Fact Extraction

Normally C/C++ fact extractors provide a representation ofthe code which closely resembles the

abstract syntax graph (ASG) that a compiler compiling the code would create. However, for our

purposes, we express the code in four different ways:

1. Original code, unprocessed by CPP or compiler

2. As facts representing the CPP language occurrences throughout the code

3. Code that has been processed by CPP, but not by the compiler

4. The compiler’s ASG representation

If we realise that every CPP directive is expanded to at most asingle line, we can safely ignore the

third representation. This allows us to assume that line numbers which occur in the ASG directly

correspond to the same line numbers in the original code, simplifying the analysis in our method.

44

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 45

#define var 4
#ifdef var
#else
#endif

Figure 4.1: Simple code fragment with preprocessor directives

4.1.1 Extracting macro facts

With the lack of macro fact extractors available it was necessary to write one. After some explo-

ration, it became obvious that one would essentially need towrite an entire CPP to extract macro

facts. Rather than embark on this task, it was felt that an approach similar to the one taken with

the CPPX [10] fact extractor should be chosen. Since CPPX wascreated as a patch to the GNU

GCC C/C++ compiler, plus supporting tools, we wrote our macro fact extractor by modifying the

GNU GCC CPP and creating the tool we called CPP0-CPPX. This gave us the power of a stable

and well established CPP to work with.

CPP was modified to collect information about every preprocessor directive and macro expan-

sion and to write these out into a file. The code fragment in figure 4.1 provides a simple example,

which results in the set of facts shown in figure 4.2. A more detailed description of the fact schema

used for CPP0-CPPX is given in section 2.3.1.

Like CPPX, we represent our macro facts in the TA language [9], which was briefly described

in section 2.3. This scheme allows us to represent the facts and their relations as a graph. Each

node in the graph is given a type through the$INSTANCEdeclaration and associated attributes in

theFACT ATTRIBUTEsection. The inter-node relations are described in the remaining lines of

theFACT TUPLEsection.

We can see from the example that each macro declaration includes facts about its expansion.

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 46

FACT TUPLE :
$INSTANCE @12 cMacroDecl
$INSTANCE @13 cDefinitionToken
$INSTANCE @17 cMacroIfdef
$INSTANCE @20 cMacroElse
$INSTANCE @23 cMacroEndif
cMacroDefines @13 @12
cMacroConditional @17 @12
cMacroBlockPart @17 @20
cMacroBlockPart @20 @23
FACT ATTRIBUTE :
@12 { name = "var" file = "test.c"

line = 2 startLine = 1 }
@13 { type = CPP_NUMBER value = "4"

file = "test.c" line = 1
sourceColumn = 13 }

@17 { name = "var" file = "test.c"
line = 3 entered = true }

@20 { file = "test.c" line = 4
entered = false }

@23 { file = "test.c" line = 5 }

Figure 4.2: Example macro facts in TA format

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 47

#define var 1\
2

Figure 4.3: Simple code fragment with multi-line macro declaration

More complex preprocessor code would provide the string of token expansions, as well as facts

about parameter expansion occurrences for parameterized macros.

Generally speaking, extracting the macro facts is straightforward, however there were some

subtleties to overcome. From figure 4.2 we note that each partof a preprocessor conditional is de-

clared as a fact and their association strung together. It isalso necessary to keep track of whether or

not a particular part of the conditional was actually included in the output code. As CPP processed

directives within each part, regardless of if they were included in the output code or not, we had

to keep track and ensure that if they were in a “skipped” part then no errant directive facts were

placed in the resulting fact file.

Another source of frustration was in dealing with macros whose declarations spanned multiple

lines. As far as CPP is concerned, every declared macro is a single line. A multi-lined macro

declaration must therefore be written with the line continuation marker “\”. However, at least with

the GNU GCC CPP, the internals consider the line being tokenized to remain the same throughout

the multi-lined macro declaration. What this results in is aset of facts which appear to interlace

the declaration tokens and provide generally nonsensical results. One needs a way of knowing the

real line, relative to the original source, a given expansion token occurred on as well as what line

CPP believes it to be on. This point is clarified in figure 4.3 with corresponding facts shown in

figure 4.4.

One final obstacle to overcome was the issue of maintaining consistent file paths in the fact

file. When a file is included through the#include directive it is possible that it existed in the

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 48

FACT TUPLE :
$INSTANCE @12 cMacroDecl
$INSTANCE @13 cMacroDefinitionToken
$INSTANCE @15 cMacroDefinitionToken
AndThen @13 @15
cMacroDefines @13 @12
FACT ATTRIBUTE :
@12 { name = "var" file = "test5.c"

line = 3 startLine = 1 }
@13 { type = CPP_NUMBER value = "31"

file = "test5.c" line = 1
sourceColumn = 13 }

@15 { type = CPP_NUMBER value = "32"
file = "test5.c" line = 2
sourceColumn = 3 origMultiLine = 1

Figure 4.4: Example multi-line macro facts in TA format

same path as the including file. Alternatively, it is possible that it was in a different directory and

the include directive used a relative or absolute path. Thisbecomes an issue when the same file

is included multiple times, from different files, by different path names. If one is not careful, the

resulting fact file could contain multiple references to thesame file, but with different path names.

It was decided that every included file should be referenced in the fact file by either an absolute

path or a path relative to the original C/C++ source code being compiled. This also is consistent

with the extracted fact output from CPPX and the normal operation of most Unix C compilers.

4.1.2 Extracting facts from original code

To extract facts about the original code it was felt the best approach was to tokenize the code

and record the important attributes for each token, as exemplified in figures 4.5 and 4.6. To be

consistent with CPPX and CPP0-CPPX we again used TA as the output.

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 49

a = 16;

Figure 4.5: Simple code fragment

FACT TUPLE :
$INSTANCE @8 cDefinitionToken
$INSTANCE @9 cDefinitionToken
$INSTANCE @10 cDefinitionToken
$INSTANCE @11 cDefinitionToken
AndThen @8 @9
AndThen @9 @10
AndThen @10 @11
FACT ATTRIBUTE :
@8 { type = CPP_NAME value = "a"

file = "test.c" line = 1
sourceColumn = 1 }

@9 { type = CPP_EQ value = "="
file = "test.c" line = 1
sourceColumn = 3 }

@10 { type = CPP_NUMBER value = "16"
file = "test.c" line = 1
sourceColumn = 5 }

@11 { type = CPP_SEMICOLON value = ";"
file = "test.c" line = 1
sourceColumn = 7 }

Figure 4.6: Example token facts in TA format

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 50

The naming convention used for the token types is the same as the one used by GCC’s CPP.

Since CPP must tokenize the code it is processing, we modifiedit to not only output macro related

facts, but tokenized code facts as well.

4.2 Macro Classifications

We have classified macro use into almost two dozen types, similar to those found in Ernst et al. [5].

Our taxonomy is inspired by the styles of macro use that were encountered in the systems used for

the case study in chapter 6. Presented below is a brief description of each of these classifications:

4.2.1 Unparameterized Macros

Simple Constant

The body of these macros expand out to a single constant value. This value may be a numeric value,

string, or character. Expansions that involve negative values or extraneous paired parenthetical

marks are included in this classification.

#define VALUE 5

#define WELCOME_MSG “Hello!”

#define LENGTH ((-(((53)))))

Constant Expression

Like simple constant macros, these macros expand out to a constant value. However, their body

may contain arithmetic expressions or type casts, so long asthe evaluated value is constant. Other

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 51

variables may also be used in the expansion so long as they areconstant values and for every

expansion the same variables are used.

#define FIVE 3+2

#define FIVE (((3))+((1)+1))

#define UHELLO (unsigned char *)”Hello!”

#define SUMAB A+B /*A and B are

constant values*/

Enumerated Constant

These macros could be classified as either Simple Constants or Constant Expressions. What sets

these Enumerated Constants apart is their use in acase label in aswitch statement. By being

used in acase label, we assume the intent was to use the value as an enumeration.

#define VALUE 5

switch(Length) {

case VALUE:

break;

}

Function Alias

These parameterless macros contain a single word expansion, providing an alias for an already

existing function. A practical use would be to conditionally define an alias for two or more similar

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 52

functions.

#ifdef USE64BITS

#define SUM Sum64

#else

#define SUM Sum32

#endif

Type Alias

The body of these macros expand out to some C type or typedef’dtype. A practical use would be

to provide a common type with an alias to handle portability issues.

#ifdef USE_WIDE_CHAR

#define CHAR wchar

#else

#define CHAR char

#endif

Keyword Alias

The macro expands out to a C/C++ keyword.

#define CURRENT this

#define E extern

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 53

Variable Alias

These macros provide an alias to a global or local variable.

int CurrentBuildingHeight = 5;

#define HEIGHT CurrentBuildingHeight

Keyword Redefinition

The name for this kind of macro is a valid C/C++ keyword, with an expansion of either another

C/C++ keyword or a semantically valid expression relative to the macro name.

#define void int

typedef long ulong

#define int ulong

Parameterless Function

These macros mimic parameterless C++ inlined functions. The macro expansion may use global

variables so long as these variables are never overshadowedby others in any of the macro expan-

sions.

int Score = 23;

#define TwiceScore (Score * 2)

#define Silly {int x=5; x=x+2;}

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 54

Parameterless Function With Variable Use

Unlike the parameterless function macros, the body of thesemacro expansions make use of local

variables. Thus every invocation of the macro may use different variables, despite being similarly

named.

/*Code snippet from functions A, B, and C*/

int Score = 2; /*Not global*/

#define DoubleScore Score = Score < < 2

Empty Declaration

The body of these macros are simply empty. As an example, we might use such a macro to cope

with compilers that do not support certain keywords.

#define static

#define extern

Code Snippet

These macros do not expand out to well formed C/C++ expressions, but instead their expansions

are snippets of code.

#define ENDIT return 0; }

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 55

4.2.2 Parameterized Macros

Inlined Function

These macros mimic C++ inlined functions that use parameters. The macro expansion may use

global variables so long as they are always the same variable.

#define TwiceScore(Score) ((Score) * 2)

#define SillySum(X,Y) (X+Y+1)

Inlined Function With Variable Use

Unlike the inlined function macros, the body of these macro expansions make use of local vari-

ables. Thus every invocation of the macro may use different variables, despite being similarly

named.

/*Code snippet from functions A, B, and C*/

int Score = 2; /*Not global*/

#define AlterScore(X) Score = Score < < X

Function Alias

The expansion of these macros provides an alias for an already existing function. A practical use

would be to conditionally define an alias for two or more similar functions.

#ifdef FILEPRINT

#define PRINTSTR(STR) fprintf(TheFile, STR)

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 56

#else

#define PRINTSTR(STR) printf(STR)

#endif

Parameterized Code Snippet

These macros do not expand out to well formed C/C++ expressions, but instead their expansions

are snippets of code.

#define ENDIT(val) return val; }

Projection Tuple

These macros take a number of parameters and “filter” some of them out.

#ifdef DOFILTER

#define A(x,y,z) x

#else

#define A(x,y,z) {x,y,z}

#endif

4.2.3 Conditionals

Excluded Code

This conditional directive always excludes a code segment.

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 57

#if 0

...

#endif

Expressly Included Code

This conditional directive always includes a code segment.This may also be used to temporarily

include a segment which would otherwise be classified as a configuration segment.

#if 1 && VERSION > 5

...

#endif

Configuration Setting

These conditional directives do not always include their respective code segments, but instead

operate depending on defined macro values at compile time.

#if VERSION > 5 && defined(SOMEMACRO)

...

#endif

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 58

Header Sentinel

A common technique to ensure a header is only included once isto encapsulate it with an existential

conditional.

/*Beginning of header*/

#ifndef HEADER_H

#define HEADER_H

...

#endif

/*End of header*/

4.2.4 Other

Token Pasting

These macros concatenate two tokens together.

#define MAKETYPE(type) typedef int type##_type

MAKETYPE(int)

Literal Expansions

These macros make use of the literal string which representstheir parameter(s).

#define ASSERT(EXP) printf(#EXP)

ASSERT(1+3=5);

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 59

4.3 Macro Migrations

While section 4.2 and chapter 5 provide a macro taxonomy and architectural details of the im-

plementation, respectively, more detail of the actual macro migration is required. The migrations

performed by the implementation, along with thoughts aboutthose not implemented are described

in the following subsections.

4.3.1 Implemented Migrations

For macros classified asEmpty Declaration and Keyword Alias , the migrations per-

formed are to simply do what the preprocessor would have done. In this case references to the

macro are removed, or substituted with its expansion, respectively.

The two constant types,Simple Constants andConstant Expressions , are mi-

grated the same way. Once the type of the expansion is inferred, the declaration is replaced with a

typed assignment of the macro literal to its expansion. In clearer terms, say we had the directives:

#define val 5

#define val2 val + 9

They would be migrated to the statements:

const int val = 5;

const int val2 = val + 9;

In the case of anEnumerated Constant , the migration is slightly more complex. Say we

again had the directives:

#define val 5

#define val2 val + 9

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 60

and for the sake of argument, let us assume they were used in case labels within the same

switch statement. The following statement would be the result of their migration:

enum {

val = 5,

val2 = val + 9

};

Alternatively, if the two expressions were used in case labels in different switch statements,

their resulting migration would be:

//Somewhere in code

enum {

val = 5

};

//Possibly somewhere else in code

enum {

val2 = val + 9

};

Macros classified asParameterless Functions are rewritten as inlined functions. The

type of the original macro’s expansion is used as the new function’s return type, and a function

returning that expansion is created. Say we had the following expressions:

int Score = 23;

#define TwiceScore (Score * 2)

#define Silly {int x=5; x=x+2;}

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 61

We could migrate the twoParameterless Functions as:

inline int TwiceScore()

{

return (Score * 2);

}

inline void Silly()

{

{ int x = 5; x = x + 2; }

}

As well, all the previous expansion references ofTwiceScore and Silly must now be

appended with() .

4.3.2 Possible Future Migrations

Declarative Directives

For macros classified asInlined Functions , the migration is similar to that ofParameterless

Functions . The only difference now is that there are parameters in the directives. To illustrate,

consider the following directives:

#define TwiceScore(Score) ((Score) * 2)

#define SillySum(X,Y) (X+Y+1)

Assuming the types of all the parameters isint , the directives could be migrated as:

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 62

inline int TwiceScore(int Score)

{

return ((Score) * 2);

}

inline int SillySum(int X, int Y)

{

return (X+Y+1);

}

Complications arise when a macro looks like aParameterless Function or Inlined

Function type but the variables used in its expansion either refer to different variables, or vari-

ables declared in a scope in which the macro can not be migrated into. To clarify, we consider the

directive:

#define AlterScore(X) Score = Score < < X

The complications arise ifAlterScore is called fromFunctionA andFunctionB , and

both those functions declare a local variable calledScore . Alternatively, if AlterScore is

declared and only used withinFunctionA , we still have a problem with its reference to the local

variableScore . In this later case, and if we’re targeting C++, then we can’tmigrate the macro to

a position withinFunctionA , as C++ prevents us from declaring functions within functions.

Both these situations are resolved in the same way, and are the conditions for when a macro

should be classified as either aParameterless Function With Variable Use or Inlined

Function With Variable Use . Instead of referencing the conflicting variables directly,

they must now be passed in by reference. In the case of a macro classified as aParameterless

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 63

Function With Variable Use , the result would be the same but without any original pa-

rameters. Assuming the type used forScore andX is alwaysint , the above example declaration

for AlterScore could be migrated to:

inline int AlterScore(int X, int &Score)

{

return Score = Score < < X;

}

Each call toAlterScore must then be updated to pass in theScore variable. We have also

been making the implicit assumption that the parameters passed in forInlined Functions ,

Inlined Functions with Variable Use , andParameterless Functions With

Variable Use macro types are always of the same type. If this is not the casethen the current

solution, though far from ideal, would be to create enough duplicates of the migrated function to

cover the combinations of parameter types. Each duplicate function may need to have a different

name, depending on if the variants in parameter lists can be unambiguously distinguished or not.

The final declarative macro style to be discussed is theVariable Alias type. As long as

the variable being aliased is in scope for all the original macro expansions, and the target language

C++, we can migrate the given macro as a reference to the expanded variable. For example, if we

had the expressions:

int CurrentBuildingHeight = 5;

#define HEIGHT CurrentBuildingHeight

we could migrateHEIGHTto:

int &HEIGHT = CurrentBuildingHeight;

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 64

However, if we were to target C, or if the aliased variable changed, we would simply migrate

the macro to a pointer reference. The migrated reference would be assigned to the pointer of the

variable being aliased, and all references to the original expansion occurrences would then need to

be dereferenced. This is assuming that in the case of the aliased variable changing, the type of the

aliased variables remained the same. If the types of the aliased variables change, then we could

create multiple instances of the migrated macro. Each such instance would reflect the different

types required, have a different name, and the appropriate expansion instances would be renamed

accordingly. Obviously a lot more work is required should the types involved change.

Conditional Directives

Among the conditional directive classifications, theConfiguration Setting type is the

most difficult to migrate. Unless the code within the conditional directive’s parts are valid state-

ments, it is assumed that migrating the conditional would require a significant amount of refactor-

ing and would be suited more to a tool specifically meant for configuration management.

Otherwise, an approach to migrating this type of conditional would be to simply convert it into

a normal C conditional, where possible. If the conditional appears outside a C block, then we

could simply include all the parts of the conditional, as if the preprocessor had evaluated it to both

true and false. Of course this can only work if the code in the respective blocks do not conflict

with each other. For example, in the situation of a conditional directive being used to choose a

function declaration, we again find that the migration isn’tnecessarily possible. The difficulties in

dealing with code that uses conditional directives are wellknown, and due to these difficulties no

satisfactory migration approach is suggested in this thesis.

Dealing with the other conditional directive classifications is much simpler.Header Sentinels

CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION 65

can not be migrated, unless one uses a#pragma directive that emulates the same effect. Depend-

ing on the intent behind code that is expressly included or excluded using conditional directives,

we could simply keep or remove the affected code. For theExpressly Included Code

type, if the directive appears within a C block, the directive could be migrated into a regular Cif

statement. However, if the intent behind explicitly including or excluding code is to allow an easy

means of choosing whether to include or exclude the affectedcode blocks, then such directives

should not be migrated.

4.3.3 Current Unknown Migrations

The remaining macro types from section 4.2 that were not discussed in sections 4.3.1 or 4.3.2

are not presented with any suggested migrations in this thesis. However, it is expected that in

generalCode Snippet , Token Pasting , andLiteral Expansion macro types to be

impossible to migrate. However, approaches to migrating the remaining types may be possible.

Chapter 5

Implemented Architecture and Framework

The implementation of the outlined migration process consists of three main phases. First there

is theFact Extractorphase, then theMigration Enginephase, and finally theSource Transformer

phase. Each phase in the migration pipeline is associated with a corresponding architectural com-

ponent in the high level architecture (figure 5.1).

TheFact Extractoranalyses the input source and creates a fact database that contains informa-

tion about the code. Included in this database are the extracted facts from the compiler’s abstract

syntax tree. As well, facts about the operation of the preprocessor and all the tokenized lexical data

from the source code is included.

Most of the analytical work is done in theMigration Engine. This component takes the facts

created by theFact Extractorand determines all the transformations necessary to migrate each

macro.

Once theMigration Enginehas completed, theSource Transformeruses the generated trans-

formations to migrate the original code.

66

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 67

Figure 5.1: High Level Architecture

5.1 Document Conventions

For the purposes of this chapter on the implemented architecture and framework, the following

conventions will be used:

When discussing an architectural component that corresponds to a component found in a figure,

italics will be used in the name of said component.

5.2 Fact Extractor

The Fact Extractor, whose high level architecture is shown in 5.2, begins by using CPPX and

CPP0-CPPX to extract the C/C++ ASG facts, macro facts, and source code token facts. Each of

these three sets of facts are initially represented by threeseparate TA fact files. Remembering that

the fact extraction is repeated for every compiled source file, after each set of facts is generated

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 68

Figure 5.2: Fact Extractor Architecture

additional prep work must be performed.

First, each node in the fact files is provided with a unique name by appending the filename of

the original source file and a fact type specifier (original, macro, token) to the name of each node.

The fact type specifier has no purpose other than the guarantee the uniqueness of all the node

names. Once that is done, the three fact files are merged together. From there all references to

files that we are not interested in, such as the standard system headers, are removed. This removal

is accomplished by maintaining a list of the source files to include in the final facts, and simply

removing references to everything else. We then add these facts to the entire system’s factbase,

represented by the componentFinal Factsin figure 5.2. In all likelihood duplicate facts will have

been added, and so we search for nodes whose type and attributes are the same. These duplicate

nodes are then removed and references to the removed nodes are changed to the remaining one.

Most of the manipulation of the fact files is done using Grok [8], with the node duplicate

removal being done through a tool written specifically for this purpose.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 69

After the system has gone through all the compiled source files and built the factbase for the

system, the process is finished by creating a block dependency graph using theBlock Graph Cre-

ator. This graph is created by using theFinal Facts to determine where each block lies in the

original source. Within theFinal Factsevery pair of fact nodes representing “curly” braces is lo-

cated. Every code block inferred from these node pairs is then examined to determine the type of

that block. By looking at the facts which relate to the block’s respective beginning line number,

the block type can be determined. This block graph is then stored in a separate file.

An intentional omission from figure 5.2 are components representing the macro dependency

graph and its creator. For the current implementation, theywere found to be unnecessary. However,

as more macro classification types are handled we will need todecide the specific order in which

to migrate them. To do this, a graph of all the macro dependencies, as defined in section 3.1, will

be created and used by theDriver of theMigration Engine.

5.3 Migration Engine

The heart of the implementation is contained within this component (figure 5.3). This component

is responsible for determining the type of each macro and howto transform them.

5.3.1 Driver

TheDriver’s responsibilities begins with using theFinal FactsandBlock Graphto decide the order

in which to process the macros. If there was a macro dependency graph, that would be used to find

small subgraphs of dependent macros. These subgraphs wouldconsist of dependent macros that

must be processed simultaneously for the resulting transformations to give valid and compilable

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 70

Figure 5.3: Migration Engine Component

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 71

results.

Once the macros are divided up into these work allotments, theDriver waits for theCoordina-

tor to collect the transformations necessary to migrate every macro. After this finishes, theDriver

allows eachSecond Stage Singletonto perform their necessary processing and transformation gen-

eration. Finally, theDriver uses theTransformation Storeto create theTransform File. This file is

used by theSource Transformerto specify the migration steps that it needs to take.

5.3.2 Coordinator

For each macro, the classification to apply to it is determined for theCoordinator. This is done

by giving the macro node name to aClassification Worker, and having it determine the best clas-

sification type for the given macro. With the macro classification returned to theCoordinator, the

Coordinatorgathers any extra facts and then generates the transformations necessary to migrate

the original macro. These later two steps are also performedby using aClassification Worker.

TheCoordinatoraccomplish these tasks by create a 1-1 mapping of threads toClassification

Workers. In terms of figure 5.7, we call these threadsCoordinator Threads. Each thread in the

Coordinator is responsible for processing a single macro at a time. For each macro, the thread

requests from the associatedClassification Workerthe macro’s classification, fact refinement, and

finally the required transformations. Once done, the threadadds the resulting transformations to

theTransformation Store.

It may also discover from theClassification Workerthat, in addition to the required transfor-

mations, certain second stage operations need to be performed. This information is returned to

the thread in theCoordinatoralong with the required transformations. The corresponding Second

Stage Singletonis then updated with the necessary information for later processing.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 72

Due to the time required for each of the three requests made byevery thread in theCoordinator,

the Classification Workersmay be distributed to other machines. To this end, each thread in the

Coordinatoruses XML-RPC to communicate with its respectiveClassification Worker.

The choice of XML-RPC was due to the simplicity of the protocol implementations and the

availability of libraries.

5.3.3 Transformation Store

This component is responsible for collecting all the transformations generated by theCoordinator.

As each transformation is added it is sorted with the rest, maintaining an ordering based on the file

name and affected line number of the transformation.

TheTransformation Storeis also responsible for writing out theTransform File.

5.3.4 Second Stage Singletons

Certain operations need to be deferred until after the initial macro processing is completed. This

component contains singleton structures necessary to collect such information.

For example, when handling simple constant macros that belong in enum statements we want

to group those macros together in a reasonable fashion, as discussed in section 5.3.4. For this to oc-

cur we need to examine the results of first processing each macro, before creating the enumeration

transformations.

Since this information is derived from the transformation gathering phase of each thread in

the Coordinator, we decided to use singletons for the sake of convenience. Once each macro

has been processed in the first processing stage and their transformations collected, theSecond

Stage Singletonscomplete their necessary processing and add the resulting transformations to the

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 73

Transformation Store.

Arguably the threads in theCoordinatorandClassification Workersshould be used to handle

the processing cost incurred by eachSecond Stage Singleton’swork. However, in the current

implementation the processing cost was minimal and thus thedistribution of work was found to be

unnecessary.

Enum Factory

Currently only a singleSecond Stage Singletonhas been required; that being theEnum Factory.

When a macro is used within a case label and will be migrated into an enumeration, the migration

is not performed in isolation as with all the other currentlyimplemented classification types. While

the migrated macro could be placed into an enumeration with only the one value, it is likely that

there are other migrated macros that would logically belongin the same enumeration as the first.

TheEnum Factoryis given the name and value of each such macro and groups them together

based on in which switch statements each macro was used. Oncethe macros have all been pro-

cessed and theSecond Stage Singletonsbegin their processing, theEnum Factorycreates a list

of transformations where macros used in the same switch statements are migrated to the same

enumeration.

5.3.5 Classification Worker

TheClassification Workeris a separate process from theDriver that communicates with theCo-

ordinator via XML-RPC. EachClassification Workeris a stateless entity that, given a macro node

or Classification Type, will perform the desired operation and return the results back to theCoor-

dinator. EachClassification Workeronly services one request at a time. A diagrammatic overview

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 74

Figure 5.4: Classification Worker Component

of theClassification Workeris given in figure 5.4.

There are three RPC method components in this framework: theClassifier, Fact Gatherer,and

Transform Generator.

Classifier

TheClassifieris responsible for determining the classification type of a macro, given a macro node.

This is done by first creating a generic list of all theClassification Types, represented as flyweight

objects. EachClassification Typesobject is asked in turn through itsClassification Checker(figure

5.5), if the macro fits its respective classification criteria. The list of matched criteria is then taken

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 75

and a heuristic is applied to choose the “best” classification from the possible choices.

Once we determine the “best fit” classification, a clone of thecorresponding flyweightClas-

sification Typeobject is created and returned to theCoordinator. We note that in returning the

cloned object there will also be some stateful information returned with it, such as the macro value

or macro type. The next time theClassification Workeris used, this information is reset, though

it will of course persist in the clone that was returned to theCoordinator for the next request it

makes.

One of the intended consequences of using this generic method of managingClassification

Typeobjects, is the ability to use different versions of the sameclassification. A good use of this

would be to select the flavour of C/C++ that we target. Transformations that are perfectly valid

in C++ would not necessarily be valid in C99, for instance. Alternatively there are things that the

GNU GCC compiler will do that other compilers can not, and themodularity of theClassification

Typeobjects allows the flexibility to choose the target environment.

Fact Gatherer

Given aClassification Typeobject, theFact Gathereruses it to collect or infer facts not required

for classification or directly necessary to generate transformations. The updated object is returned

back to theCoordinator.

While not strictly necessary, as this method could be mergedinto either theClassifieror Trans-

form Generator, we introduce it as a means to increase the granularity of thework performed by

eachClassification Workerper RPC call.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 76

Transform Generator

The Transform Generatoris responsible for generating the transformations necessary to migrate

the original macro associated with the given classificationtype object.

Whatever information that is necessary to migrate the macro, and has not yet been discovered

by either theClassifieror Fact Gatherer, will be done so in this component. For example, sim-

ple constants have their expansions recorded and type of variable to create inferred, which is all

gathered during the classification stage by theClassifier. Determining the declaration line is han-

dled by theFact Gatherer.Other information regarding placement of the migrated macro, such as

resolving naming conflicts or placement conflicts, is determined during the transformation stage.

The transformations are presented as a generic list of transformation objects, sorted by file and

line. This list is returned to the callingCoordinator.

Similar to theFact Gatherer, this component does not do any of the work directly, but instead

delegates it to the givenClassification Type.

Classification Worker XML-RPC Interface

The XML-RPC interface used by theCoordinator-Classification Workerinterface is a very simple

one and unsurprisingly corresponds to the three main subcomponents of theClassification Worker.

For the sake of being thorough, and to provide part of a concrete framework API, we present this

XML-RPC interface:

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 77

ClassificationTypeClassifyMacroNode(macroNode: string)

macroNode: The node in the fact base corresponding to the macro declaration

of the macro we wish to determine the classification of.

Returns: A Classification Typeobject of the determined classification type.

This object will contain some facts specific to the macro, depending

on the classification type and the information required to classify it.

ClassificationTypeGatherMacroFacts (macroData: ClassificationType)

macroData: TheClassificationTypefor the macro we are currently processing.

Returns: A Classification Typeobject with the updated datum stored in it.

list<Transformations> GenerateTransforms(macroData: ClassificationType)

macroData: TheClassificationTypefor the macro we are currently processing.

Returns: A list of Transformationobjects representing the required transformations

for migrating the macro associated with the input parameter.

5.3.6 Classification Type

For each classification type (section 4.2) that the system handles, a correspondingClassification

Typeclass will exist. Each of these classes derives from aClassification Typeinterface class, which

is described here and in figure 5.5. To avoid clutter in figure 5.5 a symbol was used to represent

them × n use of theConflict Resolversubcomponents by theInterfacesubcomponents. By this it

is meant that eachInterfacesubcomponent makes use of everyConflict Resolversubcomponent.

There are three main parts to theClassification Typeclass: theInterface, Conflict Resolvers,

and theClassification Facts.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 78

Figure 5.5: Classification Type Component

Interface

As alluded to in section 5.3.5 most of the work done by theClassification Workeris through using

theClassification Typeclass’sInterface. Corresponding with the three RPC requests for theClassi-

fication Worker, theInterfacecontains aClassification Checker, Fact Gatherer,andTransformation

Generator.

TheClassification Checkerof a Classification Typeclass is responsible for deciding if a given

macro is of the classification type associated with that class. Certain classification types can be

ruled out if theClassification Checkeris aware of the previously matched classifications for the

macro by otherClassification Typeclasses. While strictly not necessary, the list of previously

matched classifications is used to avoid duplicating the effort of prior classification attempts. For

example, if a macro is a Simple Constant (section 4.2) but is also used in a case label, then we

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 79

ultimately want the macro to be classified as an Enumerated Constant type. TheClassification

Checkerfor the Enumerated Constant type simply looks through the given matched list, and if it

determines that the macro was matched as a Simple Constant and used in a switch statement, it

then knows that the macro should be classified as an Enumerated Constant. It is up to theClassifier

in the Classification Workerto ultimately favour the Enumerated Constant type over the Simple

Constant type. This optimization also implies that the order in which theClassifierqueries each

Classification Typeclass is significant.

As described in section 5.3.5, theFact GathererandTransformation Generatoractually per-

form the work delegated to them from theirClassification Workersubcomponent’s counterparts.

Conflict Resolvers

The Conflict Resolversare helper libraries used by theClassification Types. Currently only two

are necessary, though it is possible that as more classification types are implemented, more shared

resolvers will be needed. EachConflict Resolveris shared amongst all the variousClassification

Typesas opposed to individual resolvers tailored for specificClassification Types.

When trying to determine a declaration line for the macro, werun into conflicts such as those

described in section 3.3. TheDeclaration Line Resolverexamines an initial line and returns the

closest line in which a macro may be safely declared, following the rules outlined in section 3.3.

Similarly, theName Conflict Resolvertakes the macro node and intended declaration line and

returns a list of nodes that would conflict with the intended migrated declaration.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 80

Classification Facts

This subcomponent is simply a data store of all the datum required to migrate the given macro

type.

5.4 Source Transformer

Once we have generated all the transformation steps necessary to migrate the macros of a given

system, we then proceed with performing the source code transformations. TheSource Trans-

former is a process which uses the generatedTransform Fileand actually migrates the code, as

seen in figure 5.6.

Each transformation in theTransform Fileis processed individually. For the current file being

processed, theSource Transformerskips to the line of the next transformation to perform. A list

of the token nodes corresponding to this line is gathered from the facts and the transformation is

performed on that list. We continue on to the next transformation so long as it affects the current

line. Once we have exhausted all the transformations for thecurrent line, the resulting list of tokens

is converted back into plain text and written to the output source file.

5.5 Process View of Architecture

The described architecture consists of a number of processes and threads. To clarify the process

view of the system, we present the following description.

As would be expected from their architectural diagrams and descriptions, the process views

of the Fact ExtractorandSource Transformerare a straightforward pipeline with each labelled

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 81

Figure 5.6: Source Transformer Component

architectural component being a separate process. The moreinteresting run-time architecture is in

theMigration Engine.

Within theMigration Enginethere are two processes, theDriver and theClassification Worker.

Since theClassification Workerruns as a separate process and uses an XML-RPC interface, it is

intended that each instance of it execute on a different system or cpu. Inside theDriver, the

Coordinator is responsible for creating and managing theCoordinator Threadswhich actually

communicate with theClassification Workers.

To help balance out any differences amongst the systems running theClassification Workers, a

pool is kept which containing handles to eachClassification Worker. This pool is called theHandle

Pool in figure 5.7. EachCoordinator Threadchooses a handle from this pool every time it makes

a RPC request, placing the handle back into the pool when the call is done.

An illustration of the process view for theMigration Enginecan be seen in figure 5.7.

CHAPTER 5. IMPLEMENTED ARCHITECTURE AND FRAMEWORK 82

Figure 5.7: Migration Engine Process View

Chapter 6

Experimental Results

To demonstrate the usefulness of our system, we chose one small and one medium sized program

as test cases for our implementation. Chosen were the text editor Vim, version 3.0, and the eternal

game of Nethack, version 3.4.0. We intentionally chose an older version of Vim for its size. Both

programs were built using a standard configuration for x86 Linux systems.

In the current system we have implemented six macro classifications: Simple Constants, Enu-

merated Constants, Constant Expressions, Parameterless Functions, Keyword Aliases, and Empty

Declarations. Descriptions of these classifications can befound in section 4.2.

As mentioned in section 5.2, the fact extraction of the actual implementation deviated slightly

from the method given in section 3.1 in that there was no macrodependency graph. As a result,

only a single macro was migrated at a time, as opposed to potential groups of co-dependent macros.

Our experiment covered both sources and headers for each of Vim and Nethack. Due to their

respective sizes we were able to use a single factbase for Vim, whereas Nethack required three. A

rough limit of 100M was imposed on each factbase so as to ensure the facts and all the temporary

83

CHAPTER 6. EXPERIMENTAL RESULTS 84

storage required for processing could fit within the author’s personal PC’s memory of 750M. The

fact extraction was performed on a per C-file basis. Nethack’s three factbases therefore contain

no duplicate macro information for macros declared in C files, although they do contain duplicate

information about macros declared in the headers.

The results of the experiment are summarized in table 6.1 andexplained in table 6.2.

Metric Vim Nethack

of Files 51 195
KLoC 26 108
Declared macros 493 3625
Simple constants 139 1822
Enumerated constants 193 648
Constant expressions 0 41
Parameterless functions 0 16
Keyword alias 1 2
Empty declaration 12 102

Can not migrate 0 15
Ancestor declaration 150 61
Move to common scope 0 0
Decl. around first 1 24
Orig. interlacing decl 0 0
Name conflict 4 4

Table 6.1: Results of experiment on Vim and Nethack

6.1 Discussion

From the summary we notice some interesting things. In both systems the relative number of con-

stants is about 68%, which is close to what we would have expected, as given in the literature [5].

The number of declarations that needed to be migrated to an ancestor scoping block was surprising

CHAPTER 6. EXPERIMENTAL RESULTS 85

at first.

Upon closer inspection we saw that in Vim, most of these macros were declared within a

structure initialisation that defined editor commands. Inside this initialisation, 144 macros were

declared after each initialized value as a sort of enumeration for each command entry. More-so,

most of these entries were in fact migrated as Enumerated Constants.

Within Nethack we observed that the majority of these kinds of macro declarations were found

in two structures. These structures described properties about monsters and objects within the

game and the macro’s declared within them were used as constants to describe various attributes.

The number of macros migrated to a common scope, being zero for both applications, indicates

that they are fairly well behaved when it comes to taking advantage of the different scoping rules

between C and CPP. This is also the case when considering the same number of macros whose

declaration was interlaced with a C statement.

We would expect that naming conflicts indicate an error in thecode. Upon further inspection

however, it was found that a few constants were simply redefined with equivalent values. Further-

more, the number of macros that could not be migrated was extremely surprising. This should

have meant that there were some serious problems with the code that could not be solved without

significant refactoring. In actuality, a combination of bugs and restrictions in the algorithms used

were the causes of these macros being marked as impossible tomigrate. We further discuss the

issue in section 6.2.

The remaining tables, from table 6.3 onward provide a detailed breakdown of each macro

classification type and the migration metrics associated with it.

CHAPTER 6. EXPERIMENTAL RESULTS 86

6.2 Confessions

The end result of running the implementation on Vim and Nethack should have been compilable

sources that ran as the originals did. Unfortunately, whilethis was not the case, out of the 2859

macro migrations only 4 were incorrectly migrated.

6.2.1 Nethack

After some fixing by hand, we were able to get Nethack to compile. However, none of the prob-

lems encountered were unexpected or unknown. Due to time constraints a number of assumptions

about the code given to the implementation were made. For example, it was assumed that a mi-

grated macro would not ever be declared between agoto and thegoto ’s target, like the situation

discussed in section 3.5. We found quite that a number of Constant Expression and Parameterless

Function macros were dependent on other macros. Since therewas no macro dependency graph, it

is not surprising that the declarations of the migrated macros were not in the order they needed to

be in to satisfy all the dependencies.

Only one such instance could not be resolved by simply rearranging the migrated declarations.

The declaration for the functionInhell() in file dungeon.h needed to be moved into a sepa-

rate file. Due to the dependencies betweendungeon.h andyou.h (which the function requires),

there was no way to fix the code without some significant refactoring. The easiest change was to

remove the function fromdungeon.h and put it in it is own header file and then include the new

header file where appropriate.

There were also an odd issue with implicitly casting betweenchar* andconst char * .

Nethack frequently uses the conditional operator ”?” to determine things like which string to use

CHAPTER 6. EXPERIMENTAL RESULTS 87

in a given situation. For example, ineat.C , the taste of food changes based on whether or not the

player is hallucinating:

pline(Hallucination ?

"Oh wow, like, superior, man!"

: "That food really hit the spot!")

After the migration process, a number of these kinds of conditionals required(char*) casts

to be put in front of the strings, especially when a migrated macro was used for the string. However,

it was not always necessary to do so and no obvious pattern forthe problem emerged. Adding in

the(char*) casts, where the compiler felt it necessary, was the simple solution to the problem.

It was very surprising to discover that, according to the system, some of the macros could not be

migrated. It was later discovered that they were all erroneously marked as such. For some of these

macros, the restrictive nature of the placement algorithm used in the implementation prevented

their successful migration. Consider the case when the location of the original macro declaration is

deemed to be a good spot for the migrated line. If that declaration is within a structure, for example,

then we must relocate it. Currently, the system will only consider placing the declaration before

the offending structure block. However, if the macro references the structure then the migrated line

should be placed after the structure declaration. At this point in time, the system does not do this

and consequently marked a number of macros in this situationas being impossible to migrate.

For the other erroneously marked macros, they were considered impossible to migrate due to

bugs in the system. In some instances the Parameterless Function classification object was overly

zealous and marked some macros as impossible to migrate, when in truth they should have been

classified as a Parameterless Function With Variable Use (had that classification type object been

implemented). As well, some of the macros were used as aliases to access member variables of

CHAPTER 6. EXPERIMENTAL RESULTS 88

structures, which the system did not catch and ultimately decided were impossible to migrate.

6.2.2 Vim

Compared to Nethack, Vim was very well behaved and only two problems with it were encoun-

tered. The first problem was with a Function Alias macro that was classified as a Parameterless

Function. Although the Function Alias macro classificationwas not implemented, the misclassi-

fication itself should not have caused a problem. In this particular instance, the return type of the

migrated method was incorrect due to the system getting confused by the unusually complex return

type for it. After some time spent trying to get the correct return type, the declaration was reverted

back to the original preprocessor directive.

The final problem actually occurred during the source migration phase. In the fileterm.h

there are a number of lengthy multi-line strings representing termcap entries. Due to a bug in the

source migrator, we were not able to successfully migrate these macros.

CHAPTER 6. EXPERIMENTAL RESULTS 89

Metric Explanation
of Files Number of C and header files in the application
KLoC Number of uncommented source lines
Declared macros Total number of declared macros
Simple constants Macros classified as Simple Constants
Enumerated constants Macros classified as Enumerated Constants
Constant expressions Macros classified as Constant Expressions
Parameterless functionsMacros classified as Parameterless Functions
Keyword alias Macros classified as Keyword Aliases
Empty declaration Macros classified as Empty Declarations

Can not migrate Identified number which can not be migrated, or can not be
migrated without significant refactoring

Ancestor declaration Migrated macros placed in a scoping block that was an an-
cestor of the original declaration. This occurs when the origi-
nal declaration block will not allow the migrated declaration,
such as in the middle of a struct (in C).

Move to common scopeMigrated macros that were declared in one C block, but used
in a non-ancestor C block, requiring the migrated declaration
to be located in a common ancestor block

Decl. around first Migrated macros whose final declaration was made right be-
fore the first expansion

Orig. interlacing decl Macros that were originally declared in the middle of a C
statement

Name conflict Migrated macros whose final declaration would have caused
a name conflict with some other entity

Table 6.2: Explanation of metrics

Metric Vim Nethack

Simple constants 139 1822
In-place migration 119 1740
Ancestor declaration 13 58
Name conflict 4 4

Table 6.3: Details for simple constant macros

CHAPTER 6. EXPERIMENTAL RESULTS 90

Metric Vim Nethack

Enumerated constants193 648
In-place migration 56 646
Ancestor declaration 137 2
Name conflict 0 0

Table 6.4: Details for enumerated constant macros

Metric Vim Nethack
Constant expressions 0 41
In-place migration 0 38
Ancestor declaration 0 1
Name conflict 0 0

Table 6.5: Details for constant expression macros

Metric Vim Nethack
Parameterless function 0 16
In-place migration 0 12
Ancestor declaration 0 0
Name conflict 0 0

Table 6.6: Details for parameterless function macros

Metric Vim Nethack
Keyword alias 1 2
In-place migration 1 2
Ancestor declaration 0 0
Name conflict 0 0

Table 6.7: Details for keyword alias macros

CHAPTER 6. EXPERIMENTAL RESULTS 91

Metric Vim Nethack
Empty declaration 12 102
In-place migration 12 102
Ancestor declaration 0 0
Name conflict 0 0

Table 6.8: Details for empty declaration macros

Chapter 7

Conclusion

We have explored within this thesis a unique approach to migrating C preprocessor directives into

C/C++ code, while focusing on readability and maintainability. This approach involved extract-

ing facts about the macros in the system, determining how each macro is being used, and then

generating a set of transformations in order to migrate the macros into C/C++ code.

We describe the operation and capabilities of our implemented system, as well as the next steps

in its evolution. To demonstrate the value of our implementation, the code for two applications

was processed with our system and some metrics on the resulting transformations recorded.

We know that our implementation is currently able to migratea significant number of macros

in the average application. With some more work we intend to increase the migration rate to the

large majority of macro instances within an average application.

92

CHAPTER 7. CONCLUSION 93

7.1 Future Work

Despite the minor bugs encountered, the positive results ofthe case study encourage continuing

development of the system and theory behind it.

Currently, our system only implements a few of the many macrotypes given in section 4.2.

One of the obvious improvements would be to continue implementing the remaining macro classi-

fications. In particular, attention needs to be given to the conditional preprocessor directives. Apart

from the known difficulties in dealing with configuration management, the handling of conditional

directives may have a significant impact on the process and architecture of the system. For exam-

ple, consider the situation of conditional directives being migrated before other the macro types.

In this case we would not need to worry as much about the placement of the other migrated macro

declarations, at least when it came to ensuring that they were within the original conditional.

Very little time has been spent on trying to optimise the migration process. It could be beneficial

to explore techniques in pre-selecting macros to migrate, with the intent of speeding up the overall

processing time. The smaller the factbase used, the faster the processing will be. If we could select

macros within small groups of files to migrate, instead of theentire system at once, we should

be able to improve the overall migration time. Alternatively, some optimisations could be found

in changes to the Grok interpreter. Currently, only a singleenvironment is used by grok. What

this means for us, is that it is difficult to isolate minimal sets of data to work with. It would be

convenient if we could invoke multiple environments withinGrok, with some means of transferring

data amongst them. One environment could contain facts for the entire system, whereas another

could consist of facts for a single file, for example. The flexibility in doing this would allow us

more optimisation options with our data and data queries.

Bibliography

[1] G. J. Badros. PCp3: A C Front End for Preprocessor Analysis and Transformation.

http://www.cs.washington.edu/homes/gjb/papers/constraints-iga.pdf, 1997.

[2] G. J. Badros and D. Notkin. A Framework for Preprocessor-Aware C Source Code Analy-

sis. Technical Report UW-CSE-98-08-04, Computer Science and Engineering, University of

Washington, 1999.

[3] I. Baxter and M. Mehlich. Software Change Through DesignMaintenance. InInternational

Conference on Software Maintenance, pages 250–259, Bari, Italy, 1997.

[4] A. Cox and C. Clarke. Relocating XML Elements from Preprocessed to Unprocessed Code.

In 10th International Workshop on Program Comprehension, pages 229–238, Paris, 2002.

[5] Michael D. Ernst, Greg J. Badros, and David Notkin. An Empirical Analysis of C Preproces-

sor Use.IEEE Transactions on Software Engineering, 28(12):1146–1170, December 2002.

[6] Jean-Marie Favre. The CPP Paradox.http://citeseer.nj.nec.com/favre95cpp.html, 1995.

[7] Alejandra Garrido and Ralph Johnson. Challenges of Refactoring C Programs. InProceed-

94

BIBLIOGRAPHY 95

ings of the International Workshop on Principles of Software Evolution, pages 6–14. ACM

Press, New York, NY, 2002.

[8] Ric Holt. Introduction to the Grok Language.http://plg.uwaterloo.ca/˜holt/papers/grok-

intro.html, 2002.

[9] Ric Holt. TA: The Tuple Attribute Language. http://plg.uwaterloo.ca/˜holt/papers/ta-

intro.htm, 2002.

[10] Ric Holt, Tom Dean, and Andrew Malton. CPPX - C/C++ Fact Extractor CPPX.

http://swag.uwaterloo.ca/˜cppx/, January 2004.

[11] Y. Hu, E. Merlo, M. Dagenais, and B. Lagüe. C/C++ Conditional Compilation Analysis using

Symbolic Execution. InInternational Conference on Software Maintenance, pages 196–206,

San Jose, California, 2000.

[12] B. Kullbach and V. Riediger. Folding: An Approach to Support Understanding of Prepro-

cessed Languages. In8th Working Conference on Reverse Engineering, pages 3–12, Stuttgart,

Germany, 2001.

[13] P. Livadas and D. Small. Understanding Code ContainingPreprocessor Constructs. In3rd

International Workshop on Program Comprehension, pages 89–97, Washington D.C., 1994.

[14] A. Malton, J. R. Cordy, D. Cousineau, K. A. Schneider, T.R. Dean, and J. Reynolds. Process

Software Source Text in Automated Design Recovery and Transformation. In9th Interna-

tional Workshop on Program Comprehension, Toronto, Canada, 2001.

[15] Johannes Martin.A C to Java Migration Environment. PhD thesis, University of Victoria,

1996.

BIBLIOGRAPHY 96

[16] S. Somé and T. Lethbridge. Parsing Minimization when Extracting Information from Code

in the Presence of Conditional Compilation. In6th International Workshop on Program

Comprehension, Ischia, Italy, 1998.

[17] H. Spencer and G. Collyer.#ifdef considered harmful, or Portability Experience with C

News. InUSENIX Summer Conference, pages 118–125, San Antonio, Texas, 1992.

[18] Bjarne Stroustrup.The Design and Evolution of C++. ACM Press/Addison-Wesley Publish-

ing Co., New York, NY, 1995.

