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Abstract

With the prevalence of legacy C/C++ code, issues of reathabihd maintainability have become
increasingly important. When we consider the problem aatefring or migrating C/C++ code, we
see the significant role that preprocessor directives ftisgpartially because of these preprocessor
directives that code maintenance has become extremelgutiiffi

This thesis describes a method of fact extraction and cod@pmiation to create a set of
transformations which will remove preprocessor direciftom the original source, converting
them into regular C/C++code with as few changes as possibiée maintaining readability in the
code. In addition, some of the subtle issues that may arigmwwigrating preprocessor directives
are explored. After discussing the general architectutbetest implementation, an examination

of some metrics gathered by running it on two software systisrgiven.
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Chapter 1

Introduction

1.1 Motivation

The C/C++ preprocessor (CPP) is a macro processor whosedgagonstructs are prevalent in
C/C++ code, especially when looking at legacy systems. @GRieiments a simple scheme which
allows the user to substitute sections of text, conditilgnatliude textual sections, or create strings
from a given input text. Traditionally this input text is CG+€ code, but CPP may be seen as a
language in its own right. An almost complete grammar of C&fPle found in Favre [6].

The output from CPP has all the preprocessor directivesvyedand is given to the C/C++
compiler to be compiled, leading us to say that C/C++ programe actually written in two lan-
guages, CPP and C/C++. Code from both languages is almasgaimtermingled in the original
(un-compiled/un-preprocessed) source code and it is vwatiing that their scoping rules are sig-
nificantly different. Scoping blocks in C are either at a glblevel, or within well defined blocks,

delineated by braces. Alternatively, definitions in CPP aleleclared at a global level and can
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only be brought out of scope explicitly, using thandef preprocessor directive. These differ-
ences in scoping rules lead to not only intermingled codealso overlapping block structures,
respective to both languages.

For simplicity’s sake, a single language would be easieetd @ith rather than a heterogeneous
mixture of the two. A method is proposed herein to migratgpreessor directives into regular
C/C++ code. The intended results focus on trying to keepréimsformed code as close as possible
to the original, in terms of both meaning and readabilitye T&rm “migrate” has been chosen to
convey the process because in essence this method is mégeoaie language, CPP, into another,
that being C/C++. While the migration method is somewhatrilvomlox, in that it requires the
“outside” C/C++ code that the CPP code expands into, the temgration” is still felt to be
appropriate.

As an example, if we consider the code in figure 1.1, despéeisie of preprocessor directives
we should have an intuitive feel for what those directives i@ally representing. The simple
constant macros are just static constants, whereas theeketazed macros are acting as inline
functions. The code in figure 1.2 demonstrates how the pcegswr directives in figure 1.1 could
be rewritten in C/C++. This is the sort of migration that thethod described herein strives to
accomplish.

While preprocessor macros were necessary to write C codg, ke has largely become a
supererogatory effort in C++. In “The Design and EvolutidrCe-+” [18] Stroustrup states that
use of the C preprocessor should be avoided and details tiloeliiced C++ features to help do
just that. Refactoring C or C++ is also made all the more diffiechen macros are used [7].
Furthermore the task of migration for C or C++ code, is giehtimpered by the inclusion of

macros [15].
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/lwarn of any dangerous monsters in vicinity

#define mon_warning(mon) (Warning && !(mon)->mpeaceful &
(distu((mon)->mx, (mon)->my) < 100) && \
(((int) ((mon)->m_lev / 4)) >= flags.warnlevel))

#define WEAPON_SYM )
#define ARMOR_SYM [
#define RING_SYM '=’
#define AMULET_SYM ™

[[These attributes are used in a case label
#define A_CHAOTIC (-1)

#define A_NEUTRAL O

#define A_LAWFUL 1

struct edog {

int apport; /* amount of training */

long whistletime; /* last time he whistled */

long hungrytime; /* will get hungry at this time */
%
#define EDOG(mon) ((struct edog *)&(mon)->mextra[0])

Figure 1.1: Example code with preprocessor directives

&\
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/lwarn of any dangerous monsters in vicinity
bool mon_warning(most *mon)

{
return (Warning && !(mon)->mpeaceful &&
(distu((mon)->mx, (mon)->my) < 100) &&
(((int) ((mon)->m_lev / 4)) >= flags.warnlevel))
}

const char WEAPON_SYM = ),
const char ARMOR_SYM = [;
cosnt char RING_SYM = '=
cosnt char AMULET _SYM = ",

/IThese attributes are used in a case label

enum {
A_CHAOTIC = (-1),
A_NEUTRAL = 0,

A LAWFUL = 1
h

struct edog {
int apport; /* amount of training */
long whistletime; /* last time he whistled */
long hungrytime; /* will get hungry at this time */

h
edog *EDOG(monst *mon)
{
return ((struct edog *)&(mon)->mextra[0]);
}

Figure 1.2: Example code with preprocessor directives abégk away
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Aside from manipulating source code, there is also the igbfaet extraction and visualisation.
Most of the available fact extractors work with code that &lasady been run through CPP, and as
such does not provide any representation of the originatosa©ften this may not matter as most
macro uses are for constant variables [5]. Still, one maytezested in the dependencies between
macros and code, had such constants actually existed abbesi One may be misled from the
visualised call graph due to the transitive property of madyeing used as functions. A C/C++
function which uses a function-like macro will appear tcedity call any methods the macro calls.
It would be convenient to treat such macros like their C/Ceutrterparts, in hopes of providing a

clearer representation of the original source code.

1.2 Objective

The largest problems in dealing with things like migrationefactoring C/C++ code stems from
the intermixing of the two languages. One solution woulddget rid of one of the languages,
namely CPP. Ideally in doing this, as few changes as postiltiee original source should be
made. CPP itself will translate the code into straight C/(Bt# the implied semantic information
that was encoded in the preprocessor directives is lostonoention a great deal of readability.
Also, it would be useful to preserve the original functiatyahs closely as possible, in that minor
differences in performance or execution branches are tatalepso long as the program runs as it
did before.

The approach taken here is to rewrite the original macrasguSiC++ language constructs
which mimic the macro as closely as possible. A method tooperfthis task is outlined, and

some early results of its usefulness using a test implertients presented. While the aim is to
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handle as many types of macro use as possible, the impled®rgeem can currently only migrate
constant macros and parameterless function-like madrosay seem fairly trivial to migrate such
simple constructs, but in truth a substantial amount of weak required. Fortunately the majority
of this work applies to migrating most other types of macre.us

Though macros are mostly used for simple tasks, like cotstard inlined functions, it might
beg the question as to why removing them would be difficultiléim truth most are not difficult
to rewrite, the two main issues to deal with are the diffefantjuage scoping rules and the lack of
strong types for the macros.

While the approach to migration is intended to be as strioghird and easy to perform as

possible, as always, the devil is in the details. The foltaysteps are taken in the outlined method:

=

. Extract the code and macro facts

N

. Choose the order in which to migrate each macro
3. Determine how each macro is being used
4. Generate a plan to transform each macro

5. Transform each macro

This method is intended to be as straightforward and ineiiis possible. The hardest part with
this project was in discovering the more obscure langualgs that the migration engine is likely
to run into, such as those discussed in section 3.5.

Originally macros were provided in C was for enhancing timgleage. Many of these enhance-

ments were incorporated into the creation of C++ [18]. Adwstite focus of this thesis will be on
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C++ and not C since there are far fewer options for the rengitir migrating of macros in C. The

method outlined is equally valid for C code, just with fewegmation options available.

1.3 Thesis Overview

The organisation of this thesis is as follows:

Chapter 2 discusses background material and related wadiscission of the C preprocessor
is given in detail, covering both its operation and semanticbrief description of fact extractors
follows. The TA file format, used to represent the facts estgd from the fact extractors used in
this project, is also described. To manipulate the extdbfetets the Grok interpreter is used, which
is therein discussed. Finally this chapter details relaterks.

In chapter 3 the approach taken to migrate C/C++ macros iwidbes. Some of the pitfalls
that one encounters when trying to migrate C/C++ macrossdikcussed.

Following that, chapter 4 discusses macros. Macro facaetitn is first covered in this chap-
ter, succeeded by a taxonomy of macros.

The details of the implemented system are described in eh&ptThe architecture and inter-
faces used in the design and implementation are also detuss

Results of a case study are presented in chapter 6. Usingnfiiemented system, two popular
open source applications were analysed in terms of classficof macros and issues encountered
during the migration process.

Finally, chapter 7 concludes with a summary of this thesid,@utlines the salient points made.

The chapter ends with a discussion of future areas of work.



Chapter 2

Background and Related Work

2.1 The C/C++ Preprocessor

In addition to each C/C++ compiler there is a macro prepmesvhich we will call CPP. More
than just a convenience, CPP originally helped programmeescome some of the limitations
of C. While most of these deficiencies have been addresseadteinversions of C and C++ [18],
the preprocessor has persisted out of a need for backwandggatibility with older versions of
C/C++. Before the C/C++ compiler actually compiles a givearse, the preprocessor is run and
that output is compiled. CPP has three main operationsusiah of files, conditional directives,

and macro expansion.

2.1.1 #i ncl ude Directive

C/C++ relies on the preprocessor to include files within sesir Most commonly this inclusion

is done for the purpose of including header files for the steshdC/C++ libraries. The C/C++
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[* File: header.h */ [* File: file.c */ [* What the compiler
#ifndef _HH int a = 5; sees */

#define _HH #include “header.h” int a = 5;

{ some stuff } int b = 6; { some stuff }
#undef HH int b = 6;

Figure 2.1: Simpléfinclude  directive examples

compiler only compiles a single, self-contained, souraedil a time. As such, CPP is required
to follow each inclusion directive encountered, startihngh& original source file, and build the
resulting code to be compiled. To actually include a file#ireclude  directive is used. When
an#include directive is encountered, CPP stops processing the cuiesrdnd continues with
processing the file given in the directive. When that file hesrbprocessed, CPP returns to pro-
cessing the original file at the spot it left off. This prodagss recursive, and a file may include
itself or cyclic inclusion paths may occur. To avoid the poig problem of infinite inclusion, in-
cluded files are commonly encapsulated with guards usimg@cessor conditionals. Some simple
examples of thetinclude directive are given in figure 2.1.

As there is no comparable C/C++ facility to thmclude  directive, no migration techniques

are proposed for it.

2.1.2 Conditional Directives

Conditional directives in CPP are used to include or exclem#e for compilation. We find this
most useful in the case of configuration management. For pbearshould we be compiling our
source under two different operating systems, we may fint gbme library functions have a
slightly different syntax. In this situation we are not aldaeuse conditionals in C/C++ since both

versions of the functions can not be simultaneously cordpiRather than duplicating the source
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and making the changes in each, we can use a preprocessdrawlidlirective to choose which
flavour of call to use. Alternatively, say our code contairebbt of debugging methods which
were overly time consuming. If we wished to remove them infthal release we could wrap
those calls in CPP conditionals and exclude them during tia ffiuild. Another useful, though
less pervasive, use of CPP conditionals is when we wish tonwamh out a piece of code that
already contains embedded comments. Since we can not reggleG:omments, we can use CPP
when this need arises.

The syntax of the conditional directives is similar to C/Ceenditionals. Each CPP condi-
tional starts with one oftif , #ifdef , or #ifndef . #ifdef and#ifndef are aliases for
“#if defined(...) " and “#if !defined(...) ", respectively. At the end of a CPP
conditional block the directiveendif or #else are used if we want to either terminate the
conditional block or add a block for the negation of the ctindj respectively. If one wants to
nest conditionals, the directiselsif  can be used as a substitute fi@lse then#if .

Each conditional is judged on a C-like expression. This eggion may contain integer arith-
metic, bit-wise/logical, and equality operations. In dubdfi to integers, literals may be used in the
arithmetic expression. If such a literal is actually a poergly defined macro, then the literal is
replaced with its expansion. Otherwise the literal is eatdd as 0. There is also tdefined()
operator which evaluates to 1 if the literal parameter giwen is a declared macro, and 0 other-
wise.

To illustrate CPP conditions, some examples are providéidume 2.2.

In terms of migrating conditional directives, one possiapproach would be to replace the
directive with a regular C/C+# statement. Even if the directive is &fdef , #ifndef , or

usesdefined() it could still be replaced with a regular C/C+f+ statement. In this later case
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#if 445 == #ifndef _HH #if O #if defined(CPU1)
#define HH | { code with call(a);

#else { stuff } comments } #else

#endif #endif call(a,b);

#endif #endif

Figure 2.2: CPP Conditional Examples

if (445 == 9) { if (HH == 0) { | (0) {

{ stuff } { code with
} else { } comments }
}

Figure 2.3: Migrated CPP Conditional Examples

the macro literal being evaluated could itself be migrate@ dlag, and the migrated C/C+f+
statement would then evaluate that flag.

In terms of the examples given in figure 2.2, only the first dmalitexamples could be migrated
in this way. If the second example did not contain the litdefine _HH ”, we could also use
this technique to migrate it. With this change in mind, thstfihree examples in figure 2.2 could
be migrated as shown in figure 2.3, provided the result isIv@di+.

An alternate approach would be to decide upon a static caafign and simply include or
exclude the evaluated conditional blocks, exactly as tepnacessor would. This approach would

be necessary to handle the fourth example in figure 2.2.

2.1.3 Macro Expansion

At its simplest, declared CPP macros are used as aliasethfarexpressions. Any expression can

be declared as a macro expansion, be it valid C code or noexamnple, the following are valid
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macro declarations:

#define foo 5

#define fnord else } ; ...

Beyond simple aliases or abbreviations, macros may beréelda take any number of param-
eters as well. Whatever is passed as a macro parameter igarbadim in the macro’s expansion.

To clarify, consider the following snippet of code:

#define mac_func(a) 1 a 2

mac_func(blah)

When CPP processes this code the expansion of the macroayitee second line is replaced
with“1 blah 2 ”. A common use of parameterized macros is as a form of inlimetions.

As hinted at in the above examples, macros are declared tiedglefine directive. For a
parameterized macro, a set of brackets with a comma detirigeof arguments is appended to
the macro name. Following the name and optional argumenlihe macro expansion. Once
a macro is declared any further instances of the macro’s nauntside of CPP directives, will be
replaced with the macro’s expansion.

Whenever a macro is expanded, the CPP will recursively cepday instances of literals that
are the name of declared macros with the respective mactpansion. If we had the following

declarations:

#define a 1 2
#define b a 3

then any expansion @fwould resultinl 2 3”. We should note however, that the description

of macro expansion so far should lead one to conclude thaCBfe could be used as a lambda
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calculus interpreter. This would be the case if it was notlierfeature that once a macro has been

expanded, it can no longer be expanded within the same oest&ior example, say we made the

declarations:

#define a 1 2 b
#define b a 3

If the CPP were to expand oat we would getl 2 a 3” and not an infinite string of 1
2",

Every declared macro remains in scope until either the CRghés processing or explicitly
brought out of scope using theindef directive. As such, the expansion of a macro may differ
between two instances. This could happen if any macros & inghe original expansion, and
those macros being used are either removed from scope arlaestk To clarify, observe the

following example:

int a = 10;
#define a 1 + 2
#define b a + 3

int z = b;
#undef a
int y = b;

The resulting code will be processed as:

int a = 10;
intz=1+ 2 + 3;

inty =a + 3
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In addition to user defined macros, there are a number of atdrutedefined macros. For
example, the macro LINE__ expands out to the current line, whereas the mact8TDC___
expands to 1 if the C/C++ compiler is ANSI standard C complian

The possibilities when using macro expansion are enormidosever, it is usually the case
that macros are used to represent a constant value or bpefssion [5], like the second and final
examples in this subsection. A sample of these sorts of reand their possible migrations is

given in section 1.1 in, figures 1.1 and 1.2.

2.1.4 Other CPP Features

Beyond the above three types of operations, the CPP caneatiwm “stringification” and string
concatenation. Stringification involves taking a macrcapaeter and replacing it with a quoted
string version of the given value. In the macro expansionagyment to undergo stringification

is prefixed with &. To clarify, say we make the following declaration:

#define DBG(msg) printf(“Error:  “ #msg “\n”);
DBG(x == 2)

The CPP will then produce the following:

printf(“Error:  * “x == 2" “\n");

The string concatenation operation takes two literalsrstpd by ##” and creates a new literal
by concatenating them together. In addition to literals bperators which when placed together
form a valid operator, such ag™and “=" or “! ” and “=" may be concatenated. As an example,

consider the following lines:



CHAPTER 2. BACKGROUND AND RELATED WORK 15

#define decl(typ) typ typ ## _type;
decl(int)

The resulting processed code would be:
int int_type;

These two operations, stringification and string concdienahave no obvious parallel in
C/C++. As such no migration techniques are proposed for ihehis thesis.

Of interest with CPP is that every directive must be declane@ single line. Consequently,
the expansion of a macro is in place and does not affect the@iten's line number tracking. We
can certainly declare a multi-line macro, but only if we use Icontinuation markers, essentially

declaring it on a single line. The following example illiegis that given the definition:

#define func_mac(a, b) a + 5\
*7 + b\
+ b *a

the preprocessor will expand every instancéuoic_mac on a single line as:

a+5*7+b+b*a

2.2 Fact Extractors

Source code can be seen or represented in a number of diffeags. The most obvious is the
source itself. The information the source provides us coimdble form of discrete tokens of
words, numbers, operators, etc. When compiling the souraever, the compiler will produce

other representations of the code.
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Given the source, the compiler will use the preprocessoet@rate a partial representation of
the preprocessor directives as it creates the code thaaetilblly be compiled. The term “partial
representation” is used because not all information atb@ypteprocessor’s operation is stored. For
example, the preprocessor does not keep track of each eapatsurrence after said expansion
has completed. After the preprocessor has created the batéhe compiler will compile, the
compiler will create an abstract syntax tree representiegrtput code. From this abstract syntax
tree, assembly code is generated and then assembled iritoathiginary object.

What we see is that the code goes through many represestdtiom source to abstract syntax
tree to binary object. Each of these representations, whdsenting the same basic information,
is different from the others.

By creating a convenient to use database of the details giragentation allows us to more
easily explore properties of the source code. For examajews wanted to know what functions
made use of global variable X. We could look through the setoc every instance of the word
“X”, and then eliminate all the local variables that overdty the global variable. After a bit of
work we would find our answer. The compiler however has alrethe this. Its abstract syntax
tree representation has to know for each variable named Kjwhit is referring to. It would be
much easier to query the abstract syntax tree, than parsgaatially compile the code ourselves
to answer our question.

Because the compiler creates these representations fardeses not make sense for us to
duplicate that effort when examining the code. Rather weikhextract the relevant information
from each representation and place it in a database. Thésetex facts will be represented
as a directed tree, or perhaps even a directed graph. Eaehwilbdhave a type and associated

properties. Edges between nodes will represent relatietvgden them. For example, a function
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$INSTANCE @1 cFunction
$INSTANCE @2 cBlock
SINSTANCE @3 cForLoop
contain @1 @2

contain @2 @3

Figure 2.4: Example facts offar loop within a function in TA format

that contains dor loop will have a representation including a node for the fiom; a node for
the function’s block, a node for ther loop, and a containment relation between them, like in
figure 2.4. A description of the fact format, TA, is given ircgen 2.3.

As we extract more out from the abstract syntax tree, we labout where functions and

variables are referenced throughout the code, among dtimgst

Facts can be generated from the other representationsif éivey are not natively presented as
a graph. For example, the original source code can be reyiegsas a bunch of word nodes, strung
together with an ordering relation. The operation of thgppweessor can be recorded by creating
facts about every declaration and expansion, and eachtomoradiencountered. Examples of literal
source code facts and preprocessor operation facts areigifigures 2.5 and 2.6, respectively. As
we can see, even the simplest of expressions or operatiargec@rate a large number of facts.

Any program which extracts such information is called a fdractor. For the system this
thesis describes, the C/C++ fact extractor CPPX [10] andwourfact extractor, CPPO-CPPX, was

used.

2.21 CPPX

CPPX is a fact extractor written by the University of WatertoSoftware Architecture Group
(SWAG). Based on GCC, CPPX can extract facts from any C or Gregram that GCC can
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Original Line of Code:
int a = 6;

Generated Facts:

FACT TUPLE :

SINSTANCE @8 cToken

SINSTANCE @9 cToken

SINSTANCE @10 cToken

$INSTANCE @11 cToken

$INSTANCE @12 cToken

AndThen @8 @9

AndThen @9 @10

AndThen @10 @11

AndThen @11 @12

FACT ATTRIBUTE :

@8 { type = CPP_NAME value
sourceColumn = 1 }

@9 { type = CPP_NAME value
sourceColumn = 5 }

@10 { type = CPP_EQ value = "3d" file = "test.cc”" line = 1
sourceColumn = 7 }

@11 { type = CPP_NUMBER value = "36" file = "test.cc" line = 1
sourceColumn = 9 }

@12 { type = CPP_SEMICOLON value = "3b" file = "test.cc" line =
sourceColumn = 10 }

"696e74" file = "test.cc" line = 1

"61" file = "test.cc" line = 1

Figure 2.5: Example literal source code facts
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Original Code:

#define add5(x) x+5
int a 6;

int b add5(a)

Generated Facts:

FACT TUPLE :

$INSTANCE @15 cMacroDecl

$INSTANCE @21 cMacroParameter

$INSTANCE @31 cMacroExpansion

cMacroParameter @21 @15

cMacroExpansion @31 @15

FACT ATTRIBUTE :

@15 { name = "add5" file = "test.cc" line = 3 startLine = 2
params = 1 }

@21 { name = "X" parameterindex = 0 }

@31 { file = "test2.cc" line = 5 }

Figure 2.6: Example of preprocessor operation facts

19
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compile. Currently only the abstract syntax tree repredent facts are extracted.

2.3 TA Modelling Language

CPPX by default uses a subset of TA [9] as its fact extractisiput. TA, or the Tuple-Attribute
language, is a simple language that can be used to reprasphisg There are two main parts to a
TA factbase: the tuples and the attributes.

The tuple section is used to declare nodes and relationebatthiem. Each node must first be

defined with a type using thé&sINSTANCE ' relation. A function node may be declared like:
SINSTANCE @2 cFunction

What this means is that the no@?2is of typecFunction . The node name does not need
to be prefixed with a@, it is simply something CPPX does. Whil&INSTANCE' is a special
relation whose nodes should be declared before being usad/inther relations, it is treated the

same as any other relation in the tuple section. In generdhtion tuple is declared like:
<Relation name> <From node> <To node>

If we wanted to represent the inclusion or containment @dra block within a function we

could use something like:

$INSTANCE @2 cFunction
SINSTANCE @3 cBlock
$INSTANCE @4 cFor
contain @2 @3

contain @3 @4
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FACT TUPLE
$INSTANCE @2 cFunction
SINSTANCE @7 cBlock
SINSTANCE @27 cForLoop
contain @2 @7

contain @7 @27

FACT ATTRIBUTE :

@2 { file = test.cc line = 3 name = f visb = pub extern = true }
@7 { line =51}
@27 { line = 4 }

Figure 2.7: Complete TA example

In this very simple way we can represent any directed graplhe ‘$INSTANCE relation
declares the nodes and the other relations represent ties bdtyveen them. There are no restric-
tions on the number of relations that may exist between tvaeaoThis leads to the understanding
that beyond simply representing directed graphs, TA inr@gtesents directed multigraphs.

The attribute section of a TA factbase is just as simple asuple section. Every node with
attributes includes a single entry in the attribute secfidrs entry lists attribute and value pairs in
much the same way as an attribute list for an XML element. @airtg with our function example,

its respective attributes could look like:
@2 { file = test.cc line = 3 name = f visb = pub extern = true }

A complete TA factbase might look like the one given in figuré.2

2.3.1 TA Macro Schema

As CPPX only extracted facts from the compiler's AST, it was@ssary to write our own macro

fact extractor. Our approach to this was to take the GNU GCQGeaprpcessor and modify it to
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export facts about its operation. Beyond the immediate ghamecessary to accomplish this, a
schema for the extracted facts needed to be created. Weniallgrdescribe here the scheme used

to describe the macro facts.

Macro Declarations and Expansions

Every macro declaration creates an instance tuple of ¢jys@croDecl . Associated with this
tuple are the attributesame, file |, line ,startLine , andparams which represent the name
of the macro, the file in which it was declared, the line after €nd of the macro declaration, the
line the macro declaration started on, and the number ofpetexs the macro takes, respectively.
For example, the statementdefine func(a) 5 + a " could create the following instance

tuple and attributes:

$INSTANCE @15 cMacroDecl
@15 { name = "func" file = "test.c" line = 6
startLine = 5 params = 1 }

Each parameter of a macro also creates an instance tuples lcaise an instance tuple of type
cMacroParameter s created. This tuple has the associated attrimaese andparameterindex
which represent the name of the literal as given in the maeotadation and the ordered index of
the parameter, respectively. We also need to associateathenpter with its containing macro.
This is done by creating eMacroParameter tuple. Continuing with our example above, we

would include the following facts in our TA file:

$INSTANCE @21 cMacroParameter
cMacroParameter @21 @15

@21 { name = "a" parameterindex = 0 }
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The final set of facts extracted from our macro declaratioretta do with the macro expan-
sion. Each literal token of the macro expansion has an agsocMacroDefinitionToken
instance tuple created for it in the extracted facts. Aloiit tis tuple are attributes describing the
token’s lexical type, literal value, file, line, and stagioolumn, all represented hype , value
file ,line , andsourceColumn , respectively. To enforce the order of the tokens in the re-
lation tuples, for every token after the first an entry in &redThen relation is created, forming
a linked list of sorts of tokens for a given expansion. Fipaihe first token is associated with
the declaring macro through tieacroDefines  relation. To complete our example above, the

following facts related to the macro expansion would be ddde

$INSTANCE @16 cMacroDefinitionToken

$INSTANCE @18 cMacroDefinitionToken

$INSTANCE @20 cMacroDefinitionToken

AndThen @16 @18

AndThen @18 @20

cMacroDefines @16 @15

@16 { type = CPP_NUMBER value = "5" file = "test.c"

line = 5 sourceColumn 17 }

"+" file = "test.c"

@18 { type = CPP_PLUS value
19 }

line = 5 sourceColumn
@20 { type = CPP_MACRO_ARG value = "a" file = "test.c"

line = 5 sourceColumn = 21 }

Every expansion of a macro generates a set of facts as weMaeroExpansion instance

tuple is created for each expansion with the associatedwtsfile ,line , andsourceColumn
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to indicate where the expansion occurred. The expansiasrteebe associated with the original
macro and this is done through tblacroExpansion relation. The final additions to our ex-

ample above when including the expansion facts would be:

SINSTANCE @23 cMacroExpansion
cMacroExpansion @23 @15

@23 { file = "test.c" line = 6 sourceColumn = 1}

Preprocessor Conditionals

Extracted preprocessor conditional facts begin with ataimee tuple that declares their type. By
thisitis meantthakif ,#ifdef ,and#ifndef arerepresented lmMacrolf ,cMacrolfdef
andcMacrolfndef  instance tuples, respectively. Each of these three instaupdes have as-
sociated with thenfile |, line , andentered attributes which represent the location of the
directive and whether or not the condition was true, and Whesther or not the conditional block
was entered. Both theMacrolfdef = andcMacrolfndef  instance tuples also havename
attribute. This attribute specifies the literal value of thacro whose declaration is being queried.

We consider the following example to clarify the above peapb:

Original Code Extracted Facts

#ifdef a $INSTANCE @11 cMacrolfdef
#endif @11 { name = "a" file = "test.c" line = 29

entered = false }

At the end of each conditional there is #endif statement, which also has facts associated
with it. Namely for each#endif statement a&MacroEndif instance tuple is created with

associatedile andline attributes.
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Should the conditional be a little more complicated and Ivean #else or #elif , an
instance tuple of typeMacroElse or cMacroElif  would be extracted. These instance tuples
have the samBle ,line ,andentered attributes as aMacrolf instance tuple.

Since preprocessor conditionals can be nested, the pratfiésentifying which conditional
statements belong to which conditional block becomes areisEo avoid parsing the code, which
the preprocessor and the fact extractor does anyway, titgoretMacroBlockPart s exported
in the facts. This relation represents a linked list of ctindal statements within the same condi-

tional block. To clarify this point, we consider the follavg example:

Original Code Extracted Facts

#ifdef a $INSTANCE @11 cMacrolfdef
#else $INSTANCE @14 cMacroElse
#endif $INSTANCE @17 cMacroEndif
cMacroBlockPart @11 @14
cMacroBlockPart @14 @17

@11 { file = "test.c" line = 39 entered = false }
@14 { file = "test.c" line = 40 entered = true }
@17 { file = "test.c" line = 41 }

The final preprocessor directive to discuss isdb@ned()  operator. When defined()
operator is encountered the fact extractor will includeMacroDefined instance tuple. This
instance tuple has associated witlfile , line , sourceColumn , andarg attributes, repre-
senting the location of the operator and the name of the nideral that was searched for. When
the literal that was searched for was found a new tuple irchh@croSubject relation is added

to the facts, indicating which macro thkefined() operator operated on. If the searched for
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literal is not found, a tuple in theMacroSubject

defined()

operator with the parentif statement, a tuple in theMacroBlockPart

26

relation is not created. To associate the

rela-

tion is added. The following example will illustrate the fathat are created withadefined()

directive:
Original Code Extracted Facts
#define a $INSTANCE @11 cMacroDecl
#if defined(a) && SINSTANCE @25 cMacrolf

defined(b) $INSTANCE @26

#endif $INSTANCE @27

$INSTANCE @30

@30 { file =

cMacroBlockPart @25 @30
cMacroBlockPart @25 @26
cMacroBlockPart @25 @27
cMacroSubject @26 @11

@11 { name = "a" file = "test.c" line = 26
startLine = 25 }

@25 { file = "test.c” line = 27
entered = false }

@26 { file = "test.c" arg = "a" line = 26
sourceColumn = 13 }

@27 { file = "test.c" arg = "b" line = 26
sourceColumn = 27 }

"test.c” line = 28 }

cMacroDefined
cMacroDefined

cMacroEndif
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Other Preprocessor Constructs

We discuss here the remaining preprocessor constructglydondef |, #include , stringifica-
tion and string concatenation.

When encountering a#tundef , the fact extractor first createsclacroUndef instance
tuple, with the attributedile andline . A tuple in thecMacroSubject relation is then
created, linking theétundef statement with the macro being undefined. If#humdef statement
did not undefine an in-scope macro, then no tuple is addeetwMiacroSubject  relation. The

following example will illustrate théfundef statement facts:

Original Code Extracted Facts

#define a $INSTANCE @11 cMacroDecl

#undef a $INSTANCE @17 cMacroUndef

#undef b $INSTANCE @18 cMacroUndef

cMacroSubject @17 @11

@11 { name = "a" file = "test.c" line = 7 startLine = 6 }
@17 { file = "test.c" line
@18 { file

7}
8}

"test.c" line

For every file referenced in the fact attributes the premsoefact extractor will create a
cFile instance tuple. This instance tuple contains a singlebatei file , which gives the

name of the file. While a reasonable convention, this ingtd@nple makes more sense in light of

the facts extracted from #include directive. When such a directive is encountered, the fact

extractor will first create alnclude instance tuple, witfile  andline attributes. To indicate

which file is being included, a tuple in tléncludes  relation is created that links the respective
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cinclude node with its correspondingfile node. Finally, a tuple in theontain  relation is
created from the file node in which ténclude directive is found, to thelnclude node. To

clarify, let us consider the following facts extracted fréfa test.c

Original Code Extracted Facts

#include “b.h” $INSTANCE @11 cinclude
$INSTANCE @18 cFile
$INSTANCE @22 cFile
contain @18 @11
cincludes @11 @22

@11 { file = "test.c" line = 7 }
@18 { file = "test.c" }
@22 { file = "b.h" }

No progress was made towards the migration of stringifioatiostring concatenation prepro-
cessor operators. Because of this, no steps have been taloemulating extracted facts for these

operations.

2.4 Grok

The most common means of manipulating TA databases is widhgubhge called Grok [8]. Grok
is akin to a restricted form of SQL in that it defines a set of nmands for manipulating binary
relations and sets. A TA factbase is represented as a setarl/belations. Within each TA factbase
the tuple section is reflected in a straightforward mannéie fiple relation name, becomes the

relation name under Grok with the two parameters thusly fiegrpart of the relation. For example,
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the TA line

$INSTANCE @2 cFunction

would add the tuplé@2, cFunction) to the “SINSTANCE relation in Grok.

TA attributes are also represented as binary relations.ryEatribute in an attribute list is
represented by Grok as a relation. The relation’s entitiesteen composed of the node name that
the attribute is associated with and the attribute valuaveltfhad the following attribute in a TA

factbase,

@2 { file = test.cc line = 3 name = f }

we would represent this in Grok by adding the tugl@2, test.cc), (@2, 3), (@2,
f) tothefile ,line ,andnamerelations, respectively.
To further clarify, say we had the TA factbase from figure 2fToaded into a Grok interpreter,

the resulting relations would be:

Relation Tuples

$INSTANCE | (@2 cFunction), (@7 cBlock), (@27 cForLoop)
contain (@2 @7), (@7 @27)

@ _file (@2 test.cc)

@_line (@2 3), (@7 5), (@27 4)

@ _name (@2 1)

@_visb (@2 pub)

@ _extern (@2 true)
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We note that the Grok interpreter appends the pre@x’‘to the name of the attribute relations.
As well as relations, Grok defines commands for manipulatimyydered sets and some simple

constructs that allow it to be used as a scripting language.

2.4.1 Language

The Grok language itself consists of very concise oper&oraanipulating relations, sets, strings,
and numbers, plus some simple control flow constructs. Famgle, the following script will take

as it's first argument a TA factbase’s file name whose factewgtracted from a source file. It's
assumed this source file contained a function whose bodyairm a single entity. The name of
this function is given to the script as it's second argume@nice it has this information, the script

will determine the type of the entity within the named funati

addta $1

functionNode = @_name . {$2}

cBlock := (rng ((id functionNode) o contain))

literalNode := (rng ((id cBlock) o contain))

builtinNode := (rng ((id literalNode) o cInstance))

type := (inv @_name) . builtinNode

if type == EMPTYSET then
type := (inv @_name) . (rng ((id builtinNode) o clnstance))
addsuffix type "*"

end if
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This example demonstrates some simple set and relatioatopgrsuch as the relational com-
position operator, d”, and set projection operator, *, as well as the fng ” operator which
returns the range of a relation. The specific details of thgtx function aren’t important to
understanding this example of the Grok language.

As we can see, the language has a straightforward infix nota@perators such as™*, “-”,
and *” are used to represent operations like union, differenod,iatersection, respectively, for
both sets and relations. As well as simple set operationk @tows us to do things like create
relations through the cross product of two sets or take #resttive closure of a relation.

A full description of the Grok language, including tutosaéxamples, and language specifica-

tion can be found in the introductory paper written by Holt [8

2.4.2 Embedded Grok Interpreter

The Grok interpreter is normally used as a stand-alone egitn, appropriately called “grok”.
This interpreter is most commonly used to run scripts thafpart of SWAG’s Software Architec-
ture Toolkit. An interactive command-line interpreter vedso a feature of grok.

As Grok is written in Turing, and then transcoded into C byTheng compiler, an embedded
version of grok was created from the “hijacked” C source. hRathan interpreting commands
from the console, grok is tricked into accepting a commaneldly via a method call. Hooks were
added to retrieve relation and set contents. In this way we able to use grok directly within
our system, rather than indirectly through scripts. We uAddF the databases in our system,

necessitating the creation of an embedded version of grok.
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2.5 Related Work

In conducting this research, we were inspired by the workro§E Badros and Notkin [5, 2]. They
examine preprocessor usage in 26 large C programs [5] acdlukea tool that allows preprocessor
constructs to be analyzed along with the remainder of thecean a unified framework [2]. Along
with other applications, the tool was applied to replacenmaefinitions for constant values with
equivalent C declarations [1]. Unfortunately, the stroetaf the tool restricts an analysis to a
single file at a time, since it is based on existing compilehit®logy. The work was not extended
to other macro types or to C++.

In this thesis, we take a different approach to the probleralyaing a complete software sys-
tem before and after preprocessing, and merging the negdéctbases into a unified description
of preprocessor transformations. This approach permégrpcessor constructs in header files to
be translated into C++ constructs that reflect their usagithout the system. While we mainly
focus on constant macros in this thesis, our approach peevedframework for handling other
preprocessor constructs and for accommodating differietgats of C++, including C.

Several other researchers have developed preprocesamg-avethods for analyzing C/C++
source [4, 12, 13]. The problem of tracking substitution®tigh the preprocessor is examined
by Kullbach and Riediger [12]. Thefolding method allows a user to visualize the actions of
the preprocessor on a particular construct. Cox and Clakeédscribe a technique for mapping
facts, expressed as XML and generated by an analysis ofe¢pequessed source, back through the
preprocessor to be properly situated in the original soukéalton et al. [14] describe a “source
factoring” process that aids the analysis and transfoonadi code written in PL/1, and other
languages, where preprocessor and macro constructs aiby hesad.

Conditional compilation poses a particularly serious peobto a software analysis system.
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Text excluded by awifdef may contain syntax errors, code in a different dialect, cemis)

or complete gibberish. Given the problems they cause [Io{rce code should be re-written
or transformed to eliminate these constructs, but in sorsescthis transformation may be im-
possible. Somé and Lethbridge [16] discuss many of the pneblassociated with conditional
compilation and describe a parsing method for efficientbcpssing conditionally excluded code.
Others [11, 3] have applied symbolic execution and partialuation techniques to analyze con-

ditional constructs.
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Approach to Migrating Macros

3.1 Fact Extraction
As outlined in section 1.2, we take a straightforward apginda the migration of macros:

1. Extract the code and macro facts

2. Choose the order in which to migrate each macro
3. Determine how each macro is being used

4. Generate a plan to transform each macro

5. Transform each macro

The first step is to extract the facts about the system. Fdr eampiled source we use our custom
preprocessor fact extractor, CPP0O-CPPX, to extract theovaaw lexer token facts and CPPX to

extract the ASG facts. By lexer token facts we mean the saing #s literal source code facts,

34
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#define A 6

#define B A+7

int func() {
return B;

}

Figure 3.1: Example of indirect expansion of macro A fronedirexpansion of macro B

such as those shown in figure 2.5. With these three sepacatdda we ensure that each node has
a unigue name, and then merge the three factbases togetbar.tlis new factbase we remove
any of the facts that will not be needed; the standard C irchehader facts in particular. From
here we merge the facts into the overall project factbas®lllyj duplicate entries in the factbase
are identified, as they may have different names but the stntaiges, and removed.

Once we are satisfied with our extracted facts, we choosertter i which to migrate the
macro instances. This is largely intended for macros defirethe#define preprocessor direc-
tive, although it may matter for removifgf statements and the like. Since we are not extracting
facts from the output of CPP, we do not want to expand macrogaur migration system. Ideally
we want to only need to know where each macro is directly edednin the original source code,
rather than indirectly expanded, as seen in figure 3.1.

In the simplest case, macros which do not depend on any othaysbe migrated without
paying attention to the order in which they are processedweyver, we may come across the
situation in which for a particular macro to be migrated eotly, every macro that it depends on
must also be migrated along with it. In this case we must enthat these groups of macros are
migrated together. Depending on how one han#lés statements, one could deem all macros in

an#if statement condition as being dependent on each othemsisalled in figure 3.2.
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#if defined(UNIX) && !defined(SMALL)
&& defined(CONFIGURABLE)

Figure 3.2: UNIX, SMALL, and CONFIGURABLE can be seen as lgeitependent on one an-
other

Code Classifications for A Resolution for A
#define A 5 1) Constant Value 1) Constant Value
#ifdef A 2) Configuration Setting

#endif

Figure 3.3: Example of classification resolution

3.2 Classification

After deciding the order in which to migrate the macros, weedaine as much as we can from
each macro in the prescribed sequence. This involves Igakirhow each macro is used and
assigning a classification, of which we have identified alnte® dozen types of macro classi-
fications, which are described in section 4.2. The macrogopincessed is matched against the
criteria for each classification type. If more than one dfaesdion criteria is met, then a resolution
heuristic is applied to determine which classification lmeatches the macro’s use. We note that
multiple classifications mean that any of them would be teily correct, in that the resulting
transformations would work. The heuristically chosen rhascintended to reflect the classifica-
tion that mirrors as closely as possible the intent the palgtoder had when creating the macro
(figure 3.3).

To optimize the classification process we have allowed foltiple passes to be performed.
Certain classifications are subclassifications of othedlsaher than eliminating these possibilities

as quickly as possible, we wait until the resolution of thevwus pass has been completed. So far
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Y

header.h

——————— |

e

Figure 3.4: Block dependency graph example

only two passes have been found necessary, but the pagditsiimore remains.

From the classification of the macro we determine the tranmsitions necessary to migrate the

macro. For the purposes of declarative macros, the two rhaigs we need to determine are the

new scope of the migrated macro and what C type to associttetwi

To deal with the scoping issue, we create a directed grapiksepting the C blocks found in

the system and their respective types, say a functionfor ablock. We represent an included

file as being the ancestor node of the including file. An exanaplthe block dependency graph

structure can be seen in figure 3.4.

Inferring a type for the macro involves delving into the faacte and seeing how the compiler

made use of the given macro.
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3.3 Placement

Once we have this block dependency graph, we look for eaatk blowhich the macro to be
migrated has been used, outside of a preprocessor diretiineeleast common ancestor of these
blocks, in the graph, then represents a block in which theltreg migrated declaration of the
macro may be placed. Due to the different scoping rules ki@ C++ and CPP, we need to
locate this block in case the scope of the macro is not camgibetween the two languages. In an
attempt to minimise the structural changes to the codegas@added to the placement method just
given. Let us assume that the block in which the macro is dedlhas a path in the block graph
to the discovered least common ancestor block. This addedstates that the resulting block
in which the migrated macro declaration will be placed wil the same as that of the original
declaration. In other words, just because we could declerenigrated macro “closer” to where
it is used, does not mean we should necessarily do so. Thmarigeclaration tends to be in a
reasonable place, like a header file for example, and theateidjdeclaration should remain there
if possible (figure 3.5).

Though we know the block in which we want the migrated macatation to be in, we still
have to choose a specific line to place it on. If the originalaation was in the target block, then
we simply try to replace the old declaration with the new. €i¥ise we choose the line before the
first use of the macro, or as close as possible if the targekbtodifferent from the first use. In
some cases it may not be possible to insert a new declardtibose initially chosen lines. The
target declaration line, for example, may be in the middla sfatement that has been split across
multiple lines. Or the target block can not include the typeleclaration we wish to make. An
example of the latter case is shown in figure 3.6. We can ndadea variable within a switch

statement that has multiple case labels, unless the particase label contains a proper C block,
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Ex 1

int funcA()

{
#define A 5
return A;

}

int funcB()

{
return A;

}

Ex 2
#define A 5
int func()
{
if(true) {
return A;
}
if(true) {
return A;
}
}

39

Figure 3.5: Examples of overlapping scope and originalatatibn as ancestor to LCA of uses

braces and all.

To resolve the above issue we start from the target line itettget block, and search backwards

in the file until we reach the first line which will legally aquethe migrated macro declaration.

After all this work one final task must be performed, in thativwest check for any name conflicts

which may now arise. As we have possibly moved the declarati@ new location in the source,

we are now at risk of causing a name conflict with other estitiethe code. To resolve any such

Legal

switch(something) {

case 4:

{
}

case 5:
return;

int macro = 7;

lllegal
switch(something) {
case 4:
int macro
case 5:
return;

7

Figure 3.6: Switch declaration examples
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<Macrolnfo>
<File fileName="keymap.h">
<DelLine fileName="keymap.h"
lineNumber="24"/>
<InsertLine fileName="keymap.h"
lineNumber="25"
lineVal="const int KOF = 0;"/>
</File>
</Macrolnfo>

Figure 3.7: Example transformation file

conflicts we must decide whether to rename either the mignatzcro, or that which it conflicts

with.

3.4 Transformations

Once the renaming issue is resolved, we take all this infoomayathered about the macro and
create a series of transformation steps. We define a set pfestcommands to insert or delete a
line or lexer token based on the information gathered, likesé¢ shown in figure 3.7. After all the
macros have been processed, this allows us to form a seséspsfin which, if followed, will take
the original source and transform it with the newly migrateacros.

We use a simple script that takes the transformations to Herpeed and actually performs
them on the source code.

All that said and done, we accept that there may be instarfgaa@o usages that simply can

not be migrated without extensive code rewriting, bestttethe software engineers.



CHAPTER 3. APPROACH TO MIGRATING MACROS 41
3.5 Pitfalls in Migration

The approach we have described generally works. For the paoistonce the scoping and name
conflict issues are resolved, the macro transformationseidiately follow. However, we must

also consider the semantics of the C language and the ifibgreguations which arise that are not
immediately obvious, plus the potential varied use of amgiveacro. While not an exhaustive list
of issues, we discuss a few which were immediately encoedterthe course of our case study in

chapter 6.

3.5.1 Language Issues

One good example of a migration pitfall is when a macro is usemle a case label. Case labels
must have constant values associated with them, and oncdgratena macro to a variable (con-

stant or not), or method, the original code will no longer @ilsn Furthermore, in the case of

migrating to a method, it is impossible to compile the codthaiit some significant changes and
work-arounds, at the detriment of readability and mairahility.

In this case one must ultimately change the code in a lessstnaightforward way to work
around this problem. Our approach in handling simple cartsteacros which appear in case labels
is to declare them, the macros, within an enumeration assgapt a variable. We work with the
assumption that this is what the original coder intendedhgymhacro and group the enumerated
migrated macros together. When multiple enumerationsodlbe immade in the same block we look
at which ones are used in the same switch statements andtpkroein the same enumeration,
grouping them together in a greedy fashion.

Another interesting problem is when we discover that a maienply can not be migrated. For
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Constant String Concatenation
#define mac_str “constStr”
printf(*a” mac_str “b");

Constant String Initializer
#define mac_str “constStr”
char str[] = “a” mac_str “b”;

Figure 3.8: Un-realizable migration examples

example, if we have a constant string that is used in a consttémg concatenation or as a constant
initializer (figure 3.8). One could argue that in some, orrem®ost, cases these types of macro
instances could be cleverly rewritten to allow migration.

A different problem is the use of gotos. When a macro is dedldetween the goto statement
and the target label. Without taking this into consideratithe approach above could decide that
the newly migrated declaration should simply reconstith& one in place. However the goto
jump will now cross over the new initialisation, causing angmlation error. We do not have this
problem if the declaration is within a proper C block, of caeir

Considering the maintainability aspects, we must also faeeissue of comments. While
beyond the scope of this thesis, if a migrated macro is placeddifferent location, then any
comments associated with it must also be similarly movedpackd.

When it comes to the nuances of the language, we must acephére are certain instances
of macro use in which we simply can not do anything about thethowt resorting to significant
code re-engineering, which we are trying to avoid. Simylave may be constrained in how we
can handle undefined and/or compiler dependent functignsiich as the comparison of pointers
between equivalent string constants. We briefly discusswewould handle the differences in

language dialects and compilers in section 5.3.
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3.5.2 Varied Macro Uses

An issue that has not been dealt with is what to do with macrosse use differs based on the
context. More concretely, consider the case of when a maesgdansion includes the expansion
of another macro. So long as both these macros are alway®je $or every use, there is no
problem. However, consider the case if the macro within #p@agasion is not in scope, relative to
the encapsulating macro, some of the times it is used. Irsttuation we have a problem as this
implies that the encapsulating macro is sometimes usingri@blas that happen to be in scope
when the macro is used.

Similarly for macros that are used in a polymorphic way, tiémnplates for abstract data types,
we again encounter this problem of the macro having diffesemantics depending on where it is
used. In some cases we could duplicate the original macexdbas its different instances of use,

but this leads to readability/maintainability problemslaxaming issues.



Chapter 4

Macro Fact Extraction and Classification

4.1 Macro Fact Extraction

Normally C/C++ fact extractors provide a representatiothefcode which closely resembles the
abstract syntax graph (ASG) that a compiler compiling théecwould create. However, for our

purposes, we express the code in four different ways:
1. Original code, unprocessed by CPP or compiler
2. As facts representing the CPP language occurrencegtimatithe code
3. Code that has been processed by CPP, but not by the compiler
4. The compiler's ASG representation

If we realise that every CPP directive is expanded to at mestgle line, we can safely ignore the
third representation. This allows us to assume that linebarswhich occur in the ASG directly

correspond to the same line numbers in the original codggldginmg the analysis in our method.
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#define var 4
#ifdef var
#else

#endif

Figure 4.1: Simple code fragment with preprocessor divesti

4.1.1 Extracting macro facts

With the lack of macro fact extractors available it was neaegto write one. After some explo-
ration, it became obvious that one would essentially needrite an entire CPP to extract macro
facts. Rather than embark on this task, it was felt that amcggt similar to the one taken with
the CPPX [10] fact extractor should be chosen. Since CPPXcvesded as a patch to the GNU
GCC C/C++ compiler, plus supporting tools, we wrote our radact extractor by modifying the
GNU GCC CPP and creating the tool we called CPPO-CPPX. This gathe power of a stable
and well established CPP to work with.

CPP was modified to collect information about every prepscedirective and macro expan-
sion and to write these out into a file. The code fragment inréiguul provides a simple example,
which results in the set of facts shown in figure 4.2. A moraiied description of the fact schema
used for CPP0O-CPPX is given in section 2.3.1.

Like CPPX, we represent our macro facts in the TA languagenNBjch was briefly described
in section 2.3. This scheme allows us to represent the factgheeir relations as a graph. Each
node in the graph is given a type through $iI8sSTANCEdeclaration and associated attributes in
the FACT ATTRIBUTEsection. The inter-node relations are described in the irengalines of
theFACT TUPLEsection.

We can see from the example that each macro declaratiordegliacts about its expansion.
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FACT TUPLE

$INSTANCE @12 cMacroDecl

SINSTANCE @13 cDefinitionToken

SINSTANCE @17 cMacrolfdef

$INSTANCE @20 cMacroElse

$INSTANCE @23 cMacroEndif

cMacroDefines @13 @12

cMacroConditional @17 @12

cMacroBlockPart @17 @20

cMacroBlockPart @20 @23

FACT ATTRIBUTE :

@12 { name = "var" file = "test.c"
line = 2 startLine = 1 }

@13 { type = CPP_NUMBER value = "4"
file = "test.c" line = 1
sourceColumn = 13 }

@17 { name = "var" file = "test.c"
line = 3 entered = true }

@20 { file = "test.c" line = 4
entered = false }

@23 { file = "test.c" line = 5 }

Figure 4.2: Example macro facts in TA format

46



CHAPTER 4. MACRO FACT EXTRACTION AND CLASSIFICATION a7

#define var 1\
2

Figure 4.3: Simple code fragment with multi-line macro deation

More complex preprocessor code would provide the stringkén expansions, as well as facts
about parameter expansion occurrences for parameteriaem

Generally speaking, extracting the macro facts is stréoglvard, however there were some
subtleties to overcome. From figure 4.2 we note that eacloparpreprocessor conditional is de-
clared as a fact and their association strung togetheralssnecessary to keep track of whether or
not a particular part of the conditional was actually in@ddn the output code. As CPP processed
directives within each part, regardless of if they wereudeld in the output code or not, we had
to keep track and ensure that if they were in a “skipped” gahtno errant directive facts were
placed in the resulting fact file.

Another source of frustration was in dealing with macros séndeclarations spanned multiple
lines. As far as CPP is concerned, every declared macro isgéedine. A multi-lined macro
declaration must therefore be written with the line corgithon marker “\”. However, at least with
the GNU GCC CPP, the internals consider the line being taeehtio remain the same throughout
the multi-lined macro declaration. What this results in sea of facts which appear to interlace
the declaration tokens and provide generally nonsengsalts. One needs a way of knowing the
real line, relative to the original source, a given expamsaken occurred on as well as what line
CPP believes it to be on. This point is clarified in figure 4.83wdorresponding facts shown in
figure 4.4.

One final obstacle to overcome was the issue of maintainingistent file paths in the fact

file. When a file is included through tHgnclude directive it is possible that it existed in the
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FACT TUPLE
$INSTANCE @12 cMacroDecl
$INSTANCE @13 cMacroDefinitionToken
$INSTANCE @15 cMacroDefinitionToken
AndThen @13 @15
cMacroDefines @13 @12
FACT ATTRIBUTE :
@12 { name = "var" file = "test5.c"
line = 3 startLine = 1 }
@13 { type = CPP_NUMBER value = "31"
file = "tests5.c" line = 1
sourceColumn = 13 }
@15 { type = CPP_NUMBER value = "32"
file = "test5.c" line = 2
sourceColumn = 3 origMultiLine = 1

Figure 4.4: Example multi-line macro facts in TA format

same path as the including file. Alternatively, it is possitiiat it was in a different directory and
the include directive used a relative or absolute path. Baomes an issue when the same file
is included multiple times, from different files, by differepath names. If one is not careful, the
resulting fact file could contain multiple references to saene file, but with different path names.
It was decided that every included file should be referennetie fact file by either an absolute
path or a path relative to the original C/C++ source codedgeompiled. This also is consistent

with the extracted fact output from CPPX and the normal dpmraf most Unix C compilers.

4.1.2 Extracting facts from original code

To extract facts about the original code it was felt the bggtr@each was to tokenize the code
and record the important attributes for each token, as ek#aapin figures 4.5 and 4.6. To be

consistent with CPPX and CPPO-CPPX we again used TA as tpetout
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a = 16;

Figure 4.5: Simple code fragment

FACT TUPLE :

$INSTANCE @8 cDefinitionToken

$INSTANCE @9 cDefinitionToken

SINSTANCE @10 cDefinitionToken

SINSTANCE @11 cDefinitionToken

AndThen @8 @9

AndThen @9 @10

AndThen @10 @11

FACT ATTRIBUTE :

@8 { type = CPP_NAME value = "a"
file = "test.c" line = 1
sourceColumn = 1 }

@9 { type = CPP_EQ value = "="
file = "test.c" line = 1
sourceColumn = 3 }

@10 { type = CPP_NUMBER value = "16"
file = "test.c" line = 1
sourceColumn = 5 }

@11 { type = CPP_SEMICOLON value = ";"
file = "test.c" line = 1
sourceColumn = 7 }

Figure 4.6: Example token facts in TA format
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The naming convention used for the token types is the sameeasne used by GCC’s CPP.
Since CPP must tokenize the code it is processing, we modifiedot only output macro related

facts, but tokenized code facts as well.

4.2 Macro Classifications

We have classified macro use into almost two dozen typedasitaithose found in Ernst et al. [5].
Our taxonomy is inspired by the styles of macro use that wecewentered in the systems used for

the case study in chapter 6. Presented below is a brief gésorof each of these classifications:

4.2.1 Unparameterized Macros
Simple Constant

The body of these macros expand out to a single constant vEhigvalue may be a numeric value,
string, or character. Expansions that involve negativeeslor extraneous paired parenthetical
marks are included in this classification.

#define VALUE 5

#define WELCOME_MSG *“Hello!”

#define LENGTH ((-(((53)))))

Constant Expression

Like simple constant macros, these macros expand out tosiasdrnvalue. However, their body

may contain arithmetic expressions or type casts, so lotigeasvaluated value is constant. Other
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variables may also be used in the expansion so long as theyoastant values and for every
expansion the same variables are used.

#define FIVE 3+2

#define FIVE (((3))+((1)+1))

#define UHELLO (unsigned char *)"Hello!”

#define SUMAB A+B /*A and B are

constant values*/

Enumerated Constant

These macros could be classified as either Simple Consta@tsnstant Expressions. What sets
these Enumerated Constants apart is their usecasa label in aswitch statement. By being
used in ecase label, we assume the intent was to use the value as an enwonerat
#define VALUE 5
switch(Length) {
case VALUE:

break;

Function Alias

These parameterless macros contain a single word expamsmiding an alias for an already

existing function. A practical use would be to conditiogalkfine an alias for two or more similar
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functions.
#ifdef USEG4BITS
#define SUM Sum64
#else
#define SUM Sum32
#endif

Type Alias

The body of these macros expand out to some C type or typetygled A practical use would be
to provide a common type with an alias to handle portabigues.

#ifdef USE_WIDE_CHAR

#define CHAR wchar

#else

#define CHAR char

#endif

Keyword Alias

The macro expands out to a C/C++ keyword.
#define CURRENT this

#define E extern
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Variable Alias

These macros provide an alias to a global or local variable.
int CurrentBuildingHeight = 5;
#define HEIGHT CurrentBuildingHeight

Keyword Redefinition

The name for this kind of macro is a valid C/C++ keyword, withexpansion of either another
C/C++ keyword or a semantically valid expression relatoséhe macro name.

#define void int

typedef long ulong

#define int ulong

Parameterless Function

These macros mimic parameterless C++ inlined functiong rmhcro expansion may use global
variables so long as these variables are never overshadywnaters in any of the macro expan-
sions.

int Score = 23;

#define TwiceScore (Score * 2)

#define Silly {int x=5; x=x+2;}
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Parameterless Function With Variable Use

Unlike the parameterless function macros, the body of thesero expansions make use of local
variables. Thus every invocation of the macro may use diffevariables, despite being similarly
named.

[*Code snippet from functions A, B, and C*/

int Score = 2; /*Not global*/

#define DoubleScore Score = Score << 2

Empty Declaration

The body of these macros are simply empty. As an example, \ghtrase such a macro to cope
with compilers that do not support certain keywords.
#define static

#define extern

Code Snippet

These macros do not expand out to well formed C/C++ expnessiut instead their expansions
are snippets of code.

#define ENDIT return 0O; }
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4.2.2 Parameterized Macros
Inlined Function

These macros mimic C++ inlined functions that use paramef€he macro expansion may use
global variables so long as they are always the same variable
#define TwiceScore(Score) ((Score) * 2)

#define SillySum(X,Y) (X+Y+1)

Inlined Function With Variable Use

Unlike the inlined function macros, the body of these macqoa@sions make use of local vari-
ables. Thus every invocation of the macro may use differantabsles, despite being similarly
named.

[*Code snippet from functions A, B, and C*/

int Score = 2; /*Not global*/

#define AlterScore(X) Score = Score << X

Function Alias

The expansion of these macros provides an alias for an gleeasting function. A practical use
would be to conditionally define an alias for two or more sanfunctions.

#ifdef FILEPRINT

#define PRINTSTR(STR) fprintf(TheFile, STR)
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#else
#define PRINTSTR(STR) printf(STR)
#endif

Parameterized Code Snippet

These macros do not expand out to well formed C/C++ expnessiut instead their expansions
are snippets of code.

#define ENDIT(val) return val; }

Projection Tuple

These macros take a number of parameters and “filter” sontesof but.
#ifdef DOFILTER
#define A(X,y,z) X
#else
#define A(X,y,z) {X,y,z}
#endif

4.2.3 Conditionals
Excluded Code

This conditional directive always excludes a code segment.
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#if O

#endif

Expressly Included Code

This conditional directive always includes a code segme&hts may also be used to temporarily
include a segment which would otherwise be classified as figtmation segment.

#if 1 && VERSION > 5

#endif

Configuration Setting

These conditional directives do not always include thespeetive code segments, but instead
operate depending on defined macro values at compile time.

#if VERSION > 5 && defined(SOMEMACRO)

#endif
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Header Sentinel

A common technique to ensure a header is only included oto@iscapsulate it with an existential
conditional.

[*Beginning of header*/

#ifndef HEADER_H

#define HEADER_H

#endif
/*End of header*/

4.2.4 Other
Token Pasting

These macros concatenate two tokens together.
#define MAKETYPE(type) typedef int type## type
MAKETYPE(int)

Literal Expansions

These macros make use of the literal string which represleeisparameter(s).
#define ASSERT(EXP) printf(#EXP)
ASSERT(1+3=5);
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4.3 Macro Migrations

While section 4.2 and chapter 5 provide a macro taxonomy actutactural details of the im-
plementation, respectively, more detail of the actual maaigration is required. The migrations
performed by the implementation, along with thoughts alteose not implemented are described

in the following subsections.

4.3.1 Implemented Migrations

For macros classified @&mpty Declaration and Keyword Alias , the migrations per-
formed are to simply do what the preprocessor would have.déméhis case references to the
macro are removed, or substituted with its expansion, msedy.

The two constant typessimple Constants  and Constant Expressions , are mi-
grated the same way. Once the type of the expansion is idfetre declaration is replaced with a

typed assignment of the macro literal to its expansion. éardr terms, say we had the directives:

#define val 5

#define val2 val + 9

They would be migrated to the statements:

const int val = 5;
const int val2 = val + 9;
In the case of akEnumerated Constant , the migration is slightly more complex. Say we

again had the directives:

#define val 5

#define val2 val + 9
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and for the sake of argument, let us assume they were usedgeénlalaels within the same

switch statement. The following statement would be thelte$uheir migration:

enum {
val = 5,
val2 = val + 9
h
Alternatively, if the two expressions were used in caselfaledifferent switch statements,

their resulting migration would be:

//[Somewhere in code
enum {
val = 5
3
/[Possibly somewhere else in code
enum {
val2 = val + 9
2
Macros classified aBarameterless Functions are rewritten as inlined functions. The
type of the original macro’s expansion is used as the newtitums return type, and a function

returning that expansion is created. Say we had the follpwkpressions:

int Score = 23;
#define TwiceScore (Score * 2)

#define Silly {int x=5; x=x+2;}
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We could migrate the twBarameterless Functions as:

inline int TwiceScore()

{
return (Score * 2);
}
inline void Silly()
{
{int x =5, x=x+ 2;}
}

As well, all the previous expansion referencesT@ficeScore andSilly  must now be

appended witlf) .

4.3.2 Possible Future Migrations
Declarative Directives

For macros classified &slined Functions , the migration is similar to that ¢tarameterless
Functions . The only difference now is that there are parameters initleetives. To illustrate,

consider the following directives:

#define TwiceScore(Score) ((Score) * 2)

#define SillySum(X,Y) (X+Y+1)

Assuming the types of all the parametergis , the directives could be migrated as:
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inline int TwiceScore(int Score)

{

return ((Score) * 2);
}
inline int SillySum(int X, int Y)
{
return (X+Y+1);
}

Complications arise when a macro looks likParameterless Function or Inlined
Function type but the variables used in its expansion either refeifterdnt variables, or vari-
ables declared in a scope in which the macro can not be migirstte To clarify, we consider the

directive:
#define AlterScore(X) Score = Score << X

The complications arise AlterScore is called fromFunctionA andFunctionB , and
both those functions declare a local variable calbmbre . Alternatively, if AlterScore is
declared and only used withiunctionA , we still have a problem with its reference to the local
variableScore . In this later case, and if we're targeting C++, then we camgrate the macro to
a position withinFunctionA , as C++ prevents us from declaring functions within funcsio

Both these situations are resolved in the same way, and areotiditions for when a macro
should be classified as eithelParameterless Function With Variable Use orInlined
Function With Variable Use . Instead of referencing the conflicting variables directly

they must now be passed in by reference. In the case of a massified as #arameterless
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Function With Variable Use , the result would be the same but without any original pa-
rameters. Assuming the type used &more andXis alwaysint , the above example declaration

for AlterScore  could be migrated to:

inline int AlterScore(int X, int &Score)

{

return Score = Score << X;

Each call toAlterScore  must then be updated to pass in 8mre variable. We have also
been making the implicit assumption that the parametersegbis forinlined Functions ,
Inlined Functions with Variable Use , andParameterless Functions With
Variable Use macro types are always of the same type. If this is not the ttesethe current
solution, though far from ideal, would be to create enougplidates of the migrated function to
cover the combinations of parameter types. Each duplicatetibon may need to have a different
name, depending on if the variants in parameter lists cambmbiguously distinguished or not.

The final declarative macro style to be discussed isviugable Alias type. As long as
the variable being aliased is in scope for all the originatraa@xpansions, and the target language
C++, we can migrate the given macro as a reference to the degarariable. For example, if we

had the expressions:

int CurrentBuildingHeight = 5;
#define HEIGHT CurrentBuildingHeight

we could migrateHEIGHTto:

int &HEIGHT = CurrentBuildingHeight;
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However, if we were to target C, or if the aliased variablenged, we would simply migrate
the macro to a pointer reference. The migrated referencédvimmuassigned to the pointer of the
variable being aliased, and all references to the origix@diesion occurrences would then need to
be dereferenced. This is assuming that in the case of treedli\ariable changing, the type of the
aliased variables remained the same. If the types of theeglisariables change, then we could
create multiple instances of the migrated macro. Each sustance would reflect the different
types required, have a different name, and the appropngi@nsion instances would be renamed

accordingly. Obviously a lot more work is required should types involved change.

Conditional Directives

Among the conditional directive classifications, t@enfiguration Setting type is the
most difficult to migrate. Unless the code within the corafifil directive’s parts are valid state-
ments, it is assumed that migrating the conditional woutpire a significant amount of refactor-
ing and would be suited more to a tool specifically meant forfigoiration management.

Otherwise, an approach to migrating this type of conditiovauld be to simply convert it into
a normal C conditional, where possible. If the conditiongpears outside a C block, then we
could simply include all the parts of the conditional, ah preprocessor had evaluated it to both
true and false. Of course this can only work if the code in #spective blocks do not conflict
with each other. For example, in the situation of a condélafirective being used to choose a
function declaration, we again find that the migration isr@tessarily possible. The difficulties in
dealing with code that uses conditional directives are Wwsdwn, and due to these difficulties no
satisfactory migration approach is suggested in this shesi

Dealing with the other conditional directive classificasas much simpletdeader Sentinels
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can not be migrated, unless one usé#pegma directive that emulates the same effect. Depend-
ing on the intent behind code that is expressly included oluebed using conditional directives,
we could simply keep or remove the affected code. ForBkpressly Included Code

type, if the directive appears within a C block, the diregtiwuld be migrated into a regularifC
statement. However, if the intent behind explicitly indlugl or excluding code is to allow an easy
means of choosing whether to include or exclude the affecbel@ blocks, then such directives

should not be migrated.

4.3.3 Current Unknown Migrations

The remaining macro types from section 4.2 that were notudsed in sections 4.3.1 or 4.3.2
are not presented with any suggested migrations in thissthésowever, it is expected that in
generalCode Snippet , Token Pasting , andLiteral Expansion macro types to be

impossible to migrate. However, approaches to migratiegéimaining types may be possible.
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Implemented Architecture and Framework

The implementation of the outlined migration process csissnf three main phases. First there
is theFact Extractorphase, then thkligration Enginephase, and finally th8ource Transformer
phase. Each phase in the migration pipeline is associatbdavgorresponding architectural com-
ponent in the high level architecture (figure 5.1).

TheFact Extractoranalyses the input source and creates a fact database rit@nhsanforma-
tion about the code. Included in this database are the ¢atrdacts from the compiler’'s abstract
syntax tree. As well, facts about the operation of the preggsor and all the tokenized lexical data
from the source code is included.

Most of the analytical work is done in thdigration Engine This component takes the facts
created by thd=act Extractorand determines all the transformations necessary to migath
macro.

Once theMigration Enginehas completed, th8ource Transformeuses the generated trans-

formations to migrate the original code.
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Figure 5.1: High Level Architecture
5.1 Document Conventions

For the purposes of this chapter on the implemented artchiteand framework, the following
conventions will be used:
When discussing an architectural component that corretstora component found in a figure,

italics will be used in the name of said component.

5.2 Fact Extractor

The Fact Extractor, whose high level architecture is shawb.2, begins by using CPPX and
CPPO-CPPX to extract the C/C++ ASG facts, macro facts, antteaode token facts. Each of
these three sets of facts are initially represented by teparate TA fact files. Remembering that

the fact extraction is repeated for every compiled soureg difter each set of facts is generated
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Figure 5.2: Fact Extractor Architecture

additional prep work must be performed.

First, each node in the fact files is provided with a unique @@mnappending the filename of
the original source file and a fact type specifier (originaacno, token) to the name of each node.
The fact type specifier has no purpose other than the guardmeeuniqueness of all the node
names. Once that is done, the three fact files are mergechergdirom there all references to
files that we are not interested in, such as the standardsystaders, are removed. This removal
is accomplished by maintaining a list of the source files tude in the final facts, and simply
removing references to everything else. We then add these tiathe entire system’s factbase,
represented by the componetimal Factsin figure 5.2. In all likelihood duplicate facts will have
been added, and so we search for nodes whose type and atrdretthe same. These duplicate
nodes are then removed and references to the removed neddsaaiged to the remaining one.

Most of the manipulation of the fact files is done using Grok [8ith the node duplicate

removal being done through a tool written specifically fas fhurpose.
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After the system has gone through all the compiled source ditel built the factbase for the
system, the process is finished by creating a block depepdgaph using th&lock Graph Cre-
ator. This graph is created by using tRk@al Factsto determine where each block lies in the
original source. Within th&inal Factsevery pair of fact nodes representing “curly” braces is lo-
cated. Every code block inferred from these node pairs is &xamined to determine the type of
that block. By looking at the facts which relate to the blacieéspective beginning line number,
the block type can be determined. This block graph is thenedtim a separate file.

An intentional omission from figure 5.2 are components regméng the macro dependency
graph and its creator. For the current implementation, were found to be unnecessary. However,
as more macro classification types are handled we will nedédae the specific order in which
to migrate them. To do this, a graph of all the macro dependsnas defined in section 3.1, will

be created and used by tBeiver of the Migration Engine

5.3 Migration Engine

The heart of the implementation is contained within this poment (figure 5.3). This component

is responsible for determining the type of each macro andtbdvansform them.

5.3.1 Diriver

TheDriver’s responsibilities begins with using théal FactsandBlock Graphto decide the order
in which to process the macros. If there was a macro depepdgaph, that would be used to find
small subgraphs of dependent macros. These subgraphs eanddt of dependent macros that

must be processed simultaneously for the resulting tramsfions to give valid and compilable
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results.

Once the macros are divided up into these work allotmergftiver waits for theCoordina-
tor to collect the transformations necessary to migrate evagran After this finishes, thBriver
allows eaclSecond Stage Singlettmperform their necessary processing and transformagan g
eration. Finally, thériver uses th@ransformation Storéo create th@ransform File This file is

used by theSource Transformeto specify the migration steps that it needs to take.

5.3.2 Coordinator

For each macro, the classification to apply to it is deterchiioe the Coordinator. This is done
by giving the macro node name tdCdassification Workerand having it determine the best clas-
sification type for the given macro. With the macro classiftrareturned to th€oordinator, the
Coordinatorgathers any extra facts and then generates the transformatecessary to migrate
the original macro. These later two steps are also perfoleding aClassification Worker

The Coordinatoraccomplish these tasks by create a 1-1 mapping of threadassification
Workers In terms of figure 5.7, we call these thred@igordinator Threads Each thread in the
Coordinatoris responsible for processing a single macro at a time. Fdr escro, the thread
requests from the associat€thssification Workethe macro’s classification, fact refinement, and
finally the required transformations. Once done, the theshs the resulting transformations to
the Transformation Store

It may also discover from th€lassification Workethat, in addition to the required transfor-
mations, certain second stage operations need to be pedorithis information is returned to
the thread in th€oordinatoralong with the required transformations. The correspan8iecond

Stage Singletors then updated with the necessary information for latecgseing.
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Due to the time required for each of the three requests madedsy thread in th€oordinator,
the Classification Workersnay be distributed to other machines. To this end, eachdhrethe
Coordinatoruses XML-RPC to communicate with its respectiMassification Worker

The choice of XML-RPC was due to the simplicity of the protoicoplementations and the

availability of libraries.

5.3.3 Transformation Store

This component is responsible for collecting all the transiations generated by ti@oordinator.
As each transformation is added it is sorted with the resintaiming an ordering based on the file
name and affected line number of the transformation.

The Transformation Stores also responsible for writing out tAigansform File

5.3.4 Second Stage Singletons

Certain operations need to be deferred until after theainitiacro processing is completed. This
component contains singleton structures necessary tectsllich information.

For example, when handling simple constant macros thahfggloenum statements we want
to group those macros together in a reasonable fashiors@ssdied in section 5.3.4. For this to oc-
cur we need to examine the results of first processing eaclhontaefore creating the enumeration
transformations.

Since this information is derived from the transformatiathgring phase of each thread in
the Coordinator, we decided to use singletons for the sake of conveniencece @ach macro
has been processed in the first processing stage and thesfamaations collected, th®econd

Stage Singletonsomplete their necessary processing and add the resuttingformations to the
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Transformation Store

Arguably the threads in th€oordinatorandClassification Workershould be used to handle
the processing cost incurred by ea8hcond Stage Singletonork. However, in the current
implementation the processing cost was minimal and thudigtebution of work was found to be

unnecessary.

Enum Factory

Currently only a singléSecond Stage Singlettias been required; that being thaum Factory
When a macro is used within a case label and will be migratiedan enumeration, the migration
is not performed in isolation as with all the other curremtiyplemented classification types. While
the migrated macro could be placed into an enumeration wily the one value, it is likely that
there are other migrated macros that would logically belarthe same enumeration as the first.
The Enum Factonyis given the name and value of each such macro and groups tusthnér
based on in which switch statements each macro was used. thmoeacros have all been pro-
cessed and th8econd Stage Singletohegin their processing, thenum Factorycreates a list
of transformations where macros used in the same switcanséaits are migrated to the same

enumeration.

5.3.5 Classification Worker

The Classification Workers a separate process from thever that communicates with th€o-
ordinatorvia XML-RPC. EachClassification Workeis a stateless entity that, given a macro node
or Classification Typewill perform the desired operation and return the resudiskito theCoor-

dinator. EachClassification Workeonly services one request at a time. A diagrammatic overview
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of the Classification Workers given in figure 5.4.
There are three RPC method components in this frameworlCledmesifier, Fact Gathereand

Transform Generator

Classifier

TheClassifieris responsible for determining the classification type of&r, given a macro node.
This is done by first creating a generic list of all @@assification Typegepresented as flyweight
objects. Eacl€lassification Typesbject is asked in turn through i@ assification Checkgffigure

5.5), if the macro fits its respective classification craeflhe list of matched criteria is then taken
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and a heuristic is applied to choose the “best” classifiodtiom the possible choices.

Once we determine the “best fit” classification, a clone ofdabeesponding flyweigh€Clas-
sification Typeobject is created and returned to tBeordinator We note that in returning the
cloned object there will also be some stateful informatetmimed with it, such as the macro value
or macro type. The next time ti@assification Workers used, this information is reset, though
it will of course persist in the clone that was returned to @oordinator for the next request it
makes.

One of the intended consequences of using this generic ohethmanagingClassification
Typeobjects, is the ability to use different versions of the saassification. A good use of this
would be to select the flavour of C/C++ that we target. Trams&dions that are perfectly valid
in C++ would not necessarily be valid in C99, for instanceteAlatively there are things that the
GNU GCC compiler will do that other compilers can not, andriredularity of theClassification

Typeobjects allows the flexibility to choose the target envir@mm

Fact Gatherer

Given aClassification Typ®bject, theFact Gathereruses it to collect or infer facts not required
for classification or directly necessary to generate t@nsdtions. The updated object is returned
back to theCoordinator.

While not strictly necessary, as this method could be meirgeckither theClassifieror Trans-
form Generatorwe introduce it as a means to increase the granularity ofvtr& performed by

eachClassification Workeper RPC call.
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Transform Generator

The Transform Generators responsible for generating the transformations necgssanigrate
the original macro associated with the given classificatype object.

Whatever information that is necessary to migrate the maard has not yet been discovered
by either theClassifieror Fact Gatherey will be done so in this component. For example, sim-
ple constants have their expansions recorded and type iabl@ato create inferred, which is all
gathered during the classification stage by@hassifier Determining the declaration line is han-
dled by theFact Gatherer.Other information regarding placement of the migrated masuch as
resolving naming conflicts or placement conflicts, is deteed during the transformation stage.

The transformations are presented as a generic list offtnanation objects, sorted by file and
line. This list is returned to the callinoordinator.

Similar to theFact Gatherer this component does not do any of the work directly, butdadt

delegates it to the give@lassification Type

Classification Worker XML-RPC Interface

The XML-RPC interface used by th@oordinator-Classification Workenterface is a very simple
one and unsurprisingly corresponds to the three main subooents of the€lassification Worker
For the sake of being thorough, and to provide part of a ce@dramework API, we present this

XML-RPC interface:
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ClassificationTypé&lassifyMacroNode(macroNodestring)

macroNode The node in the fact base corresponding to the macro déokara
of the macro we wish to determine the classification of.

Returns: A Classification Typ@bject of the determined classification type.
This object will contain some facts specific to the macro ehejing

on the classification type and the information required &ssify it.

ClassificationTyp&atherMacroFacts (macroData ClassificationTypg

macroData TheClassificationTypéor the macro we are currently processing.

Returns: A Classification Typ@bject with the updated datum stored in it.

list<Transformations GenerateTransforms(macroDataClassificationTypg

macroData TheClassificationTypéor the macro we are currently processing.
Returns: A list of Transformatiorobjects representing the required transformations

for migrating the macro associated with the input parameter

5.3.6 Classification Type

For each classification type (section 4.2) that the systemdlba, a correspondinglassification
Typeclass will exist. Each of these classes derives frdbfessification Typénterface class, which
is described here and in figure 5.5. To avoid clutter in figueeabsymbol was used to represent
them x n use of theConflict Resolvesubcomponents by tHaterfacesubcomponents. By this it
is meant that eachterfacesubcomponent makes use of ev@uynflict Resolvesubcomponent.
There are three main parts to tBéassification Type&lass: thenterface Conflict Resolvers

and theClassification Facts
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Interface

As alluded to in section 5.3.5 most of the work done byGHessification Workers through using
theClassification Typelass'sinterface Corresponding with the three RPC requests foGlaessi-
fication Workerthelnterfacecontains &Classification Checker, Fact GatherandTransformation
Generator

The Classification Checkeof a Classification Typelass is responsible for deciding if a given
macro is of the classification type associated with thatscl&ertain classification types can be
ruled out if theClassification Checkeis aware of the previously matched classifications for the
macro by otherClassification Typeslasses. While strictly not necessary, the list of previpus
matched classifications is used to avoid duplicating theredff prior classification attempts. For

example, if a macro is a Simple Constant (section 4.2) bulsis ased in a case label, then we
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ultimately want the macro to be classified as an Enumeratett@ot type. TheClassification
Checkerfor the Enumerated Constant type simply looks through thkiergmatched list, and if it
determines that the macro was matched as a Simple Consthanisad in a switch statement, it
then knows that the macro should be classified as an Enurd€Zatestant. It is up to th€lassifier
in the Classification Worketo ultimately favour the Enumerated Constant type over ingpte
Constant type. This optimization also implies that the ordevhich theClassifierqueries each
Classification Typelass is significant.

As described in section 5.3.5, tikact Gathererand Transformation Generatoactually per-

form the work delegated to them from thélassification Workesubcomponent's counterparts.

Conflict Resolvers

The Conflict Resolverare helper libraries used by ti@assification TypesCurrently only two
are necessary, though it is possible that as more clasgfidgtpes are implemented, more shared
resolvers will be needed. Ea€onflict Resolvers shared amongst all the varioGsassification
Typesas opposed to individual resolvers tailored for spe€ifi@ssification Type
When trying to determine a declaration line for the macroyweinto conflicts such as those
described in section 3.3. THeclaration Line Resolveexamines an initial line and returns the
closest line in which a macro may be safely declared, folhgwthe rules outlined in section 3.3.
Similarly, theName Conflict Resolvéakes the macro node and intended declaration line and

returns a list of nodes that would conflict with the intendednated declaration.
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Classification Facts

This subcomponent is simply a data store of all the datumiredjuo migrate the given macro

type.

5.4 Source Transformer

Once we have generated all the transformation steps negdesaigrate the macros of a given
system, we then proceed with performing the source codsftranations. TheSource Trans-
formeris a process which uses the generalemhsform Fileand actually migrates the code, as
seen in figure 5.6.

Each transformation in théransform Fileis processed individually. For the current file being
processed, th8ource Transformeskips to the line of the next transformation to perform. A lis
of the token nodes corresponding to this line is gathereah fitee facts and the transformation is
performed on that list. We continue on to the next transfeéionaso long as it affects the current
line. Once we have exhausted all the transformations fozuheent line, the resulting list of tokens

is converted back into plain text and written to the outpuirse file.

5.5 Process View of Architecture

The described architecture consists of a number of prosesskthreads. To clarify the process
view of the system, we present the following description.
As would be expected from their architectural diagrams aggtdptions, the process views

of the Fact Extractorand Source Transformeare a straightforward pipeline with each labelled
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architectural component being a separate process. Theimeresting run-time architecture is in
theMigration Engine

Within theMigration Enginethere are two processes, thaver and theClassification Worker
Since theClassification Workeruns as a separate process and uses an XML-RPC interfase, it i
intended that each instance of it execute on a differenesysir cpu. Inside th®river, the
Coordinator is responsible for creating and managing ©eordinator Threadswhich actually
communicate with th€lassification Workers

To help balance out any differences amongst the systemswitireClassification Workersa
pool is kept which containing handles to e&lassification WorkerThis pool is called thélandle
Poolin figure 5.7. EaclCoordinator Threadchooses a handle from this pool every time it makes
a RPC request, placing the handle back into the pool wherathes clone.

An illustration of the process view for thdigration Enginecan be seen in figure 5.7.
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Chapter 6

Experimental Results

To demonstrate the usefulness of our system, we chose onleasii@ne medium sized program
as test cases for our implementation. Chosen were the teéat ®th, version 3.0, and the eternal
game of Nethack, version 3.4.0. We intentionally chose derolersion of Vim for its size. Both
programs were built using a standard configuration for x8tukisystems.

In the current system we have implemented six macro claasdits: Simple Constants, Enu-
merated Constants, Constant Expressions, Parametedestsdns, Keyword Aliases, and Empty
Declarations. Descriptions of these classifications cafioied in section 4.2.

As mentioned in section 5.2, the fact extraction of the ddtnplementation deviated slightly
from the method given in section 3.1 in that there was no mdependency graph. As a result,
only a single macro was migrated at a time, as opposed tofotgroups of co-dependent macros.

Our experiment covered both sources and headers for eadmadnd Nethack. Due to their
respective sizes we were able to use a single factbase fogrniereas Nethack required three. A

rough limit of 200M was imposed on each factbase so as to erisarfacts and all the temporary

83
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storage required for processing could fit within the authpersonal PC’s memory of 750M. The

fact extraction was performed on a per C-file basis. Netlsaititee factbases therefore contain
no duplicate macro information for macros declared in C figdhough they do contain duplicate

information about macros declared in the headers.

The results of the experiment are summarized in table 6. apldined in table 6.2.

| Metric | Vim | Nethack |
# of Files 51 195
KLoC 26 108
Declared macros 493 3625
Simple constants 139 1822
Enumerated constants| 193 648
Constant expressions | 0 41
Parameterless functions 0 16
Keyword alias 1 2
Empty declaration 12 102
Can not migrate 0 15
Ancestor declaration 150 61
Move to common scope O 0
Decl. around first 1 24
Orig. interlacing decl 0 0
Name conflict 4 4

Table 6.1: Results of experiment on Vim and Nethack

6.1 Discussion

From the summary we notice some interesting things. In bggtems the relative number of con-
stants is about 68%, which is close to what we would have g¢&gdeas given in the literature [5].

The number of declarations that needed to be migrated tocstor scoping block was surprising
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at first.

Upon closer inspection we saw that in Vim, most of these nsgvere declared within a
structure initialisation that defined editor commands.idaghis initialisation, 144 macros were
declared after each initialized value as a sort of enunwrdtr each command entry. More-so,
most of these entries were in fact migrated as Enumeratedt@uts.

Within Nethack we observed that the majority of these kinfdaacro declarations were found
in two structures. These structures described propertiestanonsters and objects within the
game and the macro’s declared within them were used as cisstedescribe various attributes.

The number of macros migrated to a common scope, being zebofio applications, indicates
that they are fairly well behaved when it comes to taking ativge of the different scoping rules
between C and CPP. This is also the case when consideringnhe sumber of macros whose
declaration was interlaced with a C statement.

We would expect that naming conflicts indicate an error indb@e. Upon further inspection
however, it was found that a few constants were simply reddfwith equivalent values. Further-
more, the number of macros that could not be migrated wasreelly surprising. This should
have meant that there were some serious problems with theethaticould not be solved without
significant refactoring. In actuality, a combination of Buand restrictions in the algorithms used
were the causes of these macros being marked as impossitiigrate. We further discuss the
issue in section 6.2.

The remaining tables, from table 6.3 onward provide a dsdalireakdown of each macro

classification type and the migration metrics associatell ivi
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6.2 Confessions

The end result of running the implementation on Vim and Neltrghould have been compilable
sources that ran as the originals did. Unfortunately, wthis was not the case, out of the 2859

macro migrations only 4 were incorrectly migrated.

6.2.1 Nethack

After some fixing by hand, we were able to get Nethack to coenpgilowever, none of the prob-
lems encountered were unexpected or unknown. Due to timsradmis a number of assumptions
about the code given to the implementation were made. Fangbea it was assumed that a mi-
grated macro would not ever be declared betwegota and thegoto ’s target, like the situation
discussed in section 3.5. We found quite that a number of t@ohExpression and Parameterless
Function macros were dependent on other macros. Sincewasraeo macro dependency graph, it
is not surprising that the declarations of the migrated wserere not in the order they needed to
be in to satisfy all the dependencies.

Only one such instance could not be resolved by simply reging the migrated declarations.
The declaration for the functiamhell() in file dungeon.h needed to be moved into a sepa-
rate file. Due to the dependencies betwdengeon.h andyou.h (which the function requires),
there was no way to fix the code without some significant refang. The easiest change was to
remove the function frodungeon.h and put it in itis own header file and then include the new
header file where appropriate.

There were also an odd issue with implicitly casting betwelgsr* andconst char *

Nethack frequently uses the conditional opera®t to determine things like which string to use
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in a given situation. For example, @at.C , the taste of food changes based on whether or not the

player is hallucinating:

pline(Hallucination ?
"Oh wow, like, superior, man!"

"That food really hit the spot!")

After the migration process, a number of these kinds of dals requiredchar*)  casts
to be put in front of the strings, especially when a migratedr was used for the string. However,
it was not always necessary to do so and no obvious pattethdgsroblem emerged. Adding in
the(char*) casts, where the compiler felt it necessary, was the singblgisn to the problem.

It was very surprising to discover that, according to théesys some of the macros could not be
migrated. It was later discovered that they were all errasgomarked as such. For some of these
macros, the restrictive nature of the placement algoritisedun the implementation prevented
their successful migration. Consider the case when theitotaf the original macro declaration is
deemed to be a good spot for the migrated line. If that detober & within a structure, for example,
then we must relocate it. Currently, the system will only gider placing the declaration before
the offending structure block. However, if the macro refees the structure then the migrated line
should be placed after the structure declaration. At thistpo time, the system does not do this
and consequently marked a number of macros in this situatidoeing impossible to migrate.

For the other erroneously marked macros, they were corglderpossible to migrate due to
bugs in the system. In some instances the Parameterlessdruciassification object was overly
zealous and marked some macros as impossible to migrate, iwteith they should have been
classified as a Parameterless Function With Variable Uskttred classification type object been

implemented). As well, some of the macros were used as altasgccess member variables of
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structures, which the system did not catch and ultimatetyd#el were impossible to migrate.

6.2.2 Vim

Compared to Nethack, Vim was very well behaved and only tvablems with it were encoun-
tered. The first problem was with a Function Alias macro thas wlassified as a Parameterless
Function. Although the Function Alias macro classificatwas not implemented, the misclassi-
fication itself should not have caused a problem. In thisi@agr instance, the return type of the
migrated method was incorrect due to the system gettingisedfby the unusually complex return
type for it. After some time spent trying to get the corredtire type, the declaration was reverted
back to the original preprocessor directive.

The final problem actually occurred during the source mignaphase. In the filéerm.h
there are a number of lengthy multi-line strings represgntiermcap entries. Due to a bug in the

source migrator, we were not able to successfully migragseimacros.
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| Metric | Explanation |
# of Files Number of C and header files in the application
KLoC Number of uncommented source lines
Declared macros Total number of declared macros
Simple constants Macros classified as Simple Constants

Enumerated constants| Macros classified as Enumerated Constants
Constant expressions | Macros classified as Constant Expressions
Parameterless functionsMacros classified as Parameterless Functions

Keyword alias Macros classified as Keyword Aliases
Empty declaration Macros classified as Empty Declarations
Can not migrate Identified number which can not be migrated, or can not be

migrated without significant refactoring
Ancestor declaration | Migrated macros placed in a scoping block that was an|an-
cestor of the original declaration. This occurs when thgiof
nal declaration block will not allow the migrated declaoati
such as in the middle of a struct (in C).

Move to common scope Migrated macros that were declared in one C block, but used
in a non-ancestor C block, requiring the migrated declanat
to be located in a common ancestor block
Decl. around first Migrated macros whose final declaration was made right be-
fore the first expansion
Orig. interlacing decl | Macros that were originally declared in the middle of g C
statement
Name conflict Migrated macros whose final declaration would have caused
a name conflict with some other entity

Table 6.2: Explanation of metrics

| Metric | Vim | Nethack |
Simple constants 139 1822
In-place migration | 119 1740
Ancestor declaration 13 58
Name conflict 4 4

Table 6.3: Details for simple constant macros
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| Metric | Vim | Nethack |
Enumerated constants193 648
In-place migration 56 646
Ancestor declaration| 137 2
Name conflict 0 0

Table 6.4: Details for enumerated constant macros

| Metric | Vim | Nethack |
Constant expressions 0 41
In-place migration 0 38
Ancestor declaration 0 1
Name conflict 0 0

Table 6.5: Details for constant expression macros

| Metric | Vim | Nethack |
Parameterless function O 16
In-place migration 0 12
Ancestor declaration 0 0
Name conflict 0 0

Table 6.6: Details for parameterless function macros

| Metric | Vim | Nethack |
Keyword alias 1 2
In-place migration 1 2
Ancestor declaration 0 0
Name conflict 0 0

Table 6.7: Details for keyword alias macros
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| Metric | Vim | Nethack |

Empty declaration 12 102
In-place migration 12 102
Ancestor declaration 0 0
Name conflict 0 0

Table 6.8: Details for empty declaration macros



Chapter 7

Conclusion

We have explored within this thesis a unique approach toatiigy C preprocessor directives into
C/C++ code, while focusing on readability and maintaingbilThis approach involved extract-
ing facts about the macros in the system, determining how e@acro is being used, and then
generating a set of transformations in order to migrate theras into C/C++ code.

We describe the operation and capabilities of our impleeteaystem, as well as the next steps
in its evolution. To demonstrate the value of our implemtata the code for two applications
was processed with our system and some metrics on the regstrinsformations recorded.

We know that our implementation is currently able to migmatggnificant number of macros
in the average application. With some more work we intenchtogase the migration rate to the

large majority of macro instances within an average apptina
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7.1 Future Work

Despite the minor bugs encountered, the positive resultseotase study encourage continuing
development of the system and theory behind it.

Currently, our system only implements a few of the many magpes given in section 4.2.
One of the obvious improvements would be to continue implaing the remaining macro classi-
fications. In particular, attention needs to be given to theddional preprocessor directives. Apart
from the known difficulties in dealing with configuration negement, the handling of conditional
directives may have a significant impact on the process aitacture of the system. For exam-
ple, consider the situation of conditional directives lgemigrated before other the macro types.
In this case we would not need to worry as much about the pleneaf the other migrated macro
declarations, at least when it came to ensuring that theg wéhin the original conditional.

Very little time has been spent on trying to optimise the miigm process. It could be beneficial
to explore techniques in pre-selecting macros to migraite, tive intent of speeding up the overall
processing time. The smaller the factbase used, the fast@rocessing will be. If we could select
macros within small groups of files to migrate, instead of ¢hére system at once, we should
be able to improve the overall migration time. Alternatiwedome optimisations could be found
in changes to the Grok interpreter. Currently, only a siregieironment is used by grok. What
this means for us, is that it is difficult to isolate minimatsef data to work with. It would be
convenient if we could invoke multiple environments witldnok, with some means of transferring
data amongst them. One environment could contain facth®entire system, whereas another
could consist of facts for a single file, for example. The téky in doing this would allow us

more optimisation options with our data and data queries.
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