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Abstract

We study the problem of finding optimal transmission policies in a point-to-point energy
harvesting communication system with continuous energy arrivals in causal setting. In
particular, we investigate bounds on the long-term achievable average throughput and
corresponding power policies, where energy packets of random size arrive at the transmitter
at random times, modelled as a compound Poisson dam.
In this work, we also account for battery life and quality of service of the users. We
thus formulate non-linear constrained maximization problems. Specifically, we limit the
instantaneous battery depletion rate (i.e., transmission power) as well as its variation to
account for prolonging the battery life. Moreover, we limit the variation of instantaneous
throughput to maintain it to a constant level to account for improving the quality of
service.
Using the theory of calculus of variations as a powerful mathematical tool, we derive
necessary conditions in the form of first order non-linear ODEs, for local and thus global
optimality of solutions to the optimization problems. We also obtain numerical as well as
analytical upper bounds for the problem of constrained proper functions of transmission
power. Numerically solving the ODEs for the case of a Gaussian channel, we also compute
achievable throughputs and locally optimal power policies as a function of battery capacity
and remaining battery charge, respectively.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A wireless sensor network is a group of small, lightweight wireless nodes, deployed in large
numbers, interconnected by wireless networks. These nodes gather information about
physical or environmental conditions, such as temperature, sound, pressure, humidity, etc.
Recent advances in micro-electro mechanical system technology has made the building
of these sensors possible. Each node consist of three main parts: i) a sensor part that
senses the environment and gathers information, ii) a processing part that processes the
sensed data, and iii) a communication part that enables the node to communicate with the
neighbouring nodes. Due to the small size of each node, each individual node has a limited
sensing region and processing power. However, since these nodes collaborate on collecting
data, a large group of them can accurately monitor a wide region.
Wireless sensor networks can be used in different areas including health care [5], utilities,
and remote monitoring. Wireless sensor networks open new possibilities in health care
because they can collect data in a less invasive manner compared to other methods. They
are also cost efficient which makes them a good choice for utilities, such as electricity grid,
street lights, and municipal water. Remote monitoring applications include:

• environmental monitoring of air, water, and soil [6],

• structural monitoring for buildings and bridges [7],

• industrial machine monitoring [8],
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• process monitoring,

• asset tracking.

1.1.1 Issues and Challenges in Designing a Sensor Network

The major issues and challenges in designing a sensor network are as follows:

• Each sensor can be located in a random spot and in general the whole sensor network
doesn’t need to conform to a regular topology. Once deployed, human intervention
would be costly. Hence, the setup and maintenance of the network should be entirely
autonomous.

• Available energy is one of the biggest concerns in operating sensor nodes. Due to
remote location of sensors, they usually rely only on their battery for power, which in
many cases cannot be replaced or recharged. Consequently, one should consider the
available energy as an important factor while designing protocols. There are several
works on this topic which let the designer to sacrifice the accuracy and transmission
rate in favour of conserving energy.

• The detected events by the sensor nodes should be temporally ordered without ambi-
guity. Hence, all the sensors should be synchronized with each other, so that TDMA
schedules can be imposed.

• The routing protocol used in a sensor network should be able to dynamically add
or drop sensor nodes in their paths. This is an important factor since the failure of
nodes is frequent and new nodes are added in replacement.

• Real-time communication over sensor networks must be supported through provision
of guarantees on maximum delay, minimum bandwidth, or other QoS parameters.

• Since sensor networks have many military application, they often use secure protocols.

1.2 Energy Harvesting

Energy sources such as solar energy, wind energy and mechanical energy can often be found
in abundance in the environment. However, unlike the energy from fossil fuels, the energy
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from these sources is often found in many small and unpredictable amounts. Due to this
fact, until recently, these sources have not been considered as viable sources of energy to
perform useful work.
Energy harvesting is the process by which minute amounts of energy are derived from
external sources, and accumulated and stored for later use. As mentioned in section 1.1,
wireless sensors use batteries as their source of energy and in most applications battery
replacement is cumbersome or almost impossible. This issue can be solved by equipping
the nodes with energy harvesting technology [9].

1.2.1 Common Sources of Energy Harvesting

Energy harvesting methods can be classified based on the source of energy that is scavenged.
We list the most common renewable sources that are utilized.

1. Mechanical Vibration: Vibrations can be typically converted to electrical energy
using three mechanisms: piezoelectric, electrostatic and electromagnetic.

(a) Piezoelectric Materials: These materials have a unique property that lets them
generate electrical energy when a mechanical load such as pressure or force is
applied on them. Due to this property, piezoelectric materials have become a
viable source of energy in energy harvesting. The earliest example of using these
materials was extracting electrical energy from the impact of dropping a steel
ball bearing onto a piezoelectric transducer [14]. Age, stress and temperature
can affect the properties of piezoelectric materials. One of the advantages of
using these materials is that they can generate electrical energy without relying
on any other additional components. On the other hand, these materials are
fragile and are prone to charge leakage [15].

(b) Electromagnetic Energy Harvesting: This method utilizes the principle of elec-
tromagnetic induction to generate electrical energy. One can generate electro-
magnetic induction for energy harvesting with the help of permanent magnets,
a coil and a resonating cantilever beam [16].

(c) Electrostatic (Capacitive) Energy Harvesting: In this method electrical energy
is generated by moving the plates of an initially charged varactor. Unlike piezo-
electric materials, an initial source is needed to charge the capacitor. However,
compared to the first two methods, electrostatic energy harvesters are cost effi-
cient as they do not require a magnet or piezoelectric material that can be quite
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Figure 1.1: Mechanical-to-electrical converters [11]

expensive. Consequently, electrostatic energy harvesters can be an attractive
solution to develop low-cost sensor networks.

In most cases, piezoelectric and electrostatic devices are used for small scale energy
harvesters, while electromagnetic converters are utilized for larger devices. Figure 1
illustrates the three methods mentioned above.

2. Thermal Energy: Thermoelectric generators are able to generate electrical energy
from temperature differences based on the principle of thermoelectricity. In [20] a
method to generate electrical energy based on the temperature difference of soil and
air is presented. Thermoelectric generators are considered to be reliable and usually
require low maintenance. However, as indicated in Table 1.1, they have low energy
conversion efficiency and due to this their usage is limited.

3. Solar: Light energy usually obtained from sunlight can be converted to electricity
by photovoltaic cells. These cells exhibit a property called the photoelectric effect
that allows them to absorb photons of light and generate electricity. This effect
was first discovered by the French physicist, Edmund Bequerel, in 1839 and the first
photovoltaic module was built by Bell Laboratories in 1954 [17] [18]. Compared to
other methods of energy harvesting this method provides the highest power density as
shown in Table 1.1. However, in this method the supply of energy is not guaranteed
to be always available and it’s much dependant on weather conditions and daylight.
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Table 1.1: Energy Harvesting Sources [19]

Harvesting Method Power Density

Solar Cells 15 mW/cm3

Piezoelectric 330 µW/cm3

Vibration 116 µW/cm3

Thermoelectric 40 µW/cm3

1.3 Effect of Discharging Pattern on Battery Life

The capacity of a battery or battery capacity is the amount of energy that can be stored in
a battery, and is typically measured in either watt-hours (Wh) or kilowatt-hours (kWh).
Battery capacity can also be measured in units of (Ah) and is defined as the number of
hours for which a battery can sustain a current equal to the discharge rate at a fixed
voltage called the nominal voltage of the battery [2]. However, the actual drain pattern
can dramatically change the rated battery capacity that is reported on the battery data
sheet. In the following we discuss battery capacity under different loading patterns.
In almost every battery the available capacity is highly dependant on the rate of discharge.
Discharging the battery with a high discharge current can reduce the amount of energy
that can be extracted from the battery or in other words it reduces the capacity of battery.
Fig 1.3 approximately shows the output voltage of a typical battery as it is discharged with
different values of continuous currents. A figure showing accurate values can be found in
[10]. It can be seen that when discharge current is low and close to the rate stated in the
battery data sheet the full capacity can be accessed before the voltage drops precipitously
while for high discharge currents, the effective capacity in the battery is reduced [10].
There are many applications that require the battery to provide momentary loads at high
power. GSM (Global System for Mobile Communications) for a mobile phone is such an
example. However, compared to a continuous discharge rate, a pulsed discharge rate can
dramatically decrease the number of cycles that a battery can be used before its capacity
is diminished [3]. Fig 1.3 roughly shows the number of cycles a battery can last under
different load conditions. The graph with accurate numbers can be found in [12].

1.4 Literature Review

In this section, we summarize various studies regrading energy management in energy
harvesting. In general the efforts in the this area can be categorized into two scenarios:
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Figure 1.2: Continuous Discharge Patterns.
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Figure 1.3: Cycle life of battery under different load conditions.

• Offline scenario: Investigations that lie into this scenario assume that all the informa-
tion regarding the energy harvesting profiles of the nodes are known deterministically
before the transmission starts. In particular, all the results are deduced based on
the prior knowledge of the exact arrival times and the amount of harvested energy.
Although these results may not have practical application due to the unrealistic as-
sumptions, One can use them as an upper bound for the achievable performance in
more realistic scenarios.

• Online scenario: In this scenario, the device only has causal knowledge of the energy
harvesting profiles of the nodes. In other words, the device only knows the history
and current state of the device. However, in some works it is assumed that there is
stochastic information about the harvesting process.

1.4.1 Offline Energy Management

The general communication model considered in these works is a fading channel with
additive Gaussian noise where transmission is continuous and the rate can be controlled
via power. Specifically, the transmitter selects a power control policy P (t), achieving
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Figure 1.4: Energy harvesting system model

transmission rate r(p(t)) where r(.) is referred to as power rate function. The transmitter
stores the arriving energy in an energy queue and it also has another queue for storing the
arriving data. Fig. 1.4 depicts the model.

In [22] an optimal power allocation is found that maximizes the total data transferred
under a deadline T . The optimization problem defined in this work is subject to two
constraints, the energy causality constraint and the finite-storage constraint. That is to
say that the battery is not able to store more energy than its capacity and energy can
not be utilized before it is stored in the battery. These two constraints are illustrated in
Fig. 1.5. The upper staircase represents the causality constraint and the lower stair case
represents the finite-storage constraint. Any feasible power allocation should lie in the
tunnel between the two staircases. It is shown that due to the concavity of the power rate
function, the optimal policy is the tightest string that lies in the feasible tunnel.

The same model is also considered in [23]; however, in [23] a power allocation that
minimizes the transmission time T which is the time required to send a certain amount
of data is found. In [23], two scenarios are considered, in the first scenario all the data
is available at time t = 0 and in the second scenario, packets of data arrive during the
transmission. It is shown that the optimal transmission power does not change between
data packets or energy arrivals. Based on this property different algorithms are proposed
to obtain the optimal transmission power.
In reference [24], authors solve the same maximization problem as [22] using Lagrange
multipliers and present another approach for finding the optimal transmission power, called
directional water-filling algorithm. In this approach, due to the concavity of the rate
function, the goal is to allocate the water(energy) equally in a rectangle, which corresponds
to the concept of time. At the points of energy arrivals there are walls with right permeable
taps, and these taps only permit the water to flow from right to left. In other words the
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Figure 1.5: Feasible tunnel [10]

energy can be used and stored however, the energy arriving in the future can not be used
and this implements the causality constraint. Moreover, in [24] it is assumed that these
taps can not transfer more than Emax amount of water, and this handles the finite-storage
constraint. Fig. 1.6 depicts different possible scenarios in this algorithm. Then in [24], the
authors use this approach to find the optimal policy for the fading channel, assuming the
channel state changes M times through the transmission time.

The studies mentioned assume that the transmitter gathers the harvested energy at
discrete times. A more recent work, [25], considers the same framework with continuous
energy arrivals. Using convex analysis, it first shows that the optimal policy for an infinite
capacity battery is the boundary of the convex hull of the region above h(t) where h(t)
represent the cumulative harvested energy up to time t. Following a similar approach, an
optimal policy is presented for the finite capacity battery. In both cases, the optimal policy
has similar structure to the optimal policy obtained in [22]. Fig.1.7 shows an example of
an optimal policy obtained for continuous energy arrivals.

The works we summarized above study the case of a single-user channel. In [26], the
energy harvesting problem with a broadcast channel is considered. It is shown that the
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(a) (b)

Figure 1.6: Example of directional water-filling algorithm. (a) Initial levels. (b)Final levels
after running the algorithm

Figure 1.7: Optimal transmission policy
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optimal total transmit power is the same as the optimal transmit power with a single-user
channel. The authors prove that the optimal solution split the power based on a cut-off
level. For example, for the case of two users, if the optimal total transmit power is lower
than the cut-off level all the power will go to the stronger user and all the power above the
the cut-off level goes to the weaker user. The case of the multiple access channel is studied
in [27]. There, a proposed generalized iterative backward water-filling algorithm simplify
the problem of minimizing the transmission completion time into a convex optimization
problem and obtain the optimum energy management. In [28], the authors consider the
case of a two-user interference channel. An iterative algorithm to maximize the short
term sum-throughput is used. In [29], the authors consider the classic three-node relay
channel where both the relay and source harvest energy and can adapt their transmission
power instantaneously. An optimal transmission scheme that maximizes the short term
throughput is presented for the case of full-duplex relay. The more general case is studied
in [39]. Authors study the case where the source has the option to share its harvested
energy with the relay. It is assumed that energy transfer efficiency is α i.e., when the
source node sends σ amount of energy the relay receives α×σ, where α ≤ 1. The problem
is formulated in a similar fashion to [39], modifying the causality constraint to account for
the shared energy between the source and the relay. Then some necessary conditions for
the optimal solution are found. Moreover, two specific scenarios are studied in detail. In
the first scenario, relay energy arrivals are more frequent at the beginning and decrease
towards the end of the communication and an optimal solution for this case is presented.
In the second scenario, it is assumed that the source only harvests a packet of energy at the
beginning and through the rest of the communication, the relay harvests all the energy. In
this case, it is argued that in the optimal scenario, the source should share σ∗ amount of
its energy with the relay at the beginning of the transmission, where σ∗ can be calculated
by solving a fixed point equation.
In [30] it is assumed that the transmitter spends a processing energy cost when it is
transmitting. This adds an additional processing cost condition to the causality and finite-
storage conditions. The authors find the optimal policy which maximizes the throughput.
A directional glue pouring algorithm is introduced to solve the maximization problem
which is a modification to the glue pouring algorithm in [31], where the threshold power
level p∗ used in the algorithm is calculated by solving the equation:

log(1 + p∗)

p∗ + ε
=

1

1 + p∗
, (1.1)

and ε is the processing energy cost. Moreover, glue is permitted to only flow to the right
in order to conserve the causality condition.
In [32], authors take into account various constraint on the battery and practical imper-
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fections that it might have. In particular, for constant leakage rate it is shown that by
modifying the feasible tunnel introduced in [22], the optimal policy can be achieved with
a similar procedure.

1.4.2 Online Energy Management

In this section, we summarize works that study the problem of energy management in
the online scenario, i.e., unlike the offline case the system has only causal knowledge of
harvesting profile of the nodes and should adopt the power policy based on the system
state.
In [33], authors consider a slotted-time system where in each slot the transmitter has a
data packet to send, it can either send the packet in that time slot or it should discard
it. Moreover each data packet has a random importance value Vk and battery status in
slot k is determined by Bk+1 = min{[Bk − Qk]

+ + E − k,Emax}, where Emax is capacity
of battery, Qk is the action process which is one if the data packet is transmitted at slot k
and zero otherwise, and Ek is the amount of harvested energy during slot k. The goal is
to find an action process which maximizes the long-term average reward, defined as

G(µ) = lim
K→∞

inf
1

K
E
[K−1∑
k=0

QkVk

]
, (1.2)

where the action process is drawn according to µ. The optimal strategy can be numerically
calculated using techniques, such as linear programming. However, a three-level suboptimal
policy is presented which is conservative when the battery is low and aggressive when the
battery is in high energy states. In [34], the authors study the special case of the mentioned
problem when the system consists of two energy harvesting transmitters. It is shown that
the optimal policy dictates the transmission of data when the importance of the packet is
above a given threshold.
In [35], the authors study the problem of throughput maximization in a two-hop amplify-
and-forward relay network where the channel is assumed to be a fading channel represented
by a first-order Markov chain. The finite state space S is defined as

S = Bs × Br × Gsr × Grd

where Bs , {0,Bmaxs /n, . . . ,Bmaxs } and Br , {0,Bmaxr /n, . . . ,Bmaxr } are the sets of battery
levels at the source and relay respectively and Gsr , {g1

sr, g
2
sr, . . . , g

m
sr}, Grd , {g1

rd, g
2
rd, . . . , g

m
rd}
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are the sets of possible states of S-R and R-D links represented by the first-order Markov
chain. Using the defined state space the problem is converted into a discrete dynamic
programming and an optimal power policy is obtained.
In [42], authors study the case of lossy joint source-channel coding in a point-to-point
channel. It is assumed that the arrival times of energies follows a Poisson process, with the
battery charge modelled as a compound Poisson dam. Using this model and calculus of
variation technique two non-linear ODEs are derived that characterize the optimal power
policy and mismatch factor minimizing the distortion at the receiver. Multiple access
communication system with energy harvesting nodes is considered in [46]. The authors
consider a similar model for the energy arrivals, with a similar approach to [42], they show
that the optimal policy which maximize the throughput can be derived by solving a system
of simultaneous partial-integro-differential equations. They present an iterative algorithm
to solve the equations.
The works we mentioned above all assume that energy harvesting devices have perfect
knowledge of the state-of-charge in the battery. However, in practical world this is not
always the case, as there might be up to 30% error estimating the state of charge in some
batteries [36]. In [37], the authors investigates the performance of different transmission
policies with imperfect knowledge of the state of charge. It has been shown that the loss is
negligible compared to the case with perfect knowledge about the state-of-charge. In [38],
the authors consider the case where multiple sensors randomly access the channel to send
their data packets with random importance to the Fusion Center (FC). The authors study
the problem of designing optimal random access policies that maximize the network util-
ity, assuming simultaneous transmission from multiple nodes causes collision and packet
loss. The problem is formulated as a game and using techniques in game theory the local
optimum is found and an algorithm to compute it is presented.
In [40], the authors consider the realistic case where the battery suffers from battery degra-
dation that can decrease the lifetime of the harvesting device. Using Markov chains, a
general framework to represent the degradation status of the battery is introduced. Based
on this framework an optimization problem to maximize the battery lifetime subject to a
minimum quality of service is formulated. Then the authors show that the optimization
problem can be solved using sequential linear programming optimization algorithm.

1.5 Contributions

In this thesis, we derive transmission power policies that maximize the long-term average
transmission rate while forcing constraints to improve battery life as well as user quality of
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service. We consider a simple point-to-point communication system, where the transmitter
uses an energy harvesting module to scavenge and save energy for communication tasks.
The major contributions of this thesis are as follows:

• To avoid policies that can result in shortening battery life, we consider a new con-
straint (compared to previous work) that limits the variations of the battery depletion
rate (i.e., transmission power). This in turn decreases the internally dissipated power
in the battery and thus improves battery efficiency and life time.

• In a separate problem, we limit the maximum instantaneous discharge rate. This is
justified by the fact that most batteries have a maximum safe discharge rate.

• We also consider a problem where variations in the instantaneous throughput are
constrained. This new constraint accounts for the quality of service provided to the
users.

• We apply a calculus of variations technique combined with the Lagrange multiplier
method to derive necessary conditions for achievable locally optimal transmission
policies that maximize long-term average throughput in each optimization problem.

• Using positive recurrence arguments for the storage process, we prove a lemma which
helps derive an analytical upper bound for the problem of peak power constraint. We
also show that under certain conditions this bound meets another bound derived in
a previous work [46].

• We show for the special case of the Shannon rate function that the variance of the
instantaneous rate is bounded above by the variance of the power. This, in particular,
shows that for the special case of a Gaussian channel that a relatively small variance
in the transmission power also achieves a good quality of service.

• For the case of a Gaussian channel, we numerically show that by capping the peak
power, the gap between average achievable throughput and the upper bound is van-
ishing. Numerical simulations also reveal that the gap between average throughput
with limited power variance and that of limited peak power is almost negligible.

1.6 Thesis Organisation

The remainder of this thesis is organized as follows. In chapters 2, we state our com-
munication model as well as the storage model. Specifically, we consider a point-to-point
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communication system with non-causal knowledge of the energy arrivals and by modelling
the arrivals as a Posisson process we model our battery charge processes. Moreover, we
formulate our problem as a maximization problem. In chapter 3, we study the problem
with three different constraint. First we consider the problem of throughput maximization
while we constrain the variance of power policy. Second, we solve the problem while we
limit the peak power. Finally, we derive a necessary condition for the optimal policy that
maximizes the throughput while the variance of transmission rate is limited. Moreover, we
provide an algorithm which can be used to find the achievable solution. We provide our
simulations and numerical results in chapter 4. Finally we conclude our work in 5.
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Chapter 2

Preliminaries

2.1 Communication Model

We consider a point-to-point communication system with a transmitter-receiver pair, where
the transmitter uses an energy harvesting module, i.e, a storage unit of finite capacity which
is capable of harvesting ambient energy from its environment, and the receiver has enough
energy to decode its received signal at any rate. Furthermore, we assume that the instan-
taneous rate of the transmitter is only a function of instantaneous transmission power, i.e.,
r(p), where the function r(.) satisfies the following conditions:

[R1] r(0) = 0,

[R2] ∀ p > 0, r(p) > 0,

[R3] r(p) is three times continuously differentiable,

[R4] r(p) is non-decreasing,

[R5] r(p) is concave.

In particular, the Shannon rate function, r(p) = log2(1 +p/N0), which will be used later in
the thesis, satisfies the above conditions. We also assume that the communication is carried
over a sufficiently large block length so that r(p) has operational significance. Moreover,
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the transmission power (average power constraint) is fixed over each block, but it can
change from block to block. We define the long term average transmission rate as

R := lim
T→∞

1

T

∫ T

0

r(p(s))ds. (2.1)

2.2 Storage Model

We assume the transmitter has a battery of finite size L to store the harvested energy, and
thus the consumed power of the transmitter will become a function of available energy in
the battery denoted by Z(t). Consequently, we rewrite (2.1) as

R := lim
T→∞

1

T

∫ T

0

r(p(Z(s)))ds. (2.2)

We further assume that packets of energy {Ui}∞i=0 arrive at discrete and i.i.d. random time
instants {Ti}∞i=0, where T0 < T1 < · · · , which are a homogeneous Poisson point process
with intensity δ. Energy packets are also i.i.d. with cumulative distribution function
B(x) = Pr(U ≤ x). One can thus express the total harvested energy up to the time t as
follows

A(t) =

N(t)∑
i=0

Ui, (2.3)

where N(t) is an integer such that TN(t)−1 ≤ t < TN(t).

Remark 1 Note that {A(t) : t ≥ 0} is a compound Poisson process with rate δ, and thus
E(A(t)) = δtE(U) (i.e., expected energy arrival up until time t).

While the assumption of exponential distribution makes the problem analytically more
tractable, it is also justifiable in the sense that larger energy packets are less likely to occur
and vice versa. Thus, the stored energy in the battery is described by

X(t) = X(0) + A(t)−
∫ t

0+
p(Z(s))ds−R(t), (2.4)

where R(t) is a non-negative, non-decreasing and continuous-time process known as a
reflection process that ensures X(t) always remains inside the battery capacity, i.e., X(t) ∈
[0, L][43]. These assumptions let us apply the following theorem.
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Theorem 1 For a battery with finite capacity L and transmission power p(x) such that
sup0<x≤L p(x) < ∞, ∀L > 0 and p(0) = 0, the storage process Z(t) is positive recurrent.
Moreover, there exists a unique stationary measure π(x) such that

π(x) = π0 +

∫ x

0+
f(u)du, (2.5)

where π(x) is continuous on (0, L] and has an atom at x = 0 of size π0. In addition,

f(x) =
δ

p(x)

{
π0(1−B(x)) +

∫ x

0+
(1−B(x− y))f(y)dy

}
. (2.6)

From now on, we assume energy arrivals are exponentially distributed with parameter
λ, i.e., B(x) = 1− e−λx. Therefore, (2.6) reduces to

f(x) =
δe−λx

p(x)

(
π0 +

∫ x

0+
eλyf(y)dy

)
. (2.7)

Thus, one can see that long term average rate in (2.1) almost surely converges to

R := r(0)π0 +

∫ L

0+
r(p(u))f(u)du. (2.8)

2.3 Problem Formulation

Our objective in this thesis is to derive achievable constrained policies with good perfor-
mance, where the measure of performance is taken to be the long term average rate. We
formulate our problem as

sup
p(x),π0

∫ L

0

r(p(x))f(x)dx (2.9)

s.t. f(x) =
δe−λx

p(x)

(
π0 +

∫ x

0+
eλuf(u)du

)
(2.10)

π0 +

∫ L

0+
f(u)du = 1 (2.11)

h(p, f) ≤ h0 (2.12)

f(x) ≥ 0, π0 ≥ 0. (2.13)
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By choosing a suitable functional h we ensure that the resulting policy satisfies our desirable
criteria which will be defined in the following sections. In what follows, we first pick h to
be the variance function and then the identity function to account for the battery discharge
rate.
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Chapter 3

Achievable Policy with constrained
variance

From the viewpoint of battery life time, discharging the battery at a constant rate is
better than a pulse or a momentary high load. Since internal power dissipation is less
in constant discharging compared to pulsed discharging, therefore this issue has not been
taken into consideration in previous works. Moreover, when the Shannon rate function is
used, we prove that the variance of the transmission rate is bounded by the variance of the
transmission power. With this intuition, by limiting the variance of transmission power,
we can limit the variance of the transmission rate and obtain good performance as well.
In this section, we derive a necessary condition for the optimal policy when the variance
is bounded by same constant v0. Specifically, we formulate the problem as

sup
p(x),π0

∫ L

0

r(p(x))f(x)dx (3.1)

s.t. f(x) =
δe−λx

p(x)

(
π0 +

∫ x

0+
eλuf(u)du

)
(3.2)

π0 +

∫ L

0+
f(u)du = 1 (3.3)

V ar(p(X)) ≤ h0 (3.4)

f(x) ≥ 0, π0 ≥ 0. (3.5)
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Consider the change of variable

f(x) := g(x)e−λx, (3.6)

then one can verify from (2.7) that

p(x) =
δG(x)

g(x)
, (3.7)

where we defined G(x) = π0 +
∫ x

0+
g(u)du. Thus problem(3.1)-(3.5) reduces to

sup
p(x),π0

∫ L

0+
r

(
δG(x)

g(x)

)
g(x)e−λxdx (3.8)

s.t. G(x) = π0 +

∫ x

0+
g(u)du (3.9)

π0 +

∫ L

0+
g(u)e−λudu = 1 (3.10)

V ar

(
δG(X)

g(X)

)
≤ v0 (3.11)

g(x) ≥ 0, π0 ≥ 0, (3.12)

The objective is now to find a necessary condition for optimality of G(x). In order to
deal with the variance condition, we use the Lagrange multiplier method. Specifically, for
some non-positive η solving (3.8) is equivalent to solving the following.

sup
p(x),π0

∫ L

0+
r

(
δG(x)

g(x)

)
g(x)e−λxdx+ η

(
V ar

(
δG(X)

g(X)

)
− v0

)
(3.13)

s.t. G(x) = π0 +

∫ x

0+
g(u)du (3.14)

π0 +

∫ L

0+
g(u)e−λudu = 1 (3.15)

g(x) ≥ 0, π0 ≥ 0. (3.16)

Assume that G(x) is an extremum for the problem. Now consider the perturbation of the
form

Ĝ(x) = G(x) + εµ(x), (3.17)
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where ε is a small positive constant and µ(x) is an arbitrary continuous function over (0, L]
such that ∫ L

0+
µ′(u)e−λudu = 0, (3.18)

µ(0+) = µ(L) = 0. (3.19)

Note that (3.18) accounts for feasibility of Ĝ(x) with respect to (3.15), where G′(x) = g(x)
Consequently, our perturbed objective function should have an extrema at ε = 0, i.e.,

∂

∂ε

(∫ L

0+
r

(
δĜ(x)

ĝ(x)

)
ĝ(x)e−λxdx+ η

(
V ar

(
δĜ(X)

ĝ(X)

)
− v0

))∣∣∣
ε=0

= 0,

(3.20)

where

ĝ(x) = Ĝ(x)′. (3.21)

Equation (3.20) can be simplified as∫ L

0+

(
r

(
δG(x)

g(x)

)
e−λxµ′(x) + r′

(
δG(x)

g(x)

)
e−λx

(
δµ(x)− δG(x)µ′(x)

g(x)

))
dx

+ η

(∫ L

0+

(
2δ2G(x)e−λxµ(x)

g(x)
− δ2G(x)2e−λxµ′(x)

g(x)2

)
dx

− 2

∫ L

0+
δG(x)e−λxdx

∫ L

0+
δµ(x)e−λxdx

)
= 0.

(3.22)

Integrating the l.h.s of (3.18) by parts and using (3.19), we obtain∫ L

0+
µ′(x)e−λxdx = e−λxµ(x)|L0+ + λ

∫ L

0+
µ(x)e−λxdx = 0, (3.23)

or equivalently, ∫ L

0

µ(x)e−λxdx = 0. (3.24)
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Replacing (3.24) into (3.22), we obtain∫ L

0+

(
r

(
δG(x)

g(x)

)
e−λxµ′(x) + r′

(
δG(x)

g(x)

)
e−λx

(
δµ(x)− δG(x)µ′(x)

g(x)

))
dx

+ η

(∫ L

0+

(2δ2G(x)e−λxµ(x)

g(x)
− δ2G(x)2e−λxµ′(x)

g(x)2

)
dx

)
= 0.

(3.25)

Integrating by parts, we have(
e−λxr(p(x))− e−λxr′(p(x))p(x)− µp2(x)λe−λx

)
µ(x)

∣∣∣L
0+
−
∫ L

0+
e−λx

(
λr(p(x)) + δr′(p(x))

− λr′(p(x))p(x) + p(x)p′(x)r′′(p(x)) + 2δηp(x)− 2ηp(x)p′(x)− ληp2(x)

)
µ(x)dx = 0

(3.26)

Using (3.19), (3.24) and based on the fundamental lemma of calculus of variations we have

λr(p(x)) + δr′(p(x))− λr′(p(x))p(x) + p(x)p′(x)r′′(p(x))

+ 2δηp(x) + 2ηp(x)p′(x)− ληp2(x) = K, (3.27)

where K is a free parameter. For specific values of K and η one can compute from (3.27)
an optimum for the problem (3.8)-(3.12). In other words, if we think of p(x) as a function
of K and η our objective becomes

max
K,η

∫ L

0+
r(p(x,K, η))f(x,K, η)dx (3.28)

V ar(p(X,K, η)) < v0, (3.29)

where we have reduced our problem from an optimization over a function space into an
optimization over two parameters in R.

3.1 Upper bound

In the previous section, we proposed a method to derive a policy with good performance,
which requires us to search over two parameters. We now derive an upper bound for this

23



problem. Using Jensen’s inequality, and due to [R5], we have

Eπ(r(p(X))) ≤ r(Eπ(p(X)), (3.30)

where Eπ(.) is the expectation with respect to the stationary distribution π. Moreover,
due to [R4] we have

sup
p(x),π0

Eπ(r(p(X))) ≤ r( sup
p(x),π0

Eπ(p(X)). (3.31)

In order to calculate the term sup
p(x),π0

Eπ(p(X)), we write it as a Lagrange multiplier problem

sup
p(x),π0

∫ L

0+
δG(x)e−λxdx+ Λ

(
V ar(

δG(X)

g(X)
)− v0

)
(3.32)

s.t. G(x) = π0 +

∫ x

0+
g(u)du (3.33)

π0 +

∫ L

0+
g(x)e−λxdx (3.34)

g(x) ≥ 0, π0 ≥ 0, (3.35)

where Λ is the Lagrange multiplier. Now our goal is to find the critical values of the problem
(3.32)-(3.35). Similar to the previous section, let G(x) be extremum for the problem and
define the following perturbation

Ĝ(x) = G(x) + εµ(x), (3.36)

where ε is a small positive constant and µ(x) is an arbitrary continuous function over (0, L]
such that ∫ L

0+
µ′(u)e−λudu = 0, (3.37)

µ(0+) = µ(L) = 0. (3.38)

Note that (3.37) accounts for feasibility of Ĝ(x) with respect to (3.34). Since G(x) is an
extremum for the objective function, we have

∂

∂ε

(∫ L

0+
δĜ(x)e−λxdx+ Λ

(
V ar

(
δĜ(X)

ĝ(X)

)
− v0

))∣∣∣
ε=0

= 0, (3.39)
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gives us a necessary condition for a local and thus global optimal solution, where Ĝ(x) =
G(x) + εµ(x). Expanding (3.39) yields∫ L

0+
δe−λxµ(x)dx+ η

(∫ L

0+

(2δ2G(x)e−λxµ(x)

g(x)
− δ2G(x)2e−λxµ′(x)

g(x)2

)
dx

− 2

∫ L

0+
δG(x)e−λxdx

∫ L

0+
δµ(x)e−λxdx

)
= 0.

(3.40)

Using (3.24) and integrating by parts we obtain

Λp2(x)e−λxµ(x)
∣∣∣L
0+
−
∫ L

0+

(
2δΛp(x)− 2Λp(x)p′(x)− λΛp2(x)

)
µ(x)dx = 0

Performing some simplifications we get

2δΛp(x)− 2Λp(x)p′(x)− λΛp2(x) = K2, (3.41)

where K2 is a free parameter similar to K in (3.27). One can rewrite (3.41) as

p′(x) = α
1

p(x)
+ λp(x)− δ, (3.42)

where α = −K2

2Λ
. Thus, similar to (3.28), solving (3.32)-(3.35) is now equivalent to solving

the following problem

max
α

∫ L

0+
p(x, α)f(x, α)dx (3.43)

s.t. V ar(p(X,α)) ≤ v0. (3.44)

Different values of α corresponds to different values of the Lagrange multiplier Λ. In the
following lemma we show that both the objective function and V ar(p(x)) are either in-
creasing or decreasing with respect to the α, hence finding an α0 that satisfies the condition
(3.44) with equality solves the maximization problem above.

Lemma 1 Changing α will either increase or decrease both Eπ(p(X,α)) and V ar(p(X,α))
at the same time.
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Proof: We should note that due to the inequality sign of the constraint only the negative
values of Λ would be acceptable. Assume to the contrary that for two random values α1

and α2 we have Eπ(p(X,α1)) > Eπ(p(X,α2)) and V ar(p(X,α1)) < V ar(p(X,α2)). Let’s
assume α2 corresponds to Λ2, now since Λ2 is negative we’ll have

Eπ(p(X,α2)) + Λ2V ar(p(X,α2)) < Eπ(p(X,α1)) + Λ2V ar(p(X,α1)),

which is a contradiction since we assumed α2 maximizes Eπ(p(X,α2)) + Λ2V ar(p(X,α2)).
The other possibility is Eπ(p(X,Λ1)) < Eπ(p(X,Λ2)) and V ar(p(X,Λ1)) > V ar(p(X,Λ2))
which by a similar argument leads to a contradiction, which proves the lemma.

3.2 Achievable Policy with peak power constraint

Another way of decreasing the variation of the power is to limit the peak power. Moreover,
most batteries have a maximum safe discharge rate. Here, we maximize the long term
average rate while we constrain the power policy to be bounded by a finite number, say
M . We formulate the problem as follows

sup
p(x),π0

∫ L

0+
r(p(x))f(x)dx (3.45)

f(x) =
δe−λx

p(x)

(
π0 +

∫ x

0+
e−λuf(u)du

)
(3.46)

π0 +

∫ L

0+
f(x)dx = 1 (3.47)

p(x) ≤M (3.48)

f(x) ≥ 0, π0 ≥ 0. (3.49)

In order to deal with the inequality constraint (3.48), we use the Kuhn-Karush-Tucker
condition and reformulate the problem as below

sup
p(x),π0

∫ L

0+
r(p(x))f(x)dx+ φ(x)(p(x)−M) (3.50)

s.t. f(x) =
δe−λx

p(x)

(
π0 +

∫ x

0+
e−λuf(u)du

)
(3.51)

π0 +

∫ L

0+
f(x)dx = 1 (3.52)

f(x) ≥ 0, π0 ≥ 0, (3.53)
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where ∀x ∈ (0, L], φ(x) ≥ 0. Thus, by the complementary slackness we must have
φ∗(x)

(
p∗(x) − M) = 0, where ∗ denotes the optimal function. If φ∗(x) = 0 then the

problem simplifies to the problem defined in [41]. As a consequence of this, the solution
will be a piecewise function where it either satisfies

λr(p(x)) + δr′(p(x))− λr′(p(x))p(x) + p(x)p′(x)r′′(p(x)) = K, (3.54)

which is obtained in [41] or we have p∗(x) = M . Since the optimal policy obtained in
[41] is increasing and the initial value of the optimal solution, p†(0+), is less than M , our
solution will be in the form below

p∗(x) =

{
p†(x) if p†(x) < M,

M if p†(x) > M.
(3.55)

Where, p†(z) is calculated in [41].

We now find an upper for this problem using the following lemma.

Lemma 2 Let’s assume X1(t) and X2(t) result from the same energy arrivals A(t) by
applying two different policies p1(x) and p2(x) respectively. Now if ∀x ∈ (0, L], p1(x) ≥
p2(x), where both are continuous on this interval and X2(0) ≥ X1(0) then Eπ1(p1(X)) ≥
Eπ2(p2(X)).

Proof: See Appendix A.

Consider the following choice of p(x)

p̃(x) =

{
M if x > 0,

0 if x = 0.
(3.56)

Based on (3.55) and Lemma 2 we thus have

sup
p(x)≤M,π0

Eπ(r(p(X))) < r(Eπ(p̃(X)), (3.57)

where the left hand side is the optimization problem (3.45)-(3.49). Using the derivations

(4.2) and (4.1), to be shown later in section VII, we calculate Eπ(p̃(X)) as follows

Eπ(p̃(X)) =

∫ L

0+
p̃(x)f(x)dx =

∫ L

0+

(
π0δe

λx exp(

∫ L

0+

δ

p(u)
du)
)
dx, (3.58)
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substituting (3.56) into (3.58) we obtain

Eπ(p̃(X)) = π0δ

∫ L

0+
e−λx exp(

∫ x

0+

δ

M
du)dx = π0δ

∫ L

0+
e−(λ− δ

M
)xdx (3.59)

=
π0δM

Mλ− δ

(
1− e−(λ− δ

M
L)
)

(3.60)

Similarly π0 is calculated as

π0 =

[
1 +

∫ L

0+

δe−λx

M
exp(

∫ x

0+

δ

M
du)dx

]−1

=

[
1 +

δ

M

∫
0+
Le−(λ− δ

M
)xdx

]−1

(3.61)

=
(
Mλ− δ

)(
Mλ− δe(λ− δ

M
)L
)
. (3.62)

Hence (3.60) simplifies to

Eπ(p̃(X)) =
δM(eλL − e δLM )

MλeλL − δe δLM
(3.63)

Remark 2 Note that by calculating the following limit we are also able to get an upper
bound for the unconstrained problem i.e., problem (2.9) when constraint (2.12) is ignored.

lim
M→∞

δM(eλL − e δLM )

MλeλL − δe δLM
=
δ

λ
(1− e−λL). (3.64)

Consequently, we have

sup
p(x),π0

Eπ(r(p(X))) ≤ r

(
δ

λ

(
1− e−λL

))
. (3.65)

This upper bound was also calculated in [46].

3.3 Achievable Policy with constraint on Rate Vari-

ance

In the previous sections, our objective was to prolong the battery life by limiting the
variations in the transmission power. However there are situations where we wish to
maintain a near constant rate of transmission. Here, we aim to achieve this by finding
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efficient policies with limited transmission rate variance. Specifically, we formulate the
problem as follows

sup
p(x),π0

∫ L

0+
r

(
δG(x)

g(x)

)
g(x)e−λxdx (3.66)

s.t. G(x) = π0 +

∫ z

0+
g(u)du (3.67)

π0 +

∫ L

0+
g(x)e−λxdx = 1 (3.68)

V ar

(
r

(
δG(X)

g(X)

))
≤ v0 (3.69)

g(x) ≥ 0, π0 ≥ 0. (3.70)

A similar approach to that of (3.20) can be adopted to solve the above problem. Con-

sider the perturbation of the form ̂G(x) = G(x) + εH(x), and define H ′(x) = h(x). Hence,
by perturbing the objective function we get∫ L

0+

(
e−λxh(x)r

(
δ G(x)

g(x)

)
+ e−λxg(x)r′

(
δ G(x)

g(x)

)
×
(
δ H(x)

g(x)
− δ G(x)h(x)

(g(x))2

))
dx+

θ

(∫ L

0+

(
2 e−λxg(x)r

(
δ G(x)

g(x)

)
r′
(
δ G(x)

g(x)

)(
δ H(x)

g(x)
− δ G(x)h(x)

(g(x))2

)
(3.71)

+

(
r

(
δ G(x)

g(x)

))2

h(x)e−λx
)
dx− 2

∫ L

0

e−λxg(x)r

(
δ G(x)

g(x)

)
dx

×
∫ L

0+

(
e−λxh(x)r

(
δ G(x)

g(x)

)
+ e−λxg(x)r′

(
δ G(x)

g(x)

)(
δ H(x)

g(x)
− δ G(x)h(x)

(g(x))2

)
dx

))
= 0,

where θ is our Lagrange multiplier. Now let

ξ :=

∫ L

0+
e−λxg(x)r

(
δ G(x)

g(x)

)
dx. (3.72)

Following the approach used in the previous sections, based on the fundamental lemma of
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the calculus of variations, we obtain the following equation.

λ r(p(x))− λ r′(p(x))p(x) + r′′(p(x))p′(x)p(x)− θ
(

2λ r(p(x))r′(p(x))p(x)

− 2 (r′(p(x)))2p′(x)p(x)− 2 r(p(x))(r′′(p(x))p′(x)p(x)− (r(p(x)))2λ

− 2 ξ
(
− λ r(p(x)) + λ r′(p(x))p(x)− r′′(p(x))p′(x)p(x)

))
+ r′(p(x))δ

+ θ
(
2 r(p(x))r′(p(x))δ − 2 ξ r′(p(x))δ

)
= K3, (3.73)

where K3 is a free parameter. Since ξ = Eπ(r(p(X))), solving the above equation is not as
straight forward as solving (3.27).
In section 4.3, we present a recursive algorithm to solve this equation.
Solving the equation (3.73) will be a demanding task. However, based on the following
theorem, for some rate functions, by solving (3.8)-(3.12) we also obtain policies with good
performance while the variance of the rate is limited as well.

Theorem 2 Let X be a random variable. If f and g are non-negative, differentiable,
convex functions such that f ′ > 0, g′ > 0, f < g and f ′ < g′ over the convex hull of the
range of X, then

V ar(f(X)) ≤ V ar(g(X)).

Proof: See Appendix 2.

In particular, if we let f(x) = ln(1 + x) and g(x) = x we get that

V ar(ln(1 +X)) ≤ V ar(X), (3.74)

equivalently,

(ln 2)2V ar

(
log2

(
1 +

P

N

))
≤ V ar

(
P

N

)
which results in

V ar

(
log2

(
1 +

P

N

))
≤ 1

(ln 2)2N2
V ar (P ) .
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Chapter 4

Numerical Results

In this section, we aim to solve (3.27), (3.42) and (3.73) in order to obtain efficient power
policies. It appears there is no closed form solution for these due to the non-linear nature
of the equations. Thus, we rely on numerical solutions. Using (3.7), we have∫ x

0+

1

p(u)
du =

∫ x

0+

g(u)

δG(u)
du, (4.1)

which simplifies to

G(x) = π0 exp

(∫ x

0+

δ

p(u)
du

)
. (4.2)

Differentiating (4.2) with respect to x, results in

g(x) = π0
δ

p(x)
exp

(∫ x

0+

δ

p(u)
du

)
. (4.3)

And π0 can be computed from

π0 =

[
1 +

∫ L

0+

δe−λx

p(x)
exp

(∫ x

0+

δ

p(u)
du

)
dx

]−1

. (4.4)

In the following, we consider the special case of the Shannon rate function r(p) = log(1 +
p/N) where N = 1. Moreover, we assume δ = λ = 1. The initial value for the power policy
is chosen to be p(0+) = 0.001. Picking a small initial value for the power policy can be
justified by the intuition that a small amount of energy in the battery results in a small
depletion rate p(x), otherwise the battery will deplete rapidly which leads to a non-efficient
policy. Numerical simulations also show that for sufficiently small values of p(0+) the best
throughput is achieved [46].
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4.1 Constrained Variance for Power

In this section, we numerically solve equations (3.27) and (3.42) in order to find an achiev-
able optimal power policy and an upper when the variance of power is constrained. We
first calculate the upper bound. Based on Lemma 1, our search over Λ and K2 is limited
to finding a certain variance for which the throughput is maximum. Next, we perform an
extensive search over η and K in (3.27) to find the optimal values. Fig. 4.1 shows the
throughput achieved by the optimal policy as well as the upper bound as a function of v0.
It can be seen that for small variances we almost have a tight upper bound. Moreover, as
the plot shows we can obtain policies with small variances that provide good performance.
Fig. 4.2 illustrates policies that result, for different variances.
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Figure 4.1: The optimal throughput as well as the upper bound as a function of v0.
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Figure 4.2: The optimal policy for different values of variance.
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Figure 4.3: The optimal throughput for different values of M .

4.2 Peak Power Constraint

We now consider the problem of finding an optimal transmission policy which maximize
the throughput while the power is bounded by a constant M . From the results shown in
section 3.2, in order to obtain the optimal policy for this problem we need to bound the
policy obtained in [41] by a constant M . Fig. 4.3 shows the optimal throughput as well as
the upper bound obtained from equation (3.63) as functions of M .

Fig. 4.4 shows that by limiting the peak power, we also reduce the variance of the
power, moreover, we are able to achieve values that are almost identical to our results with
constrained variance in the previous subsection. Consequently, by only limiting the peak
power we obtain a near optimal lower bound. Based on this observation we can conclude
that most of the variation in transmission power is due to large transmission power when
battery has close to full charge.
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Figure 4.4: The throughput for the optimal case and limited peak power when the variance
of power varies in the range 0 < v0 < 1.
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4.3 Constrained Variance on Throughput

As we showed in Section 3.3, to obtain an optimal policy when the variance of throughput
is constrained, we need to solve equation (3.73). Algorithm 1 below provides an algorithm
to do so.

Algorithm 1 Recursive algorithm to numerically solve (3.73).
initialize p(x) with some arbitrary function ;
compute (4.2) and (4.4) ;
while termination criterion is not satisfied do

calculate (3.72);
update p(x) by solving (3.73) for optimized values of K3 and θ such that the
constraint is satisfied.;
update (4.2) and (4.4) ;

end

Fig. 4.5 depicts the optimal throughput achieved, when the variance of the transmission
rate is bounded. As already mentioned, we expect the policies achieved in section 4.1 to
show good performance in this scenario as well. Fig. 4.5 compares the performance of the
three different policies when the variance of the transmission rate is bounded by v0.

36



Var(r(p(x))

0 0.05 0.1 0.15

T
h
ro

u
g
h
p
u
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The optimal throughput 

A lower bound achieved by bounding the variance of power

A lower bound achieved by bounding the power policy
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Chapter 5

Conclusion

In this thesis, we have studied the problem of designing optimal transmission policies, in a
point-to-point energy harvesting communication system, while considering more practical
scenarios to account for quality of service and battery requirements compared to previous
works.
We have found the structure of achievable transmission power policies, which maximize the
long-term average throughput, while forcing constraints on appropriate functional of the
power policy to cope with battery requirements and also to improve the quality of service.
More specifically, we have used a calculus of variations technique to derive power policies
that achieve good performance and are adapted to the remaining charge in the battery.
In order to improve the battery efficiency and lifetime, we have investigated limiting the
transmission power as well as its variation. Moreover, we have derived interesting analytical
and numerical upper bounds for these cases. In particular, we have numerically shown that
under certain conditions the analytical upper bound achieves another bound previously
derived in a different work for the unconstrained problem. We have also accounted for
the quality of service, in a separate optimization problem, by constraining variations in
instantaneous throughput.
We have considered the case of a Gaussian channel for which we numerically showed that
for different values of the variance of the transmission power, as the remaining battery
charge increases the transmission power increases as well. Numerical results have also
shown that values of achievable throughput under the constraint of limited variance of the
transmission power are almost identical to those of limited peak power. We thus conclude
that most of the variation in transmission power is due to large large transmission power
at high battery charge. Future extensions include considering more general energy arrival
models as well as deriving better bounds for the problem of limiting the variance of the
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throughput.
Another extension is to consider the outage probability as a quality of service and find
achievable solutions which maximize the throughput while minimize the outage probability.
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APPENDICES

5.1 Appendix 1

Proof: We first prove that ∀t ∈ [0,∞), X2(t) ≥ X1(t). Define f(t) = X2(t)−X1(t), fort ∈
(0, T0) where T0 is the first energy arrival time. f(t) is a continuous function on (0, T0).
We thus need to show that f(t) ≥ 0. Assume to the contrary that there exists a point,
say t0 ∈ (0, T0), such that f(t0) < 0. Since f(t) is continuous there exists a neighbourhood
around t0, say (p, q), over which f(t) is negative and (p, q) ⊂ (0, t0). Let’s say (α, β) is
the biggest interval containing t0 such that ∀t ∈ (α, β), f(t) < 0, and since f(0) ≥ 0 we
must have α ≥ 0. Fig. 5.1 illustrates this case. One can easily see that this requires us
to have f(α) = 0. In addition, we have that X1(α) = X2(α) > 0. This is due to the
fact that for t ∈ [0, T0), X(t) is decreasing and once it hits zero it remains there. Thus
p(X1(t)) and p(X2(t)) are continuous at t = α. By definition we know that Xk(t) =
Xk,0 −

∫ t
0+
p(Xk(u))du, for t ∈ (0, T0), k = 1, 2. Thus X

′

k(α) = −p(Xk(α)), k = 1, 2.

Also, by our assumption we have that X
′
1(α) = −p1(X1(α)) ≤ −p2(X2(α)) = X

′
2(α). On

the other hand,

X
′

1(α) = lim
ε→0+

X1(α + ε)−X1(α)

ε

≥ lim
ε→0+

X2(α + ε)−X2(α)

ε
= X

′

2(α),

which is a contradiction. Therefore for t ∈ (0, T0), X2(t) ≥ X1(t). By induction, this can
also be proved for every interval (Ti, Ti+1), since X2(Ti) ≥ X1(Ti). In addition, one can
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Figure 5.1: Available Energy in Battery at time t

write Eπ(p(Xk)), k = 1, 2 as

Eπ(p(Xk)) = lim
T→∞

1

T

∫ T

0

p(Xk(u))du

= lim
T→∞

1

T
(Xk(0) + A(T )−Xk(T )−Rk(T ))

= lim
T→∞

1

T
(A(T )−Xk(T )−Rk(T )) ,

where R(t) is the reflection process defined in section 2.2. Since, we have X2(t) ≥
X1(t), ∀t ≥ 0, the amount of overflow of the first policy is always less than or equal to that of
the second policy (i.e., R1(t) ≤ R2(t),∀t). We thus conclude that Eπ1(p1(X)) ≥ Eπ2(p2(X))
and the proof is complete.
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5.2 Appendix 2

Lemma 3 For any random variable X, if f(X, .) is a differentiable, convex decreasing
function on [a, b] and its derivative at a exist and is bounded, then

∂

∂ε
E[f(X, ε)] = E[

∂

∂ε
f(X, ε)] (5.1)

Proof: We bring the proof from [50]
Let g(x, ε) = ∂

∂ε
f(x, ε) For ε ∈ [a, b), let

mn(x, ε) = (n+Nε)

[
f(x, ε+

1

n+Nε

)− f(x, ε)

]
(5.2)

where Nε = 2
b−ε , and for ε = b, let

mn(x, ε) = (n+Nε)

[
f(x, ε)− f(x, ε− 1

n+Nε

)

]
(5.3)

where Nε = 2
b−a . Clearly the sequence mn{n≥1} converges point-wise to g. Since with

probability 1, f(X, .) is convex and decreasing, and (by the hypothesis of boundedness)
|mn(X, ε)| ≤ |g(X, a)| ≤ M for all ε ∈ [a, b]. By Lebesgue’s Dominated Convergence
Theorem

E[
∂

∂ε
f(X, ε)] = E[g(X, ε)] = lim

n→∞
E[mn(X, ε)] =

∂

∂ε
E[f(X, ε)] (5.4)

and the proof is complete.

Proof of lemma 2: Define

h(x, ε) = εf(x) + (1− ε)g(x),

then h(x, ε) is an increasing function with respect to ε. On the other hand, we have that

∂

∂x

∂

∂ε
h(x, ε) = f ′(x)− g′(x) < 0.

Consequently, forε ∈ [0, 1], ∂
∂ε
h(x, ε) is a decreasing function with respect to x. Now

∂

∂ε
V ar(h(X, ε)) =

∂

∂ε
{E(h(X, ε)2)− (E(h(X, ε))2},

42



using Lemma 3, we have

∂

∂ε
V ar(h(X, ε)) = E

(
2h(X, ε)

∂

∂ε
h(X, ε)

)
− 2E(h(X, ε)]E

(
∂

∂ε
h(X, ε)

)
< 0.

Where the last inequality is due to a theorem which states, E(u(X)w(X)) ≤ E(u(X))E(w(X))
when u(x) is an increasing function and w(x) is decreasing.
From the above statement

V ar(h(X, 0)) ≥ V ar(h(X, 1))

or equivalently

V ar(g(X)) ≥ V ar((f(X)),

which completes our proof.
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